WirelessWorld
 Weather satellite receiver
 October 1971 17 $\frac{1}{2}$ p

Making a turntable

Thank you gentlemen.

Department of Trade \& Industry, British Rail, Port of London Authority, United Kingdom Atomic Energy Authority,

Carphones Ltd.,
Caledonian//British United Airways, Central Electricity Generating Board,

AutomobileAssociation, C.W.S. Limited, Chubb Alarms Ltd., City of London Police, Turriff Construction Corp., Marks \& Spencers Ltd., Prestcold
(Southern) Ltd., Wasco Electronics Ltd., Appledore Shipbuilders Ltd.,

Boots Pure DrugCo. Ltd. British Steel CorporationTubes Division,
Calor Gas (Ireland) Ltd., Helsinki Transport
Board (HKL),
Esso Petroleum Co.
Ltd., Ford Motor Co. Ltd.,
Imperial Chemical
Industries Ltd.,
Kellogg \& Co. Ltd., Kodak Ltd., Mobil Oil Co. Ltd.,

Pilkington Bros. Ltd., Spanish Police, St. Etienne Taxi Union, Reed Group Ltd., Shell-Mex \& B.P. Ltd., Roya Malaysian Police,

Vauxhall Motors Ltd.,

Court LineAviation Ltd. Iberia Airlines of Spain, Hawker Siddeley Aviation Ltd., K. L.M. Royal Dutch Airlines, Pañ American World Airways,

Council of the Stock Exchange, Chrysler United Kingdom Ltd.,

Dartford Tunnel Joint Committee,

East African External Telecommunications Co. Ltd., Kuwait Oil Co., London Transport Executive, Trust Houses Forte Limited, Zambian Electricity Supply Corporation. All use STAR mobile or Starphone pocket radiotelephones.

And they've helped to make us one of the world's leading padiotelephone companies.
Sothanks again, gentlemen
If you'd like STAR, too, write to: ITT Mobile
Communications Limited,
Radlett Works,
Colney St.,
St. Albans, Herts.
Tel: Radlett 4711

Designers specify them for their reliability and modern styling. Buyers choose them for their competitive prices and delivery.

are selected by equipment manufacturers everywhere.

Vesta Series
Popular, reliable panel meters with robust phenolic mpuldings and scale lengths from $1 \frac{\pi}{4}$ in to $4 \frac{1}{2}$ in. This range combines cempact functional styling with easy readability and excellent performance.
Mechanically interchangeable. with the Fyneline range.

Edgewise Series Here's the latest in the range of three Edgewise panel meters, the Model 330 with a $2 \frac{1}{4}$ in scale length. Ideal for today's crowded instrument panels, other scale lengths are $1 \frac{1}{1}$ in (Model11) and $1 \frac{1}{2}$ in (Model220).

Fynelline Series Adaptable versatile series with scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. Contemporary stýling and clear shadow-free readings ensure maximum readability. This modern range maintains the Taylor reputation for reliability and sensitivity.

Taylor offers a comprehensive range of movingcoil and moving-iron panel meters. The movingcail meters feature the proven Taylor centre-pole movement with practically friction-free operation, inherent magnetic shielding

and high torque/weight ratio. They are sensitive, accurate instruments that conform generally to BS 89/54 with contemporary or conventional styling. Ask for the

Panel Meter Shortform Catalogue.
popular Taylor Type 127A, a pocket-sized multimeter for the service engineer and hobbyist. Ask for the Instrument Shortform Catalogue.

Taylor makes test equipment too! Two typical models are Taylor Model 88B, a robust, wide-range multimeter with automatic cut-out and polarity reversal facility, and the

For the first time -a new Amplivox headset offering full communications facilities yet under $20 z$ in weight.

The New Amplivox MINILITE - a breakthrough in super-lightweight headset design. MINILITE is feather light. No wearer fatigue. No wearer discomfort. New accoustic techniques have led to an earpiece that need barely touch the ear. So it's hygienic as weli as comfortable. MINILITE is so light that it can be attached to the frame of a normal pair of spectacles. The telescopic 'Boom' is an accoustic tube that gives highest speech intelligibility. For all situations where the wearer has to use a headset continuously

MINILITE pays off handsomely in terms of performance, comfort and operator satisfaction at a truly economical price.
Minilite is Wearer Right
Send for full MINILITE details straight away.

A MPLIVOX COMMUNLCATIONS LIMIIED

BERESFORD AVENUE, WEMBLEY, MIDDX., HAO IRU.
Telephone: 01:902 8991. Cables: Amplivox Wembley.

The new distribution service that brings together six market leaders under one cover!

Now there's a faster more reliable way to get hold of electronic components. It's called BLUELINE. It covers almost all your everyday needs with a selective top quality range. And backs it with a service so efficient and friendly that BLUELINE quickly becomes an extension of your own purchasing department.

Six top manufacturers

BLUELINE is unique in its teaming together of the six market leaders in component manufacture. They give a quality concentration that enables you to meet most of your everyday needs for components.

In depth stocks

BLUELINE holds quantity stocks for every component. So it doesn't matter whether you need single items for a prototype or a batch for a production run. BLUELINE can cope with stocks off the shelf....or deliver to your scheduled requirement.

Computerised stock control

 The BLUELINE ICL 1903A computer forecasts demand and prints out a stock list daily - a feature that means orders can be confirmed immediately they're received and delivery on time guaranteed.
On-the-spot handling of orders

Order by post if you like. Or if you really want to get things moving, by telephone or telex. BLUELINE girls on the sales desk can give you the up-to-the-minute position on any component in the catalogue, handle your queries, confirm prices and give you a delivery date. And they're backed by five engineers throughout the country to help with queries and special orders on-the-spot.

now! try the DMM2 divaramumeneter-free!

£99 and it's yours-for keeps!

Fill in the coupon, send it together with your company's order, and we'll send you a DMM2 Digital Multimeter.
Examine the performance:-
Clear non-ambiguous digital reading of: Volts AC and DC $200 \mathrm{mV}-1,000 \mathrm{~V}$ f.s. Resistance 200 $2-2 \mathrm{M} \Omega \mathrm{f}$.s.
Current AC and DC 200μ A f.s. ($200 \mu \mathrm{~A}-2 \mathrm{~A}$ with optional SP2 shunts £16)
L.S.I. reliability. Push button range selection.

Maximum reading 1999 with decimal point.
Overrange and reverse polarity indication.
Lightweight ($3 \frac{1}{2} \mathrm{lbs}$.) portability.
Operation from AC supply, external 12V DC or optional rechargeable battery pack (£35).

DMM2 DIGITAL MULTIMETER

from ADVANCEE

ADVANJC円 ㅌITHCTROINICS I IMMITED

Raynham Road
Bishop's Stortford, Herts.
Telephone:
Bishop's Stortford (0279) 55155.
Telex: 81510.

INSTRUMMEINT DIVISION SALHESOFFICE

I am enclosing my company's order for a DMM2 Digital Multimeter. If after the fortnight's free trial period I do not wish to keep the instrument I will return it to Advance Electronics Ltd. and my order will be cancelled.

NAME \qquad TITLE

COMPANY

ADDRESS

cut out the coupon and answer your soldering problems

£2.75

SK1

SOLDERING KIT
In rigid plastic "tool box" containing Model CN - 15 watts -240 volts miniature iron fitted $\frac{3}{16}$, bit. Spare bits $\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}{ }^{\prime \prime}$. Reel of resin-cored solder, heat sink, cleaning, pad, stand and booklet "How to Solder".

SK2

Soldering Kit
In polystyrene pack, con:aining 15 watt miniature soldering iron, 240 volts fitted with $\frac{3}{16}$ bit, 2 spare bits $\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}^{32}$. Coil of resin-cored salder, heat sink, 1A fuse and bcoklet "How to Solder".
£2.40

Model CN 240/2

15 watts -240 volts
£1.70

Fitted with nickel plated $\frac{3}{32}$ '" bit and packed in handy transparent box.

£1-83

ES240 D 25 watt soldering iron In transparent display pack, fitted with long life ironcoated bit $\frac{1}{8}{ }^{\prime \prime}$ diam.

De-soldering tool working on compressed air for industrial use with an air line or occasional use with foot pump. Efficient, self-cleaning operation on Venturi principle. Split-second action. Press valve control.

Model ESS or GSS complete with foot pump
$\mathbf{£} 5.65$

M.E.S. Battery-operated 12 volt soldering iron

Complete with 15 ft $(4.50 \mathrm{~m})$ lead, 2 heavy gauge clips for instant connection to car battery and a guide 'How to Solcer'.
Packed in strong plastic wallet.

Please send the ANTEX colour catalogue.

Please send the following:
from electrical and radio shops or by Free Post (No stamp recuired) from ANTEX Ltd., FREE POST, PLYMOUTH, PL1 1BR. Tel (0752) 67377/8.

I enclose cheque/P.O./Cash (Giro No. 2581000)

NAME

ADDRESS

GSS Desoldering Tool
Model GSS with $\frac{3}{32}$ " tip diameter
£4.67

Here are some outstanding ICs from the wide Plessey standard range.

As European leaders in MOS and Bipolar technology
Plessey also offers you the most experienced custom/customer design service available proven by more than 400 successfully completed designs.

Ultra-High-Speed ECL Dividers

$\mathrm{SP} 602 \div 2 \quad 500 \mathrm{MHz}$
$\mathrm{SP} 620 \div 5400 \mathrm{MHz}$
SP630 $\div 10600 \mathrm{MHz}$
These three circuits form part of an expanding range of dividers. Power consumption from only 60 mW . Operating temperature from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
They are the only dividers available with full temperature range at this speed. Commercial and military applications are already nearing production.

Unique LSI Computing Circuits

These DTL/TTL compatible circuits were initially developed for process control applications in ICl . Now generally available, they feature the following:

SP520 5-Bit Reversible Gray Code Counter

A 5-bit up-down counter with non-overflow facility with both Gray and binary outputs. The Gray code o/p's can be inhibited-effectively open-circuiting. This makes them ideal for 'addressed parallel highway wired-OR applications'. Reset to zero facility is also provided.

SP521 5-Bit Binary Rate Multiplier

Basically an arithmetic unit capable of multiplying
together a frequency and a binary number. Has two-phase capability, is infinitely cascadable and eliminates the need for capacitors and other components, all as a result of internal Gray code operation.

SP522 Divider, Phase Lock and Comparator

Divides the master clock frequency (8 F) by 8 giving two interlaced o/p's (IF). These can be used to clock the SP521. There is also an o/p at 2F. Locks the phase of any i / p signal to that of the master clock. Max. i/p frequency to phase lock circuit is 3.2 F .
The comparator is a 5 -bit up-down counter with reset facility to the central symmetrical state.
WW-251 for further details.

Quad decade complements MOS counter range	Device Number	Single or Quad Decade	Single or Dual Power Supply	BCD or Decimal Output	$\begin{gathered} \hline \text { Current (I) } \\ \text { or } \\ \text { Voltage (V) } \\ \text { Output } \\ \hline \end{gathered}$	Carry Facility	Package
	MP107B	S	S	BCD	V	\checkmark	10 lead TO. 5
	MP108B	S	S	BCD	I	\checkmark	10 lead TO. 5
	MP120B	Q	D	BCD	1	\checkmark	16 lead DIL
	MP123B	S	D	BCD	V		10 lead TO. 5
	MP124B	S	D	Decimal	V		16 lead DIL
WW-252 for further details.	MP125B	S	D	BCD	V	\checkmark	14 lead DIL
	MP126B	S	D	Decimal	I		16 lead DIL
	MP127B	S	D	BCD	I	\checkmark	14 lead DIL

Plessey Semiconductors

Detectors, Demodulators \& AGC Circuits

The SL622C, a microphone amplifier plus VOGAD and the SL623C, an SSB demodulator, low level AM detector and AM AGC generator are the latest additions to the successful range of SL600 communications circuits. This fully compatible series operates from a single power rail, has low power consumption, full AGC facilities and operates up to 140 MHz .

WW-253 for further details.

1GHz Transistor Pair

The SL360 is a monolithic matched pair of transistors capable of being used at frequencies up to 1 GHz . The particularly good low current betas make this device suitable for a wide range of applications.
Typical characteristics:

BV		
h_{CE}	15 V	$\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\right)$
f_{T}	65	$\left(\mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
f_{T}	2.5 GHz	$\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
$\mathrm{V}_{\mathrm{BE}}(1)-\mathrm{V}_{\mathrm{BE}}(2)$	3 mV	$\left(\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\right)$
$\mathrm{h}_{\mathrm{FE}}(1) / \mathrm{hFE}(2)$	1.1	$\left(\mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
$\mathrm{V}_{\mathrm{CE}}(\mathrm{Sat})$	0.25 V	$\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\right)$

These characteristics make the SL360 an ideal element for the design and manufacture of more complex UHF circuits.
WW-254 for further details.

Low Noise GaAs
 Micrówave FET'S

Featuring high transconductance, low capacitance and operating frequency up to 4.5 GHz .
GAT1 $\quad 10 \mathrm{~dB}$ gain at $1 \mathrm{GHz} \quad 4 \mathrm{~dB}$ noise figure $\mathrm{GAT} 2 \quad 8 \mathrm{~dB}$ gain at $3 \mathrm{GHz} \quad 5 \mathrm{~dB}$ noise figure Ideal for use in low noise front-end amplifiers. WW-255 for further details.

Television and Audio Circuits

Colour TV on 2 Chips

The SL435C and SL436B combined form the complete colour signal processing section of a colour television receiver (PAL system).
The following functions are incorporated:
Chroma amplification - PAL switch - Colour killer
Gated burst amplifier with 45° switch
Internal stabilisation - Reference amplifier
Matrixing for red, green and blue outputs
R-Y, B-Y balanced demodulator

6W Audio Amplifier

The SL403D is a 6 W (3 W rms) audio amplifier incorporating a.c. and d.c. short-circuit protection. The device is designed to operate from a 12 V to 18 V supply into loads from 3Ω to 15Ω. Total harmonic distortion at full output is typically less than 0.3%.
WW-256 for further details.

OPTO Character Recognition

The OPT6 is a linear array of 72 integrating elements designed for OCR, code recognition and position sensing applications where high data rates and high definition are required.
The 72 elements operate in current recharge mode and integrate for one line period. Two clock pulses and one data input pulse are required for scanning the shift register which will operate typically in the range 10 KHz to 7 MHz .
The $0.2^{\prime \prime} \times 0.08^{\prime \prime}$ chip is mounted in a $\frac{3}{4}^{\prime \prime}$ glass windowed flat pack and dissipates about 300 mW at maximum bit rate.
WW-257 for further details.

Product Summary

If you would like details of the full range of
Plessey IC's please ask for our Product
Summary. This includes details of nearly
300 standard bipolar and MOS IC's, package diagrams, MOS logic diagrams and bipolar logic diagrams.
WW-258 for further details.

Semiconductors

UK Distributors:
Farnell Electronic Components Limited Canal Road, Leeds LS12 2TU
Tel : (0532) 636311

SDS-WEL Components Limited Hilsea Industrial Estate, Hilsea, Portsmouth Hampshire. Telephone : (0705) 65311
5 Loverock Road, Reading, Berkshire
Telephone : (0734) 580616
 ACTORS 50W to 1 kW with application notes.
GT. 5 AUDIO TRANSFORMERS including Microphone and line matching.Driver, output and impedance matching transformers.
GT. 12 LILLIPUT SERIES OF MICROMINIATURE TRANSFORMERS including inverter, A.F. and wide-band carrier matching A.F. Driver and pulse types, miniature smoothing and A.F. inductors.
Another range of standard transformers from Gardners acknowledged leaders in electronic transformers TRANSISTOR POWER SUPPLY TRANSFORMERS.

You can select from more than fifty standard types and be GARDNERS sure of finding
something suitable for any contemporary transistor power requirement - and most probably from stock! Write for GT.25.

There are nine other GT Brochures and we'll be pleased to mail any in which you are interested if you will post us this coupon.

GARDNERS TRANSFORMERS LIMITED
Christchurch, Hampshire, BH23 3PN, England
Tel: Christchurch 2284 (STD 02015 2284) Telex: 41276 GARDNERS XCH

The range with the Marathon endurance

Highly stable and tailored for today's technology, Erie Polycarbonates pack capacitance values from 0.1 to $10 \mu \mathrm{~F}$ into a slender, compact tube. Erie's unrivalled experience in processing and winding ultra thin dielectric film, results in ranges of 63 V d.c. and 100 V d.c.
rating with a standard tolerance of $\pm 5 \%$. Alternative tolerances of
$\pm 2 \%$ and $\pm 1 \%$ are no bother either. Temperature range is from -55 to $+70^{\circ} \mathrm{C}$ and humidity performance is first class ; up to 56 days long term damp heat.

You'll save space, weight and money: and gain a great deal in longterm reliability by sending for the data sheet. Why not do it now?

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting.jobs, We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

WHICH SUBJECT WOULD INTEREST YOUP

Mechanical
A.M.S.E. (Mech.)

Inst. of Engincers
Mechanical Eng.
Maintenance Eng. Weldirig
General Diescl. Eng Sheet Metal Work Eng. Inspection Eng. Metallurgy C. \& G. Eng. Crafts C. \& G. Fabrication

Draughtsmanship
A.M.I.E.D.

Gen. Draughtsmanship Dic \& Press Tools Dic \& Press Tools
Elec. Draughtsmanship Elec. Draughtsman Jig \& Tool Design
Design of Elec. Machin Design of Elec. Machical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng. General Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio \& Telecomms C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amateurs' Exam Radio \& TV Enginȩering Radio Servicing Practical Television Practical Telev
TV Servicing Colour TV
Practiçal Radio \& Electronics (with kit)

Auto \& Aero
 A.M.I.M.I.

MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng. Motor Mechanics A.R.B. Certs. Gen. Aero Eng.

Management \&

 Production Computer Programming Inst. of Marketing A.C.W.A. Works Managemen Work Study Production Eng Production EnStorckecping Storckecpin Personnel Managemen Quality Control Quality Control Electronic Dat
Processing Processing
Numerical Contro Numerical Control
Planning Engineering Materials Handling Operational Rescarch Metrication
Constructional
A.M.S.E. (Civ.) C. \& G. Structural Road Engineering Civil Enginecring Building Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture Builders' Quantities

General
C.E.I.

Petrolcum Tech.
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate of Education Choose from 42 'O' and 'A' Level subjects including: Engjects
English
English
Chemistry
Gencral Science
Gencral
Geology
Geology
Phystes
Muhematics
Mathematics
Technical Drawing
Technical
French
German
Russian
Spanish
Biology
B.I.E.T. and it
associated schools have recorded well over 10,000 G.C.E. successes at ' O ' and 'A' level. WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL. EXAMINATIONS

Over 3,000 of our Students have obtained City \& Guilds, have obtained Chty a Gulds Certificates. Thousands of
other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
"Completing your Course meant going irom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

ENGINEERINGTEGHNOLOGY

Dept B7, Aldermaston

 Court, Reading RG7 4PF. POST THIS COUPON TODAY

Here's how Motorola give you the complete Modem system. With:

RS-232C Quad Line Drivers and

Receivers.

The first and only monolithic quads in the industry to meet this stringent EIA spec. They're designated MCi488L and MCr489L.

Because they are quads they give you more board space, lower package count and they have direct compatibility with MDTL and MTTL logic circuits.
Op Amps for Active Filters.
The MCi437P (a dual MCi709C) and the brand new $\mathrm{MC}_{1458 \mathrm{G}\left(\text { a dual } \mathrm{MCr}_{74} \mathrm{IC}\right) ~}^{\text {C }}$ are your ideal choices. The latter is internally compensated for frequency response. Both reliable devices cost considerably less than two single-packed op amps and compare favourably with mechanical resonators or reed systems.

Frequency-Shift Keyer.
The MCi 445 G is a dual-input, logiccontrolled video switch that can connect either of two tone generators to an output line. It also has a low-impedance emitterfollower output stage.
Tone generators.
The MCi 550 G is a high-frequency differential amplifier that makes an ideal, ultrastable oscillator with built-in bias circuitry at little more than the cost of a transistor. Digital Logic.

MDTL or MTTL can be used to control the frequency-shift keyer and to perform other MODEM logic functions. Motorola offers a complete line in both families.

For full details of the Motorola Modem system and what it can mean to you write to:

Motorola Semiconductors, Dept. W W5, York House, Empire Way, Wembley, Middlesex. Telephone: 01-903 0944.

Power-Packed Performance With Gentle Finger PressureIt's TRIO's 220-watt KR-7070 Auto-Tuning Receiver

"Outstanding" is the word that sums up TRIO's 220-watt (Both channels at 8 ohms) KR-7070 auto tuning stereo receiver. It's full-balanced three-way tuning (auto, manual and remote) gives it immediate operating versatility. Also a 3FET, 4-gang tuning condenser FM front end for distinctive FM reception. Over-all amazing selectivity with 4 IC 's and crystal filter FM IF stages. Many exemplary extras throughout.

SPECIFICATIONS OF KR-7070

- Continuous Power: $90 / 90$ watts at 8 ohms
- Frequency Response (Main Input): $5 \mathrm{~Hz}-120,000 \mathrm{~Hz}$ ($\pm 1.5 \mathrm{~dB}$)
- Usable Sensitivity (IHF): $1.5 \mu \mathrm{~V}$
- Dimensions: $17^{\prime \prime}(W), 6-1 / 2^{\prime \prime}(H), 15^{\prime \prime}(D)$.

220-WATT (IHF 8 $)$) AUTO TUNING AM/FM STEREO TUNER AMPLIFIER KR-7070

Sole Agent for the U.K.
B.H. MORRIS \&
B.H. MORRIS \& CO.. (RADIO) LTD. 84/88, Nelson Street, Tower Mamiets, London, E.1. Phone: $01-7904824$
Sole Agent for the South Africo: supima corporation (pty.) limited Johanesburg: P.O. Box 7720 . Tel. 24.6121 Cope Town: P.O. Box 4112 , Tel. 55.9371 Durban: P.O. Box 1171, Tel. 31.6381 Por Elizabeth P.O. Box 3207, Tel. 44860 Bloemfonlein: P.O. Box 2232, Tel. 77824
Windhoek: P.O. Box 2152, Tel. 3527

to music in the home
When we listen we become engrossed in the music and, with good equipment, we can often obtain the same satisfaction that we would enjoy in the concert hall. Of course, there are differences between the real and the reproduced. Many of these we recognise as such; we come to terms with them and they do not intrude.

More serious perhaps are the distortions which we do not consciously notice but which are nevertheless continuously producing a contradiction between the actual and the imagined. They produce listening fatigue, a condition detrimental to the true objective. These distortions have little to do with the popular conceptions of HI-FI or LO-FI sound ; on the other hand they have much to do with good or bad engineering.

See and hear QUAD on
STAND NO, 43.
THE INTERNATIONAL AUDIO FESTIVAL \& FAIR
OLYMPIA. 25th-30th OCTOBER 1971

QUAD

for the closest approach to the original sound

The best pick-up arm in the world

SME precision pick-up arms offer a standard of design and engineering which has earned them many distinctions. Throughout the world thousands are used daily by enthusiasts, professionals, and broadcasting and recording companies, who appreciate a specification that is eminently suited to the needs of modern high-quality sound reproduction.

Write to SME Limited - Steyning - Sussex - England

Send for Heathkit - and send for the best

The best in hi-fi; the best in short-wave; the best in domestic, marine and auto equipment; the best in everything electronic.

The new AR2000
Heathkit comes direct from the world's leading suppliers of top-quality electronic equipment. You assemble your components using the unique Heathkit 'step-and-check' method and there's a team of experts ready to help and advise you on any problem. But you won't need them. Hardly anyone does! Send for your free catalogue - Now.

Say hello to these nifty compacts from Sansui, and say goodbye to the problem of obtaining a quality receiver at a reasonable price.

These beauties have got what it takes, and you don't have to mortgage the farm to own one.

Let's start with the 300.36 rousing watts. An expensive new FET frontend with 5 -stage IF amplifier for superb FM sensitivity and selectivity. Wide linear scale FM tuning dial against a dramatic blackout window panel. Fully automatic AM/FM stereo switching, plus a new FM stereo noise canceler. The 300's power bandwidth is a wide 30 to $25,000 \mathrm{~Hz}$, and as for distortion, no problem. It's less than 1% at rated output. There's probably not another compact receiver in the world that offers so much for so little.

But the 200 comes close. Created especially for the person who's just beginning to get his feet wet in stereo appreciation, this handy little component is - at 13.2 lbs . - actually lighter than a good many conventional AM-only radios. Yet it pulls in rich FM stereo broadcasts as well, and does so with extraordinary clarity. Its many big receiver features include automatic FM stereo/mono switching, an FET FM frontend for rare sensitivity and selectivity, and a wide dial linear scale for the FM band. Its power bandwidth is a wide 30 to $25,000 \mathrm{~Hz}$, and distortion is limited to 1% or less.

If you've been wrestling with the problem of obtaining a professional quality receiver at a price to suit your budget, stop in at your nearest authorized Sansui dealer and say hello to the problem-solvers.

Sansui

England: VERNITRON (UK)LTD. Thornhill Southampton SO9 5QF Tel: Southampton 44811 /Ireland: INTERNATIONAL TRADING GROUP LTD. 5 Cope Street. Dame Street, Dublin 2/West Germany: COMPO HI-FI C.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtenstein: EGLI, FISCHER \& CO.. LTD. ZURICH 8022 Zurich, Gotthardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J.-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: LUX Hi-Fi 3, rue Clesener, Luxembourg/ Austria: THE VIENNA HICH FIDELITY \& STEREO CO. A 1070 Wien 7, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Boulevard Léopold II, 199, 1080 Brussels/ Netherlands: TEMPOFOON N.V. Tilburg, Kapitein Hatterasstraat 8, Postbus 540 / Greece: ELINA LTD. 59 \& 59A Tritis Septemvriou Street, Athens 103 / Italy: GILBERTO GAUDI s.a.s. 20121 Milano, Corso Di Porta Nuova, 48 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Cyprus: ELECTROACOUSTIC SUPPLY CO., LTD., P.O. Box 625, Limassol / Portugal: CENTELEC LDA. Avenida Fontes Pereira de Melo, 47, 4.0 dto., Lisboa-1/Malta: R. BRIZZI 293, Kingsway, Valletta / Canary Islands: R. HASSARAM Calle la Naval, 87, Las Palmas / SANSUI AUDIO EUROPE S.A. Diacem Bidg., Vestingstraat $53-55,2000$ Antwerp, Belgium / SANSUI AUDIO EUROPE S.A. FRANKFURT OFFICE 6 Franikfurt am Main, Reuterweg 93, West Germany / SANSÜl ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo 168, Japan

PHILIPS

Philips for the hest 'PAL' you could have

Colour television can win or lose you your friends - and your profits. Fast, efficient and reliable installation and after sales service will make sure you're on the winning side. Philips PM 5508 PAL Colour Pattern Generator provides your engineers with all the facilities for on-the-spot colour TV (anc monochrome) service - for many adjustments you don't even need an oscilloscope ; just use the receiver's picture tube instead.
Of course, though, a sensitive, 10 MHz double-beam oscilloscope, such as the Philips PM 3230. could increase your advantage further - even over the competition.
If you want to make friends and influance people just contact Pye Unicam straight away Ask for a leaflet

giving more information on the Phil ps PM 5508 PAL Colour TV Pattern Generator, the PM 3230 Oscilloscope and other radio and TV service equipment in the Philips range

Pye Unicam Ltd
Ycrk Street Cambridge CB1 2PX
England
Telephone (0223) 58866 Telex 81215

PYE UNICAM LTE

it's all a great illusion ...

Stereosound is one of the best technical tricks of the century, and Tannoy Monitor Gold loudspeakers help. the illusion along. The piano won't seem eighteen feet wide, you won't hear the violins left, right and centre, in fact the illusion will be as good as the recording engineer can make it. (He probably used Tannoy monitors in the studio.)

our own contribution to the magictwo into one will go!

TANNOY PRODUCTS • NORWOOD RD • WEST NORWOOD SE27. TEL: 01-670 1131

Frequency Response: $30-20,000 \mathrm{~Hz}$. Power Handling Capacity: 15 " 50 watts, 12 " 30 watts. IIILZ 15 watts: Impedance: 8Ω nominal, 5Ω minimum.
Available from the best dealers in a wide range of enclosures including the NEW CHATSWORTH

M TANNOY N

STANDARD REFERENCE RESISTANCES

STANDARD MEGOHMS
Type P401, 1 M Ω nominal $\pm .05 \%$
Type P406. $100 \mathrm{M} \Omega$ nominal $\pm .02 \%$
Type P4010. $1 \mathrm{M} \Omega$ потinal $\pm .02 \%$
Type P4020. 10M Ω nominal $\pm .02 \%$ £60 plug-in 'hl-megohm' decade resistance box TYPE P400
Ten $100 \mathrm{~m} \Omega$ Steps $\pm .2 \%$

FULL INFORMATION ON REQUEST

high speed recorders type h320
Moving coil mechanism with natural frequency of oscillation of 5 Hz and sensitivity of BmA FSD. Syphon ink-pen with large reservoir capacity. Paper footags indicator. 8 chant speeds from 1.2 to 3000 mm per hour selectad by push buttons. Width of recording channel
80 mmn .
SINGLE
Channel recorder h320-1
three channel mecorder h320-3

MULTI-RANGE UNIVERSAL PORTABLE ACIC VDLTAMMETER TYPE H390
8 ACDCC current ranges 5 mA to 5 Amps 6 ACDC voltage ranges $5-500 \mathrm{~V}$. 6 Chart speeds 20 to 5400 mm per hour. Chart width 100 mm Chart wi
PRiCE

$f 55$

FOR IMMEDIATE DELIVERY

OSCILLOSCOPES

SYNCHROSCOPE C1-5

3 -in. tube. Built-in time base calibrator. Voltage measurement scale. $10 \mathrm{mc} / \mathrm{s}$ pass band. Sensitivity 300 mV per mm . Nine pre-set triggered sweep rates from 1 to 3000μ sec. Free-running time base 20 Hz to 200 kHz . Input alternator 1-10-100 times. PRICE
f38

dOUBLE BEAM OSCILLOSCOPE C1-16
Double gun rectangular tube giving display size of $40 \times 100 \mathrm{~mm}$. Passband $5 \mathrm{mc} / \mathrm{s}$ for 3 db down. Sensitivity 500 mm per Volt. 18 pre-set calibrated sweep durations from $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to 100 m sec per cm . Free running time base 50 Hz to 1 mc . Built-in amplitude calibrator. Crystal tirne base marker. PRICE
f87

FULL SERVICING FACILITIES

OUR

The comprehensive range.
The first to meet special requirements with line-ups of standard u.h.f. and v.h.f. devices.

Includes more than 30 types of r.f. power semiconductor device for use from the lowest r.f. up to 1 GHz . With c.w. power available from single devices ranging from 50 W at h.f. to 20W at the highest u.h.f. Suitable for mobiles, base stations and pocket portables, because it's designed specifically for them.

And it's because we've made each device compatible with the next that they can be built in as line-ups.
Which was how we field tested them.
For example, we designed a 17W class B f.m. amplifier to operate at

470 MHz , using a three stage 'line-up'. It worked very well indeed. So did the others we designed. Even under the most punishing conditions and. temperature extremes.
But that didn't surprise us.
As we handle all the manufacturing processes ourselves.

Which means we're able to control materials, geometry, diffusion and bonding a whole lot more accurately. And, at the same time, design in quality at every stage. Consequently every Mullard transmitting transistor is inherently stronger. Or, to put it another way, ruggedised from raw material through to finished product.

The proof is in their performance. Take our 12 V devices. Designed to operate from a 12 V battery, they can withstand repeated accidental over-voltages of up to 16.5 V . An overdrive of up to 20%. And any mismatching-given VSWRs of up to $50: 1$ at any phase. Devices designed to operate from other supplies also perform to the same high standards.

Which brings us to applications.
Continuous performance under the most punishing conditions
 our transmitting transistors in military and paramilitary equipment and in equipment for civil applications. We've done a great deal of
wulunhururum
research on both kinds. And can offer in-depth advice, whether it's a.m., f.m. or s.s.b. that's required.

And that brings us to us.
Most you already know. Although it's worth remembering that, being UK based, we're somewhat nearer than most transmitting transistor manufacturers. Many devices in our range are available ex-stock. And we can offer fast delivery on those that aren't.

Then there's our technical advisory service. It's good.

Very good. And staffed by experts who are always glad to help. However big or small the problems:

We're taking care of tomorrow too. Developing sophisticated devices for sophisticated needs. Such as the new range of u.h.f. broadband
modules with bandwidths of 380 to $512 \mathrm{MHz}, 50 \Omega$ input and output impedances and encapsulations that simplify module packing. And then there's the modules we're making for military use...

Design engineers who would like more information, write to Mullard (on your company notepaper please).

Mullard Limited, Mullard House, Torrington Pl., London WC1E 7HD Telephone: 01-580 6633

For electronic valves (a really comprehensive range), neon indicator tubes, semi-conductors (a wide variety), integrated circuits.
Teonex offers more than $£, 000$ devices. They are the eonex range are nearly always available for competitively priced and thay are superlat ve in immediate cieavery.
perfermanze, because the sompany intposes stric- Write now for technisal specificatiors and prices qualit. control Teonex concentrates entirely on exporand now ope ates in more than sixty countries, on Government or private contract. All-popular types in tc Teonex Limited, 2a Westbourne Grove Mews, Lonidan W1 1, Ergland. Cables: Tosuply London W11 Celex: 262256
Electronic valves, neon indicator tubes. semi-conductors and integrated circuits for expcrt

酾 soundsintemational

The Garrard AP76 transcription quality deck gives you a good deal to think about:

Forget the price for a moment, look at the features ㅁ Offers automatic play (start, stop and return) of single records at $33 \frac{1}{3}, 45$ and 78 rpm . Tab controls for viscous damped cue and pause, start/stop, manual/auto. \square Hexagonal, low resonance, aluminium pickup arm. Resiliently mounted counterbalance weight. \square Stylus force adjustment, calibrated 0 to 5 grams a Bias compensation calibrated for spherical and elliptical styli. \square Combined record speed and size selector. \square Slide-in cartridge carrier. $\square 11 \frac{1}{2}$ inch nonmagnetic turntable driven by 4 -pole induction motor. ㅁ Performance: wow and flutter better than 0.10\% rms. Rumble (relative to $1.4 \mathrm{~cm} / \mathrm{sec}$ at 100 Hz) better than -49 dB . This performance betters DIN 45-500 $\mathrm{Hi}-\mathrm{Fi}$ standard. B Black and silver finish as standard. Wooden base and rigid plastic cover available.

These are hard facts (and compare them with what the competition offers). Add in true quality engineering and the reliability based on 50 years' leadership in record players.

Now look at the price-recommended at $£ 27.85$. Fully $£ 10$ cheaper than the good competitive decks having the same features. Only Garrard can do it - by long experience and their comprehensive production programme across a whole range of quality players. At $£ 27.85$ the AP76 gives you transcription quality.
Return the coupon below for full details of this and other Garrard decks - or ask your Hi-Fi dealer for a demonstration today.

0.001 Hz to 1 MHz
continuously programmable over 4 decades
Sine wave distortion $<0.05 \%$
No bounce
Square wave rise time 30ns.
Quadrature outputs for two-phase lock-in systems
Outputs isolated from chassis
Outputs duplicated on back panel
Calibrated output down to 1 wV

We took the design team that won a world reputation for advanced signal recovery instrumentation... and set them to work on an oscillator. Result, Brookdeal 471-a superb all-purpose instrument with a list of features longer than your arm. If you know Brookdeal, you'll know it's time to throw your old ideas on oscillator price/performance overboard. We're giving you more performance. . ! How much more? Enter the W.W. No. below on the reader enquiry service card and we'll reveal all...

Brookdeal Electronics Limited,

Market Street, Bracknell. Berks, England.
Telephone 034423931.
See the new Braokdeal 471 at:
Melex, Manchester 5th-Bth October.
Interkama, Dusseldorf 14th-20th October.
E.P.G. Bristol 12th-14th October.

Het Instrument Exhibition,
Amsterdam 29th September to 7th October.

Vortexion

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for 2-30/60 Ω balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPM's

Since we have been supplying professional mixers for 25 years we have delayed the introduction of solid state units until they were at least as good as their valve counterparts. (Which will continue where required.)

The various sections of the FET mixers and BBC type PPM's have been performing successfully for several years in other equipments with complete reliability. The PPM also uses an FET in its time constant circuit so that polyester capacitors can be used. The response from the 600Ω output (25Ω source impedance) is level 20 Hz to over 30 kHz with very low intermodulation distortion to zero level +12 dB . The input signal voltage range is over twice that of the valve unit and the noise at least halved.

ONKYO

 JAPAN'S LEADING

 JAPAN'S LEADING Hi-Fi Hi-Fi EQUIPMENT

 EQUIPMENT}

COMPLETE STEREO SYSTEMS
SM-10 Modular 20 Watts Total Output. Dynamic Four Component Series.

28 Watts Total Output.
Multiac 50D Special 4-AMP System.
Multiac 60D Special 4-AMP System.
INTEGRA SERIES
725. Integrated Stereo Amplifier 22/22 W. 723. Integrated Stereo Amplifier $33 / 33$ W. 225. Stereo Receiver 22/22 W. 423. Stereo Tuner.

A section from the range of accessories and equipment to provide complete audio installations including loudspeakers-cassette and cartridge tape decksheadphones, etc.

PHOTOGRAPH:
D.F. 700 Complete Component Stereo System -28 Watts Total Output.
Suggested retail price $\mathbf{£} 152.91$ inclusive of Purchase Tax.

Trade enquiries are invited at the Showrooms of the sole U.K. distributors:

Parkar House, I Paul Street, London, E.C.2. Telephone 01-628 4577

WW-031 FOR FURTHER DETAILS

5 OUTPUT VIDEO/PULSE DISTRIBUTION AMPLIFIER

28 MHz bandwidth
Fully Integrated Circuit
$15 \mathrm{~K} \Omega$ input, $5 \times 75 \Omega$ output
Twin Stab. Mains Power Supply

7' VIDEO/VIEWFINDER MONITOR

10 MHz bandwidth
Fully Solid State
Line by line clamp
Range includes $11^{\prime \prime} 15^{\prime \prime} 20^{\prime \prime} \& 24^{\prime \prime}$
J. D. Jackson 'Electronics

EGGLESTON WORKS, LOMBARD STREET, NEWARK, NOTTS. TELEPHONE: NEWARK 5718

Portraits in profile of seven Wayne Kerr Bridges

This range of bridges covers the audio, video and VHF bands.

Each design is based on the transformer ratio-arm principle and enables accurate and highly stable impedance or admittance measurements to be made on both balanced and unbalanced systems.

At low frequencies small values of capacitance or high values of resistance can be measured at the end of very long cables.

At all frequencies three terminal measurements can be made using the guard facility of a transformer bridge to isolate one component from a complex network.

The complete range of WAYNE KERR bridges includes single frequency bridges designed for special purposes such as component batch selection and production process control.

Automatic Balancing Bridges

B421	1 kHz	
B541C	1 kHz	
B641	1591.6 Hz (Manual 200 Hz to 20 kHz)	
B642	1591.6 Hz (Manual 200 Hz to 20 kHz)	
B700	1 kHz	
B331	.1591 .6 Hz (Manual 200 Hz to 20 kHz)	

Manual Bridges

B500	$2 \times$ line freq and 7 kHz
B224	200 Hz to 50 kHz
B201	100 kHz to 5 MHz
B601	15 kHz to 5 MHz
B602	100 kHz to 10 MHz
B801B	1 MHz to 100 MHz

For more information, either call David O'Grady on 01-399 6751 or write to-him at the address below:

WAYNE KERR

Tolworth Close, Tolworth, Surbiton, Surrey
Telex: 262333. Cables: Waynkerr Surbiton

JACBSONS
 Radio and Electronic Components

(Made in England)

Accelerator Spinwheel

for that Extra Long Scale

* Smooth nylon to brass gears
\star Rapid travel over a long scale
* No need for larger or heavier Flywheel
\star One hole ($\frac{3}{8}$ " dia.) fixing
* Complete with nut and lock washer

P.T.F.E. Dielectric Tubular Trimmers

\star Several models available

* UHF Tuning
* Panel mounting. Vertical P.C. Board Mounting or Horizontal P.C. Board Mounting
\star Various capacities from $1 / 4 \mathrm{pF}-8 \mathrm{pF}$ to 2pF-30pF
\star Power factor less than 0005 at 1 MHz
\star High Test Voltage

Heavy Duty Epicyclic Drive
 for the Really Heavy Job

\star The main housing of this powerful friction drive is only $1 \frac{1}{2}^{\prime \prime}$ diameter and $\frac{1^{2}}{2}$ deep yet it delivers an output torque of 100 oz. ins. ($6 \mathrm{lb} . \mathrm{ins} .1$.

* The reduction ratio is $6: 1$
* The complete assembly weighs only 30 az
* Essential parts are hardened and ground to provide long life.

It's reliable if it's

made by Jackson!
Write for literature
JACKSON BROTHERS (London) LTD.
DEPT. W, W. KINGSWAY, WADDON CROYDON, CR9 4DG
Phone: 01-688 2754-5 Grams: Walfilco, Croydon U.S. office : M.Swedgal, 258 Broadway, N. York, N.Y. 10007

Eidustone solit-stete WHF/UHF

 communication receivers

MODEL 990 S

Single conversion receiver for $A M$ and $F M$ with continuous coverage from 230 MHz to 870 MHz .

Exceptional stability and sensitivity.
Crystal calibrator.
Fixed or mobile operation.
Operation from standard AC mains or 12V DC supply.

MODEL 990R

VHF Receiver with continuous coverage from 27 MHz to 240 MHz . CW, AM and FM reception.
Crystal filter to suit $12.5 \mathrm{kHz}, 25 \mathrm{kHz}$, or 50 kHz channel spacing to customer requirements.

Designed for fixed or mobile point-to-point services, broadcast monitoring purposes, meteorological services, radio astronomy, aerial investigations, civil aviation and in radio laboratories.
Operation from standard AC mains or 12V DC supply.

Illustrated brochures obtainable from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP.
Telephone: 021-475 2231 Telex: 337081
A member of Marconi Communication Systems Limited

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 250VAC output 0-260VAC

$$
\begin{array}{rrr}
1 \mathrm{amp} & £ 7.00 & 10 \mathrm{amp} £ 22.50 \\
2.5 \mathrm{amp} & £ 8.05 & 12 \mathrm{amp} £ 23.60 \\
5 \mathrm{amp} £ 11.75 & 20 \mathrm{amp} £ 49.00 \\
8 \mathrm{amp} £ 15.90 &
\end{array}
$$

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$
inpút $240 \mathrm{VAC} \pm 20 \%$
capacity 250 Watts
price $£ 12.50$ with quantity discounts

New solid state variable voltage control input 240VAC output 25-240VAC
$5 \mathrm{amp} £ 9.50$
10 amp f 15.20

Prices and literature from JOHN STEED RESEARCH LTD., 220 Edgware Road, London W.2, England. Phone: 01-723 5066

ANOTHER WINNER FROM MILLBANK-THE DISCO III MIXER
Millbank Electronics
BELLBROOK ESTATE, UCKFIELD, SUSSEX Telephone: Uckfield 4166 (0825 4166)

+ radio microphones only Reslo match mobility with perfect studio performance

This is the new TX 100 by Reslo. Manufacturers of high quality sound reproduction equipment.

Star Performer

Music at micnight

P.O. or Cheque payable Jermyn Industries Vestry Estate, Sevenoaks, Kent.

WW-042 FOR FURTRER DETAILS

Midnight is a time for listening. Let the music be as late and as loud as you like; with headphones, it disturbs no one. Let the headphones be A.K.G. and you will find the quality staggeringly good. Made by a company whose professional microphones are known throughout the world and much used in this country, A.K.G. stereo headphones reflect the same fine quality of design and meticulous manutacture. They are just about as good as anything you can buy at any price. Go to the dealer displaying the A.K.G. Superhead and hear for yourself, without obligation. Shown here, Model K. 60 R.R.P. £15.00

$\wedge>$

A.K.G. Equipment Ltd.

Eardley House
182-184 Campden Hill Rd. Ws 7AS

WW-041 FOR FURTHER DETALLS

All fully coded, all from well-known manufacturers and now available, while -stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:
1 N4148 Signal Diode ($=1$ N914)
1 N5060 1 Amp Rectifier 400 V
(=A14D) avalanche protected 7 for 50p
$2 N 2926$ NPN Silicon Transistor 8 for 50p (Red) hife 55-110
$2 N 2923$ NPN Silicon Transistor 7 for 50p hfe 90-180
2N3721 Gen. Purpose Transistor 8 for 50p
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.

Order any quantity, till sold (but we regret packs cannot be subdiwided).

Colbert Pana-Vise WORK
POSITIONERS are specially designed to quickly and easily achieve the most CONVENIENT, COMFORTABLE and TIME-SAVING work position. Available with vacuum clamp or screw-on base. They can be RDTATED, TIPPED, THLED, Distributors:

Special Products Distributors Limited

81 Piccadilly, London, W.1. Tel: 01-629 9556
Cables: Speciprod London
(made in U.S.A.)
WW-043 FOR FURTHER DETALS

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{1}^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1_{2}^{\prime \prime}}{} \times 20 \frac{3^{\prime \prime}}{4} \times 13 \frac{1^{\prime \prime}}{}{ }^{\prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround. -

These products can be seen and heard in our showrooms at 109 Kingsway, London WC2.

WHITELEY ELEGTRIGAL RADIO GO. LTD.

MANSFIELD . NOTTS • ENGLAND . Tel: Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel: HOLborn 3074

We're sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Manufacturing Company (GB)Limited, 10 Bayford Street, Hackney, London E8 3SE.
Tel:01-985 1152.

[^0]See the full Goldring range on stand 53 at the Audio fair
WW- 045 FOR FURTHER DETAILS

From Bradley. A £360 DVM now with $10 \mu \mathrm{~V}$ resolution.

Eradley's compact 173B Dígital Valtmeter will cost you only $£ 360$ in tre U.K.
And at that price you mightn't expect any extras

The 1738 gives you six.
For instance, there's a scale length of $10 \mu \mathrm{~V}$ to 1000 Vdre . and with 50% overrange, maximum reading is 1500 Vdic. with an accuracy of 0.01%.
There's guarded input giving ligh common mode rejection $=140 \mathrm{~dB}$ at line trequency.

There's display storage
And 1-2-4-8 BCD data cutput.
There is a standard unsaturated cell as ar internal calibration relerence. And the 1738 gives you automatic indication of polarity.
In one small package, the 173B gives you a lot of DVM for your money.
G. \& E. BRADLEY LTD.

Electral House, Neasden Lane,
London NW10.
Telephone: 01-450 7811 Telex: 25583
A Lucas Company

BRABLEY
 electronics

Terminate yourviring problems

Use Hellermann-GKN Compression Terminal Kits. They're ideal for general maintenance work on electrical and electronic equipment - domestic or industrial - and one of the Kits is specially made for automobile electronics.

Take your pick from three different Kits, each one containing 12 of the most popular compression terminals. With or without a hand crimping tool. The terminal packets are re-sealable, and fit into the pockets of the plastic wallet that can either be hung on a wall or folded neatly into a tool bag.

UNIVERSAL with pre-insulated terminals for general electrical maintenance and domestic appliances.
Kit No. 1. - without tool :£6.15 Kit No. 1 -CT - including tool £8.30
MAINTENANCE with pre-insulated terminals for factory and general maintenance.
Kit No. 2 - without tool : $£ 6.15$ Kit No. 2-CT-including tool: £8.30
GARAGE with non-insulated terminals and covers used on most automobiles
Kit. No. 3-without tool : $£ 3.25$ Kit No. 3-CT-including tool : $£ 5.40$

All prices are subject to quantity terms. Each of these Kits can be made up to customers' requirements, subject to quantity.

Write for descriptive leaflet to:

NETTLEFOLD \& MOSER LTD

170-194, Borough High Street, London, SE1 1 LA Tel: 01-407 7111.

I'D RATHER HAVE A MINITEST"

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean cycolac case with shock and magnetic field proof steel liner. Controls are simple and easy to use.
Second, the range. The Minitest measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively Third, high voltage probes. These extend the range to 25 or 30 kV d.c Little wonder the Minitest is preferred!

SALFORD ELECTRICAL

INSTRUMENTS LTD
Peel Works, Barton L̦ane, Eccles,
Manchester M30 OHL
Telephone 061-7895081 Telex 667711 A Member Company of GEC Electrical Components Ltd.

MY VITAL STATISTICS ARE 30mm. $\times 14$ mm. $\times 33 \mathrm{~mm}$. 250 V 10AMP A.C. SINGLE POLE SNAP-IN FIXING

now meet the family

Being a snappy little 1100 rocker who is getting around fast, I am often asked about my family. Now, having managed to persuade them to have their photograph taken with me, I have much pleasure in introducing them.

1109-often seen around with me, is a most illuminating little pilot light with a variety of colour lenses. At times we are very close and can often be seen working together very harmoniously on a wide range of appliances and equipment.

The 1100 twins are going to be very popular and you can expect to see them on many companies' panels soon.

1110, the fat one, is double pole and the clever member of the family, he can operate two circuits at a time.
Like to know more about us? Give us a ring at 01-574 2442, we would certainly like to meet YOU some time. P.S. I have just been awarded my BS. 3955 approval certificate.

ARROW ELECTRIC SWITCHES LTD.

SPECIAL OFFER! Something all i.c. users should know....

Our I.C. Patchboard Educational Pack Type CK2/E is down in price!
For a limited period only, that is.
The educational pack comes complete with patchboard for twelve dual-in-line integrated circuits, input switches, output indicators, clock, internal power supply, patch leads, a selection of ten digital integrated circuits, and a comprehensive logic instruction book. And as a bonus you also get the new handsome cabinet in which it is housed. Absolutely free.
At the special offer price of only $£ 57$, you save $£ 5$ per pack by ordering before 30 th October 71. The basic patchboard type CK2/S is exceptional value too at only $£ 48$. Ask us for further information NOW.

Limrose Electronics Ltd, Lymm, Cheshire, England.
Tel. Lymm 3019 (STD 092-575-3019)

Jack Plugs, 201, 310, 316, 309, 404
Jack Strips 310, 320, 510, 520, 810

Line Transformers
Resistor Lamps and Holders
Jack sockets 300, 500, 800
Resistor Bobbins, coils and spools

Bells and Bell Transformers 6V or 12V
Low Pass Filters
U Links and Sockets
Fuse mountings 4028 and Mounting H.15B.
Mountings Protector Strip H. 40
Patching and switchboard Cords

Patch Panels
Terminal Blocks and Strips Uniselectors and Miniature Uniselectors Ringing Generators

Large stock of GPO Type Components available for prompt delivery COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED

TELEPHONE: TRING 3476.
TELEX: 82362.

All you can buy from Vitality are miniature lamps because that's all Vitality makes.

You get personal service from the people at Vitality because lamps and only lamps are their life.

Miniature lamps at the rate of one million a week in dozens of different sizes.

This means you can be sure of getting exactly the lamp you're looking for when you ask for Vitality.

Miniature lamps from 3 mm diameter upwards in voltages from 1.5 to 50 V with all forms of bases.

When you're looking for a lamp ask Vitality first - they're Europe's miniature lamp specialists. Write for your copy of the Vitality catalogue

For example, look what you get as a scientist or engineer:square root, ax (including negative and fractional powers), log base 10 and base e, antilog base 10 and base e, reciprocal, factorial, rectangular to polar, polar to rectangular, sine and cosine, arcsine and arccosine, hyperbolic sine/cosine, arcsine/ arccosine, and e entry, integer/fraction, statistical summation (x, x^{2}, n), radians to degrees, exponent entry.

On the other hand

if you're a statistician you might like to automatically accumulate n count, item summations and sum-squares for single and grouped entries, then have standard deviation and mean, do linear regression analysis, normal probability and such recondite things.

Then again
if you're in banking or insurance you can have keys that instantly figure compound interest, present and future values of loans and investments and suchlike. Remember, Sumlock is British which means Sumlock Compucorp Calculators get round-the-clock support from no less than 34 sales and service points throughout the United Kingdom and Ireland. We're always glad to advise you on choosing the right machine for the job as well as provide keen and realistic after sales care. Now fill in the coupon.

See us on Stand no 156 Business Efficiency Exhibition Olympia 5th-13th October

SUMLOCK COMPUCORP
Programmable and non-programmable models available

Please supply me with full information on your new range of SUMLOCK COMPUCORP CALCULATORS.
NAME company ADDRESS

SUMLOCK COMPTOMETER LTD., Head Office:
ANITA HOUSE, RDCKINGHAM RDAD, UXBRIDGE, MIDDLESEX. TEL: UXBRIDGE 51522

Celestion \square

NEW CELESTION LOUDSPEAKERS

MODEL: PS12 TC 1798
(15 ohms)
PS12 TC 1920
(8 ohms)
TYPE: DUAL CONE $12^{\prime \prime}$
RANGE: $40 \mathrm{~Hz}-12 \mathrm{KHz}$ POWER: 20 WATTS RMS FLUX: 128,000 MAXWELLS IMPEDANCE: 15 or 8 OHMS PRICE (R.R.P.) $£ 9.00$

MODEL: PS8 TC 9470 TYPE: DUAL CONE $8^{\prime \prime}$ RANGE: $50 \mathrm{~Hz}-12.5 \mathrm{KHz}$ POWER: 6 WATTS RMS FLUX: 38,500 MAXWELLS IMPEDANCE: 15 OHMS PRICE (R.R.P.) £2.85

* Both recommended for Unilex

The Colostion "Ditton 120"
Placed in top Hi-Fi class by reviewers
Supplied in matched pairs-Teak or Walnut
Superb.Performance-Economical Price $\mathbf{E 5 7 . 7 0}$ pair

CELESTION 'POWER RANGE'

MODEL: G12M
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 25 WATTS RMS FLUX: 145,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £12.95

MODEL: G12H
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 30 WATTS RMS FLUX: 180,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £15.75
'POWER RANGE'

The finest Loudspeakers made for electronic guitars

> Hear the New Celestion 'DITTON 44' Monitor at the INTERNATIONAL AUDIO FESTIVAL \& FAIR at OLYMPIA from 25-30 October
ROLA CELESTION LIMITED
DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8.JP Telephone (0473) 73131

Telex 98365

If you think closed circuit

 television is complicated, come to DixonsAs distributors of every famous name in TV When you've chosen the system best suited to equipment, Dixons can offer you totally un- your requirements. we can offer you a choice equipment, Dixons can offer you totally un- your requirements. we can offer you a choice
biased advice on every problem connected between outright purchase, contract hire, hire with CCTV.
The service we offer is complete : consultation, quotation, supply and installation.
Come to our showrooms and we'll show you the very latest equipment in this field. From ITC mini-CCTV at £99.95 for a camera and monitor to a comprehensive system selling at E50.000. purchase and short term rental.
Our full-time staff technicians will check the equipment you buy before installation and give you unbeatable after sales service. So don't make a move in CCTV without us. tion or sendus the coupon for more informa(ion or a particular quotation. Or phone us at $01-4378811$

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd.
38 Hereford Road,
London W2 5AJ.
01-229 8054 or 01-229 9111
WW-057 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for:-

> REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 10 k.V.A.

A.C. SOLENOID TYPE SAM/T.

9 Knapps Lane, Bristol 5. 0272657228

ANALOGUE or DIGITAL 1Hz to 1MHz R.C. OSCILLATORS

Magnetic shielding problems?

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance. For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.
'Telshield' wrap-around foil
Telshield is an easy to use, feromagnetic
 shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields, 'Telshield' is supplied in a standard thickness of 0.05 mm , in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$. Other thicknesses and widths are available by arrangement.

Please send for further information to

Telcon Metals Ltd.,
Manor Royal, Crawley, Sussex. (Crawley 28800)

- To get better quality components, look for superior breeding

Fine breeding in electrical components is like good breeding in dogs: it takes a long time, but the results are well worth the trouble.

Rendar Instruments have the experience and the technical know-how in standard, miniature and sub-miniature components, equal to a first-class pedigree. Enough to gain Ministry of Defence Approval.

You could benefit from this if you are dogged by small component troubles. Using components from the well-bred Rendar range could bring about a substantial improvement in the reliability of the equipment you are handling.

You will find this in the sound design, the first class materials, the precise machining and careful assembly of all the Rendar components you use.

And the cost will probably be little more than you are paying now.

Why not send today for further details about the complete range of Rendar components?

RENDAR COMPONENTS OF THE MONTH (These illustrations are all life size) Miniature and standard size jack plugs and sockets. Plugs in both R-32300 screened and unscreened versions; socket bodies in high
 melting point thermoplastic; many other interesting specifications and performance figures (see individual technica data sheets). Rendar were first in the field with 3.5 mm probe miniature jack plugs!

rendar for reliability

RENDAR
INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-4 CABLES: RENDAR, BURGESS HILL

ZERO-100S
now the world's mostadvanced Hi-fi deck as a single player.

Garrard Zero-100, the new concept in transcription turntables is now in a new version.
The Zero-100S, single player. So now you can buy it as a single player or auto-changer. Both offer automatic play of single records at 33 or 45 revs. per minute. And, of course, both have the revolutionary pickup arm that virtually eliminates tracking error and the associated distortion.
The cartridge housing on the arm is pivoted at a point directly above the stylus tip. It continuously changes angle as the arm moves across the record, so that the centre line of the housing is maintained at a tangent to the groove. This action is achieved by a lever mechanism using a control rod parallel to the pickup arm.

Take a look at the diagram and you'll get an idea of the tracking accuracy. There are a whole lot of other features that go to make up the remarkable Zero-100. Magnetic bias compensation which employs the principle that like poles repel each other. A shield can be moved between the magnets and, according to the setting of the shield, a controlled bias is exerted on the pickup arm. The scale is calibrated for both spherical and elliptical styli.
Since there are no moving parts or mechanical links between the pickup arm and compensator there is no friction, wear or distortion.
Precision stylus force adjustment, achieved by moving a weight along a 3 -inch scale, is calibrated from 0 to 3 grammes in $\frac{1}{4}$ gramme steps.
Stroboscopic speed check, stroboscopic markings on the underside of the turntable are illuminated by a high intensity neon lamp and are viewed through a window in the base plate, enabling an immediate check to be made on turntable speed.
Fine speed control, giving a variation of $\pm 3 \%$ (a semitone in all), provides facility for adjustment of pitch.
Tab controls give quick, easy operation of automatic, manual, reject, replay, cue and pause (fluid damped) and stop.

The pivoting head at the start and end of a playing cycle.
See the Zero-100 and the other models in the range at the Audio Fair, Olympia, October 25-30.

Synchro-Lab motor. The Zero-100 is fitted with the Garrard Synchro-Lab motor, which combines the best features of both induction and synchronous motors, guaranteeing smooth running and constant speed.
Add to these features, performance figures such as: wow and flutter better than 0.1 r.m.s., rumble (relative to $1.4 \mathrm{~cm} / \mathrm{sec}$ (a) 100 Hz) better than-51 dB and you'll see how it's easy to get enthusiastic about the remarkable Zero-100.

The pickup arm housing and assembly, showing the magnetic bias compensator calibrated for spherical and elliptical styli.

Please send me copies of the Garrard Zero-100 and Range brochures.

Name

Address
The extremely low friction which is essential to the concept of the Zero- 100 tracking principle is achieved by the use of costly, precision loaded ballbearings, and a free floating universal pivot.
The low resonance pickup arm is counterbalanced by a resiliently mounted weight and has precision gimbal type pivots for minimal friction.

The slide-in cartridge carrier facilitates stylus inspection and the interchange or replacement of cartridges.
1 Brass
counterbalance weight
2 Magnetic bias compensation

3 Rigid acrylic pickup arm housing

4 Gimballed pivots
5 Stylus force adjustment (under arm)
6 Low resonance pickup arm

7 Control arm
8 Control link pivot
9 Pickup head pivot
10 Vertical cartridge angle adjustment (on auto player only)

Garrard, Dept. WW10,
Newcastle Street,
Swindon, Wiltshire.

JUST ONE FULL RANGE JORDAN-WATTS DRIVING UNIT $20 \mathrm{~Hz}-20.000 \mathrm{~Hz}_{2} 12$ watts

HERE FOR ONLY £13 IS RICHFULL BASS AND SPARKLING CLARITY THROUGHOUT-AT LESS COST THAN A TWEETER ASSEMBLY

Send for Constructor's Brochure free from your Hi-fi Dealer or

LOUDSPEAKERS
THE VOICE OF HIGH FIDELITY

WW-065 FOR FURTHER DETAILS

LOW-NOISE

SOUND
RECORDING
MODULE (Prov. Pat.)
FULL FREQUENCY RANGE
ADVANTAGE: 14dB UNWEIGHTED
LOW DISTORTION
NO SIDE EFFECTS
For full details write:
SYDNEY HOUSE, 35 VILLIERS ROAD, WATFORD WD1 4AL

New Model 313 with taut band movement

The model 313 has the input impedance and sensitivity of an Electronic Multimeter combined with the features of a battery operated Conventional Multimeter. And it's more stable than both. The FET input handles large overloads without damage, and the Taut Band meter movement is varistor protected from even 200.000\% overloads. The 313 operates for over 300 hours on easily obtained inexpensive batteries and a switch allows the battery condition to be checked instantly. The large 7 -inch scale is designed for fast and accurate readouts. Rugged construction combined with built-in frequency and temperature compensation gives the 313 Simpson's famous "stay accurate" dependability.

BACH-SIMPSON LIMITED

MODEL 388-3L TEMPERATURE TESTER

MODEL 269 $100,000 \Omega \mathrm{~N}$

MODEL 260-5 ${ }^{\text {P }}$ TRANSISTOR SWITCH PROTECTED

MODEL 635

industrial high accuracy

AICCOLA Soldering Instruments add to your efficiency

THE NEW 'INVADER'

ADCOLA L. 646

for Factory Bench
Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available
COPPER

LONG LIFE

B44 LL $\frac{3^{\circ}}{16^{\circ}}-4.75 \mathrm{~mm} \underset{\text { FACE }}{\text { SCREWDIVER }}$

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

Write for price list and catalogue

MODEL• 8 MK. III

REPAIR SERYICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-069 FOR FURTHER DETAILS

Logic PowerSupply

New, compact plug-in 5 V power μ nit designed to supply IC logic such as DTL,TTL etc.
Mains input $110,220,240 \mathrm{~V} 50-60 \mathrm{~Hz}$
Regulation $<0.1 \%$ line and load, Ripple $<2.5 \mathrm{mV}$ p-p
Transient recovery time $40 \mu \mathrm{Sec}$
Full short circuit protection - re-entrant current limit
Output spike clipper and optional overvoltage "crowbar'
Dimensions $95 \times 108 \times 55 \mathrm{~mm} 5 \mathrm{~V} 1 \mathrm{~A}, 95 \times 175 \times 70 \mathrm{~mm} 5 \mathrm{~V} 2 \mathrm{~A}$
Price 5 V 1 A 1 off $£ 14 \cdot 00,5$ off $£ 12 \cdot 00,50$ off $£ 10 \cdot 00$
Add $£ 2$ for 5V2A Add $£ 2$ for Crowbar
Add $£ 2$ for cased units Immediate Delivery

Weir

Weir Electronics Ltd Durban Rd Bognor Regis Sussex Bognor Regis 5991 Grams Electron Bognor Regis

We designed the 472R to a specification exactly suited to the photomultiplier user -and the price added down to only $£ 144.00$

The 472 R is selling on quality, reliability and performance; the unexpectedly low price is a bonus resulting from exact fitness to purpose and the Brandenburg policy of 'production orientation'; we even make our own HV plugs and sockets and mould our own thermo, plastic components.
Look at that ergonomically designed control panel; just turn a knob and push an adjacent button and you have the output voltage you want, at very high stabil ty..Exclusive all solid state circuitry and patented automatically regulated transformer. Ask for the 472R data sheet.

Apart from the $4 \overline{7} 2 R$, Brandenburg make stabilised high valtage supplies for outputs up to 100 kV . Let us know your particular application.

```
Output Voltage 100-2100 Volts:DC
Output Current
Ripple
Stability
Drift
Polarity
```

100-2100 Volts:DC
5 mA Max.
1 mV peak to peak
1 part in 10^{4} against $\pm 7 \frac{1}{2} \%$ mains change
5 parts in 10^{5} per hour
1 part in 10^{4} per day
Push-button reversal

Brandentirs Lintied

939 London Road. Thornton Heath. Surrey, CR4 6JE. England.
Tel: 01-6890441 Telex 9<6149.

WW-072 FOR FURTHER DETAILS

PRECISION
 POTENTIOMETER

TYPE P. 10^{-7}
ACCURACY: 5 ppm
RESOLUTION: $0.1 \mu \mathrm{~V}$
RANGE: 0 to 1.1 volts

7 DIAL IN LINE READ OUT
SCREENED AND GUARDED
TRUE ZERO CONTROL
6 DIAL CURRENT REGULATOR 4 TEST CIRCUITS

Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code: CR9 2RU) Telephone 01-684 4025 and 4094

BRADEWICK Dry De-Soldering Wick
 THE INSTANT, POCKETABLE DE-SOLDERING AID

Enables all types and sizes of joints to be completely de-soldered in seconds, using just a soldering iron. Special dry flux impregnation gives superior solder adsorption. Supplied in four sizes, in handy dispenser packs containing approx. 5 ft . (Use size 3 for general purposes) Price: 90p (list) Leaflet $\mathrm{B} / 5$ free on request.
LIGHT SOLDERING DEVELOPMENTS LTD
28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 \& 4559

The large connector is in production for HF 2MW broaccasting stations

... we're the specialists!

We're not the largest connector and cable assembly manufacturers-yet; most of our regular customers think we're among the best - which keeps us on our toes.

That's why, in addition to high quality, competitive prices and reliable delivery, we add another vital ingredient : firstclass service and personal attention.

Whether you're large or small, whether your requirements are large or small, you'll get V.I.P. treatment all the way. We'll supply RF connectors and cables from stock and cable
assemblies to your precise requirements (we've a fast-action section making cable assemblies of all types).

It's all part of our service, which includes a wide range of technical data publications, all available on request. They're well worth keeping in your current file.

Just pick up the phone - we're waiting to help you
Contractors to the Industry, the Post Office, Armed Services, Broadcasting \& Television Authorities.

For orly $=25$, Farnell have produced a bench pover supp y with a hig i performance:
Line Stebilitw
$\pm 10 \%$ rains zrange output change $<2 \mathrm{mV}$ Load Stability
zero-full load srange cutput change $<3 \mathrm{mV}$ Rippla and Noise at $\delta_{1} \mathrm{KH} \mathrm{K}$ bar dividth $<1 \mathrm{mV}$ r.m.s.
The output ce 1 be switched to provide either $0-3 \mathrm{~J}$ V. $0.5 \mathrm{~A} 00-15 \mathrm{~V}, 1 \mathrm{~A}$ with full current cap aility ove the entire voltage range. Precise levels of voltaye and curent are monitored by a large cear scale meter. The power supply is pro-ected from overload by current limiting circuitry
This compact general-purpose unit is ideally suitec for Ird str al and Educational laboratories with lim tec tudgets.

THE =30 FROM Farnell Instruments Ltd.
 Sandbeck Way, Wetherby LS22 4DH Tel: $09373541 / 6$. . z ull details on request.

(WWW-076 FOR FURTHIRR DETALS

Hatfield will break your resistance

with their New inexpensive Resistance Decade Box type 2901 using metal film resistors that provide high accuracy over 6 decades with steps from 1Ω to $100 \mathrm{~K} \Omega$ Step accuracies are 0.1% on the 4 highest decades: 0.2% on the 10Ω decade and 1% on the 1Ω decade. Dimensions: $327 \mathrm{~m} . \mathrm{m} . \times 71.2 \mathrm{~m} . \mathrm{m} . \times 87.6 \mathrm{~m} . \mathrm{m}$.
only $£ 21-00$ ex works.
Send for full details of Hatfield Resistor Decade Boxes and a copy of our Short Form Catalogue.

forward thinking in electronics

HATFIELD INSTRUMENTS LIMITED

Burrington Way, Plymouth PL5 3LZ, Devon.
Tel. Plymouth (0752) 72773/4 Grams; Sigien, Plymouth. Telex: 45592
East Asla: Ior porompt service and deliveries, contact
Hatield Instiuments (NZ) Lid., P.O. Box 561, Nepier, New Zealand

WW-077 FOR FURTHER DETAILS

Best value inVariable Filters

Some customers

British Broadcasting Corporation British Rail
Central Electricity Generating Board Chelsea College of Science \& Technology
Chemical Defence Establishment Government Communications Headquarters, Cheitenham
Imperial Chemical Industries Ltd Imperial College
Marconi Space \& Defence Systems Lid
Military Vehicles \& Engineering Establishment
National Physical Laboratory The Post Office Queen Mary College Rank Precision Industries Ltd The Rover Co. Ltd Royal Air Force College Royal Armament Research \& Development Establishment Royal Military College of Science Royal Navy Physiological Laboratory Shell Research Lid

Unilever Ltd
United Kingdom Atomic Energy Authority

University of Essex
University of Liverpool
University of Salford
University of Strathclyde

Sales prove it

WW-079 FOR FURTHER DETAILS

Our specification

\square Two independent low pass/high pass filter channels
\square Frequency cut-off range from 0.1 Hz to 100 kHz
\square Frequency tolerance $\pm 5 \%$ except at the limits of the range
\square Attenuation slope 36 or 72 dB /octave
\square Maximum attenuation greater than 75 dB
\square Combińed channels providing band pass, band stop or band separation modes
\square Mode switching without the use of external llinks
\square Digital selection of cut-off frequency giving accurate repeatability
\square Response switchable to 'normal', 'narrow' or 'damped' condition
$\square U_{R}$ to 20 dB gain provided in 'narrow' condition
\square 6th order response achieved as a result of computer aided design
\square Operation either from mains or external bätteries
\square Output protection against damage from external short circuit
—Price- $\mathbf{~ P 3 5 0 (U K)}$
Please write for pamphlet No. 1652/WD

EAREREAND

3TROUD
BARR \& STROUD LIMITED Anniesland, Glasgow W3
Telophone: 041-9549601 Telex: 778114
Kinnaird House, 1 Pall Mall East, London SW1 Telephone: 01-930 1541 Telex: 261877

${ }^{\circ} \mathrm{N}$ O linSolder

ENTHOVEN offers you Europe's Widest Range

One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use 'with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders LimIted, Dominion Buildings, South Place, [----- London EC2M 2RE. Telephone 01628 8030; telex 21457; cables: r--enthoven londonecr

SOLID SOLDERS

PLUMBERS BARS-CAR BODY FILLERS TINSMITHS
STICKS -BLOW PIPE STICKS INGOTS IN A VARIETY OF WEIGHTS WIRE IN ALL GAUGES
-1 lb \& 7 lb . REELS
FASHION JEWELLERY CASTING ALLOYS
SHEET-RIBBON

Available in a wide range of alloysstandard or custom-made. Certificates of analysis provided.

TUNE IN TO OXLEY

WITH OUR ESTABLISHED AND MOST RECENTLY DEVELOPED TRIMMER CAPACITORS

\star P.T.F.E. tubular trimmers.
\star Quartz tubular trimmers.
\star Plastic base P.T.F.E. and air dielectric trimmers.
\star Ceramic trimmers.
\star Temperature compensating trimmers.

* Ceramic base P.T.F.E. and air dielectric trimmers.
\star Maximum capacitance values from $2 p F$ to 100pF.
We feel sure we can meet your most exacting requirements for precision trimmer capacitors.

For further details contact:
OXLEY DEVELOPMENTS CO.LTD PRIORY PARK, ULVERSTON. N. LANCS. TEL: ULVERSTON 2621. TELEX 6541. CABLES:OXLEY ULVERSTON

WW--081 FOR FURTHER DETALLS
nombrex

STABILISED POWER SUPPLY Price $£ 21.50$
\star Voltage variable 1-30 Volts.
\star Current variable $0-1 \mathrm{amp}$.
\star Output ripple and noise less than 10 mV .
\star Short Circuit Protectión.

Other Models in our range :-
Model 29-X R.F. Generator: $150 \mathrm{KHz}-220 \mathrm{MHz}$. Integral 1 MHz Crystal Calibrator.
Model 30 Audio Generator: $10 \mathrm{~Hz}-100 \mathrm{KHz}$.
Model 31 R.F. Generator: $150 \mathrm{KHz}-350 \mathrm{MHz}$.
Model 32 Capacity/Resistance Bridge: $1 \Omega-10 \mathrm{M} \Omega, 1 \mathrm{pF}-100 \mathrm{~F}$
Model 33 Inductance Bridge: $1 \mu \mathrm{H}-100 \mathrm{H}$, Q from 0.1-1000.
Trade and Export enquiries welcome. Send for full technical leaflets. Post and packing 35p extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON Tel: 03-952 3515

READ MOISTURE IN 'DRY' GAS OR AIR IN 5 SECONDS

Tomorrow's Hygrometer is here today!

The most Phenomenal Hygrometer Breakthrough Ever!

Range, 1 to 1000 parts per million of water vapour. Automatic, Portable. Accurate, Automatic Dry Down. No Purging needed, Simple, Reliable, Unique. Write for complete details of all our Hygrometers, or Phone Bradford 33582: STD 0274. Telex 51598.

SHAW MOISTURE METERS,

 Rawson Road, Westgate, BRADFORD, ENGLAND.World's Largest Hygrometer Sales.
WW-- 082 FOR FURTHER DETAILS

MILITARY - INDUSTRIAL COMMERCIAL. EDUCATIONAL

A wide range of mobile and fixed station Microphones Headsets and Amplifiers.

Send now for Literature to Dept:-ww.
HAWKER SIDDELEY COMMUNICATIONS
S. G. BROWN LTD., KING GEORGE'S AVENUE, WATFORD, HERTFORDSHIRE tel: Watford 23301 telex 23412 telegrams radiolink watford Hawker Siddeley Group supplies-mechanical, electrical and aerospace equipment with world-wide sales and service.

WW-084 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{3 5 . 0 0}$

Si 452
Distortion Measuring Unit $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ - $.01 \%$

Si 453 \qquad $\mathbf{£ 4 0 . 0 0}$
Low distortion Oscillator
Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE

Aeburate and direet meralrement of spat without coupling to moving parts
 FRAHM

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

TELEPRINTERS•PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE.OR HIRE

2-5-6-7-8 TRACK AND

 MULTIWIRE EQUIPMENTSpecial Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppres sors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse Teledeltos Paper, Tape and Ribbons; Polarised and special ised Relays and Bases Terminals V.F. and F.M Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment;
 s, Sockets, Key, Push, Miniature and Racks and Consoles, Plugs, Connectors, Wires, Cables, Jack and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprine Tois Stroboscopes and Electronic Forks; Cold Cathode Matrics;
Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Worke, Akeman Streat, Tring, Herta
Tel: Tring 3476 (STD 0442 82) Cables: RAHNO TRING Telex: 82362, A/B BATEYTRING
WW-088 FOR FURTHER DETALLS

The D51 incorporates all the current requirements of a general purpose oscilloscope. Of strong construction and simple controls, the D51 can be easily operated by non-technical personnel and is an ideal oscilloscope to satisfy the demands of A-level syllabuses and the needs of Technical Colleges.
Look at these features and then send for full details NOW!!I

- True Dual Beam 鄂 Large display area $6 \times 10 \mathrm{~cm} \square$ Wide Bandwidth (DC-6MHz channel 1, DC-3MHz channel 2) $10 \mathrm{mV} / \mathrm{cm}$ Sensitivity (DC-2MHz) Exceptionally Bright Trace Small Size - Lightweight - All this for only $£ 105.00$

TELEQUIPMENT < ? >

Telequipment, 313 Chase Road, Southgate, London, N.14. 6JJ. Telephone: 01-882 1166. Telex: 262004. A division of Tektronix U.K. Ltd.

Wireless World

Electronics, Television, Radio, Audio

Our cover photograph is a satellite weather picture, received by the weather satellite station at Ambassador College, St. Albans, showing a depression centred over the west coast of Ireland. The equipment used at the college is more complex, and hence gives better results, than the simple system described in this issue.

IN OUR NEXT ISSUE

Pickup arm for home construction. This design complements R. Ockleshaw's turntable in this issue. Detailed drawings show how to make and assemble the parts.
Electrostatic headphones-constructional details of a very high-quality constant charge push-pull design using easily obtained components.
Tape recording survey-progress report on tape quality, reel-to-reel and cassette recorders, and noise reduction systems.

Contents

ibpa

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE © I.P.C. Business Press Ltd, 1971

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

焐

514 Real \& Imaginary by 'Vector'
A111 APPOINTMENTS VACANT
A126 INDEX TO ADVERTISERS
The Domestic Receiver Scene
Conferences \& Exhibitions
Television Receiver Review
October Meetings Letters to the Editor
H. F. Predictions
Nèws of the Month
Announcements
International Audio Fair
Electronic Building Bricks-16 by J. Franklin
Personalities
New Products
World of Amateur Radio
Circuit Ideas
Receiving Weather Pictures from Satellites-1 by J. M. Osborne
Turntable Design for Home Construction by R. Ockleshaw
Digital TV Synchronizers and Converters by S. M. Edwardson \& A. H. Jones
Quadraphony and Home Video Steal the Berlin Show
Dual-trace Oscilloscope Unit-3 by W. T. Cocking
Artificial Intelligence and All That by I. Aleksander
Field Sequential Colour Television Receiver-2 by T. J. Dennis
Elements of Linear Microcircuits-12 by T. D. Towers

[^1]

The Port of London Authority has the responsibility for the safe navigation of the dozens of vessels using the port limits of the Thames every day To cope with such a heavy concentration of shipp in the narrow lanes, their Gravesend Operations Centre depends on a complex radar system. And the system depends on Brimar. Each 16" Decca Radar Display is fitted with a Brimar F41-140 LC Tube to make certain that the ships great and small, can come and go in safety.
Brimar manufacture the widest range of cathode ray tubes for industry to meet almost any specification. And the range is constantly evolving to meet tomorrow's new and more complex demands. It's the kind of progress that keeps Brimar'ahead.

CRT rellability

Thorn Radio Valves
and Tubes Limited.
7 Soho Square, London, W1V 6DN. Tel: 01.4375233

Wireless World

The Domestic Receiver Scene

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:

B. S. CRANK

Assistant Editors:
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
G. DONOVAN (Classified Advertisements)

Telephone: 01-928 3333 Ext. 533 \& 246.

Traditionally our October issue must include a review of domestic receivers and this one is no exception. This tradition stems from the days when Radiolympia, usually held in the autumn, was the annual focal point of the British radio industry. Those hey days of the U.K. radio trade have long since passed and manufacturers now satisfy themselves, and presumably the traders, with a multiplicity of individual trade shows held in London hotels. Not so in Germany, however. Instead of the biennial național show, which was reintroduced a few years after the war, Germany has this year held its first international show. This, as did Radiolympia, had the unstinting support of the broadcasting organizations and the Post Office and the radio industry put on as big a show as ever-some individual companies taking the whole of one of the many halls at the exhibition centre in West Berlin. A staff report on the Berlin show, included in this issue, is devoted mainly to the subject of quadraphonic reproduction which stole the show.

Our review of domestic receivers on the U.K. market, this year surveys only television sets; there being little, if anything, new in sound receivers.

In this issue we also publish a letter from a reader who complains, as others have done from time to time, of the appalling lack of quality in the sound output of television receivers. He also mentions manufacturers' apparent disregard of the desire of many viewers to enjoy a standard of sound quality compatible with the vision quality and comparable with that of their audio equipment.

Designers, or perhaps more correctly the marketing men, have adopted the attitude that the audio output of a television receiver is secondary and, therefore, any cost pruning must be carried out in the audio circuits and the transducer.

No one is unmindful of the fact that television manufacturers are in business to sell sets at a profit and the pruning of what are considered non-essentials in order to market equipment at a competitive price is understandable. What we cannot understand is why set manufacturers, or at least most of them, do not cater for the discerning minority who would be willing to pay for something above average. As is well known, there are manufacturers who produce receivers in period cabinets, at a price, for those who want to camouflage the ubiquitous 'goggle box', but it is generally a standard chassis which is used and few, if any, make any pretence of giving a superior performance:

Our correspondent complains that the manufacturer-incidentally the one with the largest output of receivers in the U.K.--was unwilling to modify his set to provide an improved audio output. We can fully appreciate that to undertake such modifications for an individual set owner would be economically unacceptable-we would ourselves be shocked if we accurately calculated what it costs to answer an individual reader's technical enquiry let alone undertaking to modify equipment! What we cannot understand, however, is why provision is not made in at least some receivers for the audio output to be fed to a viewer's own audio equipment. We know there are problems of isolation etc, but they are not insurmountable.

We return to our opening remarks regarding the present state of the British radio and television industry. We believe it is the apathetic attitude of the industry which is responsible for the present recession and has opened the gates for the ever-increasing flood of imported equipment. The industry seems to rely on temporary boosts, such as that being given by colour television, to maintain its momentum. Something much more stable is required. Could not Britain's undoubted international reputation in the field of hi-fi be used on which to build a new image for the industry as a wholehigh quality in sound and vision.

This new 'image' might provide the justification for reviving Radiolympia.

Receiving Weather Pictures from Satellites

1. A very simple receiving station

by J. M. Osborne*

There are several American weather satellites in orbit and, at the time of writing, one is continuously transmitting weather pictures. It is possible for an amateur to receive these signals and make pictures from them.
There is no mystery about orbits as a brief description should make clear. Common sense and arithmetic should enable anyone to predict satellite transits for weeks ahead. The satellites which concern us are in simple circular orbits at a height of 1400 km above the surface of the earth. From Newton's Law of Gravitation it follows that the time to circle the earth at this height is 115 minutes.

A satellite will circle in the same plane

> * Westminster School

Fig. 1. The satellite's orbit shown relative to the earth. The orbit and the sun remain fixed while the earth rotates about its axis. As the satellite orbits every 115 minutes, a point on the earth's surface (London) moves successively from A to B and then C. From B the satellite is high to the east; from C high to the west.

