WirelessWorld January 1973

The semiconductor story

 Accurate I.f. source
Think of what you'd pay for a Digital Frequency Counterand a Modulation Meter capable of testing mobile radio both in the field 5 and on $\because \therefore$ the bench

now halve it!

Our new TF2424 Frequency Counter is light, compact and portable designed for field and workshop maintenance of mobile radio installations. Measures frequencies directly in the v.h.f. and u.h.f. bands with a 4-decade solid state numeric display.
The provision of xl and x 1000 ranges allows measurements up to seven digits to 512 MHz . In addition a $\times 10$ facility increases the resolution to 10 Hz . Crystal stability is ± 1 $\times 10^{-7}$. Battery operated with a built-in charger. Weight: $6 \frac{1}{2} \mathrm{lb}$. Supplied with detachable mains lead
and various optional extras. Price: $£ 425$ (inc. batt.).

The TF2303 narrow band Modulation Meter is also very compact and portable - designed for use on FM and AM mobile radios. Noise level is low: better than -40 dB relative to 5 kHz deviation. Measures narrow band f.m. deviation up to 15 kHz at carrier frequencies up to 520 MHz , a.m. depths up to 95% at carrier frequencies up to 225 MHz . Battery or mains operated - built-in charger. Weight 13 lb . Supplied with mains lead and various optional extras.

Price: $£ 305$ (plus $£ 25$ for optional re-chargeable battery).

Which means you could buy the pair for just over $£ 750$ - or about half the price of two equivalent competitive models. Full details by return.

MARCONI INSTRUMENTS LIMITED Longacres, St. Albans, Herts, England. Tel: St. Albans 59292 Telex: 23350 A GEC-Marconi Electronics Company

LOW COST RC OSCILLATORS 1 Hz TO 1 MHz

POBTABLE IWSTRUWENTS

ANALOGUE

FREQUENCY
1 Hz to 1 MHz in 12 ranges. Acc. $\pm 2 \%$ $\pm 0.03 \mathrm{~Hz}$.
SINE OUTPUT $\quad 7 \mathrm{~V}$ r.m.s.down to $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
DISTORTION $\quad<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz .
sQuare output
SYNC. OUTPUT SYNC. INPUT

METER SCALES
SIZE \& WEIGHT

Sine O/P Sine \& Sq. O/P. Sine O/P Sine \& Sq.O/P +meter. + meter.

DIGITAL

FREQUENCY
ACCURACY

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT

TG66B

£120
Batteries only.
0.2 Hz to 1.22 MHz on four decade controls
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz $\pm 1 \%$ from 100 kHz to 300 kHz $\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$
$<0.15 \%$ from 15 Hz to 15 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz . 2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$. 7 "high $\times 10 \frac{1}{4}$ " wide $\times 7$ " deep. 12 lbs.

TG66A
f150
Mains unit \& batteries incl

Prices include batteries with 400 hour life Mains power units $£ 10$ extra. Leather cases $£ 6$ extra.

Send for literature covering our full range of portable instruments.
IFVE\|FIECTRONICG TD Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-4495028/440 8686

numbers

Set up a QUAD 33 with +1 on the treble, control, and you will obtain a response precisely defined; readily and accurately repeatable. This response has a shape rather different from most run of the mill tone controls and there are, as you may guess, good reasons for this.

Then as the listener is not expected to know just what a given response curve does to the signal off the record, we provide a button marked 'cancel'. This enables him to make a direct comparison with the original and so learn just which recording defects need what correction. A QUAD user gets the best out of every record - every time - and enjoys the music to the full.

QUAD

for the closest approach to the original sound

BURNDEPT HAVE PLANS TO SPEED UPA BUSINESS ON THE MOVE

 give any business a move on Firstly, Burndept have the planning skill.
With 50 years' experience in radio communications, they'll plan a system according to your needs.
Secondly, Burndept has the equipment.
Burndept's new Personal Radio-telephone is the most versatile unit yet designed. It's small and light. and has a wide range of accessories. So it can be used simply by anybody anywhere - airline mechanics, construction workers, oil refinery men - all find a use for it. The Burndept Mobile Radio-telephone is a complete UHF transmitter/receiver suitable for lorries, cars, cranes and fork lift trucks.

But Burndept go one better.
They back up their systems, planning with a most efficient after-sales service.

So you'll always get the best out of Burndept - and speed up your business on the move.

With us, service comes first. Burndept Electronics (E.R.) Ltd.
St. Fidelis Road, Erith, Kent. Tel. Erith 39121 .

Vortexion

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg .) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough.
A voltage stabilised supply is used for the pre-amplifiers
making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER

(0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

100 WATT ALL SILICON AMPLIFIER

A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER

With specification as above is here combined with a 4 channel F.E.T. Mixer, 2-30/60S balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over $\mathbf{2 5 \%}$ and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER

An all silcon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs. and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER

High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced onput and HiZ gram. Outputs available $8 / 15 \mathrm{ohms}$ OR 100 volt line.

200 WATT AMPLIFIER

Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}$ $20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPMs

Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. 4, 6, 8 and 10 Way Mixers. Twin 3, 4, and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

Teonex are better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits.
Teonex offers more than 3,000 devices.
They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than sixty countries, on Government or private contract. All popular types in the Teonex range are nearly
always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England.
Cables: Tosuply London W11. Telex: 262256

Cuteralat
 TOTAL CAPABILITY IN SOLDERING

LITESOLD High
Quality Soldering Irons, 10 w to 60 w .

Pliers

Cutters

Servicemen-you keep asking forit!

In response to your demand the third impression of the Mazda Book of Pal Receiver Servicing is now available.

Its 288 pages are packed with the kind of information you need, logically arranged and using little mathematics. It is clearly written and uses 200 photographs and drawings to illustrate the text. Colour circuits are explained in general terms and practical circuits from current receivers are examined. The latest developments, such as Simple-PAL decoders and Thyristor power supplies are included

The fault sections at the end of various chapters together with a comprehensive index make it ideal as a quick reference handbook for the workshop. One index gives, for the first time, a complete schedule of British Colour TV Transmitters and Channel numbers arranged for reference by town and country, instead of the little-known transmitter sites names.

This book will be found invaluable for the revision of the colour TV elements in City and Guilds syllabuses and RTEB examinations
Order your copy today from your MAZDA Valve and Tube Wholesaler, who will give you trade discount at valve rate on the book. You can also obtain the book through most large bookshops at the jacket price; or, in cases of difficulty, from the publishers Thorn Radio Valves and Tubes Limited and Foulsham Technical. Price f3.80 + 25p P \& P.

The Author

David Seal, FSERT, MRTS is a Senior Lecturer in charge of the Television unit at Guildford County Technical College, Surrey His practical grasp of television servicing television servicing
problems derives, not only problems derives, no qualifications, but is firmly based on several years servicing experience updated by daily contact with his technician students.

Thorn Radio Valves and Tubes Limited, Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS
Telephone: 01-804 1201

The Model A80 Audio Amplifier illustrated is representative of the range of integrated amplifiers designed and manufactured by Audix for commercial applications such as factories, hotels, conference centres etc. Facilities for two low impedance balanced microphones and one switchable input for medium impedance microphone, tape recorder or gramophone are incorporated in this 60 watt r.m.s. amplifier. Outputs at 100 V and 8 ohms are provided and are protected electrically against damage by short circuit, open circuit, inductive and capacative loads.
Power amplifiers having continuous r.m.s. ratings of 15,30 , 60,120 and 175 watts are also available and can incorporate a wide variety of input mixing modules to satisfy the different requirements of individual clients.

MANUFACTURERS OF SOUND SYSTEMS AND ELECTRONICS

The demand for
Mullardhasbuiltat ...built a new plant solely to produce colour television picture tubes.

This £ 10 million purpose builtfactory in Durham, the

colour TVgoes ongrowing

Durham to help you meet it...

most modern in the world, performs all the stages in the manufacture of colourtubes, from the delicate assembly of tube guns to the laying of over one million phosphor dots on the screen, making use of glass from Mullard's own glass factory at Simonstone.

Mullard ColourSčreen tubes are designed for British
transmission standards, helping setmakers to offer viewers a superb picture from the finest sets.

With its square corners, flatfaceplate, constant colour registration and high light output, ColourScreen is not only the best, but will continue to be the biggest selling home produced tube. With investments like Durham supplementing the huge production at

Simonstone, and also enabling Mullard to increase its already impressive export performance.

Mullard Durham started volume production of ColourScreen tubes ahead of schedule and will further increase its output in the months to come.

Helping you meet the huge demand for the finest colour TV sets in the world.

3009 Improved

Since their inception our precision pick-up arms have been the subject of continuous detail refinement. Now the almost universal use of lightweight magnetic cartridges enables us to employ a re-designed balance system and non-detachable shell with advantage.
Where the facility is demanded an alternative version, the Model 3009/S2 Improved is similar but has a detachable shell. Its mass is consequently higher than the standard model.

Following our established policy earlier arms can be updated at the factory. Particulars are available from our Service Department.

The best pick-up arm in the world

Next time you need instrument cases, cabinets or consoles, made in wood talk it over with Whiteley. It could be a very profitable discussion for you. Our new woodworking plant is ready with the most up-to-date machinery, to provide speed and quality in volume production. We can work from your drawings, or design to meet your needs. Tell us the problem. Our specialist experience spans acoustics, heat dispersal and many other problems met in instrument packaging-and it's all at your service.
We can produce cases and cabinets of all kinds, acoustic hoods, desk consoles, wall boards, loudspeaker enclosures etc., in veneers to any specification, polished or lacquered, and finishes in cellulose or melamine. We can assemble the electronics in the case if you so desire. In fact, we can provide as many facilities as you need, from instrument design to sheet metal work and plastics moulding. Many of the big names in industry cure their production headaches by calling in Whiteley. When can we meet you?

ELECTRONIC \& ELECTRICAL DESIGN
PRODUCTION CAPAEILITY
CABNET MAKING
SHEET METAL FORMING/FINISHING

PLASTICS MOULDNG
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSEANEW FUTURENOW!

MECHANICAL
A.M.S.E. (Mech) C \& G Eng. Crafts Diesel Eng.
Inst. Eng. \& Tech Inst. Motor Ind. Maintenance Eng Mechánical Eng. Sheet Metal Work Welding ELECTRICAL \&
ELECTRONIC ELECTRONIC A.M.S.E. (Elec.) C \& G Elec Eng. C \& G Elec. Inst. C \& G Elec. Tech. Computer Elec. Electronic Eng. Electrical Eng. install. \& Wiring MANAGEMENT \& PROOUCTION Computer Prog. Electronic Data
Processing Estimating Inst Cost \& Works Accountants Inst. Marketing Management Motor Trade Man. Network Planning Personnel Man. Production Eng. Quality Control Storekeeping

Work Study
Works

Management

 DRAUGHTSMANSHIP A.M.I.E D ElectricaDraughtsmanship Gen.
Draughtsmanshin Technical Drawing RADIO \& TELECOMMUNICATIONS C\& G Radio/TV/ Electronics C \& G Telecomm. Prac. Radio \& Elec Prac. Radio \& Elec. Radio Amateurs Radio Servicing $\&$ Exam. Repairs Transistor Course TV Main. \& Serv. AUTO \& AERO Aero Eng. A.M.I.M.I. A.R.B. Cert. Auto Engineering Auto Repair C \& G Auto Eng. Garage

Management MAA/IMI Diploma Motor Vehicte

CONSTRUCTIONAL
A.M.S.E. (Civil)

Architectu
Building
Building
Civil \& Municipal
Constructional Eng.
Construction Surveyors
Clesk of Works
Council Eng
Health Eng.
Heat \& Vent
Hydraulics
Hydraulics
inst. Clerk of Warks nst. Clerk of Works
nst. Works \& Highwav Supers. ainting \& Decorating Structural.Eng. Urveying
GENERAL
Agricultural Eng. Council of Eng. Inst. General Education
Pract. Slide Rule Pure \& Applied Maths Refrigeration Reubigeration Rales Engineers University Ent.
G.G.E. 58 ' 0 ' \& 'A' LEVEL SUBJECTS Over 10,000 Group Passes

SEND FOR YOUR FREE BOOK BRITISH INSTITUTE NOW! OF ENGINEERING technology ALDERMASTON GOURT ALDERMASTON CO
READING RG7 4PF

To B.I.E.T. Dept.BD 73 Aldermaston Court Reading RG7 4PF
Please send me
details of your courses in:

NAME

block capitals please
BLOCK CAPITAL
ADDRESS

SUBJECT OF INTEREST \qquad
Accredited by the Council for the Accreditation of Correspondence Colleges.

Z \& I AERO SERVICES LTD., SOLE DISTRIBUTORS OF MASHPRIBOINTORG (USSR) OFFER THE FOLLOWING EQUIPMENT IN THE UNITED KINGDOM:

OSCILLOSCOPES

1. Single beam $\mathrm{C} 1-5,10 \mathrm{MHz}$ inexpensive instrument
2. Double beam $\mathrm{C} 1-165 \mathrm{MHz}$
3. Single beam C1-19 1 MHz (D.C.) oscilloscope with long afterglow screen
4. Single beam C1-37 1 MHz (D.C.) storage oscilloscope
5. Wide band C1-54 (20 MHz) oscilloscope
6. Solid State C1-49 5 MHz oscilloscope

7.

PEN RECORDERS

4. H352 Portable single
5. H30 10-channel event 6. H3100 single channel channel 1 mA .

H320-1 Hig

1.

4.

SIX DECADE 0.02 CLASS ACCURACY RESISTANCE BOX TYPE P236

6 decades 0.1-1-10-100 $1000-10.000 \Omega$.
Four terminals enable the box to be used also as a potential divider.
Rated power 0.25 W per step with full accuracy or 1.00 W per step with reduced accuracy.

PLEASE WRITE FOR FULL TEST EQUIPMENT CATALOGUE
ALL THESE INSTRUMENTS ARE SHOWN, AND CAN BE DEMONSTRATED IN OUR SHOWROOM AT 46, WESTBOURNE GROVE, W.2.

Fin: Gatalogue

*Information on our sophisticated but low-cost kits...
*New 1214 Audio Range. Build your system in a few evenings.
*New loudspeaker range.
*Unbeatable quality and specifications.
*Incredibly good value for your money.
*New continuous credit and nodeposit terms. Even includes instruments.
*Over 30 new models.
*Over 130 models in range.
*Packed full of invaluable information about the world's finest electronics...

It's New. It's the biggest Audio/ Instrument kit catalogue in the U.K. And it's absolutely FREE.

Our new jumbo size Heathkit catalogue is full of good things: low-cost Testers and Instruments, Metal Detectors, Electronic Calculator, Intercoms., Amplifiers, Tuner/Amplifiers, Tuners and Loudspeakers - there's even a Battery Charger

You name it, Heathkit can supply. What's more, you can build everything yourself. Heath help you each step of the way. Simply follow the Heathkit step-by-step construction manual. It's like painting by numbers but with something unique at the end of it. Fantastically satisfying, and less expensive than buying readymade. Our products are advanced in specification and performance. And they're regularly reviewed by leading journals. You have to be good to merit that sort of treatment.

We guarantee that by using the Heathkit step-bystep construction method you can build a piece of electronic equipment without needing to know the first thing about electronics.

Mail the coupon today for your copy of the free Heathkit catalogue. The kits shown take just one or two evenings, and we promise that whichever kit you choose it'll be more rewarding than washing the car
 or watching television.

Why not visit your Heathkit Electronics

 Centres . . . and see our Instruments and Testers.London 233 Tottenham Court Road. Telephone : 016367349 Open hours : Monday - Saturday 9-6.00 p.m. Birmingham 17-18 St. Martin's House, Bull Ring. Telephone 0216434386 Open hours:Friday - Saturday 10-5.30 p.m. Gloucester Cole Avenue Roundabout, Bristol Road Telephone 045229451 Open hours : Monday - Friday 9-5.00 p.m. Saturday 9-12.30 p.m.

Please send me the FREE Heathkit catalogue
\qquad
\qquad

Want to know more? Mail the coupon for a FREE CATAI,OGUE.
Don't forget : . . This includes Instruments and low cost Testers.

AOCOLA ṔROOUCTS LTO. ADCOLA HOUSÉ GAUDEN ROAD LONDON. SW4 6LH TELEPHONE: 01-622-0291/3 TELEX-AOCOLA LONOON 21851

WW-019 FOR FURTHER DETAILS
The Linsley Hood Stereo Hi-Fi Amplifier.

So advanced it's not yet made.

Years of experimental design have gone into this unique direct-coupled Stereo preamp and power amplifier. And contrary to usual practice the circuit and component layout (critical for low hum levels) has been made public instead of being sold to one of the commercial companies.

So if you are serious about Hi - Fi and want the best amplifier in the world you're going to have to build it yourself. And obviously the components you use must be the best available. Manufacturers rejects, seconds, or anything bought from a dubious source are just not good enough.

We are offering all the semiconductors (inc. power supply), glass fibre p.c. boards ready drilled (all same size and stackable), all the capacitors including the new tantalum types and electrolytics, all to true Hi.-Fi standards and all fully-ap proved by the designer for $£ 29.75$ for the 30 watt version and $£ 36.30$ for the 50 watt version.

Specification

Pre=amplifier
Input selector:
Mag p.u. Ceramic p.u $100 \mathrm{~K} \Omega 470 \mathrm{~K} \Omega$
Mode selector
Stereo. Reversed
Stereo. Mono LH only
Mono RH only. Mono
both channels.
Filter selector:
$7 \mathrm{KHz}_{\mathrm{Z}} 10 \mathrm{KH}_{\mathrm{Z}} 14 \mathrm{KHz}_{\mathrm{Z}}$
Twin volume controls
Filter 'slope' control
Treble
Bass
Balance
Separate outputs for amplifier or tape recorder

Amplifier

Low distortion, wide bandwidth, DC coupled Max power:
30 or 50 watts per channel
T.H.D
$<0.01 \%$ at all power levels below clipping Bandwidth:
$3 \mathrm{H}_{\mathrm{z}}-40 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$ 1 M distortion: $<0.05 \%\left(70 \mathrm{~Hz}_{\mathrm{z}}+7 \mathrm{KHz}\right.$ 50 W)
Unconditionally stable, S/C protected.

Full constructional details appear in November, December, January and February 1973 issues of $\mathrm{Hi}-\mathrm{Fi}$ News. Reprints of each are included in the Kits

IITITLI MBTOWHE BOMUUNETION SNHINTE

THE BETTER WAY FOR YOU TO MEET THE CHALLENGE OF TO-DAY'S FAST-EXPANDING COMMUNICATIONS REQUIREMENTS.

MCS 6900 digital radios

 with PCM voice and TDM data multiplexers...from Canadian Marconi Company.Contact us to-day for more details.

NOW IT'S THE AMCBON DG 300

and as ever, still the best of its kind in the world

In the Amcron $D C .300$ you will recognise what was formerly the Crown International DC.300. No other power amplifier in the world has such remarkable specifications. The change to Amcron was simply to avoid possible confusion of name identification. Nothing else has been altered. It might be that the DC. 300 you order still shows 'Crown' on the front. It is of no significance. The Amcron remains the same thoroughbred in electronic engineering. Only the name has been changed and if you value perfection. it won't take long to remember.

- brief Specifications

POWER

$$
\begin{array}{ll}
\text { POWER } & \begin{array}{l}
\text { At clip point } 340 \text { watts RMS per channel into } 4 \text { ohms. } \\
\text { 190 watts into } 8 \text { ohms per ch. Mono - more than } 500
\end{array} \\
\text { watts RMS into } 8 \text { ohms. }
\end{array}
$$

HUM \& NOISE
DAMPING FACTOR PROTECTION input Sensitivity size

LEAFLET WITH FULLER DETAILS ON APPLICATION

Eminently suitable for P.A. operation, laboratory and other precision controiled applications. There are other power amplifiers in the Amcron (formerly Crown Internationall range from two channel 60 watts RMS output to 1000 watts RMS single channel models as well as pre-amp I.C. 150.

Requests for fuller information invited

MACINNES LABORATORIES LTD. STONHAM, STOWMARKET. IP14 5LB
Telephone Stonham (044 971) 486.
WW-022 FOR FURTHER DETALLS

AMDER

- New 100° arc high quality meters at low prices.
- Rugged taut band construction - pivot and jewel available to order
- Sensitivities to $10 \mu \mathrm{~A}$
- Very competitively priced for OEM quantities
- Modern styled meters in matt black plastic cases with flattened arc giving long scale.

TWO MODELS
R55 $2.5 \mathrm{in}(63.5 \mathrm{~mm})$ Scale length R65 3.2in (81.3 mm) Scale length

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Vulcan Moving Iron. 4 models, 1-5", 1•8", 2•7", $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, 1•3"-5.25" scales. DC moving coil, AC moving coil rectified, AC moving iron.

Profile 350 edgewise $4 \cdot 3^{\prime \prime}$ scale. DC moving coil and AC moving coil rectified. Horizontal or vertical mounting.

Crescent Long Scale 180 3 models, $4^{\prime \prime}, 5^{\prime \prime}, 6 \cdot 25^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified. Clear plastic.

Stafford Long Scale 240 6 models, $3 \cdot 5^{\prime \prime}-11 \cdot 5^{\prime \prime}$ scales. DC moving coil, $A C$ moving coil rectified, AC moving iron. Also 98 scale.

Solicontroller Moving Coil Relay. DC moving coil and AC moving coil rectified. 1 or 2 adjustable alarm controls.

Lancaster Long Scale 240 . 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

Go Hi-Fi yourself! New Goodmans Din 20 loudspeaker kit - specially designed to give the D.I.Y. enthusiast excellent hi-fi reproduction at moderate cost.

This system has been thoroughly tested to Goodmans high standards. It will provide extremely satisfactory listening levels from amplifiers rated at 10 watts (per channel, in the case of stereo equipment) but it may also be operated from amplifiers of higher power.

The kit contains all parts needed to complete the system (except timber and other material for the cabinet itself) and has detailed, illustrated assembly instructions.

Contents

1. Bass unit 204 mm (8ins) diameter.
2. Dome HF radiator $25.4 \mathrm{~mm}(1 \mathrm{in})$ diameter.
3. Port tube.
4. Crossover panel with colour coded leads.
5. Terminal board.
6. Foam gasket.
7. Input lead complete with DIN plug and spade terminals. Acoustic wadding foam pad.
Fixing screws and hardware.
Cabinet template (on bottom of box).

Specification:
20 watts DIN. 4 ohms impedance, 8 ins bass unit. dome HF radiator, crossover frequency $4,000 \mathrm{~Hz}$

For further details and the name of your Goodmans dealer, send the coupon now

Goodmans
Sound reasoning.

To: Goodmans Loudspeakers Lid. Downley Rd., Havant. Hampshire,
Please send me free leaflets on Constructors' equipment and the name of my Goodmans dealer.

Name

Address

I'D RATHER
 HAVE A
 MINITEST"

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean cycolac case with shock and magnetic field proof steel liner. Controls are simple and easy to use. Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20.000 and 2.000 ohms per volt d.c. and a.c. respectively Third, high voltage probes. These extend the range to 25 or 30 kV d.c. Little wonder the Minitest is preferred!

SALFORD ELECTRICAL
INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles. Manchester M30 OHL
Telephone 061-7895081 Telex 667711 A Member Company of GEC Electrical Components Ltd.

EII s.e.

New Minilite weighs a mere 50 g . Yet it combines maximum operating efficiency with absolute wearer comfort.
With Minilite, Amplivox have avoided the problems of the old fashioned earplug inserts through ingenious use of an adjustable earpiece. An acoustic tube with sibilant filter replaces the heavier and more familiar boom microphone. Pressure pads are out too, instead there is a non-metallic headband with special bars that give stability without uncomfortable pressure.
Specified for Eurocontrol, Minilite is being widely used in air traffic control, aviation and communications control as well as other branches of industry. Minilite is, undoubtedly, the headset of the seventies. It's just one of the wide range of high-quality specialist products for civil and military use from Amplivox. No-one else offers so much for so little.
To find out more about the Amplivox range of communications products-mail the coupon or write today stating your application requirements to:
Racal-Amplivox Communications Limited
Beresford Avenue, Wembley, Middx., England. Tel: 01-902 8991. Cables: Amplivox Wembley.

Celestion Loudspeaker Engineering advances the stete of the ert to a new plateru.
 Ditton 66 Studio Monitor

1.) Celestion's new super tweeter. 2.) New design 'pressure' mid-range unit. 3.) Ultra Linear 12" Bass drive unit. $\quad 4 . j$ A.B.R. ensures controlled bass down to 16 Hz . 5.) Precision crossover for perfect system intergration

A new Loudspeaker of ádvanced design suitable for studio use and for home installations of the highest quality.
UNITS: HF 2000 (Jome 'pressure' type) MF 500 (Mid-range Dome "pressure" type) Ultra linear $12^{\prime \prime}$ bass driver and $12^{\prime \prime}$ $A B R$. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts Maximum, 4-8 ohm. This monitar loudspeaker system has an exceptionally wide and flat frequency response. Very low order harmonic and inter-modulation distortion. Precise response to transients. Beautifully maintained polar response ensures absence of unwanted directional effects and provides a highly satisfactory stereo image throughout che listening area. Marched pairs.
SIZE $40 \times 15 \times 11 \frac{1}{2}$ Natural Teak or Walnut Cabinet

Loudspeakers for the Perfectionist

DITTON WORKS, FOXHALL ROAD. IPSNICH, SUFFOLK IP3 8JP
if it's a STABLE, ACCURATE FREQUENCY source
that you need - then the new low cost

ATOMIC FREQUENCY STANDARD

from EFRATOM will interest you

In a package about the same size as the outline to this ad. and only 4 inches high the new rubidium frequency standard type FRK gives the following giant performance :-

10 MHz sine wave output at IV RMS
Long term stability better than $1 \cdot 10^{-\mathbf{1 0} 0}$ per month
Short term less than $5 \cdot 10^{-11}$ over one second
Warm up: less than 10 minutes to reach $2 \cdot 10^{-10}$
Power consumption : only 13 Watts at $25^{\circ} \mathrm{C}$ ambient
from a 24 V supply
Dimensions: $4 \times 4 \times 4.5$ inches
Weight 2.9 lbs
For more information contact.
SAYROSA ENGINEERS LTD.
P.O. Box 50, Bracknell. Tel. 034423827

WW-030 FOR FURTHER DETAILS

240° of shadowless readings. That's the Taylor
 Fyneline 'Wide Angle' range.

Meet Taylor's new range of 'Wide Angle' panel meters. The 240° circular scale offers scale lengths of approximately twice that of similar 90° movements.

Model 38, illustrated here, is the smallest in the range with the scale length of $4 \frac{3}{8} \mathrm{in}$. and a panel width of little more than $2 \frac{1}{2}$ in. Find out more about the complete Fyneline range including our 'Standard' and 'Picture Frame' models. Write for data sheet now.

MODEL \& MK, H

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROYED

CONTRACTOR TO H.M. GOVT.

TheTT21. Cost per what?

IWW-032 FOR FURTHER DETAILS

Before you listen to us, listen to a few communication transmitters.

Because the chances are they'll have our TT21 already fitted.

Because it's the best beam tetrode you can buy. Best in its class. Best for the money.

So, if you require a communication transmitter tube at the lowest possible cost per what, sorry, watt, here's the address to find out more.

The new Linstead Millivoltmeter.

Wide range, 5 "scale length, 5×5 "bench space.

M2B This instrument is based on our popular M2A and has been completely redesigned mechanically for convenience in operating and attractive appearance.
The Panel layout has been designed to give maximum utilization without waste of area. By using a vertical styling valuable bench space is reduced. The case extends to protect the meter and terminals without affecting accessibility. The carrying handle will either sit neatly on top of the instrument when vertical or be used as a rest to allow operation in a sloping position. The battery (the readily available PP9) is accessible from behind a rear plate held by a single retaining screw.

Specification: A.C. 1.2 mV FSD to 400 V
D.C. 120 mV FSD to 400 V
in 20 ranges.
Further details about the new Linstead Millivoltmeter available on request.

Lincticiad meansagooddeal inelectronics

Linstead Electronics, Roslyn Works, Roslyn Rd., London N15 5JB
Telephone: 01-802 5144

6 GABRAPHONE Integrated Amplifier -Tape Players

Saida de Luxe A stereo amplifier of the highest quality performance with built-in 8-track cartridge player, housed in 18" cabinet. A unique feature is the electronic switching between signal sources, completely eliminating switch-contact noise and unwanted coupling between signal circuits. Input connection facilities for magnetic pick-up, radio tuner or other auxiliary signal source, together with a record/replay socket for external tape-deck. Dual loudspeaker circuits, with front-panel switching. The headphone socket has its own, independent, volume control. Modular construction is employed throughout, providing ready interchangeability of units. Output power is I 2 watts RMS per channel into 8 ohms distortion less than $0.02^{\circ}{ }_{0}$ at full power, and the frequency response 25 Hz to $25 \mathrm{kHz} \pm \mathrm{Idb}$. Outstanding styling - finish in perspex White, Black or Grey.
Saida Minor de Luxe Multi-input stereo amplifier with built-in 8-track stereo cartridge player for continuous entertainment. Large performance in small size -only $14^{\prime \prime} \times 12^{\prime \prime} \times 5^{\prime \prime}$. Inputs for magnetic pick-up and auxiliary signal source. Electronic switching between inputs, output I2 watts RMS per channel into 8 ohms. Available in perspex White, Black or Grey. Modular construction ensures ready interchangeability of units. Amelia de Luxe Tape player-add-on unit. Provides playing facilities for 8 -track stereo cartridges when combined with any stereo amplifier. Incorporates equalisation for tape replay characteristic and front-panel attenuator control to adjust output to suit amplifier used. Individual volume and tone control. Elegantly styled in Black, White or Grey perspex - matching the amplifiers and other units in Gabraphone range. Output 750 mVmax into $2,000 \mathrm{ohms}$. Also available without tone control.
Write for full information.

Modern Engineering \& Technology Ltd., 4 Station Road West, Canterbury, Kent. Tel: 0227 60431/2.

WW-035 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd. 90 Wardour Street,
London W1V 3LE
01-437 1892/3
WW-037 FOR FURTHER DETAILS

USED THROUGHOUT THE WORLD. SANWAS EXPERIENCE OF 30 YEARS ENSURES ACCURACY, RELIABILITY, VERSATILITY, UNSURPASSED TESTER
PERFORMANCE COMES WITH FVERY SANWA PERFORMANCE COMES WITH EVERY, SANWA
6 Months Guarantee
Excellent Repair Service Model P.2.B £5.25 Model AT-45 £ 16.95 $\begin{array}{llll}\text { Model P.2.B } & \text { £5.25 Model AT-45 } & \text { £ } 16.95 \\ \text { Model JP-5D } & \text { £6 } 30 & \text { Model 380-CE } & \text { £ } 17.20\end{array}$ $\begin{array}{llll}\text { Model } 360-\text { YTR } & £ 630 & \text { Model 380-CE } & £ 17.20 \\ \text { M } 8.90 & \text { Model N-101 } & £ 20.00\end{array}$ $\begin{array}{llll}\text { Model U-50DX } & £ 9.00 & \text { Model 460-ED } & £ 20.00 \\ & £ 23.40\end{array}$ $\begin{array}{llll}\text { Model A-303TRD } & £ 11.85 & \text { Model EM-700 } & £ 45.96 \\ \text { Model K-30THD } & £ 1355 & \text { Model R. } 1000 \mathrm{CB} & f 59.25\end{array}$
MODEL $£ 45.96$
$£ 59.25$
U-50DX
Cases exira, avallabie for most meters, but not sold separately

[^0]
used as standards in many industries

FRAHM Resonant Reed Frequency Meters are available in plastic and hermeticaliy sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the UK. for off-the-shelf delivery
ANDERS ELETTRONILS LIMITED
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-387 9092 RTHER DETAILS

TRANNIES
(Formerly C. R, Hadley Electronics)
Harlow (02796) 37739

24 WOODHILL, HARLOW, ESSEX
(No callers please)

AC126ACl27	11 p	${ }^{\text {Al } 102}$	${ }_{49} 9$
	11 p	${ }_{\text {A }}{ }^{\text {ALIO }} 107$	${ }_{8 \mathrm{p}}^{49}$
	55p	${ }^{\text {BC }} 108$	${ }_{8}^{8}$
		${ }_{\text {BCICl }}^{\text {BCL }}$	${ }_{8}^{80}$
AFII 5	12 P	${ }^{\text {BCLI83L }}$	${ }_{8 p}$
	120	BC184L $\mathrm{BC2} 22 \mathrm{~L}$	${ }_{8}^{80}$
		${ }_{\text {BC2 }} 14 \mathrm{~L}$	${ }_{8 p}$
TRANSISTORS			
LOWEST PRICES			
Ring for bulk enquirie			
OC44			
OC45	138	TIP32A	6998 ${ }_{5} 5$
\bigcirc	${ }_{28 p}$	${ }^{4032926 G}$	550
OC28	${ }_{3} 30 \mathrm{p}$	2N3053	${ }_{490}^{20 p}$
$\bigcirc \mathrm{OC35}$	${ }_{280}$	2 N 3702	${ }_{118}{ }^{49}$
OC36	${ }_{36 p}$	2N3703	110

\star SUPER LOW PRICED LINEAR K's $\begin{array}{llll}709 \text { c TO99 } & \text { 28p } & 723 \text { cTO99 } & \text { 75p } \\ 709 \text { c DIL } & 32 p & 723 \text { c DIL } & 89 p\end{array}$ $\begin{array}{llll}709 \mathrm{c} \text { DIL } & \text { 32p } & 723 \text { c DIL } & 89 \mathrm{p} \\ 741 \text { TO } 99 & 38 \mathrm{p} & 741 \mathrm{c} 8 \text { pin DIL } \\ 741 \text { c DIL } & 36 \mathrm{p} & 748 \mathrm{c}\end{array}$ 741c DIL 36p $\quad 748 \mathrm{c}$ TO99 $\begin{array}{ll}\text { 38p } & \text { 42p }\end{array}$

TTL BARGAINS		
${ }_{7}^{7400} 7$	${ }_{12}^{12}$	${ }_{\text {AND LOTS MORE. }}^{\text {See our rricel lis. }}$
7410	${ }_{450}^{129}$	See our price Also
	${ }^{600}$	Super New Co

SLIDE SWITCHES

MINIATURE NEON LAMPS
109 mA . 230 v . or 110 v 5p each.
10 plus. 4p.

EC958

 series of receivers 10 kHz to 30 MHz In world-wide use

Professional high-stability receiver series for a wide variety of applications. The standard version can be used as a self-contained F.S.K. terminal, or as a dual-diversity terminal with common oscillator control. Variants are available for Lincompex terminal use, for specialized network monitoring surveillance and for marine applications.

Simplicity Reliability Economy

Your distributor's address and illustrated brochure obtainable from

Eddystone Radio Limited
 Alvechurch Road, Birmingham B31 3PP

Telephone: 021-475 2231. Telex: 337081
A member of Marconi Communication Systems Limited

More budget beaters!

Low cost, compact units extremely simple to operate and protected against overloads the

FARNELL E. 30 POWER SUPPLIES

are the ideal choice for general purpose bench use. They have good regulation against load or line variation and low ripple content at the output.

Each unit offers two operating ranges, expanding its usefulness at the touch of a button to that of two units.

$$
\text { E. } 30 / 10-30 \mathrm{~V}, 0.5 \mathrm{~A} \text { or } 0-15 \mathrm{~V}, 1 \mathrm{~A} \quad £ 29
$$

E. $30 / 20-30 \mathrm{~V}, 1 \mathrm{~A}$ or $0-15 \mathrm{~V}, 2 \mathrm{~A} \mathrm{f} 38$

Farnell quality and reliability at prices which beat your low budget problems. Have a look at the leaflet - we think you'll agree. And by the way, we now offer new and attractive discount rates.

Power Supplies Division

FARNELL INSTRUMENTS LIMITED. SANDBECK WAY, WETHERBY, YORKSHIRE LS22 4DH. TEL: 09373541 or 01-802 5359 (LONDON OFFICE) TELEX: 557294

High accuracy over 4,5 and 6 decades is provided by the full range of Hatfield's Resistance Decade Boxes. (Housed in robust Bondene construction cases). Alternative models with 0.1% or 1% accuracy steps range from

$$
1 \Omega \text { to } 100 \mathrm{k} \Omega \text {. }
$$

Prices from only $£ 10$ ex works for 4 decades 1% to $£ 23$ for 6 decades 0.1%.
Most types immediately available from stock. Plus Decade Capacitance Boxes with tolerances of $\pm 5 \%$ at $£ 22$ and $\mathbf{1} \%$ at $£ 30$.

Now switch to attenuators.

Another hit in design laboratories is the 2100 Series of Switched Attenuators. They're in similar styling to the Decade boxes with a full range of 8 models covering impedances of 50Ω $75 \Omega, 600 \Omega$, unbalanced and 600Ω balanced. A choice of silver or gold switch contacts for each impedance Only $£ 28$ for silver contacts or $£ 36$ for gold ex works.

Send for full details of Hatfield Decade Boxes and Attenuators. HATFIELD
forward thinking in electronics

HATFIELD INSTRUMENTS LIMITED

Burrington Way, Plymouth PL5 3LZ. Devon.
Tel. Plymouth (0752) 72773/4 Grams: Sigjen, Plymouth. Telex: 45592 South-East Asia: for prompt service and deliveries, contact: Hatfield Instruments (NZ)Ltd. P.O. Box 561, Napier, New Zealand.

dual-trace oscilloscopes

from Telequipment

* D65 for DC-i5 MHz operation * D66 for DC-25 MHz operation

\author{

- Large, bright $8 \times 10 \mathrm{~cm}$ display
 - Switched X-Y operation
 - Signal Delay
 - Lightweight, fully portable
}

the D65 and the D66

Embodying all the features required for general purpose laboratory measurements, TV servicing and production testing applications; including wide timebase range - $100 \mathrm{~ns} /$ div $102 \mathrm{~s} /$ div - and broad bandwidth characteristics. Dualtrace allows channels to be displayed scparatcly, added algcbraically, alternated or chopped. All solid-statc construction plus Telequipment expertise give you choice of two superb instruments at realistic prices D65, 15 MHz for $£ .195$ (UK)
D66, 25 MHz for $£ 225$

Write, telephone or telex for your demonstration now.
Tekironix U.K. Lid., Beavertom Hense, PO Bux Gy, Harpenden, Herts. Tel: Harpenden 6ie5: Telex: 2555:59

TheCCS2gives you acool250watts.

Our CCS2 beam tetrode is especially easy to design into co-axial circuits.

That's because we've designed a special beryllia ceramic flange which separates the heatsink from any active part of the envelope.

The alternative version, the CCS1, has an anode block, the face of which is bolted directly to the heatsink.

So, if you find air blowers an embarrassment to your design, get the facts on these conduction cooled beam tetrodes.

Ferranti moving coil panel instrumentsfit for every purpose

VERO ELECTRONICS LIMITED

Industrial Estate.
Chandlers Ford, SO5 3ZR Tel: Chandlers Ford 2952 Telex: 47551
Subsidiaries and Agents
throughout the World.

Codl lighingfor hot parties.

Velvet dim to full brightness at a touch of the finger. Off/on and infinitely variable.

Beta light glow makes switch easy to find in the dark and consumes no current.

Economical too! As the light is progressively dimmed, so the current consumption drops - think of it as an electric tap. 300 watt capacity, straight replacement for standard light switch.

Complete kit of parts $£ 2.80$ or made up $£ 2.90$ ores.

Hot Ignition for cold mornings.
 Smoother running.

The Jermyn capacitor discharge ignition system.

Instant starting in all weathers. Even with a near flat battery, the unit will produce a full sized spark.

Just one of the many advantages of an electronic ignition system, the others are:

High energy spark even at maximum revs.

Complete set of parts to build it yourself for only $£ 7.75$, as described in Practical Wireless and fully approved by the author.

Save 55p

Buy both for $£ 10.00$

Less strain on battery and starter. Lower petrol consumption. Long plug life with infrequent adjustment (typically 20,000 miles, gapped at .050").

No contact breaker arcing giving long life and less adjustment (typically 20,000-25,000 miles)
G) STATE + or - earth when ordering.

To Jermyn Industries, 13 Vestry Estate, Sevenoaks, Kent.
Please despatch return of post light dimmer kit
light dimmer
£10 pair. Enclose cheque or postal order.
BLOCK CAPITALS

NAME

signal capture display and digitisation with one instrument

DL905 Transient Recorder

Single voltage transients, repetitive waveforms, or very slowly changing signals can all be recorded by the DL905 in its digital memory: The captured signal may be viewed on an oscilloscope, a permanent record produced on a chart recorder and a digital readout obtained to feed a digital recording device or genéral purpose computer.

TYPICAL APPLICATIONS INCLUDE

Shock measurements . Explosions - Pulsed NMR High speed reaction chemistry - Stop flow and T jump analysis - Plâsmá Physics . Power line transients - Ultrasonics . High tension switching Radar - Spontaneous biological phenomena Pulse radiolysis : Vibration analysis • Seismology Etc.

First, measure it-on the Rank Flutter Meter. The Type 1741 measures accurately the degree of Wow and Flutter on sound recorders and reproducers. For more information write to: $\mathbb{\AA}$ Rank Film Equipment

PO Box 70° Great West Road, Brentford, Middx., TW8 9HR.
Tel 01-5689222
Telex 24408
Cables Rankaudio
Brentford
A Division of
Rank Strand
Electric Limited

Data Laboratories Limited, 28 Wates Way, MITCHAM, CR4 4HR Surrey. Tel: 01-648-4643/4
[o obtain further details of any of the coded items mentioned n the Editorial or Advertisenent pages of this issue, please somplete one or more of the ittached cards entering the eference number(s). Your enquiries will be passed on to the manufacturers concerned ind you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Subscriptions rates:- Home $£ 4 \cdot 35$ a year. Overseas, 1 year $£ 4 \cdot 35,3$ years $£ 11 \cdot 10$ (U.S.A. and Canada, 1 year \$11, 3 years \$27.75.
Wireless World can also be obtained through newsagents at 20 p. per copy.

Enquiry Service for Professional Readers

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name .

Name of Company

Address

Telephone Number

| PUBLISHERS
 USE ONLY | A/E | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Position in Company
Nature of Company/Businest
No. of employees at this establishment.
I wish to subscribe to Wireless̄ World

Do not affix Postage Stamps if posted in
Gt. Britain. Channel Islands or N. Ireland

BUSINESS REPLY SERVICE Licence No. 12045

WIRELESS WORLD,

READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

:nquiry Service for Professional

 \}eaders

Wireless World, January 1973

WIRELESS WORLD

Please arrange for me to receive further details of the products listed. the appropriate reference numbers of which have been entered in the space provided.
Name .
\qquad
Address.

Position in Company
Nature of Company/Business
No. of employees at this establishment .
I wish to subscribe to Wireless World

Consumer Microcircuits Ltd -frequency sensitive switch specialists

Current devices in Monolithic form include:
FX-101 Multi-Function Frequency Sensitive Switch.

FX-301 Precision Datum Switch.
FX-501 Tone Triggered Bi-Stable Switch. (Fixed bandwidth)
FX-501/R Tone Triggered Bi-Stable Switch. (Adjustable bandwidth)
FX-601 Tone Triggered Monostable Timer. (Fixed bandwidth)
FX-601/R Tone Triggered Monostable Timer. (Adjustable bandwidth)
FX-107 Tone Operated 3-Tone Sequential Encoder/Decoder ($\mathrm{Rx} / \mathrm{Tx}$)
FX-207 3-Tone Sequential Code Encoder/Transmitter. (Binary imputs select any 1 from 8 Codes)
FX-109 Dual Timer/Delay Timer/ Retriggerable One Shot Printed Circuit Boards are available to assist in the evaluation of most of the above devices.

Consumer Microcircuits Ltd offer a full M.O.S. Custom Design/Supply service for long or short run production. Designs accepted at System Concept or DiscreteProven Stage. Write or phone for further particulars.

For further particulars contact
Consumer Microcircuits L.td
Rickstones Roqd, Witham, Essex
Telephone: Witham 3833
Telex: 99382 (Reaction)

Frequency is our Business

313 EDGWARE ROAD, LONDON W2 3BR.
telephone: 017232231 Cable: Omrontrols London.
OMROM telephone: 01 7232231 telex 28514

TIMERS
SWITCHES TRANSFORMERS VOLTAGE CONTROLS FOR IMMEDIATE DELIVERY

VARIABLE TRANSFORMERS
 FAMOUS "SLIDUP" "SLIDTRANS" MODELS 1 amp 97.00 C. \& P. 37p 5 amp f 11.75 $10 \mathrm{amp} £ 22.50$ 12 amp f 23.60 $20 \mathrm{amp} £ 49.00$ "OFF THE SHELF" delivery of all types. *Fully shrouded. *Bench Mounting *Panel Mounting. *Low Price. *Input 240VAC. Output: 0-260VAC.

PANEL MOUNTING "'SYS" SYNCHRONOUS TIMER

OMRON brand Synchronaus Motor driven timer with single two timed changeover contacts. over contacts.
MINIMUM guara tead alectrical and mechanical 10,000,000 operations.
"Stocked in 110VAC 240VAC up to twenty eight hours time range: $\frac{1}{2} \%$ repeat accuracy.
$£ 14.90$ "one off" $£ 10$ in quantity.
PNEUMATIC OMRON TIMER UP TO 200 SECS DELAY-'"ATS'

Easily adjustable from delay on
energise to delay on de-energise. The OMRON ATS works on an air damped principle and can be adjusted between 0.200 secs with screwdriver adjustment. A precision snap action switch provides a 6A contact and minimum 1.000,000 ops life. "One off" $£ 8.10$. In quantity £5 for 110V/240VAC types.

LOW COST PANEL MOUNTING

 MINIATURE TIMER-"'STPYMH"

Plug-in timer for panel mounting. Synchronous Motor driven with autorese time limitantanous and 5 A . contacts rated at 5A. This timer
has fixed and moving has fixed and moving
pointers.
$\mathbf{£ 8 . 4 0}$ "one off" $\mathbf{£ 5}$ in E 8.40
quantity.

HIGH ACCURACY SOLID STATE PLUG-IN TIMER-‘'TDS'

Genuine 1\% repeat accuracy with solid timing.
Life 50 million operations minimum, instantaneous 8 time limit contacts.
Full time scales $0-1$ sec: $0-2 \mathrm{sec}, \quad 0-5$ sec, $0-10 \mathrm{sec}$: 0-30sec: 0-60sec : 0-180sec.
Dual Voltage $110 / 240$ VAC $\mathbf{£ 1 8 . 5 0}$ to $£ 13$ each.
EXCLUSIVE SOCKETS FOR OMRON TIMERS \& FLOATLESS SWITCHES

Screw terminals, with clips to hald the timer or switch firmly in place where mounted. Type BPF for STPNH. TDS, DTS Type 8PFI for 61FGP \& TOA

ELECTRONIC PLUGIN SWITCH FOR LIQUID LEVEL \& ICE
 ASSEMBLY "PS31"

Length 1 metre, for use on differential and alarm control of conductive liquids with "61FGP" (illustrated above).
£1.60 "one off" $£ 1$ in quantity.
ELECTRONIC RECYCLING TIMER FOR CONTINUOUS ON/OFF OPERATION "TDA"

Electronic twin timer for continous racycling operations, On/Off time control, 0-6secs with 2% repeat accuracy setting $0-6$ sec with transfer switch XIO.
Dual voltage 110/240VAC $£ 28.60$ but down to $£ 18$ each in quantity.
PANEL MOUNTING "NSY"
SYNCHRONOUS TIMER "Neve Square Dial"
 The OMRON timer ype square fixed dial. This the coil spring type. attractive package has two tacts.
Stock ranga $110 / 240$ VAC op to 28 hrs $\mathbf{£ 1 2 . 5 0}$ "one off" to $£ 8$ in quantity
OMRON MICROSWITCHES
*Interchangeable with
\& Continental Manufacturers
Approvals from: CSA; MIL; UL: SEVC; SAA: DEMKO ETC

VIC WITH AMP TERMINALS Single Pole Changeover 15 amp $\begin{array}{llll}\text { switch } & 0 . F & 400 \mathrm{gm} \\ \text { M. R.F. } & 114 \mathrm{gm}\end{array}$ M.D.O. 4 mm . f19 per 100; $\mathbf{f 1 5 0}$ per 100; $\mathbf{f 7 0 0}$ per 5000.
VV-15-1A WITH SOLDER TERMS. Single Pole Changeover 15 amp Switch O.F. 230 gm . R.F. 50 gm . M. 0.1 mm . f19 per 100; $£ 150$ per 1000; f650 per 5000.
SIA SUBMINIATURE SWITCH Cheaper than all its competitors Single pole changeover 5 amp switch O.F. 200 gm . R.F. 40 gm. M.O. 0.1 mm . 53 per 100; £180 per 1000; f850 per 500 J.
SIAL WITH LEAF SPRING Subminiature 5amp microswitch of $56-180 \mathrm{gm}$ R.F. 14 gm M.F. 0.8 mm . £27 per 100 ; $£ 220$ per 1000: £1000 per 5000 .
SIAL 2 WITH ROLLERACTUATOR Subminiature 5amp microswitch. D.F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D. $0.8 \mathrm{~mm} . \mathrm{f} 33$ per 100 - 5270 pe 1000; f1250 per 5000.
CCR-5 LOW TORQUE SWITCH Low cost microswitch for coin operated or air vane applications D.T. 10 gm . R.T. 13 gm . M.D. 15°. f31 per 100; f190 per 1000: f900 per 5000.
VAQ4 PUSHBUTTON MICRO. SWITCH.
15amp Microswitch with pushbutton actuator low operating force and buttons in various colours. f49 per 100; f360 per 1000; E1750 per 5000 at 110 VAC or 240 VAC .

WORLD'S SMALLEST SYNCHRONOUS MOTOR PLUG-IN TIMER STPNH

AT LAST! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A MINIATURE PLUG-IN TIMER UP TO 28HRS.

Only OMRON could provide a timer af such unrivalled superiority ovar all its competitors, anywhere in the world.
The STPNH is a synchronous motor driven timer with automatic reset function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base.
Time ranges start 0.6 secs and finish 0.28 hrs with operating voltage
Up to 72 mins $£ 7.90$ "one off" and $£ 4$ in quantity, Long time ranges around $£ 8$

The features the modern "DIN" manufacturers typical price is around $\mathbf{f 3 . 5 0}$ for

PFO3 SUBMINIA-1SAT4 SUBMINIA-
TURE PUSHBUTTON TURE TOGGLE MIC
SWITCH.

Full range available with 15 amp switching capacity. Approved by CSA Authorities \& guaranteed for twelve months.
manufacturers typical price is around $\mathbf{f 3 . 5 0}$ for
VOLTAGE STABILISER
Famous I.M.O. Constant Voltage Stabiliser st only $£ 12.50$ each. FEATURES:
*200 watt rating * Input $240 \mathrm{VAC} \pm 20 \%$ \pm Output $240 \mathrm{VAC} \pm 1 \%$.

WORK DIRECT
FROM 24VAC
FROM 24VA
SUPPLY.
SUPPLY
SOLID STATE VOLTAGE
CONTROLS 5AMP \& 10AMP
MODELS

Full solid state control over AC voltages.
Input of z230VaC variable on output to 25 -230VAC. Miniature and lightweight with finned aluminium housing thase units can truly replace wirewound trans formers.
VP05C (5AMP) f 9.90 "one off" $£ 6$ in quantity. VPIOC (10AMP) f1E.90 "one off" $\mathbf{£ 1 0}$ in quantity

PHOTOELECTRIC SWITCHES

Reflective and "slot" type photoslectric switches. Will sense any material passing the light beam up to 3 mm and provide an output signal of 02AMPS at 240VAC. Roflective distance up to 25 mm on reflective surfaces, far longer with external light.
PRIOOR (Reflective) £7.50 'one off' $\mathbf{4} 4$ in quantity
PRIOOC (slot) $\mathbf{£ 7 . 5 0}$ "one off" $\mathbf{£ 4}$ in quantity.
OMRON PROXIMITY SWITCHES
SWITCHING OF 240VAC or 24VDC
Solid state Proximity Switch opening without a separate power supply unit. Works off 240VAC or 24VDC. senses ferrous and non ferrous metals up to 5 mm from the head.
with screw terminal sockets tions are only connecthrough I.M.O. or avariabised stockists. Moulding is stockists. Moulding is UL TL-2-GPA (DC) $\mathbf{£ 9 . 5 0}$ вach. approved and OMRON "know/YL-2-GPA (AC) £25.70 "one off" $\mathbf{f 1 8}$ in quantity. features of a modern product. features of a modern produc PFO83 (8 pin) 44p each 100 lots.
PF113 (11 pin) 58p each 100 lots.

TECHNICAL LITERATURE
Full literature is available on all the products
illustrated here. Please telephone our sales office on 01-723 2231.

ALL THE PRODUCTS ILLUSTRATED HERE ARE ALSO AVAILABLE FROM THE FOLLOWING I.M.O. FRANCHISED DISTRIBUTORS. BIRMINGHAM blackburn BRISTOL
LEICESTER
LEEDS
LONDON (STH.)
NEWCASTLE
SHEFFIELD
SLOUGH
I.M.D. TERMS OF TRADING

CASH WITH ORDER UNLESS A NETT MONTHLY ACCOUNT HAS BEEN ESTABLISHED. TELEPHONE: 01-723 2231.

met Sper $^{\text {Speakers }}$ A sound choice

This new and exciting range of speakers is the outcome of many years research and development into all aspects of drive unit and enclosure design.

Results include permanent sealing of enclosures but retaining ease of access, elimination of crossover networks and attendant problems, superb performance and distinctive styling at new, lower prices.

Power capacities range from 4 watts right up to 35 watts, with cabinet finishes in teak, walnut or white.

You must see and hear this exciting new range for yourself. But start by writing for further information to the following address.

Modern Engineering \& Technology Ltd, 4 Station Road West, Canterbury, Kent. Tel: 0227 60431/2

WW- 052 FOR FURTHER DETAILS

Electrolube Ltd. Slough, Bucks, England. Tel : Slough (STD 0753) 25574 WW- 053 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATON, YORKSHIRE.
WW-054 FOR FURTHER DETAILS

Two New Successful Products from UNADHM Milano MANUFACTURER OF ELECTRONIC MEASURING INSTRUMENTS

a. 470
bandwidth: from DC to 10 MHz
sensitivity: $10 \mathrm{mV} / \mathrm{cm}, 9$ compensated ranges attenuator
callbrator: $10 \mathrm{~V} \pm 3 \%$ voltage relerence
tlme base: from $100 \mathrm{~ms} / \mathrm{cm}$ to $1 \mathrm{us} / \mathrm{cm}$ in 5 decimal steps \rightarrow

DC voltages: from 1 mV to 1000 V in 4 ranges
$A C$ voltages from $\mathbf{1 m V}$ to $\mathbf{7 5 0} \mathrm{rms}$ volts in 4 ranges
DC currents: from 1 uA to 2 A in 4 ranges
4- resistances: from 1 Ohm to 1.999 Megohm In 4 rangen

UNAOHM - START spa 45 via g. di vittorio 20068 peschiera borromeo - milano - italy cable address unaohm - milano

The world's most universal audio bridges Wayne Kerr's B224 and B642 necessary.

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without disconnection from the circuit being

The B224 is a manually operated bridge, the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

For more information, write to the address below or phone Bognor Regis (02433) 4501

WAYNE KERR
Durban Road Bognor Regis
Sussex PO22 9RL
A member of the Wilmot Breeden group

The B642 balances itself automatically. The meters read real and quadrature terms and highly stable analogue outputs are provided which are directly proportional to capacitance and conductance above 10Ω impedance and also to inductance and resistance below 10Ω. One or two decades can be set to provide the first significant figures of the measurement, thereby increasing the meter sensitivity by 10 or 100 times. If a chart recorder is connected to the output of either term, drifts in component values to at least four significant figures can be observed.

With the Aerialite

 Mastatic System you wouldn't know you were in a difficult reception areafixed high above electrical interference.
When it's used with the reception areas. popular broadcast and short wave bands. It consists of a weatherproofed aerial

The 'Mastatic' whip-type vertical rod aerial is made to be 'Antistatic' system it returns superb performance in difficult

The 'Antistatic' (AM) has a frequency range covering all transformer connected by 60 ft . of screened downlead to a compact receiver transformer.

The 'Mastatic'(AM) comes in three configurations: Product No. 79 3 sections. Total height 18 ft . Complete with chimney lashing kit. Product No. 79a 3 sections. Total height 18 ft . Complete with wall mounting brackets.
Product No. 79b 2 sections. Total height 12 ft .
Complete with 2 in .

Radnor Park Trading Estate, West Heath, Congleton, Cheshire CW124PX. Telephone: Congleton 3892/8 Telegrams: Aerialheat, Congleton. Telex: 669640 .
Aerialite Aerials Ltd

WW-057 FOR FURTHER DETAILS

Random Access Memory Card 25BKT2 Bili $£ 60$
 decoded. on printed circuit card. Ideal as high-speed Random Access Store in your own computers, control systems, terminals etc. Requires only $+5 v$ and $-9 v$ power supplies. All inputs and outputs are TLL compatible and no clock is required. Outputs can be wired-OR for memory expansion.

证
For further information. please contact.
LIMROSE ELECTRONICS LTD. 8-10 KINGSWAY.
ALTRINCHAM, GHESHIRE,
WA14 1PJ, England. Tel. 061-928 8063

BEAT VAT with AKG

There is no tax on microphones or headphones until 1st April 1973.

A must for Radio Hams

AKG D190
Professional dynamic microphone. Directional characterístic. Smooth frequency response.
Frequency range; $30-16,000 \mathrm{~Hz}$. No wonder this is one of the top selling professional mikes in this country.
RRP $£ 20.50$ to $£ 2490$ according to type.

AKG K 60.
Another widely used product both professionally and by thousands of hi-fi enthusiasts all over the country.
Lightweight - double headband soft - detachable ear cushions.
Excellent noise excluding properties.
Frequency range; $16-20,000 \mathrm{~Hz}$ RRP £15.00.

AKG PRODUCTS AREMADE BY AKG AUSTRIA (NOT SUBJ ECT TO IMPORT DUTY AND ARE DISTRIBUTED BY AKG EQUIPMENT LTD, A COMPANY WITHIN THE SAME GROUP

For further details write or telephone; 182-184 CAMPDEN HILL ROAD . LONDON . W.8.7AS

MULLARD BOOKS ON ELECTRONICS SECOND EDITION! TRANSISTOR AUDIO AND RADIO CIRCUITS

The continuing demand for the Mullard book "Transistor Audio and Radio Circuits" has made a second edition necessary. The new edition incorporates new circuits taking advantage of developments that have occurred since the first edition was published in 1969. In particular, new high-quality audio amplifiers, and amplifiers and a radio receiver using integrated circuits, have been added

Contents

Silicon and germanium transistors - Basic h.f. circuits - Basic a.f. circuits Radiograms, record players and portable radios - Tape recorders - A.f. amplifiers for car radio - High quality audio equipment High quality f.m. tuners - Loudspeakers Test Equipment.
Size $82^{\prime \prime} \times 6^{\prime \prime}$ cloth bound, comprising 288 pages, illustrated.

$£ 1.80+15 p$ P\&P

FIELD EFFECT TRANSISTORS

Field-effect transistors have outstanding advantages over other transistors in many applications. This book describes the construction, properties and typical applications of the FET. It explains the nature of the two main types - the junction FET and the insulated gate FET (usually a MOS FET). Circuit theory is examined fully, and full practical details are given.

Contents

Introductory Survey, terminology - Junction FET - Insulated gate MOS FET - Electrical properties of FETs - Applications, including basic circuits, amplifiers, matching networks, radiation detectors, switching circuits, d.c.amplifier, multivibrator', mixer', oscillator.
Size $8_{2}^{1 "} \times 6^{\prime \prime}$ cloth bound, comprising 132 pages, illustrated.

$£ 1.80+15 p$ P\&P

HOW TO GET YOUR COPY

From your local bookseller or cash with order plus postage and packing from:
Selray Book Company Limited, 60 Hayes Hill, Hayes, Bromley, Kent BR2 7HP.
Or send for full list of Mullard titles from Dept. CIH, Mullard Limited, New Road, Mitcham, Surrey CR44XY

DIXONS TECHNICAL ANNOUNCE THEIR MOST OLD-FASHIONED PRODUCT:

You'll find they have the widest range of audio visual equipment available in Britain. Every leading make. At lowest possible prices.

You'll also find that you can buy the equipment of your choice outright. or you can enter into a very favourable hre purchase agreement; or you can rent (very important if you need equipment on a short-term basis)

Very good reasons for going to Dixons Technical
But there's an even better reason: service.
In these take-t1-or-leave-It days. Dixans Technical is a civilised oasis in a hard-sell desert purchase to fit your needs, and to fit youi pocket They will advise not only on the equipment you buy, but also on its use and where necessary its installation
And when you've bought your equipment. Dixons Technical involvement doesn't stop there After-sales service is neurotic in its attention to detail and speed.

Service the most old-fashioned product to be found at Dixons Technical It cosis you nothing.
Phone Mr. Frankfurt or Mr. Richards at 01-4378811. Service starts with them. Ask them about any piece of equipment you'ie interested in

Name. Dixions

WW-062 FOR FURTHER DETAILS

SERIES 6000 MODULES

CE. 6101 Microphone Amp.
CE. 6102 Star Mixer

Mic. Amp
CE. 6101

CE. 6103 Line Amplifier
CE. 6011 Power Amp. 15w
CE. 6012 Power Supply 50v

CE. 6114 HF/LF Equalizer
CE. 6115 Equalizer with Mid-Lift

ALSO SUPPLIERS OF:

COMPLETE

Equalizer
CE. 6114

SOUND

MIXERS
Write or Telephone for DETAILS

Purpose-built servo and actuator systems using standard components

Control Amplifier

McLennan have considerable experience in the solution of actuator and servo problems using synchronous, stepping and D.C. motor techniques as well as solonoid -powered types. An important facet of our skill lies in purpose-designing around standard components for speed and economy of building.

The illustration shows a selection of modules from the McLennan standard range which are available as individual items or can be supplied engineered to custom-built systems.
Such a system could be complete in itself or form part of your own design.
Typical examples include
Camera positioning: Plotting Devices Self-steering Systems: Sig-nal-seeking Aerial Drives Professional Tape Drives: Automated Production Lines.
Stimulation of output position or velocity may be by optical, radio, electrical, mechanical, pneumatic or hydraulic signals.
integral feed-back Potentiometer

Kings Road, Crowthorne, Berkshire. Tel: Crowthorne 5757/8.

McLennan Engineering Ltd

Control Systems and Components

all nriessstown in theselistsp

Incredible but true - due to end of lease, the following stock must be cleared. Prices printed are our normal selling prices. Read down the list, find the item you want and it's yours for HALF THE PRICE SHOWN. They are available to personal callers only, so come early to avoid disappointment.

MARCONI X BAND SIGNAL GENERATOR fes
type TF $1343 / 2$.
MARCONi \times BAND SIGNAL GENERATOR yppe TF1343/1 S.T.C. SIGNAL GENERATOR $\mathbf{£ 8 5}$ 8A. Frequency range $3.55-4.2 \mathrm{KMHz}$. EBS B.C.C. SIGNAL GENERATOR type CT53. SOUTHERN INSTRUMENTS GAUGE OSCILLATOR type M700L

Automatic Typewriters. Friden Flexowriera programmatic automatic typewriters for automatic letter writing, data preparation, invoice format. adgepunching cards, cutting continuous cards. preparing punched cards. reading and copying paper tapes. Prices from

METERS

Voltmetera

Ernest Turner AC/DC voltmeter ranges $0-150$ and $0-300 \mathrm{~V}$ sensitivity 200 ohmsivolt on A.C. and 220 ohms/volt on D.C. contained in a
$\mathbf{£ 5} .50$ Cambridge AC/DC voltmeter range. 0.120 v in 5 ranges sensitivity 20 ohms/volt. 85 Grade 89.
Sangamo Weston 592 a laboratory standard Sangamo Weston 592 a laboratory standard $\mathrm{AC} / \mathrm{DC}$ voltmeter ranges $0-300$ volts in 3 ranges

With Calibration Certificate. £55 Digital Voltmatera

535
Solatron LM902-2 4 digits to 1599 range $0-1000 \mathrm{v}$ in seven ranges. Input Z better than 100K accuracy 0.1%.
Solatron LM903 A.C. converter convets LM902-2 above to read A.C. 225 Solatron LM1420.2 4 digits ranges $0-1000 \mathrm{~V}$ Dynameo 20106 digits. Ranges 0.1 .1 KV ingut 2 graater than 25000 M Acouracy 0.00% 莫 8. C. D. Dutput 3989 Ratnge 0.2 KV Dynamio 2022 S , 38989 Range C .2 KV resolution ${ }^{1}$ pert in 40,000 . Inoul z better
Gloster 81 E 21233 digits AC/OC D.C. range Glosier to 400 V in 4 ranges. AC ranges ranges 100 MV to 250 V . MILLIVOLTMETERS

Airmec 264 ranges $0-1 V$ in 6 ranges. E28
Marconi TF 899

 Philips GM6017 Range 0 -300V in 10 ranges. Freg. range 2 Hy to 200 KHy . Preq. ran look ryya 0.10

SIGNAL GENERATORS

\& OSCILIATORS
EDISWAN LOW FREQUENCY OSCILLATOR
 5500 Hz in 7 ranges. Output voltage soy into
10 K . ADVANCE A. F. GENERATOR type J modar 1. Frequency range 4 KHz to 50 KMz , 16 He to FURZEHILL A. C. OSCILLATOA type G432. Frequency range 25 Hz to 250 Hz . Sine iend Square weve output. 0 to 5 V sine. 0108 V Square p.p. Frequency rango 25 Hz to 5000 KHz . Voliage output 10 V RMS
MARCON R. F. SIGNAL GENERATOR type TF937/CT218. Frequency range 85 KHz to 100 mV . $\mathbf{4} 6$ SOLARTRON SIGNAL GENERATOR iYpe D0905. Stabilised amplitude. Frequancy range 350 KHz to 50 MHz in 6 renges. Switched ranges up to 10 V p.p.
cb

METERS

Phase Sensitive Votemetera (Resolved Component Indicetora)
Solatron VP250 Freq. Range 2 Hy to lookHy sensitivlty Ref. channel $15 \mathrm{MV} \cdot 2 \mathrm{OV}$ Smith \& Son 32 TE sensitivity. $50 \mathrm{MV}-150 \mathrm{~V}$ in 8 ranges. E2s Solation VP $253-2 \mathrm{~A}$ freq. range 0.5 Hy to 1 KHy . Sensitivity. Reforence voltage 10 V signal voltage 50 MV to 150 V in a ranges.
E17 Smith \& Son 199XTE sensitivity 50MV-50V in 4 ranges. Feediback Voltmetere Solatron VF 252. Sensitivity 0-6. 0.15V. ess Value Volematera
Marconi TF 1041 B range 50 MV -300V. Frea. range $50 \mathrm{MV}-300 \mathrm{~V}$. Freq. Range 20 HV 700 MHy . DC $20 \mathrm{MV}-1 \mathrm{KV}$. Resistance 0.2
ohms to 500 M . ohms to 500 M .
Marconi TF 1100 range 100 micro V to 300 V in twelve ranges. Freq. Range TONy to $\ddagger 3$ Input 210 M .

Philips GM6020 Range $1 \mathrm{MV}-1000 \mathrm{~V}$ in 4 Wattmeter
Wattmeters

Wavemeters

Wavameters
S.T.C. R502 Freq. Range 100 KHy to 48 MHy . Ex-Services W1185/A Freq. range 20MHy to 100MHy. E 5
t 0
f 15

SIGNAL GENERATORS

\& OSCILLATORS

MARCONI VIDEO OSCILLATOR type TF885A/1. Frequency range Sine 250 Hz to 12 MHz in 3 ranges. Square wave 50 Hz to 150 KHz in 2 ranges. Sine output 31.6 V to 316 V . Square wave ourput 32 V peak. $\mathbf{£ 4 8}$ WAYNE KERR A.F. OSCILLATOR type S 121 . Frequency range 10 Hz to 120 KHz . Voltage Sutput $220 / 250 \mathrm{~V}$. MARCONI VIDEO OSCILLATOR type TF885; Frequency range 25 Hz to 5 MHz in 2 ranges.
Sine and square wave. Output voltage 316 V Sine and square wave. Output voltage 31.6 V
 Frequency range 5 Hz to 50 KHz . $\mathbf{£ 3 5}$ SOLARTRON OSCILLATOR type OS10. Frequency renge 25 Hz to 250 KHz . £49.EO MUIRHEAD WIGAN LOW FREQUENCY DECADE OSCILLATOR type D63BA. FREquency range 0.1 Hz to 111.1 KHz in 2 ranges. Mex output $2 W$ W.
DAWE WIDE RANGE OSILLATOR type 400 C . Frequency range 1 Hz to 1 KHz . Output 400 C . Frequency range 1 Hz to 1 KHz . Output
control $1-10$ GOntrol 1-10 Frequency range 5 Hz to 50 KHz in 4 ranges. GOODMANS POWER OSCILLATOR type DSS. Frequency range 10 Hz to 10 KHz in 3 rogeg: Voliage output 0 -5VRMS. PNAX EQUIPMENT PULSE GENERATO type R100A 0 to 1000 p.p.s. Volkage outpur O-5OV. Triangular or square wave. $£ 35$
BEME TONE GENERATOR. BEME TONE GENERATOR TYpe X932 Froquency rafge 3.00 to 7.2 KHz in 10 spet frequencias.
MARCON1
MARCONI TELEVISION SWEEP GENERATOR type TF923. Frequency range 44 to 90 MH :. Range 1.10 sweep widsh. Useful for $4 C 5$
line T.V. ants only. S.T.C. SWEEP OSCILLATOR type 16 -LX(I52A mark II. Frequency range $0-20 \mathrm{MH}$. SWe日, and auto tracking hacillties. DAYSTROM T.V. ALIGNMENT GENERATCR type HFW 1; Frequancy range $3,6 \mathrm{MHz}$ to 220 MHz . Output impedence 80 ohms.

MEMORYPLANES
Ferrite core memory plânes with wired Ferise coras, Used for building your own computer or as an interesting exhibit in the demot. stretion of a compater. Mounted en plasec materlal, framo $8 \times 8 \mathrm{fm}$. Consiating af matrices $40 \times 25 \times 14$ cores each of 8 individually eddressable end divided ino 2 hative with independent sense and inhilat wires.
43.e0

Toleprimers, atc
Creed ivpe 78 pego printer 24 V pownerspos.
Creed type 78 page printer (G.P.O. modell)
with $110 / 250 \mathrm{~V}$ d.c. motor $\begin{aligned} & \mathbf{E 1 9} \\ & \text { Creed type } 25 \text { paper tape punch. Punches mp }\end{aligned}$
to 33 characters per sec. $\quad £ 19.50$

Creed type 54/N4 teleprinter with 4 row alphs/numeric keyboard. Creed type 75 page printer receivar only. EZ5 $\begin{array}{lr}\text { Creed type 7P/N3 reperforator } & \mathbf{£ 1 9} \\ \text { Creed type 7P/N4 reperforator } & \mathbf{E 2 9} \mathbf{5 0}\end{array}$ | Creed type 7P/N4 repertorator | $\mathbf{E 2 9 . 6 0}$ |
| :--- | ---: |
| Creed type 85 reperforator | $\mathbf{E} \\| \mathbf{E}$ |

Creed type 85 repertorator
Creed type 86 R reperforator
Creed type 6S/4 auto transmitter
Creed type $6 \mathrm{~S} / 4$ auto transmitter
Creed type $6 \mathrm{~S} / 4 \mathrm{M}$ auto transmitter Creed type $65 / 6$ auto transmitter Creed type $65 / 6 \mathrm{M}$ auto transmitte 812
812 Creed ypa 815 $\begin{array}{ll}\text { Weimec } & \text { \& } 8 \text { hole punchas \& readers. } \\ \text { Rebuitr models } \$ 1 & 10 \text { amd R82C } \\ \text { E } 45\end{array}$ Megnetic Tape Deck:
RCA 301 model 381.7 tracks on $\frac{1}{2}$ in tape, complete with read/write and erase heads. A recording density of 333 characters fier inch gives a nominal read/write rate of 10,000 characters per second at a tape
speed of $30 \mathrm{ir} / \mathrm{sec}$. 8 in rees.s.
fzo speed of $30 \mathrm{in} / \mathrm{sec} .8 \mathrm{Bin}$ reals.
Ex-Computer Tape Decks. Ex-Computer Tape Decks. 7 track on $\frac{1}{2}$ in
tape, Low resistance reads with frea. resporsa d.c. to 50 KHy . Blt density 557 6.p.i. $10 \frac{1}{2}$ in reais
Tape
Computer quality $\frac{1}{2}$ in tape on 24004 . ES
Klenzle Electronic Primtera
Type D1 18 print positions
Type D1-SW 14 print positions. program-
mable carriage
$\mathbf{E 2 0 0}$
Type D11-E14 print positions
Stends for above

(Rear of St Pancras Station) CASH ONLY No cheques accepted

How could we interest you in a Moore Reed 400 Hz frequency converter?

