Gramophone pickup review Thermistor hygrometer design

Small wonder:

The Monsanto Model 100A Counter/Timer measures frequency up to 12.5 MHz , single period or frequency ratio ; or counts total events. It has a crystal controlled clock and integrated circuits Its price is $£ 300$. In addition, the range includes new models tailored to meet your needs . . . the 101 B has BCD output, and is twin channel with a frequency range of 5 Hz to 50 MHz on channel A . . . the 103A has four digit readout and a line-frequency clock and sells for $£ 185 \ldots$ the 104A is a preset counter (all five decades are pre-settable from 1 to 9)
... And the latest in the family, the 106A is a fully reversible counter
...We shall be pleased to send you full details.
Exclusive agent in U.K.

G .\& E. BRADLEY LTD.

Electral House, Neasden Lane, London, N.W. 10.
Telephone: 01-450 7811. Telex: 25583

Choose your duplexer devices from EEV's extensive range

> Brief data on some of the many types available.

Send for this booklet giving full details of the complete range of EEV duplexer devices and waveguide switches.

BS802

BS310 BS814	BS458		BS452	
Product	Type No	Band	```Frequency range (MHz)```	Peak power (kW)
Pre TR cells	BS834	-	2000-12000	2500
	BS870	-	1240-1365	2500
TR cells	BS390	S	2925-3075	1250
	BS800	S	2840-3100	1250
	BS824*	S	2700-3100	250
	BS156	x	9000-9600	200
	BS452	x	9310-9510	100
	BS810	X	9250-9550	75
	BS850	x	9300-9500	50
TB cells	BS310	x	9375	5-200
TR limiter cells	BS814	X	9000-9700	200
	BS828	x	9325-9425	50
Solid state microwave switches	BS392	S	2925-3075	0.5
	BS460	X	8500-12000	0.5

*For protection of travelling waveguide amplifiers

NAME POSITION

COMPANY
ADDRESS

Frequency range
Power
Type of cell
Please send me a copy of "Duplexer Devices". I am interested in a tube with the following parameters:

Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

Design

Site layouts
Aerial System Design

Aerials

LF 'T' and 'L' Aerials, Mast Radiators. HF Dipoles, Quadrants, Rhombics, Log Periodics, Vertical Incidence Arrays, Conicals, Biconicals VHF \& UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Aerials, Television Arrays to 100 kW e.r.p MICROWAVE Passive Reflectors, Dishes $3^{\prime \prime}$ to 60 ft . dia.

Supporting Structures

Self-supporting Towers, Tubular and Lattice Masts, Telescopic Masts

Accessories

Coaxial and open wire Feeders, Filters. Aerial Switches,
Lead-in panels, Earth Systems. Air-cooled Transmitter Loads. Termination Networks

Installation

World Wide Service

C\&S Antennas provide a complete aerial service LF to Microwave

Image Orthicons a new brochure from EEV

This new brochure gives a summary of the EEV range of Image Orthicons, applications and brief data. Full information, including characteristic curves and operational conditions together with outline diagrams, is available on request. But for an introduction to the range, send for a free copy of our new brochure.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me a copy of your Image Orthicon brochure.

NAME
COMPANY
ADDRESS

WAYNE KERR
 Autobalance Universal Bridge

ranges covering $0.002 \mathrm{pF}-50000 \mu \mathrm{~F} ; 20 \mathrm{p} \delta-500 \%$;
$200 \mathrm{nH}-5 \times 10^{6} \mathrm{H} ; 2 \mathrm{~m} \Omega-50000 \mathrm{M} \Omega$
2
-figure readout of resistive and reactive terms immediately component is connected
3 or 4 -figure readout by backing-off first digits of meter readings on push-buttons

BCD outputs for Printers (optional). Analog outputs for DVMs and recorders

| 1 | 5 | 2 |
| :--- | :--- | :--- | :--- | Hz internal source/detector. Sockets for external $200 \mathrm{~Hz}-20 \mathrm{kHz}$

0.1% is the accuracy.
Simplicity of operation is the key feature.

B641 £495

prepare for tomprow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the probiems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

Correspondence Colleges
C.R.E.I. (London), Walpole House.

173-176 Sloane Street, London S.W.1. A subsidiary of McGraw-Hill Inc.

POST THIS COUPON TODAY FOR A BETTER FUTURE

To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.
My interest is City and Guilds $\square \quad$ please tick \quad General \square NAME
ADDRESS

EDUCATIONAL BACKGROUND

ELECTRONICS EXPERIENCE

Stontorian SPEAKAR STGULITS

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93

A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{8}{ }^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1}{2}^{\prime \prime} \times 20 \frac{3}{4}^{3 \prime} \times 13 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

WHITELEY ELEGTRIGAL RADIO CO. LTD.

plus 2A 250V AC operation.

The first of a new range of low-cost, compact switches, which will be found to be invaluable when weight and space saving, together with good product styling, are prime considerations.

Combining the highest standards of quality and reliability, this range of switches opens up new horizons for designers of commercial equipment. Competitive in price and of attractive appearance these sub-miniature switches are available with two or three position single pole change over circuits, are rated at 5 A 29 V DC, 2 A 250 V AC, and measure only $0.551^{\prime \prime} \times 0.375^{\prime \prime}$ and $0.93^{\prime \prime}$ to the top of the sleeve.

Write or telephone for full details and/or a sample of this latest Arrow switch -it's a little beauty.

ARROW

ARROW ELECTRIC SWITCHES LTD.

TS Distortionless Servomechanical

Stabilisers provide high-speed, accurate stabilisation without distortion of waveform. Accuracy $\pm 0 \cdot 25 \%$. Correction speed up to $60 / 100$ volts per sec. Unaffected by load, frequency or power factor variations. 1 to 120 kVA single phase and up to 360 kVA three phase.

BTR Solid-State Electronic Stabilisers give high accuracy with extremely low distortion and no moving parts. Basic models : $\pm 0.3 \%$ accuracy, 3\% max. distortion without any filtering. Unaffected by load or frequency variations. Filtered models also available. 400 VA to 10 kVA .
Claude Lyons
CVR Constant Voltage Regulators offer considerable advantages over conventional constant voltage transformers at remarkably low cost. $\pm 0 \cdot 3 \%$ accuracy, 3.5% max. distortion without any filtering. Unaffected by load or frequency variations. 360,600 and 1200 VA .

The range also includes VB tap-changing types and PST high-current stabilised d.c. supplies.

For full details write to Publicity Department. Hoddesdon.
c_{L}

BBC T.V.-moonshot: Where there can be no re-take you'll find Ferrograph.

During the Apollo 11 moon landing, the BBC used Ferrograph Series 7 Tape Recorders to monitor the NASA commentary. The recorders were in use continuously 24 hours a day. There could be no break, there could be no re-take. The BBC now has over 40 Ferrograph Series 7 recorders in use throughout the country.
Every Ferrograph Series 7 recorder is made in Britain and combines quality, reliability and a unique range of facilities. Available in mono or stereo, with or without amplifiers, all solid state,
three-speed, with two inputs per channel and independent mixing. Retail prices from $£ 175$ including P.T.

Follow the professionals; choose the recorder you know will serve you best at home or in your work: Ferrograph-it makes sound sense. See your nearest stockist or send the coupon for details and address of nearest Ferrograph specialist or ring 01-589 4485.
Ferrograph

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex offer a comprehensive range of receiving. professional and special quality valves. Whether you require a device to Mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited
2a Westbourne Grove Mews
London W. 11 - England
Cables: Tosuply London W. 11 .

WW- 015 FOR FURTHER DETAILS

The Heathkit range of scientific and electronic test instruments including the latest advances in solid state instrumentation has been especially prepared for the industrial and scientific laboratory instrument user. Whatever your requirements, be they Potentiometric Chart Recorders, Monochromators, Universal Digital Instruments as well as VVMs and general test instruments, substantial savings against similar specifications of other manufacturers can be made by using Heathkit instrumentation.

THE NEW SOLID-STATE SINE SQUARE WAVE AUDIO GENERATOR, Model IG-18 is typical of the latest Heathkit instrumentation styling.

- Sine Waves from 1 Hz to 100 kHz .
- Square Waves from 5 Hz to 100 kHz .
- Repeatable switch selected output frequency.
- Sine and square wave output available simultaneously.
- Metered sine wave output.
- Less than 0.1% sine wave distortion.

Kit K/IG-18 f37 Carr. 8/-

- Less than 50 nanoseconds square-wave rise time. - Floating outputs.
- 8 output voltage ranges for sine wave from 0.003 to 10 V rms.
- 3 output voltage ranges for square-wave from 0.1 to 10 V pk to pk.
- $2 \frac{1}{2}$ " meter with one dB and two voltage ranges. - 120 or 240 volt wiring options.

Ready to Use A/IG-18 £49 Carr. 8/-

NEW RESTYLED TEST, SERVICE AND WORKSHOP INSTRUMENTS

The Heathkit range of instrumentation can adequately provide engineers with quality instruments at lowest cost, whatever your requirements, be they VVMs, Generators. Oscilloscopes, Transistor Testers or Power Supplies.

FOR THE HOME WORKSHOP

The householder and hobbyist can, by purchasing easy-to-build Heathkits, obtain low cost models for testing household appliances, automobile circuitry, electrical/electronic models.

SEND FOR THE LATEST 1970 FREE HEATHKIT CATALOGUE and see for yourself the wide Heathkit range of instruments. HiFi . Amateur and Leisure products.

Before we sell you a Shure micropphone we tryt oruin it

just to make sure that you never will

Microphones have to be rugged. Think of the punishment they take. That's why Shure Safety Communications Microphones get a tremendous going over before we dream of selling them.

We drop them. We vibrate them. We fry them. We freeze them. We steam them in Turkish baths. We drag them behind fast moving cars. We subject them to all kinds of torture. Sand. Rain. Infra-red. Ultra-violet. Acids. Alcohol. Salt spray. Wind. Electrostatic fields. High altitude .

This savage testing, backed by stringent quality control, ensures that every Shure communications microphone will give you reliable performance. And will go on doing so even under conditions where other microphones would pack up. Always use Shure, the microphones that never fail to get the message through.

Communications

Controlled magnetic hand microphone providing a clear, crisp, highly intelligible voice response.
Rugged and dependable,
ideal for outdoor-indoor P.A.. and communications.
Frequency response 200 to $4,000 \mathrm{cps}$. High impedance. High output.

Model 414.

Amateur Radio

Provides optimum radio
communications performance from single sideband transmitters single sideband transmitters as well as AM and FM units.
Response cuts off sharply below 300 cps and above $3,000 \mathrm{cps}$. ensuring maximum speech ensuring maximum speech to cut through noise and interference

For full details of Shure microphones, SEND IN THIS COUPON TODAY

To: Shure Electronics Ltd., 84 Blackfriars Road, London SE1. Tel : 01-928 3424
I'd like to know more about Shure Microphones for Communications \square Protessional Recording \square Amateur Radio Professional Entertainers \square

Please send me the facts :

NAME
ADDRESS

Fi= = TO AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 164 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

- SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE

WHICH IS YOUR
PET SUBJECT?
Radio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobile
Aeronautical
Plastics
Building
Draughtsmanship
B.Sc.
City \& Guilds
Gen. Cert. of
Education
etc., etc.

BRITISH INSTITUTE

OF ENGINEERING TECHNOLOGY
(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

PRACTICAL EQUIPMENT
 Basic Practical and Theoretic Courses for beginners in A.M.I.E.R.E. City \& Guilds Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio
 Radio Television Servicing Practical Electronics Automation

POST COUPON NOW!
 ```I```

$$
\begin{aligned}
& \begin{array}{l}
\text { Please send me your FREE 164-page } \\
\text { "ENGINEERING OPPORTUNITIES" } \\
\text { (Write if you prefer not to cut page) } \\
\text { NAME } \\
\text { ADDRESS }
\end{array} .
\end{aligned}
$$

INCLUDING TOOLS!

The specialist Electronics Division of B.I.E.T. NOW offers you a real labopatory training at home with practical equipment.
Ask for details.

--
E
-\square

- SUBJECT OR EXAM.
THAT INTERESTS MEE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

WW-018 FOR FURTHER DETAILS

Professionals require the best.

Range. TPA Series Power Amplifiers.
Power. 25, $50 \& 100$ watts rms. into 15 ohms. Distortion. $<0.1 \%$ at any level.

Response. $20 \mathrm{~Hz} .-20 \mathrm{KHz} . \pm 0.5 \mathrm{~dB}$
Protection. Electronically .
Matching transformers available.

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any
impedance from 4 to 200 ohms
DIMENSIONS $-12 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
Complete the coupon and post today.

QUAD
for the
closest approach to the original sound
NAME
POSITION

```
```

```
Please send me full details of the QUAD 50 Amplifier
```

```
Please send me full details of the QUAD 50 Amplifier
Please send me full details of the QUAD 50 Amplifier
```

```
NAME
POSITION
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) 2561/2
```


THE ADVANCED COMMUNICATIONS ANCILLARY ENSURING READABLE TELEPRINTER COPY for

* METEOROLOGICAL BROADCASTS
* MARINE COMMUNICATIONS
* OFF-SHORE DRILLING
* FORESTRY
* BANKING

AND MANY SIMILAR APPLICATIONS

Standard Telephones and Cables Limited,
Communications Division, New Southgate, London N.11.
Telephone: 01-368 1200. Telex: 261912.

Produced by experts for Engineers,Students and Enthusiasts

This is the book you've been waiting for! Over 200 information-packed pages. Circuits for audio amplifiers, record players, tape recorders, f.m. tuners and portable radio receivers up to hi-fi standards, all designed and proven in Mullard laboratories.
Mullard publications are renowned for the technical authority of their contents and the clarity and style of their presentation.
'Transistor Audio and Radio Circuits' is another outstanding example - there's bound to be a big demand.

It's handy sized and strongly bound. Tremendous value at $30 /$ -
Get your copy from your local radio retailer, bookshop or direct from Mullard (cash with order) $32 /$ - per copy including postage and packing.

Mullard

Mullard Limited, Distributor Sales Division, Mullard House, Torrington Place, London W.C.1.

Goodmans Loudspeakers come into your life to stay. And stay! And that's why Goodmans make High Fidelity loudspeakers you can be proud to own.
From the smallest, Maxim, right up to the new king-size Magister you have Goodmans guarantee of quality right along the line.

Goodmans have been in the Audio field for over 40 years, perfecting High Fidelity reproduction for your listening pleasure, check out that High Fidelity pure sound' at your Goodmans dealer today

Complete the coupon for your free copy of the illustrated Magister leaflet/ 28 page Manual.

Goodmans for High Fidelity

1. MAMBO $=10 \frac{1^{\prime \prime}}{} \times 8 \frac{3}{4} \times 8$ " deep

Each £17.18.0 i £4.0.5P.T
2. MAXIM Mini system $10 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 5 \frac{1^{\prime \prime}}{}{ }^{\circ} \times 7 \frac{1^{\prime \prime}}{}$ deep.

Each $\mathbf{£ 1 6 . 7 . 0}+\mathbf{£ 3} .13 .5$ P. T
3. MARIMBA* For wall mounting $19^{\prime \prime} \times 13^{\prime \prime} \times 5 \frac{1}{2}$ " deop Each $£ 19.5 .0+$ £4.6.3 P. T
4. MEZZO IJ Flush fitted attenuator $19 \frac{1}{2} \times 12^{\prime \prime} \times 9^{\prime \prime}$ deep. Each $£ 30.18 .0$.
5. MAGNUMK 3 speakers, 2 atenuators
$24^{*} \times 15^{\prime \prime} \times 11 t^{\prime \prime}$ deep. Each E 40.2 .0
6. NAGISTER The new King -size. $27^{\prime \prime} \times 20^{\prime \prime} \times 14 t^{\prime \prime}$ deep Each [57.0.0.
Recommended retall prices.
All finished in Teak or Walnut to order.
*Sold in ready matched pairs.

Goodmans Loudspeakers Ltd.,
Axiom Works, Wembley, Middlesex. Tel : 01-902 1200

Ferrograph F307 stereo amplifierthe heart of great $\mathrm{Hi}-\mathrm{Fi}$

F307 is an integrated Stereo Amplifier, built in a tradition of excellence and extremely versatile in its capabilities.

It presents a clean uncluttered appearance, conforming very closely with the Series Seven Recorder in this regard. Only its main controls appear on the panel-all subsidiary controls being housed beneath a hinged extruded aluminium flap.

F307 delivers power output of 20 watts RMS per channel into a load of 8 ohms and has a total harmonic distortion of less than 0.25% at 1 kHz at all levels up to its rated output.

Your Ferrograph dealer will be pleased to demonstrate F307 to you. When planning your Hi -Fi system, this is an Amplifier to which the most serious consideration must be given and its Manual makes informative and compelling reading.

FERROGRAPH

The Ferrograph Co. Ltd.
Mercury House, 195 Knightsbridge, London, S.W.7. Telephone: 01-589 4485

SOLE U.K. DISTRIBUTORS OF

- LOW COST • QUICK DELIVERY - OVER 200 RANGES IN STOCK - OTHER RANGES TO ORDER

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.
CLEAR PLASTIC METERS

*MOVING IRON all others moving coil

BAKELITE
PANEL METERS
Type MR.BE. 3 3 lu, square fronts.

EDGWISE METERS
Type PE.70. 3 17/32in. $\times 1$ 15/32in, $\times 21 \mathrm{ia}$.

 5
E

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS - DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF

 TMK MULTIMETERSThis range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money com

- immediate delivery
- DISCOUNTS FOR QUANTITIES
- TRADE ENQUIRIES INVITED

5025

LAB TESTER

 tance: $10 \mathrm{~K}, 100 \mathrm{~K}$, im EG, 10 MEO B . Declhels: $-20 \mathrm{to}+4 \mathrm{dit}$. Rugged High lnupact Plastic Case with Handle size $5 \mathrm{jin} . \times$ 4in. $\times 2 \mathrm{jin}$.

MODEL 500 Featuron Mirror Behle and Buzzer Short Circuit Chech. Rensitivity: 30 k 』/Volt 12.C. $13 \mathrm{kn} /$ Volt A.C. 68.17 .6
 proof Black Plast

MODEL 100,000 O.P.V. LAB TESTER Freatures Unique Range Selachor, 611 m . Beale. Buzzer Short Circuit Cheek.

* ALL MODELS FITTED OVERLOAD PROTECTION AND SUPPLIED WITH BATTERIES, PRODS AND INSTRUCTIONS

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER - Excellent quality - Low price Immediale dellvery Special discounts for quantity

ALL MODELS INPUT 230 VOLT, 50/60 CYCLES. OUTPUT VARIABLE FROM 0-260 VOLTS

MODEL S-260
General Purpose Bench Mounting

1 Amp 2.5 Amp

5 Amp 8 Amp 10 Amp 12 Amp 20 Amp

MODEL S-260 B Panel Mounting

1 Amp	$\mathbf{E 5 . 1 0 . 0}$
2.5 Amp	$\mathbf{£ 6 . 1 2 . 6}$
Please add postage.	

Please add postage

memurdo

great facility for service
Member of the Louis Newmark Group, with access to the combined facilities of all other member companies

Send for quotation

To: McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth, Hampshire. Telephone: Portsmouth 35361. Telex: 86112

Not only beautiful, but...

* Lightweight
* Tropicalised
* Practically unbreakable
* High level phones
* Carbon or Magnetic le sel
* Extremely comfortable
* Simple to service

The Astrolite headset is a unique design which brings to zether elegent appearance, high performance and reliability. Communications or high fidelity versipns available.
For all the other desirable features write or telephone:-

AMPLIVOX COMMUNICATIONS LIMITED

EERESFORD AVENUE.WEMBLEY.MIDDLESEX
TELEPHONE $01-9028991$
GRAMS AND CABLES: AMPLIVOX, WEMBLEY

You're on the right trackwith Goldring 800 magnetic cartridges

Goldring 800 magnetic cartridges track unerringly. Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.

Hear it for yourself. You'll know you're on the right track.

Goldring 800/H ...the $800 / \mathrm{H}$ is designed for inexpensive changers to track between $2 \frac{1}{2}-3 \frac{1}{2}$ grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 ... the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict. £13.0.0tax paid.

Goldring 800 E ... is designed for transcription arms and a micro-elliptical diamond is fitted to a finer cantilever, end damped against natural tube resonance $£ 18.17 .1$ tax paid. Goldring 800 Super E . . . the 800 Super E is for those to whom perfection is barely good enough. Extraordinarily low mechanical impedanceforsuperbtracking capabilities. Each cartridge is supplied with its individual curve and calibration certificate. £26.0.0 tax paid.

TINSLEY STABILISED SUPPLY UNITS

TYPE 5260

Mains operated. Output voltage is selected in 1 V . steps by means of decade dials calibrated in volts. Stability: for voltages of over 100 V . better than 0.02% for the total load range with a mains variation of 20%.
Maximum output current: 100 mA .
Ripple and noise : less than 25 mV .
Effective output resistance: 0.01Ω
Dimensions: $534 \times 552 \times 314 \mathrm{~mm}\left(21 \frac{1}{2} \times 22 \times 12 \frac{1}{2} \mathrm{in}\right)$
TYPE 5260A
1 V . to $3,000 \mathrm{~V}$. d.c.
TYPE 5260B
0.1 V . to 600 V. d.c.

For further details-List 211, sheet 3581

revised 2nd Edition now available

(including 250 types added since original publication)

Pinnacle

The widest ranging and most comprehensive valve catalogue available from any independent supplier.
PINNACLE ELECTRONICS LTD achlles Street - hew cross - london s.e. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

Every aspect of microphone manufacture is covered by the makers of ten million of them-Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there's one in ten million for you. Please ask for full information.

PYE TVT LIMITED
PHILIPS SOUNO DIVISION
Addlestone Road, Weybridge
Tel: Weybridge 45511. Telex: London 262319

NewWeapons for the war against noise

We hate noise. We make filters to suppress it wherever it occurs. And now we are killing it at source with a new range of weapons . . . moulded track potentiometers. Quiet controls that retain low noise levels through a long operaticnal life (upwards of 100.000 cycles).
There are over two dozen types in the range. Each has a hot moulded track element of large cross-sectional area, giving low current densities, high voltage ratings eliminating local high spots and over-heating eradicating wear.
An integral moulding of base, track and terminals gets rid of solders, rivets, welds; provides increased reliability and excellent humidity characteristics

Standard or miniature designs, pre-set or switched for P.C.B. or chassis mounting are available in sealed and edge operated units. All are designed to meet the require ments of Specification DEF-5122 and are available with linear, logarithmic or special function laws.

ERIE
ELECTRONICS
LIMITED
ERIE

All the lethal facts are in the brochure Send for your copy today.

ERIE ELECTRONICS LMITED,
Erie Controls Division.
Great Yarmouth.
Norfolk.
Tel: 0493 4911. Telex: 97421

M. R. SUPPLIES (London) LTD.
(Established 1935)

Universally recognised an suppliers of UP-TO-DATE MATERIAL, whicb does the job properig. Instant delivery. Satiofaction assured. Prices nett.
ROOM THERMOSTATS. Danfose wall-mounted Thermostats, 40 deg. F. 80 deg. F., 380 5. A.C. 8 (dee. ${ }^{2 /-)}$).
MINIATURE RUNNING TIME METERS (Aangamo). We have great demapde for thin remarkable unit and now can supply tmmediately fron stock, $200 / 280 \mathrm{v}$..50 c . synchronous. Counting up to
日. 499 houra, with $1 / 10$ th indicator. Only 1 it ins. aquare, with cyctometer dial, depth 2 ins, Many industrial and dornestic applications to indicate the running time of any electrical apparatus, eany to lentall. 63/- (des. 1/6).
SYNCBRONOUS TIME SWITCHES, (Aanther one of our popular npecialites) $200 / 240 \mathrm{~F}, 50 \mathrm{c}$, , for sccurate pry-set switching operakions. Sanganio s.25t, providing up to 3 on-oad operatons per 24 hours at any chosen times, with day.omitting cevice (use optional). Capaciry 20-ampa. Corm pactly
ELECTRIC FANS (Papst), for extractlog or bloulng. The moat exceptlonal ofter we have yet
 SMALL GEARED MOTORS. In addition to our well-known range (Lhet (3M.169), we offer mal
 projection each side
Only 75/= (des. $5 /-)$.
miniature cooling pans. 200/250 v. A.C. With open type induction inotor (no interierence), Hight duty extractorn, ete.. ntull only $31 / 6$ (des. $5 / \cdot$).
AIR BLOWERS. Highly efficient unita fitted induction totaliy enciosed motor $230 / 260 \mathrm{~F} .50 \mathrm{o}$ 2 ifin. square. $£ 8 / 10 /=$ (den. $5 /-$). Model $8 \mathrm{D} 27,120 \mathrm{CFM}$ (free alr) to 40 CFM at $1.2 \mathrm{WK}, \mathrm{s} \times 7$
 $1.5 \mathrm{WG}, 11 \times 8 \times 9 \ln .$, outlet 3in. sq.. $213 / 17 / 8$ (den 7/b).
SYNCRRONOUS ELECTRIC CLOCK MOVEMENTS (aw mentioned and recommended in many nationai journain). 200/250 v. 50 c . Sel-starting. Fitted apindies for hourn, minuteas and central back dust cover. $38 / 8$ (des. $2 /-$). Bet of three brass hands in good plain atyle. For $5 / 7 \mathrm{in}$. dis. $2 / 0$ For $8 / 10$ dia. $3 / 6$ set.
SYMCHRONOUS TIMER MOTORS (Sangamo), 200/250 v. $50 \mathrm{c} / \mathrm{s}$. Sell-start log 2in. din. $\times 1 / \mathrm{ln}$
 Any one
(des. $2 /-$).
SMITES TIMER MOTORS. Bynchrodoun, self-starting 200/200 volts, 1 ph., 30 c . Clockwise 4 r.p.in only O.
mimiature D.C. Motors. $6 / 12$ volte D.C. Idena model makera. $4,000 / 9,000$ r.p.m. no hued. EXTRACTOR FANS. Ring mounted will metal conatruction. T/E induction motor, silent opera milax. dia., 500 CFM, E8/12/8 (des. 6/-). immediate delivery of Stant Centrifugal Pumpa, includiog stainless ateel (most models) official stockist: "PARVALOX" Electric Motors (List a.m. 169)
M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

TELEPRINTERS• PERFORATORS REPPRFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803 Binery and special purpose Codes.

2-5-6-7-8. TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES dATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specia-
lised relays and Bases; Terminals
 lised relays and Bases; Terminals phone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockers, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

Heathkit Present The Compact Sound of the 70's

SEND FOR THE LATEST 1970
FREE HEATHKIT CATALOGUE
And see for yourself the wide Heathkit range of $\mathrm{Hi}-\mathrm{Fi}$, Instruments, Amateur Radio and Leisure products.

DAYSTROM LTD,
Gloucester, GL2-6EE
Tel Glos 29451 Telex 43216

HERE'S VALUE IN 'STEREO COMPACTS'

Heathkit engineers took the highly praised AR-14 solidstate stereo receiver, modified it to fit the handsome teak or walnut veneered cabinet and combined it with a top performing BSR turntable. The result is a thoroughly impressive 15 watt per channel stereo performance. 4 to 16 ohms output impedances are more than enough to match any Hi-Fi speaker system. The BSR turntable comes fitted with a famous Shure magnetic cartridge. Easy to build, a real pleasure to listen to ... the Heathkit AD-27 represents a remarkable value in stereo compacts at only $£ 82$ in kit form. Carr 13/- extra.

HERE'S VALUE IN 'STEREO COMPACTS•

Heathkit engineers took the solid-state stereo amplifier from the AD-27 mentioned above, matched it with a precision BSR turntable and put them in a handsome teak or walnut veneered cabinet. The 17 transistor, 6 diode amplifier is more than enough to drive any efficient $\mathrm{Hi}-\mathrm{Fi}$ speaker system. Wide range Volume, Bass, Treble and Balance controls give you full command of the performance. Tuner and Aux inputs allow the addition of stereo FM or tape recorder at your convenience. The BSR turntable is equipped with a Shure magnetic cartridge. The AD-17 offers value for money at $£ 54$ in kit form. Carr 13/-. Plastic cover available at $£ 3.12 .0$ extra.

HERE'S VALUEIN 'A HI-FI SPEAKER SYSTEM'

For the $\mathrm{Hi}-\mathrm{Fi}$ enthusiast who demands outstanding performance . . . the New Ambassador offers this plus modern clean styling and quality. This entirely new 3 way $\mathrm{Hi}-\mathrm{Fi}$ speaker system incorporates the very latest techniques in speaker design. The results are thoroughly impressive and the low price, £29.16.0 in kit form, represents wonderful value. Carr $15 /$.. Grille cloth available in dark grey or gold, brown fleck on white ground please state requirements.

The impressive Heathkit range of $\mathrm{Hi}-\mathrm{Fi}$ offers something for all tastes.
Heathkit offers the best in quality sound, at direct from factory prices plus the added attraction of saving money by building D.I.Y. kits.

Nicrophones
 for every purpose

The GR/1 and GR/2 Ribbon
Ideal for studio and similar uses, when a high standard of fidelity is essential. Easily replaceable ribbon assembly.

Other models and a full range of stands, reflectors, windshields and accessories available
 All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage.
 Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance.

Send for leaflet giving full details

2 bigpower Supplies inome small box

... that's the S. 1 twin stabilised power supply from Linstead. Two completely independent supplies with enormous meters and completely protected for over load and short circuit. Design is attractive. clear, easy to operate, yet stands up to the knocks should the occasion arise.

Here is a brief specification but write to us and we will send your our illustrated leaflet giving full details.
Silicon transistors throughout - 0 to 20 v in one volt steps continuous control calibrated 0 -to 1 v - Current ranges 0 to $100 \mathrm{~mA}, 0$ to 5 A .

S1 TWIN STABILISED POWER SUPPLY £45.

LINSTEAD ELECTRONICS

35, Newington Green, London, N. 16 Telephone: 01-254.4825.

You can get

Mullard

Special Quality
Industrial Receiving valves

Some of the many types in stock-no waiting MINIATURE (B7G)
M8083/CV4014 M8100/CV4010
M8081/CV4031 M8196/CV4011

SUBMINIATURE

5902 (CV4029*) ME1403, ME1406

NOVAL (B9A)

M8136/CV4003 M8137/CV4004
CV4109
MAG NOVAL (B9D)
E55L (CV5808) EL5070
Contact your usual Mullard distributór or telephone Valve Sales Department, Mullard House 01-5806633 Ext. 722 J . SAUNDERS
 Treble Tone Controf: $+8.5 \mathrm{db}-10 \mathrm{db}(10 \mathrm{Kc} / \mathrm{s}$. Frequency Response: $\pm .5 \mathrm{db} 25 \mathrm{c} / \mathrm{s}-12 \mathrm{Kc} / \mathrm{s}$. Dimensions: Lengrh: $3^{\circ} 4^{\prime \prime}$. Depth: $1^{\prime} 6^{\prime \prime}$. Height: $2^{\prime} 6^{\prime \prime}$. Heighe less legs: $1^{\prime} 0^{\prime \prime}$

Meets the ever growing demand for well presented music and speech at private and public functions-dances, eceptions, parties etc. where there is no permanent sound installation. The Audio Portable D.J. Console incorporates the A. 25 silicon transistorised power amplifier with three input channels each with separate volume control. The two Garrard SP. 25 single play turntable units each have continuously variable fader controls. Monitor loudspeaker, socket for headset and dynamic cardioid microphone completes the equipment which is attractively housed in solid affomosia cabinet with detachable legs.

- HIGH QUALITY REPRODUCTION
 - READILY PORTABLE
 - QUICKLY SET UP
 - SIMPLE TO OPERATE
 - STYLISH PRESENTATION

Full information available on request-ask for details of Audio Sound Control Consoles, Integrated Mixer Amplifiers and Complete Sound Systems.

$\square \square \begin{aligned} & \text { SOUND } \\ & \text { SYSTEMS }\end{aligned}$

WW- 039 FOR FURTHER DETAII.S

It is a 5 mm tubular L.E.S. E5/8 cap, overall length 15 mm . Just one of the many Vitality Instrument and Indicator Lamps. made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in Vitality Catalogue 69 may well be.

* Many a product owes its success to the intelligent addition of an indicator light

VITALITY BULBS

VITALITY BULBS LTD., MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL: 02842071.

VARIABLE VOLTAGE CONTROLS

VARIABLE TRANSFORMERS

\star Output 0-260V

* Input 230V 50/60CPS
* Shrouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

CONSTANT VOLTAGE TRANSFORMER.
Maintain spot-on test gea readings with Automatic Mains stabilizer. Specification: - Output 240 V - Accuracy $\pm 1 \%$ * Input 190-260V - Capacity 250 watts - Correctad wave £12.10.0

20 AMP LT SUPPLY UNIT

- Input 240 V
- Output 20 amps at 24 V fully adjustable
- Size $16^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime \prime}$ high - Weight 50 lbs £35.0.0

SOLID STATE VARIABLE CONTROL * Output $25-240 \mathrm{~V}$ * Input 240 y 50 cps * 5 amp 810 amp models * Completely sealed 5 amp model £8.7.6 10 amp model £13.15.0

10 amp C/O PUSH-BUTTON MICRO-SWITCH
panel mounting.
Buttons in Red, Green, White \& Black
Type SS-1. 4/8 each per 1,000

IMMEDIATE DESPATCH FULL SPARES AND SERVICE AVAILABLE

PROCESS TIMERS-MICRO SWICHES

* SYNChRONOUS MOTOR \& CLUTCH
* 10 MILLION DPERATIDNS
- Instantaneous \& Timed
out 3 AMP contacts
* Repert Accuracy $\pm \frac{1}{2} \%$
- Dial ranges 0.10 secs up to 0.28 hrs. May also be used as impuise stant

SYNChRDNOUS MOTOR \& CLUTCh
Matchbor size frontal area
Automatic re-set

- plug-n dctal base
- instantaneous
and timed out
2 amp contacts
RANGES: 10 SECS. To 36 MINS.

* 1 MILLION OPS.

5 Amp c/o Sub-miniature Micro-switch
2'6

"ACTUAL SIzE"
S5G
MICRO SWITCH
\star Light force wire operated Micro switch

* Designed for even more economical coin-op mechanism
approx. 4/- each

CC5-R
MICRO SWITCH

PROXIMITY SWITCHES, LIMIT SWITCHES AND LIQUID LEVEL CONTROLS MANUFACTURERS AND IMPORTERS FOR MINISTRY OF DEFENCE, G.P.O.

OMRON PRECISION CONTROLS
DIVISION OF IMO PRECISION CONTROLS LTD
(Dept. WW9) 313 EDGWARE ROAD, LONDON, W2. TEL: 01-723 2231

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. $48 / 56$ BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-3879092. WW-044 FOR FURTHER DETALLS

trio
 D. C. NULL DETECTOR

TRIO INSTRUMENTS Null Detector is a mains operated instrument intended for use with D.C. potentiometers and bridges. It features extremely high sensitivity combined with low noise and drift. Maximum sensitivity is 1 uV . F.S.D. which combined with a noise level of less than 0.05 uV peak to peak permits the use of this instrument at voltage levels of 0.1 uV .

TRIO INSTRUMENTS LTD.,
BURNHAM ROAD.
DARTFORD, KENT. Telephone: Farringham 2082

Make the most of soundsilently with the new Garrard SL95B

A Garrard gives you the perfect sett nc tomusic - silence.
With Garrard all you hea is the music
The new Ga`rard SL95B is a superby a-gineered transcription turntable wi-h the adjed facilitd of automatic playing.
The SL95B feaures the constant-speed ©er-a-d Synchro-LAB motor and incorpora:es:

- Sue and pzuse faciliy
- -ow rescnance wood end alum niu n pick-uparm
- Gimbal-tjpe pick-up erm pivots
- Slide-in cantridge carrier
- Calibrated pick-up arn bias ccmpensatiof
- Calibrated fne stylus- orce ad ustment
- Rutomatic pay of single records
- Styling of elagance anj distinctior

Telephone: Swindor 5381

Moduline Rotary Switches... 7 day delivery 2 million variations

The answer to your prototype

 and small order requirements

How does Diamond H do it? Simple. We break a Rotary Switch down to four basic elements. Then we stock all possible variations of each element in our Moduline Assembly Dept. . . . ready and waiting your order. Your order comes, we start assembling-from 1 to 99 switches to your precise specifications. Over 2 million variations, with one week delivery.
Only Diamond H offers you Moduline switches-made with the same precision quality whether to military specifications or custom built.
Send today for the easy-to-use ordering cards and literature.

DIAMOND H CONTROLS

DIAMOND H CONTROLS LTD (A subsidiary of Oak Electro/Netics Corp) Vulcan Road North, Norwich NOR 85N

Telephone: Norwich 45291/5. Cables: Diamonhart, Norwich WW- 047 FOR FURTHER DETALS

WW-0.48 FOR FURTHER DETAILS

Who's ever heard of an electronics company offering record tokens? You can have the records of your choice, when you buy 74 N Series Integrated Circuits from WEL. No catches - no competitions, just buy the value of f 10 or over - the bigger the order the more valuable the token.
Give your order to our representative and he will give you your record loken on the spot or post the order and we will send your token by return. The offer is open until December 31st 1969
"WEL's Fargo" for record delivery of TEXAS, FERRANTI or SPRAGUE 74N Series Integrated Circuits at manufacturers' factory prices.
 Ministry of Technology approved distributor.

Ww- 049 FOR FURTHER DETALS

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

PYE SPANS THE WORLD

rely on

the vital contact

PYE TELECOMMUNICATIONS LTO. Cambridge England Telephone: Cambridge (0223) 61222 Telegrams : Pyetelecom Cambridge Telex: 81166

FOR
 SILICON TRANSISTORS

Four in five transistor sockets in this country call for silicon transistors.

NKT has continuously expanded its silicon facilities over the last five years to meet the rising demand and can readily supply most of the devices currently required.

NKT was the first to rationalise silicon transistors into a relatively few basic families with the well known NKT-coded "SILIND" range based on such industry standard types as BC 107/8/9, BC 177/8/9, BCY 70/71/ 72. 2 N 1613/1893, 2N 2638/9/9A, 2N 918, 2N 2904/ 5/6/7, 2N $2217 / 8 / 9 / 20 / 21 / 22$.

Apart from this, NKT specialises in the supply of:
(a) " 2 N " Silicon Transistors of all types such as 2 N 3053 , 2 N 3055
(b) "New-European" Proelectron Standard Silicon Transistors with BC, BD, BF, BL and BS-prefix, codes such as BFY 50/1/2. BSY 95A, BSX 20.
(c) Other Manufacturer House-Code Silicon Transistors such as PEP 5/6/7/8, ST95A.
(d) "SERVIKIT" Refillable Packs of Selected "Universal" Silicon Transistors to provide instant replacement of numerous commercial devices.
(e) Special Selections of Silicon Transistors to exact customer requirements.

YOU may be in trouble over supplies of silicon transistors such as these.

Why not contact NKT Sales Office for production quantities or special devices. Standard devices in NKT's ranges are also carried by our distributor network Coventry Factors, James Scott, C.E.S., I.T.T. Electronic Services, G.S.P.K., Eastern Aero, Lugtons, S.D.S.

NKT

F.A.L.'PHASE 32'

You must hear this superb unit
$15+15$ WATT
HIGH FIDELITY OUTPUT

SOLID STATE STEREO AMPLIFIER

Reconmonded
Retai
nice
ONLY
36 gns.

\star Excellent performance
 \star High grade components and transistors
 * Impressive technical specification
 \star Attractive appearance
 \star Modest cost

Housed in Teak veneered Cabinet,
Switched selection of Microphone,
Magnetic P.U., Ceramic P.U.,

Radio Tuner, Tape Recorder.
Available from your local Hi-Fi Dealer
SEND S.A.E. FDR FULLY DESCRIPTIVE LEAFLET
Wholesale and Retail enquiries to Manufacturers

SPECIALIST SWITCHES are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3 ,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

This is an extract from the introduction to our new 16 -page manual of inverter transformers and modules - a copy of which is yours for the asking. The contents include descriptions and methods of using saturable core output and driver transformers, linear core output transformers including transformers for the capacitively timed inverter circuit, commutation inductors and describes a number of representative converter transformers and inverter drive modules which have been added to our stock range of transformers and inductors.

Gardners Transformers Limited Christchurch Hampshire BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex 41276 GARDNERS XCH

EAGLE INDUSTRIAL METERS

PANEL, EDGEWISE OR MINIATURE

Robustness . . . accuracy . . . reliability . . good looks everything you look for in the most costly instruments you get in Eagle meters! And at a very welcome saving as well! Ask anyone who uses Eagle instruments

- in our experience every user becomes a salesman!

For full details send coupon to The Industrial Division of Eagle Products-
Adler Micro Electronics, Coptic Street, London, W.C. 1 or quicker still ring 01-580 3914.

The Famous B.D.1. Turntable which operates at $33 \frac{1}{3}$ and 45 rpm and incorporates a flexible belt drive system, virtually eliminating vibration and transmission noise, is now available in kit form. So simple to construct-such a beautiful performance!

Full details on request to
A. R. SUGDEN \& Co. (Engineers) Ltd. Market Street, Brighouse, HD6 1DX, Yorkshire. Tel. 2142
 WW-057 FOR FURTHER DETAILS

peak sound \pm neans sump englefield

NEW DESIGN FROM PEAK SOUND

Proved-performance high fidelity with specification guarantee

The Peak Sound Englefield is a new system which assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$. The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ system as published in Practical Wireless, or the $25+25$ watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. Go to your stockist and ask to see and hear Peak Sound equipment now.
Matching F.M. Tuners will be available very shortly.
and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R,M.S.) into stated loads at stated frequencies.

THE SPECIFICATION

Using two Peak Sound PA.12-15's. driven simultaneously at 1 KHz from 240 V . mains supply.
Output per channel: 11 watts into $15 \Omega: 14$ watts into 8Ω. (see spec. guarantee).
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt
Total Harmonic Distortion at 1 KHz at 10 watt into $15 \Omega \quad 0.1 \%$
Input sensitivities: Mag PU. 3.5 mV imp. R.I.A.A. equalized into $68 \mathrm{~K} \Omega$: Tape. 100 mV linear into $100 \mathrm{~K} \Omega$:
Radlo. 100 mV linear Into $100 \mathrm{~K} \Omega$.
Overload factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control nax.
Controls: Volume, Treble, Bass, Low-pass Filter. Mono/Stereo: On/off: Balance
Using two PA.25-15 amplifiers, output is then 25 watts into 15 ! /or 8Ω per channel at 1 KHz .
Power bandwidth for -1 dB at 20 watts R.M.S. into 15Ω at less than 0.25% distortion is 20 Hz to 20 KHz .

the modules

Englefield Amplifier Cabinet with			
front panel. knobs, sockets, cut and stripped wire, fuses, edge connectors, 'etc.	c6	0	0
Two PA. 12-15 power amp buile modules	£11	19	0
SCU/400 Pre-amp/Control module,			
built	£15	15	0
PS/45 Power Supply kit	54	10	0
	$\underline{538}$	4	0

Using two PA.25-15 modules at
E11/15/- each and PS/68S Stabilized
Power Supply Unit at $\mathrm{f} 13 / 10 / \mathrm{L}$, total
price for complete system comes to $\mathbf{£ 5 8} 15$ O

Go to your Stockist. Peak Sound products are already available from dealers in many parts. If your own local stockist is not yet ready with the Peak Sound items you require. please send direct toge ther with your supplier's name and address and your requirements will be dealt with without delay.

TRADEENQUIRIES INVITED. PEAK SOUND (HARROW) LTD. 32 St. Jude's Road, Englefield Green, Egham, Surrey

[^0]Details of Englefield systems, please and

Name
Address

Write vour stockists name and address in margin below and cut out with coupon if necessary

Burllers ceramics

for the ELECTRONIG INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 5432I (5 IInes)
Telegrams \& Cables: Bullers, Stoke-on-Trent

Themost advanced microwave devices arehere.

Schottiky Barrier Diodes

*Ga As Mixers *Ga As Detectors *LID, Reversible Ceramic Oscillators
*Ga As Gunn Diodes *Si Avalanche (Impatt) Diodes
*Welded Ceramic S3
Backward Diodes
*Ge Planar Detectors *LID. Coaxial
Microwave Transistors
*Si 1 watt Power amplifiers *Si Low Noise, 5 d B receiver Tuning Varactor Diodes
*Si VHF \& HF plastic, High 0 *Si Hermetic, Wide Capacitance Range
Varactor Multiplier Diodes
*160 G.4Z, Si welded Ceramic
P-I-N Diodes *Switches
*Limiters *Modulators *Stick. Coaxial, Epoxy and Pill
Point Contact Diodes
*Mixers *Detectors *Coaxial, Single Ended Ceramic Microwave Integrated Circutts
*Microstrip SUB-SYSTEMS incorporating microwave semiconductors

The Sansui truth machine.

You're as close to the truth as you can get when you hear your favorite music through this professional stereo system from Sansui.

Program sources come to you in a new and exciting form with the TU555 AM/FM Multiplex Tuner and SR3030BC 2-speed manual turntable. The professional tuner brings FM sensitivity to as low as 2.56 V (IHF) with advanced FET circuitry. The precision direct belt-drive turntable brings you flawless characteristics of wow and flutter, along with maximum stereo
separation and a high S / N ratio.
From whatever the program source, the 60 watt solid state AU555 Stereo Control Amplifier handles incoming signals in a way that really gets the truth across to the speakers. It offers a power bandwidth from 20 to $30,000 \mathrm{~Hz}$ with a distortion factor of less than 0.5%

You're face-to-face with the truth when you hear your favorite selections through the SP-200 3-way 5speaker high fidelity speaker system. Featuring Sansui's unique bass reflex design, this system offers a full 40 watts
in handling capacity and a wide 35 to $20,000 \mathrm{~Hz}$ in frequency response.

And to hear the truth with your ears alone, the Sansui truth machine is topped off with the SS-2 stereo headphone set. It gives you 20 to $18,000 \mathrm{~Hz}$ in frequency response with maximum sterec separation.

See and hear the Sansui truth machine soon at your nearest authorized dealer.

England: TECHNICAL CERAMICS LTD. Thornhill, Southampton Hampshire Tel: Squthampton 45166 / Ireland: RADIO CENTRE 122A, St. Siephen's Green, Dublin $2 /$ West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Llechtenstein: EGLI, FISCHER \& CO LTD. ZURICH 8022 Zurich, Gothardstr. 6, Claridenhof / France: HENRI COTTE \& CIE. 77, Rue J.-R. Thorelle, 77, 92-Bourg-la-Relne / Luxembourg: MICHAEL SMEN, EUROTEX 15, Rue Glesener/ Italy: ELECTRONICA LOMBARDA S.P.A. Via Montebello 27, 20121 Milano/Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. 1070 Wien, Burg8asse 114 / Belglum: MATELECTRIC S.P.R.L. 199, Boulevard Leovold II Laan, 199, Bruxelles 8 / Netherlands: TEMPOFOON BRITISHIMPORT COMPANY N.V. TIIburg, Kzpitein Hatterasstraat 8 , Postbus 540 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Southern Yemen: BHICAJEE COWASJEE LTD. Steamer Polint, Aden / SANSUI ELECTRIC CO., LTD. FRANKFURT OFFICE Schillerstrasse 31, 6 Frankfurt am Main, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo, Japan

Reminder to ring

about the
 ernest Turner's

indicating meters for the new project
(If anyone can do it, they certainly can)
? Price and delivery $\mathcal{H}_{\text {fight }}$ W combe 30931-4

E.T.E.I. LTD.
 CHILTERN WORKS TOTTERIDGE AVENUE HIGH WYCOMBE, BUCKS

WW-067 FOR FURTHER DETAILS

TRANSFORMERS

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL APPLICATIONS UP TO 100 KVA. "C" CORE, PULSE,

3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.
Samples from our standard production ranges:-

* Mains
c s. d.
$350-0-350 \mathrm{~V} .60 \mathrm{~mA} ., 6.3 \mathrm{~V} .2 \mathrm{~A}$.
220
$500 \mathrm{~V}, 300 \mathrm{~mA} .6 .3 \mathrm{~V}, 4 \mathrm{~A}, 6.3 \mathrm{~V}, 1 \mathrm{~A}$
3199
$500-0-500 \mathrm{~V}, 0.25 \mathrm{~A} ., 6.3 \mathrm{~V}, 4$ Act., 6.3 V .3 Act., $5 \mathrm{~V} .3 \AA \mathrm{~A} . \quad . \quad . \quad . \quad 419$
$525-0-525 \mathrm{~V} .0 .5 \mathrm{~A} ., 6.3 \mathrm{~V}$., 6 Act., 6.3 V .6 Act., 5V. 6A. 5136
*Low Voltage
30-0-30V. AA.
3126
28 V . 1 A, , 28V. IA., 28 V . IA., 28V. IA., 30V. $250 \mathrm{~mA} . \quad . . \quad 4150$
*Primaries $10-0-200-220-240 \mathrm{~V}$.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver \quad I 4
Mains
L.P. Filter, Chassis Mounting
L.P. Filter, Printed Circuit Mounting

70V \& 100V Line Matching

Fitted with terminal panel, taps at $0.5,2,4$ and $8 W$. into 15 ohms
9/- each in 100 Lots
Flying leads, taps at $\frac{3}{2}$ i, 1. 2 and $4 W$. into 3 ohms.. $\quad 7 / 3$ each in 100 Lots

Prices inclusive of postage and pocking, each.
For small quantities, cash with order, please.

HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER, M14 4GT 061-226 3411

Some notes on Bridge Measurement by WAYNE KERR

Number 5

Self-Balancing Bridges

In this series of notes we have examined some of the advantages of the Transformer Ratio-Arm Bridge and the facilities which are available when this type of bridge is used. However, only manually balanced networks have been considered, but there are many times when it is desirable to have an analogue output voltage in proportion to the value of the component being measured. Such a voltage may be used to operate remote indicators, chart recorders or alarm circuits, apart from providing a convenient form of local display which may consist of either a moving coil meter or a digital voltmeter.

Figure 1 shows a basic transformer ratio-arm bridge circuit.

Fig. 1
Normally, the network is manually balanced so that the currents flowing in the right hand transformer give zero flux, and it is clear that any variation in either the a.c. voltage produced by the oscillator or the gain of an amplifier forming part of the detector will not affect the balance point. However, if an attempt is made to connect a voltmeter to the output of the detector and calibrate the output voltage against the value of the unknown impedance, the following difficulties arise:
(a) Variations in oscillator output level and amplifier gain directly affect the indicated voltage.
(b) The voltmeter will indicate the modulus of the impedance, and variations in both the resistive and the reactive terms will affect the indicated value.
(c) When the network is substantially off balance, the ability of the neutral connection to control an electric field is impaired. The last issue of these notes showed that this control facility was due to balanced currents flowing in the transformer.

Figure 2 shows a block-schematic circuit which removes these difficulties by forming a self-balancing network.

A stable oscillator provides the signal for the bridge and also a phase reference voltage which is fed to two phase-sensitive detectors.

The output of the amplifier provides a bridge balancing voltage which is applied through a resistor to a winding on the right hand transformer. The initial current flowing in the transformer is therefore opposed by this 'feedback' current which can be made very nearly equal
to the initial current. The approach to the ideal condition of equality is limited only by the gain of the amplifier, which can be made as large as necessary.

The amplifier output is also connected to the phase-sensitive detectors, one of which incorporates a unity gain, 90° phase shift network. Analogue voltage outputs are therefore formed which independently show the amount of variation of the resistive and reactive terms from the value set by the standard impedance.

The use of this circuit now extends the usefulness of the transformer ratio-arm bridge to include many process control and monitoring applications. The precision of measurement and the facility for measuring high impedances accurately at the end of long lengths of cable, together with the self-balancing network, offer unique advantages for the measurement of transducer parameters.

The basic circuit shown in Figure ? can be adapted to give many different varieties of transformer ratio-arm bridge. These bridges can be designed for use in industrial measurement with suitable transducers as well as forming valuable tools for research.

Fig. 2

from the new Bradley, six not-so-new Bradleys

These days you can be fairly sure that Bradleys are working on something new. But it's reassuring to know that they aren't abandoning their old friends. Like the 127 B Voltage Calibrator. Like the 132 Current Calibrator
The 144 Current Muitiplier, the
125B a.c. Voltage Calibrator, and
the 156 Oscilloscope Calibrator. Or the
Battery, Line Oscilloscope.
And when you
see the story behind them. you'll soon see why we're hanging on to them.
Take the 127B. And the 125B. And the 132 .
They're all designed to make your calibration
simpler. So you can read off directly
the percentage error. They're guaranteed
for a year. And you can carry them anywhere
The 127B gives you an accuracy of
0.05% over the range of 0 to 509 volts d c.
The 125B has an accuracy of
0.2% from 0 to 511 volts a.c. (It also
has extremely low harmonic distortion.)
Spot frequencies 50, 60, 400 and
1000 Hz , with alternative frequencies up to 2400 Hz avarlable.
The Model 132 provides current up to
100 mA in $1 \mu \mathrm{~A}$ steps, at an accuracy of
0.05%. And there is the recently introduced new 144 multiplier. This will
extend the rarge to 10 amps with the same high accuracy.
For the oscilloscope user.
there is the 156 Oscilloscope Calibrator It calibrates vertical amplitude and sweep speeds. It checks risetime. And it features direct reading of percentage deviation.
Finally there's the Battery/Line
Oscilloscope. It has a bandwidth of
20 MHz and an input sensitivity of 5 mV per division. It can be operated from its owh self contained batteries or from a.c. Mains. They're all part of the new Bradley. Even if they're firm friends of yours.

G. \& E. BRADLEY LTD.

Electral House,

Neasden Lane,
London, N.W. 10.
Tel:01-450 7811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

So what do you do?

You reach for the 'phone and dial ONO 2398072 , if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business

We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue

For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd., Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

TRIO's New JR-310 SSB Professional Perfection for Amateur Enjoyment

JR-310
SSB COMMUNICATIONS RECEIVER

* High-stability VFO of 2 FET's and 2 transistors and easily handles QSO's for hours. * Precision double gear dial-a TRIO innovation -with linear frequency variable capacitor. Possible to get finer reading 1 KHz . One dial rotation covers 25 KHz , makes SSB demodulation easier. * Frequency range covers entire amateur band from 3.5 MHz to 29.7 MHz . One-touch selection system switches bands. WWV reception of 15 MHz possible. $* \mathrm{MHz}$ band circuit structure patterned on Collins type double conversion system so first oscillation is by crystal control, second local oscillation by VFO.

SPECIFICATIONS OF JR-310

* FREQUENCY RANGE: $3.5 \cdot 29.7 \mathrm{MHz}$ (7 Bands)
* SENSItIVITY: $1 \mu \mathrm{~V}$ (at 10 dB 's/N)
* IMAGE RATIO: More than 50 dB
* FREQUency Stability: $\pm 2 \mathrm{KHz}$ in $1-60 \mathrm{~min}$. after switching on, subsequently within 100 Hz per 30 min .
* Dimensions: $13^{\prime \prime}(W), 7-3 / 32^{\prime \prime}(H), 12 \cdot 3 / 16^{\prime \prime}(\mathrm{D})$.

* Communications Speaker which has been designed for use with the 9R-59DE
* Dimensions: 3-9/16"(W), 7-1/8"(H), 5-3/16"(D).

* A mechanical filter enabling superb selectivity with ordinary IF trans formers. * Frequency Range: 550 KHz to 30 MHz (4 Bands) * Sensi tivity: $2 \mu \mathrm{~V}$ for $10 d B \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz) * Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$. When using the Mechanical Filter $*$ Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann. Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: 01-790 4824

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

FOR RECEIVER MANUFACTURERS

P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

WW-074 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2 Tel: 01-930-3070

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

 "MS" range Knapps Lane, Bristol 5. Q272657228

Wideband Modulators
 FROM STOCK

Hatfield Types MD4 and MD6 are wideband ring modulators designed for use in 50/75-0hm systems. Type MD4 is fully shielded and fitted with BNC connectors. Alternatively, Type MD6 is a miniature encapsulated package for printed circuit board mounting. Both units are of robust design. and are capable of very good periomances as an amplitude modulator, mixer. phase detector or current controlled V.H.F. Attenuator
New unlts include Types MD5 and MD7. These are of similar construction to Types MD4 and MD6 but operate in the frequency range $10 \mathrm{KHz-100} \mathrm{MHz}$, MD5 being fully shielded ald thed BNC Connectors, and MD7 a miniature encapsulated type for direct mounting on a printed circuit board

Write for full details-deliveries from stock.

- Excellent Balance
- Wide Band
- Low Insertion Loss
- Flat Response

- Low Noise Factor
- P.C.B. and B.N.C. Models
- Hot Carrier Diodes

Dept. WW.

HATFIELD INSTRUMENTS LTD., Burrington Way, Plymouth, Devon Telephone: Plymouth 72773/5. Telex: 45592 Cables: Sigjen Plymouth SOUTH-EAST ASIA - for prompt service and deliveries contact: HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 561, Napier, New Zealand

There are a couple of things you should know about the Welbrook All Silicon Stereo Amplifier

DISTORTION 0.1% at all output levels

PRICE
 £42. 0. 0d.

A new and unique method of equalising impedances in the output stage enables only Welbrook to offer such true high fidelity reproduction at such low cost.
This technical breakthrough brings you the Welbrook W20 Stereo Amplifier, with no distortion rise at any level, for only $£ 42$. o. od. This is a truly remarkable bargain among high quality stereo amplifiers, using Class B operation.

Performance:

Power Output:
24 watts R.M.S. (12 watts per channel) into 4 ohms load. 20 watts R.M.S. (Io watts per channel) into 8 ohms load. 14 watts R.M.S. (7 watts per channel) into 15 ohms load.
Total Harmonic Distortion:
Typically 0.1% for 10 watts per channel into 8 ohms load at I kHz with no increase at low levels.
Hum and Noise:
With volume control at minimum-80 dB. With volume control at maximum- 55 dB .
Frequency Response:
-1 dB at 30 Hz and 15 kHz .
Inputs: Pickup:
R.I.A.A. characteristic, sensitivity adjustable up to 3 mV to suit crystal, ceramic or magnetic cartridges.
Tuner:
Flat characteristic-sensitivity 100 mV -input impedance 100 k ohms.
Tape:
Flat characteristic-sensitivity 100 mV -input
impedance 100 k ohms.
Outputs:
Loudspeaker outputs to suit 4,8 and 15 ohms. Tape output for recording- 200 mV for rated input sensitivities-minimum external impedance 10 k ohms.
Tone Controls: Bass:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 30 Hz
Treble:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 15 kHz
Balance Control:
Facility to reduce output from either channel continuously
from maximum output to zero
Dimensions:

Price:
Recommended retail price; $£ 42.0$. od. including cabinet.

For full details of the Welbrook Stereo Amplifier post the coupon to:
WELBROOK ENGINEERING \& ELECTRONICS LIMITED,
BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT

Model TCU 250 transistor stabilised power supply provides d.c. output of 2 A at voltages of $0-50 \mathrm{~V}$ in five 'continuous control' 10 V steps, making it suitable for use in laboratories where adjustable voltages are required. Attractively styled, the TCU 250 incorporates a number of novel features resulting in an exceptionally small size for its performance.

FEATURES

Output voltage fully variable $0-50 \mathrm{~V} 2 \mathrm{~A}$.
Adjustable overload trip protection.
Small size $15.2 \times 15.2 \times 25.4 \mathrm{~cm}$ high ($6^{\prime \prime} \times 6^{\prime \prime} \times 10^{\prime \prime}$).

Price $£ 65$ nett ex works, prompt delivery.

Please send me details of the TCU range of transistorised power supplies.

NAME
COMPANY \qquad ADDRESS
A.P.T. ELECTRONIC INDUSTRIES LTD

Chertsey Road, Byileet, Surrey. Tel: Byfleet 41131/2/3/4.

TEKTRONIX TYPE 547 VERSATILITY WITH AUTOMATIC DISPLAY . SWVITCHING

For detailed information on any of cur products, please fill in reader reply card or write, telephone or telex
Tektronix U.M. Ltd. BeavertonHouse, P. O. Box69, Harpenden, Herts. Telephone Harpenden 61251. Telex 25559 For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 4-14, Foster Street, Sydney, N.S.W. Canada: Tektronix Canada Lid., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A., 91, Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13). Switzerland: Tektronix International A.G., P.O Box 57, Zug, Switzerland. Rest of Europe and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter
 Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

SIMPLY SUPERB!

the new brenell... MODEL ST STEREO

Probably the most important new recorder of the year!
The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics; shelf-mounting cabinet; simplified controls.
Sound quality is even better than ever-as good as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.
Only the price is less than you may expect . . . £145 recommended. You pay no import duties . . . no high selling costs . . . only for a top-quality recorder, well made. It's a fine formula

- Mono or stereo operation
- Choice of 2 or 4-track
- 3 tape speeds
models
- 2 recording level meters
- Full input/output and control facilities
- 3 outer-rotor motors

BRENELL ENGINEERING COMPANY LTD. 231/5 Liverpool Road, London, N.1. Telephone: 01-6078271
GD 730
WW- 082 FOR FURTHER DET.AIS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Intormation from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937
 blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, Including feet and screws.

Contil cases are also available with aluminium panels and Contilcote, which is appliedafterdrilling and cutting.

CASE PRICES (All supplied with protective coated steel pane/s̉) Nos. denote size in inches 755 867/975 1277 white or black panel 1277 unpainted 16127 191010 1910100

CONTIL LOW COST PRINTED CIRCUIT BOARDS

"A" board shown plugged into "M" 20-way connector with "S" board supports.
Note: Power supply rails at right
angles to signal rails. angles to signal rails.

MOD-2 Cases see Oct. 1969 or Jan.
1970 Advertisements.

The 1 Amp. transThe 1 Amp. trans-
former gives 6 , 10. 18 voltage outputs. The TRA also gives
$150-80-0-80-150$. TRA at $57 / 6$ each. be connected ch can of course TRC at $35 / 6$ each $8,9,10,12,15,18,24$ and
 The ONTOS UNIVERSAL VICE is a new type of multi-purpose, multi-position light engineering vice and stand, fully adjustable for any angle and location in any desired plane. Applications are virtually limitless within its size capacity; i.e. holding P.C. boards for assembly or sessing, building up modules, as a micrometer or gauge stand, as a light general purpose vice, in the chemical laboratory, or in fact for all those occasions when you could use a third hand! The ONTOS TWIN TWO-IN-ONE UNIVERSAL VICE is a unique two-in-one version of the Onto vice, with two sets of jaws, each capable of rotation through 360 deg. of every plane independently of each other. Positive locking enables any such setting to be maintained for repetition work. Ideal for copying P.C. boards, assembly, soldering, bonding, welding, laboratory testing, etc. ONTOS: $67 / 6$ plus P\&P 4/6.
ONTO TWIN 65180 plus P\&P $4 / 6$

Your third hand

'Brightlife'

NEONS

25,000 hour average life. PC type ia. meter, 6° leads with resistor inside. Nine different caps available, $160-260 \mathrm{~V}$, io at $2 / 10$ each, 100 at $2 / 6$ each. 1,000 at $2 / 2$ each, 10,000 at $2 /-$ each. Also available with 30° leads; 110 volt resistor values. PP type 1^{-} diameter also supplied with 30° leads and 110 volt variants. 10 at $2 / 10$ each, 100 at $2 / 6$ each, 1,000 at $2 / 2$ each, 10,000 at $2 /-$ each. Neon/resistor assemblies, 100 at 9 d . each. 10,000 at 8 d . each. Neons only, 100 at gd. each, 10,000 at bd. each. Neons driven by neon oscillator for 6 to 24 volt input down to 50 mW input. Neons driven by transistors with or without alphanumeric caps.

The smallest yet, type "Q". Overall diameter $\frac{8}{17}$ ", body $.7^{\prime \prime}$, resistor mounted externally, medium Intensity. Minimum quantity 10 at $3 / 10$ each, 100 at $3 / 4$ each, 500 at $3 / 2$ each.

REED SWITCH

The West Hyde reed switch works up to 2,000 operations per second with a life of up to $50,000,000,000$ of toclans when used in the recommended circuit. The hermetically sealed swiss tube and moulded brass tube and moulded into a polypropylene placing of the contents in relation to the mounting screws. 30^{*} nominal leads fitted. Used for Rev. Counters, flowmeters, burglar alarms, under and over speed monitors, etc. I at $15 /-$.
10 at $12 / 6$ each $9 / 6$ each.

ACCESSORIES
Flexible insulated test prods, colour red or fine steel clips at the tip. opened by button on top. High speed resetting counter including bezel and socket with speed of over 40 operations per second $165 /-$. Plug in octail relay, 24 volts, with
two changeovers $17 / 6$.

1° RADFORD

In an article in the Journal of the Audio Engineering Society for July 1967, Bart N. Locanthi, Vice-President, J. B. Lansing Sound Inc. describes the development of an ultra low distortion direct current audio amplifier. In It he says ".... to get the highest accuracy possible, an English made RADFORD Low Distortion Oscillator was used which has less than 0.01% harmonic distortion at 20 kHz ."

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Speciflcation
Frequency Range:
Output Impedance
Output Attenuatio
Sine Wave Distortion: $\quad 0.110 \mathrm{~dB}$ continuously variable.
Sine Wave Discortion: $\quad 0.005 \%$ from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Square Wave Rise Time: Less than 0.1 microseconds
Monitor Output Meter:
Mains Input:
Size:
Weight:
Scaled 0-3, $0-10$, and 8 Bm
100 V. -250 Y. $50 / 60$.
100 V. -250 Y. $50 / 60 \mathrm{~Hz}$.
$171 \times 11 \times \sin$.
Price:
6150.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification
Frequencr Range:
Distortion Range:
Senslitivity:
Meter:
Meter: High Pass Filter:

Frequency Response:
Power Requirements:
Size:
Weight:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ f.s.d. (9 ranzes)
100 mV . 100 V . (3 ranges).
Square law
3 dB down at 350 Hz
30 dB down at 45 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection \pm frequency to 250 kHz .
Included battery.
$171 \times 11 \times 8$ in.
15 lb
6120.
C120.

Descriptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD.

 ASHTON VALE ROAD, BRISTOL 3
'WATTS' THE NAME FOR RECORD MAINTENANCE

Gramophone

 Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are 10 be played with pick-ups re quiring very low tracking pressures. The 30,000 finely pointed tips of the $\mathrm{Hi}-\mathrm{Fi}$ Parastat Brush positively explore every detail in the record groove to provide the high degree of record cleanliness necessary when using ultra lightweight pick-ups tracking at 2 grammes of
less. The cover pad in the lid of the case is provided for the purpose of cleaning and activating the brush which when enclosed within the case is kept at the correct level of humidity required to control all static at the working surface. Perfectly clean racords must be played with a perfectly clean erlus and an integral part of the kit is the new Watts Stylus stylus and an integral part of the kit is the new Watts Siylus Cleaner which provides a safe and efficient method of
cleaning the stylus.
Supplied complete with instructions, 1 oz. New Formula dispenser, Distilled Water dispenser, spare pad cover and

'PARASTAT'Regd Manual Model
 Mk.IIA

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. Complete with 1 oz. New Formula dispenser and instructions. Price 45 /-
Replacements : Pad Covers $2 /$-each. Brush 12/6. Sponge Cover Pad 1/-. 1 oz . New Formula Dispenser 4/6. HUMID MOP. Recommended for use in conjunction with the Manual Parastat and Preener. Cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use. Complete with spare sponges and instructions. Price 4/6. Replacements: Set of Sponges 2/6.

'PARASTATIK'

OISC PREENER
(Patent No. 982599)
Keeps new records like new. Expressly Keeps now record with records which designed for use with records which have not had previous antistatic
treatment. Complete with instructions. treatment. Complete with instructions.
Price $6 / 9$. Replacements: Packet of 4 wicks $2 /-$

All obtainable from your local specialist or direct:

The original
DUST :UG'Regd.
(Patent No. 817598)
Automatlc Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced, resulting in cleaner reproduction. Complete with t oz. New Formula Dispenser and instructions. Price $18 / 9$ plus $4 / 5$ P.T. Replacements: Nylon Bristle and Plush Pad 1/9. $\frac{1}{\frac{1}{2}}$ oz. New Formula Dispenser 2/6.
A GUIOE TO THE BETYER CARE DF L.P. ANO STERED RECOROS

Completely revised. 48 pages, fully illustrated providing all necessary information on Record
Care. /6 Post Free To CECIL E. WATTS LTO. DARBY HSE, SUNBURY ON THAMES, MIDOX. Please send (Post Free U.K. and Commonwealth)
Disc Preeners @ 6/9
Hi-Fi Parastats @ $42 / 6$ plus 1/3 P.T. I

Dust Bugs @ 18/9 plus 4/5 P.
48 page Booklets @ $2 / 6$
Stylus Cleaners @ 5/-plus $1 / 3$ P.T.
Replacement Parts
I enclose cheque/P.O. value f
(Do not send postage stamps) I
Name
Address
ribbons. Price 42/6 plus 1/3 P.T.
Replacements: 1 oz . New Formula dispenser $4 / 6$ Distilled Water Dispenser 4/- Pad Cover and Ribbons1/9.

TEOHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs--they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIo COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits. and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME

```
ADDRESS
```


NON-CONFORMIST

Oxley "Barb" cone-lock Insulators may remind you of just another lead-through or stand-off insulator.
But don't say anything. Oxley insulators deserve your respect and attention.
For sheer ease of assembly: for sheer quality. and for sheer brilliance, in the use of the Oxley "barb" cone-lock principle. Oxley insulators are IMPORTANT.
Write for details. After all, you don't want mere competence : you want to work with an artist.

OXLEY DEVELOPMENTS COMPANY LIMITED

$$
\begin{aligned}
& \text { Priory Park, Ulverston, Lancashire. } \\
& \text { Telephone: } 2621 \quad \text { Telex: } 5461
\end{aligned}
$$

$O X L E Y^{\circ} \Phi$

WW-089 FOR FURTHER DETAILS

PUNCHES, READERS, YERIFIERS AHD TELEPRINTERS at realistic prices to educatiomists. mobile SHOWROOM CALLS OM REQUEST.

Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal amateur computer. Application leaflet. $\mathbf{~ 1 2} 2.10 \mathrm{~s}$. post free.

COMPUTER TRAINING PRODUCTS

2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/6

NOW.
 Guarantee your audience's listening comfort

Our Automatic Loudness Controller delivers the sound that's right for every ear. Automatically eliminates excessive loudness. Unconditionally guaranteed!

No doubt about it. Other devices can control volume and modulation levels. That's what they're for.

But only one instrument can analyze and automatically control loudness levels.

Ours.
Reason? We designed it "from human ears", At CBS laboratories, we tested every conceivable sound sensation: Frequency content. Peak factors. Ballistic response.

Combinations of complex signals. All the characteristics that affect even the most sensitive ear

Result? An instrument so "humanly" perceptive it automatically keeps loudness levels under control. And does it inaudibly. Keeps your audience in their chairs . . . listening comfortably. No constant jumping up and down to flip the dial. They enjoy continuous listening pleasure.

Why not let your audience hear you at your best? Install this remarkable instrument in your studio. You will believe your ears. It's guaranteed. Unconditionally.
For further information, write:

The Big Little Integrals That Can Make Or Break Your Product.

 @

SY173L Single speed (2000 rpm) For record players.
DMF54R-02 Single speed (2400 rpm) For tape racorders.
RK201R Single speed (2400 rpm) For car players.
BF110R Single speed (2000 rpm). With electrical governor motor. For tape recorders.
BF200R Single speed (2200 rpm). For car recorders \& players.
ZF200R Variable speed (such as 1100,2200 and 2800 rpm). With brushless \& transistor motors. For de luxe record players \& electronic calculators.
VM250B Single speed (3600 rpm) For auto tuners.
Specification for Sankyo micro motors

NPK	Omensions		Fated Voltage (v)	Range of Voltage (v)	$\begin{aligned} & \text { Raled } \\ & \text { foroue } \\ & (\mathrm{s} \cdot \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { Soued } \\ & (0 \mathrm{~mm}) \end{aligned}$	1006 Curent (mA)	$\begin{aligned} & \begin{array}{l} \text { Starting } \\ \text { forque } \\ (0 . \mathrm{cm}) \end{array} \end{aligned}$	$\begin{aligned} & \text { Life } \\ & (H \cdot 1) \end{aligned}$	Direction of Revolution
	(m/m)	$\begin{aligned} & \text { Lengti } \\ & (\mathrm{m} / \mathrm{m}) \end{aligned}$								
8YI73L	40	324	6	$4.5 \sim 6$	3	2000	80	35	600	Left
DMFBAT-02	38	34.8	6	4.5-6	9	2400	140	30	600	Rrigh
RK201R	47.9	48	13.2	$10 \sim 16$	30	2400	210	100	1000	Right
BFIIOR	38	30	4.5	$3.5 \sim 57$	8	2000	160	30	1500	Rught
BF 2000	38	34.1	132	15.5-19-16	15	2200	180	30	1500	Right
2F200	4	50	9	$6 \sim 9$	20	2200	300	45	3000	Let. Rught
UPsson	20	44.5	4.5	$4-6$ $45 \sim 6$	14	$\begin{aligned} & 3700 \\ & 5000 \end{aligned}$	160	60	30	Rught
Vmisos	25	36.5	7	$6.5 \sim 7.5$	04	3600	45	25	500	Leth Rient

Sankyo (Europe) Export und Import G.m.b.H.: 4 Düsseldort, Bahnstraße 45-47. W. Germany. Tel: 325652/3 Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF Sankyo Saiki Mfg. Co.. Lid. : 17-2. Shinbashi 1 -chome. Minatoku, Tokyo 105. Japan. Tel : Tokyo 591-8371
Cables: SANYORGEL TOKYO
vsive
American Sankyo Corp.: Rm, 801-3. 95 Madison Ave. New York. N.Y. 10016.U.S.A. Tel: LE-2-8020

A SOLDER'S BEST FRIEND IS HIS GUN

From the Burgess All-electric Workshop : a light, balanced solder gun with a range of screw-in tips. The tips-and only the tips--heat up in 7 short seconds, Antithermal casing keeps the rest of
the gun cool. Note the slim
barrel-it reaches right down into confined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work! The price of this tough, modern instrument? Just £4 126 complete with two tips, a $6^{\prime \prime}$ extension barrel, a double-ended probe and solder FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our informationpacked catalogue.

BURGESS take the work out of your workshop.

Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW.

WW-093 FOR FURTHER DETAILS

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illuseracion), Finese Soldering Needles, Box Joint Miniature Cutters and Pliers including Tip Curting Pliers Printed Circuit Crimping and Curting Pliers and Cutting Pliers. Torque If you require quality If you require quality cools ask for Catalogue WW/69

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW-095 FOR FURTHER DETAILS

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

> Please send for List W2/69 (WW)

WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-444 3155 (Soles) and 5278
WW-096 FOR FURTHER DETAILS

TRANSFORMERS

COILS
CHOKES
LARGE OR SMALL QUANTITIES

SPECIALISTS IN
FINE WIRE WINDINGS MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.6532261 CR4.8LZ

EST. 1933

Get across loud and clear with AKG microphones!

AKG D-224

Advanced studio microphone, employing twoway cardioid princlplethe latest in microphone technology - in slim, elegant form.
Figh-quality dynamic
microphone ideal for all broadcasting and studio
work. Incorporates bass attenuation switch and pivoted stand attachment.

Find out more about AKG mikes from

Politechna (London) Ltd. 182-184 Campden Hill Road. London.W.8. 24 Hr.Telephone: 01-727 0711 Telex: 23894

It's only a year since we launched the record selling S54

Now we introduce the S54A...

... a a single beam oscilloscope with a sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ at 10 MHz bandwidth

The S54A is an all solid state oscilloscope developed from the S54. Smartly styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features:

* 10 MHz Bandwidth at $10 \mathrm{mV} / \mathrm{cm}$
* All Solid State Design
* Small Size - Light Weight
* FET Inputs

At $£ 120$ you will find no other oscilloscope of its type which offers such features at such low cost. Write or phone for full specification NOW! ! ! !

* Versatile Triggering including T.V. Line and Frame Sync.
* $6 \times 10 \mathrm{~cm}$. Viewing Area
* Built-in Voltage Calibrator.

Telequipment

 < >
Wireless World

Electronics, Television, Radio, Audio

Fifty-ninth year of publication

The review of gramophone pickups in this issue is typified by the cover illustration of a close-up of an Acos cartridge.

December 1969

Contents

ibpa

I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Idvertisement Director: George Fowkes Jorset House, Stamford Sireet, London, SE1 \$ I,P.C. Business Press L.td, 1969 3rief extracts or comments are allowed provided cknowledgement to the journal is given.

Al12 SITUATIONS VACANT

A126 INDEX TO ADVĖRTISERS
A126 INDEX TO ADVERTISERS
Editorial Comment
Stereo Gramophone Pickups by S. Kelly
Pickup Characteristics
Circuit Ideas
A Thermistor Hygrometer by D. Bollen
News of the Month
Diode Line Pulse Shaper by B. L. Hart
Logic Symbols
Active Filters- 5 by F. E. F. Girling \mathcal{E} E. F. Good
London's Audio Fair
Application Notes
Electronically Stepped Curve Tracer by A. J. Sargent
Books Received
Simple Linear A.C. Voltmeter by G. W. Short
Stereo Image Width Control by A. Roberts
Wireless World Logic Display Aid- 8
Announcements
Operational Amplifiers-10 by G. B. Clayton
World of Amateur Radio
Test Your Knowledge questions and answers devised by L. Ibbotson Personalities
Meetings
Literature Received
H. F. Predictions

HowMullard developed the valves for today's hybrid TV sets

During the earliest stages of semiconductor development, Mullard recognised that the all-valved television receiver, whilst giving reliable performance and economic set design, could with advantage incorporate semiconductor devices in place of those valves used in the low signal handling stages. Consequently, Mullard pioneered the design of hybrid television and were the first to offer a complete set of valves for the purpose. Today, we are Europe's major supplier of complete ranges of valves both for colour and monochrome sets.

Each valve provides a low cost solution to the design problems found in the critical high power deflection and output stages of television receivers.

Purpose designed Each valve performs a specific function in parttransistorised receivers. But, before developing these valves, Mullard applications laboratories had to solve the complex problems of matching the optimum specification for each
individual valve stage in a hybrid circuit layout. Nothing was left out-chassis tolerances, component stability, reliability, life performance, supply variation-all were investigated and specified.

Consistent quality All the plant, equipment and component parts for manufacturing valves were designed and built by ourselves at our Blackburn factory. In fact, our reputation for consistent product quality is a direct result of this 'do-it-yourself' policy, coupled with quality control that starts at the raw-material stage. We even produce our own grid wires from tungsten powder. And we process the critical cathode-emission coating, using barium, strontium and calcium nitrates that comply with our very tight specifications. The same tight control is exercised right down the production line, offering setmakers top-quality, reliable products at an economic price.

Continuous improvements Just because we produced the best possible valves to start with, it doesn't mean that development is forgotten. Whenever a new material or a new method of production arises from research studies or factory development projects, we investigate to see if it offers an improvement.

Complete data for set designers Mullard valves are supported by comprehensive data in the form that designers appreciate. For example, the data for deflection valves include
design charts which make full allowance for valve and component tolerances, for performance changes with valve life and for mains voltage variations.

Sales Setmakers appreciate the overall quality and economy of Mullard valves for hybrid TV, because most new television sets, both colour and monochrome, in the UK, now have them fitted as standard. Overseas customers are also specifying Mullard valves in large quantities.

Worth it? Right from the beginning we've had everything under our control, so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across the very wide Mullard component range. Our components find applications as unexpected as Astronomy and Zoology. And because of the many and unusual applications for our components, we have experience in many technologies. Experience our customers now take for granted.

Mullard components for consumer electronics

Mullard Limited
Consumer Electronics Division
Mullard House, Torrington Place
London WCl

ces :

The Engineer in State and Private Enterprise

Eไ̧itor-in-chief:
w. T. COCKING, F.I.E.E

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALLL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
I. R. EY'TON-JONES
-R. PARSONS (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

This was the title of Harvey Schwarz's presidential address on October 22nd to members of the Institution of Electronic and Radio Engineers. While not denigrating the need for Government co-operation and assistance in certain circumstances he came down heavily on the side of private enterprise-as managing director of Decca Navigator Company this is not surprising. As he rightly pointed out, there are, of course, many projects which no company, unaided, could possibly implement without Government help. But Government and industry must together hammer out some means whereby the delays, which seem inherent in obtaining such effort, can be cut drastically.

Because of the different approaches of Government and commercial enterprises there is an incompatibility which can be, and often is, detrimental to the advancement of a project. However sympathetic towards or enthusiastic for a project a Government Department may be, it is less concerned with the time factor than private enterprise. Mr. Schwarz pointed out that this is because the very structure of the civil service Business quite rightly starts by ensuring that public funds are properly spent and used to the best advantage. "All too frequently, this prerequisite breeds a caution which often becomes so exaggerated that by the time the project has been surveyed from every possible aspect by a series of committees, the chance may well have been lost.... The cushioning effect of reliance on governmental support can-human nature being what it is-stultify initiative and enterprise."

There is, however, an aspect of commercial enterprise which can be just as stultifying, and is likely to hamstring the enthusiastic engineer. Mr. Schwarz described this as "Gadarene swine-manship" which manifests itself in "a seemingly almost frenetic compulsion-not to dash over a cliff as did those unfortunate animals-but to huddle together in larger and larger conglomerates in a positive fury of gregariousness, and by a curious paradox the more entities such conglomerates absorb, the more amorphous they become". Few will not share Mr. Schwarz's regret at the growing wave of mergers with the resultant loss of famous household names and inherent danger of stifling initiative and enthusiasm.

The position of the engineer in industrial mergers and take-overs was also voiced at the meeting announcing the formation of the U.K. Association of Professional Engineers (see p. 562) membership of which is open to members of all the 14 institutions constituting the Council of Engineering Institutions. The president of UKAPE (G. B. M. Oliver) said that industrial mergers "too often produced the result that professional men . . . were lost in a vast impersonal machine where they were unable to make their voices heard".

Whereas Mr. Schwarz was concerned with the position of the individual engineer, the trade union (UKAPE) is concerned with collective bargaining on behalf of professional engineers as a body. While we are in full sympathy with any legitimate movement to improve the status, image and emoluments of the engineer-whether professional or technician-we cannot help but question what there is in common between, say, a gas or marine engineer and one in electronics. One could go still further and try to find a common denominator for the electronics engineer in, say, the guided weapons division of one of the major groups and his counterpart in the television development laboratory of a receiver manufacturer.

Wireless World is written for the individual engineer, both in his professional capacity and as a hobbyist, and we would therefore reiterate Mr. Schwarz's dictum that the engineer must be given freedom in which to exploit his natural talents: "Discovery cannot be made by order or regulation, nor can the engineer's ingenuity be trammelled by limitation of opportunity."

Stereo Gramophone Pickups

A review of the various types of transducer available

by Stanley Kelly

By definition a gramophone pickup should translate the information stored mechanically in the groove of a gramophone record into an exactly corresponding electrical signal. As is well known, it accomplishes this feat by the application of motion from a modulated Vee-shaped groove in the gramophone record via a hemispherical stylus coupled to the actual transducer element. In the case of twochannel "stereo" records the two groove walls are independently modulated. Therefore, the parameters of the record groove and the record material are major factors affecting the performance of the pickup.

Present-day styli are either sapphire or diamond, and are several orders of magnitude harder than the record material. Therefore upon the application of pressure between the stylus and the record it is the record rather than the stylus that deforms. The contact area of the stylus tip and the record groove will be a function of the effective force between the two surfaces and the mechanical constants of the record, and the attrition of the stylus will be strictly a function of this contact area and the length of travel of the stylus. This latter factor is usually equated in terms of playing time. It has been determined experimentally that at playing weights greater than about 0.5 gramme the record material is stressed beyond its elastic limit ${ }^{3,4}$ and it is the aim of cartridge designers to produce pickups which will satisfactorily track heavily modulated records at playing weights below this figure. Therefore in the interests of reduced record wear and concomitantly stylus wear, the ideal limit would obviously be playing weights less than 0.5 gramme, and certainly 1.5 grammes can be taken as the upper limit to maintain maximum record life. Despite many extravagant advertising claims, there are probably fewer than a dozen pickup cartridges produced today which actually track all music records at playing weights less than 1.5 grammes. Stylus wear is generally expressed as the size of "flat" developed at the point of contact with the record, and is a complex function of playing weight, stylus dimensions, record material, and the dynamic mechanical constants of the pickup referred to the stylus tip.

Fig. 1 shows the life of a diamond stylus at two playing weights, 2 grammes and 5 grammes, and for different radii. It will be seen that even at only 2 grammes playing weight with an 0.5 thou* stylus point, the life is only 500 hours for a "flat" diameter of 0.25 thou,

Fig. 1. Playing time for flat diameter diamond styli.
which with wide-range low-distortion equipment is currently accepted as being the maximum "flat" diameter to be tolerated. Increasingshe stylus diameter to 0.7 or 1 thou considerably reduces stylus wear but at the expense of increased tracing distortion. The elimination of tracing distortion requires a stylus of minimum tip radius-ideally zero!-but apart from stylus life other factors control the minimum tip radius. The bottom of the record groove is not infinitely sharp; with commercial pressings it is of an indeterminate radius. This is maintained at minimal value by the record manufacturers but can sometimes approach 0.5 thou! Indeed, until the advent of stereo recording the groove bottom radius was not under strict manufacturing contro and some of the earlier L.P. pressings are unplayable if the tip radius of the stylus is less than 1 thou.

The elliptical or biradial tip has been evolved to overcome the difficulty. The major radius-across the groove-is of the order ot 0.7 thou, whilst the minor or "working" radius can be as small as 0.2 thou with consequent reduction in tracing distortion, althougt stylus life is reduced accordingly. The upper limit for the major axis i 0.7 thou because under conditions of maximum vertical modulation the groove width can be (and often is) instantaneously reduced to 1 thou; thus if the tip radius (either spherical or the major axis o an elliptical) is greater than 0.7 thou the stylus will ride on thi interface of the groove and the record land with the possibility o groove jumping in addition to the increased distortion.

One specifies a given dimension and euphemistically hopes that thi dimension will be achieved. Modern production methods work tu incredibly fine tolerances and ± 0.1 thou is the norm for tip radiu limits. Thus a maximum specified radius of 0.7 thou in reality mean a dimension of between 0.5 and 0.7 thou although by selection close tolerances can be achieved. Even so, using optical methods of measure ment the confidence limits of the measuring equipment are usually c the order of ± 1 micron (one twenty-fifth of a thou) which sets practical limit.
[The projected use of the metric system throughout our commerci: and industrial life and the introduction of SI units for all scientifi work poses a number of problems at all levels of industry. This especially exemplified in design and production of gramophone pickupwhere dimensions are microscopic-masses of the order of milligram length in microns or tenths of a thou-and to this author at least seems ridiculous to think of a milligram as 10^{-6} kilogramme and th nicron as 10^{-6} metre. The magnet industry both in this country ar the United States and the pickup cartridge manufacturers throughol the world all insist on specifying their products in c.g.s. unit Conversations with many commercial and technical personnel indica an obdurate insistence on the familiar, thus c.g.s units are used this article.]

Before specifying the parameters of a pickup it is necessary to kno the maximum modulated levels available from the record. The levels are controlled at low frequencies by the maximum groodisplacement (normally 0.005 cm) and at higher frequencies by styl tip dimensions and groove velocity. Fig. 2 shows these limits. Curve relates r.m.s. velocity to maximum displacement, and B, C, D, and to stylus tip radius: G is the generally accepted maximum velocity f music records although these values are sometimes exceeded, especia on "gimmick" and "pop" records. From this graph it would appe that mis-tracking must occur with all styli in which the radius
greater than 0.0003 inch; this assumption is modified by the fact of record deformation, but is nevertheless substantially correct for the inner grooves at high modulation levels. These limitations are reduced as the groove diameter increases and at diameters exceeding about 7 inches are negligible even for 0.0007 inch tip radjus.

The basic design requirements for a pickup are fundamentally mechanical and relate to the dynamics of the moving system and one must design to track the maximum velocities shown in Fig. 2. It is convenient to divide the frequency spectrum into three sections: (a) below about 500 Hz ; (b) 500 to 5000 Hz ; and (c) above 5 kHz . One can relate Fig. 2 to maximum "needle tip impedance" that is, the mechanical impedance at the stylus point when in contact with the record, for a given playing weight. Fig. 3 relates this premise for a playing weight of 1.5 grammes, using curves A and B as limits. The dotted lines refer to a compliance of $5 \times 10^{-6} \mathrm{~cm} /$ dyne and mass of 2.25 milligrammes. These values may be modified by other considerations: (1) the record compliance-stylus mass resonance and the head mass/restoring force compliance resonance should be outside the recorded frequency range; (2) appreciable amounts of damping may be introduced. The high-frequency resonance can be evaluated ruming a record compliance of $3 \times 10^{-8} \mathrm{~cm} /$ dyne. The lowfrequency resonance is controlled by the mass moment of inertia of the arm plus cartridge related to the stylus tip and the cartridge compliance; it should be less than 22.5 Hz (the "slip" frequency of most induction motors used in turntables and a frequent source of "rumble") and above 10 Hz -at lower frequencies than this value the pickup system becomes very sensitive to external vibrations; and the motor board must be adequately decoupled to prevent shock excitation of the pickup and attendant acrobatic antics across the record surface.

It is generally assumed that compliance and stylus tip mass are the usual parameters hopefully specified by the manufacturer in relation to the mechanical constants of the pickup cartridge, but especially with highly damped systems the "loss" component achieves major importance in the mid-band frequencies, thus the evaluation of input mechanical impedance is necessary to the design engineer. Of more immediate importance to the user is the minimum playing weight for tracking music records. One method is to produce a disc with a (slow) sweep frequency covering the major frequency range (say, 80 Hz to 8 kHz) at maximum music modulation levels. In use the output from the pickup is observed on a cathode-ray oscilloscope and the playing weight is reduced until a "break" occurs on the waveform-usually at the point of maximum acceleration. A disc (7 inch $33 \frac{1}{3}$ r.p.m., 80 Hz to 8 kHz) has been produced as a tentative industry standard and the modulation levels are shown in curve G on Fig. 2. The disc has "left" channel information on one side and "right" channel on the other; because of tracing distortion, and also harmonic distortion generated by some pickups at these high levels, the interpretation is sometimes difficult but it does attempt to set an industry standard. Another practical method is to use discs with fixed modulation (say, $5 \mathrm{~cm} / \mathrm{sec}$. at frequencies above 500 Hz and $1.57 \mathrm{~cm} / \mathrm{sec}$. at lower frequencies), adjust the playing weight for the "break" and equate the results to the maximum music level at that frequency. Fig. 5 shows such a plot for a well damped moving magnet cartridge.

The mechanical impedance at mid-frequencies is determined almost wholly by damping of the moving system. Indeed, with most modern magnetic pickup cartridges the mechanical impedance over the major part of the audio frequency spectrum is controlled by this factor. In order to realize the design requirements mentioned above, only the simplest mechanical system can be used, and this would in essence consist of a stylus directly coupled to the armature suspended by some elastic medium, the mass being concentrated at the stylus tip and the restoring force being the only other constant, as shown in Fig. 5. These ideals zannot be achieved in practice but in the best examples of variable relucance or moving-magnet type structures they are closely approximated.

Crystal pickups

By far the most popular pickup cartridge is the crystal type. This is sub-divided into two groups-(a) those using Rochelle salt elements, and (b) ceramic elements ${ }^{5}$. Rochelle salt has the material advantages of high sensitivity, high dielectric constant (and hence high capacitance and relatively low electrical impedance, it can be produced as torsional bimorphs with a low mass moment of inertia and high compliance, but suffers from the disadvantage of being highly temperature-sensitive for -electrical capacitance and being deliquescent requires elaborate moisture proofing for an adequate service life. Ceramic elements are produced as -bender units only, and in order to obtain reasonable mechanical values
are made in the form of narrow relatively thick elements with resulting low capacitance and require a load impedance in excess of 2 megohms for adequate low frequency response. They possess the very material advantages of being impervious to moisture and have an indefinite service and shelf life.

Rochelle salt pickups have their major use in the record players produced for the mass market where cost is of primary consideration. Because of their high sensitivity and the fact that the electrical output is "corrected" only the simplest of amplifiers are needed. Many millions of reproducers have been produced using only a single valve with a few resistors as electronic complement to the ubiquitous Rochelle salt pickup.

The demand for better reliability and consistency and freedom from the worst temperature effects led to the introduction of the piezo-electric ceramic elements. The original form of this material was barium titanate, but the crystal structure has been modified by various additions, and sensitivities of present day materials are between two and three times that of the original material.

Although there are individual differences between manufacturers the design of crystal cartridges is now fairly stable; a typical example uses a moulded case with a "turnover" stylus assembly-one point for L.P. and stereo and the other for 78 mono. In the absence of any modern 78 records being pressed this seems a needless extravagance, but then many millions of record changers have been produced with a $16 \frac{2}{3}$ r.p.m. position on the speed control, and to the author's best knowledge only a handful of $16 \frac{2}{3}$ records were ever produced and that was ten years agodoubtless the marketing pundits have sound reasons for these anomalies. But to the pickup proper: an aluminium alloy cantilever and sapphire or diamond stylus is used, the rear suspension is approximately equally compliant in all directions, and it then drives two crystal elements through individual arms mutually perpendicular and at 45° to the record surface. The mechanical crosstalk between the two units should be a function only of the ratio of the compressional compliance to the flex-

Fig. 2. Maximum velocities on music records.

Fig. 3. Maximum mechanical impedance required to track music records with maximum modulation, at a playing weight of 1.5 g .

Fig. 4. Minimum playing weight for music levels with maximum modulation.

Fig. 5. Analogue of a simple armature system.

Fig. 6. Analogue of a crystal stereo pickup.
ing compliance. Now, assuming that the material is isotropic, the flexing compliance is proportional to the cube of the length and inversely proportional to the cube of the thickness times the width, whilst the compressional compliance is proportional to length and inversely proportional to the cross-sectional area. Thus for a given cross section any degree of isolation can be obtained by increasing the ratio of length to width, and for a design centre of, say, 26 dB , the ratio of length to width need only be $4: 1$.

The lead zirconate crystals operating in flexure are supported at the rear end by a stiff block of plastic and an additional damping member is placed amidships, this also acts as the stylus cantilever support. The sections of the crystals are mutually perpendicular and 45° to the horizontal.

The analogue is shown in Fig. 6. The cantilever stylus is driven from the record, and the mass M_{1} and compliance $C m_{1}$ are respectively the dynamic mass and the restoring force of the stylus itself. Normally the compliance between the stylus point and the compliant members driving the crystals is zero, therefore any shunt effect of motion to ground can be neglected. At the driving point the motion splits into two, and drives two identical crystal elements. Because the back support of the crystal is soft compared with the stiffness of the crystal as a whole there is appreciable motion over the whole of the crystal, and it is therefore more amenable to analysis if we split the crystal mass and put clamping impedances at the centre and rear end of the crystal. The compliance and loss resistance at the crystal driving point is the compressional compliance of the coupling member between the stylus and the crystal, whilst the compliance and resistance at the remote end of the crystal is the clamping member. It will be seen that the series masses of coupling members will form resonant circuits which modify considerably the high-frequency crosstalk-indeed because of the multiplicity of resonances analysis is approximate only.
Resistances represent the losses deliberately introduced into the system in order to make the steady state response of the cartridge as smooth as possible.

The force developed across the compliances of the crystal itself is converted into electrical energy by means of the transducer action, the e.m.f. being generated in series with the electrical capacitance of the crystal. It is the finite value of this capacitance which limits the output voltage at low frequencies when the pickup is terminated in a practical value of resistance. The series mass between the cantilever and the crystal is the total mass of the coupling member. The other half of the circuit represents the load imposed at the driving point from the other
crystal. Here, the reflected dynamic mass of the other channel coupling member is reduced because it is operated in flexure rather than in compression, whilst the compliance is very materially increased.

The low-frequency crosstalk separation is, to all intents and purposes, the ratio of these two compliances. Connected in parallel with this latter compliance is the complex impedance presented by the other crystal and its supports; it forms various resonant circuits at different frequencies, and if the impedance at this point rises unduly it will be reflected in increased crosstalk.

During this analysis it is assumed that one channel only is being driven, but as both channels are symmetrical and identical, the analysis can be considered to be fairly rigorous. Because the pickups are high impedance devices, a common ground connection can be used without introducing any substantial increase of crosstalk due to common ground impedance.

It will be appreciated from the foregoing that a rigorous analysis of this type of cartridge is very difficult, and it is usual to rely on "knowhow" and empirical trial and error rather than to design the cartridge from basic piezo-electric and mechanical constants.

Compared with a single channel cartridge, it will be appreciated that the effective dynamic mass referred to the stylus must be greater than that of a single channel unit of the same crystal and stylus dimensions by virtue of the reflected impedances of the unwanted channel. Because the impedance is complex, the impedance changes rapidly with frequency, and is responsible for the wide variations in crosstalk, especially in the upper frequencies. Whilst, theoretically, the mechanical impedance of the twin channel cartridge should not be appreciably greater than that of the single channel (because of the de-coupling effect of the transmission members) in point of fact for a given sensitivity it is usually found that the mechanical impedance is about 50% greater than that of an equivalent single channel cartridge.

The external mechanical constants of this cartridge are compliance at $30 \mathrm{~Hz}, 5 \times 10^{-6} \mathrm{~cm} /$ dyne. Effective tip mass at $10 \mathrm{kHz}, 7.5$ milligrammes, playing weight 3 to 4 grammes. Fig. 7 shows the response of this pickup. It is not claimed to be high fidelity but gives an acceptable performance with domestic equipment.

As can be expected, the mechanical input impedance varies with frequency, as shown in Fig. 8. The rise at low frequencies is due almost entirely to the stiffness of the mounting and damping parts. The various drive members and supports are usually moulded from plasticized copolymers of vinyl chloride and acetate or other thermo-plastic material. The elastic constants of these plastics vary rather widely with temperature and both the output and compliance decrease with increasing temperature, as shown in Fig. 9. Be this as it may, about 90% of all twin channel cartridges presented to the public today are crystal or ceramic.

To summarize: A crystal cartridge has the prime advantages of low cost, ease of manufacture, and a high output voltage, which are precisely the requirements for transducers in the domestic reproducing field. To date, all crystal pickups are of the $45-45$ sensing variety, that is, the two elements are sensitive only to forces in the direction of their required plane, and no "sum and difference" crystal cartridges have yetappeared on the market.

Magnetic cartridges

Magnetic pickup cartridges are fundamentally different from crystaj in that the output voltage is proportional to the velocity of the armature and by inference to the velocity of the record groove modulation whereas crystal devices produce a voltage which is proportional to thi force applied to the crystal and, to a first approximation, to the amplituds of the modulated groove.

In order to achieve wide frequency response and low playing weight the dynamic mass and the restoring force of the moving system must b minimal. At high frequencies of the order of 10 kHz , accelerations is excess of 1000 g are experienced at high modulation levels, thus fo playing weights of the order of 1.5 grammes the maximum dynami mass referred to the stylus point should be of the order of 1 milligramms

The majority of magnetic cartridges are of the moving magnet variety although because of patent restrictions variable reluctance systems usin the same mechanical configuration as that of the moving magnet (bu using an external polarizing magnet) are now appearing on the markin increasing numbers. The overall design considerations and perform ance are approximately similar to those in the moving magnet desig although it is possible in theory at least to reduce the mass moment (inertia (and hence the mechanical impedance at high frequencies) \mathbf{b} substituting a thin walled tube in place of the solid rod used in movin
magnet systems. The point of no return is quickly reached because of magnetic saturation of the subsequent very small cross-sectional area of the armature.

The magnetic circuit consists essentially of two pairs of pole pieces arranged symmetrically around the centre line of the armature with pickup coils wound over the yokes connecting opposite pairs of poles. The armature is usually a small cylindrical magnet about 0.030 inch diameter by 0.1 inch long cemented to a thin walled aluminium or duraluminium tube approximately 0.3 inch long and carrying a miniature diamond tip at the front end. The assembly is supported by a compliant hinge at its centre of gravity and in some models a tie bar, usually 0.002 inch diameter stainless steel, is connected to prevent longitudinal motion. By suitable proportioning the dimensions of the tie bar it can also be used as the major restoring force, the plastic collar then providing central support and damping. The hinge can be one of a variety of elastomers, either copolymers of polyvinyl chloride or polyvinyl acetate; butyl plus neoprene rubber is sometimes used, as have been some of the polyurethanes. Silicone elastomers have not been very successful because of their low internal damping. The success (or failure) of the pickup is intimately bound up with this bearing design. The Pearing is highly stressed in one direction due to the force developed by the playing weight-it is well known that most types of elastomers have a non-linear relation between stress and strain under these conditions. Additionally, hysteresis shows itself as distortion in the middle to high frequencies. At low frequencies the armature system vibrates about the centre of the plastic bearing but it is very rare for the inertial centre of gravity to coincide; the result of this is that with increasing frequency the effective mass increases, thus reducing tracking capabilities at high frequencies.

The static mass of this system is between 8 and 20 milligrammes depending on the particular design and the dynamic mass at 10 kHz in the best designs can approach 1.2 to 2 milligrammes. The static compliance varies between $5 \times 10^{-6} \mathrm{~cm} /$ dyne and, in extreme cases, $40 \times 10^{-6} \mathrm{~cm} /$ dyne, but because of the deliberately introduced mechanical damping (due to losses in the plastic hinge and sometimes by the addition of silicone or other grease) the mechanical impedance can be made almost wholly resistive betweeh limits of 100 Hz and 10 kHz .

Clearance between the magnet and the poles is about 0.15 thou and because of the efficient magnetic circuit, generally using Mumetal or other high permeability materials, leakage flux is extremely low and from a magnetic point of view the system is extremely efficient. The sensitivity is generally of the order of 1 to 2 millivolts $/ \mathrm{cm} / \mathrm{sec}$., although some recent Japanese cartridges have been produced with five times this output. The development of this elegant type of cartridge is due to 'Schmidt of Elac, Kiel, Germany, and has been extensively copied throughout the world.

Because of the magnetic symmetry, mutual induction between the coils is small and crosstalk arising from this factor is usually less than -40 dB whilst overall crosstalk varies between ahout -10 dB or -15 dB at the extremes of the frequency band (20 Hz and 20 kHz) improving .o a maximum of about -30 dB in the mid frequencies, say, 500 Hz to $\rightarrow \mathrm{kHz}$. This crosstalk is due almost entirely to unwanted modes of ribration of the armature system. As an example, increasing the stylus ength by only 0.01 inch can increase crosstalk caused by torsional ribrational modes by 15 dB in the mid-upper frequency range. Notwithtanding the technical criticisms, the performance of the best examples if moving magnet type cartridges are impressive.
The field strength (and hence sensitivity) of the variable magnetic ield transducer, whether variable reluctance or moving magnet, is imited by saturation of the armature or the pole pieces and by the "negative compliance" due to the pull of the steady magnetic field on he armature. If the field exceeds a critical value determined by the static ompliance of the armature restoring force it will result in the armature eing attracted to one of the pole faces and hence no music! It is this regative compliance which generally limits the sensitivity of the pickup, equiring coils of several thousand turns of fine gauge wire to produce usable output.

Aoving-coil pickup

he moving-coil pickup suffers none of the disadvantages listed above. f the magnetic field is linear and this condition is not difficult to chieve, the output will be strictly a function of coil velocity with no therent generated distortion. Because of the absence of negative ompliance the magnetic field can be increased to the limit and field trengths of the order of 15 kilogauss instead of a few tens or hundreds

Fig 7. Curves A and B show, respectively, the wanted signal and the crosstalk into the second channel, from a ceramic cartridge loaded by $2 M \Omega$ and of $5 g$ playing weight. The temperature is $21^{\circ} \mathrm{C}$ and the test record TC5702.

Fig. 8. A graph showing the stylus-tip impedance changes (lateral and vertical) with changing signal frequency.

Fig. 9. Variations with temperature in a crystal pick-up cartridge.
of gauss are possible. In addition to increasing the output the signal to noise ratio is improved proportionately. The secret of success is in the design of the coil and the support system.

The most popular moving-coil cartridge uses a coil former in the form of a rectangular plate 2 mm square $\times 0.5 \mathrm{~mm}$ thick wound with four coils each with ten turns symmetrically placed about the centre line. Thus each generator consists of two coils in series; rising perpendicularly from the centre plate is an aluminium tube cantilever about 7 mm long

Fig. 10. Diagrammatic representation of Toshiba C100P pickup cartridge.

Fig. 11. Frequency response curves for photo-electric cartridge.
carrying the stylus at its free end. The rear end of the coil is flexibly mounted on to a steel tube which forms one pole of the magnet. The other pole in front of the coil is bored to take the cantilever and its protecting tube. The flexible mounting carries a damping block and is arranged to prevent fore and aft movement. There is, however, some torsional movement which shows as a minor resonance in the 7 kHz to 9 kHz region. The ratio of cantilever length to coil dimension is $7: 1$, giving a mechanical ratio of $50: 1$, and this results in an extremely low mechanical impedance at the stylus tip. Static compliance is of the order or $20 \times 10^{-6} \mathrm{~cm} /$ dyne, but because of mechanical damping the resistive component becomes predominent between 100 Hz and 3 kHz , and approximates 40 mechanical ohms. Stylus resonance is at 26 kHz giving a calculated mass of 1.24 milligrammes. The coils are low impedance, about 2 ohms, and a matching transformer is used to raise the voltage sensitivity to about 2 millivolts $/ \mathrm{cm} / \mathrm{sec}$.
The best examples of the magnetic cartridges (both variable field and moving coil) described above can generally be protuced to give a flat frequency response with velocity from 20 Hz to $10 \mathrm{kHz} \pm 1 \mathrm{~dB}$ and 10 kHz to 20 kHz within $\pm 2 \mathrm{~dB}$. Crosstalk will generally approximate 25 dB between 400 Hz and 5000 Hz , gradually deteriorating to 10 dB or 15 dB at the extremes of the frequency range. With lower priced units the frequency response is somewhat more variable, generally being characterized by a "suck out" of a few dB between 5 kHz and 15 kHz , the extreme high frequencies being restored by the stylus/record resonance.

"Strain Gauge" pickup

Recently a number of novel types of transducers have made their appearance, the first using a "strain gauge" transducer which unlike magnetic and piezo-electric pickups is not a generator but operates by modulating a d.c. current supplied from an external source in sympathy with the mechanical information. The transducer proper is a tiny doped silicon element, $0.020 \times 0.008 \times 0.004$ inch, similar to the base material of modern transistors. It is cemented to a plastic beam which in turn is driven through a flexible member by the stylus. For stereo use two such members are used, and the general assembly is very similar to that of the modern ceramic cartridge. The modus operandi of the transducer is that the resistance changes when subjected to a force across the driving points. The magnitude of the resistance change has a linear function of the applied force thus providing that the current through the element is constant the transducer is inherently distortionless. The element is fed with a constant current and the resultant voltage which is proportional to displacement is applied to the amplifier through a coupling capacitor. Thus to a first approximation the response is similar to that of a crystal or ceramic cartridge.

The art in designing this type of pickup is to so proportion the dimensions and the material of the drive back clamp and damping members as to give a mechanical transfer that is the inverse of the record amplitude characteristic, at the same time taking into account the fact that the mechanical impedance of the transducing element is several hundred times greater than the permissible stylus tip impedance. The semiconductor transducer by virtue of its small size has a major advanatage over the ceramic element in that resonances associated with it are outside the audio frequency spectrum (the average ceramic transducer has at least one major resonance in the mid-upper frequency range) although resonances can and are introduced by other parts of the mechanical system.

The virtue of this type of pickup is that because the transducer is a modulating element the electrical output power can be considerably greater than with "generating" types of transducer. Comparison between the high quality moving coil and this type of pickup may be instructive. The moving coil cartridge requires a playing weight of 1.9 grammes at a velocity of $20 \mathrm{~cm} / \mathrm{sec}$ at 1 kHz and produces an output of 800 millivolts from a source impedance of 2 ohms. Thus the input power is 2.7 milliwatts and the output power 0.32 milliwatts giving a conversion efficiency of 0.012 per cent. A representative strain gauge pickup requires a playing weight of 3 grammes at a velocity of $20 \mathrm{~cm} / \mathrm{sec}$. at 1 kHz and gives an output of 120 millivolts from a source impedance of 400 ohms. Thus the input power is 4.2 milliwatts and the output power is 36 milliwatts and the overall efficiency is 1.16 per cent. Neglecting the electrical input power, the overall efficiency of this type of cartridge is approximately one hundred times as great as its ceramic counterpart! Distortion is commendably low, and signal to noise ratio more than adequate, but frequency response and crosstalk are inferior to the better magnetic units and because the response of the system is flat to d.c., motor rumble and low frequency feedback can be trouble some unless a rumble filter is fitted to the amplifier.

Photo-electric pickup

During 1968 a new type of pickup (or more correctly a new version o a pre-war type of pickup) made its appearance, namely the photo electronic pickup. Fig. 10 shows a sketch of the system. The diamond stylus is placed at one end of an aluminium alloy tube 0.02 inch diameter $\times 0.25$ inch long. The remote end of the tube supports a small flag approximately 0.1 inch square $\times 0.002$ inch thick. Pierced in this flag are two slots, 0.062×0.008 inch. The slots are mutually perpendicular and 45° to the horizontal. Behind the flag is a fixed screen with two similar slots and behind the screen are two photo transistors complete with miniature focusing lens each approximately 0.62 inch diameter. The moving assembly is supported by a compliant hinge approximately 0.040 inch in front of the flag. Under operating conditions the two pairs of slots overlap by 50%, displacing the stylus tip around this mean position will vary the amount of overlap and hence the total quantity of light received by the photo transistor and finally the output voltage developed by it. The lamp is fed from a stabilizec d.c. power supply and the outputs from the photo transistors are taker through a correcting amplifier to the normal hi-fi amplifier.

Like the strain gauge and ceramic cartridges, this is a displacement type of pickup in which the output is proportional to amplitude rathe: than to velocity. The frequency response is shown in Fig. 11, and is will be seen that the main resonance occurs at approximately 15 kHz whilst at frequencies above 20 kHz the pickup exhibits two resonan modes, one at 28 kHz in which the output drops to practically zero. and the other with a sharp peak at 35 kHz . These two resonances art probably connected with the dynamics of the light valve system Distortion at middle and low frequencies is quite low, being less thar 1% at 2 kHz but increasing to 6% at $5 \mathrm{~cm} / \mathrm{sec}$. at 10 kHz .

This brief survey of currently available pickups of necessity onl. skims the surface of technical development; considerable engineerin ${ }_{\text {t }}$ skill is being constantly applied to the problems outlined above, an although the possibility of novel forms of transducer are remote, detaile improvements of established designs are continually appearing, thu automatically outdating any survey.

References

1. United States Patent No. 1,520,378.
2. British Patent No. 394,325.
3. F. V. Hunt, 7.A.E.S., Vol. 3, No. 1, pp. 2-18.
4. S. Kelly, Hi-Fi News, Vol. 2, pp. 339-342.
5. S. Kelly, Wireless World, June \& July 1954.
The author of the preceding review of gramophone pickups sent a questionnaire to manufacturers and agents asking for characteristics of their products. From the replies received the following tables have been prepared. It is hoped that the information given, together with Mr. Kelly's comments, will assist readers in selecting the transducer best suited to their needs.

	A.D.C.					ACOS									
Model	${ }_{\text {S1 }}^{220}$	$\stackrel{660}{51}$	${ }_{\text {660/E }}^{\text {S }}$	$\stackrel{550 / E}{\text { si }}$	10/E	91/1sc	${ }^{91 / 2 \mathrm{SC}}$	${ }_{\text {9R }}^{91 / 3 \mathrm{SC}}$	${ }_{\text {MC }}^{\text {M2/ }}$ Sc	93/1	${ }_{\text {sc }}^{\text {sc/ }}$	95/1	96/1	94/5	104 Sc
Frequeney response ($\mathrm{Hz}^{\text {Pr }}$)	10.18 k	10-20k	10-20k	10-20k	10-20k	10-17k	30.17 k	${ }_{30-15 \mathrm{k}}$	30-16k	30-20k	${ }^{30} 10.15$	30.20k	${ }^{30.16 \mathrm{k}}$	30-16 ${ }^{\text {ck }}$	30-18k
Channel separation (dAB)	20	30	30	20	30		$\overline{5} 0$	$5{ }^{5}$	530	1400	15 500	15 1400	15 500	15	20
	47 k	47k	47 k	47 k	47 k	1 m	1 M	1 M	${ }_{1}^{50}$	$1{ }^{1900}$	19	$1{ }^{19}$	1 M	200 k	1 M
Strius ${ }^{3}$ darins	D	0	${ }^{\text {D }}$	$\bigcirc{ }^{\circ}$	${ }_{0}{ }^{\text {D }}$	${ }_{0}^{0} 0{ }^{\text {or }}$									
Stylus dimenslons (10-3/n), Compllance (10-6 cm/dyne)	0.7 15	0.5 20	0.3×0.7	0.3×0.7	${ }_{0}^{0.3 \times 0 .} 3$	0.5-0.7	0.5-3.7	0.5-0.7	0.5-0.7	0.5-0.7	${ }^{0.5} 1{ }^{12} 0.7$	0.5-0.7	0.5-0.7	0.5-12.7	${ }_{20}^{0.5}$
	<1	<1	<1	<1	<1	2.5	3.5	3.5	2.5	2.5	3.5	2.5	3.0	3.5	2.5
Playing welght (9)	${ }_{\substack{2-5 \\ 20004}}$	${ }^{11.4}$	${ }_{1}^{1+3}$	-	-	${ }_{\text {8000pF }}$	-		(\% ${ }_{\text {800. }}^{4.8}$			900p	${ }_{42000}{ }^{3.6}$	800 pF
Inductance/capacitance	400	,	\%	400											
Weight (g)	7	7	7	7	,	5.6	5.6	5.6	5.6	4.75	3	4.75		3	2
Mounting Rotat dice inc. P.T.															
Rotall price inc. P.T.	¢9.4.10	E16.6.6	¢22.9.10	¢3.16.6	¢8.14.2			- 22.4 .8	${ }^{\text {o }}$ c 2.9 .9 .6	- ¢ 3 .1.11	D $£ 3.8 .1$	O ¢ 5.1 .11	- 53.8 .1	Of3,17.	£4.18.6

	BANG \& OLUFSEN								$\begin{gathered} \text { CONNOIS } \\ \text { SEUR } \end{gathered}$		ECCA ff		DERAM
$\xrightarrow{\text { Model }}$ Trpe ${ }^{\text {I }}$	Sp1	Sp2	Sp6	Sp7	Sp8	Sp9	Sp10	spl2	SCu.	$\mathrm{Mk}_{\mathrm{s}} \mathrm{II}$		${ }_{\text {4RC }}$	
Frequency response (H_{2})	20-20k	20-20k	20-20k	20-20k	20-20k	20-20k	15-25k	15-25k	${ }_{30-16 \mathrm{k}}$	40-16k	20-20k	${ }^{30-16 \mathrm{k}}$	
Channel separation (dB) Output voltage ${ }^{2}$ (mV)	$\stackrel{16}{7}$	${ }^{16}$	$\stackrel{20}{7}$	$\xrightarrow{20}$	$\xrightarrow{20}$	20 7	25 5	25	25 40	20 6	20 6	20 6	20
Load Impedance (Ω)	47 k	47 k	47k	47k	47k	47k	47 k	47 k	100 k	50 k	50k	50 k	2 M
	0.6	0.6	D	0.6	0.7 ${ }^{\text {¢ }}$	0.7×0.2	${ }_{0} .7 \times 0.2$	0.7×0.2	0.5 ${ }^{\text {D }}$	- ${ }^{\text {0 }}$	0.3 ${ }^{\text {¢ }}$	0.5/0.7	0.5/0.7
Compliance (10-6.cm/drne)	12	12	15	0.6 15 15	15 0.7 15	0.7 15		0.780	${ }^{0.512}$	$\begin{array}{r}10 \\ \hline\end{array}$	- 30	-15	-96
(eymamic mass (mg)	i-3	$\sqrt{1-3}$	${ }_{1 i}^{1.5}$	${ }_{1}^{1.5}$	${ }_{1}^{1 i-2}$	${ }_{1 i-2}^{1.5}$	- ${ }_{1-11}^{11}$	${ }_{1-1}^{1-1}$	${ }_{2-4}$	${ }_{3 i}{ }_{3 i}$	<1	-	0.6 21
Inductance/capacitance	H.3	T. 3								${ }^{285 m H}$	${ }^{285 m H}$	${ }^{285 m H}$	
D.c. resistance (Ω W	19		11							${ }^{44}$	13	$1{ }_{13}$	3.5
${ }_{\text {Mounting }}^{\text {Moull }}$ Mrice inc. P.t.	ع5.19.6 ${ }^{\text {P in }}$	E5. ${ }^{\text {¢ }}$. ${ }^{\text {¢ }}$	${ }_{c}^{1 \operatorname{lin}_{19.6}}$	$\stackrel{\bullet .0}{\dagger}$	$\begin{gathered} 1 i_{0} \\ \varepsilon+2,99.6 \end{gathered}$	ع12.19.6	$\begin{gathered} \text { in } \\ \text { g9.19.6 } \end{gathered}$	citing	$\begin{gathered} 5 \mathrm{in} \\ \text { E5.16.9 } \end{gathered}$	Decca ¢16.0.	${ }_{\text {E22.10.0 }}$	E17.0.0	${ }_{\text {E } 5.5 .0}^{\text {Univ }}$

[^1]| | E.R.C. | | | | | | | | | | EAGLE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mrodet | ${ }_{\text {Compat }}^{\text {MR }}$ | $\underset{M R}{\text { Compat }} \times 2$ | Compat C MC | 2S8 | 2SX | 5Mx | 7 MR | 5MB | ERC1 | Power Point $M C$ | LCO5 | $\mathrm{LCOT}_{\text {SM }}$ |
| Frequency response (Hz) | 40-12k | 40-12k | 30-12k | 30-12k | 40-12k | 40-12k | 40-10k | 30-12k | 60-10k | 40-12k | 30-18k | 20-21k |
| Channel soparation (dB) | 925 | | | 20 | 20 | | | | | | 20 | 28 |
| Output voltage ${ }^{2}$ (mV) | 925 | 2150 19 | 700 1 M | ${ }_{1}^{420}$ | 800 1 M | 1450 | 2300 | 875 19 | 625 19 | 1670 | 6 47 | 47k |
| Sevius ${ }^{3}$ - | S-D | S-D | S-D | S-D | S-D | S-D | S-0 | S-D | S-D | S-D | D | D |
| Stylus dimensions ($10^{-3 / \mathrm{n}}$) | 0.6/0.7 | 0.6/0.7 | 0.6/0.7 | 0.6/0.7 | 0.610 .7 | 0.6/0.7 | 0.6/2.7 | 0.6/0.7 | $0.6 / 0.7$
 2.5 | 0.6/0.7 | 0.7 | 0.7 |
| Compllance (10-6 cm/dyne) | 3 | 2.5 | 2.5 | | ${ }_{4}$ | | 1.2 | 1.2 | 2.5 | 1 | 9 | 12 |
| Playing waight (g) | 5 | 8 | 5 | 3 | 4. | 5 | 7 | 4 | 5 | 7 | $2-4$ | 1 $\mathrm{-}$-2t |
| Inductance/capacitance | 700pF | 700pF | 600pF | 850pF | 700pF | 700.p | 700pF | 700pF | 600 pF | 600 pF | | |
| | 3.2 | 3.2 | 3.2 | 3.5 | 3.5 | 3.2 | 3.2 | 3.2 | 2 | 0.3 | | |
| Mounting ${ }_{\text {Retall price inc. P.t. }}$ | ¢1.6.0 | ¢1.6.0 | £1.11.0 | ¢2.3.4 | | line pick | ${ }^{\text {c } 1.6 .0}$ | ¢1.11.0 | - | 17.4 | ¢4.19.9 | c6.19.6 |

	ELAC							EMPIRE						
Model	244-17	244.C	244-65	344-17	344-E	444-12	444-E	808	808 E	888	888 E	888TE	888ve	999VE
Trpe ${ }^{1}$	SM	SM	MM	SM										
Frequency response (Hz)	20-20k	20-20k	20-20k	20-22k	20-22k	10-24k	10-24k	15-20k	10-25k	10.24k	10-30k	8.32k	6-32k	6-35k
Channel separation (dB)	<2	<2	<1.5	<1.5	<1.5	<1.5	<1.5	30 8	${ }^{30}$	${ }_{8} 3$	${ }_{8}^{30}$	8	30 8	30
Output volrage ${ }^{2}$ (mv)	7.5 47 k	7.5 47	7.5 47 k	${ }^{5} 7 \mathrm{k}$	${ }_{4}^{5} \mathrm{~F}$	5 47	${ }_{47 \mathrm{~F}}^{5}$	8 47	8 47 k	8 47	8 47 k	878	8 47 k	47k
Stylus ${ }^{3}$	D	D	S	D	D	D	D	D		D	D	D	D	-
Stylus dimenslons ($10^{-3 / \mathrm{m}}$)	0.7	0.7	65 M	0.7	0.2/0.8	0.5	0.2/0.8	${ }_{8}^{0.7}$	0.4×0.9	0.7 10	0.4×0.9	0.2×0.7	0.2×0.7 30	0.2×0.7 30
Compllance (10-6cm/dyno)	18	10	-	25	25	33	33	8	12	10	12	25	30	30
Cynamic mass (mg)	11-3	2t-5	2¢-5	1-2	1-2	f-1/	1-1/	$1-5$	$1-4$	-6	1-5	1-3	1-2	H-1 ${ }^{\text {i }}$
Inductance/capacitence	320 mH		-					-						
D.c. resistance (Ω)			-	-	-		-							
Weight (g)								7		7	7	7	7	7
Mounting	¢7:17.6	¢7.17.6	$\begin{gathered} \text { fin in } \\ \text { c7.17.6 } \end{gathered}$	c11.7.0	$\begin{gathered} 1 \text { in } \\ \text { £16.5.6 } \end{gathered}$	$\stackrel{1 \text { in }}{\text { £16.5.6 }}$	$\begin{gathered} 1 \mathrm{in} \\ \mathrm{E} 22.0 .0 \end{gathered}$	¢9.9.6		$\mathrm{E12}_{\substack{\text { in } \\ \hline}}$	\% in ¢17.4.8	$\begin{gathered} \frac{1}{24 n} \text { in } \end{gathered}$	¢29.5.7	${ }_{\text {¢ }}^{\text {f6.6.6.6 }}$

	ORBIT	PHILIPS					PICKERING				SHURE				
${ }_{\text {Model }}^{\text {Mype }}$	NM22	$\mathrm{Sc}_{\text {SP412 }}^{\text {SM }}$	GP411	$\mathrm{GPM}_{\text {GP40 }}$	GP200	GP300	${ }_{\text {Ac }}^{\text {AV }}$	T2	AM2	AME2	M30	$\mathrm{Man}_{\text {M }}^{\text {SM }}$	$\mathrm{MM}_{\text {M }}$	$\mathrm{Ma}_{\text {M }}^{\text {S3-3 }}$	M44-5
Freauency response ($\mathrm{Hz}_{\text {z }}$)	20.20.	${ }_{\text {cose }}$	${ }_{30}{ }^{\text {30, } 18 \mathrm{k}}$		${ }_{\text {S0-16k }}$	${ }_{50-17 \mathrm{k}}$	${ }_{\text {20-20 }}$	${ }^{20-20 \mathrm{ok}}$	20-20k	${ }^{20-200}$	$\xrightarrow[\substack{\text { SM } \\ \text { 20-15k } \\ \hline}]{ }$	${ }_{\text {20.18.5k }}$	20.17.5k	${ }_{20.17 .5 \mathrm{k}}$	20-20k
Channel separation (dB) Output voltage ${ }^{(m)}(\mathrm{mV})$	20 5	$\xrightarrow{25}$	$>$	$\bigcirc{ }^{20}$	> 200	- 500	35 7	35 6.9	35 5.5	35 5.5	$>_{5}{ }_{5}$	$\xrightarrow{200}$	>20 9.3	5.5	>25
Lex	50 k	47 k	688	68\%	${ }^{19}$	- 1 c	47 k	47 k	47 k	${ }^{57 \mathrm{l}} \mathrm{k}$	47 k				
	0.7	0.7×0.3	0.6	D	0.7	- ${ }^{\text {S }}$	0.7	0.7	0.7	- ${ }_{0}^{\text {D }}$	0.7	$0{ }_{0}^{\text {D }} \times 0.2$	0.7×0.4	${ }_{2}{ }^{\text {2 }}$	D
Compllance ($10-6 \mathrm{~cm} / \mathrm{dyne}$)	5	25	10	10	2.5	2.5				0.4×0.9	0.7	${ }^{0.7} \times 15$	${ }_{10} 0.7$	10	0.5
Synamic mass (mg)	$2 \cdot 3$.	<-7.75	${ }_{2}^{1-4}$	${ }_{2}{ }^{1} 4$		3-7	$3-7$	1.5	\% 3	1-1	\bigcirc	-1-2	27.5		
Inductance/capacitance		75 mH	550 mH	550 mH	700pF	1000 pF					420 mH	720 mH	720 mH	720 mH	720 mH
D.C. resistance (Ω) Weight (g)	10	$\stackrel{1030}{7}$	1 k 5.6	${ }_{11}^{11.5}$	11	11				5	${ }_{8.5}^{280}$	630	630 6	${ }_{6}^{630}$	$\stackrel{630}{7}$
		\% in c39.0.			${ }_{5}^{5} \mathrm{pln}$	${ }^{5} 510$	${ }_{\text {c }}{ }^{\text {i in }}$	${ }_{\text {flin }}^{\text {fin }}$			$\mathrm{ifin}^{\text {i }} 8$	${ }_{\text {c12 }}^{\frac{1}{19} 9}$			

	SHURE (contd.)												STANTON		
Model	M ${ }_{\text {SM }}$	MamC_{5}	M ${ }_{\text {S4E }}$		${ }_{\text {M }}^{\text {75 }}$ S	M75E		M75E-D19	M75E-959	M75sG	vis-II	vis-11-7	$\stackrel{5004}{\text { s }}$	${ }_{5004}$	
$\underset{\substack{\text { Trpe } \\ \text { Frequency } \\ \text { response (} \\ \text { (Hz) } \\ \text { a }}}{ }$	[$\begin{gathered}\text { SM } \\ 20-20 \mathrm{k}\end{gathered}$	- $\begin{gathered}\text { SM } \\ 20.20 \mathrm{k}\end{gathered}$	¢ $\begin{gathered}\text { SM } \\ 20-20 \mathrm{k}\end{gathered}$		(${ }^{5 M}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{Ok} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{~K} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{Kak} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{~K} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{~K} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{Kk} \end{gathered}$	$\begin{gathered} \text { SM } \\ 20-20 \mathrm{~K} \end{gathered}$	${ }_{20-20 \mathrm{k}}$	${ }_{20-20 \mathrm{k}}$	$\underset{\text { 20-20k }}{\mathrm{s}}$
Channel separation (dB)	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>35	>35	>35
Output voltage ${ }^{2}$ (mV)	11 47 k	${ }_{47 \mathrm{k}}^{9.3}$	${ }^{6} 47 \mathrm{k}$	9.3 47 k	- ${ }_{4}^{5}$	5 47 k	3.5 47 k	3.5 47 k	47 k	${ }_{47 \mathrm{k}}^{4}$	${ }_{47 \mathrm{k}}$				
Strus ${ }^{\text {d }}$ dedance (Ω)	0	0	D	D	${ }^{\text {d }}$	0	0	0	0	-	D	0	D	D	
	0.7 20	0.7	${ }_{0}^{0.7 \times 0.4}$	0.7×0.2 20	$\stackrel{0.6}{T}$	0.7×0.2	0.7×0.4	0.7×0.2	${ }_{\text {c }}^{0.7 \times 0.2}$	$\stackrel{0}{i}$	0.7×0.2	${ }^{0} 7$	0.7	0.5	${ }^{0 \times}$
Dynamic mass (mg)					\uparrow	T	${ }^{\top}$	${ }^{\top}$	${ }^{\top}$	11	${ }^{\top}$				
Playing welight (9)	${ }_{720 \mathrm{mH}}$	${ }_{720 \mathrm{mH}}$	${ }_{720 \mathrm{mH}}$	${ }_{720 \mathrm{mH}}$	(120.3	(720 mH		720mm	720mm		(- $\begin{aligned} & 2.5 \\ & 0.4\end{aligned}$	${ }_{0}^{7.4}$	${ }_{0.4}^{2.5}$
D.c. resistance (Ω)	${ }_{630}$	630	${ }_{630}$	630	630	630	630	630	630	630	630	630	850	850	850
Weight (g)	7	7	7	7	6	6	6			6	6.8	6.8	5	5	5
${ }_{\text {Moter }}^{\text {Mounting }}$ Retail price Inc. P.T.	¢10.3.10	E10.3.0		${ }_{\text {E16.13.6 }}^{\text {fin }}$	£16.13.6	£25.18.10 ${ }^{\text {in }}$	¢24.1.9	¢27.15.11	¢27.15.11	£17.12.1	E40.15.3		¢12.7.0	E14.15.6	E18.10.0

	SONOTONE							SONY			TANNOY
Model	${ }^{2 T}$	8 T 4 A	9TA	9tahc	${ }_{2}^{2109}$		3509	VC.8E	$V M-10 P$	$V M-11 G$	Turnover MV
Trpel ${ }_{\text {Frequency response (}} \mathbf{H z}$	MC $30-10 k$	SC $30-12 k$	$\xrightarrow{\text { SC-15k }}$	SC $30-20 \mathrm{k}$	MR $100-8 \mathrm{k}$	$\begin{aligned} & \text { SR } \\ & 100-8 k \end{aligned}$	SC $100-10 \mathrm{k}$	$\begin{gathered} \text { SD } \\ 15-25 k \end{gathered}$	$\begin{gathered} S I \\ 20-20 k \end{gathered}$	$\begin{gathered} S I \\ 20-25 k \end{gathered}$	$\begin{gathered} M V \\ 40.14 k \end{gathered}$
Channel separation (dB)	-	25	25	25	-	12	20	30	15	20	-
Output voltage ${ }^{\text {2 }}$ (mV)	$180 \uparrow$	90¢	$80 \uparrow$	$55 \dagger$	700¢	550¢	$140 \dagger$	4	5	${ }^{3}$	15
Load impedance (Ω)	2k	2k	${ }_{\text {2 }}^{2 \mathrm{~L}}$	2k	2k	2 k S 10	2k	${ }_{\text {10.10 }}^{0}$	47k	47k	D or ${ }^{50 \mathrm{k}}$
Strus dimensions ($10^{-3 / \mathrm{n}}$)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.2×0.7	0.7	0.5	
Compliance ($10.6 \mathrm{~cm} / \mathrm{dyne}$)	1	1.4	4	8	1.5	1	2	30		30	
Dynamic mass (mg)	6-10	4-6	3.5 $2-4$	${ }_{1-3}^{2.5}$		8-10	5.7	+2	3	11-3	3-7
Inductance/capacitance	650 pF	650 pF	450pF	800 pF	800pF	800pF	600 pF	40Ω	$5 \mathrm{k} \Omega$	$5 k \Omega$	280 mH
D.c. resistance (Ω)	$>50 \mathrm{M}$	40	1300	1300	16						
Welght (g)	4	4.5	${ }^{3}$			<3.5	<3.5	${ }_{\text {E1A }}^{15.5}$		8	16 +
$\underset{\text { Mounting }}{\text { Retall price Inc. P.t. }}$	E1.0.10 ${ }^{\text {in }}$	\pm in c2.3.3		$\begin{array}{r}\text { ¢ } \\ \text { ¢ } \\ \text { ¢ } \\ \hline 1.9\end{array}$	E1.14.0	¢2.8.7	¢2.16.0 ${ }^{\text {in }}$	E E1A ¢ 3.3 .7	¢8.15.3	-	

(1) First letter: $S=s t e r e o, M=$ mono. Second letter: $M=$ moving magnet, $V=$ variable reluctance, $D=$ moving coil, $C=$ ceramic, $R=$ rochelle salt, $I=$ induced magnet, $F=$ free field.

Circuit Ideas

A.M. oscillator

The circuit shown is that of a 470 kHz a.m. oscillator. The a.f. component is about 220 Hz and is a pure sine wave. Modulation is fixed at about 90% but may be increased or decreased by varying the a.c. feedback resistor R_{f} in the a.f. oscillator. IFT is an ordinary i.f. transformer from a transistor radio, and is tuned to give the required carrier frequency. The maximum peak-to-peak output is 60 mV which is more than adequate, and the output impedance is 100Ω. The modulator section has a perfectly linear relationship between modulation depth and a.f. input.
K. E. Potter,

Iverley,
Worcs.

Motor speed control

The circuit was devised for a battery tape recorder, in lieu of a centrifugal governor which was inclined to be erratic and produce interference in the audio. The motor required about 3 V at 180 mA . The circuit is virtually a fixed voltage source, with a negative output resistance that can be adjusted to be slightly less than the motor winding resistance (10Ω). This has the effect of keeping the motor's back e.m.f. constant. The AD 161 supplies to the motor a voltage which is determined by the BC 109 and zener diode, plus a voltage which increases in proportion to the current taken by the motor, as monitored by the 5.6Ω resistor. The OA90 is merely to offset the $V_{b e}$ of the OC44, and the $2.2 \mathrm{k} \Omega, 0.1 \mu \mathrm{~F}$ combin-

470 kHz oscillator with 220 Hz modulation, submitted by K. E. Potter. Modulation is at about 90%.

Electronic governor, devised by D. Williams for a battery lape recorder.
ation is to filter out fast current fluctuations from the motor's commutator. In use the $2 \mathrm{k} \Omega$, potentiometer is set just short of 'hunting' of the system, and then the $50 \mathrm{k} \Omega$ potentiometer is adjusted for fine speed setting. The circuit is practically independent of battery and temperature variations.
David Williams,

Sidcup,

Kent.

Delay-line coupled multivibrator

This astable circuit is a simple square-wave generator that has an excellent frequency stability. Unlike the conventional $R C$ coupled multivibrator, change in collector-to-emitter saturation voltage cannot cause a frequency drift. Drifts in the base-to-emitter voltage influence the frequency slightly because the rise and fall times are finite. The signal on the base of Tr_{3} has comparatively slow edges that have been slowed down by the delay line. In this way turn on and off time varies with fluctuations of base-to-emitter voltage. Although this stage is more critical than Tr_{1} and $T r_{2}$, it changes the length of period by only a few nanoseconds, since a voltage swing of roughly 200 mV on the base of Tr_{3} drives Tr_{4} from cut-in to saturation. In a temperature range of 0 to $45^{\circ} \mathrm{C}$ the total frequency drift is much better than 0.1%. Selection of components was not necessary to achieve such stability.
J. Heinzl,

St. Albans,
Herts.

Astable multivibrator, submitted by 7. Heinzl, which is said to have excellent frequency stability.

A Thermistor Hygrometer

Instrument uses an i.c. op. amp. as a computing element

by D. Bollen

Atmospheric humidity is an important factor in many industrial processes. To give just two examples; the size and register of printing paper will vary with moisture content, and some textiles can generate dangerous amounts of static electricity in dry air. Equally important outside industry is the damaging effect of incorrect storage humidity on valuable items, such as oil paintings and antique furniture.

Hygrometry instruments which give a direct indication of relative humidity are usually far from precise because of temperature dependence or a drift of calibration with time. The popular hygroscopic hair hygrometer will only behave consistently over a restricted temperature range, and needs to be re-calibrated at frequent intervals. Successful attempts have been made to adapt the potentially more accurate wet and dry bulb hygrometer (psychrometer) to control applications, but the major difficulty here lies in converting two temperature signals into a continuous electrical output which is proportional to humidity. Also, where delicate d.c. amplifiers are employed with low output temperature sensors, the problem of drift occurs.

The thermistor hygrometer described here uses a single i.c. operational amplifier as a computing element, to convert wet and dry temperatures into a voltage which varies with humidity. The circuit is relatively insensitive to changes in air temperature, and will retain its calibration over long periods of time. Typical accuracy for humidities between 40% and 100% over a temperature range of $15^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is $\pm 5 \%$ of full scale.

Relative humidity

Water vapour in air can be expressed as a percentage of the amount of water vapour that would be present if the air was completely saturated, and the result is a dimensionless ratio known as relative humidity. Unlike absolute humidity, relative humidity is approximately related to evaporation and the moisture content of absorbent materials, and is therefore the most widely used humidity parameter. It is important to remember that, for a given weight of water vapour in a volume of air, relative humidity decreases as temperature is raised.

Quantities of water vapour are often measured in terms of vapour pressure, that is, the contribution made by water vapour to the total air pressure. If e is the variable vapour pressure at air temperature T_{a}, and e_{a} is the saturated vapour pressure at T_{a}, then,

$$
\begin{equation*}
h \%=\frac{100 e}{e_{a}} \tag{1}
\end{equation*}
$$

Obviously, if the air being examined is saturated $e=e_{a}$ and $h=100 \%$, but if the air is absolutely dry $e=0$ and $h=0$.

Wet and dry bulb psychrometer

The Assmann psychrometer will give accurate readings over a wide range of air temperatures, and is often employed as a

Fig. I. Humidity curves based on $\left(T_{w}+15\right) /\left(T_{a}+15\right)$ versus T_{a}.
secondary standard for calibrating other types of hygrometer. Basically, the Assmann consists of two mercury thermometers which are aspirated at a constant rate by a small clockwork or electric fan. While one thermometer serves to display air temperature, the other is cooled by evaporation of water from a moist muslin sleeve surrounding the thermometer bulb. A humidity value can be obtained from the two temperatures with the aid of formulae or, more conveniently, a set of hygrometric tables ${ }^{1}$. It will be evident that the Assmann psychrometer is cumbersome in use, and does not provide a direct output for control applications. An obvious line of thought is to replace the two mercury thermometers by thermistors, and use their negative temperature characteristic to provide outputs which are then processed to yield a voltage analogue of humidity.

The relationship between vapour pressure e and wet and dry bulb temperatures T_{w} and T_{a}, is given by,

$$
\begin{equation*}
e=e_{w}-A p\left(T_{a}-T_{w}\right) \tag{2}
\end{equation*}
$$

where e_{w} is the saturated vapour pressure at T_{w}, A is a constant determined by the ventilation rate and mechanical construction of the hygrometer, and p is atmospheric pressure. For an Assmann psychrometer aspirated by an airflow of more than $3.6 \mathrm{metres} / \mathrm{sec}$ (where pressure is in millibars and temperature ${ }^{\circ} \mathrm{C}$) $A=6.66 \times 10^{-4}$ when T_{w} is above $0^{\circ} \mathrm{C}$. When the wet bulb is covered by ice

[^2]

Fig. 2. Performance of potential divider with a thermistor which gives an output nearly proportional to $T+15$.

Fig. 3. Basic circuit using an operational amplifier which gives an output nearly proportional to $\left(T_{w}+15\right) /\left(T_{a}+15\right)$.
$A=5.94 \times 10^{-4}$. Below $3,000 \mathrm{ft}, p$ can be taken as a constant $1,000 \mathrm{mb}$. A table of saturated vapour pressures will give e_{a} for equation (1) and e_{w} for equation (2).

Although the above equations could possibly be implemented with, say, a couple of diode function generators, a summing amplifier, and an analogue division circuit, the necessary equipment would be costly. However, a search for a more simple relationship between T_{w}, T_{a}, and h reveals that the gradient $\Delta T_{w} / \Delta T_{a}$ is almost constant for fixed levels of h over a wide range of T_{a}. If a plot is made of several values of h on a T_{w} versus T_{a} graph, it will take the form of a series of straight lines originating from a point near $-15^{\circ} T_{w}$ and $-15^{\circ} T_{a}$ on a Celsius scale. The situation is made clearer by Fig. 1, where $\left(T_{w}+15\right) /\left(T_{a}+15\right)$ versus T_{a} presents h as a set of almost horizontal curves, with the resulting humidity scale on the right-hand side. Fig. I curves were obtained by calculation from hygrometric tables, and show the transition between the two values for A at the point where the wet bulb freezes. Because an attempt has been made to simplify the original law, accuracy falls at low temperatures and at low humidity levels, and the resulting humidity scale is not linear. Nevertheless, if a simple circuit can be devised to yield the quotient $\left(T_{w}+15\right) /\left(T_{a}+15\right)$, the output function will represent high levels of humidity with reasonable accuracy over a wide range of air temperatures above about $5^{\circ} \mathrm{C}$.

Thermistor characteristic

Thermistor characteristic curves are invariably plotted against a logarithmic resistance scale, and it is difficult to obtain selected values from them. Given three or four measured values of thermistor resistance at known temperatures, however, the characteristic can be plotted with fair accuracy from the formula

$$
\begin{equation*}
R_{t h}=k e^{B / T} \tag{3}
\end{equation*}
$$

where $R_{t h}$ is the thermistor resistance, k is a constant determined by substituting known values of $R_{t h}, B$ is the characteristic temperature obtained from manufacturer's data, and T is the temperature in degrees Kelvin. A table can be prepared from formula (3) which gives selected values of resistance over the required temperature range.

If a thermistor is used as one arm of a potential divider, an

Fig. 4. Complete circuit diagram of the hygrometer. $R_{1}-R_{4}, R_{6}, R_{7}$ should be 2% high-stability resistors and $R_{11} 10 \%$ wire-wound IW; other resistors can be 10% carbon types. Except R_{11}, all resistors are $0.5 W . C_{1}$ and C_{2} are 125-V polystyrene types. Diodes D_{1} and D_{5} are A.E.I. VR $525 B F$ and D_{6} and D_{7} are A.E.I. Sf 403-F, while T_{1} is Mullard ACY 20. The operational amplifier is PA 7709-39 (Philco Ford) available from Rastra Electronics Ltd., 275 King Street, Hammersmith, London W.6.
output approximating to a linear relationship between temperature and resistance can be obtained. Looking at Fig. 2 a thermistor type $\mathrm{A}_{1} 5$ is allied with a $50 \mathrm{k} \Omega$ resistor, and the resulting potential divider output curve falls close to a straight line based on $T+15$ degrees Celsius. As we are interested here in the quotient of two such thermistor thermometer outputs, non-linearity errors are not quite so bad as they would appear to be from Fig. 2, provided that tracking between the two thermistors is good.

Division circuit

The division circuit of Fig. 3 is of the type employed in analogue computers, except that here temperature dependent potentiometers replace conventional potentiometers. The operational amplifier of Fig. 3 supplies an output E_{o} which is related to input $E_{i n}$ in the following way.

$$
\begin{equation*}
E_{o}=-E_{i n} \frac{\frac{R_{1}}{\left(R_{t h w}+R_{1}\right) R_{3}}}{\frac{R_{4}}{\left(R_{t h a}+R_{4}\right) R_{2}}} \tag{4}
\end{equation*}
$$

Assuming that

$$
\frac{R_{1}}{\left(R_{t h w}+R_{1}\right)} \approx T_{w}+15, \text { and } \frac{R_{4}}{\left(R_{t h a}+R_{4}\right)} \approx T_{a}+15, \text { and }
$$

$R_{2}=R_{3}$, then,

$$
\begin{equation*}
E_{o} \approx-E_{i n} \frac{T_{w}+15}{T_{a}+15} \tag{5}
\end{equation*}
$$

Thus, the output from the wet thermistor potentiometer has been divided by the output from the dry thermistor potentiometer.

In practice, resistors R_{2} and R_{3} will load the thermistor potentiometers because the amplifier input is at virtual earth, but this can be obviated by making the parallel combinations R_{1}, R_{2}, and R_{3}, R_{4}, equal to $50 \mathrm{k} \Omega$. Another practical point is that an output corresponding to $h=0 \%$ will not be zero volts, therefore an offset voltage must be supplied to the voltmeter to give the required suppressed zero.

Thermistor hygrometer circuit

The complete hygrometer circuit appears in Fig. 4. $V R_{1}$ sets the negative input voltage across wet thermistor potentiometer $T h_{1}$ and $R_{3} . R_{2}$ is the operational amplifier input resistor and R_{6} the feedback resistor, while the dry thermistor potentiometer consists of $T h_{2}$ and R_{7}. The i.c. operational amplifier chosen for use with the hygrometer has an open-loop gain $>5,000$, and is contained in an eight lead TO-5 can. C_{1} and R_{5} provide input frequency compensation, and C_{2} output frequency compensation, to ensure stability with capacitive output loads of less than $0.05 \mu \mathrm{~F}$. It is anticipated that many currently available i.c. operational amplifiers will operate satisfactorily in the Fig. 4 circuit, although the lead connections may differ.

In Fig. 4, the power supply is composed of a $12-15 \mathrm{~V}$ r.m.s. output mains transformer, with voltage-doubler C_{3}, C_{4}, D_{6}, and D_{7} to give a smoothed d.c. output in the region of 35 V . A string of zener diodes $D_{1}-D_{4}$ is supplied from a constant-current source $T r_{1}, D_{5}$, and R_{11}; this arrangement conveniently allows a centre-tap as well as two intermediate voltages.

The positive offset voltage for the meter is obtained from potential divider $R_{8}, V R_{3}$, and R_{9}. Meter sensitivity is controlled by $V R_{2}$. It is thus possible to expand or contract the meter scale to obtain optimum accuracy over the desired range of operating temperature. In addition, the operational amplifier output is capable of driving a load of up to 600Ω to operate an external humidity control switch.

Because of their short life, small d.c. motors are not suitable for continuous ventilation of the wet thermistor. A shaded pole or similar 250 V a.c. motor will give adequate ventilation without
excessive heat if it is underrun on a supply of about $50-100 \mathrm{~V}$ r.m.s., achieved by placing an appropriate value of capacitor in series with the motor $\left(C_{5}\right)$.

Constructional notes

If suitable precautions are taken to ensure freedom from temperature and air pressure gradients around the thermistors, the way in which the instrument is arranged can depend on individual circumstances and preferences.

This photograph shows the layout of the main components.

General view of the complete instrument.

Close-up of the dry (left) and wet (right) thermistors and their mount.

The layout of the prototype hygrometer is depicted in Fig. 5, and in the photographs. No attempt was made to achieve a compact layout as space was not at a premium. There is no particular reason why the hygrometer should not be miniaturised for desk-top use if so desired.

