Stereo decader without coils

Television wohbulator design

AMplusFM-plus solid-state stability

NEW MARCONI HF SIGNAL GENERATOR TF 2002AS

Marconi Instruments TF 2002AS is a fully solid-state quality signal generator. It retains all the advantages which made its predecessor, TF 2002, a leader in its class for so long and has the five additional features described below.
These - together with facilities such as a built-in variable frequency a.f. oscillator, four-range crystal calibrator with its own loudspeaker, and r.f. output down to 10 kHz with 0 to 100% a.m. - add up to an extremely powerful combination . . and, incidentally, make TF 2002AS unique.

SPECIAL FEATURES

Frequency Modulation

In addition to the normal a.m. the TF 2002As has fully monitored, internal and external frequency modulation facilities.
Extended External Frequency 8hift
A control signal ± 1 volt d.c. gives $\pm 1 . j \mathrm{kHz}$ shift at 100 kHz rising to $\pm 50 \mathrm{kHz}$ at 10 MHz or above.

Directly Calibrated Incremental Frequency
The incremental frequency control is directly calibrated at all carrier frequency settings, with the facility for standardising against the crystal calibrator for maximum accuracy.

Symmetrical Levelling

The external carrier level control facility gives $\pm 100 \%$ variation for ± 6 volts d.c. control voltage.
Separate Modulation On/Off Switch
The internal variable frequency a.f. oscillator can be switched off without disturbing its frequency range setting.
Frequency range: 10 kHz to 72 MHz
Output Level: $\quad 0.1 \mu \mathrm{~V}$ to 2 volts e.m.f.
A.M.: 0 to $100 \%, 20 \mathrm{~Hz}$ to 20 kHz .
F.M.: $\quad 1.5 \mathrm{kHz}$ deviation at 100 kHz .

Price: 50 kHz deviation above 10 MHz .
Price: $£ 1,050$.
Full environmental specification. Adopted for military use.
Please write for full technical details.
MARCONI INSTRUMENTS LTD
A GEC-Marconi Electronics Company
Longacres, St. Albans, Hertfordshire, England.
Tel: St. Albans 59292. Telex: 23350

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

Our cover picture this month, which might be called "two kinds of digits', shows a five-by-seven array of light-emitting diodes made by Standard Telecommunications Laboratories. Display devices are discussed on page 444.

IN OUR NEXT ISSUE

The first of a series of articles on the elements of linear i.cs

Constructional details of a 100 -watt quality amplifier

Review of some of the latest techniques in domestic sound and television receivers

September 1970
Volume 76 Number 1419

Contents

417 The Integrated Circuit Industry

A116 INDEX TO ADVERTISERS

ibpa

Internationa Busmess
Piess Associales
I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Production \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE 1
(C) I.P.C. Business Press Ltd, 1970

Brief extracts or comments are allowed provided acknowledgement to the rournal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month) Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; §3 Os 0d. Overseas; 1 year 63 Os 0d. (Canada and U.S.A.; $\$ 7.50$). 3 years $\not \subset 13 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 $21204 / 5$. GLASGOW: 2-3 Claimmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd̉ Sireet, New York 10017. Telephone: (212) 689-3250.

The I.C. Industry-who will pick up the bits?

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.

When Dr. F. E. Jones, managing director of Mullard Ltd, Britain's largest manufacturer of integrated circuits, admits that his company is losing £1M per year on i.c. production and says that he "cannot see his way through the dense undergrowth of the i.c. world" it is time for us all to sit up and take notice. In particular the Government should heed his words for if it does not Britain's integrated circuit industry will be doomed.

The problem is simply one of price. Take for example one of the simple integrated circuits, the t.t.l., quad, two-input gate. This device requires 28 separate manufacturing processes and consists of a chip of silicon about 1.5 mm square containing 24 components, four of which are transistors. At the beginning of 1969 the selling price of this device was 15 s 6 d , by the end of the year it had fallen to 5 s 6 d but, at the present time, it must be marketed at between 1s 2 d and 1 s 8 d -which is well below manufacturing costs-in order to compete with American concerns.

How can the Americans sell at this price in the U.K. when Dr. Jones has said that he cannot see any way to produce the circuit for this sort of money now, or in one year's time or even five years' time no matter what production methods are used?

The Americans, of course, have a huge home market, most of which is a closed shop to outsiders because of the "Buy American Act". During 1969 this market absorbed 413.4M integrated circuits, of which about 342 M were digital. In the same period the U.K. produced only 12 M integrated circuits. Also the Americans have a huge investment in the Far East where they employ 20,000 to 30,000 workers. It would appear that the silicon chips are made in America and sent by air to the Far East where they are assembled into packages by workers paid about 8 d per hour.

If the finished products are taken back to the U.S. for distribution, tax is paid only on the added value. But what is the difference in value between a processed silicon chip and the same chip in a package? Because of the difficulty in assessing this added value the amount paid in tax could be negligible. When asked if the U.K. could not mount such an "offshore" operation to their advantage Dr. Jones said that the cost savings produced in this way would be nullified by our own import duty which is based on the selling price and not the added value. Even taking into account the obvious advantages the Americans have Dr. Jones said that he still could not see how they achieved such a low price.

It is obvious that either the Americans are selling off their surplus production in this country or they are making a deliberate attempt to undermine our own integrated circuit industry. The thought is frightening when one considers all the industries which employ integrated circuits and would therefore have to rely entirely on American sources of supply.

Before the Americans can be accused of dumping it has to be proved that they are selling components at a price which is lower than in the country of origin. But what is the country of origin when the various processes are carried out in different parts of the world?

If British-component manufacturers wish to export to America they have to prove to the American excise authority, before the goods are shipped, that the price takes into account shipping costs and is not less than the price in this country. British manufacturers have no such protection where American goods are concerned. They cannot go on sustaining such huge losses and prompt action is needed from the Government in the form of import controls if the integrated circuit industry is to survive.

In view of the gravity of this threat to the U.K. semiconductor industry, and indeed the whole of the electronics industry, it is surprising that no reference is made to the prevailing situation in the latest "statistical survey" of the industry issued by the Electronics "Little Neddy" on the day Dr. Jones made his announcement.

Phase-locked Stereo Decoder

Improved channel separation and low distortion obtained using an inductorless circuit

by R. T. Portus*, A.M.I.E.E. and A. J. Haywood*, A.M.I.E.E.

During a stereo broadcast the f.m. carrier transmitted by the B.B.C. is composed of three parts, as shown in Fig. 1. The components are:

1. Left plus right $(\mathrm{L}+\mathrm{R})$ forming the compatible mono signal containing frequencies up to 15 kHz .
2. Left minus right ($\mathrm{L}-\mathrm{R}$) which amplitude modulates a 38 kHz carrier. (The carrier is suppressed to better than 1% in order to make full use of the maximum deviation available at the transmitter.)
3. A low level "pilot tone" at half the carrier frequency, i.e. at 19 kHz , whose zero crossing points are coincident with those of alternate cycles of the 38 kHz suppressed subcarrier. This tone is used as a reference to regenerate the suppressed subcarrier at the receiver.

Stereo decoders

There are many forms of decoders, ${ }^{1}$ the most popular being the switching type where the 19 kHz pilot tone is filtered by a tuned circuit, frequency doubled (to 38 kHz) and used to switch the complex signal-as shown in Fig. 2. Appendix III explains why complete channel separation is not achieved by such simple switching.

Limitations of tuned-circuit decoders

Poor separation results if the derived 38 kHz switching signal is modulated by any extraneous signal. This means that all the stereo information has to be removed by the tuned circuit. Also, if the output from the 19 kHz tuned amplifier contains any frequencies which pass through subharmonics of 38 kHz , the frequency multiplication stage will produce a modulation of the recovered 38 kHz . This in turn will produce sum and difference frequencies ("birdies") when switching the incoming

Fig. 1. Frequency spectrum of a stereo multiplex signal.

Fig. 2. Block diagram of switching stereo decoder.
complex signal. From the above considerations it may be seen that a high- Q tuned circuit is required. On the other hand, if the Q is made very large the phase of the recovered subcarrier becomes extremely drift sensitive. Any change in phase will reduce the separation. The effect of uncompensated phase error on separation is as follows.

Phase error at 19 kHz (deg.)	Separation (dB)
1	82.5
$2 \frac{1}{2}$	54.5
5	42
10	30
15	23

Fig. 3 shows the change for small changes in tuned circuit L or C with various values of Q.

Phase-locked decoder

Because of the shortcomings of tuned decoders the authors decided to use a phase locked loop to regenerate the 38 kHz suppressed subcarrier. A phase-locked loop is used to lock a locally generated signal in phase with an input signal whose frequency is liable to vary. Such a system may be given a very narrow bandwidth so that noise components of the input signal will not affect the loop operation.

If a locally generated 38 kHz signal is binary divided the remaining 19 kHz may be phase locked to the "pilot tone". This means that alternate zero crossings of the 38 kHz signal are coincident with those of the 19 kHz pilot tone. The locally generated 38 kHz signal is therefore in phase with the suppressed subcarrier.
The performance of such a system may be made superior to that of decoders using tuned circuits for the following reasons: 1. A phase-locked oscillator is a closed-loop

Fig. 3. Phase changes due to variation of L or C in a parallel tuned circuit.
system and so changes in component values, due to ageing, temperature etc., are corrected. Other systems have no comparison between input and output, and so errors may only be reduced by careful matching, the use of high quality components and accurate setting up.
2. The generation of "birdies" is very much reduced because the loop is given a low bandwidth, ensuring that phase modulation of the 38 kHz switching signal can only occur at low frequencies.
3. The setting up of a phase-locked loop is a simple matter, a d.c. voltmeter being the only instrument used. For other decoders an oscilloscope is usually required.

Performance of phase-locked decoder

The decoder (British patent application No. 35600/69) was tested using a Radiometer stereo signal generator, and the following specification obtained.

Frequency	Separation
80 Hz	28 dB
1 kHz	45 dB
10 kHz	40 dB

In a decoder fitted with a variable matrix the separation was 56 dB at 1 kHz .

Distortion at 1 kHz and with full modulation is 0.3% (predominantly 2 nd harmonic), and the distortion introduced by crosstalk at 1 kHz is 67 dB down at full modulation. The mono and stereo gains are within 1 dB of each other. Cancellation is 45 dB . The input voltage range is 130 mV r.m.s. to 1.3 V r.m.s., and the output voltage 250 mV r.m.s.

The separation at 80 Hz could be improved by using matched components in the p.s.d. stage, but directional information is negligible at this frequency so that component matching is hardly worthwhile.

Operation of a phase-locked loop

The phase-locked loop (Fig. 4) can be looked upon as a servo-amplifier in which the 19 kHz pilot tone is used as an input reference phase, and the servo loop used to control a local oscillator in a fixed phase relationship. If there is a fixed phase between two signals then they must be at the same frequency. A phase-locked subcarrier may be regenerated by deriving the 19 kHz from 38 kHz by use of a binary divider. Alternate zero crossings of the 38 kHz signal are therefore held locked to the incoming 19 kHz .
The operation of the loop is as follows. The balanced phase sensitive detector (p.s.d.) produces a d.c. output proportional to the difference in phase between the input frequency $\left(f_{\text {in }}\right)$ and a locally derived frequency (f_{o}), plus higher frequency components produced by the chopping of the input signal. For a balanced p.s.d. the lowest frequency present is that produced by the highest audio frequency (15 kHz) beating with the 19 kHz chopping signal. The difference signal is $4 \mathrm{kHz}(19 \mathrm{kHz}-15 \mathrm{kHz})$. This error signal is then amplified and low pass filtered by the error amplifier. The filtering removes the high frequency signals produced by the balanced modulator. The error amplifier output is used to control a voltage controlled oscillator (v.c.o.).

If the p.s.d. is not perfectly balanced small low-frequency audio signals will be present at the p.s.d. output. If the frequency of these signals approaches the loop bandwidth they will not be completely filtered out by the error amplifier. The resulting "ripple" on the error amplifier output will cause "jitter" on the v.c.o. output (i.e. phase modulation).

Loop operation is such that a change in phase between ($f_{\text {in }}$ and f_{o} (e.g. due to drift)

Fig. 4. Block diagram of phase-locked loop.

Fig. 5. Complete stereo decoder system built round the phase-locked loop.
causes the output of the p.s.d. to drive the v.c.o. in such a direction as to hold the phase of $f_{\text {in }}$ locked to that of f_{o}.

The system behaves as a servo-loop with a bandwidth determined by the time constant of the filter in the error amplifier.
When deciding on loop bandwidth two points have to be considered. These are "jitter" on the v.c.o. and the time required to pull into lock. The first point is important because phase jitter will reduce channel separation. Jitter is minimized by having a low loop bandwidth.

On the other hand if loop bandwidth is made too small the loop will take a long time to pull into lock.

A compromise must therefore be made and a bandwidth of 25 Hz was found to be adequate.

Theory and design equations for the loop are given in appendices I and II.

Practical decoder system

In Fig. 5 the pre-amplifier acts as a buffer on the tuner output. Its gain is made variable so that a fixed level of pilot tone is presented to the loop independent of the tuner output level.

The phase detector is balanced, and the error amplifier is made differential in order to maintain balance. The output from the error amplifier constitutes the control voltage of the voltage controlled oscillator (v.c.o.) which is free running at approximately 76 kHz .

By the use of binary dividers square-wave outputs are obtained at 38 kHz and 19 kHz . The former output drives the decoding transistors and the latter the loop p.s.d. transistors. The decoder outputs are matrixed and de-emphasized to provide the left and right channel outputs.

On acquiring lock an output is obtained from the in-phase detector. This output is amplified and filtered, and used to allow decoding to begin, and to drive a stereo indicator lamp, if required.

Circuit description

The complete decoder circuitry is shown in Fig. 6. $T r_{1}$ and $T r_{2}$ comprise a pre-amplifier whose output level is adjusted by $R V_{1}$ to set the p.s.d. gain constant. The p.s.d. consists
of $R_{5}, R_{7}, T r_{3}$ and $T r_{4}$, and these transistors are used in the inverted mode to minimize offset voltage. Since the bases of Tr_{3} and $T r_{4}$ are driven alternately at 19 kHz the p.s.d. and differential error amplifier $I C_{1}$ form a double-sideband suppressed-carrier modulator, the output of which is modified by the error amplifier response.
Audio signals close to the loop bandwidth are attenuated by C_{3}. The phase shift due to $C_{3}\left(10_{2}^{1 \circ}\right)$ is corrected for in the matrix which is fully described in a later section.

The error amplifier $I C_{1}$, type U6E7709393 or similar, is a low cost differential inteintegrated operational amplifier. This is chosen for its high gain and low input offset voltage. At $\pm 6 \mathrm{~V}$ supply the typical open loop gain is 72 dB .
C_{4} and C_{6} provide an additional h.f. rolloff beyond the loop unity gain frequency so that loop stability is not affected.
The amplifier response is tailored to give an overall loop bandwidth of 25 Hz with an error response damping factor of 0.707 . The d.c. gain is chosen from a consideration of the static error due to v.c.o. drift. The error is $<1^{\circ}$ at 19 kHz .
$R V_{2}$ provides an adjustment for input offset voltage, which would otherwise appear as a phase error. The low input offset voltage temperature drift of $I C_{1}$ ensures good phase stability.
The v.c.o. (T_{6} and $T r_{7}$) is a conventional astable multivibrator with the timing voltage of the bases controlled by $I C_{1}$. It is arranged to free run at approximately $76 \mathrm{kHz} . R V_{4}$ provides a fine frequency control by adjustment of the mark/space ratio.
R_{25} and D_{1} ensure that the v.c.o: will not operate above 80 kHz , by clamping the error amplifier input to approximately +0.6 V .

The 76 kHz signal is then applied to $I C_{2}$ which is a dual D-type SN7474 or similar binary divider. $I C_{2}$ will then provide a 38 kHz and a 19 kHz switching signal with a $1: 1 \mathrm{mark} / \mathrm{space}$ ratio. The 19 kHz signal is applied to the loop p.s.d. transistors Tr_{3} and $T r_{4}$, thus closing the loop. The 38 kHz signal is applied to the decoding transistors $T r_{11}$ and $T r_{12}$.

The bases of all the switching transistors are pulled negative to remove stored charge and to hold the transistors off in the presence of audio signals.

Fig. 6. Circuit diagram of decoder. Integrated circuits $I C_{1}$ and $I C_{3}$ are type U6E770 9393 or equivalent, and $I C_{2}$ type SN7474N or equivalent. Transistors can be BC108 or equivalent for $n-p-n$ types, and ZTX 500 or equivalent for $p-n-p$. Diodes are IS44 or equivalent. Resistors can be $\frac{1}{4} W 5 \%$ tolerance unless specified otherwise.

The action of D_{2}, D_{3} is to speed up lock-in at switch-on for outputs greater than $\pm 0.6 \mathrm{~V}$. The diodes shunt current away from C_{10} and effectively increase loop bandwidth. Between $\pm 0.6 \mathrm{~V}$ the diodes have no effect.

In-phase detector. Transistor $\boldsymbol{T r}_{10}$ is driven by both binary dividers so that it is off for $\frac{1}{4}$ cycle only of the 19 kHz . Thus a pulsed d.c. component is produced when the loop is locked. This signal is filtered and amplified by $I C_{3}$ and used for the following purposes: 1. To turn on a stereo indicator lamp, if required.
2. To allow decoding to begin in Tr_{11} and $T r_{12}$. If the decoder is allowed to switch during mono transmission, supersonic noise around 38 kHz will be heterodyned into the audio bandwidth causing a deterioration in s / n ratio. Also from some transmitters a 23 kHz low-level tone is present during mono transmission. This tone would produce a "beat" at 15 kHz in a free running decoder. For this reason the v.c.o. is not

Fig. 7. Oscillograms of typical waveforms generated by the locked-loop.

Upper: pilot tone $+150 \mathrm{~Hz}(A=B)$. Lower: emitter of Tr_{3}.

Upper: 19 kHz binary output. Lower: 38 kHz binary output.

Upper: Tr_{10} base drive.
Lower: Tr_{10} emitter.

Matrixing of $15 \mathrm{kHz} \operatorname{signal}(A=B)$. No de-emphasis. Pilot omitted.

Matrixing of 1.5 kHz signal $(A=B)$.
No de-emphasis. Pilot tone omitted.

As above with 19 kHz pilot tone included.
allowed to operate above 80 kHz , i.e. the binary output cannot exceed 20 kHz .
3. To ensure that the l.h. and r.h. channels do not reverse in the presence of noise etc. If the loop initially locks in the wrong direction i.e. 1.h. and r.h. channels are reversed, a positive output will be produced by the in-phase detector, $T r$, will be turned on thus clearing the binaries, and reversing 1.h. and r.h. This will also be the case if a line transient flips one binary only. In the writers' experience the loop has never locked in the wrong direction. Typical waveforms of the loop in operation are given in Fig. 7.
4. To keep the mono and stereo gains approximately constant via Tr_{5}.

Matrix. Once the signal has been decoded by $T r_{11}$ and $T r_{12}$ it is matrixed and deemphasized via $T r_{14}$ and $T r_{15}$. Matrixing is necessary in any switching decoder as may be seen from the theory given in appendix III.

Power supply. The circuit of Fig. 6 is shown for a supply of $\pm 6 \mathrm{~V}$. Fig. 8(a) shows a suitable low cost regulator using a miniature mains transformer.

Single supply operation is accomplished from an unregulated (15 V minimum) supply by altering the "earth" rail from the 0 V to the -6 V line as shown in Fig. 8(b).

In this case there are two minor circuit alterations: capacitor C_{1} is reversed; and resistors R_{52} and R_{58} are returned to the former -6 V rail i.e. instead of the former 0 V rail. The signal "earth" line becomes, of course, the former -6 V line.

Setting up procedure

The decoder is set up using a d.c. voltmeter The stages are as follows:

1. With no input signal adjust $R V_{2}$ and $R V_{3}$ for 0 V at test points TP_{1} and TP_{2} respectively.
2. Apply a stereo signal and adjust $R V_{1}$ until a negative voltage 1.5 V appear at $T P_{2}$ (Adjust $R V_{4}$ if necessary).
3. Adjust $R V_{4}$ to bring TP_{1} back to zero.
4. Adjust $R V_{1}$ to bring TP_{2} to -1.5 V .

Operation

Several decoders have been built and tested by the authors, using both single and dual supply operation.
Over the last year they have proved to be

Fig.8. Decoder power supply arrangements. (a) Stabilized supply for ± 6 V. (b) Supply obtained from an unregulated 15 V (or greater) d.c. source.
reliable and have required no adjustment beyond the initial setting up procedure.
The high inherent separation, in particular at high frequencies, produces a marked improvement in performance over that obtained with more conventional decoders.

Notes

This decoder design arose from work done on a phase-locked loop frequency multiplier made to improve the resolution of an engine tachometer.

The authors are grateful to J. W. Hill and D. L. Lynas for the use of equipment and for helpful criticism, and thank Rolls-Royce Ltd for permission to publish.

A kit of parts including a printed circuit board is available, mail order only from Integrex Ltd, P.O. Box 45, Derby, DE1 1TW. The price is $£ 819 \mathrm{~s} 6 \mathrm{~d}$ plus 2 s 6 d for carriage and packing. This printed circuit board is adapted to single or dual supply options. The size of the board is $100 \mathrm{~mm} \times 125 \mathrm{~mm}$ (approx.) and it may be seen from the photograph that a high packing density has been achieved. To simplify assembly, component positions have been marked and the track is roller tinned. A power supply kit is also available.

REFERENCE

1. "Receiving Stereo Broadcasts", Wireless World, September 1966.

Decoder components mounted on a printed circuit board approximately $100 \mathrm{~mm} \times 125 \mathrm{~mm}$.

Appendix I

Loop Theory

The constants used are defined as follows:
$K_{d}=$ phase detector gain constant in volts/radian.
$K_{o}=$ v.c.o. gain constant in radians $/ \mathrm{s} / \mathrm{V}$ $(=2 \times \mathrm{Hz} / \mathrm{V})$.
$G(s)=$ error amplifier transfer function
$\theta_{\text {in }}=$ input reference phase angle.
$\theta_{o}=$ locally generated phase angle
$\theta_{e}=$ phase angle error $\left(=\theta_{\text {in }}-\theta_{o}\right)$.
The loop block diagram is redrawn below.

The integration term ($1 / s$) is introduced by the conversion of the frequency of the v.c.o. to its phase.

By inspection of the diagram
$\frac{\theta_{o}}{\theta_{i n}}=\frac{K_{o} K_{d} G(s) 1 / s}{1+K_{o} K_{d} G(s) 1 / s}=\frac{K_{o} K_{d} G(s)}{s+K_{o} K_{d} G(s)}$
The error amplifier has a response that can be shown to be

$$
\begin{equation*}
G(s)=\frac{A\left(1+s T_{2}\right)}{1+s\left(T_{1}+T_{2}\right)} \tag{2}
\end{equation*}
$$

where

$$
A=\frac{R_{1}}{R_{3}} ; \quad T_{1}=C R_{1} ; \quad T_{2}=C R_{2}
$$

Substituting (2) in (1) we get

$$
\begin{equation*}
\frac{\theta_{o}}{\theta_{\text {in }}}=\frac{\left[K_{o} K_{d} A /\left(T_{1}+T_{2}\right)\right]\left(1+s T_{2}\right)}{s^{2}+\frac{s K_{o} K_{d} A T_{2}}{T_{1}+T_{2}}+\frac{K_{o} K_{d} A}{T_{1}+T_{2}}} \tag{3}
\end{equation*}
$$

Where it is assumed $K_{0} K_{d} A T_{2} \gg 1$.
This is of the form

$$
\begin{equation*}
\frac{\theta_{o}}{\theta_{i n}}=\frac{2 \eta \omega_{n} s+\omega_{n}{ }^{2}}{s^{2}+2 \eta \omega_{n} s+\omega_{n}{ }^{2}} \tag{-6V}
\end{equation*}
$$

where using servo terminology $\omega_{n}=$ natural (undamped) frequency of the loop and $\eta=$ loop damping factor.

$$
\text { Thus } \begin{align*}
\omega_{n} & =\left(\frac{K_{0} K_{d} A}{T_{1}+T_{2}}\right)^{\ddagger} \tag{4}\\
\eta & =\frac{T_{2}}{2}\left(\frac{K_{0} K_{d} A}{T_{1}+T_{2}}\right)^{\frac{1}{2}}=\frac{T_{2}}{2} \omega_{n} \tag{5}
\end{align*}
$$

Static phase errors

Since the phase loop contains an integrator term then the steady state phase error will be reduced to zero if the v.c.o. free-running frequency is the same as that of the input frequency.
The response of the loop to a disturbance causing drift in the v.c.o. free running frequency can be obtained from the figure below.

where
$\omega_{\text {v.c..o. }}=$ free running v.c.o. frequency $\omega_{o}=$ disturbance (or drift) frequency.
It can be seen that

$$
\begin{equation*}
\frac{\omega_{\text {v.c. } 0}}{\omega_{o}}=\frac{1 / s . K_{o} K_{d} G(s)}{1+1 / s \cdot K_{o} K_{d} G(s)} \tag{6}
\end{equation*}
$$

By referring $\omega_{\text {v.c.. }}$ back to an equivalent θ_{e} we get
$\frac{\theta_{e}}{\omega_{o}}=\frac{1 / s}{1+1 / s K_{o} \cdot K_{d} \cdot G(s)}=\frac{1}{s+K_{o} K_{d} G(s)}(7)$
For a step input of $\omega_{o}=\Delta \omega_{o}$ then

$$
\begin{equation*}
\theta_{e} \cdot s=\frac{\Delta \omega_{o}}{s} \cdot \frac{1}{s+K_{o} K_{d} G(s)} \tag{8}
\end{equation*}
$$

Applying the final value theorem we get
steady state phase error $=\frac{\Delta \omega_{o}}{K_{o} K_{d} A}$

$$
\begin{equation*}
(\text { since } G(0)=A) \tag{9}
\end{equation*}
$$

This phase error is required in order to pull the v.c.o. away from its free-running frequency. By making $K_{o} K_{d} A$ sufficiently large the phase error can be made as small as required.

For those who wish to pursue phaselocked loop theory a very good account is given in "Phaselock Technique" by Floyd M. Gardner, published by John Wiley and Sons Inc.

Appendix II

Loop equation constants

P.S.D. gain constant. For a phase error γ, when the loop is locked the mean output voltage from the phase detector, V_{o}, is given by:
$V_{o}=\frac{V_{i n}}{\pi} \int_{\frac{\pi}{2}+\gamma}^{\frac{3 \pi}{2}+\gamma} \sin \theta \mathrm{d} \theta$
where $V_{\text {in }} \sin \theta$ is the input signal.
Thus $\left|V_{o}\right| \approx \frac{2}{\pi} \times V_{i n} \times \gamma$ where γ is small.
Thus, if we choose an input signal of 200 mV
peak to peak amplitude:

$$
K_{d}=63.7 \mathrm{mV} / \mathrm{radian}
$$

or

$$
K_{d}=63.7 \times 10^{-3} \mathrm{~V} / \text { radian }
$$

Steady state error. From equation (9) it may be seen that the steady state error is given by:

$$
\text { Error }=\frac{\Delta \omega_{o}}{K_{o} K_{d} A}
$$

where $\Delta \omega_{o}$ is the frequency difference of the free running v.c.o. and the pilot signal, K_{d} is the phase detector gain constant and K_{o} is the v.c.o. gain constant.
Now
$K_{d}=63.7 \times 10^{-3} \mathrm{~V} / \mathrm{rad}$ and
$K_{o}=1.2 \times 10^{3} \times 2 \pi \mathrm{rad} / \mathrm{s} / \mathrm{V}$ (measured)
For the v.c.o., the frequency drift is approx. $0.075 \% /{ }^{\circ} \mathrm{C}$. It follows that for a steady state error of 1° over $20^{\circ} \mathrm{C}$ temperature change.

$$
A=214
$$

From equation (4)

$$
\omega_{n}=\frac{K_{o} K_{d} A}{T_{1}+T_{2}} \quad T_{1}+T_{2}=4.16 \mathrm{~s}
$$

From equation (5)

$$
\eta=\frac{T_{2} \omega_{n}}{2} \therefore \quad T_{2}=9 \mathrm{~ms}
$$

Appendix III

Matrixing in switching decoders

In an f.m. stereo broadcast the instantaneous deviation of the transmitter is given as :

$$
\begin{gathered}
f=0 \cdot 9\left[\frac{1}{2}(\mathrm{~A}+\mathrm{B})+\frac{1}{2}(\mathrm{~A}-\mathrm{B}) \sin \omega_{s} t\right. \\
\left.+0.1 \sin \frac{\omega_{s}}{2} t\right]
\end{gathered}
$$

where $\frac{\omega_{s}}{2 \pi}=38 \mathrm{kHz}$
The pilot tone is $0.1 \sin \frac{\omega_{s}}{2} t$.
In a switching decoder the input signal is treated as if it were time division multiplexed. The signal is multiplied by a square wave:

$$
=\left(\frac{1}{2}+\frac{2}{\pi} \sin \omega_{s} t+\frac{2}{3 \pi} \sin \omega_{s} t+\ldots\right)
$$

Suppose there is phase error ϕ existing between the 38 kHz carrier used for modulation and the local 38 kHz decoding signal.

The output signal will be proportional to V_{1} where:

$$
\begin{aligned}
V_{1}= & {\left[(\mathrm{A}+\mathrm{B})+(\mathrm{A}-\mathrm{B}) \sin \omega_{s} t\right] } \\
& {\left[\frac{1}{2}+\frac{2}{\pi} \sin \left(\omega_{s} t+\phi\right)\right.} \\
& \left.+\frac{2}{3 \pi} \sin \left(3 \omega_{s} t+\phi\right)+\cdots\right] \\
& \left(\text { neglecting } \sin \frac{\omega_{s}}{2} t\right)
\end{aligned}
$$

$$
=\left(\frac{1}{2}+\frac{1}{\pi} \cos \phi\right) \mathrm{A}+\left(\frac{1}{2}-\frac{1}{\pi} \cos \phi\right) \mathrm{B}
$$

plus modulation
around $\omega_{5} 3 \omega_{5}$ etc, which is of the form:

$$
V_{1} \propto(\mathrm{~A}+\Delta \mathrm{B})
$$

where Δ is dependent on the phase shift ϕ.
If the decoding signal is shifted by 180°, the output signal may be shown to be proportional to V_{2} where: $V_{2} \propto(\mathrm{~B}+\Delta \mathrm{A})$.
The purpose of matrixing is to subtract ΔV_{2} from V_{1} and vice-versa.

$$
\text { i.e. } \begin{aligned}
V_{1}-\Delta V_{2} & \propto \mathrm{~A}+\Delta \mathrm{B}-\Delta \mathrm{B}-\Delta \Delta \mathrm{A} \\
& \propto \mathrm{~A}-\Delta \Delta \mathrm{A}
\end{aligned}
$$

It may be seen that signals from channel A only are present in one output and from channel B in the other.
Thus, if the phase shift ϕ is known, and hence Δ, complete separation of an ideal broadcast is achieved.

Announcements

A lecture on the British Trans-Arctic Expedition $1968 / 69$ will be given by Sqn. Ldr. F. W. Church. D. J. Collins and R. G. Shears at a meeting of the R.S.G.B. at 18.30 on 28 th September at the I.E.E., Savoy Place, London w.C.2.

A post-graduate evening course of sixteen meetings entitled "Integrated Circuit Electronics" will be held at North East London Polytechnic, Romford Road, London E. 15. beginning 22nd October. Fee $£ 4$.
"Single Standard Colour Television Receivers" is the title of a 6 -week course of evening lectures to be held at Norwood Technical College, Knight's Hill, London S.E.27, commencing 20th October. Fee $£ 1$.

Basic Electronics is the subject of two ten-evening courses comprising lectures and practical work to be held at Twickenham College of Technology, commencing 15th October and 21 st January. Further details from The Principal, Twickenham College of Technology, Egerton Road, Twickenham, Middx. Fee 5 gn per course.
A course in Modern Sound Studio Techniques is to be held through the winter at the Northern Polytechnic, Holloway Road, London N.7. Sessions will be on Thursday evenings beginning 29th October. The fee for the fifteen sessions is 6 gn .

The scope of the annual Manchester exhibition of measuring equipment is to be extended next year to include professional-grade products in three main groups: electronic equipment, electronic components and apparatus for industrial measurement and control. The show will be held at the City Hall, Deansgate, from 5th to 8th October, 1971. Organizers: Industrial Exhibitions Ltd, 9 Argyll Street, London WiV 2HA.

Following the acquisition of Painton \& Co., of Northampton, by the Plessey Co., the Resistor and Connector Divisions of Plessey have combined with Painton in whose name the business will in future be conducted with R. W. Addie continuing as managing director. Painton now have four operating divisions, three commercial-connectors, resistors and exports-and one production.

Television Wobbulator

2. Circuit Details

by W. T. Cocking, F.I.E.E.

In last month's article the general principles of a wobbulator specially designed for the alignment of television i.f. amplifiers were discussed. The complete circuit diagram of the instrument is shown in Figs. 1 and 2. The heart of it is the section labelled "Wobbly Oscillator" with the transistor $T r_{2}$. This is an h.f. type operating as a Colpitt's oscillator.

The inductor is L_{1} connected between the collector and the earth line, which is the positive of the $17-\mathrm{V}$ power supply. The base is earthed for r.f. through the $1-\mathrm{nF}$ capacitor C_{5} and the capacitors C_{7} and C_{6}, of 6.8 pF and 82 pF respectively, are between collector and base with the emitter joined to their
junction. These two form the split capacitance of a Colpitt's oscillator. The tuning capacitance proper comprises D_{2} in series with C_{8}, D_{2} being the varactor diode the capacitance of which is varied by a $50-\mathrm{Hz}$ voltage applied through R_{9}. The purpose of C_{8} is merely to prevent L_{1} from shorting D_{2} at 50 Hz .

The emitter resistor R_{8} completes the d.c. path of $T r_{2}$ but allows the emitter to be free at radio frequency. It is effectively in shunt with the base-emitter path of the transistor. The other resistor R_{7} and the zener diode Z_{1} give a stabilized supply of some 12 V for the oscillator.

Wound in bifilar fashion with L_{1} is L_{2}
which feeds the diode D_{1} with load R_{3} returned to a potential divider R_{1}, R_{2} across the $17-\mathrm{V}$ supply. The diode load capacitance is C_{2} with a filter R_{4}, C_{3}. The rectified output of the diode is positive-going and is applied in series with the small bias voltage from the potential divider to the base of $T r_{1}$ which acts as a d.c. amplifier with emitter resistance R_{6}. Its collector is joined to the base of $T r_{2}$ and fed through R_{5}. In Fig. 1, this stage is labelled a.a.c, for automatic amplitude control, and it forms a kind of a.g.c. system whose purpose is to minimize variations of the amplitude of oscillation of $T r_{2}$ as its frequency is varied.

If, for any reason, the amplitude increases

Fig. 1. Complete circuit diagram of the wobbulator, apart from the power supply. Tr_{2} generates a signal varying in frequency between 30.5MHz and 42.5 MHz which is fed to the amplifier under test through the attenuator controlled by $S_{1} . \operatorname{Tr}_{3}$ is the wave shaper which enables a linear relation between frequency and displacement on the c.r.o. to be obtained.
the rectified output of D_{1} increases and $T r_{1}$ passes more current. Consequently the voltage drop across R_{5} increases and the base-emitter voltage of $T r_{1}$ is reduced and this reduces the amplitude of oscillation. The net result is to reduce the magnitude of any changes in the amplitude of oscillation.

The output of the oscillator is taken from the single-turn coil L_{3} coupled to L_{1} and connected to the r.f. attenuator. This comprises a ladder network of resistors with a single-pole 6-way switch S_{1}. When terminated at the output socket by 75Ω this network has a constant impedance of 37.5Ω at the switch arm for any position of the switch and, because of R_{28}, a constant impedance of 75Ω is presented to the coupling coil L_{3}. The actual impedance is slightly different because R_{28} actually has the standard value of 39Ω. Further, resistor tolerances in the network affect the impedance relations slightly.

Viewed from the output socket the impedance varies with the switch position, but the variation is appreciable only between the full output and the next-to-full output positions. This is inevitable with a simple ladder attenuator. The attenuator is intended merely to adjust the output to the required level in steps of about 5 dB . It is not intended to provide precisely equal and known steps; that would entail a more elaborate construction and the use of precision resistors.

The total attenuation available is not more than some 30 dB . More may be needed with some i.f. amplifiers and it is recommended
that any such extra attenuation be provided externally. For this purpose, the Belling-Lee coaxial attenuators type L729 are particularly convenient and two 6-dB types (L729/6) and one 12-dB (L729/12) in conjunction with the internal attenuator should be sufficient for almost any amplifier.

We now come to the wave shaper, Tr_{3}. It was explained in Part 1 that the relation between the frequency generated by the oscillator and the voltage applied to the varactor diode D_{2} is logarithmic and that to obtain a linear relation between frequency and the X-deflection voltage of the oscilloscope it is necessary for the voltage applied to D_{2} to have an exponential relation to the deflecting voltage. This exponential relation
is provided by Tr_{3}.
A BF177 transistor is used. This is primarily intended for use as a video output stage and is rated for operation at 100 V . It is used here on a $70-\mathrm{V}$ supply, its collector being taken to earth (positive) through R_{11} of $220 \mathrm{k} \Omega$ and its collector voltage being fed to D_{2} through R_{9} and R_{10} of $330 \mathrm{k} \Omega$ each. The emitter is returned to the negative of the $70-\mathrm{V}$ supply. The collector potential with respect to earth can thus vary from zero (collector current cut-off) to almost -70 V (bottoming).

The varactor diode D_{2} is rated for a maximum of 60 V . The application to it of a higher voltage is thus dangerous to its life and as it is an expensive component it is

Fig. 2. Circuit diagram of the power supply. Two transformers are used since the requirements are then met by stock-item components.

8 -way cable to wobbulator

Top of the circuit board showing the placement of components.

Underview of the circuit board.
important to protect it from the accidental application of anything more than 60 V . The protective device comprises the diode D_{3} with R_{12} and the two zener diodes Z_{2} and Z_{3}. The zener diodes keep the anode of D_{3} at $51 \mathrm{~V}(\pm 5 \%)$ negative to the earth line irrespective of variations of the supply voltage or the tolerance of R_{12}.

As long as the junction of R_{9} and R_{10} is less negative to earth than this D_{2} is non-conductive and has no effect. When the junction becomes slightly more negative than the zener voltage D_{2} conducts and clamps the junction of R_{9} and R_{10} at about 0.7 V more than the voltage across Z_{2} and Z_{3}. Even if $T r_{3}$ is bottomed, therefore, the voltage applied to D_{2} is limited to 54.35 V , allowing for 0.8 V drop across D_{3} and for 5% high tolerance on the zener diodes. Two zener diodes in series are used instead of a single one to reduce the dissipation per diode. It is thought that this should reduce the risk of a diode going open-circuit, for that would put the protective circuit out of action.

The d.c. bias for Tr_{3} comes from the $70-\mathrm{V}$ supply. A stabilized supply of 18 V is first derived from R_{19} and Z_{4}. A variable voltage of 13.3 V to 18 V is available from the slider of the "Coarse mid-band frequency control" R_{20}. Roughly $1 / 20$ of this voltage is applied to the base of Tr_{3} by a potential divider comprising R_{14} and the network R_{15}, R_{16} and R_{17}, the last of which is variable to form a "Fine mid-band frequency control". This is essential when the equipment is used to provide a narrow-band sweep for soundchannel alignment. It is not essential with the wide-band sweep for vision channel use, but even then it is convenient.

A $7-\mathrm{V}, 50-\mathrm{Hz}$, supply from a mains
transformer is applied through a phasereversing switch S_{4}, S_{5} to a potential divider R_{22}, R_{24}. The maximum voltage available from R_{22} is 0.48 V r.m.s. and roughly $1 / 10$ of this is applied to the base of Tr_{3} through the potential divider R_{14}, R_{18}. The voltage actually applied to the transistor is thus variable from zero to a maximum of about 130 mV peak-to-peak. For the narrow sweep for the sound channel $S_{\overline{3}}$ connects 39Ω in shunt with R_{22}, and this reduces all voltages to about $1 / 12$.

Another $7-\mathrm{V}, 50-\mathrm{Hz}$, supply provides the X-deflection voltage for the oscilloscope. It is reduced to about 1.63 V r.m.s. by R_{26}, R_{27}; this is about 4.7V peak-to-peak. It is sufficient with the oscilloscope used to give an X-trace of about two-thirds of the screen width and the X -expansion control on the oscilloscope permits the length of trace to be increased beyond this as desired. If the oscilloscope used does not have such a control, then R_{26}, R_{27} should be replaced by a variable potentiometer. Of course, if the oscilloscope used needs more than some 20 V p-p for full X-deflection, a higher supply than 7V r.m.s. must be provided.

The voltage across R_{27} is applied through a simple variable integrator R_{25} and C_{9} to provide an X-deflection voltage which is lagging in phase on the input, the phase being adjustable by R_{25}. This is necessary to correct for phase shift in the Y -deflection circuits. This occurs mainly in the wave shaper and is caused principally by C_{8} with R_{9} and R_{10}. Some also may occur in the receiver under test, especially if the output from it is taken from a video stage. The capacitance of D_{3} also has an effect and, indeed, the addition of only 10 pF across D_{3} produces a noticeable phase shift. This may seem surprising in view of the frequency of 50 Hz , for few realize how sensitive circuits

Interior of the marker oscillator.

are to phase shift.

It is important to keep stray capacitance low in the collector circuit of Tr_{3}, for the waveform is not sinusoidal and so a phase shift introduced here cannot be completely corrected. It is found in practice that the residual error can be no more than the thickness of the trace on the c.r.t., which is quite adequate for all normal requirements.

This is the basic wobbulator. On one half-cycle of the sine-wave deflection the oscillator frequency varies from 30.5 MHz to 42.5 MHz , or such smaller range as may be set. On the next half-cycle it varies from 42.5 MHz to 30.5 MHz and, of course, the X -deflection varies in the opposite direction.

The traces for increasing frequency and for decreasing superpose to give a single visible trace only if the X and Y channels have the same phase shift and only if the
i.f. amplifier gives the same response to increasing and decreasing frequencies. The latter does not necessarily occur, and it will not if the sweep repetition rate is too great in relation to the bandwidth of the amplifier. With wideband amplifiers, such as television amplifiers, the effect is unlikely to be observed with a $50-\mathrm{Hz}$ sweep except, possibly, at the troughs introduced outside the passband by high- Q trap circuits. Even there, however, they have not so far been observed.

It is essential to have at least one marker on the oscilloscope trace to indicate frequency and it is a convenience to have two markers. An internal marker oscillator is provided and is Tr_{4}. Its circuit is substantially the same as that of the wobbly oscillator, but it is tuned by an ordinary variable capacitor C_{15} of 27 pF . It operates at 6.2 V from a supply stabilized by Z_{5}. It is built into a screening box, the zener diode and R_{41} being outside it to reduce the total dissipation within the box and so the temperature rise within it. The output is taken from a 2 -turn coil L_{8} through a $100-\Omega$ resistor R_{46} and thence by a twisted pair of wires to S_{2} and to L_{5} or R_{47}. The earthy lead from L_{8} is earthed at one point only, close to where it emerges from the screening box of the marker oscillator. This is important.

A socket for an input from a signal generator is provided on the front panel and is connected by a pair of twisted wires to L_{6}. The only earth point is that of the coaxial socket on the front panel. Again, this is important.

With the marker system used here it is desirable that r.f. from the signal generator
or from the internal marker oscillator should not reach the input of the i.f. amplifier. Unless each coupling circuit is earthed at one point only, it has been found impossible to prevent greatly excessive leakage. Even with the single-point earthing, there is still some leakage and with the marker amplitude control turned right down traces of the markers are visible on the screen. They are not at all troublesome in normal usage, however.

The internal marker oscillator has a second use. When S_{2} connects R_{46} to R_{47} the output is connected to L_{3} and so to the input of the attenuator. It is thus mixed directly with the output of the wobbly oscillator. The switches S_{2} to S_{5} are ganged together; they are actually a rotary switch wafer having 4 -poles, each 2 -way. When S_{2} connects the marker output to the attenuator it also brings R_{23} into circuit to reduce the sweep and by S_{4} and S_{5} it reverses the phase of the $50-\mathrm{Hz}$ voltage applied to Tr_{3}.

This is the condition for aligning an inter carrier sound channel. The marker oscillator is set at 39.5 MHz to simulate the vision carrier, and the wobbly oscillator is set by the mid-band frequency controls to sweep about a centre frequency of 33.5 MHz . The $6-\mathrm{MHz}$ beat between the two is developed in the receiver under test just as it is when a television signal is being received.

Reversal of the phase of the $50-\mathrm{Hz}$ drive to Tr_{3} is by no means essential, but is desirable in order that the frequency sweep shall be in the same direction for both channels. It is desirable to have frequency increasing to the right on the display and the connections are made to provide this

Sequences of traces with the markers moved by 2 MHz in each photo. The slight variation of trace length is caused by mains voltage fuctuation.
for the vision channel. Because the sound channel signal is generated as a difference frequency with the fixed frequency higher than the variable, the same connections would give a sound-channel display with frequency increasing to the left. This is remedied by reversing the phase of one $50-\mathrm{Hz}$ channel.

We now come to the buffer and marker mixer, which is operative only for visionchannel alignment. L_{3} is connected through a potential divider R_{48}, R_{49} to the input of $T r_{5}$. This is a normal r.f. amplifier stage with a tuned collector circuit comprising L_{4}, C_{19} damped by R_{53}. It is tuned to mid-band and has a 3 dB bandwidth of 12 MHz . Marker inputs from the internal marker oscillator and from a signal generator are coupled into L_{4} and there mixed with the signal from the wobbly oscillator. The whole is applied to the diode detector D_{4} and the beats between the signals are produced at its output. The marker amplitude control R_{56} is fed through quite a small capacitor C_{22}. This has been found desirable to remove some residual hum which otherwise produced a slight unwanted vertical deflection on the c.r.t. The output from R_{56} is mixed with the output of the receiver under test, which necessitates bringing this into the wobbulator instead of taking it directly to the c.r.o.

This output is brought in at the socket "Input from i.f. amp" and is taken through R_{57} of $6.8 \mathrm{k} \Omega$ to the socket marked "Output to c.r.o. Y-amp" and the marker signal is also fed to this through C_{24}.

The maximum amplitude of the marker signals is fixed by the design and can only be reduced by R_{56}. The amplitude required depends on the peak-to-peak amplitude of the output of the i.f. amplifier. The maximum marker amplitude has been made about right for an i.f. output of about 2 V p -p, and it is usable, although a little small, for outputs up to some 4V. Naturally, for small outputs of under 1 V it is too great, and that is why the amplitude control is provided.

The newcomer to a wobbulator will undoubtedly think the amplitude available is too small, but he will soon find that it is adequate. It is essential that the marker amplitude should not be too great, since if it is it can greatly distort the trace.

The wobbulator is designed for use with an oscilloscope which has provision for an external X-deflection voltage and has some kind of amplitude adjustment for it. It must also have a Y-amplifier which is capable of giving undistorted reproduction of pulses of some 5 ms duration which are repetitive at 100 Hz , for that is what the output signal from the amplifier under test approximates to. An amplifier with a 3 dB response at $50-\mathrm{Hz}$ would be useless. the gain should be such that an input of 1 V p-p will give full Y-deflection, and there must be adequate gain control.

The power supply is shown in Fig. 2 and is self-explanatory. The two $7-\mathrm{V}$ windings of T_{2} could quite well be on the core of T_{1}, but this would have necessitated a specially-wound transformer. By using separate transformers two standard components could be employed.

Half-wave rectification is used for both supplies with the diodes D_{5} and D_{6}.

News of the Month

Television camera design for constructors

The latest and most ambitious design to be issued by the Mullard Educational Service is for a closed-circuit television camera using a 1 -inch vidicon pick-up tube. According to the designers it can be built for about $£ 45$, which is less than half the price of the cheapest professional camera. A model we saw made up and working produced pictures which. although not of professional c.c.t.v. quality, were certainly good and would be acceptable to most schools. technical colleges and individual constructors.

Cost is saved by using a sub-specification vidicon of one of the simpler types (e.g. Mullard XQ1030. Philips 55850). by winding your own deflection and focus coils. by circuitry designed for cheap and readily available transistors (e.g. BCY70), by the use of a photographic camera lens rather than a television camera lens, and by an elementary type of housing (e.g. a piece of plastic drain pipe and a tobacco tin lid). In addition the camera circuitry is simplified by the adoption of sequential (non-interlaced) scanning: the model we saw demonstrated was working on $312 \frac{1}{2}$ lines per field, 50 fields per second.

The electronic circuits in the camera
are: a video amplifier with a bandwidth of 4.5 MHz and an output signal of $1 \mathrm{~V} \mathrm{p-p}$ into 75Ω : horizontal and vertical timebase generators; a synchronization mixer (feeding sync signals into the video amplifier); a blanking mixer (providing blanking pulses at the vidicon cathode): and a power unit (-15 V for the transistor circuitry and -120 V and +330 V for the vidicon). The circuitry uses 23 transistors of six well-known types and 10 diodes of five types. Several monitors can be operated from the one camera.

To build the camera for $£ 45$ the designers admit that the constructor will have to "shop around" to some extent. but for those who are willing to pay for more to save this trouble, a complete kit of parts is available from Linstead Electronics, Roslyn Works, Roslyn Road, London N. 15 , at $£ 70$ (or $£ 45$ without the tube and lens). This company will also supply individual parts from the kit, and are offering a ready built camera with a professional looking chassis and case for $£ 99$ 17s 6d. The Mullard Educational Service (Mullard House. Torrington Place. London W.C.1), of course. only supplies the design information. Their literature is not yet ready but will be available later.

R.S.G.B. Exhibition

The Radio Society of Great Britain's International Radio, Engineering and Communications Exhibition will be held at the Royal Horticultural New Hall, Westminster. London S.W.I. from the 19th to 22 nd of August. The exhibition will be open during this period from 10.00 to 21.00 and the admission charge is 4 s .

At 14.30 on the second and third days there will be lectures on mobile equipment and s.s.b. receivers.

Wireless World will have a stand at the exhibition (No. 11) and we plan to demonstrate the phase-locked loop stereo decoder and the television wobbulator described in this issue. We also hope to demonstrate the surface temperature thermometer described in April 1969, the logic display aid described in the May to December 1969 issues and the electronic dice which was described in the April 1970 issue. Also on the stand we shall be selling a selection of books and reprints of some of the articles which have appeared in Wireless World.

Other exhibitors include: Adcola, Amateur Radio Shop, Angus McKenzie Hi-fi. Baginton Electronics, British Amateur Radio Teleprinter Group, British Amateur Television Club, City and Guilds of London Institute, E.M.S.A.C., J. Michael Gale, Garex Electronics, J. Beam Engineering Ltd, K. W. Electronics Ltd, Lowe Electronics, Microwave Modules Ltd, Ministry of Posts \& Telecommunications, Nombrex (1969) Ltd, Practical Wireless, Professional \& Academic Book Exhibition, Radio Amateur Invalid and Bedfast Club, Radio Shack Ltd, Radio and Space Research, R.A.F., Royal Navy A.R.S., Royal Signals A.R.S., Telecomms, Weller Electric Ltd, Western Electronics, World Association of Methodist Radio Amateurs and Clubs.

CAT-70

The British Amateur Television Club celebrated its 21 st anniversary during the weekend 25 th-26th July with a Conference on Amateur Television ("CAT-70") held at Churchill College, Cambridge.

Over 100 people registered, including delegates from Belgium, France, Germany, Switzerland and the U.S.A.

The major event of the weekend took place on the Saturday afternoon. Signals from several amateur television stations were received and displayed on monitors in the Wolfson Hall. from 14.30 until 16.00. Stations contributing included G6ADM/T from Haddenham, Cambs. (11 miles); G6NOX/T from Duddenhoe End, Essex (14 miles); G6REH/T from the top of his 110 ft tower at Sutton St. James, Lincs. (36 miles); G6AEV/T/A from a caravan in Cambridge (2 miles); and G6WI/T in Great Canfield, Essex, relayed via

G6NOX / T giving a total path length of 27 miles. A wide range of equipment was shown by amateurs, ranging from vidicon cameras to integrated circuit colour pattern generators.

The main social event was the Convention Dinner, attended by over 80 people on the Saturday evening.

On the Sunday morning, lectures were presented by C. Grant Dixon on "Slow Scan Television", by Arthur Critchley on "Integrated Circuits for the Amateur", and by M. P. Davies, of the Ministry of Posts \& Telecommunications, on "The Amateur Licence".

Starting your own business

A conference to be held at Fulmer Grange, near Stoke Poges, from the 27th to 29th of November will appeal to all those with ideas and a hankering to start their own business. For this type of person, with the determination to make a go of it, the conference should be a weekend well spent.

Ten successful entrepreneurs will talk about their experiences, the difficulties they faced and how they overcame them. Other speakers will explain how to raise the necessary finance and how to assess the market. For a period the conference will break up into discussion groups and each one will deal with a particular new business. Finally the type of person most likely to succeed will be discussed.

The fee for the conference is $£ 6$ for a single man but the organizers realize that once the plunge is taken your wife is going to have to share your affections with the business and they feel that she should be in at the start. So for an extra $£ 2$ you can take her along as well! Application forms are available from The Meetings Officer, The Institute of Physics and the Physical Society, 47 Belgrave Square, London S.W.I.

Hong Kong radio sales halved in Britain

In contrast to the trend in the rest of the world sales of radio receivers manufactured in Hong Kong have fallen in this country from 34 to 17% of the total market. This means that Hong Kong has slipped to second position behind Japan as far as total U.K. sales is concerned. Hong Kong attributes this decline to their concentration on the six-transistor single waveband receiver for the American market which is not popular here.

These figures are taken from a survey conducted by the Hong Kong Development Council which says that the concentration on the American market results from the heavy U.S. investment in the industry. Eight American firms employ more than a third of Hong Kong's radio
industry's 18,000 work force. Britain's only representative in the industry is Pye who has a 51% interest in Coronet Industries Ltd, a firm in Kowloon which employs about 600 workers.

V'enus-Mercury spacecraft

The National Aeronautics and Space Administration have selected seven scientific investigations for the Mariner-Venus-Mercury 1973 (MVM-73) spacecraft to photograph the two planets. measure the particles and fields surrounding them and study their atmospheres and ionospheres. The 900 -pound spacecraft is planned to be launched in the autumn of 1973 and should pass within 3,300 miles of Venus in February 1974 and 625 miles of Mercury in March 1974.

Teams of scientists have been formed to conduct the seven investigations listed below.
Imaging science: Weighing 61 pounds the experiment will employ two television cameras fitted with $1,500-\mathrm{mm}$ Cassegrain telescopes. These will produce pictures of Mercury with a resolution similar to that of pictures of the Moon taken through Earth-based telescopes.

Because three 210 -foot diameter aerials will be in operation in 1974 (two are now under construction at Tidbinbilla, Australia, and near Madrid, Spain), many of the pictures will be transmitted directly to Earth instead of being recorded for later transmission. Some 5,700 frames of Venus and about 2,740 frames of Mercury will be taken.
Radio science: Using radio signals from MVM-73's two transmitters (20-W S-band and $200-\mathrm{mV}$ X-band) the spacecraft's trajectory will provide dual occultation of the radio signals at Mercury and a single occultation of the radio signals at Mercury and a single occultation at Venus. This will provide the investigators with information on the interplanetary phenomena during flight and. at planetary encounters, information on the atmospheres ionospheres, mass, radius and surface characteristics of both planets.
Plasma science: Will use an instrument called a scanning electronic analyser which is a set of hemispherical analyser plates and an electron multiplier mounted on a scan platform. It will measure ions from 80 to $8,000 \mathrm{eV}$ and electrons from 40 to 400 eV . During the flight, the instrument will study the structure of the solar wind between the orbits of Earth and Mercury while the Pioneer-F and -G spacecraft, to be in flight during the same period, will be measuring the solar wind between the orbits of Earth and Jupiter. This will make possible a unique comparison of measurements at wide distances across the solar systems for the first time.
Magnetometer: An experiment to measure the magnetic field, it weighs 11 pounds and uses two triaxial, fluxgate
magnetometers mounted at different distances from the spacecraft on one boom. The magnetometer team will use measurements near Venus and Mercury to make the first experimental study of the solar wind interaction with Mercury and to determine whether or not a magnetic field exists at the planet.
Ultraviolet spectrometer: Consisting of two ultraviolet grating spectrometers, direct studies of airglow and occultation techniques will be used to gather data. The spectrometer team will use the data obtained by solar occultation to search for the presence of an atmosphere on Mercury and to determine its structure and composition. Additional information on the character of the atmosphere of Venus will also be obtained.
Infrared radiometer: Consists of two one-inch-diameter telescopes each calibrated for a broad spectral band to measure temperature emissions from the two planets.
Charged particles: A six-pound instrument will measure electrons above 2 keV and protons above 6 keV .

3D colour TV

An experimental broadcast is to be made in Holland on November 9th using a principal which was applied long before the war in cinemas. The viewers will wear spectacles with one red and one green eyepiece so that they will see the programme in three dimensions and in colour.

Professional engineers', the choice

Members of the fourteen institutions which constitute the Council of Engineering Institutions can opt to join two other organizations which will handle such matters as welfare, pay, conditions and the like. An institution, being a learned society with the object of furthering science, cannot concern itself with the affairs of private individuals.

The engineer who wishes to have the full backing of a trade union, with all that this implies, can join the United Kingdom Association of Professional Engineers (UKAPE). This organization is intent on building a reputation for ethical and responsible conduct but it will also use its powers to protect the individual from exploitation. It aims to improve his conditions of employment and to regulate the relations between employer and employee.

Some engineers may not wish to join a trade union, maybe because they are 'employers themselves or for some other reason, but they would still like to belong to an organization with their welfare at
heart. Such an organization is the newly formed Professional Engineers Association Ltd (PEAL). Members of the institutions within C.E.I. are being invited to join this organization and providing 15,000 do so PEAL say that they will be able to provide an efficient service. If PEAL is successfully launched the assets of the Engineers Guild, which was formed in 1938, will be made available to PEAL.

Tubes of Babel

If the current demand continues the number of public telephone circuits on Britain's trunk system will double in the next four years. In order to cope with this increase the Post Office have developed a $60-\mathrm{MHz}$ cable which will provide 97,200 circuits. The first example of this cable will be laid in 1973 between London and Birmingham and will be followed shortly after by a similar cable in the reverse direction.

The cable will consist of nine coaxial pairs, or tubes, operating from 4 to 60 MHz . Each pair will carry twelve 900 -circuit broadbands using a frequency division multiplex system. Repeaters, energized over the cable from power feeding stations, will be placed every 1,500 metres to compensate for the high attenuation in the cable at 60 MHz . The cable will be laid in a specially constructed concrete duct deeper than is normal for telephone cables and access will be through manholes.

C.E.I. changes its exam

Part 1 Of the Council of Engineering Institutions' examination-describable as "what every engineer should know"-has not so far been very successful in the radio-electronics sphere in the sense that few aspiring engineers have chosen to take it and even fewer have passed. To make it more attractive the C.E.I. has made some changes, both in subject matter and standard, which will come into force in 1972.

Originally Part 1 consisted of six compulsory subjects, of which only one, applied electricity, had to do with electro-technology, and the standard was equivalent to about half way through a three-year degree course. At present the electronics man can, if he wishes, replace three of the six (properties of materials, applied thermodynamics, fluid mechanics) with three subjects more closely related to electronics. The changes for 1972 will be the introduction of certain optional subjects and a reduction of the standard to a point about 12 months through a three-year degree course. Passes will be required in four compulsory subjects, mathematics, mechanics, properties of materials, and presentation of engineering information, and in two of the following
optional subjects: electrotechnics, electronics, chemistry, thermodynamics.

Details of the changes, syllabuses and specimen papers are given in C.E.I. Statement No. 8 which may be obtained from the C.E.I. (2 Little Smith Street, London S.W.1) or any of its constituent institutions, price 4 s od post free. Also under review is Part 2 of the exam, but any changes which may result will not come into effect until 1974 at the earliest.

Colour receiver sales

During June 38,000 colour television receivers were delivered to the trade. This is 2,000 more than in May and brings the total number of deliveries since the inauguration of the colour service in 1967 to half a million. The upward trend is illustrated by the fact that half of this total (0.25 M receivers) have been delivered during the last nine months. The increasing sales of colour receivers is reflected in a slight slackening in sales of monochrome sets [1970 (1969), May 133,000 (149,000). June 124,000 $(135,000)$). Single standard monochrome receivers accounted for 40% of the June total.

Experimental communications link

A 30 km experimental communications link which uses a 50 mm circular waveguide to transmit up to 300,000 simultaneous two-way telephone conversations or 200 colour television channels is to be installed by the Post Office between the research station at Martlesham Heath and Mendlesham in Suffolk. The Marconi Company Research Division is to develop and supply the prototype terminal and repeater equipment under a Post Office contract worth $£ 180,000$.

For the experimental link the frequency range will be divided into two main bands, 32 to 50 GHz and 50 to 90 GHz , although ultimately, this will be extended to 100 GHz .

Correction

Phease make the following amendments to Fig. 9 of the article "Electronic Morse Keyer" by C. I. B. Trusson and M. R. Gleason published last month. On the upper view of the circuit board the lead from the tune/operate switch should be connected to pin 3 of the MP 104 (not pin 2) and the pin numbering of the MP 102 should be altered to read 5 to 9 from top to bottom on the left-hand side and 4, 3,2, 1, if on the right-hand side. On the underside view of the board the pin numbering of the MP102 should be amended as described and the position of the conductor breaks at the following points should be lowered by one position: 29/22, 29/28, $25 / 22,26 / 33,28 / 37,27 / 37$. Finally the break at $11 / 41$ should be moved one place to the right.

H.F. PredictionsSeptember

Seasonal change is evident as a slight increase in peak median standard usable frequencies (MUFs). This is sustained during daylight on all routes illustrated except Hong Kong which, due to the large time difference between control points, develops a continuously varying MUF.
MUFs shown are predicted medians of day-to-day values for the month. Distribution of daily values about the median varies with geographic location, season and time of day. Long-term observations have shown that the optimum traffic frequency (FOT)-i.e. MUF exceeded on 90% of days-is between 72% and 90% of MUF. A constant 85% is used for these charts, prepared by Cable \& Wireless.

The programmable unijunction

by O. Greiter

The unijunction transistor and some of its applications have been described in articles in Wireless World, last month and the month before. To remind readers who have never met the unijunction we may note that it consists essentially of a silicon bar with an ohmic, non-rectifying, contact at each end and a tapping point near the middle. It is a resistor with a tap, except that the tap is a rectifying junction: one junction, hence the name. With a voltage applied to the bar it behaves just as a fixed-tap potentiometer with a diode in series with the tap. Unless the bias on the diode exceeds the sum of the diode starting voltage and the voltage at the tap, the diode is cut off. The tap is about two-thirds of the way along the bar, and this fraction is called the stand-off ratio. Problem: how accurately can you attach a tap to a sliver of silicon? The geometry actually used makes the problem even more difficult, so that the production line standoff ratio has a wide tolerance and it costs extra money to get even a moderate tolerance.
When the diode is brought into conduction carriers are injected into the silicon bar, and as they are swept into the bottom part of the potentiometer they alter its resistance, drop the tap ratio, let more carriers in through the diode and so on. Rather like a one-man band, each part of the unijunction plays many parts.
The disadvantage of this device is that the tolerances must be dealt with in the external circuit. Oscillators and timers need to have a wide range of adjustment to take up the tolerance in the stand-off ratio, and this is particularly objectionable if it is required to choose components with the right temperature coefficients to compensate for the temperature changes in the unijunction itself.

The PUT

The programmable unijunction, so-called because the parameters are fixed by external elements and because it has three junctions, not one, gets rid of many of the disadvantages of the standard unijunction, even though it is just about the same price. It is officially described as a complementary thyristor, although by thyristor standards it is a very low level device indeed. We shall see that it is related to another, older, device.

Fig. 1. The structure and symbol for a programmable unijunction transistor, showing anode, gate (anode gate) and cathode connections.

Fig. 2. Adding resistors R_{1} and R_{2} to the PUT, gives the equivalent of the ordinary unijunction.

The basic structure of the PUT and the symbol used are shown in Fig. 1. In normal use the basic connection, the starting point, is to set up the simple circuit of Fig. 2. The gate is connected to the junction of R_{1} and R_{2}, so that the upper junction is held at ηV_{s}
where $\eta=R_{1} /\left(R_{1}+R_{2}\right)$. This is just what we have in the unijunction, except that now R_{1} and R_{2} are ordinary resistors, which we can choose of any value, and any tolerance, we like. We can fix the stand-off ratio with as much precision as our money will buy, and certainly 1% will not cost very much.

So far we have added two resistors, and the cost of connecting them. However, in an ordinary unijunction circuit we put a resistor in the B2 lead, both to limit the current and, by choosing the right value for a particular specimen, to get the right temperature coefficient. We also need, in mañy circuits, a resistor in the B1 lead so that the current through the untriggered B2-B1 path will not flow through the thyristor gate, or transistor base, which is to be pulsed. In the quiescent state there is no current out at the cathode of the PUT and unless a resistor is needed for other reasons, to help with the voltage rating of the load device, for example, we need not use one. Thyristor trigger circuits thus come out, as we see in Fig. 3, with exactly the same number of components.

Performance analysis

The standard description of the behaviour of thyristors is based on the operation of cutting the device diagonally. This (shown in Fig. 4) allows the three junction device to be split into two transistors, forming an interconnected $p-n-p, n-p-n$, pair. The equations are

$$
\begin{aligned}
& I_{c 1}=h_{f e 1}\left(I_{c 2}\right)+\left(h_{f e 1}+1\right) I_{c o 1} \\
& I_{c 2}=h_{f e 2} I_{c 1}+\left(h_{f e 2}+1\right) I_{c o 2}
\end{aligned}
$$

The input current at the anode is

$$
I_{A}=I_{c 1}+I_{c 2}
$$

Solving these equations gives

$$
I_{A}=\frac{\left(1+h_{f e 1}\right)\left(1+h_{f e 2}\right)\left(I_{c o 1}+I_{c o 2}\right)}{\left(1-h_{f e 1} \cdot h_{f e 2}\right)}
$$

At very low currents, $h_{f e 1}$ and $h_{f e 2}$ are very small and $I_{A} \bumpeq I_{c o 1}+I_{c o 2}$. Thus if the currents are small, the gain is low and thus the currents are small. As soon as we apply forward bias to either base we raise the value of $h_{f e}$ for that transistor and in consequence let more current flow into the other; raising its $h_{f e}$, thus, and so on. When the

Fig. 3. In a practical scheme the number of components is the same
 with unijunction and PUT.

Fig. 4. The classic thyristor analysis.

product $h_{f e 1} \cdot h_{f e 2}$ reaches unity, $I_{A} \approx \infty$.
A more elegant analysis can be carried out using the circuit of Fig. 5. If we use the current gain, emitter to collector, notation,

Fig. 5. Resistors added for more detailed analysis.
the overall current gain, $I_{\text {out }} / I_{\text {in }}=\alpha$, is given approximately by

$$
\alpha=\frac{\alpha_{1} R_{2}}{\left(1-\alpha_{2}\right) R_{2}+R_{3}}
$$

and the input impedance at P is

$$
R_{i n}=\kappa-R_{1}\left[\alpha \alpha_{2}-\left(1-\alpha_{1}\right)\right] .
$$

Here κ is a positive term which contains device impedances. Very simply this boils down to a condition that the input resistance is negative if $R_{1}\left[\alpha \alpha_{2}+\alpha_{1}-1\right]>r_{e 1}$, the base-emitter input resistance of the p-n-p device.

The addition of these resistance elements, and the inclusion in a full analysis of the device resistances, leads to a situation in which the negative region of $R_{\text {in }}$ has a reasonably constant value. The infinities do not appear. The overall characteristic becomes something like the one shown in

Fig. 6. This, with its peak point and valley point, where both transistors are bot tomed, is just the shape we have already seen for the unijunction. Some of us, indeed, have already seen this a good many years ago. Fig. 7 shows a common base amplifier, without the supply connections. The input impedance at the emitter is

$$
R_{i n}=r_{e}+(1-\alpha) R_{B} .
$$

A negative resistance will be obtained if

$$
(\alpha-1) R_{B}>r_{e}
$$

Fig. 7. In this circuit R_{B} includes the internal r_{b}.

$$
\alpha>\left(r_{e}+R_{B}\right) / R_{B}
$$

The PUT as a point-contact transistor

Those readers who cut their teeth on junction transistors will regard this as a rather pointless exercise. Those who spent confused years with point-contact transistors will know that α can be greater than unity, and will remember that a stable amplifier needed a low impedance in the base line. The point contact transistor was, in general, a p-n-p-n device, but this was not an essential piece of knowledge. The essential detail was that you could measure α and it was greater than unity.

By accepting the fact that, current ratings apart, the PUT can be considered as a point contact transistor, we are free to look at various pulse circuits which we used twenty years ago. We can also get rather more "feel" to the conventional use of the PUT. The circuits of Fig. 2 can be rearranged in

Fig. 8. The basic gate supply circuit, for PUT, and base bias for point-contact transistor.
the form of Fig. 8. We see that R_{B} is, in fact, the parallel combination, $R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. The peak point, at which $R_{\text {in }}=0$, will be when

$$
\alpha-1=\frac{r_{e}}{R_{B}}
$$

Memory, always a bad guide, suggests that α was not very dependent on current at low levels. The current dependent term is r_{e}. This would give us a peak point which was dependent in just the same way on R_{B} and we would expect to be able to choose the peak point current by choice of R_{B}. It turns out that this is indeed so, and the curves for a cheap and a more expensive

Fig.9.From G.E. data. $I_{p}-V_{5} \cdot R_{G}$ parameter.

Fig. 10. From G.E. data. $I_{v}-V_{5} \cdot R_{G}$ parameter.
type of PUT shown in Fig. 9 shows this quite clearly. For high values of $R_{G}=R_{B}$, the peak point current is very small.

It is not surprising that the valley point current is also very dependent on the gate supply impedance. The characteristics are shown in Fig. 10. Very roughly we see that $I_{v}=100 I_{p}$. It is a feature of the PUT, however, that these characteristics are determined by an external element. An approximate expression for the impedance looking in at the base is $Z_{B}=r_{b}+\left(\frac{1}{1-\alpha}\right) R_{E}$.

Forgetting the internal r_{b}, and looking for the turning point at which $R_{B}+Z_{B}=0$

$$
(\alpha-1) R_{B}=R_{E}
$$

We can get results rather nicely if R_{B} is very large indeed, and since the peak point current is small the base current will be small. A non-linear resistance element will give just the right effect of high resistance round the peak point but, when the current increases, a low resistance to allow a high valley current to be set up. Two ways of
(a)

(b)

Fig. 11. Two ways of getting a low value of I_{p} combined with high I_{v}.
connecting this are shown in Fig. 11. The off-state gate current is very small, less than $0.1 \mu \mathrm{~A}$, so that it is desirable to stabilize the peak point working condition by means of a $1 \mathrm{M} \Omega$ resistance. This is the form shown in Fig. 11(a). In Fig. 11(b) the gate supply impedance is not so high, as the arrangement leads to a small drain current down
through the diode and $1 \mathrm{M} \Omega$. The equivalent gate supply impedance is then between five hundred thousand and seven hundred thousand ohms. However, if the diode is reasonably similar to the upper p-n junction of the PUT and is operated at a current equal to the peak points current-say 1.5 A for the D13TI-the two temperature coefficients will stay in balance and the device will always trigger at $V_{A}=V_{o}$.

Both these circuits give a ratio I_{v} / I_{p} of above 500 , compared with the ratio of about 100 if the diode is not used. It is probably desirable to look at the detail of this diode temperature compensation in terms of the point contact transistor. In Fig. 12 the transistor is shown with a leakage resistance R_{t} from base to collector. This represents the current path at the peak point. The circuit reduces then to the bridge form on the right, in which the "detector zero" is

Fig. 12. Temperature compensation in terms of the point-contact transistor, and the bridge equivalent.
obviously maintained so long as the two diodes stay in step. One might expect that without going to an individually matched solution the improvement would be a factor of about 10 . Just what the original temperature dependence would be is a matter of the form of the circuit. The data sheets give temperature curves, but they do not line up with the other characteristics. Nor do the characteristics shown in Figs. 9 and 10 line up with the tables. The data sheet information is added as an appendix.

Operational limits

Once we know what a device will do, in the sense of knowing that nature of its performance, we need to know the quantity of its performance, and the sort of circuit in which that performance can be exploited. The PUT is limited to 40 V working and to a steady state current of 150 mA -say 100 mA for a reasonable temperature range. It is imprudent to ask for pulses of more than 0.5 A . The maximum discharge, in an $R C$ oscillator, with no extra resistance to limit the current, is $250 \mu \mathrm{~J}$. This means that if the circuit uses a $4 \mu \mathrm{~F}$ capacitor you should see that it triggers at below 10 V , so that $\left(\frac{1}{2}\right) C V^{2}=\left(\frac{1}{2}\right) \cdot 4 \cdot 10^{-6} \cdot 10^{2}=200 \mu \mathrm{~J}$. In such a circuit, the supply resistance will probably need to be more than $50 \mathrm{k} \Omega$ and less than $10 \mathrm{M} \Omega$ with the cheap device. The time range thus extends up to about half a minute.

Relaxation oscillator

The most common circuit application is in the simple relaxation oscillator shown triggering a thyristor in Fig. 3. The capaci-

Fig. 13. Relaxation oscillator behaviour.
tance C_{T} is charged through R_{T} until the peak point is reached. The PUT is triggered, to discharge C_{T} into the cathode load. As this is much the same as the unijunction we can use Fig. 13 to remind us that the anode voltage moves up on the first stroke from zero towards B , along the path AB . At B the voltage can no longer be sustained across the PUT, and since the voltage across the capacitor will not change instantaneously the system switches to the only stable point, out beyond C. During the flight, current is flowing, and the voltage drops to give an intersection in the region C. The only current which can be supplied through R_{T} is much less than this, and the capacitor discharges, carrying the working point down to D. For the working point to approach I_{o} it would be necessary to follow the path $\mathrm{D} I_{o} . C_{T}$ is not capable of changing its voltage quickly upwards, because it can only charge through R_{T}. The working point jumps from D to A. There are some much more elegant ways of treating this circuit. We could use the negative resistance concept and look for the way the root dodges about between the left-hand side of the plane and the right-hand side. No doubt some of the brighter contributors to Wireless World will explain all this to us one day. The simple approach tells us how it behaves, if it works: the theory tells us if it works.

Notice that the R_{T} load line must cut the device characteristic once only, in the negative impedance region. This means, very roughly

$$
\frac{\eta V_{s}}{I_{p}}>R_{T}>\frac{V_{s}}{I_{v}}
$$

To get a particular frequency we choose R_{T} within this range, and then put

$$
\begin{aligned}
C_{T} & =\frac{1}{f R_{T} \log \left(\frac{1}{1-\eta}\right)} \\
& =\frac{1}{f R_{T} \log \left(1+R_{1} / R_{2}\right)}
\end{aligned}
$$

If we make $R_{1} / R_{2}=1.7$ this reduces, since $\left.\log e^{(}\right)=1$, to a simple equation: $f C_{T} R_{T}=1$.

A disadvantage of the PUT is that in general the value of R_{T} needed for operation is a good deal higher than the value used in the corresponding unijunction circuit. Fortunately the fact that it is operating by transistor action rather than by resistance modulation means that it comes on quick and it comes on hard. The saturation voltage at 50 mA is 1.5 V , giving a saturation resistance of 30Ω maximum, and they say
that this drops to 3Ω at higher currents. The switching time is fast, $60-80 \mathrm{~ns}$. A quick calculation shows that if we take 100 mA from a 1000 pF capacitor it will discharge at the rate of 7 V in 70 ns . Thus we shall not swing down to an unreasonable trajectory until we go below the $0.001 \mu \mathrm{~F}$ value of C_{T}. Rather roughly, we lose half our pulse. With the ordinary unijunction the limit is in the region of three times this value.

Other PUT applications

There is a useful G.E. application report ($90 \cdot 70: 11 / 67$). Some of the following circuits are taken from this report, which also contains some thyristor trigger circuits. The first is a particular relaxation oscillator, which operates at only 3 V . The circuit is shown in Fig. 14. In this low voltage circuit

Fig. 14. 1 kHz oscillator for 2 V working.
there is the problem that the voltage needed to get the first junction into conduction, the emitter-base voltage of the equivalent point contact transistor, is an important fraction of 3 V . The anode gate is held at about 1.2 V , so that the anode must be brought up to about $1 \cdot 7-2.0 \mathrm{~V}$ for triggering. If the more conventional stand off ratio of around $\frac{2}{3}$ had been used, the capacitance would have had to charge to above 2.5 V on its exponential run up to 3 V . This would mean a very flat approach to triggering and a great deal of uncertainty about the frequency, stroke by stroke. This circuit also gives very low drain on the battery. The total current is less than $100 \mu \mathrm{~A}$. A conventional low voltage unijunction would demand about 1 mA .

Circuit action in which advantage is taken of the low operating current levels is exemplified by the circuit of Fig. 15. The

Fig. 15. Tone-pulse oscillator.
zener diode-diode circuit can be replaced by the emitter-collector path of a small transistor. As it stands, the $100 \mu \mathrm{~A}$ available at the anode through the $100 \mathrm{k} \Omega$ resistance will hold the PUT, a low-current type, beyond the valley point. If the switch is
closed for a short time the $10 \mu \mathrm{~F}$ capacitor is charged, biasing the diode off and leaving only the $1.8 \mathrm{M} \Omega$ resistor to supply the anode. This is an oscillatory situation, and the circuit runs at about 1000 Hz until the capacitor has discharged through the $100 \mathrm{k} \Omega$ to the point where the zener diode will conduct. With the values shown the tone should be on for about 1 second.

Timers. These are basically oscillators of which the frequency is so low that all the attention is concentrated on a single cycle. The important advantage of the PUT is that because the stand-off ratio is determined by two external resistances almost all the parameters of the timer can be selected in advance. The circuit shown in Fig. 16 uses

Fig. 16. 30-second timer using expensive PUT.
1% tolerance components. The stand-off ratio is $0 \cdot 61$, or $R_{1} / R_{2}=1 \cdot 69$, which agrees with our earlier finding that this is the value to make $f C_{T} R_{T}=1$, or

$$
\tau=C_{T} R_{T}
$$

The effective value of R_{G} is not too certain, but the circuit does not make sense if it is above $1 \mathrm{M} \Omega$: it is the resistance of the diode when passing about $1.5 \mu \mathrm{~A}$. The peak-point current will be in the region of $0.1 \mu \mathrm{~A}$. This can be supplied by the $30 \mathrm{M} \Omega$ resistor. It would appear that trouble might occur at very low temperatures. At $-25^{\circ} \mathrm{C}$ the peak point current is $1 \mu \mathrm{~A}$, and there is only $0.3 \mu \mathrm{~A}$ available. The circuit could stick just below peak point.
To operate a circuit of this kind at low temperatures, or to use the cheaper PUT, the technique is to pulse the anode gate. This technique was described in connection with the conventional unijunction. The

Fig. 17. Modified circuit of $30-\mathrm{sec}$ timer to use cheaper PUT.
modified circuit is shown as Fig. 17. The application report quotes a $10 \mu \mathrm{~s}$ pulse at 1000 Hz , but as the circuit is a 30 -second timer in the 1% class it would be reasonable to settle for a much slower sampling rate.
Time or frequency trimming is claimed to be much simpler with the PUT. The comparison made is with trimming provided

Fig. 18. Two alternative ways of frequency trimming.
by means of a variable resistance in R_{T} itself. It is, however, possible to trim the frequency of the unijunction and PUT circuits in the timing path in a way which still leaves a lot of flexibility in the choice of values. The two alternative ways of adjusting the frequency over a small range are shown in Fig. 18.

A number of other applications are to be found in the GE application report, which is essentially thyristor-minded in the view of this writer. The circuits for ring counters and thyristor triggering are interesting and useful, but there are some speculations to which the remaining space in this article may well be devoted.