Let's try its advantages for a start. Solid-state circuitry, modular assembly, less noise, less vibration, no routine maintenance, no special installation, efficiency of 75\% and over.

The Moore Reed static frequency converter is also wall-designed; incorporates a considerable weight reduction over comparable rotary equipment (models start from 40 lb .) and units are available to provice output powers from 500VA to 15KVA.
It converts $50 / 60 \mathrm{~Hz}$ to 400 Hz , and it is available in single phase, two-phase or three-phase units.
Lesign features include voltage load regulation of better than $\pm 1 \%$ and crystal con:rol giving output frequency stability of 0.05%. Load power factors from zero lead to zero lag are accepzable.
It is impervious to interruptions of supply or "spikes" and can withstand short circuit output "without damage or blown fuses.
Contact us for the full story.

Moore Reed

Moore Reed and Company Limited,

Walworth, Andover, Hampshire, England. Telephone: 02644155 . Telex: 47554
Telegrams: Moorereed Andover Telex
A member of the Keryman Industries Group.

${ }^{2}$ WORKPOSIIONERS-300 SEREES

Colbert Pana-Vise WORK POSITIONERS are specially designed to quickly and easily achieve the most CONVENIENT, COMFORTABLE and TIME-SAVING work position. Available with vacuum clamp or screw-on base. They can be ROTATED, TIPPED. TILTED, Distributors:

broad-band, wide range and easy on the eyes: the NEW Thruline ra WATTMETER

spans 25-500 MHz, measures .02-500 watts
in eight ranges. All variable RF measurement parame, forward/reflected power and full scale values - are switched right on the front panel. Since it requires neither AC nor battery power. the model 4370 is equally at home in
the lab or atop an antenna tower, at the lab or atop an antenna tower, at boat or plane.
 The required work position is firmly secured with a patented ONE KNOB CONTROL, a unique feature of COLBERT POSITIONERS. A series of special hoiders is available for various types of work. Full details available on request.

SPECIFICATIONS:
Forward Power Ranges: 10, 25, 100, 500w; $\pm 5 \%$ OFS Model 4370

 Finish Rich olive leather grain

ELECTRONIC LIMITED
18A HIGH STREET, NORTHWOOD
MIDDLESEX. PHONE NORTHWOOD 27688.

Special Products Distributors Limited
81 Piccadilly, London, W1V OHL. Tel: 01-629 9556 Cables: Speciprod London

(made in U.S.A.)

WW- 069 FOR FURTHER DETAILS

Made-to-measure packing, you use again... and again...and again...

Protectomuffs. Tailored to your products like a Savile Row suit! Make packing a matter of seconds even with bulky, damage-prone articles and unskilled staff. Because they are returnable and virtually never wear out, packing expenditure becomes a non-recurring item in your budget. Protectomuffs are tough, padded, weatherproof, washable and carry your name. They fold flat for return and storeage. No wonder they are used by firms like Hoover, Ferranti, Rediffusion. Want to know more? Then send this coupon today or phone 01-703 3801.

PBOTECTOMOPFS

LOW COST BRIDGE RECTIFIERS

AMP tags electrically isolated from mounting bracket. Mount them on a chassis, the equipment box, transformer housing etc.

DIGITAL DISPLAY MODULES

NEW RANGE

A versatile range of display, counting and storage modules, supplied singly or in multi-digit assemblies complete with colour filters.
Four versions presently available are:-
800-200 DISPLAY
(Illustrated approx. full size) 800-210 COUNTER/DISPLAY 800-220 4-BT STORE/DISPLAY 800-230 COUNTER/STDRE/DISPLAY
All modules have gold-plated edge connectors.

Send tor full details

Would you spend anhour aday to earn more money in Electronics, Television,Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics - in television (colour and black white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments).

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutor will give you all the help and encouragement you need to pass any exams you want to take

Don't waste another day. 'lake your first step noz towards a better paid, more assured future. Send for your FREE Careers Guide today.

[^1]
a new 50MHz osciloscope

Telequipment's D83 is not just another 50 MHz scope. It's a brilliant combination of performance and plug-in versatility

at the incomparabie ≥ 450

Look what you get -
A $6 \frac{1}{2}$ in CRT operating at 15 kV which provides brighter traces and 50% more viewing area than $8 \times 10 \mathrm{~cm}$ CRT's.

Dual trace operation in alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz .
Choice of a High Gain Differential Amplifier operating down to $50 \mu \mathrm{~V} /$ div sensitivity.

Easier and faster measurements of complex waveforms with the MIXED SWEEP feature built into the DELAYED SWEEP TIME BASE. Think of the advantages of two selectable sweep speeds on a single trace.
Stability of a high order due to the adoption of the latest solid-state circuit technology. ensuring trouble-free operation over long periods.

These are only some of the advantages offered by the D83 - find out the rest by sending for full details now.

Telequipment <<>

TEKTRONIX UK LTD.

Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone: 61251 Telex: 25559.

Wireless World

Electronics, Television, Radio, Audio

The Newmarket transistor shown on our front cover symbolizes the opening of the semiconductor story which begins in this issue. (photographer Paul Brierley)

In our next issue

Publication date Feb. 2nd
Distortion reducer. An active feedback circuit which can be added to non hi-fi amplifiers to reduce total harmonic and intermodulation distortion, and hum, without loss of gain.
The Realm of Microwaves is the first part of a state-of-the-art review of the theory and application of microwaves. This first article reviews solid-state oscillators and subsequent parts will cover microstrip transmission lines, aerials and radomes, and radar systems.

Contents

Electronics Industry and the E.E.C.
The Semiconductor Story - $\mathbf{1}$ by K. J. Dean and G. White
Sixty Years Ago
News of the Month
Electronica in Retrospect
Letters to the Editor
An Electronic Turntable
Circards - 4: A.C. Measurements by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

High-standard Low-frequency Source by J. M. Osborne
1973 Conferences and Exhibitions
Magnetism and Magnetic Units by "Cathode Ray" A $\mathbf{2 0 0}-\mathrm{MHz}$ Counter Prescaler by D. J. Taylor
Twin-ribbon Speaker by A. E. Falkus
Circuit Ideas
Experiments with Operational Amplifiers - 7 by G. B. Clayton

H. F. Predictions

Meter for Blind Students by R. S. Maddever
"BBC Engineering 1922-1972"
Announcements
Books Received
A Simple Transistor D.C. Multimeter by J. D. Pahomoff
Developments in Surface Acoustic Wave Technology
Design Criteria for Logic Power Supplies by R. B. D. Knight
British Participation in ESRO-4
World of Amateur Radio
New Products
About People
January Meetings
2 Literature Received
A88 APPOINTMENTS VACANT
A100 INDEX TO ADVERTISERS

ibpa

interitiationt Business
press
Asscociares

1.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson
© I.P.C. Business Press Ltd, 1973
Brief extracts or comẏients are allowed provided acknowledgement to the journal is given.

[^2]
Askus about duplexers: those we make and those you'd like us to make.

EEV has a wide range of duplexers which can handle just about any radar frequency and power requirement.

Most of them are available from stock or on very early delivery. If we haven't got the one you need - ask us to make it for you.

EEV has one of Europe's most advanced and experienced design. manufacturing and testing capabilities. It's yours to make use of: 'phone or write or, better still, send us your spec and we'll contact you.
 A member of THE GEC ELECTRONIC TUBE CO LTD, a management company which unites the activities of English Electric Valve Co Ltd and The M-O Valve Co Ltd

Wireless World

Electronics Industry in the E.E.C.

Editor:
H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Assistant Editors:
G. B. SHORTER, B.Sc. W. E. ANDERTON, B.Sc. B. LANE

Drawing Office:
L. DARRAH.

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339
G. J. STICHBURY

Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

By the time this issue appears Britain will be a member of the European Economic Community. Inevitably there are misgivings in the minds of many businessmen, engineers and laymen as to the so-called benefits entry into the common market will produce. We have been asked what effect it will have on the contents of Wireless World. The simple answer is - editorially, little, if any. We deal with new technologies as and when they are announced irrespective of the place of origin. Moreover, as we write for the individual engineer or technician it matters not whether he is in Asia, Africa, America or Europe. This fact is borne out by our overseas circulation which is in round figures 15,000 , of which about 25% is on the Continent.

While entry into the Common Market may not directly affect the contents of the journal it could have major repercussions on this country's electronics industry. With tariff barriers removed, the door for imports into Great Britain will be wide open but the traffic could be two-way if we are ready and prepared to meet the challenge. In a recent contribution on "The future for the British electrical and electronics industry inside the E.E.C." at the I.E.E., Dr F. E. Jones, of Mullard, took a somewhat pessimistic view. This was not entirely because of the Continental threat but in view of the general influx of electronic products. He instanced that during 1972 more colour television sets came into the U.K. from Japan than from the whole Continent - E.E.C. and E.F.T.A.

Dr Jones quoted figures in support of his contention that during the 15 years of the E.E.C. there has not been any major increase in the flow of goods across the frontiers of "the seven". It would appear, therefore, that the British electronics industry has got to go into the market place and sell its wares - entry into the Common Market will not herald the millenium. Our goods must not only be competitive in price but readily available. Here surely is the nub. One of the reasons for the present influx of colour television receivers is because the British radio industry has been unable to meet the demand. The long delay in deliveries has meant that many customers bought imported receivers to ensure having their sets installed for Christmas. A similar story can be told of other sections of the industry.
"It would seem", said Dr Jones "that not much has happened in the 15 years since the formation of the E.E.C. that has been of great benefit to the electrical or electronic industries of Europe in putting them on a more competitive basis with the rest of the world. It would also seem that the full benefits . . . will not be felt until there is a federal government of Europe with a common currency and harmonization of taxes and social systems . . . but this is not in the foreseeable future, if at all."

Another aspect of our entry into the E.E.C. was highlighted by Mr J. E. Engels, chairman of Philips Electrical Industries, in a lecture at the I.E.R.E., incidentally, on the same evening as Dr Jones' I.E.E. lecture (lack of inter-institution consultation?). Mr Engels dealt with the subject of the electronic and radio engineer in the E.E.C., for the treaty of Rome states that member countries will not impede the flow of capital, goods or people across national boundaries. He set the scene, as it were, by saying "Universal brotherhood has not suadenly emerged; nor have all national struggles and competition suddenly evaporated. On the contrary, the rules of the game may have changed, but in essence the game is still the same. Within the rules of the Common Market agreements a great struggle is still going on to protect national and industrial interests. In many respects this industrial competitive struggle is more severe than it was before, because there are fewer tariff barriers".

One of the problems involved in the movement of people between countries is the differing standards of technical qualification. It is interesting therefore to learn that a new "super institution" for electrical/electronics engineers in Europe is proposed as a result of a recent convention of the National Electrotechnical Societies of Western Europe held in Zurich. Both the I.E.E. and the I.E.R.E. were represented and we await an official announcement on the outcome.

The Semiconductor Story

1: The new crystal triode

by K. J. Dean*, M.Sc., Ph.D., and G. White \dagger, M.Phil., B.Sc.

The paper which first announced the discovery of the transistor appeared in the Physical Review in July 1948. To c mmemorate the 25th anniversary of this event, Wireless World is publishing a series of four articles presenting a critical survey of the semiconductor industry, past and present, from the U.K. point of view. Part 1 describes the early development of germanium diodes and transistors, while parts 2 and 3 describe respectively the exploitation of the transistor and the integrated circuit to the present day. The final part discusses some of the problems, both technical and commercial, which have faced the industry in recent years. The roles of careful research, happy chance, technical skill and industrial pressure make a fascinating story of our times.

The new crystal triode, as the transistor was first called, seemed in 1948 to be poor competition for the Goliath sized valve manufacturing industry. But a veritable David it turned out to be! Wireless World reported the discovery in an article in October 1948, entitled "The Amplifying Crystal". How many people reading that report then realized its implications for the future? The transistor was the end result of research which started 140 years ago in 1833 with Michael Faraday. He noted that while most conductors have a positive temperature coefficient of resistance, a substance called silver sulphide had a negative coefficient. Thus a substance later to be classed as a semiconductor was identified. Rectification, photoconductivity and photoe.m.f. effects were all observed before 1900 . Theoretical work on semiconductors after Faraday's original discovery gathered momentum, so that, by the early 1930s, quantum mechanics was applied to the theory of conduction. Energy band diagrams, electrons and holes then started to be discussed. The stage was set for the discovery in America by J. Bardeen and W. H. Brattain of the transistor-a semiconductor triode. This was the first threeterminal semiconductor device which could amplify, and that was only 25 years ago. Now the impact of the transistor is universal, it has applications ranging from aviation and broadcasting to washing machines and Xerography.

Cat's whiskers

Semiconductor crystals were used in the early days of radio communications, the crystal rectifier being used as the detector in radio receivers. A typical detector was made by soldering or clamping a minute

[^3]piece of the crystal in a small brass cup and the point contact made with a flexible wire called the cat's whisker, which was held in light contact with the crystal. The discovery of the thermionic triode by de Forest in 1907, and its subsequent developments, made the crystal rectifier obsolete in radio receivers. However, the point contact crystal could not be replaced for detecting and monitoring u.h.f. power. At the other end of the scale, at low frequencies, the copper oxide rectifier and selenium rectifier have been commercially successful, but they are however not point contact rectifiers. The rectification property of these is obtained by the contact of a thin film of semiconductor with the metal on which it is deposited. They are therefore termed contact rectifiers.

Wartime research

The second World War, like all military ventures, provided the cash to oil the wheels of research, so important at times of national emergency. It saw the development of radar, which gave a great impetus to u.h.f. crystal rectifier design. Research was concentrated on using silicon, germanium and boron. Boron prepared with selected impurities, i.e. "doped", showed sufficient conductivity to be of interest, but its typical characteristic curve was S shaped and symmetrical about the origin, thus the project was then dropped. Silicon showed great promise, being used for most of the commercially available devices. At this time the importance of starting with extremely pure silicon was appreciated. The "red-dot" crystal diode developed by the General Electric Company, for example, was derived from silicon crystals prepared from melts made from highly purified silicon powder, to which was added a fraction of a per cent of aluminium and beryllium. The resulting crystal could dissipate relatively large amounts of power without appreciably
impairing its performance as a mixer. These were therefore known as "high-burnout" crystals.
The method of adjusting the cat's whisker at this time is interesting to note. The contact pressure was increased until a predetermined characteristic was obtained, and the cartridge was then tapped with a light . mallet. Careful tapping caused the forward resistance to drop and the reverse resistance to rise. The cartridge was then impregnated with wax to provide mechanical stability and to make it impervious to water. Further work in 1943 led to high purity silicon, doped with only 0.001% boron, which produced an extremely good device and made prolonged tapping unnecessary. The small amount of the impurity needed indicates how material technology had to keep pace with the demands of the semiconductor device manufacturer. At this time, work on germanium led to the high-inverse voltage rectifier; so called because it could withstand up to 100 V applied in the reverse direction. The doping agent used was tin, although it was found that similar effects could be obtained with some other elements. Germanium, however, could not compete with silicon above 30 MHz . These methods of preparing the germanium crystal and polishing its surface were to be used later in the manufacture of the first transistor.

In 1946 H. Q. North showed that the point-contact used in these devices could be welded to the crystal surface, by passing a high density current (in the order of $10^{7} \mathrm{amps} / \mathrm{sq}$. in) for a short time through the contact point. Although this did not improve their performance, little was lost either. This technique too was later to be of value in three-terminal point contact devices.

Post war development

After World War II the immediate problems of survival gave place to the interests of commercial enterprise, and researchers were able to return to more general semiconductor problems, although under industrial patronage. Silicon and germanium were chosen for the research effort, because they are simpler to understand than most other semiconductors. A lot of expertise on these materials had been accumulated during the war, particularly in America. Fig. 1 shows the structure of silicon or germanium crystals. Each atom has four neighbours, all
at the same distance from it, and all at equal distance from eacin other. Each atom and one of its neighbours is attached by an electron pair bond, which consists of sharing two electrons to form a stable bond. Each atom has four electrons available to form bonds (valence electrons), therefore the conditions are exactly right for the diamond structure of Fig. 1

Fig. 1. The crystal structure of germanium and silicon.

The electronic properties are also dependent upon the electrons present in the bonding. By introducing impurities into the crystal the bonding can be modified. Therefore, the electronic properties can be tailored as required by the controlled addition of impurities. The unoccupied bonds on the extreme edge of a perfect crystal cannot be used by internal atoms, but they are capable of accepting electrons. These are called acceptor or surface states. Crystal defects and absorbed foreign atoms will have similar effects and also create surface states. It was the thorough investigation of these states that led to the somewhat accidental discovery of the transistor effect. It is strange that surface states are now something to be avoided in transistor manufacture, because they would provide a low impedance path to current flow that is controlled inside the material.

Amplification using semiconductors was first achieved by using the negative resistance characteristic of thermistors. As the current through the thermistor increased, the heat generated caused a reduction in the resistance, and hence a drop in the voltage. The frequency of operation is limited by the temperature which has to follow the current changes. However, by making the physical dimensions small and the thermal conductivities high, oscillations of up to 100 kHz have been produced. Bell Telephone Laboratories' aim after the war was to produce a purely electronic, rather than thermal, semiconductor amplifier. The work, was initiated by W. Shockley who directed work on investigating the modulation of the conductance of a thin film of semiconductor. The conductance was controlled by an electric field applied by an electrode insulated from the film. It was hoped that the conductance would be modified by changes
in the surface states caused by the applied field. The experiment gave disappointing results, since only about 10% of the expected change in conductance occurred. The effect was explained by J. Bardeen who in 1947 proposed a double layer at the surface, formed by the charge in the surface states and the induced space charge. Further research was carried out to measure the characteristics of the surface states.

The transistor discovered

The effect of having the crystal surface immersed in a liquid was studied. The characteristics of a high-inverse voltage germanium rectifier with a field applied by an electrolyte were investigated by J. Bardeen and W. H. Brattain. They proposed that a portion of the current was being carried by holes flowing near the surface. When the electrolyte was replaced with a metal object, transistor action was discovered. The discovery was first published as a short letter to the editor of the Physical Review journal in July 1948. This marked the beginning of the transistor era. A more detailed paper was published in the following year.

The transistor is a semiconductor triode amplifier. The prefix "trans" designates the translational property of the device, while the root "istor" classifies it as a circuit element in the same general family with resistor, varistor, and thermistor. The transistor was commercially made in a similar form to the point contact diode, except for a second cat's whisker mounted very close to the first. The device is shown schematically in Fig. 2. A germanium ingot was

Fig. 2. Schematic of the point contact transistor.
prepared in the same manner as that used for the high inverse voltage diodes, and then a slice of this ingot was ground flat on both sides. The slice was copper-plated and tinned on one side, and diced into small squares with a diamond wheel. One of these squares was then sweated onto the brass base plug and the germanium surface treated. The unit was force fitted into a cylindrical cartridge, which had been shaped to accept the contact assembly. The contacts consisted of two 0.005 in phosphor bronze wires, which had been bevelled and polished.

The characteristics of the thermionic diode and the semiconductor diode are fairly similar, and methods of adding a "grid" to control the current in the forward direction as had been achieved with the
triode, were looked at. The transistor, however, is not operated in this quadrant, because the output is reverse biased in the high resistance direction. The current is enhanced and controlled by the forward biased emitter contact. This device was designated the type A transistor to distinguish it from possible future varieties. The transistor effect is the injection of holes into the n-type material by the emitter, which are collected as an increment of the collector current. The common terminal called the base electrode is physically the base of the crystal. Devices which operate on different principles, such as the field effect, have since been called transistors. Therefore, transistor electronics is used generally to describe the art of controlling electron movements in a solid, hence is sometimes called solid state electronics. One of the first point contact transistors to be manufactured in the United Kingdom is illustrated. The patent numbers

The G.E.C. crystal triode type GET 1, one of the earliest point contact transistors, to be made in the U.K. The reverse of the packet, shown here with the transistor, carried a warning "To prevent permanent damage to the triode, it is recommended that whenever possible d.c. limiter resistors be placed in series with both emitter and collector . . Great care should always be taken to connect supplies of the correct polarity to the electrodes."
show the advantage of a strong development facility, by using experience gained in the construction of point contact diodes to help in the manufacture of transistors. Patent number 591092, which was applied for in 1945, describes a method for holding the contact in place after construction. This is achieved by filling the cartridge with a wax-like substance which will harden on heating. The other patent number, 592659, was applied for in 1941, and deals with the preparation of the crystal and the subsequent treatment of its surface. The germanium had to have a spectroscopic purity of 99.95% for good results.

Transistor amplifiers

The journal Audio Engineering published an article in August 1948 entitled "Experimental Germanium Crystal Amplifier", only one month after Bardeen and Brattain's original letter. This described how to construct a germanium crystal amplifier-such was the rate of progress even in 1948. The
article highlights the similarity between point contact diodes and the type A transistor because the construction starts with two diodes. They are dismantled and the crystal used, with the two whiskers carefully adjusted on the surface. Difficulty was experienced in finding active spots, due to the relatively impure crystals being used at that time. Manufacturers were aware of the need for high quality germanium. In 1946 the first extraction plant in the United Kingdom was built at Brimsdown for Johnson Matthey for the bulk production of germanium and other semiconductor materials.

Fig. 3. Equivalent Tee circuit of a transistor.

The type A transistor can be represented by the equivalent circuit shown in Fig. 3, with the following average values for its parameters:

emitter resistance	$r_{e}=240 \Omega$
base resistance	$r_{b}=290 \Omega$
collector resistance	$r_{c}=19,000 \Omega$
amplification factor	$\alpha=1.8$

Unfortunately the active area of the device is very small and hence the collector dissipation is only about 0.2 W , although a power gain of 17 dB with a power output of 5 mW was achieved. The small size of the device, however, gives it a wide frequency response, with an upper limit of approximately 10 MHz . It was soon noted that the transistor could be greatly improved by passing large reverse currents through the collector point. This technique, called forming, resulted in amplification factors as high as 5 . This process was explained by the formation of a $\mathrm{p}-\mathrm{n}$ hook at the collector which reduced the height of the potential energy hill at the collector, so allowing a considerable increase in the number of electrons diffusing from the collector into the floating p region.
The movement of holes was thought to be mainly confined to the surface region but in 1949 J. N. Shive proved that the flow of charges could be through the bulk of the material. This was shown by constructing the double surface transistor, which was produced with germanium in the shape of an acutely tapered wedge, the two contacts being opposite each other near the thin edge. This transistor was developed into the coaxial transistor which was much easier to manufacture. Here the germanium was cut into a pill shaped cylindrical wafer with a dimple ground into the centre of both sides, so that the thickness of the centre was only a few thousandths of an inch. The emitter
and collector contacts then bear on opposite sides of the semiconductor in the dimples, and are arranged coaxially to fit into a cartridge. This method of construction avoided the problem of placing two spring contacts within a few thousandths of an inch of one another. The components used were similar to the parts used in the manufacture of point-contact rectifiers.

Junction transistors

In 1949 W. Shockley proposed that transistor action could be achieved with p-n junctions within a single crystal, thus breaking away completely from the surface effects of point contact devices. The device was therefore called a junction transistor. In principle it consisted of a bar of single crystal n-type germanium, for an n-p-n device. In the centre of the bar was formed a thin layer of p type germanium as part of the single crystal. Ohmic non-rectifying contacts were attached to each of the three regions, the outer two being the collector and emitter and the centre the base. The method of operation is essentially the same as the point contact, hence the electrodes have the same names, although the base is now in the middle. The equivalent circuit chosen for comparison is the same one as used for the point contact i.e. Fig. 3; the new values for the parameters are:

$$
\begin{aligned}
r_{e} & =25 \Omega \\
r_{b} & =250 \Omega \\
r_{c} & =5 \times 10^{6} \Omega \\
\alpha & =0.95
\end{aligned}
$$

The amplification factor α for junction transistors is less than unity, hence the amplification in common-base operation is due to the difference in impedance levels. A junction transistor was developed with a p-n hook collector, which acted similarly to the point contact transistor as far as the gain was concerned. This was achieved by a fourlayer p-n-p-n device, but the transistor had a poor high-frequency response. Little further work was carried out, even though high amplification factors were obtained.

The first junction transistors were a great improvement over the point contact devices. Power gains of 40 dB , with class A operation of 49% efficiency were achieved against 23 dB gain and an efficiency of 30% for point contact transistors. The higher power gain is due to the increase in the output impedance, and the almost ideal characteristics show that the junction transistor can operate close to the 50% maximum for a class A amplifier. Junction transistors will operate with extremely low input power of around $0.6 \mu \mathrm{~W}$. This is about one tenthousandth of the power required to operate the point contact transistor, or one millionth of the power to heat the cathode of a typical thermionic valve. Unfortunately the frequency of operation at that time was limited to about 1 MHz . This was due to the time taken for the charge carriers to diffuse across the base. The equivalent effect in thermionic valves is the transit time, that is, the time taken by the electrons to travel from the cathode to the anode. The type of case used by S.T.C. for an early junction

The S.T.C. point contact transistor TP1 appeared about the same time as the G.E.C. GET 1. It was soon withdrawn and replaced by the TS 1, a junction transistor.
transistor is shown in the photograph. Although the TP1 device shown was a point contact transistor, it was made at the same time, and externally looks identical to the TS1 junction transistor.
Several methods have been used to improve the high-frequency response of junction transistors. The most obvious answer is to reduce the base width; this is limited, however, by the problem of punch through. A second contact added to the base by Wallace et al in 1952 effectively reduced the base area and the base resistance. This increased the cut-off frequency to about 50 MHz . Further improvements were realized by advances in material technology, in particular by the diffusion process which started in 1952, and by the production of extremely pure silicon. The purification was achieved by zone refining. This process is based upon the relatively high rate of diffusion of impurities in the molten zone of a crystal, compared with the much slower rate in the solidification zone. The raw single crystal is passed slowly through a localized radio-frequency heating coil. The crystal within the coil is in the molten state, and on passing through the coil re-solidifies into a single crystal again. The impurities tend to remain in the molten region and therefore are swept to the end of the crystal. The process is repeated several times. The end with the impurities is discarded and the concentration of impurities in the main section can be reduced to about 10^{17} atoms $/ \mathrm{cu} . \mathrm{m}$.

Field effect

The field effect transistor experiments that failed were the beginning for the point contact and junction transistors. In 1952 W. Shockley proposed a unipolar field effect transistor which overcame the earlier problems of surface states. The point contact and junction transistors are called bipolar because charge carriers of both signs are involved. In the field effect the controlled conductance between input and output terminals results from changes in the number of carriers of one type, hence the name unipolar. The field effect transistor has several advantages, the most important being the high input impedance. The input is a reverse biased p-n junction, and the depletion layers created control the conductance through the channel. The difference in operation is reflected in the
names for the electrodes, the emitter and collector being called the source and drain respectively. The controlling electrode is now called the gate instead of the base. It was not until fairly recently that the technology needed to be able to mass produce these devices has been developed. In the meantime the junction transistor has built up a commanding lead.

Circuit design

Early work on transistor circuit design tended to start with a well tried thermionic valve circuit, and then modify it for use with transistors, even though the parameters are radically different. The grounded cathode triode is a voltage amplifying device with a high input impedance and a relatively low output impedance. Conversely the grounded base transistor is a current amplifier with a low input impedance and a relatively high output impedance. The early papers on transistor circuit design referred to the transistor's characteristics as peculiar, because they were different to those of a valve. On looking further at the parameters, it was noted that, if the roles of current and voltage were changed over, the devices were similar enough for quantitative designs starting from the valve circuits. This background led to the circuit performance of transistors being less than they might have been, until designers began to take account of the transistor's peculiarities and use them to advantage. One of the major advantages which would be unheard of with valves is the use of complementary circuitry, allowed by having $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors.

The small size and ruggedness of transistors opened new fields and their small power requirements meant that the components used with them could be miniaturized also. The type A transistor of 1949 occupied one-fiftieth of a cubic inch, with a collector voltage of 30 V . In 1952 the junction transistor could be fitted into one fivehundredth of a cubic inch with a collector voltage of 2 V . Bell Telephone Laboratories studied the problem of manufacturing complete circuit packages under an American Signal Corps contract in 1952. At that time the package of a laboratory circuit model required about one-tenth the space

A modern germanium alloy junction transistor still in production at Newmarket Transistors. The emitter lead is in the foreground and the base lead at the right connects to a metal disc in which the semiconductor pellet is held.
and power of an equivalent package built with thermionic valves. The importance of designing sub-sections of a system, which would be used in quantity, and manufacturing them as packages was realized from the beginning of the transistor's development, and has been a goal ever since.

The general manufacture of transistors began in 1952, after Bell Telephone Labs. held a symposium, where they offered knowhow to all who wanted it for the price of an admission ticket $(\$ 25,000)$. The era of the practical transistor had now begun. Photographs show the construction of an early alloy junction and the progress achieved since then by comparison with a modern alloy junction transistor. The successive developments to improve the parameters and to find transistor structures, which lend themselves to easier manufacture are related in part 2 "The search for the best transistor". The originators of transistor electronics, J. Bardeen, W. H. Brattain and W. Shockley were awarded the Nobel prize for physics in 1956 in recognition of their work in the theory of semiconductors, when it was beginning to be recognized that they had not just invented the transistor, but had laid the foundations of the worldwide multi-million pound microelectronics industry.
(To be continued)

A photomicrograph of an early medium power germanium alloy junction transistor. The pellet of impurity and the emitter lead connected to it are clearly shown in the centre of the picture.

Bibliography

1. "The amplifying crystal", Wireless World, October 1948.
2. Bardeen, J., "Surface states and rectification at a metal semiconductor contact", Phys. Rev., 71, pp. 717-727, 15 May 1947.
3. Bardeen, J., and Brattain. W. H., "The transistor a semiconductor triode", Phys. Rev., 74, pp. 230-231, 15 July 1948.
4. Shockley, W., "The theory of p-n junctions in semiconductors and $\mathrm{p}-\mathrm{n}$ junction transistors", Bell. Sys. Tech. Journ., 28, pp. 435-489, July 1949
5. Shockley, W., "Electrons and holes in semiconductors", Van Nostrand, 1950.
6. Morton, J. A., "Present status of transistor development", Bell Sys. Tech. Journ., 31, pp. 411-422, May 1952.
7. North, H. Q., "Properties of welded germanium rectifiers", Journal of Applied Physics, pp. 912-923, Nov. 1946.

Sixty Years Ago

An uneasiness in the Marconi Company when share prices fell considerably is reflected in a statement issued by the company and reproduced in the January 1913 issue of The Marconigraph. In referred to opinions which had been expressed suggesting that "continuous waves would in the future supersede the spark system". The announcement from the secretary of the comapny continued "As these statements and opinions are liable to mislead shareholders and cause them some uneasiness, 1 am instructed to inform you that Mr. Marconi himself tested continuous wave systems many years ago, and experimented with them during the greater part of 1907 at the Poldhu station. As a result of these experiments he learned the advantages and disadvantages pertaining to continuous waves, and eventually arrived at a compromise between the continuous wave and spark systems, combining the best points of both. This resulted in material changes in his system for long distance work, and new and important improvements were patented by him in 1907, which are mainly responsible for the progress since made in long-distance wireless telegraphy. These inventions, which materially modify the spark system, seem to be surprisingly little known, notwithstanding the lectures delivered by Mr . Marconiwhen he made statements relating to the use he was making of continuous waves, semi-continuous waves and the elimination of the spark."

Corrections

L. Nelson Jones, author of the article "I.C. Peak Programme Meter" in the November 1972 issue, has informed us of an error in the specification of the meter. The scale marking division seven represents a level of +12 dBm (not 14 dBm) with a peak input voltage of 4.38 V . The undefined f.s.d. reading usually corresponds to around 5.37 V peak. This calibration fault is easily corrected by changing the value of R_{14} to $100 \mathrm{k} \Omega 2$, and Key Electronics, suppliers of the kit, are sending all those who have kits, a replacement resistor together with a copy of the amended handbook.
We regret an error exists in the circuit diagram (Fig. 1) of the "Mobile/Portable Power Unit for H.F. Transceiver" published in our December issue. The conductor betweer the base terminal of transistor $T r_{2}$ and ground should be omitted otherwise the catastrophic failure of this device will occur.

News of the Month

New i.c. concept

The development of integrated circuits from the first small devices to the latest 1.s.i. techniques has been recorded in the pages of this journal over the past few years, and now Ferranti have added to the extensive range of application techniques available to the designer. In 1969 an announcement was made concerning a new process called collector diffusion isolation (c.d.i.), a technique using bipolar devices and an isolation technique based on the diffusion of isolation areas in a p-type substrate. First discovered by Murphy and Glinski of Bell Laboratories and reported in Wireless World, Nov. '71 issue, it has significant advantages over m.o.s. since only five masking operations are required. A typical cross-section of a c.d.i. structure reveals two more significant features. First the power and earth connections are made through the semiconductor material itself, thus eliminating the need for multi-layer aluminization to provide for these connections, and second, all signal connections can be made in the single final layer of metal.
Such a structure lends itself ideally to
the new concept from Ferranti; that of an "uncommitted" logic array (u.la.) which is illustrated in the top half of the accompanying split photograph. The u.l.a. consists of 200 bipolar devices without the final metal connecting layer. From this a custom-built i.c. can be produced quickly and cheaply by adding an aluminium connecting layer to suit any logic design requirement. By standardizing the type and number of resistive elements and leaving these also in an uncommitted state, simple linear circuits can be additionally devised, thus giving greater versatility. An example of the appearance of the u.l.a. after the metal layer is applied is shown in the bottom section of the photograph. The technique is very much cheaper for short production runs than 1.s.i., though if the demand should rise unexpectedly for any particular unit, it becomes a very simple matter to convert to conventional l.s.i. techniques. For about $£ 1250$ Ferranti can undertake to produce five tested prototype samples to a customer's own logic requirements, full production prices being from $£ 12$ to $£ 20$ dependent upon quantity. The value of this system lies in the fact

Logic array

shown in an uncommitted format (top) and after the final metal array has been added.
that u.l.a. slices can be stockpiled and small quantity runs below 100 readily produced at economical prices. Applications are seen in coin vending machines and automatic machine control among a variety of others. The final package can be made available in 24,28 or 40 pin moulded or ceramic d.i.l.

Etching solution controls i.c. windows

A solution to control the etching angle and depth of deeply etched areas in silicon wafers, has been developed by Bell-Northern, of Ottawa, Canada. Silicon wafers form the base material for most integrated circuits and normally the etched bottom is flat or slightly concave and the cross-section is often enlarged or cut away by lateral undercutting of the mask. With the new etching solution the sides of the etched "window" or "well" are substantially straight and normal to the surface of the main body of material. In addition, the profile of the bottom of the etched area can be varied from slightly convex to a situation in which the edges are etched into deep grooves, while limited etching occurs in the central portion, depending on the etchant composition. By varying the amount of arsenic trioxide in the etching solution (refluxing orthophosphoric acid), the preferential etching can be varied considerably. Increasing slightly the quantity of trioxide will change the profile from concave to a centre "island" surrounded by deep grooves. At a certain point of concentration, the solution starts to leave the surface pitted and preferential etching substantially disappears.
The deep grooving effect would lend itself to electrical isolation since grooves can be etched down to a p-type layer through an n-type epitaxial silicon layer. One of the advantages is that the wall goes down straight regardless of the crystal orientation of the silicon. Oxidation of the silicon wafer after the preferential edge etch results in the grooves being completely filled with silicon dioxide and hence provides dielectric isolation of adjacent devices.

Components Board reorganized

The Electronic Components Board is being reorganized and, with effect from 1st January, the constituent associations responsible for active electronic components cease to exist as separate entities. The two Groups of VASCA, * covering professional valves and tubes and semiconductor devices, become product groups of the new organization, and a
third product group will be responsible for domestic valves and television tubes, taking over the function of the B.V.A. \dagger There will be two categories of members, (a) direct members, being companies engaged in the U.K. in the manufacture and sale of electronic components, and who are approved by the council of the Board, who will pay a subscription direct to the E.C.B. and (b) corporate members, who will be members of the Radio and Electronic Component Manufacturers' Federation, which will pay a block subscription to the E.C.B. on their behalf. The R.E.C.M.F. will therefore continue as a separate autonomous but affiliated, organization. The recently appointed chairman of the E.C.B. is Sir Ronald Melville.

- Electronic Valve \& Semi-conductor Manufacturers' Association.
\dagger British Radio Valve Manufacturers' Association.

London Component Show

Space applied for at the London Electronic Component Show to be held at Olympia, for four days from 22-25 May this year, already accounts for two-thirds of the total space available. The number of companies from whom applications have been received to date is approximately 300. Providing an indication of the wide appeal of the show is the number of exhibitors, at present totalling over 60 , who will be making their first appearance at the show. Overseas representation to date, approximately 20% of all intending participants, includes exhibitors from Austria, Canada, France, West Germany, Holland, Hungary, Italy, Switzerland and U.S.A. and the U.S.S.R.

The 1973 show will be the 23 rd in the series and the third since it went international. As the first major United Kingdom professional electronics exhibition to be held after the formation of the expanded European Economic Community, this event should play a major part in stimulating and consolidating overseas trade. The London Electronic Component

Latest Ferranti c.d.i. chip, type ZN414 pictured here can be used as the basis for a simple t.r.f. receiver. Circuit show:n provides 70 dB of power gain, consumes ImA and with 30% modulation has a distortion of 2%. The collector diffusion isolation process developed by Ferranti is a bipolar technique, which also has the low-cost production advantage of m.o.s. i.cs - see page 526 November 1971 issue.

Show is sponsored by the Radio and Electronic Component Manufacturers' Federation and is organized by Industrial Exhibitions Ltd.

Thin film laser switch

A light switch for use with lasers has been devised by Bell Laboratories scientists. The switch may be useful in future tiny optical circuits for placing phone calls and other information on a laser beam, capable of carrying many times more information than the present transmission media, such as wire conductors, coaxial cable and microwave radio links.

The magnetically controlled switch, which can modulate light passing through a thin, single-crystal garnet film, could form the heart of a miniature circuit in an

Two videophones have been incorporated in the communal aerial television system installed at the Teleng factory in South Ockendon.

optical communication system. The light switch measures about $\frac{3}{4}$ in across in its present experimental form, but could be made even smaller. The main components of the switch are a magnetic thin film of single crystal garnet through which the light is guided, and a tiny electric circuit used to impose the required information on the light beam. When a minute current is passed through the circuit a magnetic field is produced which causes the light beam in the film to change its polarization and hence the direction in which the light is refracted as it is coupled out of the film by means of a prism. Information can be impressed or coded on the light beam by switching the beam in or out of its original path in a controlled pattern of light pulses.

Super heat conductors for i.cs

The principle of heat pipe operation has been known for a long time but only recently have production problems been overcome, resulting in a variety of forms and applications. Jermyn Manufacturing have introduced a range of super heat pipes, plates and strips all working on the heat pipe principle. When one end of the pipe is heated, a fluid in the pipe evaporates and travels along the tube to its cooler end. There it condenses (giving up its heat to a suitable heat dissipator, such as a heat sink attached to the pipe) and the condensate returns to the hot end of the pipe by capillary action. A cyclic process is thus set-up, which will continue as long as there is a small temperature gradient between the ends of the pipe. This process
is efficient, with a temperature gradient down the pipe of $2.5^{\circ} \mathrm{C}$ per foot. The main manufacturing problem has been the extreme cleanliness necessary in fitting an internal fine mesh "wick" to produce the capillary action. Super heat plates, strips, sinks etc, all operate in exactly the same way. A heat plate for example may be considered as a heat pipe squashed flat. The result of this is a tendency to equalize the temperature of the whole area of the plate (the temperature gradient across its surface not exceeding $0.5^{\circ} \mathrm{C}$). An interesting application of this high-1 efficiency heat radiator has been made by Jermyn, who are producing flat, thin strips of heat conductors on which arrays of integrated circuits can lie to ensure uniform operating temperature of all the devices.

Europe's first geostationary satellite

A group of major European companies, the Star Consortium, led by British Aircraft Corporation Electronic and Space Systems, has been awarded a new satellite contract by the European Space Research Organization following two years of competitive studies. The contract, worth $£ 254,000$, is for the detailed definition study of GEOS, Europe's first geostationary satellite. The study will last three months, and lead to the award of the main development contract to the Star Consortium. B.A.C. is the prime contractor. GEOS is programmed for launch in 1976, when it will carry scientific experiments into geostationary

Earth orbit 22,300 miles above the equator to measure d.c. and a.c. electric and magnetic fields and also particle densities and distributions.

Giant mobile transmitting and receiving mast

One of the problems associated with outside broadcasting is beaming signals clear of local obstructions. To cope with this problem, Eagle Engineering, of Warwick, have designed two 100 ft masts to meet requirements made by the B.B.C. The masts are for use mainly in the London region and are the tallest mobile units in the U.K. suitable for microwave link. Each mast is in four telescoping sections. The lower pair are extended by the action of a hydraulic ram, the upper pair by means of a system of differential cables and pulleys. With two 4 ft diameter microwave dish aerials and associated transmitters mounted on the masts without the use of guy cables - the maximum safe operational wind speed has been shown to be in the order of 35-40 m.p.h.

Transmitters for independent radio stations

The first group of independent local radio stations recently announced by the Independent Broadcasting Authority is to
go on the air with transmitters of standard design. The order, placed with Marconi's, is for the supply of a total of .47 transmitters; eight pairs of 1 kW v.h.f. /f.m. and 21 kW m.f. units, two 125 W v.h.f. $/ \mathrm{f} . \mathrm{m}$. pairs and six 10 kW m.f. equipments. All the transmitters are standard Marconi units and those operating in pairs will have automatic changeover facilities. From the first consideration of the commercial broadcasting network, both m.f. and v.h.f. coverage were considered essential, and all five of the designated new stations will broadcast simultaneously on v.h.f. and medium frequencies. An eventual total of 60 independent radio stations will cover an estimated 75% of the population of the country.

International Apprentice Competition

The United Kingdom will be sending a team of craft apprentices to the International Apprentice Competition in Munich during August 1973. Among the crafts represented in the British team will be industrial electronics and television servicing. The U.K. Steering Committee is now accepting entries for the initial selection competitions. Enquiries and application forms for entry may be obtained from Mr. C. A. Thompson, City of Bath Technical College, James Street West, Bath BAl lUP. There is a $£ 10$ entrance fee for each initial selection competitor.

A.P.A.E. annual exhibition

The annual exhibition of the Association of Public Address Engineers is to be held at the Bloomsbury Centre Hotel from 13-15th March. It opens on the Tuesday morning at 12.30 and closes at 6.00 p.m. On subsequent days the doors open at 10.00 a.m. This year is the 25 th anniversary of the A.P.A.E. and a num ber of historical exhibits will be shown from the Association's collection. Lectures will be given at intervals in the City room. Tickets are available free of charge from exhibitors or the secretariat, 6 Conduit St., London W1R 9TG.

B.B.C. exhibition

A final "news-worthy" note is that well over 65,000 people visited the technical exhibition staged at Mullard House, London, to commemorate the B.B.C's 50th anniversary.

Electronica in Retrospect

An impression of this biennial exhibition

After 63,000 visitors had visited the seven-day exhibition of the international electronic components industry, held at Munich in November, it closed and was voted a great success by most who participated. Held biennially, each event has been a little larger, a little better. The variety of products shown makes it difficult to select any particular aspect, but probably one of the most visually striking was the increasingly important part that light is playing in all areas of electronics. Evidence of this was seen on such stands as Jena Glaswerk Schott \& Gen and Corning Glass, who were displaying a range of optical glasses and, more importantly, several examples of fibre optic applications. Light-emitting diodes were very much in the forefront of many of the semiconductor manufacturers' product displays and these appeared in a variety of colours from the commonly available red to yellow and green.

Plessey, who were strongly represented in a large and elegant stand, were demonstrating a high brightness yellow l.e.d. generating $34,000 \mathrm{~cd} / \mathrm{m}^{2}$ at a current of 250 mA . Ferranti, showing products in two of the halls, were demonstrating their own expertise in producing green and red emitting GaP material ready for packaging into individual lamps or segment displays. Other examples of the use of l.e.ds were to be found on the Siemens and Texas Instruments stands where a range of opto-electronic couplers, consisting of an l.e.d. and a photo-transistor sealed in a

Typical of a large number of printed circuit types was this flexible version produced by Schoeller \& Co. Electronik GmbH.
common package, were shown. These devices find common application where a degree of isolation is required between t.t.1. systems and the ground potentials, or to drive s.c.rs controlling power machinery. Another interesting application is inclusion of opto-isolators in the feedback elements of a switching mode power supply, where error signals can be safely returned to the early stages of the control unit which may be affected by fluctuations originating in the mains supply.

Several stands featured displays of laser equipment, much being designed for educational experimental purposes. An interesting application demonstrated by Spindler and Hoyer KG was the use of an optical laser measuring bench for improving the definition of electron microscope photographs. This idea involves the illumination of a transparency by a coherent light beam from a laser; the transmitted light then undergoes an optical Fourier transform followed by spot frequency filtering and a second transform to reconstitute the image. By selection of the spot frequency filters, definition of any particular aspect of the original picture can be improved.

Larger display units

A flat panel display unit shown on the Thomson-CSF stand attracted considerable interest, as did several other products from this company. Called the Pavane panel, it is available in three principal forms - as a high resolution display with 400 points per square centimetre (illustrated) and suitable to accommodate from 200 to 2000 characters, or in a semi-transparent form with a rear face available for the superimposition of projected images, or in a two- or three-colour unic of medium resolution. Having a high writing speed and digital $\mathrm{X}-\mathrm{Y}$ access, the panel is also suitable for two-way computer "dialogue" with a light or electric pen.

Also shown on the stand was a novel display tube with what is called a multi-colour penetration screen. Since the resolution and brilliance of conventional shadow mask tubes are somewhat limited for instrumentation applications, a new technique has been developed where three layers of material are coated on the inside of the tube face. These consist of two

An example of the Pavane panel used as a computer terminal readout device.

Typical of the new ideas in microwave integrated circuits shown at the Fair was this example from MESL.

The laser optical measuring bench made by Spindler \& Hoyer
separate fluorescing phosphors of either a different colour or different persistence, separated by a barrier layer. Low energy electrons of about 9 keV excite the first phosphor but are prevented from further penetration by the barrier. Higher energy electrons (17 keV) will penetrate the barrier to excite the second phosphor. Using red and green phosphors, a range of colours including orange and yellow can be produced with intermediate beam energy. Tubes of this type are now being made up to a 19 in size in a variety of screen coatings. A similar product was exhibited by the M-O Valve Company on the joint EEV and M-OV stand.

Liquid crystal display

Finally on the subject of visual display, liquid crystals appeared in several units shown around the exhibition. Notable examples were those manufactured by the joint company of Swarowski-AMI and also by Electrovac. The last-mentioned company markets the cells under the brand name Nemocell and provides two versions enabling transmitted or reflected light to be utilized. With an operating voltage of 15 to 50 V and a digit height of 12 mm , applications can be seen in channel number displays for television sets, digital clocks and other units where large alpha-numeric displays are desirable.

Although test instruments were not considered to be part of the components exhibition, at least one complete oscilloscope, of rather novel design, was exhibited. Made by the American company Nicolet Instrument-Corporation, it is called a digital oscilloscope. Essentially it is a low-frequency storage oscilloscope making use of a non-volatile digital memory. The advantage of this form of storage is that it eliminates the danger of difficult focus or brightness settings causing potential phosphor burning, and the signal resolution is extended to one part in 4096. An X-Y plotter output is available. giving the extra

The Ferranti Feedraft used to automatically generate p.c. masters, i.c. masks and other drawings.
facility of a permanent trace of the stored signal and an additional alpha numeric display on the screen together with a crosshair marker gives the time and voltage co-ordinates at the intersection.

Applications for integrated photodiodes were to be seen on two stands, those of the British company IPL Ltd and Ing. Erich Sommer, a distributor for Reticon Corporation of America. On both the diode arrays were being used to meet a number of needs including component measurement to fine limits and also a possible use in facsimile transmission. The IPL unit was made up as a line scan camera system consisting of a self scanned diode array mounted behind a custom lens assembly. A second unit called
the driver and recharge signal processor unit couples to the camera and the only other requirement is for a d.c. supply. Arrays of 50 to 256 photodiodes can be arranged in any specified length. Reticon were also displaying linear arrays, but had extended their product range to include area arrays of up to 1024 diodes.

A useful feature of the Reticon line scanner is that the i.c. includes the shift register used to operate m.o.s. switches which connect diodes to the video line.

This report covers only a fraction of the interesting range of products at the 1972 Electronica exhibition, which, surely, now ranks in importance with the Hanover Fair.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Doppler effect in loudspeakers

Perhaps I might be permitted to sum up the recent correspondence on Doppler effect in loudspeakers.

The fact that distortion due to the Doppler effect exists in loudspeakers was clearly demonstrated nearly thirty years ago by Beers and Belar, who measured objectively the distortion from various loudspeakers when radiating pure tones, and showed that the distortion obeyed the laws they had predicted. Doppler distortion from loudspeakers has also been assessed subjectively by Moir, again using pure tones, this time in a live room, and he has shown that very small orders of distortion are audible, a figure of 0.001% being quoted for the most critical carrier and modulating frequency used. What then do we make of the statement in my previous letter that Doppler distortion from three differing types of B.B.C. monitoring loudspeaker is inaudible, even at their maximum rated powers, in spite of the fact that the distortion figures exceed that given by Moir? The difference is that I was speaking of distortion under programme conditions, not when using pure tones. It has been shown by Stott and Axon ${ }^{1}$ that for flutter, which is just another form of Doppler distortion, the ear can be no less than 38 dB more sensitive to the most critical combination of tone and flutter frequency than it is to the corresponding distortion of the most critical type of programme at the same flutter frequency $(5 \mathrm{~Hz})$, both being listened to on a widerange loudspeaker in a live room. This difference reduces somewhat to 29 dB for a flutter rate of 50 Hz which would represent roughly the lower frequency limit of most loudspeakers. These figures are enormous, but in fact they can be confirmed qualitatively by every-day experience. If we take a tape machine whose flutter is completely inaudible on programme, record on it a continuous tone of 2 kHz and play it back, the resulting frequency modulation is not only just audible, it is gross, thus confirming that there is a very large difference in the sensitivity of the ear to this form of distortion for the two types of signal.

One other point should be made. In a given size of loudspeaker unit careful design will reduce the amplitude non-linearity due
to the spider-surround combination or the magnetic field. No such cure is available for Doppler distortion. If the size of the cone, the frequency limits and the sound power are fixed, the level of Doppler distortion follows automatically. Curves showing the minimum sound levels for various size radiators before Doppler distortion is audible in a $2000 \mathrm{ft}^{3}$ room are given in a paper to be published, in the Journal of the Audio Engineering Society.
H. D. Harwood,
B.B.C. Research Dept., Kingswood Warren,
Surrey.

1. Stott, A and Axon, P. E., Proc. I.E.E. Pt. B, No. 5, September 1955, 0.643.

Feedback amplifiers

I have read with great interest the further letter from Mr Walker in your November issue (p. 520) and I would like to express my gratitude to him for the light which his analyses have cast upon the noise characteristics of feedback amplifiers, and for the several obscurities which he has resolved.

It is not in dispute that the series negative feedback configuration offers the lower noise-this is evident in practice, and is the reason why it is (almost) universally adopted in commercial 'hi-fi' equipment. The normal transistor circuit of commerce has however some snags, as pointed out by Dr A. R. Bailey ${ }^{1}$, myself ${ }^{2}$ and others. Since it is not in the nature of human experience that one ever gets anything entirely for nothing, even when these snags are removed by careful engineering there will still be some ways in which the series feedback arrangement (which is better in respect of input noise figure) is less good than the shunt feedback configuration (which is worse in this respect). I contend that these aspects are harmonic distortion and input (common mode) overload.

As a demonstration of the first of these points, to which I referred in my letter in the August issue as 'transfer non-linearity' between the two inputs of an operational amplifier, I have shown in Fig. 1 the performance of a 741 type operational amplifier (which has a very high -90 dB -common mode rejection ratio, and an extremely high -100 dB -low frequency open loop gain) as a simple $\approx \times 3$ feedback amplifier in the series and shunt feedback configurations, at 1 volt r.m.s. output. It is clear that if one set a target t.h.d. figure of 0.02%, the series feedback system would not meet this specification at frequencies above 2 kHz because of common mode failure, in spite of the massive amount of negative feedback supposedly available.

By contrast, in the shunt feedback arrangement, the measured t.h.d. does not worsen at h.f. because the whole of the amplifier element is within the feedback loop. The apparent fall of th.d. beyond 5 kHz is due to the limited h.f. response of the 741 acting to filter out some of the predominantly third harmonic distortion originating in the generator.

In the case of the input R.I.A.A. equalizing circuit using a shunt feedback arrangement, which I described in my preamplifier (July 1969) and was analysed by Mr Walker in

his May 1972 article, the characteristics for which this was optimized were low harmonic distortion (of the order of 0.01%) and effective rumble filtration, these being qualities which I judged then, and now, to be valuable. However, as an example of what can be done in getting both low noise and low distortion with a shunt feedback system, the p-n-p 'Liniac' shown in Fig. 2 (and Fig. 6b, Wireless World Sept. 1971, p. 439) has a measured input noise of $0.6 \mu \mathrm{~V}$, a t.h.d. $<0.02 \%$, and an effective noise figure of -72 dB with respect to 5 mV input.
J. L. Linsley Hood,

Taunton,
Somerset

1. Bailey, A. R., Wireless World, December 1966.
2. Linsley Hood, J. L., Gramophone. February 1971, p. 1383.

Peak programme meter

One welcomes the Nelson-Jones design for a PPM (November issue)-for in these days of universal meters on tape machines (rather than the old magic eye level indicators, which could be made to behave like a PPM) one is often in doubt as to the meaning of wildly twitching pointers. However, the design could have been made even more useful.

I would have thought it would have been comparatively easy to make the electronics play the part of the special ballistics of the specified meter. At first sight, it seems unreasonable to ask the electronics to control the overshoot of a meter point-but, in fact, there is no need. Why not slow the rate of rise of the pointer to the point where overshoot is not significant? After all, even with the correct movement-or the inertia-less magic eye-it was not possible to take any remedial action once the device had indicated 'overload'. Really the level indicator is of the 'oops sorry' variety, rather than the
'if you don't turn it down a bit it'll overload'. This latter function is an interpretive one provided by the brain. So it matters not if, say, the pointer takes half a second to reach its indication provided it gives a correct indication of what happened half a second ago.

Armed with such a circuit, one could then modify most of the flickering nasties fitted to tape machines today, to give an indication that would be useful, repeatable, and even interpretable. Back to the bench please Mr Nelson-Jones! More power to your elbow (soldering iron?).
Richard Oliver,
Denmark Hill,
SE5 8ED.

The author replies:

First, I would not entirely agree that the PPM is an 'oops sorry' device, since certainly in many recording applications the recording engineer will know what is coming either from previous rehearsal or the score, or both, and it was originally for this purpose that the new circuit was designed. I do, however, agree with you about the nasty little twitching pointers of the VU meters fitted to so many tape recorders, they make my eyes ache.

While 1 agree with you that because a thing is well established it is not a good reason for continuing with it if something better or simpler comes up, I would point out that the present PPM meter movement is the result of many years of practical experience both on the part of Ernest Turner Instruments and the B.B.C. and has passed the test of time and much experiment. I would point out that when monitoring with a PPM, one is not necessarily hearing the sound also, and a very slow meter movement would I think give a false impression of the sound being monitored. To make use of your idea for using normal meter movements it would be necessary to modify the circuit of my PPM unit to enable the circuit to retain the charge put into the capacitor for a period of some tens of milliseconds
(irrespective of peak level), so that sufficient time would elapse before the circuit started to discharge in order that the meter could catch up. I think that the circuit complication added by this extra would probably outweigh any cost saving coming from using a cheaper standard movement. I have not so far worked out the circuit modifications needed but an initial look leads me to estimate that the circuit complexity would probably be at least doubled.

Finally I would point out that I developed the circuit given in the November article specifically to update the standard PPM, and not to attempt to improve the art as such. So sorry Mr Oliver but I shall not be going back to the bench to radically change the design just yet, as I really cannot see any advantage in doing what you suggest. To sum it up I do believe the meter needs a fast dynamic response to meet the needs of the recording and broadcasting engineer, just because the instrument is more than an 'oops sorry' device-at any rate it is to the engineers I know.
Sorry we don't agree on this, but please do not be put off trying the idea; it will certainly be better than the wildly twitching pointers to which you refer, and for applications where you genuinely do not know what is coming it may help a lot.
L. Nelson-Jones.

Displaying phasor diagrams

I was interested to read the article 'Displaying Phasor Diagrams' (August issue) by A. R. Carruthers and J. H. Evans. As the author of the first article quoted in their references, I congratulate them on their design. Their article reminded me of another scheme I tried after writing the article they mention. It did not attempt to display a phasor diagram on a c.r.o. but to suggest the idea of phase difference by showing changes in the displacement between pips on a horizontal timebase when the values of R or C were changed in a series $R C$ circuit. The simplicity of the scheme might appeal to some teachers.

In Fig. 1, the output of a variac is applied to terminals T_{1} and T_{6}. The components of the $R C$ circuit are connected to appropriate terminals. We are concerned with three alternating voltages; $V_{\text {suppty }}, V_{R}$ and V_{C}. So that we can work with reference to a common point, we use a $1: 1$ isolating transformer. Each voltage is applied to a diode and an $R C$ circuit; current flows through the diode only when the voltage in question reaches its positive peak value. Whenever current flows through a diode, a positive spike is developed across R_{2}, which is common to the three diode circuits. The timebase of the c.r.o. thus shows three spikes, the one on the left corresponding to the voltage which leads the other two. Fig. 2 shows the timebase.

When R_{1} is reduced (and the output of the variac is kept constant) the amplitude of the central pip remains constant; the left

pip is reduced and the right increased. But a more important feature is that the displacement between pips changes in accordance with the changes in the phase angles in the phasor diagram.

When the equipment was made many years ago, it was convenient to use EA50 diode valves, which were plentiful just after the war. I suppose nowadays it would be more convenient to use semiconductors. As far as I remember, I used a $1-10 \mu \mathrm{~F}$ decade capacitor box for C_{1}; and a $500-\Omega$ variable resistor for R_{1}. To identify the spikes, each diode had a switch. With all switches closed, there were three spikes. If S_{1} (in the circuit for $V_{\text {supply }}$) was opened, a spike disappeared. We could thus relate the central spike to $V_{\text {supply }}$.

The simplicity of the scheme might appeal to some, but a warning should be given about its use and the method I described in Electronic Engineering in 1951. I must confess that in the long run I was disappointed at the lack of effect of these visual aids. For my students, they did not open gates of perception previously closed: there was a mysterious black box, mysteriously drawing diagrams on a c.r.o. which had some resemblance to the mysterious diagrams in their textbooks. Two mysterious diagrams resembling one another were still mysterious. I started experimenting with v.l.f. oscillators and with coils rotating at $6 \mathrm{rev} / \mathrm{min}$ in magnetic fields, in attempts to teach a.c. theory by slow-motion demonstrations (some of which have been described in $W . W$.)

The Carruthers-Evans circuit would seem to be valuable basis for a laboratory measuring instrument and for a teaching aid in a

College of Technology. My experience, in teaching a.c. theory to elementary students in a technical college, suggests that schemes for drawing phasor diagrams on a c.r.o. are not as effective as slow-motion demonstrations. But of course the two techniques are not exclusive; there is no reason why we should not start with slow-motion (using centre-zero meters) and go on to phasor diagrams on a c.r.o.
T. Palmer,

Kew,
Surrey.
The authors reply:
We thank Mr Palmer for his comments, which are clearly based on some considerable experience in teaching circuit theory. The unit described was not intended to be used as the means of teaching a.c. theory, but as a method of reinforcing what had already been taught. It was used to provide short video-tape recording inserts in lectures to demonstrate (with the aid of a black box) the 'dynamic' behaviour of real engineering circuits by variation of component values as opposed to the 'static' descriptions provided with a blackboard or overhead projector.

Regrettably two errors have occurred in

the diagrams. The amended form of Fig. 3 is shown below. In the circuit of the master bistable we used a 2 S 745 rather than the 'overpowering' 2N1210.
A. R. Carruthers
and J. H. Evans.

Special-purpose amplifier

Mr Cocking's interesting article on the 'long tailed pair' amplifier (June 1972 issue), raised some points on deriving the input resistance of such an amplifier.
There are two main approaches to the problem. The first is to derive an expression from basic principles utilizing the diagrams shown in Fig. 1, and summing around the two emitter loops.

If $V_{B}=0$, there is no feedback and $R_{\text {in }}=$ ΔV. $\frac{\Delta V}{I_{B 1}}$ is given by $h_{i e}+\left(h_{i e} / h_{f e} R_{E}\right) \approx 2 h_{i e}$. If $V_{B}=\Delta V$ then the open loop gain is infinite. This gives $R_{i n}=h_{i e}+2 h_{f e} R_{T}$, which is approximately the value given by Mr Cocking. For the case of a finite open loop voltage gain of $A_{O L}$ we put $V_{B}=\Delta V\left(1-\frac{1}{1-A_{O L} \beta}\right)$ where β is the feedback factor (this means that the input difference voltage is $\frac{\Delta V}{1-A_{O L} \beta}$ giving the usual output of $\left.\frac{\Delta V A_{O L}}{1-A_{O L} \beta}\right)$. This gives us

$$
R_{i n}=\frac{\frac{h_{i e 1}^{2}}{h_{f e}}+2 h_{i e} R_{T}}{\frac{h_{i e 1}}{h_{f e}}+\left(\frac{1}{1-A_{O L} \beta}\right) R_{T}} .
$$

Taking the values quoted in the article with $h_{\text {ietyp }}=50 \mathrm{k} \Omega, h_{\text {fetyp }}=200$ both for the $\mathrm{BC107}$ at $100 \mu \mathrm{~A}$ we derive $A_{O L}=375$ by the usual simplified h-parameter analysis. As $\beta=-1 / 10$ we have $R_{i n}=2.84 \mathrm{M} \Omega$.
A much simpler approach which gives
good results is to assume R_{T} is infinite. The resistance is then $2 h_{i e}\left(1-A_{o L} \beta\right)$, where $2 h_{i e}$ is the resistance without feedback. This gives $3.85 \mathrm{M} \Omega$. Then parallel with $2 h_{f e} R_{T}$ to account for the finite value of R_{T}. This gives $10.8 \mathrm{M} \Omega$ giving finally $2.83 \mathrm{M} \Omega$. On the analytic expression

$$
R_{i n}=\frac{2 h_{i e} R_{T}}{\frac{h_{i e}}{h_{\text {fe }}}+\frac{R_{T}}{1-A_{\text {OL }} \beta}}
$$

using Mr Cocking's formula of $2 h_{f e} R_{T}$ gives $10.8 \mathrm{M} \Omega$, a factor of over 3 out. The value of $865 \mathrm{k} \Omega$ given in the article seems strangely amiss.
S. Cahill,

Queen's University,
Belfast.

The author replies.

I agree that something has gone wrong with the figures for the input resistance of the amplifier discussed in my article. Unfortunately, I cannot now trace how they arose. It is many months since I wrote the article; in itself that would not matter, but my preparatory notes and numerical calculations for it cannot now be found. I can, therefore, only apologize for the numerical error.

The important thing about the input resistance, which I did not perhaps bring out adequately in my article, is that it is a very ill-defined quantity. It depends in greater or lesser degree on $h_{i e}$ and $h_{f e}$ of all transistors; $h_{f e}$ varies greatly from one specimen to another of a given type of transistor and $h_{\text {ie }}$ varies with the emitter current. As the current division ratio between Tr_{1} and Tr_{2} depends on many factors, it follows that in this circuit $h_{i e}$ for these two transistors is also highly variable.

Because of these things the amplifier should normally be driven by a source of comparatively low impedance. Alternatively, the input resistance can be defined by a shunt resistor (which can be the basebias network of $T r_{1}$) which is small in comparison with the actual input resistance of $T r_{1}$ itself.
W. T. Cocking.

Unified dimensional display

I was very interested in Mr Baldock's article 'Unified dimensional display' (March 1972) in which he plots the dimensions of all units on four planes, the position of a unit on a plane being fixed by the L and T content of its dimension.

I developed similar planes (see upper figure) from a flow chart after reading an article 'What is a magnetic field?' by J. J. Mathews in the I.E.E. Students' Quarterly Journal, June 1963.

Mr Baldock and I have, however, aligned our planes in different ways.

My alignment for the electrical units forms a pattern which places Q and V as shown in the lower figure. $Q \times V$ and $I \times \Phi N$ represent energy. C represents a device which stores energy by the distortion of the Q distribu-

tion, and L a device which stores energy by the inertia of Q.
Q is therefore taken as the key unit. Because of the method of construction, all other units in the pattern are fixed by the key unit.

The devices may be lumped, giving a tuned circuit, or distributed in a line or volume.

All branches of mechanical engineering, such as sound, satellites, gyroscopes, etc., are covered by two sets of four of the same patterns for which the key units are: L (length) to powers of $0,1,2$ and 3 , and the same powers of L divided by T.

For example, with key unit L^{0} representing radians, the devices are a twisting shaft and a flywheel, μ is replaced by the reciprocal of the shear modulus of elasticity, and so on.

Different units having the same dimension will appear in different patterns; all devices and the dimensions of linking units such as mechanical impedance (R) and μ will be different in each pattern even for the same material.
Numbers are not usually associated with dimensions, but can be inserted into the patterns for particular cases.

Only heat and temperature do not fit the pattern. It is known that heat \times temperature equals energy, and as at one time it was thought that temperature had no dimension, heat was equated to energy. This is equivalent to calling charge energy, and gives rise to numerous difficulties in heat engineering. It is now known that temperature has a dimension, and so heat is not equivalent to energy.

To make these two fit the pattern, heat must be a key unit with a basic dimension, say H; dimension of temperature becomes energy $/ H$.

By analogy with the Periodic Table of Elements a suitable name appears to be the Periodic Pattern of Units. After learning the pattern, one can perform calculations in any branch of engineering if one knows the key unit and the constants and sizes of the materials being used.

D. L. Clay,

Coventry.

The author replies:
Mr Clay's display system raises some intriguing possibilities, but would, I suggest, be most readily understood by advanced students, although the separate diagram showing E/M quantity relationships is both straightforward and quite comprehensive. But, in general, I would prefer to omit the diagonal multipliers between quantities in a fully integrated display relating several physical fields, since otherwise it would tend to become rather congested. However, I would like to see the proposed 'periodic pattern of units' illustrated explicitly before commenting further. Another variation was suggested by Mr F. P. Rickard, of New Zealand, using M, L, T dimensions for the ampere, enabling both it and the coulomb to be displayed directly with some of the electromagnetic units within one plane.

My own scheme was evolved to relate quantities in accordance with the SI system, now used exclusively in the more progressive educational establishments. I know of at least one--The Lady Eleanor Holles School at Hampton, Middlesex which has adopted the particular format I described as an aid for both comprehension and retention of quantity relationships.

With any display involving dimensional relationships, anomalies are likely to arise if a high level of sophistication is sought.

Concerning Mr Clay's difficulties as regards the incorporation of 'heat' within his periodic pattern, I am not clear as to the meaning he attaches to the term. In B.S. 3763:1970, quantity of heat is equated with energy and work, whereas heat capacity is defined as quantity of heat divided by thermodynamic temperature, the latter being taken as a base quantity. As for charge, in academic circles this is regarded as analogous to mass

Some quantities may have the same dimensional description, but differ completely in character. A familiar case in the mechanical field is the disparity between work and moment of force, or torque. Work has the joule as its unit, given by a force of 1 newton acting through a distance of 1 metre along its direction of application. The unit of torque arises when 1 newton of force acts at right angles to a 1 metre radius of application, but its unit is the newton metre. This conflict can be resolved by regarding torque as work per unit angle. Unfortunately, angles (plane or solid), according to B.S 3763, may be regarded either as dimensionally independent quantities or mere ratios, whichever is most convenient!

While discussing dimensional displays, it is notable that with the admittance field, named quantities* (depicted in reciprocal form in Figs. 2 and 5 of the March 1972 article) are relatively sparse as compared with those used in the impedance field. In fact, the latter has 30 dimensional positions directly associated with named quantities, as against only 12 of admittance form. As far as I am aware, the reciprocal of mass has not been given a generally accepted appellation, although the term 'reciprocal mass' is used in the semiconductor field. So, in Fig. 5 of my display, it would presumably be

[^4]
acceptable to replace ' 1 /permittivity' by the description 'reciprocal permittivity'.

Some doubts have been raised as to the value of exploring dimensional relationships. Many are of negligible interest, but it is salutary to put oneself in the place of a scientist in, say, 1841, ten years after Faraday's fundamental discoveries concerning electromagnetic induction. Given the dimensional equality [permeability] \times [permittivity] $=\left[(\text { slowness })^{2}\right]$, where slowness $=1 /$ velocity, it would have appeared meaningless, yet later became of outstanding significance following Maxwell's mathematical prediction of the feasibility of electromagnetic wave propagation over a wide spectrum.

Returning to the present, is it not possible that a relationship shown by my display such as [mass] \times [elastance] $=[$ (magnetic vector potential) ${ }^{2}$] may also hint as to the existence of some form of field so far unobserved?
R. N. Baldock.

Noise

As a final comment on the colour connotations associated with random noise of various spectra, so clearly expounded by Mr H. D. Harwood in the November issue in reply to my earlier letter, may I now be credited with the origination of the term 'black noise'? I hope this will be accepted as implying equal absence of integrated energy per cycle bandwidth!
R. N. Baldock,

Harrow,
Middlesex.

Seeing in the dark

I should be most grateful if I might be allowed some space in your columns over which I might trail my coat to see if some of the broadcasters and/or television camera manufacturers will jump onto it

Let me first make some relevant statements which I believe to be accepted universally.

1. The human eye operates over a luminance range of about 10^{10}, but at any instant its operating range is much smaller, being well satisfied with a contrast range of about 10^{2}, a range which the broadcasters can satisfy when the operating conditions are very favourable. The 10^{2} range can thus slide over a range of about 10^{8}.
2. Television cameras are available which can operate to provide this 10^{2} range anywhere within the 10^{10} range over which the eye can operate, but whereas the gain of the camera can be adjusted almost instantaneously, the 'gain-control' of the eye has a time-constant of many minutes.
3. Conditions of flicker, tube design and ambient lighting in the home fix the position in the 10^{10} range of the eye where the 10^{2} range of reproduction must be located. This means that the 'gain-control' of the eye
operates only over a very small range when viewing television, but the gain control of the camera operates over a very wide range from shot to shot. For instance when cutting from say a shot of a brilliantly lit interior to one of a dark alleyway the two peak brightnesses of the reproductions are similar, in the latter case the peak brightness typically being provided by a street lamp and occupying only a small proportion of the picture area.
4. The human eye possesses a high degree of acuity to luminance changes under conditions of high luminance but a low degree of acuity under conditions of low luminance.
5. The human eye is colour conscious only under conditions of high luminance, everyone being colour-blind under conditions of low luminance.

Having stated the premise upon which my queries are based, I would now like to ask the broadcasters/manufacturers two questions. The first is based upon 4 above. Should there not be a succession of lowpass filters of successively lower cut-off frequency brought into circuit as the camera gain control is advanced? The second is based upon 5 above. As the gain control is advanced should not the gain of the chrominance channel be reduced relative to that of the luminance channel?

If these conditions are not met, then it would appear that when viewing scenes which are shot under conditions of low luminance the viewer will be presented via the television channel with information which he would not see under conditions of direct viewing of the scene, and thus the reproduction appears to be unnatural.

I should be pleased to hear or read of any fallacy in my argument.
Roy C. Whitehead,
Polytechnic of North London,
London N7.

Power supply unitsa plea

May I please make via your columns an appeal to the manufacturers of stabilized power units?

The normal commercial unit carries a moving-coil meter and a meter switch which is marked VOLTS/AMPS. The switch is nearly always used in the VOLTS position but occasionally someone moves it to the AMPS position and leaves it there. On the next occasion that the unit is used, the user, accustomed to having the meter set to the VOLTS position, turns up the amplitude control in an endeavour to produce the expected meter deflection. If the load impedance is high he will probably destroy the load before realising his error. (No, I have not blown up any i.cs, yet!)