In Fig. 5, the hygrometer case is made up of four compartments, air-sealed from each other by strips of draught excluder on the two side panels. An air duct forms the top of the case, and is ventilated by a centrifugal impeller, with the two thermistors mounted on a strip of Veroboard inside the duct. The wet thermistor is enclosed by a thin brass sleeve, and this is covered by a single layer of muslin. Underneath the wet thermistor is a container holding about roocc of distilled water; enough for continuous operation over several weeks at normal levels of humidity. The muslin is long enough to act also as a wick, which dips into the water container. Housed in the fan motor compartment is the mains transformer and C_{5}, with the neon indicator and on-off switch mounted on the side panel. The remaining compartment, underneath the air intake, contains the circuit panel and humidity meter. The purpose of the air-filter bag shown in Fig. 5 is to prevent the ingress of large particles which could cause damage to the thermistors and fan blades.

Pressure gradients will inevitably occur within a system of

Fig. 5. General form of construction adopted.

Fig. 6. Thermistor hygrometer error distribution for calibration at $20^{\circ} \mathrm{C}$.

Table 1
Meter Scale Calibration

$\mu \mathrm{A}$	$n \%$
0	0
14	10
25	20
36	30
47	40
58	50
66	60
75	70
84	80
93	90
100	100

Table 2
Voltmeter Ofiset Voltages
Calibration at $T_{a}=\quad$ Offset voltage

$10^{\circ} \mathrm{C}$	+3.45
$15^{\circ} \mathrm{C}$	+3.15
$20^{\circ} \mathrm{C}$	+2.9
$25^{\circ} \mathrm{C}$	+2.7
$30^{\circ} \mathrm{C}$	+2.55
$40^{\circ} \mathrm{C}$	-2.4

forced-air flow. It may be that the air in the immediate vicinity of the wet thermistor is found to be slightly above or below atmospheric pressure. It is possible to compensate for this constant pressure deviation, without affecting accuracy, by suitable adjustment of $V R_{2}$ and $V R_{3}$. More serious, however, is a reduction of air flow caused by a partly-blocked air intake. Quite apart from a general lowering of pressure within the air duct, the reduced flow will modify the calibration constant A in equation (2), and thus introduce serious errors.
The thermal inertia of the thermistors used in the hygrometer is such that the instrument will take about 39 seconds to respond to a 10% increment of humidity, which is considerably faster than the majority of direct-reading hygrometers. However, a rapid response also gives rise to overshoot when abrupt changes of air temperature are experienced. A slow reponse can be achieved, without increasing the thermal capacity of the thermistors, by placing a large-volume cotton-wool filter in front of the air intake. The cotton wool acts as a kind of integrator, by taking up and releasing moisture slowly, and also buffers sudden changes of temperature.

Meteorological advice suggests that the muslin on an Assmann hygrometer wet bulb should be changed before it becomes dirty. Tests with the thermistor hygrometer show that dirt certainly does increase the apparent temperature of the wet thermistor by reducing evaporation, but it is usually sufficient merely to wash the muslin wick after it has become noticeably blackened by dirt. The frequency of washing will depend on the air being sampled. In a grimy room heated by an open fire, the wick becomes dirty after barely 12 hours running time, but in normally clean air the hygrometer will run for several weeks without needing any maintenance.

Table I will facilitate calibration of the humidity meter scale, and is derived from calculations based on standard hygrometric tables and thermistor characteristics.

Setting up the hygrometer

Prior to wetting the muslin wick, measure with a voltmeter the voltage between the operational amplifier output and the earth rail, and adjust $V R_{1}$ for a reading of 5 V . Next, establish the correct offset voltage for a desired mean air temperature by adjustment of $V R_{3}$, after referring to the Table 2. Offset voltage is measured between the slider of $V R_{3}$ and earth. Next, set $V R_{2}$ for a full-scale deflection of the humidity meter.

It is as well to check for good tracking of the two thermistors, still with the muslin unmoistened, by placing the instrument first in a refrigerator and then in a warm oven. Ignoring temporary overshoot caused by abrupt temperature changes, look for a steady full-scale deflection of the humidity meter over \circ to $50^{\circ} \mathrm{C}$, within about $\pm 2 \%$ at the extreme limits of temperature.

The above procedure is sufficient to calibrate the low humidity coverage of the thermistor hygrometer, but takes no account of high humidity errors caused by those small air pressure gradients when the ventilating fan is in operation. The simplest way of calibrating the high humidity end of the hygrometer scale is to operate the hygrometer in a saturated atmosphere. Construct a simple sling psychrometer from two mercury-in-glass thermometers taped to a wooden dowel. Place a single layer of muslin around the bulb of one thermometer and moisten with distilled
water. Take the improvised sling psychrometer out of doors early in the morning, after there has been an appreciable fall of rain and the sky is still clouded over, and wave it vigorously to and fro for several minutes. If both thermometers continue to display the same reading, the atmospheric humidity will be 100%. Set up the thermistor hygrometer close to the ground, with the muslin wick moistened, the fan operating, and the air duct cover in place, and then trim $V R_{2}$ for a humidity meter reading of 100%.

Performance and operation

The chart Fig. 6 gives calibration curves and a typical error distribution when the hygrometer is calibrated for a mean air temperature of $20^{\circ} \mathrm{C}$. It can be seen that if the hygrometer error is not to exceed $\pm 5 \%$, the permissible air temperature variation is only $18.5-22^{\circ} \mathrm{C}$ at a humidity level of 1%, but increases to $15-42^{\circ} \mathrm{C}$ at 50% humidity. When the instrument is calibrated for a mean air temperature of $10^{\circ} \mathrm{C}$ or less, the limits of air temperature variation become very close, even at high humidities. Also, if T_{w} is below $0^{\circ} \mathrm{C}$, the muslin wick will freeze and cut off the supply of water to the wet thermistor.

From the above it is evident that the thermistor hygrometer is not suitable for use at temperatures near the freezing point of water, and is not very accurate at low humidity levels. Nevertheless, with its wide humidity coverage, and satisfactory performance at higher temperatures, the hygrometer will operate well in indoor environments in temperate and tropical climates.

As has already been mentioned, the operational amplifier output voltage is available for control purposes, and could also be employed for driving a chart recorder or telemetry link. In some cases it will be necessary to supply an offset voltage when zero output is required at zero humidity, which entails a floating output. Circuit details will depend on the particular application, but in the case of a simple on-off switch which operates equipment for wetting or drying air, the hygrometer operational amplifier could feed a simple Schmitt trigger and relay.

Flying Laboratories

Signals radiated by radio navigational aids for civil aviation are periodically carefully checked by ground maintenance engineers and are continually sampled automatically by monitoring equipment to ensure that proper signals are being radiated. However, the signals may be modified in a manner which is not detectable by ground measurement (for example, by reflection from terrain or man-made objects at comparatively large distances from the transmitting aerial systems) and the consequent deficiencies in the signal can only be determined by making measurements in the air, i.e. by flight inspection. All the radio navigation aids installed and operated in the U.K. by the National Air Traffic Control Services are therefore calibrated and regularly checked by the Civil Aviation Flying Unit of the

Board of Trade. This unit, which was formed in 1944 and costs about $£ 1 \mathrm{M}$ a year to operate, has recently taken into service two new Hawker Siddeley 748 aircraft fitted with the latest equipment for the flight inspection of navaids. The handing over of the two new HS 748 aircraft, bringing the fleet up to 17, afforded us an opportunity of seeing the Unit.

Between three and four hundred flight inspections covering all the civil v.hf. omni-ranges (v.o.rs) and distance measuring systems and most of the civil instrument landing systems and radar approach aids in this country are carried out annually by C.A.F.U. All these tests require navigation and flying to a high order of accuracy and demanding a great deal of care in the preparation and operation of the measuring equipment used for the work and in the post flight data analysis processes. The data thus gathered are used to assist the N.A.T.C.S. to maintain the internationally agreed standards required of radio navigation and communication systems for civil aviation.

In order to maintain the accuracy of the equipment used in the aircraft for the inspection and recording of the navaids, a standards laboratory has been established at Stansted and the aircraft are in essence "transfer standards". Some idea of the standard maintained can be gathered from the fact that for i.1.s. the glide path error is not more than 0.25 inch (in height) and azimuth is within 2.75 inches.

In addition to these routine tests, aids are subjected to an exhaustive initial scrutiny at installation, to prompt inspection if at any time there is evidence of possible deficiency, and to immediate examination if an accident should occur when an aid has been involved. Another C.A.F.U. task is the flight testing of new types of radio and radar systems.

In addition to its main task of flight inspection the unit also examines civil pilots' flying ability.

One of the two fight checking positions in the new aircraft. The one shown here handles i.l.s. and the other up to four v.o.r. or two TACAN checks simultaneously.
(Left) The C.A.F.U. standards laboratory at Stansted. The annotated instruments are: 1, v.o.r. standard; 2 and 3, v.o.r. tones generator and r.f. signal generator; 4 and 5 i.l.s. tones generator and signal generator; 6, off-air (200 kHz) standard frequency receiver; 7, prototype
"Modscope"-i.l.s. modulation measuring oscilloscope; 8, i.l.s. precision calibrator to determine zero d.d.m. (difference in modulation depth); and 9, wave analyser.

News of the Month

European broadcasting satellite

A new European consortium (COMSET -Communications European Satellite Team) led by the French company Thomson-CSF, has submitted a bid to ESRO to provide a European communications satellite which will carry sound and television programmes within the Eurovision countries and Africa, and will be operated by the European Broadcasting Union responsible for operating the Eurovision network. The proposed satellite system will allow the simultaneous exchange of two colour television programmes and ten sound channels between ground terminals situated in Europe and in Africa. Each of these stations will be able to use the satellite both for the transmission and reception of programmes. Command and telemetry systems will be provided separately, as will a channel for the exchange of engineering service messages.

The British representative in the consortium is GEC-Marconi Electronics Ltd. Other countries participating in COMSET are Sweden, W. Germany, Italy, the Netherlands and France.

Since the announcement of the formation of COMSET we have been notified of another European consortium to provide the E.B.U. satellite. It includes companies in Germany, the U.K. (British Aircraft Corporation), Sweden, Belgium, France and Italy.

Four-in-one television receiver

Family arguments as to which television channel to watch will be a thing of the past for those who can afford a new television receiver which is manufactured by the German firm Nordmende and marketed in the U.K. by British Relay. The new receiver has a 63 cm (25 inch) colour tube with three smaller, 14 cm (5.5 inch), monochrome tubes ranged below it. The main programme of interest can be viewed on the colour tube while the three monitors can each show a different programme. Any of the programmes being shown on the monochrome monitors can be switched to the main screen if desired. Sound for the three monitor channels is available at sockets for connection to earphones if required.

Nordmende's four-tube television receiver being marketed in the U.K. by British Relay.

The first set is on show in London at 84 Victoria St., S.W.1, and other demonstration models will shortly be on show in Birmingham and Edinburgh.

Although primarily intended for the use of actors, critics and television correspondents British Relay will make the receivers available on the retail market for about $£ 850$ should there by any demand.

Trade Union for professional engineers

The United Kingdom Association for Professional Engineers (UKAPE) has launched a recruiting drive which started with a press conference in London recently. "The aims of the Association are to protect the individual from exploitation by unprincipled employers and unions, to promote his interests, to improve his conditions of employment and to regulate the relations between him and his employer."
In a statement the vice-president of UKAPE, R. L. Clarke, said: "We are most concerned by the fact that professional engineers are often separated through having to join unions which are at odds with one another". Mr. Clarke went on to say that he hoped that relations with other unions would be friendly and that the Association
had no ambitions outside the engineering profession. UKAPE is non-political and seeks no affiliations.

All professional engineers who are members of one of the fourteen institutions within the Council of Engineering Institutions (C.E.I.) are elegible for membership in UKAPE.

The aims of UKAPE cannot be satisfied by the institutions federated under C.E.I. as these are not constituted to handle protection or negotiation, in fact the interests of the chartered engineer could conceivably conflict with the interests of pure learning and an institution could not be on both sides of the fence at the same time. Also the institutions, because of their very nature, cannot give UKAPE any form of financial support. Because of this the Association is to be financed by subscription (full member- $£ 6$ and associate member- $£ 410 \mathrm{~s}$ per annum). The Engineers Guild is urging all its members to join the new association. Application forms can be obtained from: UKAPE, 400-403 Abbey House, 2 Victoria Street, London S.W.1.

Film on i.c. production

The latest 24 -minute colour film added to the Mullard Film Library is called "Something big in microcircuits". It gives a detailed account of the various processes in the production of integrated circuits at the Mullard plant at Southampton. The film, which includes some excellent macrophotography of devices in various stages of production, is both interesting and informative. Copies (16 mm) are available on free loan in the U.K. from Mullard Film Library, 269 Kingston Road, London S.W.19.

Incidentally, although Mullard produce a large quantity of semiconductors they do not require "over 1000 tons of silicon a week" at the Southampton factory as was stated on p. 517 last month. That quantity lasts them a year!

Radio and TV relay

Speaking at the annual luncheon of the Relay Services Association of Great Britain, Ralph Gabriel (chairman of the council) criticized the "pettifogging restrictions" under which relay companies are operating and also of the competition likely to come from the new Post Office.
He cited the American Federal Communications Commissions report on "communal antenna television" under which companies in the States will be permitted to relay any programmes (in this country they are limited to those normally receivable in the area) and may originate programme material (which is taboo in the U.K.) and in fact any C.A.T.V. system with more than 3,500 subscribers is required as a condition of its licence, to originate programmes to a significant extent.

Mr. Gabriel, who is chief engineer of Rediffusion, also spoke of the selection ' of programmes by the "dial-a-programme" system which, if it were permitted in this country, might well find a ready market in the U.S.A.

Earth stations for Hong Kong and Jamaica

In a $£ 2.7 \mathrm{M}$ contract the Marconi Company are to build satellite earth stations in Hong Kong and Jamaica for Cable \& Wireless. Both stations will have paraboloids of 29.6 metres (97 ft) diameter. The new aerial will be Hong Kong's second, the first was also built by Marconi, enabling simultaneous communications to both the east and the west. Hong Kong's first station together with the Marconi installation at Bahrain are said to be the first civil 90 ft . aerials (and there are 23 of them) to meet all eighteen parts of the Comsat specification.

On completion of the new aerial, Hong Kong will be able to communicate with the United States, Australia, Japan and Thailand via the Pacific satellite and with the U.K., Bahrain, East Africa, India, Indonesia, Lebanon, Pakistan and Singapore or Malaysia via the Indian Ocean satellite.

Jamaica's station will allow communication to the western countries using the Atlantic Ocean satellite.

The principal standard of performance used by Comsat is the G/T figure, defined as the measure of aerial gain to the noise temperature of the system, measured at the input to the first stage of the receiver. The Comsat specification, defined by the Interim Communications Satellite Committee, calls for a G / T of 39 dB and preferably better than 40.7 dB , measured at the centre frequency in the receivng band with an aerial elevation of 5° above the horizon. The figure achieved for the first Hong Kong station was 41.3 dB and slightly less for the Bahrain station but still above 40.7 dB .

A vernier servo loop operates in conjunction with the more conventional conical scan system used to "hold" the satellite. The vernier servo eliminates the small but rapidly changing pointing errors which occur in high winds. This will mean that the station will be able to operate in marginal weather conditions with winds gusting at up :o $80 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Contributing to the low noise figure is a new design of azimuth beaming which assists in keeping the aerial accurately aligned with the satellite. This employs a system of plastic pads running on machined steel bearing surfaces which are lubricated by a continuous feed. However, the aerial will still operate if the oil feed fails. Another advantage of this system is that the plastic bearing can be changed while the aerial is still in operation. When it is considered that the rotating section of the aerial weighs 200 tons, this is no small achievemenr.

R.S.R.S. Open Days

Open days were held on 23 rd and 24 th October at the Science Research Council's Radio and Space Research Station at Ditton Park, Slough, Bucks., at which displays illustrating the work carried out there were arranged. The work is concerned with the propagation of radio waves and related physics. The ionosphere and the effects on it of electromagnetic and particle radiation from the sun, the tropo-

Cut-away view of the 157 -pound, German-built GRS-A (German Research Satellite), the first spacecraft in a co-operative programme between the Federal Republic of Germany and the American National Aeronautics and Space Administration. The satellite will study the earth's radiation belts, the auroral zone and the effects of solar proton events.
sphere and the effects on it of meteorological factors are among the matters to which primary attention is paid.

The work, both experimental and theoretical, is being carried out with the very practical end of improving communications by a better understanding of propagation. The radio frequencies covered range from 10 kHz to 1000 GHz and the distances being studied range from a few metres to several earth radii. Rockets and satellites are employed in this work.
The major part of the work is carried out at Slough, but there are four outstations; at Chilbolton, Hants., where there is a large steerable aerial; at Winkfield, Berks., where satellite tracking and data acquisition is carried out in conjunction with N.A.S.A.; at Singapore and in the Falkland Islands.

An Englishman's home is his office?

To mark its rebirth as a public corporation the Post Office in collaboration with the Council of Industrial Design has organized an exhibition at the Design Centre, 28 Haymarket, London S.W.1. Open until December 13th the exhibition describes existing services offered by Post Office telecommunications and outlines developments in design and technology from Edwardian times to the present day with a prediction for the future. By 1990 (more probably 2000) it will be possible for many office workers to be able to stay at home and talk to business colleagues by viewphone, transmit data and plans by television or
facsimile equipment, and communicate with computers and information services by telex and visual display units.

The viewphone screen will probably have about 230 lines, and the method used in linking sound and vision channels will depend on the demand for such a system. It would be possible to transmit the sound as a p.c.m. code in the vision signal, but this method would exclude the system from the standard telephone network using microwaves.

It is forecast that by 1980 about 64% of all households will have a telephone-instead of the present 30%. There will be a very rapid increase in the use of data transmission and a continued large-scale expansion of the telex services.

1969-70 Faraday lecture

This year's Faraday lecture tour will start on November 18th at Rugby, Staffordshire, and will spotlight, as it has done in the past, aspects of modern electrical and electronic science and technology in straightforward language with particular emphasis on practical demonstrations.

The lecture, which is arranged by the I.E.E., is to be given by J. H. H. Merriman and is called "People, Communications and Engineering". Mr. Merriman is the senior director (development) with the British Post Office and also member for technology on the Board of the Post Office Corporation. The deputy lecturer is C. H. May who is a staff engineer in the Post Office Telecommunications Department. The lecture will be given in thirteen towns in the British Isles.

S.R.C. annual report

The Science Research Council's report for the year 1968-69 has just been published and is available from H.M.S.O. for 8 s 6 d . Apart from various organzational matters the report gives facts on all manner of research projects being carried out up and down the country and in Europe and makes very interesting reading.

One of the announcements made in the report is that the University Science and Technology Board is to be dissolved and its place taken by two boards one responsible for science and the other for engineering.

Selling Colour

Mullard have produced a quick-reference manual entitled "Selling Colour-A Promotion Pack for dealers". This contains largely information which has already reached dealers from many different sources, but is here collated. In addition to advice on demonstrating and selling, it contains maps and estimated dates for the start of new colour transmissions.

It is available only to dealers and in the first place to those in the initial BBC-1 and I.T.V. colour areas. Applications for a copy should be made to Distributor Sales Division, Mullard I.td., Mullard House, Torrington Place, London W.C. 1 .

Diode Line Pulse Shaper

Circuit for use with t.t.l. gate

by B. L. Hart,* B.Sc., M.I.E.R.E.

Typical logic voltage levels for the t.t.l. gate ${ }^{1}$ are $\operatorname{Vour}(1)=3.3 \mathrm{~V}$ and $\operatorname{Vout}(0)$ $=0.2 \mathrm{~V}$ (at a sink current of 16 mA). Thus when it is desired, as in the field of nuclear pulse instrumentation, to drive d.c.-terminated low-impedance coaxial cable, the outer conductor of which is earthed, a voltage-level compatibility problem arises.

The interface circuit arrangement shown inside the dashed square in Fig. I has proved useful for cable driving. Operation is as follows: when the input at A is at logic O it acts as a sink for the current in R, point B is at $\left\{V_{\text {out }}(0)+V_{D_{1}}\right\}$ and point C is at earth because,

$$
\left.\left\{V_{\text {ov } T(0)}+V_{D_{1}}\right\}<V_{\gamma D_{2}}+V_{\gamma D_{3}}+V_{\nu D_{4}}\right\}
$$

where γ indicates "threshold-of-conduction" level and $V_{D_{1}}=$ forward voltage drop in D_{1}.
When A is at logic I, C assumes a potential V_{0} where,

$$
\begin{align*}
V_{0}=\left\{V-V_{D_{2}}-V_{D_{3}}-V_{D_{4}}\right\} & \times \tag{2}\\
& R_{T} /\left(R+R_{T}\right)
\end{align*}
$$

provided,

$$
\begin{equation*}
V_{\text {OUT }(1)}>\left\{V_{0}+V_{D_{2}}+V_{D_{3}}+V_{D_{4}}\right\} \tag{3}
\end{equation*}
$$

Variation of V permits control of output pulse amplitude.
In the circuit used D_{1}, D_{2} are hot-carrier
${ }^{\circ}$ West Ham College of Technology, London E. 15
diodes (Hewlett-Packard type HP50822301). D_{1} cuts off without significant carrier storage when the logic level changes from o to I permitting a flat-topped output pulse, while rapid switch off in D_{2} ensures no significant reverse current in R_{T} and hence no undershoot in the output for the reverse logic-level change. D_{3} and D_{4} are Si diodes type TMD7000 (Transitron): these are micro-versions of the closely specified SG5000 (IN4308). The noise margin, $V_{\text {NMO }}$, for logic level 0 is given, from equation (1), by
$V_{N M O}=$
$\left\{V_{\gamma D_{2}}+V_{\nu D_{3}}+V_{\gamma D_{4}}-V_{\text {OUT }(0)}-V_{D_{1}}\right\}$
Obviously $V_{N M O}$ may be improved by adding a diode in series with D_{2} : this is permissible providing equation (3) is still true when allowance is made for the extra diode drop. Circuit waveforms are shown in Figs. 2 to 5. If the connection from the t.t.1. unit is short the waveform at A is clean but when the interconnection comprises, as in the present case, a length of twisted-pair reflection effects, well discussed in the literature, ${ }^{2}$ are observed, as in Fig. 2. The negative portion of the waveform following the $I \rightarrow 0$ transition may be reduced in amplitude by the connection of a diode, shown dotted as D_{5} in Fig. r.) No trouble due to reflection occurs providing $V_{N M O}$ is not exceeded. Figs. 3 and 4 show, on an expanded time and voltage scale, details of the leading and trailing edges of the waveform at C. Fig. 5 shows that delay-line differentiation is possible when a length of cable ($\mathrm{RG}_{2} \mathrm{I}_{3} \mathrm{U}$) shorted at the far end is

Fig. I. Diode pulse shaper. $D_{1}, D_{2}=$ HP5082-230I (Hewlett-Packard); $D_{3}, D_{4}=$ TMD7000 (Transitron); $T^{2} L$ gate $=S N_{7400}($ Texas $) ; R=I k \Omega($ Metal Film $) ; R_{T}=50 \Omega$ B.N.C. termination.
connected to C . The magnitude of the negative-going pulse for undistorted output depends on VNMo. In cases where it is desirable to use a fixed voltage supply V, the resistor R may be replaced by a variable current source, such as a suitably biased common-base transistor stage with a potentiometer in its emitter circuit.

References

I. "Texas Instruments Semiconductor and Components Data," Book 2. 1968.
2. "Simple graphical method to determine line reflections betweer high-speed-logic elements". M. Abdel-Latif and M. J. O. Strutt, Electronics Letters. Nov. 1968, Vol. 4, No. 23, pp 496-478.

Fig. 2. Input waveform at A in Fig. I.

$5 \mathrm{~ns} / \mathrm{cm}$
Fig. 3. Leading edge of output waveform at C.

Fig. 4. Trailing edge of output waveform at C.

Fig. 5. W'aveform at C with shorted line connected at C.

Packaging?
 'Augat'havetime-and-costsaving all wrappedup

'Augat' just can't let up being ingenious with packaging systems and I.C. hardware, Customers keen on cost saving, time saving and the utter reliability that comes from 'Augat' quality keep coming back for more to Electrosil, their U.K. source. Take actual mounting panels. 'Augat' construct them from $\frac{1}{8}$ " thick epoxy glass boards, making reinforcement brackets unnecessary. One less complication. The sockets used are either closed entry or, in the case of dual-in-line sockets, protected entry. The hazard of fouled contacts, therefore, is sharply reduced. One worry less. And the 'Augat' breadboarding system is small, compact and astonishingly robust. Dual-in-line I.C. sockets range from solderpots to wire-wrap, and can be custom designed; LSI and MOS series come at prices that make plugging a worthwhile consideration. And Electrosil keep a hot supply line going that means instant availability ... wherever. To itemise- 'Augat' for Sockets, Breadboard and Test Panels, High Density Packaging Panels, Sockets and Connectors for flat packs and TO-5 packages, Teflon and glass epoxy sockets, Crystal and transistor sockets, Jumper leads and accessories for 'Augat' breadboards. Data sheets on application. Available in the U.K. only from Electrosil.

Contact Electrosil direct and speak to Alan Johnston, telephone number: Sunderland 58704; or write to Electrosil Limited, P.O. Box 37. Pallion, Sunderland, Co. Durham. (Telex: 53273)
or to Electrosil distributors: WEL Components Limited, 5 Love Rock Road, Reading, Berks. Tel: Reading 40616-9.
Electrautom, 8 Clarence Road, Windsor, Berks. Tel: 64258.
SDS (Portsmouth) Limited, Hillsea Industrial Estate, Portsmouth, Hants. Tel : 62332

This Counter-Timer is particularly difficult to buy!

It's not in short supply or expensive but selecting from supposedly-similar instruments is a timeconsuming problem.

We sympathise.
So here's help.
The 835 is made by Racal. That's a digital guarantee in itself.

It's got a generous specification. For example the quoted 12.5 MHz is easily 16 MHz . Push button gate selection that's so simple and reliable. And our 810 Frequency Divider extends the range 10 150 MHz . Instantly. You get Racal expertise, advice and the best service back-up in the business - FREE.

OK. We re biased. But helpful

The Racal Type 835 Universal Counter Timer
Precise Frequency, Period, Period Average, Frequency Ratio, Time Interval, Pulse Width, Mark/ Space. Totalise and Scaling.

* INTEGRATED CIRCUIT	* GATE TIMES 1 us to 10 s
CDNSTRUCTION	* EXCEPTIDNALLY EASY TD DRIVE
* DC TO 12.5 MHz	* HALF STANDARD RACK WIDTH

* SENSITIVITY 75 mv rms * UK LIST PRICE $\mathbf{f} 250$

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Transistor distortion characteristics

I have read with interest the article by Mr. Linsley Hood in the November issue. Mr. Hood has come to the conclusion that his amplifier stage gives more distortion for low collector currents and high $h_{f s}$. He has shown 13 curves to prove his point, but he has not made any attempt to explain why the situation is so troublesome to audio pre-amplifier designers.

If we take the BC109 as an example and try to control the collector current from an ideal voltage source applied to the base, what will happen? Suppose that the transistor has the recommended quiescent point of $I_{C}=2 \mathrm{~mA}$ and $U_{C E}=5 \mathrm{~V}$ with $h_{F E}$ and $h_{f e}$ of approximately 300. The base current of the transistor will of course be $I_{B}=I d h_{F E}=2 / 300 \mathrm{~mA} \approx 7 \mu \mathrm{~A}$.
When a voltage source of, say, $E_{s}=10 \mathrm{mV}$ r.m.s. is applied to the base, this will appear across the $h_{i e}$ of the transistor and give a change of base current. For BC109 $h_{i e}=$ $4.5 \mathrm{k} \Omega$ for the mentioned quiescent point, and the change in base current will be approximately $\pm 10 \sqrt{2} / 4.5_{\mu} \mathrm{A} \approx \pm 3_{\mu} \mathrm{A}$, which is almost $\pm 50 \%$ of the quiescent base current! The collector current is of course $h_{f f} I_{b}$ and will also make a 50% swing, from 1 mA to 3 mA .
A look at the $h_{i e}=f\left(I_{C}\right)$ curve published by Telefunken shows a very great dependence. For $I_{C}=1 \mathrm{~mA}, h_{i e} \approx 9 \mathrm{k} \Omega$ and for $I_{C}=3 \mathrm{~mA}$, $h_{i e} \approx 3 \mathrm{k} \Omega$, a change with a factor $3: 1$! Thus the base current will not follow a linear relationship to the source voltage, neither $I_{b}=F\left(E_{y}\right)$ nor $I_{c}=\left\{\left(E_{s}\right)\right.$ will be straight lines.

A high value of quiescent base current (low $h_{F E}$ and/or high I_{C}) will obviously make things brighter, at least as far as distortion is concerned. If this is not possible, one solution is to make certain that the change in base current comes from a current source, for example a preceding stage with high outpur impedance. An f.e.t. common-source stage willdo admirably as it can be regarded as a voltage controlled current source if drain resistance is high compared to the $h_{i e}$ of the following transistor.

The other solution is to use negative feedback from an un-bypassed emitter resistor R_{e} This will appear (for the source voltage) as a resistance of the value $h_{f_{e}} R_{e}$ (approx.) in series with the $h_{i e}$ and so the change of $h_{i c}$ will be negligible if $h_{i e} \ll h_{j e} R_{e}$ This is exactly what Mr. Hood has done in circuit D of his article. He also mentions that the distortion
factor increases with a decrease of un-bypassed resistance. The open loop gain is said to be about 8000 and the 47Ω resistance will probably appear as a $47 \times 8000 \approx 400 \mathrm{k} \Omega$ resistance in series with the input impedance of the first transistor.

Conclusion: The important thing for a transistor voltage amplifier stage is that $I=f\left(E_{s}\right.$ is a straight line. The influence of the nonlinearities of transistor input impedance should be minimized by applying a high (equivalent) resistance in the signal path of the input.
Per Engstrom, Lund Institute of Technology, Sweden.

Noise in transistor amplifiers

While working with amplifiers using input and feedback stages similar to that outlined, a curious low-frequency noise was encountered. The amplitude and frequency were Gaussian in nature and extended from approx 5 Hz to 100 Hz . However, this noise was much greater than the normal wideband noise inherent in all amplifiers.

The Johnson noise contributed by R_{s} ($\approx 600 \Omega$) is fairly low. However, some noise is injected into base by transistor action; there is also a considerable amount of noise contributed by R_{t} and R_{2}. The sum of this Gaussian noise appears at the junction of R_{1} and R_{2}, so we can represent the source impedance of such a noise generator by the lowest impedance that contributes to it, i.e. parallel impedance of R_{1} and R_{2}. This is approximately $50 \mathrm{k} \Omega$.

This noise generator, with its $50 \mathrm{k} \Omega$ source resistance, appears across the
reactance of C_{c} added to R_{5} Thus one would have expected this noise to be low. However, the reactance of $C_{c}(0.25 \mu \mathrm{~F})$ rises considerably at $5-10 \mathrm{~Hz}$. Thereby, R_{s} and C_{c} form a shunt low-pass filter for the noise source, injecting into the amplifier all the low-frequency components arising within the Gaussian distribution of the noise.

When C_{c} was increased to $10 \sim 16 \mu \mathrm{~F}$, the effect disappeared, leaving only the normal Gaussian noise. The noise level, as monitored on a peak programme meter, dropped, by -6 dB , as would be expected because of the nature of the unintended filter.

It is possible to select low-noise components for R_{1}, R_{2} and transistor but then it is always possible to secure an additional -6 dB change in noise level by just increasing C_{c} In fact there is then no advantage in using expensive components for R_{1} and R_{2} since trouble might later arise when they begin generating noise near end of life. Also, it is no longer possible to change R_{1} and R_{2} if one begins to use them in integrated form.

The corollary is that one would be well advised in having selected as large a value of C_{c} as is practicable, such that the reactance of $C_{c}+R$ at 5 Hz or so does not increase substantially above $Z_{\text {in }}$ for the particular amplifier. Most high-quality amplifiers, operational amplifiers and all integrated d.c. and operational amplifiers will readily respond to 5 Hz or so and since most high-input impedance stages use similar potential dividers, this factor should be carefully weighed. When R_{s} is comparable to $Z_{i n}$, the problem should not arise of course.
R. Thanky,

London N. 19.

Stereo decoder adaptor

Having seen the circuit for a stereo decoder adaptor in "Circuit Ideas" in the September issue I am prompted to send you a much simpler circuit which I have been using for several months.

Instead of having a variable gain amplifier on each channel a 0.5 attenuator is placed before the decoding matrix when a mono programme is being received. With a mono signal $T r_{9}$ saturates and earths one end of the attenuator chain formed by the two $10 \mathrm{k} \Omega$ resistors. Thus only half the mono sign is applied to the matrix. On stereo $T r_{\text {, }}$ is off and the full signal is applied to the matrix. The $100 \mathrm{k} \Omega$ resistor ensures that the $1 \mu \mathrm{~F}$ capacitor does not have to change its charge when going from mono to stereo.
A. ROYSTON,

University of Warwick,
Coventry.

Local radio

In the reference tolocal radio in your November Editorial you say "While the use of such (directional) aerials would certainly avoid the stations causing interference with other transmitters sharing the frequencies, it would not eliminate interference from Continental stations". This would indeed be the case if the
operating frequencies of the proposed British Local Radio System were indiscriminately chosen, without regard to those stations which are capable of causing interference with United Kingdom transmitters.

My company has carried out exhaustive tests in many parts of the United Kingdom. These tests demonstrate that, of some twentyfive channels selected for initial evaluation, at least eleven are suitable for use in some, if not all, of the areas which would probably be served by British Local Radio. In addition, these channels would be available under the terms of Article 8^{*} of the Copenhagen Convention.

Using no more than eight of the channels it would be both technically and legally possible to operate at least one hundred low-power medium frequency stations in the British Isles, each one of which would be sixty miles from its nearest neighbour on the same frequency.

Many critics of this proposal overlook the fact that very few of the proposed stations would need to cover a service area greater than five miles in diameter. In consequence, not more than fifteen of the stations would utilize a power in excess of 1.5 kW , whilst the vast majority would use 500 watts or less. (Incidentally, although 100 stations are theoretically possible, my company is of the opinion that not more than fifty would be economically viable).

The credibility of this statement is clearly demonstrated by the performance of some existing B.B.C. stations. Current B.B.C. Engineering Information Department lists show 43 low-power medium frequency stations (of 2 kW or less) as operational in the United Kingdom. Between them they carry all the B.B.C. domestic services, and they all operate from early morning until about midnight. The $1484-\mathrm{kHz}$ transmitter at Bournemouth is on the air from 05.00 until 02.00 the following morning. This station was opened as recently as November 1968, and it is difficult to imagine that it would have been authorized if the Engineering Department of the B.B.C. and the Broadcasting Department of the Post Office (responsible for ensuring the observance of the Radio Regulations of the International Telecommunications Union and issuing licences for the operation of transmitters) had not been satisfied that it would provide a satisfactory service within the area it was designed to serve.

The Bournemouth transmitter is of particular interest in that it uses an International Common Frequency, and, in consequence, shares this frequency with some 150 other stations throughout Europe. Nevertheless, to quote the words of the B.B.C. Engineering Information Service, "It provides a perfectly acceptable signal in the town of Bournemouth".

If further evidence were needed what better authority could be quoted than Lord Hill, Chairman of the B.B.C. who is reported as having said recently "I hope there is going to be some medium-wave reinforcement for local radio-a question we are now discussing with the Post Office Minister who has the authority for frequency allocation". His Lordship went on to say that there was some availability of medium wavelengths, and that medium frequency local broadcasting was technically possible "or we should not be
putting it to The Minister". The Director General of the B.B.C. said much the same thing two days earlier.

To sum up, providing that the main criteria of low power, suitably engineered aerial systems, and an intelligent selection of operating frequencies are observed, there is no reason to doubt that a chain of local radio stations could be established in the mediumfrequency band.
Derek Faraday,
Commercial Broadcasting Consultants Ltd. London, W.C. 2.

- This permits modifications to the European Frequency Allocation Plan provided agreement is reached between Administations operating in the channel.-ED.

1 could not agree more with your November Editorial particularly in connection with the subject raised in Mr. Uden's interesting letter appearing in the same issue.

The B.B.C. claims to offer a v.h.f. service and yet Radio 1 is always regarded as the poor relation by "Aunty".

There are several programmes transmitted only by Radio 1 which would benefit the listener if they were available on the inter-ference-free, high-quality v.h.f. service; and yet listeners must tolerate, at best, low bandwidth audio and, at worst, high distortion and frequent fading.

Another important factor is the education, if I may use the word, of the general public; many individuals have never heard "live" music and have come to regard the m.w. "sludge" as the real thing.

We are supposed to be in an age of technical innovation and development, particularly in the field of electronics and communications, and yet an important part of our radio service is still living in the dawn era of wireless.
E. W. Firth,

Saltney,
Chester.

Combating television interference

I read with great interest the letter from S. E. Jones, regarding the suppression of television interference, in your February 1969 issue. I was immensely happy to note that the method tried by Mr. Jones is basically the same as the one tried by me here some two years back. Since our TV receiving aerial is very near the high power s.w. transmitting centre, the intensity of the harmonic interference used to be very severe. One of the harmonics-which happened to be 240 kHz below the TV carrier-was very strong and when it came up, the picture and the sound as well used to be wiped off completely. To eliminate this interference the method tried was as follows: The interfering signal was picked up from another three-element yagi and fed into a single stage v.h.f. amplifier in which the phase and gain of the harmonic could be adjusted by means of the tuning and gain controls respectively. The output of the amplifier was then fed into the television receiver input where the TV aerial was already
connected. The length and polarity of the cable from the pick-up aerial was adjusted suitably so that the amplifier tuning point is optimum, i.e., with minimum gain. Even after tuning the amplifier for best results, there used to be some faint lines on the picture of varying intensity on account of the modulation on the interfering signal. This was also reduced considerably by introducing a filter (with 12 dB cut off for $240 \pm 10 \mathrm{kHz}$) in series with the video inpul to the picture tube.
T. S. VASAN,

Delhi,
India.

Tolerance!

What a consolation it was to read Mrs. Dinsdale's "Living with $\mathrm{Hi}-\mathrm{Fi}$ " in the November issue! For years I had wondered if my husband was unique in involving the whole household when designing and constructing electronic equipment; but now I know there are others, the upheavals will seem more tolerable.

I can go one stage further though. Our son of 15 has "adopted" electronics and his "Eidroom" is full of equipment in various stages of development. So when the air is full of talk of "pots, resistors, capacitors, etc." and conversation too highly technical for our ears, my daughter and I retire to the kitchen and prepare to "feed the brutes".

At least Mrs. Dinsdale has good music to listen to sometimes!
Maureen Nelson-Jones,
Bournemouth, Hants.

Wireless World Diary

Clearer type, enlarged page size ($75 \times 128 \mathrm{~mm}$) and therefore larger diagrams, and a complete revision of the information in the 64-page reference section make the Wireless World Diary 1970 even more useful than its predecessors. It still has a week-at-an-opening' diary section and costs 10 s (leather) and 7 s | (rexine). It will be available on December, 1st. Postage, if ordered from Dorset House, Stamford St., London S.E.1, is 4d.

Logic Symbols

A quick look at the new British Standard

The shapes and symbols used to portray logic functions are as varied as they are numerous. The time taken to discover what the symbols mean in any particular case can be appreciable and sometimes even then the function is uncertain.

To combat this the British Standards Institution has produced BS3939, section 21, "Pure logic and functional symbols" which drastically alters earlier British Standards on the subject to bring them in line with the International Electrotechnical Commission's proposals made at a meeting in Stockholm in September 1967.

The symbols are intended for use in any branch of logic engineering, be it electrical, electronic, pneumatic, hydraulic or mechanical.

The basic gate symbol is shown at (a) and is the half moon shape. The new symbols also show the logic convention in use at any particular point in the diagram as shown at (b) and (c). The gate shown at (a) therefore has a positive logic input and output. Mixed positive and negative logic inputs and outputs may be employed.

The symbol at (d) shows a gate with an inhibiting input (shown by the bar) and a negated output (the circle). A negated inhibiting input is shown at (e). The oblique line of (f) indicates an executive, strobe or clock input. The five basic functions AND, OR, NAND, NOR, NOT are shown at (g) to (k). The symbol of (l) is an identity element, or equivalence element, where the output represents "l" only when all the inputs are also " 1 ".

Multistable elements have a square for each stable state, so the symbol at (m) is a bistable. It has one input. The application of a " 1 " at this input would cause a " 1 " output from the upper square. The input lines can be drawn with the same negating and inhibiting symbols as used for the gates. A stepping input is shown at (o). Outputs are drawn from the appropriate squares as illustrated at (p). A quasi stable state is portrayed as a shaded triangle and t is the quasi stable duration. For distributed OR or AND connection the symbol is the diamond of (r) with a " l " or "\&" adjacent to the diamond as appropriate.

The BS states that large blocks of logic may be denoted by a suitably labelled square with appropriate inputs and outputs. We have devised our own two; (s) is used at the very beginning of a system design and (t) is often appropriate a little later on!

The identification of signal lines follows what is now accepted as almost standard practice. The signal name should relate to the "l" state of that signal and a bar placed over the signal name refers to the logic negation of the signal.
e.g. $\overline{\text { SUM }}=$ the logic negation of SUM.

This labelling is the subject of only one limitation, the NAME and NAME labels must not be used to indicate the two states of the same signal at different times.

This has been just a quick look at BS3939, Sect. 21. For more information the BS is available from the British Standards Institution, 2 Park St., London W.1, price 12 s .

Active Filters

5. An integrator and a lag in a loop

by F. E. J. Girling * and E.F. Good *

Practical circuits for realising the theoretical schemes discussed in Part 4 will use feedback in one form or another to stabilize amplifier gain. One of the simplest arrangements for a 2nd-order filter is a feedback loop containing an integrator and a lag, and in many cases this allows a circuit using only one amplifier.
Analysis shows, however, that high Q factor calls for a wide spread of capacitance values (or CR products) and high amplifier gain. In general, therefore, the arrangement is most suitable for low Q factors.

Shunt feedback-the virtual earth principle

When the amplifier is sign-reversing, negative feedback can be applied by the "see-saw" arrangement of impedances shown in Fig. I. As A tends to infinity the driving voltage at the input of the amplifier, $-V_{0} / A$, tends to zero. This leads to the concept of the virtual earth and the idealized relationship

$$
\begin{equation*}
\frac{V_{0}}{Z_{0}}=-\frac{V_{1}}{Z_{1}} \quad \text { or } \quad \frac{V_{0}}{V_{1}}=-\frac{Z_{0}}{Z_{1}} \tag{1}
\end{equation*}
$$

If $Z_{0}=Z_{1}$ the magnitude of the overall gain is unity, and the circuit gives the superficial appearance of being an example of 100% feedback. The correct analysis, however, is that the feedback fraction $\beta=Z_{1} /\left(Z_{0}+Z_{1}\right)$, and that because of "potting down" by the same two impedances the effective input voltage is $V_{1} Z_{0} /\left(Z_{0}+Z_{1}\right)$.

When a second input channel is added V_{1} and V_{2} are summed, ideally, according to the equation

$$
\begin{equation*}
V_{0}=-\left\{\frac{Z_{0}}{Z_{1}} V_{1}+\frac{Z_{0}}{Z_{2}} V_{2}\right\} \tag{2}
\end{equation*}
$$

Finite gain

When allowance must be made for the finite gain of a practical amplifier the equivalence shown in Fig. 2 can be used. This result is established by finding the shunt impedance to earth which makes the input current i the same for the two versions of the circuit.

It can be seen that to a first approximation

Fig. 1. Basic arrangement for applying feedback and adding signals by the shunt or virtual-earth method
the overall gain of a shunt-feedback circuit will be affected by finite amplifier input impedance only if this is comparable with the equivalent shunt impedance $Z_{0} /(A+1)$. The correct analysis of the circuit outlined in the preceding section, however, shows that the operation of the circuit is seriously affected (in zero drift, signal/noise ratio, linearity, for example) if the amplifier input impedance is equal to or less than the net parallel value of Z_{0}, Z_{1}, Z_{2}, etc., (Fig. 1), and in general this is a condition to be avoided.

Lag-and-integrator loop

In Part I under the heading direct synthesis it was shown that the. response of the secondorder low-pass network, Fig. 3(a), can be reproduced by an active system containing a lag and an integrator in a feedback loop; i.e. (when $\beta=-1$)

$$
\begin{equation*}
G(p)=\frac{\mu}{1+\mu}=\frac{1}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{3}
\end{equation*}
$$

if

$$
\begin{equation*}
\mu=\frac{1}{1+q p T} \cdot \frac{1}{p T / q} \tag{4}
\end{equation*}
$$

Blumlein (or Miller) integrator

The most familiar electronic integrator is the feedback type shown in Fig. 4(a). From equn. (I), when $A \rightarrow \infty$,

$$
\begin{equation*}
\frac{V_{0}}{V_{i}}=-\frac{1}{p C R}=-\frac{1}{p T} \quad[T=C R] \tag{5}
\end{equation*}
$$

There is, therefore, for the lag-andintegrator loop shown in Fig. 3(b) a minus sign in front of the expression for μ, and the loop is closed in the correct sense by adding $V_{\text {out }}$ to $V_{i n}$. The boxes in the diagram are
intended to indicate that the several parts of the loop are effectively isolated by buffers.

The internal gain of an integrating amplifier limits the performance of an active filter. The equivalent circuit, Fig. 4(b), shows that when allowance is made for finite amplifier gain the integrator degenerates to a simple lag, time constant $(A+1) C R$, multiplied by the gain factor A; i.e.

$$
\begin{align*}
& G(p)=\frac{A}{1+(A+1) p C R}, \\
& \quad G(\omega)=\frac{A}{1+(A+1) j \omega C R} \tag{6}
\end{align*}
$$

A perfect integrator, $G(p)=1 / p C R$, $G(j \omega)=\mathbf{I} / j \omega C R$, gives a constant phase

Fig. 2. Mathematical equivalent of an amplifier with a shunt feedback impedance

Fig. 3. (a) a znd-order passive low-pass network; (b) an active equivalent, a lag-and-integrator loop

(a)
(b)

Fig. 4. The equivalence shown in Fig. 2 applied to a Blumlein feedback integrator
shift of 90°, and an amplitude response that falls indefinitely at -6 dB /octave from zero frequency to infinite frequency and passes through $\mid G(j \omega \mid=1$ at $\omega C R=1$. The "curves" numbered (1) in Fig. 5 correspond. The gain of an imperfect (finite-gain) integrator levels off at low frequency to the value A, and equn. (6) shows that the phase shift falls short of 90° by θ, given by

$$
\begin{equation*}
\tan \theta=1 / \omega(A+1) C R \tag{7}
\end{equation*}
$$

Thus when $A \gg \mathrm{I}$, at the approximate unity-gain frequency $\omega=\mathrm{I} / C R$, $\theta=\mathrm{I} /(A+\mathrm{I})=\mathrm{I} / A$ approx., and below this frequency θ increases (i.e., the phase shift ϕ decreases) until at zero frequency $\phi=0$. These characteristics are indicated in Fig. 5 by the curves numbered (2).

The Q factor of an integrator

Finite gain is to an integrator the equivalent of series resistance to an inductor or

Fig. 5. Amplitude and phase curves for an ideal integrator (I), and a finite-gain integrator (2)

$$
\begin{aligned}
T & =\frac{C R}{k_{2}},(A \rightarrow \infty) \\
k_{2} & =\frac{R_{2}^{\prime}}{\left(R_{2}+R_{2}^{\prime}\right)}
\end{aligned}
$$

Fig. 6. Showing loss of effective gain by passive attenuation
parallel resistance to a capacitor, and similarly limits the Q factor that can be obtained in a resonant loop. Also similarly the quality of an integrator can be defined as the ratio of the part of the output in quadrature with the input to the part in phase. Hence, from equns. (6) and (7)

$$
\begin{equation*}
Q=1 / \tan \theta=(A+1) \omega C R \simeq A \omega C R \tag{8}
\end{equation*}
$$

and it is useful to notice that at $\omega=\mathrm{I} / C R$

$$
\begin{equation*}
Q=A+1 \simeq A \tag{9}
\end{equation*}
$$

In a lag-and-integrator loop, however, the undamped resonant frequency $\omega_{c}=1 / q C R$; i.e., a frequency q times below the unity gain frequency of the integrator (equn. (4)). The effective Q factor of the integrator in such a loop is therefore A / q approx., which $<A$ when $q>$ I.
The potential zero-frequency loop gain A is often in practice eroded by the presence of attenuating networks. Fig. 6 shows that these may be of two types, exemplified by R^{\prime} acting in conjunction with R, and by a network such as $R_{2}{ }^{\prime}, R_{2}$ outside the integrator feedback loop. Both reduce the zero-frequency gain-by factors $k_{1}=R^{\prime} /\left(R+R^{\prime}\right)$ and $k_{2}=R_{2}{ }^{\prime} /\left(R_{2}+R_{2}{ }^{\prime}\right)$ respectively-and so reduce Q by these factors. R^{\prime} may represent the input resistance of a transistor amplifier, and it is important to note that there is a serious reduction in Q if $R \gg R^{\prime}$.
By applying Thévenin's theorem, or otherwise, it is easily found that in the ideal case, $A=\infty$ (and $k_{1}>0$), the presence of R^{\prime} leaves the voltage transfer ratio unaltered, $1 / p C R$, and therefore has no effect on tuning. The presence of $R_{2}{ }^{\prime}, R_{2}$, on the other hand, directly affects the open-loop transfer function, and in the ideal case is equivalent to having in the loop an integrator with

$$
\begin{equation*}
G(p)=-k_{2} / p C R \tag{10}
\end{equation*}
$$

Comparison with $G(p)=-1 / p T$ gives $T=C R / k_{2}$; i.e., the " T " of the integrator is multiplied by $1 / k_{2}$. The effect of k_{1} and k_{2} on tuning in the presence of finite A is dealt with in a later section.

Effect of finite gain in a 2nd-order loop

Substituting the equivalent form, Fig. 4(b), of a finite gain integrator for the ideal integrator in Fig. 3(b) gives Fig. 7, which shows the equivalence to a two-lag loop with negative gain, and the results obtained in Part 4 can be applied. In particular, the open-loop q_{0} is increased by the factor $\sqrt{ }(A+\mathbf{1})$,

$$
\begin{equation*}
q=q_{0}(A+1)^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

Fig. 7. The two-lags-and-gain equivalent of a lag-and-
integrator loop with finite gain integrator
and since for two buffered lags the maximum value of q_{0} is $\frac{1}{2}$ (obtained when the two time constants are equal, i.e., $\left.(A+1) T_{1}=T_{2}\right)$

$$
\begin{equation*}
q_{\max }=\frac{1}{2}(A+1)^{\frac{1}{2}} . \tag{12}
\end{equation*}
$$

In general, q_{0} is given by substitution in equn. (4), Part 3, as

$$
\begin{equation*}
\frac{1}{q_{0}}=\left(\frac{(A+1) T_{1}}{T_{2}}\right)^{\frac{1}{2}}+\left(\frac{T_{2}}{(A+1) T_{1}}\right)^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

and therefore, from equn. (iI),
$\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{2}}+\frac{1}{A+1}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{2}}$
Thus the ideal value of q (the value when $A \rightarrow \infty$) is given by

$$
\begin{equation*}
\frac{1}{q_{i}}=\left(\frac{T_{1}}{T_{2}}\right)^{1}, \tag{15}
\end{equation*}
$$

and equn. (14) may be written

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{q_{i}}{A+1} \tag{16}
\end{equation*}
$$

Now the undamped resonant frequency $\omega_{c}=\mathbf{I} / T=\mathbf{I} / q_{i} T_{1}$ (see equn. (4) and Fig. 3), and substitution in equn. (8) shows that $(A+1) / q_{i}$ is the Q of the integrator at ω_{c}. Hence

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{1}{Q \text { of integrator }} \tag{17}
\end{equation*}
$$

And as at ω_{c} the frequency-response function of the lag $=1 /\left(\mathrm{I}+j q_{i}\right), q_{i}$ may be identified as the Q of the lag at ω_{c}. Equn. (16) may therefore be further rewritten as

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{Q \text { of lag }}+\frac{1}{Q \text { of integrator }} \tag{18}
\end{equation*}
$$

This is an example of the general principle that circuit losses add directly, and that hence $Q s$ add by reciprocals. The principle is very useful for finding the Q factor of practical circuits, especially when the alternative involves handling a long and cumbersome transfer function.

In practical circuits A is usually $\gg 1$ and is not known precisely. There is then no sensible distinction between A and $(A+1)$. It seems unnecessary, however, in the algebra constantly to refer to this approximation.

The solution to equn. (I6) gives the value of q_{i} that has to be set in to the design to achieve the desired value of q,

$$
\begin{equation*}
\frac{1}{q_{i}}=\frac{1}{2 q}\left\{1 \pm\left(1-\frac{4 q^{2}}{A+1}\right)^{i}\right\} \tag{19}
\end{equation*}
$$

Fig. 8, which is a plot of q against $\left(T_{2} / T_{1}\right)^{4}$, i.e. against q_{i}, with A as parameter, clarifies the relationship. For the moment only positive values of A (negative values of amplifier gain, $-A$) are of interest; i.e., that part of Fig. 8 below the diagonal representing $A=\infty$. For $4 q^{2}<(A+1)$, i.e. $q<q_{m a x}$, equn. (19) gives two real values of q_{i}; but the value given by taking the negative value of the square root should not be used as it corresponds to the region beyond the point where $q_{\max }$ has been reached, and in this region q is very sensitive

$k_{1}=\frac{R^{\prime}}{R_{1}+R^{\prime}}$
Fig. 9. Equivalent circuits for the integrator when the amplifier has finite gain and input resistance
(Left) Fig. 8. Illustrates equn. (16). Shows the effect of internal gain, A, and the ratio, T_{2} / T_{1}, on the Q factor of a lag-and-integrator loop
to changes in A. Indeed "designable" circuits, which can accommodate large uncertainties in the value of A, should use values of A which give q close to q_{i}.

Fig. 8 will be recognised as a duplicate of Fig. 9 of Part 4, the parameters A and K being related by

$$
\begin{equation*}
K=A /(A+1) \tag{20}
\end{equation*}
$$

which gives

$$
\begin{equation*}
A=K /(1-K) \tag{21}
\end{equation*}
$$

and this foreshadows an important identity that will be proved later in the analysis of the Sallen-and-Key circuit.

Effect of finite gain on \boldsymbol{T}

In the basic lag-and-integrator loop shown in Fig. 3(b), and in equivalent form in Fig. 7, $T\left(=1 / \omega_{c}\right)$ is not affected by A. The open-loop transfer function is

$$
\frac{A}{\left(1+p T_{2}\right)\left\{1+p(A+1) T_{1}\right\}},
$$

and so $T_{0}=\left\{(A+1) T_{1} T_{2}\right\}$. But, as shown in Part 4, closing the loop divides T_{0} by $(A+1)$. Hence closed-loop $T=\left(T_{1} T_{2}\right)^{1}$ and is independent of A. If, however, there is attenuation k_{2} in the loop as given by $R_{2}{ }^{\prime}, R_{2}$ in Fig. 6,

$$
T=\left\{\frac{(A+1) T_{1} T_{2}}{k_{2} A+1}\right\}^{\frac{1}{2}}
$$

and so

$$
\begin{equation*}
\omega_{c}^{2}=\frac{k_{2}}{T_{1} T_{2}}\left\{1+\frac{1-k_{2}}{k_{2}(A+1)}\right\} \tag{22}
\end{equation*}
$$

Similarly for attenuation by R^{\prime}, R_{1} (Fig. 9), although k, does not does not give a large change in ω_{c}

$$
\begin{equation*}
T_{0}^{2}=k_{1}(A+1) T_{1} T_{2} \tag{23}
\end{equation*}
$$

and so, since

$$
\begin{gather*}
T^{2}=T_{0}^{2} / k_{1}(A+1) \\
\mathrm{w}_{c}^{2}=\frac{1}{T_{1} T_{2}}\left\{1+\frac{1-k_{1}}{k_{1}(A+1)}\right\} \tag{24}
\end{gather*}
$$

Sensitivity to component values

For the passive $L C R$ network, Fig. 3(a), the parameters T and q are defined by

$$
\begin{equation*}
T=(L C)^{\frac{1}{2}} \text { and } q=\frac{1}{R}\left(\frac{L}{C}\right)^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

For the ideal active system ($A \rightarrow \infty$), Fig. 3(b),
$T=\left(C_{1} R_{1} C_{2} R_{2}\right)^{\frac{!}{4}}$ and $q=\left(\frac{C_{2} R_{2}}{C_{1} R_{1}}\right)^{\frac{1}{2}}$
Thus, by inspection of equns. (25) and (26), any variations in C_{1} and C_{2} have the same effect as variations in L and C respectively. Considering the arbitrary situation where R_{1} and R_{2} are in error in opposite directions and become, say, $x R_{1}$ and R_{2} / x, there is no change to T and the effect on q is the same as if R changed to $x R$. On the other hand, if R_{1} and R_{2} are in error in the same direction and become $x R_{1}$ and $x R_{2}$, there is no change to q but T becomes $x T$; i.e., the effect is the same as if L and C change to $x L$ and $x C$. Other situations lie somewhere between, so it may be concluded that the active system behaves in an essentially similar manner to the passive prototype.

Effect of parasitic phase lags

The effect of additional lags in the loop can be deduced from the Bode plots (i.e., the amplitude and phase plots of $\mu \beta$), and in many practical cases a simple addition of phase angles at the frequency of unity loop gain gives sufficient information.

The curves numbered (i) in Fig. io represent the loop gain of an ideal integrator-and-lag loop of arbitrary q (2 approx. in the Fig.), and the curves numbered (2) and (3) the individual characteristics of the lag and of the integrator respectively. For the moment the additional lag, curve (4), is ignored. As q increases the curves for the lag and the curves for the integrator move further apart, those for the lag towards lower frequencies and those for the integrator towards higher frequencies; and

Fig. 10. Amplitude and phase curves, open loop

Fig. 11. System when extra lag, time constant t, is introduced into the loop
the amplitude curve of the loop characteristic moves nearer to the level I at $\omega=\mathbf{I} / T$.

Now since the integrating amplifier gives a sign reversal, the critical phase lag for the loop is 180°; and in the ideal case, since the phase lag of the integrator is a constant 90°, the angle θ by which the loop phase shift falls short of 180° is the angle by which the phase shift of the lag falls short of 90°, and is therefore given by $\tan \theta=\mathbf{I} / \omega T_{2}=\mathbf{I} / \omega q T$. Hence at the approx. unity-loop-gain frequency $\omega_{c}=I / T$

$$
\begin{equation*}
\tan \theta=1 / q \tag{27}
\end{equation*}
$$

which gives, as examples, the following pairs of values of q and phase margin: $q=\mathrm{I}, \theta=45^{\circ} ; q=2, \theta=26.5^{\circ} ; q=10$, $\theta=5 \cdot 7^{\circ}$; etc. For high values of q, at ω_{c}

$$
\theta(\text { in } r a d n s)=1 / q \text { approx }
$$

(28)

Consider now the introduction of a small additional lag, time constant t, into the loop as shown in Fig. II. This adds the curves (4) to Fig. Io. It is a characteristic of a simple lag (Figs. 3 and 4, Part 2) that a significant phase shift appears at frequencies where there is still little fall in the amplitude response. Thus, for example, at (corner frequency)/10 the gain is 0.995 , while the phase lag is already 57°; and even at (corner frequency)/2, where the phase lag is 26.5°, the gain has only just fallen below 0.9 . Therefore, since in a practical filter the additional phase lag must be small if the filter is to be "designable", it is reasonable to assume that for any such lag the time constant $t \ll T$, and that in the critical region around $\omega_{c}(=I / T)$ only the phase shift of the additional lag need be considered.

This will be

$$
\begin{equation*}
\text { a } \quad \phi_{s}=t / T \text { radns approx. } \tag{29}
\end{equation*}
$$

and the net phase margin will be

$$
\begin{equation*}
\theta_{m}=\theta_{i}-\phi_{s}=\frac{1}{q_{i}}-\frac{t}{T} \tag{30}
\end{equation*}
$$

where θ_{i} and q_{i} are the ideal values; i.e., the values when there is no additional lag. The trend of the Nyquist plots for conditions where the above analysis is valid is shown in Fig. 12.

Stability in a mathematical, or Nyquist, sense requires that $t<T / q$. Stability in the engineering, or everyday, sense of ensuring a stable effective q will generally require that $t \ll T / q$, so that the unwanted phase lag is small compared with the intended phase margin; but if the circuit is such that t is known with some precision, then q_{i} may be reduced to compensate. Several additional lags of time constants $<T$ may be added and treated as one

$$
\begin{equation*}
\Sigma \phi_{s}=\left(t_{1}+t_{2}+\ldots\right) / T \tag{31}
\end{equation*}
$$

A lag internal to an amplifier is effectively divided by the zero-frequency gain around the local feedback loop. Thus in an integrator, if the amplifier is stabilized with a single dominant lag of time constant τ, there is added phase shift approximately equivalent to an additional lag of time constant τ / A. This explains why an operational amplifier, z.f. gain $=3,000$ (say), which when stabilized shows a corner frequency at 100 Hz , can be suitable for use in a filter with corner, or resonant, frequency at some thousands of Hz , provided the stabilization does not seriously affect the output available at these frequencies. There is also an increase in the effective $C R$ product equal to $1 / \omega^{\prime}$, where ω^{\prime} is the frequency where the amplifier characteristic crosses unity gain. But this is unlikely to be of importance except in a high- q circuit.

The summation of phase angles described above is virtually an extension of the summation of the reciprocals of Q-factors given in equn. (17), and when the approximations given apply, the net phase margin is given by

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{1}{Q}-\sum \frac{t}{T} \tag{32}
\end{equation*}
$$

Fig. 12. Shows trend to Nyquist plots when the additional phase angle $\phi_{s}<\theta_{i}$, the ideal phase margin

Fig. 13. Integrator-and-lag circuit using two amplifiers

At low frequencies where stray capacitance is low compared with the working capacitances, unwanted lags are of little account; especially when simple amplifiers are used which need little or no Nyquist stabilization, and when q is moderate or low and there is a comfortable phase margin. The circuit is in any case not very suitable for high q. When high-gain amplifiers are used, however, it is likely that except at very low frequencies the maximum practical value of q will be set by unwanted lags, and that the value will fall with increase in ω_{c}.

Implementation

An obvious way of setting up an integrator-and-lag loop is shown in Fig. 13. With present-day amplifiers, and with $R_{1}=R_{1}{ }^{\prime}$, the nominal zero-frequency loop-gain may be 5,000 ; which gives $q(\max)=35$; a nominal 10% loss of q from finite amplifier gain for $q \simeq 20$, and a 1% loss for $q \simeq 7$. For 3rd-order response a lag can be introduced by tapping $R_{1}{ }^{\prime}$ and connecting a capacitance to earth. With the tap at the centre this lag has time constant $=C_{3} R_{1}{ }^{\prime} / 4$.

If $R_{1}{ }^{\prime}$ is removed, the virtual earth at the input of the integrator provides a natural low-impedance node for current input. Provided the source resistance $R_{s}>R_{1}$ the z.f. loop gain $\rightarrow A$, and the benefits of high internal gain with almost 100% feedback are obtained. If an extra lag is to be used to give a 3 rd-order filter, it must now be placed after the resonant loop. It should be remembered that for frequencies below cutoff most of the input current flows through R_{1}, and at frequencies above cutoff through C_{1}. The latter point is important if out-of-band currents of considerable magnitude must be accepted-for example carrier frequency and harmonics from a rectifier-and it is essential that the output of the integrating amplifier should accept such currents without overload.

Whatever the economic and other advantages of silicon integrated circuits, it

Fig. 14. Representative of simple circuits possible for low q applications

Fig. 15. (a) loop with lag and integrator not isolated by a buffer; (b) equivalent circuit when $A=\infty$; (c) equivalent circuit when $A<\infty$
may still be useful to point out that technically for low $-q$ applications there is no need for very-high-gain amplifiers; and Fig. I4 shows a circuit used by the authors before the days of the transistor, which illustrates most of the principles involved. A typical application was following a phasesensitive detector of current-output type, when the input current was taken straight to point X .
The ideal design equations are:

$$
\begin{equation*}
T_{2}=q T=k_{2} C_{2} R_{2} \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{2}=R_{2}{ }^{\prime} /\left(R_{2}+R_{2}{ }^{\prime}\right) \tag{34}\\
& T_{1}=T / q=C_{1} R_{1} / k_{2} \tag{35}
\end{align*}
$$

The z.f. loop gain (if $R_{s} \gg R_{1}$) is $k_{2} A$, so

$$
\begin{equation*}
q_{\max } \simeq \frac{1}{2}\left(k_{2} A\right)^{\frac{1}{2}} . \tag{36}
\end{equation*}
$$

Fig. 16. (a) The Rauch circuit; (b) intermediate step leading to the equivalent circuit (c)

(b)

$$
k=\frac{R_{3}}{R_{2}+R_{3}},(1-k)=\frac{R_{2}}{R_{2}+R_{3}}, \frac{1-k}{k}=\frac{R_{2}}{R_{3}}
$$

It is of no great consequence if the cathodefollower gain is somewhat <1; it merely means that the effective k_{2} in equns. (35) and (36) is somewhat smaller than the k_{2} given by equn. (34). When input currents of considerable magnitude must be handled, the points already mentioned must be watched.

Lag-and-integrator loops using one amplifier

Fig. 15(a) shows a schematic of a lag-andintegrator loop in which the integrator follows the lag, and in which the lag and the integrator are not isolated from each other by a buffer. The placing of the integrator second gives the circuit the advantage that when q is high no large voltage is built up in the middle as in the previous arrangement. A usually more important change arises from the absence of buffering: when the circuit is drawn in equivalent form as in Fig. 15(c) a 2nd-order $C R$ network appears; and since in practice this must give $q_{0}<\frac{1}{2}$, the complete circuit must, for a given A, give a lower $q_{\max }$ than circuits which can have $q_{0}=\frac{1}{2}$.

When $A \rightarrow \infty$ the equivalent circuit of Fig. 15 (b) applies,
$T_{1}=T / q=C_{1}\left(R_{1}+R_{2}\right)=C_{1} R$
and

$$
\begin{align*}
T_{2}=q T=C_{2} R_{1} R_{2} /\left(R_{1}\right. & \left.+R_{2}\right) \\
& =b(1-b) C_{2} R . \tag{38}
\end{align*}
$$

With A finite the equivalent circuit is as shown in Fig. I5(c), and equn. (II), Part 3, gives

$$
\begin{equation*}
\frac{1}{q_{0}}=\left(\frac{(A+1) T_{1}}{T_{2}}\right)^{\frac{1}{2}}+\frac{1}{b}\left(\frac{T_{2}}{(A+1) T_{3}}\right)^{\frac{1}{2}} \tag{39}
\end{equation*}
$$

and for the maximum value of q_{0}

$$
\begin{equation*}
q_{m}=\sqrt{ } b / 2 \tag{40}
\end{equation*}
$$

The relationship $q=q_{0}(A+1)$

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{1}+\frac{1}{b(A+1)}\left(\frac{T_{2}}{T_{1}}\right)^{1} \tag{4I}
\end{equation*}
$$

Hence if $R_{1}=R_{2}$, since $b=\frac{1}{2}$,

$$
\begin{equation*}
q_{m}=1 / 2 \sqrt{ } 2\left[\text { when } C_{2}=2(A+1) C_{1}\right] \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\max } \simeq \frac{1}{2}\left(\frac{A}{2}\right)^{\frac{1}{2}} \tag{43}
\end{equation*}
$$

The Rauch circuit

The above analysis may be applied to the well known Rauch circuit, Fig. I6, if allowance is made for the extra attenuation of the input signal and of the feedback. The ideal $(A \rightarrow \infty)$ design formulae are easily derived with the help of the equivalent circuit of Fig. 14(c), following the intermediate step shown in Fig. 14(b). Commonly the circuit is arranged for unity gain at zero frequency, $R_{2}=R_{3}=R$ (say).

Then, if also $R_{1}=R$ (as in the circuit for $q=\mathbf{I}$ shown in Part \mathbf{I})

$$
\begin{align*}
& C_{1}=C / 3 q \tag{44}\\
& C_{2}=3 q C \tag{45}
\end{align*}
$$

where

$$
C=T / R
$$

With finite gain, and $R_{1}=R_{2}=R_{3}$, the z.f. loop gain is $A / 2$ (if there are no other resistances in shunt from the virtual earth to ground) and $b=\frac{2}{3}$. This gives

$$
\begin{equation*}
q_{m}=\left(\frac{1}{6}\right)^{\frac{1}{2}} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\max } \simeq\left(\frac{A}{12}\right)^{\frac{1}{2}}=\frac{1}{2}\left(\frac{A}{3}\right)^{1} \tag{47}
\end{equation*}
$$

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Dec. 10-12
Savoy Place

Reliability in Electronics

(I.E.E. Savoy Place, London W.C.2.)

OVERSEAS

Dec. 1-3
Gaithersburg
Image Storage and Transmission for Libraries
(Madeline M. Henderson, Center for Computer Sciences and Technology, National Bureau of Standards, Room B226-Inst., Washington, D.C. 20234).

Dec. 8-9

Chicago

Consumer Electronics Symposium
(C. Hepner, Zenith Radio Corp., 6101 W. Dickens Ave., Chicago, Ill. 60639)

Dec. $8-10$
Chicago
National Electronics Conference and Exhibition
N.E.C., Oakbrook Exec. Plaza 2, 1121 W. 22 St., Oak Brook, Ill. 60521)

Dec. 8-10
Los Angeles
Applications of Simulation
(P. J. Kiviat, Simulation Assoc. Inc., 10884 Santa Monica Blvd., L.A. Calif.)

Dec. 8-10
San Francisco Circuit Theory
(R. A. Rohrer, Fairchild Semiconductors, 4001 Junipero Serra Blvd., Palo Alıo, Calif.)
1)ec. 9-11

Rehovot
Application of Magnetism in Bio-
engineering
(Weizmann Inst. of Science, Rehovot, Israel)

Dec. 10-12
Pacific Grove, Calif.
Circuits and Systems
(Shu-Park Chan. Univ. of Santa Clara, Santa Clara, Calif.)

There is nothing random about quality control with BRIMAR data display tubes. Every single tube is subjected to an exacting test at every stage of production, from the raw materials used, through the various complex stages of manufacture, to the finished product.
A iypical example of BRIMAR'S advanced inspection methods is the use of Spatial Frequency measuring equipment, built to their own uncompromising standards, and used for the measurement of final spot size and focus uniformity in such tubes.
And in addition to this, an unparalleled capability in chemistry, electron optics and vacuum physics enables Brimar to offer the widest design diversity backed by a personalised customer service. This
service, provided by engineers with extensive experience of the electronics industry, covers advice on tube characteristics operating conditions and associated components.
Tailored packaging, and reliable delivery to meet production schedules are also part of the BRIMAR Service.
Want to know more about BRIMAR Industrial Cathode Ray Tubes ?-ask to see our latest catalogue.
BRIMAI
Thorn Radio Valves and Tubes Limited

7 Soho Square, London, W1V 6DN. Telephone: 01-4375233

OurDecimalone is a Cinch!

Choice of 3 end-fixes

5 to 65 ways to serve you
(Low insertion forces plus selective gold plating)

Well proven "Greenline" contact geometry

0.1 pitch 'Cinch Greenline' Modular Edge Connector

No of ways 65 max
Contact pitch $2.54 \mathrm{~mm}\left(0.100^{\prime \prime}\right)$
Available terminations Solder Slot-hand solder wiring
Short Vee Form-hand or flow solder wiring
Mini-wrap-wire wrap
Moulding Glass filled Diallyi Phthalate. Colour green
Contacts Phosphor Bronze
Plating . $0002^{\prime \prime}$ selective gold where it matters-on
contact mating areas
Write for our fully descriptive literature

CARR FASTENER COMPANY LIMITED
Stapleford, Nottingham Telephone Sandiacre 2661 Sales Offices: London Birmingham, Sale and Glasgow

London's Audio Fair

A look at the arrangements and a selection of products

This year's London Audio Fair which was held at Olympia for the first time can, and will, be rated a great success. Although tiring and nerve-racking the experience for any audio enthusiast-a genus, not a species remember-must have been exhilarating. As usual engineering personalities associated with complex and expensive equipment designs or with revered articles in learned journals were there in the flesh-not aloof, detached, and unavailable, but marshalling the columns, patiently answering any number of naive questions, and generally sweating and swearing like the rest of us.

All in all there was a democratic fellowship, a commonalty of single purpose, and the circumstances which can so thoroughly humanize are beyond praise, but deserve careful analysis.

The category audio enthusiast, we have said, is a genus. Having said this we must acknowledge the countless species. The audio enthusiast may have lots of money or very little: he may build all his own equipment or buy some commercial gear: he may put performance well before appearance; etc. etc. We all know this, but two facts must be emphasized if we are to -keep the audio world in perspective. First, virtually "perfect" performance regardless of cost is attainable and a very close approximation to this can be attained at nuch much less than the cost of typical systems of commercial equipment. Secondly, jur notion of audio fidelity is not a simple nstinctive response but represents a stage in sur aural education, and this fact goes oowards explaining the value of the Audio Tair demonstrations. The owner of squipment providing a particular grade of ;ound will, during his rounds, hear itandards new to him. If he can assimilate he experience his notion of fidelity will be idvanced and he will be at once both elated and depressed! It is worth mentioning a emark heard outside one of the -demonstration rooms-"It goes down to wenty cycles so it should be a perfect oudspeaker shouldn't it?"
Each listening room measured 20×16 eet and was about 8 feet high. Seats were rranged to cover about half the floor area nd the equipment, depending of course on -he manufacturer's products, stood at the ar end away from the door. Most rooms had noisy extractor fan in one corner-usually
