WirelessWorldMarch 1971 3s 6d ($17 \frac{1}{2} \mathrm{p}$)

MOSFET audio signal generator

Short-range mobile radar

High-frequency
 Bridges

The RF and VHF Bridges produced by Wayne
Kerr are designed on the transformer ratio-arm principle.
This gives stable performance and makes
available a third measurement terminal, thus overcoming most of the problems associated with the connection of an Unknown to a bridge at
high frequency. All models read the
real and quadrature terms simultaneously.

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED.
Roebuck Road, Chessington, Surrey. Tel: 01-3971131. Cables: Waynkerr, Chessington. Telex 262333

Designers specify them for their reliability and modern styling. Buyers choose them for their competitive prices and delivery.

are selected by equipment manufacturers everywhere.

Vista Series

Popular, reliable panel
meters with robust phenolic mouldings and scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. This range combines compact functional styling with easy readability and excellent performance. Mechanically interchangeable with the Fyneline range.

Edgewise Series
Here's the latest in
the range of three Edgewise panel meters, the Model 330 witn a $2 \frac{1}{4}$ in scale length. Ideal for today's crowded ins:rument panels, other scale lengths are 1 $\frac{1}{16}$ in (Model 11) and $1 \frac{3}{4}$ in (Model 220).

Fyneline Series
Adaptable versatile series with scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. Contemporary styling and clear. shadow-free readings ensure maximum readability. This modern range maintains the Taylor reputation for reliability and sensitivity.

Taylor offers a comprehensive range of movingcoil and moving-iron panel meters. The movingcoil meters feature the proven Taylor centre-pole movement with practically friction-free operation, inherent magnetic shielding
and high torque/weight ratio. They are sensitive, accurate instruments that conform generally to BS 89/54 with contemporary
 or conventional styling. Ask for the Panel Meter Shortform Catalogue.
popular Taylor Type 127A, a pocket-sized multimeter for the service engineer and hobbyist.
Ask for the Instrument
Shortform Catalogue.

Taylor makes test equipment too!
Two typical models are Taylor Model 88B, a robust, wide-range multimeter with automatic cut-out and polarity reversal facility, and the

Taylor Electrical Instruments Limited

- remember we're now at Dover!-

Archcliffe Road, Dover, Kent. Tel: Dover 2634 Telex: 96283
THOAN

From LtoX-band for marine, airborne and ground radar

The standard range of EEV duplexer components covers applications from L to X-band marine, airborne and ground radar systems. TR cells, TB cells, pre-TR cells, solid state limiters, monitor diodes... whatever your requirement, in narrowband, broadband or tunable types, EEV have it. Or, if it's a 'special' you need, we can almost certainly make it.

The precision manufacture of duplexers forms only part of EEV's massive experience in the whole field
of radar. And we have delivery and service to match our capability.

If you would like a copy of the EEV guide 'Duplexer Devices'-or if you are interested in a particular com-ponent-then please post the coupon.

English Electric Valve Co. Ltd. Chelmsford. Essex England. Telephone: 0245 61777. Telex: 99103 Grams: Enelectico Chelmsford

see EEV's duplexer devices.

Product	Type No. Band	Frequency range (MHz)	Peak power (kW)	
Pre TR cells	BS834	-	$2000-12000$	2500
	BS870	L	$1240-1370$	2500
TR cells	BS456	S	$2850-3050$	1250
	BS824	S	$2700-3100$	250
	BS856	C	$5300-5700$	250
	BS156	X	$9000-9600$	200
	BS452	X	$9310-9510$	100
BS810	X	$9250-9550$	75	
TB cell	BS310	X	9375	$5-200$
TR Limiter cell	BS814	X	$9000-9700$	200
Solid state				
microwave switches	BS392	S	$2925-3075$	0.5
	BS460	X	any 100 MHz	0.5

FOUR NEW COMPONENTS
 FROM ASSOCLATED AUTOMATION

1 Industrial Relay Type MR A.C. or D.C. operation. Panel nounting or plug -in tooctal type sacket. Will last for up to 5 million (${ }^{2}$ erations with 1.2 oi 3 poles ssaitching up to 10 mps . Compact, lightweight and che app.

2 Diy Reed Pelar Type ERTN

 Fance of up to 12 polas Switching capahilifiesup to 50 VA = breakdown voltages up to 1500 V.A.C. Life expectancy ai contact rating $7.5 \mathrm{VA}, 100 \times 10^{\circ}$ cperstions. Cheap a buy, capuble Clfastaction wit our power concuiption anat saxble cpertion.
3 Niniature zry fead

 Pus? 3 utton Snite? Series 500 Ewitring capabi i, \Rightarrow to 4 poles, LptC C $5 \mathrm{amp}, 1$ 1) wat Wide rance of contact er ar gemente and nounting stree. Fngle jases nountng for eit 9 si zle ot rullope fixing. Min tat for at Izast 5 million operatiss. East to Epplw, eadily avel :ble Ecot:onically pr cel.
4 Hermetica t satec Comercial ReEy Type $T=C$ AT.J. 5 transisiolicar anvelope g vinghigh isolet ex evitch Resista shock are itratione, ajeeates on powzecjwnts 00 mW Swi ching capaつ遂 (ampat 23 LLE.C.tolone single and e ousle pole). Ecomerical pics cousle pole). Eccantrical pric
thougicomparallewth any

Three relays and a switch, designed by Associated Automation to cut your switching costs. Built to the highest standards of engineering, these components join the already comprehensive range of switches and relays for all communication and control purposes. All economically priced and backed by Britain's most outstanding engineering serve.
Send in the coupen and we'll bet you have all the information you require.

To: Associated Automation Limited

 Electromagneties70 Dudden Hill Lane, London, N.W. 10
Please send me your fully illustrated

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today. The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and, above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you
need, please post the coupon.
English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103. Grams:Enelectico Chelmsford

TathonivPilse Emaritors

The Type 114 is a general-purpose pulse and squarewave generator designed for laboratory and production test facilities. The broad operating range of the Type 114 makes it well suited for applications such as studying network response to changes in pulse period and/or width, or determining the step response of systems.

Price: $£ 164$ plus $£ 19$ duty

The Type 115 is a $10-\mathrm{MHz}, 10$-volt, general-purpose pulse generator with separately variable risetime, falltime, width, delay, period, amplitude and baseline offset. It is intended for use in applications where a variety of pulse amplitudes, polarities, shapes and other characteristics are required.

Price: $£ 412$ plus $£ 47$ duty

The Type 2101 is a compact, $25-\mathrm{MHz}, 10$-volt, genera1 purpose generator with SIMULTANEOUS positive and negative going pulse outputs. Switch positions are provided for selection of a specific pulse period, duration and delay, within the calibrated range of the respective control. Weighs only $8 \frac{3}{4} \mathrm{lb}$.

Price $£ 334$ plus $£ 38$ duty
committed to progress in waveform measurement

Please fill in Reader Reply Card or write, telephone or telex
Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181 A Mauldeth Road, Manchester 19.
Telephone: 0612240446 Telex: 668409

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr.M.J.Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 0245 61777. Telex 99103. Grams: Enelectico Chelmsford

> the vital factorof
> EEV's industrial r.f. heating power triode range

"ASTRONIG" LTD.

FIRST IN THE FIELD WITH A COMPLETE RANGE OF MODULAR AMPLIFIERS

THE RESULT OF THIRTY YEARS EXPERIENCE IN SOUND AMPLIFICATION, NOW ANNOUNCE THEIR RESPONSE SELECTOR TYPE A 1888

A MUST IN ACOUSTICALLY DIFFICULT SITUATIONS SUCH AS CHURCHES, HALLS, THEATRES etc.

This unit, the result of three years research, can be built into a new, or added into an existing sound system and provides a simple but effective means of adjusting the overall response to suit the particular location.

Eight calibrated thumb wheel controls enable each section of the audio band to be adjusted to reduce troublesome building resonances etc., thereby allowing microphone levels to be increased before "howl back" occurs.

The unit is available in two forms: Type A 1888 is a portable instrument and Type A 1781 is a module to be used in conjunction with our Series 1700 units.

Further information from:
DALSTOM GARDENS, STANMORE, MIDDIESEX, HA7 1BL

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64
 for Factory Bench
 Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available

COPPER

```
B 38 \frac{1/"- - 3.2 mm}{CH}
```

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

*
Write for price list
and
catalogue

Why do so many industries rely on EEV tubes?

Because they're so reliable.

You can specify each and every EEV tube with confidence. Whatever your industry, when it involves electronics you can be sure that EEV's expertise will provide the performance, the length of life and, above all, the reliability you want

For industrial heating: EEV r.f. power triodes range from 1 kW up to 250 kW , and mercury vapour rectifiers are available with capabilities up to 30 amps at 21 kV . All are conservatively rated, realistically designed and economical.

For TV monitoring: EEV vidicons are ideal for any closed-circuit TV application. They can be used in any position and are available with a choice of photosurfaces,

For power supplies: EEV make voltage stabilisers and voltage reference tubes to fit more than 80 different sockets

For high-speed switching: EEV glass and ceramic hydrogen thyratrons provide greater accuracy and precision.

For motor control: EEV industrial thyratrons provide the degree of precision needed for motor speed control and similar applications. Both mercury vapour and xenon thyratrons are available,

For industrial welding: EEV ignitrons have long-life ignitors, and robustly constructed envelopes and water jackets of unique design giving supreme reliability.

English Electric Valve Co. Ltd. Chelmsford - Essex England
Telephone: 024561777 Telex: 99103. Grams: Enelectico Chelmsford.

stop searching for a signal

Find it easily with Avo's inexpensive, easy-to-operate HF133 Signal Generator, which covers the complete r.f. spectrum from the long-wave broadcasting to the VHF television band.
The six separate ranges were carefully chosen to make range switching unnecessary when operating in most transmission bands. Get full details of this versatile tool for the service engineer from Avo Ltd, Avocet House, Dover, Kent; telephone 2626, telex 96283.

Frequency range : 135 kHz 230 MHz * R.F. Calibration Accuracy: $\pm 1 \%$ * Amplitude Modulation: 17% at 1 kHz (35\% highest range) *R.F. Output: $1 \mu \mathrm{~V}-100 \mathrm{mV}$ (continuously variable) into 75Ω wider variation on highest range.
WW- 016 FOR FURTHER DETAILS

ERIE

-the Power Amplifier Module people

High quality - compact - labour saving. Modular amplifiers capable of loading 20 watts into an 8 ohm load.
Use them singly, or in pairs for stereo. There are no setting-up adjustments. Toshiba's inspired design eliminates all the variables, all your problems. And simple. Because Toshiba made them that way to give you swift production and consistent performance.
Minimise your assembly time. Produce a 20 watt high quality amplifier - first time, and every time, regardless of quantity. We can even supply a stereo pre-amplifier in modular form.
These new hybrid integrated circuit modules are fully available from Erie now. We'll send you the technical information. Just tell us your requirements. Or your problems.

Erie Electronics Ltd., Distributor Division, Gt. Yarmouth, Norfolk. Tel: 04934911 Telex: 97421

Micro Motors
 Level Meters
 Magnetic Heads
 Sankyo's GLDDSOME THIRDDSOME GALE TO MAKDRS OF TAPE RECORDERS, OTHDR PRODUCTS.

A double 3-in-1 value from Sankyo. Micro motors, level meters, and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals, instead of purchasing one here, another there. You will save time and money- and get quality and reliability on top of economy! Many other models available.
For further details contact:

B Sankyo

SANKYO (EUROPE) EXPORT UND IMPORT G.m.b.H.:
4 Duisseldorf, K:inerstr, 65a, West Germany.
Tel: 350281-5 Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF
SANKYO SEIKI MFG. CO., LTD.
17-2. Shinbashi 1-chome, Minato-ku. Tokyo 105, Jon
Tel: Tokyo 591-8371 Cables: SANKYORGEL TOKYO
AMERICAN SANKYO CORP.:
AMERICAN SANKYO CORP.:
N.Y. 10016, U.S.A

Tet: LE-2-8020 Telex: 223060 Cables: AMESANKYO NEW YORK
mictacing $\frac{\text { eerin }}{\text { eninentic }}$

Sex
VSMF

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

\square Mechanical

Mechanical
A.M.S.E. (Mech.
Inst. of Encincers
Inst. of Engincer
Mechanical Eng.
Maintenance Eng.
Maintena
Welding
General Diesel Eng
Shect Metal Work
Shect Metal Wor
Eng. Inspection
Eng. Inspection
C. \& G. Eng. Crafts
C. \& G. Fabrication

Draughtsmanship

A.M.I.E.D.

Gen. Draughtsmanship
Dic \& Press Tools
Elec. Draughtsmanshin
Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng. General Elec. Eng. Installations \& W'iring Electrical Maths. Electrical Science
Computer Electronics Electronic Eng.

Radio\& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amatcurs' Exam. Radio Operators' Cerr. Radio \& TV Engincecring Radio Scrvicing Practical Television TV Servicing Colour TV Practical Radio \& Electronics (with kit)

Auto \& Aero

A.M.I.M.I.

MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng. General Auto Eng Motor Mechan A.R.B. Certs.
Gen. Aero Eng.

Management \&
Production Computer Programming Inst. of Marketing A.C.W'A. Works Management Work Study Production Eng Storckecping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engineering Planming Engineering Materials Handling
Operational Rescareh Metrication

Constructiona! A.M.S.E. (Cir.) C. \& G. Siructural Road Engineering Civil Engincering Building
Air Conditioning Heating \& Ventilating Carpentry \& Joincry Carpentry \& Join Building Drawing Surveying Surveying
Painting and Decorating.
Deng and Architecture Builders' Quantitics

General
C.E.I.

Petroleum Tech.
Practical Maths.
Refrigerator Servicing. Rubber Technology Sales Engineer Timber Trade Fimber Trade Farm Science Agricultural Eng.
General Plastics

General Certificate of Education Choose from 42 ' O ' and ' A ' Level subjects including:
linglish
Chemistry
Gencral Scientc
Geology
Phusics
Mathematics
Techinical Drawing
French
German
Russian
Spanish
Spansh
B.I.E.T. and its
associated schools hate recorded zeell ozer 10,000 G.C.E. over 10,000 G.C.E.
successes at 'O' and successes at
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guild, Certificates. Thousands of

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."- Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going Irom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

Free!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRITSH NISTITUE OF Engivering iceh ilag

Dept 446A, Aldermaston Court, Reading RG7 4PF.

Give the stars theirfreedom!

TYPE UD1
Modern-style high-
TYPE 530
output microphone.
TRANSISTORISED
AMPLIFIER
3 low impedance mike
inputs, 1 music input.

RESLO MIKES LTD 24 UPPER BROOK ST., LONDON, W. 1

That's our motto, this is our method; with the Reslo-Audac Radio Microphone, stars such as Des O'Connor and Peter Gordeno are freed from trailing cables. Movement is completely unhampered Ideal for clubs, cabaret, theatres and many other applications, Reslo-Audac Radio Microphone has to be heard to be believed. Ask for a demonstration. Transmitting, receiving or amplifying, Reslo sounds superb with ribbon microphones, boom arms, floor stands, amplifiers, loudspeakers, p.a. systems, many accessories. Illustrated catalogue freely

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous '800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance. Each cartridge supplied with individua! curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivating.

800 The 800 is designed for standard larms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommended tracking weight $1 \frac{1}{2}$ to 2娄 grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

LEVELL
PORTABLE INSTRUMENTS

Long battery life and large overload ratings are leading features of these solid state instruments Mains units and leather carrying cases are opticnal extras.
All A type instruments have $3 \frac{1}{4}^{\prime \prime}$ scale meters and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type instruments have $5^{\prime \prime}$ mirror scale

The Gerry

AdlerStory.

Once upon a time Gerry Adler worked a 25 hour day making and selling valve filament testers. And very efficient they were too.

But at that time the Japanese could make them for about half the price, and sent Gerry one to prove it. It was as good as the ones he was making, so he sold it. And every other one he could get into the country.

After a time Gerry decided to go one step further. He designed some electronic equipment and had it built to his specification in Japan.Then he sold it here under the brand name 'Eagle'. Nothing particularly remarkable about that. But Gerry couldn't stand the idea of a barrier between him and his manufacturers. So he went to Japan. He poked his nose into all the electronics factories to find out how the Japanese worked.And when he got back he started to learn Japanese, and to study their history,culture and way of life.That way he had fewer communication problems and could get what he wanted.

That's what matters to Gerry. He's very fussy about what goes out under the Eagle banner.Because Eagle aren't in the filament testing business any more. They make just about everything electronic; amplifiers, test equipment, PA systems, intercoms, old uncle substation and all. Eagle is now twelve years old, and has opened offices in New York, Tokyo and Brussels.

This isn't just so much chest expansion on Gerry's part. He puts his money where his mouth is. If you think one of his products is not as good as a rival's, or it's faulty, or it's not all it should be, Gerry wants to know.

So write to him personally. He'll do something about it. He wants to make sure the Gerry Adler story has a happy ending.

Eagle Intermational

we don't stand still.
Coptic Street, London WC1A 1NR. Telephone 01-636 0961

SOLDERING IRONS?

We are specialists. Whatever your particular application, we are most likely to have just the tool for the job.

Choose from:
The fitard six-model range of rugged, lightweight, general purpose, soldering irons, from 10 watts to 60 watts, for all kinds of electronic work. Specially developed over many years to provide exceptionally good thermal stability, reliability and ease of maintenance.

The Clataines models-absolute gems of truly miniature soldering instruments, with interchangeable slip-on bits and precise performance. Unapproachable for sustained accuracy on small work.

The Litestat thermostatic models, with fully adjustable control, available for all voltages. Two extremely versatile instruments, 55 and 70 watts, giving really generous soldering capacity on demand, with closely controlled idling temperature. Very attractively priced from £3.84 (£3-16-10).

All backed up by an excellent spares and repair service, and a wide range of ancillary tools and accessories. We would like you to have the whole story-please ask for our NEW CATALOGUE.

5/1001/15

LIGHT SOLDERING DEVELOPMENTS LTD.,

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 \& 4559

WW- 027 FOR FURTHER DETAILS

HEATHKIT INSTRUMENTS

The finest value offered in instruments in the world.

A) Wide Band Gen. Purpose Oscilloscope, IO-18U Kit £42.80 Carr 80 np
B) Gen. Purpose Service Oscilloscope, OS-2 Kit $£ 32.00$ Carr $60 n p$
C) Universal 'VVM', IM-25 Kit $£ 44.00$ Carr $40 n p$
D) Portable Solid State 'VVM', IM-17 Kit $£ 17.30$ Carr 30np
E) Portable Multimeter, MM-1U Kit $£ 16.00$ Carr 30np
F) RF Signal Generator, RF-1U Kit $£ 17.50$ Carr $\mathbf{3 0 n p}$
G) Regulated High Voltage Supply, IP-17 Kit £39.90 Carr 60np
H) Regulated Low Voltage Supply, IP-27 Kit $£ 41.40$ Carr 50np

These models are also available factory assembled and tested.
For the full range of Heathkit models why not send for the free Catalogue. Yours for only the price of a postage stamp.
instrumentation

Please send me the FREE Catalogue

wireless

It has been suggested that a perfect amplifier would be equivalent to a piece of wire with gain.

A piece of wire? First of all it would hum, so we'd have to screen it. This would increase the input capacity so we'd have to make the screening large or the conductor small. Then we would have output resistance and, if of appreciable length, we'd have inductance and termination problems as well. All in all a 303 power amplifier would be much easier.

The funny thing is; even if we had our perfect piece of wire with gain and compared it with a 303. the two would sound exactly the same no matter how carefully we listened.

QUAD

for the closest approach to the original sound

Send postcard for illustrated leaflet to Dept. W W
Acoustical Manufacturing Co. Ltd., Huntingdon, Tel: (0480) 2561. QUAD is a Registered Jrade Mark.

The stripped for action capacitors that scorn conventional housing.
Polymite capacitors scorn conventional housings. You buy them stripped for action. Because Polymites use a thin polyester metallised film, they offer high capacitance values, small physical size, much less weight; plus the high mechanical strength of Erie's special way of applying terminal connections. All without a 'can'. And all with the properties of recovery from humidity that Erie Polymites alone can offer.

Scan the specification: Capacitance range Working Voltages up to Sizes as small as

Type M310
100pF-47,000pF 750 V
$8 \mathrm{~mm} \times 4 \mathrm{~mm}$

Type M312
$.022 \mu \mathrm{~F}-2.2 \mu \mathrm{~F}$
250 V and 400 V
$16 \mathrm{~mm} \times 7 \mathrm{~mm} \times 2.5 \mathrm{~mm}$

Send for the data. Or tell us when one of our engineers may call.

Jack Plugs, 201, 310, 316, 309, 404
Jack Strips 310, 320, 510, 520, 810
Line Transformers
Resistor Lamps and Holders
Jack sockets 300, 500, 800
Resistor Bobbins, coils and spools

Bells and Bell Transformers 6V or 12V
Low Pass Filters
U Links and Sockets
Fuse mountings 4028 and Mounting H.15B.
Mountings Protector Strip H. 40
Patching and switchboard Cords

Patch Panels
Terminal Blocks and Strips
Uniselectors and Miniature Uniselectors Ringing Generators

Large stock of GPO Type Components available for prompt delivery COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED

77. AKEMAN STREET, TRING, HERTS.

TELEPHONE: TRING 3476.
TELEX: 82362.
WW- 032 FOR FURTHER DETAILS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture
and Distribution of Electrical Measuring Instruments and Electronic
Equipment. The largest stocks in the U.K. for off-the-shelf delivery.
anders electronits limited
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092

Bantex for Aerials

All over the five continents and the seven seas Bantex aerials help to maintain reliable communications. Day in and day out.

Bantex aerials are selected because of their established reputation for good design and reliability. A reputation earned over many years.

Bantex manufacture all types of communications aerials, on land and on sea: for land communications we make aerials for man pack, mobile and fixed station use.

For your enquiries please contact Ernest Gutman.
Bantex Ltd. abbey rd., park royal, london n.w. 10 Telephone 01-9650941 Telex 82310

DESIGNED FOR MAXIMUM FLEXIBILITY, THE MOD-70 POWER AMPLIFIER MODULE WILL PERFORM AT 70 WATTS RMS CONTINUOUSLY IN AMBIENT TEMPERATURES TO $70^{\circ} \mathrm{C}$, IS FULLY OUTPUT/INPUT PROTECTED. YET OCCUPIES LITTLE MORE THAN 70 CUBIC INCHES.

THE MOD 70

70 WATT R.M.S. PLUG-IN POWER AMPLIFIER

Wherever reliable audio reproduction power is required at better than average bandwidth specification, at lower than average cost, and in an extremely compact, well finished package, the Mod-70 is exceptional.

ALL $1 / P, O / P$, AND SUPPLY CONNECTIONS ARE THROUGH AN INTERNATIONALLY STANDARD 8-PIN HEADER WHICH PROVIDES EASE OF INSTALLATION, WHILE FOUR CONVENIENT TIEDOWN POINTS SECURE FIXING AND QUICK RELEASE.

FOR FULL PERFORMANCE AND COMPLETE TECHNICAL SPECIFICATIONS, VOLFIELD LIMITED, 2A LANSDOWNE GARDENS, LONDON, S.W.8.01-6227187

WW- 035 FOR FURTHER DETALLS
TRANSRADIO LTD
183, PARK AVENUE, LONDON, N.W.10.
TEL: (01) 965 6281. TELEX: 923004

Subsidiary of Felten \& Guilleaume Kabelwerke AG KÖLN-MÜLHEIM

R.F. CONNECTORS

A wide range of $N, C, B N C, 83 U H F, V M P, S M$ and MINI types. Crimp types in N, BNC \& 83 UHF produced in addition to standard cable clamps. Other types for special applications.

R.F. CABLES

Miniature, R.G. and multi coaxial types.

IN-LINE UNITS

These are screened containers for attenuators etc. fitted with coaxial connectors.

CABLE-CONNECTOR ASSEMBLY

WW-037 FOR FURTHER DETALS

When YOU need HIGH QUALITY AIR SPACED TRIMMERS

... take your choice from the wide range by TINSLEY. They are readily available in quantity; up to 30 pf ; fitted with mechanical lock if required ; all parts of high grade silver plating. Split stator trimmers are also available.

H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD • LONDON SE25 • 01-654 6046

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 2-30/60 Ω balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLI-

FIER with specification as above is here combined with a 4 channel F.E.T. mixer. $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver irs full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

TRIO's CS-1554 Passes The Most Rigid Testing Requirements

Waveform analysis and other electrical equipment and electronic installation testing is performed at the highest possible peak of efficiency with TRIO's C5-1554. This wide-band dual trace triggering oscilloscope operates at ultra-high sensitivity while also offering an over-all expansive range of test capabilities. Lightweight because of its all-solid state construction, this completely dependable instrument is remarkably versatile. For example, dual trace waveform analysis with very wide synchronization capabilities is possible from $D C-10 \mathrm{MHz}$. It has no equal for speedy analysis efficiency

CS.1553

30 mm Oscilloscope

An essential device lor signal waveform analyses and TV a lignment and servicing. Complete solid state circuitry. Trigger sweep and automatic sweep potential. Very hign sensitivi-
ty with wide frequency response from DC to 10 MHz extremely versatile.

VT-106
High sensitivity Electronic Voltmeter
Voltmeter
This is a solid state electronic voltmeter employing IC and FET for high sensitivity and siability, capable of measuring vollages from 002 mV to 300 V

AG-201
ALL SOLID STATE CR type tow-frequency Oscillator An all-transistor, compact $C R$ An all-transistor, compact $C R$
type wide-band low-frequency ascillator, the AC-201 produces ascillator, the $A C-201$ produces
sine waves with a minimum of distortion and rectangular waves with a quick rise time at a low output impedance.
he sound approach to quality
TRIO

Magnetic shielding problems?

TELCON OFFER THREE SIMPLE ANSWERS

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.
'Telshield' wrap-around foil
Telshield is an easy to use, feromagnetic
 shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm , in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$. Other thicknesses and widths are available by arrangement.

Please send for further information to

Telcon Metals Ltd.,
Manor Royal, Crawley, Sussex. (Crawley 28800)

From engineering sketches to printed circuit board the same day.

CIRCUIT-STIK conductive shapes are pre plated ready for soldering. Pressure sensitive adhesive backing to substrate makes assembly simple, gives gcod adhesion, easily withstands soldering temperatures, yet is simply removed for circuit modification.
As durable and reliable as boards produced by conventional methods. A wide variety of circuit element patterns.
The sensible way to design, develop and prove printed circuit designs.

Circultstik

Marketed in the U.K. bv

Bourns (Trimpot) Lid.
Hodford House. $17 / 27$ High Street.
Hounslow, Middlesex.
Telephone: 01-572-0111 Telex: 264485.
KWP/B3E

DC300

DUAL-CHANNEL POWER AMPLIFIER

\star DC-Coupled throughout!
\star Short Circuit proof!
* 500 Watts RMS Mono.

$\star 70$ Volt Balanced line out!

* UNEQUALLED QUALITY!
$\star 3$ YEAR PARTS WARRANTY!
* only $£ 320$ inc. Dutry!

CARSTON ELECTRONICS LTD. SHIRLEY HOUSE 27 CAMDEN ROAD LONDON, N.W. 1 9LN 01-267 2748

Frequency Response
Phase Response
Power Response
Power at Clip Point Total Output (IHF)
T.H.D.
I.M. Distortion ($60-7 \mathrm{KHz} \mathrm{4:1)}$
Damping Factor
Hum and Noise $(20-20 \mathrm{KHz})$
Slewing Rate
Dimensions
Weight
Finish
$\pm 0.1 \mathrm{dbZero}-20 \mathrm{~K} \mathrm{~Hz}$ at I watt into 8 ohms, $\pm 0.6 \mathrm{db}$ Zero- 100 KHz .
Less than $5^{\circ} 0-10 \mathrm{KHz}$.
$\pm 1 \mathrm{db}$ Zero- 20 KHz at 150 watts RMS into 8 ohms.
Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel.
Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms.
Better than 0.03% at 1 KHz at 190 watts level.
Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms. lypically below 0.05% (max 0.05%.
Greater than 200 (Zero to 1 KHZ into 8 ohms at 150 watts RMS).
100 db below 150 watts RMS output (unweighted, typical 110 db).
8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal.
19in. standard rack mount (W.E. hole spacing), 7in. height, $9 \frac{1}{4} 17$. deep (from mounting surface). 40 pounds net weight.
Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.

Brought to you for your
listening enjoyment from the

Connuisseur COLLECTION

S.A.U. 2 PICK-UP ARM

Recognised as one of to-day's most advanced pick-up arms it features:-

Price list and illustrated literature on request to

A. R. SUGDEN \& CO. (Engineers) Ltd.

Market Street, Brighouse HD6 1DX, Yorkshire. Telephone: 2142

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too ... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciftcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W. 11.

WW-- 047 FOR FURTHER DETAILS

MODEL 8 MK . III

MULTIMINOR MK. IV
REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDOM TNSTMUMENTS TGD

 76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-048 FOR FURTHER DETAILS

WW- 049 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

[^0]
To be sure of good listening use your eyes

Corrbined record size and speed control.

Dynamically balaneed Garrard 4 pole induction motor.

Rotating

record spindle
eliminates wear.

TRANSFORMERS

MAINS
 2VA to 2kVA

AUTO
 10W to 5000W

OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD, LONDON, N. 7
 Tel. 01-607 2914

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORTES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Puliers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Fre quency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts
Tel : Tring 3476 (STD 0442 82)
 elex: 82362, A/B BATEY TRING

RECORDER AMPLIFIERS

and instrumentation systems

150
series DIFFERENTIAL DC AMPLIFIERS
Wide dynamic rangehigh common mode rejection
Low noise, low drift performance Modular or cased presentation also
MINI-AMP ${ }_{\text {FE-251-GA }}$ differential dc pre-amplifier Compatible modules and cards ensure ease of application and great flexibility.
FY L DE ELECTRONIC LABORATORIES LIMITED 16 OAKHAM COURT, PRESTON (0772) 57560

VABRIABLE TRANSFORMERS

OUTPUT 0-265V \star INPUT 240V 50/60 CPS SHROUDED FOR BENCH OR PANEL MOUNTING

VARIABLE TRANSFORMERS
$2.5 \mathrm{amp} \quad \mathbf{f 6 . 7 5 p} \quad 10 \mathrm{amp} \mathbf{f 1 8 . 5 0}$ $5 \mathrm{amp} \quad £ 9.75 \mathrm{p} \quad 12 \mathrm{amp}$ £21.00p位 $1 \mathrm{amp} \mathbf{£ 5 . 5 0 p}$

Inset shows latest patiern Brush gear ensuring smooth continuous adjustment.

SOLID STATE VARIABLE VOLTAGE CONTROL

- Output 25-24 JV
- Input 240V 50 CPS
* 5 amp \& 10 amp model
* Completely se zled

5 amp models $£ 8.38$ p
10 amp models $\mathbf{E 1 3 . 7 5 p}$

20 AMP LT SUPPLY UNIT

* Input 240 V . Output 20 amps at 24 V and 12 V
tuly adjustable.
* Weight 50 las.
$£ 42.50$ p
$\varepsilon 2.00 \mathrm{P}$ © $\mathrm{s}_{\mathrm{P}} \mathrm{P}(\mathrm{GB}$. $)$
50 AMP 0-24V DC LT. SUPPLY UNIT
* Continuously Rated. Large Ammeter and Voit meter. \# Ideas for Pating Units. \& Fuily protected * Ininitity variable up to 24V OC. Suze and weight $16^{\prime \prime} \times 12^{\prime \prime} \times 27^{\prime \prime}$ High一70lbs. Rear wheels fitiled.
£85.00p C \& P (indand) £3.00p

constant voltage TRANSFORMER
Maintain spot-on test gear readings with Automatic Mains stabilizer.
Specification:
* Output 240 V
- Accuracy $\pm 1 \%$
* input 190-260V
- Capacity 250 watts
* Corrected wave
$\mathbf{f 1 2 . 5 0 p}$ c \& PE1.00p

I.M.O.(ELECTRONICS) LTD.

 (Dept WWX) 313 EDGWARE ROAD,LONDON W.2.Tel 01-723 2232WW-054 FOR FURTHER DETALLS

We'llfill the air with sound

New 'Toa' P.A. systems Goldring now offer modern 'Toa' P.A. equipment for in-place installations -to go-in anywhere, and make sound go everywhere! And it's a high quality/top value equipment range that carries a crystal-clear message for you. It means business.

Solid state amplifiers. Dynamic microphones. Box, Column, Horn and Panel-cone speakers. Equipment to cover all sound requirements . . . For service in offices, schools, airports, rail terminals, sports arenas, concert halls. Wherever people gather-indoors and out of doors.

$50 \rightarrow \infty$
 Goldring Manufacturing Company

 (Great Britain) Limited, ro Bayford Street, Hackney, London E8 3SE. Phone OI-985 II52

Multimeter motivation!

There are seven good reasons for choosing an Advance DMM2 Multimeter-
1 Price—only £99 for one off—less for bulk orders.
2 Clear non-ambiguous digital reading of AC and DC voltage (100 V resolution), resistance and current-with optional shunts, type SP2.
3 L.S.I. reliability from a purpose designed package which performs the counting and storage functions.
4 Push button range selection. Maximum reading 1999 with decimal point.
5 Overrange and reverse polarity indication.
6 Lightweight ($3 \frac{1}{2} \mathrm{lbs}$.) portability in an attractive ergonomically designed high impact plastic case.
7 Operation from AC supply, external 12 V DC or optional rechargeable battery pack, BP2.
Write for data—or call Bishop's Stortford (0279) 55155 for up to date delivery information-availability may be an eighth reason for choosing the DMM2!

DMM2 DIGITAL MULTIMETER

Raynham Road
Bishop's Stortford, Herts.
Telephone
Bishop's Stortford (0279) 55155
Telex: 263785

From Bradley. A Modular Pulse Generator

The two modules on the left form a complete square wave generator giving outputs up to 6 V into 50 ohms , ovar the range 1 Hz to 50 MHz
The four on the right form a somhisticated pulse generator giving full variable pulse width and delay facilities, with double pulse output over the same range of p.r.f.
If all this can be done with a blank
space in the main frame, think what yous can do when you add the other five missing modules . . . The
Bradley 175 provides an almost limitless variety of complex pulse patterns.

All Bradley instruments can be supplied with a
British Calibration Service Certificate. Ask for details.

G Z EBRADLEY LTD
 Electral House, Neasden Lane London NW10
 TCI: 01-450 7811 Telex : 25583

A. Lucas Company

BRADLEY electronics

SINGLE SOURCE SENSE

OR
 How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations. Send for yours now.
stating which catalogue you require.

Make United-Carr Supplies your
 SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

Cineh

STOCKISTS

From Bradley. A £360 DVM

 now with 10 pV resolution.Bradler's compact 173 B Digital Voltmeter will cost you only $\$ 360$ in the U.K.
And at that price you mightn't expect ary extras.
The 178 B gives you six.
For ins-ance, there's a scale length of $10 \mu \vee$ te $1000 \mathrm{Vd.c}$. and with 50% overrange, maximum reading is 1500 Vd.c. with an accuracy of 0.01%.
There's guarded input giving high common node rejection $>140 \mathrm{~dB}$ at line frequency.
There's display storage.
And 1-ז-4-8 BCD data output
There is a standard unsaturated cell as an internal calibration reference. And the 173 B cives you automatic indication of polarits.
In one small package, the 173 B gives you a lot ef DVM for your money

G. \& E. B:RADLEY LTD.

Electral House, Neasden Lane,
London HW10.
Telephone: 01-450 7811 Telex: 25583
A Lucas Company

> BRABLAY electronics

All Bradley instruments can be supplied with a British Calibration Service Certificate from our own B.C.S. approved standards laboratory.

Dowel polarised

memurdo
 great facility for service

red range

Member of the Louis Newmark Group, with access to the combined facilities
of all other member companies.

Write for catalogue and quotation to:
McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth, Hants. Tel: 35361. Telex: 86112.

Authorised Stockists:- Lugton \& Co. Ltd., 209/210 Tottenham Court Road, London W.1. Tel: Museum 3261 Sasco. P.O. Box No. 20, Gatwick Road, Crawley Sussex. Tel: Crawley 28700 (also Chipping Sodbury 2641. Cumbernauld 25601 and Hitchin 2242) and agents in principal overseas countries.

WW- 060 FOR FURTHER DETALLS

Eight good reasons for choosing EMI Vidicons

Range Magnetic and electrostatic, 26 mm and 13 mm tubes, standard and short length, including those with specialised target layers and faceplates.

Versatility Designed for use in a wide range of colour and monochrome broadcast and closedcircuit cameras, both live and film pick-up.

Performance EMI separate mesh vidicons are noted for their high sensitivity, short lag and good resolution.

3

Uniform Quality Every EMI vidicon tube is produced to uniform standards for complete reliability.

[^1]

Economy EMI technology, quality control and production techniques provide tubes at realistic prices.

θ

Guarantee Every EMI vidicon is guaranteed for 500 hours or 12 months' operation.

5

Professional Advice Our
engineers are ready to discuss your particular application.

Fast Service Just telephone EMI or your nearest EMI distributor for fast replacement service. (U.K. distributors are listed below.)

LIVERPOOL

Smith \& Cookson Ltd.
49-57, Bridgewater Street, Liverpool 1.
Tel: (051)-709 3154
Sheffield
The Needham Engineering Co. Ltd.
P.O.B. 23, Townhead Street,

Sheffield S1 1YB Tel: (0742)-27161
NEWCASTLE UPON TYNE
J. Gledson \& Co. Ltd.

Newbiggin Lane, Westerhope
Newcastle Upon'Tyne, NE5 1PM
Tel: (0632)-860955

7° RADFORD

AUDIO MEASURING INSTRUMENTS
Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification
$\begin{array}{ll}\begin{array}{l}\text { Fpequency Range: } \\ \text { Output Impedance: }\end{array} & 5 \mathrm{~Hz}-500 \mathrm{kHz} \text { (} 5 \text { ranges). } \\ & 600 \mathrm{ohms} .\end{array}$
Output Voltage:
Output Attenuation:
Sine Wave Distortion :
Square Wave Rise Time: Monitor Output Meter: Mains Input:
Size:
Weight :
Price:
600 Ohms.
10 Volts r.m.s. max
$0-110 \mathrm{~dB}$ continuously variable.
005% from 200 Hz to 20 kHz increasing to
0.015% at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{\times 11 \times 8} \mathrm{in}$.
25 lb.
£150.
DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

```
Specification
Frequency Range
Distortion Range:
Sensitivity
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Price:
```

```
20 Hz-20 kHz (6 ranges).
```

20 Hz-20 kHz (6 ranges).
0.01%-100% f.s.d. (9 ranges)
0.01%-100% f.s.d. (9 ranges)
00mV.-100 V. (3 ranges)

```
00mV.-100 V. (3 ranges)
```



```
    100 kOhms.
```