The solution would appear to be the use of a switch which has a locking action in the VOLTS position and is nonlocking in the AMPS position.
Roy C. Whitehead,
Polytechnic of North London,
London, N7.

An Electronic Turntable

The London Audio Fair can usually be reckoned to produce one or two innovations. Unique among those shown this year was an electronically controlled parallel tracking turntable produced by Bang and Olufsen, of Denmark.

The photograph, which shows the Beogram 4000 with its top covers removed, illustrates some of the more basic details of the deck itself. Most significant is the use of a tangential arm which moves the pickup cartridge in a straight line from the edge to the centre of the record. Using such a system - not new in itself-has produced a number of advantages which have not only permitted the use of a semi-automated electronic control unit, but also improved the potential reproducing performance of
the unit. Inherent in the design of a conventional arm is the difference in tracking angles with respect to the groove tangent, made by the reproducing and recording styli. In an effort to reduce this crror to a minimum, the conventional reproducing arm is bent at an angle; however, this gives rise to a mechanical reaction producing a force which drives the stylus against the inner face of the record groove. Some form of compensation, known as bias, is applied to balance out this force but it is an ex-

The interior of the $B \& O 4000$ showing the parallel tracking arm and its slide carriage.
tremely difficult factor 10 accurately nullify and thus most systems are somewhat of a compromise. In adopting the tangential arm, the need for bias compensation is eliminated since the arm can be made straight and thus does not produce any side thrust. In addition, because the reproducing stylus is made to track in precisely the same fashion as the cutter, distortion can be reduced.

Two arms are carried on a "slide" which runs on two rails and is driven through a worm gear by a small servo motor. One of the two arms contains a lamp and photocell which serve to detect the edge of the record as the slide moves across the turntable. Since the turntable itself consists of a polished metal surface broken with radial black plastic spokes, the detected reflection produces a varying output from the photocell rather than the steady signal resulting from the reflection off a disc surface. In this way there is no chance of the stylus being lowered onto the turntable platter itself, in the event of the machine being started without a record being loaded. Two states can thus be generated by the detector arm sensor: an alternate shift of level indicating no record, and a d.c. level indicating the presence of a record.

A second sensing system is fitted to the pickup arm. This provides an output indicating angular errors in the position of the arm. As the stylus is carried across the record by the groove, of necessity the slide must be moved in sympathy to keep the arm at an exact tangent to the groove Attached to the horizontal arm pivot is a

Fig. l. Detector arm servo amplifier. This circuit produces a wo-state output to drive the control switching logic.
small shutter above which is fitted a small lamp and below, to each side, a photocell. Any deviation of the arm from its correct tangential position will partially obscure one or other of the photocells, producing an unbalanced output from the sense system which can then be used to operate the servo control and the motor to correct the situation. Using such an arrangement ensures that angular error in the arm is less than 0.04°.

Servo control circuits

The output of the photocell sensor in the detector arm is fed via a capacitor to the base of transistor $T r_{14}$ (Fig. 1) which is d.c. biased. Since the output from the photocell has a frequency of $13-18 \mathrm{~Hz}$ with no record present, it is easy to differentiate between this and a spurious signal generated by, say, the flicker of a mains driven room light. Such a selection is in fact achieved by the use of a notch filter between $T r_{14}$ and $T r_{15}$, tuned to 100 Hz . After integration of the signal from $T r_{15}$ by the emitter resistor and capacitor of Tr_{16}, the level obtained is applied to the base of $T r_{17}$, turning it on and drawing its collector voltage down to near 0 V . This in turn switches on both Tr_{18} and $T r_{19}$ giving a low (0 V) output from the sensor amplifier. Since the presence of a record beneath the detector arm produces a d.c. level from the detector, the capacitor at the base of ${T r_{14}}$ prevents any change of level at the first transistor and the circuit remains inactive, thus giving a high (6V) output.

In the event that the lamp becomes defective in the detector arm, two additional transistors, $T r_{12}$ and $T r_{13}$ are used to provide a logic output which is dependent upon current flow in the lamp. If the lamp fails, the control logic circuits prevent the arm being lowered.

The servo control of the arm slide is equally sophisticated and is described with reference to Fig. 2. By using a d.c. servo motor, a differential drive circuit can be used throughout, and although the motor can be driven at high speed with the pickup raised, this description of the circuit operation will be confined to the normal groove tracking mode. When the arm is in the lowered position the 24 V supply is connected via contacts to the two photocells; these in turn operate the two servo power amplifiers and a voltage of about 12 V appears at each side of the motor. If the pickup arm moves towards the centre of

Fig. 2. Block diagram of the servo control from the photo-detectors used to sense angular errors in the arm.

Fig. 3. The circuit used to generate the logic signals for end-of-record operation.

the record photocell $O R_{3}$ receives a greater light level than $O R_{4}$, throwing the circuit out of balance and causing the servo to drive the slide until the balanced condition is reached. Additional circuitry provides for automatic arm raising should manual tracking be required by the operation of one of the turntabie controls.

End-of-record sensing is also tied in with the servo motor control since in the original design concept it was felt that mechanical techniques would have placed a strain on the stylus. In addition, since there is no recognized standard for the diameter of the last groove on a record, some method was needed which did not rely upon this parameter to signal the restoration of the slide to start position. Fig. 3 shows how this was achieved. When the stylus tracks the last groove of the record, the mechanical contact $M V$ will have been operated by the slide position to connect the servo motor to the sense transistor Tr_{24}. Due to the rapid increase of pitch in the run-off grooves of the record, the voltage driving the servo will be unusually high, thus turning on $T r_{24}$ and $T r_{23}$. Transistor $T r_{22}$ is in turn operated by the increase in voltage across its bias resistor and thus a logic low is produced to operate the "arm raise" system. In the event of a manual "fast inward track" being ordered by the operation of one of the turntable controls, the collector of $\boldsymbol{T r}_{25}$ is held high and thus diode D_{4} blocks the base current of Tr_{23} to prevent premature setting of the restoration logic control.

Logic control system

Devising the logic control for the turntable must start with an analysis of the various operations required to operate the deck. Since a certain amount of manual control can be exercised from switches actuated by pressure plates on the top panel, the commands issued by these will be listed first. 1. Turntable speed. The turntable will revolve at $33 \frac{1}{3}$ r.p.m. in the absence of any commands to the contrary being issued by either a speed selector switch, or an automatic decision based on record diameter being taken by the detector arm logic. The higher speed of 45 r.p.m. can also be
selected from a manual switch. In the event that $33 \frac{1}{3}$ r.p.m. is selected by manual control and the record is intended to be played at 45 r.p.m., the unit will not automatically correct, but will remain at the lower speed until a second manual command is made to alter speed.
2. Arm lift. This can be initiated at any point during the playing of a disc.
3. Arm lower. Used wher lowering the stylus into a preselected groove. The logic circuits bar lowering the arm onto anything but a disc.
4. Fast and slow track in. These commands are initiated by a two-pressure switch, light pressure for a slow tracking motion, heavier pressure for a faster tracking. In the event that this command is initiated when the arm is lowered, the arm raising control is operated first.
5. Fast and slow track out. A similar twopressure switch is used here and also provision is made for automatic arm raising before the tracking commences. In addition if the arm is tracked out to the normal rest position, the turntable is automatically turned off.

The next consideration is the automatic commands that need to be generated. These are

1. Track in (fast). When the turntable is started by pressing the 'on' switch, the arm slide will track in until the edge of a record is found by the detector.
2. Arm tracking stop, arm lower. This command is initiated by the detector logic on finding the edge of the record.
3. Groove tracking mode. The servo is driven under the command of the servo amplifier and logic commands are not used. 4. End of record, arm lift, fast track to rest position, turnoff. This sequence is started by the voltage sensor connected to the servo motor.

These control functions are all undertaken by a number of i.cs connected to provide six flip-flops, a wired-OR and three single wired gates. Unfortunately lack of space precludes describing the switching techniques employed in this novel turntable, suffice it to say that this is probably the most complex to appear on the market.

Circards - 4
 A.C. Measurements

Introducing the fourth set of Circards on peak, mean and precision rectification

by J. Carruthers, J.H. Evans, J. Kinsler and P. Williams*

Measurement of direct voltages is straightforward. A moving-coil meter has good linearity of deflection against direct current in the meter, and the use of parallel and series resistors (shunts and multipliers) allows such meters to give full-scale readings to cope with a wide range of voltages and currents. For very small direct voltages and currents, d.c. amplifiers may be interposed between source and meter, and such amplifiers may also be used to optimize the input
*All with Paisley College of Technology.

Fourth set of Circards illustrates techniques of peak, mean and precision rectification. Half-wave, 1 and 2, and full-wave circuits, 3 and 4, can be used to give either mean or peak measurements. Errors due to diode voltage drops can be reduced by putting the diode in a feedback loop, 5, but use of an amplifier limits h.f. accuracy, avoided by using a simple amplifier, 6, with bridge rectifier/meter in the feedback path.
measure of the repetitive peak input voltage, the time-constant is made much longer than the period of the input signal. Too great a ratio will not allow the capacitor voltage to decay sufficiently rapidly to observe any decay in input peak voltage that may occur during the measurement. Again real diodes introduce a forward-voltage drop that mitigates against accuracy for small inputs.

Full-wave rectification is necessary where the negative and positive portions of the wave may be different. A secondary advantage can be that for symmetrical waves, a full-wave peak detector has its capacitor charge restored twice per cycle, i.e. the time for discharge and hence the ripple is approximately halved. As for half-wave rectifiers, the full-wave circuits could be used for indicating mean or peak values. (The latter would indicate only the largest peaks for an unsymmetrical signal.)

Two methods are available. Bridge rectification as in Fig. 3 requires four diodes to channel current through a load in a given direction regardless of the polarity of the applied potential. Alternatively, the provision of equal but anti-phase drives to a pair of diodes again gives single polarity to the load with each diode contributing on alternate half cycles-Fig. 4. The anti-phase voltage may be provided by a transformer or by an inverting amplifier.

In the above the assumption has been that the rectified waveform would be applied to a measuring device such as a moving-coil meter. Waveform distortion short of that causing significant meter reading error is then unimportant. Where it is required to retain full information on the rectified waveform then a precision rectifier has to be devised, i.e. one in which the rectification process is not burdened by the large errors due to diode voltage drops. Placing the diode(s) in the feedback path of an amplifier allows the effect of the diode p.d. on the output to be reduced by any desired amount.
Fig. 5 shows one version of a precision half-wave rectifier in which, for positive going inputs, the amplifier output is driven positive until it causes the diode to conduct and forces the output voltage to equal the input (or rather to differ from it by a very small p.d. which includes the amplifier offset voltage and a small contribution given by the diode p.d. divided by the amplifier openloop gain).
The basic circuit shown meets the precision requirements, and in addition minimizes source loading while being capable of supplying normal operational amplifier currents to the load. Many variations are possible leading to: precision half- and fullwave circuits, alternatively known as absolute-value circuits; precision peak detectors and mean-reading circuits.
The use of amplifiers imposes a limit to the upper frequency of operation, which limit is accentuated by the non-linear nature of the circuitry, e.g. the amplifier slew-rate limitation defines the minimum time taken to switch the diode from its non-conducting to conducting state. The precision of the rectification process is more difficult toachieve at higher frequencies and many. circuits accurate to a few millivolts at

100 Hz are seriously in error at 10 kHz . Similar limitations are apparent in any negative feedback system having non-linear elements in the feedback path.

For very high-frequency applications one solution is to construct suitable highfrequency amplifiers of standard design and incorporate a bridge rectifier/meter combination in the feedback path. The simpler designs using the minimum number of transistors are based on circuits such as the d.c. feedback pair of Fig. 6 with the meter circuitry either between $T r_{2}$ collector and $T r_{1}$ emitter, or between $T r_{2}$ emitter and Tr_{1} base. Alternating-current coupling of the input signal is then necessary as the direct input voltage cannot be zero in this circuit. The method can be extended to multi-transistor circuits and the feedback network can be located to increase or decrease the input impedance. The lowest frequency of operation is dictated by the largest value of capacitors used, and by the degree of damping of the meter movement.

To extend the frequency downwards, peak detection is usually used, i.e. with a large capacitor to store the peak voltage and minimal discharge current for the period between peaks.

At very low frequencies ($\ll 1 \mathrm{~Hz}$) an alternative method is the use of an integrator during a single complete half-cycle or cycle with separate measurement of the time to allow determination of the mean value of the waveform during that cycle.

The amplitude of an a.c. waveform is most frequently quoted in r.m.s. (root mean square) terms, i.e. the instantaneous voltage or current value is squared, the mean value over a complete cycle (or half-cycle) is taken and the square root of that mean value is obtained. It is the r.m.s. value of a voltage that allows calculation of the mean power dissipated in a resistive load, as the power in a resistive load due to an a.c. waveform of V in r.m.s. terms is identical to that due to a direct voltage of V.
It is common for instruments which truly measure the mean rectified or peak values of waveforms to have scales calibrated in terms of the corresponding r.m.s. value for a sine-wave. Hence for non-sinusoidal waveforms the readings fail to give a correct measure of either r.m.s., mean or peak, except where power measurements are concerned, e.g. power fed to a loudspeaker. There is considerable advantage in calibrating the instrument directly in terms of the parameter measured, though this set of Circards includes examples of instruments which incorporate such form factors. True r.m.s. meters are a very different matter. Three common classes depend on

- thermocouples generating an e.m.f. dependent on the power dissipated in a load
- non-linear amplifiers approximating to square-law characteristics where the output can be averaged to give a meansquare reading. A second squaring circuit in the feedback path of a following amplifier gives a square-root action
- multipliers in which the output is proportional to the product of two inputs; if the voltage to be measured is simultaneously fed to both inputs, the output is again proportional to the square of the input.

The first method is applied to r.f. signals where the power available is sufficient, and where the use of amplifier/rectifier combinations would introduce errors because of frequency limitations. It is a specialized field and depending as it does largely on the transducer is not covered in this series. The second method requires careful control of the non-linear characteristics for high accuracy to minimize all terms other than second-order; the networks are often obtained as ready-made units from the makers of instrumentation amplifiers. Methods using the square law characteristics of f.e.ts belong to this general class.

The third method can be achieved by using the logarithmic characteristics of semiconductor p -n junctions and by combining several junctions so that their p.ds may be added and/or subtracted functions of the form $\left(\log V_{1}+\log V_{2}-\log V_{3}-\log V_{4}\right)$ may be obtained, i.e. outputs dependent on $V_{1} V_{2} / V_{3} V_{4}$. These circuits can be made the basis of multipliers, or for $V_{1}=V_{2}=V_{\text {in }}$ and $V_{3}=V_{4}=$ constant, a square-law circuit results. A practical example is included that allows a meter reading proportional to the mean square of an alternating voltage, i.e. a meter that can be calibrated linearly in terms of the power delivered by that voltage to a given load.

How to obtain Circards

Order Circards by sending remittance (£1 per set, postage included) to "Circards" Wireless World, Dorset House, Stamford Street, London SE1 9 LU , indicating which sets you are buying: No. 1, "Basic active filter"; No. 2, Comparators and Schmitts"; No. 3, Waveform generators"; or No. 4.

The Circard concept was outlined in the October 1972 issue. Introductory articles to Circards are published each month in Wireless World.

High-standard Low-frequency Source

A portable instrument incorporating an i.c. phase-locked loop and utilizing the B.B.C. 200 kHz Droitwich transmission

by J. M. Osborne*

The instrument described here was built as an exercise to evaluate the potentialities of the phase-locked loop for the reception of a frequency standard. The instrument consists of a phase-locked loop i.c. stage followed by a chain of i.c. dividers as shown in Fig. 1. The p.1.1. stage is locked to the 200 kHz carrier of the B.B.C. Radio 2 transmitter at Droitwich. The carrier frequency is maintained to an accuracy of ± 5 in 10^{10}. So long as lock is held, this sets the standard for the instrument

The main use for this instrument would be the calibration and standardizing of audio oscillators, signal generators and as a source of clocking pulses. The pulses could be used for timing watches; ticks picked up by a microphone on one trace of a c.r.o. display compared with pulses from the instrument on another trace would enable a watch to be set precisely and quickly. With a little modification this type of instrument could operate the gate on a frequency meter. In this application, with a digital counter, the accuracy should be better than with an instrument using a crystal oven.

Circuit

A block diagram of the phase-locked loop system ${ }^{1,2}$ is shown in Fig. 2. The 200 kHz signal is fed from a ferrite rod aerial to a phase comparator together with the output of a local voltage controlled oscillator (v.c.o.). The comparator output voltage, which depends in magnitude and polarity on the relative phase of the inputs, is filtered, amplified, limited and used to control the v.c.o. frequency in such a sense as to bring it into lock with the signal from the aerial. Thus the v.c.o., whose output is a square
*Westminster School, London.

Fig. I. Block diagram of the low frequency source.

Fig. 2. The main functions of the NE561B phase locked loop i.c.

Fig. 3. The circuit of the p.l.l. stage.

Fig. 4. Coil winding for the ferrite rod aerial

wave, ideal for operating t.t.l., runs at exactly 200 kHz .

As the required r.f. input is small, 1 to 10 mV being suitable, no amplification is needed in areas receiving a large signal from Droitwich. The pick-up by the ferrite aerial under typical conditions in London is adequate to provide lock, but an amplifier might be needed at distances over 150 miles from the Droitwich transmitter. A domestic transistor radio tuned to the l.w. Radio 2 programme gives a rough indication of signal strength in a building.

The p.l.l. i.c. used (Fig. 3), a Signetics NE561B, has a balanced input of about $4 \mathrm{k} \Omega$ impedance. This would be an unsatisfactory load for the aerial and so a coupling coil is used to match it to the p.1.1. The coil, being free of earth, does not interfere with the internal bias arrangements of the integrated circuit. Litz wire is used in the final version of the aerial coil, the dimensions being given in Fig. 4. Winding over the whole length of the ferrite rod gives the maximum pick-up. The complete aerial is contained in a 1 -inch Paxolin tube which also serves as a handle. It is retained by Paxolin sheet about 2 inches above the aluminium box which contains the rest of the instrument. The coupling coil leads and earthy end of the tuning coil enter one end of the box while the live lead from the coil enters from the other. The trimmer and fixed tuning capacitor are just inside the box at this end remote from the p.1.1. This minimizes stray pick-up from the v.c.o. which could interfere with the lock.

The other components associated with the p.l.l. are a $0.01 \mu \mathrm{~F}$ low-pass filter, a 1.8 nF timing capacitor of the v.c.o. which sets the free running frequency at approximately 200 kHz , and a potentiometer for fine tuning of the v.c.o. by adjusting the potential of pin 6. The v.c.o. output from pin 5 is about $0.6 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ and 6.5 V above chassis. For interfacing with t.t.l., it is convenient to use capacitor coupling to a transistor switch. The transistor is a Ferranti ZTX108B.

Setting up the p.l.I.

There are two preset controls, an aerial trimmer and the v.c.o. fine tune potentiometer. A transistor radio near the instrument will pick up stray radiation from the v.c.o. If the aerial coil is disconnected or substantially detuned to avoid locking, the free running frequency can be made to beat with Radio 2 by adjusting the potentiometer. This is set for a low audio beat note. Next, with the aerial connected, the trimmer is adjusted until the loop locks, as evidenced by the abrupt change to zero beat. The aerial should now be turned until the lock is just lost. Further adjustment of the trimmer may result in the lock being regained. By repeating this process, optimum tuning can be obtained.

The dividers

The phase-locked loop is followed by a chain of SN7490 decade dividers. Switches, which should be break-before-make types, then select the required output. The first switch (Fig. 5) operates on the second divider to select $\times 1$ (straight through), $\div 2$, or $\div 5$. As the first i.c. divides by ten, the switch selects $20 \mathrm{kHz}, 10 \mathrm{kHz}$ and 4 kHz . The switch positions are marked $\times 2, \times 1$ and $\times 0.4$. The other switch selects successively from the rest of the chain and is marked 10 kHz (straight through), 1 kHz , 100 Hz and so on. To square up the output of the dividers a simple gate is incorporated (part of an SN7400) before the output terminal. Another gate in parallel drives an l.e.d. as an indicator lamp. This can be seen to flash at 10 Hz and less. While this indicates that the dividers are functioning it does not necessarily imply that the p.1.1. is locked.

Construction notes

A 16-pin d.i.l. socket for the p.1.1. and all other i.cs and components may be soldered to two strips of Veroboard, which are supported on the switch and battery wires. The circuits and batteries are contained in an aluminium box, and the 18 V at 10 mA

The prototype low frequency source, showing controls and ferrite rod aerial used as a handle.
supply comes from two PP7 batteries on one side of the box while the t.t.l. i.cs are provided with 4.5 V at 150 mA by a single 126 battery. Strictly the i.t.l. requirement is 5 V but they work happily on 4.5 V provided the battery is replaced before the voltage on load drops to 4 V .

References

1. J. M. Osborne, 'The Phase Locked Loop', Short Wave Magazine, Vol. XXX. No. I, March 1972.
2. T. D. Towers, 'Elements of Linear Microcircuits', Wireless World, August 1971, p. 397.

1973 Conferences \& Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Feb. 26-Mar. 2
Bloomsbury Centre
Seminex
(Evan Steadman and Partners, 4 Lyewood Common, Withyham, Hartfield, Sussex)
Mar. 13-15
Savoy Place
Satellite Systems for Mobile Communications and Surveillance
(I.E.E., Savoy Place, London WC2R OBL)

Mar. 13-15 Bloomsbury Centre Hotel
Sound 73
(Assoc. of Public Address Engineers, 6 Conduit St, London W1R 9TG)
Mar. 22 \& 23
Royal Garden Hotel
Man Made Memories
(Mrs. Rosemary Willson, Mercury House, Waterloo Road, London SE1)
Mar. 27-29
Imperial College
Ultrasonics Internationa!
(Ultrasonics, 32 High Street, Guildford, Surrey)
Mar. 28-Apr. 1
Excelsior Hotel
Sonex Audio Exhibition
(Federation of British Audio, 31 Soho Sq., London
WIV 5DG)
Apr. 9-13
Earls Court
Physics Exhibition
(Inst. Physics, 47 Belgrave Sq., London SW1X 8QX) Apr. 913

Earls Court
LABEX International
(U.T.P. Exhibitions, 36-37 Furnival St., London

EC4A 1JH)
Apr. 25-27 Chelsea College
B.A.S. Spring Meeting
(British Acoustical Society, 1 Birdcage Walk, London SW1H 9JJ)

Olympia
May 22-25
London Electronic Component Show
(Industrial Exhibitions, Commonwealth House,
New Oxford St, London WC1A 1PB)
June 5-8
Earls Court
International Marine Exhibition (IMEX)
(Brintex Exhibitions, 3 Clements Inn, London WC2A 2DB)
June 5-8
Earls Court
International Marine and Shipping Conference
(IMAS)
(Institute of Marine Engineers, 76 Mark Lane, London EC3R 7JN)
June 25-29
Royal Lancaster Hotel
Film '73
(Paul D. McGurk, B.K.S.T.S., 110-112 Victoria House, Vernon Place, London WC1B 4DJ)
Oct. 1-3 Savoy Place
Organization and Management of Computer Based
Control and Automation Projects
(I.E.E., Savoy Place, London WC2R OBL)

Oct. 22-27
Olympia
Audio Fair
(International Audio Festival \& Fair, Dorset House, Stamford St, London SE1 9LU)
Oct. 23-25
Savoy Place
Radar - Present and Future
(I.E.E., Savoy Place, London WC2R OBL)

Nov. 12-14
Savoy Place
Digital Instrumentation
(I.E.E., Savoy Place, London WC2R 0BL)

BIRMINGHAM

July 10-12
University of Birmingham
Video and Data Recording
(I.E.R.E., 9 Bedford Sq, London WCIB 3RG)

Sept. 16-22 University of Aston Switching and Signalling in Telecommunications (I.E.E., Savoy Place, London WC2R OBL)

BOURNEMOUTH

Apr. 11-14
The Pavilion
Marketing Communications Tomorrow
(Electromation Exhibitions Ltd., Cleveland' House, 344A Holdenhurst Road, Bournemouth)

BRIGHTON

Jan. 9-11
The Metropole
Componex
(Evan Steadman and Partners, 4 Lyewood Common, Withyham, Hartield, Sussex) Apr. 5 \& 6

University of Sussex
European Co-operation in Research and Technology (Research and Development Society, 47 Belgrave Sq, London SW1X 8QX)
June 19-21
The Metropole
Microwave 73
(Microwave Exhibitions and Publishers Ltd., 21 Victoria Rd, Surbiton, Surrey)

CAMBRIDGE

Apr. 24
The University
Computer Aided Control System Design
(I.E.E., Savoy Place, London WC2R 0BL)

Sept. 6-9 King's College
Royal Television Society Convention
(RTS, 166 Shaftesbury Avenue, London WC2H 8JH)

CARDIFF

Sept. 12-14 Traherne Hall, UWIST Physics of Semimetals and Narrow-Gap Semi(Inst. Physics, 47 Belgrave Sq, London SW1X 8QX)

COLCHESTER

Apr. 2-5
University of Essex
Software Engineering for Telecommunication
Switching Systems
(I.E.E., Savoy Place, London WC2R 0BL)

HULL
Apr. 11-13 The University
Teaching of Electronic Engineering in Degree Courses
(Dr. F. W. Stephenson, Department of Electronic Engineering, The University, Hull HU6 7RX)

LANCASTER
Apr. 9-11
The University
Thin Films
(Inst. Physics, 47 Belgrave Sq, London SW1X 8QX)

LIVERPOOL

Apr. 15-18
The University
To be Continued - Education and Training
(I.E.E.T.E., 2 Savoy Hill, London WC2R 0BS)

MANCHESTER
Jan. 3-5
The University
Solid State Physics
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

NEWCASTLE UPON TYNE
Apr. 10-13
The University
Atomic and Molecular Physics
(Inst. Physics, 47 Belgrave Sq, London SW1X 8QX)
July 3-5 The University
Scanning Electron Microscopy Systems and
Applications
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

NOTTINGHAM
Apr. 10-12
The University
Datafair 73
(British Computer Society, 29 Portland Place, London W1)

July 9-12

The University

Maintenance Management

(Society of Electronic and Radio Technicians, 8-10
Charing Cross Road, London WC2H 0HP)
Sept. 10 \& 11
The University
Solid State Devices
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

SOUTHAMPTON

Sept. 23-26
The University
Optical Properties of Thin Films
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

TEDDINGTON

Feb. 20 \& 21 National Physical Lab.
Precision and Accuracy in Pressure and Force
Measurement
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

UXBRIDGE

Apr. 30-May 2
Brunel University
Instrumentation in Vacuum Processes
(Inst. Physics, 47 Belgrave Sq, London SW1X 8QX)

WARWICK

July 16-19
The University
Software for Control
(I.E.E., Savoy Place, London WC2R 0BL)

OVERSEAS (JAN.-APR.)

Feb. 14-16 Philadelphia
International Solid-State Circuits
(I.E.E.E., 345 East 47 th St, New York, N.Y. 10017) Feb. 20-22

Rotterdam
A.E.S. Convention
(Herman A. O. Wilms, Zevenbunderslaan 109, B-1190 Vorst-Brussels)
Mar. 6-10
Basle
Medical Electronics and Bio-engineering
(Sekretanat MEDEX 73, CH-4021 Basel)
Mar. 6-10
Basle
INEL 73 - Industrial Electronics
(Sekretariat INEL 73, CH-4021 Basel)
Mar. 20-Apr. 5
British Industrial Technology Exhibition
(Tek Translation \& International Print, 11 Uxbridge
Rd, London W12 8LH)
Apr. 2-7
Paris
Audiovisual and Communication Exhibition
(Société pour la Diffusion des Sciences et des Artss
14, rue de Presles, 75740 Paris)
Electronic Components Exhibition
(Société pour la Diffusion des Sciences et des Arts, 14 rue de Presles, Paris-15eme.) Apr. 3-5

Dayton

Magnetism and Magnetic Units

Understanding the basic relationships, with special reference to SI units

by "Cathode Ray"

The other day I saw-on 'Nationwide', I believe-something about a shopkeeper who persisted in doing business in £sd. (Even he admitted that he wouldn't actually refuse decimal coins. What he thought of paint by the litre and timber by the metre, assuming he was a DIY man, wasn't revealed, probably because his opinion of them wouldn't have been unusual enough to rank as news.)
SI* units, or at least those included in the mksA system, have been with us far longer than decimal coinage. The mks (metre-kilogram-second) system was proposed by Prof. G. Giorgi as long ago as 1901, and although more than 30 years passed before much notice was taken of it, when the break came (as it did in electrical engineeringafter the addition of the ampere-more than 20 years ago) the change-over was much faster than the most optimistic had expected. Yet there is still a pocket of resistance that goes on using cgs units though all others have stopped. I mean the people concerned with magnets and magnetism.
Practically everybody uses magnets, in such things as loudspeakers, magnetic pickups and microphones, tape heads and television receivers for example, but not many are so much involved with them as to have to use magnetic units, or, more correctly perhaps, units of magnetism. May be it is because these are a relatively small group, confined largely to Sheffield \dagger, completely single-minded in their devotion to the task of producing ever better magnets, that they are out of touch with the rest of the technological world in this (to them) unimportant matter. Like the Japanese sergeant found in some remote spot in Indonesia, they don't know that the (units) war has been over for 20 years. To be fair, one must admit that there are other possible reasons for this backwardness. It is all very well for the rest of the technological world to be selfrighteous about their own acceptance of SI units; their volts and amps and watts and even henries were completely unaffected by the change. In so far as magnetic magni-

[^5]tudes have to be considered by some, this was usually a small part of their whole world and the new units could be accepted without too much upheaval. But for specialists in magnetism, cgs units were part of their tradition, and much greater mental adjustment was required. And even now, when challenged they can claim more than mere mental inertia as an excuse: with some justification they can retort that reckoning flux density per square metre is not strikingly appropriate in this day and age of microelectronics. Square centimetres are much nearer the mark, especially in the loudspeaker magnet trade. Their reasonableness in pleading against the inconvenience of having to specify a typical magnet flux as, say, 0.0015 webers may at this point be adulterated by a certain amount of low commercial cunning, since 150,000 maxwells is much better calculated to impress potential customers. Another argument that will undoubtedly be raised is the convenience of the cgs permeability of air being equal to 1 , instead of $4 \pi / 10^{7}$ as in SI.
So the magnet trade at least may be hard to convince. Perhaps a better line to take with them than extolling the virtues of SI (which they will have difficulty in seeing, even if they want to see them, which is unlikely) is the negative approach-to point out that there is no more future for cgs units than for £sd coinage. Their sons-and daughters-are being brought up on SI, and most fathers don't like to be seen as squares in their own business. And even their hi-fi customers, looking up the current loudspeaker lists as I am just now, may soon be wondering what these gauss and max-wells-and even 'lines'-are. When the magnet men realize they are talking an archaic language to the new generation of big money spenders they will change.
The readers I have in mind are not the members of the magnet trade, nor the young who know only SI, but those who were brought up on cgs and are not yet too handy with SI, together with all who are hazy about magnetic quantities of any kind and their relationships to the familiar amps and volts and ohms.
So first of all I will show how magnetic circuits correspond to electric circuits. I know that this is an extremely unoriginal procedure, found in nearly all the elementary books. I used it myself in the September 1947 issue, but even if you had been born by
then you would hardly remember it. And I know that superior persons, looking for a chance to demonstrate their superiority, will point out that this is a false analogy, since magnetic flux corresponds to electric flux, not current. But practically nobody outside the classroom, and few of those inside it, are really familiar with electric flux and elastance. It is a basic principle of teaching that the obscure should not be explained in terms of the more obscure. So I'm going to liken magnetic flux to electric current, with the warning that there is a more perfect analogy to come later.

I hopefully assume that everyone who is still with us understands Ohm's Law. No; I'm not thinking of the pedantic aspects of it that were my subject in the August 1953 issue and can be seen to this day in "Second Thoughts on Radio Theory". All I mean is the relationship between volts, ohms and $\operatorname{amps}(I=E / R)$, and how resistance depends on the dimensions and resistivity of the circuit or part of a circuit concerned. So, in Fig. 1, the resistance of the bit of wire is

Fig. I. Ohm's law applied to a piece of wire to find the current flowing through it, given the dimensions and resistivity of the wire and the e.m.f. applied to it.
directly proportional to its length l and to the resistivity ρ of the metal, and inversely proportional to the cross-sectional area A :

$$
\begin{equation*}
R=\frac{\rho l}{A} \tag{1}
\end{equation*}
$$

This is true whatever the units of $R, /$ and A. But the value of ρ depends on those units. In SI the basic unit of length is the metre, so ρ is the resistance between two opposite faces of a metre cube of the material, and in the equation l must be in metres and A in square metres, or metres ${ }^{2}$ as we are encouraged to write it. There is nothing to stop
us reckoning A in square millimetres (mm^{2}) if we prefer, so long as we allow for this deviation by dividing by 10^{6}. For ordinary circuit materials ρ is a constant at any one temperature, which is more or less what Ohm was on about. (He didn't know anything about volts, amps, or even ohms.) For metals ρ increases slightly as the temperature rises. For a lot of other things it falls. And for electronic devices it depends mainly on V or I, but of course Ohm knew nothing about them.

One must admit that this resistance formula (1) is not very often used in practice. The resistance of wire is given in tables, and the resistance of resistors is shown by the colour code they bear. If in doubt one can easily measure the resistance with the usual multirange meter. The resistances of electronic devices cannot be calculated by the formula, because ρ is unknown; anyway, one is not usually interested in their resistances as such so much as in the varying relationship between E and I, given by characteristic curves. The main purpose of eqn. 1 is to provide a clear picture of how units of resistance depend on circuit dimensions.

So much for the recapitulation. Now for the analogy. To change over to a magnetic circuit, for electromotive force E volts put magnetomotive force F amps (yes!), for current I amps put magnetic flux Φ webers (Wb), for resistivity ρ put reluctivity v, and for resistance R ohms put reluctance S amps per weber (A / Wb). (Note: ohms could be called volts/amp, which would make the resemblance of form still closer. Incidentally, in specifying the full-scale current drain of voltmeters, their manufacturers call amps ohms per volt, but in this case the reason is unknown.)

Fig. 2. This is a magnetic analogue of Fig. I, showing how the magnetic flux in a block of (say) iron can be calculated.

In Fig. 2 we have, say. a piece of iron such as a pole-piece forming part of a magnetic circuit. Following the same reasoning as for Fig. I we get

$$
\begin{equation*}
S=\frac{\nu l}{A} \tag{2}
\end{equation*}
$$

In both diagrams A has deliberately been made constant throughout the length l to avoid bringing in mathematical complications that would distract attention from the main principle. Although for our theoretical purposes A and $/$ could have been made the same sizes in Fig. 2 as in Fig. 1, in practice magnetic circuits are generally made short
and fat because (1) the object is usually to make Φ as large as possible, and (2) whereas the resistivity of the space surrounding an electric circuit is usually high enough for practically no current to leak into it, reluctivity is never very low so leakage of magnetic flux could be considerable in a long narrow circuit. There is no such thing as a magnetic insulator.

In case anyone is puzzled by reluctivity it might be helpful to reveal that it is the reciprocal of the better known permeability, μ; i.e., $v=1 / \mu$. If you prefer you can put permeability in Fig. 2 and substitute the corresponding quantity conductivity, γ, in Fig. 1. But I thought we might make a bad start if we encountered this rather unfamiliar quantity so soon.

Permeabilities or reluctivities, take your choice, are almost the same for all materials -including empty space-other than those called ferromagnetic, for which μ can be many thousands of times greater and varies enormously according to the degree of magnetization. In fact, such materials correspond very much to electronic devices in electric circuits; characteristic curves are needed, and electronic current and magnetic flux are both limited by saturation.

Before we can tackle magnetic units we have to consider how Φ and F, and other magnetic quantities not shown in Fig. 2, are related to current and voltage. We must make perfectly sure we don't confuse these relationships with the analogy we have just been considering. It would have been better if we could have illuminated magnetic quantities in Fig. 2 by some analogy with totally unrelated quantities, say the flow of tomato chutney along a pipeline on its way to the bottling department; but chutneymotive force is not a sufficiently familiar concept to come within our basic principle of education, and there are other flaws in the analogy. It happens that Ohm's Law is clearer and simpler and better known than any other valid analogy I could call to mind. But now, having I hope got a clear picture of Fig. 2, let us forget about Fig. 1.

We all know that when an electric current flows it sets up a magnetic field around itself (Fig. 3). And that the strength of this field is directionally proportional to the current. Does it depend on anything else? As a onetime famous broadcaster would so rightly have said, it all depends on what you mean by a magnetic field. I've used the term as vaguely as I suspect many people, even some readers of Wireless World, think about it. That is exactly why I'm trying to clarify the matter. There are various approaches, but as we have already established a magnetic 'Ohm's Law' let us begin there, without stopping yet to explain exactly what is meant by a magnetic field.

Whatever it is it can be supposed to be caused by what we already know as a magnetomotive force, hereafter to be abbreviated to m.m.f. in line with e.m.f. It in turn is caused by electric current, and depends on nothing else. That is, if you follow the modern practice and count the total current around which the m.m.f. is considered. So if there are 50 wires close together, each carrying 0.1 A (usually because the wire is wound into a 50 -turn coil) the effective
current is 5 A . Formerly one would have said 5 ampere-turns. The main object of SI being to exclude all illogical constants in the relationships between the basic units, the SI unit of m.m.f. has been so chosen that it is numerically equal to the current that creates it. That is why the name of the unit of m.m.f. is the same as that for the basic unit of current - the ampere.
M.m.f. is not directly useful, but only as a cause of magnetic flux; just as e.m.f. is not directly useful for creating magnetism, but only as a means of making the current flow. And just as the amount of current a given e.m.f. will cause to flow in a circuit is decided by the resistance of the circuit, so

Fig. 3. The basic relationship between an electric current and a resulting magnetic field

Fig. 4. Here the magnetic circuit linked with a current-carrying coil is assumed (for simplicity) to be confined to a highpermeability core of uniform cross-sectional area A and mean length l.
the amount of flux a given m.m.f. will cause in a magnetic circuit is decided by the reluctance of that circuit. In practice one usually looks at it from the other end: knowing that a certain amount of flux has to be provided, how much m.m.f.-in terms of current and number of turns-is needed?

This can be quite difficult. The shape of a magnetic circuit is usually decided by what it is for. In any case the whole circuit around the current cannot be of the ideal rectangular shape shown in Fig. 2. Assuming that one wants to produce the maximum flux for the minimum m.m.f.-in other words to have as little reluctance as possible-eqn. 2 shows that we would choose one of the special alloys with a very low v, or high μ. Makers of these alloys supply data showing the values of μ under various conditions. One
of the many forms of core made of such materials is shown in Fig. 4. It is quite possible to make A constant throughout, or nearly so; and although l varies according to distance from the centre an average figure can be used, and so the reluctance of the whole circuit can be calculated reasonably well.
It is seldom as simple as this. Very often, as in electric motors and generators, loudspeakers and moving-coil meters, the flux has to pass through an air gap to be of any use. When the gap is of such a shape that A and l are constant, its reluctance can easily be calculated, μ for air being known very accurately, though one has to allow for edge effects. Because μ for the core is usually so enormous in comparison, the core reluctance can sometimes be neglected, so letting one off the problem of ascertaining it. Another help is to remember that just as resistances in series add up, so do reluctances, and one can split up the magnetic circuit into separate parts, each needing a certain m.m.f. to carry a given flux. (This is analogous to Kirchhoff's voltage law.)
You may be bursting to tell me that most of the magnets in which Wireless World readers are likely to be interested are permanent magnets, for which no current is needed. Actually they too require current to cause the required m.m.f., but the molecules of the magnet material itself are so aligned that the electrons circulating in them constitute the necessary current. (In all other materials the alignment is random or in direct opposition, so the magnetic effects of these tiny currents cancel out.) One would have to be rather unusually bright at physics to predict the effective m.m.f., but fortunately the suppliers of permanent magnets also provide all the necessary data. The units used are (or should be) the same as for electromagnets; the theory is too much to push in here and now, and in any case can be understood more easily when we have covered magnetism generally. I may get around to it later, but meanwhile if you can see the March 1961 issue you will find it all there.
If you look up magnet or magnet core data you are likely to find most of it in terms of B and H, with Φ and F and S hardly mentioned, if at all. Even μ may not be specified directly, although it seems to be the most important factor in reluctance. To understand these omissions, let us take a look at a curve of Φ against F for some magnetic material such as iron (Fig. 5). The slope of this curve will be Φ / F. Our magnetic 'Ohm's Law' is

So

$$
\begin{align*}
& \Phi=\frac{F}{S}=\frac{F \mu A}{l} \\
& \frac{\Phi}{F}=\frac{\mu A}{l} \tag{3}
\end{align*}
$$

The dimensions of the piece of iron, A and l, being fixed, we see that the slope is proportional to μ. To find the actual value of μ we would have to multiply the slope by l and divide by A. This way of presenting the data is silly, because we are not interested in the figures for the piece of iron that the manufacturer's lab people happened to use for their tests, but in the properties of that par-

Fig. 5. A graph of flux against m.m.f. for a ferromagnetic material would apply to only one particular size and shape. But by suitable choice of scales of flux density against magnetic field strength the same graph is made to apply to that material in any size and shape.
ticular material, which we can then use to tell us about a piece of the size and shape we might want to use. One way would be to measure a unit cube of the material, so that l and A were both $=1$. But this would restrict the method of measurement very inconveniently, especially with SI units, for a metre cube of iron weighs about 8 tons.
A better idea is to have units that will refer to unit dimensions of the material. So instead of Φ, the total flux, we use the flux passing through unit cross-sectional area: the flux density, denoted by B, in $\mathrm{Wb} / \mathrm{m}^{2}$, called teslas (T); and what is called magnetizing force or magnetic field strength, H, in A / m. Rearranging eqn. 3 we get

So $\quad \mu=\frac{B}{H}$ or $B=\mu H$
For the reason just explained I didn't bother to provide Fig. 5 with scales, but if B is written in place of Φ and H in place of F then numerical scales would apply to that material in general, regardless of size or shape. (There are exceptions, called anisotropic materials, 'anisotropic' meaning that their properties are not the same in all directions, like wood having different properties along and across the grain.)
Sometimes one comes across data curves showing μ directly in terms of H or B. From the typical B / H curve shape in Fig. 5 we can see that the permeability (=slope) begins high and continues so over a range, beyond which it falls off rapidly towards a certain flux density, called saturation, which is not much more than for air. Under these conditions there would be a lot of leakage flux outside the iron.
Since most magnetic data and calculations are in terms of B and H, referring back to Fig. 1 we may wonder why the same policy is not adopted there, replacing current by current density and e.m.f. by electric field strength. Well, if I had started from the more strictly appropriate analogy, comparing magnetic fields with electric fields, that is just what one would do. Because one is interested in electric fields mainly in nonconducting spaces (inside a cathode-ray tube, for example) current is replaced by electric flux, which is treated like magnetic
flux and reduced to flux density or displacement. For an overall grasp of electric and magnetic theory it is very helpful to consider this analogy in detail, but I assumed that from a more practical standpoint most people are familiar with electric circuits and would like to be clearer about magnetic circuits and fields.

While we are on about fields we might look again at Fig. 3. If the current flowing through the wire (or group of wires) is called I, we now know that the m.m.f. F encircling the wire-at any distance from it -is equal to I, both I and F being reckoned in amps. But because the path length around -call it l again-is proportional to the distance r from the axis of the wire, being in fact equal to $2 \pi r$, the m.m.f. is spread over a greater circular length as the distance from the current is increased. So the magnetic field strength

$$
H=\frac{F}{l}=\frac{I}{2 \pi r}
$$

In words, it is inversely proportional to the distance from the current that causes it. We are assuming-in case you didn't knowthat the whole of the space around the wire has the same permeability and contains no currents or magnets to upset the cylindrical distribution of field around the wire.
If your information on magnetism was obtained some time ago you may have been wondering why I've about come to the end of this exposition without having ever mentioned 'unit magnetic pole'. Most of the books used to base their treatment of magnetism on it. The more honest of them admitted that no such things exist, which is why I've ignored them. It is rather different with the analogous electrical concept, unit electric charge at a point, because electrons and protons are as near as you like mobile point charges. Another item that has been perhaps conspicuous here by its absence is the 'line of magnetic force', so much used in 'explaining' magnetic fields. They don't exist either, and can be actually misleading if they are allowed to convey the impression that the spaces between are any less magnetic than the lines themselves. But, like the lines cartoonists draw radiating from persons experiencing intense emotion, they at least help one to visualize something that does exist. In particular, they show on a diagram the directions along which a magnetic field acts; for example, in Fig. 3, in circular paths around the current. If there were such things as mobile magnetic poles of negligible size, these are the paths along which they would be moved.
No; I haven't forgotten that I set out to enlighten any who are still groping in cgs twilight. The fact that cgs units don't fit in with the familiar electrical units such as volts and amps has already been mentioned as one of their disadvantages. Another is the fact that there are two cgs systems of units, one based on unit electric charge and the other on unit magnetic pole, and their units differ from one another and from the practical units by factors usually of many millions. Another snag is that unit charge and unit pole were each said to give rise to a flux of 4π units. The reason for this apparently odd choice was that unit flux density
was defined to exist at unit distance from the unit point source of flux. The surface area of the sphere of unit radius is 4π units, so if the flux emerging through unit area of the surface is 1 the total flux must be 4π. By starting on this basis, the originators of the cgs systems eliminated the factor 4π precisely where one ought to find it-in a situation of spherical geometry. The result was that the factor 4π, expelled from where it rightly belonged, broke out in places where its presence could not be justified by the geometry; for example, in the formula for a parallel-plate capacitor.

And in the relationship between current and m.m.f. My electrical engineering tutor, whenever a student was stuck at a problem, sat down opposite him, scribbled on a sheet of paper with a circular motion to represent a current-carrying coil; then repeatedly smiting its interior with the point of the pencil to represent end views of lines of force, hissed 'Magnetomotive force is point four pi times the current enclosed!' This relationship took into account the irrational 4π and the fact that the electromagnetic cgs unit of current was 10A. Nowadays even the densest student should be able to retain the SI relationship 'Magnetomotive force is equal to the current enclosed' without having to be constantly reminded of it.

Fig. 4 shows that interrelated current and magnetic flux are like adjacent links of a chain. We have considered how current in the coil causes an m.m.f. linking the current path. Faraday's greatest discovery was that a change in magnetic flux causes an e.m.f. linking the flux path. The electromagnetic unit of e.m.f. was quite logically defined as that induced when interlinked flux was changing at unit rate (l maxwell) per second. But unfortunately this turned out to be $1 / 10^{8} \mathrm{~V}$, or $0.01 \mu \mathrm{~V}$, which is small even by circuit noise standards. The electrostatic cgs unit of e.m.f., by contrast,' is about 300 V , because the ratio between the units of e.m.f. in the two systems is equal to the speed of light in centimetres per second. To the uninitiated this might seem as irrelevant as the diameter of the earth or the price of beer. The connection lies in the fact that in both cgs systems the permeability and permittivity of empty space (μ_{0} and ε_{0}) are both fixed as 1 . Now one just can't have it both ways like this. The reason is that the speed of light (c) is equal to $1 / \sqrt{\mu \varepsilon}$ for the medium in which it is travelling, so in space is $1 / \sqrt{\mu_{0} \varepsilon_{0}}$. The only way to make μ_{0} and ε_{0} both 1 is to choose units of length and time such that $\mathbf{c}=1$. If the second is retained as the unit of time, then the unit of length must be $299,792,800$ metres. Anyone who proposed this as the standard would have no political future.

The inevitable result of making unit length 1 cm at the same time as $\mu_{0}=\varepsilon_{0}=1$ was the emergence of two cgs systems, depending on whether μ_{0} or ε_{0} was chosen as basic, in which units of the same quantities differed by factors of c or c^{2}. And the real values of μ_{0} and ε_{0}, which actually are related to \mathbf{c}, had to be hidden away in the sizes of the various units. So most of them are wildly impractical. The emcgs unit of resistance, for example, is 0.001 microhm,

Quantity	Symbol for quantity	Unit	Abbrevn. for unit		emcgs equivt.
Magnetomotive force	F	Ampere	A	In practice, the ampere-turn	0.4π gilberts
Magnetic field strength	H	Amp. per metre	A/m	$=F / /$	$4 \pi 10^{-3}$ oersteds
Magnetic flux	Φ	Weber	Wb	$=A B$	$\begin{aligned} & 10^{8} \text { max- } \\ & \text { wells } \end{aligned}$
Flux density	B	Tesla	T	$=\mu H$	10^{4} gauss
Permeability	μ	Henry per metre	H/m	$=B / H$	$10^{7 / 4 \pi}$ greater
Permeability of space	μ_{0}	Henry per metre	H/m	$-4 \pi 10^{-7}$	$\begin{aligned} & \text { ditto } \\ & (=1) \end{aligned}$

while the escgs unit is about a million megohms. SI works on a different principle. By changing over to the metre and kilogram for length and mass, and using the ampere as the unit of current, all the 'practical' electrical units became parts of it, and new magnetic units emerged from them on the same principles. And so the SI unit of m.m.f. is equal to the current enclosed instead of 0.4π times it. And when the magnetic flux is changing at unit rate per second the e.m.f. induced along a linked path is 1 volt.

Does this mean that π no longer appears in electromagnetic equations? Not at all; it means it appears where it logically ought to -as 2π in cylindrical geometry and 4π in spherical geometry, but not in rectangular geometry. The cgs systems were as confusing as a system of measures would be in which the unit of length was such as to make the surface area of a sphere one unit of length-squared.

Of course there is always a snag. Instead of the convenient values of 1 for space permeability and permittivity we have $4 \pi / 10^{7}$ and approximately $1 /\left(36 \pi \times 10^{9}\right)$ respectively. So π and large powers of 10 get back in by the rear entrance! However, it is easier to remember these two values than to have to remember the correct constants for innumerable formulae. If dirt has to be swept under carpets, it is better to have it swept under two already dirty ones if we can rely on there being none anywhere else. There is even something to be said for μ_{0} and ε_{0} not being l. When they were, students were often led to suppose that H and B were more or less the same thing and μ just a multiplier to take account of the properties of magnetic materials. Then they got into difficulties with the dimensions of equations.

What, then, are the dimensions of μ and ε ? The best clue to ε is the way the capacitance between two parallel plates is calculated. It is proportional to A, the area of the space between the plates, and to ε, the permittivity of whatever occupies that space. And it is inversely proportional to l, the (uniform) distance between the plates. (Edge effects are neglected, or counteracted in some way.) So in any regular system of units

Therefore

$$
C=\frac{A \varepsilon}{l}
$$

$$
\varepsilon=\frac{C l}{A}
$$

In SI units, C is in farads, l in metres and A in metres ${ }^{2}$. So ε is farads \times metres \div metres ${ }^{2}$, or farads per metre. Going back to the electrical circuit analogy, we would find in the same way that conductivity (γ) was in siemens (formerly mhos) per metre, and $1 / \gamma(=$ resistivity, $\rho)$ was ohm-metres. An alternative that used to be used was ohms per metre cube, and similarly for the other things; but this looks as if it restricted the measurement to a piece of a particular shape and size of the material tested.

As the analogue for capacitance is inductance we start to get at μ from there. The inductance (L) of a coil-say the one in Fig. 4-is equal to the flux linked with it when unit current flows through it. If we neglect flux in the surrounding air, and use eqn. 3 we have, when F is one unit and Φ is therefore equal to L,

$$
\mu=\frac{L l}{A}
$$

So μ is in henries per metre.
To sum up, here is a table of the SI magnetic units:

PUBLICATION DATE

We regret it has not yet been possible for us to get back to publishing on the third Monday of the preceding month. The February issue will not, therefore, appear until February 2nd.

A 200-MHz Counter Prescaler

An add-on unit to extend frequency measurement

by D. J. Taylor,* B.A., G8ARV/G6SDB/T

Direct digital frequency measurement has come well within the amateur's price range this last year due to the introduction of ultra fast logic intended for high volume computer applications. As these circuits are produced by several manufacturers, price competition has resulted in savings for the amateur too. With only $£ 5$ worth of integrated circuits, it is possible to build a prescaler which combines 2 mV low-frequency sensitivity with a 200 MHz measurement ability. Here such a prescaler is described and there are three possibilities for its use: - As an add-on unit for heterodyne or similar frequency meters, where the indicated readings are multiplied by four to obtain the true frequency.

- As an additional unit for a home-built frequency counter, where the timebase can be modified to include a scaling factor of four. ${ }^{1}$
- With an additional divide-by 25 circuit (not described here) so that the net frequency division is by 100 times. As the output frequency does not exceed 2 MHz , this would be suitable for direct reading with an older vintage of counter.
The range of i.cs which form the basis of the described design, is the Motorola MECL 10000. This is an e.c.l. (emitter coupled logic) family introduced in 1971 which uses current steering rather than
*Jesus College, Cambridge.
saturated transistor switching. This technique avoids the delays normally associated with transistor charge-storage mechanisms. ${ }^{2}$

Current steering logic has various advantages:

- It can drive 50Ω lines directly.
- It generates fewer supply line transients because of the balanced nature of the circuit.
- Each gate consists of a differential amplifier, which makes interfacing to analogue signals easier than with t.t.l.
The price to be paid for these advantages is a higher power consumption noticeably in the "pull-down" resistors required on the emitter follower outputs. ${ }^{3}$ However, the basic gate has a power-speed product (a parameter used by semiconductor manufacturers to sell their devices) second only to that of low-power Schottky t.t.l. which is very much more expensive at this time and availability is poor. Practical advantages of the MECL 10000 series are, the fastest operating speed per pound, ease of electrical operation, and good availability
Using only two i.cs this prescaler simply takes a low-level sinewave signal, amplifies it to the levels required by the logic circuit which then divides the frequency by four.

Pre-amplifier, limiter and divider

The MC10116 (IC, , Fig. 1) is a triple linereceiver which consists of three wideband differential amplifiers, each having a voltage
gain of 16 (differential input to output). A possible way to use this device is as a preamplifier (two stages) and a Schmitt trigger. However, this results in a poorer lowfrequency sensitivity and a lower highfrequency limit than can be achieved. A better way to use this i.c. is as a broad-band limiting amplifier, using differential interconnection between the stages. In this way a sensitivity of a few millivolts at 10 MHz and about 100 mV at 200 MHz can be achieved.
The MC10131 ($I C_{2}$, Fig. 1) is a dual Dtype flip-flop which in this circuit is used as a toggle-bistable to give a frequency division of four times. It can drive loads directly and is guaranteed to toggle at 150 MHz .
At the time of writing the following oneoff prices were quoted MC10116-£1.12, MC10131-£3.93, making the total semiconductor cost $£ 5.05$.

Circuit details

The input has been designed to match either 50 or 75Ω, the expected source being a small search coil which can couple to the apparatus under test. As will be seen from the circuit diagram this is achieved by altering one resistor R_{1}, which is 82Ω for 75Ω input and 56Ω for 50Ω input. The off-set voltage produced across this resistor serves to prevent the prescaler being too sensitive at low frequencies, where noise and external signal pick-up may become a problem.

The intermediate amplifiers are termin-

Fig. 1. Circuit diagram of prescaler.
ated by 680Ω resistors to the negative supply, this value of resistor giving adequate bandwidth. The final stage uses a lower value resistor (R_{7}), as experiments have shown that this triggers the divider more satisfactorily and makes the waveform at that point easier to monitor.
The toggle speed is limited by the first bistable and not the bandwidth of the preamplifier which only determines the input sensitivity. The bistable itself uses a similar low value of termination resistor (R_{8}) for the first stage which is speed critical. Note that the complementary output \bar{Q}, does not need a terminating resistor for bistable operation as an extra emitter follower is included inside the device for feedback.
The output can feed either terminated or unterminated lines. If a terminated line is used, the matching resistor R_{10} should not be included and R_{11} should be decreased to 220Ω. The output will be about 800 mV peak-to-peak. For unterminated lines, R_{10} absorbs the reflection produced by the open circuit, and the voltage at the open circuit is also about 800 mV peak-to-peak. However, this voltage level will no longer be suitable for driving further e.c.l. circuits, as it consists of both forward and reflected waves.

The input stage of the prescaler is not protected against transients, but back-toback Schottky-barrier diodes, MBD 101 or similar, could be connected across R_{1} if required.

Components List			
R_{1}	56Ω		
R_{2}	1 k	C_{1}	10 nF
R_{3}	680Ω	C_{2}	10 nF
R_{4}	680Ω	C_{3}	47 nF
R_{5}	680Ω	C_{4}	100 pF
R_{6}	680Ω	C_{5}	10 nF
R_{7}	270Ω	C_{6}	47 nF
R_{8}	270Ω	C_{7}	100 pF
R_{9}	1.5 k		
R_{10}	43	$I C_{1}$	MCl 10116
$R_{1 \mathrm{t}}$	680 or 220Ω	$I C_{2}$	MC 10131

Construction

As with any circuit operating at 200 MHz , lead lengths should be kept as short as possible. In the prototype this was achieved by using the lid of a tobacco tin as a ground plane and mounting the devices, pins uppermost, directly against the metal surface. This also gave some degree of heatsinking. A photograph of this prototype is shown in Fig. 2. The layout was kept as simple as possible, with the decoupling capacitors having as short a lead length as could be reasonably achieved.

The MECL 10000 series are designed to work with positive earth and have two $V_{C C}$ pins, 1 and 16 in this case. These are grounded as close to the package as possible. The prescaler is envisaged as a small accessory unit and the use of an insulated case in

Fig. 2. Prototype construction technique showing component positions.

Fig. 3. Measured sensitivity for input frequency.

Fig. 4. 100 MHz oscilloscope traces: top, pin 2, IC C_{1}; bottom, pin 2, IC C_{2}. Input level 16 mV , h.t. 5 V .

Fig. 5. 200 MHz oscilloscope traces: top, pin $2, I C_{1}$; bottom, pin $2, I C_{2}$. Input level 125 mV , h.t. 5.5 V .
which the unit will fit, will remove any problems of earth polarity incompatibility.

Performance

An r.f. signal generator, Marconi TF995A/ 2 M , was fed into the input, providing excitation between 10 and 200 MHz . Voltages at pin 2 of each i.c. were monitored with a Tektronix sampling oscilloscope, model 661 , with a $\times 10$, type P6032 probe.
Fig. 3 shows the minimum voltage to provide satisfactory triggering against frequency over the range 100 to 200 MHz with various d.c. supply voltages as a parameter. Signal input voltages are source e.m.f., so that 100 mV plotted means 50 mV p.d. or 140 mV peak-to-peak. Over the range covered, higher supply voltages produced slightly faster toggling but reduced the sensitivity slightly. However, performance is largely independent of supply voltage. At 145 MHz , between 28 and 45 mV were required, an e.m.f. easily bled-off even a low power transmitter (45 mV e.m.f. corresponds to a power requirement of $10 \mu \mathrm{~W}$ when referred to 5052).
Waveforms for operation at 100 MHz and 200 MHz , are shown in Fig. 4 and Fig. 5 respectively with horizontal scale of $5 \mathrm{~ns} / \mathrm{div}$ and vertical scale of $0.3 \mathrm{~V} / \mathrm{div}$. The subharmonic is clearly visible on the 100 MHz trace, this being a generator imperfection. The distortion on the output waveforms is due to coupling between the two halves of the dual flip-flop package.

References

1. 'Some Improvements in Digital Frequency Measurement Techniques', D. J. Taylor, Radio Communication, May 1972, p. 288.
2. 'Electronic Devices \& Circuits', Millman \& Halkias, McGraw-Hill, 1967, p. 259
3. 'General Information MECL 10000 Series', Motorola Inc., 1971, sheet O.3-4.
4. 'A 5V Logic Power supply', D. J. Taylor, Wireless World, March 1972.

Twin-ribbon Speaker

by A. E. Falkus*, B.Sc.(Eng), F.I.E.E.

The large majority of domestic loudspeaker assemblies use moving-coil units for the bass and mid-range. For the higher audio frequencies however, a number of different types are employed.

An ideal high-frequency unit would have:

1. A linear response between 1.5 and 20 kHz .
2. A polar distribution of 90° in a horizontal plane throughout the range.
3. No resonances, colourations and other forms of distortion throughout the range.
4. Efficiency equal to the average midrange and bass speaker.
5. Power handling ability of 30 watts.
6. A uniform input impedance at all working frequencies.
7. A reasonable cost comparable with midrange and bass units.
8. No external power supply.

The first three of these requirements are essential. For a practical system the parameters outlined in sections 4, 5 and 6 are important, whereas those of sections 7 and 8 are desirable. In many ways the ionophone principle is the most attractive. Unfortunately, to produce an ionic unit to meet the first six of our requirements, although technically possible, is too expensive to be a commercial proposition. The electrostatic principle has many adherents but fails on its inability to meet the requirement of a linear response over the desired range, having a uniform impedance-and, of course, a power supply is required.

By far the commonest form of highfrequency speaker in use at present has some form of dome-shaped diaphragm with moving-coil drive. This dome may be of a hard material, in which case it will fail our third requirement. Alternatively, the dome may be of a comparatively soft material with high internal losses. Here efficiency is sacrificed for reduced resonances but this can be recovered by the use of a more powerful magnet. Nevertheless, residual resonances are always present. It is also difficult to meet our first requirement in a single unit.

Ribbon loudspeakers re-examined

When recently considering a replacement for the Ionofane, the above considerations led to a re-examination of the ribbon principle. The main drawback that has been associated with ribbon speakers is lack of sensitivity. Experimental models soon showed however, that provided the flux
density is high enough, the efficiency and power handling capacity can be realized by a $\frac{1}{4}$ in ribbon with horn loading.
The first ribbon speaker we built which gave the required performance had a large block built up from slabs of anisotropic ferrite magnet material with suitable pole pieces as shown in Fig. 1. The ribbon had an exponential horn with a cut off at 575 Hz . This unit met all our requirements except that it was expensive. At low sound levels the quality was indistinguishable from the lonofane while the maximum output was 20 dB higher than that at which the Ionofane became overloaded. Further, improved performance at the low-frequency end of the range permitted the cross-over frequency to be reduced to 1500 Hz enabling a mid-range speaker to be dispensed with.
The problem thus resolved itself into one of a magnet design to produce a comparatively high flux density in a $9 / 32$ in wide gap at a reasonable cost.

The magnet system shown in Fig. 1 suffers from the defects of being too expensive, is heavy and clumsy and the volume of the air space below the ribbon is insufficient to permit the speaker to reproduce satisfactorily the lower end of its frequency range.

The big problem in designing an economic magnet system for a ribbon speaker is that the total leakage flux between the pole pieces near the actual air gap will be many times the useful flux in the gap itself.

For example, if we apply the formula for magnet efficiency ($W . W$. Jan. 1960, p. 41)

$$
E=\frac{T}{T+3.5 G} \times 100 \%
$$

For a $\frac{1}{4}$ in wide ribbon, T, the depth of gap, may be $3 / 32$ in and G, the width, $9 / 32$. The efficiency thus becomes:

$$
E=\frac{\frac{3}{32}}{\frac{3}{32}+3.5 \times \frac{9}{32}} \times 100 \%=8.7 \%
$$

Any configuration of the magnet parts that would increase the proportion of the useful flux to the leakage flux is therefore well worth exploring.
It occurred to the writer that an improved magnet efficiency could be obtained by using a central magnet pole of square crosssection and mounting four ribbons around it, one parallel to each face, thus, in effect, using as much as possible of the inevitable leakage. This arrangement is shown in Fig. 2. A sample unit was built but the assembly of the ribbons proved very difficult. A simplified design using two ribbons,

Fig. 1. The ceramic block magnet used in the prototype ribhon speaker.

Fig. 2. A cross-section of the twin-ribbon unit and a plan view with the horn removed.

Fig. 3. The final design for the twin-ribbon magnet, which weighs 3.25 lh .

Fig. 4. Response of the unit under
'living room' conditions. Mic lm on axis, input $4 V$ to transformer, level relative to 0.0002 dynes/ cm^{2}.

Fig. 5. Response of unit taken under same conditions as for Fig. 4 but with microphone at 0.5 m and 45° off axis.

Fig. 6. Input impedance of the unit measured across the transformer primary with cross-over unit disconnected.

Fig. 7. The crossover network.

Fig. 8. A view of the completed commercial unit showing the layout of the ribbons.
one to each side of the longer faces of a rectangular section metal alloy magnet, was satisfactory, however, and this forms the basis of the twin-ribbon speaker.*

Twin-ribbon design

The twin-ribbon magnet is shown in Fig. 3. A central block of fully columnar magnet alloy is mounted in a $5 / 16$ in thick mild steel yoke. The magnet block is capped with a $3 / 32$ in mild steel pole tip $2 \frac{1}{2} \times$ lin and the magnet system is completed by two chamfered top plates. The tapering section of the magnet block is desirable since leakage flux is leaving it all the way up and reduction of the section keeps the magnet material working near its $B H$ max point.

The two ribbons are mounted on a bakelite panel so that they are located in the air gaps, one each side of the central magnet. Each has an effective length of $2 \frac{1}{2}$ in and they work in phase so that the total working length of ribbon is 5 in . The ribbons are $\frac{1}{4}$ in wide and 0.0003 in thick and transversely corrugated. They are acoustically loaded with twin horns formed in a single casting and have an exponential law with a cut-off frequency of 550 Hz . The ribbons are fed from a double-wound transformer at one end of the magnet, their further extremities being connected together.

This speaker will handle an input of 30 W r.m.s. and produce a sound level at the mouth of the horn of 115 dB . A response curve measured under living-room conditions is given in Fig. 4, and it will be seen that on the axis it is within $\pm 3 \mathrm{~dB}$ from 800 Hz to 21 kHz . At 45° from the axis in a horizontal plane there is a small fall off above 10 kHz which reaches 4 dB at 20 kHz (see Fig. 5). The ribbon presents an entirely resistive load to the transformer but there is a small leakage inductance in the transformer of about 0.06 mH causing a slight impedance rise with frequency. It will be seen however from Fig. 6 that between 500 Hz and 17 kHz the impedance is between 7.8 and 9.0Ω.

For normal use the speaker is mounted with the ribbons side by side which results in a good horizontal dispersion of the higher frequencies. As with all ribbon loudspeakers care must be exercized to prevent low-frequency signals reaching the ribbons. A small fraction of a watt at 100 or 200 Hz can cause large movements, which may cause permanent stretching of the ribbon. For this reason the twin-ribbon speaker has a built-in network crossing over at 1700 Hz . The circuit of this is shown in Fig. 7. The components are mounted on a printed circuit board carried on brackets from the ribbon transformer. The spaces behind the ribbons, inside the magnet assembly, are filled with sound absorbent material and sealed with plates at each end of the magnet yoke. The twin-ribbon speaker may thus be mounted in the same enclosure as a bass unit.
A photograph of the complete speaker is shown in Fig. 8. The overall dimensions are width 13 in, height 6 in, depth 10 in , and the weight is 10 lb .

UHFGUHFTEEEOMMUNICATION ANTENMAS

J. Beam Engineering Ltd. manufacture a complete range of professional telecommunication antennas in the V.H.F. and U.H.F. frequency range including wide-band log-periodics and aerial screens for use with on-channel repeater systems. Send for comprehensive catalogue of whole range of J. Beam equipment giving full technical data and specifications.

* MISSILE \& SATELLITE TRACKING * SHIP TO SHIP * GROUND TO AIR *TELEMETRY PCWER SYSTEMS ETC. * MOBILE RADIO * SHIP TO SHORE ETC. ETC.

ENGINEERING LTD. ROTHERSTHORPE TRADING ESTATE NORTHAMPTON NN4 9JD
TEL: 060463531 TELEX: 311101
A Member of the J. Beam Group of Companies

WW-079 FOR FURTHER DETALLS

New inside and out. The Avo Model 8 Mk. 5

The completely redesigned Avo Model 8 Mk. 5 is brand spanking new inside and out. Down to everything

But it's still an Avometer. Still British. And still the
Look what you get
Increased accuracy and range. New accuracy-
1% full scale deflection on dc ranges and $\pm 2 \%$ full scale deflection on ac ranges.

The best overload protection in the business. Avo have invented the best ever electro-magnetic cut-out It doesn't depend on batteries, and disconnects the meter well below danger level.

Designed to meet military requirements. DEF spec. approval has been applied for-and Avo expects the Mk. 5 to be passed.

Easier to handle and read. The scale is clearer -mistakes are almost impossible. And handling is much

Entirely new circuit construction. An all. enclosed thermally comperisated dust-protected movement. Flexible printed wiring. And a new printed shunt technique that's all our own.

Avo Limited, Dover, Kent.

Circuit Ideas

Faster slewing rate with 741 op-amp

The circuits shown enable slewing rates in excess of that offered by a standard 741 operational amplifier to be achieved. A single transistor amplifying stage is fed from the output of the operational amplifier. If the transistor stage provides a gain of G, then to achieve a given output voltage swing, V, the operational amplifier output voltage swing must be V / G. Both voltage swings occupy the same time, but the swing from the transistor stage is G times that from the operational amplifier. Therefore the slewing rate at the transistor stage output is G times that at the operational amplifier output.

Resistor R_{1} must be chosen with regard to the desired output impedance and the current available from the supply. Resistor R_{2} is then made equal to R_{1} / G, where G is the desired stage gain. To utilize the available voltage swing the design should be such that the collector of $T r_{1}$ is at
zero volts when the output of the i.c. is at zero volts, assuming the loop is not closed by R_{f}. If the collector and emitter currents of $T r_{1}$ are assumed to be equal, then the current through the transistor is $V_{c c} / R_{1}$. Therefore the drop across R_{2} and $T r_{1}$ base-emitter is $V_{b e}+\left(V_{c c} R_{2} / R_{1}\right)$. Hence the voltage to be dropped by the zener diode is

$$
V_{c c}-\left(V_{b e}+V_{c c} R_{2} / R_{1}\right) .
$$

These calculations need only be approximate because any errors are virtually eliminated when the loop is closed. Resistor R_{3} is required to provide sufficient current for the zener diode to operate correctly. Output impedance may be reduced further by the addition of an emitter follower but R_{f} must then be taken to its emitter (second circuit). Note that R_{f} is returned to the non-inverting input because of the additional inversion due to $T r_{1}$. Component values given in the circuit increase the slewing rate by a factor of five. Gains of up to 20 have been used.
L. Short,

Wokingham.

input 1 , in both cases via a suitable resistor. If it is more convenient, the connections to the inputs of each op-amp could be reversed, in which case the feedback connections would be output 1 to input 1 , and output 2 to input 2.

If $I C_{1}$ and $I C_{2}$ are combined in a dual op-amp, then p.c. board space will be saved, and differential temperature drift reduced. I used a 741 for $I C_{3}$ and a 747 (dual 741) for i.cs 1 and 2.
A. D. Monstall,

Edinburgh.

Low battery voltage indicator

This circuit was devised to indicate when the voltage of the battery fell below a minimum acceptable value during a long period of use.

The design is for a 9 -volt version, but can easily be adapted to suit any supply voltage. In this particular case the l.e.d. lights up when the supply voltage falls to 8.3 V - this minimum voltage is determined by choice of circuit components. The l.e.d. used is a Hewlett-Pack ard 5082-4440 available from Integrex. The zener diode is a BZY85 C8V2 400 mW , but in this circuit its avalanche point is only 7.7 V due to the low current drawn. The circuit draws about 2.5 mA normally, and 7 mA when the thyristor conducts. The $125-\mu \mathrm{F}$ capacitor

is included to prevent pulses triggering the thyristor as capacitors charged.
P. C. J. Parsonage,

Whangarei,
New Zealand.

Inexpensive p.s.d.

A digital phase-sensitive detector with an output swing of up to 15 volts can be constructed for as little as 40 p, using one SN7426N quadruple two-input nand-gate i.c. and a few passive components. The relationship between phase difference and d.c. output level is absolutely linear, so the circuit may find application in the construction of low-cost phase-lock loops and in phase-shift keyed demodulation.

The required logic function for phase detection is that of exclusive-or, i.e. ' 0 ' output for similar input levels and ' 1 ' output for dissimilar inputs, achieved by connecting the SN 7426 N as shown. Gate 1 gives the 'nand' function, while gates 3 and 4 act as inverters with their outputs combined by sharing a common load resistor. This combined output is fed to gate 2 , inverted, and combined with that of gate 1 , again by sharing a common load resistor.