just above the right-hand channel loudspeaker(s). A few had no fan but a permanently open door (Mordaunt-Short and Goldring) and K.E.F. had a pair of air-conditioning units which operated between sessions.

In all these demonstrations the sound was supposed to tell the story and sell the goods. Yet the rooms defeated the object of the exercise on three counts. (1) Though the walls were quite adequately insulated against outside noise the extractor fan contributed enough noise to drown ambient sounds in the programme material and thus destroyed realism. (2) Being so small and often over-full of listeners the room's cut-off frequency was rather high and thus bass performance was often disappointing. (3) The flexible walls tended to resonate at various frequencies giving unusual colouration to speakers.

The only demonstrations which got round this problem had the speakers positioned against the rear wall or had the speaker mounted in a solid framework. Goldring went a step further and employed special "monitor" units built on the transmission line principle-an inverted hornwhich, unlike most speakers, gives even performance in very different circumstances.

To these criticisms-which are the reasons why visitors to the Audio Fair should not be expected to believe their ears on all occasions-must be added one more. Even if the listening rooms were acoustically excellent how could one judge. say, a new cartridge? Not, as it seems to be generally assumed, by playing it without comparison in a named system. Very few visitors to the Fair are likely to have exactly the arm/amplifier/speaker combination as that demonstrated. Perhaps the best answer is simply to have cartridges of different makes demonstrated in turn by different manufacturers in a listening room set aside for the purpose. (Any amplifier/speaker combination of good overall quality could be used.) Tape decks and even radio tuners could be compared in this way.

Apart from the live demonstrations the Audio Fair could be only an audio supermarket with the goods on view and data sheets to indicate performance.

Accepting that Olympia has proved itself able to contain multiple live demonstrations the following recommendations are made. (1) That extractor fans be housed at the end of a
tube connected to the listening room. (2) That each room be enlarged if possible to say 25 feet in length. (3) That short of having plaster-board walls, rigid panels be fixed where possible especially for demonstrations employing direct radiator loudspeakers.

In discussing new equipment that seems of especial interest it seems sensible to proceed from signal sources through to the speakers.

The MI5 range of moving magnet cartridges with replaceable styli now offered by Ortofon have a frequency response of 20 Hz to 20 kHz $\pm 2 \mathrm{~dB}(20 \mathrm{~Hz}$ to $10 \mathrm{kHz} \pm 1 \mathrm{~dB})$, a channel separation of $30 \mathrm{~dB}(a t 1 \mathrm{kHz})$, a recommended stylus pressure of 1.5 g , and an output of 12 mV (into $47 \mathrm{k} \Omega$) from a normally recorded level. No transformer is required. A variant range, the MF15, is available for heavier duty work such as on automatic record changers and for playing 78 r.p.m. records. Metrosound (Sales) Ltd., Cartersfield Road, Waltham Abbey, Essex.

From Bang \& Olufsen the Beogram 1800, a semi-automatic record-player unit, features a pickup arm with built-in bias compensation, and uses the new SP10A cartridge. The arm operates automatically on pressing a button. At the end of the record the arm lifts and the motor is automatically switched off.

Provision has been made for a pre-amplifier which is simply pushed into a slot in the base. Specification includes a wow figure of $\pm 0.2 \%$ peak and a rumble level better than 35 dB below reference voltage from pickupat $10 \mathrm{~cm} / \mathrm{s}$. Speeds are 45 and $33 \frac{1}{3}$ r.p.m. with $\pm 5 \%$ fine speed adjustment. Stylus pressure is adjustable up to 3.5 g . The cartridge specification includes frequency response $15 \mathrm{~Hz}-25 \mathrm{kHz} \pm 3 \mathrm{~dB}$, channel separation better than 20 dB between 500 Hz and 10 kHz , output of 5 mV (into 47 kS at $5 \mathrm{~cm} / \mathrm{s}$, compliance of $25 \times 10^{-6} \mathrm{~cm} /$
dyne, and recommended stylus pressure of $1 g$ Bang \& Olufsen U.K. Ltd., Eastbrook Road, Gloucester.

The Truspeed is a new turntable and pickup combination from Leak. Frequency response is said to be free from resonance in the range

$20 \mathrm{~Hz}-20 \mathrm{kHz}$ and stereo separation better than 25 dB at 1 kHz . Wow is less than 0.1% and flutter less than 0.02%. The unit as illustrated costs $£ 6513 \mathrm{~s} 3 \mathrm{~d}$. H. J. Leak \& Co. Ltd., Brunel Road, London W. 3.

The Goldring Lenco turntable model GL69 has a continuously variable speed adjustment ($30-86$ r.p.m.) and the pickup arm has a removable plug-in shell which can accommodate all standard fixing cartridges for both mono and stereo reproduction. Both the height of the arm and the position of the stylus in the headshell can be adjusted to give opti-

mum tracing. The stylus pressure is adjustable (by sliding counterweight) and the pickup can be lowered on to the record by means of a viscously damped lowering device. A plinthmounted version (GL 69/P) is also available. The L 69 pickup arm which is fitted to the GL 69 is also available separately. The chassis version of the GL 69 costs $\{25$ 1s 6 d. Goldring Manufacturing Co. (G.B.) Ltd., 486-488 High Road, Leytonstone, London E. 11.

Two new tape decks were demonstrated by Tandberg. The 6000X (illustrated) costing f194, comes in two-track and four-track versions. It has provision for magnetic and ceramic cartridge inputs, independent record and playback systems, sound on sound facilities, a centre channel amplifier, four way mixing, and a 25 dB limiter. Wow and flutter figures given are $0.07 \%, 0.14 \%$, and 0.28% at $7 \frac{1}{2}, 3 \frac{3}{4}$, and $1 \frac{7}{8}$ i.p.s. respectively. The 1600 X is a very simple deck, costing $\mathbf{1 8 9}^{89}$. It has a frequency response similar to that of the

6000X but has not quite as good a signal-tonoise ratio. Farnell Tandberg Ltd, Hereford House, Vicar Lane, Leeds 2.
The Variocord 263 from Uher is a stereo tape recorder with interchangeable head mounts allowing a quick change-over between $\frac{1}{4}$ track and $\frac{1}{2}$-track recording. A comparator controls tape tension during record, playback, rewind and breaking. This contributes to the wow and flutter figure of $\pm 0.05 \%$ at $7 \frac{1}{2}$ i.p.s.

This recorder has a frequency range of 30 Hz -20 kHz at $7 \frac{1}{2}$ i.p.s. At $3 \frac{3}{4}$, and $1 \frac{7}{8}$ i.p.s. the upper limit is 15 and 8 kHz respectively. Each channel amplifier can deliver $4 W$ into 4 . Bosch Ltd., Rhodes Way, Radlett Road, Watford, Herts.

The Stereofetic f.m. tuner from Leak has high sensitivity, low distortion, and four unusual controls. One button is pressed to search for stereo transmissions (mono signals being automatically muted). Two press buttons control the noise level during stereo reception giving, all in all, three intermediate steps between mono and full stereo. A 'mono lock' can be used to obtain a mono effect even with the 'stereo only' button pressed. Also, an a.f.c. control is included. Specifications for perfor-

mance include a.m. suppression of 50 dB and a signal-to-noise ratio of 60 dB . Five filters are included to eliminate whistles when using a tape-recorder. Price of chassis model f56 11s: wood case model 663 14s 5d. H. J. Leak \& Co. Ltd., Brunel Road, London W.3.

A stereo f.m. tuner with a sensitivity of $1 \mu \mathrm{~V}$ for 30 dB signal-to-noise ratio was displayed by Revox. The input section features dual gate f.e.ts and quadruple variable capacitor tuning while the i.f. strip consists of a passive Gauss filter followed by an i.c. amplifier of 5 MHz bandwidth. Delay lines are employed for demodulation without reducing the bandwidth. A 76 kHz oscillator runs phaselocked to the subcarrier and suppliesafter binary scaling-the switching frequency to the stereo demodulator. The A76 tuner costs 155 gn . C. E. Hammond \& Co Ltd, 90 High Street, Eton, Berks.

The Sinclair Project 60, comprising a Stereo Sixty pre-amp, two Z30 power amps, and a power supply is a low-distortion integrated system. The instruction manual

is comprehensive and seems to leave nothing to chance. It should be noted that though the Z30 amplifiers are advertised as being capable of delivering 24 W continuous sine-wave this power level can only be delivered into 3Ω with a rail just above 30 V . With a 12 -volt rail and a 16Ω load the maximum continuous output power is reduced to 0.75 W . Sinclair Radionics Ltd, 22 Newmarket Road, Cambridge CB5 8DU.

Howland-West were demonstrating I.M.F. transmission-line speakers. At low frequencies the line adds acoustic. mass to the diaphragm,

doubles its effective area, and more tha halves diaphragm motion. At higher fre quencies the line absorbs the back wav from the driver. A professional monito
model (as used by Goldring in their listening room) and a smaller domestic monitor model are available. Howland-West Ltd, 2 Park End, South Hill Park, London N.W. 3.

The latest loudspeaker developed by Celestion is the Ditton 25. The mid range, from 2 to 9 kHz , is handled by two movingcoil pressure units, the upper frequencies, 9 to 40 kHz , by a u.h.f. unit, and the bass by a 12 in driver coupled to a 12 in auxiliary bass radiator. Overall frequency response is from 20 Hz to 40 kHz and this is within $\pm 2 \mathrm{~dB}$ from 60 Hz to 20 kHz . The power -handling capacity is 25 W (r.m.s. signal) and the impedance $4-8 \Omega$. Price $\int 5917 \mathrm{~s}$. -Rola Celestion Ltd, Thames Ditton, Surrey.

A new large loudspeaker from Richard Allap, the Super Sarabande, employs a 15 in bass speaker and has a frequency range of 25 Hz to 17 kHz . The impedance is 8 or 15Ω and the power handling sapacity 20W. Cost [56. Richard Allan -Radio Ltd, Bradford Road, Gomersal, Zleckheaton, Yorks.

A frequency range of 26 Hz to 22 kHz and a power-handling capacity of 40 W are wo characteristics of the new Magister oudspeaker from Goodmans. The bass is -landled by 15 in unit. It is claimed that dequate listening levels in the home will e obtained using a 10 W amplifier output. Joodmans Loudspeakers Ltd, Axiom - Vorks, Lancelot Road, Wembley, Middx.

The model 70 speaker, which incorporates ie 701 electrostatic mid-range and h.f. nit and the DW13/2 bass radiator -llustrated) took pride of place at Bowers nd Wilkins demonstration. The eleven odule doublet electrostatic unit handles all

equencies above 40 Hz . The unit has a unique stribution pattern to obtain good stereo \rightarrow bility and increase the ratio of reverberant direct sound. The pattern is virtually :cular in a vertical plane through mid band squencies, providing a wide and uniform arc rwards, with a strong rear radiating pattern er which the customer has control. Less an 0.5% distortion is obtained from model ' at 35W r.m.s. input. Also introduced was e DM1 speaker. This is a three unit system th a laminated glass cone bass radiator and e Celestion HF 1300 Mk 2 tweeter. Power ndling capacity is 10 W . Frequency response the bass end rolls off gradually below 0 Hz . The model 70 speaker costs $£, 150$ it the DM1 $\{32$. B \& W Electronics, tlehampton Road, Worthing, Sussex.

Application Notes

Circuitry selected from device manufacturers, literature

Wideband Amplifier. The Amplifier shown below has a $3-\mathrm{dB}$ bandwidth of 14 MHz and a voltage gain of 20 . The input impedance is $10 \mathrm{k} \Omega . R_{1}$ is a parasitic stopper, which may not be needed with careful construction. Circuit extracted from the publication "E-Line Transistor Applications" produced by Ferranti Ltd.

Wide-range Wien Bridge Oscillator. The oscillator has five ranges as follows: $15-200 \mathrm{~Hz}, 150 \mathrm{~Hz}-2 \mathrm{kHz}, 1.5-20 \mathrm{kHz}, 15-200 \mathrm{kHz}$ and $150 \mathrm{kHz}-2 \mathrm{MHz}$. The output is IV r.m.s. with less than 0.2% harmonic distortion at 1 kHz . Frequency of oscillation is given by $1 / 2 \pi R C$. Extracted from the publication "E-Line Transistor Applications" produced by Ferranti Ltd.

Electronically Stepped Curve Tracer

Equipment for displaying transistor characteristic curves and load lines on a c.r.o.

by A. J. Sargent

The principle of a simple curve tracer in which base current is stepped by means of a manually operated switch has been described in a previous Wireless World article'. The arrangement provides a useful aid for students, and inspired the development of an electronic stepping circuit with provision for displaying load lines.

The principle of operation is the same as in the original article and is illustrated by Fig. 1. The collector-emitter p.d. is swept in half-wave rectified pulses and provides the c.r.o. X-deflection signal. The test transistor current flowing in R_{Y} develops the Y deflection p.d. Base current is stepped in equal increments by the staircase generator on successive sweeps of the collector voltage and recycles back to zero after the required number of steps. The polarity of the collector supply p.d. and of base current increments is reversed by the switch S_{3} for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ or $\mathrm{n}-\mathrm{p}-\mathrm{n}$ operation and for diode forward and reverse characteristics. The magnitude of base current steps is selected by switch S_{4}. The switch S_{5} allows an external load resistor to be connected in series with the transistor if required.

The electronic stepping circuit is shown in Fig. 2. A normal power supply provides 12 V d.c. to the remainder of the stepping circuit. R_{1} and D_{3} produce a $6 \mathrm{~V}, 50 \mathrm{~Hz}$ square wave which is applied to the pump ${ }^{2}$ formed by $C_{3}, D_{4}, T r_{1}$ and C_{4}. The values of C_{3} and C_{4} are chosen so that the p.d. across C_{4} is pumped up in $1 V$ steps. One step occurs for each positive going edge of the square wave input. When C_{4} p.d. reaches the peak-point potential ${ }^{3}$ of the u.j.t., the emitter-base 1 circuit becomes highly conducting and rapidly discharges C_{4} to the valley-point potential ${ }^{3}$ of the u.j.t. Tr_{2} and $T r_{3}$ form an emitter-follower with high enough input impedance to ensure negligible sag of the staircase waveform due to charge leaking from C_{4}. The number of steps in the staircase can be controlled by $R V_{1}$ which varies the interbase p.d. of the u.j.t. and so alters the peak-point potential at which C_{4} is recycled. The relative d.c. levels of the staircase output and the test transistor can be adjusted as required by means of $R V_{2}$. The waveforms obtained for the whole system with an $n-p-n$ transistor are shown in Fig. 3. It is important to phase the supply transformer secondary windings so as to obtain the collector sweep p.d. during the second half of the step horizontal region as
shown in Fig. 3. If this is not done then the traces obtained are spoilt by the slow rising edges of the steps which cause base current to change during the collector sweep. Direct coupling to the c.r.o. X and Y plates is preferable, although the writer has obtained quite reasonable results by using a Telequipment Serviscope with direct Y coupling and a.c. coupling to the X plates. The recycling frequency is $50 / n \mathrm{~Hz}$ where n is the number of steps in the staircase. With 5 or more steps the recurrence frequency is rather slow and a long persistence tube would be an advantage.

Load-line display is obtained by connecting an external load resistor in series with the test transistor. Switch \mathbf{S}_{s} serves this purpose in Fig. 1. The resulting traces are illustrated
in Fig. 4. The ends of the curves correspond with points on the required load line. The test transistor may be heated with the load in circuit and the resulting shift of the traces helps to give students a clear insightinto the need for d.c. stabilisation ir common-emitter circuits.

Most of the components used are no critical. Those needing some selection art D_{3} to obtain 1V steps, the base inpu resistors to obtain the required magnitud of current increments and R_{Y} to obtain I deflection calibration. An alternative way o obtaining adjustment of step height is th tailor the value of C_{3} or C_{4}. The main transformer used must have two separat secondary windings. A Radiospares rectifie transformer with two 45 V windings wa

Fig. 1. Main circuit of curve tracer.

Fig. 2. Circuit of staircase generator.

Y-input p.d.

Fig. 3. Waveforms of potential with respect to staircase genierator negative rail, when the rest transistor is an $n-p-n$ type with an external load.
used. A potential divider across one winding provides the collector sweep p.d., and this resistor chain should be ventilated and mounted well away from the rest of the circuit. A potentiometer could be used to give incremental control of collector voltage. Both windings need to be floating with respect to the c.r.o. earth terminal to allow them to take up varying potentials in both positions of the polarity switch. A complementary two-transistor bistable circuit ${ }^{2}$ may be used to replace the u.j.t. if no unijunction transistor is available.

The Y scale is 10 mA per deflection volt when R_{Y} has a value of 100Ω. The current scale of the displayed curves is obtained by dividing this figure by the volt $/ \mathrm{cm}$ setting of the Y amplifier. For example, a setting of $0.5 \mathrm{~V} / \mathrm{cm}$ gives a current scale of $20 \mathrm{~mA} / \mathrm{cm}$. The X scale can be calibrated in one of several ways. The test transistor may be replaced by a known resistor connected between collector and emitter terminals. This produces an oblique line trace whose slope is $1 / R \mathrm{~mA} / \mathrm{V}$ where R is the resistance in kilohms. For example, a $1 \mathrm{k} \Omega$ resistor gives $1 \mathrm{~mA} / \mathrm{V}$ so that the X scale can be calibrated by interpolation between \mathbf{X} and \mathbf{Y} scales. Another method is to connect the staircase p.d. to the X input with Y input disconnected. This gives a horizontal row of bright spots at intervals of 1 V on the c.r.t. The method shown in Fig. 1 uses zener diodes as a calibration reference. When switch S_{6} is put in the calibration position the test transistor is disconnected and the zener diode reference potential is connected to the X input. The resulting trace is a horizontal line with a bright point at each end. The separation distance of the bright
points corresponds to the zener reference p.d. Two diodes are used so that the calibration system works irrespective of the position of the polarity switch. The calibration of base current increments depends on the values of the base input resistors. The potential applied to the resistors has IV steps so that current increments are given by $1 / R_{b}$. The values $250 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ give current steps of $4 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 40 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$

Fig. 4. Characteristic curves for (above) 2N1304$\Delta I_{b}=10 \mu \mathrm{~A}, I_{c}=0.4 \mathrm{~mA} / \mathrm{cm}=1.5 \mathrm{~V} / \mathrm{cm}$, load $=$ $5 k \Omega$ (below) $2 N 3819-\Delta V_{g_{s}}=1 \mathrm{~V}, I_{d}=3.2 \mathrm{~mA} / \mathrm{cm}$, $V_{d s}=1.5 \mathrm{~V} / \mathrm{cm}$, load $=560 \mathrm{~s} \mathrm{~s}$

respectively. The adjustment of $R V_{2}$ allows the first step to be set to give zero base current. This adjustment compensates for the valley-point potential of the u.i.t. and for the emitter junction volt drops of $T r_{2}$ and $T r_{3}$.

The curve tracer has been used to display characteristics of junction transistors, field effect transistors and zener diodes. Temperature effects can be examined and if collector sweep p.d. is increased sufficiently then the avalanche region of characteristics can be displayed without damaging the transistor. The system is capable of considerable refinement but even in its simple form it provides a valuable teaching aid that is capable of yielding useful measurements.

REFERENCES

1. G. B. Clayton, 'Transistor Curve Tracing', Wireless World, June 1967.
2. D. E. O'N. Waddington, 'The Diode Transistor Pump', Wireless World, July 1966.
3. H. R. Henly, 'The Unijunction Transistor', Wireless World, March 1964.

Books Received

Hi-Fi Year Book 1970 follows the same pattern as the previous issues. It presents in concise form detailed specifications and up-to-date prices for almost every item of hi-fi equipment currently available on the British market. Details are given of over 2,000 items from more than 300 manufacturers or importers, and there are over 700 illustrations. The first 54 pages are taken up by seven articles describing theoretical and practical points about speakers, tape recorders and radio tuners. Pp.431. Price 20s, postage 3 s . IPC Electrical-Electronic Year Books Lid, Dorset House, Stamford Street, London S.E.I.

Classificatore Universale dei Transistori, by Vittorio Banfi, is in two volumes. In Vol. I about 4,000 types of transistors with allowable dissipation in excess of 5 W are described, and in Vol. 2 about 10,000 lower power devices are described. Data are presented in a very useful manner; e.g. power dissipation and cut-off frequency are given for identical conditions, and the grouping and subgrouping method used facilitates tracking down devices for specific applications. Antonio Benvenga, Editrice Antonelliana, Via Legnano 27, 10128 Torino, Italy.

Radio Year Book 1969/70, lists recent television sets, radiograms, record players, table and portable radio receivers, mains operated and battery tape recorders, and tape recording accessories. There are over 1000 entries and more than half are illustrated. The tape recorder section has been limited to models costing up to $\Omega 130$. (The more expensive tape recorders are to be found in "Hi-Fi Year Book".) Technical details of models are given along with addresses and telephone numbers of suppliers and makers. Two articles, one on television the other on v.h.f. radio, take up the first 16 pages. Pp. 215. Price 15 s , postage 2s 6d. IPC Electrical-Electronic Year Books Ltd, Dorset House, Stamford Stree, London S.E.I.

Simple Linear A.C.

Voltmeter

by G.W.Short*

A simple single-stage transistor amplifier can be used to improve the linearity of a rectifier type a.c. voltmeter without altering its sensitivity. This is often useful when an ordinary d.c. meter with a linear scale has to be adapted for a.c. measurements. Simply adding a rectifier would spoil the linearity and render the original calibration unusable; at least over the lower part of the scale. If the voltages to be measured are less than about 1 V there is no easy way out of the problem, and if a rectifier is used, the meter scale must either be re-calibrated or, more probably, a fairly elaborate amplifier-rectifier circuit with at least two transistors must be employed.

The circuit described here is for use with inputs which are too large to justify building a sensitive millivoltmeter circuit but small enough to impair linearity, from say, 1 to 10 V r.m.s.

A relatively simple active circuit (Fig.1) is sufficient to produce a very worthwhile improvement in linearity at this sort of input level while leaving the meter sensitivity virtually unchanged. Meter multiplier resistances can be added and are calculated on the basis of the d.c. characteristics of the meter movement, or if desired, an existing multiplier can be used.

Operation of the circuit is quite straightforward. The meter is connected between output and input of the amplifier stage, thereby introducing a large amount of negative feedback. Study of the circuit will show that the signal source must supply slightly more r.m.s. current than is needed for normal meter fullscale deflection. The extra current being the base input current of the amplifier transistor. Looked at in a slightly different way, the feedback current which flows via the meter back to the base cancels all of the input signal current except that which is needed to drive the transistor.

If the transistor gives a high current gain the base current is so small that it can be neglected. If, for example, the working current gain is 200 -readily obtainable with modern transistors

-then the input signal current for f.s.d. need only be about 0.5% greater than the nominal meter f.s.d. current. In practical applications a 0.5% error is negligible.

Linearizing action

To account for the improvement in linearity it is easiest to consider signal voltages rather than the signal currents. The nonlinearity of a rectifier-meter results from the fact that the diodes used pass very little current until their forward zener voltage is exceeded. An ideal rectifier would pass no current at all until forward biased by a voltage equal to the forward zener voltage and thereafter its forward resistance would fall to zero and unlimited current would flow. All practical rectifiers have finite forward resistances and curved voltage-current characteristics which blur the non-linearity somewhat, but it is still there. in this circuit, the diodes are in the negative feedback path. If the voltage across the diodes is too small to overcome the forward zener voltage then the negative feedback is small. Small feedback, however, implies high gain. It follows that for very small inputs, the input signal is subject to something approaching the nonfeedback gain. A small signal voltage at the base is sufficient to produce enough amplified voltage at the collector to bias the diodes to conduction, whereupon negative feedback is increased and the amplification made more or less independent of the transistor characteristics.

To put some numbers in, if germanium diodes are used in a bridge rectifier circuit, then the total forward bias needed to overcome the zener voltage is about 500 mV . If the stage gain (base to collector) is 100 , then an input of 5 mV peak at the base will just make the rectifiers conduct strongly. The non-linearity is thus reduced by a factor approximately equal to the voltage gain. The figure of 100 for voltage gain is quite practical, as mentioned earlier. With this order of amplification, and an input of 1 V or more for f.s.d., the non-linearity is compressed into the first tenth of the scale, or less, and is negligible for most purposes.

Circuit design

The circuit is not unduly sensitive to variations in supply voltage or transistors (provided that $h_{f e}$ is high). With the capacitance values shown in Fig. 1 and a multiplier resistance R_{m} of $1 \mathrm{k} \Omega$ (the lowest practicable value for the f.s.d. of $500 \mu \mathrm{~A}$ chosen) the response is 10% down at 7 Hz . The upper frequency limit depends on the compactness of the wiring and the rectifiers. Using point contact diodes, with an amplifier built on a tag strip supported by the meter terminals, the upper limit was about 3 MHz . Ordinary copper oxide meter rectifiers will give improved linearity but a much lower cut-off frequency.

A step-by-step design procedure is given below. This makes provision for moderately peaky waveforms by allowing for peak voltages and currents five-times the r.m.s. values.

Design Procedure

$I_{m} \quad=$ meter current for full scale deflection.
$r_{m} \quad=$ meter coil resistance.
$V_{f} \quad=$ forward drop of diode at $5 . I_{m}$
(1) $I_{C} \quad=5 . I_{m}$
(2) $V_{C E}=5 . I_{m} r_{m}+2 V_{f}$
(3) $R_{1}=h_{f e}\left(V_{C E}-0.7\right) / I_{C}$ for silicon transistors
$R_{1} \quad=h_{f e}\left(V_{C E}-0.2\right) / I_{C}$ for germanium transistors
(4) $\boldsymbol{R}_{2}=\left(V_{c c}-V_{C E}\right) I_{c}$
(5) $R_{M}=V_{I N}($ f.s.d. $) / I_{m}$
(6) $C_{1}>10 /\left(2 \pi f_{M I N} \cdot R_{M(M I N}\right)$
(7) $C_{2}>1 /\left(2 \pi f_{M I N} \cdot R_{2}\right)$

Stereo Image Width Control

A circuit designed to give linear control of the width of a stereo image

by A. Roberts

Although modern stereophonic recordings o music are steadily improving, one still comes across disc recordings in which the apparent image width or spread of stereo reproduction is unsatisfactory. In some cases excessive crosstalk between channels reduces the image width. On the other hand, the increasingly popular technique, used mainly in light music, of recording the left and right channels with little or no crosstalk, produces odd effects such as "hole in the middle". To get the best results, some degree of control over the image width at the reproducer appears to be desirable

There are several well known ways of controlling stereophonic image width. The most popular method involves matrixing the left hand (a) and right hand (b) signals into $a+b$ and $a-b$, introducing relative attenuation between these signals, and then matrixing the modified outputs into a^{\prime} and b^{\prime} by addition and subtraction as before. It is difficult to include gain in such circuits and the necessary laws of the controls are usually not easy to obtain with normal components.
The circuit described below provides gain and gives fairly linear control of the output image width from o\% (mono) to approximately 165% of the image width, using two ganged linear controls.

The action of the circuit (Fig. I) is quite simple. Cross-coupling the emitters of the two transistors $T r_{1}$ and $T r_{2}$ by R_{x} introduces a negative component of crosstalk in the emitter currents. This in itself would produce image widening if R_{ν} were not present. When R_{y} is a short-circuit the outputs are made common, and the image width is zero. When

$$
R_{y}=\frac{R_{x} R_{z}}{R_{w}}
$$

it cancels the effect of R_{x} and there is no widening of the image. If R_{ν} is greater than

$$
\frac{R_{x} R_{z}}{R_{w}}
$$

the output image is widened since not all of the negative crosstalk currents at the emitters is removed by R_{y} at the collectors. The two outputs $V_{a}{ }^{\prime}$ and $V_{b}{ }^{\prime}$ (Fig. 1) can be written as, $V_{a}^{\prime}=-p\left(V_{a}+n V_{b}\right)$ and $V_{b}^{\prime}=-p\left(V_{b}+n V_{a}\right)$, where n is variable between +1 and -0.25 for the practical circuit. The factor p is also controlled to

give constant subjective loudness, independent of the width setting. For a more detailed analysis, see Appendix 2.

Practical circuit

The prototype (Fig. 2 and photograph) was designed to operate at a signal level of -10 dBm (250 mV r.m.s.) with unity gain and an overload factor of 18 dB (clipping occurs at about 1.75 V r.m.s.). Such conditions should satisfy most users, more complicated techniques are needed to operate at higher levels without drastically increasing the rail voltage. The control, R_{7} and R_{13}, is a two-gang I k Ω linear wirewound potentiometer, connected so that the wipers move apart on the circuit diagram to increase the image width.

The transistors $T r_{3}$ and $T r_{4}$ allow separation of the a.c. and d.c. collector loads of $T r_{1}$ and $T r_{2}$, since they both operate as current sinks to the d.c. components of $T r_{1}$ and $T r_{2}$ collector currents. The circuit equations are functions of the emitter and collector resistor networks of $T r_{1}$ and $T r_{2}$, and so the output load resistances must be large compared with the collector network in order to eliminate errors. However,

Fig. r. Basic a.c. circuit of the design.
transistors $T r_{3}$ and $T r_{4}$ also operate as emitter followers of the collectors of Tr_{1} and $T r_{2}$, providing good output isolation and low source impedances for the outputs. In fact the resistances presented to the collectors of $T r_{1}$ and $T r_{2}$ by $T r_{3}$ and $T r_{4}$ are respectively R_{8} and R_{11}, each in parallel with the output load impedance multiplied by the $h_{f e}$ of the transistors Tr_{3} and Tr_{4}. This is effectively $30 \mathrm{k} \Omega$ each, much larger than the network of $R_{6}, R_{7}, R_{13}, R_{14}$. The output source resistance has been measured at about 30Ω.

The circuit has only one drawback, it needs to be driven from low impedance signal sources to avoid major discrepancies between theoretical and practical responses. This is because the emitter resistances of $T r_{1}$ and $T r_{2}$ must be small compared with the emitter network.

Now,

$$
R_{e}=\frac{R_{s}}{h_{f e}}
$$

where R_{s} is the source resistances and $h_{f e}$ is approximately 400 for 2 N 930 transistors. Thus for R_{e} to be less than $5 \Omega, R_{s}$ must be less than $2 \mathrm{k} \Omega$. These values introduce approximately 0.5% error in the responses.

Overall d.c. feedback is applied to stabilize the operating conditions, the two feedback paths have a common decoupling capacitor C_{5}, so that relative drift in the two channels
is eliminated. This is desirable since it removes d.c. from R_{10}. Any d.c. present in R_{10} would reduce the clipping level of the circuit.

As expected, the gain/frequency characteristic is a straight line between 15 Hz and $50 \mathrm{kHz}, \pm 0.5 \%$. The input resistances are basically those of the bias chains, and distortion is typically -45 dB of second harmonic, relative to the working level, 250 mV . The minimum impedance the circuit can drive to full output is 750Ω.

In practice the amplitude and crosstalk responses are precisely those predicted mathematically in Fig. 4. Since the crosstalk coefficient n is basically logarithmic over a large section of the control range, the image of a stereo signal processed by the circuit has width nearly linearly dependent on the control setting. This relationship holds until the image fills the available

Fig. 2. Practical circuit for construction.
R_{7} and R_{13} are ganged.

Fig. 3. Equivalent circuit of Fig. I.

Fig. 4. Calculated response of the control circuit.

Percentage rotation

Fig. 5. Crosstalk coefficient of processed signals, when input crosstalk is 10 dB .
sound stage, i.e. at least part of the image appears to come from one loudspeaker directly. If it is attempted to further widen the image, the extremes will "fold back" towards the centre and become indistinct, because the two channels have some negative correlation. The effect is similar to that of phase reversal of one channel. Fig. 5 shows the output crosstalk of a stereo signal pair processed by the circuit, when 10 dB crosstalk is present in the inputs. Comparisons between this and published curves of image width versus crosstalk ${ }^{1}$ show that the relationship between image width and control setting is very nearly linear.

Because of the large amounts of d.c. and a.c. negative feedback employed, the functioning of the circuit is independent of the transistor parameters, provided that $h_{f e}$ is large. The measured $h_{f e}$ of the 2 N 930 transistors used in the prototype was greqer than 400 in each case. BCiogs are suitable alternatives, particularly in view of their low cost and extremely low noise figure.

1 Harwood, H. D., "Stereophonic Image Sharpness", Wireless World, July 1968.

Acknowledgement

The author wishes to express his thanks to the Director of Engineering of the British Broadcasting Corporation for permission to publish this article.

Appendix 1

The outputs $V_{a}{ }^{\prime}$ and V_{b}^{\prime} (Fig. I) are to follow the equations $V_{a}^{\prime}=-p\left(V_{a}+n V_{b}\right)$ and $V_{b}{ }^{\prime}=-p\left(V_{b}+n V_{a}\right)$ where V_{a} and V_{b} are the two inputs. When $n=0$ the outputs are the unmodified inputs, multiplied by p, which in the practical circuit under these conditions is unity. There will be a statistical correlation between V_{a} and V_{b} in general, therefore the subjective loudness of the outputs will rise as n is increased towards +1 , since when $n=1, \quad V_{a^{\prime}}=$ $-p\left(V_{a}+V_{b}\right)$ and $V_{b}^{\prime}=-p\left(V_{b}+V_{a}\right)$. Accordingly, the factor p is reduced to 0.625 for the mono condition, i.e. a 4 dB reduction in gain.

When the circuit is used to compensate for unwanted crosstalk, the inputs can be expressed in the form, $V_{a}=a+m b$ and $V_{b}=b+m a$ where a and b are the "true" left and right channels respectively. The operation, $V_{a}+-p\left(V_{a}+n V_{b}\right)$ results in,

$$
\begin{aligned}
V_{a}^{\prime} & =-p(a+m b+m n a+n b) \\
& =-p[a(1+m n)+b(m+n)]
\end{aligned}
$$

Now if $n=-m$, then $V_{a}^{\prime}=-p a\left(\mathbf{1}-m^{2}\right)$, i.e. crosstalk is eliminated and the output is reduced in amplitude by ($1-m^{2}$). To compensate for this gain reduction, p is increased to $1 \cdot 12$ for the condition when $n=-0.25$, i.e. a 1 dB rise.

Appendix 2

Fig. 3 shows the equivalent a.c. circuit of Fig. 2, using the small signal equivalent circuit of the transistors, modified for simplicity. If the emitter voltage source resistance R_{e} is small, the emitter voltages
are V_{a} and V_{b} respectively. Stating Kirchoff's current junction law at the emitters,

$$
I_{a}-I_{1}+I_{3}=0
$$

and

$$
\begin{gathered}
I_{b}-I_{2}-I_{3}=0 \\
I_{a}+\frac{V_{b}-V_{a}}{R_{x}}-\frac{V_{a}}{R_{w}}=0
\end{gathered}
$$

and

$$
I_{b}-\frac{V_{b}-V_{a}}{R_{x}}-\frac{V_{b}}{R_{w}}=0
$$

Thus:

$$
I_{a}=V_{a} \frac{\left(R_{x}+R_{w}\right)}{R_{x} R_{w}}-\frac{V_{b}}{R_{x}}
$$

and

$$
I_{b}=V_{b} \frac{\left(R_{x}+R_{w}\right)}{R_{x} R_{w}}-\frac{V_{a}}{R_{x}}
$$

So there is a negative crosstalk component in the emitter currents. If the source resistance R_{c} is taken into account the equations become rather complicated, but if $R_{c}{ }^{\prime}$ is very large and the load resistance can be neglected, then application of Kirchoff's law at the collectors gives,

$$
I_{a}-I_{4}-I_{6}=0
$$

and

$$
I_{b}-I_{5}+I_{6}=0
$$

Adding,

$$
I_{a}+I_{b}=I_{4}+I_{5}
$$

Therefore,

$$
V_{b}^{\prime}=-V_{a}^{\prime}-\frac{R_{z}}{R_{w}}\left(V_{a}+V_{b}\right)
$$

Substitution, manipulation and rewriting give,

$$
V_{a} a^{\prime}=-m p\left(V_{a}+n V_{b}\right)
$$

and

$$
V_{b}^{\prime}=-m p\left(V_{b}+n V_{a}\right)
$$

where m is a constant, equal to the circuit gain when n is zero, i.e. when $R_{x} R_{z}=R_{w} R_{y}$. With the component values of the practical circuit (Fig. 2)

$$
\begin{array}{ll}
m=1 \text { and }, & R_{w}=2.4 \mathrm{k} \Omega \\
& R_{x}=1.2 \mathrm{k} \Omega \\
R_{y}=2 x \mathrm{k} \Omega \\
& R_{z}=(3-x) \mathrm{k} \Omega,
\end{array}
$$

where x is the fractional rotation of the control (between 0 and I).

Fig. 4 shows the predicted characteristics of p and n. It is a simple matter to arrange for the circuit to have gain. For a gain of m, the collector components R_{6}, R_{7}, R_{13} and R_{14} should all be multiplied in value by m. Alternatively the emitter components R_{5}, R_{10}, R_{18} could all be divided in value by m. Obviously the biasing should be recalculated to ensure efficient usage of the rail voltage.

The variable-capacitance diode, or varactor as it is often called, is now quite widely used for tuning purposes, but little information about it seems to have been published. The capacitance of any semiconductor junction diode which is reverse biased varies with the magnitude of the reverse bias, the capacitance decreasing with the applied voltage. In ordinary diodes the capacitance is associated with quite high resistive losses, but in the special varactor diodes these losses are sufficiently reduced for them to be very useful devices for tuning purposes.

One example of the varactor is the Motorola 1N5145A. At 4 V reverse bias this has a capacitance of $27 \mathrm{pF} \pm 1.3 \mathrm{pF}$ and a nominal capacitance ratio of 3.4 (minimum ratio 3.2) when the applied bias is changed to the maximum rated value of 60 V . The nominal minimum capacitance is thus 7.85 pF . In practice one cannot achieve quite such a small minimum capacitance because it is necessary to restrict the reverse bias to less than 60 V in order that 60 V is not exceeded under worst-case conditions. The Q is 200 at 50 MHz which is a good deal higher than that of the average inductor with which it will be associated.

The law of variation with voltage is, approximately, an inverse square-root one. However, series fixed capacitance is usually needed to allow the application of the reverse bias and a tuned circuit always has shunt capacitance so that the law of variation of frequency with voltage is quite a complex expression. It turns out in practice, however, that frequency is almost exactly proportional to the logarithm of the voltage.

Fig. 1 shows the circuit of an oscillator in which the frequency is controlled by a varactor diode. The circuit is basically that of a Colpitt's oscillator in which the $6.8-\mathrm{pF}$ capacitor forms one of the split capacitors and the base-emitter capacitance of the transistor forms the other.
Fig. 2 shows the measured frequency of oscillation plotted against the reverse
bias voltage V_{d}. The amplitude of oscillation was about 1.1 V peak. It must, of course, be less than the minimum reverse bias to prevent the varactor from conducting during part of the r.f. cycle. It should be much less to minimize capacitance variations during the cycle. It can be seen from Fig. 2 that only three of the points lie slightly off the straight line drawn through the other 10 points and it is probable that this is because of experimental errors.

This law of frequency variation will hold for any mid-band frequency as determined by the inductance, as long as the circuit continues to oscillate with the capacitance values given.

Fig. 1 Circuit of a transistor oscillator using a varactor diode

Fig. 2 Variation of oscillator frequency with varactor bias

Wireless World Logic Display Aid

8: Some demonstration circuits. Using a large screen oscilloscope

designed by B. S. Crank*

In this, the last article in the series, a few circuits will be described that may be used with the Wireless World Logic Display Aid to demonstrate various logic functions. Also a modification to the blanking arrangements allowing the instrument to be used with large, slow-scan demonstration oscilloscopes, will be discussed (See also "Letters to the Editor", p. 519, November issue).

AND-OR demonstration unit

This unit consists of a box containing 32 switches arranged as per Fig. 91. The switches are grouped in sets of eight and are labelled A, B, C, D, $\bar{A}, \bar{B}, \bar{C}, \bar{D}$. The variables represented by the switches in a particular group will be "ANDed" together when the appropriate switches are operated. For instance, if S_{1}, S_{6}, S_{3} and S_{8} are operated the display aid will show the function $A \bar{B} C \bar{D}$. The TRUE variables are allocated red switches and the complements have black switches.

Switches operated in different groups will be "ORed" together. The exclusive OR function would be set up as follows:

$$
\begin{aligned}
\text { exclusive } \mathrm{OR} & =\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B} \\
& =S_{1} S_{6} \quad S_{13} S_{10}
\end{aligned}
$$

Because there are four groups of switches Boolean expressions consisting of four sets of AND terms can be "ORed" together. Some examples are the binary SUM and CARRY equations:

$$
\begin{aligned}
& \text { SUM }=\mathrm{A} \overline{\mathrm{~B}} \bar{C}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A} B \bar{C}+\mathrm{ABC}} \\
& \mathrm{CARRY}=\mathrm{ABC}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A} B C}+\mathrm{ABC}
\end{aligned}
$$

Fig. 91. Front panel layout of the $A N D-O R$ demonstration unil.

Basic facts like $A \bar{A}=0$ and $A+\bar{A}=1$ can be instantly demonstrated using the demonstration unit. It can also be used to demonstrate minimization ($\mathrm{ABC} \overline{\mathrm{D}}+\mathrm{ABCD}=$ ABC .etc.)

The switches used are miniature two-pole changeover types obtainable from G. W. Smiths. A 10% reduction on the catalogue price can be obtained if 32 are purchased.

Fig. 92 shows part of the circuitry of the demonstration unit. One four-input gate, expanded to nine inputs with five diodes, is used for each group of switches. The common point of the diodes is connected directly to the input node of the gate (pins 3 or 11 of ZN33OE-see Fig. 29, June issue). Operation of a switch will connect the variable represented by that switch to one of the inputs of the gate for the particular group.

Fig. 93 shows the remainder of the circuitry which earths one of the inputs to the gate for a particular group of switches when all switches in that group are open. If this were not done, then, unless at least one switch in each group is operated, the output from the demonstration unit would permanently be at logical 1.

If the black switches are taken to represent the TRUE variable and the red the complement, and if the output of the unit is connected to the $\overline{\mathrm{Z}}$ input terminal of the display aid the unit will operate in negative logic and will therefore perform the NAND-NOR functions.

Basic logic function unit

This consists of a box, which is plugged into the output variable socket of the display aid, and has outputs corresponding to the main logic functions. The front panel is shown in Fig. 94 and in use the Z input to the display aid is connected to one of the gate outputs on the front panel.

The circuit is shown in Fig. 95 where it can be seen that the OR function is obtained by feeding \bar{A} and \bar{B} and \bar{C} to a NAND gate. Wire-up the circuit as illustrated in Fig. 96 using two ZN362Es.

Demonstrating sequential logic circuits

The output of the sequential logic circuits can be displayed on the instrument provided the frequency of operation is low enough to be followed with the eyes. All that needs to be done is to compare the output of the sequential circuit with the output variables of the display aid in such a way as to provide a Z output when both are in the same condition. In our example of Fig. 97 we have used a two-bit binary counter which can be made to cycle continuously or operate in a single shot mode. In the prototype of this circuit which was built on a single plugin card, a four-bit counter was employed with an extra

[^3]

Fig.92. Some of the switch wiring.

Fig.93. The remainder of the swilch wiring.

Fig. 94. Front panel of the basic logic funclion unil.
(Righl)
Fig. 95. Showing how the basic logic funclions are oblained with NAND gates.

(Right)
Fig.96. Practical wiring diagram of Fig. 95.

(Below)

Fig.97. Demonstrating sequential circuils, A two bil counter which may be extended to four or six bils, depending

From logle display aid
upon instrument lype.

Fig. 98. Allering the blanking arrangements to give beller performance and aboul 4 V oulpul for LAN Electronics' 19-in oscilloscope.
switch which altered the length to three bits when required. The switch S_{2} allows the output of a lowfrequency multivibrator for continuous operation, or a trigger circuit for single shot operation, to be selected. S_{1} causes the counter to increase one count at a time when S_{2} is in the single shot position.

The output of any sort of counter, be it n.b.c.d., Johnson, etc., can be displayed in this way so that all the possible states are seen in turn on the screen. The same limitations as for combinational circuits apply of course, three outputs for Venn diagrams and Truth tables or four or six outputs (depending on instrument type) for Karnaugh maps.

Using the instrument with a large oscilloscope

For a demonstration it was necessary to use a large 19 -inch screen slow-scan oscilloscope. The particular instrument chosen was manufactured by LAN Electronics Ltd. An examination of the specification showed that the Z axis required a normal logic input of only about 4 V for full modulation of the beam.

The circuit was altered accordingly using much the same principle as before. The blanking arrangements used in the display aid did not prove very satisfactory in this case as several of the dots appeared as lines.

The circuit of Fig. 98 was finally employed. The 60 V power supply and the video amplifier were no longer required and were dispensed with. The transistor of Fig. 98 is normally held on by the base resistor. On the receipt of a negative transient from the clock generator the transistor switches off for a time determined by the $0.05 \mu \mathrm{~F}$ input capacitor. The pulse at the collector is used to trigger the monostable of Fig. 69 (Sept. issue) via C_{9}. The video output to the large oscilloscope was taken from the junction of the output of the monostable and the video output of the logic circuits. The monostable clamps the video output of the logic circuits and therefore the necessary delay between a clock pulse and the video output signal is provided.

To revert to modification -4 in the October issue it should have been mentioned that it is necessary to reduce the size of the clock generator capacitors to $0,01 \mu \mathrm{~F}$ to prevent flicker.

Announcements

"Micro-electronics applied to digital systems" is the title of a course of lectures organized by the Electrical \& Electronic Engineering Department of Sunderiand Polytechnic. The lectures are offered both as an evening course and a day course commencing in January.

The Yorkshire Television careers film 'I am an engineer-electrical', a 16 mm black-and-white film lasting 20 minutes, is now available on loan from the Education Department, Institution of Electrical Engineers, Savoy Place, London W.C.2.
"Introducing metrication into your company" is the title of a one-day seminar organized by Business \& Industrial Training Lid, (161-166 Fleet Street, London E.C.4) in association with Engineering Materials © Design to be held at the following venues: Airport Excelsior Hotel, Manchester (December 2nd); Royal Garden Hotel, London (December 9th); Airport Excelsior Hotel, Birmingham (December 11th). The fee is $£ 20$.

Techmation Lid are to hold an international seminar on analytical laboratory techniques at the Royal Garden Hotel, London W.8, from December 2 nd to 4 th . Tickets are available from Tachmation Lid, 58 Edgware Way, Edgware, Middx.

Pye of Cambridge Lid is bringing together the aviation activities of Ekco Electronics Ltd in the radar field and those of Pye Telecommunications Led in the airport and ground-to-air communications field. The merged facility will become the Ekco Electronics Aviation Division of Pye Telecommunications on January 1st. In a parallel move, Ekco Electronics instrument activity will be re-named Ekco Instruments Litd.

Interdata Inc., of Oceanport, New Jersey, has formed a wholly-owned British subsidiary 10 market its products. The new company, Interdata Ltd, Station House, Harrow Road, Wembley, Middx, will be responsible for the sale of the parent company's range of small, real-time, on-line control computers.

Following the introduction of an all-solid-state data transmission keyboard, the American company Ikor Inc. have opened a U.K. office at Chiltern House, Oxford Road, Aylesbury, Bucks, to handle local manufacture and marketing of the keyboard.
A new company, Hytron Ltd, Park Road, Crowborough, Sussex, has been formed to manufacture and sell data communications and storage equipment. The managing director is J. Hale and marketing director A. Thomas.

Alfred Herbert Ltd, of Coventry, have announced the amalgamation of two of their operating companies, Sigma Instrument Co. Lid and Herbert-BSA Electrics Lid, to form a new company called Herbert Controls and Instruments Ltd.

Electrical Remote Control Co. Ltd, and Raymend Engineering Inc, of Connecticut, have formed a joint company, Raymond Controls Corporation, which will manufacture, import and market Elremco products in the U.S.A. and Latin America.

Racal Electronics Lid, of Bracknell, Berks, and the Antenna Products Company of Texas have announced an agreement whereby Racal has exclusive representation of A.P.C. outside the American continent. A.P.C. are manufacturers of m.f., h.f., v.h.f., and u.h.f. aerials, and specialize in log periodic types.
Racal Electronics Ltd has announced that following discussions with the Ministry of Technology and the Industrial Reorganization Corporation it is selling the business and certain assets of Airmec-AEI L.td (acquired when it took over the Controls \& Communications group) to the Plessey Company Ltd.
Dixons, of 3 Soho Square, London, W.1, have been appointed exclusive U.K. distributors for the Ikegami range of closed-circuit television equipment.

Salford Electrical Instruments has signed an agreement to market in the U.K. the range of Petercem micro switches manufactured by Compagnie Electro-Mécanique, of France.

A marketing agreement has been announced between B \& K Instruments Ltd and Intecole Systems Ltd, manufacturers of 'MODULOG' data logging equipment. B \& K will distribute 'MODULOG' and provide full after-sales service in the U.K. and Eastern Europe.

The sale of Eddystone Radio's semi-domestic receivers is now concentrated through Alfred Imhof Lid, 112-116 New Oxford Street, London W.C.1, who will act as main distributor.

Amalgamated Wireless (Australasia) Ltd, have appointed Marconi Instruments as servicing agents in the U.K. for their telecommunications test gear.
London Weekend Television have purchased five RCA vision tape recorders, type TR-70B, as part of their colour expansion. The contract is valued at nearly $£ \frac{1}{4} \mathrm{M}$.

STARPHONE bySTC

The World's Smallest UHFRadiotelephone

The Starphone is unique.
It's the first radiotelephone designed to go in the pocket without external wires or rods. Operating on UHF, STC Starphone has an astonishing penetration of buildings and steel structures, and can give you instant two-way communication with your staff over a wide area.

Write for details to
STC Mobile Radiotelephones Limited, New Southgate, London N.II. England. Telephone: 01-368 1200. Telex: 261912.

low-noise recording tape

quiet as a mouse I

don't buy any tape - buy EMITA風号

THE RANGE OF EMITAPE AFONIC LOW-NOISE TAPE

STANDARD PLAY
The best general purpose tape, giving maximum durability at all professional speeds. Pre-stretched polyester base film of super strength.

99

long play
50% longer
recording time specially designed for multi-track recorders - pre-stretched polyester base film of super strength.

100
DOUBLE PLAY
Twice the recording time for a given size of spool - the perfect film for low speed, multi - track recorders - superflex polyester base film.

300
TRIPLE PLAY
Maximum playing time on
spools up to $5^{\prime \prime}$ dia.extended dynamic range - specially suitable for battery operated recorders-extra tensile polyester base.

Letter from America

Japanese competition is causing some concern in American Trade Union circles and th presidents of three of the largest unions in the electrical industry recently appealed to the Nixon administration to curb imports of electrical goods. One union leader said "This rapidly rising flood of imports from Japan, Taiwan, Korea, Hong Kong and Mexico has almost eliminated U.S. domestic production in some segments of this industry". Another official stated that "More than 50% of the black-and-white TV sets sold in the U.S. during 1969 will be of foreign manufacture".

The situation is complicated by some U.S. manufacturers taking advantage of the fact that components can be sent "offshore" to be assembled and returned on a Low Value Added duty. The low wages being of course the added value. According to the Tariff Commission, about $\$ 270$ million a year of electronic products-plus some $\$ 13$ million in scientific instruments-are involved.

One area in which the Japanese are now making considerable inroads is the electronic desk calculator field. In fact, it is estimated they already have 50% of the total sales (currently assessed at 100,000 machines a year). A typical machine is the new Toshiba BC- 1212 which is a 12 digit, one memory model costing less than $\$ 500$ ($£ 210$).

Super high-gain bipolar transistors will become serious rivals to f.e.ts in the near future. At the moment they are a little more expensive but they do offer some definite advantages such as lower leakage current and wider temperature ranges. National Semiconductor have used them in their new LM108 op. amp.-replacing the f.e.ts used in earlier types. It is claimed that the input error current equals the f.e.t. up to $50^{\circ} \mathrm{C}$ but is far superior at 125°. Robert Wedlar, the designer, said the current is so low at 125° that it could not be compared with an f.e.t-or even a complicated chopper stabilized amplifier costing much more. The performance is limited by leakages in the printed boards, resistors and capacitors rather than the amplifier itself. These super-gain transistors operate at virtually zero voltage so it is necessary to use a bootstrap circuit in the LM108 but the offset voltage is typically less than 1 mV . The low current error means that the 108 can be used with configurations not possible with more conventional amplifiers. It can operate from source resistances as high as $10 \mathrm{M} \Omega$,
introducing less error than other units with $10 \mathrm{k} \int_{2}$ sources. This high resistance allows time delays in analogue circuits of up to one hour with capacitors no larger than $1 \mu \mathrm{~F}$!

RCA have just released a new time-sharing computer (model 61) which is designed for a lease price of about $\$ \$ 0,000$ a month-or a cool $\$ 2 \frac{1}{4}$ million cash. According to RCA's T. A. Smith, the computer revolution is only just beginning and it is destined to have a greater impact on everyone's life than originally envisaged. Some of the advances in communications expected during the next few years include students operating "teacher" computers, housewives using a special video console to order groceries and automatic car control for commuters. This last named idea is not really so far fetched and much work has already been carried out by various research organizations and highway authorities using embedded control circuits and ancillary equipment for long-distance expressways. A form of automatic control for cars was demonstrated recently by the Mellon Institute. It rejoices in the name Computerised Energy Distribution and Automatic Control, or CEDAC, and it is intended to replace automotive electrical circuitry, improve safety-and cut repair bills into the bargain! Two computers are used one to control 18 functions and the other to diagnose electrical troubles. Integrated circuits are used extensively and a driver-operated master display panel transmits signals to the central computer to perform such functions as operating door locks, windscreen washers, power windows and lighting. Capacity is provided for climate control, anti-skid devices, fuel injection and transmission and ignition sub-systems. A digital display panel can be incorporated which will provide instantaneous readout of speed, oil prèssure, fuel level, engine temperature, etc. If any trouble develops, the diagnostic computer will analyse it.

A new plastic developed by Union Carbide would appear to have many advantages over existing materials. It is called Parylene and it is a better insulator than epoxys, silicones or urethanes, has a higher resistance to moisture and thermal expansion is very low. Applications include semiconductor barrier coatings, corrosion protection and encapsulation. One company-Rockwell-has been working with NASA developing techniques for vacuum depositing Parylene on complex circuit assemblies and it is claimed that tests
have been very successful. Not only are electrical parameters unchanged after many hours of stringent tests but the deposited film can conform to very complex shapes.

In a new book entitled "A biography of the Watsons and I.B.M." author W'illiam Rodgers says "In all the world, one corporation dominates the future-I.B.M." The New York Times book reviewer thinks this is a little extravagant but concedes that I.B.M. does employ 250,000 people (more than half are college graduates) and that current stock value is more than the gold ever held in Fort Knox. According to Rodgers, I.B.M. activities "cover much of the worlds advanced technology in space, on the earth, under the seas and in thousands of industries". Although I.B.M. have a reputation of being a forward looking, enlightened company, I, for one, find the move towards larger and larger conglomerations very disquieting. Many business experts are predicting a greater and greater swing towards an international business oriented world during the next few years. For instance, Dr. Perlmutter, Professor of Industry at the University of Pennsylvania, believes that by 1985 there will be 200 or 300 super giant multi-national firms dominating the world. The National Industries Conference Board estimates that by 1975 some 25% of the gross national product of the free world outside the U.S. will come from branches and subsidiaries of U.S. companies operating abroad. Not enough people know that this is a two-way affair-last year foreign investors put over $2 \frac{1}{2}$ billion dollars into U.S. industry via the stock exchanges. This international business accord has been welcomed by some who feel it will help the "one world" concept. Whether people will like living in a computerized world, dominated by super-national corporations is another matter!
A great deal of interest was aroused by the new RCA Selectavision (SV) video cartridge tape recorder when it was demonstrated recently. This uses laser technology and it can be attached to any colour TV set (although the user cannot tape his own programmes). The tape is made of plastic and the recordings are made by an electron beam system. The tape or "colour encoded master" is then developed and converted by a laser to a series of holograms recorded on the tape with photoresist. After chemical treatment a nickel master is made and this is so durable that it can make many thousands of tapes without degradation. The playback equipment consists of a very low power laser tube plus a basic form of TV camera. The laser beam passes through the tape to the pick-up tube which sees the image colours as coded variations. How does the SV compare with the E.V.R. system of C.B.S.? Well, RCA see the most significant difference in the cost as they expect to market the system for less than $\$ 400(\mathbb{1} 67)$. Tape prices are believed to be around $\$ 10$ for a 30 minute programme and $\$ 18$ for 60 minutes. Some months ago C.B.S. said that the E.V.R. unit would sell for $\$ 800$ and tapes would be $\$ 40$.

Operational Amplifiers

10. A triangular, square-wave generator

by G. B. Clayton, B.Sc., A.Inst.P.

The circuit to be described uses an operational integrator supplied with a constant input to generate a precise triangular wave. A schematic diagram illustrating the principle of operation is given in Fig. 8. Two amplifiers are used, one acting as an integrator $\left(A_{1}\right)$ and the other $\left(A_{2}\right)$ acting as a regenerative com-
parator. Diodes D_{1}, D_{2}, D_{3} and D_{4} determine the direction of current flow into the integrator. When the comparator output is at its positive level ($V_{0}{ }^{+}$) diodes D_{1} and D_{4} are reverse biased, diodes D_{2} and D_{3} are forward biased and a current $+E_{s} / R_{3}$ flows through D_{2} to the summing point of amplifier A_{1}. The output voltage of this

Fig. 8. Schematic for generator of triangular and square waves.

Fig. Io. Waveforms in the triangular- and square-wave generator.

$$
\begin{aligned}
t_{1} & =\left(V_{0}+-V_{0}^{-}\right) \frac{R_{1}}{R_{2}} \cdot \frac{C R_{3}}{E_{s}} \\
t_{2} & =\left(V_{0}^{+}-V_{0}^{-}\right) \frac{R_{1}}{R_{2}} \cdot \frac{C R_{4}}{E_{8}} \\
e_{02}- & t_{1}
\end{aligned}
$$

(b)
amplifier runs down at a rate $-E_{8} / R_{3} C$ volts/sec (Fig. 9(a)). With the comparator output at its negative value (V_{0}^{-}) a current $-E_{s} / R_{4}$ flows through diode D_{4} away from A_{1} and A_{1} output voltage runs up at a rate $+E_{s} / R_{4} C$ volts/sec (Fig. 9(b)).

The output from the integrator (amplifier A_{1}) is applied to the non-phase-inverting terminal of amplifier A_{2} (the comparator) through the resistor R_{1}. The phase-inverting input terminal of amplifier A_{2} is connected to earth. The comparator makes a transition between states when the voltage between the two input terminals of A_{2} goes through zero. When the comparator output is in its positive state $V_{0}{ }^{+}$the transition occurs when the output from the integrator is

$$
\mathrm{e}_{01}=-\left(V_{o}-\frac{R_{1}}{R_{2}}\right)
$$

and when the comparator output is in its negative state the transition occurs when

$$
\mathrm{e}_{01}=-\left(V_{o}+\frac{R_{1}}{R_{2}}\right)
$$

Waveforms are illustrated in Fig. ro. The frequency and the periods t_{1} and t_{2} are conveniently set by choice of R_{3}, R_{4} and C.

A practical circuit giving component values is illustrated in Fig. 11. A single integrated circuit having two op. amps formed on the same silicon chip mounted in a single dual-in-line pack was selected for use. There are now several of these dual op. amps commercially available at modest cost; in fact the price of a dual amplifier is very little more than that of a single amplificr and this makes multi amplifier circuits economically attractive.

In the circuit a frequency compensating capacitor of value $4,700 \mathrm{pF}$ is connected to the input lag compensating terminals of the amplifier used as an integrator. No frequency compensation is applied to the amplifier acting as the comparator. Diode clipping, using a 470Ω resistor and four silicon diodes, is employed to accurately define the comparator output swing ($V_{0}{ }^{+}$ and V_{0}^{-}).

The oscillograms (Fig. 12) show the triangular and square waveforms produced by the circuit using various values for R_{3}, R_{4} and C. If the circuit were to be made the basis of a function generator frequency ranges could be conveniently selected by switching in different values of C and a fine control of frequency could be obtained by using potentiometers for R_{3} and R_{4}. Unity mark-space ratio is obtained for equal values of R_{3} and R_{4}, a variable mark-space ratio for independent variation of R_{3} and R_{4}.

The circuit functions over a wide frequency range from very low frequencies of order 0.2 Hz to 100 kHz . The $5 \mathrm{k} \Omega$ potentiometer is used as a balance control to cancel integrator drift due to initial amplifier offsets; the adjustment is made at the lowest frequencies. With $R_{3}=R_{4}$ magnitude, say $2 \mathrm{M} \Omega$, and $C=1 \mu \mathrm{~F}$ the balance control is adjusted to give a waveform with unity mark-space ratio. The effects of integrator drift are only really appreciable for the longer timing periods and if very low frequency operation is not required the

Fig. 12. Waveforms from the trianguiarand square-wave generator for different values of C, R_{3} and R_{4}. In (a) $C=I \mu F$, $R_{3}=56 \mathrm{k} \Omega, R_{4}=680 \mathrm{k} \Omega$; horizontal scale $50 \mathrm{~ms} / \mathrm{div}$. In (b) $C=0.01 \mu \mathrm{~F}$, $R_{3}=56 \mathrm{k} \Omega, R_{\mathbf{4}}=18 \mathrm{k} \Omega$; horizental scale $0.1 \mathrm{~ms} / \mathrm{div}$. In (c) $C=220 \mathrm{pF}$, $R_{3}=27 \mathrm{k} \Omega, R_{\mathrm{s}}=27 \mathrm{k} \Omega$; horizental scale I $\mu \mathrm{s} / \mathrm{div}$. All waveforms, vertical scale $2 \mathrm{~V} / \mathrm{div}$.
integrator balance control could well be omitted from the circuit. At the higher frequencies the output triangular wave from the integrator shows marked switching transients (Fig. 12(c)).

Precise rectifiers

The following section was regrettably omitted from an earlier issue. With it we conclude Mr. Clayton's series of articles on op. amps.

The forward voltage drop across a solidstate diode can cause errors when the device is used for low-signal levels in a conventional rectification or detection circuit. Op. amps can be combined with diodes and resistors to perform almost ideal rectification.

For positive input signals D_{1} is forward biased and D_{2} is reverse biased; the output voltage is zero with output impedance R_{2}.

Half Wave Rectifier

For negative input signals D_{1} is reverse biased, D_{2} is forward biased and the output voltage is $-e_{i}\left(R_{2} / R_{1}\right)$ with output impedance equal to the closed-loop output impedance of the amplifier. Dependent on the choice of R_{2} / R_{1} the circuit may be used to produce gain as well as rectification. The circuit may be adapted to summation by the connection of appropriate input resistors to the amplifier summing point. In this case the amplifier will give half-wave rectification of the sum of the input signals.

Full Wave Rectifier (a)

The circuit shows an arrangement commonly used to obtain full-wave rectification. The first amplifier acts as a half-wave rectifier and the second amplifier as an adder. For negative input signals D_{2} is reverse biased and $e_{2}=0$; the output from the second amplifier is thus $e_{0}=-e_{i}$. For positive input signals D_{2} is forward biased and $e_{2}=-e_{1}$. The output from the second amplifier (the adder) is thus $e_{0}=-\left(e_{i}+2\left(-e_{i}\right)\right)=e_{i}$.
Full Wave Rectifier (b)

For positive inputs D_{2} is reverse biased and the two inverting amplifiers are in cascade

$$
\left|\frac{e_{0}}{e_{i}}\right|=\frac{R_{2} R_{5}}{R_{1} R_{4}}
$$

For negative input signals D_{1} is reverse biased and there are then two feedback paths to the summing junction of amplifier A_{1}, one from the output of A_{1} through D_{2} and R_{3} and the other from the output of A_{2} through R_{5}, R_{4} and R_{2}.
With the usual summing point restraints we have $I_{1}=I_{2}+I_{3}$. This gives
$\frac{e_{i}}{R_{1}}=-\left(\frac{e_{0}}{R_{5}+R_{4}+R_{2}}+\frac{e_{3}}{R_{3}}\right)$
But

$$
e_{3}=e_{4}=e_{0} \frac{R_{2}+R_{4}}{R_{5}+R_{4}+R_{2}}
$$

$$
\left|\frac{e_{0}}{e_{i}}\right|=-\left(\frac{R_{2}+R_{4}+R_{5}}{R_{3}+R_{2}+R_{4}}\right) \frac{R_{3}}{R_{1}}
$$

Using equal value resistors throughout makes

$$
\left|\frac{e_{0}}{e_{i}}\right|_{+}=1 \quad \text { and } \quad\left|\frac{e_{0}}{e_{i}}\right|_{-}=-1
$$

Circuit (b) offers several advantages over (a). The current drain on the driving source is less, for in circuit (a) the input signal drives two amplifiers in parallel. All resistors may be made equal in circuit (b) and equal value resistors are easy to select for high accuracy. Circuit (b) may be adapted to summation by the connection of additional input resistors to the summing point of amplifier A_{1}.

World of Amateur Radio

Amateur $\mathbf{7 0 - c m}$ band coveted

British amateurs are reacting sharply to repeated demands by prominent manufacturers of mobile and personal two-way business communications equipment that the mobile u.h.f. band should be extended downwards to 420 MHz , thus threatening the entire amateur $70-\mathrm{cm}$ band which currently extends in the U.K. from 425 to 429 and 432 to 450 MHz . While such proposals are usually accompanied by the rider that provision would have to be made for amateurs, no suggestions have been made as to how this could be done without seriously impairing the usefulness of this important amateur band. When the $70-\mathrm{cm}$ band was released in October 1948, it was then 40 MHz wide, but over the years it has been whittled down to the present 22 MHz .

Amateurs point out that they were making effective use of these allocations for many years before the mobile services made practical use of u.h.f.; indeed, amateur development paved the way for the present increasing use of u.h.f. by the mobile services. Almost all amateur television experimental work is concentrated in this band, which is also highly suitable for investigation of tropospheric propagation and for moon-bouncing.

In Region 1 (including Europe), with a few exceptions, no provision is made in the international allocation table for mobile services in the section 430 to 440 MHz ; in Region 2 (including U.S.A.) and Region 3 the entire allocation 420 to 450 MHz is shared by the radiolocation and amateur services.

A pertinent indication of the potential of these frequencies for extended distances is shown by the recent breaking of the world amateur $432-\mathrm{MHz}$ record by a two-way contact over the 1,185 -mile path between stations K2CBA, Petersburg, N.Y., and WODRL, Topeka, Kansas. Similarly, an amateur in Virginia recently became the first to work 20 States on this band. European activity includes frequent contacts between the U.K. and western European countries. The present width of the band is of importance in allowing regional sub-divisions and the voluntary allocation of the top 16 MHz to video transmissions for amateur television.

Long delay echoes

The renewed interest in long delay ("cosmic") echoes reported in August in this section has
already resulted in the total of useful reports of amateur experiences of this strange phenomenon rising to almost 50 . Professor Mike Villard (W6QYT), of Stanford University, is convinced that this is a phenomenon "the origin of which is crying out to be understood". The reports now range in frequency from 810 kHz up to and including 50 and 144 MHz , two frequency bands not normally associated with ionospheric propagation. The period of the echoes ranges from $\frac{1}{2}$ second to two reports of "super-long" delays of 5 minutes. The reports are now spaced in latitude from Canada to Peru; in longitude from Libya to the Marshall Islands; in time from 1932 to this summer. Preliminary analysis of the reports suggests that there are two main categories of echoes, one of which may be explainable in terms of retardation at the ionospheric critical frequency. The other category tends to occur at the time of opening or closing of transmission at a given frequency, when conditions are good for long distance propagation, often in times of low magnetic activity. Professor Villard (Stanford Electronics Laboratories, Radioscience Laboratory, Stanford, California) would welcome further reports from British Commonwealth amateurs.

The Young idea?

Recently a Cardiff youngster, Robert Ellis, passed his Radio Amateurs' Examination and morse test at the age of $13 \frac{1}{2}$ years, and thus qualified to receive his own licence at the minimum age of 14 years. (For many years, minimum British age for a full licence was 16-as your contributor who acquired an artificial aerial licence, 2 BUH , at 14 and G3VA at 16 well recalls.) An F.C.C. survey of new amateur licensees in the United States has shown that over the past 20 years there have been substantial shifts to both older and younger ages for obtaining a first licence. Although the median age of newcomers is now 24.0 , compared to 25.9 in $1949,36 \%$ of them are in the age group 16 and below, compared with only 8.5% in 1949. More than half of the newcomers were found to have been introduced to amateur radio through a relative or friend who already held a licence.

During a recent 14 MHz c.w. contest, which involved an exchange of "age" in place of the usual check serial number, the majority of operators were in the late twenties and early
thirties, though an overall spread of from 17 to 60 was noted during a short period of participation.

The latest (1970) issue of the R.S.G.B. Amateur Radio Call Book includes at least a few amateurs who are known to have held the original "three letter" call signs issued before the First World War; pre-1939 call signs represent about 13% of the current licences.

Royal Signals Society

The Royal Signals Amateur Radio Societywith a current membership of over 600 present and former members of the Royal Signals and the R.S. Territorial and Army Volunteer Reserve-is aiming to increase its membership to over 1000 by the end of 1970, which is the jubilee year of the Corps.

The Society, with members in many parts of the world, operates a headquarters station (G4RS and GB3RCS) at Blandford Camp, Dorset; produces a quarterly journal Mercury; operates a number of "nets" on several amateur bands and issues a number of awards. It also operates a QSL Bureau and acts as forum for and link between many wartime members of the Royal Signals, including the many amateurs who served in the various Special Communications Units, as well as those with much more recent experience in Army radio communications. General Secretary is: W.O. (F. of S.) J. Cooper (G3DPS), 15 Valley Road, Blandford Camp, Blandford Forum, Dorset.
In Brief: Overall winners of the 1969 V.H.F. National Field Day were the Mid-Essex VHFUHF Contest Group, with the Pennine V.H.F. Group as runners-up. . . . Preparation of the Australis-Oscar V amateur satellite continues with the electronic package undergoing radio-frequency-interference, telemetry sensor calibration, vibration and thermal tests. Amsat (Radio Amateur Satellite Corporation) is seeking launch facilities for this further amateur communications satellite from the U.S. government. . . . Thailand recently withdrew its objections to amateur communication between licensed Thai stations and those in other countries. . . . French amateurs have been instrumental in securing a law which forbids proprietors of apartment buildings opposing the installation of amateur aerials. ... The Derby society has reported its highest ever membership- 654 on the nominal role, with a fully paid-up membership of 221 of whom 107 hold transmitting licences. . . . The Clifton Amateur Radio Society with a clubroom open every Wednesday and Friday at 225 New Cross Road, London S.E.14, has been planning new activities to encourage wider membership (details from R. A. Hinton, 58 Camilla Road, S.E.16). .. A revised "band plan" for the 70, 144, 432 and 1296 MHz bands, as agreed at the 1969 I.A.R.U. Region 1 meeting at Brussels, comes into force (voluntarily) on 1st January, 1970. . . 144 MHz contacts have been effected by means of meteor scatter between Bulgaria (LZ1BW) and Holland and Luxembourg; a French amateur, F9FT, in Rheims has contacted SV1AB of Athens on s.s.b. also by means of meteor scatter.

Pat Hawker, G3VA

Test Your Knowledge

Series devised by L. Ibbotson*,
B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

19. Electronics Fundamentals

1. When a particular bipolar-transistor amplifier is used to amplify a sinusoidal signal the collector current flows for approximately $\frac{3}{4}$ of the input signal cycle. The mode of operation of the amplifier is:
(a) class A
(b) class B
(c) class AB
(d) class C .
2. Select, from the types of amplifier circuits described below, one in which voltage phase inversion occurs:
(a) triode-common grid
(b) pentode-cathode follower
(c) bipolar transistor-common collector
(d) field-effect transistor-common source.
3. The upper " 3 dB point" of one stage of a multistage aperiodic amplifier occurs at the frequency at which:
(a) the reactance of the coupling capacitor is equal to the input resistance of the next stage
(b) the susceptance of the coupling capacitor is equal to the total shunt conductance (formed by the output conductance of the stage combined with the input conductance of the next)
(c) The total shunt capacitance (the combination of the output capacitance, the stray capacitance between the stages and the input capacitance of the next stage) has a reactance equal to the input resistance of the next stage
(d) the susceptance of the total shunt capacitance is equal to the total shunt conductance.
4. Considering pentodes, bipolar transistors, junction f.e.ts and m.o.s.ts, the "Miller effect" (by which the input capacitance of an amplifying device is many times larger when it is in operation than the "cold" value) is normally significant in voltage amplifiers using:
(a) any of the four
(b) bipolar transistors only
(c) bipolar transistors or junction f.e.ts but not pentodes or m.os.s.ts
(d) all except pentodes.
5. The advantage of coupled tuned circuits for linking r.f. amplifiers in cascade,

[^4]compared to any other form of coupling is: (a) the amplifying-device gain is greatest
(b) the gain frequency characteristic is nearest to the ideal
(c) unwanted feedback is reduced
(d) the transformer coupling the circuits gives extra amplification.
6. The power delivered to its load by a normal power amplifier is supplied
(a) entirely by the d.c. supply
(b) entirely by the input signal
(c) partly by the d.c. supply and partly by the input signal
(d) by the active device (valve or transistor).
7. A low-frequency power amplifier (using a pentode or transistor, with a fixed supply potential and transformer-coupled load) will, in all cases, deliver its maximum undistorted output power to a load which has a transformed value presented to the device:
(a) equal to the device output resistance
(b) equal to twice the device output resistance
(c) equal to half the device output resistance
(d) unrelated to the device output resistance
8. The use of push-pull configuration in a power amplifier has a number of advantages when compared to the use of a single-ended configuration (using in each case devices of appropriate power dissipation; the supply voltage, class of operation and power output being the same). Select from below the quoted advantage which does not apply:
(a) non-linear distortion in the output may be reduced
(b) an unbalanced input to the stage can be used
(c) the output transformer is used more efficiently
(d) the effect of variations in the supply potential is reduced.
9. Complementary-symmetry circuits can be constructed using:
(a) any of the normal range of active devices
(b) valves only
(c) bipolar transistors only
(d) bipolar transistors or f.e.ts.
10. A particular amplifying device has a dynamic transfer characteristic (mutual characteristic) of which the slope increases as the output current increases. If it is used in a large-signal amplifier, over a range in which this characteristic can be regarded as parabolic, the harmonic distortion produced will:
(a) be negligible
(b) consist predominantly of even harmonics
(c) consists predominantly of odd harmonics
(d) include equal amounts of even and odd harmonics.
11. The application of negative feedback to an amplifier always results in:
(a) an increase in input impedance
(b) an increase in output impedance
(c) an increase in signal-to-noise ratio at the output
(d) a decrease in the harmonic distortion produced by the amplifier.
12. An emitter-follower circuit is generally used to match a high impedance output to a low impedance load. In addition it imposes on the signal:
(a) a voltage and a current gain
(b) a voltage gain but a current loss
(c) a current gain but a voltage loss
(d) a loss of both current and voltage
13. When an $L C$ sinusoidal oscillator is operating in its steady-state condition, the loop gain at the oscillating frequency must be:
(a) unity
(b) minus unity
(c) greater than unity
(d) positive, and less than unity.
14. An active device with an a.c. negative resistance characteristic is connected in shunt with a parallel tuned circuit. Oscillations of finite amplitude will occur provided the maximum value of the magnitude of the negative resistance of the device for the particular bias used is:
(a) zero
(b) greater than the dynamic impedance at resonance of the tuned circuit
(c) equal to the dynamic impedance at resonance of the tuned circuit
(d) less than the dynamic impedance at resonance of the tuned circuit.
15. The open-loop gain of an ideal operational amplifier should be:
(a) zero
(b) unity
(c) 3 dB
(d) infinity.
16. The most common fault in the operation of directly-coupled amplifiers is:
(a) drift
(b) variation in the gain
(c) a tendency to oscillate
(d) excessive noise generation

Personalities

John M. Groocock, Ph.D., recently appointed director of quality control for the European area by the International Telephone and Telegraph Corporation, has been with Standard Telephones and Cables (an IT.T. associate) since 1958 where for three years he was concerned with transistor design. In 1961 he was appointed quality assurance manager for Transistor Division and later assumed responsibility for quality and reliability at both the Harlow and Footscray semiconductor manufacturing plants. In his new appointment Dr. Groocock will assume overall responsibility for the quality and reliability of all products leaving I.T.T. factories in the European area, including the UK. Prior to joining S.T.C. he spent seven years with the Ministry of Supply after undertaking research at Imperial College for his Ph.D.
M. H. Easy, director of development at Decca Radar Lid, has been awarded the annual trophy of the Radar and Electronics Association for his "outstanding contribution to the radar and electronics industry". Mr. Easy joined the Decca Navigator Company from the Royal Air Force in 1945, transferring to Decca Radar Lid at the company's inception in 1949. As a Squadron Leader during the war Mr. Easy was responsible for the ground stations of the "OBOE" blindbombing system which was used so successfully by "Pathfinders".

Anthony S. Pudner, M.B.E., F.I.E.E., F.I.E.R.E., engineer-in-chief of the Cable \& Wireless Group for the past four years has been appointed a director. Educated at the Imperial Service College, Windsor, Mr. Pudner, who is 52, joined C. \& W. in 1934. His overseas service included two years (1950/2) in Korea in charge of the company's field telegraph unit. He recently became a vice-president of the Institution of Electronic and Radio Engineers. Cable \& Wireless have also announced the appointment of Peter A. McCunn as a director. He is 46 and has been traffic manager for the past four years.
J. C. Akerman, commercial product manager for all semiconductor devices within Mullard's Industrial Electronics Division since 1966 and a director of Associated Semiconductor Manuffacturers Lid, has been appointed head of Mullard's Consumer Electronics Division in succession to \mathbf{K}. O. Rees who has left the company. \mathbf{N}. Weisbloom has become commercial product manager for all semiconductor devioes in the Industrial Electronics Division. Since 1966 Mr. Weisbloom has held a similar position in the Consumer Electronics Division. The company has also announced the following appointments in the Consumer Electronics Division. T. Jacobs, B.Sc., who has been with Mullard since 1953, has become technical commercial manager of the division. Latterly Mr . Jacobs has been manager of the technical services department of the division. L. B. Johnson, B.Sc., M.I.E.E., becomes commercial product manager for all semiconductor devices in the division. He joined the company in 1942 and was at one time manager of the quality and reliability laboratory at Mullard, Southampton, and latterly was commercial product manager for i.cs in the Industrial Electronics Division.

Wilfrid John Fry, M.I.E.R.E., has been appointed managing director of the Electronic Instrumentation Group of Bell \& Howell Lid. Mr. Fry, who is 42 , joined the company in 1962, having previously spent thirteen years with the Solartron Electronic Group.
P. J. N. Collaro has joined E.M.I. as marketing director for the electronics and industrial operations and is responsible for the direction and development of marketing policy for all the companies and divisions within the organization: S.E. Laboratories (Holdings), Precision Electronic Terminations (E.M.I.), Nickols Automatics (E.M.I.), Ardente, Tape Manufacturing Co., E.M.I. Tape, Feriel Organization, and the six divisions of E.M.I. Electronics. Before joining E.M.I. Mr. Collaro was the marketing director for Leasco and
was previously managing director of the European division of K.L.H. Research and Development Corp.

Welwyn Electric of Bedlington, Northumberland, has announced the appointment of G. R. Latham, B.Sc., F.I.E.E., as divisional manager of its newly formed Interconnections Division. Mr Latham has latterly been working for the Plessey Co. where he was employed as engineering manager, microelectronics, at their Swindon factory. Prior to that he was with Ferranti Lid., for fourteen years. In his new capacity Mr. Latham will be responsible for implementing the agreement recently signed between Welwyn and Sanders Associates Inc. of New Hampshire, U.S.A., under which Welwyn will produce the range of flexible, rigid and multi-layered circuit boards developed by the Flexprint Division of Sanders.
A. L. Dow, B.Sc.(Hons), has joined Coutant Electronics Lid as a development engineer in the Power Supply Division. Prior to joining Coutant Mr. Dow worked for two years in the Micro-electronics Division of E.M.I. From 1962 to 1967 he undertook a 1-3-1 year sandwich course spending the middle three years at Southampton University studying for his degree in electronic engineering.

Michael G. Shortland, M.Sc.Tech., who is 35, and a graduate of Manchester University where he took first class honours in electrical engineering in 1956 and received his Master's Degree the following year, has been appointed manager of the Control and Automation Division of the Electrical Research Association. In 1963 he joined BISRA (now the Inter Group Laboratories of the British Steel Corporation) from the U.K.A.E.A., Winfrith. At BISRA he first headed the Control Dynamics Section but in 1964 took charge of the newly formed Automatic Control Section. In May 1967 he was additionally appointed chief engineer (automation).

Kenneth O. Rees, who recently resigned his directorship with the Mullard Company (which he joined in 1947), has been appointed director of marketing in the Plessey Components Group. Mr. Rees, who is 46 , is currently chairman of the British Radio Valve Manufacturers' Association and is the Association's representative to the Conference of the Electronics Industry.

Jack Hale, B.Sc.(Eng.), M.I.E.E., appointed managing director of Hytron Lid, of Crowborough, Sussex, served his apprenticeship with B.T.H. from 1948-53 and rejoined B.T.H. as project engineer following his service in the R.N.V.R. From 1959-64 Mr. Hale was with PE Consulting Group Lid, as a management consultant, before joining Feedback Ltd as production

manager. In 1965, he became

 production director and in 1968, was appointed a director of Feedback Inc., U.S.A. Hytron also announces the appointment of Arthur Thomas, M.Inst.M.C., as marketing director. He was for some time with Muirhead \& Co. Lid, as sales engineer and then spent six years as sales manager of Muirhead Inc., in Canada and the U.S.A. In 1967 he became the European manager of Telautograph Inc. of Los Angeles. G. P. Gates has also joined the board as director of development. Mr. Gates was a founder of Hytec Corporation, Los Angeles, consulting engineers and manufacturers of control equipment. He remains a director of Hylec Corporation, although he has moved to England to supervise the development of Hytron's new range of handwriting transmission systems and computer peripherals.R. M. A. Jones has been appointed to the central management of Pye of Cambridge Ltd, as director of planning and administration. He joined Pye in 1933 and became managing director of Pye Group (Radio \& Television) Ltd and chief executive of the Consumer Products Division in 1966 Throughout the war he served in the Royal Corps of Signals and was at the time of demobilization Lt.Col. on the staff of the Chief Signals Officer of the 1st Corps. Mr. Jones is also appointed chairman of Pye Group (Radio \& Television) Lid, thus retaining his link with this activity. In succession to Mr. Jones, J. T. Griffiths, joint managing director of TV Manufacturing Lid, has been appointed managing director of Pye Group (Radio \& Television) L.d and chief executive of the Consumer Products Diyision.
K. P. Kenny is appointed marketing manager of the Marine Division of Dymar Electronics Lid, of Watford. After service at sea and ashore for a major shipping line Mr. Kenny has spent five years with Cossor Electronics Lid.

Obituary

Raymond Dorrington Bangay, who retired from the Marconi Company in 1957 after over 54 years' service with the company died on October 29th. Born in 1883, he joined Marconi in 1902 and later that year went to America to help with the installation of radio stations. On his return to England in 1907, he started his study on the military uses of wireless, which included the first experiments in air-toground communications. From 1921 to 1925 he was chief of designs. Subsequently, he changed his orientation from design to exporting and from 1935 until his retirement was foreign manager.

New Products

Sab-miniature Power Supplies

A Belclere sub-miniature encapsulated stabilized power supply is now available from Electronic Component Services (Worcester) Ltd. The new hermetically sealed unit is designed for printed-circuit mounting and has a low ripple voltage. There are four types available, with a maximum ripple voltage of 500μ V. r.m.s.-P.S. 2009 (output 9V at 40 mA), P.S. 2012 (output 12 V at 30 mA), P.S. 2015 (output 15 V at 20 mA) and P.S. 2020 (output 20 V at 15 mA). Overload point is at 5 mA above rated output. Voltage drop at rated load is less than 150 mV . Output voltages are $\pm 5 \%$. Dimensions of the supplies are 60 mm long by 37 mm wide by 25 mm high. Typical p:ices are: $1-9$ at $\{35$ s each or, quantities from $50-99$ at $£ 29 \mathrm{~s} 6 \mathrm{~d}$ each. Non-standard types of these power supplies can be made to order. Electronic Component Services (Worcester) Ltd, 63-66 Foregate Street, Worcester. WW309 for further details

Lightweight Soldering Iron

A low-voltage lightweight soldering iron, the Tip-Touch is available from Midland Electronics. This 6 W iron requires 6 V a.c. or d.c. and maximum bit temperature is $320^{\circ} \mathrm{C}$. Three sizes

If interchangeable bits are available with -liameters of $\frac{1}{16}, \frac{3}{32}$, and $\frac{5}{32} \mathrm{in}$. The shaft is tainless steel. Lead length is five feet. Midland İlectronics Lid, Cogenhoe, Northampton. NW317 for further details

Portable A.F. Power Meter

\& portable battery operateđ a.f. power meter, type 85 , has been designed by Dymar Electronics to rovide a wide power measuring range, wide requency response and high accuracy both of the erminating impedance and measured power. welve power ranges in 1, 3, 10 sequence give ull-scale readings from 100μ to W 30 W and an
compatible with the h.f. transmitter used with the "Manpack" system, as well as with transmitters used in mobile, airborne and fixed ground stations. The complete amplifier is contained in a single module measuring approx. $300 \times 60 \times 50$ mm . Receptacles for power and r.f. input and output are located on the face of the module. The rear panel is used to dissipate heat, and various methods of heat dissipation mav he used. These include water or air cooling for large systems and pannel or plate mounting for Smaller systems. E.M.I. Electronics Canada Ltd, P.O. Box 1005, Dartmouth N.S., Canada.
WW319 for further details

Monitor Diode Supply

For monitoring the r.f. output of radar transmitters' operating in the $1-12 \mathrm{MHz}$ band the English Electric Valve Co. has produced the type BS600 monitor diode supply and indicator unit. Provision is made for monitoring either by a built-in meter which gives a reading proportional to the mean r.f. power input to the diode, or by feeding the demodulated r.f. pulse envelope to an external oscilloscope, in order to read the peak power accurately. Supplies for the diode anode and heater are taken from sockets on the front

panel of the instrument. A heater-voltage control, also on the front panel, provides for adjustment of the diode heater-voltage for all conditions of r.f. input. The correct diode load-resistance is built into the unit. English Electric Valve Co. Lid, Chelmsford, Essex.
WW302 for further details

Circuit Board Faultfinder

A low-cost unit for production-line testing of circuit boards and many yypes of electrical and electronic sub-assemblies, and known as Testmatic TM60, is being produced by Wayne Kerr. It makes up to 59 measurements in 4 seconds and gives unskilled operators a clear indication of 'O.K.', 'High' or 'Low' together with the location of any defective test point. Programming is quick and easy, the board for this serving also as the test jig. All checks can be pre-set for acceptance within any limits from $\pm 1 \%$ to $\pm 50 \%$. The basis of the

tests is d.c. voltage checks and any subsidiary signals, circuits or supplies can be fed into the TM60 at the rear of the unit or embodied in the programme board.

Intermittent faults can be detected by switching the instrument to a continuous repetition of the test programme, with an audible warning device operating when the defect arises. Outputs are provided for operating external alarms, sorting or counting mechanisms. Price is f695. Wayne Kerr Co. Lid, New Malden, Surrey. WW318 for further details

Wet Tantalum Capacitors

A range of wet tantalum capacitors is available from General Instrument (UK). The capacitors have low leakage current, long life and small physical size. Capacitance values range from 1.7 to $560.0 \mu \mathrm{~F}$ and working voltages from 6 to 125 V . The operating temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at the full-rated voltage or $+125^{\circ} \mathrm{C}$ at 65% of nominal voltage. Surge voltage can be 115% of rated voltage. The capacitors will withstand at least 2,000 hours' operation at the rated temperature and d.c. voltage and meet MIL-C-3965/D and 4F, DEF 5134-A5, AEC and SEN specifications. Three different cylindrical case sizes are used throughout the range of electrical specifications. General Instrument (U.K.) Ltd, Industrial Components Division, Stonefield Way, Victoria Road, South Ruislip, Middx.
WW307 for further details

V.L.F. Frequency Analyser

Aim Electronics have announced a third-octave frequency analyser (TOF 260A) with a frequency range extending from 0.5 Hz up to 100 kHz and covering any eight octaves in this frequency range. The octaves covered are pre-set to customer requirements. The unit consists of twenty-four filters, each covering one-third of an octave, designed in accordance with B.S.2475:1964 (which recommends centre frequencies and equivalent bandwidths of the filter elements). Each filter may be attenuated by $0-100 \%$ by adjustment of a ten-turn calibrated potentiometer. The outputs from all the filters may be selected by adjustment of the attenuators. Typical applications include extraction of third-octave information from unknown waveforms and simulating the characteristic noise

of any low-frequency excitation (e.g. vibrations) by selective filtering of white noise. Price: $£ 600$ Aim Electronics, Bar Hill, Cambridge.

WW316 for further details

Variable Temperature Soldering Iron

The W-TCP-2 variable-temperature soldering pencil from Weller Electric, is a small lightweight 20 -watt iron that can be run at any temperature range from $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ to $450^{\circ} \mathrm{F}\left(233^{\circ} \mathrm{C}\right)$. The required temperature is selected on a control unit

which gives a 24 -volt feed into the iron from a 230 -volt mains input. Price, including the continuously-variable temperature-controlled soldering pencil, the control unit and one tip is $\{23$. Extra tips are 8 s each. Weller Electric Lid, Redkiln Way, Horsham, Sussex.
WW306 for further details

Plastic Encapsulated A.F. Transistors

Two pairs of plastic encapsulated silicon transistors for use in 20 W and 35 W complementary audio amplifiers have been introduced by Motorola. The four transistors are encased in a compact Thermopad package (Motorola case 90) for easy mounting and efficient heat transfer. The n-p-n MJE 205 and p-n-p MJE 105 are 5 A transistors for use in complementary audio amplifiers delivering up to 20W. They have a $V_{\text {ceo }}$ of 50 V , power dissipation of 65 W and high current gain of 25 to 100 at a collector current of 2 A . The $n-p-n$ MJE 2801 and p-n-p MJE2901 are 10A devices for use in complementary audio amplifiers with outputs of up to 35 W . They have a $V_{\text {ceo }}$ of $60 \mathrm{~V}, P_{d}$ of 90 W and high current gain of 25 to 100 at a collector current of 3A. Application notes AN433 and AN427 are available, describing respectively a 20 W and a 35 W amplifier using these transistors. Motorola Semiconductors Lid, York House, Empire Way, Wembley, Middx.
WW335 for further details

Plug-to-Jack "T" Adaptor

The r.f. components division of Sealectro have introduced a new 75Ω sub-miniature "T" adaptor. Designated Conhex 50-185-0019 it is designed for screw-on mating engagement and will permit two cable-mounted plugs to be connected

in series-the third leg accommodating a cable mounted jack. This third leg employs a knurled coupling nut in place of the usual hexagonal arrangement and allows repeated disconnection. The adaptor has a gold plated body and contacts, and Tefion insulators. Sealectro Lid, Farlington, Portsmouth, Hants.
WW303 for further details

Encapsulated Power Supplies

Philbrick/Nexus Research offers two encapsulated power supplies with 0.01% regulation for either 115 V a.c. or 230 V a.c. power lines. Model 2203 has a $\pm 15 \mathrm{~V} \pm 100 \mathrm{~mA}$ output, the 2204 a $\pm 15 \mathrm{~V} \pm 50 \mathrm{~mA}$ output. These power supplies have 0.005% load regulation and less than ± 40 p.p.m $/{ }^{\circ} \mathrm{C}$ temperature coefficient. The unit is short-circuit protected and has automatic overload tracking. The units are capable of output trimming (optional) to $\pm 15.00 \mathrm{~V}$ or without trimming the units will put out $\pm 15 \mathrm{~V}$ $\pm 0.03 \mathrm{~V}$. Model 2203 costs $£ 30(1-9)$ and model 2204 C23 (1-9). Philbrick/Nexus Research, 81a North Street, Chichester, Sussex.
WW308 for further details

Card Programmed Switching Matrix

The Sealectro SCR1010 is a multiple switching device which can be programmed in seconds by the insertion of a pre-punched plastic card. The device contains 100 individually operated single-pole switches which, prior to insertion of a card are at an open setting. Any number of cards may be

programmed by pre-punching with up it 100 holes, corresponding to the switctpositions, and stored ready for use. When : particular programme is chosen, thi appropriate card is inserted in a slot in thi switching device which then automaticall: senses the card and closes the switche corresponding to the punched holes Interlocks prevent operation from al incorrectly punched or misorientated carc

The switches are rated at 250 mA 50 V d.c. and the complete unit has a guaranteed life in excess of $1,000,000$ operations. Programming Division, Sealectro Ltd, Walton Road, Farlington, Portsmouth, Hants. PO6 1TB.
WW327 for further details

Wideband Oscilloscope

Features of the Marconi TF 2210 wideband oscilloscope include dual timebase, delayed sweep facility, dual trace with internal triggering from either of two identical Y channels and sensitivity of $50 \mathrm{mV} / \mathrm{cm}$ from d.c. to 100 MHz . In conjunction with the two identical timebase generators, the delayed

sweep facility can be used for detailed examination of virtually any part of any waveform. The same waveform can be displayed for examination on a fast delayed sweep or a slow delaying sweep or examined simultaneously in both fast and slow sweep forms on separate traces. By means of a dual trigger delay, a controlled double image can be displayed for comparison of one part of a waveform with another. With long delay times, jitter can be obviated completely by use of gated delay. Combination of the dual timebase facility with the dual trace Y input system allows two different waveforms to be viewed at two sweep speeds. The result is a highly informative display comprising four separate traces. Marconi Instruments Ltd, St. Albans, Hertfordshire. WW325 for further details

Signal Lamp

Designed for mounting directly onto a printed circuit assembly, a recently introduced Bulgin signal lamp has four mounting pins on 0.1×0.3 in $(2.54 \times$ 7.6 mm) centres and thus fits proprietary boards having a 0.1 in standard matrix. The

lamp body has a maximum working rating of 30 V at 0.5 A and accepts two different lens types-domed end or flat end (as shown in accompanying illustration). Both types of lens are a push fit on the body and are available in a choice of five transparent colours, red, amber, green, blue and water clear, and five translucent colours, red, orange, green, blue and white. The lamps have order numbers D965 (transparent) and D966 (translucent) for flat lens, D967 (transparent) and D968 (translucent) for domed lens. A. F. Bulgin \& Co. Ltd, Bye-Pass Road, Barking, Essex.
WW330 for further details

Miniature V.H.F. Paging Receiver

Weight, including rechargeable cells, of the crystal-controlled Type CO. 442 Tele-Tracer v.h.f. pocket receiver is just over 100 g ($3 \frac{3}{4}$ ounces). Four different paging facilities can be supplied: tone only; tone and light; light only; tone and speech. A prefocused lamp of special design enables the light signal to be seen in daylight. Three types of power supply are available: a rechargeable cell which is automatically recharged when the receiver is placed in a charging rack; a throw-away mercury battery; a slide-in rechargeable battery cassette which can be recharged whilst detached from the receiver. The receiver conforms with the new G.P.O. regulations for v.h.f. pocket paging systems which come into force in January 1970, and is made by Cass Electronics Ltd, White Hart Yard, Guildford Sureet, Chertsey, Surrey.

WW328 for further details

Miniature Condenser Microphone

A miniature microphone manufactured in Sweden by the Pearl Microphone Laboratory weighs 40 g , is only 75 mm long $\times 18 \mathrm{~mm}$ diameter and incorporates an f.e.t. amplifier. A supply of 0.5 to 0.8 mA at 67.5 V is required but because of the wiring

arrangements used only a 2 -core flexible cable is required. Frequency response is from 30 Hz to 20 kHz , dynamic range is 126 dB and sensitivity, at 1 dyne $/ \mathrm{cm}^{2}$ $100 \mathrm{mN} / \mathrm{m}^{2}$ is -50 dB . The case and cartridge are designed so that noise is not produced by the microphone rubbing against clothing. This microphone is available with an omni-directional response
pattern (Type DC-20) or a cardioid pattern (Type DC-21). Both types are supplied with a 20 ft cable and a stand adaptor. Jagor Interelectric Ltd, Mercury House, Hanger Green, Ealing, London W.S.
WW326 for further details

Resistivity Bridge

The battery operated Radley MkIII resistivity bridge is designed to measure the resistivity of semiconductor materials in the range 10^{-2} to $10^{4} \mathrm{ohm}-\mathrm{cm}$. Integrated circuit operational amplifiers are used with a pulse counting phase discriminator for accurate null detection. The null indica-tor-a centre zero microammeter-is

driven by the phase discriminator operating in a digital mode so that directional proximity of the null is also indicated. Bridge accuracy of $\pm 1 \%$ is claimed. A simple four-in-line configuration is used in the probe system for which low cost replaceable contacts are available. Soil resistivity may also be measured by changing the probe head for an array of earth spikes. The bridge costs £245. J. A. Radley (Laboratories) Ltd, 220 Elgar Road, Reading, Berks. WW331 for further details

100-W Audio Amplifier

A feature of the Centurion audio amplifier is that its power output of 100 W rm.s. across 4Ω may be open- or short-circuited without adverse effect. Four input channels are provided, each with an individual volume control and suit a wide range of signal source levels from 1 mV to 20 V . The input channels are electronically mixed by separate circuits, and the final output may be adjusted with treble, bass and master

volume controls. Overall frequency response is 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Signal-noise ratio is less than 70 dB and harmonic distortion at 1 W and 100 W is less than 0.1% and 1%, respectively. The Centurion is listed at $£ 99$ and is available from Adastra Electronics Ltd, 167 Finchley Road, Swiss Cottage, London N.W. 3 .
WW324 for further details

Digital Voltmeter

The SM212 digital voltmeter has a full scale indication of ± 9999 and measures up to 1 kV in five steps: $100 \mathrm{mV}, 1 \mathrm{~V}, 10, \mathrm{~V} 100 \mathrm{~V}$ and 1 kV . Resolution is $10 \mu \mathrm{~V}$ at the 100 mV step. The first three steps up to 10 V are direct reading and the input impedance is more than $1000 \mathrm{M} \Omega$. The input voltage at the other two steps is attenuated and input

impedance is $10 \mathrm{M} \Omega \pm 0.1 \%$. Accuracy on the direct steps is $\pm 0.01 \% \pm 1$ digit, and on the attenuated steps it is $\pm 0.015 \% \pm 1$ digit. Digitization time is 30 ms and the display consists of four in-line side view numerical indicator tubes with integral decimal points, and one side view polarity indicator. The SM212 which has a common mode rejection of more than 140 dB is available from SE Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middlesex.
WW323 for further details

Storage Cathode-ray Tube

The Type E714B direct view storage c.r.t. introduced by E.E.V. is intended for use in oscilloscopes, and incorporates the electrostatic method for flood-gun and writing-gun focus and for deflection. The tube has a robust storage layer and uses an aluminized P31 screen. In the storage mode, typical light output is 175 ft -lamberts. Variable persistence gives a choice of storage time from several minutes to less than one second. With the flood gun switched off and provided no further writing is applied, storage time extends to several days. The

tube has a writing speed in the storage mode of $0.5 \mathrm{~cm} / \mu \mathrm{s}$, a deflection sensitivity of approximately $12 \mathrm{~V} / \mathrm{cm}$ in both axes, at a writing beam voltage of 1.5 kV , a typical line width of 0.4 mm in the c.r.t. mode. The English Electric Valve Co. Ltd, Chelmsford, Essex.
WW329 fot further details

A.C. Microvoltmeter

The Comark a.c. microvoltmeter type 1251 has a maximum sensitivity of $30 \mu \mathrm{~V}$ f.s.d. with a resolution of $0.30 \mu \mathrm{~V}$ per scale division on a scale length of 120 mm with d.c. output. The instrument has 12 fixed calibration ranges covering $100 \mu \mathrm{~V}$ f.s.d. to 30 V f.s.d. Sensitivity is continously variable up to a maximum of $\times 3$ on all ranges. The variable sensitivity control does not affect the calibration of the instrument on fixed ranges. The input impedance is greater than $5 \mathrm{M} \Omega$ in parallel with 20 pF on the most sensitive ranges, increasing to $10 \mathrm{~m} \Omega$ in parallel with 20 pF on the less sensitive ranges. Response is flat from 10 Hz to 20 kHz on $100 \mu \mathrm{~V}$ range, 10 Hz to 50 kHz on $300 \mu \mathrm{~V}$ range, and 3 Hz to 200 kHz on the remaining ranges with -3 dB points at 50,200 and 500 kHz respectively. Accuracy is given as $\pm 3 \%$ of f.s.d. and the instrument, which measures average value, is calibrated to indicate the r.m.s. value of sine waves. A d.c. output, proportional to meter reading, of 1 V for f.s.d. at 2 mA is provided, permituing the instrument to be used as an a.c./d.c. converter for digital voltmeters, etc. Comark also produces a similar a.c. millivoltmeter type 1241 but this has no

variable sensitivity. It covers the range from 1 mV f.s.d. to 300 V f.s.d. in 12 ranges with a flat response from 3 Hz to $200 \mathrm{kHz}(-3 \mathrm{~dB} 1 \mathrm{~Hz}$ to 500 kHz). The normal response time is less than 0.1 s extending to approximately 2 s for low-frequency measurement. Both instruments are battery powered. Comark Electronics Lid, Brookside Avenue, Rustington, Littlehampton, Sussex.
WW 304 for further details

Op. Amp. Power Supply

Farnell's A15 power supply has two nominal outputs arranged to provide $15 \mathrm{~V}-0-15 \mathrm{~V}$ at 100 mA . Each output can be varied over the range 12 V to 17 V . Alternatively, the outputs may be connected in series to obtain

24 V to 34 V . Two separate controls are provided and effect both ganged adjustment and independent variation of one output. Stability during zero to full load variation and $\pm 10 \%$ mains change is better than 2 mV . Ripple and noise content is less than 1 mV p-p. Protection is afforded by means of cut-back and current limiting circuitry and mains fuse. The unit may be purchased as a printed circuit card at a price of $£ 18$ or as a modular sub unit with cover, mains lead and terminals for $£ 20$. Farnell Instruments Ltd, Sandbeck Way, Wetherby, Yorkshire.

WW322 for further details

Plastic S.C.Rs

Transiiron Electronic Ltd has introduced a range of low-cost silicon planar s.c.rs in a particularly rugged TO- 92 plastic package. These devices are ideally suited to lamp and solenoid driving, sensing and timing applications and for motor control and other industrial and consumer switching problems. Designated $2 \mathrm{~N} 5060-64$, there are 30 V , $60 \mathrm{~V}, 100 \mathrm{~V}, 150 \mathrm{~V}$ and 200 V types with peak pulse currents up to 40A and extended blocking voltage capability up to 300 V . Other versions with tightened or relaxed specifications for gate-trigger current are also available. Moisture resistance is to Military Standard 202C (Method 106B) and the packages are tested for thermal and mechanical stress, including constant acceleration to $40,000 \mathrm{~g}$ on each axis for 32 hours, vibration shock and simulated fall, and corrosion resistance. Transitron Electronic Lid, Gardner Road, Maidenhead, Berks.
WW320 for further details

Signal GeneratorSynthesizer

The French Adret Codasyn 201 combines the functions of a signal generator (modulation, attenuation and sweep) with the accuracy of a synthesizer (digital frequency selection and coherent spectrum derived from a crystal controlled oscillator) and is intended for use as an exceptionally accurate and stable coherent frequency source over the range 0.1 Hz to 2 MHz . The instrument incorporates a very stable crystal oscill ator in a proportionally controlled oven followed by a phase locked harmonic generator and digital circuits using what is claimed to be a unique frequency synthesis design. Digital dividers provide a spectrally pure output whose frequency stability is $\pm 1 \times 10^{-7} /$ day. Higher stability of $\pm 2 \times 10^{-9} /$ day is optional. Output frequency is controlled by eight digital dials with resolution to 0.1 Hz . In addition, a calibrated search or interpolation oscillator provides smooth
frequency control between all digital steps up to 100 kHz . Resolution and stability of this oscillator permit a meaningful setting of 0.001 Hz . A separate calibrated variable oscillator covers the band 0.1 Hz to 2 MHz without range change. High level output voltage is $+13 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (1 V r.m.s.) into 50Ω for c.w. and f.m. modes, or +7 dBm $\pm 0.5 \mathrm{~dB}(0.5 \mathrm{~V}$ r.m.s.) into 50Ω for the a.m. mode. Attenuated output is -1 dBm $\pm 0.5 \mathrm{~dB}$ (0.2 V r.m.s.) into 50Ω for c.w. and $\mathrm{f} . \mathrm{m}$, or $-7 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (0.1 V r.m.s.) into 50Ω for a.m. Frequency response is within $\pm 0.5 \mathrm{~dB}$ over the entire frequency range. The Adret Codasyn 201 is marketed in the U.K. by Racal-Electronics L.td, Western Road, Bracknell, Berkshire.
WW321 for further details

Ferrite Packages

A range of packages for handling and mounting small and awkward shaped pieces of ferrite has been developed by the Industrial and Electronic Components Division of Plessey. The packages-'Maxi Packs'-can be used where circuit-board area and space are not at a premium. The ferrite circuitry, built by Plessey according to the particular requirement, is

encapsulated in a resin block which is finally enclosed in a plastic box. As the electrical contacts to the component are made via either terminal spills or printed-circuit termination pins, all of which are on one face of the box, mounting in either the upright or inverted positions is easy. They are available in ten sizes. Plessey Co. Lid, Swindon, Wilts.
WW312 for further details

Transistor and Diode Tester

Model RK66 is another tester in the range supplied by K.S.M. Electronics Lid, and

the instrument has the following specification. Transistor measurements: leakage current, 1 nA and above; collector current, 1 nA to 2 A f.s.d.; collector voltage, $0-12 \mathrm{~V}$; base current, $0-150 \mathrm{~mA}$; and $h_{f e}$ (1 kHz); 0-1500. Diode measurements: forward voltage drop (at 2A) 0-12V d.c.; reverse vol tage, $0-1 \mathrm{kV}$ d.c. f.s.d.; and reverse current, 10 nA and above. K.S.M. Electronics Ltd, Bradmore Works, Bradmore Green, Brookmans Park, Herts.

WW332 for further details

Novel Reed Switch

A magnetic reed switch manufactured by the Gordos Corporation of the U.S.A., and marketed in the U.K. by B \& R Relays, contains blades twisted from their normal planes which open and

$40 \mu \mathrm{~m}$-and have a large area of contact. Hence, the resistance is much less than that of a conventional cadmium sulphide cell, a typical value being 600Ω at 50 lux from a light source with a colour temperature of $2700^{\circ} \mathrm{C}$. The RPY58 has a maximum permissible dissipation of 200 mW and an ambient temperature operating range extending from -40 to $+70^{\circ} \mathrm{C}$. It measures approximately $6 \times 6 \times 2 \mathrm{~mm}$ without its flexible leads, which are 37 mm long and spaced for standard printed-circuit grids. Mullard Ltd, Mullard House, Torringion Place, London W.C.1.

WW311 for further details

Non-polarized Tantalum Capacitors

A range of non-polarized solid tantalum capacitors is announced by General Instrument (UK). Designated NPMCS, the capacitors range from 0.034 to $160 \mu \mathrm{~F}$ and standard tolerances are $\pm 20 \%$ and $\pm 10 \%$, but $\pm 5 \%$ types are available. Typical capacitance variation with temperature is -4% at $-55^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ referred to $25^{\circ} \mathrm{C}$. Full rated operating voltage can be applied throughout the temperature range -55 to $+85^{\circ} \mathrm{C}$ and surge voltage over this range of temperatures can be 130% of rated voltage. These capacitors are basically two (MCS) capacitors connected cathode-to-cathode in a bakelite case. They are particularly suitable for use in circuits where the reverse voltage is 100 high for polarized types. General Instrument (UK) Lid, Stonefield Way, Victoria Road, South Ruislip, Middlesex.
WW314 for further details

Power Regulator Module

Emihus Microcomponents have introduced a d.c. power regulator module, measuring approx. 60 $\times 30 \times 25 \mathrm{~mm}$, which is adjustable over the range 3.5 V to 30 V and which will supply a load circuit of 0.6 A over this voltage range without any derating. The load current may be extended up to 20A by means of external transistors. Both positive and negative types are available. The regulator is designed to withstand very large variations of input voltage and the stabilization factor is typically $1100: 1$ at $V_{\text {out }}=10 \mathrm{~V}$. The operating temperature range is 0 to $100^{\circ} \mathrm{C}$ and the total power dissipation of the module in standard form is 6 W at $40^{\circ} \mathrm{C}$. Temperature coefficient is typically $0.02 \%{ }^{\circ} \mathrm{C}$ and recovery time 50 ms (for a 250 mA change in load current recovering to 50 mV). Emihus Microcomponents Lid, Glenrothes, Fife, Scotland.
WW315 for further details

December Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

Ist I.E.E.-Discussion on "Wideband techniques and the local telecommunications network of the future" at 17.30 at Savoy PI., W.C.2.

2nd I.E.R.E. -"The design of active filters" by Dr. A. G. J, Holt at 18.00 at 9 Bedford Sq., W.C.1.

4th I.E.E.-"The commercial exploitation of research and development" by J. C. Duckworth at 17.30 at Savoy II., W.C.2.

4th I.E.R.E.-"Computer-based telemetry systems for distribution management" by R. A. F. Smythers at 18.00 at 9 Bedford Sq., W.C. 1 .

Sth I.E.E.-Discussion on "Measurements using c.r.t. displays" at 17.30 at Savoy PL., W.C. 2 .

8th I.E.E./I.Meas. Control.-"The Concorde's flying control system" by I. L. Rye at 17.30 at Savoy Pl., w.C. 2 .

10th I.E.R.E.-"Computer-aided instruction" by Inst. Captain G. Huggett, R.N., at 18.00 at 9 Bedford Sq., W.C. 1 .

10th B.K.S.T.S.-"The acoustics of the Royal Albert Hall" by K. Shearer at 19.30 at the Colour Film Services, Portman Close, Baker St., W.I

11th I.E.R.E./I.E.E.-Third lecture on "Physiology for engineers" at 18.00 at St. Bartholomew's Medical College, E.C.1.

11th I.E.R.E.- "Passive satellite communications" by R. L. Harris at 18.00 at 9 Bedford Sq., W.C.1.

11th R.T.S. "New large-screen television projector" by I. Lake at 19.00 at I.T.A., 70 Brompion Rd., S.W.3. 15th IE.E.-Discussion on "Gallium arsenide lasers" at 17.30 at Savoy Pl., W.C. 2 .

16th I.E.R.E I.E.E.-Discussion on "Nonmagnetic digital recording techniques" at 18.00 at 9 Bedford Sq., W.C.I.

17th I.E.E.-Discussion un "Llectron-uptical design techniques" at 14.30 at Savoy P1., W.C. 2 .

17th I.E.R.E.-Discussion on "More engineers in management?" at 18.00 at 9 Bedford Sq., W.C.1.

18th I.E:E-Discussion on "Radio interference measurements" at 17.30 at Savoy P1., W'C.2.

BATH

10th I.E.R.E.-"Noise in transistor circuits" by P. J. Baxandall at 19.00 at the Technical College.

BIRMINGHAM

11th I.E.R.E.-"Quasars: the most powerful transmitters in the universe" by Dr. P. J. S. Williams at 19.15 at the University.

BOURNEMOUTH

2nd I.E.E.-"Electromagnetic levitation" by R. B. Owen at 18.30 at the College of Technology.
3rd I.E.E.T.E.-R. Aero. Soc-"Automatic flight control" by A. J. Colwell at 20.00 at the Anglo' Swiss Hotel.

BRISTOL

16th I.E.E.T.E.-"Electrics \& electronics in heavy industries" by A. R. S. Gough at 19.30 at Queens Bldg., the University, University W'alk.

CAMBRIDGE

9th I.E.E.-"Electromagnetic levitation" by H. Bolton at 19.30 at Cambridgeshire College of Arts and Technology.

11th I.E.E./I.E.R.E.--"Circuit optimization by digital computer" by J. S. Reynolds at 20.00 at Engng. Labs, Trumpington St.

CARDIFF

10th I.E.E./I.E.R.E.-"Electronics in the nation's economy" by I. Maddock at 18.30 at U.W.I.S.T.

12th S.E.R.T.-"High-fidelity and public address" by J. Davies at 19.30 at Llandaff Technical College.

17th R.T.S.-"Loudspeakers-their history and development" by R. L. West at 19.00 at B.B.C. Llandaff.

COVENTRY

4th I.E.E./I.E.E.T.E.-"Satellite communication" by J. M. Brown at 18.30 at Herbert Art Gallery.

EDINBURGH

9th I.E.E./I.E.R.E.-"Project planning and control" by J. Brennan at 18.00 at the Carlton Hotel, North Bridge.

EVESHAM

9th I.E.R.E--"The Post Office Tower" by S. G. Young at 19.00 at the B.B.C. Club.

GLASGOW

8th I.E.E/I.E.R.E.-"Project planning and control" by J. Brennan at 18.00 at the University of Strathclyde.
19th S.E.R.T.-"Transistors in logical circuits" by G. Roberts at 19.30 at 70 Bothwell St., C.2.

IPSWICH

16th I.E.E.-"Automatic landing of aircraft" by A. W. Jolliffe at 18.30 at Great White Horse Hotel.

LEEDS

2nd I.E.E.-"The management of major electronic projects" by J. W. Sutherland at 18.30 at the University.

9th I.E.E.-"Radar data processing techniques with application to air traffic control" by-Dr. P. J. C. Child at 19.00 at the University.

LEICESTER

9th R.T.S.-"Decca Navigator" by R. S. Trevelyan at 19.30 at Vaughan College, St. Nicholas Circle.

LETCHWORTH

1st I.E.E.- "Colour television" by P. L. Mothersole at 15.00 at the College of Technology.

LIVERPOOL

10th I.E.R.E.-"Information theory and code design" by S. B. Wilson at 19.00 at the University.

MANCHESTER

3rd I.E.E.-"Computers and communications" by Prof. R. L. Grimsdale at 18.15 at U.M.I.S.T. 4th S.E.R.T.-"Ferguson colour television receiver" by K. Harris at 19.30 at the Renold Bldg., U.M.IS.T.

11th I.E.R.E.-"Pulse code modulation" by G. H. Bennett at 19.15 at the Renold Bldg., U.M.1.S. I.

NEWCASTLE-UPON-TYNE

10th I.E.E./I.E.R.E.-"Hybrid integrated circuits" by T. D. Towers at 18.00 at the Polytechnic.

NOTTINGHAM

16th I.E.E.-"Concorde electronics" by H. Hill at 18.30 at the University.

PORTSMOUTH

10th I.E.R.E.-"Stripline circuits in microwave equipments" by J. M. H. Chambers at 19.00 at Highbury Technical College, Cosham.

READING

11th I.E.R.E.-"Solid state displays" by L. H. Lea at 19.30 at the University, Whiteknights Park.

RUGBY

2nd I.E.R.E.-"Application of electronics to aero engine design" by D. R. Foulds at 18.30 at the College of Engineering Technology.

RUGELEY

4th I.E.R.E.-"Loudspeakers" by Dr. A. R. Bailey at 19.00 at Shrewsbury Arms.

SHRIVENHAM

2nd I.E.E. I.E.R.E.-"Impact of micro-electronics for circuit design" by C. S. Den Brinker at 18.15 at R.M.C.S.

SOUTHAMPTON

2nd I.E.E.T.E.-"Engineering education \& training for the 1970s" by R. Bray at 19.30 at the British Legion Centre, Cumberland Place.

ST. HELENS

18th S.E.R.T.-"Amateur radio opertion" by E. H. Lewis at 20.00 at the Technical College.

TREFOREST

2nd I.E.E.-"The electronic watmeter" by P. C. Joslin at 19.00 at Glamorgan College of Technology.

WORCESTER

10th B.C.S./I.Prod.E.-"Computer aided design" by K. Thompson at 19.30 at the Technical College, Deansway.

Late November Meetings

aberdeen

26th I.E.E.-"Large scale integration-why, where and when?" by D. D. Jones at 19.30 at Robert Gordon's Inst. of Technology.

BELFAST

25th I.E.R.E.-"Audio frequency hi-fi amplifiers" by I. Hardcastle at 18.30 at the Ashby Inst., Queens University, Stranmillis Rd.

DUNDEE

27th I.E.E.-"Large scale integration-why, where and when?" by D. D. Jones at 19.00 at the University.

DURHAM

26th I.E.E.T.E.-"Modern techniques of airtraffic control" by J. Henderson at 19.30 at the University's Science Labs.; South Road.

FAREHAM

27th I.E.E. Grads.-"Brain cell to micro-circuit pattern recognition" by Dr. I. Aleksander at 19.00 at H.M.S. Collingwood.

INVERNESS

25th I.E.E.-"Large scale integration-why, where and when?" by D. D. Jones at 19.30 at the Technical College.

LEEDS

25th IE.E.-"Use of satellites in long-distance communication" by H. Stanesby at 18.30 at the University.

NOTTINGHAM

20th R.T.S.-"The design of colour video tape recorders" by W. Silvie at 19.30 at the B.B.C. Studios, Wilson House, Derby Road.

READING

24th I.E.E.-"Hi-fi" by J. Moir at 19.30 at the J. J. Thomson Laboratory, the University, Whiteknights Park.
2sth I.E.R.E.-."Automatic test equipment" by O. H. Davie at 19.30 at the J. J. Thomson Laboratory; the University, Whiteknights Park.

SOUTHAMPTON

25th I.E.E.-Faraday Lectur "People, communications and engineering" by J. H. H. Merriman at 10.30 and 14.30 (students) and 18.30 (public) at the Guildhall.

Answers to 'Test Your Knowledge'"-19

Questions on page 589

1. (c)
2. (d) Valves, bipolar transistors and f.e.ts are broadly analogous in their use in most basic amplifier circuits. 1hase inversion occurs in the device only when the cathode, emitter or source respectively is the common electrode in the circuit.
3. (d) At mid-band frequencies in a properly designed amplifier this shunt capacitance has much too small a susceptance to draw significant current. As the frequency is increased the capacitive current increases, the output voltage falls, and additional phase shift is introduced.
4. (d) In a pentode the screen grid reduces the control-grid/anode capacitance to such an extent that in normal circuits the Miller effect is insignificant.
5. (b) By adjusting the degree of coupling so that "double-humping" just starts to occur the output is almost constant in amplitude over a band of frequencies and drops rapidly outside that band.
6. (a) The input may take power, as in the case of a bipolar transistor amplifier, but this power is dissipated in the transistor.
7. (d) The optimum load causes the output current and voltage to swing up to the "knee" of the most extreme characteristic which may be reached (this will be determined by limitations which depend on the particular device), and down almost to cut-off. It appears that the maximum power transfer theorem is violated here, but this is not so because the input signal amplitude, and hence the value of the Norton equivalent current generator at the output, is not a fixed parameter.
8. (b) The inputs to the two devices must be balanced about the supply common line.
9. (d) Complementary symmetry circuits use devices requiring supply potentials of opposite polarities; i.e., $n-p-n$ and $p-n-p$ bipoiar transistors; n-channel and p-channel f.e.ts.

10. (b)

11. (d) The input impedance, the output impedance and the signal-to-noise ratio each may be increased or decreased depending on the details of the circuit.

12. (c)

13. (a) When the oscillations are building up the loop-gain must be greater than unity, but the output amplitude will stabilize at a value at which non-linearity reduces the gain to unity.
14. (d) The power absorbed by a resistor of value R, when the voltage across it is V, si $V^{2} R$. If R is negative power is given out by the resistor. So long as the negative shunt resistance is smaller than the positive shunt resistance more power is delivered to the circuit than is absorbed. As oscillations build up non-linearity in the device characteristic reduces the mean a.c. resistance until it is equal in magnitude to the dynamic impedance at resonance of the tuned circuit.

THE CHOICE

 of CRITICS
 BULEM PREEISTON ROMPOUENTS HAVE BEEN STANDARDISED BY LEADING MANUFACTURERS IN OVER

TAKE PLUGS \& SOCKETS

Bulgin Plugs and Sockets are incorporated in equipment, ranging from the Aircraft Industry to the manufacturing of medical equipment. Over 150 varieties are available, covering from one to eight pole models, for low voltage or mains operation.
P. 485 + P. 486 Screw locking single pole connector, panel mounting socket

5 A .250 V ~ rating.
P. 28 + P. 29 Flex-lead two pin model for extension uses, 5A.250V. ~rating.
P. 490 + P. 4912 pole Domina connectors for multiple stacking. 5A. 250 V . ~ rating.
P. $501+$ P. 502 Miniature version of the above, 3A.250V.~
rating.
P. 360 Miniature three pole connector, 1.5A.250V. \sim rating P. 438 Three pole, miniature, facility outlet, panel mounting socket. 1.5A. $250 \mathrm{~V} . \sim$ rating.
P. 561 Three pole, miniature connector shrouded P. $502+$ P. 501 pins \& sockets, 2A. 250V. \sim rating.
in addition to this there is an identical

FOR DETAILS OF THE COMPLETE RANGE SEND FOR BROCHURE 1506/C
A. F. BULGIN \& CO. LTD.,

Bye Pass Rd., Barking, Dssex.
Tel: O1-594 5588 (12 lines)

MANUFACTURERS AND SUPPLIERS OF RADIO and electronic components to ADMIRALTY MINISTAY OF WORKS WAR OFFIGE MINISTMY OF AVIATION HOME OFFICE MINISTAY OF TECHNOLOCY GROWN ACENTS aeseanch establishments U.K.A.EA.

Literature Received

ACTIVE DEVICES

A TTL series 74 N Cross Reference Guide, listing 13 manufacturers' devices in cross reference with National's TTL line, is available from Marketing Services Department, National Semiconductor Corporation, 2975 San Ysidro Way, Santa Clara, California 95051

WW401
Farnell Instruments Ltd, Sandbeck Way, Wetherby LS22 4DH, Yorkshire, list their digital logic components with prices, in publication F21 WW 402
"Gunn effect devices and their applications", an 8-page article originally published in Mullard Technical Communication, is now available as a reprint. I.E.D./Valve Sales, Mullard Ltd., Torrington Place, London W.C. 1. WW422

HARDWARE

A descriptive sheet is available from Jidenco Ltd, Vale Road, Windsor, Berks, on their reflow solder machine, model J.P.2, suitable for the attachment and removal of flat pack i.cs to and from p.c. boards

WW419

INSTRUMENTS

Dana Electronics Ltd, Bilton Way, Dallow Road, Luton, Beds, have produced the following publications:

Series 7000 Digiphase Synthesizer-very accurate frequencies to 11 MHz in 1 Hz increments WW 403
Amplifier data sheets 789-791
WW404
Series 2600 data amplifiers WW405
Digital voltmeters WW406

Type 422 precision v.l.f.-1.f. signal generator, having a frequency range of $0.005 \mathrm{~Hz}-50 \mathrm{kHz}$, frequency accuracy of ± 2 parts in 10^{3}, and sine, square and triangular wave outputs is described in a leaflet from Airmec Instruments Ltd, High Wycombe, Bucks

WW407
Two leaflets have been received from Telequipment Ltd, 313 Chase Road, Southgate, London N.14:
Oscilloscopes
WW408
S54A Single-beam Solid-state Oscilloscope WW409

An 8-page technical manual on electronic tachometers, which describes their application to flow rate, r.p.m. and linear speed measurement, is available from Dynalco Corporation, 4107 N.E. 6th Avenue, Ft. Lauderdale, Florida 33308, U.S.A.

WW410
The Wayne Kerr Co. Ltd, New. Malden, Surrey, have published a catalogue of their range of electronic measuring instruments

WW411
Tektronix Inc. has published a 40-page catalogue on oscilloscopes and associated instruments which is available from Tektronix U.K. Ltd, Beaverton House, Harpenden, Herts

WW412
Two short-form catalogues are available from Bell \& Howell Ltd, Lennox Road, Basingstoke, Hants:

Tape \& Graph Recording .. WW413
Transducer products WW414
A short catalogue discussing Brüel \& Kjaer electronic measuring equipment is available from B\&K Laboratories Lid, Cross Lances Road, Hounslow, Middx

WW415
B \& K Instruments Ltd, 59 Union Street, London S.E.1, have produced a folder containing details of instruments made by Krohn-hite Corporation, Brush Clevite, Chronetics, Benrus, Jerrold and Radiometer

WW416
A short-form catalogue describing their range of electronic measuring instruments is available from Avo Lid, Avocet House, Dover, Kent WW417
S.E. Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middx, have produced a folder of leaflets and catalogues describing their various products

WW418

GENERAL INFORMATION

No. 38 (August/September 1969) of the house magazine "News from Rohde \& Schwarz ${ }^{\text {n }}$ is available from Rohde \& Schwarz, 8000 Munchen 80, Muhldorfstrasse 15
The British Standards Institution, 2 Park Street, London W1Y 4AA, has produced PD64 36: "A guide to the BS9000 scheme", price 12s.
The handbook "Printed Wiring \& Printed Circuit Techniques", revised by the Electronic Engineering Association, is available from Design Electronics, Dorset House, Stamford Street, London S.E.1. Price 40s, post free.
A 16-page "guidance manual" on how to optimize circuit designs for their most economical production as hybrid i.cs has been produced by Newmarket Transistors Ltd, Exning Road, Newmarket, Suffolk

WW421
Those readers looking for an introduction to logic circuits will not go far wrong with "It's the Logic that Counts" which is a book published by Marconi Instruments Lid, Marketing Services Department, St. Albans, Herts. Costing \AA_{2} the book uses the "programmed learning" approach.

H.F. Predictions-December

Sunspot numbers for recent months show the expected start of a steady declint in solar activity which will continue until 1975. F2 layer daytime MUFs fo routes predominantly in the northern hemisphere are at their peak in December, F1 and E layer MUFs, however, are at their lowest and have littl/ or no effect on circuit operation. Night-time F-layer MUFs on the other hans are also lowest during winter months which, coupled with declining sola activity, seriously reduces the usable spectrum.

Fade-outs and disturbances should continue as at present, that is relativel: frequent but of low intensity.

The northern auroral zone passes through Alaska, Hudson Bay, Icelant and northern Norway; radio paths crossing this zone are subject to period of high attenuation lasting several days.

SINCLAIR IC-10

MONOLITHIC
 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a 5 -year guarantee on each IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output:
10 Watts peak. 5 Watts R.M.S. continuous Frequency response: Total harmonic distortion: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Load impedance: Power gain: Supply voltage: Size:
Sensitivity
Input impedance
Less than 1% at full output.
3 to 15 ohms.
$110 \mathrm{~dB}(100,000,000,000$ times) total
8 to 18 voits.
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies. oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
 IC-10

with IC-10 manual and 5-year guarantee Post free.

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.

Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or $\mathrm{PZ}-6$. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.
Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet and templates provided enable you to position them. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

7-30 TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $\mathbf{Z - 3 0}$, are covered in the Project 60 manual.

SPECIFICATIONS

Power output- 15 watts R.M.S. (30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. (40 watts peak) into 3 ohms using a 30 volt supply. Output-Class AB.

APPLICATIONS

High fidellty amplifier: car radio amplifier; record player fed direct from pick-up: intercom: electronic music and instruments: P.A., laboratory work, etc. Full details of these and many other applications are given in the manual supplied with your Z.30.

Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio: better than 70 dB unweighted.
Distortion: $\quad 0.02 \%$ total harmonic distortion at full output into 8 ohms and at all Size: $34 \times 2+\times$ pinches.
Input senstivity: $\quad 250 \mathrm{mV}$ into 100 Kohms .
Damping Factor: >500.
Loudspeaker impedances 3 to 15 ohms .
Power requirements: 8 to $35 \mathrm{~V} . \mathrm{d.c}$.

2.30

Ready buik, tested and guaramteed, with 2.30 manual.

STEREO SIXTY PREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup- 3 mV Correct within \pm 1d8 on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxiliary-up to 3 mV . - Output-1 volt
- Signal-to-noise ratio-better than 70dB. - Channel matching - within 1 dB .
- Tone Controls-TREBLE + 15 to - 15d8. of 10 KHz : BASS +15 to -15 dB ai 100 Hz .
- Power consumption 5 mA .
- Power requirement-PZ.5 or PZ. 6.
- Finish-brushed aluminium front panel with black knobs.
- Mounting-on cabinet front by spindle bushes and adjustable brackets.

STEREO SIXTY

SINCLAIR POWER SUPPLY UNITS

P7-5 30 volts unstabilised-sufficient to drive two $\mathrm{Z}-30$'s and a Stereo 60 for the majority of domestic applications.

Price: $\mathbf{f 4}$. 19s. 6d.
PZ-6 ${ }^{35}$ volts stabilissad-idaal for driving two $\mathrm{Z}-30$'s and a Stereo 60 when very low efficiency speakers are employed.

Price: $\mathbf{f 7} 10 \mathrm{~s}$. 6d.

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we work perfectly and should any defect arise in normal use we
will service it at once and without any cost to you whatsowill service it at once and without any cost to you whatso-
ever provided that it is returned to us within 2 years of the ever provided that it is returned to us within 2 years of the purchase
thereafter.

New from ILIFFE

WORKED EXAMPLES IN ELECTRONICS AND TELECOMMUNICATIONS

-Problems in Telecommunications

B. HOLDSWORTH, B.Sc., C.Eng., M.I.E.E., M.Sc. and Z. E. JAWORSKI, Dip.Eng., D.I.C., C.Eng., M.I.E.E., M.I.E.R.E

This, the third of four volumes, has been written to meet the needs of students preparing for the B.Sc. Final examination in Telecommunications, for Part III of the I.E.E. Line and Radio Course, and for the C.E.I. Part II examination in Communications Engineering. Each chapter deals with one main topic and contains a selection of representative examples which enable the reader to acquire a thorough grasp of the principles involved.

278 pp. 162 illustrations
25s. net, 27s. by post

PRINCIPLES OF PAL COLOUR TELEVISION

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting). 154 pp. 59 illustrations

35s. net case, 37 s . by post
21 s . net student edition, 23s. by post.
Further information available on request
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
Butterworths-Iliffes-Newnes
88 KINGSWAY LONDON WC2 01-405 6900

INTEGRATED CIRCUIT AMPLIFIERS

CA3005 BF Amplifer with $10 \mathrm{mme/n}$ imndwidih. Max. diseipation 26 mW . For useas RF amplifier, batanced mixer, product detector or self-obcllating mixer.
CA3012 Wide Band Ampilfter (up to $20 \mathrm{muc} / \mathrm{s}$), suthable as IF Ampiliter for VHF/FM recelvers. CA 3038 Buffer Ampllfer conslating of two "super-mipha" pmit of The above four l.Ca ure in TOs encapsulation.
PA282 Audio Amplifier providing a max. output of 1.2 wathe. 65/PA234 Audio Ampther prowding a max. output of 1 watt. 27/6 PA837 2 wates Audio Amplifier. The above
package.
MC1709CG General Purpose operational amplifter in TO.99 ane.
 $800 \mathrm{ke} / \mathrm{s} ; 7 \mathrm{mmW}$ diasijation. Output 10 mW loto 150 an lownl. $15 /-$ individual leade. Bandwidth $600 \mathrm{kc} / \mathrm{s}$. 160 mW dinsipution. Output $10 \mathrm{~m} W$ toto 1 sua lond.
TAA320 MOAT input stage followed by a bi-polar trannintor
TAD100 All active components required for an A.M. Receiver. comprising mixer, oscithtor, i.f. smplifer, a.g.c. and pre- amplitier atages.
resintors are required and output stuge for which one of the shove dencribed I.C.s can be used. Dual seven-in-line pmekage. $\quad 45 /-$ Data sheet avelitable for all the sbove 1.C.s.

NEW OSCILLOSCOPE FROM RUSSIA

CI.5 SYNCHROSCOPE

 Bandwidth $10 \mathrm{mc} / \mathrm{s}$. Triggered and freerunning time base. Pulses from . 1 to 3,000 microseconds can be observed. Max, overshoot of 1 microsec. pulse 5%. Built-in time base callbrator and amplitude calibrator. Sensituvity from 3 to 25 Vrms/mm. Telescopic viewing hood.NOW AT NEW REDUCED PRICE OF 639 Full servicing facilities available

WESTINGHOUSE EPOXY ENCAPSULATED

 WIRE ENDED MINIATURE RECTIFIERS 1N540, 1,000 pit.... 3 nmpn D.C.; max. surge 200A. Dinmeter 25\% DISCOUNT FOR QUANTITIES OF 20 OR OVER

SILICON 'LOCKIT' TRANSISTORS
HCl 14
BF194

SPECLAL INTRODOCTORY OPFER: 4
SPECLAL INTRODUCTORY OPPER:
12 TRANSISTORS OF ANY OF THE ABOVE TYPES
£2.5.0 POST PAID

SPECIAL OFFER OF

PNP GERMANIUM TRANSISTORS AC154, large elignal type, sultable for clasa 'B' output and

 disnipation som W. Max. collochr-bose voltage
collector curvent 30 mA . Prico. each

SILICON MATCHED DIODE PAIRS 1N4951 Two diodes th common TO92 epoxy case. Separate anode lende and loint cathode. Diodes are atatically and
dynamically balanced. Max. reverse voltage 2ov. Max. dinapation 200 mW . Buitable for TV horizontal phage discrimingior and similar applications. Price $3 /$ - each. Consherable dineount

MULTIMETERS TYPE 108-IT
4-range precision portable meter. 5,000 o.p. . . AD.C. Folt D.C. current 0.5-5-50-500 mA. Renistance: 2000-20.000
 TYPE MFIS
D.C. Voltage range $0-0.5-10-50-230-500 \mathrm{~V}$ A.C. Vollage range $0-10-50-250-500 \mathrm{~V}$.
D.C. current ranges: $500 \mu \mathrm{p}-10-100 \mathrm{~mA}$. caparity and output level neasurementer senale calibrated for Accuracy $\pm 2.5 \%$ for D.C. and $\pm 4 \%$ For, A.C. measurements.

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN NO C.O.D. ORDERS ACCEPTED ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAIL SHOP.
Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: PARK 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel:LANgham 8403
A.R.B. Approved for inspection and
release of electronic valves, tubes
klystrons, etc
OUR NEW 1969/1970 CATALOGUE IS NOW READY
PLEASE SEND QUARTO S.A.E. FOR YOUR FREE COPY

PCLSO1 15

WE WANT TO BUY:

723A/B; 2K25; 4C35-50/- paid subject to tese urplus to

BUILD YOURSELF A QUALITY TRANSISTOR RADIO!

 NEWI RDAMER EIGHT MK I WITH TONE CONTRDL SEVEN WAVEGMIOS MW1, MW2. LW, SW1, SW2. SW3 AND TRAWLER BANO. 8 transistors an: 3 Airspaced gonged tuning condensery Earratice sockes and earpiecte Selectivity swinth Sue $9 \ldots 7 \times 4$ in. Tolal Building
 $\begin{array}{ll}\text { hoamer six, } & \text { 6 wavebands } \\ \text {-MW1. MW2 SW1. SW2. IW }\end{array}$ ANO TAAWLER BAND. 6 titans istors and 2 diodes Famte rod and $5 \frac{1}{} \times 1$ in. Building Costs 19/6.P. \&P. 4/6. Pant and Pans list 2/- tree
 pocket five, med. Anio long Waves \& TRaWler bano to andor 50 mettes WITM SPEAKER AND EARPIECE. 5 transistors and 2 denser. terite tod derial. tuning con$1+\pi$ 3tro. Toter Buinding Costs $4 / /{ }^{2}$ $1 \frac{1}{4}$ 3fon. Total Buinding Costs a4/6
 NEWI TRANSEIGMTE WAVEBANDS. MW. IW. 3 SHORT WAVES ANO TRAWLER BAMO. a improved ypo trensistors and 3 dindees. Fentixa Push pull output Sue $9 \times 54=22, n$ Toral Building Costs $89 / 6 \mathrm{P}$ \& $\mathrm{P} 5 / \mathrm{B}$
 Pans and
 transona five meo. ano long ANO TRAWLER BANO TO appron 50 melies With speaker ani earPIECE 5 tranisitars and 2 digdis. Territe rad arnal. maving coil speaker. 61 . 44×1 tin. Total Bulding Costs 47/8. P. 8 P. $3 / 9$. P Itree with parts).
 Roamer sevemmia 7 Wave-gands mwi, MW2. LW. SW1. SW2, SW3, AND TRAWLER BAND. 7 tomszislors and 2 diodes Ferritu rod aríal and lalescopsc aerial Socket for car ternal $7 \times 4 \mathrm{in}$ Patsonas earpicce with swiched socier for privble listoning $5 /$ exte. Pions and Parts fist 3 . (tree mith

RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedford. 'Phone 023452367

KING OF THE PAKS Unequalled Value and Quality	
SUPER PAKS $\begin{gathered}\text { new bil-pak untested } \\ \text { semiconductors }\end{gathered}$	
Satisfaction OUAranteed in Every Pak, or money back.	
	60 Mixed Germanium Trankistors AF/RF............. $10 / \mathrm{l}$
	75 Germanium Gold Bonded Diodes dim. OAS
	40 Germanium Translitors like OC81, ACl
	60 200ma Sub-min. 811. Dlodet.
	\$0 sllicon Planar Traniletors NPN stm.
	16 Blicon Rectifers Top-Hat 75amA up to
	50 git. Planar dlodes 250 mA OA/ $200 / 202$
U9	20 Mixed Volts 1 watt Zener Dlodes.
	30 PNP 8llicon Planar Transistorn TO-3
V12	12 8illicon Rectiferi EPOXY BV128/127
	30 PNP-NPN Sil Tranaistors OCz200 \& 28104
	150 Mired Blicon and Germanium Diedes.
	30 NPN Billicon Planar Transietors TO-5 sim. 2 N 69
	10 3.Amp silicon Rectifers stud Type up to 100
	30 Germanium PNP AP Transistors TO-5 like ACY 17.22. $10 / 0$
U18	86 -Amp silicon Rectifers BYZ13 Type up to 600 PIV.. $10 / 0$
	30 Blicon NPN Transistora like BC108............... 10-
U20	121.3 -mup Biticon Rectitiers Top-Hat up to 1.000 PIV.. $10 /$ -
U21	30 A.P. Germanluma alios Transistors 20300 Beries \triangle OC71 10/-
	101 -amp Glass Min. sllicon Rectifera High Volts...... 10/-
023	30 Madt' like MAT Beries PNP Transistor............ 10/-
	20 Gernandum 1-amp Rectifera GJM up to 300 PIV... 20 -
U2\%	
	Experimentera' Assortment of Integrated Cliculte, unterted Gutes, Fup-Plops. Regieters, etc..8 8 Assorted Pleces.... 20/0
	101 amp BCR's T0.3 can up to 600 PIV CRBI/ $26.600 \ldots$... $20 /-$
	20 8il. Planar NPN trans. low nolse Amp 2 N3707
	15 Plastic case 1 amp silicon rectifers 1N4000 series.... $10 / 0$
	25 Bil. Planar trans. PNP TO-18 2 N2806.............. 2010
	25 8ll. Planar NPN trans, T0-5 BPY50/31/32 10/0
	30 Bif. alloy trans. 80-2 PNP. OC200 28322........... 10/0
	20 Past Switching gll, trane NPN, $400 \mathrm{Mc} / \mathrm{s} 2 \times 3011 \ldots . . .10 /-$
	10 Dual trame, 6 lear 1 To. 3 2 2 2060.................... $10 /-$
	VhP Germi PNP trang. T0-1 NKT667 AM117...... 10/-

BHPAK SENICONDUCIDIS
 (DEPT. WW.)

TESTED SCR'S
PIV1A 7A 16A 30A
100 8/6 10/-15\% 45
200 12/6 15/- $20 /-55 /-$
20- 40\%-501.
SIL. RECTS TESTED
PIV 750 mA 3 A 10A
50 1/- 2/8 4/3 9/8
$1001 / 3 \quad 3 / 3 \quad 4 / 315$
$2001 / 9 \quad 4 / 84 / 980$
300 $2 / 3$ $4 / 6$ $6 / 6$ 02
$4002 / 6 \quad 5 / 6 \quad 7 / 6 \quad 25 /-$
500 3/- 6/- 8/6 30/-
$\begin{array}{llll}600 & 3 / 3 & 6 / 9 & 8 \\ 800 & 3 / 6 & 7 / 6 & 11\end{array}$
$\begin{array}{cccc}800 & 3 / 6 & 7 / 6 & 11 / 8 \\ 1000 & 5 /- & 8 / 3 & 12 / 8\end{array}$
1200 8/6 11/6 15/-
full range of zener
DIODES
VOLTAGE RANGE
400 mV ($\mathrm{DO}-7 \mathrm{Ca}$
1-5W (Top-Hat) $3 / 6 \mathrm{ea}$.
10W (80-10 8tud).. 5/- en.
Al] fully tested 5% tol. and
marked. State voluage
required.
BRAND NEW TEX
GERM. TRANSISTORS
Coded and Guaranteed
Pak No. EQYT
T1 8 20371A 0c71
T2 $820334{ }^{\text {P }}$
T3 8 203744A OC81D
T4 8 2G381A 0 OC81
T6 8 20344A OC4
T7 8 20345A
T8 8201378 OC78
T9 8 2G399A 2N1302
T10 8 20417 AF117
All 10/- etach
2 K 2060 NPN SIL. DUAL
TRANS CODE D1699
TEX As. Ous price 5/- ea.
120 VCB NIXIE DRIVER
TRANSISTOR. Bim. B8x21
${ }^{4}$ C407. 2 N 1893 FULLY
TEsTED AND CODED
ND120. $1-24 \quad 3 / 6$ each.
To-5 N.P.N. 25 up $3 / \mathrm{l}$ ea .

QUALITY-TESTED PAKS

 6 Matchod Trans. OC44/45/81/0 Red Bpot AF' Trans. PN P 6 Whate gopt RF Trans. PNP
silicon Rects. 3 A $100-400$ PIV
10 A silicon Recta. 100 PIV
12 A ACR 100 PIV
811.
811. Trans. 28303 YNP
Zener Dhodes 250 mW
3.12 V Zener Dhdes 250 mW
200 Me/a 84 . Trans. NPN B8Y26/2?
 High Current Trans. OC42 Eqvi.
Power Transistors 10 OC 281
102 guicoa Recta. $\$ 00$ PIV 250 mA OC75 Transiators
Power Trana. Ocz20 100 Y
OAZ02 Sill Diodes Sub-min Oazo2 sil. Diodea Sub-min. 84. Trane NPN YCB 100 zT86

OC72 Transistors
OHI, Rect. 400 PIV 500 mA
GET884 Trans. EqVI. OCA
GET884 Trans. Equt. OC44
GFT883 Trans. Eqvi. OC4

GT31 LF Low Notse Germ Tr
PNP
IN914 su. Diodes 75 PIV 75 mA
8 OA95 Germs Dlodes $8 u b-\mathrm{min}$. IN 69 .
3 NPN Germ. Trans. NKT73 Eqvi.
AC130 Power Trans. Germ
Oc25 Power Tran. Germ.
AC128 Trans. PNP High
4 ACl28 Tran. PNP Righ Gain
2 N 1307 PNP B witchlag Trans.
CO62
Gertn. Dlodes Equt.
7 CG62H Gertu. Dlodes Eqvi. O
3 AF116 Type Trans............
ACl26 Cerm. PNP Tratis.
sllicon Recta. 100 PIV 750 m
ocs1 Type Tras:
3 OC171 Trans.
25701 si, Tran. Texaa
312 Yolt Zenera 400 mW W 1845 B
1 2N910 NPN BL Trans. VCB 10010

3 B8Y95a 8il. Tran
3 OC200 8id. Trapa.
81. Power hecta. BYZ13

TK201A..... Zener Dlodes gub-min
2N1132 PNP Eplazlad Planar Bi
2N697 Epltarial Planar Trana, 4 Germ. Power Tranar Equ
1 Unjunction Trans. 2N264

Tunnel Dlode AEY111 1050 Mc/s.
2N272 gi. Epoxy Planar HFE225
BY 100 Type Su. Rect

Tmant IIPHOVFAVPIIIIER

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 V . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8

2ikw fan heater
Three ponition wwitching tu widt
changeas in the wrather. switen up for full heater (21/kW), witcch doun
for balt heat (1)kW), switch central for halk heat (11 kW W), switch central
blows evid for aummuer cooling-

FLUORESCENT CONTROL KITS

 Fach hit empprises seven items-Choke, 2 tube ende, Che new "Grolux" tubeen for heb tanke and Indoor plant s.

 each kit orlered. Kit MF1 $3 / 6$ on Hrst kit then $\mathrm{k} / \mathrm{6}$ on esch two kits ondered.

Glans encaneel, awilches operated by extertual magnet-gold
 24ke nod break up to iA up to 300 volts. Price $2 / 8$ each
 $18 / /$ per dozen.
Flat. Prat type, 21 m . long, Just over $1 / 1 \mathrm{Bim}$. thlek, approx Mastey tin. wide. .he Branian Type flat tened out, so tha be pucked linto a square solenold. Ratligg 1 anip 200 volt.
 $1 / 3$ each. $12 /$ - dozen.

3 DIGIT COUNTER

For Tape Recorder or other application
resettable by depresting buitcon. Price $8 / B$

TRANSDUCER

Male by Acom, reference No. 1.D. 1001. For
meanuring vibration, ete., to be used in conjunction wath "O", Mete?. Regulat

ISOLATION SWITCH 20 Amp D.P. 250 Volte. Ideal to control \square

light cell
Amont zero reaisant in sunilight
lacreaseas to to \mathbf{K}. Ohins in dark or dull

FLEX BARGAINS

Screened 3 Core Flex. Fizch core 14/0076 Copper PVO raded overall $1^{\text {Prifec }} £ 3.15 .0$ per 100 yds coll and metal
 coren, protected by buugh rubber rheetht, then black couton to 3 kW firen. Regular price $\mathrm{s} / 6$ per yd. 30 yd. wull $£ 4.10 .0$.
 Copper. Normal price $2 / 6$ per yd. 100 yd. coil $£ 7.10 .0$. 6A 2 Core Flox. Aa above, bui for Veeuum Cleaners, Electric Blankets,etc. 39/6 100 yd.coll 3-CORE WATERPROOF FLEX
6A, 23/0076 circular PVC corered an itted to electric drills And nost partable appllances, Ideat extension lead. Regular
price $1 / 6$ per y andl our price $78 / 8$ for 100 yard coil. Poot $6 / 6$. Elliot Sealed Contaet Reed Relay. Three circuits elosed by 3 voit or 100 MA . $9 / 6$ each
Sllm Tubular Mierophone. Far hand hohing or frontal
puapennion -iever owich-high jmpedn nce with lend and pluges for cassette tiape recorier but nuitable for moan ampa. 19/6.
50 MA Movink Coil Moter. 2in. fuah mounting round zeter

6, 12 OR 24 VOLT SOLENOID For energizlng Reed Buitchen, etc., nize
upprox. in. Iong by 1 ln . diameter Hole hrough selemoid approx. ins. $8 / 6$ sach.

SA 3-PIN SWITCHED SOCKETS An excellent opportuntity to
 - we offer 6 Brition mado (Hicruft) brkelite only 10 - plux $3 / 6$ post nant insurance.

MINIATURE EXTRACTOR FAN
Beautifully made by famour giernan Conipany. Parst byotem

BUY TIME SLOT METERS

Price $£ 3.19 .6$. post and ine. $\mathrm{E} /$

HORSTMANN 'TIME \& SET' SWITCH
(A A Amp 8 witch). Juat the thing if you want to come home to
warm house without it costing you n ortune. You can delay the witeh on time of your electric firse. .etc., up to 14 hours from
 DISTRIBUTION PANELS Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$ pluss, Supplied complete with of feet of henvy cable aslvertised at 25 . Our price 39/6. plus $3 / 6$ post and insurance.

24 HOUR TIME SWITCH

 While you tre on hollday. Mhde by he tantuous Emathe Company.

DOUBLE ENDED MAINS MOTOR
On feet with holes for serew. down fixing. To drive mudele,
oven, blower heater, etc. $10 /$ esch. plua $3 /(6$ pooi

INSTRUMENT MOTOR WITH GEAR BOX Mule by the famous 8 sniths Comppny. Thin motor han an 8 -gear
Irain truin in perspex gear box. Approximate dimentions, notor
IIIn. \times Itin. dianneter, gcar box tin. $\times 2$ tin. diameter. Athoukh only 2 watt motor this in resily powertul and imponstble to topp
by hand. Mainu operated and availuble with the flal speeds 1 rpm, ${ }^{4}$ rpm, 30 prem, 60 pman and 1 rev. per hour, $35 /-$ peed

I WATT AMPLIFIER \& PRE.AMP
5 transistors - hlghly efficient , inale for use with tape. Lim ied quantity 29/6. Puli circuit diag. waso shows

VARYLITE

Wiil dim incandement lighting up to 600 watt froun full brilliance to out may be itted in place of than or mount fring as arandard wall switch mo plastic boy with cont fol knob $£ 3.19 .6$.

HI FI BARGAIN

PULL FI 12 INCH LOUDSPEARER. This in undoubledly one of of he country" most fmmous maker, It hase is die-cast metal frame and il arongly recommended for HI-Fi load and Rhy hmm Gultar Had
 $30-10,000$ ep...- apecily 8 or 15 ohno -Chassis Diam. 12 in, - 121 over mounting luge- Battee hoie ilip.

tagential heater unit

Winter in comlng bot net todng and you won't
damag. Thas heater unit is the very lateat iype mant
 hlower heaters coatiling $\varepsilon 15$ and more. We have A few oaly. Units complete. wired ready to nt into catew,
i.e motor, tmpeller, 3 kw. hrater avitching 1,2 and

 Over 63 are porst free. Below 63 add $2 / 9$
Semi-conducters adi
posi free. S.A.E. with enquiries over please.

MINIATURE WAFER SWITCHES

2 pole, 2 way - 4 pole, 2 wry- 3 pole, 3 wry 4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way 2 pole, 6 way- 1 pole, 12 way. All at $3 / 6$ WATERPROOP HEATING 26 yarda length 70 W. self. regulating AC FAN Bmall but very powertul maine motor with 51 ln . bladen. Ideal for cooling equipment of as extracLor. silent but very elficient. 1\%/6. post $4 / 6$. Mounts from back or front with 4BA merews.

RADIO STETHOSCOPE

MAINS TRANSISTOR POWER PACK

 Desigued to operate trannistor sets and amplifera. Adjust.able output $6 v ., 9 v ., 12$ volts for up to 300 mA (Clitss H working). Takes the place of nny of the following batterlea: PP1, PP3, PPA, PP6, PP7, PP9, and others. Kit comprisea: condensers and inatructions. Beal snip at only 16/8 plus $3 / 6$ postage.
PHILIPS TRIMMER
0.30pl ath old dewign but one widich hat
never been bettered. $1 /$ - each. $10 / \cdot$ doz.
$£ 4.0$ per 100 .

MOTOR WITH
GEARBOX
 230 VOLT
SOLENOID

 SPRING COIL LEADS na, fitted to telephones, ${ }^{4}$ core
$2 / 6$ ewch, 3 core $2 /$ - each.

PP3 BATTERY ELIMINATOR

Run your omall transistor radio oforn adjustable high or low current.
$8 / 6$ each.

INSTRUMENT BUZZER

6-12 volte, adjuetable tone, a vory peat metal cased U.8.A
made unit approx. 1 in. x lin. \times th. thick. $6 / 6$ each
 PANEL LAMPS

 fited with lampr. 110 w. and
Price $3 /-$ each. $30 /-$ dozen.

APPLIANCE THERMOSTAT
This le a akelelon Type conirol Intended tor building into
oven, for baktng, curing. pottery, etc, 2 raodela, one prea oven, for thating, curing, potitery, ete. 2 raodela, one pre
net for control. Approximate operating tempersture. Note only high temperature thaulation used in these miatm. Price 12/6 each.

S K.W. PORTABLE HEATER
For wurkphop - Atoree - green-
houre. etc. Usea twin halanred motorn for silent operallon ard
rellability, threc, ponstion switeh
given tman, heat

- 돌 BARGAINS SERVICE FROM T.R.S.

Amplifier Kits

Styled and kitted by T.R.S., using quality componente, including valves or transistors and excellent instructions. Backed by T.R.S. eervice.
MULLARD 5,10. Mono. Basic kit (requiree pre-amp), Input Sensitivity- 40 mV ;
Response 20 Mz -15K Mz + IdB; Output 10 watts R.M.S. at 3 or 15 ohms. KIT 110.10 .0 ; BUILT \&13.0.0 (Carr. either, 7/6).
MULLARD 2-VALYE PRE-AMP with switching for 5 inpurs; bass/treble/volume

MULLARD $10-10$ STEREO AMPLIFIER. Input sensitivity- 210 mV per ch.; Response $2 \mathrm{~Hz}-35 \mathrm{KHz}+3 \mathrm{~dB}: 10$ wates R.M.S. outpue par channel into 3 or 15 ohms. KIT 818.10.0; B BILT 22. 10.0 (Corr. eicher. 12/6.)
$2+2$ STEREO PRE-AMP similar to Mullard 2 -valve pre-amp, but doubled with gang controls and balance. BUILT
T.R.S. $4+4$ STEREO AMP 15 ohms speakers. Input switehing. ete. Bass and treble controls. Simple module assembly, Amp and pre-amp with ront panel and knobs. 216); 24V. Power pack $\mathbf{C 2 . 5 . 0}$ Kit 87.19 .6 (Corr. 3/6): Teak sided cabinet Cl.17.6 (Carr. 2/6) (24V. Pow
(Carr. 2/6): Complete kit inc. OIN plugs and sockets $\{12.10 .0$ (Carr. 7/6).
THE NEW T.R.S.
P.W. 12-12
T.R.S. have produced their own kit version of this outstandingly good combined stereo amp and pre-amp. It tical Wireless's excellent circuit but is styled for flater, more conventiona cabinet which will be shortly available. Kit includes two tone front panel and contro knobs.
Inputs Mag. P.U. (R.I.A.A.) Ceramic-Radio: Response20 Hz to $30 \mathrm{KHz}+1 \mathrm{~dB}$. Out-put- 12 watts per ch. R.M.S. inco 15 ohms

Complete KIt of parts £24.10

MODULES

SINCIAIR ${ }^{25}$ advertised $\mathbf{E 4 . 9 . 6}$ Pre-amp/tone control 69.196 SINCLAIR PZ unle €4.19.6
amplifier and pre-amp C2.19.6 SINCLAIR "MICROMATIC" MIDGET RADIO RECEIVERBulle $59 / 6$.

TUNERS

T.R.S. 6 VALVE AM/FM TUNER

With power supply, vaives. large illuminated wave change, "'magic eye" indicator. Tunes Med. waves and F.M. Diode output for tape. Kit with power unit $\{12.10 .0$ (Carr. 7/6).
 Kit less power unit 611.11 .0 (Carr. 7/6).

T.R.S F.M. TUNER

Assemblies from modules obtainable separately. Features interstation suppression, A.F.C. etc. Modules and chassis, scale and zuning drive come to C15.15.0 (Carr. 2/6); Decoder E10.10.0 (Carr. 2/6).

GRAMO UNITS, PLINTHS, ETC.

GARRARD SP. 25 Mk. 11
$10 \frac{1}{\mathrm{in}}$. die-cast $\mathrm{t} / \mathrm{table}$, cueing device and counterbalance. Less cartridge In maker's carton CIl.19.6 (Carr. 7/6) GARRARD LM. 2025 With Sonotone 9TA/HC cartridge and lift control El0.19.6 (Corr. $7 / 6$) PLINTHS
Garrard WB.I ©3.7.6 (Carr. 5/-)

