Wireless World
 Novemter 1969 Three Shillings

Integrated circuit tester
Electronics in civil aviation

THE ADVANCED COMMUNICATIONS ANCILLARY ENSURING READABLE TELEPRINTER COPY for
 * METEOROLOGICAL BROADCASTS
 * MARINE COMMUNICATIONS
 * OFF-SHORE DRILLING
 * FORESTRY
 * BANKING
 AND MANY SIMILAR APPLICATIONS

Standard Telephones and Cables Limited,
Communications Division, New Southgate, London N. 11
Telephone: 01-368 1200. Telex: 261912.

Get your own Multimeter today (complete with plastic case, leads, instruction booklet and a full year's guarantee) from your local supplier, or ask for details direct from Avo.

prepare for tomprrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.
Why C.R.E.I. Courses are best
No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation* Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

WW-007 FOR FURTHER DETALS

These are a few out of EEV's extensive range of triodes for industrial heating, realistically designed for day-to-day use in welding and other industrial heating equipments. Conservatively rated, EEV industrial heating triodes are designed with all EEV's extensive experience of transmitter valve manufacturing techniques behind them so that they will provide long and reliable lives. Prices are competitive and deliveries are good. For full details fill in the coupon below.
 for industrial heating.

Please send me full data on your range of forced-air cooled power triodes for industrial heating. I am also looking for a triode with the following parameters:

Output power (kW) :
Anode voltage max. (kV) :
Frequency (MHz):
English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777
Telex: 99103 Grams: Enelectico Chelmsford
NAME POSITION

> COMPANY

ADDRESS
 places? And you're held up for meters? Like an 0-5mA calibrated in pulsfrekvens? Or a jonkammarström meter specially calibrated from 10^{-10} to 10^{-4} ? Or a straightforward lbut impossible to locatel 100 mA moving-coil job reading simply $0-35 \mathrm{KL} / \mathrm{M}$ ИH H R Relax. No problem at all. Anders are legending most types of meters in all sorts of languages every day of the week-and as often as not calibrating them specially info the bargain. Hand leftering specialists are standing by for the one or two off Fast, accurate techniques are here for the quantity orders. Ring us. You'll find we are as fast at this sort of thing as we are at supplying standard meters off the shelf and, as you know lor should knowl, that's fast.
N.B. The variety of meters in our new catalogue is a revelation-and now we've got extensive new centralised premises for a better-than-ever service.

Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibraling reed frequency meters and tachometers.

ANDERS METER SERVICE

Image Orthiconsa new brochure from EEV

This new brochure gives a summary of the EEV range of Image Orthicons, applications and brief data. Full information, including characteristic curves and operational conditions together with outline diagrams, is available on request. But for an introduction to the range, send for a free copy of our new brochure.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex : 99103 Grams: Enelectico Chelmsford

Please send me a copy of your Image Orthicon brochure.
\qquad
NAME
POSITION
COMPANY \qquad
ADDRESS

Vortexion

This is a high fidelity amplifier (.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

THE VORTEXION 50/70 WATT ALL SILICON AM PLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.s.

Size $14^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$
Weight 201b.
$100 \mu \mathrm{~V}$ on $30 / 60$ ohm mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms, balănced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output 100-120v or 200-240v. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits: The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced input and $\mathrm{Hi} \mathbf{Z}$ gram.

VORTEXION LIMITED, 257-263 The Broadway, Wimbledon, S.W. 19

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS-0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS - $12 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{4}{ }^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$

Complete the coupon and post today.
Please send me'full details of the QUAD 50 Amplifier
NAME
POSITION
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) $2561 / 2$

WW-013 FOR FURTHER DETAILS

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering.

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts. Voltages available 12 v ., 24 v ., $100 / 120 \mathrm{v}$., $210 / 250 \mathrm{v}$. Five bit sizes from $\frac{1}{16}$ " to $\frac{1}{4}^{\prime \prime}$.

59/6

MODEL WG150. For use on all circuits requiring a large number of joints. Power rating 150 watts. Voltages available $100 / 120$ v., 210/250v. Four bit sizes from $\frac{3}{16}{ }^{\prime \prime}$ to $\frac{7}{16}{ }^{\prime \prime}$.

A Technical Knockout

Titles are hard to win at Morganite. But we have a Champion in the Type 81E Cermet Trimming Potentiometer.
After several rounds with our Quality Control personnel, the Champion emerged unscathed. Unfortunately.
the other contender could not of electrical tests. stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft . matchstick) but he suffered a technical
K.O. during the final rounds

The Champion took them in his stride and now challenges all comers.
If you have an application for a 0.5 w single turn trimming potentiometer, (Bantam Weight) back a proven title holder - it pays!

The

end

VACUUM GAUGES

The Genevar Ja age Range: threa types cf pressore measuremert tesice suitable for sozhisticated applicat ons ir science and incustr,. All fea:ure ins ant readcut, rece- Jar cutput and interchangeab e gauge heads. Election cal v stabilised power supply makes the gauges ifsensitive to mains volkage fluctuation thus elimina ing $3 r$ external 'set vo ts' control.

Thermocol ela Gauges and Gacge Heads for pressure nazsu-ement in the medium hign vacutm range 1 torr to 1 - -3 torr. Two types. mains or battery powzex
Pirani Gauga an= Gauge Head: for pressure measuremert in the medium high vacuum range 1 tow to 10 - $^{\frac{2}{2}}$ torr. TND scale readout.

Penning Gange ㅋnd Gauge Head: for pressure measuremert r the high vaculm ra ge of $3 \times 10-{ }^{3}$ ton to 10 - ' tor. Favel mounting acceasories available.

Full details of these and other instruments from the Sole U.K. and Export distributors.

W. GREENWOOD ELECTRONIC LTD.

21, GERMAIN STREET, CHESHAM, BUCKS
TELEPHONE: CHESHAM 4808/9.

© Registered trade mark of Claude Lyons Limited

With every Claude Lyons Regulac comes the benefit of 35 years' experience in variable transformers. Regulacs come in hundreds of models from smallsingle units for laboratory or instrument use to large ganged assemblies for high-power 3 -phase operation at outputs from 210VA to 28.8 kV 'A and above.

The range includes portable, dual-output and oilimmersed models plus many high-frequency and special types-and is constantly being extended.

Regulacs provide smooth, continuous adjustment of voltage output from zero to line voltage and above, either hand-operated or motor-driven. No device is more useful, versatile andreliable for the control of $A C$ voltage.

LI
For full details write to Publicity Department. Hoddesdon Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161'Telex 22724 76 Old Hall St., Liverpool L3 9PX. 051-227 7761 Telex 62181 a

VALUABLE NEW HANDBOOK FREE EOMGINERSS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical ElecElecromes - Radar Tech Electroncs
Frequency Madar Tech. - Frequency
Transistors.

ELECTRICAL ENG

Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship -Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG

Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Siructural Eng. - Santary Structural Eng. - Road Eng. - Hy
Eng. Eng. - Road Eng. - Hy-
draulics - Mining - Water draulics - Mining - Water Supply - Petrol Tech.

RADIO ENG

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation -. Practical Radio -Radio Amateurs' Exam. MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding Inspection-Draughtsmanship-Inspection-Draughtsmanship-
-Metallurgy Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Auto mobile Maintenance - Repair mobitonobile Diesel Mainten--Automobile Diesel MaintenEquipment - Garage Manage Equipment - Garage Manage ment.
we haye a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MÁTHEMATICS, EIC.

Which qualification would increase your earning powerl A.M.I.E.R.E., B.SC. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E. A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S. M.R.S.H.. A.M.I.E.D.. A.M.I.MUN.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.
* HOW to put some letters ofter your nome and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take odvantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT	$\begin{aligned} & \text { INCLUDING } \\ & \text { TOOLS } \end{aligned}$
Basic Practical and Theoretic Courses for beginners in Radio, T.Y., Electronics, etc. A.M.I.E.R.E.	The specialist Electronics Division of B.I.E.T. NOW offers you a real laborarory train-
City \& Guilds Radio	ing at home with
Certificate, P.M.G. Certificate, Practical Radio,	practical equipmertr. Ask for derails.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T.. 446A ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS
\qquad
WRITE IF YOU PREFER NOT TO CUUT THIS PAGE

LEVELL VOLTMETERS

TRANSISTOR A.C. MICROVOLTMETERS

 Response from 1 Hz to 3 MHz with amplifier output ávailable. Two versions switch on type TM3B.

VOLTMETER RANGES
$15 \mu \vee, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$. ... 500 V f.s.d. Accuracy $\pm i \% \pm 1 \%$ f.s.d. $\pm \mid \mu \mathrm{V}$ at lkHz .
dB RANGES
-100 dB to +50 dB in 10dB steps. Scale
-20 dB -to +6 dB . $0 \mathrm{~dB}=1 \mathrm{~mW}$ into 600 O .

FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz . ± 0.348 from 4 Hz to 1 MHz . On 500 uV : $\pm 3 \mathrm{~dB}$ frcm 2 Hz to 2 MHz . On $150 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}$ frcm 4 Hz to 1 MHz . On $50 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 7 Hz to 500 kHz . On $15 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 20 Hz to 200 kHz .

AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges. Will drive
a load of $200 \mathrm{k} \Omega$ and 50 pF without loss.
POWER SUPPLY
One type PP9 battery, life 1000 hours: or
$\star \star \star \star \star \star \star \star \star \star$

TYPE TM6A

E85

Complete with battery and in put lead.
OPTIONAL
EXTRAS
Leather Case
A.C. Power Uni
c7/10\%.
H.F. VOLTAGE RANGES
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} \ldots 3 \mathrm{C}$. .s.d. Square law scales. Accuracy $\pm 4 \%$ of reading
$\pm 1 \%$ of fis.d. at 30 MHz .
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} \ldots+20 \mathrm{~dB}$.
Scale -10 dB to +3 dB . $0 \mathrm{~dB}=1 \mathrm{~mW}$ into 50Ω.

TYPE TM6B $£ 99$

Complete with battery and in.

OPTIONAL
EXTRAS
Leather Case
A.C. Power Unic

E7/10/-.

BROADBAND
VOLTMETERS
As A.C. Microvolemeters plus H.F. probe to extend response to 450 MHz . Two ver-
sions differ only in meter size and L.F. bandwidth switch on type TM6B.

H.F. RESPONSE

$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHE ± 388 from 300 kHz to 400 MHz .
L.F. RANGES

As TM3A and TM3B except for the omis sion of $15 \mu \mathrm{~V}$ and $153 \mu \mathrm{~V}$.

POWER SUPPIY
One type PP9 battery, life 1000 hours on
L.F. ranges and 400 hours on H.F. ranges: or, A.C. mains when Levell Power Unit
is fitced.

Fully detailed leaflets are avaliable on our complete range of Dortable instruments

LEVELL

PORTABLE INSTRUMENTS

LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts.

plus 2A 250V AC operation.

The first of a new range of low-cost, compact switches, which will be found to be invaluable when weight and space saving, together with good product styling, are prime considerations.
Combining the highest standards of quality and reliability, this range of switches opens up new horizons for designers of commercial equipment. Competitive in price and of attractive appearance these sub-miniature switches are available with two or three position single pole change over circuits, are rated at 5A 29 V DC, 2A 250 V AC, and measure only $0.551^{\prime \prime} \times 0.375^{\prime \prime}$ and $0.93^{\prime \prime}$ to the top of the sleeve.

Write or telephone for full details and/or a sample of this latest Arrow switch -it's a little beauty

from the new Bradley, new life for ageing oscilloscopes

The way things are going in computer logic and pulse measurement. even relatively new oscilloscopes are old before their time Yet you may feel that investing in faster instruments to examine the even faster computer phenomena of today represents too large an outlay.
For you. Bradley introduces the
158 Oscilloscope Adaptor.
It'll put new life into oscilloscopes.
because it enables waveforms at
frequencies up to
1000 MHz to be displayed on any
general purpose oscilloscope.
So you can expect quite a lot more from your present equipment.
Bradleys will see to that.
G. \& E. BRADLEY LTD.

Electral House,

Neasden Lane,
London, N.W. 10.
Tel:01-4507811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

Bradey

Calibration Service

Any organisation using electronic instruments must have a programme for regular maintenance and calibration. traceable :o National standards. Organising adequate technical effort and the necessary test equipment is both difficult and expensive. Why not let Bradley Technical Services do it for yכu?
We have tvell equipped modern facilities, backed uf by experience accumulated over the last 15 years. Calibration, repair and maintenance can be provided for a single instrument or for a complete nventory on a contract basis These facilities are supported by a controlled environment Standards Laboratory.
British Ca ibration Service approved for a wide range of d.c., a.c. and r.f.
measurements-the first ever to get r.f.
approval. Your instruments can be calib-
rated using standards traceable to
National Fhysical Laboratory and
National Eureau of Standards.
We shall te pleased to send you our
illustrated brochure.

G. \& E. BRADLEY LTD.

Electral House,
Neasden Lane,
London, N.W. 10.
Tel:01-4507811 Telex: 25583

EXPECT MORE FROM THE NEW BRADLEY

WW-02e FOR FURTHER DETAMS

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

rely on

WW- 026 FOR FURTHER DETAIIS

BuIlleres ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detalled particulars.
BULLERS LIMITED
Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent

FOR

CUSTOM HYBRIDS

If you have read as far as this, you either know what "custom hybrids" are, or want to know what they might be.

For the uninitiated, a "hybrid" is a modern form of microcircuit (integrated circuit) which produces the performance of a bulky. conventional-component. printed-circuit-board assembly inside a small sealed package by hybrid assembly techniques, combining printing of components with attaching separate discrete devices.

Electronic equipment manufacturers are changing over from printed-circuit-boards to hybrid microcircuits. Larger ones are trying to produce their own hybrids. Smaller ones tend to look to a specialist custom-hybrid manufacturer, like NKT, for units custom-built to their exact specifications.

A survey of customers to whom NKT have supplied custom-hybrids over the last two years indicates that the commonest reasons for them "going hybrid" have been:

1. They had to have smaller circuits.
2. They had only short runs, expensive in engineering.
3. They had high assembly labour costs relative to materials.
4. They had to use high-cost special-selection components to achieve close overall circuit performance.
5. They had long runs of identical packages.
6. They had to find improved environmental stability.
7. They had a need for greater reliability.
8. They had a problem in getting skilled assembly labour.
9. They had to reduce production costs.
10. They had a cost problem in multiple-component stock holding.
YOU may have equipment design problems such as these to which custom hybrids can provide an answer.

Why not write in on your company letter heading to our Marketing Manager for NKT's CUSTOM HYBRWD BROADSHEET No. 5, and áfree copy of our "CUSTOM HYBRID GUIDANCE MANUAL".

NKT—Newmarket Transistors Ltd.,

Exning Road,

Newmarket, Suffolk.
Tel. Newmarket (0638) 3381. Telex 81358
STAND C63, INSTITUTE OF ELECTRONICS SHOW, belle vue, manchester. 29 SEPT.-3 OCT.

WW- 030 FOR FURTHER DETALLS

You're on the right trackwith Goldring 800 magnetic cartridges

> Goldring 8oo magnetic cartridges track unerringly. Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.
> Hear it for yourself. You'll know you're on the right track.

Goldring $800 / \mathrm{H}$... the $800 / \mathrm{H}$ is designed for inexpensive changers to track between $2 \frac{1}{2}-3 \frac{1}{2}$ grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 ... the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict.£13.0.0tax paid.

Goldring $800 \mathrm{E} \ldots$. is designed for transcription arms and a micro-elliptical diamond is fitted to a finer cantilever, end damped against natural tube resonance \&18.17.1 tax paid. Goldring 800 Super E... the 800 Super E is for those to whom perfection is barely good enough. Extraordinarily low mechanical impedanceforsuperb tracking capabilities. Each cartridge is supplied with its individual curve and calibration certificate. £26.0.0 tax paid.

PRECISION VERNIER POTENTIOMETER TYPE 5590C
This is a single range 5 dial potentiometer readable to 7 decimal places. with 8 figures above one volt and 7 figures below. It retains all the advantages of the double potentiometer without continual cross-calibration. Range: 0 to 1.8010110 V in steps of $0.1 \mu \mathrm{~V}$. Calibrated Accuracy: $\pm 0.0005 \%$ of reading $+0.1 \mu \mathrm{~V}$. Leaflet 208F./3514.

PHOTOCELL GALVANOMETER AMPLIFIER TYPE 5214

This amplifier is primarily intended for use with an indicating galvanometer for

the most sensitive null detection in d.c. bridge and potentiometer work of the highest precision. The amplification is such that a robust type of indicating galvanometer can be used and no very special precautions need be taken to eliminate vibration. Leaflet 175./2043.

FOUR FROM... 1 9

HIGH SENSITIVITY PORTABLE GALVANOMETER TYPE M.R. 4/45

Optical magnifier gives effective scale distance of 1.5 meters in an instrument about 22 cm in length. The case has a completely removable cover and detachable screen. Double light beam giving 2 separate spots, centre zero scale and fine zero adjuster. Considerable space saving - with an increase in sensitivity. Leaflet 175/ 2021A.