We have seen that the PUT is very much like a point contact transistor. One difference, of course, is that it is a silicon device, whereas all, or at any rate almost all, the point contact transistors were germanium devices. The other feature is that junction technology has given us very low saturation resistance, thus widening the available working band inside the supply voltage. For the D13T1 we find that at $10 \mathrm{~V} V_{s}$ we have a valley current of 1 mA with an $R_{G}=1 \mathrm{k} \Omega$. This valley current gives an average value of

$$
R_{i n}=10 \mathrm{k} \Omega
$$

so that, roughly

$$
(1-\alpha)=R_{i n} / R_{B}=R_{i n} / R_{G}=10
$$

Thus $\alpha=11$

$$
\begin{aligned}
& \text { At } R_{G}=R_{B}=10 \mathrm{k} \Omega \\
& \quad R_{i n, e}=-10 / 0 \cdot 25=-40,000
\end{aligned}
$$

Thus $\alpha=5$.
It is apparent that the equivalent point contact transistor is a rather non-linear device of rather uncertain characteristics. Even so, there is no reason why we should not attempt to use the PUT in some of the circuits which were evolved in the days of the point contact transistor. Fig. 19 shows a greatly simplified equivalent commonbase amplifier. The input impedance of this arrangement has already been given, on the assumption that R_{c} is small. The input impedance of the common emitter circuit

Fig. 19. Common-base point-contact circuit.
is, in simplified form

$$
R_{i n, b}=R_{B}+\left(\frac{1}{1-\alpha}\right) R_{c} .
$$

This gives a negative resistance for the same condition as for the common base circuit. The difference is that with the common base circuit the impedance at the emitter line input is open-circuit stable, while with the common emitter circuit the impedance at the base input is short-circuit stable. We have already seen how, by putting a device which is a short-circuit at very high frequencies across the emitter input we achieve instability which drives the system from one limit condition to the other. This is the capacitance or controlled relaxation oscillator. The same effect can be produced by the use of inductance in the base circuit. A relaxation oscillator can be constructed using the arrangement of Fig. 20. The setting-up condition is, as in the

Fig. 20. Inductance controlled relaxation oscillator.
$R C$ circuit, the choice of R_{E} to give a static current which is between the peak point and the valley point. If the effective value of R_{B} is $10 \mathrm{k} \Omega$ and, to make life simple we take $R_{1}=R_{2}=20 \mathrm{k} \Omega$, and $V_{o}=20 \mathrm{~V}$, the valley current will be rather over $200 \mu \mathrm{~A}$. A good mid-point will be at $I_{o}=100 \mu \mathrm{~A}$, giving $R_{E}=100 \mathrm{k} \Omega$. At very high frequencies the inductance will hold the base current constant, and if instantaneously this base current is insufficient to allow $100 \mu \mathrm{~A}$ to flow the circuit will progressively cut itself off. Base current will disappear, because of the movement of the emitter. There is a voltage spike at the base, just as in the $R C$ circuit there is a current spike when the circuit triggers. The whole action can be described on a negative resistance S-curve. It is not profitable to go into detail, because the actual device has been designed to handle high peak currents, but not to handle high peak voltages.

More interesting, from a practical point of view, are the circuits shown in Fig. 21. These two circuits provide the required high or low impedance required for oscillation at a single finite frequency. These oscillators

are simple but are not likely to be very high class circuits, relying as they must on a very non-linear negative resistance to maintain oscillation, and a sharp limiting action to determine the amplitude. If we continue on the lines suggested by point contact transistor experience we arrive at a circuit of the type shown in Fig. 22, in which a low

Fig. 22. High stability should be obtained by decoupling and a tapped tank circuit.
inductance, high- Q, circuit is used together with a good deal of decoupling. It would seem to be reasonable to add a thermistor in parallel with the $L C$ circuit to set the amplitude of oscillation so that it remains inside the cut-off and saturation regions of the transistor.

One area in which the point contact transistor is missed is in the design of simple pulse regenerators. It is thus interesting to compare two circuits, one for a point contact device and one for a PUT (Fig. 23). The PUT circuit produces the output pulse when the transistor is switched off. If we consider the essential circuit as a monostable we see that the only real difference is in the choice of trigger points.

Fig. 23. Two ways of producing standard sharp pulses.

The purpose of this article, and of the two of the conventional unijunction which preceded it, has been to draw the attention of readers who have not met these devices to the wide range of circuits in which they can be applied. The PUT, in particular, would seem to be of much wider application as a transistor than is implicit in its official designation of a general purpose low power thyristor. There is enough circuit information on point contact circuits which may be applicable to keep a lot of people happy for a long time.

Fig. 21. Negative resistance LC oscillators.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON
 Sept. 7-9

Imperial College
Computational Physics
(I.P.P.S., 47 Belgrave Square, London S.W.1)

Sept. 7-11
Grosvenor House
International Broadcasting Convention
(I.B.C., c/o I.E.E., Savoy Place, London WC2R OBL)
Sept. 15-18
Savoy Place
Gas Discharges
(I.E.E., Savoy Place, London WC2R OBL)

Sept. 15-18 Olympia
Bio-medical Engineering Exhibition
(U.T.P. Exhibitions Ltd, 36-37 Furnival Street, London E.C.4)
Sept. 22
William Beveridge Hall, University of London
Computer Output on Microfilm
(Microfilm Association of Great Britain, 109 Kingsway, London WC2B 6PU)
Sept. 28-Oct. 1
Centralised Control Systems
(I.E.E., Savoy Place, London WC2R OBL)

BIRMINGHAM

Sept. 18-20
The University
The Nuffield Advanced Physics Course
(I.P.P.S., 47 Belgrave Square, London S.W.1)

BRIGHTON
Sept. 15-17
Hotel Metropole
Power Sources Symposium
(International Power Sources Symposium
Committee, P.O. Box 136, 26 Wellesley Road,
Croydon, CR9 2EG, Surrey)
DURHAM
Sept. 2-9
British Association Meeting
(British Association for the Advancement of Science, 3 Sanctuary Bldgs, 20 Gt. Smith Street, London S.W.1)

EXETER

Sept. 15-18
The University
Solid State Devices
(I.P.P.S., 47 Belgrave Square, London S.W.I)

HARROGATE

Sept. 18-20
Cairn Hall
Audio 70
(Exhibition \& Conference Services Ltd,
Victoria House, Claremont Avenue, Harrogate)

MANCHESTER

Sept. 8-11 Hotel Piccadilly
Electronic Instruments Exhibition
(Industrial Exhibitions, 9 Argyll Street, London WIV 2HA)

OXFORD

Sept. 14-16
The University
Photo-electron Spectroscopy
(I.P.P.S., 47 Belgrave Square, London S.W.I)

Sept. 28-Oct. 1
New College
Quality Assurance in Action
(Inst. of Engineering Inspection, 616 Grand
Bldgs, Trafalgar Square, London W.C.2)

READING

Sept. 7-9
The University
Ion Implantation
(I.P.P.S., 47 Belgrave Square, London S.W.1)

SHEFFIELD
Sept. 22-24 The University
Microwave and Laser Instrumentation
(R. A. Ganderton, Design Electronics, Dorset

House, Stamford St., London S.E.I)
SOUTHAMPTON
Sept. 7-10 The University
Measurement Conference
(British Society for Strain Measurement, 281
Heaton Road, Newcastle upon Tyne NE6 5QB)
Sept. 22-24
Skyway Hotel
Electronic Instruments Exhibition
(Industrial Exhibitions, 9 Argyll Street, London WIV 2HA)
SWANSEA
Sept. 21-24 University College
Electronic Engineering in Ocean Technology
(I.E.R.E., 8-9 Bedford Square, London W.C.1)

TEDDINGTON

Sept. 2-4
National Physical Laboratory
Man-Computer Interaction Conference
(I.E.E. Savoy Place, London WC2R OBL)

WARWICK
Sept. 21-23
The University
Temperature Measurement
(I.P.P.S., 47 Belgrave Square, London S.W.1)

OVERSEAS
Aug. 31-Sept. 4
Munich
Hybrid Computation
(Prof. Dr. J. Heinhold, Kongressburo AICA-
IFIP 1970, Institut fur Angewandte Mathe-
matik, Arcisstr. 21, D-8 Munchen 2)
Sept. 8-12
Magnetic Recording Conference
(Hungarian Optical Acoustical and Fil technical Society, Keszült: 200-pld-ban 70/ 2808-MTESX HNY.Bp.)
Sept. 18-27
Berlin
German Industries Exhibition
(Berliner Ausstellungen, 1 Berlin 19, Charlot-
tenburg, Messedamm 22)
Sept. 21-24 Panama City
Engineering in the Ocean Environment
(I.E.E.E., 345 East 47th Street, New York, N.Y. 10017)

Sept. 23 \& 24
New York
Electron Device Techniques
(I.E.E.E., 345 East 47th Street, New York,
N.Y. 10017)

Vehicle Location Systems

Electronic techniques to improve road traffic control

by R. A. Tyler*, M.I.E.R.E.

It has been standard practice in the past to apply static means of control to traffic movements, i.e. road signs, markings in the road, fixed 'one-way' systems, etc, but as traffic flow is a dynamic function, adequate control has demanded dynamic methods, such as traffic lights and policemen on point duty. By applying more modern control techniques we should be able to progress a particular vehicle through a traffic system from starting point to destination in the most economical way. Although cost effectiveness at present precludes the use of such techniques for the benefit of the ordinary motorist, the advantages afforded a vehicle fleet operator in being able to control the dispositions of his vehicles in a given area make such a system attractive.

A promising scheme is to provide a supervisory control facility which, by continuous situation reporting, enables route plans to be revised and corrective measures to be reported to the vehicles involved (Fig. 1). Radio links which have voice, data, or voice and data channels can carry the necessary information between vehicle and base, and control room devices exist for displaying this information. However, in order to provide an overall control system there remains the need for a method of determining the position of the vehicle to a sufficiently high degree of accuracy within the traffic system.

The ease with which a vehicle position may be determined depends largely on the vehicle operating mode and the degree of co-operation which may be expected from it. Land transportation vehicles may operate in any of the following three modes:
(a) Free range-where vehicles are allowed to move about without restriction over a specified two-dimensional space, as when operating in a desert environment.
(b) Road restricted-in which vehicles, usually wheeled, are free to move anywhere within the confines of a predetermined road network. This category includes private cars, police and emergency vehicles, etc.
(c) Route plying-vehicles restricted to particular routes within a specified road or rail network. All rail vehicles are included in this group. Although fundamentally of

* The Marconi Company Ltd.

Fig. 1. Vehicle control loop.
type (b) buses may be considered as a sub-group in that they are usually constrained to the route-plying mode.

Clearly, the greater the number of constraints on a vehicle the easier it is to track. A mode (c) vehicle may be quite satisfactorily tracked along the route simply by a knowledge of start time and distance travelled.

Taking full advantage of up-to-date technology it is possible to rule out the use of radio telephone links, which demand a high degree of crew participation, and confine discussion to consideration of location systems which can automatically provide a fixed base station with regularly updated vehicle position information.

Location methods fall into two main categories. The first requires means of discovering the whereabouts of the vehicles directly from the base station. The second needs each vehicle to be provided with equipment to determine its own position and for passing this information to the base station. By using radio, both methods become practicable.

Location methods, category 1

Radio location systems falling into this category include those employing direction finding, navigation and radar. Direction finding does not easily lend itself to automatic detection of large-vehicle fleets, and ground clutter problems present considerable difficulties when using conventional radar systems.

The most promising approach would appear to come from the use of navigational aid methods which apply triangulation techniques to a signal
radiated from the vehicle. Location accuracies of better than half-a-mile within an area of open terrain of $20-30$ miles radius have been achieved using phase comparison, and there is no reason to suppose that this represents the limits of either range or accuracy. A major difficulty encountered with all methods where location information is to be extracted by reference to the physical nature of the radiated signal is one of multi-path reflection.

Although this difficulty is considerably reduced over areas of open countryside, it remains perhaps the most serious problem in urban environments. Early expectations of using first returned pulse (FRP) delay measurements have been shown experimentally to be disappointing. In this method the vehicle carries a pulsed transmitter which is triggered from the master base station. The difference in delay of the reply pulse from the vehicle arriving at two separated slave receiving stations is related to the receiving station base line, and the vehicle position may then be fixed using standard hyperbolic navigation techniques.

When multi-path propagation conditions exist the vehicle reply appears as a string of pulses at the receiving stations and it is difficult to determine the vehicle position (Fig. 2). In FRP systems, delay comparison is made only on the first pulse to return in each case as this must have arrived over the direct path and later pulses are neglected. Provided that the first pulse to return can be positively identified, this somewhat complex method can be used quite effectively. But in heavily built-up areas the welter of closely spaced reflected signals makes definition of the first returned pulse difficult and the accuracy of such a system thereby suffers. Also the FRP system is in considerable difficulty where more than one vehicle is involved unless selective calling is used. However, this principle may be applied to vehicles operating in any of the three modes referred to previously.

Operation in urban environments, where road junctions frequently occur at less than one hundred-yard intervals, imposes stringent accuracy requirements on any method of vehicle location Accuracies of one hundred feet or less are simply not feasible in such an environment
when using any of the methods in this category. Thus, we have to look elsewhere for a workable solution to the location problem, and from what follows it will be seen that methods falling into the second category show more promise.

Location methods, category 2

This method is basically the same as the simple one referred to in Category 1, but the vehicle is expected to know where it is at all times. It is, in effect, questioned on its position whenever the base station requires to update its record of vehicle dispositions.

The problem therefore may be split into two requirements, (a) some form of location equipment within the vehicle which allows it to determine its own position, and (b) a means of transferring this positional information back to base on demand.

There are a number of ways of achieving the requirement outlined in (a), two of which will be dealt with in greater detail later. But in order to use this method requirement (b) demands some form of communication channel between vehicle and base and some important experiments in the development of one such link will now be described.

Data link 1

In the planning stage a number of constraints were placed on the information channel such that the following initial specification was considered desirable.

Fig. 2. Anomalies which can occur in a pulsed system.
t_{A} represents path $A-V$ taken with t_{B} giving vehicle position V
t_{A}^{\prime} represents path $A-R-V$ taken with t_{B}^{\prime} giving vehicle position V^{I} t_{B} represents path $B-V$ taken with t_{4} giving vehicle position $V^{I I}$
t_{B}^{\prime} represents path $B-R-V$ taken with t_{A} giving vehicle position $V^{I I I}$
By using the first returned pulse method only delays t_{A} and t_{B} would be used to fix the position of the vehicle at V.

Fig. 3. Block diagram of vehicle equipment (top) and base equipment (below).

Printer
(1) The radio part of the link should consist of commercially available two-way v.h.f. equipment, so the information must be fitted into a baseband a few kHz wide.
(2) Selective calling of vehicles was essential for the interrogation methods used. As the overall system was to be automatic, a digital computer would be used to provide correctly timed interrogation signals and to interpret returned information.
(3) As returning information was to be fed into the on-line computer, it was desirable to make the return path a digital link.

It was discovered in the early stages that very little was known about the behaviour of v.h.f. data links applied to vehicles moving in and around an urban environment. Therefore it became imperative to obtain statistical results using practical equipment, and a series of experiments were set up using the computer to gather and sort the necessary data.

Early experiments were conducted using audio-tone selective calling on the base-to-vehicle link. When a particular address was recognized the vehicle would reply to base with a 40 -baud message. Upon reception at the base station, this message would be de-serialized in the computer and the contents compared with a replica of the original message. If incorrect, details of this comparison would then be printed out and at the end of each run statistical data would be computed and printed (Fig. 3).

The experiments were organized in the following manner. Two complete sets of vehicle equipment were made available, each set comprising a two-way selective call f.m. radio and a specially developed digital generator which provided, on command, a pre-set message 16 bits in length. Each vehicle had a particular call sequence allocated to it, which the computer could select on a rotational basis, together with four sequences representing imaginary vehicles.

In the event of receiving no reply from a call to a genuine vehicle, the computer would break the rotational calling routine and recall the offending vehicle. If again no reply was received, a third call would
be made. If still no reply was forthcoming the legend NO REPLY would be printed out and the routine calling sequence resumed. Further, if after an interval of five minutes no reply at all had been received from a particular vehicle, it was assumed that a major failure had taken place and a visual indication would be given at base (Fig. 4).

After a great number of runs had been made with the vehicles operating over diverse routes covering both urban areas and open countryside, the considerable amount of data acquired was analysed and compared with similar results obtained using the radio equipment in voice communication surveys over the same routes.

The field pattern associated with v.h.f. radio installed in a vehicle operating within an urban environment is extremely complex and difficult to analyse. It can be

Fig. 4. Flow diagram for data link experiment.
visualized as a fixed pattern due to multiple reflections from stationary objects, buildings, street furniture, other vehicles, etc. On this is superimposed a continuously varying micro-structure due to traffic moving in the vicinity of the vehicle aerial. The situation is further complicated by the fact that the aerial is being caused to move in a somewhat erratic manner, due to traffic conditions, through this complex and changing pattern. The net result is that between vehicle and base there is an indeterminate transmission path, the characteristics of which change drastically from moment to moment. It has been shown that the field strength at the base receiver can vary as much as $20-30 \mathrm{~dB}$ at a rate dependent upon the speed of the vehicle and further modified by the relative presence and speed of surrounding traffic.

The transmission of voice over such a path generally causes little concern as the intelligibility of speech is not greatly affected by such rapid fading. But the very nature of digital data usually demands a near perfect transmission path. Additionally, the signal may fade during the 0.4 s time slot used for transmitting the 16 -bit message, with consequent corruption of data. However, in spite of this gloomy picture, the experiments showed that over a known good speech path in an urban area, data error rates of only a few per cent were likely. But even with error rates of this magnitude, data, to be usable, must be subjected to some form of error detection and subsequent correction.

Obtaining navigational information

Having established provisional parameters of a mobile data link (b) the question remained, how could the necessary information be obtained and passed successfully over the link.

To solve the problem the vehicle requires some means which will enable it to determine its own position as outlined in (a). This is similar to the conditions imposed in conventional navigation and it would not be unreasonable to expect a solution to be obtained using the same approach. Indeed this approach is possible within the restraints of road traffic movements.

The classical method of navigation between two places requires several points, or 'fixes', to be taken along the route, where an accurate knowledge of actual position may be obtained. The number of fixes required depends on the accuracies of the results, distance between start point and destination, etc. Location between one fix and the next is determined by a

Fig. 5. T-junction as a three-port system.
(a)

(b)

Fig. 6. (a) Vehicle to base-location message, (b) base to vehicle-vehicle address message.
procedure known as 'dead reckoning', which is based on a knowledge of the direction and distance travelled from the last fix; consequently provision must be made for measuring this direction and the dis tance travelled.

It is of course possible to navigate entirely by dead reckoning. To be able to do so over large distances requires extremely accurate vector measurements with such expensive items as inertial platforms and on-board computers. However, the land vehicle operating in modes (b) or (c) is confined to a specific network of routes over which it is constrained to travel, and location systems can make use of these restraints.

By way of illustrating how such restrictions may be used, consider a T road junction as a three port sub-system (Fig. 5). A vehicle V entering at port A must emerge at Port B or C, or reverse out of port A, otherwise it must have stopped within the confines of the junction. In this example three detectors would be needed to cover the conditions of vehicle movement in areas between junctions.

Returning to the conventional method of dead reckoning with fixes, it is easily seen that such an approach can be made in a simpler manner in the road transport situation. All that is required to provide a system of vehicle location (i) to arrange within the vehicle a means of measuring distance travelled, (ii) to establish along each route a number of fixed points which, as each one is passed, may be identified by apparatus installed in the vehicle, and (iii) to determine whether or not the v.h.f. data link is adequate to pass this information to the central base station. It is, of course, assumed that the base station has data handling equipment available. This should be able to extract the necessary information from the link and display it in a form suitable for human operators to comprehend, thereby enabling control strategies to be applied.

Wheel revolution counting

In a wheeled land vehicle a simple, if somewhat crude, method of measuring distance travelled is to count the number of revolutions made by the wheels while traversing a given route. Because this can be easily arranged in a modern motor car, experiments were planned in order to gain experience of this
form of measurement and to determine just how seriously data link I could be used in a practical system. To this end a suitably geared mechanical pick-off, operating a 10 -bit digital shaft-encoder, was fitted into the speedometer drive cable of one of the vehicles used in the previous experiments.

The equipment was so arranged that a call from the base station would initiate a reply from the vehicle containing an up-to-date indication of shaft-encoder position. Tone selective calling was used to address the vehicle but in this case each of the 16 bits of the reply message was given a different significance. The first three became a fixed start code, the next two were used as an indicator, followed by 10 bits of Gray code from the shaft-encoder, and the final bit was used 'as an end of message indicator (Fig. 6a).

Two routes were selected, both of which started and ended at the base station site. Route A was about $3 \frac{1}{4}$ miles long mostly through lightly built-up areas. The longer route B, about $8 \frac{1}{2}$ miles, included a 4 -mile figure-of-eight loop in a heavily built-up town centre, situated about 3 miles from the base transmitter. A number of marker points, spaced one quarter to half a mile apart were chosen on each route and the vehicle crew was asked to throw a switch when passing each marker. The operation of the switch caused the two indicator bits in the message to change, signifying to the computer that such a point had been reached.

Several calibration runs were made and the information was stored in the computer. Operational runs were then performed, the results of which were printed out in the following form. A first column identified the marker points on the route. The second and third columns showed the times at which the vehicle reached the positions indicated in the first column. These were determined both by comparing the shaftencoder information with that obtained during the calibration run, and by a change in indicator bit condition. The fourth column indicated distance error and a fifth column provided some indication of average vehicle speed between markers. Statistical data on radio-link conditions during the run were collated at the end of each print-out.

Results showed that under good radio conditions adequate accuracies could be
achieved even with a simple set-up, position indications within 50 ft being frequently obtained, to some extent vindicating the wheel count method Tracking became difficult, if not impossible, with the simple system under bad radio conditions, i.e, heavy interference, shadowing, etc, indicating that, as had been expected, some form of error detection would be essential under such conditions.

As the system contained a computer it seemed natural to attempt a software solution to this problem. A vehicle tracking programme was written which enabled a number of credibility checks on the incoming data to be made and only those able to pass this screen were considered reliable. Tests with this programme gave very good tracking, even under quite heavy interference conditions, and it was felt that the feasibility of such a system for tracking route-plying vehicles had been demonstrated.

The next major step in this particular line of development was to improve the method of presenting results to a controller. It was therefore arranged to present the vehicle situation as a visual picture using a graphical display unit. It was logical to make use of this approach. as a computer was included in the system and flexibility of display afforded by this means made the case overwhelming. The opportuntity to be able to switch from a map of the area showing the immediate disposition of all his vehicles (Fig. 7) to another "presentation showing the up-to-the-minute operational situation on any particular route of his choosing gives the vehicle fleet operator a unique degree of operational control at the press of a button.

Clearly, the information that might flow over a vehicle-to-base digital link need not be restricted to positional data only. In fact it was arranged on certain occasions to make a change in message indicator bits to represent a 'driver alarm' signal. By this means the vehicle driver could alert a controller simply by throwing a switch in the vehicle, which caused a flashing alarm indication to appear on the controller's display screen. In a practical system a great variety of data could be sent back to base over the link. For instance, bus operation controllers might wish to know the passenger loading at certain times, and passengers could be counted automatically when boarding or alighting at bus stages, the information being relayed back to base.

Data link II

The work so far had been done with only one, or sometimes two, vehicles. Because of the capital outlay required for such a system, it would only become really economic when applied to fleets containing probably a few hundred vehicles. This being so, some attempt had to be made to speed-up the calling rate of data link I which had been held to about one per second, for three reasons. These were, first, the use of tone-selective calling required 500 ms to achieve a successful

Fig. 7. Map display of the area showing the position of all vehicles.
interrogation, second, upon being called some time was needed for the vehicle transmitter to reach full power, and third, even a 16 -bit message took 400 ms to send at the 40 -baud rate. So a faster link-data link II-was considered.

The philosophy behind any system which might be produced was that of providing add-on digital equipment to any good commercially available mobile v.h.f. radio. In consequence it was felt that only the first or third items above could be tackled at this point in time. Indeed, by increasing the signalling rate to 1,000 bauds and providing a similar outgoing digital link for pulse code addressing, the interrogation and reply time would be substantially reduced. The next step therefore was to determine the feasibility of signalling over the link at this higher rate.

It was felt that the emphasis on the two main types of error would change when using 1,000 -baud rate, as opposed to 40 -baud signalling, due to the nature of the radio signal. The time required to transmit a complete message at the faster rate was less than that for just one bit at the slower, and this would manifest itself in a greater number of 'no replies' than 'corrupt messages'. Experiment largely confirmed this expectation, although there was a marginal increase in overall errors. However, it was established that there was no great penalty to be paid for using the increased data rate and work could now go ahead on providing a similar digital link from base to vehicle.

This entailed major changes in the hardware used so far at both ends of the link. For instance, the serializer in the vehicle had to be modified in order to
de-serialize the incoming message, and similar arrangements were required at the base end. Further, results had shown the need for some form of error detection for the outgoing link and this would now need to be accomplished by hardware methods in the vehicle. Some form of protection could be achieved by building a fair degree of redundancy into the interrogation message sent to the vehicle. For convenience, a 16-bit message was used but only 8 bits were made available for address purposes. A start code of four 'ONES' followed by a 'ZERO' preceded each address, which in turn was split into two blocks of 3 bits followed by a block of 2 bits, each block being punctuated by a 'ZERO' bit. A final 'ONE' acted as an end of message indicator as before (Fig. 6b).

A check was applied to incoming data at the vehicle end of the link to ensure that each message fitted into this format; if it did not the message was disregarded. A vehicle recognizing an address as its own would formulate a reply from the data contained at that moment in its data register and then transmit this back to base. Thus, as before, all that is required to complete a location system is to set suitably coded up-to-date vehicle position information in this register.

Further navigational methods

Having already established that a simple wheel revolution counting system could be adequate for vehicles operating in mode (c), and that using a faster data link large fleets could be controlled, attention was turned to the more difficult problem of vehicles of the mode (b) type.

A clue to the solution to this problem might be found by returning to the subject of conventional navigation. So far we have explored the dead-reckoning approach and have found comfort in this for vehicles which are restricted to given routes. A little thought will show that this, combined with fixes arranged at strategic points within a given urban network, could provide a suitable location system.

Consider a vehicle which is operating in mode (b) travelling along a straight road in an ordinary town. Before very long it is likely to reach a crossroads and is presented with an element of choice. It may continue on past the junction or it may turn left or right; somehow the location system must determine which of these possibilities has been chosen. The system previously described, within limits, measures distance travelled, and it can be assumed that the base station has good knowledge of the town geography. Such a system can determine when a vehicle arrives at a particular junction but is unable to decide by which port it leaves. Some means must therefore be provided to overcome this dilemma.

As a first approach, a measurement of the degree of turn could be considered and, given sufficient accuracy, this method has a lot to recommend it. However, most practical methods of achieving this to the required degree of accuracy entail somewhat complex modifications to the mechanical parts of the vehicle. It is interesting to note that the principle of the ancient Chinese "southpointing chariot", which was chronicled some 5,000 years ago, provides one form of solution to this problem ${ }^{1.2}$. Further methods rely upon magnetic compass indication, but the presence of a large and variable number of oddly assorted metallic vehicles in the immediate vicinity rather precludes such an approach in this type of environment.

Location systems using beacons

Another way of achieving the desired result is to provide a beacon at the side of each road leading away from the junction. If each beacon is uniquely coded and can be interrogated from the vehicle then, knowing the sites of each beacon, the base station is able to follow the progress of the vehicle. Again, if enough beacons are erected, one on each lamp-post perhaps, quite a good degree of positional accuracy may be obtained; sufficient for most practical purposes without the use of other methods such as wheel-revolution counting. This type of system bears a strong resemblance to railway 'block signalling', the position of each vehicle being determined by which block it is in at any time. The blocks in this case need be only a few tens of feet long.

Until recently the use of beacons was not considered to be particularly viable for vehicle location, the economics of such a system being most unfavourable. Some advant age had been gained elsewhere by using beacons in conjunction with wheel revolution counting for largely routeplying purposes. But the sheer number of
beacons required for mode (b) vehicles (several at each junction), even when combined with wheel revolution counting, demands a beacon which is cheap to produce, install, maintain and run. Although in the practical case a high initial cost may be defrayed to a considerable extent by a leasing agreement with other operators. For example, once installed, beacons could be used by police, bus and tram operators, taxis, delivery van fleets, etc. As such a system can easily be made mutually exclusive, the interference problem need not arise.

Beacons, and the way they are interrogated, may take various forms. The requirement is basically one of short-range communication and any of the standard methods from optics to ultrasonics can be used. The beacons themselves may beeither active or passive. Active beacons are those which continuously emit pre-coded information and the marine lighthouse is a common example of an active beacon. Passive beacons transmit their address signal only when triggered by some external source and may be further classified into two sub-groups, passiveactive and passive-passive, depending upon the method by which they are powered.

Passive-active types need some form of power to drive them even in the quiescent state. A radio beacon is usually of this form in that the receiver must remain on at all times, other than when the transmitter operates, in order to amplify and detect the triggering signal. For this purpose a source of external power is required. The wartime I.F.F. transponder is a practical example of this type of beacon.

Passive-passive beacons are completely inert, requiring no external power at all while waiting to be triggered. They derive the power which enables them to reply, solely from the external energy required to trigger them. For example, the rear reflector on a motor car needs no external power supply but emits a red-coded 'address' when triggered from a white-light source. Clearly, the advantages gained from using passive-passive beacons in a vehicle location system are considerable. No batteries or mains supply are needed so that installation and maintenance effort required are minimal and they cost nothing to run. At the present time the use of optics allows the most practical method of applying a passive-passive beacon solution to the vehicle location problem.

In one such system beacons consisting of horizontal reflective strips are illuminated by a vertical scanning beam emanating from the vehicle. The reflected reply is de-scanned, detected by a photo-cell, and after amplification provides an electrical analogue of the beacon code. This information is stored in a register until a demand is received over the v.h.f. data link, whereupon the beacon address is transmitted back to base. Knowing that the code is that of a particular beacon, and the beacon is situated in a certain place, the base station now has the exact position of the vehicle and can display this to the operator in some pre-arranged form.

Using optical passive-passive methods the beacons become purely reflective, and a first requirement is to devise some way of coding each beacon in order to give a unique reply. In the present system this is achieved by using strips of retro-reflective material. Retro-reflection is the property of a material to reflect a beam of light back along the axis of the incident beam. A ray of light incident on a plane reflecting surface is reflected at the same angle as that made by the incident beam to the normal, but on the opposite side of the normal. A plane surface is only retro-reflective to light reaching it along the normal.

Beacons could be coded digitally by using the presence of a strip to represent 'ONE' and no strip to represent 'ZERO', but this simple method is unsatisfactory for the following reasons. In practice a vehicle may pass a beacon at any distance across the car riageway, it may be travelling in the inside lane when interrogating one beacon but in the outside lane when passing the next. Therefore the beacon reading equipment must be able to read and store the beacon information at distances ranging from a few feet to a few tens of feet. This means that the frequency and pulse width of a reply can vary considerably in the practical case, because the angle subtended by the beacon alters with distance from the reading head.

Further difficulties occur due to a difference in the installed heights of various reading heads. Clearly, for a system to be practicable it must accommodate reading equipment which can be fitted on the roof of a Mini or on top of a double-deck bus. In this respect too it is most desirable to allow a wide tolerance on the installation height of the beacons themselves. For these reasons the beacons must be capable of being read at a variety of vertical angles and the reading equipment must be able to extract the beacon code under these conditions. This possibility of a slant presentation results in a further change in pulse width and frequency during a single scan, but both these difficulties can be overcome by devising a method of extracting both timing and code information from the reply signal.

Modulation of the light beam by frequency shift (two colour), polarization, or pulse-width techniques afford ways of deriving the required information, and both methods have been used in the system under consideration. But before discussing these methods in greater depth some thought must be given to how the beacon is to be read.

As previously mentioned, the beacon is scanned vertically. The light source needs to supply an extremely well collimated beam, one which can project a spot of less than about $\frac{1}{4}$-in diameter at a distance of about 40 feet. This is a very exacting requirement but one which can be readily met by using a low-power laser. The monochromatic property of the laser, used together with suitable filtering, also provides a considerable signal-to-noise advantage. The beam is deflected on to an eight-sided mirror-drum which rotates at
about 2,500 r.p.m., thereby scanning any beacon in its path. The need for retro-reflection now becomes clear, the return signal so formed is de-scanned by the mirror-drum and deflected on to the sensitive area of a photo-diode (Fig. 8). This is all the optics required for the pulse-width coded beacon as the necessary information can be extracted from the photo-diode output electronically, and we are now able to consider the operation of this system in greater detail.

Width-coded beacons (Fig. 9a) are divided into $1 \frac{1}{2}$ in horizontal zones, the first inch of a 'ONE' zone and the first half-inch of a 'ZERO' zone consist of reflective material (Fig. 10a). The signal received from such a beacon is of the form shown in Fig. 10b, and this is used to gate an up-and-down counter which normally counts a faster-running pulse signal. A positive-going edge causes the counter to count up until a negative-going edge reverses the count. The state of the counter is r ead out at each positive edge and if it contains a positive number the appropriate register position is written to 'ONE' if negative a 'ZERO' is written. Immediately after reading the counter is reset ready for the next signal bit. This process is shown diagrammatically in Fig. 10c. marked A.

Fig. 8. Basic optical system.

Fig. 9. (a) Width-coded beacon and (b) beacon for polarized light method.
Beacons for the polarized light method consist of alternate equal width strips of reflective and non-reflective material (Fig. 9b). Coding is achieved by covering certain reflective strips with polarizing material and the whole beacon is scanned by a beam of polarized light. This causes a rotation of direction of polarization to occur on light returning from the covered strips while no change occurs on the uncovered ones. By splitting the returned beam after de-scanning, and passing each split beam through suitably arranged polarizing filters, the output of one of the two photo-cells detecting these signals will

(a)

(c)

Fig. 10. (a) Width-coded beacon, (b) width-coded beacon waveform, and (c) the counting operation of up/down counter. The counter is read and then reset at points
contain information from each strip, and the other only that from the polarized strips. The signal from the second cell may therefore be clocked into the register using the output from the first cell as a strobing signal.

All estimates existing today predict a continued rise in the number of road vehicles over the next 50 years. In Britain alone this number is expected to top 35 millions. With this order of density it becomes transparently clear that the present "Brownian motion" of traffic can no longer be toler ated and orderly control will have to be applied to a greater extent.
Over the past year several small location systems have been demonstrated. Wheel revolution counting, polarized and widthcoded beacon methods have been shown in an attempt to illustrate that solutions do exist to the somewhat difficult problem of vehicle location. The first faltering steps have been taken into the realms of practicability, and it is not unreasonable to suppose that great strides will now be made in this particular subject.

References

1 ''Differential Gears" by Ernest F. Carter, Design and Components in Engineering, 9th February 1967.
2 "The History of Marine Navigation", by Per Collinder (translated by Maurice Michael), Batsford 1954.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Electronics in medicine

In expressing my support for the editorial "Electronics in Medicine-the Future" in the June issue, I should like to draw attention to an underlying handicap retarding the development of biomedical engineering technology in the United Kingdom.

Medical electronics is a branch of biomedical engineering, a multidisciplinary scientific activity. In 1958 , following the initiative of Dr. Zworykin, the first of the International Conferences on Medical Electronics was held in which many kinds of specialists from the life and basic sciences have contributed. In hospitals of the National Health Service and Medical Faculties of the Universities, where direct collaboration between medical and engineering personnel is possible and desirable, there is still no recruiting, training or career structure for chartered engineers. Is it merely a rhetorical question to ask how the engineering side of biomedical engineering can be carried out without the participation of professional engineers?

Some hospital physicists, aware of the need for engineering in the medical environment, have retrained themselves as engineers. The situation in the universities is even less satisfactory, for the normal staffing structure in an electronics laboratory is the "one- (or two-) man-band", each one organized independently, one or more to a department according to the demand. There is no need to emphasize the consequent duplication of capital outlay and failure to utilize available skill.

It appears to the writer that the engineer is not yet accepted in biomedical engineering, and that non-engineers do not understand either the need for engineers, or the work they do. The remedy, of necessity, must originate from within the engineering profession. The initiative must be both practical and independent of external support or patronage. Only when engineers, as a profession, are making an indispensable contribution to the inter-disciplinary cause, also providing training and research facilities, will the engineer be welcomed by non-engineers. Five years ago, Dr. Zworykin proposed the setting-up of an Institute of Biomedical

Engineering. May I as an engineer, propose that the Council of Engineering Institutions give consideration and support for the creation of such an institute?
R. E. GEORGE,

Physics Dept.,
Medical School,
Guy's Hospital, London S.E.1.
Your editorial in the June issue rightly draws attention to the difficulties faced by companies manufacturing medical electronic equipment, especially for the U.K. market. In it you suggest that equipment produced for the general user has potential applications in medicine, but the converse is just as of ten true.

The evolution of electronics from radio began before the incentive of war-time radar, helped greatly by physiologists and associates who asked for the impossible. and then provided it themselves. For example, between the wars, Matthews, Offner, Tonnies, Schmitt and others transformed the crude audio amplifier by adding differential inputs, increasing gain and stability, and extending the frequency response towards zero. Since the war, medical workers have been constantly breathing down the necks of solid-state designers, demanding higher input impedances, less noise and many other characteristics that have proved invaluable elsewhere.

It is not only in the fields of circuit techniques and components that biomedical engineering (as it is now known) has influenced electronics in general. Many items of hardware developed specifically for medicine have found other applications, perhaps after minor modifications.

This company manufactures a patient monitoring system that has evolved from initial work in a medical research establishment, but the specially developed indicators and chart printers are now proving to be of a great interest to instrumentation and control engineers in many industries. By exploiting this greatly extended market, it is possible to provide the hospitals with what they want at a price the nation can afford.
ANTHONY S. VElate,
T.E.M. Engineering Ltd,

Crawley, Sussex.

Rationalizing trade associations

I was most interested in the editorial in your issue for July because a rationalization of the many trade associations in the electronics field is long overdue.

In 1956 I was appointed secretary of R.C.E.E.A.-now E.E.A.-and a year later I put up a scheme (which would probably have led to my immediate retirement) for the administration of all these associations within the general confines of the British Electrical and Allied Manufacturers' Association. I learnt very quickly that this was a non-starter at that time, although the economic factors and almost entirely common membership of E.E.A. with B.E.A.M.A. made it a logical development.

There were two reasons why it was not acceptable then. One you have high-lighted. That is the reluctance of some associations (or their council members) to surrender their autonomy. The second was never publicly recorded, but was, the intense jealousy between member companies, which led them to believe that their own interests were more important than those of the industry, or indeed of the nation. I am convinced that the latter has been the real reason why no rationalization of the electronics industry representation has so far taken place.

However, the last few years have seen a major re-grouping of the companies in this field, and there are consequently fewer heads of businesses to be convinced of the obvious economies to be achieved by ending the proliferation. One would therefore hope that the rationalization of the trade associations, which the E.E.A. is apparently trying to achieve, will go forward. The resulting benefits to the nation should in the long term benefit the member companies also.

The top men who would comprise the "voice that could speak to governments, other associations and foreign organizations" are unlikely to have the time to do it in B.E.A.M.A. and E.E.A. etc. Perhaps after thirteen years the jealousies are becoming less pronounced, and the powerful voice may yet emerge.
H. E. F. Taylor,

Torquay,
Devon.

Mobile radio and amateur bands

In your issue of July 1970 you quote from the recently published Annual Report (1969) of the Electronic Engineering Association: "The lack of spectrum space continues to be seen as the most likely factor which could seriously limit the expansion of mobile radio communications. Negotiations have therefore now begun with the Ministry of Posts and Telecommunications to secure the use of the 68 to 71.5 MHz and 420 to 450 MHz bands."

The reason why our Association has suggested to the Ministry of Posts and

Telecommunications that 68 to 71.5 MHz should be made available to mobile radio communications arose from the recent announcement that the GEE navigational chain which operated in that band had closed down. In making the recommendation I do not think that any of our members were aware that this part of the frequency spectrum was used by amateurs. Indeed, it seems that the allocation was made without the usual formality, and only upon a noninterference basis.

In regard to the $420-450 \mathrm{MHz}$ band, I feel sure that the amateurs will understand our concern as an industry that substantial frequency space, without which mobile radio cannot expand, is being made available above 470 MHz in the United States and below 450 MHz on the Continent. Mobile radio activity and the size of the industry it can support, and the amount of research and development that the industry can support, are in the last analysis dependent upon the adequate availability of frequencies. If the problem of expansion in the all important u.h.f. sector is not solved then leadership in product development and export will undoubtedly pass from Britain to those industrial countries who are now receiving generous new allocations. It is against this background that our members question whether the country can afford, even on a non-interference basis, the allocation of 22 MHz to amateur television.

Our members have the highest regard for amateur activities including their brilliant pioneer work above 1.5 MHz nearly fifty years ago, and would not wish to see them deprived of all facilities in the u.h.f. bands. We should welcome discussion on the subject with representatives of amateur associations. R. A. Villiers,

The Electronic Engineering Assoc.,
London, W.I.

Class AB-some questions

Following the two articles on a class $A B$ amplifier design by Mr. Linsley Hood and also the correspondence in the August issue, we would like to raise several points concerning the specification.
Total harmonic distortion is specified as less than 0.02% at all power levels below maximum output, but this is presumably (see Figs. 6 and 7) only at 1 kHz though not specified as such. What are the distortion levels at 100 Hz and 10 kHz at full output, for example?

When quoting a noise level for the amplifier, the noise bandwidth of the measurement was unspecified thus rendering the result as meaningless as quoting a frequency response without limits (e.g. $\pm 3 \mathrm{~dB}$).

A value for "square-wave transfer distortion" is given as 0.2% at 10 kHz but the power level is not specified. As "square-wave transfer distortion" is a non-standard quantitative measurement, for the result to be meaningful, an explanation is required as pointed out by Mr. Gibbs in his letter in the August issue.

Also results for other amplifiers, for example a good class B amplifier, would be useful for comparison.
Martin Smith and
H. P. Walker,

Southampton, Hants.

Notwithstanding the perfection of Mr . Linsley Hood's latest amplifier in practice, I would differ with him over some of the points he raises in the July issue.

A Darlington pair has a lower mutual conductance than the output transistor on its own. The converse can only be true of the complementary pair configuration. His first paragraph attributes a higher value to both pairs.

The overall linearity of the output stage of his Fig. 2, when driven from a genuinely low source impedance, does depend on the quiescent current contrary to his expectations. A high drive impedance is the answer, with a low inter-base impedance. This does not impair the cut-off performance as the conducting transistor presents a low base-emitter impedance to the one being cut off.

The output stage of Fig. 3 operates between the common emitter and the common collector modes. The true emitter follower of Fig. 2 has an inherent distortion of about 100 times less than Fig. 3, provided that the source impedance is low enough and the quiescent current is appropriate. Infinite values of bootstrap capacitance are necessary to secure pure common emitter operation; this circuit is predominantly common emitter above 30 Hz . His calculation of class A output power assumes that the output transistors have a constant mutual conductance. Due to the bend in this characteristic at low collector currents they do not cut off as soon as expected. The class A output of either version is nearly $2 \mathrm{amps} \mathrm{pk}-\mathrm{pk}$. Using a standing current of 100 mA and no emitter resistors, a class A output of over $5 \mathrm{amps} \mathrm{pk}-\mathrm{pk}$ is available. (The traditional definition of class A does not preclude current ratios between the two halves of 10^{8}.)
A high class A power is not, ipso facto, a particular virtue. The correct quiescent current is related to the linearity of the output stage under dynamic conditions, and this ought to be significantly lower than that required by full class A operation, in a good class AB design.

The mutual conductance of MJ $481 / 491$ with 0.82 -ohm emitter resistors is 1 mho at high currents; this falls to 0.5 mho at a collector current of around 20 mA . If $\operatorname{Tr}_{3}, 4$, have high current gains, so that the drive impedance really is low, this is the optimum quiescent current with a bandwidth of a few kHz . Higher quiescent currents worsen the performance. A current of 200 mA is undoubtedly right for bandwidths greater than this, but no compromise would be necessary if the drive impedance was high enough for all combinations of transistors.

Poor matching of the output transistors is extremely unlikely to cause any noticeable deterioration of the performance, except to a distortion meter; low
gains may even be advantageous in certain cases. Full class A operation is unnecessary in both these circumstances.

My final point concerns the avoidance of temperature-compensation in the biasing of the output stage. The penalty for this is very poor thermal stability in the 8 -ohm version.
D. L. D. Mitchell, University of Bradford.

I.Cs in stereo pre-amplifiers

We were very interested in the article in July 1970, by L. Nelson-Jones, describing an application of the RCA CA3048 as a stereo pre-amplifier.

The original RCA stereo pre-amplifier circuit was intended for use in low-cost applications and had a few sho:tcomings as observed by Mr. Nelson-Jones. A later RCA report published in June 1969 (A Monolithic Integrated Circuit for Stereo Pre-amplifiers, by L. Kaplan) describes several circuits which produce comparable performance to the circuit described by Mr. Nelson-Jones but use passive tone controls. The problem of signal-to-noise ratio was overcome by increasing the loop gain of the first pre-amplifier whilst still maintaining adequate overload capability.

The CA3052 is capable of producing a similar noise performance to the CA3048 when used as a stereo pre-amplifier provided amplifiers A2 and A3 are used for the magnetic inputs. These amplifiers are tested in production for equivalent input noise with full R.I.A.A. compensation, and amplifiers A1 and A4 are checked with a simple ' C ' filter connected at the output. We should be happy to provide any further applications information to interested readers.

L. R. Avery,

RCA Ltd,
Sunbury-on-Thames,
Middx.

Jupiter probe

In the feature "News of the Month" in your August issue under the heading "Space Probe to Jupiter" you state that "This planet is believed to be the only one in our solar system which radiates more energy than it absorbs from the sun, current measurements indicating about twice as much." This is not true as all planets containing any radioactive material must radiate more energy than they absorb from the sun. No other planet, however, radiates as large an excess as Jupiter.

A planet must radiate enough energy to maintain its thermal equilibrium, and it is reasonable to assume that any planet will contain some radioactive core material, the decay of which will produce heat energy. It is evident, therefore, that to maintain thermal equilibrium a planet must radiate as much more energy than it absorbs from the sun as it generates itself in internal radioactive decay.
James M. Bryant,
Cheltenham, Glos.

Transistor Breakdown-voltage Meter

Constructional details of a useful instrument which provides direct reading of junction breakdown voltage at fixed reverse currents

by Jens Langvad*, M.Sc. (Danish)

Designers of power amplifiers, power supplies or any equipment using transistors working at high supply voltages often require to know the actual breakdown voltage of the transistors. The instrument described here was designed to replace the conventional method of just increasing the voltage slowly to see what happens.

The maximum collector-to-emitter or collector-to-base voltage specified by the transistor manufacturer is often grossly understated. This leads the circuit designer into buying expensive high-voltage transistors in cases where a standard type may do the same job just as well. The cheap BC107, for instance, usually exhibits a collector-to-base breakdown voltage [$V_{(B R) C B O}$] in excess of 80 V , although the stated maximum operating voltage is only 45 V .

The reason for this is that in the planar manufacturing process it is not easy to keep the $V_{(B R)}$ within narrow limits. By stating a $V_{(B R)}$ well below the production average, but still above the need of most customers, allowance is made for a greater number of freaks and a lower rejection factor.

Breakdown characteristics

For an ordinary silicon planar junction transistor three breakdown characteristics are of interest. These are: (1) the $V_{(B R) E B O}$, (2) the $V_{(B R) C B O}$ and (3) the $V_{(B R) C E O}$ voltage-current curves. (In accordance with accepted terminology the " O " stands for open and refers to the third terminal.) The first is quickly dealt with; the $E B$ junction breaks down like an avalanche zener diode with a knee voltage of $6-12 \mathrm{~V}$, according to type (most BC 107s lie quite accurately at 8 V).

The $C B$ diode breaks down in a similar manner, but the knee voltage is much higher. The $V_{(B R) C B O}$ is the most important of the three, as it determines the maximum peak-to-peak collector voltage swing one can expect from the transistor.

The CEO characteristic is shown in Fig. 1 together with the $C B O$. (There is no scale factor, as this depends entirely on the type of transistor investigated.) At very low currents the two curves are seen to coincide, but after reaching the knee the $V_{(B R) C E O}$ drops with increasing current, thus exhibit-

[^0]

Fig.1. Typical breakdown characteristics.

Fig.2. Principle of breakdown-voltage meter.
ing a negative resistance characteristic. If, however, an external resistance is present between the base and the emitter the $C E$ curve approaches that of the $C B$. If, for a low-level transistor, $R_{B E}$ is less than $100 \mathrm{k} \Omega$ (and this will be the case in most amplifier applications) the two curves may be considered as coinciding.

Breakdown-voltage meter

The breakdown-voltage meter itself comprises a simple d.c. supply giving the unusually high output voltage of 200 V , in connection with a current limiter covering the equally unusual range of $0.1 \mu \mathrm{~A}-1 \mathrm{~mA}$ in decade steps. In Fig. 2, $T r_{1}$ and $T r_{2}$ are high-voltage type transistors. A is a differential input amplifier working as a voltage comparator and E is a reference voltage. When no current flows in the test object the output of A is zero, so that $T r_{2}$ is cut off and the series transistor Tr_{1} saturated through R_{1}. When the test object is connected, the current flowing through it will produce a voltage drop across R_{2}. This
voltage cannot exceed E, because if it did, the voltage comparator would turn over, saturate $T r_{2}$ and thus drive the supply voltage towards zero.

Provided that the input impedance of A is much greater than R_{2}, the current in the test object is seen to be limited to $I=E / R_{2}$. Thus $I=1 \mu \mathrm{~A}$ and $E=0.5 \mathrm{~V}$ require $R_{2}=$ $0.5 \mathrm{M} \Omega$. The voltmeter V indicates the voltage required to drive I through the test object, plus the reference voltage E. But the latter is small enough to be neglected.

Practical circuit

The complete circuit diagram is shown in Fig. 3. Any transformer giving 200-250V and 6.3 V may be used. The zener-stabilized low voltage supplies the voltage comparator and also works as a reference for the voltage limiter. (This is of the usual kind and serves only to limit the maximum voltage to full scale deflection on the meter.) There are two voltage ranges: $0-100$ and $0-200 \mathrm{~V}$, and the voltage divider for the limiter and the pad for the meter are switched simultaneously by S_{1}. Transistors $T r_{1}, T r_{2}$ and $T r_{3}$ are high-voltage devices, RCA type 2N440, but any type with a $V_{(B R) C B O}$ of 300 V or more would do.

Transistors $T r_{4}, T r_{5}$ and $T r_{6}$ constitute the voltage comparator. The f.e.t. input transistor provides the amplifier with an input impedance approaching infinity. The diode-resistor network in the input protects the f.e.t. against voltage surges. S_{2} selects the current ranges $0.1 \mu \mathrm{~A}-1 \mathrm{~mA}$. The selected value of current obviously depends on the type of transistor under test, but usually the $V_{(B R) C B O}$ is remarkably independent of the current at which it is measured. Generally speaking, one should use the low-current ranges for low-level planar transistors, and the two highest ranges for germanium or power devices. When measuring $V_{(B R) C E O}$ one can get a fair impression of the shape of the breakdown characteristic just by rotating S_{2}.
S_{3} switches between positive and negative supply for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors respectively, and S_{4} connects the transistor either $C B O$ or $C E O$. In the midposition the transistor is disconnected and the supply voltage turned down. This is achieved by $S_{4 C}$ shorting the base of $T r_{1}$ to ground. S_{4} could be a keyswitch biased in both directions, so as to ensure that the

switch is always in the neutral position when the transistor is inserted. When S_{4} is operated, the voltage does not jump but rises fairly slowly owing to the $10 \mathrm{k} \Omega / 16 \mu \mathrm{~F}$ $R C$ network. This is necessary in order to avoid dangerous current surges in the test object.

The test current may be adjusted by altering the base voltage of Tr_{5}. It is easily set to the correct value by means of a known resistor. With $470 \mathrm{k} \Omega$ connected between C and B terminals, S_{4} in position $C B$ and S_{2} in position $100 \mu \mathrm{~A}, P_{1}$ should be adjusted until the meter reads 47 V . $(100 \mu \mathrm{~A} \times 470 \mathrm{k} \Omega$ $=47 \mathrm{~V}$). In this context it can be mentioned that the instrument is ideal as a megohmmeter, having a linear scale and covering a range of 0.1 to $2000 \mathrm{M} \Omega$ f.s.d.

Mounting of the components is far from critical; yet it is recommended to put the whole in a closed metal box and connect this to circuit earth so as to avoid the disturbing influence of hum voltages on the high impedance input. However, insulate the box externally (a coat of paint may suffice), or be very careful with external test-leads, as a short from either of the connecting terminals to the case will prove fatal for at least half of the transistors.

If the components are mounted on a printed circuit board, trouble might be experienced with the low current ranges owing to stray currents on the board. This can be countered by keeping the gate of the f.e.t. and associated leads and components on a "stand-off", away from the etched side of the board.

A Quick Look at Display Devices

Information present inside a piece of equipment-be it a computer, a measuring instrument or what have you-is of no use unless it can be made to do something or it can be presented to the outside world in a way that can be understood by human beings.

Ordinary incandescent lamps can be used individually to show simple on-off or yes-no information or they can be used to illuminate a more complex legend, "No. 3 alternator failure", for instance. Early counter-timers used such lamps to illuminate the digits 0 to 9 either by edge-lighting perspex sheets or by illuminating an engraved or printed window. However the flexibility is limited and the current consumption is high, and most of the power consumed is wasted as heat.

Some of the above remarks apply to simple neon indicators, but here, low brightness and high-voltage replace the high-current and heat disadvantages.

Gas-filled indicators, such as the Nixie, have long reigned supreme in the instrumentation field where a numeric only readout is required but they are of no use when letters and words have to be displayed.
The cathode-ray tube is now much used to display alphanumeric information and the methods of doing so are as varied as they are numerous. Character generators for c.r.ts can now be purchased in integrated circuit form which use the seven-segment method of presentation. Seven lines are generated which can be used to assemble all the numbers from 0 to 9 plus a few letters. More complex electronics can be employed to produce on a
c.r.t. upper and lower case alphabets, all the numerals and a varied assortment of symbols. Although expensive with complex scanning, blanking, decoding, addressing and storage circuitry this type of display is much used, often in association with computers.

The single incandescent lamps and the neon lamps can be grouped together in a 5×7 matrix to provide a display capable of showing a full range of alphanumeric characters and symbols. The array of lamps in this case is driven by a logic net work which receives coded input information and determines which lamps have to be lit to display a given character. The same 5×7 matrix approach can be, and is, used with c.r.ts, here the matrix is formed by dots on the tube face.

The latest contender in the field of displays is the light emitting diode and our front cover this month shows an integrated array produced by Standard Telecommunication Laboratories Ltd which, as can be seen, is based on a 5×7 matrix. These lamps are forward biased diodes which emit a narrow band of light by the recombination of injected holes and electrons across the energy band gap of a single crystal material. The diodes are manufactured from a mixture of gallium phosphide and gallium arsenide. They have the advantage of requiring voltages and currents that are compatible with those normally found in transistor and integrated circuitry.
Another display medium which we will be hearing a lot about in the future is liquid crystal; a substance which can be held in a layer between two transparent surfaces and turns opaque when an electric field is applied.

Active Filters

13. Applications of the active-ladder synthesis

by F.E. J. Girling* and E. F. Good*

The application of the active-ladder synthesis to low-pass and high-pass filters with and without zeros in the stop band, and to simple band-pass filters is discussed.

Butterworth ladder filters

Because only moderate Q factors are needed, Butterworth responses are in general suitable for realisation by factors. Nevertheless, by misalignment of the factors
(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Butterworth ladder fitters normalised for $\omega_{c}=1 \mathrm{rad} / \mathrm{s}$.
on the frequency axis or by errors in Q factor, an appreciable slope can be introduced into the pass-band response by component errors which would cause very little change in pass-band response in an equally terminated filter (much as in the example shown in Fig. 3 of Part 12).
Now although Butterworth responses have relatively rounded corners, over much of the pass band they show a high degree of flatness, e.g. Sth-order response is 1% down from the zero-frequency level at about 0.85 of ω_{c}. If this degree of flatness is to be achieved in practice, therefore, without calling for a tight tolerance on the values of the reactances (or their equivalents in an active filter, the values of the $T \mathrm{~s}-$ or $C R$ products), an equally terminated ladder filter is the preferable choice. Diagrams for orders 2 to 7 are shown in Fig. 1 (although the filters of orders 2 and 3 do not really come within the scope of the present argument) and it is interesting to notice that the normalised reactance values coincide with the reciprocals of the Q factors (Part 9, table 6).
The theoretical structure for a 5 th-order active ladder has already been given (Fig. 13(d) of Part 12) and may be turned into practical form as in Fig. 2 herewith. In this diagram the inverting stages have been moved to new positions to reduce the number of resistors connected to the second and fourth integrators.

If the frequency response is compared with that of the 5 th-order constant- k filter, Fig. 6, it is seen that the shapes are little different, except that the constant-k filter gives a more rapid fall into the cut-off region. When normalised for -3 dB at I radian/second the element values of the constant- k filter are as given in Fig. 3, and
comparison with those of the Butterworth filter give an indication of the tolerances allowable without losing flatness in the pass band or attenuation in the stop band.

In a filter such as that shown in Fig. 2, if $R_{\text {in }}=R_{5}$ the voltage gain is the same as that of the passive model, $\frac{1}{2}=-6 \mathrm{~dB}$. There is no necessity to stick to this figure, however. First $R_{\text {in }}$ may be varied over a considerable range. Secondly the gain of any stage in the forward path may be changed provided the gain of the surrounding backward path or paths is/are changed in inverse ratio. Thus the signal level at the output may be raised without altering the shape of the response curve by reducing R_{1} and increasing the lowest-positioned of the three resistors R^{\prime} by the same ratio; by reducing R_{2} and increasing the already mentioned resistor marked R^{\prime} and the lower of the two resistors marked R_{3}; etcetera. Such changes assume, of course, that each affected amplifier has sufficiently high internal gain to behave still sensibly ideally.
As the first and last integrators have a feedback resistor connected across the capacitor, they provide in effect a simple lag and an unwanted sign change. More economical ends may be used, therefore, as shown in

Fig. 3. Constant-k filter normalised for $-3 d B$ relative to zero-frequency level at $1 \mathrm{rad} / \mathrm{s}$.

Fig. 4. These are lag and integrator circuits (Part 5) and they replace the end two integrator loops of the basic active ladder. The input resistor is now part of a time constant and so cannot be varied independently. Other means of varying the overall gain remain, however.

For a sharper corner and increased attenuation in the stop band Chebyshev filters may be used, and element values may be taken from reference works (e.g. Ref. 1). There is also something to be said for taking as a model a "classical" constant- k filter.

Constant- k filters

Constant- k or A-type filters (Ref. 2) have attractive regularity, Fig. 5, which allows all the integrators of the active ladder to have the same T (except the end ones, which are of half value). When the central elements
*Royal Radar Establishment

for $\omega_{C}=\mathrm{rrad} / \mathrm{s}$
$T_{1}=C_{1} R_{1}=0.618 ; T_{2}=1.618 ; T_{3}=2 ; \quad T_{4}=1.618 ; T_{5}=0.618 ; R^{\prime}, R^{\prime \prime}$, and Rin orbitrary

Fig. 2. Active 5th order Butterworth filter modelled on Fig. 1(d).
of the passive models are designated $2 L$ and $2 C$, as shown, the nominal cutoff frequency is given by

$$
\begin{equation*}
\omega_{n}=1 / \sqrt{ }(L C)=1 / T \text { (say). } \tag{1}
\end{equation*}
$$

Hence, since $R=\sqrt{ }(L / C), L / R=C R=T$. In the basic active ladder, therefore, all the integrators have $C R$ products equal to $2 T$, except the end ones which have value T.

From the responses shown in Fig. 6 it can be seen that these filters are not of equal-ripple type. They are not, therefore, optimum designs: a Chebyshev filter of equal order and with the same maximum

- depth of ripple in the pass band gives a steeper initial fall into the cutoff region, though the ultimate rate of fall is necessarily the same; or alternatively for the same steepness of initial fall the Chebyshev filter gives a smaller maximum depth of ripple.

The 3rd-order filter is identical with a Butterworth filter; the high-frequency and low-frequency asymptotes intersect at the nominal cutoff frequency, and $\omega_{n}=\omega_{c}$ (the

> (a)
$T_{2}=L / R, T_{1}=C R$

$$
T_{2}=C R, T_{1}=L / R
$$

$C_{2} R_{2}=T_{2}, C_{1} R_{1}=T_{1}$
(b)

$$
T_{m}=C_{m} R, T_{l}=C_{l} R
$$

Fig. 4. Methods of making economical ends.
(a)

(b)

(c)

Fig. 5. Constant-k low-pass ladders.
-3 dB frequency). As the order increases, an increasing proportion of the reactances (or integrators) have the value 2 , and the high-frequency asymptote moves down the frequency scale. This causes the initial fall into the cutoff region to be steeper than the asymptote: for the 5 th-order about $35 \mathrm{~dB} /$ octave, compared with $30 \mathrm{~dB} /$ octave; for the 7th-order about $60 \mathrm{~dB} /$ octave, compared with 42 ; for the 9 th-order about $90 \mathrm{~dB} /$ octave, compared with 54 . By the 9 th-order a pronounced and unpleasant ripple has appeared towards the end of the pass band; but up to the 7th-order the amplitude response is quite good enough for many purposes, and the fact that the integrators can be made up using a number of resistors all of one value, and a number of capacitors also all of one value, can make these filters a convenient choice in experimental work.
Also shown in Fig. 6 are curves for the voltage at the output of the centre integrator, which is the replica of the voltage across the centre capacitor (if there is one) of the passive model, or of the current through the centre inductor. These show an increasingly large resonant peak as the order increases. This means that the centre integrator could overload before full output is reached at the final integrator. This possibility can be avoided, however, by increasing the forward gain of one or more of the loops at the output end of the filter and reducing the gain of the feedback parts of the loops as already described.
Some peaking occurs at the centre of Butterworth filters, but to a less degree as they are less resonant. This can be seen by comparing the Q factors of a Butterworth filter (Part 9, Table 6) with those of a resist-ance-terminated constant- k filter given herewith (Table 1). The high Q factors are, of course, the price paid for the steeper initial cutoff, and if the integrators do not have high zero-frequency gain this will show as
an imperfection in the realised response more than with a Butterworth filter.

Effect of finite gain

In a realisation by factors it is easy to estimate the effect of finite gain and make correction by adjusting element values (provided more than the minimum necessary

Fig. 6. Constant-k filters: output voltage and voltage at centre. (a) 5th order; (b) 7th order; (c) 9th order.
gain is available)-see Part 9. In a ladder it is a straightforward matter to calculate the effect of finite gain in an integrator, which as shown in Part 7 is equivalent to finite Q in the corresponding reactance. But when the model is an equally terminated filter, and all but the reactances should be of infinite Q, no adjustment of element values can compensate for finite Q in these reactances or finite gain in the corresponding integrators. In the active ladder, the loss may be compensated by raising the effective amplifier gain to infinity by positive feedback. This may be applied through a sign inverting amplifier, as shown in Fig. 7; or

Fig. 7. A method of applying positive feedback to compensate for finite gain in an integrator.
if a differential input terminal can be found (e.g. the emitter of the input transistor) the positive feedback may be applied directly over the integrating amplifier. What is aimed at is that each of the inner resonant loops when freed of loading from the rest of the filter should have infinite Q, and in practice it is sufficient to apply positivefeedback correction of approximately double magnitude to only one integrator of each loop. It need hardly be said, however, that nowadays the best course of action, at any rate for a low-frequency filter, is to use an operational amplifier of ample intrinsic gain so that no compensation is needed. It should, of course, not be forgotten that capacitors do not have zero loss. But the availability of polystyrene capacitors showing Q factors from 2000 to 5000 makes it unlikely that much difficulty will be experi-
enced on this score; and polycarbonate capacitors showing Q factors of about 500 , and having the advantage of much greater compactness in capacitances of $0.1 \mu \mathrm{~F}$ and over, are usually quite satisfactory.

The effect of finite amplifier gain in distorting the pass-band response is shown by some experimental results obtained by the present authors many years ago. At that time transistors were in a very primitive state, and the only sensible choice of amplifier seemed to be a single pentode valve, Fig. 8. With the loss in the coupling and mixing networks it is probable that the effective amplifier gain was 50 to 100 , and the measured response is shown in Fig. 9, curve (b). To increase the effect the valves were connected as triodes, giving an effective gain of probably 10 to 20 , and the result is shown in curve (c). The curves have been adjusted vertically for easy comparison, i.e. the extra zero-frequency loss is not shown, and it is clear the main effect is felt near the "pole" frequency of the highest- Q factor and indicates a damping down of the Q of that factor.

Adding zeros in the stop band

The performance of a filter is often improved at small expense by adding zeros in the stop band, as mentioned in earlier parts; and in a passive low-pass ladder filter a zero is obtained if either (1) a series arm inductance is tuned with a parallel capacitance (so that, ideally, the impedance of the arm becomes infinite at the required frequency) or (2) a shunt arm capacitance is tuned by a series inductance (so that the impedance of the arm tends to zero at the required frequency). Strict correspondence between the internal working of the passive filter and an active counterpart would require an extra integrator for every added reactance. However, the present writers' colleague, Dr R. L. Ford, has shown that satisfactory results can be obtained by making some additional interconnections to the simple (all-pole) structure, in much the same manner as

Table 1. Factors of constant-k filters with resistance terminations for nominal cutoff frequency of $1 \mathrm{rad} / \mathrm{s}$.

Fig. 9. Responses of 7th-order low-pass active ladder filter: (a) theoretical, (b) measured using pentodes, (c) measured using triodes.
notch response can be obtained from a twointegrator loop (Part 7).
The basic idea is that in Fig 10, for example, the current in $C_{2}{ }^{\prime}$ is proportional to ($p V_{3}-p V_{1}$) and therefore to ($I_{3}-I_{1}$), the difference of two quantities which, at least potentially, are already available in counterpart in the active system. Hence the counterpart of the required difference ($I_{3}-I_{1}$) can be formed and added with a suitable scaling factor to the counterpart of I_{2} to represent the addition of $I_{2}{ }^{\prime}$ to I_{2} without the use of any additional integrators (or differentiators). This is shown in Fig. 10(b). The additional links are r_{1} and r_{3}, and their correct values relative to r_{2} can be found by the following analysis.

In the passive network

$$
\begin{equation*}
I_{2}^{\prime} / p C_{2}^{\prime}=V_{2}=V_{3}-V_{1} \tag{2}
\end{equation*}
$$

so for the counterpart quantities in the active system we should have

$$
\begin{equation*}
I_{2}^{\prime} R=\left(V_{3}-V_{1}\right) p T_{2}^{\prime} \tag{3}
\end{equation*}
$$

where $T_{2}{ }^{\prime}=C_{2}{ }^{\prime} R, R$ being the scaling factor chosen for converting the currents of the passive network into voltages in the active system.
The voltages shown as available in Fig. 10(b) are

$$
I_{3} R=V_{3} p T_{3} \text { and } I_{1} R=V_{1} p T_{1} .
$$

$I_{2}{ }^{\prime} R$ may therefore be obtained by implementing the equation

$$
\begin{equation*}
I_{2}^{\prime} R=V_{3} p T_{3}\left(\frac{T_{2}{ }^{\prime}}{T_{3}}\right)-V_{1} p T_{1}\left(\frac{T_{2}{ }^{\prime}}{T_{1}}\right) . \tag{4}
\end{equation*}
$$

Fig. 8. Very early version of 7 th-order low-pass active ladder filter. $R=390 \mathrm{k} \Omega, C=1000 \mathrm{pF}, 2 \mathrm{C}=2,000 \mathrm{pF}, V_{1}-V_{10}=C V 138$.

Now for the system as shown in Fig. 10(b)

$$
\begin{align*}
V_{x}= & I_{2} R\left(\frac{r_{2}}{r_{2}}\right)+V_{3} p T_{3}\left(\frac{r_{2}}{r_{3}}\right) \\
& -V_{1} p T_{1}\left(\frac{r_{2}}{r_{1}}\right) \tag{5}
\end{align*}
$$

Fig. 10. A method of introducing a zero of transmission by adding only resistors.

So $V_{x}=I_{2} R+I_{2}{ }^{\prime} R$ as required if

$$
\begin{equation*}
\frac{r_{3}}{r_{2}}=\frac{T_{3}}{T_{2}^{\prime}} \text { and } \frac{r_{1}}{r_{2}}=\frac{T_{1}}{T_{2}^{\prime}} . \tag{6}
\end{equation*}
$$

In practice the synthesis must be modified somewhat, since $I_{3} R$, the quantity representing $I_{4}+\left(-I_{2}\right)$ (we suppose for a moment that $C_{2}{ }^{\prime}$ is not present) does not appear as a single voltage, the summation being done by giving the T_{3} integrator two input resistors. This situation is met by providing two input resistors r_{3} for the inverting amplifier, as shown in Fig. 10(c), and the same is done for $-I_{1} R$ as shown on the right-hand side of the diagram. The result at this stage is rather cumbersome. But two of the added resistors are in parallel with the feedback resistor r_{2}, so the system may be simplified as shown in Fig. 10(d), the resistor r being made equal to the parallel combination of r_{1}, r_{2} and r_{3}.
Fig. 11 illustrates how the method can be applied to reproduce a 5th-order filter with two added stop-band zeros. The parameters have been chosen to realise a Darlington characteristic of the same shape as that shown in Fig. 1 of Part 1, and used as an example in Part 9, but scaled to a lower frequency to set the first zero at 50 Hz . The required time constants, in milliseconds, are given in the table.

Variable tuning

The filter shown in Fig. 11 also serves to illustrate how variable tuning may be applied. The requirement is to vary the $T \mathrm{~s}$ of all five integrators in unison. ($T_{2}{ }^{\prime}$ and $T_{4}{ }^{\prime}$ follow automatically.) Methods for tuning an integrator were described in Part 8 (Figs 10 and 11). In particular, it was shown (Fig. 10(d) of Part 8) that by "plotting down" the input to an integrator by a factor $k(<1)$ the T of the integrator is increased to T / k. When several inputs are summed at the virtual earth of an integrator amplifier it is obviously necessary to vary all these inputs. However, if thought is given to the placing of the potentiometers, each one may generally control an input to two integrators. This is achieved in Fig. 11 by breaking the circuit at the places marked X and feeding the potentiometers from the outputs of the adjacent amplifiers, the onward signal lines being reconnected to the sliders. It will be noticed that there also has to be a potentiometer in the input line; but the total number has been reduced to six, against the total of eleven separate inputs to the integrators.
The problem of providing a multi-gang potentiometer can be avoided by using the electronic switching method shown in Fig. 11 of Part 8. Using this method filters have been built covering a tuning range of 10 to 1 ; but because the action of "potting down" reduces the zero-frequency loop gain of the two-integrator loops (and hence their quality - see also Parts 5 and 7), some droop towards the corner of the pass-band response may be expected as the cut-off frequency is reduced, unless an adequate surplus of zero-frequency gain is provided.

High-pass

In Part 7 it was shown how a two-integrator loop can be used to produce the basic 2nd-

Fig. 11. Realisation of a 5th-order Darlington low'pass response.

Fig. 12. High-pass sections.
order high-pass response. As a reminder of this, Fig. 12 shows an undamped high-pass section and the corresponding functional diagram. The essential feature is that the output, V_{L}, is obtained by subtracting the voltage across C from the input V_{i}. This puts both integrators in the feedback path.

If the same principle is to be followed when a system of integrators is used to copy the working of a high-pass ladder structure, for example that shown in Fig. 13, it follows that the functional diagram must be arranged so that V_{o} is derived from $V_{\text {in }}$ by successively subtracting voltages, V_{6}, V_{4}
and V_{2}, corresponding to those across the series-arm impedances of the passive circuit. As usual, it is convenient to work backwards from the output end, and so, assuming V_{3} given, it is required to form the relationship

$$
\begin{equation*}
V_{0}=V_{1}=V_{3}-V_{2} . \tag{8}
\end{equation*}
$$

To do this, V_{2} must be obtained by copying the working as follows:

$$
\begin{equation*}
I_{1} p L_{1}=V_{1} \tag{9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
I_{1} R=V_{1} / p T_{1}\left(\text { where } T_{1}=L_{1} / R\right) \tag{10}
\end{equation*}
$$

$I_{2} R=I_{1} R+I_{0} R$ (where $I_{0} R=V$),

$$
\begin{equation*}
V_{2}=\frac{I_{2}}{p C_{2}}=\frac{I_{2} R}{p T_{2}} \text { (where } T_{2}=C_{2} R \text {). } \tag{11}
\end{equation*}
$$

Similarly V_{3} is obtained, assuming V_{5} is given,

$$
\begin{equation*}
V_{3}=V_{5}-V_{4}, \tag{13}
\end{equation*}
$$

and so on.
The resulting functional diagram is deceptively simple. Turning it into a practical circuit using Blumlein feedback integrators and sign inverting stages leads to a formidable number of interconnections. At the output end, however, these may be reduced to more manageable proportions by using a modified integrator as shown in Fig. 14 which gives the voltage transfer ratio

$$
1+1 / p T_{1}
$$

In this way both $-V_{0}$ and $-V_{0} / p T_{1}$ are fed back together on a single wire (c.f. Fig. 7, Part 7).
It is also possible without much extra complexity to make additional connections to produce stop-band zeros, and quite highperformance filters have been built by this method. All things considered, however, other methods of building an active highpass filter, which will be described in a later article, are generally to be preferred.

T_{5}	T_{4}	T_{3}	T_{2}	T_{1}
$\frac{L_{5}}{R}$	$C_{4} R$	$\frac{L_{3}}{R}$	$C_{2} R$	$\frac{L_{1}}{R}$

Fig. 13. High-pass ladders.

Fig. 14. Electrical version of 5th-order h-p active ladder filter.

Band-pass

The transformation of a low-pass ladder to band-pass was described in Part 2. Briefly, each reactance in the low-pass ladder is formed into a tuned branch by the addition, either in series for a series arm, or in parallel for a shunt arm, of a reactance of the opposite sort. Each of the tuned branches so formed is tuned to the same frequency, the geometric centre frequency of the required band-pass characteristic. Thus the shape and bandwidth of the band-pass characteristic are determined by the original low-pass filter, and the added reactances simply transfer the characteristic to the required position on the frequency scale. This process is illustrated in Fig. 15, where the output ends of passive ladders of alternative types, \mathbf{T} and Π, are shown. The table shows the $T \mathrm{~s}$ which must be equal if the filters are to have the same bandwidth and (for the band-pass filters) centre frequency.
The working of these band-pass filters could be copied step by step, each reactance being considered individually; but the result can be reached more quickly by first noticing two related correspondences. The first, Fig. 16(a), is the familiar one (see Part 7, for example) between a two integrator loop and a series tuned circuit. When the parameters are appropriately matched, the active system in response to an input voltage V produces an output voltage $I R$, which is proportional to the current I which the same voltage produces in the passive circuit. The second, Fig. 16(b), is the correspondence between a two-integrator loop and a parallel tuned circuit. Here, when the parameters are appropriately matched, the active system produces an output voltage V in response to an input voltage $I R$ which is proportional to the current I which produces the same voltage V across the passive parallel tuned circuit. In both cases R may, in principle, have any arbitrary value.

Thus it is seen that an integrator representing an inductance is transformed to represent a series tuned circuit by connecting across it in a feedback link a second integrator, and that an integrator representing a capacitance is transformed to represent a parallel tuned circuit by the same addition. In each case the two-integrator loops so formed are tuned to the same frequency as the passive tuned circuit

It follows that the equivalent of the passive transformations shown in Fig. 17 is to connect a second integrator across each integrator of the active low-pass ladder to form a two-integrator loop. Each of these loops is tuned to the required centre frequency, and ideally gives infinite gain at this frequency just as the single integrators in a low-pass ladder ideally give infinite gain at zero frequency.

Fig. 15. Derivation of band-pass structures from low-pass.

Fig. 16. Active equivalents of the two types of tuned branch.

An example is shown in Fig. 17(b), where for convenience the arbitrary scaling resistance is taken as equal to the terminating resistance of the passive model, Fig. 17(a). The two-integrator loops representing the series-tuned branches develop $I_{1} R$ from V_{1}, $I_{3} R$ from V_{3}, etc.; and those representing the parallel-tuned branches develop V_{2} from $I_{2} R$ etc. The interconnections via the several difference elements provide that (1) each two-integrator loop which represents a series-tuned branch is fed with the voltage across that branch, i.e. $V_{1}=V_{2}-V_{0}$, $V_{3}=V_{4}-V_{2}$, etc.; and that (2) each twointegrator loop which represents a paralleltuned branch is fed with a voltage proportional to the current through that branch, $I_{2} R=I_{3} R-I_{1} R$, etc.

For the sake of completeness Figs 17(c) and (d) illustrate the derivation of an active ladder from the alternative form of passive model; but since, for the same response, $T_{1}\left(=L_{1} / R\right)$ in the one form must equal $T_{1}\left(=C_{1} R\right)$ in the other, Figs 17(a) and (d), and so on for all the $T \mathrm{~s}$, the resulting active system, Fig. 17(d), is identical to that of Fig. 17(b).

The functional scheme derived above can be realised bya variety of means. If attention is confined to conventional feedback arrangements of the virtual-earth sort, it is necessary to take account of the sign reversal that accompanies each operation, and also to order the circuits so that subtractions are replaced by summations. A rule that must be followed is that all loops must
(a)

Fig. 17. Derivation of active band-pass ladder.

Fig. 18. Modelling the input end of a band-pass ladder filter.
contain an odd number of amplifiers, one or three. Each two-integrator loop must include a third amplifier for sign inversion, and a straightforward application of these rules gives Fig. 17(e). Clearly a large number of possible variations exist, though normally the circuits will be drawn to give a similar high degree of regularity. At the input end the action of the terminating resistance is easily reproduced as in Fig. 18, and again results in a resistor placed across the capacitor of an integrator.
When the filter modelled is of relatively narrow bandwidth the $T \mathrm{~s}$ of the integrators representing the reactances of the original low-pass filter, T_{1}, T_{2}, T_{3} etc., are much larger than the $T \mathrm{~s}$ of the integrators representing the reactances added in the bandpass transformation, $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}, T_{3}{ }^{\prime}$ etc. (because the low-pass corner frequency, which is also the band-pass width, is much smaller than the band-pass centre frequency). This, as we know from analysis of a single two-integrator loop, does not make good use of the integrator amplifiers. The flexibility of the active system is such, however, that a much larger resistance than R may be chosen to give the two integrators in each loop approximately equal $T \mathrm{~s}$. This increases relatively the voltages at the outputs of the top row of integrators, and the resistances in all the remaining links connected to these points must be increased to compensate, if the bandwidth of the filter is to be unaltered.

REFERENCES

1. "Simplified Modern Filter Design" (book) by P. R. Geffe. Iliffe, London, and Rider, New York, 1963.
2. "Tchebyshev Filters and Amplifier Networks", by V. Belevitch. Wireless Engineer, April 1952, Vol. 29, No. 343, pp. 106-110.

Improving the 13A Oscilloscope

A few extra parts increase the bandwidth of this popular 'scope to $\mathbf{5 M H z}$

by N. W. Vale

The needs of scientific research and colour TV construction, both carried out on a limited budget, led the author to develop a modification which considerably improves the bandwidth of the Hartley 13A double-beam oscilloscope currently available at low cost on the surplus market. The instrument typically has a 3-dB bandwidth of 10 Hz to 3.5 MHz , although it will display a $4.5-\mathrm{MHz}$ signal of 3 V peak-to-peak.

The modified oscilloscope retains a maximum sensitivity of 300 mV peak-to-peak, and it has a virtually flat response from 20 Hz to 4.5 MHz . The $3-\mathrm{dB}$ points are at 10 Hz and 5 MHz .

Experiments with Wireless World colour TV circuits show that the modified oscilloscope will successfully display and lock video signals at the detector stage, giving a clear indication of the colour burst. It was found that all the important waveforms in the colour decoder could be readily displayed. In other tests the instrument was found to give a useful display at frequencies up to 10 MHz .