 100 kOhms.
 3 dB down at 350 Hz
 3 dB down at 350 Hz
 30 dB down at }45\textrm{Hz}\mathrm{ .
 30 dB down at }45\textrm{Hz}\mathrm{ .
 \pm1 dB from second harmonic of rejection
 \pm1 dB from second harmonic of rejection
 frequency to 250 kHz
 frequency to 250 kHz
 Included battery.
 Included battery.
 174 }\times11\times8\mathrm{ in
 174 }\times11\times8\mathrm{ in
 f120.
    ```
    f120.
```

Descriptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD.

BRISTOL BS3 2HZ
Telephone: 0272, 662301

Your choice in Linstead low cost twin stabilised power supplies

Type S1

* 2×0 to $20 \mathrm{~V}, 0.5 \mathrm{~A}$ each.
- Accuracy: voltage $\pm 2 \% \pm 0.1 \mathrm{~V}$
current $\pm 2 \%$ F.S.D.
$\star \pm 10 \%$ supply voltage gives $\pm 0.1 \%$ output change.
\star Ripple: $300 \mu \mathrm{Vr} . \mathrm{m} . \mathrm{s}$.
* Can be used in series for $40 \mathrm{~V}, 0.5 \mathrm{~A}$.
\star Can be used in parallel for 20V. 1 A.
* 2 ammeters.
* Indefinite shorting without damage.
* Size: $8 \frac{1}{4} \times 6 \frac{1}{2} \times 6 \frac{1}{2}$ in $(21 \times 17 \times 17 \mathrm{~cm})$.
* £48.00 net U.K.

Type S7

* 2×0 to 30 V .1 A each.
\star Accuracy: voltage $\pm 2 \%$ F.S.D.
current $\pm 2 \%$ F.S.D.
$\star \quad \pm 7 \%$ supply voltage gives $\pm 0.1 \%$ output change.
\star Ripple 300μ Vr.m.s.
* Can be used in series for $60 \mathrm{~V}, 1 \mathrm{~A}$.
\star Can be used in parallel for 30 V .2 A .
$\star 2$ meters, calibrated volts and amperes.
* Full overload and short circuit protection.
\star Size: $8 \frac{1}{4} \times 6 \frac{1}{2} \times 7 \frac{1}{2}$ in $(21 \times 17 \times 19 \mathrm{~cm})$
\star £65.00 net U.K.
For full details of both units send the coupon today.
o: Linstead Electronics. Roslyn Works. Roslyn Road. London, N. 15
Please send me full details of your twin stabilised power supplies.
Name

Address

Please fill in Reader Reply Card or write. telephone or telex:

Tektronix U.K. Ltd.

Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181A Mauldeth Road, Manchester 19.
Telephone: 0612240446 Telex: 668409

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services
\& FULLY GUARANTEED REPAIR OF INSTRUMENTS

- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS

WIRING AND SHEET METAL FACILITIES
Write or 'phone
FIRNOR-MISILON LIMITED MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

OXLEY DEVELOPMENTS COMPANY LTD. Priory Park, Ulverston, North Lancs., England

$$
\text { Tel: Ulverston } 2621 \text { Telex: } 6541 \text { Cables: Oxley Ulverston }
$$

The OXLEY Wire Wrap "Barb" cone-lock Connector is a feed through insulator for high speed automated panel wiring. It consists of a rectangular section spill which is nickel flashed and dip spin tinned, with a P.T.F.E. insulating bush. The wire wrapping operation is achieved by a rotary tool which quickly produces highly reliable joints.

The connectors are suitable for assembly into $0.156^{\prime \prime}(4 \mathrm{~mm})$ diameter holes and have a working voltage of 1.5 KV and a maximum current rating of 5 amps .

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"
Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers-and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms
Dimensions: 21 in. $\times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{4}$ in.
Choice of finish: Teak or walnut.
Recommended Retail Price NOW £32

1. Studio quality high frequency unit (HF1300 Mk. 2).
As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3}{4}$ " with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network. It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems, and the NEW 'Ditton 120' Loudspeaker.

Studio
Series

Loudspeakers for the Perfectionist

Visit us at Sonex

ROLA CELESTION LIMITED, FOXHALL ROAD, IPSWICH, SUFFOLK, 1 P3 8JP, ENGLAND
Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365

First of the quiet ones from Marconi Instruments

New Low Noise UHF FM Signal Generator permits $>70 \mathrm{~dB}$ adjacent channel rejection measurements

The TF 2712 is the first of the quiet ones - a series of signal generatcrs designed to embody all the features needed for the accurate evaluation of narrow band mobile FM receivers. It is a signal generator with sufficien-ly low sideband noise to permit - with ease - the exacting two and :hree signal generator tests required by the licensing authorities on advanced mobile equipment. It has extremely low microphony and its frequency
stability specification is entirely consistent with this type of measurement.
TF 2012 covers the frequency range 400 to 520 MHz and a swept frequency output of 200 kHz excursion is available by application of an external low speed voltage. Measurements and test capability includes: sensitivity; modulation acceptance bandwidih: adjacent channel selectivity: AF power output; AF response characteristic: hum and noise:
general alignment tests demodulator characteristic tests. Send for a comprehensive data sheet and a copy of our brochure 'THE QUIET ONES'.

Marconi Instruments Litd
A GEC-Marconi Electronics Company
Longacres, St. Albans, Herts.. England. Tel: St. Albans 59292 Telex: 23350

II
-THE PROFESSIONAL APPROACH

A British Pre-Amplifier with an Unparalleled Specification

Five section graphic equalisers operate
independently in each channel
Theoretical limits of low noise are reached via a unique noise cancelling pre-amplifier
"GRAPHIC STEREO"
£162.0
"POWER STEREO 70" Amplifier $£ 83.0$ (35 watts R.M.S. per channel)
"POWER STEREO 60" Amplifier £97.0 (80 watts R.M.S. per channel)

 AUDIX B.B. LIMITED STANSTED•ESSEX Tel:STANSTED 3132/3437

\section*{Use this powerhouse of information from Wireless World. A pocket diary with 60 pages of important technical data, including formulae, abacs, frequency allocations and circuit building bricks. 60 pages that answer 1001 technical and general questions. Only 7/6 per copy in Rexine and big discounts on bulk orders.
 | Number | Rexine | Leather |
| :--- | :--- | :---: |
| $1-49$ | $7 / 6$ | $10 / 9$ |
| $50-99$ | $6 / 6$ | $9 / 9$ |
| $100-249$ | $5 /-$ | $8 / 3$ |
| $250+$ | $4 /-$ | $7 / 3$ |}

How to transmit from your pocket

Postage 6d extra per copy; quantities over 6 post free.

Send your orders to: Cashiers,
IPC Business Press (Sales \& Distribution) Ltd.
P.O. Box 147, 40 Bowling Green Lane, London EC1P 1 DB

Scoop that for value!

OS1000 OSCILLOSCOPE

from the ADVANCE range

Justadd sound

A simple statement, but to the many professional audio engineers using EMITAPE 815 it means a lot.
They know that developing the special formulation for tape of this quality is no simple matter. They have confirmed that it provides the low modulation noise, good dynamic range and signal-to-print ratio so essential to flawless sound recording. EMITAPE 815 is standard play. EMITAPE 825 is the long play version, ideal for portable and low tension recorders. Any professional engineer not yet familiar with EMITAPE 815 can confirm what the others already know - this is quality tape: Send us your name and address and we'll send you a sample.
EMITAPE 815
EMI Tape Limited • Hayes • Middlesex • England • Telephone: 01-573 3888

The gentle art of hatching audio power transistors

We are just as fussy about hatching our Audio Pover 'Transistors as a mother hen with her eggs. But the hen has no say in the quality of her eggs, whereas we have a lot to say about the quality of our transistors.

We now have the very best--the new BD 181 to the BD 184 series-of high current audio power transistors in production, and our advanced techniques enable us to control the quality very closely. Surface flatness and thickness of the dice... diffusion to a narrow base width which gives the improved gain characteristics and lincarity . . crystal plating to close limits, so that contact resistance with the header is reduced allowing closer control of
hermal resistance and knee voltage these are all examples of meticulous process control.

The result is an excellent yield within the exacting specitications for our power transistors. Or in practical terms. rugged devicesthat answer your needs al sensible prices, due to quantity production and atutomated quality control.

A complete range of rugged audio power transistors is available for amplifiers ranging from the most demanding 50W circuit to a
$3 W$ domestic unit. Other devices in the range cater for $35 \mathrm{~W}, 25 \mathrm{~W}$, 15 W Class A and 15 W Class B and 10W amplifiers.

Of course, a complete line-up of supporting devices, including requirements for pre-amplifiers and power supplies are included in our complete atudio capability.

Worth it. We believe this audio power range is complete enough, efficient and economical enough for the most demanding of audio manufacturers.

They can be sure that these
products will give consistent service and that we are producing them at the best possible price. Consistently achieving these two aims with all our products has helped build our reputation. A reputation which stretches across the electronics industry. Before we embark on producing any new device we can dratw on the insight and experience we have gained-sometimes from unusual electronics areas-to employ our resources in providing the technically superior products our customers have always demanded.

Mullard [5]

components for consumer electronics

Mullard Limited.
Consumer Electronics Division,
Multard House, Torrington Place,
London WClE 7HD.

The new PG-71 Pulse Generator costs $£ 150$, has two independent channels and one unusual characteristic...

* High output-dual 10 volts into or from 50』?
* Fast <10 ns rise/fall times
* Wide ranges-period $200 \mathrm{~ns}-1 \mathrm{sec} .(1 \mathrm{~Hz}-5 \mathrm{MHz}$) delay $50 \mathrm{~ns}-1 \mathrm{sec}$. width $50 \mathrm{~ns}-1 \mathrm{sec}$.
* Gating, external trigger and manual one-shot facilities
* True double pulse-two channels each with independent delay, width and amplitude
* Pulse advance capability to +1 sec .
* Super-portable: only $3 \frac{1^{\prime \prime}}{} \times 9 \frac{1}{4}^{\prime \prime} \times 11^{\prime \prime}, 7 \frac{1}{2} \mathrm{lb}$ -battery operation available
* Internal channel mixing facilities

[^2]

JOHIN $\mathbb{S M I T H} \mathbb{L T D}$.
209 SPON LANE F WEST BROMWICH - STAFFS. TEL. 021 -553 2516 (3 LINES) WOODS EANE•CRADLEY HEATH - WARLEY - WORCS. TEL. CR 69283 (3 LINES)

WW-074 FOR FURTHER DETAILS

Neither you nor your microphone ought to be kept on a lead

WW- 075 FOR FURTHER DETALIS

DOWN ON THE TEXAS RANGE THERE ARE NOW 64 MSI 74 SERIES

Caunters

SN7490 Decade
SN7492 Divide-by-12
SN7493 4-Bit Binary

* SN74L90 Decade

SN74L93 4-Bit Binary

* SN74I60 Synchronous 4-Bit Decade
* SN74161 Synchronous 4-Bit Binary
* SN74162 Fully Synchronous 4-Bit Decade
* SN74163 Fully Synchronous 4-Bit Binary
* SN74190 Synchronous 4-Bit Up/Down Decade I-Line Mode Control
* SN74191 Synchronous 4-Bit Up/Down Binary I-Line Mode Control
* SN74192 Synchronous 4-Bit Up/Down Decade
* SN74193 Synchronous 4-Bit Up/Down Binary
* SN74196 Asynchronous Presettable Decade
* SN74197 Asynchronous Presettable Binary

Decoders

SN7442 BCD-to-Decimal Decoder
SN7443 Excess-3-to-Decimal Decoder
SN7444 Excess-3-Gray-to-Decimal Decoder
SN7445 BCD-to-Decimal Decoder/Driver
SN7446 BCD-to-7-Segment Decoder/Driver (30v)
SN7447 BCD-to-7-Segment Decoder/Driver (I5v)
SN7448 BCD-to-7-Segment Decoder
SN7449 BCD-to-7-Segment Decoder
SN74141 BCD-to-Decimal Decoder/Driver
SN74145 BCD-to-Decimal Decoder/Driver
SN74154 4-2-16-Line Decoder/Demultiplexer
SN74I55 Dual-2-to-4-Line Decoder/Demultiplexer
SN74|56 Dual-2-to-4-Line Decoder/Demultiplexer (O-C)

Memories—Latches

SN7475 Quad Bistable Latch
SN748I 16-Bit RAM
SN7484 16-Bit RAM Gated Write Inputs
SN7488 256-Bit ROM Custom Programmed

* SN7489 64-Bit RAM

SN74100 Dual Quad Bistable Latch

* SN74I70 4-by-4 Register File (Buffer Memory)

Arithmetic Elements

SN7480 Gated Full Adder
SN7482 2-Bit Binary Full Adder
SN7483 4-Bit Binary Full Adder

* SN7485 4-Bit Magnitude Comparator

SN7486 Quad-2-input Exclusive OR
SN74181 4-Bit Arithmetic Logic Unit, Function Generator
SN74182 Look-Ahead for Arithmetic Logic Unit

* SN74H87 4-Bit True/Complement

SN74HI83 Dual Carry-Save Full Adder

* SN74L85 4-Bit Magnitude Comparator

SN74L86 Quad-2-input Exclusive OR

Shift Registers
SN7491A 8-Bit
SN74L91 8-Bit
SN7494 4-Bit (Parallel-In, Serial Out)
SN7495 4-Bit Universal
SN74L95 4-Bit Universal
SN7496 5-Bit Dual Parallel In/Out
SN74L98 4-Bit Data Selector/Storage Register
SN74L99 4-Bit Universal

* SN74164 8-Bit Serial-In, Parallel-Out
* SN74165 8-Bit Parallel In, Serial-Out
* SN74166 Synchronous Parallel-Load 8-Bit
* SN74198 Universal 8-Bit Parallel-In/Out, Left/Right
* SN74199 8-Bit Parallel-In/Out, J-K Inputs

Data Selectors

SN74150 16-Bit Data Selector
SN74I5I 8-Bit Data Selector
SN74152 8-Bit Data Selector
SN74I53 Dual 4-to-I-Line Data Set/Multiplexer
Parity Generators
SN74180 8-Bit Parity Generator/Checker
Logic Elements
SN7406 Hex Inverter Buffer/Driver Open-Collector High
Voltage Output
SN7407 Hex Buffer/Driver, Open-Collector High Voltage Output
SN7408 Quad 2-input Positive AND Gate
SN7409 Quad 2-input Positive AND Gate
SN7413 Dual 4-input NAND Schmitt Trigger
SN7416 Hex Inverter Buffer/Driver, Open-Collector High Voltage
SN7417 Hex Buffer/Driver, Open Collector High Voltage Output

* SN7423 Expandable Dual 4-input Positive NOR Gate with Enable
* SN7425 Dual 4-input Positive NOR Gate with Enable
* SN7427 Triple 3 -input NOR Gate
* SN7432 Quad 2-input OR Gate
* SN7437 Quad 2-input NAND Buffer
* SN7438 Quad 2-input NAND Buffer with Open-Collector Output
* SN74104 Gated J-K Master-Slave Flip-Flop
* SN74105 Gated J-K Master-Slave Flip-Flop
* SN74110 Gated J-K Master-Slave Flip-Flop Data Lockout
* SN74111 Dual J-K Master-Slave Flip-Flop Data Lockout

SN74121 Monostable Multivibrator

* SN74I 22 Retriggerable Resettable Monostable Multivibrator
* SN74I23 Dual Retriggerable Resettable One-Shot
-PLUS ALL THE ORIGINAL GATES-FLIP FLOPS SN7400; SN7401; SN7402; SN7403; SN7404; SN7405;
SN7410; SN7420; SN7430; SN7440; SN7450; SN745I;
SN7453; SN7454; SN7460; SN7470; SN7472; SN7473; SN7474; SN7476; SN74107.
* NEW ITEMS

DELIVERY EX STOCK FROM:
QUARNDON ELECTRONICS (sEmicondoctors) LTD SLACK LANE • DERBY

AVELEY introduces a first-class performer

at a First-Class

Price $\mathbf{5 8 2}$

Designed to supply the routine facilities necessary for the operation of 5 V logic our new model J 174 Pulse Generator will enable a basic, and uncomplicated operation in all areas of Current Sinking Logic. As a 'working' gent' eral purpose instrument, J 174 offers no pretentious 'dressing' to swell the price. It's straightforward, simple, and offers supe' service at a competitive price without any degradation of performance. Compact, mains operated, and using I.C. Logic J 174 gives an inherent fast rise-time with a design that will allow for direct interfacing with all popular families of Current Sinking Logic Instrumentation.

Call us for immediate demonstration and/or clectrical and mechanical specifications. Delivery of this $£ 82$ Puise Generator is guaranteed ex-stock.

- 5 Hz to 3 MHz clock
- 0.1μ.sec to 100 m .sec Pulse and Delay range.
- Output voltage fully compatible with Current Sinking Logic.
- Normal and Delay facility.
- Single Shot capability
electric ltd

New from Brenell...

'Type 19' an industrial and scientific tape deck built to the highest standards!

brenell

BRENELL ENGINEERING COMPANY LTD
2315 Liverpool Road, London: N.1. Telephone: 01-607 8271 WW-078 FOR FURTHER DETALLS

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

'PHASE 12'

An extremely attractive solid state stereo amplifier, ideal for unit audio use. Facilities include MAGNETIC and CERAMIC P.U. RADIO. TAPE etc. Output 6 watts per channel Freq. Response 40-40,000 c.p.s.-3 dB. Hum Level-74 dB. Controls include Input Selector, Volume. Balance, Bass, Treble and Stereo/Mono Switch. Black and silver facia panel with satin silver control knobs. Slimline finish enhanced by good quality Teak cabinet housing.

The latest addition to the FAL range For performance and styling the "PHASE 44" compares with the best. Reliability assured by the use of top grade components.
Push button selection for Magnetic and Ceramic pick-up. tuner, tape, mono/stereo. filter, on/off.
Circuit incorporates 20 transistors and 4 diodes.
drodes.
Facilities provided include:-Headphone Jack socket, reserve power outlet and mains neon.
Without doubt. 'the 'PHASE 44' represents excellent value for money.

'PHASE 44' SOLID STATE STEREO AMPLIFIER $20+20$ WATT R.M.S. HIGH FIDELITY
 £42.50

£25.20

FUTURISTIC AIDS LTD, 104 Henconner Lane, Leeds, 13.

Best value in Variable Filters

Some customers

British Broadcasting Corporation British Rail
Central Electricity Generating Board Chelsea College of Science \& Technology
Chemical Defence Establishment
Government Communications Headquarters, Cheltenham
Imperial Chemical Industries Ltd
Imperial College
Marconi Space \& Defence Systems Lid
Military Vehicles \& Engineering Establishment
National Physical Laboratory
The Post Office
Queen Mary College
Rank Precision Industries Ltd
The Rover Co. Ltd
Royal Air Force College
Royal Armament Research \&
Development Establishment
Royal Military College of Science
Royal Navy Physiological Laboratory
Shell Research Lid
Unilever Lid
United Kingdom Atomic Energy
Authority
University of Essex
University of Liverpool
University of Salford
University of Strathclyde

Our specification

 channels\square Frequency cut-off range from 0.1 Hz to 100 kHz
\square Frequency tolerance $\pm 5 \%$ except at the limits of the range
Attenuation slope 36 or $72 \mathrm{~dB} /$ octave
Maximum attenuation greater than 75 dB Combined channels providing band pass, band stop or band separation modes
\square Mode switching without the use of external links
\square Digital selection of cut-off frequency giving accurate repeatability
\square Response switchable to 'normal', 'narrow' or 'damped' condition
\square Up to 20 dB gain provided in 'narrow condition
\square 6th order response achieved as a result of computer aided design
\square Operation either from mains or external batteries
\square Output protection against damage from external short circuit
\square Price-f350 (UK)
Please write for pamphlet No. 1652/WD

EASFRR ANPND

$\Leftrightarrow 5-1040$
BARR \& STROUD LIMITED
Anniesland, Glasgow W3
Telephone: 041-9549601 Telex: 778114
Kinnaird House, 1 Pall Mall East, London SW1
Telephone: 01-930 1541 Telex: 261877

RECORD ZENER OFFER

DO YOUR COMPANY A GOOD TURN. Get the lowest factory prices and fastest delivery for all TEXAS, AEI, and FERRANTI Zener diodes. All voltages and powers. Save your company time and money.
GET A SMALL REWARD. Free L.P. record tokens with Zener orders over £5, exchangeable for all makes of record.
OR HELP A CHARITY. Alternatively we will credit the equivalent amount to the reaistered charity of your choice. Contact WEL today for a keener Zener deal. Offer ends 31st March 1971.
MEL COMPONENTS LTD 5 LOVEROCK ROAD, READING, RG3 1DS Tel.58061619 Telex84529
MINISTRY OF TECHNOLOGY APPROVED DISTRIEUTOR WW- 083 FOR FURTHER DETAILS

with CENTRALAB * tried and tested products.
Wafer switches in all sizes and ratings, for ultra-reliable signal switching. Wide range of poles and switch positions : : superb detent mechanisms for positive 'feel': : high VA ratings for power circuits: : mutti-layer construction for intricate arrangements.

All available from UECL - with the attractive "design and build your own" kit of parts. Send now for details, or ask for your wallchart of over 200 different types.

Ultra Electronics (Components) Limited,

* registered trade mark of Globe Union Inc.-- Lice registered user Ultra Electronics (Components) Limited.

Designed for compact modern equipment. for all climates, these miniature keys are only 0.425" wide by 0.78" long and 1.76" deep behind panel.

BRITEC LIMITED

17 ChARING CROSS ROAD. LONDON. WC2H OER
Tel: 01-930 3070
WW-086 FOR FURTHER DETAILS

USED THROUGHOUT THE WORLD SANWAS
EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY, VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.

| | Guarantee | Excellent Repair | |
| :---: | :---: | :---: | :---: |
| Model P-28 | 44.87 | Model K-30tho | £12.60 |
| Model JP. 50 | ¢5.87 | Model F-80tro | f13.15 |
| Model I-500N | c8.00 | Mode 380-CE | ¢16.00 |
| Model 360 -YTR | ¢8. 25 | Model 430-ES | £20.00 |
| Model A.303TRD | £11.00 | Modei EM-700 | £45.00 |
| Mode AT-1 | £11.37 | Mode F-1000CB | ¢60.00 |

Cases avalable with most meters
MOOEL JP. 50 PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K;

OUMLIT ELEGTHONLGS LD.

47-49 HICH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585 WW-087 FOR FURTHER DETAILS

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction exceptionally low price and built in reliability.

The instrument is of modern appearance, small, light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial. allowing operation at low frequencies for strobo photagraphic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an externa closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase

Light source. High intensity Xenon tube mounted in a para
Flashing rate
Frequency accuracy
Triggering. bolic reflector.
1-250 flashes/second in 3 ranges
Typically $\pm 2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts

Price : $£ 38.50$
Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242
WW- 100 FOR FURTHER DETAII.S

| JE S AUDIO | INSTRUMENTATION |
| :--- | :--- | :--- | :--- |

J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE. WW-089 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-101 FOR FURTHER DETAILS

CONTINUOUSLY VARIABLE LOW PASS ACTIVE FILTERS over the range of:
1 Hz to 11 kHz

CLOSE TOLERANCE CAPACITORS 400 Volts D.C. down to: $\pm 1,2,5 \%$
made to customers' requirements

Also:
c \& boxes
wheatstone bridges
Voltage dividers

UNIVERSAL BRIDGES for educational purposes

LIONMOUNT \& CO. LTD.

Bellevue Road, New Southgate, London, N.11. Tel: 01-368 7047 WW-090 FOR FURTHER DETAILS

The D51 is a new oscilloscope incorporating all the current requirements of a general purpose oscilloscope. Of strong construction and simple controls, the D51 can be easily operated by non-technical personnel and is an ideal oscilloscope to satisfy the demands of A-level syllabuses and the needs of Technical Colleges.
Look at these features and then send for full details NOW!!!
国 True Dual Beam Large display area $6 \times 10 \mathrm{~cm} \square$ Wide Bandwidth (DC-6MHz channel 1, DC-3MHz channel 2) $10 \mathrm{mV} / \mathrm{cm}$ Sensitivity (DC-2MHz) Exceptionally Bright Trace \square Small Size - Lightweight - All this for only $£ 98.0 .0$

TelequipmenT \ll >

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

This month's cover. A simulated emergency at Standsted airport to demonstrate the use of rescue vehicles equipped with AVOID radar described in this issue.

IN OUR NEXT ISSUE

The first of two articles describing a sensitive f.m. tuner using dual-gate m.o.s.f.e.ts, ceramic i.f. filters and integrated circuits.
Low-cost logic teaching aid enabling the Karnaugh map of combinational logic circuits to be displayed on an oscilloscope.
Further details of special articles in this our 60th birthday issue are given on p. 113 .

Volume 76 Number 1425

Contents

103 Concepts and Reality in Electronics
Wein Bridge Audio Oscillator by A. F. Ewins
Demonstrating Multivibrator Action by T. Palmer
News of the Month

Wireless World's 60th Birthday
H.F. Predictions

Elements of Linear Microcircuits-6 by T. D. Towers

Circuit Ideas
Letters to the Editor
Electronic Building Bricks-10 by fames Franklin

Multiple-array Loudspeaker System by E. 7. Fordan
Announcements
Conferences \& Exhibitions
Choosing a Vidicon (concluded) by D. F. Gibbons
Diode Switching using Charge Analysis by B. L. Hart

Letter from America

World of Amateur Radio
New Products
Personalities
Literature Received
March Meetings
Real \& Imaginary by "Vector"
appoint ments vacant
INDEX TO ADVERTISERS

AVOID-Short-range High-definition Radar by K. L. Fuller

Electronic Voltmeter for 2 to 50 kV by A. M. Albisser \mathcal{E} N. F. Moody

New Approach to Class B Amplifier Design (concluded) by P. Blomley

ibpa

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1
© 1.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; 3 Os Od. (33.00).
 Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: Birmingham: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 0EP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

Editor-in-chief:
w. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.

Concepts and Reality in Electronics

One of the difficulties in studying electronics is to know what conceptual level a lecturer or writer is on when he is explaining or describing something. Even if one is familiar with all the technical terms and symbols, and has crossed the first hurdle-that the meaning is not simply the sum of the facts-there is still this slight worry about where exactly the meaning lies on the scale of reality, a scale that stretches from the groundrock of sense data to the stratosphere of abstract notions.

One sees such a scale in logic systems. At the top (for the sake of a reference point) there is the level of abstract logical relationships which can be expressed in words or some other kind of symbolism. Next down, and seemingly more "real", is the functional or black-box level concerned with states (on, off, up, down etc.), which are usually represented by voltages or currents. Below this is the hardware level, of interconnected devices and components with electrical energy shunted about among them, which is describable in engineering terms without any reference to logic as such. Lower down, and hardly recognizable as logic, is the level of tangibles: the materials and electricity, which one can experience directly without being an engineer. (Of course the reality of even this level is dubious, based as it is on complementary concepts of waves and particles, so it might equally well be placed at the top of the scale of abstractness.)

For the student the middle of this conceptual scale is the most tricky because the terms and symbols used can have various degrees of abstractness. If we see a NOR gate symbol, do we think of the pure logical function or of a familiar circuit configuration? It must depend on the context. At this level, more or less, we have those shifty characters voltage and current. Owing to their long history in electrical power engineering, and their common usage by the layman, these variables have acquired the reputation of being the real stuff of electricity. As a result when we hear such terms as voltage drive, voltage gain or voltage feedback we might easily come to think that the drive, gain or feedback takes place solely by voltage alone and that current doesn't enter into the process. This may lead us into all sorts of confusion in trying to understand what is going on. It is only when we come to examine voltage or current more closely that we see the will-o'-the-wisp nature of these apparently solid citizens. Apart from being concepts they exist only as instrument readings. Thus something that we may think of as comparatively "real", such as voltage gain, turns out to be more in the nature of an indicator of the real thing an indicator that has been invented mainly because voltmeters are readily available and we therefore like to use voltage for design and specification purposes. To see the full picture we must know what are the input and output impedances across which the voltages are measured.

The practical experimenter tends to blame mathematics for many of the conceptual difficulties met in studying electronics. It is true that mathematical concepts, such as the mysterious square-root-of-minus-one, have taken hold in electronics pretty extensively. But this is not to be considered as some sort of infestation. If mathematics had not provided ready-made concepts we would have had to invent our own, and it is doubtful whether even these would have helped to dispel the slight confusion we are bound to feel when encountering different aspects of reality.

Wein-bridge Audio Oscillator

Provides 10 Hz to 100 kHz in eight $\sqrt{10}$ steps and uses a m.o.s.f.e.t. as the input device

by A. J. Ewins

In the 'good-old-days' before the invention of the transistor, an audio oscillator designed on the Wein-bridge principle used a double-gang variable capacitor for fine control of the frequency and fixed resistors to determine the frequency range. Because of the lower input impedance of transistor circuits. Weinbridge audio oscillators employing them have reversed the roles of the variable capacitor and fixed resistors to fixed values of capacitors with variable resistors. Some excellent oscillators have been designed on this basis* but good doublegang variable resistors and accurate fixed capacitors tend to be rather expensive. Now that the m.o.s.f.e.t. is available, with its extremely high input impedance, it is possible to revert to the original design using variable capacitors and fixed resistors should it be considered desirable to do so. The author thought that the design of such an oscillator was worth the attempt.

One possible solution to using a m.o.s.f.e.t. as the input device would be to place a 'source-follower' circuit in front of a good existing transistor design. However, the author's approach has been to start at the beginning and arrive at a m.o.s.f.e.t. input stage with exceptionally high voltage gain.

Design procedure

Neglecting the frequency selective positive feedback and the voltage stabilizing negative feedback loops the design of a high-gain amplifier with a m.o.s.f.e.t. as the input device is first considered.

Fig. 1 shows the typical transfer characteristic of the RCA 40468A m.o.s.f.e.t. used by the author. This device was chosen because of its low cost and high value of transfer conductance (7.5 mA /volt). With a drain current of about 5 mA the transfer characteristic is fairly linear and the transfer conductance is at a maximum of about $7.5 \mathrm{~mA} / \mathrm{V}$ for source-to-drain voltages in excess of about 10 V . As will be seen from the' transfer characteristic, the gate-tosource bias voltage at a drain current of about 5 mA is typically -1 V . As this bias voltage may vary between samples of the m.o.s.f.e.t., it was thought advis-

[^3]able to bias the gate with a positive voltage, as for a conventional $n-p-n$ transistor, and use a suitable value of source resistor to obtain the correct source voltage at the chosen value of drain current. With the voltage on the gate chosen to be 5 V , the expected source voltage is 6 V . With a drain current of 4.5 mA , a value for the source resistor of $1.33 \mathrm{k} \Omega$ is obtained. A $1 \mathrm{k} \Omega$ resistor was used in series with a 330Ω resistor; the 330Ω resistor forming part of the negative feedback loop. With this biasing arrangement, the drain current will be within $\pm 10 \%$ of its design value (assuming precise values of resistance) for variation in the gate-to-source bias voltage of $\pm 50 \%$ (i.e. $\pm 0.5 \mathrm{~V}$).

With a positive supply of 22.5 V , the source voltage set nominally at 6 V and a drain-to-source voltage of at least 10 V , the maximum value of resistance that may be placed in the drain line of the m.o.s.f.e.t. is $(22.5-6-10) / 4.5$ which equals $1.45 \mathrm{k} \Omega$. Thus, since the voltage gain of a m.o.s.f.e.t. stage is proportional to the load on its drain, the maximum voltage gain attainable from the circuit would be approximately 7.5 mA / volt $\times 1.45 \mathrm{k} \Omega$ which equals 11 . (This is assuming, of course, that the source resistor is decoupled.) The voltage gain of this stage could be improved by increasing the value of the drain resistor, necessitating an increase in the positive supply voltage. However, in view of the fact that the absolute maximum drain-to-source voltage is 20 V for this particular type of m.o.s.f.e.t. it would not be advisable to increase the supply voltage by any appreciable amount.
One way of making the drain load appear

Fig. 1. Characteristics of the R.C.A. 40468A m.o.s.f.e.t.
high while maintaining a low supply voltage is to replace the drain resistor with the collector circuit of a transistor which has a fixed emitter resistor and a constant base voltage (i.e. a constant current circuit). The variation of collector current with varying collector voltage is negligible for such a configuration, giving an output impedance in the collector line in excess of $100 \mathrm{k} \Omega$. Thus, with the constant current matched to the drain current of the m.o.s.f.e.t., the voltage gain of the m.o.s.f.e.t. stage is potentially increased to a value in excess of $100 \mathrm{k} \Omega \times 7.5 \mathrm{~mA} / \mathrm{V}=750$.
Having decided on a constant current circuit as the load for the m.o.s.f.e.t. stage the problem arises as to how to match the constant current to the chosen value of drain current and to stabilize the voltage on the collector and drain of the constant current transistor and m.o.s.f.e.t. By means of d.c. negative feedback from the collector/drain junction, either the f.e.t.'s drain current may be controlled by varying the bias voltage on its gate, or the constant current may be controlled by varying the voltage on the transistor's base. Figs. 2(a) and 2(b) illustrate these two possible methods. The drawback of both these methods is that the d.c. feedback line imposes an unwanted load on the drain of the m.o.s.f.e.t. stage, reducing its voltage gain. The second method having a more drastic effect than the first. The first method was attempted using feedback resistors with values in the megohm region. However, it proved unsuccessful in that low-frequency instability resulted when an input signal was applied to the circuit.

At this stage, thought was given to the second stage of amplification and having decided on a p-n-p transistor an obvious solution presented itself. With the base of the second stage transistor directly coupled to the drain of the first stage, the d.c. voltage developed across its emitter resistor could be tapped to provide the base of the constant current transistor with just the correct amount of d.c. voltage to produce the required value of constant current, thus stabilizing the d.c. voltage at the collector/ drain junction (see Fig. 2(c)). In doing this no unwanted load is placed upon the drain of the m.o.s.f.e.t. stage

Using this method of matching the constant current load to the chosen value of drain current results in an extremely stable

Fig. 2. (a and b) Two ways of stabilizing the voltage on the collector and drain of the constant current transistor and m.o.s.f.e.t. (c) the solution employed.
working point d.c. voltage at the collector/ drain junction of the first stage. For variations in the bias voltage of the m.o.s.f.e.t. of $\pm 50 \%$ about the design value of -1 V , a variation in the d.c. voltage of the collector/drain junction of as little as $\pm 2 \%$ is achieved (assuming that all resistors are their precise values).
The design of the second stage of amplification (the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ - transistor, Tr_{3} in Fig. 3) is conventional, as is the output stage, which is an emitter follower. A constant current circuit was used as the emitter load of the output stage in order to reduce the load on the emitter of this stage. If the output from the oscillator is to be connected to the output attenuator circuit of Fig. 4, or if the load applied to the output from the oscillator is not likely to be less than $1 \mathrm{k} \Omega$, the constant current circuit may be replaced by a resistor of about 470Ω without any detriment to the oscillator's performance. As shown in Fig. 3, the minimum value of resistance that may be applied to the output from the oscillator is 220Ω.

Fig. 3 shows the circuit diagram of the audio oscillator as described. It will be seen that the frequency selective, positive feedback is a conventional Wein-bridge circuit. The frequency ranges (coarse control) are provided by means of switched selected fixed resistors, the double-gang variable capacitor providing the fine frequency control. Using values for the resistors and capacitors as shown in Fig. 3 gives frequency coverage over the range of 10 Hz to 100 kHz in eight $\sqrt{10}$ steps. i.e. 10 to $32 \mathrm{~Hz}, 32$ to 100 Hz , etc. The double-gang, 1000 pF , variable capacitor is a four-gang, 500 pF , tuning capacitor with its four sections divided into two pairs; the two sections in each pair being connected in parallel. The tuning capacitor used by the author is an expensive item and rather upsets the argument of a cheap, finefrequency control. However, a double-gang, 500 pF tuning capacitor, which may certainly be obtained for less than 10s, may

Outputs $A \& B$ to inputs $A \& B$ in figures $4 \& 5$

Fig. 3. The audio oscillator.
alternatively be used, providing frequency coverage over the range of 20 Hz to 200 kHz , again in eight, $\sqrt{10}$ steps. i.e. 20 to 63 Hz , 63 to 200 Hz , etc.

The voltage stabilizing, negative feedback is achieved by means of a thermistor as shown in Fig. 3. The type specified is an S.T.C. R24 which gives an output of about
1.4V r.m.s. The S.T.C. types, R53 and R54 may be used, providing outputs of 1 V and 2.2 V , respectively. Some alteration to the feedback resistor in the source line of the m.o.s.f.e.t. (330Ω) may be necessary with these other types.

The only capacitors in the circuit, other than the frequency selective capacitors, are

Fig. 4. Output attenuator circuit.
those in the output, in the negative feedback line and the two for decoupling around the emitter circuit of Tr_{3}. The role that these two decoupling capacitors play is worthy of comment. Neglecting, for the moment, the decoupling capacitor across the base of $T r_{2}$, the capacitor decoupling the emitter of Tr_{3} produces maximum voltage gain in the second stage of amplification. However, its presence reduces the input impedance of the second stage, increasing the load on the drain circuit of the m.o.s.f.e.t. and hence reduces the voltage gain of the first stage. If only the $1.8 \mathrm{k} \Omega$ resistor in the emitter circuit of Tr_{3} is decoupled, leaving $1 \mathrm{k} \Omega$ undecoupled, the input impedance of the second stage is raised, increasing the voltage gain of the first stage but at the expense of a drastically reduced second stage voltage gain. Perhaps not surprisingly, completely
decoupling the emitter of Tr_{3} produces the greatest overall, open loop gain of the two alternatives. It may be worth experimenting with the amount of resistance left undecoupled in the emitter of $T r_{3}$ since maximum open loop voltage gain of the two stages is not necessarily achieved when the emitter of $T r_{3}$ is totally decoupled.
Returning now to the decoupling capacitor on the base of $T r_{2}$; it was found necessary to have this in order to maintain the high gain of the amplifier down to low frequencies. The open loop gain of the amplifier as shown in Fig. 3 was found to be in excess of 5,000 at 1 kHz . The 120 pF capacitor connected in series with the 100Ω resistor across the collector load of Tr_{3} tailors the high-frequency response of the amplifier and prevents any unwanted highfrequency oscillations from occurring. For
this reason also, the $1 \mathrm{k} \Omega$ resistor in the source line of the m.o.s.f.e.t. was left undecoupled.

The circuit of Fig. 4 provides a means of varying the output voltage from 0 to 1 V in six, $\sqrt{ }$ T0 steps with a constant output impedance of 600Ω. The 820Ω resistor in the emitter of Tr_{6} may be adjusted, if required, so that, with the variable control set at maximum, the output from the attenuator in position six is exactly 1 V . The resistors used in the constant output impedance attenuator were of 5% tolerance, being perfectly adequate for the author's requirements. Resistors of 1 or 2% tolerance may, of course, be used if a greater degree of accuracy is required.

Readers will notice that, although the audio oscillator was originally designed to operate from a supply of 22.5 V , the circuits of Figs. 3 and 4 are shown as operating from an 18 V supply. After the initial design was made the author reasoned that a supply of 18 V would be more convenient should battery operation be preferred. Consequently, after initial experimentation with the circuit, a prototype and final model were constructed for use with an 18 V supply. All performance data given is for an oscillator operating from an 18 V supply.

The author does not have ready access to harmonic distortion measuring equipment and, as a result, was unable to check the overall performance of the oscillator until it had been completed. The total harmonic distortion of the oscillator, which was discovered to be predominately second harmonic, was measured at the output of the output attenuator circuit at a level of 1 V and was found to be less than 0.15% over the range of 25 Hz to 25 kHz . The author was able to employ the services of Brunel University's electronics department for this measurement and wishes to thank its staff for their co-operation.

Fig. 5. Frequency meter and square-wave shaper.

Fig. 6. The circuit of the power supply unit.

Because the design of the oscillator was very much by rule-of-thumb, it is to be expected that it is capable of refinement with, perhaps, an improvement in the distortion figures.

Calibration

As with all test instruments, calibration of the oscillator poses a problem and is best achieved with the aid of a digital frequency meter. Calibration of two adjacent ranges, e.g., the ranges 100 to 320 Hz and 320 Hz
to 1 kHz , is all that is necessary, provided that 1% tolerance resistors are used for the construction of the coarse frequency control, as the relationship between alternate ranges will hold good for all the ranges covered by the oscillator. The author, however, Lised 5% tolerance resistors, having decided to build-in a frequency meter to the completed oscillator. For those readers who may be interested the circuit of the author's frequency meter is shown in Fig. 5. The same switch that selects the frequency range of the oscillator was used to select
the frequency range of the meter. As part of the frequency meter is a square-wave shaper, a square-wave output was made available with a peak-to-peak voltage of approximately 4 V . The rise time of the square-wave was less than $0.2 \mu \mathrm{sec}$ at a frequency of 100 kHz .

Performance

No tests were carried out as to the frequency or output voltage stability of the oscillator with variations in room temperature or supply voltage. However, there is no reason to expect these to be any different from other oscillators of a similar design. Typical values that may be expected are: frequency stability; better than 2% for $\pm 10^{\circ} \mathrm{C}$ variation; less than 1% for $\pm 5 \%$ variation in supply volts. Output voltage stability; less than 3% for $\pm 10^{\circ} \mathrm{C}$ variation; less than 1% for $\pm 5 \%$ variation in supply volts.
The output voltage variation with frequency was found to be less than 1% over the entire range of the oscillator.
The distortion figures of the oscillator are not exceptional and are, as previously mentioned, less than 0.15% over the frequency range of 25 Hz to 25 kHz .

As the circuit of the frequency meter used by the author is sensitive to changes in supply voltage, he used a mains operated, stabilized power supply capable of delivering up to 100 mA at 18 V . Fig. 6 shows circuit of the author's power supply.

Demonstrating Multivibrator Action

T. Palmer*, B.A., Assoc.I.E.R.E.

When teaching the action of an astable multivibrator to students, there is the difficulty that, no matter at what point in the cycle we begin, the action is determined by what happered in a previous period. If the important feature at a certain moment is that a capacitor is discharging, we have to go back in time to explain how it became charged. These difficulties can be avoided by starting at a certain point, which I call stage 1 , and for which the circuit is shown below.

Stage 1. With switch S_{1} open, A_{1} reads zero, A_{2} reads 6 mA , and A_{3} reads 6 mA . When S_{1} is closed, A_{1} immediately gives a reading of 6 mA . The reading on A_{2} falls to zero and stays at zero for a certain time. It then rises to 6 mA . When the reading on \boldsymbol{A}_{2} rises to 6 mA , that on \boldsymbol{A}_{3} falls to zero and stays at zero for some time; eventually it rises to 6 mA . All the meters continue to read 6 mA .

The moral to be drawn from the demonstration so far is that when any transistor starts to pass current, its neighbour on the right stops passing current for a certain period. If C_{1} and C_{2} are banks of $100 \mu \mathrm{~F}$ capacitors it is easy to show, by varying C_{1} or C_{2}, how the
delay is related to the value of capacitance ($100 \mu \mathrm{~F}$ for a short delay, $800 \mu \mathrm{~F}$ for a long delay).

Stage 2. Switch S_{1} is open; the lead from C_{2} which previously was connected to the base of Tr_{3}, is now connected to the base of $T r_{1}$. Initially, A_{1} reads zero, A_{2} reads 6 mA , and A_{3} reads 6 mA . When S_{1} is closed, A_{1} immediately reads 6 mA and A_{2} reads zero, because of the action illustrated in stage 1 . Eventually the reading on A_{2} rises to 6 mA and now Tr_{1} behaves in the same way as Tr_{3} in stage 1. Whereas $T r_{3}$ could not affect $T r_{2}, T r_{1}$ can. Whenever either of the transistors starts to

Circuit for demonstrating astable multivibrator action. Meters are $0-10 \mathrm{~mA}$ types.
pass current, the other one is switched off. The pattern continues indefinitely.

If the transistors and resistors are mounted on an S - DeC^{\dagger}, it is not necessary to have a switch for S_{1} : simply insert the leads of R_{1} in the appropriate holes. The circuit can easily be changed from that of stage 1 to that of stage 2 by plugging the lead from C_{2} in a hole associated with the base of $T r_{1}$.

Students often have difficulty understanding that in an astable multivibrator of this type the base can swing appreciably positive to the emitter. It is instructive to improvise a voltmeter out of a centre-zero 25μ A meter in series with a $1 \mathrm{M} \Omega$ resistor. Such a voltmeter connected between base and emitter of Tr_{2}, for instance, shows that immediately after $T r_{2}$ has stopped passing current, the base is momentarily 6 V positive with respect to the emitter. Students can see that it is not until the base is slightly negative to the emitter that collector current starts to flow in $T r_{2}$. Eventually some of them may be persuaded to have some faith in the statements made to them about $R C$ circuits. Even if they are not, the demonstration keeps them out of mischief.
\dagger S-DeC. is available from SDS Electronics Ltd, 34 Arkwright, Astmoor Industrial Estate, Runcorn, Ches.

News of the Month

Sony must be very sure of their position because, although their set receives and processes PAL colour television signals (and the make-up and format of these signals are covered by AEG-Telefunken patents), they claim that they are not infringing any of the patent rights. It will be interesting to follow Telefunken's reaction to the announcement.

The new set has a 13 in screen (in line with Sony's earlier preference for small sets); it weighs 39 lb , and has a recommended retail price of $£ 199.75$.

A nother Japanese firm who will soon be launching a range of PAL colour television sets, this time with a licensing agreement with AEG-Telefunken, is Hitachi.

Sony defies PAL patents

A colour television receiver is to be introduced in April which is unlike any other on sale in this country. Instead of using the three-electron-gun shadow-mask tube Sony, who produce the receiver, are employing a tube of their own design which they have called the Trinitron. In the tube a single electron gun produces three beams which are magnetically deflected to provide the scan and electrostatically deflected for convergence purposes. Unlike the shadowmask tube, which has the three beams arranged in a triangle, the Trinitron employs a 'horizontal-in-line' beam geometry. This arrangement, claims Sony, means that in optical terms one is using a large lens with a small aperture giving very high definition. Certainly on receivers viewed by Wireless World the definition was very good although the convergence arrangements were such
that a slight colour fringing on black and white pictures was visible at the extreme corners of the picture. Incidentally convergence has to be carried out in one plane only and therefore the controls are few and simple.
In place of the shadow mask the Trinitron employs a metal plate with vertical slits running the height of the tube face. The phosphors are also applied in stripes.

Sony have not a licensing agreement with AEG-Telefunken who developed the PAL television system and who hold the patent rights. Sony say that their 'system employs a completely new concept of reception for the British colour TV broadcasting standard'. Just how different the circuitry is we were unable to establish as Sony will not release any details at this stage. All we were able to find out was that no valves are used.

The photograph shows a portable position indicating unit which operates in conjunction with the U.S. Navy's navigational satellite system and a master station which may be hundreds of miles distant. As the satellite rises over the horizon both the master and portable stations record the satellite's signals and the portable station then transmits this information to the master station. The master first computes its own position using the doppler shift of the satellite's signals and then computes the portable station's relative position. This information is then transmitted to the portable station. The portable station weighs 27lb and was built by Honeywell.

Domestic radio and TV deliveries

The graph shows the deliveries of U.K. manufactured radio and television receivers and record playing equipment to the trade (multiply by one thousand) as released by the British Radio Equipment Manufacturers' Association. We have projected the curves into 1971 although we may perhaps have erred on the side of optimism. The colour TV market will almost certainly increase its rate of growth but it would be very difficult to say what sort of impression imported colour receivers are going to make and the share of the market they are going to win. We feel that the radio receiver market will start to pick up because public interest in v.h.f. receivers will be aroused by the discussions on local and commercial radio that will take place during the year.

Touring Exhibition

During 1971 a series of 'Electromation Exhibitions' will be held throughout the country. Some of the firms taking part will be: Cannon Electric, Watford Electric, Elite Engineering, Gresham Lion Electronics, Seiga Electronics, Mullard, Bowthorpe Hellerman, Rowband Electronics, Coutant

Electronics, S.D.S., Interface Components, Stabletron, Integrated Photomatrix, Avdel, Excel Electronics, Murex, G.D.S. Sales, Highland Electronics, Electrical Remote Control, Chemical Processes, Vero Electronics, Craig \& Derricott, Membrain, and Hallam Sleigh \& Cheston. The exhibitions will be held at the following places.
Feb. 23-25 Guildhall, Plymouth
April 6-8 Excelsior Hotel, London Airport
20, 21 Station Hotel, Newcastle
22, 23 Grand Hotel, West Hartlepood
June 9, 10 Central Hotel, Glasgow
11, 12 Caledonian Hotel, Edinburgh
22, 23 Hotel Leofric, Coventry
24, 25 North Stafford Hotel, Stoke-on-Trent
July 6, 7 Adelphi Hotel, Liverpool
8, 9 Midland Hotel, Bradford
20, 21 Grand Spa Hall, Bristol
22, 23 Rank Banqueting Suite,Swansea
Sept. 7, 8 Queen Hotel, Leeds
9, 10 Royal Victoria Hotel, Sheffield

BBC-2 trade test

transmissions

During the following transmissions the sound sequence will be: four-mins 440 Hz tone, one-min no sound and fifteen-mins of recorded music.
Monday to Friday
09.00 Test card \mathbf{F}
09.58 Caption
14.28 Caption
14.30 Service information
10.00 Service information
10.05 Test card F 15.00 Test card F
11.00 Colour prog. 15.30 Colour film or film
11.20 Test card F 16.00 Test card F
11.28 Caption 16.10 Colour bars
11.30 Service information
11.35 Colour film 16.30 Colour film 11.55 Colour bars 17.00 Test card F
12.00 Test card F 17.10 Colour bars
12.10 Colour film 17.15 Test card F
12.25 Colour bars 17.30 Colour film
12.30 Test card F 18.00 Test card F
14.00 Colour film 18.15 Colour film 14.20 Test card F 18.40 Test card F

Saturdays

As Mondays to Friday except for:
14.50 Test card F 16.35 Test card F
15.00 Saturday 17.00 Colour film
cinema

T.E.M.A. awards

The annual awards to the winners of the competition for technologists and technicians were made at the annual dinner of the Telecommunication Engineering \& Manufacturing Association on February 2nd. The entrants from member companies submitted essays on some aspect of their studies or training. The winner in the technologist grade (confined to graduate trainees or those in

The traffic control room at the Dartford tunnel. S.T.C. have recently installed a single-channel u.h.f. communication system which allows contact with service control vehicles. The use of u.h.f. has overcome the problems of receiving the signal inside the tunnel itself and no dead spots exist at the tunnel mouths due to cancellation effects.
the final year of their studies) was Jack Roberts, B.Sc. (Hons.), of Creed \& Co, and the runner-up was Richard P. Edwards of the Marconi Company. Winner in the technician class was Peter J. Walters of GEC-AEI Telecommunications.

Emley Moor again

The new aerial at Emley Moor is now operational and it is hoped that about 1.75 M more viewers will be able to receive programmes than with the temporary aerial, which has been in use since the collapse of the original mast.

The lower portion of the new mast is a 900 ft high concrete tower, 80 ft in diameter at the base, and weighing 14,000 tons. The top 180ft of the mast (the total height is $1,080 \mathrm{ft}$) is a steel lattice structure containing the various aerials. The main companies who have built the new mast for the I.T.A. are Ove Arup and Partners (consultants), Tileman and Co. (main contractors for the tower) and E.M.I. (aerials).

The I.T.A. have also recently announced that a $£ 1 \mathrm{M}$ contract has been awarded to Marconi for 15 television transmitters to be installed in various parts of the country from 1972 onwards.

The Physics Exhibition

The Physics Exhibition will again be held at the Alexandra Palace, London (19th to 22nd April). There will be an increased number of exhibitors from overseas including France, Hungary and Israel, as well as a large stand which will be organized by the Federation of Scientific and Technical Associations of Italy.

An important change has been made in
the regulations relating to equipment and instruments in production. In the past to qualify for the exhibition instruments, or other apparatus, had to show 'substantial advances on or differences from existing apparatus, instruments or techniques'. The eligibility of each item was assessed by a committee. This process will continue for the 1971 exhibition but in addition, for every experimental or new item the committee consider suitable for the exhibition the exhibitor may also exhibit one item, or in some cases two, from production. The organizers, the Institute of Physics and the Physical Society, say that by this change in the regulations it is hoped to restore the interest in scientific instrumentation and careful measurement which was a feature of the early Physical Society Exhibitions and that a balanced exhibition of interest to physicists, both pure and applied, will result.

While appreciating the reasons for this change in the regulations we sincerely hope that this new licence to exhibitors will not be abused. It would be very sad to see the exhibition become a happy hunting ground for the salesmen.

In place of the open forum which has been a feature of the last two exhibitions there will be a joint meeting of the Education and Electronics Groups of the Institute (2.30 p.m., 21st April). The lectures that will be held during the exhibition are as follows: 'The Impact of Electronics in the Medical Field', Professor Vito Svelto, University of Panavia (3.30 p.m., 19th); 'Science Teaching at the Open University', Professor M. J. Pentz, dean and director of studies in science at the Open University (3.30 p.m., 20th); and 'Holography, Industry and the Rebirth of Optics', J. W. C. Gates, division of optical metrology, the National Physical Laboratory (3.30 p.m., 22nd).

AVOID -Short-range High-definition Radar

by K. L. Fuller*

An experimental short-range radar has been built for detecting airfield vehicles. Using a c.w. frequency modulation ranging technique in conjunction with a frequency-sensitive steerable aerial, it achieves azimuth scan from the same frequency modulation. The radar also has marine and military applications.
With the growing use of fully automatic landing systems at airfields there is an increasing need to drive vehicles on the airfield at fairly high speeds in conditions of poor or zero visibility. After a successful automatic landing it is necessary to guide the aircraft from the end of the runway via the taxi-track to the main terminal building. This could be done with buried cables in the taxi-tracks, but would have the disadvantage that considerable installation work would be required and the system would not be flexible. Further, although following the cable would keep the aircraft on the correct route, there would be no guarantee that the route was free from obstacles. In the case of an unsuccessful automatic landing in fog resulting in a crash, it is obviously essential that fire tenders and ambulances should be able to reach the scene as soon as possible, without colliding with obstacles and survivors en
*Mullard Research Laboratories, Redhill, Surrey.

Fig. 1. Transmitted and received signals in an f.m.-c.w. radar. Near target produces low difference frequency and a distant target a higher difference frequency.
route, and here a really effective aid to vehicle navigation in zero visibility is required.

It has therefore been decided that a radar which looks over a sector of about 60° ahead of the vehicle and with a maximum range of perhaps 160 metres is the most practical solution. To produce a useful picture such a radar would need a short-range performance and range resolution performance about an order of magnitude better than current radar systems. In addition it is desirable that the radar has a rapid angular scan to avoid picture flicker and present a high information rate. In the AVOID radar system this is done with an electronic scan, giving 25 complete pictures per second. (AVOID is an acronym for airfield vehicle obstacle indication device.)

Range measurement

To achieve a two-metre resolution over the range 3 to 160 metres would require a pulse length of 10 ns if conventional pulse techniques were used, which would present almost insoluble problems of bandwidth, generation and T / R switching.

An alternative approach which seemed attractive at first sight was the use of an ultrasonic radar system because the velocity of propagation is much lower, so the range resolution can be obtained with more reasonable pulse lengths and bandwidths. When this was tried several major difficulties arose. First, the attenuation of ultrasonics in air is high and hence it is extremely difficult to obtain ranges in excess of 20 metres with a reasonable transmitter power. Second, due to the low velocity of propagation, the information rate from the radar is insufficient to produce a useful up-to-date picture. Third, the ultrasonic radar is very sensitive to interference generated by jet engine n se.
It was therefore decided to use conventional microwave radar but to measure range by applying a linear frequency modulation to a continuous transmission (Fig. 1). The transmitter frequency, shown by the solid line, increases linearly with time until it reaches the end of the frequency range of the device and then decreases. A return signal from a close target (broken line) will have

Fig. 2. Two azimuth scanning systems (a) mechanical and (b) electronic. In the electronic system scanning is achieved by using an aerial whose radiation pattern changes with frequency.
the same shape but delayed slightly in time, and the return signal from a more distant target will again be the same shape but delayed more in time. If these return signals from the targets are mixed with a sample of the transmitter output, and the difference or beat frequencies extracted, the close target will produce a low difference frequency and a more distant target will produce a higher difference frequency. In general there will be targets at all ranges, so a spectrum of difference frequencies will be produced with frequency proportional to range. These frequencies will momentarily go down to zero and return to their normal value at the turn-round points on the main frequency sweep. If the time for this turn-round is kept short compared with the sweep time, this effect can be neglected.
One major advantage of this method is that the transmitter is running continuously and that the effective power is the mean or continuous power of the transmitter, and this therefore lends itself ideally to solid-state microwave generators. Unfortunately it is not possible at this time to produce a solid-state generator with enough output power frequencymodulated over a sufficient frequency range, but it is expected that these will be available in the very near future. At present the transmitter is a backwardwave oscillator frequency modulated from 8 to 11.5 GHz and producing 100 mW output.

If the return signals from the targets are to be used efficiently, they should be fed into a bank of filters where the energy
corresponding to each range element is integrated. Ideally there should be one filter for each range element and with a time constant equal to the 'illumination' time of that particular target. In the experimental radar the complexity of a bank of filters was too great. and instead a single swept superhet filter is used which scans through the range spectrum and converts the parallel returned information into a more conventional serial range scan. The resultant loss of sensitivity is not serious in a short-range system. To have good range resolution a linear frequency sweep is needed. For example, if it is required to resolve to one part in a hundred of the maximum range, the linearity of the sweep has to be approximately 1%.

Azimuth scan

In a conventional pulse radar the range scan rate is determined by the velocity of propagation, but in AVOID the range scan obtained from the superhet just described can be carried out at any rate convenient to the system. If the range is scanned from minimum to maximum and back again in a triangular form, and at the same time the aerial is slowly scanned in azimuth, the picture will be built up in a petal form shown in Fig. 2(a).

Because it is not desirable to have a mechanical scan for various reasons an electronic scan was used. The method chosen uses an aerial whose angle of radiation depends on the frequency of the signal fed to it, and it is possible to use the same frequency sweep used for range measurement to produce the angular scan. Examination of the parameters of the system shows that the angular scan must be fast and the range scan slow in comparison, so the picture is built up as shown in Fig. 2(b).

The first aerial to achieve this result consisted of a piece of waveguide 1.2 metres long with circular holes cut in the broad face. These holes were spaced a half-wavelength apart, and on alternate
(Right) Fig. 4(a). Plan view of typical scene. A radar representation of this would bear little relation to what the driver would see. Perspective view using a B scan (b) gives a truer picture.
(Below) Fig. 5. Complete system block diagram. Part enclosed by shaded box is

(a)

(b) a swept superhet receiver.

sides of the centre-line of the broad face to bring them into phase. At the centre frequency where the half-wavelength spacing was exact, the aerial radiated broadside, and the beam steered from left to right as the frequency was lowered or raised from this value. The waveguide was mounted in a vertical horn to restrict the vertical beamwidth and to give extra gain.

There were two main difficulties with this aerial. First, despite the fact that the holes were as large as possible with diameter extending from the centre-line to the outside edge, insufficient power radiated from them and 80% of the input power was dissipated in the load at the end. This loss occurred similarly on reception. Second, two spurious beams were produced at 45° in error in elevation and azimuth, and these caused low efficiency due to the wastage of power in the beams and also confusing results due to signals being returned from these

Fig. 3. Poor v.s.w.r. at the broadside frequency, caused by small mismatches at the aerial holes adding in phase, are avoided by offsetting the aerial by 35° so that it scans from 5 to 65°.
directions. These beams were attenuated heavily on the experimental model by the addition of resistive loading to the horn, but this was not a completely satisfactory solution.

The second aerial built used the travelling-wave principle, and consisted of a similar piece of waveguide, this time with a slot cut along the centre of the broad face of the guide. This slot tapers in width along the guide and is covered by a piece of dielectric material to assist radiation from inside the guide to outside. The direction of radiation is determined by the relative velocity of the wave inside and outside the guide, and as there is a velocity change within the guide according to frequency, the radiation direction changes also with frequency. This aerial has two advantages over the former aerial-it produces only one beam, and it has a much higher etticiency, about 7 dB greater. It does have two disadvantages of its own. It cannot produce a beam broadside by definition, and so it has to be mounted at an angle. Also for the same frequency range the angular scan is reduced-to just over 20°.

The present aerial system is a return to the principle of the lirst aerial, but uses dielectric loading inside the guide. The dielectric constant and the hole spacing have been chosen to eliminate grating lobes; to obtain better radiation from the holes there is a dielectric layer on the outside. Vertical beamwidth is defined by a parabolic reflector. To remove problems at the broadside frequency, where small mismatches at the holes add in phase to produce a poor v.s.w.r. at the input, the aerial is designed to have a 35° offset, seen in Fig. 3, so that it scans from 5° to 65°.

Display

There are various methods of displaying the radar information to the driver. The most desirable is the provision of a
head-up display which would produce a perspective view of the scene ahead and which would superpose itself on the scene as viewed through the windscreen. This would be a very costly proposition as the head-up display mechanism is expensive, and would mean that the driver's head would have to be fixed accurately in one position. It is preferable therefore, in the experimental stage at least, to produce a display on a cathode-ray tube which the driver can look at by glancing slightly at one side. The form of the display was arrived at as follows.

Fig. 4(a) shows a plan view of a road and building. By suitable X and Y time-base generation, it would be possible to reproduce the radar version of this plan view on the screen, but this would bear little relation to what the driver sees through the windscreen. So it seems more obvious to use a radar B scan, which is range plotted versus angle, and in this case the picture would look like Fig. 4(b)-a perspective view. If the vertical range scale is linear, the picture is not in true perspective as seen by the eye but is
distorted, so a shaped range scan is used to give a more correct presentation. The B scan display is easy to produce as the two triangular scanning waveforms are already present in the circuitry of the system.

Experimental system

A block diagram for the complete experimental radar system is shown in Fig. 5. The backward-wave oscillator is frequency modulated over the range 8 to 11.5 GHz by the azimuth sweep generator which feeds the power supply. The law of voltage versus frequency for a b.w.o. is exponential, and the power supply has a complex correction circuit to produce a linear frequency sweep. Unfortunately backward-wave oscillators also exhibit a very fine structure on their voltage/frequency curve which cannot be compensated, and is at present affecting the range resolution capabilities. The output from the b.w.o. goes via the broadband circulator to the aerial and a small amount leaks directly into the mixer to provide the local oscillator signal.

Return signals from targets go via the

Fig. 6. Modified television receiver acts as display in this experimental set-up.
circulator into the diode mixer and the difference frequencies are extracted and amplified. High difference frequencies corresponding to long range targets are amplified more than low difference frequencies corresponding to short range targets. The next four blocks on the diagram comprise the swept superhet receiver which scans through the range spectrum as determined by the range sweep generator. The output from the swept superhet is compressed in dynamic range and fed to the bright-up amplifier of the display. The X and Y signals for the display are obtained from the azimuth and range sweep gener ators.
One azimuth sweep takes 400μ s and one complete range sweep 20 ms , i.e. the complete picture scan rate is 50 Hz . The target resolution for this system is 2° in azimuth over a 60° scan, i.e. 30 elements, and two metres in range over a maximum range of 160 metres, i.e. 80 elements. Thus the complete picture is $80 \times 30=2,400$ elements. An optional alternative picture rate of 25 per second has been added recently; this doubles the number of lines on the screen without changing the resolution. The effect is to produce a picture which appears to have much better definition, but at the expense of some flicker.
The experimental equipment built for laboratory evaluation has recently been installed in a vehicle, with a modified portable television receiver as the display. Fig. 6 shows a driver's view and Fig. 7 a view ahead with its radar representation.

An extensive programme of trials has shown that a short period of familiarization is necessary, after which the radar picture is found very useful.

Blind driving, with the windscreen completely obscured, has been tried in two locations; a fenced car park (empty!) and a deserted airfield. Although the driver completely lost his sense of direction, having no visual or compass information, the vehicle did not collide with any of the numerous obstacles, and it was easy to drive through a route marked by corner reflectors.

Further blind driving was undertaken during a simulated emergency at Stansted

Fig. 7. View of scene and its radar equivalent.
airport in which an aeroplane and 2000 gallons of fuel were ignited. The radar vehicle, with the front and side windows blacked out, was driven successfully at about 40 mile /h over a complex course approximately 500 m long, leading four fire engines to the burning aircraft.

More conventional tests and demonstrations, with a filmed record of the radar picture and the outside view, have been made at Heathrow, Gatwick and Farnborough airfields, and on the M4 motorway.

The advantages of this radar over existing conventional radar systems are

- it is cheap
- resolution and near-range performance are an order of magnitude better than conventional systems.
- it has no moving parts
- it produces a daylight-viewing flicker-free picture.
- it is simple
- it does not require high-power or high-voltage supplies
- it is unlikely to interfere with, or receive
interference from, other radars already in use on an airfield
- it is possible to alter the perspective of the display with simple circuitry changes.
It has applications other than those already suggested; for example as a harbour radar for small ships, a radar for launches in rivers and crowded waterways, as a forward-looking radar for military vehicles, or as a manpack battlefield radar. It is especially versatile if used in conjunction with a moving map display giving the direction and location of the vehicle.

Much thought has been given to the use of an alternative frequency for transmission; X-band was chosen for the experimental model for economy, because the resolution in azimuth appears adequate and performance in rain and fog known to be satisfactory at this frequency.

The design, construction and testing was carried out by K. Holford on the system and A. J. Lambell on the aerial. Much of the work was supported by the M.E.L. Equipment Company Ltd, Manor Royal, Crawley, Sussex.

Our 60th Birthday

Eleven years before broadcasting began in this country, Wireless World, the world's first radio journal, made its appearance under its original title of The Marconigraph. The first issue was in April 1911. We plan, therefore, to celebrate our 60th birthday with a special April issue.
We have invited two former editors (H. S. Pocock and F. L. Devereux) and several other contributors to survey developments in various areas of our technology-sound reproduction, receiver techniques, communications, radio-wave propagation, basic theory etc.
These articles will be in addition to the normal quota of material so the
issue will be considerably larger than normal.

Complete constructional details are given, in the first of two articles, of a sensitive f.m. tuner design for stereo reception. Using dual-gate m.o.s.f.e.ts, ceramic i.f. filters and integrated circuits, the tuner has a sensitivity of $0.75 \mu \mathrm{~V}$ for 20 dB quieting, a capture ratio of 2 dB , an image rejection of -70 dB and spurious response of 94 dB .

Constructional details are also given for a low-cost logic teaching aid which enables the Karnaugh map of combinational logic circuits to be displayed on an oscilloscope.

H.F. PredictionsMarch

The prediction charts, drawn by Cable and Wireless Ltd, show standard median MUF, optimum traffic frequency (FOT), and lowest usable frequency. MUFs and FOTs apply in both directions. LUFs apply for reception at good sites and in the U.K. only as they are affected by local noise level.

MUF is, by definition, the frequency at which communication should be possible for 50% of the time. The FOT is usually taken as 85% of the MUF

Elements of Linear Microcircuits

6: Audio amplifiers

by T. D. Towers,* m.b.E.

If you need an audio amplifier you could design a circuit yourself using discrete transistors. Alternatively you might use a standard off-the-shelf 'packaged circuit' (i.e. amplifiers already assembled on printed circuit boards). But nowadays you are most likely to turn to one of the commercially available integrated circuits.

In the i.c. field most of the linear amplifier circuits available that could be used for audio requirements are general purpose op-amps. To get the gain and frequency response needed for this type of op-amp you have to connect it into a network of resistors and capacitors (as discussed in previous articles in this series).

However, i.c. manufacturers have recognized that some people may not want to play about with discrete components and they have come up in recent years with 'special function' audio amplifiers.

These incorporate in the package as many as possible of the passive components that would normally have to be used externally with a general purpose op-amp. Thus there has grown up the breed of audio amplifier integrated circuits discussed in this article.

As yet, specific audio amplifiers form only a small part of the total linear amplifier microcircuits on the market. A count at the beginning of 1971 showed about 150 a.f. amplifier types against about 1500 general purpose op-amps. Another interesting feature that emerged from the count was that while the U.S.A. was the leader in general purpose op-amps., Western Europe appears to have established a powerful position out in front in monolithic a.f. amplifiers and Japan in hybrid.

Commercially available audio amplifier microcircuits fall readily into three categories, (1) pre-amplifiers (low level up to 50 mW output); (2) amplifiers (mid-level with from 50 to 500 mW output); and (3) power amplifiers (high level from 0.5 W output upwards).

Because of the power dissipation handling difficulties in a very small chip, monolithic integrated circuits tend to be limited to pre-amplifiers and amplifiers. Power amplifiers (and certainly high-power amplifiers above about 5 W) are usually thick film hybrid assemblies.

[^4]As yet there is no standardization of integrated circuit audio amplifiers. Each company engaged in their manufacture has its own special versions. In addition, while the market is settling down to some standardization, companies may produce models which subsequently go off the market or are superseded by new versions (as, for example, the PA 122 of G.E., U.S.A., now superseded by the PA234). If you look at the circuits given later in this article you will see as yet little in common between the different manufacturers except that most use class A at low level and class AB complementary push-pull at high levels. So far, little use has been made of class D, although it has many features that suits it to monolithic or hybrid integration.

Table 1 lists audio amplifier microcircuits fairly readily available in the U.K. The list is still a short one, but over the next few years it will lengthen appreciably.

Monolithic low level

Of all the various linear functions, the audio circuit is probably the most difficult to integrate because conventional audio circuits usually require large-value capacitors, which are not easily produced in monolithic form. Even so there is quite a choice from a variety of manufacturers and a circuit might have anything from two to six stages of amplification.

One of the simplest circuits is the TAA 320 shown in Fig. 1 (a) in a 100 V , 2W amplifier. You will see that the TAA320 itself comprises an input n-channel insu-lated-gate f.e.t. driving an n-p-n transistor through a separate base-emitter resistor. In the external circuit, the 180 and 3.3Ω resistors in the feedback from the loudspeaker fix the overall amplifier gain. The voltage dependent resistor suppresses potentially damaging voltage spikes across the output transistor, BD115. The circuit has a sensitivity of about 85 mV input for 2W output.

Three stages of gain are found in monolithic configurations such as the TAA263, shown in Fig. 1(b). This is widely used as a basic amplifier with the addition of a load resistance between terminals two and three, and a d.c. feedback resistance between terminals three and one to set the output at the required mid-voltage. The TAA263 is designed for a $7 / 8 \mathrm{~V}$ rail supply, but, in the

TABLE 1

| Microcircuit directory-a.f. amplifiers | | | |
| :---: | :---: | :---: | :---: |
| CA3007 | RCA | A. | 100 mW |
| CA3020 | RCA | A. | 500 mW |
| CA3048 | RCA | P. | ($\times 4$), * 12 V |
| CA3052 | RCA | P. | ($\times 4$). 16 V |
| MC1302 | Motorola | P. | ($\times 2$). 12 V |
| MC1303 | Motorola | P. | ($\times 2$), 26 V |
| MC1306 | Motorola | A. | 200 mW |
| MC1454 | Motorola | A. | 1 W |
| MC1554 | Motorola | A. | 1 W |
| MFC4000P | Motorola | A. | |
| MFC8010P | Motorola | A. | 1W |
| MFC8040P | Motorola | P. | |
| MFCS000P | Motorola | A. | 4W |
| MFC9010P | Motorola | A. | 2W |
| OM200 | Philips | P. | 1.3 V |
| PA222 | GE (U.S.A.) | A. | 1 W |
| PA230 | GE (U.S.A.) | P. | 12 V |
| PA234 | GE (U.S.A.) | A. | 1 W |
| PA237 | GE (U.S.A.) | A. | 2W |
| PA239 | GE (U.S.A.) | P. | ($\times 2$) 24 V |
| PA246 | GE (U.S.A.) | A. | 5W |
| PA263 | GE(U.S.A.) | A. | 3.5W |
| Sl-1020A | Sanken | A. | 25W |
| SI-1050A | Sanken | A. | 50 W |
| SL402A | Plessey | A. | 1.5 W |
| SL403A | Plessey | A. | 2.5 W |
| SL630C | Plessey | P. | 12 V |
| TAA 103 | Philips | P . | 6 V |
| TAA 111 | Siemens | P . | 4.5 V |
| TAA 121 | Siemens | P. | 4.5 V |
| TAA141 | Siemens | P. | 3 V |
| TAA 151 | Siemens | P. | 7 V |
| TAA15 15 | Siemens | P. | 12 V |
| TAA263 | Philips | P. | 6 V |
| TAA293 | Philips | P. | 6 V |
| TAA300 | Philips | A. | 1W |
| TAA310 | Philips | P. | 7V |
| TAA320 | Philips | P. | m.o.s.t. |
| TAA370 | Philips | P. | 1.3 V |
| TAA420 | Siemens | P. | 7.5 V |
| TAA435 | Philips | 0. | 14 V |
| TAA480 | Philips | P. | 7 V |
| TH9013P | Toshiba | A. | 20W |
| $\mu \mathrm{A} 716$ | Fairchild | P. | 21 V |
| $\mu \mathrm{A} 745$ | Fairchild | P. | 6.3 V |
| P-pre-amplifier: | A-power am | lifier | |
| D-driver amplifier. | | | |
| * x followed by a number in amplifiers contained in a single | | | |

form of the OM200, the same circuit is available for use on the 1.3 to 1.5 V supply for hearing aids.

The TAA310 of Fig. 1(c) illustrates a more complex four-stage monolithic audio pre-amp. $\operatorname{Tr}_{1}, \quad \operatorname{Tr}_{2}$ form a d.c.-coupled input feedback pair; $T r_{3}, T r_{4}$ a long-tailed pair with the signal fed into Tr_{3} and the feedback into $T r_{4}$ via the $100 \mathrm{k} \Omega \Omega$ and $150 \mathrm{k} \Omega$ resistors for d.c. and via the 0.027 and $25 \mu \mathrm{~F}$ capacitors from the $4.7 \mathrm{k} \Omega$ and 270Ω resistors for a.c. The four diodes at the input of $T r_{5}$ carry out the level shifting which is necessary to set the output at half rail voltage. The TAA310 can be used in many practical circuits by the addition of suitable external components. In Fig. 1(c) it is shown with a compensation network for a high-gain tape-replay pre-amplifier.

Fig. I. Typical commercial a.f. low-level amplifier monolithic microcircuits: (a) TAA 320 two-stave m.o.s.f.e.t. input pre-amplifier in $2 W$ crystal pickup record player; (b) TAA 263 three-stage general purpose 7 V pre-amplifier; (c) TAA 310 four-stage high-gain pre-amplifier in tape playback system; (d) MC 1303 P five-stage dual pre-amplifier; (e) PA 230 four-stage low-level amplifier in 'flat' pre-amplifier; (f) TAA 370 five-stage high-gain pre-amplifier.

Five stages of amplification are to be found in the MC1303P whose internal circuit is shown in Fig. 1(d). The package contains two identical amplifiers as shown. If you have followed the earlier articles in this series, you will recognize that it is very much a derivative of the 'standard' monolithic op-amp. which comprises a series of d.c.-coupled long-tail pairs with some form of d.c. level shif ting to set up the output at mid-rail voltage. in use, the input signal is applied to the ' + ' input and suitable d.c. and a.c. feedback networks inserted between the output and the ' - ' input. The MC 1303 has been widely used to provide front end pre-amplifiers for stereo audio systems, with different equalizing feedback networks switched in for tape replay, magnetic pickup, ceramic pickup, microphone, etc. The dual amplifier comes in a fourteen-lead dual-in-line package.

One example of a monolithic low-level amplifier that has been widely used is the PA230 shown in a typical overall circuit arrangement in Fig. 1(e). The internal circuit of the monolith (inside the shaded area) can be seen to be a conventional op-amp. with balanced input stages followed by level shifting to a single-ended push-pull output. The pair of $100 \mathrm{k} \Omega$ resistors across one input hold the output at half rail voltage, and the d.c. feedback from the output to the
other input via the $51 \mathrm{k} \Omega$ resistor clamps the output at virtually the same voltage. The overall gain is set by the ratio of the $51 \mathrm{k} \Omega$ resistor to the 510Ω resistor connected via a $10 \mu \mathrm{~F}$ to earth across the second input. The $10 \mathrm{k} \Omega$ resistor and 100 pF capacitor in series across the feedback resistor cuts the high-frequency response, while the 75 pF capacitor from the output at the top of the diagram is designed to prevent h.f. oscillation.

As a last example of monolithic low-level a.f. amplifiers, Fig. 1(f) shows the circuit of the TAA370, a six (2×3) stage arrangement for very high-gain hearing aid requirements. Various terminals are brought out that give flexibility of circuit arrangements. Normally the microphone is connected to (9) with the usual feedback from (7). Terminal (8) is decoupled with a 2.2 to $10 \mu \mathrm{~F}$ capacitor. The output from (7) is fed via a volume control of about $25 \mathrm{k} \Omega$ to (1) through suitable $1 \mu \mathrm{~F}$ isolating capacitors. An adjustable resistance from the positive 1.3 V supply at (6) to terminal (10) enables the setting up of the output d.c. level. Terminals (5) and (2) are connected to the negative supply. The earpiece is connected from terminal (3) to (6). The whole amplifier comes in a TO-89, 10-lead flat pack. Although primarily intended for hearing aid use it is versatile and has been

(c)

Fig.2. Typical low-level amplifier circuit conflyurations now commercially available in hybrid microcircuit form and requiring minimal external components to
give practical amplifier systems: (a) 'flat' pre-amplifier; (b) tone control preamplifier; (c) equalizer pre-amplifier for a magnetic pickup.
widely used for other types of audio circuits within the limits of its 5 V supply rating.

Hybrid low level

A glance at the circuits in Fig. 1 will show you that to make practical a.f. systems with monolithic i.cs you still have to use many discrete external components, particularly capacitors. The latest progress towards doing away with external components and providing complete systems in microcircuit form has been in the field of hybrid (particularly thick film hybrid) circuits. The Japanese seem to be out ahead in this field and are providing a range of hybrids which are complete functions in themselves. They avoid the limitations of the monolithic technology by mounting subminiature capacitors, etc. inside the package.