```
ALWAYS IN STOCK controls, mono and stereo; Capacitors Electrolyties; Vinair; Bondacoust; Tinned
board:
Ir-Kit; Enamelled wire;
``` copper wire; plugs and sockets,

Garrard Clearview Cover SCP.I G3.5.0 (Corr. 4/6) \(\quad 6.5 .0\) (Corr. 5/-)

CARTRIDGES
When bought together with playing units. Decea Deram, 65.5 .0 ; BSR TC8/H (Stereo compatible), 25/न; BSR Stereo TC.85, 20/6; Sonoto
T.A.S. FOR TRANSFORMERS. Mains and output supplied to spec. for
tingle or short production runs. Also comprehensive service in replacement line O/P eransformers. Enquiries invited. S.A.E. from private individuals please.

\section*{T.R.S. \\ RADIO COMPONENT SPECIALISTS}

70 BRIGSTOCK RD., THORNTON HEATH, SURREY

\section*{More than a Christmas Present! a stepping stone to a career for eleçtronically minded teenagers.}

\section*{New...Unique... RADIONIC X30} Radio and Electronic Construction Kit

An educational hobby-set comprising:-
Over 30 fascinating experiments, including a printed-circuit transistor radio-which works !-Burglar-alarm, Morse Code, etc. Completely safe, battery operated. Easy to build with detailed, fully illustrated instruction manual. Radionic is used in over 2000 schools. Special cash price direct from manufacturer \(£ 7.19 .6\) inc. P.T. Post Free. Dispatch before Dec. 15 th guaranteed for orders received before Dec. 10 th .

Send cheque or P.O. to.
RADIONIC PRODUCTS LTD. Dept. W
St. Lawrence House, Broad Street, Bristol 1

\section*{WW-116 FOR FURTHER DETALS}

\section*{SPEED CHECKI Roso peo Minuto or ommtime else per minute}
P.I. ELECTRONIC TACHOMETER

Type P.I/L with light probe
Type P.I/M with magnetic probe
* Imposes no load
- No mechanical connection required
* Ideal for inaccessible places
- Lightweight for easy movement

External D.C., Battery, and
Marine engine speed versions

\section*{available from- \\ NECO ELECTRONICS (EUROPE) LTD.,}

WALTON RD., EASTERN RD COSHAM. HANTS.
COSHAM \(71711 / 5\)
WW-117 FOR FURTHER DETAILS

W.H.M.

WOW AND FLUTTER METER (R.M.S)

MODEL III

SYDNEY HOUSE, 35 VILLIERS ROAD, WATFORD
WDI-4AL

\section*{TMK} a masly first class precision multimeter at a wortinutile saving in coss. The impact rastistant baleeita cabine els are supphied with the

\section*{MODEL 200}
 transiator circuit masauremants.

\section*{PECIFICATION}

OCV:O-0.6 8-30.120.800-1.200V at 20K/OP
ACV: \(0-8-30-120-600-12000 ~\)
DC Current: \(0-0.06-6-50-600 \mathrm{~mA}\)

Capacitance: 0002.02 uf InC 6 V angel
Oecibels -2010 163 3 b
Outpu1: 0.05

LASKY'S KIT PRICE 85/-
MODEL 5025
50,000 O.P.V. FEATURING
57 MEASUREMENT RANGES
 compact cabinet The range seescted is clearly indicatad on the actual meter face facilitaing instann idemification without taking movement mith overtoad protection cicuit Special A and mA measurement rambes SPECIFICATION
500 V at 50 KOPV -50-250 1.000V at 25KOOPV 0-0.125-1.25-5.0-25.125 - ACV: 0.3-10-50.250-1.000V at 2.5NOPV 0.1.5-5-25-125-500V ar 5KOPV - OC \(\mu A: 0.25 \mu \mathrm{~A}\) at \(125 \mathrm{~mA} ; 0.50 \mu \mathrm{~A}\) ar 250 mA

OС \(\mathrm{mA}: 0-2.5 \quad 25-250 \mathrm{~mA}+125 \mathrm{mV} ; 0-5-50-500 \mathrm{~mA}\) at 250 mV .
DC Amps: \(: \mathbf{Q} .5 \mathrm{a}\) at \(125 \mathrm{mv} ; 0-10 \mathrm{~A}\) ar 250 mv
Resistance. 0.10 M ahms 113.85 .8506 .5 K and 65 W ohms at centre scale):
- Output Copscitor 10.1 iff, \(400 \mathrm{Vmin} / \mathrm{m}\) senes with \(A C V\) ranges.

Decibers: -20 to 81588 in 10 ranges

\section*{LASKY'S K/TPPR/CE £10.10.0}

\section*{TMK 100K \\ FULLY BUILT AND TESTED}

Ahighly accurate Mullimetet using a \(10 \mu \mathrm{~m}\). Mater hand calibmanted to onc
 which gives inssamt identfication without taking yout eyes hom the matrer. An audible burrer is provided lor easy shor testing SPEC. DCV anges: \(0.5,2.5,10,50,250,500,1,000 \mathrm{~V}\) ar 100 KOPV A ACV ranges: 3 . 10 . \(50.250 .500,1.000 \mathrm{~V}\) at \(5 \mathrm{~K} / \mathrm{OPV}\). OC curient: \(0-10.100 \mathrm{~A} .0-10.100 \mathrm{~mA}\) 0.2.5. 10Ampe Resistance: \(0.1 \mathrm{~K} \quad 10 \mathrm{~K} \quad 100 \mathrm{~K} .10 \mathrm{M}\). \(100 \mathrm{M} /\) ohms. x1.5v u2 \(10+49.40 \mathrm{~B}\). Continnity test:Audible buzer. Operates on

7MK

\section*{Model PL-436}

\section*{FULLY BUILT AND TESTED}
20.000 O.P.V. Multi-testet for the amateur or professional, Features mirror scale and wood grain finish front panel. SPEC.: OCN ranges \(0.6 .3 .12,30.120 .600 \mathrm{~V}\) at 20 K O.P. V. ACN ranges: 3. 30.120
600 V at \(8 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{V} . \mathrm{DC}\) current: \(50 \mu \mathrm{~A} .0 .6 .60\). 600 mA . 10K. 100K, 1 M and 10 M ahms end scate 165.650 A Resistance \(10 \mathrm{~K} .100 \mathrm{~K}, 1 \mathrm{M}\) and 10 M ohms ond scale \(\mathbf{1 6 5 . 6 5 0}\). 6.5 K and 65 K ohms centre scale). Decibels: -20 to +57 dB in four rances. \(5 / \times 4 \times 2 \mathrm{zin}\) Complete mith batneies balts. Size.

\section*{}

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL FREE \(\qquad\)

TTC Model C-1051
POCKET MULTIMETER
 movement Colaur coded scales Single positive check in. recessed selection swith
tof all ranysas. Dhms reto adiustment Range spac acc voits: \(0-8-30-300-1,200 \mathrm{~V}\)

 Hand calibrestion pives entiemely high standerd of acculacy on all anges uses

\begin{tabular}{|c|c|}
\hline LASKY'S PRICE \(75 /-\) Possit \(2 / 6^{\text {ALSO AVAILABLE }}\) C-1052 3 KOPV METER E5.19.6 \\
\hline
\end{tabular}

\section*{TTC MODEL C-1000}

 DC current: 0.1 .100 mA Resisiance: 0.150 N ohms \(\{2.000\) ohms centre scalie) site only \(3 \neq 2 \neq \mathrm{xin}\) Click stiop iange selection swith Ohms ruito adjusimeme LASKYS
\(P R / C E\)

AVAILABLE NOW! THE IC-403
INTEGRATED CIRCUIT AMPLIFIER MODULE
these ing developed for compurer and space projects repre sent modures-sire only \(25 \times 10 \times 5\) millimetras-
 design since the instoduction of the transistor The

\(\qquad\)
 THE IC. 403 IS AVAIIABLE FROM STOCK EXCLUSIUELY FROM LASHY CIRCUIT APPLLCATIONS FREE INSTRUCTION DATALEAFLETON REOUEST

\section*{LASKY'S PRICE 49/6 \\ \(\qquad\)}

Also available from stock Sinclair IC-10. \(59 / 6\) post free.
DENSH BOARD KITS EDUCATIONAL GIRCUIT SYSTEM The DENSHI BOARD system
enables the young experimenter and electronlcs hobbyist to procircuits of increasing sophistica tion-without soldering or the use of any tools at all I Basically the system comprises a slotted circuit board Into which plug-In com to produce up to 30 dilferent circults. The components ase Incapsulated in transparent plastic blocks bearing the appropriate clicuit symbol and value thus novice to visually grasp the fundamentals of circuity after only a

BOARD KIT comes complete with 80-page manual of circults and data. THESE ARE JUST A FEW OF THE CIRCUITS YOU CAN BUILD IN MINUTE SIGNAL INJECTOR. SIGNAL TRACER, WIRELESS MICROPHONE, ETC, DENSHI BOARD KIT SR-1A comprises. Base board; funer block; 4 resistors Choke coil transformer; 2SA transistor for RF; 2 diodes; 3 capacitors; battery block and 80 page manual. This kit permits the bullding of 16 besic circulie

\section*{}

DENSHI BOARD KIT SA-2A as SR: 4 - Dlus: 2 SB wansistor for AF: 2 tesision enacitor; cisstal microphone; test probes; electrode; additional connecting places, 9 V bitery. This kit permits the bullding of \(\mathbf{3 0}\) circuits.
\[
\text { LASKY'S PRICE } £ 7.2 .6 \underset{\substack{\text { Posicis } \\ 3 / 2}}{ }
\]

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch, Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e.g. IN9141/3d. \(\square\) IN916 1/11d. \(\square 2 N 697\) 4/5d. \(\square 2 N 706\) 2/3d. \(\square\) 2N706A 2/9d. \(\square\) 2N929 5/8d. \(\square 2 N 1613\) 4/8d. \(\square 2 N 3011\) 9/1d. \(\square 2 N 3053\) 6/2d. \(\square\) 2N3055 15/9d. \(\square 3 N 140\) 15/3d. \(\square\) BFY50 4/8d. \(\square\) BFY51 3/9d. \(\square\) BSY27 18/- \(\square\) BSY95A 3/3d. \(\square\) C407 4/6d. \(\square\) CA3012 18/3d. \(\square\) CA3014 25/6d. \(\square\) CA3020 25/9d. \(\square\) OA200 1/9d. \(\square\) OA202 1/11d.

\section*{Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS}

The result of the combined resources of SGS
and RCA,these quasi circuits set new standards
in quality and performance. Each kit is complete
with circuit diagram, all semiconductors, resis-
tors, capacitors and printed circuit board.
\(12 \bar{A}\)
£7. 0.0.
25A
£8. 5. 0.
40A
£9. 0 . 0 .
70A
£10.10. 0 .
Any two will make an outstanding stereo equipment.

\section*{R+TV}

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W 2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

\section*{Complete stereo system - 28 gns.}

The new Duo general-purposer 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.
Type 1 SPECIFICATION
Impedance 10 ohms It incorporates Goodmans high flux 6 " -4 " speaher
 Type 2 as type 1 . Size \(17 \frac{1}{2}^{\prime \prime} \times 10 \frac{1}{\prime}^{\prime \prime} \quad 6 \frac{1}{}^{\prime}\). Incorporating \(10 \frac{1}{2}^{\circ} \times 6 t^{\prime}\) bass unit and \(2 t^{\prime \prime}\) tweeter. 3 ohms impedance \(5 \frac{1}{9}\) guineas plus
7/6d. p. 6 p

Covyr and Teak finish Plinth \(£ 4.150 \mathrm{~d} .7 / 6 \mathrm{~d}\). p. 6 p.

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
amplifiers costin
SPECIFICATION.
R.M.S. power output: 3 watts per channel into 10 ohms speakers

INPUT SENSITIVITV: Suitable for medium or high output cartridges and iuners. Cross-talk better than 30 dF at \(1 \mathrm{kc} / \mathrm{s}\).
CONTROLS: 4 -position selector swich 2 pos
CONTROLS: 4 -position selector swith (2 pos. mono and 2 pos. stereo)
dual ganged volume control
dual ganged volume control.
TONE CONTROL Treble lift and cui. Separate on off swith. A preser balance control.

che Olassic TEAK FINISHED CASE \(8 \frac{1}{2}\) GNS. Buill and tested

Specification
Sensitivies for 10 watt output at 1 KHz into 3 onms. Tape He日d: 3 mV lat 3 h i.p.s. 1 . Mag. P. U.: 2 mV . Cer. P.U.: 80 mV . Tuner: 100 mV . Aur. 100 mV . Tapoedrec. Output: Equalisation for each input is correct to within \(\pm 2 \mathrm{~dB}\) (R.1.A.A.) from 20 Hz to 20 KHz Tone Control Range: Bass
\(\pm 13\) dB at 60 Hz . Treble \(\pm 14 \mathrm{~dB}\) at 15 kHz . Total Distortion: (for 10 wett outputl <1.5\%.

INPUT: 8 -poshion rotary selector switch \((3\) pos. mono and 3 pos. stereol. P.U. Tuner. Tape and Tape Rec. out Sensinivities: All Inpurs 100 mV into 1.8 M ohm.
FREQUENCY RESPONSE: \(40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 208\).
TONE CONTAOLS: Separate bass and treble contols. TREBLE 13 dB lift and cur (at 15KHz) BASS: \(15 d 8\) lift and \(25 d 8\) cut lat 50 Hz).
VOLUME CONTAOLS: Seoarate for each
Viscount Mark IIS: Separate for each channel. AC MAINS INPUT: \(200-240 \mathrm{~V} .50 .60 \mathrm{~Hz}\) Viscount Mark II for use with magnettc pick ups speclification as above. Fully equallsed for magnetic plck ups. Suirable for cartriges with minimum output of \(4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}\). at 1 kc . Input
Impedance 47 k . 15 gis plus \(7 / 6\) p. 8 .

She iscoumt integrated high FIDELITY TRANSISTOR STEREO AMPLIFIER \(13 \frac{1}{2}\) GNS \(+7 / 6\) p. \& p.

OUTPUT: 10 waths per channel into 3 to 4 ohms speakers (20 watts) monera)
\(\qquad\)
al.
These 5 tiems can be purchased
together for \(28 \mathrm{gns}+£ 1.10 \mathrm{p} . \& \mathrm{p}\).

OUTPUT: 10 watts into a 3 ohms speake INPUTS: (1) tor mike 110 m....). Inpu TRANSISTORS: 4 silicone and inree gemanium

THE RELIANT MK.II
Solid State
General Purpose Amplifier In teak-finished case
\(6 \frac{1}{2}\) GNS.
\(+7 / 6 \mathrm{p}\) \& D

MAINS INPUT: 220/250 volts
 MIKE TO SUIT ICRYSTAL: \(12 / 6 \mathrm{~d}\). \(1 / \mathrm{ed}\). D. \& p. \(8^{\prime \prime} \times 5^{\prime \prime}\) speaker \(14 / 6\). \(1+3 / \%\). \& op. Mk. 15 fgns \(+7 / 6\) d. p. \& p. less Teak-finished case

X101 10w. SOLID-STATE HI-FI AMP
 With Integral Pre-amp. Soecilications: Power Dumput limito 3 ohms speenem 10 wathe Sensibviry Hor hored output): 1 mV inro 3 K
 Response: Minus at 3 dB points 20 Hz and 40 kmy

 69/6 pius 2/8. \& \&
CONTROL ASSEMBIY: (inckding resistors and capacitors) 1. Volume: Piciee St2 Trebiv: Price \(5:-3\) Comprenensive bess and irbile Pico \(14 \%\). The above 3 items can be purchsed tor use with the X101. Powta suppues for xiol:

\section*{STEREO PRE-AMPLIFIER}

Inputs- 6 position rotery swith 13 position mono. 3 position stereol. Tuner 150 mV into 880k Magnexe pick up luily equasised and suitable lor magnetic cantidges with minimilisng ourput of \(4 \mathrm{mV} / \mathrm{cm} / \mathrm{c}_{\text {bec }}\) Lasd 47k Ceramk pickup volums controis for Sach channel Tmen for 200 my output Controls-scearato

 front panel and knobs Builh and lested \(\mathbf{~} 7.7 .0\) plus \(5 /\). p . \& p .

7 -transistor fully tu with baby alarm tacility. Set of pans. The latest modulized and pre-alignment techniques makes this simpe to build
Sizes: \(12^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}\)

CYLDON 2 TRANSISTOR U.H.F. TUNER

Brand new. Complete with circuit diagram \(\mathbf{f 2 . 1 0}+1 \%\) p. \& \(p\).

7-transiator tuily tunable M.W.-L.W. superhet portable. Set of parts. Complete with all components. including ready etched and drilled printed circuit board-back printed for foolproof construction.

50 WATT AMPLIFIER

27 gns.
plus 20/- p. \& p

An extremely reliable general purpose valve Amplifierwith six electronically mixed inputs. Suitable for use with: mics. guitars. gram. tuner. organ. etc. Separate bass and
treble controls. Output impedance
3. 8 and 15 ohma

\section*{SPECIAL OFFER}

Complete stereo systems comprising GALFOUR 4 speed avio player with sterso head 2 DUO speaker systems size \(12 \times 6 \frac{1}{2} \times\)
\(5 \frac{2}{2}\). Plinth fless cover) and the DUETTO stereo amplifier All above items

19 GNS. plus 20/- o. \&ip

NEW 48' FOLDING MACHINES SHEET METAL bench model by parker

\(48^{\prime \prime} \times 18\) gauge capacity 640 0 0 \(36^{\circ} \times 18\) auge capacity \(24^{-} \times 16\) gauge capacity

Carriage Free
Also the well-known vise models of
\(36^{\circ} \times 18\) gauge capacity. \(24^{\circ} \times 18\) gauge capacity. \(18^{*} \times 16\) gauge capacity..

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench

One year's guarantee. Money back if not satisfied. Send for details:

\section*{A. B. PARKER}

FOLDING MACHINE WORKS, UPPER GEORGE STREET heckmondwike, york's. Telephone 3997

\section*{SENSATIONAL BRITISH MADE RADIO CONSTRUCTION OUTFIT - MAKES 5 DIFFERENT TRANSISTOR RADIOS}

\author{
No soldering--No experience needed-simple \\ total building \\ 47/6
} lavishly illustrated step-by-step plans enable
anyone 9 to 90 to build radios easily with Home Radio Course_you terrific results. - Educationa-_almost a complete Noms Aadio Course-you start with a simple semi-conductor radio which takes under radio complete in attractive case. All operate off tiny self contained battery costing pennies and lasting months. True to life sound reproduction. Fully tuneable. Receives standard medium wave broadcasts. All parts down to last screw-Inc. 3 Transistors. I Semiconductor. 1 Moving Coil Loudspeaker (this alone must be worth 19/6) Personal phone for smaller radios, all resistors, condensers. coil. wire. knobs, Radio Case, A.B.C. Plans, etc.. etc. ONLY \(47 / 6\) plus \(4 / 6\) p. \& p. (Parts available separately) New and boxed direct from Manufacturers to you saving EEs in middlemen's profits. MAKES FANTASTIC XMAS PRESENT. /Check prices of less comprehensive educational tovs in the shopsl/ SOLO EVEAY YEAR FORTHE LAST 9 YEARS—MANYTESTIMONIALS.

PHOENIX ELECTRONICS (WW11), 18 Litte Preston Street, Brighton 1, Sussex

\title{
Wilkinsons FOR RELAYS = P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN large stocks held of miniature sealed relays \\ \\ TERMINAL BLOCKS. 2 way 5C/430
} \\ \\ TERMINAL BLOCKS. 2 way 5C/430
}
\(\qquad\)
 MINIATURE SILVER ZINC ACCUMULATOA |ideal for model work, \(12 / 6\) each. \(120 /\) - doz., post \(1 / 6\). STROBOSCOPP FORK. 125 cycles. P.O. No. 5, \(30 /\) LEDEX ROTARY SOLENOIDS ANO CIRCUIT
 12 way
0
0
OH:
150 N.S.F. SOLENOIDS zype 3 E 115.2 ohms 48 . D. D.C. \(17 / 6 \mathrm{ea}\). CERAMIC AND PAXOLIN WAFER SWITCHES avaliable from stock at keen prices send for lise. 24 way
Double Pole Pax Wafer Swirches \(12 / 6\) each, post \(2 / 6\). P.O. STANDARD RACKS 6 fre U channel sides drilled
for
Sqin. panels heavy angle base, \(150 /-\), cge
20/-. Desk Units for Racks \(30 /\), cge \(7 / 6\).
MINIATURE BUZZERS. 12 V . with tone adiuster. \(7 / 6\).
 PLASTIC.FILM CONDENSERS TMC SII SOOITLM
\(0.9+0.1 \mathrm{md}\). S00v, also 1 mid. \(1 \%\). 150 v . TCC 20/- each. AIR BLOWERS. 200/250 vole. A.C. cylindrical Tin.-

ELCOM STUD SWITCHES. 12 pole 2 way or 3 way GEARED MOTORS. 1 r.p.m. or 3 r.p.m. 4 wates very
 YACUUM GAUGES. 2in, scaled. 0/30 inches of mercury 20/- each, pose \(2 / 6\). STANDARD LEVER

in. square case wish pair of bin. lenses mounzed BATTERY CHARGERS at special price made by West-
inghouse. worth 65 . Inpu? \(200 / 250\), A.C. output \(6 v\). 15 amps D.C. with ammeter, fuses: regulated by a 4 -position
 MINIATURE DIGITAL DISPLAY SERIES 661
Counting Insts. Led., an assembly of five uniss each
displaying I messages in numbers with decimal poine,
and letters \(\leqslant 25\) compleze, send for deralls. HIGH SPEED COUNTERS \(31 \times\) lin., 10
counts second w
figures.
following voleazes
available.

SUB-MINIATUR mounted in fives 13 si
Tounted in fives for \(22 / 6\) post
sicrew-on cover.
PO 201 on headoh
PO 201 on headphone cord 9 d.
PLUGIIN RELAYS Cord 3/F, poss 1/6. \(28 v\). D.C. or 240 v . A.C. with base and cover, \(35 /\) - each. RELAYS, 24 vole D.C., 4 make. 4 break heavy dury contacts UNISELECTOR DIGIT SWITCHES 8 level 12 ourlets 3 bridging 5 non-bridging 50 volts. \(68 / 10 /-\). STABILIZED POWER UNITS RACAL. inst, RYpe
PU 156 C, A.C. inpur \(200 / 250 \mathrm{~V}\). D.C. Outpur positive HT 200/300\%, Atabilized Load curreni 250 mA negarive HT
\(150 \%\) HT 150 v . stabilized is mA. 645 .
ROOM THERMOSTAT. Adjustable between 45 and
75 deg. Far., 250 v . 10 amp . A.C. ideal for greenhouses, \(35 /-\mathrm{l}\).
or \({ }^{3} 1,000\) WC/432 \(50 /-\).
ROBUST AIRCRAFT PUSH, 5C/898 of bakelite barrel type construction, with l?in. square hole fixing top with beins used aecideneally Samples 5/. each targe quankiztes MAGNETIC COUNTERS, Veeder Root with zero resen. counts per minute, eounking to 999,999 , 110 or 125 volts VACUUM COIts ONDENSERS, 25 pf. \(32 \mathrm{KV}, 27 / 6\), DOse \(3 /-\)
 Microamps \(0 / 500\) Milliamps \(0 / 502\) 2lin. Milliampe 0 's00 1 in . M Amps \(50-0-502 \mathrm{in}\). Voles \(5 / 0 / 521 \mathrm{in}\). MC Voles \(0 / 202 \mathrm{in}\). Voles \(0-402 \mathrm{in}\). MC.
MICROAMPS 0/50 scaled in Ronrgens in. MCR.... 70/PORTABLE VOLTMETERS O/250 Moving Iron A.C.ID.C.

> ONE HOLE FIXING SWITCHES DOUBLE POLE ON/OFF
\(\qquad\)

making and breaking CTOR. Precision made. Contacts

1. WILKINEON (CROYDOND LTD LONGIEY HOUSE LONGLEY RD. CROYDON SURREY

RESISTORS, wre wound or carbon. posentiometers, BRIDGE MEGGER series 1. With resistance box li, 189 , ours, range price c 60 . TRANSFORMER. 200/240 LONGLEY HOUS

\section*{NO EXCUSES! NO DELAYS! FROM STOCK! vaniable voltage transfonuens}

50 AMPS

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
VAN DE GRAAF ELECTROSTATIC GENERATOR \\
fited wieh motor drive for \({ }^{230}{ }^{230}\) g. \({ }^{2}\) giving \\
a potential \\
of approx. 50,000 volts. Supplied absolutely complete including accessories for carrying out \({ }^{2}\)
number of interesting number of
experiments, and full inseructions. This instrument is completely safe, and ideally sulted for Sehool demonstrations. Price \(67 / 7 / \%\), plus 4
\end{tabular} \\
\hline
\end{tabular}

500 VOLTS, 500 megohms Price \(\mathbf{E} 28\) carriage paid. 1,000 VOLTS, 1,000 megohms E 34 carriage paid.

5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input
Output
0.260
V.
V. A.C. A.C. Output 0.260 v. A.C.
Output
0.240
v. D.C. Output \(0-240\) vi. D.C.
Fitted large scale ammeter and voltmeter Neon Indicator, fully tive metal case 15 in . \(X\) \(83 \mathrm{in} . \times 6 \mathrm{in}\). Weight 24 lb. Infinitely variable, smoothstepless voltage variation over range. Price \(£ 38\) plus \(30 /-\) p. \& c. Similar in appearance

\section*{CONSTANT VOLTAGE TRANSFORMER}
 Constant
at 230 V at 230 v.
250 wate 250 wate metal case. Fitted red frice CIIIO Weigh 17 lbs .
 HIGH FREQUENCY GENERATOR Inpur \(100 / 110\) voles or \(200 / 250\) volts \(\mathrm{AC} / \mathrm{DC}\)
Output 19 KV varlable. Ideal for testing insu lation, vacuum, leakage path, gas discharge lamps, neon ere. A useful ozone and HF supply.
Manufactured by Edwards High Vacuum Led. Brand new in maker's polished wooden carrying

\section*{SERVICE TRADING CO} Postare and Carriage bown below are inland only. Fon
Overiess please ask for Overatas

MINIATURE UNISELECTOR issue a catalozue or lis

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium
Sulphide Phococell. Relay Transistor and Sulphide Photocell. Relay Transistor and
Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 vols oper High Speed Relay for 6 or \(22 / \mathrm{volt}\) oper
ations. Price \(25 /\), plus \(2 / 6\). P . ORP. 12 and Clrcuit 10\()^{2}\) post paid 220/240 A.C. MAINS MODEL
 incorporates mains eransformer rectifier and special circuit \(47 / 6\), plus \(3 / 6\) P. \& P. MOUNTING with adjustable lens assembly and
\(\Rightarrow\) ventilated lamp housing to take
MBC bulb. Seprate明 MBC bulb. Separate photo cell mounting assembly for
ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair \(\mathbf{C 2 / 1 5 / 0}\) plus \(3 / 6\) ares
P. \& \(P\)
-2

INSULATED TERMINALS Available in black, red, whice, yellow, blue and green. New

RADIO ALTIMETER
This precision Instrument is
based on a 24 r . D. C. LOW
INERTIA (Integrating)Motor.
The Motor drives two
precision precision pots through close
colerance at fraction ofrains at fraction of manufacturer's price: \(32 / 6\), plus \(6 /-\mathrm{P}\). \& P . 30 volt 3 amp., \(11 /\), plus \(2 / 6\) P. \& \(P\)

AUTO TRANSFORMERS. Step up. step down I lo-200-220-240 v. Fully shrouded. New. 300 wat type \(63 / 10 /-\) each. P. \& P. 4/6. 500 watt type £4/12/6 each,
P. \& P. 6/6. 1,000 wate sype \(\mathbb{5} / 15 /-\) each, P. \& P. 7/6. COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet \(15: \times 5 \mathrm{zin} .3\) for \(10 /=\) post paid
(3 minimum order). SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled, No
speed adjustable 10 w.p.m. to as high as desired. Weight 2
16. 44/12/6 pose paid.

\section*{NEW MODEL}

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker. also earpiece lor personal monitoring. Complete with
morse key. \(45 /-\) plus \(3 / 6 \mathrm{~d}\). p. \& p.

\section*{NICKEL CADMIUM BATTERY} 1.2 v. 35 AH. Size 81 high \(\times 3 \times 1 \% .30 \%\) each, plus \(4 /=\) Sincered Cadmium Trpe 1.2 v. 7AH. Size: height \(3!\) in.,
width 2 in. \(X\) I Tested 12/6. P. \& P. 2/6.

\section*{DRY REED SWITCHES}

\section*{\(2 \times\) lamp Dry Reeds (makes contacts) mounted in 870 ohm 9 - 18 v coil. Size \(3 \mathrm{in} . \times 3 \mathrm{fin}\). \(\times\) in. New. Price
\(8 / 6\) per pair. Post Paid. 6 of the above mentioned units (12 Reeds, 6 coils) fitted in New 45/- each. Post Paid. - - - Telephone Dlais (New) 14'6d. Post Paid. \(2 \overline{50} \overline{\text {. A.C. SOLENOID }}\) \\ \\ \(50 \mathrm{v}\). D.C. SOLENOID \\ 50 v . D.C. SOLENOID \\ approx. 21 b. pull. 12/6, P. \& P. 1/6, \\ PRECISION INTERVAL TIMER From o 0.30 seconds (reperitive). Jewelled
balanced balanced movement. Lever re-ser.
Operates 230 v. A.C. 5 amp. and
switaches. Ex. equipment; tessed. \(17 / / 6\), plus \\ 2/6 P. \& - CO NDENSERS \\ \\ \\ all mall ordeas. also calleas at: 57 BRIDGMAN ROAD, \\ LONDON, W.4. Phone: i\&5 1560}

\section*{}

PARVALUX TYPE SD1 9 230/250 VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Position of drive spindle adjustable
different angles. Mounted different angles. Mounted on substantial cast aluminium base. Ex equipment. Tested and in first-
class running order. A really

BODINE TYPE N.C. 1

\section*{GEARED MOTOR}

Reversible \(1 / 70\) th h.p. 50 cycle .38 amp .
(Type 2) \(28 \mathrm{r.p.m}\). torque 20 lb . in
reversible \(1 / 80\) th h.p. 50 cycle. 28 amp
offered in 'as new' condision. Inpur voltaze ofs are offered in 'as new condition. Input voltage of motor \(230 / 240 \mathrm{v}\) A.C. input 17.6 plus \(6 / 6 \mathrm{P}\) \& P . or less erans Price, either type \(\mathbf{E 2 . 1 7 . 6}\) plus
former \(\mathbf{E 2 . 2 . 6}\) plus \(4 / 6\) P. \& P These motors are ideal for rotating aerials, drawing
'LARGE DIGIT \(12-18\) v.D.C

3 banks of 11 positions, plus
homing bank. 40 ohm homing bank. 24.36 v. D. C. operasion. Carefully removed from equipment and

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C. operation.

6 BANK 25 WAY FULL WIPER C6.10.0, plus \(2 / 6\) P. \&.C. operation
8-BANK 25-WAY FULL WIPER
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
RELAYS \\
BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A HIGHLY COMPETITIVE PRICE
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{COIL WORKING PRICE} \\
\hline 170 & \(9-12\) & \(4 \mathrm{co} \mathrm{H.O}\) & \\
\hline 170 & \(9-12\) & \(3 \mathrm{c} / \mathrm{O}+1\) H.D. & 2 \\
\hline 280 & 6-12 & \(2 \mathrm{clo} \mathrm{incl}\). & 14 \\
\hline 700 & \(12-24\) & \(2 \mathrm{c} / 0\) incl. base & 12 \\
\hline 700 & \(16-24\) & \(4 \mathrm{c} / \mathrm{o}\) incl base & 15/6 \\
\hline 700 & \(16-24\) & 4M 2B incl. base & 12/6 \\
\hline 1250 & \(20-40\) & \(2 \mathrm{c} / 0\) H.D. incl. bas & 12/6 \\
\hline 2500 & 30-50 & \(2 \mathrm{c} / \mathrm{oH.D}\). Incl. bas & 12/6 \\
\hline 9000 & \(40-70\) & \(2 \mathrm{c} / \mathrm{o}\) incl. base & \\
\hline & H.D. \(=\mathrm{He}\) & vy Ducy & T PAID \\
\hline \multicolumn{4}{|l|}{MINIATURE RELAYS} \\
\hline \multicolumn{4}{|l|}{9 - 12 volt D.C. operation. 2 c/o 500 M.A. contacts. Size only lin. \(\times \frac{1}{} \times \frac{1}{2} \mathrm{in}\). Price \(11 / 6\) Post paid.} \\
\hline \multicolumn{4}{|l|}{\(30-36\) v. D.C. operation. 2 c/o 500 M.A. contacts 3.200 ohm coil. Size only \(1 \times \frac{1}{18} \times \frac{1}{2}\) in. \(8 / 6\) post paid.} \\
\hline
\end{tabular}

\section*{230 VOLT AC RELAYS 230 volt AC Coil. Three c/o 5 amp
contacts. \(17 / 6\) Post Paid. (illustrated) LONDEX four c/o 3 amp \\ A.C. AMMETERS \(0-1,0-5,0-10,0-15,0-20 \mathrm{amp}\). F.R. 2tin. dia. Allat \(21 /-\) each.
A.C. VOLTMETERS 0 \\ 2 tin. Flush round all at \(21 / 0\) each. P. \& \(p\). 0.150 \(0-300\) v. A.C. Rect. M-Coil \(2 \frac{1}{2}\) in.
\(0-300\) v. A.C. Rect. M-Coll \(3 \frac{1}{2}\) in. \\ MULTI RANGE \\ TESTERS \\ NEW MODEL UD-50 MULTI
TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PRO. TECTION. Ranges: D.C. voles: 100 mV .,
 \(0.5 \mathrm{~mA} ., 5 \mathrm{~mA}, 50 \mathrm{~mA} ., 250 \mathrm{~mA}\). 5 ize: \(5 \mathrm{t} \times 3 \frac{1}{2} \times 1 \frac{1}{8} \mathrm{in}\).
Complete with batterles \(\mathbf{~} 7.5 .0 \quad\) Post paid
and test prods. \\ and test prods}

\section*{RING TRANSFORMER}

This mulzi-purpose Auto Transformer, with Hound current Transformer, Auto Transformer ing the required number of turns through the centre opening
 to give BV,
Price: RT.j00
RT. 300 VA

\section*{dEMONSTRATION TRANSFORMER} (STENZYL TYPE)

Two removable coils ar
tapped as \(0,110,220\) voles, capped at \(0,110,220\) volts
and \(6,12,36\) voles respec sively. A composite apparstration. Electro magnetic induction, jumping ring induction lamp, relationship ampere eurns, induction

possible experiments. New

\section*{modifed L.T. TRANSFO \(\overline{R M E R S}\)}

All primaries \(220-240\) volts
Type No.
Type No. 3 Sec. Taps
\(30,32,34.36 \mathrm{v}\). at 5 mp
\(30,40,50 \mathrm{v}\). at 5 amps .
\(10,17,18 \mathrm{v}\) as 10 amps .
\(6,12 \mathrm{v}\) at 20 amps.
\(17,18,20 \mathrm{v}\) at 20 amps
\(6,12,20 \mathrm{v}\) at 20 amps.

\section*{-}

personal callers only
\begin{tabular}{l}
\hline 9 LITTLE NEWPORT STAEET, \\
LONDOUN' OH.C.2. \\
TA.: GER 0576
\end{tabular}

\section*{}

SCOOP / STAAR RECORD PLAYER Desck plovs 33, 45, 78, R.P.M. records. 9 vo
Oper ated, with mono cert wipe. BRANO NE W. one thed wit

GARRARD RECORD DECKS

All the letest models BRAND NEW and puarantem TERRIFIC SAVINGS
-2025 STEREO -2025 C DIAMOND. 9 TAH.
3000 STEREO פTAH.C.
-SP \({ }^{25}\) Mk. 1
A70 Mk. .1
-AT 60
SL 65
AP 75
4015
SL 75
\begin{tabular}{l}
SL 75 \\
SL 95 \\
CL \\
\hline
\end{tabular} also in stock - thorens - lenco - bs.
 "Soeder otter base and cover weilole for them moders at E4.15.a Cartiger B/

MULLARD I WATT AMPLIFI
dead for Intercom suiv Alems, Toin phone,
Record Pligers or Guitar Precike
Output 3 onms HA ABCO PRICE 45/., p.p. 2/6.
OTHER ITEMS. Sultwele \(7 \times 4\) lnch.
3 ohm peaner \(17 / 6\) p.P. 1

\section*{BUILD YOURSELF QUALITY RADIO}

New primed circuit design whth tull pown
cutpur. Fully turembe on both Mwiw
Bosizer, Room Filling Power Esert to build with terilic rewits All locan and comit.

TOTAL COST E6.19.6. p.p. \(4 / 6\).
A劵 for Leater No. 1.

TRANSISTORS DIDOES RECTIFIERS WE HAVE THE MOST COMPREMENSIVE UEW 1969 LIST OF 1000 TYPES NEW 1969 LIST OF Whether vou requite one or 1000
con fulfil your order from slockl
For quemitry auoradions itiephone:
101) 7230401 Ex. 4. or 10114026823

\section*{HENELEC 5-5 STEREO AMPLIFIER}
excollent low priced British
16 tranimtor mains operstid. Output E+5 warts for B. 15 ath PRICE £13.90.0. p.p. \(7 / 6\). (Leatle: on recuest Complete Stereo System 5 -5

Usual price £47.0.0. OUR PRICE £39.10.0. p.p. 20/.

\section*{BUILD THIS VHF FM TUNER}

5 MULLARD TRANSISTORS, \(300 \mathrm{kE} / \mathrm{B}\) QANOWIDTH, MONO \& STEAEO. A popular VHF FM Tuiner for quality and receorion of mono mind stereo.

PARTS TOTAL COST £6.19.6. OECODER £5.19.6.
ASK FOR LEAFLET No.

Mail Order Dept.. Componems, Organ Dep 303 EDGWARE ROAD. LONDON W. 2. Telephone: 01-723 1008/9
OPEN MON-SAT 9 am-6pm THURS \(9 \mathrm{am}-1 \mathrm{pm}\)

\section*{HR QUALITY COMPONENTS AND EQUIPMENT}

NEW RANGES FOR THE AMATEUR AND PROFESSIONAL USER

* \(\mathbf{5 0 , 0 0 0}\) OHMS PER YOLT MULTIMETER
 lead: and
AFIOS
*VACUUM TUBE VOLTMETER

 de scalen:-10
to +65 de . 10 m
plete with inplete with in
structions and
leads MODEL TE65 C17.10.0 p.p. \(7 / 6\) R.F. Probe 42/6

Model 200H Meather case, Price 15

* 20,000 OHMS PER YOLT

MULTIMETER

 10001. ance 0 obk
an
or
or or copacitance
.
77/6 pp.

* PORTABLE OSCILLOSCOPE

 TOJ Price 435 p.p. 10/-
* TRANSISTOR POWER ampLIFIERS

POWER SUPPLY Switched DC
Stathilsed OUT-
Ruts in puts UP TO IAMP.
\(3-6-9\)
\&
12 VOITS. Indicator lamp for each voltage.
Fully fused mains operated. Regulation \(1 \%\). SE101A Price £8 150

\section*{* FIELD STRENGTH METER} 5-Ranges \(1-250 \mathrm{mc} / \mathrm{s}\). Fitted \(200 \mu \mathrm{~A}\)
meter. Earphone output. Calibrated FL3OHA \({ }^{\text {tuning }}\) Prale \(72 / 6\) pp. 2 Also non-callorated rvpe peaking \(F / \mathrm{S}\) © TAANSISTORISED
INTERCOMMS

2-sration, E3.10.0: 3-station, es.15.0

* SIGNAL INJECTOR
-
New model for
check ing all audio
and \(R F\) up to VHF, simple to use. Battery operated. Output approx.
Ikc/s. 1.4 V pp. Harmonles up to VHF. like/s \(1.4 V\) Pp. Harmonles up to VHF.
SE250s
* MAICHING SIGNAL tRACER

SE 500
\begin{tabular}{|c|c|}
\hline Suppliers of quality components and equipment for over 25 years & PORTABLE GEIGER COUNTERS \\
\hline
\end{tabular}

AUDIO
DOSIMETER POCKET.TYPE 0.50, 12/6
HIGH FIDELITY Complete range in soock to sult all
HI-FI and Public Ad-
dress COMPONENTS UK's largest supplier of components. EVERYTHING YOU NEED ON FACING PAGE

*TRANSISTOR CHECKER
Complete expaciey
for cheking cill
transiseors non and
 pind for olpha. beta
and German.
diso and
diodes
with
complete innıructions. Z9.M-2;
55.19.6, p.p. 3/6.

\section*{}

\section*{\(\sqrt{\sqrt{8} 8}\)}

EXPERIMENTER'S MODULE

* all items offered are brand new stock - always in stock *

\section*{NEW PRICES ON NEW COMPONENTS}

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dlmensions (mm.): Body: \(f \mathrm{~W}: 8 \times 2.8\)

\section*{Leads: \({ }^{\text {I }}\)}

10\% ranges; 10 Ohms to 10 Megohms (E12 Renard Series) \(5 \%\) ranges; 4.7 Ohms to 1 Merohm (E24 Renard Series). Prices-Der Ohmic value.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Prices-der Ohmlc value.} \\
\hline tw & 10\% & 2 d . & \(1 / 6\) & 3/3 & 10/4 \\
\hline + \({ }^{\text {W }}\) & 5\% & 2 d. & 1/9 & 3/8 & \(11 / 8\) \\
\hline W & 10\% & 2 d. & 1/9 & 3/8 & 117 \\
\hline iw & 5\% & 3d. & 2/- & 4/- & 12/10 \\
\hline
\end{tabular}

\section*{CAPACITORS}
lyester tion. Radial leads.
\(\pm 10 \%\) tolerance. 100 Volt working.

Polystyrene film. Tubular, Axial leads. Unencapsulated \(\pm 5 \%\) or \(\pm 1\) pf tolerance, 160 Volt Working.
Prices-per Capacitance value (\(\mu \mu \mathrm{F}\))
10. 12. 15, 18, 22, 27, 33, 39, 47. each \(56,68,82,100,120,180,220\). 270. 330. 390

470, 560, 680, 820, 1,000, 1,500 6d \(2.200,3.300,4.700,5.800 \quad \cdots \quad 7 d\). \(\begin{array}{llll}6,800,8.200,10,000,15.000 & \ldots & 8 d \\ 22,000 & \ldots & . . & 9 d\end{array}\) POTENTIOMETERS (Carbon)
Superior grade enclosed controls. Low rotational noise. Body dia., 1In. Spindle, Superior grade enciased
\(2 \mathrm{in}, \mathrm{tin}\). Tolerance, \(20 \%\).
Linear: 1 K to 2 M . (IW at \(40^{\circ} \mathrm{C}\)).
Iogarithmic: 5 K to 2 M . (\(\left(\frac{\mathrm{W}}{}\right.\) at \(40^{\circ} \mathrm{C}\)).

GANGED STEREO POTENTIOMETERS (Carbon)
tW at \(70^{\circ} \mathrm{C}\). Long Spindle.
Logarlthmic and Linear: \(5 \mathrm{k}+5 \mathrm{k}\) to \(1 \mathrm{M}+1 \mathrm{M}\). \(\quad 10\) off
Prices ner ohmic value \(\quad 25\) off \(\quad 100\) off \(\begin{array}{lllll}\text { Prices ner ohmilc value } & \text { each } & 10 \text { oft } & 25 \text { off } & 100 \text { off } \\ & 8 /- & 70 /- & 162 / 6 & 575 /-\end{array}\)
SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets sultable for printed circuit boards of 0.1 in . P.C.M. 100 ohms to 5 Meqohms (Linear only). Miniature: \(0.3 W\) at \(70^{\circ} \mathrm{C} . \pm 20 \%\) below iM, \(\pm 30 \%\) above \(\frac{7}{} \mathrm{M}\). Horizontal (\(0.7 \mathrm{in}+0.4 \mathrm{in}\). P.C.M.) or Vertical \((0.4 \mathrm{in} . \times 0.2 \mathrm{in}\). P.C.M.). Subminiature 0.1 W at \(70^{\circ} \mathrm{C} . \pm 20 \%\) below \(2.5 \mathrm{M} . \pm 30 \%\) above.

POLYESTER CAPACITORS (Mullard)
Tubular \(10 \%, 160 \mathrm{~V}: 0.01 .0 \cdot 015,0 \cdot 022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .008,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d}\), \(0.15 \mu \mathrm{~F}\), IId. \(0.22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 3,0.47 \mu \mathrm{~F}, 1 / 6.0 \cdot 68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8\). 500. \(2.200,3.300,4,700 \mathrm{pF}, 6 \mathrm{~d}\). \(6.800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 068,0 \cdot 1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 \cdot 22 \mu \mathrm{~F}, 1 / 6,0 \cdot 33 \mu \mathrm{~F}\), 2/3. \(0 \cdot 47 \mu \mathrm{FF}, 2 / 8\).
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45. OC71, OC81, OC81D, OC82D. 2/-. OC70. OC72. 2/3. AC107. OC75, OC170, OC171, 2/6. AF'115, AF116, AF117. ACY19. ACY21. 3/3. OC140. 4/3. OC2200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/-, OC23, OC28, 8/3.
SILICON RECTIFIERS (0.5 A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V.. \(3 / 3\). 1.250 P.I.V., 3/9. 1,500 P.I.V., 4/-. (BA): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V.. PRINTED CIRCUIT BOARD (Vero)

SEND S.A.E, FOR 1969 CATALOGUE

\section*{DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE}

Telephone: CAMBRIDGE (0223) 63687
(Visit us at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE \(5 /\)
C.W.O. Post and Packing 1/6

\section*{LATEST RELEASE OF}

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance \(2.5-600\) ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from £45 to \(£ 60\), carr. \(£ 2\).
*SET OF VALVES : new, \(£ 3 / 10 /-\) a set, post \(7 / 6\); SPEAKERS : new, \(\$ 3\) each, post \(10 / \mathrm{-}\). \({ }^{\text {*HEADPHONES : new, } £ 1 / 5 /- \text { a pair, }}\) 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price \(10 /-\) each, post \(2 / 6\). RF Coils \(13 \& 14\); \(17 \& 18 ; 23 \& 24\); and 27 and 28 . Price \(12 / 6\) each. \(2 / 6\) post. By-pass Capacitor K.98034-1, \(3 \times 0.05 \mathrm{mfd}\). and M.980344, \(3 \times 0.01 \mathrm{mfd}\)., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of 3, 10/-, post 2/6. Block Condenser, \(3 \times 4 \mathrm{mfd}\)., 600 v ., \&2 each, \(4 /\) - post. Output transformers \(901666-501\) 27/6 each,
4/- post.
- Available wizh Receiver only.
S.A.E. for all enquiries. If wishing to call at Stores, please zelephone for appointment.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5 T SET (Receiver Set of 5 Coils \& Power Unit) for \(£ 27 / 10 /\)-, carr. 30/
COMMAND RECEIVERS; Model \(6-9 \mathrm{Mc} / \mathrm{s}\), as new, price \(£ 5 / 10 /-\) each, post 5\%.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves \(2 \times 1625 \mathrm{PA} ; 1 \times 1626\) osc. \(11 \times 1629\) Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(83 / 10 /\) each, \(10 /-\)
post.
R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line up \(7 \times 9001 ; 3 \times 6\) AK5; and \(1 \times 12 \mathrm{~A} 6\). Switch runed \(234-258\) Mc/s. Rec. only \(£ 3\) each, \(7 / 6\) post; or Rec. with 24 v . power unit and mounting tray \(£ 3 / 10 /-\) each, \(10 /\) - post.
RECEIVERS: Type BC-348, operates from 24 y D.C., freq. range 200-500 \(\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}\). (New) £35.0.0 each; (second hand) \(£ 20.0 .0\) each, good
condition, carr. \(15 /\) both types. condition, carr. 15/- both types.
MARCONI RECEIVER 1475 type 88: \(1.5-20 \mathrm{Mc} / \mathrm{s}\), second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. 15/-,
RACAL EQUIPMENT: RA. 17 Outer Metal case for receiver available, as new, \&10 each, carr. £1. Frequency Meter type SA20: © 35 each, carr. ©1. Frequency Counter type SA21: £65 cach, cars. \(30 /\)-. Dlversity Switching Unit
 SA. 80 (for use with the SA. 20): \(25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}\), £ 40 each, carr. © 1 .

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , \(400 \mathrm{c} / \mathrm{s} 3\) phase, \(66 / 10 /-\) each, \(8 /-\) post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25)- each, post \(2 /\)-.
CONDENSERS: \(150 \mathrm{mfd}, 300 \vee \mathrm{~A} C ., £ 7 / 10 /-\) each, carr. \(15 /-40 \mathrm{mfd}, 440 \vee\) A.C. wkg. \(£ 5\) each, \(10 /-\) post. \(30 \mathrm{mfd}, 600 \mathrm{v}\) wkg. D.C., \(\mathrm{E} 3 / 10 /\) each, post \(10 /-\) \(15 \mathrm{mfd}, 330 \mathrm{~V}\) A.C. wkg., \(15 /-\) each, post \(5 /-10 \mathrm{mmd}, 1000 \mathrm{v}, 12 / 6\) each, post \(2 / 6\) \(10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 / 0.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6\) each, post \(3 /-.8 \mathrm{mfd}, 600 \mathrm{v}\), \(8 / 6\) each, post \(2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}\) wkg, \(£ 3\) each, post \(7 / 6\). \(2 \mathrm{mfd}, 3000 \mathrm{v}\) wkg., \(£ 2\) each, post \(716.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}\), \(4 /-\) cach, \(1 / 6\) post. 0.01 mfd . MICA 2.5 Kv . Price AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: \(£ 25\) each, carr. £1. OSCILLOSCOPE Type 13A, \(100 / 250\) v. A.C. Time base \(2 \mathrm{c} / \mathrm{s}-750 \mathrm{Kc} / \mathrm{s}\). Bandwidth up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\). and \(1 \mathrm{Mc} / \mathrm{s}\). Double Beam tube. Reliable general purpose scope, £22/10/- each, 30/- carr.
COSSOR 1049 Mk. 111 , £45 each, \(30 /-\) carr.
RELAYS: GPO Type 600,10 relays (a) 300 ohms with 2 M and 10 relays (a) 50 ohms with 1 M ., \(£ 2\) each, \(6 /\) - post.
12 Small American Relays, mixed types \(£ 2\), post \(4 /\).
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d.

\section*{GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., 30/-each, 4/-post. Assembly unit with Letcherbar Tuning Mechanism and potentio
meter, 3 r.p.m., \&2 each, \(5 /-\) post. \\ Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 wates, 5 inch screw thrust, reversible, torque approx. 25 lbs ., rating intermittent, price £3 each, post 5/-. \\ SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.}

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price \(25 / \mathrm{-}\), post \(5 / \mathrm{h}\)
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items relays, magnetic clutches,
price \(£ 7 / 10 /-, ~ £ 1\) carriage.
FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, 60-
\(95 \mathrm{Mc} / \mathrm{s}\). AMERICAN EQUIPMENT: BC-640 Transmitter, 100-156
\(\mathrm{Mc} / \mathrm{s}\)., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers,
\(\begin{aligned} & 28 \text { v. D.C. input. Also have associated equipment. BC-375 Transmitter. } \\ & \text { BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893 }\end{aligned}\)
BC-778 Dinghy transmiter. SR 32 . Fiter D.C. Power Supply F-170/GRC 32A: Cabinet Electrica
GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet E.ectrical
\(\begin{aligned} & \text { CY } 1288 / G R C \text { 32A; Antenna Box Base and Cables CY 728/GRC; Mast } \\ & \text { Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit }\end{aligned}\)
\(\begin{aligned} & \text { Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, } \\ & \text { CM.23; Directional Control CRD.6, } 56 / \text { CRD and } 568 / C R D \text {; Azimuth }\end{aligned}\)
Control Units, 260/CRD. Test Set URM.44, complete with Signal Generator
TS.622/U.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, \(£ 2 / 10 /\) each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. \(12 / 6\) AUTO TRANSFORMER: \(230-115 \mathrm{v} . ; 1,000 \mathrm{w}\). \&5 each, carr. 12/6. 230-115 v.; 300 VA , £3 each, cart.

OHMITE VARIARLE RESISTOR: 5 ohms, \(5 \frac{1}{\mathrm{l}} \mathrm{amps}\); or 2.6 ohms at 4 amps. Price (either type) £2 each, 4/6 post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output (a) 300 mA . Complete with two \(\times 9 \mathrm{H}\) chokes and 10 mfd . oil filled capacitors.

TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3 \mathrm{C} 24\) 's; complete with filament transformer 230 v. A.C. Mounted in 19 in . panel, \(\mathbb{\AA} 4 / 10 /-\) each, \(15 /\) carr.

POWER UNIT: 110 v. or 230 v. input switched; 28 v.@ 45 amps. D.C. output. Wt. approx, 100 lbs, \(£ 17 / 10 /-\) each, \(30 /\)-cars. SMOOTHING UNITS suitable e £ \(/ 10\) - each, 15/- carr

DE-ICER CONTROLILER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay \(4 \mathrm{P}, \mathrm{C} / \mathrm{O}\). (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronomertic governor \(20-30 \mathrm{v}\).,
\(12 \mathrm{r} . \mathrm{p} . \mathrm{m}\); geared to two 30 -way stud switches and two Ledex solenoids, 1 delay relay etc., sealed in steel case (\(4 \times 5 \times 7 \mathrm{ins}\).) \(\{3\) each, post \(7 / 6\).
MODULATOR UNIT: 50 watt, part of BC-640, complete with \(2 \times 811\) valives, microphone and modulator transformers etc. \(£ 7 / 10 /-\) each, \(15 /\) - carr.

ADVANCE TEST EQUIPMENT: VM78 A.C. Millivoltmeter (transistorised) Ess each; TT1S Transistor Tester (CT472) £37/10/- each; VM77C Valve voltmeter \(\mathbf{£ 4 0}\) each. Carr. 10/- extra per item

NIFE BATTERIES: 4 v .160 amps , new, in cases, \(£ 20\) each, \(£ 1 / 10 /\) carr
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in a 3 in . diamerer case. Price 30/- each, postage 5/-.

UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- each, post 4/-.
FREQUENCY METERS: BC-221, meter only £30 each, BC-221 complete with stabilised power supply £35 each, carr. \(15 /-\) L.M13, \(125-20,000 \mathrm{Kc} / \mathrm{s}\)., \(£ 25\) each
 15/-. FR-67/U: This instrument is direct reading and the results are presented Freq.: \(100 \mathrm{Kc} / \mathrm{s}\). per sec. Power supply: \(115 \mathrm{v} .950 / 60 \mathrm{c} / \mathrm{s} ., \mathrm{c} 100\) each, carr. \&1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. rance \(450 \mathrm{c} / \mathrm{s}\) \(22 \mathrm{Kc} / \mathrm{s}\)., directly calibrated. Power supply 1.5 v.-22 v. D.C. £ \(12 / 10 /-\) each, carr. .
CATHODE RAY TUBE UNIT: With 3in. tube, colour green, medium persistence complete with nu-metal screen, \(£ 3 / 10 /-\) each, post \(7 / 6\).
APNI ALTIMETER TRANS./REC., suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\)., com plete with all valves 28 v. D.C. 3 relays, 11 valves, price 83 each, carr. \(10 /\)

CANADIAN C52 TRANS/REC.: Freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\) on 3 bands. R.T. M.C.W. and C.W. Crystal calibrator etc., power Input 12 V . D.C., new cond., complete set \(£ 50\). Used condition working order £25. Carr. on both types \(£ 2 / 10 /-\), Transmitter only \(£ 7 / 10 /-\) (few only) Carr. \(15 /-\). Power Unit for Rec., new \(£ 3 / 5 /-\).
Used power units in working order \(£ 2 / 5 /-\). Cars \(10 /-\).

AVOMETERS: Model 47A, £10 each, 10/- post. Excellent secondhand cond. meters only).

DECADE RESISTOR SWTTCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance \(\pm 1 \%\) \&3 each, \(5 /\)-post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance \(\pm 1 \% ~ £ 3 / 10 /-\) each, \(5 /-\) post
TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . E 5 each \(+10 / \mathrm{carr}\). Or \(\mathbf{£ 9}\) for two + £1 carr. (brand new condition)

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " \(N\) " fernale connectors fitted to receive UG-21/U series plugs. New in ctns., \(\mathbf{8 6} / 10 /-\) each, post \(760-22,2\) pole, 2 throw. New) \(6 / 10 /\). Type M1460-4. (New) \(6 / 10 /\) - each, \(4 / 6\) post. \(4 / 6\) post. 1 pole, 4 throw,
PRD Electronic Inć. Equipment: FREQUENCY METER: Type 587-A, \(0.250-1.0 \mathrm{KMC} / \mathrm{SEC}\). New) £75 each, post \(12 / 6\). FIXED ATTENUATOR: Type 130c, \(2.0-10.0 \mathrm{KMC} / \mathrm{SEC}\). (New) \(£ 5\) each, post \(4 /-\). FIXED ATTENU. ATOR: Type \(1157 \mathrm{~S}-1\), (new) \(\mathbf{E} 6\) each, post \(5 /\)-.

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

\section*{ELECTRONIC BROKERS}

RECORDER SP 20 Series
Cenera) Purpone sIngle Pen potentlometric Inatra-

\(\ell 135\) each. P. \& P. \(40 /\)
PEN RECORDER

Portable 1,2 and 4 channel pen reoorders by Kelving
Bughen. Generid purpose recorders providing clear
 with couphraively high rates of change. The the instrument mmune to the enects of vibration
and uccelleraton.

 R. s P. extre.
A.F. GENERATOR TYPE H MODEL I
 miero volto to so volta peak.
PULSE AMPLITUDE ANALYSER E105 LOW OHM SAFETY METER

6 Pen Event Reconter. 6 in. Chart wirth. Araillable in witle range of chart ppeet. Rack
mounted \(\mathrm{ETO/10/0}\) canc to suit extra.

ULTRA VIOLET RECORDER 12 Channel NEP 1050 with 6 galvanometers \(£ 280\). ULTRA VIOLET PHOTOGRAPHIC RECORDER 19 Channel mitror Galvanometer

POWER SUPPLIES AIRMEC
POWER SUP KL
Rack mounted (19 in.). Malne operated. Cathode

\begin{tabular}{|c|}
\hline * HIGH PRECISION * FULLY STABILISED TRANSISTORISED LOW VOLTAGE POWER SUPPLIES \\
\hline \\
\hline
\end{tabular}
 OVERLOAD \({ }^{\text {Cin CIRCUIT BREAKE }}\) - MTPPLEANUAL belter bettre than soon:
\(120 / 130\) voit A.C. INPUT.
A vailable to the following tiper

ADVANCE TRANSISTORISED DC POWER UNITS
 METERS
2 in dias. mounting
 case. \&2.15.0. Carriage \(10 /-\)
Precision A.c. \& D.c. Wattmeter. Model 8. 67
 D.729 B.M. PHASEMETER AND

SUPPLY UNIT
 Q. meter, tn phase and quadrature cornponents
Grea indication of phase angle \(0^{\circ}\) - \(300^{\circ}\). Frequency

BRAND NEW S.E, LABORATORIES TRANSDUCER completo with excapsulated Ampliner/dernodulator 8.E
Avequate to the followifig range
SE150, 8E50 or SE165A.
0.25
0.350 p.s...i.

Ango avilabie dif
List price \(870+\)

COMPUTOR AND PERIPHERAL EQUIPMENT

1 TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
 headd encaved in one common unit. Low reataturee hende.
Frequency response Approximately \(30 \mathrm{Kc} /\). to 50 Kc . Bit