All extra components for the modification are easily fitted inside the oscilloscope case and the external appearance and control functions remain unaltered.

General description

The bandwidth of the original instrument can be improved by reducing the value of the feedback resistor (R_{46} in the circuit diagram normally fixed inside the lid of each instrument) in the h.f. deflection amplifier.

Naturally, such a modification gives an appropriate loss of amplification. The deflection amplifier gain may be restored by adding a simple compensated wideband amplifier. A transistor design was originally considered for this application but was rejected for the wider dynamic range and better compatibility of a valve amplifier.

The compensated amplifier finally used is of conventional design and relies on the high slope of a frame grid r.f. pentode to obtain a good sensitivity while a low value of anode load is used to obtain the required bandwidth. Fig. 1 gives the circuit of this amplifier.

The 6 AK 5 is a triode-connected

Fig. 1. The circuit of the new wideband amplifier.
cathode-follower input stage, to obtain smooth gain control at high frequencies and maintain a high input impedance.

To provide compensation at high frequencies, the cathode resistor of V_{2} is bypassed by C_{4} the value of which has been selected to give compensation for the h.f. losses which occur in the oscilloscope and its active probe input circuits.

It is suggested that the modified oscilloscope be used with its cathode follower probe plugged in at all times. This is to avoid changes in the h.t. supply voltage to the new amplifier. In any case, it is advisable to use the probe for all work requiring the full frequency response of the modified instrument.

Practical details

Remove the negative feedback resistor R_{46} from the instrument and replace it with a $1.8 \mathrm{k} \Omega$ non-inductive carbon resistor rated at $0.5 \mathrm{~W}\left(R_{9}\right)$.

Interconnect contacts 1 and 2 of the probe switch $S_{4} A$ in the oscilloscope. This keeps the h.t. supply connected to the probe valve in all switch positions. The object of this is to prevent cathode poisoning of the probe valve, which might occur if the valve was allowed to run with heater only supplies for any length of time, and to keep the h.t. requirements for the input section as steady as possible.

Remove and discard C_{35} (a large paper dielectric type). Fit two suitable valve holders in the region previously occupied by C_{35} and build in the new amplifier. The
aluminium chassis bracket which passes the site of the new valves may have an appropriate piece cut out of it to allow easier access.

Remove the existing A1 gain control (R_{38}) and connect the wire which originally fed this control from R_{37} to the chassis. Fit $R V_{i}$, the new Al gain control, using the same panel hole.

Wire a $20-\mathrm{k} \Omega 10-\mathrm{W}$ resistor $\left(R_{10}\right)$ in parallel with resistors R_{39} and R_{40} of the oscilloscope. This compensates for the increased h.t. load due to the added valves.

Remove and discard C_{34}, the original input coupling capacitor to V_{9}, and connect new amplifier output to V_{9}.

Connect the input of the new amplifier to contact 6 on $S_{4} B$ (i.e. to A1 input) and check that the other connections to the new a mplifier are as shown in Fig. 1.

Shopping list

R_{1}	100Ω	R_{7}	$2 \mathrm{k} \Omega^{*}$	C_{3}	$0.22 \mu \mathrm{~F}$
R_{2}	$2.2 \mathrm{M} \Omega$	R_{8}	150Ω	C_{4}	$820 \mathrm{pF} \#$
R_{3}	820Ω	R_{9}	$1.8 \mathrm{k} \Omega \dagger$	C_{5}	$16 \mu \mathrm{~F} b$
R_{4}	$10 \mathrm{k} \Omega *$	R_{10}	$20 \mathrm{k} \Omega \S$	$V R_{1}$	$5 \mathrm{k} \Omega$ lin.
R_{5}	100Ω	C_{1}	$0.22 \mu \mathrm{~F}$	V_{1}	6 AK 5
R_{6}	100Ω	C_{2}	$0.22 \mu \mathrm{~F}$	V_{2}	EF 184

$* 1 \mathrm{~W}$ rating. $\dagger 0.5 \mathrm{~W}$ rating. § 10 W rating.
All other resistors rated at 0.25 W . \#mica. b350V working.
All capacitors 250 V working polyester unless otherwise specified.

Electronic Building Bricks

4. Transducers-analogue and digital

by James Franklin

In Part 2 we saw how information could be represented by electrical variables, both in static and dynamic form. A "travelling representation" is called a signal. Two examples given were pulses of electrical energy representing number of objects travelling on a conveyer, and a continuous variation of electrical energy representing sound-wave energy. To obtain these electrical signals a converting device was needed in each case-a photo-electric cell to convert the light energy and a microphone to convert the sound energy. There are in fact a great many converting devices in use, particularly in industrial control equipment. A familiar one at home is the gramophone pickup. Some convert the mechanical or other energy directly into electrical energy, as shown in Fig.1(a), while others-for example, the oven thermostat--use it to control electrical energy coming from a separate source, as shown at (b).

In Part 3 we saw that electrical energy is constituted by electrons, and that a general movement of many electrons is an electric current, measurable as a flow rate in coulombs per second (amperes). Current is an electrical variable, and as

Fig.1. Obtaining information in electrical form from information represented by some other type of energy: (a) direct energy conversion; (b) control of electrical energy.
such can be controlled. Thus in Fig.1(b) we could replace the words "electrical energy" by "electric current" or indeed by words denoting any other electrical variable. Also in (b) we could replace the words "mechanical (or other) energy" by
words describing a particular physical variable, such as force or temperature.

We can, in fact, develop from Fig. 1 a much more general concept-a device that receives some physical variable representing information and transforms this into an electrical variable representing the same information. The variables change but the essential information does not. Any actual device which does this is called a transducer*. This is our first "building brick", and we are showing it, according to plan, just as a functional block-Fig.2.

Fig. 2. Electronic building brick
No.1-the transducer; (a) an input
transducer; (b) an output transducer.
It must be quickly added that "transducer" can also mean a device that works in the reverse direction, converting an electrical variable into a physical variable, as shown at (b) in Fig.2. This may be thought confusing, but in practice the transducer's direction of operation in an electronic system becomes obvious from the position the device occupies in a block diagram, say at the input as against the output. Domestic examples of the Fig. 1(b) type of transducer are the loudspeaker and the television picture tube, though these are not often described as transducers. But the term is used frequently in industrial electronics (Fig. 2 (a) could be a "pressure transducer") and sometimes in sound reproduction.

From Part 2 we saw that information may be represented in a signal in two ways. In the electronic counting system the number of objects was represented by that number of pulses of electrical energy. In fact the exact form of the energy-time

[^1]

Fig. 3. Graphs illustrating the action of (a) an analogue transducer and (b) a digital transducer, both responding to angular displacement of a shaft.
graph did not matter very much: the pulses could equally well be triangular or some other shape provided their number was correct. This type of representation, in which the number of electrical events gives the essential information, is called a digital \dagger signal.

With the other type of representation, the continuously varying electrical energy obtained from a microphone responding to a violin note, the successive values of electrical energy were proportional to the successive values of sound energy -they had to be, otherwise distortion of the information would occur. In other words the electrical energy timegraph was similar in form to the variation with time of the sound energy (supposing this were plotted as a graph). As such the electrical variable was a sort of model, or analogue, of the sound variable. Such a representation is called an analogue \ddagger signal.

Some transducers are designed to work with analogue signals, others with digital signals-it depends on what is needed for a particular electronic system. For example, for a system in which a digital computer is the main element, digital transducers might well be the more convenient. To illustrate the difference between the modes of operation, Fig. 3 shows the relationships in two transducers, both representing a given physical variable, rotation of a shaft: (a) an analogue transducer giving a proportional electric current (3 milliamperes per degree of rotation), and (b) a digital transducer giving a related number of pulses of current (one pulse per 10 degrees). Both transducers use current as the electrical variable, the analogue type directly, the digital type merely as a medium for denoting number.

[^2]
Circuit Ideas

Hybrid push-pull deflection amplifier

A requirement arose for a push-pull deflection amplifier for an electrostatic cathode ray tube system where it was not practicable to provide the additional negative h.t. and heater supplies which would be required by the usual constantcurrent pentode coupling circuit. To satisfy the requirement a hybrid circuit was devised which uses a double triode valve in a standard long tailed pair configuration and a two terminal constant current circuit using transistors ${ }^{1.2}$ in the common cathode lead. Assignment of component values is very simple. First anode resistors and anode currents are chosen to meet the output requirements and this fixes the standing grid-to-cathode bias and the necessary input voltage swing. It is then possible to determine the offset voltage for the grids relative to ground from the inequality:- $V_{g g}+V_{g k}($ min $) \geqslant V{ }_{\text {cc (min) }}$ where $V_{g g}$ is the required offset voltage
$V_{g k}^{g g}$ is the grid-to-cathode voltage
$\left.V_{c \in}^{g k}{ }_{(m i n}\right)$ is the minimum voltage which can appear across the constant current circuit for correct operation
provided that a value for $V_{c c(\min)}$ is fixed. $V_{\text {cc }(\text { min })}$ is determined by the zener diodes,
the use of those with the lowest available reference voltage setting a lower limit for $V_{c c(m i n)}$ of about 7 V . If a smallest value for $\left.V_{g k(\min)}^{c c(m i n}\right)$ of 2 V is assumed, a minimum value of 5 V is established for $V_{g g}$ Use may be made of this offset voltage to provide a trace shift or picture centring facility as shown in the circuit diagram. The components shown provide a 460 V peak-topeak output swing for a 28 V peak-topeak input swing.
D. E. VAUGHAN, Christchurch, Hants.

1. P. Williams, "Letters to the Editor", Wireless World, p.456, Sept. 1966.
2. P. Williams, "Ring-of-two Reference", Wireless World, p.318, July 1967.

Conversion of a double-beam scope for XY plotting

For those unable to buy an oscilloscope having identical X and Y amplifiers, the ability to do XY plotting is somewhat limited. The figure given illustrates a simple modification to a double-beam oscilloscope. The idle Y amplifier is made use of, and switched to the X plates,

Switching for X Y plotter.
which in turn have merely been disconnected from their own amplifier. Leaving the spare beam disconnected at the upper Y plates usually means that it will appear near centre on the screen, but with the brilliance turned down, no difficulty should ensue. Where the output of the normal X and Y amplifiers is developed with respect to chassis, care should be taken to avoid reversals in the switching.
B. LANE,

Bletchley,
Bucks.

Connecting microphones to transformers

It is sometimes necessary to be able to connect either a balanced or unpalanced input plug to the primary of a microphone transformer. This can be done with the circuit shown which allows either to be plugged into its appropriate socket. The

Versatile microphone transformer arrangement.
jack sockets have normally closed contacts as shown, and the connections are arranged so that the whole of the primary winding is included and the appropriate points and cable screening are earthed in each case. A floating balanced input can also be obtained by inserting an empty plug into the unbalanced socket.
A. C. Gott,

Southall,
Middx.

The F.E.T. as a Class-A Audio Amplifier

When to use and how to bias

by P. L. Matthews*

In spite of the publicity given to field-effect transistors when they were introduced, they are still dominated by bipolar types in audio circuits. One of the main reasons for this is that present methods of manufacture lead to wide variations in their primary charac-teristics-the zero gate voltage drain current $I_{d s s}$, pinch-off voltage V_{p}, and mutual conductance ${ }_{g m 0}$-which are approximately related by $2 I_{d s s}=g_{m 0} \cdot V_{p}$.

Probably the most widely used f.e.t. is the 2 N 3819 , with V_{p} and $I_{d s s}$ spreads of 0.5 to 7.5 V and 2 to 20 mA respectively. Without going into calculations it can be seen that if devices with extreme parameter values are to be incorporated into a conventional selfbiased stage, the design will have to tolerate a drain current variation of the order of 10 to 1 , which is obviously impracticable. The extra cost of a tightly specified selection of the 2N3819 makes it less of an economic proposition when a couple of cheap plastic bipolars will often do the job just as well. However, there are some instances in which an f.e.t. must be used, and this article aims to show which devices should be chosen for a given application, and how they should be biased.

The perfect performance

In order to determine how bias variations alter the performance of an f.e.t. amplifier it is useful to consider the operation of a theoretically perfect device in an isolated self-biased stage. The circuit of Fig. 1 depicts an n -channel f.e.t. operated from a supply voltage of $+V_{d d}$, with load and bias resistors R_{L} and R_{S} respectively, when capacitor C is sufficiently large to bypass signal frequencies. The input shunting resistor R_{g}, which
*Newmarket Transistors Ltd.

Fig. I. Standard biasing circuit for f.e.t. audio stage.

Fig. 2. Values of c for various values of a and b, according to the equation.
would typically be about $1 \mathrm{M} \Omega$, must nevertheless be small enough to ensure that $R_{g} \cdot I_{g s s} \leqslant V_{g s}$ and the gate terminal can then be considered to be at zero d.c. potential. In addition the primary characteristics of the f.e.t. are taken as $V_{p}, I_{d s s}$ and g_{m}.

From the above it can be seen that, provided the input signal remains within the linear region, the maximum $\mathrm{pk}-\mathrm{pk}$ output voltage swing in the linear region ($V_{d s}>V_{p}$) is

$$
\begin{aligned}
& V_{d d}-\left[V_{d s(s a t)}+V_{g s}\right] \\
= & V_{d d}-\left[\left(V_{p}-V_{g s}\right)+V_{g s}\right] \\
= & V_{d d}-V_{p} .
\end{aligned}
$$

The voltage drop across R_{L} is half the swing, or $\frac{V_{d d}-V_{p}}{2}$, and this gives the optimum value of R_{L} as

$$
R_{L}=\frac{V_{d d}-V_{p}}{2 I_{d}}
$$

But $A_{V}=g_{m} \times R_{L}$
$=\frac{2 I_{d s s}}{V_{p}}\left(1-\frac{V_{g s}}{V_{p}}\right) \times \frac{V_{d d}-V_{p}}{2 I_{d}}$
$=\frac{V_{d d}-V_{p}}{V_{p}-V_{g s}}$ (with substitution for I_{d}).
Again, considering $\mathrm{pk}-\mathrm{pk}$ signal voltage,

$$
V_{\text {in(max })}=\frac{V_{\text {out }(\max)}}{A_{V}}
$$

This gives $V_{i n(\text { max })}=V_{p}-V_{g s}$.
This result shows that no matter what other specifications the f.e.t. has, provided that the load resistance is substantially lower than the input impedance of the following stage, and that the drain voltage falls exactly at the centre of the output swing, an input signal of $V_{p}-V_{g s}(\mathrm{pk}-\mathrm{pk})$ gives the maximum output of $V_{d d}-V_{p}$ ($\mathrm{pk}-\mathrm{pk}$). Consequently, a device with a low pinch-off voltage should be selected for use with a low supply voltage so that a larger output swing will be available. As a general rule, it is not worthwhile operating an f.e.t. from a supply voltage less than twice its maximum pinch-off voltage, so the 2 N 3819 would have to run off at least 15 V . You have to be careful, of course, not to exceed the maximum voltage rating for the device -in this case it is 18 V .
It is now easy to calculate the harmonic distortion (predominantly second) produced by the above amplifier at maximum output.

$$
D_{2}=\frac{V_{i n}}{8\left(V_{p}-V_{g s}\right)}=\frac{1}{8}=12 \frac{1}{2} \% .
$$

It may seem remarkable that the above simple results should hold for any depletion mode f.e.t. but in practice a slight departure from the theoretical value would be expected due to variations in the specification of V_{p}, and to the fact that the assumed equations may only be approximately true.

The problem of parameter spreads

The selection of suitable bias conditions for the f.e.t. is now considered. With a particular device, it can be seen that as $V_{g s}$ is increased toward V_{p}, more voltage gain is obtained at the expense of output swing, and vice versa. A higher supply voltage increases both gain and output, but, as the designer is often tied to the supply of 12 V or so available in most equipment and because the drain-source breakdown voltage (which is only about 20 V for many popular devices) imposes limitations, this is not always a practicable proposition. Nevertheless, a quick calculation will show that quite a reasonable gain and output can be obtained with a typical f.e.t. but the problem of parameter spreads now becomes clear. If a circuit is set up with components selected to suit a device with a chosen V_{p} and $I_{d s s}$ substitution of a dissimilar device is
likely to cause severe bias problems. In particular, the variation in drain current will upset the vital centring of the drain voltage between $V_{d d}$ and V_{p}, causing a considerable reduction in output voltage swing. Unfortunately this problem cannot be solved in general as simply as in the preceding calculations, and the best technique is to determine the maximum spreads of $I_{d s s}$ specified for the device in question, and then to calculate the optimum resistance values for a typical centre spread unit. As an example, in the case of the 2 N 3819 , it would be best to take $I_{d s s}=11 \mathrm{~mA}$ and $V_{p}=4 \mathrm{~V}$, as these are the middle values. It also proves useful to specify $V_{g s}=\frac{V_{p}}{2}$ in most cases, as this places the input voltage swing safely in the centre of the permitted region.
Suppose, in the circuit of Fig. 1 that a device with parameters $I_{\text {dss }}$ and V_{p} are inserted, R_{S} is adjusted to make $V_{g s}=\frac{V_{p}}{2}$, and R_{L} sets the drain voltage to the middle of the output swing. The drain current is therefore $\frac{I_{\text {dss }}}{4}$. If now the f.e.t. is removed and replaced by a device with parameters $I_{\text {dss }}$ and $V_{p^{\prime}}$, where $I_{d s s^{\prime}}=\left(a . I_{d s s}\right)$ and $V_{p^{\prime}}=$ ($b . V_{p}$) (a and b are small positive numbers) then the new drain current $I_{d^{\prime}}$ can be related to the original by $I_{d^{\prime}}=c . I_{d^{d}}$.

Substituting into the standard transfer equation,

$$
I_{d^{\prime}}=I_{d s s^{\prime}}\left(\frac{V_{p^{\prime}}-V_{g s^{\prime}}}{V_{p^{\prime}}}\right)^{2}
$$

giving

$$
c I_{d}=a I_{d s s}\left(1-\frac{c}{2 b}\right)^{2}
$$

and thus

$$
c^{2}\left(\frac{a}{b^{2}}\right)-c\left(\frac{4 a}{b}+1\right)+4 a=0
$$

The solution of this quadratic is

$$
c=\frac{b^{2}}{2 a}\left(\frac{4 a+b}{b}-\frac{\sqrt{8 a+b}}{b}\right)
$$

and further simplification gives

$$
c=\frac{b}{2 a}[(4 a+b)-\sqrt{b(8 a+b)}]
$$

Fig. 3. Graph showing proportionality between V_{p} and $I_{\text {dss }}$ for NKT80110 familytypical for most popular devices.

Approximate values of c for various values of a and b are given in Fig. 2.

This discussion assumes to a certain extent that the highest and lowest values of V_{p} and $I_{d s s}$ occur simultaneously, so that they are considered to be characteristic of an extreme device. In theory this is not necessarily the case, but the graph in Fig. 3 illustrates that V_{p} can be considered to be roughly proportional to $I_{\text {dss }}$ for devices from the Newmarket NKT801 10 family, and this can be shown empirically for most popular devices. In any event it is possible to allow for discrepancies of this nature merely by substitution of appropriate "worst cases" in the above equation.

A practical example

An example will help to clarify the general procedure. Consider the circuit shown in Fig. 4(a) which incorporates a junction f.e.t. type NKT80212. The typical V_{p} and $I_{\text {dss }}$ for this device are 700 mV and $200 \mu \mathrm{~A}$ respectively, and setting $V_{g s}=\frac{V_{p}}{2}=350 \mathrm{mV}$ gives a drain current of $50 \mu \mathrm{~A}$. The values of R_{S} and R_{L} can be calculated from this information to be $7 \mathrm{k} \Omega$ and $83 \mathrm{k} \Omega$ respectively and the nearest E12 preferred types have been specified in the diagram.

Consider now what happens when this typical device is replaced by a "lower spread" unit with V_{p} and $I_{d s s}$ of 500 mV and $100 \mu \mathrm{~A}$ respectively as shown in Fig. 4(b). For this unit, $a=\frac{1}{2}, b=\frac{5}{7}$ and this gives $c=0.6$ (approximately) so the new drain current will be about $30 \mu \mathrm{~A}$. The source and drain voltage can now easily be calculated and it is seen that the drain voltage is above the output swing centre, causing clipping of the waveform unless its amplitude is reduced to 2.5 V pk-pk. A similar argument applies to the "upper spread" unit with $a=1 \frac{1}{2}$, $b=1 \frac{2}{7}$ and $c=1.35$ (approximately), giving $I^{\prime}=68 \mu \mathrm{~A}$, but this time the drain voltage is too low and restricts the output to 2.5 V $\mathrm{pk}-\mathrm{pk}$. Thus the circuit will be able to yield an output of only $2.5 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ at most for any NKT80212 f.e.t. without individual circuit adjustment, as distinct from just over $8 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ for the typical device considered first.

The distortion level appears to be rather complicated to calculate, but it is sufficiently accurate to consider the ratio of available output to maximum output and multiply this by the previously determined value of $12 \frac{1}{2} \%$. In this case the value would be $D_{2}=\frac{2 \cdot 5}{8} \times 12 \frac{1}{2} \%=4 \% \quad$ (approximately). The justification for this calculation is understandable in the case of the typical device, as D_{2} is proportional to $V_{i n}$, but this can be formally extended to cover the limit cases if desired.

The effect of temperature

Variations in temperature, supply voltage, resistor values, etc., can readily be incorporated into the above argument, but, as the first of these can be very important, a brief outline of the method is given. The pinch-off voltage of an f.e.t. decreases with

(a)

(b)

(c)

Fig. 4. Circuits illustrating the effect of parameter spreads in f.e.ts.
temperature by a factor similar to that of a p-n junction, a typical value for diffused devices being $-2 \mathrm{mV} / \mathrm{C}^{\circ}$. Unfortunately it is not as easy to define a simple factor for $I_{d s s}$ as this depends on such things as carrier mobility and impurity concentrations of the particular device, but many manufacturers provide a graph of the relationship. As a guide, however, it can be estimated that $I_{\text {dss }}$ will fall linearly with increase in temperature up to $75^{\circ} \mathrm{C}$, when its value is $\frac{3}{4}$ of that at $25^{\circ} \mathrm{C}$. Conversely, the $I_{\text {dss }}$ at $-25^{\circ} \mathrm{C}$ is $1 \frac{1}{4}$ times the value at $25^{\circ} \mathrm{C}$. If the previously designed amplifier was required to operate from -25° to $+75^{\circ} \mathrm{C}$ it would be necessary to consider the typical device at $25^{\circ} \mathrm{C}$ as before, the lower spread device at $+75^{\circ} \mathrm{C}$ and the upper at $-25^{\circ} \mathrm{C}$. These would give a $V_{p^{\prime}}$ and $I_{d s s^{\prime}}$ of 400 mV , $75 \mu \mathrm{~A}$ and $1 \mathrm{~V}, 375 \mu \mathrm{~A}$ for them, respectively, so a, b, and subsequently c would be altered accordingly.

Conclusion

"You pays your money, you takes your choice". Either you select an economical "full spread" device and accept its restricted usefulness, or pay more for a special selection with its corresponding advantages. It's not surprising that bipolar transistors are still the first choice for most audio circuits.

Personalities

Paul Adorian, F.C.G.I.. F.I.E.E. F.I.E.R.E., managing director of Rediffusion Ltd since 1966, is to retire at the end of October when he will be succeeded by Hugh Dundas, D.S.O.. D.F.C., D.L. who has been on the board of the company since 1966. Mr. Adorian. who will be 65 in November. entered the field of radio communications as a student engineer with Standard Telephones and Cables. He joined Rediffusion in 1932 as a development engineer, becoming in succession assistant chief engineer and chief engineer before joining the board. He is also chairman of Redifon Ltd, manufacturers of flight simulators and communications equipment, and of Redifon-Astrodata Ltd and a director of the British Electric Traction Company Ltd. Mr. Dundas. his successor, joined Rediffusion's executive staff in 1961 from the Beaverbrook Press. He is also a director of Rediffusion's parent company, British Electric Traction, and of Thames Television.

Sinclair Radionics has bought a major shareholding in the AIM Associates Group. Tim Eiloart, founder of the group, has resigned from the position of chief executive but remains outside chairman of Cambridge Consultants Ltd, the research and development company of the AIM group, and Richard Cutting is appointed managing director. Gordon Edge and Roy Hawkins, who were joint managing directors of Cambridge Consultants, have left the company and been appointed to the Technical Division of PA Management Consultants Ltd. David Southward, another of the founder-directors of the company, remains managing director of AIM Electronics, AIM bioSciences and Cambridge Audio Laboratories, the Group's manufacturing subsidiaries. Clive Sinclair, manag ing director of Sinclair Radionics, which he founded eight years ago, has become chairman and chief executive of the AIM group. Mr. Sinclair has stated that the two organizations will operate independently "because of their very different fields of activity".

Commander David W. Malim has become chairman of Marconi Space and Defence Systems Ltd, one of the four systems companies within GEC-Marconi Electronics Ltd. Educated at the Royal Naval College, Keyham, he served as an officer in the Royal Navy throughout the war and was on the staff of the British Joint Services Mission in Washington from 1946 to 1949 when he went to the Admiralty as weapon engineer officer. On his retirement in 1959 Commander Malim became manager and director of Lancashire Dynamo Ltd, in Manchester, joining Elliott Automation Ltd in 1962 and becoming joint managing director of Elliott Space and Weapon Automation Ltd in 1963. English Electric bought Elliott Automation in 1968 and after the merger with GEC in 1969 all the electronics interests in the group were reorganized. Elliout Space and Weapon Automation became part of GEC-Marconi Electronics Ltd and Commander Malim was appointed joint managing director of GEC-Elliott Space and Weapon Systems with Arthur S. Walsh, M.A. (Cantab.), who now becomes managing director of Marconi Space and Defence Systems. Mr. Walsh, who is 44, was educated at Selwyn College, Cambridge, where, after service in the Royal Signals from 1944 to 1948, he graduated in natural sciences in 1951. He joined the GEC Laboratories at Stanmore in the radar microwave group and became a group leader in 1956. Mr. Walsh was appointed assistant manager of the Applied Electronics Laboratories at Stanmore in 1964, becoming manager a year later, and was technical director of GEC-AEI (Electronics) Ltd from 1966 until his appointment as joint managing director of GEC-Elliott Space and Weapon Systems Lid in 1969.

Leo G. Dive, the senior assistant in the B.B.C. Engineering Information Department, is to be the Corporation's engineering representative on the B.R.E.M.A. commercial committee in succession to Hugh Greatorex, who
retired recently. Mr. Dive, who was from 1964-1966 senior engineer in the B.B.C's New York Office, has also taken over responsibility for the management and direction of the B.B.C's mobile colour demonstration unit which is at present on a summer tour of exhibitions and promotions. Enquiries about the unit should be addressed to Mr. Dive at the Engineering Information Department, B.B.C.. Broadcasting House. London WIA IAA.

Eric J. Wightman has been appointed engineering director of the Industrial Instrument Division of Smiths Industries Ltd. Mr. Wightman, who is 43 , has spent a little over three years with the Industrial Instrument Division, first as chief engineer and latterly as technical manager. Before joining S.I. he spent two years as chief engineer, data systems, at Solartron and previously was with the Gyroscope Division of Sperry Rand for seven years.
K. Milne, Ph.D., M.I.E.E., has been appointed engineering manager of the Radar Equipment Division of Plessey Radar Ltd in succession to R. L. Burr, who has become technical co-ordinator for Plessey Radar. Dr. Milne began his career in 1946 as chief microwave aerial designer with Associated Electrical Industries Ltd. He was awarded his doctorate in 1951 for his thesis on wide-angle scanning properties of microwave lens aerials. In 1953 he became engineeer-in-charge of systems analyses of radar systems, including c.w. and volumetric scanning radar. He joined Decca Radar Ltd in 1960. Particular projects with which he was concerned included satellite earth terminals and electronic scanning radars. He was appointed manager of Plessey Radar's Space Systems Department in 1966.
J. W. V. Denton is appointed national sales manager by Data Recognition Ltd, of Reading. Prior to joining D.R. he was manager, information systems, for Motorola Control Systems Ltd and before that was with Cossor Communications for four years as their regional sales manager. Mr Denton received his training in communications and radar in the Royal Navy.

Sir Robert Cockburn, K.B.E., C.B., has been appointed chairman of the Council of the National Computing Centre. He succeeds J. M. A.Smith, who recently retired. Sir Robert, who is 61 , was director of the Royal Aircraft Establishment, Farnborough, from 19641969. A graduate of London University, he engaged in research in communications, radar and atomic energy between 1937 and 1948 at R.A.E., the Telecommunications Research Establishment and the Atomic Energy Research

Establishment, respectively. He was the Scientific Adviser to the Air Ministry from 1948 to 1953 and between 1954 and 1959 was successively principal director of scientific research (guided weapons and electronics), deputy controller of electronics, and controller of guided weapons and electronics at the Ministry of Supply. Sir Robert, who received his knighthood in 1960, was chief scientist. Ministry of Aviation, from 1959 to 1964, and vice-chairman of the Space Committee, Ministry of Defence. from 1964-1965.

Transitron Electronic Corporation. of Wakefield, Mass., has announced the appointment of Grahame F. Hazell as vicepresident for European Semiconductor Operations. Mr. Hazell, who is 36 , is a native of Ipswich, Suffolk, and a graduate in physics of the University of Nottingham. For the past 10 years he has been employed by Texas Instruments, initially on various marketing assignments and for the past few years as operations manager of the TI facilities in Bedford and, more recently, Plymouth. The Transitron companies reporting to European Semiconductor Operations are in the UK, France, West Germany, Holland and Sweden.

George Siddall, who joined the Electrical Research Association as head of its Electronics Department in 1962, has been appointed assistant director technical to help Dr. B. C. Lindley, the director, in the formulation, co-ordination and control of the Association's technical policies and operational activities. He will have special responsibility for the Applied Sciences Division and for the technological planning unit.

Robert W. Beattie has resigned from the managing directorship of Electrosil Ltd and chairmanship of Miniature Electronic Components Ltd. He is succeeded in these positions by John E. Carl, B.Sc., a 42-year-old American who recently came to this country from the parent company Corning Glass Works. After graduating from Alfred University, New York, in 1951 with a degree in ceramic engineering he joined the research and development department of Corning. In 1968 he moved to the electronic components plant at Bradford, Pennsylvania, where he remained as plant manager until coming to the U.K. recently as production executive at Pallion, Sunderland.

OBITUARY

John Goodman, assistant managing director of the Dubilier Condenser Co. (1925) Lid, died recently at the age of 56 . Mr. Goodman joined the company in 1932, and was appointed assistant managing director in 1966. His father was one of the founders of the company in 1912.

World of Amateur Radio

Awards and certificates

Although amateur operating proficiency awards and certificates have a long and respected history--for example, the "worked all continents" award dates back to the early days of the International Amateur Radio Union, founded in 1925-there are fears that the situation has rather got out of hand in recent years. As far as can be judged there are now between 800 and 1000 different awards issued by national and international societies and groups, local clubs, and in association with various amateur radio publications. While many of these do undoubtedly encourage useful activities and provide amateurs with valuable competitive yardsticks, there is a growing belief that unless care is exercised the rising flood of awards may bring the system into disrepute. The recent introduction of new awards, such as the "five-band DXCC" requiring some 500 QSL cards, valid only if of recent date, is threatening to overwhelm the amateurs in the "rarer" countries with requests for more and more cards. For several years some of these amateurs have appointed "QSL managers" to undertake the tremendous task of verifying thousands of brief radio contacts each year. But even so (and there are arguments against the system of QSL managers as this is open to abuse), it is becoming more and more difficult to obtain the rarer cards from overseas stations swamped by requests.

The R.S.G.B.-which has done much to uphold the continued value of proficiency awards--has recently announced new rules for all of its awards (details from R.S.G.B., 35 Doughty Street, London W.C.1), but one notes with some alarm that yet another major new award "The I.A.R.U. Region I Award" has been added to the list-this time at the request of the I.A.R.U. Region I Bureau.

R.A.E. courses

Would-be amateur transmitters should note that a number of evening courses covering the syllabus of the Radio Amateurs Examination will be starting at local educational centres in many parts of the country during September. Typical of these is one at Birkenhead Technical

College where enrolment takes place from September 7 to 10, and classes are held on Thursday evenings. In this area, as in a number of others, Morse classes are held in conjunction with the local amateur radio society, in this case the Wirral A.R.S. (non-members enquiries to Alf Fisher, G3WSD, 34 Glenmore Road, Oxton, Birkenhead. We have been notified of courses at several London centres including Acton Technical College. Wembley Evening Institute and Gascoigne Recreation Centre, Barking. Readers in other parts of the country should make inquiries of their local education authority to discover if there are any local courses.

Transceivers

Although Collins introduced an h.f. transceiver about 10 years ago, it is only quite recently that fairly substantial numbers of amateurs have swung over to the use of compact, combined transmitter-receivers.

While transceivers are generally regarded as fairly ambitious projects for home construction, many of the problems can be overcome by group construction. For example, the Nottingham Amateur Radio Club is planning a constructional project this winter under the guidance of Bob Sills, G31QM, for a number of members to build their own five-band, largely solid-state, s.s.b. transceivers at a cost in the region of $£ 30$.

An interesting recent development in the field is the marketing in the United States of a compact 2 -watt c.w.-only low-power transceiver for 3.5 and 7 MHz , for use as a fixed or vacation station. The key feature of this all-semiconductor equip ment, which runs from dry batteries and is made by Ten Tec for sale at about $\$ 55(£ 23)$, is the use of its single variable-frequency oscillator to form the transmitter driver and a simple homodyne (synchrodyne) receiver based on, a dual-gate m.o.s.f.e.t. heterodyne detector, and with a single integrated circuit providing all the a.f. amplification.

At the other end of the scale is the recent 300 -watt p.e.p. CX7 transceiver by Signal /One, a subsidiary of the computer firm N.C.R. This makes full use of s.i.cs, including 16 digital and 14 linear types, 60
silicon transistors (including dual-gate f.e.ts in the front-end) with one ceramic/metal power valve which has a beryllia coupler block to transfer anode heat to its own extruded heat sink and with many other features to put it into the de luxe class.
In Brief: Winner of the 1970 (33rd) annual B.E.R.U. Contest was R. J. Mills, VQ8CR, of Mauritius, who made 517 contacts in spite of very poor propagation conditions. Runner-up was D. M. MacVicar, VP7DX, while D. L. Courtier-Dutton, G3FPQ, was third and the leading British station. ... A new v.h.f. beacon transmitter, GB3DM, is now operating from the I.T.A. transmitting site at Burnhope, Co. Durham. The 30 -watt tiansmitter on 145.975 MHz feeds two four-element Yagi aerials beaming north and south, mounted at a height of 98 ft . The station can be received at good range (reports to D. Long, G3PTU, Croesor, Iveston Lane, Iveston, Leadgate, Consett, Co. Durham). . . . Among recent stations heard on h.f. bands have been FB8XX (Kergulen Islands), 4N2BR (a Yugoslav expedition to one of the Adriatic Islands), HS5ABD Chaing Mai, Thailand, 9 Q5QR Kinshasha, Congo, and the Japanese EXPO ${ }^{\prime} 70$ station JA3XPO. Also reported active recently have been CEOAE Easter Island, VPICP British Honduras, VR5LT Tonga Island and several CE9A stations on South Shetland Island. . . . An intense E-layer disturbance on July 6th resulted in long-range reception of many v.h.f. broadcasting stations on 70 and 95 MHz , and another opening to TF3EA in Iceland. . . . Among the mobile rallies being held in September are: R.S.G.B. Scottish Mobile Rally (19th) at the David Livingstone Memorial, Blantyre, Lanarkshire (details G. A. Hunter, GM3ULP, "The Bungalow". Broomside Braes, Camp Road, Motherwell); Peterborough (20th) at Walton Senior School, Mountsteven Avenue off Lincoln Road, Peterborough; and Harlow (27th) at Magdalen Laver Village Hall (details B. ' G. Capper, G8CUA, 124 Peterswood, Harlow, Essex). ... A special event station, GB3WAC, will be operating from the Sea Cadet's HQ, Scotch Yard, Tonypandy, during the World Archery Championships (Sept. 10th-12th). . . A special station, GB3CWR (or GB3CWI) will be run in connection with the Cumberland Federation of Women's Institutes "Golden Jubilee" celebrations (Sept. 6th-12th). . . . Contests during September include the V.H.F. National Field Day (6th) in conjunction with the international I.A.R.U. contest; "Worked all Europe" DX Contest (12th to 13th, phone section): $3.5-\mathrm{MHz}$ Field Day (13th); and National Final of the R.S.G.B. D/F contest (20th. by Slade Radio). . . . A new world record for 13 cm is being claimed for a 249 -mile contact in the United States (W4HHK and WA4HGN/P). . . . A $144-\mathrm{MHz}$ moon-bounce contact has beer made between New Zealand (ZL1AZR) and California (K6MYC).

PAT HAWKER, G3VA

Literature Received

For further information on any item include the $W W$ number on the reader reply card

ACTIVE DEVICES

Power microcircuits are the subject of some literature we have received from AEI Semiconductors. Carholme Rd. Lincoln.

PM5A. Thyristor/rectifier diode combination, $800 \mathrm{~V}, 5 \mathrm{~A}$ \qquad WW401
PM 6A. Diode/diode. 1.4kV. 6AWW402
PM 7A. Bridge rectifier. 1.4 kV . 7A ..WW403
Motorola have produced a new journal called Semiconductors which is to be produced every 3 months. The first issue contains articles on integrated circuits for industry and computers. gives circuits for a 400 MHz wideband amplifier. a 1 Hz low-pass filter. and low-voltage inverters. and describes an integrated circuit f.m. stereo decoder ...WW404

A 96-page manual called "Power transistors for amplification switching and control" has been produced by RCA. It covers physical theory. structure. packaging. limiting factors. and the operation and requirements of power transistors in amplification. switching and in control circuitry. The price is $\$ 2$. RCA Solid State Division. Somerville. N.J.08876. U.S.A.

A range of logic modules employing. high threshold logic. d.t.1.. t.t.l. and e.c.l. are the subject of a catalogue from Jasmin Electronics Ltd. 1 Meriden Close. Hainault. Ilford. Essex. The products consist of integrated circuits on printed circuit cards \qquad WW405
"Reliability Report-digital integrated circuits -May 1970" may be obtained from the National Semiconductor Corporation, 2900 Semiconductor Drive. Santa Clara. California 95051
.WW406
"Planar Power Switching Transistors" is the title of a new Mullard publication for design engineers. E.E.D.. Mullard Ltd. Mullard House, Torrington Place. London WC1E 7HD .
.WW407
Marconi-Elliott Microelectronics Ltd. Witham. Essex. have recently started production of 54.74 series t.t.l. and have published a data sheet on their range

WW408

PASSIVE COMPONENTS

Bulletin 94033 from Brush Clevite Co. Ltd. Thornhill, Southampton, Hants. describes a 10.7 MHz ceramic filter (type FM4) intended for use in f.m. i.f. strips. The component has a 3 dB bandwidth of typically 235 kHz (40 dB . 900 kHz max.) and an insertion loss of about 3.5 dB

WW409

An alarm annunciator capable of displaying. 12. 18 or 24 legends is described in a data sheet from Mimic Diagrams and Electronics Ltd. Maxim Rd. Crayford. Kent. The unit contains logic for alarm sequencesWW4 10

Condensed catalogue 8010 from Penny and Giles Lid. Mudeford. Christchurch BH23 4AT. Hampshire. deals with a range of precision conductive plastic potentiometersWW41I From the same company comes a fuller catalogue containing details of rectilinear and rotary potentiometers: pressure. force. acceleration and rotary transducers: and servo and signal conditioning equipmentWW412

A wall chart devoted to wirewound trimming potentiometers may be obtained from Electrosil Ltd. Pallion. Sunderland. Co. Durham

WW 413
"Manual of inverter transformers and modules" has been published by Gardners Transformers Ltd. Christchurch. Hampshire BH23 3PN .WW414

A pocket booklet describes the products of B \& R Relays Lid. Temple Fields. Harlow. Essex.

WW415
Limit switches. microswitches and proximity switches together with various process timers are the subject of a new 20 -page catalogue from Omron Precision Controls. 313 Edgware Rd. London. W.2. \qquad WW416

We have received the following literature concerned with audio equipment for professional use from Vitavox Ltd. Westmoreland Rd. London. N.W.9.

B80 and B M 100 microphonesWW417 B50 series microphonesWW418
B60 and B64 microphonesWW419
Microphone standsWW420
Pressure units data sheet
Type 190 circular hornWW422

- Radial diffuser. lightweight hailer and

1000 Hz hornWW 423
Series 550 multicell hornsWW424
Series 220 multicell hornsWW425
Bitone loudspeaker systems (halls and cinemas) ..WW426
Mini-bitone speaker system (special effects
in halls and cinemas)WW427
Dividing networks (cross-over)WW428 15 -inch (380 mm) ceramic magnet loudspeakers WW429
12 -inch (305 mm) ceramic magnet loudspeakers ..WW430
3-inch (84 mm) WN 350 loudspeaker unit
WW431
Trade price list
WW432

An integrated circuit patchboard which will house up to 14 packages (or more with a plug-in extension board) and which contains pulse generation. input and indication facilities is described in a leaflet from Elliott Instruments Ltd. Station Industrial Estate. South Woodham Ferrers. Nr. Chelmsford. EssexWW433

APPLICATION NOTES

A leaflet "Use of 10.7 MHz ceramic coupled mode filters in linear i.c. i.f. strips" is obtainable from the Brush Clevite Co. Ltd. Thorn hill. Southampton. HantsWW434
"Power Microcircuit" describes the use of the PM5A. 6A and 7A devices mentioned in the Active Devices section. AEI Semiconductors. Carholme Rd. Lincoln WW435

Application report No. 6 from Brookdeal Electronics Ltd. Market St. Bracknell. Berkshire is called "Measurement of contact potential by the vibrating capacitor method"

WW436

EQUIPMENT

High-quality audio power amplifiers for use in the broadcasting and sound recording industries with outputs up to 100 W are the subject of a leaflet from H / H Electronic. Industrial Site. Cambridge Rd. Milton. Cambridge CB4 4AZ

WW437
The following catalogues of American equipment are available from Wessex Electronics Ltd. Stover Trading Estate. Yate. Bristol BS 17 5QP.

Wiltron Company. Sweep generators 0.1 to 18 GHz . phase meters. vector network analysers. line stretchers. v.s.w.r. automatic testers. directional detectors and r.f. detectorsWW438
Anzac Electronics. Broadband r.f. and microwave signal processing devices. 0.5 M Hz to 3 GHz .
....................WW439
Wavetek Company. Function generators from sine. square and triangle manual instruments to fully programmable waveform synthesizers from 0.0015 Hz to 10 M Hz WW440
Philco-Ford. Sierra Operations. High-power signal generators 50 MHz to 3 GHz . watt meters. coaxial loads and attenuators ..WW441
Birtcher Corporation. Transistor and integrated circuit test equipment. computer controlled automatic test equipmentWW442

The data sheets listed below were sent to us bv Beglec N.V.. 718 Houba de Strooperlaam. Brussels 2.

Rodec Fader. 22 Hz to 32 kHzWW 443
Rodec Stereo Mixer. CU887. Four-channels with bass and treble controls. comprehensive switching facilities and twin VU meters \qquad ..WW444
Rodec Mixer. CU881. Four-channel stereo mixer ..WW445

Audio equipment. an amplifier (model 9000) and an f.m. tuner (model 1500). is described in literature from Bryans Amplifiers Ltd. 18 Greenacres Rd. Oldham. LancsWW446

Two leaflets from Culan Electronics Ltd, By Ormíston, East Lothian, Scotland, describe a.c. power controllers up to 3 kW \qquad .WW447

SE Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middlesex have available a leaflet which briefly describes the test equipment they produce \qquad WW448

New Products

Flying Spot Scanner Tube

A new screen phosphor is used in the Mullard, five-inch, flying spot scanner tube type Q13-110GU. The tube has magnetic -focusing, a metal-backed screen, and a spark gap to prevent internal flashover between the anode and the grid. It operates with an anode voltage of 25 kV and has a resolution better than 1000 lines. The new phosphor, a cerium activated yttrium aluminate, has an emission peak at 550 nm and an extremely short decay time of less than $0.1 \mu \mathrm{~s}$. It is mixed with a blue phosphor (caesium activated ytrium silicate), which also has a short decay time. Because of the short decay time of the phosphors, the flying spot scanner tube can follow fast moving objects without blurr. Mullard Ltd., Mullard House, Torrington Place, London W.C.1.

WW 302 for further details

Miniature Rotary Switch

Highland Electronics have announced a miniature rotary switch in the Highland/Grayhill range-series 53. The switches have the following features: up to

24 positions (15° indexing angle); up to 12 decks; up to 12 poles per deck; diameter over tags 1.35 in ; gold plated contacts. Panel and spindle seals are available. Highland Electronics Ltd, 33-41 Dallington Street, London E.C.I.
WW 303 for further details

Quick-heating Iron

The Ersa Sprint quick-heating soldering iron, made in West Germany, is available from Home Radio (Components). Warm up time is less than 15 seconds. When the press switch is released the iron starts to

cool, but remains sufficiently hot to continue to melt solder for about 1 minute. The technique for using it therefore seems to be to press the switch for 15 seconds, then release it just at the point of starting to make the soldered joint. The switch could be held down for the whole time of soldering, particularly if there was rapid heat conduction from the joint, but this would cause the bit to oxidise more rapidly. The iron proper weighs less than 5 ounces (7 ounces with lead and plug), and when laid down on the bench after use it is balanced so that the bit does not touch the bench. Although the iron is marked 220 V the suppliers state that it is suitable for all a.c. voltages from 220 V to 250 V and are prepared to guarantee it for use within this range. Spare parts are available and any part can be changed very quickly. Price $£ 3$ 19s 6d. Home Radio (Comsonents) Ltd, 234-240 London Road, Mitcham, Surrey, CR 4 3HD.
WW329 for further details

Op. Amp Dual Output Supply

A dual output supply to power operational amplifiers is available from Lambda Electronics. The outputs are ± 12 to 15 V d.c. at 400 mA for each line. The voltage difference between the lines is maintained to within 1% of absolute voltage or 0.1% change for all variations of line, load, and temperature. The unit, designated LXD-3-152, gives series connected dual outputs. Convection cooling is used and no external heat sinks or forced-air systems are required. Regulation is 0.1% of line or load; ripple and noise 1.5 mV r.m.s., 5 mV peak to peak. Remote sensing is provided. Current limiting is fixed and
current ratings at different operating temperatures are clearly specified. The unit measures $80 \times 95 \times 130 \mathrm{~mm}$. A 24 to 40 V version is also available. Lambda Electronics. Marshland Road, Farlington, Hants.
WW 318 for further details

Lockjaw Vice

A vice, called the Lockjaw, has been introduced which is suitable for industrial or domestic use and incorporates a number of novel features. The vice has 104 mm ($4 \frac{1}{16} \mathrm{in}$) jaws, is 200 mm (8 in) long and $100 \mathrm{~mm}(4 \mathrm{in})$ high and weighs about 1.75 kg . The silicon metal jaws have indents and slots machined in them so that tubes and discs can be held without excessive pressure and therefore without damage. The jaws can be easily prised off and the rear jaw can be reversed (turned upside down). If this is done the rear jaw is free to pivot so that it automatically adjusts to the shape of any tapered objects that have to be clamped, again avoiding excessive damage. The vice as described above has a recommended retail price of 86s. For more delicate work rubber-faced jaws are available as an extra (14 s a pair). There are three ways of mounting the vice. In its standard form it can be bolted to a bench in the normal way. A suction base can be purchased (30s) which allows the vice to be firmly attached to any flat

non-porous surface without damaging the surface in any way. Finally a substantial G-clamp is available (30s) which can be bolted to the vice so that the vice can be mounted on any convenient bench, girder, etc. Vice and Workholding Co. Ltd, 149a Crayford Rd, Crayford, Kent.
WW 301 for further details.

Spot-frequency Marine Receivers

Two multi-channel, single-sideband receivers are introduced by Eddystone Radio. Both have crystal-control and operate on switch-selected spot frequencies. One of these models, type EC964/1, provides a choice of 52 spot frequencies in the medium- and high-frequency bands, while the other, type EC964/3 offers a choice of 28 spot frequency channels in the m.f. maritime band. The two receivers meet the British Post Office specifications TSC 102 and TSC 105 respectively. The EC964/1 is primarily intended for use in ocean-going ships, while the EC964/3 is suitable for

ships operating in coastal waters where the higher frequencies are not normally used. Both receivers cover the international distress and calling channel (2182 kHz), other frequencies being chosen by the customer before delivery. Channels are switch-selected to simplify operation. Reception facilities cover double-sideband and single-sideband voice transmission, upper-sideband being accepted in the latter mode. An integral monitor loudspeaker is fitted and outlets are provided for telephones and remote line circuits. Operation can be from any standard a.c. supply or from low-voltage d.c. using a G.P.O. approved d.c./a.c. converter type 978. GEC-Marconi Electronics, Eddystone Radio Ltd, Marconi House, Chelmsford, Essex.
WW330 for further details

Modular Power Supplies

LTH Electronics have launched a series of compact, high specification stabilized power supply modules. Known as the LRA series, it is designed for installation into customers' equipment and is built as a 19in rack-mounting module. Both single and twin units are available with preset voltages in the range of $1-30 \mathrm{~V}$ and $30-50 \mathrm{~V}$ at $1,2,5$ and 10 A . The stability ratio is greater than $200,000: 1$ and typically $500,000: 1$. A fast acting, automatic-reset, over-current circuit affords complete protection against short circuit and overload. Remote sensing enables the correct voltage to be maintained at the load terminals and integral over-voltage units are available for the protection of

expensive external loads. The output resistance is less than 0.0005Ω. Ripple and noise is less than $200 \mu \mathrm{~V}$. LTH Electronics Ltd, Eltelec Works, Chaul End Lane, Luton, Beds.
WW327 for further details

Quartz-crystal Units

The McKnight Crystal Company supply a range of hermetically sealed, nitrogen filled, metal-cased AT-cut quartz-crystal units covering the frequency band 1400 kHz to 20 MHz . These units are available in several holder styles including miniature Def. types D, J and K. A wide range of frequency tolerances is available for oscillator or filter applications. Frequency calibration is to customers' requirements. McKnight Crystal Company, Unit 21, Shipyard Estate, Hythe, Southampton SO4 6DE.
WW333 for further details

Function Generator

Model 142 HF VCG generator from Wavetek (available through Wessex Electronics) is a precision signal source with a frequency range of 0.0005 Hz to 10 MHz . In addition to sine, square and triangle waveforms model 142 offers a variable duty cycle on all output waveforms. This can be continuously adjusted from 5% through the usual 50% to 95%. This means that pulse outputs can be generated with on-off ratios of $1: 19$, 19:1 or anywhere between. A sawtooth

waveform with a rise-fall ratio of 1:19. $19: 1$ is also possible. In addition to the 15 V pk -pk into 50Ω, the 60 dB step attenuator allows clean signal levels as low as 15 mV (pk-pk). An external sweep signal (either d.c. programming or a.c. modulation) can be applied to sweep the output over a 1000:1 ratio. Square-wave rise and fall time is less than 20ns. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BSI 7 5QP.
WW332 for further details

Time Scale Generator

The Comark time scale generator, type 1401, provides a 'rule-scale' timing waveform from $1 \mu \mathrm{~s}$ to 10 s with an accuracy of 0.005%. There are three simultaneously available waveforms. The rule-scale waveform consists of equispaced

rectangular pulses of three distinct amplitudes, every fifth and tenth being accentuated without change of duration. An 8-position switch selects the scale by specifying the least significant interval. The unscaled outputs are 1:4 mark/space ratio pulses from seven separate outputs with periods from $1 \mu \mathrm{~s}$ to 1 s . The squarewave output has unity mark/space ratio and an interval of 10 times the periods indicated by the selector switch. The output stage has a rise time of 40 ns and a fall time of 30 ns . The internal 1 MHz reference can be replaced by an external clock signal for increased accuracy or to permit generation of long time periods. Two instruments, used in cascade, will generate periods up to $10^{8} \mathrm{sec}$. Comark Electronics Ltd, Brookside Avenue, Rustington, Littlehampton, Sussex.
WW 324 for further details

3.5-W Amplifier

A low-cost version of the General Electric (U.S.A.) PA246 5-W amplifier, the PA263, is available from Jermyn. Designed for supply voltages up to 30 V it will deliver 3.5 W r.m.s. continuously with about 9 mV input. It may be used with various supply voltages, loads and inputs by adjusting external components. Price for quantities $1-24$ is 33 s (plus 2 s 6 d post and packing for small orders). Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW328 for further details

Dual Pulse Stretcher

A noise-free pulse of almost any width can be generated by the type MC 675 pulse stretcher from Motorola. The width of the output pulse generated by this circuit is determined by the width of the input pulse and a time constant derived from an external capacitor and either an external or an internal resistor. Two modes of operation are made possible by the inclusion of a two-input NOR gate at the output. When the signal levels at both inputs of this gate are low and with the input pulse fed to the pulse-stretcher input terminal only, the unit operates as a
conventional pulse stretcher to generate a pulse the duration of which is related to the input pulse duration as described above. The unit can also operate as a monostable multivibrator. In this configuration, no output pulse is generated for an input noise pulse of a duration (in seconds) equal to 10 times the value of the external capacitor (in farads). Propagation delay is 110 ns and the power dissipation is 180 mW . Encapsulation is a plastic TO-116 package. The temperature range is -40 to $+75^{\circ} \mathrm{C}$. The price is 45 s each for quantities of 100 and above, Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW331 for further details

Printed Circuit Sockets

Oxley Developments Company have added a subminiature socket, type $30 \mathrm{~S} / 093 / \mathrm{PCB}$, to its range of miniature printed circuit sockets. Designed to accept the standard Oxley 30P/093 plug, the sockets mount on a standard 0.150 in $(3.8 \mathrm{~mm})$ module printed circuit board. Plugs are inserted in a plane parallel to the

printed circuit board to allow compact board stacking. Single or multiple units with up to ten outlets can be supplied: p.t.f.e., insulating bushes are available in eleven colours to BS 2746; socket contacts are gold-plated brass. Oxley Developments Co. Ltd, Priory Park. Ulverston, Lancs.
WW 313 for further details

$\mathbf{5 0 - M H z}$ Digital Frequency Meter

Orbit Controls have announced the first of a new family of electronic instruments for 19in rack mounting with a panel height of only $1 \frac{3}{4}$ in. Digital frequency meter type $71 \mathrm{C} \quad 100$ is a direct reading 5 -decade instrument covering the spectrum 20 Hz to

50 MHz . Input sensitivity over the range is 10 mV , and the dynamic range is better than 60 dB . Three programmable gate times and four programmable display times are available. Selection of gate and display time is remotely programmed via a multipole socket on the rear panel. The instrument is designed so that it may be used to indicate the incoming frequency to a communications receiver by monitoring the local oscillator frequency. To provide direct reading, up to six frequency offsets are provided and the particular offset, equal to the receiver intermediate frequency, may be selected to add to or subtract from the local oscillator frequency as appropriate. Selection of frequency offset is, again, remotely programmed via a multipole socket on the rear panel. The front panel of the instrument is clear of controls other than a test button which enables the quartz crystal derived timing signal to be switched to the input circuit. Input, outputs. switch, etc., are located on the rear panel. The display module may, if required, be removed from the instrument and connected by an external cable to a further socket on the rear panel to provide a display remote from the instrument. An alternative version, type 71 C 101 , is also available, having gate and display times selected by means of front panel push-buttons. In this version the frequency offset, if required, is prewired internally. In other respects the two instruments are identical. Orbit Controls Ltd, Alstone Lane Industrial Estate, Cheltenham, Glos. GL51 8JQ.

WW 309 for further details

Low-cost Dry Reed Relays

A range of dry reed relays has been introduced by ITT Components Group Europe. The HRE 399, HRE 599, HRE 899 and HRE 831 are low-cost general-purpose industrial relays incorporating up to four "normally open" (make) switches. They are designed for printed-circuit mounting on boards up to 2.5 mm thick, with the mounting lugs and electrical terminals being on a grid spacing of 2.54 mm . The depth of the relays is 10.5 mm , and magnetic and mechanical protection is provided by a metal shield. The HRE 399 relay has a maximum switching current of 0.6 A a.c. $/ \mathrm{d} . \mathrm{c} .$, maximum switching voltage of 220 V a.c. /d.c. and a maximum switching power of 12 VA . Maximum switching current for the HRE 599 is 1A a.c./d.c.; the maximum switching voltage is 250 V a.c.

or 90 V d.c. and the maximum switching power is 24 VA . For the HRE 899 relay the maximum switching current is also 1 A a.c./d.c., with the maximum switching voltage being 250 V a.c. or 150 V d.c. and the maximum switching power 60 VA . The HRE 831 has the same performance as the HRE 899 relay. ITT Components Group Europe, Power Components Division, West Road, Harlow, Essex. WW 308 for further details

Signal Amplifier

The Bournlea Dynamic d.c.-a.c. amplifier has a bandwidth from d.c. to 500 kHz , 25 V pk-pk output swing and employs f.e.t. input stages to provide a drift of less than $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and a noise level of $25 \mu \mathrm{~V}$ r.m.s. at 60 dB gain. Alternative overall gain settings of 0,20 or 40 dB are selectable by switch, the gain accuracy being 0.5 dB . The $1 \mathrm{M} \Omega$ input resistance is accurate within $\pm 2 \%$ and makes it possible to use the amplifier as an accurate high gain current to voltage converter down into the nA and pA region. Either a.c. or d.c. input coupling can be selected, the low frequency cut-off being at 1 Hz in the a.c. mode. The output d.c. potential is adjustable by a single front panel control the setting of which is unaffected by the input source resistance. The output resistance is less than 20Ω. Operation is from self-contained batteries. The amplifier is available from The Cardon Instrument Co., Earls Colne, Colchester, Essex.
WW 307 for further details

Modular Pulse Generator

The Bradley Modular Pulse Generator 176 is a 50 MHz instrument for generating various complex pulse patterns. The use of modules in a basic main frame provides flexibility-the modules can be arranged in any order and additional units added as required. The main frame which

includes the stabilized power supply, can accommodate up to 11 modules. These are interconnected by coaxial cables. Six modules are currently available. the basic units being a period module capable of producing any p.r.f. from 1 Hz to 50 MHz , and a delay/width module providing pulse widths or delays from 10 ns to 1 s . Other modules include a high-impedance variable-level input unit, and an output module providing up to 6 V and having a risetime of 2 ns . Fan-in and fan-out units provide expansion, pulse-width subtraction. and inversion. Separate sockets are used for each interconnection, and all outputs are short circuit proof. G. \& E. Bradley Ltd, Electral House. Neasden Lane, London, N.W. 10.
WW 326 for further details

Square Trimmer Resistor

Reliance Controls have introduced a new $\frac{1}{2}$-in square wirewound fully sealed trimmer. The trimmer is available in three versions, designated CW65. CW66 and CW67, dependent upon the pin configuration required. Suitable for printed circuit board mounting, the various styles allow the designer to make the maximum use of available space. Resistance range of the CW65 /66/67 trimmers covers 10Ω to $25 \mathrm{k} \Omega$. Mechanical adjustment is 25 turns and temperature range -55 to $+155^{\circ} \mathrm{C}$. Wattage rating (whole element uniformly

loaded) is 1 W at $20^{\circ} \mathrm{C}$, derating to zero to $155^{\circ} \mathrm{C}$. Insulation resistance is $1000 \mathrm{M} \Omega$ at 500 V d.c. The wiper is of gold plated beryllium copper, and the terminals are gold plated. Reliance Controls Ltd. Drakes Way, Swindon, Wilts.
WW 316 for further details

Centre-tap
 Silicon Diode Assemblies

The Semiconductor Division of Westinghouse Brake and Signal Co. have introduced a series of silicon double-diode rectifiers rated at 20 A with voltage ratings of $100-600 \mathrm{~V}$. This series of centre-tap assemblies is designated

SxRC10 and SxRN10. Higher than usual overload to mean-current rating ratio is claimed. Housing is a standard TO-3 glass/metal package which permits mounting on normal transistor heat sinks. Westinghouse Brake and Signal Co. Ltd. 82 York Way, King's Cross, London N. I. WW 306 for further details

Thyristors for High-frequency Inverters

Two new families of thyristors available from Mullard have high $d i / d t$ and $d v / d t$ ratings of $100 \mathrm{~A} / \mu \mathrm{s}$ and $200 \mathrm{~V} / \mu \mathrm{s}$ respectively with crest working voltages of 800,1000 , and $1,200 \mathrm{~V}$. Types BTW23 and BTW24, are p-gate, reverse blocking. avalanche devices intended for use in high-frequency inverters and motorcontrol circuits. The BTW23 thyristors have a maximum forward current rating of 70 A and an avalanche rating of 40 kW when a square pulse of 10μ s duration is applied and the junction temperature is $25^{\circ} \mathrm{C}$. The thyristors have an encapsulation
similar to the TO-49 with an M12 thread. on the stud. The BTW24 thyristors have a forward current rating of 30 A and an avalanche rating of 20 kW ($10 \mu \mathrm{~s}$ square pulse when junction temperature is $25^{\circ} \mathrm{C}$). These thyristors are contained within TO-103 encapsulations. Mullard Ltd, Mullard House, Torrington Place, London W.C.1.

WW 322 for further details

100-W Power Transistor

Microwave Associates have announced the first $100-\mathrm{W}$ power transistor at 1 GHz , designed specifically for pulse applications. The device will provide 10 dB gain as an amplifier, and 60 watts output as an oscillator, at 1 GHz . Microwave Associates Ltd, Cradock Road, Luton, Beds.
WW 310 for further details

Corona Stabilizers

The M-O Valve Company has extended its range of metal/ceramic corona stabilizers with the introduction of the SC8 and SC9 series. The SC8 (the larger in the photograph) provides stabilized voltages in the range 25 to 50 kV in six 5 kV stages and the SC9 in the range 350 to 2000 V in 11 stages of from 50 to 200 V . Specific voltage types can also be made to

customers' special requirements. After one minute the voltage remains constant to within 0.25% of the initial value for at least two hours. and long-term stability is better than 1% per 1000 hours. The temperature coefficient of the SC 8 is $0.005 \% /{ }^{\circ} \mathrm{C}$ while for the SC 9 it is measured at $0.3 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ over the temperature range -40 to $+90^{\circ} \mathrm{C}$. The M-O Valve Co. Ltd, Brook Green Works, London W.6.
WW 323 for further details

Microwave Duplexer

Type MCH5890 microwave duplexer from Motorola consists of two

step-recovery diodes. one connected in series between the transmitter terminals and the receiver terminals, and the other one shunting both pairs of terminals. The device can accept a 40 W input power. During transmission the insertion loss between aerial and transmitter terminals is only 0.1 dB while the isolation between the aerial and receiver terminals is 25 dB . Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW 319 for further details

M.O.S. Arrays for Electronic Organs

Two m.o.s. arrays specifically designed for electronic organs are available from WEL. Array type MA70 is a ${ }^{12} \sqrt{2}$ divider giving true semi-tones. Array type MA60 is a six-stage binary divider giving six outputs each one octave apart. (An electronic organ can be made with four MA70 circuits and twelve MA60s.) For organ designers requiring a free-phase system 30 MA 70 s could be used. Prices are about $£ 310 \mathrm{~s}$. for the MA70 and 25 s for the MA60 (for quantities in excess of 1,000 pieces). WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW 320 for further details

Lightweight X-band
 Travelling-wave Tube

The M-O Valve Company has introduced a low-cost lightweight X -band travelling wave amplifier, type TWX34. giving a minimum gain of 35 dB and a saturated power output of 1 W over the frequency range 7.5 to 11 GHz . A typical application is in the ground station of a transportable satellite communications system where continuous operation in ambient temperatures of up to $60^{\circ} \mathrm{C}$ and ability to withstand shock, vibration and high humidity conditions are required. A low wattage oxide coated cathode has been incorporated and total power supply consumption under full r.f. drive conditions is less than 25 W . Power supply connections are by flying leads, but other

types of connection can be provided on request. The M-O Valve Co. Ltd. Brook Green Works, London W. 6.
WW 321 for further details

Switching Diode

A silicon planar. epitaxial, whiskerless diode, type BAV44, is announced by Mullard. It can rapidly switch currents up to 1 A , and is primarily intended for use in servo amplifiers. digital voltmeters and oscilloscopes. Maximum continuous

reverse voltage is 65 V and the maximum voltage drop with a forward current of 1 A is 1.25 V . Switching time $\left(t_{r r}\right)$ from $I_{F}=$ 1.0 A to $I_{R}=1.0 \mathrm{~A}$ and measured at $I_{r r}$ $=100 \mathrm{~mA}$ is 22 ns . Diode capacitance is 7.5 pF . Mullard Ltd, Mullard House, Torrington Place, London W.C. 1.
WW 325 for further details

Integrated Circuit Socket

Employing a new concept in socket design for integrated circuits and semiconductor devices, the A23/2033 now available from Jermyn, is a 25 -contact single strip socket capable of accepting either flat or round

leads. The body of glass-filled nylon is fitted with gold flash phosphor bronze contacts, giving a life of up to 10,000 insertions with an electrical resistance of $15 \mathrm{~m} \Omega$. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 305 for further details

Oscillator Klystron

A forced-air cooled, fixed frequency, two cavity oscillator klystron (K3071), for operation in airborne Doppler and beacon radar equipment, has been introduced by English Electric Valve Co. The tube incorporates a heater design claimed to give a lower level of heater f.m. than

hitherto attainable. In addition, the sturdy construction results'in a tube having low noise and low microphony. A further improvement is its longer life expectancy compared with earlier types. Operating frequency of the K 3071 is $8800 \pm 5 \mathrm{MHz}$ and a typical output power is 1.5 W , but variants can be supplied for operation at any frequency in the 8 to 9.5 GHz range. Silicone rubber moulded connections are used for unpressurized high-altitude operation. English Electric Valve Co. Ltd. Chelmsford, Essex.
WW 315 for further details

Solid-state Plus/Minus Sign

To indicate plus or minus information, a light-emitting diode display module has been added to Hewlett-Packard's numeric indicators. The model 5082-7018 plus/minus sign comes in the same package as the 5082-7000 series of numeric indicators. It operates at less than

5 V . A plus or a minus is displayed by applying a drive voltage to one (minus sign) or two (plus sign) input leads. A third lead is the earth connection. Brightness can be varied by changing the d.c. drive between 1.6 and 4 V . Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks.
WW 317 for further details

Schmitt Trigger I.C.

SN7413N Schmitt trigger combines two 4-input positive nand gates. Each gate has different input levels for positive and negative going signals. Hysteresis (the difference between two threshold levels) is typically 800 mV . Noisy pulses can be accommodated without false trigger regardless of change of temperature. The units also fire reliably with rise and fall times slower than 1 V per second. The unit is housed in a 14-pin dual-in-line plastic package and costs 10 s 1d each in quantities of 100 . WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW 311 for further details

"Have we eaten of the insane root that takes the reason prisoner?"

Now that the dust of the General Election has settled, with the computers, both electro-mechanical and human, duly confounded,* we are now looking forward with differing degrees of trepidation to the delights the future holds under our new masters.

The political parties are unanimous in plumping for increased production for export as the prime means of salvation. This being so, I thought that for a few minutes we might do worse than to take a look at our own electronics industry to see whether anything could be done to improve existing performance.

The position of industry in general can be likened to that of a farmer who possesses twenty cows. Under Communisn, the State takes the cows and sells some of the milk back to the farmer. Labour buys the milk from the farmer and pours it down the drain. The Conservative policy is to get the farmer to sell five cows and buy a bull. The Liberal outlook is much the same except that they would employ A.I. All, however, subscribe (by implication at least) to the premise that the bigger the organization the more efficient it is; so the trend has been towards the scooping of a multitude of little electronics concerns into a few gigantic ones.

We all know the arguments for mergers-streamlining, rationalization, the avoidance of duplication of effort, are all stock phrases-but, according to a recently published study, \dagger most takeovers and mergers are made for the security and convenience of the management of the bidding company. Usually (it says) the major motives are to gain bigger shares of their markets, reduce competition or protect themselves from other predatory firms.

Be that as it may, the concept that the greater the size, the greater the efficiency, is rubbish, and those who argue for it take no account of human nature. As an instance, those of you who run your own small businesses won't need to be told that economies in small matters make the difference between extracting a living and going broke.

[^3]Not so in the big organization. To the clerk who is writing a letter about a $£ 250,000$ order, a second sheet of paper is too trifling a matter to be considered and it is far too easy to reach for a telephone to save the fag of writing.

In such circumstances the management's typical reaction is either nil, which is bad, or to create a Gestapo department to deal with it, which is often worse. Control departments of this character are frequently parasitic growths, sucking out an existence from the main stem of profits, for they can, all too easily, cost more to maintain than the savings they effect.
A typical example of the control system now in vogue is P.E.R.T. (the initials stand for Programme Evaluation and Review Technique). In essence this is a semidiagrammatic method of ensuring that all the bits and pieces for a large contract come together at the right times and places so that the job flows smoothly to completion on schedule. It also sets out to keep tabs on costs and to aid the solution of various management problems. It is the sort of thing that no trendy company would dream of doing without, on the grounds that present-day systems orders are on so large a scale that it would be impossible to control them efficiently in any other way. But some while ago I was at a gathering which included several veteran engineers and I was amazed to hear from one of them of the size and complexity of some of the radio communication systems which were undertaken between the wars, and even back in the 1914-18 period. Nobody had ever heard of P.E.R.T. in those days, but the jobs got done in far quicker time than they would take today. At that time it was part of engineering training to be able to visualize the demands for materials well before they arose, and to order accordingly. The man who couldn't do that didn't become a senior or chief engineer or if he did, he didn't last long. He was sacked.

Now P.E.R.T. in principle is applied commonsense and, used rationally, is well enough. It is at its interface with human nature that it can fall down badly. Elevate it to the status of a department and it can so easily become a coterie of high priests whose main-although perhaps uncon-scious-aim is to preserve the mystique and to enlarge the sphere of influence of
the cult.
The computer is another control system which is wide open to misuse. Computers tend to be run by an alien race of high priests who, protected from close investigation by reason of the jargon of their calling, can easily let enthusiasm outweigh sober judgement and advocate the use of highly expensive machines for jobs that a desk calculator could do in less time and at a fraction of the cost.

A big combine tends to be riddled with control departments; all were instituted with the best of intentions; some, possibly, save the company money. But it would at any rate do no harm for such a firm to take a cool, hard look at all such areas to see whether they are costing more to maintain than the amounts they save. The grave danger, too, with efficiency-control systems is that they can easily become a cloak for managerial ineptitude and face-saving. When things go wrong their presence can make the difference between the personal admission of "I was to blame" and the shrugging-off comment "Unfortunately there was an undetected error in the computer programming". Such an outlook leads by logical progression to the present prevalent practice of calling in an external firm of management consultants to advise on company reorganization. By definition a manager's function is to manage, and do so to such effect that he makes a profit for his company. If he cannot do this, then he should go.

Are we, in fact, making too much of a fetish of large-scale electronics groupings and business efficiency systems? These approaches of course are an aping of American techniques, but what is sauce for the American goose is not necessarily sauce for the British gander; it should not be forgotten that, in spite of its size and vaunted efficiency, the American electronics industry would collapse like a house of cards if disarmament became a reality and government-sponsored space programmes were stopped.

Now I come to think of it, the humble tea-break is, in its way, symptomatic of the whole business of pseudo-efficiency. Time was when the tea-lady and her trolley did the rounds twice daily, dispensing cheer to all. But, "Inefficient!" said the experts, and proceeded to prove on paper how much cheaper machines would be. "Splendid!" said management and so it came to pass that machines were installed and the tea-lady was out.
After the inevitable teething troubles, things go famously for a while and the revenue rockets. Management rubs its hands, overlooking the fact that a timesthree increase in takings signifies that a considerable proportion of the proletariat are now taking several tea-breaks per diem instead of the statutory two.

This bit of automation was originally an American idea which has been widely copied over here. But one world-famous firm has, to my certain knowledge, seen the light and has gone back to the oncederided trolley. I hardly like to mention this, but it's located in the U.S.A.

Outline details of some up-to-date units

It is fair to suggest that the poor relation of most hi-fi enthusiasts' systems is the radio tuner, if indeed a tuner is included at all.

While at any time the upper crust of the hi-fi fraternity are willing to enter into protracted and sometimes pretentious discussion of purely mechanical parameters such as wow and flutter, mass, compliance, trackability and so on, radio reception is hardly regarded by some as worthy of consideration. Yet this latter via the radio tuner is a truly electronic signal source that could be more actively utilized. Most of the country is now covered by v.h.f. transmitters so that it is possible for the majority of listeners to receive a reliable signal*. If the transmission is a "live" one originating in a studio local to the transmitter, the output from a hi-fi system can be of superbly high quality, especially on stereo.

Hi-fi probably came into its own as a "following", with the introduction of the LP disc and thus made possible music quality in the home far superior to that supplied by long- and medium-wave a.m. radio. But medium-wave radio has nothing to do with hi-fi and it is only at v.h.f. with f.m. transmissions that radio, mainly because of better noise performance at those frequencies, can compete with the record. It is true that some manufacturers supply an a.m./f.m. tuner with medium-, long- and sometimes short-wave reception, in addition to the v.h.f. band. However, no one pretends that quality programmes are possible on the a.m. bands and these are usually included merely to give maximum coverage of the available transmissions, since the v.h.f. band provides only B.B.C. programmes Radio 2, 3 and 4, and some local radio. Also v.h.f. has limited area coverage and foreign programmes generally can only be received on a.m. bands.

Importance of tuning

The distortion content of an f.m. transmission is potentially extremely small. One particu lar requirement to avoid distortion on f.m. is accuracy of tuning. Unlike the simple a.m. demodulator, if the i.f. signal is not centred on the linear portion of the f.m. discriminator

[^4]characteristic the demodulated audio signal will be non-linear. Again unlike a.m. reception it is not easy with an f.m. tuner for the listener to find the centre frequency by ear and most tuners feature visual and automatic electronic facilities to assist in tuning and to prevent oscillator drift with time.

Sensitivity and noise

It is in the matter of audio dynamic range and signal-to-noise ratio that disc recordings could be said to be superior to that of broadcast signals. Because of the need to maintain the broadcast signal at a reasonably high average it is necessary for the B.B.C. to limit the audio dynamic range (the range from the softest to the loudest passage) to a particular ratio; $30-35 \mathrm{~dB}$ having been quoted. Recordings have not the same limitations of dynamic range. On the question of noise, one big advantage of the f.m. system over a.m. is that extraneous signals which display an a.m. characteristic can be removed from the input signal by a limiter circuit. These include static and man-made interference such as that caused by ignition systems and electrical apparatus. By limiting the maximum amplitude of all signals, the discriminator is presented with a signal of constant amplitude, with variations in frequency only.

Random noise (white noise) contains a.m. and f.m. components and the f.m. when detected is heard as a background noise or hiss. Because of the nature of f.m. detection and the use of a.g.c. circuits the audio output from the detector is reasonably constant and the difference between strong and weak stations manifests itself by the amount of background noise present. To obtain good clean reception (and the worst is always cleaner than a.m.) it is desirable for the tuner to enjoy good sensitivity and low noise when the amplifying stages are working at high gain. This "usable" sensitivity is invariably quoted by tuner manufacturers as so many $\mu \mathrm{V}$ for so many dBs quieting, for example: $2 \mu \mathrm{~V}$ for 30 dB quieting being typical.

Noise increases as the audio frequency range is extended, and this is counteracted by emphasizing the high-frequency end of the audio range before transmission and
de-emphasizing by the same amount in the receiver. By this means the frequency response effectively remains level but the accompanying noise is attenuated. The de-emphasis figure is quoted as $50 \mu \mathrm{sec}$ which represents the time-constant of the de-emphasis circuit.

As has been stated then the greatest advantage of f.m. over a.m. is the virtual elimination of interference and this combined with transmissions at v.h.f. has allowed a greater audio bandwidth. Some programmes, however, which are routed over many miles of land-line networks before reaching the transmitter, suffer from attenuation of the high frequencies. The U.K. system bandwidth is 15 kHz with a deviation frequency of $\pm 75 \mathrm{kHz}$. The ratio of deviation frequency to the highest audio frequency (deviation ratio) has a direct influence on noise performance \dagger. The i.f. bandwidth of an f.m. tuner is typically 200 kHz at the 6 dB points. The response should be symmetrical, and the linear portion of the discriminator characteristic should cover at least 100 kHz to prevent distortion. (Grundig claim for their RT100 tuner that the distortion factor is below 1% when it is detuned by 50 kHz .) Although present-day tuners are very sensitive and can be operated from relatively crude aerial installations, distortion can arise as a result of multipath reception and for this reason alone it is wise to consider the erection of an efficient outdoor aerial preferably with some directional properties. All v.h.f./f.m. transmissions are horizontally polarized which means that even the simple dipole offers some rejection of reflected signals on a horizontal plane but "aircraft flutter" can be troublesome in some areas. A particularly unpleasant form of distortion can occur from reflected signals which makes piano music sound as if the speaker windings were dragging the magnet pole piece.

Basic requirements

Having settled on a suitable aerial, all that is necessary for enjoyable reception on an existing hi-fi amplifier and speakers is a quite simple, well designed tuner. It

[^5]should have good sensitivity so that the limiter is always saturated, adequate bandwidth with good response, a stable oscillator and a discriminator with a high order of linearity. To save further on cost the tuner could be powered from the main amplifier if the amplifier power supply ratings allow but for convenience it is better to buy a tuner unit with its own mains power unit. Such a tuner can be obtained for a modest sum. If stereo reception is required the tuner must incorporate a stereo decoder. Most modern tuners are suitable for stereo
reception but if cost is a prime factor a "stereo ready" tuner could be purchased and used on mono. It could be converted to stereo at a later date by means of a plug-in decoder module available from the manufacturer.

Refinements on the more expensive tuners are extras which improve reception in weak-signal or difficult areas and electronic aids to relieve the user of a certain amount of guesswork. Among these are visual tuning indicators which may take the form of an ordinary meter movement, an electronic tuning eye or

Stereo test tone transmissions

To facilitate channel identification and adjustment of channel cross-talk a 250 Hz tone is transmitted every day except Wednesday and Saturday in the left channel only from about four minutes after the end of Radio 3 until 23.55. This test may be interrupted from time to time. On Wednesday and Saturday the following test sequence is transmitted by the B.B.C.

Test No.	Time (Approx.)	Left channel (A)	Right channel (B)	Purpose
1	23.42	250 Hz at zero level	440 Hz at zero level	Identification of left and right channels and setting of reference level
2	23.44	900 Hz at +7 dB	900 Hz at +7 dB , antiphase to left channel	Adjustment of phase of regenerated subcarrier and check of distortion with signal wholly in the ($A-B$). i.e. S. channel
3	23.48	900 Hz at +7 dB	900 Hz at +7 dB , in phase with left channel	Check of distortion with signal wholly in the ($A+B$). i.e. M, channel
4	23.49	900 Hz at +7 dB	No modulation	Check of A to B cross-talk
5	23.50	No modulation	900 Hz at +7 dB	Check of B to A cross-talk
6	23.51 .20	Tone sequence at -4 dB : $\begin{array}{r} 60 \mathrm{~Hz} \\ 900 \mathrm{~Hz} \\ 5 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$ This sequence is repeated	No modulation	Check of A-channel frequency response and A to B cross-talk at high and low frequencies
7	23.52 .20	No modulation	Tone sequences as for left channel on Test 6	Check of B -channel frequency response and B to A cross-talk at high and low frequencies
8	23.53.20	No modulation	No modulation	Check of noise level in the presence of pilot tone
	23.55	Reversion to monophonic transmission		

The schedule is subject to variation or cancellation to accord with programme requirements and essential transmission tests.