The waveform produced by the detector is a rectangular wave whose mark-space ratio is proportional to the phase difference between the input square waves. This rectangular wave is applied to a low-pass filter formed by R_{2} and C_{1}, whose values should be chosen to suit the operating frequency and required output resistance. As the SN7426N has high-voltage opencollector outputs, the voltage for the

common load resistor R_{1} may be chosen to give the required output swing, to a maximum of 15 volts. Note that the opencollector outputs are rated to sink a maximum current of 16 mA .

This whole circuit function could, of course, be achieved by using one circuit
of a SN7486N quadruple two-input ex-clusive-or, but this would require the use of an external transistor to achieve an output swing of greater than 2.5 volts, as well as being more expensive.
R. A. Harrold,

Leicester.

Reducing distortion by 'error add-on'

The conventional virtual earth amplifier must by its nature have an error at its output, V_{A} (upper part of first circuit). The basis of this new circuit is to recognize that a measure of this error appears at the input of A_{1}, and when fed to A_{2} an error 'add-on' signal is produced. The output between V_{A} and V_{B} is then composed of the error in the output signal V_{B} added to the distorted original signal V_{A} to produce an output very much closer to the ratio R_{2} / R_{1} than in the conventional case. What error add-on does for amplifiers is to use the second load terminal, normally earthed, to do something useful.
Gain is $\left(V_{A}+V_{B}\right) / V_{i n}=G_{1}+G_{2} G_{1} / A_{1}$, where
and

$$
G_{1}=\frac{A_{1} R_{2}}{R_{2}+R_{1}\left(1+A_{1}\right)}
$$

and

$$
G_{2}=\frac{A_{2}}{1+A_{2} R_{3} /\left(R_{3}+R_{4}\right)}
$$

The circuit has been built and demonstrated using the values shown. When slightly overloaded the results show very clearly how the principle works. Resistor R_{2} was adjusted but in practice a 1% resistor could be used. It is hoped to publish more details later, but
intuitively I feel that the open-loop gain improves at 12 dB /octave compared with 6 dB for the conventional case. Of interest is the hope of solving problems such as loudspeaker distortion which negative feedback fails to cope with adequately. A microphone might be placed in front of the main loudspeaker to produce an error add-on signal
for a separate error add-on loudspeaker. Indeed in principle a chain of microphones and speakers could be employed to reduce distortion to any amount although in practice this might be difficult to achieve. A. Sandman,

Lincoln's Inn Fields,
London, WC2.

Experiments with operational amplifiers

7. Using transistors for logarithmic conversion

by G. B. Clayton,* B.Sc., F.Inst.P.

Bipolar transistors, operated under appropriate conditions, behave logarithmically. An operational amplifier transistor feedback circuit may be used to perform logarithmic conversion. Converters using this principle assume a transistor characteristic described by the equation

$$
\begin{equation*}
V_{E B}=-E_{0} \log _{10} \frac{I_{c}}{I_{0}} \tag{7.1}
\end{equation*}
$$

where I_{c} is the collecter current in amps, I_{o} is a constant at constant temperature, its value is typically $10^{-12} \mathrm{~A}, E_{o}$ is a constant at constant temperature, its value approximately 60 mV at $27^{\circ} \mathrm{C}$, and $V_{E B}$ is the emitter base voltage.

The equation holds for a wide range of collector current values provided that the collector base voltage of the transistor is held at zero.

Because of the temperature dependence of the terms I_{o} and E_{o} simple logarithmic converters using single transistors give accurate logarithmic conversion only if the temperature is held constant. The effect of temperature changes may be considerably reduced by balancing the temperature variation of one transistor against that of a second transistor; such temperature compensation requires the use of an extra operational amplifier. Experimental circuits for investigating the action of simple log converters and temperature compensated converters are suggested in what follows.

A circuit suitable for investigating the performance of a simple logarithmic converter is illustrated in Fig. 7.1. Negative feedback is applied to the operational amplifier through a diode connected transistor $T r_{1}$. The circuit is suitable for positive input voltages. Diode D is connected in parallel with the logging transistor to protect the transistor against the excessive inverse voltage which would arise if an input signal of wrong polarity were inadvertently applied. Negative input signals may be logged by reversing connections on both transistor and diode. Resistor R_{E} is connected in series with the logging transistor to reduce the effective loading on the amplifier output at the higher values of feedback current.

If we assume that the base current of the transistor is negligibly small compared with the collector current, the feedback current
may be equated to the collector current. The output voltage of the amplifier provides the transistor emitter base voltage and we may write:

$$
\begin{equation*}
e_{o}=V_{E B}=-E_{o} \log _{10} \frac{I_{c}}{I_{o}} \tag{7.2}
\end{equation*}
$$

where $I_{\mathrm{c}}=I_{f}=\frac{e_{i}}{R}$.
Note that the output voltage from the circuit is taken from the emitter of the logging transistor and not from the output terminal of the amplifier, pin 6.

The response equation for the circuit may be verified by applying a range of input voltages and measuring and recording input and output signals. If the widest logging range possible with the circuit is to be realized it is necessary to separately balance both the input voltage offset and the bias current of the amplifier. In making these adjustments the transistor with its protective diode are disconnected from the circuit and a large value resistor (say $1 \mathrm{M} \Omega$) is connected in their place.

Input offset voltage is balanced first. This is done by shorting pin 2 to earth and adjusting the offset voltage balance potentiometer
for zero amplifier output. Once input offset voltage has been balanced the short on pin 2 is removed. The input voltage to the circuit is set to zero and the bias current potentiometer is adjusted so that the amplifier output is again zero. The logging transistor with its protective diode should now be connected back into the circuit.

In investigating the logging range of the circuit input voltages in the range, say, 0.1 mV to 10 V will be found suitable. A typical set of experimental results is given in the table below.

Output voltage e_{0}	Input voltage e_{i}	$\log _{10}$ e_{i}
0.32 V	$10^{-4} \mathrm{~V}$	-4
0.35 V	$8.8 \times 10^{-4} \mathrm{~V}$	$\overline{4} .95=-3.05$
0.4 V	$4.7 \times 10^{-3 \mathrm{~V}}$	$\frac{3}{2} .66=-2.34$
0.45 V	$3 \times 10^{-2} \mathrm{~V}$	$2.48=-1.52$
0.5 V	0.21 V	$1.32=-0.68$
0.55 V	1.6 V	0.20
0.6 V	10 V	1

Results may be plotted graphically as in Fig. 7.2 in order to show the logging range. The graph should be used to deduce values for the constants E_{o} and I_{o} of eq. (7.2).

* Department of Physics, Liverpool Polytechnic.

Fig. 7.1. A simple logarithmic converter.

Interchanging the position of the input resistor and logging element in the circuit of Fig. 7.1 gives the circuit shown in Fig. 7.3. This circuit may be used to perform an antilog conversion. The circuit accepts positive input signals. Diode connection of the transistor allows the same transistor to be used for either positive or negative input signals, by connecting the transistor into the circuit in the appropriate direction.
It is not necessary to separately balance inpat offset voltage and bias current; an adjustment of the $10 \mathrm{k} \Omega$ balance potentiometer for zero output with zero input is sufficient.

Input voltages in the range say 200 mV to 600 mV should be applied and values of input voltage and output voltage should be recorded. A graph of the input voltage against the log of the output voltage should be drawn.

Fig. 7.2. Plot of experimental results from Fig. 7.1 converter.

Fig. 7.3. A simple annilog converter.

A circuit for a temperature compensated log converter is given in Fig. 7.4. The circuit uses two operational amplifiers and two logging transistors. The output voltage of amplifier A_{1}, attenuated by the resistive divider R_{3}, R_{4} provides the emitter base differential voltage between transistors $T r_{1}$ and $T r_{2}$ and

$$
\begin{equation*}
e_{0} \frac{R_{3}}{R_{3}+R_{4}}=V_{E B}-V_{E B 2} \tag{7.3}
\end{equation*}
$$

$V_{E B 2}$ is controlled by the negative feedback round amplifier \boldsymbol{A}_{2}. The feedback forces it to take on that value which will cause the collector current $I_{c 2}=I_{2}$ to flow in transistor $T r_{2}$. Negative feedback round amplifier A_{1} forces $V_{E B 1}$ to take on that value which will cause the collector current $I_{c 1}=I_{1}$ to flow in transistor Tr_{1}.
Substituting $V_{E B}$ values from eq. (7.1) into eq. (7.3) and rearranging gives

$$
\begin{equation*}
e_{o}=-\frac{R_{3}+R_{4}}{R_{3}} E_{o} \log _{10} \frac{I_{c 1}}{I_{c 2}} \frac{I_{o 2}}{I_{o 1}} \tag{7.4}
\end{equation*}
$$

where

$$
I_{c 1}=I_{1}=\frac{e_{1}}{R_{1}} \text { and } I_{\mathrm{c} 2}=I_{2}=\frac{e_{2}}{R_{2}}
$$

The output is compensated against the marked temperature dependence of the transistor I_{o} terms, since for matched transistors the I_{o} terms cancel. Even if the transistors are not perfectly matched it is found that for transistors of the same type the ratio $I_{o 2} / I_{o 1}$ remains fairly constant with change in temperature. The linear temperature dependence of the term E_{o}, which, together with resistors R_{3} and R_{4} determines the scaling factor, may be compensated by using a temperature sensitive resistor for R_{3}.
If the greatest possible logging range is required the input offset voltage and bias current of amplifier A_{1} should be balanced, using the procedure outlined for the simple log converter of Fig. 7.1.
The input signal to be logged is applied at e_{1} and a fixed collector current $I_{c 2}$ set by e_{2} and R_{2} is passed through transistor $T r_{2}$.

In a practical temperature compensated \log converter it is usual to return the e_{2} input to the positive supply and to choose the value of R_{2} so as to give a required value of $I_{\mathrm{c} 2}$. The value used for $I_{\mathrm{c} 2}$ determines the

Fig. 7.4. Temperature compensated logarithmic converter.

Fig. 7.5. Plot of experimental results from Fig. 7.4. circuit.
value of $I_{c 1}$ and hence e_{1} required for zero crossing of the output of amplifier A_{1}.
If very small input signals are not to be used and one merely wants to take measurements in order to explore the action of the circuit it is not necessary to balance amplifier A_{1} offsets. The output voltage should be measured for a range of values of e_{1}. This should be done for several fixed values of the reference current $I_{\mathrm{c} 2}$. Results are conveniently displayed by plotting the output voltage against the log of the input voltage (or input current). The slope of these graphs is equal to $\frac{R_{3}+R_{4}}{R_{3}} E_{o}$. Values of R_{3} and R_{4} are normally chosen to give an output voltage change of IV per decade of input current change.
Experimental results obtained with the circuit of Fig. 7.4 are shown graphically in Fig. 7.5. The results were obtained with two settings of $e_{2}, 1$ volt and 10 volts, corresponding to $I_{\mathrm{c} 2}=10^{-5} \mathrm{~A}$ and $10^{-4} \mathrm{~A}$ respectively. Note that zero crossing of the output occurs in each case when $I_{c 1}$ is slightly less than $I_{c 2}$. This is because of a mismatch in transistor I_{o} terms. The results indicate a value $I_{o 1} / I_{o 2} \approx 0.8$ for the two transistors used. In both sets of results accuracy of log conversion falls off for values of the input voltage less than 10 mV . The range of the circuit can be extended by balancing the offsets of amplifier A_{1}.

The effect of fixing the current $I_{1}=I_{c}$ at some reference value and applying a varying input signal to the e_{2} terminal should be tried. This gives \log conversion without sign inversion, but the e_{2} input is not suitable for very small signals. Transistor $T r_{2}$ does not give accurate logarithmic conversion for very small currents because its collector base voltage is not zero.

Note that all op-amp transistor feedback \log converters will accept only singlepolarity input signals. The circuit of Fig. 7.4 is suitable for positive input signals. If one wishes to perform a logarithmic operation on a negative input signal the $n-p-n$ transistors $T r_{1}$ and $T r_{2}$ should be replaced by a suitable p-n-p type (say 2 N 4058).

The circuitry in Fig. 7.4 may be rearranged to give a circuit which will per-

Fig. 7.6. Temperature compensated antilog converter.
form an antilog conversion, as illustrated in Fig. 7.6.

The input signal to the circuit, attenuated by the resistive divider, R_{3}, R_{4}, provides the emitter base differential voltage between transistors $T r_{1}$ and $T r_{2}$ and

$$
\begin{equation*}
e_{i} \frac{R_{3}}{R_{3}+R_{4}}=V_{E B 2}-V_{E B 1} \tag{7.5}
\end{equation*}
$$

Negative feedback round amplifier A_{1} forces $V_{E B 1}$ to take on that value which will cause the current $I_{1}=I_{c 1}$ to flow as a collector current in transistor $T r_{1}$. If I_{1} is held constant as a reference current $V_{E B 1}$ is constant and $V_{E B 2}$ varies directly with e_{i}. Voltage $V_{E B 2}$ determines the collector current, $I_{c 2}$, of transistor $T_{r_{2}}$. Negative feedback round amplifier A_{2} forces $I_{c 2}$ to flow through resistor R_{2} and amplifier A_{2} gives an output voltage $e_{0}=I_{c 2} R_{2}$.

Substitution of $V_{E B}$ values from eq. (7.1) into eq. (7.5) gives

$$
e_{i} \frac{R_{3}}{R_{3}+R_{4}}=E_{o} \log _{10} \frac{I_{c 1}}{I_{c 2}} \frac{I_{u 2}}{I_{o 1}}
$$

Where $I_{c 1}=I_{1} e_{\text {ref }} / R_{1}$ and $I_{c 2}=e_{o} / R_{2}$
Thus $\quad I_{c 1} \frac{I_{o 2}}{I_{o 1}} \frac{R_{2}}{e_{o}}=10^{e_{i}} \frac{R_{3}}{R_{3}+R_{4}} \frac{1}{E_{0}}$
Values of R_{3} and R_{4} are normally chosen so that

$$
\frac{R_{3}}{R_{3}+R_{4}} \frac{1}{E_{o}}=1
$$

R_{3} may be made temperature dependent in order to compensate for the temperature dependence of E_{0}. With these values of R_{3} and R_{4}

$$
e_{o}=I_{c 1} \frac{I_{o 2}}{I_{o 1}} R_{2} 10^{-e i}
$$

If $I_{01}=I_{02}$ the multiplying factor

$$
I_{c 1} \frac{I_{o 2}}{I_{o 1}} R_{2}
$$

may be made equal to a desired constant c by choosing $e_{\text {ref }}, R_{1}$ and R_{2} so that $e_{\text {ref }}\left(R_{2} / R_{1}\right)=c$. This makes $e_{o}=c 10^{-e i}$.

The value of the constant c must, of course, not be made greater than the output

Fig. 7.7. Plot of experimental results from Fig. 7.6 circuil.
voltage capability of the amplifier. To allow for transistor mismatch and to avoid the use of close tolerance resistors the following experimental setting-up procedure may be adopted. Set e_{i} to zero and adjust $e_{\text {rif }}$ or R_{1} to make the output of amplifier A_{2} exactly c volts. Apply an input signal of minus one volt and trim the value of resistor R_{4} to make the output of amplifier A_{2} exactly $10 c$ volts. Experimental results obtained with the circuit are shown graphically in Fig. 7.7. The two sets of results are for $c=1$ and $c=0.1$. No offset balance was employed. Balancing amplifier A_{2} offsets may be expected to extend the range of the circuit.
(To be continued)

Op-amp \log and antilog converters may be combined in order to generate many non-linear functions. The circuits are connected together in such a way that they perform the operations normally involved in logarithmic computation. The remainder of Experiment 7 will deal with \log circuits for multiplication, division and the generation of powers.

H.F. Predictions
 January

HPF (highest probable frequency) is the frequency above which the probability of a skywave path existing is less than 10% and FOT (from the French, optimum traffic frequency) is the frequency below which the probability is greater than 90%. LUF (lowest usable frequency) is the frequency above which the probability of exceeding the desired signal-to-noise ratio is greater than 90%. FOT is an old established term but something of a misnomer as the true optimum, at which the product of skywave and signal probabilities is a maximum, is found to be the geometric mean of FOT and LUF. As the charts, which are prepared by Cable \& Wireless, have a logarithmic frequency scale this optimum is easily placed by eye at midway between the FOT and LUF curves.

Meter for Blind Students

Aural-tactual indication for d.c. measurements

by R. S. Maddever*, M.A., D.Phil.

This instrument for blind students is designed to convert an electrical input into an audible indication, as a direct replacement for a moving-coil meter. With a designed range of 0 to 100 mV and an input resistance of $2 \mathrm{k} \Omega$, a $10^{\circ} \mathrm{C}$ change in temperature or a 30% change in battery voltage produces an output change of less than 3%. Tactual 'readout' can be by pointer on a circular scale or by decade switches. With the last-mentioned the reading precision is 1% of full scale.
A variable reference voltage is produced by changing the resistance R_{7} in series with the constant current generator Tr $_{2}$. An operational amplifier, A, compares this reference voltage with the voltage to be measured across R_{1}. If the reference voltage is greater than the input voltage the amplifier output is positive and thus allows a second operational amplifier, B, connected as a free running multivibrator, to function and produce sound in an earpiece. If the reference voltage is lower than the input voltage, amplifier A output is negative and the multivibrator inoperative. By merely reversing the input leads to the first op-amp the audio output can be obtained when the

Three instruments with different types of 'readout'.
*Geelong Grammar School, Corio, Australia,

Circuit of the aural-tactual meter. Transistors are germanium types, e.g. OC45, OC71; op-amps Motorola 1435; diodes silicon types, e.g. BA100, OA200, IN914.
reference is below the input, if this is preferred.

Thus, in use, R_{7} is adjusted, either by potentiometer or by switches, until oscillations are about to begin, and the input voltage is then known to be practically the same as that read off the variable reference voltage scale. The input terminals will be similar to those of a 50 microamp, 100 mV moving-coil meter, so that conventional shunts and series resistors may be switched in to form an 'audible multimeter'.

The Motorola 1435 dual op-amp requires a centre-tapped voltage supply. To achieve this and still allow the supply to be switched on by the insertion of the earpiece, resistors R_{10} and R_{11} are used, with decoupling capacitors C_{4} and C_{5}. The value of R_{11} is smaller than R_{10} because the current from the positive supply is greater than that from the negative supply due to the constant current generator. Silicon diodes D_{4} and D_{5} isolate the functions of the two op-amps. The multivibrator frequency may be altered by changing C_{2} or R_{9}.

The base of $T r_{2}$, a germanium transistor, is held at about 700 mV below the positive supply line by the silicon diode D_{3}. Since the emitter-base voltage is about 300 mV , the current through it stabilizes so that a further 400 mV is dropped across the emitter load, R_{5} and R_{6}. Thus by varying R_{6} the collector current is adjusted to produce the required maximum reference voltage across R_{7} at its full scale value. Temperature compensation is afforded by the fact that the temperature coefficients of the voltage across the diode and $V_{B E}$ for Tr_{2} are similar and thus tend to cancel each other out. R_{4} is chosen so that even at the lowest supply voltage the bias current through D_{3} is several times the currents in the bases of $T r_{1}$ and $T r_{2}$. To allow zero setting with no input, $T r_{1}, R_{2}$ and R_{3} are added. Silicon diodes D_{1} and D_{2} are for input protection.
R_{7} can be either a wire-wound potentiometer or a series of switched resistors. In each case the maximum resistance is made $1 \mathrm{k} \Omega$, and hence R_{6} is adjusted to produce a current of $100 \mu \mathrm{~A}$ in the collector of Tr_{2}.

Instruments using both methods of varying R_{7} are shown in the photograph. Front panels are made from copper clad board. Braille figures and letters were put in with resist paint or dots from pressure sensitive sheets such as Letraset. Ordinary lettering was also put in to aid sighted instructors. After etching, the Braille dots were further raised with solder. Before removing the pressure sensitive ordinary letters to expose the copper, the areas around the letters were painted black with a cellulose lacquer. This provides excellent contrast for the copper lettering. The largest instrument uses Locktronic posts and resistors (A. M. Lock \& Co. Ltd.) so that blind students may easily insert shunts and series resistors.
The author is grateful to Churchill College, Cambridge, for the award of a Schoolmaster Fellow Commonership during the holding of which these instruments were developed, and to Mr. S. Stephenson, of Worcester College for the Blind, who brought the need of such instruments to his attention and arranged for several to be tested.

'B.B.C. Engineering

1922-1972

We consider that this monumental work* by Edward Pawley demands more than our norma notice under "Books Received". This 570-page volume, which incidentally weighs some $3 \frac{1}{2} \mathrm{lb}$, contains well over 300,000 words and so much information that it would be invidious to high light any one section.

As the history of broadcasting in the U.K falls fairly naturally into the following six periods the book has been divided into these six chapters:

1. The experimental era preceding the formation of the British Broadcasting Company in 1922.
2. The lifetime of the British Broadcasting Company: 1922-6.
3. The formative period of the British Broadcasting Corporation, from its foundation in 1927 until the outbreak of war.
4. The war years: 1939-45
5. The period of post-war reconstruction: 1946-55.
6. The years of expansion, from 1956 onwards. Although, inevitably, names (many of which became household words) are prominent in the story, Mr Pawley has dealt with the developments of broadcast engineering rather than the personalities concerned.

A complete picture ("warts and all") of Britisin broadcasting from the earliest experiments before the setting up of the originai British Broadcasting Company to the latest colour television techniques is painted. The work is extremely well documented with something like 550 references.

One aspect of broadcasting in the U.K. which may not be generally known becomes obvious on reading the book. It is that the B.B.C. has played a major part in the international field of broadcasting. Another little known contribution is the part played by B.B.C. engineers in the 1939-45 war effort. In the section covering the war years one learns

Announcements

Racal-Mobilcal Ltd, Reading. Berkslire, have announced a contract for military radio equipment valued at $£ 1.8 \mathrm{M}$. The equipment includes the "Syncal", "Squadcal" and "Comcal" h.f. mobile radiotelephones.

A customer service laboratory for thick-film materials has been opencd by the Du Pont Company (U.K.) Ltd, at Hemel Hempstead, Herts. The service is intended for European customers and possesses equipment for the manufacture and testing of thick-film components.

The consortium of AEG-Telefunken, Aeritalia and the British Aircraft Corporation has been awarded the contract for design, development and manufacture of the Radome (radar transparent nose cone) requirement for the Panavia multi-role combat aircrafi.

Jermyn Distribution, Vestry Eslate, Sevenoaks, Kent, have been awarded a franchise to handle the range of Siferrit pot cores manufactured by Siemens.

EMI Electronics and Industrial Operations, Blyth Road, Hayes, Middlesex, has introduced a com puterized spectral calibration seivicu for users of its photomultiplier tubes.

A vacation school intended to familiarize engincers and scientists in industry and education with modern methods and philosophies in the measurement of physical quantities will be held at the
what technical juggling was concealed by such code names as "washtub", "dartboard", and "domino". The first of these names was given to the medium-wave transmissions to guide home-ward bound bombers after raids. Dartboard created a strong jamming signal used on the medium-wave band to confuse enemy night fighters who were being given information in a Forces programme broadcast from Stuttgart. The Alexandra Palace telcvision transmitter was used, under the code name domino, to disable the navigational system developed by the Luftwaffe and known as Y-Gerat.

An interesting aspect of broadcast engineering is emphasized by the author in his foreword. He points out that many of the techniques used in broadcasting are common to other branches of electronics and other forms of radio communication but "broadcasting differs from them in one way that has had a profound effect upon its development: the receiving part of a broadcasting system - a vitally important part - is not under the control of the broadcasters". One result of this peculiarity is that the problem of obsolescence imposes a severe restraint on development as no improvement can be made at the transmitter unless either it is planned and announced so far ahead that existing receivers are worn out before the change takes place or that it is made in such a way that there is no deterioration in reception using existing receivers.

The many and varied achievements of the B.B.C. engineers are well documented in this volume and is in itself a tribute to their work over the past 50 years.

* "BBC engineering" 1922-1972, by Edward Pawley, BBC Publications, 35 Marylebone High St., London, WIM 4AA. Price $£ 7$

University College of North Wales, Bangor, from 8th to 13th April 1973. The school on Electronic instrumentation will be organized by the Electronics Division of the Institution of Electrical Engineers, Savoy Place, London, WCI.

New Zealand Broadeasting Corporation has ordered two complete mobile sets of outside broadcast colour TV equipment, including Mark VIII auto matic colour cameras, from Marconi Communication Systems Ltd, Marconi House, Cheimsford CM1 IPL.

Ultra Electronics (Components) Ltd, Fassetis Road, Loudwater, Bucks, have signed an agreement to represent Ouest Electronic Connecteurs. of France, in the distribution of connectors and related components.

A contract to provide a new telecommunications link with France is included in a transmission equipment order placed by the British Post Office with GEC Telecommunications Ltd, P.O. Box No 53, Coventry CV3 1HJ.

Two short courses entitled "Video recording" and "Time sharing computer systems" are to be held at Norwood Technical College, Knight's Hill. London, SE27 OTX. Video recording is a seven-week course from 18.30 to 20.30 each Monday commencing 12th February; fee $£ 3.00$. Time sharing is a six week course from 18.30 to 20.30 each Tuesday commencing 13th February; fee $£ 2.25$

Books Received

Semiconductor Diode Lasers, by Ralph W Campbell and Forrest M. Mims, is written for experimenters and engineers as a broad introduction to the semiconductor laser and its applications. It simplifies the theory of laser action and deals briefly with the historic development of lasing materials and methods of excitation and discusses the relationship between non-coherent light emissions, as from l.e.ds, and coherent light emissions which characterize the semiconductor injection laser diode. The book continues with an intormative section showing commercial device manufacturing techniques, covering the geometry of single diode construction and high-power. multi-element arrays. The remaining chapters are devoted to the practical applications and circuitry used with these devices, demonstrating the simplicity of pulse generators, modulators, power supplies, detectors and receiving systems. Pp.192. Price £1.90. W. Foulsham \& Co. Ltd, Yeovil Road, Slough. Bucks.

Compatibility and Testing of Electronic Components, writuen by C. E. Jowett, is designed to meet the needs of engineers and technologists working in the fields of component reliability, quality control, production and test development. It covers this rast subject in a clear, concise manner, providing detailed information on manufacturing and testing methods and generating an understanding of compatibility between materials, processes and differing environmental conditions. The subject matter deals with practically all aspects of integrated circuits, thick- and thin-film devices. capacitor and deposited resistor lechnology. hybrid microelectronics, miniature encapsulated relays and flexible film wiring. The remaining chapters are concerned with techniques involved in reliability screening, environmental and life testing. component stress testing and detection of incompatibilities. Pp.345. Price $£ 6.00$. Butterworth \& Co. Ltd, 88 Kingsway, London WC2B 6AB.

Field Effect Transistors has been edited by N. R. Bijlsma and P. Burwell of Elcoma Publications in conjunction with E. G. Evans of Mullard's Central Technical Service. It is designed to familiarize the potential user of f.e.ts with the operating principles, characteristics and terminology of these devices in such a way that the special properties offered, can be recognized and utilized to advantage. This is achieved by discussion of the relative structures and principles involved in both junction and insulated-gate, field-effect transistors. Development is from triode technology, enhancement and depletion modes of
operation, to tetrode or dual-gate forms of construction. Electrical properties are dealt with and the closing chapter describes circuit configurations and typical applications. Pp.131. Price £1.80. Mullard Lid. Mullard House, Torrington Place, London WCIE 7HD.

Dielectrics, by P. J. Harrop, is the title of a work on a topic which has been neglected to a certain extent even though great advances have been made on the subject of material science. The author has attempted to bring up to date the subject of dielectric materials used in electrical/electronic engineering, using a minimum of the large amount of tedious mathematical analysis normally associated with material physics. The book develops from a section of background information, which summarizes the classic capacitive properties of dielectrics. into the nature of mater which effect classification of the numerous types of material media. The text continues with an extensive survey dealing with the modern forms of dielectric and discusses the relative merits of forms and techniques employed in the fabrication of components. Finally, testing and measurement techniques are reviewed dealing with the basic parameter evaluation of both solid and liquid dielectrics. Pp.155. Price $£ 3.50$. Butterworth \& Co. Lid, 88 Kingsway, London WC2B 6AB.

Techniques of Circuit Analysis, by G. W. Carter and A . Richardson, is written primarily for undergraduate students of electrical and electronic engineering, though it will also be found useful to physicists. It provides instruction and practice in the methods of analysis which are essential in solving electrical circuit problems. A notable inclusion is the analysis of distributed circuits and transmission lines under transient as well as steady state conditions. Laplace transforms, matrix algebra, Fourier integrals and the complex plane are explained with worked examples used to illustrate the methods described. Each chapter concludes with a set of exercises. Pp.548. Price £5.00. Cambridge University Press, Bentley House, 200 Euston Road, London NW 1 2DB.

Thick Film Circuits, by G. V. Planer and L. S. Phillips. aims to assemble the basic ideas and data required to enable the reader to understand and assess the capabilities of thick film technology in relation to his own particular requirements. It is also designed as a reference book for those already involved in this area. or who have a more general interest in electronic packaging developments. A selection of the chapter headings are: applications, substrates, conductor and resistor patterns, printed capacitor and insulating layers, printing and
firing procedures, hybrid circuits, trimming and test procedures, environmental protection, and circuit design concepts. Pp.152. Price £4.00. Butterworth \& Co. Ltd. 88 Kingsway, London WC2B 6AB.

Transistor Audio and Radio Circuits, for radio receivers, record players, tape recorders and hi-fi equipment. is the second edition of a publication by Mullard. This edition incorporates many new circuits that take advantage of developments which have occurred since the first edition was published. These include new audio amplifiers. a radio receiver and amplifiers using integrated circuits. In addition to the designs for 10 W and 25 W audio amplifiers, there are now three new circuits for $15 \mathrm{~W}, 35 \mathrm{~W}$ and 50 W amplifiers. A pre-amplifier for these new circuits is also included. Methods of protecting these amplifiers from short circuits are discussed and suitable circuits given. Another addition to the book is a chapter on loudspeakers. This considers the choice of speaker for a particular application and the characteristics of the speaker required. Enclosures for speakers and some general rules for construction are discussed. Pp.281. Price £1.80. Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.

Broadcasting in Britain 1922-1972, by Keith Geddes, is an illustrated, brief account of the engineering aspects of broadcasting from the formation of the British Broadcasting Company to the present era of television broadcasting and digital and stereophony techniques. Pp.63. Price 45p. Her Majesty's Stationery Office (Science Museum Publicalious), 49 High Holborn. London WCIV 6HB.

Hi-Fi Year Book 1973 is a complete directory for pickups, motor units, tuners, amplifiers, microphones, recorders, speakers and cabinets. Brief specifications and prices of each product are provided. A section giving mantfacturers' and dealers addresses is also included and introductory articles cover the subjects of specifications. cassettes, loudspeakers and four-channel stereo techniques. Pp.464. Price £1.50. IPC Electrical-Electronic Year Books Lid, Dorset House, Stamford Street, London SEI 9LU.

BBC Engineering is published approximately four times a year and is a record of B.B.C. technical experience and developments in radio and television broadcasting. The October 1972 edition, number 92, is centred around a history of B.B.C. engineering 1922-1972 and an article covering the first five years. A further principal article is entitled "Acoustic Modeling of Studios and Concert Halls". Pp.36. Price 40p (post free). Annual subscription $£ 1.50$. B.B.C. Publications, 35 Marylebone High Street, London WIM 4AA.

Transistor Circuit Design, by Laurence G. Cowles, is a reference manual of practical transistor circuits with design procedures and formulae covering d.c. to microwaves. small signals to high-power circuits related to discrete components and integrated circuits. Pp. 344. Price £6. Prentice-Hall International Publisher, Durrants Hill Road, Hemel Hempstead, Herts.

Beginner's Guide to Television (5th edition), by Gordon J. King, deals with basic principles, TV transmission and reception, test cards and receiver controls, relay TV and communal aerials, colour and closed-circuit TV and video-tape recording. Pp.211. Price £1.60. Butterworth \& Co. Ltd. \&S Kingswav. London WC2B 6AB.

A Simple Transistor D.C. Multimeter

by J. D. Pahomoff*

A meter for high impedance measurements in transistor circuits

This short, but interesting article was received from one of our Russian readers and was inspired by the Linsley-Hood design we published in June 1972. A certain small amount of editing was undertaken but every effort has been made to preserve the original character of the author's manuscript which we feel adds to the interest of the article.

Fig. 1. Complete circuit diagram of the simple transistor d.c. multimeter.

Fig. 2. Construction of the voltage multiplier.

In spite of its principal simplicity, the final circuit diagram of the multimeter as suggested by Mr. Linsley Hood is too complicated especially for the beginner, because of many switches. I think that the simpler variant of this multimeter, described later, will find popularity among the readers of the magazine. Such a multimeter can be wired up during one week-end. To make the construction of the multimeter more simple all the switches are omitted and substituted for small sockets ($\frac{1}{8} \mathrm{in}$. diameter or less).

Circuit

The suggested revised circuit of the d.c. transistor multimeter is shown in Fig. 1. First of all the voltage multiplier is changed so that all the voltage ranges have single individual separate resistors from R_{1} to R_{6} inclusive. It's more convenient both for wiring and calibration
The current multiplier is also slightly changed, the first and the last ranges being omitted. All the ranges for measurements of voltage and current are the same: $100-$ 30-10-3-1-0.3-0.1. Only two ranges for measurements of resistance are left unchanged, as it is quite enough for most of the practical purposes. Each ohms range has its individual potentiometer (R_{16}, R_{18}). The variable resistor R_{21} in the tail load of Tr_{1} and $T r_{2}$ serves as a 'set zero' adjustment The variable resistor R_{23} serves to set full scale deflection.
In order to switch off the multimeter there is a switch S_{1}. In the position 'OFF' transistor bases of $T r_{1}$ and $T r_{2}$ acquire the zero potential, that's why the current could not flow.

Construction

Construction of the d.c. multimeter is not critical and it can be made in every way possible. It is suggested that the instrument case may be made of Paxolin. The construction of the voltage multiplier is shown in Fig. 2 and current multiplier in Fig. 3. Part of the current multiplier, for example $R_{11}-R_{14}$ may be wire wound. Each of these wire resistors must be correctly checked with Wheatstone bridge. Resistors from R_{10} to R_{7} can be selected among the preferred value series. For example, in the case of the 67Ω resistor R_{10}, in the current chain

[^6]

Fig. 3. Construction of the current multiplier.

Fig. 4. Pusition of the main parts of the multimeter
(multiplier), it can be selected as $68 \Omega-1 \%$; $R_{9}, 220 \Omega-5 \% 230$ ohm, etc.

The position of the main parts of the multimeter is shown in Fig. 4. All the additional information can be found in the previous article by Mr. Linsley Hood, Wireless World, June 1972, pp. 279-280.

Components list

Resistors

R_{1}	50 M		R_{13}	2.3
R_{2}	15M		R_{14}	1
R_{3}	5 M		R_{15}	100
R_{4}	1.5 M		R_{16}	100 preset
$R_{\text {S }}$	450k		R_{17}	120k
R_{6}	100k		R_{18}	50k preset
R_{7}	49k		R_{19}	47k
R_{8}	670		R_{20}	18k
R_{9}	230		R_{21}	10k preset
R_{10}	67		R_{22}	680
R_{11}	23		R_{23}	500 preset
R_{12}	6.7		R_{24}	3.3 k
Transistors				
$T r_{1}, T r_{2}$		BC184L		
$T r_{3}$		MPSA65		

Developments in Surface Acoustic Wave Technology

Eighty-six years ago, Lord Rayleigh discovered the surface acoustic wave effect by which a signal can be propagated and remain on the surface of a material. Instantaneous examination of the propagating waveform in spatial terms gives access to a real time signal which can be sampled or modified. Such a facility extends the designer's armoury where conventional electronic or electro-magnetic circuits are unsuitable. Perhaps the most important of the applications for this type of phenomenon is in practical delay circuits for frequencies from 10 to 400 MHz
and delays up to $50 \mu \mathrm{~s}$.
Conversion of electrical to acoustic energy, and the reverse, is achieved by using interdigital transducers consisting of two sets of interleaved metal fingers spaced one-half of an acoustic wavelength apart. The resonant frequency of this electromechanical pattern is obtained from dividing the s.a.w. (surface acoustic wave) velocity by the finger spacing, and if a signal of such a frequency is applied across the fingers, then a surface wave will be launched down the piezoelectric substrate. Since the s.a.w. is non-dispersive, the information
content can be accurately preserved, and in addition the transduction is reciprocal so the same finger pattern will regenerate an electric signal from the s.a.w. Bandwidth of the finger array can be simply adjusted by alteration of the number of finger pairs, and electrical impedance determined by the choice of radiating aperture.

In addition to making use of the delay properties by selection of the material used for the piezoelectric substrate - and, of course, the separation of the transducer arrays, the designer can use the same type of element array to make bandpass filters with very small changes in the techniques employed. Tapped delay lines can also be readily devised, and a recent new application has been found for surface acoustic wave devices in f.m. pulse compression filters.

With such a variety of applications already realized for the s.a.w. device, it is small wonder to find that even more advanced projects are planned for the future. Several companies are experimenting with the s.a.w. devices, Microwave and Electronic Systems Ltd, in a recent statement, outlined some future products.

Future development prospects

An example of one of the devices predicted is the linear frequency discrimina tor. This consists of two filters having triangular insertion loss characteristics of equal width, but offset by a frequency difference equal to half the separation of stop band. Positive or negative slope discrimination over bandwidths and frequencies difficult to deal with using conventional design techniques may be easily accommodated using the s.a.w.

Adaptive non-linear convolvers may not be familiar to too many. They use the non-linear interaction of the s.a.w. signal with a reference signal propagating in the opposite direction. The resultant signal at the sum frequency has a very low or even zero velocity (comparable to a standing wave) and can thus be integrated over considerable time periods using a capacitor. The basic mathematical process offered is that of convolution, but correlation is achieved by making the reference signal the reverse of the incident signal.

Finally, the s.a.w. device offers excellent possibilities for the synthesis of highly stable oscillations at v.h.f. and beyond. In practice the actual stability is not as good as conventional quartz crystal oscillators, but there is the advantage of being able to operate at fundamentals of 400 MHz and provide the additional facility of electronic tuning over a range of up to 1 part in 10^{3} with small sacrifice in stability.

Currently, principal substrate materials employed in the production of s.a.w. devices are bismuth germanium oxide, with a surface wave velocity of $1.6 \times$ $10^{3} \mathrm{~m} / \mathrm{s}$, lithium niobate having a velocity of propagation $3.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$. aluminium nitride, $5.8 \times 10^{3} \mathrm{~m} / \mathrm{s}$ and finally the more familiar ST-cut X propagating quartz having a s.a.w. velocity of $3.1 \times$ $10^{3} \mathrm{~m} / \mathrm{s}$.

Design Criteria for Logic Power Supplies

by R.B.D. Knight, ${ }^{*}$ m.A., D. Phil, M.I.E.E.

The features required from a power supply intended for integrated circuit logic are examined. Criteria are stated which, applied to the design or selection of supplies, will improve both economy and reliability of equipment.

Since their introduction in the late fifties, power supply modules have become considerably more refined. Ever smaller variations in output voltages are quoted for changes in load, temperature, time and mains input. Current limiting and protection against voltage transients are often offered as integral parts of the design or as optional extras. It was natural that the designers of logic systems should seek supplies for their circuits from the wide range of standard units available from a large number of manufacturers. The choice made was more important than it appeared at first sight because a unit misguidedly selected on the basis of price, size or an irrelevant technical feature may well have had subtle snags which caused apparently inexplicable i.c. failures and so gave poor equipment reliability.

For reasons of low cost and the wide variety of circuit functions available, 74 series t.t.l. logic working from a nominal 5 V supply is very popular. It is generally known from manufacturers' data sheets and applications information that for correct operation:

- The supply voltage must be between 4.75 and 5.25 V (industrial) or 4.50 and 5.50 V (military grade),
- The supply voltage must not exceed 7.0 V ,
- No voltage exceeding 5.5 V may be applied to a logic input, and
- Every 5 to 10 packages must be decoupled by a capacitor of 0.01 to $0.1 \mu \mathrm{~F}$ having good r.f. properties.
It is less easy to find out that:
- Voltage transients exceeding the stated maxima even for a fraction of a microsecond can cause degradation even if catastrophic damage does not ensue.
- Slow changes in supply voltage, e.g. $1 \mathrm{~V} / \mathrm{ms}$, within the normal limits, are tolerable.
- When the "totem-pole" output stage (see Fig. 1) switches, a heavy current pulse results from the non-conducting transistor switching on before the conducting transistor switches off. This pulse has a duration of the order of a

[^7]nanosecond and is the reason for decoupling groups of i.cs.

- The supply must be free from fast transients and these must not be induced by the current pulses through the totempole.
- Conductors longer than 25 cm or so behave as transmission lines and not as short circuits to pulses having the rise times to which t.t.l. circuits are sensitive.

Properties of stabilized supplies

The arrangement generally used in the design of stabilized power supplies is shown in Fig. 2. An amplifier compares the output voltage with a zener reference and develops a control signal which is applied to a series element. The higher the gain of

Fig. 1. "Totem-pole" output stage.
the loop the lower is the output impedance at d.c. and the greater the immunity from changes in mains input. The use of remote sensing connections as shown, enables a low output impedance to appear at a point physically distant from the supply. However, this low impedance is only demonstrated at d.c. and low frequencies. In order to be stable the supply must be designed so that the loop gain of its control system must fall with frequency in a controlled manner. This results in an output impedance which rises with frequency. This rise is controlled by the capacitor C_{2} in Fig. 2.

The higher the loop gain of the system the more difficult it becomes to control its frequency response. A low gain design giving modest performance can be stabilized by a single time constant, but high gain designs require two or even more shaping circuits. Inescapably associated with these is a relatively high phase shift at certain frequencies which results in ringing in response to sudden changes in load current. Even worse, transient response is likely if remote sensing is employed as a further time constant is added, as shown in Fig. 3. Resistors R_{3} and R_{4} represent the resistances of the leads between the power unit and the load: C_{3} is the total capacitance at the load end and is largely madeup by thedecoupling capacitors distributed amongst the i.c. packages. The inductances of the leads, L_{1} and L_{2}, may also be significant. All these parameters are outside the control of the power supply designer, but an inescapable part of the loop which he is trying to design to be stable! The selection of a supply module having an outstanding performance in the conventional sense in

Fig. 2. Series stabilized power supply.

Fig. 3. Supply with long output leads.
the belief that this will ensure that there are no problems in this area is therefore a serious mistake. If anything, the reverse is likely to be true.

Voltage transient protection. A small rise in voltage at the output of a supply based on Fig. 2 causes the series element to be cut off, giving the unit a very high output impedance. If, for example, the 5 V rail is accidentally shorted to one at a higher voltage or touched by a charged object such as an unearthed soldering iron there is nothing to prevent an excessive potential reaching the logic circuits. If the series device should fail and become a short circuit the output voltage will rise dangerously and cause extensive damage to the logic devices. To reduce these weaknesses, thyristor "crowbar" circuits are often added. The principle of these is shown in Fig. 4. These do not give such satisfactory protection as is often imagined. The switchon time of most thyristors is of the order of microseconds and the firing circuit adds more delay between the appearance of an excessive voltage and the thyristor becoming effective.

When the mains supply is switched on unpredictable voltage conditions exist throughout the stabilizer and crowbar circuits. These also vary with the exact instant during the supply waveform when the switch is closed. Any bounce in the switch further complicates the situation. Under these conditions it is possible for an even larger and longer voltage transient to occur at the output and not be restrained by the "protection" circuit.

Current limiting. If an excessive current is drawn from a power supply its output voltage will fall. This fall may be related to the current in various ways, as shown in Fig. 5. Curve 1 shows considerable foldback, i.e. the output current falls greatly when the supply is overloaded. This brings the danger of lockout states if the load line representing all the logic elements intersects the characteristic at three points. A typical t.t.l. load line is shown dotted in Fig. 5 as curve 2. Much less favourable load lines, such as curve 3, have been reported by Kalb. \dagger However, such extreme cases as he reports were con-

[^8]cerned in circuit studies and should not be observed among devices from reputable manufacturers' production runs.

Curve 4 in Fig. 5 shows a modest amount of foldback which would be unlikely to permit lockout conditions to arise. Curve 5 demonstrates the characteristic of a supply which transfers from a constant voltage to a constant current mode. For comparison, the relationship for a simple shunt zener regulator (Fig. 6) is shown in the figure as curve 6 . The use of foldback current limiting is attractive to the power supply designer as this leads to a reduction

Fig. 4. Thyristor "crowbar" protection circuit.

Fig. 5. Characteristics of supplies and loads. 1. Supply with considerable foldback 2 \& 3. t.t.l. load lines. 4. Supply with slight foldback 5. Supply having constant current characteristic. 6. Shunt zener stabilizer.

Fig. 6. Shunt regulator using zener diode.
of the dissipation in the series element under conditions of short-circuits and other heavy loads on the output. This can make possible the use of a smaller heat sink or fewer series transistors. However, it is obvious from Fig. 5 that the more reentrant is the overload characteristic the more probable it is that equipment will fail to function due to having fallen into a lockout condition. At best it may be necessary to use a power module rated at a current significantly higher than the useful load to ensure that there is only one crossing of the load line and limiting characteristic. The supply least likely to give this problem is the simple shunt zener regulator.

Recommended design approach

Obviously a supply must always provide an output voltage between the required limits. This is not, however, a stringent design feature. It is essential for a power supply intended for logic circuits to have a controlled transient response in order to be free from significant ringing or overshoot. These are more important than the transient response time itself. The transient performance must not be degraded by the addition of unspecified amounts of additional capacitance across the supply terminals, even at the end of long leads. These requirements are best met by a simple design. The resulting regulation against mains input and output load changes, though poor by power supply industry standards, can readily be arranged to be tolerable by logic elements, allowing in addition for ripple and voltage drop in wiring. Remote sensing is not needed for relatively low currents and is indeed a disadvantage owing to the extra difficulty of obtaining the required transient response. However, when the voltage drop in the cables between the supply module and the load is likely to exceed 100 mV , the advantage of eliminating this outweighs the problems which result.

The current limiting characteristic is not too critical although it is essential to ensure that this is crossed only once by the load line of the circuits being driven by the supply. Undoubtedly the less re-entrant this is the more certainly the supply is compatible with any logic elements. Overvoltage protection is very desirable, but to be truly effective must operate very much faster than any thyristor circuit. A zener diode, being a single sharp junction device, gives far superior limiting. Devices having the essential sharp knee, well defined breakdown voltage, very low slope resistance and high surge power ratings have been designed for this application and are now readily available. These devices provide, for the first time, the possibility of effective protection of integrated circuits from damage due to voltage transients. To avoid delays in the operation of the protection due to transmission line effects the device should be installed close to the logic elements. A large heat sink is not mandatory, since the dissipation is negligible under normal conditions. If a sustained excess voltage
occurs, due to a short circuit to a higher voltage rail or a short-circuited series element in the power supply, the dissipation in the protecting device may be excessive. If the device then fails it will almost certainly become a short circuit, continuing to protect the integrated circuits. Repairs are therefore limited to the power supply area and costly searches through the logic circuits for elements which may be only slightly damaged are still avoided. The shunt stabilizer of Fig. 6 inherently provides fast protection against voltage spikes.
Other logic families. The demands which 74 series t.t.l. makes from its power supplies apply to the high speed 74 H versions, with somewhat greater emphasis. Slower families give less of a current pulse problem but m.o.s. in particular, is very prone to damage by voltage transients. All widely used logic integrated circuits are able to tolerate $\pm 5 \%$ total voltage excursions. Many are unaffected by $\pm 10 \%$. The same general principles should therefore be applied in the provision of power supplies for all current types of digital integrated circuits.

Conclusions

Comparison of the properties of standard stabilized power modules and the requirements of logic elements reveal that the supplies give a very well defined voltage, which the integrated circuits do not need, and no protection from voltage transients. Even power supplies with thyristor crowbar circuits may allow, or even cause, dangerous transients.

The specification of sophisticated power supply units for integrated circuit logic is not only uneconomic but also unsatisfactory. Local decoupling of devices, in accordance with device manufacturers' recommendations, should be provided to supply pulse currents without delay due to transmission line effects. The supply module must not oscillate and must have a suitable response to transient currents whatever the total value of capacitance connected at the remote end of the supply leads. The regulation and ripple are not critical, but the total voltage excursions must be within the limits specified for the logic family. A simple shunt zener regulator meets all the requirements and is a practical solution for all currents for which suitably specified zener diodes with the required power rating are available. Overvoltage protection is strongly advised, particularly where series stabilization is utilized in the supply design. This should be obtained by the use of the special zener diodes now available for this purpose. Zener protection can also be added to existing system designs with advantage.

British participation in ESRO-4

The latest spacecraft from the European Space Research Organization is that of ESRO-4 which was launched by a fourstage, solid-propellant Scout rocket on 21st November, at NASA's Western Test Range in California. There are five experiments on board, one of which was mounted by the Mullard Space Science Laboratory, Dorking, Surrey, and supported by the Science Research. Council. The prime function of this British experiment is to measure ion (charged atom) density, temperature and composition of the Appleton or F-iayer of the ionosphere.

On the satellite structure three sensors are used for measurement, one of which is a gridded, spherical, ion-collecting probe 20 cm in diameter fitted to the end of one of three, 1.3 metre folding booms. The booms perform two functions, one of which is to de-spin the craft after orbit insertion, and the other to position the ion probe clear of the space-charge which will surround the vehicle.

The electrical potential of the probe is swept repeatedly from positive to negative enabling it to act as an ion mass spectrometer. On the same boom as this probe, but very close to the craft, is a smaller sphere of 1 cm diameter designed to collect residual electrons and, therefore, to define
the spacecraft's absolute potential in space. This feature allows the correct interpretation of the mass spectrometer readings to be obtained.

A third probe, 10 cm in diameter, carried on a boom 0.35 metre in length and mounted exially at the base of the satellite, has a constant charge applied with respect to the spacecraft, which serves as a type of calibrator against which the apparent ion density can be continually checked. The charge is adjusted to represent the midrange value at the beginning of each potential sweep of the spectrometer probes, so that short period fluctuations in ion current can be detected down to the order of 2%, whatever the residual ion density.

The spacecraft was planned to have a nearly polar orbit with altitudes varying from an apogee of 1100 km to a perigee of 280 km . Spin rate before orbit insertion was about 150 r.p.m. and after the operation of the de-spin booms it would have been reduced to $65-70$ r.p.m. There are five different attitudes planned for the various experiments which are acquired by a command operated magnetic torquer. The prime contractor for this scientific satellite was Hawker Siddeley Dynamics under contract from the European Space Research Organization.

Spacecraft ESRO-4 on a test rig in California

World of Amateur Radio

Hobby for the well-heeled?

Is amateur radio becoming a high-cost hobby demanding little from its adherents other than a willingness to pay out hundreds of pounds for factory-built equipment? This is a question which can be guaranteed to rouse strong feelings. But certainly the number of amateur "shacks" containing equipment costing $£ 500$ or even well over $£ 1000$ is now quite high. Amateur communication receivers range up to more than $£ 250$; many transceivers are around this figure (though de luxe models such as the CX7A are about $£ 1000$); linear amplifiers around the $£ 150$ mark; r.f. speech clipping units possibly $£ 50$; electronic keyer say $£ 25$; beam aerials and towers, virtually no limit; and so on. All this seems a long way from the $0-v-1$ ('straight'") receivers and the two-band, 10 -watt transmitters of the 'thirties, or the surplus HRO and home-built a.m./c.w. transmitter of 20 years ago.

Undoubtedly many amateurs are concerned at this transition from a do-it-yourself and self-training activity to what is increasingly a cheque-book hobby, though some of us continue to find much interest in what are virtually "junkbox" stations. It is still possible to put an amateur station - particularly a c.w. station - on the air for under $£ 25$.

Easier licences?

A similar, and related, debate in amateur circles is about the constant pressure in many countries to make it simpler to obtain amateur licences. To quote a guest editorial in Break-In (New Zealand): "At the present time there seems to be a great hue and cry to lower the requirements to become an amateur radio operator . . . we feel that quality will always count more than quantity". The writer notes the outcry against having to learn the "archaic" Morse code and the arguments against formal radio theory examinations, and the feeling that amateurs form an "exclusive club" without regard for the many who wish to participate in the hobby.

The writer quotes an amateur in Japan (where it has been made very easy to obtain a first licence) as suggesting that "many now get a licence after a short
course, buy equipment, send off application for station licence, get on the bands for enjoying long chats with girl friends . . . and then sell their equipment".

The editorial points to the value of c.w. and theory examinations, not only for their own use, but also as a way of ensuring that a licence is valued as something which requires effort to obtain. Certainly most of us who struggled (against our wishes) to learn c.w. operation have subsequently never regretted making the effort.

Yet the following comments were received on 3.5 MHz from a Chesterfield amateur: "I find most days not one c.w. station using the band - often day after day it is the same until the evening, no c.w. but tons of s.s.b. proving the band is open . . . I tested Top Band (1.8 MHz) to find out how much it is used in daytime for c.w. I gave a series of CQ calls across eight hours per day for five days. Not one c.w. station came back".

Amateurs and BBC-50

The amateur's role in the early days of broadcasting received at least partial recognition during the recent $\mathrm{BBC}-50$ celebrations, though one missed any account of the broadcasting by amateurs in the period 1920 to 1923 or what was virtually the start of Empire broadcasting by the late Gerald Marcuse, G2NM.* The successful joint I.E.E.-R.S.G.B. lecture by G. R. M. Garratt, G5CS, though full of fascinating detail of the historic events between 1896 and 1901 was placed well before the more controversial love-hate relationship between amateurs and the early B.B.C.

One historic document, the 1921 petition presented to the P.M.G. by the Wireless Society of London and signed by 65 local societies, appears to have been lost for ever, despite the efforts in the early 1940 s by Arthur Milne, G2MI, to preserve the petition which he found in Post Office archives marked for destruction. Fortunately he made a photocopy of the document though the original now seems to have yanished for ever. The petition addressed to the Rt. Hon. F. G. Kellaway asked that regular "wireless telephony" transmissions be made, and foresaw the educational value of wireless as well as its use for entertainment.

Contest Notes

A well-known call-sign appears at the top of the list in the recent 1.8 MHz contest: G6UW, call of the Cambridge University Wireless Society (operated by D. I. Field, G3XTT). Leading scorer in a recently introduced "under 18" section was A. McHale, G4AMH. Revised dates for a number of 1973 contests have been announced by the R.S.G.B.: National Field Day June 2-3; S.S.B. National Field Day July 14-15; Diamond Jubilee h.f. contest, May 12-13 (telephony) and May 19-20 (c.w.). But one must query the action of the R.S.G.B. in organizing for its Diamond Jubilee h.f. events (covering 1.8 to 30 MHz) a contest in which "only contacts between stations in the British Isles will count" in view of the efforts over many years to discourage the use of such bands as 14 and 21 MHz for semi-local contacts. A most curious way of marking 60 years of service to the amateur movement!

The A.R.R.L. continues to issue large numbers of Worked All Continents awards: of 1846 certificates issued in one year, 881 were endorsed for s.s.b., 12 for r.t.t.y., 51 for 3.5 MHz operation and four for 1.8 MHz . A number of these awards have recently been issued for slow-scan television.

Of the 31 awards for 1.8 MHz operation issued up to November 1972, Stew Perry, W1BB, reports that seven were to amateurs in England (G6GM, G3PU, G30QT, G3PQA, G3BBP, G3FPQ and G3LIQ), two to Scottish amateurs (GM3YCB, GM3WDF) and one in Northern Ireland (GI6TK).

Recognition is given by Edward Pawley in his recent book "BBC Engineering 1922-1972" - Ed.

In brief

Three American organizations and the Cornish Amateur R'adio Club are to mark the 70th anniversary of the opening of "CC", the original Marconi transatlantic station in the United States at Cape Cod on January 19, 1903. Special amateur stations will operate from the original sites at Cape Cod and Poldhu. . . . Efforts are being made to establish a new society in the Denby Dale district of Yorkshire and a meeting will be held on January 24 at the local Pie Hall (details J. Clegg, G3FQH, 8 Hillside, Leak Hall Lane, Denby Dale, Huddersfield). . . . Sound advice on the cure of TV and audio breakthrough is given in a new 100-page "Television Interference Manual" by Barry Priestley, G3JGO (published by R.S.G.B. at $90 p$ including postage) which emphasizes that the main problems are those arising from the social difficulties created between the amateur and the viewer. . . . "The Amateur is balanced" - so runs the A.R.R.L.'s amateur's code - but a recent enquiry to the League makes one wonder: "I am going on a honeymoon to Florida and would appreciate advice on what 2-metre f.m. frequencies would be most practical to operate"!

Pat Hawker, G3VA

microphoner matter most.

Never have so few words said so much about sound system installations. The truth is that a carefully chosen, top-quality microphone makes a measurable difference in sound system quality-regardless of the other components in the system. It is. false economy at it worst to be a microphone miser. Install Shure Unidyne or Unisphere microphones-for installations with a marked superiority in voice intelligibility (and fewer service calls due to microphone problems).
Shure Electronics Limited
84 Blackfriars Road
London SE1, 8HA Telephone (01) 9283424
$\Rightarrow 1 \mathrm{H}=\mathrm{H}=$

'If the Wayne Kerr Testmatic did not exist, it would have been necessary for us

The heart of a Dolby System noise reduction unit is a small but complex circuit board. In six-byseven inches are assembled no fewer than 507 resistors, capacitors, diodes and transistors.

On that score alone, fault-finding is a major operation. And as Dolby's policy is to make all processors interchangeable, they have to guarantee the stability of every part of the circuit. So their electronic checkout procedure entails 58 separate DC measurements.

Said Dave Peacock, head of the Test Department: 'An interesting thing about our board is that it is specifically designed to suit the Testmatic. We began by making a thorough search of the market to see if there was a testing machine that would suit us. Had the Testmatic not existed, we should have had to invent something very like it ourselves.
'How has it done? Well, on average we get about 2.5 faults a board. Half of these are DC
faults. Thanks to Testmatic, finding and correcting them take only 10 percent of our electronic checkout effort.
'We've costed it, and we know it has saved us more than $£ 1,000$ in a year - using the TM60 for a mere $2 \frac{1}{2}$ hours a day. But we're stepping up output, so next vear the saving should be even more impressive.
‘Any teething troubles? . . . I wouldn't say so. We hit a small snag about a year ago but the Wayne Kerr service was so prompt that the whole thing was really a non-problem . ..'

The Wayne Kerr Testmatic TM60 - for testing circuit boards, cableforms, sub-assemblies. For more information call Bognor Regis (02433) 450! or write to the address below

WAYNE KERR

Durban Road, Bognor Regis, Sussex PO22 9RL

New Products

Tester for transistors and diodes

An addition to the Semitest family of i.c. testers is the Semitest V. Manufactured by Rohde \& Schwarz, it is battery-operated and permits measurement of the static characteristics of transistors (current gain, leakage current, break-down voltage up to 15 V), diodes (leakage current, forward voltage) and zener diodes. The Semitest V may also be used for function tests on thyristors, resistance measurements and insulation checking in the range of 100 to $10^{10} \Omega$. The instrument contains two voltage generators (± 0 to 10 V and ± 0.5 to 15 V , error $\pm 3 \% \pm 15 \mathrm{mV}, I_{\text {max }} 10 \mathrm{~mA}$, a constant-current generator ($10 \mu \mathrm{~A}$ to 10 mA , error $\pm 3 \% \pm / 1 \mu \mathrm{~A}$. Error limits on meter amp. $\pm 3 \% \pm 0.2 \mathrm{nA}$ and 10 mV to $30 \mathrm{~V}(\pm 3 \% \pm 10 \mathrm{mV})$. U.K. agents. Aveley Electric Ltd, Roebuck Rd., Chessington, Surrey.
WW302 for further details

I.C. logic checker

Manufactured by the Industrial Components Division of Guest International Ltd, a new logic checker features an l.e.d. display. The unit is suitable for use with all d.i.l. integrated circuits having 16 leads or

fewer. It can check t.t.l. or d.t.l. gates, flip-flops, counters, shift registers, decoders, adders, etc. Input impedence corresponds to a single t.t.l. load and there is no interference with the circuit under test.

The logic checker automatically takes its power supply from the i.c. terminals and requires no other external power connection. A particularly useful feature is the clip-on plate showing the logic circuit connection within the i.c. which is placed over the display in order to establish both the circuit and the operating conditions. All logic states can thus be quickly assessed. Price is $£ 23.50$. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey CR4 7JA. WW309 for further details

Interface logic AND driver

An 8 -pin, d.i.l., i.c. device, for highcurrent, high-speed switching operation, is a dual peripheral position AND driver manufactured by SGS/ATES. Designated T75451A, it can be used in systems that employ t.t.l. and d.t.l. logic, and is designed to meet requirements such as high-speed logic buffer, power driver, relay driver, lamp driver, m.o.s. driver and memory driver. The T75451A is said to be free from latch-up and has diode-clamped inputs to simplify system design. Maximum output sinking current is 300 mA at a guaranteed output low voltage of 0.7 V , and $100 \mu \mathrm{~A}$ of leakage current is guaranteed at 30 V output. SGS/ATES, 20041 Agrate Brianza, Milan, Italy.
WW313 for further details

Transistor Arrays

Five transistor arrays are now available from the Semiconductor Division of the Sprague Electric Co. These devices are of monolithic construction and combine the attributes of silicon integrated circuits with the design flexibility and accessibility of discrete devices. Designated the ULS2045H, ULN-2046A, ULN-2054A, ULN-2081A and ULN-2082A, the arrays are especially useful in applications requir-
ing matched thermal and electrical parameters.

The first two types consist of five $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors, with two connected as a differential pair; type ULN-2054A of six n-p-n transistors connected to form two independent differential amplifiers; and the last two types, each of seven $n-p-n$ transistors connected in the common-emitter and common-collector configuration respectively. All types are well suited for a variety of applications in low-power systems in the d.c. to v.h.f. range. Sprague Electric (UK) Ltd, 159 High Street, Yiewsley. West Drayton. Middx.
WW311 for further details

Crosshatch generator

The Checkmate crosshatch generator, made by Industrial Electronic Products Ltd, is available from Manor Engineering. Its "test card" chequered border permits rapid TV picture adjustment of linearity,
crystal controlled crosshatch, dot and white field patterns are obtained by use of digital i.c. logic. Complete synchronizing

and blanking waveforms are provided, with $2: 1$ interlace. The generator's r.f. output tunes continuously over u.h.f. TV channels 21 to 65 , obviating the need to disturb receiver push button settings. A stabilized power supply is included. Manor Engineering, The School House, Crookham Common, Newbury, Berks. RG15 8EJ.
WW 305 for further details

Component housing

A small, compact and inexpensive electronic component housing is announced by Logikontrol Ltd. Made of high impact polystyrene, it measures $90 \times 50 \times$ 37 mm including mounting flanges and has an internal volume of 10 cc . Among various features, it can accommodate two printed circuit boards on which miniature mains transformers and relays may be mounted. Printed circuit fast-

on connectors and the snap-fit lid eliminate the need for a special plug and socket. Available in five different colours from Logikontrol Ltd., 17 Little Edward Street, London NW1 4AT.

WW3 19 for further details

Wide-angle viewing l.c.d.

The Litronix RL 21 light-emitting diode announced by Guest International features an extra large radiating area and high luminance at a current of just 20 mA .

This l.e.d. is i.c. compatible and designed for front-panel mounting, using either matt black or clear plastic clips which are supplied free. The terminations are rectangular section making them suitable for either soldering or wire-wrapping. It is suitable for wide-angle viewing and the standard device is available in a diffused red moulded package. Clear red, diffused white, or clear packages are also available. Power dissipation at $25^{\circ} \mathrm{C}$ is 200 mW and recurrent forward current is 1 A max. Continuous forward current is 100 mA max. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey CR 4 7JA.
WW321 for further details

A.C. voltmeter

The new TM4 voltmeter from Farnell measures a.c. from $300 \mu \mathrm{~V}$ to 100 V f.s.d. at frequencies up to 33 MHz . The instrument has a high input impedance minimizing test circuit loading. Loading can be reduced still further by using a passive or active oscilloscope probe. Probe compensation facilities are provided and an output

is available on the front panel to power the active probe. A switched filter is provided to remove unwanted and irrelevant highfrequency signals and noise when making low-frequency measurements. An output capable of driving a pen recorder is provided. The instrument is housed in a grey case with satin-chrome handles and has a retractable tilt stand. The U.K. price is $£ 80$. Farnell Instruments Ltd, Sandbeck Way, Wetherby, Yorks, LS22 4DH.
WW328 for further details

A.F. filter system

The Universal Equalizer UE 1000, now available from F.W.O. Bauch Ltd., contains eight a.f. filters, combined in six logically arranged equalizer modules. Corresponding to separate functions, these modules permit, through simple control adjustment, the introduction of one, all or groups of filters into the audio signal path.

Features of the UE 1000 include extended cross-over, limiting and cut-off frequencies, as well as improved roll-off slopes of 12,24 and 36 dB /octave, previously only available as 12 or 24 dB / octave. The UE 1000 provides distortionfree processing of high signal a.f.-input levels up to a maximum of +22 dBm corresponding to 10 V , with in-built over-
load indication and protection. Frequency range is from 20 Hz to 20 kHz , while distortion is less than 0.3% even at +22 dBm .

Operation of the "linear" or "equalizer" switches permits the audio signal to be fed unchanged to the audio input, or through the equalizer stages, respectively. The equalizer switch can also be operated during use, for subjective comparison of the reproduction quality in both "linear" and "equalizer" positions. The UE 1000 is self-contained in a standard 19in assembly for rack or surface mounting. F.W.O. Bauch Ltd., 49 Theobald Street, Boreham Wood. Herts. WD6 4RZ.
WW3 17 for further details

Touch tuning i.cs

Siemens have now introduced in the U.K. their touch sensitive tuning i.cs which replace the mechanical push-buttons on TV tuners. With a mere touch of a finger, channels can be selected and indicated. For even greater convenience a low-cost remote control unit could be used for channel changing, using only a single wire. The new i.c. is also applicable in any similar electronic equipment, i.e. test stations in factories or electronic push-button control in lifts etc. The new unit should improve the reliability of TV and radio channel selection systems where varicap tuners are used, for it has been found that the main failure occurs with the mechanical push-button unit, due mainly to oxidation of the switch contacts.

Only a low-voltage supply is required permitting either the use of inexpensive filament lamps for channel indication or opening up possibilities for future designs with gallium-arsenide diodes, or perhaps even liquid crystals. Because of the low voltage concept, it is also unnecessary to isolate the touch-system from the mains supply or use rectified mains, thus saving additional expensive high ohmic value resistors with high voltage capability.

But perhaps even more important, it permits the circuit to meet the safety requirements of BS 9000 , which is in preparation.

Two types are available - the SAS 560 and the SAS 570. Each consists of four similar stages, and up to twelve channels are possible for television use. The SAS 560 , a basic 4 -stage unit, features an internal memory, which ensures that when the receiver is switched on, channel one is always selected. This could be tuned to the viewer's preferred station. The price of one circuit in production quantities is around 35p.

The input of the i.c. is very sensitive and still works when the resistance of the finger is more than $100 \mathrm{M} \Omega$. There are two independent outputs for each channel one to switch the varicap supply, the other to switch the indicator lamps, and on export sets, the u.h.f./v.h.f. band switch.

A remote control system for channel switching could be connected to the i.c. Selection would be performed by stepping through the channels and stopping on the one required. Siemens Ltd, Great West House, Great West Road, Brentford, Middx.

Thick-film potentiometer

Coutant Electronics Ltd are manufacturing a thick-film focus potentiometer, complete with resistive divider chain, for use in colour television sets. The potentiometer is claimed to offer many advantages over the conventional component employed at present, such as improved reliability, smaller size, better resistance to environmental extremes and superior long-term stability.

The unit is designed for o.e.m. use and consists of two high-value printed resistors and a central printed potentiometer track all connected in series. Resistor values are $19.7 \mathrm{M} \Omega \pm 5 \%$ (h.t. end), $29.4 \mathrm{M} \Omega$ tracking to within $\pm 5 \%$ (potentiometer) and $20.1 \mathrm{M} \Omega \pm 15 \%$ (earthy end). Although the normal operating voltage is 9 kV it will withstand 15 kV across the complete chain, or 9 kV across any two terminals with the control knob in any position, without damage or flashover occurring. It is claimed that resistance will stay within 2% of the nominal value for a minimum of 100 rotational cycles or for changes due to temperature.
The values of resistance have been chosen to make the unit compatible with any current production colour television tubes. Most important for domestic equipment, the moulded polypropylene case (measuring 65 mm long $\times 42.8 \mathrm{~mm}$ wide) not only protects the printed resistors from the ingress of atmospheric impurities but also is said to have an extremely good resistance to flame. Coutant Electronics Ltd., 3 Trafford Road, Reading, Berks.
WW315 for further details

Circuit tracing device

A simple device for identifying electrical circuits and tracing wires has been introduced by Thomas \& Betts. It is claimed that the method makes it possible for a single operator to identify and mark circuits safely in less time than it usually takes two men to do the same job by conventional means. The instrument, called the E-Z-Coder circuit tracer, con-

sists of a meter unit, a test block with 12 leads, and a carrying case designed to leave the operator's hands free. Cir cuits are identified by comparing the resistances of the individual leads connected through the test block, readings being taken off a 90° ohms scale.

Accurate readings are ensured by calibration of the meter prior to use. The adjustment screw is recessed to prevent accidental movement, and the clarity of the scale reduces the possibility of error. Power for the instrument is supplied by a 1.4 V mercury cell with a life of about two years. The circuit tracer is fitted with a 'hot line' indicating light to warn the user of any live circuit. Protective insulation shrouds the 36 in long test leads in case of contact with a live wire. By using more test blocks wired in series it is possible to check up to 156 wires in groups of twelve. Thomas \& Betts Ltd., Greenhill House, 90-93 Cowcross Street, London ECIM 6JR.
WW 308 for further details

Passive probe kit

Electroplan Ltd have introduced a passive probe kit to their accessories range. Known as the GE81600, the kit consists of $10: 1$ and $1: 1$ attenuator heads, a compensating lead assembly, a spring piunger body with hook tip and a detachable earth lead.

Using the $10: 1$ attenuator head, the probe may be used from d.c. to 70 MHz and can be compensated for use with instruments having an input impedance of 1 M 9 in parallel with 20 to 60 pF .

For low-level signals, the $1: 1$ attenuator head can be used from d.c. to 5 MHz and no compensation adjustments are necessary. The GE81600 passive probe kit is available from Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Herts. Price £9.00, quoting ordering code 15-44.
WW312 for further details

Wire stripper and cutter

Bib Sales Division of Multicore Solders Ltd. have introduced a new wire stripper and cutter. Case hardened, with ground cutting s rfaces, the wire stripper adjusts to most :landard sizes of wire and is fitted with a handle opening spring to facilitate repetitiv; wire stripping. A handle locking catch is fitted at the top of the wire

stripper to keep the jaws closed when not in use. Recommended retail price of 75p. Bib Sales Division, Multicore Solders Ltd., Hemel Hempstead, Herts.
WW 307 for further details

Low-cost digital multimeter

Fluke International Corporation have announced the 8000 A , a low-priced multimeter which is guaranteed over the temperature range $15-35^{\circ} \mathrm{C}$. It will measure a.c. and d.c. volts to 1200 V , a.c. and d.c. current to 2 A and resistance $20 \mathrm{M} \Omega$.

The following is a brief specification: d.c. voltage $\pm(0.1 \%+1$ digit $)$
a.c. voltage $\pm(0.5 \%+2$ digits $)$
d.c. current $\pm(0.3 \%+1$ digit $)$
a.c. current $\pm 1.0 \%+2$ digits)
ohms $\quad \pm(0.2 \%+1$ digit $)$
Overload protection on the various functions: voltage ranges to 1200 V r.m.s., current ranges to 2 A r.m.s. (fused) and ohms to 230 volts. Size: $2.5 \times 8.5 \times 10.0 \mathrm{in}$. Weight: 7 lb with battery pack (optional). Fluke International Corporation, Garnett Close, Watford WD2 4TT.
WW314 for further details

Semiconductor valve

Tens of millions of valves are still in use outside the consumer industry. In radar and communications, broadcasting and instrumentation, regular replacement of these valves is essential due to their limited life and characteristic degradation during service. Now a solid state valve replacement, called the Fetron, has been introduced which, in many applications, can be plugged directly into the valve socket without the need for major circuit modification.

GDS Sales, who are stocking the first Fetrons to be marketed in the U.K., say that the advantages of the new device include extremely long life (estimated by Teledyne Semiconductor, the manufacturers, at over $1,000,000$ hours), no microphony, zero warm-up time, reduced heat dissipation due to the absence of the valve's heater, no degradation of transconductance, and built-in internal shielding.

