Wirelessworld May 1971

tereo mixer circuit

Hles-per-gallon meter

22 APR1971
$+1$
\int_{1}
आ

3-PLUG-IN OSCILLOSCOPE

- $60-\mathrm{MHz}$ Bandwidth
- Dual-Trace, $5 \mathrm{mV} / \mathrm{div}$
- 5 ns/div Sweep Rate
- 2% Accuracy

■ 8 x 10 cm Display

- Solid State

£1119 сомmbere

WITH PLUG-IN UNITS
The TEKTRONIX 7503 THREE-PLUG-IN OSCILLOSCOPE offers more measurement capability per pound than any other quality oscilloscope.

Easier to use. An exclusive peak-to-peak auto-triggering mode provides a triggered sweep throughout the 360° range of the level/slope control. The front panel is uncluttered, illuminated push-button switches are extensively used to conserve space. Controls are conveniently related to function through the use of a colour-keyed front panel

Faster measurements. Auto Scale-Factor Readout is exclusive to Tektronix! It labels the CRT with time or frequency/div; volts, ohms, C (temperature), or amps/div; invert and uncal symbols; and automatically corrects for 10X probes and magnifiers Readout is required when using the NEW 7D13 Digital Multimeter and the NEW 7D14 Digital Counter plug-in units. It can be ordered initially or as a conversion kit, which is easily installed.

THE 7000-SERIES

An Integrated Test System! With the introduction of the 7D13 and 7D14 digital plug-in units, the 7000-Series becomes an Integrated Test System. ITS much more than an ordinary oscilloscope. SEVENTEEN plug-in units covering a wide performance spectrum are available to solve virtually all of your measurement problems. Some of the features offered are: dual-trace, differential comparator, $10-\mu \mathrm{V}$ differential, sampling, current amplifier, digital multimeter and digital counter. For instance, plug-in units can be chosen to give the 7503 delaying sweep and $90-\mathrm{MHz}$ bandwidth.

Greater versatility. The following 7000-Series mainframes offer unique four-plug-in versatility. The 7704 (150 MHz), R7704 (150MHz rackmount), 7504 (90 MHz), and 7514 Storage 90 MHz). The 7000 -Series does not require a full complement of plug-in units, you can start with onlv one norizontal and one vertical plug-in and add more as your measurement requirements change.

Your Tektronix field engineer will gladly demonstrate ine complete versatility of the New Tektronix 7000-Series Oscilloscope System, in YOUR laboratories with YJUR signals.
Please fill in Reader Fifply Card

or write. telephone or felex: | Tektranix U.K. Ltd. |
| :--- |
| Beaverton House, P.O. Box 69, |
| Harpenden, Herts. |
| Tel: Harfenden 61251 Telex: 25559 |

7V r.m.s. Sine or Square from 1Hz to 1 MHz

FREQUENCY:
SINE WAVE OUTPUT:
DISTORTION:
AMPLITUDE STABILITY:
SQUARE WAVE OUTPUT:
SYNC. OUTPUT:
SYNC. INPUT:
SIZE \& WEIGHT:

1 Hz to 1 MHz in 12 ranges. Accuracy $\pm 2 \% \pm 0.03 \mathrm{~Hz}$. 7 Vr .m.s. reducible to $<200 \mu \mathrm{~V}$ with $\mathrm{R}_{\mathrm{S}}=600 \Omega$ at all levels. $<0.1 \%$ up to 5 V output, $<0.2 \%$ at 7 V from 10 Hz to 100 kHz . $< \pm 1 \%$ variation with frequency up to 300 kHz .
$7 \vee$ peak reducible to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{~V}$ r.m.s. sine wave in phase with the main output.
$\pm 1 \%$ frequency lock range per volt r.m.s. input.
$7^{\prime \prime}$ high $\times 10 \frac{1}{4}{ }^{\prime \prime}$ wide $\times 5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ deep. 10 lbs.

Types TG200 and TG200M generate only sine waves. Types TG200M and TG200DM have a meter calibrated $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ and $-14 /+6 \mathrm{dBm}$. Types TG200 and TG200D have a calibrated control instead of a meter.

VISIT US AT THE LONDON ELECTRONIC COMPONENTS SHOW STAND 2.116 OLYMPIA MAY 18 TO 21.

R.C. OSCILLATORS

LEVELL Electronics Ltd • Park Road . High Barnet . Herts. . Tel : 01-449 5028
Send for literature covering our full range of portable instruments.

ERIE

-the Audio Power Transistor people

Silicon power transistors for hi-fi amplifiers; up to 80 watts in push-pull complementary pairs; in a variety of packages.
A whole range of devices - the Toshiba range.
And you get them from Erie.
You get the data from Erie too. And applications information. All fully documented to make it easy for you at the design stage. Good availability is ensured. Because at Erie we have a reputation to maintain. We know that superior components are no good unless they're available in production quantities.
Contact Erie Distributor Division now for the literature on Toshiba audio power transistors and other semiconductor products.

Erie Electronics Ltd., Distributor Division, Gt. Yarmouth, Norfolk.
Tel: 04934911 Telex: 97421

When we listen we become engrossed in the music and, with good equipment, we can often obtain the same satisfaction that we would enjoy in the concert hall. Of course, there are differences between the real and the reproduced. Many of these we recognise as such; we come to terms with them and they do not intrude.

More serious perhaps are the distortions which we do not consciously notice but which are nevertheless continuously producing a contradiction between the actual and the imagined. They produce listening fatigue, a condition detrimental to the true objective. These distortions have little to do with the popular conceptions of HI-FI or LO-FI sound ; on the other hand they have much to do with good or bad engineering.

QUAD

for the closest approach to the original sound

TRIO's CS-1554 Passes The Most Rigid Testing Requirements

Waveform analysis and other electrical equipment and electronic installation testing is performed at the highest possible peak of efficiency with TRIO's CS-1554. This wide-band dual trace triggering oscilloscope operates at ultra-high sensitivity while also offering an over-all expansive range of test capabilities. Lightweight because of its all-solid state construction, this completely dependable instrument is remarkably versatile. For example, dual trace waveform analysis with very wide synchronization capabilities is possible from $D C-10 \mathrm{MHz}$. It has no equal for speedy analysis efficiency.

CS-15.53
130 mm Oscliloscope
An essential device for signal wave form analyses and TV alignment and servicing. Complete solid state circury. rigger sweep and automatic
 om wide frequency respons satile.

VT-106
High sensitivity Electronic Volimeter
This is a solfit state electronic voltmeter employing IC and FET for high sensitivity and siability, capable of measuring voltages from 0.02 mV to 300 V .

 AG-201

ALL SOLID STATE CR type low-frequency Oscillator An ali-transistor, compact CR type wide-band low-frequency oscilator, the AC- 201 produces oi waves with a minimum waves with and rectangula at a low output impedance.

TRIOKENWOOD ELECTRONICS S.A.

160 Ave., Brugman, 1060 Bruxelles Belgium

Sole Agent for the U.K
B.H. MORRIS \& CO., (RADIO) LTD.

84/:88, Nelson Street. Tower Hamlets. London E.1. Phone: 01-790 4824

Curve Tracer

Tektronix Type 576
\star Expanded viewing area - combines a $10 \mathrm{~cm} \times 12 \mathrm{~cm}$ graticule with fibre-optic readout of scale factors, step amplitude, and Beta/div or gm/div.

* Swept or DC Collector Supply to 1500 V .
* Leakage Measurements to $1 \mathrm{nA} /$ div.
\star Multi-function Switching - direct-reading power limits, polarity tracking, auto-positioning, mode changes.
* Calibrated Display Offset - improved accuracy ($\pm 2 \%$) increased resolution.
\star Step Generator Range to 2A or 40V.
* Calibrated Step Offset - aid or oppose.
* Pulsed Base Operation.
\star Kelvin Sensing for high-current tests.
\star Interlock Operator Protection.

576
£1,140
$576 \bmod 301 \mathrm{~W} £ 975$
(without character read out)
All prices delivered U.K.
 extends the capabilities of the 576 allows many tests previously impossible. $£ 673$ plus duty $£ 76$

[^0]

The best pick-up arm in the world

SME precision pick-up arms offer a standard of design and engineering which has earned them many distinctions. Throughout the world thousands are used daily by enthusiasts, professionals, and broadcasting and recording companies, who appreciate a specification that is eminently suited to the needs of modern high-quality sound reproduction.

Write to SME Limited • Steyning • Sussex • England

Video Monitors

SIZES 7" $11^{\prime \prime} 15^{\prime \prime} 20^{\prime \prime} 24^{\prime \prime}$

FULLY SOLID STATE
10 mHz . BANDWIDTH

2\% GEOMETRY

LINE BY LINE CLAMP

MODULAR CONSTRUCTION

SAME CIRCUITRY 7" TO 24"

J. D. Jackson Electronics

Why we are excited about the C333 range

In these fast-moving days you might wonder why we're excited about a new capacitor range. Well, sales figures tell us that a lot of circuit designers are also enthusiastic about this-the latest Mullard range of miniazure plate ceramic capacitors. Setmakers have already ordered them by the million. And, as for us, we were excited about this new range long before we even sold the first one. In case you are not already using these plate ceramic miniature capacitors, let us tell you (enthusiastically) somethirg about them.

They're small. Well, of course. This is the mini age. Naturally, we designed them to fit a 2.45 mm . grid printed circuit board. But we also made them rectangular and thin (2.1 mm. max.). In fact they are no bigger than the winder on your wristwatch, so that they can pack very closely.

Wide range. This is something to be enthusiastic about. For the first time, circuit designers have available a wide
range of low-cost, high stability, close tolerance miniatures to choose from -at low prices. The full range (at present) has 28 values in five sizes from 1.8 pF to 330 pF (the E6 range). With temperature coefficients between NP0 and N750 the stability of tuned circuits can be maintained over a wide temperature rangethis is the C333 series.

High quality : low cost. These two conflicting objectives provided their own solution. In the first place we chose the most suitable materials for the performance and stability we required. Then we developed special, highly-automated processes to produce these tiny components within the rigid specifications we had laid down. These very efficient processes gave us the desired results; closely-controlled quality and low production costs.

Stability. This is essential for the applications for which these capacitors are intended. We developed materials which would not oxidise or peel in arduous conditions. And a special lacquer coating to protect them in conditions of high humidity. In brief, we designed in high stability and long life.

Tight tolerance. Again, the use of very stable materials and highly automated manufacturing and quality control equipment ensures
that every capacitor is held within very close limits-essential for the components used in oscillator and filter stages. The tolerance on every capacitor is within 0.25 pF or $\pm 2 \%$ -whichever is the greater.

Worth it? Our rising production figures indicate that a good many people think so.

Set designers appreciate that, at Mullard we continue to apply enthusiasm and care to the manufacture of all our devicesdiscrete components, valves and tubes, and semiconductors. And we continue to produce exciting results.

Materials research, applications research, automated quality production and control-all backed by experience in component manufacture stretching over the history of the electronics industry. All contributed to the quality and performance of this our latest range of capacitors.

Mullard
 components for consumer electronics

Mullard Limited,
Consumer Electronics Division,
Mullard House, Torrington Place,
London, WCl

COMPAK 8 can be tuned in seconds -by anyone!

Labgear COMPAK 8 HF SSB PACKSET

10W p.e.p. speech over entire range 2-9 M Hz. Unprecedented serviceability

* Light, sturdy, inexpensive
* Externally-loaded Aerial for higher efficiency (Prov. Pat.)
* Plug-in Tx and Rx modules for instant replacement
* 8 crystal controlled channels
* Fully submersible

The forward looking COMPAK 8 Transceiver gives outstanding performance over the frequency range 2-9 MHz by making use of the very latest in integrated circuits, F.E.T. and wide band techniques.
Operating directly from a rechargeable battery it gives a power output of 10 watts p.e.p. on any of 8 channels in this H.F. band. The use of wide-band circuits eliminates the complexity of individual tuning and band switching with its time consuming channel alignment. The result is a completely self-contained back-pack

SSB transceiver with a minimum of controls - lower in weight, smaller in size, and with greater flexibility of performance than any comparable equipment. Labgear COMPAK 8 is designed for single side-band suppressed-carrier voice or key operation in A3J or A2J modes under the most severe environmental conditions. It meets the needs of military, security forces, police, emergency, surveying etc. and is designed for use by non-technical operators.

Transmitter and receiver use plug-in modules for ease of servicing.Low-noise high-gain receiver employs dual gate MOSFET RF devices in conjunction with fast attack, slow release AGC, to give exceptional immunity to blocking and cross modulation and performance approaching base station standards.

"It all depends on that article". So spoke the Duke of Wellington on the eve of Waterloo. And the article, a human component of the legendary British 'line', took every charge and shock the enemy could mount. And the Duke took the laurels.
So it is with Erie Redcaps, a 100\% British-made component. Redcaps offer up to 100 times the capacitance-volume ratio of conventional components. Redcaps are solid layered structures of noble metal electrodes and thin ceramic films, fused to make a solid layered structure of inherent stability;
inherent reliability. Redcaps tolerate temperatures from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; cover a range from 10 pF to $0.56 \mu \mathrm{~F}$; working voltages of 100 or 50 V d.c.
Redcaps are encapsulated with Jet-Seal, a hard, bright polymeric coating, formulated to provide mechanical and electrical protection under severe environmental conditions.
Would you like to have the details? Would you like to know the cost ? It ail makes excellent reading. So send for the brochure or an Erie Engineer. Today.
ww- 015 FOR FURTHER DETAILS

REDCAP is a registered name

Erie Electronics Limited,
Great Yarmouth, Norfolk.
Telephone: 04934911 Telex: 97421

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1^{\prime \prime}}{2} \times 8 \frac{1^{\prime \prime}}{2}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{8}{ }^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3}{4}{ }^{\prime \prime} \times 13 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

See us on Stand 1-193/207 at the I.L.E.C. Show Olympia

MANSFIELD - NOTTS • ENGLAND • Tel: Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel: HOLborn 3074

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical
A.M.S.E. (Mech.)

Inst. of Engineers
Mechanical Eng.
Maintenance Eng
Welding
General Diesel Eng
Sheet Metal Work
Eng. Inspection Eng. Inspection Eng. Metallurgy
C. $\&$ G. Eng. Crafts C. \& G. Fabrication

Draughtsmanship A.M.I.E.D.

Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng General Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amateurs' Exam. Radio Operators' Cert. Radio \& TV Enginẹering Radio Servicing Practical Tclevision TV Servicing Colour TV
Practical Radio \&
Electronics (with kit)

Auto a Aero

A.M.I.M.I.

MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng. Motor Mechanics A.R.B. Certs Gen. Aero Eng

Management \&
Production Computer Programming Inst. of Marketing A.C.W.A. Works Management Work Study Production Eng Storckeeping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engineering Matcrials Handling Operational Rescarch Operational
Metrication

Constructional A.M.S.E. (Civ.) C. \& G. Structural Road Engineering Civil Engineering Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Carpentry \& Join Clerk of Works
Building Drawing Surveying Painting and Decorating Architecture Builders' Quantitiẹs

General

C.E.I.

Petroleum Tech.
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Science Agricultural Eng General Plastics

General Certificate of Education Choose from 42 ' O ' and ' A ' Level subjects including. English
Chemistry
General Science
Geology
Physics
Technical Drawing
French
Gorman
German
Russian
Spanish
B.I.E.T. and its
B.I.E.T. and its
associated schools
associated schools
have recorded well have recorded well over 10,000 'G.C.E.
successes at ' O ' and successes a
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going irom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIISH ISSIIIUTEOF ENGINEERINGG IEGHNOLOGY

Dept D.259, Aldermaston Court, Reading RG7 4PF.

(Write if you prefer not to cut this page)

B.IET - IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now-neons and indicators too... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.ll.

TEDNEX

electronic valves, semi-conductors, neons \& indicators for export

HEATHKIT SHOWROOMS

LONDON Heathkit Centre

233 Tottennam Court Rd.
Open Monday to Saturday 9am-6pm. Phone 01-636 7349

birmingham Heathkit Centre

17-18 St. Martins House, Bull Ring.
Dpen Tuesday to Saturday 9 am-6pm. Phone 021-643 4386
GLOUCESTER Factory Showroom
Bristol Road, Gloucester.
Open Monday to Saturday 9am-5pm.

Please send me leaflets for models IB-101 \square EU-70A \square SM-105A \square NAME

ADDRESS

POST CODE

[^1]
Minilamps

Low voltage indicator lamps for Maxilife

Up to eleven years of continuous use - just one of the many advantages of Long Life Minilamps over conventional indicator lamps. Minilamps are reliable, easy to install, are front mounted for easy access, and safe. They come in five standard colours with voltages ranging from $6 v$ to 28 v , or mains neon also available.

Minilamps are currently being used in Alarm and Warning Systems: Automatic Flow Indicators: Computer Control Panels: Car Dashboards: Aircraft Control Panels: Display and Exhibition Units. Whenever and wherever you need a small, reliable lamp, remember a single word for warning - Minilamps - the bright idea in a small package.

For complete range of Minilamps available and full technical information, contact FieldTech Limited, London Airport (Heathrow), Hounslow, Middlesex.

Phone 01-759 2811
MTDNOLARTO®

FialdTech Ltd

6-FIGURE
DC DIFFERENTIAL VOLTMETER 0.01% accuracy from temperaturecompensated Zener diode circuit D.C. Differential Voltmeter M400 gives 6 -figure readout from 100 mV to 1 kV and is accurate to 0.01% without the application of any corrections for
ambient temperature. The null meter is calibrated, covering $\pm 30 \mu \mathrm{~V}$ at maximum sensitivity, and an analog output for recorders is available from the meter circuit. The stable performance is matched by very high rejection of a.c. and d.c. common mode voltages. Ask for M400 Data Sheet.
ww-021 FOR FURTHER DETAILS

WAYNE KERR

THE WAYNE KERR CO. LTD Roebuck Road Chessington Surrey England Telephone 01-3971131
Cables Waynkerr Chessington Telex 262333

VARIABLE TRANSFORMERS

OUTPUT O-265V * INPUT 240V 50/60 CPS SHROUDED FOR BENCH OR PANEL MOUNTING

VARIABLE TRANSFORMERS
2.5 amp $\mathbf{~ 6 6 . 7 5 p ~} 10$ amp $£ 18.50 \mathrm{p}$ $5 \mathrm{mpp} \quad \mathrm{m9.75p} \quad 12 \mathrm{amp} \mathrm{f21.00p}$ $8 \mathrm{amp} \quad$ E14.50p 20 amp £37.00p 1 amp $\mathbf{f 5 . 5 0 p}$

Inset shows latest pattern Brush gear ensuring smooth Brush gear ensuring sm
continuous adjustment.

SOLID STATE VARIABLE VOLTAGE CONTROL

- Output 25-240V
* Input 240V 50 CPS
* 5 amp \& 1C amp models
* Completely sealed

5 amp models $£ 8.38 p$ 10 amp mode s $£ 13.75 p$

20 AMP LT SUPPLY UNIT
\star Inpur 240V. Ourput 20 amps at $24 V^{\text {and }} 12 \mathrm{~V}$
fully adjustabie.
$\begin{aligned} & \text { fully adiestabie - } \\ & \text { * Weight } \\ & 50 \text { ibs }\end{aligned}$
£42.50p
52.00 c с \& P (G.B.)

LT. SUPPLY UNIT

* Continuuusly Rated * Large Ammeter and Volt.
$\stackrel{\text { metert. }}{\star}$ Ideal for Plating Units. ${ }_{\star}$ F Fully protected. \# Infinutly varibibla up to 24 V DC. Size and wight $16^{\prime \prime} \times 12^{-} \times 27^{-H i g h-701 b s s . ~ R e a l ~}$
${ }_{\text {fint.00p }}$ C \& P (inland) E3.00p

CONSTANT VOLTAGE TRANSFORMER
Maintain spot-on test gear readings with Automatic Mains stabilizer.
Specification:

* Output 240 V
* Accuracy $\pm 1 \%$
* Input 190-260V * Capacity 250 watts * Corrected wave
f12.50p c\& PE1.00p
I.M.O. PRECISION CONTROLS LTD.

(Dept WWX) 313 EDGWARE ROAD, LONDON W.2. TEL. 01-723 2232

WW- 022 FOR FURTHER DETALSS

We command attention!

New-'Toa' Transistor Megaphones . . . Clearly the best you've heard!

Models cover all speech and loud-hailing needs. For building site, sports field, addressing crowds and outdoor meetings, tour guides, etc.

Clear, dynamic sound. 'Non-howling' design eliminates feed-back. Most models waterproof for all-weather use. With pistol grip or hand-mike to allow speaker to be shoulder-slung or stand-mounted. Light. Easy to use. Volume controllable. Rechargeable types eliminate battery-changing.

Also Continuous Siren, or
Burglar-alarm broadcasting types.

Goldring ©

Goldring Manufacturing Company (Great Britain) Ltd., 10 Bayford Street, Hackney, London E8 3SE. Tel: OI-985 1152

"ASTRONIC" LTD.

FIRST IN THE FIELD WITH A COMPLETE RANGE OF MODULAR AMPLIFIERS

THE RESULT OF THIRTY YEARS EXPERIENCE IN SOUND AMPLIFICATION, NOW ANNOUNCE THEIR RESPOMSE SELECTOR TPPE A 1888

A MUST IN ACOUSTICALLY DIFFICULT SITUATIONS SUCH AS CHURCHES, HALLS, THEATRES etc.

This unit, the result of three years research, can be built into a new, or added into an existing sound system and provides a simple but effective means of adjusting the overall response to suit the particular location.

Eight calibrated thumb wheel controls enable each section of the audio band to be adjusted to reduce troublesome building resonances etc., thereby allowing microphone levels to be increased before " howl back " occurs.

The unit is available in two forms: Type A 1888 is a portable instrument and Type A 1781 is a module to be used in conjunction with our Series 1700 units.

Further information from :
DILSTON GARDEEIS, STAMMORE, MIDDLESEX, HA7 IBL 01-204 2125

Soft magnetic alloys

TELCON OFFER THE WIDEST RANGE

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form. Typical applications include: many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and a variety of magnetic shielding applications.

Radiometal alloys

Almost as well known as the Mumetal group, these high permeability alloys, with their high saturation induction and low electrical losses, are extensively used for transformers and chokes where the operating flux density is higher than is possible with Mumetal and where a higher permeability than that of silicor, iron is required. The six grades have a variety of applications including : relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys
Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has a correspondingly high incremental permeability at high inductions. It is extensively used for stator laminations, telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are frequently used in echo sounders and ultrasonic devices. A special grade of alloys, known as 'Rotelloys', which have superior mechanical properties have also been developed for use in high speed rotating equipment such as aircraft generators.

Telcon Metals Ltd., Manor Royal, Crawley, Sussex. (Crawley 28800)

Passing the buck is the philosophy of some businesses. Catching the buck is Gerry Adler's personal philosophy. He believes that no customer can be expected to buy a product for which nobody accepts responsibility.

So he makes this promise. If any Eagle product isn't as good as it should be, tell Gerry. Drop him a line, and he'll sort it out.

And, having made this promise, we'd like to show you two of our newest intercom services.

There's the 88 series Inter Telephone System.

It's easy to install and flexible to use. It's available with either eleven or seven station masters and/or the corresponding number of slaves. And conversations can be private or conference-whichever you prefer.

And then again there's the Eagle IN series.

Designed for the executive desk, the
IN comes in a variety of guises. There's a 5 station All Master system. That lets everyone speak to everyone whenever. Or there are a series of master and slave systems. Or easiest of all there's an IN wireless system that you just plug into the power point. And that's it.

We're rather proud of them. We think you will be too. In fact we don"t think Gerry will be stopping the buck on account any of the Eagle Intercoms.

Fagke Interiatiomal

-we don't stand still. Write or phone Coptic Street, London WC1A 1 NR
Tel: 01-636 0964 for a copy of our new catalogue.

WW- 027 FOR FURTHER DETAILS

$30 \mathrm{kHz}-30 \mathrm{MHz}$ Signal Source Video Oscillator O200 gives a pure sinewave signal from 30 kHz to 30 MHz at levels from - 50 to +10 dB on $1 \mathrm{Vp-p}$ at 50 ohms. A 1 -volt monitor output is provided for counters. Outstanding stability of frequency and amplitude. Ask for O200 Data Sheet.

50 MHz Frequency Counter

The FC50 is a low-cost instrument giving a non-blink display of time, count period or frequency up to 50 MHz . Adjustable up-dating rate, outputs of clock pulses, and facilities for electrical or mechanical stop/start, inhibit and gating. Ask for FC50 Data Sheet. Ww- 028 FOR FURTHER DETALLS

WAYNE KERR
 THE WAYNE KERR CO. LTD.

MINI—DMM2—small in weight ($3 \frac{1}{2} \mathrm{lbs}$.) in size ($\left.8^{\prime \prime} \times 3 \frac{11^{\prime \prime}}{} \times 7 \frac{3}{8}^{\prime \prime}\right)$ and price£99 ONLY (or less for five or more). MAXI—DMM2—maximum reliability from a purpose designed L.S.I. chip which performs all of the counting and storage functions. Maximum stability from automatically stabilised DC input amplifier. Dual slope integrating A-D converter. Low temperature coefficient zener reference. Flicker proof digital display.

MULTIMETER—DMM2—17 ranges for digitally displayed measurement of AC and DC voltage, 100 pV resolution, resistance, and current (with optional SP2 shunts). Push button mode selection. Maximum reading 1999 with auto decimal point. Overrange and reverse polarity indication. The DMM2 is ubiquitous, too-it can be operated from AC supply, 12 V external DC or from a rechargeable battery pack--you can take it, and use it, anywhere!

DMM2 DIGITAL MULTIMETER

from ADVAINCE

ELECTRICAL INSTRUMENTS LTD
CHILTERN WORKS HILCII WYCOMBE
bucks
Phone 30931

Hatfield make news on land and sea

New equipment for Radio Communications and Line Communications

Hatfield's R \& D team are making news again with many new products being shown for the first time at the R.E.C.M.F. Exhibition. One of the most intriguing is the introduction of the Marine H.F. SSB Radiotelephone which now brings Hatfields skills into the marine field. There's also many modifications to existing products as a result of Hatfield's continual programme of R \& D. Among the new products being shown are:

New Marine H.F.SSB Radiotelephone

400 watts 1.6 to 4.2 MHz . 23 Transmit Channels. 35 Receive Channels. MODES A3A, A3H, A3J. Size Only $19^{\prime \prime} \times 13^{\prime \prime} \times 20^{\prime \prime}$ Conforms to Specification TSC 105.
200 Watt Version Also Available. Future Developments to include 400 Watt SSB Radiotelephone for the 4 to 27.5 MHz Band.

See us at

STAND 1-111 R.E.C.M.F OLYMPIA

HATFIELD INSTRUMENTS LIMITED

Line communications
Selective Level Meter
Type 1001 (P.O. No. 23B/A) For terminated or through measurements from +25 to -115 dBm on 600 and 140 ohm systems.
Frequency range from 30 Hz to 30 KHz . Battery or mains operation.
R.F. components

600 ohm Balanced Attenuator 20500 to $121 \mathrm{~dB}: 0.1 \mathrm{~dB}$ steps.

Decade Resistance Box 29016 Decades from $1 S /$ to $100 \mathrm{~K} \Omega$ Metal Film Resistors. Accuracy 0.1%,

HATFIELD

forward thinking in electronics

South-East Asia: for prompt service and deliveries, contact: Hatfield Instruments (NZ) Ltd., P.O. Box 561, Napier, New Zealand.

Farnelluatmomememe P.R.F. -0.01 Hz to 10 MHz

* Single or double pulse output * true double PULSE OPERATION with independent control of output width, delay, amplitude and polarity. * RISE TIME 10 NANOSECONDS. * MAXIMUM PULSE AMPLITUDE is 20 V into 'open circuit', or 10 V into $50 \Omega *$ PRICES FROM $£ 118$.
Component modules available: Power Supply, Trigger Unit, PRF Generator, PRF Divider, Delay Unit, Pulse Width Unit, Output Unit. Variable Slope Output Unit.

details, please contact us at the address below. (Please state if you require literature on Full Range of Power Supplies, Electronic Instruments and Digital Logic Equipment).

Visit stand 3. 155 R.E.C.M.F.
FARNELL INSTRUMENTS LIMITED, Sandbeck Way, Wetherby, LS22 4DH, Yorks. Telephone: 0937 3541/6
London Office: Telephone: 01 802/5359

DC300

DUAL-CHANNEL POWER AMPLIFIER

Frequency Response
Phase Response
Power Response
Power at Clip Point
Total Output (IHF)
T.H.D.
I.M. Distortion ($60-7 \mathrm{KHz} 4: 1$)

Damping Factor

Hum and Noise $\mathbf{(2 0 - 2 0 K H z})$

Slewing Rate
Dimensions
Weight

Finish Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
$\pm 0.1 \mathrm{db}$ Zero- 20 KHz at 1 watt into 8 ohms, $\pm 0.6 \mathrm{db}$ Zero- 100 K Hz .
Less than $5^{\circ} 0-10 \mathrm{KHz}$.
$\pm 1 \mathrm{db}$ Zero- 20 KHz at 150 watts RMS into 8 ohms
Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel. Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms. Better than 0.03% at 1 KHz at 190 watts level.
Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05% (max 0.05\%.

Greater than 200 (Zero to 1 KHZ into 8 ohms at 150 watts RMS).
100 db below 150 watts RMS output (unweighted, typical 110 db).

8 volts per micro-second. $S-R$ is the maximum value of the first derivative of the output signal. 19 in . standard rack mount (W.E. hole spacing), 7 in . height, $9 \frac{3}{4} \mathrm{in}$. deep (from mounting surface). 40 pounds net weight.

\star DC-Coupled throughout!

\star Short Circuit proof!
$\star 500$ Watts RMS Mono.
$\star 70$ Volt Balanced line out!

* UNEQUALLED QUALITY!
$\star 3$ YEAR PARTS WARRANTY!
* only f320 inc. DUTY!

CARSTON ELECTRONICS LTD. SHIRLEY HOUSE 27 CAMDEN ROAD LONDON, N.W. 1 9LN 01-267 2748

professionals are hard to please...

In this completely professional area of Magnetic Recording Equipment engineers set themselves high standards because they have extremely high standards to meet and maintain - every day of the year.
They demand truly dependable equipment for this tough, exacting work - equipment like the Plessey range that is technically excellent, flexible and thoroughly reliable under continuous operating conditions.
Plessey studio equipment includes reel-to-reel, portable, console and endless-loop cartridge recorders that have been time proven for twentytwo years by broadcasters around the world. This kind of equipment will fit into your system - and give definite operational and cost advantages. Keep us in mind when next you are considering new equipment.

A full range of technical literature is available on request, or better still, a technical representative will call if it's convenient.

Contact us now!

PLESSEY

Electronics

Sales and Service - Rola Recording Products Department Garrard Engineering Limited
Newcastle Street Swindon Wiltshire
Telephone Swindon 5381 Telex 44271
or the manufacturer
Plessey Electronics Pty Limited
Equipment Unit
Westbank Terrace Richmond Australia 3121
Telex 30383 Cables ROLA Melbourne

THE Clatarens DE-SOLDERING TOOL

Self-contained-does NOT require the use of air-lines or pumps

- Simple, light and inexpensive

PERMABIT nozzle will not wear or become eroded by the solder
Standard nozzle $\frac{5}{64}$ in. bore. Alternative, $\frac{3}{64}$ in. bore
Mains or low voltages
Please ask for New Leaflet 5/1007

used as standards in many industries

FRAHM Resonant Reed
Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Instruments and Electronic
Equipment. The largest stock
Equipment. The largest stocks
in the U.K. for off-the-shelf delivery
PIDERS ELETROIILS LIIITED
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092

Nombrex accuracy!

C.R. TEST BRIDGE MODEL 32 Price $\mathbf{£ 1 0 . 5 0}$

Every radio 'ham' needs one and at this low price you are buying a fully transistorised, high quality instrument. Write for full technical leaflets.
Note a few of the specification details below:-

- 6 Ranges covering 1Ω to $100 \mathrm{M} \Omega$

1 pF to $100 \mu \mathrm{~F}$

- Accuracy $2 \frac{1}{2} \%$ at centre to 5% near ends.
- Separate and clear R \& C scales
- Power Factor measurement up to 70\%
- Neon indication for capacitance leakage
- Battery operated or external supply
- Guaranteed for 12 months

Trade and Export enquiries welcome Post \& Packing $32 \frac{1}{2}$ p. extra

NOMBREX (1969) LTD.
CAMPERDDWN TERRACE, EXMDUTH, DEVON. Tel: 03-952 3515.

High quality monochrome monitors suitable for use either in T.V. studios or laboratory applications demanding the highest possible performance. Facilities include electrical centering, modular circuit design and separately stabilised E.H.T. These together with exceptional stability and high brightness capability are some of the notable features of this range.

Designed for a wider range of less demanding applications and offering an extended choice of screen sizes. Ideally suited for general studio uses, high performance industrial systems and data

Modular type A designed to suit every application.

- Viewing systems include parallaxfree viewing during exposure.
- Lenses $f 1.3$ f1.5. f1.9. $\ddagger 2.8$ and $\ddagger 3.5$.
- Adaptors for all popular scopes.
- Wide range of fully interchangeable accessories.
- Film backs: Polaroid 10 second prints with roll, pack or cut film, conventional photo materials including 35 mm .

Inexpensive Type P

- LIGHTWEIGHT
- SIMPLE OPERATION
- ATTRACTIVE APPEARANCE
- lower purchase PRICE
- ECONOMY SIZE POLAROID FILM TYPE 20
- PRE-EXPOSURE VIEWING
- LENS $\ddagger 4.5$ 2.4" (61 mm) lens provides reproduction of trace and graticule with gocd linearity. The object/image ratio is 1:07 (nom).
- SHUTTER SPEEDS include fixed exposure $1 / 25$ th sec. (nom) time and brief.
- ADAPTORS Camera models available for most popular oscilloscopes.

TELFORD PRODUCTS LTD.

4 WADSWORTH ROAD GREENFORD MIDDLESEX ENGLAND TEL:01.998 1011
THE DAVAIL PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND
MULTIWIRE EQUIPMENT
Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBDARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,
 Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment;
 Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.
W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herta
Tel: Tring 3476 (STD 0442 82)
Cables: RAHNO TRING
Telex: 82362, A/B BATEY TRING
WW-041 FOR FURTHER DETAILS

Now available with 3 OUTPUTS making these units more versatile for:
DEVELOPMENT
PRODUCTION TESTING
SERVICING

Type VRU/30/20*-£144.35 (£144.7.0) * OUTPUT 1, 0-30V 20A DC.

Will provide accumulator performance from AC mains for production testing and servicing of battery operated equipment. Output continuously variable $0-30 \mathrm{~V}$ at up to 20A.
*OUTPUT 2, 0-70V $10 A$ AC.
For the testing and development of low voltage AC equipment.

* OUTPUT 3, 0-250V 4A.

Continuously variable AC mains supply voltage for testing equipment at various voltages.

Send for publication wPU9
VALRADIO LTD.
Dept. WPU9, BROWELL'S LANE, FELTHAM, MIDDLESEX, ENGLAND Telenhone: 01-890 4242
MO_ MOL_MN \qquad

NEW TRANSISTOR TEST SET gives gain measurement up to 2000 at $\mathrm{I}_{\mathbf{C}}$ values down to1ヵA

 from deriving the fullest possible use of the extremely low current capability of modern-day transistors. TF- 2703 provides the means for the designer to adequately assess the performance of a transistor under low current operation by enabling gain measurement up to 2000 at collector current values as low as $1 \mu \mathrm{~A}$. More and more designers are realizing the desirability of minimizing power demands and TF 2703 permits the selection of 'specials' from cheap bulk-price unsorted transistors. By use of an adaptor large quantities of transistors may be checked at the goods receiving areas.
tests both p.n.p. and n.p.n. bipolar transistors portable, battery operated - simple to use only $£ 67$ (budgetary) f.o.b. UK

This new Transistor Test Set joins many other mi products which have an appeal wider than our more specialized activities. They include

Indicate the products which are of interest and we will send you comprehensive data sheets

TF2703	\square	TF2604	\square
TF1313A	\square	TF2700	\square

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance. Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommended tracking weight $1 \frac{1}{2}$ to 21 grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that "budget' hi-fi systems can provide.

50 Goldring Manufacturing Company (Great Britain) Limited, io Bayford Street, Hackney, London E8 3SE. Phone: oI-985 1152.

R.F. CONNECTORS

A wide range of $N, C, B N C, 83 U H F, V M P, S M$ and MINI types. Crimp types in N, BNC \& 83 UHF produced in addition to standard cable clamps. Other types for special applications.

R.F. CABLES

Miniature, R.G. and multi coaxial types.

IN-LINE UNITS

These are screened containers for attenuators etc. fitted with coaxial connectors.

CABLE-CONNECTOR ASSEMBLY

Annual call-off orders quoted.

Now in full production and giving reliable service in the field, the Racal TA 940 Solid-State Linear Amplifier provides:-

CONTINUOUS POWER -

100w F.S.K. operation without forced coaling
CONTINUOUS RELIABILITY

- solid state conservatively rated

CONTINUQUS FREQUENCY COVERAGE - 1.6 to 30 MHz broad band, no tuning CONTINUOUS IMMERSION - hermetically sealed, water and dust proof.
Designed for military field service, to operate with any suitable h.f. manpack or driver unit under the
most severe environmental conditions, the TA 940 operates with 100 mW to 5 w power inputand, with suitable Power Supply Units, from $12 / 24 / 28 \mathrm{~V}$ d.c. or $110 / 220 \mathrm{~V}$ a.c. The TA 940 is backed by CONTINUOUS SUPPLY, SPARES AND SERVICE, as are all Racal-BCC products.

Details From:
 RAACAL

Racal-BCC Ltd.,
Bracknell, Berkshire, England Tel. Bracknell 3244 Telex 84166

${ }^{\top}$ NOlinSolder

ENTHOVEN offers you Europe＇s widest Range

One good reason for soldering with Enthoven－whatever your needs－is the Enthoven range．It gives you a wide choice of high quality products developed for use with modern techniques．It in－ cludes Flux Cored Solder Wires，Solder Pre－forms，Solid Solders，selective Fluxes， solder specialities，materials for printed Circuitry and for soldering Aluminium． For complete technical details of Europe＇s widest range，ask Enthoven Solders Lim－ ited，Dominion Buildings，South Place， －－－－－London EC2．Telephone 01－628

SOLID SOLDERS

PLUMBERS BARS－CAR BODY FILLERS TINSMITHS
STICKS－BLOW PIPE STICKS INGOTS IN A VARIETY OF WEIGHTS WIRE IN ALL GAUGES
－1 lb．\＆ 7 lb ．REELS FASHION JEWELLERY CASTING ALLOYS
SHEET－RIBBON

Available in a wide range of alloys－ standard or custom－made．Certificates of analysis provided．

WW－047 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter－pk－pk or RMS calibration with variable control for rela－ tive measurements． 40 calibrated ranges $£ \mathbf{\$ 5 . 0 0}$

Si 452 ．．．．．．．．．．．．£30．00
Distortion Measuring Unit． $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}-.01 \%$ Sine－Square－RIAA J．E．SUGDEN \＆CO．，LTD．Tel．Cleckheaton（OWR62） 2501 BRADFORD ROAD，CLECKHEATON，YORKSHIRE

DIOTESTOR IN－CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED， 17 Charing Cross foad，London WC2H OER Tel： $01-9303070$ WW－ 049 FOR FURTHER DETAILS

ELAPSED TIME INDICATORS

Current Integrators

The whole range of Elapsed Time Indicators（E．T．I．）consists of－
CHRONSISTOR ® Electro－chemical E．T．I．based on copper for 100，1．000 and 10，000 hours This one is expendable after use
MERCRON（ ）－Electro－chemical E．T．I．based on mercury for 100， 1.000 and 10.000 hours Exists in six different models
HOROCONTROL（B）－Electro－mechanical E．T．I．for A．C．．or D．C．for 9999．9，or 999.99 hours

From Bradley. One nanosecond risetime on a new oscilloscope calibrator.

All Bradley instruments cant be supplied with a Britislı Calibration Service Certificate Irom our own BCS approved Standarts Lilioratory.

3 -adley werc the first to introduce a complete oszilloscope test stá ion - the 1ype 156 Osilloscope Calibrator. Now we introduce a completely nevi instrument, the 192, which incorporates many new teatures.
Ahat can the 192 do?
Forcheckirg basic amplifierresponse, the 192 provides fast rise pulses having a - nanosecord cdge and a very clean scuare top. These are variable n p.r.f. over the rarge $1 \mu \mathrm{~S}$ to 1 S .
For Y amp iffer calibration, it provides D \approx voltage 3 and 1 kHz square waves at anplitude accuracies of 0.25% over the range of 30 - γ to 200 V .
For timebase calibration, the 192 has a w de range $=$ rystal-controlled time mark generator providing accurate time puises oler the rance 10 nanoseconds to 5 seconds in $1,2,5$ sequences.
The 192 feares an ergonomically designed push-button switch layout and also a $50 / 60-z$ sinewave output (which al ows you to check trigger circuits at line requencies).
A so consid 3 that the 192 inclu des the ur ique Brad ey feature of allowing percentage error for both amplitude and fime, to be rzad directly on a meter without the need for urther calculations.

G\&EBRAELEYLTD
Elactral Howse. Neasden Lane.
Lcndon N V - 0 .
-elephone 31-.2507811 Telex: 25583

A Lucas co mpany
BRADLEY
electronics

Books BY G.A.BRIGGS

OVER A QUARTER OF A MILLION COPIES SOLD SINCE 1948

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations. Cloth bound.
PRICE $\mathbf{£ 1} 50$ ($\mathbf{£ 1} 63$ post free).
A standard work on the subject of
loudspeakers, now in its 24 th impression.

CABINET HANDBOOK

192 pages, 90 illustrations. PRICE 38p
(46p post free). Semi-stiff cover.
Cloth bound 75p (85p post free)

AERIAL HANDBOOK

(Second Edition)
176 pages, 144 illustrations.
PRICE (Semi-stiff cover) 75p (83p post free) Cloth bound $\mathbf{£ 1} 13$ ($\mathbf{£ 1} \mathbf{2 3}$ post free).
This revised edition includes explanations and requirements relating to colour TV and Multiplex stereo.

MUSICAL INSTRUMENTS AND AUDIO
240 pages, 212 illustrations. Cloth bound. PRICE $£ 163$ ($£ 176$ post free)
Intended to appeal to both the concert-goer and the audiophile.

ABOUT YOUR HEARING

132 pages. 112 illustrations.
PRICE (semi-stiff cover) 78p (86p post free).
Cloth bound $\mathbf{£ 1} 13$ ($\mathbf{£ 1} .23$ post free).
Many aspects of audiology, age and noise
effects are expertly covered, with
guidance for the hard of hearing.

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. 112 illustrations. Cloth bound. PRICE $\mathbf{£ 1} 25$ ($\mathbf{~} 1.38$ post free).
Vital information on the development of
radio, audio, hi fi, etc., from the early
days up to 1961

A TO Z IN AUDIO

224 pages, 160 illustrations. Cloth bound.
PRICE 78p (88p post free).

PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound.
PRICE 92p (£1 post free)

> All the above books contain the usual touches of humour associated with this writer.

Please send orders and enquiries to:
RANK Wharfedale book dept. b.W.s. 13 WELLS ROAD ILKLEY YORKS LS29 9AZ
Telephone: ILKLEY 4246

Published by:
RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS
 \section*{The Mode SV 700ED
 \section*{The Mode SV 700ED Video TaperecorderThe newest addition to the Shibaden Range}

This new Shibaden Model SV-700ED is a modified version of the very successful SV-700 series of video taperecorders and is equipped with the newly developed 'Electronic Editor
This remarkable capability permits intermittent recording or the electrical insertion of other programs to a pre-recorded program and can be easily performed without any disturbance.
The outstanding features of this new unit include a built in electronic editor which ensures noise-free editing. There is complete tape interchangeability which means that tapes recorded on one SV-700ED are fully playable on any other Shibaden SV series half-inch video taperecorder and on SV-800EC units. Still frame viewing for close inspection of a critical scene is possible and the automatic gain control system will eliminate troublesome level adjustment against variation of input levels for both the video and audio.
Audio dubbing is possible and audio can be added or recorded over to a previously recorded tape. The recording time is 70 minutes continuous recording on one Shibaden R-706 video tape.
Write today for a fully detailed brochure and price list of the SHIBADEN range.

SHIBABEA (UN.) L/MITEF
BROADCAST ECCTVEGUIPMENT MANUFACTURERS
61-63 Watford Way, Hendon, London,
NW4 3AX. Telephone: 01-2028056

- high accuracy digital measurement a full multimeter facilities a little larger than an Avometer aautomatic decimal point and over-range indication ainternal calibration source asimple push-button operation aBCD print-out facility afully portable alow cost

All this and it's an Avometer,too!

With the Digital Avometer DA 112, you can measure a.c./d.c. voltage between 1 V (100 mV d.c.) and 1000 V full range, a.c./d.c. current between 1 mA ($100 \mathrm{\mu A}$ d.c.) and 1 A full range and resistance from 100_{Ω} to $1 \mathrm{M}_{\Omega}$ full range. Basic accuracy $\pm 0 \cdot 1 \%$ of reading ($\pm 0 \cdot 1 \%$ of full range on 1 V and 10 V d.c. ranges). A.c. measurements up to 100 kHz . Input resistance $1000 \mathrm{M} \Omega$ on 10 V d.c. range. 50% over-range facility (except 1000 V a.c.) at specified accuracy.

See us on the Thorn Group Stand
Stand No. 1-116/130 London Electronic Components Show (RECMF) May 18-21 1971

How to get what you want without having to try very hard

SINGLE SOURCE MAKES SENSE

Anything you can do to save yourself trouble makes sense. When it comes to ordering smaller quantities of a variety of parts there is a lot to be said for getting everything from one place. We're in business to make that easy for you.
As stockholders of Cinch, Dot and FT products, we are an efficient single source for pretty well everything of this kind you are likely to want in whatever quantity you want it and at short notice. So, whether it's Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners or Assemblies that you need, the easiest way is to get them from us-the most economical too, in the end.

Make United-Carr your SINGLE SOURCE

116 PAGE FREE SINGLE SOURCE CATALOGUE illustrates thousands of stock items, any one of which you might want at any moment, posted on request to Firms and Organisations. Send for your copy now:
United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

Ened (FT) stockists

UPITED-CARR
SUPPLIES

TRACK DOWN DAMAGING TRANSIENTS!

NOW, you can determine the source and monitor the magnitude of transients with the compact low cost, Erskine Surge Indicator, Mk II. As a guide to corrective action, the indicator is a must for designers, manufacturers and
 users of semi-conductors and relay switching equipment.

$$
\begin{aligned}
& \text { SURGE INDICATOR Mk II } \\
& \text { Saves its cost in a millionth of a second! } \\
& \text { Erskine Laboratories Limited, } \\
& \text { Scarborough, Yorkshire } \\
& \text { Tel: 0723-2433 Telex: } 52562 \\
& \text { A member of the Dale Group of Companies }
\end{aligned}
$$

WW- 055 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Solenoid SRM. 7 lbs to 14 lbs at $1 \frac{1}{2}{ }^{\prime \prime}$

Knapps Lane, Bristol 5. 0272657228

See now,playlater.
If something's worth recording, it's worth recording well. The TVR 332 Video Tape Recorder gives a very high quality picture for just $£ 820$.

Its many features include audio monitoring and dubbing; push button controls; automatic playback and rewinding; instant stop-motion and 1500 hours video head life.

Whether you want to buy or hire, it's naturally backed by Dixons service.

Write or phone Dixons CCTV Ltd 3 Soho Square, London W.1. 01-437-8811

Dixons CCTV. Weoffer you more:

WW- 056 FOR FURTHER DETAILS

All you can buy from Vitality are miniature lamps because that's all Vitality makes.

You get personal service from the people at Vitality because lamps and only lamps are their life.

Miniature lamps at the rate of one million a week in dozens of different sizes.

This means you can be sure of getting exactly the lamp you're looking for when you ask for Vitality.

Miniature lamps from 3 mm diameter upwards in voltages from 1.5 to 50 V with all forms of bases.

When you're looking for a lamp ask Vitality first - they're Europe's miniature lamp specialists. Write for your copy of the Vitality catalogue

Two wide range, low cost Linstead instruments for your work bench

L.F. Signal

Generator,
Type
G2

* 10 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~Hz}$. \star Sine wave: 0 to 6 V r.m.s. \star Square wave: 0 to 9 V peak to \star Squ.
$\star 0$ to 1 Watt into 3 ohms. 50 Hz to 20 kHz .
\star Step attenuator on sine and square wave outputs: X1. X0.1. X0.01. x0.001.
\star Rise time $\frac{1}{2}$ us over full range.
\star Size: $21 \times 16.6 \times 15 \mathrm{~cm} .\left(8 \frac{1}{4} \times 6 \frac{1}{2}\right.$
$\times 6$ Gin $)$
$\mathbf{f 2 8 8}$
net U.K.

Transistorised

 Millivolt Meter, TypeM2
$\star 12$ A.C. ranges: 1.2 mV to 400 V F.S.D. Imeasurements may be taken down to 60μ volts) (10 Hz to
$300 \mathrm{kHz}: Z=10 \mathrm{M})$.

* 8 D.C. ranges: 120 mV to 400 V F.S.D.
\star Accuracy $\pm 2 \frac{1}{2} \%+2 \frac{1}{2} \%$ F.S.D.
* Full overload protection.
\star Operated by 9 -volt battery.
\star Size: $21 \times 16.6 \times 13 \mathrm{~cm}$. $18 \frac{1}{4} \times 6 \frac{1}{2}$
\times 5in)
$f 30$
net U.K.

For full details of both instruments, send the coupon today.

- RADFORD

AUDIO MEASURING INSTRUMENTS
Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification	
Frequency Range:	$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges).
Output Impedance:	600 Ohms.
Output Voitage:	10 Volts r.m.s. max.
Output Attenuation:	$0-110 \mathrm{~dB}$ continuously variable.
Sine Wave Distortion:	0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Square Wave Rise Time:	Less than 0.1 microseconds.
Monitor Output Meter:	Scaled 0-3, 0-10, and dBm.
Mains Input:	$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
Size:	$17 \frac{1}{} \times 11 \times 8 \mathrm{in}$.
Weight:	25 lb .
Price:	£150.

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range:
Distorition Range
Sensitivy:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ f.s.d. (9 ranges).
100 mV .-100 V . (3 ranges
100 kOhms .
3 dB down. at 350 Hz .
30 dB down at 45 Hz
30 dB down at 45 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection frequency to 250 kHz .
included battery.
$17 \pm \times 11 \times 8 \mathrm{in}$.
£120.
Descriptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD.

BRISTOL BS3 2HZ
Telephone: 0272, 662301

WW-064 FOR FURTHER DETAILS

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED
MARSHGATE TRADING ESTATE,
MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

With the Motorola 5 to 60 amp silicon power transistor range.

Specify Motorola silicon power transistors and you can be sure of one thing - no amp cramp.

Motorola give you the widest possible range. And that's not all.

Specify Motorola and you're putting top quality into your circuits. And saving money too.

Therangegoes from 5 to 60 amps . You've got a choiceof 5 packages and up to 10 amps in plastic.

Beat amp cramp with Motorola. Write to:

Motorola Semiconductors, Dept. WW,

 York House, Empire Way, Wembley, Middx. Telephone: or-903 0944 .MANUFACTURING FACILITY AT EAST KILBRIDE, SCOTLAND

Therodscowirn AUDOO CATALOCUE has something for EVERYONE

. the most sophisticated of audio systems, cassette recorders, with musicassettes to go with them. Reel to reel recorders and accessories of every kind. Tapes at such incredible discounts it's too good to be true. Amplifiers, tuners, record players, Hifi for the do-it-yourselfer, headphones, mixers, radios for car and home, clock radios, speakers of all types, P.A. equipment, dust bugs; disc preeners, instalment credit-need we say more?... we could, but it takes a whole catalogue to do so Why not send for a copy by filling in the coupon below?

SENT FREE!

KJ ENTERPRISES (DEPTWW5) 33 BRIDLE PATH WATFORD HERTS Tel 25634 Showrooms 101 St AIBANS ROAO warforo (close to Watord Junction Station)

Please send me FREE a copy of the KJ fully illustrated colour discount catalogue by return of post. To: -
BLOCK CAPITALS PLEASE

Name

Address

RCA ANNOUNCE NEW POWER
TRANSISTORS FOR QUASI COMPLEMENTARY AUDIO AMPLIFIERS.

Now available, six of the best from RCA.
Six new power transistors for output levels from 5 W to 70 W (8Ω impedance).

Manufactured by RCA to the highest professional standards.
Available from your local stockist as of now
Make a note of the right number for your project.

Type	40629	40630	40631	40632	40633	40636
Power Output	5 W	7 W	10112 W	25 W	40 W	70 W

Or phone Sunbury-on-Thames 85511 and we'll tell you more. There's plenty more to tell.

RCA Ltd.. Solid State, Sunbury-on-Thames, Middlesex.
OFFICIAL DISTRIBUTORS:

Raise yourStandards with

Whatever your precision Standards instrumentation needs, you'll do a better job with Tinsley equipment. Fill up the coupon and get to know more about the Tinsley standard.

BRIDGES - ELECTRONIC NULL DETECTORS POTENTIOMETERS $_$POTENTIOMETER CALIBRATORS ■ RESISTORS ■ STABILISERS WATTMETERS • STANDARD CELLS

H. TINSLEY \& CO. LTD.

WERNDEE HALL, SOUTH NORWOOD, LONDON, SE25. TELEPHONE 01-654 6046 (5 lines)

To H. Tinsley \& Co. Ltd., Werndee Hall, S. Norwood, London SE25 Please send me your Standards Catalogue

NAME POSITION \qquad
COMPANY \qquad ADDRESS

NEW SOUTHCOM

 starfoneThe Diminutive Single Sideband Radiotelephone With The Big Voice.Tested Beyond $1,000 \mathrm{Km}$. And Amazingly Inexpensive!

The Starfone is the ideal high frequency transceiver for medium range fixed and mobile communications. Reliable as only all-transistorized equipment can be, the Starfone is the best device for construction projects, farm to city, bank to bank and hundreds of other communications requirements.

Model Starfone "104"

Extremely compact, the Starfone fits the corner of a desk or under the dashboard of an automobile. And it has up to 4 channels to provide day and night frequencies and separate channels for different administrative circuits.
Two models are available for 2 to 10 MHz frequency coverage. Both models operate from any 12 volt source. Power consumption is only 1 watt on receive and transmitter power consumption follows voice peaks,
The low price? See your Southcom dealer or write for full Starfone information.

FEATURES

Powerful-Works over distances and terrain where FM fails. Proof tested beyond 1000 Km .
Rugged-The Starfone is the commercial version of Southcom's Patrolfone Tactical Militarized Transceiver.
Reliable-100\% transistorized, no tubes.
Easy to Install-Uses "no tuning" broad band circuitry, installs in minutes. Just connect battery and antenna to put the station on the air.

SPECIFICATICNS

Size: 7.36 cm . high $\times 24.13 \mathrm{~cm}$. wide $\times 20.32 \mathrm{~cm}$. Iong ($2.9^{\prime \prime} \times 9.5^{\prime \prime} \times 8.0^{\prime \prime}$)
Frequency: Model SC104A-2 to 7 MHz
Range: Model SC104B-3 to 10 MHz
Channels: 1 to 4, any channel anywhere in the frequency range
Power Output: 15 to 20 watts P.E.P. into 50 ohms.
Emission: Upper or lower single sideband. Selectable sideband option effectively doubles number of channels.
Power Requirements: 12 volts DC, positive or negative ground. $115 / 230$ volt AC power supply available.

SOUTHCOM INTERNATIONAL
Department 171-3
2210 Meyers Avenue
Escondido, California 92025 U.S.A. Telephone (714) 746-1141 Cable: SOUTHCOM Telex: 695-400 Representatives Worldwide

TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volts
Secondary 240

LOW VOLTAGE SERIES (ISOLATED) \qquad

LEAD ACID BATTERY CHARGER TYPES
PRIMARY 200-250 VOLT FOR CHARGING 6 OR 12 VOLT BATTERIES

\star CARRIAGE VIA B.R.S.
All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

Higher current types available on application.
POSTAGE EXTRA
ALSO AVAILABLE: Open construction variable voltage transformers, suitable for
ALSO AVAILAB
panel mounting.
0.5 Amp.

\star Speedy production winding service. \star Please send for full lists.

Also stocked:
VALVES • SEMICONDUCTORS • MULTIMETERS

BARRIE ELEGTRONIGS

11 MOSCOW ROAD • QUEENSWAY

 LONDON, W. 2[^2]| VISIT US |
| :---: |
| AT |
| THE |
| LONDON |
| COMPONENT |
| SHOW |

WW- 076 FOR FURTHER DETALLS

WHEATSTONE BRIDGE

Type 185 R.I.
6 RANGES
0.08 to 60,000 ohms ACCURACY $\pm 0.5 \%$

This is a compact Wheatstone Bridge for D.C. resistance measurements. An 800 Hz buzer and earphones can be supplied as accessories for conductivity measurement.

PRICE: £22.00 EX-STOCK
Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code: CR9 2RU) Telephone: 01-684 4025 and 4094

SOLID STATE A.C. MAINS AMPLIFIERS

employing only high grade components and transistors
LT55 6 WATT AMPLIFIER
A High Fidelity unit providing excellent results at modest output levels.
Output Rating I.H.F.M. 6 W.
Frequency Response 30-20,000 cps-2dB. Sensitivity 5 mv (max.)

Harmonic Distortion 0.5% at $1,000 \mathrm{cps}$. Recommended Output for 3-8-15 ohm Loudspeakers.
$\begin{array}{ll}\text { Output for } 3-8-15 \text { ohm Loudspeakers. } & \text { Retail price } \\ \text { Input Sockets for 'Mike' Gram and Radio }\end{array}$ £11
Tuner/Tape Recorder.
Controls (5) Volume, Bass, Treble, Mains
Switch, Input Selector Switc
Switch, Input Selector Switch.
LT66 12 WATT STEREO AMPLIFIER
A twin channel version of the LT55 providing up to 6 watts High Fidelity output on each channel.
Switched Input Facilities Socket (I) Tape or crystal PU (2) Radio Tuner (3) Ceramic $\stackrel{\text { Pu Microphone. }}{ }$
Controls (6) Volume, Bass, Treble, Balance,
Controls (6) Volume, Bass, Treble, Balance,
Mono Switch.
Facia Plate Rigid Perspex with black/silver Facia Plate Rigid Perspex with black/silver
background and matching black edged knobs
 with silver finish centres.

Recommended Retail price C21
Size 12×3 x 6 in. Approx.
 PLEASE SEND A STAMPED ADDRESSED ENVELOPE FOR FULL DESCRIPTIVE DETALLS OF ABOVE UNITS.
Wholesale and Retail enquiries to: LINEAR PRODUCTS LTD ELECTRON WORKS, ARMLEY, LEEDS

*PROFESSIONAL AERIALS

. .for Telecommunications

\star MISSILE \& SATELLITE TRACKING

* SHIPTO SHIP
* GROUND TO AIR
* TELEMETRY POWER SYSTEMS ETC
* MOBILE RADIO
* SHIPTO SHORE

The new J BEAM Colinear incorporates in-built "phase inverters" (patent appli. 56417/70) consisting of a series of printed circuits sealed and shrouded in glass-fibre laminate which enables 25\% reduction in the physical size of the aerial to be achieved. Provides omni-directional coverage with gain of 10 dB UHF or 6 dB VHF.

OFFICIAL CONTRACTORS TO THE BBC, ITA, MIN. OF DEFENCE, HOME OFFICE, LOCAL AUTHORITIES

Write or telephone today

$\left.\begin{array}{lll}0 \\ 0 & S & \Delta \\ 5\end{array}\right]$

ENGIMEERING ITD

ROTHERSTHORPE CRESCENT, TEL: 63531 (STD 0604)
data specifications.
NORTHAMPTON.
TELEX: 311101

Member of the J. Beam Group of Companies

VISIT US ON
STAND 1/189
R.E.C.M.F. OLYMPIA
MAY $18^{\text {th }}-21^{\text {st }}$

WW- 079 FOR FURTHER DETAILS

ON HAND AT ANYTIME

let us introduce you to:
the narda 9500 SWEEP GENERATOR
THE SCIENTIFIC ATLANTA 410A TELEMETRY DATA

RECEIVER

THE DUMONT 1000 SERIES OSCILLOSCOPES
THE NORTH ATLANTIC 8525 A.P.I.
Visit our stand for comprehensive information on the entire marketing capacity of automatic test, electronic instrumentation, and communications equipment which Aveley offers to industry.

If you cannot visit-write for leaflets and Aveley News.

AT AVELEY

we have a firm grasp of the instruments market. coupled with a wide range of United States Companies. In the
AMERICAN EXHIBITION, GROUND FLOOR NATIONAL HALL News.

AVELEY ELECTRIC LTD
ARISDALE AVENUE, SOUTH OCKENDON,
ESSEX RM 15 5SR
Tel: South Ockendon 3444
Telex: 24120 Avel Ockendon

Looking for a safer breed of Connector?

You choose electrical equipment in much the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see its pedigree.
When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machining and assembly; sound design. Its pedigree is impeccable.
Just 1 winner from the Rendar kennel The Rendar Safebloc saves time and saves lite. There's no need to fit a olug for testing- just danger of shocks - no current can pass until the lid is closed.
Rendar pioneered this concept, and introduced the "Safebloc" to the British market over 12 vears ago. It's indispensable on testing lines, and for all kinds
of electrical demonstrations. Double Safebloc available for 3 -phase apolications.

INSTRUMENTS LTD Burgess Hill, Sussex. England Tel. 2642-4. Cables RENDAR Burgess Hill WW-082 FOR FURTHER DETALLS

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

EnTla
區

[^3]
ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components
BUDAPEST, XIII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 3648; 3649

MEMEA DEÁORE an OSCHIDSPO PGMa? thesefeatures

Dual trace - Signal delay ■ DC-25 MHz at $10 \mathrm{mv} / \mathrm{div}$ Full delayed

time base
facilities

- 3\% measuring accuracy

Viewing area $8 \times 10 \mathrm{~cm}$

... at a Telequipment price

D67 Dual trace Solid State Oscilloscope

The D67 is a supreme example of Telequipment's ability to offer a high quality, high performance oscilloscope at a sensible price.

Where else can you find an all solid state dual trace 25 MHz portable oscilloscope with sweep and signal delay, stabilised power supplies, 3% accuracy and a viewing area of $10 \times 8 \mathrm{~cm}$ for only $£ 295$ (U.K. price, inclusive of delivery)

Send for full details now and see how great is the value offered in the Telequipment D67.

Wireless World

Electronics, Television, Radio, Audio

This month's cover. Although not concerned with manufacturing processes we are not unmindful of their significance and our illustration shows 21 -inch face-plate being sealed to a metal-coned c.r. tube at an E.M.I. factory.

IN OUR NEXT ISSUE

Do we want intelligent machines? What do we mean when we say a machine is intelligent? Can we build them? These are some of the questions discussed in one of next month's articles.
Transistor circuit analysis: The first of two articles which together form a complete introduction of transistor amplifier theory.

Contents

213 Editorial Comment
214 Artificial Vision
Miles-per-Gallon Meter by S. C. Hambly
Announcements, Conferences \& Exhibitions
Stereo Mixer by H. P. Walker
226 News of the Month
International Components Show

Letters to the Editor
May Meetings
Circuit Ideas
Transients and Transience
Digital TV Line Standards Converters
Using Non-linear Loops by Thomas Roddam
Audio Festival in France
F.M. Stereo Tuner-2 by L. Nelson-Jones

Sixty Years Ago
London Component Show Exhibitors
Electronic Building Bricks- $\mathbf{2}$ by James Franklin
Elements of Linear Microcircuits- $\mathbf{8}$ by T. D. Towers
H.F. Predictions

Memory for Karnaugh Map Display by Brian Crank
Modifications to the Karnaugh Map Display by A. W. Critchley
Personalities
World of Amateur Radio
New Products
Literature Received
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

Published monthly on 3rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3s 6 d).
Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.I. Telephone 01-928 3333.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636.
Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
Subscription rates: Home, $£ 4.00$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

Brimar manufacture the widest range of cathode ray tubes for industry to meet most specifications. Tomorrow's new and more complex demands are already being evaluated by Brimar. It's this kind of forward thinking that keeps Brimar ahead. Write for further details.

Thorn Radio Valves
and Tubes Limited
7 Soho Square, London, W1V 6DN.
Tel: 01-4375233.

Editorial Comment

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.

First, a word of thanks to the many readers and organizations who have sent congratulatory messages on our completing 60 years of publication. The reception given to the April issue and the good wishes from readers in many parts of the world-some having read the journal for as many as fifty years-is heartening and deeply appreciated by members of the editorial staff. A few of the letters are included on p.231.

Browsing through volumes for references etc., for our birthday issue has prompted us to introduce, as a regular feature, quotations from the pages of Wireless World of 60 years ago. The first is on p.249.

Although, as Hugh Pocock mentioned in his guest editorial last month, there was a time when we published notices of broadcast programmes (albeit in selfdefence) we are not concerned with the aesthetics and politics of broadcasts (sound or vision) or records. There are journals, and journalists, devoted to reviewing programme material. We have never seen this as a function of a technical journal. Having said that, we do not want to convey the idea that we are concerned only with frequency response and "entertaining the bats"!

Similarly in the field of broadcasting we are concerned with the means and not the matter broadcast. Any move, therefore, which will increase the use of broadcasting is to be applauded; as is the recent announcement by the Minister of Posts and Telecommunications to introduce local commercial radio independent of the B.B.C. The plans, as envisaged in the Government White Paper 'An Alternative Service of Radio Broadcasting' (Cmnd 4636), provide for a network of 60 stations (in addition to the 20 B.B.C. local radio stations authorized last year). They will be under the jurisdiction of the I.T.A. which it is proposed to rename the Independent Broadcasting Authority.

The 60 stations will serve about 75% of the country's population. What of the other 25% ? To serve them with an independent service would need very many more stations. Provided one has the capital and the courage one can start up a local newspaper, but a local radio station is dependent on an essential commodity which is in limited supply, i.e., the frequency spectrum, and especially the m.f. section. It is proposed that the 60 new stations should operate both in the m.f. and the v.h.f. bands. Surely this is an uneconomic use of the already overcrowded frequency spectrum. An appendix to the White Paper points out that in the 121 medium-frequency channels there are already some 1440 stations operating in the European Broadcasting Area. Those readers who live in the S.E. corner of England will know that it is virtually impossible to receive a medium-wave broadcast free of interference after dusk. The planners, will of course, counter this criticism with the rejoiner that the local radio service will also be broadcast on v.h.f. They will thus be utilizing two slices of the spectrum cake to satisfy what one slice should be able to do. Why not v.h.f. only? According to the White Paper this could provide a population coverage of 65% in the United Kingdom by day and night, whereas on m.f. the coverage will be 70% by day but only 25% by night.

Those who will be financially involved in local broadcasting will doubtless argue that the number of v.h.f. receivers in use is small by comparison with the ubiquitous m.f. transistor portable and the potential audience would therefore be considerably smaller. Had this attitude been adopted by the B.B.C. engineers in 1955 we would never have had a v.h.f. service. They provided the service and the industry, after some heavy prodding, produced the receivers.

Artificial Vision

Microelectronic implant for directly stimulating the brain of blind people

The idea of implanting small electronic devices in the body has now become widely accepted through the use of the cardiac pacemaker. Here only two electrodes are required, to stimulate a part of the heart muscle. Extending this technique to apply a multiplicity of electrodes to a whole area of the central nervous system-in particular the brain-seems a very daring step indeed, both from the medical and the engineering point of view. Nonetheless this step is now being taken, by workers at the Medical Research Council's Neurological Prostheses Unit*, in an attempt to restore some degree of vision to people who have

Fig.1. Principle of the visual prosthesis. The visual cortex of the brain is stimulated by electrodes fed from microelectronic receivers in an implant between the skull and the scalp. In practice the transmitter "hat" is in contact with the head.
become blind, for example, through damage to the optic nerve. (Prosthesis means a manmade device for replacing a part of the body.) By stimulating the visual cortex of the brain with 180 electrodes, fed from a set of microelectronic inductive-loop receivers implanted between the skull and the scalp, it is hoped to produce visual patterns which can be organized electronically to enable a blind person to, say, avoid obstacles when walking or read print or handwriting at normal speeds. Preliminary experiments on
*At the Institute of Psychiatry, Maudsley Hospital, South London

a woman patient, who has had a visual prosthetic implant since 1968 , suggest that this intention can be achieved.
The principal M.R.C. workers concerned are a physiologist, Professor G. S. Brindley, who has done the preliminary experimental work (Refs 1 and 2), and an electrical engineer, Mr. P. E. K. Donaldson, who has specialized in electro-physiological research work for some years. Both were originally at the Physiological Laboratory, Cambridge University, where the project on visual prosthesis was begun. Professor Brindley constructed the first visual prosthesis, implanted in the woman patient mentioned above, which had 80 receivers and 80 electrodes applied to only one side of the visual cortex (the right cerebral hemisphere). Mr. Donaldson has been developing animproved implant, originally suggested by Professor Brindley, which uses a smaller number of receivers, 29 , but arranged in a 20 -column $\times 9$-row matrix to give, in conjunction with logic AND gates, 180 stimulation outputs which will be applied to both hemispheres of the brain (90 electrodes on each side). This has not yet been used on a patient.

The interest of the electronic engineering development, apart from new circuit techniques, lies mainly in the environmental problems. These are to construct an implant which is small and neat enough to be carried by the patient without discomfort or change in physical appearance and which will work reliably for years while immersed in the body's fluid-virtually a bath of warm saline solution! To tackle these formidable problems the latest technology in hybrid microcircuits has had to be investigated-in particular the testing of conducting and insulating materials, encapsulation and hermetic sealing-and where necessary new techniques have had to be developed with the assistance of industrial firms.
Fig. 1 shows in simplified diagrammatic form how the visual prosthesis will operate. The patterns to be conveyed to the cortex (e.g. letters of the alphabet) are sensed by a picture source, which could be an artificial retina or a scanning device, such as a television camera, combined with a storage system. This produces 180 simultaneous video signals from an ordered array of points on the optical field, each signal representing the light intensity at a given point. Thus the geometrical structure, and any light-andshade features, of the pattern are conveyed by the information in the 180 signals. These

At all 180 intersections:
video signal feeds transmitter pair; receiver pair feeds AND gate
Fig.2. Electrical grouping of transmitters and receivers into a 20×9 matrix. By this means 180 points on the visual cortex can be stimulated from only 29 receivers.
signals are used to pulse-modulate a bank of 29 inductive-loop transmitters built into a hat-shaped plastics shell similar to a hair drying hood. The transmitters are arranged so that the inductive loop in each is located immediately above the loop of a corresponding receiver in the implant-the actual layout, in the 'hat' and in the implant, being a matter of physical convenience. Electrically, however, the transmitters are grouped to form a 20×9 matrix - that is 20 columntransmitters and 9 row-transmitters-so that 180 unique pairs of transmitters can be identified (see Fig.2). These pairs are modulated by the 180 separate video signals from the picture source. Row-transmitters generate 500μ s pulses of r.f. at 10 MHz , while alternate column-transmitters give $500 \mu \mathrm{~s}$ amplitude modulated pulses at 8 MHz and 6 MHz (this arrangement of different frequencies for adjacent columntransmitters being a means of avoiding cross-talk).

Magnetic fields set up by the transmitter
coils link with the corresponding receiver coils in the implant. Thus the pulsemodulated $10 \mathrm{MHz}, 8 \mathrm{MHz}$ and 6 MHz r.f. signals are picked up within the patient's head and these signals provide not only information but the electrical power needed to operate the active devices in the implant. The receivers are electrically grouped to form a 20 -column, 9 -row matrix corresponding to that of the transmitters (Fig.2), and their outputs, 500μ s unidirectional pulses, are fed to 180 two-input AND gates (that is, an AND gate at each intersection in Fig. 2 of a column-receiver output and a row-receiver output). Thus any one of 180 AND gates in the implant can be opened by activating a particular column-row pair of transmitters in the 'hat'-that is, by turning on the column-transmitter and row-transmitter simultaneously with a $500 \mu \mathrm{~s}$ modulating pulse.