The zero level reference corresponds to 40% of the maximum level of modulation applied to either stereophonic channel before pre-emphasis. All tests are transmitted with pre-emphasis. Periods of tone lasting several minutes are interrupted momentarily at one-minute intervals.
With receivers having separate controls of subcarrier phase and cross-talk, the correct order of alignment is to adjust first the subcarrier phase to produce maximum output from either the A or the B channel during test-2 and then to adjust the cross-talk (or 'separation') control on tests-4 and -5 for minimum cross-talk between channels.
With receivers in which the only control of cross-talk is by adjustment of subcarrier phase, this adjustment should be made on tests-4 and -5.
Adjustment of the 'balance' control to produce equal loudness from A and B loudspeakers, is best carried out when listening to the announcements during a stereophonic transmission, which are always made from a centre-stage position. If this adjustment is attempted during the tone transmissions, the results may be confused because of the occurrence of standing-wave patterns in the listening room.

The outputs of most receivers include significant levels of the 19 kHz pilot tone and its harmonics. These components do not interfere with normal listening but do affect most signal-level meters. It is essential, therefore, to provide filters with adequate loss at these frequencies if instruments are to be used for the above tests.
even a system of coloured lights to indicate which side of the centre frequency the tuner is off-tune and when it is on-tune. Probably the largest single influence on good stereo quality is the decoder itself. Manufacturers favour different methods of extracting the left and right-hand channels from the composite signal but a point to watch out for here is the degree of channel separation. This should be typically 30 dB at 1 kHz .

In the early days of stereo transmissions some tuners gave a visual indication of when a stereo signal was present and it was then necessary to switch the tuner manually to stereo. Nowadays it is more usual for the stereo signal to switch-in the decoder automatically, at the same time lighting a pilot lamp to indicate that stereo is being received. Many tuners with automatic switching still retain a manual mono override switch because in fringe reception areas or situations where the stereo signal is very weak it may be preferable to hear the programme in mono with less background noise, which is the case when the decoder is muted. It should be mentioned that stereo transmissions in any case contain more noise than mono transmissions when received on a mono tuner because the audio information occupies slightly less of the carrier modulation depth.

To assist listeners in setting up their equipment correctly, the B.B.C. transmits special test signals at scheduled times. Details of these are set out in cols. 1 and 2 opposite.

If it appears that we are dwelling too long on the possibility that programmes are likely to be degraded by noise let us put things in perspective by saying that in the poorest conditions the noise on f.m. is less than is the norm on a.m., especially after dusk. With a "usable" signal, noise on f.m. is virtually inaudible.

Use of new devices

Noise performance has again been improved as of late by the use of field effect transistors. These devices also make it easier to apply automatic gain control than do bipolar transistors and for these and other reasons many makers use an f.e.t. as an r.f. amplifier. Ceramic filters in place of conventional i.f. transformers are coming in and so too are i.cs. The use of i.cs no doubt eases production problems and ceramic filters can be designed with wideband characteristics and sharp cut-off to provide the necessary selectivity without the use of a large number of tuned circuits in the i.f. stages.

More and more manufacturers are now employing capacitance-diode tuning. This allows the ganged tuning capacitor to be dispensed with and tuning to be carried out by a single potentiometer. Sometimes four or more potentiometers are included, each with a separate tuning scale and press-button thus allowing the user to preset his tuner to four or more stations.

Oscillator frequency drift is corrected in most f.m. tuners by an automatic frequency control circuit (a.f.c.) which has
a pull-in range of some $150-200 \mathrm{kHz}$. Provision is commonly included to switch-out the a.f.c. so that the correct tuning point can first be found without the masking effect of the automatic tuning, which is then switched-in to take care of drift. Some listeners may wish to receive an f.m. station in an adjacent transmission area or those living in south-east coasta regions may sometimes receive Continental f.m. stations. These transmissions are necessarily much weaker than the local station and it is useful to be able to switch-out the a.f.c. in this situation to prevent the tuner being "captured" by the strong local signal.

Available units

We circulated all known makers and suppliers of f.m. tuner units in the U.K. for details of their products and from each of those who replied we have selected one model for a short review in the following pages. We stipulated that the tuner must have a v.h.f./f.m. band but it could also cover a.m. bands. Unless stated otherwise the tuners mentioned are for a.c. mains operation. Tuner /amplifiers are excluded. Some specifications are suffixed (I.H.F.) where this has been given on the particular manufacturer's returns. It may well be however, that some unmarked specifications for tuners from other manufacturers are also to I.H.F. requirements but have not been so defined. I.H.F. are the initial letters of an American body, the Institute of High Fidelity, which lays down methods of measurement for audio equipment. In some cases it can provide for enhanced published performance figures.

Prices quoted are the suggested retail prices in force at the time of going to press, and include purchase tax.

Arena F211 (f.m. stereo)

Sensitivity: $3 \mu \mathrm{~V}$ for 20 dB quieting at 40 kHz deviation.
I.F. bandwidth: 250 kHz .

Discriminator bandwidth: 600 kHz .
A.M. suppression: better than 50 dB , limiting from $4 \mu \mathrm{~V}$.

Frequency response: $20-15000 \mathrm{~Hz}$.
Channel separation: better than 30 dB ($250-6300 \mathrm{~Hz}$) Carrier suppression: better than 50 dB Price: 35 gn .
Automatic stereo switching with indicator and mono override switch; switched a.f.c.; capacitance-diode tuning with five press-buttons and scales. U.K agents: Highgate Acoustics, 184-188 Great Portland Street, London W.1

Armstrong 524

(f.m., decoder optional)

Sensitivity: $1.5 \mu \mathrm{~V}$ (mono), $5 \mu \mathrm{~V}$ (stereo) for $30 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio at 75 kHz deviation. Limiting: Full limiting at $5 \mu \mathrm{~V}$. I.F. bandwidth: 220 kHz at 6 dB .
I.F. rejection: 90 dB .

Aerial inputs: $70-80 \Omega$ and 300Ω.
Output voltage: 300 mV (average).
Output impedance: $1 \mathrm{k} \Omega$.
Price: $£ 404 \mathrm{~s} 6 \mathrm{~d}$.
When decoder is fitted, channel separation is 30 dB at 1 kHz , suppression at 38 kHz is 40 dB ; automatic switching and stereo indicator; tuning meter and interstation noise suppression. Armstrong Audio Ltd, Warlters Road, London N.7.

Bush (a.m./f.m. stereo)

Sensitivity: $3 \mu \mathrm{~V}$ for $26 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio (mono).
Aerial input: not quoted.
Output voltage: 2 V (max).
Output impedance: $1 \mathrm{M} \Omega$.
Power supply: external from Bush stereo amplifier via 5 -pin DIN type socket.
Price: $£ 36$ 15s.
Tuner intended primarily for use with Bush stereo amplifier. Features a.f.c. on f.m. with switch; stereo indicator and tuning meter. Above details refer to f.m. section. Coverage on a.m. is long- and medium-wave bands with internal ferrite
rod aerial. Rank Bush Murphy Ltd, Power Road, Chiswick, London W.4.

Beomaster 5000 (f.m. stereo)

Sensitivity: $0.8 \mu \mathrm{~V}$ for $20 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, 75 kHz deviation.
I.F. bandwidth: 200 kHz at 3 dB .

Detector bandwidth: 1 MHz .
Crosstalk: 40 dB at 1 kHz .
Aerial input: 75-300 .
Output voltage: adjustable between 55 mV and 1 V .
Pilot and carrier suppression: 50 dB .
Price: $£ 105$ (teak), $£ 106$ (rosewood). Ceramic filters and f.e.t. r.f. amp. and mixer incorporated; a.f.c.; automatic stereo switching with level adjustable between 1 and $100{ }_{\mu} \mathrm{V}$; interstation muting.
Bang \& Olufsen U.K. Ltd, Eastbrook Road, Gloucester GL4 7DE.

Dual CT16 (a.m./f.m. stereo)

Sensitivity: $1.5 \mu \mathrm{~V}$ for 26 dB quieting at 22.5 kHz deviation (mono).

Image rejection: 50 dB .
I.F. bandwidth: 200 kHz .

Channel separation: better than 45 dB . Pilot tone suppression: better than 50 dB .
Aerial input: 240Ω.
Output voltage: 0.8 V for 30%
modulation.
Output impedance: $47 \mathrm{k} \Omega$.
Price: $£ 106$.
Automatic stereo switching and stereo indicator; audio response $40-15000 \mathrm{~Hz}$ $\pm 1.5 \mathrm{~dB}$. Above details refer to f.m. section. On a.m. frequency coverage is $150-350 \mathrm{kHz}$ (l.w.), $500-1650 \mathrm{kHz}$ (m.w.), $6.7-15.4 \mathrm{MHz}$ and $5.6-6.6 \mathrm{MHz}$. Dual Electronic Industries, St. Georgen House, Mill Road, Stockenchurch, Bucks.

Eagle AFT60 (a.m.ff.m. stereo)

Sensitivity: $2 \mu \mathrm{~V}$ for 20 dB quieting (stereo).
Channel separation: 28 dB at 1 kHz . Image rejection: 55 dB .
Aerial input: 75Ω unbalanced. Output voltage: variable $0-280 \mathrm{mV}$.
Price: £53 18s 10d.
Above details refer to f.m. section. Cover-

age on a.m. $600-1600 \mathrm{kHz}$ (m.w.) with sensitivity of $500 \mu \mathrm{~V}$. Teak cabinet; f.e.t. front end. U.K. agents: B. Adler \& Sons (Radio) Ltd, Coptic Street, London W.C.I.

Elizabethan System 4
 (f.m. mono)

Sensitivity: $14 \mu \mathrm{~V}$ for 3 dB from limiting. Output voltage: 100 mV .
Price: £28
A.f.c. $\pm 250 \mathrm{kHz}$ range. Part of the Elizabethan Coniston Suite. Lee Products (Great Britain) Ltd, 10-18 Clifton Street, London E.C.2.

Grundig RT100

(a.m./f.m. stereo)

Sensitivity: $1.5 \mu \mathrm{~V}$ for 26 dB quieting at 15 kHz deviation.
Image rejection: $58-66 \mathrm{~dB}$.
I.F. bandwidth: $160-200 \mathrm{kHz}$.

Discriminator bandwidth: 650 kHz .
A.M. suppression: better than 58 dB at 1 kHz .
Pilot tone suppression: 40 dB at 19 kHz , 60 dB at 38 kHz .
Channel separation: 35 dB minimum at 1 kHz .
Aerial input: 240Ω.
Output voltage: 0.65 V for 40 kHz deviation.
Output impedance: $2 \mathrm{k} \Omega$ (lowest permissible load impedance $22 \mathrm{k} \Omega$).
Price: $£ 181$ 11s 9 d .
Automatic stereo switching with variable trigger level $(6-60 \mu \mathrm{~V})$; override mono switch and indicator; f.e.t. front end with a.f.c.; tuning meter and light aids; variablecapacitance diode tuning with pressbutton selection of up to six stations. Above details refer to f.m. section. Frequency coverage on a.m.: $145-350 \mathrm{kHz}$ (1.w.), $510-620 \mathrm{kHz}$ (m.w.), $3.15-8.8$ and $8.6-22.5 \mathrm{MHz}$. Grundig (Great Britain)

Ltd, 15 Orchard Street, London W1H 9AE.

Goodmans Stereomax
(a.m./f.m. stereo)

Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting. I.F. bandwidth: 300 kHz at 6 dB . Discriminator bandwidth: 600 kHz . A.M. rejection: 40 dB .

Channel separation: 37 dB at 1 kHz . Pilot tone suppression: 50 dB .
Aerial input: 300Ω, balanced, 70Ω unbalanced.
Output voltage: 250 mV for 30% modulation.
Output impedance: $100 \mathrm{k} \Omega$.
Automatic stereo switching and stereo indicator; switched a.f.c. (pull-in range 100 kHz); muting; tuning meter. Above details refer to f.m. section. Frequency coverage on a.m. $545-1650 \mathrm{kHz}$ (m.w.). External power socket for feeding other units. Goodmans Loudspeakers Ltd, Axiom Works, Lancelot Road, Wembley, Middx.

Heathkit K/AJ-14 (f.m. stereo)

Sensitivity: $5 \mu \mathrm{~V}$.
Image rejection: 45 dB .
I.F. rejection: 80 dB .

Frequency response: $20-15000 \mathrm{~Hz}$ at 3dB (I.H.F.).
Aerial input: 300Ω balanced, 75Ω unbalanced.
Output voltage: 0.7 V for $1000 \mu \mathrm{~V}$ input. Output impedance: $20 \mathrm{k} \Omega$.
Channel separation: 30 dB at 1 kHz .
Price of kit: $£ 2418 \mathrm{~s}$, post and packing 5 s .
Mono/stereo switch and stereo indicator; a.f.c.; walnut or teak cabinet available. Heath (Gloucester) Ltd, Gloucester GL2 6EE.

Körting T500 (a.m./f.m. stereo)

Sensitivity: $3 \mu \mathrm{~V}$ for $26 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio at 12.5 kHz deviation.

Bandwidth: approximately 140 kHz .
Price: $£ 79$ 15s.
Automatic stereo switching with indicator; tuning meter; frequency coverage on a.m. $145-355 \mathrm{kHz}$ (l.w.), $510-1620 \mathrm{kHz}$ (m.w.) and $5.85-7.4 \mathrm{MHz}$. Special feature on a.m., automatic bandwidth ($3-6 \mathrm{kHz}$) dependent on input signal strength. U.K. agents: Europa Electronics Ltd, Howard Place, Shelton, Stoke-on-Trent ST1 4NW.

Leak Stereofetic (f.m. stereo)

Sensitivity: $2.5 \mu \mathrm{~V}$ for $30 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio.
Image rejection: 72 dB .
I.F. rejection: 80 dB .
A.M. suppression: 50 dB .

Aerial input: 75Ω unbalanced.
Output voltage: 0.9 V r.m.s. at 75 kHz deviation.
Output impedance: 200Ω.
Channel separation: better than 35 dB at 1 kHz .
Price: $£ 68$ 1s 4d.
Switched a.f.c.; tuning indicator combined stereo indicator; f.e.t. front end and i.cs in i.f. stages and decoder; ceramic filter i.f. stages; automatic stereo switching with "mono lock" switch. Features "quasistereo", a method of progressively reducing noise while retaining some steren effect. H. J. Leak \& Co. Ltd, Bradford Road, Idle, Bradford, Yorks.

L \& H "Signalmaster" 6087

(f.m., decoder optional)

Sensitivity: $2.5 \mu \mathrm{~V}$ for $20 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio.
Image rejection: better than 55 dB .
I.F. bandwidth: 250 kHz .

Output voltage: 200 mV (nominal).
Power supply: 9 V battery or 32 V external.
Price: 30 gn .
With decoder channel separation is better than 32 dB at 1 kHz ; a.f.c. switch; stereo indicator; available in teak or rosewood. Britimpex Ltd, 8/12 Rickett Street, London S.W.6.

Nikko FAM-12F (a.m./f.m. stereo)

Sensitivity: $1.8 \mu \mathrm{~V}$ for 20 dB quieting. Image rejection: better than 45 dB at 1 MHz .
Channel separation: 40 dB at 1 kHz Output voltage: 0.5 V at 30% modulation. Price: $£ 688 \mathrm{~s}$ 3d.
Automatic stereo switching with indicator and mono override switch; tuning meter; switched a.f.c.; muting; noise filter; f.e.t.
front end. Above details refer to f.m. section. Frequency coverage on a.m.: $530-1605 \mathrm{kHz}$ (m.w.). U.K. agents: Howland-West Ltd, 2 Park End, South Hill Park, London N.W.3.

Pioneer TX-900 (a.m./f.m. stereo)

Sensitivity: $1.7 \mu \mathrm{~V}$ (I.H.F.).
Image rejection: 95 dB .
Selectivity: 65 dB .
S / N ratio: 60 dB at 30% modulation.
Harmonic distortion: 0.3% at 400 Hz ,
100% modulation.
Aerial input: 300Ω balanced.
Output voltage: 1 V at $400 \mathrm{~Hz}, 30 \%$ modulation adjustable on each channel.
Channel separation: 38 dB at 1 kHz .
Price: $£ 15418 \mathrm{~s} 3 \mathrm{~d}$.
Front end f.e.t; crystal filter i.f. stages; automatic stereo switching with mono override switch; adjustable stereo muting and interstation muting: switched a.f.c. Above details refer to f.m. section. Frequency coverage on a.m.: $\quad 525-1605 \mathrm{kHz}$ (m.w.). Shriro (U.K.) Ltd, Lynwood House, 24/32 Kilburn High Road, London N.W.6.

Philips RH691 (a.m./f.m. stereo)

Sensitivity: $7 \mu \mathrm{~V}$ for $26 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio at 15 kHz deviation.
Distortion: less than 1% at 75 kHz deviation.
Channel separation: 35 dB at 1 kHz .
Carrier suppression: 40 dB at 38 kHz
(30 dB at 19 kHz).
Audio response: $20-15000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.
Output voltage: 1.4 V at 40 kHz deviation.
Output impedance: $10 \mathrm{k} \Omega$.
Price: $£ 83$.
Switched a.f.c; automatic stereo switching with mono override switch and indicator; tuning meter; interstation muting. Above details refer to f.m. section. Frequency coverage on a.m.: 150 400 kHz (l.w.), $525-1604 \mathrm{kHz}$ (m.w.) and $5.9-18.2 \mathrm{MHz}$. Philips Electrical Ltd, Century House, Shaftesbury Avenue, London W.C.2.

Quad FM (stereo)

Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting.
Crosstalk: better than 30 dB at 1 kHz .
Suppression: better than 40 dB at 38 kHz .
Aerial input: 75Ω.
Output voltage: 100 mV .
Output impedance: $100 \mathrm{k} \Omega$ each channel ($50 \mathrm{k} \Omega$ mono).
Price: $£ 51$.
Automatic switching and stereo indicator with override manual switch; neon tuning indicator; a.f.c; fully tropicalized. Acoustical Manufacturing Co. Ltd, Huntingdon, Hunts.

Radon 404 Mk2

(f.m., decoder optional).

Sensitivity: $15 \mu \mathrm{~V}$ (usable).
Bandwidth: 300 kHz at 3 dB . I.F. bandwidth: 170 kHz .
A.M. rejection: 26 dB for 20 mV input. Aerial input: 75Ω.
Price: $£ 3918$ s with decoder fitted.
Switched a.f.c; permeability tuning. When decoder is fitted stereo switching is automatic with indicator. A Mark 3 version of this tuner has the stereo decoder fitted as standard. Radon Industrial Electronics Co. Ltd, Brooklands Trading Estate, Orme Road, Worthing, Sussex.

Radford FMT. 3

(f.m., decoder optional)

Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting.
S / N ratio: 70 dB .
Frequency response: $40-15000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB}$.
Harmonic distortion: less than 0.6% at 75 kHz deviation.
Detector bandwidth: 550 kHz .
Aerial input: 75Ω and 300Ω.
A.M. suppression: 45 dB .

Output voltage: 2 V at 75 kHz deviation. Price: $£ 60$ plus p.t. (decoder fitted). With decoder, channel separation is better than 37 dB at 1 kHz ; carrier suppression better than 60 dB ; auto-
matic stereo switching with mono override switch; switched a.f.c; tuning meter; interstation muting; f.e.t. r.f. amplifier. Radford Audio Ltd, Ashton Vale Road, Bristol BS3 2HZ.

Rogers Ravensbrook
 (f.m. stereo)

Sensitivity: $5 \mu \mathrm{~V}$ (usable).
I.F. rejection: 85 dB .

Image rejection: 70 dB .
A.M. suppression: 50 dB .

Channel separation: better than 30 dB at 1 kHz .
Output voltage: 200 mV for 30% modulation.
Price: $£ 45$ plus case.
Front end f.e.t; integrated circuit i.f. strip; switched a.f.c; automatic stereo switching with indicator; tuning meter; interstation muting. Rogers Developments (Electronics) Ltd, 4-14 Barmeston Road, Catford, London S.E.6.

Rotel 120-ST (a.m./f.m. stereo)

Sensitivity: $2.5 \mu \mathrm{~V}$ for 20 dB quieting. Harmonic distortion: less than 1.5% at 1 kHz
Channel separation: better than 35 dB at $1 \mathrm{kHz} 100 \%$ modulation.
Output voltage: 1200 mV at 100%
modulation.
Price: . £49 10s.
Automatic stereo switching with stereo indicator; a.f.c; tuning meter. Above details refer to f.m. Frequency coverage on a.m.: $535-1605 \mathrm{kHz}$ (m.w.). Distributors: Pullin Photographic Rank Aldis, P.O. Box 70, Great West Road, Brentford, Middx.

Sony ST-5100

(a.m./f.m. stereo)

Sensitivity: $1.8 \mu \mathrm{~V}$ for $20 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio. Selectivity: 70dB (I.H.F.).

Image rejection: 90 dB .
Spurious rejection: 100 dB . A.M. suppression: 50 dB (I.H.F.). Frequency response: $20 \mathrm{~Hz}-15 \mathrm{kHz}$ $\pm 1 \mathrm{~dB}$.
Aerial input: 300Ω balanced,
75Ω unbalanced.
Channel separation: better than 38 dB at 400 Hz .
Carrier suppression: 60 dB .
Price: $£ 99$ 15s.
Front end f.e.t.; i.f. filters; tuning indicators; a.f.c. control; muting switch. Above details refer to f.m. section. Frequency coverage on a.m.: $530-1605 \mathrm{kHz}$ (m.w.). Sony (U.K.) Ltd, 11 Ascot Road, Bedfont, Feltham, Middx.

S.N.S. FMT/9 (f.m. mono)

Sensitivity: $10 \mu \mathrm{~V}$ for $30 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio at 22.5 kHz deviation.

Limiting: $10 \mu \mathrm{~V}$ for full limiting.
Aerial input: 70-80 Ω unbalanced.
Output voltage: variable $0-500 \mathrm{mV}$.
Output impedance: $5 \mathrm{k} \Omega$.
Power supply: 9.1 V d.c. or optional a.c. mains unit.
Price: on application.
This tuner is available either for single programme reception or in switched version for up to four preset stations. It has a crystal-controlled oscillator and in the four-station version the above sensitivity figures are slightly impaired. Designed specially for radio distribution systems. S.N.S. Communications Ltd, 851 Ringwood Road, West Howe, Bournemouth BH11 8LN.

Sansui TU555 (a.m./f.m. stereo)

Sensitivity: $2 \mu \mathrm{~V}$ for 20 dB quieting. Image rejection: better than 50 dB . I.F. rejection: better than 60 dB . Channel separation: better than 35 dB . Aerial input: 300Ω balanced, 75Ω unbalanced.
Output voltage: more than 1.5 V .

Output impedance: greater than $10 \mathrm{k} \Omega$. Price: $£ 77$ 9s 2d.
Signal strength meter and stereo indicator; stabilized oscillator supply with no a.f.c; special noise cancelling circuit; f.e.t. front end. Above details refer to f.m. section. Frequency coverage on a.m.: $535-1605 \mathrm{kHz}$ (m.w.). U.K. importers: Brush Clevite Co. Ltd, Thornhill, Southampton SO9 1QX, Hants.

Sugden R21 (f.m. stereo)

Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting. Frequency response: $30 \mathrm{~Hz}-15 \mathrm{kHz}$ $\pm 1 \mathrm{~dB}$.
I.F. rejection: 80 dB . Image rejection: 70 dB .
A.M. suppression: 50 dB .

Aerial input: 75Ω or 300Ω.
Output voltage: 0.5 V .
Channel separation: better than 30 dB .
Price: approximately $£ 67$.
Front end f.e.t.; variable-capacitance diode tuning with four preset station buttons in addition to continuous tuning; switchable stereo filter giving low noise with reduced separation; special low-pass filter with 55 kHz cut-off; pilot tone and sub-carrier filters. Differently styled version (R51) available. J. E. Sugden \& Co. Ltd, Bradford Road, Cleckheaton, Yorks.

Sinclair System 3000

This f.m. tuner will be released in late autumn. The only information available at the time of going to press is that sensitivity is expected to be $5-10 \mu \mathrm{~V}$ for 40 dB quieting. The circuit will incorporate a phase-lock loop discriminator, variable-capacitance diode tuning and an i.c. stereo decoder. Sinclair Radionics Ltd, 22 Newmarket Road, Cambridge CB5 8DU.

Teleton STQ-201X (f.m. stereo)

Sensitivity: $2.5 \mu \mathrm{~V}$ for 20 dB quieting.
I.F. bandwidth: 240 kHz (3dB).

Image rejection: better than 50 dB .
S / N ratio: 45 dB for 1 mV input.
Aerial input: 300Ω balanced.
Channel separation: 30 dB at 1 kHz .
Price: $£ 36$.
Stereo indicator; a.f.c.; tuning meter. Teleton Electro (U.K.) Co. Ltd, Teleton

House, Robjohns Road, Widford, Chelmsford, Essex.

Tripletone FM Mk2 (f.m. stereo)

Sensitivity: $2-\geqslant \mu \mathrm{V}$ for 20 dB quieting. Bandwidth: 210 kHz .
Aerial input: $70-80 \Omega$ unbalanced.
Output voltage: 0.1 V .
Channel separation: better than 30 dB at 1 kHz .
Price: $£ 37$ 19s 10d (teak case), $£ 35 \mathrm{ls} 3 \mathrm{~d}$ (chassis only).
Front end f.e.t.; a.f.c. (range 400 kHz); automatic stereo switching and indicator. A mono version is available with provision for a plug-in decoder. The Tripletone Manufacturing Co. Ltd, 138 Kingston Road, Wimbledon, London S.W.19.

Trio KT-7000 (a.m./f.m. stereo)

Sensitivity: $1.5 \mu \mathrm{~V}$ (usable).
Frequency response: $20-15000 \mathrm{~Hz}$ -2 dB .
Harmonic distortion: less than 0.3\% (mono) at $400 \mathrm{~Hz}, 100 \%$ modulation. S / N ratio: better than 70 dB at $30 \mu \mathrm{~V}$ input.
Image rejection: better than 100 dB at 100 MHz .
I.F. rejection: better than 100 dB .

Channel separation: better than 35 dB at 1 kHz .
Carrier suppression: better than 50 dB .
Aerial input: 300Ω balanced,
75Ω unbalanced.
Output voltage: 1.5 V at $400 \mathrm{~Hz}, 100 \%$ modulation.
Output impedance: 7000Ω.
Price: $£ 125$.
Three-f.e.ts front end; crystal filter and integrated circuit i.f. stages; signal strength meter and tuning meter; automatic stereo switching and indicator; interstation muting; step-type output level control. Above details refer to f.m. section. Frequency coverage on a.m.: $540-1600 \mathrm{kHz}$ (m.w.). U.K. agents: Lasky's Radio Ltd, 3-15 Cavell Street, Tower Hamlets, London E.1.

NEW ADVANCE MULTIMETER

 in the handiest pack MOD

DMM2 Digital Multimeter

Versatility

Measures :-
DC \& AC Volts 200 mV - 1000 VFS DC \& AC Current 200 AFS External shunts extend ranges to 2 A. Ohms. $200 \Omega-2 \mathrm{M} \Omega F \mathrm{~S}$ Operates from AC Supply. External 12 V DC or optional rechargeable battery pack.

Stability LSI Reliability
Dual Slope Integration Single LSI chip with stabilized zero performs all counting point and storage display provides completely stable operation

ADVANOC코
 ITMMIT카D

INSTRUMENTS DIVISION SALIESOFFICE Raynham Road, Bishop's Storfford, Herts. Telephone: 027955155.
and storage functions. Full overload protection.

[^6]position
COMPANY
ADORESS

spiakin STH: IN:

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1}{2}$ " $\times 8 \frac{1}{2}$ " completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1^{\prime \prime}}{} \times 23 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1}{8}$ " acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient 9 " speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95
The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3}{4}{ }^{\prime \prime} \times 13 \frac{1}{2}^{\prime \prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

WHITELEY ELEGTRIGAL RADIO OO. LTD.

From LtoX-band for marine, airborne and ground radar

The standard range of EEV duplexer components covers applications from L to X-band marine, airborne and ground radar systems. TR cells, TB cells, pre-TR cells, solid state limiters, monitor diodes... whatever your requirement, in narrowband, broadband or tunable types, EEV have it. Or, if it's a 'special' you need, we can almost certainly make it.

The precision manufacture of duplexers forms only part of EEV's massive experience in the whole field
of radar. And we have delivery and service to match our capability.

If you would like a copy of the EEV guide 'Duplexer Devices'-or if you are interested in a particular com-ponent-then please post the coupon.

English Electric Valve Co. Ltd. Chelmsford. Essex England. Telephone: 0245 61777. Telex: 99103 Grams: Enelectico Chelmsford

see EEV's duplexer devices.

				Peak power
Product	Type No.	Band	Frequency range (MHz) (kW)	
Pre TR cells	BS834	-	$2000-12000$	2500
	BS870	L	$1240-1370$	2500
TR cells	BS456	S	$2850-3050$	1250
	BS824	S	$2700-3100$	250
	BS856	C	$5300-5700$	250
	BS156	X	$9000-9600$	200
	BS452	X	$9310-9510$	100
TB cell	BS810	X	$9250-9550$	75
TR Limiter cell	BS814	X	9375	$5000-9700$
Solid state				200
microwave switches	BS392	S	$2925-3075$	0.5
	BS460	X	any 100 MHz	0.5

9R-59DE BUILT IN MECHANICAL FILTER \& TUBES COMMUNICATION RECEIVER

The thrills of amateur short wave communication can be a joy forever. With TRIO's 9R-59DE communications receiver you can be assured of repeated adventure. TRIO's modern engineering techniques are especially apparent in its mechanical filter which achieves amazingly superior selectivity. For the thrill of a lifetime tune in with TRIO's 9R-59DE.

* Illuminated dials permit easy tuning and band spread readings. * Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands. * Callibration Close accuracy with an excellent anti-backlash mechanism. * A mechanical filter enabling superb selectivity with ordinary IF transformers. * One RF and two audio stages of amplification, insuring high sensitivity and selectivity. * A Product Detector making possible clear SSB reception.

Specifications:

* Frequency Ranges: Band A $550-1600 \mathrm{KHz}$, B 1.6-4.8MHz, C $4.8-14.5 \mathrm{MHz}, \mathrm{D} 10.5 \cdot 30 \mathrm{MHz}$. * Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S $/ \mathrm{N}$ Ratio (at 10 MHz) Selectivity 1.5 KHz at $-50 \mathrm{~dB} *$ Power Consumption: 45 watts * Audio Power Output: 1.5 watts $*$ Tube \& Diode Complement: $6 B A 6 \times 3,6 B E 6 \times 2,6 A Q 8 \times 2,6 A Q 5, S W-05 S$ $\times 2$, SW -05×2, IN 60×2. $*$ Dimensions: Width 15," Height 7," Depth 10."
the sound approach to quality
TRIO
TRIO ELECTRONICS,INC.

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugman, 1060 Bruxelles Belgium
Sole Agent for the U.K.
B.H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street, Tower Hamlets, London E. 1. Phone: 01-790 4824

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today. The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and; above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you need, please post the coupon. English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103. Grams:Enelectico Chelmsford

McMurdo's new 0.100" Pitch Connector = "RL" Series

5 to 85 way single sided with solder and printed wiring tails. 10 to 170 way double sided with solder and printed wiring tails.

Working Voltage

Proof Voltage
Insulation resistance (dry)
Contact resistance to test gauge Insertion and withdrawal forces Contact finish

700 v. AC/Peak
1750 v. DC
10^{6} Megohms min.
10 Mill-ohms max. 6 oz. per contact max. Flow tin or hard gold (specify when ordering)

Another new product from:
McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth,
Hampshire. Telephone: Portsmouth 35361. Telex: 86112.

memurdo
 great facility for service

Member of the Louis Newmark Group. with access to the combinod facilitles of all other member companies.

You can view X-ray pictures in daylight using onlya 5 micro-Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X-ray equipment for this very purpose reducing X -ray dosages to as little as 5 microRöntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'.

The Image Isocon is soo sensitive that it can
convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology. For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 024561777. Telex:99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

Wide range Universal Bridge

Direct readout accurate to 0.1\%

Wayne Kerr B224 is a new audio-frequency bridge giving accurate values for the resistive and reactive terms of any component or complex impedance in the range 2 micro-ohms to 500 gigohms. Accuracy: $\pm 0.1 \%$ ($\pm 0.3 \%$ for impedances below 10). Frequency: Internal Source $1592 \mathrm{~Hz}\left(\omega=10^{4}\right)$ $200 \mathrm{~Hz}-20 \mathrm{kHz}$ using external source with internal wide-band detector
Connections: 2 -terminal for isolated components. 3 -terminal for in-situ measurements. 4-terminal below 10Ω : cuts lead errors.

Readout: G/R and C/L terms simultaneously. In-line displays with decimal point illuminated. Null meter also indicates correct range.
Power: From internal rechargeable battery. Ask for B224 data sheet.

WAYNE KERR

Innovation in Electronic Measurement
THE WAYNE KERR COMPANY LIMITED NEW MALDEN SURREY ENGLAND Telephone: 01-942 2202 Telex: 262333 Cables: Waynkerr, Malden

This is
 what you see.

This is what you can see with the EEV Image Isocon.

Even individual photons can be detected.

With an EEV Image Isocon you can achieve really high-quality TV pictures in the darkest nighttime conditions.

A combination of an EEV Isocon and an image intensifier fibre optically coupled operates satisfactorily at light levels equivalent to single photons.

The Isocon is reliable and able to stand up to active-duty conditions. It cannot be put out of action by bright flares.

The majority of existing orthicon systems can be easily converted.

For the full facts about the Image Isocon please post the coupon.

Proved for these important applications
Air: Aircraft navigation without transmission of detectable pulses. Night photography and reconnaissance (especially when information is required at a central control centre from remote locations such as unmanned outposts, aircraft etc).

Sea: Navigation without lights. Night operation on aircraft carriers.

Land: Navigation without lights. Target finding in the dark. Border surveillance and perimeter defence.
English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 024561777. Telex: 99103. Grams: Enelectico, Chelmsford

Paris and componens for telecombuncaion enginering

 aND EIECTRONCSEXPORT-IMPORT

Electromechanical
Components

Electroacoustic
Components

Miscellaneous Parts
and ComponentsConnectors, socketsSwitchesRelaysPilot lampsRotary buttonsMicrophonesEarphonesLoudspeakersTransformersFluorescent tube and mercuryvapour lamp adaptersFerritesPermanent magnetsAerials
IMPORTVacuum tubes, special lampsSemiconductor devicesIntegrated circuits

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components
*Mnemopolymerics the science of heat-shrinkable polymers with a built-in memoryperfected after many years of research and development by Hellermann-Electric.

The Helashrink ${ }^{\text {® }}$ range of Moldanized © Shapes gives you the fast, low-cost answer to encapsulation of electrical connectors; water sealing of cable glands; cable jointing; sealing crutches on power cables; covering spurs in wire harnesses and cable.

More than 70 standard shapes are available and specials can be supplied to meet your particular needs.

Shrinking is fast - by heat gun, gas flame or infra-red ovens.

Moldanized Shapes have excellent electrical properties. They add strength, insulation, abrasion and moisture protection - resist acids, alkalis and contaminants.

Shrink-it-yourself kit FREE
 (All you need is a match)

Please send me your free Mnemopolymerics Demonstration Kit - plus full details of Helashrink Moldanized Shapes.
Name
Company
Address_

WW-016 FOR FURTHER DETALL

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate 'tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance. Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special corical hinge to give pin-point pivoting.

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommended tracking weight $1 \frac{1}{2}$ to 21 $\frac{1}{2}$ grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

ASTRONIC SERIES 1700

For the finest reproduction invest in Astronic Equipment built from standard modules for use in clubs, factories hospitals, sportcentres, hotels, schools or where only the best will do

ASSOCIATED ELECTRONIC ENGS LTD. DALSTON GARDENS, STANMORE, MIDDX. TEL: 01-204 2125

VALUABLE NEW HANDBOOK FREF EMGINERSS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

EIECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng. Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.

MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding - Eng. Pattern Making -Inspection-Draughtsmanship--Metallurgy - Production Eng.

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE Have A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E.E., A.M.I.M.I., A.M.R.R.I.B.A., A.M.I.Mun.E., A.I C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 46 A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and easily
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you ore now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners in Radio, T.V., Elec tronics, etc. A.M.i.E.R.E. City \& Guilds Radio Amateurs' Exam., R.T.E.B. Certificate, P.M.G. Cer tificate, Practical Radio, Radio \& Television Servicing, Practical Electronics, Electronics Engineering, Automation.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT,

 ALDERMASTON, BERKSHIRE.Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRITE if YOUU PREFER NOT TO CUT THIS PAGE

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciftcations and prices, please write to Teonex Limited, 2 a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.11.

TEDIEK
 TEONEX

electronic valves, semi-conductors, neons \& indicators for export

Effective elimination of electro-magnetic interference produced by ancillary electrical equipment is of paramount importance in present day communication and signalling systems. Erie Broadband Filters and Filtercons provide the highest attenuation, at the lowest cost, in the smallest package. In less than 1 cubic centimetre they can offer, typically, an insertion loss of 80 dB minimum in the range 1.50 kHz to over 10 GHz .

A wide range of Erie Filter Devices, in coaxial and multi-section designs, with $\mathrm{Pi}, \mathrm{T}, \& \mathrm{~L}$ networks, provide for reliable operation over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (in some cases up to $150^{\circ} \mathrm{C}$), with excellent performance to beyond 10 GHz . Voltage ratings $50-2,500$ volts d.c.
Used the World over in Aircraft, Spacecraft, Ships, Land Vehicles and Static Installations. Send for the Filter Devices Technical Bro-
chure, and learn about the kind of Filters that

have been approved for use in Airborne Weapons and other professional equipments.

ERIE ELECTRONICS LTD.
Great Yarmouth, Norfolk. Telephone: 04934911.
Telex: 97421
 Cable hinding is sol much easier with Insulok MSties

Insulok Series MS one-piece plastic cable ties are designed for quick, simple cable fixing - by hand, or using the Insulok tensioning tool-without metal fastening pins or locking devices. The ties are manufactured in accordance with American Mil Specs. 17821, 18034 and 23190 to meet tough aerospace and electronics requirements. They come in a full range of sizes - with or without panel fixing heads-to handle cable bundles from ${ }^{\prime} 625^{\prime \prime}$ to $4^{\prime \prime}$ diam. All ex. stock. Accessories include standard, screw, bolt or adhesivefixed cradles, tie guides and markers.

try them...

Please send me samples of Insulok MS Cable Ties - and full technical information.

COMPANY
ADDRESS

* For Tape Recorders \& Other Products

Micro Motor 2F-900

A transistorized motor for portable dictating machines and tape recorders.

Level Meter Model-08

For cassette tape recorders and record players.

Magnetic Head 07-03

-Recording and playback head for cassette tape recorders.

A double 3-in-1 value from Sankyo. Micro motors, level meters, and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals instead of purchasing one here, another there. You will save time and money-and get quality and reliability on top of economy! Many other models available. For further details write:

Sankyo (Europe) Export und Import G.m.b.H.:
4 Dïsseldorf. Kölnerstr. 65-a, West Germany. Tel: 350281 Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF
Sankyo Seikl Mfg. Co., Ltd.
17-2. Shinbashi t-chome. Minato-ku, Tokyo 105. Japan. Tel: Tokyo 591.8371 Cables: SANKYORGEL TOKYO
American Sankyo Corp
visimi
95 Madison Ave.. New York. N. Y. 10016 , U.S.A. Tel: LE - $2-8020$
, ysixitit
$\underbrace{4}$

> When it comes to selecting a sound system you want a lot of things. Loud and clear sound to the farthest corner. 100 per cent reliability. The most modern components. Proper installation. Back up from a company with experience. And a minimum cost.

All that and more.

Altec sound systems have been selected by all types of users throughout the world. Large and small.

Famous and not so famous. At indoor sports arenas. Outdoor stadiums. Fieldhouses and auditoriums. Concert halls and theatres. Airports. And all types of religious structures. Before you select your sound system, find out more about Altec.

Write for complete details and a free catalogue today.
LTV Ling Altec Ltd., Baldock Roąd, Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTV Ling Altec, Inc.

You can depend on Altec sound

To reproduce and record realistic and crystal-clear sound, it takes good equipment. And that is where we come in with a complete line of products for the broadcast and recording industries.
\square Monitor speaker systemslarge and small.
\square Speaker components.
\square Power amplifiers--transistorized and even portable.
\square Input equipment-including master studio control consoles, mixer-amplifiers and pre-amplifiers.

- Audio controls-including mixers, equalizers, attenuators and custom console components.
\square A full line of professional and general-purpose microphones.

30 years of Altec experience is proof of quality performance in studios, concert halls, theatres, auditoriums and arenas throughout the world. You can depend on Altec-as a standard for performance, reliability and low operating expense.
Write for details to:
LTV Ling Altec Ltd., Baldock Rd., Royston, Herts;or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

Y) AlIIT

A Quality Co. of LTV Ling Altec, Inc.

Clitesalas

SOLDERING INSTRUMENTS

DON'T WASTE MONEY

. . . on the purchase and maintenance of unnecessarily complicated and expensive soldering irons.

In probably 75\% of cases the LITESOLD range of lightweight, high performance instruments provide the sensible choice. These well-balanced quality tools reflect nearly twenty years development resulting from wide use in industry.

There are 7 models from 10 watts to 60 watts covering the whole field of electronic soldering, listed at from 32/with quantity discounts. They are backed by a fast and inexpensive repair service, although servicing is simplicity itself, using ex-stock spares.

Full details of the LITESOLD models free on request, together with introductory details of our ADAMIN micro-instruments and LITESTAT Thermostatic modelsfor some of those other 25% of cases, Ask for literature L.5.

LIGHT SOLDERING DEVELOPMENTS LTD.,

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 \& 4559

TELFORD PRODUCTS LTD.

4 WADSWORTH ROAD GREENFORD MIDDLESEX ENGLAND TEI:01-998-1011
THE DAVALL PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5
Telephone: 01-485 8531 (10-lines) Telex: 2-2573
Cables: Hallectric, London, N.W.5.

CHASSIS and CASES

Type N

Plus post and packing.

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type \mathbf{Z} removable back and front.

BLANK CHASSIS

FOUR-SIDED I6 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2$ "1	6/3	2/11	$10 \times 8 \times 2 \frac{11}{}$	12/-	5/6
$7 \times 4 \times 1 \frac{1}{17}^{\prime \prime}$	6/	3/2	$12 \times 7 \times 2{ }^{\prime \prime}$	12/-	$5 / 11$
$7 \times 5 \times 2$ "	7/6	3/5	$12 \times 9 \times 2 \frac{1}{\prime \prime}$	13/9	71-
$8 \times 4 \times 2$ "	71	3/4	$13 \times 8 \times 2{ }^{\text {2 }}$	13/9	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	$3 / 9$	$14 \times 7 \times 3^{\prime \prime}$	$14 / 6$	616
$9 \times 7 \times 2$ "	9/3	4/10	$14 \times 10 \times 2 \frac{11}{\prime \prime}^{\prime \prime}$	16/-	$8 / 7$
$10 \times 4 \times 22^{\prime \prime}$	$91-$	3/9	$15 \times 10 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	$16 / 6$	9/1
$12 \times 4 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	10/-	4/3	$17 \times 10 \times 3^{\text {17 }}$	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			
Plus post and packing.					
TO FIT OUR CASES					
Size	Price	Base	Size	Price	Base
$7 \times 5 \frac{3}{4} \times 1 \frac{1}{2 \prime}$	$7 /-$	3/9	$12 \times 63 \times 2^{\prime \prime}$	10/9	5/11
7×5 年 $\times 2^{\prime \prime}$	7/9	$3 / 9$	$14 \times 8 \frac{3}{4} \times 2^{\prime \prime}$	13/6	7/11
$11 \times 6 \frac{8}{4} \times 1 \frac{1}{1 \prime}$	101-	$5 / 6$	$15 \frac{3}{4} \times 9 \frac{3}{4} \times 2 \frac{12}{\prime \prime}^{\prime \prime}$	17/-	916
$11 \times 6 \frac{9}{4} \times 2^{\text {n }}$	10/-	5/6	$17 \frac{3}{4} \times 9 \frac{3}{4} \times 2 \frac{1}{2}$	18/6	$10 / 6$

Plus post and packing.

WITH BASES

Size	Price	Size	Price
$5 \times 4 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	$9 / 3$	$31 \times 3 t \times 21^{\prime \prime}$	$6 / 6$
$4 \times 21 \times 1{ }^{\prime \prime}$	6/-	$3 \times 2 \times 1$ "	5/6
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 21^{\prime \prime}$	7/3	$6 \frac{3}{8} \times 2 \frac{11}{16} \times 1 \frac{15}{16}$	$8 / 3$

Plus post and packing.
PANELS: Any slze up to 3 ft . at $6 /-\mathrm{sq}$. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

No matter what your CCTV requirements are, General Video Systems have thé answer - with their wonderful range of SHIBADEN equipment. The result of extensive Research and Development, SHIBADEN equipment has been designed to a modular concept which means that you can fit and furnish your own CCTV studio for as little as $£ 3,000$.
The widespread need for this type of package deal within industry, commerce and education fields are numerous. And each individual requirement can be met from the simplest .operation to a full broadcast studio. A.complete contract maintenance of SHIBADEN equipment is offered by RCA Limited, part of the world's largest Service Organisation. If you are about to invest in CCTV equipment or would like to discuss your requirements, let GVS "put you in the picture".

Write or telephone
PENERAL YDED SYSTEMS LTD.
Main Distributors of SHIBADEN Equipment 61-63 Watford Way, Hendon, London NW4, Telephone:01-202 8056

SHRINK YOUR SWITLHIIIG PROBLEMS...

 with 4 new improved miniature relays from Associated Automation

Mercury Wetted Contact Relay Type EBRM: Height only 10 mm for low profile pcb mounting; 20 mW bi-stable, 40 mW single-side-stable; operate time Ims nominal at max. coil power; life over 25×10^{9} operations at rated load of 100 VA ; bounce-free for both Form C or D contact resistance.

3

Hermetically Sealed Relay Type TF: All-welded, T. 0.5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CP.L approval for standard versions; switching capability 1 amp at 28 V D.C. to low level; single and double pole; operate powers down to 40 mW .

Dry Reed Relay Type ERMC/D/E:
Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35 mW depending on contact arrangement; electrostatic shielding, high voltage insulation and low thermal types can be specified; life expectancy 10×10^{6} operations at full load, contact rating 10VA

Enclosed Industrial Relay Series 20:
Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100 W ; life over 10×10^{7}. operations; single or twin contacts in wide range of materials; low-priced, readily available, easy to apply.

All these illustrations are full size.

Whatever your switching problem - we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all. communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us . . . for size.

WW--031 FOR FURTHER DETAILS
M \qquad M \qquad

Brought to you for your listening enjoyment from the

> COMnOISSEUT COLLECTION
Now Quality Performance Comes Realistically Priced! B.D.2. COMBINED TURNTABLE \& PICK-UP ASSEMBLY
The tried and trusted B.0.2. features:

- Belt drive furnable with new S.A.U. 2 arm operated by hydrautic lift and with special lowering device. Now
incorporates new head shel with lateral adjustment.
* 33_{3}^{1} and 45 r.p.m
- Virtually silent
- Anti-vibration springs
- Available as chassis or on teak plinth

Price list and illustrated literature on request to
A. R. SUGDEN \& CO. (Engineers) Ltd.

Market Street, Brighouse HD6 1DX, Yorkshire. Telephone: 2142
\qquad n

Tronsormers, Chokes

Saturable Rencioios
 Volimobile volitige regulators

Rectilier Sels

Transformers

Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth. Townleytransformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmohiles

The most robust and use ful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Volt mobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are aut0-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outp uts from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equipment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers. saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes
A.C. and D.C. chokes

Specific enquiries are invited

STANDARD RESISTANCE BOXES *

LABORATORY QUALITY EXCEPTIONALLY STABLE, SUPPLIED WITH INDIVIDUAL TEST CERTIFICATES

STANDARD MEGOHMS

P401	$1 \mathrm{M} \Omega$	$\pm 0.05 \%$	$£ 52$
P4010	$1 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4020	$10 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4061	$100 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 75$

PLUG-IN MEGOHM DECADE BOX P400
Range $0-1000 \mathrm{M} \Omega \pm 0.2 \%$. In $100 \mathrm{M} \Omega$ steps $£ 190$

SWITCHED 'MEGOHM' RESISTANCE BOX P4002
4 decades $0.01-0.1-1-10 \mathrm{M} \Omega \pm 0.05 \%$.
All decades and sweeping contacts are accessible through separate terminals.
£98

AVAILABLE EX STOCK FROM:
Z \& I AERO SERVICES LTD. 44A, WESTBOURNE GROVE, LONDON, W. 2 Tel: 01-727 5641/2/3

* Made in USSR

WW-035 FOR FURTHER DETAILS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

JOHN SMITH LTD.

209 SPON LANE • WEST BROMWICH • STAFFS. TEL. 021-553 2516 (3 LINES) WOODS LANE•CRADLEY HEATH • WARLEY - WORCS. TEL. CR 69283 (3 LINES)

Please odd $1 / 6$ per ib. for Carriage and packing.

- STOCKISTS OF ELECTROSIL GLASS TIN OXIDE RESISTORS COMPREHENSIVE RANGE OF INDUSTRIAL VALVES AND SEMICONDUCTOR DEVICES ALWAYS IN STOCK

LIND-AIR OPTRONICS (INDUSTRIAL) LTD.
 ELECTRONIC COMPONENT DISTRIBUTORS

 6-12 TUDOR PLACE, LONDON, W. 1(off Tottenham Court Road-rear of Woolworths)
Telephone: 01-6371601 (10 lines) Telex 27931

WW- 040 FOR FURTHER DETALS
Nombrex accuracy!

C.R. TEST BRIDGE MODEL 32

Price f10. 10. 0d
Another Nombrex high quality transistorised, modern' styled instrument at a low price designed for the radio profession and educational establishments.
Note a few of the specifications details below:-

- 6 Ranges covering 1Ω to $100 \mathrm{M} \Omega$

1 pF to $100 \mu \mathrm{~F}$.

- Separate and clear R. \& C. scales.
- Power Factor measurement up to 70\%.
- Neon indication for Capacitor leakage. - Luminescent balance indicator.
- Battery operated or external supply.

All Nombrex instruments are guaranteed against defective parts or faulty manufacture for 12 months.

Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6d extra.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 3-30/60 Ω balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms-15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hl Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

This

 newrange of AIR SPACED Variable CAPACITORS and TRIMMERS ...

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range-from miniature air spaced trimmers up to large high voltage
transmitting capacitors.

SUB MINIATURE TRANSFORMERS

We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

Write today for complete details
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD LONDON SE25 •01-654 6046

WW- 044 FOR FURTHER DETAILS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE
2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

 Telype Spares.

Gaiety Works, Akeman Street, Tring. Herts Tel: Tring 3476 (STD 0442 82)

Consult and Supply

WELWYN ELECTRIC LIMITED

(Founded 33 years ago)

A Consultant is generally accepted to have very specialised knowledge in his field, gained by augmenting intellect and academic learning with the experience of years of practice. A Leading Consultant would certainly be regarded as a National or even International authority.
The 'Seventies might well emerge as the Decade of Consultants, so if you feel the compulsive urge to consult, either (a) because it is fashionable; or (b) because the budget allows for it; or even (c) because it looks good in the Annual Report; or just simply (d) because you need advice . . . then why not use us as Leading Consultants as well as Suppliers?
In the context of Resistors we are certainly recognised internationally as authorities.

$$
L
$$

METER PROBLEMS?

A very wide range of modern deslgn instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

 138 GRaYs inn road, w.c. 1A Lexor DIS-BOARD gives you up to 6 sockets from one power ourlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.
brochure from
LEXOR DIS-BOARDS LIMITED,
Allesley Old Road, Coventry.
Telephone 72614 or 72207

Phone: 01/837/7937
WW-047 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

WW-049 FOR FURTHER DETALS

DIFFERENTIAL D.C. AMPLIFIERS

For use with d.c. energised Transducers

150 sames
modular or cased versions
versatile, high performance instrumentation amplifiers for use with low or high level signals. Two outputs available to drive all U-V galvanometers, indicators, recorders and control devices.

FE-154-BD modular $£ 69$ FE-154-BD/C cased mains powered £99

Complementary units:-
Bridge Supplies and Conditioning Units, Sample and Hold and Bridge Amplifiers.

FYLDE
Electronic Laboratories Limited. Oakham Court, Preston. PR1 3XP Telephone: Preston (0772) 57560

WW- 048 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SAM

Continuous Rating 14oz. at ${ }^{\frac{3}{2} / n}$
Instantaneous
up to $5^{\frac{1}{2} / b .}$.

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.

KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65-7228/9

WW-050 FOR FURTHER DETAILS

[^7]66 We are living on our small farm high up in the Himalayas-at $8,500 \mathrm{ft}$. and at the moment we have very hurriedly constructed tin sheds to live in and naturally it is very very cold inside in winter, with temperatures of 25° of frost indoors quite common. Our Quad amplifier/control unit and speaker were the only things we had which helped us to forget the bitter cold and since the nearest road and therefore the electricity is a good 35 miles from here, we even bought a small generating set to enable us to switch on the set and lose ourselves in the magic of superb music, superbly reproduced.99*

* Extracts from a letter from Mr. Tara Singh, one of our more remote customers.

If music really matters, you'll find room for Quad

QUAD
 for the closest approach to the original sound

MILLBANK MIXERS

Our new input mono/stereo mixer. Available on short delivery.
Fitted with any inputs from our exclusive audio module range.
Broadcast standard P.P.M. or VU, prefade listen and 2 watt monitor amp.
External "Curve Bending" facility. Twin 600 ohm floating balanced line outs.
Simple, Reliable.
And it does not cost the earth.

At Millbank we've got it-made

Millbank Electronics
Forest Row : Sussex : England.
Telephone Forest Row 2288 (0342-82-2288),

> All over the 5 continents and the 7 seas Bantex aerials are helping to maintain reliable communications. Day in and day out.
> Bantex aerials are selected because of their established reputation. for reliability. A reputation earned over many years.
> Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through all bands and are used by the armed forces, police, taxi networks and industry.
> Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and other materials.
> The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantex aerials.

Ben 4 © 186 WALMER ROAD, LONDON W. 11
Telephone 01-727 3432
Telex 82310

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. For full details please contact:
S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 4845

WIRELESS WORLD

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées a l'étranger. Ces cartés de service sont valides pendant six mois à partir de la date de publication.

PRIĖRE D'ECRIRE EN LETTRES MAJUSCULES

Weitere Einzelheiten über irgendwelche Artikel, die auf Redaktion-oder Anzeigenseiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-Nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleiter, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gültig.

BITTE IN BLOCKSCHRIFT AUSFÜLLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE STAMPATELLO

Con objeto de obtener mas detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.
SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

10-12 Watts - 25 kVA
 DRAKE TRANSFORMERS

 INCORPORATING Mains Transformers Chokes
Audio Output Transformers
 Audio Input Transformers
 Saturable Reactors. Coils

Current Transformers

Not everybody's dial is all it should be, so we at Anders specialise in changing our customers' faces to order. Our experienced team of Dial Printers is ready to perform the most complex Face Change with promptness and efficiency. As well as holding the largest stock of off-the-
shelf meters and associated accessories in the United Kingdom, Anders offer a really fast service for supplying non-standard range instruments with special readings. Let's face it, if you have problems with your dial it pays to let Anders face it.

Anders means meters

Anders electranics limited

48/56 Bayham Place, Bayham Street, London, N.W. 1

 Telephone 01-387 9092.Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency meters and Tachometers.

SYS TIMER

* SYNCHRONOUS MOTOR \& CLUTCH
- 10 MILLION OPERATIONS
- Instantaneous \& Timed out 5 AMP contacts
*Repeat Accuracy $\pm \frac{1}{2} \%$
\star Dial ranges 0.10 secs up to 0.28 hrs. May also be used as impulse start.
f11 dependent
- 1 on quantity

NSY TIMER
$\star 2$ sets 5 amp changeover output contacts

* 5 Million operations
\star Repeat accuracy $\pm \frac{1}{2} \%$
\star Set time can be altered whilst in operation
© Dial ranges from seconds to hours

IMMEDIATE DELIVERY OF LIMH \& MICRO SWITCHES, FLOATLESS LHOUID LEVEL CONTROLS PROXIMITY SWITCHES OMRON PRECISION CONTROLS OMRON APPROVALS CSA US Mil Spec. SEV. UL
\star OUTPUT 0-260V *INPUT 230V 50/60 CPS. \& SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp £5.10.0
2.5 amo f6. 15.0°

10 amp f 18.10 .0 $5 \mathrm{amp} £ 9.15 .0$ - 8 amp f14.10.0 12 amp £21. 0:0

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

I.M.O. PRECISION CONTROLS

313, EDGWARE ROAD,LONDON, W.2. TELEPHONE 01-723 2232
ww-056 For furtier detalls

STEPHENS
 ELECTRONICS
 P.O. BOX 26
 AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS GUARANTEE
Satisfaction or money refunded.

[^8]

Both the SELECTEST Super 50 and the MINITEST are normally ex stock.
Two superb multi-purpose electrical measuring instruments, well wofth waiting for - but you don't
have to.
Both are tough, with maximum accuracy and
sensitivity. The SELECTEST has a big, clear scale with mirror inset and knife-edge pointer.
Operates vertically or horizontally.
The MINITEST is pocket size, measures a.c. and d.c. voltages, d.c. current and resistance over 20 ranges to 20,000 and 2,000 ohms per volt d.c. and a.c. respectively.
A high voltage probe is available to extend the range of both instruments.

SELECTEST Super 50 Multirange Test Meter.
Tremendous value in multirange test meters, the SELECTEST has all the features you are likely to need for years to come.
Reasonably priced at

MINITEST pocket-sized Multirange Test Meter The meter you'll never leave behind! For sheer convenience and versatility the MINITEST leaves the others standing.
Excellent value at

The above prices are to the trade. Discounts for quantities and special terms to wholesalers are available.

Peel Works, Barton Lane, Eccles, Manchester M30 OHL Tel: 061-7895081 Telex 66711
A Member Company of GEC Electrical Components Ltd.

Free Range

Morganite Resistors have plenty of stock on show. And we re only showing some of it here.
Say the word, and you can have samples of our entire range of Cermet Trimming Potentiometers - free and fast. In development batches that'll give you food for thought when you run them through your test routine. Before you do that, a word
of warning. You'll be disappointed if you expect anything dramatic to happen while you're testing our trimming potentiometers. Our new, expanded cermet production set-up sees to that.
Here components are checked for surface profile. then put under the microscope at anything up to 500 times life size. And the finished product runs an even
stricter gauntlet of tests. All of them are tough routines, too, but we reckon it's up to us to set the standards that keep us in front.
That goes for Morganite design as well. And Morganite research. Morganite delivery. Morganite prices. We mean to stay ahead on all counts.
And guess who benefits? You.

Save yourself time by talking about your applications (PCM, TV, Pulse, HF, etc.) to our specialist engineers. If we can't meet your. requirements from our own extensive range, then well tell you who can.

The scope specialists

Dynamce,

East Mains Industrial Estate, Broxburn,
West Lothian, Scotland.
Tel. Broxburn 2631
World Wide Sales $\&$ Service

You will find it in this new Vitality T-1 Range.
Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3 mm they are capable of up to 200,000 hours of life at rated voltage and come either wire ended or based to fit available holders. With wide application in peripheral equipment for the computer industry, this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

VITALITY BULBS

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company. WW- 061 FOR FURTHER DETALLS

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

21, GERMAIN STREET, CHESHAM, BUCKS TELEPHONE: CHESHAM 4808/9.

7.TITIR are lienaw LTillo anparanae

FX 101

MULTI-FUNCTION FREQUENCY SENSITIVE SWITCH

FX 201
 DUAL FREQUENCY SElective SWITCH

\author{

- DATUM OR BAND SWITCHING
 - ADJUSTABLE SWITCH FREQUENCIES
 - HIGH STABILITY SET POINTS
 - HIGH Q AND FAST RESPONSE
 - AUTO/EXTERNAL SWITCH RESET
 - EXPANDABLE SET POINT DIFFERENTIAL
 - FAIL SAFE MODE OPTIONS
 - SINE OR PULSE SIGNAL INPUT
}

> DUAL CAPABILITY-TWO SWITCHES IN ONE PACKAGE NARROW/WIDEBAND OPERATION ADJUSTABLE BAND SPACING ADJUSTABLE BAND FREQUENCIES HIGH ' Q^{\prime} AND FAST RESPONSE
> SINE OR PULSE SIGNAL INPUT VERY LOW POWER CONSUMPTION

[^9]

Take the Model 4311:

Apply It. The THRULINE 4311 Wattmeter, developed for air navigational aids such as DME, ATC, and other pulsed RF systems, will also measure and monitor almost any type of 50 -ohm RF transmission. Carry It. Direct reading and self-contained, the "4311" needs no additional instrumentation nor 60 or 400 Hz line power. Just pick it up, carry it to your equipment, connect and use.
Read It. The " 4311 " indicates CW or FM power up to 10,000 watts accurately, forward or reflected. Push the button and the "4311" scales the peak of pulsed or envelope power to 10,000 watts.
r.ompare It. There is no other like it. Scan the basic specs below hen, put a BIRD in your hand. Send for bulletin 4311-67.

SPECIFICATIONS

PEAK PULSE or ENVELOPE POWER MODE Frequency Ranges: $0.45-2300 \mathrm{MHz}$ Power Ranges: $1 W$ to 10 kW . Accuracy: $\approx 8 \%$ of full scale
Minimum Pulse Parameters: From a duty factor of $1 \times 10-4$, a pulse width of 0.4 microseconds, and a rate of 30 pps or higher, deperiding on the Element selected.

AVERAGE (CW) POWER MODE
Frequency Ranges: $0.45-2300 \mathrm{MHz}$
Power Ranges: 1W to 10kW.
Accuracy: $\pm 5 \%$ of full scale.
Price
Model 4311 THRULINE
Directional RF Wattmeter £335 Duty Paid
Plug-In Elements from £17.10 Duty Paid

That's the Series 30 says Geraldine.
Any voltage from 0-500 at maximum current output with choice of protection circuit in three standard sizes. Want to find out more? Then phone me at Byfleet.

A.P.T. ELECTRONIC INDUSTRIES LTD.,
CHERTSEY ROAD • BYFLEET • SURREY TEL: BYFLEET 41131/4

Low cost regulated DC power supplies

Compact design providing optimum performance at low cost. Stabilised voltage and current outputs ranging from $0-10 \mathrm{~V}$ to $0-60 \mathrm{~V}$ and currents from $\frac{1}{2} \mathrm{~A}-5 \mathrm{~A}$ Units can be arranged for series or parallel operation

KSM
KSM Electronics Ltd. Bradmore Green Brookmans Pk., Herts. Tel Potters Bar 59707

WW-068 FOR FURTHER DETAILS

TRANSFORMERS
 coils

CHOKES trade enquiries welcomed
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., L.E.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
$01-6532261$

WW-069 FOR FURTHER DETAILS

WW-070 FOR FURTHER DETAILS

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products ... P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring

Sole UK distributors of modern P. A. systems by Toa Electric Co., Ltd, Goldring Manufacturing Company (Great Britain) Limited, 10 Bayford Street, Hackney, London E8 3SE.
Write or Telephone 01-985 1152 For Full Details

TRANSISTORISED FIELO STRENGTH METER TYPE MC16 BY PRESTEL

SPECIFICATION:

Frequency bands: three in VHF-40 to 60; 60 to $110 ; 110$ to $230 \mathrm{Mc} / \mathrm{s}$, one in UHF- 470 to $900 \mathrm{Mc} / \mathrm{s}$. Continuous separate UHF-VHF tuning with reduction gear (single control knob; 2-speed). Frequency accuracy: 2%. Intermediate frequency: $35 \mathrm{Mc} / \mathrm{s}$. Transistors: 16. Diodes: 7. UHF-VHF sensitivity: 2.5 UV . Measuring range: 2.5 uV to 100 mV .4 measuring scales: 100 uV f.s. 1 mV f.s. 10 mV f.s. 100 mV f.s. and 1 Volt full scale, with auxiliary attenuator 20 dB . Two asymetrical coaxial input terminals: 75 Ohms for UHF and VHF. 'Measuring accuracy: $\pm 3 \mathrm{~dB}: \pm 2 \mathrm{UV}$ in UHF. $\pm 3 \mathrm{~dB}$: $\pm 2 \mathrm{uV}$ in VHF. Power supply by 71.5 volt batteries, supplied Stabilized voltage by Zener diode. Incorporated loud-speaker. Detection can be switched on FM or AM. Pointer reset control. Battery Detection can be switched on FM or AM. Pointer reset control. Battery charge checking device. Impedance matching transformer UHF-VHF
300 Ohms. Attenuator 20 dB . Leather bag. Technical. manual. Dimensions: $280 \times 100 \times 150 \mathrm{~mm}$. Weight: 3.5 Kg . Price: $£ 95 \mathrm{Nett}$.

PETER SEYMOUR, 410 BEVERLEY ROAD, HULL, YORKSHIRE.
TEL: 0482-41938 (morning)
0482-20914 (afternoon)

Colbert Pana-Vise Work Positioners are specifically designed to quickly and easily achieve the most convenient, comfortable and time-saving work position.

Available with vacuum clamp or screw-on base.
They can be rotated, tipped, tilted, angled, elevated, lowered. The required work position is firmly secured with a patented oneknob control, a unique feature of Colbert positioners.

A series of special holders is available for various types of work.
Full details available on request.

Distributors:-

SPECIAL PRODUCTS DISTRIBUTORS LIMITED

81 Piccadilly, London W. 1 Tel: 01-629 9556 Cables: Speciprod London (Made in U.S.A.)
WW- 073 FOR FURTHER DETALLS

The OXLEY Wire Wrap "Barb" cone-lock Connector is a feed through insulator for high speed automated panel wiring. It consists of a rectangular section spill which is nickel flashed and dip spin tinned, with a P.T.F.E. insulating bush. The wire wrapping operation is achieved by a rotary tool which quickly produces highly reliable joints.

The connectors are suitable for assembly into $0.156^{\prime \prime}$ (4 mm) diameter holes and have a working voltage of 1.5 KV and a maximum current rating of 5 amps .

ENAMELLED

 COPPER WIRES.W.G.
$\frac{1}{2}$ lb. Reel
1 lb. Reel
18-22 11 s . 3d. 16s. 6d.
23-30 11 s .9 d. 17 s .6 d.
31-35 12s. 3d. 18s. 6d.
36-40 15s. 24s.
41-44 17s. 9d.

29s. 6d.

Orders despatched by return of post.
Please add $1 /$ - per item P. and P.

Supplied by:

BANNER TRANSFORMERS

(Dept. WW), 84 Old Lansdowne Rd. West Didsbury, Manchester M20 8WX

A.C. MICROVOLTMETERS

\section*{VOLTAGE \& db RANGES: $15 \mu \mathrm{~V}$.} $50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} . .500 \mathrm{~V}$ f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz . $-100,-90 \ldots+50 \mathrm{~dB}$. scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$ RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to | RESPONSE: $\pm 3 \mathrm{dBB}$ from 1 Hz to |
| :--- |
| $3 \mathrm{MHz}, ~$ | $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MH

above $500 \mu \mathrm{~V}$. Type TM 3 B can be above $500 \mu \mathrm{HV}$. Type TM3B can be
set to a restricted B.W. of 10 Hz to set to a restricted
10 kHz or 100 kHz .
INPUT IMPEDANCE: Above 50 mV : $>4.3 \mathrm{M} \Omega<20$ pf.
On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$. AMPLIFIER OUTPUT: 150 mV at f.s.d

PORTABLE INSTRUMENTS

D.C. MULTI開ETERS

VOLTAGE RANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} . . .1 \mathrm{kV}$. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. $L Z$ \& $C Z$ scales.
CURRENT RANGES: 3pA, 10pA, 30pA ... 1 mA (1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0.3 \mathrm{pA}$. LZ \& CZ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges.
\% $\mathbf{f 7 5}$ \% $\mathbf{8 9}$ \% \% \ddagger. 93

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$... 3 V f.s.d. Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at 30 MHz . $-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega \pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$. AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.
\%

Long battery life and large overload ratings are leading features of these solid state instruments. Mains units and leather carrying cases are optional extras. All A type instruments have $3 \frac{1}{\frac{1}{2}}$ " scale meters and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type jnstruments have $5^{\prime \prime}$ mirror scale

It's only a year since we launched the record selling $\$ 54$

Now we introduce the S54A...

... a single beam oscilloscope with a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ at 10 MHz bandwidth

The S54A is an all solid state oscilloscope developed from the S54. Smartly styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features:

* 10 MHz Bandwidth at $10 \mathrm{mV} / \mathrm{cm}$
* All Solid State Design
* Small Size - Light Weight
* FET Inputs

At $£ 125$ you will find no other oscilloscope of its type which offers such features at such low cost. Write or phone for full specification NOWI ! ! !

> * Versatile Triggering including T.V. Line and Frame Sync.
> * $6 \times 10 \mathrm{~cm}$. Viewing Area
> * Built-in Voltage Calibrator.

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

Our cover picture this month, which might be called "two kinds of digits", shows a five-by-seven array of light-emitting diodes made by Standard Telecommunications Laboratories. Display devices are discussed on page 444.

IN OUR NEXT ISSUE

The first of a series of articles on the elements of linear i.cs

Constructional details of a 100 -watt quality amplifier

Review of some of the latest techniques in domestic sound and television receivers

September 1970
Volume 76 Number 1419

Contents

417 The Integrated Circuit Industry

418 Phase-locked Stereo Decoder by R. T. Portus © A. f. Haywood
422 Announcements
423 Television Wobbulator- 2 by W. T. Cocking
427 News of the Month
429 H.F. Predictions
430 Programmable Unijunction Transistor-by O. Greiter
434 Conferences \& Exhibitions
435 Vehicle Location Systems by R. A. Tyler
441 Letters to the Editor
443 Transistor Breakdown-Voltage Meter by Jens Langvad
444 A Quick Look at Display Devices
445 Active Filters-13 by F. E. 7. Girling \& E. F. Good
451 Improving the 13A Oscilloscope by N. W. Vale
452 Electronic Building Bricks-4 by fames Franklin
453 Circuit Ideas
454 The F.E.T. as a Class A Audio Amplifier by P. L. Mattheros
456 Personalities
457 World of Amateur Radio
458 Literature Received
459 New Products
464 Real \& Imaginary by "Vector"
465 F.M. Tuners Survey
466 Stereo Test Tone Transmissions
A98 APPOINTMENTS VACANT
A116 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Production \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, Liondon, SE1 © I.P.C. Business Press Ltd, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $£ 3$ 0s 0d. Overseas; 1 year (3 Os 0d. (Canada and U.S.A.; $\$ 7.50$). 3 years $\not \subset 13 \mathrm{~s}$ Od. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change ot address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: $021-356$ 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42r.d Street, New York 10017 Telephone: (212) 689-3250.

5h-h-h don't makeanaise!

Well how much noise can a digital voltmeter make?
Some of them quite a lot.
Spillback from the input terminals of a digital voltmeter can result in errors - errors often attributed to external noise - particularly in systems measuring low level inputs. So down with spillback and welcome to the quiet one - the Racal 9075. Still need convincing? Take a look.

And that's not all!
Full programmability. Accuracy 0.01%. Resolution 1 part in 30,000.
10 microvolt sensitivity. Scale length 29999 (over-range to 39999).
Totally passive input. Auto-range versions available.
p.s. If this isn't the DVM for you, Racal have six others you can choose from.

Write or phone today for a demonstration

This bigger than average contact area, spring formed for extra low smooth insertion forces, is one of the major factors that gives the Cinch $0.1^{\prime \prime}$ Modular Edge Connector its reputation for optimum reliability. In addition, available platings include 5 microns of gold on the mating surfaces with 2 microns of gold overall.
Any number of ways, from 5 to 65 , can be supplied in the basic $0.1^{\prime \prime}$ module. High precision mouldings are in glass filled diallyl phthalate, and contact termination options are mini-wire wrap, solder slot, vee-form, or flow solder.

Polarising keys can be supplied to ensure instant correct positioning. End fixes are also available, in metal with open or closed end, and in plastic with closed end.
Rapid reliable deliveries in bulk quantities are assured. We'll gladly submit quotations for your requirements or send fully detailed data sheets. Cinch 0.1 pitch 'Greenline' Modular Edge Connecior No. of ways: 5 to 65 max.
Current Rating: 5 amps (d.c. or a.c. RMS) per contact at $25^{\circ} \mathrm{C}$. Working Voltage: 700 V . d.c. or a.c. peak. Insertion Force: 8 oz. max. per way on nominal board. Contacts: Phosphor bronze.

Electrosil's new Pick-a-Back connector, with the snap action, is the most advanced concept yet in D.I.P. testing. You can say goodbye to tedious test probes. Electrosil Pick-a-Backs are designed for D.IL. packages mounted onto a P.C. board. Made specifically for testing and fault location, the connector will snap on to a D.I.L. package, obviating the need for test probes.

There is quick release action. You have no more costly "write-ofis" due to accidental shorting between adjacent pins. Pick-a-back's integrally moulded contact comb prevents shorting and also serves as an attachment guide.

It can be used singly or in multiples to test complete I.C. boards before flow soldering.

Gold plated beryllium copper contacts with wiping action for reliable contact. Four versions available to mate with all standard 14 pin and 16 pin D.I.P.s.

Write for full details.
ELECTROSIL LIMITED, P.O. Box 37 , Pallion, Sunderland, Co. Durham. Tel: Sunderland 71481. Telex 53273.

Electrosi

have the experience
 fart yorill lovers!

Ferrograph Y and P tape recorders for science, industry, broadcasting.

Ferrograph tape recorders are world-famous for their superb quality and many recording facilities. Ferrograph reliability is renowned. Now Ferrograph introduce a new series of instruments, providing exactly what technical users have been asking for.
Models are available for full-track, half-track and twintrack operation, using standard $\frac{1}{4}$ in tape. All have 3 speeds; solid-state electronics, 3 motors, 3 heads, built-in loudspeakers, $8 \frac{1}{4}$ in. dia. reels with adjustable reel height. Very quick start and stop can be remotely
controlled or operated by time switch.
Series Y recorders are designed specificaliy for use in laboratories and monitoring services where long-term reliability and consistency of performance are essential. Three models cover the entire speed range from $15 / 16$ to $15 \mathrm{in} / \mathrm{sec}$. A 4 -channel $\frac{1}{4} \mathrm{in}$. in-line head reproducer having 4 low-level equalised outputs is also available.
Series P instruments have been evolved for radio. TV and film recording in studios and for field work. They have 600 Ohm balanced inputs and outputs for all channels plus
everything eise you expect from a Ferrograph recorder excellent performance, robust construction, careful screening, reliability for years on end. Ring or write for details. The Ferrograph Co. Ltd, The Hyde, Edgware Road, Colindale, London NW9, Tel:01-205 2241, Telex: 27774, or any of the following.

International Distributors

 Leroya Industries Pty. 266 Hay Street, Subiaco, Western Australia 6008, Australia: Matelectric.Boulevard Leopold II, 199, 1080 Brussels, Belgium; H Roy Gray Ltd,
14 Laidlaw Boulevard, Markham, Ontario, Canada;

Cineco,
72 Avenue des Champs Elysees, Paris 8 e, France:
Henry Wells \& Co, KG,
1040 Wien 4, Danhausergasse 3. Austria;
Ferropilot GmbH \& Co., KG,
Hamburg 39, Sierichstrasse 43,
West Germany:
Hi-Fi Installations,
P.O. Box 2430, 276 Andries Street, Pretoria, South Africa;
Elpa Marketing Industries Inc. New Hyde Park, New York 11040, New York, U.S.A.
There are Ferrograph Distributors also in most other countries. Please obtain details from the London office.

Ferrograph

There is an M in Decca

It stands for Motorola and you'll see it in the Decca single standard TV chassis. It's the mark of the Motorola quality and reliability that got radio on the road and helped to put men on the moon.

Motorola is one of the largest semiconductor manufacturers in the world. Its U.K. plant is at East Lilbride. Also in Europe there is a factory in France and another to be established in Germany, whilst the Company's European headquarters are in Geneva.

It's because Motorola understands quality and reliability that their equipment has provided the essential communication links (radio and TV) between the moon surface and earth.

That too is why there is an M in Decca - it stands for reliability.
Motorola Semiconductors Limited York House, Empire Way, Wembley, Middx. Tel:01-9030944. Telex: 21740 Motsem Wembley.
(M) MOTOROLA

CUNCEPT FGR THE 7a's

The new Storno fully automatic VHF/UHF radio communication system permits direct two-way selection dialling between mobiles and any telephone extension connected to a private automatic exchange. There are also facilities for car-to-car dialling and for predetermined selection of most frequently used extensions.

St(1) is ready for the 70 's-and beyond

 FM radiotelephones are better

4in ELECTRONIC INSTRUMENTS EXHIBITION 1970 Hotel Piccadilly MANCHESTER September 15/16/17

TUESDAY 15th 10.00-18.00 WEDNESDAY 16th 10.00-18.00 THURSDAY. 17th 10.00-17.00

ELECTRONIC INSTRUMENTS EXHIBITION 1970 Skyway Hotel SOUTHAMPTON September 22/23/24

TUESDAY 22nd 10.00-18.00
WEDNESDAY 23rd 10.00-18.00
THURSDAY 24th 10.00-17.00

Exhibiting Companies

Advance Industrial Electronics Aim Electronics Ltd
*Aveley Electric Ltd.
*Avo Ltd.
*B \& K Instruments Ltd.
$B \in K$ Laboratories Ltd. \dagger Bell \& Howell Ltd.
G \& E Bradley Ltd.
Brookdeal Electronics Ltd. tCeta Electronics Ltd. Cossor Electronics Ltd. Dana Electronics Ltd. *DEAC (Great Britain) Ltd. D.I.S.A.

Dymar Electronics Ltd.
Farnell Instruments Ltd.
Fluke International Corporation *General Radio (U.K.) Ltd.

Kistler Instruments Ltd. Lambda Electronics Ltd. Levell Electronics Ltd.
*L.T.H. Electronics Ltd. *Lynwood Scientific Developments Ltd. *Lyons instruments Ltd.
Marconi Instruments Ltd.
tPye Unicam Ltd.
Racal Instruments Ltd
Racal Thermionic Ltd.
S E Laboratories (Engineering) Ltd. Smiths Industries Ltd.
Solatron Electronic Group Ltd
Tektronix (U.K.) Ltd.
Telequipment Ltd.
Texas Instruments Ltd.
Venner Electronics LId.
*Wandel \& Goltermann (U.K.) Ltd.
*These companies exhibiting at Manchester only The se companies exhibizing at Manchester only
tThe se companies exhibiting at Southampton only

TELCON METALS LTD., Manor Royal, Crawley, Sussex. Telephone: Crawley 28800 Member of the BICC Group of Companies.

太 Star products-Star award

STC is proud to announce that its entire range of Star equipment has received the award of the British Council of Industrial Design. Elegant and functional in design the Star Mobile Radiotelephone and Starphone Pocket Radiotelephone are milestones in the design of Radiotelephone products.

The rapid acceptance of Star Mobile Radiotelephones in the UK and in over 30 countries throughout the world is a forceful reminder of the importance of design in worldwide marketing success.

For further-information
STC Mobile Radiotelephones Limited, New Southgate. London N. 11.
Telephone: 01-368 1200.
Telex:261912.

Go Sansui. And ruin your amateur standing.

If you've had enough of fiddling around with amateurish stereo equipment, Sansui stands ready to put you on a professional plane. No gimmicks, no fancy gadgetry, just very solid advanced components that will let you begin enjoying stereo as it should be enjoyed in the '70s.

Start with the powerful 180 watt AU-999 solid state Control Amplifier. Incorporating every major advance yet made in the audio industry, it offers a wide 10 to $30,000 \mathrm{~Hz}$ power bandwidth and slams the door on distortion (0.4% or less). Independently usable pre-andpower amplifier sections, Triple Tone Control Circuit. Capable of handling three sets of speaker systems and two tape decks.

Then add the sensitive TU-777 AM/FM Multiplex Stereo Tuner. Rich in FET circuitry, it features a new type of noise canceler, automatic FM Stereo/Mono switching and special muting and tuning meter circuits.

Tape deck? The just-perfected Sansui SD-7000, of course. A 3 -motor 4 -head stereo deck that offers unprecedented tape protection, it is unexcelled for versatility and ease of operation n_{μ} and achieves a distinctly superior tone quality.