First Fetrons to be available are the TS12AT7 and TS6AK5. These are intended to replace the 12AT7 and 6AK5 respectively in most amplifier circuits. The TSI2AT7 consists of two highvoltage f.e.ts and the TS6AK5 a cascode

connected f.e.t. pair. Amongst the valves which it is claimed can be replaced by the TS6AK5 are the EF90, EF95, and EF95F.

At this stage, GDS say that the pentode Fetron should not be considered a plugin replacement for the valve in oscillator circuits because of the absence of a screen grid. For specific oscillator service, the screen can be simulated by the inclusion of a $R C$ network in the package, but such devices are not yet standard products.

Fetrons are extremely rugged. The case of the current devices is a deep-drawn steel cap welded to a large header. Before welding, the case is evacuated and backfilled with dry nitrogen.

Both the TS12AT7 and TS6AK5 are available from GDS stocks and cost, in quantities of 100 and above, $£ 5.25$ and $£ 4.75$ respectively. GDS (Sales) Ltd., Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 306 for further details

Corrosion inhibitor

'Vapor-Strip', which prevents the formation of rust, salt corrosion, mildew and mould, is now available overseas through the manufacturer's (Northern Instruments) exclusive export distributor, Singer Products Company Inc., New York.
'Vapor-Strip' looks and feels like a piece of grey sponge rubber with an easily removable adhesive backing. When this backing is removed and the strip is applied 10 a clean surface, chemicals are released, which prevent corrosion, reduce acid damage and prevent gum and varnish formation while helping to remove old deposits. One small Vapor-Strip will protect 2500 cubic inches (41000 cc) for over two years of normal use. It has no deleterious effect on commonly used plastics, rubbers. paints and adhesives, while preventing fungus growth.

Leather, cloth. engine gaskets and similar materials were incubated under extreme fungus producing conditions for 16 weeks at $70^{\circ} \mathrm{F} \quad\left(21^{\circ} \mathrm{C}\right)$. With 'Vapor-Strip' protection. there was no
evidence of any damage; untreated samples were almost covered with mould and mildew and frequently rotted away. The product is practically odourless. Normal packaging consists of two $\frac{7}{8} \times$ $2 \frac{1}{2}$ in 'Vapor-Strips' in a blister type card, with suggested uses and complete directions. Custom sized strips, for special applications, are available to order. Singer Products Company Inc., One World Trade Centre Suite 2365, New York, N.Y.10048, U.S.A.

WW322 for further details

Knob assembly

A new knob, dial and escutcheon assembly with an alternative plain or customer designed legend dial has been introduced by Bulgin. Designed for push fitting to $\frac{3}{16}$ in flattened shafts, the knob and

escutcheon are polished black with smooth sides. The decor cap and dial are spin finished alloy. A. F. Bulgin \& Co. Lid., Bye-Pass Road, Barking, Essex.
WW326 for further details

V.H.F. signal generators

Low-noise, broad-frequency coverage and precision modulation are claimed as the foremost attributes of two new a.m./f.m. signal generators from Hewlett-Packard. Covering 450 kHz to 550 MHz with calibrated modulation and +19 to -145 dBm output levels, they can perform complete r.f. and i.f. tests on virtually any kind of v.h.f. receiver.

Both units deliver low-noise signals with a wideband signal/noise ratio better than
$140 \mathrm{~dB} / \mathrm{Hz}$ and non-harmonic and sub-harmonic outputs that are down more than 100 dB . Close-in noise, critical in mobile radio adjacent-channel selectivity tests, is specified at $-130 \mathrm{~dB} / \mathrm{Hz}$ at 20 kHz offset.

One version of the new signal generator, model 8640A, has a slide-rule tuning dial with 0.5% frequency accuracy and drift of less than 10 p.p.m. per 10 minutes. The other, model 8640 B , has a six-digit l.e.d. display (useful separately as a 550 MHz frequency counter) and a built-in phase-lock synchronizer to achieve output stability of better than $5 \times 10-{ }^{8}$ per hour; i.e. synt hesizer stability.

Even when the 8640 B is locked, the spectral purity and same precision f.m. of the unlocked mode is preserved. This permits meaningful tests on narrowband and crystal-controlled receivers. Provision is also made for locking to an externally applied 5 MHz standard for even higher stability, or for locking two 8640 Bs together for various two-tone tests. In the unlocked mode, the built-in counter can display the generator's frequency to a resolution of 100 Hz at 500 MHz and 0.1 Hz at 500 kHz . The counter can also measure external signals between 20 Hz and 550 MHz , eliminating the need for separate frequency measuring equipment in many test applications.

Except for the counter and lock features, the overall performance of the 8640 A and 8640 B signal generators is identical. Power output is calibrated from +19 to $-145 \mathrm{dBm}(2 \mathrm{~V}$ to .013 V$)$ and levelled to $\pm 0.5 \mathrm{~dB}$. The maximum output of +19 dBm permits high level tests on receiver i.f. strips, amplifiers, and mixers without additional power amplification. Accurate low level measurements down to -145 dBm have been assured through r.f.i. shielding and use of an accurately calibrated step attenuator. The output level is displayed on both a direct reading dial and a built-in meter that autoranges for high resolution. Other facilities available are modulation of the c.w. with independent a.m. and f.m. sources that are metered and calibrated for all r.f. output frequencies and levels. The a.m. is adjustable from 0 to 100% with the bandwidth, accuracy and low incidental f.m. required for the most stringent a.m. measurement applications. Distortion is

1% at the 50% modulation setting and 3% at 70% a.m. Provision is also made for external pulse modulation with pulse widths down to 1 sec .

The f.m. mode provides calibrated and metered deviation that remains constant with frequency or band changes. Peak deviations to at least 0.5% of carrier frequency are available. Important for accurate narrowband f.m. measurements, there is negligible frequency shift from the c.w. to f.m. mode and no degradation in spectral purity. With the 8640 B in the phase-locked mode, full f.m. capability is preserved at modulating rates from 50 Hz to 250 kHz , producing accurate f.m. with the carrier stability of a crystal oscillator. The standard internal modulating tones are 400 and 1000 Hz for both a.m. and f.m. Hewlett-Packard Ltd., 224 Bath Road, Slough, Bucks. SLI 4DS.

WW325 for further details

Ultrasonic air transducers

Two piezo-electric ultrasonic transducers made by H. D. A. MacDonald and designated type UT40T and UT40R, are designed for $40-\mathrm{kHz}$ transmitting and receiving applications, respectively. Obtainable as matched pairs, with the matching achieved to within 100 Hz , the specifications quoted are:

UT40T

Sensitivity $\quad(0 \mathrm{~dB}=1 \mu \mathrm{bar} / \mathrm{V} / \mathrm{m})>3 \mathrm{~dB}$
Frequency
Impedance
Capacitance
Selectivity
Max. applied voltage
200Ω

7 V
Temperature range $\quad-15$ to $+65^{\circ} \mathrm{C}$

UT40R

Sensitivity $\quad(0 \mathrm{~dB}=1 \mathrm{~V} / \mu$ bar $)>-64 \mathrm{~dB}$
Frequency $40 \pm 0.9 \mathrm{kHz}$
Impedance
$70 \mathrm{k} \Omega$
Capacitance
$1400 \pm 20 \% \mathrm{pF}$
Selectivity 60
Temperature range $\quad-15$ to $+65^{\circ} \mathrm{C}$ Priced at $£ 3.95$ for a single pair, discounts are offered or quantity orders. H. D. A. MacDonald, 100 Clarendon Road, Ashford Middlesex TW 15 2QD.
WW301 for further details

V.H.F./U.H.F. amplifier

Microwave International (U.K.) Ltd, have announced a range of solid-state broad-band power amplifiers, covering $225-400 \mathrm{MHz}$, which have been developed for use in transceivers. One, the Model WA2240, finds application as a power amplifier for sweepers and many test set-up applications. These units have been used successfully as drivers for the testing of high-power r.f. circuitry in network analyzer systems.

The modules are designed with 50Ω to 50Ω input/output impedance, and are factory aligned. The Model WA2240 is available in power output ranges from 5 to 100 watts and may be ordered with signal

gain from 10 to 50 dB . It is also available with electronic output protection against poor and varying load v.s.w.rs. Specifications for the Model WA2240 wide-band amplifier are:
Frequency
Instantaneous
bandwidth
Power output

Power input
Second harmonic
Input v.s.w.r.
Load v.s.w.r.
Spurious output
Supply voltage
$225-400 \mathrm{MHz}$
175 MHz 5 W at 1 A 20 W at 2 A 60 W at 6 A 100 W at 12 A 1 or 10 mW $-30 \mathrm{~dB}$ minimum
2:1 max. 1.5:1 typical 2:1 maximum $-50 \mathrm{~dB}$ minimum +28 V d.c. Microwave International (U.K.) Ltd, 33-37 Cowleaze Road, Kingston upon Thames, Surrey.
WW329 for further details

V.H.F.-A.M. radiotelephone

Dymar Electronics have introduced a rugged, weatherproof amplitude-modulated v.h.f. personal portable radiotelephone (type 980) for general purpose short-range land communications. Single- or twofrequency simplex service is provided with three channels spaced within a bandwidth of 1.0 MHz . Channel spacing is either 12.5 or 25 kHz and the frequency range is 68 to 174 MHz .

Transmitter characteristics include: r.f. power output, 500 mW into 50 ohms; up to 100% modulation; modulation response, with +1 dB and -3 dB relative to 1 kHz between 300 Hz and 2.5 kHz ; and modulation distortion, less than 10% at 1 kHz and 5% modulation (typically 5%). Receiver characteristics include:
sensitivity, $1.6 \Omega \mathrm{~V}$ e.m.f.; selectivity, not less than 70 dB adjacent channel rejection; spurious responses, attenuated at least 60 dB relative to wanted signal; a.g.c., less than 10 dB increase in a.f. output for an increase in signal from $1.6 \mu \mathrm{~V}$ to 100 mV e.m.f.; a.f. output, 100 mW . A choice of aerials is available - helical, whip or trailing wire.

Depending on the battery used, the type 980 weighs between 0.6 kg and 0.75 kg (approximately 1 lb 50 oz and 1 lb 10 oz). Dimensions are $208 \times 84 \times 39 \mathrm{~mm}$ (approximately $8 \times 3 \frac{1}{4} \times 1 \frac{1}{2}$ in). Dymar Electronics Ltd, Colonial Way, Radlett Road, Watford, Herts.
WW316 for further details

10-turn potentiometer

A miniature precision 10 -turn potentiometer, only $\frac{3}{4}$ in long, and $\frac{7}{8}$ in diameter, is now available from Kynmore Engineer ing Co. Ltd. The new model is known as the ET-850. The case is made of hightemperature moulded plastic and the internal slip-rings and the external solder terminals are of heat-treated beryllium copper with gold plating.

Standard linearity is 0.25% and temperature stability 70 p.p.m. ${ }^{\circ} \mathrm{C}$. Standard resistance values are: $100,200,500$, $1000,2000,5000,10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$ and 100 k ohms. End resistance is 0.25% or 1 ohm , whichever is the larger. K ynmore Engineering Co. Ltd., 19 Buckingham Street, London WC2N 6EQ.
WW 303 for further details

H.V. Darlington hybrid

A new high-gain, high-voltage, dual Darlington hybrid circuit has been announced by RCA Solid State-Europe. The HC3100 contains two Darlington circuits, both of which are electrically isolated from the package so that the unit can be mounted directly on a chassis. It incorporates protective diodes for the logic drive circuit, diodes for commutating inductive loads and operates from power supplies up to 120 V . The HC3100 can be úsed in regulators as well as such applications as hammer, solenoid, and stepper motor drivers. The case is an 8 -pin variant of the TO-3 hermetic package. RCA Ltd., Sunbury-on-Thames, Middx. WW320 for further details

About People

Dr. Frank E. Jones, M.B.E., F.R.S., managing director of Mullard Lid, has retired but joined the board - of Philips Industries Ltd on January Ist. Dr. Jones, who is 58 , joined the Mullard board in 1956 as teclnical director and was appointed managing director in 1962, He graduated at King's College, London, and entered the scientific civil service in 1940 and was at one time head of experimental physics research at the Telecommunications Research Establishment of which he later became deputy chief scientific officer. He left T.R.E. in 1952 to become deputy director of the Royal Aircraft Establishment, Farnborough. In 1967 he was elected a Fellow of the Royal Society for his work on radar and infra-red technology and "his outstanding technological leadership in an advanced industry". Dr. Jones is succeeded as managing director of Mullard by Jack C. Akerman who has been with Mullard since 1936. In 1967 he was appointed a director of Associated Semiconductor Manufacturers Ltd., an associated company of Mullard Ltd. He took over as head of Mullard's Consumer Electronics Division in 1969. He has been commercial director and a member of the Mullard board since 1970.

Peter Rainger, B.Sc.. F.I.E.E., head of the Research Departinent of the B.B.C., has received the David Sarnoff Gold Medal Award for 1972 from the Society of Motion Picture and Television Engineers. He was given the award "for his pioneering development of all-electronic television standards conversion techniques together with numerous other important contributions to television technology". Mr. Rainger, a graduate of London University, was head of the B.B.C. Designs Department from 1968 to 1971, and since November 1971 has been head of the B.B.C. Research Department.
the U.K, in February to deliver a lecture at the Institution of Electrical Engineers. Dr. Shockley's lecture on 14th February will be the highlight of a week of celebrations to commemorate the 25th anniversary of the discovery of the transistor. Dr. Shockley, who was born in London in 1910, joined Bell Telephone Laboratories in 1936 where he was director of transistor physics when he left in 1956. He was with Beckman Instruments for a few years before occupying the chair of engineering sciences in the Department of Electrical Engineering at Stamford University. He rejoined Bell Labs in 1965.

Among the recent recipients of Royal Society Medals are Sir Nevill Mott, F.R.S., emeritus professor of physics in the University of Cambridge and senior research fellow. Imperial College of Science and Technology, London, who receives the Copley Medal "for his original contributions over a long period to atomic and solid state physics". The Hughes Medal has been awarded to Dr. B. D. Josephson, F.R.S., reader in physics, University of Cambridge, "for his discovery of the remarkable properties of junctions between superconducting materials." Readers may recall that Dr. Josephson, wrote on superconducting devices in our October 1966 issue. Except for a short time spent in the Physics Dept. of the University of Illinois as research assistant professor, Dr. Josephson has been at Trinity College, Cambridge, since 1957. He graduated in 1960.

David Hawkins, 33. has been appointed sales manager of Blueline Electronic Components. Previously he was an account execulive with ITT Components Group, having joined ITT from Telcon Magnetic Cores Lid in 1970.

Dr. William Shockley who with Drs. W. H. Brattain and J. Bardeen received the 1956 Nobel Prize in Physics for the invention of the junction transistor, is to visit

David Griffin, M.I.E.R.E., market ing manager of Motorola Semiconductors Ltd, has been appointed director of product
promotion and planning. Europe. He moves to Geneva in January. Mr. Griffin, who is 38 , was with Texas Instruments, Bedford, from $1957-62$ and with Celdis immediately prior to joining Motorola in 1964. He is succeeded as marketing manager, U.K., by Mike Ward. who is 36 and has been with Motorola for the past six . years.

John Bishop, M.I.E.R.E., has joined GEC-Elliott Process Auto mation Ltd as manager of its Telemetry and Supervisory Systems Division at Leicester. Mr Bishop graduated from the University College of Southampton where he studied electronics. In the mid fifties he spent three years with GEC in Coventry and for the past ten years has been sales manager with Serck Controls Lid.

Geoff Gamble, who joined Brookdeal nearly four years ago and earlier this year was promoted to chief applications engineer, has become marketing manager. Prior to joining Brookdeal, Mr. Gamble was for three years an engineer in the Radio Systems Division of Plessey.

David Letheren, B.Sc., a graduate of University College, London, has joined the m.o.s. applications team at Emihus Microcomponents Ltd, at Weybridge, Surrey. Mr. Letheren, who is 32, joins Emihus from Bell Punch Company, where he was an m.o.s. design engineer. Previously, he was with Decca Radar Ltd, working at the Hersham research laboroatory on analogue and digital radar systems.

Orbit Controls Ltd, of Cheltenham, have appointed Michael E. Cosens to the new post of field sales manager. He joined Orbit from The Plessey Company where he was European sales manager of the Memories Division. Previously Mr. Cosens, who is 36 , was general sales manager of Fabritek Inc., responsible, from London, for world marketing and sales outside the U.S.A.

Tom Ivall, M.I.E.R.E., technical editor of Wireless World since 1965, will become editor on the retirement of Harold Barnard in April.

Geoff Hammond, B.Sc., recently became applications engineer with Brookdeal Electronics Ltd, the signal recovery instrumentation manufacturers of Bracknell. His post carries the responsibilities of providing a technical back-up service for the sales engineers. dealing with customers' technical and experimental enquiries and the writing of application notes. Imımediately prior to his appointment Mr Hammond was a
research student at the City of London Polytechnic preparatory to writing a thesis for his Ph.D.

Ian Clinksales, who has joined GDS Sales Lid as sates manager, has over thirteen years' experience in the semiconductor industry, both in the United Kingdom and Scandinavia. He was laterly with Motorola Semiconductors Ltd where he held the position of industrial sales manager. From 1962 to 1971 he was with SGS-Fairchild, having previously been with Texas Instruments.

Alan Smith has been appointed sales manager of Best Electronics (Slough) Ltd, the recently launched subsidiary of GDS Sales Ltd. He has been with GDS since 1969.

Tom E. Zombory-Moldovan, M.Sc., F.l.E.E., has become technical director of GEC-Elliott Industrial Controls Ltd. Mr Zombory-Moldovan, a British citizen aged 45 , was educated in Hungary and served an engineering apprenticeship with Standard Telephone Company in Budapest. After leaving Hungary in 1956 he joined the staff of Manchester University and was awarded his M.Sc. degree in 1960. This was followed by five years as head of advanced electronics in the Power Protection and Meter Department of Associated Electrical Industries Lid (now part of the GEC organization). Immediately prior to his new appointment Mr Zombory-Moldovan was technical manager of the Plessey Numerical Control Co. Ltd.

On the retirement of R. A. H. Penney, the Marconi International Marine Co. has appointed K. Pope as London manager (sales). Mr Penney was a seagoing radio officer from 1927, when he joined the company, until 1945 when he was transferred to the shore technical staff. His shore appointments include contracts representative based on Newcastle, manager, northern area (contracts division), and London sales manager since 1968. Mr Pope, the new London manager (sales), joined the seagoing staff of Marconi Marine as a radio officer at the end of the war. Since 1962 he has been joint manager of the London Office

Marconi International Marine Co. have also announced the appointment of David Bowker as its representative in North America. He succeeds John Older who has returned to the United Kingdom. Mr Bowker began his career with Marconi Marine as a seagoing radio officer in 1960. He served at sea until 1964 when he transferred to the company's shore staff as a technical sales assistant in the export sales division. He served from 1969 io 1971 as the company's U.S.A. representative and has recently been marine director of the Norsk Marconikompani.

January Meetings

Tickets are required for some meetings: readers are advised therefore, to communicate with the society concerned

LONDON

3rd. I.Phys. - One-day meeting on "On-line computers for laboratory experiments" at 9.45 at Imperial College, SW7.
4th. IEE - Kelvin lecture "Conduction in amorphous materials - theory and applications" by Prof. Sir Nevill Mott at 17.30 at Savoy PI., WC2.

9th AES - "Monitoring in multi-track recording" by R. W. Swettenham at 19.15 at the IEE, Savoy PI., WC2.

10h. IEE/IERE - Colloquium on "Microcomputers and electronic calculating aids" at 14.30 at the IERE, 9 Bedford Sq., WCI.
10th. IEE - Discussion on "Active antennas and steerable arrays for communications" at 17.30 at Savoy PI., WC2.

15th. IEE - "Cold cathode electron emission" by R. Brander at 17.30 at Savoy PI., WC2.

17th. R. I. Navigation - "Situation display: marine radar" by P. O. Prior at 17.00 at Royal Inst. of Naval Architects, 10 Upper Belgrave St., SW 1.

17h. IEE - "Traffic control and surveillance on motorways" by K. W. Huddart and J. T. Duff at 17.30 at Savoy PI., WC2.

17th. IEE - "Solid-state displays devices" by Dr. C. Hilsum at 17.30 at Savoy PI., WC2.

18th. IEE - "The relationship between research, development and marketing" by I. Barron at 17.30 at Savoy Pl., WC2.
18th. RTS - Panel discussion on "Why digital?" at 19.00 at I.B.A., 70 Brompton Rd., SW3.
23rd. SERT - "The introduction of flight data recording systems" at 19.00 at the IBA Conference Room, 70 Brompton Rd., SW3.

24th. R. I. Navigation - Discussion on "The use of Omega for air and sea navigation" at 15.00 at Royal Aeronautical Soc., 4 Hamilton PI., W 1.
24th. IERE - "Media: A continuous digital process control system" by J. R. Halsall and I. J. Kirby at 18.00 at the IERE, 9 Bedford Sq., WC1.
25th. IEE - Colloquium on "The properties of evaporated semiconductor films" at 10.00 at Savoy Pl., WC2.
30th. IERE - Colloquium on "Fixed and variable resistors" at 10.00 at Harkness Hall, Birkbeck College, Malet St., WC 1 .

AYLESBURY

11th. IEE/RAeS - "The Skynet satellite communication system" by Air Commodore F. C. Padfield at 19.30 at Kermode Hall, R.A.F., Halton.

BATH

17th. IERE - "Medical electronics" by K. Riley at 19.00 at Bath University, Room 2E.3.1.

BELFAST

16th. IERE - "Practical aspects of air traffic control" by W. J. Eames at 19.00 at Cregagh Technical College. Montgomery Rd.

BIRMINGHAM

8th. IEE - " 50 years of B.B.C. engineering" by J. Redmond at 18.00 at the MEB Offices. Summer Lane.

10th. RTS - "The development of u.h.f. television" by L. G. Dive at 19.00 at B.B.C. Broadcasting Centre, Pebble Mill Rd.
24th. IERE - "Some recent developments in
v.h.f. mobile radio by J. D. Parsons at 19.15 at City of Birmingham Polytechnic, North Centre, Franchise St., Perry Bar.

BRADFORD

11th. IERE - "The 8500 colour television receiver concept" by A. Martinez at 19.00 at the Technical College.

BRIGHTON

30th. IEE Grads. - "The engineer in Parliament hy A. Palmer at 19.30 the University of Sussex, Falmer.

CAMBRIDGE

11th. IEE - "Electronic aids to night vision" by Dr. P. Schagen at 18.30 at the University Engineering Department, Trumpington Street.

25th. IERE/IEE - "Vocoder techniques" at 18.30 at the University Engineering Laboratories, Trumpington St.
25th. IEE/IERE - "Future advances in h.f. communications systems" by M. H. Gross at 18.30 at The University Engineering Laboratories, Trumpington St.

CARDIFF

10th. IERE - "Man-computer interface for process control" by K. E. Morgan at 18.30 at U.W.I.S.T.

CHATHAM

31st. IERE __ "High-fidelity sound reproduction" by R. West at 19.00 at the Medway College of Technology.

CHELMSFORD

17th. IEE/IERE - "Beam indexing colour television systems" by Dr. J. A. Turner at 18.30 at King Edward VI Grammar School. Broomfield Rd.

GUILDFORD

24th. [ERE - "Review of solid-state microwave devices" by J. G. Summers at 18.30 at University of Surrey.

KINGSTON UPON THAMES

16th. IEE Grads. - "Making electronic music" by G. Rodgers at 18.30 at Kingston Polytechnic, Penrhyn Rd.

LEICESTER

17th. IERE - "Application of integrated circuits" by A. Potion at 18.45 at the Lecture Theatre "A", Physics Block, Leicester University.

LETCHWORTH

16th. IEE - "The Open University and technological education" by Dr. D. I. Crecroft at 19.45 at the College of Technology.

LIVERPOOL

22nd. IEE - "Computer-aided design of integrated circuits" by A. Cranswick at 18.30 at the Lecture Theatre, Dept. of Electrical Engineering, University of Liverpool.

MALVERN

8th. IEE - "Tomorrow's world in telecommunications" by W. J. Bray at 19.30 at the Abbey Hotel.

17th. IERE - "Electronics education and the Open University" by J. A. Myers at 19.30 at Abbey Hotel.

MANCHESTER

18th. IERE - "Electronic control of small a.c. motors" by P. Bowler at 18.15 at Renold Building, UMIST.
22nd. IEE - Faraday lecture "Navigating land, sea, air and space" by A. Stratton at 19.30 at the Free Trade Hail.
23rd. IEE - Faraday lecture "Navigating land, sea, air and space" by A. Stratton at 14.30 and 18.30 at the Free Trade Hall.

NEWCASTLE-UPON-TYNE

10th. IERE - "Recent developments in nucleonics and scanning systems as applied to medicine" by J. W. Haggith at 18.00 at Ellison Building, the University.

NEWPORT, Mon.

17th. IEETE - "Electronics in the modern car" by C. S. Rayner at 19.30 at Newport \& Monmouthshire College of Technology, Allt-yr-yn Avenue.

PORTSMOUTH

30th. IEE Grads - "Angels, birds and radar" by Dr. E. Eastwood at 19.00 at Portsmouth Polytechnic.

READING

18th. IERE - "Visual telecommunications systems - a reiview of some technical problems" by I. Macdiarmid at 19.30 at the J. J. Thomson Laboratory, University of Reading, Whiteknights Park.

SOUTHAMPTON

17th. 1EETE - "Hi-Fi" by R. West at 19.30 at the Polygon Hotel, Cumberland PI.

31st. IERE - Colloquium on "Electrons in cars" at 16.00 at the University.

STAFFORD

23rd. IEE - "Military applications of electronics" by D. Cawsey and T. K. Garland-Collins at 19.00 at N. Staffs Polytechnic, Beaconside.

Sunderland

18th. IEETE - "Computers - techniques and applications" by R. A. Selby, B. Meech and M. Todd at 19.30 at Priestman Building, Sunderland Polytechnic, New Durham Rd.

TAUNTON

17th. IEE - "Micro electronic logic circuits" by Dr. A. T. Johns at 19.45 at the County Hotel.

WORTHING

16th. IEE - "Electronic performance testing of motor vehicles" by C. D. Freeman at 18.30 at Worthing College of Further Education.

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

A new range of Passivated, Assembled, Circuit Elements (PACE-packs) manufactured by International Rectifier, Hurst Green, Oxted, Surrey, is described in leaflet E2716. The modules described, utilize passivated diode and thyristor junctions in various configurations to form isolated power controllers rated for 250 V r.m.s. at 25 and 42.5 amperes

WW401
A 12-page technical booklet describing a complete range of encapsulated, thick film, voltage regulators and over-protection units is available from Coutant Electronics Ltd, 3 Trafford Road, Richfield Estate, Reading, Berks

WW402
Data sheets on the Q400A and Q400B series of photo-conductive cells having spectral responses of 570 nm and 690 nm , respectively, are:

Sheet 3290 (Q400A) \qquad WW403
Sheet 3291 (Q400B) \qquad WW404 Joseph Lucas (Electrical) Ltd, Electronic Products Group, Mere Green Road, Sutton Coldfield, Warwickshire.
"Thyristors and Diode Stacks" is the subject of a 28 -page brochure which provides information on aluminium fabricated cooling-fins and semiconduc tors covering the range $10-700$ amperes. AE Semiconductors Lid, Carholme Road, Lincoln LN 1SG
..WW405
Modular. universal active filter elements is the subject of a brochure containing nomographs and filter response curves for the design of bandpass, highpass and lowpass responses, maximally-flat and elliptical function forms. Kinetic Technology Inc., 3393 De La Cruz Boulevard, Santa Clara, California 95050 WW406
A catalogue of electronic components entitled "Sensors" providing electrical data on optoelectronic devices and temperature and magnetically sensitive resistors has been received from Siemens Ltd, Great West House. Great West Road. Brentford Middlesex, TW8 9DG

WW407
"Buyers Guide to Integrated Circuits" lists the type numbers and nearest equivalents of m.o.s., linear and digital integrated circuits from Texas Instruments, Signetics, General Instrument Microelectronics and Plessey stocked by S.D.S. Components Lid, Gunstore Road, Hilsea Trading Estate, Portsmouth, Hants. PO3 5JW

WW408

PASSIVE DEVICES

Data about Elcor Isoformers, which are isolation transformers intended for use in low-noise and medical electronics where maximum interference and leakage protection is required, is available from Aveley Electronics Ltd, Roebuck Road, Chessington, Surrey KT9 1LP \qquad WW 409

Five technical bulletins describing models TP-101, $102,103,104$ and 105 wide band $(0.5-1500 \mathrm{MHz})$. fast rise-time $(0.18 \mathrm{~ns})$, low-loss $(0.4 \mathrm{~dB})$ r.f./pulse transformers in flat-pack form, were received from

Anzac Electronics, 39 Green Street, Waltham, Massachusetts 02154
................................WW4 10
A leaflet contains a full specification and description of a new type of miniature, p.t.f.e. covered, probe and socket from Sealectro Ltd, Walton Road, Farlington, Portsmouth, Hants. PO6 ITB ..WW4 11

A short-form catalogue describing precision coaxial and waveguide components covering the range d.c. to 18 GHz manufactured by Maury Microwave Corporation was sent to us by Tony Chapman Electronics Lid., 3 Cecil Court, London Road, Enfield, Middlesex

New miniature servo-controlled a.c. voltage stabilizers for laboratory or industrial application providing distortionless control at power ratings between 180 VA and 920 VA , are described in a leaflet from Claud Lyons Ltd. Valley Works, Hoddesdon. Herts

Data on types "VK". ceramic capacitors (1 pF to 1 F), "VY", porcelain capacitors (0.24 pF to 10 nF), "Vee Jem", chip capacitors (1 pF to 470 nF) and a new low-cost Phenolic dipped range, is available in a condensed catalogue from Vitramon Europe, Wooburn Green, Bucks
....WW4 14
Type 3W1, precision decade capacitor having direct in-line readout over the range 0.001 to 1.099 F with an accuracy of $\pm 0.5 \%$ in 0.001 F steps, is the subject of engineering bulletin 90,606 from Sprague Electric Company, North Adams, Massachusetts 01247
.WW415

APPLICATION NOTES

Two application notes received concerning power transistors discuss:

The basic performance characteristics and specific circuit design detail related to the application of transistors 2N6104/2N6105 in broadband u.h.f. power amplifiers. AN6010 WW416
A testing programme used to determine the capability of the 2 N 3055 power transistor design to withstand thermal cycling over a wide range of operating conditions. AN4783 …....................................WW417 RCA/Solid State Europe, Sunbury-on-Thames, Middlesex.

An application report on Motorola's new emitter-coupled logic family, MECL 10,000 series, which features non-saturated switching functions for very high-speed operation with load driving capability, has been produced by GDS (Sales) Lid., Michaelmas House, Salt Hill, Bath Road, Slough, Bucks
..WW4 18
"IN821 and B2X90 series of high-stability reference diodes" is the title of application note TP 1339 which compares the performance of standard-cell reference sources against that of semiconductor diodes. Formulae are given for the calculation of stabilization factor and curves show the performance of a number of circuits described. Instrument and Control Electronics Division, Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HDWW419

EQUIPMENT

A remotely controlled, digitally tuned, microwavereceiving system (model 3600) covering 0.5 to 18 GHz and developed by American Electronics Laboratories Inc. is described in a brochure from C.T. (London) Electronics Ltd., Sutherland House, Sutherland Road, Walthamstow, London E17 6BU

WW420
A brochure summarizing, the characteristics of autobalanced component measuring bridges with diagrams explaining the principles for both manual and automatic operation, was received. It provides brief specifications of the five different types of bridge manufactured by Wayne Kerr Company Lid, Durban Road, Bognor Regis, Sussex PO22 9RL

A loose-leaf binder received, contains numerous information sheets dealing with "Data and Telegraph Equipment". It covers signal test equipment, message generators, code converters/regenerators, receiver/ demodulators, tonekeyers and selectors, tape readers and message storage equipment. Plessey Company Ltd, Sopers Lane, Poole, Dorset BH 17 7ER
..WW422
Leaflets describing trip amplifiers, with input sensitivities ranging from 10 mV io 300 V and 10 A to 1 A intended for industrial control systems also, low-cost miniature power supphes with output voltages in the range 4 V to 24 V d.c. are:

ICD2 (amplifiers)
WW 423
PS8 (power supplies)
WW 424
Farnell Instruments Ltd., Sandbeck Way, Wetherby, Yorks LS22 4DH.

COMMUNICATIONS

A booklet, containing technical descriptions and specifications of the various v.h.f. and u.h.f. transmitter-receivers available for mobile radiotelephone service, is entitled "Over 70 years of mobile radio" and is available from Marconi Communications Systems Ltd, Marrable House, Great Baddow, Chelmsford, CM2 7QWWW425

Information sheets about the various aspects of business radio including features such as telephone answering and personal paging services, are available in a wallet form from Air Call Ltd, 176/184 Vauxhall Bridge Road, London S.W.I
.WW426

GENERAL INFORMATION

A complete list of production tools to metric standards (mm) suitable for the manufacture of solder washers. discs and rings, has been received from Enthoven Solders Lid, Dominion Buildings, South Place, London EC2M 2RE

WW427
Automation system architure and its involvement in the electronics/automation industry is the subject of a booklet from Warren Point Ltd., Prospect Place, Welwyn, Herts.

Tefzel insulated wire, said to have excellent mechanical and high temperature properties combined with high chemical resistance and light weight, is specified in a data sheet from Permoid Ltd.. Manchester M4 7JX

A catalogue dealing with all the necessary component parts needed by the enthusiast for a build-it-yourself electronic organ, was received from Elvins Electronic Musical Instruments, 8 Putney Bridge Road, London S.W. 18

The 500 -page 1973 catalogue and price list including diodes, thyristors, transistors, i.cs, resistors, relays, switches, potentiometers, r.f. connectors and accessories, is available from G.D.S. (Sales) Ltd., Michaelmas House, Salt Hill, Bath Road, Slough Bucks

Nearly 8000 components and accessories are listed in a 240 -page catalogue and price list from Home Radio • (Components) Ltd, 234-240 London Road, Mitcham, Surrey CR4 3HD. Price 50p plus 20p postage.

Gardners
 lime up

Line MatchingTransformers from Standard to Super Fidelity

It's easy to choose the right Line Matching Transformer from the five Gardners ranges.

The Super Fidelity Series, with a frequency response of 1 HHz to $80 \mathrm{kHz}-0.5 \mathrm{~dB}$, gives the widest possible bandwidth for high accuracy instrumentation and recording applications.

Then there's the Wide and Extra Wide-band ranges. Outstanding performers with a frequency range 30 Hz 20 kHz or more - for the 0.5 dB points. Used a lot by broadcasting and recording companies throughout the world.

The Miniature and Standard ranges provide excellent bandwidth for most purposes, 30 Hz 22 kHz for the $1 \cdot 0 \mathrm{~dB}$ points.

Except for the very smallest in the range, all Gardners Line Matching Transformers are fully magneti-

cally shielded, giving very hïgh hum rejection ratios.

Prices start from £2. 61 (recommended retail price) and all types are usually available from stock.

Complete technical information is given in brochure GT. 5 'Audio Frequency Transformers' which we'll be glad to send on request.

So accurate is the balancing of the windings on some of these transformers that, when used as pairs in a hybrid circuit (as illustrated) we can guarantee a rejection of better than -55dB over the frequency range 50 Hz to 10 kHz and normal rejection of up to
$75 d B$ may be expected.

Specialists in Electronic Transformers

GARDNERS

TRANSFORMERS LIMITED
Gardners Transformers Limited, Christchurch, Hampshire, BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH.

Sinclair Project 60 Project 60 Stereo FM Tuner

Amongst the many advanced electronic features to be found in this remarkable stereo tuner, use of the phase lock loop principle ensures standards of audio quality better than from any other method of detection yet used. Varicap diode tuning, accurately formed printed circuit coils, an I.C. in the special stereo decoder section and switchable squelch circuit for silent tuning between stations contribute to the unsurpassed performance of this tuner, irrespective of price consideration. But the Project 60 FM Stereo Tuner is far from expensive - indeed, it offers fantastic value for money and will bring the thrill of stereo radio to many who previously may not have been able to afford it. The tuner may be used with any good system as well as Project 60, but if you use it with other Project 60 modules, you will find the matching front panels particularly impressive in appearance as well as function.

SPECIFICIATIONS
Number of transistors: 16 plus 20 in I. C. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu \mathrm{~V}$ for lock-in over full deviation
Squelch level: typically $20 \mu \mathrm{~V}$
Signal to noiseratio: $\pm 65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{Khz}$ ($\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% modulation.
Stereo decoder operating level : $2 \mu \mathrm{~V}$. Cross talk: 40 dB
Outputvoltage: $2, ~ 150 \mathrm{mV}$ R.M.S. max. (1ypically $2 \times 50 \mathrm{mV}$. stereo)
Operating voltage: $25-30 \mathrm{~V} D \mathrm{C}$ at 100 mA Indicators: Stereo on: tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Super IC. 12

Integrated circuit
high fidelity amplifier

Having introduced Integrated Circuits to hi-fi constructors with the IC.10, the first time an IC had ever been made available for such purposes. we have followed it with an even more efficient version. the Super IC 12, a most exciting advance over our originat unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up, F.M. radio or small P.A. set up, etc The free 40 page manual supplied, details many other applications which this remarkable IC make possible. It is the equivalent of a 22 tran-
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak) $6-8 \Omega$. Frequency Response: 5 Hz to $100 \mathrm{KHz}=1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28 V). Load Impedance: 3 to 15 ohms. input Impedance: 250 Kohms nominal. Power Gain : 90dB (1,000.000.000 tımes) after feedback. Supply Voltage: 6 to 28V. Quiescent current: 8 mA at 28 V . Size: $22 \cdot 45 \cdot 28 \mathrm{~mm}$ in cluding pins and heat sink.
Manual avalable separately 15 p post free.
With FREE printed circuit board and 40 page manua
£2.98 Post free

Project 605

The easy way to buy and build
 Project 60

> Prolect 605 is one pack containing one $P 25$. two $Z 30 \mathrm{~s}$. one Stereo 60 and one Masterlink. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fited with neat little chps to plug straight on to the modules Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become avalable adapted to the Project 605 method of connecting.
> Complete Project 605 pack with f 29.95 comprehensive manual, post free
> Everything vou need to assemble a superb 30 watthigh fidelity stereo amplifier without having to solder.

the world's most advanced high fidelity modules

Z.30 \& Z.50 power amplifiers

 Built. tested and guaranteed with circuits and instructions manual. $\mathbf{2 . 3 0} £ 4.48 \quad \mathbf{2 . 5 0} £ 5.48$The $Z .30$ and $Z .50$ are of advanced design using siticon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and are intended for use principaliy with other units in the Project 60 range. Their performance and design are such, however, that $Z .50$ s and $Z .30$ may be used in a far wider range of applications
SPECIFICATIONS ($\mathbf{Z . 5 0}$ units are interchangeable with Z. 30 s in all applications).- Power Outputs Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts
Z.5040 watts R.M.S. into 3 ohms using 40 volis. 30 watts R.M.S. into 8 ohms using 50 volts

Frequency response: 30 to $300.000 \mathrm{~Hz}+1 \mathrm{~dB}$ Distortion: 0.02% into 8 hms . Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8 s). For speakers from 3 to 15 ohms impedance. Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels The Stereo 60 is particularly easy to mount
SPECIFICATIONS—Input sensitivities: Radio - up to $3 \mathrm{~m} /$ Mag. p.u. 3 mV . correct to R.I. A. A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$ Ceramic p.u. - up to 3 mV . Aux - up to 3 mV . Output: 250 mV Signal to noise ratio better than 70 dB . Channel matching : within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz BASS $+1210-12 \mathrm{~dB}$ a 100 Hz . Front panel: brushed aluminium with black knobs and controls Size: $66 \times 40 \times 207 \mathrm{~mm}$.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s. The unit is very easily mounted and is unique in that the cut-off frequencies are continuously variable. As attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. There are two filter sections - rumble (high pass) and scratch (low pass). H.F cut-off (-3 dB) variable from 28 KHz to 5 KHz . L. F. cut-off (-3dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply) 0.02% at rated output. Operating voltage from 15 to 35 V . Current 3 mA . Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ.5 for normal Z.30 assemblies and PZ. 6 or PZ. 8 where a stabilised supply is essential
Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control. etc.	£4.48
Mains powered record player	2.30, PZ. 5	Crystal or ceramic PU volume control, etc.	¢9.45
12W. RMS continuous sine wave stereo amp for average needs	$\begin{aligned} & 2 \times 2.30 \mathrm{~s} \text {, Stereo } \\ & 60 ; \text { PZ.5 } \end{aligned}$	Crystal. ceramic ormag PU..F.M. Tuner, etc.	£23.90
25 W . RMS continuous sine wave stereo amp using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \mathrm{~s} \text {, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.F.M Tuner. Tape Deck. etc	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 80 hms)	$2 \times$ Z.50s, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers etc. controls	£19.43
$\overline{F . M . S t e r e o ~ T u n e r ~(~} £ \mathbf{2 5}$) \& A.FU. (£5.98) may be added as required			

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd., vou are dissatisfied with it, your money will be refunded at once. Many Sinclair apoointed Stockists also offer this same guarantee in co-operation with Sinclair Radionics Lid

Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectly. Should any defect arise in'normal!use, we will service it at once and, without any charge to you, if it is returned within two years from the date of purchase. Outside this period of guarantee a small charge (tyoically $£ 1.00$) will be made. No charge is made for dostage by surface mail. Air Mail is charged at cost

SINCLAIR RADIONICS, STIVES, HUNTINGDONSHIRE PE17 4HJ
Please send Tenclose cash/cheque/money order
Name

Address

GMM PANEL METERS

CLEAR

Type SD． $830 \quad 82.5 \mathrm{~mm} \times 110 \mathrm{~mm}$ Fronts			
		10 ma	£2．50
		3 Orna	¢2 50
		10，má	$\mathrm{f}^{2} 50$
		500 ma	£2． 50
		1 amb	£2． 50
		万 аmı	¢2． 50
		（1）amp．	¢2． 50
\％ 10 A	£2．75	as 190	¢2 50
$5(1-0-511 \mu 4$	22． 70	109． 180	12． 50
100us	12.70	205 － 13.0	£2 50
1noti－Lotha	£2 70	611．b， 0	£2．50
$200 \mu \mathrm{~A}$	£2．70	31605.18 .0	£2 50
5014A	22．55	151．Ac．	22．75
L ma	22． 50	3\％11 A．C．	£275
5 ma	£2－50	14 Meter	£3．00
Type SD． $640 \quad 63.5 \mathrm{mmn} \times 85 \mathrm{~mm}$ Fronts			
50 HA	22.60	500 AA	£2 35
20－0－0）	12． 55	1 aıt．	22．35
ия）	22． 55	$\square^{\text {¢ апир．}}$	$\underline{22.35}$
100－H－10．18	¢255	It amp．	£2．35
20014	22．55	3v．D．C．	£2．35
аитиA	22．35	205．D，C．	£2．35
fima	¢2．35	50以，1，C．	£2．35
د11\％	¢2．35	$3005.13 . C$	£2．35
［0ma	¢2．35	151．A．C	22.40
丂ौun	£2．35	300 V A．C	£2．40
Bmoma	＋2．35	－U Meter	£2．70
Type SD． $480 \quad 46 \mathrm{~mm} \times 59.5 \mathrm{~mm}$ Fronts			
Ји口а	¢2．40	－5101）	£2－15
Stu－（u）－5furs	22．35	$1{ }^{1}$ nup．	42．15
1010 A	22．35	$\overline{5}$ amp．	－
（100－（） 10 H1，	22.35	\％）．1．c．	${ }^{22} 2.15$
20104 A	¢2．35	101． 11.	4215
3014 A	£2 20	$20 \mathrm{H}^{\text {2 }}$ D．C．	£2．15
1 ma	12．15	505 11 C	22 15
列A	£2．15	31015．12， C	22．15
10 tu A	£2． 15	154．A．C．	£2．30
30 ma	22.15	400V．A．C	£2．30
10 OmA	¢2． 15	－1］Meter	£2．55

＊MOVING IRON－ ALL Others moving coil

Please add postage

PLASTIC PANEL

SEW＇＇BAKELITE PANEL METERS

SEW EDUCATIONAL

POWER RHEOSTATS

俍 Sinve hole firing thit dia，bhats．Bual quantities available． 50 WATT． $11 / 25 / 50 / 100 / 200 / 500 / 1000 / 2500$ or 5000 ohns．$£ 1 \cdot 15$ ．P．A P．Th1

Type MR．38P． $121 / 32 \mathrm{in}$ ，square fronts

		120 m 4	£1．75
（1）mewntria		200 ma A	£1．75
		360 mma	¢1．75
		500 ma	¢1．75
		Tzoma	£1．75
		1 alup．	£1． 25
		4 amp．	21.75
		5 amp．	21．75
		10 amp．	£1．5
		35． 10.0	£1．75
		105．D．C．	
$50 \mu \mathrm{~A}$	£2 30	15．DC．	£1．75
50．0－5ULA	22.10	20n5：D． C	$\mathrm{x}_{1} 85$
$100 \mu \mathrm{t}$	¢2． 10	505：B．C	£1．75
100．0．101）${ }^{\text {a }}$	£1．95	1005．DC	£1． 5
200 HA	£1． 95	1．50V．D．C．	81．75
5100 LA	21.80	30015.	£1．75
5000－0－51004A	£1 75	5005－11C	
1 mA	£1．75	Thove be．	£1． 5
1．0．7 mat	£1．75	151.	
2 LmA	£1．75	501，1，C．	£1．85
$5_{\text {ma }}$	¢1．75	砍し，A．C．	£1．85
10ma	£1．75	3005 A．C．	¢1．85
2 2tma	£1．75	300V．A．C．	£1．85
\％urna	£1． 75	A Meter 1mA	£1．85
190 ma	£1 75	V1\％Meter	£2 30

Type MR．A5P．zin．square fronts．			
5una	${ }^{\text {f2 } 2.50}$		
coly		200）lic．	cil
200 ar	${ }_{82}$	3300 D．DC	－1．
	－ 81.85		
	81.85	8 veter	
cind		1 mump	
sona	81.85	5anp．	
500		20 mmp ．	
1 amp	${ }_{11.85}$	31 amp．	

EDGWISE METERS

Type P．E． $70.317 / 32 \mathrm{in}, \times 115 / 32 \mathrm{in}, \times 2^{3}$ in．deep．

50 F	£3．40	500ua	£3． 05
50－0－50¢ A	£3．30	1 nA	£2 70
100 A	£3．30	300 V A．C．	£2．
$100-10.160 \mu \mathrm{~A}$	£320	V1 Meter	¢3
$200 \mu \mathrm{~A}$	£3：20		

METERS

RP214 REGULATED POWER SUPPLY Solid state．Varialie output 0－2tV DC up

Input 2201240$)^{\circ} \mathrm{AC}$
Nize $18 \overline{7} \times 8 \mathrm{a}$
$\times 8$

PS． 200 REGULATED P．S．U

PS．IOOOB REGULATED P．S．U．

LB4 TRANSISTOR TESTER
Teats PNP or NPN transistorg． 1．5v batteries．Complete with al instruetions etc．$£ 4$ 50．poret 210 p

LB3 TRANSISTOR TESTER

 ＇Jests ICO and Op．Oprates from 9r instructions pte．$£ 3.95$

HOMER INTERCOMS
her home
te．Supplicd complete
P ust 15p．
station $£ 5 \cdot 25$ ．＇ost 15 p

Send SAE for list of Semi Conductors and Valves

G．W．SMITH

${ }_{\&}$ Co．（Radio）Ltd．

MULTIMETERS for EVERY purposed

TSEO POCKET MULTIMETER High-precision at low-cost Ranges: D.C. 1.0001 , 10.000
D.C. Current 1.50 mA . Resis tance $100 \mathrm{k} / \mathrm{ohms}$. 21.85 . Yos

HODBL 1092 Testmeter ,1/3/15/150/300/1200 V. D.C.
 $0110 \mathrm{~K} / 1 \mathrm{meg}$ g Decibels -10 to -15 d
E 2.75 each. Post 15 p .

HIOEI MODEL 7ROX
 $1050 / 250 / 1400 \quad \mathrm{VC} 50 \mathrm{uA} /$.
 30,000 O.P. Overload pro vDC. $12 / 601 / 20 / 600 / 1200$ VAC. $60 \mu \mathrm{AA} 30 \mathrm{~mA} / 300 \mathrm{mAA}$
$\mathrm{K} / 20 \mathrm{OK} / 2 \mathrm{mezolim}-10$ to

20,000 MODEL TE-12
 $0 / 6 / 30,120 / 600 / 1.2000$ V

with 30,000 o.l.v.

 ${ }_{60}$ mer Ω. £8.87. Post paid.

Our Price $\mathbf{1 5}^{5}$ 97. Post 255p
ROUND SCALE TYPE PENCIL TESTER MODEL TS. 68

Completely portable, simple to use pocket sized
 Post 13 p .

KODEL TH-12
 tection. Sise switch selector.
$0 / 25 / 25 / 10 / 50 / 250 / 1000 \mathrm{~V}$.
$\mathrm{D} \cdot \mathrm{C}$
0/C. $10 / 50 / 250 / 1000$ V. A.C. $0 / 10 / 50 / 250 / 1000 \mathrm{~V} . \mathrm{A.C}$.
$0 / 50 \mu \mathrm{~A} / 25 / 250 \mathrm{minA}$ D.C. $0 / 3 \mathrm{~K} / 30 \mathrm{X} / 300 \mathrm{~K} / 3 \mathrm{meg}$.

 FTC-401
TRANS
TESTER

F m N

measuring A. B and ICO.
NPN or PSP. Equally
Adaptable for cliecking adraptable for checking
diodes. Supplied complete with instry.
battery and leaids. £ 7.50 . Post 20 p

Selected TEST EQUIPMENT

Model S-100TR MULTITESTER 100.000 O. P.V
MIRROR SCALE/OVER MIRROR SCALE/OVER-
LOAD PROTECTINN
$0 / 12-6 / 3 / 12 / 30 / 120 / 000$ V DC.
$0 / 6 / 30 / 120 / 600 \mathrm{~V} . \mathrm{AC}$.
$0 / 12 / 600 \mathrm{uA} / 12 / 30 \mathrm{MA} / 12$

$0 / 10 \mathrm{~K} / 1 \mathrm{MEG} / 100 \mathrm{MEG}$.
-20 to +50 db . $0.01-2$ mill. Complete with batteries, instructions and leads. $£ 13-50$. Post $2 \overline{0}$.
 817.50. Poat 25 p

RF-300 AF/RF SIGNAL GENERATOR

All trancistorisel. com
pact, fully portable Mact, fuly portable wave 18 Hz . to
AF
220 KHzf .
AF Rquare
Output nine/gquare 10
Output nine/Gquare 10 V
P-P. RF 100 KHHz . to
200 MHz Output.
 maximum.
$220 / 240 \mathrm{c} . \mathrm{C}$. Conpplete with instruc
tions and leads. $£ 29.95$ Post 50p.

TE-20 D RF SIGNAL
GENERATOR
GENERATO
Accurate wide range signa
generator covering $120 \mathrm{Ke} / \mathrm{B}$
$500 \mathrm{Mc} / \mathrm{s}$ on 6 bing
calib. Dibreted
Variable
R.F
calibrated Variable Re R.F
attenuator, audio output
atlenuator, awtio output,
Xtal socket for calibration
$220 / 240 \mathrm{~V}$. A.C. Branil new
220/240V. A.C. Brand new
with instructions.
37 p . Size 140×215.
$\times 17$
$\underset{\text { MODEL L-55 FET V.O.M. }}{\text { Input }}$
ohmis. 0/.3/1. 2/6/30/120/600 V. D.C.
$0 / 3 / 12 / 10 / 120 / 600 \mathrm{~V} . \mathrm{A.C}$. $0 / 120 \mu \mathrm{~A} / 120 \mathrm{~mA}$. D.C.
$0 / 1 \mathrm{~K} / 100 \mathrm{~K} / 10$.meg/ 100 meg
ohirs. $\mathrm{fl5} 9.97$. Post 25 p .

TE-16A TTsasistorised Signal Generatori.5 ranged
$400 \mathrm{kHz}-30 \mathrm{mHz}$. An inexpensive instrument ior the handyman.
Operates on 9y battery. Operates on 9 v hattery.
Wide easy to revi seale. 800 kHz modutation. $52 \times 5 \frac{1}{2} \times 3 \mathrm{in}$.
Complete tions and leads. instruc-

TRANSISTORISED L_C.R. A.C MEASURING

 $\pm 2 \%$ TURNS RATIO 1110 MFD .6 Rangee Ranges $\pm 1 \%$. Bridge voltage at 1,000 CPS
Operated from 9 volta. $100 \mu \mathrm{~A}$. Meter indication Attractive 2 tone metal case. Size $71^{*} \times 5^{\prime} \times 2^{*}$ £20. Post 25p.

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR

MODEL MG-100 SINE SQUARE
WAVE AUDIO GENERATOR
Range: $19-220.000 \mathrm{~Hz}$
ine w a
 or Square wave 10 v . P. Wo P. Size 180×90

TE-65 VALVE VOLTMETER High quality instrume With 28 ranges.
D.C.
d.c.
volts
i. 5 -
volt
 Resistance uy to 1,00 megohms. Cornplete A.C. operation nstructionh. £1\% 50 . Poet Alditiona. Probes avail Ahle:
£2.50.
e.

MODEL 04311 SUB-STANDARD VOLT AMMETER
Sensitivity 330 ohm
Volt AC. and D. Volt A.C. anil D.C.
Accuraty 5% D.
1% A.C. Neale length $0 / 300 / 750 \mu \mathrm{~A} / 1.5 / 3 /$ $750 \mathrm{~mA} / 1 \cdot 5 / 3 / 7.5$ AMP. D.C.
$0 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~mA} / 1 \cdot 5 / 3 / 7.5 \quad$ AMP. ${ }_{0}^{\text {A.C. }}$ (75/150/300/750mV/1 $\cdot 5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300 /$ 750V. D.C. $5 / 7 / 75 / 3 / 30 / 75 / 150 / 300 / 650 \mathrm{~V}$. A.C. Automatic cut out. supplied comg ete. with test
leads, manual and test certilicates. 249. Post 50 p .

G. W. SMITH
 \& Co. (Radio) Ltd.

Also see opposite page
and next two pages

UNR 30 RECEIVER
4 Bande covering $530 \mathrm{kc} / \mathrm{s}$ - $30 \mathrm{mc} / \mathrm{s}$. B.F.O. Bullt in Speaker $220 / 240 \mathrm{v}$ AC. Brand new with instruc-

UR-1A SOLID STATE COMMUNICATION + Bands covering $5 \overline{50 h c}$;-30me/s. FET. 8 Meter. Variable BFO for $88 B$, Bullt-in Bpeaker. Bant-
 structions. £25. Carr. 37 p .

SKYWOOD CX203 COMMUNICATION
RECEIVER
RECEIVER

Sulid state. Coverage on 3 bands, $200-420 \mathrm{KHz}$ and Bandgpread. Aerial tuninge, BFO. AVCle ANL. Bandspread. Aerial tuning, BFO. Arc. ANL.
s. meter. AM/CW/Ss B. Itegrated speaker and
phoae socket. Operation $220 / 240 \mathrm{v}$ AC or 12 V DC phone socket. Operation $220 / 240 \mathrm{~V}$ AC or 12 V DC
$\$ \mathrm{ize} ~$
$325 \times 26 \mathrm{C} \times 150 \mathrm{~mm}$. Complete with instruc. size $325 \times 268 \times 150 \mathrm{~mm}$. Complete wit
rions and circult. $£ 228.50$. Carr. 50 .

LAFAYETTE HA-600 SOLID STATE
RECEIVER

TRIO 9R59DS
COMMUNICATION
RECEIVER

continuousand elec-
trical taudsprean mid 80 metres. 8 valve plup 7 old diode circuit. $4 / 8$ liwiable BFO. o meter, Jek. Bendrapreal Ahal.

AVOMETER MOVEMENTS

spare movements for Model 8 or 9. (Fitted with Hodel 9 acale) or bask for any multimeter,
Brand new and boxed. $£ 350$. Poot 25 p .

Can be Junael or bench mounted. Basic meter measures I volt DC, but can be used to measure a
whde raige oi AC and DC volt, current and ohans whith optional plug in cards. Spechication: Number of digits: : ${ }^{2}$ plus fourt overrange digit Overrange: 100% (up to 1 -999). Iuput impedrnce: 1000 Meg ohinr. Measuring eycle: 1 per second, ment against an internal reference volust Overoad: to 100 v , D.C. Input: Fully tloating (3 poleb). Laputpower: $110-230$, A.C. $50 / 60$ cycles
 THARANTEED.
635.50 Carr. 50 p

$2 \times$ Z30 amplifier, stereo 00 pre-amp, PZ,
power supply. $£ 15 \cdot 85$. Carr, 37 p . Or with PZ power supply. £15. 85 . Carr. 3 .p. Or with PZ6
power supply. $£ 18.00$. Carr. $37 \mathrm{p} .2 \times 250$ amplidierstereo to pre-\&mp, PZ8 power supply. £20-25. Add to any of the above $£ 4.45$ for active filter unit
and $£ 13.00$ for a pair of 416 speakers. All other staclair products in stock. IC12 £1. 80 . Post 10 p .
$2,000 \mathrm{amp} £ 21.95$. Carr. 37 p . $3,000 \mathrm{amp} £ 28.50$. Carr. 37p. Neoteric amp \&43.95. Carr. 37 p .
NEW PROJECT 605 \&20.97. Carr. ${ }^{27}$.

SPECLAL OFFER
GOODMANS AXIOM 301
HI Fi 12 in . Y watt twin Hi Fi lim, 2h wate twin cone
full range speaker. $30-$
16,000 Hz. 16.500 gaus. 18,000 Hz. IR. 000 gauss.
ohm impedance. Brad nev
:ind boxe.d. (List price $\ddagger 21.22$ and boxed. (List price 21
OUR PRICE 12.50 ent
Carr. 50 .

SPECIAL OFFER STEREO SPEAEERS Matched pair of stered
bookshelf sijeakers. lle

 Complete with DIN lead
s12.95 br. Carr. 50 .

Tone, volume and balance controls. Traek selector. Complete with matche palr of stereo apeakers, connections ant minga.

GENUINE BARGAIN!

KOSS SP. 3 XC

 STEREO Resyoine $10-15.000 \mathrm{~Hz}$ ImpedanceBrand new, boxed and fuly guaranteed. (List
$\mathbf{\varepsilon} 9.50)$. OUR PRICE £6.50. Post 25 p.

1021 STEREO LISTENING STATION

For balancing and gain
Belection of loud. speakers with of loud $\begin{aligned} & \text { sitional } \\ & \text { facility for stereo head- }\end{aligned}$ phone switching. 2 gain

controls, speaker onooff phone sockets. $6^{\prime \prime} \times 4^{\prime \prime} \times$| slide switch, stereo head- |
| :---: |
| $24^{\prime \prime} .22 .25 . ~ P o s t ~$ |
| 15 p. |

MIXER PREAMPLIFIER
5 microphone input each with indiridual
gain controls enabling complete mixing facili-
ties. Battery operated $92^{*} \times 5^{*} \times 3^{n}$. Inputs Mies $: 3 \times 3 \mathrm{BmV} 50 \mathrm{~K}$;
$2 \times 3 \mathrm{mV} 600$ ohm. Phono meg. +mV 50 K . Phono ceramic 100 mV i meg. Ontput 250 mV 100 K .
\&8. 97 . Post 20 p .

HA-10 STEREO HEADPHONE AMPLIFIER
All silicon trana
istor ates from niagnetic. ceramic or tuner inputs with twin sterco headphone outputs and separate volume controls for
each channel. Operate ron 9 g . battery. lnute
$5 \mathrm{MU} / 100 \mathrm{MU}$. Output 50 MW . 55.97 . Yost 15 p .

NEW GARRARD MODULES

Popular range of Garrand decks with ghure
cartridge fitted lu de luxe plinth with hinged lith. S125 111 Module/M75-1
AP76 Module/Mi5.
Zero 100 M Module/M931:
Carr. 60p extra any item.

DOLBY SYSTEM NOISE REDUCTION UHIT

Improves the performance of cassette and sem proiessional recorders. Reduces tape hlas by
3 dB at $600 \mathrm{~Hz}, 6 \mathrm{~dB}$ at 1200 Hz and 10 dB for al 3 dB at $600 \mathrm{~Hz}, 6 \mathrm{~dB}$ at 1200 Hz and 10 dB for al
frequencies above 100 Hz . Controls for Input levels and noise reduction on record and replay 2 meters for Dolby level. Off tape monitoring Frequency response: 20 Hz to $15 \mathrm{kHz} \pm 1 \mathrm{~dB}$
$19 \mathrm{kHz}-35 \mathrm{~dB}$. Size $15!^{\prime \prime} \times 9^{\prime \prime} \times 3 \frac{1}{*}^{\prime \prime} . \mathrm{A}^{2} \mathrm{C} .200$ $\underset{\text { PRICE }}{\underset{\text { OUR }}{ }} \mathbf{f 3 2 . 5 0}$ сarr. 50 p
hosiden dhoos stereo headphones

Wonderful value and excellent performance combined. Adjuat able head band. 8 ohm
impedance. impedance. $20 \cdot 12,000$
cps. Complete with cps. Complete with
lead and stereo jack lead and stereo jack
plug. ONLY
Post 12p.

$\begin{array}{llll}\mathrm{C} 60 \ldots & \ldots & .3 \text { for } 75 \mathrm{p} & 10 \text { for } £ 2 \cdot 35 \\ \mathrm{C} 90 & . & 3 \text { for } 81.05 & 10 \text { for } 83.30\end{array}$
 Tape Head Cleaner 30p each. Post 10 p extra.

SPECIAL OFFER: ROTEL RH700
STEREO HEADPHONES $20.20,000 \mathrm{~Hz}$. $8-16$ ohm
(Litat 29.95). OU12 PRICE 56 75. Post 25 p .
 Brand new and
guaranteed.
8
 (Rec. list 259.50 pr.)
OUR PRICE 239.50 pr. Cart $\& 1.00$

TRANSISTORISED FM TUNER
 buit ready for use. Fantastic value for money STEREO MULTIPLEX ADAPTORS, 24.97 TE 1018 DE-LUXE MONO HEGH IMPEDANCE GEADSET
Sensitive, soit earpads,
adjustable headbanil. Mag
nelic,
ohra,
£1.97. Post 1 up.

G. W. SMITH
 \& Co. (Radio) Ltd.

Also see previous pages and opposite page.

FM TUNER

NELSON-JONES

Approved parts for this outstanding design (W.W. April 1971/2) Featuring $0.75 \quad \mu \vee$ sensitivity. Mosfet front end.

THOUSANDS
ear 0.75 HV
NOW IN USE
output level, suitable for phase locked decoder,
as below. Designer's own P.C.B.
FURTHER PRICE REDUCTIONS
Basic Tuner Parts with Screening Box
NOW LESS THAN £11-50. Please send S. A.E. lists.
NEW ALIGNMENT SERVICE
Details on request.

SOLID STATE TUNING INDICATOR

(W.W. April ${ }^{\prime} 72$). Tuning is indicated by the balance of two light emitting diodes. The kit Includes, LED's, high gain transistors, P.C.B., res istors, mounting kit and instruction booklet; amp-see decoder).

DIAL CHASSIS KIT

Now available-includes all dial drive components, dial plate, decoder mounting bracket, Nowning scales, decoder-tuner tagstrips, etc., 4 -way $2 / 3$ pole rotary switch and instruction booklet.

PHASE-LOCKED STEREO DECODER KIT
Now with free LED 'stereo on'" light-complementing this superb decoder (W.W. Sept. '70). Suitable for wide variety of tuners including the NELSON-JONES TUNER. Complete kIt ONLY £7.68. P. \& P. 16p.
NEW iC Stabilised PSU. S/C, overload protected, low ripple. E3.55. P. \& P. 19p.
LIGHT EMITTING DIODES (Red) Improved efficiency type, mech. identical to HP LED, panel or PCB mounting with
free mounting clip-clear or black-please state. Order LED1A. Please add postage. Monsanto miniature PCB mounting with radial leads
Order LED2. Please add postage
NOW ONLY 35 p each with connection dsta.
7 SEGMENT LED Displays. Lowest cost.
0.325^{4} characters with RH dec. point. ONLY £2.46 each
AERIALS-3 ELEMENT VHF/FM (Outdoor)
A good aerial is essential for optimum Stereo Radio reception.
ONLY £2.60. P. \& P. 40p.
Coax $5 \mathrm{p} / \mathrm{metre}$. (Masts and Fixing kits available).

ONLY £28.50. Post (U.K.) 45p

ELECTRONIC CALCULATORS

Both of our Pocket size calculators feature:-
MOS LSI Calculating Chip with 8 Digit Led Display, Overflow and Negative Number Indicators Zero Suppression
Full 4 Function-will pertorm Addition, Subtraction, Multiplication and Division including Chain or Mixed Multiplication or Division as well as true credit balance
RAPIDMAN 800. Calculates in 10 digits and displays to two decimal places. Carrying case £1 45. Mains adaptor £2. Size $5.4 \mathrm{in}, ~ x 3.1 \mathrm{in} . \times 0.9 \mathrm{in}$. Weight: $70 z \mathrm{~s}$.

PRICE on application

MODEL BC806. Calculates in 12 diglts. Decimal point may be either 2, 4 , or 6 places or Fully Floating, Last eniry cancel. in addion here is a CONS AN KAY or input convers Size: 6 in. $\times 3 \frac{1}{2}$ in. $\times 1 \frac{1}{4}$ in. Weight 8 ors. Supplied complete with leather carr. case. Rec. Re

Mains adaptor available shortly.
All calculators are fully guaranteed and complete with batteries
 Cases supplied with nen-slip feet en stock on tetum of post- Piease consult catalogue or ask tot quote fos farg

WEST HYDE (WB)
West hyde developments umited. ryefield chescent, northwood hills, northwdod, middx.. hag inn. Telephone: Northwood 24941/26732.

WW-086 FOR FURTHER DETAILS
\qquad Black button headed screws also provide the means of atraching 19 inch mounting brackets and louvered top and botiom panels can be supplied for extra ventilation, Cases
are supplied ex stock by return of past.

BRIGHTCASE				
	1 off	5 off	10 off	P\& P
BC21 (31 ${ }^{\text {" }}$ Whole Rack)	8.40	8.30	8.20	45p
BC22 (3 ${ }^{\text {² }}$ Half Rack)	6.80	6.70	6.60	45p
BC31 (51. Whole Rack)	10.20	10.10	9.90	45p
BC32 (5才" Half Rack)	840	8.30	820	45p
Rack Brackets $3 \frac{1}{2}^{\prime \prime}=60 \mathrm{p}$ pel pair, $5 \frac{1}{4}{ }^{\prime \prime}=85 \mathrm{p}$ per pair		Add "L" 0 or lourreses 0.50		

luly assaled wit

WESTHYDE NH

Which not only contains all the digital logic, polarity sensing logic, over range sensing logic, the comparator to sense threshold crossing, synchronization of the display strobing, storage register, but also replaces up to 16 standard 14 -pin TTL packages, giving good reliability and easy servicing. Some chip

That's not all. I've also got an LED plug-in readout which makes me extremely long-lived though low on power consumption. I only use $2 \frac{1}{2}$ watts (mains operated). I'm very strong My larger upright components are compression mounted, so I can withstand great shock with no damage to my circuit board. You can have me in 3 standard full scale voltage values - and you can change the range on my main printed circuit board. When you order me from Electroplan, they'll send you a handbook with full instructions on how to change my range. If you want a special version of me, just ask for their Application Department and they'll fix you up. So this is the Daystrom 1295 Digital Paneł Meter signing off now, and leaving you free to write or ring Electroplan Limited, P O Box 19, Orchard Road, Royston, Herts SG85HH Telephone Royston 41171 . At only $£ 77.00$ I'm a snip.

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

74 Series T.T.L. I.C'S
bi-pak still lowest in price full specification GUARANTEED. ALL FAMOUS MANUFACTURERS

\qquad

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)
0.1% DISTORTION! HI-FI AUDIO AMPLIFIER
Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$.

- Loal-3, 4,8 or 16 ohms. Supply vol
- Bignar to noise ratio 801dB.

Hlor ina bize $03 \mathrm{rim} \times 105 \mathrm{~mm} \times 13 \mathrm{~min}$.
quality componene most stringent specifcationa using tol circuitry concelved to fll the need for all your A.F. alnpllt cation needs.
BRITISH MADE. only $£ 3.25$ each

STABILISED POWER
MODULE SPM80
£2.95
AP80 is espectally designed to power 2 of the Al50 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneous) y. This module embodies the circuit ;rotection. With the addition of the Malna Transformer 4 T80,
 $\times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These units enable you to huild Audio Systems of the highest yasilty at a hitherto unoitainable price, Also
Ideal for mnny other applications including: Dlsco syateme, Public Address, Interconn Units, etce. Handbook availahle, 10p.
TRANSFORMER BMT80£1.95 p. \& p. 25p

SYSTEM 12 STEREO Each Kit contains two Amplifier Modules, 3 watts RMS, two loudspeakers, 15 ohms, the pre-amplifier, transformer, power supply module, front panel and other accessories. as well as an illustrated stage-by-stage instruction booklet designed ONLY for the beginner. Further details avail- FTS. 5 FREE p. \& p. able on request.
All orices quoted in new pence, Giro No. 3.88. 1006 Ptease sind all orders direct to warehouse and desaatcn deparimen - D 4

래N TEXAN

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER \star FREE TEAK CABINET $\begin{gathered}\text { with comp: } \\ \text { pete } \\ \text { kits: }\end{gathered}$ FEATURES. New sItm design with 6 - IC's, IC Sockets, 10 sllicon transistors, 4 rectifiers, 2 zeners
Special Gardeners low field sllm line transformer
Fibre glass PC panel. Complete chassis work.
\qquad transformer. HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES
-DEVELOPED BY TEXAS ENGINEERS FOR PERFORMANCE, RELIABILITY AND EASE OF CONSTRUCTION. FACILITIES. Onloff switch indicator, headphone separate treble, bass, volume and balance controls, scratch and
rumble filters, mono/stereo switch, Inpu1 selector; Mag. P , Radlo Tuner, Aux. Can be altered for Mic, Tape, Tape-head, etc. COMPLETE WITH FREE TEAK CABINET

IN ELECTRONICS?

DESIGN WLITH
SILVER TRIM

INTEGRATED CIRCUITS

Why buy alternatives when you can buy the genuin

TEST	EQUIPMENT Just
SE250B	Pocket Pencli Signal Injecior $£ 1.90$
SE500	Pocket Pencil Signal Tracer $£ 1.50$ Robust 2 K Volt $£ 4.55$.
Lis	With case $\mathrm{EAPa}^{\text {a }}$
TE15	$\underset{\substack{\text { Grid } \\ \text { ¢ } \\ \text { S } 45}}{\text { Dip }}$ Meter $440 \mathrm{KHz}-230$
500	$30 \mathrm{~K} / \mathrm{V}$ Multimeter $\mathrm{Eg.25}$
200 H	$20 \mathrm{k} / \mathrm{V}$ Multimeter $\mathrm{E} 4 \cdot 20$.
	With case £9.50
AF105	
U4341	ACIDC Multimeter with transistor
	tester. Steel case $£ 10.50$
TE20D	RF Generator $120 \mathrm{KHz}-500 \mathrm{MHz}$ £15-95
TE22D	Audio
C1-5	$3^{\prime \prime}$ Pulse Scope 10 Hz
TE65	Valve Vollmeter 28 ranges $£ 17.5$

"BANDSPREAD" PORTABLE To build MW/LW Superhet Radio using Mullard RF/iF Module, 600 mW olp. Fibre glas's cabinet. All parts $£ 7.98$. P. \& P. 82p. (Battery 22p extra.) ALL PARTS SOLD	MW /LW TUNER ML3 - Superhet MW/LW radio Tuner to build S/M Tuning. Mullard Module etc. ALL PARTS \&4.85. P. \& P. 15p. PARATELY

TRIACS

$$
\begin{aligned}
& \text { HALF P.IV. } \\
& \text { HO5 AMP } \\
& \text { BO505 } 50 \\
& \text { B0510 }
\end{aligned}
$$

PA-Disco-Lighting
PA-DISCO-LIGHTING PA.DISCO-LIGHTING
UK's Largest Range-Write
phone or call in. Details and
demons

\qquad
\qquad alve Amplifie
ECTS. PROJ
S. SPEAKER SPREE OPT/CS LIGHTING. MICSI ERS.
EVEPY DMMERS-STANDS. MIXERS.
FREE SOP PA-DISCO-Lighting.