Output signals from the AND gates$500 \mu \mathrm{~s}$ d.c. pulses-are taken by a bundle of wires through a small orifice in the skull and are applied by 180 electrodes to the visual cortex of the brain- 90 electrodes on each hemisphere. These electrodes, made of platinum, are mounted in two flexible silicone rubber caps which are moulded to fit round the two occipital lobes of the brain. They are distributed according to physiological knowledge of how the surface of the visual cortex responds to electrical stimulation at different points. Thus any of the 180 electrodes can be activated by pulse modulating a column-row pair of the transmitters, and so, looking at the whole system, any one of 180 points on the visual cortex can be stimulated by a signal from any one of 180 points on the optical field of the picture source.

Stimulating a given point on the visual cortex may result in any of several visual perceptions by the blind patient, including a single spot of light, a group of two or three spots and a whole cluster or cloud of dim spots. The commonest perception is of a single, very small spot of white light 'like a star in the sky' and this is obviously the most useful for organizing the transmission of patterns, such as letters of the alphabet, through the whole electronic-neurological system so that they are recognizable by the

Fig.3. The four types of package used in the implant: (top left) row-receiver (isy m and capacitor; (top right) block of fifteen $1 \mu F$ tantalum capacitors; (bottom left) column receiver; (bottom right) hermetically sealed logic package.
patient. \dagger To achieve this organization it is necessary to correlate the stimulation of a given point on the visual cortex with the position in space of the resulting white spot perceived by the patient. This is done by activating a given electrode and asking the patient to point with his arm to where he 'sees' the white spot. By recording a series of patient's responses to stimuli in this manner it is possible to build up a map which correlates electrode positions on the cortex with white-spot positions experienced by the patient. Once this is achieved, with the apparatus now being developed, it will be possible to introduce a positional coding system to translate the pattern as sensed by the picture source into the particular distribution of electrode stimulation required for the patient to 'see' a similar pattern.

The implant

In the implant are 29 receivers and 180 AND gates. The components for these are grouped into 44 packages which are sealed into a silicone rubber cap moulded to fit over the patient's skull. There are four different groups of packages, Fig.3: (a) twenty column-receivers, each containing passive components and semiconductor diodes and encapsulated in resin; (b) nine row-receiver pick-up coils with their tuning capacitors, each encapsulated in resin; (c) nine logic packages, each containing 20 transistor AND gates and associated components, hermetically sealed and resin encapsulated; and (d) six capacitor packages, each containing a block of 15 tantalum capacitors encapsulated in resin. The column receivers and logic units are constructed as hybrid microcircuits on thickfilm circuits.

The three packages which are selfcontained circuits are shown in Figs. 4 and 5. A column-receiver, Fig.4, consists of a tapped pick-up coil tuned by a 150 pF capacitor, two detector diodes in series, a $10,000 \mathrm{pF}$ smoothing capacitor, a 55 -volt zener diode to limit the d.c. output voltage, and a diode to provide bias for thetransistors in the logic package. The coil is 17 turns, tapped at 10 turns, for a $6-\mathrm{MHz}$ receiver; or 13 turns, tapped at 10 turns, for an $8-\mathrm{MHz}$ receiver. The purpose of the tapping is to match the impedance of the LC tuned circuit to that of the detector circuit and so achieve maximum power transfer. Two detector diodes, in series, are used because the maximum p.i.v. rating of a single diode would be insufficient to cope with the peak inverse voltage of the signal waveform (about 130 V). The function of the zener voltage limiter is to protect the transistor AND gates.

When the receiver is energized by a pulse of r.f. from the transmitter (it can receive up to about 2 watts) a d.c. voltage pulse is developed across the zener diode. The positive terminal is connected to 'earth' (an

[^4]

Fig.4. The column receivers (20 in all) with diodes feeding a bias common rail which provides a negative supply to the logic packages (one of which is shown below in Fig. 5).
electrode contacting the body fluid of the patient) and the negative terminal to nine AND gates (one gate in each logic package). At the same time, for the duration of the pulse of r.f., the bias diode provides a second d.c. voltage between 'earth' and a common rail, to which all the other bias diodes are connected. When any of the columnreceivers is energized by its transmitter, the corresponding bias diode applies a negative voltage pulse to the common rail, taking it to a maximum potential of -55 V less one diode voltage drop. This is fed to all the logic packages as a negative bias potential.
Fig. 5 shows a row-receiver pick-up coil and tuning capacitor connected to one of the logic packages. The coil has 11 turns, tapped at 2 turns, and is tuned by a 100 pF capacitor to 10 MHz . The row-receiver, as can be seen, differs from the column-receiver in that it consists of a tuned circuit and p-n-p transistor chip, $T r_{\text {row }}$, which is housed in the logic package. The collector of $\operatorname{Tr}_{\text {row }}$, and the bases of the n-p-n transistorchip AND gates, $T r_{\text {ANDI }}-T r_{A N D 20}$ are biased by a negative potential which comes from the bias common rail in Fig. 4 and is present when one or more of the columnreceivers is energized by a pulse of r.f. In the absence of an r.f. voltage from the rowreceiver coil this bias on the collector of $T r_{\text {row }}$ is approximately -55 V , and it biases off the transistor AND gates by at least -0.6 V (base-emitter voltage).

When the row-receiver coil is energized by a 500μ s pulse of 10 MHz r.f. from the transmitter, an a.c. voltage is applied across the base and emitter of $\operatorname{Tr}_{\text {row }}$. During the positive-going excursions of a.c. at its base, $T r_{\text {row }}$ is cut off and no current flows through it. During the negative-going excursions at the base the transistor is turned on and the $10-\mathrm{MHz}$ half cycles of current discharge the collector-emitter capacitance so that in effect there is a d.c. flow maintained in the collector-emitter circuit for the duration of the 500μ s pulse of r.f. As a result the collector-emitter p.d. falls and a positive-going 500μ s pulse is applied to the bases of the transistor AND gates. This positive-going potential is sufficient to turn on the AND gate transistors. Which of them are actually turned on
depends on which gates receive their second input, that is, emitter supply voltages through the diodes $D_{1}-D_{20}$ from their corresponding column receivers. The diodes $D_{1}-D_{20}$ are to protect the baseemitter junctions of $\operatorname{Tr}_{A N D I}-\operatorname{Tr}_{A N D 20}$ in the condition when maximum negative potential is applied to a transistor base (row-receiver off) and the transistor emitter is almost at earth potential (corresponding column-receiver off).

Thus, particular gates are opened by the simultaneous energization of the rowreceiver and one or more of the columnreceivers in Fig. 4, and in this open state the transistor AND gates produce at their collectors a negative-going (with respect to 'earth') 500μ s pulse at an amplitude of up to 55 volts (limited by the zener diodes in Fig. 4). This output is fed to an electrode on the visual cortex, which presents a load, mainly resistive, of about $3,000 \Omega$. Half of the 180 electrodes are fed through series tantalum capacitors of $1.0 \mu \mathrm{~F}$ (those in the
six 'capacitor packages' referred to above). These capacitors are to maintain the net current through their corresponding stimulating electrodes at zero; this should be helpful in preventing electrolysis at the electrodes.

An important difference between rowreceiver and column-receiver inputs to the AND gates is that the row-receivers supply 500μ s pulses of constant amplitude but the column-receivers supply pulses which are varying in amplitude-the pulse amplitude modulation, corresponding to light intensity, applied to the column-transmitters. Essentially, then, the column-receivers supply controllable power to the stimulating electrodes while the row-receivers merely provide the signals for operating the gates.

The straightforward matrix principle is satisfactory for stimulating one point at a time on the cortex, by simultaneous energization of one column-receiver and one row-receiver. In order to create a useful pattern, however, it is necessary to be able

Fig. 5. One of the nine row-receiver coils feeding one of the nine logic packages.
$T r_{\text {row }}$ is electrically part of the row-receiver but is in the logic package because active devices have to be hermetically sealed. The other transistors are two-input AND gates.

Mini implant for implantation into a baboon. This wired-up but as yet unsealed device was built to establish absence of toxicity and resistance to body fluid. One logic package, one row-receiver coil and three out of four columnreceivers can be seen.
to select and stimulate several points at the same time. This cannot be achieved directly, but by the introduction of a repetitive scanning principle in the transmitting equipment the patient can be made to experience white spots which are apparently simultaneous though actually not (cf. the apparent simultaneity of picture points on a television picture). For this purpose the row-transmitters, and hence receivers, are energized in sequence at a scanning frequency of 2000 rows per second and as there are 10 of these (9 in use, 1 spare) this means that a given row transmitter is switched on by its 500μ s modulating pulse every 5 ms , giving a field frequency (cf. television) of 200 per second. As each rowtransmitter is turned on by its $500 \mathrm{\mu s}$ modulating pulse the required columntransmitters for that row, determined by the pattern structure viewed by the picture source, are also turned on by simultaneous modulating pulses of appropriate strength.

In designing the packages for the circuitry in Figs. 4 and 5 the major requirements were: (a) small size, to make the implant as neat and unobjectionable to the patient as possible, and (b) ability to operate reliably for years in an atmosphere consisting of a warm saline 'mist'. (Although the packages are saved from

Fig.6. Hermetic package for the logic circuits compared in size with a 50p coin. On the right is the printed substrate with the ceramic wall attached (the high-light shows the solder glass); on the left is the lid, with metallizing for attachment and hole for filling with nitrogen.
direct immersion in the body fluid by the silicone rubber shell, this is by no means completely impervious to moisture.)

Monolithic integrated circuits were considered as a possibility but were not used because of the difficulty of getting special devices manufactured and environmentally tested for this unusual project, and because of their lack of flexibility, once fabricated, for experimental work. Instead hybrid microcircuits, using thick film conductors and resistors, were chosen. This technique permits experimental thick film circuits and experimental packages to be made in the laboratory, allowing flexibility of design and extensive environmental testing of devices, materials and completed packages in the conditions of a physiological laboratory.

From research into the environmental conditions it was found that, for reliable operation, discrete passive components and passivated micro-diodes need only be encapsulated in epoxy potting resin, but that thick film resistors and planar transistor chips should be hermetically sealed.

The resin-encapsulated packages, for the column-receivers, row pick-up coils and banks of tantalum capacitors, are fairly conventional (Fig. 3), but the nine hermetically sealed packages, for the

Fig.7. Completed hermetic logic package before and after wire attachment and encapsulation.
transistor AND gates and row-receiver transistors, are unusual. Based on an aerospace package developed at the Royal Aircraft Establishment, they have a ceramic substrate on which metal film conductors are deposited by a screen printing process (see Fig. 6). A ceramic wall, fabricated as a complete component and slightly smaller than the substrate, is laid on the circuit and fused to the substrate with glass. This encloses all the components but leaves connecting tags projecting outside. When the components are all assembled on the conductors, a lid of the same material as the substrate is bonded on to the top edge of the ceramic wall with solder, thereby closing the package. This lid contains a small hole by which the package is subsequently filled with nitrogen and finally sealed by a blob of solder over the hole. The great advantage of this design of package is that it enables the circuit layout to be changed during development work -by screen printing a fresh pattern of metal film conductors-without affecting the overall structure of the package. After wires have been soldered to the external tags the hermetically sealed package is encapsulated in epoxy resin (Fig. 7), and it then measures $29 \mathrm{~mm} \times 20 \mathrm{~mm}$.

The completed packages are fitted into rectangular cavities moulded into the bottom part of the silicone rubber shell and are then wired up with Teflon insulated wire of 7 thou' outside diameter. The mass of wiring, which is extremely dense and complicated, is pulled flat by a Terylene net and impregnated by a layer of silicone rubber, which forms the top part of the shell and seals in the electronics.

An. important part of the engineering development work has been the environmental testing of the implant packages. This is done by immersing them in a warm saline bath (1% sodium chloride solution at $50^{\circ} \mathrm{C}$) and operating them continuously under normal electrical conditions until any deterioration of performance is observed. For this purpose the immersed receivers are inductively coupled to transmitter units applied to the outside walls of the bath. As an example, column-receivers which have been tested continuously for 6 months under these conditions have been found to have no visible corrosion of components or conductors and no measurable reduction in performance.

A great many electronics firms have gone out of their way to assist this remarkable project by providing specialized engineering knowledge and services. Notable among these is Newmarket Transistors, who have made all the hybrid logic microcircuits for the prototype implant, and Andermann and Ryder, who have overcome some tricky problems in the manufacture of the ceramic hermetically sealed packages.

REFERENCES

1. Brindley, G. S., and Lewin, W. S. "The sensations produced by the electrical stimulation of the visual cortex." J. Physiol., 1968, vol. 196, pp.479-493.
2. Brindley, G. S. "Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses." Ann. Roy. Coll. Surgeons, 1970, vol. 47, No. 2, pp.106-108.

Miles-per-gallon Meter

An instrument which can help you achieve maximum petrol economy

by S. C. Hambly

The instrument described here will give a continuous indication of miles-per-gallon (miles/gal) with an accuracy not worse than $\pm 10 \%$ when connected to a motor vehicle. It must be stressed that the circuit is experimental and the calibration procedure is somewhat involved. However, calibration in terms of miles/gal is not essential because the meter can be used to adjust the vehicle's controls for maximum fuel economy, under a particular set of conditions, by driving to achieve the highest possible meter deflection. The device can only be used on vehicles which have an electrically driven fuel pump and, with the circuit given, a positive earth electrical system. The two factors which are needed to calculate miles/gal are the amount of fuel used and the distance travelled. It was found that on the author's vehicle, a two-litre short wheelbase Land-Rover, the volume of fuel delivered by each pumpstroke was constant over a range of pump operating rates; a fact that is made use of in the system being described.

A block diagram is given in Fig. 1. Contact-breaker operations are counted

Fig.1. Block diagram of the system. The ladder network converts the contents of the binary counter into an analogue voltage which is measured on the peak reading voltmeter.
electronically, the total count at any time representing a distance which can be calculated from the overall gear-ratio in use and the circumference of the road wheels. The total count is reset to zero each time the fuel pump operates so that the count immediately prior to reset is a measure of the distance travelled for a specific volume of fuel.

For an engine running at constant speed and load, a plot of the contact-breaker count against fuel-pump operations has the form of a sawtooth as shown in Fig. 2(a). If the engine speed is now doubled the count will rise at twice the previous rate, but if the miles/gal does not change the count will be reset twice as frequently as before, with the result that the sawtooth will have exactly the same amplitude as before, as shown in Fig. 2(b).

In general the miles/gal will not be constant, and this will be reflected in the size of the count reached immediately before reset. An instrument arranged to follow the successive peaks of the converter output waveform will indicate successive values of miles/gal, the average of these being taken over the time interval between successive pump strokes. This time interval is not usually longer than a few seconds for an engine idling, and becomes smaller as the load on the engine increases.

Circuit details

The voltage across the vehicle's contactbreaker provides the input to the system. Because this waveform is a series of damped oscillations, due to the inductive load, a low-pass filter $R_{2} C_{4}$ in Fig. 3 is inserted bet the contact-breaker and the Schmitt trigger (Tr_{1} and $T r_{2}$). The Schmitt provides clean input pulses for the first stage of the binary counter.
The binary counter has eight stages and a maximum count of 255 . Increasing the number of stages to nine gives a maximum count of 511 with ample margin for no-load conditions, but it must be remembered that, if a full-scale deflection is associated with a count of 511 instead of 255 , the meter deflection for (say) 30 miles/gal will be only one-half that produced by the eight-stage counter. In the author's vehicle the eightstage counter was found to be best.

The resistive ladder network which
translates the counter content to an analogue voltage has eight sections corresponding to the eight stages of the counter. Each section of the ladder network receives an input from one collector of the counter via an emitter follower. A voltage directly proportional to the total count appears across R_{34} and has the form of a staircase which reaches a maximum value for a count of 255.

Each time the fuel pump solenoid is energized, the counter must be reset to zero. This is brought about by momentary connection of the reset line to ground. The connection is made by a pair of normally open contacts on a reset-relay, which has an operating coil wired in series with the fuel pump. A P.O. relay frame provided with a specially wound low-resistance coil has proved quite satisfactory for the purpose, but there would be advantages in replacing this by a reed relay.
Series connection requires the lowresistance coil, but this is considered preferable to connecting the reset relay coil in parallel with the fuel pump solenoid which would mean that connections have to be

Fig.2. Waveforms showing the output of the ladder network for two different engine speeds. Note how the same peak value is reached in each case. This is because although the contact breaker is operating at twice the rate the fuel pump is also working at twice the speed, giving the same fuel consumption.
made inside the fuel pump housing and additional leads brought out.

Ideally the indicator should display the peak value of the ladder network output voltage at the moment just before reset, and it should hold this reading until the next reset occurs. Instead, a simple peak-reading voltmeter is used. The time constant C_{3}, R_{35} is a compromise that gave best results. The 9 V power supply is zener stabilized against car electrical system voltage variations.

Calibration

In order to prove the feasibility of this method of assessing miles/gal, a considerable number of measurements were made, extending over a period of about five months. Much of this time was spent on the fuel pump. Tests were made using a calibrated measuring cylinder to collect the fuel passing through a controlled leak introduced at a point between the pump and carburetter.

The time for a fixed number of pump strokes was recorded for a range of leak settings designed to cause the pump to operate at speeds in the range 0.08 to 3.0 strokes/second, a range which embraces stroke rates found in normal use for the author's vehicle. For these tests the engine was switched off and the ignition disconnected; changes in pump supply voltage were made as required by introducing an additional battery.

The results of these tests are summarized in Fig. 4 where the volume of fuel delivered per pump stroke is shown as a function of stroke rate.

Measurements were made for supply
voltages in the range 13 to 17 V , and at ambient temperatures from 0 to $20^{\circ} \mathrm{C}$ approximately.

The conclusion reached was that in the range 0.08 to 2.8 strokes $/ \mathrm{sec}$., the volume of fuel delivered on every stroke was $(4.34 \pm 0.1) \times 10^{-4}$ gallon. Beyond the range quoted, the vol./stroke increases. No attempt was made to assess the effects of the level of fuel in the vehicle tank or of the attitude of the vehicle.

As mentioned earlier the instrument can be used as described, without calibration, to achieve maximum fuel economy, by driving in such a way as to keep the meter as near full-scale deflection as possible.

If you wish to calibrate the meter proceed as follows:

1. Introduce the coil of the reset relay into the fuel pump circuit, and observe the rate at which the pump operates with the engine idling, and when climbing a hill in low gear. 2. Measure the volume of fuel/stroke at a few points in the range of stroke rates found in (1), as described above. The result should be a curve similar to that shown in Fig. 4.

An expression for miles/gal can be developed as follows in terms of:
C : representing number of contact-breaker operations recorded by the counter before reset.
V : representing the volume of fuel delivered per pump stroke (expressed in gallons).
R : overall gear ratio. Crankshaft revolutions divided by road wheel revolutions.
D : diameter of road wheels in feet.
For a four-cylinder engine C contactbreaker operations means $C / 4$ camshaft revolutions and $C / 2$ crankshaft revolutions.

Fig. 4. Characteristic of the fuel pump in the author's car which is a short wheelbase Land-Rover.

The distance travelled by the vehicle in miles is therefore:
distance (miles) $=29.75 \times 10^{-5} C D / R$ and the vehicle's fuel consumption is: miles $/ \mathrm{gal}=29.75 \times 10^{-5} \mathrm{CD} / \mathrm{RV}$
The road-wheel diameter in feet is substituted for D, and assuming for the moment operation in top gear the appropriate ratio is entered for R.
This leaves miles/gal as a multiple of C, the count of contact-breaker operations between one reset and the next. The binary counter and ladder network operate from a nominal supply voltage of -9 V , and the ladder output for the maximum count of 255 is 2.1 V .

If the ladder output voltage at the moment before reset is E then the corresponding count is $(E \times 255) / 2.1$, which replaces C in the expression for miles/gal.

$$
\text { miles } / \mathrm{gal}=29.75 \times 10^{-5} \frac{255 E D}{2.1 R V}
$$

For the vehicle used in these tests, wheel $\mathrm{dia}=2.3 \mathrm{ft}$; (top) gear ratio $=5.4$; vol./ stroke $=4.34 \times 10^{-4}$ gal, giving miles $/ \mathrm{gal}=$ $35.6 E$, where E is the ladder-network

Fig. 3. Full circuit diagram. Some resistors ($2.8 \mathrm{k} \Omega$) are made up of two $5.6 \mathrm{k} \Omega$ resistors in parallel.
output voltage immediately prior to reset.
For other than top gear operation, provision can be made by marking the indicator scale separately for each gear ratio, in the same fashion as multi-range voltmeters; but it would be exceptional for a long journey to be negotiated mainly in low gear, and it could be argued there is no necessity to consider anything lower than third gear.

Overall accuracy

The main sources of error are variation in the volume of fuel/pump stroke and variation in supply voltage causing small changes in zener voltage and therefore in the laddernetwork output. Under steady conditions the absolute accuracy is expected to be not worse than $\pm 10 \%$, for pump operating rates not exceeding approx. three strokes/ sec.

Shopping List Resistors			
Qty	value	Qty	value
1	$68 \Omega *$	24	$5.6 \mathrm{k} \Omega$
1	680Ω	16	$6.8 \mathrm{k} \Omega$
8	$1 \mathrm{k} \Omega$	3	$8.2 \mathrm{k} \Omega$
1	$1.5 \mathrm{k} \Omega$	1	$15 \mathrm{k} \Omega$
24	$2.7 \mathrm{k} \Omega$	16	$18 \mathrm{k} \Omega$

* 1 watt all others 0.5 W

Capacitors

Qty	value	Qty	value
16	1 nF	1	10 nF
1	$250 \mu \mathrm{~F}, 6 \mathrm{~V}$ working		

Semiconductors

Qty		Qtype	Qty
Qtype			
18	2N930 \dagger	25	0A90
8	0 C 202	2	$\mathrm{Z} 2 \mathrm{~A} 47 \mathrm{~F} \neq$

\dagger any n-p-n silicon transistors can be used as long as they have a current gain of at least 50
$\neq 4.7 \mathrm{~V}, 400 \mathrm{~mW}$ zener diodes.

Other parts

The reset relay used a P.O. relay frame with the bobbin wound with about 200 turns of 24 s.w.g. enamelled copper wire.
Meter: 0.2 mA f.s.d., 380Ω.

Binding of "Wireless World"

Our publishers will undertake to bind readers' copies of Wireless World. The cost, including postage on the completed volume, is $£ 2$. Copies should be sent to IPC Business Press Ltd, Binding Department, c/o 4 Iliffe Yard, London S.E.17, with a note of the sender's name and address. A separate note confirming despatch and enclosing the remittance, should be sent to the Binding Department, Dorset House, Stamford Street, London S.E.1.

For those who wish to bind their own copies cloth binding cases are available price 50 p (10 s) including postage and packing. Readers will have noticed that the index for volume 76 (1970) was included in the December issue.

Announcements

B.I.M.C.A.M. officer. L. R. Price, chairman and managing director of Honeywell Ltd, has accepted the invitation to be president of the British Industrial Measuring \& Control Apparatus Manufacturers' Association. The vice-president is L. S. Yoxall (chairman, Foxboro-Yoxall Ltd) and W. H. Medcalf (managing director, Leeds \& Northrup Ltd) is the chairman of Council.

Highgate Acoustics ceased to be Arena's sole distributors in the United Kingdom on March 31st. This follows the formation of Rank Arena A/S in Denmark last year by Rank Bush Murphy with 80% of the shares and Hede Nielsen A/S with the remainder. R. B. M.-will in future market the Danish products under the trade name Bush Arena.

Licensing agreements have been signed by three more Japanese manufacturers planning products using the Dolby noise reduction system. Dolby Laboratories have acquired an office in Japan situated at Tiger Building, 20-7, 4-chome, Kuramae, Taito-ku, Tokyo.

A new company has been formed, Barrie Electronics, 11 Moscow Road, London W.2., which stocks over 100 styles of standard transformers and offers a production winding service. Valves, semi-conductor devices and metal oxide resistors are also distributed.

EMI has purchased 50% interests in two Italian domestic electronics companies-Voxson S.p.A. of Rome and Eergon S.p.A of Anagni.

Cadmium Nickel Batteries Ltd has recently changed its name to SAFT (United Kingdom) Ltd, Castle its name to SAFT (United Kingdom) Ltd, Castle
Works, Station Road, Hampton, Middx. Tel: 01-979 7755.

Tekmar Electronics Ltd, the U.K. components sales division of Tekmar S.A. of Geneva, have completed negotiations which give them exclusive sales agreements for the U.K. distribution of electrolytic and tantalum capacitors, printed circuit boards and custom built integrated circuits manufactured by Elna Co. Ltd, of Tokyo, Japan.

The Semiconductor Division of MCP Electronics Ltd has signed sole U.K. representation and distribution agreements with the Swedish Institute of Semiconductor Research (Hafo) and with Tekelec Airtronic.

The M-O Valve Co. Ltd have concluded a technical agreement with Teiecommunications Industries Inc, of Farmingdale, New York, under which the American company is licensed to manufacture M-O Valve surge arresters in the U.S.A. and to sell these throughout North and South America.

Semicomps Ltd, 5 Northfield Estate, Beresford Avenue, Wembley, Middx, have been appointed distributors of the range of optoelectronic devices and associated integrated circuits manufactured by Monsanto's Electronic Products Division.

Tape cassette manufacturer Magnetofoni Castelli of Italy are represented in the U.K. by Trusound Manufacturing Ltd, Crittal Road, Witham, Essex. Tel: Rivenhall 4101.

An agreement has been reached under which the electronics division of Allhabo, Stockholm, will be solely responsible for the sales and marketing in Sweden of the range of components produced at the Emihus Microcomponents plant at Glenrothes, Scotland.

Auriema Ltd have concluded a distribution agreement with Nurad Inc, of Baltimore, U.S.A., to market their range of custom designed aerials, feedhorns, arrays and structures in the U.K.

The French company E.C.E. (L'Equipment et la Construction Electrique) have appointed FieldTech Ltd as sole U.K. sales agents for their range of switches and all other equipment.

Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham B16 8QW, have been appointed exclusive U.K. distributors for Resista GmbH; part of the West German Roederstein Group, who manufacture passive electronic components.
Radiodiffusion Television Algérienne has awarded a contract worth $£ 250,000$ to Marconi's Broadcasting Division for the supply and installation of a complete television and sound broadcasting studio complex in Oran, Algeria.

Plessey are to supply action data automation equipment worth $£ 750,000$ to the British Royal Navy, as part of the new training simulators to be installed at H.M.S. Dryad, the naval tactical training school near Portsmouth.

Ericsson Marine have received an order from Cunard, valued at around $£ 250,000$, to provide fully automatic radio stations for 13 new Cunard ships, the first to be completed by the middle of this year.

The Broadcasting Division of Marconi has been awarded a transmitter contract worth more than $\mathfrak{£} 1 \mathrm{M}$ by the Independent Television Authority. Marconi will supply 15 sets of u.h.f. transmitting equipment for installation in various parts of the country.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

May 18-21	Olympia
Electronic Component Show	
(Industrial Exhibitions Ltd, 9 Argyll St.,	
London W1V 2HA)	

May 18-2 \quad Royal Garden Hotel Electronic Components Conference
(Electronic Components Board, Carrier House, Warwick Row, London S.W.1)
May 28 \& 29
Horticultural Hall APRS 7I Exhibition
(Assoc. of Professional Recording Studios,
c/o 3 Strathray Gdns, London NW 3 4PA)

EASTBOURNE

May 18 \& 19
Grand Hotel Design and Control of Manufacture (Sira Institute, South Hill, Chislehurst, Kent BR 7 5EH)

OVERSEAS

May 10-12
Washington
Electronic Components Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 12-14
Boulder
Electron, Ion \& Laser Beam Technology
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 17-19
Dayton
Aerospace Electronics Conference
(I.E.E.E., 124 E. Monument Avenue, Dayton, Ohio 45402)
May 17-20
Washington Microwave Symposium
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 21-27
Montreux
Television Symposium
(Case-Box 97, 1820 Montreux)
May 28-30
Geneva
Amateur Television Convention
(J. Richez, 1 rue Samuel-Constant, 1201 Geneva)

Stereo Mixer

A comprehensive range of high-quality input stages with mixing, filtering, and tone-control facilities

by H. P. Walker, B.A.

The stereo mixer to be described, in this and next month's issues, is shown in the block diagram of Fig. 1, and its specifications are given in Table 1. Although the author's equipment was built with five stereo channels, there is in principle no reason why it should not be expanded to many more with a more complex system of mixing and group faders, or simplified to a high-quality pre-amplifier with no mixing facilities. Similarly, the nominal output levels can be altered as required.

Pre-Mixing circuits

For an overload margin of 30 dB for the input pre-amplifiers, and a residual noise level of better than 80 dB below full output, the nominal signal level at mixing should be 120 mV , requiring an output of about 250 mV from the pre-mixing circuits. This defines the gain of the input circuits for the basic sensitivities.

The stereo balance and mono/stereo switch, shown in Fig. 2, is a common feature of all the pre-mixing amplifiers.

The balance control should be a wire-

Table 1. Input facilities

Source	Max. Sensitivity	Noise	Overload margin	Comments
Magnetic pickup	$1.5 \mathrm{mV}$ $\text { (a) } 1 \mathrm{kHz}$	$-67.5 \mathrm{~dB}$ ref. 1.5 mV @ 1 kHz	$>30 \mathrm{~dB}$	Normal R.I.A.A. equalization
Ceramic pickup	$15 \mathrm{mV}$ @ 1 kHz	$\begin{aligned} & -70 \mathrm{~dB} \\ & \text { ref. } 15 \mathrm{mV} \\ & @ 1 \mathrm{kHz} \end{aligned}$	28dB	Utilizes mechanical equalization, input impedance $\sim 200 \mathrm{k} \Omega$
Crystal pickup	70 mV @1kHz	$-85 d B$ ref. 100 mV @ 1 kHz	$>26 \mathrm{~dB}$	Economical circuit input impedance $=2 \mathrm{M} \Omega$
Microphones	Various depending on type		30 dB	Several circuits are described for different requirements
Auxiliary	230 mV $100 \mathrm{~K} \Omega$ input impedance	$<-70 \mathrm{~dB}$	Infinite	Preset sensitivity control preceding amplifier

wound potentiometer to avoid the crosstalk which would result from a high contact resistance at the slider (e.g. with a carbontrack potentiometer). The inclusion of the $4.7 \mathrm{k} \Omega$ resistors, before the mono/stereo switch, provides a properly mixed version
of the two stereo channels for mono operation. If one wishes to mix a monophonic signal stereophonically (e.g. for a point source of sound, movable in a stereo field) the signals must be paralleled at the input or at the presensitivity control.

High-quality magnetic and ceramic pickups: While it is possible to design a virtual-earth feedback amplifier suitable for a magnetic pickup, signal-to-noise ratio is inferior to that of the series input of the feedback pair when the source impedance is less than the input resistance. It was required that the input of the mixer be switchable between a microphone and a ceramic pickup so there was a further advantage in using the feedback pair, since input impedance can be changed without altering gain. The final circuit for this amplifier is shown in Fig. 3. and the equalization curve in Fig. 4.

Although a field-effect transistor will give a good noise figure when operated with a ceramic pickup it will give a poor
flicker noise performance when the source resistance is low. This is exactly the case with a magnetic pickup and the effect is worsened by the bass-boost of the R.I.A.A. characteristic. It was considered most important to cater for a high-quality magnetic pickup, and for this reason a bipolar transistor is used as the input device. When operating a low-noise silicon transistor at about $80-100 \mu \mathrm{~A}$ collector current, the noise figure is 2 dB or less over the effective range of source resistances from $1 \mathrm{k} \Omega-50 \mathrm{k} \Omega$. However, this optimizes the noise figure for a source resistance of about $5 \mathrm{k} \Omega$ and as the stage must also be operated with a $200 \mathrm{k} \Omega$ source resistance for ceramic pickups it was decided, in the interests of low flicker noise, to reduce the

Fig. 2. Stereo balance and mono/stereo switch.

Fig. 3. Gramophone pickup amplifier with switched equalization for magnetic and ceramic cartridges, and for use with a microphone. Tr_{1} BC184LC or BC109C; $\operatorname{Tr}_{2} 2 N 3707$ or BC167; Tr $_{3}$ BC167 or BC107.
standing current to $35-40 \mu \mathrm{~A}$. This increases the noise figure to 3 dB at low frequencies with the magnetic pickup.

Ceramic pickups operating into about $200 \mathrm{k} \Omega$ require bass boost in the preamplifier to balance the falling bass response caused by the input time constant ${ }^{1}$. The component values for C_{12}, R_{15}, and R_{4} are suitable for pickups having a self-capacitance of about 600 pF -which includes the majority of better cartridges. This results in turnover at about 1.5 kHz and is approximately the same as that of the treble tone-control (discussed later) which can be used to compensate for different cartridge capacitances and degrees of mechanical equalization. The input resistance or feedback time constant can also be adjusted to suit other types, provided that the feedback resistor R_{15} is not made less than $5 \mathrm{k} \Omega$ otherwise serious loading of the emitter-follower will result.

The second transistor is operated under conditions of low distortion; C_{5}, R_{12} and R_{18} are included to improve the highfrequency stability and only affect the performance outside the audio range. The filter comprising R_{1} and C_{4} is essential to prevent r.f. appearing at, and being detected by, the base-emitter junction of the first transistor. Inevitably the presence of R_{1} in series with the base of Tr_{1} causes a poorer noise performance (particularly at low frequencies with a magnetic pickup) but it should not be omitted if a wide variety of gramophone equipment is likely to be used.
The microphone input will match a $50 \mathrm{k} \Omega$ high-impedance dynamic microphone. In conjunction with a transformer it is suitable for a low-impedance type. This is, however, only a useful secondary function of this circuit and the noise performance will be slightly inferior to circuits specifically designed for this kind of input.

About 20 dB of n.f.b. is applied at midfrequencies, reducing distortion to less than 0.1%. The purpose of C_{9} is again to improve the high-frequency stability of the circuit.

The R.I.A.A. feedback-loop time constants are:

$$
\begin{gathered}
R_{19} C_{8}=82 \mu \mathrm{~s} R_{19} C_{11}=240 \mu \mathrm{~s} \\
R_{14} C_{11}=3000 \mu \mathrm{~s}
\end{gathered}
$$

The values shown in Fig. 3 approximate these time constants, with the exception of the l.f. turnover*2 (sub-audio frequencies being attenuated by a rumble filter later in the mixer), and the gain at 1 kHz is given by $R_{19} / R_{5} \dagger$. The basic sensitivity (at 1 kHz) is then 2 mV for 240 mV output, allowing more than 30 dB of feedback at mid-frequencies, falling to 10 dB at very low frequencies.

High-output crystal and ceramic pickups: Pickup cartridges having average outputs in excess of 100 mV r.m.s. will overload the ceramic pickup input unless

[^5]

Fig. 4. Measured R.I.A.A. characteristic for magnetic pickup input of Fig. 3.

Table 2. Performance characteristics of Fig. 3

Specification:	Magnetic p.u.	Ceramic p.u.	Microphone
Sensitivity	1.4 mV r.m.s. at 1 kHz	15 mV at 1 kHz	0.7 mV at 1 kHz
Input impedance	$60 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$	$60 \mathrm{k} \Omega$
Distortion at nominal levels	$<0.02 \%$	$<0.02 \%$	$<0.02 \%$
Overload margin (0.1\% dist.)	$>30 \mathrm{~dB}$ at $1 \mathrm{kHz} \& 10 \mathrm{kHz}$	28 dB	30 dB
Signal-to-noise ratio referred to max. sens.	67.5 dB input shunted with 420 mH	70 dB input shunted with 680 pF	42 dB input open circuit

Fig. 5. Attenuator for use with high output ceramic cartridge when employing Fig. 3.

Fig. 6. Amplifier for high-output ceramic cartridge. Tr_{1} BC169, BC184LC, etc.; $T r_{2}$ 2N4058, 2N4062, etc.
resistive attenuation is placed between the cartridge and the input. A suitable circuit is shown in Fig 5.

The circuit of Fig. 6 has the merit of costing very little to build. The first transistor is run at a collector current of $10-20 \mu \mathrm{~A}$ and current-drives the second transistor, whose collector voltage is defined by the d.c. and a.c. feedback to the emitter of the first transistor. Using the normal Darlington connection would achieve the high input impedance but would result in gross distortion because of the effective voltage drive at the base of the second transistor.

Performance

Input impedance (measured)
$2 \mathrm{M} \Omega$ in parallel with 2 pF
Max. sensitivity
$70 \mathrm{mVr} . \mathrm{m} . \mathrm{s}$.
Max. input 1.8 Vr m.s. (overload margin $>26 \mathrm{~dB}$)

Distortion for an input of 600 mVr .m.s. at $1 \mathrm{kHz} \quad<0.02 \%$ not exceeding 0.1% for input of $1.5 \mathrm{Vr} . \mathrm{m}$. s. in audio band Signal-to-noise ratio ref. to input of 70 mV (1000 pF on input)
$>80 \mathrm{~dB}$.

Microphone amplifiers

First, a brief summary of the types of microphones which are likely to be encountered. Crystal microphones will not be considered because of their low sound quality.

Fig. 7. Amplifier for medium impedance microphone. The approximate maximum sensitivities are 400 to $500 \mathrm{\mu V}$ ($600 \Omega \mathrm{mic}$.) and 150-200 $\mathrm{\mu V}$ (2008 mic.). The overload margin is 30 dB (0.1% distortion). Frequency response is $20 \mathrm{~Hz}-25 \mathrm{kHz}$ (-3dB) and s / n ratio not less than 60 dB (66 dB with 200Ω mic.). $\mathrm{Tr}_{1} \mathrm{Tr}_{2} 2 N 4058,2 \mathrm{~N} 4126$ or 2N4289; Tr_{3} BC109, etc; Tr_{4} 2N3707, Tr_{5} BC167, etc.

(a)

Fig. 8. Low-impedance microphone amplifiers. The overload margin is 30 dB for 0.1% distortion. Sensitivity for a 30Ω input impedance is determined by the three-position switch-(1) $80-100 \mu \mathrm{~V}$, (2) $25-30 \mu \mathrm{~V}$, (3) $12-20 \mu \mathrm{~V}$. Distortion $\cong 0.02 \%$. S/N ratio 63.5dB. T_{1} in the prototype was Radiospares 'Hygrade' type. Tr_{1} 2N3819; Tr_{2} and Tr_{5} 2N3707; Tr_{3} and Tr_{6} BC167, BC107 or 2N3707; Tr_{4} BC169, BC1841C or BC109. C ${ }_{2}$, C_{3} and C_{4} will have to be added to compensate for transformer losses.

Capacitor microphones: These have their own head-amplifier within the microphone case, the output signal of about 1 mV being sent down a low-impedance line (typically 200 or 600Ω).

Ribbon microphones: Depending on the step-up .transformer supplied with the microphone, the impedance and signal levels could be low $Z 30-50 \Omega$ (typical open-circuit voltage $100-200 \mu \mathrm{~V}$) or. 200 $600 \Omega(200-500 \mu \mathrm{~V})$, med. $Z 1 \mathrm{k}-1.5 \mathrm{k} \Omega(600-$ $800 \mu \mathrm{~V}$), and high $Z 50 \mathrm{k} \Omega$ ($2-4 \mathrm{mV}$.)

Moving-coil microphones: Again, the im-
pedance of these depends on the transformer supplied, but generally are either med. Z 200-600 Ω (typical open-circuit voltage $200-800 \mu \mathrm{~V}$), and high $Z 50 \mathrm{k} \Omega$ (2-4mV.)

We will now consider various low-noise amplifiers suitable for the last three categories. High impedance types suffer losses at high-frequencies because of the length of cable which can be used between microphone and amplifier. If used, they should be connected directly to the circuits of Fig. 8(a) or 8(b), omitting the transformer but including a resistor (e.g. $220 \mathrm{k} \Omega$) in place of the transformer secondary-an isolating
capacitor, say $1 \mu \mathrm{~F}$, will be required with circuit of Fig. 8(b).

The medium impedance versions ($200 \Omega<Z_{m i c}<1.5 \mathrm{k} \Omega$) are suitable for direct connection to the circuit of Fig. 7. This rather unusual circuit makes use of the principle suggested by E. A. Faulkner ${ }^{3}$ of paralleling several transistors to overcome the limitation on achievable noise-figure for low source resistances. Also, p-n-p transistors have lower "effective" base resistances ${ }^{4}$ (which determines the minimum n.f.); the greater circuit complexity results from the d.c. voltage requirements of these devices. The point of interest in this circuit is the collector load of the paralleled $T r_{1}$ and $T r_{2}$, which by means of $T r_{3}$ presents a low d.c. resistance of about $2 R_{8}$ and a high a.c. resistance of R_{7}. The effectively constant-current collector load for a.c. signals current-drives the base of $T r_{4}$-a requirement for low distortion. The current of about 0.5 mA in $T r_{1}$ and $T r_{2}$ is set by R_{1}, R_{2} and the base voltages derived from the 6.2 V sub-rail by the potential divider R_{5} and R_{6}.

The switched sensitivity control in the feedback loop makes the circuit suitable for both the medium-impedance versions of the ribbon and moving-coil microphones and the more sensitive capacitor microphones with approximately 1 mV output. By paralleling more p-n-p transistors, this method could be extended to the design of a low-impedance microphone amplifier. However, the greater circuit complexity is not justified when one considers the added advantage of a transformer input, namely the cancellation of extraneous signals picked up on a balanced line.

With regard to step-up transformers, mounted close to the microphone amplifier, one is most likely to encounter the highimpedance transformers (1:50) prevalent in the valve days and still made by most firms. The objection to the large turns ratio on these transformers is the degrading effect on the high-frequency response caused by the high secondary impedance, leakage inductance and winding capacitance. However, the circuits in Figs. 8(a) and 8(b), which are suitable for this type of transformer, can offset this limitation by including high-frequency compensation.

The f.e.t. used as the input device in Fig. 8(a), gives a good noise figure with the high secondary impedance of 100 $200 \mathrm{k} \Omega$, and, because of its high input impedance, results in negligible attenuation of the microphone signals. The d.c. conditions for this circuit are set by the 6.2 V zener in the emitter of $T r_{2}$ and by the negative feedback from the tapping in the emitter-follower load $\left(T r_{3}\right)$ to the source of $T r_{1}$. Unfortunately the value of R_{5} must be adjusted for each f.e.t. because of the spreads in $V_{G S} / I_{D S}$ characteristics.

The circuit of Fig. 8(b) is a modified form of the gramophone pickup amplifier shown in Fig. 3. The bipolar transistor, Tr_{4}, is operated at a very low collector current ($\approx 10 \mu \mathrm{~A}$) to provide a good noise figure. The transformer secondary acts as the d.c. feedback loop, replacing the usual resistor -e.g. R_{4} in Fig. 3-and thereby avoid-
ing unnecessary attenuation of input signals. Both circuits employ the 'bootstrapping' technique to improve the linearity; a fact which is reflected in the excellent overload margirn A switched feedback sensitivity control makes the circuits suitable for most low-impedance microphones and the addition of a suitable capacitor in parallel with the feedback resistor, R_{2}, R_{3}, R_{4}, compensates for high-frequency losses in the transformer. The performance of the two circuits is almost identical except that when used in the most sensitive condition, the f.e.t. input is superior because with bipolar transistors the non-linearity of the $V_{B E} / I_{B}$ characteristic is very marked at low collector currents; ultimately we depend on this part of the circuit to perform the subtraction of feedback from signal voltage.

The most suitable microphone transformer for the bipolar circuit of Fig. 8(b) would have a turns ratio of between $1: 15$ and $1: 30$ giving a secondary impedance of $10-30 \mathrm{k} \Omega$. For these transformers the collector current in Tr_{4} should be set at about $30-40 \mu \mathrm{~A}$ by reducing R_{1} to $100 \mathrm{k} \Omega$. The higher sensitivity required under these conditions can be achieved by halving the values of feedback resistors R_{2}, R_{3}, R_{4}.

Microphone transformers with secondary impedances of $1-1.5 \mathrm{k} \Omega$ could be used with the circuit of Fig. 7 though now only one p-n-p transistor operating at 0.5 mA would be necessary instead of the two in parallel. As a suggestion, readers might like to try paralleling two n-p-n transistors and modifying the circuit of Fig. 8(b).

Finally, two constructional points. When designing a component layout for any of the above circuits, one must take care to keep input leads as short as possible and adequately screened, particularly for the high-impedance transformer-secondary connection to the inputs of Figs. 8(a) and 8(b). Switched jack sockets should be used, and wired so that when not in use the input is shorted.

Auxiliary amplifier

So that the auxiliary input can handle a very wide range of input signal levels, the preset sensitivity control is placed at the front of the pre-amplifier, as shown in Fig. 9. The amplifier gain is given by $\left(R_{\mathrm{g}}+R_{4}\right) / R_{4} \approx 8$ making the basic sensitivity about 30 mV . Although the maximum signal-to-noise ratio is no longer obtainable, because of the resistive attenuation, the worst possible noise level is still better than 70 dB below a 30 mV input.

When large signals are applied to the base of $T r_{1}$ (as is the case when a large amount of feedback reduces the gain to les̀s than ten), insufficient collector-base voltage may cause distortion due to saturation in the first transistor. To avoid this, the d.c. feedback resistor, R_{2}, is connected to a tapping in the emitter resistor, $\left(R_{6}+R_{7}\right)$, of $T r_{2}$ to increase the collector-base voltage of $T r_{1}$.

The r.f. filter, R_{1} and C_{3}, is present, as before, to prevent radio breakthrough, and C_{4} serves to improve the h.f. stability.

Fig. 9. Auxiliary amplifier. $\operatorname{Tr}_{1} \operatorname{Tr}_{2}$ BC109 etc.

Fig. 10. Virtual earth mixer. $\operatorname{Tr}_{9} \operatorname{Tr}_{10}$ BC109 etc.

A feedback factor of greater than 30dB ensures that the distortion is much less than 0.02% at working output levels over the , whole audio frequency range. The minimum input impedance is about $70 \mathrm{k} \Omega$.

Virtual-earth mixer

Fig. 10 shows the complete circuit of the mixer. The bootstrap capacitor, C_{4}, increases the amplifier gain to over 4000 and reduces harmonic distortion to less than 1% for a 3 Vr.m.s. output. About 60 dB of n.f.b. is applied; this reduces distortion to quite negligible proportions ($<0.01 \%$) and ensures proper mixing of the signals from the channel faders with no interaction. The capacitor, C_{3}, in parallel with the $62 \mathrm{k} \Omega$ feedback resistor, curtails the very extended high-frequency response which might cause instability with some layouts.
The provision for five stereo channels in the present design should satisfy most requirements; the more versatile system of several virtual-earth mixers and group faders is preferable when mixing a greater number of channels. The nominal signal level at the output is about 350 mV and
residual noise is 84 dB down (measured on a bandwidth of $\sim 20 \mathrm{kHz}$).

REFERENCES

1. Burrows, B.J.C., 'Ceramic Pickups and Transistor Pre-amplifiers', Wireless World, February 1970.
2. Linsley Hood, J.L., 'Modular Pre-amplifier Design', Wireless World, July 1969.
3. Faulkner, E.A., 'Optimum Design of lownoise Amplifiers', Electronics Letters (I.E.E.), Vol.2, No.11. pp.426-427 November 1966.
4. Faulkner, E.A. and Harding, D.W., 'Some Measurements on Low-noise transistors for Audio-frequency Amplification'. The Radio and Electronic Engineer, 36, No.1. pp.31-33. July 1968.
(To be concluded)

Apology

We regret the printer's error in the April issue which resulted in the concluding four lines of the article on Mediator (p.200) appearing at the beginning of "Circuit Ideas"(p.204).

News of the Month

European information retrieval network

The European Space Research Organization's computer at Darmstadt, West Germany, is now linked to a terminal at the Technology Reports Centre at St. Mary Cray in Kent. In addition the Darmstadt computer, an I.B.M. $360 / 65$, is linked to many other terminals scattered around Europe. The whole forms an information retrieval network available to any engineer or organization who would care to use it. In the computer's store are details of about three-quarters of a million reports, documents and articles all cross referenced in numerous ways. Of this total, half-a-million are reports of the American National Aeronautics and Space Administration's scientific activities, many of which have not been published. The remainder of the documents consist of papers submitted by E.S.R.O. and by various research establishments as well as numerous magazine articles.

To use the service one writes to the

Technology Reports Centre, Station House Square, St. Mary Cray, Orpington, Kent BR5 3RE, for an application form: The details needed on this form is the subject heading and various 'Keywords' that will assist the terminal operator, and the computer, to search for all the relevant published reports. The service is fast and costs $£ 37.50$ to industry ($£ 23$ to academic institutions) per search.

Most of the stored reports deal with' aerospace activities but there are a large number of other subjects covered. There is a great deal on electronics and communications.

The programme used by the computer is a modified version of RECON which is a programme developed for N.A.S.A. by the Lockheed Missiles and Space Company in the United States. The E.S.R.O. store of information is continuously being added to on a monthly basis.

Sales of Japanese colour TV receivers hit by boycott

A recent issue of the journal Business Week reports that as a result of American accusations that the Japanese are 'dumping' colour television sets on the

American market consumers are refusing to buy Japanese and as a result profits are falling steeply. Dumping is the practice of selling goods in a foreign market at a
lower price than on the home market.
However, the fall in sales is not so much in America, as one would expect, but in Japan where the organization Shufuren (Japanese Housewives Federation) on hearing of the dual pricing arrangements initiated a boycott. A 19-inch colour television set in Tokyo retailing for $\$ 411$ sells in New York for less than $\$ 300$ and Japanese consumers were understandably upset.

As a result of pressures in Japan the price on the Japanese market was lowered while the price to the American market was increased. However, one does not offset the other and Japanese manufacturers are faced with falling profits and the need to cut back on production.

Detecting oil slicks

We are used to hearing how the technological revolution is destroying our environment so it is refreshing to hear of work that, while not combating the trouble at its source, detects a hazard before it does any damage.

The hazard in this case is oil slicks at sea. The results of experiments carried out off the West coast of America using an airborne sensor to detect slicks have been most encouraging. It was found that with an airborne radiometer spilled oil stood out starkly in the near ultraviolet $(0.38 \mu \mathrm{~m})$ and in near red light $(0.6 \mu \mathrm{~m})$. Polarization measured from the reflected light of the oil spill also showed a sharp contrast.

The tests showed that not only was it possible to detect oil but the type and quantity of oil could also be established. The work was carried out by the National Aeronautics and Space Administration's Ames Research Centre in California and was sponsored by the U.S. Coast Guard.

Such sensors could be carried on earth resources, and other satellites, to monitor the oceans around the world. This would mean that oil slicks could be detected before they did damage and could perhaps lead to the culprits being apprehended. The first court case using evidence obtained by an orbiting satellite should be interesting.

I.E.E. Centenary

A week's celebrations in London, starting on 17th May, will mark the centenary of the founding of what is now the Institution of Electrical Engineers. It was on this date in 1871 that the Society of Telegraph Engineers was formed, the objects of which were 'the general advancement of electrical and telegraphic science and more particularly for facilitating the exchange of information and ideas among its members'. The present title of the Institution was adopted in 1888 and it was as long ago as 1921 that it was granted a Royal Charter entitling its corporate members to describe themselves as chartered electrical engineers.

Membership now exceeds 63,000 of whom nearly 12,000 have permanent addresses overseas. In collaboration with the Civils and the Mechanicals, the Institution assists in the formation of national engineering bodies in emerging commonwealth countries.

The institution has had a close link with the radio and electronics sector of electrical engineering for many years; its first specialized group was the Wireless Section. From 1923 to 1932 the B.B.C. occupied part of the Institution building in Savoy Hill.
The centenary-week programme includes a Service of Thanksgiving at Westminster Abbey; an extensive programme of lectures built around the theme, "Electrical Engineering in the Service of Man"; a banquet at the City of London Guildhall; a conversazione at the Royal Festival Hall, which Her Majesty the Queen, and H.R.H. the Duke of Edinburgh will attend; and a dinner at the House of Commons intended mainly for younger members of the Institution.

C.Eng. and retired?

If you are a chartered engineer in one of the fifteen institutions constituting the C.E.I. and you still feel like work a register being compiled by the Engineers Guild may interest you. The register, which is open to all corporate members over the age of 55 , is intended to assist companies to cover temporary absences, to help during peak demands or to allow the companies to carry out special investigations or tasks which would not be economical with permanent staff.

Engineers who qualify and who would like to be placed on the register should obtain an enrolment card by sending a 9 $\times 5$ in envelope with the request to Mr . G. M. Stephens, 1414 Warwick Road, Solihull, Warwickshire.

Companies wishing to use the service should write to the Chartered Engineers Register, The Engineering and Building Centre, Broad Street, Birmingham 1, to select the engineer who is most suitable for the job in hand. The Guild has no responsibility as far as deciding fees or dealing with tax and National Insurance matters are concerned.
C.E.I. have also announced that it has been granted a Royal Charter to set up a composite register and an engineers registration board. The register in addition to listing chartered engineers will also list technician engineers and engineering technicians. Entry to the register permits technicians to use the designatory initials T.Eng. (CEI) or Tech. (CEI).

Radiation hazards

Instances of unpredicted effects have been noted in the vicinity of high-power radars among them accidental detonation of explosive devices. In February the Ministry of Defence issued a warning to mariners about effects from a high-power over-the-horizon radar being constructed at Orfordness, Suffolk. Among the effects which might occur are 'mild and harmless electric shock from metal rigging or metal structures, accompanied by slight sparking'. Radio equipment may be damaged if connected to an external aerial and certain electrically triggered devices may switch themselves on-possibly including motorway warning lights. We understand that hazard monitors are installed on this site.

The Medical Research Council has just endorsed earlier recommendations on exposure to r.f. radiation. Radiation levels throughout this region of the electromagnetic spectrum have assumed importance in the last decade or so because of the high power levels being used for r.f. heating and in radar transmitters, and also because of the growing use of micro-
wave ovens for cooking. Maximum radiation levels recommended are

- $100 \mathrm{~W} / \mathrm{m}^{2}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ power density from 30 MHz to 30 GHz for continuous exposure, and
- $10 \mathrm{~Wh} / \mathrm{m}^{2}\left(1 \mathrm{mWh} / \mathrm{cm}^{2}\right)$ energy density during any 0.1 -hour period for discontinuous exposure from 30 MHz to 30 GHz .
The M.R.C. recommendations include the warning that a sensation of warmth at frequencies between 10 MHz and 100 GHz should be avoided and a simple means of monitoring possible leakage of power should be available, especially where industrial microwave heating equipment is used. (These M.R.C. recommendations do not apply to therapeutic exposure under medical supervision.)

In the U.S.A. similar levels have been incorporated into legislation for product radiation, which also deals with television set x-radiation and laser radiation. In the U.S.S.R. and East European countries however authorities recommend a power density level of $10 \mathrm{~W} / \mathrm{m}^{2}\left(1 \mathrm{~mW} / \mathrm{m}^{2}\right)$ and recently health authorities in the U.S.A. have been sounding out interested parties on this lower level.

Irradiation of biological tissue can produce body heating and can cause damage where the vascular system is not well developed-so that heat is not conducted away quickly enough. This applies particularly to the eyes, where cataracts can be formed (in a similar way to 'glass blowers cataract'), and to the testes where temporary infertility can occur. (An introductory article on the effects of r.f. and laser radiation appeared in Non-ionizing Radiation vol. 1 no.1, June 1969, pp.5-7.)

Precision oscillator agreement

The Ministry of Aviation Supply and Racal Instruments have entered into a

The photograph shows GB3WW, Wireless World's 60 th anniversary amateur radio station, which is on the air in the evenings during the month of April. We are using a trap-dipole about 100 feet above street level here at Dorset House. The equipment is, left to right, an Eddystone receiver, K.W. transceiver and linear amplifier, and the receiver described in our July to September 1969 issues by D. R. Bowman. The microphone is from Shure and the morse key, which belongs to Pat Hawker who is in charge of the station, is of first world war vintage. All the stations who have made contact with us will be sent our QSL card which is a reproduction of last month's front cover.

partnership agreement, the first of its kind, for the design and manufacture of a precision v.h.f. synthesized signal generator with a performance an order better than anything that is currently available.

The generator will cover the range 100 kHz to 160 MHz with an accuracy of better than two parts in 10^{9}. The noise content of the output signal will be between -140 and $-150 \mathrm{~dB} / \mathrm{Hz}$ bandwidth as against the $-120 \mathrm{~dB} / \mathrm{Hz}$ bandwidth now normal. The instrument will be capable of operating with automatic measurement systems being, fully programmable and capable of being remotely controlled. The 140 dB thick film attenuator will have a near-unity voltage standing wave ratio. The purity of the output waveform will be as good as a high quality standard oscillator that does not use synthesized techniques.

Details of the agreement cannot be obtained and all that is known for certain is that Racal started on the design of a new method of frequency synthesis some time ago and subsequently made an approach to the Ministry.

Entrepreneur-engineers

'Britain's future lies in new skills, and not in providing handcarved crutches for old industries. . . . The Government should encourage investments in new ideas by allowing income invested in new ventures to be free of income tax as is already done in the U.S.A.' So Tim Eiloart, chairman of Cambridge Instruments, said in London recently. He went on to point out that Britain's top-ten exporting companies, which accounted for one-sixth of British exports, had been built up by engineer-entrepreneurs. Mr. Eiloart thinks that British industrialists should be taught entrepreneurial drive as a necessary managerial skill as is already done in the U.S.A. and India.

Electrostatic gyroscope

A new kind of gyroscope, the result of eight years' development work, is being tested in the air. Gyroscopes consist of a heavy spinning mass, usually disc shaped or in the form of a solid cylinder, held in high quality pivots. Such a device when held in suitable gimbal rings will tend to maintain its plane of spin when the gimbals are moved. A gyroscope is therefore often used as a direction reference in navigational equipments. Such gyroscopes tend to slowly drift due to, among other things, pivot friction and the effect of various electronic pick-off devices which are used to sense the gyroscope's position.

Honeywell and the U.S. Air Force Avionics Laboratory at Ohio have developed a gyroscope which uses no bearings at all. It consists of a highly
polished beryllium ball about 38 mm in diameter which is spun at high speed suspended in an electrostatic field in a vacuum chamber. We have not heard how the spin plane is measured.

The electrostatic gyroscope is being developed as part of a new inertial navigation system for aircraft.

S.T.C. engineer wins contest

A young engineering graduate at Standard Telephones and Cables Pty. Ltd (Australia) has won a competition conducted by the American Institute of Electrical and Electronics Engineers for a paper he prepared on static inverters. He is twenty-four years old David Coward, a graduate in electrical engineering at Queensland University, who is currently working in the Industrial Division Laboratory of S.T.C. at Liverpool. The prize for winning the competition, is $\$ 100$ in cash and an all-expenses paid trip to America to attend the International Convention of I.E.E.E. in New York in March next year. Static inverters, electronic devices capable of converting large quantities of d.c. power to a.c., are employed in power supplies which are essential for important computer complexes and critical electronic equipment which may be disrupted by loss of power for even a few milliseconds. For such applications a number of independent inverters are connected in parallel to form a redundant system in which one or more inverters may fail without affecting continuity of supply. Parallel redundant systems offered now rely on a single oscillator or reference signal line to synchronize all inverters. Failure of this oscillator or signal line causes the whole system to fail. In his paper David Coward described a system developed by himself and an S.T.C. senior development engineer, Mr. Christopher Walker, in which each inverter incorporates an oscillator, and a detector which statistically analyses all oscillator outputs and develops a control signal for its inverter which is identical to that of all the other detectors. Any faulty oscillator is rejected and an alarm condition raised, but its corresponding inverter continues to function normally.

Ionospheric satellite

The third satellite in a joint Canada-U.S.A. project is called ISIS-B (International Satellite for Ionospheric Studies). The 582 -pound, Canadian-built satellite is the largest and most advanced ionospheric spacecraft yet developed and it carries twelve experiments to investigate the ionosphere. Eight of these were provided by Canadian universities and government agencies and the remaining four were provided by the NASA Goddard

Space Flight Center and the University of Texas.

The ionosphere is important from a purely scientific standpoint and is also very important to communications engineers since it reflects certain radio waves and the selection of the best frequency depends on a detailed knowledge of it.

The ionosphere is an electrified gas curtain beginning about 35 miles above the Earth and is divided into four regions or layers-the D, E, F_{1} and F_{2} layers. The electron density of each layer varies with altitude and amount of ionization with the time of day, the degree of solar activity, the season of the year and geographical location.

ESRO satellite repeater contract

The European Space Research Organization has placed a contract. worth about $£ 700,000$, with the newly formed STAR consortium (Satellites for Telecommunication, Application and Research consisting of AEG-Telefunken, Thompson-CSF, CGE-Fiat, L. M. Ericsson and Montedel). The contract is for the initial definition and design of a satellite repeater operating at 12 GHz with a bandwidth of 500 MHz which is intended for a European communications satellite.

Decca win American awards

Decca Radar received two awards at the New York Boat Show from the American National Marine Electronics Association. The first, the Radar Award, is presented for the best single product and was given to Decca for the super-101 small boat radar. The second was the Design and Engineering Award which was presented for 'the continued excellence of design, performance and reliability of Decca's whole range of radars'.

I.T.U. activities for space conference

The International Telecommunication Union are to mark the occasion of the World Administrative Conference for Space Telecommunications (Geneva, 7th June-17th July) with a special issue of Telecommunication Journal. The journal will have 200 pages and will carry articles on all aspects of space communications. It will also contain a list of all the satellites which have been launched so far and a planisphere showing the regions covered by geostationary satellites as a function of their position over the equator. Single copies of the issue will cost 2.50 Swiss Francs or U.S. \$3.50.

International Component Show

Highlights of the Paris exhibition held March 31-April 6

Among the most eye-catching of components at the Paris show were liquid crystal displays. Based on an effect known since 1888, activity in recent years-notably by RCA and Texas-has been motivated by their low power consumption and immunity from high ambient illumination. Recent development of crystalline liquids with low melting points has made usable devices possible. Above the melting point crystals are randomly dispersed and form electric dipoles. In one kind of device, the dipoles are at a fixed angle to the fibre axis, so that, under the influence of an applied electric field, their resulting alignment causes a change in overall refractive index making the material opaque. Thus a big advantage over other displays is gained-greater incident illumination results in more light being returned. Devices are made by sandwiching a $15 \mu \mathrm{~m}$ layer of liquid between two transparent plastics layers, coated with $0.5 \mu \mathrm{~m}$ of transparent and conductive tin oxide.

At the exhibition, two three-digit modules were shown-by the Vienna firm Electrovac and by Tekelec Airtronic (France) who showed the American Optel 1003. Degree of opacity depends on applied field-threshold field is $5 \mathrm{kV} / \mathrm{cm}$, corresponding to 7.5 V for a thickness of $15 \mu \mathrm{~m}$, and saturation value is $50 \mathrm{kV} / \mathrm{cm}$.

Quartz crystal and integrated circuit comprise new Marconi oscillator housed in a TO-5 package (type F3187).

Between these values, opacity is roughly proportional to the field. Power needed is $150 \mu \mathrm{~W} / \mathrm{cm}^{2}$ of display area and the Optel module consumes $120 \mu \mathrm{~W}$ at 20 volts.

Applications for this kind of device include greenhouse windows, windscreens, camera lenses, advertising displays, traffic signs, watches, as well as in electronic instrumentation. Optel device needs a minimum operating voltage of 15 V which makes driving a little awkward. Hughes make a suitable driver/decoder (type HCTR 0107) believed to cost around £3. Cost of the three-digit module is about £15. RCA are believed to have one for around $£ 11-12$. Temperature range of the Optel display is limited to +10 to $50^{\circ} \mathrm{C}$ working and 0 to $80^{\circ} \mathrm{C}$ storage. Life is given as 10,000 hours (for a 20 to 100 Hz supply). On-time is 15 to 20 ms and off-time 100 to 200 ms .

Many extensions to both m.o.s. and t-t logic ranges were seen-too many to list here. Motorola alone for example introduced 68 digital m.o.s. i.cs. More semiconductor device manufacturers say they'll be introducing silicon-gate m.o.s. products later this year or in 1972, and nearly everyone claims to specialize in custom design-one wonders whether there are enough customers at present to support all of them. (In the silicon-gate technique the conventional aluminium gate electrode is replaced with silicon, reducing the threshold voltage by about two volts and allowing lower supply voltage and lower logic levels. This allows compatibility with bipolar circuits, increased packing density and also results in better reliability.)

Motorola announced an agreement to 'second-source' with SGS-amid rumours of a takeover of SGS. Motorola will provide a second-source of the SGS high noise-immunity logic circuits-H100 and H200 series-and the SGS range of linear integrated circuits for the entertainment market. SGS will second-source the industrial high threshold logic-MHTL series-and entertainment linear i.cs. We understand that SGS might also second-source the new Motorola MECL 10,000 high-speed logic series.

In this range of emitter-coupled elements chief selling points are a power dissipation of 25 mW per gate and a propagation delay-dissipation product of

50 picajoules. Currently available devices include OR/NOR and OR-AND gates and line drivers, a line receiver, 256 -bit read-only memory, and a 64-bit random-access memory. Prices of the basic gates are around $£ 1$ in 100 -up quantities.

The i.f. section of the new Siemens TBA 460 integrated circuit for f.m./a.m. receivers is a copy of the TAA991. Addition of dual audio stages allows a complementary output stage to be driven up to ten watts. This makes possible a technique which may develop in stereo equipment-i.e. using two of these i.cs, one for a.m. and the other for f.m. with the a.f. sections for left and right audio channels. Other new linear i.cs are TBA830 microphone amplifiers (Siemens), TBA 651 a.m. tuner circuit (SGS), TBA 8105 -watt audio amplifier for car radio (Ates, Milan), TBA570, TBA690 and TBA700 for sound receivers (Philips group), H652TAA and H696TAA a.f. circuits (Telefunken), SAK 110 tachometer (ITT-Intermetall) plus others for television receivers-already known to set makers.

There were plenty of new discrete semiconductor devices too-most are included in the quick-reference table on this page with makers identified.

There were also too many new products from the 200 -odd exhibitors in the instru-

mentation sections to report all of them. In oscilloscopes, for instance, there were at least 18 newish models. We say newish because many had been seen before and exhibitors' claims of 'new' really meant they hadn't been shown at earlier Paris exhibitions. Most of the oscilloscopes had a bandwidth of less than 20 MHz . The Heath-Schlumberger $15-\mathrm{MHz}$ dual-trace scope has a rise time of 24 ns and a phase difference of less than 1° in the $x-y$ mode, useful for phase measurements, curveplotting, and vectorial displays. The recently introduced Hewlett-Packard 1700 oscilloscope has $35-\mathrm{MHz}$ bandwidth with 10 -ns rise time. Battery-powered, this is probably the fastest of its kind, and is available with or without a delayed sweep facility. New Philips $25-\mathrm{MHz}$ model, PM3210, with 14 -ns rise time has a conventional timebase. A dual-trace oscilloscope, it also has an $x-y$ display facility with a phase difference of 2° up to 0.5 MHz . Sensitivity on the most sensitive range is $1 \mathrm{mV} / \mathrm{cm}$.

It's not only in solid-state devices of course that developments are taking place. Vacuum tubes are still supreme for high-power transmitters and for broadcast imaging devices. A triode developed for a French Army Doppler radar by Thomson-CSF has come off the classified list and will be marketed in the USA later this year (TH591). Main feature is its in-circuit $50-\mathrm{MHz}$ bandwidth at L-band. Peak output power of 500 kW has been achieved with this valve. It is vapour cooled using the Hypervaportron technique in which a thin water-vapour layer surrounds the anode. With it anode dissipation can reach $2 \mathrm{~kW} / \mathrm{cm}^{2}$. Another tube developed specially for u.h.f. television transmitters in the USA, is TH290. Forced-air cooled, it can deliver 2 kW in class A with a cross-modulation between sound and vision carriers of better than 52 dB .

Most of the electro-optical devices had been already announced-those shown included E.E.V. and RCA image isocons for low light levels, E.E.V. $\frac{1}{2}$ in vidicon, EMI and E.E.V. short-length lin vidicons, M-O Valve head-up display c.r.t. RCA silicon-intensifier-target camera tube, RCA III-V compound photomultipliers, EMI image intensifiers and the EMI intensifier vidicon.

New generation of photomultipliers by RCA Electronic Components use group III-V compounds as a secondary electron emitter. Results of investigations into more efficient emitters were announced two years ago by RCA, and now a range of photomultipliers is in production using gallium phosphide-up to ten times more efficient than materials used in conventional tubes. For an applied potential of 600 V , gallium phosphide will produce 30 secondary electrons from one primary electron as opposed to, typically, five. With tubes using a gallium phosphide dynode in the first stage it is possible to discriminate between events producing one, two, three and more primary electrons. The Quantacon family of 16 tubes includes some with the multi-alkali photocathodes giving response up to

Low-profile switch for printed circuit boards (ITT type PZ) can handle one amp at 100 volts. Switch is $8-m m$ high and suitable for sandwiching between p.c. boards and ganging. Philips 14-ns risetime oscilloscope PM3210 has $x-y$ facility with phase difference of 2°

930 nm and an improvement of three or four times that of an S-20 cathode at 694 nm . Use of III-V compounds as photoemitters gives response up to $1.1 \mu \mathrm{~m}$. Some are very fast-type C31024 has a rise time of 0.8 ns .

New television components centre mainly around i.cs and the introduction of 110° colour tubes-notably from Philips subsidiaries. Sylvania have two 67$\mathrm{cm} 110^{\circ}$ tubes, one with a large neck and one with a thin neck-this last allowing components with lower power ratings to be used, because deflection coils are closer to the electron beam. Narrow-neck tubes also mean that the corner convergence generator is no longer needed, a dynamic focusing voltage is not needed and for convergence correction only a simple passive circuit is needed. Length of the 110° tube is of course shorter than 90° tubes-nearly 10 cm in the case of the large-neck tube. A new $50-\mathrm{cm} 110^{\circ}$ tube is also much shorter. ITT components group have also produced a 110° colour tube with a narrow neck, saving 11 cm in depth, and allowing $67-\mathrm{cm}$ receiver depth to be reduced to 43 cm . Deflection yokes and convergence units are also available from tube makers. Combined u.h.f. and v.h.f. varicap tuners are now on the Continental market.

Developments in capacitors centre on improving dielectrics-with high dielectric strength, low losses, wide temperature range, low sensitivity to humidity-as well as smaller physical size. Many makers were showing new ranges of tantalum capacitors and improved plastics capacitors. Wima have improved encapsulation of polyester and polycarbonate capacitors to give better water and solvent resistance by sealing in cast resin. A new low-loss polypropylene capacitor for 110°-tube circuits is under development by Wima who plan to show it at Hanover. An Italian company, Arco, were showing printed-circuit-mounting polypropylene capactors for use in series heater chains.

LTT components group announced a range of close-tolerance thin-film capacitors for low-voltage applications. Tolerances as close as $\pm 0.1 \%$ for 300 pF to $10,000 \mathrm{pF}$ have been achieved by successive vacuum deposition followed by their computer-controlled micro-engraving
technique. They have stability of 0.01% per 1000 h at $70^{\circ} \mathrm{C}$, an insulation resistance of $10^{12} \mathrm{ohm}$ and a temperature coefficient of ± 30 p.p.m. $/ \mathrm{degC}$.

With over 1,000 exhibitors, this year's exhibition was larger than last year's by about 30%. France had 469 technical exhibitors and there were 558 from outside France. Even so most of the literature was in the French language. Major exhibitors after France were USA (167), Federal Germany (143), UK (80), Switzerland (41), Italy (34), Spain (24) and Japan (21).