Your speaker system could be the compact, 30 watt 2-way SP-70, Sansui's newly developed system designed especially for the person with a limited listening area. Complete with walnut cabinetry and hand-carved "Kumiko" fretwork grille.

And having come this far, it wouldn't be right to settle for anything less than the very professional SR-3030BC 2 -speed manuial turntable, and advanced 2-way 4-speaker SS-20 stereo headphone set.

Hear the entire system perform soon at your nearby authorized Sansui dealer. And give us
your professional opinion'.

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than .05\%
\star an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£37.0.0
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to . 01% with comprehensive facilities including L.F. cut switch, etc.
£27.0.0

J. E. SUGDEN CLASS A AMPLIFIERS.

James Sugden designed the first commercially available Class A transistorised amplifier in 1967 The latest models are the A21 series II at £59. 10. O. and the A51 power amplifier with C51 control unit at $£ 113.0$. O. the pair. Performance is beyond criticism and construction is up to our, instrumentation standards.

See your dealer or write for our free colour brochure today.
 Also see the F.M. tuner survey for details of our new tuner!

J. E. SUGDEN \& CO. LTD.,
BRADFORD ROAD, CLECKHEATON., YORKS. Tel: Cleckheaton (OWR62) 2501

Listen they're playing our tuner bryan amplifiers limited

Manufacturers of high fidelity amplifiers and tuners 18 GREENACRES RD OLDHAM LANCS TEL: 061-624 4074

Practical Aerial Handbook Gordon J . King, Assoc. IERE, MIPRE, MRTs.

 In recent years, aerial systems for radio and television reception have begun to assume a new importance. Their efficiency, more than anything else, is the key to dealing with problems introduced by the growing use of the u.h.f. band, the congestion of signals in broadcast bands, ever-increasing electrical interference and the need to supply millions of homes with good quality sound and vision signals over a wide range of frequencies. This book examines these problems and, indeed, every practical aspect of aerial work. By far the most comprehensive and up-to-date treatment available, it has been written by an author with unrivalled experience of the whole field.
Ferrograph stereo amplifier F307

Ferrograph's F307 is one of the finest stereo amplifiers in the world. It has been designed to make the heart of great hi-fi systems.
It is an integrated stereo amplifier, built in the Ferrograph tradition to provide a unique combination of performance and facilities. Power output is 20 watts RMS per channel into a load of 8 ohms. Total harmonic distortion is less than 0.25% at 1 kHz at all levels up to its rated output. Silicon solid state devices are
used throughout, with F.E.T.'s in certain input stages to provide high input impedances and large overload margins and thus to accommodate a wide range of input sources, including tape, ceramic and magnetic pick-ups. radio and auxiliary inputs, at their optimum levels. The signal-tonoise ratio, measured with volume control at maximum, is better than 65 dB . Controls include four-input selector switch, switched mains outlets, press-button HF filter, comprehensive mono/stereo input
and output switching. The main controls are readily to hand on the front panels; all others are conveniently placed under a hinged flap.

In appearance, the F307 amplifier continues the uncluttered lines of the Ferrograph Series 7 recorder, the two making an ideal combination which is matched both visually and technically. But the amplifier is equally compatible with most other good recorders and hi-fi installations, suits innumerable
amateur and protessional uses, blends with any decor, stands attractively on any bookshelf or room-divider.
When planning your hi-fi system the F307 deserves your serious consideration. Your local Ferrograph specialist will be pleased to demonstrate it to you. Alternatively, please write or ring for details and address of nearest stockist. The Ferrograph Co. Ltd, The Hyde, Edgware Road Colindale, London NW9 Tel: 01-205 2241, Telex: 27774

International Distributors:

 Leroya Industries Pty,266 Hay Street, Subiaco,
Western Australia 6008,Australia:
Matelectric,
Boulevard Leopold II, 199,
1080 Brussels, Belgium;
H Roy Gray Ltd,
14 Laidlaw Boulevard,
Markham, Ontario, Canada;

Cineco,

72 Avenue des Champs Elysees,
Paris 8 e, France;
Henry Wells \& Co. KG.
1040 Wien 4, Danhausergasse 3,
Austria

Ferropilot GmbH \& Co., KG, Hamburg 39, Sierichstrasse 43, West Germany; Hi-Fi Installations
P.O. Box 2430, 276 Andries Street Pretoria, South Africa:
Elpa Marketing industries Inc, New York Park, New York 11040, New York, U.S.A.
There are Ferrograph Distributors also in most other countries. Please obtain details from the London office.

Ferrograph

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone
FIRNOR-MISILON LIMITED 10 COMMERCE LANE, LETCHWORTH, HERTS Tel: 6069

This tall-standing, beautifully built unit gets things organised for you -with loads of space for those scores of bits and pieces. Built with precision . . . steelstrong . . . measuring $42^{\prime \prime}$ high, $13^{\prime \prime}$ wide and $12^{\prime \prime}$ deep . . . having 18 drawers. It comes to you in a lustrous finish of grey or deep bronze green.
ORDER DIRECT FROM THE
MANUFACTURER - USE THE COUPON BELOW

N.C.BROWN LIMITED

E
Eagle Stedworks Heywood, Lanbs. Telephona:89018 pacesetters in storage equipment
\qquad 18A unit(s) Cheque enclosed \mathbf{E} £ NAME ADDRESS \qquad
\qquad

Now hear this.

People with something big to say, say it big . . . with Eagle PA amplifiers. In fact we only think small when it comes to money. Your money. Our amplifiers are very quietly priced indeed. Maybe that's why Eagle equipment is starting to dominate the PA scene. But quality and willingness to listen has something to do with our success as well. And versatility indoors or out . . . with any combination of speakers and microphones (preferably ours!).

Ring or write for more information and the 40-page Eagle electronics catalogue to Sole World Distributors.
B. Adler \& Sons (Radio) Ltd. Coptic Street, London, WCIA INR
Tel: 01-636 0961

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10w. peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output: Frequency response: Total harmonic distortion: Load impedance:
ver gain: Supply voltage: Size:
Sensitivity: Input impedance:
atts R.M.S. continuous 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Less than 1% at full output. 3 to 15 ohms.
$110 \mathrm{~dB}(100,000,000,000$ times) total.
8 to 18 volts.
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
 IC-10
 with IC-10 manual Post free.

$59 / 6$

Project 60

Laboratory standard modular high fidelity

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance and now the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
Themodules are: 1 . The $Z .30$ and $Z .50$ high gain power amplifiers. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter Unit. 4. 4 supply units-PZ.5; PZ.6; $P Z .7$ and PZ.8. In a normal domestic application, there will be no significant difference between PZ. 5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two $Z .50$'s there is the PZ. 8 supply unit to ensure maximum performance from these amplifiers. No skill or experience are needed to build your system and the Project 60 manual gives all the instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as new additions are made to the range. A stereo F.M. tuner is next to come. These and all other modules introduced will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

	System	The Units to use	In conjunction with	Your Project 60 Units will cost
A	Car Radio	2.30	Existing car radio, Sinclair Micromatic	89/6
8	Simple battery powered record player	2.30	Crystal pick-up, 12 V or more battery supply and volume control	89/6
C	Mains powered record player	Z.30 and PZ.5	Crystal or ceramic P.U. Vol. control etc.	¢9.9.0
D	$20+20$ watts RMS stereo amplifier for most needs	Two Z.30s, Stereo 60 and PZ. 5	Crystal, ceramic or magnetic P.U., most dynamic speakers, FM tuner, etc.	£23.18.0
E	$20+20$ watts RMS stereo amplifier for use with low efficiency (high performance) speakers	Two Z.30s. Stereo 60 and PZ. 6	High quality ceramic or mag. P.U., F.M. Tuner, Tape Deck, etc. All dynamic spkrs.	£26.18.0
F	$40+40$ watts RMS deluxe stereo amplifier	Two Z.50s, Stereo $60 \mathrm{PZ}$.8 and mains transformer	As for E	£32.17.6
G	Outdoor public address system	2.50	Microphone, up to 4 P.A. speakers, 12 V car battery with or without converter, controls	¢5.9.6
H	Indoor P.A	One Z.50, PZ. 8 and mains transformer	Mic., guitar, heavy duty speakers etc., controls	£17.8.6
J	High pass and low pass filters	AFU	D, E or F as above	£5.19.6
K	Stereo F.M. tuner	To ber	released shortly	

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price $2 / 6 d$ including postage.
SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE
Telephone 022352731

Z. 30 \& Z.50 POWER AMPLIFIERS

The Z.30 together with the $\mathbf{Z . 5 0}$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the Z.30 or $Z .50$ power amplifiers in your Project 60 system will depend on personal preference, but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the $Z .30$ use PZ. 5 for most domestic requirements, or PZ. 6 if you have very low efficiency loudspeakers. For $\mathbf{Z . 5 0}$, use the PZ.8 described below.

SPECIFICATIONS $\mathbf{2} .50$ units are inter-

 changeable with 2.30 s in all applications. Power OutputsZ. 3015 watts R.M.S. into 8 ohms, using $35 \mathrm{~V}: 20$ watts R.M.S. into 3 ohms using 30 volts.
Z. 5040 watts R.M.S. into 3 ohms from 40 volts 30 watts R.M.S into 8 ohms, using 50 volts. Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Distortion 0.02% into 8 ohms
Signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 Kohms For speakers from 3 to 15 ohms impedance Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ ins.

Curve shows power versus distortion for 2.30 and 2.50

STEREO 60 Pre amp/Control Unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent racking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. SPECIFICATIONS

- Input sensitivities - Radio - up to 3 mV . Mag. p.u. - 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: \mathbf{2 0}$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. -- up to 3 mV : Aux. up to 3 mV .
- Output -250 mV .
- Signal-to-noise ratio - better than 70 dB
- Channel matching - within 1 dB .
- Tone controls - TREBLE +15 to -15 dB at 10 kHz : BASS +15 to -15 dB at 100 Hz .
- Front panel - brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{d} \times 1 \frac{1}{2} \times 4$ ins.

Built, tested $£ 9.19 .6$ and guaranteed

Curve to show bass and treble cut and boost.

ACTIVE FILTER UNIT

For use between Stereo 60 unit and two 2.30 s or $\mathbf{Z . 5 0}$ s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other amplifier system.

Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass). Supply voltage-- 15 to 35 V . Current- 3 mA H.F cut-off (-3 dB) variable from 28 kHz to 5 kHz . L. F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Filter slope, both sections 12 dB per octave. Distortion at 1 kHz (35 V supply) 0.02% at rated output.

 and guaranteed

POWER SUPPLY UNITS

The units below are designed specially for use with the Project 60 system of your choice Illusiration shows PZ. 5 power supply unit to left and PZ. (for use with Z.50s) to the right. Use PZ. 5 for normal Z..30 assemblies and PZ. 6 where a stabilised supply is essential.
$\mathrm{PZ}-530$ volts unstabilised $£ 4.19 .6 \quad \mathrm{PZ}-845$ volts stabilised (less mains transformers) $£ 5.19 .6$ PZ-6 35 volts stabilised $£ 7.19 .6 \quad$ PZ-8 mains transformer $£ 5.19 .6$

GUARANTEE

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

SANWA Mu|n||t|lit

MODEL AT-I

USED THROUGHOUT THE WORLD, SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELLABILTY, VERSATILTTY. UNSURPASSED TESTER performance comes with every sanwa. 6 Months' Guarantee. Excellent Repair Service

Model P-1B	¢3 7	6	Model K-30TMD	$¢ 12$	0	0
Model JP 50	E5 10	0	Model F-BOTRD	$f 13$	15	0
Model U-500N	¢7 10	0	Model		,	8
Model 360-Th	¢7 17	6	Model 380-CE	f15	2	6
Model A-303Tho	¢10 10	0	Model 430 ES	¢19	0	0
Model AP-I	[11 7	8	Model EM-700	¢51	0	0

PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K;

QUALIT ELECTRONICS LID.
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585
WW-096 FOR FURTHER DETAILS

WW- 097 FOR FURTHER DETAILS

It's the background that counts with the Hatfield Psophometer
With features such as $30 \mu \mathrm{~V}$. f.s.d. frequency range 50 Hz to 20 KHz and 600 ohms impedance with centre tap connected to earth, the Hatfield Psophometer 1000 offers an instrument of advanced design built on a background of long technical development and specialised manufacturing experience in this field. Write now for full Information and for a copy of the latest HATFIELD SHORT FORM CATALOGUE.

HATFIELD INSTRUMENTS LTD., Dept. WW, Burrington Way, Plymouth, Devon, PL5 3 LZ
Telephone: Plymouth (0752) 72773/5 Telex: 45592. Telegrams: Sigjen Plymouth.
HATFIELD =ALUN

FREQUENCYRANGE 50 HZ to $20 \mathrm{KHZ} \cdot 30 \mu \mathrm{~V}$. F.S.D. $\cdot 600$ OHMS IM PEDANCE WITH CENTRE TAP CONNECTED TO EARTH • ADVANCED DESIGN. SOLID STATE

CIRCUITRY • MEASURES WIDEBAND NOISE IN WVEIGHTED \& UNWEIGHTED MODES • MEETS LATEST CCITT REQUIRE - MENTS • BATTERY OPERATED • PORT -ABLE•PLUG-IN 2 KHZ BANDPASS FILTER FOR CROSSTALK MEASUREMENT

Send for informative brochure fully explaining:

1. Why a single motor. 2. Electrical perfarmance. 3. Wow and flutter.

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957

FIELDTECH OFFER

2N 3055 Transistors. 14/- each
15 Watt Amplifier, integrated circuits, size $2.05^{\prime \prime} \times 1.05^{\prime \prime}$. \&6. 6. 7 each
Code Switches 15/- each

Minilamp Indicators c/w Mounting Grommets and Connectors:-
6 and $12-14 \mathrm{~V}$. $3 / 4$ each Plus 6d. each P/Tax 24-28V ...4/4 each Plus 11d. each P/Tax Neons 115-230 VAC. 3/4 each

Send cash or cheque with order. Allow $2 / 6$ postage.

FIELDTECH LIMITED Dept. J.A.M.,

 No. 2 Malntenance Area, Heathrow Airport, Hounslow, MiddlesexSEND S.A.E. FOR LISTS GUARANTEE
Satisfaction or money refunded.

SENSITIVE DC AMPLIFIERS TGAZ
Modular construction all solid state, gains up to 1,000 may be obtained impedance in the order of 10 M ohms 5 voltage gain ranges and variable control provides continuous adjustment over each range make these units very suitable' for increasing the sensitivity of chare and pen recorders,

ADVANCE VOLT STAT CV500/31
Input 162-276 v. A.C., $50 \mathrm{c} / \mathrm{s}$. I phase output 115 V . constant at 410 watt. Offered
BRAND NEW at only E8. P. \& P. $15 /$-. These items are double wound.

OSCILLOSCOPE PROBE TM8II9 High impedance $100 / 1$ resistive attenuated probe for accurate display of HF waveforms probe foraceurate display ortif waveorms or short rise time pulse signals, offered
brand new with all accessories and instruction manual. List price $£ 17$. Our price E 7.10 including earth bayonet TM8i94.
HIGH VOLTAGE TRANSFORMERS Inpue 240 v., output 2560 v. and 2820 v at 1 imp. Weight 75 lb . Price $£ 15$.

NICKEL-CADMIUM BATTERIES

D.E.A.C. manufacture RS 3.5 rating 3.5 Ah $1-24 \mathrm{v}$. Size as British U2, fully recharge able. Offered BRAND NEW $19 / 6$ each. P. \& P. I/6.

MARCONI TF IO73A RF ATTENUATOR

Range $0-100$ in 1 dB steps. Frequency range d.c. to 100 MHz . Input 0.25 watts accuracy each IdB step 0.2 dB . Offered perfect condition 75 ohm version 635 each.
MATRIX SWITCH ASSEMBLEY Five rows of 17 contacts (gold plated)
Working voltage 250 v between adiacent Working voltage 250 y between adjacen
contacts current rating max in any one row I amp. Applications are many in Process Control data handling and card reading. Offered brand new at only 50/each. P. \& P. 3/6. Dlode Pins 3/6 each.

SPECIAL OFFER

 Temperature Compensated RF Power Meter, Model B831B, for the accurate measurement of CW or Pulsed RF power in six fuil scale rances from . 01 eo 3.0 milliwatts. These measurements can be made over the frequency range from0.01 to 40 GHz using a series 218 Thermistor 40 GHz using a series 218 Therdirectly in milliwatts or DBM on the meter which has a mirror backed scale. These units ar offered in as new condition, some of which have been used as demonstration models only. Price only E75, complete with wave guide type thermistor head and fully detailed manual.
VSWR INDICATOR MODEL 812A Precision eguipment used to measure VSWR and relative power, over the Trequency range of GHz to 220 GHz The unit consists of three fundamenta electrical parts, ${ }^{2}$ high gain, tuned
amplifier, a precision, attenuator and a precision meter, the tuned audio ampliprecision meter, the cuned audio amplI. kHz adjustable between $950-1050 \mathrm{cps}$. Band Width 20,40 and 400 cps selectable. Sensitivity 0.1 micro volt for full scale deflection. Offered as new at only $£ 45$ each.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment the Catalogue Nos. are $2202 \mathrm{~A}, \mathrm{C} / 33 \mathrm{~A} 63 / 1$ i coil resistance is
250 ohms. Complete with base, and the price is $\mathbf{f 4 . 1 9 . 6 \text { . Limited quantity only }}$ available.
Also: 2203 A, 2200A, 2202 A.

FOSTER VOLTAGE REGULATING EQUIPMENT TYPE 12A80 Input 250 A.C. max.s input variation $\pm 5 \cdot 15 \%$ output 250 v. A.C. constant
Load 80 max. As new E65. Carr. $\mathbf{f 4}$.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank. Rumous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function.
Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 Rams for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price f19.10.0. Our Price $£ 5$. 19.6 plus $4 / 6$ post/packing.

Rhode \& Schwarz ESM300 UHF Receiver AM/FM $85 \mathrm{MHz}-300 \mathrm{MHz}$
Rhode \& Schwarz BNI5031 Field strength test receiver AM/FM $90 \mathrm{MHz}-470 \mathrm{MHz}$. Rhode\&SchwarzBN4151/2" 60 Noise generator $3 \mathrm{MHz}-1000 \mathrm{MHz}$.
Rhode \& Schwarz BNI 8042 Unbalanced standard Attenuator $0-1008 \mathrm{~b} 50$ ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$.
Rhode \& Schwarz BN33664/50 UHF Load resistor 100 watt 50 ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$. Rhode \& Schwarz BN4521 Vibration Meter $30 \mathrm{~Hz}-12 \mathrm{KHz}$. Rhode \& Schwarz ZD Dlagraph.

Advance Q meter type T.I.
 Marconi Q meter type 329G

$100 \mathrm{kHz}-100 \mathrm{MHz}$.
$50 \mathrm{kHz}-50 \mathrm{MHz}$.
$15 \mathrm{MHz}-170 \mathrm{MHz}$.

Marconi Impedance Bridge type TF936 Marconi Universal Bridge type TF868/ Marconi Universal Bridge type TF868

RHODE \& SCHWARZ POLYSKOP

($\$$ WOB, 2)
With accessories for sale or hire.

RF GENERATORS

Marconi Standard Signal generator TF867 $15 \mathrm{kHz}-30 \mathrm{MHz}$ 6200 Marconi UHF signal generator TF762C $300-600 \mathrm{MHz}$ 475 Marconi FM/AM Signal Generator $2-216$ MHz TF995A/3 P.R. Services type CT212 AM/FM signal generator $85 \mathrm{kHz}-32 \mathrm{MHz}$ 645 Services type CT212 AM/FM signal generator $85 \mathrm{kHz}-32 \mathrm{MHz}$
Services type CT2II AM/FM signal generator $20-80 \mathrm{MHz}$. $£ 40$

Hewlett Packard $616 \mathrm{~B} 1.8 \mathrm{GHx}-4 \mathrm{GHz}$, also special generators up to X band Marconi signal generator TFI44H/4. Range 10 kHz to 72 MHz P.U.R. Advance Model SLI. Range $300-1000 \mathrm{MHz}$
£ 150

D.C.IA.C. ELECTRONIC VOLTMETERS

Philips GM6010 Sensitive D.C. Millivolt Meter IMV/FSD to 300 volts in twelve Philips GM68505 Transistor measuring test unit designed for labs' test departments Advance V $\mathrm{M} \ddot{7} / 7$ wide range A.C. Valve Voltmeter I $\mathrm{mv}-300$ v.
Philips GM6016 $3 \mathrm{mv}-1000 \mathrm{v}$. I $\mathrm{kHz}-30 \mathrm{mHz}$
Philips GM6014 I mv-300 v. I $\mathrm{kHz}-30 \mathrm{mHz}$
Rohde \& Schwarz UHF Millivoltmeter type UR'V with insertion unit for measure ments up to 2400 mHz
Hatfield Millivoltmeter LE48C 0.3 MV. 30 volts, Large eight inch " scale indication balance and unbalanced inputs

CAMBRIDGE INSTRUMENT Co. Led. Precision test meters. Electrodynamic CAMBRIDGE INSTRUMENT Co. Led. Precision
A.C. Ammeter' 0 to 15 amps with test certificate A.C. Ammeter 0 to 15 amps with test certificate

Tinsley Universal Shunt type 4309C
Tinsley Vernier Potentiometer type 4363E Auto
Foster Thermocouple potentiometer type DX

Digital Voltmeter Solartron LM902.2 four digit readout
Solartron A.C. Convertor LM 903 matching unit for LM 902°
Hewlett Packard DVM 405 CR four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable $0-1000$ v

Frequency Counters Analogue/Digital
Marconi TF/ $345 / 2$ digital 10 Hz to $220 \mathrm{mHz} \mathrm{C} / \mathrm{W}$ full complement plug in's Racal Digital frequency meter type older valve model $10 \mathrm{~Hz}-300 \mathrm{k}$
Rank Cintel Counter/timer transistorised model $10 \mathrm{~Hz}-\mathrm{I} \mathrm{mHz}$
Venner Counter/timer type TS a 3 Mains or portable Digital meter readout U.S.A. BC221 Heterodyne frequency meter 125 kHz -20 mHz new or used from
U.S.A. TSI75/U $85-1000 \mathrm{mHz}$ Modulated, reception/emission CW, MCW, as new U.S.A. TSI86/D Heterodyne frequency meter $100-10,000 \mathrm{mHz} \mathrm{CW}, \mathrm{MCW}$, pulse

SOLARTRON VF252/NSL PRECISION ACMILLIVOLT METER Range 1.5 milli vole (for full scale deflection) to 15 voles in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models. Price only $\mathbb{8} 5$.

LUCAS CAR RELAYS. 12 v. Heavy
duty make. Suitable for spotlights, horns, overdrives, etc. Brand new.
Only 7/6. Special price for quantities.

BARGAIN OFFER

200-yard reels equipment wire, size 1/024, STC quality, various colours. Brand new
reels only $15 /-$ P. \& P. $2 / 6$.
P. F. RALFE

10 Chapel St London N.W.I
Phone OI-723 8753

MUIRHEAD DECADE

OSCILLATOR MODEL 650 B
This Precision Instrument has an accuracy of 0.2 per cent with a frequency coverage of 1 cps to 111.100 KHz continuous. Max output 2 watts into 8 k ohms harmonic content less than 1 per cent Hourly stability 0.02 per cent. Offered in as new condition, list price $£ 350$. Our price $£ 95$.

BRUEL \& KJOER AUTOMATIC

 SWEEP FREQUENCYFrequency 5 ATOR MODEL 1016 frequency 5 cps to 10 KHz . Offered in at cost.

GEC UNISELECTOR. GPO pattern. 5 bank full wipe 5 bridging contacts 25 position. 75 ohm. Coil 28-36 v. Brand new 50/-. P. \& P. $4 / 6$.
R.D.O. UHF. RECEIVER. $38-1000 \mathrm{mHz}$ offered with 3 tuning units to cover full requency range. Ideal communication receiver or can be supplied with Pa
adaptor for laboratory work. \$95.

WATSON MARLOW ORBITAL Specially designed for corro Specially designed for corrosive liquids etc. Rated output against 10 ft . head-
$110 \mathrm{G.P.H}$. direction of flow reversible 110 G.P.H. direction of flow reversible. 14 lb. Supplied as new. Price $\mathrm{Cl2} 12 \mathrm{l} 0$ P. \& P. 10/-. List £22.10.0.

DOUGLAS N.. 6 COIL WINDER With motor tailstock and special Swedish With motor tailstock and special Swedish
reel carrier, plus gears. Offered in good reel carrier, plus gears. Oftered
operative condition. Price $\mathbf{E 8 5}$.

CAMBRIDGE SPOT GALVANO. METER. Type 41153/1-3. Offered brand new with hand book. Price 622.

CROYDON INSTRUMENTS

Precision Kelvin Wheatstone Bridge type KWI. Measurements can be made from 0.0001 of an ohm. 100,000 ohms contains insitu Sulfivan Galvo, four decade ranges, four standards and six Kelvin divide/multiply ratio's offered in excellent condition ready for use Price $£ 95$.

MARCONI 100 KHz QUARTZ CRYSTAL Type Qmi20/F contained in B7G envelope wich flying lead connections. Brand new only 20/- each.

MORGANITE GLASS ENCLOSED RESISTORS Value 2.5 k . meg ohms, tolerance 10%. 25/- per carton of four

COMPLETE C.R.T. KIT comprising 2API C.R.T. mumetal screen/tube base and graticule. The lot 45/=. P. \& P. $2 / 6$

TMC MINIATURE KEY SWITCHES Two change-overs, non-biased, two
position offered. New, only $8 / 6$ each.

PAXOLIN PC BOARDS contains five Mullard OC36 power transistors-made up as solenoid drive unit. Guaranteed
Brand new, only $30 /-$ inc.
PAXOLIN PC BOARD contains ten
GETII3 transistors with polythene holders, sen miniature glass diodes and 25
iW. resistors. BRAND NEW $19 / 6$. ${ }_{4}^{2}$ P. \& P. resis d .

SOLARTRON OSCILLOSCOPE 523S. 2
The best of the surplus scopes for $\mathrm{E52}$, fully serviced and calibrated, compare the specification with others. Bandwidth
$\mathrm{DC}-10 \mathrm{MHz}$ at 3 dB . Sensitivity is $1 \mathrm{MV} / \mathrm{cm}$ Time Base 0.1 usec $-1 \mathrm{sm} / \mathrm{sec}$ in 7 decades with fine control on each range. Uses C Core malns transformers/4 in. High resolution flat face PDA CRT and many other features make this scope very suitable for colour television servicing and many other applications. Price $\mathbf{E 5 2}$ P. \& P. 25/-.

ADVANCE WIDE RANGE AC YALVE VOLTMETER VMT7

 Range 0.001 v to 300 v in six decades, frequency range 15 cps to 4.5 MHz . che VM77 operates on $100-250 \mathrm{v}$ ac supply Price E25, P. \& P. Inclusive.
SCHOMANDL FREQUENCY
 METER TYPE FD.I AND

CONVERTER UNIT TYPE FDM.I Range I KHz to 900 MHz an approved standard for telecommunications equip-
ment. Offered calibrated to manument. Offered calibrat

ADMIRALTY B. 40 RECEIVERS High

 ع22/10/0, carr, 30/. With circult diag rame Vailable B41 L. F. version of above. $15 \mathrm{Kc} / \mathrm{s}-700$ RTC 249 4-TRACK TAPE DECK

 reel gize. Puah button
controls, fully inter.

 unit plate, 4 tim. belo
13.18.6. Car. TYPE I3A DOUBLE BEAM
OSCILLOSCOPES BARGAIN

An excellient general purpose D/B oscilloscope. T.B. 2 cp $750 \mathrm{Kc} / \mathrm{s}$. Band width $6.5 \mathrm{Mc} /$ gensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Oper A.C. Supplied in excellent working condition, $£ 22 / 10 /-$ Carriage 30/.

MARCONI CT44 TF956 AF ABSORPTION WATTMETER
$1 \mu /$ watt to
820 . Carr, $20 /$
CLASS D. WAVEMETERS
(68
 £'7.19.6 Carr. 7/6.

CLASS D WAVEMETERS No Crystal controlled. 1.2-19 Me/s. Mains or 12v. D.C. Excellent condition with calibration charta

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS $0-20 \mathrm{Kols}$. Output 5 K or 500 ohms. $200 / 250$
A.C. Ofrered in oxcellent condition, $\mathrm{El2/10/-}$ A.C. Ontered

VOLTAGE STABILISER TRANSFORMERS. $180-260 \mathrm{v}$. input, Output 280 v .
Available 150 w or 225 w . $£ 12.10 .0$. Cart. $5 /$

TO-3 PORTABLE OSCILLOSCOPE, 3^{3} TUBE Tin amp. Sensitivity. iv

 bandwidth 1.5 epe- 800
KHZ . Input tmp. 2 meg 0 20 PF . Thme base. 5 ranges chronization. Internal/ex$140 \times 215 \times 330 \mathrm{~mm}$. Weight 15 $1 \mathrm{lbs} .220 / 240 \mathrm{~V}$. A.C. Supplled br
537.10 .0 Garr. 10%.

CRYSTAL
CALIBRATOR
NO. 10
mall portable crystal controlled wablable crystal Gize 7 in. $\times 7$ in. $\times 4 i n$,
Frequency
range
500 Frequency rasge 500 $\mathrm{Ko} / \mathrm{g}-10 \mathrm{Mc} / \mathrm{s}$ (up to
$80 \mathrm{Mc} / \mathrm{s}$ on harmonice). Calibrated dial. Power requirements 300 V.D.C.
15 mA
V. and
12 15 mA and 12 V.D.C. tion. 89/6. Carr. $7 / 6$.

TF885 VIDEO OSCILLATORS

$0-5 \mathrm{mc} / \mathrm{s}$ Sine Square Wave 245 . Carr. $20 /$
MARCONI TFI95M BEAT
$40 \mathrm{ko} / \mathrm{s}$. £28. Саாr. 30/.

WS62 TRANCEIVERS
Large quantity available for EXPORT! Excellent condition. Enquiries Invited.
COMMUNICATION RECEIVER
overing $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO , Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO.
Built-in speaker and phone jack. Metal cabinet. Built-1n speaker and phone jack. Metal cabinet,
Operation $220 / 440 \mathrm{v}$. A.C. Supplied brand new, guaranteed with instructions. 13gns. Carr. 7/6, EDDYSTONE V.H.F. RECEIVERS 770R. $19-165 \mathrm{Mc} / \mathrm{s}$. 8150 Both types in excellent condition

LAFAYETTE SOLID STATE HA600

5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE

8.A.E. POR FULL DETALS.

AVO CT471A MULTIMETER
Battery operated, fully transistorised
 D.O. voltages 12 mV . to $1,200 \mathrm{~V}$. A.C.

 to $1,000 \mathrm{Mc} / \mathrm{s}$. Omered in p.
tion. $£ 55$ each. Carr. $10 /$.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $500 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mol} / \mathrm{s}_{\text {, continuous }}$
and electrical band spread on $10-15,20,40$ and 80 metres. and electrical band spread on $10-15,20,40$ and 80 metree.
8 valve plas 7 diode elrculth $4 / 8$ ohm output and phone

 Wilh instruction manual and service data. 242

TRIO TS 510 Amateur Transceiver with speaker and mains P.S.U. £180 TRIO JR 500SE 10-80 Metre Amateur Receiver
¢ 180
$£ 65$

LAFAYETTE HA. 800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

SIX BANDS 3.5-4, 7-7.3, $14-14.35,21-45$,
18-29.7, 50-54 Mcl

Dual conversion on all bands. $2 \times 455 \mathrm{Kc} / \mathrm{s}$ mecharical filter ' g ' meter. Iuge slide rule dial. Operation 230 v AC or 12 p DC Size $15^{*} \times 9 \xi^{*} \times 8 f^{*}$. Complete with ingtruction manual 257.10.0. Cart. Paid, (100 K K/s Crystal $39 / 6$ extra.)

TRIO JR-310 NEW AMATEUR BAND $10-80$ METER RECEIVER IN STOCK $£ 77.10 .0$

RCA COMMUNICATIONS
RECEIVERS AR88D
Tatest relesse by minustry Brand NEW in original cases.
$110-250$. A.O. operation. Frequency in 6 Bands. $335 \mathrm{Kc} / \mathrm{s}$ -

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER
A cormpletely new translastorlsed recelver covering 152-174

 dial. Squelch and volume controls. Taper recorder output.
75 B aerile input. Headphone fack.
Operation 230

LAFAYETTE LA-324 STEREO AMP LIFIER
A.M.s. Dew Hi-Fl Amplifer at tow cost. 12.5 watte A.M.s. per channel.-20.20,000 $\mathrm{Hz} \pm \mathrm{db}$. Inputs for
Mag or Cer Cartridge. Tuner and Auxillary.
Output $4-16$ Features Hent
 output. Protected outpot stage. Finideh simulated
walnut vinyl lad metal cuse black and brubhe anodised aluminium tront panel. $104 \times 31 \times 8!$ in.
224. Carr. $7 / 6$.

Type MR. 3

1/32in.

$27 / 6$
$27 / 6$
full range of other sizes in stock-send sae for leaflet

POWER RHEOSTATS

$25 \mathrm{WATT} .10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms. $14 / 6$. P. \& P. $1 / 6$.

BELCO DA- 20 SOLID STATE DECADE AUDIO OSCILLATOR

New hiyh-quality
able
limert-
initrument
sine 1 Hz to 100 KHzz . Square

MARCONI TE.I42E DISTORTION FACTOR METERS Excellent condition. Fully tested $£ 20$. Carr. $15 /$ HIGH T.E. 40 HIGH SENSITIVIT A.C. VOLTMETER

A.C. meg. input 10 ranges:
O1/.03/.1/. $3 / 1 / 3 / 10 / 30 / 100 / 300$

Suppiled brand new complete Suppiled brand new complet
with leads and instruction Operation
ع17/10/-. Carr. $3 /$ /.

PLESSEY SL 403A
49/6 post paid.
TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges.
D.C rolte $1.5-1.500$
A.C.
 Reegistance. megegoms.
$202 / 240 \mathrm{vv}$.
A.C. operation. Complete with operabe sind
Instructions $£ 1 \% / 10 / \mathrm{m}$.

COSSOR 1049 DOUBLE BEAM O.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$. Perfect order AM/FM SIGNAL GENERATORS

 No. 2 . $\frac{\Delta}{\text { quality }}$ preciston Instrument made for Che Ministry
by Armec. FTo quency coverag $20-80 \mathrm{Mol} / \mathrm{s}$ AM/
$\mathrm{CW} / \mathrm{FM}$.

neorer | porates prectior |
| :---: |
| putar $1 \mu V=100 \mathrm{M}\rangle$ |

 A.C. Size $12 \times 8 \neq \mathrm{xin}$. Supplied in brand new
condition complete with all connectors, fully tested, 845 . Csirr. $20 /$-.

TRANSISTORISED LC.R. A.C MEASURING \triangle BRIDGE

${ }^{1100} \mathbf{M F D}$. 6 Ranges \pm Ranges $\pm 1 \%$. Brldge voltage at 1,000 OPS
 AU0. P. \& P. 5 j -. TRANSFORMERS 0/115/230v. Rtep pp or step down. Fully ghrouded

150 W .42 . P . \& P. $3 / 6$ ${ }_{300}^{150} \mathbf{W} .42 / 6$, P. $8 . \&$ P. $3 /$ | 300 W |
| :---: |
| 500 |
| 1,000 |
| \mathbf{W} |

$1,000 \mathrm{~W}$
1,500

,500 W. \&15110/0, P. \& P. 20/-.

G. W. SMITH
 \& Co. (Radio) Ltd.
 ALSO SEE OPPOSITE PAGE

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR Sine $18-200,000 \quad \mathrm{~Hz} ;$ Square $\begin{aligned} & 18-50,000 \\ & \text { Ontput max. } \\ & \end{aligned}$ (10 K omms). Opera-
ilon intermal butteries. Attractive 2 -tone cases
 TE-20RF'SIGNAL GENERATOR

 R.P. stienuator. Op-
eration $200 / 240$ V. A.C. Brand new with instruc thons. ع15.
 Full range of Ampllfers, kits; speakers in stock.

TE22 SINE SQUARE WAVE

AUDIO GENERATORS
 Output Impedance 5,000 ohms, 2001
250 v. A.c. opera. tion. Supplied brand
new
and guran teed with guaran t tion manual and leads, 218.10 .0 .

LAFAYETTE TE-46 RESISTANCE

 obms
inmedance
Also checks

TY75 AUDIO SIGNAL GENERATOR
Slne Ware $20 \mathrm{CPs}-200 \mathrm{Ko} / \mathrm{s}$. Square Wave 20 CPS- HI gh nd low impedance
 6 rolts. $220 / 240$ votts A. A. .
Brand new with instructions. 816. Carr. 7/6. Alze $210 \times$ ${ }_{100}^{216 .} \times 120 \mathrm{mmm}$.

TE-20D RF SIGNAL GENERATOR

 6 bends. Directly cali Lrated. Variable RF
attenuator, audio output. Xtal socket for callibra
 Brand new with ingtruc ${ }_{8}^{\text {tions. }} \mathrm{size} 140 \times 215 \times 170 \mathrm{~mm}$,

ADVANCE TEST EQUIPMENT Brand new and boxed In original pealed cartons,
JIB. AUDIO SIGNAL GENERATOR JIB. AUDIO SIGNAL GENERATOR or 5 obme. $£ 30.0$.
VM79. UHF MILLIVOLT METER 100 Kojg to $1,000 \mathrm{Mc} / \mathrm{F}$. A.C. 10 mV to 3 v . D.C ance 1 ohrm to 10 megohm. £125.0.0. TTIS. TRANSISTOR TESTER Frull range of facilities for testing PNP or NPN
transtistors la or out of circuitt. e37. transishars 1 a or out or circult. $£ 37.10 .0$ Carriage 10/- per Item.
SOLARTRON CD TIIS2 DOUBLE BEAM OSCILLOSCOPES
to 9 Mels. Perfect order. $\& 65$. Carr. 50 AVO CT. 38 ELECTRONIC MULTIMETERS Hilgh quality 97 range instrument which measures
A.C. and D.C. Voltage. Current, Resistance and Power Output Rangea D. C. volts $250 \mathrm{mV}-10,000 \mathrm{v}$ $(10$ meg 0 - 110 meg olinput). D.C. curreat $10 \mu \mathrm{~A} \cdot 25$ ${ }_{250 \mathrm{~V}}$ (with R. P . measuring head up to $250 \mathrm{Me} / \mathrm{s}$) A.O. current $10 \mu \mathrm{MA}-25$ amps. Power output 50 miloro-watte 5 watte. Opertion $0 / 110 / 200 / 250 \mathrm{~V}$.
AC. supplied in pertect candition A.C. supplied in perfect condition complete with SOLID STATE VARIABLE A.C.
 VOLTAGE REGULATORS Compact and panel mounting.
Ideal for conirol of lampa, drills, electrical appliancesetc.
Input $230 / 240 \mathrm{a}$. A.c. Output continuously variable from

HALF PRICE OFFER! SINCLAIR STEREO 25 Hi Fi solid state pre-amplifier and control unit liscorporating treble, bass, Yo ume and balance controle. Switched input for
p.u. (mangetlic and ceramic), milize and radio. Will aloo accept

 Amplitier but full linstructions are supplied to enable it to be
 brand new and guaranteed, with full instructions. Orig sinal price 88.19 .6
OUR PRICE

Variable Voltage TRANSF口RMERS

Brand n
High quality construction. Input $230 \mathrm{v} \cdot 60-60$ cycle
Output full variable from $0-260$ volts. Bulk quantities available

$8 \mathrm{amp} .-814 / 10 /-; 10 \mathrm{amp} .-£ 18 / 10 /-; 12 \mathrm{amp} .-821 ; 20 \mathrm{amp} .-837$

MULTIMETERS for EVERY purpose,

MODEL TE-200 20,000 O.P. Mirror scale 20020,000 orerload prote lon. 0 5/5/25/125/1,000 P.D.C
 $\stackrel{+20}{+20}$ to ${ }^{\text {to }}$. $2 / 6$.

MODEL TE-300 30,0000 P MODEL TE-300 30,000 O.P.V. tection $01.6 / 3 / 15 / 60 / 300 / 1,200$
V.D.C. $0 / 6 / 30 / 120 / 600 / 1200$ V.A.C. $0 / 30 \mu \mathrm{M} / 6 \mathrm{~mA} / 60 \mathrm{maA} /$
$300 \mathrm{~mA} / 600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K}$, $300 \mathrm{~mA} / 600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K} /$
$800 \mathrm{~K} / 8 \mathrm{meg} .-20$ to +63 db.
$\mathbf{~} 5.19 .6$. P. P. $3 /-$.

TE-51. NEW 20,000 の/
VOLT MULTMETER, with VOLT MULTMMETER, with
overload protection overload protection and
mirror $\begin{aligned} & \text { gcale, } 0 / 6 / 6 / 1200 \\ & 1,200 \text { v. A.C. } 0 / 3 / 30 / 60 / 300 /\end{aligned}$ $60 / 3,000 \mathrm{v}$. D.C. $0 / 60 \mu \mathrm{~A} / 12$ /300m A.D.C. 0/60K/6 meg.
ohm. 92/6. P. \& P. $2 / 6$.

SAVE UP TO $33+\%$ ON
SAVEFI EQUIPMENT
Send for full discount price list

MODEL
MODEL $2-\mathrm{k} \Omega /$ Volt $\quad \mathrm{F} / 25 / 50 /$ 25050. ${ }^{2-\mathrm{k}}$
$100 / 500 / 1,000$
2 $100 / 500 / 1,000$ v. D.C. $10 / 50 /$ meg. ohm. -20 to +22 dB 69/6. P. \& P. 2/6.

MODEL TE-70. 30,000 O.P.V $0 / 3 / 15 / 60 / 300 / 60 / 1,200$
D.C. $0 / 6 / 30 / 120 / 600 / 1,200 \quad$ v D.C. $0 / 6 / 30 / 120 / 60 / 1,200 \mathrm{~V}$ $0 / 16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{Mes} \Omega$ 25/10/ - P. \& P. $3 /$.

MODEL PT-34, 1,000 O.P. $V .0 / 10150 / 250 /$
$500 / 1.000 \mathrm{~V} .2 . c$. and $500 / 1,000 \mathrm{~V}$. a.c. and
d.c. $0 / 1 / 100 / 500 \mathrm{~mA}$. d.c. $0 / 100 \mathrm{~K} \mathrm{~K} 39 / 8$.
 volts $125 \mathrm{mv}-1000 \mathrm{v}$. A.C. volts $1.5 \mathrm{~F}-10000$. D.C. Cur.
rent $25 \mu \mathrm{~A}-10 \mathrm{Amp}$. Ohm rent $25 \mu \mathrm{~A}-10 \mathrm{Amp}$. Ohms
$0-10{ }^{\text {Meg }}$. D.B. -20 to $0-10$ Meg a. D.B. -20 to
+81 db Overioad protection
$\mathbf{~} 12 / 10 /-$. P. \& $\mathrm{P} .3 / 6$.

SPECIAL OFFERS Garrard SP25 Mk II fitted Goldring G800 price 632.8.5. OUR PRICE 19.15 .0 . Carr. IOI GOLORING GL69/2 fitted Goldring G800 cartridge complete with de luxe base and cover. Total list price C 50.16 .0
OUR PRICE 639 .
Carr. 201

SINCLAIR EQUIPMENT
Project 60. Package Offers

 amplifer, stereo 60 pre-amp, PZ8 power supply. £21.10.0. Carr. 7/8. Trapsiormer 4 PZR, $59 / 6$ extra. Add to any of the above $£ 4.17 .6$ for active
filter unitt and $£ 16.0 .0$ for a pair of Q16 speakers. fitter unt and $£ 16.0 .0$ for a pair of Q16 speakers,
All other Slichair products in stock: 2,000 smplifier, $£ 23.0 .0$ Carr. 7:6. Neoteric amplifie

TE-1035 STEREO HEADPHONES

Low cost high perform.
ance stereo headphones.
ance stereo headphones. Faam rubber ear cups. 8 ohm impedance. 25 .
$18,000 \mathrm{~Hz}$. With lead and stereo jack plug. ONLY
39/6. P. \& P. 2/6.
B.C. 221 FREQUENCY METERS Latest release $125 \mathrm{KHz} \cdot 20 \mathrm{MHz}$. Excellent con dition. Fully tented and checked and complete
with calibrator charta. 827.10 .0 each. Carr. 10%.
$270^{\circ} 500$ MICROAMP METER Incorporated in Readio Altitude Indicator $1.1 /$ -
HOSIDEN DH-OBS DE LUXE STEPEO
 HEADPHONES Features unlque mechanical 2 way
units and fitted trols. 8 ohm imped ance. 20.-20,000cps complete with
spring lead d\& sereo
jack plug. 87.10 .6 .

C.W.STIHH \& CO. (RADIO) IHTD

All Mail Orders to-
147. Church Street, London, W. 2 Tel: 01-262 6562
(Trade supplied)

3, LISLE STREET, LONDON, W.C. 2
34, LISLE Street, LONDON, W.C. 2 311, EDGWARE ROAD, LONDON, W. 2 open 9-6 monday to saturday (edeware road $1 / 2$ day thursday) to safe $£ 10$ ea. S.a. . literature.
MODULAR POWER SUPPLIES. Fully stabllised 8.5 to 9.5 volt. 10 amp . ($12 \times 6 \times 4 \mathrm{in}$.) Brand new. Indivldual spec. with each unit. f10 ea.
MADIATION MONITORING EQUIPMENT. POH-
able and bench models (brand new) S.a.e literature.
KLYSTRON POWER SUPPLY (Solartron AS562).
£40. Carr. 50/-.
KLYSTRION POWER SUPPLY (EIIIOT PKU1). E100
120 AMP. AUTO TRANSFORMERS. 190-270v.
$50 \mathrm{c} / \mathrm{s}$ (tapped every 5 volts). $£ 50$ ea (Carr. by
arrangement.)
801 A SIGNAL GENERATOR. $10-300 \mathrm{mc} / \mathrm{s} \mathrm{In}$
4 bands. Ext. $50 \mathrm{c} / \mathrm{s}-10 \mathrm{kc} / \mathrm{s}$. Output $200 \mathrm{~m} / \mathrm{v}$
E50 ea. P.P. 25/-,

SPEAKERS
E.M.1." 19×14 in. 50 watts. 8 ohm (14A/600A.) Four tweeters mounted across main axis. Separate "X-over unlt balances both bass and h.f. sections. 20 Hz . to 20,000 Hz . Bass unit flux 16,500 gss. A truly magnificent system f25. P.P. 50/-
E.M.I. 13×8 in. 10 watt with Integral tweeter. 15 ohm. 55/- ea. P.P. 5/
"E.M.I." $6 \frac{1}{2}$ in. Rd. 10 watt woofers. 8 ohm. 30/- ea P.P. 2/6,
"FANE" 12 in .20 watt. 15 ohm . (122/10A.) With integral tweeter. \& 6 ea. P.P. 7/6.
SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{ln}$.) Made to Spec from $\frac{3}{3} \mathrm{in}$. board. Finished in black leathercloth. 13×8 In 50 Hz . to $20,000 \mathrm{~Hz}$. £ 710 s . P.P. $10 /-$
SPEAKER CABINET KIT. Above mentioned cabinet only In kit form which you may assemble and cover to your own choice. 40/-. P.P. 5/
EXTRAGTOR FANS/BLOWERS
"AIRMAX" 71 In. FAN. In aluminium diecast housing (9 in). 240 v . Brand new. £ 410 s . P.P. $10 /$
"PLANNAIR" $5 \frac{1}{2}$ In. FAN. (TYpe 5 PL 121-122.) Diecast housing. 240v. Brand new. E6. P.P. 10/
"SOLARTRON" TANGENTIAL BLOWERS. Overall size $16 \times 5 \frac{3}{2} \times 3 \frac{1}{2} \mathrm{In}$. Alr outlet $12 \times 1 \frac{1}{2} \mathrm{in}, 240 \mathrm{v}$. Brand new.

BULK COMPONENT OFFER. Resistors/capacltors. All (ypes and values. All new modern components. Over 500 pieces, £2. (Trial order 100 pieces $10 /-$.) We are confident you will $\boldsymbol{\theta}$-order.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}$.). 200 micio-amp. Made in
Germany. 15/-each.
SILICON PHOTOVOLTIC CELLS (MS2BE) 550m.V. $35 \mathrm{~m} . \mathrm{a}, 30 /-\mathrm{ea}$
RELAYS H.D. 2 pole 3 way 10 amp. contacts. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (wlth dust-proof covers) 4 c/o contacts. 24 v .500 ohm $7 / 6$ өa.
PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wilght Micrometer Gauge. Type 1. 18.5 pf1.220 pf . $\mathbf{\Sigma 1 0}$ ea. Type $29.5 \mathrm{pf}-11.5 \mathrm{pf}$. E6 ea.

POT CORES LA1/LA2/LA3. 10/- өa
71 WAY PLUG \& SOCKET (Peinton Series 159). Gold plated contacts with hood \& retaining clips. 30/- pail. 50 WAY PLUG \& SOCKET (U.C.L. minlature). Gold plated contacts $20 /$ - palr. 34 way version $15 /-$ palr.
CO-AX RELAYS (magnetic devices) 1 change-over 12 v.w 20/- өa.
COMPUTER BOARDS
4-OC23; 4-2N1091; 4-2G302; 4-OA10. 20/- ea
8-OC42 (long leads) ; 16-0A47, 7/6 ea.
8-DA11A; 14-DA47. 5/- ea.
Bargain pack of 5 boards. Components too varled to enumerate. At least 100 transistors and diodes. E2 lot.

TRANSFORMERS

L.T. TRANSFORMERS (shrouded).

Sec. 20/40/60v. 2 amp. 82/6. P.P. 7/6.
L.T. TRANSFORMERS. Pilm, 200/250, 1.5 amp . 30/-. P.P. 5/-.
"ADVANCE ADVANCE" CONSTANT VOLTAGE. Prim.
$\pm 15 \%$. Sec. $115 \mathrm{v}, 2.250$ watts. E15 e8. P.P. $50 /-$
L.T. TRANSFORMER 20v, $1.5 \mathrm{amp}, 15 /-$ P.P. $2 / 6$.

ISOLATION TRANSFORMERS. 250 watts. 45/\%. P.P. 10/-
L.T. TRANSTFORMER. Prim. 240v. Sec. 33-0-33v. 5 amp. 45/-. P.P. 10/-.
STEP-DOWN TRANSFORMERS PrIm. 200/250v. Sec, 115 v .1 .25 amps , 25/- oa. P.P. 5/-,
L.T. TRANSFORMERS Prim. 240v. Sec. 8/1 $2 / 20 / 25 \mathrm{v}$. 3.5 amp models $20 /-; 5 \mathrm{amp}$ model 25/-. P.P. $5 / 6$.
L.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/. ea. P.P. $2 / 6$.

COPPER LAMINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{16} \ln$.), $2 / 6$ shest, 5 for $10 /=$
Also $11 \times 6 \frac{6}{2}$ in., $3 /-$ ea., 4 for $10 /$ -

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240 v . A.C 85/- ea. P.P. 5/-
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240v. A.C., 20/- 0 P.P. 5/-..
"LONG LIFE" ELECTROLYTICS (sciew terminal) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{In}$.). $20 /-$ ea. P.P. $2 / 6$. 10,000 u.f. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.) $17 / 6$ 日a. P.P. $2 / 6$. 3,150 u.f. 40 v . ($4 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{In}$). $15 / 6$ oa. P.P. $2 / 6$ EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. Into 8 ohm.) British designed and built. True hl-fi performance. Built-in filters to protect speakers. Three independentiy
mixed inputs. High-Low impedance. Mic. Crystal-CeramicMagnetic Cartridge, or aux. equipment. E55. P.P. 50/S.a.e. literature

TELEPHONE DIALS (New) 20/- ea.

RELAYS (G.P.O. '3000'). All types. Brand new from $7 / 6$ each. 10 up quotations only. EXTENSION TELEPHONE (TYPO 706) Black or 2 tone Grey. 65/-. P.P. 5/-
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{3}$ wlpe 65/.. 10 bank

REED RELAYS 4 make 9/12y (1,000 ohm) $12 / 6$ ea, 2 make 7/6 ea. 1 make 5/- ea. Reed Switches ($1 \frac{1}{4} \ln$.) 2/ea. £1 per doz.
SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{j} \mathrm{ln}$.). Weight $\frac{1}{6}$ 02. Type 1,960 ohm, 3/9v. 1 make. 12/6 ea. Type 2 . $\frac{1}{6}$ 02. Type 1.960 ohm, $3 / 9 \mathrm{v} .1$ mak
1800 ohm, $3 / 12 \mathrm{v}, 1$ make. $15 /-$ ea.

SILICON BRIDGES. 100 P.I.V 1 amp. ($\frac{5}{8} \times \frac{5}{7} \times \frac{7}{7}(\mathrm{~m}$.$) .$ 8/6 ea.
H.T. TRANSFORMERS. Prim. 200/240v. Sec. 300-0-300v. $80 \mathrm{~m} / \mathrm{a}$. 6.3 v . C.T. 2 a . $6.3 \mathrm{v} .2 \mathrm{a} .30 / \mathrm{e}$ ea. P.P. $7 / 6$.

PATTRICK \& KINNIE I9I LONDON ROAD - ROMFORD • ESSEX
 ROMFORD 44473 RM79DD

STUDIO SOUND FOR THE HOME richardson

Presenting the AVONLEA PIERCER

A versatile, simple, hand operated machine specifically designed for cutting a large variety of shapes in light gauge sheet metal.
The ease of operation and range of easily interchanged attachments provides a wide application of uses for the cutting, punching, bending and forming of sheet metal and other similar materials, and it is this versatility that makes it particularly suitable for the radio, T.V. Electronics Industries, and Research Establishments.
For further detalls write or phone:

ESMANCO LTD BROOK STREET

STEREO INTEGRATED AMPLIFIER SIA 100

The SIA 100 is an integrated stereo control and power amplifier. The power amplifier has a special circuit that minimises cross-over distortion while also having short circuit protection in the form of limiting the maximum current in the output transistors.

INPUTS

1) Disc $1: \mathbf{2 m V}$ at 47 K , noise- 70 dB . RIAA equalised.
(2) Disc $2: 2 \mathrm{mV}$ at 47 K , noise- 70 dB . RIAA equalised.
(3) Aux 1:50mV at 2 meg. noise -75 dB, level response.
2) Aux 2: 50 mV at 2 meg. noise- 75 dB. level response.
(5) Aux $3: 250 \mathrm{mV}$ at 100 K , noise. -80 dB , level response
(6) Tape manitor: 250 mV at 100 K . noise- 80 dB , level response.

OUTPUTS

Control unit to power amplifier: 250 to 1.5 V continuously variable on each channel. T:H.D. less 0.01% for rated input.
Phones socket outputs: 250 to 1.5 V continuously variable on each channel. Load greater than 1 K ohms. Record outputs: 250 mV , with tone controls inoperative. T.H.D. less than 0.01% for rated input.
Speaker Outputs.
16 ohms- 20 watts for 0.02% T.H.D 8 ahms- 30 watts for 0.04% T.H.D. 4 ohms- 40 watts for 0.2% T.H.D.

AVAILABLE IN METAL OR WOOD CASE
STEREO CONTROL UNIT SCP \| SIMILAR IN APPEARANCE TO SIA 100 EXCEPT THAT POWER OUTPUT STAGES ARE EXCLUDED.

AVAILABLEFROM:

J. RICHARDSON ELECTRONICS LTD, 57 Jamestown Road, London, N.W.1.
 01-2670723

VITAVOX

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS and ancillary equipment

Further Information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9
(Tel: 01-204 4234)
[T

BI-PAK=LOW COST I.C's VALUE ALL THE WAY

BI-PAK Bemiconductors now offer you the largest and most
popular range of I.Crs available at these EXCLUSIVE LOW popular range of I.C's available at these EXCLUSIVE LOW
PRICES. TTL Digital 74 N Spries fully coded, brand new.
Dual in-line plastic 14 and 18 ptn packages.

BI-PAK Order No.	$\underset{\text { Type }}{\text { Sim. }}$	Description	Price and qty. prices 1-24 25-99 100 up		
BP00	7400 N	Quad 2-Input NAND GATE	6/6	5/6	$4 / 6$
BP01	7401N	Quad 2-Input NAND Gate OPEN COLLECTOR	6/6	5/6	4/6
BP04	7404N	HEX INVERTER	6/6	$5 / 6$	4/6
BP10	7410 N	Triple 3-Input NAND GATE	6/6	5/6	$4 / 6$
BP20	7420 N	Dual 4-Input NaND GATE	6/6	5/6	4/6
BP30	7430N	Single 8-Input NAND GATE	$6 / 6$	5/6	4/6
BP40	7440 N	Dual 4-Input Buffer Gate	6/6	5/6	$4 / 6$
BP41	7441AN	BCD to decimal decoder and NIT Driver	22/6	20/-	17/6
BP42	7442 N	BCD to decimal decode (TTL O/P)	$22 / 6$	20/-	17/6
BP50	7450 N	Dual 2 expandable AND/OR/NOT GATE \rightarrow	6/6	5/6	4/6
BP53	7453N	Single 8 -Input AND/OR/NOT GATE-expandable	6/6	5/6	$4 / 6$
BP60	7460 N	Dual 4-Taput expandable . .	6/6	5,6	4/6
BP70	7470N	Single JK Flip-Flop-edge triggered	9/-	$81-$	7/-
BP72	7472N	Single Master Slave JK Flip-Flop	9/-	8/-	7/-
BP73	7473 N	Dual Master Slave JK Flip-Flop	10/-	8/-	$8 / 6$
BP74	7474 N	Dual D Plip-Plop	10/-	8/-	$8 / 6$
BP75	7475N	Quad Blatable Latch ..	11/-	101-	$9 / 6$
BP76	7476N	Dual Master Slave Flip-Flop with preset and elear	11/-	10/-	8/6
BP83	7483 N	Pour Blt Binary Adder	26/-	22/6	20/-
BP90	7490 N	BCD Decade Counter	22/6	20/-	17/6
BP92	7492N	Divide by 124 Bit binary counter..	22/6	201-	17/6
BP93	7493N	Divide by 164 Bit binary counter. .	22/6	20/-	$17 / 6$
BP94	7494 N	Dual Entry 4 Bit shirt Register	22/6	201-	17/6
BP95	7495 N	4 Bit Up-Down Sbift Register	22/6	20/-	17/6
BP96	7496N	5 Bit shift register	24/-	21/-	18/6

TTL INTEGRATED CIRCUITS
Manulacturers' "Fall outs"-out of apec. devices including functional units and
part functional but classed as out of spec. From the manufacturers' very rigld ppecifications, Ideal for learning about I.C's and experimental work, on testing

QUALITY-TESTED
6 Matched Trans. OC44/45/81/81D
20 Red Spot AF Trans. PNP.....
16 White Spot RF Tras. PNP.
5 silicon Rects. 3 A $100-400$ PIV...
5 Silicon Rects. 3A 100 400 PIV.
210 A Silicon Rects. 100 PIV
20 Cl 140 Trans. NPN 8 witching 112 A SCR 100 PIV.
3 gil. Trans. 25303 P
 $3200 \mathrm{Mc} / \mathrm{s}$ sin. Trans..NPN B8Y2
3 Zsner Diodes $1 W$ 33V 5\% Tol..
4 Kigh Current Trans. OC42 Eqvi. 4 Kigh Current Trans. OC42 Eqvt....
2 Power Transistors 1 OC26 1 OC35,
5 8itcon Recte. 400 PIV 250 mA . 5 Simcon Rects. 400 PIV 250
4 OC75 Transistors
1 Power Trans.
1 Power Trans. OC20 100 V
1004202 gil. Diodes Sub-nin.......
2 Low Noise Trans. NPN 2 N92930. 1 Sil. Trans. NP
80 O81 Diodes
80 0c72 Transistors
4 Oc77 Transistors
40 O 77 Transistars
4 Sil. Rects. 400 PIV 500 mA
5 GET884 Trans. Equt. OC44
5 GET884 Trans. Eqvt. OC44
5 GET883 Trans. Eqvt. OC45
22 N708 SiL. Trans. 300Mc/m NPN.
3 GT31 LF Low Noise Germ Trans..
GIN914 SII. Dlodes 75 PIV 7mad...
GIN914 Sil. Dlodes 75 PIV 75mA. ..
8OA95 Germ. Diodes Sub-min. IN69.
3 NPN Germ. Trans. NKT773 Eovt.
2 OC22 Power Trans. Germ..
20 C 25 Power Trans.
2 OC25 Power Trans. Germ.....
4 AO128 Trans. PNP Him
4 AC128 Trans. PNP High GAin.
4 AO127/128 Comp. pair PNP/NPN.
3 2N1307 PNP Switching Trans...
32 N1307 PNP Switching Trans....
7 CG62H
3 AF116 Type Trans
3 AFl 16 Type Trans.
4 ACl26 Germ. PNP Trans...
4 Silicon Rects. 100 PV 750
4 Silicon Rects. 100 PIV 750 m
3 AF117
3 AF117 Trans........

8
7 ON2922 Sil. Epoxy Trans.
OC71
2
210 A 600 PIV S11. Rects. IS 45
3 BC100 B11. NPN Hects. Gain Trans...
1 2N910 NPN SII. Irans. VCB 100...
12 N 910 NPN SII. Trans. VCB 100,
21000 PIV Bil. Rect. 1.6 A R53310 AF
3 BSY95A gil. Trans. NPN $200 \mathrm{Mc} / \mathrm{s}$.
3 B8Y95A Sil. Tran
2 GET880 Low Noise Gerim. Trans.
1 AF139 PNP High Freg. Trans....
3 NPN Trans. 1 BT141 and 2 ST140. 3 NPN Trans. 18 M141 and 2 ST140
4 Madt's 2 MAT100 and 2 MAT120 4 Madt's 2 MAT100 and 2 MAT12.
3 Madt' 22 MAT101 and 1 MAT121.
$40 C 444$. 4 OC44 Germ. Trans. AF..
3 AC127 NPN Germ. \$ AC127 NPN. Qerm. Trans, Motorola.
I 2N390 SU. PNP Tran. Mots.
2 Gil. Power Rects. BYZ13 1 ©il. Power Rects. BYZ13. \quad Trans. NPN 100 Mc
2 2N1132 PNP Epitaxial Planar sil..
3 2N697 Eptaxial Planar TranA. Sil.
4 Germ. Power Trana, Eqvt. OC16. .
4 Germ. Power Trans, Equt, OCl6.
1 Unijunction Trans. 2 Z 2646
2 Sil. Trans, $200 \mathrm{Me} / \mathrm{s} 60$ Fch 7T83/84...
20 NKT Trans. AF, RF, VHF, Coded

DTL DIGITAL I.C's

MDTL dual in-line package.
Type MC844P expandable dual 4 -input NAND Power Gate Type MCB45P Clocked Flip-Flop
FULL DATA SUPPLLED WITH UNITS

BRAND NEW. FULL TO MANUFACTURERS
SPECIFICATION
SPPECIFICATION
BP709 Operational Amplifier, dual-in-line 14 pin pack- $1-24 \quad 25-99 \quad 100$ up
 inputs and low impedance output.

FAIRCHILD (U.S.A.) I.C'S RTL

N

KING OF THE PAKS Unequalled Value and Quality SIDEE DAVG NEW BI-PAK UNTESTED SEMICONDUCTORS

Batislaction GUARAN TEED in Every Pak, or money back.

12	60 Mixed Germapium Transistors
U3	75
04	40 Germanium Tranaistors like OO
U5	60200 mA Aub-min. 812. Diode
U6	30 sllicon Pladar Transist
U7	
U8	50 8ll. Planar Diodes 250ma OA/
U9	20 Mixed Yolts 1 watt Zener Diode
U11	25 PNP \&llicon Planar Transistors
U12	licon Rect
U14	150 Mixed Silicon and Germanium Diodes.
015	25 NPN sllicon Planar Transistors TO-5 sim. 2N697
U16	10 3-Amp sllicon Rectifers 8tud Type
U17	30 C
	86 -Amp silicon Rectifiers BYZ13 Type
	Sillicon NPN Transistors like BC108
U20	12 1.3-amp silicon Rectifiers Top-Hat up
U21	30 A.F. Germantum alloy Transistors 2 G 300
U23	Madt's like MAT Series PNP Transistors
	20 Cermanium 1-amp Reclifera GJM up to 300
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN 8illicon Translstora 2N708, B8
U26	30 Fast Switahing Silicon Diodes lite IN014 Micm
	Experimenters' Assortment of Integrated Circuits, unte Gstes, Flip-Flops, Registers, ete., 8 Assorted Pieces.
	101 smp SCR's TO-5 c8n up to 600 PIV CRSI/ 25 -60
	15 Plastic Sillion Planar tranb
	20 sil. Planar NPN trans. low noise Amp 2N3
	25 Zener dlodes 400 mW D07 case mixed Folts,
U33	15 Plastic case 1 amp 8ilicon rectifera 1 N 4
	30 8il, PNP ailoy trans. TO-5
	25 sili. Planar trans. PNP
	Sil. Planar NPN trans. T0-5 BFY50/51
037	30 Sill alloy trans. 80-2 PNP, OC200 2S322
U38	20 Fast 8witching gill trans. NPN, $400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 301110$
	30 RP Germa. PNP trans. $2 \mathrm{~N} 1303 / 5$
U40	10 Dusl trans. 6 lead To-5
041	25 RP Germ. trans. T0-1 OC45 NKT72............... 10

Code Nos. mentioned abore are given as a gulde to the type of device in
the Pak. The devices themselves are normaily unmarked.

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospltal, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W. 8

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER", or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2-way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $2 / 6$ extra. P. \& P. 4/6. Price Refund if not lead. Battery $2 / 6$ e
satisfied in 7 days. satisfied in 7 days.

59/6

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLiFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.

ULTRASONIC TRANSDUCERS

40 kHz Type 1405
(Direct replacement for Type 1404) Available from stock 25 kHz unit available shortly.
B. RIGOLD \& BERGMANN LTD. 54 OLD BROAD STREET • LONDON • EC2 Tel: 01-588 1604

This new meter kit by TMK offers the professional, electronics hobbyist and student the unique opportunity of building a really first class precision mutimeter at a worth while saving in cost. The impactresistant bakelite cabinet is supplied with the meter scale and movement mounted in position. The highest quality in components and $\mathbf{1 \%}$ tolerance resistors are used throughout. Supplied complate in
MODEL 5025 5.0.000.e.,. EEATuAING
A highly reliable Instrument using an entirely new range selection mechanism which permits the use of a really large meter In a more compact cabinet. The range selected is clearly indicated on the actual meter face facilitating instant identifcation without taking your eyes from the meter. High speed overload protection circuit. Special A and MA measurement ranges
SPECIFICATION: SPECIFICATION:

- DCV: 0.0.25-2.5-10-50-250-1,000V at $25 \mathrm{~K} / \mathrm{OPV} 0-0.125-1.25-$ - ACV: $0.3-10-50-250-1,000 \mathrm{~V}$

500 V at 5 K 10 PV .

- DC $\mu \mathrm{A}: 0-25 \mu \mathrm{~A}$ at $125 \mathrm{~mA}: 0-50 \mu \mathrm{~A}$ at 250 mA
-DCmA: 0-2 5-25-250mA at 125 mV . 0-5-50-500mA 250 mV - DC Amps: $0-5 A$ at $125 \mathrm{mV}: 0-10 A$ at 250 mV .

Resistance: $0-10 \mathrm{M} / \mathrm{ohms}(13,85,650.6 .5 \mathrm{~K}$ and $65 \mathrm{~K} / \mathrm{ohms}$ at centre scale).

- Output Capacilor ($0.1 \mu \mathrm{~F}, 400 \mathrm{~V}$ w) in serles with ACV ranges - Decibels:- 20 to +81.5 dB in 10 ranges.
cabinet, size $5 \frac{1}{4} \times 6 \frac{1}{a} \times 2 \frac{7}{5} \mathrm{in}$. Sirang restilent plastic handle. Complete with test leads.

KIT PRICE $£ 10: 10.0$

Pos $5 /$
ALSO AVAILABLE READY-BUILT AND TESTED E12.10.0. Post $5 /-$

Also available. TMK Model 200 Meter 20,000 ohms/N 92/-. Instructions and data available before purchase-Send SAE plus 2/6. Refundable if you purchase Kit.

LASKYS MODEL TM5

Another new look pocket multi-meter from Lasky's providing case-size and value. The "slimline" impact resistant 2 zin. square meter. Readability is superior on all low ranges: making this an excellent instrument for servicing transistorised equipment. Mecessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal clear meter cover

- DC/N: 3-15-150-300-1,200 at 5K ohms/V - $A C / \mathrm{N}: 6-30-300-600$ at $\mathbf{2 . 5 K}$ ohms $/ \mathrm{V}$
- ACN:6-30-300-600 at 2.5K oh
- Resistance: $0-10 \mathrm{~K}$ ohms, 0-1 M ohms
- Decibels: - 10 dB to 16 dB
- Complete with test leads, battery and instructions

LASKYS PRICE 49/6 P. \& P. 2/6

LASKYS

TM1

The first of Lasky's new-look top value meters, the TM-1 is a really tiny pocket multimeter providing "big" meter accuracy and performance. Precision movement calibrated $t 0 \pm 3 \%$ of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black cas

DC/V: 0-10-50-250-1000 at 1 K ohms $/ \mathrm{N}$

- AC/V : 0-10-50-250-1000 at 1K ohms/V
- DC CURRENT: $0.1 \mathrm{~mA}, 100 \mathrm{~mA}$.
- Resistance: 0-150K ohms
- Decibels: $-10+22 \mathrm{~dB}$
- Complete with test leads, battery and instructions

Size Only $3 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{8} \mathrm{in} . \times 1 \frac{1}{4} \mathrm{in}$.

LASKYS PRICE 39/6 P. \& P. 2/6

Audio-Tronics 70

The 1970 edition of Lasky's Audio-Tronics catalogue is available FREE on request. Packed with 1000's of items for the Radio and Hi-Fi enthusiast. Electronics Hobbyist. Servicemen and Communications Ham. Covers every aspect of Hi-Fi (including Laskys budget Stereo Systems and Package Deals). Tape recording and Audio accessories plus Lasky's amazing money saving vouchers worth over $£ 25$. SEND TODAY. Send your name, address and $2 /$-for post and inclusion of your name on our regular mailing list

This month's voucher worth 30/-

Hear and compare the world's finest sound reproducing equipment for the home. The top loudspeakers, amplifiers, tape recorders, pick-ups, tapes and accessories have been brought together under one roof to give you a superb Festival of Sound.

Famous manufacturers from all over the world will be demonstrating their products in specially constructed studios which will enable you to hear the Sound at its best.
Each day a programme of special live presentations and lectures will be held in the Hi-Fi Theatre . . . and there will be two cinemas continuously showing films of instruction and interest. Entrance to both theatre and cinemas is FREE.

Everyone who takes pleasure in using and listening to $\mathrm{Hi}-\mathrm{Fi}$ equipment of the highest standard must visit this International Audio Fair.

This superb stereo system is a real price breakthrough. It comprises the VISCOUNT F.E.T. Mk I amplifier on which full details are given betow, the famous Garrard SP 25 Mk II fincluding teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

Measuring $17 \frac{1}{2}$ " $10_{4}^{3 \prime \prime} \times 6_{4}^{3 / \prime}$. the Duo type 2 speakers are beautifully finished in teak veneer with matching vynair grills. They incorporate a $10_{2}^{1 " n} \quad 6 \frac{11}{4}$ " drive unit and high frequency speaker, both of which are of 3 ohms impedance. The Duo speaker system is also available separately at £6.6.0. each plus 15$)^{\prime}-P$ \& P. Complete stereo system £41 plus E2.10 P \& P.

High fidelity transistor stereo amplifier employing field effect transistors, With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly F.E.T. MK \| E14.5s. plus $7 / 6$ P. \& P. surpasses amplifiers costing far more.

Size: $12 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{3{ }^{\prime \prime}}{}$ in teak-finished case.

Specification: Output per channel 10 watts r.m.s. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ (e) 1 watt.

Total distortion: @ 1 kHz @ 9 watts 0.5%.
Input sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K ohms.

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (with vol. max). Controls: 6 position selector switch (3 pos. stereo $\&$ 3 pos. mono). Separate Vol. controls for left \& right channels. Bass $\pm 14 \mathrm{~dB}$ @ 60 Hz . Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz . Tape Recording output sockets on each channel.

BUILT \& TESTED
Mk II (MAG. P.U.) £15.15.0 plus 10% - \& p Specification same as Mk. I. but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @ 1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 65 dB (vol. max).

Elegant Seven Mk $\mathbf{3} \mathbf{(3 5 0 m W})$

 7 transistor fully-tunable M.W.-L.W. superhet port able Set of parts. Complete with all components,including ready etched and drilled printed circuit including ready etched and drilled printed circuir MAINS POWER PACK KIT: 9/6 extra. MAINS POWER PACK KIT: $9 / 6$ oxtra. Price $\mathbf{£ 5 . 5 . 0}$ plus $7 / 6$ P.
Circuit $2 / 6$ FREE WITH PARTS

The Dorset $(600 \mathrm{~mW})$

7-transistor fully tunable M.W.-L.W. superhet porable-with baby alarm facility. Set of parts. The
latest modulised and orealignment techniques latest modulised and ore-alignment 1echniques MAINS POWER PACK KIT: 9/6 extra. Price $\mathbf{~ 5 . 5 . 0}$ plus 7/6 P. \& P
Circuir 2/6 FREE WITH PARTS

LIQUIDATED STOCK IAPS: III:

 TOURISTE MK3 CAR RADIOBeautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7 " $\times 2$ " $\times 4 \frac{1}{2}{ }^{\prime \prime}$ deep.

ORIGINALLY SOLD COMPLETE FOR £15.4.6.
SET OF PARTS $50-6-0$
Speaker, baffle and fixing kit 25/- extra plus 4/-
P. \& P. (Postage free when ordered with parts.)

Circuit diagram $2 / 6$. Free with parts. Plus 7/6 P. \& P.
RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
Also 323 Edgware Road, London, W.2. AL.L ORDERS BY POST to Acton Goods not dispatched outside U.K. Terms C.W.O. All enquiiies S. A.E.

	UAF42 $10 / 6$	${ }^{2759}{ }^{351-}$	${ }^{5049}$ S/8	6 AX4 ${ }^{8}$	${ }^{\text {6F33 }}$ 201-
QQvo3.10	UBC41 ${ }^{\text {U }}$	28000 z801U 25/-		${ }^{50 \mathrm{~T}}$ 13-	
QQvo6-40	UBF89 7\%-	Z900T 12/-	583at 80-	${ }^{687}$ \% $5 / 6$	${ }_{6}^{6055} 7$
eqvor-40- ${ }^{85 /-}$	UCF80 10/-	$\begin{array}{ll}\text { IL4 } \\ \text { IR5 } & 8 / 6 \\ 8 /-\end{array}$	SZ4 BZAGT 14, 12/-	${ }^{68 K 7}$ 6 BAF $8 /-$ $1 / 8$	
	UCH81 $6 / 8$	184 5/-	${ }_{6 A B 7}{ }^{\text {did }}$	${ }_{6 B E 6} 51$ -	6J7a Bi-
R17 8/-	UCL82 $7 / 6$	188 ${ }^{\text {185 }}$	${ }^{64 C 7}{ }^{31-}$	${ }_{6}^{68666} 11 /-$	
${ }_{\text {R19 }}^{\text {RTV280/40 }}$	UCL83 ${ }_{\text {UF4 }}$				${ }_{6}^{6 \mathrm{~K} 60 \mathrm{~T}} \mathrm{C}$
40	${ }^{\text {UF80 }}$		${ }_{6 A K 8} 681-$	$6 \mathrm{BR7} \mathrm{l}^{18 /-}$	${ }_{\text {QK }}$
ETV280180	UF89 6/9	${ }_{344} 4$ -	${ }_{6 A L 5} 3 /-$	6BW6 18/-	6 K 8 G
180/	UL41 12/-	3D6 3/-	6AL5W \%-	68W7 13-	${ }^{6 K 8 G T} 713$
51/-	UL84 8/6	$304 \quad 718$	6 6m6 3/-	${ }^{604} 56 / 9$	
U	UU5 71-	${ }^{384}$ 6/9	6AN8 101-	${ }_{6} 68{ }^{\text {ch }}$ -	
$14 / 8$	8/8	8/-	6AQ5 8/-	${ }^{6} \mathbf{C H 6} 6$ 11/-	
U		58254	$6 \mathrm{Aq5}$	9	
U191	VR106/		6as6	6D6	
			6A879 18/-	6EA8	
UABC80 8/6	6/-	4GY 10/6	6ado 5/-	6.233 15\%-	6897

SPE 09	TUB	351-T		NSIST				
OA ${ }^{\text {a }}$	$2 / 6$	OC38	$8 / 6$	N543 4/-	${ }^{31200}$		AFY19 $22 / 8$	ORS1/40 ${ }^{12 / 6}$
OA10	8/-	-	$2 / 8$	${ }_{\text {IN70 }}$ IN70-725 ${ }^{\text {/- }}$	${ }_{3}^{3 \mathrm{NFR}} 188$		A8Y26 ${ }^{\text {As }}$ A/6	CRS3/05 ${ }^{12 / 6}$
OA71	$2 /$		$3 / 4$	$7 / 3$	${ }_{3} \mathbf{N 1 3 9}$		${ }_{\text {AsY }}{ }^{\text {S }} 87$ 2\% $2 \%-$	ORS3/20
0A73	1/6	OC71	2/6	In7464	3N140	19/6	BAWH9 5/6	
0 A 74	$21-$		4\|-	series 5/3			BC107 3/6	ORS3/30
OA79	1/9	OC73	11/-	In $821421 /-$	3N159		BC108 4/-	
0 OA81	$1 / 6$	0075	4/8	IN823A 28/-	6 FR 5		(80113 8/-	CRS25/025
${ }^{0491}$	1/3	${ }^{0} \mathrm{C} 76$	5/-	${ }^{\text {IS44 }}$	12FR60	14/8	${ }^{\text {BC118 }}$ 7/6	
OA200	$1 / 8$	0C81	4-	IZMTS ${ }^{\text {\% }}$	1001	${ }^{3 / 4}$	BCY10 9-	8
${ }_{0}^{\text {OR202 }}$	${ }_{78}^{2 /}$	${ }_{0}^{0 c 810} \mathrm{Cc81Dm}$	м3/-	IZMr10 ${ }^{\text {I }}$ 18/8		16		
	${ }_{916}^{716}$	${ }_{0}$		IZT10 $13 / 8$			${ }_{\text {BF115 }}{ }_{\text {BF773 }}$	GET103 4/-
${ }_{0}$	111i-	0 C 82	31-1	${ }_{26385} 120 / 6$	${ }_{40668}$	${ }_{\text {271- }}^{281}$	${ }_{\text {BFY5 }}{ }_{\text {BFI }}$	GET110 8/-
OAZ2	110/-	ос83	4/6	20403 10/6	40669	29/-	BFY52 4/6	GEX66 15/-
		0 C 83 B	3/-	IN60	40126	4/6	Bsos 7/6	
OA	8/6	Oc8	8/-	IN4785 11/-			BS ${ }^{\text {B/1 }}$	NKT304 71 -
		0 Cl 22	10	2N13				8 D 915
		0 O 1	8/8	2N1306 $8 / 6$	${ }^{\text {A0176 }}$	716	${ }_{\text {BSY29 }}{ }^{\text {BSI }}$ 3/6	${ }^{\text {8D928 }}$ 8/3
OAZ213	$38 / 6$	0 Cl 40	8/-	${ }^{2 N 1307}$ 8/6	${ }^{40 Y 17}$		BU100 36/-	8D938 816
OAR		${ }^{\mathrm{OCH}}$	8 8-	${ }^{2 \mathrm{~N} 2147} \mathbf{2 N 2 9 0 4}$	${ }^{\text {ACY28 }}$		BYZ13 ${ }^{\text {/ }}$	8D94 8D968
		$0 \mathrm{Cl172}$	\%8	${ }_{2}{ }^{\text {N3053 }}$ 818				8D9
0 C	8/8	0 C 2	8/-	2N3054 $12 / 6$	${ }^{\text {AD162 }}$		CR81:10 51-	
	$7 / 8$		7/8	2N3056 15/-	AF117		CRE1/20 9/6	Z Range
	5/-		101-	2N3730 25/-	AF118		81/30	Zener diodes
	8/0	IN21	-	2N8731 25/-				
	15\%	IN218	.5i-	2N5109 41/-				
ос35	8/6	[125	12/-	${ }_{82303} 10 /-$	${ }_{\text {AF186 }}$			
MANY OTHERS IN STOOK include Oathode Ray pubea and Special Valves. U.K. P. \& P. ap to $10 /-1 /-$; to $212 /$-; over \&1 2 /- in e, over \&3 post free. C.O.D. 4/- extra.								
								${ }_{1.5 \mathrm{~W}}^{\text {\% }}$ \%-
								${ }_{7 \times \mathrm{W}}^{1 / \mathrm{W}}$ 7/8

sow 1 17

the valve with guarantee

30 P 12 10
30 P 19 14/-
9002
30PL1 13/-
$\begin{array}{ll}9003 & 10 \\ 9004 & 2 /\end{array}$ 30PL14 17
35LbGT 9
$\begin{array}{ll}35 W 4 & 5 \\ 35 & \\ 3 & \\ 3\end{array}$

60C5

$50 \mathrm{CD6G30}$
$50 \mathrm{EHF} \quad 12$
C.R. Tube FCR 97 32/ VCR51750/ VCR5178 55 $\begin{array}{ll} & 451 \\ \text { 5FP7 } & 26 / \\ \text { 88D } & 2801\end{array}$ $\begin{array}{lr}\text { 5FP7 } & 26 / \\ \text { 88D } & 180 / \\ \text { 88J } & 80 / \\ 88 \mathrm{~L} & 90 /\end{array}$ Photo Tube CMG26 25/6097C 350 Special Vlv
OV1031 OVIOs1 100 JP9/7D K 301

K 301 | K 308 |
| :--- |
| K |
| 2 | K337 212

KRN2A70/KRN2A70
WLA17A 3J/92/E $3 \mathrm{~J} / 92 / \mathrm{E}$
5 C 23
5 C 2 l $\begin{array}{ll}237 / 10 /- \\ \text { 5022 } & 215 \\ 714 \mathrm{AX} & 24 \\ 725\end{array}$

INTEGRATED CIRCUITS

RCA RCA 3005 wide band R.F. Ampl. 300 mW diss band ampl. iso.mW CA 3012 wide bün

 diss 3020 Audo power amplSTC
MIC 93018 Digital dual 4 imput gates
MIC $709-1 C$ Linear operational ampl
MIC 93018 Digital dual 4 imput g a
MIC $709-1 \mathrm{C}$ Linear operational am
MIC 9005 H Highspeed flip-flop.