Fig. 2. The two orbits from Table 1 together with three orbits from the next day plotted at two-minute intervals which give an idea of where to point the aerial. The nearer the satellite the higher the aerial elevation needs to be.
indefinitely. The orbit has been chosen to make about 10° with the earth's axis of rotation. Hence the satellite crosses the equator at an angle of 80° and so reaches polar latitudes of 80° as shown in Fig. 1. As the earth rotates, each point on its surface between $80^{\circ} \mathrm{N}$ and $80^{\circ} \mathrm{S}$ will pass twice through this plane at the same time each day, e.g. once by day and once by night. In the example of Fig. 1 a point on the equator will cross three hours (45°) after passing the sun (after noon), that is 15.00 hr local time by the sun, e.g. 16.00 hr B.S.T. To within about 15 minutes this also holds for all points on the earth's surface between $50^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{S}$.
A satellite is always somewhere on the circle of its orbit. Since 115 minutes per orbit is not an exact number per day, each day it will be at a different place in the orbit at the time the given point on the earth's surface passes through the plane. As an example let us consider London and a typical satellite NOAH 1 on 8th June 1971. At 11.26 hours the satellite crosses the latitude $52^{\circ} \mathrm{N}$ going north. As shown in Fig. 1 London at this time is in position
A. For an observer in London the satellite is below the eastern horizon. 115 minutes later. at 13.21 hours, the satellite will again be crossing latitude 52°. The earth having rotated 29° in the meantime (since it rotates 360° in 24 hrs), London will now be in position B in Fig. 1. For the observer the satellite is now high in the eastern sky moving from south to north and it will be above the horizon from about eight minutes before this time until about eight minutes later when it sets in the north.

115 minutes later, at 15.16 hours, the satellite will again cross latitude $52^{\circ} \mathrm{N}$ but by now London will be in position C in Fig. 1 and the satellite will be high in the western sky. A set of predictions for these two transits has been extracted from those prepared by the Radio and Space Research Station and is reproduced in Table 1. From these the latitude and longitude positions of the satellite have been plotted for an area corresponding to Europe (Mercator's projection) at two minute intervals in Fig. 2.

While an observer could never 'see' a satellite 1500 to 3000 km away, he can
receive signals from the satellite's 5 N solar-powered v.h.f. transmitter. As the beam width of a simple aerial may be 50° tracking is not a critical process.

The two orbits discussed for 8th June were numbers 2244 and 2245 from launch. Also shown in Fig. 2 are orbits 2256 to 2258 on the following day. Orbit 2256 occurs 12×115 minutes after orbit 2244 and so on.

To generalize, this satellite will always move from south to north and be to the east of the observer between 12.00 and 14.00 each day and to the west between 14.00 and 16.00 . Each day the transit will be about 1 hour (earlier or later) different from the day before. Assuming that one knows the time of crossing a given latitude, the track can be seen or interpolated on Fig. 2.

Everything said about the orbits applies to local time throughout the world. Furthermore the 80° inclination of the orbit (to the equator) is chosen because this results in a precession of the orbit of 1° per day; that is 360° or one revolution each year like the sun. So the times given apply to solar time throughout the year.

Pictures of the ground below the satellite are sent every few minutes by a slow-scan television system known as automatic picture transmission (a.p.t.). Each picture takes about three minutes to send at four lines per second. There is a short interval between pictures during which NOAH 1 sends infra-red pictures as it does also during the night. The pictures taken during orbits 2244 and 2245 are shown in Fig. 3. Each picture overlaps with its neighbours as can be seen on close inspection. As the camera is looking at a spherical earth and as the orbits converge towards the poles, the overlaps are not exact. By sticking the photographs together carefully, a best fit can be obtained as shown in Fig. 4. Europe from the Mediterranean to Scandinavia is clearly visible. Countries are often shown by cloud cover or snow on the mountains, but if the sky is clear coastlines can also be seen at lower contrast.

These pictures were taken with the very simple apparatus described in this article and are not of good quality due to receiver noise and low definition presentation. However, they might be good enough for an amateur weather forecaster. The block diagram is shown in Fig. 5. Working from left to right, the aerial is a home-made six-element Yagi for 137 MHz , which is light enough to be held in the hand. A proper aerial for satellite tracking would be either a helical or a crossed Yagi to accept a rotating plane of polarization. However, a practised tracker using the portable aerial can rotate the aerial about its long axis at about a quarter of a revolution per minute to keep the signal strength meter reading maximum.

Aerial and receiver

I described a very simple aerial for satellite signal reception in the Februarv 1971 issue of The Short Wave Magazine, essential details of which are reproduced in Fig. 6. Readers who require a full
constructional description should refer to the original article.

The receiver is a cheap domestic f.m. tuner, type TCC A 1005 , which has to be modified to cover 137 MHz . The receiver
may be obtained from G. W. Smith Ltd for a little under £7. The modification consists of removing one turn from the r.f. and oscillator coils and removing 25% of the turns on the r.f. choke as shown in the

Fig. 3. Pictures taken, using the simple equipment described, during the orbits 2244 and 2245 tabulated in Table 1 and plotted in Fig. 2. They show, bottom right, the Nile delta and Italy; top right, Scandinavia and the Baltic; bottom left, Spain, Gibraltar and
North Africa; and a practised eye could spot Scotland emerging from the cloud over the U.K. in the top left picture

TABLE 1. Satellite Predictions

time	azimuth	elevation	lat. N	long. E	height	range
Orbit No. 2244 date 8:6471						
13.15.1	125	12.3	33.73	23.99	1.472	3.419
13.17 .1	118.3	21.7	39.77	21.47	1.476	2.800
13.19 .1	106.3	33.4	45.76	18.58	1.480	2,271
13.21 .1	82.4	45.4	51.68	15.12	1.484	1,921
13.23.1	43.4	48.3	57.49	10.78	1.488	1.858
13.25.1	12.6	38.5	63.13	5.02	1.491	2,108
13.27 .1	357	26.2	68.47	356.81	1.493	2.579
13.29.1	348.8	16	73.25	344.18	1.495	3.171
Orbit No. 2245 date 8-6-71						
15. 8	183.8	14.4	27.65	357.5	1.467	3,265
15.10	190.8	24.5	33.73	355.26	1,472	2.652
15.12	203.7	37.3	39.77	352.74	1.476	2.135
15.14	231.3	50.6	45.76	349.85	1,480	1.809
15.16	276.8	52.1	51.68	346.39	1.484	1,783
15.18	308	39.8	57.49	342.05	1.488	2.068
15.20	322.6	26.6	63.13	336.29	1.491	2.559
15.22	330.4	16.2	68.47	328.08	1.493	3,156

Fig. 4. The pictures of Fig. 3 overlapped to make a best fit mosaic, showing Europe and the Middle East from Suez to Iceland.

Fig. 5. Block diagram of the apparatus used for taking the pictures given in Figs. 3 and 4. The one-shot vertical sweep circuit is shown in full.

Fig. 6. Aerial constructional details.
circuit diagram in Fig. 7. It is useful to have some way of checking that the frequency of the tuned circuits is correct and a dip oscillator is a useful tool for this pur pose. The only satellite transmitting at present, ESSA 8, operates on 137.62 MHz . It is desirable to have this point marked on the dial with some precision, possibly by using harmonics of a crystal oscillator as markers. The satellite is in range for only fifteen minutes at a time so tuning cannot be left to chance. The discriminator in addition to demodulating the f.m. signal provides a signal-dependent voltage which is connected to a signalstrength meter. An AVO Multiminor on the 2.5 V range or any $10 \mathrm{k} \Omega / \mathrm{V}$ meter will do. It is an advantage to have a large scale instrument so that it can be easily seen by the person operating the aerial.

Oscilloscope \mathbf{Z} modulation

As implied, the picture information is conveyed by means of frequency modulation of the carrier so that its strength is independent of the varying range and attitude of the satellite. The modulation is carried out at a fixed frequency of 2.4 k Hz and this sub-carrier is easily recognized on the monitor speaker as an audible note. Its intensity, but not its frequency, fluctuates as the picture information is used to amplitude modulate the sub-carrier. A typical line of this amplitude modulated 2.4 kHz sub-carrier is shown in Fig. 8. To improve the signal-to-noise ratio a tuned audio filter is used following the audio amplifier as shown in Fig. 9. This audio is sufficient to modulate the spot brightness on a standard school oscilloscope (Telequipment S5IE). Because the cathode of the oscilloscope is at negative e.h.t. the Z modulation is applied via an internal capacitor. As d.c. coupling is not possible, the raw audio frequency is fed to the Z input, only the positive half of each cycle brightening the spot.

Line time-base and synchronization

The internal time-base of the oscilloscope can provide a 4 Hz line sweep. It is just about possible to get recognizable pictures with a free running time-base and an example is given in Fig. 10. The white edge of the picture appears at random and wanders from line to line. There is no synchronizing in the picture signal and this raises the biggest technical problem for the amateur. The solution which I have adopted is to use a 100 kHz quartz oscillator followed by i.c. dividers to produce a very stable 4 Hz source of trigger pulses. These are injected into the Y input of the scope at the base of a $1 \mu \mathrm{~F}$ capacitor and used to trigger the sweep as shown in Fig. 12. The inductance is in no way critical and a winding of a small a.f. transformer suffices. With the trigger control on the S51E set correctly perfect synchronization is possible.

The crystal clock consists of a 100 kHz quartz crystal oscillator followed by an

Fig. 7. The circuit diagram of the f.m. tuner showing how the S meter is connected and which coils to alter. Transistor types are given as a guide; alternative types may be fitted. Extra parts are shown dotted.

Fig. 8. An oscilloscope trace showing a typical line (250ms) of the amplitude modulation of the 2.4 kHz subcarrier. The rectangular section near the end is the 12.5 ms white edge of the picture.

Fig. 9. The tuned audio filler is a simple device which steps up the signal voltage but, more important, gives considerable improvement in the signal-to-noise ratio.
i.c. divider chain (Fig. 1I). The oscillator circuit is conventional but a high beta transistor should be selected for easy starting. The crystal frequency is adjusted by the trimmer $T C$. The simplest and completely effective calibration relies on the use of a radio with a long-wave band. This is tuned to the standard frequency 200 kHz Radio Two transmitter. If the radio is placed near the crystal oscillator enough second harmonic exists to beat with the 200 kHz signal. The trimmer is set to give one beat per second or better. The radio should be orientated to give a weak signal from the broadcast station. The receiver noise, as the a.g.c. operates on beats, and is helpful in making the final setting. A beat frequency of 0.2 Hz is possible and the long term stability is probably better than 1 in 2×10^{5}. Once set the crystal clock needs no further attention. The second transistor is also a

Fig. 10. This shows the picture at the bottom right of Fig. 3 as it appears without synchronization and a free running time base. The white wavy line is the edge of the picture.

Fig. 11. Circuit for producing 4 Hz crystal controlled clock sync. pulses.
high beta type to switch the i.c. decade divider without noticably loading the crystal oscillator.

The divider chain provides outputs at 10 kHz and 1 kHz which may be used as test points or as frequency standards in other equipment.

A gate on the reset line of the counters is operated by the sync. pulse train which is transmitted before the picture information. This resets the divider to start in time with a gap in the pulse train (the gaps occur at 4 Hz). Hence the first sync. pulse occurs in the next gap and, as the clock is accurate, the synchronization of the whole picture will be correct.

The starting procedure is as follows. Just before the sync train arrives the transmitter sends a few seconds' warning burst of a 600 Hz tone. This warning that the picture is about to begin is easily recognized. The operator at this time throws the reset switch up, thus taking the reset line from all three dividers to the positive line. This sets and holds all counters to zero. At the end of the tone the sync. train arrives. The operator now moves the switch to the run position. In the meantime the signal arriving has charged C_{1} which holds $T r_{4}$ off so counting does not start. On the arrival of the next gap in the carrier C_{1} discharges and so switches on Tr_{4}. This puts the input 1 of gate 1 to ground causing the output of the gate to go positive. This causes the output of gate 2 to go down taking the reset line to zero and counting starts. The reset line also goes to input 2 of gate 1 thus holding the situation after the end of the gap and indeed indefinitely until the reset switch is next raised.

The line time-base is triggered by a negative-going pulse. This could be
obtained directly from the last divider. However, these dividers show a small step down in output voltage during the 'on' stage. This does not affect the logic but could conceivably produce a false negative trigger pulse. As a safety precaution the output is taken via the two remaining gates of the SN7400; as the final gate is either on or off no ambiguous pulses can occur.

Vertical time-base.

The frame time-base is a one-shot device and consists of two components only. A switch connects a $1 \mu \mathrm{~F}$ capacitor to a -200 V supply via a $3 \mathrm{M} \Omega$ resistor. The Y input to the oscilloscope is arranged to give a $1 \mathrm{~V} / \mathrm{cm}$ sensitivity so that 10 V across the capacitor gives full vertical deflection, this takes about 200 seconds and is adjustable by varying the supply voltage or the 3 M resistor. It is

Fig. 12. The circuit used to introduce the synchronizing pulses from a quartz crystal clock into the Y input of the 'scope.
important to turn off thé switch at the end of a sweep to avoid exceeding the working voltage of the capacitor. The circuit of the vertical time-base can be seen in both Figs. 5 and 12.

Photography

The slow scan picture can be seen on the screen of the oscilloscope and a general idea of the cloud cover in Europe could be estimated by watching the scan, line by line. Unless one has a very long-persistence screen, i.e. 3 minutes, it is necessary to integrate the picture by photography. The camera is focused on the c.r.t. with the shutter open while the picture is being made. Almost any camera will do but a supplementary lens is generally needed to focus down to 20 cm . Almost any lens of about 20 cm focal length will do and it can be held over the camera lens with insulating tape. The camera must be fixed in a rigid mount in front of the screen with the stop wide open, say $f 2.8$, and the shutter on bulb. It is more convenient to black out the room than to exclude light from the camera and 'scope. One can have very subdued lighting while making the picture and so do the switching etc. and also see what is going onto the film. The camera used by the writer is a Kodak Retina employing Tri-X film.

An idea of the layout can be obtained from the photograph, Fig. 13. The camera faces the c.r.t. screen, the supplementary lens being held in a piece of wood just visible in front of the camera. Behind is the h.t. unit which supplies -200 V d.c. adjustable, while in the foreground is the tuned filter passing the picture signal to the Z modulation on the 'scope.
One operator outside tracks the aerial

Fig. 13. The picture making end of the apparatus set up ready for use. The camera facing the screen is in the centre of the picture. To the right is the audio filter and to the left the 200 V supply. The capacitor and resistor of the vertical sweep are attached to the Y input of the 'scope.
watching the S meter and monitoring the audio signal on a loudspeaker. The first audio amplifier and loudspeaker is seen near the feet of the operator in Fig. 14. Indoors, in a darkened room, the audio signal arrives via a screened cable, is amplified and fed to the $2.4-\mathrm{kHz}$ filter and the 'scope Z input. The brightness control is set so that the sweep is just visible with no Z input. The modulation brings up the brightness to a value which will make an image on the film. The vertical deflection control is used to set the sweep at the top of the screen with the capacitor discharged.

A 3 -second burst of a $600-\mathrm{Hz}$ tone warns the operators that a picture sequence is about to start. The aerial operator concentrates on keeping the signal steady. The indoor operator switches on the vertical sweep and opens the camera shutter. At the same time phasing of the line sync. dividers is carried out as previously described. As soon as the picture finishes the shutter is closed and the vertical time-base switched off. The film is wound on ready for the next picture and the capacitor discharged through a $1 \mathrm{k} \Omega$ resistor to bring the sweep back to the top of the screen. After the transit the film is cut off the cassette in a photographic darkroom and loaded into a tank, developed and printed in the usual way. A Polaroid camera can be used to give instant pictures.

My thanks are due to Dereck Slater, of Kettering Grammar School, for the original suggestion to use an S51E, to Geoffrey Perry of the same establishment for information on earlier satellites, to the Radio and Space Research Station at Slough for current prediction and the Met Office Tracking Station Operator for up-to-date information on new satellites and dead ones. My thanks also to the National Aeronautics and Space Administration of America, that mammoth organization capable of putting such
sophisticated machinery into orbit, who are still able and willing to send me information directly.

ESSA-8, the only satellite transmitting at present transmits on 137.62 MHz and transits north to south in the mornings. We pass through the plane of the orbit around 11.00 hours. It operates in daylight only and sends a continuous note between pictures. Next month a more advanced station will be described.

Fig. 14. The aerial and S meter. The coaxial cable leads to the aluminium box containing the receiver. The black box contains the first audio amplifier and monitor speaker.

Conferences and Exhibitions

LONDON
Oct. 12-15
R.H.S. New Hall

Engineering Inspection \& Control Exhibition \& Conference
(Business Conferences \& Exhibitions, Mercury House, Waterloo Rd., London S.E.1)
Oct. 25-28
Olympia
Research \& Development Exhibition \& Conference (R. W. Boardman (Exhibitions), 8 Leicester St., London WC2H 7BN)
Oct. 25-30
Olympial
Audio Fair
(International Audio Festival \& Fair, Dorset
House, Stamford St., London S.E.1)

BRIGHTON

Oct. 19-21
Hotel Metropole
Inter/Nepcon
(P. G. Saville, 21 Victoria Rd, Surbiton, Surrey)

BRISTOL

Oct. 12-14 New Bristol Centre
Electronic Instruments Exhibition
(Industrial Exhibitions, 9 Argyll St., London WIV 2HA)

MANCHESTER

Oct. 5-8
City Hall
MELEX-Manchester Electronics Exhibition
(Industrial Exhibitions, 9 Argyll St., London WIV 2HA)

NEWCASTLE

Oct. 5-7
Exhibition Centre
Engineering Exhibition
(Engineering Industries Assoc., 15 Walker Tce.,
Prince Consort Rd., Gateshead-on-Tyne 8)

OVERSEAS

Oct. 4-6
Toronto
Electrical \& Electronics Conference
(Conference Office, 1819 Yonge St, Toronto 7, Ontario)
Oct. 6-8
Washington
Electronic \& Aerospace Systems
(M. B. Thorpe, Bell Aerospace, 1000 Connecticut Ave., Washington, D.C. 20036)
Oct. 6-9
Mexico City
Seminar on Telecommunications
(J. Alberty, Siemens Mexicana, S.A., Poniente

116, 590, Col Industrial Vallejo, Mexico 16)
Oct. 7 \& 8
Montreal
Video Cartridge, Cassette \& Disc Player Systems (S.M.P.T.E., 9 East 41st St, New York, N.Y. 10017)

Oct. 11-13
Washington
Electron Devices
(I.E.E.E., 345 East 47th St, New York, N.Y. 10017)

Chicago
Oct. 11-13
One World of Microelectronics
(International Society for Hybrid Microelectronics, Suite 102, 1410 Higgins Rd, Park Ridge, Illinois 60068)
Oct. 12-17
Ljubljana
Modern Electronics Exhibition
(Gospodarsko Razstavisce, Ljubljana, Titova 50, Yugoslavia)
Oct. 14-20
Dusseldorf
Interkama
(Dusseldorfer Messegesellschaft mbH - Nowea-
4 Düsseldorf 10, Postfach 10203)
Oct. 15-24
Prague
Audio, Video \& Radio Exhibition
(AVRO Praha '71, 10 Rimska, Praha 2)
Oct. 18 \& 19
Chicago
Consumer Electronics Symposium
(W. Luplow, Zenith Radio Corp., 1851 Arthur Ave., Elke Grove Village, Ill. 60007)
Oct. 18-20
Chicago
Fall Electronics Conference
(I.E.E.E., 345 East 47th St, New York, N.Y. 10017)

Lausanne
Eurocon 71-I.E.E.E. Convention
(Eurocon 71, 24 Chemin de Bellerive, $\mathrm{CH}-1007$
Lausanne)

Television Receiver Review

Circuit developments in new sets

If one had to sum up the trend in television receivers since our last report (October 1970) one might reasonably say that it has been the year of the smaller set. Not small set, for these have been with us for a long time-the use of transistors and integrated circuits having made it possible to design neat mains/battery portable monochrome sets with screen sizes from 10 in (Sanyo) down to 3 in (Standard). It would seem that British and European tube and receiver manufacturers have decided that the 26 in screen is about as large as they can go with the present technology, and are now concerned with fostering an apparent demand for lowerpriced receivers with smaller screens. (This demand may well have been started by the influx of the Japanese portables.) The 'smaller set' category might well be identified by a range of screen sizes of 17 in (monochrome and colour), 15in (colour), 13 in (monochrome only). Most of these receivers are described by their makers as 'portable', but some people might consider this applicable only to the smallest sets, which can be powered from batteries as well as from the mains.

Meanwhile existing designs of large (20in-26in) hybrid receivers have been continuing in production because they have been found successful both in price competitiveness and reliability. G.E.C., ITT-KB, Philips, Pye Group and Rank-Bush-Murphy are among the major groups which have reported 'no change'. A newcomer to Britain with hybrid receivers is Grundig, a firm which claims to be Germany's largest television set manufacturer. They have introduced three monochrome receivers and one 26 in colour set, which uses integrated circuits for sound i.f. colour decoding and tuner stabilization.

Technically the most interesting of the smaller sets is the Sony 13 -in colour receiver type KV-1320UB. This has a new type of tri-colour tube called the Trinitron which, as we reported in our March 1971 issue, p.108, uses, instead of a shadowmask and phosphor-dot pattern, a metal plate with vertical slits and vertical phosphor stripes. The three electron beams emerge from a single electron gun in a 'horizontal-in-line' formation, as distinct from the triangular formation of a shadowmask tube. Apart from this the receiver has a type of colour decoder which operates on

Example of this year's new sets-a Ferguson 17-inch colour receiver using the B.R.C. type 8000 chassis mentioned in the text.

Fig.1. Successive lines of a television field, showing the phase of the $R-Y$ colour information alternating between 90° and 270°.

Fig.2. Basic principle of decoder used in Sony 13-inch colour receiver.
a different principle from that of a conventional PAL receiver and therefore, according to the manufacturers, does not infringe the AEG-Telefunken patents on PAL. (Sony do not have a licence from AEG-Telefunken to make PAL teceivers.)

What in fact this decoder does is to convert the PAL chrominance sigrial available at the detector into an N.T.S.C. type of chrominance signal-that is, one without phase alternation line by line by the $\mathrm{R}-\mathrm{Y}$ component. Thus the receiver does not make use of the essential feature which distinguishes the PAL system from N.T.S.C.-the cancellation of phase (and hence hue) errors introduced in the transmission path.

The phase reversal of the $\mathrm{R}-\mathrm{Y}$ component on alternate lines of the transmitted signal is cancelled by the simple expedient of omitting the colour information in every other line of each field. Thus in Fig.1, if the $\mathrm{R}-\mathrm{Y}$ information in lines $\mathrm{A}, \mathrm{C}, \mathrm{E}$, etc., is omitted, the $\mathrm{R}-\mathrm{Y}$ information in lines B , D , etc., is retained and always has the same phase angle (270°) with respect to the $\mathrm{B}-\mathrm{Y}$ phase reference $\left(0^{\circ}\right)$. Alternatively, if the $\mathrm{R}-\mathrm{Y}$ information in lines B, D, etc, is omitted, that in A, C, E, etc, is retained and again always has the same phase angle (90°) with respect to the reference. This process is achieved electronically by the system shown in Fig.2. An electronic switch is operated by a bistable circuit giving a square wave at half the line scanning frequency. Thus if the switch is in position \mathbf{P} at the beginning of line A (Fig.1) the chrominance signal is passed directly to the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ demodulators throughout line A. At the end of line A the bistable moves the switch to position Q , but the chrominance information transmitted during line B does not reach the demodulators because it is held back by the 64u/s (one line period) delay unit. Instead, while the switch is at Q , the demodulators receive a delayed version of line A chrominance information. Before the line \mathbf{B} chrominance information starts to emerge from the delay unit the electronic switch has moved back to position P where it remains for the duration of line C . . and so on. In practice it does not matter which position the switch starts from when the set is turned on, the $\mathrm{R}-\mathrm{Y}$ chrominance information will always have the same phase (permanently 90° or permanently 270°). The phase of the $B-Y$
component is not changed in the PAL transmitted signal, so this fixed phase information is passed to the demodulators in both positions, P and Q, of the electronic switch; but, as with the $\mathrm{R}-\mathrm{Y}$ component, the demodulators receive the $\mathrm{B}-\mathrm{Y}$ component directly when the switch is at P and then a delayed version of it when the switch is at Q. Thus the demodulators receive the chrominance information as transmitted only during alternate lines (e.g. lines A, C, E, etc.) and during the 'between' lines (e.g. lines B, D) they receive repeated versions of that information.
$R-Y$ and $B-Y$ demodulation is achieved in the normal way by synchronous detectors using local reference oscillators in phase quadrature operating at the colour subcarrier frequency. The phases of these reference oscillations are controlled by the colour sync bursts in the transmitted signal, and these swing $\pm 45^{\circ}$ in phase (with respect to the $B-Y$ phase reference, 0°, plus 180°), in synchronism with the $R-Y$ component phase reversals. The controlling burst is used in the normal way for the $B-Y$ reference oscillator, but because of the signal switching system described above the burst phase must be reversed for the R - Y reference oscillator on one line out of two to obtain the 90° shift in the mean burst phase. This is achieved by a further electronic switch, operated by the bistable, which switches in a phase inverter when the Fig. 2 switch is at position P.

A simplified version of the actual circuitry is shown in Fig.3. It will be seen that the electronic switch in Fig. 2 is formed by two diodes which are turned on and off by positive and negative d.c. voltages from the bistable (the points equivalent to the switch terminals are shown at P and Q). The 220 pF capacitors are simply to isolate the d.c. operating voltages from the previous signal paths. A similar two-diode circuit is used for switching the phase of the burst. As can be seen the 'phase inverter' referred to in the previous paragraph is obtained by means of a centre-tapped transformer, the two signal voltages between the c.t. and the secondary terminals being always 180° out of phase.

It would seem that the use of the nonPAL decoder has two main disadvantages. First, because of the omission principle of Fig.1, half of the transmitted chrominance information in the vertical direction is not displayed. (However, there is also a loss of vertical chrominance information in a standard PAL delay line decoder, because the colour information from any two adjacent lines is averaged by the action of the delay line.) Secondly, because the PAL signal is converted into an N.T.S.C. type of signal, hue errors introduced by phase shifts in the transmission path are not automatically cancelled (and in fact the Sony receiver is provided with a manual hue control for this very reason). On a 13 -in screen the first disadvantage does not show up to any extent, but it will be interesting to see what is the picture quality of a forthcoming receiver using an 18 -in Trinitron tube.

Another new colour receiver is the British Radio Corporation's type 8000
chassis, which has a 17 -in (shadow-mask) colour tube. This set is interesting in a number of respects. First the price is below $£ 200$ (in fact $£ 189.75$); secondly it has an all solid-state circuit; thirdly the designers have dispensed with the e.h.t. voltage tripler used in most colour sets and reverted to an overwind on the line scanning transformer and single rectifier to provide the 21 kV e.h.t. for the colour tube; fourthly the detector is a synchronous type instead of
the usual envelope detector, and finally the power supply uses a thyristor voltage stabilizer.

The makers have abandoned the e.h.t. tripler mainly on grounds of cost, thereby helping to keep the price of the set down. Although in the past overwinds for 20 kV or more have been found prone to breakdown through shorting of turns, sometimes starting fires, the designers of the receiver state that they have achieved better relia-

Fig.3. Simplified circuitry of the Sony colour decoder shown in Fig.2. The points P and Q correspond to the "switch contacts" P and Q in Fig.2.

Fig.4. Functions and terminals of integrated circuit synchronous detector used in B.R.C. 17-inch colour receiver and Decca 12-inch monochrome set (Motorola MC1330P)

Fig.5. Functions and terminals of chrominance decoding integrated circuit (Motorola MC1327) used in B.R.C. and Decca 17-inch colour receivers.
bility by a winding technique involving impregnation with silicone rubber insulation. Decca, in their latest 17 -inch colour receiver, the CS1730, have decided on an intermediate arrangement, by using a 10 kV overwind and a voltage doubler. This doubler has selenium rectifiers and is housed near the bottom of the chassis to keep it cool.
A synchronous detector, operating at the low signal voltage of 50 mV , is used in the B.R.C. set, and in a Decca monochrome receiver to be described later, because of its inherently high linearity in comparison with the simple diode envelope detector. The advantages of this high linearity include less need for sound trapping, less critical tuning and more stable i.f. performance at high receiver sensitivities,

Fig.6. Simplified vertical deflection circuit of Decca 12-inch monochrome set.
as the i.f. and video gain partitioning can be re-apportioned to reduce the need for high gain at i.f. The synchronous detector is certainly more complicated, but it is available in integrated circuit form and so is not unduly expensive or difficult for the set maker to use. Fig. 4 shows the internal functions of the Motorola MC1330P used by B.R.C. and Decca. To provide the fixed local oscillation required for synchronous detection the incoming i.f. signal is passed through a limiting amplifier, removing the modulation, to an external tuned circuit (connected to terminals 2 and 3) which is tuned to the carrier frequency 39.5 MHz . The resulting oscillation is applied to a squaring circuit which produces the square waves needed for opening and closing the gates. With the arrangement shown, two gates with an inverter in one signal path, the input signal is chopped at 39.5 MHz and one half cycle is inverted. The result is a train of uni-directional, half-sinewave pulses proportional in amplitude to the carrier level and hence to the modulation. This is passed through a video amplifier within the i.c. and the result is an output (at terminal 4) with a d.c. component of about 7 V and a video signal component of up to 4 V peak-to-peak.

In the B.R.C. receiver the line timebase works at the high supply voltage (for transistor circuits) of 180 V , and this allows a fairly simple regulated power supply to be used. In this a thyristor acting as a triggered switch is inserted between one mains input terminal and the 180 V terminal to be voltage regulated. The time during the positive half cycle of the mains supply, when the thyristor is triggered is varied in accordance with the load on the regulated
supply, so that the energy removed by the load is balanced by the energy restored to the reservoir capacitor during the period of thyristor conduction. The time of triggering is determined by the rate of rise of ramp voltage across a capacitor, this rate being made a function of the output voltage of the supply.

In both this set and Decca's 17 -inch colour receiver the chrominance decoding circuitry is greatly simplified by the use of an integrated circuit. This is the Motorola MC 1327 , and the functions it performs are shown in Fig.5. It accepts luminance and chrominance signals, the 4.43 MHz reference oscillations for demodulation, the 7.8 kHz identification signal and line and field blanking pulses. The chrominance signals are demodulated and matrixed so that the i.c. produces R, G and B signals.

Another new solid-state receiver is a 12 -inch mains/battery monochrome set just introduced by Decca, the type MS 1210. This receiver uses four integrated circuits: the MC1352 giving i.f. amplification and a.g.c., the MC1330 synchronous detection and video amplification, the TBA750 intercarrier sound detection and a.f. pre-amplification, and the TAA611B audio power amplification. The last two devices, in fact, provide the whole of the sound channel-no discrete active devices being used. The TBA750 intercarrier sound i.f. receives its input signal from the MC1330 vision detector via a ceramic filter. An interesting point about the power supplies is that a 120 V rail required for the vision amplifier is obtained from a winding on the line output transformer.

An unusual circuit in the scanning section is the vertical deflection output stage. This is similar to a class B complementary symmetry output stage but does not in fact use a p-n-p power transistor, which would be unduly expensive to perform the functions required of it. Instead the output stage uses two ATES n-p-n transistors as shown in Fig.6, the lower one of which, the BD216, although it has a high breakdown voltage, is a low cost device. The two phases of the class B type of operation are: 1st phase, Tr_{1} producing one half of the output waveform with Tr_{2} acting as its driver; 2nd phase, Tr_{2} alone producing the other half of the output waveform. The positive going ramp of the sawtooth waveform applied to the base of $T r_{2}$ in both the phases produces an increasing collector current via R_{1}. This in turn causes the base current of $\operatorname{Tr}_{\text {i }}$ to fall, $I_{b}\left(T r_{1}\right)=I_{R l}-I_{c}\left(T r_{2}\right)$, and hence the collector of Tr_{1} falls, going from a maximum to a minimum. The path of I_{c} is as shown by the loop. Eventually a point is reached when $V_{b e}$ of $T r_{1}$ goes negative, no further base current flows in $T r_{1}$ and D_{2} is now forward biased. This is the end of phase 1 and the start of phase 2 in which Tr_{2} acts on its own as the output transistor with R_{1} as its collector load; the waveform at the collector passing through D_{2}, C_{1} and the vertical deflection coils. The sawtooth waveform applied to the base of Tr_{2} drops off rapidly at the end of the ramp, cutting off $T r_{2}$, and as a result the back e.m.f. generated by the deflection coils appears across Tr_{2}.

Turntable Design for Home Construction

by R. Ockleshaw

In three articles the author describes a turntable, pickup arm and wow and flutter meter for home construction. The turntable, believed to be the first complete design for home construction and described in this issue, has a rumble level of -36 dB relative to $1 \mathrm{~cm} / \mathrm{s}$ r.m.s. recorded velocity and peak wow and flutter of $\pm 0.25 \%$. Ready-turned parts are available for those without access to a lathe. Detailed drawings show how the parts are made and assembled and the article also shows how the mechanical filtering system is derived. Cost of the turntable and pickup arm is between $£ 20$ and $£ 25$. The second article will describe the construction of the pickup arm and the third will show how to check turntable performance and describes a novel wow and flutter meter using a phase-locked loop.

Although several designs for pickup arms have been published, I do not know of a constructional project that included a turntable. Perhaps the reason for this is obvious-it is mechanics on the grand scale, not normally suitable for the amateur with a limited range of tools.

To produce certain parts for this project within a satisfactory tolerance a lathe has to be used, but I have been careful to ensure that lathe-work can be accomplished on medium-sized or even small machines, the type most likely to be available. Provided one has the basic ability to use a lathe, gaining access should be easy. Model societies may have one-almost certainly some of the members-local schools or colleges that run evening metalwork courses might be persuaded to allow the occasional use of a lathe, or may even encourage it. Those that do may charge a nominal fee. There are only three parts for which the use of a lathe is essential. Use of a lathe for certain other parts
simplifies their manufacture, but if made by other means will only affect the finish and not the performance. (Ready-made turned parts can be obtained from the address given in the parts list.)

Filtering wow and rumble is discussed towards the end of this article where it may be better appreciated in the light of practical knowledge.

Styling is functional and in keeping with modern design, and performance, in relative terms, should satisfy all but the most critical. Although the design contains most features normally desired in a 'transcription' unit it is essentially simple both in concept and in detail.

The unit features a 10 -in diameter machined cast-aluminium turntable driven by a self-starting synchronous motor through a resilient rubber belt. There is a choice of two speeds using a simple manual change. The matching pickup arm is protected against vibration and acoustic pick-up by integral mechanical filters. A

pickup-arm lowering device is featured. Provided instructions are followed, wow and flutter will be $0.5 \% \mathrm{pk}-\mathrm{pk}$ and rumble -36 dB relative to a recorded velocity of $1 \mathrm{~cm} / \mathrm{s}$ r.m.s.

Construction

Motor board. The motor board should be to hand when assembling the plinth as it can be used as a jig to ensure that the plinth is square. Make from $\frac{1}{2}$-in plywood, or blockboard, the apertures being cut by jig-saw, coping saw, etc. In following the accompanying diagrams, note that the area around the aperture for the switch body is recessed to accommodate the switch mounting plate and screws. Veneer or paint the top surface. Other ideas are matt-black Formica, or if you paint the plinth, a contrasting colour. Finish also the exposed edge adjacent to the pickup-arm board.

Plinth. Make the three duplicated parts in the plinth from $\frac{1}{2}$-in high-density plywood to the dimensions indicated and assemble as shown together with fillets and blocks. Use a good-quality synthetic glue (Evode Resin W, Cascamite, etc.) for the joints, these being held by veneer pins (use motor board as jig) while the glue sets. Rubber feet, obtainable from hardware or do-ityourself shops, can be screwed or glued underneath. Finish as desired.
Next, make the motor plate, adjustment plate and pickup-arm board. Although a captive nut (hank bush) is specified for the adjustment plate, in practice a shakeproof washer and nut may be a useful alternative. Evostik impact adhesive can be used to fix the motor to the motor plate.

Turntable. The 3 - lb turntable is a faceplate for an industrial sanding machine. It is produced by Picador Engineering Co. Ltd, a well-known firm of tool makers, and can be obtained through tool shops. It is essentially a sandcasting and may have slight casting flaws when received but these will be generally of little consequence. Complete the turntable by inserting the main bearing sleeve (see later) thrust bearing assembly (see later) and turntable mat. As a cheaper alternative to the mat, glue six rubber pips (mine came from a moulded rubber car mat) onto the turn-table-preferably into drilled recesses.

(The inner three pips in the photograph are for 7 -in discs.)

Main bearing spindle. Silver steel is supplied to a high degree of tolerance: ± 0.0005-in of the nominal size. It is ground to this accuracy giving a finish considered more suitable for bearing surfaces than a turned one. After cutting to size, face the ends on a lathe. If a lathe is not available, rough file one end and grind with a rolling jig and oil stone.

Harden the spindle by heating to cherry red and then quenching in water. Polish with fine emery cloth and finally metal polish while rotating the spindle in the lathe or drill chuck. Carefully preserve the spindle surface prior to hardening as any attempt to remove blemishes by polishing may prove futile. These blemishes will cause excessive bearing wear. Round off top edges to prevent the bearing sleeve being scored when placing the turntable over it.

It is more important that the top surface of the nylon thrust-bearing pad is square than the top of the spindle. In this case bond the nylon thrust bearing pad to the top of the spindle with Araldite after hardening and grind square if necessary.

Main bearing sleeve. The main bearing sleeve is made from a p.t.f.e.-compound dry bearing material. This retains most of the desirable features of p.t.f.e. but is much easier to machine. The material is quite soft and convenient to use, if a trifle dirty, but care should be exercised to prevent bearing surfaces being damaged. This compound, in common with many plastics, has a high coefficient of linear expansion. Indeed, p.t.f.e. at $20^{\circ} \mathrm{C}$ exhibits a so-called phase change resulting in a sharp dimensional increase, which may be used to advantage. The bearing material is supplied as a tube with nominal $\frac{3}{8}$-in inside and $\frac{5}{8}$ in outside diameter. As the inside hole is a little too small, use successive reamers to bore the material to correct size. Hold the reamers in a tail-stock chuck (the work in the main chuck of course) and rotate the work by hand or at least at a very low speed. Then carefully turn down the outside of the bearing sleeve to the correct size.

Fit the bearing sleeve into the turntable. At this stage the main bearing spindle may still not fit the hole or it may be too stiff. This may be because of the squeezing action of a tight fit of the sleeve into the turntable. In this case carefully run-through the reamer to bring it to the correct size. If the tolerance of the main bearing spindle is on the high side this still may not be sufficient to give a perfectly free-running bearing. (Test at normal room temperatures, not straight from the lathe or after being held in the hand.) To give increased bearing clearance place the turntable together with the fitted bearing sleeve in a refrigerator for a few minutes, followed by reaming. Use a reamer in reasonable conditionit is important that the surface should be free from scores. Always feed the reamer with a rotating action.
Thrust-bearing spindle. Construction of the thrust-bearing spindle is more straightforward. No tight tolerances apply except that it is as well to check that the spindle
fits the hole in the middle of a new record as these rapidly wear. The thrust ball may be held in the assembly by overswaging with a centre punch or with Araldite. The thrust-bearing ball should rest on the exact centre of the nylon thrust bearing pad to reduce rumble. No difference in performance should result if this part is made in other materials, like nylon or p.v.c.
Long and short spars. Bend the two spars from 20 -s.w.g. mild steel (galvanized or passivated if possible) to give adequate stiffness, If a bending machine is not available careful work with a mallet and vice should be adequate remembering that this part is unseen and finish is unimportant.

Pulley. The pulley is possibly the most difficult part to make. The tolerances given must be strictly adhered to if performance is not to be impaired. Measuring the internal diameter of the grooves when turning the pulley is facilitated by using a simple gauge (see drawing 'Turning the pulley'), the groove being too narrow for a normal micrometer. (Set dimension X with a template.) To start the hole in the pulley, use a centre drill and ensure the drill does not deviate inside the pulley by using a bar to steady the drill.

The pulley cover (drawing 14) can alternatively be made without the angled sides, instead using $\frac{1}{2}$-in thick wood for the two sides (as in the photograph). By making the height slightly greater than the pulley height, the $1 \frac{1}{2}$-in dia. cut can be avoided.

Damped suspension pads. For the suspension pads, three springs are required, made by winding 13 in of $1-\mathrm{mm}$ silver-steel wire on a $\frac{1}{2}$-in dia. former. After removing from the former, even out the spring and form as shown. Compress with fingers until it 'bottoms'. After removing pressure it should be 1 -in long. To give a clean $\frac{1}{2}$-in hole in the pads to take the springs, punch out using a sharpened piece of thin-walled $\frac{1}{2}$-in stainless-steel pipe (as used in the lifting device). Make the pads larger than necessary and trim on assembly. Use Evostik for bonding.

Assembly

Assemble the main bearing spindle with its bottom flush with its holder. Use the grub screw to lock it in place temporarily as adjustment will follow. Place the suspension cruciform comprising the long and short spars, with the pickup-arm board fixed by brackets, in the plinth before screwing on the motor board from underneath. Additional pad cheeks can be used
as packing to make the turntable top parallel with the motor board.

Assemble the bonded motor plate and motor to the motor board together with the adjustment plate and spring. (The spring must be strong enough to allow the end of the motor plate to rise above the board.) Screw the capacitor holder to the underside of the motor board.

Wire the motor to the switch before screwing the motor board to the plinth, earthing the motor casing. Assembling the pulley to the motor may require a little persuasion as it has been designed as an 'interference' fit. Heat the pulley in hot water for a few minutes-expansion should then allow a fit. Do not ream the hole to size and do not unnecessarily pull off the pulley once fitted as this may cause enlargement of the hole and consequent slipping. Lower or raise the main bearing spindle to align the top of the pulley with the top of the turntable

Designing to avoid rumble

Rumble generally is generated by two sources in a turntable unit-the motor and turntable main bearing-and may be described as noise the spectral content of which lies within the range of about 10 to 200 Hz . Apart from a comparatively small amount of noise due to mechanical displacement in the motor bearings, its contribution arises from 'stepping' or 'cogging'- the tendency to rotate in discrete steps rather than in a uniform way. If a synchronous motor is held loosely in the hand and allowed to rotate this 'cogging' vibration is felt quite strongly. Thus if the motor is coupled to the turntable it must always be through some kind of mechanical vibration filter-for example a resilient belt or rubber-tyred wheel.

Unfortunately it is more difficult to mechanically filter rumble generated by the turntable main bearing. This kind of rumble is generally random (except perhaps when the turntable is blessed with ball bearings) unlike the discrete motor vibrations that are related to mains frequency. It is caused by imperfections on the bearing surfaces.

Motor rumble

In this design, vibrations from the motor can be transmitted to the turntable by two paths-the drive belt and the motor mount-ings-and a mechanical filter is necessary in both paths (Fig. 1).

The electrical equivalent-Fig. 2shows the motor as a two-dimensional

Fig. 1. Rumble from the motor is transmitted to the turntable by two paths (motor mounting and pulley) which must be separately filtered.

Fig. 2. Electrical equivalent of Fig. 1. Motor produces rumble through the belt in a lateral plane and through the mounting in a vertical plane. The lateral vibration can produce vertical vibration if the turntable is not stiff enough.

Fig. 3. Inertial grounding effect of pickup arm creates common and differential-mode points. Common-mode response can be eliminated by grounding point A.

Fig. 4. Mounting a turntable unit on a 'noisy ground'- a non-rigid shelf for example-introduces noise and one solution is to use a 'lockable in transit' type of spring mounting for F_{3}.

Fig. 5. In the belt-driven unit, F_{2} can be made effective enough to eliminate F_{3} and the motor casing can be grounded.
vibration source. Relative to the ground plane, vibration through the turntable mountings will be in a vertical plane while that from the belt will be predominately in a lateral plane. However, this lateral vibration can give rise to vertical vibrations if the turntable is not sufficiently stiff- or adequately damped.

The main responses of a stereo cartridge will be at 45° to the plane of this vertical displacement and will thus reproduce a component of any vertical displacement relative to the pickup-arm mounting point. This is why it is always desirable to mechanically couple the pickup arm as close to the turntable as possible to reduce
as much as possible any differential movement.

But, however much we may reduce the differential displacement, the commonmode displacement may still have an effect on the pickup output because the pickup is essential an inertial system and will therefore have a common-mode response. What response it does have obviously depends on the design of the pickup arm.

We therefore should modify the electrical model to that of Fig. 3 and it is obvious that any common-mode response can be eliminated by grounding (literally!) at point A. Unfortunately, if the ground is noisy due to the unit being placed on a shelf, then the pickup will produce an output in sympathy with the displacement. This is one common cause of acoustic feedback.

Many turntable units are grounded at this point but the manufacturers are always careful to ensure that effective filtering eliminates any displacement that might excite the common-mode response of the pickup arm Fig. 4.

The design of belt-drive units is not so mechanically restrictive as some jockey-wheel-driven types, and allows the use of more efficient filters for F_{1} and F_{2} (Fig. 4)-the belt and turntable suspension pads respectively-and it becomes possible to combine F_{2} and F_{3} and ground the motor casing (mechanically). The resulting, chosen, arrangement is shown in Fig. 5.

Main bearing rumble

The prime cause of bearing rumble is imperfection of bearing surfaces. The

Parts List

All parts, including cover, for both pickup arm and turntable are available as raw materials or readyturned where appropriate from Longdendale Technological Products, Hadfield, Hyde, Cheshire.

Part	description/material	source
motor	Berger RSM 50/8	Longdendale Technological Products (LTP)
turntable	Picador $10-\mathrm{in}$ sanding disc $\frac{5}{8}$-in shaft	most good tool shops
belt	rubber	LTP
main bearing sleeve main bearing spindle	Glacier DQ1 $\frac{5}{8} \times \frac{3}{8}$ in nom. $\frac{3}{8}$-in dia. silver steel	Glacier Bearing Co. Ltd. sold in most tool shops \& engineers' suppliers in 13 -in lengths
suspension springs	1-mm dia. silver steel	" "
motor alignment spring	$\frac{3}{4} \times \frac{1}{4}$ in o.d.	
damping pads	1 -in thick polyurethane foam	upholstery dealers
long and short spars	20-s.w.g. mild steel	ferrous metal dealers
turntable mat	rubber	Metrosound, C. Watts radio hobby shops
pad cheeks	$\frac{1}{16}$-in Paxolin	radio hobby shops
pulley	$1 \frac{1}{2}$ dia., 2 -in long aluminium bar	non-ferrous metal dealers
$\left.\begin{array}{l} \text { facia plate, } \\ \text { pulley cover, motor plate, } \\ \text { adjustable slate } \end{array}\right\}$	20-s.w.g. aluminium	non-ferrous metal dealers
switch	2-pole c/o slider	Radiospares etc.
thrust bearing pad thrust ball	$\frac{1}{4}-\mathrm{ln}$ dia. $X \frac{1}{2}$ in long nylon $\frac{1}{4}$-in dia. ball bearing	cycle shops, motor accessory shops
spindle	$\frac{5}{8}$-in dia. p.v.c. $\operatorname{rod} \times 1 \frac{1}{2}$-in	LTP
main bearing spindle holder	$\frac{3}{4}$-in dia. $\frac{3}{4}$-in long aluminium rod	non-ferrous metal dealers

Miscellaneous

Captive nuts (hank bushes, six 4BA one 6BA), screws (six 4BA $\frac{1}{4}$-in cheesehead, four $4 \mathrm{BA} \frac{3}{4}$-in countersunk head, four 6BA $\frac{1}{4}$-in cheesehead, six 4BA $\frac{1}{2}$-in cheesehead), nuts, rubber feet. From usual sources or LTP.
obvious approach is to make them as perfect as possible. This is quite reasonable but there is a limit and mechanical filtering techniques must be used to reduce the effect further.

It is well known that the less dense a material the greater is the attenuation to the passage of sound and noise. Here in lies the key. The bearings should be made of a material with a density that is as low as possible. The energy then generated, which can be quite high, suffers a great deal of attenuation in its passage to the stylus. The reproduction of rumble can also be affected by resonance phenomena in the pickup arm, about which more later.

Most modern plastics fall into the lowdensity category but not all are suitable bearing materials. Of those that are, nylon and p.t.f.e. are most common. Unfortunately p.t.f.e. is virtually impossible to machine, nylon is difficult but machinable, and p.v.c. while not an ideal material from the wear view point is easier still to machine. Better still are some compound materials that have p.t.f.e. as a base. They retain all or most of the desirable properties but are easy to machine. They are known under proprietary names like Glacier DQ1, used in this design.

Wow and flutter

Wow is caused by slow variations in record speed, flutter by fast variations. Like rumble, it cannot be eliminated completely, merely reduced to an acceptable level. In the simple arrangement of a slow-speed motor directly driving a revolving turntable, wow and flutter could be caused by sticky main bearing, belt slip, motor cogging and pulley eccentricity. (Wow can also be caused by a badly eccentric or warped record but this is outside our control.) But note that only one of these points really indicates a design problem, that is motor cogging, and this is really tied up with rumble. If the belt is an efficient filter this source of flutter is eliminated.

The most usual way of preventing wow and flutter is to prevent the remaining three imperfections occurring due to bad manufacture, or dirt and grease being smeared on the belt, and to provide aturntable with a high inertia. Care must be taken that any turntable inertia is not overcome by too tight a coupling of the drive motor. This most certainly would occur if a synchronous motor was used with a rimdrive jockey-wheel system. The speed of a synchronous motor is fixed and does not depend on the load as with an asynchronous motor.
A second article will describe construction of a pickup arm.

Correction

R. J. Ward, author of the article 'Sweptfrequency audio oscillator' in the September issue, has asked us to point out that the $4.7-\mathrm{nF}$ capacitor in Fig. 11 should be omitted. We regret omitting the label F , to correspond to E in the multivibrator of Fig. 5. There was a printer's omission on p.417-'Power supplies are required at +10 V and -10 V ' should have appeared in the text gap.

October meetings

LONDON

6th. IERE-_"Components-past, present and future" by G. W. A. Dummer at 18.00 at London School of Hygiene, Keppel Street, W.C.I.
7th. RTS-"Satellite broadcasting" Part 1: Basic satellite technology by G. Lewis at 19.00 at I.T.A., 70 Brompton Road, S.W. 3 .
12th. AES-"Developments in audio instrumentation" by J. Kuehn at 19.15 at the Mechanical Engineering Dept., Imperial College. Exhibition Road. S.W. 7

13th. IERE/IEE-"A blood analyser using the PDP-8/L" by E. T. Oram at 18.00 at $8-9$ Bedford Sq., W.C.I.
14th. SERT-"The BRC 8000 television receiver" by A. Martinez at 19.00 at I.T.A., 70 Brompton Road, S.W.3.

18th. BCSR Statistical Soc.-Babbage memorial lectures at 14.30 at I.E.E., Savoy Pl., W.C. 2 .
20th. IERE-"Applidation of satellite relayed communications to civil aviation and maritime use" by D. Hirst and J. D. Parker at 18.00 at $8-9$ Bedford Sq., W.C.1.
21st. RTS-"Satellite broadcasting" Part 2; Satellite design by G. K. C. Pardoe at 19.00 at I.T.A., 70 Brompton Road, S.W.3.

27th. IERE-"Innovation in industry-a factor for growth" by R. H. Jones at 18.00 at $8-9$ Bedford Sq., W.C.1.

ABERDEEN

13th. IERE/RTS - "Colour film for television" by Dr. Boris Townsend at 19.30 at Robert Gordon's Institute of Technology, St. Andrews Street.
20th. IERE--"Hi-Fi tape recording" by R. West at 19.30 at Robert Gordon's Institute of Technology, St. Andrews Street.

BATH

13th. IERE - "Signal processing and computation using pulse rate techniques" by J. D. Martin at 18.00 at The University.

BIRMINGHAM

5th. IERE-"World competition in the electronics industry of 1970-a challenge for the engineer" by Dr. F. E. Jones at 19.15 at the Department of Electronic and Electrical Engineering, The University. Pritchetts Road.
21st. SERT-"Video tape, the manufacture and requirements" by R. Waldie at 19.30 at University of Aston, Gosta Green.

BOLTON

14th. IERE-"Computer-aided design" by E. Wolfendale at 18.15 at the Institute of Technology, Deane Road.

BOURNEMOUTH

5th. SERT/IEETE-"Radar ornithology-the engineer's point of view' by H. R. J. Smith at 19.45 at College of Technology, The Lansdowne.

BRISTOL

21st. SERT--"Curve tracers" by R. Watson at 19.30 at the Polytechnic, Ashley Down.

27th. IERE-"The continuing education and development of professional engineers" by Dr. K. G. Stephens at 19.00 at The Polytechnic, Ashley Down.

CAMBRIDGE

28th. IERE-"The problem of addressing new display materials" by A. Colchester at 18.30 at the University Eng. Labs., Trumpington St.

CARDIFF

6th. SERT-"Demonstration and lecture on the Sony Trinitron television tube" at 19.30 at Llandaff Technical College, Western Avenue.

20th. IEETE-"Electronic variable speed drives" by C. J. Teece at 19.30 at University of Wales Institute of Science \& Technology, Cathays Park.

CHATHAM

28th. IERE-"Electronic video recording and reproduction" by B. T. Pickstock at 19.00 at Medway College of Technology.

CHELMSFORD
13th. IERE--"Comparison of p.c.m. and f.d.m./f.m. microwave radio relays" by S. G. Allen at 18.30 at the Civic Centre.

COVENTRY

28th. IERE--"Reliability" by R. C. Winton at 19.15 at Lanchester Polytechnic.

DUNDEE

7th. IEETE-"Technician engineers and technicians-their role, their status, their future" by E. A. Bromfield and "The Engineers Registration Board and composite register" by M. W. Leonard at 19.00 at the University, Fulton Bldg.

DURHAM

13th. IEETE-_"Modern telecommunications" at 19.30 at University Science Labs, South Rd.

EDINBURGH

6th. IERE-"The development of a colour TV service" by J. Dunlop at 19.00 at Carlton Hotel, North Bridge, 1.

12th. IEE-"Setting up an educational micro-electronics laboratory" by N. Milne at 18.00 at Carlton Hotel, North Bridge, 1.

GLASGOW

7th. IERE-"The development of a colour TV service" by J. Dunlop at 19.00 at The Institution of Engineers and Shipbuilders, 183 Bath Street, C.2.

Ilth. IEE--"Setting up an educational micro-electronics laboratory" by N. Milne at 18.00 at The Institution of Engineers and Shipbuilders.

HARLOW

22nd. IERE-"Fibre optics in telecommunications" by Dr. N. Chown at 19.30 at Harlow Technical College.

LIVERPOOL

12th. IERE-""Finance and engineering" by J. Cuckney at 19.00 at the Department of Electrical Engineering and Electronics, The University.

13th. IERE-"Electronics in Medicine" by Dr. D. W. Hill at 19.00 at the Department of Electrical Engineering and Electronics, The University.

MANCHESTER

21st. SERT-"Pulse width modulation" and demonstration of IVC colour video recorder by A. Parkinson at 19.00 at Renold Building, U.M.I.S.T.. Sackville St.

MIDDLESBROUGH

26th. SERT--"Philips solid-state colour receiver" by N. Cunniff at 19.30 at Cleveland Scientific Institution.

NEWCASTLE-UPON-TYNE

6th. SERT-"Engineering development in colour TV'' by K. R. Harris at 19.15 at Charles Trevelyan Technical College. Maple Terrace.

13th. IERE-"A new look at data logging" by T. Kinnear at 18.00 at Ellison Building, The Polytechnic, Ellison Place.

READING

21st. IERE-"Developments in transistor circuit design" by Prof. E. A. Faulkner at 19.30 at The University, Whiteknights Park.

SOUTHAMPTON

20th. IERE-"The design and application of digital filters" by Dr. D. R. Wilson, D. R. Corrall and B. D. Dollimore at 18.30 at Lanchester Theatre, The University.

STEVENAGE

20th. IEETE-"Electronics usages in commercial vehicles" at 19.30 at College of Further Education, Monkswood Way.

SWANSEA

20th. IERE-_"Replanning aspects of mediumwave broadcast service" by Dr. R. C. V. Macario and J. F. Craine at 18.15 at Department of Applied Science, University College.

THURSO

19th. IERE-"Hi-Fi tape recording" by R. West at 19.30 at Thurso Technical College.

Advantages of field storage technique for synchronizing different picture sources and for standards conversion

by S. M. Edwardson*, m.I.E.E., and A. H. Jones*, b.Sc.

One of the ways in which the presentation of television programmes has improved in recent years is that, as far as possible contributions from a multiplicity of picture sources are now arranged to be synchronous. One reason for this is to provide an uninterrupted train of synchronizing pulses so that viewers are not disturbed by frame 'roll-overs' or other momentary synchronization defects when changes are made between different sources. Continuity of the synchronizing pulses is important to the broadcaster as well, particularly when the programme is being recorded on video tape, because the subsequent replay from a video tape machine can be seriously disturbed for several seconds following any discontinuity in the recorded synchronizing pulse train. A further advantage of synchronous sources is that special effects are possible, such as the so-called 'split-screen' teghnique (in which a single picture contains simultaneous contributions from two or more sources). In addition, source synchronism enables programme makers to wipe, mix and dissolve rather than simply cut between different sources.

When the different television sources are all located within a single building there is no great difficulty in achieving synchronism, since they all can be fed from a common pulse generator and, by adjusting the timings of the pulse feeds to individual sources, precise and virtually permanent synchronism of the video signals is obtained. This is not possible, however, when some sources are remote.
This article considers the ways used by broadcasters to achieve synchronism between relatively remote television sources. Emphasis is placed upon the most modern method--the field-store synchro-nizer-and the practicality of making a relatively cheap, high-performance version using digital techniques ${ }^{1}$. The article also considers the application of such techniques to standards converters.

Existing methods of source synchronization used by the B.B.C. fall into three main categories.

Genlock. Here the signal from the remote source is regarded as the 'master' signal and the synchronizing pulses at the
studio centre are adjusted automatically to synchronize with the pulses of the master. ${ }^{2}$ This is simple and convenient, but has the disadvantage that the synchronizing operation must be carried out slowly to avoid disturbance to viewers' receivers and other apparatus. Furthermore, only one remote source at a time can be used as master and it is necessary to use signals from a local source (e.g. a studio) for a period, while re-locking to a further remote source is carried out.

Natlock. + Here the central source (e.g. B.B.C. Television Centre) is the master, to which all other contributing sources are locked ${ }^{3}$. At the master, the phase of the synchronizing signals from one (or more) remote sources is compared with that of the master and digitized correction signals are fed back to each remote source so as to bring and maintain them in synchronism. The whole network is highly stable and uses narrow-band audio circuits for the correction signals.

The field-store synchronizer. This is essentially a variable video delay interposed in the path of a television signal, the value of delay being such that the output signal is in precise synchronism with a master signal. Precise synchronism between two television signals is achieved when the phases of their field synchronizing pulses, line synchronizing pulses and colour subcarriers are the same. Where a difference in frequency (changes of these phase relationships with time) exists between the television signal to be synchronized and the master signal, the delay in the synchronizer steadily increases or decreases to maintain synchronism; ultimately, the delay reaches a maximum or minimum value, at which point it is reset, to repeat its cycle of variation. A convenient value of maximum delay is equal to the duration of one field; thus, when the cycle of variation is repeated, one television field is omitted or duplicated according to the direction of delay variation. An interesting effect occurs in a field-store synchronizer when the cycle repeats, since the picture information carried by the train of cutput

[^2]television fields, normally 'odd, even, odd, even, etc.' becomes, for example, 'odd, even, odd, odd, even, etc'. Two fields of the same kind, with regard to picture content, then occur successively and the output picture is seen to move vertically or 'hop' by one picture-line spacing. A hop in the other direction takes place at the next re-cycling. This effect is found in practice to be not very obvious and, in the majority of synchronizing applications, occurs only very rarely.

Only one field-store synchronizer exists at present and is in service at the B.B.C's Television Centre in London. Its variable delay is formed from a switched cascade of ultrasonic delay-lines similar to those in an electronic field-store standards converter-in fact, this synchronizer is a modified standards converter. Fig. 1 indicates one of the ways in which it is used.

Applications of synchronizers

PAL to PAL synchronization is the most common use of a synchronizer within the United Kingdom, where a colour television signal from a remote source is synchronized to, say, the signals at the studio centre. In most respects PAL to-PAL synchronization presents the simplest problem, because of the tight tolerance to which the subcarrier and scanning frequencies are held (± 0.45 part per million when the PAL signals originate in other countries using the PAL system). SECAM-to-PAL synchronization is particularly useful when importing signals from SECAM countries because, after processing by the synchronizer and transcoding, the signal conforms to the PAL specification in all respects, despite the wide range of scanning frequencies that the SECAM specification permits. \ddagger

The synchronization of monochrome signals creates a special problem despite the simpler nature of the signals to be handled. The wide range of scanning frequencies likely to be encountered with imported monochrome signals can exceed the capacity of the present synchronizer

[^3]

Fig. 1. Action of field-store synchronizer.
(± 400 parts per million) and an optical standards converter must, at present, be used to achieve synchronism. Future non-optical synchronizers will occasionally be required to handle wide-tolerance monochrome signals. It was mentioned earlier that a vertical hop occurs every time the synchronizer's delay system re-cycles and, for input signals with scanning frequencies differing greatly from those of the output signal, hopping would occur very frequently and would be subjectively annoying. To handle such signals, therefore, additional storage capacity equal to one television field might be required, so as to ensure the emergence of an undisturbed train of 'odd, even, odd, even, etc.' fields from the synchronizer."* In this case re-cycling would occur half as frequently and a complete picture (i.e. two fields) would be omitted or duplicated each time.

Pros and cons of synchronizers

The field-store synchronizer has the advantages that a television source can be synchronized without disturbing the synchronizing pulses of the master station and without using feedback to the point of origination. It provides a continuous train of output synchronizing pulses (even with no input signal) and it permits rapid 'cutting' from one remote source to another, producing a correct output within a small fraction of a second of the arrival of a new input signal. The ability to synchronize without feedback is particularly valuable when overseas sources are considered.

[^4]A disadvantage of the synchronizer arises from the fact that it operates by delaying the video signal and hence can cause video-signal distortions whereas, in the cases of Genlock and Natlock, syrichronism is achieved through operations on only the synchronizing pulses. In the case of the synchronizer at present in service with the B.B.C., the distortion is small but is not imperceptible-an important consideration for a device intended to be used frequently in the television broadcasting chain.

Digital techniques now offer a solution to the problem of video distortion, as well as having other important advantages.

It is well known that the information contained in any analogue signal can be conveyed by sampling the signal at at least twice the highest frequency present; the magnitude of each of the samples may be sent as a binary number which is described by the presence or absence of
each of a group of pulses. Fundamental work on the application of pulse-code modulation ${ }^{4}$ to broadcast-quality colour television signals has concluded that a sampling frequency of three times the colour subcarrier frequency (i.e. about 13 MHz) should be used and that each of the samples should be described by eight binary digits, corresponding to $\$ 56$ equispaced quantizing levels; this leads to a serial bit-rate of about 100 M -bits per second. However, the serial digit stream may be subdivided so as to use a number of parallel channels working at a correspondingly reduced bit-rate. It is possible, for example, to use 8 channels working at about 13 M -bits per second, or 24 channels working at about 4M-bits per second. This subdivision transforms the digital signal into a form in which it can be processed by readily obtainable integrated circuits and storage devices. The advantages of digital processing are high accuracy and reliability, immunity to noise

Fig. 2. Basic form of digital field store synchronizer.
and interference, with freedom from drift and from the necessity for careful setting-up and adjustment.
This last advantage makes digital processing particularly attractive for those parts of the television signal in which complicated processing is carried out. Experimental digital line-store converters have already been built ${ }^{5}$ and it is reasonable to expect the practical application of digital processing to field-store synchronization and standards conversion. The costs involved in applying digital techniques have fallen in recent years to the extent that a digital solution to a requirement can now often compete, on economic grounds, with the analogue equivalent. It is estimated that the cost of a future digital field-store synchronizer will be appreciably less than that of the corresponding analogue equipment.

Methods of digital synchronization

Present-day analogue synchronizers make use of ultrasonic delay-lines for signal storage. These lines have the property that a signal inserted into them emerges at the output terminal after a specified time interval. For synchronization, and a number of other applications, however, it would be preferable to use devices into which 'blocks' of signal may be written and stored for a variable interval depending on the relative phasing of the input and output synchronizing pulses. Fortunately, the storage devices used in digital systems are generally of this type and their application to the television synchronization problem, in place of delay-lines, leads to a considerable simplification in the ancillary circuits.

Thus with a storage system consisting of a series of 'pigeon-holes', which can be filled and emptied as required, it is possible to envisage field-store synchronizer whose basic form is shown in Fig. 2.
The storage assembly is subdivided into a number of individually accessible units; these may have any convenient size, but it is desirable that the information contained in a television field should be accommodated within a whole number of units. The total capacity of the storage assembly must be at least equal to that required for one television field.

Writing and reading from the storage units is effected by means of the input and output switches shown diagrammatically in Fig. 2. The stores are emptied in sequence via the output switch which is controlled by the output synchronizingpulse train. The input switch is controlled by the input synchronizing pulses and directs each block of incoming information to the storage unit to which the output will be connected when that particular information is required; the stores are controlled by input clock-pulses during writing and by output clock-pulses when reading. The reading process is preferably made non-destructive (perhaps by 'read-restore' action), the stored information remaining available until replaced by the writing-in ('overwriting') of new information.
By this overwriting technique it is

Fig. 3. Alternative form of synchronizer.
possible to deal with non-synchronous cuts in the input signal without causing any visible disturbance at the output.* If the position on the raster of the beginning of a new signal were known, say by indicating the 'line-number' to the input switching system, the signal could immediately be routed to the appropriate store location. In practice, this cannot occur and it will be necessary to arrest the writing process until the first of the new field-synchronizing pulses arrives; in this case, that part of the input signal which was written into the stores during the field immediately preceding the cut would be repeated at the output. If the writing process were stopped altogether, say by the removal of the input signal, the output would produce a stationary picture.

In general, however, the input and output switches provide access to the storage units in an orderly sequence but, of course, at slightly different rates. Now digital storage arrays are generally constructed in such a way that the writing and reading processes are carried out by the same circuits. Thus writing and reading cannot take place simultaneously in any one storage unit, if the two clock rates are different, as indeed they may have to be in a synchronizer.

This restriction can be overcome by incorporating more storage units than are necessary to accommodate only the information corresponding to a field. Then if, say, writing 'catches up' with reading, the reading switch can be arranged to omit a field. If reading catches up with writing, the reading switch will correspondingly cause the previous field to be repeated. This process is identical to the delay re-cycling process mentioned earlier. In practice, it may be advantageous to use a number of extra storage units sufficient to provide backlash; in this way frequent vertical picture hops may be avoided in the circumstances when the phase

[^5]difference between the input and output signals wanders about zero.

At present, the obvious choice of storage device for a synchronizer of this type is the m.o.s. dynamic shift-register. This device will not store information reliably for more than a short time interval, but this problem can be overcome by recirculating the information within each storage unit, at either input or output clock rate, during the interval between writing and reading. Another way of coping with the problem posed by dynamic registers is to cycle the information through the storage units connected as a ring. If this were done under the control of, say, the output clock it would be possible to derive the output from a fixed point in the ring of stores, with the signal inserted at an appropriate point. In this form, the ring may be regarded as a tapped delay with the addition of a recirculation path to allow for the repetition of information when required. A subsidiary buffer store would be required at the input, however, so that new information could be inserted into the appropriate point of the ring at the appropriate time, under the control of the output clock pulses. This leads to arrangements of the type shown in Fig. 3. Each of the storage units comprising the buffer store on the left-hand side of this diagram has a capacity equal to that of each of the units in the main ring of stores. Sw_{1} directs input information into the buffer store as it arrives; this process is, of course, clocked at input rate. The reading of the buffer store and all subsequent switching and clocking operations are locked to the output standard. Sw_{2} and Sw_{3} are ganged; their purpose is to provide access, during the period of each signal block, to information that has been written into the buffer and is ready to be transferred to the ring. During any one such period, signals fiow down one or both, or neither of the two wires leading to $S w_{4}$. The wipers of $S w_{4}$ are ganged and are positioned, at the beginning of each signal block, to feed information into the appropriate (adjacent) pair of terminals on the ring so as to replace the signal block(s)
that would, otherwise, have circulated through that particular section of the ring. Information is discarded or repeated at the output when the wipers of Sw_{4} move past the output connection. The size of the buffer store, and the motion of Sw_{2} and Sw_{3} may be arranged so that frequent discarding and repeating of information is avoided when the input and output synchronizing waveforms are hovering near synchronism. If the main ring holds only one field, ancillary circuits can be connected at the output to ensure that the output signal is presented in correct phase during successive fields.
Other arrangements can be envisaged; for example, it would be possible to connect the input signal to the main storage ring, with a subsidiary buffer store at its output. The final choice of block diagram will depend on detailed design considerations.
Complications arise when field-store synchronization is attempted with a storage capacity limited to about one television field. The properties of a PAL colour signal are such that an 8 -field cycle is involved; this arises because of the interlaced fields, the V -axis (PAL) switching at half-line frequency, and the arithmetical relationships between the colour subcarrier and the scanning

Fig. 4. Extension of Fig. 2 to provide facilities for field-store standards conversion.
frequencies. Each of the eight fields is separately identifiable and a synchronizer would, ideally, have a storage capacity sufficient for eight fields, in order to match precisely any incoming field to one from the master signal; even the synchronization of monochrome signals ideally requires two-field storage. There is no need, however, for such storage capacity in practice since the difficulties can be overcome without serious penalties. There are two main effects involved.

First, when the timing of the input signal requires that 'odd' fields at the input be displaced to become 'even' fields at the output, or vice versa, picture information will be absent from half of one television line at the bottom or top of the output picture.
A second, and more serious, problem arises in connection with the polarity of the V-axis (PAL) switching. Once the corresponding lines of the nearest incoming field have been aligned, there is a 50% chance that the polarity of the PAL
switching sequence will be wrong. During the development of the present-day synchronizer, various methods of overcoming this problem were examined and the method finally adopted was to change, when necessary, the synchronizer, delay by one complete television line so as to bring the V -axis switching sequence into step \dagger. This method, known as 'line-slipping', results in a picture that has been moved bodily up or down by one line and means that a further loss of one line of video information can occur; this was considered less serious than the degradation of picture quality which would accompany alternative solutions. It is likely that a similar method will be necessary in a digital synchronizer.

Extension to field-store conversion

A field-store converter is required to produce an output signal whose field phasing is constantly varying relative to the input. A field-store synchronizer must, of course, be capable of dealing with such variations. However, in the case of the converter, the variation is much more rapid, and the conversion process, in general, also involves a change in the number of lines per picture. These requirements may be satisfied by
arrangements similar to those given in Figs 2 and 3 with the addition of circuits that interpolate between a number of input lines (possibly derived from successive input fields) to produce information suitable for display on the output raster, together with the additional storage capacity required for interpolation.

Fig. 4 is an extension of Fig. 2 to provide these extra facilites. In this example the interpolator takes information from one line in each of two successive fields, and the two output switch wipers are driven accordingly. The total storage capacity required would somewhat exceed that corresponding to two fields. Circuits already developed ${ }_{5}$ could be used to carry out the processing required in a digital interpolator of this type.

The presence of the colour subcarrier complicates the interpolation process,

[^6]
REFERENCES

1. Patent applied for 2. E.B.U. Review, Pt. A, 107, February 1968.
2. S.M.P.T.E., 78, 8 August 1969.
3. Lord, A. V. 'Digital Methods Applied to Television', Journal Royal Television Society, Vol. 12, No. 2, Summer 1968. pp 27-36.
4. 'Digital TV Line Standards Converters', W.W. May 1971 p. 238.
however, as it does for analogue field-store standards conversion. A problem arises because the phase of the colour subcarrier changes from line to line and field to field in a manner which can prevent information being taken directly from different lines and fields of the signal. Analogue standards converters avoid this difficulty by using an intermediate system of colour signal coding, rather like N.T.S.C., having a specially chosen colour subcarrier frequency which is an integral multiple of the input line frequency. This means that, for a given colour, the phase on any line of any field is always the same and interpolation is thereby simplified. It is possible that a similar kind of intermediate colour system may be necessary in digital field-store standards converters.

Acknowledgements

The authors wish to acknowledge the contributions and help received from their colleagues in the B.B.C. Research Department; they also wish to thank the Director of Engineering of the B.B.C. for permission to publish this article.

Communication 72

This is the title of an international radio and data transmission conference being organized for 13th-15th June next year in the Metropole Convention Centre, Brighton. It is being jointly sponsored by Electronics Weekly and Wireless World and will provide a meeting ground for the manufacturers and users (both military and civil) of communications equipment. A steering committee including representatives of Government Departments, the industry and user organizations has been set up and a call for papers will be issued shortly.

Considerable interest has already been shown by manufacturers in the supporting international exhibition which has the backing of the Electronic Engineering Association and is being organized by P. Gordon Saville, 21 Victoria Rd., Surbiton, Surrey. Present plans provide for about 150 stands.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Dual-trace oscilloscope unit

I would like to comment on some of the points made by W. T. Cocking in his article 'Dual-trace Oscilloscope Unit'.

A continuously variable gain control I consider unnecessary and I do not use it on an ordinary oscilloscope in which the gain varies in steps of 1:2:5:10. On the other hand, I would not consider the purchase of an oscilloscope which lacked direct coupled amplifiers. There are rare occasions when the a.c. and d.c. components differ so much that I have to put a dry battery in series with the input, but this is acceptable for experimental work.

Most people believe that the input resistance of an oscilloscope is about $1 \mathrm{M} \Omega$ shunted by a capacitance of 30 to 50 pF because this is stated in the instruction manual. In fact this is true only at low frequencies. At high frequencies the shunt resistance falls to perhaps $2 \mathrm{k} \Omega$. This may not be important when used with switching circuits but it will probably be disastrous if connected across the tuned circuit of an oscillator.

The graph shows the resistive component of the input impedance measured with a Q meter. Above 100 kHz the resistance is inversely proportional to the square of the frequency. The resistance will vary slightly from one attenuator position to

Input resistance of oscilloscopes. (A) Advance OS2100 (transistor amplifier); (B) Telequipment D53, amplifier C2 (valve).
another but the two curves are representative. One oscilloscope (B) uses valve amplifiers and the input resistance varies only slightly when the mains supply is switched off. There are series resistances such as grid stoppers in the input attenuator and these probably cause the very low equivalent shunt resistance. Measurements were made with short (approx. 6 inch) wires between oscilloscope and Q meter.

I must emphasise that the graphs do show the shunt resistance. They are not curves of capacitive reactance.

M. D. Samain,

University of Salford.

The author replies:

The points about gain control and a d.c. response are surely personal ones. I am used to a continuous gain control and would not willingly do without one. On the other hand, I have rarely found any use for the d.c. input of an oscilloscope.

I am most interested in the figures for the input resistance of oscilloscopes at high frequencies. I made a rough measurement on an oscilloscope at 10 MHz and found the resistance to be of the order of $7 \mathrm{k} \Omega$ only. The c.r.o. so loaded a tuned circuit, however, that the resulting Q was too low to measure accurately with the meter available and I would not rely on my figure to better than $\pm 50 \%$! It does, however, give confirmation of a low input resistance at high frequencies.

The suggestion that it is caused by the use of series stopping resistors is probably the chief cause. At $10 \mathrm{MHz}, 22 \Omega$ in series with 30 pF has a parallel equivalent of $12.8 \mathrm{k} \Omega$ in shunt with 30 pF . W. T. Cocking.

Television sound quality

I recently purchased a new 24 -inch singlestandard TV set. I have subsequently found that although the picture quality is very good the sound is dreadful, speech quite frequently being unintelligible and music invariably not worth listening to. When I complained to the retailer I was told that the poor sound was common to most sets and was due to the fact that the manufacturers had provided more for the money on the vision side. I said that the sound
quality was ás important as the visual quality to my enjoyment and that I was prepared to pay either to have the sound taken through my high-fidelity amplifier and speaker system, or, alternatively to buy an entirely separate tuner to use with my high-fidelity system. I was told that they were forbidden by the manufacturers to do the former (it was done on a previous TV set), and that there was no such thing as a separate tuning unit for TV sound.

I then communicated with the manufacturer (B.R.C.) pointing out that the sound quality was much worse than on one of their own portable transistor sets I had bought for a little over $£ 20$. They said that they were sure my TV set was faulty and should be returned to their factory. I perforce went through the lengthy procedure of doing this, at the same time stating that I would much rather put the sound through my other equipment either from the TV set or a separate tuning unit, or failing that, and since the set was being returned to them anyway, would willingly pay anything within reason for them to fit a better quality amplifier and/or speaker. In the event they insisted that none of these things was possible and returned my set with a note that a capacitor had been changed.
The quality of the sound reception is minimally improved but remains quite unacceptable by any reasonable standard.

In common with many other families, we use our television set for more hours of the week than either the radio or record player. Despite the fact that I have very expensive equipment for sound reproduction, I am obliged to tolerate sound on our major source of entertainment which spoils our pleasure in the programmes. Although I am prepared to spend whatever additional money is necessary to obtain good sound quality I am told that this is not available at any price.
R. SEAR,

London N.W.3.

Optimum scale integration

In 'News of the Month' in your July issue (page 340) you comment on the use by Plessey of the term 'Optimum Scale Integration'.

When designing complex linear integrated circuits - for example colour processing systems - the limit to the amount that may be integrated is rarely set by chip size. The factors controlling chip complexity are usually stability (when high gains are involved) and overall system price-bearing in mind that the cost of an integrated circuit increases very rapidly with the number of external connections that are made to it. A digital system may well have less connections if it is integrated on a single huge 1.s.i. chip than on several smaller chips but the same does not apply to linear systems, which need coupling, decoupling and tuning, most of which are accomplished with non-integrated components.

Thus, several years ago, Plessey Microelectronics coined the term 'optimum
scale integration', or o.s.i., to describe the integration of linear systems into the most economic number of functions per chip. It was a contrast with digital I.s.i. where the most economic number of functions per chip is usually the largest.
James M. Bryant,
Plessey Company,
Components Group,
Swindon, Wilts.

In reply:

Mr. Bryant quite rightly points out that the problems of designing linear and digital i.cs are different but to imply that digital i.cs do not have to be optimized is stretching things a bit. Minimizing the number of interconnecting leads can be done only if the chip is being designed for a particular system. In most cases the chips (digital) are intended as building bricks in some system to be designed by the customer and not known to the i.c. manufacturer. Digital i.cs, like most other manufactured products, are the result of a process of optimization and compromise. The term o.s.i. seemed to stem from the need to make the devices sound different for publicity purposes-hence our quip.ED.

The asymmetric
 long-tailed pair

The long-tailed pair is, arguably, the most versatile basic circuit scheme ever con-ceived-all credit to the perceptive genius of A. D. Blumlein - and the advent of monolithic silicon integrated circuit technology, with its active device oriented circuit design philosophy, has vastly extended its use. So far, however, attention has concentrated on the 'symmetric' longtailed pair, i.e. a balanced scheme in which the active devices are made, intentionally, as near-identical as possible. As far as I am aware no attention has been paid to the case where the devices are intentionally fabricated with a significant, controlled, asymmetry, i.e. the asymmetric long-tailed pair. It is the purpose of this letter to point out briefly, the possible advantage of such a configuration; in the case discussed here bipolar junction transistors are dealt with.

Consider the circuit of Fig. 1 in which transistors $T r_{1}$ and $T r_{2}$, made in close

Fig. 1. Basic long-tailed pair.
proximity on the same semiconductor wafer, have emitter areas A_{1}, A_{2} units respectively. If, (i) the saturation current density of the emitter base junctions of both devices is J_{o}, (ii) operation is at a current level $>I_{C B O}$ (typically $<\operatorname{lnA}$), and (iii) the common-base d.c. current gain of each device is α, then

$$
\begin{align*}
& I_{C 1}=\alpha I_{E 1}=\alpha A_{1} J_{o} \exp \left\{\left(V_{1}-V_{E}\right) / V_{T}\right\} \tag{1}\\
& I_{C 2}=\alpha I_{E 2}=\alpha A_{2} J_{o} \exp \left\{\left(V_{2}-V_{E}\right) / V_{T}\right\} \tag{2}
\end{align*}
$$

Fig. 2. Long-tailed pair transfer characteristics.
where $V_{T}=$ thermal voltage $=K T / q \approx$ 25 mV at $T=300^{\circ} \mathrm{K}$
Furthermore,$\quad I_{S}=I_{E 1}+I_{E 2}$
Routine algebraic manipulation of (1), (2), (3) gives,
$\left(I_{c_{1}} / \alpha I_{s}\right)=1 /\left[1+n \exp \left\{-\left(V_{1}-V_{2}\right) / V_{T}\right\}\right]$
where $n=\left(A_{2} / A_{1}\right)$. A similar expression holds for $\left(I_{C 2} / \alpha I_{S}\right)$

A more convenient form of (4) is, $\left(I_{c_{1}} / \alpha I_{s}\right)=$

$$
\begin{equation*}
1 /\left[1+\exp \left\{\left(V_{O S}-V_{1}+V_{2}\right) / V_{T}\right\}\right] \tag{5}
\end{equation*}
$$ in which,

$$
\begin{equation*}
V_{O S}=V_{T} \log _{e} n \tag{6}
\end{equation*}
$$

Equation (5) is sketched in Fig. 2. Curve (a) corresponds to $n=1$ (symmetric case): curve (b) corresponds to $n>1$ (asymmetric case). Clearly the effect of area difference is to shift the transfer characteristic parallel to itself along the horizontal axis by the amount of the offset voltage, $V_{o s}$. (In the intentionally symmetric case there is always the possibility of some undesired small offset voltage because of fabrication tolerances: thus a 2% area difference between $T r_{1}, T r_{2}$ yields, via (6), $V_{o s}=0.5 \mathrm{mV}$).