IINDUC̃TIVELY COUPLED DOUBLE RATIO BRIDGE TYPE 5650

For platinum resistance thermometry, this Bridge operates at 400 Hz and is readable 108 figures with an accuracy of ratio measurement to 1 in 10°. The desk console contains the Oscillator. Mains Operated Charging Unit. Selective Amplifier. Double Inductive Ratio (8 decades). Lead Compensating Unit and a set of Resistance Standards. Leaflet 139D.

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex of fer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to Mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.
For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W. 11 - England Cables: Tosuply London W.11.

TWO FROM

H TINSLEY \& CO LTD . WERNDEE HALL SOUTH NORWOOD • LONDON SE25 • 01-654 6046

CLEAR PLASTIC METERS - OVER 200 RANGES IN STOCK - OTHER RANGES TO ORDER USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

BAKELITE
PANEL METERS

EDGWISE METERS
Type PE.70. $317 / 32 \mathrm{in} . \times 115 / 32 \mathrm{in} . \times 2 \frac{10}{}$ $50 \mu 4 . \ldots . .680 /-1500 \mu 4$....... 58/.
 $200 \mu \mathrm{~A}55 /-\mid$ vu meter .. $65 /$

PLEASE ADD POSTAGE

U.K. DISTRIBUTORS OF TMK MULTIMETERS

WW-038 FOR FURTFER DETALIS

VALRADIO LTD.

Dept. WPU4, BROWELL'S LANE, FELTHAM, MIDDLESEX, ENGLAND Telephone: 01-890 4242

WW- 042 FOR FURTHER DETAILS

M. R. SUPPLIES (London) LTD.,
 (Established 1935)

Oniversalty recognined as suppliers of UP-TO-DATE MATERIAL, which doen the job properly Instant delivery. Sulisfaction wsured. Prices nett.
FAN FLOW EETRACTOR FANS. Undoubtedly today'e kreatest bargain for domentlo or Industria
 only $£ 8 / 2 / 6$ (deepsuh $7 / 6$).
DESK OR TAELE FAN. An itienl fan for the hot weether, lightmeight polythene, welghn oaly Red and White, Blue and White. 25 watte, $450 \mathrm{c} . f . \mathrm{mm}$. Cumplete with witch aud fex Only 24/2/6 (dees. 8 -)
SYWCRIONOUS TIME SWITCHES. (Another one of our popular apeclalitlea) $200 / 240 \mathrm{v}$. soc., for Accurate preati switching operations. Bangamo 8.254, providlag up to 3 on-oft operationa per

ELECTBic FANs (Papat), for extrectlog or bowing. The most exceptional offer we have yei
 SMALL GEARED MOTORs. In addition to our well-known range (Lint GM.169), we offer mall
 project ton esch shie
Onily $89 / 8$ (das. $3 /-$)
MmIATURE COOLIMG FANs. 200/250 \quad. A.C. With open type inductlon motor (no interference)

AIR BLOWERS. Eighly efflent unlts atted loductlon totally enclosed motor $230 / 260 \mathrm{~F} .50$.

 2.5 W@. $11 \times 8 \times 9 \mathrm{in}$., oulet 3 ln . 8 .., £13/17/6 (des. U.K. 7/82

BYNCRRONOUS ELECTRIC CLOCK MOVEMERTS (as meationed and recomamended in many
nationdj jourtialn). $200 / 250 \mathrm{r}$. 50 c . Self-atartlog. Fitted aptodlea for hours, minutcand central national fourtiahn). $200 / 250 \mathrm{r}$. 50 c . Self-atartiog. Fitted apindiea for hours, minutca and central beck duat cover, $38 / 8$ (des, $2 /-$). Bet of three brana hand, in good plulu utyle. For $5 / 7 \mathrm{in}$. dis. $2 / 6$

 deep. Chuice of lollowlog apeede: 1 r.p.m., 12 r.p.h., 1 r.p.h., 1 rev. 12 hours, 1 rev. per dasy. Any one
(des. $2 /-$) / $/$ - (den. $2 /$). . Ato
SMITES TIMER MOTORs. Synehronous, self-startiag 200/250 wolta, 1 ph., 30 e. Clockwise. r.p.a. only. (n) $25 /=$ (dен. $2 /$-).

MIMATURE L.C. MOTORS. $6 / 12$ volts D.C. Ideal model makers. $4,000 / 9,000$ r.p.m. no hoad 8 ta. x it in. ulameler. Plunge inuig. Omiy $8 / 8$ (des. 1/6).
officlal 8tOceist: "Parvaluz" Eleetric Motors (Lhet a.m.le9)
EETRACTOR TANS. RIng mounted all metal construction. T/E induction motor, allent opern-
 immenlate deliveri of stuart Centrifugal Pumpe, tncludiag atainlesa ateel (moat modela).
M. R. SUPPLIES (LONDON) LTD,, 68 New Oxford Street, London, W.C. 1
(Telephone: 01.636 2958)

Best Reception with TRIO

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8-TUBE COMMUNICATION RECEIVER

* Illuminated dials permit easy tuning and band spread readings
* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* Close callibration accuracy with an excellent anti-back. lash mechanism.
* A mechanical filter enabling superb selectivity with ordinary IF transformers.
* One RF and two audio stages of amplification, insur ing high sensitivity and selectivity.
* A Product Detector making possible çlear SSB reception

SPECIFICATIONS:

* Frequency Ranges: Band A $550-1600 \mathrm{KHz}$,

B $\quad 1.6-4.8 \mathrm{MHz}$,
C $4.8 \cdot 14.5 \mathrm{MHz}_{\text {, }}$
D $10.5-30 \mathrm{MHz}$.

* Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz)
* Selectivity: $\pm 5 \mathrm{KHz}$ at -50 dB
* Power Consumption: 45 watts
* Audio Power Output: 1.5 watts
* Tube \& Diode Complement: 6 BA $6 \times 3,6$ BE 6×2, $6 A Q 8 \times 2$, IN $60 \times 2, S W .05 S \times 2, S W-05 \times 2$, 6 AQ5
* Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$. Depth $10^{\prime \prime}$.

Model JR-500SE CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
* Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Hi-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
* Dimensions: Width $13^{\prime *}$. Height 7", Depth $10^{\prime \prime}$

the sound approach to quality:
TRIO
TRIO ELECTRONICS.INC.

TO: B.H. Morris \& Co.. (Radio) Ltd. WW Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME:
AGE
ADDRESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6, Belgium

Heathkit Present The＇Comparat Sound of the 70＇s

See what＇s New in the world of sound from Heathkit at the Audio and Cine Fair，1969， Olympia，London．

Daystrom Ltd．will be exhibiting the latest Heathkit Hi－Fi Stereo Amplifiers，Tuner－Amplifiers，F．M． Tuners，Stereo＇Compacts＇，Loudspeakers etc．A selection of these will be on demonstration in the Audio Studio on our stand．

New models include two stereo＇compacts＇，models AD－17 and AD－27．The AD－17 comprises a BSR MA65 turntable with Shure M44－MB magnetic cartridge and a 10 watt（rms）per channel stereo amplifier all mounted on a teak or walnut plinth．The AD－27 is similar but uses the MA7O turntable and includes an FM stereo tuner．In this case the＇plinth＇is better described as a small cabinet．It has a＇roller shutter lid and is available in teak or walnut．

A new loudspeaker has been added to the Heathkit range．The＇Ambassador＇is a first class hi－fi loud－ speaker．The cabinet comes ready assembled and finished in teak or walnut to match other current Heathkit equipment．It uses three loudspeaker units －a $12^{\prime \prime}$ ．bass unit，a $5^{\prime \prime}$ mid range and a small tweeter．

See these New models and many more ．．． in the Heathkit 1970 CATALOGUE． its
 FREE on request！

θ

Armstrong

the high fidelity sound

A STEREO

 TUNER-AMPLIFIER for the BUDGET SYSTEM

I27 STEREO TUNER-AMPLIFIER $£ 43-13-9$ OPTIONAL CASE As illustrated 63-17-0

If you want high fidelity in the highest class don"t buy the 127 Tuner-Amplifier ; it isn't meant for you. But if you want a good quality system that is a great deal better than the average radiogram, and your power requirements, as well as your budget, are of modest proportions, then this is meant for you.
The 10 watts power output, 5 from each channel, won't fill a hall, but it is more than adequate for most domestic purposes. The AM-FM Tuner incorporated is doubly attractive because, as well as covering the medium waveband, it has a performance on FM which is good enough to give excellent results on stereo radio once you add the optional M5 stereo radio decoder.

There are of course the usual facilities; pickup and tape inputs, tape recording outputs, bass and treble tone controls.