MODEL 72 MAGNETIC TAPE DATA UNIT

STORAGE UNIT

Can be used Lo reeond any
Bbit code. Data
tite code. Dots can be read
in telthers forward or back-
ward direction plus giring
vearech tacilities. The unfle
consists elireoths for recelv-
ing and atorinie linatruction
Ing and storing linatructlon
sigrals. Recording danalty
signals. Recording danalty
2 so oharacters per tinch.
Tape ipeed 100 in . Per
second, price 8190 .
second, pree 2190. Excel-
lent condition.

\section*{z 7 TRACK}

Ex-computer record/replay
head complete with
Litlue used. Price \(\mathbf{8 1 2 . 1 0 . 0}\)
Carriage \(15 /\). .
BRAND NEW
Gresham Lion 1 ln. \(1+{ }^{7}{ }^{7}\)
track record/replay heads.
Of the hlgheot protessional

8 TRAOK 1 in . Record/replay heais with sprocket drive, driver by yyuchronoun pootor. Mounted whth integrated head dssembly
eliminating allgnment problems. This can be ftted to any eliminating sllgnment problems. This can be fitted to any
sultable type of transport syotem. Price 28.10 .0 . Carriage \(15 /\).
-

TAPE PUNCH MODEL 257 HOLE A multiwire tape punch designed for general application
involving the conversion of parallel wire electrical impulsed Into punched papertape at 33 charactern per second. Unit
complete'; self-contalned requiriag only motor power and complete'; Belf-contalned
gignal supplles. Price \(£ 45\).
7 HOLE NON PARITY TAPE PUNCH New condition \(\ell 45\)

LOW SPEED 7 HOLE TAPE PUNCH
60 characters per second by well-known manufacture?
TELETYPE 8 HOLE PAPER PUNCH
MU27 PRICE 875
Aloo nvalable 8 hole punch BRPR2 as above. This model ha
iterchangreatle hend Complete with apooler. Price \&35.
HIGH SPEED \(5 / 7\) HOLE OPTICAL READER 20 charackers per second. 218.10

CARD READERS
\(\left.\begin{array}{l}80 \text { column } 1500 / 88 \text { model. punch } \\ 80 \text { columa } 1+0080 \text { model verifier. }\end{array}\right\} £ 325\)
Excellent condition.
HOLLERITH OO COLUMN CARD PUNCH HOLLERITH 80 COLUMN CARD P
TYPE HO29 \& VERIFIER H129 225.

DECODER 4 DIGIT READOUT
Can be uned in constructing frequency counter or Digital
Voltmeter. Consiats of t transistorined carde each containin

PROGRAMME BOARDS BY SEALECTRO
These boarde are baically a mults
pole muitl throw swith device consinting of a X-Y Matrix with two
contact decks th the \(Z\) Plane running at 90 degreer to each other. Contact In made by elther, *horting or plugging
in plan. Ideal for protetype mork

MEMORY PLANES
Ferrile core memory planes with
wired Ferrite cores. Used for bullding your own computor or as an intereat-
ing exhibit in the demonatration of computer. Mounted on piastlo material. Prame \(\overline{5} \times 8\) in. Conalatlag
of matricea \(40 \times 25 \times 4\) Cores each matrices \(40 \times 25 \times 4\) cores each
ne individually addrenenble and
ivided into 2 halses ithen enise and 2 halves with modependent

MULLARD MATRIX
CORE STORE STACKS
A.W. 5105 planes \(8 \times 16 \begin{aligned} & \text { coren/per } \\ & \text { plane } \\ & \text { e12/10 }\end{aligned}\)
A.W. 5115 planes \(18 \times 32\) cores/per

erin plane \(40 \times 2 n \times 10\)
\(\begin{array}{r}\begin{array}{l}\text { Flexl-wrier } 7 \text { hole punch and key. } \\ \text { hoard } \\ \text { 2199/10 }\end{array} \\ \hline\end{array}\)
MEMORY STORE
M. M. 1044 complete with logic clfo
cuite mounted In Imhof cabinel \(\mathrm{E400}\)

COMPUTERS
Burroughs E 201225 word
etore. \(£ 450\)

SYNCHRONOUS
MOTORS
Model 87.1 . rev. per hour. gell start.
ing complete with gearing hath io ing complete with gearing ohatt ic dia. NO EMPTY SPOOLS

TRANSFER CASE

Por sending data by personal carrier, GPO poot, pasaenger triln, etc. Ideal.
Buitable for deapatching tape \(20 /=\) - HOLE OPTICAI READER PRICE
\(£ 35\)

CANCELLED EXPORT ORDER
90 Column card borker and punch
type \(425 / 0\) price on

SPOOLERS 1 and Both hand and motor drivesavailable
RAND NEW TAPE

SPOOLER
Sultable for 1 in, it in . and \(\frac{\mathrm{ln}}{} \mathrm{ln}\)
Fully aeli-contained \(£ 99.10 .0\).
5" TAPE PUNCH
5 TAPE PUNCH
Sultable for muchine contro
with 50 reela of tape f 35

\section*{LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS}

CONTINUOUS TAPE CASSETTE

Bultable for sleap.learn-
ing, teaching programmes, programming machline toole telephone antwering etc
Complete with replay frecord head and eeparate erase
head. \(f^{\circ}\) Lape \(t w / n\) track 8pped \(3 \%^{\prime \prime}\) per sec. Length
tape 88 feet, but will hot e3.g.6.g.e. p. \(7 / 6\).
 MOTORS

HYSTERESIS REVERSIBLE MOTOR Incorporating two colls. Each coll when energlied
witl produce opposite rotation of output hait

HIGH TORQUE INDUCTION MOTOR. 3 - \(900 \mathrm{oz/inch}\). Avaliable in the following
 thellities and wounter price erane hend. Fant erase VEEDER ROOT 6 DIGIT COUNTER \(\bullet\)

> Bultable for counting sult
kinde of production runs. business machictiotoperation. Mechanically driven Type
KA1337. Renet manual nob. Ex-equipment but

\section*{LOW TORQUE} HYSTERESIS MOTOR MA23
Ideal tor Inatrument
chart drives. Extremely quet, useful in area, Where ambient noise
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PRECISION POTENTIOMETERS} \\
\hline \multicolumn{5}{|l|}{TEN TURN \(3600^{\circ}\) ROTATION BRAND NEW} \\
\hline Res. Ohms & Linearity Per cent & rer & M & \\
\hline 100/100/100 & & & & \\
\hline & & Beckiran & A. \(B^{\text {a }}\) & \\
\hline & & Beckman & & \\
\hline & . 0.1 & Becknas & 8 & \\
\hline & & Colvern. & 2501 & \\
\hline & & Poxes & PX4 & \\
\hline & & Colvers. & 2610 & \\
\hline & & Beckman. & 81110 & \\
\hline & & Beckman & 721 & \\
\hline 2 K & & Rellinnce & aps & \\
\hline 10K & 0.5 & Beckman & & \\
\hline 10K & 0.1 & Beckman X & A & \\
\hline 15K & & Fores & QP & \\
\hline & & Beckrina & & \\
\hline 20K & 0.5 & Beckman . & A & \\
\hline 30 K & & Colvern & & \\
\hline 30 K & & Becknina & 8495 & \\
\hline & & Beckman & & \\
\hline & . 0.5 & Beckman & 8A 16 & \\
\hline 30K & . 0.25 & Becknaz & BA 16 & \\
\hline 50 K & & Rellance & 07.10 & \\
\hline \({ }^{50 \mathrm{~K}}\) & & & .07.5 & \\
\hline & & Colvern & 2503 & \\
\hline 50 K & . & Poxes .. & PX & \\
\hline & & Beckman & & \\
\hline 50 K & & Beckinan & A & \\
\hline 100K/ & & Fon & & \\
\hline 100K & . 0.1 & Becknima & A & 70 \\
\hline 100K & . 0.5 & Beckman & & \\
\hline 100 K & & Colvera & 250 & \\
\hline 100K & & Colvera & 2610 & \\
\hline 298 K & & Beckman & A 3 & \\
\hline 300 K & . 0.1 & Beckman & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{7}{*}{THREE TURN \(780^{\circ}\) ROTATION}} \\
\hline & & & & \\
\hline
\end{tabular}

GENERATORS SIGNAL GENERATOR Generntor. Prequency Rauge: 10 o310 Mave Ootput Voltage (marimum) 200 minl-roit
\(\pm 2 \mathrm{db}\). Out put lmpedance 75 ohms. Mark/Gpace Ratlo B0/b0 on equare wave
Price \(£ 120\). Packing andi cariage SIGNAL GENERATOR T.F. \(517 \mathrm{~F} / 1\) 8lne Wave, gquare Wave Menerator. Frequency Range: \(120 \cdot 300\)
M. C/s. Auxlliary 18.58 Mgrg. c/s. Output
Voltage 0. 75 othme.
MARCONIT.F. 144G Out put volhage 1 micro-volt to 1 volt.
Output impedance 1 milernopolt. 100 mili volh. 10 ohms. 100 millitwolte to 1 volt
52.5 ohms, \(£ 75+\& 2\) carriage. AVO SIGNAL GENERATO Mrequeacy Range \(50 \mathrm{kc} / \mathrm{B}-90 \mathrm{Mc} / \mathrm{s}\). Price 215 . Carriage 21/10. SQUARE WAV GENERATOR
\(\qquad\) Out put Voltage 10 V . 75 ohm 0.19 volto a lato 20000 olnms.
Rise time from 30.50 Miul Rlase time from 30.50 Mill micro seconds MARCONI VALVE Frequeacy response on probe \(10 \mathrm{Kc} / \mathrm{s} / 3\)
loome loomch. Plve separate Volage Rangee
Overlond Protection \(100-250\) A.C.I.P 1nput 1 M protection \(\mathrm{Acc}^{100-250}\) A.C.1.P
VOLSTAT
 P.S.I.
CV500
185

OSCILLATORS
MUIRHEAD D729 PHASE METERAND POWER SƯPPLY Slves direct ludication of phase angle
\(0^{\circ} \cdot 360^{\circ}\) and difference in level between two sinueotdal voltages (trannfer function) orer the frequency ranke 2 eyclee Per sec. to
\(100 \mathrm{Ke} / \mathrm{s}\).
e276 Carriage 22 TORAUE MOTOR 225 by ELLIOTT Origtinally designed ro operate hydraulic
valven or motors under extreme enviral meatal conditions. The wrgue moror it practically utaffected by vibration or
iudden ahock. It consiots of a moving moint with a travel of \(7^{\circ}\) either nide of
ceptre. Mla. Worque 8月/10/0 \(\mathrm{D} \& \mathrm{p} / \mathrm{F} /\) DAWE 44C AUTOMATIC L.F SWEEP OSCILLATOR (NEW) Amplitude 0.10 V . Frequener Range \(5 \mathrm{~Hz} \mathrm{z}^{-}\)
\(3 \mathrm{KHz} \pm 2 \% \pm 0.5 \mathrm{~Hz} .188\) weep Rate of 10 ontiveatmin. Frequency Reep
0.3 dB . 889.10 .0 . Curriage oxtra

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH THE POST.

REPEAT CYCLE TIMERS

BRAND NEW LABORATORY TEST EQUIPMENT-AT LESS THAN HALF PRICE

Specificatlona, Range: \(0.01-111\) Meg. in 0.01
Megohan divisions. Accuracy: \(0.05 \%\). Maximum Megohm divisions. Accuracy; \(0.05 \%\). Maximum
power rating: \(0.1 \mathrm{w}^{\text {p }}\) per step. Case: Hammer finished atove enamel.
List price 860 . Our price
£22/10/-

PORTABLE WHE
BRIDGE

Bpecification. Type: Movin Coll Gecifcation. Type: Moving
Givanometer Ranges: 1.0 .05 to 5 ohms. 2.0 .5 to 50 ohma. 3.5 . 5 to 5100
ohms. 4. 50 to 5.000 ohme. 5.500 to 50,000 ohmm. Acales: Awitched. Blidiewire: O. 5 to so. Goblvano-
meter scale: \(10.0-10\). Case: Moulded plastlo meter scale: 10-0.10. Case: Moulded plantle.
Internal source: 4 V . Dry tattery. Dimeniona: \(200 \times 110 \times 63 \mathrm{~mm}\), Weight: 0.9 kg
List price 2.5 . Our price \(£ 9 / 10 / 6\).

MUTUAL INDUCT. ANCE
R. 7006
Specincarlon, Value: 0.001 H. Accuracy: \(\pm 0.3 \%\).
He
Operating Frequency:
 current: 1A, 3A. Resigtance
of colif: 4 ohm, ohm,
Case: Moulded platic. Lhe price 8 moun, Our price 50 -
portable multirange

Ranges: \(0-60\) \& \(\begin{aligned} & \text { Specifcal ion. } \\ & 0-300 \mu \mathrm{~A} . \\ & \text { D.C. } \\ & 0-3, ~ 0-30\end{aligned}\) 30 mA A.C. \(24-120 \mathrm{~mA} A \mathrm{C}_{0} 0.24 \mathrm{~m}^{0.6-3}\)
 \(1,200-6,000\) V, A.C. 3 -33s orms, \(0.3-30\) K Khme Decibels. Frequency: 50 cps. Input Resibtance D.C.: 20,000 ohms/volt. Input Renistanco A.C. mo. Welght: s guppled with \(215 \times 17\) ing. Welght: 8 kg. supplied with 2 voltage List price \(\mathbf{2 0 5 5}\). Our price £12.19.6. P. \& P. 15/-
t \(\begin{gathered}\text { LEAFLETS } \\ \text { AVAILABLE }\end{gathered} t\)

CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES \(220 / 240 \mathrm{v}\)
\begin{tabular}{|c|c|c|c|c|}
\hline No. SEC. TAPS & AMPS & & & carr. \\
\hline IA .. \(25-33-40-50\). & 15 & 6910 & 0 & 10/6 \\
\hline 18 .. 25-33-40-50... & 10 & 4619 & 6 & 8/6 \\
\hline IC .. 25-33-40-50... & 6 & 6519 & 6 & 8/6 \\
\hline \(10 . .125-33-40-50\) & 3 & \({ }^{6} 12\) & 6 & 7/6 \\
\hline 2 A.. 4-16-24-32 & 12 & 6610 & 0 & 7/6 \\
\hline 2 B .. 4-16-24-32 & 8 & E4 17 & 6 & 7/6 \\
\hline \(2 C . .4\) 4-16-24-32 .. & 4 & 635 & 0 & 6/- \\
\hline \(2 \mathrm{D} .\). 4-16-24.32 & 2 & & 6 & 5/- \\
\hline \(3 A^{*} \ldots\) 25-30-35 & 40 & 61417 & 6 & 15/- \\
\hline 3B*.. 25-30-35 & 20 & 897 & 6 & \(9 / 6\) \\
\hline 3 C .. 25-30-35 & 10 & \(\pm 610\) & 0 & 7/6 \\
\hline 30 .. 25-30-35 & 5 & & 0 & 6/6 \\
\hline 3E .. 25-30-35 & 2 & \(E 215\) & 0 & 6/6 \\
\hline 4A*.. 12-20-24 & 30 & ¢11 15 & 0 & 101- \\
\hline 4 B .. 12-20-24 & 20 & & 0 & 8/6 \\
\hline \(4 \mathrm{C} . .12-20-24\) & 10 & 4415 & 0 & 716 \\
\hline 4 D .. 12-20-24 & 5 & & 0 & 6/6 \\
\hline 5A .. 3-12-18 ... & 30 & 8815 & 0 & 7/6 \\
\hline \(58 .\). & 20 & & 0 & 716 \\
\hline \({ }_{5} \mathrm{C}^{\text {a }}\).. \({ }^{3-12-18}\) & 10 & 6317 & 6 & 6/6 \\
\hline \(50 . .13-12-18\) & 5 & \(E 212\) & 6 & 6/6 \\
\hline 6A .. 48-56-60 & 2 & & 0 & 5/6 \\
\hline 6 B .. 48-56-60 & 1 & 627 & 6 & \(5 / 6\) \\
\hline \(7 A^{*} .\). 6-12 & 50 & & 6 & \(9 / 6\) \\
\hline \(78 . .6-12\) & 20 & 4510 & 0 & 7/6 \\
\hline \(7 C^{\text {. . }}\) 6-12 & 10 & & 0 & 6/6 \\
\hline \(70 . .6\) 6-12 & & 6210 & 0 & 5/6 \\
\hline 8A .. 12-24 & 1 & E19 & 6 & 5/6 \\
\hline \(94 . .17 .32\) & 8 & \(\angle 512\) & 6 & 5/6 \\
\hline 10A*. 9-15 & 2 & E1 5 & 0 & 5/6 \\
\hline \(11 \mathrm{~A} . .6\) 6 & 15 & 12 & 0 & 5/6 \\
\hline 12A.. 30-25-0-25-30. & 2 & 635 & 0 & 5/6 \\
\hline
\end{tabular}

AUTO TRANSFORMERS
\(240 \mathrm{v} .-110 \mathrm{v}\). or 100 v . Completely Shrouded fitted with Twoopin American Sockets or terminal blocks. Please state which type required.
\begin{tabular}{ccccc}
Type & Wates & Approx. Weight & \multicolumn{3}{c}{ Price } \\
1 & 80 & 21 lb & \(£ 1\) & 17 \\
2 & 150 & 4 Ib & \(€ 2\) & 7 \\
\hline
\end{tabular}
\(n\)
0
0

Completely enclosed in beautifully finished meral case fitted with two 2-pin American sol
on/off swisç, and carrylng handle.
WE REGRET WE HAVE TO INCREASE ALL THE ABOVE TRANSFORMER PRICES BY OF COPPER.

\title{
(4)
}

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5125

AMERICAN HIGHLY STABILISED POWER SUPPLY UNIT

Regulation between \(7-15\) volts D.C. at 20 amps. Fitted 0-30 D.C. ammeter, 0-15 D.C. volemecer and overload proection 3 witch. Buite co a very high specification. Bench or
rack mou ting. Size \(19 \times 8 \times 17\) ins. A.C. input 110 v . 50 cycles. rx equipment but guaranteed in perfect condition. Maker's price in excess of \(\mathbf{\Sigma 2 0 0}\). Our pnice \(\mathbf{£ 2 5}\). Carr. \(\mathbf{3 0}\) /240/110 volt, 400 watts, Mains Transformer available if required. 83 extra.

\section*{SPECIAL OFFER OF L.T. TRANSFORMERS} Pri \(110-120 \mathrm{v} .200-240 \mathrm{v}\). Sec. tapped 12, 18, 24, 30 r. 8 a .
Table top connections. Fully eropicalised. 75/.: Carr. \(7 / 6\). Pri tapped 110 v . 220-250v. Sec. 55 v . 24a., 14 v . 10 a ., 60 v . 2 a . All windings very conservatively raeed. Tropically finished. Terminal connections. Size \(9 \times 7 \frac{1}{2} \times 7\) ins. Weight 651 bs.
f 10.19 .6 . Carr. \(15 \%\).
Pri tapped 200-250v. Sec. 46v. Very conservatively rated at 29 amps. Size \(11 \times 7 \times 7\) Ins. Weight 75 lbs . approx. Manufactured by Partridge. \&12.19.6. Carr. 15/.
Pri 240 v . Sec. \(12 \mathrm{v}, 90 \mathrm{amps}\). Open frame flying leads. Size \(71 \times 6 \frac{1}{2} \times\) 6ins. \(\quad\) (13.19 .6. Carr. \(15 /=\).

DIGITAL HOUR METERS 6 figs inc. \(1 / 10 \mathrm{hhs}\), \(1 / 100\) ohs \({ }^{40 \mathrm{v} \text {. A.C. but complete with }}\) iransormer for 240 v . A.C. operation. All in plastic case. 5 size \(6 \frac{1}{2} \times 6 \frac{1}{4} \times 3\) in. Condition as new 45/-. P. \& P. 5/-.

SMITHS SYNCHRONOUS MOTORS A. \& P. 2/6. As above, 1 r.p.m. 22/6. P. \& P P. 2/6in. \(22 / 6\).

AMERICAN SYNCHRONOUS MOTORS A.C. 230 v .50 cycles, 6 r.p.h. 2 tin. dia. cog spindle. 12

VENNER SYNCHRONOUS MOTOR A.C. 240 v .50 cycles, \(40 \mathrm{r} . \mathrm{p} . \mathrm{m}\). 21 in . dia. Lengeh of spindle in. \(12 / 6\). P \& P. 2/6.

\section*{BERCO SLIDING RESISTORS}

1004 ohms 1 amp. Single Tube Slider. Length 18 ins. \(45 / \mathrm{m}\). P. \& P. \(7 / 6,30\) ohms 1.25 amps S.T. Right angle geared drive. \(19 / 6\). P. \& P, \(5 / 6\). \(45+12\) ohms \(6 \cdot 5 / 4\) amps single Tube Fixed Length 22 ins. 25/-. P. \& P. 7/6.

> G.P.O. 3000 TYPE RELAY (New and Boxed) 20,000 ohms Heavy Duty Contacts. 2CO, 2M. 15/.P. \&P. 2/75 ohms Normal Contacts. 3M, i B, ICO. \(6 /\). P. \(^{2}\) \& P. \(2 /\). 500 ohms Heavy Duty Contacts. 3M, 3B, 8/6. P. \& P. \(2 /\) 500 ohms Heavy Ducy Contacts. 3M, 3B. 8/6. P. \& P. \(2 \%\) 150 ohms Heavy Duty Contacts. 2M. 6/-. P. \& P. 2/-

SUNVIC TANK THERMOSTATS
ype TQP. 250v. 15 amps NC. 5 amps NO. 190-70 deg. F.
AC 220-240v. SHADED POLE MOTORS
1.500 r.p.m. Double spindle. Length 0.9 in . and 0.6 in . Overall size \(3 \times 31 \times 2\) ins. New and Boxed. 10/6. P. \& P. 3/6.

\section*{BURGESS MICRO SWITCHES}
ype MK 3BR/74. Norm closed or Norm open. 1in. raised Press Button. \(8 / 6\) for three. P. \& P. \(2 / 6\).

SIEMENS MJNIATURE RELAY BASES Type T.STV 24 C. 6 Contact pin. 4 Coil pins. Cartons of 20, nc. spring clips. \(15 \ldots\)........

PULLEN SHUNT WOUND 24r. DC REVERSIBLE MOTORS
Type 610 H.P. \(1 / 75\) r.p.m. 3,500 Cont/R. New and boxed. 15/. P. \& P. 3/6.

MAINS ISOLATION TRANSFORMERS
Pri tapped \(240-220-110 \mathrm{v}\). Sec. 240 v . 1200 wates. Bulte into metal case with twin 13 amp Socket ouclet, on/off switch, neon indicator and carry handle. \(\mathbf{1 1 6 . 1 0 . 6}\). Carr. 15-.

GARDNER'S POTTED TRANSFORMERS
Pri Tapped \(200-240 \mathrm{v}\). Sec. \(35 \mathrm{v} .7 \cdot 2 \mathrm{amps}\). conservatively rated.

\section*{UNIQUE TWIN TAPE DECK UNITS}

These superb twin lape deck units were originally deslgned for installations requiring the continuous replay of music or speech when connected to suitable amplifiers. Consisting of two completely self-contained tape decks operating at either 3\(\}^{\prime \prime}\) (3 button \(\&\) track model) or \(7 \frac{1}{2}\) " 6 button 2 track modell. Each tape drive unit is fitted with a unique automatic solenoid operated tape drive reversal mechanism actuated by metallic stop foil at end of tape or inserted where reversalis destred. Constructed to the highest specification with the finest components available to ensure the utmost reliability. Nothing has been spared in the construction and the superb heavy duty
capstan motors 12 off) and rewind motors (4 otf). top grade relays. solenoids. etc.. all bear capstan motors (2 off) and rewin
witness to the high standards set

Available in iwo basic versions with either 3 or 6 button operation. The three push button model has intertocked controls operating both tape drive units simultaneously and is fitted with 2 Ferrograph \(\dot{1}\) track stereo heads. The 6 button model has independent control over each tape drive unit and is fitted with 2 Marfiott \(\frac{1}{4}\) track stereo heads. AC 230/250v. 50 cs . Vertical or horizontal operation. Size \(19^{\prime \prime} \times 19^{\prime \prime} \times 8^{\prime \prime}\) deep. Weight 54 Ib .

Originally costing approximately f450 each to manufacture. we are oflering these at a fraction of their true worth!

3 BUTTON \& 30
6 BUTTON \(5 ? 5\) MODEL 235

Carriage extra
Send for technical specification
SYPHA SOUND SALES LTD
242/4 PENTONVILLE ROAD, LONDON, N.W. 1 Tel. 01.9208200 . Closed \(\frac{1}{\frac{1}{2}}\)-day Thurs. \((200\) yds King's \(\times\) Station)

USEO THROUGHOUT THE WORLD, SANWAS EXPERIENCE OF SOTIYEARS ENSURES ACCURACY, PERFORMANCE COMES WITH EVERY SANWA 6 Months' Guarsitee - Excellent Repair Service Model P. 18 Model U. 500 Model 360.YTR Model AT-1
Model \(380-\mathrm{CO}\) Model 380-CO Modet F-80TRO Model 430-ES
MODRL U-500

\section*{SOLE IMPORTERS IN U.K; \\ MUALIY ELEGTRONICS LTD. \\ 47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tol: 01-546 4585}

WW-115 FOR FURTHER DETAILS

\section*{EDDYSTONE} COMMUNICATION RECEIVERS
FROM £59-10-0 COVERING 10KHZ-870MHZ
ILLUSTRATED LEFT-830/7 HIGH GRADE G.P. HF/MF RECEIVER COV ERING \(300 \mathrm{KHZ}-30 \mathrm{MHZ}\) IN 9 RANGES DOUBLE CONVERSION FROM 1.5 MHZ. PANORAMIC UNIT FOR VISUAL DISPLAY.
SEND 6d. STAMP FOR GENERAL RECEIVER LEAFLET OR SPECIFY FREQUENCY COVERAGEREQUIRED
SOUTH COAST EDDYSTONE CENTRE COSH \& HAMMOND
29 BEACH RD., LITTLEHAMPTON, SUSSEX.TEL: 4477 EXPORT WELCOMED-RANGE IN STOCK-COMPONENTS

WW- 114 FOR FURTHER DETALLS

\section*{ELECTROALDE}

\section*{EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS CATALOGUE WITH FULL TECHNICAL DATA-1/6d.}

\section*{30 WATT BAILEY AMPLIFIER COMPONENTS}
 MJ491\}
\(99 /=\) BC126 \(12 /-\), BC109 3/6
\(40361\}\) matched pair drivers
30/3 Main amp PC board free with each cransistor set. Total for one channel \(\mathbf{£ 7 . 9 . 6}\) list, with \(\mathbf{1 0 \%}\) discount only \(\mathbf{6 6 . 1 4 . 6}\). Total for two channels \(£ 14.19 .0\) list, with \(15 \%\) discount only \(£ 12.14 .0\).
Complete power supply kit \(\mathbf{E 4 . 1 4 . 6}\) mono or stereo, subject to discounc.
Complete regulated power supply kit \(\mathbf{£ 9 . 5 . 0}\) subject co discount. Further details on application.

\section*{FE 5 n-channel Low cose general-purpose type \(2 \mathrm{~N} 5163,25 \mathrm{~V} 5 /\) Audlolr.f. Texas \(2 \mathrm{~N} 3819,25 \mathrm{~V} 9 /-\mathrm{c}\).}

NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A Operates with I8V power supply. Sensitivity 20 mV into 20 M . ohms. \(3 \cdot 0\) watts into 7.5 ohms. Only \(57 /-\) net
PRACTICAL ELECTRONICS NOV. 69 STEREO AMP KIT, less metalwork

ZENER DIODES
SINCLAIR IC.IO INTEGRATED CIRCUIT AMP. \& PRE-AMP.
his remarkable monolithic integrated circuit amplifier and pre-amp is now available for dispatch from stock. It is the the first of lis kind ever. It is D.C. coupled and applicable for an unusually wide range of uses, all of which are detailed in the manual provided with it. Sinclair \(1 C .10\) as advertised, post free

PEAK SOUND AMPLIFIER KITS
The new Englefield Kits

Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into \(15 \Omega\) - 13 watts R.M.S. Price \(\mathbf{6 3 8 . 4 . 0}\) Net STEREO 25 WATTS PER CHANNEL Supplied in kit form with complete amplifier. pre-amplifier and regulated power supply modules. Output per channel into \(15 \Omega\) - 28 watts R.M.S. Price 658.15 .0 Net Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound advertisements. Inputs:
Magnetic, RIAA 3.5 mV
Ceramic \(\quad 35 \mathrm{mV}\)
Tape \(\quad 100 \mathrm{mV}\)
Radio 100 mV
Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assemblies (as illustrated) 86.0.0.
Other Peak Sound Products as advertised Mainline Kits as advertised.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2N696 & 5/6 & 2N2147 & \(18 / 9\) & 2N4289 & 2/11 & AFII8 & 16/6 & BCY3I & 12/6 & BSX20 & 4/6 \\
\hline 2N697 & 6/- & 2N2369A & 6/9 & 2N4291 & 2/11 & AFI24 & \(7 / 6\) & BD121 & \(18 /-\) & MJ480 & \(21 /=\) \\
\hline 2N706 & 3/5 & 2N2646 & 9/6 & 2N4292 & 2/11 & AFI27 & 7/- & BD123 & 24/3 & NKT211 & 5/8 \\
\hline 2N1132 & 13/- & 2N2924 & 4/3 & 40406 & 16/3 & AF139 & 8/- & 8 D 124 & 16/- & NKT214 & 4/2 \\
\hline 2 N 1302 & 4/- & 2N2925 & 5/3 & 40408 & 14/6 & BA102 & 6/6 & BFII5 & 7/6 & NKT217 & 12/= \\
\hline 2 N 1303 & 4/- & 2N3053 & 5/6 & ACI26 & 6/6 & BC147 & 4/3 & BF167 & 8/6 & NKT274 & 4/3 \\
\hline 2N1304 & 4/- & 2N3054 & 15/6 & AC128 & 6/- & BCI48 & 3/3 & BFI78 & 10/6 & NKY403 & 14/0 \\
\hline 2 Ni 305 & 4/- & 2N3055 & 16/6 & AC176 & 6/3 & BC149 & 4/3 & BF180 & 12/- & NKT404 & \(14 / 6\) \\
\hline 2N1306 & 6/9 & 2N3391A & 5/6 & ACY22 & 3/3 & BC157 & 3/6 & BF194 & 1/= & NKT405 & 15/- \\
\hline 2N1307 & 6/9 & 2N3708 & 2/9 & ACY40 & 3/6 & BC158 & 3/3 & BFX29 & 12/3 & NKT713 & 5/5 \\
\hline 2N1308 & 8/9 & 2N3904 & 9/- & ADI 40 & 19/- & BCI59 & 3/6 & BFX85 & 8/3 & NKT773 & 5/3 \\
\hline 2N1309 & \(8 / 9\) & 2N3906 & \(91-\) & ADI49 & 17/6 & BC177 & 6/- & BFX88 & 7/9 & NKT781 & 6/- \\
\hline 2N1613 & 6/6 & 2N3794 & 2/11 & ADI61 & & BC178 & 5/3 & BFY50 & 4/9 & P346A & 5/9 \\
\hline 2N1711 & 7/4 & 2N4286 & 2/11 & AD162 \({ }^{\text {a }}\) & \(14 / \rightarrow\) pr. & BC179 & 5/9 & BFY51 & 4/3 & V405A & 7/9 \\
\hline
\end{tabular}

\footnotetext{
METAL OXIDE RESISTORS
Electrosil type TR5, \(2 \%\), \(\frac{1}{2}\) watt rating. Very low noise, low temperature coefficient, low drift. A Prof25 to 99 d

POTENTIOMETERS
Carbon track. Long plastic spindles: each Dual gang antilog: loK only each
\(8 / 6\) \(\begin{array}{lll}\text { Single gang linear: } 220 \Omega, 470 \Omega, I K \text {, ecc. } 2 / 6 \quad \text { Dualganglinear: } 4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K} \text {, etc. to } 1 \mathrm{M} \Omega & 8 / 6 \\ \text { Dualgang log: } 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K} \text {, etc. to } 1 \mathrm{M} \Omega & 8 / 6\end{array}\)
 Any type with \(\frac{1}{2}\) amp double pole mains switch: extra \(2 / 3\).

\section*{CARBON SKELETON PRE-SETS}
, \(470 \mathrm{~K}, 1 \mathrm{M} \Omega, 2 \mathrm{M} 2,5 \mathrm{M}\), IOM vertical or horizontal mounting, I/-each.

Hi-K, all \(\pm 20 \%\) colerance: \(1,000 \rho F, 2.000 \mathrm{pF}, 5.030 \mathrm{pF}, 503 \mathrm{~V} ; 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 50 \mathrm{~V}, 4 \mathrm{~d}\). each.
LARGE CAPACITORS
High ripple current types: \(2,000 \mu \mathrm{~F} 25 \mathrm{~V}, 7 /-; 2,000 \mu \mathrm{~F} 50 \mathrm{~V}, 9 / 3 ; 5,000 \mu \mathrm{~F} 25 \mathrm{~V}, 10 / 3 ; 5,000 \mu \mathrm{~F} 50 \mathrm{~V}, 17 / 6\). S-Dec, 30/6; 2-DeC DeCstore, 69/6; 4-DeC, 119/6.
MEDIUM RANGE ELECTROLYTICS
Axial leads. Values (\(\mu \mathrm{F} / \mathrm{V}\)): \(50 / 50,1 / 6 ; 100 / 25,1 / 6 ; 100 / 50,2 /-; 250 / 25,2 /-; 250 / 50,3 / 3 ; 500 / 25,3 / 3\);
}

\footnotetext{
MULLARD C426 SERIES ELECTROLYTICS Sub-miniarure axial leads. Values: \((\mu \mathrm{F} / \mathrm{V}): 0.64 / 64 ; 1 / 40\); \(1.6 / 25 ; 2.5 / 16 ; 2.5 / 64 ; 4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ;\) \(8 / 40 ; 10 / 2 \cdot 5 ; 10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ;\) 64/4; 64/10; 80/2.5; 8j/16; 80/25; 100/6.4; i25/4; 125/10; \(\begin{array}{llllll}160 / 2.5 ; & 200 / 6 \cdot 4 ; & 200 / 10 ; & 250 / 4 ; & 320 / 2-5 ; & 320 / 6 \cdot 4 ; \\ 400 / 4 ;\end{array}\) 500/2.5. All \(1 / 3\) each.
MINIATURE (\(\mu \mathrm{F} / \mathrm{V}\)): \(5 / 10 ; 10 / 10 ; 25 / 10 ; 50 / 10\), 9d. each. \(25 / 25 ; 50 / 25 ; 100 / 10 ; 200 / 10,1 /\)-each. \(50 / 50 ; 100 / 25,1 / 6\) each 100/50; 250125, 2/-each.
- COMPONENT DISCOUNTS

10\% on orders for components for 13 or more. \(15 \%\) on orders for components for 610 or more. No discount on NET items.)
- POSTAGE AND PACKING Free on orders for CI and over. Overseas orders welcome: carriage charged at cost.
- CATALOGUE price \(1 / 6\) (U.K. post free) Our catalogue contains technical data on many of our stock emi-conductors and oiter components and as such is a
}

\section*{ALL GOODS GUARANTEED}

CONVERTOR/BATTERY CHARGER. Input \({ }^{240 \mathrm{~V}}\) \begin{tabular}{l}
\(50 \mathrm{c} / \mathrm{s}\), output 12 V 5 amp DC. Input 12 v DC, output 240 F \\
AC \\
\hline 170 watt max. With fuse and indlcator lamps. Blze
\end{tabular} AC. 170 watt max. Witherse and \(9!\times 10 \times 4\) in. Weight \(101 b\). An extremely compact unit that will give many years' reliable service. Supplied with
plug and lead. Only \(\mathrm{E4/10/} \mathrm{P} .\mathrm{P} \mathrm{P} \mathrm{}. \mathrm{15/} \mathrm{extra}\). As above-fully serviceable-perfect interior but solled As above-fully serviceabl-perfect
exterlor cames. \(£ 3\). P. \& P. \(15 /\) extra.

RACAL EQUIPMENT
One Kilowatt Linear PA complete with nower supplles in 6 ft. enclowed cabinet. In brand new condl-
requiring 100 mill watt drive. In beat tion. Complete with spares. Full details on request. 6550.

Ileltal Frequency Counters SA20; SA21B: SA28.
Prices \(£ 30\); \(£ 45\) : and \(£ 65\)
G.M. TUBES. Brand new. G24/G38/G60 at 27/6 ea. G53/1. Tram Cabelipliens. 6097 B at \(\mathbf{E 5}\) ea. EMI 8097 X at ER/10/2 ea. E3/IO/-: AS517 300 v 100 mA, © 6 . P. \&, P, \(10 /-\) extra.
TRANSISTOR OSCILLATOR. Variable frequency TRANSISTOR OSCILLATOR. Variable frequency
\(40 \mathrm{c} / \mathrm{s}\) to \(5 \mathrm{kc} / \mathrm{s}\). 5 volt aquare wave o/p. for 6 to 12 v \(40 \mathrm{c} / \mathrm{s}\) to \(5 \mathrm{kc} / \mathrm{s} .5\) volt aquare wave o/p. for 6 to 12 y
DC input. Size \(1 \mathrm{i} \times 11 \times 1\) in. Not encapsulated. Brand new. Boxed. II/6 ea. 18V 4 smp.. G.E.C. brige rectifier in bench or wall
mounting case \(10 \times 10 \times\) sin. Cormplete with internal mounting case \(10 \times 10 \times\) sin. Cornplete with internal P. AP. 15/-NAY TIMER sub-chawis with 2-12AU7. transigtor. Felay etc. Requiring 12 V.
operate \(22 / 6 . \quad\) OSCILI OSCOPES
 € 2 /10/-: 1049 . E22/10/-: 1049 Mk. 3. €30: CT52. £15: HARTLEY 13A. E18/10/.
All scopea carefully eerviced and in excellent condition. Miniature scopes ispe 1200 . Ideal TV Servicing, etc. Checked and texterl. £ 10 . P. \& \(P\). £1.
ADVANCE Slunal Renerator type D.1. \(2 \mathrm{mc} / \mathrm{s}\) to Evinc/s. Sine and square mod. With original charts. Excellent condition. \(\mathbf{£ 1 2 / 1 0 / \% , ~ P . ~ \& ~ P . ~ \& 1 . ~}\)
50 Wate AUDIO AMPLIFIERS by OEC-4KT 66's \(4 / 8 / 25\) or high imperdance inputs 15 ohin out. Standiard
mains in; metered output etc. No electrolytics. Abeolute mains in, meterer output etc.
relliablity \(\in 20\) only. Carr. \(30 /\).
AMPLIFIERS. Compact unit by Parmeko-rated 17 , watts, capable of double. 2 -KT68/2B254M; EOC81;
2-EF86: 5 U 4 , matching to 15 ohns. High impedance 2-EF86: 5U4, matching to 15 ohms. High impedance or transforner input. Size \(14!\times{ }^{8 /} \times \times 8\) in. high.
Standard mains input. Fully tested \(88 / 10 /=\). lncluding cartiake.
Omron/Schrack octal based plug-in relays. 2 pole c/o
5 A .230 v and \(6 v\). State which. Brand new. Bored. 5 A .230 v and \(6 v\). State which. Brand new. Bored.
\(12 / 6 \mathrm{ea}\). G.E.C. 4 pole c/o \(6 / 12 \mathrm{v}\) operation 180 ohms. Platinum
 \(\mathrm{K} / \mathrm{ohm}\). Brand new \(6 / 6\) es.
S.T.C. sealed 2 pole c \(/ \mathrm{O} 48 \mathrm{~V} .2,500 \mathrm{ohm} 3 / 6\) ea.
S.T.C. sealed 2 pole c/o 48 V . 2,500 ohm \(3 / 6\) ea.
CARPENTERS polarised Single pole c/o 20 and 65 obm coll as new, complete with bame \(9 / 6\) eal. Single pole c/o 680. 1.110 and 1,570 ohm coil. As new \(6 / 6\) eas. SynTop connector \(2 / 6\) ea.
COLVERN Pots, Brand new. 10; 50; 100: 250: 500 ohms: 1 ;2.5: \(5: 10: 25: 50 \mathrm{k}\) all at \(2 / 6\) ea. Special Brand O/. our price \(3 / 6\) ea. 5, \(25,50,100\) ohnts: \(2 \cdot 5,25 K\). All at \(7 /-2 a\).
HIGHRESOLUTIO N Potentiometer. 25 K .80 turns. Complete with knob. \(6 / 6\) each.
COLVERN 50 K Ten Turn pots complete with dial fl
ALMA precision resistors. 100 K ; 400 K and 998 K \(0.1 \% .5 / 6\) each.
8.25 K
\(0.1 \%\)
\(4 /-\) ea.
DUBILIER Electrolytic Capacitors. 3emfd 350v. DC. Brand new, \(1 / 9\) ea. Tested. 7/- pair.
EL64 VALVES. Ex. eq. \(2 / 6\) ea. PANEL SWITCHES. high quality DP \(2 w .2 / 6\) ea.
RACAL stablizer unit 24 V . raw DC in 20 volts 1 ainp RACAL
stab and \(12 \mathrm{~V}, 5 \mathrm{MA}\) Zener gtab out. Brand new condition
complete with circuit diaqrann. 35 /- ea complete with circutt diaurang. \(35 /-\) ea
Geared Motons. 240 y . \(50 \mathrm{c} / \mathrm{s}\) 8ynchrono
Geared Motors. \(240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}\) synchronous, Geared down to \({ }^{10}\) r.p.m. Brand new. 50/- ea. P. \& P. P. \(7 / 6\) es.
DIODES IN014. Brand new. \(1 / 3\) ea.: \(12 /-\) doz.; \(£ 4100\); DIODES
Photocells, equivalent \(\mathrm{OCP} 71.2 / 6\) ea.
E.H.T. Condensers. 7.5 kV working. \(0.25 \mathrm{mfd}, \mathrm{B} / 6\) ea. Brand new SkV 0.25 mfd at \(10 / 6\) ea.; iokV \(0.05 \mathrm{mfd} 7 / 6 \mathrm{ea}\).
VISCONOL E.H.T. Condensers. Brand new. 0.002 VISCONOL E.H.T. Condensers. Brand new. 0.002
\(15 \mathrm{kV}, 8 / 6\) ea. \(0.000525 \mathrm{kV} 16 / \mathrm{ea}\). B URGESS Micro Switches VS 5030 . Brsnd new \(2 / 6\) ea.
BULGIN panel mounting Lamp holders. Red. Brand new \(2 / 3\) ea. PLESSEY plugs and socketa. Mark 4 and 7.
Brand new Pe Your requirements pleage. 15 ohm 100 MW gin. diameter. Brand new 10/6. Dial callbrated 45 to 65 cycles 4in. diameter. In orisinai
 Manufactured by E.M.I. Open cbasais. Brand new.
Highest quality. Size \(10 \mid \times 5 t \times 6\) in. blgh. E6 ea. AMERICAN TX tuning units. TU7B \(4.5-6.2 \mathrm{Mc} / \mathrm{s}\) TU8B \(6 \cdot 2-7.7\) mc/8. Only \(35 /-\) ea. Carriage \(7 / 6\) extra carriage \(10 / 0\) : TF428B, \(£ 3 / 15 /\)-, carriage \(10 /\)
\begin{tabular}{|l|l|}
\hline DIGITAL VOLT METER type BIE 2114.1 MV to \\
1 KV DC. Auto Decimal Change. Excellent condi- \\
Kinn
\end{tabular} 1 KV DC
tinn 665 .

A VO Generator type TFN AM/Fi inc/s. In excellent condition. 44 tion. G5enerator CT \(3682 / 225 / \mathrm{mc} / \mathrm{s}\). New condl AVO Meter 471 . Trangistorized. 11 range DC/AC 12 micro A-1.2 Amp 11 ranges DC/AC 12 MV. 1200 V \(25 \mathrm{c} / \mathrm{s}\) to \(50 \mathrm{kc} / \mathrm{s} ; 5\) ranges 40 MV to \(41,20 \mathrm{kc} / \mathrm{s}\) to
\(500 \mathrm{mc} / \mathrm{s}\) extenderl with X \(100 \mathrm{multipler} ; 8 \mathrm{ranges}\) 12 ohm to 120 m ohnis. Input imperl. \(100 \mathrm{~m} / \mathrm{ohm}\) per 12 ohm to 120 mathis. Input imper. 100 m
volt on 1.2 V . range. Brand new \(\mathbf{7 5} \mathbf{7 5}\) each
19in. Racle Mounting CABINETS. 6ft. high. 2ft. deep. Side and rear doors. Fully tapped: comple Carriage at cost. SOLARTRON Storaze Omcllloscope type Q10910 SPECIAL OFFER RCC Complete V.II.F. Recelver. type 715 by BCC. Complete
tester and working (lexs cryptal). 12v DC input. testerl and working (less cryptal). 12 V DC input. Supplied with conversion data. Only \(£ 3 / 10 /=\) P. \& P. \(7 / 6\) ea

LABORATORY OSCILLOSCOPE, Solartron CD 648. 51 ln tube. DC, \(12 \mathrm{Mc} / \mathrm{s}\). Rise time 30 M Micro/s. with expansion 20 M Micro \(/ \mathrm{s} / \mathrm{cm}\). Fine condition. NOW only E 80 .

\section*{SOLARTRON EQUIPMENT}
D.B. Oacillowcope. Type CD 7118.2. 655
8.B. Oscllioscope. Type CD 518. €35.
Pulse generstor. Type OPS 100C. \(50 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{Me} / \mathrm{s}, \mathrm{E} 25\).

MIC-O-VAC type 22 (CT54) Volts; Current; Ohms.
MC-O-VAC/ to 200me/s with probe. leads ete. As new C8.10.0.
P. \& \(P, 10 /-\) Plug-in MAlNS PACK for Mic-o-vac tybe
CIS4. G2/10/:- P. \& PL Microegcond Counter Chronometer. 6 disit.
Start-ston terminsis. In flne condition \(£ 20\). Carr. \(25 /-\).
CINTEL Transiatorized Nucleonic Scalers with CINTEL Tranaigiorized Nucleonle Scalers with
adjustable discrininator, count of 10 to the 5 . In as adjustable discrininator, count of 10 to the 5 . Ln as
new condition. \(£ 37 / 10 /-\) each. Garr. \(15 /-8\).
AIRMEC Counter type 865 . 0 decades; bricht AIRMEC Cquater type 805. Vecades: brigh MULCLARD Tranalatorized Analogue to Digital Convertor Model I. 281. As new. 630 . Carr. 15/ SUNVIC DC Chopper Amplitier type Superb condition. \(£ 22 / 10 /-\) each. Carr. 20/-
ELLIOTV Dynamometer Model 5999. Accuracy
0.5 fad. Perfect conditlon. \(\subset 12 / 10 /=\) eas. P. \& P. 15/

Special discount to Unlversities. Schoois, etc. MARCONI Audio Frequency Absorption Wattmeter type TF956 (CT44). Large \(6^{\circ}\) acale. 1 micro watt to
Excelient conditlon. \(E 15\). \(P\). \(P\). \(10 /-\). MARCONI TP 886A. Magnlficition meter 445 MARCONI TF 762C UHF Generator 200 to \(400 \mathrm{MC} / \mathrm{s}\) MARCONI TF 995 AM/FM Generator 1 '5 to \(200 \mathrm{mc} / \mathrm{B}\) MA20. CONI TF 93B (No. 5). Inpedance Bridge \(£ 75\) ea MARCONI TF 144 G Generator \(85 \mathrm{lc} / \mathrm{s}\) to \(25 \mathrm{mc} / \mathrm{s}\) Teated and in excelient condition. \(£ 18\). Carr. 35/\% P.U. £22.10.0. Carriage 15/., With Charts.

SIGNAL GENERATOR/WAVEMETER type 61 90 to \(160 \mathrm{me} / \mathrm{s}\). Built in crystal markers. Standard mains input. Excellent condition \(812 / 10 /-\) Carr. \(30 /-1\). H. SIGNAL GENERATOR type CT 478 by W. H.
 TAYM/日. As new 640 . TAYLOR \(100-0-100\) micro amp, Scale size \(4 \times 2 \mathrm{in}\).
 \(0 / 5 \mathrm{kV}\) E \(3 / 10 /-\) each. \(0 / 7.5 \mathrm{kV}\). ©4/5/- Ein.
GRIFFEN \& GEORGE. 3in. round. In sloped open ended case with terms. AC \(50 \mathrm{c} / \mathrm{s} .3\) types arailable 0/20; 0/100; and 0/250V. Ef eat atndard Inputs.

\section*{18 z 6 amp and 12 y द smp. Sep. Windings \(18 / 6\) ea}

 Gardners \(6.3 \mathrm{v} 2 \mathrm{~A}: 0.3 \mathrm{v} 1 \cdot 5 \mathrm{~A} ; 6.3 \mathrm{v} 0 \cdot 1 \mathrm{~A}\). Size \(3 \times 1 / \times 4 \mathrm{in}\). As new. 14/-ea. Multi \(6.3^{\circ} \mathrm{s}\) combine to give 48 v at Gardners. Potter. Multi \({ }^{6 \cdot 3} \mathrm{~s}\) combine to give 48 v at
4 amps or 6.3 at 45 A . With \(850-0.350\) at 50 mA . As new. \(£ 2 / 10 /-\) en
Parneko/Gardners. Potted. \(475-60-0-60-475\) at 160 mA : separate winding 215.0215 at 45 mA ; \(6.3 \mathrm{v} 5 \mathrm{~A}: 6.3 \mathrm{v}\)
\(0.75 \mathrm{~A}: 5 \mathrm{v} 3 \mathrm{~A}\). As new. \(\mathbf{6 3}\) ea.
 2: 0/4/6.3 2 anp; \(0 / 4 / 53 \cdot 5 \mathrm{~A}\). In original boxes. \(£ 4 / 10 /\) lic, post, Gardiners 2 kV 10 MA . As new, \(£ 3\) incl. nostage.
Gardiners 2 KV 10MA and 4 volts \(\times 2\). \(£ 4 / 10 /=\) ea incl. postage.
Parmeko 6.3 v at \(2 \mathrm{amp} \times 4\). 22/6 ea.
Parmeko 85 v 1 anp. Separate 0.18 .24 v at 0.5 mmp . 30/-ea Parmeko B5v 1 ainp. Separate 0.18-24v at 0.5 amp . \(30 /\) - ea.
Gard/Parm/Part. \(450-400-0 \cdot 400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{v}\). E3 each.
CHOKES. \(5 \mathrm{H} ; 10 \mathrm{H}: 15 \mathrm{H}\); up to \(120 \mathrm{~mA} .8 / 6 \mathrm{ea}\). Up to \(250 \mathrm{~mA} 12 / 6\) ea. Large quantity LT, HT, EHT tranaformers. Your Large quantity LT, HT, EHT Lransformens. Your
requirements. please.
SERYOMEX Stabilized D.C. Power supplies type DCa. \(0-30\) Volts \(0-7\) ampe Separate voltage and current meters. E40. Type 38, bench mounting, \(0-15\) Volts. 0-2.5 amps. Separate voltage and current meters \(£ 30\) Bulk TAPE ERASE unit 1 or 2 in . video tape 14 hm . dia-
meter. As new 15 . Carr. \(25 /\). with rectifier heater wind-
E.H.T. Brand new 5 kV 5 MA with E.H.T. Brand new 5kV 5MA With
ing. Size \(3 \times 3 \times 5 \mathrm{ln}\). \(27 / 6 \mathrm{ea}\).

Post paid over 10
, transformers, chokes, valves, capacitors, odd units,
Cash with order.
CHILTMEAD LTD.
22 SUN STREET
READING
BERKS,
Off Cumberland Road (Cemetery Junction)
READING • BERKS
 s/ complementary palt. Output tranaformer coupled to 3 ohm
and 15 ohm speaker wockets. Gtandind phono tiput mockets.
Fnil Controls: Bass. Treble. Volume/on/or. Munction selector for
PU1, PU2. Tape. Radio. The HRL. 700 is strongiy constructed n rigid atcel chanais, bronze hammer enamel tinish, aize 9 it in. \(x\) \(\ln , \times 4 i \ln\). high. Perfornance figures:
Senaltivity-PCI-60 m/v.. 56 K input
PU2.110 m/p, 1 meg. Input inpediance.
Tape- \(110 \mathrm{~m} / \mathrm{v}\), 1 meg . Input imperlance.
Tape- \(110 \mathrm{~mm} / \mathrm{v}, 1\) meg. input imperlance.
Radio- \(110 \mathrm{mp} / \mathrm{v}, 1\) meg. input tmpedance.
Output power measured it 1 Kc-6.2 Wate. RMB into 3 ohmas,
S. 8 watts RMS into is ohm. Overall frequency response 30
 The R8L. 700 has been designed for true high didelity reproduction rom Radio Tuner, Gramophone deck zo Tape Recorder pre
amp but ta aloo capable of being used to conjunction wth a
 Bupplied reany bultit and teated, complete with knobs, attractlve
anodised aluminium' front eacutcheop panel, long apindites (can be cut to suit your housing requirementa), full circult diagram and
operatlag instruction. OUR SPECIAL PRICE
£7/18/6 perating instruction. OUR BPEC
P. \& P. \(7 / 6\).

BRAND NEW :
PARMEKO MAND TRANSFORMERS
 at 2 amp, 6.3 . at 2 ampa and 8.37 , at amp. Conservatively
rated. Fully impregnated. Electrontatic screen. 8uitable for
verticul

Transistor Stereo \(8+8 \mathrm{Mk}\). II
resulting gilicon Trangistory in first inve atages on each channel
rower noine level with inproved senaitivity. really Hrut-class HI-FI stereo Amplifier Kit. Uses 14 tranaisiori
 Sultable for use with Ceramic or Cryatal cartridges. Output slage
for any alpakers from 3 to 15 ohma. Cornpact deaign, all parta for any apeakera from 3 to 15 ohma. Cornpact deaign, all part
supplied including drilled metal work. Cir-Kif board, attractiv tront panel knobs, wire, solder, nuts, bolts-no extras to buy.
glmple atep by ntep inntructions ensble anis conatnictar to build
 pprox. to \(=16 \mathrm{~dB}\). Negative feedluack 18 dB . over main amp

Cireulh diagrum,
k (t) \(1 / 6(\mathrm{~B} . \mathrm{A} . \mathrm{E}\).
HP FI CELESTION SPEAKER UNIT. SIze
Bin. \(\times 4 \mathrm{n}\). Powerful
cone surround. \(10-18\)
11,000 Hine masnet with specinlly treated cone surround. 10-18
obm impedanoe. Few only at \(20 /-\mathrm{P}\). \& P. 3/6.
QUALITY RECORD PLAYER AMPLIFIER MK. II
a top-quality record player amplifier emploving beavy duty A top-quality record player amplifer employlis beavy duty
double wound mains transformer. ECCB3. EL84, EZ80 valves.

 and apeaker ready to at into cabinet below. PRICE \(97 / 8\).
P. \& P. \(7 / 6\). DE LUXE QUALITY PORTABLE R-PLAYER CABINETMK. 2
 OARRARD Autochanger or aingle Piayer Unit (exce
or SP25). SIze \(18 \times 15 \times 8 \mathrm{in}\). PRIOE 78/6. Carr. \(9 / 6\).

Designed for Hi-Pi reproduction of recordn. A.C. mazing operation.
Ready bult on plated buavy gauge
metal chanain. ize 7 tin. .
 Rlob, Ezso valves. Heavy duty
double wound mans tranatorme
and output fransionner matched for
8 ohm 8 ohm speaker. Separate volutue
control and now with improved Fide range tone controlagiving hass and treble lift and cut. Negative
feed-back line. Output 4 watte. Front-panel ann be detached and lesin extended for remote mounting of controls. The AA34 has
been apecially dealigned for ua and our quantity order ensblea ua to offer them compiete with knoba. valveas etc.o wired and teated
for only \(\mathbf{~} 4 / 15 /-\). P. \&. \(6 /\)..
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{10/14 WATT EI-F1 AMPLIFLER EIT} \\
\hline \multicolumn{3}{|l|}{A melliohly funished mos-} \\
\hline \multicolumn{3}{|l|}{sural amplitier with an} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{2 ELP4s lm push-pull}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Super} \\
\hline \multicolumn{3}{|c|}{th negiligibie hum.} \\
\hline \multicolumn{3}{|l|}{Separate inputa for mike
and kram allow recorda} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{and announcementu to}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{follow each other. Full} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{output tranaformer to match 3-15@ apeaker}} \\
\hline \multicolumn{2}{|l|}{and 2 Independent vol-} & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{giving good Jift and cut. Valve line-up: 2 ELA4s, EOC83, EF88,}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
parts). All parts iold weparately. ONLY \(27 / 9 / 6\). P. \& P. 8/8 \\
Also mallable ready bullt and tented complete with standar
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{input socketa. \(28 / 5 /-\) - P. \& P. 8/6.} \\
\hline \multicolumn{3}{|l|}{HARVERSON SURPLUS CO. LTD.} \\
\hline \multicolumn{3}{|l|}{170 HIGH STREET, MERTON, LONDON, S.W. 19 Telephone: 01-540 3985} \\
\hline \multicolumn{3}{|r|}{S.A.E. all enquiries.} \\
\hline \multicolumn{3}{|r|}{Open all day Saturday (Wednesday 1 p.m.)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{please note: P. p. Charges gooted apply to d.k. OMIY \& \& ON OVERSEAS ORDERS CHARGED EXTRA.}} \\
\hline & & \\
\hline
\end{tabular}

\section*{SUPER-BARGAIN STOCKTAKING SALE!!}

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value. ELECTROLYTIC CAPACITORS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Stock No. & Capacity & Voltage & Price
s. d. & \begin{tabular}{l}
No. \\
Required
\end{tabular} & \& s. d. & Stock No. 42 & Capacity & Voltage & \begin{tabular}{l}
Price \\
s. d.
\end{tabular} & No. Required & \& s. d. \\
\hline 2 & 4 uf & 25 & 4 & & & 43 & 16 uf & \({ }_{20}{ }_{275}\) & 20 & & \\
\hline 3 & 4 uf & 4 & 4 & & & 44 & 16 & 275 & 10 & & \\
\hline 4 & 6 uf & 6 & 4 & & & 45 & 350 & 12 & 19 & & \\
\hline 5 & 3 uf & 25 & 4 & & & 46 & 20/4 & 275 & 10 & & \\
\hline 6 & 64 uf & 9 & 4 & & & 47 & 250 & 50 & 20 & & \\
\hline 7 & 20 uf & 6 & 4 & & & 48 & 500 & 25 & 16 & & \\
\hline 9 & 30 uf & 15 & 6 & & & 49 & 400 & 15 & 10 & & \\
\hline 10 & 8 uf & 12 & 4 & & & 50 & 400 & 2.5 & 13 & & \\
\hline 11 & 8 uf & 6 & 4 & & & 51 & 64 & 275 & 19 & & \\
\hline 12 & 1 uf & 350 & - 6 & & & 52 & 32/32 & 350 & 26 & & \\
\hline 13 & 8/8/8 & 350 & 10 & & & 53 & 8/8/8 & 275 & 19 & & \\
\hline 14 & 50 uf & \({ }^{6}\) & 4 & & & 54 & 500 & 6 & 16 & & \\
\hline 16 & 32 & 150 & 9 & & & 55 & 64 & 275 & 13 & & \\
\hline 17 & 64 \(100 / 200 / 200 / 50\) & \({ }_{275}^{2.5}\) & \(7 \begin{array}{r}3 \\ \hline\end{array}\) & & & 56 & 25 & 6 & 3 & & \\
\hline 19 & 100/200/200/50 & 375 & 7
3 & & & 57
58 & 100
400 & 9
50 & \(2 \begin{array}{r}6 \\ \\ \hline\end{array}\) & & \\
\hline 21 & 24 & 275 & 10 & & & 59 & 400 & 30 & 16 & & \\
\hline 22 & 10 & 25 & 3 & & & 60 & 500 & 4 & 13 & & \\
\hline 23 & 125 & 2.5 & 3 & & & 61 & 150 & 30 & 16 & & \\
\hline 24 & 2 & 150 & - 3 & & & 62 & 64/32/8 & 275 & 26 & & \\
\hline 25 & 16/32 & 350 & 26 & & & 64 & 40 & 6.4 & & & \\
\hline 26 & 32 & 275 & 16 & - & & 65 & 50 & 25 & 6 & & \\
\hline 28 & 75/75/75/75 & 150 & 26 & & & 66 & 250 & 50 & 19 & & \\
\hline 30 & 12.5 & 40 & 9 & & & 67 & 30 & 6 & - 3 & & \\
\hline 31 & 640 & 2.5 & 73 & & & 68 & 100/100/50 & 275 & 50 & & \\
\hline 32 & 3,000 & 35 & \(7{ }^{7} 6\) & & & 69 & 50/50/50 & 350 & 40 & & \\
\hline 33
34 & 3,000
3,000 & 15
30 & 30 & & & 70 & 40/40/20 & 275 & 20 & & \\
\hline 34
35 & 3,000
250 & 30 & 70 & & & 71 & 400 & 6.4 & 3 & & \\
\hline 36 & 2,500 & 70
9 & 2
2 & & & 72 & 320
\(32 / 32\) & 10
275 & 3 & & \\
\hline 38 & 750 & 12 & 19 & & & & +
+25 & 25 & 26 & & \\
\hline 39 & 100 uf & 275 & 26 & & & & & & & & \\
\hline 40 & 30 uf & 10 & & & & & & & & & \\
\hline
\end{tabular}

RESISTORS. 5\% EXCELLLENT QUALITY.
Ick the values required.

\begin{tabular}{lll}
39 k ohm & 91 kohm & 1.2 meg ohm \\
43 kohm & 130 kohm & 1.5 meg ohm \\
47 kohm & 360 kohm & 1.8 meg ohm \\
51 kohm & 430 kohm & 3.6 meg ohm \\
62 kohm & 470 kohm & 5.1 meg ohm \\
75 kohm & 560 kohm & 6.2 meg ohm \\
82 kohm & 620 kohm & 7.5 meg ohm
\end{tabular}

Total:
SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Available in following values. Tick those required
\begin{tabular}{rllllllllllll}
& & & & \\
\hline
\end{tabular}

\section*{COMPARE THESE PRICES!!}

MULLARD POLYESTER CONDENSERS

\(25 \%\) discount lots of 100 per type.

TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! ! ! P.N.P. Audio. Untested, unmarked. MAINLY O.K. .. 10/- per 100 N.P.N. Silicon. R.F. types unmarked ALL USEABLE . . \(10 /-\) per 50 POWER OUTPUT (Similar OC35) ALL TESTED . \(4 /\) e cach \&2 dozen SILICON PLANAR TRANSISTORS. ALL. TESTED. NO LEAKS OR SHORTS. Gain of 20/50 6d, each, 50/100 9d. each, \(100 / 200\) 1/- each.
Transistors similar to OCP 71 (Light sensiuive) \(2 /-\) each.
THYRISTORS. 400 volt BTY 79 7/6d. each. SCR 51 (10 amp) \&1 each type 1 N 4006 . \(2 / 6\) each, \(24 /\) - dozen, \(£ 7 / 10 /-100\). S.T.C. \(3 / 4\) (400 volt) \(2 / 6\) each, \(24 /-\) dozen, \(\mathcal{L} 7 / 10 /-100\). BYZ 13 or 19 (6 amp) \(2 / 6\) cach, \(24 /-\) dozen, 87/10/-100.
RECORDING TAPE GIVE-AWAY!
ALL BRITISH MADE, BEST QUALITY. \(5^{\prime \prime} 600^{\circ} 7 / 3 \mathrm{~d} .58^{\prime \prime} 900^{\prime} 9 / \mathrm{m}\) minimum 150'-2/3d. minimum \(150-2 / 3 d\).
MAINS DROPPER TYPE RESISTORS. Hundreds of types from 7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted". 10/- per dozen
GIANT SELENIUM SOLAR CELLLS. Last few to clear at half price! Circular, 67 mm . diameter \(5 /-\) each. 50 mm . \(\times 37 \mathrm{~mm}\). 3 for \(10 / \mathrm{-}\).

GANGED STEREO POTS. \(250 \mathrm{~K} 2 / 6 \mathrm{~d}\), each. SKELETON PRESETS. Mixed. 6/- dozen.
VOLUME CONTROLS. 1 meg. 1 meg. with D.P. switch. \(2 /\) each.
TELEVISION REMOTE CONTROLS. Philips. Contain 11' 7-way cable, 1 double pot., 5 resistors, two condensers, \(10 /-\) each. (Cost \(83 / 3 /-\).)
THIN CONNECTING WIRE. 10 yds \(1 /-, 100 \mathrm{yds} 7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds} .50 / \mathrm{m}\) CO-AXIAL CABLE. Black. 6d. yard, \&1 50 yds.
CRYSTAL MIKES. 10/- each.

\section*{RECORD PLAYER CARTRIDGES}

ACOS GP67/2 15/= (Mono) GP94/1 30/= (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle \(32 / 6 \mathrm{~d}\). ACOS GP93/1 25/- (Stereo) ACOS GP94/1 with diamond needle 37/6d.

TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt \(12^{\circ}\) tube, Reflector type \(59 / 6 \quad 15\) watt \(18^{\circ}\) tube, Batten type \(\quad 79 / 6\) Complete with tube. Postage \(3 /-\)

TRANSISTORISED SIGNAL INJECTOR KIT 10/h TRANSISTORISED SIGNAL TRACER KIT \(10 /=\) TRANSISTORISED REV. COUNTER KIT (CAR) 10/-

\section*{VERO-BOARD}

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36. Spot Face Cutter and \(522^{F} \times 1^{\text {F }}\) boards \(9 / 9 \mathrm{~d}\).

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum \(2^{\prime}\)-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

NEW 4th EDITION

\section*{THE SEMICONDUCTOR DATA BOOK \\ by Motorola}
```

