viver

Digital clock using i.cs

Improving class B

Curve tracer

Tektronix Type 576
\star Expanded viewing area - combines a $10 \mathrm{~cm} \times 12 \mathrm{~cm}$ graticule with fibre-optic readout of scale factors, step amplitude, and Beta/div or gm/div.
\star Swept or DC Collector Supply to 1500 V.
\star Leakage Measurements to $1 \mathrm{nA} /$ div.
\star Multi-function Switching - direct-reading power limits, polarity tracking, auto-positioning, mode changes.

- Calibrated Display Offset - improved accuracy ($\pm 2 \%$) increased resolution.
\star Step Generator Range to 2A or 40V.
\star Calibrated Step Offset - aid or oppose.
\star Pulsed Base Operation.
\star Kelvin Sensing for high-current tests.
* Interlock Operator Protection.

576
£1,084
$576 \bmod 301 \mathrm{~W} £ 920$
(without character read out) All prices delivered U.K.

The 176 Pulsed High-Current Fixture extends the capabilities of the 576 Curve Tracer by providing pulsed collector operation to 200 amps peak and pulsed base steps to 20 amps peak. The step offset, when selected, is also pulsed. The pulsed aperating mode allows many tests previously impossible. $£ 664$ plus duty $£ 94$

Please fill in Reader Reply Card or write, telephone or telex:

e
 TEKTRONIX

committed to progress in waveform measurement

Tektronix U.K. Ltd.

Beaverton House, P.O. Box 69
Harpenden, Herts.
Tel:Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181A Mauldeth Road, Manchester 19.
Telephone: 0612240446 Telex: 668409

GT. 5 is an entirely new comprehensive brochure of Audio Transformers and contains details of a wider range of standard types. Recent introductions to Gardners Audio range described in this brochure include super-fidelity transformers with exceptionally low phase-distortion and the ability to handle steep side transient signals without generation of overshoot. Also listed is a range of high proof-voltage transformers for Post Office transmission lines and a new range of ultra miniature transformers with remarkably good performance. A frequency response linear from the lower audio frequencies to the supersonic band is standard to many of the newer types.

Gardners also have nine other GT Catalogues.
Whatever your transformer requirement there is more than a possibility that we can supply something suitable from stock. We make the largest range of standard transformers in Europe.
Return the coupon to us. And we'll send you the GTs by return.

GT. 1 POWER CONTROLLING SATURABLE REACTORS 50W. to
1 kW . with application notes. AUDIO TRANSFORMERS including Microphone and line matching, Driver, output and impedance matching transformers.
GT. 12 LILLIPUT SERIES OF MICROMINIATURE TRANSFORMERS including Inverter, A.F. and wide-band carrier matching A.F. Driver and pulse types, miniature smoothing and A.F. inductors.
ALPHA SERIES OF ASSEMBLIES for filters, delay lines, modulators, etc
LOW VOLTAGE, ISOLATING AND AUTO
TRANSFORMERS in nearly two hundred ratings, 6 v . to 440 v . and 5 VA to 2 kvA in six assembly styles. MANUAL OF INVERTER TRANSFORMERS AND MODULES.
GT. 23 INDUCTORS, including heavy current and commutation types.
GT. 24 POWER TRANSFORMERS for use with tube type circuits (including obsolescent types) and E.H.T. and Magnetron Supply Transformers.
GT. 25 TRANSISTOR POWER SUPPLY TRANSFORMERS,
GT. 100 GENERAL REFERENCE CATALOGUE with data sheets of assemblies available for specially designed transformers.

GARDNERS TRANSFORMERS LIMITED
Christchurch Hampshire BH23 3PN
Tel: Christchurch 2284 (STD 02015 2284)
Telex 41276 GARDNERS XCH

Please indicate your requirement by circling the number/s below									
1	5	12	16	17	21	23	24	25	100

When did you last hear for the first time？

Sッル㢄

The best pick－up arm in the world

Write to SME Limited Steyning • Sussex－England

Even individual photons can be detected.

With an EEV Image Isocon you can achieve really high-quality TV pictures in the darkest nighttime conditions.

A combination of an EEV Isocon and an image intensifier fibre optically coupled operates satisfactorily at light levels equivalent to single photons.

The Isocon is reliable and able to stand up to active-duty conditions. It cannot be put out of action by bright flares.

The majority of existing orthicon systems can be easily converted.

For the full facts about the Image Isocon please post the coupon.

Proved for these important applications
Air: Aircraft navigation without transmission of detectable pulses. Night photography and reconnaissance (especially when information is required at a central control centre from remote locations such as unmanned outposts, aircraft etc).

Sea: Navigation without lights. Night operation on aircraft carriers.

Land: Navigation without lights. Target finding in the dark. Border surveillance and perimeter defence
English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 024561777 Telex: 99103. Grams: Enelectico, Chelmsford

EEV flash flash flashtubes make light of the toughest jobs

For pumping lasers. For strobing. For photography. For any application in which quality, reliability and performance are vital, that's where you'll find EEV flash tubes.

There's almost certainly a flash tube in the EEV range that has the right characteristics for your application and if there isn't we can probably make one!

EEV flash tubes have extra heavy-duty electrodes. They give you long life, with up to 10^{6} flashes, and they
give you high conversion efficiency. Our air-cooled xenon flash tubes have a wide range of input energy levels and can operate at high repetition rates.

Isn't it time you had the full facts about EEV flash tubes? Just post the coupon.

> English Electric Valve Co Ltd, Chelmsford, Essex,
> England. Telephone:024561777 Telex:99103 Grams: Enelectico Chelmsford

EEV thyratrons give greater accuracy and better performance in three major nuclear physics applications:

Linear accelerators

\square EEV thyratrons can withstand peak inverse voltages up to 20 kV following a pulse.
\square Their operation is unaffected by small reservoir voltage variations.
\square EEV thyratrons need no servicing and give trouble-free operation in oil-filled equipment.

English Electric Valve Co Ltd,
Chelmsford, Essex, England.
Telephone: 024561777 Telex: 99103
Grams: Enelectico Chelmsford.

Particle accelerators

\square EEV thyratrons ensure reliable firing. They give nano-second accuracy. \square There are very few missing pulses
\square They require no external gas supply. \square Because they have an annular current flow EEV thyratrons can switch peak currents very rapidly without risk of arc extinction. When fitted into coaxial housings rates of rise of current up to $100 \mathrm{kA} / \mu \mathrm{sec}$ are possible.

Even with a perfect pickup, the distortion from a gramophone record for sounds of equal level increases very rapidly at high frequencies, eventually doubling for every major third increase in pitch.

There comes a point when, to musical ears, the distortion is increasing faster than the musical quality. The QUAD filter system is designed to enable those with ears to hear to obtain more of the music and less of the distortion.

QUAD

for the closest approach to the original sound

WELWYN ELECTRIC LIMITED

A reputation for producing high quality products, that also offer better value for money, takes a long time to achieve. Such a reputation when achieved can be enjoyed but never taken for granted.

Through our Quality Engineering Department we continuously ensure that consistency of performance parameter and long life is built into everything we make. Constant probing and inspection of every facet of our design and manufacture ensures that every product is at the top of its class.
But how about value for money? This can be related to but should never be confused with price. Our prices are sometimes 'higher than' and sometimes 'lower than', but our value-formoney remains constant i.e. the best. We have achieved, enjoy, and guard our reputation.
Red Kite (Milvus milvus)

Our wing span-athird of a century

FOUR NEW COMIPONENTS FROM ASSOCLATED AUTOMATION

1 Industrial Relay Type MR A.C. or D.C. operation. Panel mounting or plug-in to octal type socket. Will last for up to 5 million operations with 1,2 or 3 poles switching up to 10 amps. Compact, lightweight and cheap

2 Dry Reed Relay Type ERTN

Range of up to 12 poles
Switching capabilities up to
50 VA ; breakdown voltages up to 1500 V. A.C. Life expectancy at contact rating $7.5 \mathrm{VA}, 100 \times 10^{6}$ operations. Cheap to buy, capable of Jast action with low power consumption and bistable oceration.

3 Miniature Dry Reed

Pish Button Switch Series 500
Switching capability up to 4 poles, uf: to $0.5 \mathrm{amp}, 10 \mathrm{watt}$. Wide ra ige of contact arrangements ard mounting styles. Angle bases for terrace keyboards, panel mounting for either single or multiple fixing. Will last for at east 5 million operations. Easy to apply, readily available.
ezonomically priced.

4 Hermetically Sealed

 Commercial Relay Type TFC \$T. 0.5 transistor can envelope iving high isolation switching Fesists shock and vibrations, Eperates on powers down:o 40 mW Ewitching capability 1 amp at 8 V.D.C. to low level (single and Couble pole). Economical priceEough comparable with any gilitary equivalent.

Three relays and aswitch, designed by Associated Automation to cut your switching costs. Built to the highest standards of engineeking, these component's join the alieady comprehensive range of switches and jelays for all communication and control purposes. All economically priced and backed by Britcin's ricst outstanding engineering servise.
Send in the colepon and we'll let you have all the informatian you recuire

To: Associated Automation Limited, Electromagnetics
70 Dudden Hill Lane, London, N. W. 10.
Please send me your fully illustrated literature on (tick box applicable)
1
2 3 4

Coutant 'l'series Laboratory power supplies

Ask our Sales Office for the complete specification.
Coutant Electronics Ltd.
Trafford Road, Reading RG1 8JR Tel:073455391 Telex 84519

Erie's range of high sfability tin oxide resistors has a new feature that makes them unique - PLUGGABILITY. They are the 259P and 259P2 Series and are, of course, close tolerance types.
Tin oxide's enhanced robustness and reliability, plus pluggable terminations combine to make them ideal for fast, easy handling on all flow-line operations. No bent leads with Erie pluggables. Plug-in simplicity at last for PCB's with holes on 0.25 or 0.4 in centres.

To us, close tclerance means $\pm 2 \%$ or $\pm 5 \%$. High stability means $\pm 3 \%$ on load life at $70^{\circ} \mathrm{C}$, maximum dissipation. Fully available in all values from 10Ω to $300 \mathrm{k} \Omega$, these new pluggables are quite content operating up to 250 V d.c. or 0.3 W .
For broader tolerance requirements specify Erie's 9P2D Series solid carbon pluggables. Their valuas extend from 10Ω to $12 \mathrm{M} \Omega$ $\pm 10 \%$ and they"I withstand 700 V d.c. From their wide experience of electronic
component design Erie pioneered the development of pluggable resistors so that
 now, all you have to do is just plug them in. Simply. Let us send you full information without delay.

ERIE ELECTRONICS LTD.
Great Yarmouth, Norfolk.
Telephone: 04934911
Telex:97421

Slide-rule L C R Bridge has ten overlapping ranges for rapid 1% measurements of any component, also tolerance and phase angle. Switch selects 1 kHz or $100 / 120 \mathrm{~Hz}$ operation. 2. 3 and 4 -terminal connections. Adjustable overall sensitivity, special 'search' facility, and automatic increase of detector gain as balance is approached.

B 500

Autobalance Universal Bridge for continuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM connections, optional BCD outputs. Push-buttons for optimum dis crimination up to five figures. Illu minated readout.

Universal Bridge for 0.1% measurements of any LCR combination from 2 micro-ohms to 500 gigohms. Source/ detector (1592 Hz) operate from a.c. or internal rechargeable battery. Sockets for external $200 \mathrm{~Hz}-20 \mathrm{kHz}$. Display gives units, zeroes and decimal point. Four-terminal connections for accurate low impedance measurements.

B 224

Autobalance Component Bridge for immediate readout of resistance, capacitance and shunt loss, inductance and series loss. C and R comparisons from -25% to $+25 \%$. Electrolytics tested with d.c. Accuracy 0.25% (R \& C). 2% (L). Internal 1 kHz source/ detector.

Autobalance Universal Bridge gives four-figure readout on all ten ranges covering every practical value of L. C, R \& G. Sensitivity increases automatically when decade back-off controls are used but can be selected manually. External Standards sockets permit comparative measurements and increase discrimination to 5 or 6 figures. Accuracy 0.1\%.

Autobalance Precision Bridge accurate of 0.01% though simple to operate. It measures virtually any meaningful immittance in any quadrant. Automatic compensation for measurement lead impedance. Six-figures discrimination. Analog outputs.

Wide range A.F. Bridges

Wayne Kerr Bridges provide accurate measurement of L, C and R values over an unusually wide range. They employ a minimum number of fixed stable Standards in association with precision tapped transformers giving voltage and current ratios. Speed and ease of operation are assured by functional styling.

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED.
Roebuck Road, Chessington. Surrey. Tel: 01-3971131. Cables: Waynkerr, Chessington. Telex 262333

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

Mechanical
A.M.S.E. (Mech.)

Ment. of Engineers
Mechanical Eng.
Maintenance Eng Welding
General Diesel Eng
Sheet Metal Work
Eng. Inspection
Eng. Mctallurgy
C. \& G. Eng. Crafts
C. $\& G$ G. Fabrication
A.M.I.E.D

Gen. Draughtsmanshin
Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machincs Technical Drawing Technica

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng. Gencral Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.

Radio \& Telecomms C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amatcurs' Exam. Radio Operators' Cert. Radio \& TVV Enginęering Radio Servicing Radio Scrvicing
Practical Television Practical Telev
TV Servicing Colour TV
Practical Radio \&
Electronics (with kit)

Auto \& Aero
A.M.I.M.I.

MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng. Motor Mechanics
A.R.B. Certs.

Gen. Acro Eng
Management \&
Production
Computer Programming
Inst. of Marketing A.C.W.A.

Works Management Work Study Production Eng Storekeeping Storckeeping
Estimating Estimating Quality Control Quality Control
Electronic Data Electronic Da
Processing Numerica! Control Planning Engincering Materials Handling Operational Rescarch Metrication
Constructional
A.M.S.E. (Civ.) C. \& G. Structural Road Engineering Civil Enginecring Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Painting and Decorating Architecture Builders' Quantities

General
Genera
Petroleum Tech.
Practical Maths.
Refrigerator
Servicing,
Rubber I'echnology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate of Education
Choose from 42
' O ' and ' A ' Level
subjects including:
English
Enghish
Chemistry
Chemstry
General Science
General
Geology
Geology
Physics
Physics
Mathematics
Muthematics
Technical Drawing
French
German
Russian
Russian
Spanish
Biology
B.I.E.T. and its
associated schools
have recorded well over 10,000 G.C.E: successes at ' O ' and 'A' level. WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS

Over 3,000 of our Students have obtained City \& Guilds hertificates. Thousands of Certificates. Thousands of
other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept 446A, Aldermaston Court, Reading RG7 4PF.

B.IE.T - IN ASSOCIATION WTH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 3-30/60 Ω balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLI-

FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic .1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.
20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

professionals are hard to please...

In this completely professional area of Magnetic Fecording Equipment engineers set themselves high standards because they have extremety high standards to meet and maintain - every day of the year.
They demand truly dependable equipment for this tough, exacting work - equipment like the Plessey range that is technically excellent, flexible and thoroughly reliable under continuous operating conditions.
Plessey studio equipment includes reel-to-reel, portable, console and endless-loop cartridge recorders that have been time proven for twentytwo years by broadcasters around the world. This kind of equipment will fit into your system - and give definite operational and cost advantages. Keep us in mind when next you are considering new equipment.

A full range of technical literature is available on request, or better still, a technical representative will call if it's convenient.

Contact us now!
PLESSEY Electronics

Sales and Service - Rola Recording Products Department Garrard Engineering Limited
Newcastle Street Swindon Wiltshire
Telephone Swindon 5381 Telex 44271
or the manufacturer
Plessey Electronics Pty Limited
Equipment Unit
Westbank Terrace Richmond Australia 3121
Telex 30383 Cables ROLA Melbourne

ALL BAND COMMUNICATIONS RECIVER JR-599
ALL BAND SSB TRANSMITTER TX-599

TRIO IS FULLY-EQUIPPED FOR FULL-CYCLE COMMUNICATIONS

TRIO's JR-599 communications receiver brings the highest-type, professional, all-bands potential to amateur bands on an allocated 1.8 to 29.7 MHz frequency range, 50 and 144 MHz bands and $\mathrm{WWV} ' \mathrm{~S} 10 \mathrm{MHz}$ standard signal. A receiver frequency readable to the nearest 500 Hz is guaranteed due to precision type double gear mecharrism and variable capacitor with linear characteristic for main tuning dial of a 25 kHz band at one full turn. The all-band SSB TX-599 transmitter matches the JR-599 with its wide-spread IC and FET network. All HF bands are covered with its single switch mode on LSB, USB, AM and CW positions. All of TRIO's equipment-or equipment com-binations- is designed to provide entirely full-cycle communications capability.

the sound approach to quality
TRIO
TRIO IILECTRONICS, INC.

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugman, 1060 Bruxelles Belgium
Sole Agent for the U.K.
B.H. MORRIS \& CO., (RADIO) LTD. 84/88. Nelson Street. Tower Hamlets, London E. 1. Phone: 01-790 4824

From Bradley.
 A true calibrator for general purpose multimeters.

All Bradley insiruments can be supplied with a British Calibration Service Certificate from our own B.C.S. approved standards laboratory.

The 1:1 Multimeter Calibrato p-ovides in one pedtage a complete calibration station for general purpose mu timeters. Outputs available from this new nstrument include both a.c. and d.c. voltage up to $1 C 00 \mathrm{~V}$ in 1 mV steps and ac. anc d.c. current up to 10A in ti steps. Flus a 10% overrange facility ellowing dalling up to 10 cr each decads.
A.C. outjuls can je at Ine frequiency or 400 Hz .
Provisich for the calibration of res stance from 15. $1010 \mathrm{M} \Omega$?
The accurecy of the ins-rument has teen ca-ztully chcsen, end is 0.1% in the c.c. and resistanc \because modes, and 0.3% in the e.c. moce. Four terrina output gives itternal or эxternal zensing.
Opera-io 7 is simp e - just ciral the output requirec - so the instrunent can 9 z used ky anyכne with minimun training And it s sa:e. A ren ote zontrol unit is suppliec w th a 'P-ess to Operate' safety switch.
Percertage error of indificlua readings can be easily read \boldsymbol{n} a panel meter, a teature p oneered by Bredley.
Thesea-sonly a few of he hightights of the 171. which costs only $£ 1050$ in the UK, A very low orice fer a complete mallimeter calibration station his ultimate in calibra:crs gives a very high performance/cost atio.

G. \& E. BRADLEY LTD.

Electral House, Neasden Lare, Londer NW10.
Telephone: 01-450 7811 Telex: 25583
A Lucas company
BRADLEY electronics

Expecilmore from Is

ADCDIA -the handy stripper with precision performance

ADCOLA offer you a speedy off-the-shelf service with the world's most comprehensive range of modern soldering instruments.

*
Write for price list and catalogue
ADCOLA PRODUCTS LTD..
(Dept. h), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W. 4 Telephone: 01.622 0291/3 - Telegrams: Soljoint London Telex• Telex: Adcola London 21851

UNREPEATABLE OFFER !
 LIMITED NUMBER
 NUMBER

EMI L4A PROFESSIONAL BATTERY MAINS PORTABLE

Never before and possibly never again will we be able to make an offer such as this!! To coin an old cliche "It's the chance of a lifetime."

We have made the exclusive purchase of
these superb battery/mains portable
half-track professionalrecorders.
Not in the recent past available to the domestic user due to its exemption from Purchase Tax being maintained only if sold to professional, scientific and industrial organizations. Had it been placed on the domestic market it would have retailed at approx. f170 for the recorder without any accessories !!
The superb EMI L4A battery mains professional recorder has been sold by the Professional Products Department of the world famous EMI organization to professional, scientific and industrial users throughout the world. Ranking high in esteem with all professionals it has gained an unprecedented reputation for superb quality and utter reliability. Its specification developed over many years from the earlier world famous EMI L2A, used almost exclusively by the BBC and other world wide broadcasting stations, provides facilities only to be found in other professional recorders such as Nagra. etc.
Just look at the unique features contained in its comprehensive specification.
3 Heads (1 Erase, 1 Record, 1 Playback) 2 speeds $3 \frac{3}{4}{ }^{\prime \prime}$ and $7 \frac{1}{2}{ }^{\prime \prime}$. Unique automatic back tension control to ensure absolute constant speed. Two microphone inputs, with separate mixing controls, plus Remote control facilities through microphone switch. Edge mounted meter can be switched to monitor battery voltage, erase and bias oscillator current, record level and line out output. Recorded signal can be monitored before and after record on $3^{\prime \prime}$ internal speaker driven by inbuilt 200 mW amplitier or through monitoring headphones. Extremely lightweight. Only $10 \frac{3}{4} \mathrm{lbs}$. Size $7^{\prime \prime} \times 11 \frac{3}{4} \times 5 \frac{3}{4}{ }^{\prime \prime}$. Exceptionally robust. Fully tropicalised. Built to last a lifetime. Minimum running costs. Rechargeable batteries can be used over and over again in canjunction with the Mains Battery charger which also acts as a mains power supply unit. Wow and flutter better than 0.2% RMS. Signal to Noise ratio +50 dB (unweighted).
Absolutely ideal for every form of live recording. Orchestral and organ music, wild life recordings, interviews, expeditions, scientific investigations, etc. A recorder never previously available at
 GNS.
Carr. 50/Cash or Terms such a ridiculously low price.
Every machine brand new, fully guaranteed and supplied complete with superb carrying case (retail value $£ 5.10 .0$), shoulder strap and comprehensive instruction manual. Recorders can be supplied to European or NAB standards (State which required when ordering). A full range of accessories are available including mains battery charger units, rechargeable battery packs, dynamic and ribbon microphones, monitoring headsets, etc.
EMI L4C Full Track Neopilot Sync. Model
must for any ameteur or protessional movie maker, providing 100% lip synchronisation. 4 Heads with star indicator for ase with sync head telling when camera is in action. Had these been available on the domestic market they would have been approx. $\mathbf{£ 2} 20$!!!
89 GNS.
We cannot guarantee being able to meet the expected demand for this unrepeatable bargain as we have verv limited numbers available and would advise early ordering to avoid disappointment
HP TERMS FOR PERSONAL CALLERS EXPRESS MAIL ORDER SERVICE

82 HIGH HOLBORN, W.C.1.
TEL: 01-242 7401

How much is your company paying for multimeters?
 Eagle multimeters offer top quality,

 accuracy and years of faithful service but still cost less - ask top companies like NCR or Addressograph - Multigraph. The two dramatic examples below show you what we mean-compare the specifications and performance, then check the price tag!

$185 \times 102 \times 44 \mathrm{~mm}$
These are just two examples. .

Eagle International
Coptic Street
London, WCıA ıNR.
Tel: 01-6360961

BRAND X
20.000

1,000
$0-2,500$ volts in 8 ranges $0-2.500$ volts in 7 ranges 0 - 10A in 7 ranges $0-10 \mathrm{~A}$ in 4 ranges 0.20 M OHM in 3 ranges
2% of FSO
2.25% of FSD
YES
OPTIONAL EXTRA $204 \times 185 \times 115 \mathrm{~mm}$ OVER E 37

DESIGNED FOR MAXIMUM FLEXIBILITY, THE MOD-70 POWER AMPLIFIER MODULE WILL PERFORM AT 70 WATTS RMS CONTINUOUSLY IN AMBIENT TEMPERATURES TO $70^{\circ} \mathrm{C}$, IS FULLY OUTPUT/INPUT PROTECTED, YET OCCUPIES LITTLE MORE THAN 70 CUBIC INCHES.

LOOK UP TO EAGLE FOR VALUE IN ELEGTRONICS

THE MOD 70

 70 WATT R.M.S. PLUG-IN POWER AMPLIFIERWherever reliable audio reproduction power is required at better than average bandwidth specification, at lower than average cost, and in an extremely compact, well finished package, the Mod-70 is exceptional.

ALL I/P, O/P, AND SUPPLY CONNECTIONS ARE THROUGH AN INTERNATIONALLY STANDARD 8-PIN HEADER WHICH PROVIDES EASE OF INSTALLATION, WHILE FOUR CONVENIENT TIEDOWN POINTS SECURE FIXING AND QUICK RELEASE.

> FOR FULL PERFORMANCE AND COMPLETE TECHNICAL SPECIFICATIONS, VOLFIELD LIMITED,
> 2A LANSDOWNE GARDENS,
> LONDON,S.W.8.01-6227187

3-PLUG-IN OSCILLOSCOPE

$\square 60-\mathrm{MHz}$ Bandwidth
■ Dual-Trace, $5 \mathrm{mV} / \mathrm{div}$
- 5 ns/div Sweep Rate
- 2% Accuracy
- $8 \times 10 \mathrm{~cm}$ Display
Solid State
\section*{f1109 complete WITH PLUG-IN UNITS}

The TEKTRONIX 7503 THREE-PLUG-IN OSCILLOSCOPE offers more measurement capability per pound than any other quality oscilloscope.
Easier to use. An exclusive peak-to-peak auto-triggering mode provides a triggered sweep throughout the 360° range of the level/slope control. The front panel is uncluttered, illuminated push-button switches are extensively used to conserve space. Controls are conveniently related to function through the use of a colour-keyed front panel

Faster measurements. Auto Scale-Factor Readout is exclusive to Tektronix! It labels the CRT with time or frequency/div; volts, ohms, C (temperature), or amps/div; invert and uncal symbols; and automatically corrects for 10 X probes and magnifiers. Readout is required when using the NEW 7D13 Digital Multimeter and the NEW 7D14 Digital Counter plug-in units. It can be ordered initially or as a conversion kit, which is easily installed.

THE 7000-SERIES

An Integrated Test System! With the introduction of the 7D13 and 7D14 digital plug-in units, the 7000-Series becomes an Integrated Test System. ITS much more than an ordinary oscilloscope. SEVENTEEN plug-in units covering a wide performance spectrum are available to solve virtually all of your measurement problems. Some of the features offered are: dual-trace, differential comparator, $10-\mu \vee$ differential, sampling, current amplifier, digital multimeter and digital counter. For instance, plug-in units can be chosen to give the 7503 delaying sweep and $90-\mathrm{MHz}$ bandwidth.

Greater versatility. The following 7000-Series mainframes offer unique four-plug-in versatility. The 7704 (150 MHz), R7704 (150MHz rackmount), 7504 (90 MHz), and 7514 Storage (90 MHz). The 7000 -Series does not require a full complement of plug-in units, you can start with only one horizontal and one vertical plug-in and add more as your measurement requirements change. Duty 7503 Oscilloscope without readout, Option 1 $£ 661$..........\& 94 7A15 Single-Trace Amplifier ………...................... \&119 \& 17 7B50 Time Base.. 210 . 7503 Oscilloscope with readout£842£119

Your Tektronix field engineer will gladly demonstrate the complete versatility of the New Tektronix 7000-Series Oscilloscope System, in YOUR laboratories with YOUR signals.

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181 A Mauldeth
Road, Manchester 19. Tel: 061-2240446 Telex: 668409

one man one one

SIRMNECH

 VERSAMロMERSYSVEN

Strumech Engineering Limited Portland.House, Coppice Side, Brownhills, Walsall. Staffs, England. Telephone: Brownhills 3651

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best--in high performance products . . . P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring ©

Sole UK distributors of modern P.A. systems by Toa Electric Co., Ltd,
Goldring Manufacturing Co. Ltd. (Great Britain)
10 Bayford St, Hackney, London E8 35E.
Write or Telephone 01-985 1152 For Full Details

ELECTRONIC LIMITED
33a High Street, Ruislip, Middlesex HA. 47 AU
Phone Ruislip 74133. Cable Birdele
WW- 032 FOR FURTHER DETAILS

used as standards in many industries

Anders means meters

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

anders electronics limited

48/56 Bayham Place, Bayham Street London NW1. Tel: 01-3879092 WW- 033 FOR FURTHER DETAILS

WW-034 FOR FURTHER DETAILS

HEATHKIT INSTRUMENTS

The finest value offered in instruments

 in the world.C
B -

A) Wide Band Gen. Purpose Oscilloscope, $10-18 \mathrm{U}$ Kit $£ 42.80$ Carr 80np
B) Gen. Purpose Service Oscilloscope, OS-2 Kit $\mathbf{£ 3 2} \mathbf{. 0 0}$ Carr 60np
C) Universal 'VVM', IM-25 Kit $£ \mathbf{4 4 . 0 0}$ Carr 40 np
D) Portable Solid State 'VVM', IM-17 Kit $\mathbf{£ 1 7 . 3 0 \text { Carr 30np }}$
E) Portable Multimeter, MM-1U Kit £16.00 Carr 30np
F) RF Signal Generator, RF-1U Kit $£ 17.50$ Carr $\mathbf{3 0 n p}$
G) Regulated High Voltage Supply, IP-17 Kit $£ 39.90$ Carr 60 np
H) Regulated Low Voltage Supply, IP-27 Kit £41.40 Carr 50np

These models are also available factory assembled and tested.
For the full range of Heathkit models why not send for the free Catalogue. Yours for only the price of a postage stamp.

Please send me the FREE Catalogue

NAME
ADDRESS

POST CODE \qquad

A NEW PORTABLE OSCILLOSCOPE

* £56 Ex STOCK DELIVERY

* DC-4.5 MHz BANDWIDTH
* $100 \mathrm{~m} / \mathrm{cm}$
* 8×66434 in.
* 5LB
* BRIGHT LINE TRACE
* AUTOMATC SYMCHRONSAAIION
* SOLID STaIE
* RUGGED CONSTRUGTION

Reverberation Unit
Type 636

After the fun of the Audio Fair then whatever amplifier equipment you have chosen you will no doubt be interested in the added advantages of incorporating Reverberation or Ambiophonic units. May we advise you on this?

We shall be pleased to supply further details on these two units, and indeed on any Audio equipments, including mixers, microphones and matching units etc.

Ambiophonic Unit Type 666

Let GRAMPIAN know your requirements.

A British Pre-Amplifier with an Unparalleled Specification

Five section graphic equalisers operate independently in each channel
Theoretical limits of low noise are reached via a unique noise cancelling pre-amplifier

"GRAPHIC STEREO"	$£ 162.0$
"POWER STEREO 70" Amplifier	$£ 83.0$
(35 Watts R.M.S. per channel)	
"POWER STEREO 60 " Amplifier	$£ 97.0$
(80 watts R.M.S. per channel)	

"GRAPHIC STEREO" £162.0
(35 watts R.M.S. per channel)
(80 watts R.M.S. per channel)

Catering to your particular service and production requirements Speciprod

Our range includes:
Aerosol Aids: From Kontakt, Antistatik spray-cold spray-Fluid spray-Graphit spray-Oil spray-Plastik spray-Soldering Lacquer-Switch and contact cleaners -Video spray for cleaning tape heads.
Allen \& Bristol Keys: L Type. Standard and Long Arm. Contact Cleaners: Diacrom Diamonded Spatulas and Kontakt aerosols.
Nutdrivers: Hex-A.F.-Metric. Solid and hollow shaft and Palnut.
Pliers Seizers \& Nippers: Quality Precision made hand tools from Xcelite, and other leading products of special tools.

> For catalogues and other information on the above write.

Screwdrivers: Allen-Ball head-Bristol-Clutch head -Hold-e-Zee-Phillips and slotted.
Soldering Equipment: Resistance and heat controlled units. Also thermal wire stripping equipment from American Beauty and Waseco.
Twéezers: Quality Swiss made electronic tweezers. Ultrasonic Cleaners: Bench models and accessories from American Beauty.
Work Positioners: The versatile Panavise 300 series for modern precision and allied industries.
Work Viewers: Distortion free Ednalite viewers and optical glass lenses for single and group viewing.

[^0]

7V r.m.s. Sine or Square from 1 Hz to 1 MHz

FREQUENCY:
SINE WAVE OUTPUT:
DISTORTION:
AMPLITUDE STABILITY:
SQUARE WAVE OUTPUT:
SYNC. OUTPUT:
SYNC. INPUT:
SIZE \& WEIGHT:

1 Hz to 1 MHz in 12 ranges. Accuracy $\pm 2 \% \pm 0.03 \mathrm{~Hz}$.
7 Vr .m.s. reducible to $<200 \mu \mathrm{~V}$ with $\mathrm{R}_{\mathrm{S}}=600 \Omega$ at all levels.
$<0.1 \%$ up to 5 V output, $<0.2 \%$ at 7 V from 10 Hz to 100 kHz .
$< \pm 1 \%$ variation with frequency up to 300 kHz .
$7 V$ peak reducible to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{~V}$ r.m.s. sine wave in phase with the main output.
$\pm 1 \%$ frequency lock range per volt r.m.s. input.
$7^{\prime \prime}$ high $\times 10 \frac{1^{\prime \prime}}{}$ wide $\times 5 \frac{1^{\prime \prime}}{}$ deep. 10 lbs .

Types TG200 and TG200M generate only sine waves. Types TG200M and TG200DM have a meter calibrated $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ and $-14 /+6 \mathrm{dBm}$. Types TG200 and TG200D have a calibrated control instead of a meter.

Prices include batteries with 400 hour life. Mains power units are f 10 extra.

LEVELL R.C. OSCILLATORS
PORTABLE NSTRUMENTS

Give the stars their freedom!

That's our motto, this is our method; with the

Modern-style highoutput microphone.

TYPE 530
TRANSISTORISED
AMPLIFIER
inputs 1 music inike

RESLO MIKES LTD 24 UPPER BROOK ST., LONDON, W. 1

WW- 042 FOR FURTHER DETAILS

Nombrex accuracy!

R.F. SIGNAL GENERATOR MODEL 31 Price f12. 10. Od
We consider this instrument to be the best R.F. Signal Generator on the market today at its price. No amateur radio enthusiast or educational establishment should be without one.

Note a few of the specification details below:-

- Wide range $150 \mathrm{KHz}-350 \mathrm{MHz}$.
- Accuracy better than 2%.
- R.F. Output, or modulated 400 Hz .
- A.F. Signal available externally.
- Output average 100 mV overall.
- Continuously variable attenuator.
- Fully transistorised circuitry.
- Provision for external supply.

All Nombrex instruments are guaranteed against defective parts or faulty manufacture for 12 months.

Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6d. extra.

NOMBREX (1969) LTD. EXMOUTH DEVON Tel: 03-952 3515

WW-043 FOR FURTHER DETAILS

New from Brenell....

'Type 19' an industrial and scientific tape deck built to the highest standards!

brenpll

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too... all performing superbly in many climates ... all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.II.

WAVEMASTER

Type 95 S.L.C. Law Ball bearings, ${ }^{\text {If }}$ dia. fixing bush. Front area $1 \mathbf{1}^{\prime \prime} \mathrm{w}$. $\times 1 \frac{1^{\prime \prime}}{}$ h.
Type 87 S.L.C. Law Plain bearings. " fixing bush

'Wavemaster' variable capacitors have brass vanes and a single ceramic end plate. All have $0.248^{\prime \prime}$ spindles, extended both ends for ganging by means of our Universal Couplings. All are designed for S.W. working and for one hole fixing. 6 mm spindles to order if required. Various capacitances. Largest vane packs 300 pF 0.017 air gap, 50 pF 0.64 air gap.
Type 92 Modified S.L.C. Law (S.W. Tuning) Plain bearings, \boldsymbol{i}^{*} dia. fix-

STAND-OFF INSULATORS

Jackion stand-off insulators are de signed to perform well in rigorous environments. Their insulation resistance exceeds 20 million megohms even when atmospheri humidity is high. (They meet British Services test specification DEF5334.) They will withstand high steady voltages and intense r.f. fields. Forty different types: 2sk for catalogue.

Working voltages up to 10 kV .
\star Stoved-on silicone treatment: water repellent. \star Ceramic bodies. * Silver-plated tags.

* No solder. No plastic. No adhesives.

P. 30 3-GANG and P. 30 F.M. 3-GANG * A.M. 8.5 min. 320 p f swing Trimmers 25 ppF swing
\star FM. 25 pof swing

\star Ceranici insulation.
P. 20 2-GANG A.M.
* AM. 10 min 510 DF swin
* Trimmers 25 pf swing 1.75 in $\times 1.8$ in. $\times 2.5 \mathrm{in}$
P. 2 2-GANG A.M. F.M
\star Gear raio 3:1 or $1: 1$
* Capaciance A.M. 10 pF min. 510 pf sming Capacitince F.M. Apf min. 10pf swing 1.75 in x

It's reliable if it's
 made by Jackson! Write for literature
JACKSON BROS. (London) LTD.
DEPT. W.W. KINGSWAY-WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

Litestat

TEMPERATURE

 CONTROLLED SOLDERING INSTRUMENTS

* 2 Models, 55 and 70 watts
- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable $200 / 400^{\circ} \mathrm{C}$
- Available for all voltages
- Built-in indicator lamp
- Cool, comfortable unbreakable Nylon handle
- Range of bit sizes, Copper or Philips ironcoated.
- Prices from £3. 84 (76/10)

Please ask for New Leaflets 5/1009/11

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Tel: 01-688 8589 and 4559

VARIABLE TRANSFORMERS

\star OUTPUT 0-265V \star INPUT 240V 50/60 CPS \star SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp f5.50

$2.5 \mathrm{amp} \quad$ £6.75 $\quad 10 \mathrm{amp}$ f 18.50

$5 \mathrm{amp} \quad \mathrm{f} 9.75 \quad 12 \mathrm{amp} \quad \mathrm{£} 21.00$
8 amp £14.50 $20 \mathrm{amp} \quad £ 37.00$

Inset shows
latest pattern Brush gear ensuring smooth adjustment.

SOLID STATE VARIABLE
VOLTAGE CONTROL

* Output $25-240 \mathrm{~V}$
\star Input 240 V 50 CPS
* $5 \mathrm{amp} \& 10 \mathrm{amp}$ model
\star Completely sealed
5 amp model $\mathbf{£ 8 . 3 8}$
10 amp model $£ 13.75$

0-24V DC L.T. SUPPLY UNIT © Contifuously Rated. \star Large Ammeter and
 \star Infinituly variable up to 24V OC. Size and weight $16^{\prime \prime} \times 12^{\prime \prime} \times 27$ " High- 701 lbs . Reas wheals fitted tor abse of handling. f85.00 C \& P (inland) $£ 3.00$

COMPLETE PHOTO- ELECTRIC SENSOR in one unit

- Reflective type with built-in light source
* Will also operate from remote light source
- Matchbox size
- Senses any object-colours. thick smoke
Operates from 12V AC. Output signal 0.5 amp. 100 V . Approximately ≥ 5.50 dependent on quantity

I.M.O. PRECISION CONTROLS.

(Dept WWX) 313 EDGWARE ROAD,LONDON W.2.Tel 01-723, 2232
WW-048 FOR FURTHER DETAILS

stop searching for a signal

Find it easily with Avo's inexpensive, easy-to-operate HF133 Signal Generator, which covers the complete
r.f. spectrum from the long-wave broadcasting to the VHF television band. The six separate ranges were carefully chosen tọ make range switching unnecessary when operating in most transmission bands. Get full details of this versatile tool for the service engineer from Avo Ltd, Avocet House, Dover, Kent ; telephone 2626, telex 96283.

Frequency range : 135 kHz 230 MHz * R.F. Calibration Accuracy: $\pm 1 \%$ * Amplitude Modulation : 17% at 1 kHz (35\% highest range) * R.F. Output: $1 \mu \mathrm{~V}-100 \mathrm{mV}$ (continuously variable) into 75Ω wider variation on highest range.

The Crystal Controlled Switched AM or FM Tuners are at the heart of every S.N.S. Radio Distribution System.
You will know that you are installing the best because the crystal ensures drift-free reception and with our rigorously-controlled manufacturing

methods, backed by a 72 -hour soak test before despatch on all Tuners and Amplifiers, reliability is ensured. The concept of removing External Controls where possible so that unskilled hands do not create unnecessary Service Calls is now Internationally acceptable.
Since their introduction three and a half years ago, many hundreds of our Tuners and Amplifiers have been providing trouble-free operation in many parts of the world.

radio distribution systems

It's no coincidence that S.N.S. equipment has a reputation for quality it's been designed that way.

S.N.S. Communications Ltd., 85 I Ringwood Road, West Howe, Bournemouth, England, BHif 8LN. Tel: Northbourne 533I. Telegrams: Flexicall Bournemouth.

Come and see us at Stand C8 at the Sound 71 Exhibition from March 16th - 19th

Think professional.

If you're thinking about acquiring a new stereo system, think professional. Think Sansui. Give yourself the extra professionalism of a control amplifier, with all the extra capability that such a component offers. Sansui lets you choose from among three quality units, each equipped with a Triple Tone Control circuit for more complete control of the entire sound spectrum than was ever before possible, and each the unquestioned leader in its power range. Sansui's control amplifiers are the powerful 180 watt AU-999, the 100 watt AU-666 and the 85 watt AU-555A. One of them is right for you.

And to more fully enjoy the professionalism of your control amplifier, choose one of these brilliant new high linearity speaker systems - the 3 -way 3 -speaker SP-150 with a full 40 watts in power, or the 2 -way 2 -speaker 25 watt SP-50. Each is designed to pour forth the rich sounds of stereo with flawless beauty, and each is finished in rich walnut highlighted by Sansui's unique hand-carved "Kumiko" fretwork grille.

For a turntable, Sansui suggests the elegant new SR-2050C Automanual with exclusive Auto Lift/Stop mechanisms, a highly professional component which unites the convenience of an automatic with the accuracy of a manual. Another very advanced turntable is the SR-1050C, a direct belt-drive manual complete with all the refinements and precision that knowledgeable stereo enthusiasts demand today.

Whichever combination you decide on, you'll get more out of it with Sansui's 2-way 4-speaker SS-20 stereo headphone set, complete with separately adjustable Volume and Tone controls for luxurious private listening.

Think professional, and see your nearest authorized Sansui dealer soon. We think you'll find it rewarding.

B

ELECTRICAL INSTRUMENTS LTD
CHILTERN WORKS MICI WYCOMBE

BuCKS
Phone 30931

The new PG-71 Pulse Generator costs $£ 150$, has two independent channels and one unusual characteristic...

* High output-dual 10 volts into or from 50』
* Fast $<10 \mathrm{~ns}$ rise/fall times
* Wide ranges-period $200 \mathrm{~ns}-1 \mathrm{sec}$. $(1 \mathrm{~Hz}-5 \mathrm{MHz}$) delay $50 \mathrm{~ns}-1 \mathrm{sec}$. width $50 \mathrm{~ns}-1 \mathrm{sec}$.
* Gating, external trigger and manual one-shot facilities
* True double pulse-two channels each with independent delay, width and amplitude
* Pulse advance capability to +1 sec.
* Super-portable: only $3 \frac{1^{\prime \prime}}{} \times 9 \frac{1^{\prime \prime}}{4} \times 11^{\prime \prime}, 7 \frac{1}{2} \mathrm{lb}$ -battery operation available
* Internal channel mixing facilities

More details of the new PG-71 please.
Name
Position \qquad
Company \qquad
Address:

LYONS INSTRUMENTS

Lyons Instruments Ltd. Hoddesdon England Telephone Hoddesdon 67161 Telex 22724
A Claude Lyons Company
mwi./11

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes
blemishing performance. Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommen ded tracking weight $1 \frac{1}{2}$ to 2녈 grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

Goldring
 Goldring Manufacturing Company (Great Britain) Limited, ${ }_{10} 0$ Bayford Street, Hackney, London E8 ${ }_{3}$ SE. Phone: ol-985 1152.

TRANSFORMERS

AUTO
10W to 5000W

OLYMPIC TRANSFORMERS LTD
 224 HORNSEY ROAD, LONDON, N. 7

Tel. 01-607 2914

DYMAR FOR R/T MEASUREMENT

DYMAR manufacture a range of very economically priced instruments specifically designed for use in the design, production and servicing of Radio Telephone Equipments.
The Type 785 Modulation Meter is a solid state instrument for the measurement of the Depth of Modulation in Amplitude Transmitters or the Frequency Deviation in the case of F.M. Transmitters. It is specifically designed for narrow deviation transmitters in today's mobile and portable V.H.F. radiotelephones, the most
sensitive deviation range being 3 kHz f.s.d. A feature of the instrument is the low residual F.M. noise of the local oscillator which with the A.F. "Voice" filter switched in is typically -44 db below 3 kHz deviation.
Carrier Frequency Range: $\quad 30 \mathrm{MHz}-100 \mathrm{kHz}$
F.M.Deviation :
A.M. Modulation Depth :

Sensitivity :

3 kHz f.s.d. -100 kHz
3\%f.s..d-100\% Betterthan 2 millivolts overthe whole
frequency range

A.M./F.M. Modulation Meter only £260

Other Dymar Instruments

701	Wideband Millivoltmeter	$£ 125$	745	Two-Tone Signal Generat
761	Noise Factor Meter	$£ 115$	724	Suppressed Zero D.C. Mic
711	V.H.F. Millivoltmeter	$£ 250$	705	A.F. Microvoltmeter
721	D.C. Microvoltmeter	$£ 130$	765 A	Distortion Factor Meter
585	A.F. Power Meter with Batteries	$£ 140$	771 A	A.F. Wave Analyser
DYMAR ELECTRONICS LIMITED,				
Colonial Way, Radlett Road, Watford, Herts. WD24LA.				
Telephone: Watford $21297 / 8 / 9$.				

CALAN SPEED CHECK

 TECHNICAL DETAILS
 Input sensitivity 100 MV MAX. INPUT 50 Vols. Inpur impadence 10 K . Zero Frequency $3 \mathrm{KHz}+$ or -0.1 percent. Ranges 1 per cent 3 per cent 10 per cent devisition.
 CALAN ELECTRONICS LTO.,
 Crossroads by Ormiston
 East Lothian.
 Telephone Humbie 242 \& 258
 A Service Aid
 The Calan Speed-Check monitors the running of tape transport mechanisms or record players by detecting the frequency of a signal played from special test tape or disc. Any deviation from the nominal 3 kHz frequency indicates a deviation in running speed from the correct condition.
 The Speed-Check is simple to operate. Two controls are provided. A function switch connects power to the equipment and selects three ranges of deviation sensitivity. The second control is a set zero control which enables examination of the speed performance of mechanisms whose nominal running speed is fast or slow by up to 4 per cent. on the 1 per cent range so that such measurements as capstan slip and speed constancy can be examined at maximum sensitivity. A switch position on the set zero control cancels this facility to enable calibrated measurements to take place. Two Test Tapes Provided. 1. Standard $1^{\prime \prime}$ Tape $5^{\prime \prime}$ spool. Side A $7 \frac{1}{2}$ ips. side B $3 \frac{3}{4}$ ips. 2. C60 cassette records at $1 \frac{7}{8}$ ips.

You choose electrical equipment in much the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see its pedigree.
When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machinery and assembly; sound design. Its pedigree is impeccable.
Just 1 winner from the Rendar kennel
The Rendar Safebloc saves time and saves life. There's no need to fit a plug for testing - just danger of shocks - no current can pass until the lid is closed.
Rendar pioneered this concept, and introduced the "Safebloc" to the British market over 12 years ago. It's indispensable on testing lines, and for all kinds of electrical demonstrations. Double Safebloc
available for 3 -phase applications.

INSTRUMENTS LTD
Burgess Hill, Sussex, England Tel. 2642-4. Cables RENDAR Burgess Hill WW-061 FOR FURTHER DETAILS

Designers specify them for their reliability and modern styling. Buyers choose them fer their competitive prices and delivery.

are selected by equipment manufacturers everywhere.

Vista Series
Popular, reliable panel meters with robust phenolic mouldings and scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. This range combines compact functional styling with easy readability and excellent performance. Mechanically interchangeable with the Fyneline range.

Edgewise Series Here s the latest in the range of three Edgewise pane meters, the Model 330 with a $2 \frac{1}{4}$ in scale length. iJeal for today's crowded instrument panels, other scale lengths are $1 \frac{1}{16}$ in (Model11) and $1 \frac{3}{4}$ in Model 220).

Fyneline Series

Adaptable versatile series with scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. Contemporary styling and clear shadow-free readings ensure maximum readability. This modern range maintains the Taylor reputalion for reliability and sensitivity.

Taylor offers a comprehensive range of movingcoil and moving-iron panel meters. The movingcoil meters feature the proven Taylor centre-pole movement with practically friction-free operation, inherent magnetic shielding
and high torque/weight ratio. They are sensitive, accurate instruments that conform
generally to BS 89/54 with contemporary or conventional styling. Ask for the Panel Meter Shortform Catalogue.

Taylor makes test equipment too! Two typical models are Taytor Model 88B, a robust, wide-range multimeter with automatic cut-out and polarity reversal facility, and the

popular Taylor Type 127A, a pocket-sized multimeter for the service engineer and hobbyist. Ask for the Instrument
Shortform Catalogue.

Taylor Electrical Instruments Limited

- remember we're now at Dover!-

Archcliffe Road, Dover, Kent. Tel: Dover 2634 Telex: 96283

I'D RATHER HAVE A MINITEST"

The SEI MINITEST has made a remarkable impact in the pocket-sized multi-range meter market, by making itself a firm favourite with discerning people in the industry. Let's look into the reasons why.
First, the appearance. Diminutive, neat, wipe-clean cycolac case with shock and magnetic field proof steel liner. Controls are simple and easy to use. Second, the range. The Minitest
measures a.c. and d.c. voltages d.c. current and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively Third, high voltage probes. These extend the range to 25 or 30 kV d.c. Little wonder the Minitest is preferred!

SALFORD ELECTRICAL

INSTRUMENTS LTD
Peel Works, Barton Lane, Eccles,
Manchester M30 OHL
Telephone 061-7895081 Telex 667711
A Member Company of GEC Electrical Components Ltd

2N 3055 tom ANCRONA 2N 3055 winticle ALITY

as far as prices for larger quantities and
export prices are concerned please contact us

275 KING STREET • HAMMERSMITH LONDON • W. 6. phone: 01-748-2960/3143
telex: 24443
WW-064 FOR FURTHER DETAILS

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5.
Telephone: 01-485 8531 (10 lines) Telex: 2-2573
Radio Valves and Tubes Cables: Hallectric, London, N.W. 5.

No other

 TRUE
DUAL BEAM

oscilloscope

 can
compete in price

... except the D51, by Telequipment of course

The D52 is a tough little portable oscilloscope at the remarkably low price of $£ 130$.
Here are a few of its outstanding characteristics:
\star True Dual Beam

* Large $5^{\prime \prime}$ flat faced PDA Tube
* Matched Y Amplifiers-
$100 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-6 \mathrm{MHz}$
$10 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-1 \mathrm{MHz}$
* Calibrated Sweep Speeds

18+ (+ variable)

* Triggering Modes-full range including TV sync.
* Weight 24 lb .

This is one of a range of fifteen oscilloscopes at prices from $£ 28$ to the sophisticated DM53A Storage Oscilloscope for laboratory use at $£ 560$: send for detaiis and short-form catalogue NOW!!!

Telequipment \ll >

Telequipment,

313, Chase Road, Southgate, London, N. 14. 6JJ
Telephone 01-882 1166. Telex 262004.
A Division of Tektronix U.K. Limited.

Wireless World

Electronics, Television, Radio, Audio

February 1971
Volume 76 Number 1424

Sixtieth year of publication

This month's cover. We hope that constructors of the digital clock described in this issue do not obtain the results shown, which might be caused by a molten b.c.d.-to-decimal decoder. Paul Brierley, the photographer, used other means.

IN OUR NEXT ISSUE

Wein Bridge Audio Oscillator: Using m.o.s.f.e.t. as the input device this oscillator has eight ranges from 10 Hz to 100 kHz in $\sqrt{ } 10$ steps, a six-position output attenuator (also in $\sqrt{10}$ steps) which varies the output from 3.16 mV to 1 V and a built-in frequency meter.
Electronic Voltmeter for $\mathbf{2}$ to 50 kV : This unusual design employs a triode in an inverted form in which the anode voltage is made the independent variable and the grid voltage the dependent variable.

Microcircuit Audio Amplifiers: Continuing his series 'Elements of Linear Microcircuits' T. D Towers deals exclusively with a.f. amplifiers in part 6.

Contents

3 Components industry-dead or alive?

A Digital Clock by Roger Buckley
New Approach to Class B Amplifier Design by P. Blomley
News of the Month
Letters to the Editor
Circuit Ideas
Loudspeaker Stereo Techniques by E. J. fordan
Stereo Decoder Using Sampling by D. E. O'N. Waddington
Elements of Linear Microcircuits-5 By T. D. Towers
Stability and Reality by Thomas Roddam
Books Received
Electronic Building Bricks-9 by Fames Franklin
Direct Current Multimeter by \mathcal{F}. fohnstone
Announcements
Choosing a Vidicon by D. \mathcal{F}. Gibbons
H. F. Predictions

February Meetings
World of Amateur Radio
Personalities
New Products
1971 U.K. Conferences \& Exhibitions
Literature Received
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

ibpa

mieniziconal Bustiness
Press Associaies
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director: George H. Mansell

Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^1]

Electronic Video Recording has just been launched in Britain. This exciting new development which could revolutionise educational and industrial television, depends on a reproducer known as a Teleplayer. Manufactured by Rank Bush Murphy Ltd., the Teleplayer depends on a Brimar Flying-Spot Scanner Cathode Ray Tube Q8-100AA, specially developed in conjunction with the EVR Partnership.

Brimar manufacture the widest range of cathode ray tubes for industry to meet most specifications. Tomorrow's new and more complex demands are already being evaluated by Brimar. It's this kind of forward thinking that keeps Brimar ahead. Write for further details.

CRT rellability
© 8 RIMAR
Thorn Radio Valves
and Tubes LImited 7 Soho Square, London WIV 6DN. THORN Tel: $01-4375233$

Editor-in-chief:

W. T. COCKING, F.I.E.E

Editor:

H. W. Barnard

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:

B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.

Components industry-dead or alive?

The above title is the theme of one of the debates planned for the Electronic Components Conference to be held* during the Electronic Components Show at Olympia, London, in May. Described as a no-holds-barred conference, it is being organized by the Electronic Components Board and will range over the whole field of development, performance and application of both active and passive devices, with one session devoted to the BS9000 scheme.

It will be interesting to hear what the answer will be to the question posed in the debate. Without wishing to prejudge the outcome, a few comments might not be out of place. First, it must be made perfectly clear that the measure of co-ordination attained in the component sector of the electronics industry is to a large extent due to the work of the E.C.B. It has brought together under one roof, with a common secretariat, the three component industry associations-R.E.C.M.F., B.V.A. and V.A.S.C.A.-and joint meetings of some committees are now being held. However, the success of the administrative organization of the associations must not blind us to the dangers which beset this sector of our industry.

Much has been said, and written, about the situation in the field of microcircuits; suffice it to say now that we in the U.K. are by no means out of the wood. Prices of imported t.t.l. devices have fallen still further, and there seems little likelihood that British manufacturers will be able to match the American prices. How much longer the few British t.t.l. manufacturers will be able to survive is a matter for conjecture.

What may be seen as of even greater significance to the industry is the fact that so many British equipment manufacturers are buying components from overseas. Why is this? Some say it is because prices are lower, others because delivery is faster, while others cite quality as the reason. If this is the situation now, what will happen if, and when, we go into the European Common Market?

When integrated circuits were introduced many Jonahs predicted that their arrival would alter the whole pattern of both the components industry and the function of the circuit designers who would, they said, become systems engineers. It is, of course, true that the i.c. has in many instances reduced the number of discrete components used, but the application of electronics to so many new fields has maintained the volume of components required.

When the Economic Development Committee for Electronics issued its economic assessment for 1972 about a year ago the section devoted to the passive components sector of the industry made encouraing reading so far as exports are concerned: exports $£ 65 \mathrm{M}$, imports $£ 39 \mathrm{M}$ giving a trade balance of $£ 26 \mathrm{M}$. If, however, one omitted the 'audio components' i.e. loudspeakers, microphones, gramphone turntable units, tape decks, and pickup cartridges, there is an adverse trade balance of £4M.

The forecast for active components was less clear; in fact the report stresses the "problem in forecasting the total active component output in 1972".

We have not attempted to answer the question posed in the heading but it would certainly seem from our prognosis that the industry is ailing-at least in some limbs.

[^2]
A Digital Clock

A design which uses medium scale t.t.l. integrated circuits

by Roger Buckley*

Using m.s.i. (medium scale integration) integrated circuits it is possible to construct a digital clock with relatively few components. In this design the 50 Hz mains is used as the timing source. On initially switching on the clock, or after a power failure, it can be set to the correct time by feeding pulses into the counter chain at a rate faster than one per minute. Push switches are provided for this purpose. The block diagram of the clock is given in Fig. 1.
A 5 V peak-to-peak 'square wave' is provided by clipping the output of a lowvoltage secondary on the mains transformer using a zener diode. These pulses are then divided by 3000 to give a one-pulse-perminute signal and then counted by a decade counter followed by a modulo-6 counter. These two counters drive numerical readout tubes via decoders to produce a minutes display. From the modulo-6 counter the one-pulse-per-hour output is then fed into another decade counter followed by a single $J-K$ flip-flop to drive the hours decoders and display. This arrangement gives the clock a twelve hour readout and the clock recycles to 01.00 at 12.59 plus one minute.

The gating that resets the hours display is not shown but the block diagram does show how the clock may be set to any desired time using a signal of about 1 Hz

[^3]fed into either the minutes or the hours counters.

The logic elements

At this stage a description of the functions carried out by the integrated circuits employed would not be amiss. One of the most interesting is a counter designated type 9316 (type 74161 is a direct equivalent). This counter can be made to divide by any number from two to sixteen. A drawing of the i.c's various inputs and outputs is shown in Fig. 2(a).

Ignoring for a moment the inputs labelled P; if the inputs $C_{E P}$ and $C_{E T}$ are held 'high' $(+5 \mathrm{~V})$, and if clock pulses are applied to input C_{P}, then the device will behave as a standard four-flip-flop counter and will divide by sixteen. The outputs Q_{0} to Q_{3} are the outputs of the four flipflops and will produce the standard binary code. Notice that there is another output called T_{C} which stands for terminal count. The output goes high when all the flip-flops are set, i.e. they each contain a 1 , corresponding to the maximum count of the device which is 15 . The waveforms appearing at the various outputs are shown in Fig. 2(b).

Now we come to the section of the device which enables this counting sequence to be modified. The inputs P_{E} and P_{0} to P_{3} enable the counter to be syn-

Fig. 1. A block diagram of the clock.

Fig. 2. The 9316 counter. (a) Inputs and outputs; (b) output waveforms;
(c) dividing by two to sixteen.
chronously preset to any desired number (in counter jargon reset implies set all flip-flops to 0 , set implies setting all flip-flops to 1 and preset means that the counter is set to some intermediate number within the counter's range but out of its normal counting sequence).

With the P_{E} (parallel enable) input high (+5 V) a number can be fed to the inputs P_{0} to P_{3} without affecting the counter in any way. With the number in position if P_{E} is taken low and a clock pulse is applied to C_{P} and then P_{E} taken high again the counter will contain the number that was applied to the parallel inputs.

With this sequence of operations in mind have a look at Fig. 2(c) which shows how the counter is connected to divide by any number from two to sixteen; a universal counter in fact. At the terminal count, binary 1111 or decimal 15 , the T_{C} output will go high and the output of the external inverter will cause the P_{E} (parallel enable) input to go low. The next clock pulse will feed the information on the inputs P_{0} to P_{3} into the counter; the counter is no

(a)

(b)

Fig. 3. (a) Inputs and outputs of the 9310 decade counter; (b) output waveforms.
longer at its terminal count so P_{E} will go high again because of the action of the inverter and the T_{C} output.

In other words the counter on reaching 1111 instead of being recycled to 0000 on the next clock pulse is forced into a condition between 0000 and 1111 , determined by P_{0} to P_{3}, and the counting sequence is shortened. The number can be set on the P_{0} to P_{3} inputs by connecting these inputs either to +5 V (1) via a resistor or directly to earth (0). By the way, the M_{R} input is the master reset for resetting all the flipflops to 0 .

The other counter used in the clock is the type 9310 (the equivalent type is 74160). This counter is similar to the 9316 except that the counter divides by ten and the T_{C} output goes high on the count corres-
ponding to decimal nine. Details of the 9310 are given in Fig. 3. There are other integrated circuits in the clock but these are conventional and will be described as they are met.

The circuit

The complete circuit diagram of the clock is given in Fig. 4. A 50 Hz waveform provided by the transformer T_{1} is clipped by the zener diode D_{6} and is fed to the input of a 9316 counter. In the manner discussed earlier this i.c. is made to divide by 15 . One gate from an i.c. which contains four two-input gates (7400) is used as the inverter. The parallel inputs cause the counter to recycle from 1111 to 0001 (instead of 0000) subtracting 1 from the overall count making it 15 instead of 16 . The next stage of the divide by 3,000 section is one section of a dual J-K flip-flop (7473) which divides by two to make the total division $15 \times 2=30$. Two decade counters complete the division of the 50 Hz pulses to one pulse per minute. When the first decade counter reaches its terminal count of nine (1001) the T_{C} output enables the next clock pulse, in addition to resetting the first decade counter to 0000 , to cause the second decade counter to advance by one. This is because the $C_{E P}$ input was taken high by the T_{C} output of the first counter. The total division is therefore $15 \times 2 \times 10 \times 10=3,000$.

The resulting pulses at a rate of one per minute are counted on the decade counter A. The contents of the counter A are decoded by a type 9315 (or 7441) decoder driver which converts the binary output of
the counter into decimal and drives a numerical indicator directly. The tube is a gas-filled indicator tube which will display the digits 0 to 9 .

When counter A reaches its terminal count, counter B is allowed to advance one on the next clock pulse. Counter B is another decade counter and its output is decoded by another 9315 to provide the tens of minutes display. When counter B reaches five it will receive its next pulse as counter A goes from nine to zero. When this happens counter B must also return to zero as we would be breaking the rules if we allowed a six to appear in the tens of minutes display! Now five corresponds to binary 0101 and six to 0110 . When counter A goes from nine to zero, assuming that counter B holds a five, both inputs to the NAND gate X will go high as counter B tries to go to six. The NAND gate is another section of the four two-input gate i.c. (7400 used in the $\div 3,000$ counter). With both inputs to gate X high the input M_{R} to counter B will go low and counter B will be forced to 0000 ; as this happens both inputs to gate X will go low. This happens once per hour, and it is this negative going edge at the Q_{2} output of counter B which is applied to the hours counting section.

The hours counting section is a little more complex because of the need to recycle the clock from 12.59 to 01.00 . The hours counter is another 9310 decade counter (C) and the tens of hours counter is a $J-K$ flip-flop (D). This flip-

Fig. 4. The circuit diagram of the clock. The integrated circuits are available from Marconi Elliott Microelectronics Ltd, Freebournes Rd, Witham, Essex. The indicator tubes are available from Electroniques, Edinburgh Way, Harlow, Essex.
flop is in the same package (7473) as the one used in the $\div 3,000$ counter.

The once-per-hour pulse from the input of gate X is fed to counter C after being inverted by gate Z and is also fed straight to flip-flop D. The reason for the inverter is that the 9310 changes state on a positive going edge and the flip-flop changes on a negative going edge.

Consider the situation at 01.00 (o'clock). Each hour's pulse will advance counter C but will not change the state of flip-flop D because of the low on the J input of the flip-flop from the T_{C} output of counter C. A $J-K$ flip-flop will not change state from 0 to 1 when the J input is low.

When counter C reaches nine its T_{C} output will go high as will the J input to flip-flop D. The clock now indicates 09.00 . After another 59 minutes the clock will hold 09.59 and the next minute pulse will recurn counters A and B to 00 and will ge 2 rate a pulse to set the hours counter at 10. The J input to the flip-flop D was high, remember, and counter C recycled from nine to zero as normal.

The next two once-an-hour pulses will advance the hours counter C to two giving a display of 12.00 . Although these two pulses are fed to flip-flop D they will not affect its state because once a $J-K$ flip-flop is in the 1 state the input K has to be high before a clock pulse will reset it.

Counter C now holds decimal 2 or binary 0010. Q_{1} is at 1 and this is fed to the K input of flip-flop D. Both inputs to gate Y will be high (flip-flop D is set and Q_{1} of counter C is high) so the output of gate Y and the P_{E} (parallel enable) input of counter C is low. Note that the number fed to the parallel inputs of counter C is 0001 which is decimal 1. 59 minutes later the clock will display 12.59. After one minute the minutes counters in recycling to 00 will generate a pulse for the hours counter. Because the P_{E} input to counter C is low the number at the parallel inputs will be read into the counter, i.e. 1, and because the K input to flip-flop D was high, flip-flop D will reset to 0 . The clock will now display 01.00. The sequence of events described goes on for as long as the clock is switched on.

The two push-buttons are for presetting the clock and do so by feeding pulses at a higher frequency than is normal to the counting sections of the circuit. It is possible that, if the arrangement shown in Fig. 4 is used, some trouble may be experienced with contact bounce. To eliminate this trouble the circuit shown in Fig. 5 was

Fig. 5. The anti-bounce circuit. Two of these are required to replace the push-buttons of Fig. 4.

	9310 \& 9316			9315		
OV	- 8	90	PE	2	-8	9 -
CEP	- 7	$10 \cdot$	CET	A_{2}	- 7	10 -
P_{3}	-6	$11 \cdot$	Q_{3}	A_{1}	-6	19 •
P_{2}	- 5	12	Q2	+5V	-5	$12 \cdot$
P_{1}	- 4	$13 *$	Q_{1}	A_{3}	-4	$13 \cdot$
P_{0}	- 3	$14 *$		A_{0}	-3	$14 \cdot$
CP	- 2	15		9	-2	15
MR	-1	15	$+5 \mathrm{~V}$	8	$\bullet 1$	$16 \bullet$

Fig. 6. Connection details of the integrated circuits and indicator tubes used. All pins are as seen from the underside of the package.
used in the prototype. As can be seen two identical circuits are required, one for the minutes and one for the hours. The operation of one only is described.

Two gates are cross-coupled to form a simple flip-flop the state of which is controlled by a single-pole change-over switch. When the switch is in position (a) the input A reaches the output and with the switch in position (b) input B reaches the output.

Construction

The layout is not critical but care should be taken to keep all leads fairly short. It should be borne in mind that t.t.l. integrated circuits switch in a few nano seconds, that is, high in the r.f. region, and lengths of wire can have a sizeable inductance at this sort of frequency. Also take care to minimize stray capacitive coupling between wires. Provided good circuit practice is followed no difficulty should be experienced.

Because of the design of the output stages of t.t.l. integrated circuits they can cause nasty spikes on the supply line. This trouble can be eliminated by connecting $0.01 \mu \mathrm{~F}$ ceramic capacitors between +5 and 0 V at various points on the circuit board close up to the i.c. supply pins. One every three or four packages should be more than ample.

Pin connection details of all the i.c.s used are given in Fig. 6.

Possible modifications

If it were arranged that the initial division stages gave an output of one pulse per second, a seconds display could be added. This would simply consist of another block made up of units A, B, E, F, X and Z. Such a block would give a one-pulse-perminute output to feed into the minutes counters.

By using a crystal controlled oscillator instead of 50 Hz mains, more accuracy could be obtained. A precision clock could use a 1 MHz oscillator and only a few more decades of initial division would be required. This modification is desirable if very precise timing signals were required. As the resolution of the clock is increased it is necessary to increase the frequency and the stability of the timing source.

A continental clock, going from 0 to 24 hours, would be simple to implement. Another flip-flop would be required following flip-flop D, so that the tens of hours display could reach a count of two. Gating could then be simply arranged to reset the hours counters when there is a count of 23 hours plus one hour.

Back issues

We are frequently asked if back issues of the journal are available. Regretably very few are. However, readers who missed one of the following articles during the past year will be glad to know we can supply "tearsheets" (sets of pages).

May

Low-cost Horn Loudspeaker System by 'Toneburst'
Simple Audio Pre-amplifier by Lindsley Hood

June

Transistor Tester by Waddington
Crystal Oven and Frequency Standard by Nelson Jones

July

Integrated Circuit Stereo Pre-amplifier by Nelson Jones
15-20 Watt Class AB Audio Amplifier by Linsley Hood

September

Phase-locked Stereo Decoder by Portus \& Haywood
Transistor Breakdown-voltage Meter by Langvad
Improving the 13A Oscilloscope by Vale

November

High-quality Tape Recorder-1 by Stuart
Tone Control Circuit by Hutchinson

December

High-quality Tape Recorder-2 by Stuart Postscript to Simple Class-A Amplifier and Modular Pre-amp by Linsley Hood

Each set of pages costs 2 s 6 d . ($12 \frac{1}{2} \mathrm{p}$) including postage. Requests, with cash, should be sent to the Trade Counter, Dorset House, Stamford Street, London S.E.1.

New Approach to Class B Amplifier Design

by Peter Blomley*

The class B amplifier has established itself as the most versatile and lowest cost amplifier known. This is mainly due to the excellent work in the field of semiconductor circuit design by H. C. Lin ${ }^{1}$, R. C. Bowes 2, R. Tobey and J. Dinsdale ${ }^{3}$, A. R. Bailey ${ }^{4}$ and P. J. Baxandalls ${ }^{5}$. In this article it is hoped to complement the work of these designers by putting forward a new approach \dagger which may solve some of the problems inherent in present designs.