As we said at the outset, if you are after top-class hi-fi you don't want the 127, what you want is the Armstrong Series 500 model
For details and technical specifications of all models, plus list of stockists, post coupon or write, mentioning 11 WW69.

ARMSTRONG AUDIO LTD., WARLTERS ROAD N. 7 Telephone 01-607 3213

name

address \qquad

11 WW69

Themost advanced microwave devices arehere.

Schottky Barrier Diodes

*Ga As Mixers *Ga As Detectors *LID, Reversible Ceramic Oscillators
*Ga As Gunn Diodes *Si Avalanche (Impatt) Diodes
*Welded Ceramic S3
Backward Diodes
*Ge Planar Detectors *LID, Coaxial
Microwave Transistors
*Si 1 watt Power amplifiers *Si Low Noise, 5 dB receiver TuningVaractor Diodes
*Si VHF \& HF plastic, High 0 *Si Hermetic, Wide Capacitance Range
Varactor Multiplier Diodes

* 160 GHZ. Si welded Ceramic

P-I-N Diodes *Switches
*Limiters *Modulators *Stick, Coaxial, Epoxy and Pill

Point Contact Diodes

*Mixers *Detectors *Coaxial. Single Ended Ceramic Microwave Integrated Circuits
*Microstrip SUB-SYSTEMS incorporating microwave semiconductors
 Write for your copy of abridged catalogue to:
AEI Semiconductors Ltd. Carholme Road, Lincoln Telephone:
Lincoln 26435

WW-037 FOR FURTGER DETAILS

CONSTANT VOLTAGE TRANSFORMER.
Maintain spot-on test year readings with Automatic Mains stabilizer. Specification: - Dutput 240 V - Accuracy $+1 \%$ - Inpur $190-260 \mathrm{~V}$ - Inpur 190-260V - Capacity 250 watt $f 12.100$

20 AMP LT SUPPLY UNIT

- Input 240 V

Output 20 amps at 24 V fully adjustable - Size $16^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime \prime}$ high - Weight 50 lbs £35.0.0

UNIVERSAL MICRO SWITCH

MLC-3 $5 \mathrm{amp} \mathrm{c} / 0$ $1 / 6$

SOLID STATE
VARIABLE CONTROL

Output 26-240VInput 240 V 50 CP $5 \mathrm{amp} \& 10 \mathrm{amp}$ 5 amp model £8.7.6\qquad

10 amp C/O PUSH-BUTTON MICRO-SWITCH
panel mounting.
Buttons in Red, Green, White \& Black
Type SS-1. 4/8 each per 1,000

IMMEDIATE DESPATCH

 FULL SPARES AND SERVICE AVAILABLE
PROCESS TIMERS-MICRO SWITCHES

* Synchronous motor a clutch
- 10 million operations
- Instantaneous \& Timed out 3 AMP contacts
* Repeat Accuracy $\pm \frac{1}{2}$,
0.28 hrs May also be used as impulse stant

SYNChRONQUS MOTOR \& CLUTCH
Matehbor siza frontal area Automatic re-set

* plug-n octal base
- instantanedus ano timeo out 2 AMP CONTACTS hanges: 10 SECS. TO 36 MINS.

dependent

 on quantitySTP
TIMER

* 1 MILLION OPS.

5 Amp c/o Sub-miniature Micro-switch
216

* Light force wire operated Microswitch
Designed for even more economical coin-op mechanism

MICRO SWITCH

PROXIMITY SWITCHES, LIMIT SWITCHES AND LIOUID LEVEL CONTROLS MANUFACTURERS AND IMPORTERS FOR MINISTRY OF DEFENCE, G.P.O.

OMRON PRECISION CONTROLS

DIVISION OF IMO PRECISION CONTROLS LTD.
(Dept. WW9) 313 EDGWARE ROAD, LONDON, W2. TEL: 01-723 2231

One in five transistor sockets in this country are still calling for germanium transistors at a time when most semiconductor manufacturers have stopped producing them.
NKT has been expanding its germanium facilities to take the load and can readily supply most of the devices in current demand.

Apart from a comprehensive standard " $N K T$ " range of house coded devices, NKT specialises in the supply of:
(a) CV Germanium Transistors such as CV 5309, 5327, 5791. 5929. 7001. 7002, 7005, 7006, 7007, 7008, 7012, 7074, 7083, 7084, 7085, 7086, 7376, 7436, 7437, 7438, 7439, 8004. 8126, 8386, 8559, 8640, 8765, 8794. 8801, 8802, 8810, 8837, 8838, 9190 , 9308, 10809, 10992, 10995, 11176. " 2 N " Germanium Transistors such as $2 \mathrm{~N} 404,1302,1303,1304,1305$, 1306, 1307, 1308, 1309.
(c) "Old-European" Standard Germanium Transistors such as OC 28, 29 , 35, 36, 42, 44, 45, 70, 71, 72, 74, 75. 76, 77, 80, 81, 82, 83, 84.
(d) "New European" Standard Germanium Transistors such as AC 128 , 176; ACY 17, 18, 19, 20, 21, 22, 30. 39, 40, 41: AD 140, 149; AF 114, 115. 116, 117.
(e) Other Manufacturer House-code Germanium Transistors such as TK 23. $30,31,40,42,45,46,47,48,49$.

YOU may be in trouble over continuing supplies of germanium transistors such as these.
Why not contact NKT Sales Office with your requirement.

NKT-Newmarket Transistors Ltd., Exning Road, Newmarket, Suffolk.

Tel. Newmarket (0838) 3381. Telex 81358

Our model PPA1K power supply will provlde 1 kW of AC power at any frequency within the range 40 Hz to 10 kHz
A large selection of units from stock over the range 120 W to 160 kW

- low distortion - high frequency stability
- continuously variable output voltage
- single-phase or three-phase

LTV Ling Altec Limited
Baldock Road, Royston, Herts, England
Telephone: Royston 2424. Tolex: 81174

JOHN SMITH LTD.

209 SPON LANE WEST BROMWICH-STAFFS. TEL. 021-553 2516 (3 LINES) WOODS LANE-CRADLEY HEATH - WARLEY WORCS. TEL. CR 69283 (3 LINES

WW-047 FOR FURTHER DETAILS

INstanIT silitrion
 1 to 100 dB ATTENUATION

The Hatfield range of Switched Attenuators. Type 687. offer precise switched attenuation from $1-100 \mathrm{~dB}$ in 1 dB steps and are housed in neat. die-cast aluminium boxes only $5 \frac{1}{2} \times 1 \frac{5}{1} \times 2 \frac{1}{2} \mathrm{in}$.
The range comprises :

Type	Connections
687 A	BNC
687 B	BNC
687 C	
$687 \mathrm{D}^{*}$	BNC
687 E	BNC
687 F	BNC
687 G	BNC
$687 \mathrm{H}^{*}$	Terminals
	Terminals

Impedance
50 ohms
75 ohms
50 ohms
75 ohms 15 ohms
600 Ohms Unbalanced
600 ohms Unbalanced
600 ohms Balanced
600 ohms Balanced
gold-plared swich contacts.
Full details on request.
HATFIELD INSTRUMENTS LTD.
Dept. WW, Burrington Way, Plymouth, Devon.
Telephone: Plymouth (0752) 72773/5. Telegrams: Sigjen Plymouth. Telex: 45592

CHASSIS and CASES

Type N

CASES

ALUMINIUM, SILVER HAMMERED FINISH					
Typ	e Size	Price	Type	Size	Price
N	$8 \times 6 \times 2$ *	18/-	W 12	$12 \times 7 \times{ }^{*}$	37/6
N	$6 \times 6 \times 3$	17/6	W 15	$15 \times 9 \times 8$	48/6
N	$4 \times 4 \times 2$	11/-	Y 8	$8 \times 6 \times 6$	29/-
U	$4 \times 4 \times 4$	11/-	Y 12	$12 \times 7 \times 7$	45/-
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	17/-	Y Y Z 13	$13 \times 7 \times$	$50 / 6$ $53 / 6$
U	$8 \times 6 \times 6$	23/-	Z 17	$17 \times 10 \times 9$	72/6
U	$9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	24/-	Z 19	$19 \times 10 \times 8 \frac{1}{2}$	78/-
U	$15 \times 9 \times 9$	49/-		Height	
W	$8 \times 6 \times 6$	23/-		Plus post and	