- Philco-Ford confirmed withdrawal from the semiconductor business.
- New beam-tetrode power amplifier CCS1 by M-O Valve Co. gives 200 watts at 500 MHz or 400 watts at 175 MHz in f.m. transmitters. Gives 300 watts (p.e.p.) s.s.b. up to 175 MHz . WW 450 for further details
- New Miniflux heads for cassette recorders combine record, play and erase functions in one head (type CKL3). Available in stereo and mono versions.
WW 451 for further details
- Combined signal and erase heads for 8 and $16-\mathrm{mm}$ film sound tracks are made by Miniflux (type FN 566).
WW 452 for further details
- A quartz oscillator, Marconi type F3187, is housed in a TO-5 can. Covering $10-22 \mathrm{MHz}$ it has stability of 1 part in 10^{8} short term and works from a 5 -volt source taking 145 mW . WW 453 for further details
- New modulation meter, AFM3 by Radiometer of Copenhagen, is designed for v.hf. and u.h.f. narrow-band measurements. Frequency coverage is from 6 MHz to 1 GHz with a $3-\mathrm{dB}$ bandwidth of 600 kHz and sensitivity is 3 mV up to 200 MHz and 30 mV above. Calibration accuracy is 3%.
WW 454 for further details
- First double-insulated cooling fans for electronic equipment are made by Rotron N.V., Netherlands (U.K. agents Auriema Ltd). Made to European standards, they are in three kinds and based on fans made by the U.S. parent company.

WW 455 for further details

- New Lenco products-8000 turntable unit, tuner-amplifier and loudspeakers, and Octet automatic cassette changer. Lenco 85 professional turntable and pickup arm will be shown at Berlin later this year.
- Ates, of Milan, who specialize in semiconductor devices for cars, introduce the TBA800 5 -watt audio amplifier and the TBA810 5 -watt amplifier for car audio equipment. They supply a 400 -volt, 7 -amp 40655 s.c.r. for capacitor-discharge ignition systems. WW 456 for further details

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Our birthday issue

Extracts from a very long and interesting letter received from John Scott-Taggart.

In your 60th birthday number H. S. Pocock wrote: "We later received from the former proprietor of the Radio Press (John ScottTaggart) a generous tribute to The Wireless World. (We hope he reads this in his Beaconsfield retreat!)" That hope has been realized. May I ask you to show equal generosity by letting me recall some of my share in the history of amateur and professional radio and my contribution to the story of The Wireless World itself.

I started as an amateur in 1912. My transmitter had the call-sign LUX. In 1914 at the age of 17 I had my first article published in The Wireless World. I also joined the Army in that year and in due course I was commissioned in the Royal Engineers as a wireless officer, having worked for a time in Major Rupert Stanley's lab. and learnt 'all' about valves.

I experimented and contributed articles on valve techniques to The Wireless World, the first appearing in 1917 under the initials D.J. Later I bravely used my own name.

In 1919-1920 I took charge of valve manufacture at Ediswan's who made valves for the Services and for Marconi's. In Dec. 1919 I designed, and Ediswan marketed, the ES2 and ES4 valves for the amateur ($W . W$. 15th May 1920). As a very active member of the committee of the Wireless Society of London (later the Radio Society of Great Britain) I frequently contributed to the Society's proceedings and exhibited in late 1919 valves I had developed (W.W. December 1919).

Altogether I have written some 800 articles in various journals and a dozen textbooks on radio. I was not, however, a writer except as a side-line. From 1917 onwards I took out more than thirty patents on valves and valve circuits and these were sold to various companies throughout the world.

In 1920 I became Head of the Patent Department of Radio Communication Company Ltd who became very successful competitors to Marconi's. I did the research in the defence of the patent action brought by Marconi's on the H.J. Round valve patent and the French R valve patent. We won. Had we lost there would have been a Marconi valve monopoly.

During the period 1920-1923 I was professionally linked with all those around the world who were in competition with Marconi companies. My relations with The Wireless World inevitably ceased. I started my own radio publishing business and on January 9th 1923 I published the magazine Modern Wireless. Its success decided my activities for the next four years. I left Radio Communication Company. In June 1923 I launched Wireless Weekly which was a more technical paper, the only direct competitor with The Wireless World. Other magazines followed. The trade depression (winter 1926/27) made me decide to quit not only publishing but radio. I sold out to Amalgamated Press Ltd. In four years I had made enough to retire on and I was 29.

I had not lost touch with patent work. For two years I was special patent adviser to the Gramophone Company (H.M.V.), later incorporated in E.M.I. and I acted in an advisory capacity to other concerns. I retired in 1927 and wasted my time flying aeroplanes. In 1932 Amalgamated Press asked me to write and design six sets a year for my former journals. This I did as a spare-time job at home and I produced the ST300 and successive sets ending in late 1937 with ST900.

I served in the R.A.F. throughout the 1939-45 war, and I was responsible as senior technical officer of 73 Wing for the installation, maintenance and operation of all the R.A.F. radar stations in two-thirds of England and Wales. Civilian service at the Admiralty Signal and Radar Establishment completed a technical career ending in 1959.

The Wireless World was always the equivalent of The Times in radio publishing, and its steady relentless technical integrity owes everything to Hugh Pocock and his able successors and to its equally brilliant contributors such as Cocking, Scroggie, James*,'Haynes, Roddam. I have never ceased to read and respect it.

I have enjoyed the friendship of many of the radio pioneers such as Dr. W.H. Eccles, C. S. Franklin and H. J. Round-and equally enjoyed the hostility of Fleming for my legally accurate description of him as the inventor of the diode valve detector.

[^6](The courts declared his 1904 British patent invalid.)

Hugh Pocock's reference to my'Beaconsfield retreat' is accurate only as regards my twelve years as a has-been of radio. In that period I have written ten non-technical books, three of them on Renaissance art.

I would like to be remembered not for my competition with Wireless World but for my early writings and inventions and later my radar activities.

The Wireless World on its 60th birthday has deservedly the good wishes of all of us. It does not show its age because it is ageless and forward-looking.
John Scott-Taggart,
Beaconsfield,
Bucks.
The reproduction of the photograph of my station TXK of long ago (April p. 173) was excellent and brought back a horrid surge of nostalgia. At about that time I was presented with a de Forest Audion valve which I was playing about with, in the ignorance of those days, using it first as a normal detector of signals and subsequently as an audio amplifier behind a crystal detector. At one stage of the proceedings I succeeded in making the system produce a loud howl which intrigued me. I sought advice from my tutor of those days, as my only academic reference, but he could offer no explanation. Little did I think until later that I must have achieved a regenerative feedback set up which may have preceded the work of Reinartz \& Co, and the reaction patents of that period.... How near can one get to fame, and yet, who, nowadays, ever speaks of Reinartz!

An item of some interest in the picture is the very large inductance at the back. With it I received the German 'empire' station in Togoland on a crystal detector, working Nauen near Berlin. This must rank with the modern concept of DX reception at something over 4000 miles!

Wishing continued success to the Wireless World in its leading role.
W. Kenneth Alford,

Shaftesbury,
Dorset.

Telegram from the Radio Society of Great Britain

Members of Council join me in offering congratulations to Wireless World on occasion of 60th birthday celebrations. Please also convey to Hugh Pocock to whom the R.S.G.B. owes much of the success of the early years our appreciation of his guest editorial.
F. C. Ward,

President R.S.G.B. 1971.
I have been reading with very great interest your April issue. One of the articles which I found particularly interesting was that of W. T. Cocking, called 'Milestones in Receiver Evolution'.

One statement which Mr. Cocking makes I found of interest and would like to query, if I may. He says the term ' Hi - Fi ' was not invented in May 1934. I am still using an H.M.V. model 800 radiogram
which I believe was built in 1934 and advertised then as 'The model 800 High Fidelity Autoradiogram'.

Also amongst its features was a bass system using positive feedback in the output stage a volume expander using negative feedback which was controlled by the crescendos in musical passages, and lastly amplified/delayed a.g.c. which Mr. Cocking says in his article came around 1936. This stage also operated a q.a.g.c. stage, which is a receiver refinement I am sure many people do not realise was present as far back as 1934.

I feel I must give one further statement of proof for my claims as to the age of this receiver and the term $\mathrm{Hi}-\mathrm{Fi}$, which is a service manual published in December 1934 for the Model 800.
Terry I. Roberts,
Llanfeckell,
Anglesey,
N . Wales.

The author replies:

I do seem to have slipped up about the date of a.g.c. The first article on it in $W . W$. was 23 rd September, 1932, and this referred to the use of a.g.c. in the U.S.A. It did not become at all common in this country until a year or two later, but it was certainly prior to 1936.

With regard to 'Hi-Fi', I think I am literally correct although I would not dispute that 'high fidelity' may have been used earlier than 1934.-W.T.C.

Wien-bridge audio oscillator

The only practical advantage to use capacitive, instead of resistive, elements for the fine frequency control in the Wien-bridge audio oscillator (March issue) is its long life.

The extremely high input impedance gives some trouble round 50 Hz mains frequency and very good screening and layout are necessary. The frame of the fourgang variable capacitor must be carefully insulated from ground by ceramic, long-

leakage path, insulators. Otherwise the calibration will not hold.

Since the frame is at a.f. potential, it is necessary to balance its comparatively large capacitance to ground by connecting a capacitor C_{1} across the upper section $C_{2} C_{3}$ of the four-gang variable capacitor. T. GAJ-LARISCH,

Renhold,
Bedfordshire.

The author replies:

I can appreciate Mr. Gaj-Larisch's concern over the use of a variable capacitor for the fine tuning control in the design of my Wienbridge audio oscillator. I, too, was a little apprehensive over the mounting and screening of the large four-gang variable capacitor. I attached $\frac{1}{8}$ in thick sheets of Perspex to the back and front plates of the capacitor extending them vertically well below the working area of the capacitor. The capacitor was attached to the base of the metal cabinet by means of aluminium brackets mounted on the extended Perspex insulators. The capacitor and the switched resistive, coarse frequency control were carefully screened from the rest of the oscillator circuitry. The oscillator amplifier of Fig. 3 was also screened from the remaining circuits of the completed amplifier and no problems were encountered with the oscillator around the mains frequency.

Although 5% resistors were used for the coarse frequency control, and therefore the relationship between alternate ranges was not precise, the relationship was constant between the lower and upper ends of adjacent ranges, for all ranges. Therefore, if 1% resistors are used, the calibration between alternate ranges will hold.

I did not find it necessary, as Mr. GajLarisch suggests, to incorporate the capacitor C_{1} as shown in his figure; possibly because both pairs of the four-gang tuning capacitor were padded with 330 pF fixed capacitors to give a $3: 1$ ratio of fine frequency control.
A. J. Ewins,

To have been dead 33 years already is bad enough, without having to endure the knowledge that my name, which I had hoped would live after me, is being corrupted (see your March issue) by the very people who make use of my bridge circuit.
Permit me to remind you, sir, that WIEN is the name not only of the humble physicist who was once me but also of a great and noble city, which still flourishes. That city,* it is true, has many associations also with WEIN (coupled, of course, with women and song), but for all that WEIN is not WIEN nor WIEN WEIN.

Remembering, as I lie here cold in my grave, the beautiful and useful bridges of that same great city, I have constructed in my mind an intellectual bridge, or eselsbrücke \dagger as we say it in German, so that English engineers who honour my bridge by using it in their low-distortion oscillators

[^7]may be assisted to remember its inventor's name also without distortion:

Don't be mean
call me Wien.
The late Max Wien,
Churchyard, Germany.

The Editor replies:

Sorry, Max,
To have been so lax.

'Cathode Ray'

May I be permitted to take 'Vector' lightly to task? In his April contribution he paid a well-deserved tribute to 'Free Grid' but I think he might also have mentioned another stalwart who did much for Wireless World, namely 'Cathode Ray'.

It was a great treat to find the familiar pseudonym again appearing in your columns. It led me to a prolonged browse through old volumes and the re-reading of many of the 'Cathode Ray' articles. In an era when there was a strong school of thought which held that if a technical article was comprehensible it must be a failure (a school which, alas, is still to some extent with us), 'Cathode Ray's' essays came as draughts of pure air into the stuffy rooms. of textbook terminology. Who but 'C.R.? would have had the effrontery to describe reactance in terms of blow-football? We lapped it up. And in the process he taught us that, while some things were simpler than we supposed, there were others which were not nearly so cut-anddried as we had been led to believe.

As most of his articles dealt with fundamentals and are therefore timeless, would it be possible to consider a re-publication of some of them in future issues? I feel that this would be beneficial in two ways. It would be of considerable help to your student readership and at the same time would serve to cut some of us old-stagers down to size by reminding us of how much we have forgotten.
W. J. BAKER,

Great Baddow,
Essex.
Thank you for the suggestion. We will look into the possibility.-ED.

Boxcar detector

I am grateful to Dr. Smith-Saville for clarifying, in his letter in the March issue, a point raised in my December 1970 article on the Boxcar Detector. He explains that in recovering a signal of bandwidth f_{s} from noise of bandwidth f_{n}, where $f_{n} \rightarrow f_{s}$ there are two equivalent ways of limiting the noise bandwidth so that it includes f_{s} but not excessively so. The first and perhaps most obvious way is to roll-off the input at some frequency suitably above f_{s}, in which case is it satisfactory to carry out the sampling process using virtually infinitesimal sampling times, t_{s}. In the second system the input is not rolled-off but instead a suitably longer t_{s} is used.

My own firm's Boxcar Detector Type

415/425A uses the second system. As will be seen below there are quite separate considerations in the design of a practical boxcar detector which make the provision of a variable t_{s} essential. (These considerations do not apply in the design of oscilloscope sampling adaptors.) Thus, given that variable t_{s} is available anyway, obviously its use is the correct method for limiting f_{n}.
Considerations which make variable t_{s} a necessity are, among others, area measurement in single-point sampling, linearity and duty factor.

In certain single-point mode applications it is the area of the obscured pulse which is required, rather than its amplitude. For instance, this may be so because the pulse is of irregular or variable shape with no obvious top and in such circumstances has to be characterized by its mean level over a known interval. In such a case the boxcar detector is so set that the sampling pulse is known to include the whole signal pulse and the latter's area is computed as V out $\times t_{s}$.

Linearity requirements militate in favour of variable t_{s} : any sampling system is likely to go through a non-linear period in the process of switching from one state to the other and the greater the ratio of t_{s} to the switching time the less will be the overall effect of this non-linearity.

The boxcar detector must be able to operate with $t_{\text {rep }}$ at least as large as 1 second and if it is also to use a t_{s} fixed at a figure suitable for the highest frequency for which the instrument is designed, then at this large $t_{\text {rep }}$ the duty factor of the sample-and-hold system will be very large. In the case of the $415 / 425 \mathrm{~A}$ it would be 10^{8}. While this performance can be achieved it is unnecessarily expensive since it can be avoided by the provision of variable t_{s}.
J. D. W. Abernethy,

Brookdeal Electronics Ltd.,
Bracknell,
Berks.

Soldering and p.c.bs

Like most good, simple ideas the one for solder removal, described in the letter from Dr. G. W. Sutton in your January issue, is not new. In fact one can buy a solder-wick material* which performs the task exactly as he mentions. One can also use a piece of coaxial cable braid in a similar way. Tests have shown the proprietary material to be excellent.

A second point is in connection with printed circuit boards. Regretfully, the situation in respect of transparency is going to worsen as we now demand non-flammable boards which are opaque in preference to the 'high electrical' quality boards which were sometimes translucent; this reflects the change in electronic equipments which on the whole are working at low voltages and low impedances. We now want better mechanical properties and

[^8]dimensional stability together with increased bond strength between the copper and the base material; one of the penalties for all this is decreased translucency.
Henry Manfield,
Malvern,
Worcs.

U.H.F. log-periodic aerial

Since the publication of our article on a u.h.f. log-periodic receiving aerial in the January issue it has been drawn to our attention that you published two articles by M. F. Radford in September and October 1964 entitled 'Logarithmic Aerial for Bands IV and V'.

The Radford aerial was longer than ours (19 dipoles as against 15) so that the upper end of its frequency range was at 960 MHz while ours is designed to operate up to 860 MHz . It is interesting to note that the T and σ parameters chosen were 0.944 and 0.16 respectively which which correspond closely to the values we arrived at by experiment ($T=0.93$ $\sigma=0.17$). It is not surprising, therefore, that the performances of the two aerials are very similar and either version should give equally satisfactory results.

Mr. Radford based his construction on the use of metal strip and we think that your readers should be aware of this alternative method if they are thinking of making a log-periodic aerial.
J. L. EATON
and R. D. C. Thoday,
B.B.C.,

London.

Stereo decoder using sampling

It would appear that in predicting the performance of the sampling section of my decoder (described in the February issue), Mr. Portus is relying entirely on theory in spite of his excellent spectrum photography (April issue, p.184). However, his theory does not take account of the fact that the sample-and-hold circuit used is effectively a gated peak detector and not a multiplier. In order to verify this I checked the difference-frequency output at harmonics up to over 10 MHz using the circuit both as it stands and with diodes connected across the differentiator capacitors so that the sampling waveform had a 1:1 mark/ space ratio. At every frequency tested (both odd and even harmonics!) I found that the output obtained with the narrow sampling pulse was twice that obtained with the square wave. The amplitude difference is probably due to the fact that with the square wave, the frequency difference sample is present for only half the time whereas with the 200 ns sample it is present for about 99% of the time. The effective frequency characteristic of this sampling system is determined by the rate at which the voltage across the hold capacitor can follow the input signal. Thus it is probable that the frequency at which the output should be -3 dB is about 15 MHz . In
practice this frequency is somewhat lower because of the losses in other parts of the circuit. The suggestion by Mr. Birt that the value of the hold capacitors C_{12} and C_{17} should be increased to 180 pF will reduce this frequency to about 4 MHz and thus improve the noise performance.

While I agree with Mr. Birt that the 'quoted' maximum V_{p} of 8 V for the BFW 10 is a little worrying, I have never yet found any f.e.ts of this family with a higher V_{p} than 6 V ; normally it is between 2 and 4 V . D. E, O'N. Waddington.

Tickets are required for some meetings: readers are advised, therefore, to communicate with society concerned.

LONDON

4th. IERE/IEE-"Semiconductor probes for medical applications" by W. Abson at 18.00 at 9 Bedford Sq., W.C.I.

5th. IEE--Discussion on "Prediction of VHF /UHF service areas" at 17.30 at Savoy Pl., W.C.2.

5th. IERE-"An electronically controlled r.f. inductor giving a large tuning range" by M. W. Wheeler at 18.00 at 9 Bedford Sq., W.C. 1 .
6th. IEE-"The Ph.D. and its relevance to the needs of modern engineering" by Dr. C. Adamson at 17.30 at Savoy Pl., W.C.2.

7th. R. Instn.-"Telecommunications-full circle" by J. H. H. Merriman at 21.00 at 21 Albemarle St., W.1.
11th. IEE/l. Meas. Control-_"Visual prosthesis --an implanted electrical aid for the sightless" by P. E. K. Donaldson at 17.30 at Savoy PI., W.C.2.

1lth. AES-"Modern developments in cassette recorders" by J. N. Eyres at 19.15 at Mechanical Engineering Dept., Imperial College, Exhibition Rd., S.W.7.

12th. IEE--"Advances in TV colour cameras" by A. V. Lord at 17.30 at Savoy Pl., W.C. 2 .

12th. IEE-"INSPEC-the IEE's international solution to the information problem" by D. H. Barlow at 17.30 at Savoy Pl., W.C.2.

12th. IERE-_"Motorway and high speed road surveillance and control" by M. Brockman at 18.00 at 9 Bedford Sq., W.C. 1 .
24th. IEE-Discussion on "The teaching of electrical circuit theory" at 17.30 at Savoy Pl., W.C. 2 .

25th. IEE-"Printed resistors and their use in precision d.c. potentiometers" by V. S. Umantsev of U.S.S.R. at 17.30 at Savoy Pl., W.C.2.

25th. IEE/IERE-Colloquium on "R,F. measurements on solid-state active devices" at 9.30 at Savoy Pl., W.C. 2 .
26th. I. Navigation-"Port and terminal navigation and control problems in the 1980s" by Capt. H. J. Brandenburg at 17.00 at the Royal Institution of Naval Architects, 10 Upper Belgrave St., S.W.1.

CARDIFF

12th. SERT-"Television studio operation" by H. J. M. Lewis at 19.30 at Pontcanna Studios.

GLASGOW

12th. SERT-"TV signal distribution systems" by A. Schmiel at 19.30 at Macelland Galleries, Sauchiehall St.

MANCHESTER

6th. IERE-"High quality sound reproduction" by J. Harris at 19.15 at The Renold Building, U.M.I.S.T.

20th. SERT-"The Bush E.V.R. television replay system " by P. L. Booth at 19.30 at U.M.I.S.T.

Circuit Ideas

Waveform peak detector

For any waveform the average rate of change of voltage is proportional to V_{m} as shown. Thus if the voltage is differentiated and then averaged the resultant voltage is

directly proportional to the peak value of the input voltage. A typical circuit is shown below. The action of the feedback in the second stage eliminates non-linearities

due to the diodes. A digital voltmeter could be used to monitor the drop across a resistance used in place of the analogue meter.
L. UNSWORTH,

Southport,
Lancs.

Power supply modification

The circuit is a simple modification to regulated power supplies making the voltage rise slowly at switch-on. This is desirable in audio amplifiers to avoid

possible speaker damage. The slow runup allows overload trip circuits to operate before excessive voltages are reached. The circuit has several virtues: an abnormally high capacitance is not needed; the run-up is fairly linear; and the diode discharges C at switch-off, thus, in the case of shortterm power removal, the run-up is reinitiated. Being germanium (e.g. 1N480) the diode bypasses (by reverse leakage) any capacitor leakage.
P. LACEY,

Crediton,
Devon.

Battery supply regulator

The circuit is of the same type as that of P. Lacey (Circuit Ideas, November 1970). It has the same advantage that the difference between input voltage and regulated output can be small, making it ideal for battery regulation and has very good stabilization (of the order of $1: 1000$). Current limiting can be varied by choice of R_{2}, and the circuit has a re-entrant load characteristic. Putting a switch in series with R_{1} gives an output which cuts

off after a short circuit and does not restart until the switch is momentarily closed. I have used many circuits of this general type in equipment. They have superior stabilization and inferior output resistance compared with 'emitter follower' series regulators, but are less susceptible to the effects of short circuits and overloads. T. R. E. OWEN,

Dept of Geodesy and Geophysics,
Cambridge University.

Negative resistance
 frequency divider

The free-running frequency of each of the relaxation oscillators in the figure below is determined by the value of the capacitor and the emitter resistor. To safeguard the device, the emitter resistor should not be less than about $1 \mathrm{k} \Omega$. If successive stages are set to free-run a little below the desired division frequency, reliable division can be achieved by judicious choice of sync resistor (higher for low frequencies and vice versa). Division by five or six per stage is possible. The output is a sawtooth, and frequency multiplication is also possible as the oscillators can be synchronized to harmonics of the preceding stages. Isolating resistors are necessary to avoid loading and consequent changes in frequency. Selection of transistors, which must be n-p-n silicon planar types, may be necessary. If this note should lead to an epidemic of electronic organs, the blame must go to J. A. H. Edwards (Wireless World, January 1970, p.12). R.M.YOUNGSON, Jerusalem.

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recording system can be measured on a single, inexpensive instrument. The Ferragraph RTS1 Recorder Test Set.

Consisting of 4 Dasic sections-variable frequency audio generator, millivoltmeter with associated attenuator, peak-te-peak wow and flutter meter, and distortion measuring network-this instrument will measure frequency response, distortion, crosstalk, erasure, input sensitivity, output power and signal/noise ratio.

Completely solid state and lightweight, it may be used in the field as well as the laboratary,
operating on voltages of $100-120,200-250$ volts at 50 or 60 hz .

It is developed specially for those people who have to operate, maintain or service all types of tape recorders, sound-on-film equipment and audio apparatus

The Ferrograph RTS1
Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

Transients and Transcience

Sonex '71, London Airport, March 31-April 4

Visitors to this year's Sonex exhibition had the opportunity to listen to British equipment from nearly all the better audio manufacturers and to compare this with a fair representation of items manufactured outside the U.K. There was about twice as much British equipment as foreign. This is an excellent state of affairs-what poor equipment did get past the screening committee was simply out of place. The show seemed very well organized and relaxed, and to have surmounted any problems presented earlier by the breakdown of the postal service. There were two trade days and some reports of brisk business which, for the exhibitors, must be the justification of the effort.

Naturally, our interest in Sonex centres on the sound of the exhibits with respect to both engineering and demonstration techniques. In the report on Sonex 70^{*} we made two main points. First that a particular item on display should be allowed to give a fair account of itself and second that music should be played but not 'used'. It is worth making one further observation. Specification sheets are often worse than useless. This can be turned round to say that certain engineering improvements are not worthwhile. For example there is still general confusion over the nature and significance of amplifier distortion. It is possible to prefer a class A amplifier with 5% distortion to a class B amplifier with 0.1%. On this matter it was interesting to watch visitors' reactions to a switch-over between the Phase 25 class A amplifier (costing $£ 56$ and delivering 12 W per channel into 8Ω at about 0.02% harmonic distortion) and the Phase 44 class B amplifier (costing $£ 42.50$ and delivering 20 W per channel into 8Ω at about 0.05% distortion), both made by Futuristic Aids. The manufacturers seemed quite happy to demonstrate the difference in sound-only the output stage distinguishes them electronically.

In relation to loudspeaker designs the published specifications can give very little idea of performance. To obtain clear mid-range and treble transient response a very light weight moving system (e.g. ribbon or electrostatic membrane) or a very efficient linear motor combined with a rigid diaphragm must be used. (A

[^9]properly designed horn coupled to a non-too-linear drive unit can provide excellent quality over a fairly narrow band.) To produce clean bass from 70 Hz down to 30 Hz is a real challenge to any loudspeaker manufacturer. The ear is very sensitive to phase information from 1 kHz downwards. A suitably designed efficient motor unit coupled to a rigid cone and fixed in a rigid and damped box baffle can produce very good results (the Acoustic Research AR3a is remarkable in this respect) but, space allowing, a horn loaded bass driver can provide almost the real thing, as can a very large array of units on a single baffle.

The multiple-array approach using wide range units can be very effective indeed. Not only is low frequency loading improved by a large total diaphragm area

Radford's Studio 270 loudspeaker with front and side panels removed
but distortion is reduced by the sharing of effort. A range of speakers based on this idea was demonstrated by Gabraphone (Modern Engineering \& Technology Ltd, 4 Station Road, West Canterbury, Kent).

All this suggests that the manner of construction, i.e. the engineering philosophy, is at present the best guide to the likely performance of both amplifiers and speakers.

Guidance needed

The quality of demonstrations seemed better this year than last although there are still a number of firms that need guidance. Perhaps British Audio Promotions could draw up a brief on effective demonstrations-with a note explaining that very loud noises make people feel ill. There were several excellent taped programmes but we believe that there should be personal contact between the visitor and a demonstrator. Decca had an automated room that seemed, significantly, always to be empty. We took our place and read the following: "we at Decca Special Products make our task of demonstrating the quality of equipment more difficult than it has to be for the very reason that we arrange a programme of music primarily for your enjoyment, and not, as perhaps some of the other exhibitors as a result of a search to find programme material which particularly enhances our products". Bowing to the Apollo speakers we left instantly.

In the Audio Fair report (December 1970) we argued that a pair of omni-directional speakers could not provide the correct sound pattern for true stereo. In the space available it was not possible to give a full acoustic explanation for this. It is with pleasure that we refer the reader to the article 'In all directions' by John Crabbe in the April '71 issue of $\mathrm{Hi}-\mathrm{Fi}$ News. Apart from a mysterious reference to image shifts due to time differentials (omitted reference to Einstein?) the importance of suitably disposed constant pressure lobes, for proper stereo, is clearly brought out. How then are we to view Arthur Radford's latest creation, the Studio 270 (price about £130)? This speaker has a mid-range and treble unit at the top of the front and sides and a double acoustic line

Power amplifier type 744 from Grampian.
for the bass. The cabinet radiates equal energy in all directions throughout an included horizontal angle of 270° from 30 Hz to 25 kHz . Dispersion such as this is quite suitable for two-channel stereo provided the cabinets are correctly disposed. Radford's intention is that the listener should receive full transient information at all points in the stereo image. Also it is certainly true that the combined effect of two separately disposed sound sources is to qualitatively change the sound-a mono signal delivered by a correctly staged pair of speakers sounds less 'coloured' than the same signal heard from a single speaker placed centrally. Also, the difference between two-channel mono and stereo can be detected two rooms away.

These phenomena are also to some extent exploited in, or incidental to, the performance of Bowers and Wilkins' Model 70. the Lowther Auditorium Acousta, and our old friend the Quad electrostatic.

There were two other new speakers that deserve special comment. Cambridge Audio introduced the R40 as a junior version of the R50 using two Astec drivers designed by Jordan and an STC 4001 G high frequency unit. Whilst having much of the 'cleanness' of the R50 the overall result can only be described as disturbing. In the Fane Fanfare we encounter the problems of crossing over at 1500 Hz . The bass driver (in this case a 15 in unit) is required to remain rigid, when it simply cannot, over the lower part of the mid band frequency range where the ear is acutely sensitive. Considering that the Fanfare is described as a 'monitor' and that the manufacturer is employing his newly designed model 700 high flux ribbon speaker which has 'un-surpassed transient response', making it 'the most faithful reproducer available today', the absence of a selected mid range unit starting at say 400 Hz is almost beyond belief.

Amplifiers and tuners

Lowther have at last decided on which class A circuit to produce. Last year they were considering a simple emitter follower configuration using a load resistor but have now opted for a push-pull arrangement originally designed for germanium transistors by P. Tharma but suitably modified for silicon devices. They have also settled on a design for a u.h.f. television sound tuner with variable sensitivity, and a new v.h.f. tuner.

Since most expensive loudspeakers are greedy for watts Grampian's new range of
amplifiers is of interest. Both the 50w and 100 W versions are d.c. connected to the load (having a centre-tapped power supply) and employ "dual slope protection' in the output stage allowing the amplifier to follow the shape of the s.o.a.r. curve for the power devices. The 100 W version, type 744 , supplies 20 V r.m.s. across a 4Ω load and 100 V across 100Ω. The amplifiers require 1 V input for full output but are protected against transient inputs of up to 250 V .

The PA50 amplifier and SC24 pre-amplifier from Radford have a very detailed specification. The PA50 (£85) boasts a distortion level of 0.01%, and the SC24 (£80) is run at a high rail voltage so that 200 mV can be applied to the nominally 2.0 mV magnetic cartridge input without overload.

To the cassette tape player/recorders listed in the Audio Fair review the Sonex
show has added five new models. Incorporating the Dolby noise reduction system is the Rank Wharfedale DC9, which uses a Japanese made mechanism running at $1 \frac{1}{8} \mathrm{in} / \mathrm{sec}$ and providing four tracks for stereo or mono recording or playback. It has "piano key" switches for controlling the mechanisms, two VU meters and recording level controls, and a 3 -digit tape counter. The frequency response is $\pm 2 \mathrm{~dB}$ from 50 Hz to 12 kHz and, with the Dolby system switched in, the signal/noise ratio is claimed to be better than 50 dB . The other four new machines, not using the Dolby system, were shown by Brenell, Highgate Acoustics (maker, Luxor of Sweden), Philips and Shriro. The Brenell model, incorporating a Garrard mechanism, is unusual in that as well as the normal record/replay amplifiers it has two power amplifiers and two loudspeakers built in.

A Dolby noise reduction equipment which can be used between any tape recorder and any audio amplifier was shown by Highgate Acoustics under their trade name Alpha. It has two channels with level controls and meters, and the noise reduction characteristic is: 3 dB at $600 \mathrm{~Hz}, 6 \mathrm{~dB}$ at $1200 \mathrm{~Hz}, 9 \mathrm{~dB}$ at 2400 Hz and 10 dB from 4 kHz to 20 kHz .

Although there is a general trend towards magnetic pickup cartridges, the less expensive ceramic piezo-electric types are still being produced and not only for cheap record players. A new design intended for high quality stereo record

JVC Nivico four-channel amplifier.
reproduction is the ACOS 104 . Using a diamond stylus with a tip radius of $13-18 \mu \mathrm{~m}$, it has a tip mass of $1.6-2.6 \mathrm{mg}$ and a static compliance of 20×10^{-6} $\mathrm{cm} / \mathrm{dyn}$ (lateral) and 17×10^{-6} $\mathrm{cm} / \mathrm{dyn}$ (vertical). Tracking weight is $2-5$ grammes, and stereo separation is claimed to be at least 20 dB at 1 kHz . The cartridge can be used with magneticcartridge amplifier inputs with R.I.A.A. correction, or with high-impedance amplifier inputs.

A stereo f.m. tuner/amplifier just introduced by Goodmans, the Module 80, has an amplifier with a frequency response of $\pm 1.5 \mathrm{~dB}$ from 30 Hz to 20 kHz and total harmonic distortion of less than 0.1% with a power output of 30 W (per channel) continuous sinewave into 4Ω. The tuner, which uses f.e.ts in the r.f. amplifier, has a sensitivity of $1.5 \mu \mathrm{~V}$ for 26 dB signal/noise ratio, pilot tone rejection of -36 dB at 67 kHz deviation, image rejection better than 54 dB and i.f. rejection better than 90 dB . Stereo cross-talk at 1 kHz is -40 dB . All the usual tuner/amplifier facilities and controls are provided. including a tuning indicator, a stereo broadcast indicator, a jack socket for stereo headphones, loudness compensation, and protection against short circuiting the amplifier's outputs.

One feature of the JVC Nivico four-channel amplifier, shown by Denham \& Morley is its reasonable price, which is $£ 110$-not bad for four 10W (continuous sinewave power) integrated amplifiers, of harmonic distortion less than 0.08%, with separate VU meters. There are separate level controls for the four channels but common tone controls. Another feature is a facility, called a "sound field composer", which enables the user to create a four-channel stereo effect from two-channel sources. In this the amplifier outputs for the front two loudspeakers are produced in the normal way, while the outputs for the rear two speakers are produced as difference signals, $\mathrm{L}-\mathrm{R}$ and $\mathrm{R}-\mathrm{L}$. Frequencies below 200 Hz are directionless. A balanced tranformerless circuit enables the four amplifiers to be combined into two pairs for reproduction of conventional two-channel stereo.

Sinclair have replaced their IC-10 integrated circuit audio power amplifier by a new device with higher power output, the Super IC-12. This is claimed to give a power output of 6 watts continuous sinewave, a power gain of 90 dB , to have a frequency response of $\pm 1 \mathrm{~dB}$ from 5 Hz to 100 kHz , and to introduce less than 1% total harmonic distortion "(typically 0.1% at all output powers and all frequencies in the audio band". The input impedance is $250 \mathrm{k} \Omega$ and the load impedance range is 3-15 ohms. Price, including a printed circuit board for mounting the device and external components required for particular applications, is $£ 2.98$.

How would you like a 10 -watt, 8 -ohm Rembrandt or, for that matter, any of the "world's artistic master pieces" with a choice of two power handling capacities? That in fact is what you can get with the

Tracking error of Garrard Zero-100 pickup arm compared with that of a conventional arm.

JVC Nivico "picture speakers". One model (10W), using a 5 in drive unit, has a picture frame which is "hand made" in "real wood" and "antique finished". The other (5 W) has a 5 in drive unit and 2 in tweeter and the picture frame is described as "vinyl sheet overlay plywood rose wood". Sound emerges from a space between the picture and the frame, and no doubt one advantage of this audio-visual combination is the complementary coloration of the two sources.

Metrosound were showing the latest Ortofon pickup arm, the AS212, which is an improved version of the maker's RS212 arm and with simpler styling. It has a built-in lowering device, an integral arm rest and magnetic bias compensation. The counterbalancing weight is in two integrated sections, one of which is rotated for balancing and the other rotated to give the required stylus tracking weight-indicated on a graduated scale. The arm has the same shape as the RS212 but we understand that it has a lower resonance frequency. Price is "about $£ 29$ ".
Because a pickup arm is a pivoted device and the pickup moves in an arc, the

Garrard Zero-100 turntable.
stylus and cartridge cannot always be correctly oriented in the record groove (corresponding to the cutter orientation) and this angular error, which can be up to 4 degrees, results in some distortion. In the Zero-100 turntable shown by Garrard the tracking error is reduced to a nominal 90 seconds of arc, say the makers, by pivoting the cartridge housing on the arm, at a point directly above the stylus tip, and continuously changing its orientation as the arm moves across the record so that the centre line of the housing is maintained at a tangent to the groove. This is done by a lever mechanism using a control rod parallel to the pickup arm. In a comparative demonstration using a frequency test record, the 2nd harmonic distortion on a 1000 Hz band was shown to be better than 0.1% with the new arm, compared with 1.4% using a conventional arm at an equivalent position on the test record. The Zero-100 deck has an aluminium turntable, magnetic bias compensation, stylus force adjustment and fine speed control ($\pm 3 \%$) and can be used as an auto-changer (up to six records) as well as for manual operation. Wow and flutter are claimed to be better than 0.1% r.m.s. The price is $£ 55$.

A 4-speed auto-changer the BSR McDonald 210 measures $13 \frac{3}{4}$ in $\times 10 \frac{1}{4}$ in $\times 5 \frac{1}{2} \mathrm{in}$ and weighs $3 \frac{3}{4} \mathrm{lb}$. The squaresection arm has a fixed balance weight, a cueing device, an automatic lock and an indication of stylus pressure. The type SC7M cartridge gives an output of 77 mV at 1 kHz .

A feature of AKG's latest headphones for stereo listening, type $\cdot \mathrm{K} 180$, is that the volume of the air space between the moving-coil transducers and the eardrums can be continuously varied by operating adjusting knobs on the earpieces. By this means the quality of the sound can be changed to give the listener the effect of sitting at different distances from the orchestra in a concert hall. Minimum air volume gives "brilliant presence of the sound . . . orchestra seat", medium volume "a spatial and neutral sound image ... 15th row" while maximum volume gives "diffuse and soft sound . . . last row". The 'phones, which cost $£ 32$, are 600Ω impedance types and have a frequency range of 16 Hz to 20 kHz .

It has been discovered that when microphones are used on stages, or other situations where the sound has to be picked up at a distance, better results are obtained by placing the microphone as close to the floor as possible rather than on a high stand. This is because the path lengths for the direct and floor-reflected sound waves are almost the same and very little cancellation occurs, whereas if the microphone is on a high stand the path lengths differ considerably and the resulting wave cancellations can seriously affect the frequency response. To allow microphones to be mounted about $\frac{1}{8}$ in from the floor Shure have introduced a stand which is designed to isolate the microphone from floor vibrations. The microphone is hung in a rubber ring from the central boss of a thin-legged tripod which is about 5 in high.

Digital TV Line Standards Converters

Painting by numbers

Electronic standards converters for changing 625 -line television pictures into 405 -line pictures have been used by the B.B.C. and I.T.A. at main transmitters for some years-their function being, of course, to provide a 405 -line service from picture sources which are now almost all 625 -line. These converters work on an analogue principle. During the 1970s the broadcasters will be gradually changing over to digital signal processing and distribution - all video information between the picture source and transmitter being represented by binary numbers on the p.c.m. principle. Meanwhile, the need for the 405 -line service continues and in any case it will be carried on beyond the useful life of the present analogue standards converters. With this situation in mind both the B.B.C. and the I.T.A. have developed digital line standards convert ers. These. when eventually in operation, will be able to handle the digitally represented video information directly, and are expected to be more reliable and simpler to operate than are the analogue converters. Wireless World recently saw a demonstration of the B.B.C's experimental digital converter, developed at the Corporation's Research Department. Kingswood Warren, Surrey.

In a line standards converter, whether analogue or digital, two main processes
are required. First, the input signals, which have been derived by scanning the scene according to a 625 -line raster pattern, are modified by an 'interpolation' process. In this process 405 lines are derived from the incoming 625 -line picture, in such a way that each derived line (still having a duration according to the 625 -line $/ 50$-field standard) carries information corresponding to the scanning of the scene by a 405 -line raster pattern. The process consists of combining the signals from two or more successive input lines in accordance with the relative positions of corresponding lines in the 625 - and 405 -line raster patterns, assuming the rasters to be superimposed. Secondly, the 405 lines provided by the interpolation process are individually adjusted in duration so as to occupy the correct time intervals demanded by the 405line $/ 50$-field standard. This 'timeredistributing' process is effected by means of information stores. For this reason the whole system is described as a line-store converter'.

The B.B.C. digital converter (Fig. 1) samples the incoming 625 -line $/ 50$-field signal at a rate of 11 MHz . The magnitude of each sample is then represented by an 8 -digit binary number; thus the input signal is quantized into 256 discrete levels. The process of interpolation is carried out

Fig. I. Principle of the B.B.C. digital line store converter. The analogue-to-digital converter (a.d.c.) quantizes the input signal and translates the samples into binary numbers, as in p.c.m. If the input signal were already encoded, assuming a p.c.m. distribution system, this a.d.c. would not, of course, be necessary.
using a digital store-an m.o.s. integrated circuit shift register-with a capacity corresponding to the information contained in one input line, together with high-speed binary 'arithmetic' which accepts two 8 -bit numbers or 'words', multiples each by a suitable 3 -bit number and adds the resulting products. These arithmetical operations are achieved with an unusual type of logic, devised by J. P. Chambers, involving clocked delays, and this is implemented by t.t.l. integrated circuits.
The second, time-redistributing, process is carried out using an assembly of stores-again m.o.s. shift registers-each having a capacity corresponding to one input line. Each wanted line from the interpolator is 'loaded' into one of the redistributing stores at a rate corresponding to 625 -line scanning. Shortly after the store has been fully loaded it is 'emptied' at a rate corresponding to the 405 -line scanning standard. By providing a suitable number of shift register stores and a suitable switching arrangement, it is possible to ensure that the stores can be loaded and emptied in sequence and that all the wanted lines are suitably processed in the correct order. Finally, ancillary circuits provide 405 -line $/ 50$-field sync pulses in digital form which are added to the digital signals from the time-redistributing stores, and the combined digit stream is fed out.

For the purpose of the demonstration the output digit stream was fed into a digital-to-analogue converter (shown in Fig. 1) to produce a conventional 405 -line video signal, and this was displayed on a monitor alongside the original 625 -line picture on another monitor. No difference could be seen between the two pictures except very occasionally when the interpolator could not derive exactly the right information to present a particular optical pattern correctly in certain parts of the 405 -line picture. It was explained that this was due to a limitation of the interpolation formula, which uses quantities (binary numbers) drawn from only two successive television lines. Future designs of digital converter would use a more advanced formula-and consequently more arithmetical operations-based on a greater number of successive lines, and this would reduce the interpolation errors.

The I.T.A. converter, which has not yet been demonstrated, is similar in principle to the B.B.C. one, we understand, but operates at the higher sampling rate of 13 MHz . Although these line standards converters are not primarily intended for giving a colour television signal output, the I.T.A. state that their equipment, because . of its higher sampling rate, could in fact ${ }^{\text {. }}$ handle the colour information in the chrominance signals as well. This would be necessary, for example, if the line converter were used as part of a complete colour television standards converter ${ }^{\dagger}$ giving field rate conversion as well-say for changing American colour pictures to European colour pictures.

[^10]
Using Non-linear Loops

The theory applied

by Thomas Roddam

For the last couple of months I have been offering readers some thoughts on a topic which they well know to be relevant only to designers of large and complicated systems. Feedback, yes, but feedback with switches in the circuit, that is not for the ordinary man. Now I intend to show that it is for the ordinary man-and who is more ordinary than a man building a power unit?- and that even if you accept some approximations you can still emerge with an answer which enables you to choose sensible components to start messing about at the bench.

The first problem we shall discuss is the design of a switching regulator. In particular we shall take a series switching regulator. Anyone who would prefer to think of it in a slightly different way can call it a class-D d.c. amplifier. The purpose of the system is simple : we have a rough supply of $V_{\text {in }} \pm$ a lot and we want a supply of $V_{\text {out }} \pm$ a little. At low levels we can use a conventional class-A
valve or transistor regulator, but this consumes a fair amount of power and we find that either economy or the cooling problem demand a better solution. Switching regulators, chopper regulators, are the answer. In theory they introduce no power loss at all, so that they combine economy with the avoidance of cooling problems.
A chopper, as its name indicates, chops. This means that there will be a smoothing circuit following the chopper. It is possible to drive the chopper at a fixed frequency and to vary the mark-space ratio to control the output. It is also possible to allow the system to drive itself. Fig. 1 is indicative of the general difference between the class-A, dissipative, regulator and the pure switching type of regulator. We must go more deeply into the circuit arrangements, but in doing this I am going to skip one question which crops up in most power supply problems. We always have to get a shift in d.c. levels
at some point in the circuit. In the class-A system of Fig. 1(a), for example, we need a supply for the base of the pass transistor: if we take this from the unregulated input we find in a practical design that we must drop quite a fair voltage from collector to emitter, or get a wide range of base feed current. It is the detail of design here which is rather tedious if you want a solution which looks best. The theory of this kind of regulator chooses an arbitrary form here, and in this study of the chopper I shall assume that if necessary another d.c. supply is available to put biases where they are needed.

The circuit we are considering consists of three essential parts. There is the chopper itself, the averaging circuit and the circuit which drives the chopper. These are shown in Fig. l(b). For practical purposes they will normally be something like the elements shown in Fig. 2. The series pass power transistor and the flywheel diode do the

Fig. 1. Class A and chopper regulators: (a) class A regulator: (b) chopper regulator; (c) behaviour of a chopper regulator.

Fig. 2. Part-practical chopper regulator. $\operatorname{Tr}_{1,2}$ BSX 19. $R_{c 1}=R_{c 2}=R_{B}=1 \mathrm{k} \Omega$. $R_{b}=10 \mathrm{k} \Omega . V_{\text {in off }}=6.6 \mathrm{~V} . V_{\text {inon }}=7.8 \mathrm{~V}$.
actual chopping, and the interrupted current flows into the low-pass filter. A Schmitt trigger, the values of which are taken directly from Electronic Counting, p. 65 (Mullard), feeds through a d.c. switching amplifier, which hides a d.c. level problem, to the base of the pass transistor. For the Schmitt circuit shown, triggering is at 6.6 V and 7.8 V , so that a 2.8 V zener diode will put the mid-point of the zener band $(7.2 \mathrm{~V})$ up to 10 V at the positive terminal of C . The input voltage is taken as 20 V , and we expect to get an on-off ratio of $1: 1$. I fully realize that you have a 39.2 V source and you want to get 24.5 V , but this is my example and by using simple numbers we can look at the meaning instead of worrying about arithmetic. When I look at RollsRoyce car advertisements it is not the odd tenpence on the price which worries me.

The nominal load of this regulator is to be 1 amp . At full load, then, $R=10 \mathrm{ohms}$. At this point I am in a state of total innocence about the order of magnitude to use for L and C. Later we shall show how we can work back, but now, guessing madly, I choose to make this a low-pass half-section with a design cut-off frequency of 1600 Hz , so that $\omega_{c}=10^{4}$. Immediately,

$$
\begin{aligned}
& L=R / \omega_{\mathrm{c}}=1 \mathrm{mH} \\
& C=1 / \omega_{c} R=10 \mu \mathrm{~F} .
\end{aligned}
$$

These are plausible values, anyway, and 1 mH at 1 A , although it means a gapped core, can be got on a reasonable ferrite.
I propose to try the describing function method of analysis, and the first step is to study the characteristics of the linear part of the circuit. This is shown in Fig. 3, and it is extremely simple to find that

$$
\begin{gathered}
\frac{V_{1}}{V_{2}}=1+j \omega L G-\omega^{2} L C, \text { or } \\
1+j \omega L / R-\omega^{2} L C
\end{gathered}
$$

It is usual to normalize this. First we introduce ω_{0}, given by

$$
\omega_{0}^{2} L C=1 .
$$

This gives us

$$
\frac{V_{1}}{V_{2}}=1-\left(\frac{\omega}{\omega_{0}}\right)^{2}+j \frac{\omega}{\omega_{0}} \cdot \frac{1}{R} \cdot \frac{L}{C}
$$

Now the servo designers take

$$
\zeta=\frac{1}{2 R} \sqrt{\frac{L}{C}}
$$

so that

$$
\frac{V_{1}}{V_{2}}=1-\left(\frac{\omega}{\omega_{0}}\right)^{2}+j 2 \zeta\left(\frac{\omega}{\omega_{0}}\right)
$$

We can work out the values of

$$
20 \log \left|\frac{V_{2}}{V_{1}}\right|
$$

Fig. 3. The linear part of the circuits.

Fig. 4. Magnitude of V_{2} / V_{1} versus frequency ratio ω / ω_{0} for various values of $\zeta \leqslant 1$
$\frac{V_{2}}{V_{1}}=\frac{l}{\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)+j 2 \zeta \frac{\omega}{\omega_{0}}}$

Fig. 5. Phase shift of V_{2} / V_{1} versus frequency ratio ω / ω_{0} for various values of $\zeta \leqslant 1$
and of the phase angle, which will give us the response of this network for various values of ζ. These are shown in Figs. 4 and 5. We now use a little intuition or commonsense or guesswork. The Schmitt trigger works on about $\pm 0.5 \mathrm{~V}$ and can easily be made more sensitive. The input to the network is $\pm 10 \mathrm{~V}$ from the 10 V centre level. We shall expect at least 20 dB attenuation through the averager. The transmission curves of Fig. 4 are all pretty close to each other, and to the asymptote, for which

$$
\left|\frac{V_{1}}{V_{2}}\right|=\left(\frac{\omega}{\omega_{0}}\right)^{2} .
$$

The phase angle is given by

$$
\tan \theta=\frac{2 \zeta\left(\omega / \omega_{0}\right)}{1-\left(\omega / \omega_{0}\right)^{2}}
$$

We expect to be in the region where $\left(\omega / \omega_{0}\right)^{2} \gg 1$. Guessing, $\left(\omega / \omega_{0}\right)^{2}$ is about 10. Roughly, then

$$
\begin{aligned}
\tan \theta & =-2 \zeta /\left(\omega / \omega_{0}\right) \\
& =-1 / \omega C R .
\end{aligned}
$$

In the region we are interested in studying,

$$
\frac{V_{2}}{V_{1}}=\frac{l}{\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)=j 2 \zeta \frac{\omega}{\omega_{0}}}
$$

Fig. 6. Polar plot of the response of the LCR network.
we have
$\sin \theta=(180-\theta) \cos \theta=-1$, and so
$180^{\circ}-\theta=1 / \omega C R$.
This will be very useful in examining the effect of load changes.
I am far too lazy to draw in detail the Nyquist plot of this response. The general shape of it is shown in Fig. 6, and we can, with advantage, find which bit of this we need before we start working out the detail. We must therefore find the describing
function of the switch and its control mechanism. The input-output diagram is shown in Fig. 7. I have assumed that this Schmitt is a bit more sensitive than the model, so that I have exactly 1 volt peak-topeak hysteresis. If the input is less than this, the trigger circuit stays where it is and there is no output from the switch. As soon as the input a.c. signal to the Schmitt reaches $0.5 \sin \omega t$, the triggering will take place at the tips of the sine wave, and we shall get a 10 V square wave out. As the input rises the triggering takes place earlier, in the way shown in Fig. 8, but as the output is not changed the gain is less. The sine wave component of the output is actually $(4 / \pi) 10$ volts, or $12 \cdot 6 \mathrm{~V}$. I propose to alter R_{b} in my Schmitt trigger again, to make it operate at $\pm 0.63 \mathrm{~V}$-like the original, in fact, so that the maximum gain is just 20 times.

We can work out a few points very easily. For the 0.6 V input the gain is 20 and the angle 90°. The angle will come back to 60° when input $=0.6 / \sin 60=0.6 / 0.866$ ≈ 0.7, giving a gain of 18 times. For 45°, the input is $0.6 / 0.7=0.857$, giving a gain of about 15 . For 30° the gain is 10 . These results are sketched out in Fig. 9.

Let us begin by considering our system with its nominal 10 -ohm load. We have

$$
\left|\frac{V_{1}}{V_{2}}\right|=\left(\frac{\omega}{\omega_{0}}\right)^{2}
$$

For the 10 -ohm load

$$
\zeta=\frac{1}{20} \sqrt{\frac{10^{-3}}{10^{-5}}}=\frac{1}{2}
$$

It turns out to be easiest to take

$$
\begin{aligned}
\tan \theta & =-2 \zeta /\left(\omega / \omega_{0}\right) \\
\text { or }|\theta| & =\omega_{0} / \omega
\end{aligned}
$$

θ in radians.

$$
\text { For } \begin{array}{rlrl}
\frac{V_{1}}{V_{2}} & =25, \frac{\omega}{\omega_{0}}=5, & \theta=11^{\circ} \\
\frac{V_{1}}{V_{2}} & =16, \frac{\omega}{\omega_{0}}=4, & \theta=14 \frac{1}{2}^{\circ} \\
\frac{V_{1}}{V_{2}} & =9, & \frac{\omega}{\omega_{0}}=3, & \theta=20^{\circ} \\
\frac{V_{1}}{V_{2}} & =4, & \frac{\omega}{\omega_{0}}=2, & \theta=25-30^{\circ} .
\end{array}
$$

The approximations are falling apart here.
We are interested in finding the conditions which make the transmission round the loop pass through the point $(1,0)$. The conventional way of doing this is to plot V_{2} / V_{1}, with ω as parameter, in the complex plane, and to plot $1 / G(a)$, where $G(a)$ is the describing function, with (a), the signal amplitude as parameter, and to find the intersection of these curves. The usual way of drawing these two curves is as polar plots, like the one in Fig. 6. However, even with suitable graph paper it is not very satisfactory for this problem, because we are only going to work in a very limited range of angles and it's a terrible waste of paper. Working on scrap, setting out the angles is a bore and so I propose to plot the interesting region in rectangular co-ordinates, $|\mu \beta|$ and θ.

Fig. 7. The switch and Schmitt trigger. $V_{\text {in }}=0$ corresponds to 7.2 V at the Schmitt input, or 10 V before the zener diode. $V_{\text {out }}=0$ is the nominal +10 V .

Fig. 8. The switching system.

Fig. 9. Sketch of describing function.

Fig. 10. Plots of LCR response and $I /($ describing function $)$.

For the $L C$ network we have

$$
\left|\frac{V_{2}}{V_{1}}\right|=\left(\frac{\omega_{0}}{\omega}\right)^{2}
$$

and

$$
|\theta|=\frac{\omega_{0}}{\omega}
$$

Approximately, then, $\left|V_{2} / V_{1}\right|=|\theta|^{2}$, a parabola. I have plotted this in Fig. 10, and then gone on to transfer the data of Fig. 9 on to the same scale. I find I did not draw enough of Fig. 9, but the intersection tells me that the system will oscillate at just below $3 \omega_{0}$, or something less than 5000 Hz , and that the value of $G(a)$ will be, at a guess, 7 or 8 . The ripple will be rather more than 1 volt.

This is not really good enough, but before we modify the design let us see what happens if we reduce the output current to half its nominal value by making $R=20$ ohms. We saw that for $L C R$ the amplitude does not vary much when we change R, at least not if we are working where we should be, but the angle is inversely proportional to R. It is very easy indeed to add the small bit of the (V_{2} / V_{1}) curve which shows the new intersection, at a rather larger amplitude and a lower frequency.

Naturally I would not have gone to all this trouble unless I could see some way of making the circuit work. If the value of R_{b} in the Schmitt trigger is increased the hysteresis gets smaller and smaller, and so the maximum value of $G(a)$ gets bigger and bigger. Using just the Mullard values we should be able to push $G(a)$ up to about 100 at the maximum, with a $\pm 0 \cdot 1$ volt hysteresis gap. Fig. 11 shows the essential region for this condition. It will be seen that the frequency has been pushed up to about 7000 Hz and the ripple is down to about one-half volt r.m.s.

The actual chopper frequency is not, in theory, very significant because we can change L and C. In practice it matters, because if we choose to chop at 1 MHz the transistor and the diode are going to have rather a hectic time and will cost a lot of money. It is a straightforward scaling problem. Taking this rough answer of $5-7 \mathrm{kHz}$ for $1 \mathrm{mH}, 10 \mu \mathrm{~F}$ we can move up to 25 kHz with $200 \mu \mathrm{H}, 2 \mu \mathrm{~F}$. The transistor switching losses will increase by a factor of 5 , and the ripple will be about the same.

It is not possible to avoid having some ripple, because it is the ripple at the output which keeps the whole thing working. On the other hand it is very easy to smooth out this sort of high frequency ripple. Indeed it seems to me, although I have never seen this stated explicitly, that you must add an $L C$ section after the Schmitt tap-off point. The reason is this: we have shown a resistive load, but the power supply user may have a large capacitance at his input, possibly because he would otherwise be sending signals back down the power line. Surge protection must provide a high input impedance at the switching frequency and will give high ripple attenuation.

Operation in an off-set mode requires the study of a describing function which includes a d.c. component. We can look for a rough and ready answer by using what we have already. Suppose that the input voltage is reduced to 11 volts. The chopper must then

Fig. 11. Revised Fig. 10 with $\pm 100 \mathrm{mV}$ hysteresis.
be on almost all the time, so we shall need a large amount of ripple, centred on a fairly low voltage. The regulation against changes of input voltage will only be a factor of about 10 , even for small changes.
In a sense, we still have not got a very good voltage regulator. We can try passing the buck to the circuit designer. It is useful to draw the amplitude-phase diagram as a polar diagram, and this js sketched in Fig. 12. If we increase $G(a)$ we make $1 / G(a)$ smaller. When we carry this process too far, we lose the trigger effect in our Schmitt trigger, and we have no phase shift due to hysteresis. The characteristic becomes that of a saturating system. In theory, however, this will not oscillate, though stray capacitance effects may produce enough extra phase shift in a practical circuit. We can design in this extra phase shift. As it is a passive system we will normally consider it in conjunction with the $L C R$ system. A lead-lag network, shown in Fig. 13, will modify the $\left(V_{2} / V_{1}\right)$ curve to the form shown in Fig. 13(b). As this crosses the $\theta=0$ (i.e. full positive feedback) axis it is just a question of getting enough gain, even without hysteresis. From a practical point of view, however, the absence of hysteresis means a slow transition from on to off, and back again, with the increased switching losses. It will easily be seen, when Figs. 12 and 13 are compared, that this sort of characteristic can be made to cross the $1 / G(a)$ line wherever we wish, and therefore we can make full use of the sensitivity of the switching control circuit.
An important feature of this class of circuit is the speed at which it makes its decisions. If it is operating at 10 kHz , 10 milliseconds is, as it were, a lifetime. The

Fig. 12. The general form, as a polar plot, of the critical region.
ripple from rectified and roughly smoothed mains is just another input variation to be reduced by the regulator.

There is quite a lot more detailed design work to do before you arrive at a practical circuit. I suspect that usually this is done by the method of building a system and then modifying it to make it work. One modification with a theoretical basis is to adopt the following reasoning. We find that as we reduce the loading, (refer back to Fig. 10), we get a substantial change in characteristic. We can hardly tell the user that he must always draw 1 amp : sometimes he only wants 100 mA . We become fairly independent of loading, however, once the loading is light. If we design for, say, 2 ohms load, with $L=200 \mu \mathrm{H}$ and $C=50 \mu \mathrm{~F}$ we have the same cut-off frequency but the characteristic where we are studying it is not nearly so sensitive to load. Frequency and regulation remains more nearly constant.
One reason why I chose this switching regulator as my first example is that it lends itself very well to analysis by another method. This is the method called the phase plane method by some writers, but which I feel might well be called the situation trajectory method. We go right back to first principles, and having drawn the circuit in Fig. 14 we write down the circuit equations:

$$
\begin{aligned}
L d I / d t & =V_{1}-V_{2} \\
V_{2} & =Q / C \\
I & =V_{2} / R+d Q / d t
\end{aligned}
$$

From which:

$$
\begin{aligned}
\frac{d I}{d t} & =\frac{V_{1}-Q / C}{L} \\
\frac{d Q}{d t} & =I-Q / C R \\
\text { and } \frac{d I}{d Q} & =\frac{C V_{1}-Q}{C R I-Q}
\end{aligned}
$$

This is the classic form, which corresponds to working with position and velocity in a servo system. It is easier to work with V_{2}.

$$
\begin{aligned}
& \frac{d I}{d t}=\frac{1}{L}\left(V_{1}-V_{2}\right) \\
& \frac{d V_{2}}{d t}=\frac{1}{C}\left(I-\frac{V_{2}}{R}\right)
\end{aligned}
$$

I have also found that it is easier, in this example anyway, to leave time in the two equations, instead of solving a differential equation and using tables.
For the practical circuit,

$$
\begin{aligned}
& L=1 \mathrm{mH}=10^{-3} \\
& C=10 \mu \mathrm{~F}=10^{-5} \\
& R=10 \text { ohms, at full load. }
\end{aligned}
$$

The average state is $V_{2}=10$ volts, $I=1 \mathrm{~A}$ and $V_{i}=20$ volts or 0 . Provided that I is always positive, so that the fly-wheel diode is always conducting if the transistor is off, we can measure everything from the average state, and aim for $V_{2}=0, I=0, V_{1}= \pm 10$ volts. Then with this new meaning for I and V_{2}

Fig. 13. Tailoring the characteristic: (a) lead-lag network; (b) effect on characteristic.

Fig. 14. The switching regulator again.

$$
\begin{aligned}
\frac{d I}{d t} & =10^{3}\left(\pm 10-V_{2}\right) \\
\frac{d V_{2}}{d t} & =10^{5}\left(I-\frac{V_{2}}{R}\right), R=10
\end{aligned}
$$

A reasonable guess at a value of $d t$ to give a smoothish curve is 10 microseconds. A smaller value would be better, but would involve much more work. Let us try, and write the elapsed time as $n 10^{-5}$ seconds.

$$
\begin{aligned}
d I & =\left(\pm 10-V_{2}\right) /\left.100\right|_{n} \\
d V_{2} & =\left.\left(I-V_{2} / 10\right)\right|_{n}
\end{aligned}
$$

Initially, $I=0, V_{2}=0$, and we take the $+\operatorname{sign}$ in the $d I$ equation

	$\boldsymbol{d} \boldsymbol{I}$	$\boldsymbol{d} \boldsymbol{V}_{2}$	at end of time	\boldsymbol{I}	\boldsymbol{V}_{2}
$n=1$	$0 \cdot 1$	0		0.1	0
2	0.1	0.1		0.2	0.1
3	0.099	0.19		0.299	0.29
4	0.097	0.27		0.396	0.56
5	0.0944	0.34	0.49	0.9	

We have gone too far. After $n=4$. we have V_{2} at a value which will trip the Schmitt trigger if the total hysteresis gap is ± 0.5 volts. So now we take the minus sign and step 5 becomes:

5	-0.1056	0.34	0.29	0.9
6	-0.109	0.2	0.18	1.1
7	-0.11	0.07	0.07	1.8
8	-0.118	-0.11	-0.48	1.69
9	-0.117	-0.649	-0.6	1.04
10	-0.11	-0.7	-0.71	0.34

Doubling the size of the time steps
$12-0.207 \quad-1.48 \quad-0.92 \quad-1.14$

We should not have done that, so back to

$$
11-0.1034-0.744 \quad-0.81 \quad-0.4
$$

The switching point is going to be pretty soon after this, and I am going to take it as now, which means I take the plus sign again.

12 A	+0.104	-0.77	-0.7	-1.17
13	+0.112	-0.58	-0.59	-1.75
14	+0.117	-0.41	-0.48	-2.16
15	0.12	-0.27	-0.36	-2.43
16	0.124	-0.12	-0.24	-2.55
17	0.125	+0.01	-0.12	-2.54

I confess to having looked for some graph paper to plot this out as Fig. 15. I confess also that I do not believe point number 6, but it does not matter: the system looks after itself, forgetting errors as we go round. With more energy one can draw several loops, and see how the system settles down to a steady movement round the loop. It looks as though each circuit will take some $200 \mu \mathrm{~s}$, giving a ripple frequency of 5000 Hz , and that the ripple will be about 1.7 volts r.m.s. The frequency agrees fairly well with the answer we got by the describing function method, but the ripple comes out rather higher. Considering that I have deliberately worked very roughly I feel that the argument is quite reasonable. The reader may have wondered how I got the frequency: I simply noted that from one maximum of V_{2} at $n=7$ to the other, a maximum of $\left|V_{2}\right|$ at $-2 \cdot 55$, was $9-10$ steps of $10 \mu \mathrm{sec}$, so that right the way round will be about 20 steps.

Given enough energy we might work out another set of data of the same kind for, say, $R=100$, which would leave the expression for $d I$ unchanged but would alter the equation for $d V_{2}$ to contain a term $V_{2} / 100$. We might then find that we should need to look at another switching condition, for if the negative value of I in this analysis exceeds the standing current the flywheel diode ceases to operate. There is then a section of the trajectory in which we have just the capacitor supplying the load, and we must work out the equation to cover this condition. At least, we must if we are prepared to work in this region. In practice we increase either the inductance or, by modifying the switch circuit, the frequency. We may have a separate oscillator.

The external oscillator is fed in to the circuit so that its voltage adds to the error voltage. To make the calculations simple I
am going to feed in a triangular signal of ± 0.2 volts and 25 kHz frequency, shown in Fig. 16. Looking at Fig. 15, and doing some guessing, I propose to start calculating at the point where $I=0 \cdot 1, V_{2}=0$ for $t=0$, and to keep all the other values the same. In view of the fatigue which sets in as soon as I start on one of these long tables, I shall summarize the result in the form of Fig. 17. The ripple is down to less than 0.5 V r.m.s., and the frequency is up to 25 kHz .

The serious reader is still left with a lot of plodding, for the whole pattern must be worked out for the lightly loaded situation as well. The analogue simulation is what a lot of you will do. Having first calculated by either of the techniques described, and at this stage the describing function method is the easiest, the sort of values you will use in the $L C$ network, you construct your analogue system. The easiest thing here is often to build the unit itself. Then you use a signal generator as the supply of jitter. This technique has the great advantage that you can check the heating in the switching transistor, about which you normally know only typical switching times.

It should be possible to use the describing function method to take account of an external drive. This involves the consideration of a modulator effect in the control loop. Without going into any detail, there is no doubt that this is a pretty complicated procedure, especially as the injected oscillator waveform will probably not be a sine wave. I myself prefer the use of the sawtooth produced by a unijunction oscillator, because it is the cheapest way I know of getting a well-defined signal which is always either rising or falling. I do not like driving the Schmitt trigger from a sine wave, because the flat top produces uncertainty of triggering in the critical region.

The sampled data technique can be applied to the driven regulator. It is of special value in considering the slow variations in output caused by input or load changes. In Fig. 18 we see how the output voltage is tested almost regularly by the

Fig. 15. Beginning of
the trajectory.

Fig. 16. Master oscillator voltage added to error.

Fig. 17. Form of the solution for a driven switching regulator.

Fig. 18. Switching regulator as sampled data system: (a) sampler and pulse length modulator; (b) p.l.m. pulses into holder.
sawtooth, and the switch is then used to produce the pulse length modulated output train from the sampler. The $L C$ network provides the hold function. A really formal solution along these lines is complex, because the sampling is not taken at the regular instants of the basic theory, but the exact epoch of either the leading edge or the trailing edge of the pulses depends on the deviation which is being measured. This 'picture' approach, however, does make it very easy to work out the loop gain at very low frequencies and thus to predict what we might call the Avo-to-Avo gain, the change in the d.c. output shown on a moving coil instrument for changes in working conditions.

The real crunch comes in the awkward problems. If you need to know exactly what happens after a load change the situation trajectory enables you to trace it in detail. If you simply want a self-switching circuit the describing function enables you to get the frequency in the right region from the beginning: I find this useful, because inductors take more procurement time than anything else. The idea of sampling data is useful because it provides a direct appraisal of the size of the oscillator drive, and the sensitivity of the switch.

In a later article I propose to examine another non-linear system which, if not carefully designed, can go very wrong in a very odd way.

Audio Festival in France

Among the most interesting events at the Festival du Son, Paris (5-9th March), was a public demonstration by O.R.T.F. (Office de Radio et Television Francaise). Arranged in two parts it was intended principally to gauge public reaction to various types of quadraphonic recording (O.R.T.F. dubbed the system 'la tetraphonie') but included some twochannel stereo sound accompanying television pictures.

Two-channel television sound has been transmitted on an experimental basis in Japan and Germany where each channel has carried a different language-the original and a translation of a foreign film sound track for example. However, O.R.T.F's recorded demonstration was concerned entirely with the ability to provide a stereophonic accompaniment to their black-and-white television picture. The main objection which seems aesthetic rather than technical-discounting the ludicrous contrast between a $58-\mathrm{cm}$ television screen and a large stereo sound field-is the anomaly arising from movement of the camera. All the O.R.T.F. tapes were of an orchestra and the conventional camera techniques of zooming, panning or otherwise changing the viewing angle without a corresponding change in the aural perspective upset even a lay audience.

For experimental two-channel television sound transmissions O.R.T.F. have used the pilot-tone system transmitters of France Culture, bringing to mind the early days of stereo radio in Britain. Of course, in principle the pilot-tone system could be applied to television sound transmissions, but the French use a.m. and the O.R.T.F. engineers see little prospect of change, or of introducing f.m. sound on another frequency.
'La tetraphonie' turned out to be a series of recordings made with different microphone configurations and replayed through four loudspeakers, disposed in various ways around the room. Practically coincident cardioid microphones are used extensively for two-channel work by O.R.T.F., so it was surprising that, despite a claim to have employed all the obvious arrangements, a true tetraphonic format was not used. The five situations presented are illustrated. As one might expect (a) and (b) seemed to please most people,
although (a) tended to produce obvious rear images if one was too near the rear speakers, while (e) was obviously 'left-right' and, despite the sense of ambience, thought less good than either (a) or (b). Arrangements (c) and (d) were thought not worthwhile by most listeners.

Notwithstanding the semblance of experimental conditions, including the issue of forms for gauging 'audience reaction', and the excellent presentation, several engineers present commented on the lack of experimental design and the absence of any provision for comparison between mono and two-channel stereo, not to mention between four channels and one of the four-channel simulation processes now available. Whatever the results of the tests, they will hardly repay the enthusiasm and efforts of those responsible.

One or two excellent pieces of equipment not at present available in the U.K. were noticed, and most impressive in terms of sound quality were the electrostatic headphones produced by Audiotec. This small French concern produces three excellent loudspeakers' and a range of electronics as well as importing the wares of the Japanese Stax company. Having handled their electrostatic headphones-similar in design to those described by J. P. Wilson in Wireless World in December 1968-and concluding that they could do better, Audiotec produced their own giving the Stax product to another agent. A true push-pull design with transformer drive, the headset is claimed to have a response of 20 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{~dB}$ and a maximum sound output of 115 dB . Heard in conjunction with the Stax capacitative pickup the quality was noticably smooth and musical-definitely one of the few acceptable noises in the show.

One interesting approach to turntable design was displayed by Link. Taking the decoupled suspension/belt-driven system devised many years ago by Acoustic Research, the designer has attempted to produce a more stable machine by inclining the suspension and adding damping, claiming the unit is then more stable to lateral and vertical shocks which represent the two most likely modes. The Link turntable also employs an unusual main bearing with a bronze bush and

Tefion insert mounted in the platter, a fixed supporting member being rigidly attached to the floating plate. As the centre of gravity of the assembly is below the point of suspension any tendency for the platter to take up slack in the bearing by rocking as it rotates is said to be eliminated, improving the rumble performance of the equipment.

Two loudspeakers claimed to be 'servo controlled'. Few details were available of the American Harmon-Kardon Landmark 100 which purports to use motionalfeedback, the literature available referring to a 'correcting signal' derived from the drive units, but giving no explanation of its origins. Whatever its merits as a design the resultant sound was truly horrible, perhaps due to the inept demonstration.

The Belgian Servosound is based on the idea (attributed by Prof. Korn, the designer, to Paul Voigt) of using the output impedance of a feedback amplifier to compensate for the acoustical deficiencies of the loudspeaker and its enclosure. Accordingly the loudspeakers are sold complete with 20 or 60 -watt amplifiers in which the n.f.b. loop includes a component mysteriously labelled 'circuit cybernetique d'asservissement'. This turns out to be a bridge which includes compensation for the acoustical and electrical circuits of the drive unit and its enclosure at low frequencies, thus avoiding the problems associated with negative output impedances in the past. Professor Korn claimed this was the only way of obtaining properly controlled cone motion at low frequencies and that in his experiments 11 dB of electrical damping could be produced compared with a maximum of 4 dB using mechanical methods.
R.F.J.