Conventional approach

A definition of a class B amplifier could be 'one in which the operating point of each output device is set at the lower extreme of its transfer characteristic. Hence in a pushpull design, for any symmetrical input signal, each output device conducts only one half of the output waveform'. This method of operation gives the amplifier zero (or nearly zero) quiescent power consumption, high efficiency and excellent peak current drive capability. It is unfortunate that the sacrifice paid for these virtues is the problem of ensuring a linear transfer of signal drive from one output device to the other.
So that the class B system can be analysed it is useful to approach the output circuit as two separate amplifiers (labelled X and Y in Fig. 1 for convenience), the outputs of which combine to give the complete signal. This is shown in diagrammatic form in Fig. 1, where it is assumed that the blocks representing the amplifiers form the equivalent of a complementary output stage.

The transfer characteristic for one of these 'sub-amplifiers' is shown in Fig. 2, where above the bias point A the characteristic is extremely linear and below it becomes a combination of linear and exponential relationships. The designer's task is to define this last region so accurately that when it is combined with that of the other sub-amplifier, the overall gain will remain constant (i.e. as the gain of one subamplifier decreases, the other increases equally to compensate).

The workings of a class B output circuit can be clarified by the use of g_{m} diagrams, these being a plot of gain-or in this case

[^4]

Fig.1. Block diagram of conventional class B amplifier with the two halves of a complementary output stage represented by sub-amplifiers X and Y.

Fig.2. Transfer characteristic of sub-amplifier X which is linear above bias point A and non-linear below. In conventional class B, non-linear regions of X and Y sub-amplifiers have to be accurately matched to give overall linearity.
mutual conductance-of the complete output circuit against drive voltage. The ideal would, of course, be a straight line parallel to the input yoltage axis (indicating there is no change of gain with input swing), but regrettably this is not the case with designs popular at the moment. To provide a comparison of the different types of output circuits, I have prepared gain plots showing the effects of different bias levels, these being illustrated in Figs. 3 and 4. From these it is now easy to see the characteristic change in gain which can occur during the transfer from one sub-amplifier to the other. Referring țo Fig. 3 about a 10\% gain change occurs during transfer, whatever the bias level is set ąt.

The output circuit in Fig. 4 is a quasi-complementary type giving most interesting results. The main conclusion is that it is impossible to bias this circuit for symmetrical gain change and in practice it proves very difficult to establish which biasing point would give the best results concernirg the rate of gain change.

This method of describing a class B amplifier can give an insight into the problems involved with a conventional design. First, each sub-amplifier has to have two regions in its transfer characteristic:
-the constant gain region (above bias point A in Fig. 2)
-the non-linear region(below this point). Second, the non-linear region of each subamplifier has to be complementary to its partner, otherwise the situation shown in the g_{m} diagrams (Figs. 3 \& 4) will occur. An interesting point is that the only reason why the non-linear region of the transfer curve is important is because the input signal normally traverses this region as well as the linear portion. If this was not the case most

Fig.4. Curves for quasi-complementary output circuit show impossibility of biasing circuit for symmetrical gain change.
of the design problems in class B amplifiers would be solved.

It is difficult to realize at first that a class B amplifier has to have this non-linear region in the sub-amplifier characteristic so that the two halves of the waveform can

Fig.3. Gain-or mutual conductance-of simple symmetrical output circuit showing change in gain which can occur during transfer from one sub-amplifier to the other. Effect of different bias levels is shown.
be separated. With conventional designs this is a built-in feature, but it need not be so. Assuming we define class A operation to include any amplifier where the input signal never traverses the non-linear region, the sub-amplifiers of a class B amplifier can operate in class A as long as the input signals are uni-directional. To accomplish this the required non-linear element is placed before the sub-amplifier inputs.

New approach

Now the key to the problem is in the proposition that each sub-amplifier should be considered as a separate class A design, hence distortion generated by each of these units can be held to an extremely low level as long as the input signal can be prevented from driving the amplifier into the cut-off region. In the new approach, the output sub-amplifiers are biased above the nonlinear region and uni-directional signals are fed into the input. This arrangement is illustrated in Fig. 5, where the necessary circuit changes are shown by comparison with Fig. 1. The obvious difference is the addition of the two diodes at the input which produce the uni-directional signal to drive the output sub-amplifiers. The linear transfer of signal between the two amplifiers is now dominated by this signal splitter.
Signal splitter. As the name implies the task of the signal splitter in a class B amplifier is to segregate the top and bottom halves of the signal waveform. Normally this is achieved by using the non-linear characteristics of each half of the output stage, but as this particular approach leads to
problems, the new approach separates the two functions of amplifying and signal splitting completely.

To explain the problems involved with the design of a signal splitter it is usual to establish the ideal and see how this can be approached practically. As it happens there are two ideal 'half' characteristics which will give a linear cross-over when they are combined. The first, and obvious one, has a conduction path only in one direction and absolutely zero in the other. The other is more complicated and has three regionslinear region (large positive inputs), a nonlinear region (transfer coefficient is proportional to signal) and a reverse region (transfer coefficient is zero).

The difficult region is the non-linear one. This will only give a linear crossover when it is combined with another conjugate characteristic. Not only this, but the relationship between the linear and non-linear portion has to be accurately defined. Normally this is achieved by altering the quiescent current in the signal splitter for minimum crossover distortion. Thus using this approach in the signal splitter means that the non-linear region has to be complementary to its partner and also that the linear and non-linear regions have to be accurately related. If additional constraints are imposed-due to devicespreads and temperature changes-the situation can become very difficult unless a simple approach is used.

Returning to the first type of signal splitter, the immediate comparison which can be drawn is the simplicity of the characteristic. There are no interactions between each element and only one region has to be accurately defined. Ideally, therefore, this type of characteristic should be easy to control once a suitable device configuration is found.
Ideal element. The simple p-n diode fabricated in silicon can have a forward-toreverse current ratio of 10^{10}; thus it approaches the ideal almost within the boundaries of measurement. This is however only considering the forward characteristic under conditions of current drive. If a voltage source were used the forward transfer would revert to the familiar exponential relationship between input voltage and output current (Fig. 6a). If a signal splitter is now made of two of these diodes and a current of changing direction fed into the common point, then from Kirchhoff's second law the current must flow either in diode D_{1} or diode D_{2} depending on the direction of signal current flow. The transfer coefficient for the diode must be unity, as it is only a two-terminal device, hence this type of signal splitter is extremely linear under the conditions of current drive (Fig. 6 b).

Transistor signal splitter. The use of a transistor as a signal splitter (Fig. 7) logically follows that of a p-n diode simply because the emitter-base junction has almost identical characteristics to that of a diode. Exactly where the transistor is superior to that of the diode depends on

Fig.5. New approach to class B amplifier in which sub-amplifiers are biased above non-linear region and fed with uni-directional signals produced by the diodes. This effectively transfers signal splitting from the sub-amplifiers to a separate part of the circuit.

Fig.6(a). Transfer characteristic of voltage driven diode signal splitter.
Fig.6(b). Linear transfer characteristic of current driven diodes.
the design approach but in most cases the level-shifting property of a bipolar device is the main reason. This is very useful in a practical design but care has to be taken in the selection of the type of device. There is a problem with the use of transistors as signal splitters due to the emitter-base depletion capacitance. Under conditions of
low injection this can add an additional phase lag during the crossover period. The problem can be overcome by using silicon planar devices with very high transition frequency $\left(f_{T}\right)$ or by selecting devices in which the f_{T} is dominated by the diffusion capacitance as f_{T} remains constant down to very low emitter currents.

Synchronous signal splitter. There is a limit to the speed at which the diode or transistor signal splitter will transfer the signal path between the sub-amplifiers. If a synchronous signal splitter is used the time taken can be reduced to a few nanoseconds. This makes true class B operation possible at frequencies far higher than the audio spectrum. The system diagram is shown in Fig. 8(a). Instead of using the characteristics of the devices, as in the signal splitter which separates the two halves of the waveform, switches $T r_{1}$ and $T r_{2}$ are turned on and off at the required time by another amplifier labelled

ST. This is a high-gain amplifier with a small amount of hysteresis, and as soon as the input exceeds a predetermined level the output from the trigger (amplifier ST) will change its polarity and turn on $\operatorname{Tr}_{\text {, }}$ or Tr_{2}, depending on the signal direction, Fig. 8(b). This thereforegives almost theideal signal splitting characteristics but the added complication might spoil its commercial possibilities.

Performance of the new design

The transistor signal splitter and the output stage circuit have a combined charac-

Fig.7. Types of signal splitter. Transistor type has the advantage of level shifting.

Fig.8(a). Synchronous signal splitter, with fast switching time, allows new approach to be used at frequencies well above audible range.
Fig.8(b). Operation of synchronous splitter of Fig.8(a). When input level exceeds a pre-determined level, output changes polarity and turns on Tr_{1} or Tr_{2}.
teristic shown in Fig. 9 which demonstrates the excellent gain linearity. It is only when the bias of the sub-amplifiers is decreased below its optimum, allowing the output signal excursions to trace the nonlinear region of the characteristic, that distortion begins to rise sharply. Further studies of these curves reveal that increasing the quiescent current through the output devices does not degrade, or for that matter improve, the crossover performance of the output circuit. Keeping this in mind it is therefore possible to design a class B amplifier without any bias adjustment. This assumes that the designer can guarantee that spreads in active devices and resistance values do not permit the quiescent current to fall below the level where the mutual conductance of the amplifier begins to decrease.

In this discussion about the performance of the design as a whole it would be fitting if the sub-amplifier design is mentioned. With conventional designs this two- or three-transistor element is fraught with compromises, one of the most serious being the decision on the inclusion of a baseemitter 'turn-off' resistance for the power transistor. Such a combination generates what can be called 'dead zone' distortion, mainly due to the change in slope of the transfer characteristic at zero crossing. One example of this is shown in Fig. 10 where, as predicted, the lower the value of resistance the more pronounced is the effect. It is very tempting to exclude this resistance altogether, especially if the current drive approach has been adopted, but the penalty would be a poor highfrequency performance coupled with overload recovery problems. This dilemma is aggravated if the designer decides to use homotaxial base powder devices (chosen for the robust nature of their construction and freedom from secondary breakdown) because the input diffusion and depletion capacitance is very high, hence the gainbandwidth product of the device is relatively low (e.g. silicon planar $f_{T} \approx 90 \mathrm{MHz}$, homotaxial base $f_{T} \approx 1 \mathrm{MHz}$). In the later case it is essential that the resistor is included. However, if the approach suggested in this article is adopted the subamplifier will never enter this non-linear region, thus the base-emitter turn off resistance can be included in the circuit to improve the performance without undue complications.

Once the decision has been taken to use the new approach the best circuit congiguration has to be found and here again nature's swings and roundabouts create a difficult situation where compromise seems necessary. One of the criteria I used was that of thermal performance, following an initial consideration of the electrical properties of each configuration. The power transistor chip can change its temperature by tens of degrees centigrade during a power cycle, this being reflected by a corresponding change in the baseemitter voltage ($V_{B E}$) of the device. If the voltage bias to the sub-amplifier is applied directly to the power device (Fig. 11a), any change in the $V_{B E}$ will cause a considerable change in quiescent current and in turn an

Fig.9. Combined characteristic of transistor splitter and output circuit shows excellent gain linearity.

Fig.10. Transfer characteristic for conventional two-transistor sub-amplifier showing worsening effect of reducing the base-emitter 'turn-off' resistance of the power iransistor. This normally generates 'dead zone' distortion due to the change in slope at zero crossing but is avoided in the new approach.

Fig.11. (a) Change in $V_{B E}$ with temperature causes considerable change in bias current which could adversely affect intermodulation distortion. Circuits in (b) and (c) avoid this.
increase in distortion at low frequencies which could adversely affect the intermodulation performance of the amplifier as a whole. An improved design is shown in Fig. 11(b) and a more elegant version similar to that used in the Quad amplifier ${ }^{6}$, in Fig. 11(c). It is on this latter example that I have concentrated most design effort, mainly because the performance advantages tend to outweigh the increased cost of pre-driver devices.

Returning now to an examination of the performance of the whole amplifier-the total distortion through the audio range can readily be made less than 0.1% before applying feedback, this performance being repeatable at almost any level of quiescent current.

Future designs

The use of class B amplifiers is not, of course, confined to the field of audio and in fact the ideas set out in this article lend themselves to applications in the highfrequency ($>1 \mathrm{MHz}$) spectrum. The poor cross-modulation performance of present designs is usually due to the presence of non-linearities in the crossover region, hence substantial improvements can be expected in this direction.

Other applications where an ultra-low distortion amplifier of low stand-by power and high output capability is needed can be seen, examples of such devices being portable standard oscillators and meter calibration amplifiers. In the next article a practical design for a 30 -watt audio amplifier is discussed in detail and future proposals developed in diagrammatic form.
(To be concluded)

REFERENCES

1. Lin, H. C. 'Quasi-complementary transistor amplifier', Electronics, vol.29. Sept. 1956. pp.173-5.
2. Bowes, R. C. 'Transistor audio amplifier', Wireless World, vol.67, 1961, pp.342-5.
3. Tobey, R. \& Dinsdale, J. 'Transistor audio power amplifier', Wireless World, vol.67, 1961, pp.565-70.
4. Bailey, A. R. 'High-performance transistor amplifier', Wireless World, vol.72, 1966, pp.542-6.
5. Baxandall, P. J. 'Symmetry in class B' (letter), Wireless World, Vol.75, 1969, pp. $416 / 7$.
6. 'Low-distortion class B output', Wireless World, vol.74, 1968, p. 67.

Our 60th Birthday

The first issue of this journal, which for two years was entitled The Marconigraph, appeared in April 1911 and we therefore celebrate our 60th birthday this year. To mark the occasion we plan to have an enlarged April issue including several contributions reviewing the past 60 years in various fields. Further details will be given in our next issue.

News of the Month

Congratulations Glenrothes

The Glenrothes Development Corporation has embarked on an imaginative plan which was pioneered 100 years ago by Thomas Edison and forgotten. Edison provided work space and facilities for private inventors that they would otherwise not have had. The Corporation are building a $£ 20,000$ factory, due for completion in June, which will be divided into small units of something over 400 sq feet. These units will be let to inventors at a nominal rent. The exact rent will depend upon the means of the person involved and will not exceed 60 s per week (a house in the area costs about 50 s weekly to rent). On top of this the inventor will have to pay rates of around $£ 30$ per year.

Advice on setting up in business, business management, accountancy, marketing etc will be freely given by a committee. This committee, made up from prominent local business men, will vet each inventor who wishes to take advantage of the scheme, and will offer factory space to those, who in their opinion, are most likely to succeed.

An inventor, who has successfully developed his idea and has gone into production, would soon outgrow 400 sq.ft and would be offered a factory site in Glenrothes. However there are no strings attached to the offer at all and the successful inventor would be free to go where he chose. A bank has shown interest in the scheme and is willing to advance money for the purchase of plant to individuals who have successfully passed the committee's vetting and set up shop in the factory.

Individuals who would like to apply for factory space under the scheme should write to the Glenrothes Development Corporation, Glenrothes House, Glenrothes, Scotland.

European space consortium

Companies from eight of the ten member states of the European Space Research Organization have formed a consortium to respond to tenders issued by ESRO for both application and scientific satellites.

The new consortium has been named

STAR (Satellites for Telecommunications, Applications and Research). The member companies are British Aircraft Corporation; Contraves AG., (Switzerland); CGF-Fiar (Italy); Dornier System, (West Germany); Fokker VFW, (Netherlands); L. M. Ericcson AB., (Sweden); Mondetel, (Italy); SBCA, (Belgium) and Thomson CSF, (France).

The West German company AEGTelefunken has also joined the STAR consortium but specifically for study and development of telecommunications satellites expected in the European programmes.

Naval trainer

A trainer system is to be designed and built for the Royal Navy by Ferranti Limited in collaboration with the Admiralty Surface Weapons Establishment at Portsdown. The trainer will be commissioned at H.M.S. Dryad, the Royal Navy's School of Tactics, Navigation and Action Information Organization during 1975, at a cost approaching $£ 5 \mathrm{M}$.

The function of the new system will be to train staff in using automated action information and weapon control equipment. It will simulate the operations rooms and the weapon control systems of the Leander class frigates fitted with the various weapon systems as well as the new type-42 guided-missile destroyer.

The trainer will contain three FM. 1600 and eight FM.1600B computers which will generate, process and distribute data to displays in the control and operation rooms of the trainer. The four simulated operations rooms are replicas of the ships' operations rooms they represent. Radar, sonar, electronic warfare and weapon control data are presented on the same displays and in the same form as under operational conditions. Many of the displays, themselves, will be supplied by Plessey Radar Ltd and by Decca Radar Ltd. Instead of live signals being used, the data will be synthetically generated. In general these synthetic signals will be programmed computer outputs, but for one of the more complex radars Marconi

Ltd are to supply special equipment.
Exercises will be controlled by the instructional staff in a central control room containing sixteen displays. Each of the simulated ships will be able to exercise independently or as a task force using radio and digital data-links for exchange of information. Communication with the computers is by means of keyboards.

Electronic typesetting

The latest method of high speed typesetting for printing forms the characters on a cathode-ray tube and the resulting images are recorded on photographic film, which is subsequently used for making lithographic plates. Characters are built up from closely spaced vertical or horizontal parallel lines traced by the c.r.t. spot, rather on the principle of television picture synthesis except that the spot intensity is not continuously variable-just full on or full off. The instants of turning on and off the beam current are determined by binary digital data held in magnetic-tape and disc stores under the control of a computer-like system. An interesting feature of the method is that it is not restricted to letters, numbers and other such characters but can also be used for composing diagrams, which can be directly interspersed with the text.

Wireless World's printing has not quite reached this advanced technique though much of the journal's text is composed by an earlier phototypesetting method (see "Electronics in Typesetting", March 1968). But our publishers have an associated printing company, Computaprint Ltd., which has just installed a machine of the fully electronic kind described above, the RCA Videocomp $70 / 800$. This is capable of typesetting at the astonishing speed of 6000 characters (about two columns of this page) per second-which compares with up to 500 characters /second for non-c.r.t. photocomposition, 5 characters/second for conventional "hot metal" mechanical typesetters and 1 character/second for hand setting. Another commercial machine, the Mergenthaler Linotron, is claimed to work at up to 10,000 characters/second.

The Videocomp $70 / 800$ is in fact a room-full of computer-like equipment: c.r.t. /photographic unit, two magnetic tape stores, a random-access disc store, a data processor with a core store of its own, and an operator's console with a typewriter. The c.r.t. forms characters from vertical lines with a definition of up to 1800 lines /inch and diagrams up to 450 lines/inch. Type of various founts (styles) can be set with character sizes varying from 4 to 96 points (72 points $=1$ inch), and characters can be altered electronically to form roman, oblique (quasi italic), expanded and condensed versions of the basic "face". A piece of
text is composed line by line at any width up to 70 picas (11.67in) and to any required length on the film, which is moved past the c.r.t. optical system at speeds up to $40 \mathrm{ft} /$ minute. Drawings and diagrams measuring up to $7 \mathrm{in} \times 9$ in can be composed.

One possible outcome of this general technique is further development in the remote control of newspaper printing, already being done to some extent by facsimile transmission. Now that the visual as well as the verbal content of newspapers can be codified and transmitted electronically as digital data there will be less need to consider news as freight which has to be physically distributed from centralized printing works.

German satellite earth station

AEG-Telefunken are to build a satellite station at Leeheim, near Gross-Gerau, Hesse, West Germany, under a DM3.5M contract awarded by the Central Telecommunications Bureau of the Federal German Post Office. The station will work mainly with the Italian synchronous satellite, Sirio, which is due to be launched in 1972.

The station will mostly be employed in experimental work in the band 10 to 20 GHz with the aim of opening up this band for commerical use. Normal communication satellite frequencies are 4 and 6 GHz .

American scientific space projects

Below we list the major scientific projects planned by the American National Aeronautics and Space Administration. Some of these projects have been mentioned in earlier issues of Wireless World. The cost quoted for each project is the highest estimate of all expenses from project conception to the completion of the programme.
Applications technology satellites (ATS): Synchronous satellites intended to test new satellite systems. Earlier ATS satellites (1 to 5) have carried out photographic and radio propagation experiments and have tested gravity gradient satellite stabilization systems. ATS-F (1973) and ATS-G (1975) will test a $30-\mathrm{ft}$ erectable space aerial with a 0.1° pointing accuracy for TV transmissions to small earth receivers. (See pictures.) Cost, $\$ 360 \mathrm{M}$.
Atmosphere explorer: Three 10001b spacecraft to be launched in 1973, 1974 and 1975 to investigate the earth's atmosphere at altitudes between 75 and 95 miles. Earlier similar explorers have been launched in 1963 and 1966. Cost, \$49M. Earth resources satellite (ERTS): To be launched in 1972 and 1973 to assist in
research in agriculture, oceanography, forestry, cartography, etc., and to develop a new data handling system. Cost, $\$ 200 \mathrm{M}$.
Geodetic earth orbiting satellite (GEOS): Earlier satellites in the series launched in 1965, 1966 and 1968. New satellite planned for 1972 to study earth's gravity and to precisely define the position of 86 points on the earth's surface (to within ± 10 metres) cost, $\$ 31 \mathrm{M}$.
Interplanetary monitoring platform (IMP): To improve knowledge of solar, lunar and terrestrial relationships obtained by studying interplanetary radiation. Earlier satellites launched in 1963, 1964, 1965, 1966, 1967 and 1969. Further launches scheduled for 1971, 1972 and 1973. Cost \$75M.
Mariner Mars 1971: Will survey 70\% of the surface of Mars to identify landing areas and study seasonal variations. The vehicles will transmit photographs of the planet's surface and data on the Martian atmosphere. Two spacecraft to be launched one month apart in 1971. Cost $\$ 125 \mathrm{M}$.
Mariner Mars/Venus 1973: To be launched in the autumn of 1973. Will pass within 3,300 miles of Venus in February 1974 and within 625 miles of Mercury in March of the same year. The pictures to be transmitted of Mercury will have a resolution similar to those of the moon taken by Earth based telescopes. Cost, $\$ 120 \mathrm{M}$.
Nimbus: To develop and flight test sensors and instrumentation basic to the study of the atmosphere and to provide data for meteorological research. Earlier launches in 1964, 1966 and 1969. Two more launches to be carried out in 1972 and 1973. Cost $\$ 325 \mathrm{M}$.

Orbiting astronomical observatory (OAO): Extremely complex 5,000-1b satellites to study stellar phenomena and
the galactic and intergalactic medium. Earlier launches 1966, 1968 and 1970; planned launch in 1971. Cost $\$ 360 \mathrm{M}$.
Orbiting solar observatory (OSO): Earth orbiting spacecraft designed to obtain high resolution information on the sun. Earlier launches 1962, 1965, 1967(2), 1969(2); planned launches 1971 and 1973. Cost \$185M
Pioneers F and G: To be launched in 1972 and 1973 on missions that will last about two years each and will culminate in about a 100 hour inspection of Jupiter as the craft swing round this planet. The craft are exploratory in nature and will study space beyond Mars, the asteroid belt and will photograph Jupiter. Cost, $\$ 105 \mathrm{M}$.
Radio astronomy explorer (RAE): One placed in earth orbit in 1968 and another to be placed in lunar orbit in 1972 . These craft have 750 ft extendable aerials to monitor radio signals from the milky way, other galaxies, the Sun, Jupiter and the Earth. Cost, $\$ 22 \mathrm{M}$.
Small astronomy satellite (SAS): 330-lb earth orbiting satellites (1970 and 1971) to search for X-ray, gamma ray and u.v. sources from inside our galaxy. Cost, \$ 37 M .
Small scientific satellite: To be placed in earth orbit in 1971 to study magnetic fields, auroral phenomena and charged particles. Cost, $\$ 7 \mathrm{M}$.
Synchronous meteorological satellite (SMS): Will continuously observe the atmosphere; launches in 1972 and 1973. Cost, $\$ 30 \mathrm{M}$.
Viking: Unmanned Martian landing and orbiting spacecraft. The craft will divide into two when in orbit of Mars and one section will land on the planet. Photographs, as well as biological and chemical data, will be transmitted from the surface of the planet. An attempt will be made to find evidence of life. Launch 1975. Cost \$850M.

ATS-F to be launched in 1973 will take on the shape shown in the photograph once out in space. One of its tasks will be to relay educational television programmes to India. In addition the satellite will relay weather data from Nimbus satellites to ground stations and will carry out experiments in air traffic control on congested air routes.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

'Linear Scale Millivoltmeter'

I congratulate A. J. Ewins on the design of his linear scale millivoltmeter (W.W. Dec. 1970) which represents a very worthwhile improvement over Waddington's original circuit. Even with the circuit modified as described for use with a $100 \mu \mathrm{~A}$ meter movement, the improvement in linearity is most valuable.

One useful further modification which may be of interest to other readers is the addition of a decibel range to the instrument. For each range to be $\pm 10 \mathrm{~dB}$ relative to the adjacent ones, the attenuator requires modifications to obtain 3.162:1 steps. To avoid the need for non-standard resistor values, the arrangement shown in the figure may be used. Resistors R_{9} to R_{14} have the same values as in the original circuit, but in the ' 3.16 ' decade positions, an extra 130 2

is switched into the resistor chain. The meter is rescaled to read $0-10$ and $0-3.16$ on the voltage ranges, the ratio between them now being 10 dB . A separate decibel scale is calibrated from -10 to +2 dB relative to 1 mW into 600Ω, which cor responds to 775 mV . This calibration may be achieved indirectly from the $0-10$ voltage scale by the use of the following table.

$d B$	V	$d B$	V
-10	2.45	-3	5.48
-9	2.75	-2	6.15
-8	3.08	-1	6.90
-7	3.46	0	7.75
-6	3.88	+1	8.69
-5	4.36	+3	9.75
-4	4.89		

In this way a total decibel range of -70 to +50 may be obtained, which is very convenient for plotting frequency response curves.
D. J. FARMAN,

University of Durham, Durham City.

Compression chambers behind horn drivers

In the article 'Low-cost Horn Loudspeaker System', May 1970 Wireless World, 'Toneburst' seems mystified about why adding and tuning a compression chamber behind the driver should make such an improvement in the bass performance. In the absence of his data regarding design flare rate, total horn length and driver, we can only speculate from this side of the Atlantic regarding an explanation for the observed improvement.

Probably the mechanism is that of 'reactance annulling' as described by D.J. Plach and P. B. Williams in the February 1955 Radio-Electronic Engineering. A more theoretical treatment is given by D. J. Plach, 'Design Factors in Horn-Type Speakers' Journal of the Audio Engineering Society, October, 1953.

The basic mechanism is rather simple to descibe. Within an octave below and above the horn cut-off frequency (determined by the flare rate) the horn presents an 'inductive' mechanical impedance to the driver as well as a 'resistive' portion which falls rapidly as frequency decreases in this region. This inductive portion of the horn load can be 'annulled' or tuned out by proper choice of a 'capacitive' effect which is the compliance of the driver suspension. If the driver is of the "high compliance' type, the effective compliance is too high and can be lowered by a sealed chamber behind the driver. As a rule of thumb, the resonance of the combined
driver and chamber (less horn) should be two to four times the cut-off frequency of the horn. That is, a horn with a 30 Hz cut-off should be driven with a cone having a free air resonance of 60 to 100 Hz . Most 12 to 15 inch loudspeakers have free air resonance below this range and would need a rear compression chamber of several cu. ft. volume to adjust the resonance. Perhaps this is what 'Toneburst' was doing with his compression chamber.

J. Robert ASHLEY,

University of Colorado, Colorado Springs, Colorado.

That a finite length acoustic horn in practice delivers appreciable sound output (i.e., it has a non-zero impedance) below its cutoff frequency has been noted by many authors. ${ }^{1-3}$ An article by "Toneburst" ${ }^{3}$ in the May 1970 issue is one of the most recent ones again noting this fact. However, in that article, "Toneburst" quoted Paul Klipsch" as saying "... It must be concluded that the computed horn impedances are only qualitatively correct for frequencies within an octave of the low frequency cutoff." This statement refers to the condition of an acoustic horn having a zero impedance at and below its cut-off frequency. Shortly, after making the above quote, Klipsch ${ }^{4}$ showed that this was an erroneous condition and that the theory in fact does predict a non-zero impedance (i.e., finite sound output) at and below cut-off. Here is a short exposition of Klipsch's work.
Theoretical development. The acoustical impedance, $Z_{A 1}$ of an exponential horn is given by Olson^{5} as

$$
\begin{align*}
& Z_{A 1}=\frac{p c}{S_{1}} \times \\
& \left\{\frac{S_{2} Z_{A 2}[\cos (b L+\theta)]+j p c[\sin (b L)]}{p c[\cos (b L-\theta)]+j S_{2} Z_{A 2}[\sin (b L)]}\right\} \tag{1}
\end{align*}
$$

where
$S_{1}=$ the area of the throat in cm^{2}
$S_{2}=$ the area of the mouth in cm^{2}
$L=$ the length of the horn in cm
$Z_{A 2}=$ the acoustical impedance of the mouth in acoustical ohms
$\theta=\tan ^{-1}(a / b)$
$a=m / 2$
$m=$ the flare constant of the horn $=$ $4 \pi f_{c} / c$
$f_{\mathrm{c}}=$ the cut-off frequency in hertz
$c=$ the velocity of sound in the mediumin air it is $3.45 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$.
$b=\sqrt{4 k^{2}-m^{2}} / 2=2 \pi \sqrt{f^{2}-f_{\mathrm{c}}^{2}} / c$
$k=2 \pi / \lambda$
$\lambda=c / f$
$p=$ the density of the medium-for air it is $1.18 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

$$
j=\sqrt{-1}
$$

Performing some mathematical manipulations, a normalized throat impedance can be written as

$$
\begin{align*}
& Z_{A 1}{ }^{\prime}= \\
& \quad \frac{Z_{A 2}{ }^{\prime}[b-a \tan (b L)]+j k[\tan (b L)]}{[b+a \tan (b L)]+j k Z_{A 2}{ }^{\prime}[\tan (b L)]} \tag{2}
\end{align*}
$$

where

$$
\begin{array}{rlr}
Z_{A 1}^{\prime}=\frac{Z_{A 1}}{Z_{1}} & Z_{A 2}^{\prime}=\frac{Z_{A 2}}{Z_{2}} \\
Z_{1} & =\frac{p c}{S_{1}} & Z_{2}
\end{array}=\frac{p c}{S_{2}} .
$$

If we take $\operatorname{limit}_{b \rightarrow 0} Z_{A 1^{\prime}}$, then equation (2) becomes indeterminate. By applying the well known L'Hospital's Rule of Calculus, the normalized throat impedance at the cut-off frequency ($h=0$) is

$$
\begin{equation*}
\left.Z_{A 1}^{\prime}\right|_{f_{c}}=\frac{Z_{A 2^{\prime}}(1-a L)+j k L}{(1+a L)+j k L Z_{A 2}{ }^{\prime}} \tag{3}
\end{equation*}
$$

It is immediately apparent that this value of $Z_{A 1}{ }^{\prime}$ is definitely non-zero.

Two further points are that: (a) below cut-off, b becomes imaginary and $\tan (j x)$ $=j \tanh (x)$ in equation (2) and (b) the mouth impedance, $Z_{A 2^{\prime}}$, is that of a piston of equivalent radius R vibrating in a hole in an infinite baffle. ${ }^{6-7}$

A practical example. To illustrate graphically, a horn with an $f_{c}=107.5 \mathrm{~Hz}, m=$ $0.0392, L=14 \mathrm{in}, S_{1}=128 \mathrm{in}^{2}$ and $S_{2}=$ 550 in 2 was investigated. Fig. 1 shows how the resistance (R) and the reactance (X) of $Z_{A 1}{ }^{\prime}$ vary with frequency. The dotted lines

Fig. 1. Throat impedance versus frequency.
represent the erroneous condition of zero impedance at and below cut-off.

Klipsch ${ }^{8}$ went on to indicate that the reactance curve, X, of Fig. 1 should be offset by a combination of the diaphragm suspension stiffness and an enclosed air chamber behind the diaphragm. "Toneburst" found that an air chamber reinforced the bass frequencies that were otherwise of small amplitude.

Samuel A. Guccione,

Arnold,
Maryland, U.S.A.

REFERENCES

1. Klipsch, Paul W., "Improved Low Frequency Horn'", Jnl. Acoust. Soc. Am., Jan. 1943, pp. 179-182.
2. Newcomb, Arthur L. Jr., "Home Installation Design and Performance of an Exponential Low-Frequency Horn'", I.E.E.E. Trans. Audio and Electroacoustics, December 1967, pp. 198-200.
3. "Toneburst", "Low-Cost Horn Loudspeaker System", Wireless World, May 1970, pp. 202-205'
4. Klipsch, Paul W., "A Note on Acoustic Horns", Proc. I.R.E., July 1954, pp. 447-448.
5. Olson, Harry F., "Music, Physics, and Engineering", Dover Publications, New York 1967, pp. 93-94.
6. Beranek, L. L., "Acoustics", McGraw-Hill, New York, 1954, pp. 116-128.
7. Olson, op. cit., p. 85.
8. Klipsch, op. cit., p. 448.

The author replies.

I have not been in any doubt about the function of the chamber behind the driver. Indeed in the original paper of 1941 Klipsch says quite succinctly "The air chamber behind the diaphragm is designed to offset the main reactance of the throat impedance at low frequencies". My interest and surprise does not lie in this.

Perhaps I should have presented the theoretical foundations of the experimental approach a little more squarely in the article, but I believe that all the necessary clues are provided in the three introductory paragraphs.

We are used to seeing flat response curves for amplifiers. We expect the power output of a good amplifier to be absolutely steady through the whole audio spectrumsay from 20 Hz to 20 kHz . It is quite wrong, however, to believe that such a flat frequency/sound-power curve should be expected of a loudspeaker.

In a previous article* I reproduced data originally published by Weiner showing sound levels reaching the listener's ears from a level-output source 45° to the left or right of the listener. At 200 Hz the sound intensity was the same at both ears but at 3 kHz the level was up by 5 dB at one ear and down by 10 dB at the other. Since (as was also stated) stereophony does not seem to depend on time delays for frequencies above 1 kHz , but rather on relative intensities, we can draw three very important conclusions.

1. Absolutely flat response from the loudspeakers at frequencies above 1 kHz is ideal, but failing this identical response curves (assuming correct dispersion and nothing worse than falling treble output with rising frequency) will give a completely stable stereophonic image in an ideal listening room.
2. The response curves should be nearly flat from 1 kHz down to about 200 Hz . 3. As the frequency drops below 200 Hz a flat response becomes less and less important and may be judiciously traded for extended bass performance, reduced enclosure size, or both. (Note that the variations described are of amplitude not phase. Extending the bass by phase reversal, i.e. by a transmission line or by bass reflex techniques, audibly adulterates the signal.)

The experimental approach lay in shortening the folded-horn bass enclosure and thus allowing the amplitude variations, due to impedance changes in the horn, to reach a level of $\pm 6 \mathrm{~dB}$ at the bottom of the range. Variation in the output of the horn driven by the FR4 is less than $\pm 1 \mathrm{~dB}$ up to about 4 kHz where the horn gradually

[^5]loses its "grip" on the driver cone and the response begins slowly to decay.

I hope this brief account clarifies the matter. How corner placing allows such bass performance is still a mystery. 'TONEBURST'.

Audio Fair Report: putting the record straight

I was glad to see the report on the London Audio Fair in the December issue, especially from a very observant technical angle, which after all is what the show is all about.

In the interests of fairness however, I would like to refer to, and possibly clarify, a couple of points made in the item on JBL loudspeakers. The writer says 'the sound level was too high-we were assured this was necessary to prove their superiority'. Unfortunately, all too often, a speaker which has a very even response and clean sound at listening levels, has a hopeless overload factor, and is incapable of following really fast transients at high levels. Conversely, a speaker which does cater for higher listening levels and subsequent high transients, is incapable of maintaining an even response at low listening levels. Had your reporter stayed a little longer, he would have heard an alternating demonstration of low-level choral and orchestral work, and some "clean feed" recordings played at high level, to demonstrate the speakers' efficiency, and ability to maintain linear cone excursions during really sharp transients.

Similarly, your writer states "Bass and treble lift seemed a permanent amplifier setting". Can I assume this to be a compliment to the speakers' performance? I don't think so. I can only assume your reporter glanced at the vertical faders on the JBL Graphic Controller, and seeing them in the 'half way up' position, assumed this to be a permanent bass and treble setting. Perhaps I can clarify this also. The faders, as with all graphic control equalizers, in the midway position, are set at 'flat'.

As a final point, your writer followed up this item with an excellent note on h.f. dispersion-a very much neglected subject in this field. Whereas he mentions the polar diagram in Fig.1(b) belongs to the B\&W Model 70, the unnamed polar diagram in Fig.1(a) entitled 'A well designed radial horn', bears a striking resemblance to the polar diagram of the JBL 2350 radial horn*.

S. J. Court,

Feldon Recording Ltd,
London, W.I.

* We should have acknowledged JBL as the source of the diagram although, in fact, there are ways other than that used by JBL of designing a radial horn to provide the correct dispersion.-ED.

Circuit Ideas

Follow-and-hold circuit

There are certain measurement situations where it is advantageous to have a circuit which follows an input voltage signal until instructed to hold the instantaneous level. In the circuit presented $T r_{1}$ is an f.e.t. switch and $T r_{2}$ a source follower. When $T r_{1}$ is 'on' the very high open-loop gain of the operational amplifier ensures that the output voltage is equal to the input to within the input off-set of 5 mV for a 741 or 709 type amplifier. On application of the hold instruction, Tr_{1} switches 'off, isolating the source follower and leaving a voltage $V_{g s}$ stored on C such that the output remains at the instantaneous value it occupied when the 'hold' instruction was given. It is necessary to clamp the operational amplifier output by means of zener diodes D_{1} and D_{2} (each 5.1 V) to ensure that $T r_{1}$ cannot be turned on due to the amplifier saturating negatively when open-loop. Transistors $T r_{3}$ and $T r_{4}$ (general purpose types) enable the hold instruction to come from d.t.l. or t.t.1. circuitry. $T r_{1}$ and $T r_{2}$ are n-channel
junction f.e.ts, e.g. MPF102. Very long holding times may be achieved by choosing low-leakage f.e.ts for Tr_{1} and $T r_{2}$ or increasing the value of C. High-speed operation is possible if the operational amplifier is a high-speed device. With the components shown the output impedance is approximately $2 \mathrm{k} \Omega$ and input impedance $400 \mathrm{k} \Omega$. It is possible to introduce some gain, $R_{f /} / R_{i n}$ by having a resistor R_{f} in the feedback loop and a resistor $R_{\text {in }}$ at the non-inverting input, as in standard operational amplifier practice.
J. F. Roulston,

Edinburgh.

Sensitive \pm voltage trip

The gain of the amplifier can be varied widely by the potentiometer to produce a saturated output for a wide range of input voltages. Once tripped, the amplifier state is held by the feedback circuitry, until reset, providing the overvoltage has been reduced or removed.

With components shown, the trip voltage ranged between $\pm 50 \mathrm{mV}$ and $\pm 5 \mathrm{~V}$. The max. and min. trip voltages are directly proportional to the input resistors. Both resistors must have the same value. The transistors may be powered from the same supply as the integrated circuit, and this supply need not be highly stabilized. The resistor in series with the relay coil is for current limiting, if necessary.
N. Nicola,

Geneva.

Decades of resistance

The figure shows a way of obtaining decade resistance ranges, using only four resistors and a double-pole ten-

position switch. To obtain higher decades, resistors should be increased by powers of 10 .
J. Johnstone,

Hanley,
Stoke-on-Trent.

Loudspeaker Stereo Techniques

How to combine left and right signals and get the message from the medium

by E. J. Jordan

I think to start with it is pertinent to ask 'why stereo?'. As is often the case in the design of loudspeaker systems the primary aim may appear somewhat cloudy. One advantage of stereo is that two loudspeakers are sold instead of one, which is very much in the interests of many people. But what are the performance advantages of stereo reproduction? It may be suggested that lateral location of the various instruments or voices in music becomes possible, but on this point it is worth noting that one of the difficulties associated with concert hall design is to provide a sound stage which minimizes lateral spread, and such spacing as there is only comes about due to the problem of having to accommodate possibly 100 or more instruments (and many of them large) on the sound stage. Obviously they should not be too deeply ranked, otherwise the sounds from the front will mask those from the rear and there may also be a time delay problem. On the other hand it would be equally unsatisfactory to stretch an orchestra out in a horizontal line so that sounds came to us from widely different directions. Orchestral layout must aim to bring out the full quality of each individual instrument whilst maintaining a balanced harmonious whole.

Having said this it is a double paradox that so often in stereo reproduction attempts are made to spread the sound out over the greatest possible width, whilst using conventional loudspeaker arrangements that are intrinsically incapable of doing this. It has become apparent to me that in so many aspects of sound reproduction, considerable time, money and effort are directed towards ends which are neither possible nor even desirable.

Certain types of programme, such as opera, can benefit from a wide sound stage, particularly where movement on the stage is to be portrayed; and this provides us with one advantage of stereo. However, the effective stage width must be appropriate to the programme and to the listening area. I personally do not like to hear a violin solo spread over the same area as the full chorus in Aida-or vice versa.

Which leads us to the second and more important performance advantage of stereo, which is to provide an appropriate sound stage: not to squirt sound from the left and right, but to provide a sound area
commensurate with the programme. A single loudspeaker can do this adequately for an unaccompanied voice or small instrument provided that there is little reverberation. This situation normally only applies to news bulletins. For all other programme material good stereo provides a considerable enhancement of realism which cannot be secured merely by using two spaced loudspeakers in mono.

The reader will have appreciated by now that the advantages of stereo reproduction are purely subjective; accordingly this article is primarily a description of some of the many experiments that I and my colleagues have conducted over the past few years, and the observations made therefrom.

A third important advantage of stereo reproduction is that it separates the
sounds of instruments playing together. Now I am not referring here to apparent physical separation in the sense of spreading apart but to the discrete identity of instruments, even when closely grouped, allowing the individual music lines to be heard more clearly. This is due to the fact that binaural hearing is far more selective than monaural when dealing with a multiplicity of sound sources. The dramatic demonstration of this is to listen to someone speaking in a noisy environment first using both ears normally and then with one ear covered. The immediate impression with one ear covered is that the wanted sound is being masked by the noise whereas the use of both ears results in a far higher degree of separation of the speaking voice and the other sounds, and higher definition.

Figs 1-5. Listening effects produced using two loudspeakers connected to a twin-channiel amplifier switched to 'mono'. The positions of listener and balance control are varied.

To sum up then, stereo reproduction can offer the following performance advantages:
(1) the provision of an appropriate sound stage width;
(2) enhanced separation of sound detail; and
(3) the effect of sound source movement.

These are in what I consider to be their order of importance.

Throughout this article I shall only consider two-channel stereo. First, we are normally equipped with only two ears and can therefore deal with only two bits of audio information at any one instant. Secondly, any advantage of multi-channel stereo can be secured with two channels at less cost by improved loudspeaker techniques which will be discussed later. (The use of four channels to give reverberation effects is another matter entirely and will be dealt with in a subsequent article-the editor permitting.)

Basic arrangement

The simplest and almost universally adopted loudspeaker arrangement for stereo is the use of one loudspeaker for each channel positioned to the left and right of the required sound stage. Such a situation is shown in Figs. 1 to 5.

To study how these and other configurations work, two loudspeakers were connected to the left and right outputs of a stereo amplifier which was switched to the mono position. Each loudspeaker thus received the same signal which could be varied in relative intensity between the loudspeakers by varying the balance control from centre to half right and half left. For these tests the loudspeakers were placed face upwards to eliminate polar effects.

In Fig. 1 with the balance control central and the listener on the centre line

Figs. 8 and 9. Images produced by the arrangement of Fig. 7 for an off-centre listener.
facing forward, there is a sharply defined image straight in front of the listener. If the listener, however, swivels his head, the sound image will tend to move in the direction he is facing. (By shaking his head vigorously, he can shake the entire orchestra-rather like the effect with headphones. Returning now to the 'eyes front' condition and swinging the balance control, the image will retain its sharpness and move left or right accordingly. So far so good, we have a working stereo system-just so long as your head is held in a clamp.

Setting the balance control back to centre and moving the listener just off axis, has the effect shown in Fig. 2, where we see the centre image replaced by an extended sound area of indeterminate position between the nearest loudspeaker and the centre.

Moving the listener further off axis with the balance control still central gives the situation in Fig. 3 where most of the sound image is centred around the nearest loudspeaker with just a hint of pull to the centre. This is known as the Haas effect and also explains why two spaced loudspeakers in mono will not give an increase in the size of the sound stage. Keeping the listener in this position and moving the balance control half left (in

Fig. 6. The type of polar characteristic required for optimum stereo performance.

Fig. 7. The optimum stereo condition. The polar lobes cross in front of the main listening area.
this case) not surprisingly concentrates the image solidly around his nearest loudspeaker as in Fig. 4.

Moving the control half right, however (Fig. 5), produces a completely indeterminate image extending from one loudspeaker to the other.

It is obvious from these experiments that for any listener position other than forward-facing on centre, the reproduction of a stereo signal by this system is quite. unsatisfactory. It is appreciated that by gimmick recording techniques some sounds may emanate from the remote loudspeaker but the image in between the units will remain distorted.

Improved results can be secured by the use of loudspeakers having forward polar lobes. The loudspeakers should not be highly directional and a very suitable characteristic would be to have a difference of about 6 dB at 15 kHz between the response on axis and 30° off axis. A frequency response curve of the preferred type is shown in Fig. 6. The optimum stereo results are secured when the axis of the polar lobes crosses in front of the main listening area (Fig. 7). If we now place our little man back in the centre of the listening area he will experience exactly the same situation as depicted in Fig. 1. In fact, this will be true for any symmetrical arrangement of identical loudspeaker systems. It is when our man moves off centre that the trouble starts, and what we are trying to do is establish a two-channel stereo system which will work for all listening positions.

With the loudspeakers arranged as in Fig. 7, and the balance set centrally, our off-centre man will observe a somewhat extended image but at least it will be situated more or less centrally (Fig. 8). (Compare with Fig. 3.)

If the balance control is swung half left a more sharply defined image will approach the left-hand loudspeaker. If it is swung half right our listener, still to the left, will 'observe' a broad image between centre and the right-hand speaker (Fig. 9). This is still far from ideal but nevertheless it is considerably better than the effects in Figs. 4 and 5.

An additional problem arises in the crossed polar system when broad images occur: there is apparent sound movement within the image which is frequency conscious, but this is usually the least disturbing problem.

A programme source in which there is considerable movement exposes a further drawback of the basic two-loudspeaker
arrangement and this can be illustrated by the use of one of the 'passing express train' types of recording. One assumes that the train did in fact go straight past the microphones in the first place but all arrangements similar to those described so far give the impression that the train passes on a curved track as indicated in Fig. 7.

It is thus theoretically possible to provide perfectly adequate stereo from two channels. However, the arrangements normally used can provide considerable image distortion. This can be minimized by optimizing the polar characteristics of the loudspeakers. If the loudspeakers tend to be either omni-directional or on the other hand extremely directional, then the image distortion may be so bad as to render the additional cost of stereo over mono quite unjustifiable.

Image distortion is also worsened by trying to achieve too wide a sound stage, i.e. having the loudspeakers too far apart relative to the listening position.

Centre loudspeaker system

I first encountered the use of a centre speaker many years ago demonstrated by Hugh Brittain. He had a large G.E.C. Periphonic system each side of a stage and a small forward-facing system in the middle. The middle speaker was fed with a sum signal from each channel attenuated by 20 dB and could be switched in or out. Listening in the centre position it was barely possible to tell whether the middle speaker was on or off. Moving to the side with the centre speaker off produced the usual shift of the entire image to the nearest loudspeaker. Switching in the centre loudspeaker expanded the image right across the full width of the stage with good image location.

Fig. 10 illustrates our experiments on these lines. In this case the two side loudspeakers were turned inwards by an angle of about 30°. The centre unit faced upwards and was fed from both channels at full level. This resulted in an effective gentle top roll-off above about 3 kHz . With the listener in his usual off-centre position and the balance at centre, an almost perfect central image was secured. With the control set half left or half right, fairly well defined images were secured in the appropriate positions. It was very refreshing to be able to walk across the full sound stage and find that all the images remain stationary and well formed. It was interesting to note that the passing express on this system went straight.

A game that two can play

A very entertaining evening can be spent if you get your hi-fi friend to bring his loudspeakers to your house. (Naturally his
equipment is not quite up to your standards so he will only have bookshelf units.) Each of these is then connected, via very long leads, in parallel and in phase with your own systems. You can now play for hours with various juxta-positions of all four loudspeakers and the various effects obtained can be quite startling. You can 'do your thing' and get 'high' on a plasma of sound; and at the culmination you can shake your heads vigorously and splatter the sound all over the walls. (Marijuana has nothing on this.) Having settled down, however, the effects of placing the two 'visiting' loudspeakers in the centre back-to-back will bring about a remarkable improvement in the stereo effects. Quite seriously, these experiments are well worth trying.

An arrangement sometimes used on grounds of economy is a large centre speaker handling the bass of both channels with the middle and high frequencies handled by small left and right 'outrigger' units. But if the crossover frequency is too high or the crossover too sharp, the imagery will be distorted as in the case of the basic two-loudspeaker system and the bass will be disembodied.

Reflected stereo system

A variation of the centre loudspeaker technique which possesses certain additional advantages is the reflected system. The arrangement is shown in Fig. 11 where two loudspeaker systems are placed back-to-back facing two reflectors. It is necessary for the polar characteristics of the loudspeakers to be similar to those described for Fig. 7 and it must be stressed that the arrangement is not satisfactory with polar responses markedly different from these. The reflectors should be inclined inwards at an angle of about 60°. The surface of the reflectors should be as hard as possible, glass or Formica covered timber is ideal, and they must be substantially flat. Any attempt to broaden the coverage by curving the reflectors will destroy the stereo effect. The arrangement as described can provide full room coverage in any case. The spacing of the reflectors and their area is not critical. It can be seen from the diagram that due to the positions of the reflected loudspeaker images, the effective sound stage width is nearly double the actual distance between reflectors. A typical spacing between reflector and loudspeaker might be 3 to 4 ft in which case the width of the listening area will be 6 to 8 ft and the effective stage width 12 to 16 ft . As a guide to reflector area, if the spacing is 3 ft then the area should not be less than about $3 \mathrm{ft}^{2}$ with the smallest dimension not less than $\mathbf{l f t}$. These figures are taken pro rata for other spacings.

Fig. 10. Adding a centre speaker.

Fig. 11. A reflector system providing a virtual sound stage wider than the spaced reflectors.

The stereo performance of this arrangement is very good, being almost identical with that shown in Fig. 10. It has the additional advantage that only two loudspeakers are required. The cost of the reflectors is low and may be offset by the fact that one double enclosure may be used for the loudspeakers instead of two separate ones. In spite of the fact that all very low frequencies will be coming from the centre, this is not apparent when listening. The reflectors in any case will start to become operative only above about 200 Hz . A considerable increase in extreme bass efficiency is provided by the mutual coupling between the units.

All in all this technique provides a neat, practical and economic solution to the problems of stereo reproduction. From the point of view of room décor the reflectors may be made appropriately decorative, fitted on simple stands and put away when not in use. The space between the reflectors and the loudspeakers may be used, provided no large object is placed in line of sight on the loudspeaker axis. A standard lamp, plants, coffee table or a small chair may be accommodated or even a bookcase, provided it does not project into the 'beam' of the system.

An integrated radiogram

Not long ago I conducted an interesting exercise to see if a fully integrated stereo hi-fi radiogram could be successfully made using the reflector technique. The carcass of the system was provided by two back-to-back double loudspeaker systems spaced about four feet apart. The enclosures were of the hybrid type and the tunnel structures extended across the four-foot space and formed 'girders' upon which the equipment was mounted. One of the obvious problems was to prevent feedback from the speakers to the pickup without overloading the excellent bass response. This was achieved by a mechanical filter upon which the entire record-player was mounted.

Full delay-line system

A delay-line system is costly but nevertheless represents, in my opinion, the most advanced loudspeaker system at present possible both in quality of reproduction and in stereo performance. In view of the degree of the design
flexibility available, it is very desirable to design these systems individually to match the room in which they are to be used both aesthetically and acoustically. Basically the system comprises a continuous line of loudspeakers extending the full width of the required sound stage and the left and right channels are fed in at each end (Fig. 12). The loudspeakers are interconnected to form a delay line. The simplest arrangement is shown in Fig. 13. In practice, of course, provision has to be made for impedance matching. To make the continuity of the sound source as complete as possible the loudspeaker units should face upwards or downwards so that their axes are at 90° to the listener with the exception of the extreme end units which should face inwards. The effective polar response of these can be controlled by choice of delay components to optimize stereo performan'ce. We naturally wish to avoid the hysteretic distortion normally associated with inductive crossover components and therefore only air cored inductors should be used and resistors if necessary. Development work on purely acoustic delay components is at present under way. Actual component values and the dimensions and layout of these systems are determined by the particular environmental requirements.

The stereo performance of the system is virtually perfect: well-defined images are produced which are precisely located and location remains quite independent of the position of the listener even if he stands at the end looking along the system. (To stand in this position with an express train rushing towards you is frighteningly realistic.) On the score of cost this would be in the region of $£ 400$ for a 10 ft stage which does not make it the most expensive loudspeaker in the world by any means, especially when it is pointed out that this is only $£ 200$ per channel. It is interesting, ther efore, to see how this system compares with others in this price bracket. I have already made my stand clear in the first of these articles regarding the advantages of the full-frequency range single-cone moving-coil approach over crossover systems, so we will not cover that ground again. We have just qualified the stereo performance as being vastly superior to basic two-speaker system techniques. So if we are going to pay $£ 200$ for a conventional loudspeaker, such as a large horn-loaded system, what in fact are we paying for? The answer and remaining consideration is power bandwidth. On this score it is worth noting that a loft delay-line system would have a very high
efficiency at low frequencies (approaching 20 times that of a single cone unit) and would handle up to 300 watts input power. The available sound power would therefore be extremely high; of the order of one acoustic watt. This is about 500 times higher than the power required to reproduce a full symphony orchestra in a $2000 \mathrm{ft}^{3}$ lounge.

A delay-line system need not take up very much space. A convenient configuration might take the form of a 'shelf' approximately 15 in . wide and 8 in . deep, running along one wall. The top surface of the shelf would be free for use with most of the loudspeaker units mounted on the underside (Fig. 14). As we have already pointed out, the delay-line system allows great flexibility of design.

Reflector delay-line system

As we have seen, the use of reflectors can produce a very wide sound stage-wider than the room if required-and for this reason reflectors may be used in conjunction with a full delay system. Of more interest, perhaps, is the fact that with the use of reflectors the delay line may be shortened with only a small deterioration in stereo performance and a considerable reduction in cost. An arrangement which has been satisfactorily used is shown diagrammatically in Fig. 15. A system like this would cost basically about $£ 180$, or $£ 90$ per channel. The total power handling capacity would be 120 W and the low-frequency efficiency would be well above average. The available lowfrequency power would be 64 times that of a single unit or about 0.13 acoustic watts. Using a system like this in the library of a large country house, an effective sound stage of 40 ft was readily achieved with good location throughout this area. It was wonderful for listening to grand opera.

Conclusions

I feel that the loudspeaker industry as a whole has shown insufficient regard for the requirement of stereo, whilst on the other hand some of the record companies have messed things up with multi-channel computerized gimickry. The result is a squirt to the left of us and a squirt to the right, with a muddled hubble bubble in the middle. (Tongue twisters please note.) Given an optimized polar characteristic and correct placement, the basic two-loudspeaker system will work sufficiently well to justify the additional cost. With very little additional effort these may be placed back-to-back in conjunction with reflectors to achieve a very marked

Fig. 12. A continuous line of speakers.

Fig. 13. Introducing delays to blend polar characteristics.

Fig. 14. Impression of how a full delay system might be fitted on a wall.

Fig. 15. A shortened delay line system also employing reflectors.
improvement. If cost is not a primary consideration, then one of the delay line techniques may be used with or without reflectors to provide an ultimate in sound reproduction by today's standards.

A few times I have used the expression 'available sound-stage width', and to avoid confusion I should point out that there is no disadvantage in making this as wide as possible, provided the image location is good. In this case if the programme requires only a restricted stage, then this should be evident in the signal information and the programme material will restrict itself near to the centre of the available sound stage. Some programme material does benefit from a wide stage, in which case it is nice to have it available and to let the programme (by the grace of the recording engineer) determine its own width.

Printed-circuit Boards

Wireless World Colour TV Receiver. We are informed by D-B-S Electronics, The Parade, Cadnam, Hants, that they can supply printedcircuit boards for this receiver. One for part of the colour circuitry measures only $2 \frac{3}{4} \mathrm{in}$. by $9 \frac{3}{4} \mathrm{in}$. The layout is different from the original, but the board is drilled and the R and C numbers are marked on it.

Capacitor-discharge Ignition System. D. E. Bolton, of 61 Cuckmere Road, Seaford, Sussex, has produced printed-circuit boards for the capacitor-discharge ignition system designed by R. M. Marston and published in January 1970. Boards are available for both negative and positive earth versions at a cost of 25 s (£1.25). This price includes postage, circuit diagrams, a list of components and suppliers, and practical construction tips.

Stereo Decoder using Sampling

A design using sample-and-hold techniques to obtain good channel separation, low distortion and low sub-carrier breakthrough

by D. E. O'N. Waddington, m.I.E.R.E.

Inspired by an article, "Synchronous detector uses switching techniques" by R. Glasgal published in The Electronic Engineer of April 1968, I have designed a new decoder circuit using sampling. This circuit has several significant advantages over my design of three years ago ${ }^{1}$: the sub-carrier filtering is far more efficient so that the breakthrough is negligible; it is very much easier to set up and far less critical (actually the number of pre-sets has been reduced from five to three); and the gain of the decoder is the same with either mono or stereo. This last is particularly important now that the B.B.C. sometimes broadcasts alternate stereo and mono items in the same programme.

Principle of operation

The starting point for the design lies, naturally enough, in the basic equation for the composite stereo signal. This may be given as

$$
\text { instantaneous value } V_{i}=0.9\left[\frac{A+B}{2}+\frac{A-B}{2} \sin 2 \omega t\right]+0.1 \sin \omega t
$$

> where

$$
\omega / 2 \pi=19000 \mathrm{~Hz}
$$

$A=$ left audio-frequency signal
$B=$ right audio-frequency signal.
For the purpose of this analysis this can be reduced to

$$
\begin{aligned}
V_{i} & =\frac{A+B}{2}+\frac{A-B}{2} \sin 2 \omega t \\
& =\frac{1}{2}[A+B+(A-B) \sin 2 \omega t]
\end{aligned}
$$

If this equation is solved for the limiting values of $\sin 2 \omega r$ (i.e. when $\sin 2 \omega t=+1$ and $\sin 2 \omega t=-1$ it will be seen that $V_{i}=A$ for the former and $V_{i}=B$ for the latter. Thus by sampling at the correct instants, theoretically, the A and B signals can be recovered with no cross-talk at all. This process is illustrated in Fig. 1. In practice it is not possible to take an infinitely narrow sample in exactly the correct phase. In order to estimate the effects of incorrect phasing, the equation can be solved for other values of $\sin 2 \omega t$. The results of this calculation for values of $\sin 2 \omega t$ between 60° and 120° is shown in Fig. 2. It will be seen that for a phase error of $\pm 20^{\circ}$, the amount of unwanted signal will rise to 30 dB below the required signal. Thus it is not essential to set the phase exactly in order to obtain adequate channel separation. The effects of sampling period are more difficult to assess accurately but it is safe to assume that if the sample is less than 10°, sufficient channel separation will be obtained.

In order to implement this method of decoding, the following steps are necessary

1. Extract the 19 kHz pilot tone from the composite signal.
2. Generate sampling pulses synchronized with and having the correct phase relationship to the incoming pilot tone.
3. Sample the multiplex signal.
4. Filter out the unwanted signal components.
5. Apply de-emphasis.

In practice it is necessary to use even more steps as examination of the block diagram, Fig. 3, will show. In particular, the sampling pulses are generated from a continuously running oscillator. This avoids the need to switch any circuits on or off when a stereo signal is

Fig. 1. Method of extracting the left-and right-hand channel information from the multiplex signal by sampling. Note: the pilot tone has been omitted from the multiplex signal for clarity.

Fig. 2. Plot of channel separation plotted against sampling instant.

Fig. 3. Sampling decoder block diagram.

Fig. 4. Limiting amplifier output.
received and, incidentally, ensures that the gain is the same for stereo and mono. Another important change in the basic system is that the sampling gates are actually sample-and-hold gates so that the filtering requirement is satisfied by the de-emphasis networks.

Pilot-tone extractor and frequency doubler

When I started this design I thought that it would be much easier to construct if all coils could be eliminated. I therefore investigated the use of active filter networks with resistance/capacitance tuning. Although I produced working circuits, none of them was simple enough. The main trouble was that each tuned network needed at least two set-up controls, one for frequency adjustment and another for Q. Furthermore, the Q depends on amplifier gain (unless this is negligibly large) so that simple one or two transistor circuits are more or less ruled out. As a result of this investigation I decided to use a Q multiplier again. Thus, in Fig. 7, the signal at the output of the emitter follower $T r_{1}$ is split so that the composite signal is fed to the sampling networks and the high-frequency components only are fed to the transformer T_{1} which drives the Q multiplier stage $T r_{2}$. The output from this stage is fed to the primary of the tuned transformer T_{2}. At the secondary of this transformer the 19 kHz pilot tone is full-wave rectified and applied to the base of Tr_{3}. As this stage has high gain it limits giving an output as shown in Fig. 4. This limited waveform is differentiated and used to lock the frequency of the free-running multivibrator Tr_{5} and $T r_{6}$.

Sampling pulse generation

While an infinitely narrow sampling pulse would be ideal, it is not strictly necessary, which is as well as it is not practical. However, it is quite practical to make the pulse duration 250 ns which is equivalent to $3 \cdot 42^{\circ}$ or approximately 1% of the period of one cycle of the sub-carrier. This gives adequate channel separation.

The method of generation is as follows. Just prior to the genera-
tion of a pulse, $T r_{4}$ is bottomed, $T r_{5}$ is switched off and C_{11} is charged to the supply voltage. Now, when $T r_{5}$ bottoms (because of multivibrator action) the base of T_{4} is taken negative by C_{11} and $T r_{4}$ switches off so that the voltage at its collector goes to the positive line. $C_{1 \text { : }}$ discharges through R_{13} and, when the voltage at the base of $T r_{4}$ is sufficiently positive, $T r_{4}$ bottoms once more and the voltage at its collector goes negative again. The width of this positive going pulse will be approximately 0.7 CR . This process is illustrated in Fig. 5. The sampling pulses for the other channel are generated in a similar way by $T r_{6}$ and $T r_{7}$.

Sampling gate

The simple sampling process shown in Fig. I would obviously contain a large proportion of high-frequency components and very little of the wanted signal. A better method is to use a sample-andhold tec hnique where the value of each sample is stored until the next one. This is shown in Fig. 6. It will be seen that the low-frequency component predominates and that very little high frequency is present.
This is implemented as follows (Fig. 7). The composite signal from the emitter follower $T r_{1}$ is capacitively coupled to the sources of the f.e.ts. $T r_{8}$ and $T r_{9}$ and referenced via R_{4} to the positive line. Normally the f.e.ts. are held in the off or high impedance condition as their gates are connected directly to the collectors of the normally bottomed transistors Tr_{4} and Tr_{7}. When a sampling pulse is generated by $T r_{4}$, the voltage at the gate of $T r_{8}$ will go to the positive line switching the f.e.t. to its low impedance condition thus allowing C_{12} to charge to the voltage at the source of the f.e.t. As the $R_{D S}$ on of the f.e.t. will be less than 500Ω the charging $C R$ will be less than $33 \times 10^{-12} \times 500=165 \mathrm{~ns}$. That is, it will be less than 10% of the sampling pulse width so that the voltage across C_{12} at the completion of the sampling period will equal that at the source of the f.e.t. to within less than 1%. When the f.e.t. is switched off, C_{12} will start to discharge through R_{24}. The discharge time-constant is $10 \times 33 \times 10^{-6}=330 \mu \mathrm{~s}$. Hence C_{12} will not have discharged by more than 6% before the next sample. Thus the output waveform will consist of a series of steps. In order not to add to the load across the $10 \mathrm{M} \Omega$ resistor R_{24}, the output is taken via a source follower $T r_{10}$ to the de-emphasis network. The sampling action is similar for the other channel.

Setting up

The effectiveness of the decoder in separating the left- and right-hand channels depends, naturally enough, on the accuracy with which it

Fig. 5. Formation of sampling pulses.

Fig. 6. Sample-and-hold technique. The samples are stored on the capacitors C_{12} and C_{17} which are charged or discharged according to the values of the samples by $T r_{8}$ and $T r_{9}$.

Fig. 7. Circuit diagram of complete decoder. Transistor types. Tr_{1} BC108, 2N929; Tr_{2} BC109, 2N930; Tr_{3} BCY72, 2N3702; $\operatorname{Tr}_{4-7} B S X 20,2 N 2369 ; \operatorname{Tr}_{8-11}$ BF244b, 2N3819, MPF105, UC714, BFW10.
and the receiver with which it is to be used have been set up. The setting up consists of two separate parts-
l. tuning the receiver for correct bandwidth and optimum phase response
2. tuning the pilot tone extraction circuits and adjusting the phase of the sampling circuits for best channel separation.

Receiver adjustment

This has been put first because no decoder can give good performance with a poorly adjusted receiver and also, the stereo signal which will then be available can be used to set up the decoder.

For stereo reception the receiver not only needs adequate bandwidth (360 kHz approximately) but it must also have a reasonable phase response. The bandwidth can be checked using an ordinary signal generator but measurement of the phase response really requires more complicated test gear. Fortunately the effects of poor phase response can easily be seen on an oscilloscope so that the following procedure can be used.

1. Disconnect the de-emphasis network from the output of the discriminator. (This network will not be needed again as deemphasis is included in the decoder.)
2. Connect the Y input of an oscilloscope to the output of the discriminator.
3. Tune in a signal modulated with a stereo signal with information in the left-hand channel only. If the receiver has a.f.c. be sure to switch this off while tuning and to switch it on again only after the signal has been tuned in correctly.
4. Examine the output from the discriminator on the oscilloscope. It should appear as shown in Fig. 8(a). If necessary, adjust the tuning of each i.f. transformer slightly to improve the oscillogram. Be careful not to overdo the adjustment as excessive de-tuning will reduce the sensitivity of the receiver.
Note. To date, none of the published circuits for f.m. tuners using untuned intermediate frequency amplifiers and pulse counting discriminators is suitable for stereo reception. Even the circuit using double conversion to give a 300 kHz untuned second i.f.* has its problems. I have found it necessary to decouple the supplies to the discriminator section carefully and to include extra low-pass

[^6]

Fig. 8. Output from the discriminator of an f.m. tuner with (a) i.f. anplifier correcily tuned, (b) inadequale bandwidth, and (c) poor phase response.

Fig. 9. Output at 5 kHz . This pieture is obtained only if the input frequency is coherent with the sub-carrier.

Fig. 10. Phase adjustment Lissajous figures. (a) 40 dB channel separation, (b) 30 dB channel separation.
filtering to prevent residual i.f. components from beating with the 38 kHz sub-carrier giving rise to "birdies" and consequent distortion.

Decoder adjustment

Before starting to set up the decoder it is as well to check if there is a reasonable hope that it will work. This can be done as follows.
Connect the circuit to a 9 V supply. Apply a 5 kHz , or thereabouts, sine-wave having an amplitude of about 100 mV r.m.s. to the input of the decoder. The signals at the two outputs should each be less in amplitude by about 9 dB than the input and should appear as stepped waveforms (see Fig. 9). If this is correct, it indicates that the input-output circuits, the sampling pulse generator, and the sampling gates are working.
Having ascertained that the cecoder will pass a mono signal, the next step is to set up the pilot tone extraction dircuits. To do this, it is desirable to have an accurate 19 kHz source as well as a stereo signal. However, the decoder can be set up if either is available.

Using an accurate 19 kHz source

1. Connect the 19 kHz source to the input of the decoder and monitor the output of the Q multiplier at the collector of Tr_{2} using an oscilloscope.
2. Keeping the 19 kHz input as low as possible consistent with obtaining an adequate picture, adjust the core of T_{1} for maximum output.
3. Transfer the oscilloscope input connection to the junction of the secondary of T_{2} and D_{1}.
4. Adjust the core of T_{2} for maximum output. Again keep the input level as low as possible.
5. Connect the oscilloscope input to the collector of Tr_{6} and note that as the input is increased above about 5 mV , the squarewave 'locks on'.
6. With this 'locked' condition, adjust R_{30} so that this squarewave has a 1:1 mark-to-space ratio
7. With a 19 kHz input of 10 mV , connect the Y input of the oscilloscope to the input and the X input to the collector of Tr_{6}
8. Adjust the core of T_{2} to give the Lissajous figureshown in Fig. 10. A decoder set up in this way should give a channel separation of better than 30 dB .

Using a receiver tuned to a stereo signal
Any stereo signal can be used for steps 1 to 7 as only the 19 kHz pilot tone is used but for setting the channel separation (steps 8 and
9) it is essential that the 'left channel only' signal should be used.