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

BLANK CHASSIS

FOUR-SIDED 16 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2$ 11	6/3	2/11	$10 \times 8 \times 2 \frac{1}{2 \prime}$	12/-	5/6
$7 \times 4 \times 11^{\prime \prime}$	6/-	3/2	$12 \times 7 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	12/-	5/11
$7 \times 5 \times 2^{\prime \prime}$	7/6	3/5	$12 \times 9 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	13/9	7/-
$8 \times 4 \times 2$ "	$7 /$	3/4	$13 \times 8 \times 2 \frac{1}{2 \prime}^{\prime \prime}$	$13 / 9$	6/11
$81 \times 5 \frac{1}{1} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3^{\prime \prime}$	$14 / 6$	6/6
$9 \times 7 \times 2$ "	9/3	4/10	$14 \times 10 \times 2 \frac{1}{2 \prime}^{\prime \prime}$	16/-	$8 / 7$
$10 \times 4 \times 22^{\prime \prime}$	$9 /$	3/9	$15 \times 10 \times 22^{\prime \prime}$	16/6	$9 / 1$
$12 \times 4 \times 22^{\prime \prime}$	10\%	4/3	$17 \times 10 \times 3^{\prime \prime}$	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			,

TO FIT OUR CASES

Size	Price	Base	Size	Price	Base
$7 \times 53 \times 12^{\prime \prime}$	7/-	3/9	$12 \times 63 \times 2{ }^{10}$	10/9	5/11
$7 \times 53 \times 2$ "	7/9	3/9	$14 \times 83 \times 2{ }^{\text {1 }}$	13/6	7/11
$11 \times 63 \times 1 \frac{1}{2 \prime}^{\prime \prime}$	10/-	5/6	$15 \times 93 \times 2 \frac{1}{2 \prime}{ }^{\prime \prime}$	17/-	$9 / 6$
$11 \times 6 \frac{3}{4} \times 2^{\prime \prime}$	10\%	5/6	$17 \times 9 \times 2{ }^{\frac{1}{4}} \times$	18/6	$10 / 6$

WITH BASES

Size	Price	Size	Price
$5 \times 4 \times 22^{\prime \prime}$	9/3	$34 \times 34 \times 24^{\prime \prime}$	6/6
$4 \times 24 \times 1{ }^{\prime \prime}$	6/-	$3 \times 2 \times 1$ "	5/6
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 2{ }^{\prime \prime}$	7/3	$6 \frac{3}{8} \times 2 \frac{11}{16} \times 1+\frac{3}{4}$) $8 / 3$
	us pos	\& packing.	

PANELS: Any size up to 3 ft . at 6/- sq. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

H. L. SMITH \& CO. LTD.
 Electronic Components • Audio Equipment
 2871289 EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891

We shall be pleased to quote for all your component requirements.

Otatariso

MODEL 15

MICRO
 SOLDERNG INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $\frac{3}{6}$ in. (.047in.) to $\frac{3}{16} \mathrm{in}$., including long-life PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8} \mathrm{in}$. Weight $\frac{1}{2} \mathrm{oz}$.
Max. handle dia. $\frac{7}{16}$ in.

- EXTRA-HIGH

PERFORMANCE
Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15
watts-equals normal 30/40watt iron.

- ALL VOLTAGES

The ADAMIN range includes five other models $(5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue $\mathrm{A} / 5$.

LILHT SOLDERNG DEVELOPMENTS LTD

There are a couple of things you should know about the Welbrook All Silicon Stereo Amplifier

DISTORTION 0.1% at all output levels

PRICE
 £42. 0. 0d.

A new and unique method of equalising impedances in the output stage enables only Welbrook to offer such true high fidelity reproduction at such low cost.
This technical breakthrough brings you the Welbrook W20 Stereo Amplifier, with no distortion rise at any level, for only $£ 42$. o. od. This is a truly remarkable bargain among high quality stereo amplifiers, using Class B operation.

Performance:

Power Output:
24 watts R.M.S. (12 watts per channel) into 4 ohms load.
20 watts R.M.S. (l0watts per channel) into 8 ohms load.
14 watts R.M.S. (7 watts per channel) into 15 ohms load.
Total Harmonic Distortion:
Typically 0.1% for 10 watts per channel into 8 ohms load at I KHZ with no increase at low levels.
Hum and Noise:
With volume control at minimum 80 dB . With volume control at maximum-55 dB.
Frequency Response:
Frequency Response:
-1 dB at 30 HZ and 15 KHZ .
Inputs: Pickup:
Imputs: Rickup:
R.I.A. characteristic, sensitivity adjustable up to 3 MV to suit crystal; ceramic or magnetic cartridges.
Tuner:
Flat characteristic-sensitivity 100 MV -input impedance 100 K ohms.
Tape:
Flat characteristic-sensitivity 100 MV -input impedance
100 K ohms.
Outputs:
Loudspeakers output to suit 4,8 and 15 ohms. Tape output for recording-200 MV for rated input sensitivities-minimum
external impedance ro K ohms.
Tone Controls Bass:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 30 HZ
Treble:
Ganged control giving $\pm 14 \mathrm{~dB}$ at 15 kHZ
Balance Control:
Facility to reduce output from either channel continuously
from maximum output to zero.
Dimensions:
$143^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep $\times 4^{\prime \prime}$ high (cabinet)
Price:
Recommended retail price; $£ 42$. 0 . od. including cabinet.

WELBROOK ENGINEERING \& ELECTRONICS LIMITED, BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT

\square 䟚 \square

Get across loud and clear with AKG microphones!

Find out more about AKG mikes from

Politeohna (London) Ltd. 188-184 Campden Hill Road,
London.W.8. 24 Hr,Telephone: 01-727 0711 Telex: 23894
AKIV microphones

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specifled)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by wavelorm errors, load, power factor or phase shlift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM VIbrating Reed Frequency Meters are available in minlature switchboard and portabie forms, in ranges from 10 to 1700 cps . Descriptive IIterature on these meters, and on FRAHM Resonant Reed Tachometers, freely avallable from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. $48 / 56$ BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-3879092.

WW-058 FOR FURTHER DETALLS

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Meroury/Pogasus, Elliot 803,
Binery and special purpose Codes.
2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS. TELEPRINTER SWITCHBOARDS
Plcture Telegraph, Desk-Fax. Morse Equipment ; Pen Recorders; Switchboards; Converters and Stabilited Rectifiers; Tape Holders, Puller: and Fast winders; Governed, Sychronou: and Phonic Motors; Teleprinter Tablea and Cabinetes Stlence Covers; Distortion and Relay Testers; Send/Receive Low and High Pas fliters; Teleprinter, Morse, Teledeltos Paper, Tape
 and Ribbons; Polarised and specialived relays and Bates; Terminalo V.F. and F.M. Equipment; Telephone Cartiers and Repeaters Diversity: Frequency Shift, Keying Equipment; LIne Trantormers and Noise Suppresmors; Racks and Consolet Plugs, Sockert, Key, Push, Mindature and other Switches; Cords, Wlres, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Teat Equlpment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaicty Works, Akeman Street, Tring, Herte.
Tol. t Tring 3476 (3 llnes) Cables: RAHNO TRING STD: 044282 TELEX 82362

The T5000 is probably the most reliable digital magnetic tape recorder in fully computer-compatible format you can find anywhere. It has 12 months PROVEN OPERATION behind it.

We didn't want to say too much about the T 5000 until we were SURE of its performance. We've had it working internationally with discerning and demanding users. Now we're sure. You will find the T5000 a valuable contribution to your operation.

The T5000 fits easily into any system without headache - your interface problems have been anticipated right at the design stage.

BRIEFLY:

Reliability Proven All solid-state modular construction.
No relays. All logic is I.C.
Simple to Operate Simple tape path.
Automatic loading into vacuum columns.
Ideal Tape Handling Vacuum columns give optimum tape packing. Proportional servo dynamic braking.
Precision Tape Drive Electronic damping eliminates any incremental capstan drive resonances.
Packing Density: 200, 556 or 800 b.p.i.
Feed Modes a. Incremental on command.
b. 37.5 i.p.s. (other speeds to special order)

Increment Rate a. $0-300$ characters $/ \mathrm{sec}$ at 556 and 200 b.p.i.
b. $0-500$ characters $/ \mathrm{sec}$ at 800 b b.p.i.
(1200 characters $/ \mathrm{sec}$ to special order)
Start Time 2 mSec at 37.5. i.p.s.

Ferrograph Series 7a lifetime of recording

Ferrograph Tape Recorders have been famous ever since 1949. A lifetime's experience of making fine recorders goes into every one of Ferrograph's brilliant new Series 7.
And there is a lifetime's recording in every Ferrograph instrument. Many of the earliest Ferrographs are giving perfect service today - twenty years later. You can be sure your Ferrograph will do the same for you. It will give dependable service for many, many years to come. It will keep its value. It will need the minnmum of service. Spare parts will remain àvailable for a lifetime's recording. That's how Ferrograph got its name.

Available in Mono, and in Sterco with and without end amplifiers; combining a unique range of 30 recording facilitics, including:

- All silicon solid-state electronics with FET input stages and wide input overload margins. - Vertical or horizontal operation.

Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.
3 motors (no belts). 3 tape speeds.
Variable speed spooling control for easy indexing and editing.
Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.

- Pravision for instantaneous stop/start by electrical remote control.
Single lever-knob deck operation with pause position.
Independent press-to-record button for safety and to permit click-free recording and insertions. 81" reel capacity.
Endless loop cassette facility.
Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.
4 digit, one-press re-set, gear-driven index counter.
2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
Signal level meter for each channel operative on playback as well as record.
Tape/original switching through to output stages.
Re-record facility on stereo models for multiplay, echo effects etc, without external connections.
Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment. Three outputs per channel i.e. (1) line outlevel responise. (2) line out-after tone controls. (3) power output-8-15 ohms.

Power output 10W per channel.
Independent tone controls giving full lift and cut to both bass and treble each channel.
Retractable carrying handle permitting carrying by one or two persons.

U.K. Retail prices from $£ 175$ incl. P.T.

Listen for yourself

To know the Ferrograph Series 7 you must look at it, listen to it, for yourself. You will find it in stock at many of the best tape-recording and Hi-Fi specialists in the country, including the following:

Ferrograph stockists

London Dealiers
C. Goodwin (Sales) Ltd.,

7 The Broadway,
Food Green, N. 22
Tape Recorder Specialists
169-173 Sireasham High Rood
S.W. 16

Hampstead High Fidelity
IJa Heash Street, N.W. 3
Imhofs,
12-116 New Oxford St.
Largs of Holborn,
76/77 High Holborn
w.C. 1

Nusound,
242/4 Pentonville Road,
N. 1

Nusound,
82 High Holborn.
W.C.I

Nusound,
228 Bishopsgare
E.C. 2

Nusound,
300 Killourn High Rood.
N.W. 6

Nusound.
16 Lewisham High St
S.E.I3

Nu sound. E.IS

The Recorder Co.,
186-188 West End Lane
W. Kampstead. N.W. 6
R. E. W. (Earisfield) Lid., ${ }^{266-268}$ Upper Tooring Road. S.W. 17
R. E. W. (Eartsfield) Lid.,

146 Charing Cross Road,
w.C. 2

Telesonic Liden
2 Tottenham Court Road, W. 1
Teletape Lid.,

3 Edgware Roa

W. 2

Teletape Led.,
T4/8s Shaflesbury Avenue, W.I

Aberdeen
Aberdeen Radio Company,
12 Hadden Street
Aberdeen Sound Centre Lid.
25A Betmont S_{l}.
Banstead
Raylec Limited,
13 Buff Parade.
High Street
gh
Birmingham
Chas. H. Young Led.
70-172 Corporation Sireet.
Blrmingham
C. H. (Mi-Fidelity) Lud,
67.169 Bromsgrove Street.

Birminghams

Cine-Equipments Led,	Coventry Tape Recorder Services,
Audio Visual Department,	33 King William Street
9 A Dale End,	
Birmingham 4	Crewe Charlesworths of Crewe LId..
Blackburn	28 Highrown
Holdings Audio Cemre.	
39-11 Mincing Lane	Darington
Blackpool	McKenna \& Browa Lid.
F. Benfell Limited,	
17 Cheapside.	Derty
(Abingdon Streel)	Bucklands of Derby, \$1.49 London Road
Bolton	
Harker \& Howarth,	Doncaster
Churchgaze	Tom Jaques Ltd., Sound \& Electronic Engineers,
Tasco Recorderi (Bournemouth) Led. 16 Wood Sireer	
Tape Recorders (Bournemouth) Led.,	Dorchester
874 Christchurch Road	Sutions,
Bournemouth Hardye Arcade	
Forrester's.	Edimburth
National Radio Supples Lid.,	J. B. Fulton Associates Led.,
70-72 Holdenhurst Road	16 Howe St., Edinburgh 3
Brighton	
Avery's	J. J. Mitchel (Cameras) Lid.,
77 St. James's Sireet	Haymarkel Corner. Edinburgh /I
Lanes Radio Lid.	
// Gardreer Si.	Eppling
	Chew \& Osborne Lid.,
Audio Bristol, 148 High Street	
Park Streel Aienue, Bristol 1	Farnham
Bristoi I	Moyd of Keyworth Ld., 26/28 Downing $S t$.
Bristol \% West Recording Service Led, Glavgow6 Park Row,	
Bristol I	McCormack Ltd.,
	33 Bath Strees
Tape Recorder \& Hi-Fi Centres LUd., 82 Stokes Crof	
	Goodmayes Unlque Radio Lid.,
Bromley	The Focade,
Bromley Sound, High Road 32 Lerchworth Drive	
	Gravesend
J. Smith \& Son (The Rock) Lud., 184 The Rock	Bennet1 \& Brown (Gravesend) Lid.
	98, 60 b \& 60c Wrotham Road
Cambridge	Grimsby
	Lincolnshire Instrument Co.,
University Audio,/ \& 2 Peas Hill	Hi-fi House.
	60-71 Cariergate
	Guildrord
Canterbury Hi-Fi Centre. 26 St. Dunstan's St.	Merrow Sound Led.,
	229 Epsom Road,
Cardiff	
The Roath Radio \& Television Co., 23/27 Morgan Arcade.	P. J. Equipments Ltd.,
	3 Onslow Street
Cardif CFI 2AF	
	HIgh Wycombe
Sound Film Services (Cinema Liaison Lid.),	Hughes Photographic \& $\mathrm{Hj}-\mathrm{Fi}$ Specialists,
27 Charles SL.	7 High Strees
Tape Recorder \& Hi-Fi Centres Lid.,	Huddersfield
Oxford A rcade.	Woods.
The Hayes	The Music Shop. New Street
Caste Douglas	
John Mitchell,	
1/1 King Strees	Nusound, 87-100 Ifford Lane
Coventry	Ketrerng
Coventry Hit-Fi Centre. 13 City Arcade	Paul Taylor \& Partnern Lid. 1 Silver Sireet

Paut Taylor \& Parnnern Lid.

Leeds Becket Film Services Lid. Audio Visual Specialists, t6-48 The Headrow, Leeds LSI 8EL	Salisbury
	Suttons Music Centre
	Blue Boar Row
	Sherfeld
	Sheffield Sound Centre,
Vallance Audio Lab,, 20 New Market St.	101 Ecelesall Road
	Solihull
Leicester United Fitm Service, 13 King Sirees	C. H. (Hi-Fidelity) Lud.,
	12 Drury Lane
	Southampton
Liverpool Beaver Radio (L'pool) Led., 20-22 Whitgchape!	Hamilon Electronics (Southampton) Led..
	35 London Road
	Suttons. 421 Shirley Road
Lowestoft	
Hughes (Lowestioft) Lid., 62 London Road Norsh	South Shields
	Saviles's,
	9.7 Keppel Sireet
Maidsone Sloman \& Pettitu, Pudding Lane	Stafford
	Tom Reekie Lid.
Mansfield Syd Booth. /1 Queen St.	
	Stock port
	W. J. \& M. Baylis Lid.
	Reddish
Manchester Lancs. High Fidelity Lid., 248 Wilmsiow Road, Manchester if	
	Stockton on Tres
	Bond \& Mason,
Mlddesbrough	Radio-TV-Hi-Fi-Electrical,
McKenna \& Brown Lid., Linthorpe Road	
	Stoke on Tremt Wilsons Radio Ltd.,
Newcastle Clement Wain Limited Redlion Square	3032 Liverpool Road
	Sudbury
	The Record Shop,
Newcastle-upon Tyne	King Street
Turners (Newcastle-upon-Tyne) Ltd.,	Sunderiand
Camera House,	Saxons (Sunderiand) Lid., Photo-
Pink Lane	graphic Dealers, 20-22 Waterloo Place
Norwich	
Suttons,	Swansea
16-18 Exchange Street	Hoit,
	Radio, TV, Hi-Fi, Audio Electronics,
Notlinghurn The Audio Centre, 28-30 Pelham Strees	Picton Arcade.
	Oxford Sireet
	Teddlington
Peter Anson Electronics. 165 Arkwright Street	Daytronics Ltd., 119A High Siree
Nottingham Tape Recorders Lid. 11 Burton Street	Truro
	Fords (Prop E. J. E. Vivian)
Oxford	9 Pydar Streer
Westwoods,	Wealdstone
46 George Street.	K. J. Enterprises,
Oxford	17 The Bridge
Plymouth	Wilmsiom
Albert E. Ford Lid., 84 Cornwall Strees	The Hi-Fi \& Tipe Recorder Lounge,
Portsmouth H. R. K night Lid., 71 Tangler Road	
	WokIng D. H. Hughes $\&$ Sons Ltd
	29 High Sireet.
	Kпарhill
Tom Joyce. 117 Boundary Rood	Wolverhamption M. R. Warner \& Son Lid., 26 Chapel Ash
Redcar McKenna \& Brown Led., 135 High Street	
	Bowers \& Wilkins Lid, I Becker Bultings. Littiehampton Road
Reigate Alan Laurenson \& Co. 9 Bell Street	

Today's acoustical-performance standards are the highest ever. Nice to know Reslo makes equipment to match.