- PORTABLE DISCOS DETAILS ON REQUEST.
CREDIT TERMS FOR CALLERS.

SINCLAIR PROJECT 60 MODULES
—SAVE POUNDS!

230	£3-57;	250 £4.37
	- 60	PZ5 £397
	87.97;	PZ8 £4.77

PZ6 £6.37;
Transformer for PZ8 $£ 2.95$
Active Filter Unit $£ 4.45$
Stereo FM T

PACK
2×230
2×230

 MINIATURE AMPLIFIER
5 transistor 300 mW o/p. Fitted volume
and sensitivity control, 9 volt operated.
$\boldsymbol{\AA 1 . 7 5 \text { each P/P } 1 5 \mathrm { p } \text { . }}$.

MAIL ORDER DEPT: 303 EDGWARE ROAD, LONDON, W.2? RETAIL SHOP: 404-406 EDGWARE ROAD. (01-402 8381) open 6 days a week 9 am-6 pm Monday to Saturday

 SUPPLIERS OF SEMICONDUCTORS TO THE WORLD

COMPLETE TELEPHONES
NORMAL HOUSEHOLD TYPE AS SUPPLIED TOTHE POSTOFFICE xspo
ONLY 95p

spesprat

telephone dials
Standard Post Office type Guaranteed in working order ONLY 25p

MAKE A REV COUNTER FOR YOUR CAR

OVER 1,000,000 TRANSISTORS IN STOCK

We hold a very large range of fully marked. tested and guaranteed Transistors, Power Transistors. Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.
600,000 Silicon Planar Plastic Transistors, clearance Audi PNP similar to ZTX500 2N3702/3, BCY7O etc. Audio NPN, similar to ZTX300, 2N3708/9, BC107/8/9, BC168/9 etc. R.F. NPN and Switching NPN.
Please state type of Transistor required when ordering.
ALL AT 500 for $£ 3.00$. 1.000 for $£ 5.00$ 10,000 for $£ 40.00$.

OUR VERY POPULAR 3p TRANSISTORS
fully tested \& guaranteed
TYPE A" PNP Silicon alloy. TO- 5 can.
TYPE B PNP Silicon, plastic encapsulation
TYPE "B" PNP Siticon, plastic encapsulation
TYPE
TY" PNP Germanium AF or
TYPE "E" PNP Germanium AF or RF,
TYPE "F" NPN Silicon plastic encapsulation.
TYPE 'G" NPN Silicon similar TTx
TYPE "G" NPN Silicon. similar ZTX 300 range.
TYPE "H" PNP Silicon similar ZTX500 range.

POWER TRANSISTOR

 PRICE BREAKTHROUGH!plastic cased sllicon power taansistors of latest OESIGN. 40 WATTS AND 90 WATIS. PNP \& NPN TYPES ALL TYPES AVALABLE AT THE MOST SHATTERINGLY LOW AND GUARANTEED!

A CROSS HATCH

 GENERATOR FOR $£ 3.50$
YES. a complete kit of parts including Printed

 Circuit Board. A four position switch gives x-hatch. Dots. Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is a project in the September edition of Practical TelevisionThis complete kit of parts costs $£ \mathbf{3} .50$, post paid.
A MUST for Colour T.V. Alignment.
Our famous P1 Pak is still leading in value for money Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification
Chart supplied to give some information on the Transistors.

£1 each

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

ELECTRONIC ORGAN DIVIDER BOARDS built to high industrial/computet spec. 5 octave set $£ 15$. Complete with connection data and oscillator details.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in}$. $12 \frac{1}{2} \mathrm{p}$ sheet, 5 for 50 p
$11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in}$. 12 p sheet, 4 for 50p
$11 \times 8 \times 1 / 16$ in $20 p$ sheet, 3 for 50 p
Offcut pack (smallest 4×2 in.) 50 p 300 sq. in.
SPEAKERS AND CABINETS
E.M.I. 13×8 in. (10 watt) with two tweeters and cross over $3 / 8 / 15 \mathrm{ohm}$ models. $£ 3 \cdot 75$. P.P. 250 .
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15$ ohm models $£ 2 \cdot 25$. P.P. 25 p.
E.M.I. $6 \frac{1}{2}$ in. ind. 10 watt Woofers. 8 ohm. 13,000 gss
£2-25. P.P. $15 p$.
E.M.I. 20 watt ($13 \times 8 \mathrm{in}$.) with single tweeter and "X-over" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magnet $11,000 \mathrm{gss}$. £8. P.P. 40 p. 20 watt base unit only. $\mathbf{£ 6}$. P.P. 40 p .

CABINETS for $13 \times 8 \mathrm{in}$. speakers manufactured in $\frac{3}{4}$ in. teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9$ in. f5 ea. P.P. 40p.
20W. CABINET. $18 \times 11 \times 10 \mathrm{in}$. £6. P.P. $50 p$

PRECISION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{v}$ to $15 v: 60 \mathrm{db}$ to 20 db . 9 ranges. Excellent condition. $\mathbf{t 2 2} 50$. P.P. f1.50
V.H.F. POWER TRANSISTORS TYPE PT4176D (2N4128). 24 watt 175 MHz . $\mathbf{E 1} 150$ ea. S.A.E. for spec. MINIATURE UNISELECTORS (A.E.I. 2203A.), 3 bank, 12 position, non-bridging wipers. $\mathbf{£ 4 . 2 5}$ ea. Brand new Complete with base.
TEN TURN POTENTIOMETERS (Colvern) 5000 ohm f1-50 complete with 10 T dial
VACUUM PUMPS (Merrovac GS 24). Complete with \div h.p. 240 v . A.C. motor. New concition. $£ 35$. (S.A.E Literature.)
PAINTON WINKLER SWITCHES. 1 pole 15 way 2 bank (G.P. contacts and wipers) $£ 1-25$ ea

BULK COMPONENT OFFER. Resistors,'Capacitors. All types and values. All new modern components. Over 500 pieces £2. (Trial order 100 pcs. 50 p.) We are confident you will re-order
BERCO WIRE-WOUND POTS. New individually boxed. 200 ohm 25 wa
100 watt $\mathbf{f 1}$ ea.

HIGH CAPACITY ELECTROLYTICS $2,200 \mu \mathrm{f} .100 \mathrm{v}$. ($1 \frac{1}{4} \times 4 \mathrm{in}$.) 60p. $3,150 \mu \mathrm{f} .40 \mathrm{v} .\left(1 \frac{1}{4} \times 4 \mathrm{in}\right.$.) $60 \mathrm{p} .10,000 \mu \mathrm{f} .25 \mathrm{v}$. $\left(1 \frac{1}{4} \times 4 \frac{1}{2} \mathrm{in}\right.$.) 60 p . $10,000 \mu \mathrm{f}$. 100 v . $\left(2 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}\right.$.) $\mathrm{f1} .12 .000 \mu \mathrm{f} .40 \mathrm{v} .(2 \times 4 \mathrm{in}$.) 75p. $16.000 \mu \mathrm{f}$ 16 v . (2 $\times 4 \mathrm{in}$.) 60p. $21,000 \mu \mathrm{f}$. 40v. ($2 \frac{1}{2} \times 4 \mathrm{in}$.) £1. Post and packing 5 p.

LIGHT DIMMERS (2000 watt) Triac Controlted. $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$
in. $£ 5.75$ еа. P.P. 25

T TRANSFORRANSFORMERS
 Sec. 20/4NSFORMER. (Shrouded) Prim. 200/250v

 S.T. $20 / 40 / 60 \mathrm{v}$. 2 amp . $£ 2$ ea. P.P. 40 p .Prim. TRANSFORMER (CONSTANT VOLTAGE).
$100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 50 p
L.T. TRANSFORMER. Prim. 240v. Sec. O/25/50v.

2 amp. f1.75. P.P. 25p.
L.T. TRANSFORMER. Prim $220 / 240 \mathrm{v}$. Sec. 13 v .
L.T. TRANSFORMER. Prim $220 / 240 \mathrm{v}$. Sec. 13 v .
1.5 amp. 65 p. P.P 15 p .

at amp. c.t $28-0-28 \mathrm{~V}$. at 2 amp . Shrouded type. $\mathbf{E 2}$.
P.P. 40 p .
2500 watt. ISOLATION TRANSFORMER (CON-
STANT VOLTAGE). Prim. $190-260 \mathrm{~V}$. 50 Hz . Sec
230 v . at $10 \cdot 9$ amps. $£ 30$. Carr. $£ 2$.
H.D. STEP-DOWN TRANSFORMER. Prim. 200/240V

Sec. $117 v$ at $19 \cdot 8$ amps. (2,300 watt). $£ 22 \cdot 50$. Carr. $£ 2$ H.T. TRANSFORMERS. Prim. 200/240v. Sec. $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ c.t. 2 amp . 11.50 P.P. 40 p . $350-0-350 \mathrm{v} .60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$ c.t 2 amp . 1 1. P.P. 25 p . STEPDDOWN TRANSFORMERS: Prim. 22/240v Sec. 115 v . Double wound 500 w . £5. P.P. E1. 700 w . (with filters) $£ 10$. P P. $£ 1.500 \mathrm{w}$. (metal case
socket output) and overload protection. $£ 6.50$. socket output) and overload protection. £6.50.
AUTO-WOUND. 75 W £1. P.P. 25p. 300W. £1-50. PP. 50p 750 W £6. P.P.f1
L.T. TRANSFORMER. Prim. 110/240v. Sec. 0/24/40v. 1.5A. (Shrouded type). £1 50. P.P. 25p.

HT/LT TRANSFORMER Prim. 240 v . (tapped) Sec. 1 $500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$. Sec. $2 \mathrm{31v} .5$ amp. £2.75 P.P. 50p.

HEAVY DUTY E.H.T. TRANSFORMER. Prim 0/110/240v. Sec 1800v. 3.1 K.V.A. £28. Carr. £2 4 K.V.A.

PRECISION CAPACITANCE JIGS. 8eautifully made with Moore Wright Micrometer Gauge. Type 1. 18.5pt. to $1.220 \mathrm{pf} \mathrm{£10}$ each 9.5 pf .1011 .5 pf . $\mathbf{£ 6}$ each. MULTICORE CABLE (P V.C.).
6 core (6 colours) 3 screened, 14/0048. 15p. yd. 100 yds f12.50.
12 core (12 colours) $\mathbf{1 5 p}$. yd. 100 yds. $\mathbf{£ 1 2 . 5 0 .}$
24 core (24 colours) 20 p. yd. 100 yds. $\mathbf{£ 1 7 . 5 0 .}$ 24 core (24 colours) 20p. yd. $100 \mathrm{yds} . \mathbf{£ 1 7 . 5 0 .}$

34 core (17 colours) 25
Minimum order 10 yds.
TELEPHONE DIALS (New) £1 ea.
RELAYS (G.P.O. ' 3000^{\prime} '. All types. Brand
new from $37 \frac{1}{2}$ p ea. 10 up quotations only. new from 37 ${ }^{2}$ p ea. 10 up quotations only.
EXTENSION TELEPHONES (Type 706) New/Boxed. £5. 50p.
RATCHET RELAYS. (310 ohm) Various Types 85p. PR 5p.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe £3-25. 10 ban

BLOWER FANS (Snail type) Type 1 ; Housing dia. 3⿺ $\frac{1}{2}$ in. Air outlet $1 \frac{1}{4} \times 1$ in. £2.25. P.P. 25p. Type 2 : Housing dia 6 in. Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2}$
240 v . A.C (brand new).
POT CORES LA1/LA2/LA3 50p each
RELAYS
SIEMENS/VARLEY PLUG-IN. Complete with transparen dust covers and bases. 2 pole c/o contacts 35p ea ; 6 make contacts 40 p ea.; 4 pole c/o contacts 50p ea. 6-12-24-48v types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$) with 10 amp. silver contacts 2 pole c/o 40 p ea.; 2 pole 3 way 40 p. P.P. $5 p$ 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$) 10 amp contacts. 4 pole c/o. 40p ea. P.P. 5p.
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp contacts. 75p (with base). P.P. 5p
SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{\mathrm{i}} \mathrm{in}$.) W/t. 1 oz. 1 make $3 / 12 \mathrm{v}$. 40p. ea.
SILICON BRIDGES. 100 P.I.V. 1 amp. ($\frac{5}{8} \times \frac{2}{2} \times \frac{3}{3} \mathrm{in}$.) 30p 200 P.I.V. 2 amp. 60p.
CIRCUIT BREAKERS (3 pole) 15 amp . Dorman $\&$ Long 'Loadmasters' $£ 1 \cdot 50$. P.P. 25 p

PATTRICK \& KINNIE

I9I LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473
RM7 9DD

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}$ $25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output : continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100 mV - 1 volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times 12 \pm \times 10 \mathrm{in}$. Second hand condition. $£ 27.50$ each Carr. fl 50.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply- $115 \mathrm{~V}, \pm 10 \%$ A.C., $50 \mathrm{c} / \mathrm{s}$. Freq. $3650-$ $7300 \mathrm{Mc} / \mathrm{s}$. Internal Transmission-CW, Pulse, FM. External Trans-mission-Square Wave, Pulse. Power $\mathbf{O} / \mathrm{put}-0.2$ milliwatts. O/put Attenuator: -7 to -127 dbm . Load- 50Ω. Price: $£ 135$ cach $+£ 2$ carr. TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put -7 to -85 dbm . Transmission-FM, PM, CW. Sweep Rate $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation- $0-40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range $3-50 \mathrm{microsec}$. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-$5-500$ watts peak. . $.2-6$ microsec. duration, 0.5 microsec pulse rise time, Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter.

Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy $-+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output -7 to and 60 humidity. Power Meter: Input
-85 dbm . Price: $£ 75$ each $+£ 1$ carr.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both he output freq. and power are indicated on direct-reading dials. 115 V , AC, $50 \mathrm{c} / \mathrm{s}$. Freg. $-1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse-40-4000 pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put1 milliwatt max., 0 to -127 db variable. O/put lmpedance- 50Ω. Price $£ 120$ used, excellent condition. Unused as new condition $£ 150+$ carr. $£ 2$. TS-382/U AUDIO OSCILLATOR: 20 to $200,000 \mathrm{c} / \mathrm{s}$. in four ranges. Freq. meter check $60 \mathrm{c} / \mathrm{s}$. and $400 \mathrm{c} / \mathrm{s}$. Emission CW. O/put voltage: 1 uv to $10 \mathrm{~V} \pm 3 \%$ in seven ranges. Power req. 115 V AC single phase. Price $£ 20$ cach, used good condition. Unused condition $£ 30+$ carr. $£ 1.50$.
CT150 Portable valve-tester suitable for testing a wide range of valves. Manufactured by Avo. $£ 55$ each $+£ 2$ carr.
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order. $£ 18 \cdot 50+£ 1$ carr.; OR BC-221 (as received from Ministry), good condition, less charts, $\mathbf{£ 8 \cdot 5 0}+\mathbf{£ 1}$. carr
CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition, $£ 2$ each +25 p post
HEADSET ASSEMBLY TYPE NO. 10: Moving coil headphones and HEADSET ASSEMBLY TYPE NO. 10: Moving coll headphones and
microphone. (Similar to above) new cond. $£ 1.75+25 \mathrm{p}$ post ; or secondmicrophone. (Similar to above)
hand cond. $£ 1 \cdot 25+25 p$ post.
hand cond. $\mathbf{5 1 \cdot 2 5}+25$ post.
HEADSET ASSEMBLY: with lightweight boom microphone. Good HEADSET ASSEMBLY: with lightwe
secondhand cond. £3 a pair, 25 p post.
DLR HEADPHONES: 2 x balanced armature earpieces. Low resistance. f1.50 a pair +25 p post.
MOVING COIL INSERT: Ideal for small speakers or microphones. Box of $3 £ 1+23$ p post.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. $£ 2+25$ p post.
NO. 16 HAND MICROPHONE: With carbon insert, lead and plug. NO. 16 HAND
fi 25 p post
AR88 RECEIVER: List of spares, 5 p.
TELEPRINTER EQUIPMENT, REPERFORATORS, READERS, and AUTO TRANSMITTERS ETC. Send for list, 5 p.

Type 388B	MARCONI EQUIPMENT Variable Attenuator. $\mathbf{£ 1 2 . 5 0}$ each. Carr. 60 p .
Type 388С	Variable Attenuator. $£ 15$ each. Carr. 60 p .
TF-874.	Moisture Meter. $£ 28.50$ each. Carr. £1.
TF-899	Millivoltmeter. $£ 25.00$ each. Carr. 75p.
TF-934	Deviation Test Set, $2 \cdot 5-100 \mathrm{MHz}$ (can be extended up to 500 MHz on Harmonics). Dev. Range $0-75 \mathrm{KHz}$ in modulation range $50 \mathrm{~Hz}-15 \mathrm{KHz} .100 / 250 \mathrm{~V}$ a.c. $£ 45$ each. $£ 1.50$ carr.
TF-1026/4	1 requency Meter. $2000-4000 \mathrm{MHz}$. $£ 32.50 \mathrm{cach}$. Carr. $£ 1$.
TF-1026/5	Frequency Meter. $1800-2200 \mathrm{MHz}$. £30 00 each. Carr. $£ 1$.
TF-1026/6	Frequency Meter. $3800-4200 \mathrm{MHz}$. $£ 32.50$ each. Carr. £1.
TF-1026/7	Frequency Meter. $1700-2100 \mathrm{MHz}$. £30 00 each. Carr. £1.
TF-1091	Ph. Meter. $£ 4500$ each. Carr. £1.
TF-1093/1	$\mathrm{Ph} . \mathrm{Meter} . \mathrm{£} 48.00 \mathrm{each}$. Carr. $£ 1$.
TF-1262	UHF Millivoltmeter. $£ 55500 \mathrm{each} . \mathrm{Carr}$. $£ 1$.
TF-1263	Stort Element Counter. 50-200 Bauds. $£ 85 \cdot 00$ each. Carr. £1.
TF-1264	Slotted Line Attenuator. $£ 45.00 \mathrm{each}$. Post 60p.
TF-1267	Heterodyne Frequency Meter. $£ 8500$ each. Carr. £1.
TF-1274	VHF Bridge Oscillator. $\mathbf{3 0 - 3 0 0} \mathbf{M H z}$. $£ 65 \cdot 00$ each. Carr. £1.
TF-1275	VHF Bridge Detector. $£ 75$ 00 each. Carr. $£ 1$.
TF-1300	Valvevoltmeter. $£ 4000$ each. l'ost 75 p .
TF-1303	Transistorised Power Unit. £25.00 each. Post 75p.
TF-1350/1	Power Unit. ¢20 00 each. Carr. £1.
TF-1371	Wideband Millivoltmeter. $£ 45 \mathbf{0 0}$ each. Carr. $£ 1$.
TF-1377	Suppressed Zero Voltmeter. 0-500V. $£ 35 \cdot 00$ each. Carr. $£ 1$.
TF-1434 2	Counter Range Extension Unit. £55 00 each. Carr. £1
TM-5683	43DB Attenuator Unit. $£ 20 \cdot 00$ each. Post 60 p .
TM-6017	Stand. £3.00 each. Post 60p.
TM-6156	Attenuator 40DB. ¢20 00 each. l'ost 60p.
TM-6183	Decoding Unit. $£ 3000 \mathrm{each}$. Carr. $£ 1$.
TM-6184	Numerical Display Unit. $£ 15 \cdot 00$ cach. Post 60p.
TM-569 1	Preamplifier. $3 \mathrm{~Hz}-100 \mathrm{KHz}$. $£ 15.00$ each. Post 60 p .
TM-6600	Secondary Pulse Generator. $£ 15.00$ each. Post 60 p .
TM-6629	Signal Compressor. $\mathbf{£ 2 5} \mathbf{0 0}$ each. Carr. ¢1.
TM-6899/1	Assembly Unit. $\mathbf{x 6} 00$ each. Post 60p.
6076A	Deviation Test Set. $65-75 \mathrm{MHz}$. $£ 75 \cdot 00$ each. Carr. $£ 1$.

CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115V or $250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}$; or $180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}$. A small compact tropicalised instrument designed to meet requirements of radar and communication engineers and general clectronic scrvice. Measures 9 in. $\times 8$ in. $\times 6$ lin. Time base $10 c / \mathrm{s}-$
$40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity $40 \vee \mathrm{per} \mathrm{cm}$. $40 \mathrm{Kc} / \mathrm{s}$. Y plate sensitivity 40 V per cm . Tube 2 in . Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities
Complete with test leads, metal transit case. As new $£ 27.50$ each. Carr. $£ 1$. Complete with test leads, metal transit case. As new $£ 27.50$ each. Carr. $£ 1$.
POLARAD MSG-3 MICROWAVE SIGNAL GENERATOR:
$4 \cdot 5-8 \mathrm{GHz}$ Internal pulse and squarewave modulation. £185 each, carr. £1.50.
POLARAD MSG MICROWAVE SIGNAL GENERATOR: $12.4-$ 17.5 GHz . £ 225 each, carr. £1.50.

POLARAD KLXSTRON POWER SUPPLY Model KXB: Input 240 V a.c. $50-60 \mathrm{c} / \mathrm{s}$. $£ 55$ cach. Carr. $£^{2}$

TS-45/APM3 " X " BAND SIGNAL GENERATOR (and transmitter output power and frequency meter): $8 \cdot 7 \cdot 9 \cdot 5 \mathrm{GHz}$. Accuracy $\pm 2 \mathrm{MHz}$. 115 V a.c. $£ 25$ each, carr. £1.
USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$
vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv .
$\begin{aligned} & \text { rms } / \mathrm{inch} \text {. Triggered sweep, built-in trigger pulses and markers. Mains input } \\ & 115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s} \text {. Complete with all leads, probes and circuit diagram. } \mathrm{E42} 40\end{aligned}$
each, carr. £2
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in
6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$
$\begin{aligned} & \text { per sec. External PM. Percent Mod. O-30 for sine wave. Am or Pulse Carrier. } \\ & \text { O/put. Voltage } 0,1-100,000 \text { microvolts cont. variable. Impedince } 50 \Omega \text {. }\end{aligned}$
$\begin{aligned} & \text { O/put Voltaga } 0.1-100,000 \\ & \text { Price: } \mathbf{~} 85 \text { each }+£ 1.50 \text { carr }\end{aligned}$
FRECUENCY METER TS-74 (same TS-174): Heterodyne crystal con-
trolled. Freq. 20-280 Mc/s. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod.
$\begin{aligned} & \text { at } 1000 \mathrm{c} / \mathrm{s} \text {. Power Supply-batteries } 6 \mathrm{~V} \text { and } 135 \mathrm{~V} \text {. Complete with calibration } \\ & \text { book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) \&75 each. }\end{aligned}$
$\begin{aligned} & \text { book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) } £ 75 \text { each, } \\ & \text { Fully stabilised Power Supply available at extra cost } £ 7.50 \text { each. Carr } £ 1.50 \text {. }\end{aligned}$
CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal
$\begin{aligned} & \text { case with full operating instructions. } 2.4 \mathrm{~V}-480 \mathrm{~V} \text {. A.C. or D.C. in } 6 \text { Ranges, } \\ & 1 \Omega \text { to } 10 \mathrm{Meg} \Omega 2 \text { in } 5 \text { Ranges. Indicated on } 4 \mathrm{in} \text {. scale meter. Complete with }\end{aligned}$
$\begin{aligned} & 1 \Omega \text { to } 10 \mathrm{Meg} \mathrm{\Omega} \text { in } 5 \text { Ranges. Indicated on } 4 \mathrm{in} \\ & \text { probe, excellent condition. } £ 2 \text {. } 50 \text {, carr. } 75 \mathrm{p} \text {. }\end{aligned}$
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$
and response curve indicator with 6in. CRT tube and separate power supply.
Fully stabilised. Price on requesr.

TRANSFORMER HV: 228 V input $19,500-0-19,5004.5 \mathrm{KVA}$, Wt. 220 lbs $£ 30$ each. Carr. ${ }^{6} 4$.
MODULATOR UNIT: complete with transformer and 2×807 valves mounted in 19 in . chassis $\times 8 \mathrm{in}$. high $\times 8 \mathrm{in}$. deep. $\mathbf{£ 4} \mathbf{5 0}$ secondhand cond., or $\mathbf{£ 6} .50$ new cond. Carriage $£ 1$.
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves. Ideal for con
CONDENSERS: 30 mfd 600 v wkg. d.c., $\mathbf{£ 3} \mathbf{5 0}$ each, post 50 p .15 mfd 330 v a.c. wkg., 75p each, post 25 p . 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . 55

 4 mid $600 \mathrm{v} ., 2$ for $£ 1.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post 10 p .0 .01 mfd MICA 2.5 KV , $2.25 \mathrm{mfd} 25 \mathrm{Kv} . \mathrm{wkg}$. $£ 20$ each , $£ 3$ carr.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , $£ 2.50$ each, carr. 75 p . OHMITE VARIABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps . Price (either type) $£ 2$ each, 30 p post each.
TX DRIVER UNIT: Freq. 100-156 Mc/s. Valves $3 \times 3 \mathrm{C} 24^{\prime} \mathrm{s}$; complete with filament transformer 230 v. A.C. Mounted in 19in. panel, $\mathbf{~} 4.50$ each, carr. 75 p.

POWER SUPPLY UNIT PN-12A: 230 V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. mput. 4 Rectifying alves type 523 . on steel base $19^{\prime \prime} \mathrm{W}_{\mathrm{x}} 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime \mathrm{D}}$. (All connections at the rear.) Excellent condition £6-50 each, carr. £1
AUTO TRA VSFORMER: 230-115V, 50-60c/s, 1000 watts, mounted in a strong steel case $5^{\prime \prime} \times 6 \psi^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. $£ 7$ each, Carr. 75 p . $230-115 \mathrm{~V}$, Carr. 75p.
MODLLATOR UNIT: 50 watt. part of BC-640, comolere with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7 . 5 0}$ each, 75 p carr.

CATHODE RAY TUBE UNIT: With 3 in. tube, Type 3FG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{£ 3} 50$ each, post 50 p. TS 622/URM 44 SIGNAL GENERATOR: Freq. range, -7 to 11 GHz . O/put plus $£ 2.00$ carriage

APN- 1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1-25, post 30p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V.. 9 amps. $2 \frac{1}{2}$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. \&15 each, 2150p carr
AIRCRAFT SOLENOID UNIT S.P.S.T.: $\mathbf{2 4 V}, 200$ Amps, $\mathbf{£ 2}$ each, $\mathbf{3 0 p}$ post. DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 9 ohms. Tolerance $1 \% \mathbf{£ 3}$ each, 25 p post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ \mathbf{~} \mathbf{5} 5 \mathrm{each}$, post 30 p ,
CRYYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. £12.50 each, £1 carr.

VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . £3 each 75 p post. Input 115 V , output 135 V at 5 Amps. $\mathbf{£ 5}$ each, 75 p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ in , wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ cach, $£ 2 \cdot 50$ Carr. Ol 4 ft . high $\times 23$ in. wide $\times 19$ in. deep, with rear door. $£ 850$ each, $£ 2 \mathrm{Carr}$
FUEL INDICATOR Type 113R: 24 V conplete with 2 magnetic counters -9999, with locking and reset controls mounted in 3in. diameter case. Drice £2 each, 30p post.
MARCONI DERIVATIVE TEST SET OA-1259: This unit has been designed primarily for testing the linearity of modulator/demodulator equipment used in HF radio links. The unit (TF-1261) and a Scists ap stabilised power supplies Further details on request. Secondhand, excellent cond. $\mathbf{\Sigma} 225$ each. Carr. £2.
MARCONI TF-1234 UHF RECEIVER: Suitable for testing the RF stages of radio link equipment. A superheterodyne receiver tunable from $1700-2300 \mathrm{MHz}$. Complete with power supply. Secondhand, excellent cond. $£ 175$ each. Carr. £2.

TS-418/URM49 SIGNAL GENERATOR: Covers $400-1000 \mathrm{MHz}$ range. CW Pulse or AM emission. Power Range $0-120 \mathrm{dbm}$. $£ 125$ each. Carr. $£ 1.50$.
TN/130/APR. 9 UHF TUNING UNIT: Freq. $4300-7350 \mathrm{MHz}$. IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27-50 each. Carr. £1.
APR-4 AM RADIO RECEIVER: $90-1000 \mathrm{MHz}$. This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Power Supply $115 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. £100 each. Carr. £2.
R-361 RECEIVER: $225-400 \mathrm{MHz}$. 1 preset channel crystal controlled. Superheterodyne, voice and CW. $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ input. £35 each. Carr. £1-50.
TS-130 TEST SET: Complete with RF Probe type 1019 Freq. $0.9-12.5 \mathrm{KHz}$, and RF Probe type 1020 Freq. $0 \cdot 3-1 \mathrm{KHz}$. Also slotted line attenuator $1 \mathrm{M}-34 / \mathrm{U}$. Freq. $0 \cdot 3-4 \mathrm{KHz}$; and connectors. £45 each. £1 carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequency
 Post 60p.
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal (0.005%). Accuracy better than 0.02%. Dial directly calibrated every 1 KHz from $2.5-5 \mathrm{MHz}$. Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new" complete with Manual and Spares. £14 each. Carr. 75p.
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. "As new" £10 each. Carr. 75 p .
FILTER VARIABLE BAND PASS NO. 1: Dual channel unit, each channel has variable slot frequency of $500-900 \mathrm{~Hz}, 1200-1600 \mathrm{~Hz}$ and band pass facility 600Ω nput/output, monitor input and high impedance output iacks. Standard rack mounting 3 tin. deep panel. Mains operation $200-250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. "As new" $£ 6 \cdot 50$ each. Carr. 75p.
ROTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps. $4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. $1 \mathrm{Ph} . \mathrm{P} . \mathrm{F} .9$. $£ 17.50 \mathrm{each}$. Carr. $£ 1 \cdot 50$.
TYPE 8 A -Input 24 V d.c., Output 115 V a.c. $3 \mathrm{Ph} .1 .8 \mathrm{Amps} .400 \mathrm{c} / \mathrm{s} . ~ £ 7 \cdot 50$ each. 75 p post.
POWER SUPPLY: 230V a.c. input; 3000V @ $2 \cdot 5 \mathrm{~m} . \mathrm{A}$; 4v @ 1 Amp, 300-0-300 200mA; 6V@7Amp;6V @ 3 Amp. With smoothing capacitors etc. $£ 10 \cdot 00 \mathrm{cach}$. $€ 1.50$ carr.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm, $£ 1.50$ each, 30p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and purpose motors available. List 3p.
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. $£ 3.50 \mathrm{ca}$. +40 p post DALMOTORS: $\mathbf{2 4 - 2 8 V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. £5 each, 60p post
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). E4 each, 60p post.
MOTOR: 240 V single phase, $2,400 \mathrm{rpm}$. $1 / 40 \mathrm{H} . \mathrm{P}$. approx. Price $£ 1 \cdot 75 \mathrm{each}$, 30p post.

CALLERS BY TELEPHONE APPOINTMENT ONLY
W. MILLS

TELEPRINTER EQUIPMENT LIMITED

Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . . Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP. EQUIPMENT

SIEMENS

EQUIPMENT
OTHER
EQUIPMENT

SPECIAL

 EQUIPMENTPERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6S5, 6S6, 6S6M, 92, 35, 71, 72, 74 HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS 15, 19, 20, 28, 32, 33, 35
all configurations
PERFORATORS 14, 19, 28 LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.

TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN. CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

WW-089 FOR FURTHER DETALLS

COMMUNICATION ACCESSORIES \& EQUIPMENT
 LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300, 500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION)-20-way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS--type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include :

KEYBOARD PERFORATORS for offline tape preparation

AUTOMATIC TAPE TRANSMITTERS with speeds up to 250 w.p.m.
MORSEINKERS specially designed for training, producing dots and dashes on tape HEAVY DUTY MORSE KEYS
UNDULATORS for automatic record and W/T signals up to 300 w.p.m.
CODE CONVERTERS converting from 5 -unit tape to Morse and vice versa
MORSE REPERFORATORS operating up to 200 w.p.m.
TONE GENERATORS and all Students' requirements
CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS-
MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS
LAMPS, etc.

Special Offer!!!

MULLARD ELECTROLYTIC CAPACITORS

Type No.	Working Voltage Vdc.	Capacitance uF	Max. Ripple Current at $50^{\circ} \mathrm{c}$	Weight	Price
07115332	16	3300	2.4 amps	102	15p
07115472	16	4700	3.9 amps	102	17p
07115682	16	6800	5.8 mps	$1 \frac{1}{2} 02$	22p
07115103	16	10000	7.9 amps	$2 \frac{1}{2} 02$	27p
07215752	16	$7500+7500$	10.5 amps	302	37p
07215113	16	$11000+11000$	13.8 amps	$4 \frac{1}{2} 02$	49p
07116222	25	2200	2.2 amps	102	15p
07116472	25	4700	5.4 amps	$1 \frac{1}{2} 02$	22p
07216502	25	$5000+5000$	9.6 amps	$3 \frac{1}{2} 02$	37p
07216752	25	$7500+7500$	12.6 amps	$4 \frac{1}{2} 02$	49p

	Working Voltage Vdc.	Capacitance uF	Max. Ripple Current at $50^{\circ} \mathrm{c}$	Weight	Price
Type No.	40	$34003+400$	9.1 amps	$3 \frac{3102}{2}$	$\mathbf{3 7 p}$
07217342	40	$5000+5000$	12.0 amps	$4 \frac{1}{2} 02$	$\mathbf{4 9 p}$
07217502	63	680	$2 \cdot 1$ amps	102	$\mathbf{1 5 p}$
07118681	63	$1650+1650$	7.8 amps	302	$\mathbf{3 7 p}$

106 and 107 Series

A further 10% discount on lots of 100 of any one type. Please calculate the weight of your order and include appropriate postage.

10615103	16	10000	7 amps	2107	65p
10616223	25	22000	17 amps	1002	f1. 12
10617103	46	10000	12 amps	$7 \frac{1}{2} 02$	94p
10618153	63	15000	28 amps	1802	£1.79
10710222	100	2200	10 amps	$5 \frac{1}{2} 02$	74 p

RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for $£ 7 \cdot 50,1,000 £ 50$.

BXY $27 / 28 / 32 / 35 / 36 / 37 / 38 / 39 / 40 / 41$	\ldots	£1
Microwave Detector CAY 10		$\ldots 5$

Microwave Mixer $\kappa 5$

CL 7331 Microwave Gunn Effect Oscillat
Microwave Gunn Effect Oscillator
CL 8370
CL 8370
CL 8380
CL

Microwave Tunnel Diodes
AEY 13
AEY 16
Transistor
BF 180
85
$\boxed{6} 10$

BF 194
AF 124
20 p
10 p
20 p

100 CERAMIC RESISTORS 09 CERAMIC
CAPACITORS 100 DIODES

	PACK No. 1
100 RESISTORS 100 CERAMIC CAPACITORS 100 POLYSTYREN CAPACITORS	
	PACK No. 2

£1 1 VERO-BOARD CUTTER $52 \frac{1}{2}$ in. $\times 1$ in. 15 BOARDS
50 SQ. INS. "ODD PIECES' VERO.
£1 100 RESISTORS 100 CERAMIC SO MULLARD POLYESTER CAPACITORS
f1
20 ASSORTED UNUSED TRANSISTORS PACK No. 5
$\mathbf{f 1}$
1 TRANSISTORISED SIGNAL TRACERKIT
I TRANSISTORISED SIGNALINJECTORKIT

6 COMPUTER PANELS CONTAINING MANELS
DIODES, TRANSISTORS DIODES, TRANSISTORS,
INDUCTORS, RESISTORS \& CAPACITORS 1 100 RESISTORS (ASSORTED TYPES

SOLARTRON EQUIPMENT

TFA CARRIER CONVERTOR JX614 £35.
2 PHASE LF OSCILLATOR BO $567 £ 35$.
CALIBRATOR AT 203 E15.
VSWR INDICATOR CO $512 \mathbf{£ 3 0}$.
PULSE GENERATOR OPS 100 C Good condition £12. Exceptional $\mathbf{f 1 6}$.
LOW FREQUENCY DECADE OSCILLATOR 103-2A £35.
TFAREFERENCERESOLVER JX $746 £ 35$.
LOW FREQUENCY DECADE OSCILLATOR OS103 $£ \mathbf{5 0}$.
RESOLVED COMPONENT INDICATOR VP250
RES
f 30 .
E30.
RESO
£35.
LABORATORY AMPLIFIER AWS51A £12.50
LF PHASE SENSITIVE VOLTMETER VP253 535. LF PHASE SENSITIVE VOLTMETER VP253-2A
K40.
DIGITAL VOLTMETERS LM $1420-2$ f120.
LM 1440-3 £150. LM 1010-2 £50.
PULSE GENERATOR GO $1005 \mathbf{f 4 5}$.
Carriage on all above items E 1.50
DIGITEC VOLTMETER 4 digit read out. 100 MV DC FSD. Size $7 \times 6 \times 4 \frac{1}{2}$ in. 240 V input f 4250 ea. P. \& P. 50 p . WAYNE KERR VHF ADMITTANCE BRIDGE B 801 $£ 65$ ea. Carr. $£ 1.50$.
COSSOR MOTORISED SCOPE CAMERAS with 1.000 ft . of film. Complete $\mathbf{f 1 5}$ ea. Carr. £1 25 .

As above, manual operation with film $£ 10$ ea. P. \& P. $£ 1 \cdot 25$. MAGNETIC TAPE 1 in. 2400 ft . reel. NAB centres MAGNETIC TAPE 1 in. 2400 ft , reel, NAB centres
Used but good condition. $\mathbf{E 2} 50$ per reel P. \& P. 50 p

> TEKTRONIX

RM 1710 MHz oscilloscopes $\mathbf{E 2 2 5}$
Brand New RM 503 £250.
545A Frame $£ 300$.
CA Plug - in $\mathbf{f 8 5}$.
LPlug-in $£ 50$.
$524 A D$ Oscilloscope $\mathbf{f 1 3 5}$
109 Pulse Generator $\mathbf{£ 3 0}$.
1S1 Sampling unit $\mathbf{f 3 5 0}$

HEWLETT PACKARD

431 B £85. $200 \mathrm{CD} \mathbf{f} 45$
400 f £45. $430 \mathrm{C} £ 45$.
8733B Pin Modulator, Brand now $\mathbf{f 1 5 0}$.
OLD MODEL 10 MHz Fiequency Counter. Good
order $\mathbf{2 4 0 \mathrm { V }}$ Mains input. $\mathbf{f 2 5}$ ea. Carf. $£ 1 \cdot 50$

MARCONI TF 867 GENERATOR £135. Carr. £ $2 \cdot 00$ MARCONI TF 1300 VALVE VOLTMETER. As new £30 ea Carr f 1.50.
BERKELEY 40 MHz FREQUENCY COUNTER Standard main input $£ 35$. Carr. $£ 200$. RACAL SA 20 FREQUENGY COUNTER E17. Carr. £1 25
VARIACS. 20, 15 and 8 amps. All quality brands $\mathbf{£ 1}$ per amp plus carriage.

TELONIC Plug-in Modules. L7M-VR2M-LA1/M. ALL FOR $\mathbf{£ 1 2 5 - \text { or } \mathbf { f 5 0 } \text { each. }}$
HONEYWELL RECORDER. Electronik 15 £225. Others include Electuoflow; Speedomax G; Cambridge between $£ 10$ and $£ 60$. Write or call.

SERVOMEX Stab. Supply 3-30V. 0/40 Amps. $£ 75$. Carr. f3

ROBAND T112 $0-50 \mathrm{~V}$. 0.10 amps f45. Catr. f3 ADVANCE PP2. $0-50 \mathrm{~V}$. $0-10 \mathrm{amps}$. £45. Carr, $£ 3$. SOLARTRON True RMS Voltmeter VM 1484 £45. Carr. f1.25
MUIRHEAD PAMETRADA Wave Analyser D A89EM. In excellent condition f185

CITENCO MOTORS. 4 rpm 24 oz . in. Type CR12 $A C-D C$ Reversible. $110 / 240$ volts. Biand new boxed AC-50 ea. P. \& P. 37 p .
Large quantity new spares for above type motor. Bulk Sale only.
We have large stocks of SCOPE TUBES - some types which are impossible to obtain or very expensive. We may have an equivalent or can offer an alternative. S.A.E., please.
We stock large quantity of PAPER CAPACITORS, eg 8 mfd $1250 \mathrm{~V}: 0.5 \mathrm{mfd} 10 \mathrm{KV}$; 125 mfd 3.5 KV Rapid Discharge Write for details

MARCONI

FREQUENCY COUNTERTF1 345.10 MHz . Complete FREQUENCY COUNTER good condition but tequires some attention. in good condition
With manual $\mathbf{£ 2 5}$. Carr. $\mathbf{~} 1 \cdot 50$.
GENERATOR TF801B/3/S. As new condition f175. Used but good order £140.
SPECTRUM ANALYSER TF 1094/3 with LF Unit. As new £800.
TF1094. Old Model f125. 21 days delivery from order. Fulther information on request.
TV Sweep Generator. Complete with display f65: Carr. E1.50.
Low Capacitance Bridge TF 1342 £25. Carr. £1-50 Pulse Generator TF 675F E15. Carr. E150.
Distortion Analyser TF142F £50. Carr $\mathbf{£ 1} 50$.

NOISE GENERATOR by Cutler Hammer type 71. f65. Carr. f1.50

SIEMENS REFLECTOMETER BRIDGE 10 KHz to 30 MHz . Complete cased f65. Carr. $\mathbf{E 1} 50$
THERMOPLOTTER bY WESTON Metered. $60 / 100^{\circ} \mathrm{C}$. f50. Carr $£ 1.50$.
TUNABLE MICROVOLTMETER by I.R. Model 601 £85. Carr. $£ 1$-50.
10 TURN 3 GANG $\mathbf{2 5 0 K} 5 \%$ Lin $0.5 \% \mathbf{£ 1 2 5 0}$ ea. P. \&f P 25p.

SIGNAL GENERATOR No. 1 AM-FM CT 21285 KHz32 MHz £15. Car. $\mathbf{f 1} 150$.
SIGNAL GENERATOR No. 2. AM-FM. $20-80 \mathrm{MHz}$. f15 ea. Carr. £1 50.

RC OSCILLATOR by APT. $20 \mathrm{~Hz}-20 \mathrm{KHz} .15$ to 600 ohms . $\mathbf{£ 1 5}$ еа. Санг $\mathbf{E 1} 50$

MARCONI CT 320 Generator AM—FM $35 \mathrm{Khz}-18 \mathrm{MHz}$ Film Scale £35. Carr. $\mathbf{E 2} 00$.
E.M.I. WM16 PLUG IN TYPE 7/6. High gain differential Brand new boxed $\mathbf{£ 2 5}$ ea. P. \& P. 75p

LEYLAND SPECTRUM ANALYSER $5100-5900 \mathrm{MHz}$ 5 in. display $\mathbf{£ 1 2 5}$.

Cintel Square and Pulse Generator Model 1873

CINTEL Wide Range Capacitance Bridge Model 1361 f15 ea. Carr. E 1.50.

CINTEL Incremental Inductance Bridge f15. Cair. f1.50.

MUIRHEAD PHASEMETER. Type 729AM. Fine condition $\mathbf{£ 1 2 5 .}$
 MUIRHEAD Decade Oscillator D890A/4 $\mathbf{f 8 5}$. D890/A f75. Cart. f1 50.

AMPEX FR300 Tape Decks ex E.M.I. Computer. Complete in cabinets. $\mathbf{£ 1 7 5 0} \mathbf{~ e a . ~ C a r r i a g e ~ a t ~ c o s t . ~}$

QUANTITY OF VACUUM PUMPS. Callers only.
EDDYSTONE RX 770U £120. CaIr E1.50.
GEC RX BRT 400 f55. Carr. $\mathrm{f1} 50$.
SURFACE PROFILE MONITOR by G.V. Planar Model SPM 10 in as new condition $\mathbf{£ 1 7 5}$.

Modern SLOPED INSTRUMENT CASES. Size 15L. $7 \mathrm{D}, 8 \mathrm{H}, 10 \mathrm{in}$. slope. Provision for recessed front panelwith feet. Brand new in maker's original boxes. $£ 2.50$ incl. \mathbf{P} \& P.

BRUEL \& KJAER OSCILLATORS TYPE 1013 E85. Type 1014 £120

BRUEL \& KJAER Level Recorder 2304 £120.
LF OSCILLATOR CT 3650.1 Hz to 10 Khz £25. Carr. £1-50.

TEST GEAR COMPONENTS Etc. 1,000,001 ITEMS MUST GO

LISTS READY NOW-S.A.E. PLEASE

ATTENUATORS

Hatfield $0-12 D B$ in 1 db steps and $0-120$ DB in 10db steps. $£ 5$ ea. P. \& P. 50 p
STC TYPE $74600.0 \cdot 1 \mathrm{db}$ steps $0-1 ; 1 \mathrm{db}$ steps $0-9$ 10 db steps O-100. f6 ea. P. \& P. 50 p
ONE ONLY Potter tape unit. Good condition with all control modules. $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$.
Must go f75. Cart at cost

```
ROHDE & SCHWARZ EQUIPMENT
AF ANALYSER BN 48302-- ¢250.
NIDIOSCOPE BN 424101/2-£1,300
STANDARD SIGNAL GENERATOR BN 41409
AM-FM 4-300 MHZ-f650.
ZG DIAGRAPH BN 3560/50-&150
UHF RECEIVER USVD BN 1523 280-940 MHZ
&350.
```



```
160-230 M Hz-£100
160-230 MHZ-E1ON,NUATOR 75 ohm 0-100 DB
O-300 MHz BN 18042 75- E50.
PHASE METER BN 1941-E65.
UHFF SLOTTED LINE, 300-3000 MHz 100 ohms
BN 3926-E120.
```

E.M.I. SRO2 LF Oscillator, Precision and Swept 20Hz to 20 Khz with manual $\mathbf{\text { E15. Carr. }} \mathrm{E2} 00$.

PHILIPS VALVE VOLTMETERS
GM 6020 £25 GM $600 £ 30$
$\begin{array}{ll}\text { GM } 6014 £ 20 & \text { GM } 6012 \text { £25 } \\ \text { GM } 6015 £ 20 & \text { PM } 2520 £ 15\end{array}$

Carriage on above $£ 1.00$.

AIRMEC 861 OHMETER 0.3 ohm to 10 M ohms,

6 in . meter. f17-50. Carr. E1-50.

TRIMMER PACK-2 Twin 50/200 pf ceramic: 2 Twin each: 3 air spaced preset $30 / 100$ pf on ceramic base. each, 3 all spaced preset $30 / 100 \mathrm{pf}$ on
ALL BRAND NEW 25p the LOT. P. \& P. 10p

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitators, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

LANGREX SUPPLIES LIMITED
 Blackwood Hall, I6A Wellfield Road, London, SWIG 2BS Tel: 01-677 2424

Terms of Business: Mon. to Sat. Open to callers 9 a.m. to 5 p.m. Closed Sat. Ip.m. to 3 p.m. Express postage 5 p. for one valve; Ip. each additional valve
Express postage: lp. for each transistor, over 10 post free. All orders over $\mathbf{E 5}$ post free. Valves tested and released to A.R.B. specification if required.

STEREO IC DECODER
 HIGH PERFORMANCE PHASE LOCKED LOOP
 MOTOROLA MC1310P EX STOCK DELIVERY
 Separation : $40 \mathrm{~dB} 50 \mathrm{~Hz}-1.5 \mathrm{kHz}$.
 SPECIFICATION
 $1 / P$ level: 560 mV rms
 O/P level: 485 mV ims per channel
 Input impedance: $50 \mathrm{k} \Omega$. Power requirements Will drive up to 75 mA stereo 'on' lamp or LED.
 KIT COMPRISES FIBREGLASS PCB (Printed and tinned), Resistors, I.C., Capacitors, Preset Potm. \& Instructions.
 LIGHT EMITTING DIODE (Red)
 Suitable as stereo on indicator. For above
 f3-50 post tree
 35p plus p.p.

BENTLEY ACOUSTIC CORPORATION LTD．

AA GLOUCESTER ROAD，LITTLEHAMPTON，SUSSEX．Tel． 6743 THE VALVE SPECIALISTS．

 \qquad
幺䒑几

	OA ${ }^{\text {1094A／S }}$ H．F． SPECTRUM ANALYSER car ${ }^{2}$ r range： 30 M 5 weep up to 60 d Kc／s． encesmeasur＝ able．P．O．A． BRAND NEW TRIMPOTS HELIPOT： $10,50,100,500,5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}$ PAINTON： 200 ． 500 ， 2 Kohm ， 60 p each． RELIANCE： $1 \mathrm{KO}-\mathrm{K}$ ．45p each．Discount for QURAND NEW RELAYS BY＂DIAMOND THERMOCOUPLES．Mineral Insulated Metal Sheathed．Conductors：Positlve Aickel－ ductor Dlameter： 011 inch nominal．Toler－ ance：$\pm 3^{\circ} \mathrm{C}$ ．up to $400^{\circ} \mathrm{C}$ ．$\pm{ }^{?} \%$ between $400^{\circ} \mathrm{C}$ ． £2．25 post paid type $5.221 .3 .150 \quad \mathrm{sl2e} 120 \times 120 \mathrm{~mm} . \mathrm{ERO}^{2.50}$ postage included． Also as above 20 V．M．C．slze $60 \times 60 \mathrm{~mm}$ ． type S． 2193.254. £ 4.95 post paid． post paid． QUANTIZATION DISTORTION TESTER． Checks a．f．to a．f．distortion of p．c．m，systems． Utillses system power supply．Output level Variable in 1 dB steps．from 50 to +2 dBm ． Accuracy：$\pm 0.2 \mathrm{~dB}$ at $+2 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ incremental．Quantizatlon distortion： 0 to -40 dB in 0.5 dB steps．Meter indication： True r．m．s．Input impedance： $600 \Omega \pm 10 \%$ balanced． AVO MOdEL 3 VALVE TESTER Enables compre－ henslve charac－ teristics to be plotted，or meas－ simple good／bad Carf：CT 160 VALVE TESTER As above but in portable form as lllustra－ inci．carr． TEKTRONIX OSCILLOSCOPES
JOHN CRICHTON Eiectronic Equipment 5．58，Kingston Road，Raynes Park，London，S．W	

POWERTRAN ELECTRONICS

METALWORK SYSTEM
Designed to house Bailey, Blomley or Linsley Hood Class AB amplifiers with simple or regulated power supplies and Bailey Burrows pre-amp. Options of standard or hum reducing toroidal mains transformer. Also rotary control version. Details in price list.

TOROIDAL TRANSFORMER 60 volt 2 amp .
Max. height 2in. Suitable for our regulated power supply. . $\quad \mathbf{8 7 . 4 0}$
Simple clamp. 0.20
Magnetically screening clamp. 0.75

COMPONENTS FOR W.W. AMPLIFIER DESIGNS
I00W AMPLIFIER (FEB. 1972)
Designer approved kit.
Semiconductor set
Resistors. capacitors, pors
F/Glass PCB
POWER SUPPLY (For IO0W Amp.)
Designer approved kit.
Semiconductors, Resistors, capacitors, pots, trans formers, F/Glass PCB 30W BLOMLEY (New approach to class B) Semiconductor set
Resistors, capacitors, pots
30W BAIL
BAILEY (Single power rail)
Transistor set
acitors, pots
rail)
Resistors, ca
F/Glass PCB
..
LINSLEY-HOOD CLASS A (Dec., 1970, circuir)
2Nesigner approved kit.
2N3055 pair, BC212L, 2N171।
Resistors, capacitors, pot
F/Glass PCB
F/Glass PCB
LINSLEY-HOOD 20W CLASS AB
MJ481/491, MJE52I, BCI $82 \mathrm{~L}, \mathrm{BC} 212 \mathrm{~L}$, zener
Resistors, Capacitors, pots
Resistors, capacitors, pot
F/Glass PCB
Please state 8Ω or 15Ω
REGULATED 60 V POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of Bailey or Blomley amplifiers, featuring very pffective S/C protection. All Semi/C's, R's, C's, F/Glass PCL PRE-AMPS PRE-AMPS
Each component set comprises of all specified resistors, capacitors, transistors, pots, including special balance BAILEY/BURROWS (Aug., 1971)
Stereo F/Glass PCB
Component Set: Mono
Component Set: Mono
BURROWS SIMPLE PRE-AMP
Mono F/Glass PCB
(suitable for +'ve and -'ve voltage systems)
Component set: Mono
Component set: Stereo
LINSLEY-HOOD SIMPLE PRE-AMP
Stereo F/Glass PCB
(includes accommodation for mag. PU circuit but components for this are not supplied with the sets)
Component set: Stereo
STUART TAPE RECORDER
Set of stereo $\mathrm{f} / \mathrm{glass}$ PCBs
Components sets on price list.
For FREE I/Iustrated List please write to:
22 The Pantiles, Bexleyheath, Kent UK POST FREE EXCEPT WHERE STATED OVERSEAS AT COST

MAIL ORDER ONLY
15.60
2.50
5.60
1.85

SLIDER POTENTIOMETERS
LENGTH: 87 mm

WIDTH: 10 mm

TRAVEL: 55mm

Single: log or lin IK, 2K2, 4K7, 10K, 22K, $47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}$ Dual: log or lin IK, 2K2, 4K7.
Black/Chrome knob: type A or B1.25
1.8060

THYRISTORS				RECTIFIERS			23 mm CARBOR POTENTIOMETERS	
PIV IA	3A	7A	16A	1 A	5A	3A	Single:	lin 1 K to 2 M 2
$50 \stackrel{p}{25}$	${ }^{2}$	${ }_{45}^{P}$	${ }_{60}$	${ }^{P} 7$	${ }_{8}$	${ }^{P}$	Single:	$\log 4 \mathrm{~K} 7$ to 2M2
10027	30	50	65	7	9	20		lin or log 4K7 to 2M2
20035	37	55	75	8	10	22		
30040	45	60	85	9	11	25		ned;
40045	50	65	90	10	12	26		better than Log.

Zener Diodes 400 mW 4V7-30V 12p

SemiConductors $2 N 699$
$2 N 1613$ $2 N 1613$
$2 N 1711$ 2N2926G $\quad 0.10$ $\begin{array}{ll}2 N 3053 & 0.15 \\ 2 N 3055 & 0.45\end{array}$ $\begin{array}{ll}2 N 3055 & 0.45\end{array}$ $\begin{array}{ll}\text { 2N3442 } & 1.20 \\ 2 N 3819 & 0.23\end{array}$ $\begin{array}{ll}\text { 2N3819 } & 0.23 \\ \text { 2N3904 } & 0.17\end{array}$ $\begin{array}{ll}\text { 2N3904 } & 0.17 \\ 2 N 3906 & 0.20\end{array}$ $\begin{array}{ll}\text { 2N4058 } & 0.12 \\ \text { 2N4062 } & 0.11\end{array}$
 2N5830 40361 40362
BC107 BC107
BC108 BCl 108
BC 109 BCl 25
BC 26 BC 126
BCI 182 K $\begin{array}{ll}\mathrm{BCl} 82 \mathrm{~K} & 0.10 \\ \mathrm{BC} 212 \mathrm{~K} & 0.1\end{array}$ $\begin{array}{ll}\mathrm{BC} 212 \mathrm{~K} & 0.12 \\ \mathrm{BC} 182 \mathrm{~L} & 0.10\end{array}$ $\begin{array}{ll}\mathrm{BCI} 82 \mathrm{~L} & 0.10 \\ \mathrm{BCI} 184 \mathrm{~L} & 0.11\end{array}$ BC 184 L
BC 212 L BC 212 L
BC 214 L BF257 BF257
BF259 $\begin{array}{ll}\text { BF259 } & 0.4 \\ \text { BF } 29 & 0.47\end{array}$ BFX29
BFY50 MJ481
MJ491 MJ491
MJE521 MJE521
MPSA05 $\begin{array}{ll}\text { MPSAO5 } & 0.30 \\ \text { MPSA12 } & 0.55\end{array}$

'TEXAN'
 TEXAS INSTRUMENTS DESIGNED
 \& APPROVED FULL KIT

£28.50 post (UK) 45p INCLUDES TEAK CASE

20 Watt per channel stereo amplifier designed by Richard Mann of Texas Instruments and published in Practical Wireless May-July 1972. This 10 W distortion (0.09% at 20 W into 8 ohm), wide bandwidth (-3dB $\mathrm{Hz}-35 \mathrm{KHz}$) design is offered as a Texas Instruments approved full kit (including list list.

1.25
0.20
0.25
10
15
.45
20
.23
0.17
0.20
0.12
0.11
0.60
0.30
0.30
0.40
0.45
0.08
0.08
0.08
0.15
0.15
0.10
0.12
0.10
0.11
0.12
0.14
0.40
0.47
0.30
0.20
1.20
1.30
0.60
0.30
0.55
0.35
0.35
0.35
0.40
0.20
0.60
0.70
0.58
0.58
1.10
0.50
0.60
0.60
0.70
1.00
1.50
0.74
0.90
0.60
0.50
1.40
0.07
0.07
0.05
0.10
0.25
1.20

VITA VOX HIGH QUALITY

MICROPHONES
PRESSURE UNITS
And a wide range of associated eqpt. Further information from

GUNTON ELECTRONIC IGNITION KIT give you
\bullet

Continual Peak Performance - Up to 20% reduced fuel cons Increased Acceleration and Top Speed Longer Spark Plug Life Increased Battery Life

- Elimination of Contact Breaker Burn
- Purer Exhaust Gas Emission

12 volt onty - state pos. or neg. earth. Supplied with illustrated assembly and fitting instructions. with details for fitting all types of tachometers. Can be built in an evening and fitted in 15 minutes. Spare snap-on connectors for coil. etc. Call in for a demonstra-
tion SA.E. all enquiries please.

OVER 300,000 IN STOCK!
Multiway and R.F. Connectors by twenty different companies! Send us your detailed requirements quoting Nato numbers if known.
G.P.O.5-DIGITCOUNTER50V.Brand new. T.151A-E1.(P.Pd.)
G.P.O.5-DIGIT COU

VEEDERROOT 5-DIGIT COUNTER 20V. D.C. with manual
 DESSYN POSITION TRANSMITTERS AND RECEIVERS
For 24. D.C. operation. We have available various types of
Transmitiers and Blank Dial Receivers. Please advise us of your Transmitters and Blank Dial Receivers. Please advise to quote. GRELCO 6-WAY CONNECTOR BLOCKS
0 tor £1-25. (P.Pd.)
SANGAMO-WESTON MOVING-COIL RELAYS $\mathbf{6 5 0}+20$ ohm- $\mathbf{2} 2.25$ (P.Pd.) 2200 ohni- 2.25 . (P.Pd ENGLISH ELECTRIC VACUUM CAPACITORS
Variable. 7 -150pF. Type UB. $150-15-40-$ £26.50. (P.Pd.
$\begin{array}{lll}\text { MAINS TO } & \text { MAASS } \\ \text { 27V } 500 \mathrm{~mA} & \text { EJ.75 } \\ \text { DCPOWER }\end{array}$
$\begin{array}{llc}\text { MAINS TO } & \text { MAINSI27V } & \text { £3.75 } \\ \text { 27V } 500 \mathrm{~mA} & \text { DC POWER } & \text { EACH } \\ \text { STABILISED } & \text { SUPPLY } & \text { (P.PdU.K.) }\end{array}$
A.C. MAINS to $27 V$ D.C. UPOWER SUPPLY UNITS. These interesting 27V 0.5A units (wall happly provide 700 mA indefinitely) are buis being made for base or side mounting. Cable entry grommets are mounted in the base of the unit.
The choke capacity smoothed output is solid state stabilised The choke capacity smoothe output is solitput current, and againt and output fuses with spares are fitted. The output
 alarm circuit. Input voltage is $200-250 \mathrm{v}$ A.C. in
while the transformer secondary carries two taps. Al while the transformer secondary carries two taps. A A
termations to a Gretco block. There is adequate room for
other equipment within the ventiated case, which is $12^{n} \times$ other equipment within the ventilated case, which is $12^{n} \times$
$10^{*} \times 6^{\prime \prime}$ deep. Our price, brand new in carton with circuit, $10^{\prime \prime} \times 6^{\prime \prime}$ deep. Our price,
only $£ 3.75$ (P.Pd. U.K.).

MIL SYNCHROS AVAILABLE EX-STOCK In sizes $08,11,15,16,18$ and 23 for 50,60 and 400 Hz operation Synchro Control Transformers
Synchro Control Transmitte

Synchro Control Differential Transmitters ynchro Torque Transmitters and Receivers
Synchro Resolvers
TANTALUM CAPACITORS We hold large stocks by S.T.C. T.C.C., Dubilier, Kemet, Plessey, G.E.; etc., send for ETHER ELECTROMETHODS LOW INERTIA ETHER ELECTROMETHO
INTEGRATING MOTORS
Available ex-stock at extremely low prices. for 1-5, 6, 12 and $\frac{24 \mathrm{~V} \text { operation in stock. }}{\text { AERIAL DIRECTION INDICATING KIT }}$
AERIAL DIRECTION INDICATING KIT This set comprises a pair of Magslips to provide femote indica-
tion of aerial azimuth and comprises a transmitter and receiver. tion of aerial azimuth and comprises a transmitter and feceiver. receiver can be mounted at the control point, to provide immediate and continuous indication of aerial position. Supply voltage required is $\mathbf{i n c l u d i n g ~ a ~ p o i n t e r ~ f o r ~ t h e ~ r e c e i v e r . ~ T h e ~ s u g g e s t e d ~ u s e ~ o f ~ t h e s e ~}$ including a pointer for the receiver. The suggested use of these
items would include a mains operated, geared motor to drive the aerial controlled from the position to which is fed back position information by the magslip link. Trans
provlde 50 v 50 Hz from 240 v A.C. $£ 1.95$ each. (P.Pd.).
PLANNAIR. Axial flow Fans (with mounting) Type 6 PL-122-331 Mk. ${ }^{2}$ 6 $^{\prime \prime}, 2,800$ r.p.m. 400 v . 3 ph 50 Hz . New and boxed-- £18 (C.Pd. U.K.). DOWTY ROTOL VALVES 07402YB33. We have iust received a few of these difflcult to obtain items. P.O.A.
Full details and price on application. LIQUIDS. Capacity 2 U.S. galls. fitted with delivery taps.
Brand new in cartons- $\mathbf{E 2 2} \mathbf{5} \mathbf{5 0}$ (C.Pd. U.K.). 400 HZ INVERTERS. 27.5 v 150 A input. $115 \mathrm{v} \mathbf{4 0 0 \mathrm { Hz } 2 5 0 0 \mathrm { VA }}$ 400 HZ INVERTERS.
output. Not new but excellent condition; fitted with control outpur. Noing switchgear and voltage and frequency adjust-
box containing s.
ment circuits. These are extremely small for their capacity ment circuits. These are extremely small for their capacity

only 16 in long and 13 in high overall including the controi box | only 16 in long and 13 in high overal |
| :--- |
| which also carrles the circuit diagram. E29 (C.Pd. U.K. Mainld.) |
| MULICORE PVC COVERED TELEPHONE CABLE 24 | MULTICORE PVC COVERED

core £22 per 100 yds, 12 core $£ 18$ per 100 yds, 8 core $£ 12$ per core $£ 22$ per $100 \mathrm{yds}, 12$ core $£ 18$ per 100 yds, 8 core $£ 12$ per
100 yds 4 core $£ 10$ per $200 \mathrm{yds}, 2$ core $£ 3$ per 100 yds . (All C. Pd. U.K. Mainland).

HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE 10 DEF 12D Type 3 in following colours: violet, yellow, white, grey,
green, orange, pink, red and brown $70 / 0076^{\circ}$ conductors $\mathbf{£ 3 \cdot 2 5}$ green, orange. pink, red and brown $70 / 0076^{\prime \prime}$ conductors ex 25
per 100 yds (P.Pd.) also with $40 / 0076^{\circ}$ conductors in grey, violet, white, pink and red at $£ 2 \cdot 50$ per 100 yds (P.Pd.).

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& PLUGS \& SOCKETS Servo and Electronic Sales Ltd

TRANSFORMER/RECTIFIER UNIT Comprising a 380440 v 3 phase, 50 Hz input transformer and stud mounted silicon rectiffers. Output is 220 v D.C. 15 amps . Ideal for operation of
D. C. motors etc. $£ 27.50$ (including carriage U.K. Mainland). SPECIAL OFFER OF PROFESSIONAL HIGHEST GRADE SPECIAL OFFER OF PROFESSIONAL HIGHEST GRADE
POWER SUPPLIES! Two types of rack mounting supplies are avaliable both in
absolutely mint condition complete with all valves, spare luses etc. $\mathbf{C l}$ E. 25489 Ed.B. Dual outputs: $275 v$ at 250 mA D.C. and 6.3 v at 10 A A.C. Fitted switched $2^{\prime \prime}$ sa. panel meter to monito oufput voltage and current. The unit carries A.C. input and tapped input fransformer with output taps at $310-450 \mathrm{v}$ in 10 v steps and the taped primary and secondaries of 6.4 v 10 A (C.T.) 5 v 6 A (C.T.) and 4 V 8 A . The H.T. output is double choke capacity smoothed $(2 \times 8 \mathrm{H}+2 \times 8 \mu \mathrm{~F})$. A bridge metal rectifier is employed. H.T. switch is fitted. Beautifully finished in grey hammer stove
 behind F.P. Weight 66 lbs . Price £13.00 C.P. England and Wales plus $\& 1$ extra carriage Scotland and N.I.
Cat. W. 25495 Ed.B. Dual outputs: 275 v at 250 mA STABILISED and $6-3 \mathrm{v} 10$ A A.C. Fitted switched $2^{\prime \prime}$ square panel meter to monitor output voltage and current and 9 valive anode voitages The unit carries A.C. input and H.T. output panel fuses. The H.T. supply is derlved rom a tapped input transtormer with
output taps at $410-550 \mathrm{v}$ in 10 v steps and the L.V. supply from a separate transformer with tapped primary and secondaries of 6.4 V 10 A (C.T.) 5 v 6 A (C.T.) and 4 V 8 A . The H.T. output is
series stabilised by $4 \times$ KT66 valves. A bridge metal rectifier series stabilised by $4 \times$ KT66 valves. A bridge metal rectifie
is employed. Separate H.T. switching is provided from the is ent panel. Fitted with fult cover and beautifully finished in grey hammer stove enamel. Dimensions: Front panel $19^{\prime \prime}$ wide ${ }_{\varepsilon 19}^{12} 50 \mathrm{C}$ P England and Wales plus extra $£ 1$ carriage Scotland and N.I. TIME SWITCH Smiths type TT. $10 / \mathrm{KD} .0 / 10 \mathrm{~m} / \mathrm{nutes}$. Contacts
2-pole, $250 \mathrm{v} 50 \mathrm{~Hz}-\mathrm{E}^{2} 25$. (P.Pd.) KLAXON GEARED MOTORS
KLAXON GEARED MOTORS
240 v 50 Hz .1 r.p.m. 2 lbs.fin. $\mathbf{6} .25$. (C.Pd.)
Ditto. $110 \mathrm{v} .-£ 4.75$. (C.Pd.)

DRY REED INSERTS

Overall length 1.85" (Body length 1.1") Diameter $0.14^{\prime \prime}$ to switch up to 500 mA at up to $250 v$ D.C. Gold clad contacts- 63p per doz. $£ 3.75$ per $100 ; £ 27.50$ per 1,$000 ; £ 250$ per 10,000. All carriage paid.
Heavy duty type (body length $2^{\prime \prime}$) diameter $0.22^{\prime \prime}$ to switch up to 1 A. at up to 250 V. A.C. Gold clad contacts, $£ 1.25$ per doz., $£ 6.25$ per 100; $£ 47 \cdot 50$ per 1000 ; $£ 450$ per 10,000 . Changeover type $\mathbf{6 2} \mathbf{5 0}$ per doz. All carriage paid.
Operating Magnets 55p per doz. £4 per 100 ; £35 per 1000. All carriage paid.

The revolutionary new Supertester (80R. Buy it for what it is. Or buy it for what it can be.
 The Supentester 680R is a completely new concept in measuring instruments. In itself a high quality test meter with eighty ranges on a 128 mm mirror backed scale, it is also the basis of a complete measurement system. With the addition of the appropriate accessories it can measure a wide range of values including light, temperature, gauss and phase sequence. And there are other accessories to greatiy extend the 680 s 's range. The 680 S System offers many advantages iver conventional test meters including tremendous versatility and economy Amperclamp
 Signal Temperature Probe

 $501 \mathrm{KHz}_{2}$
 signats for circuit testing $£ 5.95$ Electronic Voltmeter
 Meter

 strengins f11.95
 OTHER ACCESSORIES AVAILABLE SHUNTS D.C. 25.50 and $100 \mathrm{amps} \mathbf{£ 4 . 5 0}$
 SUPEA TESTER
 680R SPECLFI- CATIOM.

 1 resistance
 of 17 Mohms for acc. and for d.c. and 1.6 Mohms shunteu by 10 pF tor a. C. $£ 18.00$

 WS LTD.