When O.R.T.F. used these arrangements for demonstrating four-channel recordings, most listeners preferred (a) and (b). Symbol X denotes ideal listening position, and 'front' the direction listener was facing. In recording, cardioid microphones occupied complementary positions, but in (a) were closer together than in (b).

AMPLIVOX COMMUNTCAYIONS LIMITED

AMPLIVOX COPAMUNICATIONS LTD. BERESFORD AVENUE WEMELEY • MIDDX TELEPHONE 01-902 3997
GRAMS AND CAELES AMPLIVOX. WEMBLEY
See us on stand 334 Hall E at the Paris Air Show

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation

Name
Title
Address

EEV know how to help rada

designers help themselves.

Help yourself to EEV duplexer knowhow. It comes in all shapes and sizes, at most frequencies and powers. And you can rely on every EEV cell for extra-long life and high quality. Many are available from stock for others we'll give firm delivery dates.

EEV have a lively record of success in advanced duplexer and component design ... witness our L, S, C and X band balanced duplexers and our L, S, C and X band protector cells. EEV's range of primerless devices is one of the best, giving fulltime protection without keep-alive

EEV know how to help you with your systems, too. We have computer-aided design groups, advanced manufacturing capability, and one of Europe's most up-todate test facilities. Send us your specification and we'll advise you. Or perhaps you just need data sheets at this stage. Either way, please write or telephone and we 'll be glad to help.

EEVknow how.

computer's best friend

Where an oscilloscope has to be precise, reliable, able to go places, engineers choose the S.E.'s EM 102 Series. It is used widely for on-site testing and servicing
 by many manufacturers. It has the advantage of being a true double-beam (not prone to triggering ambiguities), all solid-state oscilloscope giving laboratory precision in a rugged, portable mains- or battery-operated instrument The EM 102 Series includes the option of delayed sweep with bright-up and a selection of plug-in modules including $15 \mathrm{MHz}, 30 \mathrm{MHz}$, double differential or high-gain differential amplifiers incorporating a wide range of facilities to cover the most exacting user requirements. Full use of the instrument is ensured by after-sales back-up including the attention of skilled applications engineers and fast turn-round, onsite servicing facility. The product itself, and the hidden assets that go with it, make sure every S.E. scope gives you good value for money. Write or ring for details.

SE measures up to tomorrow's technology

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166. Telex: 23995
Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

F.M. Stereo Tuner

2-Further details of high-performance design for home construction

by L. Nelson-Jones, F.I.E.R.E.

This sensitive f.m. tuner design, described in last month's issue, has a performance equal to the better examples of commercial tuners, but at a much lower cost. Full constructional details were given in Part 1 and this article discusses in detail some of the devices used-especially the dual-gate m.o.s.f.e.t., integrated circuit demodulator and ceramic i.f. filters-and concludes with alignment instructions.

The dual-gate m.o.s.f.e.t. is not to be confused with the type of junction f.e.t. which has two gate connections, usually one to the gate and the other to the substrate, as this has gates effectively in parallel. The dual-gate m.o.s.f.e.t. has gates effectively in series so that it can be likened to the multi-grid valve or a cascode stage and like these devices has the advantage of very low feedback capacitance from output to input. It has also the same advantages as single-gate m.o.s.f.e.t.s namely, good signal handling, low noise, and high input impedance. Fig. 9 shows the likeness of the dual-gate m.o,s.f.e.t. to a cascode stage, and its construction. The drain current of a dual-gate m.o.s.f.e.t. is a function of both gate potentials, and this enables gate 2 to be used for gain control in the case of r.f. amplifiers, or for injection of local oscillator voltages in the case of mixer stages. Type 40673 is very similar to the 3N140 but in addition has full protection of both gates by pairs of zener diodes between each gate and the source (and substrate) electrodes. These diodes are clearly of minute proportions-they add only a fraction of a picofarad to the gate capacitances. The breakdown of these diodes is around ± 10 volts, so that normal signal levels do not cause conduction. But the diodes will conduct long before the gate breakdown voltages are reached, and, provided the resultant currents are adequately limited by the circuit values, no harm will result to the gates.

Apart from the obvious advantage of two controlling gates, the great advantage of the second gate is that it acts as a 'guard ring' between the drain, and gate 1 . The result of this guard ring action is a typical drain-to-gate 1 capacitance of 0.02 pF (with a maximum for the 40673 and 3 N 140 types of 0.03 PF). This low value of feedback capacitance enables
such a device to give up to 28 dB of power gain at 100 MHz , without need for neutralization, but in practice a gain of 20 dB is a more realistic figure for an r.f. amplifier at this frequency. This ensures a high margin of stability, which together with the superior signal handling qualities of the m.o.s.f.e.t. make this a very easy device to use for r.f. amplification in an f.m. tuner.

Integrated circuit i.f. amplifiers

Integrated-circuit i.f. amplifiers have been available for some time now in various
forms, from the simple differential pair and the cascode stage, up to relatively complex circuits such as that used in the receiver described (TAA661B). There are now a number of these more complex circuits available, nearly all of which use a product detector for demodulation. Examples of these are the Sprague ULN-2111, Plessey SL432A, and the SGS TAA661B. Fig. 10 shows the circuit of the TAA661B, together with the basic external connections.

Gain is provided by three stages, each of which is a non-saturating differential amplifier followed by an emitter follower.

(c)

Fig. 9. Symbolic representation of dual-gate m.o.s.f.e.t. (a) showing similarity to cascode stage. Plan view (b) shows complete separation of gate 1 from drain-by-gate 2; (c) shows section across $A-A$. Bi-directional zener diodes conduct at around $\pm 10 \mathrm{~V}$ preventing gate breakdown (type 40673 only).

Fig. 10. Demodulation and i.f. amplification are performed in this single-chip integrated circuit (TAA661B). Phase-sensitive detector consists of 'tree' of differential pairs with constant-current tail (to right of bias chain), fed with a phase reference provided by tuned circuit and with signal to lower pair.

Overall d.c. feedback is applied so that the output level at the third emitter follower is kept equal to that of the base of the input transistor. This voltage is set at. approximately 1.4 volts by the bias chain of five diodes which has two outputs, equal to two and five 'diode voltage drops'. The higher of these voltages is used to control the main supply line of the amplifier stages via an emitter follower. This supply line is therefore at approximately 2.8 volts-five 'diode
drops' less the base-diode drop of the emitter follower.

The detector consists of a 'tree' of differential pairs with a constant-current source in the common 'tail' connection. This constant-current source is a 'current mirror' circuit where the constant current is equal to the current feeding the second transistor, strapped as a diode. The current mirror principle is based on the fact that two equal transistors with equal base-emitter voltages will also have equal
collector currents. This principle may be extended so that two transistors of an integrated circuit having different areas (but otherwise similar) will have collector currents equal to their areas when used in such a circuit.

The detector acts as a phase-sensitive full-wave rectifier, with a phase reference provided by a tuned circuit driven from a tap on the load of the final emitter follower of the amplifier. The lower two transistors of the tree are driven by the signal from

Fig. 11. At resonant frequency of tuned circuit-see Fig. 10 -signal applied to lower differential pair is in quadrature with reference from tuned circuit fed to upper pairs, and current divided equally between each of the upper pairs (a). When signal frequency deviates, phase difference between the two signals increases or decreases (b), changing proportion of current through each half of both upper pairs.
the amplifier, and as the two bases of the pair are at equal d.c. potential-due to the overall 100% d.c. feedback over the amplifier-the collector currents of these two transistors become square waves at the carrier frequency, at all signal levels above the limiting threshold of the amplifier chain. The two upper pairs of transistors are fed by the reference voltage from the tuned circuit and like the lower pair the bases of both pairs are at equal d.c. potential.

One base of each pair is connected to the supply line of the amplifier, while the other is fed by an emitter follower, biased via the tuned circuit from the same potential as the base of the emitter follower controlling the supply line of the amplifier. The voltage across the tuned circuit is approximately 300 mV peak-to-peak with full limiting so that these upper pairs of transistors are also fully switched at the reference frequency. At the resonant frequency of the reference circuit, the signal voltage applied to the lower pair of transistors is in quadrature with the signal from the tuned circuit to the upper pairs of transistors, due to the loose coupling of the tuned circuit via the $22-\mathrm{pF}$ capacitor. Thus at resonance the current square wave through each half of the lower pair of transistors will divide equally between each of the upper pairs, because the two signals are in quadrature, and the transition of the reference waveform takes place midway through each half cycle of the current square wave supplied by the lower pair. Action is shown in Fig. 11a.

As the frequency departs from the centre frequency of the tuned circuit, the phase difference between the two signals decreases or increases, depending on the direction of the frequency shift, so that the proportion of the current passing through each half of each upper pair changes, Fig. 11 b . The collectors of the upper pairs are connected so that the pair which have an increase in current for an increase in frequency are connected together, as are those having a decrease. One pair of collectors is connected to a load resistor, and the other pair direct to the 12 -volt supply. The load resistor drops approximately 6.0 volts at the centre frequency so that the output level is typically +5.5 volts, at the emitter of the emitter-follower output stage.

De-emphasis is arranged by a capacitor connected to the base of the emitter follower. Alternatively a separate de-emphasis network can be connected to the output in the usual way, with a much smaller value of capacitor connected to pin 1. A capacitor connected to this pin is still essential to preserve overall stability by by-passing the r.f. voltages present at this point. A similar reduction is necessary if the output is applied to a stereo decoder. A value of 150 pF is suitable in either case.

Ceramic i.f. resonators

There are a number of ceramic resonators on the market and they take different physical forms. Some are similar to the

Fig. 12. Ceramic resonrtor used is equivalent to two 2-pole filters coupled by capacitor C_{k} (a) and has selectivity shown at (b). Two cascaded filters give a bandwidth of 220 kHz at 3 dB down and 560 kHz at 60 dB down.
type of filter common in communications receivers where high degrees of selectivity are required, and these have tuned circuits at input and output with one or more resonators between. Others use only ceramic resonators, with perhaps coupling capacitors, and have a family resemblance to the type of crystal filter used in v.h.f. communications receivers for high degrees of i.f. selectivity at 10.7 MHz . The type of filter used in the tuner consists only of a single ceramic resonator which by the layout of its electrodes performs the function of a multi-section filter with a bandpass characteristic.

Such filters are now also being made in quartz for v.h.f. communications receivers and can equal the performance of much more complex multi-element filters, despite their relative simplicity. This excellence of performance is true also of the ceramic type, where the device used has a performance slightly better than a multi-element device of otherwise similar characteristics, both in respect of selectivity and passband loss. Due to its greater simplicity it is also much cheaper, and smaller.

The equivalent circuit of the filter (Vernitron FM-4) is of two 2-pole filters coupled by an additional capacitor $C k$ as shown in Fig. 12. Physically all the elements are on a single ceramic substrate. The overall response is equivalent to two critically-coupled bandpass circuits in cascade. Figure 12 b shows the typical selectivity of such a single unit (solid curve) consisting of a single substrate multi-pole filter with the equivalent circuit of Fig. 12a. The broken curve shows the result of using two such complete resonator units (with a suitable buffer stage between) to obtain higher selectivity. The resultant performance is more than adequate for f.m. broadcast reception, with $3-\mathrm{dB}$ bandwidth of typically 220 kHz and 60 dB bandwidth of around 560 kHz . Ripple in the pass-band is quoted as not exceeding 1 dB (2 dB for two stages).

Measurements confirm these figures for typical pairs of filter units in a practical amplifier. These resonators cannot be coupled directly to one another in normal use or the balance of the response curves will be upset, resulting in a highly asymmetric response-the use of driving
or load impedances noticeably different from the 330 -ohm design impedance will upset the degree of coupling in individual sections. This relatively low impedance of 330 ohms is perhaps one of the drawbacks of this type of ceramic resonator, although most such filters have impedances in the same region. In practice, however, the reduction in gain due to the use of such low-impedance loads in the amplifier chain is not too serious, especially as an additional low-gain buffer stage between the filter sections is needed to avoid interaction of the filters.

The most serious loss of gain from this low load impedance would occur in the mixer stage, where with a typical dual-gate f.e.t. stage as described, the voltage gain of the mixer would be reduced to a little below unity with such a load. In the tuner design the mixer is therefore modified to use a tuned load with a grounded-base buffer stage feeding a 330 -ohm resistive load to which the first filter is connected. This ensures a true 330 -ohm source for the filter, and results in an overall mixer gain of 24 dB . The mixer load circuit is designed to work at only a moderate Q so that the tuning of this circuit is not highly critical.

Due to production tolerances the ceramic resonators are graded into frequency bands and appropriately colour coded to indicate their exact frequency tolerance. For the type used there are five groups covering a total spread of 150 kHz (at $37.5-\mathrm{k} \mathrm{Hz}$ intervals) around 10.7 MHz . In a receiver using two such filters, both must be of the same colour group to achieve a satisfactory result. (Details of these groupings were given in the parts list.)

Variable-capacitance diodes

In the past few years some improvements have been made in the parameters of variable-capacitance diodes for tuning. These improvements have given diodes a higher Q and a wider variation in capacitance for a given voltage change. Many tuners now use such diodes exclusively for tuning the r.f. circuits, and they are becoming common in u.h.f. television tuners. The great advantage of these diodes for tuning is that the r.f. circuitry can be made very compact, thus minimizing pick-up and easing screening problems, and making circuit location independent of dial mechanism location. The main disadvantage, so far as the average constructor is concerned, is that both availability and price are at a disadvantage compared with a normal tuning capacitor at the present time.

A nother common use of these diodes is a.f.c., and here the requirements are not nearly so severe as only a small variation of capacitance is required. Availability of diodes for this purpose with a smaller change of capacitance with voltage is fairly good and prices are moderate. Such a device is the Texas TIV307, whose capacitance versus voltage curve is shown in Fig. 13 (as measured by the author on three samples). This device could also be used for tuning purposes-it has just adequate capacitance variation without

Fig. 13. Capacitance-voltage characteristic for a.f.c. diode.
using too high or too low a control voltage. Too low a control voltage is undesirable, especially in the oscillator stage, where harmonic generation and conduction of the diode become a problem at low bias voltage. Too high a voltage can be a problem either because the diode will not withstand it, or because the voltage is simply not available.

The smallest capacitance swing is in the oscillator circuit (from $87.5+10.7=98.2$ to $108+10.7=118.7 \mathrm{MHz}$) which has a frequency ratio $\quad f_{\text {max }} / f_{\text {min }}$ of 1.22 , and a capacitance ratio of $1.22^{2}: 1$ or 1.46 : 1. The r.f. circuits need a capacitance swing of $(108 / 87.5)^{2}=1.53: 1$. A swing of from 2.5 to 7 volts would give such a change if the only capacitance were the diode. But there will always be $10-15 \mathrm{pF}$ of general circuit capacitance, so that a diode change from 10 to 20 pF at least is necessary (or just over 2:1 variation in the diode). With some care in circuit layout and a change in L / C ratio the TIV 307 could just give this swing (or its companion with higher capacitance TIV $308-12 \mathrm{pF}$ at -4 volts), especially if a higher supply voltage than the 12 volts used in the design were available. It is the author's intention at a later date to design a diode-tuned receiver, but in the present design a normal tuning capacitor is used mainly on the grounds of cost and the difficulty of obtaining diodes in suitably matched triplets.

Alignment of tuned circuits

The tuned circuits must be aligned in reverse order, that is starting at L_{s} and working back to L_{1}. By far the easiest way of aligning the i.f. section is to use a wobbulator centred on 10.7 MHz and having a sweep frequency of 50 Hz , with a peak-to-peak deviation of 1 to 2 MHz . Fig. 14 shows the response of a correctly aligned i.f. amplifier and demodulator: The y-axis is the output of the tuner (1 volt/division) and the x-axis is the modulation voltage ($75 \mathrm{kHz} /$ division). The display shown is for a moderate input, but is well into limiting. Apply the wobbulator input to L_{2} via a capacitor at about 1 mV level from 80 ohms. The core of L_{4} is easily set for maximum gain by looking at
the noise amplitude at either side of the display. As the core is moved the noise is first greatest on one side and then at the other as the resonant frequency of L_{4} moves across the band. Set the core to mid-way between the positions giving maximum noise on either side.

If a wobbulator is not available then at least a signal generator must be used. Connect as for the wobbulator above to L_{2} via a capacitor and apply a level of around 1 mV from 80 ohms. Connect a centre-zero meter of around $\pm 3 \mathrm{~V}$ full scale between the output and the a.f.c. reference lead (preferably better than $10 \mathrm{kohm} / \mathrm{volt}$ sensitivity). Rock the tuning of the signal generator back and forth around 10.7 MHz while adjusting the core of L_{5} until the positive peak excursion is equal to the negative peak excursion-Fig. 14. If the signal generator calibration is fine enough the tuning of L_{5} is finally set for best linearity, plotting output voltage against frequency. If the core of L_{5} is far from the correct setting, the output may be a totally positive or totally negative excursion, with no S-shape.

If a centre-zero meter is not available the 10 -volt range of a multi-meter may be used connected between the output and earth. When the signal generator is far off tune the reading of the output level should be around 5.5 volts (supply at 12 volts). This is equivalent to the zero centre reading using the centre-zero instrument as above. The tuning of L_{5} is now set for equal deflections about 5.5 volts.

To set L_{4} the signal generator is set slightly to one side of the centre frequency and the level dropped until the meter indication begins to change (i.e. drops below limiting level). Adjust L_{4} to make good this change (i.e. to increase signal strength) redueing the signal generator level to keep the i.f. stages below limiting level. Continue the process until no further improvement can be made. Alternatively, the core of L_{4} may be tuned for maximum noise output; with no signal generator connected or with i generator switched off.

While aligning the i.f. section it is a help to have the oscillator out of action to

Fig. 14. Response of correctly aligned i.f. amplifier and demodulator. L_{4} is set for maximum gain midway between positions giving maximum noise, either side of the display.
prevent spurious responses from .i.f. harmonics. This is most easily achieved by shorting out L_{3} with a single crocodile clip across the ends of the coil to connect together the end turns.

It is not sufficient to set the output level to 5.5. volts (or zero with respect to the a.f.c. reference) with an input of 10.7 MHz when tuning L_{5} for two reasons. First the majority of signal generators, even of very high quality, are not accurate enough to ensure a symmetrical S-shaped characteristic, and, secondly, the ceramic resonators are not necessarily peaked at 10.7 MHz . If the frequency of the generator is known to within about 10 kHz or better and is set to the i.f. indicated by the ceramic resonators colour code (see parts list), then L_{5} may be set initially in this way. But the symmetry of the S-shaped characteristic of the detector should still be checked after setting L_{4}, and any slight correction made as appropriate to the core position of L_{s}.

Align the r.f. section in the usual way for superheterodyne receivers-set the oscillator so that the correct span of input frequencies is covered, and then adjust the r.f. circuits to track correctly.

To adjust the oscillator set the tuning capacitor to maximum capacitance and the signal generator to 87.5 MHz . Adjust the variable capacitor next to the oscillator coil to receive the $87.5-\mathrm{MHz}$ signal. Set the tuning capacitor to minimum capacitance and the signal generator to 108 MHz . Now adjust the trimmer capacitance again noting which way this adjustment is to tune in the 108 MHz signal. (With this type of capacitor, maximum capacitance is with the silvering on the top disc towards the centre connecting pin of the capacitors three pins, and minimum is 180° from this position i.e. farthest from the middle pin.)

If the capacitance setting needs reducing at 108 MHz then increase the value of $L_{\mathbf{3}}$ by squeezing the coil to bring the turns closer together. Re-adjust the capacitor to bring the receiver back to tune at 108 MHz and return to 87.5 MHz and maximum capacitance of the tuning capacitor. If the trimming capacitor now needs decreasing in capacitance then the coil inductance has been increased too much.

An alternative method, possibly quicker, is to set the $108-\mathrm{MHz}$ end using only the trimmer capacitor and then find to what frequency the low-end is tuned, without altering the trimmer capacitor. If this is below 87.5 MHz , reduce the inductance by opening out the turns; if it is above 87.5 MHz , close up the turns. Set the frequency and tuning again to 108 MHz and reset the trimming capacitor. Return to the low end and again check the frequency the receiver is set to; continue this process until on reaching the low end the receiver is set to exactly 87.5 MHz .

Having set the span of the oscillator, the two r.f. coils and their trimmer capacitors need adjusting to complete the alignment. This is possibly the most difficult part of the alignment procedure because of the high sensitivity of the
receiver. Perhaps the simplest method is to dispense with the signal generator altogether at this point and to tune for maximum noise, with the signal generator switched off but still connected. Tracking of the r.f. coils may be set in a similar way to the oscillator coil.

Set the tuning capacitor to minimum capacitance, and tune for maximum noise using the trimmers. Set the tuning capacitor to maximum capacitance and, in the manner used for the oscillator, check whether the trimmer capacitance needs increasing or decreasing to tune for maximum noise at the low-frequency end of the dial. If the capacitance needs increasing, squeeze the coil turns closer together; if the trimmer needs decreasing in capacitance then open out the coil turns slightly. Return to the minimum value of the tuning capacitance and repeat the process from the beginning, and continue to do so until both r.f. coils need no change of tuning of the trimmer on going from one end of the dial to the other.

Further reading

The publications listed may interest those wishing to pursue various design aspects.
"MOS field-effect transistors", RCA product guide MOS160A
Data sheets on devices 40673, 3N140, 3N 141, 40603,40604 (RCA)
Data sheets on devices CA3028A, 3028B, 3053 (RCA)
"Understanding and using the dual-gate m.o.s.f.e.t." RCA application report ST-3529
"Application of dual-gate m.o.s. field-effect transistors in practical radio receivers," RCA application report ST-3486
"Integrated-circuit frequency modulation i.f. amplifiers", RCA application report ICAN-5380
"Integrated circuits for f.m. broadcast receivers", RCA application report ICAN-5269
"Use of 10.7 MHz ceramic coupled-mode filters in linear i.c. i.f. strips", Vermitron application report
Data sheet on ceramic filter FM-4, bulletin 94033 (Vernitron)
Data sheet on TAA661B (SGS)
Addresses
RCA (GB) Ltd, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middx
SGS Ltd, Aylesbury, Bucks
Vernitron Ltd, Thornhill, Southampton SO9 1QX, Hants

Correction

In the parts list for the tuner-published in the April issue-47-nF capacitors (10 needed) were accidentally omitted. These can be similar types to the $1-\mathrm{nF}$ capacitors. In Fig. 4 a link should be added to the top left corner of L_{5}, between the earth area at the perimeter and the earth area under L_{s}. Inductor L_{5} should be 10 turns-Fig. 6 c . Finally, in the caption to Fig. 2, pin 2 should, of course, read pin 1.

May 1911. The Marconigraph, the original title of Wirgless World, opened its second issue with a word of thanks to the press and the public on the reception accorded to issue No.l. The writer of a short note on the journal's content was extraordinarily prophetic when he wrote 'The other short articles and notes of recent happening in the Wireless World will no doubt prove of interest to all'.

The major technical article in the issue "A note on the Experimental Measurement of the High-frequency Resistance of Wires" was written by Dr J. A. Fleming. In essence the technique consisted of obtaining two samples of the wire and passing an a.c. curfent down one and a d.c. current down the other. The d.c. current was adjusted until the amount of heat produced in eqch wire was equal. It was then possible to calculate the r.f. resistance of the wire. The original drawing is reproduced on this page. The wires (w) are suspended in mercury (k) in air-tight glass tubes (T_{1}, T_{2}). The temperature chang\&s affect the mercury levels and therefore the air pressure in each tube. The air bubble in paraffin oil (b) indicates the pressure difference.

This was all before the days of oscillators and the method of generating the a.c. waveform is of interest. This is how Fleming described it: 'The greatest practical difficulty is to secure a sufficiently steady high-frequency current. This was generated by employing a motor-driven alternator to give current to a large high-tension transformer raising the potential of an alternating current having a frequency of 50 to a potential of 10,000 or 20,000 volts. This voltage was used to charge one or more Leyden jars, which were discharged across a spark-gap, an air-blast on the gap being used to steady the discharg. The frequency of the oscillations so created was measured in each case by a cymometer, and the mean-square value of the current by one of the Author's hot-wire thermo-electric

London Component Show

Exhibitors at Olympia, May 18-21

Although held in alternate years, with very different titles, the London Electronic Component Show and the Instruments, Electronics \& Automation Exhibition are very similar and the participants largely the same. This year it is the turn of the Component Show which opens at Olympia on 18th May for four days. It will be open each day from 10.00 to 18.00 and admission is 25 p (overseas visitors free).

Below we list the manufacturers and suppliers who are participating. Many of the overseas manufacturers listed are being represented by their agents whose names are given in

AB Electronic Components
AEG-Telefunken (Britimpex)
AMP
A.P.R. (Guest Intl.)

Accumulatorenfabrik Sonnenschein (Bauch) Adams \& Westlake Co.,
Advance Electronics
Advance Filmcap
Aladdin Components
Aladdin Electronics
Alden Metal Products
Alma Components
Alston Capacitors
Altoflex
American Embassy
Amphenol
Arcolectric Switches
Arena
Arrow Electric Switches
Artek Systems (Tranchant Electronics)
Ashburton Resistance Co.
Associated Automation
Astralux Dynamics
Ates Electronics
Atomichron Inc. (Claude Lyons)
Audax,
Aumann K. G. (Cole)
Avo

BICC-Burndy
B. \& R. Relays
B.V.C. Electronic Dev

Bakelite Xylonite
Beckman Instruments
Beclere Company
Belling \& Lee
Benedict \& Jager (B \& R Relays)
Benney Electronics
Berec Internationa
Bertan Associates Inc. (Claude Lyons)
Besson \& Partner
Biomation Inc. (Data Labs)
Birch-Stolec
Bissett Berman Corp. (G. E. Electronics)
Bobifil Talleres Tarraso (Kolectric)
Bofors A. B. (Guest Intl)
Bogen, Wolfgang (Cole)
Bonnella, D. H., \& Son
Borguno-Jorge Borguno Clua
Bourns-Trimpot
Bowthorpe Electric
Brandauer \& Co.
Britimpex
British Brown-Boveri
British Insulated Callender's Cables
British Physical Labs.
British Standards Inst
rookdeal Electronics
Bulgin \& Company
Burgess Micro Switch Co.
Burr-Brown Research Corp. (Fluke)
B.M. Electronic Components
C.C.L.
C.G.S. Resistance Co

Cadmium Nickel Batteries'
Callins International
Cambion Electronic Products
Carlingswitch
Carr Fastener Co.
Cathodeon Crystals
Celdis
Centralab
Chamberlain \& Hookham
Channel Electrical Equipment
Ciba-Geigy (UK)
Cintra Inc. (Fluke)
ircuit Integration
Clare Electronics
Clarke, H., \& Company
Clarke-Hess Communications Research Corp. (Claude Lyons)
Cliff Plastic Products (Guest)
Coil Winding Equipment Company,
Cole Electronics
Colvern
Computing Techniques
Comway Electronics
Concordia Electric Wire \& Cable Co
Connollys
Control Data Corp. (Claude Lyons)
Cosmocord
Counting Instruments
Crompton Parkinson
rouzet
Culton Control Systems
Culton Instruments

Darby Industries
Data Laboratories
Data Precision
Davall \& Sons
Daven McGraw Edison (Ultra Elec. Components)
Davis-Relays
Davu Wire \& Cables
Daystrom Industrial Products
Deac
Develco Inc. (Claude Lyons)
Dial Engineering Co.
Diamond H Control
Digital Equipment Co
Djevahirdjian SA (Cole)
Dubilier Condenser Co
Dunlop Co.
Durrwachter-Doduco K.G. (J.M. Harding)

ECC Corp. (Claude Lyons)
EFCO,
E.M.A. (Culton Controls)

EMI Electronics
EMI Electron Tube Division
EMi-Varian
Eagle International,
Edicron
Efco-Frankel
Egen Electric
Elcomatic
Electrautom
Electrical Remote Control Co
Electricole
Electro Acoustic Industries
Electro Mechanisms
parentheses. Some others, as with the French and Spanish, are participating in collective displays. In addition to the manufacturers listed below several banks, publishers (including our own IPC Electrical-Electronic Press), the Minpostel and other organizations providing services to the electronics industry are exhibiting.

The Electronic Components Board is organizing a conference on the theme "Forward into the "70s" which is to be held at the Royal Garden Hotel during the period of the Show.

Electrographic

Electrosil

Electroustic
Electrothermal Engineering
Elektronska Industria (Guest Int!)
Elgenco Inc. (Claude Lyons)
Emihus Microcomponent
Engineering Enterprises
English Electric Valve Co
Enthoven Solders
Erg Industrial Corp.
Erie Electronics
Erma
Etri
Euro Electronic Inst. (Livingston)
Euro Electronic Rent
Ever Ready Company
Evans, Frederick W.
Evershed \& Vignoles

FKS Communications (Claude Lyons)
F. R. Electronics

FABRI-TEK Computer Components
Fagor Electrotecnica S.C.I.
Fairchild Semiconductor
Farnell Instruments

Ferranti

Filhol
Floform Parts
Fluke International Corp.
Forbes, Neil D.
Formica
Foxall \& Sons
Frequency Electronics Inc. (Claude Lyons)

GDS (Sales)
G.E. Electronics
G.E.C. Electronic Tube Co.
G.E.C. Semiconductors
G.K.N. Screws \& Fasteners
G.K.N. Shardlow Metrology

Gardners Transformers
General Instrument Microelectronics
Globe Union /Centralab (Ulra Electronics)
Goodacre \& Davenport Semiconductors
Goodmans Loudspeakers
Gordos Corp. (B \& R Relays)
Gore \& Associates
Greenpar Engineerin
Gresham Instrumatic
Gresham Lion Electronics
Gresham Recording Heads
Gresham Transformers
Gruner, W. (G. E. Electronics)
Guest International
Guidline Instruments (Claude Lyons)
H.C.D. Research

Haddon \& Stokes
Hallam. Sleigh \& Cheston
Harding, J. M.. Worthing
Harwin Engineers S.A.
Hatfield Instruments
Hawthorn Baker
Hayden Laboratories

Heath-Gloucester
Hellermann Electric
Hesto-Henkels-Stock
Highland Electronics
Hinchley Engineering Co.
Hirschmann, Richard (Electroustic)
Hivac
Howells Radio
Juber, J. J.
Hunt Capacitors
Huntec
Hysol Sterling

IRC (Dubilier)
TT Cannon Electric
TT Components Group Europe
TT Electronic Services
mhof-Bedco
mperial Chemical Industries
Imperial Metal Industries
Impex Electrical
nersa, S.A.
afin S.A.S.-Prodotti Neohm (Dubilier)
Insulating Components \& Materials
integrated Photomatrix
ntercontinental Radio (Claude Lyons)
ntersil (Tranchant Electronics)
Iskra Kranj (Guest Inti)

J Beam Engineering
Jackson Brothers
Jeanrenaud
Jermyn Industries
Joseph Electronics
K.S.M. Electronics

Kabel-und Metallwerke (Hayden)
Kemo
Kenton Laboratories
Klippon Electricals
Knowles Electronics
Kolectric
Kovo (Edicron)
Kristall-Verarbeitung (Cole)
Kulite Semi-Conductor Products (Electro-
Mechanisms)
Kumag A. G. (Cole)
L.C.R. Components

Labhire
Labservice
Lee Green Precision Industries
Lemosa
Levell Electronics
Lewis Spring Company -
Licon Electronics
Linton \& Hirst
Lion Mechanical Products
Lipa \& Isostat
Livingston Hire
Lloyd Instruments
Lock. A. M. \& Co
Londex
Lucas, Joseph

Lyons, Claude
Lyons Instruments

M.B. Metals

M.C.P. Electronics

M-O Valve Co.
McMurdo Instrument Co.
Magnetic Devices
Magnetic \& Electrical Alloys
Mallory Batteries
Mann Components
Mann sol
Manson
Marconi Communication Systems
Markovits,
Marquardt, J. \& J. (G.E. Electronics)
Mas S.p.A. (G.E. Electronics)
May Precision Components
Mechanics for Electronics (Techmation)
Menzel \& Brandau (Collinson-Goodwell)
Metway Electrical Industries
Microsystems International
Midland Engineering \& Machine Co
Millivac Instruments (Claude Lyons)
Milton Ross Co.
Morgan Crucible Co.
Morganite Resistors
Motorola Semiconductors
Millard
Multicore Solders
N.S.F.

National Semiconductor
Newport Instruments
Note Electric Co

Officine Galileo (Techmation)
Oliver Mel Control
Olivera-Justo Oliver Lacruz
Omegna-Talleres
Optimation Inc. (Fluke)
Ostby \& Barton Co.
Oxley Developments Co

[^11]Perp-Industrial
Pickering Electronics
Piker
Pistor \& Kroner
Plasmoulds
Plastronics
Plassey Co.
Portescap
Power Development
Precious Metal Depositors
Precision Electronic Components (Techma ton)
Precision Relays
Pret Elektrofeinmechanische Werke (G.E
Electronics)
Pressac
Printed Motors
Pye Swathe

Quickdraw Co
R.M.T. (Kolectric)

Redial Microwave Components
Radiation
Rat il Electronic (Cole)
Rathdown Indusiries
Raytheon Co.
Redpoint
Reliance Controls
Rendar Instruments
Research Instruments
Resistances
Reutlinger \& Soehne (Cole)
Riff, AB (Techmation)
Rilton Electronics
Rockland Systems Corp. (Claude Lyons)
Rona Celestion
Roselson-Acustica Electronica
Rosenthal Technical Components
Rosenthal Technische Werke
Ross. Courtney \& Co.
Royal Worcester Industrial Ceramics Rut Ohg. Wilhelm (Electroustic)
Ruff. H. (Cole)
Russenberger S.A. (Guest IntI)

SECME

SFIM (Electro Mechanisms)
GS
S.T.P. Electronics
S.T.P. Engineering

Sake Tsushin Kogyo Co. (Electro Mechanisms)
PASCO
Schaevitz. Engineering (Electro Mechanisms) Salford Electrical Instruments
Saunders-Roe Developments
Scottish Instruments
Scottish In
Sealectro
SEFRAM (Electro Mechanisms)
Semicomps
Semiconductor Specialists
Sfernice
Siemens AG (B. \& R. Relays)
siemens
Sifam Electrical Instrument Co.
Signetics International Corp.
Silec Semiconductors (Electroustics)
Simmonds Relays
Sintered Glass-to-Metal Seal Co
Smiths Industries
Solderstat
Sorensen Lighted Controls
Souriau Lectronon
South London Electrical! Equipment Co
Southern Transformer Products
Special Products Dist ributors
Spinner GmbH. (Hayden Labs.)
Sprague Electric
Stability Capacitors
Standard Pneumatic Motor Co.
Steatite Insulations
Steatite \& Porcelain Products
Stemag-Steatit-Magnesia (Cole)
Straumann, Reinhard (Claude Lyons)

Suflex

Suhner Electronics
Surrey Steel Components
Symonds. R. H

Tagra
Tape Recorder Spare
Tau-tron Inc. (Claude Lyons)
Te Re Co. (Permanoid)
Techmashexport of U.S.S.R
Techmation
Techmation
Technograph \& Telegraph
Technogr
Tektronix U.K.
Tektronix Datatek N.V.
Telcon-Magnetic Cores
Telson Metals
Teledyne Philbrick Nexus
Telequipmen
Tempo

Terminal Insulators
Thomson. C.S.F
Thorn Bendix
Thorn Electrical Industries
Thorn Radio Valves \& Tubes
Tokyo Sokki Kenkyujo Co. (Electro Mechanisms)
3M Company
Tranchant Electronics
Tranchant Electronique S.A.
Transistor AG
Transitron Electronic
Tucker. Geo. Eyelet Co
Tufnol
Tyco Bytrex Division (Electro Mechanisms)

Ultra Electronics Components
Union Carbide
United Detector Technology
(Techmation)
United Trade Press
Unitrode Corp. (G.E. Electronics)

Varelco

VARTA Batteries
Venner Electronics
Vero Electronics
Video S.A. (Cole)
Vision Engineering
Vitality Bulbs
Vitramon Europe
Vitrohm (Dubilier)

Wandleside Warren Wire Co
Washington, George
Waycom
Waycom Semiconductors
Wayne Kerr Laboratories
Wego Condenser Co
Weller Electric
Welwyn Electric
West Hyde Developments
Westinghouse Brake \& Signal Co.
Weyrad
Whiteley Electrical
Wickmann Werke (G.E. Electronics)
Wingrove \& Rogers
Wire Products \& Machine Design
Woden Automation
Woden Transformer Co

Z \& I Aero Services

Electronic Building Bricks

11. Adding quantities and numbers

by James Franklin

Arithmetical addition is a familiar process in everyday life and work, and it is quite common in electronics too. Most obviously it is needed in electronic computersaddition of numbers in a digital computer or addition of quantities in an analogue computer. Less obviously, it is needed in electronic communications systems for combining one or more signals into a single signal. The electrical signal which enters your television set from the aerial could be plotted as a single graph-a quantity varying with time-but it is in fact the result of adding, in the transmitter, several component signals bearing different types of information.
We have already distinguished between analogue and digital methods of representing information (Part 4) and this distinction must be continued in the operations performed on the information.
For analogue addition in electronics we can use any of several electrical variables, the most common ones being charge, voltage and current. A method of adding charges (quantities of electrons) can be seen in the principle of charge storage described in
(a)

(b)

Fig. 1. Way of connecting two batteries (a) so that their voltages are arithmetically added; and (b) the same principle applied to the addition of two voltages which are varying with time.

Part 6. Transfer a quantity of electrons from one source and another quantity from a second source into the same charge store, and the total quantity of electrons is the arithmetical addition of the two charges.
Adding voltages is familiar to anyone who has put three 1.5 -volt cells into a torch to make a 4.5 -volt battery, or has noticed that a 12 -volt car battery is made up of six 2 -volt cells. The principle, which is called series connection, is illustrated in Fig. 1(a). But what about voltages which are varying and representing information-how do we add them? The basic principle is the same: the two sources of voltage, the signal sources, are connected in series, as shown schematically in Fig. 1(b) and at any instant the addition of the voltages is the overall voltage measured across the pair. This process is illustrated by the graphs in Fig. 2. The voltage variation with time of source A is plotted in one graph (v_{A}) and the voltage variation of source B in another $\left(v_{B}\right)$. If the two voltages are added at successive instants of time the total voltage varying with time is as plotted in the top graph $\left(v_{A}+v_{B}\right)$.

Adding currents is achieved by arranging the separate electron flow paths from a number of signal sources to merge into a common path in which the total current can be measured. This is illustrated in Fig. 3 and is known as parallel connection. (The letter i introduced here is the generalized symbol for current.) The addition of the three currents at any instant of time is the current measured in the common path. It is easy to understand why this is so if one remembers that current is electron flow rate-coulombs per second (Part 3). Suppose that the three currents in Fig. 3 had steady values of 2,3 and 7 coulombs per second (amperes). Over a period of one second there would move through the common path a total quantity of electrons (charge) of $2+3+7$ coulombs, that is 12 coulombs. Thus the total flow rate in this common path would be 12 coulombs per second, or 12 amperes. This is for steady currents, but the same principle of addition applies when i_{A}, i_{B} and i_{C} are all varying with time independently.

If we want to add numbers represented in electrical form we have to use the principle of digital adding (see above). This can be achieved in several ways. For example, if we feed six pulses into an electronic counter,
then eight pulses, the counter will register fourteen-it will have performed the addition $6+8=14$. The method most widely used, however, is based on binary notation and arithmetic. As explained in Part 6, binary numbers, normally written using the two symbols ' 1 ' and ' 0 ', can be represented electrically by 'on' and 'off' states of electronic switches. For electronic binary addition, shown schematically in Fig. 4, the information about these states is conveyed from rows of electronic. switches (called registers) to a binary adder; and this presents the sum as a line of 'on' and 'off' states in a further row of electronic switches (register).

In Fig. 4 the binary states representing each number are presented to the adder simultaneously. In another method of binary adding the states are fed in serially and the sum states are also produced serially. In fact the inputs and the output of the adder are all signals, in the form of trains and pulses.

Fig. 2. Graphical illustration of what happens in Fig. 1(b) over a period of time. At any instant the voltages plotted in the lower two graphs add up to the voltage in the upper graph.

Fig. 3. Principle of adding currents from signal sources by causing them to pass through a common path.

Fig. 4. Digital addition using binary notation and arithmetic. Numbers are represented by 'on' and 'off' states of electronic switches.

1966 -and all that!

Insure against distortion with Shure

Shure Model 444 Controlled magnetic microphone. Specially designed for radio communications applications

Special response haracteristic gives optimum speech intelligibility

Please send me full information on Shure Communications Microphones.

 Name Address
Sq SMuFe

Shure Electronics Ltd
84 Blackfriars Rd., London SE1. Tel: 01-928 3424

Elements of Linear Microcircuits

8: Wideband amplifiers

by T. D. Towers, ${ }^{*}$ m.b.E.

Whatever branch of electronics you work in, you will probably one day find a need for a linear amplifier with a flat frequency response perhaps from d.c. to r.f., or even v.h.f. Such an amplifier goes variously, and sometimes loosely, under the names 'wideband', 'video', 'broadband', 'baseband' or 'linear pulse'. In this article we will use the term wideband to cover all variants.

Wideband amplifiers are mostly used to amplify broad frequency spectrum signals (as in oscilloscope Y deflection amplifiers), but can also be used to amplify a narrow spectrum that may move about in centre frequency or be of uncertain frequency. In the days of valves you could, without too much trouble, design amplifiers up to about 10 MHz bandwidth, leaning heavily on classic texts like Millman and Taub 'Pulse and Digital Techniques' (McGraw-Hill). With the arrival of transistors, the readily achievable bandwidth was pushed out to 100 MHz along the lines indicated by the author in 'Elements of Transistor Pulse Circuits' (Iliffe).
By the 1970s the electronic equipment designer could choose from a wide range of complete wideband amplifiers selfcontained in small metal or plastic
*Newmarket Transistors Ltd.

(a)

(b)

Fig. 2. Three-transistor wideband amplifier microcircuits; (a) Sprague ULN2103; (b) Sylvania SA20.

Fig. 1. Examples of two-transistor wideband amplifier microcircuits; (a) Ferranti ZLA10; (b) Plessey SL201.
transistors diffused into the silicon chip have frequency cut-offs between 300 and 1000 MHz so that in the passband of the broadband amplifier, usually less than 100 MHz , they are working at what is a relatively low frequency. As a result there is little differential phase shift across the transistor. Also, in a small silicon chip, no troubles can arise from parasitics in the interconnecting leads as happens in discrete component amplifiers. Finally, thermal compensating elements diffused into the chip make gain stability a minor problem. A survey of wideband amplifier microcircuits at the beginning of 1971 revealed 150 types commercially available.

Circuitry

The Ferranti ZLA 10 with the circuit of Fig. 1(a) is a 12 V two-transistor d.c. coupled feedback pair with a mid-band current gain of $26 \mathrm{~dB}(\times 20)$. The 3 dB bandwidth is d.c. to 120 MHz , and output resistance is not more than 400Ω. Feedback (d.c.) is applied from terminal seven to terminal six. The ZLA 10 is packaged in an eight-lead TO-5 can.
The same sort of d.c. coupled feedback pair is used in the Plessey SL201 of Fig. 1(b) with the additions of an emitter resistor R_{3} in the input transistor, the splitting of the output transistor emitter resistor R_{7}, R_{8},
and extra leadout pins one, seven and six for versatility. Designed for a 9 V rail it draws 15 mA supply current. With a mid-band 9 dB voltage gain, it has a bandwidth of d.c. to 10 MHz . It is housed in an eight-lead TO-5 package with the case connected to the negative supply terminal.

An extra transistor adds little extra cost or production difficulty in an i.c. One illustrative example is the Sprague ULN2103 of Fig. 2(a). This is a d.c.-feedback pair $T r_{2}, T r_{3}$, with an added input emitter follower Tr_{1}. Taking 10 mA from a 12V supply, the ULN2103 has a mid-band gain of 30 dB from d.c. out to a 50 MHz 3 dB down, an input resistance of $1.2 \mathrm{k} \Omega$, an output resistance of 750Ω, all in an eight-lead dual-in-line package.

Another way of using three transistors in a wideband amplifier i.c. is the Sylvania SA20 of Fig.2(b). Basically it is a d.c.coupled feedback triplet with the overall gain set by the ratio of R_{6} to R_{4}. Typically it can be set up to provide 20 dB gain to $100 \mathrm{MHz}(-3 \mathrm{~dB})$ while drawing 24 mA from a 24 V supply, and providing 12 V peak-to-peak into a $1.2 \mathrm{k} \Omega$ load.

An example of the use of four transistors in a wideband microcircuit is the Signetics SE501 with the circuit of Fig.3(a). This has multi-access points that enable it to be connected as a wideband amplifier with four different gains and with bandwidths up, to 50 MHz without requiring the use of any external discrete components except the necessary input and output coupling capacitors.

The SE501 circuit is a d.c. coupled feedback pair $T r_{1}, T r_{2}$, with an emitter follower Tr_{3} for isolation. A second isolated emitter follower stage Tr_{4} is available and may be connected to increase the drive at the cost of increased power consumption. Taking 3.5 mA (7.5 mA with the second emitter follower used) from a 6 V supply, the SE501 has an open loop gain of $46 \mathrm{~dB}(\times 200)$ and bandwidth of 3 MHz to $16 \mathrm{~dB}(\times 6)$ and 55 MHz bandwidth depending on how it is connected.

Four-transistor wideband i.cs tend to be higher gain or more versatile versions

Fig. 4. A six-transistor wideband amplifier microcircuit; Motorola MC1553; (a) circuit diagram; (b) transformer input arrangement; (c) capacitor input arrangement.
of two- and three-transistor circuits. However the Beckman Instruments 823 of Fig.3(b) is an interesting departure. With $\pm 30 \mathrm{~V}$ power supply and an idling current of only 10 mA , this thick film hybrid, unitygain, output buffer amplifier has a 3 dB bandwidth from d.c. to 4 MHz , with an

Fig. 3. Four-transistor wideband amplifier microcircuits; (a) Signetics SE501;
(b) Beckman Instruments 823.
input resistance greater than $1 \mathrm{k} \Omega$ and an output resistance less than 10Ω. It can provide a 52 V peak-to-peak output swing with a rise time of less than $0.1 \mu \mathrm{~s}$.

As wideband amplifier microcircuits employ more and more transistors they tend to lose the versatility of the simpler versions discussed earlier. However, even the six-transistor Motorola MC1553 of Fig.4(a) has a variety of uses.

Basically the 1553 is a d.c.-coupled feedback triplet $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \operatorname{Tr}_{3}$, with an output emitter-follower buffer Tr_{4}. Transistor Tr_{5} is incorporated in a d.c. feedback loop to establish and stabilize the output operating point. A current-source transistor Tr_{6} is used to set symmetrical positive and negative load current excursions regardless of power supply voltage, temperature or load resistance.

A second feedback loop for a.c. operation consists of resistors R_{5}, \mathbf{R}_{4} and R_{6}. This enables gains from 50 to 400 to be obtained by varying the amount of feedback, by changing external interconnection and by taking the output at various points of the circuit. Bandwidth of course falls as the gain is increased by reducing feedback.

Fig.4(b) and 4(c) show the MC1553 circuit connections for transformer and capacitor inputs, the 'dotted' capacitor
C_{2} in 4(c) is included when the source resistance R_{s} is more than 500Ω (up to $5 \mathrm{k} \Omega$). Typical gain options are $\times 400$ (20 MHz bandwidth) leaving terminals three and four disconnected; $\times 200$ (25 MHz) connecting three to four. The low 3 dB cut off frequency is set by C_{1} and C_{2}. For practical capacitor values, it can be down around 10 to 100 kHz .

The RCA CA3001, using a seven transistor circuit with a mid-band gain of 16 dB and a 3 dB bandwidth of 16 MHz , draws only 10 mA from a $\pm 6 \mathrm{~V}$ (or single 12 V) supply. Fig. 5 shows a typical application of the CA3001 in a cascaded three stage amplifier which gives a mid-band gain of 65 dB , with 3 dB response limits of 10 kHz and 10 MHz . The need for external interstage coupling capacitors can be avoided by using output terminals twelve and seven to bring into operation internal capacitors, but this severely restricts the low-frequency end of the bandpass.

The Fairchild 702 was probably the most widely used wideband i.c. microcircuit in the second half of the 1960s. It was very similar in circuitry with its nine transistors to some of the op-amps whose circuits were given earlier in this series. With simple compensation the 702 can give a stable 40 dB gain flat from d.c. to over 5 MHz for 3 dB down, and it can be arranged to give a usable gain up to 30MHz.
The Fairchild $\mu \mathrm{A} 733$ is an example of the extended bandwidths now attainable. It is a two-stage differential amplifier with both differential input and output available. Internal series-feedback is used to obtain wide bandwidth, low phase distortion and gain stability. Emitter follower outputs enable the device to drive capacitive loads, and all stages are currentsource biased to obtain high-power supply and common mode rejection ratios.

External connections make it possible to obtain fixed gains of 400,100 , and 10 ,
and in addition provision is made for having the gain adjustable between 10 and 400 by selecting an external resistor. At a voltage gain of 100 the 3 dB bandwidth is 90 MHz .

As yet there is very little standardization and, if you want to use some of the wealth of devices, you cannot avoid studying the individual products in detail. To help you at least to know where to look, a selected directory of wideband amplifier microcircuit manufacturers, whose products circulate in the United Kingdom, is appended in Table 1.

TABLE 1
Directory of wideband amplifier microcircuits Manufacturer Type Number
Analogue Devices 901, 903
Beckman
C.T.S.

821, 822, 823, 866
.
Microelectronics CTS86 Engineering
Electronics
Ferranti
Semiconductors $\mu \mathrm{A} 702, \mu \mathrm{~A} 712 . \mu \mathrm{A} 719, \mu \mathrm{~A} 733$. A A 751
Intronics A501. A502
Mitsubishi M5113, M5134
Motorola MC1410, MC1445, MC1510. MC1545. MC1552. MC1553 MC1590. MFC4010P
Philco Ford PA7600, PL7600. PA7605. PA7606, PA7712. PA7713 PD7712, PL7712
Plessey SL201.SL521.SL571
R.C.A. CA3001. CA3011. CA3012 CA3020. CA3021. CA3022 CA3023. CA3034 CA3035 CA3040
Raytheon RC733, RM733
Sescosem SFC2510
Siemens
Signetics
Silicon General
TAA721. TAA 722
SE501. NE501, N5733, S5733 SG733. SG1401. SG1402. SG2401, SG2402. SG3401 SG3402
Sprague ULN2103
Sylvania SA20. SA2 1
Teledyne CMC6020. CMC602
Texas
SN2600. SN2610, SN5510 SN5511. SN7501. SN7511 WC1146. WM 1146

Fig. 5. Seven-transistor wideband amplifier microcircuit, RAC3001; typical arrangement in three-stage cascaded amplifier.

H.F. Predictions

The ionospheric index used for these predictions is 90 . Seasonal changes are most apparent on routes within the northern hemisphere. The MUFs are about 20 MHz and vary little during most of the 24 hours. Daylight MUFs on the trans-equatorial paths continue above 25 MHz and amateur 10 -metre band openings should be possible.

Unlike MUF, the lowest usable frequency (LUF) is closely dependent upon such system factors as transmitter power, aerial gain, and type of service. The LUFs drawn here were prepared by Cable \& Wireless and are for commercial telegraphy using directional aerials and high-power transmitters. Those for the amateur service would be considerably higher, especially during daylight. Generally the proximity of optimum traffic frequency (FOT) and LUF is a measure of the difficulty of communication.

Memory for Karnaugh Map Display

by Brian Crank*

This 32-bit store is intended for with the Karnaugh map display unit which was described last month. It enables the user to store two Karnaugh maps either of which can be displayed or altered at will and replaces the external logic that is normally used with the unit.

When the thought occurred that a memory could easily be made to partner the Karnaugh map display unit the question had to be asked what is the point when a pencil and paper would do just as well? Two points in favour are that the student using the unit can find his own way round the map without the aid of an instructor and the unit is more likely to arouse the student's interest than a pencil and paper.

In use, the memory is connected to the Karnaugh map display unit andinformation is fed in on switches and push-buttons. Two complete maps can be stored in this way.

The basic building block used in the memory is the t.t.l. integrated circuit type SN7481 which consists of sixteen flip-flops arranged in a four-by-four matrix as shown in Fig.1. There are four Y address lines and four X address lines which are used to put in, and retrieve information from, the flip-flops.

The top left-hand flip-flop is the only one common to both the Y_{1} and X_{1} address lines and if both these lines are UP (at logical 1 or +4.5 V) this flip-flop is 'addressed'. Every other flip-flop in the store can be individually addressed using one particular combination of X and Y address lines.

Each flip-flop has two-states (0 and 1) and the state of only the addressed flip-flop appears at the output of the store. So by manipulation of the X and Y drive lines it is possible to examine the state of each flipflop in turn. Two outputs are provided from the i.c. one being the inverse of the other. When a flip-flop is addressed its content appears at the output of the store but the state of the flip-flop itself is in no way changed.

So much for getting information out of the store, now how about putting it in in the first place?

There are two inputs, write $1\left(W_{1}\right)$ and write $0\left(W_{0}\right)$. If the W_{1} input is at 1 then the flip-flop which is addressed will have a 1 written into it or if the W_{0} input is at 1 the addressed flip-flop will have a 0 written into it.

The circuit of the complete memory unit

[^12]is given in Fig.2, where it will be seen that two sixteen-bit stores are used. Each store can hold a complete Karnaugh map and each flip-flop in a particular store holds information for one square of the Karnaugh map (either an 0 or a 1).

The store X and Y address lines are driven by the logic outputs of the Karnaugh map display unit via NOR gates. Now if the output of the display unit is $\bar{A} \bar{B} \bar{C} \bar{D}$ both inputs to the top left-hand NOR gate will be DOWN $(0 \mathrm{~V})$ and the Y_{1} address line of store 1 will be UP (as will be the Y_{1} line of store two via a separate NOR gate). In addition the X_{1} lines of both stores will be UP and therefore the top left-hand flip-flop in each store will be addressed. The content of this flip-flop in the store selected by S_{2} will be fed to the input of the display unit and will appear on the c.r.t.
screen in the top left-hand square of the Karnaugh map which represents $\bar{A} \bar{B} \bar{C} D$.

Going back to basic logic theory a NOR gate with the inputs A and B will have an output:
$\overline{A+B}=\bar{A} \bar{B}$
As the clock generator drives the counter in the display unit and changes the inputs to the memory each flip-flop in both of the stores is addressed in turn and the content of each flip-flop in the selected store $\left(S_{2}\right)$ appears on the c.r.t. screen in the corresponding place on the Karnaugh map.

Writing the maps into the stores is very simple. Say it is wished to write a 1 into the square representing $A B C D$ on the map held in store 1 . Store 1 is selected on S_{1}; switches S_{3} to 6 are set to $A B C D$ and the W_{1} button is pressed. A 1 will be written into the square $A B C D$ on the relevant map.

The logic outputs of the display units are applied to the switches S_{3} to 6 and in turn are connected to a four-input NAND gate. The output of this gate can be connected by the W_{0}, W_{1} push-buttons to one of

Fig. 1. The internal arrangement of the SN7481 integrated circuit 16-bit store which forms the basis of this unit. The inputs A, B, C, D, etc., are provided by the Karnaugh map display unit.

Fig. 2. The circuit of the memory unit.
the four NAND gates (used only as inverters) which are connected to the W_{0} and W_{1} inputs of the stores.

In our example above with the switches in the positions described the following sequence occurs. When the output of the display unit reaches $A B C D$ the spot on the c.r.t. face will be in the square of the Karnaugh map representing $A B C D$ and the flip-flop in both stores corresponding to $A B C D$ will be addressed. All inputs to the four-input NAND gate will be UP so its output will go DOWN. This DOWN is passed via the closed W_{1} push-button and S_{1} to the inverter connected to the W_{1} input of store 1. The output of this inverter will go UP and a 1 will be written into the flip-flop corresponding to $A B C D$ in store 1 and a 1 will appear on the screen of the c.r.t. in the $A B C D$ position provided that store 1 is selected on S_{2}. If the W_{0} button had been pressed a 0 would have been written.

Note it is possible to display the contents of one store while amending the contents of the second store. The two resistors are required because the store outputs do not have internal loads.

If dual storage is not required a single Karnaugh map can be stored in one SN7481. The circuit alterations are simple, omit one SN7481, two SN7402, one $1 \mathrm{k} \Omega$ resistor, S_{1} and S_{2}. Use only half of the SN7400.
Correction: Because of the polarity of the scan waveforms the logic outputs D and \bar{D} (Fig. 10 last month) should be reversed otherwise the map will appear reversed in the X direction.

Shopping list

SN7481, 16-bit store
SN7400, quad 2-input NAND gate
SN7402, quad 2-input NOR gate
SN7420, dual 4-input NAND gate $1 \mathrm{k} \Omega, 0.25 \mathrm{~W}, 10 \%$
Switches single-pole change-over
Switch double-pole change-over
Lektrokit board LK 141
$\times 2$
$\times 1$
$\times 1$
$\times \quad 4$
$\times 1$
$\times \quad 2$
$\times 15$
$\times 1$
$\times 1$

Modifications to the display unit

I am indebted to A. W. Critchley of the TV Development Department of E.M.I. Electronics Ltd who has suggested some modifications which simplify the Karnaugh map display unit still further. The two unused exclusive-OR gates can be employed to replace the transistors in the multivibrator circuit ($T r_{2}$ and $T r_{3}$). The circuit of Fig. 3 shows how.

The clamping circuit consisting of $D_{1 \text { to } 6,}$, $R_{24 \mathrm{to} 27}$ and C_{8} can be replaced with four resistors. The ladder networks are connected directly to the outputs of the counter and a $1 \mathrm{k} \Omega$ resistor is connected between each counter output and +5 V . These resistors remove the step in the counter output waveform (see Fig. 4). This modification increases the output from the ladder networks so it may be found necessary to reduce the value of the deflection amplifier feedback resistors R_{33} and R_{37} to avoid distortion.

Fig. 3. The two unused exclusive-OR gates can be used as a multivibrator.

Fig. 4. The clamping network can be replaced by four resistors as shown.

Personalities

John Bardeen, M.S.. Ph.D.. professor of electrical engineering and physics in the University of Illinois at Urbana. who in 1956 shared with William Shockley and Walter Brattain the Nobel Prize in Physics for the trio's discovery of the transistor effect, has been awarded the Medal of Honour of the I.E.E.E. The citation reads: -For his profound contributions to the understanding of the conductivity of solids. to the invention of the transistor. and to the microscopic theory of superconductivity. Dr. Bardeen, born in Madison. Wisconsin, in 1908. graduated in electrical engineering at the University of Wisconsin in 1928 and received his doctorate in mathematical physics from Princeton University in 1936. He was a postdoctoral fellow at Harvard University, assistant professor of physics at the University of Minnesota. a physicist at the U. S. Naval Ordnance laboratory during the war years, and from 1945 to 1951 a research physicist at the Bell Telephone Laboratories. He has been professor of electrical engineering and physics at the University of Illinois since $195!$.

Group Captain Eric R. Madger, O.B.E., has joined Raytheon Overseas Ltd as manager for international systems sales in the London office. He joined the Royal Air Force in 1939 and served in radio and electronics specialities throughout World War II. Following the war he worked in the Radar Research Establishment at Malvern: as an electronics

Gp. Captain E. R. Madger
officer in the Far East; and at the Air Ministry as a squadron leader responsible for new electronic systems: From 1960 to 1962 Group Captain Madger, then a wing commander, served in the United States at Strategic Air Command Headquarters. Upon his return to England, he commanded the R.A.F's Radio Introduction Unit. He was at one time with the Ministry of Defence where he was responsible for all aspects of integrated national air defence and air traffic control systems, and later Group Captain Electrical Engineering in the Signals Command HQ.

The M-O Valve Company has announced a re-organization of production responsibilities at its Hammersmith factory. L. E. Algar, is a ppointed manager of the receiving valve and transmitting valve departments, and also becomes deputy general manager; R. E. Brittain, is manager of the reed department: K. G. Cook, manager of the gasfilled valve and surge arrester departments: R. G. Robertshaw manager of microwave departments; and A. B. MacFarlane manager of the cathode-ray tube department. Each product group manager is responsible for all aspects of production and development in his respective area.

Dr. E. R. Skelt has been appointed chief engineer of the research and development activities of Marriott Magnetics Ltd, of Penryn. Cornwall. Dr Skelt was previously leading a research team in thin film devices and techniques at G.E.C. English Electric.

Among the recipients of awards to be presented by the Institute of Physics and the Physical Society at its annual dinner on May 4th are the following:
J. A. Ratcliffe, C.B., C.B.E.. F.R.S.. formerly director of radio and space research in the Science Research Council, receives the

Guthrie medal and prize 'for his contributions to radio physics and to the physics of the upper atmosphere'. Mr. Ratcliffe, who is 68, graduated at Sidney Sussex College, Cambridge, and apart from the war years when he was at the Telecommunications Research Establishment, he remained at the University as a reader in physics until 1960. He then became director of the Radio Research Station of the D.S.I.R. (now the Science Research Council). F. E. Jones, M.B.E., D.Sc., managing director of Mullard Ltd, receives the Glazebrook medal and prize 'for his applications of semiconductor physics and for management in a physics based industry. Dr. Jones, who is a graduate of King's College, London, was at T.R.E., Malvern, from 1940 to 1952 (at one time as head of experimental physics research). For four years from 1952 he was deputy director of the Royal Aircraft Establishment, Farnborough. The Bragg medal and prize of the I.P.P.S. goes to G. R. Noakes, M.A.(Oxon), formerly science master at Uppingham School, 'for his contribution to the development of new approaches to the teaching of physics particularly through the medium of textbooks:. Mr. Noakes was a regular contributor, under the pseudonym 'Quantum', to our sister journal Electronic \& Radio Engineer (no longer published).
R. J. Clayton, C.B.E.. M.A., F.Inst.P., F.I.E.E., technical director of the General Electric Company, has been appointed a visiting professor at Imperial College, London. Mr. Clayton will

R. J. Clayton

be associated with the Electrical Engineering Department and will be concerned with developments intended to strengthen the links between the department and industry.

Malcolm Hearn, B.Sc., product manager of Data Systems Group of Racal, which he joined seven years ago, has become sales manager of Racal-Milgo. After gaining his degree at Imperial College in 1956. Mr. Hearn completed a graduate apprenticeship with the B.B.C. and then
served a three-year short-service commission in the R.A.F. His initial sales experience was gained in the Radio Division of Standard Telephones \& Cables.
R. C. Strand, M.I.E.E., Grad. Inst.P., who has been with Roband Electronics five years, is appointed chief engineer. He has been in charge of the Roband design groúp manufacturing special-to-customer power supplies. He will now be responsible for co-ordinating the activities of the oscilloscope, digital instruments and power supply groups.
F. Delissen has been appointed divisional manager of the Production Division of Painton \& Co. Ltd (now part of the Plessey Components Group), responsible for the manufacture of components for both the Connector and Resistor Divisions. Prior to this, Mr. Delissen was general services manager for the Swindon Region of the Plessey Components Group and divisional manager. Actona Engineering Division.
W. R. R. Haines, managing director of the Plessey Electronics Group, has become president of the Electronic Engineering Association for 1971 in succession to Percy Allaway (E.M.I.). Mr. Haines joined Decca Radar Ltd in 1953 and after a number of varied appointments became the first general manager of Plessey Radar Ltd in 1965, at the time when Plessey acquired part of Decca Radar's in terests.

OBITUARY

Philip Hylton Spagnoletti, O.B.E., B.A., M.I.E.E., who had been associated with Standard Telephones and Cables since 1929. latterly as business development consultant, died on 14th March. Born in 1906, he graduated in natural sciences at Trinity College, Cambridge, in 1928. After several years' service overseas on radiotelephone installations Mr Spagnoletti returned to the U.K. in 1937 and started up the airborne radio division of S.T.C. and was responsible for the work on radio altimeters and several other important communications and navigational devices used during the war. In 1945 he became chief engineer of Kolster-Brandes Ltd, an S.T.C. company making radio and television sets. He became general manager in 1947. At the same time he was responsible for Brimar valves. He was awarded the O.B.E. in 1955 for "valuable assistance to the Postmaster General in television and hearing aids". From 1957 to 1965 Mr . Spagnoletti was group executive in charge of components activities in S.T.C.

World of Amateur Radio

British amateur callsigns

During March, the first of the new G4-three-letter (G4AAA onwards) callsigns were issued by Minpostel. This event brings to a close a 25 -year period during which all new British calls were in the G3AAA to G3ZZZ series (the same series is used regardless of the 'country' prefix such as GM, GI etc). Since the vast majority of calls are issued in strict alphabetical sequence, the call denotes the approximate date of issue. Through the courtesy of Minpostel's Radio Regulatory Division, the following list, indicating the date at which each sequence began to be issued, has been prepared: it is believed to be the first complete and officially checked list ever to be published, and thus of considerable interest to all amateurs and listeners:
 have been issued as follows:
G8A- June, 1964
G8B- June, 1967
G8C- September, 1968
G8D-September, 1969
G8E- September, 1970
In addition, G6-three-letter calls have been issued since 1964 for amateur television; G5-three-letter calls since 1966 to foreign amateurs for use in the U.K.

The earlier two-letter and G2-three-letter calls stem from pre-war licensing-the following estimated \cdot dates have not been checked by Minpostel. Many of the earliest G2, G5 and G6 calls were issued and reissued many times, and the number of original holders is fairly low:
G2- From 1920 to 1939
G3- during 1937 and 1938
G4- during 1938 and 1939
G5- from 1921 to 1939
G6- from 1921 to 1939
G8- during 1936 and 1937
The 2 -three-letter calls were originally issued before World War II as 'artificial
aerial' licences without permission to radiate, but were re-issued to same amateurs from 1946 onwards as radiating licences with G prefix. At various times G7 and G9 licences have been issued for special purposes and to firms.

On the bands

With the expectation of a continuous decline in sunspot numbers until autumn 1975, interest is growing in the lowerfrequency bands. The lively 'W1BB 160metre DX Bulletin' is reporting such achievements as the first-ever contact between Europe (West German station DL9KRA) and Japan (JA3AA), and good signals this season in transatlantic tests from British, Scottish and Czech stations. K8YUA/KL7 in Alaska has heard British stations G3RCE/A, G3RKJ and G3ZDY. What must be one of the few beam aerials on 'Top Band' is the array used by K5TFG consisting of two dipole elements 50ft high and spaced 53 ft 10 in apart. And on 3.5 MHz , the early months of the year produced exceptional openings from Europe into the Far East and to the West Coast of America via the long path. The March B.E.R.U. contest brought numbers of familiar calls on the bands, but conditions were only fair, and there was a noticeable lack of African participation this year. On the other hand, the A.R.R L. DX contests saw the usual fantastic scores being piled up, often at rates of around a-contact-aminute for considerable spells. And those engineers who think of v.h.f. as being for 'local' operation except in abnormal propagation conditions, might ponder the series of almost 200 contacts on 144.41 MHz , without a miss, between G 6 CW , Nottingham, and PAoPCD, Delft, Netherlands, using s.s.b.

Changes in U.S. band-planning?

Considerable concern and alarm is being expressed by amateurs in many countries at a recent F.C.C. "Notice of proposed rule making" (Docket 19162). The new rules, if adopted, will change the U.S. sub-
allocations in all h.f. bands from 3.5 MHz to 28 MHz . The changes proposed include extending the frequencies allotted to 'phone operation (for example, 14150 to 14350 kHz instead of 14200 to 14350 kHz), to reduce c.w. sections allotted to 'extra class' licences from 25 kHz to 10 kHz , and to introduce a novice sub-band (c.w.) between 28150 and 28250 kHz . Many amateurs believe that these proposals will destroy the present balance between frequency allocations for the U.S.A. and the rest of the world, in view of the high powers and elaborate aerials used by large numbers of American amateurs, and will also upset existing I.A.R.U. voluntary band-planning. The effects would be especially severe in countries near the United States, where it has long been the practice to operate 'phone in segments below the U.S. 'phone allocations. But the general effect would be felt throughout the world in a general squeezing of the c.w.-only segments of the bands.

The F.C.C. action is perplexing in view of the recent decision of the A.R.R.L. not to press for additional 'phone allocations in the h.f. bands. There is a feeling that the new proposals will be opposed by many organizations, who can submit comment to F.C.C. until June 1st.The F.C.C.has shown in the past that where there is strong opposition such proposals may be dropped, modified or deferred.

In Brief

A new Canadian v.h.f. beacon station, VE2BYG, using 250 watts e.r.p. on 50.065 MHz and located 250 miles northwest of Montreal is expected to remain in operation for six months. . . . As the result of 17 successful prosecutions by the British Post Office for unlicensed operation during a recent two-month period, fines totalling $£ 580$, plus $£ 235$ costs, were imposed, with forfeiture of equipment in 14 cases. . . . A special British call, GB2ITU, is expected to be heard during this year's 'World Telecommunication Day' on May 17....An amateur station, GB3CLR, will be a feature of the open-day of Battersea Adult Education Institute, London S.W.11, on April 24. ... Franz Turek, DL7FT, is expecting to be operating from rarely heard Albania during June 16 to 30 , using the call ZA2RPS. ... Early dates in the 1971 mobile rally season include: May 2 , the Spalding rally at Surfleet (talk-in stations G3VPR/P and G3XBS/P); and May 30, Maidstone Y.M.C.A. Amateur Radio Society at ' Y ' Sportscentre, Melrose Close, Maidstone. Talk-in station GB3YSC on 1.8, 3.5, 70 and 144 MHz . Details from A. S. Walter, G3WXL, 31 Lansdowne Avenue, Maidstone, Kent. . . . This year's reunion of the British Radio Amateur Old Timers' Association is on May 7. . . . Convention of the Northern Amateur Radio Societies on May 9. . . . The R.S.G.B. has formed a committee to plan for its Diamond Jubilee year 1973.

Pat Hawker. G3VA

New Products

Multi-mode i.f. amplifier/detector i.c.