SIGNAL GENERATOR TF 801D $10-485 \mathrm{MHz}$, sine and pulse modulation 0.1
microvolt to 600 mV output, price on application.
VIDEO OSCILLATOR TF BBSA \& 885 A I 5 MHz and $25 \mathrm{~Hz}-12 \mathrm{MHz}$ respec-
25 Hzz to
tively, fine and square wave output uo to tively, fine and square wave output up to
31 i e55 and 885 resp. Carriage $30 /$-.

AVO SIGNAL GENERATOR CT $378,2-450 \mathrm{MHz}$. $£ 38.10 .0$. Carriage $18 /$ AVO'S METERS
Model 48A complete with multiplier shunts, etc., in special fitted wooden case, E14.10.0.
Carriage for each of above $7 / 6.6$
REDIFON REDIFON
Twinplex combiner type AFS 13665 Twinplex converter type AFS $12 \quad 685$
F.S.K. unit type GK ${ }^{185 A} \quad 658 / 10 / 0$
PLEASE NOTE ALmate ALL EQUIPMENT
ordered from us is completely over-

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures L \& C at 80 Hz , $1 \mathrm{kHz}, 10 \mathrm{kHz}$. Ranges:- $\mathrm{L}: 1, \mathrm{HH}-100 \mathrm{H}$. C: $1 \mathrm{mF}-100 \mu \mathrm{~F}$. R: 0.1 ohms -100 mohms . AC Bridge volts monitored and vari able. Automatic detector sensitivity F.M. DEVIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$. Can be used up to 500 MHz . Deviation range $0-75 \mathrm{kHz} 667 / 10 / 0$. Carriage $30 /$ -

TF IA4G SIGNAL GENERATOR. To clear. In very good "as seen" condition etc. $£ 15$.

MARCONI TEST EQUIPMENT

 to 300 V in 7 ranges.
$20 \mathrm{~Hz}=1500 \mathrm{MHz}$. D.C. voltage $\begin{aligned} & \text { ranges } 300 \\ & \text { MV-1000 }{ }^{\text {in }} 8 \text { ranges. } \\ & \text { D.C. resistance } 50\end{aligned}$ D.C. resistance 50
ohms to 500 Mohms
Price 66210.0 Price E62.10.0 TFI4H SIGNAL
GEN. Freq. range 10
KHz - M . Hz . R.F. GEN . ${ }^{\text {Freq. } \mathrm{MHz}} \mathrm{R}$ R. F .
output 2 uV to 2 V at 50 ohms 400 and 1000
Hz internal mod.
Limited aty, SIGNAL GENERATOR TF 801/A able. Fulispec $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400 and price on c / s. I kc/s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
request. Output $0-100 \mathrm{db}$ below 200 mV from
75 ohms source. $£ 85 . \mathrm{DITTO}$ but $801 / \mathrm{A} / 1$ with additional high level output. 689 . Both P. \& P. 20/, including necessary connectors, plugs and instruction manual.

BRAOLEYPORTABLE ELECTRONIC

 MULTIMETER TYPE CT47IB. Thisinstrument operaces from three I $1 \underset{\text { cells. }}{ }$
is fully transistorised and measures A.C. and D.C. current, A.C, and D.C. voltage. and calibration check. Full spec. and price

As above but MODEL CT 471 A manu actured by AVO, full spec and price on

4,5 and 8 bank 25 way uniselectors £4.10.0; $£ 6.17 .6$ respectively.
ARB8 SPARES. We hold the largest stock WEE MEGGERS. 250V E12.0.0. GENERAL RADIO AMPLITUDE MODULATION MON
$230 \mathrm{v}, 3$ pole, 10 amp plug in change over relays. Il pin base, perspex cover

PHASE MONITOR ME-63/U. Manu factured recently by Control Elactronics Inc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from $20-20,000$ e.p.s can be sinusoidal or input signals between 2 and 30 r . peak. In excellen condition. $\mathbf{6 7 5}$. Carriage $30 /$
HARNESS "A" \& "B" control units function boxes, headphones, micro
phones, etc.

29/4IFT. AERIALS each consisting of ten 3 ft ., If. dia. tubular screw-in with adaptor to fit the 7 in . rod, insuwith adaptor to fit the 7in. rod, insu-
lated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect in canvas bag, $£ 4 / 0 / 0$. P. \& P. $10 /-$

FIELD TELEPHONE TYPE "F" Housed in portable wooden cases. Excellent for communication in and out doors for up to 10 miles. Pair including 220 yds field cable in drum $\mathbf{8 7}$.10.0.

FOR EXPORT ONLY

53 TRANSMITTERS. All spares installations and spare parts. R.C.A.
TRANSMITTERS ET 4336 . Complete installations and all spares. BC 610 E COLLINS TYPE 231D SKW tune and manual tuning. Complete
with very comprehensive spares. Full specification and price on application. Complete installations and all spares. No. 19 WIRELESS SETS. H.P. SETS and all spares R. 210
RECEIVERS with all necessary accessories.
PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, $£ 45$.
P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12
$01-7434946$

SOLARTRON EQUIPMENT SIGNAL GENERATOR TYPE CT $480.7-12 \mathrm{kMHz}$ in one range, square and pulse modulation and C.W. Eb5. CT 478. As above but $1.3-4.2 \mathrm{kMHz}$ in two ranges E 55 . indicators for ears $85 / 6$.
 Regulated and stabilised P.S.U. SRS two ranges. Variable and fixed 170 V negative output, 835 . Carriage 201. 7 MHz 'scope, $\mathbf{6 8 5}$. Carriage $30 /$ $C D$ 643.2. Single beam Laboratory Model, DC to 14 MHz price upon application. QD 910 . St
 Price on request.

DAWE STORAGE OSCILLOSCOPE complete wtih trace shifter,
complete as new, specification and complete as new
BOONTON Q METER TYPE 150A.
 ${ }^{\text {cos range. }} 0-250$
NOISE GENERATOR CT 207. 10060 M/c with built-in 8 -minu
Complete with cables. E57.10.0.
TS 418 B/USIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. E105. Carr. 30/-

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.
LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

ERS

Type MR.38P. 1 21/32in, square front

EDGWISE METERS

 Typedeep.

$50 \mu \mathrm{~A}$	60\%	500¢A 59/-
万0-0-50,	$57 / 6$	1ma $47 / 6$
${ }_{1000}^{100.4} \ldots$	$57 / 6$	300 V. A.C. . $47 / 6$

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS-DISCOUNTS FOR QUANTITIES

DISTRIBUTORS OF
 TMK mutimeters

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan,
offers excellent value for money combined with quality and accuracy of measurement. - IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED

MODEL S-260
General Purpose
Bench Mounting

1 Amp	C5.10.0	Panel Mounting
2.5 Amp	66.15 .0	1 Amp $\quad 65.10 .0$
5 Amp	69.15.0	2.5 Amp $\quad 6.12 .6$
8 Amp	¢14.10.0	Please add postage.
10 Amp.	<18.10.0	
12 Amp	¢21.0.0	
20 Amp	¢37.0.0	Special discounts for qua

ALL PRODUCTS ARE AVAILABLE AT RETAIL BRANCHES OF
G. W. SMITH \& CO. (RADIO) LTD OR DIRECT BY MAIL ORDER

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES:
Mit size $11-400 \mathrm{~Hz}$ versions for 26 and 115 v . operation with
$10 / 20.13 / 26$ and $57.5 / 115 \mathrm{v}$. control phase windings. Mil size 08, $10,11,15$ and 18 motor generators for 400 Hz operation with 26 and 115 y . energised tacho generators. Mil size $08,10,15$ and 18 cwo phase se rvomotors also avail-
able with 400 Hz windings and a limited range in 50 Hz eypes. able with 400 Hz windings and a limited range in 50 Hz Eypes.
Mil Permanent Magnet Field Servomotors Size 0, 11 , 15 and 18 with supply voltages from 6 to 50 v. D.C
Mil Tachogenerators Size 08 and 10 for 400 Hz supply. Mil size 11 Servomotor gearheads available in various
ratios from $10: 10$ to $1000: 1$.
Arices. EVERSHED ANDOMOTOR-GENERATORS We hold stocks of this well known manufacturer's items
amounting to about 100 different types-an enquiry scaking amounting to about 100 difierent types an enquiry stating
your broad design consideration wrill bring aireply by
return indicating ex stock availability of the motor most nearly meteting your requirements.
Write for our Data sheers A i31 onwards for decails of
MIL SYNCHROS AVAILABLE EX STOCK
in sizes $08,11,15,16$, 18 and 23 for 50,60 and 400 Hz operation. nechro Control Transformers
Synchro Control Transmittors

Synchro Control Dlfferential Transmitters
Synchro Torque Transmitters and Receiver
EQUIVALENT MAGSLIP ELEMENTS more suitable for educational use also in stock.
Write for our Data Sheets A 001 onwards for Synchro Write for our Data sheets
and Magslip information.

PRECISION POTENTIOMETERS

Numerous instrument types, continuous rotation potentiometers for control application and
HELIPOTS in stock. List on application.

PLUGS, SOCKETS \& CONNECTORS
 Lee. Amphenol, Transra
to Orpington or Lydd.

G \& FULLY TRANSISTORISED

G \& E BRADLEY ELECTRONIC MULTIMETER TYPE CT471B

 carriage E!

DRY REED INSERTS

 CV8615). For quantities up to 1,000 2/- each; up to 5,000
$1 / 9 \mathrm{~d}$. over $5,0001 / \mathrm{d}$. each. Minimum order 10 off. In makers Packs. SWITCHING LOGIC DIODES BAY 38 (CVB8I)
 S.T.C. T. .C.C. Dubilier, Kemer, Plessey, G.E.i. etc., send for
siock int with lowest prices for immediate deivery.
WEE MEG WEE MEGGERS Evershed in leather case ${ }^{\text {E1 }} 14.0 .0$ ((Carr. Pd.)
SNNEOSINE POTENTIOMETERS Types SCPI, SCP4, SCP5, CLR96, CLR66 in stock. 1.2 -19 Mc with charts. Brand new 15 (carriage 30/-)
MARCO NI SIGNAL GERATOR TFBOIA $10-300$
 new with spares (earriage 30/-).
SANGA M O. WESTON PU PU-standard FREQUENCY METERS S 105 । $200-2,000 \mathrm{~Hz} 95-135 \mathrm{~V}$. $£ 12.10 .0$. Post ${ }^{7 / 6}$ VOLTAGE POWER SUPPLY UNIT. Mains
LOW VOLT
Untit input, output 2 at
ing (relay incorporated), with provision ror exxernal switch-
Translstor stabilised. Housed in atreative instrument case with adequate room for other
atauipment. Brand New condition-a ridiculous price $65 /-$ equipment. Brand New condition
(carriage paid)
SUB-MINTURE 1 in. DIAMETER METERS. Arbitrary scale. Sealed. $150-0.150, \mu \mathrm{~A}, \mathrm{O}-300 \mu \mathrm{~A}$ or $0-500 \mu \mathrm{~A}$. Either
type $35 /-$ each (post and packing 26). Gertsch COMPLEX RATIO BRIDGE Model CRB28.
Six digits in phase, four digits in quadrature. Our Price $£ 200$.

Servo and Electronic Sales Letd

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockists - Aeronautical Supplier

Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/3322 19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 01-688-1512 (Croydon)

ATTENTION ALL LABORATORIES STUCK FOR R.F. PLUGS \& SOCKETS

As a result of a special bulk purchase we can offer a laboratory kit of 82 R.F. connectors and 18 accessories all separately

 kit of 32 R.F. connectors and 18 accessories all separatelypacked and plainly marked at a fraction of manufacturer's
prices. This offer is of exceptional inkerest to R. \& D. departments where having a range on the shelf is so important. The kit comprises:

> 5 VMP items- -50Ω plus 18 caps $38 \mathrm{C} \& C-50 \Omega$ $14 \mathrm{CC} \AA 5 \Omega$ 23 Micro miniature- 50Ω 250Ω Adaptors between series

AT LEAST 30 DIFFERENT ITEMS IN EACH KIT WORTH
OVER EK5 AT LIST PRICES. NOW OFFERED AT EIS
PER KIT, CARRIAGE PAID.
12 kits for the price of 10112 kits 180 farriage paid.
WE HOLD LARGE STOCKS OF R.F. CONNECTORS,
PLEASE OUOTE MANUFACTURER'S OR NATO STOCK PLEASE QU

PRECISION SIGNAL GENERATORS

 " $\quad 394-850 \mathrm{KHz}$
" $\quad 850-1.83 \mathrm{MHz}$ $\mathrm{H} 18 \cdot 3-30 \mathrm{MHz}$
 $\mathrm{D}: 30$ or 90 KHz on ranges E, F, G and H . A.M. Modulation:
$\mathrm{I}, 000,1,600$ or $3,000 \mathrm{~Hz}$. Oucput voltage: $\mathrm{I} \mu \mathrm{V}$-IV in 6 ranges and iv-10V in 20 ranges. With provision for external
modulation. In excellent condition. 65 each (carriage $30 /-$).
F.M./A.M. SIGNAL GENERATOR CT 320 As above but with additional L.F. range $35-85 \mathrm{KHz}$ and less
the $18.5-30 \mathrm{MHz}$ range (Ranges $\mathrm{A}-\mathrm{H}$) and with additional mod.
10 and 30 KHz range $\mathrm{E} ; 30$ and 90 Kz , F , G \& H . In excellent 10 and 30 KHz range E; 30 and 90 Kz
condition. $£ 65$ each (carriage $30 /$).
F.M./A.M. SIGNAL GENERATOR CT2II

High Precision Generator for range $20-800 \mathrm{MHz}$ in swo
ranges: $20-40 \mathrm{MHz}$ and $40-80 \mathrm{MHz}$. The film strip scale reads direct in MHz , each 25 KHz calibration mark being
 Deviation: $30 \mathrm{KHz}, 100 \mathrm{KHz}$ and 300 KHz on range
$60 \mathrm{KHz}, 200 \mathrm{KHz}$ and 600 KHz on range 2. Square wave output is available on both ranges. The attenuated output
is from $!\mu \mathrm{V}$ to $/ \mathrm{V}$ in 6 ranges and IV to 10 V in 20 ranges. Modulation frequencies are $300,1,000,1,600$ and $3,000 \mathrm{~Hz}$.
In excellent condition. $£ 40$ each (earriage $30 /$).

10 cm. $16116-0$

1611600
Modulated MiNAL GENERATOR SPERRY PT. NO. Modulated Microwave Generator covering the range 7.8 to
II cm ., with modulation frequency of -4.4 KC . The instru ment may also be used as a CW Generator. The precision attenuator is calibrated $0-130 \mathrm{~dB}$. Coaxial output. In excellent
condition. 650 each (carriage $30 /$).

8C107/8/9 2/9

NPN Planar transistors
LC107 $8925+2 / 5100+2 / 2$

2N4871 6/9

Motorola unijunction
$25+5 / 9 \quad 100+4 / 9$
$2 N 3055 \quad 15 /=$
transistor
$25+13 /-100+11 /=$

IRC 20

1.2 amp (similar ciocisi)
$25+6 /-100+5 /-$

2N2926

NPN Planar transisto
$25+1 / 8 \quad 100+1 / 6$
BY 127
Mullard Plastic HV rectifier 8Y100 etc.)

2N3819 7/-
Texas FET
$25+6 /-100+5 / 3$
MGA100 35/$31 F 2$ Inlra-Red Emitter a OCP 71 19/6 Mullard Phototransistor $25+17 / 3 \quad 100+14 / 9$

方

17/6 ${ }^{2 N 743}$

 $36 / 150$
$\times 36 / 300$
$\times 36 / 600$

SILICON RECTIFIERS

I Amp Miniature Moulded Junction | | Rectifiers | | 25.99 | $100+$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| IN4001 | 50 | $1 / 24$ | 2 | $1 / 5$ | 114 | in4001 IN 4002

IN 4003 IN4004 IN4005 IN 4006 IN4007 $\quad 1000$

DISCOUNT: Quaneicies or difterene IN 4000 serles may be combined to | qualify for the quantity discount prices |
| :--- |
| quoted. Example: $10 / 1 \mathrm{~N} 4001$ | IO/IN4002 1/10; $5 / 1 \mathrm{~N} 4007$ 3/4 (25 total pieces).

(In the event of any IN 4000 scries going temporarily out of stock we reserve the extra charge.)
$1000+$ and over prices on application.

ZENER DIODES

\section*{$400 \mathrm{~mW} 10 \%$ GLASS CASE. TEXAS Mfr.} | 152036 | 3.6 | volt | is 2082 |
| :--- | :--- | :--- | :--- |

 $\begin{array}{llll} & 152120 & 12 & \text { volt } \\ 152056 & 5.6 & \text { vole } & 152160 \\ \text { vole } & 16 & \text { volt } \\ 152062 & 6.2 & \text { volt } & 1 \$ 2180 \\ 152068 & 6.8 & \text { volt } & 152270\end{array}$ $\begin{array}{lllll}152068 & 6.8 & \text { volt } & 152180 & 18 \\ 15270 & \text { volt } \\ 152075 & 7.5 & \text { volt } & 152300 & 30 \\ \text { volt } \\ \text { volt }\end{array}$

NEWS NEWS NEWS NEWS
L.S.T. Electronic Components Limited are proud to announce their official now available at Industrial Ueer prices Al R CA Semi-conductorducts Integrated circuits now also available from L.S.T. at Industrial User prices. Many Mullard, General end bet, is free to all. Iskra resistors, Mullard Capacitors Veroboard, Rapaneo coils and other miscellaneous components stocked in large quantities. Official International' Rectiffer Semi-conductor Centre stockists.

INTEGRATED CIRCUITS

CA3005	23/6	CA3020	25/3	CA3028B	21/-	CA 3043	27/6
CA3011	14/9	CA3021	31/3	CA3035	$24 / 6$	CA3044	24/-
CA3012	17/9	CA3022	261-	CA3036	14/6	CA3045	2416
CA3013	21/-	CA3023	2513	CA3039	$16 / 9$	CA3046	15/2
CA3014	24/9	CA3026	20/-	CA3041	21\%	CA3048	40,
CA3018	(6/9	CA3028A	14/0	CA3042	21,9	CA3051	26/9
Application Notes for each individual type 2/6d. per copy.							
ICIO	Sinclair Audio Amplifier GE IC Preamplifier			.. \quad.		\cdots	59/6
PA230				20/-
PA234	GE IC Preamplifier GE IC I Watt Amplifier			" -	..	.,	17/6
PA237	GE IC 2 Watt Amplifier			.. .,			32/6
PA246	GEIC 5 Watt Amplifier				\cdots	52/6
PA124	GE IC Zero Voltage Switch			. \quad.	43/-
SL403A	Plessy 3 Watt Amplifier			.. ${ }^{\text {, }}$	-	"	42/6
SL702C	Plessy Linear			- \quad -		-	2016
TAA263	Mullard Linear						151-
TAA293	Mullard General Purpose Amplifier				..	.	20/-
TAA310	Record/Playback Amplifier			\cdots	-	301-
TAA320	MOS LFAmplifier		-	131-
TADI00	Mullard IC Receiver			-.		-	431-
3 N 84	GE Silicon Controlled Switch					261-

[^10]
R.S.T. Valve mail order co. blackwood hall, 16a Wellfield road STREATHAM, S.W. 16

WW-105 FOR FURTHER DETAILS

For the best electrical contacts

This latest edition of Electrical Who's Who is completely updated. Over 8,500 entries include key names in all branches of the industry: supply, manufacturing, contracting, consulting and trading-as well as in Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, firms and organizations.
Size: $9^{\prime \prime} \times 6^{\prime \prime} .512$ pages. Price 65 s. By post 69 s. 6 d Obtainable from: Electrical Who's Who, Dorset House, Stamford St., London SE1

Electrical

Bl-PRE-PAK

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP'SILICON ALLOY TO-5 CAN
Spec:-
ICER AT VCE $=20 \mathrm{v}$ 1 mA MAX.
Thase are frt.
is a direct equivalent to the
OC200/205 range.

TYPE B
PNP SILICON
PLASTIC ENCAPSULATION Spec:-

ICER AT VCE $=10 \mathrm{v}$
1 mA MAX.
HFE, 10-200
These are of the $2 \mathrm{~N} 3702 / 3$ and 2N4059/62 range.

TYPE E PNP GERMANIUM FULLY MARKED AND TESTED. STATE R.F. OR A.F. WHEN ORDERING.

NEW UNMARKED UNTESTED PAKS
integrated circuits. data \& CIRCUITS OF TYPES.
\qquad 10/-

| B8O 8 DUAL TRANS. MATCHED O/P |
| :--- | :--- |
| PAIRS NPL-SIL INTO- 5 CAN |
| Pal |

| -10 | $\begin{array}{l}\text { OC45, OC81D } \& \text { OC81 TRANS } \\ \text { MULARD GLASS TYPE }\end{array}$ |
| :--- | :--- | :--- |

200 TRANSISTORS. MAKERS
REJECTS. NPN-PNP. SIL \&
-B83 200 GERM. GERM.

B66
150
HIGH CUALI. GLPAS
DIODE M MIN. GLASS TYPE

B86

B87 100 TO OC44. OC 45 . OC 81 . ETC. $10 / /$ SILTRANS. NPN, PNP. EQUIV.
50 TO OC200/. 2N706A.

B88	50	BSY95A. ETC.
B60	$\mathbf{1 0}$	7 WAT ZENER DIODES. MIXED VOLTAGES

10/-

	16	1 AMP. PLASTIC DIODES
H0-10		

H5	16	$\begin{array}{l}\text { 1AMP. PLASTIC } \\ 50-1000 \text { VOLTS }\end{array}$

250 mW . ZENER DIODES
H6 $\left.40 \quad \begin{array}{l}\text { 250mW. RENER DIODES } \\ \text { DO-7 MIN. GLASS TYPE }\end{array}\right)$

NEW TESTED \& GUARANTEED PAKS

| 879 | $4 \quad 1$ amp. Plassic. |
| :--- | :--- | :--- | :--- |

88110	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-
889	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10
892	NPN SIL TRANS, A06=BSXZU. 2 N 2369.500 MHz .360 mW	10/-
${ }_{89}{ }^{\text {8 }} 5$	GET113 TRANS. EOUIV. TO ACY17-21 ' PNP GERM.	10/-
896	2N3136 PNP SIL. TRANS. TO- $\mathbf{1 8}$ HPE $100-300$ IC, $600 \mathrm{~mA}, 200 \mathrm{MHz}$	10/-
89810	XB112 \& XB102 EQUIV. TO AC126 AC156, OC81/2, OC71/2, NKT271. EIC	10/-
в99 200	CAPACITORS, ELECTROLYTICS. PAPER, SILVER MICA, ETC. POSTAGE ON THIS PAK $2 / 6$	10/-
H4 250	MIXED RESISTORS POST \& PACKING 2/	10/-
H7 40	WIREWOUND RESISTORS MIXED TYPES \& VALUES. POSTAGE $1 / 6$	10-
нв	BY127 Silicon Recs. 1000 P.I.V. 1 amp Plastic. Replaces the BY10D	10/-
ня 2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at.least 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev.
counter for any car.

FREE CATALOGUE AND LISTS for: -
 ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10\% CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.
P.O. RELAYS

VARIOUS CONTACTS AND
COIL RESISTANCES.
NO INDIVIDUAL SELECTION.
POST \& PACKING 5/-

8 for 20/-

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Samson's (ELECTRONICS) LTD.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-512

HEAVY DUTY L.T. TRANSFORMERS Twickenham PRI 220, 235, 255v. Secs $55 \mathrm{v} 24 \mathrm{a}, 14 \mathrm{v}, 10 \mathrm{a}, 22 \mathrm{v}$. 2 z 25 V . Ia. Panel terminal block connections.
 Heavy terminal connections 88.10 .0 . Carr. 12/6.
Parmeko Neptunc Series. PRI 200, 220,240 . Sec. tapped 3, 8 ,
12, 18v. 5a. Potted C core type. Conservatively rated. $59 / 6$. Parmeko Neptunc Serics. PRI 200, 220, 240v. Sec. tapped 3, 8,
$12,18 v, 5 a$. Potted C core type. Conservatively rated. $59 / 6$.
 Specia Clearance offer, 95 , 110 , 12 ov . Primary onty. Sec. 46 ,
29 , very conservatively rated. Size $10 \% \times 8 \times 8$ inches.
68.10 .0 . Carr, $15 /$.

SPECIAL OFFER OF GRESHAM CHOKES

 20H $350 \mathrm{~m} / \mathrm{a} .200$ ohm. "C" Core Potted Type, $69 / 6$. Carr. 12/6. 1 H 1a. I5 ohm. $69 / 6$. Carr. $15 / \mathrm{-}$
Swinging Chokes, $20 \mathrm{H} 100 \mathrm{~m} / \mathrm{a}-10 \mathrm{H} 450 \mathrm{~m} / \mathrm{a}$. $55 /$-. Carr, $10 /$ Swinging Chokes, $20 \mathrm{H} 100 \mathrm{~m} / \mathrm{a} \cdot \mathrm{-} 10 \mathrm{H} 450 \mathrm{~m}$

PARMEKO CHOKES-NEPTUNE SERIES

 I50M/A. IVIG.

[^11]MAGNETIC DEVICES 6V. D.C. CONTACTORS 3 Heavy Makes contacts. Size $2 \times 1 \$ \times$
1 in. $8 / 6$. P. \& P. 2/-.

$15=1$ $x-1$

PULLEN SHUNT WOUND 24. D.C.

 Type 610 H.P. $1 / 75$ r.p.m. 3.500 Cont./R.15 . P. P. \& P. $3 / 6$.

Type MK 3BR/74. Norm MICRO SWITCHES
Type MK 38R/74. Norm closed or Norm
Press Button. $8 / 6$ for three. P. \& P. $2 / 6$.
HONEYWELL 250v. 10A. A.C. Lever
operated, Make or break (3 tags). Three
operated. Make or break (3 tags). Three
for 12/6. P. \& P. 2/-. Many other types for $12 / 6$.
available.

NEWMARK SYNCHRONOUS

 MOTORS$220-240 v, 50$ cycles, ${ }^{3}$ watts. ${ }^{8}$ \&.p.m
Overall size $2 \times 2 \times 2$ ins. $10 / 6$. P. \& P. $1 / 6$ LONDEX 220.240 v . A.C. RELAYS Open frame type 12 heavy make con-

SYNCHRONOUS BIO-DIRECTIONAL VENNER SYNCHRONOUS $220-240 \mathrm{v}$. 50 cycles 40 r.p.m. automatically reverses wherever spindle stop is placed overall size $2 t \times 2 \times$ lins. Spindle length in. dia. 1/16th. An ideal motor for display, giving a
forward and reverse motion. $12 / 6$. P. \& P, 2/6. - CROUZET SHADED POLE MOTORS
A.C. $115 / 230 v .10$ watts, 1 r.p.m. Overall size 2 Jin . dia. depth 2 ins . Spingle tin. dia. tin. 22/6. P. \& P. $2 / 6$.

GARDNERS HT TRANSFORMERS ALL PRIMARIES TAPPED $200-250 v$.

 Sec .63 v . 1.6 a . 24 v . 0.8 a . 6.3 v . Ia. Open type. Table top connections. $65 /$. P. P. \& P. $7 / 6$.
Sec. 12 v . Ia. Twice open type T. T. connections. $17 / 6 . \mathrm{P}$ \& \& P. 3/6
 Oli-filled pootted type. $50 /-$ Capr, B/6.
Sec. $370-390-410 \mathrm{v} .6 \mathrm{~m} / \mathrm{a}$. Open ${ }^{\text {ch }}$.
$\mathrm{Sec} .370-390-410 \mathrm{v}$. $6 \mathrm{~m} / \mathrm{a}$. Open 'C' core type. 12/6. P. \& P. $2 / 6$. Sec. 12 v .6 a . and 15.6 v . 1.5 a . Fully shrouded. $57 / 6$. P. \& P. $7 / 16$.
Sec. tapped $20-40-700-760 \mathrm{v}$, $50 \mathrm{~m} / \mathrm{a}$. 6.3 v . 1.5 a . Fully shrouded.

 600 watts auto tapped 200-210-220-230-240-250v. Open
type. T.T. connections. $45 / \%$ P. \& P, $5 / \mathrm{o}$.

NO EXCUSES! NO DELAYS! FROM STOCK! VARIABLE YOLTAGE TRAHSFORLIERS
 INPUT 230 v. A.C. 50/60

 OUTPUT VARIABLE $0 / 260$ v. A.C. BRAND NEW. Keenest prices in the country. All Types (and spares) $0-260$ y at I amp. 10 $0-260$ v. at 2.5 amps. $0-260$ v. at 5 amps . $0-260$ v. at 8 amps. $0-260$ y. at 10 amps. $0-260 \mathrm{v}$. at 12 amps . $0-260$ v. at 15 amps. $0-260 \mathrm{v}$. at 20 amps. $0-260$ v. at 37.5 amps . $0-260 \mathrm{v}$. at 50 amps.... 1920 20 different types ayailable FOR IMMEDIATE DELIVEAY.

INSULATION TESTERS (NEW)

 Test 80 I.E.E
Spec. Rugzed
van de graaf ELECTROSTATIC GENERATOR
fited with
motor drive
A.C. giving
of approx. 50.000 volts.
Supplied absolutely com-
plete including acces-
sories for carrying out a
number of interesting
experiments, and full
instructions. This instru
ment is completely safe,
and ideally suited for
School demonstrations.
Prise ty/7/: plus $4 /=$
P. \& P. L't. on req.

LATEST TYPE SOLID STATE VARIABLE CONTROLLER
Ideal for lighting and heating cir
cuits, compace panel mounting Buil in fuse protection. CONTINUOUS LY VARIABLE.
Input 230v AC out put $\mathbf{2 5 - 2 3 0 v}$ 5 amp model $18,7,6$
10 amp model $\mathbb{L} 13.5$.
230 v. A.C. SOLENOID. Haavy duty type. Approx, 316 . pull. $17 / 6$ plus $2 / 6$ P. \& P. 12%. D.C. SOLENOID. Approx. IIb. pull. IO/6, lib. pull. $10 / 6$, P. \& P. $1 / 6$. ApMox. 216 pull $12 / 8$. fporox. 2/b. pull. 12/6.

36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit INPUT
220/240 v. A.C.
OUTPUT
continuously
VARIABLE 0.36 v .
Fully isolated. Fitted in robust metal case with Voltmeter, Am= meter, Panel Indicator and chrome handes. Input and Output fully fused. Ideally suited for Lab. or
Industrial use. 58 plus $40 / \mathrm{p}$. e. c .

SERVICE TRADING CO

Postage and Carriage shown
below are inland only. For below are inland only. For
Overseas please ask for
anotation. Overseas
quotation.
issua

Miniature uniselector 3 banks of 11 positions, plus homing bank. 40 ohm coil. $24-36$ v. D. C. operation. Carefully removed from equipment and
tested. 22/6. plus $2 / 6$ P. \& P.

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER

All primaries $220-240$ volt
Type No. Sec . Taps
 AUTO TRANSFORMERS. Step Up, step down A Fully shrouded. New. 300 wat P. \& P. 6/6. I,000 watt type $47 / 2 / 6$ each, P. \& P. 7/6. LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Circuic. Now supplied with new Siemens High Speed Relay for 6 or 12 volt oper-
arions: Price $25 /$ plus $2 / 6$ P. \& P. arions: Price $25 /$ - , plus $2 / 6$ P. \& P.
ORP. 12 and Circult $12 / 6$ post paid.
220!240 A.C. MAINS MODEL
incorporates mains transformer rectifier and specia relay with $2 \times 5 \mathrm{amp}$. mains $\mathrm{c} / 0$ contacts. Price ine circuit 47/6; plus $2 / 6$ P. \& P.

MBC bulb ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $62 / 15 / 0$ plus $3 / 6$

SOLID STATE INTERVALTIMER

2430 v . D.C. operation. Stabilised uni-junction Timer and S.C.R.
(30v. |Amp.), encapsulated in metal (30v. AAmp.), encapsulated in metal \geqslant Timing interval adjustable
core. from a fraction of a second to several
minutes by means of external
resistor or pot. By adding a 24v. Relay many othe remplex timing functions are possible. Price: $16 / 6$ incl cireuit, p. \& P. 2/6. Suitable relay 9/6. P. \& P. $1 / 6$.
PARVALUX TYPE SDI9 $230 / 250$ VOLT AC REVERSIBLE

GEARED MOTORS

30 r.p.m. 40 lb . ins. Position of
drive spindle adjustable to 3
different angles. Mounte to 3
ubstantial angles. Mounted on
base. Ex-equipment aluminium in first-elass running order. A really powerful motor offered at a fraction of maker's price. 6 gns. P. \& P. $10 /$
BODINE TYPE N.C. 1 GEARED MOTOR
(Type i) 71 r.p.m. torque 10 lb . in.
Reversible $1 / 70$ thh.p. 50 eycle .38 amp .
(Type 2) $28 \mathrm{r} . \mathrm{p} . \mathrm{m}$. torque 20 lb in
reversible $1 / 80$ th h.p. 50 cycle .28 amp.
The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor 115 v A.C. Supplied complete with transformer for $230 / 240 \mathrm{v}$ A.C. input
Price, either type $£ 3.3 .0$ plus $6 / 6$ P. \& P. or less transformer E2.2.6 plus 4/6. P. \& P.
These motors are ideal for rotating zerials, drawing
curtains, display stands, vending machines etc. et

$230 / 240 \mathrm{~V} 10$ RPM MOTOR

(Non Reversible)
Extremely powerful. Con tinuously rated. Offered at the low price of $35 /=$ pose paid

POWER RHEOSTATS
(NEW) Ceramic construction, windEnamel, heavy duty brush assembly designed for tontinuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm $10 \mathrm{a}, 5$ ohm 4.7 a ., 10 ohm 3a., 25 ohm 2 a ., 50 ohm l.4a., 100 ohm la., 250 ohm $-7 \mathrm{a} ., 500$ ohm 45 a ., I k ohm 280 mA ., I. 5 k ohm m
$230 \mathrm{~mA}, 25 \mathrm{k}$ ohm $-2 \mathrm{a} ., 5 \mathrm{k}$ ohm 140 mA ., Diameter $230 \mathrm{~mA} ., 2 \cdot 5 \mathrm{k}$ ohm 2 aa .5 k ohm 140 mA ., Diameter 3 tin. Shaft length $\frac{1}{2} \mathrm{in}$. dia. ${ }^{15} 5 \mathrm{in}$., 27/6. P. \& P. I/6.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / \mathrm{I} \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$ 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 /$ 5 K ohm. All at $21 / \mathrm{F}, \mathrm{P}$. \& P. $1 / 6$.
$25 \mathrm{WATT} 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ ohm. All at $14 / 6$, P. \& P. $1 / 6$.
Black Silver Skirted knob calibrated in Nos, 1-9. 12 in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now available EX STOCK supplied complete with fult data and applleatlons sheet. Price 21/- plus $1 / 6$ P. \& P. चै.M.c. ILLUMINATED
LATCHING PUSH BUTTON KEY SWITCH No. S525594 LOCK $4 \mathrm{c} / \mathrm{o}$
Complete with mounting Gracket, P ush Knoband Lenses

- state colour preferencel. PRICE $19 / 6$ each excluding bulb, Post Paid. Discount for quantities of 200 excluding

STRODELSRPDELSTRODEL

ELECTRONIC ORGAN KIT

deal present for Elec tronically minded boy. Easy to build, solid
state. Two fuil octaves (less sharps and flats) (less sharps and flats).
Fitted hardwood case using two penlite $1 \frac{1}{2} v$. batteries. Complete set of parts including speaker, etc., together with full instructions and functional, inseructive gift for any boy or girl. Price 63.0.0. P. \& P. 4/6.

50 in I ELECTRONIC PROJECT KIT
50 easy to build Projects. No soldering, no special tools required. The Kic includes Speaker, meter, Relay,
Transformer, plus a host of other components and a $56-$ Transformer, plus a host of other components and a Projects are: Sound level Meter, 2 Transistor Radio, Amplifier etc., etc. Price 67.15.0. P. \& P. 6/-.

10 in I PROJECT KIT

10 easy to build Projects including: Radio, Morse Oscillator, L F Oscillator ete. A Solar Cell is included in this Kit as alternative power for some of the circuits also a 14 -page step by step instruction leaflet. Price $\mathbf{\$ 3 . 1 7 . 6 .}$

25 ohm coil, 24 V. D.C. ope
$\mathbf{5 5 . 1 7 . 6 \text { , plus } 2 / 6 \text { P. \& P. }}$
6 BANK 25 WAY FULL
WIPER 25 ohm coil, 24 v. D. operation. 6610.0 plus 216 P \& 8-BANK 25-WAY FULL WIPER 24 v. D.C. operation, 87.12 .6 , plus 4/-P. \&

RELAYS

NEW SIEMENS PLESSEY,
MINIATURE RELAYS AT A
HIGHLY COMPETITIVE PRICE.
MINIATURE RELAYS AT A
HIGHLY COMPETITIVE PRICE.

POST PAI

$$
-P
$$

MINIATURE RELAYS

9-12 volt D.C. operation. 2 e/o 500 M. A. contacts. Size only lin. $x \frac{1}{8} \times \frac{1}{2}$ in. Price $11 / 6$ Post paid.
 SPECIAL OFFER
Relay 18124 v. D.C. 2 c/l ${ }^{3}$ Amp contacts.
400 ohm coil. NEW. $9 / 6$ P. \& P. $1 / 6$ or 400 ohm coil. NEU,
3 for $30 /-$ post paid.
TYPE A.G.C. 1 M 1812 V . A.C. ${ }^{3}$ amp contacts.
NEW $9 / 6+1 / 6$ p. \& P. or 3 for $30 /$.

RECHARGEABLE NICKEL CAD. BUTTON CELLS
 rate, complete with 200/250
unused. Price $9 / 5$ each plus
unuse. Price
units for E 1
post
paid.
V.

C̄OMPLETE NI. CAD. BATTERYOUT. FIT (EX W.D.)
2 metal carrying cases
each containing 10×1.2 each containing 10×1.2
volt $7 A H$ (12v) batteries. also $10 \times 1.2 v 22 \mathrm{AH}$
(12 z) batreries (40 bat(12v) batteries (40 batvoltage, dual meter,
thyristor controlled
 charging unit. Designed
for charging the 7 AH taneously. $100-250 v$ AC. Builtage can be adjusted between power supply for field mork try specification. Ideal makers price. 2 sets of batteries, I charging unit. The set 45 c c. \& p. $30 /-$.

NICKEL CADMIUM BATTERY

1.2 v. 35 AH. Size $8 \frac{1}{}$ high $\times 3 \times 1+$. $30 /-$ each, plus $1 /-$ P \& \& P
Sintered Cadmium Type 1.2 v. 7AH. Size: height $3 \frac{1}{2}$ in., width 2 lin . $X 1 \frac{1}{\text { In in }}$. Weight: approx 13 ozs ExTested 12/6. P. \& P. 2/6.

NEW MODEL HIGH FREQUENCY

 TRANSISTORISED MORSE OSCILLATOR Adjus table tone tontrol. Fitted with moving eoil speaker, also earpiece for personal monitoring. Complete with morse key. 45/-plus 3/6d. p. \& p.SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled,
speed adjustable 10 w p.m. to as
high as desired. Weight $2 \frac{1}{2} l \mathrm{lb}$. E $4 / 12 / 5$ post paid.

INSULATED TERMINAL8 Available in black, red, white yellow, blue and green. New

Ex. W.D. MINIATURE BLOWER UNIT 18-24 v. D.C. operation, overall length P. \& P. $2 / 6$.

ELECTRONIC BROKERS LTD

HIGH GRADE COMPONENTS

MINIRACK MULTICHANNEL
OSCILLOGRAPH. MUR 12

 Cosor. Model 1431. Complete with
motor, auto tranatormer and capacitor untt. Price.E49.10.0 plus aurringe
 As illustrated.
Price
Prinated. head io exit 10.0 plus carriage Viewing head to suit Type 'A' camera.
Prico.......... $\mathbf{~ £ 2 5 . 1 0 . 0 ~ p l u s ~ c a r r i a g e ~}$

VOLSTATS

OLype					
creme	${ }_{190}^{190 / 280}$			W.	
MT 161E			12	w.	
MTZ 161 A	190/260	50	30	50 w .	
CV 800	951130	0	5	Atw	
$\mathrm{CV}_{\mathrm{CV}} \mathrm{soj}$	190,280	50	${ }_{230}^{230}$	${ }_{150}^{50}$	
CV 150	110	${ }_{80}$	${ }_{230}$	${ }_{250}^{150} \mathrm{~W}$.	
MT 16	190/260	4	230	50 W .	
MT 14	190/2		230	${ }_{500} 150 \mathrm{~W}$	
M	190	${ }_{50}$	230	500 150	
${ }_{4 T} 202 \mathrm{~A}$	190/260	b0	230	500	
$30 \mathrm{MB7790}$ CVH coid	210/250	S0	-		${ }_{\text {c10 }} 10.10$
		50	40		
A	19	80	240	1000 W.	

GALVANOMETERS (PENCIL TYPE) SPECILow Frequency Types
Type No.

	Prequeney Resporse $\pm 5 \% \mathrm{c} / \mathrm{s}$	Terminal Resistance in Oh7ns	sensitivity for a 3 sem optical polh MA/cm	
EB/20	20	85	0.4 Micro A / cm	233
EB/35	35	${ }^{75}$	0.67 Micro N / cm	233
EB/40	40	95	0.43 Micro A/cm	33
EB/400	40	45	2.1 Micro \mathbf{A} / cm	\&33
EB/60	60	90	0.7 Miero A cm	${ }^{\text {¢ }} 33$
EB 100c	100	60	9.1 Miero A cm	E33
EB, 100	100	75	$2.7 \mathrm{Micros} \mathrm{A} / \mathrm{cm}$	233
EB/160	160	70	$5 \mathrm{Micron} \mathrm{A} / \mathrm{cm}$	833
EBB/200	200	70	21 Micro A cm	ع33
EB/300	300	120	${ }_{25} 2$ Micro Alcm	
EB/450	450	120	50 Micro A/cm	c33
Hiibh Preod	Typen			
	1,000		$0.46 \mathrm{MA} / \mathrm{cm}$	833
EBIII,600	1,600	85	$0.9 \mathrm{MA/cm}$	
EB $/ 2,200$	2.200	85	$1.9 \mathrm{MA/cm}$	
EB/ $/ 2,500$	2,500	42	$4.8 \mathrm{MA} / \mathrm{cm}$	
EB/3,300	2.300	45	6. 3 M M / cm	
EB/4,000	4,000	45	7.2 M A/em	
EB/3,000	8,000	45	$13.3 \mathrm{ma} / \mathrm{cm}$	233
KBB/8,000	8,000	45	$22 \mathrm{MA} / \mathrm{cm}$	${ }^{2} 33$
EB/10,000	10,000	45	${ }_{8}^{28} \mathrm{MA} / \mathrm{cm}$	
EB/20,000	20,000	90	$85 \mathrm{MA} / \mathrm{cm}$	C50

DIGITAL VOLTMETERS

DM2004. For DC measurement from 1 mV to I kV Sale 1999 in two manually selected stages of 0-999 and 00-1999. Input impedance Range I: IM ohms;-Ranges 2, 3 and 4: IOM ohms. Aceuracy 0.1% of reading.

DM2010. Scale 109999. For DC. measurement of 10 microvolt to 1.1 K volt. Input Z greater than 25000 M ohms. Accuracy 0.001% F.S.D. C.M.R. DC 160 dB . Parallel B.C.D. output (not isolated). Price 6500 LM902.2. Seale 1599 in 7 ranges from 0.IV to $1,000 \mathrm{~V}$. Input $\mathrm{Z} 0-1,000 \mathrm{~V} 100 \mathrm{M}$ ohms. Accuracy 0.5%. Print out facility two 50 -way sockets for Printer or remote display. 6 V DC 300 mA maximum combined outpue.

LM1420.2. For DC measurement from $01-1,000 \mathrm{~V}$ in 6 Ranges. Input Z not less than $10 M$ ohms. Accuracy 0.05% of Indication, Calibration. Internal Weston Cell. C.M.R. greater than 150 dB . Can be used as a counter or as a simple stop watch or to determine the frequency Price 6300

DM2020. Scale 19999, 10 microvolt resolutions. Accur acy 0.01%. B.C.D. output. Price $\S 325$

DM2001. Scale 19995. DC. Accuracy 0.05\%. Range 50 microvolt to 2 kV . $1 / \mathrm{P}$ impedance greater than $10,000 \mathrm{M}$ ohms. Parallel B.C.D. output or Decimal (not isolated).

AC-DC CONVERTERS TYPE $2140 /$ Al-BI and 2140/A3-83
A flexible modular system for use with a DVM for accurate mean (RMS) or true (RMS) Voltage measurements, Module AI LF Amplifier $\times 0.1$ to $\times 1,000$. Module A3 LF Amplifier $\times 0.1$ to $\times 100$
2140/AI-BI 1,000V True RMS Converter................ . . .
2140/A3-B3 200V Mean (RMS CALIBRATED) Converter.
Price C 150

(No. 5) IMPEDANCE BRIDGE TYPE TF936
 volts monitored and varisbles. Automatic detector sensitivity control. Rugged pan-climatic construction.
Measures 1 , from 1 microll to 100H. 0 Mrora 1 pF to 100 malerof and re sistance from 0.1 ohm to 10 M ohm
Price.......... 805 carriage extra

MOTORS

HIGH PRECISION MAINS $230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}$. continuonsly ratod 3000 r.p.m. Made by Groydon Engineer.
ing. Model KA Bo $\mathbf{N F B}^{\text {. Sulinable for }}$ ing. Model KA 60 JFB . Suing ble for
capsitan motor. size 8 in . long, 4it in capsinan moror. 8 ize 8 in. long, $4 t$ in
dlameter with 6 in . dismeter fange and 4 fixing hotes. f4/10/0 each. P, \& P. $25 /$ -

LOW TORQUE HYSTERESIS MOTOR MA2J Ideal for instrument chart drives. Extremely quilet, aseful in areas
where ambient noise levels are low. High starting torque enable relative high inertia loads to be driven up, to $6-02 / \mathrm{in}$. Available in

 1/80 r.p.m... $1 / 120$ r.p.m., $1 / 240$ r.p.p.
$1 / 440$ r.p.m. $25 /=$ each. P. \& 8 P. $3 /$.

HYSTERESIS REVERSIBLE MOTOR
Incorporating two coila, Each coll when energised will produce opposite rotation of output shaft. 240 V 50 Hz . \& R.p.m., i r.p.nı.
$1 / 6 \mathrm{r}$. p.m., $120 \mathrm{~V} 60 \mathrm{~Hz}, 1 / 10 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 30 /=$ each. P. © P. $3 /=$.

SYNCHRONOUS MOTORS.
Model \& 71 r.p. h. and $1 / 60$ r.p.h. self otarting complete with gearing Equipment. 40% P. \& P. $3 /$.

DATA TRANSMISSION-SYNCHROS
A selection from our wide range
Torque Recelver
Tonque Recelver 11TR4a sperry
$\begin{array}{lll} \\ \text { ACN } 1550 \text { Sperry } & 90 / 115 \mathrm{v} & 400 \\ & 26,12.3 & 400\end{array}$
Torque Receiver 11 TR 4 a Pullin
Control Tranaformer 11CT4A Muirthead ControlTransformer 11CT4a Control Tranaformer 11CT4a Control Tranaformer 11CX 48 Torque Tranamitter ACA/AE Torque Tranamitter 11MD3 Bperry
Pullin Pullin
Ketay
8mith Ketay
8mith
Muirhead Muirhead
Muirhead \qquad $\begin{array}{ll}1 / 115 \mathrm{v} & 400 \\ 6 \mathrm{v} & 40 \\ 0 \mathrm{v} & 40 \\ 28 \mathrm{v} & 40 \\ 115 / 90 \mathrm{v} & 400 \\ 11 / 990 \mathrm{v} & 400 \\ 26 \mathrm{v} & \\ 115 / 00 \mathrm{v} & 4\end{array}$ 118/90v 400
CARRIAGR

EYERSHED \& VIGNOLES

SPLIT FIELD SERVO MOTOR

SYNCHRONOUS MOTOR WITH GEARBOX Motor 11 M83 kearbor type 11 H 21 . This unit is an 8000 r.p.m., $116 \mathrm{v}_{\mathrm{m}}$ $9.92 / 1$. Motor torgma 602. in. length c/w gearboz $25 / 8 \mathrm{ln} . \times 1$ of diameter.

RAGONOT MOTOR
28PM 3 -phase $50 \mathrm{~Hz} 1 / 20 \mathrm{HP}, 1500$ DRIVES Rotor movea I in axially "Bwitch on" to take up drive and on 8witch of
odisengage drive. $45 /=$ each. P. © P. P. $10 / 2$

GENERATORS

AVO SIGNAL

GENERATOR CT 378
mentals up to 450 MHz on H Funda Scale calibration accuracy $\pm 1 \%$. continuously variable into 75 ohm 1 mikerc volt to 12.5 mV into 50 ohm using fixed attentuator pad. Hodula
tion facilities. A/F o/p facility. 0 / evel meter. Force o/p facllity. Bize

OSCILLATORS \& SIGNAL GENERATORS (I
 (T104) NEW AUTOMATLC CYCLIMG Osculator. Acos 1. Mains supply... (I108) LOW FREQUENCY DECADE OSCILLATOR D-8ab-A Max. O/p 1 W in 600Ω above 30 Hz Price 845 (H09) DECADE O8CLLLATOR D-850-B. Range $1 \mathrm{~Hz}-111 \mathrm{KHz}$ Price 2 \& (I110) L.P. OsCILLATOR a 420 FURZEHILL. Range 1.4 Hzs HONTKOR-SMTHLATOR AND AUTOMATIC FREQUENCY (H.
 (149) GADGE OSCLLLATOR M 700L SOUTHERM DISTRUMENTB. (I18 sional Genergator crenc. Range $85-30$ MHz. O/p. (I15) AUDIO FREQUEMCY GEMERATOR. Type JR. ADVANCE.rice 2 . (183) gIGNAL aENERATOR CT 480 SAMDERS. Range 7 KHz -
$12 \mathrm{KHz}, \mathrm{O} / \mathrm{p}$. $0= \pm 60 \mathrm{~V}$. Attenuation range -10 to +100 dB .
(79) WOBULATOR aM $2877 / 02$ PBTLLIP8 .. Price $£ 65$ (I42) NOISE GENERATOR CT 410 WAYNE KERR. Frequency
 FM/AM SIGNAL GENERATOR. TYpe 8G. G3D. ADVANCE. Range FM deviation $\pm 100 \mathrm{~K} \mathrm{~K}_{2}, \ldots \ldots$. (I105) STONAL GENERATOR Mod. B8A TAYLOR. Range 100

D.C. TACHOGENERATOR Type dia $3 / 16 \mathrm{in} 3 / 8$ in lo.m. Drive £16/10/0.

A.C. MOTOR GENERATOR

Type G1005 Motor 8pec, 6000 r.p.m. Torque $25 \mathrm{grn} / \mathrm{cmn}$. Control
 Priec $£ 7 / 10 / 0$ p. \& p. $5 /$.

49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 7781/2. Cables: SELELECTRO

MEASURING INSTRUMENTS AND RECORDERS

(R3) SNGLE PEN, DC MILLIAMMETER. 0-1mA. Chart width
 (R4) SINGLE PEN. DC MILLIAMMETER, $0-1 \mathrm{~mA}$ or $0-500$ micro amp. Chart width 3 in . 8 peed 1 ln . sind 6 in ./hr. Fitted alarn ($0-500$ micro A). Malns power supply.............. Price $£ 48.10 .0$ (R24) Sinole Pen. dC Milliammeter. 0.2 mA , Chart widh 4 in . Speed 1 in . and $6 \mathrm{im} . / \mathrm{hr}$. and 1 in . and $6 \mathrm{im} / \mathrm{minn}$. Clock work P9) PEN DC MICLAMMETER $0-15 \mathrm{~mA}$. Chart width 8 In peed 6 in. and 12 in./hr. Mains supply................... Price \&75 (R9) UNIVERSAL MOLTIPONNT. 1.24 point suitable quantities with slow rate of change. Chart width 12 in . Bpeed: 3 ranges, 61
ratlo. Sensitivity $0.100^{\circ} \mathrm{C}$ based on 0.75 mV FSD using Thermocouple pick up.. Tidth 64 in Speed: 20 and 720 min. fhr. Also available 0.100 $0-400^{\circ} \mathrm{C}$ using Thermocouple pick ups............ Price $₹ 79.10 .0$ (RII) CAMBRIDAE TEMPERATURE RECORDER SINGLE PEN. Circular Scale. Uses ether bulb and capillary tube. Range:
$50-300^{\circ} \mathrm{C}$. Chart dia. 108 in. ($24-\mathrm{hr}$. markings). Maing supply... \&45 (R18) MERSTED TEMPERATURE RECORDER. Two Pen $200^{\circ} \mathrm{C}$, c/w bulbs and capillary tublag. Mains supply, 24 hr . Cha (R18) FIDDEN Mk, II SERVOGRAPE, single point fitted with urret head to enable converaion to 4 point. User epacitlve sensin. nput. Chart dia. 11 in. Speed: 1 rev.ha. seasilivis 50 micro Amp R1e) KENT Mk. II SWGLE POINT, Chart width $94 \mathrm{in}$. . Bpeeds r.e. $0-600^{\circ} \mathrm{C}, 0-1,000^{\circ} \mathrm{C},-50$ to $-200^{\circ} \mathrm{C}, 0-100^{\circ} \mathrm{C}$. Also available multipoint. General purpose slow responge suitable Temperature Humidity, etc. Response s. secs. for F8D. Supply. Price 84910 (R25) SINGLE PEN. DC MILLIAMMETER, 0-1mA. Chart Fidth RE7) SINGLE PEN DC MILIIAMMETER $15-0-5 \mathrm{~mA}$. OH damped movement. Chart width 7 in. Bpeed: 1 in./hr. Clockwork drive
B-day. Terminal Resistance 100 ohms................. Price £89 (R39) SINGLE POINT. DC MILLIAMMETER $1-0-\frac{\mathrm{fmA}}{}$. Char Fddth 2 Ra. speed: 6 in./ar. Uses typewrer Marker. Main (R52) PEILLITPS 0-10mA 6-CEANNEL DC. Chart width os in (R61/1) TWO PEN. DC MILLIAMMETER. 0-2mA. Chart width (R5) SDNGLE PEN. SERVORTTER MODEL FWS. Chart width 11 in. slow speed. Response (R7) PORTABLE SLNGLE AND FOUR PEN, Suitable recording and 240 in $/ \mathrm{mln}$. : Four pen $1,1,2,4$ and $16 \mathrm{oms} . / \mathrm{aec}$. Electric pens. Mains supply amplifiers to suit.
Price....Bingle pen c/w Amp. E99; Four pen c/w Amp. £149 (R56) SINGLE PEN. DC mulikmmeter. $0-5 \mathrm{~mA}$. Chart widit (R57) SDNaLE PEN. DC MILLIAMMETER. 0 -0.mma. Chart width
8 in . Speed: 1 in. and 6 in ./hr. Terminal Reaistance 4.500 ohma. (58) SINGLE PEN. DC MILLAMMETER, $0-2 \mathrm{~mA}$, Chatit width
 $0-7 \mathrm{~kW}$. Chart width 4 in . Clockwork drive. B-day movement (R34) CAMBRIDGE SINGLE PEN STRIP CHART RECORDER metric recorder for quantikles such an temperature, moisture, ete in. Power supply $200 / 250 \mathrm{~V} 60 \mathrm{~Hz}$. Dimenslons: Wideh 16 ik in , - SNALE Pry Price 26
 tlons: Range - to to in. w.g.; Chart winth 7 ins; Chart speed Price $£ 25$ (R36) POXBORO FLOW INDICATOR TYPE ECC IND MAG tres/min mLO 2 ifb . Dimengions: Width $14 \frac{\mathrm{in}}{2}$, height 17 in ., depth 13 in. Price 835
(R37) FOSTER STRIP CHART RECORDER TYPE 3480\%. UBe h six-colour half-ineh ribbon and mechanical chopper principle

METERS

(1517) YTBRON ELECTROMETER. Mod. 33B. Electronic Inst (1614) (I506) AC/DC FOLTMETER. WHSTON ELECTRONTC. Voltag range -7.5 to 10rice $\ell 12.10 .0$ (Z508) FLUZ METER Type 15A/AP. TL,G. ELECTRIC. Range
$96-12$ gauge. In wooden case..........................ice elio (I504) VERNLER POTENTIOMETER. TyDe 4363, A. TINSLEY. (1518) WATTMETER. S 67. SANGAMO WESTON, Range $0-15 \mathrm{~W}$
1117) WIDEBAND MLLLVOLTMETER. TF 1871 MARCONL
 (II21) PORTABLE POTENTIOMETER. Type L192828 CAM-
BRIDGE, Fitted with standand cell and themometer. Price f45 (I122) POTENTIOMETER AND GALVO. Type P.3-CROYDON PRECISION. Accuracy .0001
(1123) SLIDE WIRE POTENTIOMETER. CAMBRIDGE. Voltage range $0.01: 0.1=1.0$. Fitted with Galvo. Key. Absolute voltage (132) DECADE INDUCTOMETER. Type 230A. DAWE. Range (II14) MILLIVOLTMETER. Type 264. AIRMEC. Range 0-300 (II11) VALVE VOLTMETER. Type 712. AIRMEC. Range AC
(1118) ABSORPTION WATTMETER A.F. No. 1 MR 4. Powe sealed in A.E. and dB. Price flanc (II12) STANDARD FREQUENCY CHANGER. Type 203. AIRMEC
 (194)
194) DYNOMETER. Type 3206. TINSLEY.......... Price E45 (I95) AC/DC VOLTMETER, Mod, 32. TURNER. Range Voltage
$0-300 \mathrm{~V}, 220 \mathrm{O} / \mathrm{Volt} .5 \mathrm{In}$. moving coll with mirror fcales, in wooden carrying case. Price $£ 15$
 (I92) PHASE METER. Type IT. 1-3. McMICHAEL RADIO. 0-90 (139 Range 00 mi. Price £20 181) FREQUENOX METER 1178-A. GENERAL CAMBRIDGE RADIO. Range $200 \mathrm{~Hz}-60 \mathrm{KEz}$. Input $25 \cdot 150 \mathrm{~V}$....... Price £ 230 I80) AC/DC VOLTMETER. s72.16. SANGAMO WESTON. Range oltage $0-300 \mathrm{~V}$... $£ 29.10 .0$ I69) FREQUENCY METER. ENGLISH ELECTRIC. Range $380-$ (I72) TUNTNG FORK FREQ. METER. 4 volts. \&TS. 387 . Pris SMTTES MBRTDE Range $0-200$ error less than 0.5% 6il mirror scale.. (IS19) PRECISION PEASEMETER. Model P01-HAXSON Faclities include: plase lag, phase lead; fine, medium and coars (18) DYNAMOMETER MIP Yoltage range $0- \pm 4 \mathrm{~V} ; 0-200$ | mirrur scale. FED 220 V at 400 Hz in wooden case with carr ing handle......... (II2) \mathbf{R} \& Q METER. Type 299 XTE. SMITR. Reference and quadrature reading, also readings in radians: $0-360^{\circ}$ head /las (I90) VALVE VOLTMETER. Type 6. MABCONI. Range 0.150V (150) AC/DC METER Model 44. EIIL. Range Voltages: 0.200 V
 (143) VERENIER POTEENTIOMETER-CAMBRIDGE. Accuracy

CLOSED CIRCUIT TELEYISION SYSTEM Consisting of a FARVIsor Compact Camera fully transistorise printed AMPEX Viden Monitor Type VM-9A. All solid atate. Dimen aions: Height 11 In \ln., width 9 音in., depth 6-in. Weight 1410 sLEMENs Montor Type 1F soosE, two tripods and all inter excellent condition at a bsrgain price of.................... £120 We can also offer a TV pattern generator by Video Circuite Model PG162 for checking out the above system, e/w handbook. Very
good condition..................................... Price 845 sood condition.

SPECTRUM ANALYSERS 3 Marconi. OA. 109A. Apectrum Anslyser
 continuously variable up to 30 K Hz 3 seca. Long pervatence CR tube Complete with trolley and powe upplies. Price $£ 750$.

FENLOW LOW FREQUENCY ANALYSER 0.3 Bz to 1 K Hz. Power denslty $0-10$.
$06: 0.3: 1.5: 7.5: 37.5 \mathrm{Ha}$. Price f275.

MICOVAC ELECTRONIC TEST METER
By E.I. La. Mond 22B this is precision portable inalrumeni with a wide range of facllities. D.C. volts. $0-2.4,4.8,24,48,240,480$ sirilar range to D.C. with frequency coverage from $20 \mathrm{~Hz}-20 \mathrm{M} \mathrm{Hz}$ Probe ficcreases range from $10 \mathrm{~K} \mathrm{~Hz}-200 \mathrm{M} \mathrm{Hz}$, Resistance Range
$0-1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ ohm and 10 M ohms. Fitted with main 0-1 K, $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ ohm and 10 M ohms. Fitted
P.s.U. adaptor. Metal case. Price f40. Carringe extra.

Amplifer X 0.1 to X 1000 . Module A3 LAP Amplifier X 0.1 to X 100 2140/A1-B1 1000 V True RMS Converter. Price £175. $2140 / \mathrm{A}$
E 150.

PLATINUM RESISTANCE THERMOMETER

 PROBES SOLARTRON Type NT $1188 / \mathrm{c}$ and NT 1687. Accuracy $\pm^{10} 1^{\circ} \mathrm{C}$. Probes In stainlessateel case. 1 in. diameter. Temp.$+250^{\circ}$ C. Price 812.10 each. p. \& $\mathrm{p} .3 / 6$.

MINIATURE PRECISION

POTENTIOMETERS
New 10-turm precision potantioneter
consisting of pricntiometer consisting of potentiometer, knob and
readout dial in one extremely compact assembly. A very attractive unit fimished in black plastic with white dial
Availabie in $100 \mathrm{~K}, 20 \mathrm{~K}, \delta \mathrm{~K}, 1 \mathrm{~K} .11 \mathrm{~W}$ Avaulabie in tookrace 5%. Accurac
Resistance tion
correlation of diai reading to $0 / \mathrm{P} 0.5 \%$ Weight 0.6 oz., overall length $111 / 16$ in

NUMICATOR

expectancy. Minimum striking $0-9$ digital display tuber. Long life XN 13 and XN3 amber Alter. Price $18 / 6$ each. P. \& $\mathcal{P} .2 / 6$

MERCUR

RELAYS

Type HG4B100 of an operating time resay is caport as 5 milllAmanll chassis space required renient moonting. Enviroament-free.
Tamper-proof. High senaltivity Tamper-proof. \#igh senoltivity

Type	Coil Resistance	Oontmb Rating	Cunsaet
HG2B 1004	5000 ohm	5 mmp .	2 PDT
Ha2b 1006	1300 ohm	5 amp.	2 PDT
HG2b 1010	1300 ohm	5 amp.	2 PDT
EG48 1005	1300 ohm	5 amp .	4 PDT
HG4B 1007	$\therefore 1300 \text { ohm }$	5 amp.	4 PDT

INKWELL OPERATION
20 and 40 channel Multlpen (Project ing aupply. Chart width 9 from 824 V supply. Chart width 9 in. Electro-
magnet pens. Voltage range
$6-125 \mathrm{~V}$. magnet pen
Price $£ 65$.

VIBRATION EQUIPMENT
Goodmans Vibration Control Ampliter E50L
Goodmans Vibration Phase Shitter. E $566 .$. Price ${ }^{6} 65$ Savage 'G' Ampitfers avage Acceleration Controi Unit, sGCi. 12Hz-10K Price 845 apedance PMa. Output tmpedance $600 \mathrm{~g} . .$.

PHOTOMULTIPLIER VMPII/44 (CV 2317)
by $20 t h$ Century Electronics
athode senitivity $40 \mu \mathrm{~L} / \mathrm{L}$. Operating volts for $10 \mathrm{~A} / \mathrm{L} 1100$ volts

ANIMAL SONARAY
Type 1803 B by Dawes
n inatrument for measuring the thickaltrasonicsusing the pulseecho princtpal The animal sonary was specincally
designed for the meakure of back fat lesigned for the mearure of back fat
hicknesa for use under field conditions. Fully portable weighing only 26
With handbook, price: $£ 149 / 10 / 0$.

CRYSTAL OVENS

ediron Fitted Bi-Metal Btrip $75^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C}$. Octal Base Type A $4260^{\circ} \mathrm{Fi} \mathrm{y}^{\circ} \mathrm{C} \mathrm{C}^{\prime}$ 6V AC and l2V ACor DC. Price fA/10/0 P. APe A 2260 EDN" A " 12V/24V AC/DC. Price $24 / 10 / 0$. Marmni Type F 3006-01
\&18/10/0. P. \& P. 2/6.

VARIABLE VOLTAGE TRANSFORMER
Various types avaiiable, including aingie- and Chree-phase manua or motor drive. Contact us by phone or letter for stock appraisa and delivery
 liso available 100 Hz and 400 Hz . Price

NEW COMPLETE TELE
PHONE DIAL ASSEMBLIES
Clear Perspex
$20 /-$ disals.
P.

LINEAR THYRISTER CONTROLLED LIGHT DIMMER hotoflood or apeed controller, etc. Wil mount ho atandary aocket boxes. our price 58/6. P. \& P. 3/-

AUTOMATIC CRYSTAL
THICKNESS SORTING
MACHINE Fully automatic dlce gauging and sortilig systemu, eliminates al extreme interest to manutacturers of semi at a quarter of its original list price. It is suitable for the sorting of germanium and allicon dilees. The unit can sort up to 2,400
pieces an hours. Our price $£ 450$. Furthe pieces an hour. Our price ${ }^{\text {\&450. Furthe }}$
information avaliable on request, Com plete with manual and spares.

TELEPHONES. Two-tone grey. Brand new boxed.
Curent type. 65.5 .0 each. P. \&\& P. $5 /$. . Standard GPO Dial Telephone (blac Standard GPO Dial Telephones (black) with internal
bell. $17 / 6$ each. P. \& P. 5/-. Two for $30 /$. P. \& P. $7 / 6$. MULLARD MX 115 GM TUBE with holder. Plat app 300 volts. $30 /-$ ea. P. \& P. $3 / 6$.
PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{6 8 / 1 0 / *}$ ea.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ Folt square wave o/p, for 6 to 12 z new. Bored. $11 / 6$ ea.
RACAL Diversity unit. $£ 10$ each. Carriage $£ 1$.
PYE RADIO TELEPHONES. 50W Base. Ranger 20A final and $3 / 10$. Prices less valves from $\mathbb{5 5}$. Complete, tested and working, from 88 . Callers please !
CRAMER TIMER 28V DC Sweep $1 / 100$ th sec \& sweep 60 secs. $4^{\prime \prime}$ dial. Remote control stop/start reset $£ 6.10 .0$. Omron/Schrack octal beLAYS
Omron/Schrack octal based plug-in relays. 2 pole c/o 5A, 6r only. Brand new. Boxed. $7 / 6$ each.
G.E.C, 4 pole c/o $6 / 12 \mathrm{v}$ operation 180 ohms. Platinum contacts. Brand new. Boxed. 10/- each.
Miniature STC Plug in relays Plastic dust cover, 4 pole c/o $7.5-18 \mathrm{v}$. operation. 185 Ohms $8 /-$ each.
$6 / \mathrm{each}$ per 100. 6/: each per 100
S.T.C. sealed 2 pole c/o, 2,500 ohms. (okay 24v) $2 / 6$ ea.; $12 \mathrm{v}-7 /$ - es.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base $7 / 6$ ea. Single pole c/o 680, 1.110 and 1,570 ohm coil. As new $6 / 6$ ea. Single pole
coil $6 / 6$ ea.
Brand New. Single Pole c/o (type 5A2), 2×1200 ohms. 8/6 ei. PhotoChopper type ACPC1. Size $1 \frac{8}{8} \times 1 \times \frac{q^{\prime \prime}}{}$. EI each. P. \& P. $2 / 6$.
COLYERN BROMTENTIOMETERS
ohms: 1-25:5:10: 25 ; 5 , $10 ; 50: 100 ; 250 ; 500$ ohms: $1 ; 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ ail at $2 / 6$ ea. Speclal Brand
new MORGANITE 250 K 1 in, sealed. Normal price 9/-, our price $3 / 6$ ea.
INSTRUMENT $3^{\prime \prime}$ Colvern. 5; 25; 100 ohms. 7/- ea. TRIM POTS, Palgnton-solder lugs $5,10 \& 25 \mathrm{~K}$ at 3/- each: Pins $10 ; 20 ; 50 ; 100 ; 200 ; 250 ; 500$ ohms; 2.5 and 25 K at $7 /-$ each.

ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K} ; 988 \mathrm{~K}$; $0.05 \% 7 /-$ each.
DALE heat sink resistors, non-inductive 50 watt. Brand new, 15 ohms- 6,6 ea, ; 8,2K $4 / 6$ ea. Excellent dummy load.
Wheatatone Bridge by TINSLEY type $1138 \mathbf{8 6 0}$. CAPACITORS
ERIE feed through ceramicons $2200 \mathrm{pf}-9 \mathrm{~d}$, ea.
Sub-min. TRIMMER I square. 8, 5pf. Brand new $2 / 6$ ea. Concentric TRIMMER $3 / 30$ pf. Brand new I/6 ea. ELECTROLYTICS. Brand new. $250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6$ ean.; $2000 \mathrm{mfd} 16 \mathrm{~V} 7 /=$ ea.
EHT 2 mfd 5 KV . Brand new $£ 2$ each.
VISCONOL EHT. Brand new $0.000525 \mathrm{kV}, 16 / \mathrm{e}$ ea E.H.T, $0.02 \mathrm{mfd} 8 \mathrm{KV}-6 /-$ ea.; $0.5 \mathrm{mfd} 5 \mathrm{KV}-1 \mathrm{I} /-$ ea.: $0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /-\mathrm{ea}$.
DECADE DIAL UP SWITCH. Finger-tip.
Engraved 0/9. Gold plated contacts. Size $2 t^{\prime \prime}$ high,
$2 t^{\prime \prime}$ deep $\frac{1}{2}$ wide. $30 /-$ ea. Bank of 4 with escutchin plates etc. $2 \frac{1}{2}^{*}$ high $2 \xi^{*}$ deep. $2 \frac{1}{*}^{*}$ wide. $£ 5$.
PHOTOCELL equivalent OCP $712 / 6$ ea.
Photo-resist type Care 703. (105 Case) 10/- each.
BURGESS Micro Switches V3 5930. Brand new 2/6 ea. PANEL mounting lamp holders. Red. Brand new
TRANSISTORS BC 114-NPN Low noise high gain audio, etc.; BC 116 PNP General purpose $200 \mathrm{mc} / \mathrm{s}$.
EX brand new equipment. Guaranteed perfect. Good Ex brand new equipment. Guaramteed perfect. Good
BRAND NEW BCII4 TRANSISTORS. 5/-
each; $4 / 3$ each per $100 ; 3 / 6$ each per 1,000 .
MINIATURE SPEAKERS 15 ohm $2^{\prime \prime}$ diameter
Brand new. $7 /$ each. P. \& P. $2 / 6$ each Brand new. $7 /$ - each. P. \& P. $2 / 6$ each

NUCLEONIC INSTRUMENTS

SCALER type 1000 by Dynatron. Suitable Beta/ gamma counts. Built in test signal. Calibrated adjust-
able discrimluator. Read out 2 decade neons and able discrimlnator. Read out 2
4 digit counter. Supplied \ln as new condition at $£ 5$ and 4 digit col
As above but with resettsble counter f 8 es. Carr. 30/.
Few only RATEMETER type 1161B Complete with Count. EHT available for external equipment ond to Count. EHT available for ex
3 kv . As new $£ 35$. Carr. 30/-.
Portable Geiger Counter in haversack, complete
$\mathbf{E 5}$ ea. P. \& P. $10 /$. 100 CHANNEL PULSE HEIGHT analyser type 1368B. As new 675. As above but type 1363C. ¢120. ECKO PULSE HEIGHT ANALYSER type N101
E25. Carr. $30 /-$.
CINTEL Transistorised Nucleonic Scaler with
adjustahle discriminator. 6 meter display 0.9 giving adjustahle discriminator. 6 meter display $0-9$ giving
count of 10 to the 5 . New Condition. Now ONLY $£ 18$. Carr. $15 /$ -
PULSE
Penerator type 1147A. \&6. Cair. 30/-

SPECIAL. SGS Fairchlld Silicon Epitaxial Tran-
sistor. NPN. 30 V: 300 MW . Complementary to sistor. NPN. 30 V : 300 MW . Complementary to
BC116. Guaranteed Brand New. Full Length leads. NOT rejects. Perfect. Spec. Sheet supplied, $/=$ each. minimum order £1. P. \& P. 2/
AMPEX TV CAMERA CC3324. As new 6250. New $24^{\prime \prime}$ dual standard Marconl TV modifled for above. If required 850 .

TEST GEAR

cosso

fit osclloscops
E.M.I.
SOLARTRON
$711 \mathrm{~S} .2 \mathrm{D} . \mathrm{B}, \mathrm{DC}-9 \mathrm{mc} / \mathrm{s}$. In fine

) Hatrive All carefully checked and tested. Carriage 30/- extra. MARCONI
TF 956 (CT44) Audio Freq. Wattmeter f 15 . Carr. 10/. TF 886 Magnification Meter $£ 45$ Carr. $£ 1$
TF 369 N. 5 Impedance Bridge $£ 55$ Carr. 30 TF 369 N . 5 Impedance Bridge $£ 55$ Carr. $30 /-$
TF 144 G Signal Generator. Serviceable, Clean $£ 15$
 TF 885 Video Oscillator Sine/Square $£ 35$ Carr. $30 /$ -

TF $428 \mathrm{~B} / 1$ Valve voltmeter $£ 4$ Carr. 10/.
TF $428 \mathrm{~B} / 2$ Valve voltmeter $£ 8$ Carr. $10 /$ -
Tr 428B/2 Valve voltmeter 88 Carr. 10/-
TF 934/2 FM Deviation Meter \&25. Carr. 30/SOLARTRON
Pulse generator POS $100 \mathrm{C} 50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{s} £ 18 \mathrm{Carr}$. $£ 1$ Laboratory amplifler AWS51A. 15c/s-350ke/s $£ 35$
Stabilised P.U. SRS 151A 620 Carr. 30/Stabilised P.U. SRS 152 \& 55 Carr, 30/- 6 Carr. 10/Stabilised P.U. AS 516 \& AS 517 €3, and \&6 Carr. 10/-
Calibration. Unit type AT203. $£ 25$. Carr. $30 /-$
Process Response Analyser. Fine Condition. $\$ 250$ Process Response Analyser. Fine Condition. 2250 Oscillator type OS 101. $£ 30$. Carr. 30/-
D.C. Amplifler type AA900. $£ 30$. Carr. $£ 1$.
AVO TRANSISTOR ANALYSER-£75 only Testmeter No. 1 \& 14 Carr. 15/TWO only TELEQUIPMENT DB Oscillo-
scopes type D33R. 170 each. Carr. £1. CINTEL
Wide Range Capacitor Bridge $£ 25$ Carr. 15/Stne and Pulse Generator type 1873 £25 Carr. 15/AIRMEC
Valve Millivoltmeter type 264. 3MV-1V e20 Carr. 11 Counter type 865 , 6 decades. Brikht Vertical diaplay gate facilities, Very good condition E25. Carr. 30/-

OSCILLOSCOPE CAMERA. Shackman 25 ft . Exp 270 frames. Times from $1 / 250$ to 1 secs. auto. Dalmere Fl. Focal $1 \frac{1}{1} \mathrm{in}$. with standard 4 in . to 5 in . fitting, E 30
BRADLEY ATTENUATORS 0/500 meg cycles
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}$ e25 per pair.

BECKMAN MODEL A. Ten turn not complete

E.H.T. Base B9A in Polystyrene holder with cover Brand_new. $2 / 6$ ea
ZENITH E.H.T. Tester, with Probes, Metered 0.3 .5 kv .
DVM \& RATIOMETER BIE 2116 by Blackburn DENCO s band low noise travelling Wave ampliffer
FREQUENCY Meter LM 14. Modulated version of BC 221 with charts and covers. Brand new 830 . Carr. $80 /-$ SPECIAL, FURZEHILL V200A Valve millivolt meter, 10 mv . to 1 kv . 220 . Carr. $£ 1$
FURZEHILL Valve Voltmeter type 378B/2, Range $0-80$ dbs \& 10 millivolts to 100 Volts in 5 ranges. Size $11 \times 81 \times 7^{\prime \prime}$. SIO. Carr. $15 /$. each. P. \& P ${ }^{\text {E }}$ 10/-. 22 (OT54) Volts: Ohms, DC to 200 mc / s with probe, leads, circuits etc. As new $£ 8.10 .0$. P. \& P. 10%.
HEWLETT

HEWWLETT PACKARD $5^{\prime \prime}$ oscilloscope tube with built-in graticule $10 \times 10 \mathrm{~cm}$. Length $16 \frac{1}{2}^{\prime \prime}$. Brand new,
boxed. $\& 12$ each. Carr, 30/-.

3 CM Wave Guide, some flex; Sanders Attenuators: Decca Waveguide Switches; Delay lines, etc. Phone or call.
DISTRIB UTED AMPLIFIER type $2 C / 350 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$
Gain 300, 630 each
DAWE Wide Range oscillator type 400 A .20 cs to $20 \mathrm{kc} / \mathrm{s}$ Sine wave. 500,600 and 2000 ohm. Fine condition. E20.
Carr. $30 /-$.