SIRMINGHAM $30-31 \mathrm{Gt}$. Western BLACKPOOL (Agent) O\&C Electronics, 227 Church St.
BRADFORD 10 North Parade (Closed Wed) DARLINGTON 19 Northgate (Closed Wed. DERBY 26 Osmaston Rd. (Closed Wed.) EDINBURGH 101 Lothian Road (Closed Wed.)
GLASEOW 326 Argyle St. (Closed Tues.) GLASGOW 326 Argyle St. (Closed Tues. LEEDS 5.7 Countv (Mecca) Acade. Briggate LEICESTER 32 Hight St. (Closed Thurs.) LONRPOL 73 Dale St. (Closed Wed.) MANCHESTER 60a Oidham St. Tel. 231629

HI-FICENTRES LTD 106 HENCONALL ORDERS TO: under ex. 30p extra over es, or as a exteut. Trade eqpplied. S.A.E. with enquiries.
EXPORT ENQUIRIES WELCOMED BRANCHES OPEN ALL DAV SATURDAYS AND OPERATE A 5-DAY WEEK MALL ORDERS NOT TO BE SENT TO SHOPS MIDDLESBROUGH 106 Newort Rd. NEWCASTLE 24 (Closed Wed.) Tel. 47096 NOTTINGHAM 19/19a Market St. (Closed Tel. 21469 SHEFFIELD 13 Exchange St. (Closed Thurs) STOCKPORT 8 Little Underbank Tel, 480077 SUNDERLAND 5 Marke Satar
 R.S.C. 666 Mkil $6+6$ WATt STEREO AM PLIFIFIER

COMPLETE KIT OF PARTS INC $£ 11.50$ TEAK FACTORY BULLTIE R.S.C. SUPER 30 MKIII HIGH FIDELITY STEREO AMPLIFIER

Push Button Selector Switching Jack Socket for Headphones
Neon Indicator
Satin Silver Finish Metal Faseia Solid State Circuitry
Sold sta cilice Tra
Four Diodes, Four Rectifies
* Four Diodes, Four Rectifiers Send S.A.E. for full descriptive leatlet

mg maniacturers
For Msenetic or
Cersmic Pick-Ups
regardless of Price
Output (per chanuel)
Frequita has into 8Ω
 CoMPLETE KIT (less

FACTORY BUILT UNIT INC. CABINET $\leq \mathbf{8 8 . 7 5}$ £44.95

REDNS ULTRA HIGH POWER LOUDSPEAKERS $12^{1 \prime}$ 'POP' $50 \quad 15^{\prime \prime}$ 'POP' 60 18" 'POP' 100

FANE SPEAKERS 'POP' $25 / 2$ £6.75

R.S.C. AIO 30 WATT HI-FI AMPLIFIER Nensitivity ithiat, Fir High Inay, mic. of

 B.S.C.MATNSTRANSFOPDMERS FULLY GOARANTEED. Interlesved and Impreg.
Wbere necegsary. Primaries 200 . 250 V . 50 Hz . Sereened.
MIDGET CLAMPED TYPE
 FULLY SHROUDED UPRIGHT MOUNTIN
 50-4-300v. $99 p$
$£ 1-05$

 DROP-THROUGH TYPE

suitable for Hullarid 5.10 . Auplifer

 $£ 1.40$
$£ 2.20$
$£ 2.20$ £2.65 22.65
$£ 2.20$
$£ 2.65$
64.95 $£_{55} 5 \cdot 10$
$£ 50$

10 OUTPUT TRANSFORMERS

HI-FI SPEAKER ENCLOSURES

 Tweeter cone extends high note
nency range 20. 15,000 IIz. Inpedgnce Cast (hassis REMMARKABLE VALUE
MODEL 803 T . 85

HI-FI SPEAKER SYSTEMS

BATTERY/MAINS CONVERSION UNITS

\section*{SELENIUM RECTIFIERS | F.W. |
| :---: |
| Brided |}

TRANSFORMERS

Primary 200.250 Volts LATING SERIES Tapped (120 V) and Earth Shielded Centre ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SECONDARY WINDING

Screned and Shrouded, 69.43 P \& P 67P Secondary 240V, Centre Tapped
Ref. VA Weight AUTO SERIES (NOT ISOLATED)
113
64
4
66
67
8
93
95
$115 V 500$ Watt totally enclosed outo transformer, complete with mains lead

PRIMARY LOW VOLTAGE SERIES (ISOLATED) $\begin{array}{llll}\text { Ref. Amps. } & \text { Weight } \\ \text { No. } & 12 \mathrm{~V} & 24 V & \text { Hu } \\ 112 \\ 111 & 0.5 & 0.25 & 12 \\ 213 & 1.0 & 0.5 & 1 \\ & & 0\end{array}$
111
71
18
70
108
72
17
115
187
226

Rei.	Amps.	Weight	Size cm.	30 VOLT RANGE Secondary Taps		
No.		lb oz.			f	
112	0.5		$8.3 \times 3.7 \times 4.9$	0-12-15-20-24-30V	1.01	2
79	1.0	20	$7.0 \times 6.4 \times 6.0$		1.35	
3	2.0	3. 2	$8.9 \times 7.0 \times 7.6$	".	2.01	
20	3.0	46	$10.2 \times 8.9 \times 8.6$	", ",	2.48	
21	4.0	60	$10.2 \times 10.0 \times 8.6$	", ",	2.94	
51	5.0	8	$12.1 \times 10.0 \times 8.6$., .,	3.66	
117	6.0	78	$12.1 \times 10.0 \times 10.2$	$\because \quad$ ",	4.36	
88	8.0	100	$14.0 \times 11.7 \times 10.0$		5.64	
89	10.0	122	$14.0 \times 10.2 \times 11.4$	\because ".	$7 \cdot 14$	67
Rei.	Amps.	Weight	Size cm.	50 VOLT RANGE Secondary Taps		
No.		16 oz			4	
102	0.5	111	$7.0 \times 7.0 \times 5.7$	0-19-25-33-40-50V	1.33	30
103	1.0	210	$8.3 \times 7.3 \times 7.0$		1.94	
104	2.0	50	$10.2 \times 8.9 \times 8.6$.,	2.69	
105	3.0		$10.2 \times 10.2 \times 8.3$	", ",	3.65	
106	4.0		$12.1 \times 11.4 \times 10.2$	", "	4.83	
107	6.0	124	$12.1 \times 11.1 \times 13.3$	"	7.14	
118	8.0		$13.3 \times 13.3 \times 12.1$	", ",	9.32	
119	10.0	1912	$16.5 \times 11.4 \times 15.9$	", ",	11.68	
Ref.	Amos.	Weight	Size cm.	60 VOLT RANGE		
124	0.5		$8.3 \times 9.5 \times 6.7$	$0-24.30-40-48-60 \mathrm{~V}$		
126	1.0	30	$8.9 \times 7.6 \times 7.6$		1.88	
127	2.0	56	$10.2 \times 8.9 \times 8.6$	"." ".	2.94	
125	3.0		$11.9 \times 9.5 \times 10.0$		4.48	
123	4.0	10.6	$11.4 \times 9.5 \times 11.4$, ${ }^{\text {, }}$	5.78	
120	6.0	1612	$13.3 \times 12.1 \times 12.1$	".	8.37	
122	10.0	232	$16.5 \times 12.7 \times 16.5$		13.85	

All rałings are continuous. Standard construction : open with solder tags and wax impregnation. Enclosed styles to order.

TRANSISTORS
TO MANUFACTURERS' FULL SPECIFICATIONS

$100+6.5 p$
$500+6.5 \mathrm{p}$
10.
hismum order 10 pieces
\star Quantity prices on application
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

H-astray

LASKYS - NEW DOLBY SYSTEM NOISE REDUCTION UNIT

The new Lask's NOISE REDUCTION UNIT uses the famous DOLBY 'B' system to provide users of reducing tape hiss by 3 dB at 600 Hz rising to 60 B at 1200 Hz and 10 dB for all frequencies above 3000 Hz . The unit is ideal for replay of pre-recorded tapes and cassettes now being issued in the DOLBY ' B ' format. Controts are provided for input levels and noise reduction on record and replay. 2 meters are fitted for instant checking of DOLBY level. Off tape monitoring is provided by the replay input sibis

Audiotronic 6 Pole

 QuadraphonicDecoder
Ahis and 4-channel discrete sources it pertorms records

50 matrix decoding function on SQ encoded programme material fadopted by the majority of the world's manufacturers). from disc. tape or FM radio. The four signals. when reproduced through four amplifiers and four speakers. will be presented as left, right and front, left and right nack information. Switching is provided for: $S Q$ recording and FM Broadcasts. "Ambient" for enhanced 2-channel sound by synthe allows overall level to be set plus a and 4 -channel record and playback. The mRIEF SPEC Input imp 40 K ohms. Output 1 mp 300 ohms. Freq. Resp. $4 \mathrm{~Hz}-100 \mathrm{KHz}$. Freq. Sep. GOdB. Rear Sep. 20 dB . Power Req. AC $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Size $180(\mathrm{~W}) \times 55(\mathrm{H}) \times 220$ (D) mm .

FERGUSON 3414 COMPACT SYSTEM Manual turntable and Golding 6800 H cart. Inputs for Tape play Auxillary and outputs for tape and headphones. Controis for valume. bass. treble and batance. The FM Tuner section has 5 pre-settable push buttons. Stereo broadcast indicato into 4 ohms. Freq porp $30-25 \mathrm{KHz}$ Harmonic
 $50 / 60 \mathrm{~Hz}$. Size $56.5(\mathrm{~L}) \times 38(\mathrm{~W}) \times 18.5(\mathrm{H}) \mathrm{cm}$. Walnut veneer finish. RH. 402 Complete with pair of

Philips RH. 402 Speakers PACKAGE
availabie separately at Ferguson 3414 Compact with a pair of Laskys Price $\mathbf{E} \mathbf{8 5}$

LEAK TRUSPEED Mk III
A low speed ($250 \mathrm{rpm} / \mathrm{m}$) synchronous 12 .pol
hysterasis motor $1100 \cdot 130 \mathrm{~V}$. or 200.250 V
gives constant turntable speed independent
mains voltage fluctacis. gives constant turntable speed independent and 45 r.p.m. Wow. less than 0.15%. Flutte balanced turntable mounting greatly reduce acoustic feedback. Cast aluminium turntable
 rim thus eliminating stipping caused by bowed or warped records. Size: $12 \frac{\text { Lin }}{\text { Lin }} \times 15 \frac{3}{3}$ in $\times 7 \frac{1}{2}$ in
nc. cover. COMPLETE WITH ARM. TEAK PLINTH. AND TINTED PERSPEX COVER AND

EXCLUSIVE TM-5

5K/ohms/V MULTIMETER
Another pocket multimeter from Laskys providing top quality arid with extra large 2 in square meter. Readability is superior on al ranges. making this an excellent instrument for servicing tran sistorised equipment. Recessed click stop selection switch. Zero ohms adjustment. Buff finish with crvstal clear meter cover Spec.: DCN: 3-15-150-300-1200 at $5 \mathrm{~K} / \mathrm{hmms} / \mathrm{V}$. ACN $6-30-300-600$ at $2.5 \mathrm{~K} /$ ohmis/V. DC Current: 0.300 uA 10 dB to 16 dB . Complete with battery and test leads. LASKYS PRICE $£ 2.45$

AUDIO - TRONICS 1973

JUST PUBLISHED The 1973 edition of Laskvs famous "Audio-Tronics Pictorial" is now

 avaliable. Bigger brighter and better than ever. Laskys brand new catalogue now contains 48 pages packed with all the latest H. F1 and electronics equipment - everything for tne layman and enthusias frastzoy ifyactio
Wilkinsons

RELLAYS P.O. TYPE 3000 BUILTTO YOUR SPECDECA

TO YOUR SPECIFICATION

* DUST COVERS
* QUICK DELIVERY
* KEEN PRICES
* QUOTATIONS BY RETURN HOME \& OVERSEAS
 Send for complete list of Carbon and Wire Wound types, all values.
GALVANOMETERS. Unipivot type $50-0-50$ Microamp, scaled $35-0-35$, Knife polnter, Mirro scale, 4 ln . dia. In leather carrying case $£ 10$ each. Post 40 p .
infinity, metal case, In good working ord £15 each Poss 40p.
PORTABLE VOLTMETERS 160 volts AC/DC moving Iron 8 in . MIrror scale In polished wood case with hinged flap $9 \frac{3}{4} \mathrm{in}$. by $8 \frac{1}{2} \mathrm{in}$. by $3 \frac{3}{4} \mathrm{in}$., only $\mathrm{f5}$ each, post 70 p , resistance suppled to extend range to 320 volts (scaie reading x2) 50 ex exra. $0-40$ volts $£ 2$ each. 0.5 amp same price. 10 MA $£ 1.50$ each, all post pald.
FREQUENCY METERS. $45 / 55$ c.p.s. 230 v. A.C. 6 in. dia. flush round $£ 10$. Post 70p SINGLE FUSE HOLDERS. Belling Lee L356 one hole flxing. 10p each.
GEARED MOTORS. 1 r.p.m. or 3 r.p.m. 4 watts very powerfut, reversible 24 v. £175, post 20p. can be operated from 230 V. with our $£ 1$ Transformer. Post 30 p . ERECTIFIER UNITS WESTALITE TYPE BC 3-3/15. Input 2001250 Volts AC. Output up to 6 Volts 15 Amps DC. Heavily damped 0/20 ammeter Moving Coil $2 \frac{1}{2}$ in. reads true charging current, which is regulated by a four posing rotary swith and sliding resistance. A ballas designed to stand on bench or flt to a wall £10. Carrlage 75p
MINIATURE DIGITAL INDICATOR, size of digits in. illuminated by 28 volt lamps reading 0 to 9 with decimal polnts, aulck alsconnect at rear of unif or easy lamp replace
the twelve lamps at the rear of the unlt is lighted, the lamp projects the corresponding digit on the condensing lens through a projection lens on to the vlewing screen at the front of the unit. E3 each. Hustrated details avaliable
BRIDGE MEGGERS, SERIES 1, 1,000 volits Box 0/9999 Box $0 / 9999$ ohms. Brand new. £65.00 each. Carrla
VEEDER-ROOT COUNTERS with zero reset 80 6 floures. 110 v. A.C. $£ 5$ post paid.
STROBOSCOPE FORKS 125 CYCLES. HIGH SPEED COUNTERS 3 In. $\times 1$ in. 10 counts per second, with
4 figures. The following D.C. voltages are
available, 6 v.,. 12 v., 24 v., 50 v., or 100 v.
Also supplled with auxiliary contacts,

lage 75 p . 000 counts per

$£ 1.75$
 4 pole 11 way and off $55.50,24$ pole 11 way and off E10.50. 54 pole Onjoft E7. 50.
MICROSWITCHES ROLER TYPE. HO Neywell S.P.C. 15 amp $125-250$ and MICROS WITCHES ROLLER TYPE, Honeywell S.P.C.O. 15 amp $125-250$ and
460 volts AC, 60 p each post pald. Quantit'd discounts. 10 amp 250 volt NSF, 40p
SPRINGLOADED TOGGLE SWITCHES. D.P.C.O. 10 amp FOOTPRESS SWITCH with sloping rubber-covered platform S.P.C.O. 5 amp.品
 LONGLEY RD. CROYDON, CRO 3LH. Phone $01-6840236$ Grams: WIL CO CROYDON WW-099 FOR FURTHER DETAILS
 PHONE AMPLIFIER which enable you to take down long telephoue you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office aid. On/Off switch. Volume control. Operates on one 9 v battery. Size 3in. x 4in. Ready to operate. Add $14 p$ extra for battery P \& P 22p.

WEST LONDON DIRECT SUPPLIES

169 KENSINGTON HIGH STREET, LONDON W8 6SN

Thermistors

F. J. Hyde, DSc, MSc, BSc.

The aim of mis book is to give for ane firsta a comprehensive account of the properties and applications of both positive and negative temperature coefficient (NTC and PTC) types of thermistors. In order that their potential usefulness in a wide range of instrumentation and measurement may be made evident. It will prove to be an indispensable reference book for all those interested in the application of this extremely useful circuit component 0592028070208 pages illustrated $1971 \quad$ £3.20 Available from leading booksellers or The Butterworth Group 88 Kingsway London WC2B 6AB Showrooms and Trade Counter 4-5 Bell Yard London WC2

VARIACS

Zenith Duratrak Type V6M Inp. 135v \& 115 v Outp. 135 v at 6 a
Zenith opentype Inp. 220v Outp. $0-253 \mathrm{v}$ at 0.5 a
£25.00 carr. $£ 1.00$

KEYBOARDS

ICT Numerical Type 81 CR7811-69
£15.00 carr. 35p ICT Alpha Verifier Type 82 CR7891-66 f27.00 carr. 50 p

PERIPHERALS

Data Recording Magnetic Tape Handler Type VI 7 Track $\frac{1}{2}{ }^{\prime \prime}$ complete witt. Read Write Heads suitable as replacement and spares for most ICL Computer Systems ICL Systems 4 - Line Printer 4555. RCA Tape Handlers 4/50 \& 70/445-2. RCA Type 150780 column Card Reader Plessey RAB/3 'M' (003) 32 K word 25 Bit 2 Micro second Memory System. Teletype Corp. Hi Speed tape punch (BRPE) P.O.A

CAPACITORS

Daly Electrolytic 9000 uf 40 v 50 p : Daly Electrolvtic 10.000 uf 70v 50n: Dubilier Metallised Paper Type 426 100uf 150v DC 50p: R.I.C. type 1297 1.8uf 440 V AC 35p.

MOTORS

Crompton Parkinson 240v 1 ph 50 c 0.125 hp 1400 rpm
£5.00 carr. 67p GEC fractional $1 / 12 \mathrm{hp} 230 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 1425 \mathrm{rpm}$ f3.50 carr. 67p E.E. $\frac{1}{2}$ hp 230 v 50 c 1 ph 50 c . 1440 rpm
10.00 carr. $£ 1.00$

FANS, CENTRIFUGALBLOWERS \& STARTERS
Woods Aerofoil short casing type" $\mathrm{S}^{\prime \prime} 2700 \mathrm{rpm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6$ " plastic impel ler incl. p.p. $£ 11.50$
Airmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller $\&$ casing (corres ponds to current type $39657 \frac{1}{2}$ ") 230 v 1 ph 50 c 2900 rpm Class " A " insulation 425 cfm free air weight $9 \frac{1}{2}$ lbs. incl. p.p. $£ 21.00$.

1ph 50c 2700rpm $7 \frac{1}{2}^{\prime \prime}$ impeller 14 blades incl. p.p. £13.50.

Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems, Steam exhausting, Pneumatic conveying. Cooling Electronic equipment. Air blast for Oil burners. Secomak Model 365 (corresponds to 5751 Airblast Fan. 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 44 lbs price incl. carr. £41.00. Secomak model 350250 v 1 ph 50 c 0.166 hp .2800 rpm continuous 50 cfm 2 in . \mathbf{w}.g net weight 34 lbs , price incl. carr. $£ 26.00$.

Air Controls type VBL4 200/250v 1ph 50c. 110 cfm free air weight $7 \frac{1}{2}$ lbs. priceincl. p.p. £14.50.

Where p.p. not advised, add 10 p per f handling \& post (In UK) Cash with order personal callers welcome open Mon. Wed. 9.30-5.30 Fri.-Sat. 9.30-6.00 Free Car Park adjacent.

FM STEREO ISHERE!

Have you considered converting your existing transistorised FM Tuner to Stereo? LOCK DISTRIBUTION now have available a Stereo Decoder Kit comprising P.C. Board, Motorola MC1310P (Coil-less Decoder I.C.), all resistors and capacitors, plus easy to follow Layout Diagram.

The lot for $£ 3.85$

All you have to do is build the Kit up and away you go.

Kits are also available for Tuning Indicators, using latest Motorola Light Emitting Diodes and Transistors, again supplied complete with all passives and P.C. Board.
Finally, if you are not keen on noise between stations a squelch Circuit Kit can be supplied. This also uses Motorola Transistors for quality and reliability.

Send Cash or Cheque for immediate delivery

LOCK DISTRIBUTION

Neville Street, Middleton Road, Oldham, Lancs. Tel: 061-624 6832 01-253 7521 021-783 5896

ICA 7655
WW-101 FOR FURTHER DETAILS

PHASE LOCKED LOOP (W.W. July 1972)			
MOTOROLA MC1310P KIT EX STOCK DELIVERY			
Complete kit MC1310P only	$\begin{aligned} & \text { £ } 3.40 \\ & £ 2.75 \end{aligned}$	Built and Tested Light Emitting Diode	$\begin{aligned} & \mathbf{£} 5 \cdot 50 \\ & \mathbf{£} 0 \cdot 35 \end{aligned}$
TEXAS SN76104N STEREO DECODER			
Complete kit SN76104N only	$\begin{array}{r} \mathbf{£} \cdot 00 \\ \mathbf{£ 1 . 5 0} \end{array}$	Built and Tested Set of 3 coils	$\begin{aligned} & \mathrm{f} 4.75 \\ & \mathrm{f} 0.80 \end{aligned}$
LATEST S.Q. QUADRAPHONIC DECODER			
A complete kit for the latest I.C. Decoder using the C.B.S. S.Q. system for quadraphonic disc reproduction.			

ORDER NOW FOR LATE JANUARY DELIVERY JUST RELEASED E.M.I. QUAD SPEAKERS

for quadraphonic and stereo use with the latest twin coil speaker system and patented electronic front-rear separators built in giving "surround sound" from existing stereo systems and future quadraphonic systems. LE3SS 15 watt RMS $\mathbf{£} 38.00$ each plus P.P.

TEXAS-HARDCASTLE AMPLIFIER KITS

The complete range from 10 watts to 100 watts. Power supplies for all kits available. See our advertisement on page 116 W.W. November, 1972.

TEXAS-MANN TEXAN (P.W. May-Aug. 1972)
Complete specification kit £28.50

NEWI OUR LATEST 25 WATT TEXAN VERSION

Complete kit with 2.4 amp power supply, BFR80 and BFR40 improved drivers and all push button selector array $£ 35.00$ complete. Order now for Dellvery Early Feb. 1973 to avold disappointment Send large stamped and addressed envelope for our latest llete of products.
SONAX ELECTRONICS (MAIL ORDER)
12A BURLEIGH PARADE, SOUTHGATE LONDON N14

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-5125

GARDNERS ISOLATION TRANSFORMERS PRI. ${ }^{110, ~} 200,220,240 \mathrm{v}$. Sec. $240 \mathrm{v}, 3$ amp. Conservatively
rated. Fully tropicalised. Enclosed in steel case. Size rated. Fully tropicalised. Enclosed in stee case. Size
$9 \times 6 \frac{1}{2} \times 6 \mathrm{ins}$. Brand new. Fraction of maker's price 8.50 .
Carriage 50 p .

SPECIAL OFFER OF MULTI TAPPED L.T. TRANSFORMERS VERY - CONSERVATIVELY RATED Gresham Pri. 200-220-240v. Sec. 29.5 v .

 $200 \mathrm{~m} / \mathrm{a}$ ' C ' Core. Table top connections. E4.50, carr. 50p.
Pri. 200-220-240v. Sec. $20-21-22-23-24-25 \mathrm{v}$
$6 \mathrm{a} .$.
$20-21-22-23-24-25 \mathrm{v}$.
$3 / 5 \mathrm{a} .$,
18-19-20-21-22-23v. 2a., 11-12-13-14-15-16v. 0-5a. twice $100-0.100 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$ ' C ' Core. T. Top connections. 86.50 carr. 75 p.
$\overline{\text { Pri. 200-220-240v. Sec. tapped } 63-68-74 v .}$
3a. and 6 v . 4a. Open frame terminal block 3a. and 6 v .4 a . Open frame terminal block
connections $£ 2.50$ P. P. 50 p . Pri. $200-220-240 \mathrm{v}$. Sec. $37-40-4 \mathrm{ved}$ ta.
105v. $300 \mathrm{~m} / \mathrm{a}$. twice. Oil filled potted $\frac{\text { ع. } 600 \text { carr. } 75 \text { p. }}{\text { Pri. } 200-220-24}$ Pri. 200-220-240v. Sec. 39v. 8.6a.i. 38 v .
2.6a. Oilfiled potted type. E8.50. carr. 75p Pri. $200-220-240 \mathrm{v}$. Sec. fapped $30-57.5-$
$115 \mathrm{v} .0-5 \mathrm{a}$. ${ }^{\text {' } \mathrm{C}^{\prime} \text { Core T. Top Connections. }}$ 115 v .0 .5 a . 'C' Core T. Top Connections.
£2.00 P. LTP Pri. $200-220-240 \mathrm{v}$. Sec. $6 \cdot 3 \mathrm{v}$, 8 a . three times. 6-2v. 3a. twice, open frame
type T. top connections $£ 3.75$ carr. 75 p . type T. top connections £3.75 carr. 75p.
Woden Pri, 220-240v. Sec. 10v. 2a. fully shrouded £1.50 P.P. 25p. Pri. 220-240v. Sec.
shrouded. 1.75 P .25 p .
Pri. 200-220-240v. Sec. tapped 3-10-13v. 7a. Pri. 200-220-2
Open frame.
Pri. ${ }^{220-240 \mathrm{~V} . ~ S e c . ~}{ }^{24.5-0-24.5 \mathrm{v} .}{ }^{0.75 \mathrm{a}}$. $\frac{{ }^{\circ} \mathrm{C} \text { ' Core. T. top connections } £ 1-50 \text { PP 25p. }}{\text { Pri. } 200-220-240 \mathrm{v} \text {. Sec. } 111-0-11 \mathrm{v} \quad 176 \mathrm{~m} / \mathrm{a}}$
 Pri. 220-240v. Sec. 22v. 0.9a. 21v. 0.006 a .
'C' core T. top connetions 75p P.P. 25p REDCLIFFE Pri. 200-220-240v. Sec. 12-0-
 $\frac{\text { P.P. } 40 \mathrm{p} \text {. }}{\text { Pri. } 220-240 \mathrm{v} . \text { Sec. } 24 \mathrm{v} .3 \mathrm{a} .}$ 'C' core T. top
 Pri. 220-220-240v. Sec. 5 P. ${ }^{\text {Pa. }}$.
T. top connections $£ 2.50$ P. 50 .
Pri. $200-220-240 \mathrm{v}$. Sec. $25-0-25 \mathrm{v}$. $154 \mathrm{~m} / \mathrm{a}$. 7v. 1.35a. 'C' core T. top connections ع 1.25 P.P. 25 p.
Pri. $240 \mathrm{v} . \mathrm{Sec}^{14 \mathrm{v} .6 \mathrm{a} . \text { open frame. T. top }}$ connections £2.00 P.P. 35 p . Pri. $110-240-440 \mathrm{v}$. Sec. tapped $24-26 \mathrm{v}$. 8 a .
6 v . 1a. open frame type $£ 3.50$ carr. 50 p . Gv. Ta. Open Pri. 200-240-240v. Sec. tapped 59Open frame terminal block connections. $£ 5.50$ carr. 50 p . Pri. 200-220-240v. Sec. tapped $56-58-60 \mathrm{v} .3 \mathrm{a}$ open frame. Terminal block connections
£2.75 P.P. 50 .

PARMEKO ISOLATION
TRANSFORMERS Pri. tapped 100-110-200-220-230-240-250v. Sec $115 v .13 \cdot 5$ amps conservatively rated
Fully shrouded table top Connections. Sizes $13^{\prime \prime} \times 10^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ Price $£ 32.50$. Carr. $£ 2$. Pri. tapped $200-210-220-230-240-250 \mathrm{v}$. Sec
tapped $90-100 \cdot 110-120 \mathrm{v} .7 .5 \mathrm{amps}$ con tapped $90-100-110-120 \mathrm{v}$. 7.5 amps con
servatively rated. Table top connections sizvatively rated. Table top connections.
Sizes $\mathbf{9}^{\prime \prime} \times 8^{\circ} \times 8^{\prime \prime}$. Price $£ 2250$ plus $£ 1 \cdot 50$ Sizes.
Carr.

HT TRANSFORMERS

 6.3v. 4.5A., $15 \mathrm{v} .1 \cdot 2 \mathrm{~A}$. Open Frame type
Table top connections $£ 1.75$. P.P. 25 p .

ISOLATION DRAKE TRANSFORMERS ISOLATION TRANSFORMERS Pri. 200-220-240v. Sec. 110 v . 50 watts. Open frame type. Table top connec- tions. Size $4 \times 3 \times 3$ ins. $£ 125$. P.P. 25 p

PARMEKO LT TRANSFORMERS Enclosed type PRI. 220-240v. Sec. 24-30

LT SMOOTHING CHOKES

 Gresham ' C ' core swinging types, $7.5 \mathrm{~m} / \mathrm{h}$

$4 \mathrm{~A}-100 \mathrm{~m} / \mathrm{h} 0.5 \mathrm{~A}$. $£ 3.00$. P.P. 50 p . Woden
$50 \mathrm{~m} / \mathrm{h} 2.5 \mathrm{~A}$

 $12 \mathrm{~m} / \mathrm{h} 7 \mathrm{~A}$. $£ 175$. P.P. $\mathbf{3 0 p}$. G.E.C. $150 \mathrm{~m} / \mathrm{h}$
3 A.
open frame tyo fully tropicalised. $3 A .0$ open trame type fully tropicalised.
$£ 2.75$. P. P. $\mathbf{3 5 p}$. Mains filter chokes $10 \mathrm{~m} / \mathrm{h}$ 2 A .50 p.
ohm res.

TUBULAR PAPER CAPACITORS
 6 mfd .440 v . Wkg. AC 50 p . P.P. 10 p

WODEN AUTO TRANSFORMERS 3,000 watts tapped 0-105-115-125-135-200-215-230-245-260v. Open rame type table top connections
Carr.
£ 150.
G.E.C. LT TRANSFORMERS
 Secs. $27 \mathrm{~V} .9 \mathrm{~A} ., \mathrm{gV}$ 9A., 3v. 9A.
The following voltages can be The following volages can be Open frame. Fully tropicalised.
Table top connections. $£ 4.50$. Carr. Table top connections. ©4.50. Carr.
50 p . As above at 1.8 A . conservatively 50p. As above at 1.8 s
rated $\mathbf{£ 1}$. $\mathbf{3 5}$. P.P. $\mathbf{3 5 p}$

$\begin{array}{l}\text { OMRON } \\ \text { AC 240v, Relays } 2 \text { pole } \\ \text { CO 5a. contacts single } \\ \text { hole fixing size } 11 \times 1 \% \times 1 t \\ \text { ins. } 40 \text { p. P.P. 10p. }\end{array}$

OMRON 3 pole co 5 a contacts single hole Octal plug in type relay. Perspex covered 2 pole co 7 za . contacts size $2 \times 11 \times 1 \frac{1}{4} \mathrm{ins}$

6V. DC. RELAYS
37 a. make contactors size make contactor
$2 \times 1 \frac{1}{2} \times 1$ ins. 50 p .
P.P. 10 p
PAINTON 12 WAY PLUGS AND Brand New SOCKETS
Brand New. Chassis mounting socket,
shrouded plug. 35 p. complete. P.P. 5 p . Shrouded plug. 35
6 -way 20p. P.P. 5 p.

LANDIS \& GYR COUNTERS 4 digits 48 V.D.C. 48 MA. 10 IMPIS Reset coil $50-60 \mathrm{~V}$. Size 4, . $\times 1 \frac{1}{4} \times$ 1t.
$£ 125$ P.P. 25p. Plessey AC 240 v . 5 digit counters 85 P P.P.15p Size $2 \frac{1}{\frac{1}{1}} \times{ }_{1 \frac{1}{4}} \times$ $1 \frac{1}{2}$ ins. G.P.O. 5 digit counters 40.50 v .
D.C. 2300 Si
$\times 1$ 15 p . Counting list Ltd. 6 digit counters ins. $£ 2.50$ P.P. 15 p .

SPECIAL OFFER TCC
Type CP147T. 4 mfd. 600 v . wkg. $70^{\circ} \mathrm{C}$.
 Three for $£ 1.00$. P.P.
Type 92 iM .8 m .d. 750 v . wkg. $60^{\circ} \mathrm{C}$. 50 p . Type 92 IM .8 mtd. $750 \mathrm{v} . \mathrm{wkg} .60^{\circ} \mathrm{C} .50 \mathrm{p}$.
P.P. 15 p . T e CP 154 SO. 1 mfd .4000 v .

HTT. TRANSFORMERS
FRACTION OF MAKER'S PRICE Pri. $200-240 \mathrm{v}$. Sec. 1875 v . $60 \mathrm{~m} / \mathrm{a} .4 .2 \mathrm{kv}$. PrI. $200-240 \mathrm{v}$. Sec. $630-0-630 \mathrm{v}$. $105 \mathrm{~m} / \mathrm{a}$.

 $5 \mathrm{v}, 3 \mathrm{a} .16 .50$. Carr. 50 p .
Pri. $115-230 \mathrm{v}$. Sec. $400-0-400 \mathrm{v} . \quad 400 \mathrm{~m} / \mathrm{a}$ E4.75. Carr. 50p.
AMOS. Pri. 200-220-240v. Sec. $1750 \mathrm{v} .5 \mathrm{~m} / \mathrm{a}$. $400-100-0-100-400 \mathrm{v}$. $100 \mathrm{~m} / \mathrm{a} .6 \cdot 3 \mathrm{v}$. 8 a . 4 v .2 a .
4 v .1 a . Enclosed type top terminal connec4v.
tions $£ 4.50$. Carr. 75 p .
WODEN. Pri. 230v. Sec. 890-710-0-710-890v $120 \mathrm{~m} / \mathrm{a}$. open frame table top connections.
Tropicalised $£ 2.50$. P.P. 40 p . Pri. 220-240v. Sec. tapped 150-165v. 4 amps. Open frame. T. top connections tropicalPri 200-220-240
Pri. 200-220-240v. Sec. tapped 300-325v.
$400 \mathrm{~m} / \mathrm{a} .6 .4 \mathrm{v} .1 .8 \mathrm{a}$. E .00 . Carr. 50 p . Pri. $200-220-240 \mathrm{v}$. Sec. 350 v . $100 \mathrm{~m} / \mathrm{a}$. 6.3v. 4 a . Three times ' C ' core T. top connections 4a. Three times '
E1-75. P.P. 35 p .

4.1 .0
 each

FET Input Fully British Made

Common mode rejection ratio 1000

Output
Common mode voltage Input offset voltage ± 10 Volts ± 10 Volts $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Input Impedance $\quad 50,000 \mathrm{M} \Omega$ Continuous short circuit protected

IMMEDIATE DELIVERY

ancom limited
devonshire street cheltenham T cheltenham 5386124690

THE
 $B_{U Y S}^{E S T}$IN FREOUENCY COUNTERS

YAESU MUSEN

YC-305 $30 \mathrm{MHz} \mathbf{£ 8 5}$ ex-stock YC-305D $220 \mathrm{MHz} \mathbf{£ 1 1 1}$ ex-stock

Free delivery by Securicor in 24 hours normally

Operates on 100-120/200-240 V AC o 12VDC
 8 digit capability
 Read out to $1 \mathrm{~Hz}(10 \mathrm{~Hz}$ when YC -305D

 OUR CUSTOMERS SAY. " The quality of construction i$£ 1,000+$ and would 'show many others the way home!'
 WE SAY, "For DELIVERY and AFTER-SALES SERVICE ours is the standard by which thers are judged

SPECIFICATION
Frequency Range: 5 Hz to 30 MHz Gate Times: 1 milli-sec. or 1 sec
Input Capacity: less than 20 pF Input Capacity: Iess than
Stability: 0.0005% at $25^{\circ} \mathrm{C}$

Accuracy: \pm time base stability +1 count
nout Impedance- high 1 M ohms, low 56 ohms Time Base: $1,000 \mathrm{KHz}$ crystal controlled Dimensions: $8 \frac{1}{4} W \times 3 \frac{1}{4} \times 10 \div$ inches

Maximum Input: 60 V p-pless than 10 sec . 20 V p-p continuous
Power Requirement: $100 / 110 / 11 / 7200 / 234 \mathrm{~V}$ AC 18 VA or $12-14-5 \mathrm{VDC} 1 \mathrm{~A}$
As main U.K distritutors of Yaesu Musen transmitters, receivers, etc. we hold extensive As main U.K. distributors of Yaesu Musen trans
stocks of spares and have full service facilities. "Your 'ONE-STOP' single source of all YAESU equipme

WESTERN ELECTRONICS (U.K.) LTD.,
OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN
Tel. TOTTON 4930 or 2785
Cables: AERIAL, SOUTHAMPTON

(II)
 1.2. (Electronics) Ltd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 0.05% at 1 KHz into 8 ohms!) and is electronically and mechanically compatible with the HY40.

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi -Fi but also for public address systems and industry.

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15% (typical 0.05%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$.
SUPPLY VOLTAGE: + 22.5volts D.C.
SUPPLY CURRENT: $\overline{0} .8 \mathrm{amps}$ maximum.
PRICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:-
MONO: £4.90
STEREO: $\mathbf{f 9 . 8 0}$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from $16-25$ Volts and a balance circuit which, when linked by a balance control to a second $\mathrm{H}+5$, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting $\mathrm{Hi}-\mathrm{Fi}$ standards, the HY5 combines extremely low noise with a nigh overload capability. When used in coniunction with the HY41 and PSU45 forms a completely intergrated system.

NPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve)
$2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay (external components to suit head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up lequalized and compen-
satable) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

ACTIVE TONE CONTROLS (Bexendali) Treble +12 db
Bass + 12 db .
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
$16-25$ volts
PRICE: MONO: $£ 3.60$ STEREO: $£ 7.20$

SUPPLY CURRENT
6 mA approx.
OVERLOAD CAPABILITY
better than 26 db on most sensitive input
infinite on tuner and auxl.
OUTPUT NOISE VOLTAGE: 0.5 mV .

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps.
Overall Dimensions: L. 7"; D. 3.8'"; H. 3.1'
PRICE: £4.50 inc. P. \& P.

SERVICE TAMDING CO

INPUT 230 v. A.C. $50 / 6 \mathrm{~B}$ OUTPUT VARIABLE O/260 y A.C. Carriage Paid BRAND NEW. All types
50 0.260 v. at 1 amp
AMP 0-260 v. at 2.5 amps 0.260 v . at 5 omps 0.260 v . at 10 amps $0-260$ v. at 20 amps $0.260 \sim$ ot 25 amps 0.260 V . at 25 amps $0-260 \mathrm{v}$. at 50 amps

Postage and Cartiage shown
below are inland only. Fo below are inland only. For
Overseas please ask for

issue a We do not
 igsue an agtslogue or list.

50 in 1 ELECTRONIC PROJECT KIT

equired. The Kit includee Speaker, meter, Relay, Transformer, plus a host of other components and a $56-$ page instruction leaflet. Some examples of the 50 possible Amplifier etc., etc. Price $£ 7$.75. P. \& P. 30p.

FOGR EASY TO BUILD KITS USING TUBES, SOLID STATE TIMING + TRIGGERING CIRCUITS, PROVISION FOR EXTERNAL TRIGGERING. 230-250V. A.C. OPERATION.
EXPERIMENTERS "ECONOMY" KIT EXPERIMENTERS "ECONOMV" KIT ponents including Veroboard S.C.R. Unifunction Xenon Tube + instructions
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories etc. Roller Adlustable circuit. New trigger coll, plastic thyristor Price £10.50. 50p P. \& ${ }^{\text {P }}$
Designed for use in large rooms, halls and the photo and a special trigger coil, Speed adjustable $1-201 . \mathrm{p} . \mathrm{s}$ Light output greater than many (so called 4 Joule)
strobes. Pricd 12.00 . P. \&
SUPER. 50 . Approx. 4 timees the light output of our well proven Incorporating, Heavy duty power supplf, Variable speed from t-13 flash per sec Never before a Strobe Kit with so HIGH an outATTRACTIVE, ROBUST, FULLY VENTILA: Hy-Lyght KIt including reflector, $\mathbf{£ 7} 00$. P. \& P. 45 p .
FOR HY-LYGHT STROBE incl. reflector, \& 400 . P. \& ${ }^{\text {PR }}$ PH POLISHED REFLECTOR. Idealiy suited Tor above Strobe Klts. Price 53p and 13p P. \& P. or
\qquad
RAINBOW STROBE FOUR LIGHT CONTROL MODULE

$$
\begin{aligned}
& \text { MODULE } \\
& \text { In response to numerous requests, we now offer a mains }
\end{aligned}
$$

$$
\begin{aligned}
& \text { In response to numerous requests, we now offer a mains } \\
& \text { operated fully Isolated shori-circuit-proof ready-built } \\
& \text { module, with varlable flash rate. It will operate tour of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { oper } \\
& \text { module, with varlable flash rate. It will operate four of } \\
& \text { our Hy-Lyght or Super Hy-Lyght Strobes in either } 1,2 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { our Hy-Lyoht or Super Hy-Lyght Strobes in either } 1,2 \text {, } \\
& 3 \text {, } 4 \text { sequence: } 2+2 \text {, or all together. Fantastic effects } \\
& \text { with or without colour filters. Modules can be connected }
\end{aligned}
$$

$$
\begin{aligned}
& \text { with or without colour filters. Modules can be connected } \\
& \text { together to operate } 8 \text { or } 12 \text { Strobes. Will work on long }
\end{aligned}
$$

$$
\begin{aligned}
& \text { runs of up to } 50 \text { yards, so that your Strobes can be spaced } \\
& \text { out tor maximum effect. Size of modue is } 5 \times 6 \times 1 \frac{1}{\text { tinn }} \text {. }
\end{aligned}
$$

fowas $-1-\infty$

 with full connection instructions.(HEW) for continuous duty AVAILABLE FROM 100 WATT THE FLL 25 ohm 10 ma., .7a., 500 ohm 45 a 1 ohm 280 mA . 1.5 k ofm $230 \mathrm{~mA}, 2 \cdot 5 \mathrm{k}$ ohm $\mathbf{2 a}$., 5 k ohm 140 mA ., Diameter
 5K ohm. All at $£ 1$.15. P. \& P. $7 \frac{1}{2}$ p.

俗 Black Silver Skirted knob calibrated in Nos. $1-9.1 \frac{1}{2}$ in. dia brass bush. Ideal for above Rheostats, I8p ea.

UNISELECTOR SWITCHES - NEW 4 BANK 25 WAY FULL WIPER 6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C.
operation. 66.50 , plus 25 p P. \& 8 BANK 25 WAY FULL WIPER

for quantities.

VERY SPECIAL OFFER

'HONEYWELL' LEVER OPERATED MICRO SWITCH 15 Amps 250 Volt A.C. clo contacts.
TYPES: N39, N95, Nioc, Noi.
 NEW
$£ 1.90$

INSULATED TERMINALS Available in black, red, whise Yoliow, blue and green. New
10p each. Post paid. Minimum

METER BARGAINS

balance/level meters

AMMETERS NEW! $2 \frac{1}{2}$ in. FLUSH ROUND available as D.C. Amps $1,5,75,20$ or A.C. Amps
$1,5.10,15,20$. Boht types $£ 175$ incl. P. \&P. $0-300 \mathrm{~V}$.

RELAYS

> LILATUR NEW SIEMENS PLESSEY, etc.

INSULATION TESTERS (NEW) Test tol.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed clutch. Size L. 8 in. W. 4 in., H. 6 in. weight 6 ib. 500 vOLTS. 500 megohms $£ 28$ carriage paid

230V/240V COMPACT SYNCHRONOUS
GEARED MOTORS
Manuactured by either Sangamo, Haydon

RPMAICW 3 RPHA/CW 20 RPH cw
Fraction of

250 r.p.m. $100-115 / 210-240 \mathrm{VAC}$. 2 in. $\times 1$ in. Ideal for rim-dive models, dilspay etc. Extremely
size including small capacitor. 75 p. post paid.

parvalux

Type: SDI.S/86896/0J

230250v. A.C. 50 . D.m. 22 10ins. $£ 7.00$ P. \&P. 30 p .
Continuously rated. Inc.., base $£ 7.00 \mathrm{P}$.
The above motors are new and unused.
PARVALUX TYPES SDI9 230/250 VOLTT AC REVERSIBLE GEARED MOTORS
30 r.p.m. 40 lb . ins. Position of drive spindle adjustable to
different angles. Mounted on substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A really powerful motor offered at a fraction of maker's price. 66.30 ,

PARVALUX TYPE SD2. 200 250 VO
A.C. D.C. HIGH SPEED MOTOR A.C. D.C. HIGH SPEED MOTOR Speed 9,000 r.p.m. approx. or 3,200 r.p.m.
if used with built-in governor, or variable if used with huile range if used in conjunction
speed over a wider
with our Dimmer Switeh, illustrated below.

With our Dimmer Swit PRICE: \&1.75 P. \& P. 25 p

600 WATT DIMMER SWITCH
(4) Easily fitted. Fully guaranteed by makers exeept fluorescent at mains voltage. Complete
with simple instructions.
$£ 3$ includina P. 8 P

XR-210 IC MODEM BECAUSE

FSK DEMODULATION

If you're a systems or circuit designer interested in Modems, we think you'll want to listen to our new XR-210 integrated FSK Modulator/Demodulator.

The XR-210 brings you the highest level of component and functional integration in any Modem circuit on the market. It has an internal phase detector, voltage controlled oscillator, high-speed comparator and an RS-232C compatible output driver. The integration of these functions allows you to cut two-thirds to four-fifths of the components you'd otherwise use in a discrete Modem design.

As a designer, you get less complicated systems, improved device matching and better overall performance, and promise of a fairly painless way to prototype your Modems.

Manufacturing people like this circuit because it reduces component count. Reliability is enhanced because of the XR-210's integration of many components onto a single silicon chip. And Exar gives off-the-shelf delivery.

The XR-210 uses an internal Phase-Locked Loop system and operates at 5 to 26 volts at 0.5 Hz to 20 MHz . It's especially well suited for 103 (300 Baud) and 202 (1800 Baud) type data sets.

EXAR SPEAKS YOUR LANGUAGE

QUANTITY	$1-24$	$£ 5.25$
	$25-99$	$£ 4.85$
	100 up	$£ 4.25$

Rastra Electronics lto.

275-281 King Street • Hammersmith • London W6 9NF • Tel. 01-7483143/2960 • Telex 24443

LINDAIR(ELECTROTECH)LTD

Silently driven bya shaded pole Mycalex motor. Compact, powerfut
and auiet running with aluminium Impeller and quiet running with aluminium Impeller (outlet $5 \frac{3}{4} \times 1$ 1i). Mains PRICE ONLY

$£ 1 \cdot 60$

PROGRAMME TIMER BY HONEYWELL 15 pairs of cams which in turn are individually adjustable to give switching periods of zero to 12 seconds with infinitely variable
combinations. A mains synchronous motor drives the cam shaft at 1 rev. per 12 seconds (5 RY.P.M.). Designed originally for vending machines at a cost of $£ 15.00$ plus. Many applications where
continuous sequence programmes are required, such as continuous sequence programmes are required, such as Ighting
effects etc. New in original maker's cartons. First class value at
$£ 5.75$ plus 25 . effects etc. New in original maker's cartons. First class value at
$\boldsymbol{\&} 575$ plus 25 p \mathbf{P}. \mathbf{P}.
 2^{2} and $12^{\prime \prime}$ water gauge (a max. of change-over switich single pole amps. 250 v . Swith rated rated.
inlet tube $\frac{1}{14}$ dia. Prolection Overall slae dia. $3{ }^{\prime \prime}{ }^{\circ}$ dept
plus $\mathrm{H}^{\prime \prime}$ (alr tube), fi.25.

"SORENG"MAINS
 "OAVENSET" MAINS SOLENOID.

MAINS SOLENOID BY MAGNETIC DEVNCES LTD. A beaulifully constructed bracket is incorporated for vertical or horizontal
mounting. Size:
 2: bolt. Plunger non-captive. New in original
 Large nuantity,

"HONEYWELL"'
MICROSWITCHES
Two and three bank, manual push. Ideal for vending machines.
etc. Each bank comprlses a change-over rated at 15 amps 240v. A.C. The through-panel
mounting assembly is in heavy mounting assembly is in heavy polythe surmounted by black
knob. Neck dia. ${ }^{2}$, 2 bank 40 p . bank 55p.

CURRENT FLOW INDICATOR Ideai for all types of battery
operated equlpment (portable machines, tape recorders, etc.). Four white segments appear
when current flows. Coll is
BOOS B/12v. Drawing only 8 ma on function. Neat in appear

Uniess otherwise stated-all ltems are NEW and UNUSED. Postal or carrlage charge are for Grest Britaln only. companles, edueationai drom depts., tric. All

MICRO-LITES

Wonderful engineering-micro miniature incandescen lamp small enough to pass through the eye of a needle 1,000 's of uses. WIII operate from the output of a tran
sistor. Ratlng: $1.5 \mathrm{v}, 10-15 \mathrm{ma}$. Size $4.4 \times 1.4 \mathrm{~mm}$. dia Leads 22 mm . These fantastlc lamps have a life expect
ancy of $1,000 \mathrm{hrs}$. OUR PRICE

recision fan co. (Smithy Induation) OOUBL BLOWER.,This is a beautifully BLOWER, -This is a beautitly
balanced, particularly quiet run ning unit givivg approx. 90 cubic fi. $/ \mathrm{min}$. The motor is a 2 pole
shaded pole 240 v . Mycalex.
drawing only drawing only 240 man . Mon run
Weight 2 Ib. Sizes: Case dia
$3 \cdot 1{ }^{\prime \prime}$, width (case only) 3.125 in. width overall (inc. motor) 5.25 in., aperture 3.125 in . by ${ }_{25 p} 18$.

brand NEW FERRANTI

 LIGHT EMITting diode (GALLIUM ARSENIDE) TYPE ZME 60FREE P. \&

Please note these are brand new devices and not
Seconds or Relects and are current Ferranti Stock.
DOUGLAS TRANSFORMERS
Full range in stock
For details please phone 01-402 5589

SYNCHRONOUS AUTO-RESET PROCESS TIMER by LONDEX LTD.

Brand Newn Mr Mkzed
These well known timers are already In world-wide use and are perlect for industrial Electronic Timing, and for ase and are control timing problems. Repetitive accuracy better than 0.5% of full scale setting. Two or more can be Interconnected to give control of a serles of processes. $230 / 250 \mathrm{v}$. 50 Hz , also available
60 Hz . 15 minutes full scale, 15 secs. per divislon. Drlven by selfstarting sync. motor. Contact rating 5 amp at 250 v . a.c. Incorporates solenoid operated clutch. Also, lever actuated micro switches multi-pin connector as illustrated.

OUR PRICE ONLY
£6.50

BRAND NEW RELAYS by "SCHRACK" (Perspex enclosed).
"RA" SERIES 4 changeover: 24 V AC, 48 V AC, 48 V DC; 110 V DC. Price 70 p each, $£ 7.50$ per dozen.

RL"' SER

RN" SERIES 2 changeover: 6 V AC $5 \mathrm{amp}, 12 \mathrm{~V}$ AC amp, 24 V AC 5 amp. Price 75p each. $\mathbf{E 7 . 5 0}$ per dozen.
"RN" SERIES 3 changeover: $24 V$ AC 5 amp. $48 V D C 5$ amp, 120V DC 5 amp, $12 V$ AC $5 \mathrm{amp}, 48 \mathrm{~V}$ AC $5 \mathrm{amp}, 110 \mathrm{~V}$ AC 5 amp . OTHER TYPES IN STOCK
ENQUIRIES WELCOMEO

CParval GEARED MOTORS "Parvalux" Reversiblors 100 RPM
Geared Motor. Tyoe S 14 . Geared Motor. Type S.D. $14,230 / 250 \mathrm{~V}$.
 Also limited number only as above.
Brand New. $£ 12.50$ each. P. \& P. 50 p.

SEEN THIS?

THIS IS THE ONLY WAY WE COULD FABULOUS ITEM!
NORPLEX the famous American fibre-glass copper-clad laminate. Excellent mech. and eles., conductive properties. Heat

FURTHER BULK PURCHASE SILVANIA MAGNETIC SWITCH NOW COMPLETE WITH REFERENCE MAGNET! A magnetically activated switch. Vacuum sealed in glass envelope. Silver contacts normally closed, rated 3 amp at 120 , systems, etce, and wherever non-mechanical switching is required. New Lower Price. Only $£ 2 \cdot 10$ for 12 ${ }_{\mathrm{E}}^{\mathrm{f}} \mathrm{f}$ for 50 or E 15 for 100 complete with magnet.

NOW OPEN

OUR NEW COMPONENTS SHOP 315 EDGWARE ROAD, LONDON W.2.

AOVANCE CONSTANT VOLTAGE TRANFDRMER. TYPE CVS 750A. InDU: 100-260 v,
 E47.50. Carlage £2.50 G.B. Only. requiring a billilant but tiny llght source. A vailable with flange cap or wire

E.1.25 P. \& P. 15 P

"HONEYWELL" Y3 Serles. Flush micro-swltch 10 amp. c/o. The side panel is Insulated.

MYCALEX. Open frame shaded pole motors
$240 \mathrm{~V} .50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{ln} .80 \mathrm{rpm} .12 \mathrm{lb} . / \mathrm{In}$
$£ 2.25$ each. $\mathrm{P} . \& \mathrm{P} .25 \mathrm{p}$. BRAND NEW "GRYPHON" BROOK REVERSIBLE MOTORS. TYpe TE 230/250v
50 Hz 1 Ph . 083 h .p. 1380 rpm 0.96 mps a 50 Hz ioad, i" spindie. This Is a superbly cone structed, slandard-fortmounted unit, with the extra facllity of reversal by remote switchlng.
Weight 16 lb . 10 oz . Offered in orlginal maker's Weight 16 lb . 10 oz. Offered in orlginal maker's
packlng at approx. half price. £.7:50. Carr. 75p. MAINS INDUCTION MOTOR. Open frame for spindle, weight : lb . Powerful. 83p each MAINS SHADEO POLE MOTOR. 240 V.A.C.

AMPEX7.5V.D.C.MOTOR. This is an ultra-precision in the AMPEX model AGG20
portable recorder. Torau $450 \mathrm{GM} / \mathrm{CM}$. Stall load at
500 ma . 500 ma . Draws 60 ma on run.
600 rpm $\pm 5 \%$ speed adust ment, Internal AFIRF sup-
1^{*} spindle, motor 3^{*} dia. x

 quotations). Mu-metal enciosure avallable HARWIN. Tapped (6 Ba) high voltage 'stand oft" insulators, length $4^{\prime \prime}$ ' tapped (8 Ba) t" long.
f.2.00 per 100 . Carrlage Paid. NIFAM WEATHER PRODF 3 PIN CDNsection and 1 free. P. \& S. interchangeable reting (approx.) 3 amp at $240 \mathrm{~V}, 10 / 12 \mathrm{amp}$ at

VINKOR POT CORE ASS. TYPE LA. 2103 (core LA. 2100). Normal price. $£ 1.48$. Our price 75p each. Speclal quote for quantly.
SLIDER SWITCHES, 3 amp, type D.P.D.T.
 $\times \grave{7}^{\prime \prime}$ deep. E1.25 per doz. El
as
required. Carrlage Pald.
We would like to announce that ELECTRO TECH SALES have now become membert expanaion programme giving a comprehensive and streamilined service. Whatever your electronic or electro-mechanica requiremente-contact us irrt, maybe we
can help. Wealso welcome trado enguirios.

EIEGTROVILIUE Electronic Component Specialists

SEMI-CONDUCTORS

Brand new, guaranteed to spec
No seconds or surplus.
Insulating sets free with power types
 \cdots you a

It's more than just

a catalogue

- and we give

$25 p$ REFUND VOUCHER with it

SIEMENS CAPACITORS

POLYCARBONATE 5% TOLERANCE
POLYCARBONATE 5% TOLERAN
250V. up to $0.1 p \mathrm{~F} ; 100 \mathrm{~V} \cdot 0.1 \mu \mathrm{~F}$ and above
$0.01 ; 0.012 ; 0.015 ; 0.018 ; 0.022 ; 0.027 ; 0.033 ; 0.047: 0.056 ;$ ach $4 p$.
 0.27, 0.33; 6p. 0.39 7p. 0.47 8p. 0.56 10p, 0.68 11p. IuF 13p. ELECTROLYTIC
(Valuos in iffiV)
$0.47 / 100 ; 1 / 100 ; 2 \cdot 263 ; 47 / 35 ; 10 / 25 ; 22 ; 16 ; 47 / 10: 47 / 25 ; 10010:$ 220/3 : each 5p; $10 / 63$: 22/35; 47/35; 100/16; 100/25; 220/6; 220/10; 220/16: 470/3 10.63: 2213
 100/63; 470/25: $1000 / 10$ each 12p. 220/63; 470/35; 1000/16; each 17p. $100 / 2520$ p. $470 / 63$; 1000/35 each 23p. 2200 ; 25 36p. $1000 / 63$:

The Electrovalue Catalogue No. 6 (4th printing - 96 pages) is as much a manual of valuable technical information as it is a comprehensive, up-to-date catalogue of semiconductors, components, accessories. materials, tools, etc. All items are brand new and makers" specifications. Prices are competitive, there are attractive additional discounts
offered, and now we include a refund voucher for 25 p available for spending on orders for $£ 5$ or more. Send 25p for latest Electrovalue Catalogue now, post free

- Hundreds of to-day's most wanted
- Slide and rotary potentiometers transistors, with data and outlines
- Resistors 8 capaci-

Diodes. thyristors.
tri-acs fully detailed
ranges

- Equivalents tables
- Switches relays, connectors
- Cs plus schematics, theoretical - S-Dec, T-Dec, and connection diagrams mounting boards - Materials. Hardware etc.

publications

EUS211 (74191) Uo down binary counter
Fi.124 (74192) Up down detade counter with clear
FL1 254193) UD down binary counter with clear

Mandbook of Transistor Equivalents.
40p. Handbook of Tested Transivtor Circuits (it. Ness), 40p. Rad:o Electronits. Colaur totes
hhart. 15 . Engineers Relerence Mand chart. 15p. Engineers Relerence Mand.
book \& itsles. 20p. Add 36 . for
postage on each of gove if bought postage on
separately.

Prices appearing in this advertisement are for guidance only. Current prices are as shown in
Catalogue No. 6 (4th printing).

MODERN TELEPHONES type 706. Two tone grey, $£ 3.75$ ea The same but black, $£ 2 \cdot 75$ ea. P. \& P. 25p ea.
AS NEW type 706 BLUE Ef ea. P. \& P. $^{25 p}$.
AS NEW TYP TOPAZ YELLOW $£ 450$ ea. P. \&P. 25 p .
STANDARD GPO DIAL TELEPHONE (black) with internal bell, 87p ea. P. \& P, 50, Two for $£ 1.50$, P, \& P, 75 p.
All telephones complete with beil and dial.
PHOTOMULTIPLIERS. Type 931A-c2.25 ea
SINE TO SQUARE WAVE CONVERTOR. 20 Hz to 250 KHz peak to peak. Completely assembled fibre glass board. $£ 2 \cdot 25 \mathrm{ea}$ P. \& P. 15p.

RELAYS

G.E.C. Sealed Relays High Speed 24V. 2m 2b-17p ea.
S.T.C. Sealed 2 pole c/o 700 ohms (24 V), 15p ea. 12v 35p ea. 2,500 ohm (okay 24v)-13p ea. S.T.C. Brand New 2 pole clo 6800 ohm coil-15p ea

CARPENTERS polarised Single pole c/o 20 and 65 ohm coil
 33p ea.
Variey VP4 Plastlc covers 4 pole clo $5 \mathrm{~K}-30 \mathrm{p}$ ea. $85 \mathrm{~K}-33 \mathrm{p}$ ea POLARISED Relay 2 pole c/o 250 ohm and 250 ohm coils. 25p ea.

POTENTIOMETERS

COLVERN 3 watt. Brand new, 5; 10; 25; 500 ohms; 1: $2.5 ; 5$ 10: 25; 50k all at 13p ea.
MORGANITE Special Brand new. 2.5; 10; 100; 250; 500K: 2.5 meg .1 in . seaied, 17 p ea

STANDARD 2 meg. log pots. Cúrrent type 15p ea.
INSTRUMENT 3 in. Colvern 5 ohm 35p ea.; 50k and 100 k 50p ea.
BOURNS TRIMPOT POTENTIOMETERS. 10; 20; 50; 100 200 ; 00 ohms; $1 ; 2 ; 2 \cdot 5 ; 5 ; 10 ; 25 \mathrm{~K}$ at 35 p ea. ALL BRAND NEW RELIANCE: $270 ; 470 ; 500$ ohms; 10 K at 35 p ea. ALL BRAND

ALMA precision resistors 100 K : 400 K : 497 K : 998 K : 1 meg$0 \cdot 1 \% 27$ p ea.; $3 \cdot 25 \mathrm{k}, 5 \cdot 6 \mathrm{k}, 13 \mathrm{k}-0 \cdot 1 \%$ 20p ea.

VISCONOL EHT CAPACITORS					
Slue $1 \times 2 \mathrm{l}$ ins			Sixe $1 \frac{1}{2} \times 5 \frac{1}{2}$ ins.		
5mid	2.5 kV	50p ea.	0.01 mfd	10 kV	50p
0.01 mfd	5 kV	40p ea.	0.002 mid	15 kV	65 p
0.001 mid	10kV	50p ea.	0.0005 mfd	20kV	
Size	$\times 6 \frac{1}{4}$ ins.		$0.1 \mathrm{~m} / \mathrm{d}$	4 kV	
mid		50p			
DUBILIER $0.1 \mathrm{mtd} 5 \mathrm{KV} ; 0.1 \mathrm{mfd} 7.5 \mathrm{KV} ; 0.25 \mathrm{mfd} 7.5 \mathrm{KV} ; 0.5$ 5 KV all at 50 p ea. P. \& P. 15 p .					
E.H.T. POWER UNITS type $532 / 1617,0-3 \mathrm{kV}, \mathbf{£ 1 5}$ ea. Сагт. £1.50.					
E.H.T. TRANSFORMERS (Standard Mains) 3 KV 600 MA. £20-00 ea. Сагr. $\mathbf{£ 1}$ 150.					
CAPACITORS 0.1 MFD 50 KV working. $£ 10$ ea. Carr. 1150. 0.1MFD 100KV working. $£ 16$ ea. Carr. $£ 1.50$.					

BINARY DECADE DIAL UP SWITCHES. Brand new. Finger tip. Engraved 0-9. Gold plated contacts. Size 1望" high $2 \frac{1}{11^{*}}{ }^{4}$ deep, $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ wide, $£ 1-50$ ea

LIGHT EMITTING DIODES (RED)

from Hewlett-Packard Brand new 38p each

Holder-ip ea. Information--5p
PHOTOCELL equivalent OCP 71, 13p ea
Photo-reslst type Clare 703. (TO5 Case). Two for 50p.
BURGESS Micro Switches V3 5930. Brand new 13p ea.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil Size $1 \frac{1}{6} \times \frac{3}{2} \times 4 \frac{1}{2}$ in. As new, by Sodeco of Geneva. $£ 2.50 \mathrm{ea}$ As above but 350 ohm . $£ 3.50 \mathrm{ea}$.

TRANSFORMERS. All standard inouts

STEP DOWN ISOLATING trans. Standard 240 V AC to
Transformer Size $27 \times 1 \frac{15}{27} \times{ }^{2^{\prime \prime}}$, Output 18 volt 1 amp with screen
Brand new. $\mathbb{1} 1.00$ ea. P. \& P. 25 .
Neptune series $460-435-0$ etc. 230 MA and $600-570-540-0$ etc.
250 MA . $£ 3.50$ Incl. post.
Gard/Parm/Part, 450-400-0-400-450. 180 MA. $2 \times 6.3 \mathrm{v}, £ 3$ ea Transformer 250-80MA; 13V-1.2A and 6.3V-5A. £1-50. P. \& P. 25p Neptune serles $350-0-350 \mathrm{~V}$ at 55 MA , separate winding $500-0$ 500 V at 250 MA . $£ 2 \cdot 00$ ea. Carr. $£ 1$ extra.
CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$, up to $120 \mathrm{~mA}, 42 \mathrm{p}$ ea. P. \& P. 17 p D to 250 mA 63p. P. \& P. 35p.

HARTLEY TYPE I3A ONLY £18.00

DOUBLE BEAM OSCILLOSCOPE

TB $2 \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}$. Band width $5.5 \mathrm{Mc} / \mathrm{s}$. Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$ Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. A completely reliable general purpose oscilloscope. Supplied with CIRCUIT DIAGRAM and Mains lead. Carr. $£ 1 / 50$.
As above. Complete with all accessories. £25.00. Carr £1.50.

OSCILLOSCOPES
 SOLARTRON 711S. 2 D.B. DC-9 mc/s, In fine condition © $\mathrm{DC}-15 \mathrm{mc} / \mathrm{s}$. Good condition $£ 50$
 SOLARTRON DC-10 mc/s. CD513-£40
 SOLARTRON CT316 (D300 range) DC-6 megs. £20 COSSOR 1049 Mk . IV. DB. $£ 35$

All carefully checked and tested. Carriage $£ 1.50$ extra.

MARCONI

Noise Gen. TF1106. £40. Carr. £1.50.
Vacuum tube Voltmeter TF1041A, £35; 1041B, £45 Wide Range Osclllator TF 1370 and $T F$ 1370A, $10 \mathrm{c} / \mathrm{s}-1$ mc / s from $£ 140$.
Deviation Meter TF934/2, £50 ea. Carr. $£ 1 \cdot 50$
Deviation type 719, £30 ea. Carr. 75 p.
TF 1026 Frequency Meter £12-50. Carr. 75
TF 329 Magnification Meter. As new condition $£ 60$
TF 195 Audio Generator $£ 10$. Carr. $£ 1.50$.
TF 308 A Signal generator £45 ea. Carr. $£ 1-50$
TF 386 Magnification Meter $£ 45$. Carr. $£ 1$.
TF $\$ 36 \mathrm{~N}$. 5 Impedance Bridge from $£ 50$ ea. Carr. $£ 1 \cdot 50$ TF 144 G SIgnal Generator. Servlceable. Clean $£ 15$. In TF 885 Video Oscillator Sine/Square £35. Carr. £ $\$ 50$ TF 885/1 £55. Carr. $£ 1 \cdot 54$.

SOLARTRON

Stablilsed P.U. SRS 151. £15. Carr. $£ 1.50$
Statitised P.U. SRS 152. £10. Carr. $£ 1.50$
Precision Millivoltmeter VP252. £25. Carr. $£ 1$
Oscillator type OS 101 . £30. Carr, $\mathbf{£}$-50.

Electronic Testmeter CT 38 . Complete £20. Carr. £1

AIRMEC

Signal Generator type 701. £25. Carr. $£ 1 \cdot 50$.
AIFMEC Generator type 210 £ 120 . Carr. $£ 1 \cdot 50$.
E. M.I. Oscilloscope type WM16. Main frame £125. Choice of Plug in $7 / 2 \mathrm{OC}-24 \mathrm{mc} / \mathrm{s} \times 2 £ 35 ; 7 / 1 \mathrm{DC}-40$ megs $£ 25$ Diffrentiai unit available from $£ 40$.
E.M.I. WMB. DC to $15 \mathrm{mc} / \mathrm{s}$. Compl amp, from $£ 40$.

BECKMAN MODEL A. Ten turn pot complete with

E.H.T. Base B9A in Polystyrene holder with cover. Brand new 13p ea.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new Single sided up to $2 \frac{1^{\prime \prime}}{2}$ wide $\times 15^{\prime \prime} \frac{1}{\frac{1}{2}} \mathrm{p}$ per sq . In. Larger plece ip per sq. in. Double sided. Any size ip per sq. in. Postage 10p per order.

PANEL mounting lamp hoiders. Red or green. 9p ea. MI niature PANEL mounting lamp with holders-10V 15MA $5 p$ ea

Standard 240 V MOTORS by CITENCO reductlon gearbo to 19 r.p.m. reversible, $£ 5$ ea.
Also 57 r.p.m. and 114 r.p.m

GYROS Large clear plastic topped. Type A £4 ea. P. \& P. 75p.
Single pole 3-way 250 V AC 15 amp switch. Bp ea. P. \& P. 5p.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units. etc., at "Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

VALVES

VALVES AND TRANSISTORS Telephone enquiries for valves,
transistors, etc., retail 743 4946; trade and export 7430899

TEST EQUIPMENT
 VALVE VOLTMETER
TYPE TF 958 Measures AC
100 mV i $20 \mathrm{c} / \mathrm{s}$ to
$100 \mathrm{mc} / \mathrm{s}:$ $100 \mathrm{mc} / \mathrm{si} \mathrm{DC}$
50 mV to
multiplier extends multiplier extends
ac range to 1.5 kV .
Balanced input Batanced input
and centre-zero
scale for DC. AC $\mathrm{up} 1 \mathrm{t}^{\circ}$
$£ 32.50$.

TF 1066 B/2 F.M. SIGNAL GENERATOR. Frequency range $\begin{aligned} & 400-555 \mathrm{MHz} \text { in one band. } \\ & \text { Crystal calibration: } 1 \mathrm{MHz} \text { and } 10 \mathrm{MHz} \text {. }\end{aligned}$ Crystal calibration: 1 MHz and 10 MHz .
Output: piston attenuator $0.1 \mu \mathrm{~V}-100 \mathrm{mV}$ at
50 ohms. Int. mod. frea. 1 to 10 Hz , ext. 50 ohms. Int. mod. frea. 1.10 coshz , ext. mod . treq. 100 Hz to 100 kHz . Fr
300 ktz . $£ 250$. Carriage $£ 1.50$.
TF 125sA VHF SPECTRUM ANALYSER for analysis and measurement of Radar
Equipment. Frequency range 190 to 230 MHz with crystal check points. Sweep width 0.5 to 5 MHz , output pulse delay (a) $85-175 \mu \mathrm{Sec}$,
(b) $0.7-1 / 4 \mathrm{mSec}$ with $\times 1$ and $\times 2$ multipliei $\begin{aligned} & \text { and }-2, \times 1, \times 2 \text { muitiplier. Output } 2 u v \text { to } \\ & 20 \mathrm{~m} \\ & \text { with }\end{aligned} \times 10$ multiplier. $£ 250$. Carriage at cost. MUIRHEAD PHASEMETER. Type D729/ AM and P.S.U. D729 A/S.
manual, leads, as new $£ 200$.
TF 1400 S DOUBLE PULSE GENERATOR
WITH TM $6600 / \mathrm{S}$ SECONDARY PULSE UNIT. For testing radar, nucleonics. "scopes counters, filters etc. SPEC. TF 14005. Rep
trequ. 10 Hz to 100 kHz , pulse width 0.1 to
100μ sec delay -1.5 to $+3000 \mu \mathrm{sec}$. rise time < 30 N sec.
SPEC. TM $6600 / \mathrm{S}$. As for TF1400S except
pulse width $0.5025 \mu \mathrm{sec}$, delay 0 to $+300 \mu$ $\mathrm{sec}, £ 200$.

Open 9-12.30, 1.30-5.30 p.m. * excepl Thursday 9-1 p.m.
 5.40
0.48
0.37
3.40
9.00
3.00
0.72
0.72
0.50
0.70
0.80
0.35
0.55 UBF80
UBF89
UCC85
UCF80
UCH42
UCH81
UCL82
UCL83
UV41
UF80
UF89
UL41
UL84
UUB
UY41
UY85
VH105/

the valve with a guarantee

 pulse modulation. Built-in 5 MHz crystal
calibrator. Separate R.F. and mod. meters. P.O.A.

TF 562B/3 Oscillator and Detector Unit.
TF 886A Magnification Meter.
TF
TF
TM
1225 122
577 A 〉White Noise Test Set.
TF 1104 VHF ALIGNMENT OSCILLO. SCOPE combining sweep generator, markers etc. Frequency range 5 kHz to
$10 \mathrm{MHz}, 10 \mathrm{MHz}$ to 40 MHz and 41 to 216 MHz . S weep width 500 kHz to 10 MHz , output
$100 \$ \mathrm{~V}$ to 10 mV . Markers $0.5,1 \& 5 \mathrm{MHz}$. 100 SV to 10 mV . Mar
Price on application.

hewlett-packard

HEW BOO MHZ SAMPLING OSCILLO.-
SCOPE WITH 188A DUAL TRACE SCOPE WITH 188A DUAL A. 5248 COUNTER FREQUENCY tloning of decimal point. Period measurement: $0-10 \mathrm{kHz}$, reads in seconds. milliseconds or microseconds, decimal point automatically positioned. Display
on 6 neon lamp decades and 2 meters. on 6 neon lamp decades and 2 meters.
Complete with manual and following plug-ins: 525 A io to $100 \mathrm{MHz}, 525 \mathrm{~B}$ 100
to $220 \mathrm{MHz}, 526 \mathrm{~A}$ video amplifler. Price on application.
540B TRANSFER OSCILLATOR. Extends range of 524 and 5245 series
counters to 18 gHz , or on its own,
measures trequencies below 4 gHz with 0.5% accuracy.
430C MICROW AVE POWER METER. unable bolo, BM16 wavegulde, E125. 205AG AUDIO OSCILLATOR, Low
distortion, 20 Hz to 200 kHz , metered and attenuated inputs and outputs enabling a very wide range of measure-
ments to be made on amplifiers, filters. ments to
etc. $£ 145$.
200CD WIDERANGE OSCILLATOR.
5 Hz to $600 \mathrm{kHz}, ~$
TELEPHONE ENQUIRIES 年elating to TEST E EUIPMENT Sholld

PLEASE NOTE
ALL EQUIPMENT
hauled mechanically and electrically

BCRCAET Hallicralters.4336 also modifled version of	
Increased output to 700 w .COLLINS TYPE 2310 $4 / 5 \mathrm{kw} ., 10 \mathrm{channel}$,	
autotone and manual tuning. All above	
complete installation and spareTRANSCEIVERS	
19, 19HP, 38, 62.	
$\text { C- } 13 \text { TRANSMITTERS }$	
MARCONI CR100 RECEIVERS. To clear, untested, as seen fe.	
V.H.F. Q-METER TYPE TF As6B. FRequency range: 20 to 260 MHz in 4 ranges. Q Range: 5 to 1,200 . Precision test clrcuit capacitor calibrated at $0,02 \mu \mu \mathrm{~F}$ intervals £65. Carriage $£ 2$	
HARNESS "A" " \mathbf{B} " control unlts Junction boxes, headphones, microphones etc.	
R.F. METER $0-8$ amp. $2 \frac{10}{\prime \prime}^{\prime \prime}$ (U.S.A.) £2.2 P. \& P, 15p.	
TELEQUIPMENT	
Separate Y amps 0.1 to $500 \mathrm{~V} / \mathrm{cm}$, time base $1 \$ / \mathrm{sec}-500 \mathrm{~m} / \mathrm{sec}$.	
0.1 to 50 v per cm . Time base $1 \mathrm{u} / \mathrm{sec}$ -	
0.1 to 50 v per cm . $100 \mathrm{~m} / \mathrm{sec}$. Price on application.	

METERS $\begin{aligned} & \text { Full List of our very large } \\ & \text { stock of meters on request }\end{aligned}$ NTEGRATED CIRCUITS Texas SN 76131N Stereo pre-amp 00.65 . RECEIVER 100/126 mics. Pricy £1200. Cartiage £1.5 H.F. TRANSCEIVER TR26 TELEPHONE TYPE "J" (Tropicalised) 10 IINe MAGNETO TELEPHONE SWITCHBOARD
200 line AUTOMATIC PRIVATE TELEPHONE SWITCHBOARD line AUT MATIC PRIVATE TELEPHONE SWITCHBOARD PADAR SCANNER ASSEMBLY TYP 368 Parabolic assembly 17". Complete with motor for 26 V 600 W , etc. $£ 25.00$.

COLOMOR (ELECTRONICS)
170 Goldhawk Rd., London, W. 12
Tel. O1-7430899

AC/DC TAUT SUSPENSIONS

MULTIMETERS
(Wade in U.s.S.R.)
Large wetcetion in multimeters with

Pleane write for full catalogue.

TRANSISTORIZED AUDIO SINE-WAVE OSCILLATOR TYPE G3-36 bitus.