Precision-made amplifiers, loudspeakers, hi-fi radio tuners, full P.A. systems, accessories ...and microphones-magnificent. This is the Reslo range of products, designed to top the sky-high acoustical-performance standards of today. Shown above are some of Reslo's most in-demand microphones, three stylish, clean-sound units that truly speak for themselves...

Looking for one like this?

4 mm ., tubular, wire ended, length 11.5 mm Just one of the many Vitality Instrument and Indicator Lamps. made in an unusually large number of types, patings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in Vitality Catalogue 69 maywellbe

* Many a product owes its success to the intelligent addition of an indicator light'

VITALITY BULBS

VITALITY BULBS LTD., MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST EDMUNDS. SUFFOLK TEL: 0284 207,1

Mamber of the General Instrument Group

\section*{PARTS AND COMPONENTS FOR telecommuncaion enginering aND EIECTRONCS
 EXPORT－IMPORT
 | RC－Elements | \square Resistors |
| :--- | :--- |
| | \square Capacitors |
| | \square Potentiometers |
| | |
| Electromechanical | \square Connectors，sockets |
| Components | \square Switches |
| | \square Relays |
| | \square Pilot lamps |
| | \square Rotary buttons |
| | |
| | \square Microphones |
| Electroacoustic | \square Earphones |
| Components | \square Loudspeakers |
| | |
| | \square Transformers |
| | \square Fluorescent tube and mercury－ |
| | |
| | \square Vapourlamp adapters |
| and Components | |
| | \square Perrites |
| | \square Permanent magnets |
| | \square Aerials |
 IMPORT
 Vacuum tubes，speciallamps
 Semiconductor devices
 Integrated circuits}

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components

BUDAPEST
BUDAPEST，XIII．，VISEGRADI UTCA 47 a－b
Telephone：495－340；495－940．Telex：3648； 3649

Celestion PA

Loudspeakers for all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome

Driver Units

Pressure type units are available with or without tapped 100 V line trans-
 formers. The following 'built-in' features are on all models - High Sensitivity, Weatherproof, Phase Equalising Throat and Self-centring Diaphragm Assembly.

Re-entrant Loudspeakers

Rola Celestion re-entrant loud speakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

LOOKING FOR HIGH SPEED TESTING OF YOUR
 DATA TRANSMISSION SYSTEMS?

Here's the answer

THE NEW HIGH SPEED DATA
TRANSMISSION TEST SET NO. 5
FROM TREND

With this portable, mains operated, unit you can carry out high speed testing of your data transmission equipment and links, checking peak telegraph distortion and bias distortion at a received data input rate of 128 Kilo bits per second. Error counting can be achieved at speeds of up to 1.6 Mega bits per second.
The Test Set No. 5 comprises a data transmitter, a data receiver and measuring circuits contained in a strong, internally screened ABS case. The case can be removed and the Test Set then rack mounted if desired.

Trend have fully detailed leaflets on this and their full range of transmission test equipment which is available on request.

trend
Trend Electronics Limited

[^0]
Some notes on Bridge Measurement by WAYNE KERR

Number 4

The Electric Field

The first three issues of these notes have described the basic principles of the Transformer Ratio Arm Bridge and have shown how high impedance components, such as small capacitors, can be accurately measured at the end of very long lengths of screened cable. The use of the bridge neutral connection enables the capacitance of the connecting cables to be isolated from the component being measured, the balance point of the bridge being unaffected by the presence of the screened cables. In this issue the use of the neutral connection to control the electric field surrounding an electrode forming part of a parallel plate or coaxial capacitor is described.

Figure 1

If a parallel plate capacitor is drawn, together with the associated electrostatic field, it will be apparent that the measured capacitance of this arrangement can be considered as the sum of two components; $\left({ }_{C}\right)$, the value for the centre part of the field in which the lines of force are linear, and $\left(C_{F}\right)$, the value for the non-linear fringe field. Figure 1 illustrates these fields.

The electrical value for such a capacitor is exceedingly difficult to calculate, owing to the complicated nature of the fringe field, and so it has become common practice to use plates which are large in diameter and also placed closely together, in order to reduce to a minimum the effect of the fringe field. Furthermore, a difficulty arises in the determination of the permittivity of a substance comprising the dielectric. This is a simple ratio of the capacitance of the plates with the material placed between them to the capacitance of the plates in free space. In theory, an infinitely large disc of material would be necessary in order to carry out such a measurement and avoid errors due to lines of force in the fringe field traversing the edge of the disc.

The transformer ratio arm bridge offers a practical solution to these difficulties and Figure 2 shows how these errors can be eliminated by the use of the bridge neutral connection.

The right hand circular electrode is surrounded by an annular guard ring and is separated from it by a thin ring of insulating material.

When the system is balanced, both the central electrode and the guard ring are at the same potential and the bridge will only measure the capacitance formed by the central part of the field (C_{B}).

Further consideration of this arrangement shows that the thickness of the insulation in the annular gap becomes a limiting factor in the accuracy of the measurement-a wide gap would start to produce locally curved lines of force proportional to the width of the insulation. Fortunately, a technique developed recently enables an insulating layer to be produced only a few microns thick substantially removing this difficulty.

So far, the discussion of the transformer ratio arm bridge and its application to capacitance measurement has neglected a fundamental necessity, the creation of a precise standard of capacitance. The techniques already described can be used to design a basic standard, dependent only on the determination of the exact mechanical dimensions and the velocity of light for its achievement.

Figure 2
The ability to measure the capacitance between two electrodes precisely without correction being necessary for the effect of the fringe field creates new possibilities in metrology as well as electronics. Bridges can be constructed to measure reciprocal capacitance, and as the distance between linearfield electrodes varies as $1 / C$, a voltage output can be given from the bridge directly proportional to this distance.

"H14x burr free holes

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works: Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades. Garages, etc.
Obtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

" D -MAX" (electronics) LTD. Napier Hosse, Hish hollom, Lonon, w. .c.

WW- 072 FOR FURTHER DETAILS

NewWeapons
 for the waragainst noise

We hate noise. We make filters to suppress it wherever it occurs. And now we are killing it at source with a new range of weapons . . . moulded track potentiometers. Quiet controls that retain low noise levels through a long operational life (upwards of 100,000 cycles).
There are over two dozen types in the range. Each has a hot moulded track element of large cross-sectional area, giving low current densities, high voltage ratings : eliminating local high spots and over-heating; eradicating wear.

An integral moulding of base, track and terminals gets rid of solders, rivets, welds: provides increased reliability and excellent humidity characteristics.

Standard or miniature designs, pre-set or switched for P.C.B. cr chassis mounting are available in sealed and edge operated units. All are designed to meet the requirements of Specification DEF-5122 and are available with inear, logarithmic or special function laws.

ERE
ELECTRONICS
LIMI-ED

All the lethal facts are in the brochure. Send for your copy today.

ERIE ELECTRONICS LIMITED.
Erie Controls Division.
Great Yarmouth,
Norfolk.
Tel : 04934911 Telex: 97421.

YOU Want PaRTS URGENTLY
 -almost
 immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, If it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standord parts made by these Companles and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full detalls of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplles Ltd.,
Frederick Road, Stapleford, NottIngham. Sandiacre 8072 STD ONO 2398072

 四
 pacesetters in storage equipment

Sond your FREE BHOCH.|NAME
URE \square of Sand \square (how AODRESS
many) Budget Storage
Unite (1) E 17 8e. In greon Dept.ww Eegle Steelworke, Moywood, Lence. Tel: 89018
or gray
Landnn: 28.27 Newlon St. W.C. 2 . Tel: 01.405 7931
WW-076 POR FURTHER DETALL.

CALAN TRACE SHIFTER C50ID

* A TRACE (9,600 MILLIMETRES LONG ON A 5 INCH TUBE!)
* A THREE DIMENSIONAL DISPLAY!
* Vertical comparison of successive scans!