60/-
Postage 5/-
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. 30/-. Postage I/-
TELECOMMUNICATIONS AND THE COMPUTER by James Martin. 140/-. Postage Free.
SERVICING WITH THE OSCILLOSCOPE by Gordon J. King. 28/-. Postage 1/-.
THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/-. Postage I/6.
TRANSISTOR MANUAL by General Electric Company, 21/-. Postage I/6.
DISCRETE AND INTEGRATED SEMICONDUCTOR CIRCUITRY by L. J. Herbst. 38/.. Postage 1/-.
SCR MANUAL by General Electric Company. 25/-. Postage $1 / 6$.
TRANSISTOR POCKET BOOK by R. G. Hibberd. 25/-. Postage 1/-.

```

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-2I PRAED STREET, LONDON, W. 2
Phone PADdington 4185 Closed Sat. I p.m.

High grade of stability of electric parameters Resistance and durability

Long operational life

\section*{Polish}
electronic tubes for radio receiver sets electronic tubes for TV receiver sets and electronic components are offered by

Foreign Trade Enterprise
Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370.

Telex No. 81437

> To persons interested we forward detailed information, catalogues and tenders.

\section*{GLASS FIBRE OPTIC}

\section*{FLEXIBLE LIGHT PIPE, now available in any length} \(150+\) glass fibres, with three zimes low
plastic fibre. P.V.C. sheath 0.080 in. dia. Used like wire bur to convey lighe to remote or naccessible positions for inspection, panel Indicators,
hoto-electric and other applications. Prices per phoro-electric, and other applications. Prices per fe.
(post free): \(1-9,5 /=; 10-49,4 /=; 50-249,3 /=\). Enquiries S.A.E.

SYSTEM 696 6 CO. 15 BELL ROAD. EAST MOLESEY. SURREY

PRINTED CIRCUITS
Small quantities are not expensive, we have full artwork and assembly facilities.

Let us quote you for any quantity.
ПFPFTT ELECTRONIC SYSTEMS LTD. Hookstone Park, Harrogate Harrogate 86258
Telex 57962

Setting a new standard combining lower purchase and operating costs with superior performance, the Telford Type \(P\) meets requirements where smaller or standard oscilloscopes are employed.
SIMPLE OPERATION-ATTRACTIVE APPEARANCE -LIGHTWEIGHT-ECONOMY SIZE POLAROID FILM TYPE 20

LENS
High-quality Dallmeyer F4.5 2.4" \((61 \mathrm{~mm})\) lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is \(1: 0.7\) (nom).

\section*{SHUTTER SPEEDS}

Three modes of operation are provided, including fixed exposure \(1 / 25\) sec. (nom.) time and brief

\section*{ADAPTERS}

Comprehensive range of adapters are available to fit most popular oscilloscopes.

4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011
THE DAVALL PHOTO OPTICAL COMPANY OF THE BENTIMA GROUP
'OSCILLOSCOPES'Double Bearm, Single Beam and Differential TypesAvailable Now
Telequipment D55
PriceE.M.I. WM8. DC-15Naggard Model 311 DB6100Hewlett Packard 130 AMarconi TF 1277Solartron CD 5235Solartron CD 711Solartron CD 7/15/2Mullard 140/3\(115 / 2\)
Furzhill Model 0-100
Hartley 13A DB
Cossor 1049 DB
Cossor 1049 DB
Cossor 1035 DB
Lavoie 05-73 DC-35 MHz
Solartron CD
 Please write for further details

\section*{"SPECIAL OFFER"}
SOLARTRON HIGHLY STABILISED P.S.U. MODEL SRS I5IA
Output 20-500 v. in ewo ranges. Positive line at 300 mA . Variable output 170 v . fixed; 0 - 170 v . variable. Two A.C. outpues at \(6 \cdot 3\) v. A.C. are provided. A.C mese units are offered in first-class condition. For A.C. mains. 200250 V. A.C. Overall case dimensions Price \(£ 35\).
Handbook available with P.S.U.

\section*{* TRANSISTORISED STABILISED \\ LOW VOLTAGE P.S.U. TYPE 4D}
\(3-30\) v. D.C. at 3 amps. Fully variable
Current limiting control.
Sensing facilities for remote operation.
Protected and fused for \(110 / 250 \mathrm{v}\). A.C. mains Small size only: \(5 \frac{1}{2} \times 5 \times 11\) ins. deep.
Stability: 1000
Ripple: I mV . max. Weight: 16 lbs .
and are offered BRAND NEW BXesent-day standards of post and packing.

\section*{ALSO AS ABOVE \\ AMP MODEL. TYPE 4B}

Size: \(4 \times 3 \frac{1}{4} \times 7\) ins. Weight: 6 lbs .
Price \(\mathbf{£ 1 3 . 1 0 . 0}\) inclusive of pose and packing

\section*{R.D.O. UHF/VHF RECEIVERS}

This is an I.F. (\(300 \mathrm{Mc} / \mathrm{s}\)) five-stage amplifier followed by A.F. and video stages. R.F. tuning is provided by interchangeable Tuning Heads or Unics which cover sensitivity is \(15 \mu \mathrm{~V}\). approx. for an output of 6 mW . I.F. bandwidth is \(4 \mathrm{Mc} / \mathrm{s}\). Audio response can be set at i50-10,000 c/s (broad) or \(320-1,950 \mathrm{c} / \mathrm{s}\) (narrow). Provisions are made for connecting the receiver to a Panoramic Adaptor (for observing frequency specera) or to a Pulse Analyser. Power requirements- 115 V . A.C. PRICE, fully overhauled and guaranteed, complete with Tuning Units TNIB, TN2B and TN3B to cover frequency range torla

\section*{PORTABLE 12 v. BATTERIES}

Non-spillable lead acid type. Rating: 12 v .4 amp . hours, will withseand heavy overloads withour damage. Size: \(4 \times 4 \times 4\) ins. Weight: 4 lbs.
Supplied fully sealed/charging inseructions.
BRAND NEW BOXED 45/:. Post and packing 4/6. Ideal for Model Boats and Photo Floods, ete.
A.E.I. MINIATURE UNISELECTORS Coil resistance 250 ohms. Type 2200A. Supplied with base. Quanticies available.

Price \(\mathbb{4} .19 .6\)

\section*{VIBRATING REED FREQUENCY} METERS
Range \(55-75 \mathrm{e} / \mathrm{s}\) in 2 scales, having total length of 10 ins for 110 v . (or 240 v . with transformer) Manufacturer: Trub Tauber, Zurich. Price \(\mathbb{1} 12,10.0\).

\section*{NIFE BATTERIES-NICKEL IRON}

We have for disposal complete sets comprising 2 We have for disposal complete sets comprising
batterles to a total of 12 v , at \(180 \mathrm{mp} / \mathrm{mours}\). Supplied batterles to a total of 12 v , at 180

DAWE STOBOFLASH TYPE I200C Fully calibrated in r.p.m. for 240 V. A.C. mains operation, these instruments have many uses especially in the field of engineering, enabling operators to view reciprocating and revolving machinery under actual Offered in good condition at only \(\mathbf{E 2 7} .10 .0\)

\section*{CREED MOTORS-REF. 522}

Originally intended for teleprinters. Will make ideal light duty grinders/buffers, etc. Series wound 4,200 r.p.m. 125 V. A.C. or D.C. 42 watts. BRAND NEW. Spare brushes. \(35 / 6\). Post and packing \(4 / 6\).

\section*{R.F. ATTENUATORS TYPE A38} These attenuators are contained in a screened cass case and are suitable for the audio to VHF range up to \(300 \mathrm{Mc} / \mathrm{s}\). Inpur level 0.5 watts max. Impedance 75 ohms Attenuation 80 dB in steps of 20 dB . Weight: 9 oz . Panel mou

\section*{BURNDEPT R.F. PLUGS}

These difficuls-so-obrain plugs, suitable for Londex aerial, \(C / O\) relays and other types of equipment, are supplied NEW EX CABLES at \(4 / 6\) each or 3 for \(12 /\) Pose and packing \(6 d\)

\section*{HIGH VOLTAGE TRANSFORMER}
A. I grade. Input \(240 \vee\). capped down to 200 v . Output Weight: 75 lb . Post and packing 25/-

EDDYSTONE DIE-CAST BOXES Contains sensisive amplifier originally insended for amplification of P.E. cells. C/W inpus sockes, fuse, BRAND NEW 32/6. Post and packing \(2 / 6\).

LEDEX ROTARY SWITCHES
Standard wafer size: It ins. Single-pole 12-way, 3-bank lange mounting. 48 v. D.C. coils. Minimum voltage 30 v. D.C. Supplied BRAND NEW 45/-.
Similar to above but one wafer with long spindle co enable user to make up to own requirements.
Coil voltages: \(30-48 \mathrm{v} . \mathrm{D} . \mathrm{C}\).
BRAND NEW \(\mathbf{3 5} / \mathrm{m}\)

\section*{PLESSEY HIGH-SPEED SWITCHING RELAYS}
deally suitable for transistor circuits. Coil 12 v. 3,100s2. Single pole change over. Fully sealed. Small size BRAND NEW. Only \(15 / \mathrm{M}\). Post and packing \(1 /-\)

IMHOFS INSTRUMENT CASES
Finished in moteled grey stove enamel with satin finish trim. Size width for standard 19 in. equipment. Heighs: 10 ins. Depth: is ins. With front panel and vencilated rear panel.
Supplied BRAND NEW 4.10 .0 each. Carriage \(10 /\) -

\section*{COMMUNICATIONS RECEIVERS}

Redifon RSOM. \(16.5 \mathrm{Kc} / \mathrm{s}-32 \mathrm{MHz}\) in 8 bands. These well-known receivers are in world-wide use. Especially model reconditioned to specification \(\mathbf{E 8 5}\). Supplied with mains 240 v. A.C. P.S.U.
"PERISTALTIC PUMPS"
TYPE MHRE 721. WATSON MARLOW LTD. These very versatile units have facilities for two feed lines and are highly suitable for corrosive liquids and chemicals. Operating voltage \(200 / 250\) v. A.C. These are
standard eype without variable speed conerol. Offered standard eype without variable speed conerol. Offered
BRAND NEW at only \(\mathbf{6 2 4} .10 .0\). Post and packing \(10 \%\).

\section*{HIGH VALUE RESISTANCE BOX TYPE R. 7003}

Specificasion. Range: \(0.01-11 \cdot 10\) Megohm in 0.01 Megohm divisions. Accuracy: 0.05 per cent. Maximum power rating: 0.1 wate per step. Case: Hammer finished stove enamel
Lise price E 60 . Our price \(\mathbf{£ 2 2 . 1 0 . 0}\).
"TEKTRONIX" OSCILLOSCOPE 515A O.C. to 15 MHz . Rise sime 23 NS As new condition. Offered at a litele over half Price. £260. Guaranteed.

REMSCOPE DOUBLE-BEAM STORAGE OSCILLOSCOPE
With two plug-ins. Type 741/1 and 741/2. As new

PORTABLE MULTIRANGE METER

Specification. Ranges: 060 and \(0-300 \mu \mathrm{~A}\). D.C. \(0^{3}\), \(0-30\) and \(01-120 \mathrm{~mA}\), D.C. \(1 \cdot 2\) and 12 amps D.C. \(0.6-3\) and \(6-30 \mathrm{~mA}\), A.C. 24120 mA, A.C. 0.2412 A. A.C. 3-12-30-300-600 1.200 and 6,000 v. D.C. 0.6-3. 2.4-12 \(6-30,60300,120-600,240 \quad 1,200\) and \(1,200-6,000 \mathrm{v}\) A.C. \({ }^{3-333 \text { ohms, } 0.3-30 \text { Kohms, } 0.03-3 \text { megohms D.C. }}\) Resistance: -12 to +78 Decibels. Frequency: 50 cos Resistance: - 12 to +78 Decibels. Frequency: 50 cps.
Inpue Resistance D.C.: 20,000 ohms/vole. Input ResistInput Resistance D.C.: 20,000 ohms/volt. Input Resist-
ance A.C.: 2,000 ohms/volt. Temperature Range: - 10 ance \(A . C .: ~ 2,000\)
to +50 deg. C. Dimensions: \(255 \times 215 \times 170 \mathrm{~mm}\). Weight: 8 kg . Supplied with 2 voltage dividers, H.V. leads, spare rectifiers. 1.5 and 22.5 v . battery. Lise prise £25. Our price £12.19.6.

\section*{BRADLEY D.C. CALIBRATOR TYPE 126}

This instrumene is essential for the accurate calibration of meters/oscilloscopes and provides accurate voltages up co \(2,500 \mathrm{v}\). D.C. For lab. use at 2 mA . Ripple \(0.05 \%\). Accuracy \(\pm 0.5 \%\). Range 02.500 v . in 50 v . sceps. Polarity positive or negative with respect to earth. ercentage deviasion \(\pm 5 \%\) of outpus voltage (calibrated control). Supplied in perfect condition as © 60.

\section*{BOONTON SIGNAL GENERATOR} TS 497/B/URR
Astenuation 0.1 micro \(v .-100 \mathrm{mV}\)
Supplied in very good condition.
Frequency coverage: 2400 MHz
SCHOMANDLE FREQUENCY METER FDI with Type FDMI Adaptor
Range: 30900 MHz .
Approved by G.P.O. as standard for mobile communications equipment, etc.

\section*{MARCONI DIGITAL FREQUENCY \\ METER TF \(1325 / 2\)}

Range, with plug-in, up to 220 MHz .
Supplied AS NEW 325 with plug-ins.
ADYANCE FREQUENCY COUNTER TIMER-TYPE TC IA
6 digit in line read ouc.
List price \(C 390\). Our price 695.

\section*{FLUKE DIFFERENTIAL V.T.V.M.}

MODEL 821A
Range: \(0-500 \mathrm{v}\). and \(001-10 \mathrm{v}\). as null detector.

\section*{ENGLISH ELECTRIC INSULATION TESTERS}

Fully variable so 10 kV . Metered ousput on voleage and current for 240 V. A.C. operation
Supplied AS NEW at 35 each.

\section*{DIGITAL VOLTMETERS!}
- A.C. AND d.c.

Digimeter Type B,I.E, 2123 is a fully transistorised multi-range instrumens possessing the following distincrive features:
Electrical characteristies:
D.C. Ranges: 10 mv to 400 voles in four ranges (1,000 volts for positive voltages).
Accuracy: the greater of \(\pm 0.1 \%\) of \(\pm 1\) digit. Accuracy: the greater of \(\pm 0.1 \%\) of \(\pm\) digit.
A.C. Ranges: 100 mV to 250 voles RMS in three A.C. Ranges: 100 mV to 250 voles RM
ranges. Brand new with handbook 292.10 .0 . LAST FEW TO CLEAR ONLY 170 EACH

\section*{TECHNICAL TRAINING by IC S in radio, television and electronic engineering}

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:
* C. \& G.TELECOMMUNICATIONTECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* P.M.G.CERTIFICATESIN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable. signal generator, multi-meter and valve volt meter- all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

\section*{INTERNATIONAL \\ CORRESPONDENCE \\ Schools \\ A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!}

International Correspondence Schools
(Oept. 230). Intertext House. Stewarts Road. London, S.W. 8

NAME
Block Caphals Please
ADDRESS

C MAKF TRANGFORMERE AMONGST OTHER THING

 MAINS TRANSFORMERS. Prim 200-240 v A.c. TXI. \(425-0-425\) \(250 \mathrm{Ma}, 6.3 \mathrm{r}\)
\(250-0, \mathrm{~A}, \mathrm{CT}, 6.3\)
250

 1 tapped

 \(20-0-20,30-0.30,40-0-40,80-0.50\) a.c. \(1 \mathrm{amp} .60 / \mathrm{C}\) HEATER TRAMSFORMERS. Prim 200/250 FA.c. 6.3 - I. 5 a
 \(150 /-12-0.12{ }^{2} 1\) a \(18 / 8 ; 20-0-20 \times 0.7 \mathrm{~s} 18 / 6\). MIDGET MAINS TRANBFORMERS. FW rectiaction, elxe
 OUTPUT TRANSFORMERS. Muland E/10 UL B7/B; 7 wat
 50 watt (KT68 etc.) \(185 /-; 100\) watt \(285 /-\); auto matchip
transforuer 10 watt. \(3-7.5-15\) ohm, up or down 11/8. CEOKES. Inductance 10 E . \(85 \mathrm{Ma} 18 / \mathrm{m} ; 85 \mathrm{Ma} 15 /-; 150 \mathrm{M}\)

> W.W. COLOUR TELEVISION RECEIVER
Choke Ll 60/-; Trandormer Tl 57/6; Fleld 0/P tranaformer \(60 /\)
\[
\text { Carriage extra on all tranaformers } 4 / 6 \text { minimum. }
\]
BULK TAPE ERASERS. 200/250 F a.c... immediato and completo orasure of any size apool of magnetic tape, sleo sultable to FIDORESCENT LIGHTING 12 LT Complet A watt 110/-: 21 ins .13 ratt 130/-; speclal offer 18 the. 15 innit \(85 /\). Tranniator ballast 12 vfor single 40 wate or twin 20 wat tubes, \(150 /-\) s shagle 20 watt, \(100 /\). \(107 /-; 35\) watt \(230 /-50\) watt \(320 /=\), etc., etc., all at dhacount while stoak lasta. illustrated lints. P. \& P. \(8 / /\). LOUDSPEAKERS. Ex equipment, perfect. 3 ohms. Elec, Good P. \& P. \(3 / 6\) min Carriage ertra on all ordert.
S.A.E. ALL ENQUIRIES PLEASE MAIL ORDER ONLY
46 KENILWORTH ROAD, EDGWARE, MIDDX HAB 8 YG. Tel: 01.9589314
there are gems in ireland
This is one

THIS is another

If YOU WANT A REAL GEM CONTACT

AFTER ALL, WE'RE IN THE EMERALD ISLE

VAIVES

㬺

MARCONI TEST EQUIPMENT

IMPEDANCE BRIDGE TYPE TF 367 (No. S). Measures L \& C at \(80 \mathrm{~Hz}_{2}\) \(1 \mathrm{kHz}, 10 \mathrm{kHz}\). Ranges:-L: \(1 \mu \mathrm{H}-100 \mathrm{H}\). C: \(1 \mathrm{mF}-100 \mu \mathrm{~F}\). R: 0.1 ohms 100 mohms .
AC Bridge volcs monitored and variable. Auromatic detector sensitivity control. flos. Carriage 30/
FM DEVIATION METER TYPE TF 791 B . Frequency range: \(4-250 \mathrm{MHz}\) deviation \(1-75 \mathrm{kHz}\). Specification and rice on applicatio
SIGNAL GENERATOR TF BOI/A. \(10.300 \mathrm{Mc} / \mathrm{s}\), in 4 bands. Incernal at 400 Ourpur \(0-100 \mathrm{db}\). \(50 \mathrm{e} / \mathrm{s}\) to \(10 \mathrm{ke} / \mathrm{s}\). 75 utpur \(0-100 \mathrm{db}\) below 200 mV from 75 ohms source. EA5. DITTO but 801/A/I with additional high level
output. 889. Both \(P\). \& \(P\). \(20 /\). in cluding necessary connectors, plugs, and Instruction manual.

DISTORTION FACTOR METER \(100-8,000 \mathrm{~Hz}\) in four ranges. Distortion range: 0.05 to \(50 \%\). Input impedance 600 o , attenuation 0-60db continuously Criable. Sensitivity. 42.10 .0 PuIrse GE
ERATOR TYPE TF 675 F . Repetition frequency: 50 Hz to sec; built in 0.1 and \(0.5 \mu \mathrm{sec}\) delay sec; buit ines. 40.10 .0 . Carriage \(20 /\). CIRCUIT MAGNIFICATION METER TYPE TF 329F. Frequency range: 50 kHz to 50 MHz . Magnification 450pF with uning Capacitor: 40 to hauled and callbrated, \(£ 70\). Carriage \(30 /\) TF 899 VALVE VOLTMETER, 10 mV O 2V \& 17.10 .0 . Carriage 30 E57.10.0 Carriag Mel VIDEO OSCIILAT SIDEO OSCILLATOR TF 885A \&

\section*{}

\section*{HEWLETT-PACKARD TEST EQUIPMENT}

MODEL \(524 B\) ELECTRONIC MODEL 400DVALVEMILLIVOLTCOUNTER WITH MODEL 525B METER. Volage range: ImV to 300v PLUG IN UNIT. Basic counter measures frequencies from 10 Hz so
10 MHz and time from 0 to 10 kHz Automatic positioning of decima point, elghe place registration. Full self check facility from buile in frequency standards. Plug in unit extends freco. 220 MHz . Full specification and price on request

OHz to 4 MHz . Inpues impedance range: and 15 pF . Accuracy \(2 \%\). \(£ 38.10 .0\). Carriage 12/-.

MODEL 430C MICROWAVE POWER METER. Power range: 0.1 co 10 mW F.S.D. in five ranges. also calibrated in DBM from -20 to +10 . Frequency range: 10 MHz to ' R ' Band,
depending on Bolometer moune. depending on Bolome
\(\mathbf{\$ 5 8 . 1 0 . 0 \text { . Carriage } 3 0 \% \text { . }}\)

 application. QD 910 . Seor \(\qquad\) negacive outpuc, 435 . Carriage 20/-. CD 711 S.2. Double beam, DC
7MHz scope, e85. Carriage \(30 /\). Price on reques
NT
VF 252 VALVE VOLTMETER. Voldage range: 1.5 mV to 15 V F.S.D.
in nine ranges. \(10: 1\) attenuator input; accuracy \(\%\). Frequency range
0 Hz to 100 kHz . Input impedance Greater than \(50 \mathrm{Mn}_{n}\) with 20 pF . Ful specification upon request. 233.10.0. Carriage 15/-
Regulated and stabilised P.S.U. SRS \(151 \mathrm{~A}, 20\) co 500 V positive as 300 mA in D 643.2. Single beam Laboratory

\section*{ENGLISH ELECTRONIC INSULATION TESTERS O-loKV with buils-} onisation ampllfier, 435
AIRMEC INSULATION TESTER O-ISKV wish buils-in ionisation ampli fier, 428.
KELVIN \& HUGHES PEN RECORDERS \&35. Carriage 15/-
END OF RANGE ITEMS in as seen condition: CR 100-cio; R.R.O.-. 10
 620; Furzehill VTVM 10 mV to 100 V - 615 .
GAUMONTKALEE (RANK STUDIO) MODEL 1740 WOW \& FLUTTER METER. \&105. Carriage \(7 / 6\)
BOONTON SIGNAL GENERATOR TS 497/B/URR, \(2400 \mathrm{MHz} . \quad\) c 95. rriage \(30 /\)
TS 418 B/U SIGNAL GENERATOR, \(400-1000 \mathrm{MHz}\). 105 . Carr. 30 /

\section*{}

To view TEST EQUIPMENT please phone for appoinemens
TRANSISTORS, ZENER DIODES etc.
 Carr

\section*{EI-PRE-PAK}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS
OVER 54

\section*{TRY OUR X PACKS FOR UNEQUALLED VALUE}

\section*{XA PAK}

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72
Bl, ese
PRICE \&S PER 1000

\section*{KB PAK}

Silicon TO-IB CAN type transistors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706. BSY27/29, BSY95A.

PRICE 44.5 PER 500
PRICE 18 PER 1000
POST \& PACKING 2/6 U.K
XC PAK
Silicon diodes miniature glass eypes, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, etc.

PRICE E4-10 PER 1000
POST \& PACKING 2/6 U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF \(75 \%\) OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.
hUGE CLEARANCE OF UHFVVHF TUNER UNIT REJECTS
STOCKS ALMOST EXHAUSTED! PLACE YOUR ORDERS NOW!!! FANTASTIC TRANSISTOR VALUE

\section*{TU.2. CONTAINING 2 Al 186's \& 2 AF178's}

TU.3. CONTAINING 2 AF186's \& 2 AF178's PLUS WAVEBAND SLIDER SWITCH
PRICE 10/- EACH UNIT PRICE 12/6 EACH UNIT \(P\) \& \(P\) 2/6d. EACH UNIT
All the Units have many other components e.g. Capacitors. Resistors. Coils and Tuning Condensors etc
ALL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA

\begin{tabular}{|c|c|}
\hline NEW UN
\[
878 \quad 12
\] & \begin{tabular}{l}
MARKED UNTESTED PAKS \\
INTEGRATED CIRCUITS, DATA \\
\& CIRCUITS OF TYPES. \\
SUPPLIED WITH ORDERS \\
10/-
\end{tabular} \\
\hline 8808 & DUAL TRANS. MATCHED O/P PAIRS NPL-SIL. INTO- 5 CAN 10/- \\
\hline B82 10 & OC45. OC81D \(\&\) OC81 TRANS \(10 /-\)
MULLARD GLASS TYPE \\
\hline B83 200 & 200 TRANSISTORS MAKERS REJECTS NPN PNP. SIL. '\& GERM. \\
\hline B84 100 & SILICON DIODES DO-7 GLASS 10/-
EQUIV. TO OAZOO OA2O2 \\
\hline 366150 & HIGH QUALITY GERM.
DIODES MIN. GLASS TYPE \(10 /-\) \\
\hline B86 50 & SIL. DIODES SUB. MIN.
IN914 \& INS 16 TYPES
10/- \\
\hline B87 100 & GERM. PNP TRANS. EQUIV. \(10 /\).
TO OC44, OC45, OC81. ETC \\
\hline B88 50 & SILTRANS, NPN, PNP, EQUIV. TO OC200/1. 2N706A. BSY95A. ETC. \\
\hline B60 10 & 7 WATT ZENER DIODES \(10 /\) -
MIXED VOLTAGES \\
\hline H5 16 & 1 AMP. PLASTIC DIODES
\(50-1000\) VOLTS \\
\hline H6 40 & \begin{tabular}{l}
250 mW . ZENER DIODES \\
DO.7 MIN. GLASS TYPE 10/-
\end{tabular} \\
\hline
\end{tabular}

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at leas 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors

Please ask for Pak P.1. Only 10/-
2/- P \& \(P\) on this Pak
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any \(0-1 \mathrm{~mA}\) meter into a perfectly linear and accurate rev counter for any car.

20 -each

FREE CATALOGUE AND LISTS for: -

\section*{ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART}

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add \(1 /\)-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

MULLARD DATA BOOK
SEMICONDUCTOR \& VALVE DATA \& E QUIVALENTS postage 6d

EACH

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Guaity 10 R Bagh
quality 10 valve
recelver manufac-
tured by Murphy. Coverage in 55 binal
\(650 \mathrm{Ke} / \mathrm{s} \cdot 30 \mathrm{Mc} / \mathrm{m}\) \(650 \mathrm{Ke} / 4.30 \mathrm{Mc}\)
I.F. \(30 / \mathrm{Ke} / \mathrm{e}\). In corporates 2 R R.F.
and 3 I.F. atagea
and bandpawh alter, B.F.O. controlled Bulit- output. etc, output for phonen.
Operation \(150 / 230\) rolt A.C. Size 19\(\} \times 13!\times 18 \mathrm{ln}\). Weltht 1141 ib . Ontered in Reod workiog eondition. K209. \(£ 2 \% / 10 /\). Curr. \(30 /-\).
 I1 value high
gradecona-
nanlostion recelver tuit
able for tropl able lor tropi-
cal use. 1.20
Me/n. on \({ }^{4}\) it CW/PM opersates precision
verajer drive B.F.O. Aerial trimmer. internal spataker and excellent condition. tully \(\{\$ 5.0 .0\) Carr. TYPE I3A DOUBLE BEAM
OSCILLOSCOPES BARGAIN
 D/B озсіlloscope. T.B. 2 сря\(750 \mathrm{Kc} / \mathrm{s}\). Band width \(6.6 \mathrm{Mc} / \mathrm{s}\) ating voltage \(0 / 110 / 200 / 250 \mathrm{v}\). A.C. supplied in excellent working conditlon. \(£ 22 / 10 /-\) worklng conditlon. \(\mathbf{2 2 2 / 1 0 / -}\) -
Or complete with all accesOr complete with ail accer£25. Carrlage 30

\section*{MARCONI CT44} TF956 AF ABSORPTION WATTMETER \(1 \mu /\) watt 6
£20. Carr. \(20 /\)

SOLARTRON CD. 101 Doubleam.

CLASS D. WAVEMETERS

CLASS D WAVEMETERS NO. \({ }^{2}\) operatlon. Complete with calibration chario.
Exeellent condition \(\mathrm{E12/10/0}\). Carr. \(30 \%\). EDDYSTONE Y.H.F. RECEIVERS 770R. 19.165 Mc/s. Ely

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS \(0-20\) Kol. Output \(8 \mathbb{K}\) or 500 ohmas. \(20 / 250\) v.
A.C. Ofiered to excellent condition, \(812: 10 /-\). Aarrimge 10 /

RACAL MA. 168
TRANSISTORISED
DIVERSITY SWITCH
Bradi ne condition
TO- 2 PORTABL
A general purpose low cont

\(2 \mathrm{CPB}-1\) MHHZ. Inputimp.
2 meg a. 25 PF . Lluminated

 with
Carr. 10
 y Rmp, Bensitivity. Av
p.p/CM. Handwidh 1.5 cpa

 KHZ . Input tmp. 2 meg
20 PF . Time bese. 6 ranges 10 epu-300 KHZ. Bya:
chronization. Internal/ex-

SOLARTRON MONITOR
OSCILLOSCOPE TYPE IOI
 in excellent condition with cabler, probe, etc., ns.
received from Ministry. \(£ 8 / \mathbf{1 9} / 6\). Carr. \(30 \%\).

FIELD TELEPHONES TYPE L. Generator ringing, metal casea. Operate on 2 2.5
v. batterien (not
supplied.) Excellent condiwoh. \(£ 4.10 .0\) per padr. supplied.) Excellent conditom. \(\mathbf{8 4} \mathbf{1 0 . 0}\) per pats.

\section*{LAFAYETTE SOLID STATE HA600}

5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE
 detector © variable BFO © Noiselimiter © \& indece

RECEIVER MODEL 9R-59DE
4 band recelver covering \(500 \mathrm{Kc} / \mathrm{s}\) to \(30 \mathrm{Mc} / \mathrm{a}\), continuous had electrical handopread on \(10-18,20,40\) and 80 metres.
 V. A.C. Mains. Beautifully designed. Bize \(7 \times 15 \times 101 \mathrm{n}\). Carriaze pald Trio Commanication Type Eeadpbones.
TRIO TS 510 AMATEUR TRANSCEIVER with speaker and mains P.S.U.
E2I2. IN STOCK!

Covern all the amateur handa in 7 separate rugea hetween
3.5 and \(29.7 \mathrm{Mc} / \mathrm{a}, 7\) valves, 2 trambistors and 8 diodes plus 8 cryntals: output 8 and 500 ohn and 5.000 ohmn phone double gear dial driva with direct reading down to i kRz .
Remote control socket for connectlon to a tranamitter. Audio output 1 witt. \(113 / 250\) F. A.C. malss. Superb modern
styling. size \(7 \times 13 \times 10 \mathrm{in}\) with instruction manus and

TRIO JR-310 NEW AMATEUR BAND 10-80 METER RECEIVER IN STOCK \(\mathbf{6 7 7 . 1 0 . 0}\)
RCA COMMUNICATIONS
RECEIVERS AR88D
1atert release by miniatry BRAND NEW in original cases.
\(110-250 \mathrm{v}\). Ac. operation. Frequency in 6 Bands. \(335 \mathrm{Kc} / \mathrm{F}\) \(32 \mathrm{Mc/s}\) continuous. Output impedance 2.2 -600 ohma.
Incorporating crymtai niter, nolso Itriter, variable BFO. Incorporating cryntal fiter, noise iluaiter, variable
variable selectivity, etc. Price \(£ 87.10 .0\). Carr. E2.

CRYSTAL ALIBRATOR NO. 10 mall portable cryata
 Prequency renge
\(\mathrm{Kc} / \mathrm{M}-10 \mathrm{Mc}\)
\(\mathrm{Mc} / \mathrm{s}\) (up
to \(30 \mathrm{Me} / \mathrm{A}\) on harmoples). Calibrated dial. Power
requiremente 300 V.D.C.
 Lin. 89/6. Carr. ESWM RNWEL MEIEIEMS

Type MR.38P
\(121 / 32 \mathrm{in}\).

LAFAYETTE STEREO AMPLIFIER MODEL STEREO 10

Completely tranaistorised 8 watts per channel I.H.F. tuusle
 size. big performannce stereo amplifier ideal for limited space
 Price \(\mathcal{L} 11.19 .6\)

\section*{POWER RHEOSTATS}

High quality ceramle construction. Windings embedded in vireoun ensme Single hole fizing. tin. dia, shafts. Bulk quantities available Single hole firing. ilh. dia. shaits. Bulk quantities avaikble.
25 WATT. \(10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2600\) or 5000 ohmas. 14/6. P. A. P. \(1 / 8\), 50 WATT. \(10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500\) or 5000 ohms, \(21 /\). P. \& P. P. 1/6.
100 WATT. \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000\) or 2500 ohman, \(27 / 6\). P. \& P. 1/6.

AVOMETER MOVEMENTS

3pare movements for Model 8 or 9 . (Fitted with Dodel 9 scale) or basin fot any multimete
Brand New and Boxed \(89 / 8\) P. \& Pr \(3 / 6\)
erfect order with set of ohunts and resigtanc

TE-6S VALVE VOLTMETER

COSSOR 1049 DOUBLE BEAM .c. coup OSCILLOSCOPES Bertect order AM/FM SIGNAL GENERATORS

Oscillator
No. 2. Test
No. 2. A higa
inalfument made
for the Mintatry
by Alrmec. Mro-
quency
quency eoverage
20-80 Mc/a. AM/
CW/FM. Incor
poratee precinio
dibl, level meter, precision atrenuntor \(1 \mu \mathrm{~V}-100 \mathrm{MV}\).
Operation from 12 volt D.C. or \(0 / 110 / 200 / 250 \mathrm{v}\). A.C. Size 12 x 8 , F 9 in . Supplled in brand new
cordition complete with ill conmectors, fuily conditon complete
nested. \(£ 45\). Cart. 201 -

TE-I6A TRANSISTORISED

RIES. 6 Ranger
\(2 \%\) C. 10 PFt
1110 mFD .6 Rarigea
\(\pm\) Ranges TURNS RATIO \(1: 1 / 1000-1: 11100\) Operated irom 9 . Brils. \(100, \mu A\). Meter indication.

\section*{AUTO TRANSFORMERS}

\section*{}

\section*{G. W. SMITH \\ \({ }_{8}\) Co. (Radio) Ltd.}
also see opposite page

BENTLEY ACOUSTIC

38 CHALCOT ROAD, CHALK FARIV, LONDON, N.W. THE VALVE SPECIALISTS GLOUCESTER ROAD, LIT all mail orders to Littlehampton

 BCY38
BCY39
BC107
BC108
BC113
BC115
BC1
BC118
BCZ11
BD119
BF154
BF159
BF163
BF173
BF180
BF181
BF185
BFY

Tit
(Burndept B.E.352) 60 watt model. Supplled Brand New complete with stainless steel tank \(9 \frac{1}{2} \times 6 \frac{1}{6} \times 4 \frac{1}{2} \mathrm{in}\). c60. Calr. 20/-.
2. FAST NEUTRON MONITORS (BuIndept 1407C) for measuring neutrons in the energy range 0.15-15 moV. 8100.
3. Radiation Monitors (Burndept BN \(110 \mathrm{MK} . \mathrm{V}\)) \(0-5 / 50 / 500 / 5 \mathrm{k}\). c.p.s. Brand new, E100. Alpha and
Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BuFndept BN 132) \(0-5 / 50 / 500 / 5 \mathrm{k}\) c.p.s. With bullt-in Gamma probe. Brand new. £50 complete with carrving harness.
S.A.E. for literature. 10\% discount for Educational Authorities

SPEAKER SYSTEM (\(20 \times 10 \times 10\) in.). Made to spec. from \(\frac{\pi}{3} \mathrm{in}\). board. Finished in black leathercloth. \(13 \times 8 \mathrm{in}\). speaker with twin weeters
\(50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{c}\). \(\mathrm{E7.10}\). P.P. 10/-
SPEAKER CABINET KIT. AbOVe mentioned cabinet only. in kit form which you may assemble and cover to your own SPEAKER BARGAINS. E.M.I. \(13 \times 8 \mathrm{in}\). with double Tweeters 15 ohm, 65/-, P.P. 5/*-
3 or 15 ohm, \(45 /-\) ea., P.P. 5/-

EXTRACTOR/BLOWER FANS (Papst)
100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2\) in. 2800 r.p.m. Wonderful buy at 50/- ea. \(240 \mathrm{v} . \mathrm{A} . C\).

CYLINDRICALFANS (Solartion), Overall size \(16 \times 5 \frac{3}{2} \times\) P.P. \(7 / 6\) (New).

LEVEL METERS (\(1 \frac{1}{2} \times \frac{1}{2} \mathrm{In}\).). 200 mic o-amp. Made in Germany. 15/-each.
PHOTOMULTIPLIERS 6262 and 6262b. £15 ea.
RELAYS H.O. 2 pole 3 way 10 amp . contacts. \(12 \mathrm{v} . \mathrm{w} . ~ 7 / 6\) ea.
RELAYSH.D. 2 pole 3 way

PYE OHMMETER TYPE 10B. 500 v . test. 3 meg. ohm\(20 \mathrm{k} . \mathrm{meg}\). ohm. 200/250v. A.C. Brand new Instrument \(£ 30\) P.P 30/:

POT CORES TYPE LA 3. 10/- ea
71 WAY PLUG \& SOCKET (Painton Series 159) Gold plated contacts with hood \& retalning cllps. \(30 / \cdot\) pair. 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts 20/-pair. 34 way version \(15 /\)-pair.
VALVE MILLIVOLTMETER (Marconi TF899) 0-2v. LOGIC BOARDS with 31 ACY40s-38 dlodes etc 20/-ea. P.P. \(2 / 6\)
CO. \(A X\)

CO-AX RELAYS (magnetic devices) I change-over 12 v.w.
ELECTRONIC ORGANBUILDERS. We now have in stock P.C. boards built to computer standards. Each board is a complete 4 octave divider (\(4 \frac{1}{2} \times 3 \mathrm{in}\).). All connectlon data
supplied. \(30 / 4\) each. Set of 13 (gives 5 octaves to keyboard) supplí
E16.
DIODE LOGIC BOARDS contains 10 diode gating circuits which convert any one
binary code, \(10 \%\) - each.

\section*{TRANSFORMERS}
E.M.T. TRANSFORMER 2100-0-2100v. \(40 \mathrm{~m} / \mathrm{a} .75 /-\) E.H.T. TRANSFORMER (Parmeko "Neptune') 3,000v 280 m.a. \(£ 12 / 10 / 0\). P.P. \(50 /-\)
L.T. TRANSFORMER 60 v .8 amp. £5. P.P. \(15 /-\) -
L.T. TRANSFORMER 20v. \(1.5 \mathrm{amp} .15 /-\), P.P. \(2 / 6\)
L.T. TRANSFORMERS Prim. 200/250v. Sec. \(0-1 / 0-\) 3/0-9/0-27v. 30 amp. £7.10. 15 amp. £5. P.P. 15/-. L.T. TRANSFORMER Pfim. \(200 / 250 \mathrm{v}\). Sec. \(0 / 25 / 35 \mathrm{v}\) 30 amp. E7.10. P.P. 20/-
STEP-DOWN TRANSFORMERS Pilm. 200/250v. Sec. \(115 \mathrm{v}, ~ 1.25\) amps, 25/-ea. P.P. 5/-.
L.T. TRANSFORMERS Prim. 240 v . Sec. \(8 / 12 / 20 / 25 \mathrm{v}\). L.T. TRANSFORMERS Prim. 240v. Sec. \(8 / 12\)
3.5 amp models \(20 /=; 5\) amp model \(25 /-\) P.P. \(5 / 6\).
l.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/. Q. P. P.P. \(2 / 6\).

ELECTRIC SL
85/- өa. P.P. 5/OUARTERLY

COPPER LAMINATE PRINTED CIRCUIT BOARD \(\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{t}\right.\)
in.
Also \(11 \times 2 / 6\) sheot, 5 for \(10 / 2\)

\section*{BULK COMPONENT OFFERS}

100 Capacitors (latest types) 50 pF to \(.5 \mu \mathrm{~F}\). 250 Resistors \(\frac{t}{2}\) and \(\frac{1}{2}\) watt
150 HI -Stab Resistors, \(\frac{1}{2}, \frac{1}{2}\) and 1 watt.
25 Vitreous W/W Resistors, 5\%.
12 Piecislon Resistors . \(\%\) (several standerds Included).
12 Precislon Capacitors 1 and 2\% (several standards included).
12 Electiol
12 Electrolytics (minlature and standard sizes). ANY ITEM 12/6. ANY 5 ITEMS 50/-.

TELEPHONE DIALS (New) 20/- ea. RELAYS (G.P.O. \(3000^{\circ}\)). All types. Brand EXTENSION TELEPHONE (Type 706) Black of 2 tone Grey. 65/-. P.P. 5/-.
UNISELECTORS (Brand new) 25-way 75 ohm. 8
\(\frac{1}{3}\) wipe \(75 /\)

REED RELAYS 4 make \(9 / 12 \mathrm{v}\). (1,000 ohm.) \(12 / 6\) ea. ea. £1 per doz I oz . Type 1. 960 ohm, \(3 / 9 \mathrm{v} .1\) I make. 12/6 ea. Type 2. toz. Type 1.960 ohm, \(3 / 9 \mathrm{v} .{ }^{1}\) mak
\(1800 \mathrm{ohm}, 3 / 12 \mathrm{v} .1\) make. \(15 /\) - ea.

PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Trpe 1. 18.5 pf 1220pI. £10 ea. COME OSCILLATOR (Synt
STC CRYSTAL LOCKED OSCILLATOR (Synthesiser) Precision crystal oven. Locks oscillator at each \(100 \mathrm{~K} / \mathrm{C}\) Separate locked oscillator from \(0-100 \mathrm{~K} / \mathrm{c}\). \(£ 150\) in excellent condition.

\section*{PATTRICK \& KINNIE}

\section*{R.S.T. Valve mail order co.}

\author{
BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16
}

\section*{tan}

\section*{R.S.C. SENSATIONAL HIGH FIDELITY STEREO ‘PACKAGE’ OFFERS \\ 30 Watt Output \\ \(\star\) Super 30 Amplifier in veneered housing.
A Pair of Stanway II Louds peaker Units. Epecial total price. Four fully quadly units ready to "pluperb performance. 86 Gns. \\ AUD.A.E. for leaflet. Carr. 30 \\ \\ * Garrard SP25 Mk. 30 Watt Output K Gordaring cspor Mk. Ceramic diamond tin Plinth. \(\star\) Super 30 Amplifier in veneered housing. \\ \\ Extremely \\ Extremely
Ateractive Plinths Anished in Teak o Tinted Tra
Plastic
mon \\ 8pecial totat price.
Four fully wired unith
ready to \(\%\) plug 1 la ." \\ 76 Gns. \\ 13 Watt Output \\ * Garrard SP25 Mk. II 4 speed Player Unit, on Plinth. \(\star\) Goldring CS90 Ceramic P.U. Cartridge housing \& Pair of Dorchester Loudspeaker Units Special total price. 51 Gns. Terms Dep. 810 and 9 monthly payments \(\mathbf{£ 5 . 1 1 . 0}\) 13 WATT 'PACKAGE' Ra sbove but with Garrand
artidge in llen of 46 Gns.
Speciel totel Etice \\ RSCCTAIR IB WATT STEREO AMPLIFIER PULLY TRANSISTORISED, SOLID STATE CONSTRUCTION GIGH FIDELITY

 built with 12 mith. gitee. 18 GNs. Or Dep. \(25 / 2 / 6\) and 9 milly. pyinta. 318
(Total \(£ 18 / 6 / 0\)). Or in Tenk or Afromonia veneer housing 19/ GNs. or Dep. (Total \(\varepsilon 19 / 8 / 0\)).
\(85 / 10 / 6 \mathrm{and} 9 \mathrm{~m}\)}

R.S.C. BATTERY/MAINS CONVERSION UNITS
 repiaceu ostierlea mupplying 1.5 V . and 90 V .
whereA.C.mains \(200 / 250 \mathrm{v} .50\) c/s. is avallable. Complete kit with diagram 52/6 F.W. Bridged \(6 / 12 \mathrm{v}\). D.C. Output Input M

R.S.C. AlO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER

307 millivolta. Separate Bases and Treble Controls. Bensitivity

7 Gns.

TDELITY \(12-14\) WATT AMPLIFIER Push-pull uitra linear output "baili-in tone contro
prosemp. Two toput nockets with asociated control
 High qually sectionally wound output tranuformer
IND. BAAS AND TREBLE CONTROLS. Frequency reaponse \(\pm 3 \mathrm{~dB} 30-20,000\) c/s. Hum level- 60 dB
QENBITIVITY 40 millivolts. For Crstal or Ceramic
PUB. High Impedance "mikes". Por Musical Instru

 \({ }^{121}\) Gma.) Twin handled metal cover 2\%/6. Terusis on ans. Carr. \(11 / 6\) (or factory bult

R.S.C. COLUMN SPEAKERS 21 Gmu.) Twin handled metal cover 27/6. Termis on ansembled units. Deposit 99/6 and
monthiy psyments of \(23 /-\). (Total \(£ 15 / 6 / 8\). RSC A1IT transistorised verion o 14 Gns

 total \(£ 23\).

\begin{tabular}{|c|}
\hline \multirow[t]{27}{*}{} \\
\hline \end{tabular}

\section*{R.S.C. SUPER 30 MkII HIGH FIDELITY STEREO AMPLIFIER}

 TYPUT SENAITVITIES: Man. Pu. \({ }^{4}\) miv.

 HaRmonic Distortion: \(0.1 \%\) at 10 Wate
 Monlhor 8w, Mains Sw. P.U. (2) Tape Aup.
INPUT SOCXETS: (1) P.U. Input Elector assureanpproprite equalisation.)
CBASSIS: strong Steel construction. Approx. FACLA PLATE: Attractive design ln rigid Pernper.
ap avallable.

BRADFORD \({ }^{10}\) North Parade (Hzll-day Wed.). Tel. 25349
BLACKPOOL (Agent) O C Electronics 227 Church St.
BIRMINGHAM
221.236 Arca 1279 Halldy Wed
 DARLINGTON 18 Priestgate (Hall-day Wed.). Tel. 68043 EDINBURGH 133 Leith Se. (Hali-day Wed.). GLASGOW 326 Argyle St. (Hall-day Tues.). Tel. CITy 4158 HULL 91 Paragon Sereet (Halif-day Thurs.). Tel., 20505
 MAIL ORDERS to: 102-106 Henconner Lane, Bramley, fl. Terms C.W.O. or C.O.D Postage \(4 / 6\) extra under \(\$ 2\). \(5 / 9\) exera under 65 . Trade supplied.S.A.E. with enquiries please. Open all day Sats. MAIL ORDERS MUST NOT
BE SENT TO SHOPS.

\section*{complete att of parts, point to I HIGH FIDELITY} point whing diaprams
and detailed instructions.
22 Gns . | AMPLIFIER

 OUTPUT QUALITY CAN BE OBTAINED BY
USE WITH FIRST-RATE ANCLLLARY USE WITH FIRST-RATE ANCLLLARY
EQUIPMENT. Unit factory bult 28 ODI EQUIPMENT. Unit factory built 28 Gns. or Depasit \(£ 7 / 5 /-\) and 9 mthly. pasmeata \(56 / 3\)
(Total \(£ 32 / 11 / 3\)) or in Teak or Afrormosia veneer housing 31 On. Ceakr. \(15 /\) Afrormosia
Deporit \(£ 7 / 3 / 6\) and 9 mithly. pasments \(64 /-\)

32 High Sereee (Hall-day Thurs.). Tel. 56420 LEICESTER
5-7 County (Mecca) Arcade, Briggate
(Hall-day Wed.)
73 Dale St. (Half-day Wed.). CENeral 3573
238 Edgware Road, W. 2 (Halli-day Thurs.) LONDON
60A OId ham Street (Hzali-day Wed.) MANCHESTER
106 Newport Rd. (Hant.1. day 41 Ilackeen Sreee (oop. Fennicks NEWCASTLE UPON \({ }_{13}^{13}\) Exchanace sele

Sill
 Record Playing Units

 RP3C Ab, Above but winn

\(\qquad\) with Mannetic P. V. Cartridges'
and 'Witt oft or 'Roll over'

watt transigtos

REED SWITCHES
Flaws encased. switches operated by external mag. Met-inold welded contacts.
Miniature. lin. long \(x\) approxlmately 1 in . Mimmeter. Will make and lireak up to 1 A , un to

\section*{MINIATURE GLASS NEONS 12/6 doz.}

TRIM POTS on \(2^{\circ} \times 4^{\circ}\) brls. + Ths caps and other conilronenta, \(100 \mathrm{n}, 500 \Omega, 15 \mathrm{~K}, 20 \mathrm{~K}\). Please state requirements. 5 for \(10 /=+2 / \cdot \mathrm{D} . \mathrm{d} \mathrm{p}\).
\[
\begin{aligned}
& 90 \mathrm{O} 5,3 \text { OA } 10,3 \text { Pot Cores, } 20 \text { Resist- } \\
& \text { ors, } 14 \text { Capaciturs, } 3 \text { GET } 872.3 \text { GE' } \\
& 872 \mathrm{~B}, 1 \text { GET } 875 \text {. All long leaded on } \\
& \text { panels } 13^{\prime \prime} \times 4^{\prime \prime} .2 \text { for } 10 /-\mathrm{p} \text {. \& p. I/8d. } \\
& 4 \text { for } 20 /- \text { Post free. }
\end{aligned}
\]

COMPUTER PANELS \(2 \mathrm{in}, \times 4 \mathrm{in}\) 10 for \(10 \%+1 / 6 \mathrm{IN}\) \& \(\mathrm{N}, \mathrm{Min} .35\)
 85 transistors; 100 for \(65 /\), . . id in. \(8 / 6\),
inin. 350 transistors: 1.001 for \(C 30\) inin. 350
+ carr.

GIANT PANELS 5!" \(\times 4^{\circ}\) min 20 transistors \(9 \times 56 \mu \mathrm{H}\). Inductors. remistors. capmeltors ete. 3 for \(\mathrm{Cl}+\) 2/- W. above.
As above, only 21 transistors. 70 diodes. is miln. \(1 / 10\) th \(W\) resistons.
3 for \(25 /=\) p. \(\&\). \(\mathrm{p} .2 /\).

QUANTITIES AVAIJABLE EXTRACTOR/BLOWER FANS (Padst)
100 e.f.m. \(4 \frac{4}{} \times 4 \frac{2}{2} 2 \mathrm{in} .2800 \mathrm{r} . \mathrm{p} . \mathrm{m}\). 240v. A.C. Prection made in west Germany by Paput. These Fians are the beat available. Genuine barkatn at \(50 /=\) each. I iat juice.

\section*{compuriter chafincering}

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of \(£ 900 / £ 1,250\) per annum, plus bonus. Shift allowances are payable after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday. pension and sick pay arrangements. Please write for Application form to Assistant Personnel Officer
NCR, 1,000 North Circular Road, London, NW2
quoting publication and month of issue.

> Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 1st January 1970.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept.wwi1), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

\section*{APPOINTMENTS VACANT}

DISPLAYED SITUATIONS VACANT AND WANTED: £7 per single col inch.
LINE advertisements (run-on): \(8 /\) - per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /\) SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Advertisements aceepted up to DECEMBER 5 for the JANUARY issue, subject to space being available.

\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits. Applications to:

Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 541I

\title{
Telecommunications Engineer
}

The above vacancy exists in the Scottish division of a large engineering company operating a number of establishments in the West of Scotland, in addition to factories throughout the United Kingdom. The successful candidate, who will operate from the Glasgow office, will be responsible to the Chief Electrical Engineer for planning, implementing and maintaining the rapidly expanding communications network throughout the Scottish factories.
Applicants should have experience in the operation and maintenance of \(\mathrm{H} / \mathrm{F}\) carrier systems, automatic telephone exchange installations and switching networks. A knowledge of data, facsimile and teleprinter transmission and P.A. systems would be an advantage.
Qualifications required are a degree, H.N.C., or C. \& G. Full Technological Certificate in Telecommunications.
All applications are confidential and will be acknowledged. If already employed by our client applicants name will not be divulged without permission. Applicants should indicate any company to whom they do not wish their applications forwarded. Please give details of age, experience and qualifications to Ref. 13186/53.
Name and address in block capitals please.
S \& M SELECTION, 216 BOTHWELL STREET, GLASGOW, C. 2.

\section*{ELECTRONIC ENGINEERS}

Vacancies exist in the Test Gear Department at West Leigh for Electronics Test Gear Engineers capable of tull design responsibility, manufacture and delivery to the production floor. Products include sophisticated alrborne communication equipment, automatic production test equipment and equipment employed in testing many of the Company's electronic components.
Qualifications should include H.N.C. but consideration will be given to applicants with equivalent experience.
Please apply in writing giving full particulars to the Personnel Officer, The Plessey Company Limited, Martin Road, West Leigh, Havant. Hampshire quoting ref. HAV/180/6

2634
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
An immediate vacancy occurs at \\
THE WIRELESS COLLEGE \\
COLWYN BAY, NORTH WALES \\
for an additional inseructor co assist in preparing students for P.M.G./M.P.T. examinations. The primary responsibility will be the practical instruction on modern marine radio equipment. Applicants musz hold a P.M.G. Certificase and should have a sound rechnical knowledge. Recent marine operating and/or teaching experience is desirable but not essential. \\
Write in the first instance to the Principal. 2622
\end{tabular} \\
\hline
\end{tabular}

\section*{BBC}

TRANSMITTER PLANNING AND INSTALLATION DEPARTMENT

\section*{requires}

\section*{ENGINEER}
for work in connection with the planning, installation and commissioning of VHF and UHF transmitting stations. Duties will include assisting in the preparation of specifications, negotiations with manufacturers, liaison with other BBC Departments and acceptance tests on equipment.

The successful candidate may be a member of a team of several engineers each dealing with a particular aspect of a project or projects or he may be directly responsible for smaller projects. He may, alternatively, be responsible for supervising the work of installation technicians and/or transmitter mechanics.

Candidates must be qualified engineers and have had several years' experience of work on UHF and VHF transmitters. They should preferably be Chartered Engineers and a university degree or equivalent would be an advantage.
Commencing salary \(£ 2,030\) p.a. to \(£ 2,238\) p.a. in a scale having a maximum of \(£ 2,550\) p.a. Request for application form to The Engineering Recruitment Officer, BBC. Broadcasting House, London W1A 1AA quoting reference 69.E. 2287 W.W. 2620

COMPUTER-CONTROLLED SWITCHING SYSTEMS Pho MSc bsc
in physics or electronics

Dr.-Ing. Dipl.-Ing.

Applicants experienced in Hardware design Circuit design System analysis Switching systems
will be given special tasks and rising chances. Experts in the cited fields achieve excellent salaries. The laboratories are located in Düsseldorf (Rheinland), Frankfurt (Main) or Munich.
Knowledge of the German language is not required.

Send short form application to: D 6 Frankfurt (Main), Mainzer Landstraße 134-146

\section*{CONTINUOUS EXPANsION \\ Standard Telephones \& Cables, Microwave and Line Division based at Basildon}
are growing fast. In order to keep pace with this consistent growth rate we require

\section*{Installation Engineers Technicians \& Testers} Ref. 25720

To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane, Basildon. Essex.

\section*{Test Technicians}

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in elec. trical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

\section*{R/F TEST ENGINEERS}

Engineers are required for final test of Solid State R/F prototype and preproduction equipment operating at U.H.F. and microwave frequencies.

These positions would be ideally suitable to ex service radio/radar personnel or test engineers with experience in the use of R/F/Microwave test equipment and a knowledge of transistorised circuitry.

The Company offers first class holiday, sick payments and welfare facilities including an excellent group pension and insurance scheme.

Please apply in writing to:

\section*{Personnel Officer,}

Park Avenue, Bushey, Herts. Phone: Watford 28566.

\section*{ELECTRONICS SYSTEM O.C. ENGINEER \\ For field assignment in DENMARK}

We are an international Company engaged on the design and installation of a complex computerised air defence system with sites throughout the European NATO countries. For the forthcoming installation phase of our project we require the services of a Quality Control Engineer for a period of about 18 months, to supervise the standard of installation (and time schedules) for the sites throughout Denmark.

We expect the ideal candidate to have good systems engineering experience backed by the appropriate qualifications. In addition he will be capable by way of some previous experience of implementing quality control and inspection procedures. It is obvious that previous radar and communications or site systems integration work would be a distinct advantage.

Although the job is by nature short term a career minded engineer will gain not only good experience in this field but would also be able to establish good working relations with senior colleagues within the international electronic industry.

Applicants and their families should be completely mobile and able to take up residence in Copenhagen within 2 months of joining the Company.

Salary and overseas allowances, which reflect the short term nature of the employment will be in the region of \(\mathbf{5 4 , 0 0 0}\) p.a.
Applications giving concise details of experience and qualifications to:
R. A. Rich, Deputy Personnel Manager, Nadgeco Ldd., 98 The Centre, Feltham, Middlesex.

We are a division of one of the world's leading manufacturers of precision electronic test and measuring equipment, and we are looking for a

\section*{TECHNICAL WRITER}
to join our technical publications staff. We are thinking of a maintenance or service technician with a sound practical bachground in electronics and the ability to think and write clearly and logically. Some knowledge of the German langaage would be an asset, but is by no means a prerequisite.

We offer an attractive salary, outstanding benefits, and the attraction of a very favourable geographic location. Please apply to the Personnel Manager of

Hewlett-Packard GmbH, 7030 Böblingen, Herrenberger Str. 110, Germany, Tel.: (07031) 667205.

\title{
GOVERNMENT OIS ZAMBLA
}

\section*{REQUIRES}

\section*{GROUND ENGINEER [Radio/Electrical]}
for the Government Flight Department, Ministry of Power, Transport and Works, on contract for one tour of 36 months in the first instance. Commencing salary according to experience in scale Kwacha 3408 rising to Kwacha 4056 a year (approx. £Stg. 1988 - 2366), plus an Inducement Allowance of Kw. 1002-774 (approx. £Stg. 585452) a year. A Direct Payment of \(£ 291\) is also payable direct to the officer's bank in the U.K. Gratuity \(25 \%\) of total salary drawn. Both Gratuity and Direct Payment are normally TAX FREE. Free passages. Quarters at moderate rental. Children's education allowances. Liberal leave on full salary or terminal payment in lieu.
Candidates, preferably under 50 years of age, must
have the minimum qualification of Radio ' \(A\) ' licence. Preference will be given to candidates holding electrical ' X ' group 9. I , with experience on American V.H.F. VOR. H/F, and possessing a Radio ' \(B\) ' licence.
The officer will be required to work on Piper Aztec type aircraft and to carry out the maintenance of the radios of the Government Communication Flight Aircraft.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference \(M 2 Z / 680906 / W F\)

\title{
V.HF TEIEVISON RELAY \& COMMUNAL AERAL SSYTTEMS
}

I-
We are planning a considerable expansion of our activities and have the following vacancies:

\section*{I. A SENIOR ENGINEER}
to have control of all aspects of systems design, planning, estimating, installation and commissioning.

\section*{II. ENGINEERS}
capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:

\section*{BRITISH/RELAY}

The General Manager,
Special Services Division,
British Relay House,
41, Streatham High Road, S.W. 16

\section*{HENRY'S RADIO LTD.}

303 EDGWARE ROAD, LONDON, W. 2 HAVE THE FOLLOWING VACANCIES IN THEIR ORGANISATION
SALES ASSISTANTS
Young man with good general knowledge of electronic components required for our retail sales dept. Please telephone 723-1008/9 ext. 1 ,
SALES ASSISTANTS
Young man with a good general knowledge of HIGH FIDELITY EQUIPMENT required for our STEVENS, Telephone 723-6963. 2585

\section*{The Middlesex Hospital Medical School Cleveland Street, London W1}

\section*{Department of Physiology}

\section*{EIECTRONIC TECHNICIAN}
required for maintenance and further development of wide range of electronic equipment for medical teaching and research. Well equipped electronic workshop, opportunities for developing own ideas.

Salary scale: \(£ 1025-£ 1285\).
Applications stating age, qualifications, experience and availability for interview, to the Secretary, Department of Physiology, The Middlesex Hospital Medical School, London W1P 6DB.

\section*{SUPERINTENDENT AVIONICS}

This is a new appointment in the Component Overhaul Division with responsibility to the Divisional Manager for the administration and technical control of the avisinics section. This section comprises electrical instrument and radio overhaul workshops and it is desirable, therefore, that candidates have a minimum of 10 years experience in the avionic components industry, preferably in a supervisory capacity. H.N.C. or equivalent in an appropriate discipline. Age range 30-40.
The Company is a member of the important Air Holdings Group and has wide interests ranging from aircraft maintenance and conversions to freight and baggage handling equipment.
The salary is good with commencement open to negotiation. Benefits include Pension Scheme Free Life Assurance and participation in a productivity bonus scheme.

Applications with brief details of experience and qualifications to:
The Personnel Officer,
Aviation Traders (Engineering) Limited, Southend Airport,
Southend-on-Sea, Essex.

\section*{Haxo}

\section*{TECHNICAL ASSISTANT}

\section*{Instrumentation Investigation}

This position involving the maintenance and building of instruments and instrument investigation is in the physical chemistry unit of Glaxo Research Ltd.
Ideally candidates should be under 25 and have reached at least 'A' level standard in physics and chemistry.
Experience in the construction of electronic devices is desirable but full training in the use of complex apparatus will be given.
There are opportunities for promotion, day release for further studies. generous pay scales, 3 weeks' holiday. sick pay and sports and social facilities.

Please write, quoting ref. ZH.39, to the Personnel Officer (MRG), Glaxo Laboratories Limited, Greenford, Middlesex.

International Computers

\section*{OXLEY \({ }^{\circ}\) \\ 0}

\section*{Applications are invited for the position of}

\section*{Assistant to the Works Director}

\author{
of Oxley Developments Company Ltd., Ulverston.
}

Applicants must be about 30 years of age and have Higher National Certificate or a degree in Science. Preference will be given to someone with all or part of the following experience or qualifications :-
(1) Knowledge of modern manufacturing methods in electronics, small mechanical components and mechanisms.
(2) Assistant or deputy to a Works Manager in a thriving concern.
(3) Experience in dealing with people, production control, and shop floor conditions; experience in cost accounting.
Oxley Developments is a vigorous and expanding Company offering scope and opportunity for the right man. The Works are located in open countryside at the southern end of the Lake District.
Applications giving details of education, qualifications, experience and salary and including copies of two references or names and addresses of referees to be addressed to:

\section*{The Personnel Manager,}

\title{
Oxley Developments Company Ltd. \\ PRIORY PARK • ULVERSTON • NORTH LANCASHIRE
}

\section*{ELEGTRONIC ENGINERS}

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

\title{
ELECTRONIC TEST ENGINEERS
}

Experienced Engineers/Technicians urgently required for testing Variable Speed Thyristor Drives and Solid State Multi-track Tape Recorders. Candidates with H.N.C./O.N.C. preferred. Previous experience in Solid State Testing is necessary.
Salary up to \(£ 1,400\) for suitable applicants. Some assistance with housing and removal expenses may be given.

Write or phone:

\author{
Chief Inspector, SIMON ELECTRONICS LTD., Bond Avenue, Bletchley, Bucks. Bletchley 5331 (STD. 0908 2)
}

\section*{ELECTRONICS TECHNICIAN university of birmingham}

TECHNICIAN required for the Department of Anatomy to assist in the design and construction of electronic apparatus for neurological research, also to participate in routine experimental procedures Involving animals and man. Elementary knowledge of electronics desirable, but no previous experience in the medical sciences is necessary. Applicants should be studying for H.N.C. or an equivalent qualification in electronic engineering or physics. Salary range \(£ 773-£ 1,077\) p.a.
Apply for application form to the Assistant Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Birminghamr 15, quoting reference \(401 / \mathrm{T} / 139\).

2614

\section*{TEST ENGINEERS}

Vacancies exist in our test department for junior test engineers to undertake prototype and production testing/servicing of advanced signal analysis computers.

Knowledge of modern digital and/or analogue techniques is essential.
Applications are invited from young men holding ONC or similar qualifications or having relevant practical experience.

Apply giving details of qualifications and experience to

Mr. N. Elliott,
Data Laboratories
28 Wates Way
Mitcham, Surrey
01.648.4643.

2628

Loughborough University of Technology
LABORATORY TECHNICIANS
VACANCIES exist for TECHNICIANS/SENIOR TECHNICIANS with experience in either aeronautical or electronic fields. Duties include assistance in the construction and servicing of test equipment relating to research, student projects and general departmental work including mechanlcal construction and/or electronic instrumentation.
Applicants should have basic technical qualifications together with substantial practical mechanical of electronic experience preferably associated with the alrcraft industry.
Untversity surdings and working conditions in the conditions for all grad and there are excellent leave Salary scales:

SENIOR TECHNICIANS: \(£ 1,056-£ 1,311\) p.a.
TECHNICIANS: £773-£1.077 p.a.
Please apply in writing, giving full details, to Professor K. L. C. Legg. Head of Department of Transpore Technology, Loughborough, Lelcestershire.

\section*{PROTOTYPE DEVELOPMENT}

I seek a firm or individual of proven competence to design and produce prototype important invention (provisional PAT.) involving Octo-Electronics, R.F., Logic, control circuits and small high speed electro-magnetic mechanism (from specialists) Box No. 2635.

join the men who lead

\section*{Electronic Packaging Engineer}

An experienced Electronic Hardware Designer is required to carry out thermal and structural designs on advanced electronic systems for guided weapons.
The engineer appointed to this job will be capable of working on his own initiative in the provision of design and data service for low power electronic assemblies. He will also be required to formulate design rules for the guidance of less skilled personnel in the optimised design of such less sklled personnel in the optimised design of such assemblies, with particular em and structural design.
Suitably qualified engineers who have been working in these areas for the past three vears at least are invited to write or 'phone for an application form, quoting Ref. 1512 to:

Eric Buckmaster,
1512 Personnel Department, British Aircraft Corporation. Guided Weapons Division. Stevenage, Herts Tel: St

ARATAM AHREAAFT GORPORATION the most powerful aernspace company in Europe

\section*{RADIO ENGINEER \\ FOR UGANDA}

We have a vacancy for a well trained radio engineer with a good knowledge of electrical and electronic problems.

The person we are looking for should be a good organiser, must have real interest in his work and must be willing to train local staff. There are unlimited opportunities as the successful applicant will receive on the spot training in our medical and X-ray dept. This will necessitate regular journeys to all parts of Uganda. Our terms of service are good, the climate is wonderful and the work unusual. We offer good local and overseas leave facilities.

Those interested should write to:
Twentsche Overseas Trading Co. (Uganda) Ltd.,
P.O. Box 7160, KAMPALA, Uganda,
giving details of previous experience, age and marital status.

\section*{RESEARCH and DEVELOPMENT}

\section*{ELECTRONIC ENGINEERS}

\section*{...OUR WORK}

Expanding exports and the increasing complexity of our products have intensified our development programmes for digital and analogue computers. linkage and special purpose computer peripherals. We wish to establish new teams of electronic engineers and if you are interested in joining us

\section*{... YOUR QUALIFICATIONS}
should include a degree. H.N.C. or equivalent. You should have relevant experience. coupled with enthusiasm and ability and .

\section*{.. YOUR REWARDS}
with Redifon will be a good salary, stability of employment, a wide range of interesting work and an opportunity to expand your experience into new fields in.

\section*{... OUR COMPANY}

We design and manufacture flight simulators and electronic teaching machines for world-wide markets. The laboratories are situated in a pleasant part of Sussex at Crawley. mid-way between London and the South Coast.

Application forms may be obtained from:
H. C. Hall, Personnel Manager, REDIFON LIMITED.
Flight Simulator Division,
Gatwick Road, Crawley, Sussex.
Telephone: Crawley 28811

\section*{GR-Mervilitationits}

\section*{Technicians and Engineers for St. Albans and Luton}

\section*{qualified or not!}

\section*{Vacancies in all grades}
- VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production. Service and Calibration departments.
- APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians
- SALARIES up to \(£ 1,600\) negotiable and backed by valuable fringe benefits
- RE-LOCATION EXPENSES available in many instances.
- CONDITIONS excellent: free life assurance, pension schemes, canteen, social club.
- \(37 \frac{1}{2}\)-hour, 5 -day, office-hours week.
- WRITE or 'phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required.

\title{
maman In Instruments Instruments Limited
} Limited
}

\author{
Longacres, St. Albans, Herts. Tel : St. Albans 59292 Luton Airport. Luton. Beds. \\ Tel: Luton 31441
}

A GEC-Marconi Electronic: Company

\section*{Opportunity in the Commercial Activity concerning Gas Discharge Tubes \\ We require a man to be responsibie for the technical/commercial policy connected with a wide range of} cathode discharge tubes and similar devices.
He will be largely concerned with business objectives and profitability and will work with Marketing. Production, Development and Research personnel at all levels. The appointment will be based at Mitcham, but some travel, both within the U.K. and overseas, will be involved.
The successful applicant's outstanding characteristic shouid be a flair for business and commercial activities, but a background of engineering training and experience, preferably in the design, development or production of electronic equipment or valves, would be useful, as would sales experience in the electronics industry.

For details of this interesting appointment, write in the first instance to the Personnel Manager, Mullard Limited, Mullard House, Torrington Place, London, W.C.I, quoing Reference: RBT/IO30.

\section*{Mullard}

\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

BRITISH UNITED AIRWAYS

\section*{Radio Mechanic}
required for installation, maintenance and repair of grand radio, teletalk and public address systems. The man appointed will, for the present, be the Company's only specialist In this work, and needs to be versatile, enthuslastic and able to work with a minimum of supervision. Thorough knowledge of VHF radio equipment essential. £22 for 40 hour week. Day work except for emergency call-outs. Staft travel scheme enables employees to visit South America, Africa, etc. for one tenth of normal fare.
Applications to Mr. H. King, British United Alrways, Gatwick Airport, Surrey.

\section*{JUNIOR TECHNILIAN}

Required for operation and maintenance of the closed circuit television \& sound equipment, of a large London Theatre. Hand written applications, please, showing age, experlence \& salary required to Box No W.W. 2629

\section*{JUNIOR TECHNICIAN}
required in the Electronics Laboratory of the Department of Chemistry. This post olfers an interesting opportunity to galn further qualifications and experience in electronics covering a wide variety of instrumentation Salary on the scale £377 to £637 per annum according to age, qualifications and experience, with day release to attend Technical College,

Please apply in writing to the Deputy Secretary. The University. Southampton, SO9 5NH, giving the names of quoting ref: WW

2661

\section*{ROYAL HOLLOWAY COLLEGE (University of London) \\ Englefield Green, Surrey.}

SENIOR ELECTRONICS TECHNICIAN with good general experience, preferably with H.N.C. or equlvalent. required to operate an Electronics Work Shop within be mainly concerned with the deslgn and construction of new apoaratus and with the maintenance and repalr of exlsting apasatus.
Salary within the range \(£ 1,056\) to \(£ 1,311\) plus London Weighting according to qualifications and experience.
Appllcatlons, together with the names and addresses
of two referees, should be sent to the Callege Secretary.
2631

OLYMPIA INTERNATIONAL require
SENIOR CALCULATOR ENGINEERS (2)
(1) To take over responsibility for mainte (1) To take over responsibility fo
ance planning and outside calls.
ance planning and outside calls.
(2) To join our ream of Electronic service specialists whose main function is to deal with the repair of printed circuits.

Also required
TRAINEE 18-20 years
for our Dictation systems deparemene. Apply ro:

Personnel Recruitment,
Olympia Business Machines Co. Ltd. 203/205 Old Marylebone Road,
London N.W.I.

\title{
Commissioning Eninneers and Installers
}

TRANSMISSION DIVISION
In spite of an excellent response to our recent advertisement a continuing expansion projecting into the foreseeable future demands that we seek additional staff.
Opportunities exist for commissioning and installation staff with experience of carrier systems to join a well established team working on fransmission contracts both in the U.K. and overseas.
The Transmission Division's growth and its heavy commitments also create openings for less experienced engineers with a good transmission background who would be prepared to accept responsibility after a period of field training.
If you meet any of the above mentioned requirements we shall be pleased to hear from you. Please telephone V. S. Klein, Installation Manager, or write stating age and giving details of qualifications and experience quoting reference number BEE/468/E to the Personnel Officer. Personnel Department, The Plessey Company Limited. Beeston, Nottingham NG9 ILA tel. Nottm. 254831 Ext. 4497.

\section*{TRAINEE ELECTRONICS SERVICE ENGINEER}

A vacancy for a Trainee Electronics Service Engineer has arisen at the MANCHESTER Office of a National Company marketing Electronic Desk Calculators. Applicashould preterably from young men aged experience in the field of Radio. Television or Electronics servicing of who practice these or stmilar subject as a
hobby.
Please wite in the first instance to: Mr. 1. Cuihbert, Regional Service Supervisor, Sumlock Comptometer Lid., Emplire House. King Edward Street, Briggate, Leeds, LSI.6AU.

\section*{SENIOR}

\section*{LabORATORY TECHNICIAN}

BBC have a vacancy for a Ṡenior Laboratory Technician in the Radio Group of Research Department at Tadworth, Surrey. The duties consist of constructional and experimental work, carried out under the direction of Engineers, on transmitting and receiving systems including aerials and transmission lines. The post offers a variety of work in these fields. Applicants should have several years experience in laboratory work, a good basic knowledge of electrical theory and electronic devices. and possess O.N.C. or equivalent qualifications. They should have an interest in radio and television and in associated radio frequency measuring techniques.
The starting salary for this post is in the range of \(\{1,453\) to \(\{1,609\) per annum and rises by annual increments to \(\{1,843\). However, if no candidate fulfilling the above requirements is found the post may be filled at a lower grade.

Write for application form (enclosing addressed foolscap envelope and quoting reference 69.E.2303.W.W.) to The Engineering Recruitment Officer, BBC, London WIA IAA.

\section*{ARE YOU QUALIFIED TO MOVE.}

If you are a Design Engineet or in systems test. technical sales. production engineering. field service or technical writing. et ELECTRONICS APPOINTMENTS help you. They are in electronic engineering.
Among our current vacancies are the following:-
Senior Sale: Englineer. H.N.C. standard, with extenstive sàlling experience in computer or computer peripheral field Salary \(\mathbf{~} 3,000\). London based.
Senior Design Engineer. H.N.D. or equivalent. as Assistant to Chiel Engineer. Experience in modern digital control electronics nd high speed counting.
This placement service is entirely free and confidential.
Phone lany time day or nightl or write:
ELECTRONICS
APPOINTMENTS LTD.
NORMAN HOUSE• 105/109 STRAND•LONDON•W.C. 2 TEL•01-836 5557

\section*{EIECTRONIC SERVICE ENGINEERS}

The Installation and Maintenance Division of E.M.I. Electronics urgently requires engineers with drive and real ability to work when necessary on their own initiative and assist with the divisions rapidly expanding work programme.

The successful candidates will be engaged to work in one of the following areas:-
* Servicing and calibration of a wide range of electrical instruments.
* Installation and Maintenance of automation, numerical, digital and multiplex systems.
Applicants should have had several years' experience of the maintenance of electronic equipment, and these vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions.
Excellent commencing salaries and staff benefits.
ERTOCATPEERS
Applications giving concise career and personal details to:-
BMI M. L. WATERS GROUP PERSONNEL DEPT
E.M.I. LTD BLYTH ROAD HAYES MIDDX

\section*{THE UNNEESSTY OF LEEDS \\ PROCTER DEPARTMENT of Food and leather Sclence SENIOR EXPERIMENTAL OFFICER}

Funds have been made available from the Sainsbury Centenary Grant for the Advancement of Research and Education in Food Science for the appointment of an experienced graduate electrical (electronic) engineer or similarly qualified person to join a research group investigating the chemistry of the substances responsible for the flavour of foods, using combined gas chromatographymass spectrometry. His main duty would be to care for the sophisticated instru. ments involved and to develop the instrumentation further. He would be available also for consultation by other research groups in the Department The appointment is for 3 years in the first instance in the range \(\mathbf{f 1 , 4 6 0}\) £1.940, the point of entry depending on qualifications and experience. Superannuation under F.S.S.U.
Applications (three copies) stating age qualifications and experience and naming three referees should reach Dr. H. E. Nursten, Procter Department of Food and Leather Science, The University Leeds, LS2 9JT, as soon as possible

BERRY'S RADIO requires
(A) ENGINEER-fully conversant dictat
(B) RADIO ENGINEER-practical ex-
(C) COUNTER SALES must possess

So JUNIOR ASSISTANTS RE-
QUIRED, MINIMUM AGE 16.
Top Rates. Permanency.
Luncheon Vouchers. 5-day week.
25 HIGH HOLBORN, LONDON W.C.I

\section*{SITUATIONS VACANT}

A FULL-TIME technical expertenced salesman re-- puired for retall previous experience, salary requred Rd., London, Wi2,
REDIFON LTD, require fully experienced TELER COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing rom ex-Service personnel or jersonnel about to leave the Services. Please write giving tull detalls toThe Personnel Manager, Redifon Lid.. Broomhill Road, Wandsworth, S.W.18. \(\checkmark\) Engineers in our Production Test Department. Finding and Testing of Mobile VHF and UHF Mobile Equipment. Excellent Opportuntilies for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd. Cambridge Extn. 327. Edevelopment, construction and Installation of electronics instruments used in blochemistry. Applicants should possess O.N.C. or equivalent and be able to construct and test equipment from clrcuit diagrams. Salary
 to £ 1,295 per annum. Supplementary payments for conditions of service. Applications in writing to Departmental Superintendent, Department of Biochemistry, MRC Metabolic Reactions Unit. Imperial Dollege, London, S.W. 7 ERARTMENT OF NUCLEAR PHYSICS, University of EPARTMENT OF NUCLEAR PHYSICS, University of
Oxford, has a vacancy for a senior technician to york with a group developing fon sources and very high
oltage devices for the Oxford 20 MV electrostatic generators. The work calls for initiative and responstblity. A qualification of H.N.C. In physics or electronics would be appropriate. Salary in the range \(£ 979\) to £ 1.316 p.a., with children's allowances and six weeks'
pald leave per year. Possibllity of working for a higher quallification exists. Write to T. L. Green, Nuclear

Pliysics Laboratory. Keble Road. Oxford, mentioning reference Alll. It work in well equipped electrical workshop. Duttes Include servicing and construction of modern electronic equipment. Knowledge of workshop and circuit wiring essential and candidate must have initiative and be able to work without supervision. O.N.C. or equivalent by part-time day release. Salary in the range s898£ 1202 plus C 125 per annum London welghtins according to age and experience. Apply in writing to the
Deparmental Superintendent. Department of Chemistry. Imperial College, South Kensington. London, S.W.7. \({ }_{\text {I2623 }}\) A SSISTANT SOUND RECORDING AND MAINTENANCE ENGINEER. Enthusiastic and well qualified youns man required in Ceniral London. Excellent pros-
pects tor the right man willine to accept responsibility Write giving details of qualificatlons and experience to Box W.W. 2624 . Wireless World.
Q UALIFIED ENGINEERS considering emigration to A Astralla 1970 required to Join new and vigorous hrm Elrmingham. Brlef resume to Box W.W. 2627. Wireitss World YOU INTERESTED IN HI FI? If so, and you A have some experience of selling in the Retail Radio Trade, an excellent opportunity awaits you at Telesonic
Ltd.. 243 Euston Road. London. N.w.1. Tel. \(01-3877467\). [21
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
 RIngurood Rd. FERNDOWN, Dorset. S.A.E. for leaflet. Write now-Right now. HOW to Use Ex-Govt Lenses and prlsms. Booklets. ENGLISH, 469 RAYLEIGH RD., HUTTON, BRENTWOOD ESSEX. \\
UHF KITS and T.V SERVICE SPARES. Suitable for position push button transistorised tuners \(£ 55 \mathrm{~s}\). Od., 405/625 transistorised sound \& vision IF panels \(\mathrm{C}_{2} 15 \mathrm{~s}\). Od. incl. clrcuits and data, \(P / P\) 4/6. Basic dual purpose \(405 / 625\) transistorised tuners incl. elrcuit
\(\Omega 210 \mathrm{~s}\). Od.. \(P / \mathrm{P}\) 4/6. UHF ist available on request. UHF tuners, PLESSEY incl valves 55/-. P/P \(4 / 6\). EKCO/FERRANTI 4 position push button type. Incl. valves, leads. knois f5 10s. Od., P/P 4/6, SOBELL/ GEC UHF tuner kit incl. valves, tight angle slow motion drive assy, leads. fittings, knobs, Instructions §5 18s. 6d.. P/F 4/6. SOBELL/GEC 405/625 IF \& outpat chassis incl. clrcult 32/6, P/P 4/6. Ultra 625 IF \\
 330 range \(25 /\)-, Pye CTM 13 ch . Incremental \(25 /-\) P/P 4/6. Many others available incl. large selection channel colls. Fireball tuners. used rood cond. 30/-: Push button tuners RGD \(612 / 619\) type used good cond. 30/-, P/P 4/6. LOPTs, Scan coils, Frame output translar makes. TV sienal boosters transistorlsed PYE/ Labgear B1/B3, or UHF battery operated \(75 /-\) UHF mains operated 97/6. UHF masthead \(85 /\). , post free. Enquiries Invited. COD despatch avallable. MANOR
SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. CALLERS 589B, HIGH ROAD. N. FINCHLEY, N.I2 (near GRANVILLE RD,). Tel. 01-445 9118. (60 A R88 MAINS TRANSFORMERS, \& \(2 / 10 /=, 12 / 24 \mathrm{v}\) 4 -way terminal blocks. \(5 /-\). Rotax Inverters. input 24 v DC. output \(115 \mathrm{v}, 3\) phase, 400 cycles. 1.8 amps . \(\mathrm{f} 7 / 10 /-\) 200 amp terminals. insulated heads. 8/6. Carriage and packing extra. Also high voltage capacitors and insulators In stock. Westover Electronic. Braidley House.
St. Paul's Lane, Bournemouth. Tel. 23944.
\([2619\) A DVANCE E2 Slgnal Generator, \(100 \mathrm{Kc} / \mathrm{s}, 100 \mathrm{Mc} / \mathrm{s}\), Both in good condition. 6 Ingles, Welwyn Garden City, Herts. W/G 24887 . \(i 2625\) BRAND NEW ELECTROLYTICS. \(15 / 16\) volt, \(0.5,1,2\), \(5,6.8,10,15,20,30,40,50,100,200 \mathrm{mfds} . .8 \mathrm{~d}\). Mullard 25 volt 6.4. 12.5, 25. 50, \(80 \mathrm{mfds} ., 10 \mathrm{~d}\). Carbon Film Resistors, d watt. \(5 \%\). E12, series 10 ohms to 1 merohm. 1/6d. dozen; minlmum order 7/6. postage 1/-. The C.R.
Supply Co., 127 Chesterfield Road, Sheftield, S.8. \({ }^{[2604}\). NEW DEVICES AT LOWEST PRICES. GE HA230 Audio Preampllfier. \(18 / 6\) each. GE PA234 1 W Audio Amplifier. GE 2N5L72 NPN 200 mW Transistor. \(1 / 9\) each. IN 4820 1.5 A 400 V Si. Rectifler, \(2 / 6\) each. Data with Integrated Circuits. C.W.O. P. \& P. \(1 /\) - per order. JEFF ELEC-
TRONICS. York House, 12 York Drive, Grappenhall, Warrington, Lancs. Mall order only. 12605 \(\mathrm{C}_{20630 \text {. } 6-\mathrm{ft} \text {. Licture-screen Projectors. Cintel Model }}\) spare CRT's. Partly dismantled for storake. Offers. Phone 01-948 1414,
COMPUTOR LINE OF SIGHT mk 3 A . An Analog Device comprising 3 19" 6ft racks full of synchros. DC. motors, servo amps. gear boxes. Not working cleap for quick sale. 70 ex. equip. S.T.C. sealed relays 2 c/o
contacts 48 v .2500 coyls, ofters. Mr. Summers. Gainsborough 3940 evenings.
\end{tabular} \\
\hline
\end{tabular}

\section*{TEST EQUTPMENT - SURPLUS ANDSECONDHAND}

SIGNAL generators, oschlloscopes, output meters, wav etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ash ville Old Hall, Asliville Rd., London, E.ll. Ley. 4986 (1) Mullard Double Bean Oscllloscope. L. 101 recalibrating. \&80. (2) Marconi BFO. type TF195L £ 30. (3) Avo model 7, £ 15.
Megger (4) Evershed Bridge
500 volt. \(£ 20\). Burgess Lane \& Co. Lid. Megger 500 volt. £20. Burgess Lane \& Co. Lid.,
Thornton Ave. Chiswick, London W. 4 . \(\mathrm{M}_{\text {arconi Tr890 }}\) Tri/ Radar Test Set \(8500-9680 \mathrm{Mc} / \mathrm{s}\) mistor Power Monitor. Spectrumal Generator, Ther Feed Assembly, brand new, makers' guarantee, 02]-454
8305.

\footnotetext{
\section*{RECEIVERS AND AMPLIFIERSE} SURPLUS AND SECONDMAND
HRO Rx5s, etc., AR88, CR100. BRT400, G209, S640 Ashville Old Hall. Ashville Rd., London, E.ll. Ley
}

\section*{GEARED MOTORS}

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new
for catalogu
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

\section*{BAILEY 30 WATT AMPLIFIER}

\section*{10 Tr's as spec'd and Fibreglass Pcb \(\quad\) E6.7.6} 20 Tr's as spec'd and 2 Fibreglass Peb's \(\quad \$ 12.10 .0\) M1481 26/ MPFI03 \(8 / 6 \quad\) MJ491 \(30 / 6\) R1-R27 (\(5 \%\) low noise) \(\&\) P, \(10 / 6 \mathrm{Cl}\).C6 (Mullard) \(7 / 6\) \(\begin{array}{ll}\text { Mullard C43I } 2500 \mathrm{mFd} / 64 \text { ve with clip } & 15 \\ \text { AliH/Sink (Drilled } 2 \times \text { TO3) } 4 \times 44 \mathrm{in} & 10 \%\end{array}\)

\section*{LINSLEY HOOD CLASS A AMP} Set 10 C.F. R's \(5 / \%\)
MJ480 (Matched for \(<0.1 \%\) T. Set 5 Capacitors \(22 / 6\)
MI48 (Matched MJ481 (Matched for <0.1\% T.H.D.) per pair 5 2N3906/2N4058/2N697/2N1613 6/6 BC109 Pair of H/5inks as spec dor Mono \(5 \times 4 \mathrm{in}\). MJ480 \(16 / 6\) Hunts KA 12 BT \(2500 \mathrm{mFd} / 50 \mathrm{vw}\) \(1250 \mathrm{mFd} / 40 \mathrm{vm} 9 / .250 \mathrm{mFd} / 50 \mathrm{vw} 3 /-500 \mathrm{mFd} / 50 \mathrm{vw} 5 / 9\) A.I FACTORS. 72 BLAKE ROAD, STAPLEFORD, NOTTS.

\section*{FOR YOUR \\ SYNCHRO \& SERVO REQUIREMENTS!}

SERVO \& ELECTRONIC SALES LTD 43 HIGH ST., ORPINGTON, KENT. Tel:31066, 33976 Also at Croyoon Tel: 1.6881512

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624
TRANSISTOR SUBSTITUTION HANDBOOK 9th Edition
49 EASY ENTERTAINMENT \& SCIENCE PROJECTS. Vol 1
Robert M. Brown and Tom Kneitel

\section*{NOVEMBER 1969}
TRANSISTOR COLOURTV
SERVICING GUIDE
Robert G. Middleton 35s. net.
CLOSED CIRCUIT TV FOR ENGINEERS AND TECHNICIANS
Leonard E. Showalter 50s. net
JANUARY 1970
UNDERSTANDING AND USING UNIJUNCTION TRANSISTORS
S. Hoberman
24s. net.

\section*{ELECTRONIC CIRCUIT DESIGN \\ Farl J. Waters \\ 30s. net. \\ FEBRUARY 1970 \\ LEARN ELECTRONICS THROUGH TROUBLESHOOTING \\ Wayne Lemons 75s.net. \\ FM FROM ANTENNA TO AUDIO \\ Leonard Feldman 30s. net. \\ The above are obtainable from most good bookshops or direct from the Publishers (see below) on remittance of \\ the price plus \(2 / 6\) p \& \(p\). \\ FOULSHAM—SAMS TECHNICAL BOOKS}
(W. FOULSHAM \& CO. LTD)
YEOVIL ROAD, SLOUGH,
BUCKS, ENGLAND

\section*{EXCLUSIVE OFFER \\ AMPEX \\ MODEL FR-100 A \\ DATA TAPE \\ RECORDER-REPRODUCERS}

COMPLETELY FITTED IN 6 ft TOTALIY ENCLOSED CABINETS with recording and reprodsclag Amplifiers. \(\star\) SIX SPEEDS
\(15^{\circ}, 30^{\circ}\)
and \(60^{\circ}\)
per second.
and tinterchanaeable
* \(\mathfrak{z}^{\circ}\) TAPE, 5 TRACKS.
 Capacity
\(\star\) DC-FM-PCM-N
SYSTEMS.
\(\star\) DC to 30,000 eycles.
\(\star\) UP TO 10.000 Pulse Rate. *DRIFT FREE WITHIN \(1 \%\). \(\star\) SERVO CONTROL to 0.75 *trace timming \(5 \mu / \mathrm{s}\). *ACCURACY \(10{ }^{5}\) per week. MOIECTRONICS IN
MODULES FRONT ACCESS
 *POWER INPUT 105/125y 48 to \(500 \mathrm{a} / \mathrm{e}\).
\(\star\) Made in U.S.A. these line units cont the American Goveramear 23,000 each betore devaluation Full details on application.

P. HARRIS

ORGANFORD - DORSET BHI6 6ER
WESTBOURNE 85051

\section*{\(\square\)\(\left\{\begin{array}{cc}8 & 0 \\ \square & 0\end{array}\right.\) PRINTED circuits electaonic equipment manufactubers Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-624 0939}

\section*{आOMOON CENTRAS Radio stoles}

WIRELESS SET No. 38 A.F. V. Preq. rnage 7.3 to 9.0 Me/s. Wurk-
 tank merial with lawe. \(\mathbf{\Sigma}^{7}\) per pair or \(£ 3100\) single. P.P. \(25 /=\). MODERN DESK PRONES, red, Ereen, blue or topaz, 2 tone crey or black. with internal bell and bandset with 0-1 dia. E4/101-. P.P. \(7 / 6\).
10-WAY PRESS-BUTTON INTER-COM TELEPRONES In RakGuto cane with juaction box handset. Thoronghly overla uled.
Guaranteed. \(£ 6 / 10 /=\) per unit. 20-WAY PRESS-BUTTON INTER-COM TELEPHONES In BakeIte case with Junction bos. Thoroughly overhauled. Quarann eed. E7/15/- per ualt.
TELEPRONE COLLED RAND SET LEADS, 3 core, 5/6. P.P. 1/., ELECTRICITY SLOT METER (1/- In alot) for A.C. rialna. Fized
tar|at to your requirement. Sultable for hotele, etc. \(200 / 250\). \(10 \mathrm{~A} .80 /-15 \mathrm{~A} .80 /-20 \mathrm{~A} .100 /-\) P.P. 7/6. Other amperages avallable. Reoondilloned ax new, 2 years euaristitee QUARTERLY ELECTRIC CHECK METERS. Recond 1 lioned as new. \(200 / 250\) v. 10 A. \(42 / 6 ; 15\) A. \(52 / 6 ;{ }^{20}\) A. \(57 / 6\). Other
amperages available. 2 years' guarantee. P.P. B/. 8-BARK UNISELECTOR SWITCHES. 25 contacts, alternate Fiplng \(£ 2 / 15 /-; 8\) bank half wipe \(22 / 15 /=\); 6 bank halt wipe.
25 contacts \(47 / B\). P.P. \(3 / 6\).
26 contacts 47/6. P.P. 3/\%.
FINAL END SELECTORS. Relays, various callers, also 19
Recelvers in stock. All for calleri only. Recelvers in stock. All for callers only.
23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

THE QUARTZ CRYSTAL CO. LTD. Q.C.C. Works, Wellington Crescent New Malden. Surrey \(\quad 101.9420334 \& 2988)\) WW-114 FOR FURTHER DETALLS

TRANSFORMER LAMINATIONS Enor mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E' cores. Case and Frame assemblies.
CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire \(7 / 0048,7 / 0076\), 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033
STORES: 30 BARRETTS GROVE, N. 16
Tel: 01-254 1991

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS, ETC ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

\section*{LAWSON BRANID NEW TELEVISION TUBES}

12* Types \(£ 4.10 .0\)
\(14{ }^{*}\) Types \(£ 4.19 .0\)
\(17{ }^{*}\) Types \(\mathbf{E 5 . 1 9 . 0}\)
\(19^{\circ}\) Types \(£ 6.19 .0\) \(21^{\circ}\) Types \(£ 7.15 .0\) 23* Types \(\mathbf{6 9 . 1 0 . 0}\) \(19^{\circ}\) Panorama \(£ 8.10 .0\) 23* Panorama Ell.10.0 19" Twin Panel \(£ 9.17 .6\) \(23^{\circ}\) Twin Panel \(£ 12.10 .0\)
Carriage and insurance \(12^{\prime \prime}-19^{\prime \prime}-1216\) \(21^{\prime \prime}-23^{\prime \prime}-1510\)

The continually increasing demand for tubes of the very highest performance and reliability is novv being met by the neto Lazuson "Century 99" range of C.R.T.s. "Century 99" are absolutely brand nero tubes throughout manufactured by Britain's largest C.R.T. mamufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latess sype givitt maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1968. Complete fitting instructions are supplied with every tube.

2 Years full replacement guarantee
WW-111 FOR FURTHER DETAILS

\section*{LAWSON} TUBES
18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

\section*{BAILEY PRE-AMPLIFIER}

High quality pre-amplifier circuit deseribed by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circult of great versatility with a maximum output of 2 volts making it
suitable for driving Bailey 20W and 30 W Amplifiers suitable for driving Bailey Linsley Hood Class A Amplifier and many others All normal pre-amplifier facilities and consrols are normal pre-ampifier facilities and consrols are latest modifications 7 in . by 3 itin. features edge connector mounting, roller tinned finish and silk sereened component locatlons. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyester
eapacitors and metal oxide resistors where specified.

\section*{BAILEY 3OW AMPLIFIER}

All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed 2 new Printed Circuit intended for edge connector mounting. This has the component locations marked and iser at \(4 \frac{1}{2}\) in. by \(2 \frac{1}{4} \mathrm{in}\). Price in SRBP material \(11 / 6 \mathrm{~d}\). in Fibreglass \(14 / 6 \mathrm{~d}\).

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially derigned Printed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo primary for use with CZó Thermistor, 35/6d., post

Trifilar wound Driver Transformer, 22/6d., post 1/-. Power Amp., 12/6d., past 9d.
Reprint of " Wireless World "articles, 5/6d, post f́ree.
DINSDALE IOW AMPLIFIER
All parts still available for this design
Reprine of articles \(5 / 6 \mathrm{~d}\), pose f́ree.
LINSLEY HOOD CLASS A AMPLIFIER
parts now anodised Metalwork and all power supply components

PLEASE SEND S.A.E. FOR ALL LISTS.
HART ELECTRONICS,
321 Great Western St., Manchester 14
The firm for quality.
Personal callers welcom
closed all day Saturday

BAKER "SUPERB" 20 WATT I2in. LOUDSPEAKER BRITISH MADE THROUG
Suitable for all Hi-fi Systems. Provides rich clear sound recreating the musical spectrum virtually flat \(\pm 5 \mathrm{~dB}, 20-17,000\) cps. Latest double cone with massive "Ferroba" ceramic
magnet. Flux density 16,500 magnet. Flux density 16,500 gauss. Bass resonance \(\mathbf{2 2 - 2 6 c p s . ~}\)
Plastic Cone Surround. Coils available 8 or 15 Surround Price fl5 post Free

ELECTRIC MOTORS (120v. or 240v. A.C.)
Clockwise I,200 R.P.M. Clockwise I, 200 R.P.M. off load
Heavy duty 4 pole 50 mA . Heavy duty 4 pole 50 mA . Spindle \(: \times 2 / 20 \mathrm{in}\). diam
Size \(2 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{2} \times 1 \mathrm{in}^{2}\). \(\begin{array}{lll}\text { BARGAIN } & 17 / 6 & \text { Post } \\ \text { PRICE } & 1 / 6\end{array}\)

\section*{TRANSISTOR AMPLIFIER} WITH LOUDSPEAKER A self-contained

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER \(\begin{array}{lll}\text { 200/250 A.C. } & 42 / 6 \begin{array}{l}\text { Post } \\ \text { Leanet S.A.E. }\end{array}\end{array}\)
EXTENSION SPEAKER
Smart plastic cabinet speaker with 20 ft, lead for transistor radio, intercom, mains size: 7 tin. \(x 5\) tin. \(x\) 3in. \(30 /=\)
 RETURN OF POST DESPATCH - CALLERS WELCOME RADIO COMPONENT SPECIALISTS 337 Whitehorse road. CROYOON. Tel: 01-684 1665

Thanks to a bulk purchase we can offer

\section*{BRAND NEW \\ P.V.C. POLYESTER \& MYLAR RECORDING TAPES}

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polychene and have fitted leaders, etc. Their quality is as good as any other on the marker, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard rapes. 24-hour despatch service

Should goods not meet with full approval, purchase price and postage will be refunded.

 D.P. \(\left\{\begin{array}{llllll}3 \mathrm{in} . & 350 \mathrm{ft}, & 4 / 6 & 5 \mathrm{in} . & 1,200 \mathrm{ft} . & 12 / \mathrm{c} \\ 5 \text { sin. } & 1,800 \mathrm{ft} . & 16 / \mathrm{l} & 7 \mathrm{in} . & 2,400 \mathrm{ft} . & 20 / \mathrm{l}\end{array}\right.\) Postage on all orders \(1 / 6\)

COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes

\section*{STARMAN TAPES}

\section*{28 LINKSCROFT AVENUE ASHFORD, MIDDX.}

Ashford 53020

WW-115 FOR FURTHER DETAILS

\section*{NEW GRAM AND SOUND EQUIPMENT \\ CONSULT first our 76 -page Hlustrated equipment catalogue on Hi-Fl (6/6). Advisory service, generous
terms to members. Membership \(7 / 6\) p.a. Audio Supply terms to members. Membershlp 7/6 p.a.-Audio Supply
Association, 18 Blenhelm Road, London, W.4.
 GASGOW.-Recorders bought, sold, exchanged;
cameras, etc, exchanged for recorders or vice- \\ TAPE RECOROINAETC \\ IF quality, durability matter. consult Brttaln's oldest 1 transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools.
chuches.) Modern studio facilities with Stelnway Grand. Sound News, 18 Blenhelm Road, London. W. 4. Grand. Sound News, 18 Blenheim Road, London. W. 4.
\(01-995{ }^{1661}\). dise transfer, uslng latest feedback disc cutters; EPs from 22/=; s.a.e. leaflet.-Deroy,
High Bank, Hawk St. Carnforth. Lancs. \\ VALVES \\ Valve cartons by return at keen prices; send Godwin St.. Bradiord. 1.}

\section*{FOR HIRF}

FOR hire CCTV equipment including cameras \begin{tabular}{l}
Monltors, video tape recorders and tape-any period. \\
-Detalls from Zoon Televislon. Amersham 5001. \\
\hline 75
\end{tabular}

\section*{ARTICLESWANTED}

\section*{URGENTLY REQUIRED}

ALL TYPES OF RADIO TELEPHONE EQUIPMENT
ESPECIALLY PYE CAMBRIDGE AND VANGUARD MOBILES. ALSO BASE STATIONS ANY CONDITION, WORKING OR NOT. Top prices paid. WE ALSO REPAIR ALL TYPES OF RADIO
TELEPHONE EOUIPMENT
SOUTHERN RADIO \& T.V. SERVICE
1 BACK HAMILTON STREET SALFORD 7 LANCS.

Telcphone 061.792 4929

WANTED, all types of communications recelvers R. T. \& Electronics, Lid.. Ashwille Old Hall, Ashville Rd., Lon-
Hon. En \(\mathbf{W}^{\text {ANTED-small quantly PYE Vanguards-AM25B }}\) and serviceable. Price and details nlease to: Raymond Mcateer, Radio Engineer, Maln Street. Garvagh. Co,
 WANTED, televistons, tape recorders, raclograms, Hloh St.. West Bromwich, Staffe. Tel. Wes. 0186.
WANTED GEC RELAYS, sealed. \(12 \mathrm{v}, 180\) ohms. four

\section*{VALVES WANTED \\ \(\mathrm{W}^{\mathrm{E}}\) buy new valves, tranststors and clean new com quotation by return.-Walton's Wireless Stores, 55 Worcester Bt. Wolverhampton. \\ SCRAPR.F. Heating and Transmitting Valves wanted. S TY5-500. TY6-800. TY7-600. ESA 1500, BR 1126 . May be Interested in other types. Good price pald for valve
still under vacuum. Electronic Heat \(\mathrm{Co}^{2}\) 01-654 7172}

CAPACITY AVAILABLE
A IRTRONICS, Led.. for coll winding, assembly and A wiring of electrontc equipment, transistorised sub
 ELETRONIC and Electrical Manufacture and E.Assembly. Prototypes and short production runs.
East Midlands Instrument Co. Lid., Summergangs East Midlands Instrument co. Ltd., Summerkangs
Lane. Gainsborough. Lincs. Tel. 3260.
[88
 for smail muling aun spectfcation. capacity avaliable for small miling and capsean work up to 1 in bar.-
PHILPOTT'S METALWORKS,
Ltd., Chapman St.

\section*{TETECHICAL TRAINING.}
\(\mathrm{B}^{\text {ECOME "Technically }}\) qualifed" In your spare time B guaranteed diploma and exam. home-study courses \({ }^{\text {in }}\) City \& Gulde-free.-cham Cors Colleg \(\mathrm{C}_{\text {ITY }}^{\text {\& }}\) Gefund of Fee" (Electrical, etc.), on "Satisfaction For detalls of modern courses in all branches of eiec trical enstneering, electronics, radio. T.V., automation etc.; send for 132 -page handbook-free.-B.I.E.T
(Dept. 152 K), Aldermaston Court. Addermaston, Berks
\(\mathbf{R}^{\text {ADIO officers see the world. Sea-golng and shore }}\) R appointments. Trainee vacancies during
Grants avallable. Day and boarding students.
Stamp

E ton will bring you securlty and much better pay. Elem. and adv. private postal courses for c.Eng. A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.). Clty \& Duploma courses in aill branches of EngineeringMech. Elec. Auto, Electronics. Radio. Computers. Draughts, Bulding, etc.- For full details write for FREE 132 -page gulde: British Institute of Engineering Technology (Dept. 151K). Aldermaston Court \(\mathrm{K}^{\text {INOSTON-UPON-HULL }}\) Education Committee F.R.I.C. Radar Maintenance certificate.-Iniormation from College of Technology, Queen's Gardens. Kingston-upon-

\section*{BOOKS, INSTRUCTIONS, ETC}

M wireless. equipment and instruments from orikinal R.E.M.E. Instructions; s.a.e. for list, over 70 orypes.W. \(\mathcal{H}\). Ealley, 167 a Mariat Road, Thornton Heath REUSINESS:OPPORTUNITIES
O PPORTUNITY for good TV Service Engineer wit Capital to invest with active participation in ole established London retall bustness of the highes standing. Write in confldence stating age and detall EXPERIENCED technical author living in isolated E country district requires writing to do at home. Could visit site anywhere in England about once fortnight.-Box W.W. 2636

\section*{Classified copy for the}

JANUARY ISSUE of WIRELESS WORLD

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 112-122}
Page
Al Factors. 122
A.E.I. Semiconductors Lid. 44
A.N.T.E.X. Ltd. 17
Acoustical Mfg. Co., Lid................ 14
Adcola Products, Ltd.. Cover iii
Adler, B. \& Sons (Radio) Ltd. 42
Amplivox, Lid.. 23
Anders Electronics, Ltd.. 34, 36
A.P.T. Electronics. 56
Arrow Electric Switches, Lid. 7
Associated Electronic Engineers, Lid............. . . 56
Audix, B. B., L.td. 32
Avon Communications \& Electronics, Lid. 46
Barnet Factors, Ltd. 21
Batey, W., \& Co. 28
Bentley Acoustical Corporation Ltd............... 108
Bentley, K. J. 123
B.I.E.T..... 13
Bi-Pak Semiconductors. 80
Bi-Pre-Pak, Ltd....... 105
Black, J. 100, 124
Bowthorpe Hellerman Lid. 6
Bradley, G. \& E. Monsanto Cover i
Bradley, G. \& E. Ltd. 50, 51
Brenell Engineering Co., Lrd. 58
Britec, Ltd. 5
Bulgin, A. F., \& Co., Lid. Edit. 597
Bullers Ltd.
44
Burgess Products Co., Lid. 64
Calan Electronics, Ltd. 64
Carr Fastener Co., Ltd. 72
Chiltmead, Ltd. 98
Computer Training Products. 62
Computer Weekly Year Book............ . . . Loose insert
Cosh \& Hammond, Ltd. 96
CBS Laboratories. 63
C.R.E.1. (London). 5
C. \& S. Antennas, Ltd
2
Daystrom, Lid. 11, 29
Diemos, Ltd. 124
Diamond H. Controls Ltd.. 38
Diotran, Lid. 102
Dolby Laboratories Inc. 78
Duxford Electronics.... 92
E.B. Instruments . 124
Electrama . 123
Electro-Tech Sales. 86
Electronic Brokers . 94, 95, 124
Electronics (Croydon), Lid. 81
Electrosil, Lid. 69
Electrovalue. 69
Electro-Winds, Lid...... 65
E.M.I. Tape Ltd..................................... 74
English Electric Valve Co., Ltd. 1, 3
Erie Electronics, Lid. 27
E. S. L. (Bristol) Ltd. 82
Ferrograph, The, Cb., Lid. 9, 20
Foulsham W'. \& Co. Lid. 123
Futuristic Aids, Ltd. 40
Garage Gifts, Ltd.................................. 123
Gardners Transformers, Lid.................... . . . 41
Garrard Engineering, Ltd. 37
Goldring Manufacturing Co., Lid. 24
Goodmans Loudspeakers, Lid. 19
Grampian Reproducers, Ltd..
Greenwood, W. (London), Lid................... 2830

Page
Reage
Racal Instruments, Id 70
Radford Electronics, Ltd. 60
Radio \& TV Components, Lid. 85
Radio Components Specialists 125
Radio Exchange Co 80
Radiospares, Lid. 124
Ralfe, P. F. 101
Rank, Wharfedale Lid. 52
Rendar Instruments, Lid. 58
R.S.C. Hi-Fi Centres, Lid 79
R.S.T. Valves. 109
Samsons (Electronics), Ltd. 96
Sankyo Selki Mfg. Co., Lid. 64
Sansui Electric Co. Lid. 47
Service Trading Co 88, 89
Servo \& Electronic Sales, Lid 122
Shure Electronics, Lid 12
Sinclair Radionics, Lid. \(.75,76,77\)
S.M.E., Lid. 26
Smith, G. W'. (Radio), Lid. 106, 107
Specialist Switches, Ltd. 40
Stanford Electronics 124
Starman Tapes. 125
S.T.C. Communications Division 15
S.T.C. (Star). 73
Sugden, A. R. \& Co. (Engineers) Ltd 42
Sugden, J. E. 46
Sutton Electronics, Lid. 122
Sypha Sound Sales Lid. 96
System 696 \& Co. 100
Techmation Lid. 124
Teclare, Lid. 102
Tektronix, Lid. 57
Telequipment, Lid. 66
Telford Products, Lid 100
Teonex, Lid. 10
Thorn A.E.I. (Radio Valve \& Tubes), Ltd 71
Tinsley, H., \& Co., Lid. 24
Trio Corporation 53
Trio Instruments, Lid. 36
T.R.S. Radio Component Specialists 82
Turner, E., Electrical Insts 48
United-Carr Supplies, Ltd 52
Universal. 100
Valradio, Ltd. 38,42
Vero Electronics, Lid. 46
Vitality Bulbs, Ltd 32
Vortexion, Ltd. 45
Walker-Spencer Components. 65
Watts, Cecil E., L,td 60
Wayne Kerr, The Co., Ltd. 4,49
Webber, R. A., Lid 54
Welbrook Eng. \& Electronics, Ltd. 55
Wel Components, Lid 38
Welwyn Tool Co. 65
West Hyde Developments, Lid 59
West London Direct Supplies. 80
Weyrad (Electronics), Ltd. 54
Whiteley Elec. Radio Co., Ltd. 6
Wilkinsons, L. (Croydon), Lid. 88
Z. \& I. Aero Services, Lid. 110

\footnotetext{

 at a price in excess of the recommended maximum price nhown on the cover: and that it ahail not, be lent, re-solld, hired out or otherwime diaposed of hat mutiated condition or in any unuuthorised cover by way of Tradt or atized to or as part of any publication or alvertising, literary or pletorlal matter whatsoever.
}

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\(\star\) THREE DAY REPAIR SERVICE \(\star\) INTERCHANGEABLE BITS -STOCK ITEMS \(\star\) SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

\section*{ADCOLA PRODUCTS LTD}

Adcola House • Gauden Road • London • SW4 Tel. 01-622 0291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:
name
COMPANY
ADDRESS

When soldering fine copper wire, ordinary tin/lead solder alloys will absorb some of the copper, so that the diameter of the wire will be reduced.
Ersin Multicore Savbit Type 1 solder contains a small percentage of copper so that the solder is already 'saturated' with copper and will not absorb it from copper wire or copper laminate.
Savbit will also prolong the life of copper soldering iron bits by 10 times, thus eliminating the need for frequent resurfacing of copper bits and by keeping
the copper bits in good condition, the soldering speed and efficiency are increased.
Savbit Type 1 alloy contains 5 cores of noncorrosive extra fast rosin based Ersin Flux. Melting point is \(215^{\circ} \mathrm{C}\). Recommended bit temperature is \(275^{\circ} \mathrm{C}\)
Savbit Type 1 alloy with Type 362 Ersin Flux has received Ministry approval under number DTD.900/ 4535. It may be used for soldering processes on equipment for Services use in lieu of solder to BS.219.

\section*{1 lb . REELS}

Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From \(24-34\) swg. only \(\frac{1}{2} \mathrm{lb}\). is wound on one reel.)

HOLLAND
Ersin Multicore Savbit Alloy is used by Bull Nederland of Amsterdam, Holland for the assembly of administration and statistics machines.

NEW ZEALAND
Ersin Multicore Savbit Alloy is seen being used at the factory of Bell Radic Television Corpn. Ltd., Auckland, New Zealand.

For further 'details, please apply ons youn'Company's-notepaper
MULTICORE SCIDERS LTD. HEMEL'HEMPSTEADF̈ HERTS. Telphone: HEMEL HEMPSTE D 3636```

[^0]: To Peak Sound, 32 St. Jude's Rd., Englefield Green, Egham, Surrey.

[^1]: (1) First letter: $S=$ stereo. $M=$ mono. Second letter: $M=$ moving magnet, $V=$ variable reluctance, $D=$ moving coil, $C=$ ceramic. $R=$ rochelle salt, $I=$ induced magnet, $F=$ free field

[^2]: 1. Hygrometric Tables, Part 3. (Aspirated Psychrometer readings degrees Celsius) Met.O.265C. H.M. Stationery Óffice 1964.
[^3]: * Assistant editor Wireless World.

[^4]: * West Ham College of Technology, London E. 15.