For the linear amplification of small signal voltages bipolar with respect to a specified reference level V_{2} a symmetric scheme is suitable. With the quiescent point at Q the transfer characteristic is substantially linear for $\Delta V_{1}= \pm V_{T}$. Suppose, however, that it is required only to amplify signals positive going with respect to V_{2}. In such a case the choice $n \neq 1$ would appear preferable: in fact, the input signal range for linear amplification is extended by a factor of 2 if the transistors are designed so that,

$$
V_{O S}=V_{T} \log _{e} n=V_{T}
$$

or, $n \approx 2.7$.
For this condition the quiescent point is Q^{\prime}. Obviously, the configuration is equally suitable for the amplification of negative going signals only if they are applied to the base of Tr_{2}.
B. L. Hart,

London E.f5.

H.F. PredictionsOctober

Path MUFs are determined by the two-control-point method of calculating MUFs for 4000 km range from each terminal along the great circle between them and taking the lower value as the MUF for the path. When the terminals are widely separated in latitude the MUF difference can be considerable, for example on Hong Kong/ London during 00.02 to 00.04 G.M.T. it is 23 MHz . Operation above path MUF is often observed under these conditions accompanied by a change in direction of arrival away from the great circle bearing towards the equator. Similar effects, due to ground reflection scattering and ionospheric layer tilts, are observed on many long-distance circuits and have diurnal and seasonal variations.

News of the Month

New radio-telescope

A detailed design for a radio-telescope, to be known as the Mark VA, is to be commissioned by the Science Research Council at a cost of some $£ 250,000$. In 1967 the Council announced two preliminary design studies for a large steerable radio-telescope to be operated by remote control from the Nuffield Radio Astronomy Laboratory of Manchester University, at Jodrell Bank. The new design announced by the Council will carry these preliminary studies a stage further and lead to the consideration of tenders for construction of all the major components of the telescope in about a year's time. The Engineering Division of the United Kingdom Atomic Energy Authority Reactor Group will be the S.R.C's agent; Husband and Company, of London and Sheffield, will be the consulting engineers. The specification is for a telescope of about 114 m aperture, with a solid membrane, the elements of which can be adjusted by remote control during operation. The membrane will be carried on a large steel structure pivoted in elevation on bearings carried on a beam supported from a reinforced concrete turntable. It is planned that the site of the telescope, if approved, will be at Meifod in Montgomeryshire in Wales. If constructed the Mark VA would operate at wavelengths down to a few centimetres and be used in conjunction with the existing Mark I, currently being repaired and modified, to form an interferometer with a base-line some fifty miles long.

Automatic buoy

Europe's first fully-automatic unmanned navigational buoy has replaced the Shambles lightship off Portland Bill, Dorset. Lanby (large automatic navigational buoy) has just undergone a year of intensive testing which followed its delivery by the manufacturers, Hawker Siddeley Dynamics, to Trinity House. The buoy consists of a main light beacon 12 m above sea level which can be seen for sixteen miles and a powerful fog signal which can be heard more than three miles away. At a later date radar and radio beacons may be fitted, and there is provision for accommodating meteorological or oceanographic data-reporting equipment if required. The automatic operation of the buoy and its power
supplies, three 5 kW diesel-powered generating sets, is monitored every thirty minutes by a shore station via a radio telemetry link. Should any failure occur, standby services operate automatically, and indication of the fault is relayed to the shore station. Shore control can carry out 40 separate checks on the equipment and can control 22 different operations. It is estimated that the buoy will cost 90% less to operate than the $£ 29,000$ per year required to keep a light vessel at sea.

Small airfield 'control tower'

A compact equipment (NP8) designed by Rohde \& Schwarz for small airfields is not only an accurate direction finder but also provides two-way v.h.f. communication on any one of up to six channels. A technique known as the wide aperture Doppler method is used for the direction finding process.
The pilot of an aircraft wishing to land at an airfield equipped with the NP8 selects the airfield approach frequency on his normal v.h.f. transmitter and calls the control tower. The NP8 receives the signal and provides the controller with a digital indication of the airfield's bearing from the aircraft (QDM) to within one degree and also gives a rough indication (within 10°) of the aircraft's bearing from the airfield (QDR). The controller also hears the transmission and reply using the NP8's transmitter.

The direction finder aerial consists of 16 dipoles arranged in a circle of 3.3 m diameter which are electronically commutated at 170 Hz and simulate a single aerial rotating around a circle of 3.3 m diameter. The communications aerial is a single dipole mounted at the centre of the 16 d.f. dipoles.

The outputs of the two aerial systems are fed to two separate receivers which have a common crystal-controlled local oscillator. The output of the communications receiver is detected and used to feed an audio amplifier and speaker. It is also used to compensate for frequency differences between transmitter and receiver and to prevent an f.m. signal from upsetting the d.f process by comparing the communications receiver output with the d.f receiver output to obtain a correction signal.
The d.f. receiver's output is frequency modulated by a 170 Hz signal which is
caused by the 'rotation' of the aerial relative to the aircraft's transmitter and has a phase which when compared with the original 170 Hz commutating signal yields the bearing of the aircraft.

The phase shift of the bearing signal is averaged over a period of 180 simulated aerial rotations before being displayed but for a very short transmission a bearing indication is available after 36 rotations.

Naval gun used to produce ferrite parts

New ferrite components are being developed at the Billericay factory of Marconi Communication Systems using an unusual production process. The basis of the new process is a 6 -inch naval gun with the barrel cut short and sealed. Soft rubber moulds, containing powdered ferrite material from which all the air has been evacuated, are immersed in a hydraulic fluid in the gun barrel, and the breach of the gun is closed. The fluid is then pumped up to a pressure of over 15 tons per square inch, and the powder is forced into a solid block inside the moulds. Since the pressure is applied evenly in all directions by the fluid in the gun barrel, the compressed powder is almost completely free from stresses which might distort the block of ferrite in the furnace.

The ferrite is then fired at a high temperature in an electric furnace, during which time it becomes nearly molten, and shrinks by one fifth of its size. At the end of the process the component is hard enough to cut glass, and is accurate in size to within 0.5%. This unusual method of compressing ferrite powders eliminates lengthy cutting and grinding operations, which normally have to be carried out using diamond cutting tools on the finished ferrite blocks. It also saves a considerable wastage of off-cut material, which cannot be re-used after it has been fired. In the case of the more expensive ferrites, this saving can be considerable.

I made it myself

The communications division of Motorola have taken a step in the right direction by adding an important commodity to one of their radio paging receivers. Each receiver is assembled, tested and packed by one assembly technician. Gone is the production line where each worker did the same job over and over again with little idea of what the final product looked like. The assembly workers are now completely involved. They are responsible for the quality and reliability of the receivers they have each made and an extra something is added which is called pride in one's work. A signed note with the receiver tells the customer who made it.
The receiver in question, called the Pageboy-2, uses only 80 components (if a hybrid i.c. can be called a component) and makes the one-person production technique possible. Motorola are so pleased with the results of the exercise they are now looking at other areas where the idea could be applied.

Quadraphony and Home Video steal the Berlin Show

The 27th German-based radio and television exhibition, held this year in Berlin (Aug. 27-Sept. 5), was international for the first time.' So we are justified in presenting some developments from outside Germany this time. The enlarged exhibition area held 263 exhibitors, with nearly half from countries other than Germany. There were 14 British manufacturers represented, 20 from the U.S.A. and 38 from Japan. Main developments were in quadraphonic sound systems and home video equipment.

Four-channel systems

There was a lot to see in four-channel equipment. If you're confused by what's happening in four-channel sound systems, we don't blame you. The situation is confusing because of the variety of systems and in particular a lack of agreement about which to use for what purpose. The jargon doesn't help the outsider to four-channel thinking either.

As well as the basic four-channel arrangement of four microphones feeding four speakers independently ('4-4' system) there are simulated systems-which can be merely ambience-enhancing techniquesfor creating four speaker signals from two channels ('2-2-4' system) and ' $4-2-4$ ' systems for processing four-channel information over two-channel links (e.g. discs). Then there is the question of what to do about compatible tapes, discs and broadcasts for four channels of information (at least ten systems have been proposed for broadcasting).

Some are tempted to dismiss it all as commercial gimmickry, if not trickery, but out of all this comes a theme we have heard before with mono vs stereo and monochrome vs colour television-those who have heard the better four-channel systems say they don't want to go back to conventional stereo.

Ambience is what is mostly lost through stereo reproduction, and is the reverberant sound of the playing room which arrives later than the direct sound and with an almost random directionality. To get an impression of this one has to perceive sound in the listening room on the same basis as in the original room. To do this
means arranging to get sounds in the room which follow on from the original sound in an incoherent way but at the same time do not reduce the stereo directional property. Using the findings of Haas (which incidentally related to speech pulses) it is maintained that delays of about 1 to 30 ms do not reduce directionality-the first-heard sound locating the source-and the delayed pulses merging to reinforce the first sound (provided the level difference is less than 10 dB). Thus it has been proposed to introduce delays (of around 10 ms) between front and back speakers (in a two-channel stereo system), arranging the back speakers to get the best ambience effect-level with the ears. Getting these delays can be inconvenient because of the delay mechanism needed, e.g. displaced tape heads, sound propagation tubes, etc. The alternative of using four appropriately spaced microphones can achieve the required delay, but requires the co-operation of the recording director and a 4-2-4 system. Consequently simpler ways of achieving an ambience effect have and are being adopted.

The Körting Multisound 600, Siemens RS172 and RS302, a unit by Audioson, and the Elac 3400 T are based on the old argument that the difference between two stereo channels carries reverberant sound (which is less masked than in the sum signal) and can be used to reproduce an enhanced reverberation effect. Körting use a differential amplifier toproduce antiphase difference signals, $(\pm I-R)$, which are fed through separate amplifiers to two rear speakers. The 180° phase difference is intended, the makers say, to prevent a sound image being formed midway between the rear speakers. But the effect of this may be disturbing to some in a similar way to the effect of anti-phase speakers in a conventional stereo setup, and can give reduced l.f. response through cancellation. Although these two signals could be provided more economically using either one extra amplifier with antiphase speakers or by matrixing the L and R signals, Körting -in common with many other manufacturers of such black boxes-are anticipating availability of four-channel discs or tapes.

Pioneer equipment shown had two modes of operation-one using a matrix for fourchannel discs (coded stereo discs) and one
using a phase difference circuit for ordinary stereo discs. The phase difference method provides a differential $L-R$ signal for the rear speakers with a 90° phase difference to provide a diffused rear sound source. The matrix mode is intended to be used with coded discs, i.e. two-channel discs derived from four main microphone channels. The Sansui QS-500 also includes a matrix and it is interesting that makers have decided to adopt a particular kind of matrix before there is any agreement on what system will eventually be used for disc coding.

The Sansui equipment is unique in that it includes phase modulators to give a presence effect which acts on each of the rear channels to give 'randomly' varying phase differences between 0 and 180°. Both rear channel signals, derived by matrixing, are phase shifted prior to this phase modula-tion-the specification shows 90° at 300 Hz for the left and 90° at 600 Hz for the right. The significance of these frequencies is not explained.

A '4-2-4' system proposed for use with such units has a four-microphone arrangement feeding a linear matrix coder to produce two channels from the four. The resulting left channel output comprises mainly signals from the left front and back microphones together with a difference signal from the right front and back microphones, and conversely for the right output. These two composite signals can then be applied to a stereo disc cutter in such a way as to rotationally modulate the groove by appropriate choice of coefficients in the matrix, rotation of the cutter $x-y$ axes corresponding in theory to 'panning' a sound source around 360°.

In practice of course the cutter-or pickup stylus-is not physically rotated, the desired effect being achieved by giving suitable coefficients to the cutter signals. When the matrixed or 'coded' signals are retrieved from a disc, and 'de-matrixed' it turns out that when, say, the left front microphone only is providing a signal, three speakers are energized, the left front with a full signal and the two adjacent speakers with a signal 3 dB down. As it stands, this system is clearly not a 'discrete' system, and it would seem there is a reduction in front left-right separation.

But it is argued that most programmed material would not demand four discrete channels. When discrete reproduction is important it is possible to apply gain control to the two flanking channels to reduce their effect using circuitry which recognizes the appropriate kinds of signals. This basic idea, similar to that of Scheiber, is the basis of a variety of commercial fourchannel playback units, including those by Pioneer, Sansui, Electro-Voice, Lafayette.

While it may be true that conventional stereo discs can be reproduced with added realism, such a coded disc will not be very compatible-a two-channel stereo setup will have reduced separation. Also, to improve this front right-left separation means an expensive decoder because of the need for additional gain control circuitry. As a centre-back signal corresponds to a vertical stylus motion, this would be lost when playing such a disc in the mono mode. A way round this is to provide a 90° phase difference (actually $\pm 45^{\circ}$) between the two composite channels and thus their sum is equal to the square root of the sum of the squares of the two signals, thus giving mono compatibility.

Bauer* has pointed out that there is directional ambiguity as a result of using a one-dimensional matrix i.e. one in which the output signals are linearly related to the input with real coefficients, claimed to be overcome in the CBS system by using a two-dimensional matrix with complex co-efficients-see later.

One method of putting four channels of information onto a disc is the modulated subcarrier technique used by the Victor Company of Japan. In this a matrix produces the signals $L_{F}+L_{B}, L_{F}-L_{B}, R_{F}+R_{B}$, $R_{F}-R_{B}$. The two difference signals are separately angle modulated onto a subcarrier of 30 kHz with a total passband of $20-45 \mathrm{kHz}$. (Difference signals below 800 Hz are frequency modulated and above 800 Hz are phase modulated onto the carrier.) The two sum signals are then added, so the two composite signals (representing the left channels and the right channels) are modulated onto the disc groove in the normal way. Fig. 1(a) shows a typicalgroove modulation. The level of the modulated difference signals is kept to 20 dB less than the maximum level of the sum (audio) channels. By this means crosstalk figures of 20 dB (both front-to-back channels) and 25 dB (both left-to-right channels) are obtained.

This kind of system was investigated by CBS--except that the carrier was at 22 kHz with an a.m. upper sideband extending to 38 kHz -but a number of snags were found. So that the stylus can trace the finer groove modulations the base-band signal has to be reduced in level resulting in a 6 to 8 dB drop in s / n ratio in the stereo mode. Also there are difficulties in tracking which would mean restricting the inner groove radius to about 15 cm . Then there is the cost of pickups designed for use up to 40 kHz .

The system eventually adopted by CBScalled SQ (stereo/quadraphonic) and re-

[^7](a)

(b)

Fig. 1. Grooves offour-channel discs using subcarrier technique (a) and using CBS matrix technique (b).
cently demonstrated in London as well as in Berlin-uses a linear matrixing technique which gives improved performance in some respects over other matrixing methods. Starting with the disc cutter, the method of getting the additional directional information onto the disc is similar to the system already discussed. The front signals are as for a conventional stereo disc. The left back channel is associated with a clockwise circular motion in the groove and the right back channel with an anti-clockwise motion. The left back signal is applied equally to both groove walls with a 90° phase lag on the right, and the right back signal is applied equally with a 90° phase lead on the right. The back channels are thus orthogonal-as are the front channels--signals in one back channel being unaffected by a signal in the other back channel. Thus, in theory, infinite separation is available between the front pair and the back pair of channels. (Not so between the left and right pairs, where separation can be as little as 3 dB .) Equal front signals give a lateral groove modulation, equal back signals give a vertical modulation and a source at other points around a microphone square would give elliptical modulation. Fig. 1(b) shows four $45-45$ grooves with modulation by each channel. The 90° phase difference between the two wall modulations is clearly seen.
The matrixing process has the following relation:

$$
L=L_{F}+a R_{B}-j a L_{B}
$$

and $R=R_{F}-a L_{B}+j a R_{B}$
where $a=\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{2} \sqrt{2}=0.707$.
(The terms prefixed with j are formed with wideband 90° phase-shift circuits.)

In the 'de-matrixing' process (Fig. 2) the outputs will be:

$$
\begin{aligned}
& L_{F}^{\prime}=L_{F}+a R_{B}-j a L_{B} \\
& R_{F}=R_{F}-a L_{B}+j a R_{B} \\
& L_{B}^{\prime}=L_{B}-a R_{F}+j a L_{F} \\
& R_{B}^{\prime}=R_{B}-a L_{F}-j a R_{F}
\end{aligned}
$$

Thus the front-left speaker, for example, produces no front-right signal, but has an in-phase back-right component and a backleft signal shifted in phase by -90°. By inspection of the other equations it can be seen the front and back pairs have the theoretically infinite separation while front signals are transferred with reduced amplitude in the rear and vice versa. High front separation is most useful for maintaining compatibility with two-channel stereo equipment and is a distinguishing feature of the system-Fig. 3(a). This figure also shows the signal amplitudes resulting from a front left signal in the other systems for comparison at (b). (It is achieved at the expense of slightly more power being radiated from the opposite direction of the dominant sound source thán in the system using all real coefficients in the matrix-Fig. 3). Using a different kind of matrix with the system will reduce separation and alter sound distribution.
(a)

(b)

Fig. 3. Speaker outputs when a front-left microphone only is energized using the CBS matrix method (a) and typical output using other matrices (b).

In the example of Fig. 3(a), the rear signals have negligible effect on perceived direction, only contributing to the total loudness. The human hearing system favours sounds from the front, and as sounds for the back reach the ear largely by reflection (in a room) and are therefore delayed, the Haas effect prevents any effect of reflected sound on directionality. This rule doesn't seem to apply when the back

Fig. 2. Simplified decoder matrix used in CBS SQ system using wideband 90° phase-snift circuits. Modified form of matrix can give improved separation between centre front and back signals at the expense of left-right separation.
signals are dominant. In the case of a back left signal, the signals in the front speakers are in quadrature and it has been shown that the image from two such signals is displaced toward the leading signal (front left). It turns out that this is at about the same angle as the perceived sound from the back speaker-which is about $\frac{1}{3}$ of the angle between two speakers. (Perceiving incoherent stereo signals from behind narrows the separation angle.) So the front image tends to 'blend' with the back image, and because the back signal is the stronger the sound is perceived from the back. A feature of the system is that the same effect occurs if the listener turns round and faces the back.

When playing a four-channel disc on a two-channel system, the sounds corresponding to equal signals in quadrature are shifted towards the leading phase speaker. Thus a back left signal appears displaced toward front left, which helps to convey some sense of identification between the four and two-speaker reproductions.

The reduced-amplitude (or 'side-effect') signals are perceived when a listener turns through 90°, reducing apparent front-back separation. A refinement to the system therefore is to use controlled-gain amplifiers in each of the four channels, whose action is to attenuate the side-effect signals whenever they have equal amplitudes and a 0,90 or 180° phase difference in adjacent channels. (Gain of the remaining two amplifiers is correspondingly increased to maintain constant power.) Given such a system, performance is claimed to be virtually identical to that of the original master tape.

CBS say that the first quadraphonic discs -about 20 titles-will be released in the U.S.A. in November, costing about $\$ 1$ more than two-channel discs. Sony are the first licensee for hardware outside the U.S.A. and showed two decoders at the exhibition. They are expected to be available in Europe early in 1972, when no doubt CBS will start pressing discs in the U.K. Cost of decoders is expected to range from about $£ 20$ for a matrix-only type to around $£ 60$ for a model with gain control circuitry. Other manufacturers and record companies are being licenced in Europe, and we expect announcements to be made later this year.

Home video

The Philips VCR video cassette recorder had its premiere at the exhibition. Demonstration models using this system (under licence) were seen on a number of stands-Bosch/Blaupunkt, Loewe Opta, Grundig, Nordmende and Philips-and other companies have also agreed to use the system, including Telefunken, Saba, Lenco, Zanussi (Italy), Revox and Thorn. A feature of the VCR machines is the inclusion of a u.h.f. receiver, enabling broadcasts to be recorded independently of the playback receiver. On some models, a timer is included to operate the recorder at a preselected time. Philips machines are expected to cost about $£ 290$ and are now planned to be marketed in April or May
1972. Despite the wide agreement on the VCR system for the PAL system, there still does not appear to be a standard for N.T.S.C., 60 Hz areas. In Japan and the U.S.A. ten different tape systems have been announced.

Most of the proposed domestic video machines are running behind schedule-our table (page 529 November 1970 issue) showing dates of introduction of the competing systems is now out of date. The Teldec video disc is now expected in 1973 and problems with RCA's Selectavision mean that a launch date cannot be given.

Nordmende demonstrated their CCS Super $8-\mathrm{mm}$ film system. Like the EVR system this uses the flying-spot technique to convert film pictures for display on a television receiver.

The most interesting system technically is the video disc, and the colour version of the Teldec (Telefunken-Decca) video disc player was demonstrated for the first time. To get picture information onto a disc with a reasonable playing time clearly needs a revolutionary technique not only in pickup design but also in getting the required information density. Information theory shows that for a $3-\mathrm{MHz}$ bandwidth with a signal-to-noise ratio of 40 dB , a channel capacity of $4 \times 10^{7} \mathrm{bit} / \mathrm{s}$ is required, which amounts to a storage density of 500,000 bit $/ \mathrm{mm}^{2}$ at 1500 $\mathrm{rev} / \mathrm{min}$-two orders of magnitude greater than a microgroove disc!

To get this kind of density means that normal lateral groove modulation is out of the question and constant-width grooves are used less than $8 \mu \mathrm{~m}$ wide. The sound and picture information is frequency modulated onto a carrier of between 3 and 4 MHz , with a ratio of minimum to maximum wavelength of $1: 2.66$. The signal is cut into the 150° grooves in hill and dale fashion. In retrieving this modulation from the disc the wave crests are impressed against the piezoelectric pickup (fixed in relation to the groove, thus avoiding the problem of pickup inertia) by an air film no greater than $50 \mu \mathrm{~m}$ (see illustrations in "The video disc" by J. C. Gilbert, Wireless World vol. 76 1970 pages $377 / 8$). Pickup output is proportional to wavelength, and as the disc is rotating at constant speed, the wavelength-frequency 'constancy' varies as the pickup traverses the disc because of increase in groove velocity. The resulting fall in output is equalized prior to demodulation and subsequent u.h.f. modulation. Pickup response is limited to about 5 MHz by a resonance which occurs when the acoustic half-wavelength in the transducer is comparable with its dimensions. Transducer mass and compliance of the elastic mounting give a low-frequency resonance at about 100 kHz . This allows a pickup-arm bandwidth of five to six octaves to be achieved, presumably necessary because of the low modulation index, producing sidebands outside the deviation band.

The big question is how has colour been added to this system? Teldec engineers argued that vertical resolution is unnecessarily high and to match the
horizontal resolution, considerably less than 625 lines per frame can be used. Hence, the red, green and blue picture content is recorded in sequence, so that red information is given every three lines. On playback, delay elements are used so that all three signals are available at the same time. This mixing process is used only for low-frequency picture informa-tion-up to 1 MHz -so sharpness is not lost. Only two kinds of disc are necessary, a $1500 \mathrm{rev} / \mathrm{min}$ type for 625 lines, 50 Hz and a $1800 \mathrm{rev} / \mathrm{min}$ type for 525 lines, 60 Hz . Differences within the 625-line standard are catered for in the processing circuitry.

Although playing time per disc is short, about 5 min , cartridges have been developed to take a stack of discs, which are automatically removed from their covers. Both monochrome and colour versions of the equipment are now scheduled for marketing in 1973.

Tape noise reduction

Philips showed a prototype cassette 'hi-fi' recorder (model N2510) whose performance is claimed to meet DIN45 500 standards. Using high-coercivity-tape cassettes, improved magnetic heads and their dynamic noise limiter technique (see Wireless World July 1971 issue pp. $339 / 40$) it is scheduled for release mid- 1972.

While in Berlin we thought we would follow up a rumour that three Japanese companies-Sony, Matsushita (National) and Victor-had jointly developed a rival to the Dolby system. Sony dissociated themselves from this and said they were still negotiating with Dolby.

National, who have been using a noise reduction circuit on their cassette tape recorders (rather like the Sanyo type), claim to have developed a new 'double-ended' system, i.e. one which requires signal processing prior to recording. According to National literature, they obtain a 6-dB improvement in signal-to-noise ratio with this and together with their 'noise-free device' single-ended circuit they claim an overall improvement of 20 dB ! It seems they have not yet decided whether to market this, one governing factor being development of the Philips system. They have also been involved in discussions with Dolby Laboratories over the B-type system.

The Victor company (Japan) claim to have a system competitive and compatible with the Dolby system-their published curves in fact are identical to Dolby's-without patent infringement. A possible reason for the emergence of these other systems may be the royalty price Dolby is asking. According to Dolby Laboratories it has recently been reduced to about four pence per processor as a result of an increased number of licensees. There are now 63 licensees of consumer Dolby products, including 22 in the USA, 13 in Japan and 12 in the U.K. Latest cassette machines seen using the Dolby system are made by Hitachi and Sansui.

Dual-trace Oscilloscope Unit

3. Bipolar transistors

by W. T. Cocking*, F.I.E.E.

The two previous parts of this article have dealt with the requirements for a dual-trace oscilloscope unit and have discussed in detail the design of an amplifier incorporating a field-effect transistor for its input stage. It was shown that the main practical difficulty with an f.e.t. arises out of the very large tolerances on this type of semiconductor. Additionally, however, there is a lack of definite information on the temperature coefficient. In view of the gain control requirements, this makes it impossible to be sure that a design is satisfactory without lengthy tests on a great many f.e.ts

It is a fact that the provision of a continuous control of gain is a major design problem. It was clear from the start that the most satisfactory solution would probably be to use a differential amplifier with the gain control resistor connected between the two emitters. This is a well-known circuit, but for good maintenance of the balance it requires complete symmetry. This means, in particular, that as far as d.c. is concerned everything connected between one base and the bias source must be duplicated between the other base and its bias source.

This virtually rules out the use of the f.e.t. as an input device, for a matched pair would be required to achieve the necessary symmetry and with their normal large tolerances this is more easily specified than secured. How then otherwise can we achieve an adequately high input resistance? It must be around $5 \mathrm{M} \Omega$ as a minimum and is better $10 \mathrm{M} \Omega$, so that it causes negligible error by its shunting effect on the $100 \mathrm{k} \Omega$ resistor which is supposed to define the input resistance.

An emitter-follower has an input resistance of approximately $h_{f_{e}} R_{E}$ and a typical transistor, such as the BC107, has a minimum $h_{f e}$ of about 100. To obtain an input resistance of $10 \mathrm{M} \Omega$, therefore, an emitter load of $100 \mathrm{k} \Omega$ is needed. Now the input resistance of a differential stage is unlikely to be much more than $10 \mathrm{k} \Omega$, so a second emitter follower is needed. A second stage with an emitter load of $1 \mathrm{k} \Omega$, which is small compared with $10 \mathrm{k} \Omega$, will have an input resistance of $100 \mathrm{k} \Omega$ to form the emitter load of the first stage.

Thus, a preliminary check indicates that a double emitter follower is needed to

[^8]obtain the required input impedance, and for symmetry, it must be duplicated on the other side of the differential amplifier. This solution thus requires rather a large number of transistors. This was why initially we investigated other arrangements and we returned to it only when we found those other arrangements to be unsatisfactory for gain control.

According to the text-books the input resistance of the double emitter follower is lower than one expects because the input resistance of Tr_{2} is shunted by the collectoremitter differential resistance of Tr_{1} (Fig. 1.) Further, it is usually advised that a coupling resistor be connected from the emitter of $T r_{1}$ to $-V_{C C}$, which provides a further reduction of the emitter load. The reason for providing this coupling resistance is to ensure that $T r_{1}$ is not cut-off by the $I_{c o}$ of Tr_{2}. This is possible even with silicon transistors under some conditions.

However, $I_{\text {co }}$ is unlikely to exceed $0.05 \mu \mathrm{~A}$ even at high temperature and the trouble is most simply avoided by making $I_{B 2}$, and hence $I_{C 1}$, large in comparison. The BC107

Fig. 1. Circuit for measuring the input current-voltage relation for a double emitter follower.

Fig. 2. Plot of current-voltage for the circuit of Fig. 1 .
is rated for an $h_{F E}$ of 110 to 450 . In the worst case, if $I_{C 2}$ is at least $3 \mathrm{~mA}, I_{B 2}$ is not less than $3 / 450=0.00665 \mathrm{~mA}=6.65 \mu \mathrm{~A}$, and this is adequately large in comparison with any likely value of $I_{c o}$. A current of 3 mA or more is also desirable to minimize the risk of the emitter follower cutting off on negative-going signals. There is always shunt capacitance to any coupling and it cannot change its charge instantly.

In order to assess the input resistance we need to know the collector a.c. resistance of $T r_{1}$ at a collector current of the order of $6-30 \mu \mathrm{~A}$, the latter figure being appropriate for $h_{F E 2}=110$. The published transistor data is of no help here and so we resorted to experiment. We rigged up the circuit shown in Fig. 1 using a pair of 2N3706 transistors. These are not the most suitable, for they have a minimum $h_{F E}$ of only 30 , but they happened to be at hand. We varied the base bias in steps and noted the base current and plotted the figures as a curve (Fig. 2). Above about 8.6 V the base current rose very rapidly because of the approach of $T r_{1}$ to saturation. For $V_{B 1}=8.6 \mathrm{~V}, I_{B 1}=2 \mu \mathrm{~A}$ and for $V_{B 1}=2.8 \mathrm{~V}, I_{B 1}=0.75 \mu \mathrm{~A}$; thus, the a.c. input resistance is

$$
(8.6-2.8) /(2-0.75)=4.63 \mathrm{M} \Omega
$$

Similar measurements with a pair of BF194 transistors gave a resistance of $7.2 \mathrm{M} \Omega$. This showed it to be practicable to obtain an adequately high input resistance from a double emitter follower.

The general form of the circuit follows almost automatically and is shown in Fig. 3. Transistors $T r_{1}$ and $T r_{2}$ form the input emitter follower; $T r_{3}$ and $T r_{4}$ are the differential pair; and $T r_{5}$ and $T r_{6}$ are a duplicate emitter follower. The output stage is $T r_{8}$ with $T r_{9}$ to switch it on and off. Because the base voltage of Tr_{8} is much lower than the collector voltage of Tr_{3}, the p-n-p stage $T r_{7}$ is interposed. It also enables a shift control to be provided which does not affect the gain. This is R_{8} acting as a variable resistance. The free end is connected into the other amplifier so that the component acts as a differential shift control, moving one trace upwards and the other downwards at the same time. This is necessary because independent shift controls can lead to grossly incorrect bias on $T r_{8}$.

The bias supplies for $T r_{1}$ and $T r_{6}$ are obtained from R_{2} and R_{3} which are fed

Fig.3. Basic circuit of amplifier. Tr_{3} and $T r_{4}$ form a differential amplifier with the gain-control resistor R between the emitters. Tr_{1} and $T r_{2}$ have a high input resistance, so that the actual input resistance of the amplifier is defined by $R_{B 1}$ (see text for explanation of the terminology). $T r_{5}$ and $T r_{6}$ are a duplicate emitter follower and are necessary only to preserve the balance of the differential stage. Tr_{7} is used primarily to give a change of d.c. level between Tr_{3} and Tr_{8} but it also enables 'shift' to be obtained without affecting gain. Tr_{8} is the output stage which is switched on and off by Tr $_{9}$.
from the zener diode D_{3}. Stabilized bias supplies are essential unless the main supply is stabilized; even if it were, the bias supply resistors would have to be of $\pm 1 \%$ tolerance. In practice, R_{3} is adjusted to bring the voltage across $R_{E 3}$ to a design value and then R_{4} is adjusted forzero voltage across $R ; R_{7}$ is adjusted with R_{10} at its mid position for a design value of $V_{C 7}=V_{B 8}$.
Before proceeding further, it may be as well to clarify the nomenclature and conventions used. To simplify the diagram base, emitter and collector resistors are not labelled in Fig. 3; they are all R_{B}, R_{E} or R_{C} with a numerical subscript for the particular transistor to which they belong. Thus, $R_{E 3}$ is the resistor between the emitter of Tr_{3} and - $V_{c c}$. The resistor between the collector of $T r_{3}$ and $+V_{C C}$ can be designated as $R_{C 3}$ or $R_{E 7}$ as desired; similarly, the one between the collector of Tr_{7} and $-V_{\boldsymbol{C c}}$ can be called $R_{C 7}$ or $R_{B 8}$.
For n-p-n transistors, all voltages which have a single letter subscript (e.g., V_{B}, V_{E}, V_{c}) have also a numerical subscript to indicate the particular transistor, and the voltages are measured with respect to - $V_{c c}$. If measured with respect to some other point, there is a double letter subscript. Thus $V_{C 8}$ is the collector voltage of $T r_{8}$ with respect to $-V_{C C} ; V_{C E 8}$ is the collector voltage with respect to the emitter of Tr_{8}.
In the case of p-n-p transistors, the voltages are normally measured with respect to $+V_{C C}$. They should, therefore, strictly have a minus sign, but this is inconvenient. $V_{C 3}$ is the collector voltage of $T r_{3}$ and is also clearly the emitter voltage of $T r_{7}$ with respect to $-V_{C c}$. However, $V_{E 7}$ is the emitter voltage of Tr_{7} with respect to $+V_{c c}$. Collector voltage $V_{c 3}$ is positive,
$V_{E 7}$ is actually negative (because of the different point from which it is measured) but is referred to here without the minus sign.

After this explanation, we can return to Fig. 3. The diodes D_{1} and D_{2} are essential protective devices. They ideally have no effect on the normal signal performance. Their purpose is to prevent damage to the equipment if the probe is accidentally connected to a high voltage. We take this high voltage to be the supply mains, which can reach ± 360 V peak. For $10: 1$ input attenuation of the probe and $R_{B 1}$ together, the probe resistance is $900 \mathrm{k} \Omega$ and even without the diodes the maximum input to Tr_{1} is $\pm 36 \mathrm{~V}$ peak. With the diodes, the base voltage of $T r_{1}$ is limited to at most a volt more than the diode return voltages. Because of component tolerances a close control of voltages is impracticable and it is necessary to design so that safe conditions exist throughout the amplifier, not merely in the first stage. In particular, $V_{\text {EBO }}$ for any transistor must not exceed 6 V for the BC107 type.

In the development, we naturally omitted D_{1} and D_{2} initially and we rigged up the circuit of Fig. 3 on the bench to check its performance. This did, in fact, prove admirable. We found it readily possible to obtain a -6 dB bandwidth of 10 MHz , a gain of 10 times, a gain control range of $3: 5: 1$, and good stability of the d.c. balance. Although not perfect, this last was far superior to that of any other circuit tried. When we came to add protective diodes, however, we found that $T r_{3}$ and $T r_{7}$ were in some danger and we had to do some redesign to avoid this. This is why we now take them into account from the beginning.

Before considering the design in detail,
it is advisable to be clear about a few important facts about transistors. The first is that for d.c. $V_{B E}$ is virtually a constant except for tolerances and temperature. For the BCl 07 it is 0.55 to 0.7 V as a manufacturing tolerance, and it decreases with rising temperature at the rate of $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. For the BC157 p-n-p transistor $V_{B E}$ is 0.6 to 0.75 V and decreases in magnitude at $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Because of this, when there is appreciable external emitter resistance, the emitter voltage bears an almost constant relation to the base voltage. It is a very low impedance point. In Fig. 3, for example, if $V_{B 7}$ is fixed, $V_{E 7}$ is also fixed at a magnitude lower by $V_{B E 7}$. This means that the total current in $R_{C 3}\left(R_{E}\right)$ is constant; therefore, if $I_{C 3}$ increases $I_{C 7}$ decreases by the same amount.

For a.c., the internal differential resistance of the base-emitter junction must sometimes be taken into account. This is designated r_{e} and has the rough value of $26 / I_{c}$ ohms with I_{c} in mA . It is usually additive to the external emitter resistance R_{E} and we shall call $r_{e}+R_{E}$ the total effective emitter resistance R_{e}. The voltage amplification is then R_{C} / R_{e} and the input resistance measured between base and earth is $h_{f e} R_{c}$.

The maximum normal output required from $T r_{8}$ (with $T r_{9}$ off) is 1 V peak-topeak. With two traces on the c.r.o. fully separated it can be only one-half of this. To allow a large factor of safety for drift and to obtain good linearity we shall design for an output of 2 V peak-to-peak. We previously chose $R_{C 8}=R_{E 8}=330 \Omega$ on the grounds of nominally unity gain and the required frequency response. We also decided on $V_{B 8}=2.7 \mathrm{~V}$.

Deducting $V_{B E 8}(=0.55$ to 0.7 V$), V_{E 8}$ is 2 to $2 \cdot 15 \mathrm{~V}$. The collector current (assuming the base current to be negligibly small in comparison, as is usually the case) is $V_{E 8}$ divided by $R_{C 8}$, which is 330Ω nominal. With a $\pm 5 \%$ tolerance, the resistance lies between the limits of 314 and 347Ω. Therefore, the limits on collector current are $2 / 0.347=5 \cdot 75 \mathrm{~mA} \quad$ and $\quad 2 \cdot 15 / 0 \cdot 1314=$ 6.84 mA .

Theinternal emitter resistance $r_{e 8}=26 / I_{C}$ and so ranges from 3.8Ω to 4.5Ω. From the signal point of view, this plus $R_{E 8}$ equals $R_{e 8}$, the effective total emitter resistance, which is thus 318.5 to 350.8Ω. The collector resistance $R_{C 8}$ is also nominally 350Ω, but ranges from 314 to 347Ω. Now $R_{e 8}$ and $R_{C 8}$ are uncorrelated and the limits are with one high and the other low. Therefore, the voltage amplification $R_{C 8} / R_{e 8}$ is $347 / 318.5=1.09$ to $314 / 350 \cdot 8=0.895$.

The input resistance is

$$
h_{\int e 8} R_{e 8}=125 \times 0.3185=40 \mathrm{k} \Omega
$$

as a low limit with $h_{f e}=125$. In fact, $h_{f e}$ may be as high as 500 for the BC107 transistor, so the input resistance may be as high as $160 \mathrm{k} \Omega$. We can do nothing to prevent this variation, but we can make its effect trivial by making $R_{C 7}$ small compared with its lowest value. As we shall see later, $R_{C 7}$ is $1.2 \mathrm{k} \Omega$. With a $\pm 5 \%$ tolerance its value is 1.16 to $1.26 \mathrm{k} \Omega$. Now $1.16 \mathrm{k} \Omega$ shunted by $40 \mathrm{k} \Omega$ is $1.13 \mathrm{k} \Omega$ and $1.26 \mathrm{k} \Omega$ shunted by $160 \mathrm{k} \Omega$ is $1.25 \mathrm{k} \Omega$. These are the values which should strictly be taken in assessing the gain of the $\operatorname{Tr}_{3}, T r_{7}$ combination. The maximum error caused by ignoring it is only 3%, however.

The calculations for Tr_{8} have been given in detail to illustrate the method employed. The same procedure is followed for the other stages but it would be tedious to give it in full. The results only are, therefore, summarized in Table 1.

In general, we need not in this case calculate $V_{C E}$ nor the collector dissipation, because they are so far below the limits that it is unnecessary. However, as an example, we shall do so for Tr_{8}. We assume

$$
V_{c c}=12 \mathrm{~V} \pm 1.5 \mathrm{~V}
$$

making $V_{C C}=10.5$ to 13.5 V . From the point of view of $V_{C E}$, the worst case is when R_{C} and R_{E} are off tolerance in the same direction. The collector-emitter circuit resistance is thus 628 to 694Ω and $I_{C 8}$ is 5.75 to 6.84 mA so that the voltage drop is $5.75 \times 0.694=3.89 \mathrm{~V}$ to $6.84 \times 0.628=$ 4.3 V .

The currents and voltages are taken this way because low current results from high resistance and vice versa. The minimum $V_{C E}$ is thus $10.5-4.3=6.2 \mathrm{~V}$ and the maximum is $13.5-3.89 \approx 9.5 \mathrm{~V}$. The collector dissipations are $6.2 \times 6.84=42.5 \mathrm{~mW}$ and $9.5 \times 5.75=54.6 \mathrm{~mW}$. The latter is not necessarily the maximum dissipation, but in this case it probably is. It is so far below the limit of 400 mW for the transistor that we need not worry about it.

The figures are for continuous operation. However, $T r_{8}$ is switched on and off for equal periods. As a result, the mean current and the mean dissipation are one-half of the above figures.

Table 1

	Low	Normal	High	
$V^{8 B}$	-	2.7	-	v
$V_{\text {bfg }}$	0.55	0.625	0.7	v
$V_{E 8}$	2	2.075	$2 \cdot 15$	\checkmark
${ }^{\text {cos }}$	$5 \cdot 75$	6.27	6.84	mA
${ }^{80}{ }^{\text {a }}$	4.5	4.14	3.8	Ω
${ }^{\text {e }}$ e ${ }^{\text {b }}$	318.5	$334 \cdot 1$	350.8	Ω
$R_{C B}$	314	330	347	Ω
A_{B}	0.895	0.985	1.09	
$R_{c 7}$	$1 \cdot 14$	1.2	1.26	$\mathrm{k} \Omega$
${ }^{\prime}{ }^{\prime} 7$	$2 \cdot 15$	2.25	$2 \cdot 37$	mA
$V_{E 3}=V_{E 4}$	-	$2 \cdot 7$	-	\checkmark
$V_{B 1}$ anc $V_{B 6}$	4.35	4.575	$4 \cdot 8$	V
$R_{E 3}$ and $R_{E 4}$	2.09	$2 \cdot 2$	$2 \cdot 31$	$k \Omega$
${ }_{C l 3}$ and ${ }_{\text {c4 }}$	1.17	1.23	1.29	mA
R_{64}	1.14	1.2	1.26	k Ω
${ }_{C 4} R_{C 4}=V_{B 10}$	134	1.475	1.63	V*
${ }_{\text {c }}{ }^{+} /_{C 7}$	3.32	3.48	3-6	mA
$\mathrm{R}_{\text {c3 }}$	446	470	494	Ω
$V_{E 7}$	1.485	1.64	1.78	V*
$V_{\text {bE7 }}$	0.6	0.675	0.75	V
$V_{B 7}$	2.085	2.515	2.53	V*
r_{87}	12.1	11.6	10.95	Ω
r_{83} and r_{84}	$20 \cdot 1$	21.1	22.2	Ω
$V_{B 10}$	1.35	1.48	1.63	V*
$V_{E 10}$	0.75	0.8	0.88	V^{*}
$\mathrm{ClO}^{+} \mathrm{COM}$	1.52	1.7	1.97	mA
${ }^{\prime}$ c10	0.26	0.284	0.358	mA
${ }_{\text {c }}{ }^{1}$	1.162	1.416	1.71	mA
$\mathrm{R}_{\text {c11 }}$	1.425	1.5	1.575	$k \Omega$
${ }_{c c 1} R_{\text {c11 }}$	1.66	$2 \cdot 12$	2.7	v
$V_{C 11}$	2.41	$2 \cdot 92$	358	V^{*}
$V_{\text {CEY }}$	11.09	9.08	$7 \cdot 12$	\checkmark

- Voltage below $+V_{c c}$

Our next concern is the input capacitance $T r_{8}$. The stage gain is about unity, so the portion of the input capacitance due to Miller effect is only twice $C_{b c}$. Because of $R_{E 8}$, the portion caused by $C_{b c}$ will be only a small fraction of $C_{b e}$. Values of these elements are not quoted for the BC107. Nor is $C_{c e}$ for the BF157 used for Tr_{7}. We have to guess that the total capacitance across $R_{C 7}$ is unlikely to exceed 5 pF .

When considering the output stage $T r_{8}$ in Part I we found that the combination of 330Ω and 55 pF gave a response down by 3.61 dB at 10 MHz . For the same response here with $5 \mathrm{pF}, R_{C 7}$ can be

$$
330 \times 11=3,630 \Omega
$$

For $R_{C 7}=1.5 \mathrm{k} \Omega$, the response will be -0.87 dB ; for $1.2 \mathrm{k} \Omega$ it will be -0.6 dB . This is, therefore, the sort of value which we should use on a frequency response basis, and is so low in comparison with the input resistance of Tr_{8} that we can forget the latter.
From the point of view of frequency response the lower the value of $R_{C 7}$ the better, but there is clearly not much advantage in making it less than $1.2 \mathrm{k} \Omega$. For a required gain, say, 10 times, $R_{E 7} / R_{e 3} \approx 10$, making $R_{e 3}=120 \Omega$ for $R_{C 7}=1.2 \mathrm{k} \Omega$. The input resistance of $T r_{3}$ is $h_{f e} R_{e 3}$ and this must be large compared with $R_{E 2}=1 \mathrm{k} \Omega$. We have thus to strike a balance between frequency response and a large enough input resistance for Tr_{3}. With $h_{f e}=125$, the input resistance is $125 \times 0 \cdot 12=15 \mathrm{k} \Omega$ which is certainly large compared with $1 \mathrm{k} \Omega$. As $h_{f e}$ varies so much, it may actually be four times as large.

Before deciding on $1.2 \mathrm{k} \Omega$ for $R_{C 7}$ we have to check that $I_{C 7}$ will be sufficient to handle the signal. The current is

$$
I_{C 7}=V_{B 8} / R_{C 7}=2 \cdot 7 / 1 \cdot 26=2.15 \mathrm{~mA}
$$

minimum with a high tolerance resistor. For a 1 V peak signal, the signal current will be $1 / 1.26=0.794 \mathrm{~mA}$. There is thus adequate signal-handling capacity and we
can decide definitely to make $R_{C 7}=1.2 \mathrm{k} \Omega$.
The next step is to estimate the gain of the input emitter follower $T r_{1}$ and $T r_{2}$. We saw earlier that for the required input resistance $R_{E 2}$ must be about $1 \mathrm{k} \Omega$ and that $I_{C 2}$ should be something like 3 mA . Taking these figures, $r_{e 2}=26 / 3=8.6 \Omega$. The gain of $T r_{2}$ is thus $1000 / 1008 \cdot 6 \approx 0.99$. Now $T r_{1}$ works into a load $h_{f e}$ times as great and has $1 / h_{F E}$ times the current; $h_{f e}$ and $h_{F E}$ are usually similar in magnitude, although not necessarily equal. It follows that the gain of $T r_{1}$ will be about the same as that of $T r_{2}$ and the overall gain about 0.98
Since the gain of Tr_{8} is 0.895 to 1.09 , the overall gain apart from Tr_{3} and $T r_{7}$ is 0.879 to $1: 07$. We require the overall gain to be 10 times, therefore $T r_{3}$ and $T r_{7}$ together must provide an amplification of 9.35 to 11.4 times. This gain is actually

$$
\frac{R_{C 7}}{R_{e 3}} \cdot \frac{R_{C 3}}{R_{C 3}+r_{e 7}}
$$

Here $r_{e 7}$ is the internal emitter resistance of $T r_{7}$ and depends on $I_{C 7}$; it is given in Table 1 and is around 11Ω. The requirement for $R_{c 3}$ is that it be very large compared with $r_{e 7}$, but not so large that it drops too much voltage with $I_{C 3}$ and $I_{C 7}$ in it. A value of 470Ω suggests itself. If $I_{C 3}$, which we do not yet know, is about the same as $I_{C 7}$, the drop will be about $2 \cdot 1 \mathrm{~V}$, which seems reasonably low. The factor

$$
R_{C 3} /\left(R_{C 3}+r_{e 7}\right)
$$

is thus about $470 / 481=0.975$. It is not worth while here to bother taking tolerances into account. We now find that $R_{c 7} / R_{e 3}$ must be 9.62 to 11.7 .

Before we can proceed further we have to consider the input conditions and, in particular, how we can protect the amplifier against an accidental overload. As mentioned earlier we are taking the maximum input at the probe to be $\pm 360 \mathrm{~V}$. The probe resistance is $900 \mathrm{k} \Omega$ and so the maximum possible overload current is 0.4 mA . At this current, the forward drop of a diode is unlikely to be more than 1 V at most and is more probably $0.5-0.6 \mathrm{~V}$. If the diodes are unbiased, as shown in Fig. 3, they will limit the input to $T r_{1}$ to $\pm 1 \mathrm{~V}$ about its bias voltage. This will certainly do no harm in the early stages.

Now the normal maximum signal at the output is 0.5 V peak and with a gain of 10 times this becomes 0.05 V at the input. The gain control range is $3.33: 1$ minimum and so to obtain full output at low gain, the input must be $0.05 \times 3.33=0.167 \mathrm{~V}$ peak. The diodes are in shunt with $R_{B 1}$ and must have a resistance very large in comparison if the input resistance is to be well-defined by $R_{B 1}$. This resistance should be $20 \mathrm{M} \Omega$ per diode when forward biased by 0.167 V , the peak signal.
The normal diode data does not help in selecting a suitable type, nor in deciding whether bias is necessary or not. The BZY145 appears to be suitable but it is necessary to resort to experiment. A trial quickly showed bias to be essential. This raises problems of how to obtain it. Trial showed about 0.5 V back bias to be sufficient.

It is practicable to connect one diode
between the base of Tr_{1} and $-V_{C c}$. On overload $V_{B 1}$ will then be taken to -0.5 V or thereabouts. This will cut-off $\operatorname{Tr}_{1}, \mathrm{Tr}_{2}$ and Tr_{3}, but this need not harm any of these three transistors. We cannot, however, safely return the other diode to $+V_{C C}$, for this will result in $V_{B 1}$ reaching about $V_{C C}+0.5 \mathrm{~V}$ on overload. At least $T r_{1}$ will saturate and probably Tr_{2} also. There is a a probability that the base current would be dangerously high.

We now assume that the back bias on the diode should not be less than 0.5 V . If we use a BZY88/C5V6 zener diode for D_{3} its voltage will be 5.3 to 6 V . If the diode is returned to this, $V_{B 1}$ must not exceed 4.8 V for 0.5 V or more back bias on the diode. With maximum tolerances on $V_{B E}$ for Tr_{1}, $T r_{2}$ and $T r_{3}, V_{E 3}$ must be at least 2.1 V lower. Thus, $V_{E 3}=4.8-2 \cdot 1=2.7 \mathrm{~V}$ as a maximum. It is a coincidence that this is the same as $V_{B 8}$, but a convenient one if it is otherwise satisfactory.

For a forward voltage drop of 0.5 V , $V_{B 1}$ will rise to 5.8 to 6.5 V above- $V_{C C}$ depending on the zener used. With low tolerance $V_{B E}, V_{E 3}$ will rise at most to $6.5-1.65=4.85 \mathrm{~V}$.

Tests which were later carried out with $V_{Z}=5.6 \mathrm{~V}$ and $V_{B 1}=4.7 \mathrm{~V}\left(V_{E 3}=2.7 \mathrm{~V}\right)$, which corresponds to a back bias of 0.9 V on the diode, were quite satisfactory. It was noticed that changing the diode bias affected the frequency compensation of the probe appreciably. This is to be expected because diode capacitance changes with voltage. The practical variations, however, are caused by tolerances and are taken up by initial adjustments. The main changes in the life of the equipment are caused by temperature and are likely to be very small.

When the equipment was completed, the adequacy of the protection was tested by connecting the input across the $240-\mathrm{V}$ supply mains. Naturally, nothing on the equipment was earthed. No harm whatever resulted. Having thus chosen

$$
V_{E 3}=V_{E 4}=2.7 \mathrm{~V}
$$

we can proceed to design the $T r_{3}$ stage. The first thing to notice is that if signals are applied in the same phase to $T r_{3}$ and $T r_{4}$, there is ideally no current in R and R does not affect the gain for these signals. Such signals are those resulting from the effects of temperature on $T r_{1}$ to $T r_{6}$. The in-phase gain is approximately $R_{C 7} / R_{E 3}$ and can be made less than unity if $R_{E 3}$ is greater than $R_{C 7}$. However, for fixed $V_{E 3}, I_{C 3}$ falls as $R_{E 3}$ is increased and it must be large enough to handle the signal. We previously found the signal current in $R_{C 7}$ to be 0.79 mA and allowing for the small loss in the coupling to Tr_{7} we can take it as being 0.8 mA in $T r_{3}$. The collector current of $T r_{3}$ should thus be 1.2 mA or more for reasonable linearity. This means that $R_{E 3}$ should not exceed $2.25 \mathrm{k} \Omega$. We thus choose $2.2 \mathrm{k} \Omega$ for $R_{E 3}$ and, (Table 1) $I_{C 3}$ is $1 \cdot 17$ to 1.29 mA .

We have now chosen the main circuit values except for the gain control R. Before we do this, which is a little complicated, let us check the overload conditions after the first stage. It is quite possible to have a condition in which the first stage is safe, but some later stage is not.

On overload, $V_{B 1}$ goes to a maximum of +6.5 V or a minimum of -0.5 V . In the first case $V_{E 3}$ rises to a maximum of $6.5-1.65=4.85 \mathrm{~V}$ and if R is small it pulls the emitter of Tr_{4} up to almost the same voltage. Now $V_{B 6}$ will be at its normal 4.38 to 4.8 V and $\mathrm{V}_{B 4}$ will be 3.25 to 3.4 V , therefore $T r_{4}$ will be cut off. Considering R as negligibly small, we then have

$$
V_{E 3}=V_{E 4}=4.85 \mathrm{~V}
$$

with an emitter load comprising $R_{E 3}$ and $R_{E 4}$ in parallel. This is $1.1 \mathrm{k} \Omega$ nominal, $1.045 \mathrm{k} \Omega$ minimum. Therefore,

$$
I_{C 3}=4.85 / 1.045=4.64 \mathrm{~mA} \max
$$

Because $I_{C 3}$ increases above its normal value, $I_{C 7}$ will decrease. The increase of $I_{C 3}$ is $4.64-1.17=3.47 \mathrm{~mA}$ at most, while $I_{C 7}$ is 2.37 mA (a little more because of shift conditions yet to be discussed). It follows that $T r_{7}$ will be cut-off and $V_{B 8}$ will be zero. The drop across $R_{C 3}$ will be

$$
4.64 \times 0.494=2.3 \mathrm{~V}
$$

and so the $I R$ drops of Tr_{3} will be

$$
4 \cdot 64+2 \cdot 3=6 \cdot 94 \mathrm{~V}
$$

making $\quad V_{C E}=9.5-6.94=2.56 \mathrm{~V}$ as a minimum. Thus Tr_{3} will not saturate and this makes the calculations valid ones. It is clear also that $T r_{4}$ will not have excessive reverse base-emitter bias. It is well under the 6 V limit.

To make everything safe all we have to do is to ensure that $T r_{9}$ cannot pull the emitter of Tr_{8} more than 6 V above $-V_{C C}$

Now consider a negative overload. This takes $V_{B 1}$ to about -0.5 V and $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$ and $T r_{3}$ are cut off. If there is no $R_{E 1}$, as in Fig. 3, the potential of the emitter of Tr_{1} and base of Tr_{2} is indeterminate. It is wise, therefore, to fix it at $-V_{C c}$ by a resistor of $1 \mathrm{M} \Omega$ or so. With Tr_{3} cut-off, Tr_{7} acts as a common-emitter stage with $R_{C 3}$ as its emitter resistor. As $V_{B 7}$ has its normal value, so will $V_{E 7}$ have a normal value. Therefore, the total current in $R_{C 3}$ does not change, but $I_{C 7}$ rises to the normal $I_{C 3}+I_{C 7}$, or 3.6 mA maximum. This increases $V_{B 8}$ to 4.55 V maximum, and so $V_{E 8}$ is 0.55 V less, or 4 V .

An additional shift of $\pm 0.5 \mathrm{~V}$ is required on $V_{B 8}$ and $V_{E 8}$, which makes the maximum emitter voltage of $\operatorname{Tr}_{8} 4.5 \mathrm{~V}$. When Tr_{9} has its base at $-V_{C C}$, this is reverse baseemitter bias on $T r_{9}$. It is under the 6 V rating and so is safe.

We can now return to consider the gain control. We require a minimum range of $3.33: 1$ and a gain of 9.62 to 11.7 times. With low tolerance $R_{C 7}$ is $1.14 \mathrm{k} \Omega$ and $R_{e 3}$ must be $1140 / 11 \cdot 7=97 \Omega$; with high tolerance it must be $1260 / 9 \cdot 62=131 \Omega$. To reduce the gain to $1 / 3 \cdot 33$, these values must be 3.33 times or 323Ω to 437Ω.

Fig. 4. This shows the equivalent circuit of the emitter circuit of Tr_{3}.

Now $R_{E 3}$ is the complex network shown in Fig. 4. As $r_{e 3}$ and $r_{e 4}$ vary only by $\pm 1 \Omega$, it is good enough to take $r_{e 3}=r_{e 4}=21 \Omega$ constant. The elements apart from $r_{e 3}$ must thus be 77 to 111Ω and 303 to 417Ω. Since $R_{E 4}$ is $2.2 \mathrm{k} \Omega$ it can be neglected as a shunt on $r_{e 4}$ of 21Ω.

The required figures are thus to be given by $R_{E 3}$ and $R+r_{e 4}$ in shunt; whence

$$
R+r_{\mathrm{e} 4}=\frac{R_{E 3} R^{\prime}}{R_{E 3}-R^{\prime}}
$$

where R^{\prime} is the required resistance. Working this out for $R_{E 3}=2.09 \mathrm{k} \Omega$, we get for $R+r_{e 4}, 80-117 \Omega$ and $355-522 \Omega$; with $R_{E 3}=2.31 \mathrm{k} \Omega$, we get $79.6-116 \cdot 5 \Omega$ and 348-509 Ω. Deducting $r_{e 4}=21 \Omega$, we get for $R, 59-96 \Omega$ and $334-501 \Omega$ in the first case, and $58 \cdot 6-95 \cdot 5 \Omega$ and $327-488 \Omega$ in the second. It is thus clear that R can consist of 100Ω and 500Ω variable resistors in series, one as a preset to fix the maximum overall gain at unity, and the other as a panel gain control. Variable resistors usually have a tolerance of $\pm 10 \%$, so the maximumvalues may be only 90Ω and 450Ω. The latter is a little low, but if we include a 22Ω fixed resistor we have for the preset a minimum range of $22-112 \Omega$ and the minimum required values of 58.6Ω plus the 450Ω of the gain control gives 508.6Ω which is greater than the maximum of 501Ω needed.

We shall not here go into detail about the bias networks. They are straightforward and the only difficult thing is to obtain the required range of control, despite tolerances, with standard value components. Two controls are provided for $\operatorname{Tr}_{7} ; R_{6}$ is a preset which is adjusted to bring $V_{B 8}$ to 2.7 V with the shift control R_{8} at its mid-setting. The required output shift is $\pm 0.5 \mathrm{~V}$ to separate the traces fully. At the base of Tr_{7} it is under $\pm 0.2 \mathrm{~V}$ because it is subject to the gain of $\boldsymbol{T r}_{7}$ as a base-input amplifier, which is about 2.5 times.

It will be realized that d.c. shift is permissible in spite of a.c. coupling to the oscilloscope because the switching process breaks up the different levels on the two output stages into a square wave which is passed by the a.c. coupling. Nothing has so far been said about temperature and we shall now deal with this.

It is very laborious to do this taking all tolerances into account and, in any case, we have not sufficient information to do it accurately. We take all transistors as having a temperature coefficient of $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ which acts to increase the collector current. At 5.6 V , the zener diode D_{3} will have a coefficient of $-0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The mean value of $V_{B 1}=V_{B 6}$ is 4.575 V (Table 1). This is $4.575 / 5 \cdot 6=0.816$ of the zener voltage and the effective temperature coefficient of $V_{B 1}$ and $V_{B 6}$ is $-0.2 \times 0.816=-0.163 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The combined coefficients of $T r_{1}, T r_{2}$ and $T r_{3}$ are $6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and so the coefficient of $V_{E 3}$ is $6-0.163=5.837 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Both sides of the differential amplifier are alike and so it is the same for $V_{E 4}$. At all temperatures, therefore, $V_{E 3}$ and $V_{E 4}$ move together and there is no current in R. Balance is maintained. Notice, however, that this demands equal temperatures and temperature co-
efficients on the two sides, and this may not be achieved in practice.
Because there is no current in R, the effective gain for temperature effects is not the signal gain of $R_{C 7} / R_{e 3}$ but
$R_{\text {C } 7} / R_{E 3}=1200 / 2200=0.545$.
This is a very great advantage of the differential stage; the gain for in-phase signals can be small while the gain for push-pull or single-sided inputs can be large. The effective temperature coefficient, due to the circuits prior to Tr_{7}, at the base of Tr_{8} is thus $5.84 \times 0.545=3.18 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. In Tr_{3}, an increase of temperature increases the current, but this reduces the current in $T r_{7}$ and so a negative sign is required, to make the voltage at Tr_{8} base $-3.18 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Now in Tr_{7}, the temperature coefficient of $V_{B E 7}$ is $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ acting to increase $I_{C 7}$ and so acting at the base of Tr_{8} in opposition to the previous one. If D_{4} is a 4.7 V zener its temperature coefficient is $-1.55 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The normal value of $V_{B E 7}$ is 2.515 V (Table 1). The bias reduction factor is $2.515 / 4.7=0.535$ and so the effective temperature coefficient of the zener diode at the base of $T r_{7}$ is

$$
-1.55 \times 0.535=-0.83 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

This acts to reduce the collector current and so the total effective temperature coefficient of $T r_{7}$ referred to its base is $2-0.85=1.15 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

This is subject to the gain of the stage, which is $1200 / 470=2.55$ times, making the contribution of Tr_{7} at the base of Tr_{8} $1.15 \times 2.55=3.05 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Combined with the $-3.18 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ from the early circuits the total resultant is $-0.13 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Virtually, therefore, we have a nominally zero temperature coefficient at the base of Tr_{8}. This is partly a happy chance, but only partly, for although we have not mentioned it, we chose a zener voltage for D_{4} which would lead to a temperature coefficient suitable for theoretical overall cancellation. Of course, Tr_{8} itself has the usual $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ coefficient affecting its collector current.

The tolerances on the zener temperature coefficients are actually quite large. However, the major factors in achieving a low overall coefficient remain. These are the differential stage which attenuates rather than amplifies the combined coefficients of the early stages and the fact that Tr_{7} temperature coefficient acts in opposition. We have not worked it out in detail, but in the worst case we should not expect the coefficient at the base of Tr_{8} to exceed $\pm 3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, which we consider to be reasonably small.

The switching process prevents 'internal sync' from being used. For the Marconi Instruments oscilloscope used in development the minimum signal at up to 1 MHz for 'external sync' is 0.2 V peak. The normal maximum output for fully-separated traces is 0.25 V peak. Clearly a sync output signal of around 1 V is desirable. An additional sync amplifier with a gain of about four times is needed.

Ideally, the collector loads of Tr_{3} and $T r_{4}$ do not affect the balance of this stage. In practice, they have some small effect. $T r_{3}$ has a very low impedance load to a.c.
for it is mainly the emitter input resistance of $T r_{7}$, about 11Ω. This is important in that signal voltages on the collector of $T r_{3}$ are negligible and Miller effect is absent, which keeps the input capacitance of Tr_{3} low.

In the interests of simplicity we have chosen to make $R_{C 4}$ give about the same voltage drop as $R_{C \cdot 3}$ and it turns out that this requires $1.2 \mathrm{k} \Omega$, so that the signal on the collector of $T r_{4}$ is of the same amplitude as that on the base of Tr_{8}. As Table 1 shows the $I R$ drops in the collector of $T r_{4}$ are a little lower than those in the collector of T_{3} (compare $V_{E 7}$ with $V_{B 10}$). The amplifier which follows is of the type described in Part 2, but using a p-n-p transistor followed by an n-p-n, and its circuit is shown in Fig. 5.

Fig. 5. An extra two-stage amplifier is used and fed from Tr_{4} to provide a greater output than the main amplifier and one which is isolated from the switching signals for synchronizing the oscilloscope timebase.

Values of $V_{E 10}$ and $I_{C 10}+I_{C 11}$ are readily found and appear in Table 1. If $R_{C 10}=2.2 \mathrm{k} \Omega$ and $V_{B E 11}=0.625 \mathrm{~V}$, the current in $R_{C 10}$ must be

$$
0.625 / 2.2=0.284 \mathrm{~mA}
$$

and, neglecting the base current, this is $I_{C 10}$, whence $I_{C 11}=1.7-0.284=1.416 \mathrm{~mA}$. The remaining figures are worked out in Table 1.

It is now necessary to consider what happens on a severe overload. In one sense of overload $T r_{4}$ is cut-off. Then $V_{B 10}$ is zero and both Tr_{10} and Tr_{11} are cut-off, and no harm is done. In the other sense, Tr_{3} is cutoff, so effectively Tr_{4} has normal bias to keep $V_{\text {E4 }}=2.7 \mathrm{~V}$, but the effective emitter resistance is $R_{E 4} / 2$, or 1.045 to $1.16 \mathrm{k} \Omega$ and it passes 2.33 to 2.59 mA . The drop across $R_{C 4}$ is then 2.66 to 3.39 V . Therefore, $V_{B 10}$ can be 3.39 V below $+V_{C C}$. In the worst case with $V_{B E 10}=0.6 \mathrm{~V}, V_{E 10}$ must be 2.79 V below $+V_{C C}$ and the current in $R_{C 10}$ can be $2 \cdot 79 / 0 \cdot 146=6.25 \mathrm{~mA}$.

Let us assume that $T r_{11}$ saturates, so $V_{C E 11}=0.2 \mathrm{~V}$. Then with $V_{C C}=10.5 \mathrm{~V}$ the drop across $R_{C 11}$ must be
$10.5-0.2-2.79 \approx 7.5 \mathrm{~V}$
and the current in it may be only
$7.5 / 1.575=4.76 \mathrm{~mA}$.
This leaves a balance of

$$
6.25-4.76=1.49 \mathrm{~mA}
$$

for $I_{C 10}$. Now $V_{B E 11}$ will change but little and so the current in $R_{C 10}$ will not change much, so the difference

$$
1 \cdot 49-1 \cdot 16=0.33 \mathrm{~mA}
$$

must be $I_{B 11}$.
With $V_{C C}=13.5 \mathrm{~V}$, the drop across $R_{C 11}$ is 10.5 V , and the current in it can be 7.35 mA . This is greater than the 6.25 mA total in $R_{C_{10}}$ and so in this case T_{11} will not saturate. In either case, the conditions seem safe ones.

We have still to consider the possibilities of danger arising in the connections to the oscilloscope, the attenuator details and, of course, the switching waveform generator. Space prevents their discussion here, and these matters will be deferred to Part 4.

Announcements

For the fourteenth year a 27 -lecture evening course on colour television engineering is being held at the Polytechnic of North London, Holloway N.7, beginning on 4th October. Fee £6. a good fundamental knowledge of monochrome techniques is assumed.

A post-graduate evening course entitled Integrated Circuit Electronics (Application Techniques) is to be held at North East London Polytechnic commencing 2 ist October. Details from The Registrar, Faculty of Engineering, North East London Polytechnic, Longbridge Rd, Dagenham, Essex RM8 2AS. Fee $£ 5$.

The following weekly evening courses are to be held at Hendon College of Technology, The Burroughs, London N.W.4. Electronics for non-electrical engineers, 16 meetings commencing 12th October; the construction and operation of digital computers, 16 meetings commencing 13th October; and hi-fi sound reproduction, 9 meetings commencing llth October.

Two ten-evening courses entitled 'Basic Electronics' are to be held at Twickenham College of Technology, commencing 14th October this year and 13th January 1972. Fee $£ 10$ per course. Further details from Twickenham College of Technology, Egerton Road, Twickenham, Middx.

An evening course of eight lectures on microelectronic design techniques will be held at Enfield College of Technology, Queensway, Enfield, Middx. commencing 5th October. Fee £6.

The Plessey Company Ltd have acquired the instrument landing systems interests of Standard Telephones and Cables Ltd which will consolidate Plessey's activities in the navaids field.

Marconi International Marine Co. Ltd are to supply a complete v.h.f. radiotelephone network to link the ferries, pier offices and head office of the Caledonian Steam Packet Co. Lid of Gourock, Renfrewshire. The system comprises 18 Corvette 20 S v.h.f. radiotelephone transceivers and a 20 W v.h.f. base station.

Standard Telephones and Cables Ltd have been awarded orders by the British Post Office to the value of $£ 400,000$, for installation of eight TXE2 electronic telephone exchanges.
F.W.O. Bauch Ltd, 49 Theobald Street, Boreham Wood, Herts, announce that hiring facilities are now available for the ARP 2600 electronic music synthesizer. The rate is $£ 25$ per day including instruction which takes place on the Bauch premises.

FR Electronics, Wimborne, Dorset BH2 : 2BJ, have announced a marketing and technical collaboration agreement with Hathaway Instruments Inc., of Colorado, U.S.A.

International Audio Fair

Olympia, October 26th-30th

On this page is a list of product names which will be seen at the Audio Fair, and a list of the 20 lecture demonstrations arranged as last year but taking place in a specially built 'hi-fi theatre' on the second floor of the Empire Hall.

Wireless World will be sponsoring five events-four lectures and one recital of recorded music.

The lectures will be further explorations of ever-important questions relating to audio engineering, and may well help in establishing a more honest connection between engineering specifications and the listening experience.

The recital ($4 \mathrm{p} . \mathrm{m}$. on the Saturday) will consist of selected gramophone recordings played over a pair of small corner-horn loudspeakers based on a design published in Wireless World last year. The Fair is open from 10 a.m. to 9 p.m. each day.

Lecture demonstration programme

Tues. 26th Oct.
2 p.m. Acoustics of rooms by Roger Driscoll
4 p.m. Processing of gramophone records
by E. B. Pinniger
$6 \mathrm{p} . \mathrm{m}$. The musical value of synthesizers by Tristram Cary (W.W. presentation)
8 p.m. Live, recorded, dead or alive? by Adrian Hope

Wed. 27th Oct.
2 p.m. Producing classical recordings by Christopher Bishop
4 p.m. Tape troubles by H. W. Hellyer
6 p.m. The progress of sound reproduction
by Ralph West (W.W. presentation)
8 p.m. Women and Hi-Fi. (A bird's eye view 'brains trust'!)

Thurs. 28th Oct.
2 p.m. The development and practical use of dynamic and electrostatic headphones by Howard Souther
4 p.m. Loudspeakers-why the weakest link? by Arthur Bailey (W.W. presentation)
6 p.m. An eccentric look at the record repertoire
by Donald Aldous
8 p.m. Silence and music by R. Berkovitz

Fri. 29th Oct.
2 p.m. Multi-channel recording by Robert Auger
4 p.m. Record rejuvenating by A. C. Griffith
6 p.m. Design problems in audio amplifiers by J. L. Linsley Hood (W. W. presentation)
8 p.m. 'Feed-back chat'. (A 'brains trust')

Sat. 30th Oct.
2 p.m. Audio tape cassettes and cartridges by Walter Woyda
4 p.m. Recital of recorded music (W.W. presentation)

6 p.m. From all directions. Microphone problems discussed by R. H. Fisher

Readers who hope to attend one or more of the Wireless World presentations may care to send questions on the subjects to be explored. A selection of queries received will be put to each lecturer at the end of his discourse. Submissions should be brief, preferably broadly based, and addressed to The Editor, Wireless World, Dorset House, Stamford St., London S.E.1.

On the Wireless World stand at the Fair will be working demonstrations of audio equipment built to designs published in the journal. It is planned to interconnect the various items and provide a rank of good quality headphones for the use of visitors.

AKG
Agfa-Gevaert
Akai
Amstrad
Armstrong
Audio Technica
BSR MacDonald ,
Bang \& Olufsen
BASF
Bell \& Howell (AR)
Bib
Brahms/Medway
Bush (Arena)
Celestion
Connoisseur
Decca
Dynatron Radio
EMI
Emco
Enquiry Recorder Systems
Ferguson
Ferrograph
Garrard
Goldring
Goodmans
Grosvenor
Grundig
HMV
Hacker
Harman-Kardon
Heathkit
Howland-West
ITT/KB
KEF
Keletron
Kellar
Koss
Lansing
Leak
Luxor
MB Mikrofonbau
Marconiphone
Markovits
Metrosound
Musonic
National Panasonic
Nivico
Onkyo
Ortofon
Paddock Tidy Recorders
Philips
Pickering
Pioneer
Precision Tapes
Pye
Quad
R.C.A.

Reslosound
Revox
Rota
Rotel
SME
STE-MA
Sansui
Sanyo
Scotch
Sennheiser
Sharp
Shure
Sinclair
Sonotone
Sony
Stax
Tandberg
Tannoy
Telefunken
Thorens
Trio
Uher
Ultra
Unlimited Sound
Wharfedale
Wien

Field-sequential Colour Television Receiver

2-Circuit details

by T. J. Dennis, B.A.

The automatic phase control system used for synchronizing the rotation of the colour wheel is straightforward in operation. Its circuit is shown in Fig. 1. The design finally adopted is heavily dependent on the motor used and the torque it is required to produce; that shown here should be used only as a guide.

The prototype motor came from a piece of domestic equipment, and was intended for series operation from a.c. mains. Access to field and armature windings separately was obtained, and tests showed that the motor would produce adequate torque at $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. with 12 V on the field winding and 19 V on the armature, at 600 and 200 mA respectively. The control circuit ($T r_{6-11}$) was therefore designed to give the latter output voltage for an input at the base of $T r_{s}$ of 6 volts. Silicon diodes D_{5-7} are voltage droppers, giving a total drop of approx. 2 volts.

In operation either field sync or flyback pulses (negative going) trigger the emitter-coupled astable (1)*, consisting of $T r_{1}$ and $T r_{2}$, at 16.75 Hz . The emittercoupled variant was chosen as it enables large mark-space ratios to be obtained, and gives a current output which can be heavily loaded without affecting frequency.

The negative going output pulse of approx. 8 ms duration is fed to a phase splitter (6) consisting of $T r_{3}$ and $T r_{4}$. Complementary transistors are used to ensure that when the output is on 'sample' both are saturated, with the result that the pulses fed to the four-diode discriminator (7) through R_{13} and R_{14} are truly symmetrical. The negative edge of the pulse from Tr_{4} is also used elsewhere in the system.

The pick-up coil L_{1} (12) should consist of 500-1000 turns of 28 gauge enamelled wire wound on a U-shaped limb. Construction is not critical, provided a peakpeak output of at least 1 V is obtained. The actual magnitude (in fact $d V / d t$ on the edges) of the voltage affects the gain of the system, and therefore its transient response: excessive amplitude will cause hunting, while a low level will result in a weak and sloppy phase lock.

In operation, the output from L_{1} is taken in series with a variable d.c. from R_{22}

[^9]for speed control to emitter follower $\boldsymbol{T r}_{5}$, which provides a low impedance feed to the discriminator.

On receipt of the 8 ms gating pulses, all four diodes of the discriminator conduct, and by balanced bridge action a path exists between $T r_{5}$ emitter and $T r_{6}$ base. Over a small number of cycles, C_{8} charges to the potential of Tr $_{5}$ emitter, and preserves it-more or less-over the non-sampling period of 52 ms . This is because the input impedance of the next emitter follower,
$T r_{6}$, is very high (approx. $600 \mathrm{k} \Omega$ assuming $T r_{6}$ beta $=50$, which gives an 8% loss over 52 ms). A further emitter follower, Tr_{7}, reduces again loading effects on C_{8}.

Next come the voltage adjusting diodes, followed by a voltage amplifier with gain 2 , whose main purpose is to provide the working voltage for the motor armature plus the $V_{b e}$ drops of the three impedancereducing emitter followers, $\operatorname{Tr}_{9} 10 \& 11$. As Tr_{11} has to handle appreciable current, particularly on starting, a 2 N 3055 is used.

Fig. 1. Motor control system. Motor field winding is connected across 12V. $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \operatorname{Tr}_{4}$, $T r_{6}, T r_{7}, \operatorname{Tr}_{9}, Z T X 300 ; \operatorname{Tr}_{3}, Z T X 500 ; \operatorname{Tr}_{5}, T r_{8}, \operatorname{Tr}_{10}, 2 N 697 ; \operatorname{Tr}_{11}, 2 N 3055 ; D_{1}-D_{7}$ 1N914; D ${ }_{8}$, BY100.

Diode D_{8} is essential to suppress the negative voltage transients which will appear across the largely inductive armature at switch-off.

It should be pointed out that the above circuitry is suitable only for relatively small motors driving colour wheels of the simple type described last month. Once the diameter of the disc becomes much greater than, say, 15 inches, windage accounts for a considerable power loss, and a larger motor is required. The problem was overcome in the case of the writer's 23 in . wheel by the use of a d.c. shunt-wound motor, intended for 220 V at 0.5 A . This is supplied
with 300 V for its field, while the armature is fed from a typical variable seriesregulated feedback-stabilized high-voltage power supply. The lower limb of the voltage controlling potentiometer on this unit is replaced by a pentode valve whose grid is fed directly from Tr_{8} collector, Fig. 1. Adjustment of R_{22}, and the cathode resistor of the pentode enables a mean output of 160 volts to be obtained, which will run the motor at 2000 r.p.m. Coupling to the colour wheel shaft is effected by means of a $2: 1$ reduction belt drive.

The low level parts of the a.p.c. system are retained unchanged.

Fig. 2. Red gating pulse generator. $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, Z T X 300 ; D_{1}$, OA91.

Colour switching circuits

The gating pulses generator consists of three identical monostable multivibrators, the circuit of the first being shown in Fig. 2 (2R). On receipt of a negative edge from $T R_{4}$, Fig. 1, the circuit produces complementary pulses at its outputs, of width dependent on the time constant of $R_{6}+R_{1}$ and C_{2}. Variable resistor R_{6} is adjusted to obtain pulses of as near as possible 20 ms . Diode D_{1} is included to sharpen up the trailing edge of the negative going output from $T r_{2}$, which would otherwise be partially exponential as C_{2} would have to recharge, once Tr_{2} turns off after the quasi-stable period of 20 ms , through R_{5}. This task is now performed by R_{3}, D_{1} being immediately cut off by the positive excursion of Tr_{2} collector.

The trailing edge of the positive pulse from $T r_{1}$ collector is differentiated by C_{4} and used to trigger the following monostable, which in turn, on completion of its 20 ms pulse triggers the third, the resulting waveforms being as shown in Fig. 3. The next input edge then appears at $T r_{1}$ base, and the sequence is repeated.
Fig. 4 shows the circuit of one of the three gate units and the output circuitry.
The colour difference inputs come directly from the collectors of the first stage amplifiers of the May 1969 W.W. article, Fig. 1. These amplifiers are operated at full gain, independent gain control being provided at the gate inputs.
Emitter follower $T r_{1}$ is mounted on the decoder board with R_{19} on a small panel nearby, as are the other two colourdifference gain controls. Its main purpose is to isolate the matrixing stages. As the d.c. levels of the decoder outputs are rather high, 12 V zener diodes provide a suitable drop. The amplitude controlled input is a.c. coupled to emitter follower Tr_{2} which sets up the correct mean d.c. condition for the gate proper, $\operatorname{Tr}_{3}{ }_{\&}{ }_{4}$ and provides a lowimpedance source.
When the gate is closed, Tr_{3} base is forward biased through R_{8} from the relevant monostable, now in its stable state. The bias of approx 1 mA is suffi-

Fig. 3. Ideal monostable outputs.

Fig. 4. Colour gating circuitry (only $R-Y$ gate shown in full). $\operatorname{Tr}_{1}, T r_{2}, T r_{3}, T r_{4}, T r_{6}, Z T X 300 ; T r_{5}, T r_{7}, 2 N 697$.
cient to cause $T r_{3}$ to bottom, with its collector load of R_{7} fed from a 2.7 V source. The base of $T r_{4}$ is thus clamped at zero volts and the transistor is cut off. No signal can then reach the common load R_{9}. Once the monostable changes to its 20 ms quasi-stable state, Tr_{3} is cut off, and $T r_{4}$ behaves as a conventional series feedback amplifier, with collector load \boldsymbol{R}_{9} and theoretical gain 2.5 .
It should now be clear how the complete system operates: the $\operatorname{Tr}_{3} \mathrm{~s}$ are switched off in turn, enabling the required colour difference signal to appear at the output.

Theoretically there should be no change in the d.c. level at $T r_{5}$ emitter as colour changeover occurs, as the gate circuits are identical. However, some differences are unavoidable due to component tolerances. Small potentiometers of the order of 100 ohms can be included in the d.c. setting bias chains at the inputs, and adjusted for minimum pedestals on the output waveform with no signal input.

An effect which will almost certainly occur is that due to incorrect setting of the pulse width controls in the monostables. This results in a positive or negative pulse at $T r_{5}$ emitter according as the total period of the monostables is less than or greater than 60 ms . The pulse will occur between the completion of one colour sequence and the initiation of the next; its effect may be eliminated by ensuring that the period is slightly too long, when the negative pulse is inverted twice, by $T r_{6}$ and the valve chrominance output stage, to cause beam cutoff at the c.r.t. grid.

Long term stability of the monostables has proved sufficient for the application, provided a stabilized power supply is used; logic circuits to generate the gating pulses were considered, but rejected in favour of the simplicity of the above arrangement.

Fig. 5 shows the chrominance output circuit to drive the c.r.t. grid and is based on that of the June 1969 W.W. article, Fig. 1. The choice of valves is purely because they were to hand. An ECL84 or PCL84 could replace either.
The chief modification is in the facility for varying the clamping potential of the triode for brilliance control by means of R_{9}, this system has proved more efficient in operation than that described in the relevant $W . W$. article, and enables a conventional 'video amplifier' to be used in the luminance channel.

The luminance output stage is the original monochrome circuit with the addition of the luminance delay line. Fig. 6 shows the circuitry round the latter.
Transistor $T r_{1}$ is a phase splitter, with 1 k ? collector load to match the delay line impedance. Chrominance is taken from the emitter circuit, which includes a 4.43 MHz trap, L, C_{2}. Video is also taken from this point to the additional sync separator providing PAL switching pulses and timing for the burst gating pulse.