1. Connect the output of the discriminator to the input of the decoder using a potentiometer as shown in Fig. 11.
2. Monitor the output of the Q multiplier at the collector of $T r_{2}$ using an oscilloscope
3. Keeping the input level as low as possible, consistent with obtaining an adequate picture, adjust the core of T_{1} for maximum output.
4. Transfer the oscilloscope input connection to the junction of the secondary of T_{2} and D_{1}
5. Adjust the core of T_{2} for maximum output. Again keep the input level as low as possible.
6. Connect the output of the discriminator directly to the decoder. (Note: The pilot tone level should be between 10 and 30 mV for best results.)
7. Monitor the waveform at the collector of Tr_{6} using an oscilloscope and adjust R_{32} so that the waveform seen has a $1: 1$ mark/space ratio
8. Tune in the 'left only' signal and monitor the 'right' output on the oscilloscope.
9. Adjust the core of T_{2} for minimum signal.

Set up in this way, the decoder should give a channel separation of at least 30 dB

Performance

Tests were carried out on the decoder to assess its frequency response, distortion, and channel separation.

Fig. 11. Method of connecting the discriminator output to the decoder for setting up purposes.

Fig. 12. Oscilloscope method of measuring channel separation.

Fig. 13. Printed circuit layout.
No noise measurements were made because the sub-carrier leakage would make them meaningless.

The frequency response follows the standard $50 \mu \mathrm{~s}$ de-emphasis characteristic quite closely. How closely will depend, naturally enough, on the accuracy of the components used.

As no low-distortion stereo generator was available, the tests were done using a simulated signal consisting of 10 mV of 19 kHz , linearly added to the output of a low-distortion oscillator. (Marconi Instruments T.F. 2005 was used for this as it adds two lowdistortion signals with less than 0.0005% intermodulation.) The results of the tests are summarized in Table 1. As intermodulation between the 19 kHz pilot and the upper audio frequency signal components can occur, some measurements were made to assess their importance. The spurious outputs due to this were less than 0.3% second order from 11 to 15 kHz while the third order components could not be found
The problem of accurate measurement of channel separation was also aggravated by lack of guaranteed test gear. It was possible to set up the stereo simulator ${ }^{2}$ so that it gave a channel separation, measured as shown in Fig. 12, of better than 40 dB . When this signal was used to check the decoder a separation of 46 dB was obtained! While this figure is not completely reliable, it does give an indication of the performance which can be obtained. The sensitivity of channel separation to pilot tone level was also checked and it was found that, with the separation set to 40 dB with a pilot level of 20 mV , the separation deteriorated to 30 dB when the pilot level was halved. The Lissajous figures corresponding to this change are shown in Fig. 10. These results are more than adequate for normal listening.

Practical notes

The layout of this circuit is generally non-critical although the lead lengths in the sampling section should be kept short. A suitable printed circuit layout is shown in Fig. 13.

Fig. 14. Test circuit for f.e.t. Note: meter resistance should be greater than $100 \mathrm{k} \Omega$.

Table 1

level (mV)	frequency \mathbf{f}	$\mathbf{2 f}$	$\mathbf{3} \mathbf{f}$	$\mathbf{4} \mathbf{f}$	$\mathbf{1 9} \mathbf{k H z}$	$\mathbf{3 8} \mathbf{k H z}$
30	1 kHz	0.6%	0.05%	0.04%	0.2%	0.09%
100	1 kHz	0.2%	0.01%	-	0.25%	0.2%
100	10 kHz	0.4%	0.01%	-	0.25%	0.2%

Mullard		primary	secondary	wire gauge
$\left.\begin{array}{l} \text { LA } 2517 \\ \text { LA } 2532 \end{array}\right\}$	$\begin{gathered} T_{1} \\ T_{2} \end{gathered}$	1121 112 t tapped at 56 t	$116 t$ 112 t tapped at 56 t	36 s.w.g enam.
$\left.\begin{array}{l} \text { LA } 2500 \\ \text { LA } 2534 \end{array}\right\}$	$\begin{aligned} & I_{1} \\ & I_{2} \end{aligned}$	$\begin{gathered} 139 t \\ 140 \pm \text { tapped at } 70 t \end{gathered}$	$\begin{gathered} 144 \mathrm{t} \\ 140 \mathrm{t} \text { tapped at } 70 \mathrm{t} \end{gathered}$	36/37 s.w.g. enam. $36 / 37$ s.w.g. enam
$\left.\begin{array}{l} \text { LA } 2501 \\ \text { LA } 2536 \end{array}\right\}$	$\begin{aligned} & T_{1} \\ & T_{2} \end{aligned}$	$\begin{gathered} 176 t \\ 176 \mathrm{t} \text { tapped at } 88 \mathrm{t} \end{gathered}$	$\begin{gathered} 182 \mathrm{t} \\ 176 \mathrm{t} \text { tapped at } 88 \mathrm{t} \end{gathered}$	38 s.w.g. enam.
LA 2502	$\begin{aligned} & I_{1} \\ & T_{2} \end{aligned}$	$222 t$ 222 t tapped at 111 t	$\begin{gathered} 230 \mathrm{t} \\ 222 \mathrm{t} \text { tapped at } 111 \mathrm{t} \end{gathered}$	39 s.w.g. enam.

In general the semiconductors used are readily available types. However, the output f.e.ts. could pose a problem if their V_{p} is too low. Preferably the V_{p} should be greater than 2 V so, unless a BF 244 B is used, it is as well to check this parameter. The method is quite simple. Connect the f.e.t. in the circuit shown in Fig. 14. The meter will indicate V_{p} to a sufficient degree of accuracy for this circuit.
One of the problem areas can be the coils, particularly if they are wound by hand, as there is a possibility that they will not have the exact inductance. This can make tuning difficult. However, the performance of the decoder does not depend critically on the L / C ratio, so it is permissible to pad the values of C_{5} and C_{7} to enable them to tune. Care must be taken that the directions of the windings of T_{1} are correct or the Q multiplier will not work. Table 2 gives a list of various suitable ferrite cores with the appropriate winding information.

References

1. D. E. O'N. Waddington: "A Stereo Decoder", Wireless World, Jan. 1967.
2. D. E. O'N. Waddington: "Stereo Signal Simulator", Wireless World, Oct. 1967.
A reprint of these two articles is available, price 3s, from The Publisher, Dorset House, Stamford Street, London S.E.1.

Elements of Linear Microcircuits

5: Everyday uses of monolithic operational amplifiers

by T. D. Towers*, m.B.E., M.A.

By now you should have realised that a monolithic op-amp is really a 'gain block' of electronic amplification that, because of its low cost, is set fair to displace discrete transistors far outside the analogue computer field for which it was originally designed.

In this article we will pass over the use of op-amps for the mathematical operations of addition, subtraction, integration, differentiation, level sensing, etc. that form the basis of analogue computers and instead we will take a look at how designers are using them in more mundane circuits.

D.C. amplifiers

Although most run-of-the-mill circuits tend to be a.c., we will start with d.c. amplifiers, because much d.c. circuitry carries over readily from analogue computers.

Most op-amps have two inputs and at least one output. This is shown in diagrams by the symbol for an op-amp (a triangle on its side) having ' - ' and ' + ' inputs on the left and an output on the right (as in Fig.1). The + input signal appears amplified at the output without phase inversion, and this input is therefore known as a 'non-inverting' input. A signal applied to the - input is amplified to the same extent as a signal at the + input, but appears at the output 180° out of phase with the input. Therefore the - input is known as the 'inverting' input.

You will find in Fig.1(a) the basic 'resistance ratio' inverted configuration of the op-amp. In this the voltage gain is the ratio of the feedback resistance R_{2} to the input resistance R_{1}. The op-amp input terminals are at virtual earth. This means that the input resistance of the inverted circuit is equal to the series resistance R_{1}. This fact can lead to complications where you want high input resistance combined with high gain. If R_{1} is large, then for a high gain, A_{v}, the feedback resistance $=$ $A_{v} \times R_{1}$ can become impracticably large. Designers can then adopt the modified circuit of Fig. 1 (b). In this, high gain can be achieved along with high input resistance. It uses a lower value of R_{2} to get part of the required total gain. The rest arises from the potentiometer, R_{4}, R_{3}

[^7]

Fig. 1. The op-amp 'inverted' configuration; (a) 'standard' fixed gain arrangement; (b) modification for high gain without unduly low imput resistance; (c) gain control by varying feedback resistance only; (d) varying feedback and input resistance together; (e) varying input resistance only; (f) varying proportion of output applied to feedback network.

(a)

(c)

(b)

(d)

Fig. 2. The op-amp 'non-inverted' configuration; (a) fixed gain 'standard' arrangement; (b) gain control by varying output feedback resistance only; (c) varying feedback and 'fedback' resistance together; (d) varying 'fedback' resistance only.
across the output, which reduces the proportion of the output fed back into the feedback network.

The resistance-ratio inverted configuration gives a very tightly controlled fixed gain. However, many circuits call for adjustable gain, and Figs. 1(c) to (f) show arrangements that can be adopted for variable gain with an inverted op-amp.

In Fig.1(c) the feedback resistance R_{2} of Fig.1(a) is replaced by a variable resistance R_{v}. This has the advantage that the input resistance is not affected by the gain setting, but also the disadvantage that the variable resistance is very sensitive to hum and noise pick-up.

Fig.l(d) shows an arrangement used to give more flexible gain variation. Here the feedback and input resistances are combined in one potentiometer, and the setting of the potentiometer slider adjusts the gain. With an ideal op-amp the gain could be varied in this way from zero to infinity, but of course this is not possible in practice. Fig. 1(d) has the defect that the input resistance of the circuit varies widely with the setting of the gain control. Also the rate of control is highly non-linear.

Fig, 1(e) is another variant sometimes found in which the feedback resistor is kept constant and only the input resistance R_{v} varied. Here the gain is inversely proportional to the resistance of the variable resistance and the circuit input resistance varies with the gain setting

A final variable-gain circuit in which
the feedback and input resistors are not altered is given in Fig. 1(f). Here, the gain is set by a potentiometer across the output which varies the proportion of the output allowed into the feedback network. It has the big advantage that the variable element is across the output (a low impedance part of the circuit), and is buffered by the feedback resistor from the input virtual earths which are very sensitive to noise and pick-up.

Fig.2(a) shows the standard fixed gain resistance-ratio non-inverted configuration for the monolithic op-amp. This arrangement has the big advantage compared with the inverted configuration that the input resistance is high, being roughly equal to the op-amp's differential input resistance multiplied by the 'loop gain'. Loop gain being the ratio of the op-amp's intrinsic (open loop) gain to the gain with feedback. This configuration is therefore widely used when high input impedance is important

Gain variation in the non-inverted configuration can be achieved in a number of ways. Fig. 2(b) shows the 'top' feedback resistor being varied. Fig.2(c) shows both the feedback and 'fedback' resistors being varied. Fig.2(d) achieves gain control by varying only the 'fedback' resistor. Each arrangement has its own advantages and disadvantages. The formulae for input resistance and voltage gain appropriate to each arrangement are noted on the circuit diagram. Inspection of these will show
which element it is best to vary for your particular problem.

If you want to measure accurately d.c. voltages much below IV where ordinary meters run out, you will find the inverting configuration of an op-amp widely used. Provided the voltage being measured has a low source impedance, a resistance ratio of up to $100: 1$ can be used to bring the measured voltage up to the level at which it can be read accurately on a meter. Fig.3(a) gives a typical practical circuit for measuring 2.5 mV d.c. full scale on the 50μ. A range of an Avometer.

The monolithic op-amp also proves very valuable for measuring low d.c. currents. When you want to measure currents substantially less than the 50μ. A full-scale of readily available meters, you can feed the current through a small resistor and measure the resulting d.c. voltage drop. Fig. 3 (b) is just such a practical circuit for measuring $1 \mu \mathrm{~A}$ d.c. full scale with a $50 \mu \mathrm{~A}$ meter.

The monolithic op-amp can readily provide a constant-voltage reference source. Typical of such applications is the circuit of Fig.3(c) which permits the precise voltage from a zener diode to be adjusted upwards to some other precise voltage.

When you have played around with op-amps for a while, you will discover many useful d.c. circuits. They are, for example, peculiarly suited to such arrangements as the logarithmic amplifier

Diodes $=\operatorname{IN} 914$

Fig. 3. Some useful op-amp d.c. circuits; (a) amplifier to give 2.5 mV d.c. full scate on $50 \mu \mathrm{~A}$ range of an Avometer; (b) amplifier for $1 \mu A$ d.c. full scale with Avometer; (c) adjustable zener reference voltage; (d) logarithmic amplifier.
shown in Fig.3(d). This has the property of rapid variation around zero and logarithmic fall off in gain for higher signal levels. This makes it most useful as a null detector.
Most of the circuitry discussed above is expressed in terms of neat little op-amps with only two input terminals and an output-terminal. Real op-amps have other characteristics needing more components which make practical circuitry much less simple looking.

Firstly it should not be overlooked that the op amp is not merely a d.c. amplifier but a d.c. to 1 MHz amplifier. For d.c. use it is essential that compensation of some sort is applied in the circuit to prevent oscillation. It is impossible to give any simple rules of thumb on applying compensation networks to commercial op-amps because they often have different compensation terminals and networks. Get hold of the data sheet for the device you propose to use. Study it with care and follow closely the recommendations of the manufacturers on the C and R networks to be connected to the various terminals to prevent instability.
The other thing that is missing in most diagrams discussing op-amp uses is any indication of the d.c. power supply. In d.c. use, the op-amp must have both positive and negative supply rails, because of its 'd.c. integrity' (i.e. its output being at zero when its input is at zero). However, provided the precautions on adequate h.f. and I.f. decoupling on the supply rails discussed in earlier articles are followed, little difficulty will be met with in practice on this double supply requirement. Because it is so often overlooked, however, it might pay to look more closely at the question of providing supply rails which are positive and negative with reference to a signal earth.

D.C. supply for op-amps

In op-amp basic theory, two independent power supplies to give positive and negative rails are tacitly assumed as in Fig.4(a) and (b) for inverted and non-inverted configurations. The $V_{C C}$ and $V_{E E}$ batteries in Figs.4(a) and (b) could equally well be centre-tapped positive and negative mains powered d.c. supplies.

In working with op-amps many circuit men want to use a single power supply, and find some difficulty in adapting the single supply to perform the function of the double supply.
You will note in Figs.l(a) and (b) that both inputs of the op-amp have a continuous d.c. path to the centre rail or signal earth. With the single power supply, a centre-rail signal earth can be achieved by a bleeder resistance network R_{1}, R_{2} across the power supply as in Fig. 4(c). In practice R_{1} and R_{2} are usually made equal. Also the values are chosen to give a bleeder current at least ten times the peak output current into the load resistance from the op-amp. This is necessary because the bleeder resistances are in series with the load resistance and must be low enough in value not to reduce

Fig. 4. Supply arrangements for monolithic op-amps; (a) 'inverted' configuration double (\pm) supply; (b) non-inverted double supply; (c) bleeder resistance-split single supply; (d) zener-split single supply; (e) resistance-split supply for a.c. use with signal earth to centre rail; (f) resistance-split supply for a.c. use with signal earth to negative supply rail.

Fig. 5. Arrangements for a.c. amplifiers using basic op-amps; (a) inverted; (b) non-inverted; (c) non-inverted with 100\% d.c. negative feedback; (d) high input impedance 'non-inverted'.
excessively the peak voltage swing across the load resistance.

For a 5 mA peak current in the load the above rule for the bleeder network would mean a standing current of 50 mA , and this might be unacceptable. An alternative is then to set up the centre rail with two zener diodes as in Fig. 4(d). Because of the low dynamic resistance of the Zener diodes, the standing current in the bleeder net work need be only slightly larger than the peak current into the load (for a $\mu \mathrm{A} 709$ some 8 mA).

So far, we have been considering single power supply arrangements for d.c. operation of op-amps. For a.c. operation, the bleeder current demands can be much less.

Fig.4(e) shows an a.c. amplifier resistance bleeder arrangement. Resistors R_{3} and R_{4} need be only small enough to provide a current which is large compared with the bias leakage currents at the op-amp inputs (which are usually, at most, only a few microamps). This means that the current through R_{3}, R_{4} need be only a few tens or hundreds of microamps. The resultant large values of R_{3} and R_{4}, being effectively in series with the load resistor R_{L}, would seriously limit the output drive under a.c. conditions were it not for the large decoupling capacitor, C, across R_{+} from the centre rail to the negative of the power supply. The time constant $C R_{4}$ is chosen so that the bleeder network
presents negligible impedance compared with the load resistance at the lowest frequency of a.c. operation.

The same low bleeder current can be used for a.c. applications in the arrangement of Fig.4(f). Here the input signal is applied between the op-amp input and the negative of the power supply. The load resistance is also connected via an isolating capacitor from the op-amp output to the negative of the power supply.

A.C. op-amp circuits

Although op-amps are essentially d.c. amplifiers, they are more and more being used by circuit engineers for a.c. applications.

The basic inverted configuration discussed earlier as Fig. 1(a) can be simply converted to a.c. use as in Fig.5(a) by isolating capacitors C_{1} and C_{2} at input and output. The non-inverted configuration of Fig. 1(b) can be similarly converted to a.c. use as in Fig.5(b).

Both Figs.5(a) and 5(b) have the disadvantage that the d.c. off-set voltages are amplified equally with the a.c. voltages with consequent dangers of excessive d.c. output voltage drift. The arrangement of Fig. 5(c), with virtually 100% d.c. feedback, amplifies only the a.c. voltage so that no substantial d.c. off-set occurs at the output. Here the mid-hand a.c. gain of the circuit is $\left(R_{F}+R_{1}\right) / R_{1}$.

Where a higher a.c. input impedance is required, the bootstrap circuit of Fig.5(d) is useful.

Frequency response tailoring

Thus far we have considered only the mid-band gain of a.c.-coupled op-amps. Apart from the use of the input and output capacitors to tailor low-frequency response, the wealth of resistors in the various feedback networks make a happy hunting ground for frequency response tailoring.

In the basic inverted configuration of Fig.6(a) R_{3} and C_{3} across the input resistance R_{1}, will boost top frequencies. while C_{4}, R_{4} across the feedback resistance will cut them.

Similarly in the non-inverted configurations of Fig.6(b), C_{4}, R_{4} across the input bias resistance, and C_{5}, R_{5} across the feedback resistance R_{F} both act as top cut networks. C_{6}, R_{6} across the lower resistor R_{1} of the feedback network scrve to cut bass frequencies, as does C_{3} in series with R_{1}.

To illustratc frequency tailoring by these methods some practical circuits are given. Fig.6(c) is a 'flat' microphone amplifier with a 20 to $20,000 \mathrm{~Hz}$ response. Fig.6(d) is a tape replay amplifier where the networks provide the 17 dB bass boost required. Fig.6(e) shows a pre-amplifier with the compensation necessary for a

Fig. 6. Frequency response tailoring of op-amp ampiifiers; (a) inverted configuration paths for incorporating frequency dependent networks; (b) non-inverted configuration frequency tailoring; (c) flat (microphone) pre-amp with bottom and top roll off; (d) tape replay pre-amplifier with bass boost; (e) magnetic pick-up pre-amp; (f) crystal pick-up pre-amp.

Fig. 7. Special op-amp a.c. circuits; (a) audio mixer; (b) bistable multivibrator; (c) monostable flip flop; (d) a stable multivibrator (symmetrical square wave); (e) linear a.c. millivoltmeter; (f) voltage follower (high to low impedance).
magnetic pickup. Finally Fig.6(f) shows a high-input-impedance circuit for use with a crystal pickup.

Frequency tailoring so far shown is confined to attenuating low and high frequencies. But, by incorporating frequency selective networks (such as the twin-T or Wein bridge) in the feedback network, there is great scope for making op-amps into band-pass and band-reject amplifiers with ease.

Special op-amp circuits

Apart from 'simple' d.c. and a.c. amplifiers, op-amps have now become widely used for general circuit purposes. In an article of this length it is impossible to examine all the uses made of them, but the selection given in Fig. 7 gives some indication of the scope.

An audio mixer can be made up with the arrangement of Fig.7(a). This is an adaptation of the 'adder' circuit of the analogue computer.
The circuit of Fig.7(b) gives you a simple slow-speed bistable flip-flop which can be triggered to either positive or negative rail saturation at the output. For a monostable flip flop, the arrangement of Fig.7(c) can be used. The length of time the monostable is 'on' can be controlled by a d.c. voltage applied to the non-inverting $(+)$ terminal. In Fig.4(d) an op-amp is used to provide an astable flip-flop with a symmetrical square wave output.
To overcome the non-linearity of the diodes used in meter rectification of a.c. signals, a very linear a.c. milivoltmeter circuit can be made up with an op-amp as shown in Fig.7(e). The circuit values given provide 10 mV full-scale deflection when used with a 50μ A d.c. meter.

Finally a common requirement in circuit design is a voltage follower circuit

Table 1 Design difficulties with operational amplifiers

Skill required	Circuit type						
	Signal frequency	Signal voltage	Signal current	Circuit impedance	Accuracy	Slew-rate (unity gain. large signal)	Full power bandwidth
dittle	d.c. -100 kHz	above 100 mV	above 100nA	below $1 \mathrm{M} \Omega$	worse than 1%	below 1V/us	below 10 kHz
fair	$\begin{aligned} & 100 \mathrm{kHz}- \\ & 1 \mathrm{MHz} \end{aligned}$	$3-100 \mathrm{mV}$	$3-100 \mathrm{nA}$	$1-30 \mathrm{MS}$?	0.1-1\%	$1-10 \mathrm{~V} / \mu \mathrm{s}$	$10-100 \mathrm{kHz}$
high	$1-1,00 \mathrm{MHz}$	$0.1-3 \mathrm{mv}$	0.1-3nA	30-1000M Ω	0.01-0.1\%	$10-100 \mathrm{~V} / \mu \mathrm{s}$	$\begin{gathered} 100 \mathrm{kHz} \\ -1 \mathrm{MHz} \end{gathered}$
exceptional	$\begin{aligned} & \text { above } \\ & 100 \mathrm{MHz} \end{aligned}$	below 0.1 mV	$\begin{aligned} & \text { below } \\ & 0.1 \mathrm{nA} \end{aligned}$	$\begin{aligned} & \text { above } \\ & 1000 \mathrm{M} \Omega \end{aligned}$	better than 0.01%	above $100 \mathrm{~V} / \mu \mathrm{s}$	above 1 MHz

which gives an output voltage equal to the input voltage but has a high input impedance and a low output impedance, i.e. an impedance conversion circuit. The op-amp can be connected as shown in Fig. 7(f) to provide this facility.

Common sense precautions

The various circuits set out above give an indication of the multiple uses to which op-amps can be put. However, it is well not to be deceived by the apparent simplicity of the circuit diagrams. Many precautions must be taken in practice to prevent instability and unacceptable d.c. drift.
How well you use op-amps depends to a great extent on your skill. Some circuits you can make up knowing little more than the gain resistance ratio formula and having little practical bench experience. Other circuits call for a fair knowledge of frequency compensation techniques, and a good working experience with practical circuits. Some again call for considerable
practical bench experience and theoretical knowledge. And finally some circuit areas are pushing the limits of currently available op-amps even for the most knowledgeable, skilled and highly experienced.

To give you some guidance on where, as Table 1 sets out types of circuit in degrees of difficulty, in terms of signal frequency, signal voltage, signal current circuit impedances, accuracy, slew rate and full-power bandwidth. In each of these areas it offers suggested limits to work to, dependent on your mathematics, your khowledge and your practical bench experience. There may be some argument among engineers about the exact crossover points between the different areas but the table should serve as a useful guide to tyro in the op-amp art.
(to be continued)

Stability and Reality

Life in a non-linear world

by Thomas Roddam

Playing with models, and from an engineer's standpoint mathematical analysis is just another nursery game, can be a very informative exercise, but it can also be dangerous. The practical system is not a party to your contract with the Devil: the simplifications stay on the paper, in the computer, and never reach reality at all. Searching back in memory and what I suppose could be called memory's memory for really early examples of this, perhaps the most, or one of the most, powerful examples was the deviation of reality from theory in early R.F. amplifiers. They were R.F., not r.f., in those days. They used triode valves, of which I remember the V24, with its filament running straight down the axis of the cylindrical glass tube, and an even earlier type, with a small roll of I don't know what, sealed into a sort of carbuncle which could be warmed to adjust the gas pressure inside.

I don't need to tell readers that if you connect a triode with a tuned-grid circuit and a tuned-anode circuit you get something happening which does not show on the staticcharacteristics. The reaction can, retrospectively, be separated into three schools. The first school, the practical men, ran round in circles uttering cries of alarm and adding resistance everywhere. The cunning circuit men invented eighty-seven different ways of neutralizing the anode-grid capacitance. The modern student knows that if you don't like the world the way it is, you just change it, like by marching to the Met. Office to protest against rain on Easter Monday. Instead of just breaking the triodes, however, cunning old reactionaries added a screen electrode. R.f. amplifiers were stable again until other c.o.r.'s pushed their frequencies and coil Q s up to the limit all over again.

Over the last 30 years there has been enough written on the stability of linear systems to keep the printers the richest union men in the country. The only question these excellent works, among them my own, do not ask is this: who cares about the stability of linear systems? If the system is linear we do not need feedback. Before you write to contradict this statement, I do realize that we use feedback for response control, too, but we could deal with the response by perfectly conventional network techniques. We use feedback because our system is not linear: we discover this at the bench, and then go to the desk to do all the design in terms of linear systems.

Be sure your sins will find you out. The linear assumption works very well if the nonlinearity is small. This usually means a good generous design, but a generous design is one in which the user's money is being given to a charity for inept designers, and money is getting, has become, tight. Non-linear systems may be hard to design, but they may also be cheap to use. We have moved on from "the best design we've got", and "you never had it so good" to "if you don't like the heat stay out of the kitchen", and now on to "no instant solutions".

It is easy to say "stay out of the kitchen", but if you have been selling sausages and instart mash, what do you do when all the customers start asking for souffés? You can't just answer "blow off". At least you need some idea of what it's all about. How do the clever boys design non-linear feedback systems? Can they be discussed in language the likes of you and me understand? Obviously I am willing to try, and I propose, if possible, to make use of Roddam's Rule, "if you can't spell the name, don't use the theory". These pages will not be sullied with the names of Lyapunov and Lermentov, or not immediately. They may contain mention of such drab practical things as chopper regulators and thyristor power supplies.

Non-linearities come in a wide range of styles. In linear systems we find ourselves dealing with only two kinds of thing, terms like $(s+a)$ and terms like $\left(s^{2}+a s+b\right)$, which can be separated out by a number of techniques. What are the basic kinds of nonlinearity? The definition will be in terms of the relationship between input and output and is best shown as some very simple graphs. Fig. 1 shows at (a) an ideal linear system, the input-output characteristic of our everyday dream world. In (b) we see what we may call ideal reality: up to some well-defined level the system is linear, and then saturation sets in. This is the way in which an amplifier with a good deal of feedback behaves. Fig. 1(c) is fairly familiar, too. The mechanical servo people have to live with this as backlash ; we live with it as crossover distortion; the systems theorists call it dead band because they think in terms of the width of the flat band in the middle. Finally we have one version, the symmetrical version, of a relay system. In this version the output is either at $+V$ or at $-V$, depending on whether the relay input is positive or negative. The reason for choosing this is to

Fig. 1. Characteristics of: (a) linear system; (b) system with saturation; (c) system with dead band; (d) relay system.

Fig. 2. Relay with dead band.
enable us to combine a relay and a deadband to give Fig. 2, which shows a typical relay system with a stable centre zero. When the input is enough to operate the relay it moves to one side or the other. We shall come back to relays in a moment.

With linear systems there is no doubt that for any particular value of input we shall get a particular output. For non-linear systems
this is not necessarily true. A very simple example, with a very direct way of drawing attention to itself, is a mains transformer using a C-core. When these were first used in instruments they caused a lot of alarm because sometimes, not always, when you switched on the fuses blew. A standard input, but by no means a standard current was not what we were used to observe. The trouble was caused by a characteristic shaped like Fig. 1(b) combined with hysteresis. We get hysteresis in relay circuits, too, because the pull-in current and the release current are different. Hysteresis gives us the response characteristics shown in Fig. 3. If we add saturation at the top and bottom of Fig. 3(a) we get the well-known shape of an ideal square-loop nickel iron alloy, while Fig. 3(b) is familiar in the Schmitt trigger circuit. The characteristic of Fig. 3(c) is rather less common in purely electronic systems, I think, although I have used it in anti-singing devices for preserving loop stability in a four-wire link between two two-wire systems.

Fig. 3. Hysteresis characteristic (a); ideal relay with hysteresis (b); and relay with dead band and hysteresis (c).

A closed-loop feedback system which has one or more of these non-linearities inside the loop, in addition to the usual phase shifts and amplitude variations, is obviously a fairly complicated thing. But it is the sort of circuit which is getting into the domestic radio and television sets. There is a choice of techniques for studying these circuits, and I would not be surprised if new ones had not appeared between the writing and the reading of this article.

One method which has been widely used is described as the use of an analogue computer. Most, if not all, the non-linear functions can be simulated by using diodes with operational amplifiers. Computer study sounds very classy and responsible but what does it amount to? If the system itself is a low power one and we set it up on the bench and fiddle about with the values it does not sound as grand as saying we are using direct 1:1 correspondence analogue analysis. The

Fig. 4. Smooth variant of the dead band system of Fig. 1(c).
analogue computer method is fiddling without tears: the autopilot can crash the aircraft without even blowing a fuse. Obviously I cannot make an article out of the simple statement "Try changing some of the circuit values": I am not going to say you must work it all out in advance, however. There is a middle road. If you know something about the way in which non-linear systems can be designed entirely on paper, you can make your experimental studies in a more systematic, and thus in an easier, way.

The second method is to choose approximations for the non-linearities which are easy to describe mathematically. We can find a power series for a curve like the one in Fig. 4, write down all the differential equations for the system and then take them round to the friendly neighbourhood mathematician. If you are lucky he will carry out the analysis, so that you can work out how the system behaves with particular values. Answer: it is unstable. It is most unlikely that he will be able to carry out a synthesis procedure to indicate what values will give stability. Analysis means that you do your guessing on paper, where you cannot even stick in a potentiometer or two and try variations quickly.

The method we shall discuss immediately is the use of the describing function. It is a method which has the great advantage of being closely connected with the methods used for linear systems. The describing function for a non-linear element makes certain assumptions which can lead one into trouble, but it is a powerful tool. We assume that if we apply a sinusoidal input signal of fixed amplitude the output will be a periodic wave of the same frequency as the input sinusoid. A rectifier bridge is not, in this context, a permitted function. Trouble can arise in thyristor control systems, in which it is the controller input which is taken to be sinusoidal, if the controlled rectifier system

Fig. 5. Sine wave applied to dead zone characteristic.
jumps to a half-wave condition. Our ideal non-linearities naturally satisfy the conditions. It is a simple task of Fourier analysis to determine the amplitude and phase of the output fundamental when we know the input sine wave and the shape of the non-linear characteristic.

Let us consider this operation in terms of a dead band non-linear characteristic. The input signal we shall call $I_{\max } \sin \omega t$. The dead band has a total width of I_{B}, so that the input and output are related in the way shown in Fig. 5. If we leave out any linear loss or gain, the output consists of the reduced angle of flow sine wave tops shown on the right of the figure. Calling the output $O(t)$, it will have a peak value of $\left(I_{m c x}-I_{B} / 2\right)$ and in the active region

$$
O(t)=I_{\max } \sin \omega t-I_{B} / 2
$$

Taking an angle α such that

$$
\sin \alpha=\left(I_{\mathrm{B}} / 2\right) / I_{\max }
$$

so that α is the phase of the input at which we begin to see an output
$O(t)=I_{\max }(\sin \omega t-\sin \alpha)$ for $\alpha<\omega t<\pi-\alpha$
We want to extract the fundamental component from this. We need not put the working out down here: the answer is :

$$
O_{f}=I_{\max }\left[1-\frac{2 \alpha}{\pi}-\frac{\sin 2 \alpha}{\pi}\right]
$$

This value of O_{f} is, of course, the coefficient in $O_{f} \sin \omega t$: there is no phase angle to worry about. The describing function is the effective gain at a particular amplitude, which we can call $G(a)$, the (a) to remind us that we must know the size of the signal. For the dead band circuit,

$$
G(a)=O_{f} / I_{\max }=\left[1-\frac{2 \alpha}{\pi}-\frac{\sin 2 \alpha}{\pi}\right]
$$

This is, as we might expect, always less than unity, and, also as we might expect, is a maximum for very large signals. Suppose now that we put a device with this characteristic in tandem with the amplifier in the forward path of a feedback loop. When the level at this point is (a), the overall forward gain at one frequency will be

$$
\mu \cdot G(a)
$$

The gain with feedback is

$$
\mu_{f}=\frac{\mu G(a)}{1-\beta \mu G(a)}
$$

We are not allowed to say that if $\mu G(a)$ is large $\mu_{f} \approx-1 / \beta$. This is the approximation we use to show that with enough feedback we get no distortion. Implicit in the use of the describing function, however, is the rule that we throw away the harmonics in order to concentrate our attention on the fundamental, on the term which may go round and round, increasing as it goes. We can, however, use the term $\beta \mu G(a)$ in constructing the Nyquist diagram. A typical ideal form is shown in Fig. 6. This is discussed in some detail in Chapter 7 of Principles of Feedback Dēsign (Iliffe), so we need say no more about it. We draw this diagram first for the $\mu \beta$ of the linear system alone, since $G(a)$ is always less than unity. It will be seen that it goes round a part of a circle centred on the key

Fig. 6. Typical Nyquist diagram.
point, (1,0), which means that we have a step of constant gain margin in the Bode plot. When we turn to the term $\beta \mu G(a)$ we know that for the dead band non-linear device $G(a)$ is always less than unity and that it does not introduce a phase angle. The classy thing to do is to draw a half-size picture inside Fig. 6. The lazy man draws this, enlarges it to twice the size, and notes that the point $(1,0)$ is now where $(1 / G(a), 0)$ used to be: the rest of the diagram need not be drawn, because it just covers the $\mu \beta$ line. The effect of this non-linearity on this type of feedback system is to make it even more stable.

I chose this non-linearity because Fig. 5 is easy to draw. But if we have an arrangement with two branches, as in Fig. 7 we see that what doesn't go up must go down. The describing function for the saturation curve is simply $1-G(a)(\alpha . b$.$) , or$

$$
\frac{2 \alpha}{\pi}+\frac{\sin 2 \alpha}{\pi}
$$

Again this is less than unity. Overload, like cross-over distortion, will not make a stable amplifier unstable.

When you move into the higher reaches of closed loop systems, which means when you really have to earn your keep to try and meet a specification, you find that there is a class of design which is called "conditionally stable". A Nyquist diagram, or the righthand half, which is all we need, might look something like Fig. 8. The phase shift exceeds 180° while the loop gain is still high, but the phase is pulsed back to bring the $\mu \beta$ line round the point $(1,0)$. We are accustomed to the idea that a feedback loop becomes unstable if we increase the gain sufficiently. Here we have a system which also becomes unstable if we reduce the gain. The region marked R in Fig. 8 shows the

Fig. 7. Two complementary non-linearities.

Fig. 8. A conditionally stable system.
values of $1 / G(a)$ for which either of our dead band or saturation non-linearities will make this system unstable.

The problem which the user of conditionally stable systems meets first is quite simply the first switch on. While the heaters are heating. if you use valves, or the various circuit capacitances are charging, the gain is shifting in a way which you cannot reasonably predict. This type of system is therefore normally restricted to systems which are switched on and then left alone for days, months, years. It is reasonable to provide a switch of some kind to change the loop conditions once the start-up period is over. In conventional amplifiers of this kind the nonlinearity is of the saturation type, and as it is simply overloading it is possible to limit the input signal so that the system can never be brought up to the level where the describing function starts to fall below unity. The

Fig. 9. (a) Forward characteristics of a servo amplifier; (b) response with feedback when the amplifier has normal gain and 12 dB above normal gain.
ordinary push-pull inverter without any starting bias is a dead-band system and relies on a kick of some kind to lift the describing function up to the region R. We get, in fact, two different approach paths to the instability region. I am going to take a rather intuitive approach to what happens.

Suppose we give the system some sort of jolt, which brings the non-linear device into a region where, round the loop we get a momentary ring at the right sort of frequency. We know that a system which is not particularly stable has its behaviour dominated by a pole very close to the imaginary axis. This shows up in a typical situation in the way shown in Fig. 9. The high-gain form has a nice peak developing, and we might guess that it will not take much more gain to get the system oscillating at around $\omega=40$ 50. Anyway, we have a "ring" when we shock the circuit, so that $G(a)$ has a meaning. As $G(a)$ brings the critical point inside the loop the system is unstable and the intuitive feeling is that the oscillations will grow until we come out of R on the other side. This gives us two different results for the two nonlinearities we have considered so far. For the

Fig. 10. Approaches to steady oscillation.
dead-band, $G(a)$ is very small if the signal is small, and so $1 / G(a)$ is large, but becomes smaller as the signal grows. In Fig. 10 we come along the path A, the oscillations become self-sustaining at a frequency f_{2} when we reach the $\mu \beta$ curve crossing, but this is an unstable point of instability and the system moves to the other edge and oscillates at a frequency f_{1}. With a saturation effect things go the other way round. Below saturation $G(a)$ is unity. Overloading reduces $G(a)$ until oscillation starts at f_{1}, but the working condition continues along B until at f_{2} there is stable oscillation.

We must not try to be too clever about all this. Once oscillations begin we are producing in the output of our non-linear device a whole batch of harmonics. The describing function approach concentrates attention on the fundamental. The harmonics are there, even if we haven't put them in the analysis, and they will come round the loop and mix together in the non-linearity to produce some extra terms of fundamental. This modulator fundamental, however, gets its phase from the harmonics, so the overall effective value of $G(a)$ now has a phase shift. This is a well-known effect in oscillators, usually associated with the name of Groszkowski, and provides a mechanism which here may carry the working point round between f_{1} and f_{2} away from the axis.

Practical non-linear closed loop systems are not quite so complicated as this. If we take a characteristic like the one shown in Fig. 11 we have only one value of the describing function which corresponds to instability, and that is the point P. If we are travelling in the direction corresponding to saturation, the system will oscillate stably for $O P=1 / G(a)$. If we are travelling in the direction corresponding to a dead-band system we do not get a stable oscillation at P, because, in anthropomorphic terms, the system thinks it can get round to the f_{1} point of Fig. 10. This is, in fact, the point at the origin, but once inside the region $O P$ the oscillations grow until something else comes in to take control.
Relay type non-linearities are becoming more and more important. The switching regulator is one obvious form, and if we convert it from operating with a d.c. reference to operating with a signal as the reference we find that we are talking about what it is fashionable to call a class-D amplifier. For generality we use the symmetrical relay with

Fig. 11. More common $\mu \beta$ path for nonlinear systems.
both hysteresis and a dead band, and we draw the characteristic and label it in the form shown in Fig. 12. The total dead band width is I_{B}, and the hysteresis is h. To find the describing function we apply a sine wave input, $I_{\text {max }} \sin \omega t$. When $I_{\text {max }} \sin \omega t$ reaches the switch-on value, the relay operates and gives unit output from the time that $I_{\max } \sin \omega t$ crosses the level $\left(I_{B}+h\right) / 2$ on the

Fig. 12. Relay with dead band I_{B} and hysteresis h.

Fig. 13. Finding the describing function for the Fig. 12 relay by applying a sine wave.
way up until it falls again to $\left(I_{B}-h\right) / 2$, when the output becomes zero. For the other halfcycle we just put in minus signs, and we get the wave-form shown in Fig. 13.

The size of the fundamental component of this sort of quasi-square wave is easily worked out. One very easy way of finding it is to look it up, in Bedford and Holt, for example.

$$
\left|O_{a}\right|=\frac{4}{\pi} \sin (\delta+\gamma) / 2
$$

which has a maximum value of

$$
4 / \pi=\sqrt{2 / 1} \cdot 11
$$

when $(\delta+\gamma)=180^{\circ}$. There is also a phase angle. The fundamental component of the output lags the input, because of the hysteresis, by an angle of $(\gamma-\delta) / 2$. The describing function is then

$$
G(a)=\frac{4}{\pi I_{\max }} \cdot\left|\sin \frac{\delta+\gamma}{2}\right| / \frac{\gamma-\delta}{2}
$$

δ and γ are expressed by a pair of equations which may be written rather compactly

$$
\left.\begin{array}{l}
\delta \\
\gamma
\end{array}\right\}=\arccos \left(\frac{I_{B} \pm h}{2 I_{\max }}\right)
$$

The size of the describing function is very dependent on the input. For inputs of less
than $\left(I_{B}+h\right) / 2$ there is no output at all, and so $G(a)=0$. When $I_{\max }$ is just equal to $\left(I_{B}+h\right) / 2$ the theoretical situation is that the output jumps to a value which depends on h. The angle δ is minutely more than zero, while

$$
\gamma=\arccos \left(I_{B}-h\right) /\left(I_{B}+h\right)
$$

I have said that this is a theoretical situation, because anyone who has worked with circuits at all related to this class will know that there is always some lack of symmetry and that the transition is marked by a narrow range of "half-waving", or even by a range in which one gets the effect some of us associate with the gas engine or the Bofors gun. This region is not a trivial academic one in some applications: thyristor controlled power supplies may show this effect with alarming results.
As the input signal is increased the output rises, and at first this rise is rapid: roughly this takes place when δ is less than about 30 degrees. Then, however, the relay unit begins to look more and more like a limiter, so that the output stays nearly constant as the input rises. The describing function starts to fall. The phase angle when the circuit just starts to switch is clearly

$$
\frac{\gamma}{2}=\frac{1}{2} \arccos \left(\frac{I_{\mathrm{B}}-h}{I_{B}+h}\right)
$$

but with a very large input the phase has fallen to zero. The behaviour of the describing function is shown in Fig. 14.
We must go back to the basic loop equation. We write

$$
\mu_{f}=\frac{G(a) \mu}{1-\mu \beta G(a)}
$$

I have used the minus sign here because it puts the diagram on the page right-handed, and because in designing systems I think:

$$
\begin{aligned}
|\mu \beta| & =1 \\
\text { phase } & =180^{\circ}
\end{aligned}
$$

is the critical point, and I want to work with phase margins, so that if $\theta=150^{\circ}$ I see a $+30^{\circ}$ margin. This is engineer's terminology: I turn the diagram upside down because I said before I started that this amplifier or whatever was to have negative feedback. When I reverse down the road I just don't think I am driving at -5 m.p.h. The critical condition is very simply

$$
1-\mu \beta G(a)=0
$$

This is the commonsense condition, that $\mu_{f} \rightarrow \infty$. It corresponds to

$$
\mu \beta=1 / G(a)
$$

Fig. 14. Shape and angle of describing function for relay with hysteresis.

Fig. 15. Nyquist plot of $1 / G(a)$ for relay.
We can see if this will happen by plotting $\mu \beta$ and $1 / G(a)$ separately, and seeing where they meet. We did this implicitly in Fig. 10, although as $G(a)$ was a zero phase term it did not show very clearly. In Fig. 15 we see that hysteresis lifts the $1 / G(a)$ curve away from the axis and because it offers an extra lag it will tend to make a typical system unstable.
Thus far we have really been working in terms of linear systems all the time. The describing function is a dodge which turns a non-linear system into the equivalent of a linear system with a variable inside the feedback loop. This is one important mode of operation which I hope we can discuss in a later article. A quite different situation appears if we allow the loop to be an unstable one in the language of linear systems. To make the diagram easy to draw I shall assume that the feedback amplifier is a d.c. amplifier: if you prefer you can consider that the whole picture represents one millisecond in the life of an audio amplifier which has, as its input, the note from the biggest ocarina in the world. In accordance with the principle discussed in the study of stability in the time domain we start, not with a whimper, but a bang. There are two different ways in which the system may behave. Essentially they are shown in Fig. 16. In the upper diagram, (a), the system oscillates with an amplitude which is the same

Fig. 16. The transient response of two nonlinear unstable systems, (a) and (b).
sort of size as the signal itself. It makes matters even worse if it is, as the diagram shows, at a frequency which might be that of a signal. In (b), once the transient which is associated with the linear behaviour dies down the system buzzes away producing a small, high frequency, oscillation. In the use of non-linear systems we need to make a subjective judgment. Formalists, who only read my articles because they believe, like Sir Lawrence Jones, that it does you good if something.makes your blood boil at regular intervals, will refuse to allow us to follow the rule: "when I use a word, it means just what I choose it to mean-neither more nor less." But an engineer must take the view that "when my customer makes a word do a lot of work like that, he always pays it extra". A very small high frequency ripple on a d.c. supply is usually tolerable, just as the switching frequency ripple on a class-D amplifier output annoys only the local bats. From a user's point of view the response
shown in Fig. 16(b) is the response of a stable system. De minimis non curat lex.
If the system is an amenable one there will be just one intersection between the two curves, of $\mu \beta$ with frequency as a parameter and $1 / G(a)$ with amplitude as a parameter. The intersection defines a frequency and a value of $I_{\text {max }}$. It is easy to see whether this is a small oscillation outside the frequency range of interest. There is often some sort of low-pass effect in the forward path and the output ripple may be greatly reduced by this part of the circuit. A more complicated system can have a number of modes of operation. It may be stable at one level of signal, may change to the acceptable type of instability at another level and may, finally, move into the gross kind of instability at a third level.
The elegance of the describing function treatment, in which the conventional Nyquist diagram is combined with a plot of the inverse describing function, can be extended to study the nature of multiple intersections. It is, however, an elegant illusion. The solution which is obtained at the end of the day is not as precise as the analysis suggests. The harmonics have been neglected, and although they are not in the mathematics they are there in the circuit. The describing function treatment tells you the sort of way the circuit will probably work, the sort of answer you may expect. It gives you hints on how to modify the system to get the answer you want.
The advantage which is gained with nonlinear loops may be very real. Of course there are the special cases in which the problem is merely to make sure that a system which works well for small inputs will not get out of hand if it gets a momentary overload. These are important in some servo system problems. Our main interest comes in systems which are set in the tolerably unstable zone. These can be thought of as systems in which we have chosen to work with a very high value, for the particular problem, of $\mu \beta$. The nonlinearity then acts to make the circuit selfadjusting, keeping up as high as possible without the instability providing a runaway condition. Like the discreet use of positive feedback inside a negative feedback loop, this process gives better performance at minimum cost in equipment.
We must, in another article, examine an alternative way of dealing with non-linear systems. Then we may turn to some of the applications, and see if we can get some idea of what we are doing before we start to build a regulated power supply which does not, to use the modern jargon, produce thermal pollution of the environment. Cook the equipment, I call it.

Books Received

20 Solid State Projects-for the car and garage by R. M. Marston. The car is a natural target for experimenters in electronics. The attraction is the car's ubiquity and the low cost of electronic devices. As a bonus the 12 -volt supply makes bulky and costly power supplies unnecessary. The car seems a popular way of showing off all manner of gadgets and gimmicks so exhibitionism might also play a large part.

The devices in Marston's book are not really gimmicks-they all have a useful function. Unlike many other books of the multiple project kind, the circuits in this one have been tested by the author. Some in fact have already been published, for instance the capacitordischarge ignition system originally appeared in the January 1970 issue of Wireless World. They include warning indicators of various kinds (e.g. low fuel level, engine over-heating, lighting failure), a tachometer and windscreen wiper pause controls. Two are for garage use-a drill speed control and a battery charger. Not all the 20 circuits are independent of each other-some are add-ons to add ons like the tachometer excess speed indicator. Full constructional details are given with each project, together with adequate parts lists. Pp.115. Price $£ 1.20 \mathrm{limp}, £ 1.80$ cased. Iliffe Books imprint of Butterworth \& Co., 88 Kingsway, London WC2B6AB.

Industrial Electronics by N. M. Morris Intended for technician and technician engineer students of electronic engineering this book is written to be used with up-to date syllabuses for courses leading to City and Guilds of London Institute examinations. At least, we assume this is so from the numerous problems given at the ends of chapters, which are mostly taken from C.G.L.I. papers. (Numerical solutions are given.) The author, principal lecturer in electrical and electronic en gineering at North Staffordshire Polytechic, gives a good grounding in circuits and devices for industrial application, with chapters on semiconductor devices. photoelectric devices, power converters and filters, amplifiers, feedback, oscillators, switching circuits, power supplies and measuring instruments. Discussion of vacuum and ges-filled devices comprises the first 15% of the book as they still fulfil useful engineering functions. The sections on semiconductor devices, which discuss most currently available kinds, make no mention of diode thyristors-leaving the reader with the impression that the s.c.r. and the triac are the only kinds of thyristor. Switching circuits have been split into two sections-multivibrators appear in one chapter dealing with feedback circuits, and the concept of Boolean algebra and logic in a chapter which includes thyristor power switching circuits and-oddly-the

Schmitt trigger circuit. Chapters on regulated power supplies and measuring instruments are particularly appropriate and useful for the student. The discússion on frequency compensation of oscilloscope attenuators should save many students from getting perplexed over seeing distorted rectangular waveforms. An adequate index is provided. Pp.376. Price £2.40. McGraw-Hill, Shoppenhangers Road, Maidenhead, Berks.

Foundations of Wireless and Electronics (8th edition) by M. G. Scroggie. This book, first published in 1936, gives a full treatment of the elementary principles of electronics. Previous technical knowledge is not assumed. New material is included on transistors, i.cs, frequency modulation, v.h.f. and u.h.f., transmitters and television. New chapters are devoted to waveform generators and computers. Pp. 521 with nearly 400 diagrams. Prices $£ 3.00$ for hard back and $£ 1.80$ limp. Iliffe Books, The Butterworth Group, 88 Kingsway, London WC2B 6AB.

Radio Transmitters by V. O. Stokes. This book provides a practical account of the design of power amplifiers at frequencies up to 30 MHz . Reasons are given for the choice of power output, valve and component types, and circuit configuration. It is suitable for readers with a general knowledge of radio theory. Part I concerns cost and reliability in satisfactory designs. Part II covers the design of mediumand low-power amplifiers. The treatment includes discussions of wideband techniques, amplifiers for intermediate stages, ham requirements, and the use of solid-state devices for linear and non-linear applications. Modern transmitter techniques are described and recent developments discussed in engineering terms. Pp.190. Price $£ 4.50$. D. Van Nostrand Co. Ltd., 46 Victoria Street, London S.W.I.

Guide to Broadcasting Stations (16th edition). This revised list of I.w. and m.w. European stations, s.w. transmitters throughout the world, and the European v.h.f. sound broadcasting channels, is preceded by chapters on receivers, aerial and earth systems, propagation, signal identification, and reception reports. Pp. 160. Price 50p. Iliffe Books, The Butterworth Group, 88 Kingsway, London WC2B 6AB.

Tuners and Amplifiers by John Earl, is a guide book written to assist in the buying of a tuner, an amplifier or a tuner-amplifier. What is presented is a general picture of design procedures, with emphasis on the increasing use of i.cs, and ceramic and crystal filters. Most of the terms of specification for tuners and amplifiers are given explanation. Useful practical points are made where suitable. Pp.187. Price £2.10. Fountain Press Ltd, 46-47 Chancery Lane, London W.C. 2 .

Tape Recorders by H. W. Hellyer. This is a companion to 'Tuners and Amplifiers' in the 'how to choose and use' series. The primary aim is to guide the buyer on what to look for in the way of functions, type variations, and specifications. Sections of the book cover maintenance, servicing and making test measurements. Pp.239. Price £2.25. Fountain Press Ltd.

ITV 1971, the new guide to Independent Television, contains over forty pages of technical and semi-technical information. There is a question-and-answer section on colour television, details of ITA transmitters (power output and location) and an account of the regional pattern. Pp.240. Price 75p. ITA, 70 Brompton Road, London S.W. 3 .

Electronic Building Bricks

9. The amplifier

by James Franklin

The purpose of an electronic amplifier, whether in a hi-fi equipment or an aircraft control system, is to increase the power of an electrical signal (Part 8) to enable it to operate some unit for which it would otherwise be too weak. The small electrical output of a gramophone pickup must be amplified to provide sufficient power to operate the relatively heavy mechanism of a loudspeaker.

A mechanical analogy is servo-powered steering in a motor car. The steering gear follows the driver's steering-wheel movements in exactly the same way as in a conventional car, but the servo system provides additional mechanical power so that a normal pull on the steering wheel will operate a heavy steering mechanism. What is happening is that the steering wheel movements merely control through valves a source of hydraulic power applied to the steering gear. Similarly, in an electronic amplifier the low-power input signal is used to control a relatively large supply of electrical power so that it will "drive" some load (e.g. another electronic "brick") in accordance with the signals.

To understand how this principle of electrical power control actually works in an amplifier we must go back to the idea of the electronic circuit (Part 5). In a working amplifier there are basically two circuits: a high-power circuit for driving the load and a low-power circuit for controlling the highpower circuit. This is shown schematically in Fig. 1. Here the high-power circuit contains an e.m.f. source (B) capable of

Fig. 1. This diagram shows that the basic function of an amplifier is to enable high power to be controlled by low-power variations.

Fig. 2. Graphs of power varying with time: the lower one is an input (controlling) signal applied to an amplifier; the upper one is the resulting output signal.
generating sufficient energy to operate the load to its fullest extent. The load itself we have shown as an output transducer (Part 4) and this could be, for example, a loudspeaker. In the low-power circuit the e.m.f. source (A) need generate only the small amount of energy necessary to enable it and the input transducer-say a carbon microphone-to produce a signal. (Alternatively the transducer may be of the converter type, Fig. 1(a), Part 4, which generates its own electrical energy-say a moving-coil microphone.)

The amplifier proper, shown as a box, acts so that any variation of power with time (a signal) in the low-power circuit results in a corresponding but larger variation of power in the high-power circuit, as indicated by the linking arrow. What we mean by "corresponding but larger" variation can be seen from the curves in Fig. 2, which are both graphs of power (in milliwatts) with time (in milliseconds). The high-power signal follows faithfully the variations of the low-power signal, but one can see that the changes of power in the former are greater than the corresponding changes in the latter. This, in fact, is what amplification is, and we measure the amount of it by the following formula:
Amplification $=\frac{\text { Output signal change }}{\text { Corresponding input signal change }}$ In Fig. 2, for example, the amount of
amplification can be calculated from what happens during the short interval of time t shown on the horizontal scale. During this period the low-power signal increases from 1 to 2 milliwatts (that is, by 1 milliwatt) while the resulting high-power signal increases from 3 to 6 milliwatts (by 3 milliwatts). Thus

$$
\text { Amplification }=\frac{3 \text { milliwatts }}{1 \text { milliwatt }}=3
$$

Whatever power change occurs in the input circuit will result in a power change 3 times larger in the output circuit. This number, a factor, is called the gain of the amplifier.

The extra power in the output signal is, of course, drawn from e.m.f. source (B) in Fig. 1 and is indicated in Fig. 2 by the shaded area ($=$ energy, see Part 8).

How does the amplifier provide the "means of control" in Fig. 1? In Part 7 we discussed methods of controlling electron flows in circuits and in particular a method using the property of resistance. From this idea one could go on to envisage some sort of arrangement in which the electron flow, and hence power, in the output transducer circuit is controlled by a variable resistor, the resistance of which is mechanically varied by a motor, which in turn is actuated by the signal in the low power circuit. Such a system would work but in practice would be cumbersome and expensive and would have severe limitations of performance. Fortunately there are electronic devices which perform the resistance-controlling function without needing mechanical operations-notably the thermionic valve and the transistor.* Each of these devices provides a path for electron flow, and allows the electron flow rate in this path to be varied in proportion to a low-power control signal. As can be seen in Fig. 3, the high-power circuit and the low-power circuit are completed through the electronic control device (as shown by the broken lines).

Fig. 3 is a purely functional diagram of a "one-stage" electronic amplifier. In practice resistors are used in conjunction with the control device, to set the currents through it to required values; and several such stages can be connected in a line, the output of one stage providing the input for the following one.

* From the point of view of external function the word 'valve' would be a good name for both, but the thermionic device came first and so claimed it. 'Transistor' is a contraction of 'transfer resistor'.

Fig. 3. Use of an electronic device to vary the high power in proportion to the low-power changes.

A straightforward design employing the well known '709'

by J. Johnstone

The meter described in this article covers the ranges 1 mV to 300 V and $1 \mu \mathrm{~A}$ to 300 mA , switched in a 1-3-10 series. The input impedance on the voltage ranges is $1 \mathrm{M} \Omega / \mathrm{V}$ up to 30 V , and a constant $30 \mathrm{M} \Omega$ on the 100 V and 300 V ranges. The voltage drop across the input terminals is 1 mV at $1 \mu \mathrm{~A}$, rising to 10 mV on all other current ranges.

The voltage multipliers and universal shunt, together with their associated switches, are shown in Fig. 1. Ranges up to 30 V are obtained by switching multiplier resistors into circuit. As semi-precision resistors are not readily available in values above $10 \mathrm{M} \Omega$, the 100 V and 300 V ranges are obtained by switching shunt resistors into the bottom end of the potential divider. These resistors are explained under the section describing setting up. If a single chain of resistors were used for the universal shunt some awkward values
would be involved in obtaining the $\times 3$ ranges; this is avoided by switching in an additional shunt resistor for each range.

The resistors for both the shunt and multiplier chain should be either high stability carbon film or metal film. Metal film resistors are better than carbon film as far as stability, noise level, and thermoelectric effects are concerned. Metal oxide resistors are not suitable, as some types have a very marked thermo-electric effect, generating around $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. This effect is due to the junction of the end cap and track forming a thermocouple, and should not be confused with the temperature coefficient of the resistor itself.

In order to reduce the level of input current the integrated circuit amplifier is preceded by a matched pair f.e.t. stage. The loop gain of the amplifier is defined by R_{26}, R_{27} and $R V_{5}$, and zero is set by adjusting $R V_{6}$. Frequency compensation is obtained by R_{31},
C_{1} and C_{2}, and two diodes, D_{1} and D_{2}, protect the amplifier from excessive inputs. The layout of the amplifier is not critical, but long leads should be avoided, and the instrument should be enclosed in a metal case. In the author's meter, the multiplier and shunt resistors, with the exception of the potentiometers and R_{21} and R_{22}, are mounted directly on to the switch terminals. The amplifier circuit is mounted on a piece of matrix board. Range and function switcheswhich were made from Maka-switch wafers-and the set zero control are mounted on the front panel, together with the meter and the input terminals for the test leads.

Calibration

The meter is set up by adjusting the five potentiometers and R_{15} and R_{16}. Four 1% resistors are required: $10 \mathrm{M} \Omega$, $1 \mathrm{M} \Omega$ and 1Ω, all 0.5 W , and 100Ω

Table 1

Range	Use Fig.	R_{a} Ω	V_{S} $V_{\text {ols }}$	set f.s.d.
1 mV	2(a)	-	10	$R V_{3}$
10 V	2(b)	0	10	$R V_{1}$
100 V	2(b)	0	100	$R V_{2}$
300 V	2(b)	0	300	$R V_{3}$
$3 \mu \mathrm{~A}$	2(b)	10 M	30	$R V_{4}$
100 mA	2(b)	100	10	R_{13}
300 mA	2(b)	100	30	R_{16}

2W-also a low ripple power supply able to deliver 300 mA at 10 and 30 V , and 1 mA at 100 V and 300 V is required. The order of adjustment is given in Table 1. The circuit of Fig. 2(a) is used to set the 1 mV range. For the 10,100 and 300 V ranges the power supply is connected directly to the meter terminals. The three current settings are obtained

Fig. 2. (a) Circuit to adjust the ImV range; (b) circuit used to adjust the other ranges.
by using the circuit of Fig. 2(b). Resistors R_{15} and R_{16}, are made from short lengths of resistance wire, and may be adjusted by filing away small amounts. If their value is too high, solder may be run along the wire. At least half an hour should then be allowed for the shunts to cool to room temperature, before any further adjustments are made.

The adjustment of $R V_{5}$ sets the amplifier gain required for 1 mV to drive the meter to f.s.d;; $R V_{1}$ is then adjusted to correct the overall value of the universal shunt and potential divider. $R V_{2}$ and $R V_{3}$ reduce the amplifier input on the 100 and 300 V ranges by further shunting the universal shunt. $R V_{4}$ has a similar effect on the $3 \mu \mathrm{~A}$ range. In the author's meter all the potentiometers are multiturn presets; these offer very fine adjustment, but single turn wirewound types could be used and would offer a substantial reduction in cost.

Amplifier zero drift is negligible, after a five minute warm-up period; the zero temperature coefficient has not been properly checked, but appears to be in the region of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$; noise level is negligible. No calibration drift has been found after five months' day-today use in the laboratory. With intermittent use a battery life of about one year may be expected, as the current drain is very small.

COMPONENTS LIST

Resistors (fixed)

The prefix R and the suffix Ω are omitted in the list below

	2 k	12		23 -
2	7 k	13	9	24
$3-$	20k	14	0.9	25
4 -	70k	15	0.1	$26-100$
5	200k	16	0.05	$27-100$
6 -	700k	17 -	0.5	$28-47$
7 -	2 M	18	5	29-18
8 -	7 M	19	50	30
9	20M	$20-$	00	$31-1.5$
10	9 k	21	30	32
11-900				

Resistors (variable)

The prefix $R V$ and the suffix Ω are omitted in the list below

$1-1 \mathrm{k}$	$3-1 \mathrm{k}$	$5-500$
$2-1 \mathrm{k}$	$4-500$	$6-50 \mathrm{k}$

Resistors (additional information)
All resistors up to R_{22} as well as R_{24} and R_{25} should be 1% high stability carbon,
or metal film. Other resistors should be of similar type, but may be of 5% tolerance. All potentiometers should be wirewound types. Although the resistors and potentiometers are operating at very low power levels, a minimum power rating of 0.5 W should be chosen, as this will result in improved long-term stability.

Capacitors

The prefix C has been omitted in the list below

$1-5,000 \mathrm{p}$	$3-200 \mu, 16 \mathrm{~V}$
$2-200 \mathrm{p}$	$4-200 \mu, 16 \mathrm{~V}$

Other parts

Transistors - TIS70(Texas)
Integrated circuit - LM709 (Nat. Semiconductor) or similar
Diodes - OA200
Meter-f.s.d. $=100 \mu \mathrm{~A}$
S_{1} - 4-pole, 12-way Maka-switch
S_{2} - 4-pole, 3-way Maka-switch
Batteries - PP4 or equivalent

Announcements

The subject of discussion at a residential vacation school being organized by the Electronics Division of the I.E.E. is major developments in circuit theory. The school will be held at the University College of North Wales, Bangor, from 22nd March to 2 nd April. Details are available from the Secretary, I.E.E., Savoy Place, London WC2R OBL. Ref: LS(E).

A residential vacation school on Semiconductor Circuit Design is to be held at the University College of Swansea from 19th to 23rd April. Further details may be obtained from the Secretary, I.E.E., Savoy Place, London WC2R OBL.

The I.E.E. is organizing a microwave solid state residential vacation school at Leeds University from 12 th to 23 rd July. Further information can be obtained from the Divisional Secretary (Electronics), I.E.E., Savoy Place, London WC2R OBL.

The Electronic Components Board have moved from Winsley Street to Carrier House, Warwick Row, London S.W.1. This change of address also applies to British Radio Valve Manufacturers' Association, Electronic Valve \& Semiconductor Manufacturers Association, Radio \& Electronic Component Manufactureis Federation and Conference of the Electronics Industry. Tel: 01-828 7411.

The Electronic Engineering Association has moved into new offices at Leicester House, 8 Leicester Street, Leicester Square, London WC2H 7BN, which it shares with the British Electrical \& Allied Manufacturers' Association.

The Society of Electronic and Radio Technicians is to hold a weekend residential symposium on marine electronics at Churchill Hall, University of Bristol, from 9th to 12th July.

The British Association for Brazing and Soldering has been formed with offices at The British Non-Ferrous Metals Research Association, Euston Street, London N.W. 1

The dimensional standards room at the Mitcham plant of Mullard Ltd has received a certificate of approval for a wide range of mechanical measurements from the British Calibration Service.

Echometrix Ltd, 113-115 The Broadway, Leigh-on-Sea, Essex, have been appointed U.K. agents for test equipment manufactured by Nordemende, of Bremen, W. Germany.

Coventry Controls Ltd, Godiva House, 49 Allesley Old Road, Coventry, CV5 8BU, are now an agent for "Werma" of West Germany, manufacturers of audible signalling equipment.

It's new and great from Shure...

the most-for-your-money 588 Series

This is the one. The mike with the most.
A new fine quality Unisphere
that gives you maxi features at a mini price.
See what you get

A summary of various tubes based on the vidicon

by D. J. Gibbons*, M.A., Ph.D.

Ten years ago the task of generating a television signal was a job attempted only by the expert. Although the simple vidicon was on the market the majority of television pick-up tubes in use then were photoemissive types which were more difficult to set up for good signal quality. In addition, the most important application of television was for broadcasting entertainment programmes where picture generation was largely confined to the big studios. Today the position is changing rapidly, because the comparative stability and ease of setting up of the modern vidicon (or one of its derivatives) has made it a camera tube that is suitable for a large number of applications. Among these are blackand white and colour television broadcasting, aerospace telemetry, industrial and scientific c.c.t.v., and amateur television. Further applications from a very wide variety are discussed below. The greatly enlarged range of tubes based on the vidicon has made it much easier to choose the best tube for the job, and many new applications have now been brought within the scope of the vidicon or its derivatives.

Now that a good c.c.t.v. system can be purchased for less than an audio hi-fi set up ${ }^{2}$ television signal generation, whether for a picture or not, is becoming increasingly within the grasp of the low-budget user in the industrial, educational, scientific and medical spheres as well as of the amateur and home user.

A review of the basic principles involved in generating a television signal is to be found in Ref. 7. The present comments and tables are intended to help make the vidicon a much more familiar device to those people whose primary task is not the generation of pictures for television broadcasting. To do this well still needs the co-operative skills of equipment manufacturers, lighting experts, cameramen and technicians in a studio. This article should be helpful to the ever-increasing number of users who now use a vidicon with much the same confiderice as they select and use a photographic camera or a transistor.

The vidicon has lent itself to modifications more than any other pickup tube. Fig. 1 gives some idea of the

[^8]TABLE 1 Resolution of various types of Vidicon

TV lines	Points/ line	Line pairs/ diameter	M/M integral mesh	M / M sep. mesh	E / M or M/E	E/E	High resn. E / E	$\begin{aligned} & 115 \mathrm{~mm} \\ & \text { FPS } \end{aligned}$
0	0	0	100	100	100	100	100	100
100	133	83	95	96	98	89	99	100
200	267	167	80	90	88	71	90	93
300	400	250	60	81	71	45	62	70
400	533	333	45	70	57	28	39	52
500	667	417	34	54	40	17	28	39
600	800	500	25	39	25	19		30
700	933	583	18	30	15	7		23
800	1067	667	90	25	9			17
900	1200	750						12
1000	1333	833						8
Sourc	data		1	2	3	4	5	6

Symbols: M-magnetic. E-electrostatic. FPS-focus projection scanning.
With a high quality lens system and good scanning and focus coils, the resolution of most vidicons will lie within 10% of these modulation figures. The principal exceptions are tubes of diameters other than 26 mm . the silicon vidicons. and lead oxide types.
Source of data: (1) EEV Co abbreviated catalogue (curve 5), (2) EEV Co abbreviated catalogue (curve 7). (3) Westinghouse slow-scan vidicon data sheet. (4) Westinghouse slow-scan vidicon data sheet, (5) EMI all-electrostatic vidicon data sheet. (6) GE. FPS vidicon data sheet.
present-day range of tubes; the selection shown here is by no means complete.

Most modifications to the basic studio broadcasting versions have been in the directions of matching the spectral response to regions of the electromagnetic spectrum outside the visible and increasing the sensitivity in weakly illuminated conditions. Other special versions, however, are made for extra-high resolution pictures, for severe environmental conditions such as vibration or nuclear radiation, for applications where size is a constraint, for portable light-weight transistorized cameras, for slow-scan TV, and for colour broadcasting cameras.

Roughly speaking diameters of basic vidicons (excluding coils) range from 13 to 43 mm and lengths from 86 to 265 mm . Almost the entire electromagnetic spectrum can be covered, from 200 keV X-rays (8 pm) through the u.v. and visible to 2.4 microns in the i.r. Sensitivities range from minimum target white light illumination levels of 1.0-10.0 lux for a simple broadcast quality or visible-light industrial quality vidicon to HO_{2}^{-} lx for an intensifier vidicon or SEC tube. Light levels producing a total incident light flux on the target of less than about $10^{-6} \mathrm{~lm}(0.01 \mathrm{~lx}$ on the faceplate of a 26.7 mm diameter vidicon) give rise usually to a more or less "laggy" picture, that is, one in which the signal generated by fast moving objects becomes smeared because a small amount of image retention occurs, fading in the tens of milliseconds range.

Fig. 1 Silhouettes to scale of modern vidicons and tubes based on the vidicon. A, intensifier vidicon; B, Esicon or SEC tube (TH-CSF and Westinghouse); C, Ebitron (EMI); D, F, G, H, K, L, M, various vidicons; E, integral-coil vidicon (GE); J, Printicon (EMI).

Vidicons vary over wide limits in this respect, but the lead oxide types in particular have very low lag. Other types are manufactured to provide an extended lag response for special applications (see Table 5). General broadcast and industrial quality vidicons are increasingly used to generate particularly high quality and stable television signals whenever the scene illumination is capable of being maintained at a reasonably high level. Examples are TV film scanning or remote studio application, as well as many industrial scientific, educational, and c.c.t.v. uses where lighting can be readily controlled, or where broadcast-quality short lag is not demanded with very fast moving scenes.