The National Semiconductor LM173 series integrated circuit is designed for f.m. and both double- and single-sideband amplitude modulated i.f. amplifier and detector applications. It contains over 100 transistors giving two amplifier sections, a gain-controlled stage, a balanced f.m. or s.s.b. detector, and an active a.m./s.s.b. peak detector. It can be used in three main modes-an a.m. i.f. strip with an a.g.c. range of 70 dB ; an f.m. i.f. strip with balanced quadrature detector (with external tuned circuit); and an s.s.b. i.f. strip with audio-operated a.g.c., double balanced detector and automatic mixer balancing. Cost is $\$ 4.85$ for LM373 (TO-5, 0- $70^{\circ} \mathrm{C}$ type). This circuit follows two earlier 'sub-systems'-an a.g.c./squelch amplifier and an a.m./a.g.c. i.f. amplifier. National Semiconductor Corpn., 2900 Semiconductor Drive, Santa Clara, California 95051, U.S.A.
WW 310 for further details

Radiotelephones for maritime use

Single-sideband m.f. and h.f. radiotelephones are announced by Kelvin Hughes, marking their entry into the maritime communications market. The radiotelephones, together with a new a.m. receiver,

appear at an opportune time-from 1st Jan. 1972 all new h.f. equipment installed aboard ships must be single sideband (1st Jan. 1973 for m.f. radiotelephones). The inshore type (Falkland, illustrated) covers 1.6 to 3.8 MHz in 11 transmit and 15 receive channels at either 50 or 120 watts peak envelope power. The other set-called Pentland-is intended for large vessels and is in two duplex versions. The Alpha is an m.f. set with 18 transmit and 30 receive channels and with a peak envelope power of 400 watts-the maximum allowed. The other version-the Bravois designed for the ocean-going vessels which need to transmit and receive over long distances at any time of day or night. Consequently this has an additional 23 transmit and receive channels on the h.f. band from 4.0 to 22 MHz . Valve output stages are used in these sets to give protection against misuse. In the 400 -watt sets parallel output valves give the required power and in the low-power sets a cascode valve-transistor circuit is used, with the advantage that output valves do not need to be matched. A low-cost d.s.b. receiver is made to complement these sets for receiving weather broadcasts and for direction finding. The equipment, designed in collaboration with Racal, is made by Kelvin Hughes, a division of Smiths Industries, at New North Road, Hainault, Ilford, Essex. WW302 for further details

High-power c.w. travelling-wave tubes

E.E.V. have developed three new highpower c.w. travelling-wave tubes. The tubes are the N 1065 , which produces a minimum output power of 35 W over the frequency band 10.5 GHz to 12.4 GHz , the N 1075 , with a minimum output power of 100 W from 8 GHz to 12 GHz , and the N 1077 , giving 100 W minimum from 5 GHz to 12 GHz . Saturated gain is 36 dB for N1065 and 30 dB for N1075 and N1077. All are of metal/ceramic construction. Periodic permanent magnetic focusing of the electron beam is employed. The focusing system forms an integral part of the tube, and a particular feature of its design is the measures taken to achieve a very high

degree of alignment between the electron gun, the helix structure and the magnetic field-to minimize helix interception under full r.f. conditions. English Electric Valve Co. Ltd, Chelmsford, Essex.
WW328 for further details

Portable dual-channel 18 MHz oscilloscope

A robust dual-channel portable 18 MHz oscilloscope, TF2204, has recently been added to the Marconi Instruments range. Mains, 24 V battery and special military versions are available. Features include automatic triggering, high sensitivity $(20 \mathrm{mV} / \mathrm{cm}$ at 18 MHz or $2 \mathrm{mV} / \mathrm{cm}$ at 5 MHz), and the inclusion of signal delay. Stable triggering is obtained over the full

bandwidth of the vertical deflection system. The instruments also have a channelselective internal triggering. The display is bright and the $100 \times 80 \mathrm{~mm}$ screen has an internal graticule to minimize parallax errors. The 'scope measures 250 mm high $\times 250 \mathrm{~mm}$ wide $\times 350 \mathrm{~mm}$ deep and weighs 11.5 kg . The budgetary f.o.b. U.K. price of the mains version is $£ 360$. Marconi Instruments Ltd, St. Albans, Herts. WW325 for further details

L.S.I. digital circuits

Plessey announce a new range of digital circuits, the SB220 series, suitable for digital control and metering applications. Used collectively, the circuits SB220, 221 and 222 provide frequency-to-digital

Continued on page 261

Solartron's synthesizer signal generator eliminates those three operator headaches: keeping the signal generator within the bandwidth of the RX that's being checked; having to reset output levels with each modulation change; and having to readjust controls with every frequency change.

Just look at these advantages:

- crystal accuracy and stability-3 parts in 10^{9} over 24 hours. We guarantee that the frequency you set today will be there tomorrow. Or the day after that!
- digital decade frequency setting-down to 10 Hz resolution. Setting times a few seconds manually, or a few milliseconds by electrical programming.
- complete modulation facilities - AM, FM, SSB or Pulse.

Solartron-Schlumberger are Europe's proven leaders in synthesizer signal generators.

Tell us about your Laboratory or ATE requirement. We'll be pleased to meet it. Precisely.

Phone or write for full technical details.
SOLARTRON
Schlumberger
The Solartron Electronic Group Ltd Farnborough Hampshire England Tel: 44433

Vortexion

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 2-30/60 Ω balanced line microphones, 1-HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.
conversion with inputs up to 1 MHz . Digital output is available either in natural binary or gray-coded binary for non-ambiguous asynchronous access, thus being randomly accessible. The SB220 circuit is a 5-bit reversible gray-code counter which cannot overflow, can be infinitely cascaded, and can provide 5 -bit natural binary code outputs. SB221 is a 5-bit binary rate multiplier allowing the multiplication of a basic frequency by any prescribed number up to the capacity of the multipliers (which can be infinitely cascaded). The multiplication ratio can be controlled by the natural binary outputs of the SB220 to provide effectively a binary to frequency converter. The multiplier uses gray code. The SB222 circuit provides a number of functions in one package; frequency comparison, phase locking and digital filtering. All three circuits are available in 24-leadd.i.l. ceramic packages, are designed to work over the temperature range 0° to $70^{\circ} \mathrm{C}$ and can interface directly with conventional i.c. logic. Plessey Microelectronics, Cheney Manor, Swindon, Wilts.
WW 314 for further details

V.H.F. aircraft receiver

Monitor model $15 \mathrm{WB} / \mathrm{SS}$ from Park Air Electronics includes, in addition to full coverage of the aeronautical v.h.f. a.m. band 118 to 136 MHz on a continuous tuning scale, six spot frequencies using crystal-controlled oscillator modules. Each oscillator is fitted to a plug-in printed circuit card and is delivered pre-aligned for fitting when frequency changes are required. Cost of the new equipment packed for export is $£ 145$ and availability is eight weeks from date of order. Park Air Electronics Ltd, Red Lion Square, Stamford, Lines.
WW306 for further details

Coaxial magnetron

A fixed frequency c.e.m. coaxial magnetron, the SFD 305, is now available from EMI-Varian. Characteristics are as follows:
frequency, fixed $\pm 0.030 \mathrm{GHz} \ldots 9.345 \mathrm{GHz}$ peak power output (min) 28 kW heater, standby
voltage12.6V
current (max) 1.3A
warm-up time (min) 120s
pulling factor, $1.5: 1$ v.s.w.r (max) .6 MHz pushing factor (max) $300 \mathrm{kHz} / \mathrm{A}$
weight (max) 272 g cooling .. EMI-Varian Ltd, Hayes, Middx.
WW 326 for further details

Welded cermet trimmer

A 9 mm square miniature cermet trimmer type 3755 GB , in a diallyl phthalate case with gold strap welded terminations, is available from Amphenol. Resistance values range from 100Ω to $1 \mathrm{M} \Omega$. Power

rating is 1 W at $70^{\circ} \mathrm{C}$ (zero at $150^{\circ} \mathrm{C}$) and the operating temperature range is -55° to $+150^{\circ} \mathrm{C}$. The trimmer is protected against vibration, humidity and salt spray. Dielectric strength is 900 V r.m.s. at room conditions, 350 V r.m.s. at $80,000 \mathrm{ft}$. The wiper is shock and vibration proof, with a self-locking leadscrew and ratcheting clutch, and has a carbon tipped metal contact. Amphenol Ltd., Thanet Way, Whitstable, Kent.
WW 313 for further details

Digital filters

A range of programmable digital filters from Rockland Systems Corporation of New York, is now available in the U.K. through Lyons Instruments. Since all digital filters are composed of four basic components-adders, multipliers, shiftregister delays, and memory-a modular approach has been adopted. The basic components are usually combined into second-order building blocks (two poles and/or two zeros) and these blocks are then combined or multiplexed to realise any number of filters of any desired order. Programmability is achieved by employing a read/write coefficient memory; fixed filter characteristics may be obtained with a read-only memory. Standard arithmetic accuracies are $16-24$ bits at sampling rates up 500 kHz at 16 bits $(8 \mathrm{MHz}$ bit rate). A-to-d and d-to-a conversion accuracies, where required, are limited to those commercially available ($8-12$ bits). Where the full 500 kHz sampling rate is unnecessary, each filter may be multiplexed among several inputs, or on one input to effect higher-order filtering, or both. Up to 50 second-order filters at 10 kHz sampling

rate, or 500 at 1 kHz sampling rate, are then available per instrument. To take an example, the Rockland model 4124/4125, is a programmable tenth-order recursive digital filter, which can realise arbitrary 'all-pole' designs such as Butterworth, Bessel or Chebyshev low-pass, high-pass, or band-pass filters. Lyons Instruments Ltd, Hoddesdon, Herts.
WW321 for further details

Strip chart recorders

More Russian-made instruments are available from Z \& I Aero Services. Designed for recording momentary values, of currents and voltages are strip chart recorders $\mathrm{H} 320-1$ (single channel) and $\mathrm{H} 320-3$ (three channels). Movements are movingcoil types with a natural frequency of oscillation of 5 Hz (representing maximum frequency) and a sensitivity of 8 mA f.s.d. (80 mm). A lightweight syphon pen is attached to the moving-coil frame and a

large ink well mounted coaxially with the frame. Error on d.c. is 2.5% rising to 10% at maximum frequency. One of nine chart speeds can be selected from 1.2 to $3000 \mathrm{~mm} /$ min. Internal impedance is 210 ohms. Prices are $£ 55$ (single channel) and $£ 90$ (three channels). A ten-channel event recorder, type H 30 , is also available in which the ink syphons are connected to rotary relays in each channel. Current consumption is 120 mA per pen. Price £52. Z \& I Aero Services Ltd, 44a Westbourne Grove, London W. 2 .
WW 318 for further details

Modulation analyser

Depth of modulation in a.m. transmitters or deviation in f.m. transmitters can be measured with analyser type TG-2700 made by Green ECE Ltd. Designed for narrow-band transmitters in mobile or portable v.h.f. and u.h.f. radiotelephones, the most sensitive deviation range is 3 kHz . The instrument is compatible with transmitter output analyser type TG- 2400 for power and envelope display. For f.m. measurement, frequency coverage extends from 30 to 480 MHz , with deviation range from 3 to 100 kHz . Deviation due to residual noise is 32 dB below 3 kHz ; accuracy for both f.m. and a.m. is $\pm 5 \%$; and sensitivity

at r.f. is 2 mV into 60 ohms. Made by Green E.C.E. Ltd of 5 Thorold Road, London N22 4 YE, it is marketed by Echometrix Ltd, 113 The Broadway, Leigh-on-Sea, Essex, for $£ 225$.
WW320 for further details

High-current
 switching transistors

Three new high-speed, high-current, switching transistors are available from Mullard. Types BDY90, 91 and 92 are $n-p-n$ silicon planar devices and have a transition frequency of typically 70 MHz . The transistors are TO- 3 encapsulated, and the continuous potwer dissipation rating is 40 W . However, under pulsed conditions with a duty cycle of 0.1 and a pulse duration of 0.1 ms , each can dissipate 250 W . The saturation voltage is less than 1.5 V . The specification includes:

$V_{C B O}$	120	100	80	V
$V_{\text {CEO }}$	100	80	60	V
$I_{C M}$	15	15	15	A
$P_{\text {tot }}\left(T_{m b}=75^{\circ} \mathrm{C}\right)$	40	40	40	W

Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW303 for further details

Battery-powered oscilloscope

Hewlett-Packard model 1701A dualchannel 'scope has a frequency range of d.c. to 35 MHz , a $60 \times 100 \mathrm{~mm}$ display and delayed sweep. Consuming 18 W it runs for up to 6 hours on its own battery and can also be powered by 115 or 230 V a.c. mains or by any external d.c. source between 11.5 and 36 V . Each vertical channel has a rise time of less than 10 ns . Input impedance is $1 \mathrm{M} \Omega / 27 \mathrm{pF} \quad(10 \mathrm{M} \Omega / 14 \mathrm{pF}$ with $\times 10$
resistive divider probes supplied). Calibrated deflection ranges from $10 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$. Either channel's signal can be displayed by itself, or both can be displayed on alternate sweeps or during the same sweep if chopped. The two inputs may be added or subtracted. Sweeps lock on to signals up to 35 MHz that deflect the trace by 0.5 cm . On slightly larger signals ($>100 \mathrm{mV}$) sweeps trigger stably on signals up to 75 MHz . Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks. SL1 4DS. WW 317 for further details

Portable variable

 transformersA range of portable Regulac variable transformers is being produced by Claude Lyons. Models with 240 V input and $0-270 \mathrm{~V}$ output have a range of current ratings between 1 and 13.5A. Also available are four 120 V input $/ 135 \mathrm{~V}$ output, types rated between 2.25 and 15A. The variable trans-

former is mounted in a robust case with carrying handle, input cable, mains switch and output fuse, and can be supplied with either a socket outlet or insulated terminals. A voltmeter or ammeter, or both, can be fitted if required. Claude Lyons Ltd, Valley Works, Hoddesdon, Herts.
WW 315 for further details

Indicator tubes

Indicator tubes types ZM1263, ZM1265 and ZM1175C, from Mullard, operate with a supply voltage of 170 V . Each is $19 \times 47.5 \mathrm{~mm}$. The ZM1263 is a sideviewing tube that contains symbols for alternating (\sim), plus $(+)$, mints $(-)$ and a fourth symbol, consisting of a spiral of two and a quarter turns for 'equipment failed' or anything else that has no conventional symbol. It is intended for use in digital voltmeters and similar instruments. The ZM1265, another side-viewing tube, is intended for use as an cup, down,
left or right' indicator in the control panels of milling machines and other machine tools. It displays an arrow pointing in one of the four directions. The ZM1175C is a pinned version of the numerical indicator tube type ZM1175. The pins are formed by cropping the flying leads so that the tube can be plugged into a holder. Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD.
WW309 for further details

High-speed memory

A new, read-write, random-access m.o.s. memory available from Mullard has maximum access time of 250 ns and cycle time of 750 ns . Type FEQ101, the memory contains sixteen words of four bits and an address decoder on the same silicon chip. A common bit line used for the corresponding bit in each word serves as the data input/output sense line. A buffer in each bit isolates it from the bit line while it is being read, and reading is non-destructive as it is accomplished by sensing the output current of the buffer stage. A chip-select input on the FEQ101 enables several of the integrated circuits to be connected to form memories with capacities much greater than 64 bits. The specification includes:
gate supply voltage $\quad-20 \mathrm{~V}$
drain supply voltage $\quad-10 \mathrm{~V}$
nominal input levels
$-27 \mathrm{~V}$
minimum sense current $\quad 0.7 \mathrm{~mA}$ maximum stand-by dissipation $2.0 \mathrm{~mW} / \mathrm{bit}$ operating temperature range 0 to $+75^{\circ} \mathrm{C}$ encapsulation 16 lead plastic dual-in-line Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW307 for further details

Plug-in resistors

Tin oxide resistors with plug-in terminations have been developed by Erie. The resistors-rated at 0.3 W at $70^{\circ} \mathrm{C}$ ambient temperature-are available from 10Ω to $300 \mathrm{k} \Omega$ with ± 2 and $\pm 5 \%$ tolerances.

voltage rating	250 V
temperature coeff.	400 p.p.m. above 220Ω
	500 p.p.m. below 220Ω
load life stability	$\pm 3 \%$ at 0.3 W
noise	$<1 \mu \mathrm{~V} / \mathrm{V}$
price	$£ 0.65$ per $100(5 \%$
	tolerance $)$

Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk.
WW 311 for further details

Pulse generator

A new pulse generator, the PG58 from Advance Electronics, provides repetition frequencies from 0.1 Hz to 5 MHz , pulse widths and delays from 100 ns to 500 ms , single pulse and double pulse, or square waves, from simultaneously available positive and negative outputs. Maximum

output is 10 V into an open circuit (5 V into 50Ω) from each output. The PG58 may be externally triggered or synchronously gated and a manual trigger facility is provided. There is output protection against voltage feed-in of $\pm 15 \mathrm{~V}$. Advance Electronics Ltd, Raynham Road, Bishops Stortford, Herts. WW 316 for further details

Miniature transformer

A miniature laminated transformer is available from Plessey. Designed for use with printed circuits, power output approaches 1.5 W . Input voltage is 220 V , 50 Hz . Up to ten pins can be used for input and output connections, and the terminal

strips are 20 mm . apart-the assembly measures $30 \times 25 \times 25 \mathrm{~mm}$. Bobbins are made from glass-filled nylon. The working temperature range is 40 to $120^{\circ} \mathrm{C}$. Industrial \& Electronic Components Division, Plessey Components Group, Vicarage Lane, IIford, Essex
WW 305 for further details

M.O.S. large scale i.cs

Thorp Electronic Components are distributing a range of components from UNISEM (a subsidiary of Aircraft International of America) which includes random access memories, read-only memories and character generators. The designs interface directly with worst-case d.t.l.
and t.t.l. levels without the need for pullup or pull-down resistors and will operate over the full -55° to $+125^{\circ} \mathrm{C}$ military specification range. 'Commercial' types operate from -25° to $+70^{\circ} \mathrm{C}$. The UA3524, a fully-decoded 1024 word $\times 1$ bit r.a.m. has a maximum access time at $70^{\circ} \mathrm{C}$ of 250 ns and a cycle time of 400 ns together with a refresh time of only 16 cycles. It is fully specified from -25° to $+70^{\circ} \mathrm{C}$. A military version, UA2524, is also available, specified from -55° to $+125^{\circ} \mathrm{C}$. Thorp Electronic Components Ltd, Victoria House, 63-66 Foregate Street, Worcester.
WW308 for further details

F.E.T. switch/drivers

A new range of junction f.e.t. switch/ drivers for use with $\pm 15 \mathrm{~V}$ supplies includes twin-channel s.p.s.t. and d.p.s.t. devices. Others are available for double-throw applications. The devices allow the coupling of low-level logic to high-voltage input circuits, and maximum on-resistances of 15 to 100Ω are available. DG151A and DG161A will handle analogue signals of $\pm 7.5 \mathrm{~V}$ at frequencies greater than 1 MHz ; DG151B and DG161B are suitable for $\pm 5.5 \mathrm{~V}$. They are available in TO-86 flatpack or TO-116 package. Siliconix Ltd, Saunders Way, Sketty, Swansea, SA2 8BA. WW 312 for further details

Efficient d.c. motors

Trident Engineering produce a range of permanent magnet d.c. motors, designated Maxon, rated from 0.25 W to 20 W , and

with starting torque up to $1,200 \mathrm{~g} \mathrm{~cm}$. The motors have ironless rotors allowing efficiency up to 90%, low inertia, and a high power-to-volume ratio. There are nine frame sizes-from 12 mm to 32 mm diameter. Operation is from $1,3,6,12$, or 24 V supplies. Operating temperature range is -20° to $+65^{\circ} \mathrm{C}$. The commutator has up to 13 segments for smooth output. Trident Engineering Ltd, Shute End, Wokingham, Berks, RG11 1BH.
WW322 for further details

Battery-operated lock-in amplifier

A signal recovery instrument which can be operated from batteries, if required, is the lock-in amplifier Type 401, introduced by Brookdeal Electronics. Capable of recovering repetitive signals of down to 100 dB below the noise level, it has a sensitivity which may be varied from $1 u \mathrm{~V}$ to 100 mV and a frequency range of 1 Hz to 50 kHz . The input dynamic range is 100 dB . In the reference channel, phase shifts of 90° and 180° can be introduced by operating push buttons, while a calibrated variable control gives a further $0-100^{\circ}$ adjustment. The instrument is claimed to have automatic circuitry which enables it to measure signals without

unnecessary setting up procedures and keeps it operating correctly during lengthy experiments. For supply power the 401 can have one of three interchangeable plug-in power packs: a battery pack using three PP9 dry batteries; an a.c. mains power unit; or a dual-purpose unit which allows operation from either a.c. mains or internal rechargeable batteries. Brookdeal Electronics Ltd., Market Street, Bracknell, Berks.
WW301 for further details

D.I.L. pulse transformer

Bourns (Trimpot) have introduced Model 4252-1005 miniature d.i.l. pulse trans-former-a 16 -pin unit with high insulation resistance, fast rise and fall time, clean pulse performance, and low coupling capacitance. The specification includes: operating temperature range 0° to $70^{\circ} \mathrm{C}$ pulse inductance ($\pm 10 \%, 0^{\circ}$ to $70^{\circ} \mathrm{C}$)
$150 \mu \mathrm{H}$
leakage inductance $\quad 1.0 \mu \mathrm{H}$ coupling capacitance 5 pF pulse width 400 ns Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx. WW324 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

ACTIVE DEVICES

GEC Semiconductors Ltd, Witham, Essex, have sent us the following literature:
Data sheet for silicon gate transistors M11/12/1402; gate threshold voltage 1 to $2 \mathrm{~V} ; B V_{S D S}=$ $-25 \mathrm{~V} ; C_{g^{d}}=0.3$ to $0.5 \mathrm{pF} \ldots \ldots$. WW401 Bipolar, m.o.s., hybrid, integrated circuit product guide WW402
Integrated circuit price list WW403
'MOSFET product guide', publication No.MOS160 C , contains data on single, dual and dual-gate m.o.s.f.e.ts. An index of application notes is in cluded. RCA Ltd, Lincoln Way, Windmill Rd, Sunbury-on-Thames, Middlesex
Thorp Electronic Components Ltd, Victoria House, 63-66 Foregate St, Worcester, the U.K. distributors for United Aircraft's (U.S.A.) Unisem components, have available the following literature:
'Hybrid microcircuits' describes the facilities available at the Electronic Components Division of United Aircraft for the assembly and design of thin and thick film, single or multilayer, hybrid microcircuitsWW404 'LSI memory devices', m.o.s., data sheet WW405
'H22-08, -10, -12 D/A converters'. Digital-toanalogue converters for 8 -, 10 - or 12 -bits with ± 0.5 l.s.b. accuracy
James Scott (Electronic Engineering) Ltd, Cartyne Industrial Estate, Glasgow E.2, U.K. distributors for E \& M Laboratories (U.S.A.), have available an E \& M catalogue devoted to 'Microwave devices and ferrite components' WW407
Bulletin EN2020 from International Rectifier (Great Britain) Ltd, Hurst Green, Oxted, Surrey, is a data sheet for a new range of 70A silicon power diodes which are intended for maximum reverse repetitive voltages from 100 to 1,200
'Professional cathode ray tubes' is the title of a new publication from the M-O Valve Co. Ltd, Brook Green Works, Hammersmith, London W.6. WW442

PASSIVE COMPONENTS

Electrosil Ltd, Pallion, Sunderland, Co. Durham, have produced a wall chart/leaflet giving data on their range of glass capacitors. Rated between -55 and $+125^{\circ} \mathrm{C}$ some of these capacitors are available for up to 6 kV working WW409

A large number of transformers with a wide range of voltage outputs and current ratings intended mainly for transistor equipment power supplies are described in the publication 'Transistor power supply transformers' from Gardners Transformers Ltd .Christchurch, Hampshire
Intended for use in recording studios a range of jack socket assemblies, which can be supplied in rows of 20 sockets for 19 -inch panel mounting, is described in a leaflet 'Audio jackfields'. D. N. Jones Electronics Ltd, Vapery Lane, Pirbright, Woking Surrey
Data is given on valves, TV picture tubes and deflection components, microwave components, vacuum capacitors, cathoderay tubes, photoelectric devices, X-ray tubes, semiconductors and other electronic components as well as applications information (in German) in AEG-Telefunken's 'Taschenbuch-1971'.

Allgemeine Elektricitats-Gesellschaft, AEG-Telefunken, Fachbereich Rohren, Vertrieb, 7900 Ulm, Soflinger Strasse 100, West Germany WW445

APPLICATION NOTES

'Using a dual-polarity, tracking, voltage regulator' is the self-explanatory title of an application note from Silicon General Inc., 7382 Bolsa Avenue, Westminster, California 92683, U.S.A. ... WW410
'Design of fixed and programmable counters using the RCA CD4018 COS/MOS presettable divide-by-n counter', application note No. ICAN-6498, describes the design of a counter which will divide by 3 to 999. RCA Ltd, Sunbury-on-Thames, Middlesex
'FEQ101 64-bit read-write random access memory' is a publication which describes the FEQ101 memory i.c. which is organized as 16 -words of 4 -bits each. It shows how larger storage capacities may be obtained with the device. Mullard Technical Information Service, Industrial Electronics Division, Mullard Ltd, Mullard House. Torrington Place, London WC1E 7HDWW412
Hewlett Packard Ltd, 224 Bath Rd, Slough, Bucks, have produced application notes which describe some uses for their 3721A correlator:
4, 'Correlation measures wind force' ... WW413
5 , 'Measurement of nuclear reactor criticality' WW4 14
6, 'Correlation measures supersonic turbulence'
'Micronotes', Vol.8, No.1, published by Microwave Associates Inc, Cradock Rd, Luton, Beds, LU4 OJQ, deals with the question of pulse priming magnetrons to achieve pulse-to-pulse coherence
.WW416

EQUIPMENT

Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex RM15 5SR, have sent us the following literature:
Data sheet, Rohde \& Schwarz, OMTF, 0-50MHz precision oscilloscopeWW417
Brochure, North Atlantic 8525 angle position indicator for resolver/synchro-to-digital conversionWW418 Data sheet, Narda model 9500,1 to 12.4 GHz sweep generatorWW419
Dawe Instruments Ltd, Concord Rd, Western Avenue, London W.3, have published a booklet called 'Stroboscopes' WW421

Electronic Instruments, power supplies, industrial control and logic tutor kits are the areas covered by the Farnell Instruments Ltd (Sandbeck Way, Wetherby, Yorkshire LS22 4DH) short-form catalogue
A transistor controlled relay unit is described in data sheet CD/7 from LTH Electronics Ltd, Eltelec Works, Chaul End Lane, Luton, Beds ... WW423
Delays from 1 ns to 999.999μ s with accuracies up to 100 ps are available with the programmable digital delay generator model 7040 which is described in a leaflet from Berkeley Nucleonics Corp., 1198 Tenth St, Berkeley, California 94710, U.S.A. WW424

We have received a catalogue from Loewe Opta GmbH, West Berlin, Kronach, West Germany, which describes, in German, their range of TV and radio receivers, audio equipment, tape recorders, domestic video recorders, and electronic photoflash equipment
Limrose Electronics, Lymm, Cheshire, inform us that they have revised the instruction booklet for Compukit-1. Copies cost 40p each.

Zoom Television Ltd, The Bury, Church St., Chesham, Bucks, have developed a pulse counter, called the Edi-cue, which is for precise editing of video tape on helical scan recorders and is described in a leaflet

A multi-purpose industrial radio control system is briefly described in a leaflet from Ariel Electronics, 100 Colne Rd, Twickenham, Middlesex .. WW427

The publication 'Danavox headsets' describes a variety of headsets including one with a built-in inductive loop receiver. Danavox (Gt. Britain) Ltd, Bagshot Rd, Sunninghill, Berks.
Y-Tronics is the name of a series of units manufactured by the White Electrical Instrument Co. Ltd, Spring Lane North, Malvern Link, Worcestershire, designed to be used in conjunction with the Nuffield-A-level electronics course. They are described in a booklet WW430
Also available from the same company is a leaflet describing a variety of moving-iron and moving-coil meters

431
Intended for industrial training and similar applications a random access slide' projector (ES2500) is described in a leaflet from Electrosonic Ltd, 47 Old Wool wich Rd., London S.E. 10 WW432

Electromagnets, spectrum analyzers, analogue and hybrid computers and a wide range of electronic test instrumentation are included in the 152-page catalogue of Systron Donner Ltd, St. Mary's Rd, Sydenham Industrial Estate, Leamington Spa, Warwickshire
A leaflet is \mid available which describes the type-62 racking system, intended for transmission equipment, manufactured by Pye TMC Ltd, Transmission Division, Sevenoaks Way, St. Mary's Cray, Orping ton, BR5 3AD, Kent

WW441
Heathkit (Gloucester) Ltd, Gloucester, GL2 6EE, have sent us a copy of their latest catalogue giving details of a wide range of equipment which can be obtained 'ready-made' or in kit form WW434
Resistance boxes are the subject of two leaflets from the Croydon Precision Instruments Company, Hampton Rd, Croydon CR9 2RU. They can be supplied in $1,4,5$ or 6 decades from $10 \times 0.0001 \Omega$ to $10 \times 1 \mathrm{M} \Omega$. High dissipation models are available

WW435
The short-form catalogue of Green Electronic and Communication Equipment Ltd, 5-15 Thorold Rd, London N22 4YE, includes a transmitter output analyzer, a modulation analyzer, a synthesized digital signal generator and other items ...WW437

Manufactured in Germany by HowaldtswerkeDeutsche Werfk a range of cable measuring equipment including fault location sets, burn-out and impulse test sets, fault search equipment, etc is described in a brochure from Echometrix Ltd, 113/ 115 The Broadway, Leigh-on-Sea, Essex . WW438 Also available from the same company is a price list for the wide range of test equipment manufactured by Nordmende
.WW439

GENERAL INFORMATION

The Institution of Production Engineers, 10 Chesterfield St , London W1X 8DE, has published a booklet 'Quality-its creation and control in the seventies' which is available price 75 p.
The latest issue of the journal Non-Ionizing Radiation carries several articles discussing the hazards, and effects on the human body, of radiation in the m.f., h.f. and microwave bands. Kendervic Ltd, P.O. Box 13, Guildford, Surrey WW440
A booklet, published jointly by the B.B.C. and the I.T.A., and available from the engineering information departments of either for 50 p , called 'Specification for television standards for 625 -line system-I transmissions' should be of value to all engaged in television design work.

How do you control all this?

Swiftly. Safely. And surely. With the ITT range of STAR mobile radiotelephones.

STARphone. The smallest radiotelephone in the world. We designed it without external rads or aerials to fit in your pocket. Yet despite its diminutive size, STARphone will give you incredibly clear two-way communication over a wide area. To help you load and unload at the dock-side, in factories and . warehouses. To keep you in touch on building sites, in hospitals, at airports. Approved by the Ministry of Technology for safe use in oil refineries, petrol tankers, or wherever fire is a hazard.

And for perfect fade-free communication in moving vehicles, STAR mobile radictelephone. Its noise-cancelling microphone means you get crystal-clear speech transmission, whatever's going on in the background. At whatever speed you're travelling. And it has excellent range and penetration of built-up areas. You'll find STAR in taxis, transport fleets, police cars and ambulances. To name but a few.

What's more, the entire range of STAR equipment has won the British Council of Industrial Design Award for its good looks and functional design. Another
reason for its worldwide marketing success.

The STAR range of mobile radiotelephones is widely used across the globe wherever growth in industry calls for more efficient and reliable communication. Designed and produced by ITT and marketed in Europe through the vast ITT sales network. STARphone and STAR mobile radiotelephone are available from:

ITT Mobile Communications Ltd., New Southgate, London N. 11. Telephone: 01-368 1200 Telex: 261912

WW-099 FOR FURTHER DETAILS

OVERSEAS AGENTS REQUIRED

to handle our range of telescopic tilt
over towers
\star

Low Noise FET RF Amplifiers

Frequency: As specified in the range 1 to 250 MHz
Bandwidth: As specified up to 10\% of signal frequency @ -1 dB .
Gain: 40 dB . @ $50 \mathrm{MHz} 30 \mathrm{~dB} @ 150 \mathrm{MHz}$.
Gain control: 20 dB . manual or external AGC.
Noise Factor: $1 \cdot 5 \mathrm{~dB}$.@ $150 \mathrm{MHz} .2 \cdot 5 \mathrm{~dB}$.@ 250 MHz .
Impedance: 52 or 75 ohms or as specified.
Connectors: BNC, N, SO239, L604, or as specified
Power: 12v. @ 12 ma. DC. Negative earth.
Size: $4 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{\prime \prime}^{\prime \prime}$. Diecast case.
Weight: 1202.
Price: £30.
Low Noise Broadband RF Amplifiers
Frequency: As specified in the range DC to 150 MHz .
Bandwidth: As specified from 10% to 20% of signal frequency @ -1 dB. Gain: 70 dB . @ 30 MHz .50 dB . @ 100 MHz .
Gain control: 60 dB . manual or external AGC.
Noise Factor: 1.5 dB .
Noise Factor: 1.5 dB . P . Nerstive 12 v @ 22 ma . DC. Negath
Power: 12v. @ 22 ma. DC. Negative earth.
Price: f 50 .
Impedance, Connectors, Size, and Weight as above.
Wideband RF Amplifiers
Frequency: DC to 100 MHz . @ -3 dB .
Gain: 45 dB .
Gain control: 120 dB . manual or external AGC.
Noise Factor: 6 dB .
Power: 12v. @ 30 ma. DC. Negative earth.
Price: $£ 50$.
Impedance, Connectors, Size, and Weight as above.
Low Naise Crystal Controlied FET Frequency Converters Input frequency: As specified in the range 1 to 250 MHz .
Output frequency: As specified in the range 100 KHz , to 250 MHz .
Price: $£ 50$.
Other details as FET RF Amplifiers.
The four basic units above are also available with up to 6 outputs with separate gain controls, integrated high-pass, low-pass, or spot frequency filters, as matched pairs for interferometers, or modified for particular applications. We also manufacture AM, FM, and SSB receivers with phase lock loops and integrated circuits, linear amplifiers, repeaters, and frequency multipliers.

RESEARCH COMMUNICATIONS
 peel house - porters lane - ospringe - fayersham - kent

 TELEPHONE - FAVERSHAM 2064WW-100 FOR FURTHER DETAILS

JOHN SMITH LTD.
209 8PON LANE - WE8T BROMWICH - 8TAFF8. TEL. 021-553 2516 (3 LINES) WOOD8 LANE - CRADLEY HEATH - WARLEY -WORC8. TEL. CR 69283 (3 LINES)

STRUMECH ENGINEERING LTD.

Coppice Side, Brownhills
Walsall, Staffs, England

This superb stereo system is a real price breakthrough. It comprises \quad Measuring $17 \frac{1.4}{2} \times 10 \frac{3}{4} \times \times \frac{3}{4} \times$ the Duo type 2 speakers are teak the '/ISCOUNT F.E.T. Mk I amplifier on which full details are given below, the famous Garrard SP 25 Mk III (including teak veneer base. and -rarrsparent cover) with diantond cartridge or 2025 - C and the finished with matching Vynair grills. They inccrporate a $3 \mathrm{ohm} .13{ }^{\prime}$ X $8^{\prime \prime}$ drive unit and Parasitic tweeter. Max. power handling 10 watts. Price $\mathcal{£ 1 3 . 5 0}$ per pair plus $p \& p \mathfrak{£ 1 . 5 0}$. very successful DUO type 2 speakêrs;
WITH MK IL amplifier and magnetic cartridge £48 plus £2.50 P\&P.

OThe Oiscount F.E.T.Mk I $£ 14.25$ plus 50p P. \& P

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below. the Viscount F.E.T vastly surpasses amplifiers costing far more. Size: $12 \frac{3}{2 \prime \prime}^{\prime \prime} \times 6^{\prime \prime} \times 2_{4}^{\prime \prime}$ in simulated reak case.

Specification: Output per channel 10 watts r.m.s. into 3 ohms. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm$ 1 dB @ 1 watt.
Total distortion: (a) 1 kHz (a) 9 watts 0.5%.
Input sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K ohms.

Overload Factor: Better than 26 dB .

 Signal to noise ratio: 70 dB on all inputs (with vol. max) Controls: 6 position selector switch (3 pos, stereo \& 3 pos. monol. Separate Vol . controls for left \& right channels. Bass $\pm 14 \mathrm{~dB}$ (a) 60 Hz . Treble (with D.P.S. on/off) $\pm-12 \mathrm{~dB}$ @ 10 kHz . Tape Recording outpur sockets an each channelBUILT \& TESTED.
Mk II (MAG.P.U.) $\mathbf{1} \mathbf{1 5 . 7 5}$ p/us $50 p$ p ρ Specification same as Mk. I, but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @ 1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 65 dB (vol.

Elegant Seven Mk 3 (350mW)

The Dorset (600 mW)
7-transistor fully funable M.W. L.W. superhet
portable- with baby alarm facility. Sol of pans. The portable-with baby alarm faclilit. Sel of parts. The
latest modulised and pre-alignment techniques latest modulised and pre-alignment techniques
makes this simple to build. Sizes: $12 \times 8 \times 3$ in. Malins POWER PACK KIT: 47p exira. Price $\mathbf{£ 5 . 2 5}$ plus 50 p P \& P

SOUND 50

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Frity valve smpphifier and speakers are sturdily constructed with smart housings and thoroughly tasted olectronics. They are designed to last-to withstand the knocks and bumps of life on the road. Builh for the small and medium sized gig, they are easy to handle and quick to set up ancl can be ralied upon to come over with all the quality and power you need.
the quahty and power you ne8.
Output Power: 45 watts R.M.S. (Sine wave dive). Frequency response: -3 db points 30 Hz at 18 kHz . Total distortion: response:' -3 db points 30 Hz at 18 kHz . Total distortion:
less than 2% at rated output. Signal to noise ratio: better than 60 db . Speaker Impedance: 3,8 or 15 ohms. Biss Control Range: ± 13 ch at 60 Hz . Treble Conitrol Range: $\pm 12 \mathrm{db}$ at 16 KHz . laputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K .
To protect the outpur valves, the incorporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size $20^{\circ} \times 20^{\circ} \times 10^{\prime \prime}$ incorporating Baker's 12. heary duty 25 wett high flux, quality loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme-Black and grey.

COMPLETE SYSTEM

Amplifier $£ 28.50+£ 1.50 \mathrm{P}$ \& P .
Speakers ea. $£ 12.50+£ 1.75$ P \& P.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.6.NG Also 323 Edgware Road, London, W.2. ALI ORUEHS BY PUSI 10 Actorrr Gooxls not dispatched ouiside U.K. Terms C.W.O. All enquiries S.A.E

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is avallable, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12V battery volume control	¢4.48
B	Mains powered record player	2.30, PZ.5	Crystal or cerâmic P.U. volume control etc.	£9.45
C	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers. F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo 60, } \\ & \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	2.50	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	Z.50, PZ.8, mains transformer	Mic.. guitar, speakers, etc., controls	£19.43
H	High pass and low pass filters	A.F.U.	C. Dor E	£5.98
J	Radio	Stereo F.M. Tuner	C. Dor E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet. motor plinth. free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.

Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE174HJ.
Tel: St. Ives (04806)4311

Sinclair Project 60

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $\mathbf{Z . 3 0}$ or $\mathbf{Z . 5 0}$ amplifiers in your Project 60 system will deperid on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (250 units are interchangeable with 2.30 s in a/l applications). Power Outpute
2.3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. inito 3 ohms using 30 volts.
Z. 5040 watts R.M S. into 3 ohms using 40 volts: 30 watts F.M.S. into 8 ohms, using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Dlatortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70 dB unweighted.
Input seneitivity: $\mathbf{2 5 0 m V}$ into 100 Kohms.
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{30} \times \frac{1}{2} \mathrm{in}$.
2.30

Built testad and guarantead with circuits and instructions manual
£4.48
2.50

Built, tested and guaranteed with circuits and instructions manual. $£ 5.48$

Power Supply Units

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 to left and PZ. 8 (for use with $Z .50$ s) to the right. Use PZ.5 for normal Z. 30 assemblies and PZ. 6 where a stablised supply is essential.
PZ-6 30 valts unstabilised £4.98
PZ-6 35 vaits stabflised £7.98
PZ-8 45 valts stabslised
(less mains transformer) $£ 7.98$
PZ-8 mains transformer $\mathbf{5} 5.98$

Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them. we will retund your money at once. Each module is guaranteed to work pe fectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided thet it is returned to us within 2 years of the purchase date. There will be a small charge for service tharaafter. No charge for postage by surface mail. Alr-mail charged at cost.

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input senaitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250 mV
Signa!-to-noise ratio : better than 70 dB .
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB at 100 Hz .
Front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins.
Built, tested and guaranteed.

$$
£ 9.98
$$

Active Filter Unit

For use between Stereo 60 unit and two $\mathrm{Z.30s}$ or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12 dB /octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporatedrumble (high pass) and scratch (low pass). Supply volxage - 15 to 35 V . Current - 3mA. H.F. cut-off (-3 dB) variăble from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35 V . supply) 0.02% at rated output.
Built, tested
and guaranteed
£5.98

Stereo FM Tuner

first in the world to use the
phase lock loop principle
Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now, for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS:
Number of transistora: 16 plus 20 in I.C.
Tuning range: 87.5 to 108 MHz
Capture ratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level: $20 \mu \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$
A.F.C. range: $\pm 200 \mathrm{KHz}$

Signal to noiseratio : $>65 \mathrm{~dB}$
Audio frequency response: $\quad 10 \mathrm{~Hz}-15 \mathrm{KHz}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$
$(\pm 1 \mathrm{~dB})$
($\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% inodulation
Stareo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tonesuppression: 30 dB
Cross talk: 40dB
I. F. frequency: 10.7 MHz

Output voltage : $2 \times 150 \mathrm{mV}$ R.M.S.
Aerial Impedance: 75 Ohms
Indicators: Mains on: Stereo on; tuning indicator Oparating voltage: 25-30 VDC
Size : $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{f} \mathbf{2 5}$ built and tested. Post free

TO: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ

Name

Address

Sinclair IC10/Q16/Micromatic

The world's most advanced high fidelity amplifier
This is the world's first monolithic integrated circuit high fidelity power amplifier and preamplifier. The circuit itself is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, having 5 watts RMS output (10 watts peak). It contains 13 transistors (including two power types). 2 diodes, 1 zener dıode and 18 resistors, and is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is more rugged and has considerable performance advantages, including complete freedom from thermal runaway and a very low level of distortion. The IC10 is primarily intended as a full performance high fidelity power and preamplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. It may also be used in other applications including car radios. electronic organs, servo amplifiers (it is $d c$ coupled throughout) etc.
Circuit Description
The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory. Each IC10 is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc. The pre-amp section can be used as an RF or IF. amplifier without any additional transistors. Specifications:
Output: 10 watts peak. 5 watts RMS continuous.
Frequency response: 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$.
Total harmonic distortion: Less than 1% at full output.
Load impedance : 3 to 15 ohms.
Power gain: 110 dB ($100,000,000.000$ times) total.
Supply voltage : 8 to 18 volts. (A Sinclair power unit, PZ, 7 is avalable for mains operation).
Size: $1 \times 0.4 \times 0.2 \mathrm{in}$. plus heat sink and tags.
Sensitivity 5 mV .
Input impedance: Adjustable externally up to Input imped
2.5 Mohms.
2.5 Mohms .
Price (with manual) f 2.98 post free.

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclaır design, technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies.

This elegantly designed shelf mountıng speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle
Loading: up to 14 watts TMS.
input impedance: 8 ohms.
Frequency response: From 60 to 16.000 Hz , confirmed by independently plotted B and K curve. Driver unit: Special high compliance unit having massive ceramic magnet of 11.000 gauss. alumınıum speech coil and a special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{3} \mathrm{in}$ square on face $\times 4^{\frac{3}{3}} \mathrm{in}$. deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.
Price f8.98.

To: SINCLAIR RADIONICS LTD LONDON R	ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ	
Please send	Name	
	Address	
for which I enclose cash/cheque/money order.		WW 5/71

Micromatic

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations; bandspread at higher frequencies makes reception of Radıo 1 easy. The plug-in magnetic earpiece provided matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteres is contaned within the minute and attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch. and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}\left(14 / 5 \times 13 / 10 \times \frac{1}{10}\right.$.)
Weight : Including batteries. $28.4 \mathrm{gm}(1 \mathrm{oz}$.
Weight : including batteries, $28.4 \mathrm{gm}(1 \mathrm{oz}$.$) ,$ Case: Black plastic with anodis
Tuning: medum wave band with bandspread at higher frequencies. (550 to 1.600 Hz).
Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earprece plug.
Kit in pack with earpiece. case. instructions and soider $£ 2.48$.
Ready built. tested and guaranteed. with earplece f2.98.
Two Mallory Mercury batterres type RM675 required. From radio shops. chemists, etc.

Sinclair Radionıs Ltó., London Road, St. Ives. Huntingdonshire PE1 74 HJ . Tel: St. Ives (048 06) 4311

Television Servicing Handbook

3rd Edition
Gordon J. King AssocIERE, MIPRE, MAES, MRTS, GradITAI, Dip.Television
A thoroughly practical handbook intended mainly for the professional service engineer, although it should also prove of the greatest interest to radio amateurs, students and apprentices. It deals in detail with fault-tracing, alignment adjustment and repair on modern receivers of all types.
0408000333358 pages illustrated 1971 £3-80

Understanding the Semiconductor

C. N. G. Matthews

The book starts with an introduction to conduction and semiconduction, in which the physics is kept very simple, and it goes on to deal with the pn junction and its action in diodes and transistors. The latter part of the book comprises an introduction to transistor circuitry, describing in detail the action of the three fundamental configurations and laying the foundations for an approach to stable circuit design.
040800049×128 pages illustrated 1971 £1-00

Electronic Measurement Techniques

D. F. A. Edwards AlnstP, FBIS.

This book provides in one volume practical information on modern techniques in measuring electrical quantities and describes the instruments and various methods which may be used. SI units are used throughout the text which contains much data which will be of great value to the practical engineer as well as the examination student.
0408700904 cased 376 pages illustrated $1971 \mathbf{£ 4} \mathbf{2 0}$
0408700912 limp £2.80

Modern Electronic Materials

J. Watkins BSc, AlnstP, CEng, MIEE.

The development of electronic materials brings together many disciplines including chemistry, physics and electrical engineering. Scientists and engineers in the electronics industry will be able to use this text as a source of information on disciplines other than that in which they received their formal education. 0408701404208 pages illustrated 1971 £3.50

Transistor Audio Amplifiers

P. Tharma

This book considers transistor characteristics and the various circuit possibilities, cost and performance requirements in detail, and is based on work done by the audio application group of the Mullard Central Application Laboratory. Giving a thorough background in the design and development of transistor audio amplifiers, it will be welcomed by electronic engineers, designers and final year degree students.
0592059537422 pages illustrated 1971 £6.00

Measuring
 Oscilloscopes
 Edited by J. F. Golding

The text has been prepared by Staff Engineers of Marconi Instruments Limited. Throughout, emphasis has been laid on methods and principles rather than detailed descriptions of circuits which may be rendered obsolete as new devices are produced. The book provides a comprehensive guide to the principles of operation and applications of the modern oscilloscope, and will be of value to students, technicians and all who have occasion to use this instrument.
0592000575244 pages illustrated 1971 £4-20

Transistor Circuits in Electronics

2nd Edition

Simon S. Haykin BSc(Hons), PhD, DSc, and Robert Barrett BSc, FIEE.
Specially written for students and engineers, this book deals in almost equal proportion with the use of transistors in amplifiers and oscillators on the one hand and with linear and switching circuits on the other. In this second edition a new chapter has been added on monolithic integrated circuits, giving a clear and concise account of the planar process, construction and operation of the unipolar f.e.t. and the M MOS f.e.t.
0592000591 cased 368 pages illustrated 1971 £3-80
£2.50

Semiconductors: Basic Theory and Devices
 Ian Kampel

Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradualiy progresses through diodes, transistors and the more sophisticated devices that are available today.
0408000406272 pages illustrated 1971 £2•50

The Butterworth Group

88 Kingsway, London WC2B 6AB
Showrooms and Trade counter, 4-5 Bell Yard, London WC2

FM TUNER

NELSON-JONES

Approved parts for this outstanding design (W.W. April 1971).
Featuring 0.75μ V sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning $\frac{1}{2}$ V r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.

PHASE LOCKED STEREO DECODER
 PORTUS AND HAYWOOD

Approved kit for this superb decoder (w.W. Sedt. 1970).
Featuring 40dB separation up to 10 kHz . Low distortion. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the
NELSON-JONES TUNER as above.
Complete kit £8.97, p.p. \& ins. 15p plus stabilised P.S.U. kit for decoder £2•95, p.p. \& ins. 18p

INTEGREX LIMITED
 P.O. BOX 45 DERBY DE1 1TW

WW-109 FOR FURTHER DETAILS

NEW LOW PRICES FOR W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED) Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps,
32 resistors, 3 pots, choke, $2 \mathrm{~h} /$ sinks 4 in . $\times 4.6 \mathrm{in}$. $\times 1 \cdot 3 \mathrm{in}$.,
drilled $2 \times$ TO3, fibregiass P.C.B., construction notes.. .. 18.00
2 sets 35 -00

Texas 2N3715	.	..	$\mathbf{2 . 2 5}$	Texas 2N3791	$\mathbf{3 . 5 0}$
Imported 2N3791	.	\ldots	$\mathbf{2 . 7 5}$	Drilled h/sink	$\mathbf{0 . 4 0}$
F/glass P.C.B.	.	..	$\mathbf{0 . 9 5}$	Mains transformer	..	$\mathbf{6 . 0 0}$	

F/glass P.C.B. 0.95 Mains transformer .. 6.00

$\begin{array}{lllll}\text { Power supply; } 42 \mathrm{v.} .+50 \mathrm{v} \text {. transformer, all cpts., h/sink } & \ldots & \mathbf{1 5 - 0 0}\end{array}$
30W BAILEY (SINGLE POWER RAIL)
10 transistors 5.60 Resistors, caps, pot .. 1.30
LINSLEY HOOD CLASS AB
MJ48I, MJ49I, MJE52I, BC182L, BC2I2L, Zener 3.35
16 resistors, 10 capacitators, 2 pots $\mathbf{2 . 2 0}$
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT) \quad. 1.80
4 transistors $\quad \ddot{0} \quad \cdots \quad 1.55$ Resistors, caps, pot
Please state 8Ω or 15Ω for L.H. amps.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} \mathrm{~W} 5 \%$. Low noise carbon film.

SEMICONDUCTORS

POWERTRAN ELECTRONICS
2 KENDALL PLACE • LONDON • W1

COMPUTER QUALITY $\frac{1}{2} \mathrm{in}$. MAGNETIC TAPE CERTIFIED 550 B.P. 1. 800 B.P.1. ON 2,400-ft. REELS. GUARANTEED REPLACEMENT IF FAULTED.
*in. Highest grade $2,400 \mathrm{ft}$.
$\frac{1}{2} \mathrm{in} .10 \frac{1}{2} \mathrm{in}$. dia. spool and cassette
$\frac{1}{2} \mathrm{in} .8 \frac{1}{2} \mathrm{in}$. dia. spool and cassette
1 in . metal $10 \frac{1}{2} \mathrm{in}$. dia. spool and cassette.
1 in . N.A.B. centres $10 \frac{1}{2} \mathrm{in}$. spool only.

 80 COLUMN
delivery from stock . . 3 MONTHS Warranty

- Please write for brochure of our Company's activities

COMPUTER SALES AND SERVICES (EQUIPMENT) LTD. 45-53 Pancras Rd., London, N.W. 1 Tel : 01-278 5571 Telex : 267307

RECORDER AMPLIFIERS

AND INSTRUMENTATION SYSTEMS

150
series DIFFERENTIAL DC AMPLIFIERS
Wide dynamic range-
high common mode rejection
Low noise, low drift performance
Modular or cased presentation also

MINI-AMP FE-251-GA

differential dc pre-amplifier
Compatible modules and cards ensure ease of application and great flexibility.
FYLDE
ELECTRONIC LABORATORIES LIMITED
16 OAKHAM COURT, PRESTON (0772) 57560
WW-085 FOR FURTHER DETALLS

QUALITY PARTS

FOR THE DISCERNING BUILDER

BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30 w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $41^{\prime \prime} \times 23^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only. BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
FULL KITS OF PARTS including Edge Connector Mounting Printed Circuit now available for Linsley Hood $A B$ Design. This unit is fully compatible with our Metalwork Assembly.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.
WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin material.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.
Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

321 Great Western Street, Manchester M14 4AF
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory. industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction. exceptionally low price and built in reliability.
The instrument is of modern appearance. small, light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.
Light source. High intensity Xenon tube mounted in a para-

Flashing rate.
Frequency accuracy. 1-250 flashes/second in 3 ranges. Triggering.

Price: $£ \mathbf{£ 8 . 5 0}$

Edwards Scientific International Ltd.

Knowle Road, Mirfield, Yorkshire. Tel: 0924844242
WW-084 FOR FURTHER DETALS

WW-113 FOR FURTHER DETAILS

useo throughout the worlo, sanwa's experience df 30 years ensures accuracy, relabbility, vehsatluty unsurpasseo tester PERFORMANCE COMES WITH EVERY SANWA

6 Months' Guarantee. Excellent Repair Service.			
Model P.2.B	£4.87	Model K-30tho	£12.60
Model JP-50	$£ 5.87$	Model F-80tro	£13.75
Model U-500N	¢8.00	Model 380.CE	£16.00
Model 360-YTR	¢8.25	Model N -101	£18.50
Model A-303TRD	£11.00	Model 430-ES	£20.00
Model AT-1	£11.37	Model EM-700	£45.00
Model R.1000GB f60.00			

please write for illustrated leaflets of these sanwa meters

47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY, TEL:01-546 4585

SEMI-CONDUCTORS/VALVES bando new a fully guazanited

Abstract

IN914 IN 4001 IN400镸苞 IN4003 IN4004 IN4005 IN 4000 IN 400 IN 401 IN4] IN50

EY51 400

HI-FI EQUIPPMENT SAVE UP TO 33푼 OR MORE SEND S.A.E. FOR. DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

B.S.R. McDONALD

${ }_{310}^{610} \quad 815 \cdot 95$
TEAE BASE AND PERSPEX COVER for above
BSR range 23.97 . Carriage 37 p .
TPDI \&ERIES with plinth and cover and ready
wired.

9850 $G 800$

${ }_{9800 \mathrm{E}}^{6880}$
${ }^{\text {a80 }}$ P. super E
SINCLAIR EQUIPMENT
$\begin{array}{ccccc}\text { MP60 } & £ 18.50 & 510 & £ 20.97 & \begin{array}{c}610 \\ \text { Carriage ã0p }\end{array} \\ \text { extra each item. }\end{array}$
SPECIAL OFFERS
Garrard SP25 Mk 111 fitted Goldring G800 cartridge and wooden plinth with price E35. OUU', rpRICE E22.50 Carr. 50p. GOLDRING GL69/2 fitted Goldring

TELETON SPECIAL OFFER!

CRIOT AM/FM STEREO TUNER AMPLIFIER WITR MATCHING PAIR SA1003 SPEAKER reception AFC, buill-in MPX. Cer/XTAL Input.
Total List $\mathbf{8 5 0} \mathbf{2 5}$. OUR PRICE $\mathbf{2 8 9}$.85. Carr. Also available with Garrard 2025T/C Recond Changer, Plinth, cover and stereo cartridge.
Ready wired. £45. Carr, 1 . Ready wired. £45. Cart. \&1. AMERICAN RECORDING TAPES First grade $\begin{array}{ll}3 \mathrm{in} .225 \mathrm{ft} \text {. L.P. Acetate } & 17 \mathrm{fD} \\ 3 \mathrm{in} .600 \mathrm{ft} \text {. T. P. Mylar } & 50 \mathrm{p}\end{array}$

 guaranteed. Discounts tor $54 i n .2,400 \mathrm{ft}$. T.P. Mylar $81 \cdot 97 \mathrm{l}$
quantities.
qin.

TAPE CASSETTES
Top quality in plastic library boxes. C60-60 min. 42 kp ; 3 for 21.221 C90-90 min. 62tp; 3 for $£ 1 \cdot 80$ Cl20-120 min. 75p; 3 for 22.17\%

Casette Head Cleaner 56p All Post Extra. ECHO HS-606 STEREO
HEADPHONES
(2)

SEND SAE FOR FULL LISTS! DISCOUNTS

10% on $12+$ any one type
15% on $25+$ any one type
Large quantity discounts on application. Postage: Semi Conductors 8p;
Valves 15p.

MULTIWETERS for GUSEY purposel,

POWER RHEOSTATS

ligh quality cerumiconstruction. Windings ambedded in vitreous onamel Heavy duty brum wiper. Continuous rating. Wide range nva nate hole fixing tin. dla, shaits. Bulk quantities available. 5 WATT. 10251001002508 50 WATT. 10/25/50/100/250/500/1000/2500 or 5000 ohms. £1.05. P. \& P. 7 7 p.

HONOR TE.10A. $20 \mathrm{kO} /$ Volt 10/50/100/500/1,000 $0 / 50 \mu \mathrm{~A} / \mathrm{Z} .5 \mathrm{~mA} / 250 \mathrm{~mA} \mathrm{D} . \mathrm{C}$. $0 / 6 \mathrm{~K} / 6$ roeg. ohm. -20 to +222
dB. $10-0,100 \mathrm{mfd} .0 .100-0.1 \mathrm{mfd}$. £ $\ddagger 474$, P. \& P. 15p.

MODEL TE-12. 20,000 O.P. V
WODEL TE-12, 20,000 O.P.
$0 / 0.6 / 6 / 30 / 120 / 600 / 1,200 /$ $0 / 0.6 / 6 / 30 / 120 / 600 / 1,200 /$
$3,000 / 6,000 \mathrm{~V} . \mathrm{D.C.0/6/30/120/}$
$600 / 1,200$. A.C. $0 / 80 \mu \mathrm{~A} / 6 /$ $600 / 1,200$. A.C. $0 / 60 \mu \mathrm{~A} / 6 /$
$60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 6 \mathrm{Meg} . /$ $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 6 \mathrm{Meg}$.
$60 \mathrm{Meg} . \mathrm{O}$.
50 PF.
2 e5. 97 , P. \& P. 174 p .

MODEL 50030,000 O.P.V. with overload, protection,
 $12.5 / 10 / 25 / 100 / 250 / 500 / 1,001$
7. A.C. $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~mA}$ V. A.C. 12 amp. D.C. $0,60 / \mathrm{k} / 6 \mathrm{meg}$ min 60 mes \mathbf{Q}. 88.87%, Post pald

MODEL TE-90 50,000 O.P.V Mirror scale, overioad protection. $0 / 3 / 12 / 60 / 300 / 600 / 1,200 \quad$ ₹. D.C
$0 / 6 / 30 / 120 / 300 / 1,200$ v. D.C. $0 / 6 / 30 / 120 / 300 / 1,200$
$03 / 6 / 60 / 600 \mathrm{MA} . \mathrm{D} . \mathrm{C}$. $16 \mathrm{~K} / 760 \mathrm{~K} / 1.6 / 16 \mathrm{MEG}$ $\frac{16 \mathrm{~K}}{20}$ to +63 dB . $£ 7.50$.
 P. \& P. 15 p.

TMK MODEL TW-20CB OVERLOAD BUTTON. Senai-
 D.C. Volts: 0 -0.5, $2.5,10,50,250$,
1,000 V. A.C. Volts: $0-2.5,10,50$,
$250,1,000$ V. D.C. Currents: 0.0 .05 ,
 $0.5,5,50,500 \mathrm{~mA} .-10 \mathrm{amp}$.
Resistance: $0.5 \mathrm{~K}, \quad 50 \mathrm{~K}, 0-50 \mathrm{~K}$. MEG. Decibels: -20 to +62 db £11.50. P. \& P, 17 \$p.

MODEL AB-100D. $100 \mathrm{~K} \Omega /$ Folt 5 in., mirror scale. Bullt-in meter
protection $0 / 3 / 12 / 60 / 120 / 300 / 600$ protection $0 / 3 / 12 / 60 / 120 / 300 / 600$ 1,200 v. D.C.
$0 / 6 / 30120 / 300 / 600$ F. A.C. $0 / 10 \mu \Delta 76 / 60 / 30 \mathrm{MAA} . \mathrm{Amp}^{2}$
$0 / 2 \mathrm{~K} / 20 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{M} .-20$ to
$17 \mathrm{~dB} . \& 12 \cdot 50$, P. \& P .17 p

TMK LAB TESTER

$100,500 \mathrm{~mA}, 2.5,10 \mathrm{amp}$. Besletanco: $1 \mathrm{~K}, 10 \mathrm{~K}$ Declbels: -10 to +49 carrying handle. Size $7 \mathrm{ft} \times 6 \mathrm{db} \times 3 \mathrm{Plartle}$ Case with
P. \& P. 25 p .
 SKYWOOD SW-500
$50 \mathrm{~K} Q / V o l t . ~ M i r r o r g c t e r ~$ 50 K /Volt. Mirror scale
D.C. Doits: $0.6 / 3 / 12 / 301$
$300 / 600$ 300. 600 . A.C.
$3 / 30 / 300 / 600$. D.C. cur rent: $20 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{cu}$ Resintance: $10 \mathrm{~K} / 100 \mathrm{~K} / \mathrm{l}$
Meg. Decibels: -20 to
$+\quad 57 \mathrm{~dB}$.

UNR 30 RECEIVER
4 Band covering $550 \mathrm{kc} /$. . $30 \mathrm{mc} / \mathrm{s}$. B.F.O. Built n speaker $220 / 240 \mathrm{y}$ AC. B
tions. $\mathbf{\& 1 5} 75$, Carr. 37 p .

WS62 TRANSCEIVERS
Largequantity available for EXPORT Excellent condition. Enquiries invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER
 Fariable BFO for 88B, Built in Speaker. Band spread, Sensitivity Control. 220/240v AC or $12 t^{\circ} \times 4 t^{*} \times 7^{*}$. Brand new with instructions.

AFAYETTE HA-600 RECEIVER

ariable B.F.O., noise llmiter, 8 Meter Band pread. RF Gsin. $15^{\circ} \times 94^{\circ} \times 84^{\circ} .18 \mathrm{lb} .220 / 240 \mathrm{v}$ AC or 12v DC. Brand new with instructions. \&45

AFAYETTE HA 800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

detector, variable BFO, g Met
 18 lb . Brand new with instructions. \&55. 50 . FULL RANGE TRIOEQUIPMENT EDDYSTONE V.H.F. RECEIVERS 770R. 19-165 Mc/s. excelient condition. 5150 .

SOLID STATE VARIABLE A.C.

AUTO TRANSFORMERS
$115 / 230 \mathrm{v}$. Step up or gtep down. Fully ehrouded.

YOLTAGE STABILISER TRANS FOLTAGE STABILISER TRANS FORMERS, $180-260 \mathrm{v}$. input. Output 230v.
Avallable 150 w or 225 w . $\mathbf{2 1 2} 50$, Carr. 25 p .
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
Excellent quality - Low price - Immedlate delivery

Excellent qua MODEL 8.260	MODEL \&-280 B Panel Mounting	
General Purpose	1 Amp .. ${ }^{\text {a }}$	
Bench Mounting	2.5 Amp .. ${ }^{\text {e6.62t }}$	
1 Amp .. 25.50	Please add postage	
2.5 Amp . ${ }^{\text {ce }}$	ALL MODELS	
	INPUT 230 VOLTS,	
	OUTPUT VARLABLE ${ }^{\text {50,60 }}$ CYCLES	
12 Amp (..	OUTPUT VARLABLE 0 (260	11
20 Amp .. $237 \% 00$	special discounts for quantity	

シールニールーム

LOW COST ELECTRONIC \＆SCIENTIFIC

BRAND NEW
BRAND NEW AUTOMATIC STRIP

by RUSTRAK of America．This recorder indicates the magnitude of applied currents or voltages by a continuous distortion－free line on pressure sensitive paper．Chart width $2_{\frac{1}{8}}^{8}$ in．Chart speed $\frac{1}{2} \mathrm{in}$ ．per min．Moving coil movement，scale calibrated 0－100 microamps Int．resistance 4,600 ohnis．Chart drive motor 12v．D．C．C／W handbook．Price £40．P．\＆P 50 p ．

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for lnstrument chart drives．Extremely quiet，useful in areat relative high inertia loads to be driven up to 6 －oz／in．Available in he following speeds and ranged： 240 V 50 Hz 11 r．p．m．， $1 / 5 \mathrm{r} . \mathrm{p} . \mathrm{m}$ ．，
$1 / 12$ r．p．m．， $1 / 20$ r．p．m．， $1 / 60$ r．p．m． 120 V 50 $\mathrm{Hz} 1,6$ r．p．m．， $1 / 15$ r．p．m．， $1 / 16$ r．p．m．， $1 / 24$ r．p．m．m． $1 / 3$ r．p．m．， $1 / 240$ r．p．．．．， $1 / 300$
r．p．m．， $1 / 720$ r．p．m．， 1 r．p．m．M． 1.10 lnduction Motor． 120 V 50 Hz r．p．m．， $1 / 720$ r．p．m．，${ }^{1}$ r．p．m．M．P． 10
20 r．p．m．\＆1． 50 P．\＆P．inclusive
CLUTCH MOTORS
（in 50 Hz ／12 r．p．m．i． $1 / 6$ r．p．m．， $1 / 3$ r．p．m． $120 \mathrm{~V} 50 \mathrm{~Hz} 1 / 12$

WELDING POWER SUPPLY Hughes Model Mow 550．Constant voltage．Weld voltage and duration controls

NEW LOW INERTIA INTEGRATING MOTORS Electro．Methoda Model． 901 and 906 PL．Permanent magnet
D．O．Motor．High sensitivity．Ideal mechanisms，light loads driving mechanical counters performing integration，or as amall power generators．Will operate direct］y meters．Start ing voltage（no load） 15 mv at 0.375 mA．Full load speed 1845 r．p．m．（approx．）．Moment of Inertia of Amiature
$1.8 \mathrm{gr} \mathrm{~cm} /$.cm ．Weight of Motor 300 gme （approx．）．
SPLIT－FIELD D．C．SERVO MOTOR
 £13．50．P ．\＆P ．included

NEW D．C．STEPPING MOTOR
＂Blo－syn．＂14V 0．53A 50 oz in toriule．
Biriunk Synchronous Motor．Stepping duty 200 steps $/$ shatt
revolution．Each step 1.8 ．

E．H．T．GENERATOR，BRAND NEW D．C
CONVERTER MULLARD TYPE 1049
 1．Sin．，W． 24 in．，H． 1 in．$£ 5.50$ ．P．\＆P．included．

MIDGET POWER RELAY Type Mk I（OMRON）
230 V to Hz Coil， 1 pole double throw．Unised．Faulty plating 5 for $£ 1 \cdot 50$ ．P．\＆P．included．
SYNCHRONOUS MOTORS
Model $\$ 71$ r．p．h．and $1 / 60$ r．p．h．Self starting complete with gearin
shaft it in．dia．it in．long， $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$ ．New coudition Equipment．\＆1．50．P．\＆P．Lneluded．

D．C．TACHOGENERATOR Type $9 \mathrm{c} / 10616 \mathrm{v}$ ．at 1000 r．p．m．Drive shaft dia． $3 / 16$ in．， $3 / 8$ in

R．F．ATTENUATOR MARCONI TF 1073A

$\mathrm{DC}-150 \mathrm{MHz} 1 \mathrm{~dB}$ steps 75 Ohms．Double Screened construction
Tested and in VG condition． 825 ．

ACTUATOR

ACCELEROMETERS

Model LA 23 C Potentiometric + or -10 G operating Voltage 30 V Nominal resistance 17．5K and Model LA $23 \mathrm{C}+$ or -100 G 34 V,
Re1 20 K ．Price $\mathrm{Ez6}$ ． P ．\＆P． $5 /$ ．

TYPE SE 55／A Range＋or－ 1 C £26．P．\＆P．25p
Supplied c／w technical leaflet．Weight 14.8 grammes．2BA atud mounting．$£ 3.75 .0$. P．
Many other types in stock

DIGITAL VOLTMETER DYNAMCO 2010 COMPLETELY OVERHAULED CALIBRATION CERTIFICATE EXCELLENT CONDITION GUARANTEED C／W HANDBOOK Scale：109999．D．C．Accuracy： 0.001% ．FSD． Range： 10 micro V－1－1 kV．I／P Z greater than $25,000 \mathrm{M}$ olim．C．M．R．D．C． 160 dB $50 \mathrm{~Hz} .130 \mathrm{~dB} .0 / \mathrm{P}$ ．Parallel B．C．D．Induc－ tive potentiometric systen for excellent stability．£1000．（New Price over £2000．）

HONEYWELLINCREMENTAL DIGITAL RECORDER

MODEL 6200

Records random or synchronous digital （binary）data on 7－track $\frac{t}{2}$ inch tape in steps of 0.005 inch．Packing density 200 hits／
inch．Offered in first class condition．This recorder has had very little use．Price on application．

BRAND NEW ELECTRO
MAGNETIC COUNTER

EICHNER 8 HOLE PUNCH
No motor drive required．Solenoid operated equipment using $48 v$
 LOW Londition．SPED 7 HOLE TAPE PUNCH 60 characters per second ty well－known manufacturer．
TELETYPE 8 HOLE PAPER PUNCH BRPEII $£ 260$ ． Also available 5 hole punch BRPER as above．This model bs interchangeable heads．Complete with ppooler．Price £＂5．
$5 / 7$ HOLE OPTICAL READER BY FERRANTI 5／7 HOLE OPTICAL
（I88）SIGNAL GENERATOR CT 480 SANDERS．Range 7 KHz 12 KHz ． $0 / \mathrm{p}$ ． $0- \pm 50 \mathrm{~V}$ ．Attenuation range -10 to $\begin{array}{r}+100 \mathrm{~dB} \\ \text { Price } \\ \mathbf{~} 85\end{array}$

TRANSDUCER OSCILLATOR－AMPLIFIER－DEMODULATOR．An． encapsulated unit for matching with S．E．Transducers．Suitable
where space or adverse envionmental conditions prevail．Supplied with a matching transducer a typical of is is $\pm 3 \mathrm{~V}$ into 50 KO hms ． Supply voltage 12v．D．C．Range of transducers available $0-50:$
$0-750: 0-1000: 0-4000$ psi．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Prlee $\mathbf{8 6 5}$
TRANSDUCER New Resistive Bordon Tube Principle pressure Transdncer by K．D．Iustrument．Model TD $21600-2000$ psi． TRAANSDUCER NEW EX－GOVERNMENT DISPLACEMENT BONDED RESISTANCE STRAIN GAUGES．Range \pm mechanical dis－ placement equivalent to 0.3% resistive change． $3.5+3.5 \mathrm{KOhms}$ ．
Model IT－2－31－5．

OSCCLLATOR．High discrimination，by Marconl T．F．1168．This instrunient suitabie for H．F．Communication．Due to its high
discrimination makes it suitable for erystal fiter response in Tx and $\mathbf{R x}$ drive unita．Frequency range $90-110 \mathrm{KHz}$ ． $2 \mathrm{~Hz} \mathrm{discrimina-}$ tion．Crytal and Standardised centre frequency．Calibration
accuracy $\pm 1 \%$ Ref．T．5．．．．．．．．．．．．．．．．．．．．．．．．．．．．．ice $£ 135$

RECORDERS 4 PEN OSCLLLOGRAPHS SOUTHERN INSTRU－ MENTS M942c． 4 Channel fitted with 4 speed gear boxes giving 2 PEN OSCLLLOGRAPE MR450 as per \＆Pen．Ref．I．Price $£ 150$

E．M．I

Portable L．F．Tape Recorder．Ex－service equipment consisting of Three Unit housed in transit casea（Tape Deck，Ampliter，P．S．U．）． In．track speed $30 \mathrm{in} ., 15$ in．， 7 in ．and $t \mathrm{in}$ ．min．Price $£ \% 5$.
Many control facilities．This is a good quality recorder．

the new Englefield range

Better looking-obviously ... Better performing, definitely ... and certainly lower priced compared with other top line high fidelity equipment. Yet with all this, the new
Englefield 840 range has still further plusfeatures. Only with the 840 system can you corporate the tuner within the amplifier itself, enabling you to convert it to a nglefield Add-in Press-tune Steres F. .ink can also be used with other amplifiers so desired. See and hear the new Englefield 840 range at your hi-fi stockist NOW Englefield 840 equipment is guaranteed for 5 years.
840A amplifier design features
Swing-up lid enables all input and output connections to be reached instantly and asily from interior of cabinet. Audio connections are via DIN sockets (plugs supplied). Combined speaker muting switch and headphone socket on front panel. Silicon circuitry. Rotary controls fitted with dual wipers and lubricated tracks for long life and silent action. 18 gauge plated steel chassis. Unconditionally stable. For shelf or cabinet mounting

840T stereo F.M. tuner design features
pre-tunable push button stages for instant programme selection. Switchable A.F.C. Automatic stereo reception. Sensitivity better than one micro-volt. Incorporates.
dual gate FET and I.C. circuitry, back to back varactor diodes and ceramic filters. Can be used separately or inserted in the 840 cabiriet. 75Ω and 300Ω balanced aerial sockets.

peak sound
PEAK SOUND (HARROW) LTD., 32 ST. JUDES ROAD,

Specifications
THE AMPLIFIER
 Tape: Radio 8omV: Microphone 5 mV .

 watts R.M.S.S. into o ohms. perch. driven tugether.
Controis-Volume: Bass $(\pm 16 \mathrm{~dB}$ at 40 Hz): Treble ($\pm 14 \mathrm{~dB}$ at TOKHz): :Balance. Push -butron for P. U., Radio, Tape, Mic., and mono/stereo: on- off. filter and (disguised) headphone socket/speaker muting switch.

 permititing cabinent to stand flush to wall; also space to toke
Englefield tunerif required.