Fig. 2 gives three examples of these thick film hybrid audio low-level a mplifiers to show how the number of external components is drastically reduced.

Fig. 2(a) shows the Marconi D2009 two-stage amplifier connected in an arrangement to give 62.5 dB voltage gain flat from 30 Hz to 20 kHz with a $100 \mathrm{k} \Omega$ input resistance. By varying the feedback network compensation can be obtained for tape replay, record play, etc.

In Fig. 2(b) there is an interesting microcircuit, the D2011, which is a single-stage tone-control amplifier. In this integration has advanced to the level where only two potentiometers and one capacitor are needed externally to give a complete treble boost/cut and bass boost/cut unit, with input and output d.c. isolation and with a high input impedance secured by bootstrapping.

Complete three-stage amplifiers are also available in thick film hybrid, as for example the D2100 equalizer shown set up for a magnetic pickup in Fig. 2(c).

In all the hybrids of Fig, 2, there are still a few external components, but the technology is such that ultimately we should find available completely selfcontained a.f. ampliflers which have just to be wired in between input and output and connected between the positive and negative supply rails.

Medium-level monolithic

Above about 50 mW power levels in an amplifier chain, the signal line impedances begin to fall rapidly (and capacitor values correspondingly begin to climb). The very small size of the silicon chip in monolithic amplifiers limits the power that can be handled without special heat sinking arrangements.

Quite a number of manufacturers have produced linear monolithic a.f. amplifiers capable of handling up to 500 mW of power, and a selection of these is given in Fig. 3 to show the circuitry adopted.

Fig. 3(a) shows the well-known RCA 500 mW amplifier, CA3020. The general lines of the circuit are an emitter follower, Try capable of feeding a long-tailed phase splitter driver pair, $\mathrm{Tr}_{2}, T r_{3}$, followed by emitter followers, $\operatorname{Tr}_{4}, \operatorname{Tr}_{5}$, feeding into isolated output transistors $T r_{6}, T r_{7}$. The
multiple terminals and isolated input and output devices offer many circuit arrangement options.

Fig. 2(b) is the circuit of the Motorola MFC4000P, $9 \mathrm{~V}, 250 \mathrm{~mW}$ amplifier. This can be seen to be more complex than the CA3020 and does not follow conventional op-amp circuitry. It uses 14 transistors and 5 diodes, which may seem lavishly extravagant to the circuit man used to economizing on discrete semiconductors, until he remembers that many active semiconductor devices are produced at the one time on the silicon chip. Fourteen transistors in the monolith might not be more than twice as costly as producing one conventional transistor.

While the internal circuitry of these midlevel monoliths might be of interest to an advanced circuit man, the ordinary user is not really much involved. He usually only wants to know what discrete components he should connect round the monolith to get the results he wants. Fig. 3(c) gives such information for the TAA435, a 14 V 250 mW driver stage for a higher power amplifier. The external circuitry is shown to give 4 W output from an AD161/162 complementary germanium transistor pair on a 14 V supply rail, with a 15 mV input to give full output.

Oddly, in this area, where you would expect hybrid microcircuits to start taking over from monoliths, there is still a dearth of commercial hybrid products. However, thick film technology is such that it seems very likely that commercial hybrids will begin to emerge as they have done in the lower level applications.

Monolithic power

Despite the difficulty of getting rid of the heat from monolithic chips, the technology has been pushed at present to the point where up to 5 W audio output can be handled. Fig. 4 shows two well known examples, the MC1554 and the PA246.

From the internal circuitry of the MC1554, shown in Fig. 4(a), you can see that this is bașically a long-tailed pair $T r_{1}$, $T r_{2}$, followed by an emitter follower, $T r_{3}$, feeding into a buffer emitter follower, $T r_{4}$, connected to an output transistor, Tr_{5}. The whole microcircuit is packaged in a ten-lead TO-5 can. In the circuit, the 39 pF capacitor C_{1} is a compensation capacitor to prevent instability; the network R_{1}, C_{2} across the d.c. supply rail removes highfrequency spikes and the 10Ω resistor and the $0.1 \mu \mathrm{~F}$ capacitor series network R_{2}, C_{3} across the output is a 'Zobel' network to prevent high-frequency oscillation when a partially inductive loudspeaker load is used.

The GE (U.S.A.) PA246 shown in Fig. 4(b) in a 5W amplifier set-up is another very well known monolithic power amplifier. The internal circuitry will be seen to

Fig.3. Typical off-the-shelf a.f. mid-level monolithic amplifier microcircuits: (a) CA3020, $9 \mathrm{~V}, 500 \mathrm{~mW}$; (b) MFC4000P, $9 \mathrm{~V}, 250 \mathrm{~mW}$; (c) TAA435, $14 \mathrm{~V}, 250 \mathrm{~mW}$ driver stage connected in a 15 mV for $4 W$ amplifier.

$A_{\nu}=30 \mathrm{~dB} \quad R_{1 \mathbb{N}}=20 k$
$20-50.000 \mathrm{~Hz} \quad \mathrm{P}_{\mathrm{O}}=20 \mathrm{~W}$

Fig. 4. Typical monolithic a.f. power amplifier microcircuits: (a) MC1554, $1.8 \mathrm{~W} / 16 \mathrm{~V} / 15 \Omega$ in a circuit with $20 d B$ voltage gain, $10 \mathrm{k} \Omega$ input resistance, 100 Hz to 20kHz; (b) PA246, 5W/34V/15S arrangement.

Fig. 5. Example of hybrid microcircuit a.f. high-power amplifier, Toshiba TH9013P, $20 \mathrm{~W} / 45 \mathrm{~V} / 8 \Omega$; (a) internal circuitry; (b) typical practical circuit arrangement.
be simpler than the MC1554 (certainly more easy for the less experienced circuit man to work out). Here $\operatorname{Tr}_{1}, T r_{2}$ make a long-tailed pair input stage, with Tr_{2} feeding a p-n-p compound transistor $\operatorname{Tr}_{3}, \operatorname{Tr}_{4}$, $T r_{5}$ as the lower; an n-p-n compound $T r_{6}$, $T r_{7}$ as the upper of an output complementary pair driving the 15Ω load through a $500 \mu \mathrm{~F}$ capacitor. The d.c. setting up of the amplifier is done with the potentiometer R_{4} in combination with the d.c. feedback from the output through R_{1}, R_{2} into the base of Tr_{2}. The a.c. feedback is set by the ratio of R_{1} to R_{3}.

High-power hybrid

In the power amplifier field, most of the commercial units so far have been monolithic. Thick-film hybrids do not yet feature widely in this area. However, when you get above about 5 W (r.m.s.) output power, the hybrid appears up till now to be the only viable integrated circuit.

Thick-film hybrids capable of handling up to 100 W of audio power have been developed. Technologies that have had to be developed for producing these include as many as nine separate screen printings, extensive use of crossover dielectric glazes, adequate thermally conductive adhesive bonds of the ceramic substrates to heat sinks, and plastic encapsulations that can withstand heavy thermal stresses. A particularly difficult problem has been the mounting of the output transistor chips to provide adequately low thermal resistance to the heat sink, and adequate thermal capacity to prevent excessive short term rise in their junction temperature.

One commercially available hybrid highpower amplifier that can be taken as typical of the breed is the Toshiba TH9013P which in the circuit arrangement of Fig. 5 gives 20 W output into an 8Ω speaker on a 45 V d.c. rail voltage.
The internal circuitry of the TH9013P would make conventional circuit men heave a sigh of relief as it follows standard discrete component practice. The hybrid consists of a long-tail input pair which feeds a driver stage which in turn drives a double complementary pair output stage. In fact the circuit could be just another of the discrete component audio amplifier variants that has appeared in the literature over the last ten years. A glance at Fig 5 shows that the number of external components required has been reduced to six including the loudspeaker and the fuse!

When using audio amplifier microcircuits one must not forget that many of them still have gain in the r.f. region so the user should position additional components and wiring accordingly. This point has been stressed many times in this series and cannot be overstated. Before using any of the microcircuits obtain a data sheet, most component distributors will supply you with one, and use it. If you are using a microcircuit for the first time what will you learn if you merely copy someone elses arrangement?

Electronic Voltmeter for 2 to 50 kV

An instrument which employs a triode valve as well as semiconductors to achieve a $10 \mathrm{M} \Omega / \mathrm{V}$ sensitivity

by A. M. Albisser* and N. F. Moody ${ }^{\dagger}$

We were recently faced with the need to employ a 40 kV image intensifier but found that our laboratory had no suitable voltmeter for setting the various electrode voltages. The resistance chains which supply these interelectrode voltages often have values as high as $1000 \mathrm{M} \Omega$, and the load which the voltmeter may impose must be small indeed.
The voltmeter here described covers the range $\pm 2-50 \mathrm{kV}$ d.c. and also measures the peak value of an a.c. waveform to the same scale. The instrument is linear to 1% and contains internal calibrating facilities. The load imposed by the voltmeter is in the form of a constant current, normally set to 0.1 $\mu \mathrm{A}$, so that a full scale reading the 'movement sensitivity' is effectively $10^{7} \Omega / \mathrm{V}$. Means are provided for choosing an alternative $1 \mu \mathrm{~A}$ loading factor and, as will be shown, thereby correction can be made for the small meter loading upon the measured circuit. This inexpensive instrument is mains operated, hermetically sealed and dessicated, more robust and with a wider scale range than an electrostatic voltmeter.

Principle

The design of the voltmeter is based upon the use of a thermionic. triode in an "inverted' \# form, in which the anode voltage is made the independent variable and the grid voltage the dependent variable. Thus, in Fig. 1, if the voltage to be measured, $E_{a c}$, is applied between anode and cathode, the grid bias $E_{g c}$ needed to set a given anode current I_{b} is a measure of $E_{a c}$. By choice of a suitable valve, $E_{g c}$ may well be as little as $(1 / 2000) E_{a c}$ and so is easily and safely measured. In the instrument to be described, a variant of this principle is employed; furthermore, $E_{g c}$ is made to set itself automatically and thereby drive the voltmeter movement. These matters will be best understood a little later: to begin with it may prove helpful to review that part of thermionic triode theory which is to be exploited.

[^5]Consider a valve operating within the region described by the extension of Lang-muir-Child's law,

$$
\begin{equation*}
I_{b}=K\left(E_{a c}+\mu E_{g c}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

in which,
I_{b} is the anode current in amperes,
K is the perveance of the triode, a constant that depends on the size and shape of the three electrodes,
$E_{a c}$ is the anode to cathode potential in volts,
μ is the dimensionless amplification factor, a constant determined mainly by the anode, grid, cathode geometry and,
$E_{g c}$ is the grid to cathode potential in volts (including contact potential).

We may rearrange equation (1) to give

$$
\begin{equation*}
E_{a c}=\left(\frac{I_{b}}{K}\right)^{\frac{2}{3}}-\mu E_{g c} \tag{2}
\end{equation*}
$$

This equation, with parameter $\left(I_{b} / K\right)^{\frac{3}{3}}$, represents a family of straight lines with slope $-\mu$ and intercept $\left(I_{b} / K\right)^{\frac{2}{2}}$. In other words, a linear relationship, the constant current voltage transfer characteristics of the triode, holds between $E_{a c}$ and $E_{g c}$ when I_{b} is held constant. Two of these character istic curves of the high voltage beam triode used, the $6 \mathrm{BK} 4 \mathrm{~A}, \dagger$ are sketched in Fig. 2.

Caution!

Above a potential of 16 kV , X-rays are emitted from the anode of the triode. Although some attenuation occurs in the glass envelope, care should be exercised when operati g the voltmeter.

Since an ideal voltmeter measures potential without drawing any current, we may employ equation (2) as a basis upon which to design a voltmeter whose deviation from this ideal simply depends on the magnitude of the anode current I_{b}. By defining this current, we ensure the linearity of the instrument, according to equation (2); and by reducing the magnitude of this defined current I_{b}, we approach the properties of the ideal voltmeter.

With I_{b} held constant, $E_{g c}$ is precisely related to the voltage to be measured, $E_{a c}$, by the parameter μ. Since μ, itself, is domi-

[^6]

Fig. 1. Basic circuit diagram showing the principle of the voltmeter.

nantly controlled by electrode geometry it should remain sensibly constant throughout the life of the valve. The voltage $E_{a c}$ does include contact potential, whose variation could introduce a source of error. However, the heater supply is stabilized (as will be seen) and a zero control is provided to compensate for drifts due to valve ageing.

General outline

Block diagram of the valve voltmeter is given in Fig. 3. It illustrates both the operational blocks and the two-compartment aspects of the mechanical design. Outside the voltmeter the mains is converted to a d.c. voltage to supply for a 50 kHz oscillator. The peak amplitude of this oscillator voltage is regulated, and remains constant despite changes of the mains voltage. An isolation transformer, designed to withstand a d.c. stress of more than 50 kV between primary and secondary windings, couples a.c. power from the oscillator into the second compartment of the voltmeter. It provides both filament power for the triode and bias for the automatic balance
circuits. As a result of this isolation, either the negative or the positive terminal of the voltmeter may be grounded and voltages of either polarity can be measured.
In the first compartment, the operation of the automatic balance circuits is as follows: For any given voltage applied to the anode of the triode, the constant-current sink draws a fixed current of either 1 or $0.1 \mu \mathrm{~A}$ (selected by a switch), and the resulting cathode-to-grid voltage is transferred, via the voltage sensing amplifier, to a differential voltmeter. Here, this voltage is displayed on a meter calibrated to read 50 kV full scale.
The second compartment contains only the triode, the element across which all the voltage stress is exerted during a measurement. For convenience, the triode is operated in the earthed grid configuration; we can say that its cathode-to-grid potential regulates the cathode current. Now, when an anode potential is applied and the resulting cathode-to-grid potential is a few volts positive, the portion of the anode current intercepted by the grid is negligible. Thus, the anode current is the same as the cathode current in the operating range of the triode.
In this configuration, equation (2) becomes

$$
\begin{equation*}
E_{a g}=\left(I_{b} / K\right)^{\frac{z}{3}}+(\mu+1) E_{c g} \tag{3}
\end{equation*}
$$

This equation, as before, represents a family of straight lines with slope $(\mu+1)$ and the same intercept as in equation (2). The details of the circuit, which automatically generates the corresponding $E_{c g}$ for any $E_{a g}$ over the operating range, is described below.

Automatic balance circuit

The circuit diagram sketched in Fig. 4 shows the automatic balance circuit. To measure the unknown potential difference $E_{a g}$, applied across the anode and grid electrodes of the triode, the cathode-to-grid potential $E_{c g}$ must be sensed when the cathode current is held at the desired value of (say) $0.1 \mu \mathrm{~A}$. A transistor $T r_{1}$, in the common base configuration, draws this constant current, and the voltage on its collector, $E_{c g}$, is sensed by

Fig. 4. Diagram of the automatic balance circuit.
a differential voltmeter $T r_{4}, T r_{5}$, using an f.e.t. source follower, Tr_{2}, to present a high input impedance to the triode cathode. The reading is indicated on a 1 mA f.s.d. meter. Thus, if the source follower and differential voltmeter are linear, the milliammeter reading is related to $E_{a g}$, according to equation (3). A zero adjusting potentiometer R_{1}, used in conjunction with the bush-button P_{1} at the gate of the f.e.t., permits balancing for a zero reading on the milliammeter. This adjustment does not completely balance out the effects of the intercept term of equation (3). However, for small anode currents of $10 \mu \mathrm{~A}$ or less, and for anode potentials of above 2 kV , the difference is negligible, as

Fig. 3. Block diagram of the value volimeter, showing the two internal compariments.
illustrated by the linearity of the curve in Fig. 2.
The f.e.t. $T r_{2}$ is operated at both constant source current (by use of Tr_{3}), and constant drain-to-source voltage by the boot-strapping consisting of diode D_{1} and filter capacitor C_{1}. In this configuration, the small leakage current of the gate-to-channel junction is not altered by changes in the gate voltage. Thus, the f.e.t. source-follower imposes a small, but constant, loading on the cathode current of the triode.
To prevent changes in the leakage current between the filament and cathode of the triode at different cathode-to-grid voltages, the filament power supply is also bootstrapped to the cathode via both the source follower and the emitter follower actions of $T r_{3}$ and $T r_{4}$, respectively.

A low-pass filter $R_{f} C_{f}$ isolates the gate of the f.e.t. from the cathode of the triode, thereby assuring that accidental current surges do not damage the junction f.e.t. The resistor R_{f} also serves to protect the triode from drawing excess anode current should the zero button be accidentally pushed when high voltages are impressed across the tube; while the capacitor C_{f} also provides the additional function of making the voltmeter a peak-reading instrument when the measured voltage is a.c.

Initial calibration of the instrument is performed by adjusting the 'full scale calibrate' potentiometer, R_{2}, so that full-scale meter deflection corresponds to 50 kV . However, because the instrument is linear, this calibration voltage need not be 50 kV : any convenient d.c. or peak a.c. voltage within the range of the instrument is adequate. Thereafter, recalibration should not be necessary.

It has been seen that the voltmeter draws
a normal current of $0.1 \mu \mathrm{~A}$ from the source where voltage is being measured. By setting S_{1} to the other position, the loading is increased to $1 \mu \mathrm{~A}$. Thereby the voltage drop due to a source impedance may be determined, for any voltage change ΔV due to the increased current is simply divided by 9 and added to the reading taken at $0 \cdot 1 \mu \mathrm{~A}$. Evidently the source impedance is also given as

$$
R_{\text {source }}=0.9 \Delta V \mathrm{M} \Omega
$$

Accuracy of the voltmeter depends principally on three factors; the μ of the triode, the α of the transistor in the constant current circuit, and the linearity of the differential voltmeter. For the triode, the amplification factor at constant current, is determined dominantly by the geometry of the electrodes and is affected only slightly by ageing and deterioration. The constancy of the cathode current depends on the α of the transistor in the current sink, also relatively constant. To ensure the linearity of the source follower, it is operated at constant bias, as mentioned above. Finally, the differential voltmeter proportionally converts, by emitter follower action, the voltage at its input to a corresponding current registering on the milliammeter. Thus the voltmeter is inherently accurate.

In practice, the stability is found to be excellent and the relative precision is within $\pm 1 \%$ of full scale.

Power oscillator

The diagram in Fig. 5 shows the circuit of the power oscillator. Briefly, a Colpitts oscillator, $T r_{6}$, operating at 50 kHz excites a self-biasing driver stage, $T r_{8}$, via an emitter-follower transistor, $T r_{7}$, inserted for isolation. The phase-splitting transformer in the collector circuit of Tr_{7} couples power to a class-B biased push-pull amplifier, $T r_{9}, T r_{10}$. In order to regulate the peak

Fig. 5. Circuit diagram of the power oscillator. The 70 nF capacitor is C_{1}.
amplitude of the oscillating voltage impressed on the primary of the special isolating transformer, a capacitor and diode circuit, C_{1}, D_{1}, clamps the positive peaks of the a.c. voltage to a reference level. The mean value of this clamped signal biases a common-base and a common-collector transistor, $\operatorname{Tr}_{11}, T r_{12}$, in such a way that increases in the peak-to-peak amplitude of the oscillating voltage impressed across the isolating transformer results in lowering the collector voltage of the Colpitts oscil-

Note the prototype's twin compartment construction.
lator, $T r_{6}, \ln$ this way, negative d.c. feedback ensures that the amplitude of the a.c. voltage remains fixed in spite of changes in the components and variations in the d.c. power supply voltage.

Isolating transformer

The transformer used to couple both filament power to the valve and bias power to the automatic balance circuit is made as follows: its primary winding consists of two overlapping layers of 36 s.w.g. enamelled copper wire (33 a.w.g.)§, symmetrically wound about a four-inch length of $\frac{3}{16}$ in diameter ferrite rod. While the inner layer contains 100 turns to the centre tap: the outer has 108 turns to provide a balanced primary inductance of 2.64 mH with a Q of 7.3 at 1 kHz . The secondary winding simply consists of one layer: 60 turns of 27 s.w.g. enamelled copper wire (26 a.w.g.), symmetrically wound about the outside diameter of a $14 \frac{1}{2}$ in length of Lucite pipe (transparent Acrylic plastic) with $\frac{1}{2}$ in internal diameter and $\frac{3}{4}$ in outside diameter. When the primary winding on the ferrite rod is properly placed at the centre of the Lucite pipe, the inductance of the secondary winding is 0.23 mH with a Q of 2.5 measured at 1 kHz . The breakdown strength of the $\frac{1}{8}$ in wall of the Lucite pipe is roughly 55 kV . To further enhance this breakdown strength between the windings of the transformer, the primary winding is first centrally located about the axis of the Lucite pipe,
§In the manuscript the author's used the American standard B \& S or a.w.g. gauges. We have converted io the nearest s.w.g. figure putting the specified American standard gauge in brackets. Ed.
then the tubular space formed between the outer diameter of the primary winding and the inner diameter of the Lucite pipe is filled with Sylgard 185 potting and encapsulating resin (Dow Corning) with a breakdown stress of 550 V per mil. This encapsulating procedure also ensures that the geometry of the transformer remains fixed.

High voltage compartment

The thermionic triode is the circuit element across which is placed all the potential stress during a measurement. If the loading effect of the voltmeter is to be defined as either $0 \cdot 1$ or $1 \mu \mathrm{~A}$, then it is mandatory that this flow of charge, defined by the current-sink transistor, pass wholly through the active volume of the triode. Otherwise, erratic readings would be registered, for the cathode-to-grid potential would be incapable of controlling all the components of current appearing at the cathode. To minimize this source of error, which results mainly from surface leakage currents, the following procedure is followed. Before enclosure in the high-voltage compartment, the triode is carefully washed with water and a degreasing detergent, and rinsed thoroughly with distilled water. Then, taking care to avoid placing finger marks or other dirt on the glass envelope, the tube is thoroughly rinsed with pure methanol. After it is dry, a layer of Dri-film (General Electric U.S.A.) is sprayed on the glass in order to reduce even further the surfacecreepage of charge. A similar procedure is employed to clean the two compartments of the voltmeter.

Mechanical construction

Briefly, the side panels of the box are cut from a $\frac{1}{2}$ in Lucite plastic sheet. Offsets are milled along their edges and Tensol ' A ' (Imperial Chemical Industries), is used to cement the offset joints so formed. These joints provide 50% more surface area for gluing than a simple butt joint, and correspondingly lengthen the leakage path beween the inside and outside of the voltmeter box. The overall dimensions of the box are $19.75 \times 14 \times 8$ inches, to which must be added the dimensions of the mains driven power supply and the power oscillator.

To allow access to the electronic components in the two compartments, the ends of the box (through which the negative and positive terminals pass) are attached with nylon screws. At all locations where electrical or mechanical paths communicate between the inside and outside of the box, a minimum path of 6 in of Lucite plastic assures isolation and a sufficiently long path to prevent the creepage of charge along the surfaces of the intervening plastic.

Transformer details

Phase-splitting transformer T_{1} : Vinkor type LA2316 with ic 204 -turn primary of 38 s.w.g. (34 a.w.g.) and a $14 \cdot 5$-turn secondary of 22 s.w.g. (21 a.w.g.) centre tapped.

Isolating transformer T_{2} : see text.
Step-up transformer T_{3} : Vinkor type LA2216 with a 62 -turn primary of 27 s.w.g. (26 a.w.g.) and a 260 -turn secondary of 38 s.w.g. (34 a.w.g.)

Circuit Ideas

Long-period relay monostable

There are many examples of systems where a function is excited by an input stimulus and requires to be maintained for a predetermined time, e.g., vending machines, automatic door opening mechanisms etc.

Normally C is charged to $+V_{c c}$ until switch S is momentarily closed. This causes the relay to 'pull-in' and C is connected to the base of the super- α pair, $T r_{1} T r_{2}$, which form a very high impedance emitter-follower. C discharges slowly due to base current, and the voltage at the emitter of $T r_{2}$ falls from $V_{c c}-2 V_{b e}$ to V_{d}, the relay 'drop-out' voltage, at which point the relay
opens and the circuit reverts to its stable state. The time period T is given by,

$$
T=r \log _{e} \frac{V_{c c}-2 V_{b e}}{V_{d}}
$$

where $\mathrm{T}=\beta_{1} \beta_{2} C R_{\text {relap }}$, $\left(\beta_{1}, \beta_{2}\right.$, current gains of $T r_{1}, T r_{2}$). If a high supply voltage is used $(>12 \mathrm{~V})$ an extra diode should be placed in the emitter lead of Tr_{2} to protect against reverse breakdown in the event of S being closed during a timing period. Time periods of about ten minutes can be obtained with this circuit.
J. F. Roulston,

Edinburgh.

V.L.F. sawtooth generator

The circuit shown generates a long-period linear sawtooth at fairly low impedance. The f.e.t. is biased by Tr_{1} at its zero temperature coefficient point (calculated from $I_{d s s}$ and $V_{g s}$. By bootstrap action the ramp generated at the gate also appears at the source. The constant current which charges C is defined by $V_{g s}$ and R_{2}. This current should be sufficiently great to swamp gate leakage current at the working bias point, and variations due to temperature change. The diode is reverse biased by the action of R_{3} until the source reaches the trigger point of the unijunction. When the unijunction fires the diode becomes forward biased and the capacitor is discharged. R_{9} determines the temperature stability of the firing point. The f.e.t. used required R_{1} to be $16 \mathrm{k} \Omega ; R_{2}$ could be as high as $30 \mathrm{M} \Omega$. With $\stackrel{C}{C}=4.4 \mu \mathrm{~F}$ (polyester) the period of oscillation was 3 min .
A. J. Barker,

Werrington,
Stoke-on-Trent.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

In praise of C-D ignition

You asked me to let you know my experience with R. M. Marston's C-D ignition unit under cold starting conditions here in Switzerland.
This winter has proved propitious for assessing the effectiveness of the unit, as during the Christmas holidays we experienced at our holiday chalet early morning temperatures in the region of $-25^{\circ} \mathrm{C}$. At temperatures down to $-20^{\circ} \mathrm{C}$ my engine (Citroen DS) started immediately; at lower temperatures I experienced some difficulty due to low cranking speeds, my battery being five years old. When the battery was paralleled with another battery (which had also been exposed to the same low temperatures) I obtained easy starting even at $-26^{\circ} \mathrm{C}$.

My unit has now been operating for about six months. I can say that it has been functioning under 'worst conditions' as I installed it under the bonnet above the car heater unit. The only difficulty experienced was the early failure of one of the IN4005 rectifier diodes. I am not sure if this was due to the shorting of the h.t. line or because the rating of these diodes is rather marginal. To be on the safe side I replaced them with BY127s since when the unit has operated correctly.

For me the great attraction of Mr . Marston's unit has been the general improvement in the smooth running of the car, absence of flat spots and no misfiring. I was given to understand that some complaints have been made of misfiring at high engine speeds. On the one occasion when this happened with my car, I withdrew the sparking plugs, which I had deliberately not adjusted when the unit was originally installed and found that the gaps were nearly four times as wide as recommended by the manufacturer!
Frank Gutteridge,
Geneva, Switzerland.

"An Equation-solving Aid"

I am sorry that considerations of space led to the deletion of the final paragraph of my paper 'An equation-solving aid' which appeared in the January issue. Perhaps you would kindly allow me some
room to comment a little more fully on the substance of that paragraph.

The procedure outlined in the paper enabled one to determine the value of one of the variables-in the case quoted $x_{3}=-1$. It may be that one is only interested in this particular variable, but more often than not one would wish to know x_{1} and x_{2} as well. Referring to the appendix of the article, it will be seen that, after elimination of x_{1} and removal of self-loop from x_{2}, one is left with the equation

$$
x_{2}=-\frac{4}{3}-\frac{10}{3} \cdot x_{3}
$$

Substitution of $x_{3}=-1$ leads to $x_{2}=2$. The initial equations, after removal of the self-loop (no self-loop on x_{1} in this case), contained the equation

$$
x_{1}=2+0.5 x_{2}+2 x_{3}
$$

Substitution of x_{3} and x_{2} yields $x_{1}=1$. The rule for determining the other variables is thus to note the equations which result atter removal of self-loops. These will be in convenient triangular form for substitution.
V. J. Phillips,

University College of Swansea.

Sample and hold

I read with interest the article 'Stereo Decoder using Sampling' by D. E. O'N. Waddington in your February issue.

The principle of sampling for a very short duration when $\sin 2 \omega t=+1$ and -1 and the application of a poled network to reduce high-frequency signals in the ' G ' is independent and therefore may be either.
output spectrum is indeed interesting.
The price to be paid for sampling with a short duration signal is one of noise. With a sampling interval of 250 nsec all noise present at the sample and hold input up to approximately 2 MHz will be heterodyned and aliased (i.e. sampling does not occur at at least twice the input signal frequency) into the audio bandwidth. Noise above 2 MHz will be aliased into this bandwidth. The amplitude of the individual noise spectra depends, of course, on the harmonic content of the sampling signal. Since the mark-space ratio is high the harmonic spectra of the sampling signal will have amplitudes comparable with the fundamental, e.g. 30th harmonic is -3 dB and 50 th harmonic is -6 dB (approx.). It follows that the heterodyne noise will have a significant amplitude. Calculations of the noise amplitude would be extremely difficult particularly because it would be unfair to assume a flat noise spectrum at the discriminator output.

In a conventional decoding circuit a 1:1 mark-space ratio is used. The third harmonic is approximately 10 dB down, but even so the deterioration in signal-tonoise ratio due to this and the fundamental is some 22 dB .

Mr. Waddington's decoder is allowed to 'free run' during mono transmissions. There are two reasons why no decoder should be allowed to do this:-
(1) Signal-to-noise ratio on mono will be reduced considerably.
(2) From some transmitters, Sutton Coldfield included, a 23 kHz tone is broadcast in the absence of a pilot tone. An objectionable aliasing beat of 15 kHz will be produced between this and the switching fundamental at approx. 38 kHz .

With regard to Mr. Waddington's comments on mono and stereo gain, for a sample and hold network the output signal amplitude is substantially the same whether the gate is sampling or is permanently open provided the input signal frequency is below half of the sampling frequency.

I hope that the above comments will prove of interest and that correspondence on the subject of sample and hold analysis may be stimulated.

While on the subject of stereo decoders I would like to mention an addition to the 'Phase Locked Loop Stereo Decoder' by myself and A. J. Haywood published in

Fig. 1 Decoder earth may be $0 V$ or $-6 V$ depending on supply rail choice. Filter earth
the September 1970 issue. It is possible for 'birdies' to be generated by either non-linear mixing of a tape recorder bias signal with the h.f. output of the decoder or power amplifier supersonic intermodulation distortion, i.e. h.f. decoder signals are heterodyned into the audio bandwidth.

A circuit which will eliminate these problems is given in Fig. 1. The response is -1 dB at 16 kHz . When combined with de-emphasis the pilot-tone is -40 dB and the response at 38 kHz is -53 dB .

R.T. Portus,

Rolls-Royce Ltd.

The author replies:

In reply to Mr. Portus I concede that sampling is an inherently more noisy process than average detection using a square wave. In practice I have not found the noise level to be more noticeable than with my previous design which used a shunt switch. However, I must point out that this is not the 'sampling' but the 'hold' which causes noise harmonics to be heterodyned into the audio bandwidth. The mark-to-space ratio of the sampling waveform has very little to do with the interference introduced as the hold circuit remembers the signal amplitude at the time of switching off. Experiment confirmed this. Decreasing the hold time constant to $1.5 \mu \mathrm{~s}$ reduces the interfering effect and it is not until the time constant is reduced to negligible proportions that the theoretical figures for $1: 1$ mark-space ratio are obtained.

Fig. I. Low-pass filter for use when noise is a problem. Existing components are shown dotted.

Fig. 2. Circuit to switch-off the decoder when a mono signal is being received.

If noise is a problem, however, the solution is to connect a low-pass filter with a cut-off frequency of about 80 kHz in series with the input to the decoder. This can be done quite simply as shown in Fig. 1. The only constraint is that the decoder must now be fed from a low impedance source, e.g. an emitter follower.

I was unaware of the 23 kHz signal referred to by Mr. Portus otherwise I would have taken the necessary action. The best method is to hold the sampling gates on when a mono signal is received. A circuit to do this automatically by detecting the presence of the pilot tone is given in Fig. 2.

One point that has been brought to my notice by a colleague is that the printed board layout illustrated is not full size. The board dimensions should be 4×4.9 in. D. E. O'N. WADDINGTON.

The game of the name

In the June, 1953, issue of Wireless World I described, in some detail, the operation of an $R C$ relaxation oscillator using a $\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}$ device, and my Fig. 6(a) is very like the circuit shown in Mr. A. G. Jones' letter in the January 1971 issue. The 1698 transistor used in 1953 is no longer available, but then the distributors tell me that Mr. Jones' 3 N 58 is obsolete, too. The last price I can find for it is 36 s ($£ 1.80$) while the D13T1 is only $9 \mathrm{~s}(£ 0.45$). The limited data I have for the 3N58 gives $I_{g F A}=0-8 \mu \mathrm{~A}$, which makes the limiting value of maximum trigger resistance rather low, and $I_{H}=0$, which makes it difficult to turn off. Price, and specification of the key characteristics, are two reasons why I find the PUT a useful device, and regret that I did not take to it earlier.

Mr. Jones berates Mr. Greiter about terminology. The silicon controlled switch is officially, that is according to the I.E.C., a reverse blocking tetrode thyristor. The PUT is a triode thyristor, according to the makers, but it is also in old fashioned language equivalent to a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ junction transistor with a collector hook. The 'popular' name, however, is the thing which made me use it: I was using unijunctions, and made the change because the device was sold as a better device to use in uni-junction type circuits. We are all, I suppose, rather wicked to talk of r.f. transistors, power transistors, $\mathrm{p}-\mathrm{u}$ transistors.

The question of names was discussed at one of the I.E.E.E. sessions at the Power Conversion Conference, Nov. 1965, in Philadelphia. Devices, like dogs, have their official names and their everyday names. This is not an uncommon feature of primitive tribal societies, in which a man conceals his 'real' name, because this is the one which enables other people to get magic power over him. Actually I don't care what I call the device if it is cheaper and better: if the maker called it a 'triggywink' I would shudder, but buy.

There is one real criticism of Mr . Greiter's article. The tolerances on Z_{p} and I_{v} are rather wider than one expects
until one thinks of it as a high-alpha device. The frequency range which can be obtained by varying the changing resistance is thus not as great as the typical curves would suggest.
THOMAS RODDAM.

Boxcar detector

I was most interested to read J. D. W. Abernethy's lucid article on the boxcar detector (Wireless World, December 1970) but I feel that his admirably concise description has resulted in one or two statements which require further clarification if they are not to be confusing.
In particular he mentions that there can be a difference in the noise ratio improvements obtained when a waveform is sampled by a gate with an integrating circuit time constant, t_{g}, much less than the sampling period, t_{s}, followed by a low-pass filter, relative to that obtained when a boxcar with $t_{g} \gg t_{s}$ is used, assuming the output response times, $t_{o b s}$, are equal in each case. He shows representative responses for the two circuits in his Figs 8 c and 8 b respectively. He remarks that the difference between the two depend upon the input noise spectra. This is indeed true but I feel it can be misleading to suggest that the difference is a direct consequence of the difference between the two circuits themselves. It can be shown* that if the input frequency responses of the two circuits are identical they will give the same improvements in noise ratios because these ratios depend only on the bandwidths and output response times, $t_{\text {obs }}$, which are identical. The differences displayed in Fig. 8 result because the circuit corresponding to Fig. 8c has a much broader noise sensitive bandwidth than the other one. Therefore if this input noise spectrum contains significant energy in the regions where the first circuit responds but the second is insensitive the first will show an apparently greater noise. In the former case $t_{g} \ll t_{s}$ and so the voltage on the gate capacitor can follow the input signal fluctuations during the sampling period, t_{s}. The capacitor voltage at the end of the sampling interval will be a weighted average of the signal during a short time, roughly equal to t_{m}. before the gate is closed. During the period t_{s}, the input behaves as a low-pass filter with a noise equivalent bandwidth $1 /\left(4 t_{g}\right)$. The voltage fluctuations on it at the end of the period will be the same as those observed in a circuit with this bandwidth. Since the capacitor voltage can change rapidly these fluctuations can be large. However, when $t_{g} \gg t_{s}$ the capacitor voltage will respond only to the mean input signal during the period t_{s} The noise equivalent bandwidth will be cónsiderably smaller, giving rise to correspondingly reduced output fluctuations. However, if the input bandwidth in the first case is reduced to the same amount, either by pre-filtering the input to the sampling gate or by ensuring that $t_{g} \gg t_{s}$

[^7]then the noise improvement will be identical. Thus the two circuits are equivalent in principle and differ only in their input noise sensitive bandwidths.

Mr. Abernethy also mentions that highspeed waveform samplers such as those designed for use in conjunction with oscilloscopes are unsuitable for signal averaging because their fixed gate width does not allow optimum signal recovery conditions to be attained and because their design is aimed at speed of sampling rather than linearity or zero stability. In such samplers the sampling interval is often extremely short, being 350 ps or less, giving them a very large signal bandwidth and correspondingly large noise bandwidths. It is certainly true that this sensitivity may introduce additional unnecessary noise when averaging lower frequency transients. However, this noise can be removed very simply by inserting an ordinary low-pass filter before the sampling gate to match the noise spectrum to that of the signal. In these circumstances the improvement in noise ratio will, in fact, be identical to that given by a conventional boxcar with the same bandwidth and output response time. Thus, while the use of a very narrow sampling window necessitates higher signal gain and causes some increase in open loop sampling non-linearities and zero drift these penalties need not be serious. For instance with an instrument such as the AIM Electronics WSA 114 very adequate results can be obtained without sacrificing the ability to operate at a greatly increased bandwidth allowing averaging of fast transients up to 1 GHz , and the ability to time-stretch very fast waveforms and display them on low-frequency oscilloscopes.

R. J. Smith-SAville,

AIM Electronics Ltd,

St. Ives,
Hunts.

Loudspeaker enclosures

In the article 'Loudspeaker Enclosures' by E. J. Jordan in the January 1971 issue, a few detail errors have arisen. Using a tapered pipe as a 'quarter-wave transformer', the optimum distance of the drive unit from its throat is given approximately by:

$$
d=\frac{l}{2+\left(A_{t} / A_{m}\right)^{\frac{1}{2}}}
$$

where $l=$ physical length of pipe; $A_{t}=$ cross-sectional area of throat; and $A_{m}=$ cross-sectional area of mouth. Hence for a constant cross-sectional area pipe, $d=l / 3$ (not $1 / 3$ wavelength as stated, since the loading is very poor beyond the mouth!), increasing to $l / 2$ for a fully tapered pipe of zero throat area, the equivalent of a parabolic pipe of circular cross-section. Far from being 'very popular many years ago' as indicated, I would suggest that its use has become widespread over the past few years, following the publication of my "Paraline" design, (Hi-Fi News, April 1963), of which some 20,000 examples are believed to be in use.

The 'quarter-wave' principle was, of course, first used by Paul Voigt in the 1930s in his domestic corner horn and revived by Ralph West in 1949 for the Decca corner speaker.

Regarding horn theory, it is perhaps worth mentioning that the hyperbolic family already includes the conical and exponential cases as respectively limit and central members. In the general expression, the term x_{0} is a dimension determining the flare cut-off frequency, not the distance from throat to where $A=0$, since, except for conical horns, the latter is infinitely remote, whilst for the catenoidal horn ($T=0$) the cross-sectional area is a minimum at $x=0$.

In his closing sentence regarding air displacement, Mr. Jordan echoes the general reluctance of loudspeaker designers to recognize that their devices are usually used in domestic-sized rooms. In these l.f. resonances arise of Q typically $15-25$, so presenting a violently fluctuating load whose predominant component is mostly reactive. Without a conjugate design approach, it would seem that the l.f. performance of a loudspeaker/room/ listening position combination must remain quite arbitrary.
R. N. BALDOCK,

Harrow,
Middlesex.

Resistance tolerance code

My attention has been drawn to Mr. Sproxton's letter in the November issue, in which the tolerance coding for resistors and capacitors is criticized. This code was produced after careful consideration by Technical Committee 40 (capacitors and resistors for electronic equipment) of the International Electrotechnical Commission, of which forty-one countries, including U.S.A., Japan and the whole of Europe, are members. The following points were considered:

1. In matters of this kind it is usually desirable to accept as standard, wherever possible, some widely accepted practice. This particular tolerance code had been used for many years in the U.S.A. and had been adopted by some European countries. These people appear to have used it without confusion.
2. There was not "a whole alphabet available for choice". To have created a new code using the same letters as the existing one but with different meanings would have caused appalling chaos. Leaving out I and O (easily confused with numbers), the thirteen letters of the existing code and the eight letters representing multipliers for capacitance and resistance values, there are three letters left to cover thirteen tolerances. The only reasonable course is to adopt the existing code.
3. If the code is correctly used, as Mr. Sproxton's examples show, there is little risk of confusion between the letter used for the multiplier and the letter used for the tolerance. His examples were 6800 ohms $\pm 10 \%$ and 4.7 megohms $\pm 20 \%$ which
code respectively as 6 K 8 K and 4 M 7 M . Even with values like 6800 ohms $\pm 10 \%$, or $0.068 \mu \mathrm{~F} \pm 30 \%$, which code respectively as 68 KK and 68 nN , the letters still come quite simply in the right order.

The tolerance code may not have been a stroke of genius but it was probably the best choice in the circumstances and it is the first time after a few years of use that anyone has suggested that it is confusing.
G. David Reynolds,
(Chairman of IEC/TC 40)
Hatfield,
Herts.

Despite the fact that normally the multiplier for 1000 is " k " the I.E.C. decided that all resistor multipliers (R for unity, $\mathrm{K}, \mathrm{M}, \mathrm{G} \& \mathrm{~T}$) should be capitals and all capacitor sub-multipliers ($\mathrm{p}, \mathrm{n}, \mu$ or $\mathrm{u} \& \mathrm{~m}$) should be lower case.--ED.

Ganging potentiometers

The Addashaft scheme, whereby either steel or nylon shafts can be cut to length and then inserted into poteniometers has advantages. Risk of damage to the poteniometer during the sawing and filing operation is obviated, and a choice of insulating and conductive shafts is available. Work could be reduced further, and material saved, if a choice of shaft lengths were provided.

An adaptation of the scheme could usefully be applied to twin potentiometers, of which at present only a limited choice of values (usually equal) is available. If one could quickly twin any two potentiometers, the range to be manufactured and held in stock would be reduced, and twin potentiometers, would no longer be "special". For example, if there is a need for x values of one and y values of the other, at present one needs to stock $x y$ different types of twin potentiometer, whereas if any two could be twinned as required, the number of types of single potentiometer needed is only $(x+y)$, and any of these can also be used individually. The saving increases rapidly with x and y, e.g. for a choice of four values, a stock of 8 single potentiometers replaces a stock of 16 twin potentiometers and so on. The above applies chiefly to ganged potentiometers driven by a single shaft, but it would seem possible also to cater for twin potentiometers which are not ganged but have a central shaft and a coaxial cylinder controlled by separate knobs.

It is at present possible to buy potentiometers with or without d.p. switch, which doubles the amount of stock it is necessary to hold and manufacture. If the switch could be quickly associated with either or both potentiometers at choice, or omitted if not required, this would add further to the advantages.

It appears that both manufacturing and storage costs could be materially reduced by this scheme if widely adopted.

K. J. YOUNG,

Crowthorne,
Berks.

Electronic Building Bricks

10. The oscillator

by James Franklin

Fig. 3. Output of an oscillator is measurable as an e.m.f.

Fig. 4. Two other current /time graphs which are cyclic and are therefore oscillations.
electric current (Part 3). Thus a time graph of current measured at a suitable point in the oscillator circuit would be similar to Fig. 2. This version of simple harmonic motion in electrical form is called a sinusoidal oscillation \dagger, or, because of the wave-like character of the graph, a sine-wave oscillation. A similar shape would be obtained if we plotted a time graph of potential difference existing across a part of the oscillator circuit; and in fact the output of an oscillator is often measured as an e.m.f. between two terminals (Fig. 3).

The swinging pendulum is analogous to the electronic oscillator for another reason: in both the energy is continually changing between potential form and kinetic form.

As we have hinted, the sinusoidal oscillator is only one of several types available. There are, for example, oscillators generating square waves, pulses of various shapes, and saw-tooth waves (Fig. 4). An oscillator producing pulses is normally called a pulse generator, and one of these appears in the computer block diagram in Part 1. Whatever the wave shape, however, all oscillators have this in common, that they generate a cycle of variation in an electrical quantity which is repeated indefinitely, as long as electrical power is supplied to the oscillator. The length of time taken by one cycle is called the period of the oscillation, and the number of periods (or cycles) that occur in a given time is called the frequency of oscillation. In practice frequency is measured in cycles occurring per second, and the unit cycle per second is called the hertz (Hz). \ddagger

[^8]dead-centre position A^{\prime}. It then repeats the process through $D^{\prime} G^{\prime} J^{\prime}$ and back to $\mathrm{A}^{\prime \prime} .$. . and so on. This is a cyclic movement which, in the clock, goes on repeating itself as long as mechanical power is applied to the pendulum at the right instants to keep it swinging (e.g. through an escapement mechanism from a spring). One complete cycle of pendulum swing is marked on Fig. 1 as being between reference position A and position A^{\prime} but a cycle could equally well be defined as between any two corresponding positions, for example between C and C^{\prime}.

If we plotted a time graph of the displacement of the pendulum bob along its arc of swing it would come out as shown in Fig. 2*-a graph which some readers may recognize as simple harmonic motion. In the comparable electronic oscillator, if we plotted a time graph of some variable that indicated electron movement it would be similar to Fig. 2. We cannot easily measure the displacement of electrons from a given point but we can readily measure the rate of displacement of electrons, which is

[^9]One of the functional blocks in the television set diagram in Part 1 is labelled "oscillator". According to the dictionary, to oscillate is to swing like a pendulum, move to and fro between two points. This, of course, is a definition of oscillation in visible, mechanical terms. In an electronic oscillator the oscillation cannot be seen because the to-and-fro movement is not of some mechanical part but of electrons in a circuit (Part 5). Although we cannot see this movement directly we can detect, measure and display it by various instruments, and so can discover a good deal about what goes on.

In one type of oscillator the character of this to-and-fro electron movement is similar to that of pendulum movement in a clock, so let us look more closely at a swinging pendulum. Fig. 1 is like a series of frames from a cinematograph film showing the positions of a pendulum at successive instants during its swing. If we take the dead-centre position A as a reference point we see that the pendulum swings first to the right to an extreme position D, back to the dead-centre position G, beyond this to an extreme left-hand position J, then back to the

Fig. 2. In this graph the pendulum positions in Fig. 1 are plotted, as displacements from time.

Fig. 1. Sequence of positions of a swinging pendulum-a mechanical oscillator.
思

Our claim tofame isbeing broadcast the world over.

Such is the power of Ferrograph tape recorders. Used in major broadcasting stations as well as in the aircraft industry, Police and Fire Services and Government Departments.

A Ferrograph tape recorder is a status symboland an investment. The buyer knows he is getting a top standard machine which maintains that standard for many years. (We give a 3 year guarantee inclusive of record and replay heads.)

You may pay a little more at the outset, but the rewards are many in service and reliability.

Series Y Twin Channel Stereo machine

(illustrated): Housed in a light alloy casing, this machine is speclally adapted for audio frequency instrumentation recording in scientific and industrial applications (purchase-tax-free for
these uses). Input and output conditions suitable for matching professional equipment. Available in single or two-channel forms, recording full, $\frac{1}{4}$ or $\frac{1}{2}$ track. 3 tape speeds on each machine.

Other details are yours for the asking-just complete the coupon below.

If you have a recording problem contact Ferrograph. Special machines can be made up to customers requirements.

Series Y tape recorders are available direct from the Ferrograph U.K. company or principal overseas agents (list available on request).

FERROGRAPH SOUNDS GOOD

WW-094 FOE FLTKHER DETAILS

Shure Model 444
Controlled magnetic microphone. Specially designed for radio communications applications

Special response haracteristic gives optimum speech intelligibility

Please send me full information on
Shure Communications Microphones.
Name
Address
Shure Electronics Ltd.
84 Blackriars Rd., London SE1. Tel: $01-9283124$

New Approach to Class B Amplifier Design

by Peter Blomley*

(Concluded from February issue)

This article describes a 30 -watt amplifier design which embodies the author's approach to class B design, outlined last issue. Although further work on this approach is still needed, the design illustrates the kind of problems involved. The author also discusses the application of integrated components in future designs.

The general design of a complete amplifier using the new approach is relatively conventional except for the inclusion of the signal splitter (described last month). In principle, the design of each half of the output stage is made simpler as there is no cut-off, hence
*Allen Clarke Research Laboratory (Plessey), Towcester, Northants.
removing the necessity for predicting the performance in the cross-over region.

Examination of the circuit (Fig. 1) shows that the amplifier consists of three sections, the input amplifier, signal splitter and output amplifier.

Input amplifier. This converts the input voltage into a proportional output current

Fig. 1. Complete power amplifier circuit using new approach. Design gives harmonic distortion of 0.01% at all power levels and intermodulation distortion of 0.003%.
which drives the signal splitter. To enhance the performance of the amplifier as a whole, this section should have a reasonable mutual conductance ($1 \mathrm{~A} / \mathrm{V}$) and good linearity (1\%). The latter does not represent a serious problem as the input amplifier is a low-level class A amplifier, but care is needed to control the maximum value of g_{m} otherwise frequency compensation problems arise.

Signal splitter. As many fundamental details of the signal splitter were described last month, further details are confined to the biasing system. If perfect bipolar devices were available and ideal current sources existed, voltage bias across the emitter-base junction would not be needed, but such situations do not exist and distortions due to conditions falling short of the ideal can be rendered negligible by employing simple bias diodes (Fig. 2). This reduces the voltage excursion at the input to the signal splitter from 1.2 V to $300 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$. The waveform with a sinusoidal output current is shown in Fig. 3.

Output stages. This now is one of the easiest to design. As long as the gain remains constant throughout the output cycle all is well. In the initial version, used to evaluate system performance, a compromise was reached between complexity, performance and cost. Thus individual adjustment potentiometers were used instead of the matched devices.
The output sub-amplifiers are similar to the Quad triples, these giving excellent linearity down to very low output currents, coupled with outstanding thermal stability. To compensate for the effect of ambient temperature changes on the quiescent current of the amplifier, diodes D_{1} and D_{2} cancel $V_{B E}$ changes in transistors $T r_{7}$ and Tr r_{8}. It may have occurred to the reader that diodes in the forward path of the amplifier loop could generate appreciable distortion. However, in practice the maximum change in current is about $4: 1$ and thus almost corresponds to the change in collector current of transistors Tr_{7} and $T r_{8}$. In this way the change in voltage drop across the transistors compensates for the change in the diodes. Even if this did not occur, the resultant gain change for the output subamplifier is less than 4% for $I_{\text {out }}$ values between 0 and 2A. The problem can be alleviated by increasing the current into
diodes D_{1} and D_{2} and adding one resistor, but the advantages gained from this are negligible.

Circuit description

The function of $T r_{1}, T r_{2}$, and $T r_{3}$ is to convert an error voltage-the difference between the input and feedback voltageinto a proportional output current. Now to produce the required mutual conductance of this stage ($1 \mathrm{~A} / \mathrm{V}$) without sacrificing either noise performance or linearity, the design in Fig. 1 was used. Starting at the input transistor $T r_{1}$, this p-n-p type is used mainly as a level shifter. If we assume that the
current gain of Tr_{2} was extremely large (>500), then this input stage would have a maximum voltage gain of about five-not very much! If voltage gain was increased to the theoretical maximum of 30 (by decreasing the value of R_{2} and R_{4}) problems would arise with the voltage offset at the speaker output due to increased emitter current flowing through R_{3} and base current flowing through R_{1}.

Assuming for the moment that this first stage gain is a reasonable compromise, it now becomes obvious that the noise and distortion performance is dictated by the next stage. This stage ($\operatorname{Tr}_{2}, R_{8}$) is a straightforward class A amplifier with very high

> Curve $a-$ Emitter voltage $200 \mathrm{mV} / \mathrm{cm}$ $" \quad b-I_{y}$ collector current $1 \mathrm{~mA} / \mathrm{cm}$ $" \quad c-$ Collector current $1 \mathrm{~mA} / \mathrm{cm}_{"}^{\prime \prime} \quad d-I_{\text {sig }} 1 \mathrm{~mA} / \mathrm{cm}$

Frequency $=1 \mathbf{k H z}$
Fig. 2. Input amplifier converts signal voltage to a proportional current to feed transistor signal splitter. Bias diodes reduce voltage excursion from 1.2 V to 300 mV pk-pk. Bottom trace is current signal input to splitter.

Fig. 3. Voltage excursion at signal splitter input with corresponding sinusoidal amplifier output current ($R_{L}=15 \Omega$).
gain (typically 400) and low distortion due to the limited modulation index of the collector current (0.04 max). The peak 2 nd harmonic voltage generated is about $10 \mu \mathrm{~V}$ and, assuming this is referred to the input of the first stage, it represents less than 0.001% 2nd harmonic distortion with feedback. Thus this second stage is the work horse of the input section, the third device $T \mathrm{r}_{3}$ being used both as a buffer to reduce the loading of R_{10} on R_{8}, and to convert the voltage changes across R_{8} into an output current to drive the emitters of the signal splitter.

Resistor R_{10} performs two functions in this last stage of the input section. It defines the conversion constant $E n_{g m}{ }^{e n}$ for the stage, and it governs the maximum current which can be driven out of the collector of $T r_{3}$. (This maximum current is defined by using the conducting voltages of D_{3} and $T r_{2}$ and the value of R_{10}.) Therefore this input section seems to have excellent performance during normal operation, but what can happen during an overload?

If the input transient was negative all would be well due to Tr_{2} entering saturation. But if the transient was positive $T r_{1}$ would turn off completely, the potential across R_{10} rising toward that at the end of $R_{8} .\left(\mathrm{Tr}_{2}\right.$ would also be completely cut off.) This would cause excess currents to flow in $T r_{3}$, upsetting the bias chain $R_{7}, D_{4}, D_{5}, R_{8}$. After the excessive input signal is removed some time would elapse before recovery would take place, hence diode D_{3} clamps the voltage and maintains $T r_{2}$ in full conduction to reduce recovery time and improve amplifier stability.

While discussing the problem of recovery from overload, the charge across the compensation capacitor C_{4} has also to be taken into account. The time for the accumulated charge to decay is a function of the amount of charge and the rate of decay. If the rate of decay is constant, the only way to reduce the recovery time is to limit the accumulated charge (in terms of voltage). Diode D_{3} performs this function as well as clamping the voltage across R_{10} at 1 V thus limiting drive current into the signal splitter.

The second section is the signal splitter, unique to this approach, and consists of transistors Tr_{4} and Tr_{5} plus a current source transistor $T r_{6}$. The signal current into the emitter of Tr_{+}or Tr_{5} is derived by subtraction of two current levels, one constant and set by the voltage across R_{9}, and the other the output current of the input section. This signal current either appears at the collector of Tr_{5}-causing a voltage change across R_{20}-or at the collector of $T r_{4}$-causing a voltage change across R_{21}. These voltage changes are converted into positive and negative output currents in the output section, which are then added together to give the final waveform. The current gain of the output sections which are conventional triples are governed by the ratio of R_{20} to R_{17} and R_{21} to R_{18}, and in this case the gain of 1000 seemed reasonable.

To keep the output triples above the minimum conduction level a bias current is provided by R_{11}. The procedure adopted for setting the standing current is to first set R_{20} and R_{21} to minimum (diode end).

Set quiescent current with R_{20} and increase R_{21} until there is a small increase in current.

The only part still to be described is the biasing chain $R_{7}-D_{4}-D_{5}-R_{8}-C_{3}$. This provides the half supply voltage for the base of $T r_{1}$ (decoupled by C_{3}), a load for the class A stage $T r_{2}$, and sets devices $T r_{4}$ and $T r_{5}$ at the minimum conduction level required for good phase response during cross-over -by using the voltage across D_{1} and D_{2}. By increasing the value of C_{3} it is possible to reduce the rate of charging of the speaker coupling capacitor, eliminating 'thump', but capacitor size becomes very large.

Returning for a moment to the input section, $T r_{2}$ is in a similar position to that used in many amplifiers, but instead of driving another stage $\left(T r_{3}\right)$ which only requires a limited voltage swing, it is the prime mover for the output section. To have sufficient drive capability the quiescent current in this stage may well need to be 10 mA -instead of the 1 mA in mine-and the voltage swing on the collector will be the full supply voltage (50 volts).

It now seems clear why the distortion of many amplifiers rises at low frequencies. The dissipation change of this device during a voltage cycle could be $500 \mathrm{~mW} \mathrm{pk}-\mathrm{pk}$ in the case I have quoted giving an emitterbase voltage change at low frequencies of about 100 mV . This change, even if we assumed it is basically a linear function of voltage, will cause a non-linear change in the input device and hence a considerable rise in distortion at low frequencies. In my amplifier the maximum dissipation change in $T r_{2}$ will be less than 1 mW , thus eliminating this form of distortion and improving intermodulation performance.

Performance

The measurement of distortion created some difficulties especially when con-

Fig. 4. Spectra made with a wave analyser showed no difference between spectra of outputs from oscillator and amplifier. Plots were made with (a) 1 kHz and (b) 10 kHz signals and were identical at all three power levels.

Fig. 5. Null method of assessing amplifier distortion shows distortion products to be well down in the noise. Deflection of 4 cm represents 0.003% peak distortion at 10 watts ($3 \mathrm{kHz}, 15 \Omega$ load).
sidering the range of frequencies over which this amplifier operates. The methods employed can be separated into two distinct techniques-spectrum analysis and nulling methods. To realize the first technique, an oscillator with a pure, single-line spectrum was needed, but the only one available at the time, approaching a reasonable performance, was the Si 451 produced by J. Sugden \& Co, having a range up to 30 kHz . This was found (excellent as it is) to be inadequate to permit the measurement of amplifier distortion.

So difficult in fact was the problem that it is impossible to publish distortion curves with any degree of confidence in their truth, but it can be said that using the Hewlett Packard 3590 wave analyser there was no discernible difference between a plot of the distortion of the oscillator and that taken after the oscillator output had been passed through the amplifier. Plots were taken over the frequency range 100 Hz to 20 kHz and powers of 100 mW to 25 W . As a matter of interest the spectrum plots of the amplifier are shown in Fig. 4 for 1 kHz and 10 kHz and at several power levels. The second method attempted was rather more successful but unfortunately does not present information in a usable form because it involves a comparison of output and input signals. It is also not a sequential test as in the previous method and as a result problems were encountered in successfully nulling the output against the input of the amplifier, due to the phasing of the signals and the earth loops generated by the measurement method. After considerable adjustment of the phase compensation and spurious pick-up difficulties the photograph Fig. 5 was obtained. Here the distortion generated is right in the noise (-120 dB down from 20 V r.m.s.) and the total deflection of 4 cm represents 0.003% peak distortion at 10 watts and a frequency of 3 kHz , chosen for easiest phase cancellation. The spikes usually evident in the difference waveform with this type of amplifier are completely absent, even with reactive loads, indicating that stability in the cross-over region must be excellent.

Intermodulation performance

The use of these two techniques is limited in one way or another to the evaluation of

Fig. 6. Result of feeding 5 kHz and 200 Hz signals in a 16:1 power ratio into amplifier. Intermodulation products $f_{1}+f_{2}$ and $f_{1}-f_{2}$ are 90dB below 200 Hz signal. Other spectral lines are due to generator distortion.
amplifier linearity. The main advantage is, of course, that a direct numerical value of distortion is obtained which can be used in comparison with other amplifiers.

The intermodulation test does not rely on low-distortion oscillators of signal cancelling techniques-in fact the only component which limits the measurement accuracy is the wave analyser itself. The real drawback is seen when an interpretation of the results is necessary! The method adopted is to "sweep" the transfer charac teristic of the amplifier with a low-frequency signal of large amplitude, and to "measure". the slope of the characteristic with a lowlevel high-frequency signal. The two frequencies selected were 200 Hz and 5 kHz in a power ratio of $16: 1$.

The results not only ease the assessment of the amplifier performance in an absolute sense but also give some form of subjective measurement for comparison with other elements in the system. The results obtained in Fig. 6 indicate an excellent performance, the intermodulation products $f_{1}+f_{2}$ and $f_{1}-f_{2}$ are -90 dB below the sweeping signal $(200 \mathrm{~Hz})$ all other spectral lines being due to generator distortion.

Amplitude-frequency response

The type of frequency compensation used for this amplifier is unusual, mainly as a result of the system design. The open-loop gain begins to fall off at about 4 kHz and continues on a $6 \mathrm{~dB} /$ octave roll-off to about

500 kHz where the second pole of the output section starts to contribute excess phase shift. The choice of the position of the dominant compensation was a difficult one. If it was placed in the output section, as is normally the case, the gain of the input amplifier would have to be restricted at low frequencies, affecting the distortion performance of the amplifier.
Another choice was using the dominant lag to encompass the output section as well as part of the input amplifier. This would lead to instability internal to the loop enclosed by the dominant lag and thus an internal pole would have to be introduced to remedy this condition. The final choice (shown in Fig. 7) gives the single-pole compensation needed for unconditional stability coupled with minimal high-frequency distortion. The inherent pole in the output section is subdued by the feedback resistance R_{3} (so far as the main loop is concerned) but gives the required unconditional stability of the output section.

The performance with reactive loads will be spoilt if the output impedance of

Fig. 7. Single-pole frequency compensation method used gives unconditional stability coupled with minimal h.f. distortion.

Fig. 8. Power amplifier equivalent circuit. Simple analysis shows output impedance is controlled by main feedback loop, but in practice R_{6} generates another loop effectively placing a damping resistance across the apparent output inductance.

Fig. 9. Performance with a capacitative load. Capacitor in feedback loop effectively reduces maximum rate of change of voltage across load. Overshoot is much less when fed from a pre-amplifier.

Performance-with 60 V regulated supply
output power
power response
output impedance
total harmonic distortion
intermodulate distortion
voltage gain
noise level
maximum peak output current

20 watts into 15 ohms
30 watts into 8 ohms
30 Hz to $100 \mathrm{kHz}(-3 \mathrm{~dB})$
0.1 ohm at 1 kHz
< 0.01% throughout audio band and all power levels

< 0.003\%

100
-120 dB below full power
$\pm 3 \mathrm{amps}$, approx.
the amplifier is controlled by the overall feedback loop, i.e

$$
Z_{\text {out }}=\left(1+\underset{j-}{f_{1}}\right) / g_{m}
$$

where f_{1} is the signal frequency and f_{2} the open-loop -3 dB frequency. This expression has a simple analogy with a series inductance and resistance, where $R=1 / g_{m}$ and $L=1 / 2 \pi g_{m} f_{2}$.

A little more work \dagger shows that if a capacitive load is used the amplifier would have a response given by

$$
G=\frac{1}{p^{2} T^{2}+a p T+1}
$$

This is the equation of a second-order system, where $a\left(1 / g_{m}\right) \sqrt{ }(C / L)$, and the natural frequency of oscillation is $w_{o}=$ $1 / T=1 / \sqrt{ }(L C)$. If the amplifier has an overshoot it must be due to the overall amplifier having an \boldsymbol{a}-value approaching zero. If we now assume typical values and examine the worst case condition, $g_{m}=$ $10 \mathrm{~A} / \mathrm{V}, f_{2}=4 \mathrm{kHz}$ and $a_{i}=0.1(20 \mathrm{~dB}$ peak), then $C=4 \mu \mathrm{~F}$ and $w_{o}=250 \mathrm{kHz}$.

If this was a perfect model for the amplifier the overshoot would be excessive, but in practice the output impedance is not only a function of frequency but also of output current. Thus a gets larger (less overshoot) as the output current increases. The basic assumption of this simple analysis is that the output impedance is controlled by the main feedback loop, but in this amplifier resistor R_{6} generates another loop which effectively places a damping resistance across the apparent output inductance (Fig. 8).

The only remaining improvement to the transient performance of the amplifier is by pole-zero cancellation using the feed-

[^10]back element. If this term seems somewhat academic, an alternative is to study the overshoot with a second-order system with various inputs. If the input is an ideal step the amplifier will give theoretical overshoots, but if the rate of rise of the input waveform is decreased the overshoot will reduce and eventually disappear. The capacitor (a zero) in the feedback loop is really reducing the maximum rate of change of the voltage across the load and hence the degree of excitation given to this inherently oscillatory system. By using this type of compensation excellent performance with reactive loads has been finally achieved (Fig. 9). The overshoot with capacitative loads, such as $4 \mu \mathrm{~F}$, is about 50% with an ideal step input and far less when fed via a preamplifier, thus no difficulties should be experienced with any normal load.

Electrostatic loads. The distortion characteristic with this type of load was still insignificant below 10 kHz and gave a gradual rise up to 20 kHz where it was still less than 0.05% at maximum output \neq. Square-wave performance is shown in Fig. 10 at maximum \neq output. The ringing is due to the finite output impedance converting the ringing current in the inductance and capacitance of the load into ripples in the output, plus the overshoot of the amplifier itself.

Future developments

The amplifier design is hopefully only a source of ideas which may encourage further research into the whole approach to design. So that the trend may be continued, future proposals are outlined in Fig. 11. Here, the main difference is that

[^11]the output subamplifiers are oriented toward the use of integrated components. It has become obvious that past problems with class B amplifiers originated with the stabilization of the quiescent current to give zero cross-over distortion. Attempts were made to use diodes to compensate for device $V_{B E}$ changes with fluctuations in the ambient temperaturethe independent variations due to device dissipation could not be eliminated. Most of the time the diode did its job and the voltage defined by the combination of transistor and diode remained constant. This constant voltage was used in conjunction with low-value resistors to set the quiescent current in the output circuits.

If now an integrated component is used both the diode and the transistor are on the same chip and, apart from minor fluctuations, the combination is isothermal. As a result the quiescent current is a function only of the setting voltage and not ambient temperature or differential device temperatures. The accuracy with which the current can be set is largely governed by the offset voltage of the transistor pair. Typical values of $\pm 4 \mathrm{mV}$ which would represent a $\pm 8 \mathrm{~mA}$ inaccuracy in the quiescent current using 0.5 -ohm feedback resistors are readily obtained. With such an arrangement a reasonable quiescent current for the subamplifiers would be 30 mA , the worst case figures would be 24 mA and 38 mA . Both of these values are well above the low conductance current level (5 mA) which is required for good linearity of the subamplifiers.

The advantage of the new approach is fairly evident when it is realized that as long as the amplifiers are above the nonlinear region, the spreads introduced in the sub-amplifier quiescent current will not cause the class $A B$ situation of overbiasing (shown last month) characteristic of present designs. It is now possible to design an output stage without the normal trim potentiometers, thus giving a degree of freedom in production not possible with current amplifiers. The performance of the amplifier, once checked at the end of a

Fig. 10. Square-wave performance when driving electrostatic load at 1 kHz (a) and 10 kHz (b). Top traces are voltage and lower traces current out of sub-ainplifier. Ringing is due to output impedance converting ringing current in L_{2} and C_{2} into ripples in the output.
production line can be guaranteed for operation in any climate and for any period of time.

Possible applications

The performance of an amplifier of this calibre is, in my opinion, wasted in a conventional audio set-up. In most cases, the transducers will be the weakest link.

The approach used in the design of the output sub-amplifiers does not rely on complementary matched devices-in fact, in most cases n-p-n devices are preferred for their superior secondary breakdown characteristics. This represents considerable reduction in amplifier costs especially in the 100 -watt region as presently available devices boast a $V_{C E O}$ of 120 V with

100 watts dissipation at a cost of less than 75p.

The ultimate use for this amplifier would appear to lie with the high-power professional market where the performance of cascaded amplifiers in a system would have to be excellent. Use in other fields would be mainly governed by the expected gain in performance or reduction in cost. A possible application would be as a portable standard oscillator, perhaps meter calibration amplifiers, or even high-frequency low-distortion class B transmitter amplifiers. However, these are only inspired guesses which may interest those working in these relevant fields.

Thanks are due to Peter J. Baxandall for his advice and encouragement and to Hewlett Packard and the Plessey Co. for use of their facilities.

Fig. 11. Proposals for integrated components in output sub-amplifier.

Multiple-array Loudspeaker System

How to use an assembly of small units to solve a baffling problem

by E. J. Jordan

In an article in the November 1970 issue (The Design and Use of Moving-coil Loudspeaker Units) I discussed the advantages of the simple single-cone moving-coil loudspeaker, where highquality wide bandwidth sound reproduction is required. In practice it has been found that for domestic applications in a medium sized lounge, embracing say 2000 cu ft a suitably designed unit having a cone diameter of about 4 in correctly loaded will provide more than adequate power bandwidth without difficulty. When it is necessary to provide high-quality sound in rooms considerably larger than this, however, we can either use larger louspeakers particularly to handle the low frequencies, together with mid-range and high-frequency units and the appropriate cross-over systems or multiple arrangements of the single-cone full-range unit.

The advantages of using a multiplicity of small loudspeakers for high power, wide bandwidth applications are not generally appreciated. In the first place the efficiency of a multiple array can be very considerably higher than that of a large loudspeaker having comparable power handling capacity, and in fact lies somewhere between this and a full horn system. For example typical efficiency for a high-flux 15 in direct radiator unit is 3 to 5%. That of a multiple array may be as high as $10-15 \%$ at low frequencies. A

Fig. 1. Mechanical impedance of the air load on a piston surface in an infinite baffle.
large horn-loaded system will be between $30-50 \%$ efficient. In comparison with the horn, however, the multiple array can provide a higher standard of quality with considerably less bulk and cost, and further by the use of frequency grading the sound distribution pattern may be 'shaped'. By designing for specific locations a three-dimensional sound field 'tailored' to match the environment may be established. This minimizes adverse effects of the ambient acoustics, and is of particular use where the acoustic environment is difficult. The approach may be extended with considerable success to stereo installations where it is possible to maintain accurate image location throughout large complex areas. Multiple array techniques offer such flexibility in their design that the possible applications are unlimited.

Efficiency of a multiple array

Consider a single-cone loudspeaker mounted by itself on a flat infinite baffle.

$$
Z_{M A_{1}}=R_{M A_{1}}+j \omega L_{M A_{1}}
$$

If a number " n " of similar units are mounted close together on the baffle the radiation impedance is

$$
Z_{M A_{n}}=R_{M A_{n}}+j \omega L_{M A_{1}}
$$

The radiation impedance curves are shown in Fig. 1 and from the work covered in my November article we can say that if the knee of the curve is at f_{1} for a single unit it will be f_{n} for n units where

$$
f_{n}=\frac{f_{1}}{\sqrt{n}}
$$

For frequencies below f_{n}
$R_{M A_{n}}=n^{2} R_{M A_{1}} \quad$ and $\quad L_{M A_{n}}=n^{1.5} L_{M A_{1}}$ For frequencies above f_{n}
$R_{M A_{n}}=n R_{M A_{1}}$
The power radiated by a single unit on an infinite flat baffle is given by

$$
P_{M A_{1}} \propto \frac{f^{2}}{Z_{M t_{1}}{ }^{2}}
$$

where $Z_{M t}=$ total mechanical impedance. We will assume throughout that the loudspeaker(s) is/are working under the condition of mass control then :

$$
P_{M A_{1}} \propto\left(\frac{B l i}{L_{M c}+L_{M A_{3}}}\right)^{2} R_{M A_{1}}
$$

where $L_{M c}=$ mass of moving system.
If the electrical power P_{1} fed to one unit is now distributed to n units then the power P_{n} received by each unit will be P_{1} / n. Assuming that the impedance has been rematched then if the current supplied to the single unit was i_{1} then the current in each of n units will be i / \sqrt{n}. If the length of active conductor in each voice coil is / then the total active length in n units is $n l$. The flux density B is of course the same as for each individual unit.

Rewriting the power expression for frequencies below f_{n} we have:

$$
\begin{aligned}
P_{M A_{n}} & =\left(\frac{B(n l) i / \sqrt{n}}{n L_{M c}+n^{1 \cdot 5} L_{M A}}\right)^{2} n^{2} R_{M A} \\
& =\left(\frac{B l i}{L_{M c}+\sqrt{n L_{M A}}}\right)^{2} n R_{M A}
\end{aligned}
$$

For frequencies above f_{n}

$$
\begin{aligned}
P_{M A_{n}} & =\left(\frac{B(n l) i / \sqrt{n}}{n L_{M c}}\right)^{2} n R_{M A_{1}} \\
& =\left(\frac{B l i}{L_{M c}}\right)^{2} R_{M A_{1}}
\end{aligned}
$$

Since the mass of the cone and coil system $L_{M c}$ is generally much greater than $L_{M A}$. below f_{n} the gain in efficiency will tend to approach n but the increase will become progressively less as $\sqrt{n} L_{M / 4}$ approaches $L_{M c}$. Above f_{n} the actual efficiency will be independent of n; however there will be a considerable increase in effective efficiency due to the directivity pattern.

Sound distribution patterns

Fundamentally, the greater the dimensions of a radiating area the more directional it will be. The most familiar example of this is seen in line source loudspeaker systems used for public address or sound reinforcement applications. In this case (Fig. 2) a number of loudspeaker units are mounted vertically in line. The distribution in the horizontal plane is fairly broad, being similar to that of a single unit. Distribution in the vertical plane is however restricted-depending upon the length of the column.

One effect of this is to discourage

Fig. 2. Idealized distribution pattern for line-source system.
floor-to-ceiling reflections. In practice, due to the fact that the radiating area is not a continuous line but is made up of discrete units, at frequencies where the wavelength is comparable to the physical spacing between the units, the vertical distribution pattern splits up into lobes. The main forward facing lobe becomes excessively sharp and upward and downward secondary lobes appear (Fig. 3). The common method of overcoming this is to grade the electrical power fed to the units so that the centre unit receives the maximum power, the adjacent units above and below receive say $\sqrt{ } 2$ of this power and so on. In my view however, a better way of doing this is by frequency grading, such that the centre unit receives the full frequency range and the high frequencies are progressively reduced for units away from the centre. This has the effect of reducing the effective length of the line as frequency is raised, thereby maintaining a fairly constant vertical distribution pattern for all frequencies.

The multiple array is an extension of these principles. The basic arrangement consists of close mounted units in square or rectangular formation (Fig. 4). If the same power and frequency response is fed to each unit the mid-frequency sound distribution pattern is given by

$$
\frac{\phi_{\theta}}{\phi_{0}}=1-\left(1 \cdot 14 \times 10^{-3} f d \sin \theta\right)