PAIGNTON ATTENUATORS 0.1 db , to 100 db in PISTON ATTENUATOR in carrying case. 30-140 me/s calibrated 0/70 db. 10 en. Carr. E 1
Precision THERMISTOR by YSI. 100 k . at $25^{\circ} \mathrm{C}$. Range : $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charts giving ohms for each degree over entire range. Brand new, 30/- each. CLAUDE LYONS Main Stabilizer. Type 7000 C . Input $212-252$ volts $47 / 65$ c/s. Output 238 volts 0.5% 53 amps. $£ 40$. Carriage at cost.
SERYOMEX Mains Stabilizer. Type AC7 Mk, 11. 200/250 volts $0.1 \%, 45 / 65 \mathrm{c} / \mathrm{s}-60 \mathrm{amps}$. New Condition.
ROBAND P.U. Type M39A. Stabilized 300 volts
2 amps, $£ 22$ inc. carriage. 2 amps. $£ 22$ inc. carriage.
HOLGATE 6 channel Event recorder. 1 in , or 10 in , inches per second. Size $4+\times 5 \times 8$ in. Excellent condition. 620.

HEWLETT PACKARD Recorder and Decoder type 20610. As new. Write or phone for further details.

KELVIN \& HUGHES 4 channel recorder with
amplifiers. $\mathbf{E 1 1 0}$.
SMITHS twin channel recorder. Transistorised. $£ 65$.
Various other single and twin track recorders from $£ 20$. Various other single and twin track recorders from $£ 20$. VENEER Transistorised Digital Printer. Fine condition. 660 .
19in. Rack Mounting CABI NETS 8ft. high 2ft. deep.
Side and rear doors. Fuliy tapped, complete with base and wheels. $\& 12 / 10 / 0$ Carriage at cost.
Double Bay complete with doors. Fine condition. 225. Carriage at cost.
MULLARD Transitorised Analogue to Digital ConSUNVIC DC Amplifier type DCA1. Thermo-couple, SUNVIC DC Amplifter
etc. E22.10.0. Carr. 20/-.
CINTEL Universal Counter $\mathbb{E} 30$. Cart. $30 /$
One only MARCONI TF867 Standard Signal Generator. In fine condition. $£ 120$. Carr, at cost. One only MARCONI TF144H/45. Signal Generator. $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{MC} / \mathrm{s}$. Superb condition. $£ 165$ olny.

ISOLATING TRANSFORMERS 240V in 240V 7 KVA out. As new. E 25 ea. Carr. $£ 2 / 10 /$ -
DIECAST ALLOY hoxes. Size $4 \times 24 \times 1 \frac{18}{\mathrm{ln} \text {. Drilled }}$ ends for Belling Coax socket, 3 compartments link holes between. 6,6 earh. P. \& P. $2 /$ -
AMPEX FR400 with Benson-Layner 'XY' Plotter.
Large vacuum table. Auto paper feed, f500. Large vacuum table. Auto paper feed. E500.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coil. Size $1 \frac{1}{4} \times 4 \frac{1}{2}$. As new, by Sodeco of Geneva. $\mathbf{E 2 / 1 0 / 0}$ each.
 As above but 350 ohm. ©3/10/0 ea.

METERS-Model 3705. 25-0-25 microamp. Scaled: $100-0-+100$. t $^{\prime \prime} \times 4^{\prime \prime} . \& 4$ ea.
SANGO 50 micro $a m p 3^{\prime \prime}$ round meters. Ex brand
new radiation equip. \&1 ea. P. \& P, $3 / 6$.
TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trane Standa
STEP DOWN ISOLATING trana. Standard 240 v AC to 120 v tapped $60-0-6$
As above but 500 w . $£ 4$ ear.
75 WATT Constant voltage transformer. 185 to 255 75 WATT Constant voltage transiorn
volts-240v out. $30 /-$ each. P. $\$$. P. 5/-
AMERICAN Auto step-down transformer 2 kW Built-in Transformer 0-215-250 $120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{~A}$ CT $\times 2 ; 2 \times 6.3 \mathrm{v}$ Matching contact cooled brkge rectifler $7 / 6$ each.

Parmeko/Gardners. Potted. $475-60-0-60-475$ at 160 mA ;
separate winding $215-0215$ at $45 \mathrm{~mA} ; 6 \cdot 3 \mathrm{v}$ 5A; 6.3v 075 A .5 sA . As new. 2 ea.
Gardners/Gresharm. Potted 450-400-0.400-450 180 ma ; $0-4-6.33 \mathrm{~A} \times 2 ; 0-4-6.34 \mathrm{~A} ; 0-4-5 \mathrm{~V} 3 \mathrm{~A}$. In original boxes Parm. 4 ea. gy
Parmeko $6.3 \mathrm{~V} 2 \mathrm{amp} \times 4-22 / 6$ each.
$E 3$ es.
ADVANCE Constant Voltage Trans. 1 kW .20.
ADVANCE Constant Voltage Trans, 6 volts 50 watt. As nev € 3 P. \& P. $10 /$
CHOKES, $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$: up to $120 \mathrm{~mA}, 8 / 6 \mathrm{ea}$. Up Large quantity LT, HT, EHT transformers. Your Large quantity requirements, please.
Panel switches DPDTT ex ea. $2 / 6$ ea.; DPST Brand new SPECIAL, 813 valves. Brand new, boxed $£ 2 / 10 / 0$. MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 pole,
24 way, Brand new. $f 6$ ea, P. \& P. 5%, PREM, BIand now. 66 ea. P. \& P. $5 /$
PRECISION continually rotarable stud switches. Single pole. 80 way, can be stacked if required. 63 ea. PRECISIO N rotary stud switches 2 pole 12 W size $2^{\prime \prime}$ sq-. $t^{\prime \prime}$ shaft. E2/10/0 ea.

Official Orders Welcomed from Educational Depts., Established Businesses, otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

An extremely flexible closed-circuit system made by Britain's largest manufacturer of electronic equipment. The basic system comprises two units-camera and control monitor. The units are fully transistorised with a wide use of printed circuitry making for compact size, simple installation and high reliability (both in and out of doors). High sensitivity and 625 line resolution ensure excellent picture quality under normal lighting conditions. Closed circuit television provides the penetrating, all-seeing eye that scans, inspects, controls and directs-that is today accepted as invaluable in almost every aspect of industry, commerce, transport and education. A wide range of accessories are available which further increase the system's almost limitless applications.

\section*{A. LIMITED QUANTITY OF COMPLETE SYSTEMS AVAILABLE

SYSTEM SPECIFICATION Scanning standards: 625 line, 50 fields, $2: 1$ interlace. Horizontal resolution: 600 lines. Bandwidth: $8 \mathrm{Mc} / \mathrm{s}$ over complete system. Linearity: $\pm 2 \%$ positional error. Geometry: $\pm 2 \%$ of rectangle averaged over picture. Auto Sensitivity: over the range $60: 1$ in light value-normal picture obtained with illumination of only 2 ft . candles (50% subject reflectance) at lens aperture of $\mathrm{f} / 2$. Spectral Response: Panchromatic. Ambient Temperature: Max. temperature for all units $-30^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. Power requirements $90 / 130 \mathrm{v}$. and $200 / 240 \mathrm{v}$. A.C., $50-60 \mathrm{c} / \mathrm{s}$. Consumption: 45 watts including camera. Camera Lenses: Standard 16 mm . cine lenses with "C" mounts are normally used. Accessories: See under Camera and Control Monitor.

CAMERA

Totally enclosed dustproof unit only $3 \frac{3}{4} \times 4 \times 10 \frac{1}{2} \mathrm{in}$., weighing 4 lb . Finished in two-tone blue/grey. Vidicon tube. Automatic sensitivity control enables the camera to maintain full picture quality over a brightness range of $60: 1.625$ line scanning standard $2: 1$ interlaced, frame symchronised to mains supply. 600 lines horizontal picture definition with a bandwidth of $8 \mathrm{Mc} / \mathrm{s}$. All supplies are obtained from the control monitor (consumption 5 watts).

CAMERA ACCESSORIES

Lenses: Superb quality 25 mm . (1 in.) $1 / 1.8$. " C " mount lenses made especially for this system are available, also a limited quantity of motorised 200 m lenses.
Remotely Controlled Weatherproof Pan and Tiht Heads: Pan 340° at 6° per sec., Tilt $+50^{\circ}$ at 4° per sec. $230 / 250 \mathrm{v} ., 50 \mathrm{c} / \mathrm{s}$ operated.
Remotely Controlled Pan and Tilt for Indoor Use Only: Details as above.
Weatherproof Camera Housing: Windscreen Wiper, 75 w . heater, internal circulation fan, mounting bracket for camera housing (the latter items are extras for the Weatherproof Housing):

CONTROL MONITOR

14 in . screen, overall size $16 \times 14 \times 18 \mathrm{in}$. (excluding Remote Control Unit on which Monitor is shown), weight 30 lb . Panel controls provided: Mains on/off, Contrast, Brightness. Remote Focus. Preset controls (under side panels) include: Frequency lock. Monitor height. Frame linearity. Camera height, Camera width. Auto sensitivity, Camera linearity, Cable correction, Video Gain. Beam Current, Y shift, Electrostatic focusing for camera and monitor. Additional input: Video -100 mV peak white positive into 50 ohms: Synch. 2 v . peak/peak negative. Output: 100 mV peak white positive: 2 v. peak/peak- negative. Ambient temperature range $-30^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$.

ACCESSORIES

Remote Control Switching Unit (shown under Control Monitor): Controls auxiliary functions at the camera, i.e. pan/tilt. 200m, windscreen wiper, etc. Size $18 \times 14 \times 3$ in., weight 8 lb .
Distribution Unit: Used for selecting the required picture from those available on the control monitors and distributing it to the appropriate viewing monitor. Size $19 \frac{1}{2} \times 13 \frac{1}{2} \times 8 \frac{3}{4}$ in., weight 30 lb .
Viewing Monitors: These are conventional domestic type receivers-19 in. and 23 in . models available.
Owing to the complexity and limited quantity of units available this equipment is available to CALLERS ONLY.

LASKY'S BASIC
 SYSTEM PRICE
 ONLY£135.0.0

1-camera (complete with Vidicon) less lens, 1-Control Monitor, 25 yds. of cable. PRICES FOR LENSES AND ACCESSORIES ON APPLICATION.
1 A selection of multi-channel VIEWING MONITORS are available from stock suitable for use with many existing CCTV installations.
\qquad

TEOHNICAL TRAINIING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination. ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.
- Now available-Colour T.V. Servicing

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.
CORRESPONDENCE SCHOOLS

303.309•354.356 EDGWARE ROAD LONDON W. 2

NEW RANGE SELF-POWERED PRE-AMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST
SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS; ETC. fiteed. PUSH-BUTTON SELECTION, I20db.
Bass and treble boost and curb. All inputs provided plus TAPE RECORD AS REPLAY.
GOLD AND SILVER FINISH, Mains operated. Supplied with all plugs ete. ANDUSTABLE OUTPUT UP TO I VOLT. Single mounting.

* FETY/4. Mono with buile-in mic, mixer. Accepts ony ceramic or \star FETIS4 STEREO.

Magnetic cart., input, tuner, tape, etc. Beautiful stereo sound. Price $\$ 16.10 .0$ p.p. $4 / 6$ * l.C. STEREO All lacilities plus headphone socket without amplifiers. Uses IC's,
fits, otc.
SIMPLICITY TO MOUNT-EASYTO USE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

LOOK AT THE SPECIFICATIONS!
 25 WATT \& 50 WATT

RMS SILICON AMPLIFIERS

- At full power 0.3% distortion.
- hise time 2μ sec. - At full power- $1 \mathrm{~dB} \mid \mathrm{le} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$. - Short circuit proof - Response- $1 \mathrm{~dB} / \mathrm{I} \mathrm{c} / \mathrm{s}$ eo $100 \mathrm{kc} / \mathrm{s}$. plus limiting cct. PA. 2510 transistor all sillcon differential input 400 mV sensitivity. 25 wates Rms into 8 ohms. Supplied with edse connector harness size $5^{\circ \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$.
PA 5012 transistor version 50 watts Rms into 3 eo' 4 ohms. Size $5^{4} \times 3^{\prime \prime} \times 4^{4}$.
MU 442. Power supply for one or ewo PA 25 or one PA 50.
PA 25 CT.10.0. PA so E9.10.0. MU 412 E6 All units. No soldering-just edge connectore and plugt.

BUILD THIS VHF FM TUNER
 5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND- WIDTH. PRINTED CIRCUIT HIGH FIDELITY REPRODUCTION. MONO AND STEREO. quatity, and reception of mono Tund stereo. There is no doubt about it-VHF FM sives Che REAL sound. All parts sold separately. ASK FOR BROCHURE NO. N. 3 . DECODER OR IS. (FOR STEREO)

 When in London Call in and see the new Component store

TEST EQUIPMENT

For Edrcational, Professional and Mome Constructors
special phices for quantities

AFjes $50 \mathrm{k} /$ volt mule
meter (illus.
Price 68.10 .0 o.0. $3 / 6$ Leather case 20/6.

200H 20k/volt.
Price $\mathrm{E}_{12} .17 .6$ p.p. $3 / 6$
500 30k/vole mulki-meter Price cs.17.6 p.p. 3/6. beather case 30 f -.

TML $332 k /$ vole. rice 4.2 .6 p.p. 3/ eather case 22/6.

TE65 Valve volimeter,
VMSI Transistorised AF/RF millivoltmeter. Price $\$ 32$.
TE200 RF generacor (illus.). Price cis p.p. $7 / 6$ TE22D Matching audio generator. TEIS Grid dip meter Price 12.10 .0 p.p. $3 / 6$.

TO3 Scop (illus.) 3^{3} Price 937.10 p.p. 10/

ORCRTA. WEIN BRIDGE RC AUDIO OSCILLATOR. Price ©30

PANEL METERS
 Complete range in stock. Firie List on request

CATALOGUE GONTAWS OVIR 30 PAOES OF TEST EQUNPMENT

HENAY'S STOCK EVEAY TYPE OF COMPONENT YOU NEED a CATALOGUE IS A MUSTI STOCKS CONTINUOUSLY STOEE TOOONOU ENQUIRIES INVITED FOR ALL GUANTITIES

PORTABLE
E9.10.0.
GEIGER COUNTERS Carriage 15 /-

FOR MEASUREMENT OF RADIO Activity
Supplied compler Supplied compleze haversack, cables and
probe. List price 670 . Orobe. List price $\mathrm{C70}$. tested complet. Fliminator. Plug in mains unice 73/ Dosimeters 0-50r 12/6. 0-150r 10\%

E.A.C. DIGIVISOR mk. II Ata tracecion of normal price. Oving Coil oto Display.
One inch character size: Light beam lens operated meter. Movement $500 \mu A$. Character lamp 6.3 volts. poine. Overall size: $41 x$ 1f $\times 21$.
Brand

HENRY'S LATEST

 CATALOGUE SEND350 pages fully detailed and illustrated. All audio and electronics complete with $10 /$-value discount voucher for use with purchases. Price $7 / \$$ p.p. $2 /$-.
A must for the home constructor and professional engineer
FREE
to schools, colleges and companies on written request

 EQUIPMENT Pz AS.Is... Two Z30, Pさ5 and 60 pre-amp (usually 223.10.0) (or with Pz6 in place of P25 (21)19

YOU CAN SAVE 25\%

 BRAND NEW AND FULLY GUARANTEED SP25 mkll ©II.9.6. AP7S 116.19.6. SL65 B C14.19.6. SL72 B E25. SL75 B E31. SL95 B E39. P.p. 7/6. SPECIAL: OFFER. Above supplied with cartridse 9 TAH/C diam. add $\AA 2$, magnetic 440 add $£ 3$, with $G 800$ add 7.10.0. De-luxe pllnths and covers for above. Price ce.10.0 p.p. 6%Goldring GL69 deck only. Q2 p.p. 2/6. With G800 Q2P p.p. 7/6. With G800 plinth and cover 69.10 .6 p.p. $10 /$
Garrard Model 50 and 30001 m ©.15. (fitted 9TAHC diam. carts.) p.p. 7/6. Plinths? covers $99 / 6$ p.p. $6 /-$. Also for SP25 and SL65B as above.
Goldring GL69 fited G800 with plinth/cover and cables (usually CSI). Price 48.

HI-FI equipment to suit EYERY POGKET

* PA AND DISCOTHEQUE EQUIPMENT Complete range now in stock ready to use and motular equipment
*Complete systems and individual units at specia low prices-choose from 100 selected stereo systems C_{3} ll in for a demonseration when in London, *Free 12-page stock/systems List No. 16/17. LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from (30-callers only.)

ELECTRONIC ORGANS

tMODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY BUIL
*VENEERED CABINETS FOR ALL MODELS + 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED +HP and CREDIT SALE FACILITIES When in London call in and try for yourself.

VISIT THE NEW
 DEMONSTRATION ROOMS

 (see below) HLET US quoze for all your organ componentHENRYS RADIO LTD•MAIL ORDER ANO inoustrial sales oept. 303. eogware roao londion w. $201 \cdot 723$ 1008/9 - electronic components and equipment AUDIO AND TEST GEAR

- electronic organs. public adoress DISCOTHEOUE EOUIPMENT
- high fidelity sales 309 edg ware road london w. 2 AND DEMONSTRATIONS 354. EOGWARE ROAD LONDON W. 2 TEL. $01 \cdot 4025854$
TEL. 01.4024736 TEL. $01 \cdot 7236963$
OPEN MONOAY TO SATURĐAY 9 AM TO 6 PM. THURS 9 AM TO IPM. OPEN ALL DAY SATURDAY

ELEOTROVALJE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS

 BARGAINS IN NEW SEMI-CONDUCTORSALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

IN914	1/3	2N3706	3/3	40512 45/6	BC147	3/6	BFY51	13
IN3754	4/-	2N3707	4/-	40602 9/6	BC148	3/3	BSX20	$3 / 9$
IN4148	$1 / 9$	2 N 3708	3/-	ACl07 14/6	BC149	3/6	BY164	10/-
IN5054	4/-	2N3709	3/-	ACl26 0/6	$\mathrm{BCl}^{5} 5$	101-	BY238	3/6
is940	1/-	2N3710	3/6	ACl27 6/-	BC154	11/-	Clobsi	14/6
2N696	516	2N3711	3/11	ACl28 \%-	BC157	$3 / 9$	MCI40	5/-
2N697	5/6	2N3731	24/-	AC176 11-	BC158	$3 / 6$	MJ480	21/-
2N706	219	2N3794	3/3	ACY22 3/9	BC159	3/9	M1481	27/-
$2 \mathrm{~N} / 302$	4/-	2N3819	$8 / 6$	ACY40 4/-	BC167	2/6	MJ491	30/-
2N1303	4-	2N3820	25/6	ADI40 191-	BC168	$2 / 3$	MPF102	7/6
2 N 1304	4/6	2N3904	$7 / 6$	ADI42 14/3	${ }^{\mathrm{BC} 169}$	2/6	NKT403	15/6
2 N 1305	$4 / 6$	2N3906	$7 / 6$	ADI49 17/6	BCI7	$6 / 3$	NKT405	15/-
2 N1306	819	2 N 4058	5/3	ADI61/ADI62	${ }^{\mathrm{BC} 178}$	$5 / 8$	OA47	1/9
2 N 1307	$6 / 9$	2N4059	4/3	(matched) 16/-	BC179 BC182L	6/3	OA90	1/3
2N1308	$8 / 9$	2 N 4060	$4 / 3$	AFI14 7-	${ }_{\text {BCl }}^{\text {BCl }}$ (831	4	OA91	1/3
2N1309 2 N 1613	88	2N4061 2N 4062	$4 / 3$ $4 / 3$	AFI15 AFII6	${ }_{\text {BCIP4, }}$	2/6	OA95	1/3
2 N 1711	7/-	2N4284	3/3	AFli7 6/6	BC186	$8 / 6$	OA99	
2N2147	18/9	2N4286	3/3	AF124 716	BC212L	5/-	OA200	1/21
2N2218	$9 / 3$	2N4289	3/3	AFI27 71-	BC213L	5/-	OA202	
2N2270	12/9	2N4291	3/3	AF139 9/6	BC214L	5/3	OC7I	518
2N2484	$13 / 6$	2N4292	3/3	AF180 18/6.	BCY70	5/6	TIP31A	$17 / 6$
2N2646	$10 / 9$	2N4410	$4 / 9$	AF239 9/9	BD121	$181-$	TIP32A	23/9
2N2904	111-	2N5062	12/3	ASY26 6/6	BD123	24/3	T1543	10/6
2N2924	41	2N5163	51-	ASY27 8/3	BD124	16/-	$2 T \times 300$	3/6
2N2925	4/6	2N5192	251-	ASY28 0/6	BF167	8/6	ZTX301	3/6
2N2926	2/3	2N5195	28/3	B5041 15/-	BF178	10/6	2TX302	$4 / 6$
2N3053	5/6	2N5457	9	BA102 9/-	BF180	121-	$2 T \times 303$	4/6
2N3054	$14 / 3$	2N5458	19	BA155 4-	BF194	71	ZTX304	$6 / 9$
2N3055	161-	2N5459	9	BAl30 4/6	BF195	$7 / 6$	ZTX500	51-
2N3325	$10 / 9$	40250	14/3	BAl45 5/6	BFX29	$10 / 9$	ZTX501	5/-
2N3663	11/6	40361	$12 / 6$	BCl07 2/9	BFX84	$7 / 5$	ZTX502	6-
2N3702	3/6	40362	16-	BCl 08 2/6	BFX85	$8 / 3$	2TX503	5-
2N3703	3/3	40406	16/3	BCl 09 2/9	BFX87	$8 / 6$	2TX504	12/-
2N3704	3/9	40408	14/6	8 BCl 25 12/-	BFX88	6/9	ZTX530	5/5
2N3705	3/5	40430	37/-	BCI26 12/-	BFY50	4/6	ZTX531	/19

PEAK SOUND PRODUCTS ENGLEFIELD CABINET KITS

Stereo amplifier in modular kit form 12 watts per channel E38/9/-; 25 watts E58/15/-
Cabinet kit only ©6. These prices net
As recently reviewed in Hi Fi Sound.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduc10 wates with ease. Uses ELAC 15i $59 R M 109$ speaker unit. Kit $\{13 / 12 /-$ speaker netile $<19 / 8 / 6$ nett.

STEREO AMPLIFIER SA.IO-IO.

Developed from the very successful SA.8-8 amplifier giving first-class stereo amplification featuring separate volume controls for each channel, bass and treble to 8Ω. Kit $¢ 19 / 7 / \$$ nett; buile. $\mathcal{E} 4 / 16 / 8$ nett. Suitable 8Ω wide range speakers available $\{13 / 15 \mid$ - each nett.

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity 500

700 mV for full output into 8Ω.

Power	Kit price	Suitable unreg.
12 W	including components	Dower supply kit.
25 W	$168 /-$ nett	$\mathrm{N} /-$
40 W	$190 /-$ nett	N / A
70 W	$210 /-$ nett	$115 / 1$
	$252 /-$ nett	$138 / 10$

30 WATT BAILEY AMPLIFER PACK

 Special summer reduction (to Sept. 30th 1970 only) Sensitivity 1.2 V for full output into 8ΩTransistors for one channel $£ 7 / 5 / 6$ tist, 66 only nett.
Transistors for two channels $\{14 / 11 /-$ list, $\{11$ only nett. Capacitors and resistors (metal oxide), 30% per charinel nett. Complete unregulated power supply pack, $87 / 6$ nett

INTERGRATED CIRCUITS

PLESSEY SL403A 3 watts into $7 \cdot 5$ ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett 48/6.

SINCLAIR IC. 10 as advertised, complete with instructions and applications manual $59 / 6$ nett Components pack for stereo inc. mains transformer, controls, etc., nett $44 / 15 / 0$.

S-DeCs PUT AN END TO BIRDS NESTING

Components just plug in saves
ponents. Complete T-Dec, may be temperature-cycled (208 points), $50 /-$ Also μ-Decs and 1C carriers.

ELECTROVALUE CATALOGUE

48 pages and cover well printed and excellently illustrated. Thousands of items fully detailed. POST FREE $2 /$., Overseas, post free by surface mail, add $4 /$ - if sent airmail

COMPONENT

 DISCOUNTS 10% on orders 15\% on orders for for $\mathcal{E} 15$ or more. (No discount on nett items)postage and PACKING
Free on orders over $£ 2$ Please add $1 / 6$ if order is under. Overseas orders welcome: carriage and insurance charged

ENAMELLED COPPER WIRE even No. 5WG only: 2 oz. reels: $16-22$ SWG 4/3; 2
$32,34 \mathrm{SWG}, 5 / 6 ; 36,38 \mathrm{SWG}, 6 / 3$.

TYGAN SPEAKER MATERIAL 7 designs, $36 \times 27 \mathrm{in}$. sheets, $31 / 6$ sheet Pattern book, S.A.E. plus 6d. stamp.

MULLARD polyester C280 series

$250 \mathrm{~V} \cdot 20 \%: 0.01,0.022,0.033,0.0478 \mathrm{~d}$, each; $10 \%, 0.33,1 / 5 ; 0.47,1 / 8.15,0.68,2 / 3 ; 1 \mu \mathrm{~F}, 2 / 5$ $1.5 \mu \mathrm{~F}, 4 / 2 ; 2.2 \mu \mathrm{~F}, 4 / 9$
MULLARD SUB.MIN ELECTROLYTICS C426 range, axial lead
Valves ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2.5 / 64$: 4/10; $4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 10/16; $10 / 64 ; 12.5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ;$ $10 / 16 ; 10 / 64 ; 12.5 / 25 ; 16 / 40 ; 20 / 16 ; 2064 ; 25 / 6.4 ;$
$25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 40 / 2.5 ;$ $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$ 200/6.4; 200/10; 250/4; 320/2.5; 320/6.4; 400/4; 500/2.5.
LARGE CAPACITORS
High ripple current types: $1000 / 25,5 / 6 ; 1000 / 50$, 8/2; 1000/100, 16/3; 2000/25, 7/4; 2000/50, 11/4 2000/100, 28/\%; $2500 / 64,15 / 5 ; 2500 / 70$, ib/6; $\begin{array}{ll}5000 / 25,12 / 6: 5000 / 50,21 / 11 ; \\ 10000 / 15, ~ & 17 / \% \\ 10000 / 25,24 / 6 ; 10000 / 50, & 4 / /=\end{array}$ $10000 / 70,61 \%$

MEDIUM RANGE ELECTROLYTICS

Axial leads: 50/50, 1/7; 100/25, 1/3; 100/50, 2/6; $220 / 25,2 / 3 ; 250 / 25,2 / 6 ; 250 / 50,3 / ; 500 / 25,3 / 9:$
$500 / 50,4 / 6 ; 100 / 25,4 /-1000 / 50,6 /-; 2000 / 25,1 /$.

SMALL ELECTROLYTICS

Axial leads: $4 \cdot 7 / 10,4.7 / 25,5 / 50,1 /$ each; 10/10 $47 / 25,100 / 10,220 / 10,1 / 3$ each.

 COMPUTER SALES AND SERVICES
 49-53 PANCRAS RD., LONDON, N.W.1. Tel: 01-278 5571 (low cost computers and peripherals)

ELLIOTT 803 DIGITAL COMPUTER

This is a well proved solid state digital computer, with well over 200 systems sold in the UK and abroad. Reliability has been proved by long periods of operation. It has many advantages, such as low running costs, compact design, automatic programming, extensive libraries of programmes available and a wide variety of input and output devices and auxilliary equipment can be coupled making this system suitable for use in all classes of work.

Typical

Configuration:

Central Processor with 4096 Core Store. Type 3 Paper Tape Station. One Tape Reader 500 characters per sec. (Elliott TS/93). One Tape Punch 100 characters per sec. (Teletype BRPE E11). Keyboard console and associated desk. Creed Teleprinter. Automatic Floating Point Unit.

PART USED COMPUTERS AVAILABLE SHORTLY

1CL 1500; PDP 8F; IBM 1440; IBM 1401: SDS 930; ELLIOTT 803; EMIDEC 1100; HONEYWELL 200; NCR 400.

ICT HOLLERITH

Type 029.80 column Punch A well-proven electro-mechanical card punch, with dupllcatIng, spacing, and skipping facilities. Two types of keyboard are avallable for this model Alpha/Numeric and Alphabetic.
The alphabetic largely resembles a typewriter keyboard, enables alpha punching by the operation of one key.
Supplies 110 v . D C. mains for card feed motor FEATURES: Motor cut-out switch for clearing card jams. Stop Lever for stopping card at the 80th column. Also available H129 card verifiers.

${ }^{3} \mathrm{in}$. Highest grade $2,400 \mathrm{ft}$. £3. 0.0 $\frac{1}{\frac{1}{2}} \mathrm{in} .10 \frac{1}{2}$ in. dia. spool and cassette. $£ 1.10 .0$ $\frac{1}{2}$ in, $8 \frac{1}{2}$ in. dia. spool and cassette 1 in . metal $10^{\frac{1}{2}} \mathrm{in}$. dia. spool and cassette. $\frac{1}{2} \mathrm{in}$. N.A.B. centres $10 \frac{1}{2}$ in. spool only.... f1.10.0 E1.10.0 £2.10.0 £1. 0.0

IBM 151 NUMERICAL VERIFIER Has been desigued for use on a
table. It can be used it conjunctable. It can be used in confunc-
tion with the onl Eleetrical
Tlon Puanch. Uses an electriectrical Key-
toard. Cards being fed, and Puoch. Uses an electicic Key-
boand. Caras being fed, aud
removed manas.l.
A Akip Bar can be fitted to A Akip Bar can be fited to
control Bk ipping over card areas whlch need no verificatlon. Alphatetie and spee clat chn ract tr
information can be verifed using linforrostion can be verifent using
a multiple punch procedure.

HAND PUNCHES-80 COLUMN

The Punch

Is a table-mounted model punch.
For the Serial Punching of For the serial Peduching of sancha.
numeric Data, Alpha or Multi numeric Duata, Alpha or Multi
Hole Punching is made by Hope Punching is made by
depressing two or mare keys simultaneously-

COMPLETE AIR CONDITIONING SYSTEM AVAILABLE BY WORTHINGTON U.S.A. COST OVER £8K WHEN NEW. P.O.A.

DATA DISK

The Mark IV Data Disk Handier is a self-contained magnetic disc memory unit designed for integration with small computers or other digital systems.
The handler's salient features include: random access: high density contact recording ; interchangeable disc cartridges ; write lock-out; air filtration in critical areas.
The mechanical assembly, alone, can be supplied for rack mounting or custom installation.

COMPUTER MULTI-CORE CABLES $12,14 / 0076$ copper cores, each one insulated by coloured
P.V.C. then separately screened, the 12 metalbralded cores aid together and P.V.C. covered orerall making a cable luat length cut. Other aizes available 7 core $5 /-1 t$., 6 core $4 /-\mathrm{ft}$. 4 core $3 / 6 \mathrm{ft}$.

AC FAN

Bmall but very powerful mains motor with $5 \cdot \mathrm{in}$. blades, Idea tor cooling equipment or as extructor. Sllent but very effcient. 17/6, post 4/6. Mounts trom back or front with 4 BA screws.

Double Leaf Contact

Very slight pressure closes both contacta. $1 / 3$ each. 12/ doz Plastic push-rod sultable for operatins.

PAPST MOTORS

 working, but two of these work ideally together ofl our standard 240 volt mains, $\begin{aligned} & \text { atremely qually beautiful motor, } \\ & \text { munning and reveraible. }\end{aligned}$ 30/- each. Postage one 4/6, two 6/6.
E.M.I. MOTOR

$230 \mathrm{v}, 50 \mathrm{~Hz}$. Capacitor start. Reversible. Normal construc thon. Size: 3 hin, dia. $x 2$ in. deep. Approx. $1 / 40$ th h.p

INSTRUMENT KNOBS

in dia. head with 3 in . shank for flatted with metal disc, 1/-each. 11/-dozen
MIDGET OUTPUT
 TRANSFORMER
 Ratio $140: 1$. Size approx. Iin. $\times y$ in. \times
inn., primary impedance 450 a . Connec-
tion by flying leads. $4 / 6$ each. $48 /=$ doz MIDGET OUTPUT Rutio $80: 1$. size approx. $1 \mathrm{kin}. \times 1 \mathrm{lin}$. \times in. Primary impedance 1320 . Printed CHART RECORDER MOTOR Small (2in. diameter approx.) instrument motor with fixing box given 1 rev. per 24 hours. $19 / 6$. IGNITION (E.H.T.) TRANSFORMER
 I2-VOLT EXTRACTOR FAN BY DELCO
 TRACTOR FAN BY DELCO
Ideal for ventilation in caraven, car or
boat. 6 -bibded 5in. diameter fan tnatle boat. 6 -bisded 5in. diameter fan inalde
heavy duty cyllider with 3 -point faxing
flange. 5 in. diameter fixing hole. length approx. 8 lin. Exceptional har
gain. $27 / 6$ plus $5 / 6$ post and insurance 4-PUSH SWITCH
4-PUSH SWITCH
Ideal to control fan heater, etc. 3 on switches and 1 off.
Contacts rated at 15 amp on all switches. Price $4 / 8$ each. 48/- dozen.

MAINS TRANSISTOR POWER PACK
Designed to operata transistor sets and amplifiera. Adjust
able output 0 Ev ., 9 v ., 12 volts for up to 500 mA (class \mathbb{B} wrorking). Takee the place of any of the following batteries mains tranaformer rectifer, smoothing and load resigon condensera and instrtictions. Real snlp at only 16/6, plas $3 / 6$ postage.

ISOLATION SWITCH 20 Amp D.P. 250 Volts. Ideal to control Neon Indicator showe when current is
,

3 DIGIT COUNTER

For Tape Recorder or other application,
re-settable by depressing button. Price $5 / 8$.

5A 3-PIN SWITCHED SOCKETS An excecllent opportunity to
make that bench dis board you bave make that bench dise boord you have
needed or to stock ap for future fobs. This needed or to gtock up for future jobs. This
month we offer 6 Brtish made (Hicratt) bakelite fush mounting shuttered swith
socikets for ouly $10 /-$ plus $3 / 6$ post and socirets for only $10 /-$ plus
linsurance. (20 boxes post free.)

MOTOR WITH GEARBOX

Very powertul ${ }^{7}$ r.p.m.., operates
standard A.C. maing. 29/6. plus $3 / 6 \mathrm{P}$. \& P. 230 VOLT

TRANSDUCER

Made by Acos, reterence No. 1.D. 1001. For measurng vibration, etc... to be used ln price $E 5$. Our price $49 / 6$. Brand new and
unued.

THERMOSTAT

Continuously varliabie $30^{\circ}-90^{\circ} \mathrm{C}$, Has senaor burb
 planger move oped and in addition a planger moven trongh appron. \#in.
This guld be user to open valve on
ventilator etc. $29 / 6$ plus $4 / 6$ p

230 VOLT MAINS OPERATED KLAXON HORN This is amsill (about 10in. long) but has a very plercing and
effective note hence it would make good Fire Alarm or Works effective notch hence it would make eood Pire Alarm or works
stop sind start siren. Aseo use ful for instance to gcare birds ont crops. Made for the G.P.O. so obviously best quality. slightly
used but $\mathbf{O K} .39 / 6$ plus $1 / 6$ p. p.

DISTRIBUTION PANELS

Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$
sockete in metal box to tikk atandard 13 amp funed
sockets in metal box to tike standard 13 amp fused cable. Wired up ready to work, $39 / 6$ less plug ; 451 - with fitted 13 amp plug; $47 / 6$ with fited 15 amp plug, plus $4 / 6$ P. \& I.

VARIAC CONTROLLERS

With these you can vary the voitage applled to your circult from zero to full mains without gencrat ing undre heat. One obviou ex-equipment luol. little used and in every way as good is new. exequipment hul. little used and in every way as gnod ais new.
Any not so. will be exchanged or cash refunded. 2 atup $£ 4.19 .6$.
$4 \mathrm{amp} £ 6.19 .6 .8$ amp $£ 9.10 .0$. Carriage extra

25 Amp Electrical Programmer

Learn in your sleepl Have Radio playing and kettle boiling a you awake - swith-on lights to ward off intruders - have warm house to come home to. All these and many other things you
can do if you invent in an Electrical Programmer. Made by the famous Smiths Instrument Company. This is easentially $230 / 240$ volt, mains operated Clock and a 20 amp 8 witch, the
 sitch-off time of which can be delayed up to 12 hours (continously varisble not stepped) Similarly the switch-on time can be delayed. This is a beautiful unit; size $5 ; \times 34 \times 2 \nmid i \mathrm{in}$,
deep. Metal encased, glass fronted with chrome surround. Ofered at $47 / 8$ plus $3 / 6$ postage and insurance.

RE-CHARGEABLE TORCH
Neat flat torch, fits unobtrusively in your pocket, contains and charges from our standard $200 / 240$ volt malns. American made, sold originally at over 4 dollars. Our price ouly
$19 / 6$ each.

VARYLITE

Will dim incandeacent lighting up to 600 watt from fuil brilliance to out. mayy be fitted in place of this, or mount on surface. Price complete fo heay mar be futed lu place of this, or mount
plantic box with control knob $\& 3.19 .6$.

- BARGAIN OF THE YEAR
 ASON BARGAIN
TANGENTIAL HEATER UNIT
Thls heater unit the very lateat type, most Thls heater unit is the very lateat type, most efflelent, and quiet running. Is as fitted in Hoover
and blower heaters costing $£ 15$ and more. We have and blower heaters costing $£ 15$ and more. Wo have
is few only. Comprises motor, impelier, 2 kw .
element and 1 kW . element allowing switching 1 ,
 2 and 3 kW . and with thermal safety cat-out. Can
be fitted into any metal line csse or cabinet. Only
need control switch. $59 / 6$. 2 kW . Model as above need control swltch. $59 / 6$. 2 kW . Model as above
except 2 kilowatts $39 / 6$. Pobtage and insuradce
6/(i. Don't misa this.

HI FI BARGAIN
FULL F1 18-INCA LOUDSPEAKERR. This ts undoubtediy one of the finest loudspeakers that we have ever offered, produced by one of the country's
most famous makers. It has a die-cast metal frame and ja strongly recommended for Hi-Fi losd and Rhythra Guitar and public address.

DRILL CONTROLLER

Electronically chanigen speed from approximately 10 reva, to maximum, Full power at all speeds by Hnger-tip control. Ki includes all parts, case, everything and full instructions $19 / 6$,
plus $2 / 6$ post and insurance. Made up model also available
$37 / 8$ plus $2 / 6$ p. \& p.

A INTEGRATED CIRCUITS

A parcel of integrated circuits made by the famous Plessey Company. A once in a lifetime
offer of Micro-electronle derices well below cost of mannfacture. The parcel cont all new and perfect, ifst grade device deffiltely not sub-standard or second a. The ICs are all slogle sillcon chip Geeneral Purpose Ampliferas. Regular price of whlch la well over $\& 1$
efich. Full circuit details of the ICs are included and in addition you will receive s list of eatch. Fifer circuit detains of the ICs are included and in addition you will receive s list o
50 diferent ICs avalable at bargain prices 5s. upwards with circuits and techaical data of each. Complete parcel only 81 post paid or LIst and all technical data.

MAINS TRANSFORMERS

Note all these are frst grade Transsormers and all have normal 200/240 volt, 50 cycle primary
Mains Tranalormer Type No 56786
Upright mounting, size $3 \times 2 \frac{24}{} \times 2 \mathrm{in}$. approximately. 1.5 gmp . Earth screen between primary and secondaries this transformer will power a 5-5 watt atereo amplifier
(circuit diagram available, price 2/8). Susitable output trans(circuit diagram available, price 2/8). Suitable output trang-
former is type 56787 described below. Our price $17 / 6$. Proser $4 / 6$ post.
Mains Transto
Mains Transformer Type No, 58733
Chassis mounting type, size approximately $3 \times 2\} \times 3$ in., 1.5 amp . Earth screen between primary and secondaries This will power a 5 watt ampliffer (circuit araitable 2/6). Matching ORT Mains Transformer Type No. 56695
 2 secondsries $275-0-275$ at 90 mA and 6.4 volts at 3.1 mA , There is a ac reen between primary and secondaries. Thelow. Price 19/6 plua $4 / 6$ post.

OUTPUT TRANSFORMERS

OPT. ret. 58694
Chassis mounting-size $2 \times 2 \times 2$ in. approxitnately 7 watte A push pull transformer for matchlogg 2/EL84 or Bimilar
valves to 15 ohm Loud Bpeaker. $14 / 8$ no extra for post if valves to 15 ohm Loud speaker. $14 / 6$ no extra or poit if
ordered with Transformer $5669 \overline{0}$. Circuit diagram of amplifier atailable, price 2/6.
OPT. +1.58787
Upright mounting, size approxlmately $2 \frac{7}{6} \times 2 \times 2 \mathrm{in}$, Matching impedance 60 ohms to 15 ohms. 5 watts output
using transistor type ADl 40 (Circuit diagram available price $2 / 6$). Price $8 / 8$ each, no extra for postage 11 ordered With mains transformer type 56786 .
OPT, ref. 525004
 otherwise this is as 56787 . Price $8 / 6$
OPT. ref. 58734
Chassis mounting, aize approximately $2 t \times 2 \times 14$ Chassis mounting, aize approximately 2 t
Primary 500 ohm centre tapped. Ratlo $27 / 1.5$ watts output using twin ELL80 or similar. Price 12/6. No extra for portage if ordered with 56733 .
HEAYY DUTY MAINS TRANSFORMER 30V. 37A. Primary tapped $200 / 240$ in 10r. steps. A really
beautiful "Cr core transformer. Made by Parmeko, impregnated and varnished. Weight approx. 50 lb ., size approg 8 in . wide 64 in . deep and $8 \$ \mathrm{ln}$. high. Metal framed for tree standing and dited with. E.B. acreen. Prohably priced
E 40 - 500 from Parmeko. Ex equipment, but perfect, $£ 17.10$ £40-£50 from Parmeko. Ex equipment, but perfect, $£ 17.10$
each, plus carriage at cost.

50 CYCLE TO 60 CYCLE INVERTERS For operating Amserican instruments and other equipment
made for 60 cycles 115 F . from $230 / 24050$ eycle mains. mace untts have an output of 115 volts A.C. and will handle a load of up to 100 watts. These are precision made and frequency ts exsctly 60 c.p.s Adjustment of the frequency is by s knoh on control panel. Input by 3 core output from 3 pin socket. Originsl cout of this
quantity available $£ 17 / 10$. each.

MAINS OPERATED CONTACTOR 220/240v, 50 cycle solenoid with laminated core 80 sery Extremely well made hy a Gernan Electrical Company. Overall size $2 \downarrow \times 2 \times$ 2in. $19 / 6$ each.

SIMMERSTAT CONTROL SWITCH Comblned on-off swich and heat on regulabor intended for automatic temperature regulation or electric hot plates
up
3 kW
. Official rating 15 A
$200-250 \mathrm{v}$
A.C. size 2×1. 2 in . deep. Single hole fixing 12/6. Knob 4/6 extra.

ELECTRIC BLANKET BARGAIN
Famons Norvic blanket claimed to be the most reliable in
Britain. We offer at less than wholesale price "Corona de luxe". model, this has flame resistant super safe elementdouble bed size of three heats- in presentation box showing regular price £9.3.9-we offer at $£ 4.19 .6$ post and ins. paid.

TOGGLE SWITCH
smp 250 v , with fixing
ring. $1 / 6$ each $15 /=d$ oz

AUTO-ELLECTRIC CAR AERIAL
with dashboard control switch-fully extend-
able to 40 in, or fully retraetable. Buitable for 12 v
able to 40 in. or fully retraetable. Suitable for 12 v
poitive or negative earth. Supplied complete
poaltive or negative earth. supplied conaplete
with fiting instuctions and ready wired dash-
board switch. $£ 5.18 .6$ plus $5 /$ post and las
$=5=2$ MICRO SWITCH
amp. changeover contncts. $1 / 9$ each
$18 /$ doz. 15 amp model $2 /$ eat. or $21 /=$ doz. MINIATURE EAR PIECE
As used with imported pocket radlios. $1 / 6$ each $15 / \mathrm{d}$ doz. 15/20 AMP CONNECTORS
(4) AMP 13 AMP FUSED SWITCH
 Made by G.E.C. For connecting water heater etc., into 13 amp ring matr. Plush
type $3 / 6$ each $30 /=$ doz. Metal boves surface mountling $1 / 6$ each $15 /-$ doz 13 AMP SPUR UNIT
By a.E.C. for connecting clock, etc., to ring main. Pull-
out fuse. Flush mounting. Creamn, $2 / 8$ each; $24 /-$ do

MAINS MOTOR

Precision made-as used in reoord
decks and tape recordera-ideal
for extractor fans, blower -ideal also New and perfect. Snip at g/B. Postage MINIATURE SWITCHES
2 pole, 2 why- 4 pole, 2 way- 3 pole, 3 way4 pole, 3 way- 2 pole, 4 way- 3 pole. 4 way 2 pole. 6 way-1 pole, 12 way. All at $3 / 6$ MINIATURE SLIDE SWITCH 3 pole change-over. $3 /-$ each $30 /-$ doz.

Where postage is not stated then orders
over 65 are post free. Below $K 5$ add $2 / 9$.
Semiconductors add 11 post Own 5 . Semi-conductors add. $1 /-$ post. Over Ei i
post free. S.A.E. with enquiries please.

R.S.C. HIGH FIDELITY STEREO PAGKAGE OFFEBS

Matching as recommended for optimum perormance. Compare prices with equipment and
cabidets purchased individually. abide purchased ind
\star Super 30 Amplifier ($15+15 \mathrm{~W}$ att) in veneered housing. * Goldring Transcription Turntable on Plinth. \star Shure or Goldring Magnetis Pick-up Cartridge. \star Pair of Stanway II Loudspeaker Units.
Special total price. Four fully wired units ready to ""plug-1n", 86 GIS. Send S.A.E. for leaflet.
EXTREMELY ATTRACTIVE PLINTHS initahed in Teak of Afrormosia veneer. Tinted Trangparent
Plastic cover.

'Package' prices apply providing
all lndividual units are purchased all individual units are purchased
from any branch within 3 months from any
(see leaflet)

\star Super 30Amplifier ($15 \star 15$ Watt) in veneeredhousing. $\begin{aligned} & \text { Special totar price. } \\ & \text { Pour full wired unite }\end{aligned}$ t Garrard SP25 Mk. II Turntable on Plinth. Goldring CS90 Ceramic diamond tipped Cartridge. A Pair of Stanway II Loudspeaker Units.
AUDIOTRINE HI-FI SPEAKER SYSTEMS

76 GnS .
\star TA $126.5+6 \cdot 5 \mathrm{~W}$ Amplifier in veneered housing. \star Pair of Dorchester Loudspeaker Units. \star Garrard SP25 Mk II 4-speed Player on Plinth. \star Goldring CS90 Ceramic P.U. Cartridge with diamond Stylus. Special total price. 53 Gns Transparent Plastic cover 3 ens extr Terms Dep. $£ 7$ and 9 monthly payments £8.2.8 (Total 59 Gns .) Carr. 25/-
 Carr. 25fTransparent cover 3 gns. ex
Termss: Dep. $86 / 0 / 0$ and
(Total $55 / 9 / 9$. Cam. 25/- \qquad

OTRINE HIGH FIDELITY
LOUDSPEAKERS Heavy con-
struction. Lstesthigh effleiency ceramic
magnets. Treated Cone urnound or "Lb"
indicates Roll Rubber auround. "D" Indicates Roll Rubber aurround.
Indicates Tweeter Cone Indicates Tweeter Cone providing
extended frequency range up 015,000 extended frequency range up to 15,000
c.p.s. Exceptional performance at low
cont. Impedauce 3 or 15 ohins.

 Cabinets of latest styling Satin Teak or Atrormosis veneer.
Acoustically lined or tilled with acoustic damping material. orted where appropriate. Credit terms arnileble.
 dance 3 or 15 ohms. Carr. $7 / 6$
Stanway 11 Size $20 \times 10 \frac{1}{2} \times 91$ in. approx. Rath highly fexible cone surnound, lous thro With highiy texible cone surround, long throw
voice coll and 11,000 line magnet. High fux
tweeter. Hand some Scandinavian design cabj- net. Range $35-20,000$ e.p.a. Impedance $15 \mathbf{0}$. 16 GMS . R.S.C. TA6 6 Watt High Fidelity Solid State Amplifier
20-250v. A.C. minioperated
Frequency . Response 30-
20,000 c.p.s. 2dB. Har
monic D.atortion 0.3% at
1,000 o.p.s. Separate Base mad Treble 'lift' and 'cut' controls. 3 input sockets for
Mike, Grsm, Radio or Tape. input selector swith. Output for 3 -15 ohra speakers. Mar. semsitivity buvV,
Ontput rating I.H.F.M. In fully euclosed enamelled case, $\begin{aligned} & \text { approx. } 9 f \\ & \text { facia plate } 10 t \\ & \text { at }\end{aligned} \times 3$ in, and matching knobs. 7 GMS . diagrams and inatructions.
OR FACTORY BULLT with 12 months g° Cee. \&8. 8.19 .9 HIGH QUALITYIR.S.C, COLUN
LOUDS PEAKERS, SPEAKERS In teak or PEAKERS Covered in Rexine and

Attractlve silver finisbed metal lacia plate and matching FULL WIRED
control knobs. Complete KIT of PARTS NCLUDING FULL
PRINTED CIRCUTT and comprehensive wiring diagram and instructions
\&. Or Deposit 37/6 and 9 monthly payments of 29/2 (Total \&15).

PAGKAGE OFFER BAVE E3. Above G66 assembled in cabinet
or Deposit \&5 and 9 monthiy payments $57 / 6$ (Total $\mathrm{E} 30 / 17 / 6$).
R.S.C. AIO 30 WATT ULTRA LINEAR

 Suring Bass, etc. Gram, Radio or Tape. Beserve ITEn, Guitar, for Radio Tuner. Two inputs with associated volume controls so that two separate inpats such as
Gram and "Mike" can be mixed. 200 -250 Gram and "Mike" can be mixed. $200-250$ F., A.C. mains. For 3 \& 15 ohm speakers. Coraplete
Kit parts wiring diags., instructions. Twin-handed pertorated cover $35 /-$ Or
factory built with EL3i output valves snd 12 months guarantee for 18 kns. 15 Cns. Tech. figs. apply to factory built units. Carr. 12/6.

TERMS: Deposit 23.9 .0 and 9 monthly payments of 28 (Total $821 / 9 / 0$). Send S.A.E. for leaflet | L12 12 in. 20 Watt Model. TYPS C412s, 50 watts. |
| :--- |
| 15 ohm, size $18 \times 18 \times 10$ Fitted four $12 \ln$. 11,000 |

 R:S.C. BATTERY/MAINS CONYERSION UNITS R.S.C. TFM1 SOLID STATE VHF/FM RAD/O TUNER
\& High-sennitivity, \& 200-250v. A.C. Mains operation.
t Sharp A.M. Rejection.

READE FOR USE, 69/月.

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"

Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers-and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms.
Dimensions: $21 \mathrm{in} . \times 9 \frac{1}{2} \mathrm{in} . \times 9 \frac{1}{4}$ in Choice of finish: Teak or walnut.

Recommended Retail Price $\mathbf{f} 29$

1. Studio quality high frequency unit (HF1300 Mk. 2)
As used in B.B.C. Monitors
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) —plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3}{4}$ " with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to elimin ate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

It's an interesting story-aind worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems.

Celestion
 Studio
 Series
 Loudspeakers for the Perfectionist

ROLA CELESTION LIMITED. FOXHALL ROAD, IPSWICH, SUFFOLK. 1 P3 8JP, ENGLAND
Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365
WW-108 FOR FURTHER DETANS

LATEST RELEASE OF
 RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $\mathbf{£ 6 0}$, carr. £2.
*SET OF VALVES: new, $£ 3 / 10 /-$ a set, post $7 / 6$; SPEAKERS: new, $£ 3$ each, post $10 /$. *HEADPHONES: new, $£ 1 / 5 /$ a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils $L 5$ and 6 and $\mathcal{L} 7$ and 8 . Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24 ;$ and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /=$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd} ., 600 \mathrm{v}$., £2 each, 4/-post. Output transformers 901666-501 27/6 each, 4/- post.

* Available with Receiver only.

If wishing to call at Stores, please telephone
for appointment.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $194 \times$ $12 \pm \times 10 \mathrm{in}$. Secondhand condition. $£ 25$ each, carr. 30/-

LAVOIE PORTABLE ABSORPTION FREQUENCY METER TYPE TS-127/U: Freq. 375-725Mc/s. Circuit: Piston-capacitor type tuning Resonator working direct into a 957 detector valve, R.C. coupled to a 2 stage amplifier (1 S5 \& 3S4): Microammeter Resonance Indicator: Time switch to select operating time up to 15 mins. Average ' Q '-3000: Power Requirements: 1.5 V dry batteries and 45 V . Price $£ 20$ each, $10 /$ post.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: Freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{~V}-22 \mathrm{~V}$ d.c. $£ 12.10 .0$ each, $15 /$ - carr.

Abstract

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet. suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. As new £18/10/= each, carr. £1. COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /-$ each, post 5/-. COMMAND TRANSMITTERS, BC-458: 5.3-7 Mcis, approx. 25 W output, directly calibrated. Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $£ 3 / 10 /-$ each, . post. R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AR5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$ post; or Rec. with 24 V . power unit and mounting tray $£ 3 / 10 /-$ each, $10 /-$ post. RECEIVERS: Type BC-348, operates from 24 V D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each; (sccond hand) £20.0.0 each, good condition, carr. 15j- both types. MARCONI RECEIVER 1475 type $88: 1.5-20 \mathrm{Mc} / \mathrm{s}$, with a.c. Power supply, second hand condition $£ 13 / 10$ /- each, carr. $25 /$ - RACAL EQUIPMENT: Frequency Meter type SA20: £35 each, carr. £1. Frequency Counter type SA21: £65 each, carr. 30/- Converter Frequency electronic each, carr. £1.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $86 / 10 /$-each, $8 /$-post. 24 v D.C. input, 175 v D.C. @ 40 mA output,

CONDENSERS: $150 \mathrm{mfd}, 300 \mathrm{v}$ A.C., $£ 7 / 10 /-$ each, carr, $15 /-40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{w}$ wg. D.C., $\mathrm{I} 3 / 10 /-$ each, post $10 /-$ $15 \mathrm{mfd}, 330 \mathrm{v} \mathrm{A.C}. \mathrm{wkg.} 15 /$,- each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 \mathrm{mfd} 600 \mathrm{v}, 8 / 6$ each, post $5 /-8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-88 \mathrm{mfd}, 600 \mathrm{v}$,
 each, posi $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mid. MICA 2.5 Kr . Price
$\AA 1$ for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /-$ post. OSCILLOSCOPE Type 13A, $100 / 250 \mathrm{v}$. A.C. Time base $2 \mathrm{c} / \mathrm{s} .750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam rube. Reliable general purpose scope, $£ 22 / 10 /$ each, $30 /$ carr.
COSSOR 1035 OSCILLOSCOPE, $£ 30$ each,
RELAYS: GPO Type 600,10 relays @ 300 ohms with $2 M$ and 10 relays @ 50 ohms with 1 M ., $£ 2$ each, $6 /$ - post.
12 Small American Relays, mixed types £2, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;
etc. Prices and further details on request 6 d .

> GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /$-each, 4/--post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., 22 each, $5 /-$ post.
> SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6 d .

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /-\mathrm{d}$
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $\mathrm{f} 2 / 10 /-$ each post 6/-
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., , $2 / 10 /-$ each, carr. $12 / 6$.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves 3×3 C 24^{\prime} 's complere with filament transformer 230 v. A.C. Mounted in 19in. panel, $24 / 10 /-$ each, $15 /$ - carr.
POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying V alves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong
 Carr. 10\%-。
POWER UNTT: 110 v. or 230 v . input switched; 28 v . @ 45 amps. D.C. outpur. Wt. approx. 100 lbs, , $£ 17 / 10 /$ each, $30 /$ - carr. SMOOTHING UNITS suitable for above $£ 7 / 10 /-$ each, $15 /-$ carr.
CORPORAL ROCIKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Amplifier AM1510/D] W3. Transmitter C-1493/MRQ.1. Power Units and miscellaneous spares availabic.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\$ 7 / 10 /-$ each, $15 /-$ carr.
NIFE BATTERIES: 4 v .160 amps , new, in cases, $£ 20$ each, $£ 110 /$-carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3in. diameter case. Price 0-9999, with locking
30/- each, postage 5/-

FREQUENCY METERS: BC-221, meter only $£ 30$ each, BC-221 complete with stabilised power supply £35 each, carr. 15/-. LM13, 125-20,000 Kc/s., $£ 25$ each, carr. 15/-. TS.175/U, £75 each, carr. £1.
CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100 0 , with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post 5/-.
AUDIO OSCILLATOR 382/F: Input 115 v. A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec . in 4 ranges. Cont. wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mW . Output impedance $1,000 \Omega$. $£ 27 / 10 /-$ each, $£ 1$ carr.
RACK CABINETS (totally enclosed) for std. 19in. panels. Size: 6 ft . high x 21 in . wide $\times 16 \mathrm{in}$. deep. With rear door. £12 each, £2/10/- carr. OR 4ft. high \times 23 in . wide $\times 19 \mathrm{in}$. deep. With rear door. $£ 8 / 10 /-$ each $_{\text {, }} £ 2$ carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /$ each, post $7 / 6$. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v . D.C. 3 relays, 11 valves, price . $£ 3$ each, carr. $10 /-$ ANTENNA WIRE: 100 ft . long. 15/- $+5 /-$ post.
SIMPSON OUTPUT VOLTMETER A.F., Model 427:3 ranges, 2, 10 and 50 Volts, $£ 3$ each, $+1 /$ - post.

PYE D.C. MICROVOLTMETER, suspended Galvanometer movement. Range multiplier $\times 1 \times 10 \times 100 \times 1000$. Mains operated 200/250V. $\mathrm{£} 25+£ 1$ carr.
GR FREQUENCY METER Type 720A. $10 \mathrm{Mc} / \mathrm{s}-3000 \mathrm{Mc} / \mathrm{s}$, with P.U. $115 / 230 \mathrm{~V}$ a.c. $\mathrm{£} 27 / 10 /-+\mathrm{E} 1$ carr.
SIGNAL GENERATOR OSCILLATOR TEST SET NO. 2. AM/FM, Frequency $20-80 \mathrm{Mc} / \mathrm{s}, 2$ ranges. $£ 40+15 /$ - carr.

DAWE OCTAVE BAND ANALYSER TYPE 1410A

operated. Attenuator 0-50 Db. 6 ranges. $£ 25+£ 1$ carr.
LABORATORY VALVE VOLTMETER E.I. LTD. Model 26: 6 ranges, V-250V a.c./d.c. Ohms 4 ranges $0.1-1$ meg., with probe. £22/10/ $+15 /$-carr MARCONI TF-1377 SUPPRESSED ZERO VOLTMETER: Meter Range $50 \mathrm{mV}, 0.5 \mathrm{~V}, 5 \mathrm{~V}, 50 \mathrm{~V}$, all centre zero. Input range $10 \mathrm{~V}, 100 \mathrm{~V}, 100 \mathrm{~V} \times 2$, $100 \mathrm{~V} \times 5$. Zero supression indicator 0-999. $£ 40+15 /$-carr.
COSSOR OSCILLOGRAPH VOLTAGE CALIBRATOR, Model 1433: 5 ranges, $3-300 \mathrm{mV}$, and $1-100 \mathrm{~V}$. £15 + 15/-carr.
ADVANCE L. 1 SIGNAL GENERATOR: Freq. $300-1000 \mathrm{Mc} / \mathrm{s} .0-120 \mathrm{Db}$ Attenuation. Modulation Pulse or Sinewave Pulse with $15-100$ or $80-600$ micro/secs. $£ 45+£ 1$ carr.
SONTONE NICKEL CAB. BATTERIES (S103 Size D), 1.25 V recharge able, 5 for $£ 1+5 /$-post.

APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter 25/- each, 5/-post.
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V} ., 9$ amps. $2 \frac{1}{2} \mathrm{in}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. £15 each, $30 /-$

AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, £ 2$ each, $5 /-$ post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector, (24 in . diameter); meters, suppressors, etc. \&35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /$-post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 3 / 10 /-$ each, $5 /-$ post.
TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $£ 5$ each $+10 /$ carr. Or $£ 9$ for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., $£ 6 / 10 /-$ each, post 7/6. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type
$M 1460-22,2$ pole, 2 throw. (New) $\mathbf{~} 6 / 10 /$ each, $4 / 6$ post. 1 pole, 4 throw, M1460-22, 2 pole, 2 throw. (New) £6/10/- each
Type M1460-4. (New) £6/10/- each, $4 / 6$ post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, 0.250-1.0 KMC/SEC. (New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, 2.0-10.0 KMC/SEC. (New) E5 each, post 4/-. FIXED ATTENU ATOR: Type $1157 \mathrm{~S}-1$, (new) 86 each, post $5 /-$.

FOR EXPORT ONLY
 BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, crystal controled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ Mc / s. C. 44 , Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts, output, 230 V . a.c. Input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}$, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19, FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A.
 avalable. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets matic Telephone Exchange. Complete system with full set of Manuals. Mobile matic Telephone Exchange. Complete system with ful set of Manuals. Mobie Communications Installation mounted in a trailer with $4 \times$ pneumatic
Consisting of $3 \times A R C-27 \mathrm{Tx} / \mathrm{Rx}$ with all associated equipment (as new).

The S 20 range of metal oxide resistors is $1 / 2 \mathrm{Watt}\left(70^{\circ} \mathrm{C}\right)$ rating, available in E24 range of values from 10 Ohms to 1 Megohm with a 2% tolerance. They may be used as general purpose, high stability or semi-precision resistors dependant on the rating employed. Identical in format with established types they are readily available at a competitive price, for example, 4 d each at 100 pieces. Wels Fargo get your shipment through.

CDMPDNENTS LTD 5 LDVEROCK RDAD, READING, RG3 1DS Tel.580616/9 Telex 84529 MINISTAY OF TECHNOLOGY APPROVED DISTRIEUTOR

WW-122 FOR FURTHER DETAILS

conimputce chafilceling

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns,

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.

Plan your future with | N | C | R |
| :--- | :--- | :--- |

Send an S.A.E. for New Comprehensive I.C. and Semiconductor price llsts.
INTEGRATED CIRCUITS
NEW LOW PRICES • FULLY GUARANTEED
Ren
RCA
CA3000
05
7
11
12
13
13
14
18
184
19
20
20 A
21
22
23
26
$28 A$
28 B
29
29 A
30
35
38
39
41
42
43
44
45
46
47
48
49
50
61
82
83
54
55
59
64

muluard linear	
TAA241	$8 / 8$
${ }_{243}^{242}$	5-
293	
${ }_{293}^{263}$	15/8
300	
310	
320 350 300	${ }^{14,6}$
435	29/6
${ }_{521}^{521}$	28/8
832	
811	
TAB101	1916
tadio	
TAD110	39/6
mullard dtl	
FCH101	17/6
FCH121	
FCH141	
FCH61	-
${ }^{\text {FCH201 }}$	${ }^{2616}$
${ }^{\mathrm{PCH} 211}$	$28 / 6$
FCH231	30]
FCH101	326
FCrili	317-
FCJ141	105]-
PLESSEY	
8L402A	42/6
SL403A	42/8
817012	
${ }^{\text {SL702C }}$	29/6
GEEETRAL	
PA222	87/6
${ }^{\text {PA2 } 230}$	-
PA234	-
PA237	88
PA246	$52 / 1$

Post and Paeking 1/6d. per order. Data sheet free if ordered with IC S_{a} Send 2/6d. for calalogue …"… A. MARSHALL \& SONS LTD. .nam 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 CALLERS WELCOME 9-5.30 SATURDAY 9-5 SEE OUR MAIN ADVERTISEMENT ON PAGE 73 FOR SEMICONDUCTORS

INTEGRATED CIRCUIT AMPLIFIERS

CA3005 RF amplifer, $100 \mathrm{mc} / \mathrm{a}$ bandwidth CA3012 Wide Band Amplifer for IF applications CA3020 550 mW Audio Axplifier
CA 3036 Two super-alpha pairs for stereo pick-up sybtems
CA 3052 Iatest addition to RCA range. Four-m-one CA3052 lat
amplifter
PA222 1.2 watt Audio Amplifier
PA234 1 watt Audio Amplifier
PA237 2 watta Andio Amplife
MC1709G-G.P. operational Amplifier
TAA263 3 -stage direct coupled Armplifler
TAA293 3 -stage direct coupled Amplifier
TAA320 MOST input + bi-polar stage
TAD100 All active components required to construct an
An recelver
tts Audio Amplifier $45 /-$
$49 / 6$

TRANSISTORS

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINGLE BEAM $10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep rrom 1μ sec. to to milli- 8 mile from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time máker and ampliture calibrator, 3 -in. cathode ray hood. with telescopic viewing
$£ 39.0$.

CI-16 DOUBLE BEAM mc / s passband. Separate Y1 and Y2 amplifiers, rectangular 5 in. $\times 4$ in. brated triggered sweep from 0.2μ sec, to 100 millisec. per cm. Free running ime base base callbra tion and ampliture calibrator ©87/10/0 Full details on request. spares available.

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN \& FOR HANDLING AND POSTAGE.
NO, C.O.D. ORDERS ACCEPTED

ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY:
SPECIAL PURPOSE VALYES. PLEASE OFFER US SPECIAL PURPOSE VALYES. PLEASE OFFER US
YOUR SURPLUS STOCK. MUST BE UNUSED.
\square

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col, inch
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $5 /-$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1. No responsibility accepted for crrors.

Advertisements accepted up to THURSDAY, I2p.m., IOth SEPT., for the OCTOBER issue, subject to space being avallable.

Eleaticicila Electronic Eminimeariny Assisianls

As a civilian Engineering Assiştant in the Naval Production Pool you'd procure, inspect and test electronic equipment for radio communications, sonar, radar, and missile and weapon control
The job includes preparing production specifications and working closely with contractors to maintain standards: Offices are located in London, Slough and Copenacre, near Bath.
To apply, you should have an ONC or equivalent. The grade you start at depends on the qualifications and experience you have, as there are two levels of entry. Most of the openings, though, are at Grade II. That grade pays $£ 1,643-$ $£ 1,897$. Grade III pays $£ 1,092$ at 21 , rising to a maximum of $£ 1,643$. ($£ 125$ a year more on all appointments in London.) There is also a non-contributory pension.
Prospects of promotion to posts paying over $£ 3,000$ are good, and career planning means you'd work on more than one location.
Interested? Write for details and an application form (to be returned by 8th September) to: The Civil Service Commission, Alencon Link, Basingstoke, Hampshire. Please quote $\mathrm{S} / 625 / \mathrm{MOD}(\mathrm{N}) / \mathrm{M}$.

a cluIIIN CAREER III Naval Elegivering

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress are held at intervals. Applications are now invited for the course starting in January, 1971

During training a salary will be paid on the following scale:

Age 21	£848 per annum
" 22	$£ 906$
" 23	$£ 943$
" 24	$£ 981$
" 25	"nd over
"	$£ 1,023$

Free accommodation will be provided at the Training School.
After successful completion of the course, operators will be paid on the Grade 1 scale:

Age 21	$£ 1.023$ per annum	
" 22	$£ 1,087$	"
" 23	$£ 1,150$	"
" 24	$£ 1.214$	"
". 25 (highest		
	age point)	$£ 1,288$

then by six annual Increases to a maximum of £1,749 per annum

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have a least two vears' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970
Application forms and further particulars from : Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ Telephone No. Cheltenham 21491. Ext. 2270

92

TIN

INDEPENDENT TELEVISION NEWS LIMITEED

SENIOR ENGINEER-VTR

At the new ITN facilities centre in London. The post is in a small section working with the latest colour equipment and handling the recording, editing and playback of news items received from the U.K. and abroad via Eurovision and Satellite links. The work also involves some colour film recording.
Several years' experience of operation and maintenance of quadruplex VIDEO TAPE RECORDERS is required, preferably under broadcast conditions.

[^12]
ELECTRONICS SERVICE ENGINEER

is required to service a range of Electronic Desk Calculators at the Sanyo Sales and Service centre in London.
Basic Qualifications: C. \& G. Electronics Service Certificate or equivalent. Consideration would be given, however, to previous experience in this field.
Salary Range: $£ 1,350$ to $£ 1,500$ per annum, according to qualifications and/ or experience.

Write or phone in first instance to: E. J. Landon, Esq.,

Calculator Division Service Manager,
SANYO MARUBENI (U.K.) LTD.,
Bushey Mill Lane, Watford, Herts. Tel.: WATFORD 25354

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to
The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.

CONTINUOUS

EMPANSSIO wave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require

Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in elec. trical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

$$
\begin{aligned}
& \text { BROADCASTING } \\
& \text { JNCNIRS } \\
& \text { UGANDA }
\end{aligned}
$$

* Salary £2,010-£2,506 according to experience.
* Low Taxation.
$\star 25 \%$ Gratuity.
* Contract 21-27 months.
* Subsidised accommodation.
* Education Allowances.

The officer will undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations in remote districts.

Candidates should possess City and Guilds Final Certificate in Telecommunications (with Radio) or equivalent and have wide practical experience of technical broadcasting equipment particularly high power M.F. transmitting equipment.

Apply to CROWN AGENTS; 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690995/WF

Men under 35 with experience in light engineering and electronics can build excellent careers in ICL servicing computers.

We want qualified men with HNC or C \& G in electronics engineering, or a Forces training in electronics. Or, perhaps, you have a similar qualification which provesyou have the serious interest in the subject necessary for further specialist training.

We pay realistic salaries while you trainabout six months-on ICL equipment, learning how to sort out operational problems and maintain computers in peak condition.

You will have to take responsibility for highly sophisticated and expensive equipment, so if you have a worthwhile career in mind, here is the chance to apply your expertise and initiative to the full. Career progression and promotion are limited only by your ability.

On top of your basic salary we pay generous overtime and shift rates, plus travelling expenses. Working conditions in ICL are well above the average in industry.

Write giving brief details of your career, quoting reference WW 103 C .
A. E. Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London SWI 5 .

If you can put a^{6} Yes' in every box, you might just make a RADIO TECHNICIAN in Air Traffic Control

An all-consuming interest in telecommunications \square
At least one year's practical experience in telecommunications, preferably with 'ONC' or 'C and G' technical qualifications

A highly developed sense of responsibility

Willingness to undergo a rigorous programme of training

Aged 19 or over

To the right man, the National Air Traffic Control Service offers the prospect of an interesting and steadily developing career as a Radio Technician in air traffic control.

The work involves the installation and maintenance of some of the very latest electronic equipment at civil airports. radar stations and other specialist establishments all over the country. Important today, the job will become increasingly vital as Britain's air traffic continues to grow. and prospects for promotion are excellent. Starting salary varies from $£ 1.044$ (at 19) to $£ 1.373$ (at 25 or over). Scale maximum $£ 1,590$ (higher rates at Heathrow). The annual leave allowance is good, and there is a non-contributory pension for established staff.

If you feel you can.meet the demands of this rather special job-and you have a strong determination to succeed-you are invited to complete the coupon below.

[^13]
Sea-going Radio Officers can now make sure of a shore job and good pay.

ASSISTANT ENCINEER GRADEII (BROADCASTING) BOISWANA

* Salary up to £2,387
\star Low taxation
\star Appointments grant $£ 100$ or £200 in certain circumstances
$\star 25 \%$ gratuity on basic salary
* Contract 24-36 months
\star Subsidised Accommodation
* Education Allowances

The Posts and Telecommunications Department requires an officer to undertake operational duties including the installation and maintenance of broadcasting equipment in transmitting stations and to assist with the training of junior engineering staff.

Candidates must possess the City and Guilds Intermediate Certificate (Telecommunications) or equivalent and have had five years relevant practical experience, (additional to any period of approved training) of technical broadcasting equipment including M:F. and H.F. transmitting equipment up to 10 KW .

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690420/WF.

RADIO AND SPACE RESEARCH STATION OPERATIONS SUPERVISOR-

FALKLAND ISLANDS

An Operations Supervisor is required for service at the European Space Research Organisation Satellite Telemetry Station at Stanley, Falkland Islands. He will be responsible to the Station Director for planning the operation and maintenance of the radio telemetry equipment used for the reception of data from satellites. The grade will be that of Experimental Officer and the post carries a responsibility allowance. The tour of duty will be of three years duration. A hostel is available for single staff and married staff will be accommodated, rent free, in a modern, well furnished, centrally-heated bungalow.
Qualifications Aged 26 or over with a University degree, H.N.C. or equivalent. Experience in the operation and maintenance of electronic equipment and in the management of a small group of staff would be advantageous.
Salary Between $£ 1725$ and $£ 2177$ p.a. To this scale will be added an allowance of $£ 125$, together with a responsibility allowance of $£ 100$ and an overseas allowance.
A car and baggage within certain limits will be transported free of charge.
Apply: The Secretary,
Radio and Space Research Station,
Ditton Park,
Slough,
Bucks
Telephone: SLOUGH 24411
Closing date 18 September, 1970

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.
have vacancies in Cardiff for Technical Assistants/ Assistant Engineers in Telecine/VTR and Electronic Maintenance Departments.

Applicants should have basic theoretical and practical electronic and broadcasting experience.

Salary as ACTT. Grade H/E as appropriate.

Apply in writing to:
The Personnel Department HTV Television Centre CARDIFFCF1 3JG

TELECOMMUNICATIONS ENGINEERS WEST AFRICA

Qualified Telecommunications Engineers are required for servicing and maintenance of radiotelephone equipment and associated items in tropical West Atrica.
Qualifications: HNC or higher.
Coniract: One year plus leave extensible.
Salary: According to age, experience and qualifications. Commencing at not less than equivalent $£ 2000$ sterling. Free accommodation and passages. Preference for bachelors with tropical experience but not essential.

Interested? Apply for application form to:
2b-Sussex Road - New Malden

REDIFFUSION粦

ENGINEER - COLOUR TELEVISION

We are growing even bigger in colour television and our factories at Chessington and Bishop Auckland are now producing hundreds of colour sets every week. The next few years will see us growing even more, as colour television spreads throughout the country. Our modern Engineering Department at Chessington, which designs our colour and monochrome receivers as well as all the specialised test equipment, needs two Engineers who are interested in television and wish to join an expanding organisation. The right applicants will have obtained their HNC or equivalent but consideration will be given to day release for those still studying.
Assistance with removal expenses will be given if required.
Replies please to:
The Chief Engineer
Rediffusion Vision Limited
Fullers Way South
Chessington
Surrey

ST. BARTHOLOMEW'S HOSPITAL, LONDON E.C. 1

Computing Unit for Medical Sciences

PROGRAMMER

required in the Computing Unit for Medical Sciences which has been set up by St. Batholomew's Hospital and Medical College. The aim of this science-based
Unit is to help enlarge and develop the use of computer technology in medicine, especially in the area of patient monitoring in operating theatres and wards. In this and other applications it is expected that interactive computer graphics will play an important role. The Unit has also an educational commitment. A large-configuration Honeywell ODP-516 is due for installation in the very near future, and will be the latest addition to the computing facilities already available in various departments of both Hospital and College.
Applicants should have programming experience, against a background of electronics, physics or a biological subject. A degree or equivalent qualification is desirable.
Salary scale: $£ 1,100$ to $£ 1,400$ per annum. Applications, accompanied by a full curriculum to the Clerk to the Governors by 3rd September, 1970, quoting reference ASC/2589.

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1.500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:
J. J. Sweetman, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex.
Tel: 01-573 3888, Ext. 411.

radio..electrical...
electronics engineers

You probably don't realise that your experience and training could put you in line for a key job in the computer world. Right now, you could be a T.V. or telephone maintenance engineer, an ex-
Serviceman with an electronics background or simply have an electrical or electronics qualification providing you have the ability and ambition we'll help you mould your talents into a specialised skill.

Burroughs, one of the largest international electronics companies will train you to become a
member of a highly experienced team of Electronics Field Engineers-men who install and maintain some of today's most advanced computer systems. You can work in your own home area, and at the same time find variety through working with our many clients in the course of your job. And, of course, you will earn a good salary. But, most important of all, you will have true career prospects -because we believe in quickly rewarding talent: .. Promotion to senior management is purely dependent upon ability.

The opportunity is hereif you have the will then we have the way. The rewards are undoubtedly high and we offer a number of excellent employment benefits. including a special company-assisted car purchase scheme. Here are the brief facts-but you can find out more by writing with details of your age. qualifications and experience to: Geoff Lewis,

Personnel Manager.

 Burroughs Machines Ltd., Dept. WW/S, HeathrowHouse, Cranford Hounslow, Middlesex.
Glaxo
 ELECTRONICS TECHNICIAN

Chemical Research

The Physical Chemistry Unit of Glaxo Research Limited requires an electronics technician who will be primarily concerned with the design and building of electronic devices for chemical research. The work will also involve the maintenance and evaluation of modern electronic instruments.

Candidates should preferably possess ' A ' level chemistry and physics and have attained HNC standard in electronics, or be studying for HNC. Further training will be given in the laboratories and day release for further studies is available.
Glaxo offers generous salary scales, holiday and sick pay allowances and welfare and social facilities

Applicants should write giving brief details and quoting reference ZH185 to the Personnel Officer (MRG), Glaxo Laboratories Limited, Greenford, Middlesex.

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

82

Test
 Engineers

Due to further expansion we offer excellent opportunities for Test Engineers to make a rewarding career with excellent prospects testing a wide range of complex electronic navigational equipment.
Applicants with a background of T.V. and Radio Servicing, Electronic Control Circuitry and Computers circuits should apply as soon as possible giving details of past experience. An H.N.C. would be an asset
Conditions of service and salaries are excellent

SENIOR TECHNICIAN (Grade III)

with electrical and preferably some mechanical experience to maintain Therapeutic X-Ray equip. ment at the Royal Marsden Hospital, Fulham Road, London, SW3.
The successful candidate will also have the opportunity to develop new equipment.
Minimum qualifications, O.N.C. in Electrical Engineering, and not less than 3 years' technical experience, to obtain salary on scale $\mathbb{E 1 , 2 7 0}$ to £1,590 per annum.
Applications, with details of experience and names of two referees, to the Administrator, the Roya Marsden Hospital, Fulham Road, London, SW3.

THE UNIVERSITY OF MANCHESTER EXPERIMENTAL OFFICER

Experimental Officer required in the Departmen of Engineering to assist in development and use of high-speed data logging equipment for application to research on internal combustion engines and on fluid mechanics. The equipment will be based upon commercially available units Principal duties are the initial assembly of the equipment, the preparation of control programs, the development of the completed facility, and the supervision of maintenance. Applicants mus have knowledge of and experience in electronic technology. Experience of digital computers and some knowledge of programming desirable, but an applicant judged able to learn could be accepted. Appointment initially for up to three years. Salary $£ 1,370-£ 1,555$ p.a. Further details and forms of application (returnable by August 28th) from the Registrar. The University Manchester, M13 9PL. Quote ref: $166 / 70 / \mathrm{WW}$

JUNIOR TECHNICAL OFFICER

required for permanent post to assist with commissioning, operation and development of a whole body counter equipped with on line computer processing. Some experience of electronics essential. Age under 30. Two Science ' A' levels, or if over 21 H.N.C. or pass degree. Salary according to age and experience. Write stating full details to Director. Medical Research Council Cyclotron Unit, Hammersmith Hospital, London, W. 12.

TECHNICAL ASSISTANT

A vacancy occurs in the Medical Electronics Department, St. Thomas Hospital, for a technical assistant, aged 18 to 26 .
The work is concerned with the construction and testing of experimental electronics equipment. Some workshop experience is necessary, and wiring/ assembly experience would be an advantage. Salary on scale $£ 683-£ 1,454$ plus £ 125 London Weighting. This is a Medical School appointment but applicants should write in the first instance to the Personnel Officer, St. Thomas Hospital, London, S.E.1. quoting ref. L/28.