Losses in the unit are counteracted by inclusion of networks R_{4}, C_{3} and R_{11}, C_{6} which adjust the gains of the two amplifiers. D / C. restoration is provided at the video amplifier grid by C_{7}, R_{12} and D_{1}.

The circuit of Fig. 6 was inserted directly in the feed to the v.f. output stage of the monochrome receiver after the existing 6 MHz sound take-off coil.

Auxiliary sync separator

It is not feasible to use the existing receiver sync separator in place of what is to be described, since the pulses extracted therefrom carry the 600 ns delay imposed by the luminance delay line.

Fig. 7 shows the complete burst-gating pulse generator, used to operate a fourdiode bridge placed in series with C_{7} and Tr_{3} base of Fig. 2, W.W. April 1969. P_{3} is then connected to a decoupled potential divider at approx 4 volts. Capacitor C_{9} is then connected to the C_{7} side of the bridge.

Referring to Fig. 7, Tr_{1} is an inverting amplifier feeding the sync separator proper, $T r_{2}$ \& ${ }_{3}$. Transistors $T r_{4}$ and $T r_{5}$ constitute a monostable giving a pulse (of width sufficient to encompass the colour burst) triggered from the trailing edge of the line sync pulse. This pulse is amplified to 15 V , and phase inverted twice to provide gating current for the burst gating bridge.

The negative pulse at $T r_{9}$ emitter is also used for triggering the PAL bistable in the decoder, and gating out the burst at D_{1} of Fig. 1, W.W., May 1969.

Power supplies

For simplicity it was decided to operate all solid-state sections of the system from rail voltages of 12 and 24 V , deriving all other levels from these as required.

Fig. 5. Colour difference output stage. The +80 V line pulse can be obtained from a winding of about six turns of p.v.c. insulated wire on the line output transformer. * C_{7} should be adjusted for optimum frequency response.

Fig. 6. Luminance delay line. $\operatorname{Tr}_{1}, Z T X 300 ; \operatorname{Tr}_{2}, 2 N 697 ; D_{1}, 1 N 914$.

Fig. 7. A uxiliary sync separator and burst gating pulse generator. $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \operatorname{Tr}_{4}, \operatorname{Tr}_{5}, \operatorname{Tr}_{8}, Z T X 300 ; \operatorname{Tr}_{3}, \operatorname{Tr}_{6}, Z T X 500 ; \operatorname{Tr}_{7}, 2 N 697 ; \operatorname{Tr}_{9}$, MM1614; D1, IN914; D ${ }_{2}$, OA91.

The basic voltages came from two $12-\mathrm{V}$ series stabilizers, in series and fed from isolated windings on one transformer.

Fig. 8 shows the circuit, based on a Ferranti 'E-line' transistors application report, of one of the supplies; it is conventional in form, the output voltage sets itself to that defined by the zener voltage plus the $0.7 \mathrm{VV}_{b e}$ of $T r_{1}$.

Transistor Tr_{5} is a crude, but adequate, current limiter operating at approx 2.1 A ; i.e., that current required to drop 0.7 V across 0.33 ohm. The 2 N 3055 (Tr_{4}) must be mounted on a suitable heat sink.

The +15 V supply for the decoder is derived from the +24 V rail by a third series stabilizer, identical to that of Fig. 8, but with the omission of $\operatorname{Tr}_{4}, \operatorname{Tr}_{5}$ and $R_{4} . Z D_{1}$ (now a 15 V specimen) and the load are connected to the emitter of Tr_{3}.

The +20 V supply for the decoder was obtained from a single 20 V zener fed via a 470Ω resistor from +24 V .

The -20 V necessary for the colour difference amplifiers and other parts of the decoder circuit presented some problems, however. The rather complex solution of Fig. 9 was finally adopted. It consists of an astable multivibrator running freely somewhere below line frequency, its complementary outputs being buffered by two emitter followers, $T r_{3}$ and $T r_{4}$ from a pair of peak rectifying circuits, D_{5-8}. The circuit provides a no-load output of 24 V , the internal impedance being set by the 560Ω emitter loads of $T r_{3}$ and $T r_{4}$. No physical zener series resistance is therefore provided for $Z D_{1}$, which stabilizes the output at -20 V : the demanded current is approx 3 mA .

Setting-up

The basic assumptions made here for setting-up are that the constructor has access to a double-beam oscilloscope and a reliable source of colour difference signals, as well as line flyback, composite video and field sync.
(1). The master astable, $T r_{1}$ and $T r_{2}$ of

Fig. 8. 12V stabilized power supply. $\operatorname{Tr}_{1}, \operatorname{Tr}_{5}, Z T X 300 ; \operatorname{Tr}_{2}, T r_{3}, 2 N 697 ; T r_{4}, 2 N 3055$.

Fig. 9. -20 V power supply. $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, Z T X 300 ; \operatorname{Tr}_{3}, \operatorname{Tr}_{4}, 2 N 697 ; D_{1-8}$, OA91.

Fig. 1 must be set to divide by three the incoming 50 Hz field frequency. Operation in a division mode depends on the amplitude of the sync pulse used, and this should be adjusted experimentally to obtain the maximum range on R_{21} within which the division ratio is maintained. The input pulses must also be entirely free from line frequency transients, which will seriously impede synchronization.

The best method is to take the separated field sync pulse from the monochrome set used through a simple $R C$ low-pass filter to a limiting amplifier, thence (negative going) to the astable.
(2). Check that Tr_{3} and Tr_{4} produce positive- and negative-going $8 \mathrm{~ms} \quad 12 \mathrm{~V}$ pulses respectively at their collectors, and that both transistors remain saturated during the pulse period.
(3). With R_{22} set to give 6 V at $T r_{5}$ base, check the voltage at $T r_{7}$ emitter, where it should be approx 3.9 V . Also check that this voltage varies with variation of the setting of R_{22}.
(4). Having previously tested the motor under operating conditions for the voltages required for running at 1000 r.p.m., make suitable variations in R_{17} and R_{8}, and the presence or absence of D_{5-7} to obtain the required armature voltage at Tr_{11} emitter. Note 1. A rheostat can also be included in series with the field winding if necessary, but remember that a reduction in field current, while increasing the speed of an ideal shunt wound motor, also increases the armature current proportionately. Torque remains constant.
Note 2. The velocity of the motor can best be determined by making use of the waveform from L_{1}. Trigger the oscilloscope from the $16 \frac{2}{3} \mathrm{~Hz}$ pulses from the master astable (itself running correctly) and display them on one trace. The second trace carries the coil waveform which is visually compared in period and phase with the 60 ms of the timing trace.
(5). With L_{1} disconnected and R_{22} slider (Fig. 1) connected directly to Tr_{5} base, adjust R_{22} until the motor runs as nearly as possible in synchronism (using the method of Note 2.). L_{1} should then be brought into circuit, when the motor phase should move to a locked position after a few damped oscillations. If oscillations continue experiment with the gain of the control circuit, and the value of C_{8}. A convenient means of reducing the effective gain is to move the pickup coil away from the rotating magnet.
(6). The angular position of the magnet relative to the coil must be adjusted to ensure that the correct coloured filter is moving past the c.r.t. at the correct time. A rough positional guide is to place the bar magnet so that one of its ends points to an angular position on the wheel just ahead of the commencement of the first colour in the sequence, which in the prototype is the red. See also step 13.
(7). Adjustment of monostable periods. With one trace of the oscilloscope displaying at least three field flyback or sync pulses, and the other the quasi-stable period of the first monostable, trigger the 'scope on the $16{ }_{3}^{2} \mathrm{~Hz}$ pulses.

Adjust R_{6}, Fig. 2, until the pulse period of the monostable is equal to that between two field sync pulses.

Check that the second monostable is being triggered reliably by the trailing edge of the first, and repeat the adjustment for width. If triggering is unreliable or absent, increase the value of C_{4} to 560 pF .

The 'scope should then be reconnected to display the first monostable output on trace (1) and the third on trace (2). Trigger from the trailing edge of the first monostable output. Adjust the period of the third monostable so that it overlaps with the beginaing of the next sequence by an amount not greater than the field blanking period of the incoming video. This ensures that there is no interference with the picture between sequences.
(8). With the decoder switched on, and the transmitter carrying colour bars, check that the waveforms at the emitters of the Tr_{2} 's transistors (Fig. 4) for $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{G}-\mathrm{Y}$ are as they should be, and not distorted or clipped, up to full settings of the saturation control on the decoder, and \boldsymbol{R}_{19}.

During this test, the free ends of the $R_{8} \mathrm{~s}$ should be taken to +12 V to ensure that all gates are cut off.
(9). Connect the $R_{8} \mathrm{~s}$ of the three colour gates to the relevant monostable outputs and with the $R_{19} \mathrm{~s}$ at minimum, check the waveform at $T r_{5}$ emitter for pedestals as colour change-over occurs; this is apart from the negative pulse which will be obtained between sequences if the monostables have been set up as above. If marked pedestals are obtained, suitable adjustments should be made to the bias chains at the Tr_{2} bases. (10). With the $R_{19} \mathrm{~s}$ at full gain and a moderate saturation adjustment, the 'scope being triggered from a line frequency source, check the waveform at Tr_{7} emitter, where all three colour difference signals should be visible simultaneously, with a marked flicker.
(11). With the input to C_{1}, Fig. 5, disconnected, check the operation of R, as a brilliance control with +80 V line-flyback clamping pulses on V_{2} grid.
(12). Check the operation of the luminance delay line circuit, Fig. 6, and that the video waveform is not clipped by $T r_{1}$ or $T r_{2}$ when contrast is high. With the 'scope input on d.c., check that the waveform is being d.c. restored correctly by D_{1}.
(13). Connect C_{1} of Fig. 5 to Tr_{7} emitter, Fig. 4, when coloured areas of the picture will flicker with an intensity proportional to their saturation. View the picture through the locked colour wheel, when if colours are incorrect (e.g., blue faces), re-check step 6 and reverse the connections to the pickup coil. Once the wheel is in roughly the correct phase, make fine adjustments of the relative angular positions of magnet and coil. The direction of movement necessary will become apparent through experience or common sense.
(14). With the decoder saturation control set to give a reasonable signal output, preferably with colour bars, adjust the $R_{19} \mathrm{~s}$ of Fig. 4 to obtain colours which 'look' right. These adjustments are uncritical and straightforward.

It is best to have the saturation control high and the $R_{1 y} \mathrm{~s}$ low rather than viceversa, as this arrangement ensures a good s / n ratio in the displayed colour picture. (15). If the circuit of Fig. 7 is incorporated in the decoder, the operation of the sync separator, $T r_{2}$ and $T r_{3}$, should be checked to ensure that line pulse output continues independently of picture content. Trouble will occur if $T r_{1}$ clips the incoming waveform on highlights, with the result that burst gating pulses are lost.

The gain of $T r_{1}$ has to be a compromise, in that it must provide adequate gain for clean sync separation on low contrast settings, but must not clip when contrast is high.
(16). The only problem likely to be encountered in setting-up the power supplies is with Fig. 9. Astables of this type sometimes fail to start oscillating on switch-on, since a stable state exists with both transistors saturated. This effect was encountered when the prototype was powered from two $12-\mathrm{V}$ car batteries, the astable being started then by shorting one of the bases of $T r_{1}$ or $T r_{2}$ to earth. The effect does not occur with the mains power supplies of Fig. 8.

Conclusions

These articles have been written to present sufficient information on a field sequential colour TV system built by the writer to enable interested readers to do the same.

Although quite a considerable amount of circuitry is involved, none of it is particularly critical in design or construction, and is no doubt amenable to criticism, modification and improvement.

The only specialized electronic components required are the two delay lines, and the 4.43 MHz crystal for the decoder.

The filters were purchased as $21 \times 49 \times$ 0.01 in sheets (smaller areas are available) from Rank Strand Electric, Ltd., of 250 Kennington Lane, London, S.E.11, and are their "Cinemoid" stage lighting filters, numbers 6,20 and 39 , primary red, green and blue. This size cost 63 p per sheet.

Perspex sheet is obtainable from any good builders' merchant, and can sometimes be cut to shape on request. Suitable motors were, in the author's case retrieved from the yard of a local scrap dealer.

The basic monochrome receiver used was a home-built affair, which, however, contains commercial u.h.f. tuner and i.f. plus sound and vision output units.

It is suggested that the monochrome receiver be used initially with its existing c.r.t., and a simple colour wheel, to gain experience of the behaviour of the system, before the necessary tube replacement and remounting is carried out for a larger spiral wheel. Suitable small 110° tubes are the A28-14W, giving an 11 in picture, or any portable set tube. These will take the existing scan coils without modification, although width, and e.h.t. may need adjustment.

Thanks are due to the Department of Electrical Engineering Science at the University of Essex, particularly Dr. J. A. Turner.

Electronic Building Bricks

16. The Quantizer

by James Franklin

Signals originating from analogue transducers-such as a television camera or an electrical strain gauge-sometimes have to be converted, for information processing purposes, into digital form. This means that the successive values of the signal become represented by numbers (Part 4), which might be decimal, binary or based on any other radix. We have already met the idea of considering a signal as a sequence of separate values (Part 2) and the use of this concept for measuring information (Part 15).

Now a practical requirement of an analogue-to-digital converter is that it needs a certain amount of time to produce each number. Electronically each number is represented by a pattern, either in time (e.g. a sequence of pulses), or in space (e.g. an array of on/off states of electronic switches), and some interval of time, however small, is necessary to enable each pattern to be formed and distinguished from those preceding and following it. Clearly such a converter cannot operate directly on an analogue signal, which is a continuously varying quantity (i.e. has infinitely small time intervals between successive values). The best that can be done, to keep the digital representation as close as possible to a continuously varying quantity, is to convert values of the signa to numbers at a very high rate - say a million conversions per second. In practice we use the rate necessary for the job.

Fig. 1. Showing how a signal can be examined at regular intervals of time (indicated by dots on graph) or regular intervals of the variable which constitutes the signal.

Fig. 2. Quantization by sampling, using an electronic gate (a) which is opened and closed to the signal by short duration pulses. The resulting output waveform is shown by the thick line in (b).

(a)

(b)

Fig. 3. Quantization by the 'sample-and-hold' method. The 'sampler' in (a) is an electronic gate as in Fig. 2. The resulting output (b) is a series of steps roughly following the original signal.

What this is depends on the accuracy of digital representation of the signal we need for a particular application. Any clock using an escapement mechanism does not indicate time continuously but it is near enough to continuous for most human purposes.

Thus the continuously varying signal must be examined at intervals. This examination could be at regular intervals of time or at regular intervals of value, e.g. voltage, of the signal (in which case the time intervals will be irregular). Both methods are illustrated in Fig. 1. This general process is known as quantization, because what was originally continuously varying is now represented as a series of discrete quantities, or quanta.

Two methods of achieving quantization of a signal are shown in Figs. 2 and 3. In Fig. 2(a) the signal is passed through an electronic 'gate' which is opened for short periods by regularly occurring pulses (from an electronic 'clock' or oscillator). What emerges from the gate, shown in (b), is a train of pulses of different amplitudesthin 'slices' or 'samples' of the original signal. These samples may be usable as such in information processing equipment even though the tops of the pulses are sloping. If not--perhaps because the samples are of too short duration-the method shown in Fig. 3(a) may be used. Here the signal waveform is sampled as before but the initial value of each sample is stored* until the next sample is taken. Thus the information available from the store is in the form of a series of steps roughly following the graph of the original analogue signal, as can be seen in (b). This is known as the 'sample-and-hold' method.
How accurately the quanta--the samples in Fig. 2 or the steps in Fig. 3-follow the original signal graph depends on the fineness of quantization, that is, the time intervals or value intervals between samples. We have already discussed this idea in terms of the number of levels required for measuring the information in a signal in bits (Part 15). Generally speaking it is more difficult and costly to sample rapidly than to sample slowly, so engineers use the slowest rate of sampling that will define the signal to the accuracy they need for a particular purpose. To obtain the maximum possible accuracy of signal definition the sampling rate required is given by a simple formula based on mathematical analysis ${ }^{\dagger}$ of the shape of the signal graph.

One example of the use of quantizers is in an advanced type of telephone trunk transmission system now being intro duced in various parts of the world. This is called pulse code modulation and it requires that the voice signals be quantized to enable them to be coded into digital form.

- e.g. as charge in a capacitor
\dagger Fourier analysis of the signal into component sinewaves. For full accuracy of definition the sampling rate must be at least twice that of the highest frequency sinewave that is a component of the signal.

Elements of Linear Microcircuits

12: Television receivers

by T. D. Towers*, м.B.E.

In the 1960s transistors ousted valves from most circuit positions in domestic television receivers and now we are seeing linear microcircuits in their turn displacing transistors.

Although the U.S.A. has led the world in development of military and industrial i.cs, Western Europe has led in consumer i.cs (at least in monolithics, since in hybrids Japan has forged ahead). In Europe the main stream of i.c. development for television receivers has come from Western Germany with devices from Valvo (Philips), Siemens, Telefunken, and Intermetall (I.T.T.). Plessey in the U.K., S.G.S. in Italy and Secosem in France have also entered the field, while across the Atlantic Motorola, R.C.A., Texas Instruments and Fairchild are active.

To date the different semiconductor manufacturers have tended to adopt different approaches to partitioning the television receiver for linear i.c. substitution. As a result, second source supplies are not usually available to the set maker.

Good receiver partitioning aims at using the advantages of monolithic techniques up to a point where the replacement cost of any microcircuit is not prohibitive. A single microcircuit covering all the electronics of the receiver is possible but economically prohibitive. It looks as if the number of microcircuits in a receiver will ultimately settle at between four and eight.

Until now linear i.cs have been most widely used in the sound channel, the post-video-detector signal processing, and the colour decoder. Limited frequency, voltage and power handling capabilities have restricted their applications in other areas. Your understanding of the problems of the change-over to i.cs might well be helped by a study of my book 'Transistor Television Receivers' (Iliffe Books, 1963).

Sound channel

A natural development of the early op-amp linear i.c. was an amplifier microcircuit which gave the typical 66 dB voltage gain needed in an f.m. intercarrier sound i.f. strip (200 kHz bandwidth round

[^10]6 MHz). The Mullard TAA350, with four current-driven, balanced, long-tail pairs giving efficient limiting and high a.m. rejection, was an example of this.

Fig. 1 (a) is a practical circuit (from the Pye 691 single-standard 625 -line colour chassis) using the TAA350. The input is from an AAll9 intercarrier sound detector via two 6 MHz tuned circuits. Output is via an OA90 sound detector to a volume control and an a.f. amplifier.
It is relatively easy to integrate a detector stage into a monolithic amplifier, and we find many commercial examples of
this such as the Mullard TAA380, Plessey SL432A and Telefunken TAA930. All the basic f.m. detector types (discriminator, ratio, quadrature, differential peak, pulse counting and phase locked loop) have been tried. Anyone interested in the merits (or demerits) of the different detector systems should consult ' A Comparison of Integrated-circuit Television Sound Systems by L. Blaser and D. Long in I.E.E.E. Transactions on Broadcast and Television Receivers, Feb., 1971, Vol. BTR-17, No. 1, pp. 35-43.
The long-tail pair makes it simple to

Fig. 1. Typical sound channel microcircuits. (a) Connections used with the Mullard TAA350 amplifier-limiter; (b) use of the TAA570 with integral detector.
vary voltage gain by varying the d.c. bias voltage on the base of one of the transistors of the pair, and we find a group of amplifier-limiter-detector i.cs with a d.c. volume control facility that enables the volume control potentiometer to be located some distance from the microcircuit. Typical of this type of i.c. are the Mullard TAA450 and TAA570 (Plessey pin-compatible SAA570), Siemens TBA 120, and SGS TBA261. Fig. 1 (b) shows how the TAA570 has been used in the Pye 169/769 monochrome (625-line only) television chassis. Sound i.f. input comes via two 6 MHz tuned circuits from the video detector, detection is by a single-tuned quadrature detector, and the audio output drives a two-stage valve amplifier. (The remote d.c. volume control available at pin 4 of the TAA570 has not been used in this case.)

Extra transistors are easy to fabricate in monoliths, so that the next development was to add an audio pre-amplifier stage to the limiter amplifier. This extra stage you will find in the Mullard TAA640, TAA 750 and TBA480, and in the RCA3065.

Two audio stages (a pre-amplifier and driver) appear in such amplifier-limiter microcircuits as the SGS TBA581 (to drive class AB complementary transistor power output stages) and TBA591 (for class A transistor or valve output).

All the intercarrier sound i.cs described above require some form of external audio amplifier to complete the drive to the loudspeaker. These outboard audio amplifiers are still usually discrete transistor or valve designs, but microcircuit versions are available.

Monolithic audio amplifiers up to 3 W output are now fairly common. Typical
examples are the Telefunken TAA900 (2W) and SGS TAA621 (3W). By suitable heat-sinking, conventional monolithic designs can be pushed up to 5 W , and we are already seeing new designs (e.g. from Sony) capable of 20 W r.m.s. output.

Thick film add-on audio power amplifiers from 3-50W output are now produced by many Japanese firms such as Mitsubishi, N.E.C., Sanken, Sanyo and Toshiba, and will compete strongly with monoliths.
One interesting development that seems to point the way to the final solution to integrating into a single package the whole intercarrier sound channel is the SGS monolith TBA631, which combines the functions of limiter-amplifier, detector and 3 W audio amplifier into a single chip with an integral heatsink.

Jungle chips

The post-video-detector circuitry of the television receiver has received much attention from i.c. manufacturers. It has been found possible to integrate in one chip the following video signal processing functions: video pre-amplification, keyed a.g.c. detection, a.g.c. amplification for both tuner and vision i.f. control, noise cancellation for a.g.c. and sync. circuits, sync. separation, automatic horizontal sync. and, finally, vertical sync. pulse separation. This video signal processing i.c. is variously known as the 'signal processing circuit' or, affectionately and obviously, as the 'jungle chip'.

The best known example is the Mullard TAA700 (now superseded by the

Fig. 2. Combined sound/vision i.f. microcircuit type CA3068.
set out in detail here but Mullard can supply data to prospective users.

The TAA700 is designed for TV receivers equipped with transistors or valves in the deflection and video output stages, with n-p-n transistors in the tuner and i.f. amplifier, and with negative modulation. It works on a nominal 12 V d.c. supply rail.

Sound/vision i.f.

Sound/vision i.fs present special problems in applying i.cs because the first i.f. stage must have a.g.c., and the requirement for many tuned bandpass and rejector circuits has tended to give the monolithic i.c., for sound/vision i.f. only applications, no advantage over discrete transistor assemblits. Away back in 1967 Fairchild brought out the $\mu \mathrm{A} 717$ for just such a purpose, but it was never widely adopted at least on this side of the Atlantic.

An i.c. combining the sound /vision i.f. amplifier with some later stages of the receiver can, however, make integration an economic proposition. One interesting example of this is the RCA CA3068 shown in section block diagram in Fig. 2.

The CA3068 provides a high gain (75 dB typical) $\backslash 45 \mathrm{MHz}$ wideband i.f. amplifier with 50 dB a.g.c., a video detector, a 12 dB video pre-amp., an impulse noise limiter, keyed a.g.c. with noise immunity, delayed a.g.c. for the tuner, buffered automatic fine tuning for varicap tuner control, separate sound i.f. amplification, sound carrier detector, 4.5 MHz sound intercarrier pre-amplifier and isolated zener reference diode for regulated voltage supply. The connection diagram of Fig. 2 illustrates the simplicity of use of this i.c., particularly when the needs of the serviceman are remembered.

Another interesting approach to sound/vision i.f. microcircuitry was described in 'A Thick-film Television Video I.F. Amplifier Using Compatible Components' by R. Weber and J. Prabhakar in I.E.E.E. Transactions on Broadcast and Television Receivers, Nov. 1967, Vol.BTR13, No.3, pp.7-12. In this, thick film techniques were used with printed capacitors and surface mounted toroidal coils, both capacitors and coils being adjustable on test by abrasive (powder jet blast) techniques. While this approach has not been widely adopted, it has attractions because it can produce a pre-aligned plug-in i.c. requiring no adjustment by the set maker or serviceman.

Tuner

The frequencies (up to 900 MHz) handled by the tuner are well beyond current monolithic i.c. capabilities. Hybrid (thick or thin film) techniques show some promise as explained in 'The New Thick-film Hybrid Integrated Circuit Module for V.H.F. Television Tuners² by K. Williams in I.E.E.E. Transactions on Broadcast and Television Receivers, July, 1968, Vol. BTR-14, No. 2, pp. 111-115. Plugged into the appropriate passive tuning networks, the resultant i.c. provides

Fig. 3. Using the Mullard TBA500 series in colour receivers. (a) Colour difference arrangement; (b) RGB drive.
all the active circuitry for a v.h.f. tuner which is competitive with discrete device assemblies on the score of both performance and cost.

Most new European television receivers are now varicap-tuned, and although it has not been possible to produce a commercially viable tuner i.c., several firms have produced a self-contained voltage regulator i.c. to provide the very stable 30 V or so required for varicap tuning. Typical of these is the Mullard TAA550 and Telefunken TBA940.

Colour television receivers

Some of the microcircuits described earlier, such as the tuner-varicap regulated supply, the sound /vision i.f., the sound channel, and the video processing jungle i.c., can be used in monochrome or colour sets. But a special breed of microcircuits has also been developed for colour signal processing.

There are several different approaches to the problem of handling colour signals with i.cs. The Mullard set of i.cs consists of the TBA500 video combination, TBA510 chrominance combination, TBA520 (TBA990) colour demodulator, TBA530 RGB matrix and TBA540 colour subcarrier combination. Space prevents a full description here of the internal circuitry and design problems of this family which is constantly being updated. However, for conventional colour difference drive to the c.r.t. grids, a practical system uses four of the i.cs . . . the TBA 500,510520 and $540 \ldots$ as shown in Fig. 3(a). Essentially, the luminance (Y) input to the TBA500 (which could come from the TAA700 described earlier) is amplified, delayed and
fed into the Y amplifier to drive the c.r.t. cathodes. The TBA5 50 takes the chrominance input, centred about $4.43 \mathrm{MHz}_{\text {, }}$ separates off the chrominance ($\mathrm{R}-\mathrm{Y}$. B-Y) information and feeds it via a 64 s glass delay line to the colour synchronous demodulator, TBA520. At the same time it isolates the 4.43 MHz colour subcarrier information and feeds it to the TBA540 where it controls the 4.43 MHz crystal carrier reinsertion local oscillator to produce a correct phase and frequency output to feed the synchronous demodulator TBA520, also taking into account the

PAL phase reversal on alternate lines. In the TBA520, the demodulated $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ inputs are combined (matrixed) to give a $G-Y$ signal. The three colour-difference signals are then fed through separate discrete-component amplifiers to the c.r.t. grids.

Where an RGB drive to the separate c.r.t. cathodes is desired, the fifth i.c. of the set, the TBA530 is interposed between the luminance and colour-difference outputs on the one hand and the c.r.t. RGB drive amplifiers on the other as shown in Fig. 3(b).

Fig. 4. Six thick film hybrid microcircuits from Sanyo provide most of the circuitry for this 17 in receiver.

Interesting alternative approaches to colour signal processing can be found in 'Integrated M.T.O.S. Circuits for Colour TV Applications' by M. M. Mitchell and W. Sheets in I.E.E.E. Transactions on Broadcast and Television Receivers, July, 1968, Vol. BTR-14, No. 2, pp. 28-33, and in 'Colour Command-A Digital Method for Extracting the Colour Information from the N.T.S.C. Signal' by R. Weber and T. T. Fu in the same journal, July 1968, Vol. BTR-14, No. 2, pp. 52-57.

Going back to Fig. 3, it will be seen that the drive circuits to the c.r.t. are discrete component, transistor or valve. Thick film hybrids are now available to replace these, as for example in the 'Accucircuit' plug-in microcircuits produced by RCA.

Future of i.cs in television receivers

Monolithic i.cs predominate in the microcircuits for TV receivers described so far, but thick-film hybrids are beginning to offer strong competition. Fig. 4 shows in block form the use of six thick-film i.cs
which provide most of the circuitry for a 17in v.h.f. receiver designed by Tokyo Sanyo Ltd. Using an insulated-metal-substrate, Sanyo can meet the high voltage and power requirements of output stages without separate amplifiers. As a result, the count of 25 transistors, 246 other parts and 553 solder joints for conventional discrete assembly is reduced to 6 i.cs, 58 other parts and 198 solder joints. For fuller discussion, you should consult 'Development of All-i.c. 17 in Black-and-white Line-operated TV Receiver' by Sadao Kondo, et. al. in I.E.E.E. Transactions on Broadcast and Television Receivers, May, 1971, Vol. BTR-17, No. 2, pp. 98-104.
The shape of things to come can also be seen in the Matsushita (Panasonic) pocket-size receiver using eight thick film hybrids providing the functions sound i.f. and detector, audio and a.g.c., vision i.f., video detector and amplifier, sync. separator and a.f.c., vertical deflection, horizontal deflection and power supply filtering.

Finally we can expect to see a mixing of i.c. technologies as foreshadowed in a colour TV design developed at the Kansai Electronic Industry Development Centre in Japan and organized by five TV manufacturers, seven component producers, four universities and two institutes in the Osaka area. While the design uses a discrete u.h.f. tuner, the v.h.f. tuner uses a thin film r.f. amplifier and a monolithic mixer/oscillator. The 3 W audio amplifier is monolithic, as are the vertical and horizontal oscillators. In the colour section, thick film is used for the chrominance bandpass amplifier, the chrominance demodulators, the matrix pre-amplifier and the subcarrier reactance oscillator, with monolithics for the colour killer, and colour burst amplifier. Both thick and thin film are used in the colour phase detector circuit.

Development is now so rapid that a pundit in the U.S.A. has been quoted as going on record that in five years time 75% of the circuitry of the televison set will be integrated in only three i.cs.

Personalities

Professor J. F. Coales, O.B.E., M.A., appointed president of the I.E.E. for $1971 / 2$, is professor of engineering, Cambridge University, where he has been in charge of post-graduate studies in control engineering since 1952. Professor Coales, who is 64 and a graduate of Sidney Sussex College, Cambridge, held various appointments in the Admiralty Department of Scientific Research and Experiment from 1929 until 1940 when he took charge of the development of naval gunnery radar. Six years later he became research director of Elliott Brothers Ltd where he stayed until his academic appointment at Cambridge.
R. H. Barker, Ph.D., F.I.E.E., deputy director of the Royal Armament Research and Development Establishment, is the 1971/2 chairman of the Control and Automation Division of the I.E.E. Dr. Barker, a physics graduate of University of Hull, joined Standard Telephones and Cables as a physicist in 1938 and from 1941 to 1954 worked at the Signals Experimental Establishment (later the Signals Research and Development Establishment). He was made assistant director, Ministry of Supply, with responsibilities for airborne radar, navigational aids, maritime devices and air communications in 1954. Three years later he became superintendent of research at the

Signals Research and Development Establishment and in 1959 was appointed deputy director of the Central Electricity Research Laboratory. Dr. Barker was tec hnical director of R. B. Pullin \& Company from 1962 until his appointment to his present position in 1965.

Peter E. Trier, M.A., M.I.E.R.E., director of Mullard Ltd, is the new chairman of the Electronics Division of the I.E.E. Mr. Trier, who is 52, graduated at Trinity Hall, Cambridge, and was on the staff of the Admiralty Signal and Research Establishment from 1941 until he joined the Mullard Research Laboratories in 1950. He became manager of the laboratories in 1953 and a director in 1957. His inaugural lecture, on October 20 th , is on computeraided design in electronics.
R. M. Hill, Ph.D., F. Inst. P., who was at one time head of the Electronics Department at the Electrical Research Association, Leatherhead, and is now reader in physics at Chelsea College of Science and Technology, is to supervise an investigation being undertaken at the College on conduction mechanisms in thick films. The work, for which a grant of $£ 18,000$ (renewable annually over three years) has been made, is being carried out on behalf of the Ministry of Defence (Aviation

Supply). Dr. Hill, who is 38 and a graduate of the Royal College of Science and Technology, Glasgow, spent three years in Australia in the Commonwealth Scientific and Industrial Research Organisation and a further year as research fellow in the Clarendon Laboratory, Oxford, before joining the E.R.A. Electronics Department in 1962 as deputy head.
G. W. Mackenzie, M.I.E.R.E., has become chief engineer, B.B.C. Regions, in succession to J. D. MacEwan, B.Sc., F.I.E.E., M.I.E.R.E., A.Inst.P., who was recently appointed chief engineer, radio broadcasting. Mr Mackenzie joined the B.B.C. in 1941 and from 1954 until 1969 was on the staff of the Engineering Training Centre, latterly as head of technical operations section. Since September 1969, he has been in Northern Ireland, first as head of engineering and later head of programme services and engineering.

William A. Kinsman, F.I.E.E., is appointed managing director, Thorn Radio Valves \& Tubes Ltd, and Thorn Colour Tubes \cdot Ltd. Until recently Mr. Kinsman was managing director of the Pressed Glass Division, Pilkington Brothers Ltd. At his own request, C. C. McCallum, who is 61, has relinquished the post of chief executive of both companies and will be retiring from full-time activities at the end of March 1972. After that, he will continue to serve on the boards in a part-time capacity. J. C. King, F.I.E.R.E., and G. P. Thwaites, B.Sc., F.I.E.E., F.I.E.R.E., have
been appointed to the board of Thorn Radio Valves \& Tubes Ltd., and Mr King, who has been engineering manager (products development), assumes the responsibility of general manager.
Arthur E. Crump, who has contributed several articles to W.W., and A. G. Witts, B.Sc., have formed Custom Electronics (Poole) Ltd whose first product is a logic probe which can also be used as an analogue comparator and spike detector. Mr. Crump, who is managing director, was instrumentation manager at CETA Electronics and formerly principal engineer on remote control systems at Plessey Automation. Mr. Witts was also at CETA where he was responsible for design and production engineering, and previously was in the research laboratory of Plessey Automation.
E. Marland, F.I.E.E., has joined Dubilier Ltd as managing director in succession to J. H. Cotton, M.B.E., who has retired after over 40 years with the company. Mr. Marland was previously managing director A. H. Hunt (Capacitors) Ltd and a director of Erie Technological Products Ltd. The company has also announced the appointment of B. V. Sargent to the board as marketing director. He joined the company 14 months ago as marketing manager having previously held executive positions with Electrosil, M.E.C. and Plessey. The other members of the board, of which S. Soames became chairman earlier in the year on the retirement of F. J. Hurn, are R. Davidson, B.Sc., M.I.E.E., chief engineer and technical director, and G. W. Wilks.

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recording system can be measured on a single, inexpensive instrume7t. The Ferrograph RTS1 Recorder Test Set.

Consisting of 4 basic sections-variable frequency audio generator, millivoltmeter with associated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network-this instrument will measure frequency response, distortion, crosstalk, erasure, input sensitivity, output power and signal/noise ratio.

Completely solid state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of 100-120, 200-250 volts at 50 or 60 hz .

It is developed specially for those people who have to operate, maintain or service all types of tape recorders, sound-on-film equipment and aucio apparatus.

The Ferrograph RTS1

Made to stand the test.

Why not write for further details?

FERROGRAPH SOUNDS GOOD

EEV is still producing

 EEVis still developing EEV is still selling
$3^{\prime \prime}$ and $44^{11^{\circ}}$ types are available now at competitive prices and on quick delivery.

P. \& O. Lines provide top-grode artistes to entertain passengers in their luxury cruise liners. Now P. \& O. have selected the Shure Vocal Master Sound System to enable the passengers to enjoy every nuance of the performances to the full.
The Shure Vacal Master Vocal

Projection System provides studio quafity sound reproduttion at sea or on land, indoors or sutdoors, with completely flexible control and is fully portable.
Send now for full information on the Sbure Vocal Master Mocel VA3)2-E.

Shure Electranics Limited, 84 Blackfriars Road, London, SEI 8HA Telephone 0 I-928 3424 Telex 22443

New Products

CCTV camera

A solid-state television camera for closed circuit operation is now available from the Industrial Imports Division of Dodwell \& Co. It can be connected directly to a domestic television set which is then used as a monitor. Automatic light compensation for varying light levels between 50 and 8000 lux provides stable operation over the range of 50 to 500 lux minimum. Type 7735A vidicon used in the camera has a resolution of 500 lines, and random interlace scanning is provided. The output signal is composite video/r.f. modulated at 1.5 V peak-to-peak into 75Ω. Horizontal frequency is 15.75 Hz , and the vertical frequency $50 / 60 \mathrm{~Hz}$. Ambient operating range is 32° to $104^{\circ} \mathrm{F}$. A $220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ operating voltage is required with a power consumption of 12.5 VA . Weight is 6.8 lb and the dimensions are $86 \times 241 \times 137 \mathrm{~mm}$. Price $£ 101.90$. A range of lenses is available. Remote control pan, tilt and zoom facilities can be provided. Viewing monitors are also available. Dodwell \& Co. Ltd., Industrial Imports Division, 18 Finsbury Circus, London EC2M7BE.
WW326 for further details

Logic tutors

A Combinational Logic Tutor from Limrose Electronics uses i.cs to provide a selection of AND, OR, NAND and NOR gates, together with input switches and output indicators, in a compact unit. Also new is the Sequential Logic Tutor designed for painless teaching of the principles of 'sequential' circuits such as binary and non-binary counters and shift registers. Both synchronous and asynchronous types

of sequential circuits can be constructed on this unit. The unit also uses integrated circuits and consists of a selection of J-K flip-flops, NAND gates, a low-speed clock unit and a manual pulse generator. The outputs of the flip-flops are permanently connected to logic indicator lamps to continuously monitor their logical states. In both units, all electronic components and integrated circuits are mounted behind the front panel. This results in a 'student-proof design which cannot be easily damaged mechanically or electrically in normal usage. Prices from £23.50. Limrose Elec tronics Ltd, Lymm, Cheshire.
WW327 for further details

Recorder with extra low tape speed

A multi-channel communications recorder which can record for 72 hours continuously on 31 separate channels simultaneously, is one of three new machines available from Pye TVT. Manufactured by Philips, the recorders are claimed to be the first to employ a standard tape speed of $15 / 32$ i.p.s. Tape heads are of Ferroxcube, and there is a self-adjusting tape guide system Three basic versions of the recorder are: (a) for 31 simultaneous channels on lintape; (b) for 15 simultaneous channels on $\frac{1}{2}$ in tape; and (c) for 7 simultaneous channels on $\frac{1}{4}$ in tape.
Each version is fitted with twin tape decks. A third deck can be added to 15 - and 31 channel installations. An edge track is used to record a time reference signal as well as a pilat signal. The complete installation is normally housed in a standard 19-inch rack and has lockable glass fronted doors. Pye TVT Ltd, Coldhams Lane, Cambridge CB1 3JU.
WW 324 for further details

Digital audio delay system

The Gotham Delta-T 101 digital audio delay system converts audio information into digital form, stores it in this state and retrieves it at some later time controlled by switches on the front panel. Since there is no decay of the digital data while in
storage, the delayed outputs maintain identical signal quality for all settings of the delay selector switches. The Delta-T101 is available as a single channel device with the amount of time delay selectable in 5 ms steps up to a maximum of 40 ms . Additional plug-in output taps, up to a maximum of five, may be added at any time. Each of these will have its independent delay selection switches as well as a by-pass switch. Seven additional delay cards of 40 ms each may also be plugged into the frame to bring the unit up to its maximum 320 ms delay capability. Overall timing is controlled by a stable crystal oscillator. Integrated circuit operational amplifiers are used in the analogue portions of the unit. Except for the input and output transformers, direct coupled circuits are used with resultant intermodulation and harmonic distortion under 1%, even at maximum signal levels. Frequency response is 20 Hz $12 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Power requirement: 115/ 230 V . $50 / 60 \mathrm{~Hz}$ (100W max.) Size: standard 19 in rack panel, 7 in high and 17 in behind panel. Gotham Audio Corporation, 2 West 46th Street, New York, N.Y. 10036, U.S.A.

WW316 for further details

Heat conducting compound

Thermaflow 2001 from Jermyn can be applied as a thin film between a heat dissipating device and heat sink to reduce the thermal resistance by as much as 50%. Electrically non-conductive, the compound will withstand a temperature of $200^{\circ} \mathrm{C}$ for 24 hours with a volatility of only 1%. The

compound is available in disposable syringes containing 14 g (A30S- $52 \frac{1}{2} \mathrm{p}$ each), and in jars containing 140 g (A30J$£ 1.62 \frac{1}{2} \mathrm{p}$). Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW311 for further details

Tape noise reduction unit

The Dolby B tape hiss reduction system is now available from Kellar Electronics in the form of the KDB 1 noise reduction unit. Its use as a record and replay tape signal processor results in 10% less tape hiss than the recorder would normally produce. This is achieved, it is claimed, without affecting frequency response or adding distortion. Such a system will make a large difference to cassette ($1 \frac{1}{8}$ i.p.s.) and $3 \frac{3}{4}$ i.p.s. reel-toreel machines when reproducing a wide

range of frequencies and dynamic levels. Inputs are 25 mV into $20 \mathrm{k} \Omega$ (record) and 25 mV into $30 \mathrm{k} \Omega$ (replay) for outputs of 580 mV . Channel separation is quoted as 50 dB at 1 kHz and s / n ratio (including hum) better than 70 dB referred to 580 mV unweighted. Operation is from the a.c. mains. Price $£ 49.50$. Kellar Electronics Ltd, 6 Bycullah Avenue, Enfield, Middlesex.
WW318 for further details

Miniature resistors

A range of carbon film resistors, type Rsx 00 intended for miniaturized equipment, is available from Steatite Insulations. Each resistor measures only 0.7 mm dia. $\times 2.5 \mathrm{~mm}$ long. Values are from 100 4.7MS, with tolerances of $\pm 10 \%$ and $\pm 20 \%$. Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham 16. WW317 for further details

Power supply for logic circuits

IC 100 miniature power supply from Coutant supplies an output adjustable between 5 and 6 V at 1 A . Over-voltage protection set at 6.8 V is included, along with re-entrant circuitry for overload protection. Change in output is 0.02% for a $\pm 10 \%$ input voltage change, and load regulation changes 0.1% (output voltage) for a no-load to full-load change. Ripple on the output is less than 1.5 mV peak-to-peak and the unit operates over a temperature range of 0 to $55^{\circ} \mathrm{C}$ with a temperature coefficient of 0.03% change in output voltage for each ${ }^{\circ} \mathrm{C}$ change in ambient temperature. A:C. input is 100 to 132 or 200 to 264 V . The unit measures 80×133

$\times 42 \mathrm{~mm}$. Connection to equipment is either by printed circuit edge connector or by 4 mm fixing screws and soldered connections to turret lugs. Price is $£ 14.50$. Coutant Electronics Ltd, 3 Trafford Road, Reading RG1 8JR.
WW309 for further details

Swift digital tester

An 'in-house' need for a quick and simple means of testing logic circuit cards led to the design of this general purpose digital test set by the Test Systems Division of Honeywell. The equipment has its limitations and is mainly intended for tests on combinational circuits, but in certain circumstances sequential circuits can be accommodated. Testing is carried out by comparing a suspect circuit with a known good circuit. The 'master circuit' card is

plugged into a socket on the front panel. For 'one off' tests a patch panel is used to connect the d.c. power supplies and the test set outputs to the logic card inputs. All unspecified pins are assumed by the machine to be outputs. The suspect circuit card is plugged into a second socket on the front panel. The machine applies every possible binary combination to the card inputs and compares all the outputs of the two cards. If a difference occurs the sequence is stopped and a GaAs lamp display shows at which output pin an error was detected. The machine can be restarted if required whereupon it will cycle through the remaining tests. When a number of identical cards have to be tested, the patch cords can be replaced by a pre-wired plug which fits into a front panel socket. Cards to be tested can have up to 28 inputs and output fault patterns are indicated on a bank of 64 GaAs lamps. Various adaptors are available enabling different sized cards and single integrated circuits to be
tested. Tests are carried out at a rate of one per $\mu \mathrm{s}$ and input and outputs are 5 V t.t.l. Price is $£ 890$. Honeywell Ltd, Test Systems Division, Eton Rd, Industrial Estate, Hemel Hempstead, Herts.
WW301 for further details

Schottky barrier diode

Schottky barrier diode, type BAV46 from Mullard, has been developed for use in Doppler radar systems requiring a diode that has a low flicker noise at frequencies close to the carrier frequency, and a high conversion efficiency with or without d.c. bias when driven by low-level signals from the local oscillator. The overall noise figure is typically 10 dB at 1 kHz from the carrier frequency. Under typical operating conditions, forward current would be $30 \mu \mathrm{~A}$ and the r.f. level $1 \mu \mathrm{~W}$ at 9.375 GHz . Its conversion efficiency is typically $1 \mu \mathrm{~A} / \mu \mathrm{W}$. When operated as a microwave video detector with a forward bias current of $50 \mu \mathrm{~A}$ and a video amplifier bandwidth of 2 MHz , the BAV46 has a tangential sensitivity of -52 dB and X -band frequencies ($7-12 \mathrm{GHz}$). The device can be mounted across an X -band waveguide. If required, it can be supplied with a reversible end collet, type 56321, that makes the diode then conform to the DO-22 outline. The encapsulation is hermetically sealed. The operating temperature range is -55 to $+150^{\circ} \mathrm{C}$. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW308 for further details

Lightweight headset

A micro-miniature headset from Amplivox Communications, and called the Minilite, has an adjustable earphone housing which enables the user to receive incoming signals with the earphone unit resting lightly against the ear. The earphone housing is adjustable in all directions to enable the earphone to operate as a miniature speaker without physical contact. The housing rotates through 180° to enable the headset to be used on left or right ears. An acoustic tube-type microphone is used

which has telescopic adjustment for length, and also rotates for correct positioning near the mouth. The whole assembly is supplied complete with a new type of integral sliding headband. The headset can alternatively be mounted on spectacles. Weight with headband is 43.7 g . Amplivox Communications Ltd., Beresford Avenue, Wembley, Middx, HAO 1RU.
WW333 for further details

High performance 42-track data recorder

An instrumentation tape recording system from SE Labs, designated SE data Series 5000, employs an eight-speed bi-directional tape transport, with a low mass integral capstan/motor assembly in a phase-lock servo. Arms produce sufficient tape tension around the capstan to dispense with pinch-rollers. These arms also act as sensors for the positional servo system controlling supply and take-up motors. Record and reproduce data amplifiers are common to all configurations of the Series 5000. Direct and f.m. modules are interchangeable. The direct reproduce module accepts up to eight plug-in equalizers which are switched automatically when the tape speed is changed. The f.m. system operates without adjustment in I.R.I.G. low, intermediate and wideband group 1 modes with eight-speed automatic switching. Flat amplitude or optimum transient filter response is selected manually by the position of the plug-in filter with respect to its socket. The 42 -track recording heads of the 5000 C maintain intertrack spacing at $3.81 \mathrm{~cm}+2.54 \mu \mathrm{~m}$ ($1.5000 \mathrm{in} \pm 0.000 \mathrm{lin}$) and gap scatter $2.5 \mathrm{~m}(100 \mathrm{in})$. The basic price of the system is about $£ 7,000$. SE Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middx.
WW334 for further details

Reel-to-cassette duplicator

Series 235CS: 1 reel-to-cassette duplicating system made by Telex, of Minneapolis, and available in the U.K. from Avcom Systems, comprises an open reel master transport and cassette slave modules. Frequency response is 30 Hz $-10 \mathrm{kHz} \pm 3 \mathrm{~dB}$ at $1 \frac{7}{8}$ i.p.s, and t.h.d. less than 1% at 1 kHz at ' 0 ' VU at $7 \frac{1}{2}$ i.p.s. Bias frequency is 300 kHz . Wow and flutter is given as 0.25% r.m.s. Crosstalk rejection at 1 kHz : half track two-channel, 50 dB ; quarter track, twochannel, 30 dB stereo channel separation; and quarter-track four-channel, 30 dB stereo-channel separation, with 45 dB for adjacent stereo programmes. Signal-to-noise ratio is within 3 dB of master tapes. All mechanical movements are solenoid controlled with operation from the master transport by momentary contact push buttons. Equalization for various combinations of tape speeds can be pre-set by clearly

identified controls. This system, with six slaves, will produce 84 C - 30 cassettes per hour. A typical duplication station, with six slaves, is priced at $£ 1,295$. Avcom Systems Ltd, Newton Works, Stanlake Mews, Stanlake Villas, London W12 7HA.
WW 320 for further details

$\mathbf{2 5 M H z}$ storage oscilloscope

Oscilloscope type 2200 from Advance has a main frame with three operating modes: normal, with P31 phosphor; variable persistence; and store. A stored trace can be retained almost indefinitely and even displayed after the instrument has been switched off for a period. A range of plugin X and Y modules are available for this new main frame:-
OS2001Y Single trace unit.
OS2007Y Dual trace unit-with a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ from d.c. to full bandwidth.
OS2004Y High gain differential unitbandwidth d.c. to $2 \mathrm{MHz}-$ sensitivity $50 \mu \mathrm{~V} / \mathrm{cm}$.
OS2001X X amplifier unit-for X-Y operation.
OS2003X Standard timebase unit.
OS2005AX Sweep delay unit-sweep speeds 19 ranges from 200 ms / cm to $40 \mathrm{~ns} / \mathrm{cm}$.
OS2006X Wide range/delay timebase unit-sweep speeds in 23 ranges from $2 \mathrm{~s} / \mathrm{cm}$ to $20 \mathrm{~ns} / \mathrm{cm}$ in 1.2.5.
Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
WW312 for further details

Range of trimmer pots

The Contelec T-84 series of single-turn, humidity-proof trimmers from Kynmore has a power rating of 0.5 W at $70^{\circ} \mathrm{C}$, with
an operating temperature range -55 to $+150^{\circ} \mathrm{C}$. Size is TO-5. The standard version of the series has a dial printed on the top of the case, and an arrow on the adjuster, giving the location of the wiper on the track. Contacts are of precious metal. Solder pins are nickel- and goldplated. Stops are provided at each end of travel. Screwdriver adjustment provides the electrical settings. The resistance range is from 10Ω to $20 \mathrm{k} \Omega$. Special resistance values and close tolerances are available to order. Kynmore Engineering Co. Ltd., 19 Buckingham Street, London W.C. 2 . WW 307 for further details

Dual voltage comparator f.e.t.

A high-speed (90ns delay) dual-channel voltage comparator f.e.t. type L132, for analogue-to-digital conversion, has been announced by Siliconix. The device comprises two isolated comparison channels, each with a separate strobed latch on the output. Each latch is a t.t.l. type circuit, capable of driving t.t.l. inputs. The latch can change state only when the strobe is raised to the 1 level. Amplifier

comparison input error is 2 mV . Common mode range is $\pm 5 \mathrm{~V}$. Typical input current is $3 \mu \mathrm{~A}$, and differential input voltage 10 V maximum. Supply current is 10 mA maximum. The device is available as L132 CL in a TO-86 flat pack or L132 CK in a TO-116 dual in-line package. Siliconix Ltd., Saunders Way, Sketty, Swansea, SA2 8BA.
WW305 for further details

Capacitance and inductance meters

Model C1, capacitance meter, available from Sintrom Europe, has a measuring range of 0 to $30 \mu \mathrm{~F}$ in twelve ranges. The ranges are in a $1-3-1$ sequence with 100 pF full scale as the lowest range. Nominal full-scale accuracy is 1%. The maximum voltage seen by the capacitor is 11 V d.c.

Model L1, inductance meter (illustrated), has a measuring range of $100 \mu \mathrm{H}$ to 100 H in twelve ranges. Nominal accuracy is 1% for inductances with a Q greater than 10 . The voltage across the inductor is 50 mV to reduce errors due to core magnetization. The instruments, made by Russell Laboratories in the U.S.A., are available in the U.K. from Sintrom Europe Ltd, 2 Arkwright Road, Reading RGS OLS. WW304 for further details

Magnetic recording head

The Y28 recording head from Marriott Magnetics has been designed to meet the requirements of multi-track applications for use with standard recorded 8 -track stereo cassettes. It has a rear plug suitable for interchangeable replacement with the standard of plug adopted in America. Outer dimensions of the head have also been standardized to facilitate interchangeability with other types. The head has a thick outer case of mumetal, and internal screening provides channel separation of 55 dB . It is designed for a track width of 0.020 in and is based on the X type using a nickel-silver headface.

Specification:
$\begin{array}{lr}\text { Inductance at } 1 \mathrm{kHz} & 400 \mathrm{mH} \\ \text { resistance (d.c.) } & \pm 20 \% \\ \text { impedance at } 1 \mathrm{kHz} & 450 \Omega \\ \text { track spacing, centre-centre } & 2600 \% \\ & 0.127 \text { in }\end{array}$
Output from Ampex ref. type 01-31331-01 120 μ s (uncompensated) 500 Hz (reference level) $0.55 \mathrm{mV} \pm 2 \mathrm{~dB}$ $1 \mathrm{kHz}(-10 \mathrm{~dB})$ $0.23 \mathrm{mV} \pm 2 \mathrm{~dB}$ $7.5 \mathrm{kHz}(-10 \mathrm{~dB}) \quad$ greater than +1 dB above 1 kHz level
The outputs of channel pairs are quoted as within 2 dB of each other at any frequency in the range 100 Hz to 7.5 kHz .

Output from own recording using 3 M 175 tape at $3 \frac{3}{4}$ i.p.s.
bias current at 50 kHz
0.25 mA record current
$20 \mu \mathrm{~A}$
500 Hz output $\quad 0.55 \mathrm{mV} \pm 2.5 \mathrm{~dB}$
$1 \mathrm{kHz} \quad 0.74 \mathrm{mV} \pm 2.5 \mathrm{~dB}$
7.5 kHz better than 8 dB below 1 kHz level. Marriott Magnetics Ltd., Penryn, Cornwall.
WW 319 for further details

U.H.F. quadrature coupler

The outputs of several devices may be combined, transmission continuity retained and mismatches isolated using the quadrature coupler type MIC 583031 3-dB from Motorola. Mismatch problems are overcome because the application of a reflected signal at either of the output ports of the coupler results in signals at the input port attenuated by 20 dB . Insertion loss is as low as 0.25 to 0.30 dB , phase balance $\pm 1.5^{\circ}$ to 3.0°, amplitude balance 0.5 to 0.7 dB , and the v.s.w.r. is $1.2: 1$. Transmission capability is maintained should one of a number of combined output r.f. transistors fail. Usable frequency ranges are 225 -

400 MHz , and $450-512 \mathrm{MHz}$. The stripline devices are $31.8 \times 31.8 \times 3.6 \mathrm{~mm}$ and are constructed from sealed fibreglass board. Price under $£ 10$ each. Motorola Semi-conductors Ltd, York House, Empire Way, Wembley, Middx.
WW 321 for further details

Double balanced mixers

Two sub-miniature double balanced mixers, types 1759 and 1760 , from Hatfield Instruments occupy approximately one eighth of a cubic inch. The units can be used over the frequency range 100 kHz to $500 \mathrm{MHz}(1759)$ and 10 kHz to 150 MHz (1760). Separate port earths are provided to reduce problems associated with common earth currents. Types 1759 and 1760 are priced at $£ 19.80$ each. Hatfield Instruments Ltd., Burrington Way, Plymouth, Devon. PL5 3LZ.
WW 303 for further details

Metal-oxide resistors

Metal-oxide films resistors, type WK, from Steatite Insulations are available horizontally or vertically preformed, with resistance values ranging from 1Ω to $100 \mathrm{k} \Omega$, with standard 2% and 5% tolerances. Temperature coefficients are either 200 or 400 p.p.m. Three body sizes are available: WK5, 6 mm dia. $\times 16 \mathrm{~mm}$ long; WK8, 9 mm dia. \times 20 mm long; WK83, 9 mm dia. $\times 32 \mathrm{~mm}$ long. Power ratings at $70^{\circ} \mathrm{C}$ are $1.5,4$ and 6 W respectively. Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham, 16.

WW:310 for further details

Marine communication receiver

Receiver HR 600-601/602 manufacturered in America by National Radio Company is available in the U.K. from Ericsson Marine. The main frame of the receiver contains all the signal path circuits-from aerial inputs to line and speaker audio outputs, including aerial attenuator, slot filter assemblies, frequency converters, i.f. amplifiers, i.f. filters, a.m. and product detectors and audio amplifiers. The main frame also includes a frequency synthesizer for first mixer injection, a beat-frequency oscillator and can operate from $115-230 \mathrm{~V}$ a.c. $47-420 \mathrm{~Hz}$. Two frequency-control plug-in units are available, and when augmented by one of these units, the receiver is capable of operating at any frequency between 10 kHz and 30 MHz in a.m., c.w., s.s.b. and f.s.k. modes. Crystal filter i.f. bandwidths are automatically matched to the reception mode selected. A wide range of accessories will be available. Ericsson Marine, Crown House, London Road, Morden, Surrey.
WW328 for further details

World of Amateur Radio

Impact of integrated circuits

Amateurs in many parts of the world are now developing and describing constructional projects based on the use of linear and digital integrated circuits. One notes especially the wide use of the Plessey SL-600 series, the CA types (RCA) and the high-gain Motorola balanced mixer type MC1596G for communications receivers and compact transceivers. The advantages of the SL621 a.g.c. generator have crossed the Atlantic, and is used, for example, in a recent $3.5-\mathrm{MHz}$ receiver described in Ham Radio by the Canadian amateur Paul Hrivnak, VE3ELP, in conjunction with such linear devices as the SL6 10 r.f. amplifier, the MC1596G and the General Electric PA 237 a.f. amplifier plus discrete field-effect transistors for the oscillators.

Crystal calibrators and digital frequency meters are using digital t.t.I. devices including the popular SN7490N decade dividers. Digital logic is also being used in electronic keyers and automatic senders. Also attracting increasing attention are the sophisticated integratedcircuit phase-locked loop synchronous demodulators such as the Signetics NE561 and NE565 (M565N) devices. The CA302A is proving useful as a combined speech amplifier and balanced modulator for s.s.b. generation and also as a linear amplifier providing up to about 1 W p.e.p. output to drive a valve power amplifier.

A case for more power?

One of Britain's leading h.f. long-distance operators, Dr John Allaway, G3FKM, recently voiced the growing feeling that the maximum power limits of the British amateur licence need to be up-dated.

Since 1946, except for occasional special tests, the power limits imposed on all British stations have been 150 W d.c. input for c.w. or a.m. operation or 400 W peak envelope power output for s.s.b. (A3A or A3J) on the majority of bands. Most amateurs would agree that these limits are, in themselves, reasonable (although it is puzzling why s.s.b. should be given more power than c.w.). These powers permit regular DX operation with or without high-gain beam aerials.

The present problem is that much amateur DX operating is of a competitive nature: the rarer contacts tend to go to the stations which can put the strongest signals into the distant country. In these circumstances, the top power permitted in other European countries becomes of importance to British amateurs-and, in this respect, there is little doubt that Dr Allaway has grounds for asking for the subject to be reconsidered. Looking through recent pages of my log book, I find that more and more high power operation is being permitted in Europe (the limit in North America has always been 1 kW). I have worked West German c.w. stations using 250,500 and 750 W , Swedish stations up to 500 W , Swiss 400W, Polish 250W, French 175W, Italian 300W, many Russians using 200W, while the operator of a Hungarian club station recently gave his power as 1 kW .

It must be admitted that it is widely believed that a number of British stations are using more than their permitted power (these operators may not be pleased to learn that in some regions the Post Office has restarted routine inspections). Much of the popular factory-built equipment has to be 'throttled back' to get down to the British power limits. It would surely be better to issue licences for higher power than to tolerate some amateurs obtaining an advantage by disregarding the licence terms. So while the majority of British amateurs would be happy to continue with present limits if only other European amateurs were similarly restricted, there is likely to be a growing desire that Minpostel should look again at the power restrictions.

70th anniversary of transatlantic radio

Plans are afoot to mark the 70th anniversary of the spanning of the Atlantic by Marconi (12th December 1901). These may include an international get-together of radio amateurs connected by history or location with the early days of radio. A special station, using the call VB1MSA, is reported to have begun operation in Newfoundland and is active on 3.5, 14 and 21 MHz . In this country, the event is
being organized by the Cornish Amateur Radio Club (in whose county the 1901 transmitter was set up), and among those who have promised support is the Derby society, which, as the country's oldest radio society, is planning to run a demonstration station during the weekend December 11-12.

Death of a noted blind amateur

The death took place during August of a well known sightless amateur-James Illingworth, G3EPL, of St Bees, Cumberland. A former headmaster, he had held his licence for several years when, in 1956, he lost his sight. After only a short break he returned to his amateur operating and for many years has been a notable example of what can be done by the keen amateur to overcome physical handicaps, as well as encouraging other handicapped peoplè to find satisfaction in this hobby. In 1963, Illingworth became the recipient of a Mullard Award, the citation for which recorded: "The courage which he has shown in overcoming his handicap has been a source of inspiration to amateurs everywhere. By his knowledgeable advice and persistent encouragement over the air, he has helped many other amateurs to modify and improve their own equipment."

In brief

A little-noted decision of the recent I.T.U. Geneva space conference (WARC-ST) may have a greater impact on amateur radio than the actual space allocationsthis was the overwhelming rejection of a proposal by Argentina to reduce from 144 to 50 MHz the frequency above which licences may be issued without a c.w. test. . . There was a record attendance of some 2500 at the R.S.G.B. 1971 Mobile Rally at Woburn Abbey A joint entry by the Surrey Radio Contact Club and the Croydon R.S.G.B. group (stations G3BFP/P and G6LX/P) gained the overall victory in the 1971 National Field Day, runners-up being Norfolk Amateur Radio Club. Stock port Radio Society won the Bristol Trophy for the leading single-station entry. Altogether 118 local clubs and groups competed, an increase of 14 on 1970 . . . A 144 MHz station, G3UGF / MM, is regularly active from the East Coast coastal tanker, Esso Inverness.

JY6RS is the station of the Royal Jordan Amateur Radio Society. . . . P. J. Smith, G3XJE, of Peterhouse, Cambridge, would welcome reports of long-delayed echoes (see 'W.o.A.R.' last month) as part of new Cambridge University research into this phenomenon. Reports should give delay period, strength of echo, date and time of observation, frequency of signal and any possible frequency shift of the echo. . . The 70 MHz beacon station, ZB2VHF, at Gibraltar is again in operation and has been received in the U.K. . The prefix 8Q6 is now being used in the Maldive Islands.

PAT HAWKER, G3VA

Circuit Ideas

Variable astable multivibrator

The circuit was devised to fulfil the following requirements:
(a) Square wave generation in the range $1-30 \mathrm{~Hz}$.
(b) Operation from a 5 V supply and t.t.l. compatibility.

To obtain a wide frequency variation the conventional timing resistors of a multi-
available and the rise time of both outputs when driving a single t.t.l. load was measured to be 25 ns .

When the inhibit line is switched to earth the oscillator stops. If the single shot button is then pressed a single square wave is generated at the normal output only. If the single shot button is operated when the oscillator is running this merely produces an inhibit function.

None of the components is at all critical.

vibrator were each replaced by a p-n-p transistor whose currents are controlled by the linear single gang potentiometer. It was found possible to get a frequency variation of $500: 1$ by this method. The pre-set resistors were adjusted to get the required frequency range of $1-30 \mathrm{~Hz}$. With this coverage the relationship between frequency and rotation of the potentiometer is virtually linear. The prototype would oscillate in any frequency band between 0.167 Hz and 350 kHz by choosing suitable values of capacitor. At $0.167 \mathrm{~Hz} C=$ $33 \mu \mathrm{~F}$ (tantalum) and at $350 \mathrm{kHz} \mathrm{C}=$ 5000 pF . The upper limit could probably be appreciably increased by using fast switching transistors, and selecting components to suit them.

The second requirement was met by using a quad two-input NAND as a twin 360° inverter. This considerably reduced the rise and fall times and enabled the incorporation of inhibit and single shot facilities as described later. The $n-p-n$ transistors acted as current sinks for the NANDS.

The circuit proved very satisfactory for symmetrical square waves and for markspace ratios of up to $10: 1$. Normal (Q) and complementary $(\overline{\mathrm{Q}})$ outputs are

The supply should be $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ and for maximum frequency stability should be stabilized.
C. C. Ward, University of Exeter.

Simple v.h.f./f.m. oscillator

 A 2N2926 yellow-spot transistor oscillates readily in the circuit shown. The tuning coil consists of four turns of 16 s.w.g. tinned copper wire and is 0.4 in dia. by 0.4 in long. The variable capacitor canbe a 20 pF trimmer. An OA202 is used in place of a 'varactor'. An inverse polarizing voltage of 4 V is about optimum and is obtained from a potential divider across the supply. To prevent shunting of v.h.f. voltages by the signal generator the modulating signal is applied to the diode via a $5 \mu \mathrm{H}$ miniature choke, and the collector end of the tuning circuit is connected to the diode by a capacitor of a value sufficiently small to 'block' currents at audio and somewhat higher frequencies. The components are mounted on a small piece of Veroboard having widely spaced strips of short length (to avoid undue self capacitance). This in turn is mounted on sheet aluminium bent to provide screening and to which earthy points are connected.

To check the functioning of the oscillator a low-voltage rectifier voltmeter, fitted with point contact diodes, may be connected through a small capacitor to a tapping on the tuning coil. Alteration of the collector/emitter capacitor will affect the amount of oscillation. Amplitude modulation may be achieved by applying the modulating voltage to the base of the transistor.
W. H. H. KELK,

Farnborough, Hants.

Variable power source using magnetic amplifier

Two mains transformers with 110 V taps can be connected in series and in phase on the mains side, and in series but out of phase on the l.t. side, to provide a variable voltage supply. The l.t. windings are fed

with a d.c. control of $1-3 \mathrm{~V}$, derived from a separate transformer. The amplifier can be used to supply a further transformer (as load) to provide a variable voltage supply. W. B. Pickles,

St. Albans,
Herts.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

A folder is available from Sintrom Electronics Ltd, 2 Arkwright Rd, Reading, Berks., which contains data on analogue-to-digital converters, a fast follow-and-hold amplifier, eight-channel multiplexers and a range of operational amplifiers all manufactured by the Dynamic Measurements Corp., of MassachusettsWW401

British Brown-Boveri Ltd, Albany House, 41 High St, Brentford, Middlesex, have published a catalogue -and an associated price list-covering diodes, thyristors and triacs

MCP Electronics Ltd, Alperton, Wembley, Middlesex HAO 4PE, have sent the following literature to us which describes products distributed by them:
BF377/378. Data sheet dealing with transistors manufactured by Telefunken intended to replace the BFY90. Static characteristics are identical but the gain bandwidth product is 1.3 GHz at 5 V and 25 mA . The 800 MHz noise factor at 5 V and 2 mA is $5.5 \mathrm{~dB}(200 \mathrm{MHz}, 2 \mathrm{~dB})$ WW403
AHY10A/B. Data sheet for a germanium magnetic field sensitive diode for control applications (Telefunken) WW404
CGY11/12/13, A/B. Data sheet describes a family of six GaAs Gunn effect diodes for the X-and KU -band. Efficiencies are around 1.5 to 2\%WW405 BP300. Data and application information on a microelectronic two-pole active filter manufactured by TRW of America ($f=0.1 \mathrm{~Hz}$ to $2 \mathrm{kHz} ; Q=1$ to 200 , stability $= \pm 0.005 \% /{ }^{\circ} \mathrm{C}$)

MV/MX Series (TRW). Hybrid v.h.f. and u.h.f. power microcircuits with outputs from 0.75 to 12W

Microsystems International Ltd, I Great Cumberland Place, London W1H 7AL, have produced a shortform catalogue which lists operational amplifiers, m.o.s. memories and zener diodes WW408

GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Rd, Slough, Bucks., have supplied us with data on two high-voltage avalanche rectifiers ($\mathbf{S 8 0 H T 1 A}$ and S100HT1A) manufactured by Westinghouse. (8 and 10 kV at 1 A at $25^{\circ} \mathrm{C}$ derating to 0.55 A at $70^{\circ} \mathrm{C}, 50$ to 400 Hz , overload capability 45 A for 10 ms)

PASSIVE COMPONENTS

Home Rado (Components) Ltd, 240 London Rd, Mitcham, Surrey, CR4 3HD, have published a new edition of their catalogue (the seventh) which contains 311 pages and lists a wide range of components and equipment mainly intended for the home constructor price 50p

We have received the following leaflets from GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Rd, Slough, Bucks.:

Painton trimmersWW4 10
Eddystone die-cast boxesWW411
Keyswitch relaysWW412
CGS Resistor Co. \& Guest International. Resistors WW413

Pye TMC Ltd, Components Division, Roper Rd, Canterbury, Kent, have published a leaflet describing a range of illuminated push-button switches which are called type 1

Catalogue 102 from Cambion Electronic Products Ltd, Cambion Works, Castleton, Nr. Sheffield S30 2WR, lists solder terminals, r.f. chokes and connectors

WW4 15
Henry's Radio Ltd, Edgware Rd, London W.2, have published the tenth edition of their catalogue. It contains 352 pages and gives details of electronic components, communications equipment and devices for producing electronic music and lighting price 40 p

New product bulletin 671DL/1U available from Special Products Distributors Ltd, 81 Piccadilly, London WIV OHL, describes a range of magnetic nut drivers manufactured in America by Xcelite Ltd.
..WW417
Pye TMC Ltd, Capacitor Division, Oldmedow Rd, Hardwick Trading Estate, King's Lynn, Norfolk, have a leaflet available which describes extended foil polystyrene capacitors

WW418
An eight-page booklet gives the NATO stock numbers of oxide resistors to BS9111-N-002. Electrosil Ltd, Pallion, Sunderland, Co. Durham, SR4 6SU

WW4 19
The components stocked by Lugton \& Co. Ltd, Radio House, 209-212 Tottenham Court Rd, London W1A 2BN, are listed in the short-form catalogue of the Industrial Division WW420

The August/November catalogue of RS Components (formerly Radiospares), P.O. Box 427 , 13-17 Epworth St, London EC2P 2HA, is available

WW421
Handles, locks, catches, hinges, feet, ventilation rings, Efting eyes, castors, clips and other parts for equipment cabinets are described in the 'Handles and Accessories' catalogue from Imhof-Bedco, Colne Way Trading Estate, By-Pass, Watford, Herts WD2 4NE

The Components Division of Ferranti Ltd, Dunsinane Ave, Dundee DD2 3PN, have supplied us with two catalogues:
Radar systems components \qquad WW423
Communications components
WW424
We have obtained a great deal of literature from FR Electronics, Wimborne, Dorset BH21 2BJ:
Reed switch catalogue (contains some useful applications information)WW425
Reed switch price list WW426
Reed switch accessories (coils and magnets) WW427
Logcell data sheets. Very small mercury wetted relays available as basic switches or in monostable, latching, non-latching, i.c. compatible, coaxial, dual-in-line packaged and high-speed forms WW428
Logcell price listWW429
'Pinlite' catalogue. Alphanumeric and other character display modulesWW430

Solid-state relays capable of handling up to 7A manufactured by Darpan Controls Ltd, Bridge Mills, Derby Rd, Long Eaton, Nottingham NG10 4QA, are the subject of a catalogue. They are designed to be operated directly by logic i.cs and operational amplifiers; the operating power required being only $750 \mu \mathrm{~W}$

Miniature incandescent lamps manufactured in Germany by Micro Gluhlampen Gesellschaft are described in a catalogue obtainable from H. F. Collison-Goodweil Ltd, Coleshill, Birmingham 338024

WW433

APPLICATION NOTES

Information sheet No. 209 from Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset, describes how a dual-ramp digital panel voltmeter can be made using only four i.cs and a number of discrete components. Range and accuracy is 0 to 1.999 V (positive or negative) $\pm 0.1 \% \pm 1$ digit. The range can of course be extended using suitable multipliers
. WW434
A Multicore Solders leaflet (Bulletin P.C.I) which describes batch printed circuit soldering techniques is available from GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Rd, Slough, Bucks.

WW435
A paper, 'The versatility of the h.r.c. fuse in protecting semiconductor equipments' by J. Feenan, may be obtained from English Electric Fusegear Ltd, East Lancashire Rd, Liverpool L10 5HB .. WW436

The National Research Development Council, Kingsgate House, 66-74 Victoria St, London S.W.1, have sent us details of some patent applications:
41470/68. Band-pass filter setsWW437
51137/69. Low-noise tachometer generator
56771/70. Out-of-circuit d.c ammeter .WW438
52193/69. A novel cycloconverter WW440

EQUIPMENT

We have received literature describing an audio equalizer which has a lift/cut control for each octave from 20 to $20,480 \mathrm{~Hz}$ (10 in all) intended for match ing audio systems to room conditions. Stereo versions are available. Soundcraftsmen, 1320 E. Wakeham Ave, Santa Ana, California 92705, U.S.A.

WW443
The Quickdraw Company Ltd, 10 Beechdale, Winchmore Hill, London N.21, have produced a new protractor head for technical drawing which is described in a leaflet

WW444
An American welder which electrically disassociates oxygen and hydrogen from distilled water and then uses these gases to produce a flame with a temperature of at least $3,316^{\circ} \mathrm{C}$ is described in a leaflet. The welder has to be connected to a mains power supply. The smallest model runs for twelve hours on 0.8 pints of water. Details from Special Product Distributors Ltd, 81 Piccadilly, London WIV OHL

WW445

GENERAL INFORMATION

‘Catalog No. C13.10:350. Time and frequency: A bibliography of NBS literature published July 1955Dec. 1970' published by the American National Bureau of Standards may be obtained from: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, U.S.A. price
(inc. p \& p) U.S. $\$ 0.69$
'About Patents' is a free booklet which describes the information retrieval services provided by the Patent Office. The Sales Branch, The Patent Office, Orpington, Kent BR5 3RD.

A 1971/72 prospectus may be obtained from The Registrar (Admissions), Cranfield Institute of Technology, Cranfield, Bedford.

The work of the National Economic Development Council (Neddy) and the 16 Economic Development Committees (Little Neddies) is described in a booklet 'What is Neddy?'. An associated catalogue 'Neddy in Print' gives a list of Neddy publications. Publications Dispatch, National Economic Development Office, Millbank Tower, Millbank, London SW1P 4QX.
'Approach and landing at Heathrow-a layman's guide' has been published by BEA and International Aeradio Ltd. It is a folder containing charts and explanatory matter which describes airline landing procedures, 'stacking', radio beacons, 'talkdowns', taxi-ing and parking at Heathrow. It is available from V. Windett, International Aeradio Ltd, Hayes Rd, Southall, Middlesex price 60p

Real and Imaginary

by "Vector"

Initial Suggestions

Periodically (if you will forgive the pun) the newspaper world experiences a silly season when nothing much seems to be happening and editors have to scrape the bottom of the barrel. At such times photographs tend to become larger and what is left of the sheet is filled with banner headlines.

The problem is much more acute for the hapless contributor to an electronics journal, for he has to grapple with an industry which has a perpetual silly season. At this particular moment, for example, nothing much is happening except that the Almighty Dollar has flipped to sabotage our export market, the Japs are hypnotizing our home market into committing hari-kiri and our microcircuit industry has fallen flat on its expensively-lithographed epitaxial (as predicted on this page in March 1967, though it gives me no joy to say so). Not to mention the circumstance that the Labour Exchange now has a decided leer on its stucco'd countenance whenever we steal past it.
In short, in the immortal words of the poet who wrote 'over the wire the message came, he is not better, he is much the same", the electronics industry is ticking over pretty much as usual and company chairmen with ruin staring them in the face are staring back and buying yet another estate in the Bahamas. So, upon the well-known precedent of fiddling while Rome is burning I thought I might do worse than pass away the time by setting you a quiz on the same general lines as those by L. Ibbotson which used to appear in $W . W$. under the heading "Test Your Knowledge". So here, without further ado, it is:-
(1) What is AVRO?
(a) A well-known multi-tester?
(b) A famous name in aviation?
(c) An estate agent's contraction for "average-sized-room"?
(2) What is MELEX?
(a) A poultry food?
(b) A Chinaman telling us his name is Rex?
(c) A luncheon voucher for executives?
(3) What is ILMAC?
(a) A Sassenach asking a Scotsman if he's under the weather?
(b) A waterproof coat for invalids?
(c) A brand of throat sweets?
(4) What is/are SEMINEX?
(a) A new method of family planning?
(b) The Old Boys' Association of a school of theology?
(c) a breed of short-necked giraffes?
(5) What is SICOB?
(a) A method of expressing the energy of a horse in S.I. units?
(b) A mentally deranged male swan?
(c) A computer language?
(6) What is INTERNAVEX?
(a) An international trade union for belly dancers?
(b) The medical term for solar plexus?
(c) A NATO Navy Week?

If you haven't had much luck so far, perhaps you might care to try the following for size:-IMAS, IMEX, EMCON, EASCON, INTER/NEPCON-come on that lad at the back, put some effort into it! All right then, I'll hand it to you on a plate with WESCON and EUROCON. No, Einstein Minor, the last-mentioned is not an organization dedicated to conning Britain into the Common Market. Full marks to all the others for twigging that these are all exhibitions, congresses, conventions, seminars or symposia. Incidentally, I have yet to find out the actual difference between events bearing the latter four titles.

This is the in-cult of the acronym to which the trendy boys in the exhibitions world have latched on. Bourgeois reactionaries may complain that these titles are not only meaningless but in some cases downright misleading, and enquire bitterly whether an electronics engineer must not equip himself with a crystal ball to find out that MELEX is the Manchester Electronics Exhibition. Such carping critics may count themselves lucky that they live in a tolerant democracy and not in an area where Luddite opposition to progress is shortcircuited to the saltmines.

Personally, my only complaint is that the notion is rather arriére-garde and dated, for acronyms have been with us for a long time now. Couldn't the organizers of exhibitions and conferences take a leaf out of the book of those other natural disasters, hurricanes, and use given names for their functions? It would somehow make the thing so much more personal if we could
go to an exhibition called Frieda or Janice or Laureen. Then if the organizers were fortunate enough to catch the ear of the Editor on one of his better days they might persuade him to publish a key in, say, the January issue or the Diary, so that even such an arrested mental development as mine could effect a translation.
But of course even this is not the real McCoy (whoever he was). It was our own Post Office which was courageous enough to provide us with a clear directive by ditching those emotive telephone exchange names (and what fantasies could be woven concerning the girl operators at Bluebell. Cherrywood or Virginia?). But where was I? Oh yes-when they discarded those exchanges and paid us the compliment of expecting us to memorize a gaggle of tendigit numbers. That was sheer good thinking on the part of some anonymous soul at the Ministry of Incomprehensibility and it behoves us one and all to benefit by example.

So, why not go the whole hog and sling out all these out-moded acronyms in favour of transistor-type codification? At the same time the electronics manufacturers should be urged to discard their trade names in favour of allocated serial numbers. Just think of the time saving effected by mentioning to a colleague that you were off to visit 123SE2095 instead of having to say 'I'm going to take a butcher's at the Semiconductor and Allied Technologies Seminar and Exhibition'. That's what I'd call Progress with a capital ' P '.

Even this need be only a halfway house toward the ultimate goal of scrapping the decimal system in favour of binary and digitizing not only exhibitions but everything else-railway stations, airports, striptease shows, Labour Exchanges-the lot. With all these in binary code stupendous new electronics markets would be opened up for portable back-pack computers for the general public who cannot be relied upon to recall, off-hand, that 1011101011 is Euston station. On a larger canvas the approach would give useful employment for all those highly expensive computers which the larger business houses have been conned into buying and which now serve no more useful function than providing rest homes for aged and infirm spiders.

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC.12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages

1. Higher power.

2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 moduler
5. Specially designed built-in heat rinh

No other heat sink needed
6. Full output into $3,4,5$ or 8 orms
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfield with you purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

Output power 6 watts RMS continuous (12 watts peak).

Frequency Response 5 Hz to 100 KHz . 1 dB .

Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band.

Load limpedance 3 to 15 ohms.
Power Gain 90dB ($1,000,000,000$ times) after feedback.

Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).

Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Input lmpedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audió amplifier suitable for use with pick-up, F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

Price, inc. FREE printed circuit board for mounting.
f2.98 $\underset{\text { Pree }}{\text { Post }}$

WW-094 FOR FURTHER DETAILS

Sinclair Project 60

The World's leading range of high fidelity modules

Sinclair Radionics Limited, London Road, St. Ives, Huntingdonshire PE174HJ
Tel : St Ives (04806) 4311

Project 60 offers more advantage to the constructor and user of high fideiity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world. yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P.U.. 12 V battery volume control	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic PU. volume control etc.	£9.45
$20+20 \mathrm{~W}$. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U.. F.M. Tuner, etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s}, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
$40+40$ W. R.M.S. de-luxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZZ.8, mains transformer	Mic., guitar. speakers, etc., controls	£19.43

from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02\% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS $(Z .50$ units are inter. changeable with Z.30s in all applications).
Power Outputs
Z.30 15 watts R.M.S. into 8 ohms using 35 volts 20 watts R.M.S. into 30 ohms using 30 volts.
Z.50 40 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 8 ohms using 50 volts. Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
Z. 30

Built, tested and guaranteed with circuits and instructions manual. £4.48
2.50
with circuits and instruc-
tionsmanual. $\quad \mathbf{~ 5 . 4 8}$

Power Supply Units

Designed special for use with the Project 60 system of your choice. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stabilised supply is essential.
PZ. 530 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $\mathbf{f} 7.98$ PZ. 845 volts stabilised PZ. 845 volts stabilised (less mains transformer) $£ 7.98$ PZ. 8 mains transformer $\mathbf{5 5 . 9 8}$

The Sinclair Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your monev at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 vears of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range : 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $2 \mu \vee$ for 30 dB quieting: $7 \mu \vee$ for full limiting. Squelch level: $20 \mu \mathrm{~V}$. A.F.C. range: $\pm 200 \mathrm{KHz}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}(\pm 1 \mathrm{~dB})$. Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage: 25-30 VDC. Indicators: Mains on; Stereo on : tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit 0.000000

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to 3 mV : Aux-up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$. $£ 9.98$
Built tested and guaranteed.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two $\mathrm{Z.30}$ s or $\mathrm{Z.50s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage - 15 to 35 V . Current - 3 mA . H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated output. Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Built tested and guaranteed.
£5.98

You must see and hear the most comprehensive demonstration of Hi-Fi ever staged in Europe. Come to Olympia and see the big names of the Sound Industry displaying the latest reproduction equipment. Tape recorders, Cassette Players and Cassettes, Loudspeakers and Earphones, VHF radios, Stereo Multiplier Receivers, Tapes and Discs you can hear them all in action in 100 specially constructed Audio Studios.