$$

where
$\theta=$ any angle off axis
$\phi_{\theta}=$ relative pressure at L_{θ}
$\phi_{0}=$ reference pressure on axis
$d=$ length of vertical or horizontal giving the vertical and horizontal patterns respectively in metres.
If the pressure is -6 dB at $L_{\theta-6}$
then $\quad \sin \theta_{-6}=\frac{4.38 \times 10^{2}}{f d}$

This basic arrangement will of course be subject to unwanted lobe development as before, and again this may be overcome by frequency grading-this time in both directions away from the centre unit. Here the distribution would tend to be in the form of a rectangular block which by suitable design could be tailored to provide an even distribution throughout a particular location. We can go further however and provide selected areas of higher intensity where required. For certain applications it may be desirable to be able to control the sound distribution at will, this again can be accommodated by providing suitable switching arrangements.

Circuits for frequency distribution

It is very desirable that all the units in a multiple array are connected in parallel otherwise there may be inadequate electromagnetic damping on the units. (It may therefore be necessary to fit each unit with its own transformer.) The frequency distribution should be achieved with series air-cored inductors. Sections through multiple arrays are shown in Fig. 5. Two basic circuits are shown with their effect on the vertical distribution. Similar effects can of course be produced in the horizontal plane. More exotic patterns can be produced, where required, with more complex circuits. By combining power grading with frequency grading both the distribution and the frequency response can be controlled and made variable if necessary.

Applications

For domestic high-fidelity applications small high-quality, wide-range, units are available. Generally speaking, these are adequate for most domestic locations used

Fig. 3. Example of unwanted lobes due to physical spacing between units.

Fig. 4. Basic multiple array.

Fig. 5. Basic types of distribution pattern due to frequency grading; (a) distribution independent of frequency, (b) as (a) but angled.
singly. Where required, however, two or four may be used. The units should be mounted vertically in line and frequency grading should be used so that in the case of two units the lower one receives the full frequency range and in the case of four units the third one down should receive the full range: this will ensure that the distribution pattern is displaced upwards. The units should be connected in parallel and frequency grading achieved with air-cored inductors. Inductance values may be specified by the manufacturers of the particular units used.

An extension of this approach is met in the phase-delay stereo techniques described in the February issue. For large sound distribution systems multiple arrays having any number of units may be used, and a point worth noting here is that as the size of the array increases, so the need to provide any form of acoustic enclosure is diminished. When we reach the point where we have a close packed array of 8 or 9 ft square no further form of acoustic loading should be necessary and the system should be 'open-backed'. The 'back-to-front' depth of such an array will be only a few inches (apart from the necessary supports). In a system of this size we would probably be using roughly 150 units. If the highest quality units were used such as those available for domestic hi-fi, the unit cost would be of the order of $£ 1500$, which must be considered in conjunction with a power handling capacity of about 2,250 watts. and a low-frequency efficiency of the order of 10%.

In practice it would not be necessary to use units of this quality throughout the entire array and it would therefore not be too difficult to build a very adequate system of similar performance for about a third of this figure. These figures are given only to indicate the order of the 'price per watt' economics of the approach.

When considering the efficiency, a further point is that the sound intensity derived from a multiple array tends to be independent of the distance of the listener from it under normal conditions of usage.

Summary

The multiple-array system is an approach which renders it eminently suitable for sound reproduction in theatres, halls and auditoria in general. The efficiency is derived basically from the fact that the mass per unit area of diaphragm becomes progressively less for smaller loudspeaker units. The economics are favourable because the manufacturing costs tend to be lowest for 5 in-6in loudspeakers. The reproduction quality is favoured by the fact that this size of loudspeaker sits most squarely upon the requirements necessary to reproduce the full audio range, and the relatively low mass per unit area and high values of air load offer very great advantages to transient reproduction. The ability to pre-design the sound distribution pattern makes it possible to tailor both the distribution and the frequency balance to the environment.

Announcements

The latest Japanese electronics company to sign a licensing agreement with the London based EVR Partnership is Toshiba. The agreement gives Toshiba a non-exclusive licence for ten years to manufacture EVR teleplayers in Japan and sell them in all countries except the United States and Canada.

Plessey Company Ltd have acquired Arco Societa per L'Industria Elettrotecnica SpA of Italy, manufacturers of specialized electronic components.

Leevers-Rich Equipment Ltd, manufacturers of professional audio magnetic recording equipment, has been acquired by Mining and Chemical Products Ltd, the parent company of MCP Electronics Ltd.

Carlingswitch, of Watford, have signed a reciprocal sales agreement with AMELEC, of Paris, manufacturers of miniature rocker switches. The agreement gives Carlingswitch exclusive sales rights for AMELEC components in the U.K. with the French company having the same arrangement for Carlingswitch products in France.

Joseph Lucas (Industries) Ltd, of Birmingham, and Robert Bosch GmbH, of Stuttgart, have formed a joint company Fluggeretetechnik GmbH , with headquarters in Stuttgart. The Bosch holding is 51%.

The McMurdo Instrument Co. Ltd, Rodney Road Portsmouth, Hants, have signed an exclusive agreement with Alliance Technique Industrielle under which they are licensed to manufacture the French company's products in the U.K.

Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.1, have been appointed U.K. representatives for F. W. Bell Inc., of Columbus. Ohio, manufacturers of magnetic field measurement and generating equipment.

Wentworth Instruments Ltd, North Green. Datchet, Bucks., have been appointed exclusive U.K. and Ireland representatives for the products of Research Incorporated, of Minneapolis, U.S.A., manufacturers of the Data-Trak programmer.

Electrautom Lid, 408 Finchley Road, London N.W.2, have been appointed sole U.K. agents by Qualidyne Corporation of Santa Clara, California, suppliers of semiconductor products.

For their metallized film capacitors Advance Filmcap have appointed Spenco Electronic Services Ltd. as manufacturer's agents for Northern Ireland and Scotland, and G.D.S. Sales Ltd., of Slough as franchised distributors for U.K. and Eire.

Electronic Component Services (Worcester) Ltd, of Victoria House, 63-66 Foregate Street, Worcester, have changed the name of the company to Thorp Electronic Components Ltd. The company have distribution agreements in the U.K. with The Belclere Co.; Unisem (United Aircraft) U.S.A.; Philco-Ford Microelectronics Division (U.S.A.); Emihus Microcomponents Ltd; AEG (Great Britain) and Semitron Ltd.
B. Adler \& Sons (Radio) Ltd, Coptic Street, London WCIA INR, will in future be known as Eagle International. The company has marketed electronic products under the 'Eagle' brand name since 1958.

Woollett Audiostatics, 21 Anerley Station Road, London S.E.20, is a new company formed by L. G. Woollett to continue production of electrostatic and dynamic speakers. L. G. Woollett \& Co. Ltd is now dissolved and superseded by the new company.

Teleng Inc. has been formed in the United States to market Teleng's TV distribution equipment for use in coaxial cable systems in North America.

Microwave Associates Ltd, of Luton, have received an order worth approx. $£ 90,000$ from the Malaysian Telecommunications Department for the supply of mobile microwave links. The MLV7000 equipment
operates in the 7 GHz band and employs the heterodyne repeater principle which allows the transfer of information from link to link at a 70 MHz i.f.

GEC-AEI Telecommunications Ltd. of Coventry, have received an order, worth over $£ 1 \mathrm{M}$, from the Post Office, to supply microwave radio equipment to expand the capacity of two radio trunk transmission routes in the national telecommunications network.

The Communications Division of Redifon Lid has received an order valued at $£ 230,000$ for radio beacon equipment to modernize and extend Indonesia's system of aids to air navigation.

Eddystone Radio has received an order, worth over $£ 60,000$, to supply EC964 receivers to Televerkets Centralforvaltning, the central agency for supplying and installing maritime radio equipment in Sweden.

Conferences and Exhibitions

Further details are obtainable from the

 addresses in parentheses
LONDON

Mar. 16-19
Camden Town Hall
Sound '71
(Assoc. of P.A. Engineers, 394 Northolt Road,
South Harrow, Middx HA2 8EY)
Mar. 29-Apr. 2
LABEX International
(U.T.P. Exhibitions Ltd, 36-37 Furnival St.,

London EC4A 1JH)
Mar. 30 \& 31
Grosvenor House
Training 71
(Marketing Exhibitions Ltd, 1 13/123 Upper
Richmond Rd, London S.W.15)
Mar. 31-Apr. 4 Skyway Hotel
SONEX 71
(Fed. of Brit. Audio, 49 Russell Sq.. Londen W.C.1)

BRISTOL
Mar. 23-26
The University
EASCON 71-From learning to earning
(I.E.E.T.E., 2 Savoy Hill, London WC2R 0BS)

harrogate

Mar. 24
Exhibition Hall
EL-EC 71—Electronic Equip. \& Components
(Trade News Ltd, Drummond House,
203-209 North Gower St., London N.W.1)

NOTTINGHAM

Mar. 29-Apr. 2
The University
Datafair 71
(Brit. Computer Soc.. 29 Portland PI.. London W.I)

OVERSEAS
Mar. 9-13
Basle
MEDEX 71-Medical Electronics
(Sekretariat MEDEX 71, CH-4000 Basel 21)
Mar. 9-13 Ba
INEL-Industrial Electronics
(Sekretariat INEL 71, CH-4000 Basel 21)
Mar. 9-14
Bordeanx
OCEANEXPO 71
(Salon International de l'Exploitation des Oceans.
8, rue de la Michodière, Paris 2)
Mar. 14-23
Leipzig Spring Fair
(Leipzig Fair, 701 Leipzig, Messehaus am Markt)
Mar. 22-25
New York
I.E.E.E. Convention and Exposition
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Mar. 29-Apr. 2
Space and Communication
(L'Espace et la Communication, 16 rue de Presles, Paris $15^{\text {e }}$)
Mar. 31-Apr. 6
Paris
Salon International des Composants Electroniques
(Fed. Nat. des Industries Electroniques. 16 rue de Presles, Paris 15^{e})

Choosing a Vidicon

Concluding the summary of tubes started in February

by D. J. Gibbons*, M.A., Ph.D.

For many years it was appreciated that size, stability and ruggedness were all in favour of tubes based on the vidicon, in contrast to other types of pick-up tube. The requirements of high-quality colour cameras for live scene broadcasting place severe performance demands on the tube, however, and a number of lead oxide types have appeared (known by the registered trade marks as Plumbicon, Leddicon, Oxycon, etc.); particular characteristics of these types are low lag, low dark current and a linear light transfer characteristic. The special features of these vidicons can be attributed to a target fabricated so that there is a wide region of highly insulating oxide material lying between surface layers doped respectively n-type and p-type. Thus the target is very similar in construction to an array of reverse biased $\mathrm{p}-\mathrm{i}-\mathrm{n}$ photo diodes. The Oxycon employs a mixture of metal oxides, including PbO , to yield tubes of similar characteristics to the Plumbicon and Leddicon but with shifted spectral response peaks.

Slow-scan TV and light integration

Occasionally it is necessary to send a television signal over a narrow bandwidth link such as a normal speech telephone wire or a voice radio channel. The picture repetition rate must clearly be reduced under these conditions if detail is not to be lost, and a typical scanning time is bet ween 15 seconds and 2 minutes. Under these unusual conditions the vidicon must be capable of holding the video information in the form of a charge pattern without degradation for considerably longer than normal. Vidicons with high target insulation for these purposes are supplied as 'slow-scan vidicons'. Some idea of their usefulness in such applications is gained from their dark current, because this is a measure of charge leakage within the target.

The high target insulation of these tubes also makes them well suited for light integration. If the light level is very low, then even one of the 'ultimate sensitivity' tubes listed in Table 3 may be incapable of yielding a useful signal because the information rate content of the image is too low. The signal/noise ratio can

TABLE 6 Lead Oxide Vidicons

[^12]however be increased by exposing a slow-scan vidicon to the image for a few tens of seconds, integrating the charges corresponding to the signal on the target, and then scanning-off in a single shot. Provided that enough signal can be accumulated in this way to yield an output current of $0.1 \mu \mathrm{~A}$ in a single scan of $17-20 \mathrm{~ms}$, the signal/noise ratio will be nearly equal to that in the primary photo-charge; this will be more than 40 dB in a bandwidth of 3 MHz .

Signal integration can also be achieved with the SEC tube and the Ebitron (Tables 3 and 4).

Integral focus and scanning coil vidicons

In some specialized applications an advantage of space, ruggedness or power requirements may be achieved through the use of magnetic vidicons with built-in focus and scanning coils. Naturally, most of these advantages exist in the all-electrostatic vidicons but, with the possible exception of the high-resolution all-electrostatic vidicon, the resolving power of these tubes is inferior to that of the magnetic ones. Integral focus and scanning vidicons may consist of integral focus and scanning coils, or integral coils with permanent magnet alignment rings. They are all well suited for such applications as missile and spacecraft guidance, industrial and commercial surveillance systems and very compact cameras.

Tubes responding outside the visible spectrum

Choice of a suitable photoconductive target material produces a range of vidicons which are responsive to parts of the electromagnetic spectrum from 200 keV X-rays, through the soft X-ray region, the ultra violet, the visible and up to 2.4 microns in the infra red. Table 9 lists the relevant points for tubes of this type.

Severe environmental conditions

Most of the vidicons listed in Table 2 can be operated quite satisfactorily for short periods with faceplate temperatures bet ween $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$. However, despite this capability, it is not recommended by any tube manufacturer that a vidicon camera is designed in such a way that the

Fig. 5. Spectral sensitivity curves for vidicon targets responding to the infrared. Identification letters L, M and N refer to table 9.

TABLE 6 Lead Oxide Vidicons-contd.

| Type No. | Scanning | Focus | Mesh | Colour response | Max. bulb dia.
 (mm) | Max. length (mm) | Resolution modulation @400 TV lines | White light sensitivity (A/lumen* | Applications or Colour channel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8865 | M | M | | Fig. 3 J | 26.6 | 162 | 47\% | 153 | |
| Lead Oxide Vidicon (General Electric Co.) | | | | | | | | | |
| 27946 | M | E | S | Fig. 3 H | 26.1 | 161 | 40\% | | S |
| 27869 | M | M | S | Fig. 3 H | 26.6 | 165 | 35\% | | c. e. S |
| 27870 | M | M | S | Fig. 3 H | 26.6 | 165 | 40\% | | c. e, S |
| Vistacon Camera Tubes (RCA) C, e, S | | | | | | | | | |
| 4592/R | M | M | S | Fig. 3 J | 30.45 | 220 | 25\% | 85 | R. C |
| 4592/G | M | M | S | Fig. 3 J | 30.45 | 220 | 30\% | 140 | G. c |
| 4592/B | M | M | S | Fig. 3 J | 30.45 | 220 | 35\% | 35 | B, C |
| 4592/L | M | M | S | Fig. 3 J | 30.45 | 220 | 30\% | 350 | L. c |
| 4591/R | M | M | 1 | Fig. 3 J | 30.45 | 220 | 25\% | 85 | R. c |
| $4591 / \mathrm{G}$ | M | M | 1 | Fig. 3 J | 30.45 | 220 | 30\% | 140 | G. c |
| 4591/B | M | M | 1 | Fig. 3 J | 30.45 | 220 | 35\% | 35 | B, c |
| $4591 / \mathrm{L}$ | M | M | 1 | Fig. 3 J | 30.45 | 220 | 30\% | 350 | L. e |
| Symbols: M-magnetic. E-electrostatic. J-integral. S-separate. R-red. G-green. B--blue.U-unichrome. \quad--colour. e-educational. S-development tube. L—luminance. 2 -for viewing fluoroscope screens. ci-industrial colour. b-broadcasting. i-industrial. p-reduced blemish specification. | | | | | | | | | |

Identical with the same types whout sufix/01 with the exception of havig no ant-atation disc.
IIdentical with the same types without suffix/01 with the exception of having no anti-halation disc.
*With colour filier in position. No filter is used for monochrome pictures or in the luminance channel.

TABLE 7 Slow-scan Vidicons

| Type No. | Manufacturer | Scanning | Focus | Mesh | Dark current |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E2800 | Heimann | M | M | S | - |
| TH9892 | TH- CSF | E | M | S | 5 nA |
| WL7290 (WX5424) | Westinghouse | M | M | 1 | 0.2 nA |
| WX4887 (WX4885) | Westinghouse | M | M | 1 | 0.2 nA |
| WX5111 (WX5113) | Westinghouse | M | M | S | 0.2 nA |
| WX5115 (WX5117) | Westinghouse | M | M | S | $0.2 n A$ |
| WX4950 (WX5119) | Westinghouse | M | E | S | $0.2 n A$ |
| WX5120 (WX5121) | Westinghouse | M | E | S | 0.2 nA |
| WX4384 (WX4871) | Westinghouse | E | E | S | $0.2 n A$ |
| WX4890 ($W \times 5118$) | Westinghouse | E | E | S | $0.2 n A$ |
| 9728 UV | EMI | M | M | S | $0.5 n A$ |
| (9737) | EMI | M | M | S | less than 1 nA at $70^{\circ} \mathrm{C}$ |
| 9677 UV | EMI | M | M | S | $0.5 n A$ |
| 4500 | RCA | M | M | 1 | $5 n A$ |
| (TD1342) | GEC | M | M | S | 0.5 nA |
| (TD1368-010) | GEC | M | M | 1 | $0.2 n A$ |

Symbols: M-magnetic. 1--integral. E-electrostatic. S-separate.
Types in brackets are ruggedized military types with a low wattage heater.
See also tables 3 and 4 for the SEC tubes and the Ebitron which can be used in some slow scan applications.

TABLE 8 Vidicons having integral focus and scanning coils

| Type No. | Manufacturer | Dia. incl.
 coils, $\mathbf{m m}$ | Bulb dia. mm | | Length mm | Resolution* TVL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| C23133 | RCA | 32 | 26 | S | - | - |
| F4079A | ITT | 32 | 20 | S | 104 | 850 |
| Z7960 | GE | 17.8 | 16 | S | | 700 |

*Limiting resolution in centre.
Symbols: S-development type.

TABLE 9 Vidicons Responding Outside the Visible

| Type No. | Manufacturer | Applications | | Long wavelength limit | Short wavelength limit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E2900 | Heimann | X-ray | | | |
| TH9890 ${ }^{\text {T }}$, | TH-CSF | i.r | | 2.4 microns | |
| * TH9891 | TH-CSF | i.r | | (Fig. 4 L) | |
| TH9896 | TH—CSF | u.v | | 0.7 microns
 (similar to Fig. 3 E) | 240 |
| TH9894 | TH-CSF | X-ray | | Less than 20 keV X-rays ** | $30-200 \mathrm{keV}$ X-rays |
| 9677UV | EMI | u.v | | 0.61 microns
 (Fig. 3 curve E) | 210 |
| 9728UV | EMI | u.v | | 0.61 microns
 (Fig. 3 curve E) | 210 |
| 2000 | Heimann | i.r | | 1.8 microns (Fig. 4 M) | 350 |
| P842IR | EEV | i.r | S | 1.8 microns (Fig. 4M) | |
| $\begin{array}{r} N 156 \\ * * * N 157 \\ * N 177 \end{array}$ | | | | | |
| $\left.\begin{array}{r} +N 177 \\ +\dagger N 214 \\ +* * * N 248 \end{array}\right\}$ | Hamamatsu | i. r | | 2.4 microns (Fig. 4 L) | 400 |
| $\left.\begin{array}{r} \text { N350 } \\ +N 400 \end{array}\right\}$ | Hamamatsu | X-ray | | Soft X-rays | Hard X-rays |
| TD 1307-007 | GEC | i.r | | 1.8 microns (Fig. 4 M) | 400 |

[^13]TABLE 10 Vidicons Specially for Severe Environmental Conditions

| Type No. | Manufacturer | Scan-
 ning | Focus | Mesh | Max. bulb
 dia. (mm) | Length
 (mm) | Special features |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Applications

N.B. Most manufacturers produce ruggedized vidicons suitable for conditions of high vibration or mechanical shock. These are to be found marked " R " in all other tables except Table 6 , where this symbol has a different meaning. Symbols: O-Resistant to over-exposure. f - nuclear radiation. v-high pressures. I-integral. S-separate. M —magnetic. E-electrostatic. R-ruggedized. S—development ivpe

TABLE 11 Small Diameter Vidicons

| Type No. | Manufacturer | Scanning | Focus | Max bulb dia. (mm) | Applications and/or special features |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4427 | RCA | M | M | 13.0 | w, i |
| C23104 | RCA | M | M | 13.0 | S S |
| C23134 | RCA | M | M | 20.3 | S. Diameter over integral coils 32 mm . |
| 1135 | Heimann | M | M | 13.5 | - R, diameteroverintegral coils |
| Z7968 | GE | M | E | - | S, R.w. diameter over integral coils 18 mm . |
| 9737 | EMI | M | M | 13.2 | Unity gamma: fine grain target w |
| 9738 | EMI | M | M | 13.2 | S. w |
| 97380 | EMI | M | M | 13.2 | Q, w, S |
| 9738 N | EMI | M | M | 13.2 | R. w |
| 9768 | EMI | E | E | 13.2 | w: 15.25 mm . dia oversheath. Spectral response 3C. |
| 9838 | EMI | M | M | 13.2 | S, w, spectral response 2D |
| 9868 | EMI | E | E | 13.2 | w, S: 9768 but with spectral response 2D. |
| F4079A | $1 T$ | M | M | 20.5 | 31.7 mm . over integral coils, S |
| F4079 | $1 T$ | M | M | 20.5 | |
| NEC 4427 | NEC | M | M | 13.0 | w, i ${ }^{\text {i }}$, |
| 8823 | Hitachi | M | M | 20.3 | w, i: spectral curve D |

Symbols: i-industrial cameras. M-magnetic. E-electrostatic. w-small lightweight cameras. Q-quartz faceplate (also see Table 10). S-separate mesh. S-development type R-ruggedized.

TABLE 12 Developmental Return Beam Vidicons

| Type No. | Manufacturer | Dia. (mm) | Resolution | Lag |
| :--- | :--- | :---: | :--- | :--- | :--- |
| C23061A | RCA | 52 | 45% @ 2000 TV lines | extended |
| C74137A | RCA | 115 | 5000 limiting | low |

TABLE 13 Monoscopes

| Type No. | Manufacturer | Scanning | Focus | Screen |
| :---: | :---: | :---: | :---: | :---: |
| 9788 | EMI | E | E | Alphanumeric 64 symbols. ASC 11-2 (Fig. 6b) |
| TH9503 | TH-CSF | M | E | Alphanumeric 64 symbols, or 128 |
| TH9504 | TH-CSF | M | M | Alphanumeric 64 symbols, or 128 |
| TH9505 | TH-CSF | E | E | Alphanumeric. 64 symbols |
| TD 1350-001 | GEC | * M | M | Linearity pattern |
| TD 1350-002 | GEC | * M | M | Registration pattern (\& Fig. 6a) |
| TD1350-003 | GEC | * M | M | Resolution burst pattern; white on black |
| TD 1350-004 | GEC | * M | M | Resolution burst pattern; black on white |
| TD 1350-005 | GEC | * M | M | Slant line burst pattern. |

* Photoconductive target with internal reticule pattern.

In addition to the above tubes, which are intended primarily for generating a television signal from an internal In addition to the above tubes. which are intended primarily for generating a television signal from an internal
source, RCA TH-CSF and EEV advertise vidicons with a built-in internal reticule. Various patterns ate dadilable.

TABLE 14 Silicon Target Vidicons

| Type No | Manufacturer | Length (mm) | Notes |
| :--- | :--- | :---: | :--- |
| C23136 | RCA | 161 | q. S |
| VID-136 | Texas | 121 or 133 | S |
| VID-127 | Texas | 121 or 133 | S |
| VID-128 | Texas | 121 or 133 | S |
| VID-129 | Texas | 121 or 133 | S, r |
| LD 6001 | NEC | 161 | S |
| P8010 | EEV | - | S |
| P8011 | EEV | - | S |

faceplate temperature rises above $30-35^{\circ} \mathrm{C}$, under typical operating conditions. In some cases forced air cooling may be necessary and if a vidicon camera is used to observe furnaces etc. a heat-absorbing or infra red filter should be interposed between the tube and the source of heat. Accidental or short term exposure up to the absolute maximum recommended faceplate temperature will not cause any harm. Lead oxide types should not be operated with the faceplate above $50^{\circ} \mathrm{C}$. Corresponding temperatures for slow-scan and infra red types are $45-50^{\circ} \mathrm{C}$ and $30-35^{\circ} \mathrm{C}$ respectively. The silicon types will operate up to $200^{\circ} \mathrm{C}$ and ultra violet vidicons at $70^{\circ} \mathrm{C}$.

Under conditions of high vibration, or in a missile or a spacecraft, tube microphony may be troúblesome unless one of the special ruggedized vidicons is used. All tubes in Table 2 marked " R " come in this category, as well as a few others to be found in tables elsewhere also marked "R".

Naturally, all vidicons can be used to eliminate human risks, as well as to perform functions which would be impossible for the unaided operator. Some tubes are manufactured specially for use in areas of high nuclear radiation density. These are made with a special 'non-browning' glass or a quartz faceplate, and represent particularly good examples of vidicons which can be employed in conditions which would be very dangerous for a human operator.

Another special vidicon is made to withstand high pressures. All vidicons can be operated in vacuo. The silicon vidicon is remarkably free from risk of damage by accidental exposure to bright objects through the camera, and from damage through underscanning with the electron beam; thus electronic 'zoom' is possible with this tube.

Small diameter vidicons

A very important feature of the vidicon is its ability to 'look' into a place where a human operator cannot. There are two ways of doing this; one is to use a flexible fibre-optic 'light pipe' coupled to a fibre-optic tube (Table 3), and the other is to use a small diameter vidicon. The smallest diameter cameras employ the all-electrostatic 13 mm diameter tube which needs no bulky scanning and focus coils; at present such cameras have only been proved at an experimental stage. One important use for small diameter vidicons is the detailed examination, without dismantling, of power station boiler pipes for scale formation, but these tubes are useful in all situations where space is at a premium.

Silicon target vidicon

A conventional vidicon construction employs in this version a silicon p-i photoconductive diode array, using microcircuit photolithographic techniques to produce a target containing 50,000 or more isolated photo-diodes. Only four companies so far have issued provisional

Fig. 6 Representative target patterns of vidicon-based monoscopes and vidicons with permanent internal target patterns: (a) registration chart (GE); (b) Printicon (EMI) or Scripton (TH-CSF); (c) internal reticule (RCA, EEV or TH-CSF).
specifications for this tube, whose main features are a spectral response extending from 350 or 450 nm to $11,000 \mathrm{~nm}$, a high sensitivity to normal tungsten lighting, and a target virtually immune to damage even when inadvertently exposed to bright sources such as the sun $\left(10^{8} \mathrm{~lx}\right.$ on the target).

Return beam vidicons

Utilizing the electron beam for discharging the pattern containing the picture information on the target, and also for its evaluation, invariably leads to a compromise. If the beam current is small, high resolution is possible but picture lag may occur. If the beam current is high, lag is minimized for a given kind of target photoconductor, but a lower resolution results. In the return-beam vidicons a small beam current can be used for evaluation of the charge pattern on the target, and an electron multiplier can be incorporated in a similar way as in the image orthicon, to give virtually noise-free amplification of the video signal before it is passed on to the amplifier. Unlike other vidicons, the 'noise' occurs in the picture blacks. The result of this special design is to yield a tube of remarkably high resolution, as may be seen in Table 12.

Monoscopes

There are several tubes for generating special patterns. An internal target is used to generate a pre-determined signal, which may be an alphanumeric character for a computer readout monitor (Printicon, or Scripton), or a pattern for making geometrical accuracy tests for TV system testing. Alternatively the internal pattern is built in on a photoconductive layer (Reticon, or vidicons with an internal reticule). In this type, lens optics are not needed to generate a test pattern but, if necessary, an external test pattern can be superimposed on the internally generated reticule. Fig. 6 gives some idea of the kind of internal patterns which are available in Reticons, Printicons or Scriptons and in vidicons with an internal reticule.

Acknowledgements. The author would like to thank all people who provided information for this article. It is a pleasure to thank Mr. S. Taylor for preparing Figs. 2,3 and 5 . The permission of the directors of Electric and Musical Industries for publication is gratefully ack nowledged.

MANUFACTURERS' NAMES AND

 ADDRESSESOn the left are abbreviations used in the tables. Only the head office addresses are given. All manufacturers have agents or representatives in major countries.

| | Amperex Electronics Corp., 230, Duffy Avenue, Hicksville, New York, U.S.A. |
| :---: | :---: |
| EMI | EMI Electronics Ltd., Electron Tube \& Microelectronics Division, Hayes, Middlesex, England. |
| EEV | English Electric Valve Co. Ltd., Chelmsford, Essex, England. |
| GE | General Electric Co.,
 Imaging Devices Operation,
 Syracuse,
 New York, U.S.A. |
| GEC | General Electrodynamics Corp., 4430 Forest Lane, Garland, Texas 75040, U.S.A. |
| Hamamatsu | Hamamatsu TV Co. Ltd., 1126, Ichino-cho, Hamamatsu City, Japan. |
| Heimann | Heimann G.m.b.H., 620 Wiesbaden-Dotzheim, Germany. |
| Hitachi | Hitachi Ltd., 4, 1-chome, Marunouchi, Chiyoda-ku, Tokyo, Japan. |
| I.T.T. | I.T.T., Electron Tube Division, 3700, East Pontiac Street, Fort Wayne, Indiana 46803, U.S.A. |
| | Matsushita Electronics Corp., 1006, Oaza Kadoma, Kadomashi, Osaka, Japan. |
| Mullard | Mullard L+d., Mullard House, Torrington Place, London, WC1E 7HD. |
| NEC | Nippon Electric Co. Ltd., Tokuei Building, 33-7, Shiba Gochome, Minato-ku, Tokyo, Japan. |
| Philips | Philips Electric Industries Ltd., Electronics Components and Materials Division, Eindhoven, Holland. |
| RCA | RCA Corporation, Electronics Components Division, 5415, S. 5th Street, Harrison, New Jersey, U.S.A. |

R.T.C. La RadiotechniqueCompelec,
51, rue Carnot, 92 - Suresnes, France.

Shiba Electric Co. Ltd., Hibiya-Kaidan Building, 20, 2-chome, Uchisaiwai-cho,
Chiyoda-ku,
Tokyo, Japan.

Siemens AG,

8 München 8 ,
Balanstrasse, 73, Germany.
Texas
Texas Instruments Inc., Dallas, Texas, U.S.A.

TH-CSF
Thomson-CSF/DTE
Groupement Tubes Electroniques,
8 rue Chasseloup-Laubat, 75 , Paris 15,
France.
Thor Electronics Corporation, 741 , Livingston Street, Elizabeth,
New Jersey, U.S.A.
Westinghouse Westinghouse Electric Corp.,
Electronic Tube Division,
Box 284, Elmira,
New York, U.S.A.

Young Electronique,

117, rue d'Aguesseau,
92 -Boulogne, Billancourt, France.

Semiconductor Reference Book

The fifth edition of The Semiconductor Data Book from Motorola is 'designed to serve four specific functions: 1, to permit quick identification of any semiconductor device having an E.I.A. registered $1 \mathrm{~N} . . ., 2 \mathrm{~N} . . ., 3 \mathrm{~N} .$. , number or special Motorola in house number; 2, to permit quick selection of preferred devices for particular circuit applications; 3, to permit quick selection of preferred devices that best meet a desired set of electrical specifications; and 4, to provide complete design data for all Motorola discrete semiconductor devices.' The book is divided into four sections, the first three covering the above purposes, and the fourth providing the case dimensions of all packages described. Also included in the book are condensed specifications for all Motorola integrated circuits. Pp.2546. Price 53 plus 30p post and packing from Modern Book Company, 19 Praed Street, London W. 2.

Diode Switching Using Charge Analysis

Explanation of simple charge control model of diode for students and engineers

by B. L. Hart*, B.Sc., M.I.E.R.E.

Abstract

Charge storage models of semiconductor devices allow circuit design work to be done without involved mathematics. The author maintains that an appreciation, and consequent modelling, of the p-n junction is basic to an understanding of transistors and other multi-junction devices. The review develops, and explains the application of, a simple diode charge model for switching circuits. It assumes only an elementary knowledge of calculus.

In the days when thermionic valves were the work horse of the pulse circuit engineer there was often little need, or inclination, to "look inside" the device. For most practical applications its behaviour was adequately represented by the d.c. characteristics and a knowledge of (constant) inter-electrode capacitances. The arrival of junction diodes and transistors presented some circuit phenomena not readily explained in terms of d.c. characteristics and capacitances, for example the reverse current flow in a forward biased diode and saturation effects in a transistor. It was then necessary to probe deeper into the physical electronics of device operation for state-of-the art circuit designs. This led to the development of various device models.

For many semiconductor devices the best models-those giving insight into device operation and permitting evaluation of their circuit potentialities with a minimum of mathematical complexity--are those which involve the concept of charge stores. The object of this article is to review the development and application of a simple diode charge model suitable for switching circuits and in doing so to clarify some important concepts in semiconductor device operation which appear to be shrouded in mystery for many practising engineers.

Basic concepts

In Fig. 1, the p region of the junction has a uniform concentration. N_{A}, of fully ionized

Fig. 1. Basic p-n junction diode. Text explains how charged layer is formed.
"acceptor" impurities whereas the n region has a uniform concentration, N_{D}, of fully ionized "donor" impurities. This assumes
$N_{A} \gg N_{D}$, and the transition from one polarity of semiconductor material to the other is abrupt or occurs over a very short distance. Such a structure, with ohmic contacts attached to the p and n regions constitutes a junction diode. When the junction is left open-circuited the free carrier concentration gradient across the junction causes charges (holes) which are in the majority of the p region to diffuse to the n region where they become minority carriers.
Similarly those carriers (electrons) which are in the majority in the n region diffuse into the p region to become minority carriers. The diffusion process leaves some uncovered charges in the crystal lattice structure, either side of the metallurgical junction, where mobile "shadow" charges of majority carriers previously ensured local charge neutrality. As a result a dipole layer of charge is formed.

Associated with this is a "barrier" or

Fig. 2. Charge distribution in depletion region.
built-in potential, ϕ. This causes hole and electron drift currents of such magnitude and direction that the net hole current resulting from drift and diffusion and the net electron current resulting from drift and diffusion are both zero-as must be the case for an open-circuited device. Little conceptual error is involved in assuming that the dipole layer has a rectangular charge distribution-see Fig. 2-sandwiched between the neutral bulk of the p and n
regions. Because of the absence of covering charge the name depletion region is given to the volume bounded by the dipole layer: another description is transition region.

Application of a steady forward bias, i.e. p region made positive with respect to n region, causes two effects. First, a change in the width of the depletion layer to accommodate the applied voltage and second, an enhanced injection of carriers from one region to the other.

D.C. conditions

In the carrier injection process, the establishment of a forward bias voltage V causes the minority carrier density in the n region immediately adjacent to the depletion layer to increase from its equilibrium value $P_{n o}$ (a function of N_{D}, material type, and temperature) to a value $P_{n}(x=0)$ where

$$
\begin{equation*}
P_{n}(0)=P_{n}(x=0)=P_{n o} \exp V / V_{T} \tag{1}
\end{equation*}
$$

in which V_{T} is the thermal voltage, approximately 26 mV at room temperature. Rewriting eqn $!$ in terms of the expess minority carrier density, $P_{n}^{\prime}(0)$ gives
$P_{n}^{\prime}(0)=P_{n}(0)-P_{n o}=P_{n o}\left\{\exp \left(V / V_{T}\right)-1\right\}$
Eqn I may be justified by a thermodynamic argument beyond the scope of this article.
The metal contact has the property of being able to maintain at zero the hole density at $x=W_{N}$ however many holes reach it. There will thus be a concentration gradient set up in the n region for holes which therefore diffuse towards the n contact. Some recombine with electrons in the process, the recombination rate, in an elemental volume situated at distance x from the junction, being proportional to the excess level $P_{n}^{\prime}(x)$ there.

The shape of the $P_{n}{ }^{\prime}(x)$ curve is dependent on the ratio W_{N} / L_{H} where L_{H} is the average distance travelled by a hole before recombining. If $W_{N} / L_{H} \gg 1$, as in the so-called long-base diode, all the excess minority carriers recombine before reaching the contact and the curve is a decaying exponential -see Fig. 3(a). If $P_{n}(0) \ll N_{D}$ the condition known as low-level injection holds and there is no significant field in the n region. Drift can thus be ruled out as a transport mechanism for holes. Since diffusive flow depends on the concentration gradient, the slope of $P_{n}^{\prime}(x)$ at $x=0$, where recombina-
tion has not yet taken its toll, is proportional to the diode current I which would be measured on a d.c. instrument connected at the diode terminals. Thus $I \propto d P_{n}^{\prime}(x) / d x$. The area under the $P_{n}^{\prime}(x)$ curve gives the excess minority carrier charge Q stored in the diode or the excess minority-carrier charge in transit.

For simplicity the electrons injected from the n to the p region are ignored. The initial choice $N_{A} \gg N_{D}$-realistic for most usable devices-allows this without introducing any major quantitative error.

Understanding of diode action will not be clear unless the behaviour of the n region majority carriers is considered. In this context the material type and doping levels found in modern semi-conductors is such that the assumption of charge neutrality is a valid approximation independent of the time scale under consideration. Thus the injection of a hole from the p to n region is accompanied by the simultaneous injection of an electron into the n region at the n metal contact.

The increase in excess minority carrier charge to a level $(+Q)$, corresponding to a current I, is matched by the injection of electrons of amount $(-Q)$ at the n contact. The carrier distributions run parallel, shown

Fig. 3. (a) In long-hase diode ($W_{N} \gg L_{H}$) excess minority carriers recombine before reaching contact and curve decals exponentially. (b) Injected holes (charge $+Q$) in n region are matched by injection of electrons to amount $-Q$.
in Fig. 3(b), and there is no significant voltage drop associated with the two intermingled sets of charges. The word "significant" is important here: there will be a small voltage drop (measured in $\mu \mathrm{V}$ or mV) due to the electron drift current flowing through the bulk of the semiconductor lattice. If $W_{N} \gg L_{H}$, the diode current J is composed of electron drift current, only, near the n contact. Hence the longer the n
region the greater the voltage drop due to the bulk resistance.
The relationship between Q and I is interesting. The bulk minority carrier lifetime, τ, is the average time that an excess carrier (in this case a hole) exists before recombining. This is obviously related to L_{H}, defined above. A charge Q would disappear in a time τ unless supported by a steady current I. Hence

$$
\begin{equation*}
I=Q / \tau \tag{3}
\end{equation*}
$$

A formal mathematical treatment of the physical ideas discussed yields

$$
\begin{array}{ll}
& Q=I_{0} \tau\left\{\exp \left(V / V_{T}\right)-1\right\} \\
\text { or } \quad & Q \propto P_{n}^{\prime}(0) \tag{4}
\end{array}
$$

in which I_{0} is the magnitude of the reverse saturation current of the diode. Eqn 4 obviously embodies eqn 2 and is a restatement in charge form of the standard diode equation.

Rewriting eqn 4 gives

$$
\begin{equation*}
V=V_{T} \log _{\mathrm{c}}\left\{1+\left(Q / I_{0} \tau\right)\right\} \tag{5}
\end{equation*}
$$

Under d.c. conditions eqns 3,4 and 5 tell no more than the normal diode equation and the introduction of charge as a variable might seem to unnecessarily complicate the description. This is not the case with behaviour in the transient state.

Transient conditions

A change in diode current is associated with a change in applied voltage. This is accompanied by two effects: a change in the magnitude of Q, and a change in the width of the depletion layer.

Taking the change in Q first, a change δq in stored charge in a time δt requires a current component $\delta q / \delta t$ in addition to q / τ, required to combat recombination which is always occurring. Thus if i_{1} is the current into the n region then in the limit as δt tends to zero,

$$
\begin{equation*}
i_{1}=\frac{d q}{d t}+\frac{q}{\tau} \tag{6}
\end{equation*}
$$

This equation is exact, depending only on charge neutrality, and does not depend on the spatial distribution of injected carriers. Obviously eqn 6 reduces to 3 under d.c. conditions.

The depletion layer is narrowed by supplying majority carriers at its edges from the adjacent bulk of neutral semiconductor. The process resembles the charging of a parallel plate capacitor C_{j} with plates spaced $\left(l_{p}+l_{n}\right)$ apart - see Fig. 4 . The current required for this is i_{2}, say, where

$$
i_{2}=\frac{d q_{j}}{d t}
$$

As the two processes are happening at the same time the total instantancous diode current i is

$$
\begin{equation*}
i=i_{1}+i_{2}=\frac{d q}{d t}+\frac{q}{\tau}+\frac{d q_{j}}{d t} \tag{7}
\end{equation*}
$$

We cannot go further, quantitatively, without introducing a fundamental assumption.
It is possible to obtain an exact answer to problems involving transients in semiconductors by solving the time-dependent diffusion equation for injected minority

Fig. 4. Depletion laver is narrowed by injecting majority carriers at its edges from adjacent neutral semiconductor, process resembling charging a parallel-plate capacitor with plate separation of $l_{p}+l_{n}$.
carriers. But the objective here is to derive a simple model giving physical insight into device operation and an accuracy sufficient for circuit calculations.

The basic assumption made is that in changing from one current level to another the curve for $P_{n}{ }^{\prime}(x)$ goes successively through the steady state values which would exist if the change took a (theoretically) infinite time. Thus in Fig. 5 the curve for $\left(t+\delta_{t}\right)$ is

Fig. 5: Shows movement of minority charge during transient, where curves are assumed to be same shape.
the same shape as that for t irrespective of the magnitude of the time increment δt. Clearly we anticipate trouble with this assumption-in view of the finite velocity of carriers-as δt becomes very small.

The assumption allows eqns 4 and 5 to be generalized for minority carriers so that for $q>0$

$$
\begin{equation*}
v=V_{T} \log _{\mathrm{e}}\left\{1+\left(q / I_{0} \tau\right)\right\} \tag{8}
\end{equation*}
$$

Eqn 7 in conjunction with 8 now yields the $i-v$ characteristic in the transient state.

Before drawing a circuit model for a diode consider further the depletion capacitance $C_{j}\left(=d q_{j} / d v\right)$. This is normally a nonlinear function of v though it is possible to design diodes in which the non-linearty is not very pronounced. Usually

$$
\begin{equation*}
C_{j}(v)=C_{j}(0) /\{1-(V / \phi)\}^{\prime \prime} \tag{9}
\end{equation*}
$$

where $C_{j}(0)$ is the capacitance at zero bias, and $n \approx \frac{1}{2}$ for abrupt junction, $\frac{1}{3}$ for a graded junction.

Fig. 6. Non-linearity of depletion capacitance C_{j} can be linearized by finding average volume of C_{j} graphically.

The non-linearity expressed by eqn 9 can be a nuisance for some purposes and little error is involved in linearizing the capacitance. This is a technique of general use with semiconductor devices and involves finding an average value of C_{j}, by calculation or graphically, which displaces the same charge for a specified voltage change as does the non-linear capacitance. Thus

$$
\bar{C}_{j}=\left|\int_{V_{1}}^{V_{2}} C_{j}(v) d v /\left(V_{2}-V_{1}\right)\right|
$$

This is illustrated in Fig. 6.

Diode model

Fig. 7 is the model ${ }^{1}$ which summarizes, pictorially, the results of the arguments and associated equations. The network symbot ${ }^{2} S$, reminds us of the current $d q / d t$ required when the diode stored charge q changes: current generator q / τ describes the recombination process. There is no voltage drop associated with the store for reasons discussed: all the applied voltage drop v, given in terms of q by eqn 8 , appears across the depletion layer and is shown on the diagram as a voltage generator. (It could be represented by a conventional diode symbol but this might be confusing as there is no generally accepted symbol for a diode with no inherent stored charge.)

The switch enables use of one model for two conditions of operation, $q>0$ (switch closed) and $q<0$ (switch open).

Fig. 7. Charge model of p-n junction diode used to interpret circuil behaviour of diode.

There are four points in using the model which merit specific attention

- for $q>0$, a decade change in q results, via the logarithmic relationship of eqn 8 , in only 60 mV change in v. Thus in many cases $C_{j}(d v / d t)=\left(d q_{j} / d t\right) \ll(d q / d t)$, and eqn 7 reduces to 6
- for $q<0, d q_{j} / d r$, i.e. C_{j}, only need be considered
- a small resistance, r_{x}, allowing for bulk drops, may be put in series with the anode or cathode lead
- although a number of seemingly restrictive assumptions were made in the development of the model it has general use subject to our basic assumptions (charge neutrality and instantaneous charge rearrangement so that $\left.q(t) \propto P_{n}^{\prime}(0, t)\right)$.

The effects of non-uniform impurity distribution, gold doping (for minority carrier lifetime reduction) and high-level injection are to alter the magnitudes but not position of the components comprising the model.

Diode circuit behaviour

The model is now used to interpret circuit behaviour for two drive conditions. A short

Fig. 8. Excess minority carrier distribution for short-base diode, used in fast switching circuits, interpreted in text with Figs. 9 and 10.
base diode, i.e. one having $\left(W_{N} / L_{H}\right) \ll 1$, is frequently used in fast switching circuits and is considered here. The injected minority carrier distribution, shown in Fig. 8 approximates a straight line. For a given diode current (and a corresponding slope at $x=0$), the stored charge Q is obviously less than for the case of a long-base diode Fig. 3(a). The lifetime of the excess minority carriers is no longer the bulk lifetime τ but has now a much smaller effective value τ_{D} dependent on W_{N} and hole diffusion constant.

Suppose the diode is passing a steady forward current, I_{F}, and this is suddenly reduced to zero, by opening the switch in

Fig. 9. Behaviour of diode anode voltage when diode forward current is cut off by opening switch can be found from model in Fig. 10.

Fig. 9. The subsequent behaviour of the diode anode voltage may be found from the model shown in Fig. 10, in which r_{x} is the diode bulk resistance. As I_{F} is instantaneously removed, the anode voltage will fall from its initial value by an amount $I_{F} r_{x}$. As the diode is open-circuited there is no exit path for excess carriers and these can only die by recombination in the diode, i.e. the store S is discharged by a current q / τ_{D}, so that ignoring C_{j} for reasons already discussed

$$
\begin{equation*}
\frac{d q}{d t}=-\frac{q}{\tau_{D}} \tag{10}
\end{equation*}
$$

This is justified if

$$
\begin{equation*}
\left|C_{j}(d v / d t)\right| \ll\left|q / \tau_{D}\right| \tag{11}
\end{equation*}
$$

Now from eqn 8 , for $q / \tau_{D} I_{0} \gg 1, v \approx V_{T}$ $\log _{e}\left(q / \tau_{D} I_{0}\right)$. Hence

$$
\begin{equation*}
d v / d t=V_{T} / q \tag{12}
\end{equation*}
$$

Fig. 10. When switch is opened, anode voltage of diode falls by $I_{F} r_{x}$ and excess carriers stored in S are recombined in the diode, i.e.. discharged by current q / τ_{D}.

From equations 10 and 12

$$
\begin{equation*}
\frac{d v}{d t}=\left(\frac{d v}{d q}\right)\left(\frac{d q}{d t}\right)=-\frac{V_{T}}{\tau_{D}} \tag{13}
\end{equation*}
$$

Eqn 13 is true for $\bar{C}_{j} V_{T} \ll q$ as may be verified by substituting eqn 13 in 11 .
Thus a linear fall in v for $q / \tau_{D} I_{0} \gg 1$ is expected, after which the fall in v would cease to be linear.

Fig. 11 shows the practical circuit for tests on a germanium switching diode. Diodes D_{1} and D_{2} have no significant carrier

Fig. 11. Practical circuit for opencircuiting lest on germanium switching diode. Diade current and voltage waveforms are observed with a current transformer and a high-impedance cathode follower feeding a sampling oscilloscope.
storage. The input gating pulse V_{G} is supplied from a pulse generator having a zero offset facility, while the diode current and voltage waveforms are observed using, respectively, a wideband current transformer and a wideband high-impedance, cathode follower feeding a sampling oscilloscope.

Initially D_{1} is cut off and the two other diodes conduct a forward current I_{F} (chosen in this instance to be 2.5 mA). Subse(D_{1} is switched on and current in $D_{2}-$ observed by the current transformerrapidly falls to zero. The diode voltage waveform is shown in Fig. 12. An initial under-

Fig. 12. Anode vollage waveform for diode in circuit of Fig. $I I$. When D_{1} is switched on current in D_{2} falls to zero. Undershoot is due to capacitive coupling of gating voltage across D_{2}. Voltage step indicates r_{x} is 25Ω. Text explains how diode supports reverse current while still forward biased.
shoot is attributed to capacitive coupling of V_{G} across D_{2}. Ignoring this the voltage step indicates an $r_{x} \approx 25 \Omega$. There is a region over which $d v / d t \approx$ constant and assuming $V_{T}=25 \mathrm{mV}$ a calculation based on eqn 13 gives $\tau_{D} \approx 12.5 \mathrm{~ns}$.

Now the current in a diode is not usually suddenly reduced to zero but assumes a reverse value, as in some logic gate applications. The reason the diode is able to support a reverse current flow while still forward biased is as follows.

When a step of reverse current I_{R} is applied the charge pattern in the immediate vicinity of the junction is disturbed so that the concentration gradient in that region changes its sign-see Fig. 13. Ejection of a

Fig. 13. Minority charge pattern for reverse current drive. Concentration gradient in region of junction changes its sign when step of reverse current I_{R} is applied.
hole from the n to p region is accompanied by the extraction of an electron from the body of the diode at the n contact. Now $v>0$, if $q>0$, irrespective of the direction of current flow in the external circuit. Stored charge will disappear more quickly than for $I_{R}=0$ because of the twin processes of extraction and recombination.

The charge model does not account for the backward slope of the $P_{n}{ }^{\prime}(x)$ curve, calculations assuming a triangular distribution $a^{\prime} b$ at all times. The error is slight if $I_{R} \ll I_{F}$. From eqn 6

$$
\frac{d q}{d t}+\frac{q}{\tau_{D}}=-I_{R}
$$

Fig. 14 shows the model when I_{R} is applied.

Fig. 14. Charge model with reverse current drive. Charge behaviour is shown in Fig. 15.

Capacitance C_{j} is neglected. Fig. 15 illustrates the behaviour of q.

$$
\begin{aligned}
q(0+) & =I_{F} \tau_{D} \\
q(\infty) & \rightarrow-I_{R} \tau_{D}
\end{aligned}
$$

The switch on the diode model opens at $q=0$ corresponding to $v=0$. Thus the diode becomes reverse biased at $t=t_{s}$ where

$$
\begin{equation*}
t_{s}=\tau_{D} \log _{e}\left\{1+\left(I_{F} / I_{R}\right)\right\} \tag{14}
\end{equation*}
$$

If τ_{D} is known (e.g. from a photograph such as Fig. 12) the validity of this relationship may be investigated using a test set-up

Fig. 15. Variation of excess minority charge with time. Switch opens at $q=0$.

Fig. 16. Diode voltage waveform corresponding to Fig. 13. Small voltage slip is due to current change $I_{F}+I_{R}$ at
similar to that of Fig. 11 but with D_{2} omitted, and a reverse current limiting resistance in series with D_{1}. The general nature of the diode voltage waveform is shown in Fig. 16: a small voltage jump due to a current change $I_{F}+I_{R}$ in r_{x} at $t=0$ (not always clearly defined) is followed during the recovery phase, $0<t \leqslant l_{s}$, by a slowly changing anode voltage.

Limitations of simple charge model

The charge model is based on the assumption that $q(t)$ and hence $i(t)$ is proportional to $P_{n}{ }^{\prime}(0)$ for all values of t. This means regarding the charge as a single, easily accessible, lump and leads to a single timeconstant description of the diode for firstorder switching calculations. The usefulness of the model is best assessed by comparing its predictions with those obtained from a more exact analysis which does take into account the distributed nature of the device.

- For reverse current switch off the model indicates that all the charge is removed in a time t_{s} given by eqn 14 . A calculation of the exact value of t_{s}-as determined by a solution of the time-dependent diffusion equation ${ }^{3}$ - requires a prior knowledge of the ratio (W_{N} / L_{H}). Thus eqn 14 -which gives results erring on the side of pessimism-is a useful approximation for circuit arithmetic.
- The model yields the following result for charge, Q_{E}, extracted in the period $0<t<t_{s}$ by a constant reverse current I_{R}

$$
\begin{equation*}
Q_{E}=I_{R} t_{s} \tag{15}
\end{equation*}
$$

Substituting t_{s} from eqn 14 into 15 , finding the limit as $I_{R} \rightarrow \infty$ gives

$$
\begin{equation*}
Q_{E}=I_{F} \tau_{D}=Q \tag{16}
\end{equation*}
$$

The value for Q_{E} given by eqn 16 is not removed in the time interval t_{s}. Actually, the charge is not removed in t_{s} and it is just not possible to remove all the stored charge supporting a steady current flow, in a normal diode. Solving the diffusion equation Lindmayer \& Wrigley ${ }^{4}$ have shown that if a long-base diode initially passing a steady forward current I_{F} has its applied voltage instantaneously reduced to zero, the charge, Q_{R}, recovered is given by $Q_{R}=$ $\left(I_{F} \tau_{D}\right) / 2=Q / 2$. The expression for a short base diode is $Q_{R}=2 Q / 3$.

The recovered charge approach is sometimes useful in logic circuit design ${ }^{5}$ and a number of charge recovery test circuits have been described in the literature (see especially ref. 6).

Despite the inaccuracy of eqn 16 it is
useful for rough calculations, the crudest approximation for t_{s} being $t_{s}=Q / I_{R}$.

Conclusions

This discussion has concentrated on normal or 'classical' junction diodes except for the circuit of Fig. 11 where two diodes used D_{1} and D_{2} had no significant carrier storage. Hot-carrier diodes ${ }^{7}$ have this property. These are metal-semiconductor diodes and in them the current is carried by majority carriers which are not velocity limited in the same way as are minority carriers in p-n junction diodes. At present hot-carrier diodes are relatively expensive, and are only used in those discrete circuits where speed is at an absolute premium (e.g. sampling gates). Their importance will increase as they become incorporated into bipolar integrated circuits. ${ }^{8}$ However this does not mean the obsolescence of our charge model for a number of reasons.
Firstly we may wish to investigate storage effects in those instances where its nuisance value cannot easily be avoided, e.g. in power rectifiers working at frequencies much higher than that of the mains. Secondly, we wish to use the model in those applications where storage is purposely exploited. Examples here are the snap or step recovery, diode ${ }^{9}$ and the choice of a slow diode for diode-transistor logic.

Finally, a very important reason for considering a diode charge model is that an understanding, and consequent modelling, of the basic $p-n$ junction is fundamental to an understanding of multi-junction semiconductor structures. The development of a charge model for a bipolar junction transistor follows quite logically from that of a diode.

REFERENCES

1. Koehler, D., "The charge-control concept in the form of equivalent circuits", B.S.T.J., Vol. 46, No. 3, March 1967, pp. 523-75.
2. Beaufoy, R., and Sparkes, J. J., "The junction transistor as a charge-controlled device", A.T.E. Journal, Vol. 13, 1957, pp. 310-27.
3. Lax, B, and Neustadter, S. F., "Transient response of a p-n junction", J. App. Phys., Vol. 25, No. 9, Sept. 1954, pp. 1148-54.
Grove, A. S., and Sah, C. T., "Simple analytical approximations to the switching times in narrow-base diodes", Solid State Electronics, Vol. 7, No. 1, Jan. 1964, pp. 107-10. Davidson, L. A., "Simple expression for storage time of arbitrary base diode", Solid State Elecironics, Vol. 9, No. 11/12, Nov./ Dec. 1966.
4. Lindmayer, J., and Wrigley, C. Y., "Fundamentals of semiconductor devices", Van Nostrand: 1965, pp. 55-7.
5. Cho, Y., "A method of theoretical analysis of high-speed junction diode logic circuits", I.E.E.E. Trans., Vol. EC, Oct. 1963, pp. 492-502.
6. General Electric Co. Transistor Manual 1964. Seventh edn., pp. 447-8.
7. Hewlett-Packard Ltd. "Solid-state devices" 1967, pp. 55-87.
8. Turner, M. J., "Advances in integrated circuit technology", Ferranti Ltd electronics symposium, Nov. 1969.
9. See Ref. 7, pp. 1-41.

Letter from America

As far as the general economic situation was concerned 1970 was a difficult year. Television sales of just over 8.5 million for the first nine months must therefore be considered good although it is a 15% drop compared with the same period in 1969. Radio did not fare too well with a fall of some 14% and record player sales were down about 17%. On the other hand, tape recorder sales were up 25% and both gramophone records and 8 -track tapes showed a healthy increase. Here are the yearly figures (millions of \$):

| | 1969 | 1970 |
| :--- | ---: | ---: |
| records | 1170 | 1200 |
| 8-track cartridges | 300 | 400 |
| 4-track cartridges | 21 | 8 |
| casettes | 75 | 105 |
| reee-to-reel tapes | 21 | 21 |

This year will undoubtedly see a further big increase in cassette sales due to the Dolby innovation and the long-awaited appearance of chromium dioxide (Crolyn) tapes. The 8 -track format has been mainly used for car systems but it is rapidly becoming quite popular for home use. This trend will continue when more quadraphonic tapes are issued using the quad-eight arrangement. Motorola, RCA, Lear-Jet, Telex, 3M and several other firms have announced new quad-eight playing equipment but at the time of writing very little is actually available. The quadraphonic situation as a whole is still somewhat obscure with all kinds of systemssynthetic, psycho-acoustic, matrix and multiplex vying for attention. The Japanese Record Manufacturers Association recently decided to adopt the JVC (Japanese Victor Company) system as standard but as this is a carrier system involving a bandwidth up to 45 kHz it has obvious disadvantages. CBS have developed a compatible disc system using a switching technique which would involve a minimum expense by the broadcasting stations. Another system, demonstrated successfully at recent hi-fi shows is the Feldman-Fixler, now backed by Electro-Voice. Like the Sansui, HarmanKardon, Scheiber and at least half-a-dozen others, the Feldman-Fixler is essentially a 'black box' device which can transform any two-channel, or even mono signal, into four. Synthetic of course, but the results are quite impressive for all that. Sceptics-and there are plenty-doubt whether these simulated

Electro-Voice four-channel decoder which costs $\$ 50$.

4 -channel systems can give results that would even begin to compare with genuine 4 -channel tapes but when such comparisons have been made at demonstrations many of the audience could not tell the difference! On the other hand, contrived demonstrations would not really correspond to home conditions-but none the less they show what $c a n$ be done.

One of the most interesting ideas is due to David Hafler, of Dynaco, whose argument goes something like this: information picked up by microphones pointing to, or at the back of, a hall will have a lag time and part of the information will be out of phase with the front two channels. All you have to do to retrieve this information is to connect another speaker between the two channels on your amplifier and place it somewhere at the rear of the room. This difference signal certainly adds a sense of depth and spaciousness to the overall sound but results will vary widely due to different

A method of using a derived centre channel to produce four channels (Dynaco patent No. 3,417,203).
microphone and mixing techniques. Thus a level control is needed to keep some kind of balance. As might be expected, the rarely used, simple M5 microphone placement produces the most rational sound. A further refinement is the connection of a fourth speaker as shown in the diagram. Here we make use of a derived centre channel which produces the sum of both the two channels without crosstalk by simply using a blend resistor R_{1}. The effect is to emphasize sound picked up by a centre microphone or from equal pick-up from two side microphones. The beauty of this arrangement is that you can experiment with quadraphonics of a sort without buying another amplifier-a kind of halfway approach to the real thing. It will also be possible to assess feminine reactions which may well be provoked by two extra loudspeakers in the living room!

RCA recently announced a cinema-type television projector for use in the home, school or industry. It employs a special thin film mirror which is deformed electrostatically to modulate a light-beam. The mirror is made of a nickel alloy and is about 5 cm square and between 0.2 and 0.6 microns thick. It is mounted on a series of grid supports 50 to 100 microns apart that keep the film some 5 microns from a glass substrate. In operation, a modulated electron beam scans the target as it would the phosphor screen in a conventional TV tube. The beam penetrates the metal film and deposits an electronic charge on the glass substrate in proportion to the intensity of the video picture at each spot. This charge electrostatically attracts and thus deforms the metal film and the projection system converts the amplitude of the deformation into an analogous brightness on the screen corresponding to the video signal. Picture size is 4 by 3 feet and the projection lamp is rated at 500 watts. It was emphasized that much work is needed before the performance is comparable to existing projection systems but the potential low cost justifies further development work.

Through a unique process that combines glass with metal, scientists at Corning have developed a new kind of superconductor. The material used is porous glass impregnated with lead and bismuth which forms about 35% of the total volume. As the text books say, a current will flow in a superconductor for ever without a generating source providing the temperature is kept at absolute zero i.e. $-273.18^{\circ} \mathrm{C}$ or $459.67^{\circ} \mathrm{F}$ (would you believe it, Americans still use Fahrenheit!). One of the problems associated with superconductors results from the magnetic field created by the electric current. If it becomes too great, it tends to nullify the superconducting ability. However, when the metal is distributed in glass it forms discrete grains separated by barriers and so the ability of this new Corning material to withstand magnetic fields is considerably increased.
G. W. Tillett

World of Amateur Radio

Another amateur satellite

AMSAT-the newsletter of the Radio Amateur Satellite Corporation-reports that work is proceeding on a second AMSAT-Oscar satellite (Oscar 6) designed to be launched as a secondary payload on Thor-Delta or Agena launchings. Priority is being given to the development of active satellites intended for long-lifetime, solarpowered operation and capable of augmenting amateur communications on v.h.f.

A number of satellite repeaters are under development in various parts of the world for use in future amateur satellites. These include a four-channel hard-limiting f.m. repeater being designed in Australia and of the demodulation-remodulation type with frequencies of 145.9 MHz for the up-link and 432.1 MHz for the downlink, the transmitter power being 1 watt. A 50 kHz bandwidth linear repeater is being developed in West Germany for the same frequencies but having a transmitter power of 10 watts and intended for all popular modes of amateur operation. An American group is working on a linear repeater having an input frequency of 145.9 MHz and output on 29.6 MHz .

Many amateurs are hoping that the outcome of the June 1971 World Administrative Radio Conference on Space Matters will be the granting of permission to use space communications techniques on all international bands from 7 MHz upwards. The present Radio Regulations limit operation virtually to the 144 MHz band.

Harmful interference

In the recent public discussions on frequency allocations affecting amateur radio, there has been a tendency to forget the considerable difficulties that the official administrations have in enforcing the international frequency agreements and the problem presented by the small number of countries which remain outside the International Telecommunication Union. International frequency agreements are effective only when they are adhered to-and nowhere is this basic fact more apparent to radio amateurs than between 7000 and 7100 kHz . For European amateurs, this 100 kHz segment is all that remains of the old ' 40 -metre
band' which for many years was the most popular of all the amateur bands. But the rot set in during the Spanish civil war when a number of amateur stations were pressed into use by both sides for broadcasting, with the result that international broadcasting became firmly established in this part of the spectrum. This was formally recognized in 1947 in the allocations made to broadcasting in some regions above 7100 kHz . But the Radio Regulations continued-and continueto show 7000 to 7100 kHz as an exclusive world-wide amateur allocation.

Several weeks spent recently operating on this band-with its rewarding mixture of semi-local and long-distance contactshave underlined the extent of high-power intrusion by some broadcasters. Almost every evening well over half the amateur allocation is rendered unusable by broadcasting, often leaving just a few narrow 'windows' in which amateur stations pile-up several deep. In the past decade, the R.S.G.B. Intruder Watch has reported over 600 intrusions into amateur bandswith some 22 stations persistently causing interference in recent years. Of these, 12 have been broadcast transmitters operated by administrations in four countries in Region 1 and one country in Region 3. One wonders if the countries concerned realize that the operation of these stations within exclusive amateur frequencies far from assisting their external relations, have quite an opposite effect on the very large number of amateurs who nightly suffer from this flagrant disregard of the international Radio Regulations.

Amateurs in emerging

countries . . .

At the recent installation of Fred Ward, G2CVV, as the R.S.G.B. president for 1971, an interesting sidelight was thrown on amateur activities. For the opportunity was taken by Eric Lomax of the Nigerian Amateur Radio Society to make a presentation to Dr Mike Dransfield, 5N2AAF, who, until his recent return to the U.K., had been the mainstay of the society throughout the recent troubled years in that country. For three years no new amateur licences were issued in Nigeriaand this meant a long hiatus in the efforts
of N.A.R.S. to build up the number of licences among the local nationals. Always in the past, the vast majority of amateurs in Nigeria have been temporary residents. Despite the population of about 60 million, only two Nigerian citizens hold licences. Many amateurs, throughout the world, recognize the importance of encouraging more local interest in amateur activities, seeing a potential threat to the hobby posed by the large number of I.T.U. member countries having only a handful of citizens holding licences.

. . . and in Japan

A very different situation exists in Japan where the number of amateurs now exceeds 100,000 . Japan, for some years, has been second only to the United States in numbers of amateurs, and has a far larger growth rate. Between 1965 and 1968, for example, Japanese amateurs increased from 38,000 to 84,000 . Bill Hamer, ZL2CD, a recent visitor to Japan reports in Break-in, the New Zealand A.R.S. journal, seeing evidence of amateur radio everywhere he went: "DX-band aerials on roof-tops, 50 MHz mobile whips on cars, amateur radio club stations in factories and a thriving electronic components and amateur equipment industry". He believes that the main factor in this increase has been the introduction of a novice licence, although this has not been generally popular with those who have held licences for several years. The novice licence has brought about a serious interference problem and often poor operating standards. Japan has no age limit, and the majority of novices are in the 15 to 20 age group, though he notes there are some boys and girls of about 10 years of age holding licences. Power for novices is limited to 10 watts output and they use all bands except 14 MHz -both c.w. and phone-only novice permits are issued, the c.w. examination being at 5 w.p.m. For the full grade licence, a 10 w.p.m. code examination has to be passed and 100 watts output is permitted. An 'advanced' licence requires amateur experience plus knowledge of the special Japanese morse characters and of monitoring and test equipment. The New Zealander estimates that almost 95% of all Japanese amateurs hold the novice licence.

In Brief

The next Radio Amateurs' Examination will be held at a number of local centres on May 11 Many long-distance contacts have been made this winter on 'Top Band' (1.8 MHz) including a number of stations working VK6NK in Australia; another rare station to appear on this band has been PJ2CC in the Netherlands West Indies An Electronics forecast of the amateur market in the United States is: $1970 \$ 21.6$ million; $1971 \$ 23.2$ million, considerably below the figures for 'Citizen's Band' equipment.

Pat Hawker, G3VA

AMPLIVOX COMMUNICATIONS
 LIMINED

AMPLIVOX COMMUNICATIONS LTD. BERESFORD AVENUE • WEMBLEY • MIDDX TELEPHONE 01-902 8991
GRAMS AND CABLES AMPLIVOX WEMBLEY

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation

Name
Title
Address

SM111-the commandoscope

The SM 111 dual-channel oscilloscope from SE Laboratories is built for action in the laboratory and in the field. Small, compact, portable, but with a generous $10 \times 8 \mathrm{~cm}$ screen, high brightness and small spot size. This instrument has been subjected to resonance search, dry heat,damp heat, low temperature, dust, sand, drop, bump and tropical life tests. So tough, robust it's been awarded NATO approval. Exemplary specification and facilities: bandwidth $\mathrm{DC}-18 \mathrm{MHz}$, sensitivity up to $2 \mathrm{mV} / \mathrm{cm}$ both channels, $D C$ trigger and
 DC coupled amplifier. Mains or battery powered. If you need a scope that's practical, accurate, reliable under all conditions, get active service from SE's SM111. Write or ring for details.

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166. Telex: 23995
Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

M.S.I. high level logic circuit

Designed specifically for high noise environments, the H 157 synchronous 8421 b.c.d. decade counter from SGS, has asynchronous preset and reset, and a guaranteed minimum fan-out of 25 . It is able to work on a supply voltage of 10.8 to 20 V , and has a d.c. noise immunity of 5 V with a 15 V power supply. Four asynchronous preset inputs are provided which allow the counter to be positioned for whatever counting is desired, from 0 to 9 . The circuit operates in the temperature range of $0-75^{\circ} \mathrm{C}$, and is mounted in a ceramic 14 lead dual-in-line package. SGS (United Kingdom) Ltd, Planar House, Walton Street, Aylesbury, Bucks.
WW312 for further details

I.C. unsoldering tool

A portable unsoldering tool has been developed by Marconi to allow damagefree removal of microcircuits and other multi-connection components from printed circuit boards. The unit consists of an electrically heated pot of molten solder with a metal piston floating in it. A vertical hole through the piston is fitted with one of a number of 'nozzles", shaped to accommodate different packages (i.e. dual-in-line packs, TO-5 cans, hybrid solid logic technology devices, valve

holders, relays and even discrete component sub-assemblies). The component to be removed from the board is held in a spring-loaded remover and set over the appropriate nozzle while the piston is depressed. Molten solder wells up through the hole and contacts the pins on the underside of the board before draining back into the pot. The spring loaded remover comes into operation immediately the pins are freed so that removal is practically instantaneous and there is no excessive transfer of heat to damage the component or the board. The oxide layer which invariably forms on molten solder is trapped on its passage up through the piston so that only fresh, clean solder actually touches the joints. Two sizes of pot have already been developed-2in and 3in diameter-both with integral heating elements using a 240 V mains supply. The power consumption averages 300 W . Marconi Company Ltd, Marconi House, Chelmsford, Essex.
WW324 for further details

Transmission-line drivers and receivers

A range of five integrated circuits from Motorola are for use as interfaces between coaxial or twisted-pair transmission lines and data transmitters or receivers constructed with r.t.l., d.t.l., t.t.l. or e.c.l. The circuits, types MC1580L to 1584 L , have wide input and output ranges $(+9$ to $-3 \mathrm{~V}$ for the drivers), high input or output impedances (up to $8 \mathrm{k} \Omega$) and short propagation delays (down to 20 ns). The receiver circuits can reject $\pm 4 \mathrm{~V}$ of noise. Uses of the units other than for data reception or transmission include voltage comparison, waveform generation, high impedance buffering and, logic-level translation. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW311 for further details

Variable power supply

The Roband Vareco range of variable stabilized supplies for bench use, employs a novel over-voltage protection system, and variable current limit prevents damage to the supply or load under fault conditions

and enables the units to withstand a sustained short-circuit without damage. Stabilization is typically $20,000: 1$, ripple is less than 2 mV , and the dual meter scale enables very accurate setting-up of low voltages in the range 0 to 10 V . The units can readily be operated in series or parallel, and remote programming facilities are available. The range consists of the Varex 33-2, giving 0 to 33 V at 2 A ($£ 55$); the $33-10$, giving 0 to 33 V at 10A (£90); and the $60-5$, giving 0 to 60 V at 5A (£95). Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey.
WW313 for further details

Reduction gear drive

Jackson Brothers (London) have developed a small gear drive with input and output shafts in line, and with provision for mounting a dial or pointer. The reduction ratio between input and

output is $8: 1$ while that between input and pointer bush is $6: 1$. The pointer, or dial, will therefore travel 240° while the output shaft travels 180°. The length of this gear drive from back plate to face of pointer bush is only 12.5 mm and the front area is $44 \times 54 \mathrm{~mm}$. Jackson Brothers (London) Ltd, Kingsway, Waddon, Croydon, CR9 4DG.
WW320 for further details

Multi-pole high-current connector

The Fischer type 107A018 circular 6-pin connector available from Sealectro is continuously rated at 25 A per pin. The overall diameter is 36 mm and versions include free plug, free socket and chassis socket. They can be obtained waterproofed. The free plug and free sockets have a compression type cable clamp tailored to the cable in use while the chassis socket has solder tag connections. Insulation of the
pins to body is p.t.f.e. permitting use in relatively high temperature applications and leaving the insulant unaffected by soldering of connections. Sealectro Ltd, Walton Road, Farlington, Portsmouth PO6 ITB. WW307 for further details

Power supplies with isolated outputs

The Isoplys range of small, isolated-output power supply modules made by Elcor Inc., of Virginia, and available from Aveley Electric use zener diodes to obtain regulation. As inexpensive supplies they are designed to energize various devices that must be well isolated from direct local connection to ground, chassis, case or system common. The units are substantially

noiseless in floating circuit application. Novel construction of the transformer, and special mounting of the rectifiers, filter elements, and regulator, plus electrostatic shielding, greatly reduce the generation and transference of noise, while providing good isolation between the output circuitry and the combination of input and ground (core case and primary shield). Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex.
WW314 for further details

Stabilized power supplies

The RP Series, from EKB, is a range of high performance, low cost, modular power units with output voltages preset in three ranges, $0-7 \mathrm{~V}$ at $2.5 \mathrm{~A}, 8-18 \mathrm{~V}$ at 2 A , and $19-24 \mathrm{~V}$ at 1.5 A . Potentiometer adjustment is provided to give a $\pm 1 V$ swing about the nominal setting. Overload protection is

provided by a fast-acting re-entrant characteristic which automatically resets on removal of fault conditions. The trip current is adjustable from 25% to 110% of full load. Complete over-voltage protection can be supplied as an optional extra. Units are fused on both mains input and d.c. output lines. Four-terminal sensing is provided to enable regulation to be maintained when long cable runs are unavoidable. The design enables units to be stacked on 75 mm centres to form multiple outputs. Units are priced at $£ 19.00$ each throughout the complete range; overvoltage protection can be factory fitted for an additional $£ 4.50$ per unit. EKB Ltd, Bromham, Chippenham, Wilts.
WW308 for further details

Modular high-voltage power supply

Euro Electronic Instruments, U.K. representatives for Velonex, have announced a precision power supply designed for use with solid-state detectors, photomultiplier tubes and other devices requiring a stable high-voltage source with low noise and ripple content. The power supply-the Velonex Nimpac 105-has an output which is continuously adjustable from zero to $3,000 \mathrm{~V}$ d.c. at 0 to 10 mA with a nonbacklash 20 -turn control, the output voltage being indicated by four in-line digits accurate to $\pm(1 \%+3.0 \mathrm{~V})$. Ripple and noise are less than 10 mV peak-to-peak, including high-frequency components and harmonics, and output voltage is line regulated within 50 mV and load regulated within 10 mV . Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.1. WW301 for further details

Impedance meter

The $1 X 704 \mathrm{~A}$ impedance meter from ITT allows the measurement of any complex impedance in the 50 to 1000 MHz bandwidth. The measuring unit consists of a 50Ω coaxial line incorporated into a standard chassis. Detectors fixed along the length of this line measure the r.f. voltages at different points, and the results are displayed on three independent meters. Three printed discs used in conjunction with a modified Smith's chart form the computing unit. This device establishes the relationship between the three measured voltages and the impedance under test, and also with a 50Ω standard against which the instrument is calibrated. ITT Electronic Services, Edinburgh Way, Harlow. Essex.
WW 316 for further details

Heavy duty wafer switches

A comprehensive range of Centralab wafer switches in various sizes, ratings and configurations, is available from Ultra Electronics (Components). Included among this range is the JV9019, a fifteen-pole heavy duty power switch having from two

to five positions. Contacts are placed 20° apart. Contact springs and terminals are silver plated. Up to 20A can be handled at 12 V , and switching life is typically 25,000 cycles minimum. Ultra Electronics (Components) Ltd, Fassetts Road, Loudwater, Bucks.
WW309 for further details

Subminiature lampholder

A subminiature lampholder made of plated brass is available from WEL Components. The translucent 'windows' are available in blue, green, red, amber, and white. Bulbs are size T2 and type L1123 is recommended for i.c. indication having a rating of 5 V 60 mA with approximately 100,000 hours life. Price $£ 0.29$ each per 100 . WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW315 for further details

Tape duplicator

A master reproducer designed for rapid duplication of cassette. cartridge and reel-to-reel audio tape recordings is available from Ampex. Model RR-200 reproducer can drive up to ten Ampex model 3400 slave units and can duplicate up to 200 copies of a 30 -minute-per-side tape in one hour on a 10 -slave line. The RR-200 replaces the 3000 series of duplicators. It uses reel-to-reel master tapes and has speeds of $30 / 60$ and 60/120 inches-per-second, plug-in head assembties, and automatic tape tension control

and can accommodate master transport tape widths from $\frac{1}{4}$-inch to 1 -inch. Four-track and eight-track versions are available capable of duplicating pro grammes for eight-track and four-track stereo cartridges and two-track stereo or four-channel stereo tapes. The master reproducer has a frequency response equivalent to $50 \mathrm{~Hz}-15 \mathrm{kHz}$ at $7 \frac{1}{2}$ i.p.s., a flutter and wow of less than 0.15%, and independent switching is provided for both master and copy equalization. Price from $£ 5,500$. Ampex Great Britain Ltd, Acre Road, Reading, Berks.
WW317 for further details

Digital multimeter

The TF2670 from Marconi Instruments measures voltage, current and resistance to an accuracy better than 0.5%. In its basic form it has one current range of $200 \mu \mathrm{~A}$ but the addition of a plug-in current shunt unit

extends this to a total of five ranges, both a.c. and d.c., extending from $199.9 \mu \mathrm{~A}$ to 1999 mA . The instrument has push-button selection of range and function. Price of TF2670 is $£ 105$. A rechargeable battery box, which makes TF2670 independent of the mains supply for up to five hours, and the current shunt unit, are available as optional accessories. Marconi Instruments Ltd, St. Albans, Herts.
WW310 for further details

Positive temperature coefficient thermistors

The $\mathrm{TG}_{\frac{1}{8}}$, from Texas Instruments, is a silicon bar thermistor with a positive temperature coefficient of 0.7% per ${ }^{\circ} \mathrm{C}(7,000$ p.p.m.) and a temperature range of -75° to $+150^{\circ} \mathrm{C}$. The device is encapsulated in a hard-glass package. There is no hysteresis through its temperature range. It is available in resistance values of $10-2,700 \Omega$ on a standard decade scale. T.I. Supply, 165 Bath Road, Slough, Bucks.
WW323 for further details

Conductive plastic pots

A range of $\frac{7}{8}$ inch diameter body, conductive plastic potentiometers has been introduced by Electrautom. The New England C series has a standard linearity of down to 0.25% infinite resolution and longer life than wirewound models (manufacturers claim by a factor of more than ten). They are available with $\frac{1}{4}$ in or $\frac{1}{8}$ in shafts for bush or servo

mounting, and can be supplied with special function angles and taps. Prices for 100 -off are $£ 2.80$ each for bush-mounted 1% linearity models and $£ 4.25$ each for servomounted 1% linearity models. Electrautom Ltd, Etom House, Queens Road, Maidstone, Kent.
WW303 for further details

Capacitor-discharge ignition system

Mobelec are making a range of capacitordischarge electronic ignition units with specially wound h.t. coils. Three basic units are available in both positive and negative earth versions-model C20 for 4 and 6 cylinder engines up to 12,000 and 8,000 r.p.m. respectively, C40 for 8 and 12 cylinder engines, and model E40, which is a contactless unit, with distributor adaptors for most Lucas, Autolite, Delco and Bosch distributors. Another feature of the system is a low-cost matching unit which permits use of Smith's electronic tachometers. Complete unit prices start at about $£ 13$ for the C20 model-which suits the requirements of most British and European cars. Mobelec Ltd, Oxted, Surrey. WW302 for further details

Miniature tantalum capacitors

A range of miniature resin-dipped solid tantalum capacitors, code-named TAM, is available from ITT. The size is $5 \times$ 2.5 mm maximum. Capacitance ranges from $0.015 \mu \mathrm{~F}$ to $6.8 \mu \mathrm{~F}$ with tolerance of $\pm 20 \%$. Working voltage range is from