Transistorized Audio R-C Oscillator covering a range of 20 Hz to 200 kHz in four decade bandal. Calibration aceuracy 3\%. Four separate output sockets giving
attenuation ratios of $1,10,100$ and 1000 . Mieroanmeter output indicator. Uutput voltage 5 V into

SEE ALSO PAGE 14 FOR OSCILLOSCOPES, RECORDING INSTRUMENTS AND OTHER
TEST EQUIPMENT

Hag corrent thyristors BTX 47 -1200R; ; 1200V 11.5 A . BTX $+8-1000 \mathrm{R}$; 1000 V 16A. SILICON POWER RECTIFIERS BY101 450 p.i.v. 1.1 A.
BY105 800 p.i.v. BY105 800 p.i.v. I.1A.
BY127 600 p.i.v. Al.

AVALANCHE RECTIFIERS	
1A8029 [000 p.i.v. 1.5A.	20.80
Ras310af 1000 p.iv 1.5A.	20.40
RAS508AF 960 piv. 6 A.	20-50
ZENER DIODES	
1 watt 5%, series BZX6I: 7.5 to 68V.	30.20
2 watts 5\%, series BZX70: 10 to 27V.	20.25
5 watts 10\%, series D818: 22 to 47V.	20.35
5 watts 10\%, series D817: 56 to 100V.	20.85
8 watts 10%, seriee D815: 4.7 to 18V.	20.86
SOLD StATE LIGHT EMITTING	

soLid state ligit emiting
DIODES MV10B
To18 outhine. Brightness 500 FT-L at 50 mA . Forward voltage. 1.65 to 2 V . Diode gives bright red pinpoint of 0.170 in . PRICE $20 \cdot 85$.

WHEN ORDERING BY POST PLEASE ADD $£ 0 \cdot 12 \ddagger$ IN \& FOR HANDLING AND POSTAGE.
No C.o.d. ORDERS ACCEPTED.
Minimum handling charge eot

OUR NEW 1972/1973 CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY

PLEASE NOTE THAT VALYES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

Head Office

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and
klystrons, etc.

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS VACANT

DISPLAYED APPOINTMENTS VACANT: $£ 9.00$ per single col, inch.
LINE advertisements (run-on) : 50 p per line (approx. 7 words), minimum two lines
BOX NUMBERS : 25p extra. (Replies should be addressed to the Box number in the advertisement, c/o
Wireless World, Dorset House, Stamford Street, London, S.E.1.)
PHONE : Allan Petters on 01-261 8508 or 01-928 4597

Join Burroughs and you can have an exciting computer career and live on the threshold of the Scottish Highlands. You can commute from excellent residential areas, enjoy golf, angling, ski-ing and yachting and send your children to excellent schools and universities in the area. You can work on viable research and development programmes in an expanding environment in the computer and peripheral field. Due to expansion we have vacancies for

SENIOR ELECTRONIC ENGINEERS

Experienced in electronics packaging and the design of digital and M.O.S./L.S.I. circuits and power supplies.
Applicants should have an Honours degree and experience in the above field.
Excellent salaries and relocation expenses will be offered. Apply in writing to: Engineering Recruitment Officer. Burroughs Machines Limited,
Cumbernauld, Scotland.

h.m. GOVERNMENT COMMUNICATIONS CENTRE has vacancies for

COMMUNICATION OPERATORS

Posts are avallable entailing watchkeeping on a rota basis providing secure employment with superannuation benefits. There are prospects of service abroad. it is essential to be able to drive a car.
QUALIFICATIONS. Selected candidates will be invited to Interview and test and will be required to: (a) Send and recelve morse at 25 w.p.m.

or Il The Maritime Radlocommunications General Certificate
or liil City and Guilds Course 49 .
The sbility to touch-lype on a standard teprinter keyboard Is deslrabie.
AGE. Candidates should generally be aged 30 or under.
AGE, Candidates should generally be aged 30 or under.
SALARY. Starting salary according to age and experience.
SALARY. Starting salary according to age and experlence.
APPLICATIONS. WIth personal details, quallication and experience to
The Personnel Officer (Communication Opefators),
Hanalope Park, Near Wolverton, Buckinghamshire.

Middlesex Polytechnic

Enfield

Microlectronics
Centre
Short Practical Courses in 1973
These day and evening courses which have become wellknown and popular in previous years are being offered again together with new courses designed to cater for modern technology and industrial trends.

* Integrated Circuit Technology
\star Computer Aided Analysis and Design
\star Hybrid Microelectronics and Thick Films
* MOS Devices and Technology

In every case emphasis is put on practical experience for the participant.
For full details and application forms contact The Admissions Office, (Enfield Short Courses Dept. W.W.1), Middlesex Polytechnic, P.O. Box 40, Enfield, Middlesex EN3 4SF. Tel: 01-804 .8131.

BROMLEY GROUP HOSPITAL MANAGEMENT COMMITTEE

ELECTRONICS MAINTENANCE TECHNICIAN

for the acceptance, testing and maintenance of a variety of electronic control and communication equipment and electro-medical apparatus.
Salary $£ 1,896$ by increments to $£ 2,448$. Applicants must hold, as a minimum, O.N.C. or O.N.D. in Electronics or Light Current Electrical Engineering or the City \& Guilds Final Certificate in Telecommunications Engineering. Practical experience in industry or the armed services is essential; hospital experience an advantage but training with manufacturers possible. Own transport, for which mileage is payable, essential.
Applications, with details of training, experience, age, etc., and naming two referees, to reach the Group Engineer "Bassetts", Starts Hill Road, Farnborough, Kent (Tel.: Farnborough 53333) not later than 21 st January, 1973. No accommodation available for married applicants.
[2237

Shore jobs for Radio Officers.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,350$ $-£ 1,710$, depending on age, with annual rises up to $£ 2,310$ (compulsory pension contributions are included in these amounts). In addition you would. receive payments that can be as much as $£ 300$ or more a year for attendances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless Telegraphy, IMTR, Wireless Telegraph Section, Union House, St. Martins-le-Grand, London, EC1A 1AR.

THAMES CONSERVANCY

Applications are invited for the following posts in the Chief Engineer's Department at Reading:-

ELECTRONICS ENGINEER

(Salary S.O. Grade 1-2 - £2565 to £3324 p.a.)
who will be required to lead a sub-section applying engineering science in the field of Water Resources. The person appointed should be a corporate member of an appropriate Engineering Institution, and will be involved in the following work:-
(i) rhe establishment of a major system of telemetry monitoring hydrological parameters throughout
che Thames Basin: the Thames Basin;
(ii) the progressive development of electric analogue models of hydrological systems;
(iii) the development of hydrometric instruments;
(iv) digital computer application.

Knowledge and experience of telecommunications and telemetry is essential, whilst post graduate qualifications and experience of computer programming would be an advantage.

ELECTRONICS TECHNICIAN

(Salary AP 2-3-£1530 to £2100 p.a.)

required for the maintenance of a system of telemetry throughout the Thames Basin, the repair of Hydometric instruments and the construction of electric analogue models. O.N.C. in Electrical Engineering or City \& Guilds. Electronics Technician's Certificate desirable. Previous experience of telemetry would be an advantage.

Applications should be submitted in writing, giving details of age, marital status, qualifications and experience, to the undersigned as soon as possible.

> E. J. BRETTELL, Chief Engineer,
> Chief Engineer's Headquarters,
> Thames Conservancy,
> De Bohun Road, READING, Berks.

TELEVISION ENGINEER

required

to join a small but enthusiastic team operating a

Television Unit for Horseracing

If you have an HNC, City \& Guilds, or equivalent qualification and have experience in operating and maintaining outside broadcast television equipment and VTRs together with a willingness to travel and to work in a demanding field

THEN

THIS COMPANY OFFERS YOU

1 the opportunity to join an organisation that is forward looking and is planning to develop and expand in the field of television and electronics
2 a job that is located in varied surroundings on British racecourses
3 a basic salary of between $£ 2,500-£ 2,750$ plus expenses when on location.
If you are interested please write or telephone for a Company form to Mr. F..T. Dixon, Racecourse Technical Services Limited, 88 Bushey Road, London SW20: Tel. : 01-947 3333.

REDIFON is consolidating its resources in Crawley.
REDIFON, having recently won some large orders, is enjoying a large expansion programme.
REDIFON offers attractive opportunities and competitive salaries.
In particular in our new look Customer Service Department we require:-

TECHNICAL AUTHORS

Redifon require T.A.'s for its flight simulation projects. This is varied and interesting work in a highly sophisticated industry. Some knowledge of electro-mechanical and electrical systems is necessary: a digital techniques background would be advantageous. Though formal authorship qualifications are not necessary. clarity of expression and a maintenance experience background are desirable.

CHECKER/PROOF READER

(Air publications and Civil manuals, technical proposals, etc.)
Check laymark camera copy against draft material for errors. layout and general quality of work.

EDITORIAL ASSISTANT (Paste-up Artist)

Responsible for preparation of material for printing Civil manuals to R.F.S.L. requirements and for printing air publications to prescribed requirements. Involves the recording. preparing of artwork and re-touching of original artwork. The submission of artwork text and illustrations, mounting of negatives on masking sheets and pasting up line illustrations in text as necessary.

SPARES PROVISIONING CLERK

Responsible for receiving and preparing spares orders, liaising with customers, suppliers, shipping, etc., despatch follow up and organising appropriate records. Good customer approach necessary. Ability to read parts lists and identify electrical electro-mechanical details. Training will be given.

SPARES SCHEDULING CLERK

To assemble detailed break-down data and associated information from which spares lists and recommendations are produced. Production of documentation to plan and time scale. Knowledge of electrical electro-mechanical parts needed.

Apply Personnel Officer, REDIFON FLIGHT SIMULATION LIMITED, Gatwick Road, Crawley, Sussex.
Telephone Crawley 28811

OPPORTUNITIES AT DYMAR

Continued expansion at Dymar Electronics has produced the following inter esting positions --

ELECTRONIC ENGINEER

An electronic development engineer is required to join a team of young enthusiasts engaged in the design of a new generation of HF communications and associated equipment. Qualifications should be at least to HNC level. although special consideration will be given to relevant experience. Familiarity with the design of
medium power transmitters would be an
advantage. advantage.

Salaries, which will be commensurate with experience. will be negotiable and there are attractive fringe benefits
Written applications, giving brief career details, should be sent to
G. C. Holden, Chief Engineer HF Division, Dymar Electronics Limited,

Colonial Way, Hertfordshire WD2 4LA.
DTMAT the name in radiotelephones

INSTRUMENT TEST ENGINEER

A test engineer is sought to assume responsibility for final testing of the company's range of instruments. A wide selection of products provides interesting and challenging work for an engineer with experience in this specialist field.

LEEDS (ST JAMES'S) UNIVERSITY

 HOSPITAL MANAGEMENT COMMITTEE A new post has been established for an X-Ray Maintenance Technician (Medical Physics Technician III) at St James's HospitalThe duties of the successful candidate will include maintenance, repair and development of X-Ray, machinery. Opportunities exist for developing knowledge and skills by attending courses, conferences and exhibitions.
A full Medical Physics Department is being set up and prospects may exist in other fields. Salary scale $£ 1,602-£ 2,076$.
Whitley Council Conditions of service. Applications in writing stating age, experience etc. and giving the names of two referrees to the Group Personnel Manager, St James's Hospital, Leeds LS9 7TF as soon as possible.

RADIO OFFICERS

DO
 YOU
 HAVE

 POSSESSION OF ONE OF THESE QUALIFIES YOU FOR CONSIDERATION FOR A RADIO OFFICER POST WITH THE COMPOSITE SIGNALS ORGANISATION

On satisfactory completion of a 7 -month specialist training course, successful applicants are paid on scale rising to $£ 2.365$ p.a.; commencing salary according to age - 25 years and over $£ 1,664$ p.a. During training salary also by age. 25 and over $£ 1,238$ p.a. with free accommodation.

The future holds good opportunities for established status, service overseas and promotion
Training courses commence at intervals throughout the year. Earliest possible application advised
Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from
Recruitment Officer (TRO. 2.)
Government Communications Headquarters
Room A/1 105
Oakley Priors Road
CHELTENHAM Glos GL52 5AJ
Telephone: Cheltenham 21491 Ext 2270

FAULT FINDERS

British Radio Corporation is one of the industry's leading manufacturers of unit/audio equipment for distribution both in this country and to a thriving export market. In order to cope with the continuing expansion it is necessary to engage additional technical staff.
Applicants for these positions must be capable of diagnosing faults in radio, radiogram and hi-fi equipment, and will preferably hold an appropriate Electronics qualification and will already have experience in this field. Successful candidates will be offered an excellent rate of pay and promotion prospects.
Written applications in the first instance to:

PERSONNEL MANAGER, BRITISH RADIO CORPORATION LTD., 43/49 FOWLER ROAD,
 HAINAULT,
 ILFORD, ESSEX

TECHNICAL WRITERS

Do you want an attractive salary and a choice working location in South Germany near Stuttgart? The world's leading manufacturer of precision electronic test and meas urement equipment and systems offers these and other outstanding benefits to the Technical Writers who join our technical publications group. You may qualify if you have a sound background in electronics and are an experienced writer, preferably in both service and promotional fields, some knowledge of German would also be advantageous. Please write or phone (reverse charges).

Hewlett-Packard GmbH, 703 Böblingen, Herrenberger Str. 110, Germany. Telephone 07031/6671.

H.F.

Development Engineers

International Marine Radio Company is a member of a world-wide organisation, and is a Company leading in the design and manufacture of radio communications equipment for marine applications.

We require development engineers at both senior and junior levels to work on new projects for H.F. single sideband receivers and transmitters.

These positions require a sound knowledge of radio communications circuit design. and some development experience on equipments for the M.F. and H.F. bands would be an advantage.
Candidates should preferably be qualified to either HNC or degree standard, but the ability to demonstrate a professional outlook and to make an immediate contribution to the projects by working independently and accepting the responsibility this entails will be our major requirement.

Apply by telephone or in writing to The Personnel Manager, International Miarine Radio Company Limited, 1 Peall Road. Croydon. CR9 3AX.

Telephone 01-684 9771.

ITT Marine

2244

Magnetic Tape Recording

Not less than $£ 2,700$ p.a.

The Central Research Laboratorics

 of EM! Limited are cartying out a study of Magnetic Tape for airborne data recording, and require an engineer who is experienced in tape recordingThe work involves a study of the characteristics and performance of magnetic tape under high environmental conditions.

Candidates preferably aged between 28 and to, should possess a BSc. degree in Physics or Electronic Engineering or an equivalent qualification. They should be familiar with digital encoding rechniques and also be able to design and construct laboratorv apparatus suitable for the study of the physical
parameters of magnetic tape Experience in magnetic tape recording is essential.

Starting salary will not be less than $f, 2,700$ and there is a contributory pension scheme. Assistance will be given towards re-location.

Please write giving brief details of experience to: \mathbf{C}. W. T. Mott, Chief Recruitment Officer, EMI Limited, 135 Blyth Road, Hayes, Middlesex.

International leaders in Electronics, Records and Entertainment.

Jobs galore! 144,000 new computer personnel needed by 1977. With out revolutionary, direct -from-America. course. you train as a Computer Operator in only 4 weeks!

Pay prospects? $£ 2500+$ p.a.
After training, our exclusive appointments bureau - one of the world's leaders of its kind-introduces you FREE to world-wide opportunities. Write or phone TODAY, withou: obligation.

London Computer Operators Training Centre P13. Oxtord House. 9-15. Oxford Sireer. W. 1 Telephone: 01-734 2874
127. The Piazza. Dept. P13. Piccadilly Plaza. Manchester Telephone: 061-236 2935

Leeds (st. james's) university hospital Management committee ST. JAMES'S HOSPITAL

MEDICAL PHYSICS

 TECHNICIAN GRADE 3Candidates for this post must possess a thorough knowledge of electronics preferably as applied to medicine.
An applicant with adequate industrial experience of several years would be considered.
The salary scale is $£ 1602$ increasing by annual increments to a maximum of $£ 2076$. Candidates from outside the Health Service Candidates from outside the Health Service
will commence at the minimum except in exceptional circumstances. Whitley Council conditions of service.
Applications in writing stating age, qualifications. experience erc. and giving the names of ewo referees to the Group
Personnel Manager, St. James's Hospital. Leeds LS9 7TF.

TELEVISIONSERVICE ENGINEER

We are an expanding Television Rental and Retail Company with a vacancy for an additional qualified service engineer. Suitable applicant will preferable have some colour experience, be responsible to the Service Manager, have a clean driving licence and be eligible for a spacious rent free flat.
Apply:
Hydes of Chertsey Ltd. 56/60 Guildiord Street, Chertsey, Surrey. Phone: Chertsey 63243
[2180

SOUTHEND-ON-SEA MUNICIPAL AIRPORT

RADAR/RADIO ENGINEER

required with experience in maintenance of 3 cm . and $10 \mathrm{c} . \mathrm{m}$. Radar, VHF communications and recording equipment and navigational aids. Possession of appropriate City \& Guilds or National Certificates desirable. Salary according to Technical $4 / 5$ Scales, $£ 1,530-£ 2,100$. Written applications, giving age, experience and qualifications, to the Airport Commandant, Municipal Airport, South-end-on-Sea, Essex.

SENIOR
 DESIGN ENGINEER

Required by PROGRESSIVE LONDON BASED COMPANY IN ELECTRONIC MUSICAL INSTRUMENT FIELD with experience and specialised knowledge of Electronic Organs, Semi-Conductors and Synthesiser Techniques. Salary negotiable but commensurate with responsibility of the position.
All replies will be treated in strictest confidence. Box No. WW 2267.

ARTICVESTFOR SALE

100KHZ FREQUENCY MARKER OSCILLATOR

Crystal Controlled
TTL Compatible.
5V DC Input. $£ 4.25$ each.
For details of these or our Quartz Crystal Units send to:

- Crystal Electronics Ltd.

Cromwell House, Third Avenue, Millbrook, Southampton, SO1 OLE Tel: Southampton (0703) 76361.
MANUFACTURERS OF QUARTZ CAYSTALS AND CRYSTAL PRODUCTS

\star * ARTICLES FOR SALE

Cheapest Available Anywhere

EF 80	
EY $86 \cdot 87$	
DY 86.87	251
EF 183	
EF 184	EACH
ECC 82	PLUS
ECC 83	5p P.\&P.
PCF 80	OER 2
PCL 84	POST
PCC 84	FREE
EH 90	
EBF 80	

PC 900	
PL 81	25
PY 800 PC 86	251
PC 868	EaC.
PCL 805'85	plus
PCC 89	
PCC 189	OVER 2
PCL 82	POST
PCF 808 PCF 805	free

PFL 200	
PL 36	$\mathbf{3 0 1}$
$\mathbf{3 0 ~ P L ~ 1 3}$	EACH
$\mathbf{3 0 ~ F L ~ 1 ~}$	Plus
MANY OTHERS	Sp P.\&P.
OVE 2	
IF NOT USTED	POST
SEND 3OP PO	FREE

OUR ASSTD
BOX 1OO
OF TOP
TWENTY
INCLUDES
VALVES
FROM
A. B. and C.

SEND PO, CHEQUE or MO to:
285 MORLAND ROAD,
Telephone 01-6534863
SOUTHERN MACHINE SERVICES croydon, surrey, cro бhe or 01-656 0374

2279

ELECTRONIC BARGAINS

NEW fully electronic voice operated Auto-fade unit. music fade system.
$\mathbf{6 6 . 0 0}$ per kit. $£ 8.75$ ready to use.
NEW quality stereo pickup Pre-amps with tone controls.
NOW on 90 mm . square fibre glass board (for MAG., CER. or CRYS.).
$\mathbf{\$ 9 . 0 0}$ per kit. $\mathbf{£ 1 2 . 0 0}$ ready to use.
NEW expandable audio mixer cabinets. NOW offer economical low cost system.

Please add 25 p for postage and packing. S.A.E. for details.

REED UNITS
Contains 311 1 $\mathrm{A} \quad 250 \mathrm{~V}$ reeds
Cantains $31 \quad 1 \frac{1}{2} \mathrm{~A} 250 \mathrm{~V}$ reeds
mounted round a drum with magnat mounted round a drum with magnel
inside. atso resistors. plugs etc. inside, atso resistors, plugs etc.
Only $\mathrm{f} 1(25 \mathrm{p}$): 2 for $£ 1.65$ (35 p). Only $£ 1(25 p) ; 2$ for $£ 1.65(35 p)$)
Ferric Chloride lib $40 \mathrm{p}(15 \mathrm{p})$:

 40p: 2 N1613 12p; 2 N3819 26p; CASED AMPLIFERS. 4 valve. 2 watts of for $20 \mu \mathrm{~V}$ i/p $7 \times 4^{-3} 3$ ohm speaker. also man-standard single motor solenoid

 ac 40 p . 10 pl . ac 40 p (10p). Oners avaliabe. Sole fitre $£ 1$ pes meter. BSE St BSR A
extra.
extra.
GREENWELD (Wg) 24, Goodhart Way, W. Wickham, Kent.

Tel 01-777 2001 up to 10.30 pm . Shop at 21 Deptord Broadway SE8, open Sats. Tel 01-692 2009.

UNISELECTOR SWITCHES

24 volt, 10 position, 3 bank, c/w suopressing condenser and supplied c/w base plug in jacks. Uniselector only. £1.25, p. \& p. 25 p. C/w base plug in jack, £1.65. p. \&p. 2 . £1.35, p. \& p. 25p. C/w base plug in jack. £1.75, p. \& p. 25 p .
Ditto, as above, 25 position, 6 bank. This uniselector is fitted to a front panel and has a distribution board fifted in the rear and is wired from the uniselector to the distrlbution panel. Limited number only. $\mathbf{E 2} \mathbf{7 5}$ each, p. \& p. 50 p.

24 volt, Radiospares type 22 , relays c/w bases, fitted to small panel (2 per panel), 60p per pair, p. \& p. 15 p . Glass Fibre plug in digital boards. New. Designed to take divide by 10 I.C's and nixi tube IC driver, c/w CCT instructions, 28p each, D. \& p. 3p.
New Numerical 0-9 Indicator tubes, c/w data, £1/35 each, p. \& p. 6p.
Plastic Holders designed to hold the above tube and will fix to the PCB as above, sp each, p. \& p. 4p.

G.T. F. ELECTRONICS

9 Ernle Road, Calne, Wilts. SN119BT.
Phone: Calne 3360
2273

CLASSIFIED

a94

rrampus alarimin

All Br^{2}

OIGTAL indicators 5V rype． 7 spgment
 f39．50．
LIGHT EMIT OIODE with panel clip \＆data 35p． ULSTRASONIC TRANSOUCERS transmiviveceive f2．

steren hi．fi

 AD MAGNETIC CARTRIDGE． $20-20 \mathrm{KHZ} 5 \mathrm{mV}$ ．Diamond f4．19 Uusl IL Preemo f1．67．MC1310P MPX for any FM RX $£ 2.69$ KIT f 3.45 complate 4 digigis kit with case $£ 21$
INTEGRAIED CIRCUITS
NTEGRATED CIRCUI
710 OLL 28p． 709 To5 19p．OIL 28p， 710 33p． 748 33p． 723 59p．VOLTAGE REGULATOR： $1 \frac{1}{4} 5$ to 20 V E 1.67. PH OTO detectoímp． 37 p 74N TL Gartss 74001／2／3／4／5／10／20／30／4／60 15p．7413 29p．7470／72 SEMICONDUCTORS
ZENERS，BZZ88 400mW 11p．IN40014p．IN4004 8p．INS14 5p．2N305540p． 8C107 Bp．BC108 7p．BC109 8p．FET2N3日19 28p．AC125／6／7／G AC127／8 C18718．AF117 all 14p，A0181／2 35p．BC177／8／9 16p．BC182／3／4 1 p ． SC212／3／4 12p．BCY70 18p．BFY50／1／2 17p．TIS43UJT 29p．2N706 12p．
 CAPACITORS： 25 V 10／50／100／200 μ F 5p． $1000 \mu \mathrm{~F}$ 13p．22pF to $1 \mu \mathrm{~F} 3 \mathrm{p}$ ． free catalogue sae．P\＆P 7p，C．W．O．olsCOUNT $10+10 \%$ ．0．BOX 29．BRACKMELL BERK

BBC2 TVs $£ 7$
 50
 Including

Thorn 850 Chassis with UHF Tuner．Ex－rental sets sold complete but unservi

U．H．F．TUNERS

For Ferguson 850， 900 Chassls，but adaptable for
Chas 18.
E2． 50 each，C．W．O．，postage included Send S．A．E for llst of TVs．Tupes Valves，etc．Allow 10.14

TRADE DISPOSALS

Midiands \＆North：1043 Leeds Road，Bradford 3 Cornwali：Pencoys，Four Lanes，Redruth

ENAMELLED	COPPER	WIRE
S．W．G．	116 Reel	$1 / 10$ Reel
10－14	c1．15	5
15－18	E1．15	\％
20－24	¢1．18	8 p
25－29	E1．25	73
30－34	81.30	30p
35－40	¢1．40	
The above prices cover P．\＆P．in U．K．Supplied by INDUSTRIAL SUPPLIES		
102 Parrawood Roa	Withington， 081－224－3553	ester $\begin{array}{r}20 \\ 33\end{array}$

TV Line out－put transformers

Replacement types ex－stock．
or＂By－return＂service，contac
Then Mil
236 Sandycombe Rd．，Rlehmond，Surrey Tiwg 2 EQ
Valves．Tubes，Condensers，Resistors，Rectifiers and rame out－put Transformers also stocked． CALLERS WELCOME

PRECISION

POLYCARBONATE CAPACITORS

Fresh stock
 Fully tested

		3				
${ }^{1.04 F}$	＋5\％	${ }^{300}{ }^{\text {P }}$	2\％	${ }^{40 p} \mathrm{p}_{5}$	$\pm 1 \%$	
F		50 p ；	土2\％	${ }_{60 \mathrm{p}}$		
4．74F						
		110 D				
15uF：	± 5	180	± 2	210 P		

NEWI TRANSISTORS．BC 107，BC 108，BC 109．All Mayen； 6 for 50 ； 14 for $£ 1.00$ ．Ali brand new and marked POPULAR DIODES．IN914 at 7p each； 8 for 50p； 18 to $£ 1 \cdot 00$ ．IN 916 at $y p$ each； 8 for $50 p ; 14$ for $£ 1 \cdot 00,1544$ at 50
each； 11 for 50 p； 24 for $£ 1 \cdot 00$ ．All brand new and marked． SPECIAL OFFER－400 MW ZENERS．Values avallable $4 \cdot 7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1,10,11,12,13 \cdot 5,15 \mathrm{~V}$ ．Tolerance
$\pm 5 \%$ at 5 mA ．All new and marked．Price 10 p each； 6 for $\pm 5 \%$ at 5 mA ．A
RESISTORS
to $2 \cdot 2 \mathrm{M} \Omega$ in E12 serles，ilm $1 . \mathrm{I}_{2}, 10,12,15,18,22,27,33,3$ 47，56， 68,82 and their decades．Hiph stability，low nolse
 of any one value．Special development pa，
value 2.2Ω to $2 \cdot 2 \mathrm{M} \Omega(730$ resistors）$£ 5 \cdot 00$ ．
TANTALUM BEAD CAPACITORS－Values available $22,0.47,9.0,2 \cdot 2,4.7,6 \cdot 84 \mathrm{~F}$ at $35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V}, 15 \mu \mathrm{~F} 20 \mathrm{~V}$ $2 \mu \mathrm{~F} 15 \mathrm{~V}, 33 \mu \mathrm{~F} 10 \mathrm{~V}$ ， 47 LF 6 V ． $100 \mathrm{\mu F} 3 \mathrm{~V}$－all at 9 p each capacitors）£5．00． $0.25 \mu F$ ，Size $13 \times{ }^{\prime \prime}$ 5iLICON PLASTIC RECTIFIERS 1.5 AMP－Brand new wire－ended DO27．100PIV at 8p each or 4 for $30 \mathrm{p} ; 400 \mathrm{PIV}$ at 9p each or 4 for 34 p ； 800 PIV at 14 p each or ${ }^{4}$ for 50 p ．
P．E．SCORPIO－ $1 \mu \mathrm{~F}$ 440V a．c．capacitor listed above as recommended by the Author for use in place of $2 \times$
0.47 KF 1000 V d．c．discharge capacitors C 6 and $\mathrm{C7}$ ． Improved reliablitity．Alternatlvely， $2 \times 0.47 \mu \mathrm{~F} 440 \mathrm{~V}$ a．c． may be supplled at 35p each．These capacitors are aiso
suitable for systems recently published In P．W．and \mathbf{W} ．W 5 p post and packing on all orders below $£ 5$ ． V．ATTWOOD
DEPT A9，P．O．BOX 8，ALRESFORD，HANTS

					TERME C．W．O．P．and P．7p．Orders above e2 post free．List $4 p$ stamp．		
P．O．B	$\times 2$	6 L	ondo	n，NW2		each	100 18.00
	each	25		100	13FX37	45	32.00
BC107	－085	1.50	$2 \cdot 50$	4.00	BFX68	30	18.50
BC107A	． 07	1.65	3.00	5.10	BFX84	24	17.00
BC107B	． 07	1.66	3.00	5.10	BFX85	29	19.50
BC108	－065	1.80	2.80	4.00	BFX86	． 24	17.00 17.20
${ }_{\text {BC108A }}$	． 07	${ }_{1}^{1.65}$	8.00 3.00	5.10 5.10	BFX88	20	14.10
BCl 108 B $\mathrm{BC1}$	－07	${ }_{1}^{1.65}$	3.00 3.00	5.10 8.10	BFY50	18	14.00 14
${ }_{\text {BC109 }}$	． 065	1.60	2.50	4.00	BFY81	． 18	13.00
BCl09B	． 07	1.65	3.00	$5 \cdot 10$	BFY5 ${ }^{\text {BFO}}$	． 18	12．80
BC109C	07	1．65	$3 \cdot 300$	5.10 5.80	BFY64	40	28.25
BC114	．11	${ }_{2}{ }^{2} 40$	${ }_{3} \cdot 80$	5.85	BFY 76	40	27.50
BC115	－ 12	2.80	3.20	$5 \cdot 90$	BFY76	22	13.70
BC116	－13	2.80	3.90	$5 \cdot 95$	BFY7	24	15.20
BC118A	－14	3.00	4.00	6.00	BFY78	38	28.50
BC117	． 19	4.50	7.50	12．00	B8X19	25	18.20
BC118	10	2.85	3.55	5.85	BSX ${ }^{\text {BS }}$	27	18.20
BC119	27	6.00	9.00	14.00	B8x 21	． 27	18.50
BClas	15	3.40	8－10	－ 00	${ }_{\text {B8x }}{ }^{\text {c }}$	25	125.25
BC126	17	3.50	$6 \cdot 15$	$0 \cdot 00$	B8X28	47	$18 \cdot 10$ 32.00
$\mathrm{BCl}^{2} 2$	15	$3 \cdot 20$	${ }^{5} 30$	8． 00	BSY 26	25	17.50
BCl 34 BCl 35 80	－ 10	2．35	3.55 3.55	5.88 8.85	B8Y27	${ }_{25}$	17.50
BC138	14	$3 \cdot 00$	4.00	$8 \cdot 00$	BSY95A	08	7.50
BC137	－ 14	3.00	4.00	8． 00	ME0401	18	
BCl^{3}	． 20	4.40	$7 \cdot 60$	14.00	ME0 ME0404	18	
BC142	－18	4.20	7－30	14.00	ME0404		
BCl^{43}	． 20	4.70	${ }^{8.90}$	18.50	ME0404－1		
${ }_{\text {BCl }}^{\text {BCl }}$	－ 20	4.80 4.40	7.80 7.10	14.00 13.00	ME0411	17	
BC163	． 10	$2 \cdot 10$	${ }_{8} \cdot 70$	${ }_{8} 80$	ME0412	． 18	
BC154	10	$2 \cdot 10$	3．70	8.20	ME0413	． 14	
BC182K	－ 10	8． 10	3.70	8.20	ME1002		
BCY70	． 15	3.50	5.00	9.00	SPECLAL OF	FER8	
BCY71	－ 18	$3 \cdot 40$	8.00	9.00	AC141 $\times 12$		21.00
BCY72	13	$2 \cdot 80$	4.70	8.00	OC 45×12		21．00
BF゙152	． 30	4.40	7.10	13.00	I．C．TADI 0		21.25
BF153	20	4.40	710	13.00	470 kHz	I．F．	block
BFI54	－16	3.50	8.40	11.00			81.00
BF158	－ 15	$3 \cdot 30$	710	13.00	TAD100＋1		fiter
BF159	． 27	5.80	8.70	16.00			22.00
BF180	． 23	4．80	$7 \cdot 30$	$13 \cdot 00$			［2277

NEW LIGHT SENSITIVE SWITCHES

TWO NEW LITE IC＇
 COMPLETE LIGHT SWITCHES

CONSISTING OF PHOTODETECTOR AMPLIFIER
TRIGGER DRIVER All in a single 4 amm．dia．cin．
NEW FEATURES
WIDER VOLTAGE SUPPLY RANGE
LITE IC 2
11 V to 20 V
HIGHER OUTPUT CURRENT DRIVE
APPLICATIONS INCLUDE：
Relay，Triac or Logic Drive．Automatic Light Switching \＆Devr Control．Beanr／Break Detection Bùrglar Alarm，Batel Countiay $\&$ Code Readings
PRICE ONLY 95 p each with full operating insiructions． 10 off for 80 p each．Postage Free in the U．K．PO／CHEQUES payable to ELBON \＆crossed（with order）．
LITE－IC，ELBON，SUMMERFIELD，THE CRESCENT，WEST WITTERING，SUSSEX．

> | CARBON FILM RESISTORS |
| :--- |
| High Stab． |
| $j W 5 \%$ | RESISTOR KITS 10R－1M E12 SERIES： 10 E 12 KIT ． 10 of each value（（Total of 610 ）$£ 2.80$

25 E 12 KIT ． 25 of each value（Total of 1525 ）${ }_{\mathrm{E}} \mathrm{6} .50$ FREE CATALOGUE ON REQUEST Plaquette Ceramlc Capacitors 50 V ； $22 \mathrm{pF}-0.014 \mathrm{~F}$
（E12 up to 10000 F ，E6 above）20 （E12 up to 1000 pF ，E6 above） 2 p each．$£ 1.75 / 100$ BH COMPONENT FACTORS LTD． pt．WW．， 61 Cheddington Road，PITSTONE， Lelghton suzzard，Beds．，LU79AQ．

SITUATIONS VACANT

Experlenced and Tralnee Technical Authors with Electronics or Radlo background required．Engineering and Technlcal Publications Ltd．， 45 Frlar Gate，Derby，DE1 1DA．Tel． 033241261.

300KS

ESSENTIAL BOOKS

HOW TO MAKE WALKIE－TALKIES FOR LICENSED PERATION．Only 40p Incl．Dostage．
GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK．Contains circuits，data，lllustrations for modiflcations to sets and test equibment．Latest Impression C3． 25 incl．postage．
MOBILE RADIO TELEPHONES．Important reference book or users of commercial communications equipment． Price $£ 2.60$ incl．postage．
THE SCATTERING \＆DIFFRACTION OF WAVES．A goldmine of information for the experimenter，amateur \＆
 post free．

GERALD MYERS（WW） Booksoller \＆Publisher
18 Shaftesbury Street，Leeds LS12 38T
Extra postage for abroad．

TENDERS

WARWICKSHIRE COUNTY

 COUNCIL AMBULANCE SERVICE
Replácement of Mobile Radio Equipment

Enquiries are invited from firms able to supply mobile and base station radio telephone equipment in connection with replacement of the existing equipment in the County Council＇s Ambulance Service during the financial year 1973／74．
Details may be obtained by writing to the County Medical Officer of Health，Health Department，Shire Hall，Warwick．
E．CUST Clerk of the Council．

SITUATIONS VACANT

SENIOR ENGINEER required by Continental Radio, T.V. and Audio manufacturers, experienced in general servicing problems. Location London A. Massing, Europhon (Radio \& Television), 70 Caledonian Road, London, N.1. Tel: 01-837 3045

$B^{\text {B }}$BC requires RADIO TELEGRAPHY OPERATOR for its MONITORING SERVICE near Reading Duties involve operation of radio receiving appar tus, including Radio Teletype terminal equipmen monitoring or plaing (including schedule check ing and stend canning) and correcting, logging ing and band scanning), and correcting, lial qualifications are: Ability to type international Morse fications are plain language at 25 w.p.m. aural or visual recognition of signalling codes used in communication systems, operational experience of modern receiving equipment and understanding of radio propagation and frequency usage. Perfect hearing. Candidates will be expected to attend for Morse typing and signal recognition test. Salary
$£ 1,554$ p.a. x £ $£ 3$ to $£ 2,019$ p.a. max. plus $12 \frac{1}{2} \%$ shift allowance. Write for application form to Personnel Officer, BBC, Caversham Park. Reading RG4 8TZ enclosing addressed foolscap envelope.

TlRST class Radio and Audio Engineer required of Britain's largest photographic and radio importers. Good conditions, excellent pros-
pects, L/Vs. Apply Mr. Vassie, 253 8031.
$[2246$

JAPANESE Radio importers require expcrienced engineers for servicing transistor radios, etc. Part
[2258

MARINE Radio Installation Engineer to fit and 1 service SSB and VHF Radio Telephones, Radar and Automatic Pilots to yachts of all types anywhere in U.K. Must be based in or near London. Vehicle including personal use provided. The applicant must work on his own initiative and be capable of some mechanical engineering as well as woodwork. Know edge of boating a great advantage. Telesonic Marine
Ltd., 243 Euston Road, London. NW1 2BT. $01-387$ 7467.

MANAGER/SENIOR Salesman required for busy Th Television, Radio and all Electrical Applianc Showroom. Must be fully experienced in all leadin appliances. Wages from $£ 2,000$ p.a. Banstea
Tel. Victor Towler \& Co. Lid., $3993476 / 7 / 8$

SITUATIONS WANTED

RADIO/ELECTRONICS technician, 26 years, married, is open to offers of permanent or south of London, but willing to travel anywhere 7 years experience in vhf/uhf communications and industrial electronics, driving licence holder and radio amuteur. Distinction $C \& G$ Electronics Servicing (Final). Reliable and practical man, capable o working on own initiative on the design, construction, commissioning and maintenance of radio and elec tronics equipment. Looking for an out of the ordinary situation, incorporating both bench and field work, and the remuneration $£ 2,000$ per annum plus. Box No. WW 2265.

ARTICLES FÓR SALE

A
A ARVAK ELECTRONICS. 3 -channel sound-ligh t132.- 74 Bedford Avenue, Barnet, Herts.
1268.

A MATEUR computer constructors' newsletter BUILD IT in a DEWBOX quality plastic cabinet D_{2} in. $x{ }^{2 \lambda}$ in. x any length. D.E.W. Lid. (W.) Ringwood Rd. Fernwood. Dorset. S.A.E. for leaflet Write now-Right now
COMPONENT Kits for magazine projects, construc Send S.A.E. for lists. Audio and Control Engineering;
30 Baker Street, London, W1M 2DS.

FRONT surface mirrors, 94% reflectance, optically Fiat, extremely durable. From $£ 2.00$ per square $\begin{array}{lllll}\text { toot, ex-stock.-OCLI Optical } & \text { Coatings } & \text { Limited } \\ \text { Dunfermline, Fife. Inverkeithing } & 3631 & (038 & 34 & 3631)\end{array}$

IF you can't buy it, perhaps we can make it for you will do our best to send a quote by return of pos Try our high speed service for your design problems particularly those encountered in the use of I.C. logic We also service and repair laboratory test equipment 'scopes, sig. gens. etc. at very reasonable rates Barnes Electronic Services, $20-24$ Beaumont Road,
Chiswick, London, W.4.

LADDERS, $20 \mathrm{ft} ., \pm 7 \cdot 80$, carr. 80 p. Leaflet. Callers Lowelcome.-(Dept. W.W.W.), Home Sales, Baldwin C.O.D. Answer phone installed

LENSES, prisms, mirrors, beamsplitters, telescopes, our 48 page lists. H. W. English, 469 Rayleigh Road our 48 page lists. H. W. English, 469 Rayleigh Road
Hutton, Brentwood, Essex.

COLOUR, UHF and TV SERVICE SPARES. Varicap/Varactor UHF lists available on request. Varicap Tuners for Band 1 and Band 3 , 2.85 Salvaged Varicap Tuners $£ 1.50$, incl. Connection $\mathrm{P} / \mathrm{P} \quad 25$ p. Luminance Delay Line 50 p . $\quad \mathbf{P} / \mathrm{P} \quad 15 \mathrm{p}$ P/P 25p. Luminance Delay Line S0p. P/P 15p Philps G6 Decoder Panel incl. DLIE, Crystal, etc.
£6.50. P/P 30 p . Also quantity Colour TV Camera panels and asstd. manufacturers' surplus Colour re paner panels. Plessey Colour scan coils $£ 5.75 \mathbf{P} / \mathbf{P} 35 \mathrm{p}$ Convergence coils $£ 3.80$ P/P 25 p , Blue lateral $£ 1.25$
$\mathbf{P} / \mathbf{P} 10 \mathrm{p}$ (or complete set $£ 10$ P/P 50 p) Muilard type colour Scan coils plus latest convergence coil for electronic conirol of static convergence $£ 5.25$ P/P 35 p. Leading Brit. maker Colour LOPT assy
incl. EHT output and focus control $£ 3.50$ P/P 35 p. Integrated transistd. decoder unit incl. circuits $£ 1 \cdot 2$ $\mathrm{P} / \mathrm{P} 10 \mathrm{p}$. B9D valve bases for colour valves and PL 500 series $10 \mathrm{p} \quad \mathrm{P} / \mathrm{P}$ 5p. UHF tuners transistd $£ 2.85$, incl. slow motion drive, indicator $£ 3.95$
Transistd. push button $£ 6.25$. Knobs 40 p. UHF/VHF Transistd. push button $£ 6 \cdot 25$. Knobs ${ }^{\text {basic integrated tuner } £ 3.95 \text {. Cyldon UHF valve }}$ basic integrated tuner $£ 3.95$. Cyldon UHF valv
tuners $£ 1.50$ all tuners P / \mathbf{P} 25p. Transistd. UHF VHF LF pancls $£ 4.75$ (or salvaged $£ 2.50$) P/P 25p
MURPHY $600 / 700$ series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplificr, 7 valves accessories housed in cabinet plinth assembly $£ 7.50 \mathrm{P} / \mathrm{P}$ 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplificr and output chassis incl. cet. £1.50 P / P
30 p . THo RN 850 Dual standard time base panel $£ 1.00$ P/P 30p. PHILIPS 625 IF amplifier panel incl. cct £1.00 P/P 25 p . VHF turret tuners AT7650 incl. valves for KB Featherlight, Philips 19TG170, GEC 2010 etc Pam and Invicta $\mathrm{fI} \cdot 95$, A.B. miniature with UHF Pam and suitable KB, Baird, Ferguson, 75p, Ekco injection suitable KB, Baird, Ferguson, ${ }^{\text {Ferranti, Plessey push bution with UHF injection }}$ £1.00, all tuners P/P 25p. New fireball tuners Ferguson, HMV, Marconi $£ 1-90 \mathrm{P} / \mathbf{P} 25 \mathrm{p}$. Large selec tion LOPTs, Scan coils, FOPTs available for mos .25 Power unit $£ 4 \cdot 25$ Labgear set" 3 outlet UHF/VHF distributor amplifier, main operated $\mathrm{f} 6.50 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. MANOR SUPPLIESS, 172
WEST END LANE, LONDON, N.W.6 (No. 28, 59 159 Buses or W. Hampstead Bakerloo and Brit. Rail) MA:L ORDER: 64 GOLDERS MANOR DRIVE LONDON, N.W.11. Tel. 01-794 8751
PRNTED Circuit Board in 6 widths: 2 in, $2 \frac{1}{2}$ in. 1 in., $3 \frac{1}{2}$ in., 4 in . and 5 in. x any length; $1 / 16$ in. Single-sided fibreglass, $2 p$ per 3 sq. in. Double sided $1 \mathbf{p}$ per sq. in. $\mathbf{P} \& \mathbb{P}$ fp per order. SAE
quotations for other sizes and quantity discounts J. Knopp, 11 Connaught Gardens, Braintree, Essex CM7 6LY. Tel. Braintree 25254
$\mathbf{S}_{\text {matched }}^{\text {TEREO SLIDER POTENTIOMETERS / track }}$ matched two better than 2 dB :- Smooth action Lengths 88 mm , widths 20 mm , travel 60 mm . P.C Mountings. Log $100 \underset{~ K}{\text { Sterco Balance } 10 \mathrm{~K}} 5500 \mathrm{k}$, UK. lin. $50 \mathrm{k}+50 \mathrm{k}$, 53 p Sterco Balance 10K 55 p. U.K. post free, overseas at
costs. C.W.O. to Component Supplicrs, 3 Kesters Close, Hardwick Camb
T ELEQUIPMENT Scopes. Perfect Condition. D5 55 Double Beam 6 MHz Bandwidth Auto-sync $£ 70$.
 Carriage $£ 2$ extra. Only one each available. Phone 1-886 3733/9666 2250
TELEQUIPMENT D53 Oscilloscope for sale, firs Lelass condition $£ 150$ o.n.o. Phone L. R. Denton
$01-2029824$ after $6.30 \mathrm{p} . \mathrm{m}$. TRANSISTORED UHF Tuners $£ 1.00$ inc. P. \& P C. VHF with valves P.B. or rotary 75 p inc. \mathbf{P}. \& P
T AND RADIO aluminium mast 2 in . $x 35$ fee radio aerials. Buyer collects, offers. Henham (nea
Bishops Stortford) 483 VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories equipment from $£ 40$. V. N. Barrett (Sales) Lid 1 Mayo Road, Croydon. 01-684 9917 . (Sales) Ltd. VHF KIT 80-180 mHZ receiver, tuner, convertor Trarsistorised, remarkable performance. £4 of
(Radio), St. Martins s.a.e. for literature Johnssons (Radio), St. Martins
Gate, Worcester, WR1 2DT. VIDEQ TAPE RECORDFR, National NV-1020E 405/625 £165. National WV-350N Camera, Buil in Monitor $£ 150$. Rediffusion ${ }^{23 \prime *}$ Video/Audio Monitor $£ 60$. Above as new. L.
Pleasant, Framlingham (723590), Woodbridge, Suffolk

GO Receivers. Signal and 75 KHz Neuchatel Radio compact compact units. Two available versions, $£ 35$ and $£ 60$
Toolex, Bristol Road, Sherborne (321), Dorset.

ARTICLES WANTER

A VO 8 WANTED. Any condition. Any quantity sons Roàd, w. Croydon, SY. ${ }^{2}$ $\mathbf{E}^{\text {NGINEER requires modern transistorised }}$ single or Custard, 24 Etchingham Court, Etchingham Park Road, London, N3. Tel. 01-349' 1752 . ${ }_{\text {Part }}$
$\mathbf{R}_{\text {Ring } 01.979}^{\text {EQUIRED }} 0123$ most urgently 30 pieces CV. 2422.
WANTED urgently Bleeper system preferably with aerial transmitter for minimum one mile radius

Wanted, all types of communications receivers and test equipment-Details to R. T. \& I. Electronics, Ltd, Ashville Old Hall, Ashville Rd. 163
London, E.11. Ley. 4986. W ANTED, televisions, tape recorders, radiograms, High St., West Bromwich, Staffs. Tel. Wes. 0186 . 173 $W^{A N T E D}$, EMI CCTV equipment, any condition. 78901 . Penn Close, Wells, Somerset. Tel. Wells

BOOKS

WORLD RADIO TV HANDBOOK 1973, published from David McGarva, Box 114F, Edinbureh EHI 1HP. Migarva, Box 145, Edinburgh

BUSINESSES FOR SALE

OFFERS for Limited Company known as RadioBox mo. $\underset{W}{\text { metrics }} \mathrm{W}_{2263}$.

BUSINESS OPPORTUNITIES
 R
 S.M.C. Radio Scan Marine Company. This is Ace Agencies for Marine Radio. Radar and Echo sounding Equipment of Foreign Manufacture aimed

CAPACITY AVAILABLE
 $\mathbf{B}_{\text {sample }}^{\text {ATCH }}$ Production Wiring and Assembly or to $\mathrm{B}_{\text {sample }}$ or drawings. Deane Electricals. 19B $01-9928976$.
 COMPLETE design, development and manufacture C of small and complex electronic process controllers, computers etc. Box No. WW 2264.
 C OIL winding capacity. Transformers, chokes, R.F. Coils, etc., to your specification. Sweetnam \& Bradley Ltd., Bristol Road, Malmesbury, Wilts., or Tel. Malmesbury 3491.
 [2080
 $D^{E S I G N}$, development, repair, test and small production of electronic equipment. Specialist in ELECTRONICS, 54 Lawford Road, London, N.W.S 01-267 0201
 PRECISION injection moulding electronic industry C.B. Industrial Plastics Limited, 1 Mackintosh Lane, E9 6AB. Ring $01-985$ 7057 .

NEW GRAM AND SOUND
 \section*{EQUIPMENT}

G LASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-

TECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND

$\mathrm{H}^{\mathrm{RO}} \mathrm{R} \times 5 \mathrm{~s}$, etc., AR88, CR100, BRT400, G209, Ltd., Ashville Old Hall, Ashville Rd., London, E.11: Ley. 4986.

SERVICE $\&$ REPAIRS

SCRATCHED TUBES. Our experienced polishing
 With absolute confidence sent to Retube Lid., North Somercote, Louth, Lincs, or 'phone 0507-85 300. 130
SERVICE Sheets (1925-1971) for TV's, Radios, Transistors, Tape Recorders, Record Players. etc.; Hamilton Radio, 47 Bohemia Road. St. Leonards Hussex. Tel: Hastings 29066 . Road, St. Leonards, SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range Ltd., Ashville Oid Hall, Ashvilie Rd., London, E. 11 . Ley. 4986.

TAPE RECORDINE ETC

IF quality, durability matter, consult Britain's oldest apes. (Excellent tax-free fund raisers your suitable Modern studio facilities with Steinway Grand-Sound News, 18 Blenheim Road, London, W.4. 01-995 $\begin{aligned} & 1661 . \\ & {[1954}\end{aligned}$ YOUR TAPES TO DISC-Mono/Stereo. From leaflet. Deroy Studios, High Bank, Hawk Street, TUITION
RADIO and Radar M.P.T. and C.G.L.I. Courses. FY7 Write: Principal, Nautical College, Fleetwood,
$[72$

[^9]
Newnes Radio Engineer's

Pocket Book 14th Edition
H. W. Moorshead

A ready reference source for formulae, tables and definitions of electrical and electronic terms, including many mathematical tables. The book is very carefully indexed for quick and accurate selection of material.
1972192 pp illustrated 0408000740 E1.20

Sound with Vision

Sound Techniques for Television and Film
E. G. M. Alkin

For the first time the methods developed by the BBC are here made available in book form for the benefit of television sound operators and production staff. The book discusses the problems of simultaneous production of sound and picture, giving practical instruction in methods of overcoming them. There are detailed discussions of operation equipment and trends which will be useful to designers and manufacturers of sound equipment.
|972 288 pp illustrated 0408702362 £6.00

Video Recording

Record and Replay Systems
Gordon'White
This book describes the principles of video recording and discusses the various systems which are on the market or will soon make an appearance. Inevitably the book is technical, but it is designed so that people who have an interest in the subject should find no difficulty in understanding the principles, advantages and disadvantages of the various systems.
1972216 pp illustrated $0408000856 € 3.25$
Obtainable through any bookseller or from
The Butterworth Group

THE LAST OF THIS UNBEATABLE UNREPEATABLE OFFER TEN SVTOOE TAPERECORDER SHIBADEN SV700E $\frac{1}{2}{ }^{\prime \prime}$ VIDEO TAPERECORDER at under HALF PRICE

ONLY £198 EACH

Also Shibaden HV24 tele-cine type cameras complete with remote camera control units and sync pulse generators.

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned lst and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

DEIMOS

TAPE RECORDERS FOR RESEARCH，INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD，WINCHEAP CANTERBURY，KENT 0227－68597

WE PURCHASE

COMPUTERS．TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT．PLUGS AND SOCKETS，MOTORS，TRANSISTORS， RESISTORS，CAPACITORS，POTENTIO－ METERS．RELAYS TRANSFORMERS ETC
ELECTRONIC BROKERS LTD．
49 Pancras Road，London，N．W．1．01－837 7781

THE TEXAN

HI FI AMPLIFIER BY TEXAS
COMPLETE DESIGNER APPROVED KIT £28．50
INSTRUCTIONS，INCLUDING BREAKDOWN PRICE LIST OF PARTS 35p．
TELERADIO ELECTRONICS
325，FORE ST．EDMONTON，LONDON
N．9．01－807－3719

	THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE
$\begin{aligned} & \text { Rganide } \\ & \text { Rothe } \end{aligned}$	EQUIPMENT
$\begin{aligned} & \text { of itp and } \\ & \text { Sereo } \\ & \text { Records } \end{aligned}$	Send P．O． 15 p for 48 page
	cecile watts limited Darby House Sunbury on－Thames Middx．

CASH LMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio，television，telephone and electronic equipment，or in component form such as meters，plugs and sockets，valves， transistors，semi conductors，capacitors， resistors，cables，copper wire，screws and nuts，speakers，etc．
The larger the quantity the better we like it．

BROADFIELDS \＆MAYCO DISPOSALS
21 Lodge Lane，London，N12． Telephone：01－445 2713 01－445 0749 Evenings：01－958 7624

SOWTER TRANSFORMERS
or all purposes in
SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well－known companies， studios and broadcasting authorities and were estab lished in 1941．Early deliveries．Competitive prices． Large or small quantities．Let us quot

Transformer Manufacturers and Designers 7 Dedham Place，Fore Street，Ipswich IP4 IJP

BRAND NEW－FULL SPEC．DEVICES

 OC72 12 p
ZENERS BZYB8 5% SERIES 8 p .1 AMP RECTIFIERS 50 V
 Lamp 459．DALO PCCPEN 80p． 2 ． F．Watt 5% Carbon Film Resistors 10 of one value
F．E．T．Op．Amp．$£ 4.28 .104500 \mathrm{~V}$ TRIAC $£ 1.20$ ．

JEF ELECTRONICS（W．W．1）
York Howse， 12 York Drive，Grappenhall，Wartington，
Mail Order Only．C．W．O．P \＆P 9 pp per order．O／Seas 85p．
Discounts begin at 10% tor $10+$ List free
Money back if not satistied．

SYNTHESISER？

Build your own，using Dewtron＊PROFESSIONAL MODULES
（＊Regd．Trademark）
VOLTAGE CONTROL amplifiers，oscil－ lators，filters，and P－H－A－S－E．
MAN－SIZED PATCHBOARD，no cables
CASH SAVINGS by buying sets of modules，components，and keyboard．
ALL MODULES available separately．
Send S．A．E．for details or 15 p for full musical catalogue．
D．E．W．Ltd．， 254 Ring wood Rd．，Ferndown，Dorset

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS，ETC．

CHERTMEAIN LUH．

7．9． 11 Arthur Road，Heading． Herks．

Fel： 582605

DIMMIT

range of light dimmers

\star professional modules for industrial use on heaters，lamps，motors，etc
\star commercial modules for studio，stage disco and clubs，etc．
\star attractive standard wall mounting models for home and office，etc
Rotary and slider control versions Ratings available： $400 \mathrm{~W}, 1000 \mathrm{~W}, 2000 \mathrm{~W}$ Send 10 p for complete catalogue and price list．Discount for quantities．
YOUNG ELECTRONICS
54 Lawford Road，London，NW5 2LN 01－267 0201

EXCLUSIVE OFFERS

HIGHEST QUALITY 19＂RACK MOUNTING CABINETS \＆RACKS

Height		Width CAbiners		Huct Panel	
	in inctio	is minches	in frches		${ }^{\text {Price }}$
CA	${ }_{70}^{76}$	运	18	71	£15．00
CB	76	2－1	迷		E16．00
CD	${ }_{816}^{814}$	$2+$	${ }_{26}$	7	212.50
	\％	\％	\％	68	810．00
cr	8	2．	${ }_{4}$	\％	114．00
	88.	，	III	，	\％14．00
cJ	8：1		\％	\％	
ck	s：；	at	12	7	¢ 1100
cl	St	（3）	36	12	912．50
CM	1i	＂2	18	17	85.00
	$1 \cdot 9$	$2+$	26	${ }^{1 / 1}$	
CR	6：		21		¢24．00
cr	71	6：	2	（i9）	445．00
CU	${ }^{17}$	2hi			¢20．00
cx	73	2：3	21	bis	¢18．00
（ ${ }^{\text {a }}$	59	24	＋	5	
cz	6.4	22	26	5x	114．00
Da	8	22	213	＊10	
碳	93		22	17	¢15．00
，	bi4	2	27	，	117．00
17\％			2	41	¢30．00

Full details of all above an request．

Full details of all atove available on request

FREE

PRITIED GRGUITS
© ELECTRONIC EQUIPMENT

- LARGE \& SMALL QUANTITIES

D FULL DESIGN \& P.T.M. PROTOTYPE SERVICE
ASSEMBLIES AT REASONABLE PRICES
for full dotais contact

X.J.BENTLEY \& PARTNERS 18 GREENAC'RES 18 GREENACRES
ROAD. OLDHAM Tel 0616240939

Vary the strength

 of your lighting with a DWM MSMITCHThe DIMMASWITCH is an attractive and efficient dirrimer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available. with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression
Price: $600 \mathbf{w} \mathbf{£ 3 . 2 0}$. Kit form- $\mathbf{£ 2 . 7 0}$ $300 \mathbf{w -} \mathbf{£ 2 . 7 0}$. Kit form- $\mathbf{£ 2} 20$.
All plus 10 p post and packing
Please send C.W.O. to:-

DEXTER AND COMPANY

4, ULVER HOUSE, 19 KING STREET,
CHESTER CH1 2AH TEL: 0244-25883
As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc
WW- 105 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEM LANE, HENDON, NW4 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

A. R. SINCLAIR

7 Flinders Close, St. Albans, Herts Tel: St. Albans 50614
WE BUY ALL TYPES OF
ELECTRICAL, ELECTRONIC EQUIPMENT \& COMPONENTS

PTEITCABASTRIPPERS FOR FAST ACCURATE WORK

Very useful for electricians, TV. Radio and handymen, the $A B$ Engineering range of pocket strippers covers all cable sizes from $0^{\prime \prime} .25$ up to $2^{\prime \prime}$ o/d. Cable simply goes into spring loaded grip and the tool is rotated round cable for clean. neat separation of insulation. Blade is turned through 90° and the tool is pulled hrough to the end of the cable to give a lengthwise cut. These handy tools make the job easy and save time, temper and money

Three models are available
MK. O Capacity $\frac{1^{\prime \prime}}{4}$ to $\frac{5^{\prime \prime}}{8} \mathbf{£ 3 . 5 0}$
MK. 01 Capacity $\frac{5^{\prime \prime}}{16}$ to $\frac{7^{\prime \prime}}{8^{\prime}} \mathbf{£ 4 . 5 0}$
MK. 02 Capacity $\frac{\frac{3}{4}_{4}^{4}}{}{ }^{\prime \prime}$ to $2^{\prime \prime \prime} £ 7.95$
Cash with order, add 15 p P \& P
Spare Blades: MK. 0 \& 01 75p. MK. 02 £1.00.

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24 -hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llll}3 i n . & 160 f t . & 10 p & 5 i n, \\ 500 & 600 f t & 30 p\end{array}\right.$

 Postage on all orders $7 \frac{1}{2} \mathrm{p}$
COMPACT TAPE CASSETTES AT HALF PRICE
60, 90 , and 120 minutes playing time, in original plastic library boxes.
MC 60 45p each. MC90 621p each. MC 120 92p each
STARMAN TAPES
28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

Ashford 52136
WW-106 FOR FURTHER DETAILS

LOUDSPEAKER BARGAINS

Fane Pop 100 watt $18^{\prime \prime} 8 / 15$ ohms Fane Pop 60 watt $15^{\prime \prime} 8 / 15$ ohms Fane Pop 50 watt $12^{\prime \prime} 8 / 15$ ohms...
Fane PoD $25 / 2^{\prime \prime} 12^{\prime \prime} 25^{\text {watt }} 8 / 15$ ohm Fane Pop $1512^{\prime \prime} 10$ watt $8 / 15$ ohms Baker Group $2512^{\prime \prime} 3,8$ or 15 ohms Baker Group $3512^{\prime \prime} 3,8$ or 15 ohms Celestion PS8 for Unilex
EMI $13 \times 8,3,8$ or 15 ohms
EMI $13 \times 8,3,8$ or 15 ohms
EMI 13×8 twin tweeter 3,8 or 15 ohms $\begin{array}{ll}\text { EMichard Allan } 8^{\prime \prime} 3,8 & 15 \\ \text { or } 15 & 8 \text { ohm }\end{array}$ Richard Alan $8^{\prime \prime} 3,8$ or 15 ohms
Richard Allan $12^{\prime \prime}$ dual cone 3 or Richard Allan 12 "dual cone 3 or 15 ohms Fane $8^{\prime \prime} \mathrm{d} /$ cone, rol! surround, 807T 8 or 15 ohm
Elac $9 \times 5,59$ RM109 15 ohms
Elac $9 \times 5,59$ RMII 48 ohms
Elac $6 \frac{1^{\prime \prime}}{2}$ d/cone 8 ohms.
Elac $6 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} /$ cone, roll surround 8 ohms Elac $4^{\prime \prime}$ tweeter 8 ohms
Crossover for above (P \& P Free)
Goodmans 8P 8 or 15 ohms
Goodmans IOP 8 or 15 ohms
Goodmans 12P 8 or 15 ohms
Goodmans 15P 8 or 15 ohms
Goodmans I8P 8 or 15 ohms
Philips 5" 8 ohms.
7×4 or $8^{\prime \prime} \times 5^{\prime \prime}, 3$ or 8 ohms
FREE WITH ORDERS OVER $£ 6$-" "HiFi LOUDSPEAKER ENCLOSURES" BOOK

All units guaranteed new and perfect
Prompt despatch, P \& P 25p per speaker
Send for our free booklet "Choosing a speaker"
WILMSLOW AUDIO
(Dept. WW)
10 Swan Street, Wilmslow, SK9 IHF Cheshire

"W.W." HI-FI KITS

\star LINSLEY HOOD $15-20 \mathrm{~W}$ AMPLIFIER

 July 1970 latest and ultimate design. Our ki personally tested and approved by the designer work now available ensures simple construction of amps. and power supply.\star BAILEY PRE-AMP (AUG. 1971)
Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{2} \times$ Especially recommended to drive $15-20 \mathrm{~W} A B$ amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any "WW' article

丸REFUND GUARANTEED ON ALL PARTS

SPECIAL OFFER

2N3055 30p each 4 for $£ 1$ 2N3054 20p each 3 for 50p

Unmarked, Tested and Guaranteed. Post and packing 10p per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-ATOUR
RETAIL SHOP NOW OPEN

A. 1 FACTORS

245, North Sherwood St., Nottingham NG1 4EQ
Telephone: Nottingham (0602) 4605 Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)

THICK FILM CIRCUIIS
by G. V. Planer \& L. S. Phillips
f4 Postage 10 p
OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS Burr-Brown $\mathbf{£ 7 . 2 0 \quad \text { Postage } 1 5 p ~}$
TRANSISTOR SUBSTITUTION HANDBOOK No. 12 by Foulsham-Sams Cl 40

Postage $10 p$
DIGITAL LOGIC BASIC THEORY AND PRACTICE by J. H. Smith $£ 1 \cdot 50$ Postage 10 p
SCR MANUAL by GENERAL ELECTRIC Ł1.55 Postage 12p THE HANDBOOK OF BASIC ELECTRONIC EQUIPMENT by W. Oliver $\mathbf{£ 1 . 7 5} \quad$ Postage 10 p VIDEO RECORDING by G. White E3.25 Postage 15p
TRANSISTORIZEDRADIO CONTROL FOR MODELS by D. W. Aldridge $\mathbf{E 2} .50$

Postage 10p
RADIO AND ELECTRONIC LAB ORATORY HANDBOOK by M. G. Scroggie $\mathbf{E 4} 75 \quad$ Postage 25p THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal £350 Postage 20p
HANDBOOK OF MICROWAVE TECHNIQUES AND EQUIPMENT by Harry E. Thomas 89 Postage 20p
the modern book co.
SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS
19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185
Closed Sat. 1 p.m.

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 50p (10/-) PER LINE. Average seven words per line. Minimum two lines.
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus $\mathbf{2 5 p}(5 /-)$.
- Cheques etc., payable to "Wireless World" and crossed " \& Co."
- Prest Day January 19, 1973 for February, 1973 issue.
\square

MANUALS AVAILABLE

MARCDN	SDIARTRON	COSSOR	tektronix	TELEQUIPMENT	MARCONI	SOLARTRON	COSSOR	tektronix	TELEQUIPMENT
TF329G	AS516	339	422	S31	TF1041	CT436	TC1A	VENNER	0160
TF801B	AS517	1035	51140	S32A	TF1100	C0523S. 2	T2	TSA3436	1684
TF801B/3/S	ASW51A	1049	515 A	043	TF1101.	A0557	TC2A	TSA3334/3	HEWLETT PACKARD
TF8010	SRS 1518151 A	E.M.I.	524AD	WAYNE KERR	TF1 104/1	CD711s	01	RADIVET	20000
TF867A	SRS15281.52A	WM2	531	B221	TF1300	C0814	D2	211	130 A
TF868A	VF252	WM8	541	-812.1	TF1345/2	00910	J	RACAL	BC221
TF885	C0546	WM16	541A-B	8521		CD1014	AIRMEC	SA28	hartLey 13A
TF886A	D300	ADVANCE	555	FURZEHILL		CD1016	701	SA33	

This is only a small example of the manuals we have in stock. S.A.E. with your enquiries - we may be able to help.

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 88-95

Racal Amplivox Lid 23
Radiomasts Ltd48
Rank Audio VisuaRastra ElectronicsRola Celestion LidR.S.C. Hi-Fi Centres Litd. 75
Salford Electrical Insts LtdSayrosa Engineers Ltd
Samsons (Electronics) Ltd.
Scott, James (Electrica
Service Trading CoShibaden (U.K.) Ltd.
Shure Electronics Lid
Sinclair A.R
Sinclair Rad
S.M.E. Ltd.52,
53
S.M.E. Ltd.
Smith, G. W. (Radio) Ltd. $54,55,56,57$
Sonax ElectronicsSowter, E. A.Special Product Distributors Lid.
Starman TapesStrumech Eng. Ltd.
Sugden, J. E., Ltd.
Taylor Electrical Instruments Ltd 24
Tektronix (U.K.) Ltd. 44
Teleprinter Equipment Ltd. Teleradio. The, Co. (Edmonton) Ltd. 97
Teonex Ltd.Thorn Radio Valves and Tubes LtdToyo Communication Equipment
Unaohm-Start 34
Valradio Ltd. 26
Vero Electronics 30
73
Vitavox Ltd.73
4
Young Electronics 97
Watts, Cecil E., Ltd. 97
Wayne Kerr, The, Co. Ltd. 35, 50
Western Electronics (U.K.) Ltd 78
58
West Hyde Developments Lid 76
West London Direct Supplies West London Direct Supp
Weyrad (Electronics) Ltd. 96
Whiteley Electrical Radio Co. Ltd. 13
76
Wilkinson, L. (Croydon) Ltd. 99

Save time and money

In the front is the Bradley 192 oscilloscope calibrator. It costs $£ 495$ in the UK and gives you fast rise pulses, with a 1 nanosecond edge and a very clean square top. These are available in p.r.f. over the range $1 \mu \mathrm{~s}$ to 1 s for checking basic amplifier response. Another feature of the 192 is the ergonomically designed push button switch layout and a $50 / 60 \mathrm{~Hz}$ sinewave output to allow you to check trigger circuits at line frequencies.

Backing it up, the Bradley 156 which gives pulses with 3 nanosecond rise time on the leading edge and at a fixed p.r.f. of 1 MHz . But the 156 costs only $£ 300$ in the UK, so, although you lose a little capability, you save a lot of money.

For Y amplifier calibration, both provide DC voltages and 1 kHz square waves over the range of $30 \mu \mathrm{~V}$ to 200V.

For timebase calibration, both have a wide range crystal-controlled time mark generator providing accurate time pulses over the range 10 nanoseconds to 5 seconds in 1, 2, 5 sequence.

Both include the unique Bradley feature of allowing percentage error for both amplitude and time, to be read directly on a meter without the need for any calculation.

All Bradley instruments can be supplied with a British Calibration Service Certificate from our own B.C.S.
approved standards laboratory.

G \& E BRADLEY LIMITED Electral House, Neasden Lane, London NW10 1 RR Tel:01-4507811 Telex : 25583 A Lucas Company

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years.

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible.

There are well over 1,000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture:

Savbit Alloy - A copper loaded alloy to reduce copper absorption from copper wires and copper laminate when soldering and also reduces the wear of copper soldering iron bits.

High Melting Point Solder (H.M.P.) - Melting temperature liquidus $301^{\circ} \mathrm{C}$ for special applications where above average heat is experienced.

Low Melting Point Solder (L.M.P.) - for soldering ceramics or silver coated surfaces. Melting temperature liquidus $179^{\circ} \mathrm{C}$.

Tin Lead Cadmium (T.L.C.) - special low melting point solder. Melting temperature liquidus $145^{\circ} \mathrm{C}$.

Ultra Fine Gauges - for soldering miniature components and assemblies. In all standard wire gauges to $34 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. $(0.23 \mathrm{~mm})$ in most alloys.

Solder Pre-forms - include solder tape. rings, washers, pellets. Cored or solid. Available in a wide range of specifications.

Solder Cream-for special applications.
For mass assembly of printed circuit boards EXTRUSOL High Purity extruded solder for solder baths and pots.

Compatible range of printed circuit chemicals and fluxes:

PC 2 Multicore Tarnish Remover
PC 90 Multicore Peeloff Solder Resist
PC 41 Multicore Anti-Oxidant Solder Cover
PC 80 Multicore Solvent Cleaner
PC 10A Multicore Activated Surface Preservative
PC 52 Multicore Protective Coating
and seven standard Multicore liquid fluxes available in one and 45 gallon containers.

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to:

Multicore Solders Ltd.

Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7.EP
Tel: Hemel Hempstead 3636 Telex: 82363

[^0]: Please write for iflustrated leaflet of these and other specialised Sanwa meters

[^1]: Tick or state subject of interest and post to:
 International Correspondence Schools, Dept. 2764 Intertext House, Stewarts Road, London SW8 4 UJ.

 Subject of interest
 Society ol Engineers Graduateship (Electrical Engineering) C \& G Telecommunications Technicians Cerfificates
 C \& G Electrical Installation Work
 C \& G Certificate in Technical Communication Techniques
 MPl General Certificate in Radio Telegraphy
 I Audio, Radio \& TV Engineering \& Servicing
 Electronic Engineering, Maintenance, Engincering systems, Instrumentation \& Control systems
 Computer Engincering and Technology
 Electrical Enginecring, Installations, Contracting, Appliances
 Self-build radio courses
 Name
 Adidress

 Occupation
 Age
 ACCREDITED BY THE C.A.C.C., MEMBER OF THE A.B.C.C.

[^2]: Price 20p. (Back numbers 40p.)
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
 Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription rates: Home, £4.35 a year. Overseas, 1 year £4.35; 3 years $£ 11.10$ (U.S.A. \& Canada 1 year $\$ 11$,
 3 years $\$ 27.75$). Student rates: Home and Overseas 1 year $£ 2.18$, 3 years $£ 5.55$ (U.S.A. \& Canada 1 year $\$ 5.75$, 3 years $\$ 14.50$).
 Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

[^3]: *South East London Technical College
 +Twickenham College of Technology

[^4]: * Note. The quantities admittance. conductance and susceptance now have the unit siemens, symbol S, instead of the unit mho.

[^5]: *Système Internationale d'Unités.
 \dagger To forestall indignant retorts, or even physical assault, from citizens of Sheffield, I would assure them that I have no wish to bring their city into contempt. By all accounts it is an admirably progressive one, not least in the reduction of atmospheric pollution.

[^6]: * Moscow, U.S.S.R

[^7]: *Measurement consultant to Semitron Ltd.

[^8]: †"Design Considerations for a t.t.l. Gate", Jeff Kalb, National Semiconductor Corp. publication TP-6.

[^9]: VALVES WANTED
 WE buy new valves, transistors and clean new comquotation by return.-Walton's, 55 Worcester St. Wolverhampton.