Leaving aside for the moment the question of lag, target illumination levels, lower than $10^{-2} \mathrm{~lx}$ cannot be used at standard picture repetition rates because the video output signal from the vidicon becomes very noisy due to the particulate nature of the light. However, target illumination levels below $10^{-3} \mathrm{~lx}$ can be used by integrating the signal for several tens of seconds on a special slow-scan vidicon (Table 7).

If a lens optics system is used and the various tubes are put in order of white-light sensitivity (defined as video signal output for a given scene brightness), the list is as follows: Ebitron secondary electron conduction (SEC), intensifier vidicons, silicon and lead oxide vidicons, 22 mm vidicons, 13 mm vidicons. For a given depth of focus, the sensitivity of a camera using a lens system and a vidicon with a linear light transfer characteristic depends only on the f-number of the optical system and the vidicon signal output for a given number of lumens incident on the faceplate. Thus the camera sensitivity does not depend on tube diameter unless fibre-optics is used exclusively, in which case the sensitivity is greater for large diameter fibre-optics faceplate vidicons.

Manufacturers tend to specify in different terms the sensitivity of tubes in which the light transfer characteristic is not linear, since questions of light and signal level, dark current and emergence of background blemishes all need to be specified unless purely subjective criteria are used ${ }^{9}$.

It is thus a simple matter accurately to compare the sensitivities of the silicon, lead oxide and ultra-violet types of vidicon, the SEC tube and the Ebitron, but not those of intensifier vidicons, or standard types for visible light applications, as shown in Table 2. These tubes have a less-than-linear light transfer characteristic and thus have a higher sensitivity at low light levels. Uniformity of dark current is more important than its absolute value, since all that is needed in the video channel to compensate for a constant dark current is admixture of a d.c. potential, although manufacturers of broadcast-quality colour cameras prefer negligible dark current ${ }^{10}$. The foregoing list can therefore only be used as a guide.

The usual video bandwidth for a

TABLE 2 Basic Vidicons for Visible Light

Type No.	Manufacturer	Scanning	Focus	Mesh	Spectral curve*	Max. length (mm)	Max. bulb dia. (mm)	Recommended applications
TH9806	TH-CSF	M	M	1	D	165	26.7	e. b
TH9806PA	TH-CSF	M	M	S	D	165	26.7	e. b
TH9807	TH-CSF	M	M	1	D	165	26.7	t. b
TH9807PA	TH-CSF	M	M	S	D	165	26.7	t. b
TH9808	TH-CSF	M	M	1	D	165	26.7	i
TH9808PA	TH-CSF	M	M	S	D	165	26.7	i
TH9812	TH-CSF	M	M	1	D	165	26.7	i'
TH9812PA	TH-CSF	M	M	S	D	165	26.7	i'
TH9813	TH-CSF	M	E	1	D	165	26.7	w
TH9814	TH-CSF	M	M	1	D	135	26.7	i. m
TH9814PA	TH-CSF	M	M	S	D	135	26.7	i. m
TH9815	TH-CSF	M	M	1	D	165	26.7	z
TH9815PA	TH-CSF	M	M	S	D	165	26.7	z
TH9817	TH-CSF	M	M	1	D	165	26.5	b. c
TH9817PA	TH- CSF	M	M	S	D	165	26.7	b. c
TH9821	TH-CSF	E	E	s	D	165	26.7	s. m
TH9823	TH- CSF	E	M	S	D	112	26.7	w, i, S
TH9824	TH-CSF	E	E	S	D	165	26.7	s
TH9830PA	TH-CSF	M	M	S	D	200	38.5	a, t. b, c, i'
TH9831	TH- CSF	M	E	1	D	265	38.5	b, c, t
9677 S1	EMI	M	M	S	c	159	26.6	b. q
9677 S2	EMI	M	M	s	c	159	26.6	b. e
9677 F1	EM	M	M	S	c	159	26.6	q. 1
9677 F2	EMI	M	M	S	c	159	26.6	t.e
9677 B	EMI	M	M	S	C	159	26.6	L.i', z
9677 M	EMI	M	M	S	c	159	26.6	r
9677 C	EMI	M	M	S	c	159	26.6	i
9677 Amateur	EMI	M	M	s	c	159	26.6	a, p. x
9706 S 1	EM	M	M	S	c	130	26.6	b. 9
9706 S2	EMI	M	M	s	c	130	26.6	b, e
9706 F1	EMI	M	M	s	c	130	26.6	t. q
9706 F2	EMI	M	M	S	c	130	26.6	e. t
9706 B	EMI	M	M	S	c	130	26.6	L.i', z
9706 C	EMI	M	M	S	c	130	26.6	i
9706 M	EMI	M	M	S	C	130	26.6	r
9728 S 1	EMI	M	M	s	c	159	26.6	b, a
9728 S2	EMI	M	M	S	c	159	26.6	b. e
9728 F1	EMI	M	M	S	c	159	26.6	t. q
9728 F2	EMI	M	M	s	c	159	26.6	t. ${ }^{\text {e }}$
9728 B	EMI	M	M	S	c	159	26.6	L. i^{\prime}, z
9728 C	EMI	M	M	S	C	159	26.6	i
9728 M	EMI	M	M	S	c	159	26.6	r
9728 Amateur	EMI	M	M	s	c	159	26.6	a. p, x
9730 B	EMI	M	M	S	c	130	26.6	L. R.i.m. n
9730 C	EMI	M	M	s	c	130	26.6	i, R, m. \boldsymbol{n}
9730 M	EMI	M	M	S	c	130	26.6	r. R
9745	EMI	E	E	S	C	159	26.6	w, i
9877	EMI	M	M	s	D	159	26.6	S. U
9806	EMI	M	M	S	D	130	26.6	S. U
9828	EMI	M	M	s	D	159	26,6	S. U
9845	EMI	E	E	S	D	159	26.6	S. w. U
1255	Heimann	M	M	1	B	162	26.6	g. 0
2255 NOR	Heimann	M	M	S	B	162	26.6	b.c
2255 IND	Heimann	M	M	s	B	162	26.6	i
2255 AMR	Heimann	M	M	s	B	162	26.6	a, x, r
2255 FIM	Heimann	M	M	S	B	162	26.6	,
2255 ROE	Heimann	M	M	S	B	162	26.6	2. L
2255 ENT	Heimann	M	M	S	B	162	26.6	a. p. x
2700	Heimann	M	E	S	B	163	26.6	w, l, c'
xa1010	Philips/Mullard	E	E	s	D	162	26	w, i, R, S
X01030	Philips/Mullard	M	M	1	D	152	26	a, i. p
xa1040	Philips/Mullard	M	M	s	D	162	26	$\mathrm{c}^{\prime}, \mathrm{i}$
xal041	Philips/Mullard	M	M	s		162	26	L. i. z^{2}
XQ1042	Philips/Mullard	M	M	s	D	162	26	b, e
x01043	Philips/Mullard	M	M	s	D	162	26	i
$\times 01044$	Philips/Mullard	M	M	s	D	162	26	i, r
NEC 7038	NEC	M	M	1	c	-	26.7	g. ${ }^{\text {i }}$
NEC 7262A	NEC	M	M	I	-	-	26.7	g, w.i
NEC 7735A	NEC	M	M	1	-	-	26.7	c^{\prime}, e. g. i
NEC 8134	NEC	M	E	s	-	-	26.1	b. c, ct. w, i
NEC 8134-VI	NEC	M	E	s	D	161.5	26.1	c.t. b , w
NEC 8507	NEC	M	M	s	-	-	26.7	b. c, c', i
NEC 8480	NEC	M	E	s	c	263.5	38.3	b. d. ${ }^{\text {i }}$
NEC 8572	NEC	M	M	S	c	165	26.7	t
NEC 8480-VI	NEC	M	E	S	c	263.5	38.3	b, t^{\prime}
4493/P893	EEV	M	E	S	-	162	26	c^{\prime}. (red)
4494/P894	EEV	M	E	S	-	162	26	c^{\prime}. (green)
4495/P895	EEV	M	E	S	-	162	26	c^{\prime}. (blue)
7038	EEV	M	M	1	C	162	26.7	t. k
7262 A	EEV	M	M	!	D	131.5	26.1	w, i, c'
7735B	EEV	M	M	1	D	162	26.7	b.e.t. i
8134	Eev	M	E	s	D	162	26.1	b.i
8134 V 1	EEV	M	E	s	D	162	26.1	c. b
8507A	EEV	M	M	S	D	162	26.7	b. a. i', e, t^{\prime}, a
8541 A	Eev	M	M	S	D	162	26.7	b, e, i, t^{\prime}
8572	EEV	M	M	S	c	162	26	b, t, k
8625	EEV	M	M	S	B	162	26.7	b, e
8626	EEV	M	M	s	B	162	26.7	b, e
P810	EEV	M	M	1	C/D	162	26.7	i, r r
P831	EEV	M	M	S	D	131.6	26.7	m. i. R
P844	EEV	M	M	S	c	162	26.7	b.t.k
P848	EEV	M	M	S	C/D	162	26.7	i, e. r
P849	EEV	M	M	s	C/D	162	26.7	i, e, r
P860	EEV	M	M	1	c	162	26.7	b, e
P863	EEV	M	M	S	D	162	26.7	m. i. R
7262A	Hitachi	M	M	1	D	131.5	26.7	,
7735A	Hitachi	M	M	1	D	162	26.7	
8051	Hitachi	M	M	s	c	203	38.4	b.t.d
8134 NI	Hitachi	M	E	1	D	162	26.1	b. t. w, c'
8134A	Hitachi	E	M	S	c	159	26	s
$\begin{aligned} & 8480 N \mathrm{VI} \\ & 8507 \end{aligned}$	Hitachi	M M	E	S	c	266 162	38.2 26.7	b. t. w. c. b, i, c, c^{\prime}

Type No.	Manufacturer	Scanning	Focus	Mesh	Spectral curve*	Max. length (mm)	Max. bulb dia. (mm)	Recommended applications
8507B	Hitachi	M	M	S	c	162	26.7	b. i, c
8541 B	Hitachi	M	M	S	D	159	26	b. i, c
8572	Hitachi	M	M	S	c	162	26.7	i, b, \mathbf{t}
8758	Hitachi	M	M	1	D	136	26.7	i, w
8758A	Hitachi	M	M	1	D	136	26.7	w, i
8815	Hitachi	M	M/E	1	C	266	38.2	b. t. c^{\prime}
8816	Hitachi	M	M/E	1	D	162	26.1	b. t, c '
F4016	17	E	E	S	c	142	25.9	i, w, m. S
F4058	17	M	M	S	c	131	25.9	w. S S
F4064	1π	M	E	S	c	148	25.9	w. S
F4085	$1 T$	M	M	S	c	132	25.9	w, S
F4070	17	E	M	S	c	112	25.9	w, n. S
2048	RCA	M	M	1	C	133	26.2	m, i, a, R
4478	RCA	M	M	1	D	165	26.7	p.g.i
$\left.\begin{array}{l} 4493 \\ 4494 \\ 4495 \end{array}\right\}$	RCA	M	E	S	D	163	26.1	b. c. i
4503A	RCA	M	M	S	D	133	26.1	m. i, a, R
4514	RCA	E	E	S	D	148	25.8	m, i, R, G
7038	RCA	M	M	1	C	165	26.7	t t
7262 A	RCA	M	M	1	D	132	26.7	b. w. i
7263 A	RCA	M	M	1	D	132	26.8	m. i. w.a.R
7735	RCA	M	M	1	D	165	26.8	p. g, i
7735A	RCA	M	M	1	D	165	26.8	g.i
7735B	RCA	M	M	1	D	165	26.8	${ }_{i}$
8051	RCA	M	M	S	C	204	38	t. d. b
8134	RCA	M	E	S	D	161	26.2	i, w.c
8134/N1	RCA	M	E	S	D	161	26.2	c. w, b
8521	RCA	M	M	S	D	203	38	, w,
8480	RCA	M	E	S	C	263	38	t, w, d
8480 N /	RCA	M	E	S	C	263	38	c.w. b
8507A	RCA	M	M	S	D	162	26.8	1.b
8541A	RCA	M	M	S	D	162	26.8	b, i
8573A	RCA	M	M	S	D	165	26.8	i
8567	RCA	M	E	S	D	162	26.2	m, i, w, R, e
C23033	RCA	M	E	S	D	203	38	S
C23066	RCA	M	M	S	D	133	26.1	S, R
C23133	RCA	M	M	S	D	102	$26 \dagger$	u, S
C74127	RCA	M	M	1	D	132	26.8	n, m, i, w, S, R, i, r
TD 1319	GEC	M	M	1	C	162	26.6	i,m,i,w, S. R.j.r
TD 1325-001	GEC	M	M	1	C	162	26.6	i
TD 1337	GEC	M	E	S	C	162	26.6	w
TD 1339-001	GEC	M	E	S	c	147	26.6	R. w
TD1341-001	GEC	M	M	S	C	162	26.6	i^{\prime}
TD 1343-011	GEC	E	E	S	C	134	25.9	R
TD 1347-001	GEC	E	E	S	c	147	26.6	R, w, n
TD 1347-021	GEC	E	E	S	B/C	134	25.9	R. w, n, r
TD 1348-001	GEC	M	M	S	C	163	26.6	b. i
TD 1354-001	GEC	M	M		c	162	26.4	b. i
TD1355-010	GEC	M	M	S	c	121	25.9	R. w
7038	GEC	M	M	1	c	162	26.6	,
7226	GEC	M	M	1	C	118	26.6	w
7226A	GEC	M	M	,	C	133	25.8	R. w
GEC 7291	GEC	M	M	1	C	162	26.6	t. S
7522	GEC	E	E	S	C/D	162	26.6	w
7038	GE	M	M	S	C	151	26	t. 0.1
7038 V	GE	M	M	S	C	151	26	t', b
7226	GE	M	M	1	C	151	26	w.i
7262a	GE	M	M	1	D	151	26	w, i, L
7363 a	GE	M	M	1	D	151	26	R. w. i
7735 a	GE	M	M	I	D	165	26	b, i
7735 B	GE	M	M	1	D	165	26	b, L
7735BX	GE	M	M	1	D	165	26	z
8134	GE	E	M	S	C	165	26	i. g
8134 V	GE	E	N	S	C	165	26	t. i. c
8484	GE	M	M	1	c	165	26	w, i
8507	GE	M	M	S	D	165	26	b, i
8507a	GE	M	M	S	D	165	26	b
8541	GE	M	M	S	D	165	26	w, b.i
8541 A	GE	M	M	S	D	165	26	w, b, i, r
8541 X	GE	M	M	S	D	165	26	w. b. l.
8572	GE	M	M	S	C	165	26	t
8572 V	GE	M	M	S	c	165	26	t, t
8604	GE	M	M	S	c	165	26	w, t, t
27872	GE	E	M	S	c	95	26	S, w. (lim. resn. 800 TVL)
27873	GE	E	M	S	c	114	26	S, w. (lim. resn. 1200 TVL
27894	GE	E	M	S	c	114	29	S, w. (lim. resn. $1000 \mathrm{TVL})$
27912	GE	M	M	S	D	151	26	R. w. i
27917	GE	E	M	S	C	140	29	S, w, llim. resn. 1000 TVL
27929	GE	E	M	S	D	151	26	b. S
27929B	GE	E	M	S	D	151	26	b. c. S (B channel)
27929G	GE	E	M	S	D	151	26	b. c. S (G channel)
27929 R	GE	E	M	S	D	151	26	b. c, S (R channel)
27933	GE	M	M	S	D	151	26	R. w. i. S llow pwr. htr. cpw. 27912)

KEY TO APPLICATIONS RECOMMENDED BY MANUFACTURERS
\dagger A dagger beside a dimension means inclusive of integral coils; * see figure 2: a. amateur and home use: black-and-white live-scene studio broadcasting: c, colour live-scene broadcasting: c. CCTV and industrial live-scene colour d. data transmission: e, educational black-and-white: E electrostatic; f. may be used without faceplace discoloration in areas of high radiation: g. general purpose: G. US government end-use only: h. high resolution; i. industrial: i^{\prime}, extra high quality industrial: 1 , integral; j, intemal reticule; k, caption scanning: L low light level: m. military M, magnetic: n, aerospace: o. obsolescent replacement type; p. low priced economy tube; q. extra high picture quality: r. relaxed blemish specification: R, ruggedized: s, scientific: S. development tube available on sampling basis: t, telecine (TV film scanning): t ', colour telecine; u, integral coils; U. underwater television: v. very high pressures: w. lightweight cameras: x, experimental use: γ, slow-speed scan; z, suitable for viewing X-ray fluoroscope screens: S. separate mesh.
high-resolution flicker-free television picture is between 3 and 10 MHz , at which all public entertainment broadcasting is undertaken. However, this is not the optimum for a high signal/noise ratio at low light levels in those applications where picture flickering is not troublesome, but is obviously linked to the picture repetition rate and the resolution required. Provided that the bandwidth is no higher than that needed for the resolution, the highest signal/noise ratio obtains at about 300 kHz for a 405 -line picture. The exact scanning conditions may be readily calculated from the analysis given in Ref. 1. The enhanced signal/noise ratio results from employing the same number of scanning lines in the picture and the same horizontal resolution, but a lower video bandwidth and a slower frame rate.

Basic vidicons for visible light applications

This is by far the largest category, because tubes of this kind are widely used for applications which include broadcasting, c.c.t.v., industrial, educational and medical purposes, missile telemetry, space TV, and telecine (film scanning). Earlier tubes were specified to a larger extent than now by subjective criteria, such as whether a television picture 'looked good' or whether there were many background blemishes visible. Such valuable tests are always made, together with others, on all tubes, especially those employed in entertainment television. However, particularly since the introduction of multi-tube colour cameras, a much greater emphasis is placed on specifying more objective measurements such as light transfer characteristic, spurious signals, stability against light overload, and picture lag ${ }^{10}$. Therefore it is now possible to select a tube with much greater precision than formerly, provided that it is possible clearly to define tube requirements; this tends to be easier to do in scientific and industrial applications, and is more important in the design of colour cameras for broadcasting ${ }^{10}$.

The electron beam can be scanned and focused either magnetically or electrostatically; this gives rise to four possible varieties of vidicon. Highest resolution tubes employ magnetic deflection and focus, next in resolution capability come those with magnetic focusing or deflection and electrostatic deflection or focusing, and then come the all-electrostatic tubes. The latter are capable of yielding the smallest cameras for a given target size, and are particularly well suited for small light-weight transistorized cameras of low power consumption, or for industrial uses where space is at a premium.

The most common and significant variation in electrode structure of all-magnetic tubes is the connection to the mesh electrode $\left(\mathrm{g}_{4}\right)$, which may be internally connected or brought out separately. Although separate mesh tubes require an extra voltage, a big gain in resolving power is attainable ${ }^{8}$. The optimum ratio of mesh to g_{3} voltage for best geometry or for best uniformity lies in
the range $1.2 / 1$ to $1.7 / 1$ depending on the scanning and focus coils used. The mesh should always be operated at a higher potential than g_{3}, otherwise most of its advantages are lost; in electrostatic tubes g_{5} is the separate mesh and this must be operated at the manufacturer's recommended voltage.

It is difficult to make a strict comparison between the resolving powers of tubes made by different manufacturers because different ways of specifying this are often used. 'Limiting resolution' is a subjective estimate so it cannot be used with precision, especially when different people make the test: a rough quantitative figure would be $2-3 \%$ output signal compared with the very low frequency output at the same light level. This is 'modulation depth'. Other ways of quoting resolution depend on specifying the modulation depth of a given number of spots per line or number of TV lines.

Table 1 summarizes the resolution figures for different types of vidicons, together with conversions from different ways of specifying this.

It must be emphasized that in magnetically scanned tubes, such factors as resolution, deflection defocusing and scanning orthogonality are very much a function of the scanning and focus coils used. The new printed-circuit scanning coils eliminate many of the disadvantages of the older kinds ${ }^{3}$.

Obviously, the tables and comments can in no way replace the more detailed information to be found in the manufacturer's data sheets. An exact price for any country in the world may be obtained from his agent or from one of the manufacturers listed in next month's article. Prices range from about $£ 10$ for an economy or amateur-grade standard vidicon to $£ 135$ for a broadcast-quality tube; lead oxide types tend to be somewhat higher, and these range from about $£ 500$ to $£ 600$ for broadcast quality tubes, with $£ 300$ or so for industrial tubes and $£ 50$ each for setting-up tubes.

High sensitivity tubes

Since a vidicon type tube generates no noise, the signal/noise ratio of the video output signal depends on the signal level and the design of the TV head amplifier ${ }^{\text {. }}$ All commercially available TV systems incorporate a head amplifier designed so that the noise is minimized. However, in a standard television system employing a modified vidicon with a pre-scanning gain of $15-40$, the signal/noise ratio is determined less by the head amplifier than by the shot noise in the photo-current.

It is possible to achieve a system signal/noise ratio nearly equal to the primary photocurrent noise, which itself is very close to the signal/shot-noise ratio in the light-hence the term ultimate sensitivity is often applied to these tubes. To attain this limit at very slow scanning speeds may require an even larger pre-scanning gain to give an output signal of about 150 nA ; this extra gain might be obtained from, for example, a separate

TABLE 3 Fibre Optic End-Window Tubes

Type No.	Manufacturer	Type	$\begin{aligned} & \text { Sensitivity } \\ & \mu \mathrm{A} / \mathrm{x} \end{aligned}$	Notes	Resolution
W×30654	Westinghouse	Intensifier	$9 @ 0.01$ lx	S	30\% @ 300 TV lines
TH9611	TH-CSF	Intensifier	$1 @ 0.011 \mathrm{x}$		
WL30691	Westinghouse	SEC	$5 @ 0.01$ 1x	S	38\% @ 300 TV lines 40\% @ 300 TV lines
TH538	TH-CSF	Esicon	$5 @ 0.01 \mathrm{~lx}$		$\{10 \% @ 450$ TV lines
TH9812FO	TH-CSF	FO vidicon	0.025*		
TH9813FO	TH.CSF	FO vidicon	0.025*		
TH9830FO	TH-CSF	FO vidicon	0.025*	h. q	85\% at 400 TV lines
2255 FO	Heimann	FO vidicon	0.027*		
P831F	EEV	FO vidicon	0.03*	R	
9686	EMI	FO vidicon	0.03*		1,000 TV lines limiting
96770	EMI	FO vidicon		S	
96065	EMI	FO vidicon		S	
9806D	EMI	FO vidicon		S	
9828D	EMI	FO vidicon		S	
98300	EMI	FO vidicen		S	
9877 D	EMI	FO vidicon			
C23055 (A)	RCA	$(38 \mathrm{~mm})$ FO vidicon	0.02*-0.2*	Type A has integral clamping ring for coupling other FO components. S	
C23112 (A)	RCA	26.6 mm FO vidicon	0.02*	Type A has integral clamping ring for coupling other FO components. S. R	650 TV lines limiting
6×0	Philips/Mullard	FO, PbO vidicon	0.14	${ }_{S}$	650 TV lines limiting
7×0	Philips/Mullard	FO. Pbo vidicon	0.1	S	650 TV lines limiting
8×0	Philips/Mullard	$26 \mathrm{~mm} \mathrm{FO}, \mathrm{PbO}$ vidicon	0.12	26 mm diagonal	25\% at at 400 TVL
E 1004 F	Heimann	SEC	5	26 mm diagonal	40\% at 400 TVL
E 1322	Heimann	Intensifier	1		
E 1550	Heimann	Intensifier	1		

* Approximate. Sensitivity is higher for high dark currents or low illumination levels.

Other manufacturers offer to fit a flbre-optics end-window to special order in any of their standard range of tubes. Symbols: h-high resolution. L-low light-level. q-extra high picture quality. R-ruggedized.
S-developmental tube available on a sampling basis.

TABLE 4 High Sensitivity Tubes used with Lens Optics

It should be noted that if tubes such as the intensifier vidicon or the SEC tube are used with lens optics, a very large angle of convergence should not be employed in the lens system. Not all tubes shown in Table 3 are listed here.

Type No.	Manufacturer	Type	Sensitivity $\mu \mathrm{A} / l \mathrm{lumen}$	Resolution

* With manufacturer's recommended i.r. filter in position
S Developmental type available on an active sampling basis.
image intensifier. A further advantage of operating the vidicon scanning section at a signal output level of about 150 nA or more is that the lag is negligible with one of the photo-conductors shown in Fig. 2, $\mathrm{B}, \mathrm{C}, \mathrm{D}$, or Fig. 3, G, H or J.

Pre-scanning amplification may be achieved through incorporation of an image intensifier fibre-optic coupled to a fibre-optic vidicon (intensifier vidicon): through electron bombardment induced conductivity (Ebitron) or the phenomenon of secondary electron conduction. (SEC tube or Esicon). Profiles of these tubes to scale are shown in Fig. 1. Spectral characteristics of photo-emissive cathodes used in tubes of this type are shown in Fig. 4. Vidicons with fibre-optic faceplates (which have an effective f/1.0 optical system) are shown in Table 3. These vidicons may be compared directly with the intensifier vidicon and the SEC tube since these also employ fibre-optics input

Fig. 2 Spectral response curves for various vidicon targets in which the light transfer characteristic is not linear. Similar response curves do not imply identical targets; in particular, factors such as dark-current uniformity and resistance to "burn-in" may be different as well as other parameters

TABLE 5 Long Storage Photoconductor Vidicons

Type	Manufacturer	Scanning	Focus	Applications
TD1325-044	GEC	M	M	r, v, ch, m
TD1326	GEC	M	M	d. s
P865	EEV	M	M	d. w
4500	RCA	M	M	s, i. m, G
4542	RCA	M	M	L. W
C23063	RCA	M	M	S
27856	GE			W, d, S
Permachons (Westinghouse)				
WX-5123	Westinghouse	M	M	s. t, S

Symbols: ch-transmitting only changes in readings. d-p.p.i. radar display distribution. L-very long lag. m-moving target indicators. r-elimination of ground radar clutter. s-slow scan TV. S-development type. t-temporary storage of transient events. i-limited motion industrial TV. v-narrow bandwidth "difference" video transmission. W-Weather radar. G-US Government use only. w-compact lightweight cameras.
systems. The important sensitivity criterion here is $\mu \mathrm{A} / l \mathrm{lux}$. specified with the faceplate area, and not $\mu \mathrm{A} /$ lumen alone, which is the sensitivity specified for any tube employing lens imaging. Such fibre-optic end-window tubes can be coupled directly to other fibre-optics devices such as a light-pipe or an image intensifier, or used for in-contact film scanning and applications such as image conversion by using a phosphor deposited directly on the fibre-optic window.

Since conventional lens optics may be used with tubes employing fibre-optic faceplates provided that very high f-number lenses are not used, it is possible to compare all high-sensitivity tubes. Table 4 compares the sensitivity of these tubes when used with conventional lens optics of not too high light-convergence angle. Their use for satellite astronomy has been proposed.

Storage vidicons

It is often necessary to retrieve informa tion from a television signal waveform as a repeated sequence of outputs. Two types of vidicon are made specially for this application.

In the first type, the target of the tube is so designed that the signal decays very slowly with successive scans; this is brought about partly by a slow decay of photoconductivity, and partly through the electron beam scanning off only a small proportion of the available charge pattern in each sweep. Tubes of this kind are used in p.p.i. to TV scan conversion for bright distributed radar displays, and in other applications where it is necessary to separate the functions of display and storage.
The target in the second type of tube, the Permachon, is capable of regenerating the scanned-off signal, to permit continuous reading for up to 30 minutes. If erasure of the stored information is required, this may be done quite simply in a single scanning period by interrupting the scanning beam. An alternative version uses a separate gun to write-in the information, but otherwise the storage properties of the target are the same. This scan-conversion Permachon can be usefully employed in TV systems conversion as well as for other purposes where somewhat greater flexibility is required than is available with the first type (Table 5).

Fig. 3 Spectral sensitivity curves for various types of vidicon target in which the light transfer characteristic is linear

Fig. 4. Spectral response curves for photoemissive cathodes.

REFERENCES

1. P. Rainger, 'A camera tube head-amplifier'. Roy. Tel. Soc. Journ. 11, 230, (1967).
2. 'C.C.T.V.-From Novelty to Necessity'. Wireless World, Nov. 1968.
3. E. W. Bull, 'Printed Scanning Coils'. Wireless World, Aug. 1968, pp. 260-262.
4. R. Barer \& J. Wardley, 'Ultra-violet television microscopy'. Nature, Dec. 16th 1961.
5. J. Wardley \& F. W. Jackson, 'Advances in Electronics and Electron Physics', 1969.
6. H. G. Lubszynski, B. J. Mayo, J. Wardley and N. C. Barford. 'New all-electrostatic vidicon'. Proc. I.E.E., March 1969, p. 339.
7. R. T. Clayden, 'TV picture generating equipment' in 'Video Techniques', Electronics Data Library, vol. 3, 1969.
8. H. G Lybszynski and J. Wardley, 'Some problems of resolution in low-velocity camera tubes'. Proc. I.E.E., June 1963, p. 59.
9. H. G. Lubszynski, S. Taylor and J. Wardley, 'Some Aspects of Vidicon Performance', J. Brit. I.R.E., May 1960, p. 325.
10. I. J. P. James,' The EMI Four-tube Colour Television Camera. Part 1 The Design Philosophy'. Radio and Electronic Engineer, 39, 249, May 1970.

H.F. PredictionsFebruary

The charts show median standard MUF optimum traffic frequency and lowest usable frequency for reception in the U.K. LUFs were calculated by Cable \& Wireless for specific point-to point telegraph circuits. LUFs for domestic reception of high-power broadcasting stations would be slightly higher and for the amateur service considerably higher, especially during daylight.

Commercial working frequencies are kept below FOT to allow for day-to-day variations in the ionosphere and seasonal trend over the month.
Amateur "openings" can be expected on bands up to 15% above MUF, but it is not possible to say on which days these will occur.

February Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

3rd. IERE-"Electronic scanning systems" by M. F. Radord at 18.00 at 9 Bedford Sq., W.C.I.

4th. RTS-Shoenberg Memorial Lecture "The life and work of Sir Isaac Shoenberg" by Prof. J. D. McGee at 19.00 at the IEE, Savoy PI., W.C.2.

9th. Royal Instn.-Schools Lecture "Waves and vibrations" by Prof. R. King at 17.30 (to be repeated on 10 th. $16 \mathrm{th}, 17$ th \& 18 th) at 21 Albemarle St., W.I.
9th. AES-"Acoustic design of monitoring rooms" by Kenneth Shearer at 19.15 at the Mechanical Eng'g Dept., Imperial College, Exhibition Rd., S.W.7.

10th. IEE-"Design and constructional techniques for microclectronic equipment" by F. A. Robertson at 17.30 at Savoy PI., W.C.2.
12th. IPPS / Brit.Soc. of Audiology-"Acoustic measurement in audiology" at 14.00 at the Inst. of Mech. Engrs, 1 Birdcage Walk, S.W.1.

15th. IEETE--"The engineer in the modern world" by the R. Hon. Anthony Wedgwood Benn at 18.00 at the IEE, Savoy PI., W.C.2.

17 th . BKSTS--"Acoustics and percussion instruments" by Dr. W. H. George at 19.30 at the College of Music, 47 Gt . Marlborough St., W.1.
18th. RTS-"Colour EVR" by Sir Francis McLean \& B. J. Rogers at 19.00 at the ITA, 70 Brompton Rd, S.W. 3 .
19th. IEE-Discussion on "Modern developments in graphic recording devices" at 17.30 at Savoy Pl., W.C.2.

24th. IEE/R.Ae.S.-Discussion on "Built-in test equipment for the Concorde" at 18.00 at 4 Hamilton Pl., W.1.

24th. SERT-"Algorithms" by J. H. Robinson at 19.00 at the Manson Theatre, School of Hygiene \& Tropical Medicine, Keppel St., W.C. 1.

25th. IERE-""Television communication by satellite and conventional systems" by D. J. Whyte at 19.30 at the Medway College of Technology.

26th. Brit. Acoustical Soc.-Meeting on "Scatering phenomena in acoustics" at 14.30 at the Chelsea College of Science \& Technology.

ABERDEEN

10th. IEE/IERE - "Electronics in the automobile" by W. F. Hill at 19.30 at the Robert Gordons Inst. of Technology.

BELFAST

16th. IEE Grads.-"Electronic techniques in archaeology" by Dr. M. J. Aitken at 18.30 at the Main Lecture Theatre, Ashby Institute.

BIRMINGHAM

3rd. RTS-"The modern methods of video tape editing and machine control" by Alan Pywell at 19.00 at the ATV Studio Centre. Bridge St.

8th. IEE Grads.-"Electronics in medicine" by M. F. Docker at 18.30 at the M.E.B. Offices, Summer Lane.

10th. IEE/I.Meas.Cont.-"The dynamic response of instruments" by Prof. L. Finkelstein at 19.00 at the Chamber of Commerce.

16th. RTS-"Television: hopes and constraints" by Brian Young at 19.00 at the ATV Studio Centre. Bridge St

22nd. IEE-"The application of electronics in security systems" by J. McArthur at 18.00 at the M.E.B. Summer Lane.

BRADFORD

17th. IEETE--"Modern trends in hi-fi" by M. M. Tiley at 18.30 at the Cleveland Scientific Institute. Middlesbrough.

BRIGHTON

23rd. IEE-"Electronic telephone exchanges" by K. G. Marwing at 18.30 at the Polytechnic.

23rd. IERE - "A communication engineer's view of speech" by J. W. Reynolds at 18.30 at the College of Technology.

CAMBRIDGE

25th. IEE/IERE--"Satellite communications: the present and the future" by J. M. Brown at 18.30 at the Engineering Labs. Trumpington St.

CARDIFF

10th. IERE-"Concorde automatic flight control and landing system" by D. M. Fryer at 18.30 at the U.W.I.S.T.

17th. SERT - "Video tape recording" by H. W. Hellyer at 19.30 at the Llandaff Technical College, Western Avenue.

CHELMSFORD

10th. IERE-"Hyperbolic navigation systems" by C. Powell at 18.30 at the Civic Centre.

CROYDON

24th. IEE Grads.-"Long distance waveguides for telecommunications" by N. Lacey at 18.30 at the Technical College.

DORKING

24th. IEE-"Video recording" by A. H. Jones at 19.30 at the Star \& Garter Hotel.

DUBLIN

4th. IEE Grads.-"Electronics-its future in navigation" by F. S. Stringer at 18.00 at the Trinity College.

DUNDEE

11th. IEE/IERE-"Electronics in the automobile" by W. F. Hill at 19.00 at the University.

EDINBURGH

9th. IEE/IERE-"Optical communications" by F. F. Roberts at 18.00 at the Carlton Hotel.

ENFIELD

17th. IERE-"Integrated circuit laboratories in colleges and universities" by J. Butcher at 19.00 at the College of Technology.

FARNBOROUGH

9th. IEE-"Near field inductive communications" by G. J. Walters at 18.30 at the Technical College.

GLASGOW

8th. IEE/IERE--"Optical communications" by F. F. Roberts at 18.00 at Rankine House, 183 Bath St.

GLOUCESTER

10th. IERE-"Modular design of single-standard colour television receiver" by B. Baldwin at 19.00 at the Technical College.

25th. IEE--"Use of light frequencies in communication" by R. B. Dyott at 19.00 at the Technical College.

LIVERPOOL
17th. IERE-"Automatic film analysis" by W. H. Evans at 19.00 at the Dept. of Electrical Eng'g, the University.

LOUGHBOROUGH

16th. IEE/IERF-"Some electrical and electronic applications in fully fashioned knitting machines" by R. Blood and R. L. Duthie at 18.30 at the Edward Herbert Bldg., the University.

MANCHESTER

3rd. IEE - "The design of data communications systems" by D. W. Davies at 18.15 at U.M.I.S.T.
18th. IERE-"P.O. communications for the Queen Elizabeth II and recent maritime radio development." by W. M. Davies at 19.15 at the Renold Bldg., U.M.I.S.T.
24th. IEE-"Electronic techniques in archaeology" by Dr. M. J. Aitken at 18.45 at Renold Bldg., U.M.I.S.T.

NEWCASTLE UPON TYNE

3rd. SERT-"Pulse code modulation" by W. Berrisford at 19.30 at the Charles Trevelyan Technical College, Maple Terrace.

10th. IERE-"Learning machines-the next revolution?" by I. Aleksander at 18.00 at the Polytechnic, Ellison P1.

16th. IEE Grads.-"Electronics-its future in navigation" by F. S. Stringer at 18.30 at the University, Merz Court.

25th. IEE Grads.-"Superconductivity" by A. D Appleton at 18.30 at the Newcastle Polytechnic. Ellison Place.

PLYMOUTH

3rd. RTS-"Commercial sound recording" by Robert Auger at 19.30 at the Studios of Westward Television Ltd.

4th. IERE/IEE-"Latest techniques in computer aided design" by E. Wolfendale at 19.00 at the Polytechnic.

READING

25th. IERE-"Node Logic" by B. S. Walker at 19.30 at the J. J. Thomson Laboratory, the University.

SHEFFIELD

18th. IEETE-"Presenting the microwave show"
by Dr . J. Allison at 19.00 at Lecture Room 3, Engineering, Mappin Street, the University.

SOUTHAMPTON

2nd. Brit. Computer Soc.-"Interactive terminals -communication aspects" by W. Hillier at 19.15 at the Mathematical Dept. the University.

17th. IERE-"High speed switching characteristics of thyristors" by B. Holloway at 18.30 at the Lanchester Theatre, the University.

STAFFORD

23rd. IEE Grads.-"Electronic techniques in archaeology" by Dr. M. J. Aitken at 19.30 at the North Staffs. Polytechnic.

SUNDERLAND

4th. IEE Grads.-"Colour television" by C. B. B. Wood at 18.30 at the Polytechnic, Chester Rd.

22nd. IEE-"Electronic performance testing of motor vehicles" by R. Evans at 18.30 at the Polytechnic, Chester Rd.

UPPER TYTHING

15th. IEE Grads.-"Radio and radar astronomy" by Dr. J. E. B. Ponsonby at 19.30 at the Hillard Hall, R oyal Gram. School.

UXBRIDGE

9th. IEE Grads.-"Space communications -present and future" by J. M. Brown at 18.30 at Brunel University.

WARRINGTON

8th. IEETE-"Records past and present" by G. Nathan at 19.30 at No. 1 Room, The Training Centre, Joseph Crosfield \& Sons Ltd.

WHITBY

9th. IEE-"Logic and the engineer" by S. Towill at 19.00 at Botham's Cafe.

YORK

llth. IERE-"Recent applications of holography" by M. R. E. Forshaw at 19.00 at the Central College of Further Education, Tadcaster Rd, Dringhouses.

World of Amateur Radio

More v.f.o. operation on v.h.f.?

For many years, the vast majority of v.h.f. operators have used crystal-controlled transmitters on the 144 MHz band, with crystal frequencies usually chosen in accordance with a voluntary zonal band-plan. The object of this plan has always been to reduce the effects of interference from local stations on the weaker signals from more distant stations. It does result, however, in the necessity to search the full band for possible replies to CQ calls. In this respect, v.h.f. practice differs from h.f. operation where almost all contacts are effected by netting v.f.o.-controlled stations on to the frequency of the station calling CQ . Recently, the increasing use of variable frequency control on v.h.f. (for example using stable Vackar field-effect transistor oscillators such as the one designed by Peter Martin, G3PDM, Wireless World, February 1970) has given rise to considerable debate among amateurs on whether to adopt netting techniques on v.h.f. This is already being done to an increasing extent by amateurs on the Continent, and it seems likely to become increasingly popular also in the U.K. This does not imply immediate abandonment of the zonal system when originating CQ calls, though clearly if more and more stations opt for v.f.o. operation many of the reasons for zonal band-planning will disappear. Netting has long proved its value on h.f. and its use on v.h.f. has been delayed only because of the problem of building oscillators stable enough to be used on 144 MHz . In one respect, however, the zonal plan needs further enforcement; this is in keeping 'phone operation out of the sector 144.0 to 144.15 MHz used for c.w.

A place for simple h.f. equipment

During the past decade, amplitude modulation has been transformed from being the dominant mode for long-distance h.f. operation to what is fast becoming a rare technique. Today the domination of s.s.b., at least on some bands, is virtually unchallenged. Yet, increasingly, doubts are being expressed at certain implications of this revolutionary change.

For instance, many amateurs owe their introduction to the hobby from the casual reception of amateur transmissions on normal domestic receivers; still more found a.m. operation a most useful technique for newcomers equipped with only a minimum of test equipment and a standard of technical knowledge sufficient to pass the Radio Amateurs' Examination. Today, few non-amateur listeners are likely to resolve s.s.b. transmissions, and a valuable means of stimulating interest in amateur communication has been lost

There are other signs of a spreading belief that h.f. operation has in recent years seen too much emphasis placed on complex equipment and high-gain aerials. It should therefore be stressed that effective world-wide communication, particularly on c.w., remains possible using simple dipole or vertical aerials which can be easily and economically erected even in the most difficult urban and suburban locations. A check has shown that during 1970 over 100 different countries were worked on 14 MHz c.w. from G3VA using simple wire aerials not exceeding 25 feet in height. Many other amateurs regularly achieve similar results. It would be most regrettable if would-be amateurs were discouraged by the belief that long-distance working calls for expensive equipment.

First transatlantic tests

Fifty years ago, starting at 03.15 G.M.T. on February 2nd, 1921, the first series of amateur transatlantic tests-the first organized attempt to receive in the United Kingdom transmissions from American and Canadian amateur stations operating on about 200 metres-were held. Some 250 British transmitting and receiving enthusiasts announced their intention to take part; in the outcome some 30 logs were received but-to quote the Wireless World report on the event -"no entrant received a single word which can unquestionably be attributed to an American amateur station". Many entrants reported interference from harmonics of commercial stations and jamming by self-heterodyne receivers. At this time some 150 transmitting and 4000 receiving licences had been issued by the British

Post Office. A prize was awarded to a Mr. W. R. Wade, of Bristol, for his description of the attempt. The failure of these tests led to a determination on both sides of the Atlantic to show that such long-distance reception of amateur stations was feasible. Indeed very different results were recorded in the next series of tests in December 1921 when many American amateur signals were logged in the United Kingdom.

Microwave beacons

Plans are being made by the scientific studies group of the R.S.G.B. to establish two 1296 MHz beacon stations; one in London and another near the south coast. These continuously transmitting stations are expected to stimulate more activity in the $23-\mathrm{cm}$ amateur band, and to allow further investigation of propogation over long sea paths to the Netherlands and elsewhere. The U.K. beacon stations, including those operating in the 28,70 , 144 and 432 MHz bands, have amply proved their value for such purposes. For example, the beacon GB3SX at Crowborough, Sussex, on 28.185 MHz , in conjunction with a similar beacon in West Germany has shown that the 28 MHz band is open for long-distance communication much more frequently than is generally believed. It had been hoped that other amateur radio societies in Europe would have set up more of these 28 MHz beacon stations.

In brief

Some revealing statistics on West German v.h.f. and u.h.f. activity have been reported by the I.A.R.U. Region 1 Bureau: of a total of about 14,000 stations in the German Federal Republic, about 6800 -almost 50%-are active on the 144 MHz band, compared with some 670 on $432 \mathrm{MHz}, 44$ on 1296 MHz and 14 on 2.3 GHz . But on 144 MHz only about 3% of active stations use tranismitters having more than 100 W r.f. output, 26% use between 10 and 100 W while over 70% use less than $10 \mathrm{~W} . . .$. . The main h.f. contest season is approaching with the A.R.R.L. DX contest on February 6-7 and March 6-7 (phone sections) and February 20-21 and March 20-21 (c.w. sections). The 34th R.S.G.B. BERU contest-restricted to British Commonwealth amateurs-is on March 13-14..... The Dutch national amateur radio society V.E.R.O.N. formed at the end of World War II recently celebrated its 25 th anniversary with a meeting at the Philips recreational centre in Eindhoven attended by 300 members Another recent 25 th anniversary is that of the resumption of British amateur transmitting in January 1946 when the 28 MHz band was released to amateurs, followed during the next few months by the other bands-the early resumption of amateur activity was considered at the time as a tribute to the wartime services of amateur operators in many countries.

Pat Hawker G3Va

Personalities

P. R. D. Shardlow, B.Sc., Ph.D., has joined EMI Electronics and Industrial Operations at Hayes, Middx, as technical advisor on audio-visual technology. He has also been appointed technical director of EMI Tape Ltd, one of the fourteen technically based divisions which are co-ordinated by EMI Electronics and Industrial Operations. Dr. Shardlow studied at London and Manchester universities and during his external Ph.D. course gained industrial experience with Sperry Gyroscope Co., Rolls-Royce, Ferranti and Brush Electrical. His final 18 months were spent in commissioning the control system at Jodrell Bank radio telescope. After a 15-month state scholarship at Massachusetts Institute of Technology he returned to the U.K. to join Decea Radar. His next appointment was as director of Arbiter Electronics and until recently he was joint managing director of Tape Systems Ltd.
W. J. Morcom, B.Sc., M.I.E.E., manage of Marconi's Radio Communications Division since 1965, has been appointed technical director of Marconi Communication Systems Ltd of which Tom Mayer is managing director. Mr. Morcom, who is 61, was educated at the Devonport Dockyard School, where he won the Admiralty Prize as top apprentice of all Naval Dockyards. He was awarded the Whitworth Scholar-

W. J. Morcom
ship to City and Guilds (Engineering) College in 1929, and took a degree in engineering. He joined Marconi as a design engineer working on broadcast transmitters in 1933. For nearly 20 years, after the war, Mr. Morcom was in charge of transmitter development.

Peggy Hodges, responsible for guided weapon simulation and systems studies at the Stanmore Establishment of Marconi Space and Defence Systems, was presented with the 1970 Whitney Straight Award by The Prince of Wales on Demeber 9th, at the Royal Aeronautical Society. The Award recognizes the achievement and status of women in aviation and consists of a bronze sculpture and $£ 200$ in cash. The citation acknowledges Miss Hodges' work and that of her department in the design and development of the Seaslug and Sea Dart naval missiles, and draws attention in particular to her position as an authority on the use of simulation techniques in the design of guided weapons.

Peter Ward, who joined Independent Television News in 1968 as head of vision engineering, has been appointed chief engineer in succession to Cyril Teed who recently re joined the Marconi Company. Prior to joining I.T.N. Mr. Ward, who is 39, was with ATV Network Ltd for twelve years. In 1959 he took charge of the Design and Maintenance Department and in 1961 was appointed engineer-in-charge, Wood Green Studios.

George King, B.Sc. (Eng.), A.C.G.I., F.I.E.E., F.Inst.P., chief scientist of Standard Telecommunication Laboratories Ltd, Harlow, Essex, has been appointed visiting professor in telecommuni cations in the University of Surrey's department of electronic and electrical engineering. After wartime research in radar for the Admiralty, Mr. King joined S.T.L. in 1946 as head of the microwave department, later becoming head of the materials division. In 1954 he was appointed chief engineer of the transistor division, Standard

Telephones \& Cables Ltd, and in 1958 returned to S.T.L. as director of research. In 1962 he became manager, exploratory research, and was appointed to his present post in 1964.
R. P. Gabriel, B.Sc., F.I.E.E., M.I.E.R.E., chairman of Rediffusion Engineering Ltd, has been appointed chairman of Rediffusion International Ltd which provides technical and administrative services to the Group's overseas stations. He succeeds Hugh Dundas who was recently appointed managing director of Rediffusion Ltd. After taking a first class honours degree in electrical engineering at King's College, London University, Mr. Gabriel joined Rediffusion in 1933 as a junior engineer.
C. J. Carter, M.A., F.I.E.E., who recently retired as director of electronics research and development (ground) in the Ministry of Aviation Supply, has joined Plessey Radar Ltd as a special assistant to the divisional director, P. E. G. Bates. From 1955 to 1961 Mr. Carter was director of air navigation and reconnaissance equipment research and development (Ministry of Aviation). He was deputy director general, defence research staff, at the British Embassy in Washington from 1961 to 1964.

Rediffusion also announced the appointment of John C. Goodwin, B.Sc. Tech., F.I.E.E., to the board of Rediffusion Ltd. Mr. Goodwin, who is 54 and a graduate of Manchester University, joined Rediffusion in 1964 as an engineer after a war-time post at the Admiralty. During his 24 years with the Group he has held positions as chief engineer, general manager, director and chairman of a number of member companies.

Arthur C. Haddy, a director of the Decca Record Company, has been presented with the Emile Berliner Award by the American Audio Engineering Society for "pioneering development of wide-range recording and playback heads and for his significant part in the international adoption of $45^{\circ}-45^{\circ}$ stereo disc recording". Mr. Haddy joined the Crystalate Gramophone Co. in 1929 and moved to Decca in 1937 when Crystalate was taken over by them.
J. Rawicz-Szczerbo has been appointed managing director of the Antiference Group Ltd in succession to Norman M. Best who remains as chairman of the Board. Mr. Rawicz joined the Group in 1964 and in 1966 became managing director of Antiference Ltd, a position he will continue to hold. Mr. Best founded Antiference in 1936.

NEW YEAR HONOURS

Few people in the field of radio \& electronics were recipients of honours in the New Year list. Among them were:

C.B.

Air Vice-Marshal L. H. Moulton, D.F.C., F.I.E.R.E., A.O.C. 90 Group R.A.F.

K.B.E.

Major-General John E. Anderson, F.I.E.E., late Royal Corps of Signals, Colonel Commandant.
C.B.E.

Brigadier A. D. Brindley, M.B.E., M.I.E.E., late Royal Corps of Signals.
J. F. Crosfield, managing director, Crosfield Electronics Ltd.
J. M. Price, B.Sc., A.M.I.E.E., assistant managing director, GEC-AEI Telecommunications Ltd.

O.B.E.

Lt.-Colonel A. C. Birtwistle, M.A., M.I.E.E., Royal Corps of Signals.
J. Lait, M.I.E.R.E., principal lecturer, Electronics Branch, Royal Military College of Science.
S. J. Robinson, M.A., F.I.E.E., scientific adviser, Mullard Research Laboratories.
Prof. G. D. Sims, M.Sc., Ph.D., F.I.E.R.E., F.I.E.E., head of the Department of Electronics, University of Southampton.
S. N. Watson, F.I.E.E., chief engineer (television), B.B.C.
M.B.E.
G. Adamson, first radio officer s.s. Empress of Canada.
D. V. Staynor, M.I.E.R.E., chief development engineer, Mobile Radio Division, ElliottAutomation Radar Systems Ltd.
A. T. Whitehead, assistant director (telecommunications), Botswana.
C. B. B. Wood, head of image scanning section, B.B.C. Research Dept.

OBITUARY

Sir Gordon Radley, K.C.B., C.B.E., Ph.D., director general of the Post Office from 1955 to 1960 , died on 16th December aged 72. Sir Gordon studied at Faraday House, and obtained his B.Sc.(Eng.) and Ph.D. degrees at London University. After serving with the Royal Engineers in the 1914-18 war he entered the engineering research laboratories of the General Post Office in 1920. He became the Post Office's first Controller of Research in 1944 and five years later was appointed deputy engineer-in-chief, becoming engineer-in-chief in 1951. On his retirement from the Post Office in 1960 Sir Gordon joined the boards of the Marconi Company, the Marconi International Marine Co., Marconi Instruments, and the English Electric Valve Co. He was still chairman of Marconi Marine at the time of his death, but had left the boards of the other companies.

are now available from RCA Distributors. They stock the full range, as well as Numitrons and Nuvistors. Their stocks are large. They are strategically positioned. And they are fully geared to give you the on-tap service which you can turn on by phone, wire or telex.

SEMBICOMPS

Semicomps Northern Ltd., The Square, Kelso.
Roxburghshire. Tel: 2366

T T REL Equipment \& Components Ltd.,
Croft House, Bancroft. Hitchin. Herts.
Tel:50551/2/352202 Telex: 82431 Grams: Robert, Hitchin

ECS (Windsor) Ltd., Thames Avenue.
Windsor. Berks. Tel: 68101 (20 lines)
Telex: 84573
RCA Ltd, Electronic Components Division, Sunbury-on-Thames, Middlesex. Tel: Sunbury-on-Thames 85511 Telex: 24246 Grams: RCA London

BULGIN

There are many hundreds of leading manufacturers throughout the world who have standardised on the Bulgin range of Instrument Control Knobs as illus trated by this small selection.
The range consists of over 140 Basic Types with many further variations which provide for choice of body colour. Collet, Grub or Allen Screw fixing. Metric or

Imperial Shaft acceptance. Spin or Satin top decor and in a number of cases legending to customers own specification. Throughout it is our constant aim to give immediate delivery with a guarantee of continuity of supply combined with the highest standards of finish, achieved by diamond polished moulds, and automatically controlled processing.

New Products

Pulse generator

General purpose pulse generator model 6640 from Texas Instruments replaces model 6613. The p.r.f., internal or external, can be from 1.5 Hz to 15 MHz . Pulse width is variable from 30 ns to 300 ms . Ranges and delay (of main pulse with respect to trailing edge of synchronizing pulse) is variable between 80 ns and 300 ms . The above ranges are each covered in seven overlapping sections. The main pulse output is 0.3 to 10 V into 50Ω, continuously variable and direct coupled. Simultaneous positive and negative pulses are available, and the duty cycle is 90% at maximum. Pulse rise and fail times are 6 ns to 15 ms continuously variable in four overlapping ranges: rise and fail times are independently variable within each range. A sync output of +2.5 V directly coupled into 50Ω is available with a width $50-80 \%$ of the duty cycle. A second pulse is provided which occurs before the fundamental pulse at the trailing edge of the sync pulse. Both pulses have similar amplitude, rise and fall times. The generator is mains powered. The bench-mounting version is $190 \times 216 \times$ 305 mm . The weight is 5 kg . Price $£ 285$. Texas Instruments Ltd, Digital Systems Division, Dallas Road, Bedford.
WW 328 for further details

Instrument cases

Progressive Projects announce a range of instrument cases which are compatible with standard 19in rack mounting. Heights of cases are $3.5 \mathrm{in}(88.5 \mathrm{~mm}), \quad 5.25 \mathrm{in}$ $(133 \mathrm{~mm})$ and $7 \mathrm{in}(177.5 \mathrm{~mm})$. Construction is in thick gauge mild steel with heavy

section silver anodized aluminium extrusion round the front. A number of extra items are available including ventilated top and bottom covers, carrying handles, and front panels. Progressive Projects Ltd, PP Group of Companies, 58B Queensway, Stevenage, Herts.
WW $\mathbf{3 3 0}$ for further details

A to D display card

The DC 603 is an analogue to visual digital readout converter. The digital display has a maximum reading of 199 which can be scaled from 1.99 A to 1.99 mA . The unit can be supplied either with a transformer for mains input or as the rectifier system only, where a.c. voltages are available from the main system, when the a.c. re-

quired is 220 V at $4 \mathrm{~mA}, 18-0-18 \mathrm{~V}$ r.m.s. at 25 mA and 7.5 V r.m.s. at 200 mA . An alternative form powered from d.c. supplies is also available. The accuracy is 0.5%. B.C.D. information at t.t.l. levels is available as an extra provision. The data is updated 50 times per second but the speed for full accuracy is 2 measurements per second. The basic unit price is $£ 40$. Fenlow Electronics Ltd, Whittet's Eyot, Jessamy Road, Weybridge, Surrey.
WW 334 for further details

General purpose function generator

Model 5100 function generator made by Krohn-Hite is available in the U.K. from Allied International. It has a dynamic frequency range of 0.002 Hz to 3 MHz and provides sine, square, and triangle waveforms, and positive and negative ramps.

The main output is 20 V pk-pk (open circuit) and has a three-position amplitude control calibrated, open circuit, in peak volts (10,1 and 0.1) with a separate infinite resolution vernier. An additional 5 V pk-pk squarewave output with less than 15 ns risetime may be used for synchronization, gating, blanking, etc. Frequency may be varied by a control voltage in either of two ways. In the external mode it can be swept over a range of $1000: 1$ with the maximum frequency determined by the frequency band. In the dial mode it may be used to frequency modulate $\pm 5 \%$ around any selected frequency. The entire audio range of 20 Hz to 20 kHz may be covered in a single sweep by applying an external ramp. Frequency accuracy is $\pm 5 \%$ of setting from 0.02 Hz to 100 kHz and $\pm 10 \%$ from 0.002 Hz to 3 MHz . External synchronization can be provided by a 2 V r.m.s. external signal which will lock the generator over a range of approximately $\pm 5 \%$ with a slight change in distortion and amplitude. Input impedance is $1 \mathrm{k} \Omega$. The d.c. offset is controlled by a front panel potentiometer and switch $(\pm 5 \mathrm{~V}$ open circuit, 2.5 V across $50 \Omega)$. Drift is less than $50 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Frequency stability varies from $\pm 0.05 \%$ per 10 min . to $\pm 0.25 \%$ per 24 hours. Allied International Publicity Division, 59/61 Union Street, London S.E. I.
WW 303 for further details

Balanced microwave mixers

A range of broad-band microwave balanced mixers exhibiting a low noise figure, high isolation and low v.s.w.r., over multi-octave and octave frequency ranges from 1 to 18 GHz , is available from Microwave International Ltd. Selected Schottky barrier diodes give large dynamic range. The broad-band mixer r.f. and local oscillator ports cover the frequency range 1 to 12.4 GHz with a maximum input v.s.w.r. of 2.0 and the i.f. port covers the frequency range 5 to 250 MHz . The noise figure is 9 dB (single sideband measurement). The 1.o. to r.f. isolation is 12 dB minimum, and the corresponding figure from l.o. to i.f. is 26 dB . This unit has a compression point of +12 dBm , and the unit will handle a maximum c.w. r.f. input of +27 dBm . Other units are available covering the above mentioned range in octave bandwidths. Microwave International Ltd, 33-37 Cowleaze Road, Kingston-upon-Thames, Surrey.
WW 333 for further details

M.O.S. frequency divider

Now available from Auriema is the Philco Ford pL4CO7C monolithic frequency divider using m.o.s. technology. The divider circuit consists of seven flip-flops arranged in a 3-2-1-1 configuration and diffused into a single silicon substrate. The circuit can be driven from a sine- or square-wave input. Each flip-flop has a low impedance push-pull output which is capable of driving external circuitry as well as other flip-flops. Power consumption is low. Output power under standard conditions is 400 mW pro-
viding a swing between -1 and -10 volts. Input repetition rate is 100 kHz max. for the 4 CO 7 C and 500 kHz max. for version 4 CO 7 AC . Both versions can operate down to d.c. Input capacity is 5.0 pF max. at zero input, and input leakage current $1.0 \mu \mathrm{~A}$ max. at an input level of -20 V . The device is suitable for tone generation in electronic organs. Auriema Ltd, 23-31 King Street, London W. 3 .
WW 331 for further details

Rotary switches

A new 30 mm rotary switch'from Plessey can employ up to ten standard wafers in both shorting and non-shorting versions. Contact ratings are 500 mA at 30 V and 50 mA at 300 V for d.c. or a.c. resistive loads, and contact resistance is less than $10 \mathrm{~m} \Omega$. The maximum continuous current carrying capacity is 2 A . The spindle diameter is 6 mm with either 10 mm or $\frac{3}{8} \mathrm{in}$

diameter bush. Three standard spindle styles are available. Other options include panel and spindle sealing and double-pole on/off mains switching versions. The switch is also available as a dual concentric. Switching is through 12 positions (30°) as standard with $45^{\circ}, 60^{\circ}$ and 90° indexing also available. Professional Components Division, Plessey Components Group, Abbey Works, Titchfield, Fareham, Hants. WW 329 for further details

Klystron power supply

Model 604D klystron power supply from Microtest allows resonator and reflector voltages to be continuously adjusted. Resonator voltage and current, and reflector voltage and heater voltage can be monitored on the integral meter to within $\pm 2 \%$. The
heater supply is regulated. The reflector supply can be internally modulated with a square wave for on-off operation or with a sawtooth for f.m. operation.

output supply	cathode (resonator)	reflector	heater
voltage	$15-400 \mathrm{~V}$	0-500V	5.5-7.0V d.c.
load			
current	$0-100 \mathrm{~mA}$	0.0 .5 mA	0-1.5A
resolution	0.5 V	0.1 V	0.05 V
regulation ($\pm 7 \%$ mains			
variation)	0.001\%	0.001\%	0.5\%
ripple	1 mV r.m.s.	0.5 mV r.m.s.	10 mV r.m.s.

Power supply for the instrument is 100 $250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Microtest Ltd, 28 Walker Lines Industrial Estate, Bodmin, Cornwall. WW 302 for further details

Precision measuring amplifier
 The 2607 measuring amplifier from Bruel

 \& Kjaer is designed for sound and vibration measurements. It has interchangeable scales to allow direct reading of sound level, acceleration, velocity, displacement, power spectral density, etc. when used with different transducers. Equipped with B \& K condenser microphones it fulfils and ex ceeds the I.E.C. 179 specification for precision sound level meters. A special feature of the 2607 is a built-in lin-log converter and a rectifier allowing + peak, - peak and max. peak indication in addition to the r.m.s., impulse, and impulse hold readings. The lin-log converter gives a 50 dB display on the meter and 60 dB dynamic range on the output. Sensitivity is from $10 \mu \mathrm{~V}$ to 300 V . There are built-in A, B, C and D weighting networks, and a power supply for condenser microphones. The frequency range is $2 \mathrm{~Hz}-$ 200 kHz , and external filters can be added. B \& K Publicity Division, 59 Union Street, London S.E. 1.WW 322 for further details

Dual power supplies

Two dual power supplies are available from Hewlett Packard. Each houses two identical 50W power supplies in one package. Operation can be independent, or one supply can track the other. The output of the slave supply matches that of the master supply to better than $0.2 \% \pm 2 \mathrm{mV}$, when tracking. Each side of the new dual power supplies can be operated at constant-voltage or at constant-current. Each side has its own independent iniernal crowbar for overvoltage protection. In the tracking mode, on overvoltage in either supply trips both

crowbars. Model 6227 B is rated at $0-25 \mathrm{~V}$ and $0-2 \mathrm{~A}$, and model 6228 B at $0-50 \mathrm{~V}$ and $0-1 \mathrm{~A}$. Load regulation is $\pm(0.01 \%$ +1 mV) for constant-voltage operation or $\pm(0.01 \%+25 \mu \mathrm{~A})$ for constantcurrent operation, for a change in load current or voltage, respectively, equal to the rating of the supply. Line regulation is $\pm 1 \mathrm{mV}$ or $\pm 100 \mu \mathrm{~A}$ for a line voltage change from 207 to 253 V . Ripple and noise (d.c. to 20 MHz) is less than $250 \mu \mathrm{~V}$ or $250 \mu \mathrm{~A}$ r.m.s., and less than 4 mV or 2 mA peak-topeak under any load conditions within ratings. Both supplies in each unit are isolated for up to 300 V between any output and the chassis, or between one output and another. Hewlett Packard Ltd, 224 Bath Road, Slough, Bucks.
WW 324 for further details

Instant circuit boards

Individual circuit boards can be assembled and tested directly from engineering sketches, schematics and logic flow diagrams the same day using a complete family of Circuit-stik circuit sub-elements and circuit materials designed as a total packaging system. Sub-element conductors are preplated and flux coated and ready for soldering. The conductive circuits are supplied

on a thin substrate with a press-to-stick adhesive backing. They are designed to withstand soldering temperatures yet can be removed when required. The 1000 series sub-elements are pre-drilled on 0.1 in grid, are directly compatible with pre-punched epoxy-glass board and require no terminals. Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
WW 320 for further details

Range of coaxial terminations

The R.F. Components Division of Sealectro is marketing a range of low-power resistive terminations for coaxial use. The range covers power ratings from 0.5 W to 10 W and in various frequency ranges from d.c.
to 12.4 GHz . Typical examples are the OTT956A which has a b.n.c. input connector and is designed for use from d.c. to 1 GHz . and is rated at 1 W continuous power handling. Impedance values are 51,75 , 100 or 150Ω. Another style is theOTT 1597 s.h.f. which will operate from d.c. to 11 GHz at 1 W . This device is fitted with a t.n.c. connector and exhibits a maximum v.s.w.r. of 1.2 at 11 GHz . Each item can be supplied with either male or female connectors and either silver plated for gold plated bodies. R.F. Components Division, Sealectro Ltd, Walton Road, Farlington, Portsmouth PO6 1TB.
WW 323 for further details

I.C. desolder heads

Solderstat announce a new accessory which, using the method of simultaneous desoldering, removes standard dual-in-line packages within a few seconds. The desolder head is simply pushed on to a standard H.M.S. series miniature soldering iron in place of

the standard copper bit. The desolder heads are machined in one piece to ensure good thermal condition and long life. Both 14 -way and 16 -way dual-in-line models are available. Solderstat Ltd, P.O. Box No. 10, Bush Fair, Harlow, Essex.
WW 327 for further details

Selective detector

Selective detector type SD466/1, from Waverley, is a battery-operated instrument primarily intended for use with an external attenuator, as a transmission measuring set or spectrum analyser. There are sixteen sensitivity ranges-from $12 \mu \mathrm{~V}$ to 400 V f.s.d. The frequency range is $100 \mathrm{~Hz}-1 \mathrm{MHz}$ in 44 overlapping bands, and $40 \mathrm{~Hz}-1.3 \mathrm{MHz}$ wide band. There are eleven bands per decade and four multipliers $-\times 1, \times 10, \times 100$ and $\times 1000$. Accuracy is $\pm 2 \%$ as a voltmeter. The $\frac{1}{3}$ octave filters have band edges of -1 dB . Second harmonic rejection is greater than 60 dB (higher frequencies greater than 50 dB). Input impedance is $1 \mathrm{M} \Omega$ in parallel with 20 pF over the ranges 1.2 mV to 400 V , and approximately $20 \mathrm{k} \Omega$ in parallel with 40 pF on the $12 \mu \mathrm{~V}$ to $400 \mu \mathrm{~V}$ ranges. The record output is 1 mA d.c. into $3 \mathrm{k} \Omega$, and signal output 120 mV from $1 \mathrm{k} \Omega$ source. Two 9 V dry batteries power the instru-

ment. The sealed case measures $178 \times$ $445 \times 254 \mathrm{~mm}$ and weighs 9 kg . Waverley Electronics Ltd, Waverley Road, Weymouth, Dorset.
WW 316 for further details

Multi-purpose signal generator

The decade a.m.-f.m. signal generator type MS100M, designed and manufactured by the Schomandl subsidiary of Rohde \& Schwarz, is a multi-purpose generator with an output frequency of 10 kHz to 100 MHz adjustable in least increments of 1 Hz whilst retaining the accuracy of the built-in crystal oscillator. Continuous frequency adjustment allows interpolation within each decade of ranges from $\pm 5 \mathrm{~Hz}$ to $\pm 5 \mathrm{MHz}$, and can be carried out manually, or externally by an analogue d.c. signal, or by sweeping. The frequency generating system of the MS100M is provided with a synchronized oscillator in each frequencyselection stage and produces very pure output signals. Since the set is immune to r.f. leakage, even low-voltage outputs can be accurately adjusted and the output level can be continuously adjusted over 10 dB (meter indication in V and dB) and in increments of 1 dB down to - 132 dB . The generator can also be supplied with tuning in crystal-controlled increments of 10 Hz , 100 Hz and 1 kHz , and decade stages can be added. Output is $1 \mathrm{~V}\left(Z_{s}=50 \Omega\right)$. U.K. agents Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex. WW 304 for further details

Photoconductive cell

Mullard have produced a subminiature cadmium sulphide cell type RPY.71. It is made by a technique providing extremely small and stable cells with a high-power dissipation. These cells have zero initial drift-or resistance overshoot-and a smaller memory effect than photoconductive cells made by the conventional sintering process. Changes in illumination and the resulting changes in cell resistance have a linear relationship. Maximum permissible dissipation is 50 mW and maximum rating is 50 V . Its resistance at 10 lux from a
source with a colour temperature of 2700 K does not exceed $6 \mathrm{k} \Omega$; dark resistance is more than $500 \mathrm{k} \Omega$. The cell has maximum dimensions of $5.3 \times 5.3 \times 1.3 \mathrm{~mm}$, and will operate in the temperature range -40° to $+60^{\circ} \mathrm{C}$. Mullard Ltd, Mullard House, Torrington Place, London WC IE 7HD. WW 305 for further details

Turns-counting dial

A 10 -turn, 25 mm diameter, turns-counting dial, type $25-10$, is available from R. C. Knight. It has a guaranteed life of 2×10^{6} rotations, and is designed for applications where space is restricted. Constructed for accurate and backlash-free readings, it

includes collett mounting for easy dial-toshaft assembly. A selection of end cap colours for dial identification is available. Standard finishes are silver-satin or black anodized aluminium, with prices from 41 s 9 d (£2.09) each. R. C. Knight Ltd., 20 Solent Avenue, Lymington, Hants, SO4 9SD. WW 326 for further details

Oscilloscope camera

With a new $\mathrm{f} 1.9,51 \mathrm{~mm}$ lens, a Mark il version of the 'Super-seven' Polaroid oscilloscope camera has been introduced by Shackman Instruments. The lens is mounted in a rim-set multi-speed shutter and can be adjusted to give any desired object-toimage ratio between $1: 0.7$ and $1: 1$. It is also possible to record a single sweep spot on BE (P11) phosphor tubes, at a speed of $2 \mathrm{~ns} / \mathrm{cm}$. Attachment to the oscilloscope is by bezel adaptors incorporating quickchange, left to right 'swing-away' hinges, to permit direct viewing of the c.r.o. screen without displacement of the camera, or the need to re-focus. The camera body, which houses the lens and shutter, is available in

two types, either with or without a lowangle, off-axis binocular viewer. Three interc hangeable film modules are available, all being par-focal-interchanged at will without the need to re-focus-offering the use of Polaroid instant pictures, $4 \times 5 \mathrm{in}$. single sheet films, $3 \frac{1}{4} \times 4 \frac{1}{4}$ in Polaroid roll films, flat eight-exposure cassettes, as well as conventional 4×5 in cut film and 120 size roll film. All three film modules fit to a 9 -position slide, which can be rotated to the vertical, or horizontal aspect, making the best use of film area at different ratios. Shackman Instruments Ltd, Mineral Lane, Chesham, Bucks.
WW 306 for further details

Electronic voltmeter

ITT have introduced a new electronic voltmeter, the VX208A, that will measure the mean value of an a.c. voltage from 10 Hz to 10 MHz . The meter has a preamplifier and attenuator giving a high input impedance ($10 \mathrm{M} \Omega$ shunted by 30 pF) and a low noise factor. Twelve ranges enable it to measure a.c. voltages from 1 mV to 300 mV and from 1 V to 300 V . ITT Electronic Services, Edinburgh Way, Harlow, Essex.
WW 301 for further details

Subminiature toggle switches

Two subminiature toggle switches are available from Guest International. Type 21136 is single pole, and the double pole version is designated 21146 . Each switch

incorporates a printed-circuit tag having standard 0.2 in spacing and a $\frac{1}{4}$ in bush and nut for front panel fixing. The finish is mattblack and there is a choice of solid silver or gold for the contact material. The contacts are rated at 2 A 250 V with a resistance of less than 0.005Ω. The case is made of diallylphthalate. Industrial Electronic Components Division, Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey.
WW 321 for further details

Encapsulated reed relays

Keyswitch offer a range of encapsulated reed relays moulded in a semi-flexible epoxy resin. Terminating pins are on a 0.1 inch matrix for p.c. applications. The range is designed for 6,12 or 24 V coil operation, and up to four reed capsules may be included in one unit for complex switching functions. Form C (changeover) or form A (normally open) contact arrangements may be specified with a wide range of current and voltage ratings. Keyswitch Ltd, 120-132 Cricklewood Lane, London N.W. 2.
WW 318 for further details

Metal-oxide resistors

FP style metal oxide resistors, available from WEL, are claimed to stand overloads up to 100 times rated power without any trace of flame. Available as $2,3,4,5,7$

and 10 W rated units, they have a working voltage rating of 500 and a resistance range from $9-90 \mathrm{k} \Omega$. Standard tolerance is 5%. WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW 310 for further details

Portable magnetic tape system

A compact portable magnetic tape system from Honeywell, model 5600, is a 14 channel instrumentation grade recorder. The basic recorder accommodates 16 data cards for any combination of record/ reproduce channels totalling this number. An auxiliary housing is available for expansion to a total of 32 data cards. Builtin features permit easy on-the-spot conversion of tape width, power source and recording technique to meet a variety of special requirements at remote locations. It can use thin base tape on 267 mm reels, and has a universal hub for 6,13 and 25 mm tape. Models are available to operate from $115 / 230 \mathrm{~V}, 48-420 \mathrm{~Hz}$, or from 10 -

15 V d.c. or $22-30 \mathrm{~V}$ d.c. A phase-locked servo-controlled capstan system provides seven speeds ranging from $\frac{15}{16} \mathrm{in}$ to 60 in per second. Ancillary components are available including meter monitors, attenuators, differential inputs, and remote control units. Test Instruments Division, Honeywell Ltd., Charles Square, Bracknell, Berks.
WW 315 for further details

Soldering gun

The L200 soldering gun from Klaus Schlitt has a solder feed control allowing singlehanded operation. Solder is wound on various sized spools. Also built-in is a small lamp. The mains versions are for 110 or

220 V ; and $20,30,40,50,60,80$, and 100 W models can be supplied. A 24 V 40 W version is also available. Klaus Schlitt, LöttechnikMech. Geräte, D-6000 Bergen-Enkheim b.Ffm., Postfach 44, West Germany.