And you can relax in the comfortable Hi - Fi Theatre with daily presentations, lectures and discussions by the industry's top names.

Everyone interested in Hi - Fi must come. This is the greatest event in the history of sound techniques.

Tuesday to Saturday 10-9 daily

Admission 30p

Opportunities Unlimited in RADIO,TELEVISON, ELECTRONCS

C \& G Telecommunication Techns' Certificate Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

Post and Packing-150 any quantity
MITED, AYEFIELD CRESCENT, NOATHWODD HiLLS,
Telephhone: Northwood 2494/26732 Telex: 923231 WW- 097 FOR FURTHER DETALLS

 relephone: Northwood $24941 / 26732$

NEW GOOD LOOKS A drastically reduced number of parts (2) The Brightcase is stable the appearance any any and the smart look of anodised alumin- (2) The Brightcase is stable on any face. The front hande protiusian ium and black P.V.C. coated steel. combine to create a beautiful new case with a marked reduction in cost. Of standard $19^{* \prime}$ rack size, the Brightcase can be used freestanding, or one on top of another, or racked, using separ ate mounting brackets. protects knobs, meters. etc Psotru
connectors, cables. etc.
The Brightcase can be stacked vertically.
4) The Brighticase top and bottom panes are of textured black PVC coated steel
(5) The Brighteese is id 8 al for moduiar systems.
(6) The Brightcase arives completely assambled, in its special pack

Send for literature and prices Pelephenas: Northwoad $24941 / 26732$ Tellax: 923231 WEST HYDE NTHWO. WW- 097 FOR FURTHER DETAILS

Contil Mod-2 instrument cases are ideal for development and cheaper

	\times	Y	2	1 otf	P \& P		x	Y	z		P\& P
A	4.5	3	6.5	1.90	$15 p$	N	4.5	7	13	3.05	28p
B	4.5	7	6.5	2.20	28p	0	4.5	10	13	4.00	35p
c	4.5	10	6.5	275	28p	P	9	3	13	3.05	28p
D	9	3	6.5	2.75	28p	0	9	7	13	4.00	35p
E	9	7	6.5	3.05	28p	R	9	10	13	4.90	35p
F	9	10	6.5	3.60	28p	S	13	3	13	4.00	35p
G	13	3	6.5	3.05	28p	T	13	7	13	4.90	35p
H	13	7	6.5	3.60	28 p	u	13	10	13	6.00	45p
1	13	10	6.5	4.00	35p	v	18	3	13	4.90	35p
J	18	3	6.5	3.60	28p	W	18	7	13	6.00	45p
K	18	1	8.5	4.90	35p	x	18	10	13	7.60	45p
1	18	10	6.5	6.00	45p	G	Woodgrais Sitesininches			4.00	$28 p$
M	4.5	3	13	2.20	28p						

Kit of Sinclair hardware inc. capacitors, plugs, sockets. screws, wire heat sink, fuse, fuse hoider, atc. $£ 3.40 \mathrm{P} \& \mathrm{P} 22 \mathrm{p}$.
Sinctiair punched case and chassis. Mod 2 tupe G in wood grain, $£ 4.25$
P \& $P 28 p$
for production. Made with PVC coated materials there is no paint to scratch, the surface is scuff resistant and easy to clean. Coated aluminium front and back panels gives easy cutting with rigidity and coated steel top, bottom and sides gives strength and ease of assembly. Three heights of cases, four widths and two depths give 48 different cases. Mod-2 means modern design.

Type G is now available in simulated teak in Type G is now available in simulated teak in wood grain finish and ideally suited
for domestic equipment. Also available ready punched for Sinclair Project 60 , with or without A.F.U. It is available with a set of fitting plugs, sockets, fuses, etc.

WEST HYDE W由1

WEST hyoe developments limited, ryefield crescent, northwood hills, NORTHWOOD, MIODX., HAG 1 NN. Telephone: Northwaod 24941/26732. Telex: 923231 WW-097 FOR FURTHER DETAILS

Radio and Audio Servicing Handbook
 2nd Edition
 Gordon J. King AssocIERE, MIPRE, MRTS.
 This book is a practical guide to the servicing of radio receivers and audio equipment of all types, and is intended especially for the service technician. Many others, however, find it of absorbing interest, among them students, hi-fi and recording enthusiasts, amateur experimenters, radio dealers and sound engineers.
 040800018×284 pages illustrated $1970 \quad \mathbf{6 3 . 0 0}$ (60s)
 Radio Valve and Transistor Data
 9th Edition
 Edited by A. Ball
 First published in 1949 this book has become an indispensable source of information for all those interested in electronic engineering, from the home constructor to the research worker. Exhaustively revised and updated, the useful and comprehensive information contained in this new edition will add to the already considerable reputation enjoyed by this highly successful book.
 $0592057966 \quad 256$ pages illustrated $1970 \quad \mathbf{~} 0.75$ (15s)
 Available from leading booksellers or
 昒
 The Butterworth Group
 88 Kingsway, London WC2B 6AB

SHEET METAL FOLDING MACHINES

 $36^{7} \times 18$ gauge capacity. $24^{*} \times 16$ gauge capacity.....
Also the well-known vice models of $36^{\prime \prime} \times 18$ gauge capacity............... $£ 15 \cdot 00$
$24^{*} \times 18$ gauge capacity............ $£ 10.00$ $18^{\circ} \times 16$ gauge capacity. Carriage Free

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied. Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, HECKMONDWIKE, YORKS
Telephone 3997
WW-100 FOR FURTHER DETAILS

USED THROUGHOUT THE WDRLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY, VERSATILITY, UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY

6 Months Guar
Model P.2.8.
Model JP.5D
Model U.500N
Model 360-YTR
Model A-303TRD E4.87 Modal K130THD ice E5.87 Model F-80TRD E5.87 Model F-80TRD
£8.00 Model 380-CE E8.25 Model N-101 $\begin{array}{ll}\text { C11.00 } & \text { Model 460-ED } \\ \text { Model EM-700 }\end{array}$
Model R. 1000 CB
Cases available with most meters

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-099 FOR FURTHER DETALLS

[^11]WW-101 FOR FURTHER DETAILS

[^12]
NOW ONE OF THE LEADING FRANCHISED SEMICONDUCTOR DISTRIBUTORS OFFERS NEW BRANDED DEVICES AT INDUSTRIAL TRADE PRICES

MULLARD, INTERNATIONAL RECTIFIER, SENSITRON, S.G.S., NATIONAL SEMICONDUCTOR

THIS IS THE FIRST TIME D.T.V. GROUP LTD. HAVE EXTENDED SALES OF THIS RANGE TO PRIVATE READERS OF WIRELESS WORLD BULK QUANTITY PRICES ON REQUEST

WE HOLD ONE OF THE LARGEST SEMICONDUCTOR STOCKS IN THE U.K.

LOW COST DIGITAL TTL 7400 RANGE
FROM FRANCHISED DISTRIBUTOR STOCK

	($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)				
Compare these prices!			1-24	25-99	$100+$
			${ }_{0}^{6.250}$	${ }_{0}^{\text {¢p }}$. 167
DM7400N DM740IN	(SN7400N)	Quad Two-Input Gate	0.250	0.200	. 167
	(SN7401N)	Quad Two-Input Gate (Open			
		Collector) .	0.25	0200	0.167
DM7402N	(SN7402N)	Quad Two-Input NOR Gate.:	0.250	0.200	0.167
DM7403N	(SN7403N)	Quad Two-Input Gate (Open			
		Collector)	0.250	0.200	0.167
DM7404N	(SN7404N)	Hex inverter	0.27	0.225	0.188
DM7405N	(SN7405N)	Hex Inverter (Open Collector)	0.275	0.225	0.188
DM7410N	(SN7410N)	Triple Three-Input Gate	0.250	0.200	0.167
DM7420N	(SN7420N)	Dual Four-Input Gate	0.250	0.200	0.167
430 N	(SN7430N)	Eight-Input Gate	0.250	0.200	0.167
DM7440N	(SN7440N)	Dual Four-Input Buffer	0.250	0.200	0.167
DM7450N	(SN7450N)	Expandable Dual AND-ORINVERT Gate	0.250	0.200	0.167
DM745IN	(SN745IN)	Dual AND-OR-INVERT Gate	0.250	0.200	0.167
DM7453N	(SN7453N)	Expandable AND-OR-INVERT Gate and	0.250	0.200	0.167
DM7454N	(SN7454N)	AND-OR-INVERT Gate	0.250	0.200	0.167
DM7460N	(SN7460N)	Dual Four-Input Expander	0.250	0.200	0.167
DM7472N	(SN7472N)	J-K Master Slave Flip Flop	0.325	0.263	0.221
DM7473N	(SN7473N)	Dual J-K Flip Flop	0.525	0.417	0.350
DM7474N	(SN7474N)	Dual D Flip Flop	0.450	0.363	0.300
DM7476N	(SN7476N)	Dual J-K Flip Flop with Preset and Clear Inputs	0.563	0.450	0.375
DM7486N	(SN7486N)	Quad Exclusive-OR Gate	0.575	0.488	0.425
DM74107	(SN74107N)	Dual J-K Flip Flop with Vce and			

TRANSISTORS

LARGE QUANTITY-PRICES ON APPLICATION

BC
BC
107

POWER DEVICES, SENSITRON GUARANTEED. INDUSTRIAL STOCK ITEMS

ZENER DIODES	
BZY95 Series 40p	32p 28p
1.5 Watt	
10 Volt-	
75 volt	
BZX70 Series 24 ${ }^{\frac{1}{2} \text { p }}$	20p 171p
2.5 W	
7.5 Volt.	
75 Volt	
	1-24 25+
1ZMT10-	23p 19, ${ }^{\text {p }}$ p
1 Watt $\pm 10 \%$	
3.3 Volt-8.2 Volt 25p 21p	
1 Watt $\pm 5 \%$	
IZMTIO	$15 \mathrm{p} \quad 13 \mathrm{p}$
9.1. Volt-33 Vols	
IZMT5 9.1 Volt-33 Volt	174p 14tap

SILICON RECTIFIERS, 1 AMP WIRE-ENDED PLASTIC

Type							P.I.V.	1-100	$100+$	$1000+$
IN400]	.	\cdots	.	\cdots	.	-	50	7p	6 p	4 p
IN4002	100	8p	7p	41p
IN4003	\cdots	\cdots	.	-	.	\cdots	200	10 p	9 p	5p
1 N4004	.	.	-	.	.	\cdots	400	10p	${ }^{9} \mathrm{p}$	5p
IN4005	-.	\cdots	.	\cdots	.	.	600	12p	10p	7 p
IN4006	.	-	.	.	.	\cdots	800	14p	12p	9p
IN4007	.	-	1000	$16 p$	13p	10p

FOR INDUSTRIAL TRADE "SWIFT SERVICE" 60 PAGE CATALOGUE. SEND 35p. TERMS C.W.O. OR C.O.D. EXCEPT FOR EST. ACCOUNTS, GOVERNMENT DEPTS., ETC. PLEASE ADD $10 p$ P. \&P. (U.K.), 50p OVERSEAS As these are trade prices it is regretted that we have to impose a minimum order value of $£ 2 \cdot 50$ U.K., £5 overseas. Orders to:

Special offer of AMPEX professional tape heads mu-metal shrouded. (Designed for model A.
track record, or playback, $£ 3.00$. Erase head $£ 2.00$. Set of 3 with mounting bracket and cover $\mathbf{\varepsilon 7} \cdot 50$. Half track record only, $63 \cdot 00$ each. Carriage paid.

OXLEY P.T.F.E. BARB TERMINALS. Stand off K
HARWIN. Tapped (6 8a) high voltage "stand of insulators, length $\frac{z}{n}^{\prime \prime}$ " tapped (8 B) it long. 62.00 per 100. Carriage Paid.
"BENSON BROS." $12 v$ D.C. HEAVY DUTY SOLENOID. Size: ${ }^{3}$ overall $\times{ }^{1 t} \times$ Very "DECCO" MAINS SOLENOID. Compact and very powerful. 16 th. pull.
i" travel which can be increased to removing captive-end-plare. Overall size WEBER MAINS SOLENOID. Robust WEBBER MAINS SOLENOID. Robust and strong.
 6 lb . pull at $11{ }^{\prime \prime} ; 8 \mathrm{lb}$. at $\mathrm{I}^{\prime \prime}: 10 \mathrm{lb}$. at ". The non-captive
 $2 \frac{1}{\prime \prime}$ high $\times 2 \times 2.21 \cdot 25$ plus 25D P. \&
MAINS SOLENOID BY MAGNETIC DEVICES LTD. A beautifully constructed solenoid at half normal price. A two-sided bracket is insorporated for vertical
or horizontal mounting. Size:
$\left\lvert\, \frac{1}{2}\right.$
$\frac{1}{2}^{2}$, Pull is or horizontal mounting. Size:
approx. 2 lb, , plunger travel $t^{\prime \prime}$. Fixing eye takes up to $\frac{1}{2}$ bolc. Plunger non-captive. New in original makers bot. ${ }^{5}$ bit each, plus 25p P. \& P. Large number available, special price for quantity.
Perspex enclosed, plug in, with base. size 1 , $X H_{3} \times$
 S.t.C. Midget Sealed Relay type 4109 EC . 12 v .40 mA 170s2. single H.D. make. 53 p each.
 \&1.00.
"OMRON" OCTAL BASE, A.C. mains. $2 \times 5 \mathrm{amp}$. C/O contacts. Perspex enclosed. 88p.
 ea. $1.260 \Omega 48 \mathrm{vv} .6 \mathrm{c} / \mathrm{o}$. 83 p ea.
E.R.G. $1,000 \$ 6 \mathrm{v}$. DC. I make encapsulated reed type

MOTORS

AMPEX 7.5v. D.C. MOTOR. This is an ultra-precision cape motor AG20 portable recorder. Torque $450 G M / C M$. Stall load at 500 ma . Draws 60 ma on run. 600 rpm speed adjustment, internal AF/RF suppression. !" dia. $\times 1^{\prime \prime}$ spindle motor dia. $\times 16$. Our price $£ 4.25$. P. \& P P 25 Lare quantity available (spesial quotations). M
able 75 p each.

PRECISION FAN CO. Smiths Industries) CENTRIFUGAL FAN BLOWER. This is a beautifully balanced. particularly quiet running. unit giving approx. 90 cubic it. $/ \mathrm{min}$. The motor is a 2 pole shaded oly 240 ma on run. Weight $2 t$ ib Mysizes. drawing 3 in widt (case 125 . 125 . 3 lin. Width (case only) 3.125 in ., Width overall (inc.
motor) 5.25 in. aperture 3.125 in . by 4.85 in. Offered motor) 5.25 in., aperture 3.125 in . by 1.85 in. Offere well betow makers price at $\mathbf{~ P R O G R A M M E ~ \& ~ \& ~ P . ~} 25$. 25 . A bank of 15 micro-switches are each independently
operated by 15 pairs of cams which in turn are individuolly adjustable to give switchhing periods of zero to 12 seconds with infinitely variable combinations. A mains
synchronous motor drives the cam shaft ac 1 rev, per synchronous motor drives the cam shaft at I rev. per
12 seconds 15 R.P.M. Designed originally for vending
machines at a cost of E15.00 plus. Many applications machines at a cost of 15.00 plous. Many applications
where continuous sequence programmes are required. where continuous sequence programmes are required
sueh as lighting effets etc. New in original makers
cartons. First class value at 85.75 plus 25 p . $\&$. P .

ELECTROLYTIC CAPACITORS MULLARD $900 \mu \mathrm{~F}$ 100v. heavy ripple serew terminals 1 To" dia. 3 ! 70p eac., 66.00 per doz. $1,600 \mu \mathrm{~F}$ 64v. If dia. $\times{ }^{3}$
$38 p$ ea., $£ 3.50$ per doz. $10,000 \mu \mathrm{~F}$ 10v. If dia. $\times{ }^{3}$
 50p ea., $\mathbf{E 4} 50$ per doz.
SOp ea., $\mathbf{E 4 . 5 0}$ per doz
HUNTS $1,000 \mu \mathrm{~F}$ 50v. $1 i^{\prime \prime}$ dia, $\times 2^{\prime \prime}, 25 p$ ea., $10,000 \mu \mathrm{~F}$ v. $13^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 30 \mathrm{pea.} £$.3.00 per doz. $16 \mu \mathrm{~F} 350 \mathrm{v}$ $3^{\prime \prime} \times 11^{\prime \prime \prime}$ wire ends. $\mathbf{~} 2.00$ per doz. $1,000 \mu \mathrm{~F} 50 \mathrm{v}$. $\mathrm{I}^{\prime \prime}$
dia. $\times 3^{\prime \prime}, 30 \mathrm{p}$ ea.. 63.00 per doz. $32-32 \mu 275 \mathrm{v}$. $\mathrm{I}^{\prime \prime}$ dia. , 38p ea. $100 \mu \mathrm{~F} 100 \mathrm{ve}$. I" dia. X $\mathbf{2}^{\prime \prime}$. 25 p e ea. ERIE. Ceramicon capacitor. Type CHV4IIP: 500 P.F 30 KV Size $1.5^{\prime \prime}$ dia. $\times 1.44^{\circ}$ long. 50 p ea. Carriage paid HIGH CAPACITY ELECTROLYTICS. Cylinder ype with screw terminals on top. Average size 3 dia. X "Mallory" $25.000 \dot{\mu}$ F 25 v . D. C. . 40 v . D.C. surge. "Mallory $35.000 \mu \mathrm{~F}$ 15v. D.C., 20 v . D.C. surge. "Mallory $40,000 \mu \mathrm{~F}$ 10v. D.C. 12 v . D.C. surge. "Sprague $40,000 \mu$ F $10 v$. D.C.. $12 v$. D.C. surge. "General Electric",

GEARED MOTORS "Parvalux" Reversible 100 RPM Geared Motor. Type
$5 . D .14,230 / 250 \mathrm{v}$. A.C. 22 lb./in. E spindle. Ist class condition mited number only as above

Brand New. $£ 12.50$ each P. \& P 50 p
LECTRO CONTROL ICHICAGOI Ch

ELECTRO CONTROL (CHICAGO) Shaded 240 V . 50 Hz .200 rpm 10 lb . 'in. 62.50 . P. \& P. 25p MYCALEX. Open frame, shaded pole motors. 240 v $50 \mathrm{~Hz} .7 \mathrm{rpm} .28 \mathrm{lb}, \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb} / \mathrm{in}$. 2225 each.
$\mathrm{P} . \& \mathrm{P} .25 \mathrm{p}$.
"CROUZET" TYPE 965. 115 $240 \mathrm{v} .50 \mathrm{~Hz} .47 / 68$ wates. 50 rpm Stourly constructed. Size: $2 \mathrm{H}^{\prime \prime}$ dia $\times 3 \frac{1 "}{}$ long, plus spindle $1^{\prime \prime} \times{ }^{*}$
dia. Anti-clock. $£ 2.75$. P. \& P. $25 p$

TYPE 955. Same as above, but 3 rpm . $3 \mathbf{0 0}$. P. \& P
SYNCHRONOUS MOTORS. $220 / 380 \vee 50 / 60 \mathrm{~Hz}$ $250-300$ rpm. 75 each.
MYCALEX MAINS. Shaded pole, $1425 \mathrm{rpm} . \frac{3}{16}$ MYCALEX MAINS. Shaded pol
spindle, 2 for $£ 1 \cdot 25$. Carriage Paid.
MAINS INDUCTION MOTOR. Open frame $\frac{1}{6}$ spindle, weight lb. Powerful. 88p each. P. \& P. 12 p . $10 / 240$ Neight 6 lbs. 63.50 each t 6.00 per pair. P. \& P. 50 D each.
"FiBRE GLASS' COPPER CLAD. Top grade. One ize only. $7 \frac{1}{\prime \prime} \times 4 \frac{1}{4 \prime}^{\prime \prime} \times 14^{\prime \prime} .3$ panels 6100 . 12 panels BELLING \& LEE FUSEHOLDERS YPE L!382. Size 0 . Rating 7A. Breakdown voltage
 posts suitable for soldering or solderless snap-on onnectors ($t^{\prime \prime} \quad 0.032^{\prime \prime}$). Current rating 30 A max. Lise price 30 p. Our price $£ 1.50$ per doz.
"MALLORY', LONG LIFE $1.35 \mathrm{v} .3 .600 \mathrm{ma} / \mathrm{H}$. CAP $250 / 300 \mathrm{ma}$
 ont. current. Size: $2^{\prime \prime} \times$ i". 5 for $\mathbf{E l} 00$ or 6200 per doz. Carr. Paid. Type B cits. 1.35 each 10.5 v . Overall. $350 \mathrm{ma} / \mathrm{H}$. CAP. $20 / 25 \mathrm{ma}$ cont. current. Size:

A.C./D.C. M/IRON AMMETERS 0.5 amps or $0-8$ amps (suitable battery chargers etc.). Perspex frone. Size

We welcome order, from established companies.
educational depts. etc., a surchargs of 50 p to cover cost of invoicing must be made on any order amounting

EIECTROTECH SALES

BUSINESS HOURS: 264 PENTONVILLE ROAD, LONDON, N. 1
9.30-6 (1 p.m.Sats.)
(ONE MIN. FROM KINGS X STATION) TeI. 01-8377401/2

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $£ 0 \cdot 40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0 \cdot 14$. extra. P. \& P. $\mathfrak{£ 0} \mathbf{2 5}$. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate. P. \& P. $£ 0.22$ in U.K. Add $£ 0 \cdot 14$ for Battery.
Full price refunded if returned in $\mathbf{7}$ days

2200MFD:100v:10A(50${ }^{\circ}$) 75p each BRAND NEW

 LARGE REDUCTION FOR QUANTITY

The largest selection

74 Series TTL I.C'S down again in Price

Check
All dev
BI-PAK
BI-PAK
Order No
No

BP $100=7400$ Quad. 2 -input NAND Gate
BP $01=7401$ Quad. 2 -input Pos. NAND Gate (with

open collector output

BP $13=7113$ Dual 4 input Bchmitt Trigger
BP $20=7+20$ Duan 4 -input Pos. NAND Gates

${ }_{\mathrm{BP}}^{\mathrm{BP}} 41=7441 \mathrm{BCD}=742 \mathrm{BCD}$ tocclinal nixie driver

BPI $10=74110$ Cates Master-slave Fipplops
BF111 $=7+1111$ Dual Datal Lock-out Fip- Flop
BPP118 $=7+118$ Hex Set. Reeet Latches
BP118 $=74118$ Hex Set. Reset LLLthes
BP119 $=74199$ Hex Ret Reese Latches 24
BP
BP141 = 74141 BCD-ta-Decimal Decoder $1 / 1$ rive
BP145 $=74145 \mathrm{~B}$ BCD-to- Decimal Decoder/Driver. O/C
$\begin{array}{ll} \\ 3 P 151 & =741518 \text { - Bit Data 8electors }\end{array}$

$\mathrm{BP} 155=74155$ Dial 12 to 4 Line Decoder
$\mathrm{BPP} 156=74159$ Dual 2 to 4 Line Decoder $0 / \mathrm{C}$
BPI60 $=74160$ gync. Decade Counter
BP161 $=74161$ Evnc. 4 - Bit Binary Co
BP161 $=74161$ Bync. 4 . Bit Binary Counter
BP1 $141=74199$ Bync. Up-Down BCD Counte

BP196 $=74196$ Pre-setable 50 MHZ Decade Counter

Devices mas be mised to qualify for
application. (TTL 74 Series only.)
Data is available for the above series of I.C's in booklet form. PRICE 13 .
TTL INTEGRATED CIRCUITS
Manufacturers" "Full outs"-out of spec. Hevices including functional units and
part function but clased as out of spec, from the manufacturers' very rigid specificn
PAZ No. PAKNo. PAK No.

DTL 930 SERIES

may le mixel to qualify for quantity price. Lary
"O" PAKS QUALITY TESTED SEMICONDUCTORS

 Matched trans. OC
OC 75 transisturs
OC 72 transistors
AC 128 trans. P.N.P. high gain 50 D
AC 126 trans. P.
AC 126 trans. P. .
OC 81 type trans.
oc 71 type trans. $\quad \because \ddot{a}$
AF 110 type trans.
OC 171 H.F. type trans.
2N2926 8 il . Epoxy trans.
 Madt's 2 MAT $100 \& 2 \mathrm{MAT}$
120
Madt's 2 Mat 101 OC 44 Germ trans. A.F. AC 127 NPN Germ. trans.
NKT trans. A.F. R.F. code NKT trang. A.F. R.F. code
OA2 2 sil. diodes sub-min.
OA B1 diodes IN914 Sild diales 75 PIV 75 mA
OA 95 Germ. diodes suh-min. 10A 600 PIV Sil Rects. 18425 R sil. power rects. BYZ 13
Giil. trans. $2 \times 2 \mathrm{~N} 690,1 ;$ gil. 2uitch transs. 2 N 706 NPD
sil. switch tring. 2 N 708 NPN NP 101. trans. 2×2 N1131
$1 \times 2 N 1132$ sil. NPN trang. 2N1711
Sil.
NPN
trans.
2N 2369 iil. NPP TO-5 $2 \times 2 \mathrm{~N} 2904$
$\times 2 \mathrm{~N} 295$ NPN

$$
\begin{aligned}
& \text { NPN trans. } \\
& \text { 2N } 3705 \mathrm{mmp} \\
& \text { NPN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2N } 3705 \\
& \text { NPN Amp. } 4 \times 2 \text { N } 3707,3 \times \\
& \text { 2N:/708 } \\
& \text { Plantic NPN TO-18 } 2 \mathrm{~N} 3904
\end{aligned}
$$

$$
\begin{aligned}
& \text { Plastic NPN TO-18 } 2 \mathrm{~N} \\
& \text { NPN trans. } 2 \mathrm{~N} 5172 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { NPN trans. 2N5in2 } \\
& \text { BC 107 NPN trans. } \\
& \text { NPN trans. } 4 \times \text { BCios. } 3 \times
\end{aligned}
$$

BC109
BC 113 NPN TO-18 trans.
BC 115 NPN TO-5 trans.
NPN high gain 3×1 PCI BCY70 PNP trans. TO-18
BFY52
BEY 28 NPN Bwitch TO-18. B8Y 28 NPN Awitch TO-18.
BYY 95 A PN trans. 300 MHZ
BY100 type sil. rect. BY 100 type sil. rect.
Sil. \& germ, trans. mixed all
£1

ANOTHER BI-PAK FIRST!
THE NEW S.G.S. EA 1000

 Monic distortion at Supply Voltage (Vs) Supply Voltage (V)
24V 15 ohm load.
$\begin{array}{lll}\text { Qty. } & \begin{array}{l}1-9 \\ \text { Price each } 62.6]\end{array} & \begin{array}{l}10-25 \\ E 2.28\end{array}\end{array}$
arger quantitie
10.25
$E 2.28$
quoted
ull hook-up diagrams and Omplete technical data sup-
lied free with each module or available separately at
10p each.

SUPER PAKS NEW BI-PAK UNTESTED
SEMICONDUCTORS
Unoenoulled Value and quality in Every Pak; or money lisk.

$\begin{array}{cccc}£ 3.50 \\ £ 2.10 & £ 1.50 & £ 3.50 & \text { NEW LOW PRICE TESTED S.C.R's }\end{array}$
 888 8.

EDI- puiva- one 50 p own orders oho	FREE One 50p Pack of your own choice free with FREE orders valued $£ 4$ or over.	GERM. POWER TRABS Type Price ench
S SLLICON RECTIFIERS-TESTED		
	300 mA 750 mA 1 A 1.5A 3 A 10A	$\mathrm{Oc23}^{0}$ …........33p
50 4D 5D 5p	4 p	
1004808050	4 llllllll	0c28 ${ }_{\text {Oct }}$
	$\begin{array}{llllll}5 p & 9 p & 6 p & 14 p & 20 p & 24 p\end{array}$	0c29 …....... 40p
$\begin{array}{llll}400 & 6 p & 13 \mathrm{p} & 70 \\ 800 & 70 & 16 \mathrm{p} & 10 \mathrm{p}\end{array}$		
$\begin{array}{rrrr}600 & 7 \mathrm{p} & 16 \mathrm{p} & 10 \mathrm{p} \\ 800 & 10 \mathrm{p} & 17 \mathrm{p} & 13 \mathrm{p}\end{array}$		
1000 11p 25 p 15p	$\begin{array}{llllllll}11 p & 25 p & 15 p & 30 \mathrm{p} & 46 \mathrm{p} & 63 \mathrm{p} & \text { £250 }\end{array}$	
$200-33 \mathrm{p}$	33p - 33p 5\%p 75p	AD142 40p
		2N3055 115 WATT SIL. POWER, NPN
		OUR PRICE 63p
		FULL RAFGE OF
		${ }_{2-33 \mathrm{~V}}$
8ILICON DIAC For use with Triacs BR100 \quad 37p each		400 mV (DO-7 Case)
		10 stud) 25 p es. All
	HIJUNCTIONS SIEMENS VHF TRAN	fully tester 5% tol.
48. Eqvt. 2 N2646	Eqvt. 2 N2646 OSC. UP TO 900 MHZ.	voltage requlred.
t. Tls43. BEN 3000	Tl843. BEN 3000 USE as REPLAC	
7p each. 25-99 25p,	each. 25.99 25p, MENT FOR AF13	GRAYD NEW TEXAS
100 UP 20p	P 20p	Gzilit TRANBIBTORS
	ERECIAL	Pak No EQVT
		T1 82G3714 OC71
NPN SILICON Planar BC107/8/9 10p each, 50-99 9p. 100 up 8p each. 1.000 off, 7p each. Fuily tested and coded TO.18		T2 82G374 OC72
		T3 82033744 A OCB11
		T4 82G:881A OCB1
		c382T Oc82
		T8 82 G 378
P100 P!		2
St		7.

 JUMBO COMPONENT PAB8, Mixed Clec-
tronic Components. Exceptionally
Galue (no rubbish). Resistors, capacitors, pots, Electrolytics \& Coiss + many other
piseful items. Appraximately 3 lb. in weight

all all

REFURBISHED computers and peripherals

a complete hardware and software back up

special two tier maintenance system

A new comprehensive service to computer users. C.S.S. offer from a SINGLE SOURCE-refurbished computers and peripheral equipment, comprehensive hardware and software back up, plus special maintenance facilities tailored to your needs. Whether you need a card punch, or a complete system installed, working and maintained, we can help.
Write for our brochure or make an appointment to visit our showroom now.

Computer Sales \& Services (Equipment) Ltd 49-53 Pancras Road London NW1
Telephone 01-2785571
Telex 267307

QUALITY PARTS

FOR THE DISCERNING BUILDER
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material size $41^{\prime \prime} \times 23^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metaiwork, which also has edge connector mounting. Available in Fibreglass material only. BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design All parts are in stock except the Metalwork.
J. R. STUART TAPE CIRCUITS. All parts now available.

Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS
 PENYLAN MILL, MORDA, OSWESTRY, SY10 9AF SALOP Tel: Oswestry 2894
 Personal callers are always welcome. But please note we are closed on Saturdays.

W.W. AMPLIFIER KITS
 100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED)

Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps,
32 resistors 3 pets, choke, $2 \mathrm{~h} / \mathrm{sinks} 4 \mathrm{in} . \times 4.6 \mathrm{in}$. $\times 1.3$ in
drilled $2 \times$ TO3, fibreglass P.C.B., construction notes.. .. i8.00
notes.. $\quad . \quad 18.00$
$\begin{array}{llllllll}2 \text { sets } \\ \text { F/glass P.C.B. } & \cdots & \ldots & 0.95 & \text { Mains transformer } & \cdots & 6.00\end{array}$

F/glass P.C.B.	\cdots	\cdots	$\mathbf{0 . 9 5}$	Mains transformer	\ldots	6.00
4700 mfd. 63 v.	\because	.	1.70	1000 mfd .64 v.	\cdots	\because

$\begin{array}{lllll}4700 \text { mid. } 63 \mathrm{v} . \\ \text { Power supply; } 42 \mathrm{v} . \\ \because+50 \mathrm{v} . & \text { transformer, all } \mathrm{cpts} ., \mathrm{h} / \mathrm{sink} & \because & 15.00\end{array}$ - 28.50

2 power supply kits (New $\ddot{\text { approach to class B B }}$)
30W BLOMLEY

10 transistors $\quad . \quad$.. $5 \cdot 10$ Resistors, caps, pot .. $1 \cdot 30$
F/glass P.C.B. $\quad 0.65$
LINSLEY HOOD CLASS AB
MJ481, MJ491, MJE521, BC182L, BC212L, Zener $3 \cdot 35$
16 resistors, 10 capacitors, 2 pots $2 \cdot 20$
Please state 8Ω or 15Ω.
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
4 transistors 1.55 Resistors, caps, pot
1.80

REGULATED 60v. POWER SUPPLY
tur-
A design, suitable for a pair of Bailēy or Blomley amplifiers, featuring very effective S / C protection. All components, including mech. parts, heat sink fuses, etc.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} W 5 \%$. Low noise carbon film.

SEMICONDUCTORS							
2 N 1613	0.20	2N3711	0.09	BC212L	0.12	1808720	0.50
$2 \mathrm{Ni711}$	0.25	2 N 319	0.23	BFX84	0.25	1840 K 20	1.40
2 N 3053	0.20	2N3720	0.55	BFY50	0.20	1 N916	0.07
2N3055	0.60	2N3904	0.27	40361	0.47	1544	0.05
2N3702	0.11	2N3906	0.27	40362	0.57	15920	0.10
2 N 3703	0.10	2N4058	0.13	MJ481	1.20	153062	0.25
2N3704	0.11	2 N 4062	0.12	MJ491	1.30	TIP29A	0.50
2N3705	0.10	BC107	0.10	MJE52I	0.72	TiP30A	0.60
2N3706	0.09	BC109	0.10	MPSAO5	0.30	TIP31A	0.60
2 N 3707	0.11	BC125	0.15	MPSA55	0.35	TIP32A	0.74
2N3708	0.07	BC126	0.22	MPSU05	0.60	TIP33A	1.00
2N3709	0.09	BCli82L	0.10	MPSU55	0.70	TIP34A	2.00
2N3710	0.09	BC184L	0.11	MPSH05	0.20	TIP3055	0.60
BRAND	NEW		$\begin{aligned} & \text { LITY } \\ & \text { LOR } \\ & \text { POS } \end{aligned}$	COMPON ER ONL FREE		FAST SE	ICE

POWERTRAN ELECTRONICS
2 KENDALL PLACE - LONDON
W1

BEST BUY IN TTL!!

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LSTSERVIGE - A full design range of hlgh quality TTL available from LST your Officlally Appointed Siemens Dlstributors

Part No. Description Equal 1-24 25-99 100 up
FHIOI Quadruple 2-input
NAND gate
111 Triple 3-input NAND
121 Duale 4 -input NAND
131 g-inte
141
Dual 4-input NAND
151 Expandable dual
2-wide 2-input
AND-OR-INVERT
$161 \begin{gathered}\text { gate } \\ \text { Dual } 2 \text {-wide } \\ \text { AND-OR-INVERT }\end{gathered}$
171 Expate $\begin{gathered}\text { gatable 4-wide } \\ \text { 2-inputAND-OR- }\end{gathered}$
2-input AND-OR-
INVET gate
|81 4-wide 2-input
AND-OR-INVERT
191 Quadruple 2-input
201 Quadruple 2-input with open
collector output
$211 \begin{gathered}\text { Hex inverter } \\ 221 \text { Gated full adder }\end{gathered}$
$\begin{array}{ll}23 \mid & \text { 2-bit binary full-adder }\end{array}$
$\begin{array}{ll}231 & \begin{array}{l}\text { 2-bit binary full- } \\ 241 \\ \text { Four-bit binary }\end{array}\end{array}$

7400 20p 16p 14p $7410 \quad 20 p \quad 16 p \quad 14 p$ $\begin{array}{llll}7420 & 20 p & 16 p & 14 p \\ 7430 & 20 p & 16 p & 14 p\end{array}$ 7440 24p 20p 17p $7450 \quad 20 p \quad 16 p \quad 14 p$ 7451 20p 16p 14p 7453 20p 16p 14p 7454 20p 16p 14p 7402 20p 16p 14p
$\begin{array}{llll}7401 & 20 p & 16 p & 14 p\end{array}$ $\begin{array}{cccc}7404 & 20 p & 16 p & 14 p \\ 7480 & 67 p & 21 p & 18 p \\ 7482 & 67 p & 56 p & 48 p\end{array}$ $\begin{array}{llll}7483 & 87 p & 73 p & 62 p \\ 7 & 61.32 & £ 1.16 & 61.00\end{array}$

$271 \begin{gathered}\text { Hex inverter with } \\ \text { open collector }\end{gathered}$
open collector
output
$281 \begin{gathered}\text { output } \\ \text { BCD to decimal } \\ \text { decoder TTL }\end{gathered}$ decoder
output
291 Quadruple 2-input 341 open collector ou
exelusive
351 Schmitt Trigger
361 Excess 3 to decima 371 Excesoder 3 gray to
331 Excess gray to
decimal decoder
3 Quad 2-input positiv
331 Quad 2-input positive
391 Quad 2-input
$\begin{array}{llll}7413 & \text { 35p } & \left.\begin{array}{ll}\text { 27p } & \text { 23p }\end{array} \quad \begin{array}{ll}\text { 25p }\end{array}\right]\end{array}$
$\begin{array}{lllll}7443 & £ 1.45 \quad & £ 1.20 & £ 1.08\end{array}$
$7444 \quad £ 1.45 \quad £ 1.20<1.08$
$7408 \quad 25 p \quad 21 p \quad 18 p$
AND gate open
FLYIO1 Dual 4-input
FL 101 J-Kpander
$1 i 1 \mathrm{~J}$ flip flop
limaster-slave 121 fual J-Kiop 131 Dual J-K flip-flop $131 \begin{gathered}\text { Dual J-K master- } \\ \text { slave flip-flop }\end{gathered}$

7409 25p 21p 18p $\begin{array}{llll}7460 & \text { 20p } & \text { 16p } & 14 p \\ 7470 & \text { 45p } & \text { 37p } & \text { 32p }\end{array}$ 7472 32p 27p 23p
7473 45p $40 \mathrm{p} \quad 35 \mathrm{p}$ 7476 45p 40p 36p

> Part No.

141 Dual D-type edge 151 Quad bistable tatch 151 Quad bistable latch
$\begin{array}{llllll}161 & \text { Decade counter } & 7474 & 46 p & 38 p & 33 p \\ 171 & 7450 & 45 p & 40 p & 37 p\end{array}$

$\begin{array}{llllll}191 & \text { 4-bit shift register } & 7495 & 80 \mathrm{p} & \mathbf{8 7 p} & \mathbf{5 7 p} \\ 201 & \mathbf{7 2 p} & 62 \mathrm{p}\end{array}$ xnchronous
4 -bit decade
$\begin{array}{llll}\text { counter with one } \\ \text { line mode control } \\ 74190 & £ 1.80 \quad £ 1.48 \quad £ 1.27\end{array}$
$211 \begin{gathered}\text { Synchronous up down } \\ 4 \text {-bit binary counter }\end{gathered}$ With one line
mode control

 4-bit decade
251 (As above)-binary
74192 £1.74 $£ 1.45$ £1. 25
 271 Dual J-K master-slave
$301 \begin{gathered}\text { and clear } \\ \text { Dual quadruple } \\ \text { bistable latch }\end{gathered}$

FLKIO1 Mibstable multi-
FLL $101 \begin{aligned} & \text { BCD to decimal } \\ & \text { decoder and nixie } \\ & \text { driver }\end{aligned}$
74121 48p 40p 34p
$74141 \leqslant 1.22 \leqslant 1.02 \quad 87 p$

CONTRACT ORDER PRICES AND HULK QUANTITY PRICES QUOTED ON REQUEST

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 FTEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

 \title{
GEMI－CONOUOTORE／VALVES
}
 \title{
GEMI－CONOUOTORE／VALVES
}

Abstract

 NNNN NMが 动范 ज紜 紜綿絲糸糸云会俞察 ${ }^{\text {TR }}$

TRANSISTORS

VALVES

СА 3000		RATED	$\underset{\& 1 \cdot 02}{\text { CIR }}$	CUITS	
	21.80			8N7413	35p
CA3005	21．17	FJH101	25p	SN7420	23p
CA3007	22．62	FJH111	70 p	8NT 430	23p
CA3011	75p	FJH121	25p	SN7440	23p
CA3012	88p	FJH131	25p	EN7441AN	N 87
CA3013	21.05	FJH141	25p	SNT 442	87p
CA3014	21.24	FJH151	25p	SN7446	21.25
CA3018	84p	FJH161	70p	sN7447	21.10
CA3018A	$1 \cdot 10$	FJH171	25p	8N7448	21．00
CA3019	84p	FJH181	25p	8N7450	23p
CA3020	21－26	FJH221	25p	8N7451	23p
CA3020A	21.60	FJH231	25p	8N7453	23p
CA3021	21．68	FJH241	25p	8N7454	23p
CA3022	\＆1．30	FJE251	25p	8N 7460	23p
CA3023	81－26	FJJ101	50 p	BN7472	35p
CA3026	\＆1．00	FJJ111	50 D	8N7473	43p
CA3028A	74p	FJJ121	${ }^{80 \mathrm{p}}$	8N7474	43 p
CA 3028 B	21.05	FJJ131	${ }^{60 p}$	BN7475	47p
CA3029	87p	FJJ141	21.25	SN7476	45p
CA3029．	$21 \cdot 65$	FJ．1181	75 p	8N7483	87p
CA3030	$21 \cdot 37$	FJJ191	65p	gn7486	50p
CA3035	\＆1．22	FJJ211	21.25	SN7490	21.00
СА 3036	72p	FJJ351	21.25	8×7492	87p
CA 3039	82p	FJL101	21.25	SN7493	87p
CA3041	21.09	FJY101	25p	8N7495	87p
CA3042	21.09	IC10	22．50	BN7496	87p
CA3043	21.37	IC12	22.50	8×74107	43p
CA3044	\＄1．20	L900	40 p	8N74153	21.40
CA3045	21－22	L914	40p	SN74154	22.20
CA3046	81p	L923	40 p	SN74160	81.80
CA 3047	21－37	MC724P	88 p	8N74161	21.80
CA3048	22.04	MC780P	22.47	8N74164	$\underline{22.20}$
CA3049	21.80	MC788P	82p	8N74165	22.25
CA3050	21.84	MC790P	21.24	8N74192	22．25
CA3051	21.34	MC792P	${ }^{86}$ p	QN74193	22.25
CA 3052	21.65	MC799P	86p	TAA241	21．62
CA3053	46p	MC1303L	22.62	TAA242	24.25
CA3054	21.09	MC1304P	P22．75	TAA243	81.50
CA3055	22.40	MC1305P	P $£ 3.88$	TAA263	75p
CA3059	$81 \cdot 65$	MC838P	25.49	TAA293	97 p
CA3064	21．20	MC1 435 P	P23．45	TAA300	81.75
FCH101	85p	MC1552G	A4．61	TAA310	£1．25
FCH111	21.05	MC1709C	CG 84D	TAA320	727
FCH121	21．05	MFC4000		TAA350	81.75
FCH131	50p		£1．12	TAA435	21.47
FCH141	21.05	Pa 222	24．37	TAA521	21．32
FCH151	21.05	PA230	${ }^{\text {¢1 }} 1.00$	TAAB22	${ }^{23} 4.60$
FCH161	50p	Pa 234	$\underline{21.00}$	TaA530	84．95
FCH171	21.05	PA237	21.85	TAA811	24－45
FCH181	21.05	PA246	$\underline{\text { 2 } 2.45}$	TAB101	97p
FCH191	21.05	PA424	22.35	TAD100	81.97
FCH201	21.30	PA264	44.47	TAD110	81.97
FCH211	21.30	PA265	£4．97	8L403A	82.25
FCH^{221}	21.30	8NT 400	${ }^{23 \mathrm{p}}$		81.47
FCH231	21.50	8N7401	23p	UA702A	$\underline{22.80}$
FCJ101	21.60	8N7402	23 p	UA702C	77 p
FCJ111	21.50	8N7403	23p	UA703C	11.37
FCJ121	22．75	8S7404	23p	UA709C	81.25
FCJ131	22．75	8N7405	23p	UA710C	£1．25
FCJ1 41	25.25	8．77406	80 p	UA716	\＆1．87
${ }_{\text {FCJ201 }}$	21.80	SN 7408		UAT23C	${ }_{21} 1.68$
FCJ211	22．75	$\begin{aligned} & \text { 8N7409 } \\ & 8 N 7410 \end{aligned}$		UA730C	21.82 21.80
$\begin{aligned} & \text { FCK101 } \\ & \text { FCL101 } \end{aligned}$	24.30 22.80	8N7410 SN7411	23p	UA741C	87p
BRIDGE RECTIFIERS PLASTIC ENCAPSULATED					
600 PIV	1A	50p	200 P	PIV 4A	75p
50 PLV	2A	55p	400 P	PIV 4A	80 p
100 PLV	2 A	600	50 P	PIV 6A	62 D
200 PIV	${ }_{2}$ A	67p	100 P	PIV 6a	75p
400 PTV	2 A	80 p	200 P	pIV 6A	85 p
50 PIV	＋A	60p	400 P	PIV 6A	\＆1．10
100 PIV	4A	70 p			

30p	EL		
42p	EM		EL95
:---	:---		
EM80	合罟		

SILICON RECTIFIERS MINIATURE WIRE ENDED PLASTIC

4001 50PIV
4003200 PIV
4004400 PV
4005 600
4005 600PIV
4006800 PIV
40071000 PIV

TRANSISTOR DISCOUNTS：－
$12+10 \% ; 25+15 \%$ ； $100+20 \%$ ANY ONE TYPE POSTAGE ON ALL SEMI－CONDUCTORS 7p EXTRA．
S．A．E．FOR FULL LISTS

SAYE UPTO 33 $\frac{1}{3} \%$ OR MORE SEND S.A.E. FOR. DISCOUNT 'PRICE LISTS AND PACKAGE OFFERS!

HI-FI EQUIPMENT

RECORD DECKS B.S.R.
 MP6,
110
510
310
 MP60 T.P.d. 1 MP60 T.P.D. 2 610 T.P.D. 1
510 T.P.D.
210 Package*
 THORENS ${ }^{\text {£ }}$

Mono

RECORD DECK

PACKAGES
wired in teak renearei
plinth and cover
Horrard 2025 T/
Sonotol1e 9TAHCD

Garrard 8P25 III with Goldring G80\% $£ 18.95$ metal plinth.)
Gartard AP7R with Goldring G800....
BSR MP60 witb Audio Technica AT
£29.95

Goldring GLig/2 with Goldring G880.	Goldring GL75 with Goldring G800.	G42.50
Gatriage 50 P		

SINCLAIR EQUIPMENT

OOQ OSA

 power supply, E 18.85 . Carr. $37 \$ \mathrm{p} .2 \times 250 \mathrm{ampli}-$

 amplifer $£ 2450$. Carr. 3ip. 3.000 Amplifter $£_{\text {Carr, }} \mathbf{3 7 1 p}$.

HOSIDEN DHO4S

2-WAY STEREO HEADPHONES

Each headphone contalna a $2 \ln$. woofer and a aln. tweeter. Built In individual level controls. $25 \cdot 18,000$ c.p.s 8Ω imp. with cable and stereo plug. 25.97t. P. \& P. $121 p$.

alest

New 6th edition giving full details comprehensive range of HI-FI EQUIPMENT COMPONENTS. TEST EQUIPMENT and DISCOUNT COUPONS VALUE 50p. 272 pages, fully illustrated and detailing SEND NOW! STILL ONLY

371 p
$P \& P$ 10p

Changer, Plinth, cover and stereo cartridge.
TRANSISTOR FM TUNER

MARCONI TF.I42E DISTORTION Excellent condition. Fully tested $£ 20$.

TE-20RF SIGNAL G

TE22 SINE SQUARE WAVE

AUDIO GENERATORS

TRANSISTORISED L.C.R. A.C MEASURING
 1110MFD. 6 Ranges
$\pm 2 \%$ TURNS RATIO $1: 1 / 1000-1: 11100$. ${ }^{6}$ Ranges $\pm 1 \%$. Bridge voltage at , indeation. Attractive 2 tone metal case. size $77^{*} \times 5^{*} \times 2^{*}$

TE-I6A TRANSISTORISED
SIGNAL GENERATOR

LAFAYETTE RESISTANCE
CAPACITY ANALYSER

RUSSIAN 22 RANGE MULTIMETER

$\frac{\text { Our Price £5.97. P. \& P. 25p }}{\text { RDSSIAN C1-16 DOUBLE }}$
RUSSIAN C1-18 DOUBLE
BEAM OSCILLOSCOPE 5 mo/s lass Band. separate Y1 nnd X2 ampliflers. Rectangular
5 in. $\times 44 \mathrm{n}$. C.R.T. Calibrated
triggered sweep fron triggered sweep from $22 \mu / \mathrm{sec}$.
to 100 milli-sec. per cm. Fre running time base $50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{s}$
Built-in time base calibrator and amplitude calibrator. Supplied complete with all accessorie
and instruction manual

CRYSTAL CALIBRATO
NO. 10 Small portable crystal

 $30 \mathrm{Mc} / \mathrm{s}$ on harmonics).
Calibrated disis. Power reyulrements 300 V.D.C.
15 mA and 12 V.D.C.
0.3 A . Excellent condi0.3A. Excellent condi-
tion. $£ 4 \cdot 471$. Carr. 37 kp .

SOLID STATE VARIABLE A.C.
VOLTAGE REGULATORS
 Compact and panel mounting
Idesi for control of tamps TEIII DECADE RESISTANCE ATTENUATOR Variable range 0-1II

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{g}$. FET, S Meter
Varinble BFO for SgB , Built in Speaker. Band Varinble BFO for S8B, Buitt in Speaker. Band-
apread, Sensitivity Control. $220 / 240 \mathrm{v}$ AC or 12 g DC. 12 it $^{\circ} \times 42^{\circ} \times 7^{*}$. Brand new with instructlons. £25. Carr. 37 \}p.

UNR 30 RECEIVER
4 Bands covering $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. B.F.O. Built
in Speaker $220 / 240 \mathrm{v}$ AC. Brand new with instruc-

WS62 TRANSCEIVERS Large quantity available for E XPORT excelient condition. Enquiries invited LAFAYETTE HA-600 RECEIVER

variable B.F.O., noise limiter, \& Meter, Band AC or 12 v DC. Brand new with ingtuct Carriake 50p.
 drils elect ricatrol of tamps Input 230/240 v. A.C. Output continuously v. M.C. Outpute from
20 v .230 v. Madel
 £11.97t. Postage 128 p . AUTO TRANSFORMERS 40 db . Frequency: DC to 200 KHZ (-3 db). Maximum input leas than 4 watts (50 volts). Built in 600 on loal reaistance with internal/
external switch. Brand nev $£ 27.50$ P. P. 25 . ROUND SCALE TYPE PENCIL TESTER MODEL TS. 68

Completely portable, simple to use pocket sized tester. Rangers
2.000 o.p. ${ }^{0}$. Resistance $0-20 \mathrm{~K}$ ohms. Only El 97 .

VOLTAGE STABILISER TRANS FORMERS. 180-260v. input. Output 230 v . Available 150 w or 225 w . £12. 50 , Carr. 25 p .

230 VOLT A.C. 50 CYCLES RELAYS $\begin{gathered}\text { Brand new. } 3 \text { sets } \\ \text { of changeover }\end{gathered}$ contacte at 5 amp rat ing. 50 p each
P. \& P. 10 p (100 lots 240) Quan-
tities available.

POWER RHEOSTATS

High quality ceramlo construction. Windings embedded in vitreous enamel.
Heavy duty brush wiper. Contingous rating. Wide range available ex-stock. Heavy doty brush wiper. Continuous rating. Wide range available ex-stock. 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms .72$\} \mathrm{p}$. P. \& P. 7 \&p
50 WATT
 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms. £1-37. P. \& P. $7 \$ \mathrm{p}$.

YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality © Low price - Immediate delivery

MODEL S-260 General Puspose	
1 Amp	.. 25.50
2.5 Amp	.. £6.75
5 Amp	
8 Amp	214.50
10 Amp	218.50
12 Amp	\&21.00
20 Anıp	237.00

INTEGRATEDCIRCUIT SOCKETS

SOLE DISTRIBUTORS SUPER-ELECTRONICS

5, VIOLET HILL, LONDON N.W. 8. 6248281

CHOKES-INDUCTORS
Have you a suppression
problem?
'STANDARD' RANGE EX. STOCK
OR WILL DESIGN AND PRODUCE TO
YOUR SPECIFICATION

WW—106 FOR FURTHER DETAILS

VITAVOX

for hich quality MICROPHONES LOUDSPEAKERS and ancillary equipment

Further information from:
VITAVOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel: 01-204 4234)

BI-PREPAK

FULLY TESTED AND MARKED

PACKS OF YOUR OWN CHOICE UP TO the value of sop WITH ORDERS OVER $£ 4$

CLEARANCE LINES

	$1-10$	10.50	50
Sl 4030 Audio Amp.	2.00	1.95	1.8
IC. 709C tinear Opp. Amp.	50p	40p	3p
A.E.1. Fully marked \& tested Gates	25p	22p	20p
A.E.I. Fully marked \& tested Flipflops	50 p	40p	30 p
0C71/72. Fully tested. unmarked	$5 p$	$5 p$	4 p
Matched Sets, 1-0C44, 2-0C45. Per set	25p	20p	$15 p$
Matched Sets, OC45, 1 st \& 2nd I.F. Per set	$15 p$	12p	10p
BB 105 Varicap Diodes	10 p	8 p	$6 p$
DA47 Gold bonded Diades, marked \& tested	3 p	3 p	
IW Zener Diodes: $6.8 \mathrm{~V}, 75 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V} \& 43 \mathrm{~V}$	$5 p$	4p	
10W Zener Diodes:			
$7.5 \mathrm{~V}, 11 \mathrm{~V}, 13 \mathrm{~V}, 20 \mathrm{~V} \& 100 \mathrm{~V}$	20p	17p	
Micro Switches, S/P. C/0. Popular size	25p	20p	
1 Amp. Bridge Rectifiers. 25V, RMS	25p	22p	20

1 Amp Plastic Rectifiers: These are voltage, reverse Polarity and other rejects from the BY127 range Ideal for low voltage Power Units etc. Price. $f 1$ per 100

COLOUR T.V. LINE OUTPUT TRANSFORMERS.
Designed to give $25 \mathrm{~K} . \mathrm{V}$. when used with PL509 and PY500 valves. As removed from colour receivers at the factorv
NOW ONLY 50 peach ost and packing 23

BUMPER BUNDLES
These parcels contain all types of surpius etectronic components. printed

2 LBS IN WEIGHT FOR £1

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED

TYPE "A"

PNP Silicon
alloy, metal To-5 can. 25300 type, direct replacement for the OC200/203 range

TYPE "B PNP Silicon plastic encapsulation, low voltage but good gain, these are of the 2N3702/3 and 2N4059/62 range

TYPE "F"
NPN Silicon plastic encapsulation Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 11$ Series.

TYPE "E
PNP Germanium af or rf please state on order. Fully marked and tested.

NEW UNMARKED UNTESTED PAKS

B80	8	$\begin{array}{l}\text { Dual Jrans. Matched } 0 / P \\ \text { pairs NPN. Sil. in To-5 can }\end{array}$
50p		

B83	$\mathbf{2 0 0}$	Trans. manufacturer's rejects all types NPN. PNP. Sil. and Germ.$\quad \mathbf{5 0 p}$

B84 100 \begin{tabular}{l}

silicon Diodes D0.7 glass
equiv. to OA2OO, OA202

\hline
\end{tabular}

B86	$\mathbf{5 0}$	Sil. Diodes sub. min. in914 and IN916 types	$\mathbf{5 0 p}$
B88	$\mathbf{5 0}$	Sil. Trans. NPN. PNP. equiv. to	$\mathbf{5 0 p}$

860	10	7 watt X ener Diodes Mixed Voltages	$\mathbf{5 0 p}$

H6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	50p
H10	25	Mixed volts. $1 \frac{1}{2}$ watt Zeners. Top hat type	50p
866	150	High quality Germ. Diodes Min. glass type	50p
H15	30	Top Hat Silicon Rectifiers 750mA. Mixed volts	50p
H16	8	Experimenters' Pak of Integrated Circuits. Data supplied	50p
H20	20	BY126/7 Type Silicon Rectifiers. 1 amp plastic. Mixed volts	50p

NEW TESTED \& GUARANTEED PAKS			
B2	${ }^{\circ} 4$	Photo Cells, Sun Batteries 3 to .5 volt. .5 to 2 ma .	50p
н8	4	BY127 Silicon Recs. 1000 P.I.V. 1 amp. Plastic. Replaces the BYioo.	50p
879	4	1 N4007 Sil. Rec. Diodes, 1.000 P.I.V. 1 amp . Plastic.	50p
881	10	Reed Switches, mixed types. large and small.	p
899	200	Mixed Capacitors, Post and packing 13 p Approx. Quantity counted by weight.	50p
H4	250	Mixed Resistors. Post and packing $10 p$. Approx. Quantity counted By weight.	50p
H7	40	Wirewound Resistors. Mixed Values. Postage $7 p$.	p
н9	2	OCP71 Light Sensitive Photo T	50p
H12	50	NKT155/259 Germ diodes, brand new stock clearance.	50p
H18	10	OC71/75 uncoded black glass type PNP Germ.	50p
H1	10	OC81/810 uncoded white glass type PNP Germ.	50p
H2	20	OC200/1/2/3 PNP silicon uncoded To- 5 Can	50p
H29	20	gold bonded diodes coded	50p

F.E.T. PRICE BREAKTHROUGH

This field effect transistor is the 2N3823 in a plastic encapsulation: coded 3823E. It is an ideal replacement for the 2N3819. Data Sheet supplied with device
$1-10=30$ p each. $10-50=25 p$ each. $50+20$ p each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev.
counter for any car.
each

FREE CATALOGUE AND LISTS for: -

TRANSISTORS, RECTIFIERS DIODES, INTEGRATED CIRCUITS, FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add $10 p$ post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

8 RELAYS
VARIOUS CONTACT
COIL RESISTANCES
NO INDIVIDUALSELECTION
POST \& PACKING 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

ELECTRONIC ORGAN DIVIDER BOARDS built to high industrial/computer spec. 5 octave set $\mathbf{f 1 5}$.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in, $12 \frac{1}{2} p$ sheet, 5 for 50 p
$11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in} .15 p$ sheet, 4 for $50 p$
$11 \times 8 \times 1 / 16 \mathrm{in} .20 \mathrm{p}$ sheet, 3 for 50 p
Offcut pack (smallest 4×2 in.) 50 p 300 sq . in.
P\&P single sheet 4 p . Bargain packs 10 p
P\&P single sheet 4p. Bargain packs 10p
SPEAKERS AND CABINETS
E.M.I. $19 \times 14 \mathrm{in} .50$ watts ($14 \mathrm{~A} / 600 \mathrm{~A}$). Four tweeters mounted across main axis. Separate "X-over" unit
balances both bass and h.f. sections. 20 Hz to $20,000 \mathrm{~Hz}$. Bass unit flux 16.500 gss . A truly magnificent system £25. Carr. $£ 1-50$.
E.M.I. 13×8 in. (10 watt) with two tweeters and crossover $3 / 8 / 15$ ohm models. $£ 3-75$. P.P. 25p.
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15$ ohm models £2-25. P.P. 25p.
E.M.I. $6 \frac{1}{2}$ in. Ind. 10 watt Woofers. 8 ohm. 13,000 gss £2-25. P.P. 15p.
E.M.I. 20 watt (13×8 in.) with single tweeter and "X-over" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magnet
$11,000 \mathrm{gss}$. £8. P.P. 40 p . 20 watt base unit only f6. P.P. 40 p.

CABINETS for $13 \times 8 \mathrm{in}$. Speakers made from ${ }^{\frac{3}{4}} \mathrm{in}$. teak finish blockboard. 20 watt cabinet ($21 \times 15 \times 8 \frac{1}{2}$ in.) E6. P.P. S0p
£4.80. P.P. 40 p.
"AIRMAX'" 7 $\frac{1}{2}$ In. FANS. Aluminium diecast housing (9 in.) 240v. a.c. New. E5. P.P. 50p.
"KLAXON"' GEARED MOTORS (8 ib-in.) 112 s.p.m. 240V. E225.
BRIDGE MEGGERS (500v. series 2) £18 ea. in good working order.
BRIDGE RECTIFIERS (Mullard GEX 54INBIPIF) Output 74 volt . at $18 \mathrm{amps} \mathrm{f} \mathbf{2}$ ea. (brand new).
ULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces £2. (Trial order 100 pcs . 50 p .) We are confident
you will re-order.

BERCO WIRE-WOUND POTS. New individually boxed. 200 ohm 25 watt 50p : 725 ohm 50 watt $\mathbf{7 5 p}$: 300 ohm
100 watt $\mathbf{~} 1$ ea.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2}$ in.) 200 micro am
MICROAMMETERS (4 in. sq. Weston) 25-0-25 micro-
amps. New/boxed. $\mathbf{£ 2} 25$ ea. P.P. 25p
PRECISION CAPACITANCE JIGS. Beautifully made
with Moore \& Wright Micrometer Gauge. Type 1. 18.5pf to
1220 pf. $£ 10$ ea. Type 2.9 .5 pf to 11.5 pf . £6 ea.
POT CORES LA1/LA2/LA3. 50p ea.
LIGHT DIMMERS (2000 watt) Triac Controlled. $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$

L.T. TRANSFORMER. (Shrouded) Prim. 200/250v Sec. 20/40/60v. 2 amp. E2 ea. P.P. 40p.
L.T. TRANSFORMER. (Constant voltage) Prim. 200/240v. Two Secs. 50v. 2 amp. E3. P.P. 50p L.T. TRANSFORMER. Prim. 240v. Sec. 8/12/20/25v 3.5 amp. £1 ea. P.P. 40p.
L.T. TRANSFORMER. Prim 220/240v. Sec. 13 v . 1.5 amp. 65p. 10.5 v . 1 amp . Model 50p. P.P. 15 p L.T. TRANSFORMER. "ADVANCE VOLTSTAT"' Pim. 190-260v. Sec. 6 V . I.m.s. 25 watt. $£ 2$ ea. P.P. 30p
H.T. TRANSFORMERS. Pitm. $200 / 240 \mathrm{v}$. Cec
 $350-0-350 \mathrm{v}$. $60 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$, c.t. 2 amp. £1. P.P. 25 p . H.T. TRANSFORMERS (H.D.) Pilm. 200/240v. Sec.
 Carr. £1. Chokes to match £4. Carr. £1.
STEP-DOWN TRANSFORMERS. Prim. 200/240v. Sec. 115 v .120 watt (double wound). E1-25. P.P. 25p Sec. 115 V . 120 watt (double wound). £1-25. P.P. 25 p :
250 watt (D.W.). £2-25. P.P. 25p: 500 watt (D.W.). £5. P.P. £1; 600 watt (auto). £4-50. P.P. 75p; 750 watt (auto). £5-50. P.P. £1.
ADVANCE CONSTANT VOLTAGE. Prim. 190/250v. Sec. 115 v . 2250 watt. £15. Carr. £2-50. REGULATED POWER SUPPLY. (Coutant) Input $100 / 250 \mathrm{v}$. Output $\pm 150 \mathrm{v}$. D.C. at $500 \mathrm{~m} / \mathrm{a}$ TWICE.
Dimensions $5 \frac{1}{4} \times 6 \frac{1}{2} \times 11 \frac{1}{2} \mathrm{in}$. W. $22 \mathrm{lb} £ 20$ each. Dimension
Carr. $£ 2$.
CaIr. £2.
120 amp . AUTO TRAN SFORMER. $190 / 270 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Tapped every 5 volts. $£ 50$ ea. (Carr. by arrangement.)

LIQUID LEVEL SWITCH. Detects even mildly conductive liquids i.e. ether etc. N/O-N/C contacts fails to safe. $£ 10$ ea.
S.a.e. literature.
'LONG LIFE', ELECTROLYTICS (screw terminal).
25,000 u.f. 40 v , ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.) £1 P.P. 10 p .
10,000 u.f. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.) $87 \frac{1}{2}$ p. P.P. 10 p . 3,150 u.f. 40 v . $\left(4 \times 1 \frac{1}{2}\right.$ in.) 75 p. P.P. 10 p .

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea; 6 make
contacts 40 p ea.; 4 pole c/o contacts 50 p ea. $6-12-24-48 \mathrm{v}$ types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40 p. P.P. $5 p$. 24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$.) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5 p.

240 VOLT A.C. RELAYS ($1 \frac{3}{4} \times 1 \frac{3}{4} \times 1 \mathrm{in}$) G.P. contacts 1 make $2 \mathrm{c} / \mathrm{o} .60 \mathrm{p}$ ea. P.P. 5 p .
REED RELAYS 4 make 9/12v. (1.000 ohm.) 62 $\frac{1}{2} p$ es. 2 make $37 \frac{1}{2} p$ ea. 1 make 25p ea. Reed Switches ($1 \frac{1}{4} \mathrm{in}$.) 10 p ea. £1 per doz.

SUB-MINIATURE REED RELAYS ($1 \mathrm{in} \times \frac{1}{1} \mathrm{in}$.). Weight $\frac{1}{6}$ oz. Type $1.960 \mathrm{ohm}, 3 / 9 \mathrm{v}, 1$ make. $62 \frac{1}{2} \mathrm{p}$ ea. Type 2. 1800 ohm, 3/12v. 1 make. 75p ea.
E.H.T. GENERATOR MODULE (Mullard VM1049) input 12 volt, output 1800 volt $1 \mathrm{~m} . \mathrm{a}$. $£ 4$ ea. P.P. 25 p. SILICON BRIDGES 100 p.i.v. 1 amp ($5 \times 8 \times 8 \mathrm{in}$) 45 p : 100 p.i.v. $2 \mathrm{amp}\left(1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{2} \mathrm{in}\right.$.) 75 p.

MARSHALL'S INTEGRATED CIRCUITS
 NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED

A. MARSHALL \& SON LTD.

See our Ad. on opposite page for Transistors, Diodes, Passive Components and P. \& P. charges. Many more types in stock and arriving daily. PLEASE ENQUIRE.

LARGEST STOCK
 WIDEST SELECTION
 LOW PRICES AND RETURN OF POST SERVICE

nly) 12tp extra per pair.			Many0.15	more semi-cond				se ena		$\begin{aligned} & \text { NKT215 } \\ & \text { NKT216 } \end{aligned}$	$\begin{aligned} & 0.22 \frac{1}{2} \\ & 0.374 \end{aligned}$			
2 G 301	0.20	2 N 3393		3NI28	0.70	${ }^{\mathrm{BC} C 122}$	0.20	BFY25	0.250.200.50					
		2 N 302			0.772		0.20 0.20	BFY			O. ${ }_{0}^{0.37}$			
$2 G 303$	0.20	2 N 3402	0.22	N141	${ }_{0}^{0.725}$	BC	${ }_{0} 0.37$	${ }^{\text {BF }}$	0.5	NKT2	${ }_{0} .3{ }^{\text {a }}$			
26306 26308	0.42,	(0.32	3N142	0.65	${ }_{\text {BC }}$	0.10	BFY			+			
2 G 30		2 N 3405	0.45	3 N 152	$0.87{ }^{\text {a }}$	BC148	0.10	BFY43						
2 C 371	0.15	2 N 3114	0.224	R.C.A	0.52 ,	BC1	0.12	BFY	0.23					
374	0.20	3415	0.22	4005	0.55	BC	0.17 ¢	BFY						
G31	-22	2 N 34	0.37	40250	0.87	${ }^{8 C}$	0.20	BFY52						
2N388	62	2 N 3417	37	40251	0.87	$\mathrm{BCl}^{5} 8$	0.11	BFY53						
	0.22 +	2 N 3439	30	403	. 32	BC15	0.12	BFY56A	0.57 i	NKT240				
2 N 6	0.20	2 N 34	0.97 b	40310	0.45		0.62 k	8FY75	0.30	NKT241	0.27 1			
2 N 697	0.17	2 N 3570	1.25	40311	0.35	BCl	$0 \cdot 11$	8 FY 76	0.42	NKT242	0.20			
2N698	0.25	2 N 3572	0.971	40312	0.47	${ }^{\text {BC }} 1688$	0.10	BFY	0.57	NKT243	0.62 !			
2 N 699	0.30	2N360	0.27	40314	0.37		0.11	BFY	${ }^{0.671}$	NK ${ }^{\text {N } 244}$	0.17 0.20			
${ }_{2}{ }_{2} \mathbf{2 N 7 0 6}$	0.12 0.12 0.12	2N3606	- 0.27	40315	O. 0.47	${ }_{\text {BC1 }}$ 898	0.12	${ }_{\text {BF }}$	0.25	NKT	0.20			
2 N 708	0.15	2N3702	0.11	40317	0.371	BC170	0.12 t	BF						
2N709	0.624	2N3703	0.10	40319	0.55	BC171	0.15	${ }^{8 P} \times 2$						
2 N 118	0.25	2N37	0.11	403	0.47	BC172	0.15	BPX2	1.38					
718	0.30	2N37		40323	0.32	BC175	0.221	BPY	1.45	NKT272	0.20			
		2 N 37	0.09	40324	47		0.10	BR	0.47 t					
2 N 727	0.30	2N3707	11	40326	0.371	BC		BS						
2 N 94	0.17	2 N 3708	0.07	40329	0.30	BC	0.11	BSX	0.17	NKT281	${ }_{0}^{0.87}$			
2 N 916	$0 \cdot 171$	2N3709	0.09	40344	0.274		0.10 0.09	${ }_{\text {BS }}$	0.37	NKT402				
2 N 918	0	2 N	12	40347	0.38	${ }^{\text {BC }}$	${ }_{0}^{0.11}$	${ }_{\text {BS }}$	0.47	NKT403	0.75			
${ }^{2} \mathrm{~N} 9293$	0.22	${ }_{2} \mathrm{~N} 3713$	1.08	40348 40360	O. 0.42	BC212L	0.13	BS	0.32	NKT404	0.621			
2 N 987	0.52	2 N 3714	1.15	40361	0.471	BCY10	0.27	BSX	0.82					
2 N 1090	0.22	2N3715	1.23	40362	0.57	BCY^{12}	0.27	BSX	0.62					
1091	0.22	2 N 3716	1.30	40370	0.32	$\mathrm{BCY}^{\text {c }}$	0.27 f	BS	022					
2 NH 131	0.25	2N3773	2.40	40	57	BCY31	0.30	BSX77	$0.27 \frac{1}{2}$					
	0.25	2N379		40407	$4{ }^{\circ}$	BCY^{2}	0.50	BSX $\times 8$	0.27 ,	NKT4	0.47			
	0.17						. 25		0.27 f	NK				
${ }_{2} \mathrm{Nl}^{303}$	0.17	2N38	0.97	40409	0.55		0.30		0.27	NK	0.32\%			
2N1304	0.22	2N3854	0.27	40410	0.62 k		0.40	${ }^{\text {BSY24 }}$	0.15	NKT674F	- 30			
2 N 1305	0.22 ,	2 N 2754 A	0.27	40412			0.60	BSY		${ }_{\text {NKT }}$				
${ }_{2}{ }_{2} \mathrm{Ni}^{2} 307$	-0.25	${ }_{2}{ }^{\text {N }} 38555 \mathrm{~S}$	${ }_{0} .30$	40467A	0.57 0.35		0.15	BSY27	0.17	NKT717	0.421			
2 Ni 308	0.30	2 N 3856	0.30		0.35 0.72		0.15		0.17	NKT734	0.27 +			
2 Ni 309	0.30	2N3856A	0.35	${ }_{40600}$	0.57		0.32			NKT7				
2 N 1507	0.171	2N3858	0.25	40673	0.85	BC	0.22		0.25	NKT773				
2 N 1613	0.25	2N385	0.30	AC	0.30	BCY59	0.22	BSY 36	0.25	NKT7				
2 N 1631	0.35	2 N 385	0.27	AC	0.20		0.97 t	BSY37	0.25	NKTIO339				
N1632	0.30	2 N 3	0.32	${ }_{\text {AC }}$	0.25	BCY70	0.20	BSY ${ }^{38}$	0.22	NKT10419	0.30			
2 N 1637	0.30	2 N	0.30	${ }_{\text {AC }}{ }^{\text {c }} 12$	0.20	1	0.25	BS	0.22	NKT10439	0.37 ¢			
N 163			1.50	AC 54	${ }_{0} 0.22$	CY72	0.17 +	BSY40	0.32	NKT10519	0.32			
2 N 1639		矿		${ }_{\text {AC }}$ A 176	${ }_{0}^{0.25}$	BCZ 10	0.27	BSY51	0.32	NKT20329	0.47)			
N16718	1.0	2 N	0.40	${ }_{\text {ACP }}{ }_{\text {AC }}$	- 0.62	BCZ	0.42	BSY52	0.321	NKT20339	0.37			
2 N 1701		2 N 3900	0.37 +	${ }_{\text {AC }}{ }^{\text {ACb }} 8$	0.37		1.12 !	BSY	0.371	NKT80				
2 Ni 711	0.25	2N3900A	0.40	${ }_{\text {ACYI7 }}$	0.27		0.65	BSY	0.40	NKT80				
2 N 1889	0.32	2 N 3901	0.971	${ }_{\text {ACY }}{ }^{\text {d }}$	0.25		$0.82 \pm$	BS						
2 Nl 89	0.37	2N3903	0.35			BD	0.60	BSY	$0.47{ }^{1}$	NKT80				
2N2147	0.82	2N3904	0.35	ACY19 ACY20	- 0.25		0.75	BSY		NKT80212				
N2148	0.57	2 N 3905	0.37	${ }^{\text {ACH2 }}$	0.25 0.25	BO132	0.85	BSY82	0.521	NKT80213				
2N2160	0.57 .	2N3906	0.37			BDY10	${ }^{137}$		0.57 d	NKT80214				
N219	0.40	2 N 405 B	0.17	${ }_{\text {ACY }}{ }^{\text {ACY }}$	0.20 0.20	BOYII	.62	BS	0.12 t	NKT80215				
2N2193A	0.42 \&	2 N	0.102	ACY 28 $A C Y 40$	0.20 0.20	BOY17	50	BSW	0.42	NKT80216	0.9			
2N2194A	0.30		0.12	${ }^{\text {ACH }}$	0.20 0.25	BOYIS	1.75	B5W70	0.271					
2N2217	0.27 \#	2N4061	0.12	${ }_{\text {ACY4 }}$	-.23	BDY19	1.97 .	CI			0.50			
2N221	0.23	2N 406		${ }^{\text {A Cly }} 4$	0.521	BDY20	1.12 .	C124	0.271		\%			
2N2219		2 N 1244		${ }_{\text {ADI }}{ }^{\text {A }} 4$	0.52	BDY	0.97 \|	C425	0.55					
		2 N 4245	,	ADI49	0		1.25	C426	0.40					
2 N 2221	0.25	2 N 4254	2	ADI50	0.62		1.25	C428	0.371		27			
2 N 2222		2 N 4255	$0 \cdot 42$	${ }_{\text {AD }}$ AD161	0.37		1.00	C744	0.30		1			
2N2297	0.30	2N4284	0.17 +	${ }_{\text {AFF }}$	${ }_{0} 0.42$	BF	0.25	ME0402		OC29	2			
2 N 2368	0.171	2N4285	0.17	${ }_{\text {AFlis }}$	0.25	B	0.47 t	ME0411	0.22	OC35	O			
2N236	0.17	2N4286	0.17	AFI4	-0.25	BF16	$0.37{ }^{\text {k }}$	MEO	0.25	$\bigcirc \mathrm{OC} 36$	0.621			
2N2369	0.17	2N4287	0.17		O.25	BF	0.18	MEO	0.22 立		$0.22{ }^{1}$			
2 N 2410	0.42	2 N 4288	$0.17 \frac{1}{1}$	${ }_{\text {AFIL }}{ }^{\text {AF }} 17$	0.25	BFI73	0.19	MEE	${ }_{0}^{0.25}$		0.25			
$2 \mathrm{~N}^{2483}$	0.27	${ }^{2} \mathrm{~N} 4289$	0.17	AFII7	0.25 0.62	${ }^{\text {BFF }} 177$	0.30	ME40	0.15	O	0.20			
2N2484 $\begin{array}{l}\text { 2 } \\ \text { 2 } 239\end{array}$	0.32 0.22	2 N 4290 2 N 4291	0.17 0.17	AFII 18 AFII	0.624 0.20	BFI78 EFI79	0.30 0.30	ME40	0.15		O.124			
2N2539	0.22 0.22	${ }^{2} \mathrm{~N} 4291$	0.17 0.12	AF124	0.224	BF179 EFI 180	${ }_{0}^{0} 8$	ME4	0.		0.15 0.15			
${ }_{2}{ }^{2} 2613$	0.35	2 N 43	0.47	AF125	0.20	BFI81	0.321	ME4102	- 0.17	\bigcirc	0.121			
2N2614	0.30	2N50	0.52	AF126	0.20	BFI84	0.25	ME4103	${ }_{0} 1.15$		$0 \cdot 12$			
2 N 2646	0.521	2 N 5028	0.57 \|	AF127	O.17	BE18	0.42	ME4103 ME6IOI	0.15 0.20	\bigcirc	${ }_{0}^{0.32}$			
${ }^{2} \mathbf{N} 2696$	${ }^{0} .32{ }^{\text {P }}$	2N5029	0.47	AF 139 AFI78		BF19	${ }^{0} 0.17{ }^{4}$	M. 40			0.22			
2 N 2711	0.25	2N5030	0.42	AFI8	O. 0.72	BF19	0.15 0.15	Mj420	${ }^{1} 127$	$\bigcirc{ }^{\circ} \mathrm{C} 75$	$0.22]$			
${ }^{2} \mathbf{2 N 2 7 1 2}$	0.274		0.12 0.52	AF180	O. 0.52	BF1	0.15 0.15	MJ 421	1-12	$\bigcirc{ }^{\circ} 77$	- 0.30			
2 N 2713 2 N 2714	${ }_{0}^{0.274}$	2N5174 2 NSIT	0.52 0.52 0	AFI80 AFIBI	O. ${ }^{0}$	EF197	0.15 0.15	M 4330	${ }^{1} 02.15$	\bigcirc	0.20 0.221			
${ }_{2}{ }_{2} \mathrm{~N} 2865$	${ }_{0}^{6.621}$	2N5176	0.52 0.45	AD239	0.42	EFF200	${ }_{0} .51$	M. 440	0.95		0.224 0.25			
2N2904	0.30	${ }_{2}$ N5232A	0.30	AF279	0.47	BF224	0.14	M ${ }^{1480}$	0.975	${ }^{\circ} \mathrm{OC83}$	0.25 0.25			
2 N 2904 A	0.32	2N5245	0.45	${ }_{\text {AF }}$	${ }^{0} 0.62$	BF225	0.19	M 5490	1.00	-C139	$0.32{ }^{2}$			
2N2905	O. 0.47	2N5246 2 N 524	0.42 0.67	As5Y26	O. 0.32		- 0.23	M M 4	1.371	- Cl^{140}	${ }^{0.321}$			
${ }^{2} \mathrm{~N} 2905 \mathrm{~S}$	0.40	2N5249	O.67	${ }_{\text {ASY27 }}$	${ }_{0} 0.37$	BF2	0.23 0.23	MJ802	4.12	OC170	0.30			
2N2906 2 N 2906	O.25	(1) $\begin{aligned} & \text { 2N } 5265 \\ & 2 N 5266\end{aligned}$	3.25 2.75	ASYY ${ }_{\text {AS }}$	${ }^{0} 0.274$		O. ${ }_{0} 0.23$	M14502	4.44	- 171	0.30 0.40			
2 N 2907	0.30	2N5267	2.62	ASY29	0.27 1	BF $\times 12$	0.22	M 11800	2.17	- 20	-0.60			
2 N 2923	0.15	2N5305	0.371	ASY ${ }^{\text {a }}$	0.25	BF×13	0.221	M M 3 340	0.624	- O 202	0.75			
2 N 2924	0.15	2 N	0.4	ASY50	0.25 0.32	${ }^{\text {BF }}$	0.30 0.30		- 0.60	-	0.42			
${ }_{2} \mathbf{N} 2925$		2N5307	0.37	ASY5	-0.32	BF	030	MJ 29255		-C204	0.42			
2N2926		2 N 53	0.37	ASYS	0.25 0.25	BFX	0.37 0.37	MJ E3055	0.87	-C205	O.90			
Green Yellow	$\begin{aligned} & 0.14 \\ & 0.12 \ddagger \end{aligned}$		0.62 0.42	ASY ${ }^{\text {ASY }}$	0.25 0.25	${ }_{\text {BFX }}$	0.37 0.20	MPFI02	0.42	- ${ }^{\text {O227 }}$	0.75			
	- ${ }^{0} 12$	2N5354	0.4 0.27	${ }_{\text {ASY }}$ A 63	0.17	${ }^{\text {BF }} \times 68$	${ }_{0}^{0.671}$	MPFI	0.37	OCP7	0.421 0.621			
2 N 3011	0.30	$2 \mathrm{NS535}$	O.27	${ }^{\text {ASYY }}$	0.25					ORP61	0.501			
2 N 3014	0.324	2N5356	O.32	ASY83	0.25 0.32	BFX885 BFX 86	0.324 0.25	MPF105 MPS 3638	${ }^{0} 0.37$	P346A	0.22 t			
$2 N 3053$ $2 N 3054$	O.18	2N 5365 $2 N 5366$	0.47 0.32	ASY86	- $0.32{ }^{\text {P }}$	BFX86 $\mathrm{BF} \times 87$	0.25 0.27	MPS3638 NKTOO13	0.328 0.47 1	T1534	0.624			
2 N 3055	0.62	${ }_{2}{ }^{2} 53675$	0.571	AU103	1.25	${ }^{\text {BFX }} 888$	0.23	NKT124	0.42		- 0.40			
2 N 313 2 N 313 13	0.30 0.30	2N5457 2S005	${ }^{0.375}$	BC107 BC 108	0.10 0.10		${ }_{0}^{0.621}$	NKT125		Tis45	-			
2N3134 2 N 35	0.30 0.25	2S005	0.75 2.00	${ }_{8} \mathrm{BC1} 1098$	-10	${ }^{\text {BFX }}$ BFY ${ }^{\text {a }}$	0.701 0.321	NKT126	0.278 0.27	Tis 46	0.11			
${ }_{2} \mathrm{~N}_{3} 1366$	0.25	25102	0.50	${ }_{8 C 113}$	0.15	BFY11	0.42	NKT135	0.27	TIS47	0.11			
2 N 3340	0.971	25103	0.25	${ }^{\text {B }} 14$	0.15	BFIT	${ }^{0.224}$	NKT137	${ }^{0.32}$	TIP29A	0.50			
2N3349 2 N 3390	1.30 0.25	2S104	- 0.25	${ }_{8 C 115}^{8 C 15}$	0.15	BFY 18 BFY19	O.32	NK1210	0.30 0.30	TIPSIA	${ }_{0}^{0.62 \frac{1}{2}}$			
2N3390	0.25 0.20	25502	- 0.35	${ }_{\text {BCl }} 16$ A	0.15	${ }_{\text {BFY } 20}$	1.60	NKT212	- 0.30	TIP33A	0.75			
2 N 3391 A	0.30	25503 3	${ }^{0} 0.27{ }^{\text {d }}$	BC118	0.10 0.20	$\mathrm{BFP}^{\text {BFP2 }}$	0.421	(${ }^{\text {NKT213 }}$	0.30 0.22	TIP33A	${ }^{1}$			
2N3392	$0 \cdot 17 \frac{1}{4}$	3N83	0.40	BCl121	0.20	BFY24	0.45	NKT2:4	0.22t	TIP34A	2.05			
PANEL METERS 38 Series-FACE SIZE $42 \times$ 42 mm . All prices for $1-9$				Milliamp		Log. and Lin. With switch 0.25 Wire-wound Pots (3 watts) Twin-Ganged Stereo Pots. (Log. and Lin.) Less Switch 0.37 t $\mathbf{0 . 4 0}$								
			10 50		$\begin{aligned} & 1.37 \\ & 1.37 \frac{1}{3} \\ & 1.27 \end{aligned}$									
2,	A		100		1.37 ${ }^{\text {d }}$									
			500			HEAT SINKS $4.8^{\prime \prime} \times 4^{*} \times 1^{\prime \prime}$ Finned for Two TO-3 Trans. . 0.47 ! $4.8^{*} \times 2^{\prime \prime} \times 1$ Finned for One TO-3 Trans. $\quad 0.32$ For SO-1 $0.025 \quad$ For TO-5 0.05 Finned For TO-18 0.05 Finned For TO-1 0-05 Finned								
	-			Amp	${ }^{1} 1.37{ }^{\text {a }}$									
	".	1.75 1.50	$1{ }^{5}$	Volts	${ }^{1} \cdot 3.37 \frac{1}{\frac{1}{2}}$									
50000	",	- $1.87{ }^{\text {d }}$	10		${ }^{1.37}$									
100-0-100	"	75		"	.37									
0.500		+1.37	300 500	,	- 37	ZENER DIO								
	M							2			0.15			
MULLARD C280 M/FOIL CAPACITORS $0.01,0.022,0.033,0.047,0.068,0.14 p$ each. $0.15,0.22$, 0.33 5p each. 0.479 p. 0.68 IIp . $1 \mu \mathrm{~F}$ 14p. $1.5 \mu \mathrm{~F} 21 \mathrm{p}$ 2. $2 \mu \mathrm{~F}$ 25p						I Watt (from $2.7 v$ to 200v) 10 Wat (from 3.9v to 100 V) 20 Watt BZY93 Series (from $7.5 v$ to 75 v)					$7{ }^{\text {\% }}$			
						0.521 0.30 0								
						Antex 15 W . Soldering Iron D.G. 30 W . Soldering Irons								
PRESETS Carbon Miniature and Sub miniature. Vertical and Horizontal. 0.1 watt, 0.2 watt, all at 0.06 each. 0.3 watt 0.075 .											1.10			
						POSTAGE AND PACKING CHARGES U.K. 								
ARBON POTENTIOMETERS														

RESISTORS $\ddagger W$. \& $\ddagger W$. E24 Series

Wire Wound
$2 \frac{1}{2}$ watt 5% (up to 270 ohms onily)
5 watt 5% (up to 8.2 k ohms only)

$0.07 \pm$
0.07
$0.12+$
$0.12+$

R23 (STC) ${ }_{\text {l }} \mathbf{2 7 1}$		VA 10390.15	VA 10770.20
		VA 10400.12	VAl091 0.22]
	VA	VA1053 $0 \cdot 12$	VAl0960.20
A10050.15	VA1038	VAl075	VA3705 0

PRICES SUBJECT TO ALTERATION WITHOUT PRIOR NOTIC
SEND I $/$ - (5 np) FOR NEW COMPREHENSIVE SEMICONDUCTORPRICELIST. (24 Dages)

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Littlehampton 6743 Please forward all mail orders to Littlehampton

家
 W్WM

 H2

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental : $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $124 \times 10 \mathrm{in}$. New condition. £45 each, Second hand condition £27-50 each, Carr. $£ 1.50$.
MARCONI SIGNAL GENERATOR TYPE TF-144H/S: Frequency Range $10 \mathrm{Kc} / \mathrm{s}-72 \mathrm{Mc} / \mathrm{s}$. RF Output $2 \mu \mathrm{~V}-2 \mathrm{~V}$ at 50Ω. Int. Mod. 400 and $1000 \mathrm{c} / \mathrm{s}$. Excellent condition with Manuals. £200.00 each. Carr. £2.