ADD-IN PRESS-TUNE STEREO F.M LINK
With four tunable press button controlled stages each $88-108$
 Sensitivity -1 micro-volt for $30 d$ d. quieting.
Sub-carrererejection $-48 d B$ at 19 KHz .

Aerial-Sockets for 75 ohm and 300 ohns, balanced.
Thning meter and Indicating beacon automatic stereo reception
on the front panel.
Details of Englefie!d 840 range please, to

C \& G Telecommunication Techns' Certificate C \& G Electronic Servicing Certificate R.T.E.B. Radio/T.V. Servicing Certificate Radio Amateurs' Examination General Certificate of Education, etc.
Which one would qualify you for higher pay?
International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the
Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential
for success in electronics. for success in electronics.
And the result? You'll soon be qualified in your field of electronics,
and in a position to choose your opportunity. and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

LASKY'S PRICE £22.50

LASKY'S PRICE £9.95
EXCLUSIVE DIGITAL CLOCK MECHANISM

 : Shock and vibation prom

LASKY'S PRICE £6.95.
 LASKY'S TM1 METER 1000 SI.

 LASKY'S PRICE $£ 1.98 P_{8} P 1$
'ASKY'S TM5 METER 5000 ohms/V
a82

ENGLAND'S LEADING ELECTRONIC CENTRES

HENELEC SELF-POWERED PRE-AMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted PUSH-BUTTON SELECTION, $\pm 20 \mathrm{~dB}$. Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY. Specifically designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER FINISH, Mains operated. Supplied with all plugs etc. ADJUSTABLE OUTPUT UP TO I VOLT. Simple mounting.
ic stereo

* FET9/4. Mono with built-in mic. mixer. Accepts any ceramic or FET9/4. Mono with buit-in mic. mixer. Accepts ony ceramic or
crystal cartridge. Plus turer, tape, etc. Price $£ 12.50$ p.p. 20 p. \star FETI54 STEREO

Magnet
Price $£ 16 \cdot 50$ p.p. 25 \star I.C. STEREO

All facilities plus headphone socket without amplifiers. Uses IC's,
FET's etc.
SIMPLICITY TO MOUNT-EASYTOUSE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

At full power 0.3% distortion

LOOK AT THE SPECIFICATIONS!

25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

- Rise time 2μ sec. - Short circuit proof plus limiting cct.

PA 2510 transistor all silicon differential input 400 mV sensitivity. 25 watts Rms into 8 ohms. Supplied with edge connector harness PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size

MU 442. Power supply for one or two PA 25 or one PA 50. PA 25 £7.50. p.p. 15p. PA $50 € 9.50$. p.p. I5p. M $\cup 442 € 6.00$ p.p. 25p. All units. No soldering-just edge connectors and plugs.

TEST EQUIPMENT

For Educational, Professional and Iome Constructors

metios $50 \mathrm{k} /$ volt multi Price $£ 8.50$
Leather case $\mathrm{EI} \cdot 42$
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{volt}$
Price ${ }^{\text {E3 }}$
Case 62p
$50030 \mathrm{k} / \mathrm{volt}$ multi-mete Price $£ 8-85 \quad$ P.p.
Leather case $£ 1.50$

THL 33 2k/volt. Price $£ 4 \cdot 12$ P. P.
Leather case $£ 1.15$ TE65 Valve voltmete (illus.) £17.50 p.p. 40 p VM5I Transistorised AF/RF millivoltmeter. TE22 Audio Generator Price $\mathbf{£} 17.00$ p.p. 35 p.

TE20D RF generator | (illus.). |
| :--- |
| p.p. 35 p |
| E $15-00$ | TE22D Matching audio

 TEIS Grid dip meter. Price $£ 12.50$ p.p. 20 p

TO3 Scope (illus.) $3^{\prime \prime}$ zube. $1.5 \mathrm{Mc} / \mathrm{s}$.
Price $€ 37.50$ p.p. 50 p *CI-5 Scope. $3^{\prime \prime}$ tube $10 \mathrm{Mc} / \mathrm{s} \mathrm{PB}$
*CI-16 Double beam
scope. Price $£ 87.00$ P.p. 50 p
*Leaflet
No. 19 on equest.

RP40 (Illus.) Vari
 amps. Pri
p.p. 47 p
RP24 6-12v. $+3 v$ $0-2$ amps. Price
$E 21.50$ p.p. 47 p

RPI24 Variable
-24v. I amp. Price € 13.50 p.p. 37 p

Complete range in stock. 38,65 and 85 types plus large range Edge rypes also $240^{\circ}-250^{\circ}$ types. Latest Catalogue is a must for complete

BUILD THIS FM TUNER also Decoder, tuning meter \& power supply
 5 MULLARD TRANSISTORS $300 \mathrm{ke} / \mathrm{s}$ BAND-
WIDTH. PRINTED CIRCUIT, HIGH WIDTH. PRINTED CIRCUIT, HIGH
FIDELITY REPRODUCTION. MONO AND FIDELITY REPRODUC
STEREO. A pOpular quality and reception of mono and stereo.
There is no doubt abour it-VHF FM gives the REAL sound. All par
Cabinet 100 p. Decoder Kit 45.97 , Tuning Meter $\mathbf{~ 1} \cdot 75$. Mains unit (optional) Model Decoder P\$i200 E2.62

plus a complete range of individual units our new Hi-Fi Store. LOW CASH OR CREDIT/HP TERMS Credit terms from $£ 30$ purchase-callers only).
FREE-Stock Lists Nos. 16/17 on request. BEST VALUE IN U.K.

HENRY'S LATEST catalogue

350 pages

COMPONENTS TEST GEAR EQUIPMENT, MODULES
*SPECIAL OFFERS, Etc., Etc. Everything for the constructor. Complete with 50 p value discount vouchers for use with
purchase. Price 50p Post Free. WHY purchase. Price 50p Post F
NOT SEND AWAY TODAY?
FREE 8-page Transistor, IC, Diode lists FREE 16-page Organs to Build brochure FREE Decks and Hi Fi Stock Lists Nos. FREE PA, Disco and Lighting List No. 18 FREE Quotations for all Electronics-

TRANSISTOR AMPLIFIERS

NEW RANGES NOW IN STOCK
(LeafletsRef. No.6\&8)
Post, etc. 20p

SINCLAIR PROJECT 60 PACKAGE DEALS

 OPTIONAL POWER SUPPLIES. Post etc. 20p P. 500 (One or Two) for 104, $304 \ldots . \quad . \quad \mathbf{~} \mathbf{£ 2 . 6 2}$ PS. 20 (One or Two) for PA7 \quad MPA $\begin{aligned} & \text { E3.47 }\end{aligned}$ $\begin{array}{llll}\text { PZ5 for Z30 } & \text { O } \\ \text { PZ8 for } Z 50 & \cdots & £ 5.97 & \text { or PZ6 for Z } \\ \text { Z } & \text { Transformer }\end{array}$ $\begin{array}{llll}\text { Pll for } 608 & \cdots & \mathbf{E 5 . 9 7} & \text { Transformer } \\ \text { P2.87 } & \text { P15 for } 410\end{array}$ MU442 for 1 or 2 PA25 or 1 only PA50 $£ 6.97$
± 2.25 $2 \times Z 30$ a mplifier, stereo 60 pre-amp, PZ5 power supply, $£ 19$. Carr. 40 p. Or with PZ6 power supply, $£ 21$. Carr. 40 p. $2 \times Z 50$ amplifier, stereo 60 pre-amplifier PZ8 power supply, $\mathbf{2 1} .50$. Carr. 40 p. Transformer for PZB, $£ 2 \cdot 25$ extra. Any of the above
with Active Filter unit add $£ 4.87$ or with pair Q16 speakers with Active filter unit add $£ 4.87$ or with
add $£ 16$. Also NEW FM TUNER, $£ 21$.

Range $0-10 \mathrm{mr}$

FOR MEASUREMENT OF RADIO ACTIVITY Supplied complete with instructions, haversack, cables and probe. List price 570 . Our price, new, tested, complete with 4 cell H.T. Eliminator. Plug in mains units $£ 3.75$ Dosimeters 0-50R 62p; 0-I50R 50p;

Electronic Organs.
High Fidelity Sales \&
Demonstrations Centre
354 EDGWARE ROAD,
LONDON, W.2.
Tel: 01-402 5854

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED

MOTOROLA We can now offer the whole vast range of Motorola I.C.s. at industrial distirbutor prices. Pease send 5 p for price firt (34 pages). Examples						
			Data Sheets $\mathbf{2 0} \mathbf{0} \mathbf{1 2 ¢}$ extra.			
MC724P		0.68				
$\mathrm{MC7}^{\text {M }}$ 90P		${ }_{2}^{1.24}$				
Fairchild (RTL)						
		2	1	2		
${ }_{\text {L914 }}^{\text {Len0 }}$		0.40 0.40	0.37 0.37	0.35 0.35		
L223		0.40	0.37	0.35		
Linesar						
			6-1	${ }^{12-24}$		
UA702A	ros	$2 \cdot 80$	8.70	8.75		
UA702C	${ }_{\text {TOS }}^{\text {TO5 }}$	${ }^{0.77}$	0.75	- $\begin{aligned} & 0.72 \\ & 1.25\end{aligned}$		
UA709C	то5	1.25	1.17	1.12		
UA709C	${ }^{\text {DIL }}$	0.85	0.55	0.50		
UA709C	${ }^{\text {Tost }}$	0.55	0.58			
UAT10C	т ${ }^{105}$	${ }_{0}$	${ }_{0.85}$	${ }_{0}^{1.80}$		
UA716	${ }^{\text {TO5 }}$	1.87	1.75	1.70		
UA723C	${ }^{\text {T05 }}$	1.62	1.50	${ }_{1}^{1.42}$		
UA730C	${ }_{7} \mathbf{T O 5}$	1.80	1.45	1.37		
U4741C	${ }^{\text {TOS }}$	0.87	0.80	0.20		
UA7410	DIL	0.87	0.80	0.70		
TTL Loarss						
		1.24	25-99	00-4		
$\begin{array}{llll}\text { 8N7400 } & 0.25 & 0.80 & 0.18 \\ 887401\end{array}$						
$\begin{array}{llll}\text { 8N } 402 & 0.25 & 0.20 & 0.18 \\ 8 \mathrm{N7403} & 0.25 & 0.20 & 0.18\end{array}$						
$\begin{array}{llll}\text { SN7404 } & 0.25 & 0.29 & 0.18 \\ \text { SN7405 } & 0.25 & 0.20 & 0.18\end{array}$						
$\begin{array}{llll}\text { 8N77406 } & 0.80 & 0.75 & 0.70\end{array}$						
$\begin{array}{llll}\text { 9N7408 } & 0.25 & 0.20 & 0.18\end{array}$						
-		0.25 0.25	0.20 0.80	($\begin{aligned} & 0.18 \\ & 0.18\end{aligned}$		

8 Plessey ${ }^{20} 12$ 12
16 Pin Dual-in-Line I.C. Holders, $20-32$
100 or more gates may be mixed to qualify for the $100+$

Data Sheets all
4/923 and
MULLARD

FJH101	0.87
FJH121	0.87
FJH141	0.87
FJH161	0.874
FJH171	0.91
FJH221	0.87 +
FJ.J101	1.37
FJJ121	1.87 t
FJJ14t	3.124
FJJ191	1.87
FJJ251	$3 \cdot 124$
FJY101	0.80
MULLARD	DTL 4
FCH101	0.87 t
FCH 121	1.05
FCH201	1-32!
FCH231	1.50
FCJ101	$1.62{ }_{4}$
FCJ111	1.55
FCT201	1.80
FCJ211	2.76
FCK101	4.37 \dagger
FCY 101	1.05
PLessex	t
SL403A	2.12t
3 watt amp.	
slatel	1.45
sGs	
TAA661B	1.92%

A. MARSHALL \& SON LTD.

See our Ad. on opposite page for Transistors, Diodes, Passive Components and P. \& P. charges. Many more types in stock and arriving daily. PLEASE ENQUIRE.

CHOICE OF 1000 'S OF ITEMS LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

$\begin{array}{llllllll}\text { SILICON }^{\text {PIV }} & 50 & \text { RECTIPIERS }_{100} & & 200 \\ & 400 & 600 & 800 & 1000 & 1200 & 1400\end{array}$
 6A
10 A
17 A
15 A

DIODES AND RECTIFIERS

IN914	0.07	AAZI7	0.12	BAY38	0.25	OAS	0.171
IN916	0.07	BA100	0.15	BYICO	0.17	OATO	0.221
IN4007	0.22	BA102	0.221	BY103	0.22	OA9	0.10
1544	0.10 0.15	BAIto	0.321	BYı22	0.371	OA47	0.07 \$
15113 15120	0.15 0.15	BAll 5	0.071	BY\|24	0.15	OA70	0.07
15121	0.171	BAI41	0.321	BYI26	0.15	OA73	0.10
15130	$0 \cdot 12$	BA142	0.321	BY127	0.171	OA79	0.09
15131	0.12 t	BAI44	0.121	BY164	0.57	OABI	0.07
15132	0.15	BA145	0.20	BYX10	0.221	OAB5	0.07
15940	0.071	BA154	0.121	BYZ10	0.35	OA90	0.07
AAl19	$0 \cdot 10$	BAX13	0.12	BYZ11	0.321	OA91	0.07
AA129	0.10	BAX16	0.121	BYZ12	0.10	OA95	0.07
AAZ 13	0.10	BAYIB	0.171	BYZ13	0.25	OA200	0.10
AAZ15	0.121	BAY3I	0.071	FST3/4	0.22	o A202	0.10

| MAINS TRANSFORMERS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MAINS TRANS |

YRISTORS					
PlV	50	100	200	300	400
1 A	0.25	0.271	0.371	0.40	$0 \cdot 47$
4 A	--	0.471	0.55	0.57	0.77 t
5A		0.55	0.65		0.75
TIC47 0.6 amp .200 PIV 0.55. Also 12 amp 100 PIV $0.75 ; 2 \mathrm{~N} 3525$ at $\mathrm{fl} \cdot 121$.					

| |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |

CAPACITORS. Polyester, ceramics, Polystyrene, silver mica,
tantalum, trimmerz erc.
Electrolytica
$\begin{array}{cc}\text { MFD. } & V_{1} \\ 1 . & 18 \\ 1.6 & 25 \\ 2 . & 350 \\ 2.5 & 16 \\ 4 & 10 \\ 4 & 40 \\ 4 & 350 \\ 5 & 18 \\ 5 & 50 \\ 6.4 & 6.4 \\ 8 & 40 \\ 8 & 450 \\ 10 & 12 \\ 10 & 25 \\ 12.5 & 25 \\ 16 & 10 \\ 16 & 15 \\ 16 & 450 \\ 25 & 6.4 \\ 25 & 10 \\ 25 & 25\end{array}$
$\quad f$
0.07
0.07
0.10
0.07
0.07
0.07
0.11
0.07
0.07
0.07
0.07
0.15
0.07
0.07
0.07
0.07
0.07
0.16
0.07
0.07
0.07
MFD
25
32
32
40
50
50
50
64
80
80
100
100
100
100
125
200
250
250
320
V_{50}
40
450
16
12
25
50
25
16
25
6.
12
25
10
10
10
25
50
10
1
0.07
$0.07 t$
$0.07 t$
0.27
$0.07 t$
0.07
0.07
0.10
0.07
0.07
0.07
0.07
0.07
0.10
0.12
0.07
0.07
0.14
0

0.
0.14
0.121
0.19
0.24
0.17
0.2
0.2
0.3
0.42
0.62
0.25
0.4
0.67
0.7
0.5
2.31
2.25
0.62
0.97

THERMISTORS (MULLARD)

Telex 21492 A. MARSHALL \& SON LTD
Tel: 01-452 0161/2/3
28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
SENDI/-(5np) FOR NEW COMPREMENSIVE
SEMICONDUCTORPRICELIST. (24 Dages)

MOTORS

AMPEX 75 is an ultra-precision MOTOR. This is an ultra-precision tape motor AG20 portable recorder. Torque | ASOGM/CM. Stall load at 500 ma . |
| :--- |
| Draws 60 ma on run 600 rpm |
| 0 | Draws 60 ma on run. $600 \mathrm{rpm} \pm 5 \%$

speed adjustment, internal AF/RF suppression. $1^{* \prime}$ dia. $X 1^{*}$ spindle, motor $3^{\prime \prime}$ dia. $\times 1.5^{\prime \prime}$. Original cost
£ 16.50 . Our price $£ 4.25$. P. \& P. 25p. Large quantity available (special quotations). M
able 75 each.
NEW HYSTERESIS MOTORS BY WALTER JONES. Type $14050 / 12$, $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s} 1500 \mathrm{rpm}$ cont.
 Our price E6.50 each. Carriage Paid.
VACTRICPRECISION D.C.MOTOR. Type XO7P 19. 10 v . D.C. $0.66 \mathrm{amp} .8000 \mathrm{rpm} .30 \mathrm{gm} / \mathrm{cm}$. Size 7 . Original makers packing. Limited supply. $£ 3.50$ Carriage Paid. MYCALEX MAINS. Shaded pole, 1425 rpm. ${ }^{\frac{3}{6}}$ spindte. 2 for El-25. Carriage Paid.
MAINS INDUCTION MOTOR. Open frame, $\frac{1}{1 / 3}$ " spindle, weight $\frac{3}{4} \mathrm{lb}$. Powerful. 88p each. P. \& P. 12p
E.M.I. PROFESSIONAL TAPE MOTOR. $110 / 240 \mathrm{v}$. E.M.I. PROFESSIONAL TAPE MOTOR. $110 / 240 \mathrm{v}$.
50 Hz .3000 rpm , reversible, silent running. $4 t^{* \prime}$ dia. x
 ERECISION AND SERYO
PRECISION AND SERVO POTENTIOMETERS PRECISION LINE (USA). Size $15.300 \Omega \pm 5 \%$ LIN. Continuous track plat. wipers set at 180°. $\mathbf{E 2} \cdot 25$ each.
Carriage Paid. PENNY \& GILES. Size 15.500 Q. Type Q26201-72/1. Continuous track. E2.50 each. Carriage Paid.
BECKMAN. Type AS.506, 10 turn. Tol. $\pm 1 \%$. LIN Tol. BECKMAN. Type AS. 506,10 turn. Tol. $\pm 1 \%$. LIN Tol.
$\pm .07 \% .40 \mathrm{k}$. Long spindle. $62 \cdot 00$ each. Carriage Paid. S.T.C. Type B $330 \mathrm{CT} .2500 \Omega$. $2 \frac{1}{2}{ }^{\prime \prime}$ dia. $\times 1 \frac{1}{2}^{\prime \prime}$. Completely copped encased. 11.25 each. Carriage paid

"ADVANCE VOLSTAT" CONSTANT VOLTAGE TRANSFORMER. Input 190 to 260v. Output 230 R.M.S. at 100 Watts. Supplied with matching Capacitor. $\mathbf{6 2} 00$ plus 25 P.P. C.
CRY $75^{\circ} \mathrm{C}$ L DC, 75° C. Takes 21^{2} min. crystals. Similar to above 12 v .
only by SNELGROV (Toronto), $\mathrm{EI} \cdot 50$ each, P \& P . 15 p BERCO. Rotary rheostat. Type L25. 100 Q. 25 watt. $1 \frac{x^{n}}{2}$ dia. $\frac{1^{\prime \prime}}{4}$ spindle. 50 p each. 13 p Carriage.
PAINTON BOURNS TRIMPOTS. $1 \mathrm{k}, 2 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, 10k, 20k, 50k, 500k. Other Trimmer pots in stock.
RIL 10k. MORGANITE Ik. MEC 200Ω (tubular) 50Ω. Any 3 for $\notin 1 \cdot 10$ carr. paid.
"TEXAS" Unmarked, Tested, TO5 Geranium generalpurpose transistors. 24 for Eli-00 P. \& P. 13p. Large quanticy avalable.
CINEMA ENGINEERING Precision "Standard" Wire Vound Resistors. Extremely high stability over
very wide temperature range. 1/6 Watt $0.25 \% ~ 30 \mathrm{~K}$, very wide temperature range. $1 / 6$ Watt $0.25 \% 30 \mathrm{~K}$,
75 K 30 p ea. $1 / 3 \mathrm{Watt} 0.05 \%$ K, $10.02 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}$, 75 K 30 p ea. $1 / 3 \mathrm{Watt} 0.05 \% 9 \mathrm{~K}, 10.02 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}$,
60 p ea. $0.1 \% 100 \mathrm{~K}, 250 \mathrm{~K}, 625 \mathrm{~K}, 60 \mathrm{p}$ ea. $0.25 \% 47 \mathrm{~K}$,
 60 p ea. $0.5 \%, 10 \mathrm{~K}, 15 \mathrm{~K}, 50 \mathrm{~K}, 90 \mathrm{~K}, 375 \mathrm{~K}, 450 \mathrm{~K}, 60 \mathrm{p}$ ea.
$3 \mathrm{~K}, 4 \mathrm{~K}, 5 \mathrm{~K}$, $15.33 \mathrm{~K}, 500 \mathrm{~K}, 800 \mathrm{~K}, 1$ meg., 60 p ea. $0.5 \% 81 \mathrm{~K}, 2.2$ meg, 60 p ea. $0.1 \% 20 \mathrm{~K}, 1.35 \mathrm{meg}, 1.5 \mathrm{meg}, 2 \mathrm{meg}, 3.3 \mathrm{meg}$,
60 p ea. $1 \mathrm{Watt} 0.05 \% 0.24959 \mathrm{~K} . \quad$ \& 1.00 ea. $0.1 \% 3.24 \mathrm{~K}$ $1 \mathrm{meg}, 3 \mathrm{meg}, 4 \mathrm{meg}, 3.75 \mathrm{meg}, ~ \in 1.00 \mathrm{ea} 1 \% 2.4 meg,$. $2.5 \mathrm{meg}, 3.6 \mathrm{meg}, \epsilon 1.00 \mathrm{ea} .2 \mathrm{Watt} 0.05 \% 5 \mathrm{meg}, ~ \subset 1.50 \mathrm{ea}$ $0.1 \% 5.714 \mathrm{meg}, 10 \mathrm{meg}, ~ \in 1.50 \mathrm{ea} . \pm 0.1 \% 2 \mathrm{meg}, 2 \mathrm{KM}$,
$\epsilon I .50 \mathrm{ea} .0 .5 \% 5.9 \mathrm{meg}, 10 \mathrm{meg}, ~ \in 1.50 \mathrm{ea} .1 \% 2 \mathrm{~K},. 5 \mathrm{~K}$,

RIL Type $2 \pm 10 \% 560 \Omega 13$ p each.
ALMA $\pm 0.05 \% 50 \mathrm{~K} 75$ p each.
ALMA $\pm 0.1 \% 141.46 \mathrm{~K} 50 \mathrm{p}$ eac
SHALLCROSS $\pm 0.5 \% 3400 \Omega 30 p$ each
ELECTRO-THERMAL PRECISTOR $\pm 0.1 \% \quad 2.4 \mathrm{~K}$ Price 50p.

"DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb. pulf.
$3^{\prime \prime}$ travel which can be increased to ${ }^{\prime \prime}$ by removing captive-end-plate. Overall size removing captive-end-plate. $2^{\prime \prime} \times 2 \frac{1}{2}^{n} \times 2 \mathbf{i}^{n}$ high. \&l'50. P. \& P. 25 p.

WEBBER MAINS SOLENOID. Robust and strong. On this item the plunger travel is $1 \mathrm{lb}^{\frac{3^{3}}{}{ }^{\prime \prime} \text {. Performance }}$ 6 lb . pull at $1 \frac{1}{2}^{\prime \prime} ; 8 \mathrm{lb}$. at $\mathrm{I}^{\prime \prime} ; 10 \mathrm{lb}$. at $\frac{1}{2}^{\prime \prime}$. The non-captiv
plunger has a fixing eye to take up to ${ }^{-\frac{3}{2}}{ }^{\left(n^{\prime \prime}\right.}$ bolt. Size plunger has a fixing eye to take up to
$21^{\prime \prime}$ high $\times 2^{\prime \prime} \times 2^{\prime \prime}$. 61.25 plus $25 \mathrm{p} P$. \&.

MAINS SOLENOID BY MAGNETIC DEVICES MAINS SOLENOID BY MAGNETIC DEVICES LTD. A beautifully constructed solenoid at half normal price A two-sided bracket is incorporated for vertical price. A beautifully constructed solenoid at half normal or horizontal mounting. Size in incorporated for vertical $2^{\prime \prime} \times 11^{\prime \prime} \times$ it ${ }^{\prime \prime}$. Pull is or approx. 2 lb., plunger travel it. Fixing eye takes up to d" bolt. Plunger non-captive. New in original makers boxes. 75p each, plus 25 p P. \& P. Large number available, special price for quantity.

RELAYS
RELAYS
Perspex enclosed, plug in, with base. Size $1 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{2}^{n} \times \frac{3}{3^{\prime \prime}}$
MO $308600 \Omega 24 \mathrm{v}$. $4 \mathrm{c} / \mathrm{O}$. 60 p ea., $65.00^{\text {per }}$ per doz. MQ $308600 \Omega 24 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$. 40 p ea., $65 \cdot 00^{4}$ per doz.
MQ $50810,000 \Omega 100 \mathrm{c} .4 \mathrm{c} / \mathrm{c}$. 50 p ea., $\mathrm{E4} \cdot 50 \mathrm{per}$ doz. MQ $50810,000 \Omega 100 \mathrm{v} .4 \mathrm{c} / \mathrm{o} .50 \mathrm{p}$ ea., $\mathrm{C4} 50 \mathrm{per}$ doz.
"ISKRA" 240 V.A.C. $3 \mathrm{c} / \mathrm{o} .6 \mathrm{mpp}$ contacts. Size approx.: $1 \frac{1}{2}^{2 \prime} \times 1 \frac{1}{4}^{\prime \prime} \times 1^{\text {n }}$. 88 p.
"OMRON" OCTAL BASE. A.C. mains. $2 \times 15 \mathrm{mp}$ C/O contacts. Perspex enclosed. 88 p .
 ea. $470 \Omega(12 v .4$ c/o. 73 p ea. $2,780 \Omega 48 v .4 \mathrm{c} / 0.73 p$
ea. $1,260 \Omega 48 \mathrm{v}, 6 \mathrm{c} / \mathrm{o} .83 \mathrm{p}$ ea.
CLARE. Sealed relay. Type RP3716G4. El-25 ea.
CLARE ELLIOTT. Sub-min $675 \Omega 24 \mathrm{v}$. Type WJ $2 \mathrm{c} / \mathrm{o}$.
Similar to above. $340 \Omega 17.6 \mathrm{v}$. 75 p ea. Similar to above. $340 \Omega \quad 17.6 \mathrm{v}$. 75 p ea.
MAGNETIC DEVICES. Sub-min $24 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, \frac{3^{\prime \prime}}{4^{\prime}} \times \frac{5^{n}}{0^{n}}$ + HOURNP ${ }^{\text {ea }}$ BOURNE. Trimpot sub-miniature relay 18 v . $1,000 \Omega$

"B. \&
"B. \& R." 3 c/o. 10 amp. contacts (silver) operates on 2 volts D.C. Draws approx. I amp. Size: $2^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2^{\prime}} \times 1 \frac{1^{\prime \prime}}{} \mathrm{fl}$.
(00 .
DIAMOND "H" sealed relay. Type BRII5CIT-IC 26 v $150 \Omega 4$ c/o encapsulated in heavy brass case glass sealed SCHRACK. Octal base

24r. 2 HD c/o. Perspex enclosed E.R.G. $1,000 \Omega 6 v$. DC. I make encapsulated reed type. Size: $\times \frac{1}{10} \times 1{ }^{3}$. 4 for El-00.
SANGAMO WESTON. Moving coil relay 315Ω $310 \mu \mathrm{a}$, complete with base. 75 p ea.
S.T.C. Midget sealed relay. Type $4190 \mathrm{EC} .12 \mathrm{v} ., 40 \mathrm{~mA}$ 170 . Single HD make. 53 p ea.
F.I.R.E. Plug in relay, 115 v ., coil $50 / 60$ c.p.s., 3 heavy duty silver change-over contacts. Very robust. 63p ea LATCH-MASTER. Miniature relay 6, 12, 24v. DC One make one break 5 amp contacts. Once current is applied relay remains latched until input polarity is reversed. ${ }^{\prime \prime \prime}$ dia. $\times \mathbf{8}^{\prime \prime}$. Please state vertical or hori-
zontal mount and voltage. Original cost $\mathrm{f8} .00$, now zontal mount and
offered at $\in 1.63$ ea.

offered at El .63 ea .

G.E.C. Sealed relay. Type M 1492. 24v. 670Ω. New condition but ex-equipment.
HELLERMANN DEUTSCH. Type L26F18. Latching relay. Latch coil $200 \Omega 26 \mathrm{v}$. DC. Reset $375 \Omega 6$ change over switching. A truly superb relay. Measuring only SCHRACK Rotary Selector Relay RT304. 48v. coil SCHRACK Rotary Selector Relay RT304. 48v. coil
$(280 \mathrm{ohm}$). 48 positions, 4 sweep arms (4 pole 12 way). (280 ohm). 48 positions, 4 sweep arms (4 pole 12 way)
There are 2 secondary switches: (1) one c.o. H/duty contact set which changes over and back with each step; (2) two H/duty change-overs which change over on each 12th step and return on the following pulse Size: $3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}^{9 n} \times 4 \frac{1}{1}$ " high. Also as above but 110 y . (1,290 ohm coil). All new and in original maker's pack ing. E3-25. Carriage paid.
MAINS 6 DIGIT COUNTER BY E.N.M. LTD Non-reset. Size: mounting plate $2 \times 11^{\prime \prime}$. Unit size $2 \frac{1}{4}$ " high \times TH \times, El- 38 .
TIME ELAPSED REGISTER. 24v. D.C. Has a 5 digit readout plus dial reading I hour (601 min. div.) metering Total of $99,999 \mathrm{hrs}$. Non-reset sealed unit, chrome beze
through panel mounting. Size $25^{5}{ }^{5}$ dia. $\times 35^{5}{ }^{n}$ overall. through panel mounting. Size $2 \frac{5}{18}{ }^{\prime \prime}$ dia. $\times 3 \frac{5}{16}{ }^{\prime \prime}$ overall 63-25. Carriage paid.
DEAC. RECHARGEABLE PERMA-SEAL Nickel-Cadmium
Batteries Type 900 B . 1.22 v . at 900 Batteries Type 900 B . $1 \cdot 22 \mathrm{v}$, at 900
mA (10-hr. rate). Size 90 mm . \times 63p ea. P. \& P. $12 p$.

ERNEST TURNE ERNESTTURNER $800 \mu a$ METER plastic front. Green-Red-Green uncalibrated
riage Paid.

MINIATURE B.P.L. 500-0-500 MICRO-AMMETER清" dia. scale. Through panel mounting. Hermetically sealed. £1.63. Carriage paid.
$311^{n} \times 3 \frac{1}{1}^{n}$. Plastic front. Calibrated 50 Modern design "AT plus 25p P. \& P.
"ATLAS" SUB-MINIATURE LAMPS (Capped). -Ratings 5 v . 60 ma . $35 \pm 25 \%$ Lumens. Life Expectancy
60,000 hours or at $6 \mathrm{v} .70 \mathrm{ma} \cdot 75 \pm 25 \%$ Lumens, 5,000 hours. Size: $9.1 \times 3.1 \mathrm{~mm}$. $£ 1.50$ per doz. $£ 5.00$ box of 50 ..
We welcome orders from established companies, educational depts., etc. (To cover invoicing costs minimum $\mathbf{6 2 \cdot 5 0}$, please.) A discount of 10% may be deducted from all orders of 620.00 or over.

The computer industry

The long . . .

Where do you find the company that offers the particular service you want? Which government department, professional association or user group may have the answer to your problem? Well, here in one package are details of where you can get any of 68 different services; 96 areas in which companies offer consultancy or programming; over 250 categories of equipment and supplies. Plus names, addresses and telephone numbers of companies in the business, with the name of the officer you need to contact. It's out now and contains the best guide to computers and computing in the UK.

. . . and the short of it

Computer Directory gives you the whole industry.
It's out now and it costs $£ 2.00$.

Computer Directory

To: Cashiers, IPC Business Press (Sales \& Distribution) Ltd.,
P.O. Box 147, 40 Bowling Green Lane, London EC1P 1DB

ORGAN DIVIDER BOARDS, bull to high industrial/computer standards. 5 octave set £15, complete with connection data and oscillator details. COPPER LAMINATE PRINTED CIRCUIT BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in} .12 \frac{1}{2} \mathrm{p}$ sheet, 5 for 50 p $11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in}$.15 p sheet, 4 for 50 p $1 / \times 9 \times 1 / 16 \mathrm{in}, 20 \mathrm{p}$ sheet, 3 for 50 p Offcut pack (smallest $4 \times 2 \mathrm{in}$.) 50 p 300 sq . in.

RADIATION MONITORING EQUIPMENT. Portable and bench models (brand new) S.a.e literature KLYSTRON POWER SUPPLY (Solattron AS562). £40. Carr. $£ 2 \cdot 50$.
KLYSTRON POWER SUPPLY (EllIOtt PKU1). $\mathbf{£ 1 0 0}$ 120 AMP. AUTO TRANSFORMERS. $190-270 \mathrm{~V}$. $50 \mathrm{c} / \mathrm{s}$ (tapped every 5 volts). $\mathbf{£ 5 0}$ ea. (Carr, by arrangement.)
801 A SIGNAL GENERATOR. $10-300 \mathrm{mc} / \mathrm{s}$ in 4 bands. Ext. $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$. Output $200 \mathrm{~m} / \mathrm{v}$ £50 ea, P.P. £1-25.

SPEAKERS

'E.M.I." $19 \times 14 \mathrm{in} .50$ watts. 8 ohm (14A/600A.) Four tweeters mounted across main axis. Separate "X-over" Hz . Bass unit flux bass and h.f. sections. 20 Hz . to 20,000 £25. P.P. £1 50 .
E.M.I. $13 \times 8 \mathrm{in}$. With two tweeters and cross-over. 8 or 15 ohm £3.75. P.P. 25p.
E.M.I." 13×8 in. Bass Unit. 10 watts $3-8-15 \mathrm{ohm}$ models, E2.50 each. P.P. 25p.
"E.M.I."' $6 \frac{1}{2}$ in. Rd. 10 watt woofers. 8 ohm. $£ 1.50$ ea. PAP. $12 \frac{1}{2} \mathrm{p}$ p.
FANE" 12 in .20 watt. 15 ohm ($122 / 10 \mathrm{~A}$.) With integral tweeter, $\mathbf{f 6}$ ea. P.P. $37 \frac{1}{2} \mathrm{p}$.
SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{in}$.) Made to Spec. speaker with twinished in black leathercloth. 13×8 in speaker with tweeters complete with " X-over"

Hz. to $20,000 \mathrm{~Hz}$. $\mathbf{2} \cdot 50$. P.P. 50p
EXTRACTOR FANS/BLOWERS
"AIRMAN" $7 \frac{1}{2} \mathrm{in}$. FAN. In aluminium diecast housing (9 in.). 240 V . Brand new. £4-50. P.P. 50 p .
PLANNAIR"; $5 \frac{1}{2} \ln$. FAN. (Type 5 PL 121-122.) Diecast housing. 240V. Brand new. EG. P.P. 50p. $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}$. Air outlet $12 \times 1 \frac{1}{2} \mathrm{in} .240 \mathrm{v}$. Brand £250. P,P, $37 \frac{1}{2}$ D.
BULK CUMPONENT OFFER. Resistors/capacitors. All types and values. All new modern components. Over 500 places, £2. (Trial order 100 pieces 50p.) We are confident you will reorder

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1 \mathrm{in}$.) 4 digit. 24/48v. (state which), $32 \frac{1}{2} p$ ea. P.P ${ }^{5} \mathrm{p}$. Dig f1.75.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$.) 200 micro-amp. Made In Germany. 75p each.
MICROAMMETERS ($4-\mathrm{in} . \mathrm{sq}$. Weston). 25-0-25 microamps. £2.25. P.P. 25p.
RELAYS HID. 2 pole 3 way 10 amp , contacts. $12 \mathrm{v} . \mathrm{w}, 37 \frac{1}{2} \mathrm{p}$ ea LIGHTWEIGHT RELAYS (with dust-proof covers) $4 \mathrm{c} / 0$ contacts. $24 \mathrm{v} .500 \mathrm{ohm} .37 \frac{1}{2} p \mathrm{ea}$.
PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1. 18.5 pf$1,220 \mathrm{pf}$ £ $\mathbf{£ 1 0}$ ea. Type $29.5 \mathrm{pf}-11.5 \mathrm{pf}$. $\mathbf{f 6}$ ea.

POT CORES LA1/LA2/LA3. 50p ea

LIGHT DIMMERS. $2,000 \mathrm{~W}$ Trial Controlled ($3 \times 2 \frac{1}{2} \times 1 \frac{1}{4}$ in.). £5.75. P.P 25p.
50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts f 1 pair. 34 way version $75 p$ pair.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.). 2 pole changeover
(silver points) 40p each, p. \& p. Fp.
COMPUTER BOARDS
4-OC23; 4-2N1091; 4-2G302; 4-OA10. £1 ea.
8-0C42 (long leads) ; 16-0A47. 37 $\frac{1}{2} p$ ea.
8-DA11A: 14-OA47. 25p ea.
Bargain pack of 5 boards. Components too varied to enumerate. At least 100 transistors and diodes. £2 lot.

TRANSFORMERS

L.T. TRANSFORMERS (shrouded). Prim. 200/250v.

Sec. $20 / 40 / 60 \mathrm{v} .2 \mathrm{amp}$. $\mathbf{2} \cdot 12 \frac{1}{2}$. P.P. $37 \frac{1}{2} \mathrm{p}$.
L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40v. 1.5 amp . 1 1.50. P.P. 25 p.
"ADVANCE" CONSTANT VOLTAGE. Prim. 190/250v. $\pm 15 \%$. Sec. 115 v . 2,250 watts. f15 ea. P.P. £2 50 . H.T. TRANSFORMERS. Prim. 200/240v. Sec. 300-0-300v, $80 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v}$. С.T. 2 a . $£ 1.50$ ea. P.P. $37 \frac{1}{2} \mathrm{p}$.
350-0-350v. 60 M.A. 6.3v. C.T. Ra. £1 ea. P.P. 25 p.
L.T. TRANSFORMER. Prim. 240v. Sec. 33-0-33v. 5 amp. £2-25. P.P. 50p.
STEP DOWN TRANSFORMER. Prim. 200/240v. Sec. 115 v .100 watts. fl ea. P.P. 25p.
 3.5 amp models $£ 1$; P.P. $27 \frac{1}{2}$ p.
L.T. TRANSFORMERS. Prim. 240v. Sec. 14v. 1 amp 50p ea. P.P. $12 \frac{1}{2} \mathrm{p}$.

LIQUID LEVEL DETECTOR. Detects even mildly conducfive liquids, i.e. ether, etc. N.O./N.C. Contacts fails to safe. £10. S.A.E. literature.

ELECTRIC SLOTMETERS (5p) 25 amp. L.R. 240 v . AC. E4.25 ea. P.P. 25p
QUARTERLY ELECTRIC CHECK METERS, 40 amp. 240v. A.C. E1 ea. P.P. 25p.
LONG LIFE" ELECTROLYTICS (screw terminal.) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.) £1 ea. P.P. $12 \frac{1}{2} \mathrm{p}$.

EXECUTIVE "SIXTY"' AMPLIFIER. (60 w. r.m.s. Into 8 ohm.) British designed and built. True hi-fi performance Built-in filters to protect speakers. Three Independently mixed inputs. High-Low impedance. Mic. Crystal-CeramicMagnetic Cartridge, or aux. equipment. £55. P.P. £2.50. S.a.e. literature

TELEPHONE DIALS (New) £1 ea.
RELAYS (G.P.O. '3000'). All types. Brand TEW from 371 G.P.O.) 3 core/cream p. .c. 100 yd, coil $£ 2$ 200 yd. coil £3.75. P.P. 25p.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{3}$ wipe £3.25. 10 bank $\frac{1}{2}$ wipe $£ 3.75$. Other types from $£ 2 \cdot 25$.

REED RELAYS 4 rake $9 / 12 \mathrm{v}$. (1,000 ohm.) $62 \frac{1}{2} \mathrm{p}$ ea. 2 make $37 \frac{1}{2}$ p ea. 1 make 25p ea. Reed Switches ($1 \frac{3}{4} \frac{i n}{} \mathrm{in}$.)
10p ea. $£ 1 \frac{1}{\text { per doz }}$
 $\frac{1}{1}$ oz. Type 1.960 ohm, $3 / 9 \mathrm{v}, 1$ make. $62 \frac{1}{2} \mathrm{p}$ ea. Type 2. 1800 ohm, 3/12v. 1 make. 75p ea.
SILICON BRIDGES. 100 P.I.V 1 amp. ($\frac{5}{8} \times \frac{8}{8} \times \frac{3}{9} \mathrm{in}$.), 42 $\frac{1}{2} \mathrm{p}$ ea.
"ADVANCE" VOLSTAT TRANSFORMERS. Input $190-260 \mathrm{v}$. Output 6 v. R.M.S. 25 Watt. $£ 2$ each. P.P. 25 p . PLUG-IN RELAYS. (Siemans-Varley) $4 \mathrm{c} / \mathrm{o} .700 \mathrm{ohm}$, 50p ea. complete with base. (Other make-ups and coils available.)

PATRICK \& KINNIE

191 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473
RM79DD

SERVICIN FANE Finding starting from scratch, this compretensive guide takes Practical Wireless readers through from basic principles to the more advanced aspects and fault alignment of f.m. superhets and The authors finding on hi-fi systems. The
are G. J. King and H.W. Kelly who are G. J. King and H. W. Hepular series have written previous po pul ar sure yo do not on servicing. Be sure you do not
miss the start of this important miss the start in the May
new series
mum ${ }^{2}$ 4

NEW SERE SS... SERVICING G

 4 HI SI SIGNALThe high standards of modern audio amplifiers have made many older audio signal generators obsolete. Starting in the May issue of Practical Wireless, the circuit and complete building instructions are given for this laboratory quality signal generator. Distortion at 1 kHz is a mere 0.01% and output ranges run from 15 Hz to $150 \mathrm{kHz} \pm 1 \mathrm{~dB}$, though an additional range goes up to 1.5 MHz .

'STATION FOCUS' SIX

The performance of the average superhet receiver depends largely upon the proper alignment of tuned circuits. In the medium and long-wave receiver described in the May Practical Wireless, separate panel controls are included for the correct alignment of the critical circults. The prototype shown above has been built on a clear perspex panel.

MULTI－SPEED MOTOR
Replacement in many well－known food mixers．Six speeds are available 500
850 and 1,100 r．p．m．from either or both of the nylon sockets（where the beater
 pollshing speedg）from the main drive and approximately lin．long．A firthe wound its speed may be further 2300240 v ．AC－DC series usetyl Thytister controller．This is a very powertul and
 Double Leaf Contact
Very slight pressure closes both
contacts．6p each．60p doz．
Plastic push－rod suitable for operating，

Est．1／20th h．p．Made for 110－I20 vol
working，but together of our standard 240 ideall msins．A really beautiful motor
 MIDGET OUTPUT

隹田
 MIDGET OUTPUT

 CHART RECORDER MOTOR Bmall（2in．dameter approx））Instrument motor with fixllng
flange and spinde（tin．long，tin diameter）；integral gear－ box gives 1 rev．per 24 hours．£1．
 SKT at
Price $\varepsilon 1.50+23$ man．
size
FRTUORESCENT CONTROL KITS

3 DIGIT COUNTER
For Tape Recorder or other application，re
settable by depressing button．Price 288 ．

（殔S

Almost $\underset{\text { zero }}{\text { LIGHT Ceaistant }}$ CELL

EXTRACTOR FAN
Cleans the sir at the rate of 10,000
cubic ft．．per hour．At the pull of a

 witch，mains conaector，and fixing brackets． E2 plus 36 p
MAINS TRANSISTOR POWER PACK

DISTRIBUTION PANELS
Just what you need for work bench or lab． 4×13 amp
bocketa in metal box to take standard 13 amp funed
pluga and oni aitch with neon waming suplied
 STANDARD WAFER SWITCHES

Btandard size 14 water－silver－plated 5 －amp contact，
etandard \ddagger^{*} spindle 2^{2} long－with locking washer and nut

MOTORISED SWITCH FOR ANIMATED SIGNS，ETC．
 This li a motorised progranmer switch，maing operated，
with six 15 amp changeover contact operated by
trige triggers on a rotating drum．six triggers will put switches up and another six triggers will put switches doma．Thus
gimple onloff operation or changeovers are poseibie．The
triger cin triggere can be exactly set to any position around the
drum which is rotated by a one－rev．per hour motor．A drum which is rotated by a one－rev．per hour motor．At
beantifully made precision switch which probably cost

 HONEYWELL PROGRAMMER
This is a drum type timing device，the drum beemg caliarated in e
purposes with trips which are inf initely adjustable for position．

There are 15 changeover micro switches each of 10 amp type operated by the trips thus 15 circuits may be changed per revolution．Drive motor is mains operated 5 reva．per min．Some of the many uses of Vending machinee，Dispory control，Boiler fring，Dispensing and

plus 25p post and ins．Don＇t miss this terrifict bargain．
THIS MONTH＇S SNIP

THIS MONTH＇S SNIP

ELECTRIC TIME SWITCH

Made by smiths these are A．C．mains operated．NOT
CLOCKWORK．Ideal for mounting on rack or shelf or can be built into box with 13 A socket． 2 completely
alljustable time periods per 24 hours， 5 amp changeover contacts will switch circuit on or off during these period

COMPUTER TAPES

2，4003t．of the best magnetic tape money can buy．Made by E．M．I．，1in． wide，almost unbreakable and on a 101 in ．metal computer spool．Users have
claimed succassful results with video as well as sound recordings．\＆l

20 AMP ELECTRICAL PROGRAMMER
Learn in your sleep 1 Have Radio playing and kettle boiling as you a wake－switch－on lights to ward off intruders－have warm
houe to come home to．All these and many other things you can do it you invest in an Electricsl Programmer．Made by the
fanous Smiths Lnstrument Company．This is easentially a
$230 / 240$ volt mains operated
 $230 / 240$ volt mains operated Clock and a 20 arap Ewitch，the
switch－off time of which can be delayed up to 12 hours（conting

5 Similarly the switch－on time can be delayed．This is a beautiful unit，size $5 \% \times 34 \times 24 \mathrm{in}$ ．
deep．Metal encased，glass fronted with chrome surround．Offered at
$£ 2.40$ pius 23 p postage and insurance．INTEGRATED CIRCUITS
A parcel of integrated circuits made by the famous Plessey Company．A once in a lifetime
offer of Micro－electronlc devlces well below coat of manufacture．The parcel contains 5 ICB all new and perfect，first grade device defnitely not sub－standard or seconds．The ICs are all single silicon chip General Purpose Amplifiers．Regular price of which is well over $\& 1$
each．Full circuit details of the ICs are included and in addition you will receive a list of
en 50 different ICs arailable at bargain prices 25 y upwards with circuits an
each．Complete parcel only $\& 1$ post paid or List and all technical data．

With this y AMP can rary the voltage aplied to your circuit from zero to
270 volts without generating undue heat．One obvious application there－
fore is to dim lighting．Ex equipment but little used as good as new

BARGAIN OF THE YEAR

THERMOSTAT WITH PROBE This has a aensor attached to a 15 A switch by a 14 in ．length of flexible capillary tubing－control range is 20deg．F．to 450deg．F．so it is suitable to control soit heating and liquid heating especiaily when in buckets or portable vessels as the
sensor can be raised out and lowered into the vessel．This
thermostat could also be used to sound a bell or other sism thermostat could also be used to sound a bell or other．Alarm
when critical temp．is reached in stack or heap subject to when critical temp．is reached in stack or heap subject to
spontansous combustion or is liquid is being heated by gas or spontansous combustion or is liquid is being heated by gas or
other means not controliable by the switch．Made by the
famous Teddington Co，we offer these at

PROTECT VALUABLE DEVICES FROM THERMAL RUNAWAY OR OVERHEATING Thyristors，rectiflers，transistors，etc．，which use heat－ sinks can easily be protected．Simply make the contact
thermostat part of the heat－sink．Motors and equlp－ ment generally，can also be adequately protected by
having thermostats in atrategic spots maving thermostant in strategic spots on the casing．
har contact thermostat has a calibrated dial for get－ Our contact thermostat has a calibrated dinl for set－
ting between 90 deg．to $190 \mathrm{deg} . \mathrm{F}$ ．or with the dial
removed range setting is between 80 to 800 deg ． ting betwe
removed rat
Price 50p．

ELECTRIC CLOCK WITH
25 AMP SWITCH
Made by Smith＇s，these units are as control the oven．The clock is maina driven and frequency controlled so it
is extremely accurate．The two small is extremely accurate．The two small
dials enable switch on and off times to be accurately set．Ideal for switching on tape recorders，Offered at only a

fraction of the regular price new and unused－only ese
lesa than the value of the clock alone－pog and

UNDER－FLOOR HEATING CABLE

2001t．lengths，sultable for disaipating 1,000 watts at 80
volts．Join three in series to make a 240 ．volt malns－operated element of 3 kW ．Price \＆1 per length， 23 p post on any quantity

3－CORE LEADS

Heavy duty 23／36，average length 5 ft ． 50 p per dozen
CONSTRUCTORS＇PARCEL
1．Plessey ministure 2 －gang tuning condenser with built－in
trimmers and wave gang switch．2．Ferrite alab aerial with trimmers and wave gang switch．2．Ferrite alab aerial with coils to suit the above tuning condenser．3．Circuit diagram
giving all component values for 6 －transistor circult covering giving all component values for 6 －transistor circult covering
full medium wave and the long wave band around Radio 2 ． The three items for only 40 p which la half of the price of
MAINS RELAY $200 / 250 \mathrm{v}$ ．with 310 amp contacts． which being very small only $1 t \times 1 \times\{i n$. approx．，wil
fit into conflned spaces．63p each． 26.75 per dozen， HEARING AID AMPLIFIERS 3 transistor ated condensors and resistors on a little printed assoch oabe，the whole thing only about hall as big as an Oxo may well be jugt making ministure equipment then theso

LARGE PANEL MOU NT． 21% each． MOVING COIL METERS
Size 5in．\times tin．Centre zero $200-0-200$ micro amp，made by Sangamo Weato．Regular price probably 28．Our price
\＆3．Ditto but $100-0-100$ f4．

A．C．AMMETER

0.5 amps．，flush mounting，moving iron．Ex－equlpment but CIRCUIT BOARDS
Heavy copper on $3 / 32$ paxolin sheet，ideal for making power packer to be cut away with hacksaw blade．5in．$\times 5$ in 8 p each． 15 in ．\times sin． 23 p each．

SUB－MINIATURE MOVIN
as used in behind the oar deaf aid
Acta also as earphone size only $\ddagger \mathrm{in} . \times \mathrm{in}$ ．\times in．Regular price probsbly E 3 or more．Our price El ．Note these are
exequipment but it not in perfect working order they will be exchanged．
MAINS OPERATED
CONTACTOR
220／240v． 50 cycle solenold
with laminated core so very
silent in operation．Closes 4 silent in operation．Closes 4
circuits each rated at 10 amps． Extremely weli made by a
German Electrical Company． German Electrical Company．
Overall size $2 i \times 2 \times 2$ in．

SIMMERSTAT CONTROL SWITCH
Combined on－of switch and＂heat on＂regulator intended

AUTO－ELECTRIC CAR AERIAL with dashboard control awitch－4ully extend－
able to 40 in or fully retractable．Suitable for 12 v positive or negative earth．Supplied complete
with nitting instructions and ready with fitting instructions and ready wired dash
board 8 witch．\＆plus 25 p post and ins．

2
MICRO SWITCH
5 amp．changeover contacts， 9 p each， 90 p Miniat ure ear piece
As used with imported pocket radios． 8 p each 75p doz，

15／20 AMP CONNECTORS 13p each $21 \cdot 20$ doz． 13 AMP FUSED SWITCH
 Made by G．E．C．For connecting water type 18 p each $£ 1.50$ doz．Metal bozes for surface mounting 8p each 75p doz． 13 AMP SPUR UNIT
By G．E．C．for connecting clock，etc．，to ring main．Pult
out fuse．Flush mounting．Cream．13p each； 21.20 doz．

MAINS MOTOR

Precislon made－as used in rocord
decks and tape recorders－ideal also for extractor fans，blower，heater，eto．
New and perfect．Sinip at 50 p ．Pogtage New and perfect．Snip at 50 p．Postago
15 p for frst one then 5 p for each
one ordered． 12 and over post frea．

MINIATURE WAFER

SWITCHES

 4 pole， 3 way－ 2 pole， 4 why－ 3 pole， 4 way $\overrightarrow{2}$
2 pole， 6 wayl pole， 12 way．Ail at 18 p
each， 81.80 dozen，your asortment． MINIATURE SLIDE SWITCH 3 pole change－over． 15 p each 81.50 doz．
Heamy duty 250 watt model，not Weller，but
by a famous Italian maker．\＆4 plus 33p by a famous Italian maker． 24 plus 33 p
poatage and insurance． A Now sorrice to Reader．A bulletin bringing news of now
lines，special snips and＂too few to adverise＂lines will bo posted to sin wlll The bulletin will be called＂Advance Advert News＂t and the subacription is 60 p per year．Subscribers will also
recelve our completed 1971 catalogue when this is published．

Where postage is not stated then
orders over 55 are post free Below $f 5$ add 20 p．S．A．E．with enquiries please．

Post \＆Trade orders to Dept．WW，J．Bull（Electrical）Lid．， 7 Park Street，Croydon CRO IYD

HEAVY DUTY LTT TRANSFORMERS By famous maker. Fully Tropicalised. Pri tapped 100 ,
$110,120,200,220,240 \mathrm{v}$. E.S. Three Separate Secondies

SPEEIAL OFFER RADIO SPARES MULT-TAPPED L.T. TRANSFORME

Pri $200,220,240 \mathrm{v}$. 5 ec . provides all voltages from $1-40 \mathrm{v} ., 70$ watts. Separate taps are as follows: 1v. 9a., 2 v . 9 am ., 2 v , $9 \mathrm{v}$. ., 5 v .

Pri $220-24$ WODEN L.T. TRANSFORMERS type. Table top connections. $\in 1.50$. P. \& F 20p. Pri $110-210$ 240 v . Sec. 10.5 y .2 a . Conservatively rated. Fully shrouded terminal block connections. $£ 1-25$. P. \& P. 20p. English Electric Table top connections. E2.50, P. \&'P. 30 p .
T.E.C. $240-110 \mathrm{v}$. ISOLATION TRANSFORMERS Pri Tapped 10. 0. 200. 220. 240v. sec. Tapped $110-112.5-115 \mathrm{v}$ Conservarively rated at 9 amps. Tropicalised open frame type.

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri 240 v . 5ec. 240v. Centre tapped,
2 kva . Mounted in strong metal case. Size II $\times 9 \times 8$ ins. 2 kva . Mounted in strong. metal case. Size
Conservatively rated. $£ 27 \cdot 50$. Carr. $\mathrm{Ci} \cdot 50$.

$$
\begin{aligned}
& \text { Pri PaRMEKO "C" CORE TRANSFORMERS }
\end{aligned}
$$

Sec. $528 \mathrm{v}, 0.4 \mathrm{a}$. 5 ec .664 y .6 .2 az .6 .3 v .3 .25 a . 6.2 vv .1 .4 a,
$\begin{aligned} & \text { Table top connections. Si } \\ & \text { boxed, } \mathrm{EI} .75, \mathrm{P}, \mathrm{\&} \text { P. } 45 \mathrm{p} \text {. }\end{aligned}$

GRESHAM L.T. TRANSFORMERS
Pri tapped 15-230-240v. Sec. $6.3 v$. CT 5a. Twice 6.3v. CT 3a. uly tropi $6250 \mathrm{~m} / \mathrm{a}$. Potted type. Conservatively rated $\& 1.50$ P. \& P. ${ }^{62 \mathrm{~V}} \mathrm{SO}_{\mathrm{p}}$.

Pri $10-0-200-220-240 \mathrm{v}$. SEC. $500-$ ' CORE
$5.3 \mathrm{v} .1 .6 \mathrm{a} .6 .3 \mathrm{v} .0 .6 \mathrm{a}, 6.3 \mathrm{v}, 0.45 \mathrm{a}$. $5 \mathrm{v} .3 \mathrm{va}, 120 \mathrm{~m} / \mathrm{a}$. 6.3 v .2 .5 a .
 10 p P. \& ${ }^{20 \mathrm{P} .} \mathrm{Pr}$. 30 p.
Sameson's
9 \& 10 CHAPEL ST., LONDON, N.W.I $01.723-7851$
 ages can be obtained.
Example: No.

AUTO TRANSFORMERS
240v,-110v, or Jovv. Completely Shroud ed fitted with
Two-pin American Sockets or terminal blocks. Please state which type required.

Type	Wotts	Approx. Weight	Price	Carr.
	80	2 lb .	62.00	30 p
2	150	4 lb .	E2.75	35p
3	300	$6 \pm 1 \mathrm{~b}$.	E3.75	35 p
4	500	81 lb .	65.25	45p
5	1000	15 lb .	67.25	50p
6	1500	25 lb .	69.75	55p
7*	1750	28 lb .	614.75	75p
$8 *$	2250	30 lb .	$¢ 17.85$	75p

Abstract

Type 92 Sub Chassis 111 921 M 82 ${ }^{82}$ ${ }^{82} \mathrm{CP} 123 \mathrm{~K}$ CP

 n makers cartons.T.C.C. BLOCK CAPACITORS

M.F.D.	D.C.W.G.	Deg. Cent	Price
10	750	60	60 D
8	1200	70	75 p
8	1000	60	60 p
8	750	60	45p
8	500	60	37p
8	250	71	28 p
8	200	71	20p
6	750	60	37 p
4	1500	70	45p
4	1200	70	37 p
4	1000	60	37 p
4	750	60	32 p
4	600	70	25 p
4	500	60	22 p
4	450	100	22 p
4	350	60	17 p
2	1000	60	37p
2	1500	71	42 p
2	500	60	15 p
2	200	71	10 D
1	800	71	20p
1	600	71	10
0.5	2000	60	25
$8+4$	350	60	45
0.01	12 Kv	60	50

DUBILIER BLOCK CAPACITORS O.IMFD $10,000 \mathrm{v}$. 75 p .0 .25 MFD 7.500 v .75 p . 0.1MFD $7,500 \mathrm{v}$. 50 p . 2 MFD 5000 v . 1.50 IMFD $5,000 \mathrm{v}$. 1.00 . 4 MFD 800 v .35 p .

65MFD $550 \mathrm{~V}, \mathrm{E}$ WORKING BLOCK CAPACITORS
18 MFD 300 v . 75 p P. \& P. 30 p . 25 MFD 275 v . 11.25 P . \& P. 35 p . 0.06 MFD 850 V . 20 p P. \& P. 10 p .

LOW TENSION SMOOTHING CHOKES
 less than \ddagger ohm res. Hermetically sealed. Oil filled. Brand new

SPECIAL OFFER OF GRESHAM CHOKES $5 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50$ ohm. "C." Core Potted Type. 63.12 P . \& P. 50 p
P. 50 p.

 $20 \mathrm{H} 350 \mathrm{~m} / \mathrm{a} .200$ ohm. "C" Core Po
1 H Ia. 15 ohm E 3.50 P . $\$ \mathrm{P} .75 \mathrm{p}$.

IO EXILDE GLASS ACCUMULATORS 10 Volt. 5 A.H. Size: Height $5 \times 7 \times 21$ ins. Supplied
 original maker's cartons. P. \& P. 50 p. One 11.00 P. \& P.
65 p .

WILLESDEN POTTED TRANSFORMER

olve your communication problems with this new 4-Station Transistor Intercom system 1 master and 3 subs), in de luxe plastic abinets for desk or wall mounting. Call/talk/ isten from Master to subs and subs to Master. Operates on one 9 v battery On boff Mastor. Operates on one 9 . battery. On/off witch, Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $£ 0.40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER"' or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $\mathcal{£ 0 \cdot 1 2}$ extra. P. \& P. £ $0 \cdot 25$. Price Refund if not satisfied in 7 days.

TETEPTIONHAWPITIER

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. $£ 0.18$ in U.K. Add $£ 0.12$ for Battery.
Full price refunded if returned in 7 days.

For
electronic components fast...

Itudiaspanres
P.O. Box 427, 13-17 Epworth St London EC2P 2HA
Tel: 01-253 7501 Telex: 262341

VITAVOX

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS
and ancillary equipment
Further information from:
Yitavox LTD., Westmoreland Rd., London, NW9 5YB (Tel: 01-204 4234)

ELEGTROVALUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

many at new reduced prices - all power types with free insulating sets

40361	55p	2N 2905	44p	2N4291	15p	BCI48	14p	BFX87	29p
40362	68 p	2N2905A	47p	2N4292	15p	BC149	15p	BFX 88	$26 p$
2N696	20p	2N2924	20p	AC107	$46 p$	${ }_{8 C 153}$	$19 p$	BFY50	23 p
2N697	22p	2N2925	22p	ACl26	20p	BC154	20p	BFY51	20 p
2N706	12p	2N2926	119	${ }_{\text {ACl }}$	20p	${ }^{\text {BC157 }}$	19p	BFY52	23p
2 N 930	29p	2N3053	$27 p$	AC128	20p	BC158	$17 p$	BS $\times 20$	$16 p$
2rill ${ }^{\text {d }}$	36 p	2 N 3055	75 p	${ }_{\text {AC }} \mathbf{C} 53 \mathrm{~K}$	25 p	${ }^{\text {BCI }} 59$	18p	C407	17p
2 N 1132	40p	2N3702	13p	${ }^{\text {ACLI }} 176$	27 p	BC167	13p	MC140	$25 p$
2 N 1302	$19 p$	2N3703	13p	ACY20	20p	BC163	$11 p$		
$2 \mathrm{~N} / 303$	19p	2 N 3704	13p	ACY22	16 p	${ }_{8 C 169}$	$13 p$		35 p 30 p
$2 \mathrm{~N} \mid 304$	23p	2N3705	13p	ADI40	56p	BC177	17p	M M S 6311	30 p
2 N 1305	23p	2 N 3706	13p	ADI42	50p	BC178	${ }^{15 p}$	NKT211	
2 N 1306	33 p	2 N 3707	13 p	ADI49	60 p	BC179	17 p	NKT212	235
2N1307	33 p	2 N 3708	13 p	ADI61	40 p	${ }^{\text {BCC182L }}$	13 p	NKT274	239 188
2N1308 2 N 1309	$36 p$ $36 p$	2N3709 2N3710	13p	ADI62	$4{ }^{40}$	BC183L	11 p	NKT274	-189
${ }^{2} \mathrm{~N} 1309$	23p	2N3710	13p	AFII4	30 p 30 p	${ }_{\substack{\text { BCl } \\ \mathrm{BC} 212 \mathrm{~L}}}$	13 p 250	NKT405	79p
$2 \mathrm{Ni711}$	$26 p$	2N3819	$35 p$	AFII7	28 p	BC213L	25p	OC71	29p
2 N 1893	54p	2N3904	35p	AFI24	30p	BC214L	25 p	0 C 81	25p
2 N 2147	95 p	2N3906	$35 p$	AFI 27	28 p	BCY70	$19 p$	OC81D	25p
2N2218	34p	2N4058	20p	AFI 39	48 p	BCY71	33 p	ZTX300	12 p
2N2218A	43p	2N4059	20 p	AF239	490	BCY72	$15 p$	ZTX301	16 p
2N2219	38p	2N4060	20 p	ASY26	27p	BFIIS	23p	ZTX302	22p
2N2219A	53 p	2 N 4061	$20 p$	ASY28	$27 p$	BF167	27p	ZTX303	22p
2 N 2270	62 p	2 N 4062	20 p	BC107	14p	BF173	31 p	ZTX304	27p
2N2369A	19p	2 N 4124	18p	BC108	12p	BFI94	17p	ZTX500	18p
2N2483	35p	2 N 4126	27 p	BC109	148	BFI95	18p	$2 T \times 501$	$21 p$
2N2484	42 p	2 N 4284	15 p	$\mathrm{BC}^{1} 125$	$15 p$	BFX29	319	ZTX502	25
2N2646	54p	2N4286	15p	BC126	22 p	BFX84	25p	ZTX503	22 p
2N2904A	42p	2N4289	15p	BC147	15p	BFX85	34 p	ZTX504	52p

RESISTORS

Code	Power	lerance	ange	Values		$\begin{aligned} & \text { to } 99 \\ & \text { elow). } \end{aligned}$	100 up								
c	1/20w		82, -220K	E12	7	6.5									
	1/8W		$4.78-330 \mathrm{~K}$	EI											
C	$1 / 2 \mathrm{~W}$		$4.7 \Omega-10 \mathrm{M} \Omega$ $4.7 \Omega-10 \mathrm{M}$	E12		0									
C	IW	10	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	2.5	2									
	$1 / 2$		$10 \Omega-1 \mathrm{M} \Omega$	E24		3.5									
ww	iw	\% $+1 / 20 \Omega$	0-22, $2-3.9 \Omega$	E12		7	6								
	3W		$12 \Omega-10 \mathrm{~K} \Omega$	E12		7									
			$2 \Omega-10 \mathrm{~K}$	E12	9	¢	8								
Codes: $\mathrm{C}=$ carbon film, high stability, low noise. MO = metal oxide, Electrosil TR5, ultra low noise. $W W=$ wire wound, Plessey.				Prices are in pence each for quantities of the same ohmic value and power rating. NOT mixed values. (ignore fractions on total value of resistor order.)											
Values: E12 denotes series: $10,12,15,18,22,27,33,39$, $47,56,68,82$ and their decades. E24 denotes series: as E12 plus $11,13,16,20,24$, $30,36,43,51,62,75,91$ and their decades.															
				TYGAN SPEAKER MATERIAL 7 designs, 36×27 in. sheets, $£ 1.57$ sheet											
				MULLARD polyester C280 series $250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.0473 p$ each; $0.068,0.1,4 p$ each; $0.15,4 p ; 0.22,5 p$. 10% $0.33,1 p ; 0.47,8 p ; 0.68,11 p ; 1 \mu \mathrm{~F}, 14 p ; 1.5 \mu \mathrm{~F}$, 21p; 2.2 $\mu \mathrm{F}, 24$ p.											
ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $30 \mathrm{~V}, 15 \mathrm{p}$ each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$. to 82 V , 27p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each. Clip to ircrease 1.5 W rating to 3 watts (type 266f), 4 p.															
				LLARD SUB-MIN ELECTR											
CARBON TRACK POTENTIOMETERS,				4/10; 4/40; $5 / 64 ; 6.4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5$:											
				200/6.4; 200/10; $250 / 4 ; 320 / 2.5 ; 320 / 6 \cdot 4 ; 400 / 4 ;$$500 / 2.5$.											
				LARGE CAPACITORS High ripple current types: 1000/25, 28p; 1000/50, 41 p ; $1000 / 100,82 \mathrm{p}$; 2000/25, 37p; 2000/50, 57 p; $2000 / 100,41 \cdot 44 ; 2500 / 64,77 p ; 2500 / 70,98 p$; 10000/25, $11 \cdot 40 ; 10000 / 50,62 \cdot 40$.											
Only quote	es of	\& 47 availa													
CARBON SKELETON PRE-SETS Small high quality type PR, linear only; 100Ω, 220』, 4709., IK, $2 \mathrm{KZ}, 4 \mathrm{K7}$, 10K, 22K, 47K, 100 K , $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each.															
				COMPONENT DISCOUNTS 10% on ordèrs for components for $\mathbf{E 5}$ or more. 15% on orders for components for $£ 15$ or more. (No discount on nett items.) (No discount on nett items.)											
COLVERN 3 wats Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1 \cdot 5 \mathrm{~K}$, $2 \cdot 5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each.															
				POSTAGE AND PACKING Free on orders over $\mathrm{E2}$. Please add 10 p if orders under $£ 2$. Overseas orders welcome: carriage and insurance charged at cost. Send S.A.E. for latest list. Prices subject to alteration without notice.											
ENAMELLLED COPPER WIRE even No. SWG only: 2 oz. reels: $16-22$ SWG 25 p; 24-30 SWG 30 p; 32, 34 SWG, 33p: $36-40$ SWG, 35 p. 4 oz. reels: $16-22$ SWG only 42p.															

Appointed distributors for
SIEMENS (U.K.) LTD.
NEWMARKET TRANSISTORS E. GRINSTEAD ELECTRONIC COMPONENTS

PEAK SOUND

baXANDALL

 SPEAKER SYSTEMDesigned by Peter Baxan dall. Superb reproduction for its size. Handles
10 watts with ease. Uses 10 watts with ease. Uses
ELAC 15Ω 59RM109 speaker unit. Kit $£ 13.90$ nett; built $£ 19 \cdot 40$ nett.

MAINLINE AMPLIFIER KITS
RCA/SGS designed main amplifier kits. Input sensitivity 500-
700 mV for full output into 8Ω.

Power	Kit price	Suitable unreg.
12 W	including components	power supply kit
25 W	$£ 8.40$ nett	$£ 4.82$
40 W	$£ 9.75$ nett	65.92
70 W	$£ 10.50$ nett	$\mathbf{6 . 0 3}$
	$£ 12.60$ nett	$\mathbf{6 6 . 8 7}$

30 WATT BAILEY AMPLIFIER PARTS

Sensitivity $1 \cdot 2 \mathrm{~V}$ for full output into 8Ω.
Transistors and PCB for one channel $£ 6.46$
Transistors and PCBs for two channels $£ 12.92$
Capacitors and resistors (metal oxide), $\mathbf{2} \cdot \mathbf{0 0}$ per channel.
Complete unregulated power supply pack, $£ 4.75$
Suitable heat sink 10DN space 400c, 55p
Suitable heatsink IODN $400 \mathrm{C}, 55$ p

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into 7.5 ohms.
SINCLAIR IC. 10 as advertised, complete with instructions and Components pack for stereo inc. transformer, controls, etc., 64.75 netr.

S-DeCs put an end to birds nesting
Components just plug in-saves time-allows re-use of comComplete T-Dec, may be temperature-cycled (208 points), $\mathbf{£ 2} \mathbf{5 0}$ Also μ-Decs and IC carriers.

INDICATOR LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C, 24p. Neon, square red type LSSC/R, 17p; amber type LS5C/A, 17p, Clear type LSSC/C, 17 p . All above are for 240 v . mains operation. Filament types: 6v. 0.04A square red type LS5C/R-6v., 20p; 6v. 0.04A amber type LS5C/A-6v., 20p; 6v. 0.04A clear type 0.04 A LS5C/R-12v, $23 p ; 28 v, 0.04$ A LS5C/R-28v, 28p.