WW 325 for further details

Miniature power supplies

A series of miniature power supplies by Bentron are available from Rastra. They provide stabilized d.c. outputs from unstabilized sources with a factor of 2000:1 without any auxiliary external voltage. The maximum input voltage, depending upon the model, is 40 V to 70 V and the output voltage 4 V to 60 V . All parts are protected against overload and each unit is short-circuit proof. Encapsulation is by epoxy resin. The user programmes current limit and output voltage by means of external resistors wired across four pins. There are 28 models with a wide variety of voltages available. Rastra Electronics Ltd, 275 King Street, Hammersmith, London W.6.
WW 319 for further details

Portable transceiver

An eight-channel portable 'man-pack' s.s.b. transceiver with a transmitting p.e.p. of 10 W is available from Labgear. The transceiver, known as "Compak 8", is selfcontained and housed in a plastic case. It contains four printed circuit boards. The boards for the transmitter and receiver functions are separate self-contained plug-in modules. The unit is designed for voice or key operation using a.m. with suppressed carrier. It is sealed (with its batteries) and may be carried on a halter or in a rucksack. The frequency range is $2-9 \mathrm{MHz}$. Weighing 6.8 kg the transceiver measures $356 \times$ $216 \times$ I14mm. Labgear Ltd, Cromwell Road, Cambridge.
WW 308 for further details

1971 U.K. Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON
Feb. 8-12
Australian Trade Display
(Trade \& Industry Office, Australia House, Strand, London W.C.2)
Feb. 17 \& 18
I.E.E., Savoy Place Electron Energy Analysis
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. 16-19 Camden Town Hall Sound ' 71
(Assoc. of P.A. Engineers, 394 Northolt Road, South Harrow, Middx HA2 8EY)
Mar. 29-Apr. 2
Earis Court
LABEX Intemational
(U.T.P. Exhibitions Led, 36-37 Furnival St., London EC4A 1JH)
Mar. 30 \& 31
Grosvenor House
Tralning 71
(Marketing Exhibitions Ltd, 113/123 Upper
Richmond Rd, London S.W.15)
Mar. 31-Apr. 4
Skyway Hotel
SONEX 71
(Fed. of British Audio, 49 Russell Sq., London W.C.1)

Apr. 19 \& 20
I.E.E., Savoy Place

Hybrid Microelectronic Circuits
(International Society for Hybrid Microelectronics, c/o Dr. R. G. Loasby, A.W.R.E., Building A37, Aldermaston, Reading RG7/4PR)
Apr. 21-29 Earls Court
Intemational Engineering and Marine Exhibition
(Industrial \& Trade Fairs Ltd, Commonwealth House, New Oxford St., London WC 1A 1PB)
May 18-21
Olympia
Electronlc Component Show
(Industrial Exhibitions Lid, 9 Argyil St.,
London W1V 2HA)
May 18-21 Royal Garden Hotel
Electronic Components Conference
(Electronic Components Board, Carrier House, Warwick Row, London S.W.1)
June 8-10
Savoy Place
Aerospace Antennas
(I.E.E., Savoy Place, London WC2R 0BL)

June 21-25
Royal Lancaster Hotel
Film '71
(B.K.S.T.S., 110-112 Victoria House, Vemon Pl., London WC1B 4DJ)
July 12-17
Imperial College
Industrial Measurement and Control by
Radiation Techniques
(I.E.E., Savoy PI., London WC2R 0BL)

Sept. 8 \& 9
I.E.E., Savoy Place

High Voltage Insulation in Vacuum
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Oct. 26-30
Olympia
Audio Fair
(Rex Hassan, 42 Manchester St., London W.1)

BRIGHTON

Apr. 4-6
University of Sussex
Vacuum Equipment
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Apr. 20-23
Hotel Metropole
Technical Communication in the 70s
(Business Conferences \& Exhibitions, Mercury
House, Waterloo Rd, London S.E.1)

BRISTOL

July 9-12
The University
Marine Electronics
(S.E.R.T., 8-10 Charing Cross Rd, London W.C.2)

Mar. 23-26
The University
EASCON 71-From leaming to earning
(I.E.E.T.E., 2 Savoy Hill, London WC2R 0BS)

EASTBOURNE

May 18 \& 19
Grand Hotel
Design and Control of Manufacture
(Sira Institute, South Hill, Chislehurst, Kent
BR 7 5EH)

EXETER

July 3-5
The University
Band Structure in Solids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

HARROGATE

Mar. 2-4
Exhibition Hall
EL-EC 71-Electronic Equip. \& Components
(Trade News Ltd, Drummond House,
203-209 North Gower St., London N.W.1)

Overseas: FEBRUARY-MAY

Feb. 9-11
Los Angeles
Aerospace \& Electronic Systems
N. Y. 10017)
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017) Feb. 13-19 Monte Carlo
Colloque International de L'Audiovisuel
(Comité du Festival, Palais des Congrès, Avenue d'Ostende, Monte-Carlo)

Feb. 17-19

Philadelphia
Solid State Circuits Conference
(Lewis Winner, 152 W. 42 nd Street, New York, N.Y. 10036)

Mar. 9-13
MEDEX 71-Medical Electronics and Bio-engineering
(Sekretariat MEDEX 71, CH-4000 Basel 21)
Mar. 9-13
Basle
INEL-Industrial Electronics
(Sekretariat INEL 71, CH-4000 Basel 21)
Mar. 9-14
Bordeaux
OCEANEXPO 71
(Salon International de l'Exploitation des Oceans,
8 , rue de la Michodière, Paris 2)
Mar. 14-23
Leipzig
Leipzig Spring Fair
(Leipzig Fair, 701 Leipzig, Messehaus am Markt)
Mar. 22-25 New York
I.E.E.E. Convention and Exposition
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Mar. 29-Apr. 2
Paris
Space and Communication
(L'Espace et la Communication, 16 rue de Presles, Paris 15°)
Mar. 31-Apr. 6 Paris
Salon Intemational des Composants Electroniques
(Fed. Nat. des Industries Electroniques, 16 rue de
Presles, Paris 15°)
Apr. 5 \& 6
Atlanta
System Theory
(C.O. Alford, School of Electrica! Eng., Georgia

Institute of Technology, Atlanta, Georgia 30332)

LANCASTER
Apr. 5-7
The University
Elementary Particle Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 14-16
Solid State Devices
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)
, LIVERPOOL
Mar. 23-26
The University
Negative Ions
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

LOUGHBOROUGH

Sept. 7-10
The University
Displays
(I.E.E., Savoy PI., London W.C.2)

MANCHESTER
Sept. 1-3 The University
Multivariable Control System Design and
Applications
(UKAC 1971 Convention Secretariat, Savoy PI., London WC2R 0BL)
Sept. 6-12
The University
Electron Microscopy
(I.P.P.S., 47 Belgrave Sq., London S.W.I)

Oct. 5-8 City Hail
MELEX—Electronics Exhibition
(Industrial Exhibitions Ltd, 9 Argyll St.,
London, W1V 2HA)

NOTTINGHAM

Mar. 29-Apr. 2
The University
Datafair 71
(British Computer Society, 29 Portland Pl.,
London W.1)
July 6-8
The University
Electronic Control of Mechanical Handling
(I.E.R.E., 9 Bedford Sq., London WC1B 3 RG)

SHEFFIELD

Sept. 7-9 The University
Computers in Medical and Biological Research
(I.E.E., Savoy PI., London WC2R 0BL)

YORK

Apr. 5-8
The University
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Apr. 12-15
Washington
Telemetering Conference
(Washington Technical Consultants, 422 Washington Bldg, Washington D.C. 20005)
Apr. 13-15
Boston
Electronics in Medicine
(Electronics in Medicine, 330 W. 42nd St.,
New York, NY10036)
Apr. 13-15
New York
Computers and Automata
(Polytechnic Institute of Brooklyn, 333 Jay St, Brooklyn, New York 11201)
Apr. 13-16
(C.D. Mee, IBM Corp., Building 015, Monterey \& Cattle Rds, San Jose, California 951 14)
Apr. 26-28 Atlantic City Frequency Control Symposium
(U.S. Army Electronics Command, Solid State \&

Frequency Control Div., Electronic Components Laboratory, Fort Monmouth, New Jersey 07703)
May 10-12
Washington
Electronic Components Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

May 12-14
Boulder
Electron, Ion \& Laser Beam Technology
(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)

May 17-19 Dayton
Aerospace Electronics Conference
(I.E.E.E., 124 E. Monument Avenue, Dayton, Ohio 45402)
May 17-20
Washington
Microwave Symposium
(I.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)

May 21-27
Montreux

Television Symposium
(Case-Box 97,1820 Montreux)

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

Sprague Electric (U.K.) Ltd have added 50. TO18 based. plastic transistors, rated at 360 mW . to their range. A set of data sheets and an interchangeability chart for the range (Econoline) may be obtained from S.D.S. (Portsmouth) Ltd, Gunstore Rd, Hilsea Industrial Estate, Portsmouth, Hants
.WW401

We have received a semiconductor price list from ITT Semiconductors. Footscray. Sidcup, Kent

WW402
Brief details of a wide range of active and passive electronic components from several manufacturers round the world are given in Electronic Component Selector Guide. Celdis Ltd, 37/39 Loverock Rd, Reading, Berks. RG3 1ED...............WW403

Hybrid "Helipol" microcircuits including voltage regulators, ladder networks and switches. power amplifiers, circuit protection devices and a lamp and relay driver are described in a publication "Helipol Microcircuits". Application data and details of the customer design service are also given. Beckman Instruments Lid, Glenrothes, Fife, Scotland WW404
"Transistor selector" is a publication which enables a transistor to be chosen for a particular task on some aspect of its specification or by application. SGS (U.K.) Ltd, Planar House, Walton St. Aylesbury. Bucks ...WW405 A diode selector is also availableWW406

Wel Components Ltd. 5 Loverock Rd, Reading, Berks. RG3 IDS, have published a semiconductor price list for 1971 ..WW407

Ferranti Lid, Gem Mill, Chadderton, Oldham, Lancs, have published a new integrated circuit price list ...WW408

A bipolar transistor reliability report describing the extra testing of, and gives life test data for. transistors with the suffix Jan-TX. National Seniconductor Corp., 2900 Semiconductor Drive, Santa Clara, California 9505I ..WW409 From the same address a t.t.l. and low-power t.t.I. guide is available ..WW410

We have received the following publication from Fairchild Semiconductor Lid, Kingmaker House, Station Rd, New Barnct. Herts. "Linear integrated circuit condensed catalogue" gives brief data on a large range of linear i.cs and provide type application lists

AEI Semiconductors Lid, Carholme Rd, Lincoln, have published a 24 -page booklet dealing with eight ranges of zener diodes. The booklet, number (4450 50. VREG). costs 5 s .
"Solid-state microwave sources" is the title of a booklet which has been published by ITT Components Group Europe, ST.C. Ltd, Edinburgh Way, Harlow, Essex

PASSIVE COMPONENTS

Catalogue A-00001 describes the range of reed switches manufactured by the American company

Hamlin. It is available from Inter-market Services Lid, 47a Hay's Mews, Berkeley Square, London W. 1 WW4 13

A price list covering the products of many companies capacitors, resistors. semiconductors, valves, integrated circuits and hardware is available from Swift. Hardmans, Swift House, Bryan St, Hanley, Stoke-on-TrentWW414

Some details of the vast range of products manufactured by ITT Components Group Europe, S.T.C. Ltd, Edinburgh Way, Harlow, Essex, can be gleaned from the publication "Components-Product Digest" ..WW4 15 Also available is a list of U.K. sales offices for particular products ($6000 / 463 \mathrm{E}$)WW4 16

Catalogue No. 1 (1971) list a wide range of electronic components available from the D-T-V- Group Ltd, 126 Hamilton Rd, London S.E. 27WW4 W17

A leaflet giving technical data and prices for a range of loudspeakers bas been received from Baker Reproducers Ltd, Benshan Manor Road Passage, Thornton Heath, Surrey
..WW4 18
The Dec '70/Mar' 71 catalogue is available from Radiospares Ltd, P.O. Box 427, 13-17 Epworth St, London EC2P 2HA

WW419
Also available from Radiospares is the publication "Component Applications Data". This gives more complete data and advice on using some of the components listed in the catalogueWW420

APPLICATION NOTES

"Helipot 845 digital-to-analogue converter" is a publication which after discussing d.a.cs in general goes on to describe the hybrid microcircuit d.a.c. model 845 together with various methods of using it. Beckman Insıruments, Queensway, Glenrothes, Fife .

WW42I
An application note from Fairchild Semiconductor Ltd. Kingmaker House, Station Rd. New Barnet, Herts, gives suggested circuits for the $\mu \mathrm{A} 740$ junction f.e.t. op-amp and types μ A715 (high speed), $\mu \mathrm{A} 735$ (micropower), $\mu \mathrm{A} 725$ (instrumentation) and the $\mu \mathrm{A} 727$ (temperature controlled) op-ampsWW422
"Control line applications" suggests uses for a range of modules designed to interface low current control circuitry with high current actuators etc. Time delay units are also discussed. FR Electronics Ltd, Wimborne, Dorset ..WW423
"The case for subminiature switches" is a book which will appeal to all who need to use small switches. It contains the results of an exhaustive eighteen month switch test programme carried out by Waycom on more than 1000 switches. Copies can be obtained from Waycom Ltd (Publications). Wokingham Rd. Bracknell. Berks., price 25 s

Application note AN 420. "An integrated circuit stereo pre-amplifier" describes the design of a pre-amplifier using one MC 1303P dual op-amp in each channel. Motorola Semiconductor Products Inc., York House, Empire Way, Wembley. Middlesex. ...WW424

EQUIPMENT

A leaflet available from Coie Electronics Lid, Lansdowne Rd, Croydon CR9 2 HB , describes a group delay measuring set (400 C) which complies with the P.O. spec. RC5178. The P.O. type number is measuring set 37A
....WW425
Literature describing f.m. tape equipment manufactured by Lennartz Electronic, of West Germany, is available from Haydon Laboratories Ltd, East House. Chiltern Ave, Amersham. Bucks ...

WW432
"Don't dump your key punch machine till you've read this brochure" is the title of a publication which describes three optical character recognition machines manufactured by Interscan Data Systems (U.K.) Ltd, Hoechst House, Salisbury Rd, Hounslow, MiddlesexWW433

A loose-leaf booklet produced by KGM Vidiaids Ltd, Clock Tower Rd, Isleworth. Middlesex, describes, and gives data on, a range of closed-circuit television equipment
.WW434
J Beam Engineering Ltd. Rothersthorpe Cres. Northampton. have produced a 56 -page catalogue giving data on their range of radio communication and television aerials. A price list is includedWW442

Avo Ltd, Avocet House, Dover, Kent, have produced a catalogue which gives details of all the Avometers now available ..WW444

A wide range of equipment for the communications industry is listed in the two catalogues from Rohde and Schwarz which we have received from Aveley Electric Ltd, South Ockendon, Essex RMI 5 55R.

Measuring instrumentsWW445
Communications equipmentWW446

HARDWARE

When equipment has been manufactured it must be packed. Literature available from Evans Bellhouse Lid. Newton Heath, Manchester 10, is devoted to this problem.

Wood wool packingWW448
Moulded polystyrene packingWW449
Fabricated foam packing.................WW450
Mainly for the electrical industry is a brochure that describes "panel plates" for switches and the like made from either satin finished stainless steel or brushed brass. Sola Basic International. P.O. Box 753-Milwaukee, Wisconsin 53201, U.S.A. WW451

A catalogue called "Soldering instruments" is available from Light Soldering Developments Ltd, 28 Sydenham Rd, Croydon, CR9 2LL

WW452
Black crepe tapes for printed circuit artwork are listed in a leaflet produced by Circuitape Lid, High St, Tring, Herts
.WW453

GENERAL INFORMATION

The following new publications are availabie from the British Standards Institution, Sales Branch, 101 Pentonville Rd, London N1 9ND:
BS89: Part 1: 1970, 'Specification for direct acting electrical indicating instruments'price 20s BS9400: 1970, 'Specification for integrated electronics circuits of assessed quality: generic data and methods of test'price 40s CP95: 1976. "Fire protection for electric data processing installations". price Ios

A 52 page booklet "The international system of S.I. units" is a translation from the French by the National Bureau of Standards and the National Physical Laboratory. It is available from H.M.S.O. price 12s

Two metric conversion cards $£ / \mathrm{kg}$ to $£ / 1 \mathrm{~b}$ and kg to cwts have been produced by The J.A.C. Wilkerson Co., 5 Beeches Ave, Carshalton. SurreyWW4 54

The '1970-71 bulletin of special courses in higher technology, management studies and commerce' is available from London and Home Counties Regional Advisory Council for Technological Education, Tavistock House South, Tavistock Square, London WCIH 9LR, price 10s

off the shelf for as little as $2 /$ - per watt. Maximum distortion $0.1 \% 20 \mathrm{~Hz}$ to 20 kHz . Full power bandwidth 10 Hz up to $80 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Complementary and quasi-complementary versions in all power ratings perform to the same high standard. Unconditionally stable. Fully protected against

* Stereo Integrated Circuit Preamplifiers
* Stereo Headphone Amplifiers
* Toroidal Mains Transformers
all designed to the exacting standards of the professional user.
Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating Motorola transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited

8 Elsworthy Rise London N W 3
'"Setting the Standard for the Seventies"

SPECIAL OFFER

 FROM

THE TINSLEY PATCHETT

VERY HIGH PRECISION

 A.C. STABILISER . . . £250FROM STOCK—DELIVERY 7 DAYS

This instrument has been designed to fill the need for a very stable supoly with a high purity of waveform for precision A.C. measurements The uhit is extremely simple in operation and is fitted with protective devices and alarms which automatically prevent any possibility of damage it does not require any adjustments in setting up other than the output voltage selection. Output current:-
1 ampere maximum for stabilisation range of $\pm 7 \%$ change of input voltage 2 amperes maximum for a stabilisation range of $\pm 3.5 \%$ change of input voltage.

* SEND FOR LEAFLET 215
H. TINSLEY \& CO LTD WERNDEE HALL

SOUTH NORWOOD • LONDON SE25 • 01-654 6046

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	Z. 30	Crystal P.U., 12 V battery volume control	$\begin{aligned} & 89 / 6 \\ & \left(£ 4.47 \frac{1}{2}\right) \end{aligned}$
B	Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	$\begin{aligned} & £ 9.9 .0 \\ & (£ 9.45) \end{aligned}$
c	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ.5 } \end{aligned}$	Crystal ceramic or mag. P.U. most dynamic speakers. F.M. tuner etc.	$\begin{aligned} & \text { £23.18.0 } \\ & (£ 23.90) \end{aligned}$
D	$20+20$ W.R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc	$\begin{aligned} & £ 26.18 .0 \\ & (£ 26.90) \end{aligned}$
E	$40+40$ W. R.M S. deluxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As for D	$\begin{aligned} & £ 32.17 .6 \\ & \left(£ 32.87 \frac{1}{2}\right) \end{aligned}$
F	Outdoor P.A. system	Z. 50	Mic., up to 4 P.A. speakers controls etc	$\begin{aligned} & £ 5.9 .6 \\ & \left(£ 5.47 \frac{1}{2}\right) \end{aligned}$
G	Indoor P.A.	Z.50, P2.8, mains transformer	Mic., guitar, speakers, etc., controls	$\begin{aligned} & \text { £17.8.6 } \\ & \left(£ 17.42 \frac{1}{2}\right) \end{aligned}$
H	High pass and low pass filters	A.F.U.	C. D or E	$\begin{aligned} & £ 5.19 .6 \\ & \left(£ 5.97 \frac{1}{2}\right) \end{aligned}$
J	Radio	Stereo F.M. Tuner	C. Dor E	$£ 25.0 .0$

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.

Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE1 7 4HJ.
Tel: St. Ives (04806) 4311

Sinclair Project 60

Z. 30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use Z.30 or Z.50 amplifiers in your Project. 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well
SPECIFICATIONS (2.50 units are inter-
changeable with Z.30s in all applications).
Power Outputs
Z. 3015 watts R.M.S into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts. Z.50 40 watts R.M.S. into 3 ohms using 40 volts. 30 watts R.M.S. into 8 ohms. using 50 voits
Frequency response : 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distartion : 0.02% into 80 hms
Signal to noise ratio: better than 70dB unweighted.
Input sensitivity: 250 mV into 100 Kohms
For speakers from 3 to 15 ohms impedance
Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ in.
Z. 30

Built, tested and guaranteed with circuits and instructions manual $89 / 6$ ($£ 4.47 \frac{1}{2}$)
2.50

89/6 (E4.47
Built, tested and guaranteed with circu'ts and
instructionsmanual $109 / 6 \quad\left(£ 5.47 \frac{1}{2}\right)$

Power Supply Units

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 to left and PZ.8 (for use with 2.50 s) to the right. Use PZ.5 for normal 2.30 assemblies and PZ.6 where a stablised supply is essential.
PZ-5 30 volts unstabilised $£ 4.19 .6$ ($£ 4.97 \frac{1}{2}$)
PZ-6 35 volts stabilised $£ 7.19 .6$ ($£ 7.97 \frac{1}{2}$) PZ-8 45 volts stabilised
(less mains transformer) $£ 5.19 .6$ ($£ 5.97 \frac{1}{2}$)
PZ-8 mains transformer $£ 5.19 .6$ ($£ 5.97 \frac{1}{2}$)

Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier, Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs:

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag p.u 3 mV . correctio R A A curvet $1 \mathrm{~dB} \cdot 20 \mathrm{to} 25,000 \mathrm{~Hz}$ Ceramic p.u-up to 3 mV : Aux-up to 3 mV
Output: 250 mV
Signal-to-noise ratio: better than 70 dB
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz}: \mathrm{BASS}+15 \mathrm{to}-15 \mathrm{~dB}$ at 100 Hz . Front panel: brushed aluminium with black knobs and controls
Size: $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$
Built, tested
and guaranteed.
£9.19.6 (£9.97⿺辶

Active Filter Unit

For use between Stereo 60 unit and two 2.30 s or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12 dB /octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporated rumble (high pass) and scratch (low pass) Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) variable from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35 V . supply) 0.02% at rated output
Built, tested
and guaranteed
£5.19.6 (£5.971 $\left.\frac{1}{2}\right)$

Stereo FM Tuner

first in the world to use the phase lock loop principle
Before production of this tuner, the ohase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. In the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS

Number of transistors: 16 plus 20 in I.C
Tuning range : 87.5 to 108 MHz
Capture ratio: 1.5 dB
Censitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level: $20 \mu \mathrm{~V}$.
A.F.C. range : $\pm 200 \mathrm{KHz}$

Signal to noiseratio: $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ $(\pm 1 \mathrm{~dB})$
Total harmonic distortion: 0.15% for 30% modulation
Stereo decoder operating level : $2 \mu \mathrm{~V}$
Pilot tone suppression: 30 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz

Output voltage : $2 \times 150 \mathrm{mV}$ R.M.S
Aeriallmpedance: 75 Ohms
Indicators: Mains on: Stereo on; tuning indicator Operating voltage: $25-30 \mathrm{VDC}$
Size: $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{£ 2 5}$ built and tested. Post free

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ
Please send

Name

Address

Sinclair IC10/Q16/Micromatic

IC10

The world's most advanced high fidelity amplifier
This is the world's first monolithic integrated circuit high fidelity power amplifier and preamplifier. The circuit itself is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, having 5 watts RMS output (10 watts peak). It contains 13 transistors (including two power types). 2 diodes. 1 zener diode and 18 resistors, and is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is more rugged and has considerable performance advantages, including complete freedom from thermal runaway and a very low level of distortion. The IC10 is primarily intended as a full performance high fidelity power and preamplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. It may also be used in other applications including car radios, electronic organs. servo amplifiers (it is dc coupled throughout) etc.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.
Each IC10 is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc. The pre-amp section can be used as an RF or IF, amplifier without any additional transistors.

Specifications

Output: 10 watts peak. 5 watts RMS continuous
Frequency response: 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$
Total harmonic distortion: Less than 1% at full output.
Load impedance : 3 to 15 ohms
Power gain: $110 \mathrm{~dB}(100,000.000,000$ times) total.
otal.
Supply voltage : 8 to 18 volts. (A Sinclair power unit, PZ. 7 is available for mains operation).
Size: $1 \times 0.4 \times 0.2$ in. plus heat sink and tags.
Sensitivity 5 mV .
Input impedance: Adjustable externally up to 2.5 Mohms.

Price (with manual): 59/6 (£2.97t) post free.

016

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design, technical journals have justly compared the Q16 with much more expensive loudspeakers. Its shape enables the 016 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications

Construction: Special sealed seamless sound or pressure chamber with internal baffle
Loading: up to 14 watts TMS
Input impedance: 8 ohms.
Frequency response: from 60 to 16.000 Hz confirmed by independently plotted B and K curve. Oriver unit: Special high compliance unit having Driver unit: Special high compliance unit having
massive ceramic magnet of 11.000 gauss, aluminium massive ceramic magnet of speech coil and a special
excellent transient response.
excellent transient response.
Size and styling: 97 in square on face $\times 4 z$ in deep Size and styling: 9zin square on face $\times 4 z$ in deep
with neat pedestal base. Black all-over cellular foam front with natural solid teak surround. Price $£ 8.19 .6$. ($£ 8.97 \frac{1}{\mathbf{2}}$)

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ
Please send
Name

Address

Micromatic

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy The plug-in magnetic earpiece provided matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contained within the minute and attractively designed case. Whether you build a Micromatic kit or buy this amazing receive ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications

Size: $36 \times 33 \times 13 \mathrm{~mm}\left(14 / 5 \times 13 / 10 \times \frac{1}{\frac{1}{2}} \mathrm{in}\right.$.)
Weight: including batteries. $28.4 \mathrm{gm}(1 \mathrm{oz}$.) Case: Black plastic with anodised aluminum front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies. (550 to 1.600 Hz)
Earpiece: Magnetic type
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case instructions and solder 49/6 (f $2.47 \frac{1}{2}$)
Ready bult, tested and guaranteed, with earpiece 59/6 (£2.97it)
Two Mallory Mercury batteries type RM675 required. From radio shops, chemists, etc.

* Sinclair Radionics Ltd. London Road. St. Ives. Huntingdonshire PE1 74 HJ . Tel: St. Ives (048 06) 4311

See now,playlater.
 If something's worth
 Write or phone

recording, it's worth recording well. The TVR 332 Video Tape Recorder gives a very high quality picture for just $£ 820$.

Its many features include audio monitoring and dubbing; push button controls; automatic playback and rewinding; instant stop-motion and 1500 hours video head life

Whether you want to buy or hire, it's naturally backed by Dixons service.

Dixons CCTV Ltd 3 Soho Square, London W.1. 01-437-8811

We offer you more

TEGHNICAL TRAINIIG in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
(1) Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc. Now available-Colour T.V. Servicing

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments. All under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

* FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CAlIbRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
(REPAIR SERVICE 7 DAYS
* WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

WW- 081 FOR FURTHER DETAILS

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

'PHASE 12'

An extremely attractive solid state stereo amplifier, ideal for unit audio use. Facilities include MAGNETIC and CERAMIC PU. RADIO, TAPE etc. Output 6 watts per channel Freq. Response 40-40,000 c.p.s.-3 dB. Hum Level-74 dB. Controls include Input Selector, Volume Balance. Bass. Treble and Stereo/Mono Switch. Black and silver facia panel with
 £25.20 Recommended Retail Price satin silver control knobs. Slimline finish enhanced by good quality Teak cabinet housing.

The latest addition to the FAL range. For performance and styling the "PHASE 44" compares with the best. Reliability assured by the use of top grade components
Push button selection for Magnetic and Ceramic pick-up. tuner. tape, mono/stereo. filter, on/off.
Circuit incorporates 20 transistors and 4 diodes.
Facilities provided include:-Headphone Jack socket, reserve power outlet and mains neon.
Without doubt the 'PHASE 44 ' represents excellent value for money
'PHASE 44 SOLID STATE STEREO AMPLIFIER $20+20$ WATT R.M.S. HIGH FIDELITY OUTPUT
\star Excellent performance
\star Impressive specification

* Attractive appearance
* Natural teak veneered cabinet
* High Grade components
onvy $£ 42.50$

For leaflets on the above and other models
in the FAL range, please send SAE to:-
FUTURISTIC AIDS LTD, 104 Henconner Lane, Leeds, 13.

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

WW-083 FOR FURTHER DETAILS

STOCKISTS

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76̀-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
G.P.O. APPROVED CONTRACTOR TO H.M. GOVT.

WW-084 FOR FURTHER DETAILS
DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London WC2H OER Tel: 01-930 3070

WW-086 FOR FURTHER DETAILS

ELAPSED TIME INDICATORS

Current Integrators

The whole range of Elapsed Time Indicators (E.T.I.) consists of:-
CHRONSISTOR (B)-Electro-chemical E.T.I. based on copper for 100, 1,000 and 10.000 hours This one is expendable after use.
MERCRON (8) -Electro-chemical E.T.I. based on mercury for 100, 1,000 and 10.000 hours.
Exists in six different modeis
HOROCONTROL(B) -Eiectro-mechanical E.T.I. for A.C.. or D.C. for 9999.9 , or 999.99 hours,

INDUSTRIRL
INSTRUMENTS LIMITED

FACTORY: PONSWOOD INDUSTRIAL ESTATE, HASTINGS, SUSSEX. TEL: HASTINGS 7344/5/6

Neither you nor your microphone ought to be kept on a lead

With our Type 12 Mk 111 and Type C Mk 111 you won't be. They're radio dom of movement at a really minimat
cost The microphones are simply cost. The microphones are simply connected to small transmitters that you can keep in your pocket. And with the Type C Mk 111 you can use up to five microphone systems at the same time with absolutely no interaction. The Type 12 Mk 111 and the Type C MK 111 are both available on a completely free 7 -day trial; so write today and we'll send you the full details.

ENSS.N.S.

radio microphones
S.N.S. Communications Ltd., 851 Ringwood Road,

West Howe; Bournemouth. England, BH11 8LN,
Tel: Northbourne (STD 02016) 5331 (4 lines)
Telegrams: Flexicall Bournemouth
WW- 088 FOR FURTHER DETAILS

The extensive range of Oxley Snales now include an Eyelet version (which is ideally suited for mounting I.C. Packs and other components for experimental work). They augment the well known standard range of Oxley "Snales" suitable for mounting in 0.040 inches, 0.050 inches diameter holes.

Send for technical details and samples.
OXLEY DEVELOPMENTS CO. LTD.
Priory Park, Ulverston, North Lancs, England
OXLEY ${ }^{\circ}$ D
Tel: Ulverston 2621 Telex: 6541 Cables: Oxley
Ulverston

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation. robust construction. exceptionally low price and built in reliability.
The instrument is of modern appearance, small. light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate.
Frequency accuracy Triggering.

High intensity Xenon tube mounted in a para bolic reflector.

1. 250 flashes/second in 3 ranges

Typically $\pm 2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts.

Price: $£ \mathbf{3 8 . 1 0 s . 0 d}$.
Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242

WW-089 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS
 to 8 K.V.A.
A.C. SOLENOID TYPE SBM/T.
 Knapps Lane, Bristol 5. 0272657228

WW- 091 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{£ 5 . 0 0}$

Si 452
£30.00
Distortion Measuring Unit. $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ - $.01 \%$

Si 453 \qquad £40.00
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE

The show no hi-fi dealer can afford to miss
 11 a.m.-6 p.m. (trade only) APRIL 2nd, 3rd \& 4th (general public)

2nd Exhibition of high idelity equipment spon sored by the Federation of British Audio

WW-093 FOR FURTHER DETAILS

UNIDUE
 TWIN
 TAPE DECK UNITS

These superb twin tape deck units were originally designed for installation:s requiring the continuous replay of music or speech when connected to suitable amplifiers. Cansisting of two button $\frac{1}{6}$ track model). Each tape drive unit is fitted with a unique automatic solenoid operated tape drive reversal mechanism actuated by metallic stop foil at end of tape or inserted where reversal is desired. Constructed to the highest specification with the finest components available to ensure the utmost reliability. Nothing has been spared in the construction and the suparb heavy duty capstan motors (2 off) and rewind motors (4 off), top grade relays, solenoids. etc., all bear witness to the high standards set.
Available in two basic versions with either 3 or 6 button operation. The three push button model $3 \frac{3}{4}$ i.p.s. has interlocked controls operating both tape drive units simultaneously and is fitted with 2 ferrograph $\frac{1}{2}$ (rack stereo heads. he 6 butt $\frac{1}{2}$.p.s. model has indepe/25 $50 \mathrm{c} / \mathrm{s}$. Vertical or horizontal operation. Size $19^{\prime \prime} \times 19^{\prime \prime} \times 8^{\prime \prime}$ deep. Weight 541 b .

TECHNICAL SPECIFICATION
Power requirements $230 / 250 \mathrm{~V}$ A.C. $50 \mathrm{~d} / \mathrm{s}$. Vertical or Horizonal operation. Overall dimensions. $19^{-} \times 19^{\prime \prime} \times 8^{\prime \prime}$ deep. Weight 54 lis. 3 Button model opsrates at $3 \frac{1}{5}$ I.P.S. 6 Button model operates at $7 \frac{1}{2}$ IP.S. TAPE REEL SIZES: U.Ppeg 50 ds $1 / 75$ th H.P. 1500 R.P.M. REWIND \& TAPE UP MDTORS: 4 Garrard AC Mors 100-130/200-250 Volts. $50 / 60$ d/s $0.3 \mathrm{~A} \cdot 0.15 \mathrm{~A}$ 24W relay SUPply transformer: Primary 210-230-240 Volts A/C $50 \mathrm{~d} / \mathrm{s}$. Secondary $24-26-32 \mathrm{~V}$. RECTIFIER. Sentercel selinium rectifier type 460 SC 21815 . CONDENSERS: 1 Plessey 2.000 uf $50 y$ O.C. 2 AEl 2uf 400V. SDLENOIDS: 8 Magnetic Devices Letd Type 427661200 hms . RELAYS: 2 Double coil relays type 593EI/TS 5668590 Ohms. 2 Type $569 \mathrm{E} 14 / 590 /$ /aEF2/24. 2 Type 596/E9/890/G2/24. 2 Type $596 E 8 / 590 /$ /2/24 (3 Button unit only II. RECORO/REPLAY HEADS. 3 Button Unit fitted 2 Fe:ragraph 3500 hms impedance half track stereo heads. 6 Button modal fitted 2 Marrioft 4 track haads 500 Ohms impedance.
Originally costing approximately Originally costing approximately are offering these at a fraction of their true worth! Limited number onty-we can6 button units-orders dealt with in strict rotation. with in

SYPHA SOUND SALES LTD.
242/4 PENTONVILLE ROAD, LONDON, N.W. 1 t, al al 8378200 Closed : dev Thurs 1200 yds King's \times Station)

VIDEO MONITORS

- FAST DELIVERY
- CLEAN FUNCTIONAL STYLING
* SHARP HIGH CONTRAST PICTURES
- HIGH RESOLUTION PICTURE TUBE
- 10 MHz VIDEO BANDWIDTH
- BLACK LEVELCLAM P
- ALLSOLIDSTATE
- INTERNAL/EXTERNALSYNCHRONISATION

Special Phosphors can be supplied for data display and special applications
P28 (11 INCH) MODEL £155 P38 (15 INCH) MODEL £ 161
FOR TECHNICA LDETAILS CONTACT THE MANUFACTURERS

RED LANE, KENILWORTH, WARWICKSHIRE Tel: 0203-465045

WW-094 FOR FURTHER DETALLS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND

 MULTIWIRE EQUIPMENT DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressörs; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teléprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and special ised Relays and Bases; Terminals V.F. and F.M Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Tel: Tring 3476 (STD 0442 82)
Cables: RAHNO TRING
glex: 82362, A/B BATEY TRING
WW-096 FOR FURTHER DETAILS

LARGE RANGE OF LOW COST COMPUTERS \& PERIPHERAL EQUIPMENT

FROM A SINGLE SOURCE

IBM PUNCHED CARD EQUIPMENT AT LOWEST UK PRICES AND SHORT DELIVERY

024, 026, 077, 082,
083, 087, 088, ETC.

ELIIOTT 803

DIGITAL COMPUTER

This is a well proved solid state digital computer, with well over 200 systems sold in the UK and abroad. Re liability has been proved by long periods of operation 4096 Core Store Tape Reader 500 characters per sec. (Elliott TS/93). One Tape Punch 100 characters per sec. (Teletype brPe E11). Kayboard console and associated desk. creed Teleprinter. Automatic Floating Point Unit.

COMPUTER QUALITY $\frac{1}{2} \mathrm{in}$. MAGNETIC TAPE CERTIFIED 550 B.P. 1. 800 B.P.1. ON 2,400-ft. REELS.
REPLACEMENT IF FAULTED
$\frac{3}{2}$ in. Highest grade $2,400 \mathrm{ft}$
$\frac{1}{2} \mathrm{in} .10 \frac{1}{2} \mathrm{in}$. dia. spool and cassette
$1 \mathrm{in} .8 \frac{1}{2}$ in. dia. spool and cassette
1 in. metal $10 \frac{1}{2}$ in. dia. spool and cassette
$\frac{1}{2} \mathrm{in}$. N.A.B. centres $10 \frac{1}{2} \mathrm{in}$. spool only

REFURBISHED HAND PUNCHES - 80 COLUMN delivery from stock - - 3 months warranty

- Please write for brochure of our Company's activities

COMPUTER SALES AND SERVICES (EQUIPMENT) LTD.
49-53 Pancras Rd., London, N.W. 1 Tel: 01-278 5571 Telex: 267307

INTEREST CHARGES REFUNDED R.S.C. MAIUS TRANSFORMERS
 FULLY SHROUDED UPRIGHT MOUNTING
 $£ 1.99$
$£ 2.40$
$£ 1.99$
$£ 240$
$£ 4.49$
$£ 4.69$
$£ 499$
$£ 1.20$
$£ 140$
$£ 145$
$£ 150$
$£ 199$
$£ 1.99$
$£ 2.35$
$£ 1.99$ FILAMENT Or TRANSISTOR POWER PACK Types
 (1-4-18V 1 99p: 1f-12-25.42v. 2n. £1 60

 OU 25 .

FANE 807 HIGH FIDELITY LOUDSPEAKER
PAIR OF LOUDSPEAKER UNITS PRICE COMPLETE ONLY £42
 OUDSPEAKERS
 Theatest high ellieayy con-

$£ 3.50$
cor Terms: Deposit t5.50 and 9 monthly payments
± 4.50 (Total ± 46)

WHEN ORDERING PLEASE STATE IMPEDANCE

FANE LOUDSPEAKERS'POP'25/2

THE'YORK'HIGHFIDELITY 3'SPEAKER SYSTEM E22

 FANE ULTRA HIGH POWER LOUDSPEAKERS

BRSC. SUPERBOKKIIHIGHFIDELITY STEREOANPLIFIER

HIGH GRADE COMPONENTS.
SPECFICATIONS COMPARABLE WITH
UNITS COSTING CONSIDERABLY MORE Units Costing considerably MORE
Employing Twir Printed Circuits.
TRANSISTORS:
 INPUT SENSITIVITIES:

EMINENTLY SUITABLE FOR USE WITH ANY MAKE
OF PICK-UP OR MIC. Ceramic or Coil, Ribbon or Crystal) CURRENTLY AVAILABLE. SUPERB SOUNDOUTPUT QUALITY CANBEOBTAINED SUPERB WITH FIPST RATE ANCILLARY EQUIPMENT COMPLETE KIT OF PARTS, point to point $£ 23.25$ wirug ing

UNIT FACTORY BUILT $£ 30.50$
Or depssit $£ 4$
(Total $£ 34$ 15)
Or in Teak or Afrormosia veneer $£ 33.75$
THTMrs: Depusit \&4 a
T+urns: Depust £4 a
£3 \%5. (Tetal $£ 37 \% 5$
LEICESTER 32 Hir swer
LEEDS 5-7 County (Mecca) Arcade, Briggate $\begin{gathered}\text { (Half-day Wed.) Tel. } 28252\end{gathered}$ LIVERPOOL 73 Dale St. (Half-day Wed.). Tei. CENtral 3573 LONDON 238 Edgware Road, W. 2 (Half-day Thurs.). MANCHESTER 60A Oldham Street (Half-day Wed.) MIDDLESBROUGH 106 Newpore Rd. (Half-day NEWCASTLE UPON 41 Blackett Street (opp. Fenwicks SHEFFIELD 13 Exchange Street (Castle Market Blds.)

RP2C
Css 90 bight compltance cultring
bereomic
Steno cartrilge with linnond stylus. Monuted on Carr $\quad £ 24.65$

OTHER TYPES with Magnetio
P.U. Cartridges and 'Litt off' C. Cartridges and 'Litt off' at lowest prices.

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for instrument chart drives. Estremely quiet, useful in area relative high inertise louds to be driven up to 6 -ooz/in. Available in the following speeds and ranges: $240 \mathrm{y} 50 \mathrm{~Hz}, 1 / 30$ r.p.m. 1% r.p.m.
$1 / 5$ r.p.m., $1 / 12$ r.p.m., $1 / 20$ r.p.m., $1 / 60$ r.p.m., $1 / 45$ r.p.m.; 120 V
 . \& P. 3

SYNCHRONOUS MOTORS

Model 871 r.p.h. and $1 / 60$ r.p.h. Self starting completc with gearing
Bhaft 1 in dia. it in. long. $200 / 250 \mathrm{~V}$ 50 Hz. New condition Ex Equlprinent. $30 /-$ P. \& P. $5 /=$.
D.C. TACHOGENERATOR Type $9 \mathrm{c} / 10616 \mathrm{v}$. at 1000 r.p.m. Drive ع18/10/0.

HIGH PRECISION MAINS SYNCHRONOUS MOTOR 3 Phase-I Phase
${ }_{3010}^{230 V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}$. continuonsly ratod. ing. Model KA 60 JFB . Suitable
 capsater with 6 in. diameter lange and 4 fixing holes. 60/-each. P. \& P. $28 /$

ACTUATOR

By English Eilectric. Type 4519 Mk . 1 D.C. Motor AE 1560 Mk .
28V 3A. 500 r.p.m. Intermittent rating. £16. P. \& P. \&1.
NEW MINIATURE RELAYS

R.F. ATTENUATOR MARCONI TF I073A

DC- 150 MHz 1 dB steps 75 Ohms . Double Screened construction. Tested and ta VG condition. $£ 25$.

CODER SHAFT POSITION

By Dater Corporation. TYpe 4166-7003 '"V' Bean Code National 215. P. \& P. 5/

ANALOGUE-DIGITAL CONVERTER
By United Aircraft. Type 6.8PT-C. Model 13.BNRY,B. 13 Digit encoder Grays code. Length 3 in., diameter $1 \% \mathrm{in}$. Serv
Type mounting. 815. P. $\&$ P. $7 / 6$.

ACCELEROMETERS

Model LA $23 \mathrm{CPotentiometric}+$ or -10 G operating Voltage 30 V Nominal reaistance 17.5 K and Mo
Rel 20 K . Price £26. P. \& P / F.
TYPE SE 55/A Range + or - 1G £26. P. \& P. $\sqrt{6 /-}$
TYPE F by G.E.C. Op to $1,000 \mathrm{G}$. Ceramic type giving of of 23 mV supplied c/w technical leaflet. Weight 14.8 grammes. 2BA atud mounting. £3.15.0. P.
many other types in stocl

TAPE RECORDERS

E.M.I. Professional Audio tape recorder model BTRIC. This was the type of equipment used by the BLCC. Fully overhauled and in

DATA TAPE SYSTEM 14 CHANNEL
By \&olartron. Versatile 14 Channel tape recorder having many applications. The installation is capable of recording and repromethods. Capstan motor constant speed controlled by a tuning fork Oscillator. Tapespeeds (1) in. per sec. (2) in., 7 in. 15 in.. 30 in., 60 in. Maximum reel diameter: 14 in . Information o

E.M.I.

Portable L.F. Tape Recorder. Ex-service equipment consisting of Three Unit housed in transit cases (Tape Deck, Amplifter, P.S.U.) \ddagger in. track speed 30 in., 15 in., 71 in. andi $\frac{d i n . ~ m i n . ~ P r i c e ~}{2} 75$.
Many control facilities. This is a good quality recorder.

LOW COST ELECTRONIC \& SCIENTIFIC

A BARGAIN IN NEW POWER SUP-
PLIES. AT LESS THAN HALF MANUO/P Voltage 7.5v.-9v. Max. load current 10 Amps . Max ripple on full load approx Overvolt protection. OUR PRICE \&19.50

KEYNECTOR

Connects anything electrical in seconds without plagz or sockets. No more worries about dangeroun
ive wires. Now you can make electrical connection safely, in seconds with the revolutionary new Keynector. Cuts out plugs, sockets and saves time for the do-it-yourself enthusiast. Only \&2. 33 plua P. \& P. 5/- Or send for a leaflet.

HIGH SPEED IMPULSE COUNTER DA to 100 YNN and ANDREWS in dial with polnter registering up to 100 plus a 4 eccapement. Coil resistance mounted in dial. Uses an inverse P. \&P. $7 / 6$.

BERKELEY DECIMAL COUNTING UNIT 0-9 Dirrect reading octal base plug in unit electronic counter. The number counts received ine unit counta from on the tenth puise resetting to zero and simultaneously generating an o/p signal Circults can be connected \ln cascade. Power Bupply 6.3V D.C
Cut on/Cut ofr. $15 V$. Price $70 /=$, P. \& P. Free.

nUMICATORS

End Reading Quantity Complete with Bese Price Each GRIOM/U (Clear)

$\begin{array}{ccll}\mathrm{XN} 3 / \mathrm{FA} & 38 \mathrm{~m} / \mathrm{ma} \text { lead } & \text { (Amber) } \\ \mathrm{XNN} 3 \mathrm{~F} & 38 \mathrm{~m} / \mathrm{m} \text { lead } & \text { (Red) } \\ \mathrm{XN} 3 \mathrm{~A} / \mathrm{F} & 6 \mathrm{~m} / \mathrm{m} \text { lead } & \text { (Red) }\end{array}$
$\begin{array}{lrl}\text { XN3A } & \begin{array}{ll}6 \mathrm{~m} / \mathrm{m} \text { lead } & \text { (Red) } \\ \text { (Clear) }\end{array} \\ \text { XN11/F } & 38 \mathrm{~m} / \mathrm{m} \text { lead } & \text { (Red) }\end{array}$
$\begin{array}{ll}\text { raplete with Base } & \text { Less Base } \\ 298 /(21.45) & 28 /-(£ 1.40 \\ 28 /-(51.40) & 27 /-(\$ 1.35 \\ 27 /-(91.35) & 26 /-(\$ 1.30\end{array}$

名
EICHNER 8 HOLE PUNCH OR READERS No motor drive required. solenoid operated equipment using 48 Reader \&28.10.0: Punch 49.10 .0 . Carriage 26/-
7 HOLENON PARITY TAPE PUNCH
LOW SON SPED 7 HOLE TAPE PUNCH
60 characters per second by well-known manufacturer.
TELETYPE 8 HOLE PAPERPUNCH BRPE 1 £ $\mathbf{2 6 0}$. Also available 5 hole punch BRPE2 ah above. This model ha 5/7 HOLE OPTICAL READER BY FERRANTI
(183) SIGNAL GENERATOR CT 480 SANDERS. Range 7 KHz 12 KHz . O/p. $0- \pm 50 \mathrm{~V}$. Attenuation range -10 to +100 dB Price (I79) WOBULATOR GM 2877/02 PHILLIPS Price 265
TRANSDUCER OSCILLATOR-AMPLIFIER-DEMODULATOR AI encapsulated unit for matehing with S.E. Traneducers. Buitable where gpace or adyerse environmental conditions preval. Supplied with a matching tranaducer \& typical of is $\pm 3 \mathrm{~V}$ into 50 KOhms
gupply voltage 12 v . D.C. Range of trinaducers $0-750$: 0-1000: 0-4000 psi.............................Price $\mathbf{8 6 5}$ TRANSDUCERS ONLY. Ref.C.1......................... Price \&15 TRANGDUCER-New Reaistive Bordon Tabe Prinaiple pressure Transducer by K.D. Instrument. Modes TD $2160-2000$ pal
Ref. C. 6. TRANSDUCER NEW EX-GOVERNMENT DISPLACEMENT BONDED besistance strain gavazs. Range $\pm t$ mechanical dis

OsctLLATOR. High discrimination, by Mareoni T.F. 1168. This instrument suitable for H.F. Communication. Due to It high discrimination makes it suitable for crystal Hiter reaponse in Tx
and Rx drive units. Prequency range $90-110 \mathrm{KHz}$. 2 Hz diseriminaand Rx drive units. Prequency range $90-110 \mathrm{KHz}$. 2 Hz diserimina
tion. Crystal and Standardised centre frequency. Colibration RECORDERS 4 PER OSCILLOGRAPHS SOUTHERN TSTRD MENTS M942C. 4 Channel fitted with 4 speed gear boxes giving $1,5,26,100 \mathrm{~m} . \mathrm{m}$. per sec. Frequency response $0-55 \mathrm{~Hz}$, sensitivity 2/m.m./M.A. OSLLOGAPB MR 450 as per 4 Pen. Ref. I. Price Prlce $£ 250$

EREW B.P.L. MOLTTMETER T.V.M. 1083. Employing silicon pianar F.F.T, this inatrument gives long,term stablilty and negligibl MHz using HPV 1063 . Voltage range 0 - 30 KV . Centre zero on DC rangestor differential circuit spplication. Input resistance $1 \mathrm{M} .0 \mathrm{hm} / \mathrm{Volt}$

シーシーのニールー
 \section*{EQUIPMENT AND COMPONENTS}

MEASURING INSTRUMENTS AND RECORDERS

FACSIMILE RECORDERS
J649 G／A 18 in ．Chart Recorier．Helix speed： $60,90,120$ rev．$/ \mathrm{min}$ ．
Transmission speed ：in．；15／16 in．； 14 in ．per nin．Scanning rate： 96 lines／in．
Ret．C． 3.

SINGLE PEN RECORDER By Record Electrical （R3）	
3 ln ．chart，senaitivity 500 miaro amps．Coll res．1．53k．Fully inter－ changeable gears available to make a wide range of chart speeds． $200 / 250 \mathrm{~V}$ ． 8 ize： $8 \times 11 \times 6$ in． And ink．List over $£ 100$ ． Our price 0－1ma version $252 \cdot 50$ $£ 49.50$	

POWER SUPPLY UNITS										
$\underset{\mathbf{V}}{\mathbf{O} / \mathrm{P}}$		$\mathbf{U}_{\mathbf{U} \text { or }}$	Input volt．	Make	Type	$\underset{\underset{\text { Dinches }}{\text { Dimshons }}}{\substack{\text { Hin }}}$		Ref． No．		
0										
and				230						
$\begin{array}{ccccccl}4-16 \mathrm{v} & 7 & \text { B } \\ 6\end{array}$										
$\frac{\mathrm{adj}}{3-15 \mathrm{v}}$				£25						
	5	B	240	Coutant	ELV500／6	$41 \times 7 \times 12$	576	37		
4－15v	5	8	240	Advance £15	PM7	$41 \times 51 \times 91$	S76	38		
12	150	s	240	Farnell	SBU12．1	$4 \times 0 \times 10 \frac{8}{18}$	876	49		
士				${ }_{\text {coband }}^{\text {E12 }}$				40		
20028adj		B	240	Roband e30	B101／200	$7 \times 61 \times$	876	40		
26－37	7	8	240	Coutant	E8700／28	$84 \times 7 \times 12$	87	42		
＋30				£10						
	mA	8	240	B．P．L．	3	$19 \times 81 \times 12$	876	41		
12	20	8	110	$1 . \mathrm{B}$	Ex comp．	$6 \times 51 \times 16$	879	66		
12	20	8	110		Fx．com	$6 \times 54 \times 16$	878	70		
				1						
12	20	8	110	$1 . \mathrm{B}$	Ex．comp．	$6 \times 51 \times 16$	878	57		
12	20	s	110	I．B．M．	Ex．comp	$6 \times 51 \times 16$	378	56		
12		s	110	I． E ． M ．	Ex．	$6 \times 51 \times 16$	878	59		
	20			82.5						
12	20	8	110	I．B．M． £25	Ex．comp．	$6 \times 51 \times 16$	878	58		
12	20	8	110	1．B．M．	Ex．com	$6 \times 51 \times 16$	37	67		
6	16	B	110	1．B．M．	Ex	$6 \times 51 \times 131$	879	54		
				218．50						
48	6	8	110	I．B．M． 117	Ex．${ }^{\text {co}}$	$6 \times 51 \times 16$	879	55		
30	7	8	110	1．B．M．	Ex．cormp	$6 \times 54 \times 134$	879	62		
12	15	8	110	1．8．M．	Ex．co	$6 \times 51 \times 13 \pm$	878	64		
12		8	110	${ }_{1} \mathrm{E} 22$			874	60		
	12	8	110	$\begin{gathered} \text { I.B.M. } \\ \text { £22 } \end{gathered}$						
12	12	8	110	1．8．M．	Ex．comp	$6 \times 51 \times 13$	37	61		
20	8	3	10	I． $18 . \mathrm{M}$ ．	Ex co	$6 \times 5 \times 13$	874	65		
				£12．50						
6		8	110	I． B ．M．	Ex．comp．	$6 \times 5 \times 98$	874	68		
6	8	8	110	I．B．M．	Ex．comp	$6 \times 51 \times 9$	874	63		
12	8	8	110	${ }_{\text {I．}}^{\text {E18．}}$ M		$6 \times 51 \times 94$	374	72		
	4			$£ 18$						
12	＋	8	110	I．B．M． £12．50	Ex．comp．	$6 \times 51 \times 91$	87	71		
62010	$\begin{aligned} & 8 \\ & 4 \\ & 4 \end{aligned}$	8	110	1．3．M．	Ex．corap．	$6 \times 51 \times 91$	874	69		
		U／8		225						
		8		Power						
	Do．	8	240	Electron－	8P110	$8 \times 6 \times 13$	877	43		
		Do．	240	Do．	Do．	Do．	877	44		
48	4	U／8	240	${ }_{\text {Advance }}$ £18．50	C8	5t $\times 0 \times 17$	877	80		
								73		
24	5	U／8	240	Advance	11022	$6\} \times 6 \times 17$	873	73		
48	2	U／S	240	Advance	12C122	$5 \frac{1}{61} \times 6 \times 17$	86	74		
12／15	5	8	240	225	CR12／	$51 \times 8 \times 17$	873	33		
				¢45						
	20	s	240	Coutant	R205	$19 \times 81 \times 13$	873	51		
$\begin{array}{r} 0 \\ +6 \end{array}$	$\begin{array}{r} 10 \\ 2 \end{array}$	8	240	Coutant	R206	$19 \times 7 \times 12$	87	47		
	$\begin{array}{r} 28 \quad 20 \\ 11900 \\ 1250 \end{array}$			£50						
				88	240	Coutant	8204	$19 \times 81 \times 14$	870	85
			240		Airmec	705	$19 \times 12 \times 8$ 8	872	52	

PRECISION POTENTIOMETERS

LOW FREQUENCY RESOLVED COMPO． NENT INDICATOR BY SOLARTRON
Type VP es3．2A．This instrument will indicate by means of two contre zero 6 in．scale meters the reablved components of a signal
voltage with respect to the applied reference energifation．Fre－
 bamy，sum unbalanced Input．Bignal Input Resibtance： 10 Ma unbalanced，
or $2: 0 / 240 \mathrm{~V}$ ．Standard Rack Panel， 19 in． $12 \downarrow$ in．high， 2175 new condition，complete with manuil．

VIBRON ELECTROMETER

This unit is a vibration condenser ampliffer which is suitable for the measurement of small D．C．potentials covering the range of
IM－1V．This unit can also be used as high impedance null detector for the comparison of ironation currents of very high resistance． $£ 89.10 .0$ ．
PLATINU
RESISTANCE THERMOMETER PROBES
SOLARTRO
in stalnlegssteel case $+250^{\circ}$ C．Price $£ 12.50$ each．p．\＆p． $3 / 6$.
FENLOW LOW FREQUENCY ANALYSER 0.3 Hz to 1 K Hz ．Power density $0010 . \mathrm{B}$
$.06: 0.3: 1.5: 7.5: 37.5 \mathrm{~Hz}$ ．Price 2275.

LINEAR THRYRISTER CON－ TROLLED LIGHT DIMMER

 foow．module．Ideally sultable for photo－flood or epeed controller，etc．Will moun into standard socket boxes．
Our price $59 / 6$ ．P ，\＆P ． $5 /$－．

L．F．SIGNAL aENERATOR SGB8 NEW CONDITION
 $\pm\{1 \%+1$ c／a）．Sine wave listortion less than 1% at IW．Output
Sine wave continuously wariable，o to 30 V r．mas．into bow Bine wave impedance varies up to $5 \mathrm{k} \Omega$ depeniling on output level getting Rise sad flall times u1，to $0.75 \mu 8$ maximum．Power requirements
1001 to 130 V and 201 to 260 V 40 to 80 ． 10010130 V and 200 to 260 V ， 40 to $60 \mathrm{c/f}$ ， 100 W ．Dimensions
19 in ．wide $\times 104$ in．high $\times 86 \mathrm{in}$ ．deep．Weight 32 j ．Rack mount 19in．wide $\times 10$ in．high $\times 8 \frac{1}{2} \mathrm{in}$ ．deep．Weight 32 j b ．Rack mount
ing．Price ${ }^{2755}$ carriage extra． MULTI－RANGE TRANSISTORISED VOLT． METER 1063
Employing ailicon planar F．©．T．，this instrument gives long－term
atability and negligible drift over a wide temperature range wid atability and negligible drift over a wide temperature range．Wid
frequency band $0-300 \mathrm{MHz}$ ．ualng HPV 1083 ．Voltage range $0-30 \mathrm{KV}$
 Meter scale 5 in ．with 1 M different colour for iliferent scales Special price $\$ 42.50$ each．Carriage $£ 1.50$ ．

SYNCHRONOUS

 Model CK4 arallable．Also available
100 Hz and 400 Hz ．Price $\& 5$ ．P．\＆P．

RY PLANES

（Ref．C4） Ferrite core memory planes with wired
Ferrite cores．Ued for building your own computer or as an interesting
exhibit in the demonstration of a com
puter Mounted on plastlc matertal puter．Mounted on plastic material，
irame 5×8 in．Consisting of matrices
5×5 $40 \times 25 \times 4$ cores each one individualty
addressable and divided into 2 hilve with independent sense and tahlbit
wires．$£ 6.50$ ．P ．P ． 15 p ．

MINIATURE DIGITAL

DISPLAY

Operates on a rear projection 6.3 pilot
lamp．The lamp projecta the correspond． ing digit on the condensing lens through
a projector leng，on to the viewing a projector lens，on to the viewing
screen at the front of the unit． 1 in． width，3h in，deep． 1 in．high．Weight 3 t oz．Character size fin．high． 0,9 with
8 right hand decimal point and degree． 8 right hand decimal point and degree．
Avaliable to apecial order，worda and other characters or colour，at cost of
artwork or plates．List price 1 in characters \＆2．45t． 1 in．characters

EAC DIGIVISOR Mk．II DIGITAL READ－OUT DISPLAY

Ideally suitable for use in conjunction with transistorised decade counting devices．No milliwatt，of power are required to charge
the digita．The DIGIVIBOR incorporates a moving coll movement which moves a trans－
luceut seale through an optical syntem and the lucent scale through an opticalaystem and the
resuitant single piane image is projecteit on a
screen．The translucent scale is made to
represent digits 0.9 represent digits 0．9．Specifcation： 6.3 volt， 250 microarnp．Image
beight f in．gize $49110 \times 2 \quad 39 / 64 \times 1$ in．Our price $£ 3.68$ beight f in．Size
List price $8 \dagger$ gns．

EX COMPUTER PRINTED CIRCUIT PANELS $2^{*} \times 4^{*}$ packed with semiconductors and capacitors, diop diodes, etc. quality Our resistors, boards, 50 p. P. \& P. 7 . 7 p. With a guaranteed minimum of 35 transistors. Transistor Data included. SPECIAL BARGAIN PACK. 25 boards for E1. P. \& P. 18 p . With a guaranteed minimum of 85 transistors. Transistor Data included. PANELS with 2 power transistors sim. to 9 OAS, 3 OAIO, 3 Pot Cores. 26 Resistors, 4 for LI . P. \& P. 25 p .	BUMPER BARGAIN PARCEL We guaran:ee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly audio and switching types-data supplied). The rest of the parcel is made up with 1% mainly metal oxide, carbon film, and composition types. Mainly and \ddagger watt diodes, miniature including tantalum, electroiytics, ceramics and polyesters. ©i inductors, a selection the values. also the odd transformer, trimpot, etc., etc. ... These are all miniature, up to date, orntessiss this, one of our best
I2V 4A POWER SUPPLY Extremely well made by FRAKO GmbH in W. Germany, with constant voltage mains transformer, tapped input from 15 V to 240 V . Full wave rectification and capacitor smoothing. Size $9^{\prime \prime} \times 6^{\prime \prime} \times 5^{\prime \prime}$, weight 11 lb. These units are brand new, unused and fully guaranteed. Maker's price believed to be guaranteed. Maker's price around 680. Our Price $£ 9.5$. Carr. 50 p .	EX-COMPUTER POWER SUPPLIES Reconditioned, fully tested and guaranteed These very compact units are fully smoothed with a ripple better than 10 mv . and regulation better than $\%$. 2 ver voltage pro- tection on all except 24 v . units. 120 v .130 v, a.c. $50 \mathrm{c} / \mathrm{s}$ input. Mains transformer to suit $\{3$ extra if required. We offer the following types:
DIODES EX EQPT. SILICON I Amp I,000 PIV 4 for 50p 20 Amp I50 PIV 4 for fI P. \& P. $5 p$	$0 \begin{aligned} & \text { High Stabs } £ \text { and I Watt, } \\ & 5 \% \text { and Better }\end{aligned}$
	LARGE CAPACITY ELECTROLYTICS
EXTRACTOR/BLOWER FANS (Papst) 100 c.f.m. $4 \frac{1}{*}^{\circ} \times 4 \frac{1}{2}^{*} \times$ 2°, 2800 r.p.m. 240 V AC 42.5each. P. \& P. 25p.	14. $\times 3^{\text {" }}$ dia. $8,000 \mathrm{mfd} 55 \mathrm{~V}$ 50 p each P. \& P. $12_{\text {p each }}$
	EXTENSION TELEPHONES 99p ea. These phones are extensions and do not tain bells.
RELAY OFFER Single Pole Changeover Silver Contacts 25 to 50 V . \& for 50 p . P. \& P. Bp.	
KEYTRONICS MAILING ADDRESS WAREHOUSE AND DISPATCH 014788499	

पनN:T'S RADIO LTMTED ENGLAND'S LEADING ELECTRONIC CENTRES
 HENRYS RADIO EHIFI COMPONENTS . TEST. PA. DISCOTHEQUE. ELECTRONIC ORGANS. MAIL ORDER NEW RANGE SELF-POWERED PRE-AMPLIFIERS
 LOOK AT THE SPECIFICATIONS!
 SLIM MODERN DESIGNS USING THE LATEST SHLICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION. 20 dB . Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY. Specifically designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER designed for use with PA25 Sand PAsO with all plugs etc. AJDUSTABLE OUTPUT UP TOPI VOLT. Simple mounting.
 $\star \begin{aligned} & \text { FET9/4. Mono with built-in mic. mixer. }\end{aligned}$ Accepts any ceramic or
 \star FEti54 stereo.
 Magnetic cart., inpur, tuner, tape, etc. Beautiful stereo sound. Price $£ 16.10 .0$ p.p. $4 / 6$.
 \star I.C. STEREO
 I.C. STEREO All facilities plus headphone socket without amplifiers. Uses IC's, FET's etc. Price $£ 24.0 .0$ p. p. $5 / 6$
 SIMPLICITY TO MOUNT-EASY TO USE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

 25 WATT \& 50 WATT RMS SILICON AMPLIFIERS
 At full power 0.3% distortion.
 - Rise time u sec. - Short cifu it proof nlus limiting cet.
 Response— 1 dB | $1 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.
 PA 2510 transistor all silicon differential ur 40 miven sitivit. 25 watts Rms into 8 ohms. Supplied with en - .nnector harness size $5^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$. PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size $\times 3^{\prime \prime} \times 4^{\prime \prime}$.
 MU 442. Power supply for one or two PA 25 or one PA 50. PA 25 67.10.0. p.p. 4/-. PA 50 E9.10.0. p.p. 4/-. MU 442 E6. p.p. $6 /-$. All units. No soldering-just edge connectors and plugs.