3 to 35 V d.c. Prices are from 8 p (1s 7d) to $11 \mathrm{p}(2 \mathrm{~s} 2 \mathrm{~d})$ for quantities of 100 up , depending on capacitance and voltage. ITT Components Group Europe. Capacitor Product Division, Brixham Road, Paignton, Devon.
WW326 for further details

Right-angle plug and socket

The Hirose type RA6-11P right-angle plug and socket, from Henry \& Thomas, is an eleven pin plug with a $2.5 \mathrm{~mm}(0.098 \mathrm{in})$ contact pitch. The mating socket is designated RA6-11S. The pair have a current rating of 5 A at $20^{\circ} \mathrm{C}$, a contact resistance of

$10 \mathrm{~m} \Omega$ max. and an insulation resistance of $1000 \mathrm{~m} \Omega$ at 500 V d.c. The body moulding of the connectors is of an epoxy resin. Pins are of gold-plated brass and the sockets are manufactured from gold-plated beryllium copper. Henry \& Thomas Ltd, Yeo Street, Bow Common, London E.3.
WW305 for further details

Range of electrolytic capacitors

The voltage range of new capacitors from Colstar is 3 to 100 V d.c., and the capacitance range 1 to $2500 \mu \mathrm{~F}$. The units are small, have low leakage current, and comply to I.E.C.664. The electrodes are of etched aluminium foil and anodes are coated with a very thin oxide film which is the dielectric. The whole capacitor is contained in a hermetically sealed aluminium case insulated by a p.v.c. sleeve. Colstar Ltd, 233-243 Wimbledon Park Road, London S.W.18.
WW325 for further details

Miniature locking toggle switches

In the range of miniature locking toggle switches, available from Guest International, the locking action is achieved through the toggle itself. Once locked, it can be released only if it is axially pulled and then moved to a new position. The length of the toggle is 20 mm and standard switches are manufactured in three lockable combinations with the contact arrangements being two-, three- or fourpole. The switch body is available in

either non-sealed or waterproofed versions. Finishes are in chrome or matt-black and contact platings are in gold or silver with a rating of 2 A at 250 V . Industrial Electronic Components Division, Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey.
WW327 for further details

High-current switching transistor

A high-current transistor, type BFX34, from Mullard is an n-p-n, silicon planar epitaxial device intended for use as a driver of print hammers and relays. Because of its low saturation voltage (1 V or less) the transistor dissipates little power when conducting. It is therefore particularly suitable for use in switching circuits where high efficiency is required. Characteristics include:

$$
\max . V_{C p}
$$

$\max . V_{C E O}$
120 V
max. $V_{C E O}$ 60 V
$\max . I_{C M}$
$\max . P_{\text {tor }}\left(T_{\text {case }} \leqslant 25^{\circ} \mathrm{C}\right)$
5W
$h_{F E}\left(I_{C}=2 \mathrm{~A}, V_{C E}=2 \mathrm{~V}\right) \mathrm{min} . \quad . \quad 40$
$\max . V_{C E^{s a t}}\left(I_{C}=5 \mathrm{~A}, I_{B}=0.5 \mathrm{~A}\right) \quad 1 \mathrm{~V}$ $\min . f_{T}$
$\left(I_{C}=0.5 \mathrm{~A}, V_{C E}=5 \mathrm{~V}, f=35 \mathrm{MHz}, T_{a m b}=\right.$ $\left.25^{\circ} \mathrm{C}\right) \quad 70 \mathrm{MHz}$
$t_{o f f}\left(I_{C}=5 \mathrm{~A}, I_{B(o n)}=-I_{B(o f)}=0.5 \mathrm{~A}\right) 1.2 \mu \mathrm{~s}$ encapsulation

TO-39
Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW306 for further details

Dual-in-line socket

The A23/2028 dual-in-line socket from Jermyn accepts plug-in packages having 14 leads on 0.1 in centres, with row spacing of 0.3 in . The glass-loaded nylon bedy is available with a choice of two contact materials: Z contact-beryllium copper, gold plated over silver; Y contact-

phosphor bronze, gold plated over nickel. Typical contact resistance is $5 \mathrm{~m} \Omega$ for type $\mathrm{Z}, 10 \mathrm{~m} \Omega$ for type Y. Price range from 15 p for 500 up. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW328 for further details

Power transistor range

The G.E. (U.S.A.) D44C and D45C series of complementary pairs of power transistors, available from Jermyn, are rated at 30 W each with $V_{\text {ces }}$ ratings from 40 to 70 V and available in a range of $3: 1$ maximum gain spreads. They have a low $V_{c e}$ sat of 0.5 V at 1 A , typical f_{t} around 50 MHz and good gain linearity with collector current. The transistors are colour moulded (for ease of identification) and have a heat dissipating plate on one side. The leads may be formed to TO-66 configuration. Jermyn Industries, Vestry Estate, Sevenoaks, Kent. WW321 for further details

Miniature v.h.f. radio

Van Dusen have introduced a miniature v.h.f. radio receiver powerful enough to pick up aircraft transmissions over a 25 mile radius. It was developed as an

emergency stand-by receiver intended primarily for pilots. Price $£ 4$. Van Dusen Aircraft Supplies Co., Oxford Airport, Kidlington, Oxford.
WW319 for further details

Digital indicator

K.G.M. have announced a digital indicator called the Minitron. It operates from 5 V and gives a parallax-free seven-bar presentation. It has a configuration compatible with integrated circuits to the extent of plugging into a standard socket. Life expectancy is 100,000 hours, and current consumption is 8 mA per bar. It is capable of time-shared operation. Up to six units can be obtained now at $£ 1$ each. K.G.M. Electronics Ltd, Clock Tower Road, Isleworth, Middx.
WW322 for further details

Coaxial reed relays

A range of coaxial reed relays is available from Sealectro. The units are designed for use from d.c. to 1 GHz and are fitted with gold plated 50Ω subminiature screw-on or snap-on connectors. They will operate from 6,12 or 24 V with an average switching time of 15 ms . Isolation between ports is $>30 \mathrm{~dB}$ with a maximum v.s.w.r. of 1.25 .

Typical insertion loss is 0.75 dB maximum over the frequency range. The units will handle up to 12 W continuous power. RF Components Division, Sealectro Ltd, Walton Road, Farlington, Portsmouth PO6 1TB.
WW304 for further details

Variable delay line unit

Matthey Printed Products are distributing the Silver Star variable delay-line unit UN $14 / 511$ as an addition to their existing range of 75Ω equalized delay line modules. Designed to a B.B.C. specification, the plugin unit offers rapid and accurate selection of any delay time from 10 to 165 ns . This facility is particularly useful in colour

television vision mixing equipment when successive special event programmes may require television engineers to re-set temporarily the fine trim of delays in signal trains going to the mixer. The unit measures $114 \times 635 \times 318 \mathrm{~mm}$. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent, ST6 3AT. WW330 for further details.

Low-noise tape on $10 \frac{1}{2}$-inch reels

Scotch Dynarange 203 long-play tape is now available in $3,600 \mathrm{ft}$ lengths spooled on $10 \frac{1}{2}$ in NAB metal reels. Designed for use on advanced specification highcapacity recorders, such as those manufactured by Akai and Revox, the new length of tape offers six hours playing time at $3 \frac{3}{4}$ i.p.s $(9.5 \mathrm{~cm} / \mathrm{s})$. Recommended retail price is $£ 6.25$ plus p.t. of $£ 0.07$. 3 M Company, 3M House, Wigmore Street, London W 1.
WW318 for further details

Sockets for

24-pin i.cs

24-pin solder tail i.c. sockets from Texas Instruments can be compactly mounted and the contact positions are numbered. Orientation of contacts is specifically designed to overcome the problem of i.c. lead frame burrs and rough edges, and the solder tail socket will accept any shape of lead frame. The terminations are 0.025 in wide by 0.0065 in thick with contact plating of 200μ in of bright tin plate per MIC-T-10727. Other platings are also obtainable. Socket bodies are of glass-filled nylon. The operating temperature range is from -65 to $+125^{\circ} \mathrm{C}$. TI Supply, 165 Bath Road, Slough, Bucks.
WW329 for further details

Personalities

Edgar M. Lee, B. Sc., F.I.E.E., who founded Belling and Lee Ltd in 1922, has retired from the chairmanship of the company. He has been gradually relinquishing the day-to-day administrative duties since suffering a coronary heart disease in 1955. In recognition of his contribution to the company, which is now part of the Philips organization, he has been appointed founder president. Mr. Lee, a graduate of King's College, London, was a founder member of what is now the Radio and Electronic Component Manufacturers' Federation.

Gavin Kermack, B.Sc., D.I.C., F.I.E.E., aged 46, is appointed to the board of Honeywell Ltd as director, industrial products group. Sales \& Service Divisions, in succession to Peter Prior who recently took up a senior post at the Brussels' headquarters of Honeywell's new European marketing organization. Mr. Kermack. who is a graduate of Glasgow University, was managing director, Serck Controls, and latterly group manager, marketing, for Serck Ltd. At one time he was with Ferranti Ltd where he was associated with D. T. N. Williamson (of amplifier fame) on machine tool control.
J. B. Hodgson, formerly director and general manager of Centralab Limited and its subsidiary Stability Capacitors Ltd, has been appointed managing director of both companies. He has been succeeded as general manager of Centralab by A. D. Little, who was works manager of the Antrim factory.

Anthony Renton, B.Sc., D.Phil., has been appointed group technical manager for Highland Electronics Group Ltd. The group recently announced the acquisition of Ardente Ltd and Ardente Acoustic Laboratories Ltd (hearing aid manufacturers) from EMI Ltd. Dr. Renton recently returned to this country after 16 years in America where for the latter three years he
was at the NASA Electronics Research Center, Cambridge, Massachusetts, conducting research on power switching components. When he went to America in 1954, he took up a Post Doctoral Fellowship at Penn State Univeristy and then spent four years at Bell Telephone Laboratories. In 1960 he joined RCA and from 1962 to 1968 lectured in electrical engineering first at the University of Pennsylvania and later at Northeastern University.

Peter Wall, M.Sc., has joined the Rank Organisation as technical manager for Rank Wharfedale Ltd. and H. J. Leak. Immediately prior to joining Rank he was with Redac Software Ltd, the Racal computer-aided design subsidiary. Mr. Wall, who has an honours degree in electrical engineering and an M.Sc. in mathematics, was formerly chief engineer of the Quartz Crystal Division of Standard Telephones and Cables.
G. S. Innes, O.B.E., B.Sc., M.I.E.E., A.Inst.P., who retired recently as deputy physicist at St. Bartholomew's Hospital, London, is now consultant on medical physics and engineering to the T.E.M. group of companies which includes T.E.M. Engineering Ltd, who manufacture the Monitron system for patient monitoring and industrial control and the SAMI range of "socially acceptable monitoring instruments". Mr. Innes was appointed an O.B.E. in the New Years' Honours for his services to the hospital and to medical engineering.

Roger N. Oatley, formerly a chief technical officer at the British Standards Institution, has gone to Frankfurt a. M., W. Germany, as secretary of the international committee established to introduce the Western Europe harmonized system of quality assessment for electronic components. This com-mittee-CENEL Electronic Components Committee (C.E.C.C.)-is part of the 14 -nation European

Glectrical standards co-ordinating committee (CENEL), which rationalizes electrical technical specifications and procedures in the E.F.T.A./E.E.C. economic groups (Finland is an associated country).

Stephen Forte, Ph.D., B.Sc., F.I.E.E., recently joined General Instrument Microelectronics Ltd as marketing director. Since 1955 he had been with Marconi where in 1959 he took charge of a research section investigating parametric amplifiers and microwave solidstate techniques. He then assumed responsibility for the company's microelectronics applications laboratory and on the formation of Marconi-Elliott Microelectronics Ltd was appointed m.o.s. product manager.
M. P. Mandl has joined Marconi-Elliott Microelectronics Ltd as a director and general manager. Mr. Mandl has an honours degree in physics from Imperial College, London, and was with English Electric Valve Company from 1958 to 1966 . He then joined Raytheon International being latterly the director of their international sales and services.

Cosmocord Ltd announce the following managerial reorganization at their Waltham Cross, Herts, factory. D. Archer becomes general manager (technical) and is responsible for all technical and engineering activities, including plant services, engineering services and inspection, development engineering, work study and production engineering; G. Edwards becomes general manager (sales) responsible for sales, both home and abroad; and R. Spence general manager (manufacturing) responsible for production.
A. M. Pilbrow, has joined the staff of the Scientific Instrument Manufacturers' Association (S.I.M.A.) as technical secretary. Following his National Service in R.E.M.E. he joined the G.E.C. Applied Electronics Laboratories as a design engineer and later held positions as a mechanical instrument engineer with S. Davall \& Sons and as the senior engineer of the design department of Ultra Electronics (Components) Ltd.
A. J. Wynroe, Ph.D., has joined K. J. Bentley and Partners, the Lancashire printed circuit specialists, as technical director. He will have overall responsibility for all technical aspects of Bentley's and its associated companies Portland Electronics Ltd, Bryan Amplifiers Ltd, and Franken Systems \& Supply Ltd. Dr. Wynroe was until recently doing research work in nuclear electronics at the

Daresbury Laboratories of the Science Research Council and has been lecturing in physics at Manchester University.

Following the recent appointment of L. D. Hadfield as managing director of Plessey, Australia, he is succeeded as general manager of the Automation and Transmission Divisions of Plessey's Electronics Group at Poole, Dorset, by J. E. Samson, F.Inst.P. Immediately prior to joining Plessey Mr.Samson was group managing director of Negretti and Zambra Ltd. He is president of the institute of Measurement and Control.

A number of appointments have been announced by Advance Electronics Ltd, of Hainault, Essex, during the past two months First, Gordon C. Pope, M.Eng., M.I.E.E., who joined the company in 1963, has succeeded Eric Wakeling, M.I.E.E., as managing director. Mr. Wakeling, who has been m.d. since 1962 is now executive deputy chairman. Peter Sidey, B.Sc., A.R.C.Sc., previously managing director of the company's Instruments Division has been appointed director of new business development. Rex E. Nelson, B.Sc.(Eng.), F.I.E.E., A.C.G.I., who joined the company in November last year, is appointed a director and will continue in his executive capacity as marketing director. He joined A.E.I. as a graduate apprentice in 1952 and was marketing director of Thorn Automation, Rugeley, immediately prior to joining Advance. The company has also recently appointed four product marketing managers: Don Beckman (instruments), Tony Skottowe (industrial), Alan Hutley (power supplies) and Mike Briggs (special projects).

Harold J. Cooke, manager of the drawing office handling Wireless World drawings since 1939. has retired. He joined the drawing office of the Wireless Press (then our publishers) in May 1921 and has therefore handled the drawings published in the journal for nearly 50 years. Much of the credit for the standard of draughtsmanship displayed in the diagrams published in W.W. must go to him.

OBITUARY

Harry Faulkner, C.M.G., B.Sc., F.I.E.E., deputy engineer-in-chief of the Post Office when he retired in 1953 after 40 years' service, died in January aged 78. A graduate of University College Nottingham, Mr. Faulkner was the first engineer-in-charge of the Rugby radio station (1926-29). For ten years following his retirement from the Post Office he was director of the Telecommunication Engineering and Manufacturing Association.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

We have received the following publications from RCA Lid, Lincoln Way, Windmill Rd, Sunbury-onThames, Middlesex.

HPA-100, 'High-power arrays', very high-power
encapsulated circuit modulesWW401
PTD-187B, 'Power transistor directory' . WW402
RFT-700G, 'R.F. power transistors' . . . WW403

The 1971 'Abridged valve data booklet' from the English Electric Valve Co. Lid, Chelmsford, Essex, lists over 600 devices in its 96 pagesWW404
'The semicon index' replaces the earlier 'International transistor data manual' although it is still compiled in conjunction with Avo Ltd. The index is well designed and lists data on an enormous number of transistors. Functional Publication Services Ltd, 29 Denmark St, Wokingham, Berks. RG11 2AY . price $£ 5.25$

If you have facilities for wire bonding the SG3801 quick-chip will be of interest. It contains a variety of active and passive components which may be connected in any way the user requires. The device is made by Silicon General and literature is available from Rastra Electronics Ltd, 275 King St, Hammersmith, London W.6.

WW405
The following literature is published by Siemens (U.K.) Ltd, Great West House, Great West Rd, Brentford. Middlesex.
'Semiconductor manual 1970/71', 896 pagesWW406 Selenium rectifiers for radio and television' WW407 'Microwave tubes' WW408
'Numeric and symbolic indicator tubes' . WW409

PASSIVE COMPONENTS

A reed relay catalogue is available from Electrothermal Engineering Ltd, 270 Neville Rd, London E. 7

We have received the following literature from Vero Electronics, Industrial Estate, Chandlers Ford, Hampshire SOS 3ZR.

| 'Card handles' | WW411 |
| :---: | :---: |
| -D.I.P. boards' | .. WW412 |
| 'Terminal pins' | WW413 |
| 'Systemized fittings) | (equipment cases andWW414 |

A catalogue called 'Cable trunking and cable trays' describes the products of William E. Cary, Sheet Metal Unit, Times Mill, Grimshaw Lane, Middleton, Manchester, M24 2AA

WW415
'Higla fidelity, electronic components, and equipment catalogue' is the title of the latest catalogue of G. W. Smith \& Co. (Radio) Ltd, 3 Lisle St, London W.C. 2 price $37 \frac{1}{2}$ p

A leaflet called 'Printed circuits general data' is available from Nevin Electric Ltd, Arkwright Rd, Poyle Trading Estate, Colnbrook, Bucks. . WW4 16

Illuminated rocker switches (type 900TP) are described in a leaflet available from the Microswitch Division, Honeywell Ltd, Windsor Rd, Slough, Bucks.

A wide range of switches, mostly for printed circuit mounting, manufactured by Chicago Switch Inc., is described in a leaflet from Competa International Products, Bye-pass Rd, Barking, Essex ...WW418

Henry's Radio Ltd, Edgware Rd, London W.2, have produced a ninth edition of their catalogue price $37 \frac{1}{2} p$

We have received the following literature from Siemens (U.K.) Ltd, Great West House, Great West Rd, Brentford, Middlesex.
Capacitor catalogueWW4 19 Electrolytic capacitor catalogue WW420
Radio interference suppression catalogue WW421 Ferrite components and transformers catalogue
'Low voltage control equipment' large catalogue listing relays, switches, plugs, sockets, etc. etc. WW423

EQUIPMENT

A brochure describing the MAC-16 small computer system for business use is available from Unidata Ltd, 52 Curzon St, Mayfair, London W.1... WW429

Details of a range of v.h.f. television transmitters are contained in a booklet from Pye TVT Lıd, Coldhams Lane, Cambridge WW430

A new machine for stripping enamel covered copper wire is described in a brochure from Gardners Transformers Ltd, Christchurch, Hampshire BH23 3PNWW431

Fenlow Electronics Ltd, Whittets Eyot, Jessamy Rd, Weybridge, Surrey, have produced the following literature

$$
\begin{aligned}
& \text { Digital panel meter type DP603 } 0 \text { to } \\
& 1.99 \mathrm{~V}) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{WW} 432 \\
& \text { Miniature power unit type PU40 }(\pm 15 \mathrm{~V}, 50 \mathrm{~mA}
\end{aligned}
$$ max.)

'Electrical safety testing equipment to B.S.' is the title of a leaflet from Zenith Electric Co. Ltd, Cranfield Rd, Wavendon, Bletchiey, Bucks.

WW434
Shure Electronics Ltd, 84 Blackfriars Rd, London S.E.1, have produced a leaflet, 'Vocal Master', which describes audio equipment for professional use WW435

We have received the following leaflets from Applied Data Systems Ltd, Station Rd, Belmont, Surrey:

100, data collection system WW436
200, circuit selection systemWW437
202, speech privacy equipmentWW438
300, data matching unit WW4 49
302, data matching unitWW440
4,000, store exerciser WW44 1
Engine test setW442
Telegraph converter units WW443
A six-page brochure is available which describes a three-terminal document reader (Dataterm-3). Data Recognition Ltd, Loverock Rd, Battle Farm Estate, Reading, Berks. RG3 1DX
.WW444
A low-cost, small, ten-digit desk calculator (Anita 1011) which uses l.s.i. circuits and will add, subtract, multiply and divide is described in a brochure from

Sumlock Comptometer Lid, 39 St. James's St, London S.W. 1 .

Data sheet 1037 from Honeywell Ltd, Microswitch Division, Windsor Rd, Slough, Bucks, deals with sequential timers WW448

GENERAL INFORMATION

We have received the following specifications in the BS 9000 series for parts of assessed quality. British Standards Institution, 2 Park St, London WIA 2BS BS9012:1970, Counter and indicator tubes . price 60 p
BS9016:1970, Indicator tubes ... 60 p
BS9021: 1970, Corona stabilizer tubes . price 80p
BS9025:1970, Travelling-wave amplifier tubes
BS9026:1970. Low-noise signal amplifier tubes
with integral permanent magnet focusing
BS9040. 1970, Gas-filled microwave swice tubes ... $£ 1.60$ BS9041:1970, Digital t.t.l. integrated circuits
BS9052:1970, G.P. professional c.r.ts price 80 p We have also received

BS4649:1970, Miniature circuit-breaker distribution boards for low- and medium-voltage a.c. circuits
price 50p

British Insulated Callender's Cables Ltd, P.O. Box No. 5, 21 Bloomsbury St, London W.C.1, have published a booklet called 'The erection of aerial telephone cables'

From the Boat Show
Ajax Electronics (1969) Ltd, Southend-on-Sea, Essex.
'Leader 100 ' 100 W radiotelephone($£ 435$) WW450 'Leader’ 75W radiotelephone ($£ 375$) ... WW451 'A25' 25 W radiotelephone (£265) WW452
Marine Electronics Ltd, Ickleford Rd, Hitchin, Herts.
'Tasman’ echo sounder (£54)WW453
'Combined Pacific', combined echo sounder,
knot meter and log (£122)
'Aqua-log', marine specdometer ($£ 76$) WW454
.WW456
Miles Nautical Instruments Ltd, River Bank Works, Old Shoreham Rd, Shoreham-by-Sea, Sussex BN4 5FL.
Speedometer and course-run $\left.\begin{array}{r}\text { indicat or } \\ (£ 66.5) \\ \text { Depth meter }(£ 82) \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\end{array}\right)$ WW457
Smiths Industries Ltd, Motor Accessory Division,
Oxgate Lane, London NW2 7JB.
Catalogue, 'Sport Boat Equipment'
WW459
Electronic Laboratories (Marine) Ltd, Cyldon Works,
Fleets Lane, Poole, Dorset. (Seafarer range)
'Seavista' 3kW small boat radar ($£ 795$) . WW460
'Seascan' 3 kW small boat radar ($£ 450$). WW461
'Seafix' radio direction finder (£28) WW462
'Surveyor' depth sounder ($£ 250$) WW463
'Seascribe' depth sounder ($£ 100$) WW464
'Seafarer Mk II' depth sounder ($£ 28$) . . . WW465
The Ferrograph Co. Ltd, The Hyde Edgware Rd, Colindale, London N.W.9.
R300 depth sounder (meter-£75) WW466
G500 depth sounder (chart-£120) WW467
G180 depth sounder (chart-£85) WW468 S.P. Radio A/S, 9000 Aalborg, Denmark. (Sailor range)
Catalogue, v.h.f. aerials WW469
Navigational equipmentWW470
Charge controllers type 76 WW471
Loops, d.f. (26FA and 26F) WW472
56D, 100W telephony transmitter WW473
96D, 2W radiotelephoneWW474
66T, marine receiverWW475
56T, marine receiverWW476
RT141/142, 20W v.h.f. radiotelephone . WW477
76D, 35W telephony transmitter WW478
86D, 70W telephony transmitter WW479
Marine radio equipment (short form) ... WW480
46T, marine receiverWW48
Derritron Electronics Ltd, Marine Division, 24
Upper Brook St, London W. 1 .
DF70, direction finder and marine receiver (£125)WW482
'Seaphone', 5 W radiotelephone ($£ 175$) . . WW483
'Mayday II' emergency radiotelephone (£125)
WW484

March Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

Ist. IEE-"Telecommunications-new practices, old concepts" by Prof. J. Greig at 17.30 at Savoy Pl., W.C. 2 .

2nd. IEE-Discussion on "Technical codes of practice in independent television" at 17.30 at Savoy Pl., W.C. 2 .

3rd. IERE - "Loran C-.some recent develop ments and field observations" by W. F. Blanchard and A. R. Woods at 18.00 at 9 Bedford Sq., W.C.I.

4th. RTS-"Recent developments in colour tubes" by W. Wright at 19.00 at I.T.A., 70 Brompton Road, S.W.3.

8th. IEE-Colloquium on 'Recent progress on semiconductor microwave sources" at 14.00 at Savoy PI., W.C. 2
8th. IEE-"Communication of objectives-reconciling the interests of the organization and the engineer' by Dr. D. Pym at 17.30 at Savoy Pl.. W.C. 2 .

9th. IERE—Clerk Maxwell lecture "Guided electromagnetic waves" by Prof. H. M. Barlow at 18.30 at University College, Gower Street, W.C.I.

10th. IEE-"Aspects of military defence communications, past and future" by J. R. Mills at
17.30 at Savoy Pl., W.C.2.

10th. IERE-"Modernization of short-wave transmitting stations" by C. MacKenzie at 18.00 at 9 Bedford Sq., W.C.1.

15th. IEE-Discussion on "Low cost digital voltmeters" at 14.30 at Savoy Pl., W.C.2.

15th. IEETE-Panel mecting on "Better equipment-by design" at 18.00 at Savoy Pl., W.C. 2 .

16th. IERE/IEE-Colloquium on "Equipment technology in computer systems" at 14.30 at 9 Bedford Sq., W.C.l.

17th. Inst.Nav.-Discussion on "The relationship between A.T.C. separation standards and navigational capability" at 17.00 at Royal Institution of Naval Architects, 10 Upper Belgrave Street, S.W.I.

17th. IEE-Discussion on "Data communica-tions-studies for a public service" at 17.30 at Savoy Pl., W.C. 2.

17th. IERE--"Data logging techniques" by J. T. Kennair at 18.00 at 9 Bedford Sq., W.C.I.

17th. BKSTS-"The development of high-quality audio amplifiers" by J. L. Linsley Hood at 19.30 at I.T.A.. 70 Brompton Road, S.W. 3

18th. RTS-"Low light television" by R. J. Core at 19.00 at I.T.A., 70 Brompton Road, S.W.3.
22nd. IEE - Colloquium on "Ferrite microstrips" at 10.30 at Savoy Pl.. W.C.2.

24th. IERE-"Engineer to entrepreneur" by T. M. B. Eiloart and J. Langham Thompson at 18.00 at 9 Bedford Sq., W.C.I.

25th. IEE-Discussion on "Techniques for separating biological signals from biological noise" at 14.30 at University College, Gower Street, W.C.1.

31 st. IERE-"R.F. standards" at 18.00 at 9 Bedford Sq., W.C.I.

ABERDEEN

17th. IERE-"Electronics and road safety" by G. J. Glassbrook at 19.30 at Robert Gordon's Institute of Technology, Physics Dept. Lecture Theatre, St. Andrews Street.

AYLESBURY

1lth. IEE-"Stereo transmission" by Dr. G. J. Phillips at 19.15 at the College of Technology

BATH

3rd. IEE/IERE-"Data communication" by M. B. Williams at 19.00 at the University.

BIRMINGHAM

8th. SERT-Colour TV forum at 19.30 at Aston University.

17 th. RTS-"Satellite communication in the 70 s " by D. I. Dalgleish at 19.00 at ATV Studio Centre, Bridge Street.

BOURNEMOUTH

4th. IEE-"Application of m.o.s.t. \& I.s.i. techniques" at 18.30 at the Technical College.

BRISTOL

10th. IERE - "Optical character recognition" by Dr. A. W. M. Coombs at 19.00 at School of Chemistry.

CARDIFF

5th. IER'E/IEE-"Electronic control of postal machinery" by H. W. N. Long at 18.00 at University of Wales Institute of Science and Technology

18th. SERT-"Problems of u.h.f. transmission and reception" by W. Wolfenden at 19.30 at Llandaff Technical College. Western Avenue.

24th. RTS-"U.H.F. transmitters" by D. East at 19.00 at Broadcasting House, Llandaff.

CHATHAM

25th. IERE-Discussion on "Engineer to manager'* at 19.00 at Medway College of Technology

CHELTENHAM

I6th. IERE/IEE-"Medical electronics" by Dr. D. J. Mahy and M. R. Bullen at 19.00 at Cheltenham Cobalt Unit adjoining General Hospital, Sandford Road.

COLCHESTER

23rd. IERE-"Direct view storage tube displays" by A. B. E. Ellis at 18.30 at University of Essex

EDINBURGH

2nd. IEE/I.Mech.E._-"Complex industrial measurements with simplified electronic presentation" by T. Black and W. Brown at 18.00 at Carlton Hotel.
3rd. Brit. Computer S.-"Character recognition and intelligent machines" by Dr. A. Coombs at 18.00 at the Mountbatten Building of the Heriot-Watl University.

10th. IERE/IEE-"Machine intelligence" by Prof. D. Michie at 19.00 at Napier College of Science and Technology, Colinton Road.

EXETER

16th. IEETE - "Concorde electrics and electron ics" by H. Hill at 19.30 at Imperial Hotel.

FAREHAM

3rd. IERE/IEE-"Electronics for mass produced cars" by 'C. F. Rayner at 19.00 at H.M.S. Collingwoot.

FARNBOKOUGH

25th. IERE-"Design for maintenance" by Lt. G. Benyon-Tinker at 19.00 at the Technical College.

GLASGOW

11th. IERE/IEE-""Machine intelligence" by Prof. D. Michie at 19.00 at the Institution of Engineers and Shipbuilders, Rankne House, 183 Bath Street.

INVERNESS

3rd. IEE-_"Instrumentation for oceanography" by B. S. McCartney at 19.30 at the Technical College.

LEEDS

25th. IERE---"Electronics in cars" by L. G. Cripps at 19.00 at the University, Department of Electrical and Electronic Engineering.

MANCHESTER

4th. SERT-"Transistor d.c./d.c. convertors" by I. McArthur at 19.30 at U.M.I.S.T., Sackville Street. 8th. IEETE-"Technician engineers and technicians-education, training, qualifications and status" by E. A. Bromfield at 19.30 at $113 / 115$ Portland Street.

18th. SERT--"Philips G8 colour receiver" by
R. Pratt at 19.00 at Renold Building, U.M.I.S.T.

18th. IERE/IEE-c"A fully integrated communications system" by P. L. Dalgliesh at 19.15 at Renold Building. U.M.I.S.T., Altrincham Street.

25th. SERT-"Evolution of radio communications and navigation in post war civil aircraft" by D. Allimundo at 20.00 at Renold Building, U.M.I.S.T.

MIDDLESBROUGH

3rd. IEE-"Instrumentation problems in Polar exploration" by Dr. S. Evans at 18.30 at Cleveland Science Institute.

NEWCASTLE-UPON-TYNE

3rd. Brit. Computer S.-.-"The origins of digital computing" by Prof. B. Randell at 19.00 at the University.

10th. IERE-"Engineer to manager-effecting the transition" by M. W. Lauerman at 18.00 at Ellison Building, The Polytechnic, Ellison Place.

OXFORD

10th. IEE-"Stereophonic broadcasting" by Dr. G. J. Phillips at 19.00 at the S.E.B., 1 Woodstock Road, Yarnton.

PLYMOUTH

3rd. RTS "The impact of automation in television transmission" by G. A. McKenzie and R. H. Vivien at 19.30 at the Studios of Westward Television.

READING

25th. IERE-"Integrated circuits in hi-fi systems" by B. A. Recd at 19.30 at the J. J. Thomson Laboratory, The University, Whiteknights Park.

ROMFORD

10th. IERE-"The Victoria line" by V. H. Smith at 18.30 at Central Library.

RUGBY

16th. IERE/IEE-"Digital voltmeters" by J. R. Pearce at ` 18.30 at College of Engineering Technology.

SWINDON

2nd. IERE-"Application of protection devices on electricity supply systems" by H. L. Rotstein at 18.15 at The College.

THURSO

4th. IEE--."Instrumentation for oceanography" by B. S. McCartney at 19.30 at the Technical College.

TREVENSON

9th. IERE-"Global communications-past, present and future" by R. J. Halsey at 19.00 at Cornwall Technical College.

LATE FEBRUARY MEETINGS

LONDON

24th. SERT--"Algorithms" by J. H. Robinson at 19.00 at the Manson Theatre, School of Hygiene \& Tropical Medicine, Keppel St., W.C.I.

25th. IERE-"Television communication by satellite and conventional systems" by D. J. Whyte at 19.30 at the Medway College of Technology.

26th. Brit. Acoustical Soc.-Meeting on "Scattering ohenomena in acoustics" at 14.30 at the Chelsea College of Science \& Technology.

Real \& Imaginary

by "Vector"

Sacred Cows and Other Fauna

The imminence of $W . W$'s sixtieth birthday sent me scuttling to the back issues to see when 'Vector' first came down like a wolf on the fold. To my surprise I found that it's seven years come September-a minianniversary which will no doubt be celebrated by a decor of black crepe in the Editor's Sanctum.* There is nothing quite so chastening as re-reading one's old copy, so if an aura of gloom envelopes this page, you'll know the reason why.

Evil eye dept.

My maiden effort was, I see, a send-up of Radiolympia, a time-honoured institution which, by coincidence, folded shortly after, in defiance of my prediction that the next show would be held in a telephone kiosk. The second excursion was a similar exercise on the Farnborough Air Show, which from that time onward has been relegated from an annual to a biennial beanfeast. Was there, I began to wonder, something in this evil eye business after all?

Truly, pride goeth before a fall. I wish I could similarly report the demise of other, and more futile, sacred cows which were subsequently dealt with, but these, alas, have proved to be more resilient. For instance, there is the 'Crow-Bar Effect', a common phenomenon in large companies. This is a condition of self-oscillation using paper-work coupling and the net effect is akin to that produced by a high-power alternator which has had a crow-bar laid across its terminals-namely, a furious display of energy but no useful work done. With the proliferation of control departments to control those departments which control departments, this effect is lamentably on the increase.

Looking on the brighter side, while the heresy is still strongly held that the formation of super-groups will ipso facto provide a super-efficient electronics industry, I note with satisfaction that the projected welding of British instrument companies into one mammoth whole, which seemed imminent a year ago, now seems to have folded its tents. And (miracle of miracles) one or two influential voices are now being

[^14]raised against that arch-sacred cow, Economic Growth. \dagger
But such trends are not moving fast enough for our health. If, therefore, I have a reader who is well versed in necromancy and would like to help the electronics industry, perhaps he would care to recommend a book, written at amateur level, on "The Do-it-yourself Evil Eye". I should be glad to pick up some tips.

Physician, heal thyself

According to the Sunday Telegraph magazine, a gentleman called Mr. H. Ross Perot, of Dallas, Texas, owns most of a computer company called Electronic Data Systems Corporation. It seems that on April 23rd last, the Company had rather a bad day and Mr. Perot personally dropped just under $£ 200,000,000$ (yes, I know that sounds an awful lot of strawberries but that's what it says).

Upon the face of it, it looks as if one of Mr. Perot's computers wasn't really trying on April 23rd. A distinct lack of data transfer, if you ask me.

Conservation year for television?

I see that in the January issue the Editor has been laying about him on the subject of the frequency allocation accorded to television broadcasting. No doubt his remarks will be hotly debated, but whatever the outcome, surely no-one will dispute that the present television system is woefully inefficient. I am not, in this context, casting aspersions on the programme content (which is a subjective matter anyway). When I say 'inefficient' I mean in terms of information conveyed in relation to bandwidth occupied. If there should be anyone who doubts this, let him try the simple experiment of switching on to a television play, first using vision only and, later, sound only. He will find that the sound channel enables you to follow the plot tolerably well, but with vision only you will be lost in a matter of seconds.

[^15]Necessity being the mother of invention, I hazard a guess that, supposing a goodly part of the television band was wrested for more deserving causes, we should see a great upsurge in technical innovation. Remember, we were quite content to ignore the inefficient and wasteful use of the sideband envelope in the black-and-white era. It wasn't until the exigencies of colour came along that ways and means of packing a colour sub-carrier inside it were developed. Similarly, if need arose, the wasteful areas of the present system, such as frame-to-frame redundancy, would be subjected to a flurry of intensive research and before we knew where we were we should be getting two programmes for the (bandwidth) price of one.

Sprechen sie Deutsche?

A correspondent who is looking forward to visiting the International Spring Fair at Leipzig, complains that his phrase-book contains little in the way of technical expressions, with the notable exception of 'The wireless operator who grasped the spark gap will be cremated tomorrow, which might fill a lull in the conversation. Anything to oblige, H.J.G. (Bootle). Here are a few items to help you on your way:-

Happy landings, H.J.G., You should have a trip packed with incident.

Quote of the year

"What advice would you give a sixteen-year-old school leaver, with a few O-levels in science and maths, who is interested in electronics as a career?" This question was asked by a staff correspondent of W.W's sister journal Electronics Weekly of a member of the Careers Research Advisory Centre (C.R.A.C.) at the "Opportunity-70" exhibition which was held at Olympia in December.
Answer: "Well, we usually send people like that over to Curry's stand in the corner."

These are the pofentiomefers youill pick

Supreme reliability in a smaner size (the first. " square potentiometers to be designed and made in the U.K.)that's the big thing about this Electrosil/M. ...C. mui turn, wirewound series. The T40P (top adjusting, side mounting), the T42P (side adjusting, side mounting)' and the T43p (side adjusting, flat mounting) provide the most precise adjustment possible and the lowest T.C. arailable. . . a "must" for wherever the finest control is necessary and extreme environmental conditions are prevalent. Recent substantial reductions give you an emtra small price too.

WW- 098 FOR FURTHERE DETAILS

Temperature coefficient 50 p.p.m. per degree C. Thickness 0.150 ins., fully sealed Industrial, defence and aircraft applications. Resistance range 10 ohms to 50 K . ohms. Rating 0.75 w $+85^{\circ} \mathrm{C}$. Temperature range -55° to $+150^{\circ} \mathrm{C}$.
Write now for full derails of Electrosil Trimming Potentiometers. ELECTROSIL L\|M|ITED, P.O. Box 37, Pallion, Sunderland Co. Durham. Telephone Sunderland 71481 . Telex 53273.

Electrosil

PARIS PORTE DE VERSAILLES MARCH 31ST, APRIL 1ST, 2ND, 3RD, 5TH, 6 TH 1971

PARIS world capital of the electronics industry

Research engineers, manufacturers and electronic equipment users from 70 countries will meet at the
NIIERNAIONAL axHilion CFELECLRONLC Compon=NIS organised by S.D.S.A.

Special two and three-day trips to the exhibition are being organised from various points in the U.K.
Information
FRENCH TRADE EXHIBITIONS
196, Sloane Street, London S.W. 1
Tel : $2353234 / 5$

NIIRNATONAL COLLOCUMM "SPAGE AND COMNUNRAHON"

Collection and transmission of information in space systems applications organised by F.N.I.E.
Information and registration at the Secretariat of the Colloquium Fédération Nationale des Industries Electroniques (F.N.I.E.) 16, rue de Presles, 75-Paris 15° Tél : 273.24.70
This is the sixteenth edition of a useful book listing European longand medium wave stations of the world and all the short wave stations of the world, including vHF sound broad. casting stations. The stations are presented both in order of frequency and geographically.

SIIICON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the 2 S 300 (TO-5) and 2 S 320 (SO-2) range and similar to the OC200205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2 S300 or SO-2 2 S320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- \&1 15s. (plus p. \& p. 3s.)
500 off-E2 10s. (plus p. \& p. 3s. 6d.)
1,000 off- 4 (plus p. \& p. 5s.)
10.000 off- $\& 35$ (plus p. \& p. Ils.)

Large quantities quoted for on request. EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts.
Tel: WARE 3442

Low cost regulated DC power supplies

Compact design providing optimum performance at low cost. Stabilised voltage and current outputs ranging from $0-10 \mathrm{~V}$ to $0-60 \mathrm{~V}$ and currents from $\frac{1}{2} \mathrm{~A}-5 \mathrm{~A}$. Units can be arranged for series or parallel operation.

WW-106 FOR FURTHER DETAILS

The show no hi-fi dealer can afford to miss

SKYWAY HOTEL

Bath Rd., Hayes, Middlesex. (Nr. London Airport)
MARCH 31 st, APRIL 1 st 11 a.m. 6 p.m. (trade only) APRIL 2nd, 3rd \& 4th (general public)

2nd Exhibition of high fidelity equipment sponsored by the Federation of British Audio.

Train for tomorrow's world in Radio and Television at The Pembridge College of Electronics

Your first day on Television: 21st April, 1971

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is avallable, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

| | System | The Units to use | together with | Cost of Units |
| :---: | :---: | :---: | :---: | :---: |
| A | Simpie battery record player | 2.30 | Crystal PU., 12 V battery volume control | $\begin{aligned} & 89 / 6 \\ & \left(£ 4.47 \frac{1}{2}\right) \end{aligned}$ |
| B | Mains powered record player | Z.30, PZ. 5 | Crystal or ceramic P.U. volume control etc. | $\begin{aligned} & £ 9.9 .0 \\ & \langle £ 9.45) \end{aligned}$ |
| C | $20+20$ W. R.M.S. stereo amplifier for most needs | $\begin{aligned} & 2 \times 2.30 \mathrm{~s} \text {, Stereo } 60 \text {, } \\ & \text { PZ. } 5 \end{aligned}$ | Crystal, ceramic or mag. PU., most dynamic speakers, F.M. tuner etc. | $\begin{aligned} & \mathbf{£ 2 3 . 1 8 . 0} \\ & (£ 23.90) \end{aligned}$ |
| D | $20+20$ W. R.M.S. stereo amplifier with high performance spkrs. | $\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$ | High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc. | $\begin{aligned} & \mathbf{£ 2 6 . 1 8 . 0} \\ & (£ 26.90) \end{aligned}$ |
| E | $40+40$ W. R.M.S. deluxe stereo amplifier | $2 \times Z .50$ s, Stereo 60 PZ.8, mains trsfrmr | As for D | $\begin{aligned} & £ 32.17 .6 \\ & \left(£ 32.87 \frac{1}{2}\right) \end{aligned}$ |
| F | Outdoor P.A. system | $\mathbf{Z . 5 0}$ | Mic., up to 4 P.A. speakers controls, etc. | $\begin{aligned} & £ 5.9 .6 \\ & \left(£ 5.47 \frac{1}{2}\right) \end{aligned}$ |
| G | Indoor P.A. | Z.50, PZ.8, mains transformer | Mic., guitar, speakers. etc.. controls | $\begin{aligned} & £ 17.8 .6 \\ & \left(£ 17.42 \frac{1}{2}\right) \end{aligned}$ |
| H | High pass and low pass filters | A.F.U. | C, D or E | $\begin{aligned} & £ 5.19 .6 \\ & \left(£ 5.97 \frac{1}{2}\right) \end{aligned}$ |
| J | Radio | Stereo F.M. Tuner | C, D or E | £25.0.0 |

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.

Sinclair Radionics Ltd., London Road, St. Ives, Huntingdonshire PE174HJ.
Tel: St. Ives (048 06) 4311

Sinclair Proiect 60

Z． 30 \＆Z． 50 power amplifiers

The Z 30 and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance． Total harmonic distortion is an incredibly tow 0.02% at full output and all lower outputs Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference，but they are the same size and may be used with other units in the Project 60 range equally well．

SPECIFICATIONS（ 2.50 units are inter－ changeable with Z． 30 s in all applications），
Power Outputs
Z． 3015 watts R．M．S．into 8 ohms using 35 voits 20 watts R．M．S．into 3 ohms using 30 volts．
Z．50 40 watts R．M．S．into 3 ohms using 40 volts 30 watts R．M．S into 8 ohms．using 50 volts．
Frequency response： 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion： 0.02% into 8 ohms
Signal to noise ratio：better than 70 dB un－ weighted．
Input sensitivity： 250 mV into 100 Kohms For speakers from 3 to 15 ohms impedance
Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ in．
Z． 30
Built．tested and guaranteed with circuits and instructions manual

89／6（£4．47 $\frac{1}{2}$ ）
2.50

Built．tested and guaranteed with circuits and instructionsmanual $109 / 6$（£5．47 $\frac{1}{2}$ ）

Power Supply Units

Designed specially for use with the Project 60 system of your choice
Illustration shows PZ． 5 to left and PZ． 8 （for use with $Z .50 \mathrm{~s}$ ）to the right．Use PZ． 5 for normal Z． 30 assemblies and PZ． 6 where a stablised supply is essential
PZ．5 30 volts unstabilised $£ 4.19 .6$（ $£ 4.97 \frac{1}{2}$ ）
PZ－6 35 volts stabllised $£ 7.19 .6$（ $£ 7.97 \frac{1}{2}$ ）
PZ－8 45 volis stabilised
（less mains transformer）$£ 5.19 .6$（ $£ 5.97 \frac{1}{2}$ ）
PZ－8 mains transformer $£ 5.19 .6$（ $£ 5.97 \frac{1}{2}$ ）

Guarantee

If within 3 months of purchasing Prolect 60 modules directly from us．you are dissatisfied with them，we will refund your money at once．Each module is guaranteed to work perfectly and should anv defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 vears of the purchase date．There will be a small charge for service thereafter．No charge for postage by surface mail．Air－mail charged at cost

Stereo 60 pre－amp／control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier． Again silicon epitaxial planar transistors are used throughout，achieving a really high signal－to－noise ratio and excellent tracking between channels．Input selection is by means of push buttons and accurate equalisation is provided for all the usualinputs．

SPECIFICATIONS

Input sensitivities：Radio－up to 3 mV ．Mag．p．u 3 mV ：correctio R．I．A．A．curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$ Ceramic p．u．－up to 3 mV ：Aux－up to 3 mV ．
Output： 250 mV
Signal－to－noise ratio：better than 70 dB
Channel matching：within 1 dB
Tone controls：TREBLE +15 to -15 dB at 10 KHz ：BASS +15 to -15 dB at 100 Hz
Front panel：brushed aluminium with black knobs and controls．
Size： $8 \frac{1}{4} \times 1 \frac{1}{3} \times 4$ ins
Built，tested
and guaranteed．
£9．19．6（£9．97⿺辶

Active Filter Unit

For use between Stereo 60 unit and two Z．30s or $Z .50$ s，and is easily mounted．It is unique in that the cut－off frequencies are continu－ ously variable，and as attenuation in the rejected band is rapid（ $12 \mathrm{~dB} / 0^{\circ}$ ctave），there is less loss of the wanted signal than has previously been possible．Amplitude and phase distortion are negligible．The A．F．U．is suitable for use with any other amplifier system． Two stages of filtering are incorporated－ rumble（high pass）and scratch（low pass）． Supply voltage -15 to 35 V ．Current -3 mA ． H．F．cut－off $(-3 \mathrm{~dB})$ variable from 28 k Hz to 5 kHz ．L．F cut－off（ -3 dB ）variable from 25 Hz to 100 Hz ．Distortion at 1 kHz （ 35 V ．supply） 0.02% at rated output．
Built，tested
and guaranteed
£5．19．6（£5．97⿺辶 $\frac{1}{2}$ ）

Stereo FM Tuner

first in the world to use the
phas？lock loop principle
Befor：production of this tuner，the phase lock loop rinciple was used for receiving signals from ：pace craft because of its vastly improved signal to noise ratio over other systems．Now． for the first time．the principle has been applied to an FM tuner with fantasticaliy good results．Other original features include varicap diode tuning．printed circuit coils，an I．C in the specially designed stereo decoder and squelch circuit for silent tuning between stations． Sensitivity is such that good reception be－ comes possible in difficult areas．Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial．In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know．Stereo broadcasts are received automatically as the tuning control is rotated a panel indicator lighting up as the stereo signal is tuned in．This tuner can also be used to advantage with any other high fidelity system．

SPECIFICATIONS：
Number of transistors： 16 plus 20 in I．C．
Tuning range： 87.5 to 108 MHz ．
Capture ratio： 1.5 dB
Sensitivity： $2 \mu \mathrm{~V}$ for 30 dB quieting： $7 \mu \mathrm{~V}$ for full limiting．
Squelch level： $20 \mu \mathrm{~V}$
A．F．C．range ：$\pm 200 \mathrm{KHz}$
Signal to noise ratio：$>65 \mathrm{~dB}$
Audio frequency response
$10 \mathrm{~Hz}-15 \mathrm{KHz}$ （ $\pm 1 \mathrm{~dB}$ ）
Total harmonic distortion： 0.15% for 30% modulation
Stereo decoder operating level ： $2 \mu \mathrm{~V}$
Pilot tone suppression： 30 dB
Crosstalk： 40 dB
I．F．frequency： 10.7 MHz
Output voltage： $2 \times 150 \mathrm{mV}$ R．M．S
Aerial Impedance： 75 Ohms
indicators：Mains on：Stereo on；tuning indicator
Operating voltage： $25-30 \mathrm{VDC}$
Size： $3.6 \times 1.6 \times 8.15$ inches： $91.5 \times 40 \times 207 \mathrm{~mm}$

Price： $\mathbf{f} \mathbf{2 5}$ built and tested．Post free

To：SINCLAIR RADIONICS LTD LONDON ROAD ST．IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address

Sinclair IC10／016／Micromatic

The world＇s most advanced high

fidelity amplifier

This is the world＇s first monolithic integrated circuit high fidelity power amplifier and pre－ amplifier．The circuit itself is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick，having 5 watts RMS output（10 watts peak）．It contains 13 transistors（including two power types）． 2 diodes． 1 zener diode and 18 resistors，and is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins． This exciting device is more rugged and has considerable performance advantages．in－ cluding complete freedom from thermal runaway and a very low level of distortion． The IC10 is primarily intended as a full performance high fidelity power and pre－ amplifier，for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply．It may also be used in other applications including car radios． electronic organs．servo amplifiers（it is dc coupled throughout）etc．

Circuit Description

The first three transistors are used in the pre－amp and the remaining 10 in the power amplifier．Class $A B$ output is used with closely controlled quiescent current which is independent of temperature．There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at all supply voltages，making battery operation eminently satisfactory
Each IC10 is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity．These include oscillators，etc． The pre－amp section can be used as an RF or IF，amplifier without any additional transistors．

Specifications：

Output： 10 watts peak 5 watts RMS continuous Frequency response： 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$ ． Frequency response： 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$ ．
Total harmonic distortion：Less than 1% at ful Total h
output．
output
Load impedance： 3 to 15 ohms
Power gain： 110 dB （100，000，000，000 times） total．
Supply voltage ： 8 to 18 volts．（A Sinclair power unit，$P Z 7$ is available for mains operation）．
Size： $1 \times 0.4 \times 0.2$ in．plus heat sink and tags．
Sensitivity 5 mV ．
Input impedance：Adjustable externally up to 2.5 Mohms．

Price（with manual）：59／6（£2．97⿺⿸⿻一丿工⺝刂）post free．

Q16

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet．In reviewing this exclusive Sinclair design，technical journals have justly compared the Q16 with much more expensive loudspeakers．Its shape enables the 016 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures．A solid teak surround with a special all－over cellular foam front is used as much for appearance as its ability to pass all audio frequencies

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover．

Specifications

Construction：Special sealed seamless sound or pressure chamber with internal baffle Loading：up to 14 watts TMS
Input impedance： 8 ohms．
Frequency response：From 60 to 16.000 Hz Frequency response：From confirmed by independently plotted B and K curve confirmed by independently plotted B and K curve Driver unit：Special high compliance unit having
massive ceramic magnet of 11.000 gauss．aluminium massive ceramic magnet of 11.000 gauss．aluminum
speech coil and a special cone suspension for speech coil and a special
excellent transient response．
Size and styling： $9 \frac{1}{2}$ in square on face $\times 4 \frac{1}{3}$ in deep with neat pedestal base．Black all－over cellular foam front with natural solid teak surround．
Price £8．19．6．（£8．971 $\frac{1}{2}$ ）

To：SINCLAIR RADIONICS LTD LONDON ROAD ST．IVES HUNTINGDONSHIRE PE17 4HJ Please send

Micromatic

Britain＇ssmallest radio

Considerably smaller than an ordinary box of matches．this is a multi－stage AM receiver brilliantly designed to provide remarkable standards of selectivity．power and quality for its size．Powerful AGC counteracts fading from distant stations：bandspread at higher frequencies makes reception of Radio 1 easy． The plug－in magnetic earpiece provided matches the Micromatic＇s output to give wonderful standards of reproduction．Every－ thing including the special ferrite rod aerial and batteries is contained within the minute and attractively designed case．Whether you build a Micromatic kit or buy this amazing receiver ready built and tested you will find it as easy to take with you as your wrist watch．and dependable under the severest listening conditions．

Specifications

Size： $36 \times 33 \times 13 \mathrm{~mm}\left(14 / 5 \times 13 / 10 \times \frac{1}{2} \mathrm{in}\right.$ ．）
Weight：including batteries， 28.4 gm （ 1 oz ）
Case：Black plastic with anodised alumınium front panel and spun aluminium dial．
Tuning：medium wave band with bandspread at higher frequencies．（ 550 to $1,600 \mathrm{~Hz}$ ）．
Earpiece：Magnetic type．
On／off switching：By inserting and withdrawing earpiece plug．
Kit in pack with earpiece，case，instructions and solder 49／6（ $£ 2.47 \frac{1}{2}$ ）．
Ready built，tested and guaranteed．with earpiece

Two Mallory Mercury batterles type RM675 required．From radio shops，chemists，etc．

Sinclair Radionics Ltd．．，London Road． St．Ives Huntingdonshire PE1 74 HJ ． Tel：St Ives（048 06） 4311

LARGE RANGE OF LOW COST COMPUTERS \& PERIPHERAL EQUIPMENT

FROM A SINGLE SOURCE

IBM PUNCHED CARD EQUIPMENT AT LOWEST UK PRICES AND SHORT DELIVERY
 IBM
 $\begin{array}{llll}024 & 026 & 047 & 056\end{array}$
 $\begin{array}{lllll}063 & 077 & 082 & 083 & 084\end{array}$
 $\begin{array}{lllll}085 & 087 & 088 & 519 & 548\end{array}$
 557 etc.

FROM STOCK, IMMEDIATE DELIVERY PDP8S ASR33 IBM1401 C6 Choice of configurations. NCR 400-208 Choice of two.
ELLIOT 803B Choice of two. LITTON 1238 One available.
FERRANTI ARGUS 400B Four available.

PLEASE WRITE FOR DETAILS OF SPECIFIC EQUIPMENT, DATA PREP. -OR COMPLETE SYSTEMS

ICT HOLLERITH Type 29.80 column Punch. A well-proven electro-mechanical card punch, with duplicating, spacing. and skipping facilities. Two types of keyboard are available for this model: Alpha/Numeric and Alphabetic Numeric. FEATURES: Motor cut-out switch for clearing card jams. Stop Lever for
 stopping card at the 80th column
ICT MODEL 129 VERIFIERS
The type 129 programme board verifier is an electronic operated machine which automatically verifies numeric, alphabetic and multiple punchings in standard 80 column cards with rectangular holes. Availàble from stock.

REBUILT-DELIVERY FROM STOCK
COMPUTER QUALITY $\frac{1}{2}$ in. MAGNETIC TAPE CERTIFIED 550 B.P.1. 800 B.P.1. ON 2,400-ft. REELS. GUARANTEED REPLACEMENT IF FAULTED
${ }^{\frac{3}{3}} \mathrm{in}$. Highest grade $2,400 \mathrm{ft}$.
$\frac{1}{2}$ in, $10^{\frac{1}{2}} \mathrm{in}$. dia. spool and cassette $\frac{1}{2}$ in. $8 \frac{1}{2} \frac{i}{2}$ in. dia, spool and cassette. 1 in. metal $10 \frac{1}{2}$ in. dia. spool and cassette $\frac{1}{2} \mathrm{in}$. N.A.B. centres $10 \frac{1}{2}$ in. spool only.

REFURBISHED HAND PUNCHES VERIFIERS 80 COLUMN delivery from stock - - 3 months warranty

大 Please write for brochure of our Company's activities
COMPUTER SALES AND SERVICES (EQUIPMENT) LTD.
49-53 Pancras Rd., London, N.W. 1 Tel: 01-278 5571 Telex: 267307

CAPACITOR DISCHARGE IGNITION SYSTEM

The popular Wireless World Capacitor-Discharge Ignition system is now available in two versions. The original unit, comprising a printedcircuit board with stand-off heat-sink and separate transformer. or the mechanically re-designed unit with printed-circuits and a transformer contained within a die-cast box; the transistors and thyristor being mounted on the outside of the case and supplied with snap-on plastic covers. This version also includes a plug and socket for ease of connection, together with a conversion plug providing instant change-over to conventional ignition

Both versions embody printed-circuit boards designed for positive and negative earth ignition systems thus enabling simple conversion to opposite polarity if the vehicle is subsequently changed. A complete complement of components is supplied with each kit together with ready-drilled and roller-tinned printed-circuit board. fully machined heat-sink (or die-cast box) and a custom-wound transformer
Suitable for 12 V . systems only. All components available separately. Wiring details are supplied for both polarity systems. Please state polarity required so that correct semiconductors can be supplied. Complete assembly and wiring manual for boxed version 5/-, refundable on purchase of kit.

PRICE 'OPEN VERSION' 99.25 plus 50p. Carriage. 'ENCLOSED VERSION' $£ 11.25$ plus 50p. Carriage. TRADE ENQUIRIES INVITED. MAIL ORDER ONLY DABAR ELECTRONIC PRODUCTS 98a LICHFIELD STREET, WALSALL, STAFFS. WS1 1UZ Tel: WALSALL 34365

WW-107 FOR FURTHER DETAILS

Bmail (2n. dianeler ap. ong, \$in. diameter); integral gear-
flange and spindle ($t i n$. box gives 1 rev. per 24 hours. £1

IGNITION (E.H.T.) TRANSFORMER

MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplitiers. Adjug
able output $6 \mathrm{v} ., 9 \mathrm{v} ., 12$ volts for up to 500 mA (clase B
 maine transformer rectitier, suoothing and load resietol,
condensers and instructions. Real saip at only 83p, plus 18 p pistage

3 DIGIT COUNTER

For Tape hecorler or other application, re-
set tathle liy depressing button. Price 28p.

ISOLATION SWITCH

 20 Amp D.P. 250 Volts. Ileal to controlWater Heater or any other appliance. Veon indicator shows when appliance.

Almost \quad LIGHT CELL Amost zero resistiant in sunlight light, epoxy resin sealed. Size approx. Sin. dia. hy tir. thick
Rated at $5(k) M W$. wire ended. 43 p. Suit most circuits

5A 3-PIN SWITCHED
SOCKETS An excellent opportunity to needed or to stock dis for future jous have This
month we offer bakelite flush mounting made (Hicrail)

MOTOR WITH GEARBOX Very powerful 7 r.p.rn., operates from
standard A.C. mains. \&1 $\mathbf{5 0}$, plus 18 p P. \& l^{\prime}.

 THERMOSTAT

Continuously zariable $30^{\circ}-94^{\circ} \mathrm{C}$ Has senoor burb
connected by 33 in of flexible tubing. On operation 1 a 15 amp 250 volt switch is opened and in additio plunger moves through approx in This conid be used to open valve on
ventilator etc. $£ 150$ plus 23 p p. ins

DISTRIB UTION PANELS
Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$
bockets in metal box to take standard 13 amp plugs and on/off switch with neon warning light. Supplied complete with 7 feet of heavy
cable. Wirent up ready to work, $£ 2$ less plug: $£ 2.25$ with titted 13 amp plug: $£ 2.40 \mathrm{w}$ cable. Wired up ready to work
fitted 15 amp plug. phus $2: 3 \mathrm{p}$ I'

| | | Standard size 1 wafer-silver-plated 5 -amp contact, standard t^{*} spindle 2^{*} long-with locking washer and nut | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No.of P_{01} | 2 way | 3 wa | wa | 5 wa | 6 way | 8 way | 9 | 10 way | 12 way |
| 1 pole | 33p | 33p | 33p | 33 p | 33p | 33p | 33p | 33p | 33 p |
| 2 poles | 33p | 33 p | 33 p | 33 p | 33 p | 33p | 33p | 55. | 55p |
| 3 poles | 33 p | 33 p | 33p | 33 p | 55 p | 55 p | 550 | 750 | |
| 4 mules | ${ }^{33 \mathrm{p}}$ p | 33 p | ${ }^{33} \mathrm{p}$ | 55 D | 55 p | 55p | | | £1.15 |
| ${ }^{5}$ poles | ${ }_{33 \mathrm{p}}^{33 \mathrm{p}}$ | 33p | 55p | 55p | 75p | 75p | 75 p | £1.35 | £1 35 |
| 7 polea | 55p | 55 | 55 | 750 | 95 p | 95 p | 95p | 8155 | £155 |
| 8 pules | 55p | 55 p | 55 D | 750 | $95 p$ | 95 P | 95 D | ± 175 | 21.85 |
| 9 poles | 55 p | 55P | 75 p | 75 p | £1.15 | | | ¢1.15 | ${ }_{\text {¢ }} 2.15$ |
| 10 poles | 55 p | 55p | 75 p | 95 | ${ }_{¢ 1} 115$ | ${ }_{\text {E1 }}{ }_{\text {E1 }} 1.35$ | ${ }_{\text {¢1 }}{ }^{\text {¢ } 1.35}$ | | ¢2 35 |
| 11 moles 12 poles | 55p 550 | 75p $75 p$ | $75 p$ $75 p$ | 95p | | ${ }_{\text {¢ }}{ }_{\text {21 }} 1.35$ | ${ }_{\text {¢1 }} 135$ | £2 55 | 22.55 |

HONEYWELL PROGRAMMER

This is a drum type timing device, the drum being calibrated in eq
purmoses with trips which are infinitely adjustable for position.
purposes with trips which are intinitely adjustable for position.
They are also arranged to altow 2operations per suitch per rotation.
Thereare 15 changeover micro switcheseach of 10 armp typeoperated by the tips thys 15 circuifs nay be changed per revofution. Drive
motor is mains operated $\overline{\bar{j}}$ revs. per min. Some of the many uses of notor is teains operated \bar{y} revs. per mini. Some of the many uses on
this timer are Machinery control. Boiler firing. Dispenging and thas Limer are Machinery cont rol. Boner firing. Dispenging ant.
 Price from Makers protably over \&ill each. \&pecial snip price $£ 5.75$

__ THIS MONTH'S SNIP

ELECTRIC TIME SWITCH

 Made by Bmiths these are A.C. rains operated. NOTCLOCKWORK. Ideal for mounting on rack or shelf or can be built intur box with 13 A gucket. 2 completely adjustable time beriods per 24 hours, 5 anm changeover
contacts will switch circuit on or of during these periods. £250, post athi ins. 23p. Additional time contacts ${ }_{50 \mathrm{p}}^{52.50}$ yair.

20 AMP ELECTRIEAL PROGRAMMER

Learn in your sleep! Have Radio playing aml kettle boiling as
 amons smiths lustrument Company. This is essentially a
 $220 / 240$ wit mains operated Clock and a 20 ampo Suitch, the

 postage and insurance.

ERGOTROL UNITS
ERGOTROL UNITS

I HOUR MINUTE TIMER

Made by famous smiths compans, these bave a large clear
dial, size 4 in. \times itin, which can he set in minutes up to
1 hour. After preset period the bell rings. Jeal for processing, a memory jogger or, by add ing simple lever, would operate miero-swileh. £115.

212kW FAN HEATER
Three position switching to suit changer in the weather. Switch up
for full heater ($2 \mathrm{k} \mathrm{k} W$), switch down for half heat (1 k kW), switch centra)
blows coh for summer coolingblows cold for summer cooling-
adjustable thermostat acts as autoconiral and safety cut-out. Complete
kit. $\mathbf{E 3} 75$. Fost and ins. 38p.

UVOER-FLOOR HEATING CABLE

zuy. Leligths, suitable for dissipating 1,000 watts at 80
volts. Join three in series to nake a 240 -volt mains-operated volts. Join three in series to make a 240 -volt mains-operated
element of 3 kW . Price $£ 1$ per length, $2 ; 5$ post on any quantity

3-CORE LEADS
Heavy duty $23 / 36$, aterage length 5 ft . 50 p per dozen
CONSTRUCTORS' PARCEL

1. Plessey miniature 2.gathg tuning condenser with built-in trimmers and wave gang switch. 2. Ferrite slab aerial with
coils to suit the above tuning condenser. 3. Circuit diagram giving all component values for 6 -transistor circuit covering
full medium wave and the long wave band around Radio 2 . The three items for only 40 p which is half of the price of the tuning conderser alone
MAINS RELAY $\quad 20 / 250 \mathrm{v}$. with 310 amp contucts. which being very shlall only $1 \neq 1 \times 3 \mathrm{in}$. apprix., will
Hi into contined spaces. 83 p each. $£ 6.75$ per dozen. HEARING AID AMPLIFIERS $\quad 3$ transistor ted condensors and resistors on a little printed circuit mube the whole thing only urout half as big as an Oxo cube. If you are making miniature equipment then these

LARGE PANEL MOUNTING

MOVING COIL METERS
Size 5in. \times in. Centre zero $2100-0-201$ micro amp, made by $\underset{\substack{\text { Sanggand } \\ \text { e3. Dit }}}{ }$
A.C. AMMETER
$0-5$ amps, fush mounting, moving iron. Ex
glaranteed verfect $\& 1.50$.
CIRCUIT BOARDS
Heavy copper on $3 / 32$ paxolin she copper to be cut away with hacksaw blade. 5in. $\times 5 \mathrm{in}$ 8p each. 15in. Sin. 23p each.

SUB-MINIATURE MOVING COIL MICROPHONE
Acts also as earylione size only $\geq \mathrm{in}$. \times lin. \times hin. Regular
 MAINS ÓPERATED
CONTACTOR
220/24N:. 50 cycle solenoid
with laminated core so very silent in oprration. Closes \& Extremely well made by a
(ierman Electrical Conpany.

Overall size $2 \mathrm{l} \times 2 \times 2 \mathrm{in}$.
£1 each.
SIMMERSTAT CONTROL SWITCH
Sombined on off switcb and "heat on", regulator intemded
for atomatic temperature regulation of electric hot plates up to 3 kW . Othial rating $15 \mathrm{~A} 2001-250 \mathrm{v}$ A.C. size $2 \times 1 \frac{1}{2} \times$

AUTO-ELECTRIC CAR AERIAL with dashboard controi switch - fully extendpositive or negative earth. Supplied complete
with ftting instructions and ready wired dash£o plus 2o pon ami los

TOGGLE SWITCH 3 amp 250 v with flxing
ring. $7 \frac{1}{3} \mathrm{p}$ each 75 p doz.

MICRO SWITCH

Ans. 5 amp. changeover contacts, 9 p each, 90 p MINIATURE EAR PIECE
As usen with imporked pocket radios. 8p each 75p doz. dipopgoproygo 5/20 Polythene ineulated 12 -way strip.
13p each $£ 120$ doz. 13 AMP FUSED SWITCH
 Made by G.E.C. For connecting water
heater etc., into 13 amp ring main. Fluah tyje 18p each $£ 1.50$ doz. Metal boxes for 13 AMP SPUR UNIT 75 p doz. 13 AMP SPUR UNIT
By a.E.C. tor connecting clock, etc., to ring main. Pull-
out fuse. Flush mounting. Crean. 13 p each, $\mathrm{E} 1 \cdot 20$ doz.
 MAINS MOTOR
Precision made-as used in record decks and tape recorders-ideal also
for extractor fans, blower, beater, etc. New and perfect. Snip at, 50 p . Postage
15 p for first one then 5 p for each 15p for first one then 5 p for each
one ordered.

MINIATURE WAFER

 SWITCHES 2 pole. 2 way- 4 pole, 2 way- 3 pole, 3 way-4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way2 pole. 6 way 1 pole, 12 way. All at 18 p MINIATURE SLIDE SWITCH 3 pole change-over. 15 p each 2150 doz.
Heavy duty 250 watt model, not 4 Heller, but
by \& famous talial maker. 24 plus 33 .
postage and insurance. portage and insurance. A New Service to Readers. A bulletin bringiag news of new
Aines, special ships and uns few to advertise " lines will be
 the subscription is 60 p per year. Subscribers will also

Where postage is not stated then
orders over $£ 5$ are post free. Below $£ S$ add 14p. S.A.E. with enquiries please

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

TRANSISTORS

BRAND NEW GUARANTEED

NEW TYPES－NEW PRICES
Send today for your FREE copy of our new 1971 list

2 N 404
2 N 696 2 N 696
2 N 697
2 2×706
2 N 70 B 2 N 930
2 N 113

-2 N 113 | 2 N 11 |
| :---: |
| N 13 | $2 N 13$

2 N 13
2 2 N 1305
2 N 1306
N 1307
N 1308 2N13
2 N 16
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{r}2 \mathrm{~N} 3054 \\ 2 \mathrm{~N} 3055 \\ \hline\end{array}$
－ N 37 2 N 37
2 N 37
2 N 37

2N3820
2N N 4058
．N
2N 4058
$-2 N 4061$
会人娍

號
40361
4066
AAY3
AAY
AAZ1
AAZ1
$A A Z$
$A C 10$
$A C 1:$
$A C 12$
事示
开を ACY1
ACY1
ACY A（
A1）
A1）

行

Abstract

－RNの

SEMI－CONDUCTORS

LOOK AT THESE PRICES FOR QUANTITIES FROM STOCK Pan

7401 Quad z－Input Nand Gate 7 Ind Cate Open Collector
tuan－inmit fositive vor（rate
7405 Her Inverter with Onen Collector
7410 Triple 3－Input Nand Gate
7430
Sinzle 8－Input Numd Gate
7440 Dual 4－Input Buffer Gate
7441 BCD to Decinal becoter and NIX Driver
7442 BCD）to Decimal Decoder and MX Driver
7450 Sual 2 Input and／or not（iate－Jix mandable
7453 Ringle－－Input and／or not（iate－Expandable
7460
7460 Dual d－Input－Nxpandable
7473 Dual Master slave JK Flip Fiop
7474 Daal D Flip Flow
7475 （had Bistable Latch
7483 Four Bit Binary Connter
7492 Divide by $1: .4$ Bit Binary Comenter
7493 Divide by 18 \＆Bit Binary
7494 Dial Fintry 4 Bit shift Rerister 7495 ＋Bit Ub Down Shift Leyister －
Data arailable for above seriew in boohlt form，prive 10
Dual Inline 14 Pin sockets 30 p each．If Y＇in $\mathbf{3 5 p}$ each

GENERAL
ELECTRIC
TRIACS

3 AMP PLASTIC WIRE ENDED RECTIFIERS
Type P．I．V．1－49 $50+100+500+1000+$

Silic
P．I．
50
100
200
400
50
100
200
4100
100
300
50
10
00
00
50
00
00
10
100
00

WE OFFER FROM STOCK AN EXCLUSIVE RANGE OF BRAND NEW CERAMIC FULL SPECIFICATION LOW
COST TTL 7400 RANGE OF INTEGRATED CIRCUITS

HENBY＇S \＆ow MTEERTED MReUITS

AFI

hl-fl - componenis - test - pa. - discotheoue e electronic organs - mall order HENELEC SELF-POWERED PRE-AMPLIFIERS
 SLIM MODERN DESIGNS USING THE LATEST SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION, $\pm 20 \mathrm{~dB}$. Bass and treble boost and cut. All inputs provided plus TAPE RESO Amplifiers GOLD AND SIIVER FINISH, Mains operated. Supplied with all plugs etc. AJDUSTABLE OUTPUT UP TO I VOLT. Simple mounting. FET9/4. Mono with built-in mic mixer. Accepts any ceramic or crystal cartridge. Plus tuner, tape, etc. \quad Price $\mathbf{6 1 2 . 5 0}$ p.p. 20p.
 * FETi54 STEREO.
 - I.C. STEREO All facilities plus headphone socket without amplifiers. Uses IC's, FET's etc.
 SIMPLICITY TO MOUNT-EASYTOUSE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

 LOOK AT THE SPECIFICATIONS!
 25 WATT \& 50 WATT RMS SILICON AMPLIFIERS
 Rise time 2μ sec. - Ac full power- $\mathrm{ldB} \mathrm{l} / \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$. Short circuit proof - Response- $1 \mathrm{~dB} \mid \mathrm{Ic} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$. Slus limiting cct.
 PA 2510 transistor all silicon differential input 400 mV sensitivity. size $5^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$. PA 5012 tran
 MU 442. Power supply for one or two PA 25 or one PA 50. PA 25 E7.50.p.p. 15 p. PA 50 E9.50. p.p. 15p. MU $442 \in 6.00$ p.p. 25p. All units. No soldering-just edge connectors and plugs.

 \qquad

TEST EQUIPMENT

For Educational, Professional and Home Constructors

AFIO5 50 k volt multi-
meter (illus.).
Price 68.50 p.p. 20p
Price 88.50 p.p.
Leather case $£ 1.42$
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{vol}$
Price 63.87 p.p. 20 p
$50030 \mathrm{k} / \mathrm{volt}$ multi-meter Price 68.85 p.p. 20p Leather case fl 50

THL $332 \mathrm{k} / \mathrm{vol}$ Price $64 \cdot 12$ p.p.
Leather case 61.15 TE65 Valve voltmeter (illus.) El7.50 p.p. 40p AF/RF millivoltmeter. Price $\mathbf{6 3 2} \mathbf{0 0}$ p.p. 40p TE22 Audio Generator Price $\mathbf{f l 7 . 0 0}$ p.p. 35 p. TE20D RF generator
Price 1500 (illus.). Price f 1500 TE22D Matching audio generator.
Price 617.00 p.p. 35p TEI5 Grid dip meter Price 612.50 p.p. 20 p TO3 Scope (illus.) Price 63750 p.p. 50 p CI-5 Scope. 3" tube $10 \mathrm{Mc} / \mathrm{s} \mathrm{PB}$.

Prict 16 Double beam
Cope. Double beam p.p. 50p * Leaflet No. 19 on RP40 (illus.) able $5-20 \mathrm{v}$. amps. Price $£ 25.50$
p.p. 47 p p.p. $47 p$ $0-2$ amps. E21.50 p.p. 47p RPI24 Variable
$0-24 \mathrm{v}$ I amp. Price 613 50 p.p. 37p

PANEL METERS
Complete range in stock. 38, 65 and 85 types plus large range Edge types
also $240^{\circ}-250^{\circ}$ types. Latest Cataalso $240^{\circ}-250^{\circ}$ types. Latest Catalogue is a must for complete

plus a complete range of individual units in stock Demonstrations all day visit CREDIT/HP TERMS (Credit terms from 630 purchase callers only). FREE -Stock Lists Nos. 16/17 on request. BEST VALUE IN U.K.

HENRY'S
LATEST
catalogue
350 pages.

* COMPONENTS TEST GEAR EQUIPMENT, MOCULES SPECIAL OFFERS, Ete, Ete. Everything for the constructor. Complete with with purchase. Price 47p Post Free. WHY NOT SEND AWAY TODAY
FREE 8-page Transistor, IC. Diode lists FREE 16-page Organs to Build brochure FREE Decks and Hi Fi Stock Lists Nos. FREE PA. Disco and Lighting List No. 18 FREE Quotations for all Electronics

TRANSISTOR AMPLIFIERS

NEW RANGES NOW

 IN STOCK(Leaflets Ref. No.6\&8)
Post, etc. 20p
 4-300 4 TR 9 volt 300 m
1044 TR 9 volt 1 watt
3044 TR 9 volt 3 watt.
5556 TR 12 volt 3 watt. 61.75
62.12

6086 TR 24 volt 10 watt
4104 TR 28 volt 10 watt
MPAI2/3 6 TR 18 volt 12 MPA12/156 TR 36 volt 12 watt $\mathbf{E 4 . 5 0}$ Z309 TR 30 volt 20 watt 63.75 Z 5030 volt 40 watt PAS0 I2 TR (special) 50 watt $\mathbf{E 9 . 5 0}$ 100100 watt with power supply
 OPTIONAL POWER SUPPLIES. Postetc. 20p
 MU24/40 Switchable (One or Two) for MPA12/3 or

| | | MPA | E4.50 |
| :---: | :---: | :---: | :---: |
| PZ5 for Z30 | \$3.97 | or PZ6 for Z30 | 66.97 |
| PZ8 for Z50 | 65.97 | Transformer | f2. 25 |
| Pl\| for 608 | ¢2.87 | PI5 for 410 | E2.62 |
| MU442 for 1 or 2 | 25 or 1 | only PA50 | £6-50 |

SINCLAIR PROJECT 60 PACKAGE DEALS
$2 \times Z 30$ amplifier, stereo 60 pre-amp, PZ5 power supply, 619 .
Carr. 40p. Or with PZ6 power supply, E21. Carr, 40p. $2 \times Z 50$ amplifier, stereo 60 pre-amplifier PZ8 power supply, $£ 21.50$. Carr. 40 p. Transformer for PZ8, $E 2.25$ extra. Any of the above with Active filter unit add $\mathbf{E 4 \cdot 8 7}$ or with . Also NEW FM TUNER, $£ 23$.

NEW INTEGRATED CIRCUIT STEREO MULTIPLEX DECODER Model 1067
Two transistor plus integrated circuit design. $9-12$ volt operated, $50 \mathrm{~m} V$ sensitivity, lamp output
 connections. Output I volt per channel. Price connections. Output volt per channel. Price
ready to use $£ 6.75$ (Leaflet No. 7 on request).
PORTABLE
GEIGER
COUNTER
E9.50
Carriage 75p

FOR MEASUREMENT OF RADIO ACTIVITY Supplied complete with instructions, haversack, cables and probe List price 670 . Our price, new, tested, complete with 4 cell H.T. Eliminator Plug in mains units $£ 3.75$ Dosimeters 0-5or 62p; 0.15or 50p Dosimeters
$0-50$ or 50 p

| HIGH CAPACITY ELECTROLYTICS $\begin{gathered}\text { Post etc. } \\ 10 \mathrm{p})\end{gathered}$
 40,000 mid 10 volt . . 50p $35,000 \mathrm{mfd} 15$ volt . . 62p $25,000 \mathrm{mfd} 25$ volt .. 75p $46,000 \mathrm{mfd} 25$ volt .. 97p At a fraction of normal price MADE BY MALLORY, USA |
| :---: |

E.A.C. DIGIVISOR mk. II

At a fraction of normal pri
Moving Coil 0 to 9 Display. Moving Coil 0 to 9 Display.
One inch character sixe. Light beam lens operated
meter. Movement $500 \mu \mathrm{~A}$. Also lamp for decimal
point. Overall size: $4: x$ 1/ $x 21$ Overall size:

Electronic Components \&
 Test Gear Centre
 356 EDGWARE ROAD,
 LONDON, W.2.
 Tel: 01-402 4736

High Fidelity Sales \&
Demonstrations Centre
354 EDGWARE ROAD,
LONDON, W.2.
Tel: 01 -402 5854

Electronic Organs.
P.A. \& Discotheque Centre
"309 EDGWARE ROAD,
LONDON, W.2.
Tel: 01-723 6963

Mail Order and
Industrial Sales Dept
303 EDGWARE ROAD, LONDON, W.2.
Tel: 01-723 1008/9
MONDAY TO SATURDAY - 9 a.m to $1 \mathrm{pm} . \mathrm{m}$. THURSDAYS
OPEN ALL DAY SATURDAY

This superb stereo system is a real price breakthrough. It compuses the VISCOUNT F.E.T. Mk 1 amplifier on which full details are given below. the famous Garrard SP 25 (including teak veneer base and transparent cover) with dianiond cartridge or 2025 TC and the very successful DUO iype 2 speakers:

Measuring $17_{2}^{1} \times 10_{4}^{3 .} \times 6_{4}^{3}$ the Duo type 2 speakers are teak finished with matching Vynair grills. They incorporate a $3 \mathrm{ohm} .13^{*}$
8 drive unit and Parasitic weeter, Max. power handling 10 watts Price $£ 13.50$ per pair plus $p \& p$ f $£: 50$. WITH MK II amplifier and magnetic-cartridge £48 plus £ 2.50 P\&F
The Tscount F.E.T. Mk \mid £14.25 plus 37p P. \& P

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below. the Viscount F.E.T vastly

Specification: Output per channel 10 watts r.m.s. into 3 ohms. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm$ 1 dB (®) 1 watt.
Totaldistortion: @ 1 kHz @ 9 watts 0.5%
Input sensitivities: CER. P.U. 100 mV into 3 meg ohms Tuner 100 mV into 100 K ohms

Overload Factor: Better than 26 dB
Signal to noise ratio: 70 dB on all inputs (with vol. max) Controls: 6 position selector switch (3 pos. stereo \& 3 pos. mono). Separate Vol. controls for left \& right D.P.S. on/off) $\pm 12 \mathrm{~dB} @ 10 \mathrm{kHz}$. Tape Recording D.P.

SOUND 50

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound fifty valve amplifier and speakers are sturdity constructed with smart housings and thoroughly tested electronics. They are designed to last-to withstand the knocks and bumps of life on the road. Built for the small and madium sized gig, they are easy to handie and quick to set up and can be relied upon to come over with all the quality and power yeu need.
Output Power: 45 watts R.M.S. (Sine wave drive). Frequencr response: -3 db points 30 Hz at 18 KHz . Total distortion less than 2% at rated output. Signal to noise ratio: better than 60 db. Speaker Impedance: 3, 8 or 15 ohms. Bass Control Range: ± 13 db at 60 Hz . Tretle Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K .
To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at hall power. SPEAKERS: Size $20^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating Baker's 12 heaw duty 25 watt high flux. quality loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme-Black and grey.
COMPLETE SYSTEM

Elegant Seven Mk 3 (350 mW) 7 transistor fully-tunable M.W.-L.W. superhet port
able Set of parts. Complete with all components ableluding ready etched and drilled printed circuit
board-back printed for foolproof construction. MAINS POWER PACK KIT: 47p extra Price £5.25 plus 37 p P. \& P

The Dorset (600 mW)

7 -transistor fully tunable M.W.-L.W. superhet
portable-with baby alarm facility Set of parts portable-with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques
makes this simple to build Sizes: $12 \times 8 \times 3$ in makes this simple to buld Sizes: 12
MAINS POWER PACK KIT: 47 p extra.
 STEM

Mk II (MAG. P.U.) E15.75 plus 50p $p \& p$ Specification same as Mk. 1. but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV ((1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA Signal to noise ratio- -65 dB (vol

LIQUIDATED STOCK

DANSETTE

TOURISTE MK3

CAR RADIO

ALL TRANSISTOR
Beautifully designied to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking. sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{2}$ " deep. Originally sold completely built for £15.23 SET OF PARTS with parts. Speaka

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3. 6.NG Also 323 Edgware Road, London, W.2. All ORDERS Ev Postio Acion Goods not dispatched oulside U.K. Terms C.W.O. All enquiries S.A.E.

TRANSISTORS
IN914 $\quad 7 \dagger \mathrm{p}$
ACY19
25p

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

SEND SAE FOR FULL LISTS!
10% on $12+$ any one type
15% on $25+$ any one type
Large quantity discounts on applica-
tion. Postage: Semi Conductors 7 . tion. Postag
Valves $15 p$.

40 p $42 \nmid \mathrm{p}$ 37 p 45 p

HI-FI EQUIPMENT SAVE UPTO 33 $\frac{1}{3} \%$ OR MORE SEND S.A.E. FOR DISCOUNT 'PRICE LISTS AND PACKAGE OFFERS!

TEAK BASE AND PERSPEX COVER for above BSR range 23.97t. Carriage 37 kp
wired.

SPECIALOFFERS Garrard SP25 Mk III fitted Goldring G800 cartridge and wooden plinth with
perspex cover. ready wired. Total list
price f35. OUR PRICE 622.50 Carr. 50 p. GOLDRING GL69/2 fitted Goldring G800 cartridge complete with de luxe
basei and cover. Total list price ≤ 50.80
OUR PRICE $\mathrm{fl9}$.

CR1OT AM/FM STEREO TUNER AMPLIFIER SYSTEMS Output 4 matts per channel. Excellent reception AFC, built-in MPX. Cer/XTAL Input.
Total List $£ 50 \cdot 25$. OUR PRICE $£ 29.95$. Carr. 62 Ap. Changer, Plinth, cover and stereo cartridge.
Ready wired. f45. Carr. E 1 . AMERICAN RECORDING TAPES
 quslity \quad sin. fooft. Std. piastic

| Pver
 paid. | 7in. $2,40 \mathrm{ft}$. D.P. Mylar
 $7 \mathrm{in}$.
 $3,600 \mathrm{ft}$. |
| :---: | :---: | :---: |

| ZENER DIODES | | |
| :---: | :---: | :---: |
| $\begin{aligned} & 400 \mathrm{mw} . \\ & (3.3 \text { to } 33 \mathrm{v}) \\ & 15 \mathrm{p} \end{aligned}$ | $\begin{gathered} 1.5 \text { watt } \\ (2.4 \text { to } 200 \mathrm{v}) \\ 20 \mathrm{p} \end{gathered}$ | $\begin{gathered} 10 \text { watt } \\ (3.8 \text { to } 100 \mathrm{v}) \\ 25 \mathrm{p} \end{gathered}$ |

| THYRISTORS | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIV | 50 | 100 | 200 | 300 | 350 | 400 |
| 1A | 25p | 27pp | 37¢p | 40p | - | 471p |
| 3A | 30p | 371p | 40p | 45p | - | 50p |
| 5 A | | 55p | 85p | | - | 75 p |
| 7A | - | 55 p | 65 p | 20p | | 87tp |
| 100A | - | | | | £2.50 | 12.75 |
| TRIACS | | | | | | |
| $\xrightarrow[100 \mathrm{PIV} 6 \mathrm{~A}]{\text { 8C41A }}$ | | $\begin{gathered} \mathrm{SC} 41 \mathrm{~B} \\ 6 \mathrm{~A}_{200 \mathrm{PIV}} \end{gathered}$ | | | $8 \mathrm{CH1D}$ | |
| | | ${ }_{\substack{400 \text { PIV } 6 A \\ 21.371}}$ | |
| | | $6 A 200 \mathrm{PIV}$$\$ 1.10$ |

| INTEGRATED CIRCUITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L900 | 49p | Ca3005 | 1127 | FJH221 | 50p |
| L914 | 49p | CA3011 | 82 p | FJH231 | 50p |
| L.923 | 82 ¢ p | CA3052 | 21.82 | FJH241 | 50 p |
| IC-10 | £2.50 | FCH131 | 50p | FJH251 | 50p |
| ${ }^{\text {BL403 }}$ | 22.12t | FCH161 | 50 p | FJJ121 | 87 ¢ ${ }^{\text {8 }}$ |
| MC1303 | 42.82 ${ }^{\text {2 }}$ | FJH141 | 50p | F.JJ131 | $87 \dagger p$ |
| MC1304 | 22.75 | FJH171 | 50p | FJJ211 | 21.25 |
| PA246 | 22.82t | FJH181 | 50p | FIYY101 | 60p |

TAPE CASSETTES

Top quality in plastic library bores
C60 60 min. $424 \mathrm{p} ; 3$ for $81.22 \frac{1}{2}$
$\mathrm{C} 90-90 \mathrm{~min} .82+\mathrm{p} ; 3$ for El .80
 ECHO HS-606 STEREO

Wonderfully com-
tortable.
Light-
welght welght adjustable $v i n y /$ headband, 6 ft.
cable and stereo cable and stereo

GOLDRING CARTRIDGES G850
680 G800E G800 Buper E SINCLAIR EQUIPMENT
Project 60. Package Offers

$2 \times$ Z30 amplitier, stereo 60 pre-amp,
power supply. $£ 18$. Carr. 37 Pp. 0 Or with PZ6 power supply, £21. Carr. 3ifp. 2×250 amplifier
stereo 60 pre-amp. PZ8
 Add to any of the above 4487 for active flite
unit and ell 8 for a pairon Q16 speakers. PROJECT
60 FM TUNER 20 .
 Neoteric amplitier A48. Carr. 374 p

TELETON SAQ 203E STEREO Popular solid state hi-fi smplifier incorporatin 6 semi-conductors. Output 6 watts r.m.s. Inputs for magnetic ceramic, tuner and aux. Stereo phone socket and tape output. Controls: Volume, balance bass, treble. Oiled Walnut case with brusbed arr. 37tp.

Our latest edition giving full detalls of comprehensive range of HI-FI EQUIPMENT
COMPONENTS TEST EOUIPMENT COMPONENTS, TEST EQUIPMENT and DISCOUNT COUPONS IVALUE 50° (10% 248 pages, fully illustrated and detailing thousands of items at bargain prices. SEND

MULTI

$\begin{aligned} & \text { MODEL } \mathrm{TE}-20020,000 \\ & \text { OPV Mirrarscale over }\end{aligned}$
O.P.V. Mirrarscate, over
$\begin{aligned} & \text { load protection. } \\ & 0 / 5 / 25.125 / 1040 \\ & 0 / 10 / 50 / 250 / 1000\end{aligned}$
$\begin{aligned} & 0 / 10 / 50 / 250 / 1.000 \text {.A.C. } \\ & 0 / 50 \mu \mathrm{~A} / 250 \mathrm{MA} .0 / 60 \mathrm{~K} / 6 \\ & \text { meg. }+20 \text { to }+62 \mathrm{db} .\end{aligned}$
£3\%5 P. \& P. 15p

MODEL TE-80. 20,000 O.P.V. $0 / 10 / 50 / 100 / 501 / 1,000$
$0 / 5 / 25 / 50 / 2501500 / 1,000$
A.C.
V. D.C. 0.503 A. £4.87t P. \& P. 15 p

MODELTE $70.80,000$.
$0 / 3 / 15 / 60 / 300 / 60011,200 \mathrm{v}$ $0 / 3 / 15 / 60 / 30 \mathrm{P} / 600 / 1,200 \mathrm{v}$.
D.C. $0 / 6 / 30 / 120 / 600 / 1,200$ $0 / 16 \mathrm{~K} / 116 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{Meg}$ 2550 P. \& P. 15 p

TE-900 20,000 a/VOLT OIANT MULTIMETER. Mirtor acale full view meter. 2 colour scale $0 / 2.5 / 10 / 256 / 1,400 / 5,0100$.. A.C.
$0 / 25 / 12.5 / 1050 / 50250 / 1,00 / 5,0000$ © D.C. $0 / 50 \mu \mathrm{~A}+6 / 10 / 100 / 500 \mathrm{~mA}$
in amp. 10 C . $122 \mathrm{~K} / 200 \mathrm{~K} / 20$
MEG. OHM. MOM. 215 P. \& P. 25 MODEL $5025 \quad 57$ Ranges,
Giant $5 t$ in. Meter, Polarity Reverse 8 . 1 tch.
Bensitvity:
SoK $5 \mathrm{~K} /$ Volt A.C. D.C. Yoils
$125,25,1.26,5,10,25.50$
$125,250,600,1,000 \mathrm{~V}$. $50,125,250,500,1,000 \mathrm{~V}$
D.C. Current: $25,50 \mu \mathrm{~A}, 2.5,5,25.50,220,50 \mathrm{~mA}$,
5 , 10 arne. Resigtance: $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}$,

FTC-401

TRANSISTOR TESTER
Full cupahilities for
mensuring A. Band 1CO.
NPN or PNI. Equall
adaptable for checking
diodes. Bupplied con-
But adaptes. Rupplied cong
diode with instruction
plete plete with instruct

AVO CTAT1A MULTIMETER Battery operated, fully transiatorised. Sensi

70° WIDE ANGLE
270° WIDE
Im METERS
1 mX METER

SKYWOOD SW. 500 $50 \mathrm{Kg} /$ Volt. Mirror scal
D.C. volts: $0.6 / 3 / 12 / 30$
 $3 / 30 / 300 / 600$. D.C. cur
rent: $20 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$ rent: $20 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{maA}$
Resigance $10 \mathrm{~K} / 100 \mathrm{~K} / \mathrm{t}$

Meg. Decibels: -20 to | Meg. Decibels: | -20 to |
| :---: | :---: |
| ± 7 | |
| P. $\&$ P. 15 p. | $\mathbf{~} 7.50$ |

UNR 30 RECEIVER
4 Bands covering $550 \mathrm{kc} / \mathrm{s}$ - $30 \mathrm{mmc} / \mathrm{s}$. B.F.O. Built in speaker
tions. £15.75. Carr. 37tp.

WS62 TRANSCEIVERS
Large quantity available for EXPORT: Excellent condition. Enquiries invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering $550 \mathrm{kc} / \mathrm{s}$ - $30 \mathrm{me} \mathrm{C} / \mathrm{s}$. FET, s Meter
Variable BFO for $88 B$, Built in Speaker. Bandspread, Bensitivlty Control. 220/240v AC or 12 v DC. $121^{*} \times 44^{*} \times 7^{\prime \prime}$. Brand new with instructions.
e25. Carr. 37 p .

LAFAYETTE HA-600 RECEIVER

variable B.F.O., noise limiter, S Meter, Band-
 Carriage 50p.
LAFAYETTE HA. 800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

FULL RANGE TRIOEQUIPMENT EDDYSTONE V.H.F. RECEIVERS $770 \mathrm{R} .19-165 \mathrm{Mc} / \mathrm{s}$. excellent condition. $£ 150$

INTERCOM BABY SITTER

tercoms. ideal for
in hercoms.
home/offic
shop. buzzer call system
For deak mounting. Suppliod
complete with con necting wite, ban2 stations. £2.97t. P. \& P. 12łp. 4 station $\mathbf{2 6} 62$ $\mathrm{P} . \& \mathrm{P} .25_{1}$

STATE VARIABLE A.C.
VOLTAGE REGULATORS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 con necting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. £0. 40 in U.K.

A top quality DE-LUNE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER"' or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0.12$ extra. P. \& P. £0.25. Price Refund if not satisfied in 7 days.

Feosem TEIEPHONEAMPI|TIER

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid A must for every telephone user. Useful for hard of hearing persons. On/off switch Volume Control. Operates on one switch. battery which lasts forates on one $9 \quad v$ operate, P. \& P. £0,18 in U.K. Add £0.12 for Battery.
Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) I69 KENSINGTON HIGH STREET, LONDON, W. 8

For electronic components fast

閩naliosipures P.O. Box 427, 13-17 Epworth St London EC2P 2HA Tel: 01-253 7501 Telex: 262341

Your choice of Live SocketsInstantly!
 A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket
 combinations available from stock. All types of fittings and finishes.

ELEOTROLLUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

bargains IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES • ALL POWER TYPES WITH FREE INSULATING SETS

| 40361 | 55p | 2N2905 | 44p | 2N4291 | 15p | BCI 48 | 14p | BFX87 | 29p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40362 | 68p | 2N2905A | 47p | 2N4292 | 15p | BCI49 | 15p | BFX88 | 26p |