DIN CONNECTORS

Loudspeaker	.	2-pole	plug	sock
Audio ..	\cdots	3-pole	$13 p$	10
Audio		4-pole	14p	12
Audio	.	5 -poie 180 deg .	$15 p$	12
Audio		$5-p o l e ~ 240 d e g . ~$	15\%	12
Audio	.	6-pole	15 p	13

TOGGLE SWITCHES, 250V a.c. I•5A
chrome dolly and chrome milled nut S.P.S.T. 19p, S.P.D.T. D.T. 29p; S.P.D.T. centre off 22p

WAVECHANGE SWITCHES
LPNG SPINDLES
SLIDW; 2P 6W; 3P 4W: 4P 3W
SLIDER SWITCHES D.P.D.T
24p each

CORED SOLDER - $64 / 40$ alloy, 20 s.w.g. $80 z$. reel, 65 p,

BI-PRE-PAK

FULLY TESTED AND MARKED
 AC107
 $\begin{array}{ll} & 15 \mathrm{p} \text { OC170 } \\ \text { AC128 } & 13 \mathrm{p} \text { OC171 }\end{array}$
 $A C 128$ $A C 176$
 170 OC171 OC200
 13 p OC200
 $\begin{array}{ll}25 \mathrm{p} & 0 \mathrm{C} 201 \\ 15 \mathrm{p} & 2 \mathrm{G3O1}\end{array}$
 $\begin{array}{ll}35 \mathrm{p} & 2 \mathrm{G3} 303 \\ 37 \mathrm{p} & 2 \mathrm{~N} 1302-3\end{array}$
 $\begin{array}{lll}\text { AF186 } & 50 \mathrm{P} & 2 \mathrm{~N} 1302-3 \\ \text { AF139 } & 37 \mathrm{D} & 2 \mathrm{~N} 1304-5 \\ & 25 & 2 \mathrm{~N} 1306-7\end{array}$
 BC 154 $\mathrm{BC} 171=\mathrm{BC} 107$
 BC172=BC108
 BF194
 BF 274 BFY 50
 BSY25 BSY26
 BSY26 BSY27
 BSY27 BSY28
 $\mathrm{BSY28}$ BSY 29
 BSY29 BSA95A
 OC41 OC44
 OC44 $0 \mathrm{OC45}$
 $0 C 71$ $0 C 72$
 0 CB 1 $\mathrm{OC81D}$
 OC139 OC140
 $\begin{array}{ll} & 30 \\ 2 N 1308-9 & 35 p \\ 2 N 1389-F E T & 45 p\end{array}$
 5p Power
 15p Transistors
 | 20 p oc20 |
| :--- |
| 10 |
| 0 |
 $13 p \quad 0 \mathrm{C} 25$
 $\begin{array}{ll}13 p & \text { OC26 } \\ 13 p & \text { OC28 }\end{array}$