TEST EQUIPMENT

For Educational, Professional and Home Constructors
special prices for quantities

AFlo5 $50 \mathrm{k} /$ volt multi-
meter (illus.).
meter (illus.).
Price E8.10.0 Price E8. 10.0 p.p.
Leather case $28 / 6$.
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{volt}$.
Price $£ 3.17 .6$ p.p. 3/6 Case 12/6
$50030 \mathrm{k} / \mathrm{volt}$ multi-meter Price 68.17 .6 p.p. $3 / 6$. Leather case $30 /$.
THL $332 \mathrm{k} /$ volt. Price ${ }^{\text {Leather case 22.6. }}$.
TE65 Valve voltmeter (illus.). E17.10.0 p.p. $7 / 6$. VM5I Transistorised AF/RF millivoltmeter. Price $£ 32$.
TE22 Audio Generato TE20D R.p. 8/6. TE20D RF generator
(illus.). Price 15 p.p. $7 / 6$ TE22D Marching audio $\begin{array}{lll}\text { generator. } \\ \text { Price } 6 i 7 & \text { p.p. } & 7 / 6 .\end{array}$ TE15 Grid dip meter. Price C 12.10 .0 p.p. $3 / 6$ TO3 Scope (illus.). 3 tube. $1.5 \mathrm{Mc} /{ }^{3}$
Price $\mathbf{6 3 7 . 1 0 . 0}$ p.p. 5 Scop $C 1-5$ Scope.
$10 \mathrm{Mc} / \mathrm{sPB}$. Price 639. p.p. 10/ORC27A. WEIN BRIDGE RC AUDIO OSCILLAT $£ 30$.

PANEL METERS Complete range in stock

SEE LATEST CATALOGUE CONTAINING OVER 30 PAGES OF TEST EQUIPMENT

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED A CATALOGUE IS A MUST: STOCKS CONTINUOUSLY ADDED TO-YOUR ENQUIRIES
INVITED FOR ALL QUANTITIES
PORTABLE $£ 9.10 .0$. GEIGER COUNTERS Carriage 15/

GRAVINER FIRE

HENRY'S LATEST CATALOGUE SEND:

 350 pages fully detailed and illustrated. All audio and electronics complete with $10 /-\mathrm{value}$ discount voucher for use with purchases. Price $7 / 6$ p.p. 2/FREE

SINCLAIR

SINCLAIR
EQUIPMENT
SAVE
 $2 \times Z 30$ amplifier, stereo 60 preamp, PZ5 power supply. $\mathbf{E 1 9 . 0 . 0 \text { . Carr. 7/6. Or with PZ6 }}$
 $\notin 21.10 .0$. Carr. 7/6. Transformer for PZ8 59/6 extra. Any of the above with Active
YOU CAN SAVE 25\%
BRAND NEW AND FULLY GUARANTEED SP25 Mk. III $£ 12.10 .0$. AP75 $£ 16.19 .6$. SL65 B $£ 14.9 .6$. SL72 B
SL95 B $£ 37.10 .0$. MP60 $£ 10.19 .6$. MP610 $£ 13.19 .6$.
 SPECIAL OFFER. Above supplied with cartridge SPECIAL
$9 T A H / C ~ d i a m . ~ a d d ~$
$\mathbf{2}$ 2, magnetic 940 add $\mathbf{6 3}$, G850 or AT66 OREECOMPLETE LIST
ONEQUEST no. $16 / 17$. add $£ 5$, with $G 800$ add $£ 7.10 .0$. De-luxe plinths and covers

 Goldring GL69 Mk. II deck. $\mathbf{2 3}$ p.p. 2/6. With G800 $\mathbf{E 3 0}$ p.p. 76. Mits.) p.p. 7/6. Plinths | Garrard 30001 m E9.15.0. 2025T/C E8.17.6 (fitted 9 AHC |
| :--- |
| covers $99 / 6$ p.p. 6%. |

 SP25 fitted fitted 9TA H/C with plinth/cover, cables, etc., fi3.19.6 p.p. $10 /-$

HIFF equipment to suit EVERYPOGKT

\star PA AND DISCOTHEQUE EQUIPMENT Complete range now in slock ready to use, light and modular equipment, special effects.
\star Complete systems and individual units at special low prices-choose from 100 selected stereo + Freel2-page stock/systems List No. 16/I7. LOW CASH AND CREDIT/HP PRICES

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED

 DESIGNS AVAILABLE AS KITS OR READYBUILT
*VENEERED CABINETS FOR ALL MODELS + 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED $\star H P$ and CREDIT SALE FACILITIES


```
VISIT THE
NEW
DEMONSTRATION
ROOMS
    (see below)
```

[^9]
Electronic Organs.
 P.A. \& Discot heque Centre
 309. EDGWARE ROAD.
 LONDON, W.2.
 Tel: 01-7236963

PRECISION AND SERVO POTENTIOMETERS PRECISION AND SERVO POTENTIOMETERS
PRECISION LINE（USA）．Size $15.300 \Omega \pm 5 \%$ LIN PRECISION LINE（USA）．Size $15.300 \Omega \pm 5 \%$ LIN
Continuous track plat．wipers set at $180^{\circ} .45 /-$ each Continuous tr
PENNY \＆GILES．Size 15．500 ת．Type Q26201－72／1． Continuous track．50／－each．Carriage Paid
BECKMAN．Type AS．506， 10 turn．Tol．$\pm 1 \%$ ．LIN Tol． S．T．C．Type B $330 \mathrm{CT} .2500 \Omega 2.2 \frac{2^{\prime \prime}}{}$ dia．$\times 1 \frac{1}{2}^{\prime \prime}$ ．Completely OXLEY PTFE BARB TERMINALS
OXLEY P．T．F．E．BARB TERMINALS．Lead thro＇ HARWIN．Tapped（ 6 Ba）high voltage＂cstand off＂
 K．L．G．SEALED TERMINALS．TYpe TLSI AA overall length $1^{\prime \prime}$ ，box of $100,20 \mathrm{~s}$ ．Type TLSI BB，overall length I＂，box of ${ }^{100,30 \mathrm{~s} \text { ．Carriage Paid．}}$
CRYSTAL OVENS G．E．C．Type QC940．6／12v．，AC $D C, 75^{\circ} \mathrm{C}$ ．Takes $21^{\prime \prime \prime}$ min．crystals．Similar to above 12 v ． BERCO．Rotary rheostat．Type L25． 100 S2． 25 watt $1 \frac{1}{2^{n}}$ dia．＂${ }^{\prime \prime}$ spindle． $10 /-$ each． $2 / 6$ Carr．
PAINTON BOURNS TRIMPOTS． $1 \mathrm{k}, 2 \mathrm{k}, 2.5 \mathrm{k}, 5 \mathrm{k}$ $10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$ ， 500 k ．Other Trimmer pots in stock． RIL IOk．MORGANITE 1 k ．MEC 200Ω（tubular） 50Ω Any 3 for 22／－carr．paid．
＂TEXAS＂Unmarked，Tested，TO5 Geranium general－ purpose transistors． 24 for $\mathbb{1}$ ．P．\＆P．2／6．Large quantity available．
CINEMA ENGINEERING Precision＂Standard＂ Wire Wound Resistors．Extremely high stability over very wide temperature range． $1 / 6$ Watt $0.25 \% 30 \mathrm{~K}$,
$75 \mathrm{~K} 6 /-$ ea． $1 / 3 \mathrm{Watt} 0.05 \%, 10.02 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}$,

 $12 /-\mathrm{ea} .0 .1 \% 20 \mathrm{~K}, 1.35 \mathrm{meg}, 1.5 \mathrm{meg}, 2 \mathrm{meg}, 3.3 \mathrm{meg}$
$12 / \mathrm{el}$ ea．I $\mathrm{Watt} 0.05 \% 0.24959 \mathrm{~K}, 20 /-\mathrm{ea} 0.1 \% 3.24 K,$.
$1 \mathrm{meg}, 3 \mathrm{meg}, 4 \mathrm{meg}, 3.75 \mathrm{meg}, 20 /-\mathrm{ea} .1 \% 2.4 \mathrm{meg}$, $2.5 \mathrm{meg}, 3.6 \mathrm{meg}, 20 / \mathrm{lea} .2 \mathrm{Watt} 0.05 \% 5 \mathrm{meg}, 30 / \mathrm{e}$ ea
$0.1 \% 5.714 \mathrm{meg}, 10 \mathrm{meg}, 30 /-\mathrm{ea} . \pm 0.1 \% 2 \mathrm{meg}, 2 \mathrm{KM}$ $0.1 \% 5.714 \mathrm{meg}, 10 \mathrm{meg}, 30 / \mathrm{ee}, \pm 0.1 \% 2 \mathrm{meg}, 2 \mathrm{KM}$
$30 / \mathrm{e}$ ea． $0.5 \% 5.9 \mathrm{meg}, 10 \mathrm{meg}, 30 / \mathrm{ea} 1 \% 2 \mathrm{~K},. 5 \mathrm{~K}$ $5 \mathrm{meg}, 10 \mathrm{meg}, 30 /-$ ea
RIL Type $2 \pm 0.01 \% 6.666 \mathrm{~K}$ 20／－each．
RIL Type $9 \pm 1 \% 560 \Omega 2 / 6$ each
RIL Type $9 \pm 1 \% 560 \Omega 2 / 6$ each

ALMA $\mp 0.05 \%$ 50K $15 /-$ each．
ALMA $\pm 0.1 \% ~$
$141.46 \mathrm{~K} \quad 10 /-$ each

ALHA
SHCROSS $\pm 0.5 \% ~ 3400 \Omega 6 /-$ each．
ELECTRO－THERMAL PRECISTOR $\pm 0.1 \% ~$
2.4 K 10／－each．

MINIATURE B．P．L．500－0－500 MICRO－AMMETER
誩＂dia．scale．Through panel
sealed．32／6．Carriage paid．
ERNEST TURNER $5^{\prime \prime} \times$ 4 $^{\prime \prime} 0-1$ ma scaled in 50 equal divisions，mirror scale，chrome escutcheon．Quality instrument．85／－．Carriage Paid．
$5^{\prime \prime} \times 4^{\prime \prime} 0-100$ ua 1000 ．Mirror
$5^{\prime \prime} \times 4^{\prime \prime} 0-100 \mu \mathrm{a}$ 1000S．Mirrored scale，few only．95／－ ELECTROLYTIC CAPACITORS MULLARD．
 $14 /-\mathrm{ea} ., 66$ per doz． $1600 \mu \mathrm{~F} 64 \mathrm{v}$ ． $1 \mathrm{l}^{\prime \prime}$ dia．$\times 3^{\prime \prime}, 7 / 6$ ea． per doz． $1250 \mu \mathrm{~F} 25 \mathrm{v}$ ． $1^{\prime \prime}$ dia．$\times 2^{\prime \prime}, 10 /-$ ea．， $90 / \mathrm{l}$ per doz．
HUNTS $1000 \mu \mathrm{~F} 50 \mathrm{v}$ ． $1 \mathrm{z}^{\prime \prime}$ dia．$\times 2^{\prime \prime}, 5 /=$ ea． $10,000 \mu \mathrm{~F}$ 6 v ． $1 \frac{17}{\prime \prime}$ dia．$\times 2^{\prime \prime}, 6 /-$ ea．， $60 /$－per doz． $16 \mu \mathrm{~F} 350 \mathrm{v}$ ．${ }^{\prime \prime}{ }^{\prime \prime}$
 100 1 F ＇ 100 v ．I＂dia．$\times 2^{\prime \prime}, 5 /-$ ea． ERIE．Ceramicon capacitor．Type CHV4lIP． 500 P．F． DEPENDATHERM ELECTRONIC THER DEPENDATHERM ELECTRONIC THER－ MOMETER．This precision instrument is invaluable any application where fast temperature readings are equired between $90^{\circ} \mathrm{F} .-106^{\circ} \mathrm{F}$ ．or $32 \cdot 2^{\circ} \mathrm{C} .-41.2{ }^{\circ} \mathrm{C}$ ．
$+0.2^{\circ} \mathrm{F} / 0.1^{\circ} \mathrm{C}$ ．Fitted plastic case with scale window．位＂．Offered at half maker＇s price． TIME ELAPSED REGISTER．24v．D．C．Has a 5 digit readout plus dial reading hour（ 601 min．div．）metering Total of $99,999 \mathrm{hrs}$ ．Non－reset sealed unit，chrome bezel through panel mounting．Size 2 $\frac{5}{16^{\prime \prime}}$ dia．$\times 3 \frac{5}{16}{ }^{\prime \prime}$ overall 65／－．Carriage Paid．

RELAYS
Perspex enclored，plug in，with base．Size $1 \frac{1}{4}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{} \times \frac{3^{\prime \prime}}{}$
 SIEMENS Miniature．plug in，Perspex cover， 1000Ω SEMENS Miniature，plug in，Perspex cover， 1000Ω
$6 / 12 v .2 \mathrm{c} / 0, \mathrm{z}^{\prime \prime} \times H^{\prime \prime} \times 11_{8}^{\prime \prime \prime}$ high．Complete with base． 14／－ea．， $\mathrm{E7}$ per doz． A．E．Perspex enclosed，plug in， $50 \Omega 6 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, 12 / 6$ ea． $470 \Omega 12 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 14 / 6 \mathrm{ea}$.
ea． $1,260 \Omega 48 \mathrm{v} .6 \mathrm{c} / \mathrm{o}, 16 / 6$ ea．
CLARE．Sealed relay．Type RP3716G4，25／－ea
CLARE ELLIOTT．Sub－min $675 \Omega 2$ 24v．Type WI $2 \mathrm{c} / \mathrm{o}$ ． Similar to above， $340 \Omega \quad 17.6 \mathrm{v}$ ． $15 / \mathrm{-} \mathrm{ea}$
MAGNETIC DEVICES．Sub－min 24v． $2 \mathrm{c} / \mathrm{o}, \frac{\mathrm{a}^{\prime \prime}}{4^{\prime}} \times \frac{\frac{5}{6}^{\prime \prime}}{6^{\prime}}$ BOURNE $15 /-$ ea．Trimpot sub－miniature relay $18 \mathrm{v} .1,000 \Omega$
 12／6 ea．
DIAMOND＂H＂sealed relay．Type BRII5CIT－IC $26 v$. $50 \Omega 24$ c／o encapsulated in heavy brass case glass sealed terminals．Robust．15／－ea．
$24 v 2$ HD clo．Perspex enclosed，
E．R．G． $1,000 \Omega 6 \mathrm{v}$ ．DC． 1 make encapsulated reed type．
 $310 \mu \mathrm{a}$ ，complete with base， $15 /-\mathrm{ea}$ ．
S．T．C．Midget sealed relay．Type 4190 CC ． $12 \mathrm{v} ., 40 \mathrm{~mA}$ 70Ω ．Single HD make， $10 / 6$ ea
F．I．R．E．Plug in relay，II $5 v$ v．，coil $50 / 60$ c．p．s．， 3 heavy duty silver change－over contacts．Very robust， $12 / 6$ ea． LATCH－MASTER．Miniature relay 6，12，24v．DC． One make one break 5 amp contacts．Once current is applied relay remains latched until input polarity is ontal mount and voltage．Original cost $£ 8$ ，now offered at $32 / 6$ ea．
G．E．C．Sealed relay．Type M 1492．24v． 670Ω ．New condition but ex－equipment，20／－ea．Type M 1527. 80 v ． $7,600 \mathrm{~s}$ ．New．Few only，25／－each． HELLERMANN DEUTSCH，Type L26FI8．Latching elay．Latch coil $200 \Omega 26 \mathrm{v}$ ．DC．Reset $375 \Omega 6$ change－ over switching．A truly superb relay．Measuring only I ${ }^{4} " \times 1^{\prime \prime}$ dia．75／－ea．Limited stock．All Carriage paid．
SCHRACK Rotary Selector Relay RT304． 48 v ，coil （ 280 ohm ） 48 positions， 4 sweep arms（ 4 pole 12 way ） （ 280 ohm）． 48 positions， 4 sweep arms（ 4 pole 12 way）．
There are 2 secondary switches：（1）one c．o．H／duty contact set which changes over and back with each step；（2）two H／duty change－overs which change over on each 12 th step and return on the following pulse． Size： $3_{4}^{1 / 2} \times 11^{\prime \prime \prime} \times 44^{\prime \prime}$ high．Also as above bur $110 v$ ．
（ 1,290 ohm coil）．All new and in original maker＇s pack－ （1，290 ohm coil）．All new
ing． $65 /$－．Carriage paid．
KNOWLE（U．S．A．）MINIATUREMICROPHONE CAPSULES．Impedance approx． 200Ω ，output 60 or
 Ex－equipment，all tested．20／－each．
DEAC．RECHARGEABLE
DEAC．RECHARGEABLE Batteries Type 900 B ． $1 \cdot 22 \mathrm{v}$ ．at 900 mA （ $10-\mathrm{hr}$ ，rate）．Size 90 mm ．\times
3.5 dia．Weight 40 gr ．Unused $12 / 6$ ＂DECCO＂
Owerful 16 MAINS SOLENOID．Compact and very by removing pull．＂travel which can be increased to $\times 23^{\prime \prime}$ high．27／6．P．\＆P．5／－：
American＂POWERSTAT＂，Variable Voltage Trans－ ormer．Input： $120 \mathrm{v} .50 / 60$ c．p．s．Output： 0.120 v ．at $2 \cdot 25$ amps．$\frac{1}{4}^{4}$ spindle with alternative pre－set locking
device．Size（approx．）： $3^{\prime \prime}$ dia．$\times 2^{\prime \prime}$ long．First class device．Size（approx．）：
condition． 40 －．Carriage paid．
We welcome orders from established companies， educational depts．，etc．（To cover invoicing costs
minimum $50 /-$ ，please．）A discount of 10% may be deducted from all orders of $£ 20$ or over．

BUSINESS HOURS：
264 PENTONVILLE ROAD，LONDON，N． 1
（ONE MIN．FROM KINGS X STATION）Tel．01－8377401／2

GEML-CONOUCTORS/VALVES
 BaAnd NEW a fuLLY GUARNUTHED

valyes

OA 2
OH 2
$\mathrm{OH2}$
OZ 4

 GARRARD

$\frac{\text { £5.19.6. Carriage } 7 / 6 \text { extra esch }}{\text { B.S.R. McDONALD }}$
 TEAK BASE AND PERSPEX COVER for above
BBR range £3.19.6. Carriage $7 /(\mathrm{l}$. B8R range $£ 3.19 .6$. Carriage $7 / 6$.
TPDI SERIES with plinth and cover and ready
$\begin{array}{llll}\text { Mr'60 } & \text { £19.10.0 } & 610 & £ 22.18 .0\end{array}$
$-\frac{\text { Carriage 10f-extra each item. }}{\text { SPECIAL OFFERS }}$

SPECIAL OFFERS
$\underset{\text { Garrard SP25 MkIll fitted Goldring G800 }}{\text { cartidge and wooden plinth }}$ with cartridge and wooden plinth with
perspex cover. ready wired. Total list
price 635 .OUR PRICE $£ 22.10 .0$. Carr. $10 /-$ GOLDRING GL69/2 fitted Goldring base and cover. Total list price 650.16 .0 .
OUR PRICE
E39.

HOSIDEN DHO4S HOSIDEN DHO4S
2-WAY STEREO HEADPHONES

GOLDRING CARTRIDGES: 6850
6840
G800.
G800 G800E
G800 Super E
P. $\mathrm{E}^{\text {P. }} 2 / 6$ ans

M
SINCLAIR EQUIPMENT
Project 60. Package Offers

 amplifer, stereo 60 pre. Amp. P28 power supply,
£21.10.0. Carr. 76 . Trabsiormer 4 PZ8, $59 / 6$

 All other Hinclair products in stock: 2.000 ampli-
fier $£ 23.0 .0$ Carr. $7 / 6$. 3,000 Ampliter $£ 38$.
Carr. $7 / \mathrm{B}$. Neoteric amplifer $£ 46.0 .0$. Carr. $7 / 6$.

TELETON SAQ 203E STEREO Popular aolid atate hi-fi amplifier incorporating fo semil-conductors. Output 6 watts rin. s. Inputs socket and tape output Controls: Volume, balance
bass, treble. Oiled Wallout bals, treble. Oiled Walnut case with brushed
aunuinium front panel. SPECIAL PRICE $£ 20$.

Our latest edition giving full details of a
comprehensive range of HI-FI EQUIPMENT comprehensive range of HI-FI EQUIPMENT
COMPONENTS, TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT. FREE
DISCOUNT COUPONS VALUE $10 /-.248$ pages, fully illustrated and detailing thousands
of items at bargain prices.

FLUORESCENT CONTROL KITS

 Fach kit comprises seven Itemn-Choke, 2 tube ends,starter, atarter holder and 2 tube clips, with wiring inatruc: tiona. sultable for normal fuorescent tubes or the new "OMolux" tutbes for fish tanks and indoor plants. Chokes are

 ior one or two kits then $4 / 6$ for each two kits ordered.
 kit then $3 / 6$ on each two kits orlered.
 tranaformer
$22 / 6$ plue $4 / 6$ post.
 2000 m. f . A . . Boothing. Price $87 / \mathrm{B}$.
12 vilt Car Battery. Trichie Charrar. Made in Japan, this is very mmall and neat. Regular use will keep your cas battery
in good trim throughout the winter. silly price, $25 /-$ plus $4 / 6$
 This fth most British plek-ups and is a really excellent reproducer. ILmited auntits, 19/6
δ amp 3 pin socket. These are almays good stock. you never
know when you will need some. Famous make, brown know Whe
lakelite, standard size, 12 for $13 /-$ plus $4 / 6$ post. Ditto but with sultoh. 12 tor $\varepsilon 1$ plus $4 / 8$ ppost.

 any of this then we would be glad to sinply. The thickest
is very heavy and could be used, for inatance, as a terd for a

2 amp 3 pin 8 mitched socketh tor surface mounting, brown
bakelite. Made by famous maker, $2 / 8$ ench or $24 /-$ dozen. 100 Aborted silicon Reetitiers Q.P. and switohing Diodes. $8 m a / 1$, and ver
$12 / 6$ per 100.
1 mains sippression Adsptor for preventing mains interference caused by vacuun colesuerser razoras, sewing machinees, etc.,
rated at 4 ampa, simply plug tuis into your 5 amp 9 pin
 replacement in many scopes and instruments, brand new
and unused, 28.00 plus $10 / 6$ postage snd insurance. Mu
Metal ehield for this tube, \&2, 10.0. ELECTRIC CLOCK WITH 25 AMP SWITCH
Maxle by Smilth's, these unita are as
fitted to many top quality cookers to control the oven. The clock il maing
driven amd trequency controled mo
Is ent Is extremely accurate. The two small dials ensbif switch on and of times to
be accurately
net. Ideal for ewitching

MULTI-SPEED MOTOR
Heplacement in many well-known foond
mixerst six six peedy are arailuble 5oxt
 of the nylon sockete (where the beaters
of the food mixers normally gol and

 and approximately lin. long. A further
 wound its speed masy be further controlled AC.DC series of our Thycister controller. This lis a very wowertul and
 more post free.
Nicad Battery Oharger. This plugs into a shaver gocket, has
swituh for 240 or 118 v. maina, has a charge rate of 7 mA Bwith for 240 or $116 . v$ maing, hase n charge rate of 7 mA
and 2 silide-in compartments deaigned to take 120 mA .
 Atand be easily modined to to take mercury deal all cells, cons-
plete with adaptor, $8 / 6$. plete with adaptor, $8 / 6$.
 verking books, especially suitable for meskage tapea and
 Our price, $7 / 1 /$ or $21 /-$ for 3 spools it ordered together.
8 ohm \$ppeaker. 5 Sin. round, made by F.M.I. Suit most Heat and Light Lamp 275 watt, lintersal mirrored, B.C. cap, $16 / 6$ plus $3 / 6$ post α ins.
Grundig Stanorettor. Portable offlce dictating machine,
German mand German made and very efficient. We have a few only of
these, aecondhand but in perfect work ing order, any not so
would he exchanged. \&10 each. Rechargeable Nicad Battery Packu for thla machine, $\$ 3.10$ each.
 more powerful (tin. stack). The gearbox is gealed and the
 of notor and gearbox $3 \times 3 \times 4$ in. approx., $35 /$ - each, post
and lins. $4 / \mathrm{b}$.

spor Welders. These comprise step-down transtorner, weld ing heard, foot switch and auto cut-out. Not many of
theas avallabee. price $\& 40$ complete plus carriage at coot. 8-way Shorting Switoh. This resembles an ordinary rutary wave change ewitch, but the tesgen instead of being swithe separately, are progresivively shorted thigether. This
sometimee known as an liceremental awich, 4/6 each. Buzzer. This is a normal izize hakelite buzzer, , made for the oriter, $4 / 6$ each or $48 /-$ dozen
Miniature Pluoreacent Trbes. These have a dlameter of only

${ }^{2}$ spoed 18 volt Blowerr. Made by Deico these are very
 only a 12 volit supply is availible. $36 / 6$ plua $4 / 6 \mathrm{p}$. \& p .
Panel Lamp Holdern. These require only one hole through Panel Lamp Holdern. These require only one hole through
the panel, removeatio glass front and back, uses normal smail M.E.E. bulb, $1 / 3$ each, $12 /-$ dozen.

 13 Amp Fares for fing main plugg. Made by G.E.C. these are is
very gionl, 5 i- per dozen, $50 /-$ groos.

ERGOTROL UNITS

These units made by the Mulard Group are for

HORSTMANN "TIME \& SET" SWITCH

 (A 30 Amp Switch.) Just the thing if you want to come home to a warim house wthout it costing you a fortune. You can delay the swith on time of your electric fres, el.., up to 14 hours from setting 3 hours. Equally sultabie to control processing. Resular price or up to around ± 5. Special anip price 29/6. Post and ing. 4/6.
FULL FI 12" LOUDSPEAKER.

This is undoubtedy one of the theat loudspeakers that we have ever

RESETTABLE FUSE

How long does it take you to renew a fuse? Time yourself when next one howa. Then reckoning your time at $\& 1$ per hour see how quickly nur resettable fuse (auto circuit breaker) will pay for itself. Price ouly $\varepsilon 1$ each or $\varepsilon 11$ per dozen, specify 5 , 10 or 15 amp simply fut in place of owitech.

THYRISTOR LIGHT DIMMERS

Will dim incan tescent lighting up to tivo watts from full brillance to out. Auitable to mount on M.K. switch plate, same size and fixing as standard wall switch, so may be fitted in place of

INTEGRATED CIRCUITS

DISTRIBUTION PANELS
Just what you need for work bench or lab. 4×13 amp
suckets in metal box to 4 ake standard 13 amp fumed
plugs and on/oti switch with neon warning light. Supplied complete with 7 feet of heavy
 COMPUTER TAPES
2.4 (huff. of the best magnetic tape money can buy. Mude by E.M.T., in wide, almont unbreakable and on a 101 in. metal computer sponol. Users hav claimed successful results with video as well
plua $6 / 6$ post. Cassette to hold ppool $10 /$ - extra.

MAINS TRANSISTOR POWER PACK

A.c. Ammoter. These are very unetul in the workshop at leing moving tron he most currents in fact $0-250$ s.aps, but mits accurate readings between 5 -50) amps. These are heautifully made, 3in. dial, made by 8angamo Weston.
Probable cost from the makers over $\$ 10$ each. Our price 59/6. Brand new in nuakera' cartona.
Case Bandle. Bakelite with metal attachments. Ideal for all
portable equipnent and for tool buxes, elc., $1 / 3$ each, 12/-

EXTRACTOR FAN
Clianns the air at the rate of 10,000 cubie ft. per hour. At the puil, ot a
cord it extracts grease, grime and
 decorations. Buitable for kitchena,
bathrooms,
factories,
changing

 switch, mains connector, and fixing hrackets. $\mathbf{3 8 / 6} / \mathrm{P}_{\mathrm{plus}}^{\mathrm{f} / 6}$

MAINS OPERATED

CONTACTOR

 Gernan Electrical Company.
Overall size $2 t \times 2 \times 2$ in. Overal each.

Be first this year! SEED AND PLANT
 RAISING Soil heating wire and tranalormer. 19/6. post and ins. $8 / 6$.

BLANKET SWITCH
Double pole with neon let into side so luminou in dark. Ideal for dark room light or for use with waterproof element-new plastic case. 5/6 each. 3 heat model 7,6.

WATRRPROOF Hzatisg RLEMENT. 20 yards length
70W. Seli-regulating temperature control. $10 /-$ post tree

2ith FAN HEATER

Three position switching to sult
changes in the weather.
gwitch up for full heater $(2+\mathrm{kWW})$, switch down
for hall heat $(1+k W)$, switcen central

THERMOSTATS

 Type "D". We call this the Ice-stat as it cuts in and out at around freexing point, $2 / 3$ smps. Hass many uses, one
of which would be to beep phe lot pipes irom freezing, if a
 Type "E". Thls is stanilard refrigerator thermostat. Spindle djustments cover normal refrigerator temperature. $9 / 6$ Type "F". Glans encased tor controlling the temperature of

 of all types. Adjustable over range 50 d
Price $18 /-$ plus $2 /-$ post and insurance.

3 STAGE PERMEABILITY TUNER

This Tuner is a precifion instrument made
for the famoua Radlomobile Car Radio. It tsa medium wave tuner (but set of long wave
coils availatile as an extro if required) with a
K

 radio or as a generai purpuse tuner for use ${ }^{\text {Fith Amplifer. }}$
TELESCOPIC \qquad For portable, car radio or
 TOGGLE SWITCH
3 amp $250 \mathrm{~V}, \mathrm{mth}$.xilng
ring. $1 / 6$ each $15 /-$ doz Rod Thermontats. As normally used in water heaters, 2
lengthe $10 \mathrm{in}$. and 1 8in. $12 / 8$ each. 13 amp Ivory Sockets. Unswitched, $3 / 8$ each, switched $4 / 6$
each.
15 amp Miero y witoh. Made by Burgess this is standsrd,

 inoveag one digit and the instrument is resettab
button, ideal for any counting operationa, $49 / 6$.
A New Serrice to Resder. A bulletin bringing news of new

 the Subseription 1s 18/- per year. Subscribers will alad
recelve our completed 147 c catalogue when this is published.

LATEST RELEASE OF

RCA COMMUNIEATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $\mathbf{£ 8 7} \mathbf{5 0}$ each, carr. £2.
Same model as above: Fully Recond. by M.O.D. $\mathbf{£ 6 5}$ ea., or sec. hand cond. (guaranteed working order) from $\mathbf{£ 4 5}$ to $\mathbf{£ 6 0}$, carr. $\mathbf{£ 2}$.
*SET OF VALVES: new, $\mathbf{\text { L3• }} \mathbf{5 0}$ a set, post 37p; SPEAKERS: new, £3 each, post 50p. *HEADPHONES: new, £1-25 a pair, 600 ohms impedance. Post 25p
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 50p each, post 13p. RF Coils 13 \& 14; 17 \& $18 ; 23 \& 24$; and 27 and 28. Price 63p each. 13p post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M. $980344,3 \times 0.01 \mathrm{mfd}$., 3 for 50 p, post 13 p. Trimmers $95534-502,2-20$ p.f. Box of 3,50 p, post 13 p . Block Condenser, $3 \times 4 \mathrm{mfd}$., $600 \mathrm{v} ., \mathrm{£} 2$ each, 20 p post. Output transformers 901666-501 $\mathbf{£ 1} \mathbf{1} \mathbf{3 7}$ each, 20p post.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter
system, with antennae. W.S. Type 88 Crystal controlled, $40-48$ Nic/s. W.S. Type system, with antennae. W.S. Type 88, Crystal controlled, $40-48$ Mc/s. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc}$ s. W. S. Type 62 , tunable, 1.5-12 $\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc}$, s. W. S. Type 62 , tunable, $1.5-12$
Mc / s. C. 44 . Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts,
output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC- $640 \mathrm{Tx} \mathrm{x}, 100-156$ Aic/s, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RI 1986; watt output, TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T1.14, and R. 19 , FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment availatle. Rediton GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.c. With associated equipmen available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458;
455 Tx Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete $455 \mathrm{Tx} / \mathrm{Rx}$. Directional Finding Equipment CRD 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental : $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains 200/250V $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements 29 $12 \frac{1}{4} \times 10 \mathrm{in}$. Secondhand condition. $£ 25$ cach, carr. $£ 1.50$

[^10]SOLARTRON PULSE GENERATOR GP1101.2: Period- 2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec 10 msec . All continuously variable in 5 ranges 10% continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/put; Squaring Amplifier. Input-100-250V, 50-60 c/s. New condition with Manual. Price: $£ 85$ each $+£ 1 \cdot 25$ carr.

USM-24C OSCLLLOSCOPE: 3 in. oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv , $\mathrm{rms} / \mathrm{inch}$. Triggered sweep, built-in trigger pulses and markers. Mains input $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. £42.50 each, carr. £2.

OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. (Further details on request, S.A.E.) £35 each, carr. £1.50.

TYPE 13A OSCILLOSCOPE: $100 / 250 \mathrm{~V}$, a.c. Time base $2 \mathrm{c} / \mathrm{s}-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration Markers $100 \mathrm{Kc} / \mathrm{s}$ and $1 \mathrm{Kc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope. £22-50 each, carr. £11.50.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signais with a very low spurious energy content, suitable for alignment of narrow-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range- $10-420 \mathrm{Mc} / \mathrm{s}$ in 5 bands, $\pm 0.5 \%$ accuracy. Emission-AM, CW, Pulse. O/put Voltage-0.1V0.5 , calibrated $\pm 2 \mathrm{db}$ accuracy. Modulation-in Crystal calibrator ($1,5 \mathrm{Mc} / \mathrm{s}$. Price: $£ 150$ each, complete with transit case, manual and all leads; OR £125 each, Sig. Gen. only. Carr. both types £2.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use With radio and radar receivers and for other applications requiring small
amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width-0.5-10 microsecs, Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 miliwatt max., 0 to - 127 db variable. O/put Impedance-50 Ω. Price: $\mathbf{£ 1 2 0}$ each $+£ 2$ carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply$115 V$, $\pm 10 \%$ A.C., $50 \mathrm{c} / \mathrm{s}$. Freq.- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal Transmission-
CW, 0.2 milliwatts. O/put Attenuator: - 7 to -127 dbm . Load- 50Ω. Price: $£ 135$ each $+£ 2$ carr.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put - 7 to - 85 dbm. Trans$40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range-3-50 microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20 \mathrm{microsec}$ duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter. Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec , for req. increments of less
than $60 \mathrm{Mc} / \mathrm{s}$ relative, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output - 7 to -85 dbm . Price: $£ 75$ each $+£ 1$ carr.

SIGNAL GENERATOR TS-418/URM49: Covers 400-1000 Mc/s range CW, Pulse or AM emission. Power Range-0-120 dbm. Price: £105 each $+\quad$ £1-25 carr.

SIGNAL GENERATOR TS-419/URM64: Freq. $900-2100 \mathrm{Mc} / \mathrm{s} . \mathrm{CW}$ or Pulse emission. Accuracy-freq. $\pm 1 \%$. Power - 2 db . Price: £125 each $+£ 1.25$ carr.

TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlet: Packard). Freq. $-250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High stability. O/put 160 mw or 10 V into 600Ω Price: $£ 65$ each $+£ 1 \cdot 25$ carr

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. 0-30 for sine wave. An or Pulse Carrier. O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω.
Price: $£ 85$ each $+£ 1-50$ carr.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. 20-280 Mc/s. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons. $\mathbf{E 7 5}$ each.
Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$.

CT. 54 VALVE VOLTMETER: Portable battery operated, In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1 a to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4 in . scale meter. Complete with probe, excellent condition. $\mathbf{£ 1 2 . 5 0}$, carr. 75p.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 \cdot 50$ each, post 50 p .24 v D.C. input, 175 v D.C. @ 40 mA . output, $\mathbf{£ 1}-25$ each, post 20 p
CONDENSERS: $40 \mathrm{mfd}, 440$ v A.C. wkg. $\mathbf{e} 5$ each, 50 p post. 30 mfd 600 v wkg. d.c., £3.50 each, post 50 p . 15 mfd 330 v a.c., wkg., 75 p each, post 25 p .10 mfd 1000 v .63 p each, post 13 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . $\mathbf{8 5} 5$ each, carr. 63 p .8 mfd 1200 v .63 p each, post 20 p .8 mfd 600 v .43 p each, post 15 p . 4 mfd .3000 v. wkg. $£ 3$ each, post 37 p . $4 \mathrm{mfd} 2000 \mathrm{v}: 2$ each, post 25 p . 44 mfd $600 \mathrm{v} ., 2$ for $£ 1.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post 10 p .0 .01 mfd MICA 2.5 Kv . £1 for 5 , post 10 p . Capacitor $0 \cdot 125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. $£ 3 \cdot 75$ each, 50 p post
TCS MODUL.ATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, ${ }_{2} \$ 2.50$ each. post 30p.
CONTROL. PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, carr. 75p.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 2.6 ohms at 4 amps. Price (either type) $£ 2$ each, 25 p post each.

TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathbf{£ 4} \cdot 50$ each, carr. 75 p . POWER S UPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and $1 \times 5 \mathrm{~V}$ windings@3 3 Amps each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition $\mathbf{E} 6.50$ each, carr, £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \mathrm{~h}^{\prime \prime} \times 7^{\prime \prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V, ated in steel ventilated case. $£ 3$ each,

POWER UNIT: 110 v. or 230 v . input switched; 28 v . @ 45 amps. D.C. output. Wt. approx. 100 lb ,, $£ 17 \cdot 50$ each, $£ 1.50$ carr. SMOOTHING UNITS suitable for above $£ 7.50$ each, 75 p. carr.

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7 \cdot 50$ each, 75 p carr.
CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100 a , with chamois leather earmuffs. Small hand microphone complete with switch and
moving coil insert. New condition. Price £1.75 each, post 25 p .

CATHODE RAY TUBE UNIT: With 3 in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, £3.50 each, post 37 p . APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s} .$, complete with all valves 28 v . D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 50p.
ANTENNA WIRE: 100 ft , long. $\mathbf{7 5 p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1-25, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps ; $2 \frac{1}{2}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. $£ 15$ each,

AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, \mathbf{£ 2}$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic
reflector, (24 in. diameter), meters, suppressors, etc. $£ 35$ each, $£ 2$ carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $+1 \%$ £3 each, 25 p post, 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 35 \cdot 0$ each, post 25p.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-$ $15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$. a.c. £45 each, £1.50 carr.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conjunction with a freq. meter. $£ 1250$ each, $£ 1$ carr. LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. 44 each, 50 p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output $1 \mathrm{rpm}, \boldsymbol{£ 1} \cdot \mathbf{5 0}$ each, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, $3 \mathrm{rpm}, £ 2$ each 25 p post. SYNCHROS: and other special purpose motors available. List 3p

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in. diameter case. Price $£ 2$.
each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch. 75 ohms, type " N " female connectors fitted to receive UG-21/U series plugs. New in ctns., $\mathbf{x 6} 50$ each, post 37 p . CO-AXIAL SWITCH-Mnftrs. Transco Products Inc, Type
M1460-22, 2 pole, 2 throw. (New) $\mathbf{8 6 . 5 0}$ each, post 25 p . 1 pole, 4 throw, Type M1460-4. (New) $\mathbf{2 6} \cdot 50$ each, post 25 p .

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A $0 \cdot 250-1 \cdot 0 \mathrm{KMC} / \mathrm{SEC}$. (New) £75 each, post 63p. FIXED ATTENUATOR;
Type $130 \mathrm{c}, 2 \cdot 0-10 \cdot 0 \mathrm{KMC} / \mathrm{SEC}$. (New) 55 each, post 25p. FIXED ATTENUType $130 \mathrm{c}, 2 \cdot 0-10 \cdot 0 \mathrm{KMC/SEC}$. (New) \& 5 each, po
ATOR: Type $1157 \mathrm{~S}-1$, (new) f 6 each, post 25 p .

CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with bin. CRI tube and separate power supply. Fully stabilised. Price and further details on request.

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone 0/-722-9090
GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Litzlehampton 6743 GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Littehompton

ORGAN DIVIDER BOARDS, built to high industrial/computer standards. 5 octave set f15
COPPER LAMINATE PRINTED CIRCUIT BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in} 2 /$.6 sheet, 5 for $10 /-$
$11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in} .3 /-$ sheet, 4 for $10 /$
$11 \times 9 \times 1 / 16$ in $4 /-$ sheet 3 for $10 /-$
Offcut pack (smallest $4 \times 2 \mathrm{in}$.) $10 /-300 \mathrm{sq}$.
RADIATION MONITORING EQUIPMENT. Port
KLYSTRON POWER SUPPLY (Solartion AS562)
$\ddagger 40$. Carr. 50/
KLYSTRON POWERSUPPLY (Elliott PKU1). £100
120 AMP. AUTO TRANSFORMERS. 190-270v.
arrangement.)
801 A SIGNAL GENERATOR. $10-300 \mathrm{mc} / \mathrm{s}$ in
f50 ea. P.P. $25 \%-$

SPEAKERS
E.M.I." 19×14 in. 50 watts. 8 ohm (14A/600A.) Fou weeters mounted across main axis. Separate x-over Hz . Bass unit flux 16,500 gss. A truly magnificent system. £25. P.P. 50/
E.M.I. 13×8 in. with two tweoters and cross-over. 8 or E. M.I.: 13×8 in.
E.M.I." 13×8 in. Bass Unit. 10 watts $3-8-15$ ohm models E.M.I." $6 \frac{1}{2}$ in. Rd. 10 watt wooters. 8 ohm. 30/- ea E.P. $2 / 6$. 'FANE'" 12 in .20 watt. 15 ohm (122/10A.) With integral SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$.) Made to Spec. from $\frac{3}{4}$ in. board. Finished in black teathercloth. $13 \times 8 \mathrm{in}$. speaker with twin iweeters complete

EXTRACTOR FANS/BLOWERS

AIRMAX" $7 \frac{1}{2}$ in. FAN (9 in.). $240 \mathrm{v}^{\prime \prime}$ Brand new. £4 10s. P.P. 10/-
PLANNAIR. 5 In. FAN. (Type 5 PL 121-122.) Diecast housing ${ }^{2} 5 \frac{3}{3}$ In.
'SOLARTRON', TANGENTIAL BLOWERS. Overall size $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2}$ in. Air
BULK COMPONENT OFFER. Resistors/capacitors. A pieces, £2. (Trial order 100 pieces 10/-.) We are confiden

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$) 200 micro-amp. Made in MICROAMMETERS (4-in. sq. Weston). 25-0-25 microamps. 45/-. P.P. 5
RELAYS H.D. 2 pole 3 way 10 amp. contacts. $12 \mathrm{v.w} 7 /$.6 ea. LIGHTWEIGHT RELAYS (with dust-proot covers) $4 \mathrm{c} / \mathrm{o}$ contacts. 24 v . 500 ohm $7 / 6$ ea
PRECISION CAPACITANCE JIGS. Beautifully made $1,220 \mathrm{pf}$ £10 ea. Type $29.5 \mathrm{pf}-11.5 \mathrm{pf}$. $£ 6$ ea POT CORES LA1/LA2/LA3. 10/- ea.
71 WAY PLUG \& SOCKET (Painton Series 159). Gold plated contacts with hood \& retaining clips, 30 -pair 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated ay version 15/-pair
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.). 2 pole change-over COMPUTER BOARDS

4-OC23; 4-2N1091 ; 4-2G302; 4-OA10. 20/- ea.
8-OC42 (long leads); 16-0A47. 7/6 ea.
8-DA11A; 14-OA47. 5/-e ea
enumerate. At least 100 transistors and diodes varied to

TRANSFORMERS

L.T TRANSFORMERS (shrouded). Pim. 200/250v Sec. $20 / 40 / 60 \mathrm{v} .2$ amp. 42/6. P.P. $7 / 6$
Sec. $20 / 40 / 60 \mathrm{v} .2$ amp. $42 / 6$. P.P. $7 / 6$.
L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40v. 1.5 amp. $30 /-$. P.P. $5 /$
"ADVANCE" CONSTANT VOLTAGE. Prim. 190/250v. $\pm 15 \%$. Sec. 115 v . 2,250 watts. $\mathbf{£} 15$ ea. P.P. $50 /-$ H.T. TRANSFORMERS. Prim. $200 / 240 \mathrm{v}$. Sec. $300-0-300 \mathrm{v}$. $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. С.T. $2 \mathrm{a} .30 /$ - еа. P.P. $7 / 6$. $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. С.T. $2 \mathrm{a} .30 /-$ ea. P.P. $7 / 6$.
$350-0-350 \mathrm{v} .60$ M.A. $\mathbf{6 . 3 v . ~ С . T . ~} 2 \mathrm{a} .20 /-$ ea. P.P. $5 /$
L.T. TRANSFORMER. Prim. 240v. Sec. 33-0-33v. 5 amp. 45/-. P.P. 10/
STEP DOWN TRANSFORMER. Prim. $200 / 240 \mathrm{v}$. Sec 115 v . 100 watts. $20 /$ - ea. P.P. 5
L.T. TRANSFORMERS Prim. 240 v . Sec. $8 / 12 / 20 / 25 \mathrm{v}$ 3.5 amp models $20 /-;$ P.P. $5 / 6$. L.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/

LIOUID LEVEL DETECTOR. Detects even mildly conduc tive liquids, i.e. ether,
£10. S.A.E. literature.

ELECTRIC SLOTMETERS ($1 /-$) 25 amp. L.R. 240v. AC 85/- ©a. P.P. $5 /-$ -
QUARTERLY ELECTIC CHECK METERS, 40 amp LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.). 20/- ea. P.P. $2 / 6$.
10,000 u.t. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.) $17 / 6$ ea. PP. $2 / 6$. 3.150 u.f. 40 V . $\left(4 \frac{1}{4} \times 1 \frac{1}{\frac{1}{2}} \mathrm{in}\right.$.) $15{ }^{\prime}$ '- ea. P.P. $2 / 6$ EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built. True hi-fi performance Built-in fiters to protect speakers. Three independently Magnetic Cartridge or aux equipment f55. P.P. 50/S.a.e. literature.

TELEPHONE DIALS (New) 20/- ea
RELAYS (G.P.O. 3000). All types. Brand TELEPHONE EXTENSION CABLE (eX
 UNISELECTORS (BIand 75 ohm .8 bank $\frac{1}{2}$ wipe $65 /-10$ 25-way $\frac{1}{2}$ wipe 75%. Other types from $45 /-$

REED RELAYS 4 make 9/12v. (1,000 ohm.) $12 / 6$ ea. f1 per doz 1 make 5/- өa. Reed Switches ($1 \frac{12}{2}$ in.) $2 /$ SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{4} i n$.). Weight $\frac{1}{6}$ oz. Trpe 1. 960 ohm, 3/9v. 1 mak
1800 ohm, $3 / 12 \mathrm{v} .1$ make. $15 /-$ ea.

SILICON BRIDGES. 100 P.I,V 1 amp. ($\frac{3}{6} \times \frac{3}{3} \times \frac{3}{9} \mathrm{in}$) 8/6 ea
"ADVANCE" VOLSTAT TRANSFORMERS. Input PLUG.IN RELAYS. (Siemans-Varley) $4 \mathrm{c} / \mathrm{o} .700 \mathrm{ohm}$, 10/- ea. complete with base. (Other make-ups and coils

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

ELECTRO/LLUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS BARGAINS IN NEW SEMI-CONDUCTORS
many at new reduced prices . all power types with free insulating sets

IN914	1/3	2N3707	2/6	40602 9/6	BCl 48	3/-	BS $\times 20$	3/9
IN3754	4/-	2N3708	$2 / 6$	ACl07 14/6	BC149	3/-	BY164	10/-
IN4148	1/9	2N3709	$2 / 6$	ACl26	BC153	$7 /$	BY238	3/6
IN5054	4/-	2N3710	2/6	ACl27 4/-	BC154	7/6	Cl068	$14 / 6$
15940	1/-	2N3711	2/6	ACl28 6/-	BC157	3/9		
2N696	3/6	2N3731	24/-	ACl76 6/-	BC158	3/6	MCl40	5/-
2N697	3/6	2N3794	3/-	ACY22 4/6	BC159	$3 / 9$	MJ480	$21 /-$
2N706	$2 / 9$	2N3819	7/-	ACY40 4/-	BC167	$2 / 6$	MJ481	$27 /$
2 N 1131	6/3	2N3820	12/-	ADI40 19/-	BCI68	2/3	MJP9102	$30 / 6$
2 N 1132	$6 / 6$	2N3904	7/6	ADI42 14/3	BC169	$2 / 6$	MPFIO2	
2 N 1302	$4 /$.	2N3906	7/6	AD149 12	8 BCl 77	6/3	NKT403	15/6
2 N 1303	4/-	2N4058	4	ADI61/AD162	BC178	$5 / 8$	NKT405	15/-
2 N 1304	$4 / 6$	2N4059	4/-	(matched) 14/-	${ }^{8 C 179}$	$6 /-$		
2 Ni 305	$4 / 6$	2N4060	4/-	AFll4 7/-	${ }^{8 C 182 L}$	216	OA90	1/3
2 N 1613	6/-	2N4061	$4 /-$	AFII5 7/-	BC183L	2/3	OA91	1/3
2 N 1711	7/-	2N4062	4/3	AFII6 6/6	BCl 84 L	$2 / 6$	OA95	1/3
2N2147	19/-	2N4284	3	AFII7 6/6	BC186	$8 / 6$	- A99	$3 /$
2 N 2218	9/3	2N4286	3/-	AF124 7/6	BC212L	5 -	- A200	1/11
2N2270	$12 / 9$	2N4289	$3 /-$	AFI27 7/-	$8 \mathrm{BC213L}$	5 5-	OA202	-
2N2483	6/3	2N4291	3/-	AF139 9/6	$8 \mathrm{BC214L}$	5/3	OC71	5/6
2 N 2484	9/6	2N4292	$3 /-$	AF180 18/6	BCY70	4/-		16/-
2 N 2646 2 N 2904	10/9	2N4410 2N5062	12/3	$\begin{array}{ll}\text { AF239 } & 9 / 9 \\ \text { ASY26 } & 6 / 6\end{array}$	8D 121 BD 123	$21 /-$	TIP32A	$20 /$
${ }_{2}^{2 N} 2 \times 2904$	$11 /-$	2N5062 2N5163	$12 / 3$ 5	$\begin{array}{ll}\text { ASY26 } & 8 / 6 \\ \text { ASY27 } & 8 / 3\end{array}$	${ }^{\text {BD }} 124$	20 -	Tis43	10/6
${ }_{2} \mathrm{~N} 2925$	$4 / 6$	${ }_{2} \mathrm{~N} 5192$	25/-	ASY28 6/6	BF167	816	ZTX300	$3 / 6$
2N2926	2/3	2N5195	28/3	B5041 15/-	BF178	$10 / 6$	ZTX301	3/6
2N3053	5/6	2N5457	$9 / 9$	BA102 6/-	BF180	12-	ZTX302	$4 / 6$
2N3054	14/3	2N5458	$9 / 9$	BAll5 4/-	BF194	7/-	ZTX303	$4 / 6$
2N3055	15/-	2N5459	$9 / 9$	BAl30BA 4/6	BFI95	$7 / 6$	ZTX304	$6 / 9$
2N3325	10/9	40250	14/3	BAI56 4/	BFX 29	6/3	ZTX500	5 -
2N3663	11/6	40361	12/6	BCl07 $\quad 2 / 9$	BF×84	5/9	ZTX501	5 -
2N3702	$2 / 6$	40362	16/-	BCl08 2/6	BFX85	7/-	ZTX502	6 -
2N3703	$2 / 6$	40406	16/3	8Cl09 2/9	BFX87	$5 / 9$	ZTX503	5/-
2N3704	$2 / 6$	40408	14/6	BCl25 11/-	BFX88	5/3	ZTX504	$12 /-$
2N3705	2/6	40430	37/-	BC126 11/-	BFY 50	4/6	ZTX530	5/5
2N3706	2/6	40512	$39 /$	BC147 3/-	BFYSI	4/-	ZTX531	$6 / 9$

RESISTORS

Code	Power	Tolerance	Range
c	I/20w	5\%	8252-220K Ω
c	1/8W		4.752-330KS
c	1/4W	10\%	4.75-10MS
c	1/2W	5\%	$4 \cdot 752-10 \mathrm{M} \Omega$
c	IW	10\%	4.75-10MS2
MO	1/2W	2\%	10S-1MS2
WW	IW	$10 \% \pm 1 / 20 \Omega$	$0.22 \Omega-3.9 \Omega$
WW	3W	5\%	12S-10KS

MO = metal oxide, Electrosil TR5, ultra low noise. $W W=$ wire wound, Plessey.

Values:
E12 denotes series: $10,12,15,18,22,27,33,39$, 47, 56, 68, 82 and their decades.
E24 denotes series: as E12 plus 11, 13, 16, 20, 24,
ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $30 \mathrm{~V}, 3 / 9$ each; IW: 6.8 V to 82 V , 9/- each: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 12 /- each. Clip to increase 1.5 W rating to 3 watts (type 266F), 9 d .
CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.
Singie gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6$; Single gang log, 4.7Ks2 to 2.2MS2, 2/6; Dual gang linear, $2.2 \mathrm{M} \Omega, 8 / 6$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only $8 / 6$: Dual antilog, 10 K only, $8 / 6$. Any type with $\frac{1}{2} \mathrm{~A}$ D.P. mains switch, extra 2/3.

Please note: only decades of 10,22 and 47 are available within ranges quoted.
CARBON SKELETON PRE-SETS
Small high quality type PR, linear only: 100Ω. 202, 4700 , $\mathrm{K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{MS} 2$. Vertical or horizontal mounting, 1/-each.
COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1.5 \mathrm{~K}$ $2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 5 / 6 \mathrm{each}$.
ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: $16-22$ SWG 4/3; 24-30 SWG 5/-; 32, 34 SWG, 5/6; 36, $38 \mathrm{SWG}, 6 / 3$.

PEAK SOUND PRODUCTS

MAINLINE AMPLIFIER KITS
RCA/SGS designed main amplifier kits. Input sensitivity 500 700 mV for full output into 8Ω.

Power	Kit price including components	Suitable unreg power supply 12W
25 W	$168 /-$ nett	$92 /-$
40 W	$190 /-n e t t$	$\mathrm{~N} / \mathrm{A}$
70 W	$210 /-$ nett	$115 / 1$

30 WATT BAILEY AMPLIFIER PARTS

Sensitivity $1 \cdot 2 \mathrm{~V}$ for full output into 8Ω
Transistors and PCB for one channel $£ 7 / 5 / 6$
Transistors and PCBs for two channels $\in \mid 4 / 11$
Capacitors and resistors (metal oxide), $40 /$ - per channel.
Complete unregulated power supply pack, $\mathbf{\text { E// } / 1 5 / - 1}$

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett 42/6.

SINCLAIR IC. 10 as advertised, complete with instructions and
applications manual $59 / 6$ nett.
Components pack for stereo inc. transformer, controls, etc.,
components pack for stereo inc. transformer, controls, etc.

S-DeCs PUT AN END TO BIRDS NESTING
Components just plug in-saves time-allows re-use of comComponents just plug in-say
ponents. S-Dec (70 points), $20 /-$
Complete T-Dec, may be temperature-cycled (208 points), 50/Also μ-Decs and IC carriers.

MEDIUM RANGE ELECTROLYTICS

Axial leads: $50 / 50,1 / 9 ; 100 / 25$. $1 / 9 ; 100 / 50,2 / 6 ; 250 / 25,2 / 6$; $250 / 50,3 / 9 ; 500 / 25,3 / 9 ; 500 / 50,4 / 6 ; 1000 / 25,4 /$-; $1000 / 50,6 /-;$ 2000/25, $6 /$

SMALL ELECTROLYTICS
Axial leads: $4.7 / 10,4.7 / 25,5 / 50,1 /$ - each; $10 / 10,10 / 25,10 / 50$ Axial eads:
$33 / 10,50 / 10,1 /-$ each; $25 / 25,25 / 50,47 / 25,100 / 10,220 / 10,1 / 3$ each.

ELECTROVALUE CATALOGUE

48 pages plus cover. Well printed and generously illustrated to show products, diagrams, etc. Crammed with thousands of items excellently classified for quick and easy reference. POST FREE 2/Add 4/- if required to be sent by air mail.

Pri 200-220-240v. Sec. 250-0-250v. $50 \mathrm{M} / \mathrm{A} .6$. 3 v . la. $22 / 6 \mathrm{P}$, \& P. $5 / \mathrm{F} . \mathrm{Pri}^{230 \mathrm{v}} .42 \mathrm{v}$. (a. $10 / 6$ P. \& P. $3 / 6$.

WILLESDEN POTTED TRANSFORMER Pri. 10-0-200-220-240v. Sec. 2.5v 5a four times. 50/- Carr. 8/6.

T.E.C. 240-110v. ISOLATION TRANSFORMERS

 Pri Tapped 10. 0. 200. 220. 240v. sec. Tapped $110-112.5-115 \mathrm{v}$ Conservatively rated at 9 amps . Tropicalised open frame typeTerminal Board connections. Size $9 \times 9 \times 7$ ins. Weight 60 lbs 615. Carr. $17 / 6$

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri 240v. Sec. 240v. Centre tapped $\mathbf{2 k v a}$. Mounted in strong metal case. Size
Conservatively rated. $\mathbf{£ 2 7 . 1 0 . 0}$. Carr. $\mathbf{3 0}$ /-.

ENGLISH ELECTRIC FUSES

 Cartridge Type T.I.A.30, Class Q. 30 amp and Type T.I.A. 20,Class $Q 20$ amp. $25 /$ per dozen. P . P . $2 / 6$, Fusetron Edison Screen Type 15 amp and 20 amp . $25 /$ per dozen. P. \& P. $2 / 6$ Standard $1 /$ ins. Type Glass Fuses. Wa., 3 a . $150 \mathrm{M} / \mathrm{A} .50$ for

AIR MINISTRY 2-IN. ROUND METERS $0-20 \mathrm{amps}$ D.C. $12 / 6.0-40 \mathrm{amps}$ D.C. $15 / \mathrm{c} .0-50$ volt D.C. $15 / \mathrm{m}$
$2 / 6 \mathrm{P} . \mathrm{a}_{\mathrm{a}} \mathrm{P}$.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-5I25
CURRENT RANGE OF BRAND NEW L.T. TRANS
FORMERS. FULLYSHROUUED (*excepted) TERMINAL
BLOCK CONNECTIONS. ALL PRIMARIES 220/240V BLOCK CONNECTIONS. ALL PRIMARIES 220/240V
No.
COL 2/6.
G.PO. L.T. SUPPLY UNIT

Type 19. A.C. input, tapped $200-250 \mathrm{v}$., $100-120 \mathrm{v}$. D.C. output
12 or 24 volts, very conservatively rated at 3 amps. Can be connected to give 12 volts 6 amps. Built into strong metal case size $19 \times 7 \times 6 i$ ins. With fitted fuses. On/off switch Socket outlet. Circuit supplied, $\mathbf{E 7 . 1 9 . 6}$, carriage $15 /-$

AIR MINISTRY SLIDING RESISTORS
Wire Wound single tube. 10 12a. 15/-. P. \& P. 3/-. 14 a 1-4a.
17/6. P. \& P. $3 /-57.20$ 2.8a. Adjustable metal clip type. 27/6.
 Fixed type. 7/6. P. \& P. 2/6. $758 \Omega 0.7 \mathrm{a}$. Twin tube 37/6. P. \&
$6 / 6.30 \Omega$ I.5a. Right angle geared drive. 19/6. P. \& P. $4 / 6$ Colvern ceramic rheostats. 1500Ω 0.18a. 7/6. P. \& P. $2 / 6$
$1500 \Omega 0.1$ a. $5 /$. P. \& P. $2 /-, 20 \mathrm{~K}$ inst. pots 3 ins. dia. $6 / 6$. P. \& P

ZENITH DOUBLE-WOUND VARIABLE TRANSFORMERS
Input 240v., output $0-80 \mathrm{v}$., 15 amps or 0.40 v .30 amps . Opentype slider contr
\&15. Carr. 25/-.

SPECIAL OFFER A.E.R.E. TRANSFORMERS

Pri 205, 225, $245 \mathrm{v}, \mathrm{sec} .300 \mathrm{v}, 37.5 \mathrm{~m} / \mathrm{a}$. twice. 4 kv . D.C. wkg Pri 200, 220, 240v. sec. tapped. 370, 390, $410 \mathrm{v} .6 \mathrm{~m} / \mathrm{c}$. C. core.

Pri 200, 220240 v , Sec. $350-0-350 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a}$. 6.3 v . l a. 6.3 v .0 .6 a ealed potted type. $15 /-$ P. \& P. 4/6.

VENNER SYNCHRONOUS BIO-DIRECTIONAL MOTORS
220-240v. 50 cycles 40 r.p.m. automatically reverses wherever spindle stop is placed overall size $2 t \times 2 \times 1$ lins. Spindle length lin. dia. $1 / 16 \mathrm{th}$. An ideal motor for display, giving a
forward and reverse motion. $12 / 6$. P. \& P. 2/6. A.C. $220-240 \mathrm{v}$. Shaded Pole Motors. 1.500 r .p.m., double
spindle. 0.9 in. and 0.6 in. overall. Size $3 \times 31 \times 2 \mathrm{in}$. As used in hot air blowers, new and boxed. 10/6. P. \& P. $3 / 6$.
 60 deg. C. contacts N. O. new and boxed. 27/6. P. \& P. $3 / 6$.
12 in . stem. $32 / 6$. P. \& P. $4 / 6$.

240 vol 110 v . or AUTO TRANSFORMERS 100 v . Completely Shrouded fitted with 240vo-lliov. or A0v. Completely Strouded fitted wiease tate which type required.

Type	Wats	Approx. Weight	Price		Carr.
Io	${ }_{80}$	2i lb	6119	6	5/6
2	150	4 lb	6212	6	$6 / 6$
3	300	6: lb	6312	6	$6 / 6$
4	500	81 lb	6512	6	$8 / 6$
5	1000	15 lb	672	6	916
6	1500	25 lb	6915	0	$10 / 6$
$7 *$	1750	28 lb	61415	0	12/6
8 *	2250	30 lb	61717	6	15/-

SPECIAL OFFER OF GRESHAM CHOKES $15 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50 \mathrm{hm}$. "C", Core Ported Type. 62/6. Carr. 10/-.
$10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{ohm}$."C", Core Potted Type. $55 /-$ Carr. $101-\mathrm{L}$
 $20 \mathrm{H} 350 \mathrm{~m} / \mathrm{a} .200 \mathrm{hm}$. "C" Core Potted Type. 69/6. Carr. $12 / 6$.
1H la. $150 \mathrm{hm} .69 / 6$. Carr. $15 / \mathrm{F}$.

EXIDE GLASS ACCUMULATORS
10 Volt. 5 A.H. Size: Height $5 \times 7 \times 21$ ins. Supplied brand new with charging instructions. Ideal for Emergency Lighting, Alarm Systems. erc. $\mathbf{3 5 / -}$ for Two packed in
original maker's cartons. P. \& P. $10 / 6$. One $19 / 6$ P. \& P.

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

NEW!

SN74N SERIES TTL LOGIC
NOW FROM L.S.T.-FULLL SPECIFICATION texas industrial integrated circuits AT ECONOMY PRICES.
$1.49 \quad 50.99 \quad 100+$

 SN740N Dual 4.input NAND Butfor:
SNT44N
SN7450N Expand ocimal docoder TriL outpu SN7453N Expandabie fow fide gate 2-input ANDO: SN7460N Dual 4-input expand
SN7470N J-K Flip-lios SN7472N
SN7 K M M M SN7474N Dual D-type edge-trigerrad mip-
SN7475N SN7475N Quadruple biatable
SN7476N Dual $J-K$ master-sia SN7483N Four-bite binary full-ador
SN7492N Divida-by-12 counser
SN7493N
SN7414IN
MIX PRICES: Devical may ba mixed to qualify for quantity price. Larger quantities-prices on application.

ULTRASONIC TRANSDUCERS
Operate at $40 \mathrm{kc} / \mathrm{s}$. Can be uised for remote control systems without cables or electronic links transmit and receive.
FREE: With each pair ou omplete transmitter and PRICE (Sold onily in pairs) $\mathbf{6 5}$ IVR DDII9 Heat sink compound-Silicone grease
DDI70 Bargain pack of 5 1 -watt Zener diodes DDI70 Bargain pack of 5 1-watt Zener diodes
DDi75 4 pieces 100 PRV Rectifiers 500 mA .. DD176 2 ppeces 200 PRV Rectifiers 500 mA DD177 2 pieces 400 PRV Rectifiers 500 mA
DD 180
Bargain Transistor pack 2 AF + RF $\begin{array}{ll}\text { DD180 } & \text { Bargain Transistor pack } 2 \text { AF + RF } \\ \text { DD184 Assortment of } R F \text {, audio and power transistor solar }\end{array}$ DO190 Pack cell and diode 4 sored solar cells: from S4M)
$\begin{array}{ll}\text { S4M } & \text { Silicon Solar cell } 10.16 \mathrm{~mA} \\ \text { Silicon Solar cell } 25-40 \mathrm{~mA}\end{array}$
$\begin{array}{ll}\text { B2M } & \text { Low cost Selenium solar cell }{ }^{2} \text {. } \\ \text { B3M } & \text { Selenium cell in protective case }\end{array}$
Only part of the International Rectifier "Diamond Line" range are Only part of the International Rectifier "Diamond Line" range are
listed. Send for free catalogue or ask your local component stockist.

 ± 1.50 ± 1.45 61.70 61.25 61.75

6 Amp (RMS at $75^{\circ}{ }^{\circ} \mathrm{C}$ Amb.) 400 PIV *
6 Amp
2.2 Amp (RMS at $25^{\circ} \mathrm{C}$ Amb.) 400 PIV.
40576 I5 Amp (RMS) ty 400 PIV TO-66

THYRISTORS
CRIJ5IC IAmp 50 PIV TO-5
CRI/40IC IAmp 400 PIV TO-5
$2 \mathrm{~N} 3525 \quad 5 \mathrm{Amp} 400$ PIV TO. 56

TERMS

Cash with order, pleaze.
Postage and packing: 10 p inland; 25p Europe; 60p elsewhere
ALL ORDERS DESPATCHED WITHIN ONE WORKING DAY 1971 Retail Catalogue now available, 5 p stamp for postage appreciated

Mail Order Dept. (WW), 7 Coptfold Road, Brentwood, Essex
VIsitors welcome at our new Retall shop-same address

HEATSINKS

HEATSINKS
TO. 5 (clip-on) Pack of 4 for
FINNED type for $2 \times$ TO- 3 ready drilled at FINNED type undrilled for
plastic power at

BOOKS

G.E. Transistor Manual R.C.A. Transistor Manual Designers Guide to Britis
Transistors (data book).
R.C.A. Hobby circuits manu $1 i o$ Semiconductor Projects Zener Diode Handbook
Photocel and Solarcell
book

Prastitay

EXCLUSIVE

DIGITAL CLOCK MECHANISM

- Made
- Mains operation
- 12 hour slarm
- Auto 'sleep" switch
- Hours, minutes and seconds read-off - Forward and backward time adjustment - Shock and vibration proof
- Built in alarm buzzer

This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S are achieved by two dual-concentric controls at the front including: ON-OFF AUTO and AUTO ALARM. "sleep" switch, 10 minute division "click" set alarm (up to 12 hour delay) ime adjustment. Ultra simple mechanism and high quality manufacture guarantee reliable operation and long life
The sleep switch will automatically turn off any appliance-radio. TV light, etc., at any pre-se time up to 60 min and in conjunction with the AUTO setring will switch on the appliance again nex The clock measures $4 \frac{3}{4} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 3 \frac{3}{2} \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{VAC}$ 50 Hz operation; switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instructions. HUNDREDS OF APPLICATIONS COMPLETE WITH KNOBS
LASKY'S PRICE £6.95
SPECIAL QUOTATIONS

LASKY'S TM5

Another new look pocket multimeter from Lasky's providing top quality and value. The slimline impact resistant case-size 4 in . X $2{ }_{2}^{2} 1 n . x 1 l i n$. fitted with extra large 2 zin. Square meter Readability servicing unansistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal clear meter

- DC/V: 3-15-150-300-1,200 at 5 K ohms/V - $\mathrm{AC} / \mathrm{V}:$: 6 -30-300-600 at 2.5 K ohms/V
- DC Current 0-300 μ A $0-300 \mathrm{~mA}$
- Resistance: 0.10 K ohms, $\mathbf{0 - 1} \mathrm{M}$ ohms
- Decibels: -10 dB to 16 dP

LASKY'S PRICE $£ 2 . \mathbf{9 5}_{\text {P\& P } 13 \circ}$

TMK 200 METER KIT

This meter kit by TMK offers the unique opportunity of building a really first-class precision multimeter at a worthwhile saving in cost. The cabinet is suppled with the
meter scale and movement mounted in position the Model 200 also has the range selector in position. The highest quality components and 1% tolerance resistors are used throughout. Supplied complete with full constructional. circuit and operating
20,000 O.P.V. Multimeter. Features 24 measurement ranges with mirror scale large 3×2 in. meter. Full scale accuracy. DCV and current: $\pm 2 \% \mathrm{ACV}: \pm 3 \%$. resist nce: $\pm 3 \%$. Special 0.6 V DC range for transistor circuir measurements.