| 2N696 | 20p | 2N2924 | 20p | ACI07 | 46p | BC 153 | 19p | BFY50 | 23p |
| 2N697 | 22p | 2N2925 | 22p | ACI26 | 20p | BC154 | 28p | BFY5I | 20p |
| 2N706 | 12p | 2N2926 | 11 p | ACI27 | 20p | BC157 | 19p | BFY52 | 23p |
| 2N930 | 29p | 2N3053 | 27p | ACI28 | 20p | BC158 | 17p | BS $\times 20$ | 16p |
| 2N1131 | $36 p$ | 2N3055 | 75p | ACI53K | 25p | BC159 | 18p | C407 | 17p |
| 2N1132 | 40p | 2N3702 | 13p | ACI76 | 27p | BC167 | 13p | MCI40 | 25p |
| 2 N 1302 | 19p | 2N3703 | 13p | ACY20 | 20p | BC168 | 11 p | MPS6531 | 35p |
| 2 N 1303 | 19p | 2N3704 | 13p | ACY22 | 16p | BC169 | 13p | MPS6534 | 30p |
| 2N1304 | 23p | 2N3705 | 13p | ADI 40 | 56p | $\mathrm{BCI7}$ | 17p | NKT2II | 25p |
| 2 N 1305 | 23p | 2N3706 | 13p | ADI42 | 50p | ${ }^{\mathrm{BC}} 178$ | 17p | NKT212 | 25p |
| 2 N 1306 | 33p | 2N3707 | 13p | ADI49 | 60p | ${ }^{\text {BCl79 }}$ | 17p | NKT214 | 23p |
| 2N1307 | 33p | 2N3708 | 13 p | ADI61 | 40p | ${ }_{\text {BC182L }}$ | 13 p 11 p | NKT274 | 18p |
| 2N1308 | 36p | 2N3709 | 13 p | ADI62 | 40p | BC133L | 11p | NKT403 | $65 p$ |
| 2N1309 | 36p | 2N3710 | 13p | AFI 14 AFI 15 | 30p | $\mathrm{BC184L}$ BC 212 L | 13 p 25p | NKT405 | 79p |
| 2 N 1613 | 23p | 2N3711 | 13 p 35 | AFII AFll | 30p 28p | ${ }_{\text {BC212L }}$ | 25p $\mathbf{2 5 p}$ | OC71 | 29p |
| 2N1711 | 26p | 2N3819 | $35 p$ $35 p$ | AFl17 AFl24 | 28p 30p | BC 213 L BC 214 L | 25p $\mathbf{2 5 p}$ | OC81 | 25p |
| 2N1893 | 54p | 2N3904 | $35 p$ $35 p$ | AFl24 AFl27 | 30p 28p | $\mathrm{BC214L}$ BCY 70 | 25p | OC81D | 25p |
| 2N2147 | 95p | 2N3906 | 35p | AF127 | 28p | BCY70 | 19p | ZTX300 | 17 p |
| 2N2218 | 33p | 2N4058 | 20p | AFI39 | 48p | ${ }_{\text {BCY71 }}$ | 33p | ZTX300 | 17p |
| 2N2218A | 43p | 2N4059 | 20p | AF239 | 49p | ${ }^{\text {BCY }} \mathrm{CH} 72$ | 15p | ZTX301 | 17p |
| 2N2219 | 38p | 2N4060 | 20p | ASY26 | 27p | ${ }^{\text {BFII }} 16$ | 23p | $\underline{Z T} \times 302$ | 22p |
| 2N2219A | 53p | 2N4061 | 20p | ASY28 | 27p | BFI67 | 27p | ZTX303 | 22p |
| 2N 2270 | 62p | 2N4062 | 20p | BC107 | 14p | BFI73 BFIS | 31p 17 p | ZTX304 | 33 p $\mathbf{2 5 p}$ |
| 2N2369A | 19p | 2N4124 | 18p | $\mathrm{BC1} 108$ BC 109 | 12p | BFIC4 BFI95 | 17p | ZTX501 | 25p |
| 2N2483 | 35p | 2N4126 | $27 p$ | BC 109 BC 125 | 15p | BFX29 | 31p | ZTX502 | 30p |
| 2N2484 2N2646 | 42p
 54
 1 p | 2N4284 | 15p 15 15 | BC125 | 22p | - ${ }^{\text {BFX }}$ B 34 | 35p | ZTX503 | 25p |
| 2N2904A | 42p | 2N4289 | 15p | BC147 | 15p | BFX 85 | 34p | ZTX504 | 60p |

RESISTORS

| Code | Power | Tolerance | Range |
| :---: | :---: | :---: | :---: |
| c | 1/20W | 5% | $82 \Omega 2-220 \mathrm{~K} \Omega$ |
| C | 1/8W | 5\% | 4.7S-330KS2 |
| C | 1/4W | 10\% | 4.7S-10MS |
| C | 1/2W | 5\% | $4.7 \Omega 2$ 10M $\Omega 2$ |
| c | IW | 10\% | 4.7S-10M Ω |
| MO | 1/2W | 2\% | 108-1MS |
| WW | IW | 10\% $1 / 20 \Omega 2$ | 0.222-3.9 |
| WW | 3W | 5\% | 12S-10KS2 |
| WW | 7W | 5\% | 12S2-10Ks |

Codes: $C=$ carbon film, high stability, low noise.
MO $=$ metal oxide, Electrosil TR5, ultra low noise
$M O=$ metal oxide, Electros
$W W=$ wire wound, Plessey.

Values:
E12 denotes series: 10. 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their decades. $13,16,20,24$, E24 denotes series: as E12 plus II, $13,16,20$,
$30,36,43,51,62,75,91$ and their decades.

ZENER DIODES 5\% fuil range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , isp each, 1 W .6 .8 V
33p each; $1.5 \mathrm{~W}: 4 \cdot 7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each
Clip to increase 1.5 W rating to 3 watts (type

CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level
log, $4.7 \mathrm{~K} \Omega$ to $220 \mathrm{M} \Omega \Omega, 12 \mathrm{p}$; Dual gang linear, $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log, $4.7 \mathrm{~K} \Omega$ to 2.2M Ω, 42p; Log/antilog, IOK, 47K, IM Ω only 42p; Dual antilog, 10 K only, 42p. Any type with $\frac{1}{2} \mathrm{~A}$ D.P. mains switch, extra 12p.

Please note: only decades of 10,22 and 47 are
CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: 100』, 2202, $470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{Mz} 5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each,

COLVERN 3 watt Wire-wound Potentiometers.
$10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1.5 \mathrm{~K}$, $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega$,
$2 \cdot 5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each.

ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: 16-22 SWG 25p; 24-30 SWG 30p; 32, 34 SWG, $33 p$; $36-40$ SWG, 35 p
4 oz. reels: $16-22$ SWG only 42p.

| Values
 available | 1 to 9
 (see note below). | 10 to 99 | |
| :--- | :---: | :---: | :---: |
| E12 | 7 | 6.5 | 6 |
| E24 | 1.5 | 0.8 | 0.7 |
| E12 | 1.5 | 0.8 | 0.7 |
| E24 | 1.2 | 1 | 0.9 |
| E12 | 2.5 | 2 | 1.9 |
| E24 | 4 | 3.5 | 3 |
| E12 | 7 | 7 | 6 |
| E12 | 7 | 7 | 6 |
| E12 | 9 | 9 | 8 |
| Prices are in pence each for quantities | | | |
| of the same ohmic value and power | | | |
| rating. NOT mixed values. (Ignore | | | |
| fractions on total value of resistor | | | |
| order.) | | | | of the same ohmic value and power

rating. NOT mixed values. (Ignore
fractions on total value of resistor order.)

| TYGAN SPEAKER MATERIAL 7 designs, $36 \times 27 \mathrm{in}$. sheets, $\mathrm{f} \mid \cdot 57$ sheet. Pattern book, S.A.E. plus 3p stamp. |
| :---: |
| MULLARD polyester C280 series $250 \mathrm{~V} 20 \%$: $0.01,0.022,0.033,0.047$ 3p each; $0.068,0.1,4$ p eacis; $0.15,4$; ; $0.22,5 p .10 \%$: 7p; 0.33, $0.47,8 \mathrm{p}$; 0.68, 12p; $1 \mu \mathrm{~F}, 14 \mathrm{p}$; $1.5 \mu \mathrm{~F}$, 21p; $2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$. |
| MULLARD SUB-MIN ELECTROLYTICS C426 range, axial lead 6p each Values ($\mu \mathrm{F} / \mathrm{V}$) : $0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5 / 64$; 4/10; $4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 10/16; 10/64; 12.5/25; 16/40; 20/16; 20/64; 25/6-4; $25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 40 / 2-5 ;$ $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$ 80/25; $100 / 6.4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ; 160 / 2.5 ;$ 200/6.4; 200/10; 250/4; 320/2.5; 320/6-4; 400/4; 500/2.5. |
| LARGE CAPACITORS
 High ripple current types: $1000 / 25,28$ p; 1000/50, 41p; $1000 / 100,82 p ; 2000 / 25,37 p ; 2000 / 50,57 p ;$ 2000/100, E1.44; 2500/64, 77p; 2500/70, 98p; 5000/25, 62p; 5000/50, f1-20; 5000/100, £2.91; $10000 / 15,85 \mathrm{p}$; $10000 / 25, \mathrm{fl} \cdot 22$; $10000 / 50, £ 2 \cdot 20$. |
| COMPONENT DISCOUNTS
 10\% on orders ior components for 55 or more. 15% on orders for components for El 5 or more. (No discount on nett items.) |
| POSTAGE AND PACKING
 Free on orders over $£ 2$.
 Please add 10 p if order is under $E 2$.
 Overseas orders welcome: carriage and insurance charged at cost. |
| Note: U.K. cheques not in decimal currency cannot be accepted. |

PEAK SOUND PRODUCTS

Stereo amplifier in modular kit form 12 watts RMS per channel into $15 \Omega \in 38 \cdot 45$
Cabinet kit only 66. These prices nett.
As reviewed in Hi Fi Sound and other important journals.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduc cion for its size. Handles 10 watts with ease. Use
ELAC 15Ω 59RM109 ELAC 15s 59RM109 speaker unit. Kit E13.90
nett; built $619-40$ nett.

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity 500700 mV for full output into 8Ω.

| Power | Kit price | Suitable unreg. |
| :--- | :---: | :---: |
| 12 W | including components | power supply kit |
| 25 W | 68.40 nett | 64.60 |
| 40 W | 69.50 nett | N / A |
| 70 W | 610.50 nett | 65.75 |
| | | |

30 WATT BAILEY AMPLIFIER PARTS

Sonsitivity $1-2 \mathrm{~V}$ for full output into 8 S 2 .
Transistors and PCB for one channel $\mathbf{6} 6.40$
Transistors and PCBs for two channels $\mathbb{1 1 2 . 8 0}$
Capacitors and resistors (metal oxide), $\mathbf{6 2} \cdot \mathbf{0 0}$ per channel. Complete unregulated power supply pack, 64.75

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into $7 \cdot 5$ ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett $\mathbf{E 2} 10$

SINCLAIR IC. 10 as advertised, complete with instructions and applications manual $£ 2.95$ nett.
 Components pack for stereo inc. transformer, controls, etc., 64.75 nett.
 S-DeCs PUT AN END TO BIRDS NESTING Components just plug in save ponents. S-Dec (70 points) Ell.00
 Complete T-Dec, may be temperature-cycled (208 points), $£ 2.50$ Also μ-Decs and IC carriers.

| MEDIUM RANGE ELECTROLYTICS
 Axial leads: $50 / 50,9$ p; 100/25, 9p; 100/50, 13p; 250/25, 13p; 250/50, 19p; 500/25, 19p; 500/50, 21 p; 1000/25, 20p; 1000/50, 30p; 2000/25, 30p; 2000/50 48p. | |
| :---: | :---: |
| SMALL ELECTROLYTICS
 Axial leads: $47 / 10,4-7 / 25,5 / 50,5 p$ each; $10 / 10,10 / 25,10 / 50$, 33/10, 50/10, 5p each; 25/25, 25/50, 47/25, 100/10, 220/10, 6p each. | |
| NEON INDICATOR LAMPS all $200 / 250 \mathrm{~V}$. Square bezel, red only Round, chrome bezel red, amber, clear | $\begin{array}{r} 19 p \\ 24 p \text { each } \end{array}$ |
| TOGGLE SWITCHES, 250 V a.c. I.5A.
 chrome dolly and chrome milled nut S.P.S.T. 19p, S.P.D.T. 25p D.P.D.T. 29p; S.P.D.T. centre off 20p | |
| WAVECHANGE SWITCHES LONG SPINDLES
 IP I2W; 2P 6W; 3P 4W; 4P 3W | 24p each |
| SLIDER SWITCHES D.P.D.T. | 15 p each |

シーシームニームニ
 LOW COST ELECTRONIC \＆SCIENTI

BRAND NEW
 miniaturized AUTOMATIC STRIP

by RUSTRAK of America．This recorder indicates the magnitude of applied currents or voltages by a continuous distortion－free line on pressure sensitive paper．Chart width $2 \$$ in．Chart speed $\frac{1}{2}$ in．per min．Moving coil movement，scale calibrated 0－100 microamps． Int．resistance 4,600 ohms．Chart drive motor 12v．D．C．C／W handbook．Price $\mathbf{2 4 0}$ ．P．\＆P． 10／．

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal tor instrument chart drives．Extremely furiet，uneful in arean
where ambient nolse levela are low．High starting turaue enabe relative high inertia loads to be driven up to 6 －ozzin．Available it

CLUTCH MOTORS

REVERSIBLE MOTOR

NEW LOW INERTIA INTEGRATING MOTORS Electro－Methods Model．shal and 906 PL Permanent magne
D．C．Mowr．High senativity．Ideal for instrument－type serve mechnnibus，light loads driving mechanical counterat performing integration，or as smali power generators：Will operate directly
off a photo ceil or thermo couple etc 6 V ． off a photo ceill or thermo couple．etc．6V．Nominal．TYpical para－
meters．Starting voltage（no load） 15 mV at 0.375 niA ．Full load speed 1845 r ．p．m．（approx．）Moment of Inertia of Armature

SPLIT－FIELD D．C．SERVO MOTOR

NEW D．C．STEPPING MOTOR

E．H．T．GENERATOR，BRAND NEW D．C
CONVERTER MULLARD TYPE 1049
 L． 5 in．，W．2kin．，H． 1 inin．$£ 5$ E0．P．\＆P．included．
MIDGET POWER RELAY Type Mk 1 （OMRON） 230 V 50 Hz Coil， 1 pole double throw Unused Faulty plating

SYNCHRONOUS MOTORS

 Equipment．\＆1．50．P．\＆\＆P．included

D．C．TACHOGENERATOR

Type $9 \mathrm{c} / 106$ 167．at 1000 r．p．m．Drive

 shate dia． $3116 \mathrm{in} ., 3 / 8$, in．lomg．PriveR．F．ATTENUATOR MARCONI TF 1073A
$\mathrm{DC-150} \mathrm{MHz} \mathrm{MdB}$ stepp 75 Ohms．Double Screened construction．
Tested and in VG condition． E 2 as ．
Tested and in
ACTUATOR

ACCELEROMETERS

Model LA 23 P Potentiometric + or -10 G operating Voltage 30V Neminal resitace 17.5 K and Model LA $23 \mathrm{C}+$ or -100 G 34 V
Rel 20 K ．Price 226 ．P．\＆P．5／．
TYPE SE 55 ／A Range + or -1 C £26．P．\＆P．5\％
TYPE Fby G．E．C．Up to 1.000 G．Ceramic type Biving o／p of 23 mV supplied oc／w technical leatiet．Weight 14.8 gramines．2BA stud
mounting．\quad E3．15．0．P．\＆ P ． Many other types in stock

HIGH SPEED IMPULSE COUNTER DAVIS WYNN and ANDREWS 4 in dial with pointer registering up to 100 plus a 4 digit counter mounted in dial．Uses an inverse
gir escapement．Coil resistance 100 ohms． 20 V operation．$£ 6$.

VIBRON ELECTROMETER

This unit is a vibration condenser amplifier which is suitable for the measurement of small D．C．potentials covering the range of
$1 \mathrm{M}-1 \mathrm{~V}$ ．This unit can also be used as high impedance null detector for the compsrison of ironation currents of very high resistance． $£ 89 \cdot 50$
NUMICATOR
End Readi

Side Readin

$\mathrm{XN} 3 / \mathrm{FA} \quad 38 \mathrm{~m} / \mathrm{m}$ lead
$\mathrm{XN3}$
$\mathrm{XN} \mathrm{N}^{2}$
XNH $\begin{array}{ll}\text { XNHA } & 6 \mathrm{~m} / \mathrm{m} / \mathrm{ml} \\ \mathbf{X} & \end{array}$ XN23／FA $38 \mathrm{~m} / \mathrm{m}$ lead（Red）
（Red） \qquad

EICHNER 8 HOLE PUNCH
No motor drive required．Solenoid operated equipment using 48v 7 HOLE NON PARITY TAPE PUNCH
LOW Nond SPEED 7 HOLE TAPE PUNCH
60 character per second by well known manufacturer．
TELETYPE HOLE PAPER PUNCH BRPEII $^{2} 60$. Also available 5 hole punch BRPE2 as above．This model ha interchangeable heads．Complete with spoler．Price ${ }^{\text {q75 }}$
$5 / 7$ HOLE OPTICAL READER BY FERRANTI 20 characters per second． 220
（I83）SIGNAL GENERATOR CT 480 sANDERS．Range

TRANSDUCER OSCILLATOR－AMPLIFIER－DEMODULATOE encapsulated innt for matching with 8．E．Transducers．
where space or aiverse environmental conditions prevail． with a matching transducer a typical ofp is $\pm 3 \nabla$ into 50 K
Supply voltage $12 v$. D．C．Range of tranducers available $0-750: 0-1000: 0-4000 \mathrm{psi} . . .$. ．．．．．．．．．．．．．．．．．．．．．．．．．＇rice
TRANSDUCER－New Resistive Bordon Tube Principle Tranaducer by K．D．1nstrument．Model TD $2160-204$ TRANSDUCER NEW EX GOVERNMENT DISPLACEMENT B RESISTANCE STRAIN GAUGRS，Range \pm mechanica
placement equivalent to 0.3% resistive change． $3.5+3.5 \mathrm{~K}$

OSCLLLATOR．High discrimination，by Mareoni T．F． 116 discrimination make it auifthble for cryatsl fiter response
and Rx drive units．Frequency range $90-110 \mathrm{KHz}$ ． 2 Hz diact and Rx drive units．Frequency range $90-110 \mathrm{KHz}$ ． 2 Hz diac
tion．Crystal anil Standardised centre frequency．Cali несигасу $\pm 1 \%$ Ref．L． 5

RECORDERS 4 PEN OSCILLOGRAPHS SOUTHERN INY MENTS M942C． 4 Channel fitted with 4 qpeed gear boxes
$1,5,25,100 \mathrm{~m} . \mathrm{m}$ ．per sec．Frequency regponse $0-55 \mathrm{~Hz}$ ，bensi $0 / \mathrm{m} \cdot \mathrm{m} / \mathrm{M} . \mathrm{A}$ ．

E．M．I．

Portable L．F．Tape Recorder．Ex－service equipment cons Three Unit housed in transit cases（Tape Deck，Ampliter．
\ddagger in．track speed 30 in．， 15 in．， $7 \ddagger$ in．and \ddagger in．min．Price f in．track speed 30 in ．， 15 in， $7 \frac{1}{2}$ in．and \ddagger in．min．Pri
Many control facilities．This is good quality recorder．

UIPMENT AND COMPONENTS

MEASURING INSTRUMENTS AND RECORDERS

-OWER SUPPLY UNITS

$\underset{\mathbf{V}}{\mathrm{O} / \mathrm{P}} \underset{\mathrm{A}}{\mathrm{O} / \mathrm{P}} \underset{\mathrm{U}}{\mathrm{S}}$ or volt. BRAND NEW

PRECISION
 POTENTIOMETERS

TEN TURN 3600° ROTATION
BRAND NEW (Ref. C5)

VHF ADMITTANCE BRIDGE
Capacitance $0-230 \mathrm{pF}$ and 0 to -230 pF . $£ 120$ ($0-100$ millimhos. Alao B901. Indicates parallel components of conductance and 0.100 mMho . 0 to $\pm 75 \mathrm{pF}$ and $-7 \overline{5} \mathrm{pF}$. Accuracy 2% up to 50 MHz. £115 (4110_{0}^{0} of new price).
SIGNAL GENERATOR
Advance Type F Model $1.0-10 \mathrm{kHz}$. Beat frequency type. o/P
meter. Switched attenuater. Gain control. Overhauled, good

TWENTY MILLION MEGOHMMETER .I. Model 29 A . Test woltage 85 and aboV. B/C Current lese than
mA 30 M ohun- $20 \times 106 \mathrm{M}$ ohn. Charging Delay 1 secs. Mains

NEW ELECTRO PNEUMATIC TRANSDUCER TRANSMITTER
Input $-50-0+50 \mathrm{Ma}$. Output $3-15 \mathrm{P} 81$. Spec. 870 . Coil 3 ohnns. This precision transducer accur.
varying electrical signal. 250 .
R.C. OSCILLATOR

PORTABLE FREQUENCY METERS
centric lime closed at one end and turned by variable capacitor on MHz, in an almost linear scale appros. 9in. ing leugth, Com-
plete in polished wooden case. Price $£ 1750$. Carriage extra.

DOUBLE BEAM OSCILLOSCOPE D.3I
Ideal for service work. easy to carry, and small in size for its
capabilities. 3 in . screen. Time base from $1 \mu \mathrm{sec} / \mathrm{cm}-500 \mathrm{~m}$ sec/cm with internal and external trigkering facilities. In addition there
are TV line sad frame channels. This instrment is serviced and MODEL 1706 VISI RECORDER
record up to 6 channelg sinnultaneously fron D.C. 5000 Hz at
writing speed of 50100 m ohs sec . writing speed of 30000 m ohs $/ \mathrm{sec}$.
Kecirding range: \quad D.C.- 51010 Hz .
Paptical Arm:

BRAND NEW CAPACITOR REVERSIBLE SINGLE PHASE PARVALUX MOTORS $2: 30 / 250$ v. $50 \mathrm{~Hz} 2,800$ r.p.m. $1 / 30$ h.p. Cont. rated. If in. shaft
dia. $\times 3 \mathrm{in}$ in. long. Foot mounting. Weight 6 ib. $£ 5 \% 75$ post free. COAXIAL LINE OSCILLATOR
 uitable to be complled to any waveguile size by using a coaxial to
-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK

MEMORY PLANES
 own computer or as an interesting rime 5×8 in. Consist ting of muatrices
$40 \times 25 \times 4$ cores rach one individully

MULTI-RANGE TRANSISTORISED VOLTMETER 1063
stability and negligible drift over a wide temperature range. Wide
revinency hand $0-3100 \mathrm{MHz}$.using HPV 10ti3. Voltage range (30 K V . Centre zero on DC ranges ior diferential circuit application. Input
reaistance $1 \mathrm{M} .0 h \mathrm{~m} / \mathrm{bolt}$ on all DC ranges. Accuracy $+3 \quad \mathrm{~F} . \$ \mathrm{~S}$). special price $£ 4250$ each. Gartiage $£ 150$.

CHOPPERS

Trensitate

 SONY TFM $8030 L$HIGH PERFORMANCE 11 TRANSISTOR THREE WAVEBAND PORTABLE BATTERY MAINS RADIO

This is a realiy top performance, top quality solid state receiver packed with SONY know-how and backed by
the outstanding reliability for which SONY are renowned. Now this outstanding set is available from Laskys at over 27% below the manufacturers list price making it without doubt the NUMBER ONE SCOOP of 1971! Just look at these outstanding features. Covers MW. LW and FM (VHF), 11 iransistor circuit for high sensitivity and stability. Powerful
output to 5"PM. Dynamic speaker with rich clear output to 5" PM. Dynamic speaker with rich clear
tone quality. AFC for drift tree VMF reception Pust button wave change selectors and tone control. Choice of three power sources- 9 V battery. household mains or car battery with suitable adaptors. Dial light for use in the dark. External jacks for earphone tape recording. external power input and car aerial. Ulita modern styling and superb finish with padded leatherette covered cabinet for superior sound damping with chrome trim, strong carrying handie.
The SONY TFM 8030L will enliven your leisure hours anywhere, anytime with exciting sound, news. sport, music, etc. Technical specifications: Freq. range. FM $87-108 \mathrm{MHz}$. LW $150-285 \mathrm{kHz}$ telescopic for FM internal 11 ransistors, 7 diodes and 2 thermistors. Aerial System: Directional 4Ω imp. Power Source: Gv power pack battery (Every Ready PP9 or equiv). AC mains with
 MANUFACTURERS LIST PRICE f29.75 LASKYS SPECIAL OFFER PRICE
£21.50

Optional Extras. SONY AC 90 e AC adaptor $£ 4.00$ DCC 120 stutulised car battery cord $\mathbf{£ 6 . 0 0}$

EXCLUSIVE

DIGITAL CLOCK MECHANISM

Made
Maker operation

- 12 hour alarm
- Auto "SLEEP" switch

Hours, minutes and seconds read-of Forward and backward time adjustm Silent operation synchronous motor - Built in alarm buzzer

This untque DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S are achieved by two dual-concentric controls at the front including: ON-OFF. AUTO and AUTO ALARM. "sleep" switch. 10 minute division "click" set alarm tup to 12 hour delay) time adjustment Ultra simple mechanism and high qualify manufacture guarantee reliable operation and long life.
The sleep switch will automatically turn off any appliance-radio. TV, light, etc., at any pre-set time up to 60 min . and in conjunction with the AUTO setteng will switch on the appliance again next morning
 50 Hz operation: switch rating 250 V . 3 A Complete with instructions. HUNOREDS OF APPLICATIONS

LAS KY'S PRICE £6.95 \qquad special ouotations

LASKY'S TM5 METER

Another new rook pocke1 multimeter from Lasky's providing top

 quality and value. The "slumline impact resistant case-size $4 \frac{3}{3}$ in x is superior on ail how ranges: making this an excellent instrument for servicing transistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal clear meter- DC/V: 3-15-150-300-1,200 at 5K ohms/V
- AC/V: 6-30-300-600 at 2.5 K ohms $/ \mathrm{V}$
- DC Current 0-300aA $0-300 \mathrm{~mA}$
- Resistance: $0-10 \mathrm{~K}$ ohms, $0-1 \mathrm{M}$ ohms
- Complete with test lead

LASKY'S PRICE £2.95

MIDLAND 10-406 AM/AIRCRAFT RADIO

to the entire air communications band covered by 108-137 MHz in addition to full AM medium wave. Intermediate frequencies: AM 455 KHz . VHF $107 \mathrm{mc} / \mathrm{s}$ Output power: $200 \mathrm{mV} 2 \frac{1}{2} \mathrm{in}$. PD. 8 ohm speaker. A built in ferrite rod aeria is provided for AM reception. The $10-406$ is finished in blue with chrome trim, chrome telescopic

LASKY'S PRICE £8.35 p\& p 13p

207 EDGWARE ROAD, LONDON, W. 2 33 TOTTENHAM CT. RD, LONDON, WIP 9RB. 109 FLEET STREET, LONDON, E.C.4. 152/3 FIEET STREET, LONDON, E.C.4.
 HIGH FIDELITY AUDIO CENTRE
 $42-45$ TOTTENHAM CT. RD, LONDON, WIP SRD.
 MAIL ORDERS AND CORRESPONDENCE TO 3-15 CAVELL STREET. LONDON. E1 2BN

C \& G Telecommunication Techns' Certificate

 C \& G Electronic Servicing Certificate R.T.E.B. Radio/T.V. Servicing Certificate Radio Amateurs' Examination General Certificate of Education, etc.
Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early' success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES
As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES
We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable* and high grade test instruments. You build equipment of real practical use!

 LIMITED

FULLY TESTED AND MARKED

AC 107
 AC126
 AC127 AC128
 AC176 ACY17
 ACY17 AF239
 AF239 AF 186
 AF 186 AFI 139
 | BF 159 |
| :--- |
| BC 54 |
| BC |
| 174 |
 $\mathrm{BC171-BC107}$ $\mathrm{BC} 172=\mathrm{BC} 108$ BF 172

 $\square \square \square$
 PACKS OF YOUR OWN CHOICE UP TO

 THE VALUE OF 50p WITH ORDERS OVER E 4
CLEARANCE LINES

DON'T MISS THIS LAST CHANCE ONLY A FEW LEFT
UHF/VHF T.V. TUNER UNITS TU. 2 CONTAINING 2 AF 186's \& 2 AF178's PRICE 50p
All the units have many other components, e.g Capacitors. Resistors Coils and funing condensers. Uic Although these are manufacturers rejects they are not beyond repair as has been proven by many of our customers.

ALL TUNER UNITS ARE SUPPLIED
COLOUR T.V. LINE OUTPUT TRANSFORMERS
Designed to give 25 K.V when used with PL509 and PY500
valves. As removed from colour receivers at the factorv 5 at the factorv
ONLY $f 1$ each
oost and packing 23p

1 AMP. Bridge rectifiers

100 PIV. $=25 p \quad 400 \mathrm{PIV} .=33 \mathrm{p} \quad 800 \mathrm{PIV} .=40 \mathrm{p}$
PAK F. 3 13p

BUMPER BUNDLES

These parcels contain all types of surplus electronic
components. printed panels. switches. potentiometers.
2 LBS IN WEIGHT FOR f1

OUR VERY POPULAR 3p TRANSISTORS

 FULLY TESTED \& GUARANTEED
TYPE ${ }^{\prime \prime} A^{\prime}$

PNP Silicon alloy, metal TO-5 can. 2\$300 type. direct replacement for the OC200/203 range

TYPE" "

 PNP Silicon plastic encapsulation. low voltage but good gain, these are of the 2N3702/3 and 2N4059/62 range.TYPE " F "
NPN Silicon plastic encapsulation Low Noise Amplifier of the 2 N3707/8/9/10/11 Series.

TYPE "E'
PNP Germanium af of rf
please state on order. Fully marked and tested.

NEW TESTED \& GUARANTEED PAKS

| B79 | 4 | ully Phasiu | 50p |
| :---: | :---: | :---: | :---: |
| B81 | 10 | Reed switches mixed TYPES LARGE \& SMALL | Op |
| 389 | 2 | 5 Sp5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$ | 50p |
| 892 | 4 | NPN SIL. TRANS. AO $6=$ BSXZU 2 N 2369.500 MHz .360 mW | 50p |
| в93 | 5 | GET113 TRANS, EQUIV. TO | 50p |
| 896 | 5 | 2N3136 PNP SIL. TRANS. TO- 18 HPE $100-300 \mathrm{IC} .600 \mathrm{~mA} .200 \mathrm{MHz}$ | Op |
| | 10 | XB112 \& XB102 EOUIV TO AC126 AC156. OC81/2. OC71/2. NKT271 ETC. | 50p |
| 899 | 200 | MIXED CAPACITORS, PDST \& PACKING 13p APPROX QUANTITY COUNTED BY WEIGHT | 50p |
| | 250 | WIXED RESISTORS, POST \& PACKING 10p APPROX QUANTITY COUNTED BY WEIGHI | 50p |
| | 40 | WIREWOUND RESISTORS MIXED TYPES \& VALUES, POSTAGE 7p | 50p |
| н8 | 4 | BY 127 Silicon Recs. 1000 P.IV. 1 amp Plastic Replaces he BY 100 | 50p |
| н9 | 2 | OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS | p |

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 50p 10 p P \& P on this Pak

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block. will turn any $0-1 \mathrm{~mA}$ meter into a perfectly incear ond accuruat eoue counter for any car.
£
each

FREE CATALOGUE AND LISTS
for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 5 p post and packing per order OVERSEAS ADD EXTRA FOR POSTAGE

P.O. RELAYS

VARIOUS CONTACTS AND
8 for
COIL RESISTANCES.
NO INDIVIDUALSELECTION.
POST \& PACKING 25p
f1

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

HEAVY DUTY LT TRANSFORMERS
By famous maker. Fully Tropicalised. Pri tapped 100 ,
 0-25a. Table Top Connections. 79/6. Carr. 10/6.

| PARMEKO C CORE TRANSFORMERS
 Pri. tapped $110-200-240 \mathrm{v}$. Sec. 1250 v . $197 \mathrm{~m} / \mathrm{a}$. Sec. 2 $161 \mathrm{v} .110 \mathrm{~m} / \mathrm{a}$. Sec. $3152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a}$. $\mathrm{Sec} .4124 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}$. Sec. 528 v .0 .4 a . Sec. 66.4 v .6 .2 a . 6.3 v .3 .25 a . 6.3 v . 1.4 a . Table top connections. Size $5 \times 4 \times 4$ ins. Brand new boxed. 35/-. P. \& P. 7/6. Special prices for qtys. |
| :---: |
| | |
| | |

| SPECIAL OFFER OF PARMEKO NEPTUNE SERIES TRANSFORMERS ALL PRIMARIES TAPPED $115-230 v$
 Sec. 6.3v. CT 5a. 6.3v. CT 3a. 6.3v. СT 2a. $37 / 6$ P. \& P. $5 /$-.
 S=c. $9.10 \mathrm{v} .0 .5 \mathrm{a} .6 .3 \mathrm{v}, 3.5 \mathrm{a} .6 .3 \mathrm{v} .1 \cdot 2 \mathrm{a}$. $19 / 6 \mathrm{P} . \&$ P. $4 /$-. Sec. $400-0-400 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}$. $50 /-\mathrm{P} . \&$ \& P. $7 / 6$.
 Sec. $350-0-350 \mathrm{v}$. $100 \mathrm{~m} / \mathrm{a}$. 3-8-12-18v, 5a. 63.19.6 P. \& P.8/6.
 Sec. 6.3v. CT 5a. 6.3v. 1.2a. 6-3v. 1.2a. 27/6 P. \& P. 5/-.
 Sec. 6.3 v .1 .8 a .6 .3 v . 1 a .6 .3 v . 1a. $17 / 6 \mathrm{P}$. \& P. $3 / 6$.
 Sec. 29-5-32.5v. 32/6 P. \& P. 5/-.
 Sec. 4 v . 0.5 a . four times. $15 /-$ P. \& P. $3 / 6$.
 Sec. 6.3 v . CT 0.6 a .6 . 3 v .0 .6 a . $12 / 6 \mathrm{P}$. \& P. $3 / 6$. |
| :---: |

Pri 200.220-240v. Sec. 250-0-250v. 50 M

WILLESDEN POTTED TRANSFORMER Pri. 10-0-200-220-240v. Sec. 2.5v 5a four times. 50/- Carr. $8 / 6$

T.E.C. $240-110 \mathrm{v}$. ISOLATION TRANSFORMERS

 Pri Tapped 10. 0. 200. 220. 240v. sec. Tapped $110-112.5-115 \mathrm{v}$ Conservatively rated at 9 amps. Tropicalised open frame type.Terminal Board connections. Size $9 \times 9 \times 7$ ins. Weight 60 lbs. 615. Carr. $17 / 6$.

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri 240 v . Sec. 240v. Centre tapped,
2 kva . Mounted in strong metal case. Size $1 \mathrm{i} \times 9 \times 8$ ins. 2 kva . Mounted in strong metal case. Siz
Conservatively rated. $\mathbf{6 2 7}, 10.0$. Carr. $30 /-$.

ENGLISH ELECTRIC FUSES

 Standard Itins. Type Glass Fuses. IOa.. 3a. $150 \mathrm{M} / \mathrm{A}$. 50 fo
$10 / 6$. P. \& P. I/6.

AIR MINISTRY 2-IN. ROUND METERS $0-20$ amps D.C. 12/6. 0.40 amps D.C. $15 /-, 0-50$ vole D.C. $15 / .$.
$2 / 6$ P. \& P.

Samson's
9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

$240 \mathrm{v} .-110 \mathrm{v}$. or AUTO TRANSFORMERS Two-pin American Sockets or terminal blocks. Please state which type required.
Type Wotts Abprox. W

G.P.O. L.T. SUPPLY UNIT

Type 19. A.C. input, tapped $200-250 \mathrm{v}$., 100 - 120 v . D.C. output,
12 or 24 volts, very conservatively rated at 3 amps. Can be connected to give 12 volts 6 amps. Built into strong metal case size $19 \times 7 \times 6 \neq$ ins. With fitted fuses. On/off switch.
Socket outlet. Circuit supplied, $\mathbf{4 7 . 1 9 . 6 \text { , carriage } 1 5 / - .}$

AIR MINISTRY SLIDING RESISTORS

 Fixed type. $7 / 6$. P. \& P. 2/6. 7580 0.7a. Twin tube 37/6. P. \& P.
$6 / 6.30 \Omega$ I.5a. Right angle geared drive. 19/6. P. \& P. $4 / 6$.
 1500
$2 / 6$.

ZENITH DOUBLE-WOUND VARIABLE TRANSFORMERS
Input 240 V ., outpur $0-80 \mathrm{~V}$., 15 amps or $0-40 \mathrm{v} .30 \mathrm{amps}$. Open-
type slider control. 508 Size: length 2 ft 8 ins. $\times 8$ ins. $\times 7$ ins type slider contro

SPECIAL OFFER A.E.R.E. TRANSFORMERS Pri 205, $225,245 \mathrm{v}$. sec. $300 \mathrm{v} .37 .5 \mathrm{~m} / \mathrm{a}$. twice. 4 kv . D.C. wkg-
4v. 1a. $4 \mathrm{v} .0 .3 \mathrm{a} .15 / \mathrm{P}$. P. 8 P. $6 / 6$. Pri 200, 220, 240v. sec. tapped. $370,390,410 \mathrm{v} .6 \mathrm{~m} / \mathrm{c}$. C. core.
$10 \mathrm{~V} . \mathrm{P}$. 10/.. P. \& P. 3/6.
Pri $200,220240 \mathrm{v}$. Sec. $350.0-350 \mathrm{v} .25 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. Ia. 6.3 v .0 .6 a
Sealed potted type. $15 /=$ P. \& P. $4 / 6$.

VENNER SYNCHRONOUS BIO-DIRECTIONAL
$220-240 \mathrm{v}, 50$ cycles 40 r.p.m. automatically reverses wherevor spindle stop is placed overall size $2 t \times 2 \times$ ling. Spinde forward and reverse motion. 12/6. P. \& P. $2 / 6$.
 spindle. 0.9 in . and 0.6 in . overall. Size ${ }^{3} \times 3 \neq 2 \mathrm{in}$. As used in
hot air blowers, new and boxed. $10 / 6$. ${ }^{3}$. $\mathrm{P} .3 / 6$.
 60 deg. C. contacts N.O.1, ne
$12 \mathrm{in} . \mathrm{stem} .12 / 6$. P. \& P. $4 / 6$.

SPECIAL OFFER OF GRESHAM CHOKES

$15 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50 \mathrm{hm}$. "C", Core Potted Type. 62/6. Carr. 10/\%
$10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{hm}$, "C" Core Potted Type. $55 / \mathrm{C}$ Carr. 10/
 20H $350 \mathrm{~m} / \mathrm{a} .200$ ohm. "C'C" Core Potted Type. 69/6. Carr. 12/6.

EXIDE GLASS ACCUMULATORS
10 Volt. 5 A.H, Size: Height $5 \times 7 \times 2 \neq$ ins. Supplied Lighting Alith eharging instructions. Ideal for Emerzency

Send I/- (5p) for New Comprehensive I.C. Semiconductor price list (24 pages)
INTEGRATED CIRCUITS
NEW LOW PRICES • FULLY GUARANTEED rea ra

for RELAYS P.O.TYPE 3000 BUILT TO YOUR SPECIFICATION Contacts up to 8 changeover \star QUICK DELIVERY \star KEEN PRICES - DUST COVERS-QUOTATIONS BY RETURN

EST.

1921

 $0.5 \mathrm{mfd} .2 .5 \mathrm{kV}, 90 \mathrm{p} ; 1 \mathrm{mfd}, 2 \mathrm{kV}$, 90 p . Post 10 p on each
From Stock: P.O. Standard Equipment Racks. 6 ft . U channel sides, drilled for 19 in panels. Heavy Angle Base 69.50 each. Cge. 61 .
GEARED MOTORS. I r.p.m. or ${ }^{3}$ r.p.m. ${ }^{4}$ watts very powerful, reversible 24 v .
A.C. $£ 1.75$, post 15 p , can be operated from 230 v . with our EI Transformer. Post $\mathbf{2 5 p}$. ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Fahr., 250 v. 10 amp A.C. Ideal tor greenhouses, etc., $\mathbf{6 1 . 7 5}$, post 25p.
 1f high. Weight 31 oz. Illuminated by 28 sv single contact midget flanged lamps. 08 amp.
E 2.50 each. Types available 0 to 9 or A to K or L to Z can be assembled in banks of 5 to your own requirements. E 13.50 each

EQUIPMENT WIRE P.V.C. covered $\mathcal{E 4}$ per 1,000 yds. $7 / .0076,1 / .024,14 / 0048$
type I and 2 , all colours. I $1 / 0076$ type 11 , Red and Natural only \& 10 per 1,000 yds. MINIATURE BUZZERS, 12 volts, with tone adjuster 40 p each as illustrated. LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size $5 S$
4 pole 11 way and off $\mathbf{6 5 , 5 0 .} 24$ pole 11 way and off 610.50 .54 pole On/Off 67.50 . SINGLE FUSE HOLDERS. Belling Lee L356 one hole fixing. 13p each. VEEDERRROOTMAGNETIC COUNTERS WITH ZERO RESET 800 COUNTS
PER MINUTE. 6 Figures. General Purpose TYpe. 110 v . A.C. 63.25 post 15 p.

HIGH SPEED COUNTERS

$3 \mathrm{in} \times$.1 in. 10 counts per second, voltages are available, 6 v.. 12 v ., Also supplied with auxil

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale.
Small size modern instrument, complete with carrying strap and Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery
ready to work. For 250 volt pressure only. List Price E 19.10 .0 . ready to work. For 250 volt pressure only. List Price $£ 19.10 .0$
Our Price $£ 5.19 .6$ plus $4 / 6$ post/packing. Our Price $£ 5.19 .6$ plus $4 / 6$ post/packing.

Rhode \& Schwarz ESM300 UHF Receiver AM/FM $85 \mathrm{MHz}-300 \mathrm{MHz}$
Rhode \& Schwarz BNI5031 Field strength test receiver AM/FM $90 \mathrm{MHz}-470 \mathrm{MHz}$ Rhode \& Schwarz BN4151/2"60 Noise generator $3 \mathrm{MHz}-1000 \mathrm{MHz}$.
Rhode \& Schwarz BNI 8042 Unbalanced standard Attenuator $0-100 \mathrm{db} 50 \mathrm{ohm}$ $0 \mathrm{MHz}-600 \mathrm{MHz}$.
Rhode \& Schwarz BN33664/50 UHF Load resistor 100 watt 50 ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$. $\begin{array}{ll}\text { Rhode \& Schwarz BN4521 Vibration Meter } \\ \text { Rhode \& Schwarz } & 30 \mathrm{~Hz}-12 \mathrm{KHz} \text {. } \\ \text { ZD Diagraph. }\end{array}$
Rhode \& Schwarz Acvance O Diagraph.
$\begin{array}{lr}\text { Acvance } Q \text { meter type } T . I . & 100 \mathrm{kHz}-100 \mathrm{MHz} \\ \text { Marconi } Q \text { meter type } 329 \mathrm{G} & 50 \mathrm{kHz}-50 \mathrm{MHz} \\ \text { Marconi Q meter type } 886 \mathrm{~A} & 15 \mathrm{MHz}-170 \mathrm{MHz}\end{array}$
DOUBLE BEAM OSCILLOSCOPE RHODE SCHWARZ POLYSKOP
DC 7 MHz CALIBRATED A
CONDITION, ONLY E65 P.P. $£ 2$ \qquad (SWOB 2)
With accessories for sale or hire.
Airmec portable RF sirnal generator. AM/FM Type (T212. Specially designed for fleld use for mains or 12 v operation. Frequency range 85 kHz to 30 MHz . Accurate scale
calibration. Variable output from 1 nicro 100 mV \qquad
TEKTRONIX 551 PERFECT CONDITION
0

Marconi TF867 Standard RF Signal Generator, range 15 kHz to 30 MHz . Variable output from 4 micro V to ${ }_{4}$ Volts. Extremely accurate attenuator, high output stability and discrimination make the generator very
suitable for precision measurements on networks and suitable for precision measurements on networks and
fllters. Modulation up to 100% may be applier at fllters. Modulation up to 100% may be applier at
400 or 1000 Hz . Built in crystal calibrator. Offered in 400 or 1000 Hz . Built in crystal
flrst class condition. l'rice $£ 175$.

Precision Multi Turn Indicating Dials suitable for
10 turn Helical Pots, machined from solid dural with 10 turn Helical Pots, machined from solid dural with the skirt engraved 0 to 100 and inner dial engraved
0 to 10 sultable for standard t inch spindles, these small dials are as easy to flx as screwing on an smatrume kias size $1 \frac{1}{2}$ in. for skirt, $1 \frac{1}{2}$ in. dia.
instrument
for counter knob depth $\frac{1}{2}$ in. Brand new, only $15 / 6$, for counter knob depth $\frac{\mathrm{in} \text {. Bran }}{\mathrm{A} \text { General Controls Mamufacture. }}$

SCHOMANDL FREQUENCY

 METER TYPE FD.I AND Range । KHz to 900 MHz an approved standard for telecommunications equipment. Offered calibrated to manufacturers specifications.CROYDON INSTRUMENTS Precision Kelvin Wheatstone Bridge type KWI. Measurements can be made type 0.00 . Measurements an ohm. 100,000 ohms
from 0.000 ins Sullivan Galvo. four contains insitu Sullivan Galvo, four decade ranges, four standards and six
Kelvin divide/multiply ratio's offered in Kelvin divide/muttiply ratio's offered in

excellent condition ready for use | excellent |
| :--- |
| Price E 95 |

MARCONI 12 KHz QUARTZ CRYSTAL contained in B7G envelope with flying lead connections. Brand new only $12 / 6$ each.

MORGANITE GLASS ENCLOSED RESISTORS
tolerance 10%. $25 /-$ per carton of four.

WATSON MARLOW ORBITAL

LOBE PUMPS
Specially designed for corrosive liquids etc. Rated output against 10 ft . head-
110 G.P.H. direction of flow reversible. 110 G.P.H. direction of flow reversible.
Supply 240 v . A.C. mains. Nett weight 14 16. Supplied as new. Price $£ 12.10 .0$
P. \& P. $10 /$. List $£ 22.10 .0$.

Voltage and Current regulators heavy duty rheostats-I ohm rated at 10A. each. Also 1.5 ohm at 7A., 12/6, p.p. 1/6.

Lucas diode rectifiers-\{ull wave bridge rectifier mounted on special heat-sink.
$50 \mathrm{~V} .-60 \mathrm{~V}$. operation rated at 50 A . Has many uses for heavy duty charging plants,
plating rectifiers, etc., etc. Per pair E8 plating rectifiers, etc., etc. Per pair $\mathbf{E 8}$
(two complete bridge rectifiers), p.p. $7 / 6$.

GEC UNISELECTOR. GPO pattern. 8 BANK 25 POSITIO
BRIDGING 75 ohm
WIPERS. Brand BRIDGING WIPERS. B
Boxed. Only $\mathbf{E 2} \cdot 50$ P.P. 22p.

RF SIGNAL GENERATORS AM

 AVO Ltd. Model CT 378. Good quality AM generator $2-225 \mathrm{MHz}$ in seven ranges -talibrated output level I uV to 10 V frequency range directly calibrated withset level meter. Small size modern instruset level meter. Small size modern instruleads and mains lead for price only 635 .
Airmec Led. Model CT- 212 AM/FM signal Airmec Ltd. Model CT-212 AM/FM signal
generator 85 kHz to 32 MHz directly generator 85 kHz to
calibrated output level calibrated MHz diry to IV deviation $0-30 \mathrm{kHz}$, fully portable
for 24 DC and 240 Y . AC operation in first class condition. Our price, only $\mathbf{\& 4 5}$.

TEKTRONIX 581 WITH TYPE 80

 PLUG IN AND PROBE AS NEW CONDITION
WANTED. GOOD QUALITY TEST EQUIPMENT

CAMBRIDGE INSTRUMENT Co, Led. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate

Cambridge Dynamometer A.C. test set $0-225^{W}$ Watts $/ 0-330^{\circ} \mathrm{V} / 0-30^{\circ} \mathrm{V}$
Tinsley Universal Shunt type 4309 C
Tinsley Vernier Potentiometer type 4363E Auto

Digital Voltmeter Solartron LM902-2 four digit readout
Solartron A.C. Convertor LM 903 matching unit for LM902
Hewlett Packard DVM 405CR four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable 0.1000 v .

CANNON XLR AUDIO PLUGS AND SOCKETS 3 POLE and 6 POLE AVAILABLE EX STOCK BRAND NEW

SOLARTRON YF252/NSL

 PRECISION AC MILLIVOLT METER Range 1.5 milli volt (for full scale deflection) to 15 volts in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models. Price only $£ 75$.
LOW VOLTAGE POWER SUPPLY

UNITS:
To supply 12-15-20-24 and 30 voles at continuous 5 amps with current contral and ammeter employs silicon heavy duty very suitable for light duty plating and charing duties. 240 v . $A C$ supply, fully fused. Small size only $10 \times 7 \times 6$ in. Offered brand new units. Price $£ 12.10 .0$.

MARCONI 1094 A/S

HF SPECTRUM ANALYSER 3-30MHz
LATE MODEL FOR SALE OR HIRE

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new. Only $7 / 6$. Special price for quantities.

BARGAIN OFFER

200-yard reels equipment wire, size 1/024, STC quality, various colours. Brand new
reels only $15 /$. P. $\& P$. $2 / 6$.

HUNTER MAGSLIPS 3 inch Series,
Type E-18-V/2. Very suitable for servo Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials
and ocher applications for 50 volt 50 cycle operation. Offered brand new in transit operation. Offered brand ne
boxes, at only $65 /-$ each.

MUIRHEAD PHASEMETER

D-729-bm. Complete with supply and

$$
\begin{aligned}
& \text { D925A Tunable Filter. Offered as new, } \\
& \text { with manual. Price } £ 275 \text {. }
\end{aligned}
$$

ADVANCE DC STABILIZED

P.S.U. TYPE PM8

Fully stabilized power module PM8 I5 to 30 volts 5 amps offered brand new, Price $£ 25$

50 DECO IMPULSE COUNTERS 4 DIGIT RESETT
10 Impulses per second. 27MA 22OV COILAC/DC OFFERED BRAND NEW AT 40/- EACH

P.F. RALFE
 10 ChAPEL ST. LONDON N.W. 1
 Phone 01-723 8753

EIMAC SK-600A. Air spaced Valve Holders suitable for 4×250, etc. Power tetrodes, brand new, boxed, complete with finish. Normal list price $130 /$, Our price $50 /$ -
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment the Catalogue Nos. are 2202A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the price is $\mathbf{4} .19 .6$. Limited quantity only Also: 2203A, 2200A, 2202A.
Resolved Components Indicator VP 253/la. Solartron Low Frequency Decade Oscillators. Solartron OS 103 and associated equipment. 2 Phase Low Frequency Oscillator, type Bo 567. Solartron. Solartron Synchro test set. type CT 428. Solartron AC Millivolt meter. Precision. TypevF 252.
AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v ., frequency up to 250 MHz at 50 watts. Small size only, 2 in. 3 in. Offered
brand new, boxed. Price $30 /-$, inc. P. \& P. RECEIVERS COMMUNICATIONS Marconi CRI50. 2-60 MHz as new. . $£ 60$ Hallicrafters $\$ 27 \mathrm{C} 110-220 \mathrm{MHz}$ HRO M× $500 \mathrm{KHz-30MHz}$.
Redifon R 50 M . $13 \mathrm{KHz}-32 \mathrm{MHz}$
Reece Mace Double conversion
$60 \mathrm{KHz}-31 \mathrm{MHz}$
660
COAXIAL SWITCHES
American Manufacture
Suitable for aerial changeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniacure Vacuum drawn type No vac operation connections BNC and N types.

Hilger \& Warts Microspin \times Band Bridge Hilger \& Watts Microspin X Band Bridge.
Type W957. Microspin Proton Head Type W957. Microspin Proton Head
Frequency Meter. Type FAZO8. Microspin Modulator. Type FA 210.
Microspin 1 cm Wave guide directional couples, associated measuring equipment. High Voltage Klystron Power Supply Units. Type FA 80.
Hilger \& Watts Absorbance Convertor, and many other items of interest offered. Brand new equipment.

LEAD-ACID EQUIPMENT

Transparent casing. Size $2 \frac{1}{4} \times 5 \times 7$ in. Offered brand new and boxed, 2 batteries per box. complete with links and full instructions. Can supply voltages in the
range from $2-20 \mathrm{v}$. Price $45 /-$, incl. P. \& P.

Burndept RF Plugs still available. These hard to find plugs are used on a multitude of equipment, especially Londex aeria 2 for $10 /$, inc. p.p.
Nife traction Batteries Nickel Iron. 1.2 V per cell rated at 180 A.H. Sold in crate of three cells or crates of five cells. E4 per cell. Guaranteed best buy.

BT9I-500R THYRISTORS

500 PIV Max/ rect. Current 16 amps.
Guaranteed perfect. Price 25 - each.
COLVERN HELICAL POTS
IK ohms
5 K ohms
$\left.\begin{array}{l}\text { 5K ohms } \\ 10 \mathrm{~K} \text { ohms } \\ 20 \mathrm{~K} \text { ohms }\end{array}\right\}$ ALL TEN TURN
20 K ohms
30 K ohms
PRICE 35/-
Wayne Kerr Impedance Bridge B52I. Price 645 .
Electronic Voltmeters for low level signal sources.
PYE High Impedance DC Amplifier for measurements better than 20 UV to 10 volts centre zero. Price 656 Phillips GM 6010 I mV FSD to 300 V in 12 ranges. Price 645.
Phillips PM 2520 Im FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to 1 MHz . Price $E 45$.
Dawe Model 616A transistorised Volt-
meter 10 mV FSD to 300 volts. In 10 meter 10 mV FSD to 300 voles. In 10
ranges. $£ 27$. ranges. $£ 27$.
Levell Model TM2A transistor AC Volt-
meter 1.5 mV FSD to 500 volts. $\mathbf{E 2 2}$. meter 1.5 mV FSD to 500 volts. $\mathbb{2 2 2}$.
Solartron VF-252. AC millivoltmeter 1.5 Solartron VF-252. AC millivoltmeter 1.5
mV for FSD to 15 V 30 M ohms impedmV for FSD to 15
ance. Price $£ 65$.

[^16]GEARED MOTORS
"Parvalux" Reversible 100
RPM Geared Motor. Type
S.D.I4, 230/250v. A.C. 22 ib.in.
in spindle. Ist class condition.
6750 each. P. \& P. 50p. Also
limited number only as above.
Brand New. E12.50 each. P. \&P. 50p ELECTRO CONTROL (CHICAGO). Shaded pole $240 \mathrm{v} .50 \mathrm{~Hz}, 110 \mathrm{rpm}, 16 \mathrm{lb} / \mathrm{in} . \not 22 \cdot 25 . \mathrm{P} . \& \mathrm{P} .25 \mathrm{p} .200 \mathrm{rpm}$ $10 \mathrm{lb} / \mathrm{in} . \pm 2.50$. P. \& P. 25 p
MYCALEX. Open frame, shaded pole motors. 240 v .
50 Hz .7 rpm .28 lb . in .80 rpm .12 lb ./in. $£ 2 \cdot 25$ each. 50 Hz .7 rpm .28 lb . /in. 80 rpm .12 lb ./in. $\not \mathbf{2} 25 \mathrm{each}$.
$\mathrm{P} . \& \mathrm{P} .25 \mathrm{p}$. P. \&P. 25 P. SYNCHRONOUS MOTORS. $240 \mathrm{v}, 50 \mathrm{~Hz}, 2$ watts. 88 p each. P. \& P. 25p.
KLAXON, HEAVY DUTY. 240 v . 50 Hz . 250 rpm Continuous rating. Torque $45 \mathrm{lb} . / \mathrm{in}$. Weight 361 bs . E18.50.P. \& P. £l.50.
"CROUZET" TYPE 965 . $115 / 240 \mathrm{v} .50 \mathrm{~Hz} .47 / 68$ Watts.

 TERED ANODE POLARISED CAPACITORS.
 30v. DC size: " dia. One wire each end. Also few only
 Wire-ended, size: $\Omega^{\prime \prime}$ dia. (dise) T.A.G. and Union
Carbide 15 mfd . 10 v . All types $£ 1-25$ per doz. (mixed or as required). Carriage paid.
VINKOR POT CORE ASS. TYPE LA.2103. Normal price 61.48 . Our price 75p each. Special quote for AMPEX. Dynamic stick microphone, high impedance, low noise. Offered well below makers price at $\mathbf{\ell 8} \mathbf{5 0}$.
P. \& P. 25p. Special offer of AMPEX professional tape heads, mu -metal shrouded. (Designed for model AG20). Full
track record, or playback, $\mathrm{E4} 50$. Erase head $£ 2.50$. Set of track record, or playback, $\mathbf{£ 4} \mathbf{5 0}$. Erase head $\mathbf{£ 2 . 5 0}$. Set of
-3 with mounting bracket and cover $£ \mathbf{1 0 . 5 0}$. Half track record or playback only, $£ 450$ each or $\mathbf{£ 8} \mathbf{0 0}$ per pair with bracket and cover. Carriage paid.
SYLVANIA CIRCUIT BREAKERS
ing a fast shermal response between 80° and $180^{\circ} \mathrm{C}$ 10 amp . at 240 v . continuous. Fault currents of 28 amps .
at 120 v . or 13 amp at 240 v . silver contacts. Supplied at 120 v . or 13 amp . at 240 v . silver contacts. Supplied in any of the following opening temperatures: 90 . 95 ,
$100,115,120,125,130,135,140,145,150,160,170$, 175. 3 for $£ 1$. 00 . $£ 3.50$ per dozen.
"TEDDINGTON" CONTROLS THERMOSTAT TYPE TBB. Adjustable between 75° and $120^{\circ} \mathrm{C}$. Circuit cuts in again at 3 below cut-out setting. $42^{\prime \prime}$ capillary and sensor probe. The thermostat actuates a
15 amp . 250 v . c/o switch. A second single pole on/off switch is incorporated in the adjustment mechanism.
88 p . Carriage Paid.
Painton Rotary Switch. Type 72 (to
P.O. spec. RCl416). 3 pole, 3 position,

2 bank. Offered at less than half
"GOYEN" PRESSURE SWITCH. Incorporating (a max. of approx. $\frac{1}{2}$ p.s.i.). A single pole change-over (a max of approx. $\frac{1}{2}$ p.s.i.). A single pole change-over
switch rated 15 amps., 250 v . is atcuated. Air inlet tube witch rated 15 amps. 250v. is actuated. Air inlet tube
$\frac{y^{\prime \prime}}{6}$. On Projection $1 \frac{1}{6}$. Overall size: dia. $3 \frac{1}{6}$ ", depth $2^{\prime \prime}$

ither locking or spring-return, as required determined by reversing fixing plate. Attractive plastic prestle. Available red, green, grey, cream. 60p each. Carriage paid
HONEYWELL (USA) Sub-miniature 2 bank panel
 Carriage paid.
"HONRe paid. 10 amp . c/o. The side panel is insulated. End plate size: $2^{\prime \prime} \times ?^{\prime \prime}$. \&l 50 per doz. Carriage Paid.
MARCONI SANDERS Micro-wav
No. 6442. Maker's list price $£ 75$. Our price $\mathbf{6 7 . 1 0 . 0}$. BRAND NEW
ALTERNATORS BY
ENGLISH ELECTRIC
All outputs are at $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$
Type Input V. C.P.S. Ph.

| 220 | 50 | 3 |
| :--- | :--- | :--- |
| $380 / 440$ | 60 | 3 |
| 115 | 60 | 3 |
| 220 | 60 | 3 |
| 220 | D.C. | |
| 110 D.C. | | |

All these types give the same dual outputs as | below | | |
| :---: | :---: | ---: |
| V | Ph. | V.A. |
| 115 | 3 | 50 |
| 85 | 1 | 300 |
| rriage extra | | | The following types each have 4 separate outputs (all $\begin{array}{cccc}\text { at } 400 \text { c.p.s. } \\ 7 & 380 / 440 & 50 & 3 \\ 8 & 110 & \text { D.C } \\ 9 & 24 & \text { D.C. } \\ 10 & 110 & \text { D.C. } \\ 11 & 220 & \text { D.C. }\end{array} \quad \begin{aligned} & 115 \mathrm{v} .28 \mathrm{~W} ; 115 \mathrm{v} .250 \mathrm{~W} ; \\ & 20 \mathrm{v} .6 \mathrm{~W} ; 28 \mathrm{v} .250 \mathrm{~W} ; \\ & 115 \mathrm{v} 28 \mathrm{~W} ; 85 \mathrm{v} .250 \mathrm{~W} ; \\ & 20 \mathrm{v} .6 \mathrm{~W} ; 15 \mathrm{v} 250 \mathrm{~W} \\ & 115 \mathrm{v} .28 W ; 115 \mathrm{v} .250 \mathrm{~W} ; \\ & 20 \mathrm{v} .6 \mathrm{~W} ; 28 \mathrm{v}, 250 \mathrm{~W} \\ & 115 \mathrm{v} .28 \mathrm{~W} ; 115 \mathrm{v} .250 \mathrm{~W} ; \\ & 28 \mathrm{v} .250 \mathrm{~W} ; 20 \mathrm{v} .6 \mathrm{~W} \\ & 115 \mathrm{v} .28 \mathrm{~W} ; 85 \mathrm{v} .250 \mathrm{~W} ; \\ & 20 \mathrm{v} .6 \mathrm{~W} ; 115 \mathrm{v} .250 \mathrm{~W} .\end{aligned}$

WESGROVE VIDEO TAPE RECORDERS. Unused but offered without guarantee to personal callers only
at the extremely low price of $£ 60 \cdot 00$ each. The following features are incorporated: Fixed heads (pre-heated reversible), speed will take $7,600 \mathrm{ft}$ triple play, 26 transistors (22 silicon). will take $7,600 \mathrm{ft}$. triple play, 26 transistors (22 silicon).
F.M. pulsed sound. Camera and mike inputs. $405 / 625$. A real bargain for the enthusiast! Also available a few decks complete with heads $£ 15.00$ each. Also cameras
 able 75p each
NEW HYSTERESIS MOTORS BY WALTER
 rating, outpur 2.0 oz. $/ \mathrm{in}$. Size: $3 \frac{2^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$. Spindle
$\mathrm{I}^{\prime \prime} \times \mathrm{y}^{\frac{3}{1}}{ }^{\prime \prime}$. Weight 3 lb . Maker's price in region of $£ 22.50$ Our price $£ 6.50$ each. Carriage Paid. VACTRICPRECISION D.C. MOTOR. Type \times O7PI9. 10v. D.C. 0.66 amp. 8000 rpm. $30 \mathrm{gm} / \mathrm{cm}$. Size 7 . Original VACTRIC PRECISION DC MOTOR AND COUPLED GEAR HEAD. Motor type IPPDI 28 volts $5000 \mathrm{rpm} 120 \mathrm{~mm} / \mathrm{cm}$. Gear head type 15 HIO 28 volts, $5000 \mathrm{rpm}, 120 \mathrm{gm} / \mathrm{cm}$. Gear head rype 15 HI 102
ratio $300-\mathrm{I}$. Torque 10 lb . in . Makers packing. $\mathrm{E} \mid 4.50$ Carriage Paid.
MYCALEX MAINS. Shaded pole, 1425 rom. ${ }^{3 \prime \prime}$ spindle. 2 for $£ 1.25$ Carriage Paid.
MAINS INDUCTION MOTOR. Open frame, $\frac{3}{16}{ }^{\prime \prime}$ spindle, weight ${ }^{3} \mathrm{lb}$. Powerful. 88p each. P. \& P. I2p E.M.I. PROFESSIONAL TAPE MOTOR. $110 / 240 \mathrm{v}$. 50 Hz .3000 rpm , reversible, silent running. $4^{\prime \prime}$ dia. \times $4 \frac{1^{\prime \prime}}{2}$ long. Spindle ${ }^{\frac{5^{\prime \prime}}{\prime \prime}} \times 2^{\prime \prime}$. We 6.00 per pair. P. $\&$ P. 50 p each.

PRECISION AND SERVO POTENTIOMETERS PRECISION LINE (USA). Size $15.300 \Omega 2 \pm 5 \%$ LIN. Continuous track plat. wipers set at $180^{\circ} . \overline{\mathbf{E 2}} \mathbf{2 5}$ each. Carriage Paid.
PENNY \& GILES. Size 15. 500Ω. Type Q26201-72/1. Continuous track. $£ 2.50$ each. Carriage Paid.
BECKMAN. Type AS.506, 10 turn. Tol. $\pm 1 \%$. LIN Tol.
 copped encased. $£ 1 \cdot 25$ each. Carriage paid.
MARCONI SAUNDERS Mirro-wave
MARCONI SAUNDERS Micro-wave switch. Type No. 6442 . Maker's list price $£ 75-00$ Our price $£ 7.50$
CRYSTAL OVENS G.E.C. Type QC940. $6 / 12 \mathrm{v}$., AC/ CRYSTAL OVENS G.E.C. Type QC940. $6 / 12 \mathrm{v} ., \mathrm{AC} /$
$\mathrm{DC}, 75^{\circ} \mathrm{C}$. Takes $22^{\prime \prime}$ min. crystals. Similar to above 12 v . DC, $75^{\circ} \mathrm{C}$. Takes $21^{\prime \prime}$ min. erystals. Similar to above 12 v .
only by SNELGROVE (Toronto), $\mathbf{E 2} 75$ each, carr. paid. BERCO. Rotary rheostat. Type L25. $100 \Omega .25$ wate. $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ dia. $\frac{1}{2}^{\prime \prime}$ Rotary spinde. 50 p each. 13p Carriage.
PAINTON BOURNS TRIMPOTS. $1 \mathrm{k}, 2 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$, $10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}, 500 \mathrm{k}$. Other Trimmer pots in 5 tock. RIL' IOk. MORGANITE Ik. MEC 200Ω (tubular) 50Ω. Any 3 for $\notin 1 \cdot 10$ carr. paid.
"TEXAS" Unmarked, Tested, TO5 Geranium generalpurpose transistors. 24 for $\notin 1.00$ P. \& P. 13p. Large quantity available.
CINEMA ENGINEERING Precision " Standard" Wire Wound Resistors. Extremely high stability over very wide temperacure range. $1 / 6$ Watt $0.25 \% ~ 30 \mathrm{~K}$,
75 K 30 p ea. $1 / 3 \mathrm{Watt} 0.05 \% 9 \mathrm{~K}, 10.02 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}$, 60 p ea. $0.1 \% 100 \mathrm{~K}, 250 \mathrm{~K}, 625 \mathrm{~K}, 60 \mathrm{p}$ ea. $0.25 \% 477 \mathrm{~K}$, 60 p ea. $0.5 \% 500 \mathrm{~K}, 60 \mathrm{p}$ ea. $1 \% 500 \Omega, 850 \Omega, 3,770 \Omega$,
$3 \mathrm{~K}, 4 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 50 \mathrm{~K}, 90 \mathrm{~K}, 375 \mathrm{~K}, 450 \mathrm{~K}, 60 \mathrm{p}$ ea. $\begin{array}{ll}3 \mathrm{~K}, 4 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K} .15 \mathrm{~K}, 50 \mathrm{~K}, 90 \mathrm{~K}, 375 \mathrm{~K}, 450 \mathrm{~K}, & 60 \mathrm{p} \text { ea. } \\ 1 \mathrm{Watt} & 0.05 \% \\ 200 \Omega & 60 \mathrm{p} \\ \text { ea. } 0.1 \% & 9.65 \mathrm{~K}, 14.6 \mathrm{~K} \text {, }\end{array}$
 60 p ea. $0.1 \% 20 \mathrm{~K}, 1.35 \mathrm{meg}, 1.5 \mathrm{meg}, 2 \mathrm{meg}, 3.3 \mathrm{meg}$,

 | ± 1.50 ea. $0.5 \% 5.9 \mathrm{meg}$. |
| :--- |
| $5 \mathrm{meg} .10 \mathrm{meg}, ~$ |
| 1.50 ea. |

RIL Type $2 \pm 0.01 \% 6.666 \mathrm{~K} \notin 1.00$ each.
RIL Type $9 \pm 1 \% 560 \Omega 13 \mathrm{p}$ each.
ALMA
ALMA $\pm 0.05 \% 50 \mathrm{~K} 75$ p each.
ALMA
SHALCROSS $0.5 \% 3400 \Omega 30 p$ each.
ELECTRO.THERMAL PRECISTOR ELECTRO-THERMAL PRECISTOR $\pm 0.1 \% 2.4 \mathrm{~K}$
50 F each.
OXLEY OXLEY P.T.F.E. BARB TERMI NALS. Lead thro
$\frac{7}{16}$ or ${ }^{\frac{1}{6} " \text { Stand-Off } 11 / 32^{\prime \prime} \text { or } \frac{1}{2} \text { " } £ 2 \cdot 75 \text { box of } 100 \text { all types }}$.
 insulators, length in $^{\prime \prime}$ or per 100. Carriage Paid. overall length $\Psi^{\prime \prime}$, box of $100, ~ £ 1 \cdot 00$ Type TLSI BB
overall length, $l^{\prime \prime}$, box of 100 , $£ 1.50$ Carriage Paid. overall length, 1 ", box of $100, \pm 1.50$ Carriage Paid

Perspex enclosed. pleLAYS
Perspex enclosed. plug in, with base. Size $1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times \frac{3}{4 \prime \prime}^{\prime \prime}$
$M Q 308600 \Omega 24 \mathrm{v} 4 \mathrm{c} / \mathrm{O} .60 \mathrm{p}$ ea., $65.00^{\text {per }}$ per doz MQ 50810.000Ω l00v. $4 \mathrm{c} / \mathrm{c}$. 50p ea.. $\mathrm{E4} 50$ per doz. "ISKRA" 240 V.A.C. 3 c/o. 6 amp contacts. Size approx.: ${ }_{2} \times{ }_{4} \times$.88p.
SIEMENS Miniature, plug in, Perspex cover, 1000Ω
 A. ${ }^{7}$ ea., ea. $470 \Omega 12 \mathrm{v} .4 \mathrm{c} / 0 \mathrm{7}$, plug in, $50 \Omega 26 \mathrm{v} .2 \mathrm{c} / \mathrm{o} .63 \mathrm{p}$ ea. $1,260 \Omega 248 \mathrm{v} .6 \mathrm{c} / \mathrm{o}$. 83 p ea.
CLARE. Sealed relay. Type RP3716G4. $£ \mathrm{I} \cdot 25$ ea CLARE ELLIOTT. Sub-min 675 S2 24v. Type WJ 2 c/o. Similar to above. $340 \Omega 17 \cdot 6 \mathrm{v}$. 75 p ea.
MAGNETIC DEVICES. Sub-min $24 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, \mathrm{f}^{\prime \prime} \times{ }^{\prime \prime} \times$ + 桩. 75p e
BOURNE. Trimpot sub-miniature relay 18 v . $1,000 \Omega$
 63p ea.
"B. \&
B. \& R." $3 \mathrm{c} / \mathrm{o} .10 \mathrm{amp}$. contacts (silver) operates on 2 volts D.C. Draws approx. I amp. Size: 2 " $\times 1 \frac{1 x^{\prime \prime}}{} \times 1 \frac{1}{8}$ ". DIAMOND "H" sealed relay. Type BRIISCIT-IC 26v. terminals. Robust. 75p ea. SCHRACK. Octal base 24v. 2 HD c/o. Perspex enclosed, 63p. $\quad 1,000 \Omega 26 v, D C$. I make en Size: $5^{\prime \prime} \times 7^{7 \prime \prime} \times \mathrm{I}^{\prime \prime} .4$ for $£ 1.00$.
SANGAMO WESTON. Moving SANGAMO WESTON. Moving coil relay $315 s$ $310 \mu \mathrm{a}$, complete with base. 75 p ea. S.T.C. Midget sealed relay. Type 4190 EC . 12 v .40 mA FIRE Plug HD make. 53p e

5v., coil 50/60 c.p.s., 3 heavy duty silver change-over contacts. Very robust. 63p ea. One make one break 5 amp contacts. Once current is applied relay remains latched until input polarity is reversed. $\ell^{\prime \prime}$ dia. $\times \frac{7}{8}^{\prime \prime}$. Please state vertical or hori-
zontal mount and voltage. Original cost $£ 8.00$, now zontal mount and
offered at El .63 ea .
offered at $£ 1.63$ ea.
G.E.C. Sealed relay. Type M 1492. 24v. 670Ω. New Condition but ex-equipment. $£ 1-00$ ea.
HELLERMANN DEUTSCH. Type L26F18. Latching relay. Latch coil $200 \Omega 26 \mathrm{v}$. DC. Reset $375 \Omega 6$ change${ }^{1} \frac{1}{1 \prime \prime} \times$ I' $^{\prime \prime}$ dia. $£ 3-75$ ea. Limited stock. All carriage paid. SCHRACK Rotary Selector Relay RT304. 48 vv . coil
(280 ohm). 48 positions, 4 sweep arms (4 pole 12 way). There are 2 secondary switches: (1) one c.o. H/duty contact set which changes over and back with each step; (2) two H/duty change-overs which change over
 original maker's pack ELECTROLYTIC CAPACITORS MULLARD. $900 \mu \mathrm{~F} 100 \mathrm{v}$. heavy ripple screw terminals $1 \frac{7}{7_{6}^{\prime \prime}}$ dia. $\times 3 \frac{3^{\prime \prime}}{3^{\prime \prime}}$, $900 \mu \mathrm{p}$ eac., $\notin 6.00$ per doz. $1,600 \mu \mathrm{~F} 64 \mathrm{v}$. $1 i^{\prime \prime}$ dia. $\times 3^{\prime \prime}$
38 p ea. $£ 3.50$ per doz. $10,000 \mu \mathrm{~F}$ 10v. $3^{\prime \prime}$ dia. $\times 3^{\prime \prime}$. 38 p ea., $£ 3.50$ per doz. $10,000 \mu \mathrm{~F}$ 10v. $1 \mathrm{i}^{\prime \prime}$ dia. $\times 3^{\prime \prime}$.
38 p ea., $£ 3.50$ per doz. $1,250 \mu \mathrm{~F} 25 \mathrm{v}$. $\mathrm{In}^{\prime \prime}$ dia. $\times 2^{\prime \prime}$. 38p ea., $\mathbf{6 3} 50$ per doz.
50p ea., $\mathbf{6 4} 50$ per doz.
 6 v . $11^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 30 \mathrm{p}$ ea. $£ 3.00$ per doz. $16 \mu \mathrm{~F} 350 \mathrm{v}$.
$\frac{1}{16} \times \frac{1}{2}^{\prime \prime}$ wire ends, $£ 2.00$ per doz. $1,000 \mu \mathrm{~F} 50 \mathrm{v}$. $1^{\prime \prime}$ dia. $\times 3^{\prime \prime}, 30 \mathrm{p}$ ea., $\mathbf{E 3 0 0}$ per doz. $32-32 \mu \mathrm{~F} 275 \mathrm{v}$. $1^{\prime \prime}$ dia $\times 2^{\prime \prime}, 38 p$ ea. $100 \mu F 100 v$. $I^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25 p$ ea.
ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F. 30KV Size $1.5^{\prime \prime}$ dia. $\times 1.44^{\prime \prime}$ long. ${ }^{50}$ p ea. Carriage paid
MAINS 6 DIGIT COUNTER BY E.N.M. LTD. Non-reset. Size: mounting plate $2^{\prime \prime} \times 1$ 1月 $_{2}^{\prime \prime}$. Unit size:

dial reading thour (60 V. D.C. Has a 5 digit Total 99999 hrs Non-reset sealed unit, chrome bezel through panel mounting. Size $2 \frac{5}{14} " d i a . \times 3 \frac{s^{\prime \prime}}{18}$ overall E3 25. Carriage paid.
DEAC. RECHARGEABLE
Batteries Type 900 B Nickel-Cadmium 1.22 v at 900 mA ($10-\mathrm{hr}$. rate). Size 90 mm . X
13.5 mm . Weight 40 gr . Unused
"DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb . pull. $\mathbf{z}^{\prime \prime}$ travel which can be increased to
$\mathrm{I}^{\prime \prime}$ by removing captive-end-plate. Overall size $2^{\prime \prime} \times 2 \frac{1}{2}$ $1^{\prime \prime}$ by removing captive-end-plat
$\times 23^{\prime \prime}$ high. $£ 1.38$. P. \& P. 25 p.
American "POWERSTAT" Variable Voltage Trans former. Input: 120 v . $50 / 60$ c.p.s. Output: $0-120 \mathrm{v}$. at device. Size (approx.): $3^{\prime \prime}$ dia. $\times 2^{\prime \prime}$ long. First class condition. $£ 2 \cdot 00$. Carriage paid. ERNEST TURNER 800μ METER. plastic front. $\begin{aligned} & \text { Green-Red-Green } \\ & \text { uncalibrated scale } £ I-50 \text { each. Car }\end{aligned}$ elitic uncalibrated
riage Paid.

MINIAT URE B.P.L. 500-0-500 MICRO-AMMETER tiz" dia. scale. Through panel mounting. Hermetically sealed. El'63. Carriage paid.
ERNEST TURNER
divisions, mirror scale, chrome escutcheon Quality instrument. $\mathbf{~} 4 \cdot 25$. Carriage Paid.
$5^{\prime \prime} \times 4^{\prime \prime}-1000 \mu \mathrm{a} 1000 \Omega$. Mirrored scale, few only. ©4.75.
"ATLAGE Paid" SUB-MINIATURE LAMPS (Capped). - Ratings 5 v . $60 \mathrm{ma}. \cdot 35 \pm 25 \%$ Lumens. Life Expectancy
60.000 hours or at $6 \mathrm{v} .70 \mathrm{ma} . ~ 75 \pm 25 \%$ Lumens, 5.000
 of 50 .
of
We welcome orders from established companies, minimum $£ 2 \cdot 50$, please.) A discount of 10% may be deducted from all orders of $£ 20.00$ or over.

5 + 5 WATT OUTPUT GARRARD 5200 CHANGER with low mass pickup arm and Stereo Cartridge. CONTROLS: TREBLE, BASS, VOLUME STEREO BALANCE.

PAIR OF LOUDSPEAKER UNITS

incorporating high fluy
PRICE COMPLETE ONLY

Hern 25 L

A REALLY SURPRISING STANDARD OF QUALITY IS OBTAINED FROM THIS COMPACT LOW PRICED SYSTEM

| FANE ULTRA HIGH POWER | | | | TA12 MK 11116.5 6.5WATT STEREO AMPLIFIER folly transistorised solid state construetion high fidelity | |
|---|---|---|---|---|---|
| LOUDSPEAKERS A A M Mos.er ratings ane
 | | | | |
| | | | |
| OP' 100 | 'POP' 60 | | | |
| tt | | | | | |
| 8/15ת | | | | |
| £22.05 | . 9 | | ¢4.75 | |
| | | | 65.75 | |
| | | | 5.99 | . |
| | | | | |

R.S.C. GGG 6+6 WATTHIGH OUALITY STEBEO AMPLIFIER

FANE LOUDSPEAKERS'POP' 25/2

| 006 | |
| :---: | :---: |
| | |
| , for 315 obr | , |
| Output for 3-15 ohm 日peakers. Max. sensitivity 5 mv . | |
| | |
| | |
| | |
| | |
| OR FACTORY BULT with 12 months' g'tee. \&9.45 | |
| R.S.C. BATTERY/MAINS CONVERSION UNITS | |
| Trpe BM1. An all-dry battery elimin. | |
| | |
| 1.5 v . and 90 v . where A.C. mating 20 ng
 950 . $50 \mathrm{c} / \mathrm{s}$ is availatile | |
| | |
| | |
| Complete kit wit | |
| GH QUALIT | |
| LOUDSPEAKERS | |
| In teak or afrormosia | |
| | |
| | |
| | |
| (1) | |
| | |
| | |
| $\underset{\text { Gines, Carr. } 41 \mathrm{p}}{\text { Gauss }} 10,000.25$ | |
| Lu2 12in. 20 Watt mode. | |
| | |
| | |
| | Or dep. ${ }^{4} 4$ and 9 9 $£ 27.50$ |
| | |

| Total £15.05) |
| :---: |
| | |
| | |

R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER

 RSC BASS-REGENT 50 watt AMPLIFIER

R.S.C. SUPER30MKIHIGH FIDELITY STEREO AMPLIFIER

HJGH GRADE COMPONENTS. 8PECIFICADINS COMPARABLE WITH
UNITS COSTING CONSDERABLY MORE Employing Twin Printed Circuits.
TRANSISTORS: 9 high-quality typee per channel.

 FREQUENCYRESPONSE: HCAd 2.5 m . TREBLE CONTROL: +17 dB to $-14 \mathrm{dBat} 10 \mathrm{Kc} / \mathrm{s}$. BASS CONTROL: +17 dB to -15 dB at 50 cis. BUSM LEVEL: - 80 dB . harmonic distortion: 0.1% at 10 Watts 1,000 e.p.s.
CROSS TALK: 52 dB at 1,000 c.p.s.

BRADFORD
BLACKPOOL
($)$ \& C Electronics 227 Church St.
Th
DERBY 26 Osmaston Rd. The Spot (Half-day Wed.).
DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 68043
EDINBURGH 133 Leith St. (Half-day Wed.).
CLASGOW 226 Arglesr. (Har-day Tus . Tel. CIT 4158
HULL 91 Paragon Street (Halffday Thurs.). Tel. 20505

CONTROLS: 5-position Input Selector, Mono Sw. Tipe Monitor Buw, Mains Sw
INPUT SOCKETS: (i) P. NPUT SOCKETS: (1) P.U. (2) Tape Am

HI-FI CENTRES LTD.

MAIL ORDERS to

Terms ${ }^{\text {Lis.W.W.O. or C.O.D }}$

30p excras. Over with enquiries.
supplied. S.A.
Export enquiries welcomed.
Branches open ald day sats
MAIL ORDERS MUST N
eminently suitable for use with any make OF PICK-UP OR MIC. (Ceramic or Magnetic, Moving Coil, Ribbon or Crvstal) CURRENTLY AVAILABLE. SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY UPLETE KIT OFT-RATE ANCILLARY EQUIPME 25 wiring diagrams of PARTS, point to point $£ 23.25$ wiring dia
supulied. UNIT FACTORY BUILT $£ 30.50$

$$
\text { demait } \int 1 \text { nemothly ments } £ 3 \cdot 3
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { r deposit e4 } \\
(\text { Total } \\
\hline
\end{array} 34.15\right)
\end{aligned}
$$

Or in Teak or Afrormosia veneer $\mathbf{6 3} 75$
housing as illustrated.
Terns: Deposit $£ 4$ and 9 monthly payments
$£ 3.75$. (Total $£ 37 \% 75$). Send 8 A. . for leattet
LEICESTER 32 High Street (Half-day Thurs.). Tel. 56420
LEEDS ${ }^{5-7}$ County (Mecca) Arcade, Briggate
LIVERPOOL 73 (Half-day Wed.) Tel. 28252 dale St. (Hall-day Wed. CENtral3573 LONDON 238 Edgware Road, W. 2 (Half-day Thurs.). MANCHESTER 60A OIdham Street (Half-day Wed.) MIDDLESBROUGH 106 Newport Rd. (Half-day $\begin{aligned} & \text { Wed.). Tel. } 47096\end{aligned}$ NEWCASTLE UPON 41 Blackett Street (opp. Fenwicks SHEFFIELD 13 Exchange Street (Castle Market Blds.) SHEFFIELD 13 Exchange Stret (Castle Market Blds.)

INTEREST CHARGES REFUNDED On Credit Sales settled in 3 months
R.S.C.MAINS TRANSFORMERS PULLY GUARANTEED. Interieaved and

$\frac{10 \text { H. } 400 \Omega 25 \text { P. }}{\substack{\text { R.S.C. PLINTHS } \\ \text { Superior Solid }}}$

Superior Solid
Natural Wood Construction

 RECORD PLAYING MONEY UNITS Realy to
 Cavo high compliance e eramic
Stereo/Mono cartricte
 \quad 226.09 RP6C Garrard 5200 Auto Unit

 or 'Row over' transparent covers
at lomeat prices or Row over tra
at lowest prices.

BENTLEY ACOUSTIC CORPORATION LTD.
 38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone 01-722-9090 GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Littieham Please forward all mail orders to Littlehampton

| OA2 0 | 0.30 | i8 | 0 | | 0.33 | 20D1 | 0.65 | | 8 | D | 0.35 | ECH81 | 0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OB2 | $0 \cdot 30$ | ${ }_{6}{ }^{\text {B }}$ | 0 | 6 X | 0.22 | 20 D | 1.02 | | 0 | DL9 | 0.29 | EC | |
| OZ4 | 0.23 | 6 C 4 | 0.25 | 6 x 5 | 02 | 20 F 2 | 070 | 301 | 1.00 | DL94 | 0.32 | ECH84 | 40 |
| 1 A 3 | 023 | | | 6 Ybi | 0.55 | 20 Ll | 0.98 | 302 | 0.83 | D1 | 0.37 | ${ }_{\text {ECL }}$ | 0 |
| $1{ }^{\text {A }}$ | 0.25 | | 0.73 | 6Y70 | 0.63 | ${ }^{20 P 1}$ | 0.88 | $30: 3$ | 0.75 | DM7 | 0.30 | ECL8\% | |
| 1A7t | $0 \cdot 37$ | 6 Cl 12 | 0.29 | 7 B | 0.58 | 2013 | 0.90 | 305 | 0.83 | D M 71 | $0 \cdot 38$ | ECL83 | 0.5 |
| 1195 | 0.38 | Cll^{4} | 0.63 | 7 B 70 | 5 | 20 P | 0.83 | 306 | | DW $4 / 350$ | | ECL84 | 5 |
| do | 0.48 | 6 CD | 1.15 | 7 C 6 | 0.30 | 20 | 1.00 | 807 | 059 | | 038 | ECL85 | O. 0 |
| $1 \mathrm{FD1}$ | 0.35 | fCH^{4} | 0.38 | ${ }^{7} \mathrm{~F} 8$ | 0.63 | 25 A | 029 | 956 | 10 | | | | |
| $1 \mathrm{FlO9}$ | 0.22 | 4CL6 | 0.4 | 7 H 7 | 0.28 | 25 | 0.29 | 1821 | 0.53 | DY80 | 8 | EF22 | |
| 1:6 | 0.30 | bew | 0.8 | | | | | | | E80F | 1.20 | EF36 | |
| 1H5G | | 61 | 0 | 7V7 | 0.25 | 25 Y | 0.43 | 6i060 | $0 \cdot 30$ | E83F | 0 | EF3 | |
| 1 L 4 | 0.13 | ${ }^{\text {Hid }}$ | 0 | 9B | 0.50 | 25 Z | 030 | 719 | 0.53 | E88C | | EF39 | 0 |
| 1 LD5 | 0 | 6 | 0.63 | 9 D 7 | 0.78 | $25 \mathrm{Z5}$ | 0.4 | 7475 | 0.70 | E180F | 3 | EF40 | |
| ILN5 | | | | ${ }^{19 \mathrm{Cl}}$ | 1.25 | ${ }^{2.37}$ | | A18:3 | 1.00 | E182 | | ${ }_{\text {EF }}$ | |
| 1N0 | | $6 \mathrm{F6G}$ | 0.25 | 10 C 2 | 0.50 | 30.01 | $0 \cdot 3$ | A21: | 75 | | $\begin{aligned} & 0.53 \\ & 0.18 \end{aligned}$ | | |
| 1 R 5 | 0.28 | ${ }_{6}^{6 F 12}$ | $\begin{aligned} & 0.17 \\ & 0.33 \end{aligned}$ | 10 Cl | 0.33 0.50 0 | 340 | $\begin{aligned} & 0.65 \\ & 0.80 \end{aligned}$ | ${ }_{\text {A }}{ }^{\text {a }}$ | 0.75 1.18 | EATO | | | |
| $\begin{aligned} & 1 \mathrm{~N} 4 \\ & 185 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.22 \end{aligned}$ | 6 F13 6F14 | $\begin{aligned} & 0.33 \\ & 0.75 \end{aligned}$ | $\begin{aligned} & 10 \mathrm{D} 1 \\ & 10 \mathrm{Fl} \end{aligned}$ | ${ }_{0} .75$ | 30 Cl 18 | ${ }_{0} .84$ | ${ }^{\text {AC2 }}$ | | EABC | | EF80 | |
| 1 U 4 | 0.29 | $\mathrm{fr}^{\text {F }}$ 5 | 0.65 | 10F9 | 0.45 | 30 F 5 | 0.80 | AC2 | | EACS | | EF83 | |
| 105 | 0.48 | 6F18 | | 10F18 | $0 \cdot 35$ | 30 FLl | 0.64 | | . 98 | EAF | 0.50 | 85 | |
| 21 | | | | 10L14 | 0.37 | 30 FLL | 0.75 | AC | 38 | EB34 | | | |
| 3 A 4 | 0.20 | 6F24 | 0 | 101.01 | 0.53 | 30 FL | 0.80 | | | EB41 | | | |
| | | 25 | 0.65 | 10PL12 | 0.35 | 30 FL | 0.73 | | 0.98 | EB91 | | | |
| 3 B 7 | 0.25 | 6F24 | 0.29 | 10P13 | 0.65 | 30 L | | | | EBC | | | |
| 3D6 | 0.19 | ${ }_{6} \mathrm{~F} 28^{8}$ | 0.70 | 14 Pl 4 | 1.10 | $30 \mathrm{LL5}$ | 0.64 | AC/T | 0.98 | EBC81 | | ${ }_{\text {EF98 }}$ | |
| 3Q4 | 0.38 | 6G6G | 0.75 | 111 P 18 | | 30 Lb | 78 | ALB0 | 0.78 | EBC90 | | ${ }_{\text {EF98 }}$ | |
| 3 L 5 C | 0.35 | ${ }_{6}^{6} \mathrm{HbC}$ | 15 | 12 | 0.63 | 30 P 4 MR | | ${ }^{\text {A PP3 }}$ | 035 | EBF8 | | | |
| | | | | | 0.40 | ${ }^{30 \mathrm{P} 12}$ | 0.69 0.33 | ${ }_{\text {ATP }}{ }^{\text {d }}$ | 0.12 | | | EFP6 | |
| 4 | 0 | 6.51 | 0. | 12AD6 | 0.40 | ${ }^{30 \mathrm{P} 16}$ | 0.33 | ${ }_{\text {AZZ }}$ | | | | | |
| 4G | 0.53 | | 0 | 12AE6 | | 30P18 | 0 | ${ }_{\text {AZ31 }}$ | 0.48 0.53 | $\begin{aligned} & \text { EBE } \\ & \text { Hi } \end{aligned}$ | | EK90 | |
| $\begin{aligned} & 440 \\ & \text { Y3a } \end{aligned}$ | $\begin{aligned} & 0.38 \\ & 0.28 \end{aligned}$ | | $\begin{aligned} & 0.38 \\ & 0.10 \end{aligned}$ | ${ }^{12 A 46}$ | 019 | | $0 \cdot 60$ | B319 | 0.32 | EC53 | | EL32 | |
| 523 | 0.45 | $6 \mathrm{K7}$ (t | | 12AU6 | 0.24 | 30 PL 1 | 0.69 | CL33 | 0.98 | EC54 | | EL34 | |
| 4 C | 0 | $6 \mathrm{K84}$ | | 12AU7 | | $30 \mathrm{PL12}$ | 0.37 | CV | 0.53 | ${ }_{\text {EC7 }}$ | 0.24 | ${ }_{\text {EL3 }}$ | |
| 6/30L | 0.58 | 6 L 1 | 0.88 | 12AV6 | 0.28 | 30 PL | | Cv98 | 0.10 | EC86 | | EL4 | |
| ba8g | 0.3 | 6Lbg | | 12AX7 | 0.83 | ${ }_{30} \mathbf{P L}$ | 0.75 | CY | 0.53 | EC | | | |
| ACF | 0.15 | 6L7G | 0.45 | 12 BA | | | | | 0.25 | | | | |
| A5 | $\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$ | ${ }_{6}^{6119}$ | 1.38 | ${ }_{128 E 6}^{128 A 6}$ | - 0 | 35 A | 0.75 | D7 | 0.12 | ECC33 | 1.58 | EL84 | |
| AK6 | 0.30 | 6 Li 20 | 0.48 | 12 BH 7 | 0.40 | 35105 | 0.70 | Dac3 | 0.35 | ECC40 | | EL8à | |
| L..) | 0.12 | 6N7GT | 0 | 12 E 1 | 0. | 35 L 6 | | DaF91 | 0.22 | ECC81 | 0.18 | EL | |
| GAM4 | 08 | ${ }^{6815}$ | 0.24 | 12.17 | 0.33 | $3.5 \mathrm{~W}+$ | 0.23 | DaF9 | 0.35 | ECC82 | | EL91 | |
| iAMif | 0.17 | 6P28 | 1.25 | 12 K 5 | 0 | $35 \mathrm{Z3}$ | 0.50 | ${ }^{\text {DCC }}$ | 1.00 | ECC8 | 3 | EL95 | |
| 6A@5 | 028 | 6976 | 0.30 | 12K7GT | . 34 | 352 | 0.29 | DD | 0.53 | ${ }_{\text {ECC8 }}$ | 0 | E | |
| 6AR6 | 1.00 | 6q7at | 0.43 | 12 Q 7 | 0. | 3525 | | DF93 | 0.39 | | | | |
| 6AT6 | 0.20 | 6879 687 | 0.35 0.55 | 128A7G | | 50 | | DF96 | ${ }_{0}^{0.14}$ | ECC | | EM84 | |
| GAU6 | $\begin{aligned} & 0.25 \\ & 0.30 \end{aligned}$ | ${ }_{6}^{6 R 7}$ | 0.55 | 12 | 0.40 | 500 | | ${ }_{\text {DF97 }}$ | ${ }_{0} 0.63$ | ECC18 | | E | |
| 8 G | 0.1 | 68C7(T) | 0.33 | 12863 | 023 | 50 L 6 | 0.45 | D H 63 | 030 | ECC80 | - | EY51 | |
| Bab | 0.23 | 6st:7 | 0.33 | 128H7 | 0.15 | 72 | 0.33 | DH76 | 0.28 | ECC | | EY81 | |
| E | 0.2 | | 0.53 | 128.57 | 0-23 | 7 | 0.53 | DH77 | 0.20 | ECFP80 | - | ${ }_{\text {E }} \mathbf{Y}$ | |
| 6BH6 | 0.43 | 68.77CT | 0.35 | 128 K 7 | 0.24 | 85 A | | DH8 | 0.58 | | | EY | |
| 6 BJt | 0.43 | 68K7ct | 23 | 128Q76 | T | 85 A3 | 0.40 | DH101 | 1.25 | ECF86 | | EY | |
| 6BQ5 | 0.24 | | 3 | | | 9 ag | 3.38 | DK32 | 0.37 | ECFB04 | | EY88 | |
| 6 BQ 7 A | 0.38 | 68 | 0.38 | 14 H 7 | 0.48 | 90aV | 3.38 | 40 | 0.55 | | | | |
| GBR8 | 0.79 0.63 | | | 18 | | | 1.70 1.68 | | 0.28 0.43 | ECH35 | | EZ35 | |
| GBR8 fiBS7 | 0.63 1.25 | 6V6G | 0.5 | H | 0.24 | , | 1.80 | , | ${ }_{0}^{0.37}$ | ECH42 | 析 | E240 | |

Terms of business. Cash or cheque with order. Post/pucking 0 ovip per item, subject to a minimum
of 0.09 p . Orders over 500 sent free. All orders cleared same day by first claks mail. Any parcel
insured against damage in transit for 0.03 p extra. Complete catalogur with conditions of sale
or 0.09 p Orders over

NEW LOW PRICES FOR W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED) Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps, 32 resistors, 3 pots, choke, $2 \mathrm{~h} /$ sinks $4 \mathrm{in} . \times 4.6 \mathrm{in} . \times 1.3 \mathrm{in}$., drilled $2 \times$ TO3, fibreglass P.C.B., construction notes
2 sets

2 power supply kits
30W BAILEY (SINGLE POWER RAIL)
10 transistors 5.60 Resistors, caps, pot .. I.30
LINSLEY HOOD CLASS AB
MJ48I, MJ491, MJE521, BC182L, BC212L, Zener 3.35
16 resistors, 10 capacitors, 2 pots $\quad .$.
LINSLEY HOOD CLASS A (DEC., 1970 , CIRCUIT)
4 transistors 1.55 Resistors, caps, pot
4 transistors 8Ω or 15Ω for L.H. amps.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} \mathrm{~W} 5 \%$. Low noise carbon film

SEMICONDUCTORS

STANDARD GPO DIAL TELEPHONES (black) with internal leell. 87p. P. \& P. 25 p. Two for $£ 1.50$
TRANSISTORISED FIELD RATEMETER tyII $\times 7 \ddagger$ ins. $\neq 10$ each. P. \& P 50
SURVEY METER RADIAC No. 3. Hand portable size $9!\times 5 \times 5 \ddagger$ ins. 3 ranges (seale changes) 0.03 ;
$0.3 ; ~$
$3 / \mathrm{H} / \mathrm{H}$. Internal Ion Chamber. Nice condition

7/6. Charger only 30/-. P \& P 33 p
PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{6 8} \cdot \mathbf{5 0}$ ea.
09:3 ES eat.
TRANSISTOR OSCILLATOR. Variable frequency DC imput. Size $18 \times 1 \frac{1 t}{6} \times 1 \frac{1}{2}$ in. Not encapsulated. Brand CRAM Boved 57 Pea.
CRAMER TIMER 28V DC Sween $1 / 100$ th sec $\&$ sweep 60 secs. $4^{\prime \prime}$ dial. Remote control stop/start reset $66 \cdot 50$. RELAYS
G.F.C. Sealed Relars High Speed 24 V .2 make 2 break. 23p ea. $12 v 35 \mathrm{p}$ ea.
CARPENTERS polarisel Single pole c/o 20 and 65 ohm coil as new. complete with base 37 p ea.
sinyle uiole c/o 14 ohm coil 33p ea; Sintle pole c/o 45 ohm
COLYERN POTENTIOMETERS
COLVERN Brand new. 50; 100; $250 ; 500$ ohms; 1 ;

STANDARD 2 meg Log nots. Current type. 15p ea. INSTRUMENT $3^{\prime \prime}$ Colvern. 5 : 25 ohms 35p ea.
BOURNE TRIM POTS. 10; 20; 50; 140; 200; 250:
ALMA 1 recision resistors $100 \mathrm{~K}: 400 \mathrm{~K}: 497 \mathrm{~K} ; 998 \mathrm{~K}$; DALE heat sink resistors, non-inductive 50 watt. Brand new 8.2 K at 13 p ea.
MULLARD VINKORS. Brand new loxed. LA2104 60p eat.; LAL2411 45p eat: LA 2503 30w ea.
SILYER ZINC
 $\times 3 \times 3 \mathrm{f}$. 40% weight $\epsilon 1$ ea.
MALLORY CELLS. 25p per set of
CAPACITORS
ERIE feel through ceramicons 2200 , pf-4p ea.
Un-min. TRIMMERER 330 pf is irand neu new 13p ea ELECTROLYTICS. Brand new. 250 mftl . 20 V 23p ea E.H.T. 2 infd 5 KV . Brand new $\mathbf{E 1} 50$ ea.
E.H.T. 0.1 mfd $7 \mathrm{~K} \dot{\gamma}$ at 40 p eat; 0.1 mfd 5 ky at 35 p ea

DECADE DIAL UP SWITCH. Finger-tip. $21^{\prime \prime}$ deep $3^{\prime \prime}$ wide. 75p ea. Bank of 4 with escutcheon plates, etc. 24° high, $2 \frac{1}{*}^{*}$ deep, $2 \frac{1}{*}^{*}$ wide $E 2 \cdot 50$.
PHOTOCELL equivalent OCP 71 13p ea
Photo-resist type Clare 703. (TO5 Case). Two for 50p
BURGESS Micro Switches 3 5930. Brand new 13 p BURGESS Micro Switches 135930 . Brand new 13 p ea
HONEYWELL. Sub-min. Microswitehes tree 11 SM3-1 HONEYWELL. Sub-min. Microswithes type
Brand new. I7p ea.

BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P 75p ea.; DDM50S 50p ea
El per pair
As above but 25 way 50 p ea. plug; 35p ea. socket; 75p ner pair, 9 way 33 p ea. plug and socket, 50 p per pair
U.H.F. Pluus tit UR57, 59 etc 40 etc

 B. N. right angle $£ 125$ ea.: Min. socket round 50 p ea.
Standard B. N.C. round 35 ea. Many others too numerons Standard B.N.C. round 35p ea. Many
to list. All prices quoted for cone off.
STEP TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240v 'Transformer 0-215-250 $120 \mathrm{MA}: 6.3 \mathrm{~V} 4 \mathrm{~A}$ C'T $\times 9.2 \times 6.3$ 0.5 A and separate 90 v 100 MA El 25 ea . P. \& P. 20p Matelinge contact cooled bridge rectitier 37 p eai. 4.5 V 40 amp (180 Va) $£ 1.75 \mathrm{ea}$. incl. postage or 3 for $£ 4.50$
incl. postage. Desimed to be Series paralleled. incl. yostage. Designed to be series paralleled.
Gard/Parm/Part. $450-400-0-400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$
CHOKES $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA} ; 42 \mathrm{~d}$ ea. Up targe quantity L'T. HT, EHT transtorners. Your GROUND, PLANE ANTENNA. Ex-admiralty Brand new hoxed. Adjustable $90-160$ megs. (Like
umbrela) $£ 12: 50$. Curr. £1.

RACAL RAI7K receivers $£ 250$
Racal $\mathbb{R A} 98 \mathrm{~A}$ Automatic SSB adaptor for above. Brand HEWLETT PACKARD Transfer Oscillator Model 540B MARer condition E240.
MARCONI TFI370A Wide Range R.C. Oscillator

TEST GEAR

TEKTRONIC OSCILLOSCOPES 517 A Very fast 5 nan/sees
E.M

E SOLARTRON
SOLARTRON

SOLARTRON SOLARTRON SOLARTRON SOLARTRON COSSOR HAR Min. scope. £17-50.
All carefully checked and tested. Carriage $£ 1 \cdot 50$ extra, TF 1152 Power Meter. New P.O.R
TF 1028 Frequency Meter 1229 M0. Carr. 75p. TF 195 Audio Generator $£ 10$. As new condition $£ 60$ TF 801 A Signal generator $£ 35$. Carr. $£ 1 \cdot 50$.

TF 369 N . 5 Impedance Bridge 670 . Carr. 1150. TF 144 G Signal Generator. Serviceable. Clean $£ 15$. In exceptional condition $£ 25$. Carr. $£ 1.50$. TF885/1 $£ 55$, Carr. $£ 1.54$.
TF $13+3 / 2$ ' ' Band gen. $£ 35$. Carr $£ 1.50$. SOLARTRON
Laboratory amplifier AWS51A. 15c/s-350kc/s $£ 35$
Generator DO905 $50 \mathrm{kc} / \mathrm{s}$ to 50 megs. $£ 40$. Carr. 1 Resolved Component Indicator VP253.2A and
Stabiliserl P.U. SHS 151A $£ 20$. Carr. £1-50.
Stabilised PU. SRS 152 \& 15 . Carr. \&1 50 .
Precision Millivoltmeter VP252. 25 . Carr.
Precision Millivoltmeter VP252. ©25. Carr. £1.
Process Response Analyser. Fine Condition $\mathbf{4 5 0}$ Process Response Analyser. Fine Con
Oscillator type OS 101. $£ 30$. Carr. $£ 1-50$.
D.C. Amplitler type AA 900 . $£ 30$. Carr, $£ 1$
TFA (arrier Converter JX641. $\dot{7} 5$.
restmeter No. $1 \notin 12$ ea. Carr.
Electronic 'Testmeter CT 38 . Coniplete $£ 18$ Carr. £ 1
Sine and Pulse Generator type 1873 f15. Carr. 75p. AIRMEC
Signal Generator type 701. $\mathbf{£ 2 5}$. Carr. $£ 1 \cdot 50$.
MARCONI TF 1277 . Colour studio scone, will line
TELEQUIPMENT D43R. BTand LY
TBLE E8O with $15 \mathrm{mc} / \mathrm{s}$ amp. Brand new with TD41
Elo5.
BRADLEY ATTENUATORS 0,500 meg cycles. O/12 db sid $0 / 120 \mathrm{db}$ - 200 per pair.
HEWLETT PACKARD
HEWLETT PACKARD. Attenuators $0 / 500 \mathrm{meg}$
BECKMAN MODEL A. Ten turn pot complete
E.H.T. Base B9A in Polystyrene holder with cover

Brand new. 13p ea.
DVM's BIE $2114 £ 50$ ea.; BIE $2116 £ 50$ ea. Carr. £1-50. 20 megs. $\nmid 12.5$ Generators type 1632. 100 BC221 with correct charts in fline condition Cl 5 ea.
PANAX Pulse generator G100H. Mint. $£ 40$. Carr, $£ 1 \cdot 50$. BRAND NEW INSTR UMENTS HOUSING. Size $8 \times 6 \times 7^{\prime}$ deep. Comprising of anodised aluminium front and rear linked frame with recessed light blue front and rear panels. Detachable dark grey vinyl covered aluminiun covers. Price $£ 3.87$ ea. P. \& P. 25 p FIBRE GLASS PRINTED CIRCUIT BOARD. Brand
 BERCO minature $\times 15$). Postage 5 p per order BERCO miniature variac type 31 C . $0-250 \mathrm{~V}$ 1 amp. pointer. As new $\mathbf{E} 3$. P. \& P. 37 p . SEQUENTIAL TIMERS 240 rpmi. 12 can ojerated 2 pole micro switches. Individually djustable from 0° to 180°. 46 ea. standard 240 Y MOTORS with reduction gearbox 14 los. per su, inch. 63 ea.
Moderin replacernent for VCR 138 tube. Flat face 3 in . ERR ITE Pu Bas 17 ph
FERRITE rods complete with LW, MW and coupling
coils. Brand new. 25p ea. P. \& P. 7p.
conl. Brand new. 25p ed. P. \& P. 7p.
 Sub-min, itality bulbs 8V 1.2 W 5 mm Clear L.E.S
7 p ea. 100 off 6 D ea.

DUNFOSS-solenoid valves. $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. Tyne EVJ 2 Brand new boxed 65 : Second hand 63 . P. \& P. $6 /$-. Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with. 100 k . at $25^{\circ} \mathrm{C}$. Range: 40° C. to 150° C. Supplied with charts giving ohins CLAUDE LYONS Main Stabilizer. Type TS-1L-5S0. input $119-135$ volts 47
16 amps. $£ 35$. Carr. $£ 2$.
Panel mounting VARIAC 20 amp. 2 separate wip (concentric shaft) 225 . Carr. at cost.
ROBAND P.U. Tyne M39A. Stabilized 300 volts 2 amps. E 22 inc. carriase
E.H.T. Unit by Brandenburk model S.0530/10. $\mathbf{6 5 5}$

KELVIN \& HUGHES 4 channel recorder. $£ 30$ ea.
SMITHS twin channel recorder. Transistorised. 665.
arious other single and
EVERSHED VIGNOLES Recorling paper. Brand roll. $\lesssim 900 \mathrm{H} 47^{\prime}$ wide, $14^{* *}$ dia. 25 p roll.
19in. Rack Mounting CABINETS 8 ft . high 19 in . deen side and rear doors and wheels. E/250. Carriage at cost.
Double Bay complete with doors. Fine condition. $\mathbf{£ 2 5}$ Carriage at cost.
TIME CALIBRATOR unit by Cawkell any or all time intervals fibRAT OR unit by 0.5 microsend to 1,000 . Carr. \& $1 \cdot 50$ AUDIO/Vibrator Amplitters 1 KW . $£ 150$ en. Matehing vibrators for above $3 t^{\prime} \times 2 \frac{1}{\prime}$ dia. Weight approx. 1 ton MUIRHEAD
MUIRHEAD EMI Swent Audio Oscillator type $\mathrm{SRO2}$ £ 40 ea. Carr

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \frac{1}{2} \times 4 \times 4 \mathrm{in}$. As new. by Sodeco of Geneva. 62.50 ea.
As above but 350 ohm. $\mathbf{£ 3 . 5 0}$ ea.
METERS-Model 3705 . ${ }^{250-0 \cdot+100.5 \frac{1}{2}} \times 4^{25-25}$ micro amp. Scaled Round 4^{*} scale. 100 inicro amp $0-1,000 \& 0-50$ £ 1 ea. P. \& P. 38p.

SANGO 50 micro amp $4^{\prime \prime}$ round. Brand new boxed.
EI.38. P. \& P 38 p . SA 38. P. \& P. 38p
SANGO 50 micro amp rectangular meter. Size $2 \frac{4}{4} \times 3^{\prime \prime}$ With 4 separate scales, lever operated, $0 / 6$ white, $0 / 60$
blue, $0 / 600$ red and set zero, $\neq 1.75$ p \& RECTANGULAR WESTON ${ }^{*}$,
$0-7501 \mathrm{ma}$ basic $30 /-\mathrm{ea}$; 100 nicro amp scaled $10-50$ E2.50. P. \& P. 17 p . 0 - ca; 100 micro amp scaled $0-50$ SANGO 50 micro amp 3° round meters. Ex brand
new radiation equip. $£ 1$ ea. P. $\&$ P. 17 p .

SEEING IS BELIEVING!

AMERICAN oscilloscone type TS34 7×6 ㅇ $\times 15 \frac{1}{}{ }^{*}$ deep with viewing hood. Tested good working condition. Ireal general purpose scope 117 volt mains therefore only $£ 12 \cdot 50$. Carr, \&1.
COSSOR D.B. Sones some models from $£ 15$. CINTEL Transistorised counter
Ideal conversion frequency counter $£ 12$ ea. MARCONI Absorntion Wattmeter 1 micro watt to 6 watts. Type TF956. FANTASTIC at $£ 7$ ea.
SOLARTRON Stab. PU AS $516 \&$ AS517. Circuits supplied. Fantastic value at $£ 2$ and $£ 4$ tach.
VERY SPECIAL OFFER. AVO lysers in superb condition ONLY 630 each.
SUPERB BUYS. Furzehill V200A Valve millivol meter 10 mv to 1 kv - 10 ea. Furzehill Valve volt meter $378 \mathrm{~B} / 2.10 \mathrm{mv}$ to 100 volts $\mathrm{E7}$ ea.
MEGA Ohm Meters-check earths, londing etc. Ridiculous at 65 ea.
SUNVIC DC Amplifier type DCA1. Thermo-couple etc. Genuine MULLARD Transistors/Diodes. Tester and Luaranteed. OC41, T, 76, 77, 83: 045, 10, Al at 5pea. OC23- 10 p ea.
COMPONENT PACK
2 amp push on/oft switches; 4 pots 1 double; 1 -smal double pole vol control; 250 resistors t and $\frac{\text { t }}{2}$ watt
inany hich stabs. Fine value at 50 p per pack. P^{2} \& P. nany high stabs. Fine value at 50p per pack. P^{\prime}. \& P 17 p.
3000 new, no rubbish) $\& 1 \cdot 50$. P . \& P values (new and as 3000 Type 2 pole c/o assembly. Brand new boxed Carriage extra.

TRANSISTOR EHT INVERTORS. 12 voit in, o/p $(+$ or -$) 1.5 \mathrm{KV} 2 \mathrm{MA}$ and $3 \mathrm{KV}+100$ micro anıp. Ideal CR'T supply, photomultipliers etc. Full information
supplied. Brand new at $£ 6 \cdot 50$ ea. P. $\&$ P. 25 p . supplied. Brand new at $\mathbf{6 6 . 5 0}$ ea. P. \& P. 25p.
Also, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s} .63 \cdot 50$. P. \& P. 25p. Panel switches DPDT ex eq. 13p ea.; DPST Brand new Switches 4 pole 2 way 130.
Switches 4 pole 2 way 13 p
ALBRIGHT Heavy Duty Contactor. Single make. MOTOR DRIVEN SWITCHES 4 to 21 volt is 24 way. Brand new. 43 ea. P. \& P. 25 p. 24 volt, 6 pole, M UST GO. Rubbish receivers B29, Cl2300, B40, B41

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

7-9-11 Arthur Road - Reading . Berks . Tel. No. 582605
(rear Tech. College) 300 yds. west of 22 Sun Street • Reading 65916

CHOICE OF 1000'S OF ITEMS LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

TRANSISTORS Brand new and fully guaranteed. PLEASE NOTE:-A large number of our transistors ha

$\begin{array}{llllllll}\text { SILICON RECTIFIERS } \\ \text { PIV } & \text { SO } & 100 & 200 & 400 & 600 & 800 & 1000 \\ \boldsymbol{E} & \mathbf{E} & \mathbf{E} & 200 & 1400\end{array}$

 DIODES AND RECTIFIERS

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0.07 | | 0.15 | BAY38 | 12 | OA5 | 0.17 \% |
| IN916 | 0.074 | BAI00 | 0.15 | BYIOO | $0 \cdot 171$ | OAIO | 0.221 |
| IN | 0.22 | BAl02 | 0.221 | BYIO | 0.22 ? | OA9 | 0.10 |
| | 0.10 0.15 | 110 | $0.32 \underline{1}$ | BY | 0.37 | OA4 | . 07 |
| 15120 | 0.15 | 115 | 0.071 | $Y 12$ | 0.1 | A | .07 |
| IS 121 | 0.17 | Al 41 | $0.32 \frac{1}{1}$ | 126 | 0.15 | A | 0.10 |
| 30 | 0.12 | BA142 | 0.321 | BY127 | 0.171 | OA | |
| | 0.12 | BA144 | 0.121 | BY164 | 0.57 | OAB | . 07 |
| IS 132 | 0.15 | BAI4S | 0.20 | BYX10 | 0.221 | A85 | 0.07 |
| 1S940 | 0.07 | BAI54 | 0.12k | BYZ10 | 0.35 | A | 0.071 |
| 1 | 0.10 | | $0 \cdot 12$ | BYZ11 | 0.321 | | |
| | 0.10 | | $0 \cdot 12^{\frac{1}{1}}$ | BYZ12 | 0.30 | A95 | 0.071 |
| | $0 \cdot 10$ | | $0 \cdot 17 \frac{1}{1}$ | BYZ13 | 0.25 | A200 | |
| AAZ15 | 0.12 | BAY3I | 0.07 | FST | 0.22 | A | |

MAINS TRANSFORMERS
2 amp Charger. Sec. 0 -3 5-9-18v

5 Post and Dacking) $0.2210 . \mathrm{Sec}$. tappings from 6 V to 50 V
Past and packing $O .37$.
TRIACS

| TRIACS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SC4AA 6 amp 100 V | . | . | \cdots | | 1.00 |
| SC4/8 6 amp 200 V | \cdots | \cdots | | | 1.20 |
| SC50D 15 amp 400 V | \cdots | \because | | | 205 |
| 40512 TO- 5 mod. 6 amp 400 V | | \cdots | | | . 45 |
| 40430 TO-66 6 amp 400 v | \cdots | . | | | $0.97{ }^{\text {d }}$ |
| 40486 TO. 5 mod .6 amp 400 | | | | | 0.95 |
| Economy Range Triacs ${ }^{\text {E }}$ T 410 (Pressfit) 4 amp 100 PIV | | | | | |
| TC4/10 (Pressfit) 4 amp 100 PIV | | \ldots | | | |
| TC4/20 (Pressfit) 4 amp 200 PIV | | \cdots | | | |
| TC4/40 (Pressfit) 4 amp 400 PIV | | \cdots | | | 0.97 |
| ST2 DIAC | | | | | 0.16 |

INTEGRATED CIRCUITS
SEE OUR SEPARATE ADVERTISEMENT ON PAGE 84
SHOWING NEW I.C.S AT NEW LOW PRICES.

| THYRISTORS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PIV | 50 0.25 | ${ }^{100}$ | ${ }_{0}^{200}$ | 300 0.40 | 400 |
| 3 3 | 0.30 | $0.37 \frac{1}{6}$ | 0.40 | 0.45 | 0.52 |
| 5A | | 0.55 | 0.65 | | 0.75 |
| 7A | - | 0.55 | 0.65 | | 0.9 |

TIC47 0.6 amp . 200 PIV 0.55 .
Also 12 amp 100 PIV $0.75 ; 2 \mathrm{~N} 3525$ at $1 \cdot 27!$.

| VEROBOARD | | | | 15 Matrix | Matrix |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21: $\times{ }^{\text {3 }}$ | . | . | \cdots | 0.171 | |
| 21" \times 5* | . | | \cdots | 0.21 | 0.24 |
| $3^{35} \times 3{ }^{* *}$ | \cdots | | . | 0.21 | 0.24 |
| $31^{\prime \prime} \times 5^{\prime \prime}$ | | | \cdots | 0.27 ¢ | $0 \cdot 271$ |
| $2{ }^{\prime \prime} \times 17^{\prime \prime}$ | \cdots | \cdots | \cdots | $0.62{ }^{\text {i }}$ | |
| $3^{33^{\prime \prime}} \times 17^{\prime \prime}$ | | | | $0 \cdot 80$ | |
| $\begin{aligned} & 5^{*} \times 17^{\circ} \\ & 33^{*} \times 17^{*} \text { (Plain) } \end{aligned}$ | | . | | | 1.321 0.57 |
| $5^{3} \times 17^{\prime \prime}$ (Plain) | \cdots | . | | 0.8 | |

** $\times 17^{\prime \prime}$ (Plain)
0.85
0.47 t

RESISTORS Carbon Film

| THERMISTORS (MULLARD) | | | |
| :---: | :---: | :---: | :---: |
| R53 (STC) | VA1010 $0.12 \pm$ VA1015 0.19 | | 10770 |
| | VA1033 0.12 | | VA10910.221 |
| | VA1033 0-12 | VA 10660.19 | 20 |
| | 10370.12 | A10740.12 | VA10970.20 |
| 10050.15 | VA1038 0.121 | VA1075 0.22 | VA3705 0.871 |

Please note:-Due to bulk buying we can now offer Texas RCA and Newmarket Semiconductors at industrial distributor prices. New quantity Price List available for industrial users upon request.