CLEARANCE LINES

OC71 \& OC72 transistors. unmarked, fully tested.	$5 p$
Tic45 thyristors: 6 amp. 60 volts. fully marked and tested. Texas plastic.	15p
CRS25/025 thyristors. 25 amp .25 volts.	25p
I.C.'s fully merked and tested by A.E.I. Gates 25p. Flip Flops 50 p . 709 C linear amp. To. 5 can.	50p
```1 watt zener diodes. 7.5V.6.8V, 24V. 27V, 30V and 43V.```	p
OA47 gold bonded diodes.	3p

NEW TESTED \& GUARANTEED PAKS

${ }^{2} 2$	4	Photo Cells, Sun Batteries 3 to 5 to 2 ma .	p
нв	4	BY127 Slicicon Recs. 1000 P.IV. 1 amp. Plastic. Replaces the BY100.	50p
${ }^{879}$	4	1 N4007 Sil. Rec. Diodes, 1.000 P.I.V 1 amp. Plastic.	50p
${ }^{88}$	$10$	Reed Switches. mixed types. large and smalt.	50p
${ }^{899}$	200	Mixed Capacitors. Post and packing ${ }^{13 p}$ Approx. Quantity counted by weight.	50p
H4	250	Mixed Resistors. Post and packing 10 p . Approx. Quantity counted by weight.	Op
H7	40	Wirewound Resistors. Mixed Values. Postage 7p.	p
ня	2	OCP71 Light Sensitive Photo Transistors.	50p
${ }^{H} 12$	20	NKT155/259 Germ diodes brand new stock clearance.	50p
H18	$10$	OC71/75 uncoded black glass type PNP Germ.	50p
${ }^{H} 19$	10	OCB $1 / 81 \mathrm{D}$ uncoded white glass type PNP Germ.	50p
${ }^{\text {H28 }}$	20	OC200/1/2/3 PNP slicon uncoded rolscan.	50p
	20	ed diodes coded M	

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 50p
10 p \& \& P on this Pak

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block

## ANNOUNCING

the opening of our entirely new

## CASH \& CARRY DEPARTMENT

On the spot sales of all catalogued items plus many other lines of interest Reductions for bulk buying Manufacturers welcomed

These are but a few examples OC44, OC45. OC81. 1N4007 all at $8 p$
1N4001 @ 4p.1N4004 @ 5p 1N4006 @ 6p. Minimum quantity 500.

The Semiconductor Supermarket of the South-East

NEW UNMARKED UNTESTED PAKS

880	8	Dual Trans. Matched $0 / \mathrm{P}$ pairs NPN. Sil. in TO-5 can	50p
883	200	Trans. manufacturer's rejects all types NPN. PNP. Sil. and Germ	50p
B84	100	Silicon Diodes DO-7 glass equiv. to OA200. OA202	50p
886	50	Sil. Diodes sub. min IN914 and 1N9 16 types	50p
B88	50	Sil. Trans. NPN. PNP. equiv. to OC200/1. 2N706A. BSY95A, etc	50p
860	10	7 watt Xener Diodes Mixed Voltages	50p
H6	40	250 mW . Zener Diodes 00.7 Min Glass Type	50p
Hı0	25	Mixed volts. $1 \frac{1}{2}$ wat1 Zeners. Top hat type	50p
866	150	High quality Germ. Diodes. Min glass type	50p
H15	30	Top Hat Silicon Rectifiers. 750 mA . Mixed volts	50p
H1e	8	Experimenters' Pak of Integrated Circuits. Data supplied	50p
H2	20	BY126/7 Type Silicon Rectifiers. 1 amp plastic Mixed volts	50p

P Germanium aF OR RF
please state on order Fully marked and tested
will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev
counter for any car.

each
free catalogue and lists for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add $10 p$ post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

P.O. RELAYS	8 for
VARIOUS CONTACTS AND	8
COIL RESISTANCES.	
NO INDIVIDUALSELECTION.	
POST \& PACKING $25 p$	

P.O. RELAYS

COIL RESISTANCES
NO INDIVIDUAL SELECTION.
POST \& PACKING 25p
INIMUM ORDER 50p CASH WITH

STANDARD GPO DIAL TELEPHONES (black) P. \& P. 37p.

SURVEY METER RADIAC No. 3. Hand portable size $91 \times 5 \times 54$ ins. 3 ranges (scale changes) 0.03 ; ${ }^{\text {\&3 es. P. \& }}$ \& P. 50p.
7/6. Charger oniy 30/-. P. \& P. 33p.
PHOTOMULTIPLIERS. EMI 6097X st $68 \cdot 50$ ea 6097B-CS ea.

OR OSCILLATOR. Variable frequenc
 new. Boxed. 57p
CRAMER TIMER $28 V$ DC Sweep $1 / 100$ th sec $\& 8$ sweep
60 secs. $4^{*}$ dial. Remote control stop/start reset $\$ 5.00$ 60 secs. $4^{-1}$ dial. Remote control
G.E.C. Sealed Relays High Speed 24 V .2 make 2 break.
 12V 35p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new. complete with base 37p es.
Single pole c/o 14 ohm coll 33p ea; Single
Single pole c/o 14 ohm coll 33p ea; Single pole c/o 45 ohm
COLVERN BOOTENTIOMETERS
COLVERN Brand new. 50; 100; 250; 500 ohms; 1 2.5; $5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 13 p ea. Special Brand new
MORGANITE 2.5 K ; 250 K ; 500 K 2.5 meg . $1^{\prime \prime}$ seaded

STANDARD 2 meg Log pots. Current type. 15p ea INSTRUMENT 8 Colvern. 5; 25 ohms 35p ea.
BOURNE TRIM POTS. $10 ; 20 ; 50 ; 100 ; 200 ; 250$; 500 ohms; $1: 2.55 ; 25 \mathrm{~K}$ at 35 p es.
ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K}$; 998 K ; 1 meg- $0.1 . .27 \mathrm{D}$ ea.: $3 \cdot 25 \mathrm{~K}-0 \cdot 1.20 \mathrm{D}$ ea.
DALE heat sink resistors, non-inductive 50 watt. Brand new 8.2K at i3p ea. 45 p es.; LA2503 30p ea. Brand new. 7lV 5 cell. Slze
SILVER ZINC Non-8pill. Brand $1 \ddagger \times 1 \times 172$ oz. weight $\subset 1$ ea. Single cell 1.5 V 4 AH size


CAPACITORS
ceramicons 2200
ERIE feed through ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ ea.
Concentric TRIMMER square. 8, 5pf. Brand new 13p ea ELECTROLYTICS, Brand new. 250 mfd . 70 V 23 p ea E.H.T. 2 mfd 5 KV. Brand new $£ 1 \cdot 50 \mathrm{es}$.
E.H.T. 0.1 mfd 7 KV
at 40 p ea.; 0.1 mfd 5.

DECADE DIAL UP SWITCH. Fin Engraved 0/9. Gold platerd contacts. Size 24 high,
$2 t^{\circ}$ deep $1^{\circ}$ wide. 75 eas. Bank of 4 with escutcheon $21^{\circ}$ deep $1^{\prime \prime}$ wide. $75^{\circ}$ p eas. Bank of 4 with escutcheon
plates, etc. $21^{\prime \prime}$ high. $24^{\prime \prime}$ deep. $21^{\circ}$ wide $E 2.50$.
PHOTOCELL equivalent OCP 71 13p ea.
Photo-resist type Clare 703. (TOS Case). Two for 50p.
BURGESS Micro Switches V 5930 . Brand new 13 p BURGESS Micro Switches V3 5930. Brand new 131 pea .
HONEYWELL. Sub-min. Microwwitches type 11SM3-T. Brand new. 17p ea.
BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way
As above but 25 way 50p ea, plug; 35p ea, socket: 75p
per pair; 9 way 33p ea. plug and socket. 50 p per pair. per pair; 9 Way 33p ea. plug and socket. 50p per pair.
U.H.F. Plugg ti UR57. 69.65 etc. 40 p ea.
 U.H.F. \&i 50 ea.: ‘T’ Junction B.N.C. \&I ea.; B.N.C. plug to B.N.C. plug \&I ea.; B.N.C. Right angle $£ 1$ ea, Min Standard B.N.C. round 35p ea. Many others too numerous to list. All prices quoted for 'one off,'
TRANSFORMERS, All standard inputs. $A C$ to 120 V tapped $60-0-60700 \mathrm{~W}$. Brand new 240 V Transformer 0-215-250 $120 \mathrm{MA} ; 6.9 \mathrm{~V} 4 \mathrm{ACT} \times 2 ; 2 \times 8.3 \mathrm{~B}$. 0.5 A and separate $00 \mathrm{~V} 100 \mathrm{MA} \mathrm{Cl} \cdot 25 \mathrm{ea}$. P. \& P . 20 p $4.5 \mathrm{~V} 40 \mathrm{amp}(180 \mathrm{Va}$ ) $\& 1.75$ eas incl. Dostage or 3 for 44.50 incl. postage. Designed to be Series paralleled.
Parmeko 6.3v $2 \mathrm{amp} \times 4-\mathcal{C l} \cdot 13 \mathrm{ea}$. $180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$.
Gard/Parm/Part. $450-400-0-400-450.180$ Gard/Perm/Part. $450-400-6-400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{~V}$.
CHOKES. 5 H ; $10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA}, 42 \mathrm{p}$

 requirements, plasse.
GROUND PLANE ANENA. Ex-admiralty. GROUND PLANE ANTENNA.
Brand new boxed. Adustable $90-160$ megs.
umbrella) 66.50 . Carr. £1.

## NUCLEONIC INSTRUMENTS

Pulse analyser N101; Scaler 1000 E ; Colncidence Anit 1036C; Ant comcidence unit Panax AU480; complete 1939A system A/B/G; EHT Potentiometer unlt 1007; 1430 ampliffer CF and head: Some scintillation castles: radiation monitor 1320 C and
1320 X (X-ray) survey meters no. 2 and $1320 X$ (X-ray): survey meters no. 2 and 9 : Rate
meter
scintillation 1988 A : Fast neutron Fluorr-meter 1080A and many others. Also 2000 SERIES. Amp 2002A: Low level amp 2024; PU's 2004: 2005B: nanosec time amplitude convertor 2011A: pulse amplitude analyser 2010B; discrimins tor 2007B; high level amp 2025 and others. Informa

RACAL RAI7L's and RAI7 Mk II's from fi75 (Part EDDISTONE Recelver Models 770 U and 770 R , i 40

MARCONI Wide Range Oscillator TF1s70's and TF1370A's. $10 \mathrm{c} / \mathrm{s}-10 \mathrm{mc} / \mathrm{s}$ from $£ 140$.

## TEST GEAR

OSCILLOSCOPES
E.M.I.

SOLARTRON SOLARTRON
SOLARTRON WM $2 \mathrm{DC}-13 \mathrm{mc} / \mathrm{s} \mathbf{C 2 5}$

SOLARTRON

## SOLARTRON

SOLARTRON
COSSOR

## HARTLE

All carefully checked and teated. Carriage $£ 1 \cdot 50$ extra. MARCONI
Noise gen. TF1301. E40. Carr. £1
Vacuum tube Voltmeter TF1041A. E35: 1041B. 445. Deviation Meter TF934/2, 550 ea. Carr. $£ 1.50$. TF 1026 Frequency Meter © $2 \cdot 50$. Carr. 75 p. TF 329 Magnification Meter. As new condit TF 100 A Signal generator $£ 35$. Carr. $£ 1-50$. Better grade 655 ea. Carr. £ 1.50 .
TF 888 Magnification Meter $\mathbf{4} 45$. Carr
TF 880 Masniflcation Meter C45. Carr. £1.
TF 369 N. 5 Impedance Bridge from $\mathbf{E S 0}$ ea. Carr. fF 369 N .5 Impedance Bridge from C 50 ea. Carr.
TF 144 G Signal Generator. Serviceable. Clean $\& 15$. TF 144G Bignal Generstor. Serviceable. Clean $£ 15$.

 SOLARTRON
Laboratory amplifler AWS51A. $15 \mathrm{c} / \mathrm{s}-\mathbf{3 5 0 k c} / \mathrm{s} \mathbf{4 5}$
tabilised P U. SRS 151A 520 Carr $51 \cdot 50$
Stabilised P.U. SRS 152 \& 15 . Carr. $£ 1$-50.
Precision Millivoltmeter VP'252, $\mathbf{2} 25$. Carr, $£ 1$.
Process Rasponse Analyser. Fine Coudition $\mathbf{2 5 0}$ Oscillator type OS 101. $£ 30$. Carr. $£ 1 \cdot 50$.
D.C. Amplifier type AA900. $£ 30$. Carr $£ 1$.
D.C. Amplifier type AA900. $£ 30$. Carr $£ 1$.
Storage Oscilloscopes QD 410 . £ 150 . Carr. $£ 1 \cdot 50$.

Testmeter No 1 AVO
Electronic Testmeter CT 38. Complete 118 Carr. £1 CINTEL
Square and Pulse gen. PW 0.05 to 0.3 micro secs.
15 mV to 50 V : rep rate 5 hz to 250 kz £20. Carr. $\mathrm{f1}$. AIRMEC
signal Generator type 701. \&25. Carr. £1.50.
AIRMEC Generaior type 210 E120. Carr.
ARCONI TF 1277. Colour studio scope, will line elect. In superb condition. \&120.
E.M.I. Oscilloacope type WM16. Main frame EI25. Plug in $7 / 2$ DC- $24 \mathrm{mc} / \mathrm{s} \mathrm{x} 2 \mathrm{E} / 5 ; ; 7 / 1 \mathrm{DC}-40 \mathrm{megs}$ E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete with plug in pre-annp. from 840 .

BRADLEY ATTENUATORS $0 / 500$ meg cycles.
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-\mathrm{E} 20$ per pair.
BECKMAN MODEL A. Ten turn pot complete
with dial. $100 \mathrm{E} 3 \%$ Tol $0.25 \%$-only $E 2.13$ ea.
E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 13p es.
BRUEL K KJOER Automatic Vibration Exciter Control ype 1016. \&140
OYM's BIE 2114 ¢50 ea.; BIE 2116 C50 ea. Carr. £1-50. BC22I-Brand new $£ 35$ ea. Carr. $£ 1$.
NAGARD Double pulse gen type 5002
NAGARD Double pulse gen type 5002 650. Carr. £1-50. BRAND NEW INSTRUMENTS HOUSING. SIZe $8 \times 6 \times 7^{\prime}$ deep. Comprising of anodised aluminium front rear panels. Detachable dark grey vinyl coverod
 FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side 1 p per sq. in. Double sided Ip per sq, in. Cut to sige (Max. $2 t^{\prime \prime} \times 15^{\prime \prime}$ ). Postage $5 p$ per order.
BERCO miniature variac type 31C. $0-250 \mathrm{~V} 1$ BERCO miniature variac type 31C. $0-250 \mathrm{~V}$ 1 amp.
2 5/16th
depth. $\mathbf{3}^{-}$diameter. Complete with dial and 2 5/16th" depth. 3" diameter.
pointer. As new \&3. P. \& P. 87p.
pointer. As new 23. P. \&P. 37p.
SEQUENTIAL TIMERS 240 V synchronous motor SEQUENTIAL TIMERS 240V synchronous motor
i rpm. 12 camoperated 2 pole micro switches. Individually
adjustable from $0^{\circ}$ to $180^{\circ}$. E6 ea.
Standard 240 Y MOTORS with reduction gearbox 14 lbs per sq. inch. 43 ea.
Modern replacement for VCR 138 tube. Flat face 3 in . Ef6. P. \& P. こn. bases 17p.
FERRITE rods complete with LW. MW and coupling collo. Brand new. 25D ea. P. \& P. $7 p$.
FIREBALL TURRETS. Brand new El. 50 ea. P. \& P. 25p Sub-mintature IF's 465/470 kcs. Size $+x \nmid \times$ if high. Sub-min. Vitality bulbs 8 V 1.2 W 5 mm Clear L.E.S.
7 p ea. 100 off 6 p ea.

DUNFOSS-solenold valves. $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. Type EVJ 2.
Brand new boxed 65 ; Second hand 93 . P. P, sop.
CLA UDE LYONS Main Stabilizer. Type TS-1L-680 Input $119-135$ volts $47 / 65$ es. Output $127+/-0.25 \%$ 16 amps. E35. Carr. £2.
SERVOMER. Stab. Transistor P.U. 0-15V 2.5 amps. Volt and Current meters, overload trip. E15 ea. Carr
\&1.50. £1.50
E.H.T. Unit by Brandenburg model S.0530/10. 255. SMITHS twin channel recorder. Transistorised. 645.
Varous other single and twin track recorders from $\mathbf{E 2 0}$. EVERSHED \& VIGNOLES Recording paper. Brand new boxed. L818H4 $7^{\circ}$ wide, $1 \frac{1}{2}^{\prime \prime}$ dia. $17 p$ roll; $6^{\circ}$ dia. $£ 1$ roll. JL900H4 $7^{\prime}$ wide, $19^{\prime \prime}$ dia. $25 p$ roll.
19in. Rack Mounting CABINETS 6ft. high 19 in . deep Double Bay complete with doors. Fine condition. c25 Cartiage at cost.
Signal Generator CT53. Complete with charts el5
Carr. £1.50.
TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microsecond to 1.000 microsecond Internal calibration; gate generation C50. Carr. £1-50 WAYNE Kerr Universal Bridge type CT375 $£ 45$ ea,
Carr. $£ 1.50$. Carr. £1.50.
MUIRHEAD Swept Audio Oscillator $\mathbf{6 5 0}$ es. Carr. £1-50 EMI Swept Audio Oscillator type SRO2 $£ 40$ ea. Carr.

## 4 DIGIT RESETTABLE COUNTERS. 1000 ohm coll, Size $14 \times \$ \times 4 \frac{1}{1} \mathrm{ln}$. As new. by Sodero of Geneva. E2.50 ea. <br> As above but $\mathbf{3 5 0}$ ohm. $\mathbf{4 . 5 0}$ ea.

METERS—Model 3705. 25-0-25 mlcro annp. Scaled $-100-0-+100.5\}^{\prime \prime} \times 4^{\circ} . \& 3$ ea.
SANGO 50 micro amp $4^{\prime \prime}$ round. Brand new bored.
Ci.36. P. \& P. 38p. SANGO 50 micro
WANGO 50 micro amp rectansular meter. Size $2!\times 3^{\prime \prime}$ with 4 separate scales, lever operated. $0 / 6$ whi
blue, $0 / 600$ red and set zero. $11 \cdot 75$. P. \& P. 17 p .
RECTANGULAR WESTON 5: mirror back. Scale $0-7501 \mathrm{ma}$ basic 30/- ea: $100 \mathrm{micro} \mathrm{amp} \mathrm{scaled} 0-50$ SANGO 50 micro
SANGO 50 micro amp $\mathbf{3 n}^{\prime \prime}$ round meters. Ex brand

## SEEING IS BELIEVING <br> First come. first served

AT LAST. BC221 complete with correct charts circuit diagrams, in fine condition for ONLY $£ 13 \cdot 34$ Carr. £1.
C.R.T.'s 5\%. Brand new with spec sheet. 43p ea
P. \& P. 25p. MARCONI Valve Voltmeter 428B/1 45 ea. Marr. 11 . AMERICAN oscilloscope type TS84/AP. Siz $7 \times 64 \times 15 f^{\circ}$ deep with viewing hood. Tested good working condition. Ideal general purpose scope
117 volt mains therefore only $£ 12 \cdot 50$. Carr. \&1. 117 volt mains therefore only $£ 12 \cdot 50$. Carr. \& 1
COSSOR D.B. Scopes-some models from $\mathbb{E} 15$. MARCONI Absorption Wattmeter 1 micro watt 6 watts. Type TFabe. FANTASTIC at $£ 7$ ea SOLARTRON Stab. PU AS516 \& AS517. Clrcults SUPERE BUYS Furzehll V2004 Vaive m SUPERB B TY 10 mv to 1 ky flo meter 10mv to 1 kv . E10 ea Megiculous at $E^{5}$ ea.
Genuine MULLARD Transistora/Diodea and guaranteed. OC41, 42. 76.77.89; OA5, 10. Al at 5p ea, OC23-10p ea.
COMPONENT PACK consisting of 2-2 pole 2 smp purh on/off switches; 4 pots 1 double; 1 -smal double pole vol control; 250 resistors $\frac{1}{2}$ and $\frac{1}{1}$ wat 17p.
Y.H.F. Receivers from $\mathbf{6 1 . 5 0}$. Carriage extra. 3000 Serles relayb- 15 mixed values (new and a ${ }_{3000}$ new, no rubblish) \&1.50. P. \& P. 97 p .
3000 Type 2 pole c/o assembly, Brand new boxed
Carriage extra.
TRANSISTOR EHT INVERTORS. 12 volt in, o/p ( + or - ) 1.5 KV 2 MA and $\mathrm{K} \mathrm{KV}+100$ micro amp. Ideal CRT supply, photomultipilers etc. Full informatio supplied. Brand new at 26 ea. P. \& P. 25 Also, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}$. $£ 3 \cdot 50$. P. \& P. 25p Panel switches DPDT ex en. 13p ea.; DPST Brand new Switches 4 pole 2 way 13 p.
Replacement UHF Transistor Tuners. Brand new Brand new heads for TR50 and TR51 Tape Recorders Brand
El. 60.
ALBRIGHT Heary Duty Contactor. Single make.
200 amp . 24 V coll. Brand new, boxed. fil ea, incl. P. \& P. MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 pole.
24 way. Brand new, 43 ea. P. \& P. 25 p.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

## CHILTMEAD LTD.

7-9-11 Arthur Road. Reading . Berks • Tel. No. 582605
(rear Tech. College) 300 yds. west of 22 Sun Street . Reading 65916


Promoted by the Radio and Electronic Component Manufacturers Federation

## Up-date your electronics

Keep up with the times at the International London Electronic Component Show. The world of electronics moves fast, and LECS '71 is an integral part of that progress. It is the great international occasion which pinpoints world progress in components, instruments, test equipment and materials. The 1971 show is the biggest yet-wider in scope -completely international. The governments of America, France and Russia sponsor important national prestige demonstrations.
Olympia displays 15,000 sq.m. of world progress in the world's most progressive industry.

## LECS '7I-International pivot of electronics

## Admission: by ticket obtainable only from

 exhibitors, or 25 p at entrance. Times: 10.00 to 18.00 hrs. daily.LECS 71 coincides with an important conference, "Forward into the 70 's," organised by the Electronic Components Board, at the Royal Garden Hotel, Kensington.

## OEO <br> Ampation

## INDUSTRIAL EXHIBITIONS LIMITED

9 Argill Street, London W1V 2HA


## QUICKER SERVICING-MORE PROFITS

Now, more than ever before, RADIO \& TV SERVICING gives value for money. Every Servicing Engineer realises the value of readily available servicing data-it means speedy servicing, satisfied customers and more profit-and information on earlier models that come in for repair is almost impossible to come by. Radio and TV Servicing will give you just this-it's the most comprehensive library of servicing data available.

SERVICING DATA ON OVER 1500 POPULAR MODELS
Here, in 6 handy volumes, you have comprehensive technical data for servicing over 1500 popular $1965-71$ models. The sections on Colour TV alone makes this 3600-page library a sure money-spinner for years to come. Examine RADIO \& TV SERVICING and prove for yourself how valuable and indispensable this money-making library is.

OVER 4200 CIRCUITS, PRINTED PANEL DIAGRAMS, COMPONENT LAYOUT DIAGRAMS, AND WVAVEFORM GRAPHS

## FRIE=10-day trial

To: Macdonald Technical \& Scientific, PO Box 50, Swindon, Wilts. Please send Radio \& TV Servicing- 6 volumes-on 10 days free trial I understand that | am under no obligation to buy and may return the volumes in 11 days if not satisfied. If 1 do decide to buy the volumes I will post

The full cash price of $\mathbf{£ 2 6 . 2 5}$ ( $\mathbf{£ 2 6 . 5 . 0}$ ) or
$£ 2.80$ ( $£ 2.16 .0$ ) dep. and 9 menthly payments of £ $\mathbf{2} .80$ ( $\mathbf{( 2 . 1 6 . 0}$ ) paying $\mathbf{£ 2 8} \mathbf{~ i n ~ a l f . ~}$
Name
block letters please
Address


If under 18 a parent or guardian must sign
$\square$
$\square$
. . . . .

## 


METERS. ACIDC Moving coil. 2 in, flush round, complere with fixing clip. 3 types.
 Heavy Angle Base 59.50 anch. Cge. E1. Available from stock
 ROOM THERMOSTAT. Adiustable between 45 and 75 deg. Fahr., 250 v. 10 amp A.C. Ideal for greenhouses, etc. LI'75, post 30 P .
RECTIFIER UNITS WESTALITETYPE BC
up to 6 Volts 15 Amps $D C$. Heavily damped $0 / 20$ ammeter $\mathbf{3 0 0} / 250$ Volts $A C$. Output uharging current, which is regulated by a four position rotary switch and sliding reasistance.


EQUIPMENT WIRE P.V.C. covered $£ 4$ per 1,000 yds. $7 / .0076,141.0048$
type I and 2, all colours. $14 / 0076$ type 11, Red and Natural only 10 per 1,000 yds.
MINIATURE BUZZERS, 12 volts, with tone adjuster 40p each as illustrated. LEDEX ROTARY SOLENOIDS ANO CIRCUIT SELECTORS,
4 pole $1 \mid$ way and off $£ 7.24$ pole 11 way and off $£ 12.54$ pole On/Off $£ 9$.
SINGLE FUSE HOLDERS. Belling Lee 1356 one hole fixing. 15p each.
VEEDER-ROOTMAGNETIC COUNTERS WITH ZERO RESET 800 COUNTS
PER MINUTE. 6 Figures. General Purpose Type. 110 v. A.C. $£ 5$ post 20p.
Send for new potentiometer list, Wire Wound and Carbon types available from stock.
HIGH SPEED COUNTERS
$3 \ddagger$ in. $\times 1 \mathrm{in} .10$ counts per second,
with 4 figures. The following D.C. with 4 figures. The following D.C. $24 \mathrm{v} ., 50 \mathrm{v}$., or 100 v .
Also supplied with auxiliary contacts.

L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGEE RD. CROYDON SURREY

## LATEST RELEASE OF

 RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87.50$ each, carr. £2.
Same model as above: Fully Recond. by M.O.D. $£ 65$ ea., or sec. hand cond. (guaranteed working order) from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, $£ 3.50$ a set, post 37 p ; SPEAKERS: new, £3 each, post 50p. *HEADPHONES: new, £1.25 a pair, 600 ohms impedance. Post 25 p .
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 50p each, post 13p. RF Coils 13 \& 14; 17 \& 18; 23 \& 24; and 27 and 28. Price 63p each. 13p post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M. $980344,3 \times 0.01 \mathrm{mfd}$., 3 for 50 p, post 13 p . Trimmers $95534-502,2-20$ p.f. Box of 3,50 p, post 13p. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., $£ 2$ each, 20 p post. Output transformers $901666-501 \AA 1 \cdot 37$ each, 20 p post.

- Available viith Receiver only.


## FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC. 19 X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, 40-48 Mc/s. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ $\mathrm{MF}-156, \mathrm{Mk} . \mathrm{M}, \mathrm{Crystal}$ controled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. T ype 62 , tunable, $1.5-12$

 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986;
TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19, TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R.19,
FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.c. With associated equipment
available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458 ; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: 400c/s sinewave 75\% depth. External Modulation: Direct or via internal amplifier. A.C. mains 200/250V, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $12 \frac{1}{4} \times 10 \mathrm{in}$. New condition. $£ 45$ each, carr. $£ 1 \cdot 50$.
RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, £2.50 Carr. OR 4 ft . high $\times 23 \mathrm{in}$. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8 \cdot 50$ each, £2 Carr.
RECEIVER BC-348: Operates from 24V d.c. Freq. Range 200$500 \mathrm{Kc} / \mathrm{s}, 1 \cdot 5-18 \mathrm{Mc} / \mathrm{s}$. Secondhand $£ 20$ each, $£ 1$ Carr.
APR-9 SEARCH RECEIVER: Complete with two Tuning Units TN128, $1000-2600 \mathrm{Mc} / \mathrm{s}$, and TN $1292300-4450 \mathrm{Mc} / \mathrm{s}$. £250.00 each.
APR-5 UHF RECEIVER: $1000-6000 \mathrm{Mc} / \mathrm{s}, 115 \mathrm{~V}$ a.c. Circuit. Oscillator, 6 IF Stages, Detector, Video Amplifier and Audio Amplifier. $£ 120.00$ each, Carr. $£ 2$.

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808-9213

SOLARTRON PULSE GENERATOR GP1101.2: Period-2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec to 10 msec . All continuously variable in 5 ranges with fine control. Accuracy $\pm 10 \%$. Pulse Amplitude- $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square ${ }_{W}$ ave $O /$ put; Squaring Amplifier. Input $-100-250 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$. New condition with Manual. Price: $\mathbf{5 8 5}$ each $+£ 1.25$ carr.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . rms/inch. Triggered sweep, built-in trigger pulses and markers. Mains input $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. £42.50 each, carr. £2.

OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. (Further details on request, S.A.E.) £35 each, cart. £1 50.
SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious energy content, suitable for angnment of narrow-bally generated sine waves or receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range- $10-420 \mathrm{Mc} / \mathrm{s}$ in 5 bands, $\pm 0.5 \%$ accuracy. Emission-AM, Ch, Pulse. O/put $400,1000 \mathrm{c} / \mathrm{s}$ ( 0 0.5 V , calibrated $\pm$. $\pm 2$ ailt-in Crystal calibrator ( $1,5 \mathrm{Mc} / \mathrm{s}$ ). Price: $£ 150$ each, complete $90 \%$. Built-in Crystal calland all leads; OR $£ 125$ each, Sig. Gen. only. Carr. both types $£ 2$.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. 115 V , AC, $50 \mathrm{c} / \mathrm{s}$. Freq.Width $0.5-10$ microsecs. Timing-Undelayed or delayed from 3-300 micro-Width-0.5-10 microsecs. Timing-U ndelayed or delayed from 0 to -127 db secs from external or internal pulse. Price: $£ 120$ each $+£ 2$ carr.
variable. O/put Impedance- $50 \Omega$.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers calibrated in dbm. The frequency dial is calibrated in $\mathrm{Mc} / \mathrm{s}$. Provision is made for external modulation. Power Supply$115 \mathrm{~V}, \pm 10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq.- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put Attenuator: - 7 to - 127 dbm . Load- $50 \Omega$. Price: $\mathbf{~} \mathbf{1 3 5}$ each + $£ 2$ carr.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq, and power or measurement of same. Signal Generator: Oput - 7 to - 85 dom. Trans-mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation-0$40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-500 watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at
$10 \%$ max. amplitude, less than 0.5 microsec rise time between $90 \%$ and $10 \%$ $10 \%$ max. amplitude, less than 0.5 merosec rise time $\mathbf{m a x}$. amplitude points. Frequency Meter: $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracymax. amplitude points. Frequency $1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec . at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output - 7 to -85 dbm . Price: $£ 75$ each +fl carr.

SIGNAL GENERATOR TS-418/URM49: Covers 400-1000 Mc/s range. CW, Pulse or AM emission. Power Range- $0-120 \mathrm{dbm}$. Price: $£ 105$ each TELEMETRY AUDIO OSCLLLATOR TYPE 200T: (Hewlett Packard). Freq. $-250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High stability. O/put 160 mw or 10 V into $600 \Omega$ Price: $£ 65$ each $+£ 1 \cdot 25$ carr

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. O-30 or sine wave. Amp Impedance $50 \Omega$. Price: $£ 85$ each $+£ 1.50$ carr.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. 20-280 Mc/s. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, probe, excellent condition. £12.50, carr. 75p.

CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADLAN HEADSET ASSEMBLY: Moving coil headphones $100 \Omega$ with chamois leather earmufis. Small hand microphone complete with switch and moving coil insert. New Condition. $£ 1.75$ each, post 25 p.
DLR. 5 HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance \&1.25 a pair, 25 p post.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $86 \cdot 50$ each,
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. $£ 5$ each, 50 p post. 30 mfd 600 रे wkg. d.c., $£ 3.50$ each, post 50 p. 15 mfd 330 v a.c., wkg., 75 p each, post 25 p . 10 mfd $1000 \mathrm{v}$.63 p each, post 13 p. $10 \mathrm{mfd} 600 \mathrm{v}$.43 p each, 25 p post. 8 mfd 2500 v . \&5 each, carr. 63 p. 8 mfd 600 v .43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% \mathrm{c} .300 \mathrm{v} . \mathrm{D} . \mathrm{C} .2125$, post $25 \mathrm{p}, 4 \mathrm{mtd} .3000 \mathrm{v}$. wkg. 23 each, post 37 p .4 mfd 1000.01 mfd MICA 2.5 Kv .

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2.50$ each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, carr. 75p. OHMITE VARLABLE RESISTOR: $5 \mathrm{ohms}, 5 \frac{1}{\mathrm{amps}}$; or 40 ohms at 2.6 amps . Price (either type) 82 each, 25 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$ 's; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathbf{£ 4} \cdot 50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 Z 3$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 V$ @ 6 Amp and 4 V ( $) .25$ Amp. Mounted ${ }^{8} 6.50$ each, carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. $£ 6$ each, Carr. 63p. 230-115V, $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. 83.50 each, Carr. 50p.
LT TRANSFORMER: PRI 230V. Output $4 \times 6.3$ at 3 amps each winding, $31^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $\mathbf{5 1} \cdot 50$ post 50 p.
MODULATOR UNIT: 50 watt, part of BC -640 , complete with $2 \times 811$ valves, microphone and modulator transformers etc. $\mathbf{5 7} \cdot 50$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3 in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3.50$ each, post 37 p APNI ALTLMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s} .$, complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 50p. ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, $270^{\circ}$ Movement. Ideal for making rev. counter. £1-25, post 25p
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V}$., 9 amps .; $2 \frac{1}{2}$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. £15 each f1.50p carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24 V , 200 Amps , $£ 2$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in. diameter), motors, suppressors, etc. $£ 35$ each, $£ 2$ carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\frac{t}{3}$ Go total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~$
tot 3.50 each, post 25 p.

MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up $500 \mathrm{Mc} / \mathrm{s}$ Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-$

CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Cry
conjunction with a freq. meter. $£ 12.50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex swirches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch; 16 Bank 2 Pos. £ 4 each, 50p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output $1 \mathrm{rpm}, \mathbf{£ 1 . 5 0}$ each, 25 p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and porentiometer, 3 rpm , $£ 2$ each 25 p post. SYNCHROS: and other special purpose motors available. List 3 p .
DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp ) $12,000 \mathrm{rpm}$. $\$ 5$ each, 50p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). £4 each, 50p post.
SMALL GEARED MOTOR: 24 V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{\mathrm{l}} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $£ 2$ each, 23 p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters
$0-9999$, with locking and reset controls mounted in 3in. diameter case. Price \&2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch. 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., 86.50 each, post 37 p . CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type
M1460-22, 2 pole, 2 throw. (New) 8 \& 50 each, post 25 p. 1 pole, 4 throw, Type M1460-4. (New) $£ 6 \cdot 50$ each, post.25p.
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, $2 \cdot 0-10 \cdot 0 \mathrm{KMC}$ SEC. (New) $\& 5$ each, post 25p. FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) 66 each , post 25 p .

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 £ 1 , post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE LMPEDANCE METER MODEL 201: 5300-8100Mc/s. £75 each, £l carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. 12.50 each, post 35 p.


SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE ! | ! !

## RESISTORS, $\frac{1}{4} / \frac{1}{2}$ wate



Multi-tapped 10 watts
MAPER CONDENSERS
Tv types
Miniature ELECTROLYTIC CONDENSERS
Suitable for Mains
Radio/Tr Radio/tr
Transistor types Mixed (both types)
POLYSTYRENE CONDENSERS
MULLARD POLYESTER
COND.
SILVER MICA
WIRE-WOUND 3-Watt SLIDERS
OLUME CONTROLS NUTS AND BOLTS. Mixed
length/type
$8 \mathrm{~B} . \mathrm{A}$.
${ }_{6} 8$ B.A.
4 B.A.
METAL SPEAKER GRILLES $7 \frac{1}{2}$ in. $\times{ }^{3 \frac{1}{2} i n}$.
ARPIECES, MAGNETIC
No Pluz
2.5 mm Plug
2.5 mm Plug
3.5 mm Plug

500 MICRO-AMP LEVEL METERS
5 BOARDS + CUTTER
$\begin{array}{rl}100 & 50 p \\ 20 & 50 p \\ 15 & 50 p \\ 10 & 50 p \\ 12 & 50 p \\ 50 & 50 p \\ 100 & 50 p\end{array}$

TRANSISTORS


NEW! NEW! NEW! NEW! NEW!
A light-sensitive spray which enables you by photographic means to produce printed circuits in any quantity from a simple drawing. No lenses or timers needed. Just circuits in $2 n y$
a light bulb.
Light-sensitive aerosol spray
Developer spray

## TRANSISTOR RADIOS

Once again we have a supply of these excellent radios which offer superb quality sound and excellent sensitivity. They are packed in a colourful presentation box complete with battery, earpiece and carrying case. Each one is guaranteed. You would expect to pay at least $\mathbf{5 5 - b u t}$ our price due to bulk purchase is only fl. 98.

SINCLAIR AMPLIFIERS AND SPEAKERS: Complete range in stock. All at $10 \%$ discount on list.

## VEROBOARD

$\frac{21}{3}$ in $\times \operatorname{lin} \times 0.15 i n \quad 6 p \quad 5 i n \times 3$ in $\times 0.15$ in 28p $\quad 3 \frac{3}{3}$ in $\times 3 \frac{3}{2}$ in $\times 0.1$ in 24p


 18p. Special Offer Pack consisting of $5 \frac{1}{2}$ in $x$ lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices!
G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, 64. ACOS GP $67 / 2$ (Mono, Crystal) 75 p . ACOS GP $91 / 3$ (Compatible, Crystal) £I. ACOS
GP $93 / 1$ (Stereo, Crystal, Sapphire) $£ 1.25$. ACOS GP $93 / 10$ (Stereo Crystal Diamond) fl 1.63 . ACOS GP $94 / 1$ (Stereo, Ceramic, Sapphire) $\$ 1.50$ ACOS GP 94/ID (Stereo, Ceramic, Diamond) fl-88. ACOS GP 95/I (Stereo, Crystal with two L.P./Stereo needles) $£ 1.25$.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents, etc., $£ 3$. 25 p . 13 watt 25p. 13 watt type, batten with switch. 22 in $\times 2$ in $\times$ lin 65. Postage/Packing 25p.

## MULLARD POLYESTER CONDENSERS

$1,000 \mathrm{pf}$, $1,200 \mathrm{pf}$, $1,500 \mathrm{pf}, 1,800 \mathrm{pf}, 2,200 \mathrm{pf}$, 15 p per dozen (all 400 V working). of 100 of any one type. per dozen (all 160 V working). $25 \%$ discount for lots

## RESISTORS

WIRE WOUND Most values in stock. 50 p per 100 . 10 p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. radio/television. Owing to the huge variety these can only be offered "assorted" at 50 p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75p per 100 of any one value. $15 p$ per dozen.

RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tape! 5 in Standard 38p. Long-play 45p. $5 \frac{1}{1}$ in Standard 45p. Longplay 60p. 7in Standard 60p. Long-play 82p. We are getting a fantastic number rill have a dood prices?

65 WORTH OF COMPONENTS FREE ! ! ! !
Thinking of learning another language? If so apply to us for details of LINGUA. HONE courses. We will GIVE you 65 worth of components of your selection


FANE 807 HIGH FIDELITY
LOUDSPEAKER
sin fult range
Bind
watit

PAIR OF
LOUDSPEAKER
UNITS
incorporating high flux
8 in. $\times 5$ in.
speaker.

8 in
Bize ap

PRICE COMPLETE
ONLY
com mas $£ 42$
Terms: Deposit $£ 5.50$
and 9 monthly payments
(Total $4.50 \quad$ f46).
a really surprising standahd of quality is obtained from this compact low priced system

fanE ULTRA HIGH POWER
 2 years' guarantee. High flux oeramic magnets.
Heavy cast ohassig. ALL CARRIAGE FREE.





 Facia Plate and Knobs. Output rating I.H.F.M. Complete kit of parts $\mathbf{E | 5 . 5 0}$
with full wiring diagrams and instructions Carr. 40 p . with full wiring diagrams and instructions. Carr. 40 p.
FACTORY BUULT WITH 12 MTH GNTEE. $£ 18 \cdot 50$. Or dep. $£ 3$ and 9 mnthly
pymts. $£ 2.05$ (Total $£ 21.45$. Or in Teak veneer housing. $£ 23$. Or Dep. $£ 3$ and pymts. $£ 2.05$ (Total £21.45). Or in Teak veneer housing. £23. Or Dep. $£ 3$ and
9 mthly. pymts $£ 2.55$ (Total $£ 25 \cdot 95$ ).



LOUDSPEAKERS Heavy struction. Latest high effeclency c magnets. Treated Cone surround o
indicates Roll Rubber surround. Indicates Roll Rubber surround. "D"
indicates Treeter Cone providing
extenited irequency range up to 15,000 indicateg Tweeter Cone providing
extenited frequency range up to 15,000
e.p.s. Exceptlonal performance at 10 F WHEN ORDERING PLEASE STATE IMPEDANCE




 R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hizhly sensitive. Pash. Prull hivh


 Outdoor Funotions, evtc. For use with Electronic Organ, Guitar,
String Bess etc. Gram, Radio or Tape. Reserv'C L.T. and H.T. for Radio Tuner. associsted volume controls so that two separate inputs euch as Gram and "Mike"' can be mixed.
avo-250

 $\underset{\substack{\text { voc. } \\ \text { and } \\ \text { and } \\ \text { and } \\ 0.2 \\ 0 . \\ \hline}}{ }$


$\underset{\text { Carr. 90p }}{ } \mathbf{3 0} 50$
THE'YORK'HIGH FIDELITY 3'SPEAKER SYSTEM






## INTEREST CHARGES REFUNDED

On Credit Sales settled in 3 months B.S.C.MAINS TRANSFORMEBS FULLY GUARANTEED. Interleaved and
Impregnated. Primariea $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. Screened


 $95 p$
$95 p$
81.25
81.89
81.99













 Pushh Full
or $15 \Omega$
ond
1
 81.25
81.20
81.89
8
 ltra Li
$5-18$.
s, ete.t
wat

34,61 6, KT06, etc. to 3 or $15 \Omega \quad 22.99$ | SMOOTEING CHOKES |  |  |  |
| :--- | :--- | :--- | :--- |
| 150 mA, | $7-10 \mathrm{H}$. | 250 A | $65 \mathrm{p} ;$ |
| 100 mA. | 10 H. | $200 \Omega$ | $55 \mathrm{p} ;$ |

HGGH GRADR COMPONENTS. SPECLFTCATION8 COMPARABLE WITH
UNITS COSTING CONSIDERABLY MORE Employing Twin Printed Circults.
TRANSISTOR8: 9 high-quality typer per channel OUTPUT (Per channel): 10 Watta R.M.s. continu-
ous into $15 \Omega 18$ Watt R.M.8. continuous into 3 a . ous into $15 \cap 15$ Watt R RE:
INPUT SENSITIVITES: Ceramic P.U. $35 \mathrm{m.v}$. Tape Amp. P. $400 \mathrm{~m} . \mathrm{v}$.
$100 \mathrm{~m} . \mathrm{v}$.
Mic. $\delta \mathrm{m} . \mathrm{v}$. Tape Head $2.5 \mathrm{~m} . \mathbf{v}$. TREBLECONTROL: +17 dB to -14 dB at 10 K BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: -80 dB .
HARMONIC DISTORTION: $0.1 \%$ at 10 Watts
1,000 c.p.s. CR08s TALE: 52 dB at I,000 c.p.s. ground. spun sil BRACKPOOL BIRMINGHAM ${ }^{3}$ c) \& C Electronics 227 Church St. 1 G. Western Arade. DERBY 26 O 1 DARLINGTON 18 Priestgate (Halilday Wed.). Tel. 68043 EDINBURGH ${ }^{13}$ GLASGOW 326 Argyle St.,(Hallf-dy Tues) Tel. HULL 91 Parazon Screet (Half-day Thurs.). Tel. 20505


CONTROIS: 5-position Input Selector, Bass, Treble, CONTROLS: 5-position Inyut Selector, Bass, Treble,
Mono \$w, Tape Monitor Sw. Mains Bw.
MPUT 8OCKETS: (1) P.U. (t) Tape Amp. (3) Radio. Head (loperation of Input selector
back-


EMINENTLY SUITABLE FOR USE WITH ANY MAKE OF PICK-UP OR MIC. (Ceramic or Magnetic, Moving Coil, Ribbon or Crystal) cURRENTLY AVAILABLE. SUPERB SOUND OUTPUT QUALITYCANBE OBTAINED BY USE WITH FIRST-RATE ANCILLARYEQUIPMENT, COMPLETE KIT OF PARTS, point to point $\mathbf{C 2 3 \cdot 2 5}$ wiring diagrams \& detailed instructions C23.25 wiring di
supplied.
 or depack 84 an





MAIL ORDERS to: 106! Henconner Lane, Leeds I
Terms
E.W.O. or
P. Postage 25p extra under E2.
30 p extra over $\mathrm{E2}$, or as stated 30 p extra over t2, or as stated.
Trade supplied. S.A.E. with
enquiries. Export enquiries Branchesopen wilidAYSats MAIL ORDERS MUST NO
.

## LEICESTER 32 High Street (Half-day Thurs.). Tel. 56420

 LEEDS 5-7 County (Mecea) Arcade, Briggate $\begin{gathered}\text { (Half-day Wed.) Tel. } 28252\end{gathered}$ LIVERPOOL 73 Dale St. (Hali-day Wed.). LONDON 238 Edgware Road, W. 2 (Hallif dell Central 3573 MANCHESTER 60A OIdham Street (Halif-day Wed.) MIDDLESBROUGH 106 Newport Rd. (Hali-day Wed.). Tel. 47096 NEW CASTLE UPON 41 Blackett Street (opp. Fenwick SHEFFIELD ${ }^{13}$ Exchange Streeal (Castle Marker Blds.) $\begin{gathered}\text { (Halfoday Thurs.). Tel. 20716 }\end{gathered}$
$80 \mathrm{~mA} .10 \mathrm{H}, 350 \Omega 45 \mathrm{~g}$; 60 rDA .
$10 \mathrm{H} .400 \Omega 25 \mathrm{p}$. $\frac{\text { R.S.C. PLINTHS }}{\text { 10H. }}$ Superior Solid Natural Wood
Construction for hecord Construction Pr Record
Playing units.
Cut tor

Available with Trans.
parent plastic cover
RECORD PLAYING ONITS MONEY 8AVING UNITB Ready to plug lato AmpliBer.
RP23C Conisting of Carrard
BP25 ME Goldring CS90 high complisnce ceramic Stereo/Mono cartridge
witb dlamond stylus. Mounted on wibdiaroond atylus. Mounted on

 RP6C Garrard 5200 Auto Unit | Plinth and Cove: as as |
| :--- |
| Reac, |
| Carr. 50p |
| 15 | OTHER TYPES with Magnetic

P.J. Cartridges and 'Lift oft or 'Roll over' transparant pore or 'Rol over' tra
at lowent prices.


OSCILLOSCOPE PROBE TM8II9 High impedance $100 / 1$ resistive attenuated probe for accurate display of HF wave forms or short rise time pulse signals, offered brand new with all accessories and
instruction manual. List price $£ 17$. instruction $\mathbf{~}$ man price including earth bayonet TM8194.

HIGH VOLTAGE TRANSFORMERS Input 240 v ., output 2560 v . and 2820 v at I amp. Weight 75 Ib . Price $£ 15$.

## AUDIO OSCILLATORS

Range $0-200 \mathrm{kHz}$ in 4 ranges. Output voltage 1 micro volt to 12 volt. in seven ranges. Frequency check meter 60 and 400 Hz . Very good stability and low distortion. Contains thermostatically controlled heater. Supplied complete with leads circuit diagram etc.
condition. Price E 35 P.P. EI.

* MANY OTHER TYPES AVAILABLE

SOLARTRON OSCILLOSCOPE
5235.2

The best of the surplus scopes for $\mathbf{5 2 3 2}$, fully serviced and calibrated, compare the specification with others. Bandwidth specification with others. $\mathrm{DC}-10 \mathrm{MHz}$ at 3 dB . Sensitivity is $1 \mathrm{MV} / \mathrm{cm}$. Time Base 0.1 usec- $1 \mathrm{~cm} / \mathrm{sec}$ in 7 decades with fine control on each range. Uses C Core mains transformers/4 in. High resolution flat face PDA CRT and many other features make this scope very suitable for colour television servicing and many other applications. Price 652 P. \& P. $\mathrm{El} \cdot 25$

BARGAIN OFFER 6Y DC TAPE RECORDER MOTORS Type DM148.I. Fully screened * reversible * constant speed specially designed fors * Price only EI-75 P.P. 10p

SCHOMANDL FREQUENCY
METER TYPE FD I AND
CONVERTER UNIT TYPE FDM.I
Range I KHz to 900 MHz an approved standard for telecommunications equipment. Offered calibrated to manufacturers specifications.

## 20KV ELECTROSTATIC VOLTMETER UNIT

5 in. scale Ernest Turner Model 32 contained in polished wood case with HV input sockets. Only $£ 10$.

MARCONI I2 KHz QUARTZ CRYSTAL contained in B7G envelope with flying lead connections. Brand new only $62 \frac{1}{2} \mathrm{p}$ each.

MORGANITE GLASS ENCLOSED RESISTORS Value 2.5 k , meg ohms,
tolerance $10 \%$. $\mathrm{fi} \cdot 25$ per carton of four.

## WATSON MARLOW ORBITAL

 Specially designed for corrosive liquids etc. Rated output against 10 tr . head-110 G.P.H. direction of flow reversible. Supply 240 V. A.C. mains. Nett weight 14 lb . Supplied as new. Price $£ 12.50$.
P. \& P. 50 p. List $£ 22.50$.

Voltage and Current regulators-heavy duty rheostats-I ohm rated at 10A. Brand new by famous manufacturer, $62 \frac{1}{2} \mathrm{p}$
each. Also 1.5 ohm at $7 \mathrm{~A} ., 62 \frac{1}{2} \mathrm{p}$. p.p. $7 \frac{1}{2} \mathrm{p}$.

## MARCONI TF930

H.F. field strength measuring equipment. $18-125 \mathrm{mHz}$. $€ 65$.

MARCONI WAYE ANALYSER Type TF455E. $£ 125$.

ADVANCE L.I. RF SIGNAL
$300-1000 \mathrm{mHz} .660$.
AIRMEC 251 IOkV INONISATION METER. As new. 640 .

AVO UNIVERSAL BRIDGE
Type I, Slide Rule scale. 645.

## GALLENKAMP OVEN

TYPE OV400
This oven offered as new. List over $£ 240$. Our Price ONLY El25.


## SPECIAL OFFER

"INSULATION TESTERS" TYPE NO. II METROHM by famous British manufacturer. All solid state. No handles to crank. famous British manufacturer. All solid state. No handles 9 volt transistor battery. Simply press button for function. Runs off 9 volt transistor battery. Simply press button or function.
Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery
ready to work. For 250 volt pressure only. List Price $£ 19.50$. Our Price 66.00 plus $22 \frac{1}{2}$ p post/packing.


6 FT. SCANNER. 24V ELECTRICS
HEWLETT PACKARD
TRANSFER OSCILLATOR MODEL 540B, IN AS NEW

CONDITION
WITH HANDBOOK
P.U.R.

DOUBLE BEAM OSCILLOSCOPE SOLARTRON CD7II5/2
DC 7 MHz CALIBRATED
DC-7MHz CALIBRATED AI
CONDITION, ONLY €65 P.P. £2
RHODE \& SCHWARZ POLYSKOP
(SWOB 2)
With accessories for sale or hire.

Airmec portable 12 F signal generator. AM/FM Type (T212
Specially designed for fteld use for mains or 12 v operation Frequency range 85 kHz to 30 MHz . Accurate scale calibration. *Variabie ontput from 1 miero $V 100 \mathrm{mV}$

TEKTRONIX 551 PERFECT CONDITION

Marconi TF867 standard RF Signal lienerator, range 15 kHz to 30 MHz . Variable outnut from 4 micro V to 4 Volts. Extremely accurate attemuator, high output stability and discrimination make the generator very
sultable for precision measurements on networks and sultable for precision measurements on ne applied at
filters. Modulation up to $100 \%$ may be ap filters. Modulation uif to $100 \%$ may be applied at
400 or 1000 Hz . Built in crystal calibrator. Offered in first class condition. Price $£ 175$.

II5V 400Q I PHASE STATIC-INVERTORS
Made to very high standards. Small size yet handles up to $180 \mathrm{~V} . \mathrm{A}$.
BRAND NEW UNITS $€ 17.50$. P. \& $P 50$ P

## TEKTRONIX 5I5A

and
TEKTRONIX 524AD AVAILABLE NOW

Miniature solenoid driven wafer switches, type-Ledex single pole, 7 pos., 3 wafers. Primarily used for channel
switching in Radio-Telephones. Wafers may be sul)switching in Radio-Telephones, Wafers may be sul)-
stituted for any type. Solenoid voltage, 12 or 24 V . stituted for any type.
Brand new. $\mathbf{E} .50$ each, p.11. $12 \frac{1}{2} \mathrm{n}$.

CAMBRIDGE INSTRUMENT Co. Ltd. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate
Dynamometer A.C. Ammeter range 0 to 15 amps Cambridge Dynamometer A.C. test set $0.225 \mathrm{Watts} / 0-330 \% / 0-30^{\circ} \mathrm{F}$

Tinsley Universal Shunt type 4309 C
Tinsley Vernier Potentiometer type 4363E Auto
Foster Thermocouple potentiometer type $D X$
Digital Voltmeter Solartron LM902.2 four digit readout
Solartron A.C. Convertor L.M 903 matching unit for LM902
Hewlett Packard DVM 20 A.R four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable $0-1000$

## CANNON XLR AUDIO

PLUGS AND SOCKETS 3 POLE and 6 POLE AVAILABLE EX STOCK BRAND NEW

SOLARTRON VF252/NSL PRECISION AC MILLIVOLT METER Range 1.5 milli volt (far full scale deflection) to 15 volts in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models. Price only 675.

LOW VOLTAGE POWER SUPPLY To supply $12-15-20-24$ and 30 volts at continuous 5 amps with current control and ammeter employs siticon heavy duty rectification and high quality components very suitable for light duty plating and charing duties. 240 v . AC supply, fully fused. Small size only $10 \times 7 \times 6$ in. Offered brand new units. Price $\mathbf{E 1 2} \mathbf{5 0}$.

## MARCONI 1094 A/S

HF SPECTRUM ANALYSER
3-30MHz
LATE MODEL FOR SALE OR HIRE

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new. Only $37 \frac{1}{2} p$. Special price for quantities.

200-yard reels equipment wire, size 1/024, STC quality various colours. Brand new reels only 75p. P. \& P. $12 \frac{1}{2}$ p.
HUNTER MAGSLIPS 3 inch Series, Type E-I8-V/2. Very suitable for servo operation of hydraulic valves radar aerials
and other applications for 50 volt 50 cycle and other applications for 50 volt 50 cycle operation. Offered brand new in transit
boxes, at only $\in 3.25$ each. boxes, at only $\mathbf{\epsilon} \mathbf{3 . 2 5}$ each.

## MUIRHEAD PHASEMETER

 D.729-bm. Complete with supply and with manual. Price 6275.
## ADVANCE DC STABILIZED P.S.U. TYPE PM8

Fully stabilized power module PM8 15 to 30 volts 5 amps offered brand new, Price $£ 25$

50 DECO IMPULSE COUNTERS 4 DIGIT RESETT 10 Impulses per second. 27MA 22OV COIL AC/DC OFFERED BRAND NEW AT E2 EACH

10 CHAPELST. LONDON N.W. 1 Phone 01-723 8753

EIMAC SK-600A. Air spaced Valve Holders suitable for $4 \times 250$, etc. Power tetrodes, brand new, boxed, complete with clamps, screws; heavy silver plate finish.
E2.50.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment, the Catalogue Nos. 250 ohms. Complete with base, and the price is 65 . Limited quantity only available.
Also: 2203 A, 2200A, 2202 A.
-

SEARCH RECEIVERS AN/APR/4 Range $38-1000 \mathrm{mHz}$ with 3 RF tuning

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v ., frequency up to 250 MHz at 50 watrs. Small size only, 2 in. $\times \frac{7}{3}$ in. Offered
brand new, boxed. Price $£ 1 \cdot 50$, inc. P. \&P. - COMMUNICATIONS RECEIVERS COMMUNICATIONS Marconi CRI50. $2-60 \mathrm{MHz}$ as new.. 660 Hallicrafters S27C $110-220 \mathrm{MHz} .$. Lafayette HA600.
Reece Mace Double conversion
$60 \mathrm{KHz}-31 \mathrm{MHz}$
.

COAXIAL SWITCHES
American Manufacture
Suitable for aerial changeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn type 110 voc operation connections BNC and
Offered brand new, boxed. Price $£ 3.25$

Hilger \& Watts Microspin $\times$ Band Bridge Type W957. Microspin Proton Head Frequency Meter. Type FAZ08. Microspin Modulator. Type FA 210 . Microspin cm Wave guide directional couples, associated measuring equipment Units. Type FA 80 .
Hilger \& Watts Absorbance Convertor and many other items of interest offered. Brand new equipment.

LEAD.ACID EQUIPMENT
BATTERIES IOv 5AH. Transparent casing. Size $2 \frac{1}{2} \times 5 \times 7$ in. per box, complete with links and full instructions. Can supply voltages in the range from $2-20 \mathrm{v}$. Price $\mathbf{E 2 - 2 5}$, inc. P.\&.P.

Burndept RF Plugs still available. These hard to find plugs are used on a multitude of equipment, especially Londex aerial c/o relays. Offered new ex. equipment. 2 for 50 p , inc. p.p.

Nife traction Batteries Nickel Iron. 1.2 V per cell rated at 180 A.H. Sold in crates
of three cells or crates of five cells. 64 of three cells or crates of five cells. E4 per cell. Guaranteed best buy.

BT91-500R THYRISTORS 500 PIV Max rect. Current 16 amps. Guaranteed perfect. Price $\mathbf{6 l} \mathbf{- 2 5}$ each.

COLVERN HELICAL POTS
 10K 20 K ohms
30 K ohms PRICE EI•75

Wayne Kerr Impedance Bridge B521.
Price 645 . Electronic
signal sources.
PYE High lmp. DC Ampler PYE High Impedance DC Amplifier for measurements better than $\mathbf{2 0}$
voles centre zero. Price $\mathbf{E 5 6}$.
Phillips GM 60101 mV FSD to 300 V Phillips GM 6010 mV 12 ranges. Price $£ 45$.
Phillips PM 25201 mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to 1 MHz . 12 ranges R
Price E45.
Dawe Model 616A transistorised VoltDawe Model 616A transistorised. In 10 meter $\begin{aligned} & \text { ranges. } £ 27 \text {. }\end{aligned}$
Levell Model TM2A transistor AC Voltmeter 1.5 mV FSD to 500 valts. 622. Solartron VF-252. AC millivoltmeter 1.5 mV for FSD to 15 V 30 M ohms impedmV or Price
ance. 65 .
H. W. SULLIVAN STANDARD
AIR SPACED CONDENSERS

Capacitance range 0 to 100 pf fully screened with engraved vernier subdivided into 100 equal divisions complete with vernier index and original manu-
facturers seal offered brand new, at facturers seal
only $\mathbf{E 2 5}$ each.


## AERO SERVIGES LTD



NEW ${ }^{\text {TW.C. }}$ MULTIMETERS FROM RUSSIA TYPE 4318-low seneitiv: lty
sturdy
instrament
o.p.v.) extremely
for general enectrical use. D.C. ranges: o.3-1.5.7.5-30-$60-150-300-600-900 \mathrm{~V}$ and
$75 \mathrm{mV} ; \quad 300 \mu-1.5-6.15$.
 $60 \cdot 100.300-600 \cdot 900 \mathrm{~V}$.
$1.5-6-15-60-150-600 \mathrm{~m}$

Reistance: $0.2-3-30 \mathrm{k} \Omega$. Accuracy: D.C. $11_{0}^{\circ}:$ A.c. PriCE,
and leads
TYPE 4313~-hlgh senstivitty for general electronle and TV-radio Separtivity: 20,000 .
D.C. ranges: $75 \mathrm{mV}-1.5-3-7.5-15-30-60-150-300-600 \mathrm{~V}$
A.C. ranges: $1.5-3-7.5-15-30-60-150-3000-600 \mathrm{~V}$.

600 A $-3-15-60-300 \mathrm{~mA}-1.5 \mathrm{~A}$
Resistance: $0.5-5-50-500 \mathrm{k} \mathrm{g}$.
Capacity and Transmiasion level acalea.
Accuracy: with carrylag case and leade 210.50 .
Both instruments have knife edge pointers and mirror scales.
WHEN ORDERING BY POST PLEASE ADD $10.12 \frac{1}{2}$ (2/6) IN EFOR HANDLING AND POSTAGE
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.


MINIATURE WIRE ENDED SILICON

154002	100 p.i.r.	1A		,		.	0
1 1004	400 p.is:	1 A	$\cdots$				0
IN4006	$8(10)$ p,i.v.	1A	$\cdots$	.	.		0

MVIOB LIGHT EMITTING DIODE To 18 outline. Brightuess 500 Ft. L at 510 ma. Forwarl woltage
1.65 to $2 V$. spectral length 6300 to 7000 A (red light). Lens PRICE 81.05 plus 0.10 P. P.

## INTEGRATED MONOLITHIC DUAL

Two identical amplifiers in 14 -pin dual-in-line epoxy parkage


MINIATURE CERAMIC CAPACITORS
\% tolerance: ${ }_{20}^{25 V}$ D.C. WOR-:33-39-47-56-68.-1115-120.150-80-220-270-330-320-27-370-5 -39


TWO NEW OSCILLOSCOPES FROM RUSSIA


CI-16 DOUBLE BEAM
OSCILLOSCOPE

5 me/s passhand. Separate rectangular 5 in. $\times 4$ in. cathode ray tube. Calibrated triggered sweep ec. per cni. Free rumning time base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time base calibra| tion and amplitude eali- |
| :--- |
| brator |
| $£ 87 \cdot 50$ | Frator details on request Full serricing facilities and



OUR NEW CATALOOUE 1970/197t 18 NOW READY Please senil s.a.E. FOR YOUR free copy.

## FULLY GUARANTEED <br> Zeat


$\qquad$
远



















${ }^{\mathrm{PCH}} \mathbf{~} 200$ $\begin{array}{ll}\text { PCLA } & 0.70 \\ \text { PCLE } & 0.30 \\ \text { P4 } & 0.35 \\ \text { PCLE1 } & 0.85\end{array}$	PCLL


 NNNNNNNNN


## Head Office:

## 44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD. LONDON W.2. Tel: 5808403

## WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.
A.R.B. Approved for inspection and
release of electronic valves, tubes
release of electronic valves, tubes,
klystrons, etc.

## APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: 88 per single col. inch
LINE advertisements (run-on): 45p [9/-] per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25p
SERIES DISCOUNT: $15 \%$ is allowed on orders for twelve monthly insertions provided a contract
is placed in advance.
Wireless World, Dorset House, Stamford Street, London, S.E.1.
Wireless World, Dorset House, Stam
No responsibility accepted for errors.

Advertisements accepted up to THURSDAY, $\mathbf{x} 2$ p.m., 6th MAY, for the JUNE issue, subject to space being available.

## UNIVERSITY OF SURREY Experimental Officer in Electronics

(Mechanical Engineering Depariment)
An Experimental Officer is required for work on the development of a new technique for velocity measurements in highly turbulent flows. This work will involve the development of advanced analogue and digital techniques for the manipulation and storage of transducer signals and it would be useful if applicants had experience with the design and development of integrated circuit logic systems.
The post is unusual in that it offers the opportunity to gain experience in other fields such as fluid mechanics and heat transfer although no previous experience in these fields is necessary.
The post is initially for a two-year period with a salary in the range from $£ 1902$ to $£ 2592$. Qualifications: HNC, HND or BSc.
Applications should be sent to The Staff Officer, University of Surrey, Guildford, Surrey.

## LEEDS (ST. JAMES'S) UNIVERSITY HOSPITAL MANAGEMENT COMMITTEE GRADE III MEDICAL PHYSICS TECHNICIAN

(Salary £1,356-£1,764)
Interesting post in busy Department. Applicants should have at least three years experience in electronics as applied to medicine in St. James's Hospital has recently acquired University status and the Department is going through an intensive process of development. The appointment will be regarded as Deputy Head of the Medical Electronics Department. Applications stating age, experience, etc.; and the names of two referees to the Group Secretary, St. James's Hospltal, Leeds LS9 7TF, or Tel. Leeds 33144, Ext. 288, asking for Mr. Stephenson. 1121

## SCHOLARSHIPS AWARDED BY THE INSTITUTION OF ELECTRICAL ENGINEERS

The Council of the Institution of Electrical Engineers will consider for award this year Undergraduate and Postgraduate Scholarships with a maximus value of £600 per annum.
The closing date for the receipt of applications is 3rd May, 1971.

Full particulars of the conditions governing the award of these Scholarships may be obtained from:

The Secretary, The Institution of Electrical Engineers, Savoy Place, London. WC2R OBL.

## [4.

## RESEARCH AND DEVELOPMENT ELECTRONICS ENGINEER

Applications are invited for this appointment at the Wyeth Institute of Medical Research. Taplow. The successful applicant preferably will have experience in the application of advanced electronic principles to biological sciences and will be expected to design, develop and construct prototype apparatus for medical research.

Please apply to the Personnel Officer.
John Wyeth and Brother Limited,
Huntercombe Lane South,
Taplow, Maidenhead, Berks.
SL6 OPH
Telephone Slough 28311


## INSTRUMENT ENGINEER

Applications are invited for a new permanent post of Instrument Engineer in the Industrial and Forensic Science Department of the Ministry of Commerce.

Candidates must hold at least an ONC or City and Guilds Certificate in relevant subjects and must have had good experience in the design, construction and maintenance of a wide range of electric, electronic (solid state) and electromechanical equipment. Preference will, however, be given to suitable candidates possessing an HNC, a degree in electrical or electronic engineering or an equivalent professional qualification. The successful candidate must be prepared to equip and run a small workshop in a busy general laboratory employing chemists and biologists engaged in a technical advisory service to industry. the scientific investigation of crime and water quality control.

The salary scale is at present-

$$
£ 1643 \quad £ 1685 \quad £ 1728 \quad £ 1781 \quad £ 1834 \quad £ 1897
$$

Entry point will be determined according to experience and qualifications.
Please send now for an application form and further particulars to the Secretary, Civil Service Commission, Clarendon House. Adelaide Street, Belfast, BT2 8ND (tel 27963 ext 25) quoting SB31/71/135. Completed application forms must be returned by 1 June 1971.

## WORK AS A RADIO TECHNICIAN ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently.
We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.
Salary scale: $£ 1.161$ (age 21) rising by increases to $£ 1.590$ plus a London Weighting Allowance. Promotion to Telecommunications Technical Officer will bring you more.
For full details of this worthwhile and unusual job, write to:

## METROPOLITAN POLICE

Room 733 (RT/WW), New Scotland Yard
Broadway, London, SW1
or telephone 01-230 1212 extension 2605

## TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require Test Engineers for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures.

Reply to:

# PROWEST ELECTRONICS LTD., Boyn Valley Road, Maidenhead, Berks. <br> Telephone: Maidenhead 29612 

[^13]
## NORTHWICK PARK HOSPITAL,

Watford Rcad, Harrow, Middx. HA1 3UJ Tel: 01-864 5311

## ELECTRONICS TECHNICIAN

## Salary Scale $£ 1,446-£ 1,854$

The hospital is new and is closely allied with a clinical research centre. Eventually there will be over 800 beds. The current vacancy involves the servicing and calibration of a wide range of electronic equipment used for medical, surgical and engineering purposes, and the successful applicant will work closely with medical and other professional staff.
Good staff facilities and a pleasant working atmosphere. Active social club. Temporary accommodation available.
For further details contact Mr. J. Sully, Staffing Officer.

## RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.

Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

## Salary Scales

During training with free accommodation provided at the Training School:
Age $21 \quad £ 848$ per annum

. 22	$£ 906$
- 23	$£ 943$

. 24 £981
25 or over $£ 1.023$
On successful completion of course:
Age $21 \quad £ 1.073$ per annum
. 22 f 1.140
$\begin{array}{ll}. \quad 23 & £ 1.207 \\ . .24 & £ 1.274\end{array}$
. 25 (highest
agepoint) $£ 1.351$
then by 6 annual increments to a maximum of $£ 1.835$ per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.
Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years operating experience or PMG qualifications. Preference given to those who also have GCE ' $O$ ' level or similar qualification. Exceptionally well qualified candidates aged from 36-40 may also be considered.

Interviews will be arranged throughout 1971.

Application forms and further particulars from:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ. Tel: Cheltenham 21491 Ext 2270 92

## PETERBOROUGH TECHNICAL COLLEGE

Required for September 1st, 1971

## LECTURER GRADE I

to teach Radio and Television Servicing subjects.
Applicants should have relevant qualifications and practical experience.
Salary $£ 1,230$ to $£ 2,075$ per annum, starting point according to qualifications and experience. Application forms obtainable from:

## The Principal,

Peterborough Technical College,
Park Crescent, Peterborough, PE1 $40 Z 1149$

## Colour Film Services <br> 22 Portman Close, London, W. 1 <br> have a vacancy for an

## ELECTRONIC ENGINEER

with experience in Sound installation and maintenance. Minimus qualifications required O.N.C. The position is one of responsibility and the applicant should therefore be capable of working unsuperk 2000 but will not be less than El 1800 p.a. Applications stating qualifications etc., should be made to Mr. J. W. L. Watson, Electronics Department, at 10 Wadsworth Road, Perivale, Middx.

## Transformer Designer (Radio \& Television)

We, at Rank Bush Murphy, are renowned for the quality of our products, a quality that is seen in the high standard of the components used in our equipment. The Components Laboratory team plays a key part in maintaining this standard and we are now looking for a man, experienced in transformer and wound components design to join them.
The Designer will initiate design for low power transformers, chokes, and other wound components, and be responsible for the assessment of magnetic material, winding components and other insulating materials. Aged $28+$ he will have H.N.C. or similar, and will be looking for a salary of up to $£ 2,000$ p.a. In addition he will receive fringe benefits as generous as one would expect from an organisation of our strength and profitability.

To apply, send details of your career to date, quoting reference $W W$ to:


David Jux, Rank Bush Murphy Ltd,
Power Road, Chiswick, London, W.4, or telephone 01-994 6491.
RANK BUSH MURPHY



## ...then you could become a Customer Engineer at IBM.

Wherever there are computers, people are needed to keep them running. These people are known as either Service Engineers, Field Engineers or Maintenance Technicians. Because of their close involvement with the customer. IBM calls them Customer Engineers.

Today, computers are becoming essential to industry. science, government and commerce. And no computer manufacturer can operate without Customer Engineers. So the field is wide open, and this could be your opportunity to move into todays major growth industry.
What you will do
There are four groups of Customer Engineers. Three are in Data Processing and cover between them the entire range of D.P. equipment from card punching and Teleprocessing to highly sophisticated computer systems. The fourth group is the Office Products division which covers basic electric typewriters and typewriting systems, dictating equipment and composer systems. Whichever group you may join you will be given a first class training.

## Qualifications

You should be between 20 and 35. educated to 'O' Level standard. In addition to a knowledge of basic electronics. a good mechanical aptitude is also necessary as part of the work involves repair and maintenance of the electro-mechanical devices. For engineers who will be trained for computer systems, a basic knowledge of electronics is also necessary. If you also have a logical mind then you could have a career as a Customer Engineer with IBM.

## Your prospects

Starting salaries are excellent. IBM offers many fringe benefits such as non-contributory pension scheme. free Life Assurance and an excellent career-path. And it is IBM policy to promote from within.

## Write now

Ihterested? Then write with details of your age, qualifications and experience to: Mr. D. J. Dennis, IBM United Kingdom Limited. 389 Chiswick High Road, LondonW.4. quoting reference WW/958.

# BROADCASTING ENCINEZ THE GAM:IA 

\author{

* Salary up to $£ 2454$ <br> * Low taxation <br> * Education \& outfit allowances <br> * 25\% gratuity <br> * Subsidised accommodation <br> * Contract 24 months <br> * Appointments Grant payable in certain circumstances
}

Apply to CROWN AGENTS,'M' Division, 4 Millbank, London, S.W.1., forapplication formand further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/710345/WF.

## Engineers <br> Do you want to get into sales?

We require a development engineer without previous sales training for an internal sales engineer. This position offers excellent scope for personal advancement into the sales field. Salary negotiable plus special bonus and pension schemes.

Please 'phone T. Jermyn or P. Baker at Sevenoaks (0734) 51174

Jermyn Industries Vestry Estate Sevenoaks Kent
JERMYN

## ELECTRONICS TECHNICIAN

Experienced Electronics Technician required to assist in development, maintenance and construction of a wide range of research equipment. Appointment will be to Junior Technical Officer grade $£ 769$ to $£ 1,631$, plus London weighting.
Minimum Qualifications:
2 'A' Levels or ONC if under 22
HNC or equivalent if over 22.
Apply to Mr. A. J. Flack, Medical Research Council Biophysics Unit, Department of Biophysics, King's College, 26-29 Drury Lane, London, W.C.2, or ring 8368851.

## IF YOU ARE A <br> RADIO/T.V. ENGINEER

We are interested in making a change, and have vacancies for servicing and constructing High Power Studio Electronic Flash Equipment; used in the Photographic field.
Letters only to:-
STROBE EQUPMENT LTD., 56 Turnmill Street, London, E.C. 1


## LADY ENGINEERS

We require one of those lady engineers who complain that we males never want to employ them. She will take charge of a small electronic service department at Chertsey. Dealing with repairs of solid state circuits, and must be fully conversant with semi-conductor circuitry.
Staff appointment. 40 -hour week. Salary $£|150-£| 350$.
CASS ELECTRONICS LTD.,
White Hart Yard, Guildford Street, Chertsey, Surrey.
Chertsey (09328) 6348I.

Required by the Posts \& Telecommunications Dept. to be responsible for the operation and maintenance of all the technical equipment in the studio building, which includes a main control room, outside broadcast \& recording equipment, the air conditioning plant and an emergency diesel generator and to assist with the training of local staff.
Candidates, 25-50 years, must possess a recognised qualification in telecommunications such as the City and Guilds Intermediate Certificate or O.N.C. They should preferably have experience of medium and shortwave transmitter operation and of maintaining and operating broadcast studio equipment in a tropical country.

## Sea-going Radio Officers can now make sure of a shore job and good pay.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,080-£ 1,360$, depending on age, with annual rises up to $£ 1,850$. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a Radiocommunication Operator's General Certificate issued by the Ministry of Posts and
Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless
Telegraphy,
I.M.T.R.

Wireless Telegraph Section (W.W.)
Union House,
St. Martins-le-Grand, London, ECIA IAR.


OPERATE
TELEVISION UNIT FOR HORSERACING
and require a

## TELEVISION ENGINEER

for operation and maintenance of the MCR

QUALIFICATIONS
$\star$ HNC, City \& Guilds or equivalent.
$\star$ Experience in operation and maintenance of outside broadcast television equipment.
$\star$ Willing to travel.

## OPPORTUNITIES

$\star$ The Company is planning further expansion in the fields of television and electronics.
$\star$ Post carries A.C.T.T. category B salary.
$\star$ Expenses paid on location.
Applications stating age and experience should be sent to:
RACECOURSE TECHNICAL SERVICES LTD., 88 Bushey Road, Raynes Park, London, S.W. 20.


## AER LINGUS•IRISH

## Simulator Maintenance Technicians <br> DUBLIN

If you have:
$\square$ a sound knowledge of electronics
$\square$ experience in the maintenance of aircraft avionic systems or computers
Aer Lingus would like to hear from you. If you have experience in the maintenance of flight simulators, your application will be even more welcome.

At Dublin Airport you will enjoy
$\square$ outstandingly good working conditions
$\square$ generous travel concessions
$\square$ superannuation scheme
Salary commensurate with qualifications and experience.

Please write, giving details of age, qualifications and experience to:

[^14]
## TECHNICIAN/ TECHNICIAN ENGINEER <br> .educational television unit

Required at Guildford County Technical College to join an existing team in an expanding College Television Service. The person appointed will assist the lecturer-in-charge and supervise the installation, operation and maintenance of studio and mobile equipment as well as initiate the development of new facilities. Experience with development of new faciities. Experience with helical-scan V.I.R. equipment essential, together
with some knowledge of studio operational with some knowledge of stud
Salary will be on the N.J.C. scale with additional allowance depending on qualifications and experience. Desirable minimum qualifications are the final Radio and Television Servicing and Colour Television Servicing Certificates (C.G.48) General relocation assistance in approved cases. Application form and further particulars from the Vice-Principal, Guildford County Technical College, Stoke Park, Guildford, Surrey, on receipt of S.A.E.

## CRANFIELD INSTITUTE OF TECHNOLOGY

invites applications for appointment as

## RADIO ENGINEER

in the Department of Flight to maintain the YHF/UHF communication, navigation, and instrument landing system equipment.
$£ 30 \cdot 30$ for a 40 -hour week of five days, rising with service to $£ 32 \cdot 65$ p.w. Local Government superannuation, excellent working conditions. 3 weeks annual holiday increasing to 4 weeks, sick pay scheme. Subsidised transport over a wide area.

Application form from Staff Records Officer, Cranfield Institute of Technology, Cranfield, Bedford.

## CITY AND COUNTY OFBRISTOL BRUNEL TECHNICAL COLLEGE Department of Marine \& Aero-Electronics Applications invited for post of SENIOR TECHNICIAN

 (Grade T.3)Candidates should be over 21 years of age and hold Intermediate City \& Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft. Starting salary in range $\mathbf{£ 1 , 0 8 9 -} \mathbf{£ 1 , 2 7 2}$ p.a., according to age, experience and qualifications.
Further particulars and application forms from Registrar (S), Brunel Technical College, Ashley Down, Bristol, BS7 9BU, by quoting reference 71/5. Closing date 3rd May.

## BUSINESS OPPORTUNITY



## WALSALL AND STAFFORDSHIRE TECHNICAL COLLEGE <br> LECTURER GRADE 1

TELECOMMUNICATIONS Applications are invited for the following post from the 1 st September, 1971

LECTURER GRADE 1 in
Applicants should be prepared to teach Telecommunication Principles and Telephony to the
Finat Year of the City and Guilds Course in Telecommunication, Course C.G.L.I. No. 49, and to assist in the organization of the Telephony Laboratory.
Qualifications should include the Final Certificate of the C. \& G. Course in Telecommunications Technicians and Post Office experience is essential. SALARY for the above post will be in accordance with the Burnham Further Education Scale, viz. Lecturer additions for education and training.
APPLICATION FORM and further particulars may be abpiained by applying to the Principal, Walsall and Staffordshire Techinical College, St. Paul's Street, Walsall, WS1 1 XN. Applications should be returned by Friday, 7th May, 1971. Assistance with cost of removal will be granted in approved cases.
R. D. NIXON

Secretary to the Joint Education Committee

## BRUNEL UNIVERSITY DEPARTMENT OF PSYCHOLOGY <br> A TECHNICIAN

with experience of electronics and an interest in working with animals in the field of physiological psychology is required for this new post. An initial training period will be arranged as appropriate and the successful candidate will help plan the animal accommodation.
Holidays start at two weeks four days per year (the University also closes for Easter and Christmas weeks).
Salary within the scale f1011-£1461 per annum plus $\mathbf{£ 7 5}$ London Weighting.
Postcard for application form to Establishment Officer, Brunel University, Kingston Lane, Uxbridge, Middlesex quoting reference PSY/1, or telephone UXBRIDGE 37188, extension 35. Closing date: 30th April, 1971.

1133

## NORTH OF SCOTLAND HYDRO-ELECTRIC BOARD

## Laboratory Technician

Technician required to join the Board's Research Laboratory at Pitlochry. Preference will be given to candidates holding, or studying for, their H.N.C. in Electrical Engineering. Work will involve construction and testing of electrical/electronic equipment but the successful candidate will be given opportunities in a broad field of research covered by the Board's activities.
Salary within the range f1011-f $1338+$ £60 p.a. N.J.B. Schedule "A" (Area Board) Grade 15.
The post is superannuable.
Application forms, obtainable from the Chief Personnel Officer, 16 Rothesay Terrace, Edinburgh EH3 7SE, should be returned by Wednesday 28th April.
$\qquad$


SITUATIQNS VACANT
PULL-TIME technica! expertenced salesman re
quired for retall sales: write giving detalls of age pULL-TIME technical experienced salesman re previous experience, salary required to-The Manager,
Henry's Radio, Ltd., 303 Edgware Rd., London, W. 2. A SENIOR TECHNICIAN is required in the Depart for ment of Mechanical and Production Engineering for work on electronic and mechanical equipment of instrumentation for various research projects within the Department. Scope will be given to the man with initiative in this area. In addition the Senior Technician will be responsible for the routine maintenance of electronic instruments. Preference will be given to a man with experience in precision
mechanical engineering, besides hls electronic back-

## ADM BUSINESS SYSTEMS LIMITED

 Require
## SERVICE ENGINEERS

To cover their range of desk top calculators
Vacancies exist at our London (Sunbury, on-Thames), Manchester (Sale, Cheshire) and Birmingham Branches. Interviews will be arranged at the above centres for workshop engineers. Applicants should have a sound knowledge of electronics or some previous experience of the repair of desk top calculators. Salary according to age and experience.
Applications giving full details of qualifications and experience to:

## R. Wardlaw, Esq.,

ADM Services Ltd.,
ADM House, Windmill Road,
Sunbury-on-Thames, Middlesex.
1146
ground. Salary within the scale £1,493- £ 1,883 per annum according to age, qualifications and experience
(minimum age 21). Apply in writing to the Secretary and Clerk to the Councll, Polytechnic of the South Bank, Borough Road, London. S.E.1, giving full particulars of age, qualifications and experience and DRAUGHTSMEN. Mechanical and Electrical required $D_{\text {by expanding electronics company specialising in }}^{\text {RA }}$ lighting control and audio visual products. This position is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd.. 47 Old Woolwich
Road, Greenwich. London, S.E.10. Tel. 858 4764. RXPERIMENTAL OFFICER. Reseerch and developEXPERIMENTAL OFFICER. Required to join a Unit carrying out biophysical research at Cambridge. Applicants should possess H.N.C., degree or equivalent qualification and appropriate practical experience. Dutles will include the design and development of
advanced electronic equipment for biological research advanced electronic equipment for
and some administration as assistant to the Director, Dr. J. E. Treherne, Salary (minimum age 26) will be $\mathrm{E}_{1}, 725$ rising by six annual increments to $£ 2,177$. In addition, a non-pensionable ailowance of $5 \frac{1}{2} \%$ of basic salary will be payable in respect of superannuation contributions. An electronics technician will be
appointed to act as assistant. Applications giving ful appoils of qualifications and previous experience should be sent to: The Director, A.R.C. Unit of Invertebrate Chemistry and Physiology, Department of Zoology University of Cambridge, Downing Street, Cambridge, MARINE Radio Engineer with experience of R.T. installations. Must be based in London area but able to work anywhere without supervision. Salary $£ 1,300-£ 1,500$ according to experience. Telesonic Ltd. 01-387 7467. [1101
BOADCASTING ENGINEER,
from responsible position abroad, seeks senior position in broadcasting. Many years' experience in studio operations in commercial and B.B.C. TV and colour experience, especially In Video-Tape. Available for immediate Empless World. PROFESSIONAL ENGINEER (40) electro-mech. Pramiliar with metric system, seeks position for design and construction of high-quality tape-deck and ass. equipment.-B. Tary, 14 Maldon Rd., Weling-

## ARTICLES FOR SALE

A MPLIFIER A2l Series Two J. E. Sugaen. Brand 1128 Wireless World.
$\mathbf{R}^{\text {UILD IT }}$ in a DEWBOX quality plastics cabinet. $\mathrm{B}_{2}^{\text {UiLD }} \mathrm{in}, \times$ in a DEWBOX quality plastics cabinet.
in. $\times$ any length. D.E.W. Ltd. (W) Ringwood Rd., FERNDOWN. Dorset. S.A.E. for leaflet Write now-Right now.
COLOUR, UHF and TV SERVICE SPARES. SPECIAL OFFER, leading Brit. maker's Colour Monitor
Panels designed to BBC standards. Pal fiter and Panels designed to BBC standards. Pal flter and
delay $\mathbf{£ 6}$, chrominance $\mathbf{\& 6}$, luminance $\mathbf{~} 4.50$, encoded
 35p). Also quantity Colour TV Camera Panels,
Plessey colour scan coils $£ 5.75 \quad \mathrm{P} / \mathrm{P}$
$\mathbf{3 5 p}$, convergence coils $£ 3.80 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$, Blue lateral $£ 1 \cdot 25 \mathrm{P} / \mathrm{P} \quad 10 \mathrm{p}$ (or
complete set $£ 10 \mathrm{P} / \mathrm{P} \quad 50 \mathrm{p}$ ) Leading Brit. maker's complete set $£ 10 \mathrm{P} / \mathrm{P}$ 50p). Leading Brit. maker's
surplus, colour scan colls $£ 3 \cdot 50 \mathrm{P} / \mathrm{P} \quad 35 \mathrm{p}$, convergence coils $£ 2.75 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. Colour LOPT assembly incl. EHT output and focus control $£ 4.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, luminance/ chrominance panel $£ 1 \mathrm{P} / \mathbf{P} 25 \mathrm{p}$. Integrated transistd. decoder unit incl. circuits $\mathrm{f} 1 \cdot 25$ P/P 10p. SPECIAL OFFER, leading Brit. maker's surplus 625 single
standard TV chassis, latest design, almost complete, standard iv chassis, latest design, aimost complete,
includes transistd IF stages, frame and line time bases, transformers, etc., thcl. circuit, $£ 8 \cdot 65 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. B9D valve bases for colour valves and PL500 series 12 p P/P 5 p . UHF tuners transistorised, rotary slow motion drive or push button $£ 5 \cdot 25 \mathrm{P} / \mathrm{P} \quad 25 \mathrm{p}$. Inte-
grated UHF/VHF 6 position push button transistorised grated UHF/VHF 6 position push button transistorised
tuner easily adjusted as 6 position UHF tuner, incl. tuner easily adjusted as 6 position UFFF tuner, incl. £4.75 (or salvaged $\mathbf{£ 2 . 5 0 )} \mathbf{P} / \mathrm{P} \quad 25 \mathrm{p}$. MURPHY 600 / 700 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories,
housed in spectal cabinet plinth assembly, $£ 7 \cdot 50$ or housed in special cabinet plinth assembly, $£ 7.50$ or
less tuner $£ 3 \mathrm{P} / \mathrm{P}$ 50p. SOBELL/GEC $405 / 625 \mathrm{switch}-$ able IF amplifler and output chassis, $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Ultra 625 IF AMP chassls and circuit $£ 1.50 \mathrm{P} / \mathrm{P} \quad 30 \mathrm{p}$. Philips 625 IF AMP panel and circuit, \& 1 P/P 30p.
SOBELL/GEC 2015 series $405 / 625$ printed circuit IF SOBELL/GEC 2015 series $405 / 625$ printed circuit IF panel incl. circuit $£ 1.95 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. UHF list avallable on request. VHF tuners AB miniature with UHF
injection suitable K. Kaird, Ferguson 75 P P/P 30p, Cyldon C $£ 1$ P/P' 30 p . Pye 13 ch . incremental
£ $1.25 \mathrm{P} / \mathrm{P}$ 30p. Ekco, Ferranti, Plessey push button tuner with UHF injection $£ 1 \cdot 50 \mathrm{P} / \mathrm{P}$ 30p. New flre30 p . Philips export havi Marconi type $1 \cdot 90 \mathrm{P} / \mathrm{P}$ 30p. Philips export continental turret tuners 75p hannel coils. LOPTs, Scan Coils FOPTs selection for most popular makes. Surplus ultra, Murphy $110^{\circ}$ Scan colls $75 \mathrm{p} P / \mathrm{P}^{20 p}$. Sobell frame o/p transformers Ferguson 30p. Transistorised time base panel for
 $M$ set back booster, mains operated $£ 7.90$. Wolsey masthead amplifler power unit
Surplus BBC2
Belling Lee "Skyline"
distribution 172 WEST END LANE, LONDON, N.W $\mathbf{~ L}$ (Callers only).-MANOR SUPPLIES, or W. Hampstead Tube Station), MAIL ORDER: 64 01-794 8751 MANOR DRIVE, LONDON, N.W.11.

## COUNTY COUNCIL OF ESSEX

## EDUCATION DEPARTMENT

## RCA Type TR4c Television Tape Recorder

The Authority wishes to dispose of the above broadcast standard recorder purchased in 1967 .
The equipment includes two 5 mil. air bearing headwheels both recently re-worked to 150 hour rate.
Hour meter reads less than 300 . 'Pixlock' and A.T.C. incorporated. Wired to take colour and editing modules. 2 audio record and play channels tapes. 20 empty spools. Further details and appoint ment to view from The Visual \& Aural Aids Officer County Gardens, Rainsford Road, Chelmsford Tel: Chelmsford 54248.
Forms of tender obtainable from the County Supplies Officer, Westway, Chelmsford Council, Ceturned to the Clerk of the County envelope provided which should bear no evidence of the sender's name or organisation

1122
DAWE ANALYSER 1410A. 6 ranges. Manual $£ 15$. 32 Glensliesk Park, Dunmurry, Belfast. E.M.I. 4 decade resistance boxes up to $99.99 \mathrm{k} \Omega$ tol. Dol. $2 \%$ (P.E.T. capacitor) \& 8 each. NEW, guaranteed. Middx. Tel 01-759 0039. Travellers's Way, Hounslow.
HEAVY DUTY E.H.T. mains transformers 2,000-0-
 TMPULSE ELECTRONICS power supply heart in Dle30V A.C. to give full regulated $0=25$ V D.C. at up to 2A. Overcurrent protected at $2 \cdot 5 \mathrm{~A}$. only $£ 9.62$. Suitable transformer $£ 3.09$ or both for $£ 12$. Fifteen volt
1 A version $£ 8.37$, trans. $£ 1.96$ or both $£ 10$. S.A.E. for list of new test gear Impulse Electrontes, 106
Howard Road, London, E.17. NEW CATALOGUE No. 18, containing credit vouchers surplus electric and mechanical components, price $22 \frac{1}{2}$, post free. Arthur Sallis Radio Control Ltd., 28 Gardner

CTAL VALVES C.R.T. 6EP31, Pots, Edge connectors, carbon and W/W Resistors, Mains waterproof
couplings. S.A.E. for lists. 128 Elincroft Road, Ipswich. Suffolk.
POWER Supply, 240v. single phase to 110 v .40 amp . lating Unit 240 fairground or amusement park, $x 68$ D.C., 886 ; Emergency Lighting Unit, 240 volt giving £ 32 .-Kingston Electrical Supplies, 134 London Road, Kingston Upon Thames, Surrey. Tel, 01-546 7534, [1141
$Q^{\text {UANTITY AKG } 224 E}$ microphones, Uher and Q Ampex stereo mixers, ${ }^{\prime \prime}$ and ${ }^{\frac{1}{2} \prime \prime}$ tape, and
assoctated equipment. S.A.E. for list. Box W.W. 1112.
Wireless World.
SOLARTRON POWER UNIT, $£ 7.50$ Marconi devia${ }_{\mathbf{E} 7.50}$ Stion meter, $£ 7.50$, Clystron oscllator $1-3^{\prime} 5 \mathrm{Ge} / \mathrm{s}$ oscillator with power supply $£ 5 \cdot 00$, variable delay audio $0-9$ micro seconds, cost $\mathbf{x} 900$. What offers? Samwell Hutton wobbulator, model 41 B \&22.00, Marconi B.F.O. model TF195L
tor
TF144G/4
£ 20.00 , Airmec tor TF144G/4 $\quad £ 20 \cdot 00$, Airmec Frequency meter. type
$265, ~ £ 10 \cdot 00$. Airmec Wave analyser, type 853 £ 7.50. $\begin{array}{lll}\text { Furzehill stabllised power supply type P300. } & £ 7.50 .\end{array}$

TAME these db's . . Plug in professional quality
 details Cathedral Sound W.W. "Fourways," Morris
Lane. Halsall, Lancs. L39 8SX. VaCUUM pumps, coating plant, pyrometers, recorders Barrett, 1 Mayo Road, Croydon. CRO 2QP, Surrey.
Phone 01-684-9917.
$\mathbf{V}_{\text {verter }}^{80-180} \mathrm{MHz}$. Integrated receiver, tuner, conconductor. Comprehensive kit $£ 4$ post pald or se seml free literature enclosing s.a.e. Johnsons $\left.\begin{array}{l}\text { (Radio) } \\ \text { worcester, WR1 2DT. }\end{array}\right]=$ (99
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Reunits, $f$ 35. Toolex, 6 Warwick Close, Hertford (4856).

## TEST EQUIPMENT - SURPLUS

 ANDSECONDHANDSIGNAL generacors, osch mopes, outplt meters, wal tc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ash ille Old Hall, Ashville Rd., London, E.11. Ley, 4986
TYPE 661 Tektronix Sampling Osciloscopes, Pulse Pulse Generators all fully maintained.-Write Box
WW 1138 or ring Winchester 4433 Ext. 6398 or 384 .

RECEIVERS AND AMPLIFIERS
SURPLUS AND SECONDHAND
SURPLUS AND SECONDHAND


## NEW GRAM AND SOUND

 EQUIPMENTGLASGOW.-Recorders bought, sold, exchanged cameras, etc., exchanged for recorders or vice-
versa.-Victor Morrls, 343 Argyle St., Glasgow, C. 2.

## TARE RECORDING ETC

F qualuty, durability matter, consult Britain's oldest tapes. Excellent tax-free fund raisers for schools Modern studio facilities with Steinway Grand.-Sound News, 18 Blenheim Road, London, W.4. 01-995 1661. [28
CPARES for discontinued Tape Recorders and SPRRES for discontinued Tape Recorders and King (Films) Limited, 15 Bond Street, Brighton YOUR TAPES TO DISC.- $£ 6,000$ Lathe. From $£ 1.50$ I. Studno/Location Unit. S.A.E. Leaflet. Deroy Studios,
High Bank, Hawk St., Carnforth, Lancs.

## FOR HIR

FOR HIRE CCTV equipment, including cameras, F monitors, video tape recorders and tape-any period,

## HIGHEST CASH PRICES for good-quality Tap

 2185. ISOLATION Transformer and Rectifier Set. Secondary single of three phase output from primary. Inpu set to suit above. Young \& Power Ltd., \& Station Road, Abingdon, Berkshire. Tel.: Abingdon 3772 .NaGARD OSCILLOSCOPE types DT 103 and
DE DE : 03A circuit diagrams and workshop manuals
required. Kitrick, 31 Barnway, Wembley, Middesex required. Kitrick, 31 Barnway, Wembley, Middlesex
PYE BANTAM HP1AM required. Reiss, 34 Nursery
$\mathbf{R}^{\text {EASONABLY sized Portuguese Company would like }}$ following from Wholesalers who could supply the tronic components in. Reneral. ureendy rers and elec to GRETE, R. Artilharia UM, $396^{\circ}$ D. To Lisbon Portugal.
[990
WANTED, all types of communtcations receiver Electronics, Lest equlpment.- Ashville Old Hall, Ashville Rd., Lon don E 11 , Le, Ash
WANTED, televisions, tape recorders, radiograms High Sew valves, transistors, etc.--Stan Willetts, 37 WANTED redundant TV Tube regunning plant. WANTED, mains power supply Redifon type 6211/A Taylor, $\mathfrak{m}$ Signals, $G$ SD Branch, Headquarters, is

## VALVES WANTED

$W^{E}$ buiy new valves, transistors and clean new com quotation by large or small quantities, all detalls Wotation by return.-Walton'

## EIPIE CAPACITYAVAILABLE

A produnics LTD., for Coil Winding-large or smal pliers pliers to P.O., M.O.D., etc. Export enquiries welcomed
3a Walerand Road. London, S.E.13. Tel. 01-852 1706 [61 COIL winding capacity. Transformers, chokes R.F coils, etc., to your specifcation. Sweetnam \& Brad Malmesbury 3491. DESIGN, development, repair, test, and small proELECTRONICS, 54 Lawford Rd., Landon, N.W 5 01-267-0201.
[1057
DESIGM WORK, modifications and wiring of al carried of electronic and electro-mechanical systems C.E.G.B. and M.O.D. Apply to Box No. 1153 .

E ELectronics EIRCUITS and equipment designed by Electronics Engineer with wide industrial expefor any application and frequency from D.C. to U.H.F. Prototypes and drawings supplied. Box W.W. 1155. Wireless World.
FLECTRONICS DESIGN CONSULTANT has capacity for design or evaluation of digital systems. METALWORK, all types cabinets, chassis, racks, atc., to your own specification, capacity available for smal milling and capstan work up to lin bar.Loughborciugh.
$T$ URNED parts, qutomatic capstan capacity available approved.-Desmond Engineering, Combe Martin. N.
$W^{E}$ undertake the manufacture of transformer work guaranteed for 12 months any specification. Al Co. Ltd., 820 a
Tel, $01-969$ Harrow Road, Kensal Rise, N.W. 10.

## TECHNICAL TRAINING

A.M.S.E. (ELEC.), City \& Gullds, R.TE.B. Cert. Reradio Amateurs Cert., etc., on "Satisfaction or
Refund" terms. Wide range of Courses In Elec. Engin-
eering, Design, Installation, Repairs, Refrigeration Electronics, Radio \& TV, etc. Send for full details and llustrated book-FREE.-BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 152K, Alder-
maston Court, Reading RG74PF.
$\mathbf{R}^{E C O M E}$ "Technically Qualifled" in your spare time B guaranteed diploma and exam. homestudy courses in Guilds, etc., highly informative 120 page G.B., City $\&$ Guilds, etc., highly informative 120 -page Guide-free. Reading RG7 4PF.
TECHNiCAL TRAINing in Radio, TV and Electronics througin world-famous ICS. For details of proven home-study courses write: ICS, Dept. 443, Intertext
House, London, S.W.8.

## THE UNIVERSITY OF ASTON IN BIRMINGHAM electrical engineering department M.Sc. COURSE IN ELECTRICAL ENGINEERING

October 1971

Full lime-Sandwich•Block release•Part time day
The course leads to a Masters Degree in Electrical Engineering. One third of the lecture work will cover mathematics, com puting and electrical engineering materials The remaining time will be devoted to one specialist option selected from the following:

Communication Systems
Control Systems
Electrical Machines
Measurement and Instrumentation Power Systems
The Design of Pulse and Digital Circuits and Systems
The Science Research Council has accepted the course as suitable for tenure of its Advanced Course Studentships.
The course is open to applicants who will have graduated in science or engineering, or who will hold equivalent professiona qualifications, by October 1971.

## RESEARCH IN

## ELECTRICAL ENGINEERING

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Sc. or Ph.D. in any of the above topics. Application forms and further partiThe Head of the Depars may be obtained from:
trical Engineering Department of ElecUniversity of Asg (ref. M.Sc.12), The The Sumpner Building, 19 Coleshill Street, Birmingham B4 7PB.

1120

## TUITION

HUNDREDS of top pald jobs in Engineering await Home Study-Mech., Elec., Auto, Radio, TV, Draughts Electronics, Computers, Building, etc. Send for helpful REE book.-B.I.E.T., Dept. 151K, Aldermaston Court K INGSTON-UPON-HULL Education Committee F.R.I.C. F.R.I.C. TIME courses for P.M.G. certiflcates and the College of Technology, Queen's Gardens, Kingston-upon-
Hull.
MEN! You can earn £50 p.W. Learn Computer Computer Operations Trainting Centre, C. 96 , Oxford

## GOOKS, INSTRUCTIONS, ETC. <br> $\mathrm{B}^{\text {UUND }} \mathrm{U}$ volumes 1948 to 1970 Wireless World and

 immaculate. Offers. 23 Wetronics and Radio EngineerM ANUALS, circuits of all British ex-W.D. 1939-45 R.E.M.E. instructions; s.a.e. for list, over 70 oryplnal W. H. Bailey, 167a Moflat Road, Thornton Heath,
[66
Surrey, CR4-8Pz.

VARIOUS back coples of the following magazines individually. Offers please. Wireless World 1938-1960 Wireless Engineer 1934-1955. Electronic 1938-1960 Engineer 1957-1959. Journal of the British Institution Of Radio Engineers 1950-1957. Electronic Enginee 1943-1963. Electronic 1947-1965. For detalls apply Sales Manager, Hatfield Instruments Limited
Burrington Way, Plymouth, Devon Burrington Way, Plymouth, Devon. Tel. Plymouth
72773 .

## APPOINTMENTS



## SONY (U.K.) LTD

have vacancies at their Service Centre, Feltham, Middx., for the following qualified engineers.

## ENGINEER

Experienced repairing and service of monochrome equipment essential, but training given to suitable candidate on colour sytems.

## AUDIO, RADIO, <br> TAPE RECORDER,

 television engineersSpecialists in the above categories required to fill additional positions in our domestic service department, caused by increased development in this expanding division.

* Benefits include Luncheon Vouchers to the value of 75 p per week, twice yearly bonus, and pension scheme, in addition to a competitive salary and pleasant working conditions.

Apply in writing, giving full details
of past experience to:
M. C. Sykes, Esq., Personnel Manager,

SONY (U.K.) LTD Pyrene House,
Sunbury Cross, Sunbury-on-Thames, Middx.

## ANTARCTIC EXPEDITION

requires

## ELECTRONICS TECHNICIANS

to operate and maintain scientific equipment at British stations in Antarctica.

Minimum qualifications O.N.C. or final C. \& G. electronics. Practical servicing experience essential.

Salary from $£ 1,328$ p.a. according to qualifications with all living and messing free.

For further details apply to:
British Antarctic Survey, 30 Gillingham Street, London, S.W.1.


## GONOON CENTRAR RiadIO STORES

record storage untts. Brand new, Anti-warp. 'Compact
 stores 100 records $55 \cdot 271$. P.P. 52 tp . Leaflets available. B.A.E.
ELECTRICITY SLOT METER ( 5 p in slot) for A.C. mains. Fixed ELECTBICITY SLOT METER (5D in slot) for A.C. mains. Fixed

 WIRELESS SET No. 38 A.F.V. Freq. range $7 \cdot 3$ to $9.0 \mathrm{Mc} / \mathrm{s}$. Working range it to 2 miles. $\operatorname{size} 10 \pm \times 4 \times$ 6in. Weight $6 \ddagger \ddagger b$. Includes power supply 81 b - -and spare valves and vibrator also
tank aerial with hase 10 .00 per pair or 55 .00 single.P.P. 125 p tank aerial with base $£ 1000$ per pair or $£ 500$ single. P.P. 125 p
MODERN DESK PHONES, red, green, blue or topaz, 2 tone
grey or black, with internal bell and handset with 0 -1 dia. grey or black, with internal bell and handset with 0-1 dia.
£4:50. P.P. 37t p. IO-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake-
 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake-
lite case with junction box. Thoroughly overhauled. Guaran. lite case with junction
teed. $£ y .75$ per unit QUARTERLY ELECTRIC CHECE METERS, Reconditioned

 ${ }^{8}$ wiping $£ 2.75 ; 8$ bank half wipe $£ 2.75 ; 6$ bank half wipe, 3 LISLE ST
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

## WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere.
Concorde Instrument Co.
28 Cricklewood Broadway
London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

## AMERICAN

TEST AND COMMUNICATIONS EQUIPMENT

* GENERAL CATALOGUE AN/104 1/6 *

Manuals offered for most U.S. equipments

## SUTTON ELECTRONICS

Salthouse, Nr. Holt, Norfolk. Cley 289
-MUSICAL MIRACLES
WAA-WAAPEDAL. Complete kit of all parts, robust
cabinet, mechanism \& instructions. Huge sales, wel
$\begin{aligned} & \text { proven design. ONLY E2.45 complete. Or built \& } \\ & \text { tested E4.75 post free. RHYTHMMBX. Build your }\end{aligned}$
$\begin{aligned} & \text { own from our pre-built electronic circuit modules, } \\ & \text { e.g. box giving waltz, foxtrot etc., cost under } £ 17 \text {. }\end{aligned}$
e.g. box giving waltz, foxtrot etc., cost under fily,
ORGAN PERCUSSION units E14. Bass pedal and
Send 15p for list. D.E.W. LTD.
$\begin{aligned} & \text { Send } 15 p \text { for list. D.E.W. LTD. } \\ & 254 \text { Ringwood Road, Ferndown, Dorset. }\end{aligned}$

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all Issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically.

WEST HYDE DEYELOPMENTS LIMITED RYEFIEL CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX.
Telephone: Northwood 24941/26732 Telex: 92323I

## SURPLUS HANDBOOKS

19 set Circuit and
H.R.O. Technical Instructions

38 set Technical Instructlons
46 set Working Instructions
88 set Technical Instructions
BC. 221 Circuit and Notes
Wavemeter Class D Tech.
Wavemeter Class D Tech. Inst. 18 set Circuit and Notes CR.100/B 38 sel) Circuit and Not R. 107 Circuit and Notes AR.88D Lnstruction Man Cireuit Circuit and Notea
 R.1.35, R.F. 24,
BC.
set BC. 52 set Bender and Receiver circuits 40 p post free. Colour Code Indicator 12\&p p/p 24 p . 8.A.E. With all enquiries, please.
Postage rates apply to U.K. only.

INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

## KEYNEGTOB

The safe quick way to connect electrical equipment to the mains

## Connects anything

alectricel in seconds
No plugs, sockets or bare wires! Takes multiparalles cannections un
to 13 amps. Send
for leaflez
EB INSTRUMENTS
49-53 PANCRAS ROAD LONDON N.W. 1 Tel:01-8377781
WW-118 FOR FURTHER DETAILS

## ANDOR ELECTRONICS LTD.

for new
Mullard, Ferranti, R.C.A. Motorola semiconductors
Mullard-resistors-capacitors ZTX108 12p MPF102 42 $\frac{1}{2}$ p AF117 25p ZTX300 15p MPF105 40p BC107 19p ZTX500 15p 2N3053 27p BC109 19p P. \& P. 10 p

Visit our new retail shop
45 LOWER HILLGATE STOCKPORT 061-480-9791

## PRINTED CIRCUITS

PROTOTYPE AND BATCH PRODUCTIONS
Instrument panels and dials
in Metal and Perspex
丸 SCREEN PROCESS PRINTERS $\star$
Brooklands Plating Co. Ltd. Splice's Yard, South End, Croydon CRO IBF 01-685-2128


PHILIPS OFF
TAPES \& CASSETTES
Incred ble but true! We offer these famous brands at
urices di least $5 p$ per reel tower than ony other cut-price prices at leasis $5 p$ per reel tower than ony other cut-price


Dept ww 5
17 Leigh Park Road. Leigh-on-Sea, Essex London Office Ffice
$01-2267004$

## SERVICE TRADING Co

All stock available as advertised in MARCH \& APRIL issues.
All mail orders Also callers to:
57 BRIDGMAN ROAD LONDON, W4 5BB
Phone: 01.9951560 OPEN MON.-FRI.

CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749 Evenings: 019587624

Printed circuits for the Bailey pre-amp and 30W amplifier. Also Linsley Hood Class A with Bailey pre-amp, and Texas B68. S.A.E. for individual parts list.
TELERADIO ELECTRONICS
325 FORE STREET, N. 9
Tel: 018073719


## THE ONLY <br> COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx.

## WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS MOTORS TRANSISTORS RESISTORS. CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 1781

TF $762 \mathrm{C} ~ 300-600 \mathrm{mes}$ FOR SALEA ${ }^{\text {Generator }}$		
	250	pp $£ 1.50$
TF 937 (TC218) 85kcs-30mes Generator	245*	pp 22.50
TF 373C Impedance Bridge	220	pp $£ 1.50$
QD 910 solartron Storage Oscilloscope as		
BO 221 Frequency Meter $\mathrm{AC} / \ddot{\mathrm{PP}}$ Stabi-		
Frequency synthesisor 1 cycle-31mca as new		
RCA Marine Receiver/Direction Finder	12	pp $\varepsilon 1.00$
19 Sets Mk. 3 Transeeiver $2-8$ mes Tuneable		
Wth U.H.F.	88	
88 Walkie Talkie Sets 4 Channels $\because \quad 26 \quad$ pp $£ 0.75$CR $30015 \mathrm{kes}-23 \mathrm{mes} 8$ bands CW Com-		
Parmeko Amplitiers 6 Valves K T $66^{\prime}$ 's		
Geared Motors $600 / 1$ 12/24v."Aerials $215 \quad$ pp $21 \cdot 25$		
Geared Motors 600/1 12/24v. Aerials Garage Doors. Very rough appearance,		
8-Day Smiths Jewelled Movement Wali mo ppaso		
Eastiake, B		

WW-119 FOR FURTHER DETAILS


WW-120 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (flat pots) 20 ohm to 10 K . Various makes. Wholesale and Export only.

## J. Black

OFFICE : 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260


THE QUARTZ CRYSTAL CO ITD
Q.C.C. Works, Wellington Crescent.

New Malden, Surrey
(01-942 0334 \& 2988)

WW-122 FOR FURTHER DETAILS

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

## Valves

Electron Guns

## TV Picture Tubes

Sub-assemblies

## Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

## EXPORTER:

# Elektrim 

Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA, Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

## OSMABET LTD.

We make transformers amongst other thing AUTO TRANBFORMERS. 0 -110-200-220-240v a.c. up or



 8000w to order



 $10 / 240 \mathrm{v}$, Sec $250 \mathrm{v} 100 \mathrm{Ma}, 6.3 \mathrm{v} 2 \mathrm{~A}$, 2 \& 2.25 .
MULTIVOLT TRANSFORMERS. Prim 200/240v a.ce OMT $4 / 1$ one tapped sec, $5-20-30-40-60 \mathrm{v}$ glving $5-10-15-20-$
 $0-50-60-80-90-100-110 \mathrm{v}$ giving $10-20-30-40-50-60-70-80-$ $90-100-110,10-0-10,20-0-20,30-030,40-0-40,50-0-50 \mathrm{v}$ a.c. A 83.45 .
24v AUTO TRARSPORMERS. Input $200 / 240 \mathrm{v}$ a.c., output $4 \mathrm{v} 150 \mathrm{w} 94 \cdot 60$; 250 W £675; for quartz Iodine lamps. LOW VOLTAGE TRANSFORMERS. Pring 200/240v a.c

 IDGET RECTIFIER TRANSPORMERS PTim 200/2408 .c. size $12 \times 2 \times 1$ in. PPT1 9-0-9v 03A; PPT2 12-0-12v
 0.75 A \&1. 13 each.
W.W. IGNITION CIRCUIT TRAHBFORMEE to spec, 22.50 plus $25 \mathrm{p} p$ \& p

## TRAMSFORMERS FOR POWER AMPLIFIERS Sec $3-7 \cdot 5-15$ ohms, 30 W A-A load $0 \cdot 6 \mathrm{~K}$ e4.05; 50 W A-A load 3 K f6.75; 100 W A-A load 3 K

 $811 \cdot 40$.MANS TRANSFORMERS
TX 6 Prim 200/240v a.c. Bec, $425-0-425 \mathrm{~F} 500 \mathrm{Ma}$.
 ${ }_{4 \mathrm{~A}} \mathrm{CT}, 0-5-6 \cdot 3 \mathrm{~V} 3 \mathrm{~A}$ £7. 50 .
LOUDSPEAEERS FOR POWER AMPLIFIERS New boxed, famous makea for public address New boxed, famous make日 for pubitc adaress 12 in . 15 W W/Tweeter 24.05 ; 12 in .25 W . $25-60$;

 Hi-F1 10 W ditted twin tweeters with crossover network, 3,8 and 15 ohms, 24 each. Horn tweeter
$2-16 \mathrm{KHz} 8,16 \mathrm{ohms} .81 \cdot 50$.

MULTI WAY COMRECTORS (BELLING LEE). 18 way, new for line, Inter chassib, etc., per pair 25p.
BULK TAPE ERASER. Instant erasure of any size ppoo magnetic tape, Cassetter, demagnetraing of tape head ARRCBAPT BAND CONVEBTER. Entire aircraft band receiver, $84-25$.
PRNTED CIRCUIT ETCHITG KITS, Comprehensive out make your own P.C. boarde, $£ 1 \cdot 25$.
S.A.E. ENQUIRIES-LISTS. MAIL ORDER OMLY Carriage extra on all orders.

WW-123 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER and mylar recording tapes

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the markec, in no way ar the tapes faulty and are not co be confused with mported, used despatch service-
meet with full approval, purchase price and postage will be refunded.


WW-124 FOR FURTHER DETAILS

## WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.
7, 9. 11 Arthur Road, Reading,
Berks.
Tel: 582605

MACLEANS 6" FANS
230v. AC. 2800 rpm £2.75 pp 35p
IMLOCK ALUMINIUM CHASSIS FRAMES
$10 \frac{1}{2}{ }^{*} \times 8 \frac{3}{2}{ }^{*} \times 6 \frac{1}{2}{ }^{\prime \prime}$ £1 pp 20p
CROMPTON PARKINSON ELECTRIC MOTORS
Single phase $\frac{1}{2}$ hp 1440 rpm or $2800 \mathrm{rpm} \mathbf{f 6} \mathrm{pp} \mathbf{E 1}$
ho 1425 rpm Ez 25 pp 60 p
SMITHS 12 VOLT CAR HEATER FANS
$\mathbf{E 1 . 5 0 \mathrm { pp } 3 0 \mathrm { p }}$
P.O. TYPE

20 way 3 pole Jack Strips
10: " $\times 3 \frac{1}{3}$ " $98 p$ pp 40p Ex-equip.
SOLENOIDS 12 VOLT PULL ACTION
$2^{\prime \prime} \times 1^{*} \times \frac{3^{\prime}}{4}$ 40p pp 8p
STC SEALED RELAYS DOUBLE POLE CHANGEOVER 48v $2500 \Omega$ Ex-equip. 15p pp 5p miniature 12 v . $280 \Omega$ New 2 changeover 40p pp 5 p new SIEMENS MINIATURE RELAY Double pole
changever dust cover/base. 48 v . $2500 \Omega 51$ p pp 5 p new
OMRON MIDGET POWER RELAY TYPE MK 1 230 v . AC. Single pole changeover contacts 5 amp 440 v . AC. 250v. DC. 51 p pp 5p HONEYWELL MICRO-SWITCH 10 amp 250 v . AC. Ex-equip. 20p pp 5p
ANALEX POWER SUPPLY
$7^{\prime \prime} \times 19^{*} \times 13^{-230 v}$. AC. Input-6v. $5 \mathrm{amp} \times 2$ $18 \mathrm{v} .7 \cdot 5 \mathrm{amp}$ DC output; Fully transistorized marginal adjust. on output $\mathbf{E 3 5}$ carriage $£ 3$
ANALEX POWER SUPPLY $13^{\circ} \times 19^{\prime \prime} \times 5 \frac{1}{4}^{*}$ 230 v. AC. Input- 36 v . 14 amp DC.output
stabilized ex-equip £27.50 carriage $£ 2 \cdot 50$
COUTANT/ROBAND POWER SUPPLIE
28 v 20 amp DC. output $220 / 50 \mathrm{v}$. AC. Input Fully stabilized, ex-equip tested. $16^{*} \times 16 \frac{1}{4}^{*} \times 8 \frac{1^{*}}{4^{*}}$ approx. $£ 45$ carriage $£ 5$
VEEDER-ROOT MECHANICAL COUNTERS
5 digit; lever operated; Resettable $3^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{4}{ }^{\prime \prime}$ ex-equip. 55p pp 10p
SMITHS CIRCULAR TAPE POSITION INDICATOR Resettable 55p pp 10p
DORMAN LOADMASTER
$250 \mathrm{v} . / 440 \mathrm{v}$. AC. 5 amp triple pole circuit breaker E1.48 pp 25p
G.E.C. 5-AMP CIRCUIT BREAKER E1 pp 15 p New

## TRANSFORMER

230 v . AC. Input. 6.6 v .122 amp output $6 \frac{1}{2}^{\circ} \times 7 \frac{1}{2}^{\circ} \times 9^{\text {雨 }}$ Inc. terminals new E15 carriage $£ 2$
GARDNERS: Potted input $0-250 v$. AC. output $18 \mathrm{v} .500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{v}$. AC. $150 \mathrm{~m} / \mathrm{amp} 6 \mathrm{v} .250 \mathrm{~m} / \mathrm{A}$ $3^{\circ} \times 2 \frac{1}{4}^{\circ} \times 2 \frac{1}{4}^{*}$ ex-equip. tested $£ 1$ pp 20p
SIMPSON AUTO TRANSFORMER

E10 carriage £1-50
TEXAS INST. 2N3710/BC107 Trans
10p ea. min. 3 off pp $5 p$
TEXAS INST. ZENNER DIODE
$56 \mathrm{v} \pm 2 \frac{1}{2} \% 10$ watts. 30p pp 5p
BECKMAN THERMOMETERS with switch. calibrated $0-100^{\circ} \mathrm{C}$. £4 pp 50p
OXLEY BARB INSULATED FEED THRO'
TURR
pp 8 p
GARRARD 2 TRACK TAPE DECKS MAG TYPE 230 v . AC., 17 ips. 50 v . solenoid operated brakes, RUBBER CABLE CONNECTORS
3 pin 5 amp non reversible 25p pp $8 p$
BELLING LEE in-line rubber covered interference suppressor 25p pp 8p
TELESCOPIC AERIALS
chromed $7^{\circ}$ closed $28^{\prime \prime}$ extended 6 section
ball jointed base 23p pp 8p new
MULLARD 4 DM160 INDICATORS
in plastic holder/cover ex-equip.

PRINTED CIRCUIT BOARD/19, ACY 19's:
10 OA200 Diodes: 1 reed relay: 10AZ 229 zenner DC. Output 240 v . AC. $\mathbf{E 1} \mathbf{p p} 20 \mathrm{p}$ ex-equip

MALLORY ELECTROLYTICS screw terminals 25,000 MFD 25v DC $\quad 55,000$ MFD 15 vDC $\begin{array}{lll}40,000 & " 10 v D C & 27,000\end{array} \quad 15 \mathrm{vDC}$ All at 50p"ea pp 13p. Each condenser scr"
TOGGLE SWITCHES Single pole Double Throw ex-equip new condition 50p doz. pp 13p
FIBRE GLASS TAPE 100 yd . roll: $3^{*} 3 \frac{1}{2}^{*}$ wide E1 per roll pp 20p
PAINTON type 159 series working voltage 350 v AC/DC current max. 3 amp AC/DC 7 pin plug \& socket 50p pp 10p
15 pin plug \& socket E1 pp 10 p
CASH WITH ORDER

# LOWE EIECTRONCS 

Wellington Street, Matlock, Derbyshire Tel: Matlock 2817 (2430 after 6 p.m.)
SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F.E. \& Inoue Equipment.
In addition to our wide range of new equipment, we offer the following second-hand receivers and test gear.
Receivers:
Lafayette HA-350 £55
R.C.A. $8516 \mathrm{~L} \mathbf{£ 1 5 0}$

Collins 51J3 $\mathbf{f 1 5 0}$
Collins 51J4 $\mathbf{E 2 7 5}$
Collins URR 390A £350
Collins URR 388 £225
Heathkit SB301 plus extra CW filter $\mathbf{£ 1 1 0}$ Inoue IC-700R £60
Sommerkamp FR-500 £110
BC348 £15
Test Gear:
Marconi TF-144G £20
Airmec $204 \mathbf{£ 4 5}$
Avo $\mathrm{v} /$ tester $£ \mathbf{2 5}$
Wayne Kerr B901 admittance bridge £25 Dumont 241 scope $£ 15$
Rohde \& Schwarz SKTU Noise Generator f65
BC221 £20
Mikes. keys. keyers, monitors, mobile antennas (Tavasu). headsets, intercomms., VTVM's low voltage regulated p.s.u.'s S.W.R. bridges, components, etc., etc.

Have you equipment to sell? May pay you to get our quote.
Send a large s.a.e. and we will fill it wtih lists of equipment, sundries, components. etc., etc.

## FIELD EFFECT ELECTRONICS

This book is the most complete text available on the theory and applications of field effect transistors and allied devices. Both junction and insulated gate transistors are given intensive coverage. W. Gosling - W. G. Townsend - J. Watson £8.00 Postage free

MEASURING OSCILLOSCOPES by J. F. Golding. $\mathbf{E 4}$ 20. Postage 10p.

ELECTRONIC MEASUREMENT TECHNIQUES by D. F. A. Edwards. E2.80. Postage lop.
CLOSED-CIRCUIT TELEVISION PRODUCTION TECHNIQUES by Larry G. Goodwin \& Thomas Koehring. £2.00. Postage 10p.
TRANSISTOR AUDIO AMPLIFIERS by P. Tharma. $\mathbf{6 6} \cdot \mathbf{0 0}$. Postage free.
COLOUR TELEVISION SERVIC$\| N G$ by Gordon J. King. $£ 4 \cdot 40$. Postage 10p.
THE SEMICONDUCTOR DATA BOOK by Motorola. 63.00. Postage 30p.
RADIO VALVEAND TRANSISTOR DATA by A. M. Ball. 60.75. Postage 10p.

## THE MODERN BOOK CO.

britain's largest stockist
of British and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.
WW-125 FOR FURTHER DETAILS

## EXCLUSIVE OFFERS

AMPEX
Precision Instrumentation and Data TAPEDECKS

TYPE FR 100A: BIx speeds

 control. Precision servo contro
 week. Power input $105 / 125 \mathrm{v} 48$ to
400 cycles. Rack mounting
TYPE FR 1100 , as above but
 changed to $z^{*}$ or $1^{*}$ and 0
lighter and more modern con struction than Type $F R$ R 100 A
and servo control for either type PRICE $£ 280$ for deck and servo control for either type. HIGHEST QUALITY $19^{\prime \prime}$ RACK MOUNTING CABINETS Totally Enclosed
TYPE A: $54^{\circ}$ high $\times 24^{\circ}$ deep $\times 24^{\circ}$ wide
DOUBLE SIDED. These cabinets will take rack panela both aldes, that is back and front and are drilled and tapped all the way down every I" for this purpose. They are fitted with "Instantit" patent fully adjustable rack
mounts which are vertically and horizontally adjustable these allow the painels to be recessed when they are fitted with projecting components aud it is deslred to nelose them by doors.
tother features include-all corners and edges munded
Coterior fittlnga troplealised. Removable built in cuble toterior fittlings troplealised. Removable buitt in cable
ducts. Removabie built in blower ducts. Ventliated and nsect prootel tops, Detachable slide panels. Full length instantly detachable doors inted expanding bolts if Government $\& 107$ betore devaluation, Finished in gray primer and in new condition.

RICE 226-50 each (Carriage extra
Doors are not needed if panels are mounted back and front and they are not required to be enclosed.
TYPE C: $80^{\circ}$ high $\times 27^{-}$deep $\times 22^{*}$ wide. Amprican Standard First Grade totally enclosed ventlated $19^{\circ}$ rack
panel mounting cabinets, made by Dukane. U.S.A. Open front fitted rack moints made by Dukane. U.S.A Open front itted rack mounts drilled and tapped all the
way down every thull fength rear door with latch Finished In grey these cabincts have been used but are in gooll condition but if decoration is of Importance it is recommended they are re-sdraved before use.
PRICE \&15 each (Carriage extra)
TYPE D: $76^{* \prime}$ bigh $\times 18^{*}$ deep $\times 22^{*}$ wide. These are
slightly smaller and fnished in black otherwise they are similar in construction and conditiou to trpe $C$ above Made by R.C.A. of U.S.A.

ALSO OTHER TYPES $80^{\circ}$ TO $88^{\circ}$ HIGH AVAILABLE Full details of all ahove available on request.
TRANSPORT: We have made special economicaltransport
arrangements for these calinets to ensure they arrive arrangements for these cabinets to ensure they arrive
undanaged and to avoid expensive crating. Full detaila on request.

40-page list of over 1.000 different items in itock available-keep one by you.	
$\star$ Rhode and Schwarz E.S.M. $85 / 300 \mathrm{~m} / \mathrm{cs}$ V.H.F. Rocelvers   *Video Tape Recorder ; Shibaden, excellent working order.   $\star$ Labzear Stabilised Power Units D. 4140 , 3200 > $7 \mathrm{~m} / \mathrm{a}$.   t All Power Regniated Power Supplies 500 ; $500 \mathrm{~m} / \mathrm{s}$	$£ 280$
	70
	£35
	40
plete working order	
Flann Microwave Attentuatora $4 / 12 \mathrm{G} / \mathrm{me}$. .	
O-10w	
$\star$ Elliott Recording A.C. Voltmeters 180/260 ${ }^{\text {V }}$	
CR-150/2 Marconi Communications Re-	
$\star$ E.I.I. (U.S.A.) ${ }^{\text {P }}$ ( Finest Quality Computer	
tapes suitable video work. 2400 ft , spooled	
0 foot long $6^{\circ}$ sides Triangular Lattice ste	
up to 200 leot. Hew eondition.	
¢ 0.5/30.0 m/08.......................	
¢ Wenton 2t-D.B. Meters $-10 /+0 . \cdots \cdots \cdots$	
$\star$ Latdie lightwoight stoel triangular Aerial	
Hants 12 to 10 inch sides up to 200 ft , high According to height	
WANTED C.C.T.V. EQUIPMENT	
$\star 54$ inch. dia. Meteorological Balloons......	
E.M.I. (USA) 3600 ft on N.A.B. Spools . . . .	
خ 8 Track Data High speed Tape Readers	
¢ Sarah Trana/Roceivery and Aeriais ........	
$\star$ Sarah Trana/Roceivers and Aerials ......... t Uniselectori 10 bank 25 way full wipe ex.	
$\rightarrow$ Precivion Mains Filtor Usits new	
\& A po Geiger Countern new.	
Carrlage extra at cost on allabove. All goods are ex-Government stores.	
Wo have a large quantity of " Dits and ploces" we cannot liat-pleane send us your requirementa we can probsbly help-all enquiriea answered.	
P. HARRIS   ORGANFORD - DORSET   BHI6 6ER WESTBOURHE 85051	

## LAWSON NEW TUBES

Lawson＂Century 99＂are brand new tubes．Using silver activated screens，micro fine aluminizing， high definition electron guns． resulting in superb performance and very long life．
LAWSON TUBES 18 CHURCHDOWNRD． MALYERN，WORCS． Telephone：MAL VERN 2100



## TELEVISION TUBES REBUILT TUBES

Lawson＂Red Label＂rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use． Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements．

2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR．INS．BYEXPRESS PASSENGER 14－19＂62p 21－23＂75p

## 将 Juliette

COMMUNICATION RECEIVERS from the U．S．A．
The go ahead line in specialist radios
UNIQUE in VHF frequencies
UNSURPASSED in performance \＆styling
They NOT ONLY receive Aircraft，Shipping（VHF and SW）．Taxis，Ambulances，Fire Service．T．V．Sound．Hams，Gas \＆Electric Boards．Puhlic Services \＆many other Commercial and Industrial Radio telephone Mobile transmissions
bltt al．so Classical Music，Pop and all that Jazz！！
TURN ON TO INSTANT SOUND：：These are communications receivers and entertainment sources in one neat，transistorised．portable package．They keep exciting arrcraft．shipping．RT mobales plus Medium Wave，FM National and Local broadcasts at your fingertips．Both1 feature
powerful PM dynamic wide range speakers．switchable AFC to prevent drifting，tone control，dial lighting，swivel telescopic VHF and rod aerials， precise slide rule vernier tuning external aerial and earphone sockets（cuts off speaker for private listening）．Battery or mains operated from
built－in AC cord．


Impressive finish in Walnut with deep Chrome die cast side panels and Wpaaker grille．Log scale for easy tuning．Size $9 \frac{1}{4} \operatorname{In} H \times 12 \mathrm{H} W \times 4$ in D ．


MODEL MPR 30166 BAND SAME BANDS AND FREQUENCIES PR 3005 $5.0-120 \mathrm{Mc}$ （WITH FINE TUNER）
our price $£ 41.75$


Styled in elegant black case with deep chrome trim，soft padded speaker grille，die cast sides with walnut inserts．Size $8 \frac{3}{\frac{i}{i n}} \mathrm{H} \times \|$ lin $\mathrm{W} \times 3 \frac{1}{8}$ in D ．

The latest in contemporary U．S．A．innovation
HEAR T．V．SOUND－All channels 1－13（Also UHF in many areas）

MODEL MPR 3073．THE FIRST IN T．V．SOUND PORTABLES．Sensitive swivel telescoppic aerial receives LOCAL and DISTANT T．V．TRANSMISSIONS PLUS FULL MEDIUM WAVE and VHF／FM BANDS FOR ALL NATIONAL and LOCAL RADIO STATIONS．This unique model has leatherette trim，
handsome walnut grain inserts．brown speaker grille with chrome trim． 22 handsome wainut grain inserss．brown speaker grille with chrome trim． 22
transistor／dode super－heterodyne circuit．AFC．AGC．tone control．slide rule tuning．Works from batteries or mains．Ear－piece supplied for private listening． Log scale for easy tuning． STOCKTON PARTNERS（Dept WW）， Importers \＆Distributors
BRIGHOWGATE，GRIMSBY，LINCS．TEL 0472 64196／58815

## Grampian SOUTD EqUIPMENT Ghampam reproducras iti <br> hanworth thading estate， fELTHAM，MIDDLESEX TELEPHONE：01－894－9141．

WW－127 FOR FURTHER DETALLS


MET PRODUCTS во

[^15]electronic equipment manufacturers Large and small quanti－ ties．Full design and Prototype Service．As－ semblies at Reasonable Prices． P．O．Approved Let us solve your problems K．J．BENTLEY \＆PARTNERS 18 GREENACRES ROAD．oldham

[^16]
## DESIGNER－APPROVED ＂W．W．＂HI－FI KITS

＊APRIL／MAY 1971 F．M．TUNER
＊LINSLEY HOOD MODULAR PRE－AMP July 1969 no－compromise design for the purist． Compactly built on Lektrokit．Layout details． Kit price from $£ 7-40$（mono，mag．p．u．+2 I／P．s）．
Kec 1970 mods．for pre－amp \＆low amp available． Dec 1970 mods．for pre－amp \＆low amp available
＊LINSLEY HOOD SIMPLE PRE－AMP
Designer－approved PCB（marked component loca－ tions）gives excellent results with ceramic pick－up． Kit includes all parts as in May 1970 article plus front panel．Mono \＆6．35．Stereo $£ 11.50$ inc．p．p． ＊BAILEY 30W AMPLIFIER（Nov．＇68）
Mk．IV PCB has extra pre－set for quiescent current． Output capacitor and PCB mount directly and compactly on specially designed generous heat－sink． $\star$ LINSLEY HOOD I5－20W AMPLIFIER
July 1970 latest and ultimate design．O／P capacitor， PCB ， $\mathrm{Tr} 3,4$ \＆ 5 mount compactly onto heat－sink． Our kit personally tested and approved by the
designer．Gain of $O / P$ TR＇s $>100$ ． POWER SUPPLIES（simple and stab＇d）available． HIGH QUALITY components inc＇g Muliard， Hunts，TCC capacitors，Plessey moulded pre－sets． O／P Tr＇s matched $\pm 10 \%$＠ $\mathrm{Ic}=1 \mathrm{amp}$ ．
AFTER－SALES SERVICE at reasonable cost．
REPRINTS of articles at 5 p per page，postage $3 p$ ． DETAILED PRICE LISTS at 5p inc．p．p． PERSONAL CALLERS WELCOME－BY
APPOINTMENT．DESPATCH BY RETURN

## A． 1 FACTORS

## 72 Blake Road，Stapleford，

 NottinghamTel．Nottingham 46051 Giro No． 4876008 （ 8 a．m．-10 p．m． 7 days／week）


## NEW! HANDY! TIDY! multi-drawer

 I-N-T-E-R-L-O-C-K-I-N-G storageunits

- A PLACE FOR
EVERYTHING
EVERYTHING IN ITS
PLACE!


Newest. neatest. system ever devised for storing small parts and components: resistors. capacitors. diodes. transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. Build up any
size cabinet for wall, bench or table top size cabinet for wall, bench or table top
BUY AT TRADE PRICES!
 Usualiy 15 p each. OUR PRICES: $£ 1.35$ DOZEN
OOUBLE UNITS $\{5$ ins $\times 4$ tins $\times 2$ tins) Usually 25p each OUR PRICES: £2.25 DOZEN PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT $5 \%$ in the E
Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$
Orders $£ 20$ and over DEDUCT $10 \%$ in the $£=$.
PACKING/POSTAGE/CARRIAGE. Add 35p to all orders under $£ 5$. Orders $£ 5$ and over, packing/postaga/carriage free

QUOTATIONS FOR LARGER QUANTITIES BROADWAY. LONDON, N.W.2.

## BUILD YOURSELFA TRANSISTOR RADIO



CONSTRUCTORS BARGAIM


RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedford. 'Phone 023452367

- Open 10-1. 2.30-4.30. 8at. 9-12



## CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 45p (9/-) PER LINE. Average seven words per line.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 25p (5/-).

Cheques atc., payable to "Wireless World" and crossed " \& Co."

- Press Day 6th May for June 1971 issue.

			REMITTANGE VALU	E................................... ENCL08ED

NAME
ADDRESS

RENHTANGE VALUE........................................ENGLO8ED

## ALL SEMICONDUCTORS WARRANTED

## Prices 1.9 as quoted, 10.99 less $10 \%, 100$ up $15 \%$, larger quantities special quote

2N697
2N706
2N708
2N1308
2N1715
2N2308
2N2410
2N3693
2S301
2S302
2S303
$2 S 304$

15p	2 S 305
10p	2S306
14ip	2S324
25p	2 S325
50p	2 S502
50p	25732
3512 ${ }^{\text {P }}$	25733
40p	253040
42 t p	BC109
45p	BCII4
471p	BCI16
60p	BCY3

## CHILTMEAD LIMITED

7-9 Arthur Road, Reading . Telephone 582605

ZENERS


## INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 105-112


[^17]

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
$\star$ THREE DAY REPAIR SERVICE $\star$ INTERCHANGEABLE BITS—STOCK ITEMS $\star$ SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL Assembly type

Fill in the coupon to get your copy of our latest brochure:

## ADCOLA PRODUCTS LTD

(Dept. H) Adcola House, Gauden Rd., London, SW4 Tel. 01-622 0291/3 Telograms : Soljoint, London, Telex Telox : Adcola, London 21851


Please rush me a copy of your latest brochure:
NAME
COMPANY
ADDRESS


# for fast reliable soldered joints 

Over 400 specifications used in more than 63 countries

## Use the quality solder that leading electronic manufacturers depend on.

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications which are available.
Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

## Ersin Multicore solder

* Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, B.S. 441, DTD 599A Din 1707, U.S. Spec. QQ-S-571d.
* Savbit an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535.
Solder Tape, Rings Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

STANDARD ALLOYS INCLUDE

TIN/LEAD	B.S. GRADE	LIQUIDUS MELTING TEMP.	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
$60 / 40$	K	188	370
Savbit No. 1	-	215	419
$50 / 50$	F	212	414
$45 / 55$	R	224	435
$40 / 60$	G	234	453
$30 / 70$	J	255	491
$20 / 80$	V	276	529

HIGH \& LOW MELTING POINT ALLOYS

Alloy	DESCRIPTION	MELting temp	
		C	${ }^{\circ} \mathrm{F}$
T.L.C.	Tin/Lead/Cadmium with very low melting point	145	293
L.M.P.	Contains 2\% Silverfor soldering silver coated surfaces	179	354
P.T	Made from Pure Tin for use when a lead free solder is essential	232	450
H.M.P.	High melting point solder to B.S. Grade 5S	$\begin{aligned} & 296- \\ & 301 \end{aligned}$	$\begin{aligned} & 565- \\ & 574 \\ & \hline \end{aligned}$

## COMPATIBLE PRINILED CIRCUIT SOLDERING MATERIALS



PC. 2 Multicore
Tannish Remover
removes tarnishes and inor-
ganic residues as the sec-
ond half of a pre-cleaning
process before soldering. It
leaves the copper unaffect-
ed.
PC. 90 Multicore Peeloff
Solder Resist
is a temporary solder resist
which can be peeled off
with tweezers after solder-
ing, leaving the original
clean surface. It can be used
for masking gold plated
edge connections and holes
to which heat sensitive or
other components must be
added later.
PC. 41 Multicore Anti-
Oxidant Solder Cover
which forms a liquid cover
on the solder bath either
side of the solder wave,
largely preventing the for-
mation of dross.

PC. 80 Multicore Solvent Cleaner removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processed, as a precleaning process before soldering. It removing rosin-based flux residues after soldering. PC. 10A Multicore Activated Surface Preservative is a pre-soldering coating for preserving the clean surfaces established by the
PC. 80 PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC. 10A does not need to be removed before soldering and efficiency of the soldering erocess. PC. 10A should be used whenever there is a delay between cleaning and soldering.

## Wite for technical bulsetins on

MUR poactis mich ine SOLDERS LTD
Hemel Hempstead, Herts. Tel: H. Hempstead 3636 Telex 82363

Seven Standard Multicore Liquid Fluxes are now available, five of which are new:- PC. 21 A Multicore Non-Corrosive Liquid Flux is recommended for wave, dip, brush spray and roller flux applications PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size. PC. 52 Multicore Protective Coating is a lacquer which should be applied after soldering for protecting printed circuits
from deterioration or failure inom deterioration or failure in serve. It can easily be soldered through if modifi-
cations or repairs are cations or repairs ar necessary at a later date.


Or see us on our Stand on the Main Aisle of the Grand Hall (No. 1) at the International London Electronic Component Show, Olympia, May 18-21


[^0]:    Please fill in Reader Reoly Card or write, telephone or telex:
    Tektronix U.K. Ltd.
    Beaverton House, P.O. Box 69,
    Harpenden, Herts.
    Tel: Harpenden 61251 Telex: 25559
    Narthern Region Office:
    Beaverton House, 181A Mauldeth Road, Manchester 19.
    Telephone: 0612240446 Telex: 668409

[^1]:    \& InEATMISIT HEATH (Gloucester) LTD.g GLOUCESTER, GL2-6EE Tel (0452) 29451

[^2]:    Telephone:
    01-229 6681/2 or 5.501128
    Nearest Tube Stitions: Bayswater, Queensway

[^3]:    跑DVPrer

[^4]:    $\dagger$ The patient, having been once sighted, is able to correlate patterns with his previous visual experience: his brain has already been 'organized'. A person blind from birth would not be able to do this but only correlate the stimulus patterns with other sense data such as tactual experiences.

[^5]:    * It was pointed out by Mr. Linsley Hood ${ }^{2}$ that record manufacturers do not boost the frequencies below 50 Hz in accordance with the R.I.A.A. characteristic and therefore a larger I.f. time constant will allow the fuller reproduction of these rather 'dubious' signals. Making $R_{14}=620 \mathrm{k} \Omega$ would restore the correct $3180 \mu$ s time constant.
    $\dagger$ Altering $R_{s}$ is the simplest way of adjusting the basic sensitivity.

[^6]:    *Credit should have been given to $W$. James as the designer of the Everyman Four in 'Milestones in Receiver Evolution' in our April issue.-ED.

[^7]:    * Wien = Vienna
    $\dagger$ Better known to British readers by its Latin equivalent, pons asinorum.

[^8]:    *'Soder-wick' made by Solder Removal Co., Covina Calif., U.S.A.

[^9]:    * 'Cecilia-Saint or temple prostitute?' June 1970

[^10]:    $\dagger$ "Colour TV Standards Converter", Wireless World, Oct. 1967.

[^11]:    Palmer Aero Product
    Palmer, G. A. Stanley
    Park Royal Porcelain Co.
    Parmeko
    Pedoka
    Penny \& Giles
    Permacel
    Permanoid

[^12]:    * Deputy Editor, Wireless World.

[^13]:    LATIN AMERICA
    Transmitter/communications engineer for educational radio network in Honduras. Required to work with existing medium power transmitters and VHF links. Do you like working with people in a job which really makes sense?
    We have many vacancies in health, education, engineering and agriculture, for single persons or married couples without children.
    Write without delay to Dave Brown, Overseas Volunteers CIIR, 41 Holland Park, LONDON, W.II.

[^14]:    Head of Employment
    Section V.B. 35
    Aer Lingus - Irish
    P.O. Box 180 Dublin Airport Ireland

[^15]:    All devices direot from manulacturer．No subestanderd or Types avaite remarked units．
    Typer available finclude：
    RyF／LF Amp：Type $\mu 703$ to 5 epoxy package．Op．Amp． TYpe $\mu 709 \mathrm{C}$ D．I．L．package．
    N－Channel F．E．T．
    DC－200Mhz Type $2 N 3823 E$
    ；DC－400Mhz Type $2 N 4416 E-~$ DC－ 200 Mhz Type
    to 18 epoxy package．
    to 18 epoxy package．
    Priceas
    $\mu 70335 \mathrm{p}, \mu 709 \mathrm{c} 40 \mathrm{p}, 2 \mathrm{~N} 3823 \mathrm{E}$ 23p， 2 N 4416 E 40 p
    Bend starap for complete list of epoxy tranaistors and integ－ rated circuits currently available．
    TRADE ENQUIRIES INVITED
    Rerthawk Sales， 33 Highfield Road，Flackwell Heath
    Telephone： $06-285 \mathbf{2 5 8 5 4}$

[^16]:    Tel：061－6240939

[^17]:    
    
     at a price in excess of the recommended marimum price shown on the cover; and that it ghall not be lenit, re-sold, hired out or otherwise disposed of ln a mutilated condition or in any unauthoried cover by way of trade or aftixed to or as part of any publication or advertieling, literary or plctorial matter whataoever.