SpECIFICATION

-DCV: O-0.6-6-30-120-600-1.200V at 20K/OPV. ACV: 0-6-30-120-600-1.200V at $10 \mathrm{~K} / \mathrm{OPV}$. 0 DC current: $0-0.6-6-600 \mathrm{~mA}$. Resistance: $0-10 \mathrm{~K}$ - $100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$. ohms ($58-580-5.8 \mathrm{~K}-58 \mathrm{~K}$ at mid-scale). Capacitance: $0.002-0.2 \mu \mathrm{~F}$ (AC 6 V range) (U7 type) batteries Black bakelite cabinet-Size $5 \frac{1}{x} \times 17$. Uses Iwo .5

lest leads

KIT PRICE ONLY £4.59 P\& P 13 P

POLY-PLANAR WAEETYPE

simitar manner to that of the cone loudspeaker system. In place of the conventional paper cone is a flat, rigid plastic panel which is only a fraction of the depth of the equivalent cone structure. To obtain the desired acoustic properties the panel incorporates a combination of circular grooves. With flat rectangular panel a larger piston area is also available thereby reducing he size compared with an equivalent cone loudspeaker Power capacity: 20 watts (peak, Frequency range: $40 \mathrm{~Hz}-20.000 \mathrm{~Hz}$ input LASKY'S PRICE $\mathbf{£ 5 . 7 5}$ each $\mathbf{£ 1} 1$ for 2 \qquad
 ONLY $1_{1 / 8}{ }_{18} \mathrm{im}$. THICK

MIDLAND 10-406
AM/AIRCRAFT RADIO
The first pocket size receiver of its type allowing you to tune-in MHz in addition to full AM medium wave. by 108-137 MHz in addition to full AM medium wave. Intermediate
frequencies: AM 455 KHz : VHF $10.7 \mathrm{mc} / \mathrm{s}$ Output power: $200 \mathrm{mV} 2 \frac{1}{2} \mathrm{in}$. P.D. 8 ohm speaker. A built in ferrite rod aerial is provided or AM reception. The 10-406 is finished in blue

LAS KY'S PRICE £8. $\mathbf{3 7}$ p\& p ${ }^{13 \mathrm{p}}$

207 EDGWARE ROAD, LONDON, W. 2.
 33 TOTTENHAM CT. RD, LONDON, WIP 9RB
 109. FLEET STREET, LONDON, E.C.4.
 152/3 FLEET STREET, LONDON, E.C.4.
 HIGH FIDELITY AUDIO CENTRES
 42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD.
 118 EDGWARE ROAD, LONDON, W. 2.
 mail orders and correspondence to
 3-15 CAVELL STREET. LONDON. E1 2BN

 UNISELECTORS AVAILABLE FROM STOCK: 3 LEVEL, 4 LEVEL,
5 LEVEL, B LEVEL, II LEVEL. WRITE OR PHONE FOR DETAILS. "VISCONOL-CATHODRAY" CONDENSERS. $002 \mathrm{mfd} .15 \mathrm{kV}, 45 \mathrm{p} ; .02 \mathrm{mfd}$. 10 kV , $50 \mathrm{p} ; \mathrm{in} .02 \mathrm{mfd} .2 .5 \mathrm{kV}, \mathbf{2 5 p} ; .05 \mathrm{mfd} .5 \mathrm{kV}, 45 \mathrm{p}$; 0.
From Stock: P.O. 5tandard Equipment Racks. 6 ft . U channel sides, drilled forl 19 in panels. Heavy Angle Base $\mathbf{5 9 . 5 0}$ each. Cge. $£ 1$.
GEARED MOTORS. I r.p.m. or 3 r.p.m. 4 watts very powerful, reversible 24 v . A.C. FREQUENCY METERS. $45 / 55$ c.p.s. 230 v. A.C. 6 in. dia. flush round $£ 10$. Post 50p. ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Fahr., $250 \mathrm{v}, 10 \mathrm{amp}$ SUBMINIATURE MICRO SWITCHES HONEYWELL. II5MI-TNI3. 5.P.D.T. 5 ize .78 il in. $\times .250 \mathrm{in} . \times .356 \mathrm{in} .35 \mathrm{p}$ each. Fuli details on request. Quannites available
at low prices. EQUIPMENT WIRE P.V.C. covered $\mathbf{t 4}$ per 1,000 yds. 7/.0076, $1 / .024,14 / .0048$
type I and 2, all colours. 140076 type 11 , Red and Natural only 610 per 1000 yds. MINIATURE BUZZERS, 12 volts, with tone adjuster 40p each as illustrated. Quantity Rates on request.
4 Dole 11 way and off 65.50 LENOIDS AND CIRCUIT SELECTORS, size 55 SINGLE FUSE HOLDERS. Belling and off $\in 10.50 .54$ pole On/Off $\mathbf{6 7 . 5 0}$ VEEDER-ROOT MAGNETIC COUNTERS WITH ZERO RESET B 00 COUNTS

HGH SPEED COUNTERS 3 in . $X 1$ in. 10 counts per second,
with 4 figures. The following D.C. voltages are availab
$24 \vee 50 \vee$, or 100

Also supplied with auxiliary contacts.

L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY

 Phone: 01-684 0236Grams: WILCO CROYDON

LOW COST I.C. PATCHBOARD

* HIGH RELIABILITY
- INTEGRAL CLOCK
- INPUT SWITCHES

LOGIC INDICATORS
ONLY £48
Educational Pack
، also available.

- 14 or 16 PIN D.I.L.

LIMROSE ELECTRONICS (WW), LYMM, CHESHIRE.
WW--099 FOR FURTHER DETALLS

For
electronic components fast...

IRadiosspares
P.O. Box 427, 13-17 Epworth St. London EC2P 2HA.
Tel: 01-253 7501 Telex: 262341

This superb stereo systern is a reat price breakihrough. It comprises the VISCOUNT F.E.T. Mk 1 amplifier on which full detajis are given below, the famous Garrard SP 25 lincluding teak verreer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO iype 2 speakers.

Measuring $173_{2}^{n} \quad 10_{4}^{3} \quad 6_{3}^{3 .}$ the Duo type 2 speakers are teak finished with matcling Vynair grills They incorporate a 3 olmm. 13 . 8 drive unit and Parasitic tweeter. Max. power hanclings 10 watts, Price 12 gras per pair plus p\&pfi1.10.0.

WITH MK II amplifererand magnetic cartridge $£ 45$; jus $\$ 2.10 \mathrm{P} \& \mathrm{P}$

Tivingston life THE NUMBER ONE N INSTRUMENT HIRE

TELEPHONE: 01-267 3262 TELEX: 23920

Send I/- (5p) for New Comprehensive I.C. Semiconductor price list (24 pages)

NEW LOW PRICES • FULLY GUARANTEED

RCA
CA 3000

 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 CALLERS WELCOME 9-5.30 SEE OUR MAIN ADVERTISEMENT ON PAGE 88 FOR SEMICONDUCTORS

SANWA R

USED THROUGHOUT THE WORLD. SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY,
RELIABILITY, VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.
6 Months' Guarantee. Excellent Repair Service
please write for illustrated leaflets of these sanwa meters

SOLE IMPORTERS IN U.K;
 QUALIT ELEGTRONICS LID.
 47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585

WW-101 FOR FURTHER DETAILS

VITAVOX

FOR HIGH QUALITY

MICROPHONES

LOUDSPEAKERS

and ancillary equipment
Further information from:
VITAVOX LTD., Westmoreland Rd., London, NW9 5YB (Tel: 01-204 4234)

WW-102 FOR FURTHER DETAILS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse. Hospital, 'Shop, ete., for instant interdepartmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P, £0.40 in U.K

A top quality DE-LUXE transistorised intercom consist of MASTER and SUB for desk wall mounting. Call, talk or listen from either unit. On/Of switch, volume control, Ideally suitable as "BABY SITTER" or Door Phone A boon for spastics and invalids. Useful in the home, urgery or business for instant 2 -way conversations, ffective rance 300ft Unsurpassed in OUALICY AND PERFORMANCE Comple with Gift conecting lead. Battery $£ 0.12$ extra. P. \& P. $£ 0,25$. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to perate. P. \& P. £0.18 in U.K. Add $£ 0.12$ for

```
Battery.
```

Full price refunded if returned in \bar{i} clays.

PLEASE NOTE Unses. deme ALL EQUIPMENT hauled mechanically and electrically MARCONI TEST EQUIPMENT

Hz internal mod.
Limited qty.
only avail- SIGNAL GENERATOR TF $801 / A$. able. Full spec $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal ar 400
and price on and price o
request.

TF I44G SIGNAL GENERATOR. TO clear. In very good "as seen" condition.

SOLARTRON EQUIPMENT

 Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA intwo ranges. Variable and fixed 170 V two ranges. Variable and fixed 170 V
negative output, $£ 35$. Carriage $£ 1$. negative output, $£ 35$. Carriage $\mathbb{C 1}$
CD $711 \$.2$. Double team, $D C$ to 7 MHz 'scope, $£ 85$. Carriage $£ 1 \cdot 50$. Model, ${ }^{643.2 \text {. Single } \text { to } 14 \mathrm{MHz} \text { price upon }}$ Model,
application.

SIGNAL GENERATOR TYPE CT 480. $7-12 \mathrm{kMHz}$ in one range, square and
pulse modulation and $C . W$. $£ 65$. SIGNAL GENERATOR TYPE CT 478. As abo

I $\frac{1}{2} \mathrm{in}$. DIA. PANEL METERS. $7 \frac{1}{2}-15 \mathrm{v}$ -ideal for "Battery
indicators for cars $\notin 0.77$.
BOONTON Q METER TYPE 160 A. Frea, range 50 kHz to 75 MHz . main capaci tor 30 to 500 pF . Vernier capacitor $\pm 3 \mathrm{pF}$
q range. $0-250$ with $2.5 \times$ multiplier 285 plus carriage.
NOISE GENERATOR CT 207. 100
$600 \mathrm{M} / \mathrm{C}$ with built-in B -minute timer $600 \mathrm{M} / \mathrm{c}$ with built-in 8 -min
Complere with cables. 657.50 . M ULLARD PRECISION VARIABLE CAPACITOR TYPE F. 2
15 PF to 336 pF . Supplied with individual calibration certificate. Brand new in
original packing. Eli. Carriage 75 p SUSPENSION GALVANOMETERS Pye E25. P. \& P. 1060.

- Open 9-12.30, 1.30-5.30 p.m

 Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. $£ 85$. DITTO but 801/A/I with additional high leveloutput. $£ 89$. Boch P. \& P. $£ 1$, including necessary connectors, plugs, and instruction manual.

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures L \& C at 80 Hz , $\mathrm{kHz}, 10 \mathrm{kHz}$. Ranges:- $1 \mu \mathrm{H}-100 \mathrm{H}$. C: ImF- $100 \mu \mathrm{~F}$. R: 0.1 ohms- 100 mohms . AC Bridge volts monitored and vari-
able. Automatic detector sensitivity control, £I05. Carriage $£ 1.50$. TF934. Frequency range $2.5-100 \mathrm{MHz}$ Can be used up to 500 MHz . Deviation
range $0-75 \mathrm{kHz} £ 67 \cdot 50$. Carriage $£ 1.50$.

HARNESS "A" \& "B" control units,

 unction boxes, headphones, micro9/4IFT. AERIALS each consisting of ten 3 ft ., ㄹin. dia. tubular screw-in sections. Ilft. (6 -section) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely in canvas bag, $£ 4, \mathrm{P}, \& \mathrm{P}, \notin 0.50$.FIELD TELEPHONE TYPE "F" Housed in portable wooden cases doors for up to 10 miles. Pair including batteries, fully tested 66.50 or with 220 yds . field cable in drum $\mathbf{6 7 . 5 0}$.

FOR EXPORT ONLY 53 TRANSMITTERS. All $\begin{gathered}\text { spares } \\ \text { available. COLIINS TCS. Complere } \\ \text { installations and }\end{gathered}$ COLLINS TYPE 231 D 5KW tune and manual runing. Complete with very comprehensive spares. Full
specification and price on application. Complete installations and all H.P. SETS and all spares R. 210 RECEIVERS with all necessary PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand COLOMOR (Electronics) 170 Goldhawk Rd., London, W. 12 170 Goldhawk Rd., Lond
Tel. 01 - 7430899

STANDARD GPO DIAL TELEPHONES (hlack)
with internal bell. $17 / 6$ each. P. \& P. $5 / \cdot$. Two for $30 / \mathrm{m}$ with internal
P. \& P. 7/6.
TRANSISTORISED FIELD RATEMETER type
1368 A range 0.05 to $25 \mathrm{mr} / \mathrm{hr}$ in 5 ranges gize $12 \times 3 \ddagger$ 1368A range 0.05 to $25 \mathrm{mr} / \mathrm{hr}$ in 5 ranges size 12×3 $\times 7 亡 \mathrm{ins}$, \& 10 each. P. \&P. 10%
SURVEY METER RADIAC No. 9. Hand portable size $92 \times 5 \times 5 t$ ins. 3 ranges (scale changes) $0.03 ;$
$0.3 ; 9 \mathrm{R} / \mathrm{H}$. Internal Ion Chamber. Nice condition 65 ea. P. \& P $10 /-$.
DOSIMETER $0-50 \mathrm{R} 0.150 \mathrm{R}$ and charger ©2. P. \& P. 7/6. Charger only 30/-. P. \& P. 6/6. PHOTOMULTIPLIERS. EMI 6097X at E8/IO/- ea. 6007B-65 ea.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s}$. 5 volt square wave o/p, for 6 to 12 v DC input. Size if $\times 1$ it $\times 1 \mathrm{in}$. Not encapsulated. Brand new. Bozed. $1 / 6$ ea.
CRAMER TIMER $28 V$ DC Sweep $1 / 100$ th sec \& sweep CRAMER secs. 4" dial. Remote control stop/start reset \&6.10.0. 60 вecs. 4 dial. Remotr RELAYS
G.E.C. Sealed Relays High Speed 24V. 2 make 2 break. 4/6 ea. $12 \mathrm{~V}-7 /$ ea.
CARPENTERS poiarised Single pole c/o 20 and 65 ohm coil as new. complete with base $7 / 6$ ea.
Single pole c/o 14 ohm coil $6 / 6$ ea.; Single pole c/o 45 ohm
coil $6 / B$ ea. COIL $8 / 6$ ea. POTENTIOMETERS
COLVERN Brand new. $50 ; 100 ; 250 ; 500$ ohms; 1 ; 2.5; 5; 10; $25 ; 50 \mathrm{k}$ all. at $2 / 6$ ea; Special Brand new.
MORGANITE $2.5 \mathrm{~K} ; 250 \mathrm{~K} ; 500 \mathrm{~K} 2.5$ meg. 1^{*} gealed.

3/6 es.
STANDARD 2 meg Log pots. Current type. 3/- ea.
INSTRUMENT $3^{\prime \prime}$ Colvern. 5: 25.7/- ea.
INSTRUMENT 3 Colvern. $5 ; 25.7 /-$ ea.
BOURNE TRIM POTS. 10; 20; 50; 100; 200; 250 ;SOURNE TRIM POTS. $10 ; 20 ; 50 ; 100 ; 200 ; 250$;ALMA precision resistors $100 \mathrm{~K}: 400 \mathrm{~K} ; 497 \mathrm{~K}: 988 \mathrm{~K}$: $1 \mathrm{meg}-0.1 \% 5 / 6$ ea ; $3.25 \mathrm{~K}-0.1 \% 4 /-$ ea.
DALE heat sink resistors. non-inductive 50 watt. Brand
Dew 8.2K at 2/6ea.
 SILVER ZINC Non-spill. Brand new. 7dV 5 cell. Size
$1 \frac{1}{x} \times 1 \times 2$ oz. weight $€ 1$ ea. Single cell 1.5 V 4 AH size

CAPACITORS
ERIE feed through ceramicons $2200 \mathrm{pf}-9 \mathrm{~d}$. ea.
Sub-min. TRIMMER isquare. 8. 5pf. Brand new $2 / 6$ ea.
Concentric TRIMMER $3 / 30$ pf. Brand new $1 / 6$ ea.
ELECTROLYTICS. Brand new. $250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6 \mathrm{ea}$.
E.H.T. 2 mfd 5 KV. Brand new 30/- ea.

VISCONOL EHT. Brand new 0.000525 kV . 16/- ea. Wego Caps 0.2 and 0.5 mfd 20 KV working. Brand new E4 es.P. \& P. $15 /-$ -
E.H.T. 0.1 mfd 7 KV at $8 /-$ ea.; 0.1 mfd 5 KV at $7 /-$ ea. DECADE DIAL UP SWITCH. Finger-tip. Engraved 0/9. Gold plated contacts. Size 21" high.
21° deep $t^{\prime \prime}$ wide. 15/- ea. Bank of 4 with escutcheon
plates, etc. $2 t^{\prime \prime}$ high. $2 t^{\prime \prime}$ deep. $2 t^{\circ}$ wide 62.10 .0 . plates. etc. $2 t^{\prime \prime}$ high. $2 t^{\prime \prime}$ deep, $2 t^{\prime \prime}$ wide $\mathbf{E 2 . 1 0 . 0}$. PHOTOCELL equivalent OCP $712 / 6$ ea.
Photo-resist type Ciare 703. (TO5 Case). Two for 10/BURGESS Micro Switches V3 5930. Brand new $2 / 6$ ea.
HONEYWELL. Sub-min. Microswitches type 11SM3-T
Brand new. $3 / 6$ ea.
PANEL mounting lamp holders. Red. $1 / 9$ ea.
BRAND NEW PLUGS AND SOCKE
PANERAND NEW PLUGS AND SOCKETS
CANNON. 50 Way DDM50P $15 /-$ ea.; DDM50S $10 /-$
CANNON. 50 way DDM50P 15/-ea.; DDM50S $10 /-$ ea.:
Ci per pair.
As above but 25 way $10 /-$ ea plug. $7 /$ ea $90 c \mathrm{c}$
As above but 25 way $10 /-$ ea. plug: $7 /-$ eas. socket, $15 /-$
per pair; 9 way $6 / 6$ ea. plug and aocket. $10 /-$ per pair.
U.H.F. Plugs fit UR57. 59,65 etc. $8 /-$ ea.
B.
 plug Ei ea.; B.N.C. Right angle Ci ea.; Min. B.N.C. right
angle 25/. ea.: Min. socket romnd io/ ea.; Standard angle 25/- ea. : Min. socket round 10/- ea.; Standard
B.N.C. round $7 /-$ ea. Many others too numerous to list. All prices quoted for 'one off.'
STEP DRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240 v AC to 120 V tapped $60-0-60700 \mathrm{~W}$. Brand new. 65 ea .
 0.5 A and separate $90 \mathrm{v} 100 \mathrm{MA} 25 /-$ each P \& ${ }^{\text {\& }} \mathbf{P}$. ${ }^{4 /}$

Matching contact conoled bridge rectifler $7 / 6$ each.
4.5 V 40 amp (180Va) $35 /-$ ear. incl. postage or 3 for 4.5 V . 40 amp (180Va) 35/- ea. incl. postage or 3 fo
64.10 .0 inel. postage. Designed to be series/paralleled. Parmeko 6.3v 2 amp $\times 4-22 / 6$ each.
Gard/Parm/Part. $450-400-0-400-450.180$
Gard/Parm/Part. $450-400-0-400-450.180$ MA. $2 \times 6.3 \mathrm{v}$.
CHOKES. 5 E; 10 H ; 15 H ; up to $120 \mathrm{~mA}, 8 / 6$ ea. Up
to 250 mA i2/6 ea. LT, HT, EHT transformers. Your reauirements, please.

NUCLEONIC INSTRUMENTS

Pulse analyser N101; Scaler 1009E: Coincidence unit 1038(; Anti coincidence unit Panax AU460:
Anılitler N567: A/B/G Radiation Monitor 1257A: Anılitter N567: A/B/G Radiation Monitor 1257A:
complete 1339A system A/B/G; EHT Potentiometer complete 1339A system A/B/G; EHT Potentiometer
unit 1007: 1430 amplifler CF and head: Some scintillation castles; radiation monitor 1320 c and 1320 X (X -ray); survey meters no. 2 and 3; Rate-
rueter scintillation 1368A: Fust neutron 1262 C ; rueter scintillation 1388A: Fust neutron 1262C,
r'luori-meter 1080 A and many others. Also 2000 HLuori-meter 1080A and many others. Also 2000
SERLES. Amp 2002A; I Low level amp 2024; PU's 2004; 2005B; nanosec time amplitude convertor tor 2007 B ; high level amp 2025 and others. Information a vailahle.

AMPEX VR7000. New heads, drum, ceramic tips,
rotary transformer. In superb condition. Bargain at $\mathbf{C S O}$. AMPEX TV CAMERA CC3324, As new $\operatorname{EI} 50$. The Pair $\mathbf{t 5 5 0}$.

TEST GEAR

TEKTRONIC ${ }^{\text {OSCILLOSCOPES }} 5$

 wwep. 6250 . E.M.I. WM16 DB- 24 megs each chan-$\begin{array}{ll}\text { E.M.I. } & \text { nel. E175 only. } \\ & \text { WM } 2 \text { DC } 13 \mathrm{mc} / \mathrm{s} \mathrm{C} 25\end{array}$
SOLARTRON CD1012. DC to 25 megs. Very SOLARTRON flie. $\mathbf{7 1 1 5 5 . 2 \text { D. } B , ~ D C - 9 ~ m e / s . ~ I n ~ f i n e ~}$ SOLARTRON 643 DC- $15 \mathrm{mc} / \mathrm{s}$ NOW only 665.
 COSSOR \quad E40, CD523S-E45. HARTLEY 13A DB. £20. Carriage 30/- extra. TF 801 A Signal MARCONI
TF 886 Magnification Meter $£ 45$ Carr. $£ 1$ TF 389 N. 5 Impedance Bridge 655 Carr. $30 /$ TF 144G Signal Generator, Serviceable, Clean CI5 Tn exceptional condition 225 . Carr. 30/- 635 Carr. 30/TF' 1343/2 'X' Band gen. E35 Carr. 30/-
Laboratory amplifler AWS51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s} \mathrm{C35}$
Generator DO905 $50 \mathrm{kc} / \mathrm{s}$ to 50 megs. 40 . Resolved Component Indicator VP253.2A and OS103.2A. ©120 the pair.
Stabilised P.U. SRS 151 A
C20 Carr. 30/Stabilised P.U. RRS 151 e $\ell 20$ Carr. 30\%
Stabilsed P.U. SRS 152 E15 Carr 30% Precision Millivoltmeter VP252. ©25. Carr. £1 Process Response Analyser. Fine Condition 6250 D.C. Amplifler type Aa900. ©30. Carr. £1.

AVO
Testmeter No. $1 \mathrm{cl2}$ ea. Carr. $15 /$.
Electronic Testmeter CT 38 . Complete $\subset 18$ Carr. $£ 1$
 Signal Generator type 701. E25. Carr. 30/-

MARCONI TF 1277. Colour studio scope. will line select. In superb condition. $\in 120$.

TELE QUIPMENT LIMITED QUANTITY

TELEQUIPMENT D43R. Brand new with TD41
TB. $£ 80$ with $15 \mathrm{mc} / \mathrm{g}$ amp. $£ 105$.
BRADLEY ATTENUATORS $0 / 500$ meg cycles. $0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-\mathbf{E 2 0}$ per pair.
HEWLETT PACKARD. Attenuators 0/500 meg BECKMAN MODEL A. Ten turn pot complete
with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% only $42 / 6$ ea.
E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 2/6 ea.
BRUEL KJOER Automatic Vibration Exciter Control
type 1016. $\notin \mathbf{I}$. DVM's BIE 2114 ¢SO ea.; BIE $2116 € 50$ ea. Carr, 30\%AMERICAN TRIPLETT Generators type 1632. 100 AMERICAN TRIPLETT Genera
kc / s to 120 inegs. El2.10.0. Carr. £1
BC22I with correct charts in flne condition $\mathrm{El5}$ ea. Cart. £1.
PANAX Pulse generator $\mathbf{G 1 0 0 H}$. Mint. $\mathbf{£ 4 0}$. Carr. 30/-
BRAND NEW INSTRUMENTS HOUSING. Size $8 \times 6 \times 7$ deep. Comprising of anodised aluminium front and rear linked frame with recessed light blue front and rear panels. Detachable dark grey vinyl covered
aluminium covers. Price $37 / 6 \mathrm{ea}$. P. \& P. $5 /-$.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single eide 2d. per sq. inch. Double slded 3d. per sq. inch. Cut to size. Poatage 1/- Der order.
BERCO miniature variac type 31C. 0-250V 1 amp.
$25 / 16$ th" depth. $3^{\prime \prime}$ diameter. Complete with dial and $25 / 16$ th * depth. $3^{\prime \prime}$ dismeter.
pointer. As new E3. P. \& P. $7 / 6$.
pointer. As new E3. P. \& P. $7 / 6$
SEQUENTIAL TIMERS 2
SEQUENTIAL TIMERS 240V synchronous motor t rpm. 12 cam operated 2 pole micro switches. Individually adjustable fron Mor
Standard $240 V$ MOTORS with reduction gearbox
14 lbs . per sq. inch. 63 ea. 14 lbs. per sq. inc
Modern replacement for VCR 138 tube. Flat face 3 in .
$32 / 6$ ea. P. \& P. $5 /-$ Bases $3 / 6$ ea. 32/6 ea. P. \& P. 5/-. Bases $3 / 6$ ea.
FERRITE rods complete with LW. MW and coupling coils. Brand new. 5/-ea. P. \& P. 1/6.
FIREBALL TURETS. Brand new 30/- ea. P. \& P. 5/-
 Sub-miniature II
Set of $3-12 / 6$.
Sub-min. Vitality bulbe 8 V 1.2 W 5 mm Clear L.E.S. I/6
ea. 100 of $1 / 3$ ea. ea. 100 of $1 / 3$ ea.
DUNFOSS solenoid valves. 240V 50 c/s. Type EVJ 2.
Brand new boxed $£ 5$; Second hand $£ 3$. P. \& P. 6/-.

Precision THERMISTOR by YSI. 100 k . at $25^{\circ} \mathrm{C}$. Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charts giving ohms for each derree CLAUDE LYONS Main Stabilizer. Type ${ }^{7000 C}$.
Input $212-252$ volts $47 / 85 \mathrm{c} / \mathrm{s}$. Output 238 volts 0.5% Input $212-252$ volts $47 / 65 \mathrm{c} / \mathrm{s}$. Output 238 volts 0.5% 53 amps. 640 . Carriage at cost.
Panel mounting VARIAC 20 amp . $\mathbf{E 1 5}$. Carr, at cost. ROBAND P.U. Trpe M39A. Stablized 300 volts 2 amps. 622 inc. carriage.
E.H.T. Unit by Brandenburg model S.0530/10. $\mathbf{E S 5}$.

KELVIN : HUGHES 4 channel recorder. 630 ea.
SMITHS twin channel recorder. Transistorlsed. 665.
Various other single and twin track recorders from $\mathbf{E 2 0}$.
Various other single and twin track recorders from $\mathbf{E 2 0}$. EVERSHED : VIGNOLES Recording paper. Brand

19in. Rack Mounting CABINETS 8ft. high 19 in . deep Side and rear doors. Fully tapped, complete with base and wheels. $\mathrm{E} 12 / 10 / 0$ Carriage at cost.
Double Bay complete with doors. Fine condition. 625 Carriage at cost.
TIME CALIBRATOR unit by Cawkell any or all time Internal callbration; gate generation $\mathbf{4} \mathbf{5 0}$. Carr. 30/-. AUDIO/VIbrator Ampliflers 1 KW. EI50 ea. Matching vibrators for sbove $3 y^{\prime} \times 2$ in $^{\prime}$ dis.
C 100 ea. Smaller units a available.
MUIRHEAD Swept Audio Oscillator $\mathbf{C 5 0}$ ea. Carr. 30/EMI Swept Audio Osclllator type SRO2 640 ea. Carr. 30/-

> 4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coll. Size $1 t \times 4 \times 44 \mathrm{in}$. As new, by Sodeco of Geneva. E2/10/0 each.
> As above but $350 \mathrm{ohm} . ~ \in 3 / 10 / 0$ ea.

METERS-Model
$-100-0+100.5 \xi^{*} \times 4^{\prime \prime} . \dot{C 3}$ ea.
es. $-100-0 \cdot+100.5 \frac{1}{} \times 4$. 23 ea.
Round 4* scale. 100 micro amp 0-1.000 \& 0-50 $\in 1$ es; 1 Ma movement scaled $0-1 \mathrm{~ms} \quad 12 / 6$ ea. P. \& P. 3/6.
SANGO 50 micro amp rectangular meter. Size $2 t \times 3$ with 4 separate scales, lever operated. $0 / 6$ white. $0 / 60$
blue. $0 / 600$ red and set zero. $35 /-$ ea. P. \& P. $3 / 6$. P. 3 /.

RECTA NG ULAR WESTON 5° mirror back. Scaled
0.7501 ma basic $30 /=$ ea; 100 micro amp scaled $0-50$ E2/10/0 ea. P. P 3/6.
SANGO 50 micm amp $3^{* *}$ round meters. Ex brand
new radiation equip. El ea. P. \& P. $3 / 6$.

SEEING IS BELIEVING:

AMERICAN oscilloscope type TS34/AP. Size AMERICAN Oscilloscope type
$7 \times 6 i$
$\times 15)^{\prime \prime}$ deep with viewing hood. Tested. good working condition. Ideal general purpose scope. 117 volt mains therefore only $\mathrm{El2.10.0}$. Carr $£ 11$.
COSSOR D.B. Scopes some models from CIS . COSSOR D.B. Scopes some
RACAL Diversity unit 65 es.
CINTEL Transistorised counter. 6 meter display Ideal conversion frequency counter $£ 12$ ea.
MARCONI Absorption Wattmeter 1 micro watt to 6 Watts. Type TF95B. FANTASTIC at 67 ea.
SOLARTRONSTBB. PU AS516 \& AS517. Circuits SOLARTRON Stab. PU AS518 \& AS517. Circuits
supplied. Fantastic value st $£ 2$ snd $\in 4$ each. VERY SPECIAL OFFER. AVO Transistor Ana lysers in superb condition ONLY 630 each.
SUPERB BUYS. Furzehill V200A Valve millivolt meter 10 mv to 1 kv . 10 ea. Furzehill Valve volt-
meter $378 \mathrm{~B} / 2.10 \mathrm{mv}$ to 100 volts $\mathrm{C7}$ ea. meter $378 B / 2$. 10 mv to 100 volts $\mathrm{C7} 7 \mathrm{ea}$.
MEGA Ohm Meters -check earths. bonding etc. MEGA Ohm Meters-check earths. bonding etc.
Ridiculous at $\mathbb{E} 5$ ea.
SUNVIC DC Amplifer type DCA1. Thermo-couple etc. C9 ea.
matchbox size. Must go!
COMPONENT PACK
a amp push on/off switches; 4 pots 1 double: 1 -small 2 amp push on/off switches; 4 pots 1 double; 1 -small
double pole vol control; 250 resistors t snd wstt many high stabs. Fine value at $10 /-$ per pack. P. \& P. 3/6.
3000 Series relays- 15 mized values (new and as
new. no rubbigh) $30 /-\mathrm{P}$ \& $\mathrm{P} 7 / 6$ new. no rubbish) $30 /-\mathrm{P}$. \& P. 7/6. 3000 Type 2 pole c/o assembly. Brand new boxed

- will fit any 3000 type reisy. Carriage extra.

TRANSISTOR EHT INVERTORS. 12 volt in, o/p (+ or -) 1.5 KV 2 MA and $3 \mathrm{KV}+100$ micro amp.
Ideal CRT supply. photomultipliers ete. Full information supplied. Brand new at $66 / 10 /-$ ea. P. \& P. 5/-.
Also. as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}$. $\mathbf{6 3} .10 .0$ ea. P. \& P.
P
Panel switches DPDT ex ea. $2 / 6$ ea.: DPST Brand new
$3 / 6$ ea. DPST Switches 4 pole 2 way $2 / 6$ ea.
ALBRIGHT Heavy Duty Contactor. Single make. 200 amp . 24V coil. Brand new, boxed. 61 ea. incl. P. \& P MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 pole.
24 way. Brand new. 63 ea. P. \& P. $5 /-$. 24 way. Brand new. 63 ea. P. \& P. $5 /$-.
100 CHANNEL PULSE HEIGHT ANALYSER.
 cabinet. Teste

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

7-9-11 Arthur Road . Reading . Berks . Tel. No. 582605
(rear Tech. College) 300 yds. west of 22 Sun Street • Reading 65916

G. F. MEMWAR Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS

ELECTRONIC COMPONENTS

Wholesale/Retail:

CHOICE OF I000'S OF ITEMS LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

$\begin{array}{llllllll}\text { SILICON RECTIFIERS } & & & \\ \text { PIV } & 500 \\ 100 & & 200 & & 400 & 600 & 800 & 1000 \\ 1200 & 1400\end{array}$

SERVICE TRADING CO
 Pontage and Carriage shown below are inland only. For below are inland only. For Overtaeas please asi for linue z catalogue or not.
 INPUT 230 v. A.C. 50/60

I AMP OUTPUT VARIABLE $0 / 260$ v. A.C. BRAND NEW. Keenest prices country. All types (and spares) from $0-260 \mathrm{v}$. at 1 amp . $0-260 \mathrm{v}$. at 2.5 mps $0-260 \mathrm{v}$. at 5 amps . $0-260 \mathrm{v}$. at 10 amps. $0-260 \mathrm{v}$. at 20 amps 0.260 v at 25 amps $0-260$ v. at 37.5 amps . $0-260 \mathrm{v}$ at 50 amps . 20 Different types available fo

OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. $£ 3.93$

RING TRANSFORMER Functional Versatile Educational

multi-purpose Auto Transformer, with large centre aperture, can

wound current wound current Transformer, Auto Transformer,
H.T. or L.T. Transformer, by simply hand wind-
ing the required number of turns through the E.g. Using the RT. 100 V. A. Model the output could be wound

L.T. TRANSFORMERS

All primaries $220-240$ volts.
Type No. \quad Sec. Taps

AUTO TRANSFORMERS. Step up, step down $110-200-220-240$ F. Fully shrouded. New step down type $£ 3.63$ each. P. \& P. 23p. 500 watt type $£ 5.13$ each type 6.63 each. P. \& P. 23p. 500 watt type $£ 5.13$ each
P. \& P. 33 p. 1,000 watt type $£ 7.13$ each. P. \& P. 38 p LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Circuit. Now supplied with new Siemen High Speed Relay for 6 or 12 volt oper ations. Price \&1-25, plus 13p P. \& P.
ORP. 12 and Circuit 63 p post paid. 220/240 A.C. MAINS MODEL
incorporates mains transformer rectifier and special relay with 1 make, 1 break, H.D. contacts. Price in circuit 62.75 , plus 13 p P. \& P.

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now available EX STOCK supplied complete with full data and applications sheet. Price \&1.5 plus $8 p$ P. \& P.

STROUESTROUCLSTROEL

 ELECTRONIC ORGAN KIT

Easy to build, solid
state. Two full octaves (less sharps and flats) Fitted hardwood case, powered by two pen
lite I $\frac{3}{2} v$. batteries. Complete set of parts including speaker, etc., togethe
50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, Transtormer, plus a host of other components and a 56 page insiruetionlater. Sol Mar por or Prejects are: Sound level Meter, 2 Transis
Amplifier etc., te. Price $£ 7.75$. P. \& P. 30 p.
COMPLETE NI. CAD. BATTERY OUT FIT (EX W.D.) 2 motal carrying cases each contaning 10×1.2
volt $7 \mathrm{AH}(12 \mathrm{v})$ batteries, also $10 \times \mathrm{l}$ I 2 v 22 AH
(12 V) batteries (40 bat (12v) batteries (40 bat-
teries in all). 1 Dual terios in ali.
volease, dual meter,
 charging unit. Designed and 22AH batteries simul $00-250 v$ AC. Buile to ministry specification. Ideal power supply for fiold work. Offered at fraction of makers price. 2 sets of batteries, 1 charging unit. The set 845.00, c. \& p. $£ 1 \cdot 50$.

NICKEL CADMIUM BATTERY 1.2 v. 35 AH. Size 80 high $\times 3 \times 10$. \&1.50 each, plus 20 p
P. \& P.
Sintered Cadmium Type 1.2 r. 7AH. Size: height 31 in.,
. videh 24 in . x I $1 \frac{1}{1} \mathrm{in}$. Weight; approx. 13 oxs. Ex-R.A.F
Teseed 63 p. P. \& P. 13 p .

UNISELECTOR SWITCHES NEW

 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C operation. 65 88, plus 13 p P. \& P.6 BANK 25 WAY FULL WIPER 25 ohm coil, $24 \mathrm{v}-\mathrm{D}$. 8-BANK 25-WAY FULL W!PER 44 v. D.C. operation. $£ 7.63$, plus 20 p P. \& P.

RELAYS NEW SIEMENS PLESSEY, miniature relays at competitive prices,

| 52 | $6-9$ | $6 M$ | $63 p^{*}$ | 700 | $12-24$ | $2 \mathrm{c} / 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | TYPE A.G.C. IM 1 B 12 v . A.C. ${ }^{3}$ a mp contact

NEW $48 \mathrm{p}+8 \mathrm{p}$. p \& A . or 3 for $\mathrm{E} 1 \cdot 50$ post paid.

MAINS RELAY
230 v . A.C. coil $3 \mathrm{c} / 0,10$ amp. A.C. contacts. 73 p +8 p p. \& p. Similar to above illustration.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.

HOSIDEN DH-02-S
Stereo Headphones
Outstanding performance. 8 ohm im
pedance and $20.12,000 \mathrm{cps}$. Adjustable
head band. Price only $£ 2.38$. P. \& P. 13 p Complete with lead and stereo jack plug
BURGESS MICRO SWITCH Lever operated. c/o contacts. Price 20p plus $4 \mathrm{p} P$. \& P. IOin. maker's $200-250$ v. I R.P.M. MOTOR Dimensions: $4^{\prime \prime} \times 3^{*} \times 21^{\prime \prime}$ Spindle length $13 / 16^{\circ}$. diameter $\mathbb{1}^{* \prime}$. Manu-

BODINE TYPETV.C.
GEARED MOTOR
(Typo 171 r.p.m. toraue 10 lb . in
mp. (Type 2) 28 r.p.m. corque 20
b. in Reversible $1 / 80$ th h.p. 50 eycle .28 mmp

The above two precision made U.S.A. motors are offered in as new condition. Input voltage of motor $\mathbf{2 3 0 / 2 4 0 v}$ A.C. input ormer $£ 2.13$ plus 23 p P. \& P
These motors are ideal for rotating aerials, drawing curtains, display stands, vendine machines etc. etc. VENNER ELECTRIC
TIME SWITCH

 dusk, OFF at dawn. Prices as above.
LIGHT SOURCE AND PHOTO CELL MOUNTING Precision engineered light source ventilated lamp housing to take
\Rightarrow (1) MBC bulb. Separate photo cell mounting assembly for
ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $£ 2.75$ plus 18 p .

NEW MODEL HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR

Adjustable tone control. Fitted with moving coil speaker
also earpise for personal monitoring. Complete with also earpiece for parsonal monitoring. Complete with
OFFICE AND NOT TO RETAIL SHOP TO HEAD
c
CLASS 1/5V MOVING COIL
PANEL METERS

Vote: Minimum orderz accepted 20 per type.

TWO NEW OSCILLOSCOPES FROM RUSSIA

$10 \mathrm{mc} / \mathrm{s}$ passband, triggered sec. Free running time base from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude ube with telescopic viewing hood. $£ 39.00$

CI-16 DOUBLE BEAM

5 me/s passband. Separate Y1 and Y 2 amplifiers, cathode ray tube. Calibrated triggered sweep from $0.2 \mu \mathrm{sec}$. to 100 milliec. per cm . Free running ime base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. tion and amplitude calibrator Full seroits on request. spares available.

OUR NEW CATALOGUE 1970/1971 is NOW READY. PLEASE GEND SA.E. FOR YOUR FREE COPY.

Znewt GUARANTEED

FIRST QUALITY VALVES

여영 \&

8	
PCF801	
PCF802	0.50

 $\begin{array}{ll}\text { PCPROO2 } 0.50 \\ \text { PCFBO } \\ & \text { QQV03-20A }\end{array}$

 PCH200
0.70
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad | | | 18.00 | U |
| :--- | :--- | :--- | ---: |
| PCL84 | 0.45 | 0.40 | R10 |
| PCL86 | 0.45 | 1.00 | U |

\qquad

PLEASE NOTE THAT ALL PRICES ARE QUOTED IN DECIMAL CURRENCY.
please note that valves listed above are not necessarily of u.k. Origin
Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: 5808403

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.
A.R.B. Approved for inspection and
release of electronic valves, tubes,
klystrons, etc.

APPOINTMENTS VACANT

DODDLBY SYSTEM

Noise Reduction in Recording and Communications

Dolby Laboratories manufacture professional noise reduction equipment which has been widely accepted by all major recording companies in the world, as well as by many broadcasting authorities. The same techniques have been applied to consumer products which are being built in several countries by licensees.
We have vacancies in the engineering department for talented engineers to continue research and development in these fields. Ideal candidates should not only be technically competent but have the potential for advancement to section leader in the near future. The department is expanding but is still small (a dozen people) in an organization of one hundred. We are situated in a modern building south of the river with excellent communications to the centre of London and main railway stations.

Senior Engineer Systems R\&D
 $\mathbf{£} \mathbf{3 , 0 0 0} \mathbf{-} \mathbf{£} 4,000$

Project Engineer

Licensee Liaison
£2,200-£3,000

This position is ideally suited to an engineer inclined towards research. He will compile information on and evaluate the properties of magnetic tapes, discs, optical recording systems, AM and FM radio transmission systems, landlines, PCM systems, microwave links, and orer signal recording and transmission systems. He will correlate these published or measured results with practical experiments in the recording or transmission of programme signals and produce recommendations on appropriate Dolby system noise reduction techniques, designs, and operating practices. In application of the results obtained, he will take part in or give guidance in the design of product oriented noise reduction circuitry, both for professional and consumer applications. The post may involve some travelling both in the U.K. and abroad.
The ideal candidate will probably be about 30-35, with an honours degree or Ph.D. in physics or engineering. He will have several years experience in at least some of the areas mentioned above, together with a personal interest in music and quality sound reproduction. A high level of initiative and an exceptional record of research and design accomplishment are essential.

The rapid increase in licensees of the Dolby B-Type consumer noise reduction system has resulted in a corresponding increase in our engineering liaison activities. The engineer in this post will assist our new and existing licensees in adapting their designs to include noise reduction circuits and in choosing suitable systems approaches for the products involved, which include open-reel tape decks, cassette and cartridge decks, receivers, and separate noise reduction units for home use. In addition to giving assistance at the design stage, he will advise on production and testing techniques. He will also be part of a team developing new circuits for both professional and consumer applications. While most of the work will be in the laboratory, the post will involve some travelling both in the U.K. and abroad.
The ideal candidate will be 25-35 and have a degree, together with experience of and a high level of interest in quality tape recording and sound reproduction.

TECHNICAL WRITER

Do you want an attractive salary and a choice working location? The world's leading manufacturer of precision electronic test and measuring equipment offers these and other outstanding benefits to the Technical Writer who joins our technical publications group. You may qualify if you have a sound background in electronics and are an experienced writer. Some knowledge of German would also be advantageous.

OXFORD UNIVERSITY DEPARTMENT OF EXPERIMENTAL PSYCHOLOGY
 JUNIOR ELECTRONIC ENGINEER

To assist in design, construction development and maintenance of a wide range of devices for the Psychological Laboratories, under guidance of the Electronic Engineer.

Candidates must have experience in design/development, preferably in a research environment, but not necessarily in the behavioural/medical field. Some experience of digital systems or electrophysiological techniques is desirable.

Minimum qualifications, degree of H.N.C. (preference will be given to those actively studying for higher qualifications such as corporate I.E.E. or I.E.R.E. membership). Salary on University Departmental Research Assistant Grade C scale, 8932 f1,917 (under review).
The post provides an opportunity for varied and interesting work with excellent facilities in a well equipped Electronics Section.
Please apply with details of past experience and the names of two referees to:

THE ADMINISTRATOR
Department of Experimental Psychology, I SOUTH PARKS ROAD

OXFORD

AUDIO SERVICE ENGINEERS

Vacancies exist for Field Service Engineers covering
areas: LONDON AND HOME COUNTIES
SOUTH WALES SCOTLAND
Salary compatible with experience. Vehicle provided.
Apply to:
SERVICE MANAGER, B.V.C. LTD. (SOUND
PRODUCTS) 725 FULHAM RD., LONDON, S.W. 6 1009

have immediate vacancies for:

1. ENGINEER (Telecine/VTR). A.C.T.T. Category D. Television broadcasting experience essential.
2. TECHNICAL ASSISTANT/ ASSISTANT ENGINEER A.C.T.T. Categories H / E. Experience in Electronics associated with television or allied fields required.
3. TRAINEES. The minimum qualifications required, ' A ' level Maths and Physics.

applications to:

Personnel Department HTV Television Centre CARDIFF

CITY OF LEEDS \& CARNEGIE COLLEGE
 SENIOR WORKSHOP TECHNICIAN T3 £1,089-£1,272

Applications are invited for this post in the Audio-Visual Aids section of the College, to be responsible for the maintenance of all electronic equipment including a closed circuit television apparatus and to assist in the other work of the section.
Application forms and further particulars from the Senior Administrative Officer, City of Leeds and Carnegie College, Beckett Park, Leeds LS6 3QS, o be returned as soon as possible. Previous applicants need not re-apply. 1037

UNIVERSITY of LANCASTER

ELECTRONICS TECHNICIAN DEPARTMENT OF ENGINEERING

Must be experienced in solid state electronics and instrumentation; duties will include assisting in the design and making of new equipment for teaching or research and the maintenance of laboratory equipment. Salary will be within the scales $£ 1,041-\mathrm{f} 1,410$ or £1,398-£1,707 depending on age, qualifications and experience.
Application form (to be returned as soon as possible) available from the Deputy Establishment Officer, University House, Bailrigg, Lancaster.

Got ambitions in science or Engineering

Try for a Shrivenham Cadetship and give yourself the best possible chance of a degree.
"I don't know whether the staff are really better at Shrivenham than at *****, but they certainly devote a great deal of time and trouble to us. It's not just that there's a good staff/ student ratio. There's also a first class staff/student relationship, and that's what matters. I expect to do distinctly better at Shrivenham than if I'd stayed at*****."

The speaker is a student who has studied at University elsewhere and is now reading for a B.Sc. at Shrivenhamknown more formally as the Royal Military College of Science. This is where most of the technically qualified Officers, needed in growing numbers by an Army as moderh as ours, do their degree courses. Its academic record is summed up in one readily grasped statistic. In 1969, when Shrivenham was still one of 52 establishments whose students competed for external degrees, London awarded a total of eight First Class Honours degrees in Chemistry (Special) and Engineering. Five of them went to Shrivenham.

Spotting Potential

Does this mean that the ordinarily able man will be out of his depth? No. Shrivenham has the same basic entry requirements as most universities. If there's any difference here, it tends to favour the late developers. The Army's selection procedures are rather more sophisticated than most, and can spot potential ability. Given that, it is prepared to consider young men whose 'A' level grades would lead to automatic rejection elsewhere. People with 'D's have done well at Shrivenham. And' a young man who was told after his first year at a university that he "would never reach degree standard", went on to win First Prize for Engineering at Shrivenham and a London First Class Honours degree.

Today Shrivenham runs its own degree courses leading to CNAA awards. Its students are mostly young Army Officers who have been through Sandhurst. There are also a number of civilian students, most of them on

Officer Students assist in setting up an experiment on a linear accelerator in the Rutherford Nuclear Physics Laboratory of the College.

County Awards. And there are young men who have won Cadetships.

How to get a Cadetship

Cadetships in Science and Engineering at Shrivenham carry a probationary commission as Second Lieutenant. To get one, you need at least 5 GCE passes, two of themin Maths and Science subjects-at ' A ' level. You have to satisfy the Shrivenham Selection Board that you are 'degree' material, and pass the Regular Commissions Board at Westbury, where you spend three days while they find out if you have the practical imagination and leadership needed by an Army Officer. And you have to undertake to serve as an Officer for five years after completing your course.

In return you get over $£ 1,000 \mathrm{a}$ year while you're studying (which makes you better off than any other undergraduates), as well as free tuition. And, as we have seen, you get a very much improved chance of getting a degree.

Tutorial System

There are three main reasons for this. One is that the staff can, and do, take a lot of trouble with individuals
(Shrivenham operates a tutorial system comparable to that at Oxford or Cambridge). The second is the good equipment (there are no less than four particle accelerators of up to $4 \frac{1}{2} \mathrm{MeV}$, a wind-tunnel, a rocket-motor and a computer). The third is that they are not at all indulgent about slacking. "After $* * * * * "$, says the student who knows both, "it's quite a change being made to work."

Incidentally, nobody wears uniform, and there are no parades. But during vacations you are expected to spend some time on attachment to an Army unit.

If you'd like to know more, fill in the coupon. You'll get some interesting reading-and a chance to visit Shrivenham and have a look round for yourself.

Management Consultants
 in Human Resources

17 Stratton Street London W1

Technical Development Manager

£3500-£4000

Our client is the EVR Partnership, the joint TV recording company set up by Columbia Broadcasting System of America, ICI and CIBA-Geigy. Electronic Video Recording is a system for playing professionally recorded programmes of sound and vision through any normal television receiver. The processing of film or video tape programme material into telecartridges requires highly advanced electronic and photographic equipment. The man appointed will lead a team at the Basildon; Essex, factory in developing and maintaining methods of using this equipment. Candidates should be graduate or professionally qualified engineers with several years' knowledge and experience in the television industry on the development or the operational side. Some knowledge of the photographic problems that would be involved is also desirable. J. G. French reference ZH. 2054.

The MSL Consultant has analysed this appointment Further information will be sent if you provide your name and address by telephoning 01-629 1844 or writing to the consultant quoting the reference. Your enquiry will be in confidence.

MICROWAVE/RADIO TELEMETRY SYSTEMS

The West Midlands Gas Board uses microwave radio equipment, digital supervisory systems and U.H.F. radio scanning gear for telemetry and data transmission throughout the West Midlands area. V.H.F./U.H.F. Mobile R / T systems are operated from fixed and mobile transmission centres and are extensively utilised by the Service and Conversion Departments.

The Telecommunications Department as part of the expanding management services directorate require the following personnel:-

Assistant Engineer (Microwave)

Ref:WWA155
To undertake preparation of specifications, installation planning and performance analysis of high capacity microwave systems together with integrated radio telemetering equipment. Experience in large microwave multi-channel system design essential. Salary $£ 1.665$ to $£ 2,178$ per annum.

Technicians

Ref:WWA156
To assist in the maintenance and commissioning of equipment Knowledge of comprehensive modern testing procedures, appropriate maintenance experience and the ability to work alone are essential. Initial salary $£ 1,185$ to $£ 1,725$ per annum according to experience, with progression to Senior Technician and up to $£ 1,968$ per annum on proven ability.
These posts are based at Board Headquarters, Solihull, but involve travel throughout the Board's area. Excellent working conditions include assistance with removal expenses in suitable cases.
Please apply in writing, quoting appropriate reference number, to:-
The Senior Personnel Officer, (Headquarters) West Midlands Gas Board, 5 Wharf Lane, Solihull.
Giving full details of career to date.

BATH UNIVERSITY OF TECHNOLOGY

School of Chemistry and Chemical Engineering

EXPERIMENTAL OFFICERCOMPUTER SYSTEMS

Applications are invited for the above post, tenable within a group concerned with the development of computer-based systems for the control and automation of laboratory experiments: this project is supported by the Science Research Council.

Duties include the design and construction of special-purpose electronic equipment and the development of online programs for a PDP8/K70 computer system.

Experience in solid state electronics, modern wiring and construction techniques is essential, whilst experience in computer systems and programming will be an advantage.

The starting salary for suitably qualified applicants will be within the range £1,536-£2,182.

Informal enquiries can be made of Mr. P. E. Sawyer, School of Chemistry and Chemical Engineering.

Application forms should be obtained from the Registrar (S), The University, Claverton Down, Bath, quoting reference $71 / 1$.

1010

UNIVERSITY OF SHEFFIELD

TECHNICIAN OR JUNIOR TECHNICIAN required for Electronic Section of Department of Physics, dealing with design, maintenance and production of Electronic equipment for teaching and research purposes. Training given in workshop practice. Day release training scheme. Salary: Technician $£ 1,041-£ 1,410$ p.a. Junior Technician $£ 528$ (age 16)- $\mathbf{C 7 7 4}$ p.a. (age 20). Write to the Bursar (Ref. B.738), The University, Sheffield, S10 2TN.

1024

UNIVERSITY OF SOUTHAMPTON INSTITUTE OF SOUND AND VIBRATION RESEARCH CONTRACT ASSISTANT

Applications are invited for the above technical post, which is supported by a long term Medical Research Council grant, commencing on or soon after I March, 1971. The work involves construction of audiofrequency stimulus generators and associated equipment, operation of a digital computer and general assistance with electrophysiological experiments.
Candidates should have experience in the fields of electronic construction and application, and would be instructed in the new techniques involved in operating the computer and assisting with experimental work.
This is an important position in a research team working on the problems of deafness. Salary on scale: $£ 1,368-£ 1,677$ per annum plus allowances for approved qualifications. Applications giving details of age, qualifications and experience and the names of two business referees should be sent to the Deputy Secretary, The University, Southampton, SO9 5NH by I February, 1971, quoting ref.: W.W. 998.

998

Ministry of Aviation Supply TECHNICAL OFFICER

(Electronic Engineering)

This post, in the Electronics Production (Telecommunications) Branch of St Giles Court, London, WC2, is concerned with various aspects of the production and procurement of electronic valves and semi-conductor devices for Service use. The work will involve planning and progressing of production; specification of technical content of contracts: handling and co-ordination of associated technical matters; and liaison with various industrial organisations and government bodies.
Candidates must have an ONC in engineering, electrical engineering or applied physics, or an acceptable equivalent or higher qualification. They must have served a recognised engineering apprenticeship or have had equivalent training; they should also have sound knowledge of and experience in the electronic engineering field. The total period of training and experience must be at least eight years.
SALARY: $£ 2,022$ on entry, rising to $£ 2,484$. Nor-contributory pension. Promotion prospects.
For full details and an application form (to be returned by 3 February 1971) write to Civil Service Commission, Alencon Link, Basingstoke, Hants., or telephone BASINGSTOKE 29222 ext 500 or LONDON 01-734 6464 (24-hour "Ansafone" service), quoting $T / 7648 / 71$.

ELEGTONIC MAITIENANEE

TEGHNCHANS

THORN

are required for interesting and varied work concerned with the maintenance and manufacture of a variety of equipment used in the production of Cathode Ray Tubes.
Vacancies exist on both day and night shift. We offer good conditions of employment and a competitive salary. Applications are invited from men who have served an indentured apprenticeship or who have had equivalent experience and should be made to :-
The Personnel Manager, (ET/WW).
Thorn Radio Valves \& Tubes Ltd.,
Mollison Avenue, Brimsdown, Enfield, Middx.

Haxo
 SENIOR ELECTRONICS TECHNICIAN

This is a new position in our central engineering development unit based at Greenford.
He will report to the Automatics Engineer and will be involved in the development. installation and maintenance of electronic systems in the packaging and scientific instrument field for the company's factories in the United Kingdom. He will work closely with the technicians and engineers located at the factories concerned.
This position will probably be of interest to a young man qualified to ONC standard with a sound knowledge of electronics who wishes to broaden his experience in the field of circuit design. Applicants must be prepared to travel within the United Kingdom, and should enjoy working on their own initiative.
A good starting salary will be paid and the excellent conditions of employment include the opportunity to participate in the company's profitability.

Please write, giving brief details and quoting reference ZH.231, to the Personnel Officer (MLW).
GLAXO LABORATORIES LIMITED,
Greenford, Middlesex.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.

Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

Salary Scales

During training with free accommodation provided at the Training School:
Age 21 f848 per annum
$\begin{array}{ll}22 & £ 906 \\ 23 & £ 943\end{array}$
24 £981
25 or over £ 1.023
On successful completion of course:
Age 21 f 1.073 per annum
$22 \quad \mathrm{f} 1.140$
£
25 (highest
age point) $£ 1.351$
then by 6 annual increments to a maximum of $£ 1,835$ per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.
Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years operating experience or PMG qualifications. Preference given to those who also have GCE 'O' level or similar qualification. Exceptionally well qualified candidates aged from $36-40$ may also be considered.
Interviews will be arranged throughout 1971.

Application forms and further particulars from:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ.

Tol: Cheltenham 21491 Ext 2270

Dealer Liaison Representative

QUAD require an enthusiastic young man of pleasant personality with a liking for high quality sound and some knowledge of how to achieve it.
An understanding of the general philosophy behind the various approaches to design and technique is more important than expertise in the technicalities but some technical know. ledge and ability in superficial fault diagnosis, for example, would be expected.
Covering the whole country, visiting appointed Quad retailers etc., would involve a considerable amount of travelling and time spent away from home, but this is not just another selling job and the post would carry considerable responsibility, providing scope for initiative to the man who proves his ability.
Apply in writing giving full details in confidence to:
Mr. J. H. Walker,
Acoustical Mfg. Co. Ltd.,
St. Peters Road, Huntingdon
1019

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I Ltd., at Hayes. Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1.500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance.
ase apply in writing giving brief personal and career details to:
J. J. Sweetman, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road,

Hayes, Middlesex. Tel: 01-573 3888, Ext. 2523.

coulpurer chafinecring

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.

Electronic Design Engineers - H.F. Receivers

The Racal Group leads the world in the design and manufacture of H.F. Communications equipment, and has a wider range of receivers in production than any other organisation.

A further expansion of our activities into new areas of development is now taking place and we are seeking experienced design engineers at all levels to join us.

Engineers in Racal are encouraged to take a high degree of responsibility for their products, of which they normally control all technical aspects from initial conception to quantity manufacture. In return we demand enthusiasm and ability in the field of product oriented design.

Salaries at all levels up to about $£ 3000$ per annum may be payable and brief details should be sent before interview to:

THE ELECTRONICS GROUP

Plan your future with
N C R

Mr. G. J. Lomer. Director of Development Racal-BCC Limited. Wastern Road, Bracknell. Berks

Materials/Electronic Engineers

Abstract

If you are qualified to first Degree level in Electronic Engineering or a Pure Science subject, then we may be able to offer you an interesting and challenging career. Of the many elements and compounds with applications in the electronics field, we are particularly interested in the properties displayed by quartz crystal and ferri-magnetic materials.

Specialized Components Division of the Marconi Company is engaged in the R and D, manufacture and marketing of a wide range of components using these two materials. Continuing expansion has created opportunities for Engineers with circuitry experience to work on both the fundamental Research of material characteristics and the Development of devices (eg crystal filters and oscillators; microwave circulators and isolators) which are used throughout the electronics industry.

It would be naive of us to suppose we could give you a concise description of the jobs we have to offer in this advertisement, so please telephone (reverse charges) either John Penney (Deputy Technical Manager) on Billericay 2654 Ext 37 or H. W. Cooke (Divisional Personnel Officer) on Chelmsford 53221 Ext 593 for further details. Initial interviews can be arranged at a mutually convenient location.

Marconi Communication Systems

Attractive commencing salaries will be offered, coupled with excellent conditions of employment and the opportunity for further promotion within the largest electronics Company in Great Britain. Assistance with removal expenses will be given in appropriate circumstances. If you are unable to telephone, please write to Divisional Personnel Officer, Marconi Communication Systems Limited, Marconi House, New Street, Chelmsford, Essex, quoting reference WW/SCD/21.

Billericay

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANGE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

RADIO SERVICE ENGINEER

Are you an engineer who wishes to join a large International Group and one who looks forward to being involved in the Common Market?
We are seeking such a man for our Service Department with knowledge of transistor circuitry and, if possible, experience with tape recorder and television repairs.
We offer a good salary and working conditions including a non-contributary pension scheme, subsidised canteen facilities and some free local transport. Please write giving brief details about your qualifications and experience to: The Personnel officert

BOSCH LIMITED
Rhodes Way • Radlett Road • Watford • Herts

ST. LOYE'S COLLEGE
 for the training and rehabilitation OF THE DISABLED, EXETER

The following posts on the Instructor Staff are vacant

1) BASIC WORKSHOP PRACTICE

This course calls for an
INSTRUCTOR
to train new candidates in Light Engineering Bench work, both mechanical and electrical. The post calls for a varied background in engineering and considerable experience Some teaching experience would, of course be an advantage. Five-day week. Three weeks' leave rising to four after three years' service. Superannuation Scheme.
Salary Scale: Grade III-f1,415- £1,790
2) INSTRUCTOR OF ELECTRONICS

THEORY AND PRACTICE INCLUDING radio and tv Servicing
An Electronics Engineer with industrial experience is required for the above post Five-day week. Three weeks' leave rising to four after three years' service. Superannuation Scheme.
Salary Scale: Grade III- £1,415-£1,790 Applications (no forms) to The Principal

1041

BUSINESS OPPORTUNITY

Earn a substantial extra income through a fascinating part-time business of your own that you could share with your wife and operate from your own home. exceeding 65000 per annum at the higher levels. We are looking for organisational and managerial ability.

Telephone for an appointment.
VISTA MARKETING MAIDENHEAD $\underset{1002}{28754}$

AUDIO TESTERS/ TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM L.td., 66 Offley Road, London, S.W. 9.
735-6568.
937

RESEARCH TECHNICAL SUPPORT STAFF

These appointments will be in the PHYSICS and CONTROL AND COMMUNICATIONS Divisions at the Central Electricity Research Laboratories, Kelvin Avenue, Leatherhead, Surrey, where the successful candidates will be concerned with either one or more of the following:-
(a) the calibration, maintenance and repair of a wide variety of complex modern instruments
(b) the devising and provision of complex instrumentation schemes to meet the needs of the Laboratories.
(c) development of novel instrumentation for use in generating stations, initially on a radio-
telemetry project.
Senior Scientific Assistants and Laboratory Technicians should have either a relevant HNC qualification, extensive commercial experience or of electronics and be capable of working with minimum of supervision. In either case they should be at least age 25 . Scientific'Assistants should have 5 ' O^{\prime} levels at age 16 or 2 ' A ' levels at age 18 or possess an ONC in a relevant subiect.
In all cases, salaries rise to $\mathbf{6 1 , 7 1 6}$ p.a. inc.
Further details and application forms may be obtained from the Personnel Officer at the above address. Quote ref. WW/462.

Light engineering/ electronics and in the dark about computers?

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary while we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or C\&G in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our opportunities.

How far you progress is up to you-the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates. There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35.
Locations: Central London, Hertfordshire, Middlesex, Essex, Manchester, Kidsgrove and Dublin

Write giving brief details of your career, and quoting ref. WW 647 C to: A. E. Turner, International Computers Limited, $85 / 9$ I Upper Richmond Road, Putney, London SWI 5 .

If you can put a'Yes' in every box, you might just make a RADIO TECHNICIAN in Air Traffic Control

An all-consuming interest in telecommunications \square
At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications \square

A highly developed sense of responsibility \square
Willingness to undergo a rigorous programme of training

Aged 19 or over

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports, radar stations and other specialist establishments all over the country. Important today, the job will become increasingly vital as Britain's air traffic continues to grow. and prospects for promotion are excellent. Starting salary varies from $£ 1.044$ (at 19) to $£ 1.373$ (at 25 or over). Scale maximum $£ 1,590$ (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.

If you feel you can.meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

Send this coupon for full details and application form
To: A J Edwards, C Eng, MIEE,
The Adelphi, Room 705, John Adam Street, London WC2N 6BQ, marking your envelope 'Recruitment'

Name

Not applicable to residents outside the United Kingdom

NATCS

National Air Traffic Control Service

APPOINTMENTS

requires a

SOUND MAINTENANCE ENGINEER

(ACTT Category D)
Salary £2,131 per annum. for maintenance of wide variety of sound recording and transmission equipment. Theoretical and practical knowledge of sound equipment and semi-conductor circuitry essential. Staff subsidised restaurant. Free life insurance. Contributory pension scheme
Applicants should telephone the Personnel Office 6372424 (Ext.392) for application form.

WE KNOW YOU WANT A BETTER JOB and what is more WE WILL HELP YOU FIND IT.

(3)Experienced engineers in Design and Development, Systems Test, Technical Sales, Production Engineering, Field Service or Technical Writing should
Contact Electronics Appointments Ltd. and we will help you.
Our placement service is professional, specialised and completely confidential. We are in consultation with over 800 companies on all aspects of electronics engineering. Phone or write at any time quoting WW 101.
NORMAN HOUSE - 105/109 STRAND - LONDON • W.C. 2
TEL: 01-836 5557
554

SITUATIONS VACANT

 previous experience, salary required to- The Manager,
Henry's Radio, Ltd., 303 Edgware Rd.. London, W.2. RE YOU INTERESTED IN HI FI? If so, and you
have some experience of selling in the Retall Radio Trade, an excellent opportunity awaits you at Telesonic
Ltd., 92 Tottenham Court Road, London, w.1. Tel. 01 -387 7467/8.

Diplomatic wireless service offers a career D Home and Foreign Service to men preferably between the ages of 21 and 45 with PMG first c.ass
certificate. Salary according to age, e.g. at 21 £ 1.023 p.a., 25 (or over) ${ }_{\text {f } 1,288}$ p.a., rising in annual stages to $£ 1,749$ p.ar, with additional allowances overseas. Write to the Personnel Offcer, Diplomatlc Wireless

Service, Foreign and Commonwealth Office, Hanslope | Service, Wolverton, Bucks. |
| :--- |
| $[880$ |

$\mathrm{D}_{\text {by }}^{\text {RAUGHTSMEN. Mechanical and Electrical required }}$ $\mathrm{D}_{\text {by }}^{\text {expanding electronics company specialisting in }}$ lighting control and audio visual products. This posi-
tion is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd., 47 Old Woolwich ment. Please apply Electrosonics Ltd., 47 Old Whal wich
Road, Greenwich, London, S.E.10. Tel. 858 4784.
[22
E NGINEER required for company In Glasgow to serEvice top-quality HiF1 equipment. Excellent working conditlons and terms of service. Salary well above
average for right man. Assistance may be given with housing and removal. Telephone 041-339 8787, reversing charges to arrange intervlew. [1017
 Heclass salesman. Candidates for this position must be between $25-40$ of equable temperament, able to drive,
and with a comprehensive knowledge of the high fidelity equipment in the quality market. In addition to dealing with the general public the successful applicant will be expected to deal with both professional and educational bodies and supervise installations to completion. A salary commensurate with ability will be offered with excellent opportunitles for further advancement. For appointment please write with full detalls to The Managing Director,
Hampstead High Fidelty, 91 Heath Street, London, Hampstead
N.W.3. $6 S S$.
 Dinent of Psychology. Candidates should have or be completing final Clty and Gullds in Electronic Servicing and with special experience in Electronics considered. Familiarity of Electrophysiological equipment or interest in or experience with small computers an advantage. The salary will be in the calle $£ 1,041-$ £ 1,410 per annum. Applications giving the particulars of two referees and quoting ref r.46, to Assistant Burssir
(Personnel), University of Reading, Whiteknights, Readlng, Berks.
$\mathbf{S}_{\text {RENAL }}^{\text {T. BARTHOLOMEW'S/ST. LEONARD'S HOSPITALS }}$ S RENAL DIALYSIS UNIT. An ELECTRONIC TECHNICLAN is required to work in the Renal Dlalysis Unit
at St. Leonard's Hospital serving N.E. London and the

County of Essex. This is an interesting and worthwhile
career for someone who likes working as a member of a team, and who can drive a Land-Rover (or would be willing to learn). Experience in electronics would be an advantage, but opportunitles exist for training and further study. The salary will be on the scale for
 Required qualifications are: ONC in Electrical Engineering or Applied Physics, or two "A", levels with appropriate experience. Further detalls will be given on application to Hospital Secretary, St. Leonard's Hospital
Nuttall Street. London, N. 15 LZ .

1012
Wireless technicians. There are vacancles a England and Wales for Wireless Depots throughout England and Wales for Wireless Technicians to assist
with the installation and maintenance of VHF and With the installation and maintenance of VHF and UHF Systems, Pay; $£ 1161$ (at age 21) rising to $£ 1590$ p.a.. 5 day 40 hour week with overtime payable and
3 weeks paid holiday a year. Good promotion prospects. Qualifications: City and Guilds Intermediate Telecommunications Certificate or equivalent, or good experience In Teleoommunications. For further detalls write to Directorate of Telecommunlcations. Home office, 60
Rochester Row, London, S.W.1.

ENGINEERS

Have you considered a career in Technical Authorship? If you have sound experience in electronics, radar or computers and ability to write clear concise English, then we have vacancies as Technical Authors in the Home Counties and prospects of higher rewards. Box No. WW995.

"SITUATIONS WANTED

TELECOMMUNICATIONS TECHNICIAN

Seeks appointment compatible with any of the following administrative and field experiences, gained while with the Civil Aviation and the Telecommunications Departments.
20 years: installing, commissioning, maintaining and repairing various radiotelecoms equipment from MF to UHF; low-power portables to medium-power statics, together with associated antennae and diesel-electric standbys. Maintenance and repairs of MUX, VFT and manual telegraphy equipment, PBX s and line plants. Willing to Pay Passage to Australia and Canada.