MARCONI UNIVERSAL BRIDGE TF-866A and TF-868: £75.00 each, Carr. £2.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range 0-75Kc/s in modulation range $50 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$ a.c. $£ 45$ each, $£ 1 \cdot 50 \mathrm{carr}$.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}$, 2 Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter operation. General ELectric Transmitter, $410-419 \mathrm{Mc} /{ }^{2}$, thin line tropo scatter
system, with antennae. W.S. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W. s . Type system, with ant
$\mathrm{HF}-156$, Mk. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-122$
Mc / C. 44 . Mk. II Radio Tele Mc / s. C. $44, \mathrm{Mk}$. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$,
50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}, 50$ 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}$, 50
watt output, 110 V or 230 V input. STC Tx/Rx Type $9 \mathrm{X}, \mathrm{TR1985}$; RT1986; watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R. 19 ,
$\mathrm{FM} 60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, FSB , $1.5-20 \mathrm{Mc} \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18 S4A. SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/ ype
Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28V d.c. With associared equipment
available ARC-5; ARC-3; and ARC-2 Tx/Rx. BC- $375 ; 433 \mathrm{G} ; 348 ; 718 ; 458$. 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order $£ 18 \cdot 50$ $+£ 1$ carr.; OR BC-221 (as received from Ministry), good condition, less charts, $\mathbf{£ 8 . 5 0}+£ 1$ Carr.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. £12 each, $£ 2.50$ Carr. OR 4 ft . high $\times 23 \mathrm{in}$. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8.50$ each, £2 Carr.

RECEIVER BC-348: Operates from 24V d.c. Freq. Range 200$500 \mathrm{Kc} / \mathrm{s}, 1 \cdot 5-18 \mathrm{Mc} / \mathrm{s}$. Secondhand $£ 20$ each, $£ 1$ Carr.
APR-9 SEARCH RECEIVER: Complete with two Tuning Units TN128, $1000-2600 \mathrm{Mc} / \mathrm{s}$, and TN129 $2300-4450 \mathrm{Mc} / \mathrm{s}$. £250.00 each.
TELEPRINTER CREED TYPE 7B: "as new' condition, in original packing case, $\mathbf{£ 2 5} \cdot \mathbf{0 0}$ each. Second-hand condition (excellent order), no parts broken, $£ 15 \cdot 00$ each. Carriage both types $£ 2$.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. $£ 42.50$ each, carr. $£ 2$.
SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse $-40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db variable. O/pur Impedance-50 © Price: £120 each + £2 carr
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar recevers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power SupplyCW , Pulse FM. Bi, 115 Tre 2 milliwatts. O/put Attenuator: - 7 to - 127 dbm Load- 50 Q. Price: 0.2 milliwatts. $\mathrm{O} / \mathrm{put}$

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator. Opat - to - 8 dibm. Trans$40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20 \mathrm{microsec}$ duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec . absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Merer: Inp.
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. Externa! PM. Percent Mod. O-30 for sine wave. Am or Pulse Carrier. O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω.
Price: 885 each $+£ 1.50$ carr. FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) $£ 75$ each. CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4 in . scale meter. Complete with probe, excellent condition. £12.50, carr. 75p
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.
AVO WIDE RANGE SIGNAL GENERATOR: Freq. $50 \mathrm{Kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Mains input $100-130 \mathrm{~V} ; 200-260 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$. Second-hand, excellent cond. £14 each, or: New cond. complete with all leads and transit case £20 each. Carriage $£ 1$
DESK TYPE TELEPHONES: Black, without dial, new cond. $£ 2$ each, 50 p post. USA Type 500 series, with dial, black, new e_{4} each, 50p post USA Type, with dial, second-hand cond. $£ 1 \cdot 25$ each, 50 p post.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition £1.75 each, post 25 p.
HEADSET ASSEMBLY TYPE No. 10: Moving coil headphones and microphone. (Similar to above) new cond. £1.75, post 25 p; or second-hand cond. \&1.25, post 25p.
HEADSET ASSEMBLY: with lightweight boom microphone. Good secondhand condition. £2.50, post 75p.
DLR HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance. £1.25 a pair, 25 p post
MOVING COIL INSERT: Ideal for small speakers or microphones. Box of $3 \mathrm{E1}$, post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE LMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. £75 each, £1 carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$ 24DB. £12-50 each, post 35p
POWER UNITS AVAILABLE FOR FOLLOWING SETS: 52 set-mains input, $150 \mathrm{~V} @ 60 \mathrm{~mA}$ and $12 \mathrm{~V} @ 3 \mathrm{amps}$, new cond. $\mathbf{£ 3} 50$. Receiver type 88 (1475)-mains input, 250 V @ 80 mA and 6.3 V @ 4 amps , new cond. 23.50 No. 19 set $£ 2 \cdot 50$. C12 set $£ 4 \cdot 00$. 88 set $\mathbf{£ 2} \mathbf{5 0}$. Carriage all types $£ 1$ extra.
STABILISED BENCH POWER SUPPLY: fully smooth, dual output, positive or negative, $2-6 \mathrm{~V} ; 6-9 \mathrm{~V} ; 9-12 \mathrm{~V}$ and $12-16 \mathrm{~V}$ all at 2 amps d.c. from mains input. DIGITAL VOLTMETER \& RATIOMETER Model BIE. 2116, £65, carr. £2. DIGITAL. VOLTMETER Model BIE. 2114, £55, carr. £2. (Mnftrs. Blackburn Instruments).
MARKA SWEEP GENERATOR MODEL VIDEO (Kay Electric, USA) £65, carr. £2.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6.50$ each, post 50 p .24 v D.C. input, 175 v D.C. @ 40 mA . output, $£ 1.25$ each, post 20 p.
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. $\mathbf{£ 5}$ each, 50 p post. 30 mfd 600 v wkg. d.c., $£ 3.50$ each, post 50 p .15 mfd 330 v a.c., wkg., 75 p each, post 25 p .10 mfd 1000 v. 63 p each, post 13 p. 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . £5 each, carr. 63 p. 8 mfd 600 v. 43 p each, post 15 p, $8 \mathrm{mfd} .1 \% 300$ v. D.C. £1-25, post $25 \mathrm{p}, 4 \mathrm{mrd}$. 3000 v . wkg. £3 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p . 4 mfd 600 v ., 2 for $£ 1.0 \cdot 25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post $10 \mathrm{p} .0 \cdot 01 \mathrm{mfd} \mathrm{MICA} 2 \cdot 5 \mathrm{Kv}$.
£ 1 for 5, post 10 p . Capacitor $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. £ 3.75 each, 50 p post. TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p .
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $\mathbf{£ 2} 50$ each. post 30 p .
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ $2 \mathrm{amps}, \mathbf{£ 2 . 5 0}$ each, carr. 75p. OHMITE VARIABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at $2 \cdot 6 \mathrm{amps}$. Price (either type) £2 each, 25p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $£ 4 \cdot 50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and on steel base 19^{\prime} Wx11"Hx14*D. £6.50 each, carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. £6 each, Carr. 63 p . $230-115 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $\mathbf{£ 3} \mathbf{5 0}$ each, Carr. 50p.
LT TRANSFORMER: PRI 230V. Output 3×6.3 at 3 amps each winding, LT TRANSFORMER: PRI 230 .
$3 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $£ 1 \cdot 50$ post 50 p.
VARIABLE VOLTAGE REGULATOR TRANSFORMER: Input 230V A.C.; Output $57 \cdot 5 \mathrm{~V}-230 \mathrm{~V}$ in 16 equal steps @ 21 Amps. $\mathbf{E 2 2} 50$ each, carr. $\mathbf{£ 1} 1.50$. TRANSFORMER: 230V A.C. input. 17•75V @ 35 Amps output. $£ 9 \cdot 50$ each, carr. £1.
TRANSFORMER: 'C' Core. 230 V A.C. input. $1000-0-1000 \mathrm{~V}$ or $750-0-750 \mathrm{~V}$ @ 250mA. £6-50 each, carr. 75p
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7} \cdot 50$ each, 75 p carr.
CATHODE RAY TUBE UNTT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, £3.50 each, post 37 p .
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$. , complete with all valves 28 v. D.C. 3 relays, 11 valves, price $\mathbf{£ 3}$ each, carr. 50 p.
ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev, counter. £1.25, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps.; $2 \frac{1}{2}$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. \&15 each ${ }^{2} 1.50 \mathrm{p}$ carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $\mathbf{\text { E } 2}$ each, 25 p post.
RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in. diameter), motors, suppressors, etc. £35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\frac{ \pm}{3} \%$ £3 each, 25p post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3.50$ each, post 25 p.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 12.50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. £4 each, 50p post.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at $2 \mathbf{A m p s}$. $\mathbf{~} 3$ each 50 p post. Input 115 V , output 135 V at 5 Amps . £5 each, 50 p post.

GEARED MOTOR: 24 c . D. C , current 150 mA , output $1 \mathrm{rpm}, \boldsymbol{£ 1} \cdot \mathbf{5 0}$ each, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Rechanism an potentiometer, 3 rpm, £2 each 25p post. SYNCHROS: and other special
purpose motors available. List 3p. DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. 55 each, 50 p post.
GEARED MOTOR; 28 V d.c. 150 spm (suitable for opening garage doors). c4 each, 50p post.
SMALL GEARED MOTOR: 24V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{2} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $\mathbf{~} 2$ each, 23p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters
$0-9999$, with locking and reset controls mounted in 3in. diameter case. Price \&2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female
 post 37p. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) £6.50 ea
Type M1460- 4 . (New) $\mathbf{~} 6 \cdot 50$ each, post 25 p.

PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c 2.0-10.0 KMC/SEC. (New) L^{5} each, post 25p. FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) E 6 each, post 25 p

FOR HIRE - all calibrated and ready to plug in

Accelerometers
Acoustics Equipment
Attenuators
AVOmeters
Bridges
Cable Test Equipment Cameras for Oscilloscopes Communications Test Equipment Computing Calculators Counters (DC-Microwave) Crystal Detectors

Data Loggers
Deviation Meters Differential Voltmeters Digital Voltmeters Directional Couplers Directional Detectors Distortion Meters

Electrometers Electronic Multimeters Electrostatic Voltmeters

Frequency Counters
Function Generators
Galvanometers (UV)
Gaussmeters
Insulation Testers
Level Recorders (AF)
Line Printers
Link Analysers
Loudness Analysers
Microwave Link Analysers Modulation Meters Monitoring Equipment (Power Supplies) Multimeters

Noise Generators
Noise Meters
Oscilloscopes Oscilloscope Calibrators

Oscilloscope Cameras Oscilloscope Probes

Petrol Electric Sets
Phase Meters
Plug-ins for Oscilloscopes
Polyskops
Potentiometers
Power Meters
Power Supplies
Printers
Probes
Pulse Generators
Recorders (All Types)
Resistance Boxes
Resistance Bridgés
Resolved Component Indicators
Signal Sources
Slotted Lines
Sound Level Meters
Spectrum Analysers Straín Measuring Equipment

Stroboscopes
Stylus Recorders
Sweep Generators
Tape Recorders (AF)
Tape Recorders (FM)
Telephone Test Equipment
Thermo-hygrographs
Thermometers (Recording)
Timers
TV Test Equipment
UV Recorders
Valve Testers
Vector Voltmeters
Voltmeters (AC, DC)
VSWR Meters
Water Pumps
Wattmeters
Wave Analysers Wow \& Fiutter Meters
from the index of the Livingston Hire catalogue all this equipment (from the world's leading manufacturers) is available for hire at short notice, all calibrated and ready to plug in.

SEND FOR YOUR COPY OF THE LIVINGSTON HIRE CATALOGUE

Tel: 01-267 3262

Shirley House, 27 Camden Rd., London NW1 9NR. Telex 23920 Livingston Hire

NUMBER ONE IN INSTRUMENT HIRE

- Made especially for Lasky's by famous - Maker
er operation
- 12 hour alarm
- Auto "SLEEP" switch
- Mours, minutes and seconds read-off - Forward and backward time adjustment - Silent operation synchronous motor Shock and vibration proor
- Built in alarm buzzer

This unique DIGiTAL CLOCK is now available EXCLUSIVELY FROM LASKY'S chassis form for you to mount in any housing that you choose. All settings AUTO and AUTO ALARM.. "sleep" switch. 10 minute division "click" set alarm (up to 12 hour delay) time adjustment. Ultra simple mechanism and high quality manufacture guarantee reliable operation and
The sleep switch will automatically turn off any appliance-radio. TV, light, etc.. at any pre-se time up to 60 min and in conjunction with the AUTO setting will swich on the apoliance again nex morning.
The clock measures $4 \frac{3}{4} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 36 \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{~V}$ AC switch rating $250 \mathrm{~V}, 3$ Complete with instructions. HUNDREDS OF APPLICATIONS OMPLETE WITH SET OF CONTROL KNOBS SPECIAL QUOTATIONS LASKY'S PRICE $\mathbf{f 6 . 9 5}{ }_{\mathrm{psp} \mathrm{P}_{\mathrm{p}} \quad \text { FOR QUANTITES }}$

BSR McDONALD MP60
High precision, low-mass, counterbalanced pick-up arm, cartridge. 4 pole motor.
LASKYS PRICE $\mathbf{£ 1 1 . 9 5 \quad \text { POST }}$
With plinth and cover £15.75 POST 40p.
BSR McDonald units and packages
A. Chassis only. B. Complete with Lasky's plinth and cover. C. Complete with

Lasky's plintth, cover and AD76K cart. D. comp. wired on BSR plinth with cover.

Model	A	B	c	D	E
610	¢ 15.50	¢18.75	£22.50	E24.50	£28.50
510	£13.45	f16.95	£20.75	¢22.00	£26.00
310	£10.95	¢13.45	£17.25	£21.00	£23.50
MP60	£11.95	¢15.75	f19.50	¢21.50	¢25.50

GARRARD SL55B

s. Has all the refinements that Gartard SL turntables are famous for With lifting device that allows spot-on track selection on all discs and perfect cueing facilities for singles. Wired fo mono and stereo. Size $14 \mathrm{in}(\mathrm{W}) \times 11 \frac{12}{\mathrm{in}}$ (D) 4 䆚in above and 3in betow unit plate. LASKY'S PRICE $\mathbf{f 1 0 . 5 0}$

GARRARD DECKS

S

 |larra SP 25 Mk.III with 9TA|Garrard 3000 with 9TA GARRARD PACKAGES POST FOR ALL PACKAGES 50p.
 Garrard SP 25 Mk Shure M44E cart. and Lasky's plinth and cove...............................

$$
\text { Garrard SP } 25 \text { Mk IH. MicroM2100/e cart. and Lasky's alinth and cover }
$$

$$
\text { Garrard SP } 25 \text { Mk.IH, Micro M2100/e cart. and Lasky's plinth and cover }
$$

DENSHI BOARD KITS

The Denshi Board system enables the young experimenter and elecin at all. Each kit utilizes plug-in encapsulated components. DENSHI KIT SR-1A
位 coil: transformer; 28A transistor for RF, 2 diodes; 3 earphones: various bridge and connecting pieces. This kit arphones various bridge mits conneche pieces. This kit DENSHI KIT SR-3A
Kit comprises of: 2 base boards. 50 component and accessory in extension baffle housing cadmium sulphide $2 \frac{4}{2}$ in speaker crystal mic., earpiece, test probes, morse key, extension leads etc. Build at least 100 projects Comp. with bat DENSHI DR-7 (illustrated)
With this kit you can build various types of IF amplifiers and oth audio and power amplifiers which can be used with exsonal earpiece, 7 transistors diode, thermistor volume control, capacitors, resistors, tuning capacitor, battery connectors, external project terminal blocks. shoulder carrying strap. battery, etc. PLUS 36 page manual of theory and schematics. High impact resistant case. Will house any of the radio

SR-1A £ $\mathbf{3 . 3 5}$ SR-3A $£ 11.00$ DR-7 $£ 9.15$
207 EDGWARE ROAD, LONDON, W.2.
33 TOTTENHAM CT. RD. LONDON, WIP 9RB.
109 FLEET STREET, LONDON, E.C.4.
152/3 FLEET STREET, LONDON, E.C. 4.
HIGH FIDELITY AUDIO CENTRE
42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD.
mAIL ORDERS AND CORRESPONDENCE TO
3-15 CAVELL STREET. LONDON. E1 2BN

RSC MK III SUPER 30-HI FI STEREO AMPLIEIER

A COMPLETELY NEW DESIGN FURTHER IMPROVED
IN BOTH APPEARANCE RND PERFORMANCE. IN BOTH APPEARANCE and PERFORMANCE. PRICES SUGGEST.
Only high grade components by
leading manutacturers. COMPLETE KIT OF PARTS Or FACTORY BUILT with 12 months puarantee
Dep. 5575 and 9 monthly payments 23.50 (Total $\mathbf{2 3 7}$.25)
 $£ 33.75$ $\{36.75$ PRINTED CIRCUITRY, TWEN
DIODES, FOUR RECTIFIERS.
\qquad CONTROLS: PUSH-BUTTON SELECTOR Mono Lo (5) Mono R (6) SPEAKER DIs. (7) Main Tape (4)

FANE ULTRA HIGH POWER
 years' Raarantee. High flax ceramic magnets.
Heary cast chassis. ALL CARRIAGE FREE.

 and matching control knobs, Complete KIT of PARTS
INCLUDING FULLY WIRED PRINTED CIRCUIT and coml INCLUDDG FVLLY WIRED PRINTED CIRCUIT and conl R.S.C. AIO 30 WATT ULTRA LINEAR

 $\mathbf{E} 15 \cdot 75$ perforated cover $£ 1 \cdot 75$. Or factory built with EL34 output valves and 12 monthe

RSC BASS-REGENT 50 WATT AMPLIFIER

 OR supplird complert with matibed win iodgeatkor

THE'YORK' HIGH FIDELITY 3'SPEAKER SYSTEM

material. (6) Teak veritieency tw
REMARKABLE VALUSE

\&ATM SILVER METAL FACIA with black
Black edged knobe with tright silver bentr
PUSH-BUTTON SELECTOR SWITCHING 4 NEON INDICATOR
JACK SOCKET FOR HEADPHONE \& CABDNETED MODEL VEADEEREDE IN SATIN TEAK CELAMIC or MAGNETIC, REGARDLESS OF PRICE. WE RECOMMEND USE WITH THE BEST ANCLLLARY EQUIPMENT THAT CAN BE AFFORDED.

UM \& NOISE - 75 dB Min. Vol. \rightarrow (i)) into 8 ohms.

GARMONIC DISTORTION

TREBLE CONTROL: +16 dB to -12 dB at 14 KH ,

REAR PANEL SOCKETS ARE FOR 3 PAIRS OF INPUTS (1) P.U. (2)

FANE 807 HIGH FIDELITY LOUDSPEAKER

WHEN ORDERING PLEASE STATE IMPEDANCE

$£ 9.99$ £12.99

. 5

RSC. MANSTITANSFOMMERS

 OUTPUT TRANSFORMERS

\qquad
\qquad

AUDIOTRINE A55 HIGH QUALITY STEREO SYSTEM

5 + 5 WATT OUTPUT
Garrard 5200 Changer with low mass pick-up arm and Stereo Cartridge. Controls: TREBLE, BASS, VOLUME, STERED, BALANCE
Operation on $200-250 \mathrm{v}$. A.C. mains. Output rating I.H.F.M.
Luxurious Teak Veneer Finished Cabinets. Transparent plastic (tinted) cover included for main unit. Silver finished facia plate and matching
control knobs.

PAIR OF
 LOUDSPEAKER UNITS

PRICE COMPLETE ONLY £42

A REALLY SURPRISING STANDARD OF QUALITY IS OBTAINED FROM THIS COMPACT LOW PRICED SYSTEM

BRADFORD ${ }^{10}$ North Parade (Hall-day Wed.). Tel. 25349

BLACKPOOL (Agent) O \& C Electronics 227 Church St.
BIRMINGHAM
:021-236 1279. Hall-day Wed
Osmaston Rd. The Spor (Half-day Wed.).
DARLINGTON 18 Priestgate (Halli-day Wed.). Tei. 68043
EDINBURGH ${ }^{133}$ Leith St. (Hall-day Wed.).
GLASGOW 326 Argyle St.(Hall-day Tues.). Tel. 2484158
HULL 91 Paragon Street (Hall-day Thurs.). Tel. 20505

HI-FI CENTRES LTD. MAIL ORDERS to:
106 Henconner Lane, Leeds 13 106 Henconner Lane, Leeds 13
Terms $C . W . O$. or C.O.D.
Postage 25 . 30p extra over 62 . Or as stated. quiries.
EXPORT ENQUIRIES welcomed. Branches open ALLDAY Sats
MAII ORDERS MUST NOT MAIL ORDERS MUST NET SENT TO SHOPS.

LEICESTER 32 High Street (Hall-day Thurs.). Tel. 56420 LEEDS 5 -7 County (Mecca) Arcade, Briggate $($ Halifod Wed.) Tel. 28252 LIVERPOOL 73 Dale St. (Hall-day Wed.). ${ }^{\text {TTel } .} 2363573$ LONDON 238 Edgware Road, W. 2 (Hall-day Thurs.) ${ }^{\text {T }}$. MANCHESTER 60A Oldham Street (Half-day Wed. $\begin{gathered}\text { Wel. } 236 \\ \text { Th }\end{gathered}$
 NEW CA'STLE UPON 41 Blackert Streee (oop. Fenwicks SHEFFIELD ${ }^{13}$ Exchange Street (Casstle Marker Blds.) (Half-day Thurs.). Tel. 20716

SMOOTHING CHOKES

SPECIAT HI-FI OFFERS All Caniage Paid. Mail Order Onlv. WHARFEDALE/F.A.L. Speakers, 1 F.A.L. Phase 32
$15+15$ Watt Stereo Amplitier. Total Rec. Retail Price E87-70
£66.50
following have beenunpacked
LEAK MINI $\underset{\text { STeak finish) }}{ } \mathrm{f} 18$ rogers ravensbrodk STEREO AMPLIFIEA tandberg 62 Tape Recorder GOODMANS AUDIOM 91

COMPONENTS

ACCELEROMETERS

Range	Mamfarturer	Type No．	Type	
6.8	Mechanismb	Struct 6J	Resistiv	1.50
± 10	Donner	4310	Resistive	80.00
± 10	J．A．Thompson	LaZ Mod 3C	Resistive	25.00
± 100	J．A．Thompson	LaZ Mod 36	Resistive	25.00
主 1	S．E．L	．8Ebs．A．	Inductive	300
10．5 English Electric ．TCFBA1100／3B ．．．．．．．．．．．．．． $5 \cdot 00$				
$\pm 12 \ldots$	Graseby	GW 6 A		1850
圭16 ．	Graseby			18.50
± 32	Grase by	GW6 Mk 6		18.50
± 64	Graseby	GW6 Mk 8		18.50
± 9	Lar－Elec	ITI－22F－31		15.00
1001	GEC	Type F	Ceramic	25.00
± 1	sIC de Far	．${ }^{2} 211$	Resistive	10.00
－$-5+30$	Penny \＆Gilea	D $4331 / 1$	Resistive	25.00
	Turner－．．．．	IT－1－4F	Inductive	12.00
	Sperry	－24955－0		10.00
	Sperry	212502－0100		10.00
	sperry	．214202－0100		10.00
	Enitenco	A383		10.00
	Glennite ．．．．．．	． 320		10.00

ACTUATORS	
ENGLISH ELECTRIC	
Tppe 4519 Mk 1 Rotary Actuator 28 V 3A 30 Watts 15500 rpm intermittent ．． $\mathbf{1 6} 00$	
PLESSEY	
Type Jaguar Linear Actuator 28 V 50 Watts 1.5 min rating：travel $0 \cdot 78$ ins ©（4） 100 lb max．．．$£ 15 \cdot 00$	
WESTERN MANUFACTURING	
Type EJ25 Mk 1D．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．£10．00	
AMPLIFIERS	
MAGNETIC	
Elliott	．Type 3852．31 ．．．．．．．．．．．．．．．．．£10．00
Elliott	Type 3B5235 ．．．．．．．．．．．．．．．．． $\mathbf{£ 1 0} 00$
ELLIOTT	Type 3B6297 ．．．．．．．．．．．．．．．．£1000
ELLIOTT．．．．．．．．．	Type 3C633 ．．．．．．．．．．．．．．．．£10．00
ELLIOTT．．．．．．．．．．．	Type 3C2758－A．Z ．．．．．．．．．．．．£ £ 10000
ELLIOTT．．．．．．．．．．．	－Type 3C019 ．．．．．．．．．．．．．．．．£10000
ELLIOTT．．．．．．．．．	Type 3C5161 ．．．．．．．．．．．．．．． 11000
ELLIOTT．．．．．．．．．	－Type 3C5275 ．．．．．．．．．．．$£ 10.00$
PULLIN KEARFOTT	
P．B．Pullin ．．．．．．．．．	

CELLS

STANDARD CELLS

CAMBRIDGE
Normal Weston Cell： 2 standarl cells in one case fitted with thermo－

MUIRHEAD

Type $\mathrm{D}-845-\mathrm{D}$ Reference Cell Accuracy 0.01% at $25^{\circ} \mathrm{C}$ ．Temperature coetficient less than $\pm 5 \mu / V /^{\circ} \mathrm{C}$ over the range $10^{\circ} \mathrm{C}$ to $+0^{\circ} \mathrm{C}$ ．
Mouted

MUIRHEAD

yye D－845－A Keference Cell．
As D－845－D arove hut mounting suitable for direct replacement

MUIRHEAD

SANGAMO WESTON
DORAN INSTRUMENTS
Mounted in plastics case $1 \cdot 01859 \mathrm{~V}$＠ $20^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．．．．．．． $\mathbf{£ 4} 50$
DORAN INSTRUMENTS
Mounted in plastics case 1.0183 V ． $20^{\circ} \mathrm{O}$

CHOPPERS（Synchronous converters）

ERICSSON

Type D Double Chopper－two independent units in one case 6.3 V

OAK
Type NC－4016V 400 Hz B7 baee plug－in
JAMES
Type FSN5945－55゙－1994 6V 400 Hz
£6．00

STEVENS－ARNOLD

Type 364 Coil $26 \mathrm{~V}, 10-500 \mathrm{~Hz}$ ；contacts 13 V 1ma DC Octal plug－in | £6．00 |
| :--- | BRISTOL

Type FI－52 6．3V miniature type
A．E．I

COUNTERS

We have large slocks of 3,4 and 5 Digital counters，electrical and
mechanical．Please send for list or let us know your requirements．

COUNTING UNITS

RACAL

RACAL
Type CU543D
$0-9$ counting unit
£45．00

DIGITAL DISPLAYS

E．A．C．

Digivisor Mk II IDigital Read out Display．Uses a moving coil move－

COUNTING INSTRUMENTS
Type 640 Digital Display．Uses matrix of 12 lamps to prolect digits $0-9$ onto front screen．Desired digit is selected by illuminating appropriate lamp．Lamps 6．3V 5 Watts．Digit size 4 ＂high．．．．£8．00 COUNTING INSTRUMENTS Type 600 Digital Digplay．As type 640 above except displays one
symbol only．Lamp $6.3 V y_{2}$ Watt．Digit size 4^{*} high．．．．．．．．．．．． $\mathbf{E 2} 00$
Miniature Display，As type 640 above except miniature type Lamps Miniature Digital Displaye．As type 640 above except that digits appear with degree sign，i．e． 8° etc．Lamps 6.3 V ．Digit size ${ }^{\circ} \mathrm{h} .5 \mathrm{~h}$ K．G．M．
Type m3 Digital Displays．Displays $0-9$ by mearis of edge illuminated
etched perspex screens．Lamps $\mathbf{2 8 v}$ ．Digit size \mathbb{Z}^{7} high．．．．．．．．．25

SHAFT ENCODERS

COLVERN

8 digit Encoder
18.00

COLVERN
DYCHRO CORPORATION
ELECTRO MECHANICAL RESEARCH INC
（ASCOP）
£25．00
ELECTRO MECHANICAL RESEARCH INC （ASCOP）
$£ 25.00$

FANS

PAPST－MOTEREN
Fan．Originally made for IBM $220 \mathrm{~V} 50-60 \mathrm{~Hz}$ ．
£2．50
AIR CONTROL INSTALLATION ROTRON

ROTRON
Fan． $105-125 \mathrm{~V} 50-60 \mathrm{~Hz} 14$ Watts $41 \times 4 \mathfrak{Z}^{*} \times 1 \mathfrak{l}^{*}$ ．．
£5．50

ELECTRONIC TUNING FORK
Type 1T $2-31-35$ Electronic Tuning Fork．．．．．．．．．．．．．．．．．．． 1500

GEAR BOXES
S．H．MOFFETT gear．
orerall

S．G．BROWN

GYROSCOPES

ENGLISH ELECTRIC

ENGLISH ELECTRIC

ENGLISH ELECTRIC
Mk 6B／3 Rate Gyroscope．．．
B．I．A．
Type Mja 49／8L 1ntegrating Gyroscone ．．．．．．．．．．．．．．．．．．．．． $1 \mathbf{1 0} 00$
FERRANTI
Type st／90／400 Rate Gyroscope．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{£ 7} \mathbf{5 0}$
FERRANTI
Type HST／90／400 Rate Gyroscope ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{£ 7} 50$
FERRANTI
Type T2502／T Gyro Unit ．．． $\mathbf{\& 7} 50$

ELAPSED TIME INDICATORS

HAYDON

Type Elifl．Hours and Tenths 120 V 60 Hz
HAYDON
Type EDT2．Hours and Tenths 240V $50 \mathrm{~Hz} \ldots \ldots \ldots$ ．．．．．．．．．．．．．55．50
ELGIN
Tspe $95 \mathrm{~A} 5 \mathrm{CD} / \mathrm{I} 0-3000$ hours 115 y 380－420Hz．．．．．．．．．．．．．$£ 500$
LAMPS

MAZDA

NUMICATOR TUBES

CRYSTAL OVENS

CATHODEAN

CRYSTAL OVENS-continued

REDIFON

Type A4260 EDN A. Temperature $75^{\circ} \pm 5^{\circ} \mathrm{C}$. Holds 2 " D " (ype diameter
REDIFON

MARCON

PHOTOMULTIPLIER TUBES

POTENTIOMETERS

49-53 PANCRAS RD., LONDON, N.W.1. TEL.: 91-837 7781. TELEX 267307

INSTRUMENT SLIP RINGS
Type ETC 27222 C45 45 way Slip Ring Assembly $£ 25.00$
$£ 20.00$

SOLENOIDS

EICHNER

Type $4(\underline{2}, 021-25 \mathrm{C} 2$ Voltage $42 \vee$ Coil Resistance 45 ohm. Throw approx
 ${ }^{\text {Trpe }}$ El 3 Voltage 24 V 70 ohm Th row approx. $0 \cdot 25^{\prime \prime}$. O verall dimensions

MAGNETIC CORE STORES
EX-COMPUTER
42×52 ferrite corestores. Capacity 2 K bits. Complete with 84-OA10 load diodes. For building computers or storing information in binary
form ...

SWITCHES

INERTIA

INERTIA SWITCH LTD.
ROTARY DRIVEN
LEDEX (NSF LTD.)
Rotary Roll
${ }^{4}$ pole 5 pole 11 way
1 pole 1 way H/Duty
12 pole 11 way H/Duty reversibie
4 pole 11 way
1 pole 4 way

H/Duty rotary solenoid only
DIFFERENTIAL PRESSURE

SMITHS

Type $1141 \mathrm{PF} /$ /AA/1/25 Hydraulic Pressure 8 witch.
Range setting $10-30$ p. . i . max. overload 120 p.s. T.A. CONTROLS

SAMPLING SWITCH
VACTRIC
$\mathbf{£ 4 5} \mathbf{0 0} \quad 26 \mathrm{Y} \quad 400 \mathrm{~Hz} \quad 0$ pole $\begin{array}{r}24 \\ £ 25 \cdot 00\end{array}$

SYNCHROVERTER SWITCHES

ELLIOTT

TIME SWITCH
SANGAMO WESTON

SMITHS
ACCELERATION SWITCH
GRASEBY INSTRUMENTS
MINIATURE THUMBWHEEL SWITCHES
STC
before break-rear illumination of digit.................... $£ 0.60$ before bruak- rear illumination of digit. 80.65 illumination
Type $65 \mathrm{C}-\mathrm{sw} 21-630 \mathrm{CAC}$-rear illumination of digit. Binary 10 way

TAPE HEADS (Data)
EX-IBM COMPUTER

 Type PE3 3 track inch. £4.00 NEW 7 track 1 inch tape heads
Type 84 L 9 track inch. $£ 4.00$

TRANSDUCERS
PRESSURE

COMPONENTS

AVOMETERS!
MOD. 7 SPECIAL OFFER $13 \cdot 75$ IN HIDE CASE (Postage Paid U.K.)

Size $12^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$. New in carton

Abstract

POWER SUPPLY UNITS ADVANCE. DC22 (later version of DC6). 19" rack meeting. Mains to 24V 5A D.C. Ripple 1% total output. Stabilisation $\frac{1}{2}$ to full load. $4 \cdot 6 \mathrm{R}$. © 17.50 New, boxed with handbook. (P, pd, U.K.)

FARNELL. SSB 0/25V 2A. 25/30V IA. Free standing Ripple $500 \mu \mathrm{~V}$ P/P. Stabilisation 0 to full load. $<5 \mathrm{mV}$. $\mathbf{E 2 5} 50$ New, boxed with handbook. (P. pd. U.K.)

NEUTRON COUNTING ASSEMBLY

Manufactured by Bendix-Ericsson (U.K.) Ltd., comprising: Lead Caste, Head Amplifier, 2 Neutron Counting Units, I Calibrator Jig. (Weight approximately 5 cwt.) New. Unused. $\mathbf{6 3 2 0 . 0 0}$ (C. pd. U.K.)

REDIFON FSK UNITS

$1.7-9 \mathrm{MHz}$ in 2 ranges. 19^{*} rack meeting. AP 104590 622.50 (C. pd. U.K.)

RATE GYROS

Several types in stock. Send for details.

SOLARTRON OSCILLOSCOPES

CD.7IIS2. As received from H.M. Government. Excel lent condition but offered as seen at 645 each. Buyers collect ex-Lydd
Fully reconditioned and calibrated $\mathbf{6 9 0 . 0 0}$ (C. pd. U.K.)

HOLLOW CATHODE DISCHARGE LAMPS Require open circuit striking. Voltage of 750 V D.C. and 500 V at 100 mA to run.
For $\mathrm{Si}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Ti}$
65.00 each

For $\mathrm{Ag}, \mathrm{Cu} / \mathrm{Zn}, \mathrm{Nb}$ C6.00 each For $\mathrm{Sn}, \mathrm{Ag}, \mathrm{Bi}, \mathrm{V}, \mathrm{Na}, \mathrm{Mo}, \ddot{\mathrm{Co}}, \mathrm{Ta}, \mathrm{Pb}, \mathrm{Mn}$,
$\mathrm{Mg}, \mathrm{Pb} / \mathrm{Cd}, \mathrm{Ca} / \mathrm{Mg}$
67.00 each

TRANSFORMERS AND CHOKES
GARDNER 240 V 75 W Auto, $350-0.350 \mathrm{~V} 70 \mathrm{~mA}$ 700 V 10 mA (3 kV working), $3 \cdot 15-0-3 \cdot 15 \mathrm{~V} 3 \cdot 5 \mathrm{~A} \quad 63.00$ GARDNER $250-0-250 \mathrm{~V} 15 \mathrm{~mA}, 0-400-600 \mathrm{~V} \cdot 105 \mathrm{~mA}$ ARDNER $0-20-30 \mathrm{~V} 250 \mathrm{~mA}$ (twice) GARDNER 0-20-3 V IA (twice)
GARDNER $350-300-0-300-350 \mathrm{~V} 100 \mathrm{~mA}, \ddot{6} .3 \mathrm{~V} \mathrm{3A}$, 6.3V IA

GARDNER $0-1200 \mathrm{~V} 20 \mathrm{~mA}, 6.3 \mathrm{~V}$ iA (twice)
. . 13.65
3A (twice) $\quad .0-10-230-260 \mathrm{~V} \quad 700 \mathrm{~mA}, 0-6.3 \mathrm{~V}$ All above $115 / 230 \mathrm{~V}$ tapped Primaries $50 / 60 \mathrm{~Hz}$ GARDNER 0-12V 4A (twice) 22.65
GARDNER 2.5-0.15.6-31V 3.2
GARDNER 200-0-200V $25 \mathrm{~mA} \quad 0-6.3 \mathrm{~V} 0.6 \mathrm{~A}$ (twice) ER .7
GARDNER 3.15-2-0.2-3.15V 2 A (twice) (wice) E1.75
WARDRAY 0-6.3V $2.5 \mathrm{~A}, 0-6.3 \mathrm{~V} 1.5 \mathrm{~A}, 0.220 \mathrm{~V}$
$20 \mathrm{~mA}, 0-375 \mathrm{~V} 100 \mathrm{~mA}, 0-375 \mathrm{~V} 75 \mathrm{~mA} \ldots .$.
WARDRAY $0-400 \mathrm{~V} 20 \mathrm{~mA}$.. $\mathbb{C 1} \cdot 60$
All above 230 V topped Primaries $50 / 60 \mathrm{~Hz}$ except Wardray 240 V 50 Hz
GARDNER $0.1 \mathrm{H}_{2} 2.5 \mathrm{~A}$.. EI.75
PARMEKO 0.2H 3A (0.8 H No D.C.) $\quad . \quad$.. \quad. 3.50
GARDNER $10 \mathrm{H} \mathbf{2 5 0 m A}$.. $\mathbf{2} \cdot \mathbf{5 0}$
GARDNER 50 H 25 mA
11.00

Gardner 180 H 24 mA
E2.35
(All C. pd. U.K

METERS

TURNER Model 702 20-0-20V Rect. . . . 22.50
TURNER Model 702 0-100; 1 A Rect. $\mathbf{E 3} 3$
TURNER Model 7030 0-34mA Rect.
CAL. 10-0-10, 20-0-20, 50-0-50, 50-0-50 μ A F.S.D. $63 \cdot 25$
(All C. pd. U.K.)

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS AND PLUGS AND SOCKETS

$\delta_{\text {ervo and }}$ Electronic $\delta_{a l e s} \mathcal{L}_{t d}$

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockists - Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/33221 19 MILL ROAD ,LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs).
Phone: 01-688-1512 (Croydon)

DRY REED INSERTS

Overall length 1.85^{*} (Body length $1.1^{\prime \prime}$ Diameter 0.14° to switch up to 500 mA at up to 250 v D.C. Gold clad contacts. $62 \frac{1}{2} \mathrm{p}$ per doz. 63.75 per 100; E27.50 per 1,000; 6250 per 10,000 . All carriage paid.

P.O.TYPE UNISELECTORSFROM STOCK, 50V. 11 LEVEL, IBRIDGING ON-BRIDGING, 3, 4 AND 5 LEVEL ALSO AYAFLABLE.

MERCURY WETTED CONTACT RELAY Elliott type HG2M 145 ohms. 2 normally-open 2 normally-closed contacts $£ 3 \mathrm{ea}$. GEARED MOTORS. I r.p.m. or 3 r.p.m. 4 watts very powerful, reversible 24V
A.C. 1175 , post 20 p, can be operated from A.C. mains with IMHOF BLOWER UNITS in ar IMHOF BLOWER UNITS in a standard 19 in. rack mounting assembly with Glass
Fibre Air Filter and directional Duct. Capacitor Fan Motor $1 / 50$ th H.P. $200 / 250$ Volts Fibre Air filter and directional Duct. Capacitor ${ }^{\text {F }}$
or $100 / 125$ Voits 2, 800 R.P.M. E12, carriage $£ 1-50$.
VACUUM PUMP Plessey Type B.3. \times Mk. 2, Pat. No. CV. 5072 rotary vane
type 6 in. HG inlet depression at $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and $7.5 \mathrm{c} . \mathrm{f}$. mo. with 20 . in. Hg. delivery
$\begin{aligned} & \text { pressure. } 5 \mathrm{in} \text {. Hg inlet depression at } 1200 \mathrm{r} . \mathrm{p} . \mathrm{m} \text { and } 3.5 \mathrm{c} \text { ef.m., with } 20 \mathrm{in} . \mathrm{Hg} \text {. } \\ & \text { delivery pressure. Limited stocks availiable send for details. }\end{aligned}$

BRIDGE MEGGERS, SERIES $1,1000 \mathrm{~V}$., range $0 / 100 \mathrm{M}$ Ohms--Infinity,

 complete with Resistance Box $0 / 9999$ Ohms. Brand New in seMaker's price for this instrument is $£ 189 \cdot 50$. Our Price $£ 65.00$.

MINIATURE BUZZERS, 12 voles, with tone adjuster 40p each as illustrated. LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size $5 S$.
4 pole 11 way and off $£ 5 \cdot 50.24$ pole II way and off $£ 10.50 .54$ pole On Off $\in 7.50$. CHILTON BLUE LINE HEAVY DUTY SWITCHES made by Kraus \& Naimer Code No. AAL2 3 HEAVY Size C25 \& C200 with slack Hande, also
quantity of other BLUE LINE SWITCHES Under usual price reasonable offer quantity of other BLUE LINE SWITCHES Under usual price reasonable offer INDUSTRI
R.P.M. in housing with adjustable lourres 230 Volt A.C. motor 1,400

HIGH SPEED COUNTERS
$3 \mathrm{in} . \times 1 \mathrm{in}$. 10 counts per second,
with 4 figures. The following $\mathrm{D.C}$.
voltages are available, 6 v., 12 v ., voltages are available,
$24 \mathrm{v}, 50 \mathrm{v}$., or 100 v . Also supplied with auxiliary contacts.

£1.75

EX COMPUTER PRINTED CIRCUIT conductors and top quality resistors,
capacitors, diodes, etc. Our price, 10 capacitors, diodes. etc. Wur price,
boards, 50 p . P. \& P. ${ }^{\text {en }}$
mith a suaranteed minimum of 35 transistors. Transistor Data included.
SPECIAL BARGAIN PACK, 25 boards for EI. P. \& P. 18_{p}. With a guaranteed Data included.
PANELS with 2 power transistors sim. to OC28 on each board plus components. 2 boards ($4 \times 0 \subset 28$) 50p. P. \& P. 5p. 9 OA5, 3 OAIO, 3 Pot Cores, 26 Resistors,
14 Capacitors, 3 GET872, 3 GETB72B, 14 Capacitors, ${ }^{\text {GET875, All long leaded on panels } 13^{\circ} \times 4^{\circ} \text {. }}$

I2V 4A POWER SUPPLY Exremely well made by FRAKO GmbH in W. Germany, with constant voltage mains
transiormer, tapped input from 115 V to 240 V . Full wave rectification and capacitor
smoothing. Size $9^{\circ} \times 6^{\circ} \times 5^{\circ}$, weight 111 lb . These units are brand new, unused and fully guaranteed. Maker's price believed to be
around $£ 80$. Our Price $\mathbf{6 9 - 5 0}$. Carr. 50 p

250 MIXED RESISTORS

DIODES EXERPT.
SILICON
4 for 50 p
4 for L 1.00
P. \& P. 5p

QUARTZ HALOGEN BULBS
with long leads 12V 55W for car spotlights and proJectors etc. 50p

RELAYOFFER Single Pole Chanzeover Silver Contacts
$2^{*} \times 6^{*} \times 7^{*} \times 2.5 \mathrm{~K} \Omega$ Coil operates on $2^{*} \times 6^{\circ} \times 7^{*} .2 .5 \mathrm{~K}$ a Coil operates on
25 to 50 V . B for 50 p . $\&$ \& P . p .

MAINS MOTOR

Precision made-as used in record
decks and
tape reconders-ideal also for extractor fans, blower, heater, etc.

MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplifers. Adfunt-
abie output $0 \mathbf{v} ., 9 \mathrm{y} ., 12$ volts for up to 500 mA (class B worklag). Takes the place of any of the following batteries:
PP1, PP3, PP4, PP6, PPP, PP9, and others. KKIt comprisee: condensers and instructlons. Real snlp at only 83p, plus 18p postage.
DOUBLE LEAF CONTACT

MAINS OPERATED
CONTACTOR 220/240v. 50 cycle solenoid with operstion. Closes 4 cerrevile each
rated at 10 amps. Extremely well rated at 10 amps. Extremely well Company. Overall size 21×2
2 in. 21 each.
AUTO-ELECTRIC CAR AERIAL with dashboard control switch-fully extend poaitive or negative earth. Supplied enmplete
with fitting lastructions and ready wired dash with fitting lostructions and ready wired dash
board switch. 25.75 plus 25 p poat and ing.

TOGGLE SWITCH
3 gmp 250 v . with Axing
ing.
$7 \frac{1}{2} \mathrm{p}$ each 75 p doz

MICRO SWITCH
$=5$
5 amp. changeover contacts, 9 p each, $£ 1 \cdot 00$
doz. 15 amp on/of 10 peach or $£ 1 \cdot 05$ doz.
15 amp . changeover 15 p . 10 for $£ 1.35$.

MINIATURE WAFER

 2 pole, 2 way- 4 pole, 2 way- 2 pole, 3 way-4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way-
2 poie, 6 way . poie, 12 wry. All at 18 p
each, $£ 1.80$ dozen, your assortment.

WATERPPROOF HEATINA
ELLMMETT
26 yards length 70W. Belf-regulating
temperature control. 50 p post free.

EXTRACTOR FAN Cleans the air at the rate of 10,000
cubic ft. per hour. At the pull of a cubic ft. per hour. At the pull of a
cord it extracts grease, grime and
cooking gmells before they dirty cord it extracts grease, grime and
cooking smells before they dirty
decorations. Buitable for yitchens,
 harsly be heard. Compact, 51°
caring with 55° fan blades. Sultable
wherever it air fast. Kit compriseary motor, man
blades. aheet steed casing, pull switch, mains
vost and ing.

HEARING AID AMPLIFIERS
(Ex behind ear deaf alda) 3 transistors on tiny P.C. board with volume control-whole thing only about half as big as
Oxo cube. $£ 1.75$ or with sub-miniature microphone and L.
attached $\mathrm{E3} 50$. attached 83.50 .

MAINS OPERATED
SOLENOIDS

 MAINS RELAY BANEAIN Special this month are some aingle, double
and treble pole changeover relays. Contacts and treble pole changeover relays. Contacts
rated at 15 amps Operating coll wound for
240 V . A.C. Good Britioh Make. Ununed. Blze approx. $1 \% \times 1$ ins, Open construction. $\begin{array}{lll}\text { Bingle pole } & 25 p \text { each } & 10 \text { for } 22.25 \\ \text { Treble pole } & 35 p \text { each } & 10 \text { for } \\ \text { 23.15 }\end{array}$ CAR ELECTRIC PLUG Fits in place of cigarette lighter. Useful
method for making a quick connection into the car electrical aystem. 38 p each or
10 for 23.42 .

2thW FAN HEATER Three position switching to suit
changes in the weather. Switch up changes in the weather. Bwitch up
for full heater ($2 \downarrow \mathrm{~kW}$), switch down
or hait heat for hatit heat (1 1 kW), switch central
blows cold for summer coolingblows cold for summer cooling-
adjuatable thermostat acts as antoadjustabe thermostat actis as suto-
control and saidety cut-out. Complete
kit 8375 . Post and ins. 38 p .

HORSTMANN "TIME \& SET" SWITCH

 (A 30 Amp Bwitch.) Just the thing it you want to come home to a wwitch on time of your electric fires, etc., up to 14 hours from setting time or you can use the switch to give a boost on period of up to 3 hours. Equally suitahle to control processing. Regular priceprobably around 25 . Special snip price $£ 1.50$ Post and ine. 23 .

ERGOTROL UNITS
These units made by the Muliard Group are for
operating and controlling d.c. Motors and equlp-
ment from A.C. mains. ment from A.C. mains
Thyristore are used Thyriatore are used and these aupply a variable
deff.cesulting in motor speed control and operating efficiency far superior to most other methods.
The units are contained in wall mounting cabinets with front control panel on which are tuses-push buttons for on/orl sad the variable thryristor firing control.
4 modela are availkb
ll are brand new in

$\begin{array}{ll}\text { makers cases: } \\ \text { Moder } 2410 \text { for to } & 5 \mathrm{amps} \\ \text { Model } 2411 & 217 \cdot 50 \\ \text { for up to } 10 \mathrm{amps} & \mathrm{el} 27.50\end{array}$ | Model 2411 for up to 10 amps | 2.5% |
| :--- | :--- |
| Model 2415 for up to 80 amps | 595 |
| 8.00 | |

OUT OF SEASON BARGAIN

AMPLIFIER MAINS TRANSFORMER

50 V 1 f amp. Upright mounting with fixing brackets and metal shrouds to contamp magnetic fleld, 50 c/s primary, tapped $110 \mathrm{~V}, 17 \mathrm{~V}, 210 \mathrm{~V}$,
230 V and 250 V .2 secondarles, one 50 V it amp, other 6 V amp for 230 on and 250 V .2 seondarles, one 50 V it amp, other 6 V 1 amp for
pilot fight, etc. $£ 1.95$. portage 300 . pilot fight, etc. $\mathbf{£ 1} \cdot 95$, postage 30 p .

For any lamp up to 200 watt. Mounted on awitch plate to fit in place of standard switch. Vi.
\&1-80 plus 20 post and ins.

CAPACITOR DISCHARGE CAR IGNITION

This oystem which has proved to be amazingly efflcient and
relisble was frat described in the Wireleas W orld ahout a year
 poat. When ordering please atate whether for positive or negat
ready made ignition aystems for 6 V . vehleleg. $\mathbf{2 5} \cdot 25$ plus 20 p .

Range except for 9-way is as standard waier switches. Price

3 STAGE PERMEABILITY TUNER

 This Tuner Is a precisio n instrument made for the famoua Radiomobile CarRadio. It is a medium wave tuner (but set of long wave coils available as an extra if required) with a frequency coverage $1620 \mathrm{Kc} / \mathrm{s}-525 \mathrm{Kcc} / \mathrm{s}$ and intende
to operate with an I.F, va hue of $470 \mathrm{Kc} / \mathrm{s}$. Extremely compact (size only $2 \ddagger \times$

ELECTRIC CLOCK WITH 20 AMP. SWITCH

 Made by Smith's these nuits are as fitted to many top quality cookers to control the oven. The clock 18 mains driven andfrequency controlled so it is extremely accurate. The two small dials enable owitch on and ofr times to be accurately set- -also on the left is ancther time or alarm-this may be
get iu minute up to 1 hour. At the end of the period a bell set in minutes up to
wlli sound. oftered at oour. At a the end of the period a pell
-80.50 less than tine value of the clock alone-post and ing. 15p.

DISTRIBUTION PANELS

Just what you need for work bench or lab. 4×13 amp
aockets in metal box to take standard 13 amp fused
ackets in metal box to take atandard 13 amp fused pluge and on/off switch with neon warning light. Supplied complete with 7 feet of heavy
cable. Wired up ready to work, 22.25 less plug; 82.50 with fitted 13 amp plug; $\mathbf{2 2 . 6 5}$

MULTI-SPEED MOTOR
Replacement in many well-known food
mixers. Bix speeds are arailable 500 850 and $1,100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. from either or both of the nylon sockets (where the beaters of the food mixers normslly go) and pollshing opeeds) from the main drive and approximately 1 in . long. A further point about this motor is that being $230 / 240 \mathrm{y}$, wound its speed may be further controlled with the une
of our Thyrister controller. This is a very powerful and of our Thyrister controler. This is a very powerful and
useful motor size approx. 2 in. dia. x in. long, mains
$230 / 240 \mathrm{v}$. Price 88 p plus 23p postage and insurance. 12 or 230/240v. Price 88 p plus 23p postage and insurance. 12 or
more post free.

REED SWITCHES

Glass encased, switches operated by external magnet-gold Welded contacts. We can now offer 3 types: . and break up to 1 A up to 300V. Prrice 13 peach, 12 . 20 dozen.
and of up to 1 A , voltage hp to 250 V . Price 10 p each. 900 per Flat. Flat type, 2^{*} long, just over it thick, flattened out, 80 may be packed into a square solenoid. Rating $1 \mathbf{A} 200 \mathrm{~V}$. Price 30 pesch, £3 per dozen.
Bmall ceramic magnets to ope
Bmall ceramic magnets to operate these reed switches 9 D each, 90 p dozen.
BALANCED ARMATURE UNITS
These Capaules are $l^{\prime \prime}$ in diameter and $l^{\prime \prime}$ thick.
They will operate as a microphone or loud speaker
so can be used in intercom and similar clrcuits.
33p. Ten for $£ 3$.

$$
\begin{aligned}
& \text { Bo can be used } 1 \\
& \text { 33p. Ten for } £ 3 \text {. }
\end{aligned}
$$

12 VOLT I $\frac{1}{2}$ AMP

POWER PACK
This comprises double-wound 230
240 V
maing trana 240V mains traneformer with full
wave rectifter and $2000 \quad \mathrm{~m} / \mathrm{l} / \mathrm{d} /$
smoothing. Price $£ 1.50$.

MAINS CONNECTOR
A quick way to connect equlpment
to the masins safely and firmulydisconnection by plugs prevents
accidental switching on: has
cockets which silow insertion of sockets which sllow insertion of meter without disconnection; cable
inleta firmly hold one hair wire on inlets firmly hold one hair wire on
up to four 7,129 cables. 85 peach.

QUICK CUPPA

Mini Immerslon Heater. 350W. 200/240V. boils full cup in about two minutes. Use any
socket or lamp holder. Have at bedside for socket or lamp holder. Have at bedside for
tea, baby's ood. etc. $£ 1.25$. post and
insurance 14 p . 12 V car model alen aver insurance 14 p . 12 V car model also avallable.
Bamee price. Jug model also available $\& 1 \cdot 50$

TELESCOPIC

TREASURE TRACER
Complete Kit (except wooden battens) to make the metal detector as described August iseue. 22.50 plus 20p post and

的量

LIGHT CELL

Aimost zero resletant in sunlight increases to 10 K . 0 hms in dark or dull Rated at 500 MW . Wire ended, 43 p . Sult most circuits.

HIGH ACCURACY THERMOSTAT
Uses differentisl comparator 1.C. with
therminter as probe. Designer claims tem
perature control to within $1 / 7$ th of a degree
Complete kitt with power pack 55.50 .
MOTOR WITH GEARBOX
Very powerful 7 r.p.m., operates from
standard A.C. mains. \&l. 50 , plus 18p P. $\& P$.

A Hew Servio to Readeri. A bulletin bringing news of new ines, special silps aud "too few to advertise" lines will bo
posted to aubseribers during first week of each month The bulletin wili be called "Advance Advert News" and the Bubscription is 60 p per year. Bubscribers will aloo
receive our completed 1971 catalogue when this is published.

> Where postage is not stated then
orders over 55 are post free. Below
> $\not \subset 5$ add 20 p. S.A.E. with enquiries please.
J. BULL (ELECTRICAL) LTD.

Dept. W.W.7, Park Street, Croydon, CRO 1 YD

PARMEKO " C" CORE TRANSFORMERS Pri. tapped $110-200-240 \mathrm{v}$. Sec. 1250 v . $197 \mathrm{~m} / \mathrm{a}$. Sec. 2 Table rop connections. Size $5 \times 4 \times 4$ ins. Brand new boxed. ©1.75. P. \& P. 45 p.

> T.E.C. $240-110 \mathrm{v}$. 15 OLATION TRANSFORMERS Pri Tapped 10 . 200. 220 . 240 v . sec. Tapped 110.112 .5 115 v . Conservatively rated as amps. Tropiealised open frame type. Terminal Board connections. Size $9 \times 9 \times$ 7 ins . Weight 60 lbs .415 .00 . Carr. 90 p .
7 ins . Weight 60 lbs . $15 \cdot 00$. Carr. 90 p .

PARMEKO TRANSFORMERS Jupiter Series. Pri. $110 \mathrm{v} ., 200-220-240 \mathrm{v}$. Sec. 24-0-24v. $470 \mathrm{~m} / \mathrm{a}$. and $150 \mathrm{v} .15 \mathrm{~m} / \mathrm{a}$. Hermetically sealed. 11.75 . P. \& P. 25p. Neptune Series. Pri. $110-200-220-240 \mathrm{v}$. Sec. 250-0-250v. $70 \mathrm{~m} / \mathrm{a}$., 5 v . 3a. 12.50 . P.P. 45 p . $0-0-500 \mathrm{v}$. $120 \mathrm{~m} / \mathrm{a} ., 6 \cdot 3 \mathrm{v}, 3 \cdot 5 \mathrm{a} ., 6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$. .
GRESHAM HEAVY DUTY HT CHOKES $10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} D C$. Conservatively razed. DC Res 50 a. Size $300 \mathrm{~m} / \mathrm{a} .60 \mathrm{\Omega} .63 .75$. Carr. 75 p . $15 \mathrm{H} 180 \mathrm{~m} / \mathrm{a} .200 \Omega$. 22.25. P. \& P. 50 p . $10 \mathrm{H} 180 \mathrm{~m} / \mathrm{a}$. 130Ω. 41.50 . P. \& P. 40 p . $10 \mathrm{H} \mathrm{m} / \mathrm{a}$, [1-25. P. \& P. 40p.

LOW TENSION SMOOTHING CHOKES By Redeliffe. $100 \mathrm{MH}, 2 \mathrm{amps}$. $\mathbf{2 2} 50 . \mathrm{P}$. \& P. 45 p . Swinging Types. IOMH. $6.5 \mathrm{amp-50MH} .2$ amps. $\mathbf{2 2} 25$ P. \& \& P. 45p. Both rypes less zhan $\frac{1}{3}$ ohm res. Hermetically sealed. Oil filled. Brand new. In makers cartons. Parmeko $0 \cdot 13 \mathrm{H}$. $1 \cdot 15 \mathrm{amps}$. Less than $\frac{1}{} \mathrm{ohm}$. Res. [1-25. P. \& P. 25p.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785।

01-262-5125
CURRENT RANGE OF BRAND NEW L.T. TRANS
FORMENS. FULLYSHROUEDD (ExCEDTed) TERMINAL
E ${ }_{8}$ CK

20,000 HIGH CAPACITY ELECTROLYTICS

CE4OM:
Type C
P.P. 15 p

NO K.P.O. 4-WAY TELEPHONE CORDS Non kink coil type. Length closed 10 in . Fully expanded, 4 ft .
Red only. 40 p . inc. post. TyPE BR 115 BIT-9C 4 CO CD H NELAYS
Type BR 115 BIT-9C 4 CO Contaces, 150 ohms. 26 v ., 250v. 15 a .
Enclosed in metal case. Size $1 \frac{1}{2} \times 1$ in. dia. 75 p inc. post. OMRON SUB MINIATURE RELAYS
 MAGNETIC DEVICES SEALED RELAYS
5,000 , 3 C. 0 . contacts. Overall size $2 \times 2 \times 1+$ in. New boxed. 5,000 n. ${ }^{3}$ C. O. contacts. Overall size $2 \times 2 \times 1 \pm i n$. New boxed
37tp. P.P. $7 \pm p$. ELECTAO METHODS 2.3v. A.C. CONTACTORS Heavy Dut.
sop. P.P. 10 p.
LONDEX PLUG-IN RELAYS
Sealed type, 28v. D.C. Three heavy duty silver contacts. Size
$\mathbf{2} \times \mathbf{2} \times \mathrm{in}$ in. Complete with base. 50p. P.P. IOp. MAGNETIC DEVICES 6v. D.C. $3 \times$ Heavy Makes contacts. Size
$2 \times 1 \frac{1}{2} \times 1$ in. 50p. P.P. 10 p .

> G.P.O. RELAYS 3000 TYPE 750 3M. IB. IC.O. contacts. 30p. 200 D

750 3M. 1B. 1 C.O. conracts. 30 p . 2000 OM, 35 p 2 heavy duty M. 2M. 35 p. 500 a 1 C.O. IM. 30 p. 2500 i, heavy $\frac{\text { make. 3B. MM. 1Sp. P.P. all zypes 5p. }}{\text { G.P.O. MAGNETIC COUNTERS. }}$ $\frac{1 \times 1 \mathrm{in} \text {. } 50 \text { p. P.P. } 5 \mathrm{p} \text {. }}{\text { HONEYEL MICRO SWITCHES }}$ Type YZ RW 84-NBB. Lever operated. Make or break (3 tags).
 $\frac{\text { Press Button, three for } 60 \text { p. P.P. 5p. }}{\text { RANCO REFNIGERATION THERMOSTATS }}$ Type A.10. $100-250 \mathrm{v}$. A.C. \& h.p. 75p. P.P. 10 p . Teddington
rype Q. $100-150 \mathrm{v}$. A.C. th.p. 75 p . P.P. 20p.

22

AUTO TRANSFOMMERS
$240 \mathrm{v}-110 \mathrm{v}$. or 100 v . Completely Shrouded fited with
Two-pin American sockets or terminal blocks. Please Two-pin American sockets or terminal blocks. Please
state which typer required. Weight Price Corr.
Type Wotts Approx. Weigt

Price
62.00
62.75
63.75
65.25
67.25
69.75
614.75
617.85

28watts, r.m.s. 40 Hz to $4 \mathrm{OkHz} \pm 3 \mathrm{~dB}$

PRICES SYSTEM 1
Viscount III 8101 amplifier $£ 22.00+90 \mathrm{p}$ p\& $2 \times$ Duo Type II speakers $\quad £ 14.00+£ 2$ p\&p
and cover

Total $\overline{£ 59.00}$

Available complete for only $\xlongequal[£ 52.00]{ }+\mathbf{£ 3} .50$ p\&p
SYSTEM 2
Viscount 8101 amplifier $\quad £ 22.00+90 \mathrm{p}$ p\&p $2 \times$ Duo Type III speakers $\quad £ 32.00+£ 3$ p\&p Garrard SP25 Mk. III with
MAG. cartridge, plinth
and cover

$$
\text { Total } \begin{array}{r}
£ 23.00 \\
£ 77.00 \\
\hline
\end{array}
$$

Available complete for $\mathbf{£ 6 9 + \mathbf { ~ } 4} \mathrm{p} \mathrm{\& p}$
SYSTEM 3
Viscount III amplifier R100 $\quad £ 17.00+90 p \mathrm{p} \& \mathrm{p}$ $2 \times$ Duo Typellspeakers. pair $£ 14.00+£ 2$ p\&p Garrard SP25 Mk. III with
CER. diamond cartridge.
plinth and cover
Total $\underline{\underline{£} 52.00}$
Available complete for only $\mathbf{£ 4 9 . 0 0}+\mathbf{£ 3 . 5 0} \mathbf{~ p \& p}$

Viscount III Audio Suite complete

SPEAKERS Duo Type II

Size $17^{\prime \prime} \times 10 \frac{3 x^{\prime \prime}}{} \times 6 \frac{3 x^{\prime \prime}}{}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts. 3 ohms Type III Size $23 \frac{1}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$. Drive unit $13 \frac{1}{\prime \prime}^{\prime \prime} \times 8 \frac{1}{4}$ witt H.F.speaker. Max. power 20 watts at 3 ohms Frec. range 20 Hz to 20 kHz . Teak veneer cabinet £ 32 pair $+£ 3$ p\& .

SPECIFICATION R100/101

14 watts per channel into 3 to 4 ohms. Total distortion @ 10W@1kHz 0.1\%. P.U. 1 (for ceramic cartridges) 150 mV into 3 Meg . P.U. 2 (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $\pm 1 \mathrm{~dB}$ A.I.A.A. full power) Tape out facilities: headohon given at full power). Tape ou facikies, headphon socher, pow pow and filer charateristics. Bass: $+12 \mathrm{~dB} 10-17 \mathrm{~dB}$ $@$ BOHZ. Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to -12 dB @ 15 kHz . Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max) RT101-P.U.1. \& radio-65dB. P.U.2- -58 dB . R100 same as RT101 but P.U.2. (for crystal cartridge) 450 mV into 3 Meg . Cross talk better than -35 dB on all inputs. Overload characteristics 26 dB on allinputs. Size $1 \frac{3}{4}$ " $\times 9^{\prime \prime} \times 3 \frac{3}{4}{ }^{3}$.

SOUND 50
 50 WATT AMPLIFIER
 \& SPEAKER SYSTEM

Output Power. 45 watis R.M.S (Sine' wave drive). Frequesncy responss: - -3 db points 30 Hz at 18 KHz Total distontion: less than 2% at rated output. Signal to noise ration batter than 60 db. Spezker Impedance: 3. 8 or 15 ohms. Bess Controt Renge: +13 dh at 60 Hz Trebto Control Range. +12 th at 10 KHz . inpuis: 4 inputs at 5 mV into 470 K Gech inouts contolled by setates To protect the output vatves the incorporated tail safe circuit will emate the amplifier to be used at half power. SPEAKERS: Size $20^{\circ} \times 20^{\circ} \times 10^{\prime \prime}$ incorporating $12^{\prime \prime}$ heavy duty 25 watt high flux, quality loudspeaker with cast trame Cabinets attractively finished in two tone colour schema-Black and grey.
$\underset{\text { COMPLETE }}{\substack{\text { CYSTEM }}}$
Plus or available separately £6 Amplifier: $£ 28.50$ plus $£ 1.50$ P. \& P P. \& P Speaker: $£ 12.50$ each plus $£ 2.25 \mathrm{P}$ \& P

CONTINENTAL 4-TRACK, 3-SPEED TAPE DECK
with high impedance heads
 erase head. Postive pressure pad system. Takes any tape spool up to and induding $7^{\prime \prime}$. The R. 7.74 is ctiven by a powerful $200 / 250 \mathrm{~V} 50$-crice A.C. motor. A heaw, sccurately balanced, trowheel brings wow and fluter levels down to approx. 0.3% total at 3 and $7 \frac{1}{2}$ ios. Fas ewwind in both directions
Controls couldn't be simple:! Just five push buttons that interlock it cut out accidental tape ammage. Efficient sarvo-action type brakiveg, Easyd drop-in tape toadimg.
The R.C.74 comes with an atractive moulded deck cover, which has positions for tone and $12 i_{i}, 11$. $\times 6$ inches Every single deck fully tested before dispatch. Spools not supplied. Price complete $\mathbf{£ 1 5 0 0}$. Plus 75 p р. \& p .

TOURIST
 MARK 3
 ALL TRANSISTOR

CAR RADIO

Beautifully designted to blend with the interious of all cars Permeability tuning and long wave loading coils ensures extellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity a 1 MHz is better than 8 miero wolts. Power output into 3 ohm speaker is 3 watts. Prealigned.F. module and tuner together with comprehensive instructions guarantees suctess lirst time. 12 volt nggative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 41^{\prime \prime}$ deep. Crcuit diagram 13p Free with parts. Spaaker, baffle and fiving kit $£ 125$ extra plus 20 p P \& P Speaket postage iree when ordered with parts

SET OF PARTS
f6.30

RADIO \& TV COMPONENTS (Acton) LTD
21a High Street, Acton, London, W3 6NG. 323 Edgware Road, London, W. 2.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volts Secondary 240 Volt ALSO AVAILABLE WITH IIS/I20V SECONDARY WINDINGS

Re	VA	Weight	Size cm.	
No.	(Watts)			
61	100 250	124	$10.2 \times 8.9 \times 8.3$ $9.5 \times 12.7 \times 11.4$	2.28
63	500	27	$17.1 \times 11.4 \times 15.9$	9.74
92	1000	40	$17.8 \times 17.1 \times 21.6$	17.94
128	2000	630	$24.1 \times 21.6 \times 15.2$	29.66
129	3000	840	$21.6 \times 21.6 \times 20.3$	$46 \cdot 38$
190	6000	1780	$31.1 \times 35.6 \times 17.1$	76.11

AUTO SERIES (NOT ISOLATED)

Ref.	(was	Weight	Size cm,		Taps		\& P
$\begin{gathered} \mathrm{NoO} \\ \mathrm{IO} \end{gathered}$	$\begin{gathered} \text { (Watts) } \\ 20 \end{gathered}$		7.3×4.3	0-115-2		${ }_{0}^{6.74}$	Np 20
64	75	114	$7.0 \times 6.4 \times 6.0$	0-115-210	40	1.44	30
4	150		$8.9 \times 6.4 \times 7.6$	0-115-20	220-240	1.74	36
66	300	60	$10.2 \times 10.2 \times 9.5$			3.38	52
67	500	128	$14.0 \times 10.2 \times 11.4$,	"	5.03	67
84	1000	160	$11.4 \times 14.0 \times 14.0$.	"	9.12	82
93	1500	289	$13.5 \times 14.9 \times 16.5$ $17.8 \times 16.5 \times 2.6$,'	"	13.22	
95	2000	400	$17.8 \times 16.5 \times 21.6$,	17.26	
73	3000	45	$17.4 \times 18.1 \times 21.3$.,	23.47	

TOTALLY ENCLOSED II5V AUTO TRANSFORMER
115 V 500 Watt totally enclosed auto transformer, complete with mains lead

	LOW VOLTAGE SERIES		
Ref.	Amps	Weight	Size cm.
No.	12 V 24 V		
111	0.50 .25	12	$7.6 \times 5.7 \times 4.4$
213	1.00 .5	0	$8.3 \times 5.1 \times 5.1$
71	21	10	$7.0 \times 6.4 \times 5.7$
18	42	24	$8.3 \times 7.0 \times 7.0$
70	$6 \quad 3$	312	$10.2 \times 7.6 \times 8.6$
72	10		$7.9 \times 10.8 \times 10.2$
17	168	78	$12.1 \times 9.5 \times 10.2$
115	$20 \quad 10$	1113	$12.1 \times 11.4 \times 10.2$
187	$30 \quad 15$	1612	$13.3 \times 12.1 \times 12.1$
226	$60 \quad 30$	340	$17.0 \times 14.5 \times 12.5$

(ISOLATED)

LEAD ACID BATTERY CHARGER TYPES
PRIMARY 200-250 VOLT FORCHARGING6OR I2VOLT BATTERIES

Ref.	Amps.	Weight	Size cm.			-
		1 l oz				ND
45		$1{ }^{1} 11$	$7.0 \times 6.0 \times 6.0$ $10.2 \times 7.0 \times 8.3$ 8.9		1.17	30
85	$\begin{aligned} & 40 \\ & 6.0 \end{aligned}$	3 11 5 12	$\left.\begin{array}{l}10.2 \times 7.0 \times 8.3 \\ 10.2 \times 8.9 \times 8.3\end{array}\right\}$	Please note, these units do not in-	1.77 2.67	42 52
146	8.0	64	8.9 $\times 10.2 \times 10.2$	clude rectifiers	3.04	52
50	12.5	1114	$13.3 \times 10.8 \times 12.1$		4.52	67

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order.

MAINS KEYNECTOR

For fast mains input to one or more electrical appliances up to 13 amps withou wiring a plug. Ideal for production testing, servicing and display, etc. Send for descriptive leaflet. ©2.75. P \& P 25np
\star Custom production winding service \star Ex stock items same day service \star Quantity prices on application
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

BARIRIE clectronics

 11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
DABAR

 AUDIO MIXER MODULES

A range of audio Pre-amplifier Modules is now available enabling the construction of custom-built audio mixers for studio. P.A. and discotheque installations at reasonable cost and with many facilities usually available only on expensive systems. The Modules, constructed on glass fibre printedcircuit boards, are complete with anodised aluminium black facia plates and four control knobs identified: L.F.. H.F.. Echo Send and P.F.L. The modules are designed for use with external faders or volume contrals and fulfil most requirements in the audio field. Up to ten input modules may be mixed into the combined Mixer/Line Amplifier Type MX/LNTA which is available on a matching facia plate with V.U. meter. The line amp will deliver +20 dBM All mixing may be effected with $10 \mathrm{k} \log$ faders.
The modules are fixed with four screws and dimensions are $7 \frac{1}{2}$ in $\times 2 \frac{3}{4}$ in Input modules available

UM $1 \quad 200-600$ ohm MIC
UM2 50k ohm MIC
UM3 Mag P/U 1.5mV R.I.A.A
UM4 Mag P/U 5 mV R.I.A.A
UM5 Crystal P/U 500 mV
UM6 High Level Tape/Tuner 500 mV

Mixer/Line amp MX/LNTA : 10 inputs plus expander input: 600 ohm line out with preset for V.U. adjustment.

Power Unit for above Modules: Type PU11/30, 30V, 500mA. 100W slave amplifier-100W into 4 ohm load $13 \frac{3}{4}$ in $\times 10 \frac{1}{2}$ in $\times 7 \frac{1}{2}$ in

Prices: UM1-6, £9 each. MX/LNTA, £12. PU11/30, £8. 100 W Slave Amp $\mathbf{£ 6 0}$. Manual showing mixing arrangements, connection data. etc., 25p. S.A.E. all inquiries. Trade inquiries welcome.

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET, WALSALL, STAFFS WS 1 1UZ. WALSALL 34365

FM TUNER
 NELSON-JONES

Approved parts for this outstanding design(W.W. April 1971). Featuring $0.75 \quad \mu V$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. $\frac{1}{2} V$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.

PHASE LOCKED STEREO DECODER

PORTUS AND HAYWOOD
Approved kit for this superb decoder (w.w.Sept. 1970).
Featuring 40 dB separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above
Complete decoder kit $£ \mathbf{8 . 9 7}$, p.p. \& ins. 15p
Stabilised PSU kit £3.55 p.p. 18p

LIGHT EMITTING DIODES (Red)

Solid state visible light source, typical life of many years continuous operation. May be used as indicator, light modulator, etc. Maximum current 20 mA .
Only 50p each inc. connection data
INTEGREX LIMITED
P.O. BOX 45 DERBY DE1 1TW

 GERMANIUM and SILICON TRANSISTORS, DIODES, RECTIFIERS TRIACS, FETS, LENERS. BRIDGES and INTEGRATED CIRCUITS

BY ATES • EMIHUS • FAIRCHILD - FERRANTI • I.T.T. - MULLARD • NEWMARKET • PHILIPS • R.C.A. - TEXAS • TRANSITRON
 copy todar

MODERN TELEPHONES type 708. Two tone gre £3.50 ea. The sarue but black $£ 3$ ea. P. \& P. 25 pea ea
BRAND NEW. two tone grey £6 ea. P. \& P. 25 p ea STANDARD GPO DIAL TELEPHONES (black) STANDARD GPO DIAL TELEPHONES (black)
with internal bell. $87 p$. P. \& P. 25p. Two for $\& 1 \cdot 50$. P. \& P. 37 p .

PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{6 8} 50$ ea $6097 \mathrm{~B}-\mathbf{4 5}$ ea. Type $931 \mathrm{~A}-\mathrm{E} 2.25$ ea.
SPECIAL OFFER
5 in. Photomultiplier type. PDP84G by 20th
Century. E3 ea. P. \& P. 30n.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ volt square wave o/p, for 6 to 12 v DC input. Size 14×1

RELAYS
G.E.C. Sealed Relays High Speed 24V. 2m 2b-23p ea S.T.C. sealed 2 pole c/o. $2,500 \mathrm{ohms}$. (okay 24v) 13 p ea

2F 35p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base 37 p ea
Single pole c/o 14 ohin coil 33p ea. Sing le pole c/o 45 ohun coil 330 ea. Single pole c/o 4,000 ohm coil 33 p ea.
Varley VP4 Plastic covers 4 pole c/o $5 \mathrm{~K}-30$ p ea. 15 K
33p ea.
COLVERN 3 POTENTIOMETERS
COLVERN 3 watt. Brand new. $5 ; 10 ; 25 ; 50 ; 100$ MORGANITE Special Brand new. 250 ahms; 10 at 13_{p} ea $250 ; 500 \mathrm{~K} ; 2 \cdot 5 \mathrm{meg} .1$ in. sealerl. 17p ear
BERCO SQ. Brand new. $5 ; 10 ; 50 ; 250 ; 500$ ohms $2 \cdot 5 ; 5 ; 10 ; 25 ; 50 \mathrm{~K}$ at 250 es
STANDARD 2 meg. log pots. Current type 15 p ea NSTRUMENT 3 in . Colvern 5 ohm 35 p et: 50 k an BOK 50p ea. 500 ohms; $1: 2.5 ; 5: 25 \mathrm{~K}$ at 35 p ea.
ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K}: 497 \mathrm{~K} ; 908 \mathrm{~K}$ 1 meg-0.1\% 27p ea: : $3 \cdot 25 \mathrm{k}, 13 \mathrm{~K}-0 \cdot 1 \% 20 \mathrm{p}$ ea.
ERIE feed through ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ en.
Sub-nin. TRIMMER f square. 8 , 5 pf . Brand new 13p ea Concentric TRIMMER $3 / 30$ pf. Brand new 7p ea E.H.T. 2 mfd 5 KV . Brand new. $\mathbf{~} 1.50$ ea

$$
\begin{array}{r}
\text { VISCON } \\
\text { Size } 1 \times 2 t \text { ins. }
\end{array}
$$

$$
\begin{array}{lll}
0.0512 z d & 25 k V & 50 p \text { ea. } \\
0.001 \mathrm{mfd} & 5 k V & 40 \mathrm{p} \text { ea. }
\end{array}
$$

$$
\begin{array}{r}
\text { Size } 1 \geqslant \times 5 \frac{1}{2} \mathrm{ill} \\
0.01 \mathrm{mfd} \\
10 \mathrm{k}
\end{array}
$$

 Brand new 0.25 nfd 5 KV . Dubilier 50 p ea. P . \& $\mathrm{P} \cdot 15 \mathrm{p}$ ea Rapill lischarge inifd $5.6 \mathrm{KV} \nmid \mathrm{l}$ ea. P. \& P. 15p. DUBILIER. Brand new. 1 mfd $15 \mathrm{KVW} 30 \mathrm{KVT.}. \not \mathrm{f} 7 \mathrm{ea}$
E.H.T. TRANSFORMERS \& POWER UNITS E.H.T. TRANSFORMERS a POWER UNITS
Complete Assembly 0 to 130 KV DC. Variac Con trolled. $£ 245$.
As above, but 26 KV DC 3.5 KVA . $£ 135$
Choice of capacitors and chokes, e.g., 400 H 25MA 00 KO 64 KV AC and 20 V 20 A 2 KVA . 665 $4000-0-400014 \cdot 6 \mathrm{KVA} .635$.
$0-22002 \cdot 5 \mathrm{KVA} . \underset{\text { ALIL CARRIAGES AT COST }}{ }$
DECADE DIAL UP SWITCHES. Finger-tip. En graved 0/9. Gold plated contacts. Size 23^{*} high, $2 t^{\prime \prime}$ deep ${ }^{*}$ "high, 24^{*} deep, 24^{*} wide. $£ 2.50$.
PHOTOCELL equivalent OCP 7113 p ea.
Photo-resist type Clare 703. (TO5 Case). Two for 50 p . BURGESS Micro $\$$ witches V3 5930. Brand new 130 ea. HONEYWELL. Sub-min. Microswitches type 11SM3-T. Brand new. 17p es
PANEL mounting lamp holders. Hed or green. 9p ea
BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P 75 pea.: DDM50S 50 p ea A per pair.
As above but 95 way 50 p ea. plug; 35 p ea. socket; 75 p per pair; 9 way 33p ea. pluy and socket. 50 p per pair B.N.F. Plugs to U.H.F. Adaptor $\subset 1 / 25$ ea.: Min. B.N.C. to
 to B.N.C. plug $\neq 1$ ea. ; B.N.C. Right angle $\notin 1$ ea. Min B.N.C. right angle $£ 1.25$ ea.: Min. socket round 50 o ea Standard B.N.C. round 35p ea. Many others too numerou 0 list. All prices quoted for one off.
EP TRANSFORMERS. All standard inputs
AC to 120 V tapped $60-0.60700 \mathrm{~W}$. Brand new. $£ 5 \mathrm{ea}$ As above $55 \cdot 0.55 \mathrm{~V} 300 \mathrm{~W}$. $£ 3$ ea. P. \& P. 35 p . Neptune series $460-435-0$ etc. 230 MA and 600-570-540-0 Multi 6.3 Volts to pive 48 V 3.5 Amps etc 63.50 incl Dot Transformer $0-215: 250120 \mathrm{MA}: 6.3 \mathrm{~V} 4 \mathrm{~A} \mathrm{CT} \times 2 ; 2 \times 63 \mathrm{~V}$ $0 \cdot 5 \mathrm{~A}$ and separate $90 \mathrm{v} 100 \mathrm{MA} \notin 1 \cdot 25$ ea. P . \& P . 20 p Matching contact cooled bridge rectifler 37D ea $45 \mathrm{~V} 40 \mathrm{amp}(180 \mathrm{~V}$) ≤ 1.75 ea. incl. postake or 3 for 44.50 ncl. postage. Designed to be Series paralleled.
Gard/Parm/Part. $450-400-0-400 \cdot 450.180 \mathrm{MA} .2 \times \mathrm{B} \cdot 3 \mathrm{v}$ 43 ea.
Transformer $250.80 \mathrm{MA} ; 13 \mathrm{~V} \cdot 1 \cdot 2 \mathrm{~A}$ and 6.3 V 5 A . $£ \mathrm{I} .50$ P. \& P. ${ }^{25 p}$

CHOKES. 5 PH ; $10 \mathrm{H} ;{ }_{\mathrm{P}}$ 15H. up to 120 mA . 42p ea P. \& P. 17p. Up to 250 mA A3p. P. \& P. 35p

GROUND PLANE ANTENNA. Ex-qdmiralty Brand new boxed. Adjustable 90.160 megs. (Like umbrella) $£ 6.50$. Carr. $£ 1$.

MARCONI TF888 SIGNAL GENERATOR.

Freq. $70 \mathrm{kc} / \mathrm{s} .70 \mathrm{mc} / \mathrm{s}$ in 8 ranges Directly read. $500 \mathrm{kc} / \mathrm{s}-5 \mathrm{mc} / \mathrm{s}$ Crystal Calibrator. $1 \mathrm{kc} / \mathrm{s}$ Internal modulation available on terminals as external audio. Built-in power meter 3 to 600 ohms and 10 mw to 1 watt. Large rectangular meter scaled for RF and Power. $50 \mathrm{ohm}, 80 \mathrm{ohm}$ and high level OP sufficient for lining, etc., available on termination unit. Attenuator calibrated to 0.5 micro volt. Size $14 \times 10 \times 5 \frac{1}{2}$ ins. Mains or battery operated. Supplied Brand New in original crates at £30 each. Carriage $£ 1.50$.

TEST GEAR

E.M.I. OSCILLOSCOPES

OLARTRON CD1014 DB. DC-6 megs. 655.
 RTRON
SOLARTRON GOOd condition 10 mic/s. CD513- $\mathbf{4 4 0}$. OLARTRON CT316 (D300 range) DC COSSOR 1049 in. 3. DB. 625 HARTLEY 13A DB. E25.
All carefully checked and tested. Carriage $£ 1 \cdot 50$ extra. MARCON
Noise zen. TFi 301, \&40, Carr. $£ 1 \cdot 50$
acuum tube Joltmeter TF1041A, £35: $1041 \mathrm{~B}, \pm 45$. The Ranke Oscilator $10-1370$ and TF 1370A. Deviation Meter TF934/2. $£ 50$ ea. Carr. £1 50. Deviation type 719 . $£ 30$ ea. Carr. 75 p .
TF 329 Magniflication Meter. As new condition $\mathbf{6 0 0}$. TF 195 Audio Generator $£ 10$. Carr. $£ 1-50$. TF 801 A Siznal generator $£ 35$. Carr. $£ 1-50$. Retter grade $£ 55$ ea. Carr. $£ 1.50$.
TF 886 Magniflcation Meter $£ 45$. Car
TF 369 N. 5 Impedance Bridge from $£ 50$ ea. Carr
TF 144G Signal Generator. Serviceable. Clean $£ 15$ In exceptional condition ¢25. Carr. $81-50$.
TF 885 Video Oscillator Sine/Square $£ 35$ Carr. $\mathrm{£} 1-50$ TF885/1 £55. Carr. £1.54

SOLARTRON

Stabilised P.U. SRS 151 RTO

tabilised PU. SKS 152 . $\mathcal{1} 10$. Carr. $£ 1.50$
Precision Millivoltmeter 1 P25 Carr. $£ 1 \cdot 50$.
Process Response Analyser. Fine Condition 6250 Oscillator type OS 101 . $£ 30$. Garr. £1 50 .
D.C. Amplifier type Ai900. $£ 30$. Carr $£ 1$.

$$
\begin{aligned}
& \text { AVO } \\
& \hline \text { Carr. }
\end{aligned}
$$

Testmeter No. 1 fl2 ea. Carr. 75 p .
Electronic Teatmeter CT 38. Complete $£ 20$ Carr. $£ 1$ CINTEL
Square and Pulse gen. PW 005 to 0.3 inicro secs.
15 mV to 50 V : rep rate 5 hz to $250 \mathrm{kz} \notin 20$. Carr. $£ 1$. AIRMEC
Signal Generator type 701. £25. Carr. £1 50 .
AIRMEC Generator type 210 £ 120 . Carr. $£ 1-50$.
E.M.I. Oscilloscope type WM16. Main fraine $\notin 125$. hoice of Plug in $7 / 2 \mathrm{DC}-24 \mathrm{nic} / \mathrm{s} \times 2 \mathrm{f} 35 ; 7 / 1 \mathrm{DC}-$ E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete with plug
in pre-amp, from $£ 40$.

BECKMAN MODEL A. Ten turn pot compl
with dial. $100 \mathrm{k} 3 \%$ Tol $0 \cdot 25 \%$-only $\mathbf{6 2 . 1 3 \mathrm { ea } \text { . }}$
E.H.T. Base B9A in Polystyrene holder with cover. NAGARD Double pulse gen type 5002 £50. Carr. $£ 1 \cdot 50$. MARCONI SPECTRUM ANALYSERS type OA 1094, from $£ 325$.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side $\frac{1}{2} p$ per $8 q$. in. Double sided Io per sq. in. Standard 240 V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reversible. 45 ea.
Single pole 3.way 250 V AC 15 amp switch. 8o ea
Modern replacement for VCR 138 tube. Flat face 3 in .
squirrel cage BLOWER ASSEMBLY complete with tandard mains input motor. Size $7^{\prime \prime} \times 21^{\prime \prime}$ dia. only 80 p ea. P. \& P. 25p ea

CLAUDE LYONS Main Stabilizer. 'Type TS.1L-5S0. Input 119 amps. $£ 35$. Carrs en $^{2} 7$
E.H.T.Unit by Brandenburg model S.0530/10. $£ 55$.

MAGNETRONS TYPE CV370. Brand new. Boxed. 8 ea.

KELVIN \& HUGHES 4-channel multi-speed recorders complete with amplifiers. $£ 60$ ea
EVERSHED \& VIGNOLES Recording paper. Brand new boxed. L618H4 7^{*} wide. $1^{* " ~ d i a . ~} 17$
roll. JL900H4 7^{*} wide, $17^{\prime \prime}$ dia. 25 o roll.

MARCONI 801B
 A.M. Signal Generator 10-500 MHZ Output $0.1 \mu \mathrm{~V}$ to 1 V . From $£ 140$ ea.

19in. Rack Mounting CABINETS 6 ft . high 19 in . deep Side and rear doors. Fully tapped, $£ 12 \cdot 50$. Carriage at cost Double Bay complete with doors. Fine condition. $£ 25$. Carriage at cost.

> AUDIO FREQUENCY MEASURING SET T.M.S. No. \& for testing the gain, loss and frequency response of circuits. Complete with circuits and information. ONLY $£ 12.50$. P. $\& 1.05$

SIGNAL GENERATOR CT53. $8.300 \mathrm{mc} / \mathrm{s}$. Complete with charts. $f 15$. Carr. £ 1.50 . With Photo-stat cony of
charts. 111.50 . Carr. $£ 1.50$.
WAYNE Kerr Universal Bridge type CT375. 440 ea. .

4 DIGIT RESET TAELECOUNTERS. 1000 ohm coil. Size $1 \frac{1}{6} \times 1 \times 4 \mathrm{tin}$. As new. by Sodeco of Geneva. 6250 ea.
As above but 350 ohm. $£ 3.50 \mathrm{ea}$
SANGO 50 micro amp $4^{\prime \prime}$ round. Brand new boxed. E1.38. P. \& P. 38p
SANGO 50 micro amp rectangular meter. Size 2i $\times 3$ with 4 separate scales, lever operated, 0/6 white. $0 / 60$
blue, $0 / 600$ red and set zero. $£ 1-25$ ea. P. \& $\mathrm{P} .17 \mathrm{p}^{-}$

SEEING IS BELIEVING:

STILL AVAILABLE. BC 221 complete with correct charta, circuit diagramis, in fine condition or ONLY $£ 13 \cdot 34$. Carr. $£ 1$
C.R.T.'s 5^{*} type CV1385/ACR13. Brand new with MARCONI Valve Voltmeter 428B/1 $£ 5$ ea. RESISTORS by PIHER. Carbon Film. 1 and 2 watt. All 5%. Brand new Perfect. Mixed values. Only 50 p per $\mathrm{i} \cdot \mathrm{lb}$. weight. P. \& P. 12 p .
COSSOR D.B. Scopes-some models from $£ 15$. MARCONI Absorption Wattmeter 1 micro watt to watts. Type Tr956. FANTASTIC at $\mathbf{1 7} \mathrm{ea}$. Genuine MULLARD Transistors/Diodes. Tested at 3o ea. OC23-10p ea.
MAINS MOTORS Standard voltage. Size up on R/P taye recorders. Extremely quiet. Snip at 40 p
COMPONENT PACK consisting of $2-2$ pole 2 amp push on/off switches: 4 pots 1 double 1 -small double pole vol control: 250 resistors t and $\&$ watt
many high stahs. Fine value at $\mathbf{S O p}$ per pack. P . P . 17p.
3000 Series relays- 15 mixed values (new and as new, no rubbish) $£ 1-50$. P. \& P. 37 p .
MALLORY CELLS. 15p ver set of 5 .
STUART TURNER No. 12 Water pump GPH720/ 10FT.HD or GPH150/45FT.HD. Complete with standard mains input isolating trangformer. Ideal
fountains, waterfalls, etc. ONLY $£ 5$ ea. P. $\&$ P. $£ 1 \cdot 25$. Carriage extra.

Panel switches DPDT ex en. 13p ea.: DPST Brand new.
17p ea.: DPST twice, brand new 25p ea 17p ea.: DPST twice, brand new 25p ea
Brand new heads for TR50 and TR51 Tape Recorders © 1.60 .
GYROS Large clear plastic topped. Type A $\mathbf{6} 5$ ea. P. \& P. 75 p .

ALBRIGHT Heavy Duty Contactor. Single make. 200 amp. 24 V coll. Brand new, boxed. fl ea. incl, P. \& P. MUST GO: Solartron Storage oscilloscope QD910
flo0 only. Carr. extra.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR. CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

STEPHENS P.O. BOX 26, AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS GUARANTEE
 Satisfaction or money refunded

guaranteed valves by the leading manufacturens by return service

AZ3!	50p	E880C	62\}p	EL803	85 p	PCC85	$42 \ddagger p$	${ }_{\text {PY83 }}$	50,	ULi1	57 p	6arg	327 D	GEWtit	${ }^{600}$	68L7GT	32 fp	12K7GT	${ }^{35 p}$	3545	55p
AZ50	60p	ECF80/2	47p	E1/821	55p	PCC88	70p	PY88	41p	UL84	55 p	6As5	${ }^{350}$	${ }^{65 \mathrm{~F}} \mathrm{~L}$	70 p	68N76T	30 p	1297G	25p	35 B 5	65p
CBL1	80p	ECF8i	55p	ELl80	75p	PCC89	${ }^{81 p}$	PY500	\$1.00	UM80/4	45 p	${ }^{6487 G}$	80 p	6 Fs	40 p	fiser	400	12 sc 7	25 p	35С5	35 p
CRL31	85 p	ECH:5	87¢ ${ }^{\text {d }}$	EM34	80 p	PCC189	${ }^{61 p}$	PZ30	80 p	UY41	40p	6at6	45p	${ }^{6 F 60}$	25 p	${ }_{6}^{68 \mathrm{R}}$ \%	37 tp	12867	35 p	3505	85p
CY31	35 p	ECH 42	${ }^{66 p}$	EM71	62.1 p	PCPrai	51 p	QQU02-f	28.10	UY85̈	34 p	6AUE	30 p	6 F 11	32.0	$6{ }^{618}$	32 ± 0	128日 7	25 p		
DAF91	41 p	ECH81	51 p	EM89	40 p	PCF82	521 p	QQU03.10	21.25	U301	85	${ }_{\text {GBAG }}$	47tp	${ }_{6}^{6 F 12}$	22 p	$6{ }^{649}$	$6{ }^{625}$	128.57	25p	35LSGT	474p
DaF96	41 p	ECH83	40p	EM81	422p	${ }_{\text {PCFP }}$	478p	Qvo3-12	${ }^{85 p}$	${ }^{\mathbf{W} 729}$	55p	GBE6	${ }^{609}$	$6 \mathrm{~F}^{6} 13$	${ }^{350}$	${ }^{6} \mathbf{6} 8$	35 D	128K7	40 p	35 W 4	25p
DF91	45p	ECH 84	47¢p	EM84	372	PCP86	$81 p$	R19	650	2789	\{1-22t	${ }_{6}^{68 H 6}$	42 ¢p	${ }_{6}^{6 F 14}$	${ }^{60 \mathrm{p}}$	${ }_{6 \times 1}^{606 T}$	32 Lb	128L7GT	400	35 Z 3	55p
DF96	45p	ECL80	40 p	EM87	55p	PCF200/1	81 p	R20	75 p	OAL	32 p	$6 \mathrm{BJ6}$	42 p	6 F 15	55 D	6×4	25 p	128N7GT	40 p	35249	25p
DK91	57 f p	ECL, 82	49p	EN91	32!p	PCF801	${ }^{61 p}$	gu2150A	75p	OA3	45p		${ }^{50 p}$	${ }^{6 F 18}$	40p	${ }_{6 \times 8}^{6 \times 507}$	27 p	128Q7	400	35 Z 5 GT	37tp
DK96	57 p	ECIS3	574 p	EY81	40 p	PCF802	${ }_{61}^{61}$	TT21	\$2. 20	${ }_{\text {OB3 }}$	$322 p$ 50 p	$6 \mathrm{6BL8}$	-35p	${ }_{6}^{6 \mathrm{FP}_{23} 2}$	32 c	6X8 6 Y 6 a	${ }_{60 \mathrm{p}}^{55 \mathrm{p}}$	${ }_{1}^{12887}$	${ }^{3} 80$	50 A 5	65p
DL92	${ }_{37}^{37} 1 \mathrm{p}$	ECLA6	¢ 4.50	EY881	45 p 40 p	PCF805 PCP806	${ }_{61 p}^{85 p}$	${ }_{\text {U12 }}^{\text {T } 22}$	22.50	${ }_{\text {OB3 }}^{\text {OB }}$	50p	GRNO	48¢p	${ }_{6 F 24}^{612}$	678	${ }_{7}{ }^{\text {Y }}$ +	60 p	20D	450	50B5	35p
DL94	3710 46 p	${ }_{\text {EFP39 }}$	21.50 52	EY883	40p	${ }^{\text {PCFF80 }}$	679	U20	67p	OD3	32 \ddagger p	6BQ5	25p	$6 \mathrm{~F} \mathrm{~F}^{25}$	75 p	9BW6	421 p	20L1	21.00	50C5	35p
DM70	32 fD	EF80	40 p	EY86	40p	PCHY00	70 p	U25	75 p	${ }^{364}$	400	$6 \mathrm{BL7}$	750	$6^{6} 26$	${ }_{70} 35$	110 C 2	500	${ }^{20 \mathrm{P} 1}$	${ }^{500}$	50LEGT	40p
1Y86/7	40 p	EF83	50 p	EY87	$42 \% \mathrm{p}$	${ }_{\text {PCLS }}{ }^{2}$	51 p	U23	${ }^{75 p}$	${ }^{384} 4$	${ }_{400}^{35 p}$	681288 $68 W 6$	${ }_{825}^{950}$	$6 \mathrm{Fr}^{28}$ 6 F 29	70p	10D2	40 p	${ }_{2014}^{201}$		83A1	90p
DY802	421p	EF85	41 p	EY88	27 p	PCCR 3	${ }^{61 p}$	U31	45p	${ }^{3 \mathrm{~V}} \mathrm{P}^{4}$	40p	68W6	$829 p$ $89 p$	${ }_{6}^{6 F 29}$	32.8	${ }_{10 \mathrm{~F} 1}^{10 \mathrm{~L}}$	${ }_{90 \mathrm{p}}^{40 \mathrm{p}}$	$20 \mathrm{r}^{\text {r }}$	21.00	85AL	37-p
E55L	22.75	EF86	${ }^{66 p}$	EZ35	27p	PCCL8 8	51p	U37	11.50 300	${ }^{\text {5R4GY }}$	55 p 30 p	68W7	89p 29		47\%p	10F9	50 p	${ }_{25 \mathrm{C}}$	45 p	90AUY	c2-40
E880C	40p	${ }_{\text {EF89 }}^{\text {EF9 }}$	${ }^{40 \mathrm{p}}$	$\underset{\text { EZ }}{\text { E } 40}$	27 450 450	PCLI 85 PCL 80	${ }_{51 \mathrm{p}}^{52}$	${ }_{\text {U50 }}$	30 p 30 p		37\%p	${ }_{\text {GBZ6 }}$	32, ${ }^{2.5 p}$	6.J̄̈GT	370 300	10 Fl 18	40 p	25L6GT	37 p	90C1	60p
${ }_{\text {E130 }}^{\text {E130 }}$	¢4.50 950	${ }_{\text {EF92 }}$	40p	EZ41	45 p	PD501	¢1.52t	U7\%	250	5V4G	40 p	${ }_{6} \mathrm{C} 4$	30 p	6.57	42 pp	10L1	40 D	25249	${ }^{30 \mathrm{p}}$	${ }^{900}$	21.25
EABC80	52¢p	EF93	47 p	EZ80	$27 \pm p$	PrL200	74 p	U ${ }^{8}$	25 p	5Y3GT	${ }^{30 \mathrm{p}}$	6C5GT	35 p	${ }_{6656}$	50p	10LDI1	55 p	${ }_{30}^{2586} 5$	S0p	807	47 ¢p
EAF42	50 p	EF94	$77 \frac{1}{2}$	${ }_{\text {EZ81 }}$	27 pp	${ }^{\text {Plu }}$ 38 ${ }^{\text {P }}$	${ }^{64 \mathrm{p}}$	U191	${ }^{751}$	524at	${ }_{40 \mathrm{p}}^{45 \mathrm{p}}$	${ }_{6 C A 4}$		${ }_{6}^{6 K 8}{ }^{6}$	$324 p$ $30 p$	10114	E1.00	30 AE :	40p	811A	¢1.50
Ebrcs	${ }_{4}^{55 p}$	$\mathrm{EFP15}_{\text {EF18 }}$	62tp	ESITC	25p 25.00	${ }_{\text {PLL38 }}$	90p	U1931	41p	524GT $6 / 30 \mathrm{~L}$	${ }^{40 p}$	6CAT	274 p 524	${ }_{6}^{6} \mathbf{K} 23$	30p	12AB5	50 p	3 mcls	75 p	812A	83.25
${ }_{\text {EBCA }}$	${ }^{47 \pm p}$	$\underset{\text { EF }}{\text { EF184 }}$	${ }_{35 \mathrm{p}}^{56 \mathrm{p}}$	GY501	25.00 80	Plisia	${ }_{621}{ }^{\text {a }}$ P	U281	40 p	6/3012	72p	6 CBC	275	6 K 25	75 p	12AC6	$37+0$	${ }^{30} 10 \mathrm{Cl} 7$	80 p	813	23.75
EBC90	47 p	E280F	¢2.10	az30	3710	PL82	${ }^{36 \mathrm{p}}$	U232	${ }^{40} \mathrm{p}$	6atia	4710	6CD60A	21.15	${ }_{6}^{6460 T}$	${ }^{45 p}$	12AD6	37 ${ }^{\text {ct }}$:20C18	${ }_{850}$	866A	70p
EBF80	40p	EF800	21.00	(zZ? 1	30p	${ }_{\text {PLP3 }}$	${ }_{41 p}$	U403	${ }_{37}^{50 \mathrm{p}}$	6AG7	3710	${ }_{6}^{6 C H 6}$		${ }_{6}^{6 L 18}$	$32 \ldots p$ 30 p	12AQ5	400 $40 p$	${ }^{305}$	${ }^{85 p}$	5642	60p
EbF83	40p	EF804	£1.00	G7:3	47\%p	${ }_{\text {Plisi }}^{\text {PLi }}$	${ }_{82}{ }^{41 p}$	U404	$37 . p$ 81.00	6at 6	5\%p		55 p	${ }_{6 \mathrm{LD} 20}^{60}$	$32+\mathrm{p}$	12AT6	25p	30 FL 2	92tp	6080	£1-374
${ }_{\text {EB91 }}^{\text {EbF89 }}$	26p	${ }_{\text {LL }}$	52 p	GZ34	375p	PLSOH	885	UABCB0	221 p	6ajs	29p	6 CW 4	$624 p$	$6 \mathrm{N7OT}$	35 p	12AUG	75 p	$30 \mathrm{FL13}$	50p	6146	¢1-50
Ec53	50p	EL36	47ip	HK90	32 ${ }^{\text {p }}$	PL505	¢1.45	UBF89	40 p	6AK5	30p	¢CY5	${ }^{40 \mathrm{p}}$	${ }_{6}^{681}$	${ }^{60 \mathrm{p}}$	12AVG	${ }^{30} \mathrm{p}^{\text {a }}$	$30 \mathrm{FL14}$	777	6146 B	22-37\%
EC86	${ }^{80} \mathrm{p}$	ELal	55p	H L92	35 p	P15088	E1.00	UBC4I	49 p		57 p	${ }_{6 \text { 6CY }} 7$	${ }^{80 \mathrm{p}}$	${ }^{6} \mathbf{8}$	21.05	12AY:	45p	30 Ll	${ }_{850}$	6267	32 ¢p
EC88	60 p	EL 42	571p	HL9	40 p	PL509	21-54	UCC85	46 p	6al3	4210	${ }_{6}^{6 D 3}$	${ }^{40} 9$		${ }_{37}^{61 \%}$	12ax ${ }^{\text {l2 }}$	670p	${ }_{30 \mathrm{~L}}^{30 \mathrm{~L}}$	885	6360	21.25
EC90	30 p	Lİ81	50 p	KT66	£1.37	PL $80{ }^{\text {P }}$	36p	UCH42	64p	6alas	16p	${ }_{\text {fek }}^{6 \text { fid }}$	${ }^{6721 p}$	${ }_{6}^{6 Q 7} 7 \mathrm{G}$	${ }^{3740}$	${ }_{\text {l2B }}$	${ }_{50 \mathrm{p}}$	30 Pl 2	$8{ }_{80}$	6939	22.10
$\mathrm{ECy}^{\text {ECuR }}$	32 pp	EL83	${ }_{4}^{410}$	${ }_{\text {KT88 }}$	11.66 81.05			UCL82	54 s	6AM5	25p	GDQ6B	60 p	6832	400	12BA6	$32 ¢ \mathrm{p}$	30 P 18	35 p	7199	75 p
${ }_{\text {ECC8 }}^{\text {ecer }}$	47 p 40 p	EL86	${ }_{42} 42 \mathrm{p}$	PABC80	1105 40	PY80	$32 \pm$	UCLE ${ }^{\text {U }}$	61p	6amb	22p ${ }^{25}$	fost	76 p	${ }_{684}{ }^{\text {a }}$	55 p	12BA7	32 p	$30 \mathrm{P19}$	75p	7360	21.80
ECC82/3	42 p	Elan	32 p	PCA6/8	51 p	PY81	41p	UF+1/2	55p	6Aqड̄	$32 \pm p$	geas	55p	${ }_{68 \text { 687 }}^{68}$	${ }_{32}{ }^{\text {Ptp }}$	12BEt 12 BH 7	${ }_{32} 32$	${ }^{30 \mathrm{PLL}}$ 30PL3	77\%p	7886	11.25
ECC82/3	421 p	EL91	${ }^{255}$	${ }_{\text {PC95 }}$	${ }^{36 p}$	PY8001	41p	UF80/3	371p	gaqj	50 p	6EH7	32 \ddagger p	68.87	3710	12BY7	${ }_{5}$	${ }_{30 \mathrm{PL} 14}$	85p	9002	32ヶp
$\mathrm{ECCC84}_{\text {ECS }}$	$42 \pm p$ $55 p$	ELa60	¢1.15	PCC84	46 p	PY82	35p	UF89	41p	6AR5	321p	6EJ7	35p	68K7	32 p	12 K 5	50p	35A3	50p	9003	50p

SEMICONDUCTORS BRAND NEW MANUFACTURERS MARKINGS NO RN3:MAKED DEVICES

2N388A	624 p	R.C.A.		AF106	42tp	$\mathrm{BC} 1+2$	30p	BF224	30p
2N614	30p	40253	P.A.	AF114	25 p	BC143	P.A.	BF225	30p
$2{ }^{2} 697$	20p	40398	P.A.	AF115	30p	BCl 47	17p	BF257	47 1p
2N698	25 p	40458	P.A.	AFll 6	25 p	BCl48	15p	BFX84	30 p
2N706	12 pp	2 N 4061	22¢p	AFliz	$25 p$	BC149	17tp	BFY19	33p
2N706A	12 p	2 N 4062	22.0	AFl18	60p	BC152	17 tp	BFY50	22¢p
$2{ }^{2} 936$	27 p	$2 \mathrm{~N}+286$	17 p	AF119	20p	BC157	20p	BFY51	224 p
2N1132	32 pp	2N4291	17 m	AF^{124}	$22 \geqslant p$	14C158	17¢p	BFYS 2	221p
2N1303	17p	AC107	30 p	AF125	20p	BC1698	14D	Bgx21	$37+\mathrm{p}$
2N1305	22 ¢ ${ }^{\text {d }}$	AC117	${ }^{60 p}$	AF126	20p	BC169C	15p	OC25	50 p
2N1306	25p	AC126	20p	AF127	17ip	HC171	1740	Oc26	324p
2N1307	${ }^{25 p}$	$\mathrm{ACl27}^{\text {a }}$	${ }^{25 p}$	AF139	37 p	BC175	27 p	0 C 28	62.0
2N1711	25p	ACl28	20p	AF178	45 p	BC183	22k ${ }^{\text {p }}$	OC29	75 p
2N2147	72 p	AC154	22 ± 0	AF179	45p	BC184	224	$0 \mathrm{OC35}$	40 D
2N2160	57 p	AC176	25p	AF180	52¢	BC187	28pp	Oc:36	${ }^{62}$ ¢ D
2N2614	30p	AC187	627 D	AF181	$42 . p$	BC213L	26]p	OC42	25p
2N2646	$57 \pm p$	ACI88	371 D	AF186	${ }^{667 p}$	18CY 32	37 p	OC44	20 p
2N2905	400	ACY17	2710	AF239	42¢p	BCY58	22pp	OC45	$12 \pm \mathrm{p}$
2N2926		ACY18	25p	As Y^{28}	28p	BCY70	20 p	OC45	$15 p$
Green	14D	ACY19	25 p	3C107	15p	RD115	78p	0 C 70	15p
Yellow	12 p	ACY20	25 p	BCl08	15p	BD121	85 p	$0 \mathrm{C71}$	$12 . \mathrm{p}$
Orange	124 p	ACY21	25p	${ }^{\text {BC109 }}$	15p	BD123	82bp	0C72	12tp
2N3053	27.0	ACY22	20p	BC113	27 ¢p	BDI2 4	62pp	$0 \mathrm{OC7} 4$	32 p
2N3055	75 p	ACY28	20 D	BC11*	37 D	BD131	97 p	$0 \mathrm{OC75}$	$22, \mathrm{p}$
2N3391	20p	ACY40	20p	${ }^{3 \mathrm{Cl} 115}$	32 $\ddagger \mathrm{p}$	13D132	97 fl	0 O 76	22\#p
2N3392	20 p	ACY41	25 D	BC1116	${ }^{62}$ p	BFII5	25p	${ }^{\text {OC7 } 78}$	27 p
2N3702	1710	AGY 44	400	18C116A	$37 \pm$	BF1i\%	47 t	$0 \mathrm{OC78}$	${ }^{25}$
2N3704	2210	Al140	40 p	BC117	39p	BF160	P.A.	$0 \mathrm{Oc81}$	20 p
2N3705	${ }^{20}$	AD1 12	58 p	BC118	$32 \downarrow$ p	${ }^{\text {BFI } 162}$	P.A.	$0 \mathrm{C81D}$	20 p
2N3711	20 p	AD149	$57 \pm$ d	3C134	57 pp	BF163	${ }^{35}$ p	OC83	25 p
2N:1819	${ }^{350}$	ADI50	${ }^{62}$ ¢p	BC135	P.A.	BF167	25 p	$0 \mathrm{OC8} 4$	25 p
2N3826	30 p	AD161	374 p	BC1:6	P.A.	BF173	321 p	0013 ${ }^{7}$	32 p
2N3905	37 p	AD162	37 tp	${ }^{8 C 1} 137$	P.A.	Br178	35p	0 Cl 40	$32 \ddagger p$
2N:314	P.A.	AF102	58p	BC138	P.A.	${ }_{8}^{\text {BF179 }}$	$72{ }^{2} \mathrm{p}$	0 0c170	30p
	DIO	DES \&	CTIF	ERS		$\underset{\text { BF180 }}{\text { EF181 }}$	35 p 32 p	0C171	30p
IN914	$7!p$	BZY88		OA91	7 p	BF184	${ }_{25}{ }^{2}$	OC200	32 ¢ p
AA119	10p	(Series)	32 p	OAz02	10p	BF194	224 p	OC202	$47 ¢ \mathrm{D}$
BA102	$22 \pm$ p	OA5	$12 \pm p$	BAI44	121p	BF195	2710	OCP71	424
${ }_{\text {BA1 }}$	- ${ }^{7+\mathrm{p}} \mathrm{p}$	OA47	778	BA145	20 p	BF196	42]p	P346A	25p
${ }_{\text {BY }}$	${ }_{22+p}^{12+p}$	OAFO OA79	7¢p	BA148	23p	BF197	31¢p	TI843	40p
BY126	20p	OA81	$7 \ddagger$	BA155	P.A.	BFI98	$42 \pm p$	P.A. Price on	
BY127	22łp	OA90	74p	Bal56	P.A.	BF200	36 ${ }^{\text {p }}$		cation

ADD 3p PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES

cartridges			
acos		${ }^{\text {x } 54}$..	each
	${ }_{\text {di }}^{\text {83p }}$		
		(8000	ctive
	ctitise	${ }_{6}^{68009} \mathrm{E}$	(19.500
${ }_{\text {cpat }}$	${ }_{1}^{21.55}$	Ronstre	
	${ }_{\text {cter }}^{\substack{11.85}}$	${ }_{0}^{106}$	
${ }_{\text {Acos }}^{\text {Arat }} 10 \pm 10$		${ }_{\text {dctab }}^{\text {DCtios }}$	
(ex			
(ix		ciction	${ }^{84 p}$
	${ }_{\substack{41.81 \\ 61.81}}$		
	$\xrightarrow{81: 81}$. $\begin{array}{r}11.79\end{array}$

BRICO ENGINEERING LIMITED HOLBROOK LANE, COVENTRY Tel: COVENTRY 89552 Telex 31685

Following the closure of our Electronic Fuel Injection Department we offer for sale the following electronic components. These components were intended for our own production and were purchased direct from manufacturers. The bulk of the slock is still in the original packing. We have reduced prices by up to 30\%

CAPACITATORS

Value μF		
0.001	30 V	10% Suflex H5
0.005	250 V.	Paper Hunts W95-8D

0.005
0.01
0.1
0.1
0.022
0.047
2.5
25
100
10.47
2
5
10
250
1

0.005	250 V.
0.01	Paper Hunts W95-BDI
310 SLM 51	
0.1	160 V.

250 V . Polyester $\begin{array}{lll}1.5 & 20 \mathrm{~V} . & \text { Tantalum } \\ 12.5 & 25 \mathrm{~V} . & \text { Electrolytic }\end{array}$

t WATT RESISTORS

POTENTIOMETERS

Cost/100

Prices per 100 in quantities $100-10,000$
6 WATT RESISTORS

RANSISTOR MOUNTINGSSupplier and Ref. Jermyn EP×002
Mounting Pad
Mounting Pad Jermyn$\begin{array}{llr}\text { Mounting Pad } & \text { Jermyn EPX002 } & \text { Cost/100 } \\ \text { Mounting Pad } & \text { TOS00 }\end{array}$$\begin{array}{ll}\text { Mounting Kit Mullard } 56201 \text { Parts A and B } & \left.\begin{array}{r}25 p \\ 100 \text { p }\end{array}\right)\end{array}$

FOR SALE

12V. DC PERMANENT MAGNET ELECT. MOTORS 2000-2300 r.p.m. at 12 volts-Current Consumption 5 amps (max.)-Torque 19 oz ins. SHAFT ROTATION REVERSIBLE
IDEAL FOR WORKING MODELS, CAR

ACCESSORIES, etc.
NEW and UNUSED 150 peach Terms: Cash with order. Post and Package-each
24 p extra on orders less than $£ 5$. Quantity discount: 10\% 10% orders over $€ 25$
15% orders over $€ 50$
20% orders over $£ 100$ egotiable orders over $\epsilon 100$
Enquiries to: Mr. S. H. Hardwick
BRICO ENGINEERING LIMITED HOLBROOKS COVENTRY CV6 4BG
Telephone: Coventry 89014

Any parcel of components will be made up to suit customer's requirements. Terms are cash with order. P. \& P. $10 p$ on orders less than $£ 5 \cdot 00$. Quantity discount 5% on orders over $£ 25 \cdot 00,10 \%$ on orders over $£ 50 \cdot 00,12 \frac{1}{2} \%$ on orders over $£ 100 \cdot 00$, negotiable on orders over $£ 250 \cdot 00$.
We also offer for sale the following equipment, much of it less than 2 years old and all in good 'as used' condition.

Oscilloscopes and accessories Telequipment type D43R	Quantity 2 off	Price each 685	Resistance Boxes and bridges Muirhead decade 0.10 K Pye 4 dial $0-10 \mathrm{~K}$	7 off	650	Advance Digital Panel MeterDT. 340 Fieldon Proximity Meters type PM. 2 Negretti \& Zambra Baro Vacuum	$\begin{array}{ll} 1 & \text { off } \\ 1 & \text { off } \end{array}$	$\mathbf{4} 75$ $\mathbf{4 7 5}$
Phillips PM3-200104	1 Off	¢75	Pye 4 dial 0-10K	6 off	622	Negretti \& Zambra Baro Vacuum		
Tektronic plug in unit Type H AVO BC Oscilloscope Cameratype K5	5 Off	¢45	Wayne.Kerr Universal Bridge B.221	1 off	6175 650	Gauge	1 off	¢30
AVO BC Oscilloscope Camera type K5 Domain Tralleys	5 1 off	6125 $\times 12$	Ricardo F.M. Bridge P.4550	1 off	650	Stork temperature gauge type IFC $1000.120^{\circ} \mathrm{C}$ (new)		
			Recorders Vitatron Linear Recorder type UR. 400	1 off	¢200	Avo Multimeter type H.ll08	1 off	¢64
Power supplies			Vitatran Linear Recorder type UR. 100	2 off	6200			
Electronic Industries Ltd. (APT) type TSU 512 pre-ser 12 V . DC 5 amp	3 off	¢35	Transforme			Production and General Equipment Phillips Desoldering pistol	2 off	65
Electronic Industries Ltd. (APT) type			Foster Trodiac type TRIO B. 461			Charles Austin Desoldering instru-		
TSU 1012 pre-set 12 V . 10 amp	5 off	¢45	\bigcirc ariable output 0-270V. AC	2 off	614	ment and pump '"Soldermaster''	Hf	\& 12
Farnell S.B. $30 / 10$ variable 30 V . DC Omp			RS.240V. Universal L.T. Transformer			Martindale 500W Hot Air blower	1 off	¢ 15
10 amp Advance Static Investor type IVS	2 off	445	output $1-10 \mathrm{~V}$. 45 VA	2	62	Audion Heat Sealer	1 off	$\underbrace{}_{612}$
5A. Input 24/28V. DC output			riab	Quantity	Price each	Assembly Tables-steel fra		
220/240V. AC. 500W	1 off	¢25	ervomex" Controls Limited			formica top $3 \times 2 \mathrm{ft}$.	50 off	¢5
Brico P.s.U. 440 V . 3 ph 11 and 16 V .			Controller MC. 43	2	69	BP G Electronic Test Consoles-steel		
DC 20 amp		¢30				with formica top $3 \times 2 \mathrm{ft}$	12 off	¢50
Coutant A.S.B. $2000.6-30 \mathrm{~V}$. DC 20 ar		695	Test and Environmental Equipment			Bodmer B.K. 1500 Rivering machine		
Coutant A.S.B. $1000.6-15 \mathrm{~V}$. DC 10 amp	P off	¢50	Medica Electronics Limited. Sand			with T12 and 21 heads	1 off	¢1,050
Coutant A.S.B. $500.9-16 \mathrm{~V} . \mathrm{DC} 5 \mathrm{amp}$ Francis 440 V . AC $3 \mathrm{ph} .12 \mathrm{~V} . \mathrm{DC} 50$	1 off	¢35	and Dust test cabinet RCS.II Bump Test Machine-SRDE.	1 off	6350	Ewbank Model 87 automatic wire stripping and cutting machine		
amps (brand new)	3 off	¢50	Ref. PR. 3456		6319	complete with auto wire prefeed,		
			Edwards Vacuum Pump/ISP. 30 C	2 off	635	predetermined counter, wire		
Universal Counter Timers Q			Genevac ${ }^{\text {Compressor type RPC. } 2}$	6 off	620		,	,500
Racal 5A.535	10 off		Genevac I/4 h.p. Vacuum Pump/			binocular attachment (magnifi-		
Racal SA.535B	off	6150	Compressor type RPC. 3	off	435	25)	1 off	6650
Racal 835	2 off	6175	lartron wid			Cambridge induction heating gen-		
Racal 835 (brand new)	1 off	¢225	COIC04-3	1 off	676	erator 3 -4kw output type C.E.1/3	1 off	f60

ALL ENQUIRIES TO MR. S. H. HARDWICK.
All equipment may be viewed during normal working hours at the above premises. Delivery FREE on orders over $£ 250 \cdot 00$.

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230 v. A.C. $50 / 60$ OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keanest prices in the country. All types (and spares) from I to 50 amp . available from stock. 0-260v. at 2.5 amps. . 66.75 P. \& P. 40p $0-260$ v. at 5 amps . . $\mathbf{5 9} .75$ P. \& P. 55p $0-260 \mathrm{v}$. at 10 zmps . . $£ 18.50$ CARR. © $0-260 \mathrm{v}$, at 15 amps . . . $\mathbf{2 5} \mathbf{2 5} \mathbf{0 0}$ CARR. EI $0-260 \mathrm{v}$, at 20 amps . . $£ 37.00$ CARR. fl $0-260 \mathrm{v}$. at 25 amps . . \& 49.00 CARR. $£ 1$ $0-260 \mathrm{v}$.at $37.5 \mathrm{amps} . . \mathrm{C72} \cdot \mathbf{0 0 C A R R}$. $£ 1$ $0-260 \mathrm{v}$, at 50 zmps . . $\mathbf{5 9 2 . 0 0}$ CARR. fl OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. 63.93
1 amp $65.50 .2 \frac{1}{2}$ amp. 66.63 . P. \& P. 40 p.
L.T. TRANSFORMERS

All primaries 220-240 volts

ALARM BELL
Manufactured by GENTS. 6 inch bell
$3 / 6$ volt D.C. operation
E1.50 plus 45 p P. \& P.
$12-28$ VOLT D.C. BLOWER UNI
Powerful, smooth running, precision
made Blower Unit. 5,000 RPM, $5 \cdot 4$ amps. made $3^{\prime \prime}$ wiz Srice $\mathbf{6 2 \cdot 0 0}$ post paid.
DOUBLE ENTRY
CENTRIFUGAL FAN/BLOWER
Smooth, balanced running unit. Two

ately 90 cubic ft . $/ \mathrm{min}$. but draws only 240 mc
on run. Weight $2 t \mathrm{lb}$. Case dia. 3.1尔, width (case only) 1.85°. Price only E2.95. P. \& P. 25 p.

5 amp sitch
amp. c/o contacts. Fitted with remov able push button assembly. Ex. P.O
20 for $\ell l .00$ inc. post (min. order 20)
t.m.c. ILLUMINATED LOCKING

PUSH BUTTON KEY SWITCH NO 55288576 co
Complete with mounting
Lenses (GREEN, AMBER, RED or CLEAR state colou preference). Price 88p each excluding bulb, Post Paid Discount for quantities of 200 or ove
VENNER ELECTRIC
TIME SWITCH
200/250 volt. Ex-GPO. Tested, perfect
condition. Two ON, two OFF, every 24 hrs .
 20 p . Also available with Solar Dial ON at
dusk, OFF at dawn. Prices as above.

200-250 V. A.C. NEON INDICATOR

(1)

ELECTRONIC ORGAN KIT

Easy to build, solid state. Two full octaves fitted hardwood case powered by two pen lite $1 \frac{1}{2} v$. batteries. Complete set of parts including speaker, etc., togethe $50 \overline{\text { in }}$ I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special rools required. The Kit includes Speaker, meter, Relay,
Transformer, plus a host of other components and a 56 page instruction leaflet. Some examples of the 50 possible Projects are: Sound tevel Meter, 2 Transistor Radio Amplifier etc., etc. Price 67.75. P. \& P. 30p.
CRYSTAL RADIO KIT
Complete set of parts including: crystal diode, ferrite aerial, drilled chassis and personal ear-oiece. No
soldering, easy to build, full step-by-step instructions oldering, easy to build, full step-by-step instruction
 Enamel, heavy dury brush assembly desizned or continuous dury. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2 a ., 50 ohm l.4a., 100 ohm la., 250 ohm 7a., 500 ohm 45 a ., Ik ohm 280 mA ., 1.5 k ohm $230 \mathrm{~mA} ., 2.5 \mathrm{k}$ ohm 2 ia ., 5 k ohm 140 mA ., Diameter
 50 WATT I. $12 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$
5 K ohm. All at $£ 1 \cdot 12, \mathrm{P}$ \& P I1p. 5 K ohm. All at \&1.12, P. \& P IIP
ohm ATH $25 / 50 / 100 / 250 / 500 / 1 K / 1.5 K / 2 \cdot 5 K / 3 \cdot 5 \mathrm{~K}$ Black Silver Skirted kno b calibrated in Nos. I-9. It

UNISELECTOR SWITCHES - NEW
4 BANK 25 WAY FULL WIPER
25 ohm eoil, 24 r. D.C operation
6 BANK 25 WAY FULL WIPER
25 ohm coil, 24 v. D.C
operation. $\mathbf{6} 6.50$, plus 22 D P. \& P
8 BANK 25 WAY FULL WIPER

8 BANK 25 WAY FULL 24 v. D.C. operation. $£ 7.63$, plus

VERY SPECIAL OFFER

Cannot be repeated. 500 v .50 Meg Record insulation testers. Excellent condition, fully tested. Complete

Smotesinoteridet

 LIGHT FLASH TUBES, SOLID STATE TIMING + TRIGGERING CIRCUITS. PROVISION FOR EX
TERNAL TRIGGERING. $230-250 \mathrm{v}$. A. C. OPERATION. TERNAL TRIGGERING. 230-250v. A.C. OPERATION. invaluable for the stady of movement and checking
of speeds. Many uses can be found in the psychiatric and photographic fields, also in the entertainment
ousiness. It is used a great deal in the motor industry business. It is used a great deal in the motor industry
and is a real tool as well as an interesting scientific EXPERIMENTERS "ECONOMY" KIT Adjustable I to 36 Flash par sec. All electronit com Xenents Tube +instructions 66.30 plus 25 p P. \& P. NEW INDUSTRIAL, KIT
deally suitable for schools, deally suitable for schools, laboratories ecc. Roiler
tin printed circuit. New trigger coil, plastic thyristor tin printed circuic. New trigser coil, plastic thyr
Adjustable 1-80 f.p.s. Price El0.30. 50 p P. \& P. HY-LYGHT STROBE This strobe has been designed for use in large rooms, halls and the photographic field, and urilizes a silica tube for longer life expectancy, printed circuit for
easy assembly, also special tripzer coil and output
capacitor. Speed adiustable $1-30$ f.p.s. Light output capacito 4 ioules. Price E 12.00 . P. \& \&. P. 50 p .
approx. Includ
Specialiy designed, fully ventilated Metal Case. AND NOW!

Approx. 4 times
Hy-Lyght strobe.
ncorporating. Heavy duty power supply
Variable speed from $1-23$ flosh per sec.
Fantastic Oetal based tube with massive electrodes.
Reactor control circuit producing an intense white
light.
The brilliant light output of the 'SUPER' HY-LYGHT
erilliant light output of the 'SUPER'
Never before a Strobe Kit with so HIGH an
output at so LOW a price. ONLY 20.00 plu
output at so LOW a price. ONLY 20000 plus
Attractive, robust, fully ventilated Metal Case specially
designed for the Super Hy-Lyght Kit Including reflector,
E700. P. \& P. 45P.
$7.1 N C H$ POLISHED REFLECTOR. Ideally suited
1or above Strobe Kits. Price 53p and i3p P. \& P. or $\%$

RUNNING HOUR METER. 240 volt, 50 cycle, 2.2 watt. Calibrated in minutes. Six figure. $\begin{gathered}\text { PRICE; }\end{gathered}$ EVEL METER

Miniature level meter

Approximately 300 micro amp basic, as

M $\overline{O T O R O L A}$ MA $\overline{C I I / 6 ~ P L A S T I C ~}$ TRIAC 400 PIV 8 AMP
Now available EX STOCK supplied complete with full
data and applications sheet. Price \&1 05 plus 7 P P. \& P. data and applications sheet.
Suitable diac 30 p (RCA40583)

IN8ULATED TERMINAL8
Available in black, red, white,
yellow, blue and green. New yellow, blue and gr lop each. Post paid.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, \qquad

high as desired 10 w.p.m. to a

PEAYS NEW SIEMENS PLESSEY, etc. MINITURE RELAYS AT COMPETITIVE PRICES. 45 6-9 2 HDM 50p $70015-35 \quad 2$ e/oHD $73 \mathrm{pl}^{\circ}$ $\begin{array}{lllllll}45 & 6-9 & 2 H D M & 7 p^{*} & 700 & 16-24 & 6 M \\ 185 & 6-124 \mathrm{c} / 0 & 73 p^{*} & 63 p^{*} \\ 230 & 9-124 \mathrm{c} / 0 & 78 p^{*} & 1250 & 24-36 & 4 \mathrm{c} / 0 & 63 p^{*}\end{array}$ $\begin{array}{lllll}230 & 9-124 c / 0 & 78 p^{*} & 12502436 & 4 c / 0 \\ 280 & 9.12 & 2 \mathrm{c} / \mathrm{o} & 73 \mathrm{p}^{*} & 2500 \\ 36-45 & 6 \mathrm{M} & 63 p^{*}\end{array}$
 $\begin{array}{lllll}600 & 16-244 M 2 \mathrm{c} & 78 \mathrm{c}^{*} & 63 \mathrm{p}^{*} 5800 & 40-70 \\ 700 & 4 \mathrm{c} / 0\end{array}$ $\begin{array}{llll} \\ 700 & 16-244 \mathrm{c} / \mathrm{o} & 78 \mathrm{p}^{*} 900040 & 40.70 \\ 700 & 2 \mathrm{c} / 0 & 50 \mathrm{p}^{*} \\ 700 & 12-242 \mathrm{c} / \mathrm{o} & 63 \mathrm{p}^{*} & 15 \mathrm{k} 85-1106 \mathrm{M}\end{array}$ (1) Coil ohms; (2) Working d.c. voles; (3) Contacts: (4)
Price HD $=$ Heavy Duty. All Post Paid. ${ }^{\text {inctuding Base. }}$.

MAINS RELAY
MAINS RELAY
230 v. A.C. coil 3 c/o, 10 amp. A.C. contacts. 50 p

COMPLETE NI. CAD. BATTERY OUTFIT (EX W.D.)
2 metal carrying cases each containing $10 \times 1-2$
volt $7 \mathrm{AH}(12 \mathrm{v}$) batteries, also $10 \times 1.2 \mathrm{v}$. 22 AH (12v.) batteries. (40 bat-
teries in all). I Dual teries in all). I Dual
voleage, dual meter. chyristor controlled
 charging unit. Designed for charging the 7AH and 22AH batteries simul. $100-250 \mathrm{v}$. A.C. Built to ministry adjusted between loo-250. A.C. for field wark. Offered sification. Ideal makers price 2 sets of batteries, I charging unit. The et $£ 45.00$, c. \& p. $£ 1.50$.

NICKEL CADMIUM BATTERY 1.2 v. 35 AH. Size 80 high $\times 3 \times 10$. $\$ 1.50$ each, plus 20p Sinterad Cadmium Type 1.2 v. $7 A H$. Size: height $3 \frac{1}{2}$ in. width 2 . width 2 Iin. $\times 1 \frac{1}{1}$ in. We
230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately l4lb. pull, linch travel. Fitted with mounting feet. Size 4 inches long, 2 inches wide and 3 inches high.
Price $E 2.00$ including post $\&$ pkg.
 (Similar in appearance to above illustration.) Approx. It Ib.
pull. Size of feet It x it. Price 85 sp incl. post. Manufactured by Westool Led.
36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit tinuously variable 0-36 V. A.C./D.C.
Fully isolated. Fited in robust metal Indicator and chrome handles. Input and Output fully fused. Indicator and chrome handies. Input and
Ideally suited for Lab. or Industrial use. $£ 58$ plus $£ 2$ p. \& c. $230 V / 240 V$ COMPACT SYNCHRONOUS GEARED MOTORS
\qquad
\qquad
\qquad
2 revs. per hour. Clockwise rotation. rotation.
rotion.
rotion.
 3 revs. per hour. Anti-clockwite rotation. Fraction of
makers price
All ar 75 p
incl P \& P All ar ${ }^{75}$ p
incl. P. P P 15 revs. per hour.
60 revs. per hour. lockwise rotation.

12 VOLT DC MOTOR Powerful 12 volt 1 amp REVERSIBLE motor. Speed $3,750 \mathrm{rpm}$. Complete giving final speed of 125 RPM. Size $4 \frac{1}{2}$ in. $\times 2 \frac{1}{2}$ in. dia. Price inc. post $95 p$.

BODINE TYPE N.c. 1

 GEARED MOTOR(Type I) 71 r.p.m. torque 10 lb . in,
Reversible 1/70th h.o. 50 cycle .38 amp. (Type 2) 28 r.p.m. torque 20 ib. in. Reversible $1 / 80$ th h.p. 50 cycle 28 amp The above two precision made U.S.A. motors are
offered in 'as new' condition. Input voltage of motor
$115 v$ $115 v$ A.C. Supplied complete with transformer for Price, either type 63
Price, either type $63 \cdot 15$ plus
former $£ 2 \cdot 13$ plus 27 P . \& P.
These motors are ideal for rotating aerials, drawing
curtains, display stands, vending machines etc. etc.

MORSE TRANSMISSION AND TRAINING SIMPLIFIED

 © GNT Keyboard Perforator

MODEL 51
For preparing morse code tape for use in a transmitter. Maximum speed 750 w.p.m.

GNT Transmitter

 MODEL 112Morse transmitter capable of working direct to line with a speed range of 13-250 words per minute.

OTHER MODELS AVAILABLE:

2206 Converter No. 2 code to morse.
2201 Converter morse to No. 2 code.
3072 Line commutator.
451 Morse code reperforator, operating from 40-200 w.p.m.

3082 Student box.
3065 AF tone generator.

GNT Morseinker
 MODEL 1532

Specially designed for training. Prints dots and dashes on tape with variable paper speed drive. Speed range $0-40$ words per minute.

GNT Transmitter
 MODEL 115

Specially designed for morse transmitting schools permitting the insertion of pauses between transmitted letters and words. Speed range 5-35 w.p.m.

The GNT range of morse equipment for automatic transmission and morse code training schools is now manufactured in the U.K. by

Morse Equipment Limited

77 AKEMAN STREET, TRING, HERTS., U.K

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

Electron Guns

TV Picture Tubes

Sub-assemblies

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER:

flektrim

产Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA,

Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

WW—108 FOR FURTHER DETALLS

COLOUR TELEVISION picture faults

K. J. Bohlman $\quad \mathbf{2 2 5 0} \quad$ Postage $6 p$ There are over 120 illustrations, including 88 colour photographs.

TELEVISION SERVICING HANDBOOK by Gordon J. King. £3:80. Postage 12p.
RCA SOLID STATE HOBBY CIRCUITS MANUAL by R.C.A. \&1.05. Postage 10p.
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. E2.60. Postage 20p.
TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard. $£ 1.50$. Postage 60 p
TRANSISTOR CIRCUITS IN ELECTRONICS by S. S. Haykin \& R. Barrett. E2.50. Postage 15p.
COLOUR TELEVISION WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett. 22.50. Postage 6p.

RADIO VALVE \& TRANSISTOR DATA by A. M. Ball. 75p. Postage 10p.

THE MODERN BOOK CO.

britain's largest stockist
ol British and American Jechnical Booka
19-21 PRAED STREET,
LONDON, W. 21 NP

Phone 7234185

Closed Sat. 1 p.m.

Newest, neatest system ever devised for storing small parts and components: resistors. capacitors, diodes. transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

Single units (1D) $\mathbf{£ 1 . 3 5}$ per dozen size approx ($2 \frac{1}{4}$ " high $2 \frac{11^{\prime \prime}}{}{ }^{\prime \prime}$ wide $5^{\prime \prime}$ deep) 2D £2.25 per dozen. 3D £2.35 for 8 units. 6D2 £3.65 for 8 units (2 3D's in 1 outer) 6D1 $£ 3.30$ for 8 units. Postage/Carriage 35 p for orders under $£ 5$. Carriage paid for orders over $£ 5$.

PLUS Quantity discounts!

Orders $£ 5$ and over DEDUCT 5% in the $£$ Orders $\mathbf{£} 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $\mathbf{£}$ Orders £20 and over DEDUCT 10\% in the $\mathbf{£}$
QUOTATIONS FOR LARGER QUANTITIES
WTHYT
(Deptwwoi 124 CRICKLEW00D BROADWAY LONDON.N.W. 2 TEL. 01-450 4844

BETTER GET 'SET'

Famous BC. 221 Frequency Meter 125 KHZ -20 MHz . Complete with valves, crystal and chares. Only $\mathbf{f 1 3 \cdot 5 0}$. Carr. E) 50 . Less Charts 66 . Carr. Carr. El-50.
Marconi bolA Signal GeneraMarconi 801 M Signal Genera-
tor. $10-310$ M Hz. In original
transit case. ©45. Carr. 22.50 . Cryetal Calibrator No. 10. Crystal controlled hererodyne wavemeter
covering 500 KHz . 10 MHz (Harmonics covering $500 \mathrm{KHz} \cdot 10 \mathrm{MHz}$ (Harmonics
up $\quad . \mathrm{MH}^{20} \mathrm{MO}$. Power required
300 V . D.C. 15 mA . 12 V . 0.3 A D.C. Test equipment for $62 \mathrm{MM} / \mathrm{RC}$.
Only $\$ 4.25$. P. \& P. 50 m Oniy 4.25. P. \& P. ${ }^{50 \mathrm{p} .}$ Fow only-No. 62 TM
10 MHz . 17.50 . Carr. $\mathbf{E 2}$.

Surplus Electronic Trading

Drivers End Lane, Codicote, Hitchin, Herts,
Hours of Buainass: 8-5 Mon.-Fri.; 8-12 Sat.

ATtractive DISCOUNTS ${ }^{\circ}$

 EIEGTROLILUE

 EIEGTROLILUE Electronic Component Electronic Component Specialists

 Specialists}

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

many at new reduced prices - all power types with free insulating sets

MANT AT NEW HEDUCED PIICES - ALL POWER TVPES WITH FREE NNULATING SETS									
40361	55p	2N2905	44p	2 N 4291	15p	BC148	$9 p$	BFX87	29p
40362	${ }^{68 p}$	2 N 2905 A	47p	2 N 4292	15p	${ }^{B C 1} 19$	10p	BFX88	$26 p$
2N696	17p	2N 2924	20p	AC107	$40^{\text {p }}$	BC153	190	BFYSO	23 p
2N697	18 p	2 N 2925	22p	${ }^{\text {ACl } 126}$	20p	${ }^{\text {BC }} 154$	20p	BFYS 1	20 p
2N706	12p	2N2926	$11 p$	AC127	20p	BC157	12 p	BFY52	23p
2N930	29p	2N3053	27p	${ }_{\text {ACl } 28}$	20 p	3 Cl 58	110	BS $\times 20$	169
2 N 1131	29p	2N3055	60 p	AC153K	22p	${ }^{3 C 159}$	12p	C407	17 p
2 N 1132	29 p	${ }^{2} \mathrm{~N} 3702$	13 p	${ }_{\text {ACl7 }}$	16 p	${ }^{\text {BC }} 167$	110	MCI 40	25p
${ }^{2} \mathrm{~N} 1302$	19p	2 N 3703	13p	ACY20	20p	BC168	10p	MPS5631	335
2N 1303	19 p	2N3704	130	${ }_{\text {ACY }}$	169	${ }^{\mathrm{BC} C 169}$	110	MPS6534	30p
2N 1304 2 N 1305	${ }_{260}{ }^{26}$	2N3705 2N3706	138 130	AD140	63 p 50	(${ }^{\text {BC17 }}$	14 p	NKT211	25p
2N1306	33 p	2N3707	$13 p$	ADI49	58p	${ }_{8 C 179}$	140	NKT212	25p
2 N 1307	33p	2N3708	10 p	ADI61	33p	BC182L	11%	NKT214	23p
2N 1308	36p	2N3709	$11 p$	AD162	$36 p$	BC183L	10 p	NKT274	18 p
${ }^{2 N} 1309$	${ }^{36 p}$	2N3710	13 p	AFII4	249	8C184L	$11 p$	NKT403	${ }_{79}^{65}$
${ }_{2}{ }^{2} 1613$	23p	2N 3711	13p	AFIIS	24p	3C212L	16	NKT405	79p
2 N 1711	26p	2N3819	23p	AFII 17	22p	BC213L	169	OC71	38p
2 N 1893	54p	2N3904	35p	AF124	33p	BC214L	169	OC81	25p
2 N 2147	950	2N 3906	35p	AFI 27	22p	BCY70	$19 p$	$0 \mathrm{OC8}$	20p
2 N 2218	34p	2 N 4058	13p	AF139	33p	BCY71	33p	ZTX300	14p
2N2218A	44p	2N4059	10 p	AF239	${ }^{36}$	BCY72	15p	2TX301	$16 p$
2 N 2219	${ }^{38}$	2 N 4060	$11 p$	ASY26	27p	8 8115	23p	ZTX302	22p
2 N 2219 A	53p	2 N 4061	119	ASY28	27 p	BF167	18p	2TX303	22 p
2N 2270	62 p	2 N 4062	12 p	BC107	12p	3 F 173	19%	ZTX304	$27 p$
2 N 2369 A	19p	2 N 4124	189	8C108	119	3 F 194	$14 p$	ZTX500	18 p
2N2483	$35 p$	2 N 4126	27p	BC109	12p	BF195	$15 p$	ZTX501	219
2 N 2484	42 p	2N4284	15p	BC125	$15 p$	BFX29	315	ZTX502	25p
2 N 2646	47 p	2N4286	15p	8 BC 126	22p	BFX84	25p	ZTX503	$22 p$
2N2904A	42p	2N 4289	15p	8C147	10 p	BFX85	34 p	21×504	52p

RESISTORS-10\%, 5\%, 2\%

Code	Power	Tolerance	Range	Values available	$\begin{gathered} \text { to } 9 \\ \text { (see } \end{gathered}$	$\text { to } 99$ elow).	100 up
C	1/20W	5\%	$82 \Omega-220 \mathrm{~K} \Omega$	E12	-	8	7
C	1/8W	5\%	4.7n-470K Ω	E24	1	0.8	0.7
C	1/4W	10\%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$	E12	1	0.8	0.7
C	1/2W	5%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$	E24	1.2	1	0.9
C	1 W	10\%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$	E12	2.5	2	1.8
MO.	1/2W	2\%	$10 \Omega-1 M \Omega$	E24	4	3.5	3
WW	IW	$10 \% \pm 1 / 20 \Omega$	0.22,-3.9	E12	7.	7	6
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	7	7	6
WW	7W	5\%	12@-10K	El2	\%	9	8

[^13]MO = matal oxide. Electrosil TR5, ultra low noise.
WW = wire wound, Plessey.
Values:
E12 danotes series: $10,12,15,18,22,27,33,39$,
E24 denotes series: as E12 plus II
30, 36, 43, 51, 62, 75, 91 and their decades.
CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.
Single gang linear 1000 to $2 \cdot 2 \mathrm{Ma}$, 12p; Single gang log, 4.7 KO to $2.2 \mathrm{Ma}, 12 \mathrm{p}$; Dual gang linear
4.7 kO to 2.2 Mo 42 p ; Dual gang log 4.7 KO to $4 \cdot 7 \mathrm{kQ}$ to $2 \cdot 2 \mathrm{MO}, 42 \mathrm{p}$; Dual gang log, $4 \cdot 7 \mathrm{Ka}$ to
2.2MO, 42p; Log/antilog, IOK, 47 K , IMO only 42 p ; 2-2MO, 42p; Log/antilog, IOK, 47K, IMO only 42p;
Dual antilog, IOK only, 42p. Any type with IA Dual antilog, loK only, 42p. Any type with 1 A
D.P. mains switch, 12 p extra. O.P. mains switch, $12 p$ extra. quoted.

CAREON SKELETON PRE-SETS
Small high quality type PR, linear only: 1000 . $220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2 \mathrm{~K}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, \mathrm{IOM} \Omega$. Vertical or horizontal mounting, $5 p$ each.

COLVERN 3 wate Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$,
$1 \mathrm{~K}, \mathrm{I} .5 \mathrm{~K}, 2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each

ZENER DIODES 5% full range E24 values:
400mW: 2.7 V to 30 V , 15 p each; IW: 6.8 V . to 82 V , 27p each; 1.5W: 4.7V to 75V, 60p each.
Clip to increase 1.5 W rating to 3 watts (type
266 F), 4p.

Appointed Dirtriburt SIEMENS (UK) ITD.

Appointed Stockists for
NEWMARKET THANSISTORS
RAOIOHM POTENTIOMETERS

\star SIEMENS

TTL INTEGRATED CIRCUITS

$0.033,0.039,0.045,0.056,0.068,0.082,0.1,0.12,0.15,0.18,0.226 p$
$0.27,7 p ; 0.33,0.39,9 p ; 0.47,10 p ; 0.56,13 p ; 0.68,15 p$.

NEW PEAK SOUND SPECIAL OFFER

Fantastic new Engfefield 840 amplifier with add-in facilities for
stereo tuner, advertised at $\mathbf{£ 4 9 . 5 0 \text { . Special Electrovalue offer, plus }}$
choice of ease finish in black, red, blue or green simulated leather
In makers sealed carton and guaranteed.
NETT E38.75

NEW 1971 CATALOGUE

64 pages-thousands of items well classified, plus
pages of valuable information post free 10 p
MISCELLANEOUS ITEMS FROM OUR

30W BAILEY AMP. PARTS
Transistors Rs and PCB for R_{s} one and C_{s}, and PCB for 26.46 $\begin{array}{llll}\text { Ro channel } & \text {.. } & \text {.. } 4.41\end{array}$ MAIN LINE AMPLIFIERS INDICATOR LAMPS NEON chrome bezel, round red amber NR/A, 24p; chrome bezel, round elear
square red type
tys amber type LS5C/A, IBp; clear
type LS5C/C, IBp. All above are for 240 v , mains operation. 0.04 A
Filament types: 6 V . 0.0 l square red type LSSC/R-6V.3 30p
6.0 .04A amber type LS5CA-6v. $30 \mathrm{p} ; 6 \mathrm{~V} .0 .04 \mathrm{~A}$ clear type LSSC/C
6 V .1
$30 \mathrm{p}: 6 \mathrm{~V} .04 \mathrm{p}$ preen type
 TYGAN SPEAKER

MATERIAL

7. desions,
8. 58 sheet

LIGHT DEPENDENT
RESISTORS
Cadmium Sulphide type TPMD
(equiv. ORP.12), 40p. WIRE
Even No. SWG only: 2 oz. reels:
$16-22 \mathrm{SWG} 25 \mathrm{p} ; 24-30 \mathrm{SWG} 30 \mathrm{p}$:

S-DECS
Manufacturer's prices increase
roughly by 20% on these on pages 51,52 and 53 since printing our $\$ 1 \cdot 44$. Four pack $\mathbf{5 5} \cdot 10$. DeCsTOR
pack $\mathrm{E} \cdot \mathrm{BR}$. T-Dec, may be pack ex ery

THERMISTORS
VAl039, VA1040,
VA1066, VA1077, C
15p.
VAl055,
K151-1K,
SD.
BRIDGE RECTIFIERS

Silicon	ms	Imax	
1840 K 10	70	4A	41.75
WO2	140	1A	20.40
WPO2	140	2A	20.95
BY164	42	1.4A	20.45
81912	80	-1.5A	20.66
C1412	80	-3.2A	$\underline{11.02}$
E2512	80	-15A	21.64

-Reduce rating by $\mathbf{3 0 \%}$ if no
contact cooled.

POSTAGE AND PACKING

FREE on orders over $£ 2$. Please add 10 p if orders under $£ 2$. Overseas orders welcome: carriage \& insurance charged at cost U.S.A. CUSTOMERS
U.S.A. ordare charged at prices as advartised by ELECTRO
VALUE AMERICA, P.O. Box 27, Swarthmore PA 1908.

OUR NEW 1971/1972 CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3

Tel.: $7275641 / 2 / 3$
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and
release of electronic valves, tubes,
klystrons, ete

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col inch.
LINE advertisements (run-on): 45 p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge
of 25p.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.I.

EXPANDING COMPANY IN SAUDI ARABIA REQUIRES EXPERIENCED CERTIFICATED ENGINEERS
 FOR THE FOLLOWING POSTS CHIEF ENGINEER

B.Sc. or equivalent with 10 or more years experience in Operation and Maintenance of Transmission and Broadcasting Equipment.

ENGINEERS TECHNICIANS

Experience in Operation and Maintenance of Broadcasting Equipment, Studio Equipment and Teleprinters.
Please submit a complete resume and state availability and salary required. Box WW 1270

CANCER RESEARCH CAMPAIGN

ELECTRONHCS TECHN\|CIAN

to assist in research into chemical and biological effects of radiation involving a 2 MeV linear accelerator and associated equipment. Keen practical interest in electronics, especially pulse circuits, essential. Salary in accordance with M.R.C. Technical Scales, depending on age, qualifications and experience. Day release possible. Apply in detail with names of two referees to Director, C.R.C. Gray Laboratory, Mount Vernon Hospital, Northwood, Middlesex.

SINCLAIR RADIONICS LIMITED

london road, st. ives, huntingdon

TECHNICAL LIAISON OFFICER

A vacancy has arisen in Service Department for a person to run our Consumer advice department. The position requires a high degree of initiative and job involvement as the person chosen will be solely responsible for answering all sorts of queries by letter, by phone. on our products from all types of consumers. He (or she) will also be expected to help in preparing construction manual and other technical publications and possibly to investigate new applications for our products. The job requires some knowledge of basic electronics and hi-fi sound generally. It would suit either an engineer who wants to change to a more responsible position or technical author with a practical inclination. Write to the above address or telephone:

RICHARD TORRENS
at St. Ives 4311 (STD code 04806)

Advertisements accepted up to THURSDAY, 12 p.m., 7th OCT. for the NOVEMBER issue, sub夏 jor the NOVEMBER issue, sub-

Colour TV Italy

Our client, one of the largest manufacturers of domestic consumer goods in the European market, is planning to develop its organisation in the Colour TV field. To help meet this expansion of the Television Division the following executives are required, both of whom should have had a number of years' experience in the engineering or manufacturing of Colour TV. PAL systems. Preference will be given to candidates with fluency in French, but, although the company is based in a large Italian town, a knowledge of the Italian language is not necessary. Starting salaries will be negotiated and there are superb opportunities for advancement and the realisation of personal capacity/objectives.

Engineering Manager

The successful candidate will report to the Divisional Manager and be wholly responsible for the design and development, in engineering terms, of Colour TV. In charge of a recently formed team of specialists and technicians he will find the working atmosphere dynamic and stimulating.
(Ref. C/AT/823/e)

Technical

Services Manager

Also reporting to the Divisional Manager, he will be responsible for the full range of production services required in the manufacture of Colour TV. These include: production organisation, method and time study, route sheets, equipment and production automation, test and production planning and control. He will train, motivate and manage a staff of skilled personnel operating in verious departments. His work will require close and effective co-operation with the planning and production departments.
(Ref. C/AT/824/e)
Replies will be forwarded in strictest confidence to the PA consultant advising on these appointments. They should include comprehensive career and salary details, not refer to previous correspondence with PA, quote the reference on the envelope and be addressed to:

> P.A. Advertising Ltd., 2 Albert Gate, London SW1X 7JU

Tel: 01-235 6060

TECHNICAL INSTRUCTORS

Applications are invited from persons interested in joining the British staff of a large Technical Training School situated in the Gulf area of the Middle East. Vacancies exist in the following trades and preference will be given to applicants with experience in the specific equipments required, although courses of instruction can be arranged for selected candidates.

TECHNICAL INSTRUCTORS (Radar) TECHNICAL INSTRUCTORS (Communications)

Experience of radar, TX, RX, computers, data processing and display. These appointments, of particular interest to ex-Servicemen, are initially for a period of 15 months and include regular home leave with tree air passages, attractive salary and annual bonus which can qualify for full tax concessions. The Company provides free bachelor accommodation, catering, personal accident insurance, medical care and other facilities.

Apply in writing with brief details quating ref: 324 to
Personnel Manager
AIRWORK SERVICES LTD
Bournemouth (Hurn) Airport Christchurch, Hants

EMI ELECTRONICS LTD., has a vacancy in the Installation and Maintenance Division, for an Engineer to be responsible for the installation, commissioning and maintenance of numerical control equipment for machine tools. He will be based at Hayes, Middlesex, but the position will involve work in the field in the U.K. as well as occasional overseas visits.

Applicants, aged $25-45$, should have reached H.N.C. Electronics standard, and should have experience in fault finding on solid state equipment. A knowledge of pneumatics and machine tools would also be an advantage.

Starting salary would be up to $£ 2,000.00$ per annum, assistance will be given with removal expenses. Company benefits include free Life Assurance and a contributory Pension Scheme. Please apply in writing, stating brief career details, or ring :-
R. C. Dwyer, Personnel Department,

EMI Limited, Hayes, Middlesex.
Tel. No. 01-573 3888 Ext. 632.

NATIONAL ENVIRONMENT RESEARCH COUNCIL

The Institute of Geological Sciences has vacancies for Technical Officers Grade III/IV as follows:
(1) A temporary post (tenable until March, 1974) exists in the Edinburgh Global Seismology Unit for a Technical Officer III to participate in field operations in the U.K. or overseas, which are aimed at the observation of earth tremors resulting from earthquakes or explosions. The post involves acceptance of responsibility, after initial training, for the operation and maintenance of a substantial body of equipment, including solid-state amplifiers, VHF or UHF radio links and multi-track magnetic tape-recorders.
(2) Two posts at T.O. III/IV level at the Geophysical Observatories situated at Eskdalemuịr, Dumfriesshire and Lerwick, Shétland. Duties will involve the maintenance and development of geophysical instruments, to make geophysical observations and to assist in observatory duties. Instruments will include magnetometers, seismometers, equipment for recording paper charts, phatographic charts and magnetic tape. Some electronic experience is required.
Qualifications should include either (A) O.N.C. in Electrical Engineering or (B) evidence of an equivalent standard of technical education, with 5 years apprenticeship or equivalent, and a subsequent 3 years of suitable engineering experience (preferably assembly and testing of electronic equipment) or 3 years suitable experience for T.O. IV.
Candidates should be in good physical condition. Ability to drive an advantage.
Salaries: T.O. III £1196-£1799 according to age, maximum starting salary $£ 1579$ at age 21 or over. Allowance of $£ 200$ payable at all points of scale.
T.O. IV $£ 929-£ 1579$ according to age, maximum starting salary f 1277.
Enquiries to

Establishment Officer Institute of Geological Sciences 19 Grange Terrace
 Edinburgh 9.

THE WORLD'S FINEST PROFESSIONAL PORTABLE TAPE RECORDER

Junior Service Engineer

Our steadily increasing business requires the appointment of another young engineer to join our Service Department in the West End of London. The successful applicant will be an enthusiastic and diligent worker with a good understanding of basic tape recorder principles and a standard of workmanship consistent with the quality of the product.

Good salary and conditions including four weeks annual holiday.

Interviews to be held in London.

Please send full details in writing to:-
MANAGING DIRECTOR, HAYDEN LABORATORIES LTD., East House, Chiltern Avenue, Amersham, Buckinghamshire

One year's electronics experience
 ONC or C\&G?

Then become a Radio Technician with the National Air Traffic Services. You would work on the installation and maintenance of a wide range of sophisticated electronic systems and specialised equipment throughout the U.K. You would be involved with RT, Radar, Data Transmission Links, Navigation Aids, Landing Systems, Closed Circuit T.V. and Computer Installations. You could also work on the development of new systems.

To qualify for entry to our training course you must be aged 19 or over, have at least one year's experience in electronics and preferably O.N.C. or C. \& G. (Telecoms). Your starting salary would be $£ 1,143$ (at 19) to $£ 1,503$ (at 25 or over), scale max. $£ 1,741$ - shift duty allowances. Good career prospects.

Send NOW for full details of how you can become a Radio Technician. Complete the coupon and return to A. J. Edwards, C.Eng., MIEE, Room 705, The Adelphi, John Adam Street, London WC2N 6BQ, marking your envelope 'Recruitment'.

I meet the requirements, please tell me more about the work of a Radio Technician.

NAME

ADDRESS
(A/ww/w
Not applicable to residents outside the United Kingdom

RADIO TECHNIIIANS with Wales Gas

Wales Gas Communications Section is setting up its own teams to install and maintain the new MidBand VHF Mobile Radio System coming into operation throughout South Wales. Resulting from this, there are two new positions open, involving the commissioning and maintenance of VHF radiotelephone systems and mobiles in the Board's South, West and East regions, but based at Grangetown, Cardiff.

A current driving licence and a minimum of three years' experience of such systems, together with an appropriate City and Guilds qualification in Telecommunications (or equivalent) are essential. The salary will be in the range of $£ 1302-£ 1542$ per annum and there are sick pay and contributory pensions schemes in operation.
Please write for application form to The Personnel Director, (RS).

SENIOR SCIENTIFIC ASSISTANT

This vacancy is in the Physics Division of the Central Electricity Research Laboratories, Kelvin Avenue, Leatherhead, Surrey, where the work will be concerned with the development of novel instrumentation for use in generating stations, initially on a radio-telemetry project. A sound knowledge of the application of modern electronic techniques to mechanical and physïcal measurement is required.

Senior Scientific Assistants work under Research Officers, but are gïven opportunity for the use of personal initiative in the solutions of problems arising. Academic qualifications to H.N.C. level is desirable, but applicants with lesser formal qualifications, having relevant experience, will be considered.
Salary range $£ 1.056-£ 1.881$ p.a. inc.
Applications stating full relevant details and present salary to the Personnel Officer at the above address as soon as possible. Quote Ref. WW/244

UNIVERSITY OF SURREY

department of electronic and electrical ENGINEERING
ELECTRONIC ENGINEERS
Vacancies exist in the Department of Electronic and Electrical Engineering for the following positions:

RESEARCH ASSISTANT

Trained Engineer, experienced in MODERN ELECTRONICS, required to carry out advanced design and development in support of research work and industria contracts. Broad based experience in both modern analogue and logic circuitry is desirable and the ability to take proje
construction.

The appoin
will bepointment, for 1 hree years in the first instance, will, be made within the three salary ranges below according to age and experience
$\mathbf{£ 1 , 4 9 1}$ to $£ 1,767$
$\mathbf{£ 2 , 7 2 7}$ to $£ \mathbf{£ 3 , 4 1 7}$
Membership of F.S.S.U. optional.
Applicants must be academically qualified in the Applicants must be academically qualified in the
appropriate field and must have had at least $2 / 3$ years experience in a research and/or development environment.
SENIOR TECHNICIAN
required to service a wide range of electronic equipment and to build specialised electronic apparatus, Appricanis should so of supervision.
Salary scale $\mathbf{£ 1 , 3 9 8}$ to $\mathbf{£ 1 , 7 0 7}$ per annum plus $\mathbf{£ 5 1}$ per annum for appropriate Qualification Allowance. Superannuation scheme, and good holidays.

Applications should be sent to the Staff Officer, University of Surrey, Guildford Surrey, by 30th September, 19711408

KING ALFRED'S COLLEGE, WINCHESTER
 TELEVISION ENGINEER

to be responsible for day-to-day running and servicing of new cctv unit as part of rapidly expanding Audio-Visual Resources Centre in this College of Education.
Salary within N.J.C. Technicians Grade 5 Scale-£1,653-£1,932 per annum. Further particulars may be obtained from the Senior Administrative Officer.