698

UNIVERSITY OF BRADFORD AUDIO VISUAL AIDS UNIT Applications are invited for TELEVISION ENGINEER
(Ref: $A V A / E / / Z$)
to be responsible for all aspects of the operation and maintenance of closed circuit television equipment includ ing studio practice. The person appointed will possess of relevision, including cameras and videorecorders. He will probably be a graduate or possess an appropriate or I.E.R.E.
Five-day week. Salary on scale rising to $\mathbf{Q 2 , 4 2 7}$ dependent upon qualifications and experience.
Further particulars and application forms returned as soon as possible) from the Personnel Officer. University of Bradford, Bradford, Yorkshire
BO7 IDP.

BBC

have a vacancy for an

ENGINEER

in the Designs Department

Candidates for this post will be engaged in the design of new systems, equipment and test apparatus for use at radio frequencies including both television and audio applications.

Applicants must possess a University degree or equivalent qualification. Experience of transmitter and receiver techniques is desirable, together with a good knowledge of circuit theory.

Salary, depending upon experience, would be initially between $£ 2,395$ and $£ 2,625$ p.a. rising to a maximum of $£ 2,970$ p.a. Candidates with limited experience will also be considered but may be appointed on a salary scale from initially $£ 2,150$ to $£ 2,346$ p.a. rising to a maximum of £2,640 р.а.

Applicants should be citizens of, and permanently resident in, the United Kingdom.

Requests for application form to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA
quoting reference YO.E. 22 53. W.W.

Microwave Installation Controller

This high-level appointment carries responsibility for planning and controlling the installation and commissioning of 7 GHZ and 11 GHZ systems. ITA, the BBC, the Post Office and HM Government are among the organisations purchasing this equipment.

Resulting from expanded operations in this sphere, the position demands a professional approach based on several years experience in the broad-band field-and proven success in major microwave projects.
Salary will amply reflect the considerable degree of responsibility involved. Excellent fringe benefits are another attraction-but perhaps the most important factor is that present large-scale Pye Telecom growth is creating tremendous opportunities.
Pye Telecom is an ideal Company for ambitious people. If your background suits you for this job, write now, giving career and present salary details, to: M. W. Timmins Esq.,

UNIVERSITY RESEARCH ASSISTANT

Post for Electronic Engineer available for development and maintenance of electron micro-analyser and other specialised equipment. Thorough knowledge of both linear and digital transistor or circuitry essential. H.N.C. standard or equivalent experience required. Full details from:

Dr. E. T. HALL

Research Laboratory for Archaeology 6 Keble Road, Oxford Interviews starting 14.9.70

SOUTHAMPTON GROUP HOSPITAL MANAGEMENT COMMITTEE AND

BOURNEMOUTH AND EAST DORSET
GROUP HOSPITAL MANAGEMENT COMMITTEE

GTB-Warcunilletronics

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances.
CONDITIONS excellent; free life assurance, pension
Applicants should be sultably qualified for the following posts in the Electronics Department at Southampton schemes, canteen, social club. $37 \frac{1}{2}$-hour, 5 -day, office-hours week.
(i) ELECTRONICS TECHNICIAN I (qualifications: H.N.C., City and Guilds Final or equivalent qualification);
(ii) ELECTRONICS TECHNICIAN IV (qualifications: .N.C. or H.N.C. or membership of the Society of Radiographers);
(iii) STUDENT TECHNICIAN

Salary Scales: (i) $\mathrm{El}, 800$ by five annual increments to
(ii) 61,020 by eight annual increments to (i) E1,310;
(iii) Salary applicable to age

This department is concerned with the installation testing and maintenance of an extensive range of diagnosefecherapeutic and allied electronic equipment and ultimately with research and development of bio-medic Applleations giving full details-including qualification experience and names of two referees-to the Group Engineer, Southampton Group H.M.C. Coxford Road, Southampton, SO1 6.JW, by the 21 st August 1970.

WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW 6

星
 A real opportunity for all Service and Calibration Engineers

Are you capable of working on sophisticated electronic telecommunications equipment?-If you are read on, as Our Technical Service Department has vacancies for Service and Calibration Engineers with at least 3 years experience in the Industrial repair and calibration fields.
Ideally the right men will possess either H.N.C., C. \& G. Full Tech., O.N.C. or equivalents. Salaries will be related to experience and qualifications whilst excellent prospects for promotion exist for the right man. Informal discussion will be held at our main offices, write giving full details to:

> Manager,
> Technical Services Department,
> Aveley Electric Ltd.,
> Arisdale Avenue,
> South Ockendon, Essex.

每Experienced engineers in Design and Development, Systems Test. Technical Sales, Production Engineering, Field Service or Technical Writing should Contact Electronics Appointments Ltd. and we will help you. Our placement service is professional, specialised and completely confidential. We are in consultation with over 800 companies on all aspects of electronics engineering. Phone or write at any time quoting WW 101.
NORMAN HOUSE - 105/109 STRAND • LONDON • W.C. 2 TEL: 01-836 5557

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

MEDICAL ENGINEERING IN HOSPITALS

MED BAL ELEMTQNAG

 TECHNICIAN required in the Northampton Group of Hospitalsto service, repair and calibrate a wide range of electronic equipment used in hospitals for medical, surgical and engineering purposes.
Candidates should have good practica experience in radio/telecommunications, pulse generation, automatic control systems or electro-medica equipment. Possession of HNC or HND in electronics or a comparable qualification would be an advantage. Opportunities for further study and training available. Salary scale $£ 1,180$ £1,500.
If you are interested in receiving further details of this opportunity, please write to the Group Secretary, Northampton and District Hospital Management Committee, General Hospital, North ampton, NN1 5BD.

697

UNIVERSITY OF DURHAM
 DEPARTMENT OF APPLIED PHYSICS AND ELECTRONICS

EXPERIMENTAL OFFICER

Applications are invited for the post of EXPERIMENTAL OFFICER in ELECTRONICS from Oetober, 1970, Applicants should be experienced conductor Devices. The person appointed will assist in the design and development of electronic circuits for applications in the Department, and will be given an opportunity to take part in teaching.
 EI,S05 per annum with F.S.S.U.
Applications (3 copies), together with the names and addresses of three referees, should be sent by Friday, 28 August, 1970, to the Registrar \& Secretary, Old Shire Hall, Durham, from whom further particulars may be obtained.

745

Abstract

SITUATIONS VACANT A FULL-TIME technical experienced salesman reA quired for retail sales; write giving detalls of age, Henry's Radio. Ltd., 303 Edgware Rd.. London. W. 2 .

A PPLICATIONS are invited for the post of Technician A In the Department of Psychology. The vacancy is for either a Workshop Techniclan with experlence in metal working and general workshop techniques or an
animal technician. The salary will be on the scale animal technician. The salary will be on the. scale depend on qualifications and experience. Apply in writing, quoting T.25, to Assistant Bursar (Personnel), University of Reading. Whitenights, Reading RG6 2AH,

A RE YOU INTERESTED IN HI FI? If so, and you Trade, an excellent onportunity awaits you at Telesonic Ltd., 92 Tottenham Court Road, London, W.1. Tel. $01-387$ 7467/8.
A SENIOR Transformer/Rectifler design Engineer is A required for varied and interesting projects associated with equipment up to $150 / k V A / K W$. We are an
expanding Company of Manufacturing Electrical Engineers located in South Herts. Box W.W. 97 Wireless World.
A UDIO ENGINEEK required by specialist Importer Al Distributor for work on H1 FH equipment. Should. have a keen interest in Hi-Fi and experience in this
field. Excellent position with good prospects. Mr. Ruppin, flow. Excellent position with good prospects. Mr. Ruppin, don, N.W.3. Tel.: 01-794 6033. ${ }^{\text {[703 }}$
REDIFON LTD, require fully experienced TELER COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salarles. We would particularly welcome enquiries from ex-Service personael or personnel about to leave
the Services. Please write giving full details toThe Personnel Manager, Redifon Ltd., Broomhill Road, Wandsworth, S.W.18.

BALANCE ENGINEER

with Multi Trade Operating experience, required for large London Studio, phone 4372130

UNIVERSITY OF OXFORD, Department of Nuclear to Physics, has a vacancy for a Senlor Technician to join a group designing, builing and maintaining by researchers in nuclear structure employing a twenty million volt accelelerator. Experience in electronics is essential: and a formal quallification an advantage. Salary on a scale rising to 21,592 with six weeks' pald leave per year. Write to T. L. Green, Nuclear Physics Laboratory, Keble Road, Oxford. Mentioning reference A. 133

UNIVERSITY OF LONDON KING'S COLLEGE, TECHNICAL ASSISTANT Required Reecording Unit. Recording Unit and for the organisation and maintenance of audio-visual alds within the Faculty. Applicants should have had experience in the maintenance of electronic equipment. The salary will be in accordance with the scales of College technicians and will be within the range $\boldsymbol{£ 1 , 2 3 5 - \boldsymbol { £ } 1 , 4 0 3 \text { per annum, including }}$ London Weighting. The appointment will be for one yearticulars from the Head Clerk, King's College London, Strand, WC2R 2LS. Closing date for applications: 21st August, 1970 . [726 JNIVERSITY OF SURREY. DEPARTMENT OF TECHNICIAN the Electronic and Electrical Engineering Department to service a wide range of electronic equipment and to build specialised electronic research apparatus. Applicants for the senior position should have had sufficient work with the minimum of supervision. Appolntments will be made on one of the following salary scales: Technician: £935-£1,303 per annum. Senior Technician: $£ 1,278-$ \& 1,586 per annum. Applications in writing should be sent to the Staff Officer, University of Surrey, Gulldford, Surrey, from whom application
forms may be obtalned.

SIGNALS OFFICER, MALAYSIAN GOVERNMENT, whose post is being Malaysianized, seeks employment from the end of the year. Five years head of signals and administrative personnel enzaged in operating and maintaining large rural HF/VBF communications network. Sound experience in the design, equlpping and operation of a system comprising Colitns, Racal, Redifon and Marconi equipment. This experience includes the preparation and general supervision of maintenance programmes and training of junior staff. Administrafor control of staff, budget, estimates. administration and technical detalls of Department communications, Knowledge of government bureaucracy and versed in the writing of reports. Able to conduct offial correspondence in nearly fluent Malay. Age 28 and single. Presently resident Malaysia. Seeking employment in opportunities for promotion of more consideration than salary. Reply to Box WW 740, Wireless World.

EARTICLESFFOR SALE

BRAND NEW ELECTROLYTICS, $15 / 16$ volt, $0.5,1,2$ 5, 8, 10, $20,30,40,50,100$ mids., 8.5d. Mullard 25 volt $6.4,12 \cdot 5,25,50,80 \mathrm{mids}, 10 \mathrm{~d} .5 \%$ E. 12 series resistors-Carbon Film $\frac{1}{}$ watt 10 ohms to 1 Megohm, Postage $1 /-$ per order. The C.R. Supply Co., 127 Chesterfleld Road, Sheffield, SB.
BUILD IT in a DEWBOX quality plastics cabinet. $02 \mathrm{in} . \times 21 \mathrm{in}$. X any length. D.E.W. Ltd. (W), Wingwood RC. FERND
COLOUR T.V. large-screen projectors, Cintel Model 20630. 6 it . picture from R.G.B. Video inputs. DisPhone 01-948 1414. Cor sale. Panels, Units, Components, Meters, Lists. Mr. Frear, 1 Newton Street, Ulverston, Lanc

GOR SALE: 5 KVA 220 to 110 volt 50 HZ Transformer, -. \& 30 o.n.o. Box W.W. 720 Wireless World.
HI-FI EQUIPMENT-Radio Tape Recorders, complete Radio and TVpplied and installed. Spares \& components: phone Farnborough (Hants) 42590/49101. [705 MOBILE RADIO TELEPHONE EQUIPMENT. The telephowing used 25 kHz channelled low band radio telephone equipment are for sale. 1 Ul Und T5AO, 41 Oltra 4 A 6 and 49 Ultra 4A4 (all with conversion kits for 12.5 kHz channelling , also 1 Murphy TR 1000,9
Murphy TR 1005,35 Murphy 960,12 Murphy 821,2 Murphy TR 1005,35 Murphy 960 , 12 Murphy 821 , 2 made to The Purchasing Officer, The East Midlands Electricity Board, 398 Coppice Road, Arnold, Nottingham NG5 7HX, from whom further details may be obtained.
Musicar, MIRACLES. Send S.A.E. for detalls of M1 Cymbals and Drum Modules, versatile independent bass pedal unit for organs, pianos or solo, musical nents list reed switches etc. D.E.W. Lid., 254 Ringwood Road, Ferndown, Dorset. [95 NEW CATALOGUE No. 18, containing credit vouchers surplus electric and mechanical components, price $4 / 6$, post free. Arthur Sallis Radio Control Ltd., 28 Gardner Street, Brighton, Sussex.
S_{43} (LE. Wireless World (1930-1939). 29/6 dozen, WW1,
[701
STC Star Radiotelephone, single channel UHF, com716 Wireless World.
SET of 3 (2 In operating condition) "Fleming" Bright Wireless World.
TV Tubes and parts: $14^{\prime \prime}, 17^{\prime \prime}$ and $21^{\prime \prime}$ Tubes 45/-, LOPTS, scan coils tubes 65/- tested and guaranteed. $19^{\prime \prime}$ and $23^{\prime \prime} 50 /-$ Many obsolete makes in stock. C.W.O, add $10 /-\mathrm{p}$, and p . for tubes, $5 /-p_{\text {. }}$ and p. other parts. Personal callers welcomed. VISION CTTY, 146a Goldhawk Road, Shepherds Bush, London, W.12.
Telephone: 01-743 8388.

Test Technicians

Our test department is expanding. It is responsible for the testing of magnetic storage devices, high-speed printers, punched-card and paper-tape equipment

For people with experience in electronics, opportunities exist immediately. Further vacancies will arise over the next few months. Training will be given to those who do not have previous computer experience

Applicants must have worked on the testing, maintenance or repair of electronic equipment, and preference will be given to those qualified to ONC. (Elect.) or C \& G Final.

Locations: Kidsgrove and Winsford. Both are situated in rural surroundings bordering on the Cheshire Plain. Housing is available at attractive prices, and assistance with mortgage can be arranged.

Write giving details of age, qualifications, and experience, to: Brian Buckley, Personnel Manager, International Computers Limited, Kidsgrove, Stoke-on-Trent, quoting reference WW 498M

TECHNICIAN
 MICROWAVE/RADIO TELEMETRY SYSTEMS

The West Midlands Gas Board uses microwave radio

 equipment, digital supervisory systems and U.H.F. radio scanning gear for telemetry and data transmission throughout the West Midlands area. V.H.F./U.H.F. mobile R / T systems are operated from fixed and mobile transmission centres and are extensively utilized by the service and conversion departments.We require a Technician grade 1 to assist in the maintenance and commissioning of our equipment. Knowledge of comprehensive modern testing procedures, appropriate maintenance experience and the ability to work alone to effect site repairs are essential. A current driving licence is required.

Initial salary £1,365-£1,725 p.a. with excellent conditions of employment including progression to Senior Technician and up to $£ 1,968$ p.a. on proven ability.

Please apply quoting ref. WW/A90 to the Senior Personnel Officer (Headquarters), West Midlands Gas Board, 5 Wharf Lane, Solihull, Warwickshire.

TELECOMMUNICATIONS ENGINEER

A Telecommunications Engineer is required by a company manufacturing H.F. antennas. It is anticipated that the successful applicant has C. \& F. full certificate, H.N.C. or degree, and preferably has.some installation or similar experience in telecommunications.
The applicant will be expected, after training, to be able to prepare quotations, customer liaison, design minor modfications, supervise our workshop, liaise with suppliers and occasional supervision of installations.
The anticipated age range is 25 to 35 . Salary negotiable. For proven results generous annual bonus on profits will be given and also the opportunity of becoming a Director of the company.
Contact the Managing Director.

> SOUTH MIDLANDS CONSTRUCTION LIMITED S. M. House, Osborne Road, Totton, Southampton, Hants. Telephone: Totton 4930

ELECTRONICS TECHNICIANS

Department of Phystes

Senior Technician required to join a small team carrying out research into the applications of nuclear science, concerned with a wide variety of electronic counting and measuring equipment. Candidates should possess good experience and preferably qualifications in the design, construction and maintenance of modern electronics. Some experience of computer interfacing an advantage. Ref.: I I 3/B/447. Senior Technician/Technician required for the construction and maintenance of advanced electrical equipment. Qualifications and/or experience in pulsed digital equipment desirable. Ref.: $113 / B / 448$ Salary ranges
Senior Technician .. $£ 1,278$ to $£ 1,586$
Technician ... $£ 935$ to $£ 1,303$ Apply: Assistant Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Birmingham, BI 52 TT.

TECHNICIANS

The Margaret McMillan College of Education requires the following:
AUDIO VISUAL AIDS TECHNICIAN-GRADE 2 -to be responsible for the maintenance and repair of audio visual aids equipment.
Candidates should preferably possess City and Guilds Radio and Television Servicing Intermediate Certificate.
JUNIOR TECHNICIAN-GRADE 1-to assist in the maintenance of equipment and making of teaching aids. An interest in craft, e.g. woodwork, would be an adrantage and candidates should preforably have 3 G.C.E. ('O' level) passes in appropriate subjects.
Salaries are in accordance with the N.J.C. Technicians' Grades, namely:

Grade 2- 5942 to 11,089
Plus a qualification allowance of either $£ 30$ or $£ 50$ per annum where appropriate.
Application forms and further details of the posts may be obtained from the. Senior Administrative Officer, Margaret McMillan College of Education, Trinity Road, Bradford 5, and should be returned within 14 days of the appearance of the advertise-
ment.

UHF, COLOUR and TV SERVICE SPARES. Leading British makers' surplus Colour Frame and Line time base unlts Incl. EHT transformer, £5, carriage tuner, 4 transistors, knobs, circuit data. Easily adjusted for use as 6 position UHF tuner, $£ 4 / 10 /-$, $P / P 4 / 6$ MURPEY $600 / 700$ series complete UEF conversion kits nacl. tuner, drive assy, 625 IF amplifier, 7 valves, accessories. housed tn speclal cabinet plinth assembly £ $7 / 10 /-$ or less tuner $£ 2 / 18 / 6$, P/P $10 /-$. SOBELL/GEC 405/625 switchable IF amplifier and output chassis, $25 /-$, P/P $4 / 6$. Phillips 625 IF AMP panel and circult 25/- P/P 4/6. Philips 625 IF AMP panel and circuit drive assy, aerial panel, $\dot{\&} 5 / 10 /-, P / P 4 / 6$. New op manufacturer tested VAF tuners, AT7639 Peto Scott Decca, Ekco, Ferrant1, Cossor, 38/6, Cyldon C 20/-, AB miniature with UHF injection 25/- Ekco 283/330, Ferrant1 1001/6 25/-. New freball tuners, Ferguson HMV, Marcond type 37/6, Plessey 4 position push button tuners with Ukir injection, incl. valves, 58/6. Man channel coils. Surplus Pye, Oltra, Murphy, 110° scan colls $30 /-$. Sobell 110° Frame O / \mathcal{P} transformers $17 / 6$, P / P 4/6. Transistorlsed time base panel for Ferguson portable $50 /-, P / P$ 4/6. LOPTs, Scan Colls, FOPTs available for most popular makes. PYE/LABGEAR
transistorised booster units $\mathrm{B} 1 / \mathrm{B} 3$ or UHF battery transistorised booster units B1/B3 or UHF, battery despatch available. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28 Bus or W. Hamp stead Tube Station), MAIL ORDER; 64 GOLDERS AANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751 Staff holidays August 17 to 31 .

UNMARKED Silicon N.P.N. Transistors 60% guaran teed O.K., 50 for 10/-, P.P. 1/6. Electrolytic capact tors $100+250+10 \mu \mathrm{~F}, 250$ volts, $4^{\prime \prime} \times 13^{\prime \prime}, 8 / 6$, P.P. $1 / 6$ Free bargain lists ready early September. Shop closed rom 27 th August to 2nd September. Elekon Enterprises 29 Tottenham Street, London, W1P 9PQ. Tel 01-580 7391.
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Re units, $£ 35$. Tcolex, 6 Warwick Close, Hertford (4856)

CAPACITOR DISCHARGE IGNITION

(W.W. JAN.)

Invertor transformer 30VA 15:1 ratio. CWO 32/- + 5/- p.\&p. Also available with $30: 1$ ratio for 6 V systems, cost as above. MAGTOR LTD., 68 Dale Street, MANCHESTER

BUSINESS OPPORTUNITIES

FOUNG ELECTRONIC ENGINEER, resident Kingston-upon-Thames area, owns tools and instruments,
would like to form partnership with another to manufacwould like to form partnership with another to manufac
ture audio equipment. Box W.W. 721 Wireless World.

TEST EQUIPMENT - SURPLUS ANDSECONDHAND

DAWE TYPE 1400 E sound level meter, almost new, 10 with hide case and manual. \& 60 . Phone 769-2658 SIGNAL generators, osclloscopes, output meters, wave Noltmeters, frequency meters, multi-range meters, etc., etc., in stock.-R. T. \& I. Electronles, Ltd., Ash-

RECEIVERS AND AMPLIFIERS-

SURPLUS AND SECONDHAND
HRO Rx5s, etc., AR88, CR100, BRT400, C209, S640, Ashville Old Hau. Ashille R. \& I. Electrcanics, Ltd. Ashville Old Hall. Ashville Rd., London, E.11. Ley
4986.
[65

NEW GRAM AND SOUND

 EOUIPMENTConsult first our 76 -page fllustrated equipment Catalogue on HI-Fi (6/6). Advisory service, generous terms to members. Membership 7/6 p.s.-Audio Supply
Assoclation, 18 Blenhelm Road, London. W 4 Association,
$01-995$
1661.
CLASGOW.-Recorders bought, sold, exchanged; cameras, etc., exchanged for recorders or vice-ersa.-Victor Morris, 343 Argyle St., Glasgow. C.2

SHURE GOLDRING cartridges post iree, G800 £7.17.6 M3D £5.5.0. M44/5/7 £7.10.0. M44E £8.19.6. M55. £9.19.6. M75E/2 £16. Ultimate Electronlcs, 38 Achille
Road, Lomdon, N.W.6. Mail Order Only.

TAPE RECORDING ETC

IF quality, durability matter, consult Britain's oldest - transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools, churches.) Modern studlo. facilities with Steinway Grand. - Sound News, 18 Blenheim Road, London, W.4.

YOUR TAPES TO DISC-£ 6,000 Lathe. From 25/Hetudio/Location Dnit. S.A.E. Leafet. Deroy Studios,
High Bank, Hawk St., Carnforth, Lancs.

FOR HIRE

COR HIRE CCTV equipment, including cameras - monitors, video tape recorders and tape-any period

ExcINzarinc OFFICBR (Carrier \& V.H.F.)

\star Salary according to experience in scale up to $£ 2149$ * Gratuity 25% on completion of 30 month tour * Contract 24-36 months \star Subsidised accommodation \star Low taxation \star Education allowances \star Appointments Grant of $£ 100$ or $£ 200$ paid under certain circumstances

Required by the Posts and Telecommunications Dept. for the maintenance of carrier telephone and V.H.F. equipment and to give guidance and assistance to local staff under training.

Apply to CROWN AGENTS. ' M ' Division, 4 Millbank, London. S.W.1., for application form and further par-

Candidates, $28-45$ vears, must have received a minimum of two years' approved training plus not less than five years' experience on the maintenance of carrier systems and V.H.F. radio.
ticulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/ 700207/WF

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2 -way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: $£ 1,161$ (age 21), rising by increases to $£ 1,590$ plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

Department of Electronic and Communications Engineering

3-year Full-time courses.
(a) College Diploma in Electronic and Communications Engineering with exemption from CEI pt. 1. Students attending this course may sit for the CEI parts I and II exams to obtain the necessary educational requirements for the award of the title "Chartered Engineer" after a period of industrial experience. Entry requirements 2 "A" levels in Mathematics and Physics.

(b) Higher National Diploma in Electrical

 and Electronic EngineeringSuccessful students gain exemption from CEI pt. I and may sit for the CEI pt. II examinations after a further year's study. Entry requirements: 1 "A" level in Mathematics or Physics, ONC, OND or equivalent.
(c) Electrical and Electronic Technician's Certificate
The syllabus covers the requirements for the City and Guilds of London Institute Full Technological Certificate in Telecommunications Engineering and Final Certificate for Radio and Electronic Technicians.
Part-time courses at graduate level in the following subjects:
Computer Engineering Colour Television Engineering
Television Studio Engineering
Electro-acoustical engineering
Microwave and Radar engineering
Modern Network Theory
Transistor Circuit Design Control and Systems Engineering Integrated Circuits and Micro-electronics Medical Electronics for Medical Technicians

The Department has many well equipped Laboratories and a large anechoic chamber fully equipped with specialized measuring equipment.

Prospectus and further details available on request from the Department.

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES Manufactured by the world-tamous reputable
British tape firm, our tapes are boxedin polythene British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are
the tapes faulty and are not to be confused with the tapes faulty and are not to be confused with
imported, used or sub-standard tapes. 24 -hour imported, used o
despatch service.
Should goods not meet with full approval, purchase Should goods not meet with full appro
price and postage will be refunded.

60,90, and 120 minutes playing time, in original plastic library boxes.
MC $60 \% /$-each. MC $90 ~$
$12 / 6$
each. MC $12018 / 3$ each.

STARMAN TAPES

$2 B$ LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 53020

WW-110 FOR FURTHER DETAILS

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVEN5, R. F. HEATERS. FREE CATALOGUE.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON: CRO 2QP. 01-684 9917

AMERICAN

TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere. Concord Instrument Co.

28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON
WW-111 FOR FURTHER DETAILS

- SMABET LTD.

WE MAKE TRANBFORMERS AMONGBT OTHER THINGB AUTO TRANSFORMERS. 0-110-200-220-240 V a.c. up or down

 up to 8000 watts to order.
MAINS TRANSFORMERS. Prim $200 / 240$ v R.c. TX $1425-0-425 ~ v ~$

 $45 /-;$ MT4 вec $18 \vee 25$ a $6.3 \vee 1 \mathrm{amp}, 17 / 8$.
MOLTVOLT TRANSFORMERS. PTim
 One tapped sec, $5-20-30-40-60$ v giving $5-10-15-20-25-30-35-40-$
$55-60,10-0-10,20-0-20,30-0-30 \mathrm{v}$ a.c. $1 \mathrm{amp}, 45 /-$ ditto transformer 2 amp $0 \mathrm{MT} 4 / 2$, 87/6; OMT5/1 One tapped sec, $40-50-60-$ $80-90-100-110{ }^{\mathrm{v}}$ giving $10-20-30-40-50-60-70-80-90-100-110$, $10-0-10,20-0-20,30-0.30,40-0-40,50-0-50$ ₹ a.c. $1 \mathrm{amp}, 67 / 6 ;$
$0 \mathrm{MT} 40 / 3$ One sec $40 \vee \mathrm{CT} 3$ amp 878 . OMT40/3 One sec 40 ₹ CT 3 amp, $67 / 8$.
 71/6.
150 AUTO TRANBFORMERS. Input $200 / 240 \vee$ a.c. output 24 150 watt, $90 /-; 230$ watt $135 /$-; for quartz lodine lamps.
LOW VOTTAE TRANSFORMERS. Prim 200/240 v a.c.

 size $1 \frac{18}{} \times 2 \times 1 \frac{1}{1}$ ins., Prim. 200/240 v a.c. output PPTI 9.0-9 v 0.3 a, PPT2 12-0-12v 0.25 a, PPT3 $20-0-20 \mathrm{v} 0.15 \mathrm{a}, 22 / 6$ each.
MT12V $12-0-12 \mathrm{v}$
a $2 \times 22 \times 1 \&$ ins. $22 / 6$ each.
OUTPUT TRARSFORMERS. Mullard $5 / 10$ UL, 87/8: 7 watt stereo UL $60 /=; 3$ watt PP3, 30/-i push pull 11K $3-8$; 15 ohma, 21/-; Multi ratio $7 / 10$ watt, $33 /$-; ; 30 watt (KT66 etc.) $3-15$ ohms,
 $\mathrm{KI8s}$, etc.), 2251 -; standard $3-4$ watt o/p $\mathrm{sK} / 3$ ohm or $10 \mathrm{~K} / 3$
ohm, $14 / 6 ;$ auto matching tranatormers 10 watt, $3-8-15$ ohm up
 23/6; $5 \mathrm{H} .250 \mathrm{Ma}, 35 /-$.
$\mathrm{W} . \mathrm{W}$. IGMITION CREUIT TRANSFORMER to spec, $50 /-$ plus W/6. p.p. COLOUR TELE. Choke L1, 60/-; Tran T1, 57/6; Field O/P, 60/-. Carriage extra on all irangormers $4 / 8$ minimum. size spool of magnetic tape, cassettes, 47/6, 3/- p.p.

TRANSFORMERS VARIOUB The transformers are all ex-stock, not repeatable, and offer exceptional value. TXA. Prim 110-220-220-240 v a.c, Sec 650-540-0.540650 a.c. $220 \mathrm{Ma}, 6.3 \vee 4 \mathrm{a}, 6.3 \vee 2.5 \mathrm{a}, 160 /-;$ TXB Prim $115-200-220-240 \quad$ a.c. Bec ispped $28-32-36-5 \mathrm{amp}$, 80/-; TXO Prim 200-220-240 ₹.3.c. Sec 50 v 25 a a.c., £20; TXD Prim 5-0-100-110-120 v 5.5, a, 5-0-100-110- 120 v 5.5. - series parallel-connection isolation trans, 1000 watt, £25.0.0.

$350 /-$ E.M.I. 13×8 ins., 10 watt, 3,8 and 16 ohms at $45 /$, each; 13×8 ins., Hi-FU 10 watt speaker, fitted two tweeters and crossover retwork, 15 ohms, $79 / 8$.
LOUDSPEAKERS. Ex-equipment,
LOUDSPEAKERS. Ex-equipment, perfect, Elac etc., 3 ohms
only, $10 /$ each Plus $3 /$-min. p.p.
 10/6; $6000 \mathrm{midd} 15 \mathrm{v}, 4 / 6 ; 1500 \mathrm{midd} 150 \mathrm{v}, 10 / 6 ; 64 \mathrm{mifd} 450 \mathrm{v}, 5 /=$ $80 \mathrm{mfd}, 5 /-; 32 \mathrm{mfd} 500 \mathrm{v}, 5 / \mathrm{m} ; 100 \times 400 \mathrm{mfd} 27 \mathrm{v}, 8 / \mathrm{m} ; 60 \times 100$ STEREO HIT-FI treble controls, ete., wew amplifier, fully transistorised, bass chassis guaranteed for £12.10.0 plus 10/-p.p.
8.A.E. AKR ENQUIRRES PLEASE MAIL ORDER ONLY.
46 KENILWORTH ROAD, EDGWARE, MIDDX. HA8 $8 Y G$

WW-113 FOR FURTHER DETAILS

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 2/6 for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Mlddx

LAWSON BRAND NEW TELEVISION TUBES

$12^{\prime \prime}$ \&4.10.0
$14^{\circ} \quad$ E4.19.0
$17^{\prime \prime}$ E5.19.0
$\begin{array}{ll}19^{\prime \prime} & 66.19 .0 \\ 21^{\prime \prime} & 68 \\ 5.0\end{array}$
23^{*} 88. 5.0
19* Panorama E8.10.0
23" Panorama fll.10.0
19* Twin Panel E9.17.6
23" Twin Panel $£ 13.10 .0$

> Carrlage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ $21^{\prime \prime}-23^{\prime \prime}-1510$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the nero Larsson "Century 99" range of C.R.T.S. "Century 99 " are absolutely brand newo tubes shroughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance toith needle sharp definition. Screens of the very latest type giving maximum Contrast ana Light output; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1970. Complete fitting instructions are supplied with every tube.

2 YEARS FULL REPLAGEMENT GUARANTEE
WW-112 FOR FURTHER DETAILS

LAWSON TUBES

18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, Co cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), Good prices paid
J. BLACK

Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

AMAZING VALUE

NEW BRANDED FULL SPECIFICATION SEMICONDUCTOR DEVICES. BEST FOR PERFORMANCE AND RELIABILITY
G.E. D40CI 4W. Darlington Amplifier.

Very High Gain 10,000 minimum 13/6
Signetics N5709A Type 709 Op. Amp., $13 / 6$
ITT I Amp Plastic Rectifiers: 100 V 21 . iN4003 $200 \mathrm{~V}, 2 / 2, \mathrm{IN} 4004,400 \mathrm{~V} 2 / 5, \operatorname{IN} 4005,600 \mathrm{~V} 2 / 9$, IN 4006 , $800 \mathrm{~V} 3 / 5$, in 4007 , lool $1 / 2 /-$.
P. \& P. $1 /$ per order. Overseas 7/6. S.a.e. for list. Cash with order. Mail Order Only.

DEF ELECTRONICS (W.W.9)
YORK HOUSE, 12 YORK DRIVE, GRAPPENHALL, WARRINGTON, LANCS.
Money back if not satisfied,

D 311105 LTD

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO

B CORWELL LANE, HILLINGDON,MDX.
01.5733561

PRINTED CIRCUITS
PROTOTYPE AND BATCH PRODUCTIONS
Instrument panels and dials In Metal and Perspex
\qquad
Brooklands Plating Co. Ltd.
Spice's Yard, South End, Croydon CRO IBF 01-688-2128
WE PURCHASE ER TAPE READERS AND ANY
COMPUTERS, TAPE READERS AND ANY
SCIENTIFIC TEST EQUIPMENT, PLUGS AND SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTOND, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC ELECTRONIC BROKERS LTD.
49 Pancras Road, Londen, N.w.1. 01-837 7781

WE PURGHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9 , 11 Arthur Road, Reading, Berks.

Tel: 582605

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING
- COLOUR TV SERVICING
- AUDIO FREQUENCY
- ELECTRONICS
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:

- C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Cert. Radio Amateur's Examination P.M.G. Certs. in Radiotelegraphy General Certificate of Education
 Please send FREE book on

Name.
Address

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS

BAIEY, LINSEEY-HOOD, TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. to: TELERADIO ELECTRONICS

> NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES, MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see January, February, April, 1970 issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically.

> WEST HYDE DEVELOPMENTS LIMITED,
30 HIGH STREET, NORTHWOOD, MIDDX.
> Telephone: Northwood 24941

Learn at home... First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee"
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885-Over 150,000 successes
CHAMBERS COLLEGE
(Incorp. National Inst. of Engineering)
(Dept. R16), College House, 29-31 Wrights Lane, London, W.8.

DIOTRAN
SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS FOR W.W. CAP.-DIS			TOP HAT SILICON RECTIFIERS. All good. No short or open circuit devices.					
2N3525			750 mA . E3 per 100 , E12.10					
2N3055... 12/-			per 500.					
2N3702.. 3/0								
2N3704.. ${ }_{\text {IN } 4001}$								
			TRANSISTORS. Manufac-					
IN4005.. 4/								
New and fully guaranteed.			2N3702-3 family, Ideal cheap trans. for manufacturing etc. E8 500, \& 13.10 I, 000 pieces.					
S.C.R's 16 AMP (unplated)			PLASTIC NPN SILI.					
	:-24 25-99	,	Manufacturers' seconds from					
All tested perfect functionaldevices guaranteed.								
1/6 TESTED TRANSISTORS								
One price only PNP. NPN Silico each. Planar or Germ. Fully Tested an								
ACl27 BCl09 OC44 2G399A 2N3707 ACl28 BFY50 OC45 2N696 2N3711								
ACl30 - BFY51 OC7 - 2N697 2N2906								
$\begin{array}{llllll}\text { ACY19 } & \text { BFX84 } & \text { OC72 } & \text { 2N706 } & \text { 2N2907 }\end{array}$								
ACY22 NKT141 OC82								
ACY27 NKT142 T1S44 ACY28 NKT212 2 G 301 $2 N 1131$ $2 N 3703$ 2SIO2								
ACY29 NKT213 2G302 2 N1613 25103								
ACY30 NKT214 2G303 2N171! 25104								
ACY31 NKT215 2G308 2N2904 25732								
$\begin{aligned} & A C Y 34 \\ & A C Y 35 \end{aligned}$	NKT271	2 G		2N2905	25733			
	NKT677	2G	374	2N2924				

TRANSISTOR EQVT. BOOK

2,500 cross references of transistors-British, European, Arnerican and Japanese. A must for every transistor user.
Exclusively distributed by DIOTRAN SALES. $15 /-E A C H$.

Vast mixed lot of subriiniature glass diodes. Comprising of Silicon, Germ, Point Contact and Gold Bonded types plus some Zeners, 500,000 1,000 pieces $£ 3.0 .0 .5,000$ picces $£ 13.10 .0 .10,000$ pieces $£ 23$.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. Type TIS43 and BEN 3000 and replacement for 2N2646. Fuld
LOWEST PRICE AVAILABLE ANYWMERE. 100 off $4 / \mathrm{m}$ each $=$ E20; 500 off $3 / 6$ each $=887.10 ; 1.000$ off $3 /-$ each
$=~$
$=150$. Sample devices $7 /$ - each on request.

HIGH QUALITY SILICON PLANAR DICDES.
SUB-MINIATUREDO-7 Glass TYPe, suitable replacements SUB-MINIATURE DO-7 Glass Type, suitable for OA200, OA202. BAY 38, ISI 30,1 S $940,200,000 ~ z o ~ c l e a r ~$
at 44 per 1,000 pieces. GUARANTEED 80% GOOD.

FULLY TESTED DEVICES AND QUALITY GUARANTEED-SURPLUSTO REQUIREMENTS OA202 Silicon Diode. Fully Coded.
150 plV 250 mA Qty. Price 630 per 1,000 pieces.
50 PIV 250 mA . Oty. Price E25 per i 000 ,
BY 100 SIL. RECT's 800 PIV 550 mA .
1-49 2/6 each; $50-99$ 2/3 each; $100-999$ 2/- each; 1,000 up
$1 / 10$ each. Futly Coded. First Quality.
Post and Packing costs are continually rising. Please add
I/- towards same. CASH WITH ORDER, PLEASE. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP.
MENTS TO ANYWHERE IN THE WORLD.

Ren

WW-114 FOR FURTHER DETAILS

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

ECONOMICAL THTD RELIABLE ACCURATE

Private enquiries, send two 5d stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works. Wellington Crescent.

New Malden. Surrey (01-9420334 \& 2988)
WW-115 FOR FURTHER DETAILS
TELEVISION TUBES 2 YEAR GUARANTEE
1703 110/ $=$ • 1903 130' $=2303$ 165/= carriage 12/6 per tube RADIO E TV VALVES
SOLAR TUBES (FARNBOROUGH) LTD
28 ALEXANDRA ROAD, FARNBOROUGH, HANTS. Telephone 42590 \& 49101

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENOON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991

QUABLZ CRYSTAL UNLTS

Manufactured to your requirements Fast Delivery
Freq. range $1.4-20 \mathrm{MHz}$
Phone Hythe 8961 for Leaflet AT-1
McKNIGHT CRYSTAL COMPANY
SHIPYARD ESTATE, HYTHE, SOUTHAMPTON

CIRCUIT consultant's casebook

 by T. K. HemingwaySEMICONDUCTOR LASERS by Helnrich Rieck. 35/-. Postage I/6.
AUDIO CIRCUIT DESIGN by Motorola 12/6. Postage I/6.
SERVICING WITH THE OSCILLOSCOPE by Gordon J. King. 28/-. Postage 1/6.

COMPUTER LANG UAGES by Peter C. Sanderson. 55/\%. Postage $1 / 6$.

POWER ENGINEERING USING THYRISTORS, VOL. I by Mullard. 30/-. Postage I/-.

COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. 50/-. Postage I/-. TELEPROCESSING NETWORK ORGANIZATION by James Martin. 125/-. Postage 2/-

THEMICROELECTRONICS DATA BOOK by Motorola. 60/-. Postage 5/-.
TRANSISTOR IGNITION SYST. EMS HANDBOOK by Brice Ward. 22/6. Postage I/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Bricish and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185 Closed Sat. I D.m.

Various types of two- and four-track playback heads for real, cassette and professional tape recorders are offered by

Foreign Trade Enterprise
Warszawa, Al. Jerozolimskie 44, Poland

On demand we work out and execute playback heads with requested parameters as well as subassemblies and technical details for tape recorders.

Makers: the Kasprzak Radio Equipment Works
Warszawa, Kasprzaka 18/22, Poland

MACLEANS 6° FAN
230 v AC. 3 Amp. $2,800 \mathrm{rpm}$.
55/- pp 6/-
IMLOCK COLLAPSIBLE ALUMINIUM
CHASSIS FRAMES $10 \frac{1_{2}^{\prime \prime}}{} \times 8 \frac{3^{\prime \prime}}{4} \times 6 \frac{1^{\prime \prime}}{}$.
20/- pp 3/-.
SMITH'S CIRCULAR TAPE POSITION
INDICATORS
Resettable. Ne
10/6 pp 2/-.
20-WAY 3-POLE P.O. TYPE JACK STRIPS
$10 \frac{1}{4}^{*} \times 3 \frac{1}{2}{ }^{\prime \prime} .19 / 6 \mathrm{pp} 3 / 6$. Ex-equip.
12 VOLT SOLENOIDS PULL ACTION
Size $2^{\prime \prime} \times 1^{\prime \prime} \times{ }^{\frac{3^{\prime \prime}}{2}}$
$4 / 6$ each pp $1 / 6$.
SOLAR CONSTANT VOLT TRANSFORMERS.
Harmonic neutralized. Primary volts 95/190-130/260
Rated V A. 25050 Hertz. Enclosed in case.
Soc. : 118 v AC 2.12 Amps.
£8 each. Carr. 20/-
New conditlon ex. equip. Tested
STC SEALED RELAYS DOUBLE POLE
CHANGEOVER
$48 v 2500 \Omega$ Ex-equip.
2/6 emch pD $1 / 6$.
HONEYWELL MICRO-SWITCH, LEVER OPERATED
Lever action ex-equip. 3/6 each pp 2/e.
ANALEX POWER SUPPLIES
Size $7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime}$. 230v AC Input.
Output 6 v 5 amp $\times 2$; 18 v . 7.5 Amp . DC
Marg Thal adiustmen
E35 Os. Od plus E3 carriage
ANALEX POWER SUPPLY
Size $13^{\prime \prime} \times 19^{\prime \prime} \times 51^{\prime \prime}$. 230 v AC Input.
Ex. Equip Fully Tested New
E27 Os Od plus $\mathbf{f} 210 \mathrm{sew}$ condltion:
2 10s. carriage.
VEEDER-ROOT MECHANICAL COUNTERS
5 digit; lever operated; resettable.
$3^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}$. Ex-equip. 10/6 pp 2/6.
DORMAN LOADMASTER
$250 / 44 \mathrm{v}$ AC. 5 amp triple pole circuit breaker
29/6 plus 5/-pp.
Brand new with fixing bracket.
TRANSFORMERS
3-PIN 5 AMP NON-REVERSIBLE
RUBBER FLEX CONNECTORS 6/- pp 1/6.
Input 230v. Output: 6.6 v 122 Amp
Size $6 \frac{t^{\prime \prime}}{2} \times 7 \frac{1^{\prime \prime}}{2} \times 9^{\prime \prime}$ including terminals Brand new. £15 Os. Od, plus $£ 2$ carriage.
ASHGROVE TRANSFORMER
$0-240 \mathrm{v}$ AC In
228 v AC 6.6 Amp Out
$6^{\prime \prime} \times 6 \frac{1}{3} \times 7 \frac{1}{7}^{\prime \prime}$.
£6 10s. Od. plus 30/- Carriage
TEXAS ZENNER'S
$56 v \pm 2 \frac{1}{2} \% .10$ watts. $6 /-$ pp 1/6.
OC29 POWER TRANS
7/6. 14/- pr. pp 1/6.
PRINTED CIRCUIT BOARD
ASS. RESISTORS/CAPACITORS
10 OA200 Diodes; 1 Reed Relay: 1 OAZ229 Zenner. Power Supply: $22 \mathrm{v} 250 \mathrm{~m} / \mathrm{a}$ D.C. Out/A.C. 240 v in . £1 Os. Od. pp 4/- Ex. Equip.
ADVANCE VOLTSTAT TRANSFORMER
190-260v AC In
240 V RMS Out
$30^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$.
£30 Os. Od. plus carriage.
GARRARD 2 TRACK TAPE DECKS MAG TYPE Solenold operated 230 v , $1 / \frac{7}{B} \mathrm{lps} 50 \mathrm{v}$ Solenold Ideal for contin. tape players otc
E710s. Od, each. Brand new In manufacturers cartons. pp 22/6d.
OMRON MIDGET POWER RELAY
Trpe MK1 230v AC. New 9/6d. each pp. 1/6d.
TELESCOPIC AERIALS CHROMED closed 28 oxtended. 6 section

1/6d. New
4 MULLARD DM160 INDICATORS
 green plastic cover ex-equlpment. 7/6. pp 1/6.
CERAMIC STEREO CARTRIDGE
Output $135 \mathrm{~m} / \mathrm{v}$ at $1 \mathrm{~cm} / \mathrm{sec}$.
Freq. response 40-12,000 cps. Load 1 meg.
Separation better than 15 db .
Tracking weight $5-6$ grams. $30 /$-, pp 2/6
MALLORY ELECTROLVTICS
25,000, MFD 25v DC $\quad 55,000$, MFD 15 v DC $\begin{array}{lll}40,000, & 10 v D C & 37,000, \\ 20,000, & 30 v D C & 32,000,\end{array} \quad$ 15v DC $25 v$ DC 37,500, $\quad 15 \mathrm{~V}$ OC
All at 10/- each. p.p. 2/6. Screw terminals.
Toggle Switches, single pole, double throw.
Ex-equip. Now condition. 10/- doz., pp 2/6,

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

storage
units
A PLACE FOR
EVERYTHING
EVERYTHING
IN ITS
PLACEI

Newest. neatest. system ever devised for storing small parts and components: resistors, capacitors. diodes.
transistors, etc. Rigid plastic units, interlock together in transistors, etc. Rigid plastic units. interlock together in
vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. Build up any size cabinet for wall. bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (5ins $\times 2$ なins $\times 2$ tins)
Usually $2 / 6$ each. OUR PRICES: 24/- DOZEN DOUBLE UNITS (5ins $\times 4 \frac{1}{\text { ins }} \times 2 \frac{1}{4}$ ins)
PLUS QUANTITY DISCOUNTS!
Orders $£ 5$ and over DEDUCT $1 /$ in the $£$
Orders $£ 10$ and over DEDUCT $1 / 6$ in the $£$
Orders $£ 10$ and over DEDUCT $1 / 6$ in the $£$
Orders $£ 20$ and over DEDUCT $2 /$ In the $£$
PACKING/POSTAGE/CARRIAGE: Add $6 /-$ to all orders under £3. Orders £3 and over. packing/postage/carriage ree.
QUOTATIONS FOR LARGER QUANTITIIES

(Dept. ww9), 31, albert road. HENDON, LONOON, N.W. 4.
wW-117 FOR FURTHER DETALLS

- -1 Electronic Components

RCA Semi conductors
from stock
Cat. \& Price List by return Hams-free QSL cards with every order.

This month's suggestion:
A precision Three-Mode Voltage Calibrator,
comprising:
i.c.s

CA 3018
16/9 each
CA 3047A 50/6 each

Transistors
2N 3241 A (3)
2N 2613 (2)
2N 4037
6/9 each

Diodes
1N 5216 (8)
4/6 each
ZF 15(1N965) (2)
4/1 each
P.P. and Ins. 4/- per order
(Send for Ham Tips Vol. 29 No. 2 for Cirquit details-price 2/-cash).
A wide range of semiconductors always in stock. Make sure of your three FREE OSL cards by placing your order with us NOW.
Send for catalogue to:
sEL EQUIPMENT AND COMPONENTS LTD: Croh House, Bantroft, Hitchin, Herts Telephone: Mitchin 50551/2/3 and. 52202

EXCLUSIVE OFFERS

AMPEX

Precision Instrumentation and Data

 TAPE DECKS

TYPE FR 100A six speeds,
 (easily changed to or headsy,
changing rollers and
101° reel capacity, Push button 100° reel capacity, Push button
control. Precision to $0.75 \quad \mu$ sec, track contro $\begin{array}{ll}5 & \mu \text { sec. Drift free within } \\ 1 & \text { per cent. Accuracy } 10^{5} \text { per }\end{array}$ week. Power input $105 / 125548$ to 400 cycles. Rack mounting. TYPE FR 1100, as above but a speeds,
per second, snd ${ }^{4}$ t track, easily
changed to for 1^{c} and of lighter and more modern con
straction than Type FR 100 A PRICE 2280 for deok and servo control for either type Electronics (direct reeord and direct reproduce amplifers)

HIGHEST QUALITY RACK MOUNTING CABINETS Totally Enclosed

DOUBLE SIDED. These cabinets will take rack parels both sldes, that is back and Eront and are drill ed and tapped all the way down every ${ }^{\text {" for thls purpose. Thes }}$
are titted with "Instantit" patent fully ad ustable reck mounts which are vertically and horizontally adjustable these allow the panels to be recessed when they are Atted with projecting comp Other festures incta
tither features include-all corners and edges rounded.
Interior fittlogs troplcalised. Removable built In cable interior fittings troplcalised. Removable builit in cable insect proofed tops. Detachable side panels. Full length instantly detachable doors itted expanding bolts if
ordered with cabinels. Made in U.E.A. cost the American Government $£ 107$ before devaluation. Finished in grey primer and in new condition.
PRICE $£ 26.10 .0$ eac

PRTCE $£ 26.10 .0$ osch (Carriage extra)
Doors are not needed lf payels are mounted back and front and they are not reqnired to be enclosed.
TYPE C: 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$. Fide. American Standard First Grade totally enelosed ventilated 19° rack opan front fitted rack ronnts drilled and tapped all the way down every 1°. Wull length rear door with latch. Finished in grey these cabinets have been used but are in good condition but if decoration is of importance it is recommended hey are re-sprayed berire use.
PRICE 215.0 .0 each (Carriage extra)
TYPE D: 76° bigh $\times 18^{\prime \prime}$ doep $\times 2^{\circ}$ wide. These are slightly gmasler and finlshed in black otherwise they are Made by R.C.A. of U.S.A.

PRICE 212.10 .0 each (Carriage extra)
Full details of all above a vailable on requeat
TRANSPORT: Wo have made epec ial economical tranaport arrangements for theae cabinets to ensure they arrive ondrmaged

40-page list of over 1,000 different items in atock
available-keep one by jou.

\star E. $\mathrm{E} . \mathrm{T}$. 40KV Transformers and associated

*3M Secretary Photo Copiers
太 Xerox 1385 Photo Copiers P.U.R.
E3 10

tE.M.I. (U.S.A.) I $^{-}$Finest Quality | £175 |
| :--- |
| $\mathbf{0}$ |
| 17 | tapes suitable video work, 2400 H . spooled

-10 tod in transparent outer plastic cass....... Mast Sections with mating lags for joining up to 200 feet. New condition cations Receivers t Holtman CV-157 isB/SSB Convertors. AMakay 188 ATV L.F. Recivers 15/6 ARediton RA-10 ISB Adspiors.
TT - 63 Telegraph Repeaters.
\qquad

Lattioe lightwelght steel triangular Aerial
Masts 12 to 18 inch sides up to 200 Ht. high

 Carriage extra at cost on all a bove.

We have a large quantity of "bite and pieces"
we cannot list-please send us your requirements We cannot list-please send us your requirements
we can probably help-all onquiries anwered.

P. HARRIS

SLILCON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the 2 S300 (TO-5) and 2 S320 (SO-2) range and similar to the OC200205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors In varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2S300 or SO-2 2 S320.
Approximate count by weight:
100 off- 15 s . (plus p. \& p. 2s.)
300 off- 11 i5s. (plus p. \& p. 3 s .)
500 off- 6210 s . (plus p. \& p. 3s. 6d.)
1,000 off- $\mathbf{E 4}$ (plus p. \& p. 5s.)
10,000 off- $\$ 35$ (plus p. \& p. Ils.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES
P.O. BOX 5

63a High Ștreet, Ware, Herts. Tel: WARE 3442

ANDTHER HUGE PURCHASE BY DIDTRAN 10 MILLION DIODES GERMANUMM-GOLD BONDED•SILICON
TYPE DP1
Germanium Polnt-Contact Signal Diodes DO-7 Glass case. For selection of the following types:-
OA70-95, CG60H-60H, AA113-119, HS1001-1012, GD8-16, in 34A, JN43-46-52-56-57-60-69-81-86-90. 116-294-335-480-631, etc.
TYPE DG2
Germanlum Gold-Bonded Dlodes DO-7 Glass case. For selection of the following types:-
AAY30.33, AAZ13-17, OA5-7, OA47, CG8OH-94H, HG5001-5009, IN96.98-100-118-139-143-278-289. 454-497-499-500-771-835, etc.

TYPE DS3

Silicon Epitaxial Planar Diodes Logic Fast-switching Signal. Mirro-glass package DO-35 case. For selection of the following types:-
IN914-916, IN4148-49, IN3062-69, IN4446-9,
IS44, 15960-61, MS50-51, SD10-19, BAY 38 , ETC.' ALL THE ABOVE DIODES ARE FUNCTIONAL UNITS FREE OF OPEN OR SHORT CIRCUITS, WITH UNLIMITED USES FOR RADIO ENTHUSIASTS, MANUFACTURERS, SCHOOLS AND COLLEGES. NEVERE BEFORE HAVE WE SERN ABLE TO OFLER DIODES AT SUCH A FANTAS. TICALLY LOW PRICE, AND WAY BELOW THE ACTUAL
MANUFACTURING COSTS. MANUFACTURING COSTS.
$\star \star \star$ ALL ONE PRICE $\star \star \star$ Minimum Ouantly 1,000 pleces of any one type. ApproxImate Count by Welght. Please state type requilred l.e. DP1/DG2 or DS3

Quantity	Price	Plus post \& packing
1,000 pleces	$£ 3$	$1 /$.
5,000 pleces	$\boxed{13}$	$51 /$
10,000 pleces	$£ 20$	716
25,000 pleces	$£ 40$	$10 /$.
50,000 pleces	$£ 60$	$15 /-$
100,000 pleces	$£ 100$	$20 /$.
XPORT ENQUIRIES WELCOME		

All goods as advertised ex-stock-sent by return
All correspondence, cheques, postal orders etc., to :
DIOTRAN SALES P.O. BOX 5

WARE • HERTS • ENGLAND Telephone WARE 3442

HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

electronic components receiving valves for radio and TV receivers picture tubes guns for TV getters

from Poland
are offered by
Foreign Trade Enterprise

Warszawa, A1.Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 Telex No 814431

WW-120 FOR FURTHER DETAILS

RONDON CENTREG RADIO STORES

ELECTRICITY SLOT METER (1/- In slot) for A.C. Mains. Fixed ELECTRICITY SLOT METER ($1 /-\operatorname{In}$ slot) for A.C. Mains- Fixed
tarifilt to your requirements. Suitable for hotels, etc. $200 / 250 \mathrm{vo}$ $10 \mathrm{~A} .80 /-15 \mathrm{~A} .90 /-20 \mathrm{~A} .100 /-$ P. P. 7/6. Other amperages avaikble. Recondithoned as new, 2 years guarantee-
 Includes power supply 81 ll . -and spare valves and vibrator also tank aerial with base. 28 per pair or \& 4 single. P.P. $25 /$. - MODERN DESE PHONES, red, green, blue or topaz, 2 tone
grey or black. with internal bell rad handeet with 0-1 dia. grey or black. with internal bell nad bandset with 0-1 dia.
E4/10/-. P.P. $7 / 6$.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in BakeItte case with junction box handset. Thoroughly overbauled. Guaranteed. $26 / 10 /-$ per unit.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with Junction box. Thoroughly overhauled. GuaranEL PRHONE Der unit.
QUARTERLY ELECTRIC CHECE ss new. 200/250 v. 10 A. 42/6; 15 A. 52/6;20 A. 57/6. Other mmperages available. 2 years guarantee. P.P. Bj.-:
8-BANK ONISELECTOR SWITCHES, 25 contacta, alternate wiping $£ 2 / 15 /-; 8$ bank haif wipe $22 / 15 /-16$ bank half wipe,
25 contacts $47 / 6$. P.P. $3 / 6$. FINAL END SELECTORS. H
Recel vers in stock. All for callers only.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

LNSLEY 1001 PRE-AMPLIFIER

Complete kit including PCB approved by Linsley Hood, polyester \& electrolytic cap's, $\pm 5 \%$ hi-stab R's, pre-sets, SGS \& Amelco matched Tr's, Radiospares hi-qlty $s w ' s$, pots $(\pm 2 d B)$ \& drilled front panel. MONO $£ 5.12 .6$ net STEREO $£ 10.7 .6$ net

LINSLEY HOOD CLASS AB AMP

Send SAE detailed lists including other WW Designs. BC109/BC182L $3 /-, \quad$ BC125/6 $11 /-$, BC212L $4 /-$, MJ480 20/-, MJ481 25/6, MJ491 28/-, MJE521 15/-, $40361 \mathrm{l} / \mathrm{F}, 40362 \mathrm{I} 4 / 6,2 \mathrm{~N} 1613 \mathrm{6} / \mathrm{F}, 2 \mathrm{~N} 3906 \mathrm{6} / 6$, 2N4058 4/6. Matching \& mica washers, etc., FREE. Matched 10 Tr's \& zener Texas 15 W amp. E3.9.6. Postage/packing $1 /$ - minimum on all orders. guaranteed despatch by first class return A.IFACTORS, 72 BLAKE ROAD, STAPLEFORD, NOTTS.

TACHOMETERS TACHOGENERATORS

\star Very accurate-linearity - 1%
\star Bidirectional output
to $\frac{1}{4}$ of 1% tolerance
\star Brush life $100,000 \mathrm{hrs}$. or 10 years continuous operation

* Low driving torque
\star Temperature compensated
\star Ideal as speed transducers

NECO ELECTRONICS (EUROPE) LIMITED WALTON ROAD, EASTERN ROAD COSHAM P06 1SZ, HANTS. Tel: COSHAM 71711/5. Telex. 86149

WW-121 FOR FURTHER DETAISS

Abstract

\section*{VALVES}

VALVE cartons by return at keen prices; sead 1/Godwin st.. Bradford.

ARTICLES WANTED

SINGLE PHASE to Three Phase Changers, D.C. to A.C. Rotary Converters, and D.C. Motors, any size. Universal Electric, $43 / 47$ Rivington Street., Shoreditch,
London, E.C.2.
Valves and transistors required in new condition. Any quantity purchased. Quotations by return.
S.W.16.
$01-769-0199$.
$W_{\text {and }}^{\text {ANTED, all types of communtcations recelvers }}$ Electronics, Ltde, Ashville Old Hall, Ashville R. Rd., Lon. Electronics, Ltd., Ashville Old Hall, Ashville Rd., Lon-
don. E.11. Ley
[6986. $\mathbf{W}^{\text {ANTED, }}$, televisions, tape recorders, radiograms,

 quotation by return.-Walton's
Worcester
St., Wireless
SERVICE \& REPAIRS
SMALL servicing and repair contracts undertaken.
Field service any distance. Best possible rates for Sold service any distance. Best possible rates for
top-qualty work. Cambrian Electronlcs, 96 High St.
High
[666 top-quay Fury work.
Frimley, Surrey.

CAPACITY AVAILABLE

A IRTRONTCS LTD., for Coil Winding-large or small A production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D.. etc. Export enquiries welcomed.
3a Walerand Road, London. S.E.13. Tel. $01-852$ 1706
[61 A QUA-GEM ELECTRONICS have capacity available A for light electronic assembly. Specialists in printed prices. Telephone North Benfleet 531.
CApactTY AVAlLABLE for P.C. board assembly. Large own price. P.B. Electronics, 30 Wilton Road, Malverr.

CONSULT us for our comprehensive electronic design work, development service. For first class design mork, protesstonal advice and
METALWORK, all types cabinets, chassis, racks, for etc., to your own specification, capacity avallable PHILPOTT's METALWORKS, Ltd., Chapman Sit. Loughborough.

BAKER 12 in. MAJOR £9

 30-14,500 c.p.s., 12 in . double cone, woofer and tweeter cone together with a BAKER ceramic magnet 14,000 gauss and a total flux of 145,000 Mauswells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Post Free. Module kit, $30-17,000$ c.p.s. Size Module kit, $30-17,000$ C.p.s. Size
$19 \times 12 \frac{1}{2}$ in. with tweeter, crossover,
baffle and instructions. Ideal for Hi baffle and instructions. Ideal for Fi
Fi P.A. Post Free SII. 10.0 LOUDSPEAKER CABINET WADDING 18 in. wide, $3 /$ - per ft, run.
Post $2 / 6$ per order.
ELECTRIC MOTORS (120 v . or 240 v . A.C.)
Clockwise $\mathrm{I}, 200$ R.P.M. of load Heavy duty 4 pole 50 mA . Spindle $\frac{z}{4} \times 3 / 20 \mathrm{in}$. diameter.
Size $2 \frac{1}{2} \times 2 \frac{1}{6} \times 1 \frac{1}{2} \mathrm{in}$. $\begin{array}{ccc}\substack{\text { BRagain } \\ \text { pRICE }} & 17 / 6 & \substack{\text { Post } \\ 2 / 6}\end{array}$ TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A self-contained portable
mini p.a. system. Many
Uses-Parties, Baby Alarm,
Intercom, Telephone or Intercom, Telephone or Aecord player Amplifier,
Attractive rexine covered
cabinet size $12 \times 9 \times 4$ in., cabinet size $12 \times 9 \times 4$ in.,
with powerful 7×4 in.
speaker and four transistor
ons peaker and four ammilfier.
One Watt power ample battery. Brand
new in Maker's carten with now in Maker's carton with

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{lll}\text { 200/250 A.C. } & 42 / 6 & \text { Pose } \\ \text { Leaflet S.A.E. }\end{array}$

- ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star $9-12 v_{0}$ and $200-300 \mathrm{v}$. D. C. operation. Size If x lix $\times \mathrm{i}$ in.
Response 25 cop.s. to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{dt}$ gain. For use with valve Response 25 cop.s. to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. For use with valve
or transistor equipment. Full instructions. $17 / 6$ Post RETURN OF POST DESPATCH - GALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES rado component specialists 337 WHITEHORSE ROAD, CROYDON. Tel: $01-6841665$

PROTOTYPE WIREMAN, industrial experience. Small electronic Lnstruments/sub-assys/PCBs made up to
drawings or sketches. Kent coast. Box WW 739, Wiredrawings or
[739

TECMNICAL TRAINING

BECOME "Techntcally Quallfed" in your spare time, 1 guaranteed dyploma and exam. home-study courses In radio. TV, servicing and maintenance. R.T.E.B., Clty \& Gullds, etc., highly informative 120 -page House, 29-31 Wrights Lane, Kensington, London, W.8. [16
CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of elec-
trical engineering, electronics, radio, T.V., automation, trical engineering, electronics, radio, T.V., automation, etc. send for 132 -page handbook-free.-B.I.E.T.
(Dept. 152 K), Aldermaston Court. Aldermaston, Berks.

TECENICAL TRAINING IN Radio, TV and Electronics homerough world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext
House, London, S.W.8.

TV and radio A.M.I.E.R.E., City \& Guilds, R.T.E.B.: 1 certs., etc., on satlsfaction or refund of fee terms; thousands of passes; for full details of exams and home training courses (including practical equipment) th all
branches of radio. TV, electronics, etc. write for 132 pranches of radio, TV, electronics, etc., write for 132 page handbook-iree; please state subject.-British
Institute of Englneering Technology
(Dept. 150K). Aldermaston Court. Aldermaston, Berks.

TUITION

ENGINEERS.-A Technical Certincate or qualificaElion will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.MII.E.R.E.M. A.M.S.E. (Mech. \& Elec.). City \& Diploma courses in all branches of EngineeringMech. Elec., Auto, Electronics, Radio, Computers, Draughts, Building, etc.-For full details write for
FREE 132-page guide: British Insttute of EngineerFREE 132-page gulde; British Institute of Engineering Technology (Dept. 151K). Aldermaston Court,
Aldermaston, Berks.
KINGSTON-UPON-EULL $\begin{gathered}\text { Education } \\ \text { Commiltee. }\end{gathered}$ F.R.I.C.

FULL-TIME courses for P.M.G. certificates and the Radar Malntenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-
Hull.

BOOKS, \&NSTRUOTIONS, KKC,

M
ANUALS, clrcuits of all British ex-W.D. 1939-45

BAILEY PRE-AMPLIFIER

High quality pre-amplifier circuit deseribed by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion eireuit of great versatility with a maximum output of 2 voles making it suitable for driving Bailey 20W and 30W Amplifiers, Linsley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modifications 7 in . by $3 \frac{3}{i} \mathrm{in}$. features edge connector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. materral or fibreglass and the complete Kit for the capacitors and meral oxide resistors where specified

BAILEY 30W AMPLIFIER

All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector and is roller tinned for ease of assembly. Size is also s maller at $4 \frac{i}{i n}$. by 2 zin . Price in SRBP material $1 / 16 \mathrm{~d}$ in Fibreglass 14/6d.

BAILEY 20W AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo
with bifilar wound secondary and speciat 218 y primary for use with CZ6 Thermistor, $35 / 6 \mathrm{~d}$., post prim
Trifilar wound Driver Transformer. 22/6d. post 1/Power Amp. PC Board, 12/6d., post 9d,
Reprint of " Wireless World " articles, 5/6d, post free.
DINSDALE IOW AMPLIFIER
All parts still avallable for this design.
Reprint of articles $5 / 6 \mathrm{~d}$., post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply componencs.

PLEASE SEND S.A.E. FOR ALL. LISTS

HART ELECTRONICS,

32I Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.
R.E.M.E. Instructions; s.a.e. Por list, over 70 types.-
W. H. Bailey, 167 M Moflat Road, Thornton Heath,
Surrey, CR4-8PZ.

SPECIAL OFFER

The first Volume (on transistors) of the new series of the

SEMICON INDEX
 being published in conjunction with AVO LIMITED
 will be ready at the end of September

A mine of information confaining very comprehensive technical data on over 16,000 transistors of international origin. 18 sections with cross reference index, over 600 outline drawings, CV numbers with equivalents and manufacturers.

Invaluable to all engineers \& buyers

SECURE YOUR COPY NOW
by sending the special pre-publication offer price of $79 / 6 \mathrm{~d} .+5 / 6 \mathrm{~d}$. p. \& p. direct to
Functional Publication Services Ltd., 29 Denmark St., Wokingham, Berks.
(normal price to be $£ 5.5$ s.)

TRADE MARKS

TaE Trade Mark No. 772762 consisting of a device and cinematographic films prepared for exhibition; and and cinematographic
wireless,
telephonic, television,
telegraphic, recording and sound reproductng instruments and parts thereof included in Class $9^{\prime \prime}$, and the Trade Mark No. 772763 consisting of a device of a star and reisistered in respect of "Paper, paper articles and card-board articles, an included in class 16 ; card-board, printed stationery; and instructional and teaching material (other than apparatus)" were assigned on the 24th April, 1970, by REDIFFUSION TELEVISION LIMITED, of Television House, Kingsway, London, W.C.2, to
REDIFFUSION CENTRAL SERVICES LIMITED, of Carlton House, Lower Regent Street, London, S.W. WITHOUT THE GOODWILL OF THE BUSINESS IN USE.

INIDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 98-109

[^14]| | Pagb |
| :---: | :---: |
| A1 Factors | 114 |
| Acoustical Mfg. Co. Ltd. | 31 |
| Adcola Products Ltd. . | over iii |
| Adler, B., \& Sons (Radio) Ltd. . | 60 |
| Advance Electronics Ltd. | 1 |
| Altec Lancing International. | 17 |
| Anders Electronics Ltd. | 24,34 |
| A.P.T. Electronics. | 42 |
| Associated Automation Lid. | 21 |
| Associated Elec. Eng. Ltd. | 12 |
| Ates Electronics Ltd. | 64 |
| Banner Transformers. | 44 |
| Bantex Ltd.. | 32 |
| Barnet Factors Led. | 77 |
| Barrett, V. N.. | 110 |
| Batey, W., \& Co. | 28 |
| Bentiey Acoustical Corporation | 78 |
| Bentley, K. J., \& Partners | 111 |
| B.I.E.T. | 13 |
| Bi-Pak Semiconductors. | 71 |
| Bi-Pre-Pak Ltd. | 81 |
| Bird Electronic Ltd. | 41 |
| Black, J. | 10, 112 |
| Bowthorpe-Hellerman Lid. | 11, 16 |
| Brooklands Plating Co. Ltd. | 110 |
| Brown, N. C., Ltd. | 60 |
| Bryan Amplifiers Ltd.. | 58 |
| Carr Fastener Co. Ltd. | 50 |
| Cesar Products Led. (Yukan) | 112 |
| Chambers College. | 111 |
| Chandos International. | 110 |
| Chiltmead Lid.. | 8, 110 |
| Colomor (Electronics) Ltd. | 76 |
| Computer Sales \& Service Lid. | 91 |
| Concord Instrument Co. | 110 |
| Consumer Microcircuits Ltd. | 40 |
| Deimos L'td. | |
| Diotran Ltd.. | 1, 114 |
| Douglas Electronic Ind. Ltd. | 111 |
| Drake Transformers Led. | 33 |
| Dynamco Ltd. | 38 |
| Electrical Who's Who. | 80 |
| Electromodul | 10 |
| Electronic Brokers. | 85, 110 |
| Electronics (Croydon) Ltd. | 92 |
| Electrosil Ltd. | 51 |
| Electrovalue. | 90 |
| Electro-Tech Sales. | 66 |
| Electro-Winds Ltd. | 42 |
| English Electric-Valve Co. Ltd.. | 5, 7, 9 |
| Erie Electronics Ltd. | 15 |
| Esmanco Ltd. | 70 |
| Ferrograph, The, Co. Ltd.. | 52, 59 |
| Field Electric Ltd.. | |
| FieldTech Ltd.. | 64 |
| Firnor-Misilon Ltd.. | 60 |
| Fylde Electronic Laboratories. | 30 |

Racal Instruments Ltd
PageRadio \& TV Components Lid.Radio Components Specialists.Radio Exchange Co.Radiospares Ltd.Ralfe, P. F.Rank Audio Visual Lid.
Reslo Mikes.
Rigold \& Bergmann Lid.
Rola Celestion Ltd.....
R.S.C. Hi-Fi Centres Litd.
R.S.C. Halves.
Salford Electrical Instruments Ltd.
Samsons (Electronics) Lid.
Sankyo Seiki Mfg. Co. Led.
Sansui Electric Co. Ltd.
Service Trading Co.
Servo \& Electronic Sales Ltd. .
Seymour, Peter, Lid....
Sinclair Radionics Ltd.
S.M.E. Ltd.
S.M.E. Ltd. W. (Radio), Lid.
Smith, H. L., Co. Led.. .
Smith, J., Ltd. .
S.N.S. Communications Ltd
Solar Tubes (Farnborough) Ie. 32
Solar Tubes (Farnborough) Lid.................. . 111
Special Products Ltd.Starman Tapes. .Stephens ElectronicsStorno Ltd.
Sugden, A. R. \& G. (Engs.), Ltd.
Sugden, J. E. .
Sutton Electronics
Telcon Metals Ltd. .
Telequipment Ltd..
Teleradio, The, Co. (Edmonton) Ltd
Telford Products Ltd.
Teonex Ltd. .
Thorn Radio Valves \& Tubes Lid. 47
Time Electronics Led...
Tinsley, H. .
Tinsley, H.........
Universal. 112, 114

Valradio Ltd. . .

Vitality Bulbs Ltd.
Vitavox Ltd..

Vortexion Lid.
27
Watts, Cecil E., Ltd.. 110
Wayne Kerr, The, Co. Lid.. 8
Webber, R. A., Ltd. . . .
Wel Components Ltd.
Welwyn Electric Ltd.
West Hyde Developments Lid.
West London Direct Supplies.
Whiteley Electrical Radio Co. Ltd..
Wilkinson, L. (Croydon), Ltd. .
49
75 114 42 .42 .42
67
26 26
Richardson, J., Electronics Lid
Richardson,
Rigold a Bergmann Lid.
S.C. Hi-Fi Centres Lid
Z. \& I. Aero Services Ltd. .
General Video Systems Lid.
Goldring Manufacturing Co. Ltd
Grampian Reproducers Ltd.....
Greenwood, W. (London), Lid...

Hall Electric Ltd. Harmsworth Townley \& Co. Harris Electronics (London) Ltd. Harris, P.
Hart Electronics
Hatfield Instruments Ltd.
Henry's Radio Ltd. .
Henson
I.C.S. Ltd.
I.M.O. (Electronics) Lid.

Industrial Exhibitions Ltd.
Instructional Handbook Supplies
International Audio Fair
Ivoryet. .
J.E.F. Electronics
K.S.M. Electronics

Keytronics.
Lasky's Radio Ltd.
Lawson Tubes.
Ledon Instruments Ltd.
Levell Electronics Ltd.
Lexor Dis-Boards Ltd. .
Light Soldering Developments Lid..
Lind-Air Optronics (Industrial) Ltd.
Livingston Hire Lad..
London Central Radio Stores.
L.S.T. Components.

Magnetic Tapes Led.
Marconi Instruments
Marshall, A., \& Son (London) Ltd.
Millbank Electronics
Mills, W.
Modern Book Co.
Morganite Resistors Ltd.
Motorola Semiconductors Ltd.
Multicore Solders Ltd.
McEvoy.
McKnight Crystal Co. .
McMurdo Instrument Co. Ltd.
Neco Electronics (Europe) Ltd.
Nombrex Ltd.
Omron Precision Controls
Osmabet Ltd.
Oxley Developments Co. Lrd
Pattrick \& Kinnie
P.C. Radio Ltd.

Quality Electronics Lid.
Quartz Crystals Co. Ltd.

FieldTech Itd
Firnor-Misilon Ltd.

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS-STOCK ITEMS \star SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

(Dept. H) Adcola House, Gauden Rd., London, SW4 Tol. 01-622 0291/3 Telegrams: SolJoint, London, Telex Tolox: Adcola, London 21851

Please rush me a copy of your latest brochure:
name
COMPANY
ADDRESS

When soldering fine copper wire, ordinary tin/lead solder alloys will absorb some of the copper, so that the diameter of the wire will be reduced.
Ersin Multicore Savbit Type 1 solder contains a small percentage of copper so that the solder is already 'saturated' with copper and will not absorb it from copper wire or copper laminate.
Savbit will also prolong the life of copper soldering iron bits by 10 times, thus eliminating the need for frequent resurfacing of copper bits and by keeping
the copper bits in good condition, the soldering speed and efficiency are increased.
Savbit Type 1 alloy contains 5 cores of noncorrosive extra fast rosin based Ersin Flux. Melting point is $215^{\circ} \mathrm{C}$. Recommended bit temperature is $275^{\circ} \mathrm{C}$.
Savbit Type 1 alloy with Type 362 Ersin Flux has received Ministry approval under number DTD.900/ 4535. It may be used for soldering processes on equipment for Services use in lieu of solder to RS.219.

7 lb . REELS
A vailable in standard wire gauges from 10-22 swg., on strong plastic reels.

1 lb . REELS
Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From $24-34 \mathrm{swg}$. only $\frac{1}{2} \mathrm{lb}$. is wound on one reel.)

SIZE 5
A Coil of 18 swg., packed in a unique handy dispenser.

HOLLAND

Ersin Multicore Savbit Alloy is used by Bull Nederland of Amsterdam, Holland for the assembly of administration and statistics machines.

NEW ZEALAND Ersin Multicore Savbit Alloy is seen being used at the factory of Bell Radio Television Corpn. Ltd., Auckland, New Zealand.

[^15]
[^0]: * Philips Records Ltd.

[^1]: * From Latin trans (across), ducere (to draw).

[^2]: + From Latin digitus (finger). The link with counting is obvious.
 \neq From Greek ana (up to), logos (proportion).

[^3]: * With one exception; see this page, May issue.
 \dagger ("Management and Merger Activity" by Gerald Newbould.)

[^4]: "See "B.B.C. Band-two Broadcasting Stations", in the August issue, page 401.

[^5]: \dagger For further reading: "F-M Simplified" by Milton S. Kiver. Published by D Van Nostrand Co. Inc. Princeton, New Jersey, U.S.A.

[^6]: NAME

[^7]: WW-051 FOR FURTHER DETAILS

[^8]: ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES

[^9]: Take a Z-trip-it may be the answer to that psychedelic design problem orbiting in your head These two devices give designers solutions to their frequency monitoring problems without resorting to tuned filters, frequency discriminators, resonant reeds or crystals. They're fast, accurate, small in size and give you more performance at less cost than ever possible before What's more, they are designed and made in Britain.
 By offering alternative operating modes, depending only upon circuit connection, the two Z-trips can between them satisfy most frequency-conscious switching requirements. Their reliance on digital rather than analogue techniques permits self-checking and input signal validity verification to ensure only genuine response.
 The FX 101 switches an external load when the input lies above a given datum value or falis within a predetermined band. Applications include control, instrumentation, telemetry. telecommunications and entertainment systems. FX 201, comprising two separate 'band accept' flip-flop switches, each of which responds only to a signal within a predetermined frequency range, is primarily applicable to remote control systems using discrete 'tone signals for command purposes.
 Both have the same limitation - your design ingenuity. Write for further information.

[^10]: Prices quoted are current at time of going to press. E. \& O.E. and may be subject to variation without notice. Address your order to: carry ful manufacturer's guarantee where applicable. Wata sheets will be supplied on request $1 /$,
 cors per copy Friee breake apply at $25+$ and $100+$ Please contact Sales Dept. for Prise and Availabilley. Tel. Brentwood 226470/1
 of satisfactory references.
 Oespatch: Goods quoted ex stock are nolmally despatched within one working day by first class post.
 Export orders and enquiries particularly welcomed. Cables: LESTROCO BRENTWOOD.
 Export orders and enquiries particularly welcomed. Cables: LESTROCO BRENTWOOD.
 L.S.T. ELECTRONIC COMPONENTS LTD 7 COPTFOLD ROAD, BREHTWOOD, ESSEX

[^11]: PARMEKO C CORE TRANSFORMERS Pri. tapped $110-200.240 \mathrm{v}$. Sec. $125 \mathrm{vv} .197 \mathrm{~m} / \mathrm{a}$. Sec. ${ }^{2}$
 $161 \mathrm{v} .110 \mathrm{~m} / \mathrm{a}$. Sec. 3152 v . $76 \mathrm{~m} / \mathrm{a} .5 \mathrm{Sec} .4124 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a}$
 Sec. 528 v .0 .4 a . Sec. 65.4 v .6 .2 a . $6.3 \mathrm{v}, 3.25 \mathrm{a} .6 .3 \mathrm{v}, 1.4 \mathrm{a}$ Sec. 528 v . 0.4 a . Sec. $66^{\circ} 4 \mathrm{v} .6 .2 \mathrm{a} .6 .3 \mathrm{v} .3 .25 \mathrm{a} .6 .3 \mathrm{v}$. 1.4 a ,
 Table top connections. Size $5 \times 4 \times 4$ ins. Brand new
 boxed. $35 / \mathrm{m}$. P . P P. $7 / 6$. Special prices for qtys.

[^12]: Commencing salary $£ 2,461$ per annum (ACTT Category B)
 Contributory Pension Scheme and Free Life Assurance.
 Please telephone the Porsonnel Office 01-6372424 for an application form.

[^13]: Send this coupon for full details and application form To: A. J. Edwards, C Eng, MIEE,
 The Adelphi, Room 705, John Adam Street, London WC2.
 marking your envelope "Recruitment".
 \qquad
 \qquad

[^14]:

 at a price hn excesp of the recommended maximum price ahown on the cover; and that it ahall not be lent, re sold, hired out or otherwise dieposed of io a mutliated condition or in any unsuthorised cover by way of Trade

[^15]: For further details ${ }_{6}$ please apply on your Company's notepaper to MULTICORE SOLDERS. LTD.; HEMIEL HEMPSTEAD, HERTS. Telephọe": HEMEL. HEMPSTEAD 3636 Telex: 82363