1004

Department of Applied Physics M.Sc./DIPLOMA

COURSE IN ELECTRONICS
Applications are invited for this full-time one-year course. commencing 27 th September, 1971
Further details may be obtained from the Academic Registrar, UWIST, Cardiff CF1 3NU

central wirral group
 THE LIVERPOOL CLINIC 1 Myrtle Street - Liverpool 7
 ELECTRONIC ENGINEERS
 are invited to apply or the post of Medical Physics Technieian Grade 11 in the Department of Physics at the Liverpool Clinic. The work is concerrned with the electronic instruments to be used in connection with nuciear medicine. Candidates should have a wide experience of electronics and preferably have passed experience of electronics and preferably have passed the O.N.C. or equivalent. Whitley Council Conditions of Service and Salary Application forms obrainable from Personnel Office. Clatterbridge Hospital, Bebington, Wirral, Cheshire.

O.E.M. require an ELECTRONICS TECHNICIAN

to service a range of electronic desk calculators. Experience in this field is desirable but not essential. If you have previous electronics service experience together with the relevent City and Guilds Certificate and wish to join an old established and expanding Company in the Business Machine field, why not ring E. J. LANDON at 4073191 for an interview.

ARTICLESHFOR SALE

A MPLIFIERS, pubilc address, by famous maker brand new in cartons all 19" rack mountings. 30 watt with two or three low inpedance microphone and music imput, £ 55 each. 100 watt amplifier unit only to work with separate mixer, $£ 45$ each. C.W.O. or pro forma: Surplus to our requirements. SCOTTS ELECTRONICS, 4 Gayfield place, edinburgh Tel. 0315561301
[1014
$B^{\text {UILD }}$ IT in a DEwboX quality plastics cablnet B_{2} in. $\times 2 \frac{1}{2}$ in. \times any length. D.E.W. Ltd. (W) Ringwood Rd.

For Sale. quantity of now working 17" TV's mostly Fex-rental, 30/- each. Mullard valve tester, latest

Musical miracles. Send s.a.e. for detalls of Cymbals and Drum Modules. versatile independent bass pedal unit for organs, pianos or solo, musical nents list reed switches etc. D.E.W. L.t., 254 Ring-

* Salary up to $£ 2149$
* Low taxation
* $\mathbf{2 5} \%$ Gratuity on completion of 30 month tour
* Contract 24-36 months
* Education Allowances
* Subsidised accommodation
* Appointments Grant $£ 100$ or $£ 200$ payable in certain circumstances.

Required by the Ministry of Transport and Communications for the installation and maintenance of telecommunications and radio-navigational equipment at airports throughout Malawi.

Candidates, 25-45, should possess the City and Guilds Intermediate Certificate (Telecommunications) plus at least two ' B ' Certificates and have not less than four years' experience in radio/radar maintenance after serving a recognised apprenticeship or similar training. Applicants'lacking formal qualifications but possessing extensive experience can be considered.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.t, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/681177/WF.

CHIEF TECHNICIAN EdUCATIONAL TELEVISION UNIT
 SALARY E1515-£1776

Required at Guildford County Technical College to join an existing team in an expanding College Television Service. The person appointed will assist the lecturer-in-charge and supervise the installation, operation and maintenance of studio and mobile equipment as well as initiate the development of new facilities. Experience with helical-scan V.T.R. equipment essential. together with some knowledge of studio operational procedures and audio visual aids.

Desirable minimum qualifications are the Final Radio and Television Servicing and Colour Television Servicing certificates (C.G. 48). Qualification allowance of $£ 30$ / $£ 50$ generous relocation assistance in approved cases.
Application forms and further details from Vice-Principal, Stoke Park, Guildford, Surrey, on receipt of S.A.E.

Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The Work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommunications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited,
Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

Scopes' 1035-2. 1049.-1. 1049 III-1 £50 lot
Airmec Sig Gen Type 852
$f 15$
Marconi Univ. Imp. Bridge
Dawe Valve Voltmeter 612A
f15
Marconi R.G. Oscillator TF1101
S.T.C. Elec. Counter 3 digit

Sola. D.C. Decade Amp. AA900
Sola. P.S. Unit SRS 151
Marconi Video Oscill. TF 885
Ediswan P.S. Unit. R1103
Ediswan P.S. Unit. R1103
Sola. 2 Phase L.F. Oscill. B.O. 567 £12
Redifon Freq. shift Unit. GK 185A $\begin{array}{lr}\mathbf{£ 1 5}\end{array}$
All equip. "As Seen". Cash only. (No
CHEQUES). Collected or Carr. Extra.
ALLEN
46 LESTER ROAD, CHATHAM
KENT 1020

Nen Catalogue no. 18, containing credit vouchers surplus electric and mechanical components, price $4 / 6$, post free. Arthur Sallis Radio Control Ltd., 28 Gardner
Street, Brighton, Sussex.
$\mathbf{R}_{\text {Foolscap }}^{\text {ELAYS, contactors, timers. From cor }}$ Sorking to co-ax.

T APE DECK Brenell MK 5. Ser 3. Fitted with new W/Wogan circuits $£ 45$ o.n.0. Tel. $01-2747317$ evenings. [1031
TWO SIEMENS 24-channel and one Philips 12-chanIn nel AM VF Telegrap Terminals. Detalls available. Inspection invited. Also Siemens 25-line automatic tele-
phone exchange with 20 extensions. Box W.W. 1025.
 Colour scan colls $£ 3.10 .0 \mathrm{P} / \mathrm{P}$ 6/-C Chrominance panels 20/- P/P 4/6. OHF tuners transistorised, rotary slow
motion drive or push button $\mathbf{\$ 5 . 5 . 0} \mathbf{P / P} 4 / 6$. Integrated motion drive or push button $\boldsymbol{x}^{5.5 .0} \mathrm{P} / \mathrm{P}$ 4/6. Integrated
$\mathrm{UHF} / \mathrm{VHF} \mathrm{f}_{\mathrm{i}}$ position push button transistorised tuner easily adjusted as 6 position UHF tuner, incl. circuit

 drive assy., 625 IF amplifer, 7 valves, accessories,

 cuit IF
available onel incl. circuit
on request.
VHF available on request. $V \mathrm{HF}$ tuners AB miniature with

UHF injection suitable KB , Baird, Ferguson $25 /-\mathrm{P} / \mathrm{P}$ ${ }^{4 / 6,6, \text { Cyldon } C 20 /-P / P ~} 4 / 6$, Pye 13 ch. Incremental $25 /-$ P/P 4/6, Ekco, Ferranti, Plessey 4 position push button tuner with UHF injection lncl. valves $58 / 6$ P/P $4 / 6$. | New fireball tuners |
| :--- |
| $37 / 6$ | $\begin{array}{ll}37 / 6 & \mathrm{P} / \mathrm{P} \\ 15 /-\mathrm{P} / \mathrm{P} & 4 / 6 .\end{array}$ channel coils, LOPTs, Scan Coils. FOPTs available for channel coils, LopTs, Surplus oiltra, Murphy 110° Scan ${ }^{\text {coils }} 18 / 6 \mathrm{P} / \mathrm{P}$ 4/6. Sobell trame o/p transformers $17 / 6$ P/P 4/6. Transistorised time base panel for Ferguson

 £7.18.6. Wolsey masthead amplifier power unit $50 /-$ P/P 4/6. Surplus BBC2 Belling Lee "Skyline," distribution amplifiers $\mathrm{E}^{3} 3$ (Callers only) -MANOR SUPYIES,
172 WEST END LANE, LONDON, N. 6 (N) 172 WEST END LANE, LONDON, N.W. 6 (No. 28 Bus or
W. Hampstead Tube Station). MAIL
ORDER:
64 W. Hampstead Tube Station). MAIL ORDER:
$\begin{aligned} & \text { GOLDERS } \\ & \mathbf{0 1 - 7 9 4} 8751 .\end{aligned}$ MANOR DRIVE, LONDON, N.W.11.
Tel.
[60
$\mathbf{V}^{\mathrm{HF}}{ }^{\text {80-180 }} \mathrm{MHz}$. Integrated receiver, tuner, converter Kit. Remarkable results from single semi-
conductor.
Compremensive kit
\& conductor. Comprehensive kit $£ 4$ post pald or send for free literature
Worcester, WR1
2DT.
$60 \begin{gathered}\mathrm{kc} / \mathrm{s} \mathrm{Rugby} \& 75 \mathrm{kc} / \mathrm{s} \text { HBG Neuchatel Radio Re- } \\ \text { celvers. Signal and Audio outputs. Smail compact }\end{gathered}$ Onits, $£$ ceivers. Tignal and Audio outputs. Smalex, 6 Warwick Close, Hertford (4856).
$160 \begin{aligned} & \text { GROSS of standard turrent tags, best offer } \\ & \text { secures. } \\ & \text { Box } W . W . ~ \\ & 1023 \text {. }\end{aligned}$

EUSINESS OPPORTUNITIES

BRAUN HI-FI SERVICE AGENCY FOR SALE

Sole spares stock in U.K. Advertised telephone number available.
Apply: Beacon House, 201 Holland Park Avenue, London, W.11.

TEST EQUIPMENT - SURPLUS AND SECONDHAND

SIGNAL generators, oscilloscopes, output meters, wave $\mathrm{S}_{\text {voltmeters, frequency meters, multi-range meters, }}^{\text {etc. etc. in stock. } \mathrm{R} \text {, T. \& I. Electronics, Ltd., Ash- }}$ etc. etc., In^{2} stock-R. T. T.
ville Old Hall, Ashvilie Rd., London, E.11. Ley. 4986 .

RECEIVERS AND AMPLTFIERSA
 SUAPLUS AND SECONDHAND

FOR SALE: Collins $51 \mathrm{~S}-1$ with $55 \mathrm{G}-1$ preselector, general coverage 200 KHz to 30 MHz , with dilgital
read-out. Professional receiver, superb specification to read-out. Professional receiver, superb speciacation to
laboratory standards. New pricé over $£ 1,000$, accepting laboratory standards. New price over $£ 1,000$, accepting
$£ 650$. East, 41 Avenue Close, London, N.W. 8 (Tel. 01-722 7040).
$\mathrm{H}_{\text {etc Rr5s, etc., AR88, CR100, BRT400, G209, S640, }}^{\text {RO }}$ Hetc., etc., in stock.-R. T. \& I. Electronics, Ltd.,
Ashville Old Hall, Ashvile Rd., London, E.11. Ley. Ashville Old Hall, Ashville Rd., London, E.11. Ley.
4986.

NEW GRAM AND SOUND EQUIPMENT

$\mathbf{G}^{\text {LASGOW.-Recorders bought, sold, exchanged; }}$ $\mathbf{G}_{\text {cameras, }}$ etc., exchanged for recorders or vice-versa.-Victor Morris, 343 Argyle St., Glasgow, C.2.

TAPE RECORDING ETC

YOUR TAPES TO DISC- $\mathbf{£ 6 , 0 0 0}$ Lathe. From 30/Studio/Location Unit. S.A.E. Leaflet. Deroy Studios,
High Bank, Hawk St., Carnforth, Lancs.

ROR HIRE

$\mathbf{F}_{\text {ErRograph, }}^{\text {Erer, etc., tape recorders for hire. }}$ Flashet details from Magnatape Hire Services, 191/193
F^{OR} HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape-any period.
-Details from Zoom Television, Chesham 6777

ARTACLES WANTED

$H^{\text {IGHEST }}$ CASH PRICES for good-quality Tape
 $\mathbf{W}^{\text {ANTED, }}$ all types of communications receivers Electronits, Lest Ltd., Ashille Old Hall, Ashville Rd., LonElectronics, Ltd., Ashvile Old Hall, Ashvilie Rd., Lon- ${ }_{\text {I }}{ }^{7}$
don, E.11. Ley. 4986. $\mathbf{W}^{\text {ANTED, }}$ televisions, tape recorders, radiograms. High new valves, transistors, etc.-Stan Willetts, 37
St., West Bromwich, Staffs. Tel. Wes. 0186. $[72$

WANTED TO BUY
second hand radio and telephone equipment
Apply for details to Box W.W. 1034

VALVES WANTED

$\mathbf{W}^{\text {E }}$ buy new valves, transistors and clean new components, large or small, quantitles. all details.
quotation by return.-Walton's Wireless
Stores,
55 quotation by
Worcester
St. . Woturn--Walton's

CAPACITY AVAILABLE

A $_{\text {production }}^{\text {IRTRDD }}$, for Coil Winding-large or small pliers to P.O., M.O.D.. etc. Export enquiries welcomed pliers to P.O., M.O.D.. etc. Export enquiries welcomed.

COIL winding capacity. Transformers, chokes R.F. Coils, tc., to your speclication. Sweetnam \& Brad-
ley Ltd. Bristol Road, Malmesbury, Wilts, or Tel. ley Ltd., Bristol Road, Malmesbury, wilts, or Tel.
Malmesbury 3491.
$\mathbf{M}^{\text {ETALWORK, }}$ all types cabinets, chassis, racks Metc. to your own specifcation, capacity available for small milling and capstan work up to 1 in bar--
PHILPOTT'S
Loughborough. METAL WORKS, Lough borough.

TURNED parts, automatic capstan capacity available approved.-Desmond Engineering, Combe Martin. N. Devon. Combe Martin 2412.
$\mathbf{W}_{\text {singly or in }}^{\text {u }}$ undertake manufacture of transformers work guaranteed for 12 months.-Ladbroke Transformer Co. Ltd., ${ }^{820 a}$ Harrow Road, Kensal Rise, N.W. $01-969$
$W_{\text {inina assembly }}^{\text {IRCB's sheet metal turning milling }}$
 W.5. 992 -8976.

ECHNICALTRAINING

A.M.S.E. (ELEC.), Ctty \& Guilds, R.T E.B. Cert., Refund" terms. Wide range of Courses in Elec. Enginering, Design, Installation, Repairs, Refrigeration, Electronics, Radio \& TV, etc. Send for full detalls and llustrated book-FREE,-BRITISH INSTITUTE OF maston Court, Reading RG7 4PF. Dept. 152K, Alder-

B ECOME "Technically Qualifled" in your spare time, Badio TV servicing and maintenance. R.T.E.B., City \& Guilds, etc., highly informative 120-page Guide-free Reading RG7 CPF . \quad (Dept. 837 K), Aldermaston Court,
$[16$
R.T.E.B. CERTS., City \& Guilds, Colour TV, Radio, R Computers, Radio Amateurs' Cert., Practical Electronics (with kit). Thousands of successes. Send for -FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 150K, Aldermaston Court, Readg RG74PF.

TECHNICAL TRAINING in Radio, TV and Electronics through world-famous ICS. For details of proven House, London, S.W.8.
[24

TUITION

K INGSTON-UPON-HULL Education Committee, College of Technology. Principal: E. Jones, M.SC., F.R.L.C-TIME courses for P.M.G. certificates and the Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-
Hull Hull.

THE UNIVERSITY OF ASTON IN BIRMINGHAM ELECTRICAL ENGINEERING DEPARTMENT

 M.Sc. COURSE

 M.Sc. COURSE in

 ELECTRICAL ENGINEERING

 ELECTRICAL ENGINEERING OCTOBER 1971

FULL TIME : SANDWICH
block release : part time day
The course leads to a Masters Degree in Electrical Engineering. One-third of the lecture work will cover mathematics, computing and electrical engineering materials. The romatin to speciatist option selected from the following :-
Communication Systems
Control Systems
Electrical Machines
Measurement and Instrumentation
The Design of Pulse and Digital Circults and Systems
The Science Research Council has accepted the course as suitable for tenure of its Advanced Course Studentships.
The course is open to applicants who will have graduated in science or engineering, or who will hold
equivalent professional qualifications, by October, 1971.

RESEARCH IN ELECTRICAL ENGINEERING

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Sc. or Ph.D. in any of the above topics.
Applicatlon forms and further partlculars may
The Head of the Department of Electrical Englneerlng (ref. 12),
The Universliy of Aston In BIrmingham,
The Sumpner Bullding.
19 Coleshlll Street,
BIrmingham B4 7PB.
1001

BOOKS INSTRUCTIONS:ETC

MANUALS, circuits of all British ex-W.D. 1939-4B R.E.M.E. instructions; and instruments from original R.E.M.E. Instructions; s.a.e. for list, over 70 types.Surrey, CR4-8PZ.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:

Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).
Phone: 01-397 5411

are looking for an

ENGINEER

to work on closed circuit television equipment in the Service Department of the Commercial and Industrial Division at Bedfont in Middlesex. The work includes cameras, monitors and video tape recorders, both monochrome and colour.

> Please write to:-

Mr. M. T. Morcom, Service Manager Commercial and Industrial Division Sony U.K. Limited Ascot Road, Bedfont, Middlesex

CHIEF TEST ENGINEER

[^11]
The Hatfield Polytechnic

Department of Electrical Engineering and Physics

EXPERIMENTAL OFFICER

for work on Research in Digital Communication Systems.
The project, sponsored by the Ministry of Aviation Supply (Signals Research and Development Establishment), has been running successfully for a year. The work involves the construction and testing of digital integrated circuit systems. Applicants should preferably be educated to at least HNC standard and have a good Electronics background. The post is offered initially for one year but there are good prospects of a permanent appointment.

Salary in a range up to $\mathbf{x l}, 766$ p.a., depending on qualifications and experience.

Apply giving full relevant details, to the Secretary and Academic Registrar, The Hatfield Polytechnic, Harfield, Herts. Quote ref.: 452/WW

Large stock of GPO Type Components available for prompt delivery COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED

77, AKEMAN STREET, TRING, HERTS.
TELEX: 82362.

WESt hyoe develdrments limited, hyefield chescent, ndithwood hilis, nohthwodi, midox. hab inn.
Telephons: Narthwood 24941/28732 Telax: 823231
WW-OSS FOR FURTHER DETALLS

Kit of Sinctiqi hardware inc. capacitors. plugs, sockets, screws, wire, heat sink.
fuse
fuse. fuse holder, atc. $£ 3.40 \mathrm{P}$ \& $P 23 \mathrm{p}$.
Sinctiair punched cass and chassis. Mod-2 type G in wood grain. $£ 4.25$
$P \& P 23$ p.

Type G is now available in simulated teak in wood grain finish and ideally suited with

WEST hYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWODD HILLS, NORTHWOOO, MIDDX., HA6 1NN. Telephone: Northwood 24941/26732. Telex: 923231 WW- 057 FOR FURTHER DETALLS

Typlatily used in quantitios by washing machlne menufectur. rers ind suiteble for lab. use
ait. Firtad with non-wira-cutting contacta and fure. Sultable for up to 13 ampa a man indictor lights whan mains is on the outer socketz. 1 at $£ 1.25$. P\&P10p.

West hyoe developments lid., hyefield chescent, northwood hills. middx., hab inn Tolsphone: Northwood $24941 / 26732$ Telex: 923231 WEST HYDE NTHWD WW-056 FOR FURTHER DETAUS

boands
Type A-Standard Contil board 20 condutctors with power rails at right
angles to connection rails. EACH 50 p Type B-Half board as above, but moth 20 connectorways. EACH 40p Type C-0.1" pitch Varto typa burt to fit Contil $4 \frac{1}{2}$ " square 43 copper strios
 Type M-20 wey, gold plated connector inc. polarising pin. EACH 45p
Type O-P.C. Chassis with flanged Type O-P.C. Chassis with flanged
mounting plates. 20 slots for bogrdts and connactors on half inch cantros.

Type $Y-1$ parr, $10.3 / 8^{\prime \prime}$ wide as above moulding only. ype S-Singte printed circit 145p ypes s-Single printed circuit board
supports. supports.
In addition par pail in addition we are also supplying the most papular Vero board. Tyca 122 most papular Vero board. Type 122 DISCOUNTS FOR QUANTITY.

SEND FOR FREE LEAFLETS \& PRICE LIS
WEST HYde developments lid., ryefield crescent, ndrthwdod hills, northwodd, mholesex, hat inn Tolightont: Northwood 2494/26732 Telex: 923231 WEST HYDE NTHWD. WW-058 FOR FURTHER DETALS

BIG OLD HALF-INCH PHOTOCELLS ARE OBSOLETE!

Latest type high slope broad spectral response, miniature CdS cell, case similar TO-5 but smaller, by famous American Mfr. Brand new and tested 12/6 ($62 \frac{1}{2} p$) Precision engineered optical probe body for above, for light or enlarger meter $1 /-$ (75p)
Professional quality slope-front instrument case $15 \times 9 \times 6 \frac{1}{2}$. Well known Mfrs. overstock, duo-grey, det. panel 15×8 finished and pierced 2 meters, controls etc., plus spare blank panel. While stocks last only $\mathbf{5 5} /-$, plus $5 /-$ p. \& p. $(\mathbf{f} \mathbf{2 . 2 5}+\mathbf{2 5}$ p)
Cad-plated chassis and bkts. etc., for above $15 /-$ plus $3 / 6$ p. \& p. (75 p $+17 \frac{1}{2}$ p)
Sub-min vert. PC pre-set resistors 1-2.5-10-25-100-250K, $1 \mathrm{M} \mathrm{1/-} \mathrm{(5p)}$
5-cell 225MA- Hr Ni - Cd rechargeable batts. ex new equt. $17 / 6$ plus $2 / 6$ p. \& p. ($87 \frac{1}{2}$ p + 12 $\frac{1}{2}$ p)
Few single cells $3 / 6$ ea. ($17 \frac{1}{2} \mathrm{p}$)
2-p 6 -way rotary switch, boxed $3 / 6$ ($17 \frac{1}{2} p$) Quality CdS transistor enlarger type lightmeter, $3 \frac{1}{2}$ in. mirror scale meter. Measures 0.01 to 1000 lux on 3 ranges and overrange. Complete with probe and instructions, less PP3 battery $\mathbf{£ 9 / 1 0 ~ (\mathbf { ~ } 9 . 6 0)}$ plus p. \& p. 10/-(50p)
1/- item p. \& p. except where stated. (5p)

STERAD INSTRUMENTS LTD. CHARLTON ROAD,
 SHEPTON MALLET, SOMERSET.

RACK CABINETS

These are a fully enclosed 19^{*} rack, overall size $38 \times 22 \times 22$ usable size $32^{\prime \prime}$ high, $19^{\prime \prime}$ deep. Fitted hinged rear door, with lock, removable side panels and adjustable front panel mounting positions. These are a modern top quality unit finished in light hammer grey, made by Ferranti. Supplied in new cond., ex stock.
Price 88.0 .0 plus fl carr. with pull-out drawer or $£ 7.0 .0$ plus $£ 1$ carr. less drawer. S.A.E. for list or enquiry:
A. H. SUPPLIES

57 Main Road, Sheffield S9 5HL

MUSICAL MIRACLES

 WAA-WAA PEDAL. Complete kit of oll parts, robustcabinet, mechanism \& instructions. H Huse sales, well proven design. ONLY $49-1$ complete. Or built \& tested ta.15 post free. RHYTHM BOX. Build your
own from our pre-buit electronic circuit modules, own brom our pre-built electronic circuit modules, ORGAN PERCUSSION Units 114 . Bass pedal and other fascinating effects, fuzz, tremolo etc.
Send s.a.e. for list. D.E.W. LTD.

AMERICAN
 TEST AND COMMUNICATIONS EQUIPMENT \star GENERAL CATALOGUE AN/104 $1 / 6$ * Manuals offered for most U.S. equipments
 SUTTON ELECTRONICS
 Salthouse, Nr. Holt, Norfolk. Cley 289

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (flat pots) 20 ohm to 10K. Various makes. Wholesale and Export only.
All component parts including laminations for the manufacture of 80,000 small motors, the lot $£ 800$.
J. Black

OFFIGE: 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere.
Concorde Instrument Co.
28 Cricklewood Broadway
London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

GURPLUS HANDBOOKS

19 aet Circuit and Notes

H.1.. 0 . Techntcal Instrnction

38 eet Technical In Intruction ions
40 set Workk In I natuctions
40 et Workling I Iatructions
88 eet Teclincel Instruction
BCer21 Cirnutit and Notes
B.

18 set Clircuit and Notes
BC. 1000 (31 set) Circuit and Notes
iL. 107 Circuilt tand Notes
Ali. 88 D Instruction Manus
62 get Cirnuit and Notes

Colour Code 1 ndicator $2 / 6$. p/p 6 d .
S.A.E. With
Postage ratea apply to U. K . ${ }^{\text {all }}$ ease.

Pootage ratea apply to U.K. oniy.
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

PLUG-IN REPLACEMENT TRIPLER MULTIPLIERS

for Mono TV
These Selenium high voltage units for Ferguson mono chrome TV E.H.T. supplies, are direct replacements for E.H.T. trays. Part No. ОM3-700 ànd 6M3-034-Tripler Type No. TU18-2TO
Part No. E. 18KC1A $\frac{1}{2}$ wave Type No. TU18-2HD

Prices	1 off	TU18-2HO	TU18-2TO

GOTHIC ELECTRONIC COMPONENTS
A division of Gothic Electrical Limited
Beacon House, Hampton Street, Birmingham 18
Tel:021-236 5060

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC ELECTRONIC BROKERS LTD. 49 Pancres Road, London, M.W.1. 01-837 7781

Enthusiasts

for tape recording
subscribe to the onl|
Maguzine devoted oxclusivaly to the subjact.
30/- (U.S.A.) $\$ 3.75$ Vrly. incl. postage.

- FREE SPECIMEN COPY ON REQUEST 7 ALVERSTONE AVENUE, EAST BARNET, HERTS

LOWE ELECTRONICS

WELLINGTON STREET; MATLOCK, DERBY. Specialising in top quality Amateur SSB equipment.
accessories and test
gear. A selection of second-hand items currently in stoak.

 Signal Generators: Airmec 204 ces, Marconi TFIO60
 Rohde a Schwarr SKTU Noise Generator 665.
Wayne Kerr B90 Admitance Bridge CA5.
 Weil worth while sending us a large s.a.e. for what our
American cousins call ever that may mean. We might also mention that we
service the sort of stuff we sell and we service it service the sort of stuff we sell a nd we service it
quickly, accurately and don't charge you tho earth If you have any good quality stuff to self, our offer will horrify you about the same as anyone else's, but we
do it very nicely.

HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

electronic components

 receiving valves for radio and TV receivers picture tubes guns for TV getters
from Poland

are offered by

Foreign Trade Enterprise

Warszawa, AI. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 Telex No 814431

CATALOGUE, PRICES, AND FULL DETAILS AVAILABLE UPON REQUEST

WW-104 FOR FURTHER DETAILS

CASH IMMEDLATELY AVALLABLE for redundant and suiplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO
DISPOSALS
21 Lodge Lane, London, N12. Telephone: 014452713014450749 Evenings: 019587624

KEYNEGTOB

The safe quick

 way to connect electrical equipment to the mainsConnects anything
elloctrica in saconds. No plugs. soctivers or No plugs. sockets of
ban wiras I Tasas mutbi-
parsiled lanections up

for leatioct

EB INSTRUMENTS
49-53 PANCRAS ROAD LONÓON N.W. 1 Tel:04-8377781
WW-105 FOR FURTHER DETAILS
the only COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 2/6 for 48 page booklet providing all necessary information on Record Care

CECIL E. WATTS LIMITED Darby House Sunbury-on-Thames, Middx.

SIIICON TRANSISTTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the 2S300 (TO-5) and 2S320 (SO-2) range and similar to the OC200205 and BCY 30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2 S300 or SO-2 2 S320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off-f1 15s. (plus p. \& p. 3s.)
500 off- $£ 2$ 10s. (plus p. \& p. 3s. 6d.) 1,000 off- $\mathbf{E 4}$ (plus p. \& p. 5s.)
10,000 off- $£ 35$ (plus p. \& p. I ls.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel: WARE 3442

BUILD YOURSELFA TRANSISTOR RADIO

We are a Polish company manufacturing high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves
Electron Guns

Tape Recorder Heads

TV Picture Tubes
Sub-assemblies
In addition we can offer production capacity and the ability to produce electronic components to meet our customers' own specifications.

重 Elektrim

EXPORTER:
Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA, Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations

WW-107 FOR FURTHER DETAILS

will dim up te 400 matts of incandascent lightian from zare fe fell hrililanes. This wait simply raplaces the rermallight switeh, and is fitted ina matter of minstes. Au Mr meuntiag trame is suapled, fer sie when ware doth ha raquires.

Complote Kit: $£ 2.85$ tan, Built \& testad: $£ 3 \cdot 35$
Diathane Ltd.
III. Sheffiold Road. Wymontham NORFOLK.

Private enquiries, send two 5d stamps for brochure THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works. Wellington Crescent, New Malden. Surrey ($01.9420334 \& 2988)$

WW-108 FOR FURTHER DETAILS

100W AMPLIFIER

All parts now available for this latest addition to high performance amplifiers as described in Wireless World.
22 transistors and diode (overload protection included)
£17.5.0
Resistors, Capacitors, pots, Choke 25/6
Fibreglass P.C.B 19/-
P.C.B. and components $\quad £ 19.5 .0$
$4^{\prime \prime} \times 4.6^{\prime \prime} \times 1 \cdot 3^{\prime \prime}$ Drilled H/Sink 8/-
2 full kits with $\mathrm{H} /$ Sinks £38
Transformer as specified £6
Transerm 4700/63V
Capacitor $1000 / 100 \mathrm{~V}$ 34/-

Power Supply: Component set with Drilled
H/Sink $£ 15$
2 Full Kits $£ 28.10 .0$
30W Bailey (single power rail)
10 transistors
£5.12.0
Resistors, capacitors and pot 26/-
Linsley-Hood Class AB
5 transistors, Zener 67/6
(MJ 481, MJ 491, MJE 521, BC 182L,
BC 212L)
Resistors, capacitors and pots 44/6
Linsley-Hood Class A
4 transistors 57/-
(MJ $481 \times 2,2 N 3906,2 N 1613$)
Resistors and capacitors
Amended Circuit
4 transistors
33/-
Resistors, capacitors, pot 40/-
Please state 8Ω or 15Ω for L.H. Amps.
All transistors matched and with mica washers.
Resistors except power types, $\frac{1}{2}$ W 5% low noise carbon film

	Semiconductors		
2N 3055	$\mathbf{1 2 / -}$	MJ 481	$\mathbf{2 4 / -}$
$2 N 3715$	$\mathbf{4 5 / -}$	MJ 491	$\mathbf{2 6 / 6}$
$2 N 3716$	$\mathbf{5 7 / -}$	MJE 521	$\mathbf{1 4 / 6}$
$2 N 3791$	$\mathbf{8 4 / -}$	TIP $29 A$	$\mathbf{1 1 / -}$
40361	$\mathbf{1 0 / -}$	TIP 30A	$\mathbf{1 3 / -}$
40362	$\mathbf{1 2 / -}$	IBO8T20	$\mathbf{1 2 / -}$
BC 125	$\mathbf{9 / 6}$	IB40K20	$\mathbf{3 2 / -}$
BC 126	$\mathbf{9 / 6}$	IS3062	$\mathbf{7 / -}$

Brand new top quality components. Instant Service. Mail Order Only. Post Free.

POWERTRAN ELECTRONICS

2 KENDALL PLACE, LONDON, W. 1
WW-109 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer
brand new p.v.c. Polyester
AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despateh service.
with full approval, purchas price and postage will be refunded
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} & 2 /- & 5 \mathrm{in} . & 600 \mathrm{ft} . & 6 / \mathrm{m} \\ 5 \frac{3}{2} \mathrm{in} . & 900 \mathrm{ft}, & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{fc} . & 9 /=\end{array}\right.$ L.P. $\left\{\begin{array}{lll}3 \mathrm{in} . & 225 \mathrm{ft} . & 2 / 6 \\ 5 \mathrm{in} \text { in. } 500 \mathrm{ft} . & 8 / 6\end{array}\right.$ D.P. $\left\{\begin{array}{lllll}53 i n . & 1,200 t . & 10 /- & \text { Tin. } & 1,800 \mathrm{ft} . \\ 3 \mathrm{in.} & 13 /- \\ 5 \mathrm{in} & 350 \mathrm{ft} & 4 / 6 & 5 \mathrm{in} . & 1,200 \mathrm{ft} . \\ 12 /-\end{array}\right.$ Postage on all orders 1/6
COMPACT TAPE CASSETTES AT HALF PRICE
60, 90 , and 120 minutes playing time, in original plastic library boxes.
MC $609 /$-each. MC 90
$12 / 6$ each. MC $12018 / 3$ each.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

Ashford 53020
WW-110 FOR FURTHER DETAILS

MACLEANS $6^{\prime \prime}$ FAN
230 VAC .3 Amp. $2,800 \mathrm{Ipm} .55 /-\mathrm{pD} 6 /-$ CHASSIS FRAMES $10 \frac{1^{\prime \prime}}{} \times 8{\frac{1}{3^{\prime \prime}}}^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{2} 20 /-\mathrm{pp} 3 /$ CROMPTON PARKINSON क्र HP 1440 RPM CROMPTON PARKINSO
sinqle phase electric motors
$\mathbf{£ 6 . 0 \text { . }}$. Od, ea.; 20/- pp. 2800 Ipm also available

Sameprice. RPM ELECTRIC MOTORS Single phase $£ 3$ 15s. Od. $15 /-\mathrm{pD}$
En-equip. Now condition.
I HP 1425 RPM ELECTRIC MOTOR Single phase $£ 2 \mathbf{2 s}$. 6 d .; $12 /-\mathrm{pp}$.
Ex-equip. New condition.
SMITHS 12-VOLT
SMITHS 12 -volt car heater fans
$30 /-$ ea.
1 AMP VARIAC
6/
1 AMP VARIAC/ $0-240 \mathrm{v}$ in $0-270 \mathrm{v}$ out or $0-270 \mathrm{~V}$ in $0-270 \mathrm{v}$ out. Bench or panel mounting. No calibrated scale 45/- 日a.: 10/- pp.
20-WAY 3-POLE P.
10t" \times 31" $19 / 6$ po 3/5. Ex
12 VOLT' $^{\times}$SOLENOIDS PULL ACTION
Size $2^{\prime \prime} \times 1^{\prime \prime} \times{ }^{z^{\prime \prime} .} 4 / 6$ each pp $1 / 6$.
STC SEALED RELAYS DOUBLE POLE
CHANGEOVER
$48 v 2500 \Omega$ Ex-equip, $2 / 6$ each pp $1 / 6$
SIEMANS MINIATURE SIEMANS MINIATURE RELAYS Double pole changeover, dust cover/base. 48v. $2500 \Omega 10 / 6$ ea $1 / 6$ pp. NEW.
OMRON MIDGET POWER RELAYS TYpe MK. OMRON MIDGET POWER RELAYS TYpe MK. 230v. AC. coil: Single poie changeover contacts
5 amp 440 V . AC., 250 V . DC. $10 / 6$ pp. $1 / 6$. .
DIANOND OVER RELAY 240 v . AC. coil. Heavy duty contacts, silver plated. $12 / 6$ each; pp. $1 / 6$.
HONEYWELL MICRO-SWITCH, LEVER OPERATED
10A 250 v . AC
Lever action ex-equip. 3/6 ach pp 2/--
ANALEX POWER SUPPLIES
Size $7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime} .230 \mathrm{v}$ AC Input.
Output $6 \mathrm{fv} 5 \mathrm{amp} \times 2: 18 \mathrm{v} .7 .5 \mathrm{Amp}$. DC
Output $6 \mathrm{v} 5 \mathrm{amp} \times$
Fully Transistorised
Fully Transistorised
Marginal adjustment on output
M35 0s. Od plus $£ 3$ carriage.
ANALEX POWER SUPPLY
Size $13^{\prime \prime} \times 19^{\prime \prime} \times 5 \frac{1}{2}$ ". 230 v . AC. 36 v .14 amp DC out Stabilized/ax-equip. tested.
$£ 2710 \mathrm{~s}$. 0 d . $£ 2$ 10s. Od. c
£27 10s. Od. £2 10s. Od. cariage.
COUTANT/ROBAND POWER SUPPLIES 28 v . 20 amp D.C. out $220-250 \mathrm{v}$. A.C. in
Fully stabilised solid state: ex -equip ne Fully stabilised solid state: ex-equip new condition
 5 digit; lever operated; resattable.
5 digit ; lever operated; resentiable.
$3^{\prime \prime} \times 1 \frac{1}{n^{\prime \prime}} \times 1 \frac{t^{\prime \prime}}{}$ Ex-equip. $10 / 6 \mathrm{pp} 2 / 6$.
SMITH'S CIRCULAR TAPE POSITION
INDICATOR Resetable: 10/6 each; 1/6 pp
DORMAN LOADMASTER
$250 / 44 \vee \mathrm{AC}$. 5 amp triple pole circuit breaker
29/6 plus 5/-pp. Brand new with fixing brackel. G.E.C. 5-AMP CIRCUIT BREAKER 20/- each; 3/- pp. NEW
TRANSFORMERS
TRANSFORMERS
Input 230 V . Output : 6.6 v 122Amp
Input 230v. Output: 6.6 V 122Amp
Size $6 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{t^{\prime \prime}} \times 9^{\prime \prime}$ including terminals
Brand new. $£ 150 \mathrm{~s}$. Od. plus $\mathbb{5}$ carriage.
GARDNERS: Potted input $0.250 \mathrm{~A} . \mathrm{AC}$. Output

SIMPSON TRANSFORMERS

 TEXAS INST./ XENNER DIODE

pp. 1/-Min. 3 off.
MOMETERS with switch OXLEY BARB INSULATED TURRET TAGS TYpe $150 / 50 / \mathrm{LP}$ Box $10020 /-$ - pp, $3 /-$ - $2 / 6$ doz. pp. $1 / 6$
GARRARD 2 TRACK TAPE DECKS MAG TYPE GARRARD 2 TRACK TAPE DECKS MAG TYPE Solenoid operated $230 \mathrm{v}, 1 / 2 \mathrm{ins} 50 \mathrm{v}$ Solenoid Ideal for contin tape players etc
£7 10s. Od. each. Brand new in manufacturers Cartons.
RUBE RABLE CONNECTORS
BELLING LEE 1.5 amp in-line rubber-covered
IELEFRence SUppressor $5 /-$ ea. ; pp. $1 / 6$
TELESCOPIC AERIALS CHROMED
$7^{\prime \prime}$ closed $28^{\prime \prime}$ extended. 6 section
Ball jointed base 4/6d. each po. 1/6d. New
4 MULLARD DM160 INDICATORS
Size approx. $13^{\prime \prime \prime} \times 1 \frac{1}{4}^{\prime \prime} \times 1^{1 \prime}$ in plastic holder;
green plastic cover ex-equipment. $7 / 6$. pp $1 / 6$.
green plastic cover ox-equipment. 7/6. pp $1 / 6$
PRINTED CIRCUIT BOARD/ 19ACY 19 's
10,0A200 Diodes: 1 Reed relay: 1,OAZ 229 Zenner Ass. capacitors/Resistors. Power supply $22 \mathrm{v} .250 \mathrm{~m} / \mathrm{a}$ AS.: Out/240V. AC. 20/; Dp. 4/-EX-Equip.
CERAMIC STEREO CARTRIDGE
Output $135 \mathrm{~m} / \mathrm{v}$ at $1 \mathrm{~cm} / \mathrm{sec}$.
Freq. response $40-12000 \mathrm{cps}$. Load 1 meg.
Separation better than 15 db .
Tracking weight $5-6$ grams. $30 /-$, pp 2/6
MALLORY ELECTROLYTICS
MALLORY ELECTROLYTICS
25,000, MFD 25 V DC
55,000 , MFD 15 V DC

 15v DC
Screw terminals.
TOGGLE SWITCHES, single pole, double throw Ex-equip. New condition. 10/- doz., pp 2/6.
c.w.o. Please

FIELDELECTRIC LTD.

3 SHENLEY ROAD, BOREHAMWOOD, HERTS. Adjacent EIstree Mainline Station. Callers welcomed Tel: 01-953 6009

OSMABET LTD.

WE MAEE TRANBFORMERS AMONGST OTHER THINGB AUTO TEANBFORMERS. O-1 $10-$-200-220-240 V a.c. up or down,
fully shreuded fitted insulated termins1 blocks. $30 w 26 / 6 ; 50 \mathrm{w}$

 37/8, MT3 Prim $110 / 240$ v Sec 250 v $100 \mathrm{Ma}, 6.3$ v 2 a, $45 /-$.
MULTIVOLT TRANSFORMERS, Prim $200 / 240$ v a.c. OMT4/1

 DUOVOLT TRANSFORMERS. 1 Prim $200 / 240$ y a.c. "DI2V" 2 sec
$71 / 6$.
$24 \vee$ AUTO TRAN8FORMERS. Input $200 / 240 \mathrm{v}$ a.c. output 24
150 watt, $90 /=; 250$ watt $135 /-$ for quartz fodine lampe.

 $8 \mathrm{a}, 112 / 6,12 \mathrm{~m} .165 / 6$
MIDGET RECTIFLER TRANSFORMERS, for F.W. rectificatlon
size $18 \times 2 \times 1 \%$
ing.. P Prim
$200 / 240$ a.c. output PPTI $9-0-9$

MT9V 9-0.4
size $2 \times 1 \mathrm{~B}, \mathrm{MTl2V}$

WIRE WOUND RESISTANCES 10 watt, 68 ohms, 220 ohms 55 ohme, mULTI WAY CONNECTORS. 18 way, new, for line, inter chassis,
etc., per pair $5 /-$. W.W. IGNITION CIRCUIT TRANSFORMER to apec, $50 /-$ plus W.W. COLOUR TELE. Choke LI, $60 /$;- Tran Tl, $57 / 6$; Fieli
O/P, BO/-. Carriage exara on all tranformers $4 / 6$ minimum.

$$
\begin{aligned}
& \begin{array}{l}
\text { TRANSFORMERS FOR POWER AMPLIFIERS } \\
\text { OUTPUT TRANSFOR MERS for use with KT66, KT88, }
\end{array} \\
& \begin{array}{l}
\text { EL34, 807, etc. Sec. titpped 3-7.5-15 ohmas. } \\
30 \text { watt } \mathrm{A}-\mathrm{A} \text { load } 6.6 \mathrm{~K}, 78 / 6 ; 50 \text { Watt } \mathrm{A}-\mathrm{A} \text { load } 3 \mathrm{~K},
\end{array} \\
& \text { 135/-; } 100 \text { watt A-A load } 3 \mathrm{~K}, 225 /-
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
200 / 240 \mathrm{v}, \mathrm{Bec} .42 \mathrm{v} 4 \mathrm{a} ; 50 \mathrm{v} 10 \mathrm{Ma}, 150 /- \text {. } \\
\text { CHOKES }
\end{array} \\
& 10 \mathrm{H}, 150 \text { Ma, 23/6; } 5 \text { H, } 250 \mathrm{Ma} \text {, } \\
& \begin{array}{l}
\text { Now boxed farnous makes for pablic address systems, } \\
\text { buss guitars, electronic organs, } \mathrm{Hi} \mathrm{Fi} \text {, etc. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
110 /-; 12 i n . ~
\end{array}
\end{aligned}
$$

LT FLUORESCENT LIGHTING, inputs $6,12,24 \mathrm{v}$, DC; $12 y$
fittinge with tube 8 watt $75 /-13$ watt $125 /-$; etc, Inverters 12
 S.A.E. ALL ENQUIRIES PLEASE. MAL ORDER ONLY.
48 KENILWORTH ROAD, EDGWARE, MIDDX. HA8 8Ya
C'arriage extra all order.
Tel: $01-9589314$

WW-111 FOR FURTHER DETAILS

BquonN Cantrós

 ELECTRICITY SLOT METER ($1 /-$ In slot) for A.C. mains. Fixed
taritt to your requirements.

 WIRELESS SET No. 38 A.F.V. Freq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{s}$. Work-
ing range 1 to 2 miles. Size $104 \times 4 \times 6$ in. Weight $6 \neq 1 \mathrm{H}$, Includes power supply 8ib.-and spare valves and vibrator also
tank aerlal with base. $£ 8$ per pair or $£ 4$ gingle. P.P. $25 /-$. tank qerlal with base. £8 per pair or £4 single. P.P. $25 /-$.
MODERN DESK PHONES, red, green, blue or topaz, 2 tone grey or black, with.
f4/10/-. P.P, $7 / 6$.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES In Bake
lite case with Junction boz handset. Thoroughly overhauled Guaranteed. $\mathbf{~} 8 / 10 /-$ per unit.
20-W AY PRESS-BCTTON INTER-COM TELEPHONES In Bake teed. E\%/15/-per unit.
QUARTERLY ELECTRIC CHECK METERS. Reconditioned QUAETERLY ELECTRIC CHECK METERS. Reconditioned
as new. $200 / 250 \mathrm{v} .10 \mathrm{~A} .42 / 6 ; 15 \mathrm{~A} .52 / 6 ; 20 \mathrm{~A} .57 / 6$. Other amperages available. 2 years' guarantee.
8-BANE UNISELECTOR 8-BANE UNISELECTOR SWITCHES. 25 contacta, alternate
wiping $22 / 15 /-8$ bank halif wipe $£ 2 / 15 /-; 6$ bank hall wipe, 23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m, Open all day Saturday

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTNEAD LTID.
7. 9. Il Arthur Road, Reading, Herks.

Tel: 582605

EXCLUSIVE OFFERS

 AMPEX
Precision Instrumentation and Data

 TAPE DECKS

TYPE FR 100A*

 1 per eent. Accuracy 10^{5} per
week. Power input $105 / 125 \mathrm{v} 48$ to the cycles. Rack IIounting

 HIGHEST QUALITY 19" RACK MOUNTING CABINETS Totally Enclosed

DOUBLE SIDED. These cablinets will take rack panels
 tapped all the way down every ${ }^{\text {" }}$ "or thls purpose. They
are ftted with "Instantit" patent fully adjustable rack are fitted with "Instantit" patent fully aduutable rack
mounte which are vertically and horizonsaliy adjustable - theese allow the panelel to be reccessed when they are hited with prolecting
enclose them by doors
\star Other features include-all corners and edges munded
\star Other features include- all corners and edges munied.
Interior tittings tropicallsed. Removable built in calle Inucts. Removable builit in blower ducts. Ventiliated and lusect profed tops. Detachable eide panels. Full length ordered with cabiuets. Made in U.g.A.-cost the American ordererd with cadiwe 2 . Made in U.8.A.- Cosit the American
Government 2107 before devaluation. Finished in grey rimer and in new concition.

Fe £26.10.0 each (Carriage extra)
Doors are not needed if panela 8 sre mounted hack and front and they are not required to be enclosed.
TYPE C: 90^{*} high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide. Anerlcan panel mounting cabinets, nade by Dukaue, U.S. A Open front Atted rack nounts drilled and tapped all the Finiahed In grey these cabinets have beell used hut are !n
good condition but if denoritlon is of tmportance it is ecurwonded they are re-sprayed before uape.
PRICE £15.0.0 each (Carriage extra)
TYPE D: 76^{*} bigh $\times 18^{*}$ deep $\times 22^{*}$ wide. These are
slightly maller and anished in black otherwise they are imilar in construction and conditiou to Type C above Made by PR.C.A. of U.S.A. also OTher TYPES 80^{*} TO 88* HIGH AVAILABLE Full detalls of all above available on request. TRA NSPORT: We have inade special economical transport
arrangements for these cabinets to enaure they arrive arrangements for these cablneth to ensure they arive
undamaged and to avoid expensive crating. Full detaila on request.

40-page list of over 1,000 diferent items in stock available-keep one by yon.	
working order \star Laibgear Stabilised Power Units D.4140, $3200 \vee 7 \mathrm{~m} / \mathrm{s}$.	
all Power Reguiated Power Supplies 500 v $500 \mathrm{~m} / \mathrm{a}$	
Marconi BD-971 16" C.C. T.V. Channal Camera Control Unit, Monitor Cables	
Dawe Wide Range Oscillators 0/20,0	
太Marconi Universal Bridges TF-888A	
$\begin{array}{lll}0-10 \mathrm{~W} \\ \text { Elliott Recording A.C. Voltmeters } 180 / 260 \text { - } & \text { £ } 270\end{array}$	
-150/2 Marconi	
Mox 1385 Plate Maker.	
and in transparent outer plastic case.	
Mast Sections with mating lugs lor joining	
up to 200 feat. Now condition.	
$130.0 \mathrm{~m} / \mathrm{es}$	
E.M.I. Tape Recorders BTR-1.	
der	
2 to 16 inoh sides n to 200 ft . high $\begin{gathered}\text { According } \\ \text { to }\end{gathered}$	
Good prices paid	
Magnetic Recording Tape made by	
E.M.I. (USA) 3600 ft on N.A.B. Spools	
Track Data High speed	
aran Mraminated Drawing Tables ${ }^{\text {a }} \times 3{ }^{\text {a }}$	
Precision Maina Filter Juits new	

P. HARRIS

ORGANFORD-DORSET BHI6 6ER
WESTROURNE 650
Available from leading booksellers or

聂
 The Butterworth Group

88 Kingsway London

dittranSALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS FOR W.W. CAP.-DIS IGNITION SYSTEM GNITION SYSTEACh	TOP HAT SILICON RECTIFIERS. All good. No short or open circuit devices.
2N3525 15/-	750 mA . 63 per 100 , 112.10
2N3055 12.	per 500.
2N3702... $. . \quad . .3$ 3/-	
2N3704.. 3/-	PLASTIC PNP SILICON
IN4001.. 1/6	TRANSISTORS. Manufac-
IN4005 4/-	turer's seconds from
New and fully guaranteed.	2N3702-3 family. Ideal cheap trans. for manufacturing etc. \& 8500 , $\mathbf{1 3 . 1 0} 1,000$ pieces.
S.C.R's 16 AMP (unplated)	PLASTIC NPNSILI,
1-24 25-99 100 up	Manufacturers' seconds from
100 PIV 9/6 7/6 6/-	2N3707-3711 family. Ideal
400 PIV 14/- 12/- 10/-	cheap trans. for manufactur-
All tested perfect functional	ing etc., 67.10 500, ¢12.10
devices guaranteed.	1.000 pieces.

\section*{1/6 TESTED TRANSISTORS each. Planar or Gorm. Fully Tested and
 | ACI25 | 36 | NKT713 | 2G381 | 2N2926 |
| :---: | :---: | :---: | :---: | :---: |
| ACl26 | BCIO8 | NKT773 | 2G382 | 2N2220 |
| AC127 | BC109 | OC44 | 2G399A | 2N3707 |
| AC128 | BFY50 | $\bigcirc \mathrm{OC45}$ | 2N696 | 2N3711 |
| AC130 | BFY51 | OC71 | 2N697 | 2N2906 |
| ACY19 | BFX84 | $\bigcirc{ }^{\circ} \mathrm{C} 72$ | 2N706 | 2N2907 |
| ACr20 | BFX86 | $\bigcirc \mathrm{OC75}$ | 2N708 | 2N2696 |
| ACY2I | BFX88 | $\bigcirc{ }^{\circ} \mathrm{CBI}$ | 2 N 929 | 2N3391 |
| ACY22 | NKT141 | $\bigcirc{ }^{\circ} \mathrm{C} 82$ | 2 N 930 | 2N3702 |
| ${ }_{\text {ACr }}{ }^{\text {a }}$ | NKT142 | TIS44 | $2 \mathrm{Nll3l}$ | 2N3703 |
| ACY28 | NKT212 | 2G301 | 2 N 1132 | 2 S 102 |
| ACY29 | NKT213 | 2 G 302 | 2 N 1613 | 25103 |
| | NKT214 | $2 \mathrm{G303}$ | 2 Ni 711 | 25104 |
| ACY31 | NKT215 | 2G308 | 2N2904 | 2 S 732 |
| ACY34 | NKT271 | 2 G 371 | 2N2905 | 25733 |
| ACY35 | NKT677 | 2G374 | 2 N | |
 TRANSISTOR EQVT. BOOK}

2,500 cross references of transistors-British, European,
Exclusively distributed by DIOTRAN SALES. $15 /-$ EACH.
Vast mixed lot of subminiature glass diodes. Comprising of Silicon, Germ, Point Contact and Gold
Bonded types plus some Zeners. 500,000 available at

BRAND NEW FULLY TESTED EPOXY CASE BEN 3000 and replacement for 2 N2646. Full data available.
OWEST PRICE AVAILABLE ANYWHERE 100 iff LOWEST PRICE AVAILABLE ANYWHERE. 100 off $4 /-$ each $= \pm 20 ; 500$ off $3 / 6$ each $=\mathbf{E 8 7 . 1 0 ; 1 , 0 0}$
$=~$
$=150$. Sample devices $7 /$ - each on request.

HIGH QUALITY SILICON PLANAR DIODES. for OA200, OA202, BAY 38 , IS 130 , 1 I $940.200,000$ to clear for OA200, OA202, BAY 38 , ISI $30,15940.200,000$ to clear
at $£ 4$ per 1,000 pieces. GUARANTEED 80% GOOD.

G FULLY TESTED DEVICES AND QUALITY OA202 Silicon Diode. Fully Coded. 000 piv 250 mA Dey Price
OA200 Silicon Qiode. Fully Coded.
BY 100 SIL. RECT'S 800 PIV 550 mA .
-10 2/3 each: $50-992 / 3$ each; $100-999$ 2/- each; 1,000 up

Post and Packing costs are continually rising. Please add
I/- towards same. CASH WITH ORDER, PLEASE. GlRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

QUARTZ CRYSTAL
UNITS from

- $1.4-20 \mathrm{MHZ}$ - fast delivery - HIGH STABILITY

$W C 2 B 6 A B$

"W.W." HI-FI KITS

* LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout detail.
Kit price from $\mathbf{~ 7 . 5 . 0}$ (mono, mag.p.u. $+2 / /$ P.s). Kit price from $\mathbf{~} 7.5 .0$ (mono, mag.p.u.+2 1 /P.s) * LINSLEY HOOD SIMPLE PRE-AMP Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus
front panel. Mono 66.5.0. Stereo $£ 11.8 .0$ inc. p. * BAILEY 30W AMPLIFIER (Nov. '68)

Mk. IV PCB has extra pre-set for quiescent current.
Output capacitor and PCB mount directly and Output capacitor and PCB mount directly and
compactly on specially designed generous heat-sink. * LINSLEY HOOD I5-20W AMPLIFIER

July 1970 latest and ultimate design. O/P capacitor PCB, Tr3, 4 \& 5 mount compactly onto heat-sink Our kit personally tested and approved by the designer. Gain of O/P TR's >100.
POWER SUPPLIES (simple and stab'd) available.
HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets O/P Tr's matched $\pm 10 \%$ @ lc=1 amp.
AFTER-SALES SERVICE at reasonable cost.
REPRINTS of articles at $6 /-$ per copy post free
DETAILED PRICE LISTS at I/- (Refundable with order).
PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY FIRST APPOINTMENT.

A. 1 FACTORS

72 Blake Road, Stapleford, Nottingham

Tel. Nottingham 46051 Giro No. 4876008 (8 a.m.-10 p.m. 7 days/week)

INTERCONTINENTAL COMPONENTS

 for:
Electrolytic Capacitors

from 6 V to 500 V DC wkg 5 mfd to $10,000 \mathrm{mfd}$

Available from stock

INTERCONTINENTAL COMPONENTS

Electric House,
18 King St., Maidenhead, Berks. 5L6 IEG

Tel: MAIDENHEAD 32466

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

storage
units
A PLACE FOR
EVERYTHING
EVERYTHING
in ITS
PLACE!

Newest. neatest. system ever devised for storing small parts and components: resistors, capacitors. diodes,
transistors, etc. Rigid plastic units. intertock together in transistors, etc. Rigid plastic units. interlock together in drawers have label slots/hendies on front. Build up any size cabinet for wall. bench or table top.
BUY AT TRADE PRICES!
SINGLE UNITS (5ins $\times 2 \frac{1}{4}$ ins $\times 2 \frac{1}{2}$ ins) Usually $2 / 11$ each. DOUBLE UNITS 15 OUR PRIC

PLUS QUANTITY DISCOUNTS!
Orders $\mathrm{E5}$ and over DEDUCT $1 /-$ in the $\mathbf{£}$
Orders E 10 and over DEDUCT $1 / 6$ in the f
Orders E 10 and over DEDUCT $1 / 6$ in the \mathbf{f} Orders $£ 20$ and over DEDUCT $2 /-$ in the $£$ PACKING/POSTAGE/CARRIAGE: Add 6/- 10 all orders under $£ 5$. Orders $£ 5$ and over, packing/postage/carriage
free. free.

QUOTATIONS FOR LARGER QUANTITIES

WVIMYT

(Dept. WW2) 3j albert road. HENOON, LONODN, N.W. 4.
\star ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star

 rand now. British made. Dotails S.A.E
BAKER 12 in. MAJOR £9
 $30-14,500$ c.p.s., 12 in . double cone, woofer and tweeter cone together
with a BAKER ceramic magnet with a BAKER ceramic magnet assembly having a flux density of
$14,000 \mathrm{gauss}$ and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils 40 c.p.s. Rated 20 watts. Voice coils
available 3 or 8 or 15 ohms. Post Free. Module kit, $30-17,000$ c.p.s. Size Module kit, $30-17,000$ c.p.s. Size
$19 \times 12+$ in. with tweeter, crossover, $19 \times 12 \frac{1}{2}$ in. with tweeter, crossover, bafle, instructions.
Ideal for Hi Fi or P.A. LOUDSPEAKER CABINET WADDING 18 in. wide, $3 /-$ per ft. run. Post 2/- per order.

THIS ELAC CONE TWEETER IS OF THE VERY LATEST DESIGN AND GIVES A HIGHER STANDARD OF PE The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth extension of total res. ponse from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size $3 \frac{1}{3} \times 3 \frac{1}{2} \times 2 \mathrm{in}$. deep. Rating 10 watts. 3 ohm or $15 \mathrm{ohm} \quad 38 / \mathrm{most}$ models.
THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
Leaflet S.A.E. $47 /-{ }_{3 /-}^{\text {Post }}$
RETURN JF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES RADIO GDMPDNENT SPEGIALISS 337 WHIIEHORSE ROAD, CROYDON. TeI: 01-684-1665

Quality Parts

for the discerning builder
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolu man graded transistors
BAILEY $30 w$ POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $4 \frac{14^{\prime \prime}}{} \times 22^{33^{\prime \prime}}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only.
BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World
LINSLEY HOOD CLASS AB. We have some parts for this design but a Printed Circuit will not be available. We can supply information re thermal stability to conseructors interested in this circuit. SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork. DINSDALE. We shall be putting the parts for this design into honourable retirement shortly, so please order quickly if there is anything you require.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.

Full details are given in our Free lists. Please send footscap s.a.e.

HART ELECTRONICS

321 Great Western Street Manchester M 14 4AR
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

WW-114 FOR FURTHER DETAILS

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

```
Rate: 45p (9/-) PER LINE. Average seven words
    per line.
-Name and address to be included in charge if used
    in advertisement.
Box No. Allow two words plus 25p (5/-).
Cheques etc., payable to "Wireless World " and
    crossed "& Co."
- Press Day llth February for March 1961 issue.
```

P-

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 91-103

	Page	Pagr	Pag
A1 Factors	110	Hall Electric Lt	Radio \& TV C
A.H. Supplies	106	Harris Electronics (London) Ltd. 59	Radio Components Specialists Lid.
Acoustical Mfg. Co.,	6	Harris, P.................................... 109	Radio Exchange Co. Led...................... 107
Adcola Products, Ltd.	18	Hart Electronics... 111	Radiospares Led.
Anders Electronics, Ltd	24, 34	Hatfield Instruments Ltd. 44	Rank Audio Visual Litd.
A.N.T.E.X. Itd.	49	Heath (Gloucester) Ltd. 25	Rastra Electronics Ltd.................... . . . 44
Associated Automation 2 Ltd	8	Henrys Radio Ltd.......................... 66, 67	R.C.A. (G.B.) Ltd. 51
Associated Electronic Engineers	35 59	Henson, R., Ltd................................. . 107	R.S.C. Hi -Fi Centres
Ates Electronics Ltd....	59		R.S.T. Valves Ltd..
Audix B. B., Ltd. ${ }^{\text {a }}$ Avel	28		Rendar Instruments Lid.
Aveley Electric Ltd.	36		Reslo Mikes.
Avo Ltd......	35	I.M.O. Precision Controis Ltd.	
		Industrial Insts. Ltd. 59	
Batey, W., \& Co.	61	Instructional Handbook Supplies 106	Salford Electrical Insts. Ltd. 44
Bentley Acoustical Corporation Ltd	76	Intercontinental Components 110	Samsons (Electronics) Ltd...................... ${ }^{40}$
B.I.E.T.	13	Italtel S.P.A.. Cover iii	Sansui Electric Co. Ltd.
Bi-Pak Semiconductor	73	Ivoryet Ltd..................................... 111	Service Trading Co.
Bird Electronics Led.	24		Shure Electronics Ltd
Bi-Pre-Pak Ltd	78		Sinclair Radionics Ltd. 54, 55, 56
Black, J.	106	J.E.F. Electronics... 108	S.M.E. Ltd.
Bradley, G. \& E., Ltd.	17, 19	Jackson Bros. (London) Ltd. 32	S.N.S. Communications Ltd. 37, 60
Brenell Eng. Co. Ltd.	30 59	Jackon Bros. (London) Lid.	Smith, G. W. (Radio), Ltd.................. 69, 70, 71
Britec Ltd....	59		Sonex '71................................ 61
Bulgin, A. F. \& Co., Lrd. Butterworth \& Co. (Pub.), Led	- $\begin{array}{r}52 \\ 110\end{array}$	Keytronics 66	Special Product Distributors Ltd. 28
Butterworth \& Co. (Pub.), Lid	. 110	Keytronics 66	Starman Tapes. 108
			Stephens Electronics....................... 42, 77
Calan Electronics	42	Labhire Ltd. 112	Sterad Instruments Lid. 106
Cesar Products Ltd. (Yukan)	107	Lasky's Radio Ltd. 66,82	Sugden, J. E., Ltd. ${ }^{\text {a }}$, 22
Chiltmead Ltd.	86, 109	Lawson Tubes..... ${ }^{\text {a }}$. 108	Sutton Electronics Lid. 106
Clubmans Club, The	Loose Insert	Ledon Instruments Ltd. 59	
Colomor (Electronics Ltd.)	85	Levell Electronics Ltd. 29	
Computer Sales and Service Ltd	62	Light Soldering Developments Ltd........... 32	
Communication Accessories \& Equip	d. .. 104	Limrose Electronics. 82	Tape Recording Magazine 106
Concorde Instrument Co	106	Livingston Hire Ltd.......................... $8_{84} 84$	Taylor Electrical Insts. Ltd. 43
Cotron Electronics Lid.	61	Lloyd, J. J. Insts., Ltd. 27	Tektronix U.K. Ltd.Cover ii, 21
Coutant Electronics Ltd..	. $\begin{array}{r}9 \\ \hline\end{array}$	London Central Radio Stores.................. ${ }_{\text {L }} 109$	Telequipment Ltd............................ ${ }_{46}$
Croydon Precision Inst. Co	. 57	Lowe Electronics............................ 106	Teonex Ltd. . 1 31
		Lyons Instruments...................... 39	Thorn Radio Valves \& Tubes Ltd.............. 48
D.E.W. Ltd.		L.S.T. Components Ltd........................ 81	Tinsley, H., \& Co. Ltd........................ 53
Diathane Ltd.	108		Iransaudio Ltd............................... ${ }^{53}$
Diotran Ltd..	107, 110		
Discount Tape Recorder Centre, The	.. 18		
Dixons Technical (CCTV) Ltd...	57	McKnight Crystal Co............... M $^{\text {M, }} 110$	
Douglas Electronic Industries Ltd.	106		
Dymar Electronics Ltd..	41	$.74,75$	Ultron .. 12
		Milward, G. F.	Universal .. 107
Eagle International Ltd.	20	Multicore Solders Ltd................... Cover iv	
E.B. Instruments	107		
Edwards Scientific Int., Ltd.	60		Valradio Ltd.
Electro-Tech. Sales	68	Nombrex Led.............................. 30	Vitavox Ltd........ 84
Electronic Brokers....	. 64, 65, 106	Nusound (Sypha Sound Sales Led.)............ 61	Volfield Ltd.................................. 20
Electronics (Croydon) L	72		Vortexion Ltd................................. 14
Electrovalue	79		
Elektrim...	108		
English Electric Valve Co., Ltd.	3,4,5		
Erie Electronics Ltd.	.. 10	Oxley Developments Co., Ltd. 60	Watts, Cecil E., Ltd. Wayne Kerr, The, Co. Ltd........................ 107
		Oxey Deviopment Co, Lld................ 60	Webber, R. A., Ltd
Farnell Instruments Ltd	57		Welwyn Electric Ltd.......................... 7
Field Electric Firnor-Misilon Ltd	109		West Hyde Developments Ltd. 105
Firnor-Misilon Ltd......................	. 58 .	P.C. Radio Ltd.	West London Direct Supplies.
Futuristic Aids Ltd. 58	Plessey Electronics Pty., Ltd. 15	Weyrad, (Electronics) Ltd..................... 80
		Powertran Electronics......................... 108	"Which" Magazine.................. Loose insert
Gardners Transformers L Goldring Mfg. Co. Led.			Wikinson, L. (Croydon), Ltd.................. . 82
Goldring Mig. Co. Ltd Gothic Electrical Ltd..	. 23,40		
Gothic Electrical Ltd.,	.. 106	Quality Electronics Lid.......................... 84	
Grampian Reproducers Ltd.	26	Quartz Crystal Co. Ltd........................ 108	Z. \& I. Aero Services Ltd

When soldering fine copper wire, ordinary tin/lead solder alloys will absorb some of the copper, so that the diameter of the wire will be reduced.
Ersin Multicore Savbit Type 1 solder contains a small percentage of copper so that the solder is already 'saturated' with copper and will not absorb it from copper wire or copper laminate.
Savbit will also prolong the life of copper soldering iron bits by 10 times, thus eliminating the need for frequent resurfacing of copper bits and by keeping
the copper bits in good condition, the soldering speed and efficiency are increased.
Savbit Type 1 alloy contains 5 cores of noncorrosive extra fast rosin based Ersin Flux. Melting point is $215^{\circ} \mathrm{C}$. Recommended bit temperature is $275^{\circ} \mathrm{C}$.
Savbit Type 1 alloy with Type 362 Ersin Flux has received Ministry approval under number DTD.900/ 4535. It may be used for soldering processes on equipment for Services use in lieu of solder to BS. 219 .

7 lb . REELS
Available in standard wire gauges from $10-22 \mathrm{swg}$., on strong plastic reels.

1 lb . REELS
Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From $24-34$ swg. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel.)

SIZE 12
75 ft . approx. of 18 swg. on a plastic reel packed individually in a carton.

HOLLAND

Ersin Multicore Savbit Alloy is used by Bull Nederland of Amsterdam, Holland for the assembly of administration and statistics machines.

NEW ZEALAND
Ersin Multicore Savbit Alloy is seen being used at the factory of Bell Radio Television Corpn. Ltd., Auckland, New Zealand.

[^12]
[^0]: Special Products Distributors Ltd
 81 Piccadilly, London W1V OHL
 Tel: 01-629 9556 Cables: Specigold London W1

[^1]: PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\mathfrak{f 3}$ 0s 0 d (($\mathcal{3} .00$).
 Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: Birmingham: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 0EP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

[^2]: * Royal Garden Hotel, London W.8, May 18-21.

[^3]: * Marconi Elliott Microelectronics Ltd.

[^4]: *Allen Clark Research Centre (Plessey), Caswell,
 Northants.
 \dagger The subject of patent application 53916/69.

[^5]: * "Towards True Stereophony", Wireless World, Sept. 1969.

[^6]: *E. D. Frost, "Pulse-counting F.M. Tuner", Wireless World, Dec. 1965.

[^7]: * Newmarket Transistors Ltd.

[^8]: * Research laboratories of EMI Ltd.

[^9]: Electronic Components \&
 Test Gear Centre
 356 EDGWARE ROAD. LONDON, W.2.
 Tel: 01-402 4736

[^10]: TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F. Oscillator calibrated in 10 fundamental bands, covering a freq. of $100 \mathrm{Kc} / \mathrm{s}$ $120 \mathrm{Mc} / \mathrm{s}$. Also a buffer amplifier and modulator stage, a metering system, crystal Oscillator stage, and a self-contained Heterodyne Detector. The wide frequency range covers broadcast, standard short-wave, T.V. and FM channels Operates 115 V a.c. 5060 c , s. Output Meter 0-0.3 3 . Controls: Ext Mod.
 Int. Mod.; CW; Her. Det.; Xtal.; ArO put; RF Level; O/put Units; an O/put Multiplier. Slow and Fast motion dial. Price $£ 12.50$ very good secondhand cond.; or $£ 15.50$ "as new" cond. Carr. 75p.

[^11]: Laser Associates, the leading laser manufacturers in Europe, require a capable Chief Test Engineer to systematically organise the testing and quality control of our range of lasers and laser systems. Although some experience of lasers would be an advantage, this position does call for someone with substantial experience in electronic circuitry as the power supply requirements of the laser systems and accessories are extensive. The successful applicant would be required to work in Slough until the end of 1971 when the two divisions of the company will be integrated in a new factory in Rugby, salary negotiable to $£ 2,000$ p.a. A vacancy also occurs for a test engineer to act as his assistant.
 Please forward résumé to:

[^12]: Forifurgher details, please apply on your Company's notepaper to
 MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD, HERTS. Telephione: HEMEL HEMPSTEAD 3636 Telexfr 82363