1393

A PRODUCTION ENGINEER

Required for an expanding company manufacturing professional recording equipment. He or she must be conversant with modern recording studio techniques.

Cadac (London) Limited, Stansted,
Essex.
Telephone:- Stansted 3437

NOTTINGHAM COLLEGE OF EDUCATION

CLIFTON, NOTTINGHAM
Applications are invited for the post of ELECTRONICS ENGINEER
Salary: N.J.C. Grade AP4/5, £1,932 to $£ 2,457$ (commencing salary in accordance with age, qualifications and experience). Applicants must be familiar with and able to service and maintain C.C.T.V. cameras, camera control units, and all ancillary equipment and systems in addition to standard items of teaching aids équipment. Further particulars and forms of application, to be returned by 30th September, from the Principal.

1407

Sea-going Radio Officers can now make sure of a shore job and good pay.

$\underbrace{\text { coser }}_{\text {If you'd like a job ashore, at a }}$ United Kingdom Coast Station, the Post Office will start you off on $£ 1,080-£ 1,360$, depending on age, with annual rises up to $£ 1,850$. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a Radiocommunication Operator's General Certificate issued by the Ministry of Posts and
Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless
Telegraphy,
I.M.T.R.

Wireless Telegraph Section (L.14.) Union House, St. Martins-le-Grand, London,
EC1A IAR.

93

$$
\begin{aligned}
& \text { ZAMBIA } \\
& \text { ASSISTANT } \\
& \text { TELECOMMUNICATIONS ENGINEER } \\
& \text { G.P.O. TRAINING BRANCH } \\
& \text { £2729 (and rising) + Gratuity } \\
& \star 3 \text { year Contract } \\
& \star \text { Gratuity } \mathbf{2 5} \% \text { of total salary } \\
& \text { drawn (normally Tax-Free) } \\
& \text { * Part salary Tax-Free } \\
& \star \text { Education Allowances } \\
& \star \text { Free family passages } \\
& \star \text { Subsidised Housing } \\
& \star \text { Generous Leave } \\
& \star \text { Appointment Grant of } \\
& \text { £100/200 } \\
& \star \text { Interest-free loan for car } \\
& \text { purchase } \\
& \text { Duties: formal classroom and "field" training on working } \\
& \text { equipment; preparation of courses and training materials; lecturing } \\
& \text { and demonstrating; installation and maintenance of training } \\
& \text { equipment. } \\
& \text { Qualifications: not less than } 10 \text { years experience part of which } \\
& \text { to be in the installation and maintenance of modern multiplex } \\
& \text { equipment; ability to give instruction in carrier telephony and } \\
& \text { telegraphy. } \\
& \text { (Teaching experience; a city and guilds intermediate certificate } \\
& \text { and radio experience (particularly VHF and/or Microwave) are } \\
& \text { desirable). }
\end{aligned}
$$

Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The work entails checking to an exacting specificationVHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited,
Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

P自Pye Telecommunications Ltd

IMPERIAL COLLEGE ELEGTRONICS

DEVELOPMENT ENGINEER

required for a reséarch project requiring development of electrical controls for high pressure hydraulic and mechanical systems. Qualifications: HNC or equivalent, mechanical background. Commencing salary up to $£ 1.839$ per annum in the A.E.O. scale. Contract. for a limited period. Application forms from
Departmental Superintendent, Department of Geology, Imperial College,

London, SW7 2B P
1390

CCTV ENGINEERING OPERATIONS MANAGER

We have been retained to advise on the appointment of an Engineering Manager to take responsibility for a CCTV studio and regional VTR replay centres currently being installed by us. Our client is a major international manufacturing organisation and the system will be used for industrial training.
The engineer will have experience of maintaining and operating a multi-camera CCTV studio. Production experience would be an advantage. The appointment is London based but with a certain amount of U.K. travel. The salary will be commensurate with experience and in the region of $£ 1,800$ plus generous additional benefits.
Reply please, in the first instance by letter detailing experience, employment record, etc., to:

Mr. N. Copley Television Applications Ltd. 9-11 Windmill Street London, W1P 1HF

BUSINESS OPPORTUNITY

Earn a substantial extra income through a fascinating
part-time business of your own that you could share part-time business of your own that you could share
with your wife and operate from your own home. This is an outstanding business opportunity with rewards exceeding $£ 5000$ per annum at the higher levels. We
are looking for organisational and managerial ability. are looking for organisational and manag VISTA MARKETING MAIDENHEAD 28754

390

THE
 UNIVERSITY OF SHEFFIELD
 ENGINEER IN THE CLOSED CIRCUIT TELEVISION SERVICE

Applications are invited for the above post, tenable from 1st January, 1972, or as soon as possible thereafter. The successful applicant will take charge of all technical aspects of the work, including the supervision of engineering staff. Applicants should be university graduates or have comparable professional qualifications in electronic engineering and good experience in broadcasting or C.C.T.V. Salary in the range $£ 2,019$ to $£ 3,075$ with F.S.S.U. provision. Further particulars from the Registrar, to whom applications should be sent by 9th October, 1971. Ref. R.43/BH.

LONDON BOROUGH OF HARINGEY education
 FULL TIME LABORATORY TECHNICIAN

Salary $£ 1,194$ co $£ 1,377$ per annum. According to qualifications and experience.
Required at Stationers' Companies School, Mayfield Road, N8.
Applicants should have Ordinary National CerGificate or Ordinary National Diploma, City and G.C.E. passes wh Technician's Certificate, 4 subjects. Membership of Institute of Science Technology, or an equivalent suitable qualification or five years' suitable experience.
Five-day week of 38 hours, prescribed conditions. Duties include maintenance of language labor atory, computer centre and other teaching aids.
Application forms from: Chief Education ence A40). Returnable by Ni7 (quoting refer-
\qquad

EXPERIENCED TV ELECTRONICS ENGINEER

who is anxious to enter new fields in maintenance of audio equipment is offered an exciting job.

POLYDOR RECORDS LTD.,
Recording Studio 4998686
1410

ELECTRONIC TEST ENGINEERS

Required for work on Digital Measuring Equipment using Silicon Transistors and Microcircuits. Fully qualified applicants preferred, although proven experience in electronics would be considered. Prospects for advancement are good. Weekly staff status and salary commensurate with qualifications and experience. We would welcome applications from ex-service personnel or personnel about to leave the services. Please apply to: The Personnel Manager, Venner-a Division of AMF International Ltd., Kingston By-Pass, New Malden, Surrey.
Please apply to:
The Personnel Manager,

VENNER-

a Division of AMF International Ltd.,
Kingston By-Pass,
New Malden, Surrey.
Telephone 01-942 2442

SITUATIONS VACANT

A FULL-TIME technical experienced salesman re previous experience, salary required to-The Manager previous experience, salary required to- The Manager,
Henry
[67
D RAUGHTSMEN. Mechanical and Electrical required Dy expanding electronics company specialising in lighting control and audio visual products. This position is salaried and gives ample opportunity for advanceRoad, Greenwich. London, S.E.10. Tel. 8584784. [22 Grampian have a further vacancy for a Senior Development Engineer. He must have a proven reconic equipment design and preferably with some knowledge also of transducer design. Qualifications H.N.C., H.N.D. in electrontc subjects.-Write in first instance to Gramplan Reproduces Ltd., Ref: H.G./1, IF you have had at least 5 years continuous technical Fexperlence with an audio equipment manufacturer then GRAMPIAN may be able to offer you a situation of interest approprlate to your abllity. We are only interested in people who are truly conscientious and dedicated to this section of Industry.-Apply to Gram plan Reproduces Ltd., Ref. S.M./1, Hanworth Trading han, Mddx [1420
$\mathrm{M}_{\text {ance }}^{\text {AJOR }}$ Londinen recording studio requires a MaintenM1 ance Engineer. Salary in the range £ $1,000-£ 1,500$ per annum. Please apply in writing, stating (Technical Director), Advision Ltd., 23 to A. Whetstone (Technical Director), Advision Ltd.,
Gosfield Street, London, W1P 7HB. Personal ASSISTANT with technical and com-
merclal ability wanted for managing director of London TV rental business of the highest standing established over 40 years. A suitable applicant would be trained to take increasing charge during the gradual retirement of the present managing director. Exceptional age and details of background and career. Box WW 1383. T.V. Service Engineer, preferably with some colour ability. Hydes of Chertsey Chertsey Surrey Chertsey Ltd., 56/60 Guildford Street,

ELECTRONICS and Instrumentation Technician EO.N.C. qualifled, seeks employment, South Coast Box WW 1378, Wireless World.
HNC Electrontcs 13 years experience telecommunica H tions designing, seeks interesting and rewarding position. Box W.W. 1368 Wireless world.

[^14]
Calibration Engineers \& Technicians

Continued expansion in our Technical Services Division has created an urgent requirement for a large number of fully competent engineers to calibrate an extremely wide range of electronic telecommunications and radar equipment (microwave, digital and analogue).
Tous, previous experience in this work is of greater importance than academic qualifications - men with electronic training in H.M. Forces are particularly invited to applv-but whatever your background. you will find
interesting and rewarding permanent employment with us. Salaries in the range $£ 1250$ to £1800 p.a. Promotion prospects for men of supervisorv calibre are very good
Please telephone our Personnel Manager on 01-450 7811 G \& E Bradley Ltd. Electral House. Neasden Lane, London. N.W. 10.

BRADLEY electronics

RADIO OPERATORS

DO YOU HOLD
PMG II OR PMG I OR NEW GENERAL CERTIFICATE OR

HAD TWO YEARS' RADIO OPERATING EXPERIENCE?

Looking for a secure job with good pay and conditions?
Then apply for a post with the Composite Signals Organization. These are Civil Service posts. with opportunities for service abroad, and of becoming established, ii.e., non-contributory pension scheme.

Specialist Training Courses (free accommodation) starting January, April and September, 1972
If you are British born and resident in the United Kingdom. under 35 years of age (40 for exceptionally well qualified candidates), write NOW for full details and an application form from:-

Government Communications Headquarters,
Recruitment Officer,
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ.
(Telephone: Cheltenham 21491, Ext. 2270).

HUNTINGDON RESEARCH CENTRE

WE ARE an organisation employing some 600 personnel and having several overseas units in research in various branches of medicine for government and industry.

ELECTRONICS ENGINEER

in our Department of Bio-Medical Engineering
WE REQUIRE an Electronics Engineer to join a small team.
MAIN WORK INVOLVED will be the research and development of new electronic equipment.
APPLICATIONS are invited from suitably qualified candidates with O.N.C./H.N.C./B.Sc. in Electronics/Physics or with related experience.
CONDITIONS are good and are in line with any large employeeorientated company.
STARTING SALARY will be attractive with educational facilities in suitable cases.
WRITE quoting reference BIO-MED/PH/WW/88 to:
Allen A. Schofield, Personnel Officer
Huntingdon Research Centre, Huntingdon PE18 6ES.

HARTLEY Oscilloscope. Type 13A with manual, 10S/831 £18
Impedance matching unit. Type 10036 Philips $\mathbf{£ 4 2}$
Delay box, remote timer Mk. $2 \boldsymbol{f 3}$
Rectifier units. R.A.-62-C. P. R. Mallory \& Co. 100-130V, 200-250V in D.C. $40-60 \mathrm{c} / \mathrm{s}$. £5
Repeaten Units CT114 No. 24 WYB 07579 £ $\mathbf{3 0}$
Test sets type 351 No. 10S/792 £15
Wave meter GL/T. No. 3 50-90 m/cs Marconi $£ 38$
Standar telephones and cables. Differential Detector units code 347-LU1B
Audio loading unit 4- + 1 DB
50MW 3 n £8
3MW 600n 3MW 600n switched
R.C.A. high frequency Sweep Generator 709B $£ 37$

Valves S.T.C. S.V. $4 \times 150 A$. 50p each
Gearbox type $40310^{\circ}-315^{\circ}$
Frequency meter type 4313 110-250V. AC input $0-100$ MA meter. R.F. input socket. All complete in $\mathbf{£ 2 0}$ quality case complete with test leads. Made by Barrostroud for Ferranti
Band 2. Cavity oscillator unit S No. $45 £ 8$
Diaphragm pump sets, type DP 14/3. Pressure 40 lb . per sq. in. Speed 960 Revs. 1 H.P. 3 phase (Hymatic) £35
Pump sets. 3 phase. $\frac{1}{2}$ H.P. $£ 10, \frac{3}{4}$ H.P. £15, 1 H.P. $£ 18$
Signal Generators. Model 1632 (Triplet) $200 \mathrm{~K} / \mathrm{cs}$. T. $120 \mathrm{M} / \mathrm{cs} \mathbf{£ 1 2 \text { ea. }}$
Drive Torque testing fixture T134425 complete with D.E. 1 240-250 motor $1 / 10$ H.P.
Aerofoil Fan. Revs $2 \cdot 800$. Volts $240.50 / \mathrm{cs}$. BHP $0.011 £ 5$
Oscilloscope chassis CD 518 (Solatron) with manual $£ 25$
High frequency transformer. Type H.A 111A.

The RE301 is a portable twin-track in-line-head machine with separate record and replay heads. Separate record and replay amplifiers for each channel enable these two functions to be carried out simultaneously, permitting quality monitoring during recording. A separate monitor amplifier permits comparison between the incoming and replayed signals
(Redifon) Power Supply Units. A.C. 6211 R. £5
Wavemeter Type W. 1633
Tuning Unit (Aerial manual). Type 6288R (Redifon)
Spectrum Analysers. Type 1. Ref. No. 105/16147. No manual $\mathbf{£ 1 2 5}$
Rotary transformer. Type 10057.24 Volts in 200 Volts out. $0 \cdot 1 \mathrm{amp} £ 20$ Wirerecorders (Boosey \& Hawkes).
Amplifier type T.D. 2 £9
Microwave instruments Ltd. north 0-400 MA meter
R.F. units type 24 ' B ' and $27 \mathrm{~B} £ 2$

Test set type 74. Cathode Ray oscilloscope type $£ 17$
Signal Generators. Noise type 1. Type TF 987/1 £17
Field Telephones. Ex-U.S. Army E.E.8-B £5 per pair
Wavemeter. Type QW.M. 1 A50 195-250 M/cs. £25
Rotary transformers. Type 262. 28 v in 250 v out, $\cdot 06 \mathrm{Amps} £ 1$
Type RL 7001-92A, 26V. imput $2 \cdot 2 \mathrm{amps}, 210 \mathrm{~V}$. out $120 \mathrm{M} / \mathrm{A} £ 2$ Ferranti: Small motors, 200 V . at $400 \mathrm{c} / \mathrm{s}, 10,200$ R.P.M. 75 ems $\mathbf{3}$ phase reversible $\mathbf{f 1}$
Small Motor. B.V.C. Electronic Developments. Volts 115, $400 \mathrm{c} / \mathrm{s}$ 1 phase $\mathbf{£ 1}$
Test unit calibration type 34 calibation Receiver for 'S' Band I.F. strips 230 V . input $£ 4$
Indicator Unit type $176 \mathbf{£ 7}$
B.T.H. Motor Unit Selsyn, Type 10165. Volts primary 250V. Volts secondary $100 \mathrm{~V} .50 \mathrm{c} / \mathrm{s} . £ 5$
Plannair Ltd. 115 V .3 phase $400 \mathrm{c} / \mathrm{s}$. Revs. 11,000 . Type: $1 \mathrm{PL}-$ 41-234. Watts 12 £1

Suppliers of new and used electronic and communications equipment surplus to government requirements
Terms: Cash with order or price on application.
FULL LISTS ON APPLICATION
A.R.C. MARKETING

6 GRAINGERVILL NORTH
WESTGATE ROAD •
NEWCASTLE-UPON-TYNE

TEST EQUIPMENT

Russian Admittance Bridge $0.4-30 \mathrm{Mc} / \mathrm{s} \mathbf{£ 4 0}$; Tektronix 515A mint condition $£ 225$; Tektronix 517A with PSU, Cathode follower probe (with 3 heads) $\mathbf{£ 1 5 0 \text { ; Tektronix 10A1 plug-in }}$ units 1 complete $£ \mathbf{1 0 0}$, 1 no transistors $£ 50$; Tektronix 175A High current curve trace adaptor $£ 75$; Remscope model SO1 with TS1 signal trace shifter (2) mint $\mathbf{£ 1 5 0}$; Advance Advac milli-voltmeter $\mathbf{£ 2 5}$; Pye scalamp 5kV meter $£ 20$; TF 1345/2 timer counter with complete set plug-in units $£ 300$; 1 ditto with blank panel only, needs servicing $£ 50$; TF801A $£ \mathbf{£ 3 0}$; TF1041B £40; AVO CT160 valve tester £40; Rohde and Schwarz wavemeters type WEM $10 \mathrm{Kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$, and WAM $30-500 \mathrm{mc} / \mathrm{s}, \mathbf{£} 100$ the pair; High gain amplifier, plug-in (for WM16), Type $7 / 5 \mathbf{£ 2 0}$ each (3); Russian digital volt/ohmeter (list $£ 130$) brand new with spares, unused $£ 90$; BC221 T (2) mint £15 each; Solartron SRS $152 \mathbf{£ 2 5 ; ~ A d v a n c e ~ t r a n s i s t o r ~}$ tester CT 472 as new $\mathbf{£ 3 0}$; Advance H1B Audio signal generator $\mathbf{£ 3 0}$: Belco AC [bridge model BR8 $£ 15$; LR1 Heterodyne freq. meter and calibrator (3) GR Model 271, £30 each; Philips GM $6010 \mathbf{£ 2 0}$, GM $6015 \mathbf{£ 2 5}$; Furzehill Vi200 $\mathbf{£ 1 0}$; Elliott transistor curve tracer Type $8096 \mathbf{£ 4 0}$; TF $301 \mathrm{~F} 1 \mathrm{mc} / \mathrm{s}$ inductance bridge $£ 15$ (2); Solartron VF252 £20; TF1202A power meter No probe $\mathbf{£ 1 0}$; Russian nano-second pulse generator $£ \mathbf{3 5}$; Roband model 1500 D.V.M. $£ 60$; Roband Varex $60-1$ Twin, P.S.U. $£ \mathbf{7 0}$; 2J56 Magnetron, by English Electric, brand new and boxed $£ 2$ each (200 available ex stock); 15,000 Mallory 1.35 V batteries; 15,000 10.7V Mallory batteries (both mercury types), see Electro-Tech Ad. for Spec. (small quantity orders to them, bulk to us) ; 5,250 1 watt w/w pots by P. F. Fox, various values (offers to clear lot invited); manuals for test gear available at cost. Cash with order. Freight free anywhere in U.K.; all goods subject to being unsold.

CONNECTORS \& ELECTRONICS LTD.
 20 College Drive, Ruislip, Middx.
 Telephone : Ruislip (713) 5953

BRANDED SEMICONDUCTORS NEW STOCKS

Transistors		40409	56p
BC149	15p	40410	58p
BC186	42p	40411	£1.74
BFX29	33p	40319	621p
BFX84	25p		
ME4103	1212p	Matched	
2N1183	f1-24	BFX29	74p
2N2102	55p	BFX84 5	
2N3053	27p		
2N3055	71p	Diodes	
2N3702	11p	HS2240	25p
2S301	40p	HS3131	15p
BD123	f1-10	SK103K	35p
40310	45p	IN91	35p
40314	40p	IN645	25p
40317	35p	IN3193	20p
40361	48p	IN3754	20p
40362	58p	IN1612R	49p
40406	55p	IN967B	38p
40407	39p	1ZM475R	36p
40408	49p	Z2A47CF	47p

Terms: Cash with order please. Minimum order 50p.
Postage \& Packing: 10p inland, 25p Europe, 60p Overseas. All items guaranteed.
Orders despatched within one day of receipt. Mail order only.
$\mathbf{E}^{\text {LECTRTSNIC Organ, }} \mathbf{w / w - 6 5 0 .}$ Bass pedals, optionalEvenings, weekends. 27 Tudor Road, Ashor ent enthusias.
$\mathbf{F}_{\text {scren sale any offers. Video monitors } 405 \text { line } 8 \text { in }}^{\text {OR }}$ screen.
screen and loviematic
loudspeaker.
Tel.
$F^{\text {OR SALE }}$ large quantity Radio and Electrontc books $\mathrm{F}_{\text {in }}$ clean condition. Also Mechanical Eng. Science and Maths books.-Norman Henry
Road, Rerce,
Rock Ferry,
Birkenhead, Conterbury
Cheshire. Cant
$\mathrm{F}_{\mathrm{AF}}^{\mathrm{OR}} \mathrm{SALE}$, what offers 18 D , 1arge quantities of transistors,
 Voltage dependent Resistors, large quantities. Carbon
and W.W. Resistors, Condensers. Line Output Trans-
 Relays, and hosts, of miscellaneous components.
Broadfields \& Mayco
Disposals, 21 Lodge Lane

$H^{\text {IRST }}$ Welding Machines with synchronous control ${ }_{23579}$ suitable for welding small assemblies. Skelmersdale $_{\text {(} 1400}$
$\mathbf{H}_{\text {EADPHONES }}^{\text {EATEreo), Diplomat model by S. G }}$

$\mathbf{N}_{5 K H z}^{A T H O L}$ HRO-500 receiver with Lf 10 preselector $\mathrm{KHz}^{5 \mathrm{KHz} \text { direct to } 1 \mathrm{KHz}} \mathrm{KHz}$ readout. Tuneable 500 Mz and 2500 KHz direct 1 KHz readout. Tuneable 500 Hz and 2500
Hz 1.F bandpass filters plus wider fixed Hz 1.F bandpass filters plus wider fixed bandass filters
all solid state 12 V DC or 230 v AC operation cost f 1.000 all solid state 12v DC or 230 v AC operation cost $£ 1,000$
sell for $£ 290$. Also NCX 5 TXVR with VX 501 LMO P.S.U. \& 165 AR88D brand new with spares $x 45$ TW phase II 2 M transverter $£ 60$ TEN TEC PM2 transistor CW transceiver $£ 28$ or $£ 500$ the lot. Also Radford SCA 30 £55 J.B.L. SA600 amp $\mathbf{2} 60$ micro-seiki turntable with MA 100 arm $£ 70$ (will split). Owner's redundancy
forces sale of these delectable items. R. White Pantiles Hayes Common, Kent. 01-462-2846. R. White, Panties,

New CATALOGUE No. 18, containing credit vouchers
value 50 , now avaliable. Manufacturers' new and value 50 p , now avallable. Manufacturers' new and post free. Arthur Sallis Radio Control Ltd., 28 Gardner
Street. Brighton, Sussex.

SERVICE Sheets (1925-1971) for TV's, Radios, Tran8,000 models available. S.A.E. enquiries. Hamilton Radio 54 London Road, Bexhill. Tel. Bexhill 7097.

SHARPEN YOUR responses with Brush Clevite ceramic Ni.f. resonators. New TF-04 442 identical resonators
need only fixed std.-value capacitors to set the bandneed only fixed std.-value capacitors to set the bandwidth to $2-1 \mathrm{kHz}$. Centre frequency 455 kHz only. Sith capacitor values, i.1. circuitry, and useful of 4, with capacitor values, i.f. circuitry, and useful
data, \& $1 \cdot 50$, UK post 5 p .-Amatronix Ltd., 396 Selsdon
Road, South Croydon, Surrey CR2 0DE

TETRODE MOSFET MEM564C for WW CommunicaUK post 5p. Amatronix Ltd., 396 Selsdon Road, S . Croydon, Surrey, CR2 ODE. 39 Selsdon Road, S.

VACUUM pumps, coating plant, pyrometers, recorders Barrett, 1 Mayo Road, Croydon, CRO 2QP, Surrey. Phone 01-684-9917.

VhF Radio Telephone, 1 only Hudson Base Station type AM/250/M. GPO Type 2B Freq. range 60/95 MHz. 2 only Pye Walkiephone Radio Telephones, type PTC 122/GPO with handbooks. P.O. licence needed to operate. All in good working condition, f35. Apply
Engineer-in-Charge, P.O. Radio Station, Somerton, Somerset. Telephone somerton $323 . \quad$ [1385
 s.a.e. for literature. Johnsons (Radio), St. Martins Gate,
Worcester, WR1 2DT.
W^{E} offer the following two types of brand new marked transistors for sale: BC171 and BC135 at £ 8 per 100 - Velco Electronics, 62 Bridge Street, Rams-
bottom, Bury, Lancs.

We make three types of aerial boosters, L45 for UHF TV, L12 for VHF TV, L11 for VHF radio. Bury, Lancs.
Blect
[1419

AUDIO MIXER UNITS MODULES AND BOARDS

High quality units for constructing com plete mixers in mono and stereo or for amplifier front ends etc.
S.A.E. for details.

PARTRIDGE ELECTRONICS
Dept. W.W.10, 21-55 Hart Road Thundersley, Benfleet, Essex.

Tel. South Benfleet 3256

ELECTRONIC EQUIPMENT
Coutant ED 1005

Advance TC. 66 digit $0-10 \mathrm{MHz}$ Counter $: \quad \therefore \quad 66$
Advance T.C.666 digit $0-10 \mathrm{MHz}$ Counter
Venner TSA53/
IF
Mains/Battery Operated
Mains/Battery operated
Hewlett Packard H.P. 5233 i . 6 digit Solid State
counter. 2 channel input
Dynameo DM 20205 digit voltmeter. Complete
with calibration certificate
Dynamco DM 20064 digit voltmeter. Complete
with calibration certificate 4 ditmeter. Complete
Dawes 443 A Audio Sweep Oscillator $20 \mathrm{~Hz}-1285$

Decca MW 20/10 Variable Attenuator, Grade I. . $E 55$
Airmec 210 Modulation Meter
Marconi TF $801 / D$ AM
115
With calibration certificate
Marconi TF
$995 A / 5$ FM/AM Signal Generator,
E2
complete with calibration certificate $£ 200$
Rustrak $50-0-50 \mathrm{uA}+2$ event marker Recorder
Rustrak
Rustrak
$100-0-100 u A+1$ event marker Recorder ea ea $£ 30$
Rustrak $100-0-100 \mathrm{uA}+1$ event marker Recorder
Rustrak 4 channel event Recorder N.E.P. 12 channel ultra violet Recor
 hauled 1 KW Amplifier available if required. 6265

OTHER EQUIPMENT AVAILABLE INCLUDES: MICROWAVE EQUIPMENT, I.e., WAYNE KERR S. 281 TEST OSCILLATOR, SIVERS LABS SL 5262/3 VARIABLE SLOTTED LINE, also SL 5200/1, SL 5645/3 and SL 5212 and DROP TESTERS, OVENS, PULSE GENERATORS, Etc

CREDIT FACILITIES AVAILABLE
GOOD QUALITY TEST EQUIPMENT AIWAYS PURCHASED
MARTIN ASSOCIATES
Myrorian, Greensward Lane, Arborfield, Nr
Reading, Berks. Tel: Arborfield Cross 610

SYNTHESISER MODULES

Send s.a.e. for details of voltage-controlled modules for synthesiser construction to:
D.E.W. LTD.

254 Ringwood Road, Ferndown, Dorset 68

EX-RENTAL TVS (UNTESTED) Complete with 13 channel tuners. Good cabinets $17^{\prime \prime}$ (Semi-Slim (90° tube) $\mathrm{E2} \cdot 50 ; 17^{\prime \prime} / 21^{\prime \prime}$ Slim (110° tribe) $£ 4.50 ; 19^{*}$ Slimline $£ 6.50 ; 23^{* *}$ Slimine $£ 8 \cdot 50$; 19° BBC2 Sets El 1450 .

Tubes Ex-Equipment Tested
Single Panel: $17^{\prime \prime}$ (any type) $£ 2 ; 19^{*} / 21^{\prime \prime}$ (any type)
$\in 3 ; 23^{\prime \prime}$ (any type) $£ 4$. Twin Panel (Bonded): 19^{*} (Bonded) $£ 5 ; 23^{\circ}$ (Bonded) $£ 6$. Panorama Tubes (Metal Rim): 19^{*} (Panorama) $\mathbf{6 5}$; $23^{* *}$ (Panorama)

PERFECT SPEAKERS EX TV
I'n 3 ohm (minimum order two) 5 in. round, 8 in by 2 in. rectangular, $12 \downarrow \mathrm{p}$ each. Add $7 \frac{1}{2} p$ per speaker
p. and p.

VALVES EX EQUIPMEN

EB91	5p	30 L 15	$12 \pm p$	PL36	22 ${ }^{\text {d }}$ p
13FF89	121. ${ }^{\text {P }}$	30P4	12.10	PL81	17 p
ECC88	12 l	1'C97	171 ${ }^{\text {2 }}$ D	PY81	15p
EC180	$7 \frac{1}{10}$	$\mathrm{P}^{\text {CPF86 }}$	$17 \frac{1}{1}$	PY800	15p
EF80	12 p	PC84	$7 \pm p$	PY82	$7 \pm$ D
EF85	12 P	PCF80	710	PY33	22 ld
EF183	12.8	PCC89	12£	U191	$17 \frac{1}{1}$
EF184	121p	PCL85	22\#p	6 F 23	171p
EY86	171p	PCL82	171p	30 PL 1	2210
301P13	20p	PCL86	171 1 p	$30 \mathrm{P12}$	20p
630LZ	121p	PCL83	121p	30F5	10 p

Ald $2 \frac{1}{2} p$ per valve p. and $\underset{\text { free }}{ }$. Orders over $£ 1 \mathbf{p}$. and p.

UHF TUNERS

For Ferguson 850,900 chassis, adaptable for KB
For Ferguson 850,900 chassis, adaptable
Ekco, T415, 1084 chassis $£ 2.50$. p. $\&$ p. 50 p.
SLOT METERS-SPECIAL OFFER Smiths Mk. II 6d. Convertible to 5p (Smiths Kit for 55 incl . yost and packing.
Plase write with SAE for quotations on any spares
TRADE DISPOSALS (Dept, T.S./W.W.),
Thornbury Roundabout, Leeds Road, Bradford,
Yorks.
NOW UNDER NEW MANAGEMENT

NEW THIS MONTH MULTI-PURPOSE PRINTED WIRING BOARD NIPPIBOARD

Type "A" for making amplifiers, car gadgets, electronics music circuits, alarms, oscillators, in fact almost any
electronic circuit using up to four transistors. NIPPI
BOARD is BOARD is a new design with grid references for quick component location and costs only I5p (plus 4p postage
and packing). CASH WWTH ORDER ONLY IDEAL
FOR SCHOOi PRO FOR SCHOOL PROJECTS AND MODULAR SYSTEMS.
SPECIAL OFFER (closes November 30 197I) TWO SPECIAL OFFER (closes November 30, 1971). TWO NIPPIBOARDS for 25 p ; FOUR for 40 p . (
packing.) Trade enquiries welcome.
NEW SL403D short circuit proof 3 W amplifier $£ 1-99$
plus 9p postage and packing. Cash with order only. Dept. NB/WWIO, NIP Electronics,
P.O. Box II, St. Albans, Herts

PLAYBACK MACHINES

Amplifier with $2 \times$ ECC88, $1 \times$ EL84, $1 \times$ EZ80. Input : low impedance, $20 \mu \mathrm{~V}$. Output: 2 watts into $7^{\prime \prime} \times 4^{\prime \prime} 3$ ohm speaker. Volume and tone controls. Oak faced ply cabinet $13 \frac{1}{4}^{\prime \prime} \times 14 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$ Deck uses single AC motor. Ideal for conversion to record player, telephone answering machine, etc. $£ 3$ plus $£ 1$ carr. Amplifiers only, $£ 2$ carr. paid OTHER GOODIES: TF144G Signal Generato 15 kHz to 25 MHz in 8 ranges, $1 \mu \mathrm{~V}$ to $1 \mathrm{~V} \mathrm{O} / \mathrm{P}$ In good working order, f10. Wavemonitor G. 302 Good basis for scope, just needs PSU, £6 CT5 4 VVM 2.4 to 48 V AC/DC, 1 ohm to 10 Megohms. With PSU, E10. TF517F Generato as seen, $\mathbf{£ 1 0} \mathbf{1 0} \mathbf{8} \mathrm{Mfd}, \mathbf{2 , 5 0 0 \mathrm { V }}$ new capacitors, $\mathbf{£ 2}$ Various PSU's from $£ 1 . \frac{1}{2}{ }^{\prime \prime}$ recording tape, brand Various PSU's from $£ 1$. $\frac{1}{2}$ recording tape, brand
new and boxed, $3,600^{\prime}$ on $10 \frac{1}{2}^{\prime \prime} \mathrm{NAB}$ spools, $£ 2$. new and boxed, 3,600 on $10 \frac{1}{2}^{\prime \prime}$ NAB spools, $£ 2$.
$1,800^{\prime} \frac{1}{2} "$ white leader on NAB hubs, 40p. $1,800^{\prime} \frac{1}{2}^{\prime \prime}$ white leader on NAB hubs, 40p.
8 -pin Jones plugs, large, 8p. ECL80 output 8-pin Jones plugs, large, 8p. ECL80 output
transformers, $\mathbf{1 5 p} 1 \%$ and 2% Hi-stab resistors, transformers, $15 \mathrm{p} 1 \%$ and 2% Hi-stab resistors,
100 mixed preferred values, 50 p. New electro100 mixed preferred values, 50p. New electro
lytics: $500 \mu \mathrm{~F} / 25 \mathrm{~V}, 12 \mathrm{p} .1,000 \mu \mathrm{~F} / 10 \mathrm{~V}, 11 \mathrm{p}$ $1,000 \mu / 25 \mathrm{~V}$ 17p. $1,000 \mu 150,21 \mathrm{p}$.
Carriage extra on all items.
List free
GREENWELD ELECTRONICS, 24 Goodhart Way, West Wiskham, Kent BR4 OES. Callers wel come, please phone 01-777 2001 first

1404

TEST EQUIPMENT - SURPLUS
 AND SECONDHAND

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters etc., etc., in stock-R. T. \& 1. Electronics, Ltd., Ash
ville Old Hall. Ashville Rd., London, E.11. Ley. 4986

RECEIVERS AND AMPLIFIERS
 SURPLUS AND SECONDHAND

 Ashville Old Hall, Ashville Rd., London, E.11. Ley,

NEW GRAM AND SOUND
 EQUIPMENT

GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2

[^15]
FOR HIRE
 FOR HIRE CCTV equipment, including cameras. E monitors, video tape recorders and tape-any pertod, -Details from Zoom Television, Chesham 6777

ARTICLES WANTED

Highest possible cash prices for Akai, B. \& O.,
Hrenell, Ferrograph, Revox, Sanyo, Sony, Tandberg,
Uher, vortexion, etc. $9.30-5$. $01-2427401$.
[102

Valves, Klystrons etc., wanted in quantities type etc.-Details CV342, CV417, CV428 805-807-813-723A/B etc.-Details to: Pype Hayes Radio Ltd.,
Road, Birmingham 24. Tel. $021-373$ 4942.
[15

WANTED to buy-all types of electronic test equipTelent and components. Immediate cash available -Telephone Yateley 83048.
[1334
$W^{\text {HOLESALERS, manufacturers, }}$ surplus dealers wishing to supply components, equipment, hi-f,
speakers, kits, etc., please write in conadence to Box speakers,
WW 1397.

WanTED, all types of communications receivers Dlectronics, Ltd., Ashville Old Hall, Ashville Rd., Lonon, E. 11 Ley. 4986.

WANTED, televisions, tape recorders, radiograms, High new valves, transistors, etc.-Stan Willetts, 37

TEST EQUIPMENT

We wish to buy Test Equipment, ancillary spares and devices; Components, plugs and sockets, meters, relays, motors, valves, semi-conductors, microphones, head sets, C.C.T.V. equipment; Receivers, Transmitters, Microscopes, Theodolites, cameras, lenses (professional and amateur) for motion picture and still work; film in bulk. Immediate decisions and immediate payment.

CONNECTORS \& ELECTRONICS LTD

20 College Drive, Ruislip, Middlesex
Telephone: Rulslld (713) 5953

VALVES WANTED

WE buy new ralves, transistors and clean new com7 ponents, large or small quantities, all detalls, quotation by return.-Walton
Worcester
St.

TENDERS

WEST SUSSEX COUNTY COUNCIL AMBULANCE SERVICE: RADIO
Tenders are invited for the provision of radio control and mobile radio equipment for the ambulance service at various places throughout West Sussex. Details and forms of tender may be obtained from the County Health Department, Metropolitan House, Northgate, Chichester, to be returned not later than noon on Tuesday, 2nd November, 1971.

1388

COURSES

Radio amateurs examination course Wednesday evening 6.30-9.00 p.m. To secure place, enrol as soon as possible at Acton Technical College (opposite Town Hall) Telephone 992-3248. Lecturer W. G. Dyer, M.I.E.E., G3 GEH

SERVICE \& REPAIRS
INSTRUMENT SERVICING AVO, Taylor, etc., multi1 meters, meggers, signal generators, etc. Quick and collection locally. V. W. \& E. Smith, 69 Chestnut Drive, Lelgh 6674, Lancs. W. \&s Bmith, $[1282$

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coll Winding-large or small pliers to P.O. M.O.D. etc. Ex Boards Assemblies. Sup3a Walerand Road, London, S.E.13. Tel. 01-852 1706 [61

COIL winding capacity. Transformers, chokes R.F. Coils, etc., to your speciffcation. Sweetnam \& Bradley Ltd., Bristol Road, Malmesbury, Wilts., or Tel. Malmesbury 3491

D ESIGN, development, repair, test, and small proILECTRONICS, 54 Lawford Rd., London, N.W.5. 01-267 0201.

ELECTRONIC and precision mechanical design and production service. Specialist in automatic handling Road, Clevedon, Somerset. [1391

ELECTRONIC circuits and equipment designed by electronics engineer with wide industrial experience. Ampliffers, osclilators, modulators, fiters, etc., for any
application and frequency from d.c. to u.h.f. Prototypes and drawing supplied. Box No. W.W. 1412 Wireless World.

METALWORK, all types cabinets, chassis, racks, Nor etc, to your own specification, capacity avallable PHILPOTT's METALWORKS, Ltd., Chapman St.,
Loughborough.
[17

We undertake the manufacture of transformers Fork guaranteed for 12 months.-Ladbroke Transformer Co. Ltd., 820 a Harrow Road, Eensal Rise, N.W. 10 . Tei. 01-969 0914.

We can assist you by manufacturing p.c.bs, control panels, sub-assemblies, short and long runs. Electronic Alled Components Ltd., BCA Estate, Measham,
Stafle
[19

Abstract

TECHNTCAL TRARNING B guaranteed diploma ${ }^{\text {ECOM }}$ Qualified" in your spare time, B guaranteed diploma and exam. homestudy courses in radio, TV serviclag and malntenance. R.T.E.B., City \& -Chambers College (Dept. 837k), Aldermaston Court, Reading RG7 4PF.

CIE, AMSE, Clty and Gullds, etc., on "Satisfaction Cor Refund" terms. Thousands of exam successes. Postad Courses for all branches of Engineering. Tlus-interest.-BIET (Dept. H.18), Aldermaston Court, Reading, RG7 4PF.

ENGINEARS-get a technical certificate. Exam and Fngineering. Electronics, Radio and TV, Computers, Draughts, Building, etc. Write for helpful FREE BOOK.-BIET Reading, RG7 4PF.

TECHNICAL TRAINING in Radio, TV and Electronics 1 through world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext
House, London, S.W.8. 4UJ.

Abstract

TUNTION COLOUR TV SERVICING. Be ready for the coming Colour TV boom. Learn the techniques of servicing colour TV sets through new home-study courses speclally prepared for the practical TV technician, and ICS, (D 558), Intertext House, London, S.W. 84 UJ . 1283

RADIO and Radar M.P.T. and C.G.L.I. Courses. R Write: Principal, Nautical College, Fleetwood, NY7

BOOKS
GOVERNMENT SURPLUS WIRELESS EQUIPMENT $\mathrm{J}_{\mathrm{HANDBOOK}}$. Contains ctrcuits, data, illustrations, components lists for British/USA recelvers, transmitters, trans/receivers, includes modifications to sets and test equipment. Surplus/commercial cross referenced tranformation. Price £2.85. p.p. 15p.-Myers, 112 Stainburn Crescent, Leeds 17. [1392

PATENT NOTICES

THE Proprietors of British Patent No. 958,622, for Magnetic Head and a Magnetic Tape," desire toen a Magnetic Head and a Magnetic Tape," desire to enter grant of licences thereunder. Further particulars may be obtained from Marks \& Clerk, $57-58$ Lincoln's Inn Flelds, London, W.C.2.

BUSINESS OPPORTUNITIES

CONSULTANT Designer, audio clrcuits, prototypes and © specials, also interested partner, premises. BCM,
Box 312, w.c.1.

OPPORTUNITY OVERSEAS

Advertiser, Consultant to Electronics Industry in India presently in the U.K., wishes to contact parties desirous of expanding in India. Manufacturers of resistors, electrolytic capacitors, styroflex capacitors, loud-speakers, LS cones, bandswitches, transistors, etc. welcome. Financial and/ or Technical collaboration considered. Also process licensing for the manufacture of any profitable electronic component or equipment considered. Manufacturers of labour-intensive equipment can consider low labour costs in India for their assemblies and sub-assemblies. For a meeting contact:

```
S. C. TRIVEDI,
2 Leigh Road,
Watford, Herts.
```

Very important Italian firm electronic components exporting European Common Market area and in other countries looks for agreements with firms specialising in Electronic and small dimension Electro-mechanical Departments.

Replies to:- FERMO POSTA, Roma-Nomentana, 75755, P.A. ITALY.

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!
Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care. CECIL E. WATTS LIMITED Darby House

rt

Private enquiries, send $5 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
O.C.C. Works. Wellington Crescent.

New Malden, Surrey
101-942 0334 \& 29881

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS. MOTORS TRANSISTORS RESISTORS, CAPACITORS, POTENTIO METERS, RELAYS TRANSFORMERS ETC.
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

WW DESIGNS BUILT \& TESTED

Nelson Jones FM Tuner
ALSO ALIGNMENT SERVICE
-UN S.A.E. details:
YOUNG ELECTRONICS 54 Lawford Road, London NW5 2LN. 01-267 0201

 trom zore to fall brilliance. This onit slmply conasees the mormal light switth, and is fitted in a mittor of mantes. An mX meunting frame is supinitac, for use when mare depth is requitrit.
PRICE-. Complete Kit $£ \mathbf{2 . 8 0}$

Diathane Ltd.

1:II Sheffield Road. Wymondham. NORFOLK
Please add $£ 0.10$ postage and packing

WE PURCHASE ALL FORMS OF ELEGTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD
7, 9, 11 Arthur Hoad, Reading, Berks.

Tel: 582605

During the past 12 months 85% of all customers'

QUARTZ CRYSTAL

orders were manufactured and despatched in 14 days. The remaining 15% were made in less time. We aim to try a little harder during the next 12 months.

\star Quantity discounts.
\star Manufactured to DEF 5271-A standards.
$\star 12$ Months guarantee.
\star Closer tol. units available on request,
McKNIGHT CRYSTAL CO.
SHIPYARD ESTATE, HYTHE, SOUTHAMPTON.
Tel: HYTHE 8961

DO YOU INSTALL AERIALS?

If so, consult the single source specialists for MASTS, TOWERS and ANTENNAS

look at the price: 30' from $£ 14.40$ 40° from $£ 16.50$ 50^{\prime} from $£ 19.50$

Telomasts are available in 3 sizes, all telescope down to 10', are rotatable and may be erected by one person. They are ideal for VHF and small HF antennas. Sections slide smoothly and are galvanised inside and out.
TELETOWERS. These are telescopic galvanised towers which telescope down to 25^{\prime}. Prices from: $42^{\prime}, £ .72 .00$: 57', £93.00; 79', £112.00; 100', £148.00.
WESTERN ELECTRONICS (U.K.) LTD. osborne road, totton, so4 4dn, hants. Tel. Totion 4930 or 2785 . Cales: AERIAL SOUTHAMPToN.

LINSLEY-HOOO CLASS ABI Quality Amplifier and P.S.U. P.C.B.fi. 00 data includẹd

ALSO TEXAS B68 STERED P.C.B. f2. BAILEY PRE-AMP (STEREO) f1.50. MULLARD STERED PRE-AMP 75p. ALL PARTS AVAILABLE AND LISTS WILL BE SENT AGAINST S.A.E.
teleradio electronics SPECIAL PRODUCTS
325-7 L. FORE STREET. EDMONTON, LONOON N.9.
$01-8073719$

JOHN SAYS...

RING MODULATOR by Dewtron is professional, transformerless, 5 -transistor, has adjustable $F 1 / F 2$
rejection. Module $\mathbf{E 7}$. Unit $£ 8 \cdot 90$. WAA-WAA Pedal reiection. Module $£ 7$. Unir $£ 8 \cdot 9.9$. WAA-WAA Pedal
kit of all parts, incl all mechanics \& inst. ONLY $£ 2 \cdot 45$ AUTO RHYTHM from Dewtron modules. Simple Anit for waltz, foxtrot etc., costs $\mathbf{£ 1 6 . 5 5 \text { in modules }}$ ORGAN PERCUSSION and other fascinating effects. Send 15p for illust. list. D.E.W. Led.,
254 Ringwood Road, Ferndown, Dorset.

OVERNIGHT

Prototype Printed Circuits Fastest in London Area
48 hour and Overnight Services
Electronic \& Mechanical Sub-Assembly Co. Ltd., Highfield House, West Kingsdown, Nr. Sevenoaks, Kent.
Nr. SevenoakS, Kent.
el: West Kingsdown 2344

\section*{PRINTED CREGUTTS
 \& ELECTRONIC EQUIPMENT
 - LARGE 8 SMALL QUANTITIES
 - FULL DESIGN \& P.T.H. PROTOTYPE SERVICE
 - ASSEMBLIES AT REASONABLE PRICES
 K.J.BENTLEY
 \& PARTMERS
 18 GREENACRES ROAD OLDHAM Tel 0616240939

CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749 Evenings: 019587624

＂Stella 99＂

INSTRUMENT CASES

WE BELIEVE THE FINEST INSTRUMENT CASE IN THE COUNTRY．

 BEATS ALL COMPETITORS FOR PRICE AND STRENGTH．FIBREGLASS PRESS MOULDED IN GREY，AND BLUE．SUPPLIED WITH 4 RUBBER FEET， 18 SWG ALLOY CHASSIS． 16 SWG ALLOY FRONT PANEL．FRONT PANEL HAS PROTECTIVE FILM FOR MARKING OUT AND PROTECTION．CHROMED DIE CAST HANDLE THE CASE HAS TWO SETS OF RUNNERS MOULDED IN WHICH WILL TAKE ALLOY OR P．C．BOARD CHASSIS．SAME DAY OFF－THE－SHELF DELIVERY．THIS SIZE OF CASE CAN BE TURNED ON END TO MAKE $4^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{H} \times 4^{\prime \prime} \mathrm{D}$ ．PLEASE ADVISE IF HANDLE \＆ FEET TO BE SUPPLIED LOOSE．PANEL PUNCHING AVAILABLE ON 100 UP． TRADE AND QUANTITY DISCOUNTS ON REQUEST．
FULL LIST OF ACCESSORIES AVAILABLE，SENT WITH EACH ORDER，ie．SWITCHES， PANEL LAMPS，AMPLIFIERS，FUSES，ETC．

E．R．NICHOLLS，

46 Lowfield Road，Stockport，Cheshire．Tel：061－480 2179

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way． The ivory mounting plate of the DIMMASWITCH matches modern electric fittings．Two models are available，with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$ ．The DIMMASWITCH has built－in radio interference suppression．
 $300 \mathrm{w}-\mathbf{£ 2 . 7 0}$ ．Kit form－ $\mathbf{£ 2 . 2 0}$ ．
All plus 10 p post and packing．
Please send C．W．O．to：－
DEXTER AND COMPANY （4），ULVER HOUSE， 19 KING STREET， CHESTER CH1 2AH

TEL：0244－25883
As supplied to H．M．Government Departments， Hospitals，Local Authorities，etc．

Thanksto a bulk purchase we can offer BRAND NEW P．Y．C．POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world－famous reputable
British tape firm，our tapes are boxed in polythene and have fitted leaders，etc．Their quality is as good as any other on the market，in no way are the tapes faulty and are not to be confused with imported，used or sub－standard tapes．24－hour despatch service．
Should goods not meet with full approval，purchase price and postage will be refunded

COMPACT TAPE CASSETTES AT
HALF PRICE
60，90，and 120 minutes playing time，in original MC 60 45p each．MC90 62 $\frac{1}{2}$ p each．MC 12092 p each

STARMAN TAPES
28 LINKSCROFT AVENUE，ASHFORD， MIDDX． Ashford 53020

WW－112 FOR FURTHER DETAILS

EXCLUSIVE OFFERS
丸 Ferrograph Tape Recorders Y Series
太 Ferrograph Tape Recorders Gz00太Mullard High Speed Valve Testers太 Westinghouse Rectitiers 220 V 2A D．c．丸 Racal SA52 Coanter Timers． ¿Cossor 1428 Motorised Oscilloscope Camera ※ Advance C．V．Transformers 1500 watts． AMPEX
Precision Instrumentation and Data TAPE RECORDER－REPRODUCERS

$15 / 16^{*}, 3 z^{\prime \prime}, 71^{* *} 15^{*}$, and $30^{\prime \prime}$
per second． 5 tracks，$z^{\prime \prime}$ tape
（easily changed to $t^{\prime \prime}$ or $1^{\prime \prime}$ by changing rollers and heads） 10＂reei capacity．Push button to 0.75 Precision servo contro $5 \quad \mu \mathrm{jec}$ sec，track ${ }^{\text {timint }}$ 1 per cent．Accuracy 10^{3} per
 TYPE FR 1100，as above but per second，and 4 track，easil changed to or 1° and of lighter and more modern con
struction than TYpe FR 100 A
PRICE struction than Type FR 100A
PRICE $£ 380$ for either type．
mplete units with electronies in The above comprise complete units

HIGHEST QUALITY 19＂RACK

 MOUNTING CABINETS Totally Enclosed
DOUBLE SIDED．These cabineta will take rack panels
both sidies，that is back and front and are drilled and capped all the way down every ${ }^{4}$＇for this purpose．The are fitted with＂Instantit＂＂patent fully adjutable rack
mounts which are verticall and horizontally adjustable －these allow the panels to be recessed when they ar atted with projecting components and it is desired to nclose them by doors．
\star Other features include－all corners and edges rounded． ucts．Removable built in blower ducts．Ventilated and insect proofed tops．Detachable side panels．Full Jength instantly detachable doors fitted expanding bolts if
ordered with cabineta．Made in U．s．A．－cost the American Govermment elo7 before devaluation．Finished in grey primer and in new condition．

PRICE 128.50 each（Carriage extra）
Full length door 55 each extra
Doorsare not needed if panels are mounted back and front and they are not required to be enclosed．
TYPE C： 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide．American Standard First Grade totally enclosed ventilated $1^{\circ} 0^{\circ}$ rack panel mourting cabinets，made by Dukane，U．s．A． Open front fitted rack mounts drilled and tapped all the
way down every Finished in grey these cablengets have been used but are in good condition but if decoration is of importance it is recommended they are re－spraved before use．
PRICE $£ 15$ each（Carriage extra）
TYPE D： 76° high $\times 18^{*}$ deep $\times 22^{*}$ wide．Thcse are sightly smaller and finished in black otherwise they are similar in construction and condition to Type C above． Made by R．C．A．of U．S．A，
PRICE $£ 12-50$ each（Carriage extra）
ALSO OTHER TYPES 80^{*} TO 88＊HIGH AVAILABLE Full details of all above available on request． TRANSPORT：We have made special economicaltransport sirangements for these cabinets to ensure they arrive undamaged and
on request．

40－page list of over1，000 different items in stock availabie－keep one by you．

190／280 v ．．．．．．．．．．．．．．．．．．．．．	
erranti High Speed Tape Readers 5／7 Track	
arconi TF－867 Standard Signal Generators	
Rhode and Schwarz E．S．M．85／300 m／es	
V． H F．Receivers	
ideo Tape Recorder i－shibaden，excellent	
abrear Stabilised Power Units	
\star C．C．T．V．Marconi 625 line BD－971 Camera，	
Control complete channel working order．．	
ann Microwave Attenuators 4／12	
．H．T．40KV Transformers and associate	
10 foot long 8^{*} sides Triangular Lattice Steel	
Mast Sections with mating lugs for joining	
\star Collins R－390 Commanications Receivers	
0．5／30．0 m／cs	
＊Weston 2t－D．B．Meters－ $10 /+$ B	
Commercial \＆Broadeasting type Lattice	
WANTED C．C．T．V．EQUIPMENT Good price paid	
$\star 54$ inch．dia．Meteorological Balloons．．．．．．．	
E．M．I．（USA） 3600 ft on N．A．B．Spools ．．．．	
$\star \mathbf{l}^{*}$ Used ditto＂Scotch＂Brand 4800 ft ＊ $\mathbf{*}$ niselectors 10 bank 25 way full wipe ez	
丈Precision Mains Filter Units new ．．．．．．．．．	
Avo Geiger Counters new ．．．．．．．．．．．．．．．．．	
Carrigee extra at cost on all above． All goods are ar－Gorarnment sto	
We have a large quantity of＂bits and pieces＂ we cannot list－please send ul your requirements wo can probably help－all enquirié answered．	

P．HARRIS
ORGANFORD－DORSET
BOURNEMOUTH 85051

WW-113 FOR FURTHER DETAILS

DESIGNER-APPROVED "W.W." HI-FI KITS

\star LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout details. Kit price from $\mathbf{~ 7 ~} \cdot 40$ (mono, mag.p.u. $+2 \mathrm{I} / \mathrm{P} . \mathrm{s}$).
Dec 1970 mods. for pre-amp \& 10 w , amp available. \star LINSLEY HOOD SIMPLE PRE-AMP
Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus front panel. Mono $£ 6.35$. Stereo $£ 11.50 \mathrm{inc}$. p.p.
\star LINSLEY HOOD 15.20W AMPLIFIER
July 1970 latest and ultimate design. O/P capacitor, PCB, $\mathrm{Tr}^{2}, 4 \& 5$ mount compactly onto heat-sink. $\begin{aligned} & \text { Our kit } \\ & \text { designer. } \\ & \text { Gain of of O/P TR's }\end{aligned}>100$.
\star BAILEY 30W AMPLIFIER (Nov. '68)
Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and compactly on specially designed generous hearial
POWER SUPPLIES (simple and s'tab'd) a HIGH QUALITY components inc'g Mullard, Hunts, 1 Tr's matched $\pm 10 \%$ @ $1 \mathrm{c}=1$ mp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any one article at 30p
DETAILED PRICE LISTS at 5p inc. p.p.
PERSONAL CALLERS WELCOME-BY
APPOINTMENT. DESPATCH BY RETURN

A. 1 FACTORS

72 Blake Road, Stapleford, Nottingham
Tel. Nottingham 46051 Giro No. 4876008 (8 a.m. 10 p.m. 7 days/week)

LOWE EIECTRONICS

119 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817

SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F E \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following representative selection of second-hand receivers and test gear.

Receivers

Collins 51 J4 £250
Racal RA17L $\mathbf{~} \mathbf{2 2 5}$
Eddystone 940 £90
National NC190 £45
Sommerkamp FR100B $£ 80$
Sommerkamp FR-500 £95

Test Gear

Marconi TF1331 scope $\mathbf{f 6 0}$
Marconi TF1221 Het. Converter $£ 40$
Signal generators CT212 (85 kHz to 32 MHz AM/FM) £25
BC221's $£ 10-£ 20$ according to linearity and condition.
Tektronix 585A main frame $\mathbf{£ 2 5 0}$
Tektronix 53/54D plug-ins $£ 35$
Hickok OS-121C/USM-140 £350
Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms, VTVM's, low voltage regulated p.s.u.'s, S.W.R. bridges, components, etc., etc.

Have you equipment to sell? May pay you to get our quote.
Send a large s.a.e. and we will fill it with lists of components, equipment, sundries, etc., etc.

ANDOR ELECTRONICS LTD.

for new
Mullard, Ferranti, R.C.A. Motorola semiconductors
Mullard-resistors-capacitors ZTX108 12p MPF102 42 $\frac{1}{2}$ p AF117 25p ZTX300 15p MPF105 40p BC107 19p ZTX500 15p 2N3053 27p BC109 19p P. \& P. 10 p

Visit our new retail shop 45 LOWER HILLGATE STOCKPORT 061-480-9791

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C"' \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

OSMABET LTD.

We make transformers amongst other things. AUTO TRANSFORMERS. $0.110-200-220-240 \mathrm{v}$ a.c. up or down, fuly shrouded

 MAINS TRANSFORMERS. Prim 200/240v acc. TX2 250-0. $250 \mathrm{v} 150 \mathrm{Ma}, 6 \cdot 3 \mathrm{v} 4 \mathrm{~A}$ CT, $0-5-6.3 \mathrm{v}$ 3A, $£ 4 \cdot 05$; TX

 $110 / 240 \mathrm{v}$, Sec $250 \mathrm{v} 100 \mathrm{Ma}, 6 \cdot 3 \mathrm{v} 2 \mathrm{~A}, \mathrm{E} \cdot 25$
MULTIVOLT TRANSFORMERS. Prim $200 / 240 \mathrm{v}$ a.c OMT4/1 one tapped sec, 5-20-30-40-60v giving $5-10,15-20$ £2.25; OMT $4 / 22 \mathrm{~A}$ 23.45; OMT5/1 One tapped sec
 $90-100-110,10-0-10,20-00-20,30-030,40-0-40,50-0-50 \mathrm{v}$.

24V AUTO TRANSFORMERS. Input $200 / 240 \mathrm{v}$ a.c., output e6.75; for quartz todine lamp. LOW VOLTAGE TRANSFORMERS. Prim 200/240v a.c

 (2)

MIDGET RECTIFIER TRANSFORMERS. Prim 200/240v a.c. size $11 \times 2 \times 14$ in. PPT1 $9-0.0 \mathrm{yv} 03 \mathrm{~A}$; PPT2 $12-0-12$
 ${ }_{75 \mathrm{~A}}^{\mathrm{M}} \mathrm{P} 1.13$ each.
W.W. CAPACTTOR DISCHARGE IGNITION TRANSMer to specification, $£ 2.50$ plue 25 p p. \& p . O/P TRANSFORMERS FOR POWER AMPLIFIERS. 30 watt, A-A load 6.6 K, sec $3.7 \cdot 5-15$ ohms. £4.05; 50 watt, up to 400 watt to order to your specification.
MAINS TRANSFORMERS FOR POWER AMPLIFIERS TX 6 Prim $200 / 240 \mathrm{va}$ a.c. Sec, $4255-0-425 \mathrm{~F} 500 \mathrm{Ma} .6 \cdot 3 \mathrm{v} 6 \mathrm{~A}$
 LOUDSPEAKERS FOR POWER AMPLIPIERS. New boxed, famous makes for public address
guitars, electronic organs, Hi-Fi, etc. 12 in . 15 W W/Tweeter

 3.8 and 15 ohms, $£ 4$ each. HI.FI 8×6 in. 8 ohm . $£ 1.85$;
Horn tweeters $2.16 \mathrm{KHz}, 8,16$ ohms, $£ 1.50$ each

LOUDSPEAKERS. 2 in . $35 \mathrm{ohm}, 24 \mathrm{in}$. 25 ohm, 3 in .30 ohm , sin. 3 or 15 ohml, bin. 3 or 15 or 25 ohm, $5 \times 3 \mathrm{in} .3$ or or 25 ohm, $90 \mathrm{p} \mathrm{each;} \mathrm{bitin}$.8 ohm, $6 \times 4 \mathrm{in} .8$
3 ohn, $£ 1.08 ; 8 \times$ रin. 15 or 25 ohm, $£ 1 \cdot 35$.
TAPE RECORDER MOTORS. A variety of uses, blowers fans, etc. New. 110 v a.c., 300 each, 50 p pair.
12v LT FLUORESCENT LIGHTING. 8 watt 12 in . fitting PRINTED. CIRCUIT ETCHING KITS. Comprehensive factory pack, with all molutions, and equipment to make
S.A.E. ENQUIRIES-LISTS. MAIL ORDER ONLT 46 KENIL WORTH ROAD, EDAWARE, MIDDX, HA8 8 TG
Carriage extra on all orders.
Tol -9588314

GOMDON CENTEG: Radio stocise

[^16]IMLOCK ALUMINIUM CHASSIS FRAMES $10 \frac{1}{3}{ }^{\prime \prime} \times 8 \frac{3}{2}^{-} \times 6 \frac{1}{2}$ " $\mathbf{I 1}$ pp 20p
P.O.TYPE

20 way 3 pole Jack Strips
$101^{*} \times 31^{\prime \prime} 98 p$ pp 40p Ex-equip.
SOLENOIDS 12 VOLT PULL ACTION
2"×1"× ${ }^{3 / 4} 40$ ppp $8 p$
ANALEX POWER SUPPLY
$7^{\prime} \times 19^{\prime \prime} \times 13^{\prime} 230 \mathrm{v}$. AC. Input-6v. $5 \mathrm{amp} \times 2$ 18 v .7 .5 amp DC output; Fully transistorized marginal adjust. on output e35 carriage ES_{3}
ANALEX POWER SUPPLY $13^{\circ} \times 19^{\prime \prime} \times 5 t^{\prime \prime}$
230 v . AC. Input- $\mathbf{3 6 v}$. 14 amp DC.output
stabilized ex-equip £27.50 carriage $£ 2 \cdot 50$ COUTANT/ROBAND POWER SUPPLIES
$28 \mathrm{v}, 20 \mathrm{amp}$ DC. output $220 / 50 \mathrm{v}$. AC. Input Fully stabilized, ex-equip tested. $16^{\prime \prime} \times 16 \frac{1}{\prime \prime}^{\prime \prime} \times 84^{\prime \prime}$ approx. EA5 carriage EE
TRANSFORMER
230 v . AC. Input. $6 \cdot 6 \mathrm{v}$.122 amp output $6 \frac{1}{3}{ }^{\prime \prime} \times 7 \frac{1}{3}{ }^{\prime \prime} \times 9$ Inc. terminals new E18 carriage E2
GARDNERS: Potted Input 0-250v. AC. output
$18 \mathrm{v} .500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{v} .150 \mathrm{~m} / \mathrm{amp} 6 \mathrm{v} .250 \mathrm{~m} / \mathrm{A}$.
OXLEY BARB INSULATED FEED THRO TURRET TAGS box 100 E1 pp $15 p$; 18p doz pp 8 p
GARRARD 2 TRACK TAPE DECKS MAG TYPE 230 v . AC., $1 \frac{1}{\mathrm{f}} \mathrm{ips}$. 50 v . solenold operated brakes, ideal for contin. tape players $\mathbf{E} / 60 \mathrm{pp} £ 1 \cdot 28$ new TELESCOPIC AERIALS
chromed 7" closed 28° extended 6 section ball jointed base 23p pp 8p now
in platic holder/cover ax-oquip
in plastic holder/cover ex-equip.
PRINTED CIRCUIT BOARD/19, ACY 19 's
10 OA200 Diodes: 1 reed relay: 10AZ 229 zenner
ass capacitor/resistors. Power supply 22v. $250 \mathrm{~m} / \mathrm{A}$ DC. Output 240v. AC. £1 pp 20p ex-equip TOQCLE SWITCHES Single pole Double Throw ex-equip new condition s0p doz. pp 13p
FIBRE GLASS TAPE 100 yd . roll: $3^{*} 3 \frac{1}{3}{ }^{\text {" }}$ wide E1 per roll pp 20p
PAINTON type 159 series connectors working voltage 350 v AC/DC curtent max. 3 amp AC/DC 7 pin plug \& socket E0p pD 10p 31 pin plug \& socket $\mathrm{fl} \cdot 50 \mathrm{pp} 10$ p CASH WITH ORDER

FIELDELECTRICLTD.

3 SHENLEY ROAD, BOREHAMWOOD, KERTS. Adjacent Elstree Malnilne Statlon. Tel: 01-9536009

- ALL PURPOSE TRANSISTOR PRE-AMPLIFIER $\boldsymbol{\star}$
 or transe 25 c .p.s. to $25 \mathrm{kc} / \mathrm{a}$, 26 db gain. For use with valve Brand new. Britizh made. Dotalla S.A.E. 90 p post
Frase

BAKER 12 in. MAJOR $£ 9$

30-14,500 c.p.s., 12 in . doube cone, woofer and tweeter cone egether with a BAKER ceramic magnet assembly having a flux dessity of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated Module kit, $30-17,000$ c.p.s Size $19 \times 12 \mathrm{i}$ in. with tweeter, cressover baffe, instructions. $\leq 11 \cdot 50$ LOUDSPEAKER CABINET WIDDING 18 in . wide, 15 p per ft. run. in. wide, $15 p$ per ft. run.
E.M.I. QUALITY TAPE MOTORS Post I5p

120/240v. A.C. 1,200 r.p.m.,
Heary Duty 4 pole 135 mA

baLFOUR GRAM mOTORS
$120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m Heavy duty 4 pole $1,50 \mathrm{~mA}$ Spindle $0.15 \times 0.75 \mathrm{in}$. Size $2 \frac{1}{1} \times 2 \frac{1}{1} \times 1 \frac{1}{1}$ in. 85 p Post 15 p

THIS ELAC CONE TWEETER IS DF THE VERY LATEST DESIGN AND GVES A THAN MORE EXPENSIVE UNITS.
THAN MORE EXPENSIVE UNITS
The moving coll diaphragm givee a good radiation pattern to the higher requen-
cies and a smooth extension of temtal response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $3 \frac{1}{2} \times 3 \frac{1}{2} \times 2 i n$ deep. Rating 14 watts. 3 ohm or $15 \mathrm{ohm} \leq 1 \circ \%$
models.
$10 p$
THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER

RETURN OF POST DESPATCH - CALLERS WEGOME HI-FI STOCKISTS-SALES-SERVICE-SPAEES
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD. CROYDON. Tel: 01-684-1665

STOP PRESS

TEKTRONIX OSCILLOSCOPES Type 545B DC-33MHz depending on plug-in. Calibrated sweep delay. Rise time InnSec. P.O.A.
Type 581 DC to 85 MHz
depending on plug-in.
Sweep delay. Rise time 4.5nSec. P.O.A.

Type 531 D.C. to 15 MHz depending on plug-in. Rise time l4nSec. Sweep delay. P.O.A.

Most popular plug-ins for above available from stock.

ROTARY CONVERTERS \& MOTORS Lancashire Dynamo Motor Alternator Set--45KVA 415V 3-phase motor driving 45 KVA generator with output 380440 V . 3-phase nominal 50 Hz regulated supply. P.O.A

Maudsley 1 KVA 1200 Hz single phase Orion 1 No. 76575-213 output either 80 or 120V. P.O.A.

ELECTRONIC BROKERS LIMITED

49-53 Pancras Road, London, N.W. 1
Telephone 01-837 7781

Three New races from DYNAMCO

NEW 7060

Precision T.V. waveform monitor Combined waveform and picture monitor All line standards (including CCTV).
Odd \& Even field selection.
Pulse \& Bar overlay (same field).
$\square 75$ and 1 M switched attenuators.
P Post Office TV test set Type 13B

NEW 72 SERIES

The On-Site commissioning/servicing scope.
Light/Rugged/Compact.
High Brightness for Low Occupance Signals.
Dual Channel 15 MHz/Signal delay.

- Full delayed sweep/delay gate timebase with two trigger inputs.
Post Olfice Oscilloscope Type 14A.

NEW 713J

Widebanc extension of 71 Series Oscilloscopes.
50 MHz Dual Channel plug - on amplifier.
100 MHz High writing speed display unit.
Full delayed sweep/Gate timebase module.
\square True dual trigger inputs/Unrestricted trigger source selection.
Complete compatability with all 71 Series modules.

Need a D.V.M-fast?

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 111-121

[^17]I wanted everything: I wanted a highly stable fully transistorized signal generator directly calibrated up to 1000 MHz with outstanding fine tuning facilities; I wanted an FM performance capable of dealing with both very wide and very narrow band systems. And I wanted it yesterday!

Marconi Instruments delivered from stock!

The MI TF 2006 is a signal generator of very advanced design, offering a multiplicity of features specially incorporated to assist research, development and test engineers engaged on the most advanced communications equipment. It is the only fully transistorized signal generator covering the $4-1000 \mathrm{MHz}$ range. Low inband noise, freedom from microphony, good frequency stability and accurate, directly-calibrated fine frequency tuning control make it ideal for narrow-band fm measurements on mobile receivers. Similarly, the wide modulation frequency range, wide deviation range and freedom from phase distortion simplify performance assessment of fm telemetry and other multiplex systems. The full frequency range is covered by a system of five independent oscillator units giving a unique degree of
flexibility. Each unit has its own tuning scale and modulating element. Any combination of units up to four can be selected

MI - Europe's largest single source of signal generators. TV, Narrow Band FM, AM/F M, PCM, etc. - whatever the purpose or the frequency to be covered, Marconi Instruments is the company most likely to have the precise instrument you need. Behind it: experience unique in the business.
MARCONI INSTRUMENTS LIMITED
A GEC.Marconi Electronics Company
Longacres, St. Albans, Hertfordshire, England.
Tel:St. Albans 59292 Telex: 23350

Over 400 specifications used in more than 63 countries

Use the quality solder that leading electronic manufacturers depend on.

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications which are available.
Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overal costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

Ersin Multicore solder

Contains 5 cores of non-corrosive high speed Ersin flux Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, B.S. 441, DTD 599A Din 1707, U.S. Spec. QQ-S-571d

* Savbit an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535.
Solder Tape, Rings Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

STANDARD ALLOYS INCLUDE

TIN/LEAD	B.S. GRADE	LIQUIDUS METING TEMP.	
		C	${ }^{\circ}$
$60 / 40$	K	188	370
Savbit No. 1	-	215	419
$50 / 50$	F	212	414
$45 / 55$	R	224	435
$4 / 60$	G	234	453
$30 / 70$	J	255	491
$20 / 80$	V	276	529

HIGH \& LOW MELTING POINT ALLOYS

ALLOY	OESCRIPTION	MELTING TEMP	
T.L.C.	$\begin{array}{l}\text { Tin/Lead/Cadmium } \\ \text { with very low melting }\end{array}$	C	F
point			
Contains 2\% Silver for			

COWPATIBLE PRINTIED CTRCUIT SOLDERING MATERIALS
 High Purity

Extruded Solder

Provides the most economical soldering. Its high purity and freedom
from oxides, sulphides from oxides, sulphides and other undesirable elements result in the
allowing advantages :following advantages :-
*Less dross on initial melting *Mess dross on initial mel
*More soldered joints per *More soldered joints per
pound of solder purchased. *Less reject joints.
Improved wetting of electronic components \& printed circuit boards. *More unitorm results.
All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and
pellets. Can be released under $A Q D$ authority and supplied to USA QQ-S-571d.

PC. 2 Multicore

 Tarnish Remover removes tarnishes and inorganic residues as the second half of a pre-cleaning process before soldering. it leaveed. PC. 90 Multicore Peeloff Solder Resist
is a temporary solder resist which can be peeled off with tweezers after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes to which heat sensitive or other compo
Pr. 41 Multicore Anti-
Oxidan: Solder Cuver which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.

Soldering Handbook The most comprehensive book
on soldering for industrial un so, contanning 120 pages
useth 100 illusirations and with 100 illustrations an
invaluable teference charts. invaluable reterence charts.
Features practical methods of soldering in electronics and
allied industries. and is allied industiles, and is
divided into three headings:
Published thy Published by llifee Books and available from Technical Book
shops.

PC. 80 Multicore

 Solvent Cleaner Solvent Cleanerremoves organic contamremoves organic contam-
inants such as grease, perspiration and residues of organic solutions from prior processed, as a orecleaning processed, as a precieaning
process before soldering. It process betore soldering. It
is also very efficient in is also very efficient in removing rosin-based
residues atter soldering. PC. 10A Multicore Activated Surface Preservative is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Tarnish Remover PC 10A Tarnish Remover. PC. 10A does not need to be removed before soldering and efficiency of the soldering process. PC. 10A should be used whenever there is a delay between cleaning and soldering.

Write for technical bulletins on
your company's letterhead for your company's lefterhead. for
the products which interest you to MULTICORE SOLDERS LTD.
Hemel Hempstead, Herts. Tel: H.Hempstead 3636 Telex 82363

[^0]: Stereo Magnetic Cartridges.

[^1]: Published monthly on 3rd Monday of preceding month, $17 \frac{1}{2}$ p (3s 6d).
 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E. I. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1,"
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.I. Telephone 01-837 3636. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

 Subscription rates: Home, $£ 4.00$ a year. Overseas, 1 year $£ 4.00$; 3 years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^2]: \dagger The National Slavelocking System used by the B.B.C.

[^3]: \ddagger French exported SECAM signals are held to tolerance of ± 0.5 part per million; this helps a great deal but would nevertheless result in a non-standard, transcoded PAL signal, unless a synchronizer were used.

[^4]: * The 'hop' could also be removed by simpler means, but at the expense of impaired vertical resolution.

[^5]: * This assumes that the fact that a cut has been made is conveyed to the synchronizer; if not then, between the time of the cut and the appearance of the next field synchronizing pulse at the input, information may be displayed in the wrong position on an otherwise standard output raster.

[^6]: \dagger Since PAL switching occurs at half-line frequency rate, the opposite switching polarity must always exist on adjacent lines.

[^7]: * Letter to the editor, J. Audio Eng.Soc. vol. 19 1971 pp. $315 / 6$.

[^8]: * Editor-in-chief, Wireless World

[^9]: *Numbers in brackets refer to the block diagram of Fig. I, Part I.

[^10]: * Newmarket Transistors Ltd

[^11]: IN 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR.

 ## Capacitive Disc

 - CONTINUAL PEAK PERFO RMANCE
 - UP TO 20\% REDUCED FUEL CONSUMPTION
 - easier all-weath er starting
 - increased acceleration \& top speed
 - LONGER SPARK PLUG LIFE
 - increased battery ufe
 - contact burn ellminated
 - PURER EXHAUST gAS EMISSION
 - RADIO INTERFERENCE SUPPRESSED
 Complete Installation Kitc. Guaranterd for 5 yrs
 Cor 12 volt vehicles $\mathbf{£ 1 2 . 9 5}+35 \mathrm{p}$ P\&P. State earth polarity of
 vehicle-pOSITIVE or NEGATIVE arth. Unir Construction Kit also available for the radio/ vehicle-POSITIVE or NEGATIVE earth. Unit Construction Kit also available for the radio/ electronics constructor E9.95 +35 p P\&P. The construction kit includes instructions and
 all components for wiring as positive or negative earth. and is complete with the stove all components cor wiring as positive or steel case and aluminium base. All components are available separately.

 ## ELECTRONICS DESIGN ASSOCIATES

 82 BATH ST. WALSALL WS 1 3DE.

[^12]: Thermistors
 F. J. Hyde, DSc, MSc, BSc.

 The aim of this book is to give for the first time a comprehensive account of the properties and applications of both positive and negative temperature coefficient (NTC and PTC) types oi thermistors, in order that their potential usefulness in a wide range of instrumentation and measurement may be made evident. It will prove to be an indispensable reference bpok for all those interested in the application of this extremely useful circuit component.
 0592026070208 pages illustrated $1971 \quad \mathbf{£ 3 . 2 0}$
 Available from leading booksellers or:
 The Butterworth Group 88 Kingsway London WC2B 6AB Showrooms and Trade Counter 4.5 Bell Yard London WC2

[^13]: Codes: $\mathrm{C}=$ carbon film, high stability, low noise.

[^14]: A analyser $3-30 \mathrm{MHz}$, 875 . Cintel delayed pulse and dual trace, sweep delay, $£ 100$. Spectrum analyser $O A$ 1094 , £300. Marconi TF329 Q meter, £40; Video oscillator 65B, £65; Deviation meter No. 2, £45; VVM No. 3, £25; AVO valve tester MK3, £35. Telephone
 Yateley 83048 . $B^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet B_{2} in. $X 21$ in. x any length. D.E.W. Ltd. (W) Ringwood Rd. ${ }^{\text {R }}$, Write nowr-Right now.
 COLOUR TV CAMERAS complete with lenses, tubes and cables. Can be seen working. 01-229-0898 day
 [1394
 $01-907-0548$ evening. COLOUR, UHF and TV SERVICE SPARES. SPECIAL COFFER, leading Brit. maker's Colour Monitor Panels designed to BBC standards. Pal filter and delay $£ 6$, chrominance $£ 6$, luminance $£ 4 \cdot 50$, encoded
 35p). Also quantity Colour TV Camera Panels.
 Plessey colour scan coils $\mathbf{~ 5 . 7 5}$
 P / P
 35 p convergence Plessey colour scan coils £5.75 P/P 35p, convergence
 coils $£ 3.80 \mathrm{P} / \mathrm{P}$ 25p, Blue lateral $£ 1.25 \mathrm{P} / \mathrm{P}$ 10p (or complete set $\mathrm{F} 10 \mathrm{P} / \mathrm{P}$ 50p). Mullard type colour Scan Coils $£ 3.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, with latest type convergence coils for electronlc control of static convergence £2.50 P/P 25 p . Colour LOPT assembly incl. EHT output and focus control $£ 3.50 \mathrm{P} / \mathrm{P}$ 35p. luminance/chrominance incl. circuits $£ 1.25 \mathrm{P} / \mathrm{P}$ 10p. DLI Delay Line $£ 3.75$, luminance Delay Line $£ 1.30$ P/P 20p. B9D valve bases for colour valves and PL500 series 121 p P/P 5p. UHF tuners transistd. Incl, slow motion drive, indicator, $A E$ panel £3.95, transistd. push button £5.25, Cyldon
 valve type $£ 1.75 \mathrm{P} / \mathrm{P} 25$, slow motion drive, indicator,
 6 position push button transistorised tuner easily adjusted as 6 position UHF tuner, incl. clrcuit ${ }^{24.50} \mathrm{P} / \mathrm{P} \quad 50 \mathrm{p}$. Transist. UHF/VHF IF panels £4.75 (or salvaged $\mathbf{2} \mathbf{2 . 5 0}$) P/P 25p. MURPHY $600 /$ 700 serles complete UHF conversion kits incl. tuner,
 drive assy., 625 IF amplifer, 7 valves, accessories, housed in speclal cablnet plinth assembly, $£ 7 \cdot 50$ or less tuner $£ 3$ P/P 50p. SOBELL/GEC 405/625 switchable IF amplifler and output chassis, $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Oltra 625 IF AMP chassis and circuit $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Philips 625 IF AMP panel and circuit, £ 1 P/P 30p. panel incl. circuit $\begin{aligned} & \text { sel.95 } \\ & \mathrm{p} \\ & \mathrm{P} / \mathrm{P} \\ & \text { 30p. UHF }\end{aligned}$ on request. VHF tuners AB miniature with UHF injection sultable $\mathrm{K} . \mathrm{B}$., Baird, Ferguson $75 \mathrm{p} P / P$ 30 p, Cyldon C £ 1 P/P 30p, Pye 13 ch . incremental
 £ 1.25 P/P 30 p . Ekco Ferranti Plessey push but tuner with UHF Injection $£ 1.50$ Ples 30 p . New fireball tuners Ferguson, HMV, Marconl type $£ 1.90 \mathrm{P} / \mathrm{P}$ 30 p . Phillps export continental turret tuners 75p P/P 30p. Many others available. Large selection channel coils, LOPTs, Scan Coils. FOPTs available for most popular makes. Philips 110° Scan Coils £2. 85 £4.25, power unit $£ 3-25$. UHF/VHF/FM set back booster, mains operated $£ 5.90$ P/P 25p.-MANOR SUPPLIEE, 172 WEST END LANE, LONDON, N.W. 6 (No. 28 Bus or W. Hampstead Tube Station), MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON,
 N.W.11. Tel. $01-7948751$.
 DON'T get caught speeding. Protect your valuable driving life. Only $£ 13.75$. Up to 3 rd of a mile warning on modern traps. Send remittance now before it's too late. Details only phone, s.a.e. 01-668 3255/660896. Belding \& Bennett (Box 60), Green Lane, Purley, Surrey.

[^15]: TAPE RECORDING ETC
 IF quality, durability matter, consult Britain's oldes 1 transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools Modern studio faciilties with Steinway Grand.-Sound

 YOUR TAPES TO DISC.- $£ 6,000$ Lathe. From $£ 1.50$ High Bank, Hawk St, Carnforth, Lancs.

[^16]: TELEPEONE CABLE, Plastic covered grey
 coded. 7 -core per per yd. Special quote RECORD STORAGE UNTSS. Brand new, Anti-warp. 'Compact
 ELECTRICITY SLOT METERS (5 p in slot) for A.C. mains. Fixed 10 A. $£ 4.50 .15$ A. $£ 5 \cdot 00.20 \mathrm{~A}$. $£ 5.50$. P.P. 60 p . Other amperges a valiable. Reconditioned as new 2 years guarantee. GIRELESS SET No. 38 A.F.V. Freq. ng range + to 2 miles. size $104 \times 4 \times 6 \mathrm{in}$. Weight 6 flb ncludes power supply 81 b . and spare ralves and vibrator slo tank aerial with base $£ 10.00$ per pair or $£ 5 \cdot 00$ single. P.P. 125 p er set.
 MODERN DESK PHONES, red, green, bue or topaz, 2 tone grey or black,
 P.P. $37+\mathrm{p}$.
 O-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakeite case with junction box handset. Thoroughly overhauled. 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bak g7. 75 per 27.75 per unit

 QUARTERLY ELECTRIC CHECE METERS. Reconditioned as new. $200 / 250$ v. 10 A. $£ 2 \cdot 12$; 15 A . £2 $\cdot 621 ; 20$ A. $£ 2 \cdot 871$.
 Other amperages available. 2 years' guarantee. P.P. $2 \overline{\mathrm{p}}$.
 ${ }_{23}$ LISLE ST. (Ger. 2969) LONDON W.C. 2
 Closed Thursday 1 p.m. Open all day Saturday

[^17]:

 or affixed to or as part of any publication or advertising, llterary or pletoriai matter whataoever.