```
ORGAN DIVIDER BOARDS, built to high
complete with connection data and oscillator details.
COPPER LAMINATE PRINTED CIRCUIT
BOARD
8\frac{1}{2}\times5\frac{1}{2}\times1/16 in. 2/6 sheet, 5 for 10/-
11\times9\times1/16 in.4/- sheet, 3 for 10/-
Offcut pack (smallest 4\times2 in.) 10/-300 sq. in.
```

RADIATION MONITORING EQUIPMENT. Port-
able and bench models (brand new) S.a.e literature
KLYSTRON POWER SUPPLY (Solartron AS562).
£40. Carr. 50/
KLYSTRON POWER SUPPLY (Elliott PKU1). $\mathbf{£ 1 0 0}$
120 AMP. AUTO TRANSFORMERS. 190-270v.
$50 \mathrm{c} / \mathrm{s}$ (tapped every 5 volts). £50 ea. (Cart. by
arrangement.)
801A SIGNAL GENERATOR. $10-300 \mathrm{mc} / \mathrm{s}$ in
4 bands. Ext. $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$. Qutput $200 \mathrm{~m} / \mathrm{v}$
£50 ea. P.P. 25/-.

SPEAKERS

"E.M.I.:" 19×14 in. 50 watts. 8 ohm (14A/600A.) Four tweeters mounted across main exls. Separate "X-over" unit balances both bass and h.f. sections. 20 Hz . to 20,000 Hz . Bass unit flux 16,500 gss. A truly magnificent system. E25, P.P. 50/-
E.M.I. $13 \times 8 \mathrm{in}$. with two tweeters and cross-over. 8 or 15 ohm. $75 /$-. P.P. $5 /$
"E.M.I." $13 \times 8 \mathrm{in}$. Bass Unit. 10 watts $3-8-15 \mathrm{ohm}$ models
"E.M.I." $6 \frac{1}{2} \mathrm{in}$. Rd. 10 watt woofers. $8 \mathrm{ohm} .30 /-$ ea P.P. 2/6.
"FANE". 12 in. 20 watt. 15 ohm. (122/10A.) With integral Tweeter. E6 ea. P.P. 7/6.
Tweeter. E6 ea. P.P.
SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$.) Made to Spec. from $\frac{3}{4} \mathrm{in}$. board. Finished in black leathercloth. 13×8 in. speaker with twin tweeters complete with "X-over" 50 Hz to $20.000 \mathrm{~Hz}, \mp 710 \mathrm{~s}$. P.P. 10/-

EXTRACTOR FANS/BLOWERS

"AIRMAX" 7놀 In. FAN. In aluminium diecast housing (9 in.). 240v. Brand new. £ 4 10s. P.P. 10/-
"PLANNAIR" Eit Iri. FAN. (Type 5 PL 121-122.) Diecas housing. 240 V . Brand new. E6. P.P. 10/-.
SOLARTRON'. TANGENTIAL BLOWERS. Overall size $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2}$ in. Air outlet $12 \times 1 \frac{1}{2}$ in. 240 V . Brand new $50 /-$ ea. P.P. $7 / 6$
BULK COMPONENT OFFER. Resistors/capacitors. All types and values. All new modern components. Over 500 pieces, E2. (Trial
you will re-order.

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1$ in.) 4 digit $24 / 48 \mathrm{v}$. (state which), 6/6 ea. P.P 1/-.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$) 200 micro-amp. Made in Germany. 15/- each.
MICROAMMETERS (4-in. sq. Weston). 25-0-25 microamps. 45/-. P.P. $5 /$
RELAYS H.D. 2 pole 3 way 10 amp. contacts, $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (with dust-proof covers) $4 \mathrm{c} / \mathrm{o}$ contacts. 24 v . $500 \mathrm{ohm} 7 / 6$ ea.
PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1.18 .5 pf1,220 pf $\mathbf{£ 1 0}$ ea. Type $29.5 \mathrm{pf}-11.5 \mathrm{pf}$. $\mathbf{£ 6}$ ea. POT CORES LA1/LA2/LA3. 10/- ea.
71 WAY PLUG \& SOCKET (Painton Series 159). Gold plated contacts with hood \& retaining clips. 30/- pair 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts 20/- pair. 34 way version $15 /$ - pair.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) 2 pole change-over 12 VOLT H.D. RELAYS ($3 \times 2 \times 1$
(silver points) $8 /-$ each, p. \& p. $1 /$ COMPUTER BOARDS
4-OC23:4-2N1091; 4-2G302; 4-OA10. 20/- ea
8-0C42 (long leads); 16-0A47. 7/6 ea.
8-OC42 (long leads) ; 16-0A
8-DA11A ; 14-OA47. 5/-ea.
8-DA11A; 14-OA47. 5/-ea. Components too varied to
Bargain pack of 5 boards. Comer enumerate. At least 100 transistors and diodes $£ 2$ lot.

TRANSFORMERS

L.T. TRANSFORMERS (shrouded) Sec. $20 / 40 / 60 \mathrm{v} .2$ amp. 42/6. P.P. $7 / 6$.
L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40v. 1.5 amp. $30 /+$ P.P. $5 /-$
"ADVANCE"' CONSTANT VOLTAGE. Prim. 190/250v. $\pm 15 \%$. Sec. 115 v . 2,250 watts. £15 ea. P.P. 50/H.T. TRANSFORMERS. Prim. 200/240v. Sec. 300-0-300v. $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} . \mathrm{C} . \mathrm{T} .2 \mathrm{a} .30 /-$ ea. P.P. $7 / 6$.
350-0-350v. 60 M.A. ©. 3 v . С.T. 2a. 20/- ea. P.P. $5 /-$
L.T. TRANSFORMER. Prim. 240v. Sec. 33-0-33v. 5 amp. 45/-, P.P. 10/-
STEP DOWN TRANSFORMER. Pim. 200/240v. Sec. 115 v .100 watts. $20 /-$ ea. P.P: $5 /-$
L.T. TRANSFORMERS Prim. 240 v . Sec. $8 / 12 / 20 / 25 \mathrm{v}$. 3.5 amp models 20/-; P.P. 5/6.
3.5 amp models 20/-; P.P. 5/6.
L.T. TRANSFORMERS Prim. 240v. Sec $14 \mathrm{v}$.1 amp 10/.
ea. P.P. $2 / 6$.

LIQUID LEVEL DETE CTOR. Detects even mildly conductive liquids, li.e. ether, etc. N.O./N.C. Contacts fails to safe. E10. S.A.E. literature.

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C. 85/- ea. P.P. 5/
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240V. A.C. 20/- ea P.P. 5/-.
"LONG LIFE, ELECTRO
"LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{3}$ in.). 20/- ea. P.P. $2 / 6$. 10,000 u.f. 75 v . ($\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\right.$.) $17 / 6$ ea. P.P. $2 / 6$.
3,150 uf. $40 \mathrm{v}\left(4 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}\right.$). $15 /-$ ea. P.P. $2 / 6$. EXECUTIVE "SIXTY". AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built. True hi-fi performance. Built-in filters to protect speakers. Three independently mixed inputs. High-Low impedance. Mic. Crystal-CeramicMagnetic Cartridge, or aux. equipment. £55. P.P. 50/S.a.e. literature

TELEPHONE DIALS (New) 20/- ea.

RELAYS (G.P.O. '3000'). All types. Brand new from 7/6 each. 10 up quotations only G.P.O.) 3 core/cream p.v.c. 100 yd coil $40 /-$ 200 yd. coil $75 /-$ P.P. 5/- coil.
UNISELECTORS (Brand new) 25-way 75 ohm .8 bank $\frac{1}{2}$ wipe $65 /$. 10 bank $\frac{1}{2}$ wipe $75 /-$. Other types from $45 /$-.

REED RELAYS 4 make 9/12v. (1,000 ohm.) 12/6 ea. 2 make 7/6 ea. 1 make 5/-ea. Reed Switches (1zizin.) 2/ea. $£ 1$ per doz.
SUB-MINIATURE REED RELAYS ($1 \mathrm{in} \times \frac{1}{4} \mathrm{in}$.). Weight $\frac{1}{6}$ oz. Type 1.960 ohm, $3 / 9 \mathrm{v}$. 1 make. 12/6 ea. Type 2. 1800 ohm, $3 / 12 \mathrm{v} .1$ make. 15/- ea.

SILICON BRIDGES. 100 P.I.V 1 amp. ($\left(\frac{5}{8} \times \frac{7}{} \times \frac{7}{8}\right.$ In.), 8/6 ea
"ADVANCE" VOLSTAT TRANSFORMERS. Inpu 190-260v. Output 6v. R.M.S. 25 Watt. 40/-each. P.P. 5/-PLUG-IN RELAYS. (Siemans-Varley) $4 \mathrm{c} / \mathrm{o} .700$ ohm, P- ea. complete with base. (Other make-ups and colls available.)

PATTRICK \& KINNIE

I9I LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473 RM79DD

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87.50$ each, carr. £2.
Same model as above: Fully Recond. by M.O.D. $£ 65$ ea., or sec. hand cond. (guaranteed working order) from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, £3.50 a set, post 37p; SPEAKERS: new, £3 each, post 50p. *HEADPHONES: new, £1-25 a pair, 600 ohms impedance. Post 25p.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 50p each, post 13p. RF Coils 13 \& 14 ; 17 \& $18 ; 23 \& 24$; and 27 and 28. Price 63p each. 13p post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M. $980344,3 \times 0.01 \mathrm{mfd}$., 3 for 50 p, post 13 p. Trimmers $95534-502,2-20$ p.f. Box of 3, 50p, post 13 p. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v , $\mathbf{£} 2$ each, 20 p post. Output transformers 901666-501 $11 \cdot 37$ each, 20 p post.

FOR EXPORT ONLY

BRITISH \& AMERICAN

 COMMUNICATION EQUIPMENTVRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output 12/24V d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter opestem, with antennae. W.S. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type system,
$\mathrm{HF}-156$, Mk . II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, 144-174 Mc/s, 50 watt, narrow band width. A.C. input 115 V . BC- $640 \mathrm{Tx}, 100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R.19, FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx Rype ${ }^{\text {Collins }} \mathrm{Tx}$ Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment Collins Tx/Rx Type ARC-27, $200-400-\mathrm{Mc} / \mathrm{s}, 28$ d.c. ${ }^{\text {with }}$ associated equipment $455 \mathrm{Tx} / \mathrm{Rx}$. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $12 \ddagger \times 10 \mathrm{in}$. New condition. £45 each, carr. £1-50.

[^17]* Available with Receiver only.

If wishing to call ar Stores, please telophone
for appointment.
3-b TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808-9213

SOLARTRON PULSE GENERATOR GP1101.2: Period-2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec $\pm 10 \%$. Pulse Amplitude- $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/put; Squaring Amplifier. Input- $100-250 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$. New condition with Manual. Price: 885 each $+£ 1.25$ carr.

USM-24C OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . $1 \mathrm{~ms} / \mathrm{inch}$. Triggered sweep, built-in trigger pulses and markers. Mains input $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. $£ 42.50$ each, carr. £2.

OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c}$.p.s. (Further details
on request, S.A.E.) $£ 35$ each, carr. $£ 1 \cdot 50$.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious energy content, suitable for alignment of narraw-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range- $10-420 \mathrm{Mc} / \mathrm{s}$ in 5 bands, $\pm 0.5 \%$ accuracy. Emission-AM, CW, Pulse. O/put Voltage- 0.1 V $\mathbf{9 0 \%}$). Built-in Crystal calibrator ($1,5 \mathrm{Mc} / \mathrm{s}$). Price: $£ 150$ each, complete with transit case, manual and all leads; OR $£ 125$ each, Sig. Gen. only. Carr both types f 2 .

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small
amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width-0.5-10 microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db variable. O/put Impedance- 50Ω. Price: $\mathbf{£ 1 2 0}$ each $+£ 2$ carr.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is $115 \mathrm{~V},+10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq, $-3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put Attenuator: -7 to -127 dbm . Load- 50Ω. Price: $\mathbf{~} \mathbf{1 3 5}$ each + £2 carr.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put -7 to -85 dbm . Trans-mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation- $0-$ $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% \max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy-
$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / 8$ per $8 e c$. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration
point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 point. Accuracy measured at $25-85 \mathrm{dbm}$. Price: $£ 75$ each $+£ 1$ carr.

SIGNAL GENERATOR TS-418/URM49: Covers $400-1000 \mathrm{Mc} / \mathrm{s}$ range. CW, Pulse or AM emission. Power Range-0-120 dbm. Price: $£ 105$ each

TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlett Packard) Freq. $250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High stability. O/put 160 mw
or 10 V into 600Ω Price: $£ 65$ each $+£ 1.25$ carr.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. 0-30 for sine wave. Am or Pulse Carrier O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω.
Price: $£ 85$ each $+£ 1 \cdot 50$ carr.

FREQUENCY METER TS-74 (same TS-174): Hererodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $\mathbf{6 5} \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) $£ 75$ each.
Fubilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, probe, excellent condition. $£ 12.50$, carr. 75 p .

CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition. £1.75 each, post 25 p.
DLR.5 HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, 66.50 each, post 50p. 24 v D.C. input, 175 v D.C. @ 40 mA . output, $£ 1.25$ each, post 20 p.
CONDENSERS: 40 mfd , 440 v A.C. wkg. 55 each, 50 p post. 30 mfd 600 v wkg. d.c., £3.50 each, post 50 p. 15 mfd 330 v a.c., wkg, 75 p each, post 25 p .10 mfd
1000 v .63 p each, post 13 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v \& 5 1000 v .63 p each , post 13 p. 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . £5
each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p} .4 \mathrm{mfd} .3000 \mathrm{v} . \mathrm{wkg} . £ 3$ each, post
 ach, post 10 p .0 .01 mfd MICA 2.5 Kv . $£ 1$ for 5 , post 10 p . Capacitor 0.125 mfd , $27,000 \mathrm{v}$. wkg. £3.75 each, 50 p post.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price £1-25, post 25p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $\mathbf{e 2} 50$ each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, carr. 75p.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps. Price (either type) $£ 2$ each, 25p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24^{\prime} \mathrm{s}$; complete with flament transformer 230 v . A.C. Mounted in 19in. panel, $£ 4.50$ each, carr. 75p. POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. on steel base $19^{\prime \prime} W^{\prime \prime} \times 11^{\prime \prime} \mathrm{Hx} 4^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition $\mathbf{~} \mathbf{6} .50$ each, carr. f 1 .
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V, $50-60 \mathrm{c} / \mathrm{s}$, 500
POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. t. approx. 100 lb ., $£ 17.50 \mathrm{each}$, $£ 1.50$ carr. SMOOTHING UNITS suitable for above $£ 7.50$ each, 75 p. carr.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7 . 5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{£ 3} .50$ each, post 37 p. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v . D.C. 3 relays, 11 valves, price $\mathbf{£ 3}$ each, carr. 50 p. ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. $81 \cdot 25$, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps.; $2 \frac{1}{2}$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. $£ 15$ each,
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24 V , 200 Amps, $£ 2$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in . diameter), motors, suppressors, etc. £35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\frac{ \pm}{3} \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions, total value 900 ohms. $\mathbf{3}$ Gang. Tolerance $\pm 1 \% £ 3.50$ each, post 25 p.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}$ $15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$. a.c. $£ 45 \mathrm{each}$, $£ 1.50$ carr.
CRYSTAL TEST SET TYPE 183: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 12.50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. £ 4 each, 50 p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm, $\mathbf{£ 1 . 5 0 \text { each, } , ~}$ 25p post. ASSEMELY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm , 82 each 25 p post. SYNCHROS: and other special purpose motors available. List 3p.
DALMOTORS: 24-28V d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. £5 each, 50 p post.
GEARED MOTOR: 28 V d.c. 150 mpm (suitable for opening garage doors). \&A each, 50p post.
SMALL GEARED MOTOR: 24V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{2} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $£ 2$ each, 23 p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3in. diameter case. Price £2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mntrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., 86.50 each,
post 37 p . CO-AXIAL SWITCH-Mnftrs. Transco Products post 37 p. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type
M1460-22, 2 pole, 2 throw. (New) 86.50 each, post 25 p. 1 pole, 4 throw, M1460-22, 2 pole, 2 throw. (New) £6.50 ea
Type M1460-4. (New) £6.50 each, post 25 p.
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, $2 \cdot 0-10 \cdot 0 \mathrm{KMC} / \mathrm{SEC}$. (New) 25 each, post 25 p. FIXED ATTENTUPE 130c, Type $1157 \mathrm{~S}-1$ (New) 26 each, post 25 p.

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 \&I, post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE IMPEDANCE METER MODEL. 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. £75
each, $£ 1$ carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$.
24DB. $£ 12-50$ each, post 35 p. 24DB. $£ 12-50$ each, post 35 p.

G. F. MILWARD
 Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS

ELECTRONIC COMPONENTS

Wholesale/Retail:

4,000,000 DIODES
 SILICON • GERMANIUM • ZENER
 LOTS OF 100,000-£150
 10,000-£20
 1,000-£3
 500 - £2

1,000,OOO GERMANIUM TRANSISTORS

LOTS OF 100,000-£250
10,000-£30
$1,000-£ 3 \cdot 50$
500-£2

| SPECIAL 50p PACKS. O AN EXTRA ONE FREE | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RESISTORS, $\frac{1}{4} / \frac{1}{2}$ watt | | | TRANSISTO | | |
| assorted | 100 | 50p | P.N.P. Unte ted but mainly | | |
| Wire-wound I to 3 watt | 20 | 50p | O.K. | 50 | 50p |
| 5 to 7 watt | 15 | 50p | N.P.N. Untested but mainly | | |
| 10 watts | 10 | 50p | O.K. | 50 | 50p |
| Multi-tapped | 12 | 50p | OCP 71 equivalent | 5 | 50p |
| PAPER CONDENSERS | | | Light-sensitive Diodes | 10 | 50p |
| Tv types | 50 | 50p | (These produce up to Ima from | (m light) | |
| Miniature | 100 | 50p | OC44 Mullard Ist grade | 4 | 50p |
| ELECTROLYTIC CONDENS | | | OC45 Mullard Boxed | 4 | 50p |
| Suitable for Mains | | | 2G378 Output, Marked | 4 | 50p |
| Radio/TV | 10 | 50p | 2G371 Driver, Marked | 4 | 50p |
| Transistor types | 20 | 50p | ASY 22, Marked | 5 | 50p |
| Mixed (both types) | 15 | 50p | BY 127 Rectifiers | 4 | 50p |
| POLYSTYRENE | | | IN4007 Rectifiers | | |
| CONDENSERS | 100 | 50p | (1200V peak) | 4 | 50p |
| MULLARD POLYESTER | | | STC 3/4 Rectifiers | 6 | 50p |
| COND | 50 | 50p | DIODES (0A 81 \& OA 91) | 40 | 50p |
| SILVER MICA | 100 | 50p | WIRE | | |
| WIRE-WOUND 3-Watt | | | Solid Core. Insulated 100 | 00yds. | 50p |
| SLIDERS | 15 | 50p | Stranded ditto 50yd | $50 y \mathrm{ds}$. | 50p |
| VOLUME CONTROLS | | | SOLAR CELLS | | |
| Assorted | 5 | 50p | Large Selenium | | 50p |
| NUTS AND BOLTS. Mixed | | | Small | ${ }^{3}$ | 50p |
| length/type | | | (6 cells will power a Microma | natic | |
| 8 B.A. | 100 | 50p | radio) | | |
| 6 B.A. | 100 | 50p | CO-AXIAL CABLE | | |
| 4 B.A. | 100 | 50p | Semi Air-spaced 15 | $15 y \mathrm{ds}$. | 50p |
| 2 B.A. | 100 | 50p | CRYSTAL TAPE RECORDER | | |
| METAL SPEAKER GRILLES | | | MIKES | 1 | 50p |
| $7 \frac{1}{\text { in }}$ in. $\times 3$ in | 6 | 50p | CRYSTAL EARPIECES | | |
| EARPIECES, MAGNET\C | | | 3.5 mm Plug | 2 | 50p |
| No Plug | 6 | 50p | TRANSISTORISED Signal | | |
| No Plug | 6 | 50p | Injector | | 50p |
| 2.5 mm Plug | 4 | 50p | TRANSISTORISED Signal | | |
| 3.5 mm Plug | 4 | 50p | Tracer | | 50p |
| 500 MICRO-AMP LEVEL | | | TRANSISTORISED CAR REV | | |
| METERS | 1 | 50p | COUNTER KIT (Needs I | ma. | |
| VEROBOARD. TRIAL PACK 5 BOARDS + CUTTER | | 50p | meter as indicator) | | 50p |

MULLARD 'UNILEX' AMPLIFIERS
In our opinion these units are the best value for money ever offered. A complete stereo unit consisting of Control unit, Pre-amplifier, Two Main Amplifiers and Power Pack complete the ready for use-NO extra components to buy-yours or Els. (Normal rerail price is El6:50)

GARRARD SP 25 UNITS also offered at a discount. Our price only $\mathbf{£ 1 2 . 5 0}$. Postage 50p.

TRANSISTOR RADIOS
Once again we have a supply of these excellent radios which offer superb quality sound and excellent sensitivity. They are packed in a colourful presentation box complete with battery, earpiece and carrying case. Each one is guaranteed. £ 1.88 .

SINCLAIR AMPLIFIERS AND SPEAKERS: Complete range in stock. All at 10% discount on list.

Abstract

VEROBOARD $2 \frac{1}{2}$ in $\times \operatorname{lin} \times 0.1 \sin 6 \mathrm{p} \quad \sin \times 3^{3}$ in $\times 0.15$ in $28 \mathrm{p} \quad 33$ in $\times 3$ in $\times 0.1 \mathrm{in} \mathbf{2 4 p}$ $\frac{3}{3}$ in $\times 2 \frac{1}{2}$ in $\times 0.15$ in 16p $\quad 17 \mathrm{in} \times 2 \frac{1}{2}$ in $\times 0.15$ in $55 \mathrm{p} \quad 5 \mathrm{in} \times 2 \frac{1}{2}$ in $\times 0.1 \mathrm{in} \mathrm{23p}$ Spot Face Cutter 38p. Pin Insert Tool 48 p . Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices! G90 Magnetic Stereo Cartridges. Diamond Needle, 6 mV output. EA^{2}. ACOS GP $67 / 2$ (Mono, Crystal) 75 p . ACOS GP $91 / 3$ (Compatible, Crystal) El . ACOS GP 67/2 (Mono, Crystal) 75p. ACOS GP 91/3 (Compatible, Crystal) £1. ACOS GP $93 / 1$ (Stereo, Crystal, Sapphire (El 25 . ACOS GP 93 ian (Stereo, Crystal $94 / I D$ (Stereo, Ceramic, Diamond) fl 188 . ACOS GP $95 / 1$ (Stereo, Crystal with two L.P./Stereo needles) $\mathbf{E l} \mathbf{2 5}$.

^[TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents, etc., $\mathrm{E3}$. Postage/Packing 25p. 15 watt type, batten fitting for caravans 64. Postage/Packing 25p. 13 watt type, batten with switch. 22 in $\times 2$ in \times lin 65. Postage/Packing 25p. THE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.]

1,000pf, $0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (all 160 V working). $25 \times$ discount for lots of 100 of any one type.

RESISTORS

$\frac{1}{4}$ and $\frac{1}{2}$ watt Most values in stock. 50 p per 100 . 10 p per dozen of any one value. 1 watt to 50 watts. A targe percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted" at 50p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS Large range in stock, 75 p per 100 of any one value. 15 p per dozen.

RECORDING TAPE BARGAIN: The very best British Made low-noise high-quality Tape! Sin Standard 38p. Long-play 45p. 5^{3} in Standard 45p. Longplay 60 p. 7 in Standard 60 p . Long-play 82p. We are getting a fantastic number still have a good stock at these low prices?
£5 WORTH OF COMPONENTS FREE ! ! ! !
Thinking of learning another language? If so apply to us for details of LINGUA. worth of components of your selection quite free of charge when you purchase a course ! ! ! !

 repair applications.
Sensitivity: 20,000 o.p.v. DC and 2,000 o.p.r. AC .
D.C. ranges: 75 mV .1.5-3-7.5-15-30-60-150-300-600V
 $600 \mu \mathrm{~A}-3-15-6(1-304 \mathrm{~mA}-1.5$
Resistadce $\quad 0.5-5-50-500 \mathrm{k} \Omega$

```
Capacity and Trans.0.5.
```

Accuracy: 1.J "D.C. 2% A.
l'RICE, with carrying case and leads $£ 10.50$
Both instruments have knife edge pointers and mifror scales
WHEN ORDERING BY POST PLEASE ADD $0.12 \frac{1}{2}$ (2/6) IN $£$ FOR HANDLING AND POSTAGE ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

 FULLY GUARANTEED

MVIOB LIGHT EMITTING DIODE To 18 outline. Brightness 500 Pt. 1 at 50 mA . Forward voltage
1.65 to 2 V . Bpectral length 6300 to 7000 A (red light). Lens PRICE $£ 1.05$ plus 0.10 P . F

CLASS 15 MOVING COIL PANEL METERS

| mm | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $40 \mu \mathrm{~A}$ | | £4.10 | 1.5 A | - | ¢2. 90 |
| $60 \mu \mathrm{~A}$ | | 83.90 | $2 \cdot 5 \mathrm{~A}$ | \cdots | ¢2.90 |
| $100 \mu \mathrm{~A}$ | | 23.70 | 10A | \cdots | £3.00 |
| $250 \mu \mathrm{~A}$ | | 23.25 | 40 A | . | £3.75* |
| $16190 \sim$ A | | 2300 | 155 | | 23 10 |
| 2.5 mA | | £2.90 | 180 V | . | ¢3.10 |
| 25 mA | | £2.90 | 100V | \because | £3.10 |
| 60 mA | | £2.90 | 250 V | | ¢3.25 |
| IA | | 12.90 | fi00V | | £4.00 |

\section*{MINIATURE CERAMIC CAPACITORS
 25 V D.C. WORKING} 180-2220-270-330-390-470-б60 | $680-820.1006 \mathrm{FF}$ |
| :---: |
| 400^{12} |

 $-20^{\circ}+80^{\circ}$ tolerance
$0.015 \mu \mathrm{~F}$
$0.022 \mu \mathrm{~F}$ $0.02 \mu \mathrm{~F}$
$0.047 \mu \mathrm{~F}$ 1.00np each
1.10 mp each
1.10 mp each 1.10np each
1.20np each
1.25np each . 25 np each
1.30 mp each $1-40 \mathrm{rpp}$ each
.50 np each
Nute: Minimam orders accepted 20 per type
Complete with exterual shunt
£4.00
HaOn
 Mate

島"

 \%

FIRST QUALITY VALVES

please note that all prices are quoted in decimal currency IN DECIMAL CURRENC.

CI-5 SINGLE BEAM 0 mesc passband tripg weep from 1μ sec. to 3 millisec. Free running time base rom $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude alibrator, 3 -in. cathode ray | tube with telescopic |
| :---: |
| hood. |
| viewing |
| $£ 39 \cdot 00$ | CI-16 DOUBLE BEAM OSCILLSCO mc / s passband. Separate rectimgular $5{ }^{5}$ in. $\times{ }^{4}$ in. rated triggered sweep from $0.2 \mu \mathrm{sec}$. to $100 \mathrm{milli}-$ ec. per em. Free running ime base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time base calibraion and amplitude calirator $-\cdots$..... $\mathbf{8 7} \mathbf{5 0}$ full dettils on request. pares avalable.

UR NEW CATALOGUE 10701971 IS NOW OUR NEW CATALOGUE 1970/1971 IS NOW

$\begin{array}{r}\mathrm{P} \\ \mathrm{P} \\ \mathrm{P} \\ \hline\end{array}$

${ }^{\text {PCF80 }} 0$

 | e |
| :--- |
| 0.30 | $3 \begin{aligned} & \mathrm{PC} \\ & \mathrm{PC} \\ & \mathrm{PC}\end{aligned}$ PCF8060

PCF8080
PCH200
\qquad
\qquad
\qquad

| 75 | $Q Q V$ | | | | | |
|---|---|---|---|---|---|---|
| 70 | $Q 88$ |
| 0.70 | QVO |
| 0.50 | $Q Y$ | 2 | | UCH43 | 0.75 |
| :--- | :--- | :--- |
| UCH 81 | 0.35 | | A UCL81 0.35 | .40 A | UCL81 | 0.60 |
| :---: | :---: | :---: |
| 5.50 | UCL82 | 0.35 |
| 0.40 | UCL83 | 0.60 |

Q883/3 0
$Q V 03-12$
0

$$
\begin{array}{c|cc}
0.70 & \text { UF9 } & 0 \\
0 & \text { UF11 } & 0 \\
8.00 & \text { UF42 } & 0 \\
8
\end{array}
$$

$$
\begin{aligned}
& \text { QY } \\
& \text { R10 }
\end{aligned}
$$

$$
\begin{array}{l|ll}
A^{7} & \text { UF41 } & 0 \\
3.00 & \text { UF42 } & 0 . \\
\mathbf{A} & \text { UF43 } & 0 . \\
\hline .00 & \text { UF80 } & 0.3
\end{array}
$$

$$
40 \mathrm{PE}
$$

$$
\begin{array}{r|r}
01 \\
0.50 & \\
0.40 & P 1
\end{array}
$$

$$
\begin{aligned}
& \text { PEN } 45 \mathrm{D} \\
& \text { PEN4i } \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { PEN383 } \\
& \text { PEN38. } \\
& \text { PEN45D }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PEN45: } \\
& \text { PF86 } \\
& \text { PF818 } \\
& \text { PF10AM }
\end{aligned}
$$

44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and
release of electronic valves, tubes,
klystrons, etc.
lystrons, etc.

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US

Luingston 1
 THE MUM: 1 B $1 /=\mathrm{N}$ INSTRUNLENT AHBE
 TELEPHONE: 01-267 3262 TELEX : 23920

VITAVOX

FOR HIGH QUALITY

MICROPHONES

LOUDSPEAKERS
and ancillary equipment
Further information from:
VITAVOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel : 01-204 4234)

MAN MADE
 MEMORIES CONFERENCE LONDON 30-31 MARCH, 1971
 Delegate registration may be telephoned to:
 BUSINESS CONFERENCES \& EXHIBITIONS LTD.
 01-928 3388 Ext. 346

WW-111 FOR FURTHER DETAILS

NO EXCUSES! NO DELAYS! FROM STOCK! vailable voltage thansfonderis

INPUT 230 v. A.C. 50/60
OUTPUT VARIABLE $0 / 260$ v. A.C.
BRAND NEW. Keenest prices in the country. All Types (and spares) from $\frac{1}{\frac{1}{2}}$ to 50 amp available from stock.
$0-260 \mathrm{v}$. at I amp........... $£ 5.50$ $0-260 \mathrm{v}$. at $\mathbf{2 . 5} \mathrm{amps} \ldots .$. $\mathbf{£ 6 . 7 5}$
$0-260$ v. at $5 \mathrm{amps}$. . $\quad \mathbf{E 9 . 7 5}$ $0-260$ v. at 10 amps. $£ 18.50$ $0-260 \mathrm{v}$. at $15 \mathrm{amps}$. . $£ 25.00$ 0-260 v. at $20 \mathrm{amps}$. . $£ 37.00$ $0-260 \mathrm{v}$. at 25 amps . . $0-260 \mathrm{v}$. at 37.5 amps $0-260 \mathrm{v}$. at $50 \mathrm{amps} \quad \mathbf{~} \quad 192.00$ 20 different types available FOR IMMEDIATE DELIVERY.

500 VOLTS, 500 megohms. Price $£ 28.00$ carriage paid.

1,000 VOLTS, 1,000 megohms,
£34.00 carriage paid.

VAN DE GRAAF ELECTROSTATIC
\qquad fite
|LATEST TYPE SOLID STATE VARIABLE CONTROLLER Ideal for lighting and heating cir-
cuits, compact panel mounting. Buils
in fuse ren cints, sompact pane mounting. Buil
in fuse protection. CONTINUOUS LY VARIABLE.
input 230 v AC outp
5 amp model $£ 8.38$ 5 amp model $£ 8 \cdot 38$
10 amp model $£ 13-20$

230 V. A.C. SOLENOID. Heavy duty type. Approx. 31b. pull. 88p plus $13 p$ P. \& P. 12 v . D.C. SOLENOID. Approx. 1bib. pull. 53p plus 8p. 50 . D.C. SOLENOID. Approx. lb. pull. 53p plus 8p.
50 v . D.C. SOLENOID. Approx. 21b. pull. 63p plus 8p.

36 volt 30 amp. A.C. or D.C. 3 Variable L.T. Supply Unit INPUT 220/240 v. A.c.
OUTPUT
CONTINUOUSLY
VARIABLE 0.36 v.
Fully isolated. Fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and chromo
handles. Input and Output fully handles. Input and Output fully
fused. Ideally suited for Lab. or funed. Ideally suited for Lab.
Industrial use. $£ 58 \cdot 00$ plus $£ 2 \cdot 00$ \& c.

SERVICE TRADING CO

Postage and Carriage show overseas please ask for quotation
issue a catalogue or list

RING TRANSFORMERS

 These multi-purpose Auto Transformers, with
large centre apperture, can be used as a Douole wound current Transformer, Auto Transiormer,
H.T. or L.T. Transformer, by simply hand wind. ing the required number of turns through the centre opening
E.g. Using the RT. 100 Y . Model the 0 tpe

L.T. TRANSFORMERS

Price Carr.
$\begin{array}{ll}\$ 1.88 & 28 p \\ £ 4.68 & 30 p\end{array}$
$\begin{array}{ll}64.68 & 30 p \\ 66.88 & 33 p\end{array}$
$\begin{array}{ll}\mathbf{4 6 . 8 8} & 33 \mathrm{p} \\ \mathbf{E} 4.95 & 22 \mathrm{p} \\ \mathbf{6} .43 & 33 \mathrm{p}\end{array}$ $66.43 \quad 3$
$\boxed{67.28} \quad 3$ $\begin{array}{ll}66.88 & 38 \mathrm{p} \\ 65\end{array}$ $65.23 \quad 28 \mathrm{p}$
67.15 $67 \cdot 15 \quad 33 \mathrm{p}$
AUTO TRANSFORMERS. Step up, step down 110-200-220-240 v. Fully shrouded type $£ 3.63$ each. P. \& P. 23p. 500 watt type 65.13 each
P. \& P. 33 p. 1.000 watt type 67.13 each. P. \& P. 39 p LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium
Sulphide Phorocell. Relay Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operations. Price $41-25$, plus 13p P. \& P.
ORP. 12 and Circuit 63p post paid

220/240 A.C. MAINS MODEL

orporates mains transformer rectifier and special

INSULATED TERMINALS
Available in black, red, white yellow, blue and gr
lop each. Post paid.

HOSIDEN DH-02-S
Stereo Headphones Ourstanding performance. 8 ohm im-
peddance and $20-12,000$ cps. Adjustable
head band. Price only 62.38 . P. \& P. 13 l head band. Price only 62.38. P. \& P. Plp.
Complete with lead and stereo jack plug.

BURGESS MICRO SWITCH Lever operated. c/o concacts. Price 20p plus $4 p$
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source with adjustable lens assembly and 19 ventilated lamp housing to take
MBC bulb. Separate photo cell MBC bulb. Separate photo cell mounting assembly fo ORP. 22 or similar cell with optic window. Both units
are single hole fixing. Price per pair $£ 2.75$ plus 18 p
230 YOLT AC SOLENOID
EXTREMELY POWERFUL SOLENOID with approximately
inch travel. Fitred
feet 4 inches long. 14lb. pull, I inch travel. Fitted 2 z inches wide and 3 inches high

VENNER ELECTRIC TIME SWITCH
200/250 volt. Ex-GPO. Tested, perfect
condition. Two ON, two OFF, every 24 hrs. at any manually pre-set time. Price: 10 amp .
62.75 . 15 mp . $\in \mathbf{3 5}$. 20 amp . 3.75 . P \& P .

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, $24 \mathrm{v}$. D.C operation
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D. operation. 56.50 . plus 13p P. \& P. WIPER
8-BANK 25-WAY FULL WIPER
24 v. D.C. operation. 67.63, plus 20 p P. \&
MINIATURE UNISELECTOR 3 banks of 11
homing basitions, plus
40 ohm coil $24-36 \mathrm{v}$. D.C operation. Carefully removed from equipment and

(viz)POWER RHEOSTATS
 (N|W) Ceramic construction, wind-

 Enamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FROM 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2a., 50 ohm 1.4a., 100 ohm la., 250 ohm 7a., 500 ohm $\cdot 45 \mathrm{a}$., Ik ohm 280 mA ., 1.5 k ohm $230 \mathrm{~mA} ., \mathbf{2} 5 \mathrm{k}$ ohm $2 \mathrm{a} ., 5 \mathrm{k}$ ohm 140 mA ., Diameter 31 in . Shaft length ${ }^{3} \mathrm{in}$, dia. fis in., \&1.50. P. \& P. 8p.50 WATT $1.12 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{~K} / 2.5 \mathrm{~K} /$ 50 WATT I. 12/10/25/50/100/250/500/1K/1.5K/2.5K/ 5 K ohm. All at \&1.12, P. \& P. 8p
25 WATT $10 / 25 / 50 / 100 / 250 / 500$
颠
Black Silver Skirted knob calibrated in Nos. 1-9. 12
in. dia. brass bush. Ideal for above Theostats, 18p ea.
COMPLETE NI. CAD. BATTERY OUT. FIT (EX W.D.)
2 metal carrying cases
volt $7 \mathrm{AH}(12 \mathrm{v})$ batteries.
also $10 \times 1.2 \mathrm{v} 22 \mathrm{AH}$
also $10 \times 1.2 \mathrm{v} 22 \mathrm{AH}$
(12v) batteries (40 bat-
thyristor controlled

charging unit. Designed
aneourging and 22 AH batteries simultaneously. Input voltage can be adjusted between
$100-250 \mathrm{v}$. Built to ministry specification. Ideal power supply for field work. Offered at fraction of
makers price. 2 sets of batteries, I charging unit. The makers price. 2 sets of batteries, I charging unit. The
set $£ 45.00$ c. \& p. $£ 1-50$.

NICKEL CADMIUM BATTERIES

1.2 v. 35 AH. Size 80 high $\times 3 \times 10$. $\mathbf{1} .50$ each, plus 20 p Sintered Cadmium Type 1.2 v. 7AM. Size: height $3 \frac{1}{2}$ in.

 Now available EX STOCK supplied complete with full data and applications sheer. Price $£ 1.5$ plus $8 p{ }^{-P}$. \& P.
ELECTRONIC ORGAN KIT

Easy to build, solid state. Two full octaves Fitted hardwood case, powered by two pen-
lite $1 \frac{1}{2} \mathrm{y}$, batteries. Complete set of parts including speaker, etc.. cogether 50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, page instruction leaflet. Some examples of the 50 possible Projects ara: Sound level Meter, 2 Transistor Radio. Amplifier etc., etc. Price 67-75. P. \& P. 30p.
A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp . contacts. $230 / 240$ v. A.C operation. Ex-equipment. Tested. $\& 1 \cdot 13$ plus $5 \mathrm{p} P$ \& P

HIGH FREQUENCY
TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker also earpiece for personal monitoring. Complete with

RELAYS ${ }_{\text {NEW SIIEMENS PLESSEY, ece }}$

 MINIATURE RELAYS AT COMPETITIVE PRICES.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.

200/250v. $\frac{1}{2}$ RPM Motor (Mfg by Smith Price 75p inc. post)
BODINE TYPE N.C. 1 GEARED MOTOR
(Type I) 71 r.p.m. corque 10 lb in.
Reversible $1 / 70 \mathrm{th}$ h.p. 50 cycle .38 amp. (Type 2) 28 r.p.m. torque 20 Ib. in Reversible $1 / 80 \mathrm{th}$ h.p. 50 cycle .28 amp . The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor $115 \vee$ A.C. Supplied complete with transformer for
$230 / 240 \vee$ A.C. input $230 / 240 y$ A.C. input
Price, either type $£ 3 \cdot 15$ plus 23 p
These motors are ideal for
These motors are ideal for rotating aerials, drawing PARVALUX TYPES DI9 2301250 VOLT AC REVERSIBLE GEARED MOTORS

30 r.p.m. 40 lb . ins. Position of different angles. Mounted substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A

PERSONAL CALLERS ONLY
9 LITTLE NEWPORT STREET,
LONDON, WC2H 7JJ,
LONDON. WC2H 7

APPOINTMENTS VACANT

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K Electronics and Industrial Operations of E.M.I Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1,500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance
 and career details to: J. J. Sweetman, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01.573 3888, Ext. 2523.

[ढढวว)

 Electronics

 Electronics

 Maintenance Engineer

 Maintenance Engineer}

An engineer, possibly with Computer maintenance experience, is required to maintain and
service the fastest radio paging system in the wortd. This unique equipment has recently been installed at the London Stock Exchange in the City of London. The man appointed will probably be educated to O.N.C. (electronics) or equivatent standard. Two vears' experience of maintaining digtal control equipment is desirable. The man must be capable of working
on his own initiative and will probably be aged over 25 years. Starting salary will be in the on his own initiative and will probab
region of $£ 1.500$ p.a. plus overtime

Electronics Engineers

Additional Maintenance Engineers are required in our Radio Paging and Public Address Maintenance Workshop The men appointed will be required to repair and maintain
miniaturised transistor equipment. Previous experience in fault finding or production testing digital equipment is desirable. C. \& G. Inter-Telecomms. Or Radio an advantage. One of the engineers will be required to take charge of the maintenance and repair of public address equipment.
All these vacancies are staff appomtments and benefits include reafistic and progressive salaries, 3 weeks holiday, sickness payment scheme and pension and life assurance schemes Mr. T. F. Sohi, Group Personnel Manager,
S
SHIPTON AUTOMATION LTD
Shipton Group House, Oval Road, London, NW1 7DD.
Tel: 01-485 4100. Ext. 331.

BRITISH RELAY

TELEVISION and RADIO

 DISTRIBUTION SYSTEMSWe are expanding our activities in the field of wired installations in hotels, both at home and overseas. For this,

WE REQUIRE ENGINEERS
with the necessary specialist knowledge and experience, for duties which include:-

- SYSTEM PLANNING
- SCHEDULING and ESTIMATING
- INSTALLATION CONTROL
- COMMISSIONING

[^19]
There's a big future in EVR

We're building up the EVR production unit at Basildon. Currently we need:

SHIFT CONTROL ENGINEERS

to operate video tape and sound transfer facilities. You should have had experience of equipment and staff control in television engineering, of video tape recording, telecine operation, telerecording and film characteristics. A good knowledge of optical and magnetic sound transfer and vision and sound mixing is also desirable

VTR ENGINEERS

with good working knowledge of 2 " quadruplex video tape recorder operations and maintenance. An experience of $1^{\prime \prime}$ machines would also be useful. Telecine experience an added advantage.

ENGINEERS \& OPERATORS for the Electron Beam Recorder

to work on the only Electronic Beam Recorder in this country. Either VTR or Audio Engineers are invited to apply, or operators with electronic background used to working with complex equipment. Training will be given.

AUDIO ENGINEERS

with experience in operating audio equipment to high quality reproduction standards.

Salary levels are attractive, and will depend on experience. All applicants must be prepared to work shifts. We'll help with removal expenses and we can help you to get rented accommodation in Basildon

Please write or telephone for an application form, to: F. A. Harvey. The EVR Processing Station, Christopher Martin Road, Basildon, Essex. Telephone: Basildon 22800.

The Government of ZAMBMA ecpires RADO ando ando Salary up to \$2,590

\star Contract of 36 months \star Low Taxation
\star Subsidised Housing \quad Education Allowances $\star 25 \%$ Tax-free Gratuity \star Appointment Grant of up to $£ 200$ payable in certain circumstances * Salary $£ 2,310$ to $£ 2,590$ according to experience

Duties will involve the maintenance and installation of police radio equipment throughout Zambia, travelling by road and air.
The equipment includes modern low and medium power H.F. equipment, S.S.B. equipment and V.H.F. equipment including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred. Candidates, who will serve in the rank of Inspector of Police (non-uniformed), must have completed a five year apprenticeship or hold a service trade certificate or equivalent qualification and have at least six years postqualification experience.

Duties will involve the maintenance, overhaul and instal. lation of ground terminal radio communicalion equipment and navigational aid at Arports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a know edge of theoretical principles within this field,
In addition they should have attained one of the following :
(i) completion of a 5 year apprenticeship
(ii) a service trade certificate
(iii) an I.C.A.O. certificate
or (iv) equivalent.
Radio Engineers. Ref. M2Z/690315/WF

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W. 1 for application form and further particulars stating name, age, brief details of qualifications and experience and quoting relevant reference number.

WORK AS A RADIO TECHNICIAN ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently.
We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent
Salary scale: $£ 1.161$ (age 21) rising by increases to $£ 1.590$ plus a London Weighting Allowance. Promotion to Telecommunications Technical Officer will bring you more.
For full details of this worthwhile and unusual job, write to

METROPOLITAN POLICE

Room 733 (RT/WW), New Scotland Yard Broadway, London, SW1 or telephone 01-230 1212 extension 2605

UNIVERSITY OF DURHAM

DEPARTMENT OF APPLIED

 PHYSICS AND ELECTRONICS SENIOR DEMONSTRATOR/ EXPERMMENTAL OFFICER IN ELECTRONICSApplications are invited for the post of Senior Demonstrator or Experimental Officer in Electronics. Applicants should have an interest in a wide variety of electronic circuits using modern semiconductor devices. They should have a degree or equivalent qualification. or relevant experience.
The person appointed will assist in the develop ment of circuits for both electronics teaching and research and will, if appointed as a Senior Demonstrator, undertake laboratory supervision and some lecturing.
Salary on the scale $£ 1,200 \times £ 100-£ 1,900$ (Senior Demonstrator), or $£ 1.145 \times £ 55-£ 1.310$ $\times £ 65-£ 1.505$ (Experimental Officer) with possibility of promotion to $£ 1.540 \times £ 80-£ 2.260$ (Senior Experimental Officer). All scales under review.
Applications, stating names and addresses of three referees, by 22 February, to the Registrar and Secretary, Old Shire Hall, Durham, from whom further particulars may be obtained.

SALES ENGINEER
 with exciting prospects

We are a fast-expanding electronics company with a turnover rising at 100% per year. Our specialised instruments have already won us a world reputation for performance and quality. New products and developing markets offer the man who joins us the chance to make a big contribution and see his rewards grow as we grow.
The right man for the job. which is based in the West. will ideally be under 30 , preferably a physics graduate, ambitious and full of drive. Previous sales experience is not essential. as training facilities are available. Salary will start in the range $£ 1.500$ to $£ 2.000$, plus a company car and the opportunity for overseas travel. But to a young sales engineer with real potential. that's only the beginning.

first choice in signal recovery
 Brookdea

[^20]
STAVELEY-SMITH CONTROLS LIMITED SERVICE DIVISION
 ob grosvenor street, manchester mi tew vacancies for service engineers

Marine Radio, Radar, Gyro-Compass \& Engine Room Electronics

Applicants must have had experience in service of this equipment and ability to fault find and repair. Good basic theoretical knowledge essential and keen interest in the Marine World.
Required for London, Newcastle, Belfast, Hull, Glasgow, Swansea.

Marine and Industrial Electrical and Automated Equipment

Applicants must have had experience in sophisticated automation and controls of the heavier type of electrical equipment, such as Ships Remote Bridge Controls of main engines, Protective Devices and Alarms, Data Loggers etc.
In Industry, Electronics and Automated Controls of heavier machines such as Machine Tools, Printing Equipment, Food Processing Machinery, Electric Fork Lift Trucks etc., require to be serviced and repaired. Required for London, Glasgow, Newcastle, Manchester.

Electrical Instrument Mechanics

Applicants must have had experience in the rebuilding and repairing of all kinds of fine Instruments, recalibrations, scale writing etc. Work involved is very wide indeed. Multi range Instruments, Chart Recorders, Bridges and Switchboard Instruments. Required for London (City), and Manchester (Central). Applications in writing, giving full personal and technical background details, to The Manager, address as above.

Light engineering/ electronics and in the dark about computers?

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary while we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or $\mathrm{C} \& \mathrm{G}$ in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our opportunities.

How far you progress is up to you-the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35.
Locations: Reading, Bracknell, Middlesex, Hertfordshire, Surrey, Central London, Manchester, Kidsgrove and Dublin.

Write giving brief details of your career, and quoting ref.WW668eto: A. E. Turner, International Computers Limited. 85/91 Upper Richmond Road, Putney, London SW 15.

Straight talking electronics engineers

Listen to us for a few well-paid months, then with computer expertise added to your thorough understanding of general electronics, you'll be a well qualified Service Engineer Instructor.

We're looking for that rare ability to make others see exactly what you're getting at. We want people who know their stuff inside out-who can pass on practical information that trainees would otherwise take years of experience to acquire.

It will be your responsibility to make sure that when your pupils leave the Training Centre as computer service engineers, they're (almost) as good at their jobs as you are now at yours!

Some travelling will be involved in the UK, and possibly overseas, and during this time a salary premium is paid in addition to all normal expenses.

Most of you will be based at Letchworth in the pleasant Hertfordshire countryside, and only an hour's drive from London. Relocation expenses will be considered.

Please write, quoting ref WW665C to A. E. Turner, International Computers Limited, 85/9I Upper Richmond Road, Putney, London, SW_{15}.

Expanding firm of electronic equipment stockists and importers, seek a highly experienced man

TO TAKE CHARGE AND D「VELOP

 NEW DEPARTMENT OF PASSIVE COMPONENTSExcellent technical and commercial knowledge of capacitors and resistors necessary. The successful candidate will be expected to work on his own initiative and reward will be proportionate to results. Salary and commission by arrangement.

$$
\begin{aligned}
& \text { Please write to : } \mathbf{Z} \text { \& I Aero Services Ltd., } \\
& \mathbf{4 4} \text { Westbourne Grove, } \\
& \text { Bayswater, London, W. } 2
\end{aligned}
$$

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.

Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

Salary Scales

During training with free accommodation provided at the Training School:
Age 21 £848 per annum
22 £906
23 £943
25 or over f1.023
On successful completion of course:
Age $21 \quad £ 1.073$ per annum
$22 \quad £ 1.140$
$23 £ 1.207$
24 £ 1.274
25 (highest age point) $£ 1.351$
then by 6 annual increments to a maximum of $£ 1,835$ per annum.

Excellent conditions and yood prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years operating experience or PMG qualifications. Preference given to those who also have GCE ' O ' level or similar qualification. Exceptionally well qualified candidates aged from 36.40 may also be considered.

Interviews will be arranged throughout 1971.

Application forms and further particulars from:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos. GL52 5AJ. Tel: Cheltenham 21491 Ext 2270 92

ST. OSYTH TRAINING COLLEGE

 CLACTON-ON-SEA
QUALIFIED VISUAL AIDS TECHNICIAN

required as soon as possible with responsibility for care of audio-visual aids, C.C.T.V., photocopying and photographic equipment.
Salary: Technical grade $4 £ 1,272-£ 1,515$ according to qualifications and experience.
Further details and forms of application may be obtained from the Principal, to whom applications should be returned within 14 days of this advertisement.

ADM BUSINESS SYSTEMS LTD.

 requireSERVICE ENGINEERS
to cover their range of desk top electronic calculators. Applicants should have a sound knowledge of electronics or some previous experience of the repair of desk top calculators. Salary according to age and experience.
Applications giving full details of qualifications and experience to: R. Wardiaw, ADM Services Ltd., 64-66 King Street, Hammersmith, London, W.6.
Telephone: 01-748 0211

If you're a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future
 Become a

in the fast-growing world of Air Traffic Control
Please send me an application form and details of how I can join the fascinating world of Air Traffic Control Telecommunications.

Name

Address

Not applicable to residents outside the United Kıngdom WWT/E4
To: A J Edwards, C Eng, MIEE,
The Adelphi, Room 705, John Adam Street, London WC2N 6BO, marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic.

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over) : scale maximum $£ 1590$ (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications. ('ONC' or ' C and G^{\prime} qualifications preferred).

NATCS

National Air Traffic Control Service

Radiomobile

BRITAIN'S CAR RADIO SPECIALISTS
Radiomobile is the Car Radio Division of Smiths Industries Limited, and holds the dominant position in the 'IN-Car Entertainment' market. The very rapid growth of this market has created requirements for many more Engineers at all levels. We are re-locating our Design Centre into modern premises at Hemel Hempstead, and the following appointments must be filled.

ELECTRONIC DEVELOPMENT ENGINEERS
 hemel hempstead-herts

There are excellent career opportunities for Electronic Development Engineers at our new Design Centre. The ideal candidates will have a wide experience in the design of high quality AM and AM/FM radio receivers, possess the relevant Electronic Engineering qualifications and preferably be between 25 and 45 . This is interesting work and the Engineer will be expected to be responsible for his design project right up to the manufacturing stage.

SENIOR DRAUGHTSMEN

 HEMEL HEMPSTEAD-HERTSThe Senior Draughtsmen will back up the work of our Develop ment Engineers. Previous experience in the Electromechanical and Printed Circuit Board fieid is required. He should be qualified on O.N.C. (Mechanical) standard.

ELECTRONIC TECHNICIANS CRICKLEWOOD-LONDON

> There are also excellent career opportunities for Electronic Technicians at our Cricklewood Factory. The work is concerned with development of our current radio products and Evaluation Engineering. Experience with radio receivers, tape playing equipment or electronic components would be an asset. The candidate should be qualified to O.N.C. (Electronics) standard. We would also like to hear from candidates studying for this qualification. Day release may be granted. Age preferably $21-40$.

These are monthly staff appointments and carry usual fringe benefits associated with a major company; including 18 days holiday this year.
All appointments carry attractive starting salaries which are reviewed annually.
Please write in confidence, telling us how you meet these requirements, giving details of your present position, experience, qualifications, age and salary to our Personnel Manager at the address below, or, if you prefer, write or telephone for an Application Form.

Miss I. S. Thom, Personnel Manager,

Radiomobile Limited,
Goodwood Works, North Circular Road,
London, N.W.2. 01-4520171 EXT. 4340.

Airline Radio Technicians

BOAC require fully trained and highly skilled radio technicians to work on their modern jet aircraft for the repair and overhaul of radio/radar equipment at London Airport-Heathrow. A high standard of theoretica! knowledge is essential and at least five years experience in radio maintenance. An approved apprenticeship is desirable.
Pay is $£ 2815 \mathrm{~s}$. per week rising after three months satisfactory service to f 306 s. plus shift premium. Other benefits include an excellent pension scheme sports and social club and opportunities for holiday air travel.
Please write now with details stating training experience. and qualifications quoting reference WW/406 in your letter, to:
Manager Selection Services, BOAC, PO Box 10. Hounslow, Middlesex. or dial 01-7595511, extension 3652. and ask for an application form.

30AO

WANTED

an enterprising and experienced

ELECTRONIC TEST ENGINEER

to fit into a responsible position in our QUALITY CONTROL team and whose job it would be to:
(a) Diagnose and clear faults on $\mathrm{HI}-\mathrm{FI}$ and Audio equipment;
(b) work from experience gained to optimise production techniques.

The successful applicant will work in the quality control department of a fast expanding company and must be of O.N.C. or equivalent standard.
Apply by letter or phone:

Mr. Richard Monk
 SINCLAIR RADIONICS LTD.
 London Road, St. Ives, Huntingdonshire
 St. Ives 4311

1049

Based at Southampton, a pleasant part of Southern England, within easy reach of the Solent, New Forest and London.

RADIO TECHNICIAN (Conversion)

 £1,461-£1,725 p.a. SOUTHERNGASThis is a new position required in connection with Conversion activities where it is necessary constantly to re-survey sectors ahead of the Conversion Teams and Align V.H.F. and U.H.F. equipment. Negotiating site facilities and installing the equipment.
Applicants should have City and Guilds Final Certificate in an appropriate subject. They should have had formal training with a Telecommunications manufacturer or major user and subsequent operational planning experience totalling at least five years.
Salary within range shown according to ability and experience and qualifications.
Assistance with the cost of removal will be given. Application forms may be obtained quoting reference number P.575/4, from the Senior Personnel Officer, Southern Gas Board, 164 Above Bar, Southampton SOI ODU, to whom they should be returned by 18th March, 1971.

An International Leader in the manufac-
ture of professional sound mixing consoles for Broadcasting, T.V., and music recording studios, seek a

SENIOR TEST ENGINEER

Must accept responsibility for projects during the test and studio commissioning stages and should be experienced in customer relations. Applicants must be of good personality and presentation, with the necessary expertise to carry out assignments competently.
A generous salary is offered in accordance with age, qualifications and experience. Assistance housing may be arranged.
Apply to: Personnel Manager, Neve Electronic Laboratories Ltd., Melbourn, Nr. Royston, Herts.

1058

AUDIO TESTERS/ TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM Ltd., 66 Offley Road, London, S.W. 9. 735-6568. 937

ENGINEERS

Have you considered a career in Technical Authorship? If you have sound experience in electronics, radar or computers and ability to
write clear concise English, then we have vacancies write clear concise English, then we have vacancies
as Technical Authors in the Home Counties and as Technical Authors in the Home Counties and
Midlands. Salaries range from $\mathrm{E} 1,500$ upwards with prospects of higher rewards. Box No. WW995.

[^21]
Abstract

ARTICLES,FOR SALE $B_{2}^{\text {UILD }}$ in. $\times \quad$ in a $2 \frac{1}{2}$ in. \times any length. \quad D.E.W. Ltd. (W) $\mathrm{B}_{2} \mathrm{in} . \times 2 \frac{1}{2}$ in. \times any length. D.E.W. Ltd. (W), Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet. Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet, Write now-Right now. COMPUTER BOARDS with about 10 Silicon Transistors, mainly N.P.N. similar 2N706, 20 Silicon Diodes, Quality Resistors, Capacitors. etc. Some have Trimpots and Zeners. 17 p each, 70 p for 5 . $£ 2.50$ for 25. LOGIC I.C's from $5 p$ each on boards. MIXED COMPONENTS including Resistors, Capacitors, Diodes, I.C's. Transistors. some damaged but well worth 65 p per lb or money back. THYRISTORS 2N1595, 50 P.I.V. 1A, 65p for 8 on board. All post paid. S.A.E. for list and all data. PAWSON, 114 South Street, Armdale. W. Lothian, Scotland.

1055 M Cymbal MIRACLES. Send S.A.E. for detalls of M1 Cymbals and Drum Modules, versatile tndependent bass pedal unit for organs, pianos or solo, musical novelt list reed switches etc. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset. NEW Catalogue No. 18, containing credit vouchers I value 10/-, now available. Manufacturers' new and post free. Arthur Sallis Radio Control Ltd., 28 Gardner Street, Brighton, Sussex. [94 $\mathbf{R}^{\text {Elays, contactors, timers. From cooking to co-ax, }}$ Refoolscap S.A.E. for list please. Watsons, 7a Pier Street, Lee-on-Solent, Hants, PO 13 LD . SINCLAIR PROJECT 60 OFFERS. 2×230 amplifiers, with PZ6 $\mathbf{6 0}$ pre-amp, PZ5 power supply $\begin{gathered}\text { £18-15-0. Or } \\ \text { w }\end{gathered}$ with PZ6 power supply $£ 20-15-0$. 2×250 amplifiers, stereo 60 pre-amp, PZ8 power supply $£ 20-15-0$. Transformer for PZ8 £3. Q16 loudspeaker £7-18-0. Project 60 FM tuner £ 20-15-0. OTHER OFFERS. S-DeCs 19/-. T-DeCs $42 / \%$ Modern miniature meters. 13 in . square, Similar to SEW $38 \mathrm{P}, 50$ or 100 microamps $30 /-$ Sinclair Micromatic recelvers, kit 44/-, assembled $54 /-$. Bat- teries $5 / 6$ extra. PNP Silicon transistors 25300 series. untested but at least 80% are good. 50 for $8 /-$, 100 for 14/-. Postage $7 / 6$ on project 60 orders, $2 /$ - on others. All goods are brand new. Money back if not satisfled. We regret that we are at present handling only mall order business. Swanley Electronics, Dept. WW4. 32 Goldsel Road. Swanley, Kent, BR8 8EZ. [1052 VaCUUM pumps, coating plant, pyrometers, recorders spectrophotometers/ovens, etc. Free catalogue. Barrett, 1 Mayo Road, Croydon, CRO 2QP, Surrey. Phone 01-684-9917

1056 $V^{H F} 80-180 \mathrm{MHz}$. Integrated receiver, tuner, converter Kit. Remarkable results from single semiconductor. Comprehensive kit e4 post paid or send for free literature enclosing s.a.e. Johnsons (Radio) $60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s} \mathrm{HBG}$ Neuchatel Radio Re60 celvers. Signal and Audio outputs. Small compact units, £35. Toolex, 6 Warwick Close, Hertford (4856). continued on page 111

"W.W." HI-FI KITS

* LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout details. Kit price from 67.5.0 (mono, mag.p.u.+2 $/$ P. 5) * LINSLEY HOOD SIMPLE PRE-AMP Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. front panel. Mono $£ 6.5$.0. Stereo $\in 11.8 .0$ inc. p.p.
* BAILEY 30W AMPLIFIER (Nov. '68)

Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink

* LINSLEY HOOD 15-20W AMPLIFIER July 1970 latest and ultimate design. O/P capacitor, Our kit 4 \& 5 mount compactly onto heat-sink Our kit personally tested and ap
designer. Gain of O/PTR's >100.
POWER SUPPLIES (simple and stab'd) available
HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors. Plessey moulded pre-sets.
O/P Tr's matched $\pm 10 \% @$ Ic $=$ I amp.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of articles at 6/- per copy post free
DETAILED PRICE LISTS at $1 /-$ (Refundable with order).
PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY FIRST APPOINTMENT.

A. 1 FACTORS

72 Blake Road, Stapleford, Nottingham

Tel. Nottingham 46051 Giro No. 4876008 (8 a.m. -10 p.m. 7 days/week)

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

TV Picture Tubes

Electron Guns

Sub-assemblies

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

Elektrim

EXPORTER

Polish Foreign Trade Company for Electrical Equipment Ltd.
Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA.

Phone: 26-62-71, Telex: 814351
P.O. Box: 638

If you are interested, please send for catalogues and quotations

WW-112 FOR FURTHER DETAILS

Quality Parts

for the discerning builder
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors.
BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $4 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{3}{3}^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalsupply, again intended to be used with our Metal-
work, which also has edge connector mounting. Available in Fibreglass material only.
BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed former and bifilar wound mains transformer.
circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the
December, 1970 , Wireless World.
LINSLEY HOOD CLASS AB. We have some parts for this design but a Printed Circuit will not be available. We can supply information re thermal stability to constructors interested in this circuit. SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork. WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin materiat.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.

Full details are given in our Free lists. Please send foolscap s.a.e

HART ELECTRONICS

321 Great Western Street Manchester M 14 4AR

Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

THE SEMICONDUCTOR DATA BOOK

by Motorola

E3.00
Postage 25p

THE MODERN BOOK CO.

of Brifish and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. 1 p.m.

> WANTED
> surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all sutplus equipment for SPOT CASH.

> Buyer will call to inspect anywhere.
> Concorde Instrument Co.
> 28 Cricklewood Broadway
> London, N.W. 2
> Telephone: 01-452 0161/2/3
> Telex: 21492
> Cables: CONIST LONDON

DEMMOS 1 TD
 TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO
 single and multichannel BCORWELLLANE, HILLINGDON, MDX.

 01-573 3561

| PROTOTYPE AND BATCH PRODUCTIONS | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Instrument panels and dials In Metal and Perspex | | | | |
| * | SCREEN | PRCCESS | PRINTERS | \star |
| | kland
 rd, South End | s Plati
 d, Croydon C | $\underset{R O 18 F}{n g} C o .$ | |

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C' \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers (flat pots) 20 ohm to 10 K . Various makes. Wholesale and Export only.
All component parts including laminations for the manufacture of 80,000 small motors, the lot $£ 800$.
J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W.4. 2 AH Tel: $01-2031855$. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONOUCTORS
FOR W.W. CAP.DIS TOP HAT SILLCON IGNITION SYSTEM

| | Each |
| :---: | :---: |
| ${ }^{2} \mathrm{~N} 30555^{\circ}$. | $\because .: 312 /$ |
| 2N3702. | 3/- |
| 2N3704 | |
| N4001 | |

New and fully guaranteed. short or opencircuitdevices.
Voltage range $24-400$ PlV.
 per 500. PLASTIC PNP SILICON TRANSISTORS. Manufacturer's. ${ }^{\text {teconds }}$ from transs. for manufacturing etc.
E 8 .
5 . \& 8 500, $\in 13.10$ 1,000 pieces.
 PLASTIC NPN SILI-
CON TRANSISTORS. CON TRANSISTORS. Manufacturers' seconds from
$2 \mathrm{~N} 3707-3711$ family. Ideal cheap trans. for manufactur-
ing etc. $£ 7.10 \quad 500$. $£ 12.10$
1,000 pieces

| 1/6 | TESTED TRANSISTORS
 One price only PNP. NPN Silicon Planar or Germ. Fully Tested and similar to the following types: | | | each. |
| :---: | :---: | :---: | :---: | :---: |
| Cl25 | CY | NKT713 | 2G38 | N2926 |
| AC126 | BC108 | NKT773 | 2 G 382 | 2N2220 |
| AC127 | BC109 | 0 O 44 | 2G399A | 2N3707 |
| ACI28 | BFY50 | $0 \mathrm{OC45}$ | 2N696 | 2N3711 |
| AC130 | BFY51 | OC71 | 2N697 | 2 N 2906 |
| ACYI9 | BFX84 | OC72 | 2N706 | 2N2907 |
| ACY20 | BFX86 | OC75 | 2N708 | 2N2696 |
| ACY21 | BFX88 | $\bigcirc \mathrm{O} 81$ | 2N929 | 2N3391 |
| ACY22 | NKT141 | OC82 | 2N930 | 2N3702 |
| ACY27 | NKT142 | TIS44 | 2NII31 | 2N3703 |
| ACY28 | NKT212 | 2 G 301 | 2N1132 | 25102 |
| ACY29 | NKT213 | 2 G 302 | 2 N 1613 | 25103 |
| ACY 30 | NKT214 | 2 G 303 | 2N1711 | 25104 |
| CY31 | NKT215 | 2 G 308 | 2N2904 | 25732 |
| ACY34 | NKT271 | 2 G 31 | 2N2905 | 25733 |
| ACY35 | NKT677 | 2 G 34 | 2N2 | |

TRANSISTOR EQVT. BOOK
2,500 cross references of transistors-British, European, American and Japanese. A must for every transistor user.
Exclusively distributed by DIOTRAN SALES.
I5/-EACH.

Vast mixed lot of subminiature glass diodes. Comprising of silicon, Germ, Point Contact and Gold
Bonded types pus some Zeners. 500,000 available at 1,000 pieces $£ 3.0 .0 .5,000$ pieces $£ 13.10 .0$. 10,000 pieces $£ 23$.

BRAND NEWW FULLY TESTED. EPOXY CASE BEN 3000 and replacement for 2 N2646. Full data available.
LOWEST PRICE AVALLABLE ANYWHERE each $= \pm 70 ; 500$ off $3 / 6$ each $= \pm 87.10 ; 1,000$ off $3 / . \mathrm{each}$ $\stackrel{\text { each }}{=} £ 150$. Sample devices $71-$ each on request.

HIGH QUALITY SILICON PLANAR DIODES. for OA N00 OA202 BAY 38 IS 130 , suitable replacements or OA200, OA202, BAY 38, GU130, ISS40, 200,000 EOClear
at $E 4$ per 1,000 pieces. GUARANTEED 80% GOOD.

GUALLY TESTED DEVCES AND QUALITY OAO2 Silicon Diode. Fully coded. 150 piv 25 mA Oty. Pricu 630 per 1,000 p
OA 200
inilicon Dide. Fily Coded. 50 PIV 250 mA . Qty' Price 625 per 1,000 .
$B Y 100$ SIL. RECT' 800 PIV 550 mA .

| BY1 |
| :--- | :--- |
| $1-492 / 6$ |
| Seach; $50-99$ |
| $2 / 3$ |

Post and Packing costs are continually rising. Please add
$1 / 0$ towards same. CASH WITH OCDE, PLEASE. 1\% towards same. CASH WITH O

OVEREAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

[^22]
OSMABET LTD．
 WE MAKE TRANSFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS． 0 － $110-200-22(1-240 \mathrm{v}$ a．c．up or down， inlly shrouded fitted insulated terminal bock． $30 w 2 b / 6: 50 \mathrm{w}$ 1000 w 240／－； 1500 w $345 /-; 2000$ w $480 /-; 3004$ w $600 /=;$ to00 w 825／－；and up to 8000 watts available to order． MULTIVOLT TRANSFORMERS．Prim 200／240 v a．c．OMTA／1 One tapped sec，5－20－30－40－600．Y giving $6-10-15-20-25-30-35-40$ ． $55-60,10-0-10,20-0-20,30-0-310$ a．c． 1 amp， $80-90-100-110 \quad$ giving $10-20-30-40-501-60-70-80-90-100-110$ ， DUOVOLT TRANSFORMERS．Prim $200 / 240$ a a．c．＂D12V＂， 2 secs $71 / 6$.
 24 v AUTO TRANSFORMERS．Input $200 / 240 \mathrm{~V}$ a．c．output 24 v LOW VOLTAGE TRANSFORMERS Prim 2001240 v LOW VOLTAGE TRANSFORMERS．Prim 200／240 v a．e．6．3 y $8 \mathrm{a}, 112 / 6$ ； 12 a， $165 / 6$ ． MIDGET RECTIFIER TRANSFORMERS，for F．W．rectification，
 WIRE WOUND RESISTANCES 10 watt． 68 ohms． 220 ohms， $55 \mathrm{ohms}, 3$ watt， $6.8 \mathrm{~K}, 68$ ohms， 20 watt 1060 ohms at $10 /=$ dozen． MULTI WAY CONNECTORS． 18 way，new，for litie，inter chassis． etc．，per pair 5／－
 W．W．IGNITION CIRCUIT TRANSFORMER to spec， $50 /$－plus W．W．COLOUR TELE．Choke Lı，60／－；Tran T1， $57 / 6 ;$ Field O／P，60／－．Carriage extra on all trangommers $\$ / 6$ minimum．
 TRANSFORMERS FOR POWER AMPLIFIERS EL34，807，etc．Sec．Larperd $3-7.5-15$ ohms．
 135／－；1 100 watt A－A load $3 \mathrm{~K}, 225 /-$ ．
 TX500，Prim． $200 / 240$ v a．c．，Sec．$+25-10-425$ y 500 Ma ， TX1，Prim，200／240 va．c．，sec． $425-0-425$ v， 250 Mma ， 20，CHOKES
 $10 \mathrm{H}, 150 \mathrm{Ma}, \underset{\text { LOUDSPEAKERS }}{23 / 6 ; 5 \mathrm{H}, 250 \mathrm{Ma}, 1.3 \mathrm{H}, 750 \mathrm{Ma}, 60 /-}$
 New boxed famous makes for public address systems， bass guitars，electronic organs， $\mathbf{H i} \mathrm{Fi}$ i，etc． 12 in ． $15 \mathrm{watt} \mathbf{W} / \mathrm{Tweeter}$ cone， $85 /-; 12 \mathrm{in} .25$ watt $110 /-; 12 \mathrm{in} .35 \mathrm{watt}, 130 /-; 12 \mathrm{in}$ ． $50 \mathrm{watt}, 180 /-;$ $15 \mathrm{in} .60 \mathrm{watt}, 215 / \mathrm{I} ; 18 \mathrm{in}$ ． 100 watt， $350 /-$ ． crossover network， 3.88 and 15 ohms， $80 /-$ each． Horn tweeter， $2.16 \mathrm{KHz} 8,15$ ohms， $30 /-$ ．

LT FLUORESCENT LUGETING，inputs 6，12，24v，DC；12v
fiting with tube 8 watt 75／－； 13 watt 125／－；etc，Inverters 12v
 50 watt or twin 30 watt， $220 /-$ ，etc，extentive range．Lists saE． 6AA．E ALL ENQUIRIES PLEASE．MAIL ORDER ONLY． 48 KENILWORTH ROAD，EDGWARE，MIDDXX HA88 8YG
Carriape extra all ordern．
Tel： $01-9589314$

WW－113 FOR FURTHER DETAILS

CASH IMMEDIATELY AVAILABLE

for redundant and surplus stocks of radio，television，telephone and electronic equipment，or in component form such as meters，plugs and sockets，valves， transistors，semi conductors，capacitors， resistors，cables，copper wire，screws and nuts，speakers，etc．
The larger the quantity the better we like it．

BROADFIELDS \＆MAYCO DISPOSALS
21 Lodge Lane，London，N12． Telephone： 014452713014450749 Evenings： 019587624

[^23]

BUID YOURSELFA IRATSISTOR RADIO

CONSTRUCTORS BARGAIN famous makers portable wodoen
 with chromed handle and littings．Slotied wood
front．rexne covered padded sides Dial calibrated Medium and Long Wave slations Complete with 2 primed ercuit boards and Elac 5×3.25 ohm Heavy Duty PM．Speaker．
Brand New． Only $£ 2.48$（ $£ 29977$ ）P \＆P 38 p （777）Must
RADIO EXCHANGE CO．LTD
Dept WW． 61 High Street，Bedford． Phone 023452367
－Opon 10－1，2．30－4．30．Sat．9－12

EXCLUSIVE OFFERS AMPEX
Precision Instrumentation and Data TAPE DECKS

 week．Power input $105 / 125 \times 48$ $t(1)$ cyeles．Rack mointing

 lighter and more modern con－
struction than $T y$ pe $F R$ n PRICE $£ 280$ for deck and servo control for either type and cubinets availiable

HIGHEST QUALITY 19＂RACK MOUNTING CABINETS Totally Enclosed

 tapped all the way lown every ${ }^{j}$ fur his purpose．They
are fited with instaut it
vatent fully adjustable rack are nted with instartite 1＂tent fuly adaustabie rack these allow the panels to be recessed when they are atted with projecting
enclose them by doors
\star Other features iuclude－all corners and edges rounded Interior fttings tropicalised．Removable built in cable
ducts．Removable buit in tiower ducts．Ventiated and insect proofed tops．Detachable side panels．Full length instantly detachible doors tittei expinding botes it oliered with cahnelatore devaluation．Fintished in ine primer atul in new condition．

Full 226 ent each（Carriage extra）
Doorsare not necded if pathels are mounted
TYPE C： 80° high $\times 27^{*}$ deep $\times 22^{*}$ wide．American panel mounting cabinets made by Inkane，U．s．A Open iront fittell rack monnts drilled and tarped all the wiy down every $\frac{1}{4}^{*}$ ．Full length rear door with lateh gool condition but if decoration is of fimportance it is recommended they are re－gprit ved before use．
PRICE \＆15 each（Carriage extra）
TYPE D：7a＂bigh $\times 18^{\prime \prime}$＂1cep \times g2＂＊wide．These are年ilar in conuruction and conditiou to Trpe \mathbf{C} above Made by R．C．A．of 15．B．A．
PRICE 51250 each（Carriage extra）
ALSO OTHER TYPES 80^{*} TO 88＊HIGH AVAILABLE
Full details of all above available on request．
TRANSPORT：We have mall special economical transport arraugements for there cabinets to ensure they arrive
undamiged and to ：tvoid expensive criting．Full details undamazed and to ：woid expensive
on request．

| 40－pare list of over 1,000 diferent items in stoek available－keep one by you． | |
| :---: | :---: |
| \star Labgear Stabilised Power Units D．4140， 3200 ₹ $7 \mathrm{~m} / \mathrm{a}$ ．
 \star All Powar Regulated Power Supplies 500 จ $500 \mathrm{~m} / \mathrm{a}$ | |
| | |
| | |
| | |
| MarconiControl UnitBD18in．，monitor Cables com－ | |
| plete warking order ．．．．．．．．．．．． | |
| ¿ Flann Mierowave Attentuators $4 / 12 \mathrm{G} / \mathrm{mc}$ ． | |
| | |
| Marconi TF－893A Output Power Meters | |
| | |
| \star Elliott Recording A．C．Voltmeters 180／260 v ŁCR－150／2 Marconi Communications Re－ | |
| | |
| ceivers． 1.5 to $22.0 \mathrm{~m} / \mathrm{cs}$
 ＊E．H．T．40KV Transformers and associated | |
| | |
| Equipment up to 8 KW available． \star Xerox 1385 Plate Maker | |
| \star E．M．I．（U．S．A．）I＇Finest Quality Computer tapes suitable video work． 2400 ft ．spooled | |
| | |
| | |
| 0 foot long $6^{\prime \prime}$ sides Triangular Lattice Steel | |
| | £7 |
| ＊Collins R－300 Communications Receivers | |
| 0．5／30．0 m／cs....................$~$ | |
| | |
| $24-$ D．B．Meters $-10 /+8$ | |
| | |

※ Latice lightweight steel triangular Aeria

WANTED C．C．TV EQUIPMENT Good price paid

| $\star 54$ inoh．dia．Meteorolokical Balloons．
 $\star t^{*}$ New Magnetic Recording Tape made by E．M．I．（USA） 3600 tt on N．A．B．Spools．．．． | £150 |
| :---: | :---: |
| $\star 1^{+}$Used ditto＂Scotob＂Brand 4800 | |
| 丸8 Track Data High Speed Tape Readers | |
| 太 Mason Illuminated Drawing Tables $50^{\circ} \times 30^{*}$ | £17 |
| Sarah Trans／Receivers and Aerials ．．．．．．．． | |
| Uniselectors 10 bank 25 way full wipe ex． | |
| | |
| vo Geiger Co | 87－5 | all goods are ex－Government stores．

Wo have a large quantity of＂bits and piecen＂
we cannot list－please send us your requirementa
equiries answered
P MA MBES
ORGANFORD－DORSET
BH16 6ER
WESTBOURNE 65051

WW-114 FOR FURTHER DETAILS

Dimmerswitch ${ }^{-1}$
will dim ua ti 400 watts al Imesnieseest ligitian from zere to full brillianee. This unil simaly realaces the nermal light switet, and is titted in a mattor al minutes. An MK mountigg frame is supplied, fer usi whan mare denth is requirat.

PRICE
Complate Kit: $£ 2.85$ s5y,
Buill \& lestad: £ $£ 3.35$, wh
Diathane Ltd.
III. Sheffield Road. Wymondham. NORFOLK

Please add ± 0.10 postage and packing

Quarth

ECONOMICAL accurate RELIABLE

Private enquiries, send two $5 d$ stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works. Wellington Crescent,

New Malden. Surrey (01-942 0334 \& 2988) WW-115 FOR FURTHER DETAILS

[^24]Thanksto a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

 Postage on all orders 72 P
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.
MC 6045 p each. MC $9062 \frac{1}{2} p$ each. MC 12092 p each

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 53020

WW-116 FOR FURTHER DETAILS

PHASE LOCKED STEREO DECODER
Complete designer approved kit, containing Fibreglass PCB, 62 low noise resistors 3 Fairchild IC's 15 Ferranti transistors 8 diodes, 23 capacitors and 4 preset pots
Full instructions. $£ 8.19 .6 \mathrm{pp} 2 / 6$
Decoder PCB only $£ 1.5 .0$
U6E7709393 £1 U6A747459X £1.7.6

STABILISED POWER SUPPLY
Complete kit for $\pm 6 \mathrm{~V}$ at 50 mA Suitable for above
£2.19.0 pp 3/6
Transistors: 2TX500 4/- ZTX108 equiv. 2/
INTEGREX LIMITED PO BOX 45 DERBY DE1 1TW

Printed circuits for the Bailey ampllier, Bailey 3 amp, Balley 3 amp + Linsley hood class A amp., and for Texas designs. Parts also available.
TELERADIO ELECTRONICS
325 FORE STREET, N. 9 Tel: 018073719

WE PURCHASE ALI FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9. 11 Arthur Road, Reading, Berks.

Tel: 582605

KEYNECTOR

Connects anything electrical in seconds without plugs or sockets. No more worries about dangerous live wires. Now you can make electrical connections safely, in seconds with the revolutionary new Keynector. Cuts out plugs. sockets and saves time. A hundred different uses in the home, and a must for the do-it-yourself enthusiast. Only E2.33 plus P. \& P. 25p. Or send for a leaflet.

ELECTRONIC BROKERS LTD. (Dept. W.W.) 49-53 Pancras Road, London N.W.I. Tel: $01-8377781 / 2$ Cables: Selelectro Telex No. 267307

WW-117 FOR FURTHER DETAILS

GOMDON CENTRAL Radio srodites

record storage Units. Brand new, Anti-warp. Compact 201 stores 200 records. £11.67, P.P. A13p. 'Compact 100 Lores ELECTRICITY SLOT METER (5p in alot) for A.C. mains. Fixed $10 \mathrm{~A} .50,15 \mathrm{~A} . \mathrm{E}^{2} 4.50,20 \mathrm{~A} .25 .50$. P.P. $37 \ddagger \mathrm{p}$. Other amperges available. Reconditioned as new. years guarantee. WIRELESS SET No. 38 A.F.V. Freq. range $7 \cdot 3$ to $9 \cdot 0$ Mc/s. WorkIncludes power supply 81b.-and spare valves and vibrator aiso tank aerial with base $£ 8.00$ per pair or $\mathbf{£ 4} \mathbf{0 0}$ single. P.P. 125 p MODERN DESK PHONES, red, green, blue or topaz. 2 tone grey or black.
O-WAY PRESS-BUTTON INTER-COM TELEPHONTG in BRE o- case with junction box handset. Thoroughly overhauled Guaranteed. £6 50 per unit. 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Base
ilte case with junction box. Thoroughly overhanled. GuaranQUARTERLY ELECTRIC CHECE meters. Reconditioned as new. $200 / 250$ v. 10 A. $£ 2 \cdot 122 ; 15$ A. £2.62t; 20 A. $£ 2.87 \%$. 8 -BANE UNISELECTOR SWITCHES. 25 contacts, alternate wiping $12.75 ; 8$ bank half wipe 2275 ; 6 bank half wipe,
25 contacts
£2.37t. P.P. 17 p.
23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

storage
units
A PLACE
EVERYTHING
EvERYTHING
IN ITS
PLACE!

 transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic
drawers have label siots/handles on front. Build up any

buy at trade prices!

sindit ynt

PLUS QUANTITY DISCOUNTS!
Orders $£ 5$ and over DEDUCT $1 /$ in the $£$
Orders $£ 10$ and over DEDUCT $1 / 6$ in
Orders $£ 10$ and over DEDUCT $1 / 6$ in the $£$
Orders $£ 20$ and over DEDUCT $2 /$ in the $£$
PACKING/POSTAGE/CARRIAGE: Add 6/- to ail orders
Yee
DVITITT
Coen wwil 3 a alerat rodo. HENDON. IONDON, N.W.4.

WW-118 FOR FURTHER DETAILS

UHF, COLOUR and TV SERVICE SPARES, InteColour scan colls decoder unit incl. circuits $25 /-10.0$ P/P $6 /-$, Chrominance panels Colour scan colls $£ 3.10 .0$ P/P 6/-, Chrominance panels
$20 /-\mathbf{P} / \mathbf{P} 4 / 6$. UHF tuners transistorised, rotary slow motion drive or push button $£ 5.5 .0 \mathrm{P} / \mathrm{P} 4 / 6$. Integrated UHF/VHF 6 position push button transistorised tuner easily adjusted as 6 position UHF tuner, incl. circuit $\begin{array}{clllll}\text { £4.10.0 P/P } & \text { 4/6. Transistd. } & \text { UHF/VHF } & \text { IF panels } \\ \text { £4.15.0 (or } & \text { salvaged } & \text { £2.10.0) } & \text { P/P } & \text { 4/6. } & \text { MURPHY }\end{array}$ £4.15.0 (or salvaged $\mathbf{x}^{2} 2.10 .0$) P/P $4 / 6$ MURPHY
$600 / 700$ series complete UHF conversion kits incl. tuner, $600 / 700$ series complete ump conversion kits incl. tuner,
drive assy., 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly, $£ 7.10 .0$ or housed in special cabinet plinth assembly, £7.10.0 or
less tuner $£ 2.18 .6$ P/P $10 /-$ SOBELL/GEC $405 / 625$
switchable IF amplifler and output chassis, $32 / 6 \mathrm{P} / \mathrm{P}$ switchable IF amplifier and output chassis, $32 / 6 \mathrm{P} / \mathrm{P}$
$4 / 6$. Uitra 625 IF AMP chassls and circuit, $25 /-\mathrm{P} / \mathrm{P}$ 4/6. Ultra 625 IF AMP chassis and circuit, $25 /-\quad$ P/P
4/6. Philips 625 IF AMP panel and circuit, $30 /-$
 $\begin{array}{lll}\text { cuit IF panel incl. circuit } 38 / 6 \mathrm{P} / \mathrm{P} & 4 / 6 \text {. UHF list } \\ \text { available on request. VHF tuners } \mathrm{AB} \text { miniature with }\end{array}$ available on request. VHF tuners AB minjection suitable KB, Baird, Ferguson 25/- P/P 4/6. Cyldon C $20 /-\mathrm{P} / \mathrm{P} 4 / 6$, Pye 13 ch . Incremental 25/tuner with UHF injection incl. valves $58 / 6 \quad \mathbf{P} / \mathbf{P} 4 / 6$ New freball tuners Ferguson, HMV Marconl type 37/6 P / P 4/6. Philips export continental turret tuners $15 /-P / P$ 4/6. Many others available. Large selection channel coils, LOPTs, Scan Coils. FOPTs avallable for
most popular makes. Surplus Ultra, Murphy 110° Scan coils 18/6 P/P 4/6. Sobell frame o/p transformers 17/6 P/P 4/6. Transistorised time base panel for Ferguson portable 50/-P/P 4/6. Pye/Labgear transistd. masthead UHF booster \&s.s.0, UHF/VHF setback booster
 P/P 4/6. Surplus BBC2 Belling Lee "Skyline" distribu-
tion ampliffers $£ 3$ (Callers only). MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28 Bus or W, Hampstead Tube Station) MAIL ORDER: 64 GÓLDERS MANOR DRIVE, LONDON, N.W.11. Tel.
O1-794 8751 .

TEST EQUIPMENT - SURPLUS ANDSECONDHAND
 SIGNAL generators, oscllloscopes, output meters, wave etc., etc., in stock.-R. T, \&s I. Electronics, Ltd., Ash ville Old Hall, Ashville Rd., London, E.11. Ley, 4986

TECEIVERS AND AMPLIFIERSE

SURPLUS AND SECONDHAND
Hereren etc., etc., in stock.-R. T. \& I. Electronics, Ltd. Ashville Old Hall. Ashvlle Rd., London, E.11. Ley,
4986.

NEW GRAM AND SOUND EQUIPMENT

G LASGOW.-Recorders bought, sold, exchanged versa.-Victor Morrls, 343 Argyle St., Glasgow.
\star ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star

BAKER 12 in. MAJOR £9

30-14,500 c.p.s., 12 in . double cone, woofer and tweeter cone together
with a BAKER ceramic magnet with a BAKER ceramic magnet 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Post Free. Module kit, $30-17,000$ c.p.s. Size $19 \times 12 \frac{1}{2}$ in. With tweeter, crossover baffle, instructions.
Ideal for Hi Fi or P.A. | 10.0 LOUDSPEAKER CABINET WADDING 18 in. wide, $3 /-$ per ft. run. Post 2/-per order.

THIS ELAC CONE TWEETER IS OF THE VERY LATEST DESIGN AND GIVES A THAN MORE EXPENSIVE UNITS.
The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $\begin{array}{ll}3 \frac{1}{2} \times 3 \frac{1}{3} \times 2 i n . ~ d e e p . ~ R a t i n g ~ & \text { ohm } 15 \mathrm{ohm} \quad 38 /=\text { Post } \\ 3\end{array}$ models.

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER 200/250 A.C. $47 /-$ Pos
Leanet S.A.E.

RETURN OF POST DESPATCH - CALLERS WELCOME HI-F|| STOCKISTS - SALES - SERVICE - SPARES radio component specialists 337 WHITEHORSE ROAD, CROYDON. Tel: 01-684-1665

ITW BIOM

101 EASY HAM RADIO PROJECTS
by Robert M. Brown \& Tom Kneite
(Feb) f 1.50
ABC'S OF FETS
$\begin{array}{ll}\text { by Rufus } \mathrm{P} \text {. Turner } & \text { (Feb) } \mathrm{f} 1.25\end{array}$
NOVEL EXPERIMENTS
WITH ELECTRICITY
by John Potter Shields
(Feb) $\quad \mathrm{f} 1.25$
SHORT WAVE
LISTENER'S GUIDE
by H. Charles Woodruff (Feb) $\quad £ 1.30$
CLOSED-CIRCUIT T.V
PRODUCTION TECHNIQUES
by Larry Goodwin \& Thomas Koehring (Mar) $\mathbf{£ 2 . 0 0}$
RADIO RECEIVER
SERVICING GUIDE
by Robert G. Middleton (Mar) $£ 1.90$
ABC'S OF INFRARED
by Burton Bernard (Mar) $£ 1.40$
COLLECTED BASIC
CIRCUITS
by D.I.P. Stretton \& A. W. Hartley (Mar) $£ 2.00$

FOULSHAM-SAMS TECHNICAL BOOKS
 (W.FOULSHAM \& CO.LTD.) YEOVIL RID., SLOUGH, BUEKS, ENGLAND

TAPE RECORDINE ETAC.
YOUR TAPES TO DISC.- $£ 6,000$ Lathe. From 30/-
Y Studio/Location Unit, S.A.E. Leaflet. Deroy Studios,
High Bank, Hawk St., Carnorth, Lancs.
[70

FOR WIRE

$\mathrm{F}^{\mathrm{OR}} \mathrm{HIRE}$ CCTV equipment, including cameras monttors, video tape recorders and tape-any period.
[75

A RTICLES WANTED

HIGHEST CASH PRICES for good-quality Tape HReccrders $9.30-5.00$. Immediate quotations. $01-472$
2185 . WANTED, all types of communications recelvers Electrondes, Ltd., Ashville Old Hall, Ashville Rd., Lon-
[63
don, E.11. Ley. 4986 . don, E.11. Ley. 4986.
WANTED, televisions, tape recorders, radiograms, High new valves, transistors, etc.-Stan Willetts, ${ }^{37}$

WANTED TO BUY

second hand radio telephone equipment Tel: Newcastle upon Tyne (0632) 860911. Miss Stafford

VALVES WANTED

WE buy new valves, transistors and clean new components, large or small quantities, all detalls, quotation by return--Walton's
Worcester St. Wolverhampton.

2. CAPACITYAVAILABLE

A IRTRONICS LTD., for Coil Winding-large or small A production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D., etc. Export enquirles welcomed.
3a Walerand Road, London, S.E.13. Tel. 01-852'1706

COIL winding capacity. Transformers, chokes R.F coils, etc., to your specification. Sweetnam \& Brad ley Ltd, Bristol Road, Malmesbury, Wilts, or Tel

DESIGN, development, repair, test, and small production of electronic equipment, low rates. YOUNG ELECTRONICS, 54 Lawford Rd.. London, N.W.

METALWORE, all types cabinets, chassis, rackn, or smail milling and capstan work up to lin bar.PHILPOTT's METALWORKS, Ltd., Chapman St., Loughborough
TURNED parts, automatic capstan capacity available - also milling, grinding, ftting. Low rates, Ministry approved.-Desmond Engineering. Combe Martin, N. Devon. Combe Martin 2412
W^{E} undertake the manufacture of transformers singly or in quantities to any specification. AL Co. Ltd.. 820a Harrow Road, Kensal Rise, N.W. 10 . Tel. 01-969 0914. [100 WIRING assembly PCB's sheet metal turning milling tricals, 19 b Station Parade, Ealing Common, London,
W.5. $992-8976$.

Extin TECHNICALTRAINING

A.M.S.E. (ELEC.), City \& Guilds, R.TE.B. Cert., Refund" terms. Wide range of Courses In Elec. LnginElectronics, Radio \& TV, etc. Send for full detalls and Ilustrated book-FREE-BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 152K, Aldermaston Court, Reading RG74PF
$\mathrm{B}_{\text {guaranteed diploma }}^{\text {ECOM }}$ "Technically Qualifed" in your spare time, Buaranteed diploma and exam. homestudy courses in radio, TV servicing and maintenance. R.T.E.B., City \&
Guilds, etc., highly informative $120-\mathrm{page}$ Guide-free. Chambers College (Dept. 837K), Adermaston Court,
R.T.E.B. CERTS., City \& Guilds, Colour TV, Radio, tronics (with kit). Thousands of successes. Send for full detalls of Home Study Courses and illustrated book -FREE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 150K, Aldermaston Court, Read-
ing RG7 4PF. TECHNICAL TRAINING in Radio, TV and Electronics home-study courses write: ICS, Dept. 443, intertext home-study courses wr
House. London, S.W.8.

TUFTION

KINGSTON-UPON-HULL Education Committee, K College of Technology. Ptincıpal: E. Jones, M.Sc., F.R.I.C. ${ }^{\text {FULL-TIME courses }}$ for P.M.G. certlficates and the College of Technology, Queen's Gardens, KingstonGull

BOOKS, INSTRUCTIONS, ETC.

MANDALS, circuits of all British ex-W.D. 1939-48 R.E.M.E. Instructions; s.a.e. for Ilst, over 70 types-W. H. Balley, $167 a$ Moffat Road, Thornton Heath,

ALL SEMICONDUCTORS WARRANTED

Prices 1-9 as quoted, 10-99 less $10 \%, 100$ up 15%, larger quantities special quote

 TRANSISTORS

INDEX TD ADVERTISERS

Appointments Vacant Advertisements appear on pages 100-106

| | Page |
| :---: | :---: |
| A1 Factors | 107 |
| Acoustical Mfg. Co., Ltd. | 20 |
| Adcola Products, Led. | 8 |
| Advance Electronics Ltd. | 36, 47 |
| Amplivox Ltd. | 61 |
| Ancom Ltd. | 18 |
| Anders Electronics, Ltd. | 22, 34 |
| Associated Automation Ltd.. | 4 |
| Associated Electronic Engineers Ltd. | 8 |
| Audix B.B. Ltd. | 46 |
| Aveley Electric Ltd. | 52 |
| Avo Ltd. | 10 |
| Bantex Ltd. | 22 |
| Barr \& Stroud Ltd. | 53 |
| Batey, W., \& Co | 32 |
| Bentley Acoustical Corporation Ltd. | 88 |
| Bentley, K. J. | 110 |
| B.I.E.T.. | 13 |
| Bi-Pak Semiconductors. | 69 |
| Bi-Pre-Pak Ltd | 83 |
| Black, J. | 108 |
| Bourns (Trimpot) Ltd. | 27 |
| Bradley, G. \& E., Ltd. | 37, 39 |
| Brenell Eng. Co. Ltd. | |
| Britec Ltd. | 54 |
| Brooklands Plating Co. Ltd. | 108 |
| Business Conferences \& Exhibitions Lid. | |
| Carston Electronics Letd. | 28 |
| Cesar Products Ltd. (Yukan) | - 108 |
| Chiltmead Led.. | 10,112 |
| Colomor (Electronics Ltd.) | 95 |
| Communication Accessories \& Equipment | |
| Computer Sales \& Service Ltd. | 70 |
| Concorde Instrument Co.. | 108 |
| D.E.W. Ltd. | 108 |
| Dabar Electronic Prods | 70 |
| Deimos Ltd.. . | 108 |
| Diathane Ltd. | . 110 |
| Diotran Led.. | 64, 108 |
| Douglas Electronic Industries Ltd. | 109 |
| Drake Transformers Ltd. | |
| Eagle International Ltd. | 16, 17 |
| Edwards Scientific Insts. Ltd. | - 55 |
| Electronic Brokers. | 81, 110 |
| Electronics (Croydon) Ltd. | 71 |
| Electrosil Ltd... | 63 |
| Electro-Tech Sales. | |
| Electrovalue | |
| Elektrim. | 107 |
| E.M.I. Electronics Ltd. | 41 |
| E.M.I. Tape Ltd..... . | 48 |
| English Electric Valve Co. Ltd. | 5, 7, 9 |
| Erie Electronics Ltd.. | 11, 21 |
| Farnell Instruments Ltd. | 52 |
| Ferrograph, The, Co. Ltd. | 59 |
| Firnor-Misilon Led.. | 44 |
| Foulsham, W., \& Co. Ltd. | 111 |
| Futuristic Aids Ltd. | 53 |
| Fylde Electronic Labs. . . | 32 |

| | Page | | Page | |
|---|---|---|---|---|
| Garrard (Plessey Consumer Electronics Division). Goldring Mfg. Co. Ltd......................14, 35
 Grampian Reproducers Litd............................... 110 | | Radford Laboratory Insts. Ltd.. | 2 |
| | | Radio \& TV Components Ltd. | 4 |
| | | Radio Components Specialis | 111 |
| | | Radio Exchange Co. Ltd.. | 109 |
| | | Radiospares Ltd | |
| Harris Electronics (London) Ltd. | 55 | Ralfe, P. F. | 85 |
| Harris, P....... | 109 | Rank, Audio Visual Ltd. | 12 |
| Hart Electronics | | R.S.C. Hi-Fi Centres Ltd | 87 |
| Hatfield Instruments Ltd. | 54 | R.S.T. Valves Ltd. . | 78 |
| Heath (Gloucester) Ltd. | 19 | Reslo Mikes | 14 |
| Henson, R., Ltd............................. 109 Rola Celestion Ldd........................... 44 | | | |
| | | | |
| I.C.S. Ltd. | 82 | Samsons (Electronics) Ltd. | 84 |
| I.M.O. (Electronics) Ltd. | 35 | Sankyo Seiki Mfg. Co. | 12 |
| Industrial Insts. Ltd.. | 10 | S.D.S.A. (Int. Exhibition). | 64 |
| Instructional Handbook Supplies | 110 | Scientific \& Technical Services | 108 |
| Integrex Ltd. | 110 | S.E. Laboratories (Eng.) Ltd. | 62 |
| Ivoryet Ltd.. | 111 | Service Trading Co. | 98,99 |
| | | Shure Electronics Ltd. | |
| J.E.F. Electronics | 108 | Sinclair Radionics Ltd. | 66, 67, 68 |
| | 108 | S.M.E. Ltd. ${ }^{\text {S }}$... | Cover 717 |
| | | | |
| | 85 | S.N.S. Communications Lid | 5 |
| Keytronics......... | | Smith, J, | 50 |
| | | Sonex ' $71 . \ldots$ | 65 |
| | | Starman Tapes. | |
| Lasky's Radio Ltd | 70,82 110 | Stephens Electronics .i...) | 91 28 |
| Leda Tapes.. | 108 | Sugden, J. E., Ltd.) | 55 |
| Ledon Instruments Lt | 30 | Sutton Electronics Ltd. | 108 |
| Level Electronics Ltd. | 15 | | |
| Lexor Dis-boards Ltd. | 78 | | |
| Light Soldering Developments Ltd | 18 | | |
| Limrose Electronics. | 30 | Taylor Electrical Instruments | |
| Linear Products Ltd. | 28 | Tekcon Metals itd. | 6, 27 |
| Linstead Electronics. | 42 | | |
| Lionmount 8 Co Led | 55 | Teleradio, The Co. (Edmonton), | |
| $\xrightarrow[\text { Livingston Hire Lid... }]{\text { London Central Radio }}$ | 98 110 | Telford Products Lid........... | 24 |
| London Central Radio St | 110 94 | Teonex Ltd. . ${ }^{\text {a }}$. | 29 |
| Lyons Instruments.................. | 9450 | Thorn Radio Valves \& Tubes Lt | 57 |
| | | Tinsley, H., \& Co. Ltd. | 24 |
| | | Transradio Ltd. | |
| | 45 | Trio Corporation Ltd.. | 26 |
| Marshall, A., \& Sons (London) Ltd. McKnight Crystal Co. | $\begin{array}{r} 84,90 \\ -\quad 108 \end{array}$ | Turner, Ernest, Electrical. | |
| McMurdo Instrument Co. Lid.. | 40 | | |
| Mills, W. | 92, 93 | Ultra Electronics (Components) Ltd. . | |
| Milward, G. F | 96 | Ultron............................ | 2 |
| Modern Book Co. | 107 | United-Carr Supplies Ltd.. | 38 |
| Multicore Solders Lid....................... ${ }^{\text {Cover iv }}$ | | | |
| | | | | |
| Nombrex Ltd. | 55 | Valradio Ltd. | |
| | | Vitavox Ltd. | 98 |
| | | Volfield Ltd. | 23 |
| Olympic Transformers Ltd. | 32 | Vortexion Ltd. | 25 |
| Osmabet Ltd. | 109 | | |
| Oxley Developments Co. Ltd...................... 44 | | | |
| | | Watts, Cecil E., Ltd..... | |
| Pattrick \& Kinnie. | 92 | Webber, R. A., Ltd. | Cover 30 |
| P.C. Radio Ltd. | 95 | Wel Components Ltd | 54 |
| Pembridge College, The | 65 | West Hyde Developments Lid. | 109 |
| Powertran Electronics | 88 | West London Direct Supplies. | 78 |
| | | Wilkinson, L. (Croydon), Ltd...... | . 84 |
| Quality Electronics Ltd.. | | | |
| Quarndon Electronics Ltd. | 51 | | |
| Quartz Crystal Co. Ltd. | 110 | Z. \& I. Aero Services Ltd. | 97 |

[^25]
Clear, true sound on a surface of silence

suan
The best pick-up arm in the world

Write to SME Limited Steyning Sussex England

The answer is every 3 minutes !
A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading electronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications, which are available.

Besides achieving better joints-always-your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid-and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:
MULTICORE SOLDERS LTD. HEMEL HEMPSTEAD, HERTS.
Tel. No. Hemel Hempstead, 3636, Telex: 82363.

EXTRUSOL

Extrusol high purity extruded solder, available in 1 lb . and 2 lb . bars, and also Extrusol pellets, for printed circuit soldering machines, pots and baths, polythene protected.

GALLON CONTAINERS

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring' containers, with carrying handle.

AEROSOLS

PC. 21 A, PC. 10 A , and PC. 52 available in 16 oz. aerosol sprays.

7lb.REELS

Available in standard wire gauges from 10-22 swg., on strong plastic reels.

SOLDER TAPE, RINGS, PREFORMS,WASHERS, DISCS\&PELLETS

Made in a wide range solid or cored alloys. Tape, rings and pellets are the most economical to use.

1lb.REELS
Available in all standard wire gauges from $10-34 \mathrm{swg}$., on unbreakable plastic reels. (From 24-34 swg. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel)

THE FINEST CORED SOLDER IN THE WORLD

[^0]: Knapps Lane, Bristol 5. 0272657228

[^1]: LONDON
 Edmundsons Electronics Ltd.
 60-74, Market Parade, Rye Lane, Peckham, London S.E 15 , Tel: (01)-639 9731 BIRMINGHAM

[^2]: More details of the new PG-71 please.
 Name
 Position
 Company
 Address

 ## LYONS INSTRUMENTS

 Lyons Instruments Ltd. Hoddesdon England Telephone Hoddesdon 67161 Telex 22724
 A Claude Lyons Company
 W.W. $3 / 71$

[^3]: * Ridler, B. E., "Low-distortion R. C. Oscillator". Wireless World, August 1967.

[^4]: * Newmarket Transistors Ltd.

[^5]: * Department of Medical Engineering and Computing Services. Hospital for Sick Children, Toronto
 \dagger Institute of Bio-medical Electronics and University of Toronto
 \# The term "inverted" has been applied elsewhere to a triode with a negative anode voltage thereby controlling grid current. This mode is not used here, though it was tried unsuccessfully.

[^6]: \dagger This valve is of the type used as an e.h.t. voltage regulator in colour TV receivers.

[^7]: *Extraction of signals from noise, AIM Application Note. ANN 3.

[^8]: The name comes from the trigonometrical function, the sine of an angle. A graph of the sine of an angle plotted against the angle in degrees has the same shape as Fig. 2.
 I: Named after Heinrich Rudolf Hertz (1857-1894). German physicist.

[^9]: "Strictly, only when the angle of swing is very small.

[^10]: † See for instance "Active filters" F. E. J. Girling and E. F. Good, Wireless World, vol. 75, Sept. 1969, pp. 403-8.

[^11]: \# Maximum output is dictated by peak current output capability.

[^12]: *Research laboratories of EMI Ltd

[^13]: * Shorter tube than TH9890. ** Tubes for hard and soft X-rays are manufactured with differing end-windows. $*_{* *}$ Shorter tube than N156, N177 \& N214. † All electrostatic. $+\dagger$ High resolution. S Provisional; EEV make all their range of vidicons with this photosurface to special order.
 N.B. See also the silicon vidicon (Figs. 3J and 4 N Table 14), which has a long wavelength cut-off at 1.1 microns.

[^14]: * Don't push your luck-Ed.

[^15]: \dagger For example H. V. Hodson "A False God of Growth?"-Sunday Times, Jan. 10th.

[^16]: H. W. SULLIVAN STANDARD AIR SPACED CONDENSERS Capacitance range 0 to 100 pf fully screened with engraved vernier sub
 divided into 100 equal divisions complete with vernier index and original manuracturers seal offered brand new, a facturers seal
 only 25 each.

[^17]: TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F. Oscillator calibrated in 10 fundamental bands, covering a freq. of $100 \mathrm{Kc} / \mathrm{s}-$ $120 \mathrm{Mc} / \mathrm{s}$. Also a buffer amplifier and modulator stage, a metering syster, crystal Oscillator stage, and a self-contained Heterodyne Detector. The wide frequency range covers broadcast, standard short-wave, T.V. and FM channels. Operates 115 CV a.c. $50 / 60 \mathrm{c} / \mathrm{s}$. Output Meter $0-0.3 \mathrm{~V}$. Controls Cxt . Ext. Mod.
 hand cond. Carr. 75p.

[^19]: If you have experience which is relative to any aspects of this type of work, and would like information on staff vacancies, please apply to the address below.
 All enquiries will be treated in strict confidence

[^20]: Contact: John Roberts, Sales Manager, Brookdeal Electronics Limited,
 Market Street, Bracknell, Berkshire.
 Tel: Brackell 23931 (Day). Wargrave 2885 (Evenings)

[^21]: SITUATIONS VACANT
 A FULL-TIME technical experienced salesman reA quired for retall sales; write giving details of age, prevlous experience, salary required to-The Manager, $\mathrm{A}_{\text {he }}^{\text {RE Yo }}$ You INTERESTED IN HI FI? If so, and you Trade, an excellent opportunity awaits you at Telesonic Ltd., 82 Tottenham Court Road, London, W.1. Tel, $01-387$ 7467/8.
 DRAUGHTSMEN. Mechanical and Electrical required Dy expanding electronics company specialising in lighting control and audio visual products. This position is Salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd. ${ }^{47}$ Oid Woolwich
 Road, Greenwich, London, S.E.10. Tel. 858 4764. [22 $\mathrm{H}^{\mathrm{I}} \mathrm{Fi}$ Tesonic $\underset{\text { Ltd. }}{\text { Recorder }}$ (1-387 7467 . JUNIOR TECHNICIAN (16-20) required by Psychology Department to assist in development, construction and maintenance of electronic equipment for use in good opportunities to exercise initiative; excellent holidays; day release. Salary within scale £653-£968, Apply, stating age, qualifications, experience (if any) to Administrative Assistant (PJT), Birkbeck College, MEN! You can earn £50 p.w. Learn Computer Computer Operations Training Centre, C.96, Offord House, $9-15$ Oxford Street, London, W.1. C.96, Oxford TeCHNICIAN required for Psychology Department 1 Workshop at London School of Economics to work tronic and related equipment from design to finished article. Appropriate background would be craft apprenticeship or equivalent electronics workshop training and at least ${ }^{3}$ years experience. Knowledge of instruenthusiast an opportunity to widen his experience. Five-day week, 5-6 weeks holiday, salary £ 1,040-£1,408 according to qualifications, etc., plus $£ 125$ London allowance. Write or phone: Personnel Dept., L.S.E., Houghton Street, London WC2A 2AE, 01-405 7686. [1065 VITABOX Bitone Major wanted. Model CN
 344. Mr, Guy, tel. $021-474$ or
 [1063

[^22]: ## AMERICAN

 TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments
 SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

[^23]: NEONS．PRINTED CIRCUIT BOARDS．INSTRUMENT CASES．MOULDED REED SWITCHES and PIDAM logic modules．CONnL and BRGHTLFE products are all exstock．For demats．For further details use reader service card．New prices on new leaflet．All customers on mailing list will receive these automatically．

 WEST HYDE DEVELOPMENTS LIMITED，RYEFIELD CRESCENT，NORTHWOOD HILLS，NORTHWOOD，MIDDX． Telephone：Northwood 24941／26732 Telex：923231

[^24]: SURPLUS HANDBOOKS
 19 get Circult and Notes
 1156 set Circuit and Notes
 H. R. . Techntcal Inntructions

 ${ }_{88}^{48}$ set Working Instructions
 8 C .221 Clreuit and Natem
 Wavemeter Cliss D Tech.
 18 set Circult and Notes
 18 set Ciroult and Notes
 BC. 1000 (31 sec) Clrcuit and Notes

 R.1. 107 Oircuit and Notes
 AR.88D Indructlon Manual

 AR. 88 D Dirsuruction Man
 62 set Circuit and Notes 62 set Circult and Notes
 Circuit Diagram $5 / 6$ each

 52 sei Sender ind Receiver circuith $8 /$ post Iree,
 Colour Corie $\delta 2$
 Colour Codie indicator $2 / 6$. p / p bd.
 S.A.E. with all enquiries please.
 Postage rates apply to U.K. only. Postage rates apply to m ail order onty to:
 INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

[^25]: $01-928$ a333. Wirelese World can be obtained abroad from the following: Averralia and New Zkaland: Gordon \& Gotch, Ltd. Indla: A. H. Wheeler \& Co. Canada: The Wm. Dawson Subscription Service, Ltd.:
 at a price in excess of the recommended maximum price shown on the cover; and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutiated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertisling, literary or pictorial matter whatsoever.