Add these facilities to your oscilloscope. They will help you to examine the functional waveforms of heart or combustion engine or for that matter any other long waveform phenomena.
Price £78 Export and Agency Enquiries Invited.
Calan Electronics Limited,
6 Croft Street, Dalkeith, Scotland Tel. 031-863-2344
WATTS' THE
NAME FOR
RECORD
MAINTENANCE

HI-FIPARASTAT

Gramophone

 Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick=ups requiring very low tracking pressures. The 30,000 finely pointed tips of the $\mathrm{Hj}-\mathrm{Fi}$ Parastat Brush positively explore every detail in the record groove to provide the high degree of record cleanliness necessary when using ultra lightweight pick-ups tracking at 2 grammes or less. The cover pad in the lid of the case is provided for the purpose of cleaning and activating the brush which when enclosed within the case is kept at the correct level of humidity required to control all static at the working surface, Perfectly clean records must be played with a perfectly clean stylus and an integral part of the kit is the new Watts Stylus Cleaner which provides a safe and efficient method of cleaning the stylus.
Supplied complete with instructions, 1 oz . New Formula dispenser, Distilled Water dispenser, spare pad cover and ribbons. Price 42/6 plus 1/3 P.T.
Replacements: 1 oz. New Formula dispenser 4/6 Distilled Water Dispenser 4/- Pad Cover and Ribbons1/9.

'PARASTAT'regd
 Manual Model

Mk.IIA

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. Complete with 1 oz. New Formula dispenser and instructions. Price 45/-.
Replacements: Pad Covers 2/-each. Brush 12/6. Sponge Cover Pad 1/1 oz. New Formula Dispenser 4/6. HUMID MOP. Recommended for use in conjunction with the Manual Parastat and Preener. Cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use. Complete with spare sponges and instructions. Price 4/6. Replacements: Set of Sponges $2 / 6$. 'PARASTATIK'

DISC PREFNER

Karcmo. Keeps new records like new. Expressiy designed for use with records which have not had previous antistatic treatment. Complete with instructions. Price 8/9. Replacements: Packet of 4 wicks 2/-

Al/ obtainable from vour local specialist or direct:

Automatic Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced. resulting in cleaner reproduction. Complete with $\frac{1}{2}$ oz. New Formula Dispenser and instructions. Price $18 / 9$ plus 4/5 P.T. Replacements: Nylon Bristle and Plush Pad 1/9. $\frac{1}{y}$ oz. New Formula Dispenser 2/6.
A GUIDE TO THE BETTER CARE DF L.P. AND STEREO RECORDS
 Cost Free. To CECIL E. WATTS LTD. DARBY HSE, SUNBURY ON THAMES, MIDDX. I Please send (Post Free U.K. and Commonwealth)
Disc Preeners @ 6/9 Hi-Fi Parastats @ $42 / 6$ plus $1 / 3$ P.T. Dust Bugs @ $18 / 9$ plus 4/5 P.T

Manual Parastats @ 45/48 page Booklets @ $2 / 6 \ldots \ldots$
Replacement Parts :
I enclose cheque/P.O. value $£$
(Do not send postage stamps)
Name
Address

LEVEL

METERS...

For a wide range of applications in professional radio, recording. instrumentation, and domestic equipment. For further information contact, IMPECTRON LTD., 23-31, King Street, London, W.3, Telephone : 01-992 5388

AUDIO \& DESIGN "HYPERTONE" LOUDSPEAKER

* Titanium Hyperbolic Radiating Element provides the highest standard of definition ever achieved.
\star Beryllium Copper Suspension provides low distortion bass.
* Massive 6 lb . Ceramic Magnet for easier Power handling.
« Modular approach allows flexibility of design.
ڤ Enthusiasts please note, the HYPERTONE reproduces everything.
* Frequency Response: Total integrated power within $4 \mathrm{db}-25 \mathrm{c} / \mathrm{s}$ to $22 \mathrm{Kc} / \mathrm{s}$.
* Impedance at $400 \mathrm{c} / \mathrm{s}, 8$ ohms or 15 ohms.
\star Power handling 15 watts R.M.S.

HYPERTONE
Suggested Retail Price f18.15.0

Write for further details and nearest Stockist:-
54 ROUNTON ROAD,

KEITH MONKS (AUDIO) LTD.

CHURCH CROOKHAM,
Nr. ALDERSHOT, HANTS.
Tel: FLEET (02514) 3566

WRITE FOR DEMONSTRATION AT THE AUDIO FAIR STAND 88.

WW- 081 FOR FURTHER DETAILS
WW- 082 FOR FURTHER DETAILS

ELESTA

A comprehensive range of compact counters specially designed for
industrial application

- BATCH COUNTING AND MULTIPLE PRESELECTING OF QUANTITIES
- TIME INTERVAL AND FREQUENCY MEASUREMENT
- RATE AND RATIO MEASUREMENT (rpm, ft/sec, gallons/min, etc)
- PROCESS CONTROL AND PROGRAMMING
- NUMERICAL MACHINE CONTROL SYSTEMS
Leine \& Linde rotary digitisers Elesta bidirectional counters
BRITEC LIMTTE D
17 Charing Cross Rd., London WC2. Tel: 01-930 3070. Telex 915854

Residual magnetism may endanger your tapes every time you play them: For only 75/the Ferrograph Defluxer protects them.

No professional studio would ever record without defluxing the heads and tape guides; so it is sensible that you, too, should follow this procedure at home. Once you have made a recording, or bought a pre-recorded tape, you must ensure that your sound is protected.

Electrical pulses, or magnetic materials such as are in loudspeakers nearby, can cause magnetization of the heads and guides which increases background noise and reduces highfrequency response.

Prevent any possibility of ruining your tapes. This unique

Ferrograph Defluxer is simple and quick, and can be used with practically any make of tape recorder. Once you start using it, your valuable, often irreplaceable tapes are protected against magnetization: surely it is worth just 75/-protection money! Call at your Ferrograph dealer, or send this coupon with your cheque/P.O. for a Defluxer. Money back guarantee if not

Ferrograph

SIMPLY SUPERB!

the new brenell... MODEL ST STEREO
Probably the most important new recorder of the year!
The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics; shelf-mounting cabinet; simplified controls. Sound quality is even better than ever-as good as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.
Only the price is less than you may expect . . . f 145 recammended. You pay no import duties . . . no high selling costs . . . only for a top-quality recorder, well made. It's a fine formula !

- Mono or stereo operation - 3 tape spends
- Choice of 2 or 4 -track 2 recording level meters
models - Full inputfoutput and
- 3 outer-rotor motors control facilities

A range of Brenell mono and stereo recorders is available, logether with Brene/hdeck and tape-link

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Jnformation from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-087 FOR FURTHER DETAILS

Cameras a plenty... but how quickly can you find the right low cost tube?
There is a growing range of closed-circuit equipment available. ranging from the simple black and white camera to scphisticated full-colour facilities. The time inevitably

EMI EAOUELEETRONIES

emielectronics lto., valve oivision. hayes, micolesex. tel: 01.5733888 ext. 2078

EOMUNOSONS ELECTRONICS LTD..
60 - 74, MARKET PARADE. RYE LANE. PECKHAM, LONDON. S.E. 15. TEL: (01)-639 9731
HAWNT \& CD. LTO
112 - 114 . PRITCHETT STREET. BIRMINGHAM. 6
TEL: 1021)-359 4301
SOUTH WALES WIRELESS INSTALLATION CO. LTO.
121. CITY ROAD. CARDIFF

TEL: (0222)-23636

SMITH \& COOKSON LTO
49-57. BRIOGEWATER STREET. LIVERPOOL 1
TEL (051) - ROYAL 3154
the neeoham engineering co. lito.
P.0.8. 23, TOWNHEAD STREET. SHEFFIELO SI IYB

TEL: (0742)-27161
J. GLEOSON \& CO. LTO.

NEWBIGGIN LANE, WESTERHOPE. NEWCASTLE UPON TYNE, NES IPM
TEL: (0632)-860955

OKIEY TRANSISTOR SWITCHED INDICATOR LAMPS

The Oxley Transistor-switched Indicator Lamp has been designed to indicate the state of logic or counting circuitry, and will find wide applications in computer read-outs and electronic instrument displays.

The Transistor-switched Indicator Lamp is based on the highly successful 'Barb' cone lock Indicator Lamp. and contains its own driver stage which enables the Lamp to be controlled direct from I.C. logic or other low current signals.

The design incorporates the following outstanding features:-

* rapid fixing from the front of the panel
- ideal for close grouping
- removable lens cap, available in seven colours. facilitates
- bulb replacement
* virtually unbreakable lens cap
* available for $6 \mathrm{~V}, 12 \mathrm{~V}$. or 28 V supply
* units available for positive or negative logic
* frontal appearance matches our existing range of lamps.

Major 3000 , minor 600 , comb type relays. Dependable will give you a planned delivery to match your Manufacturing schedules. Tell us what you want, and we'll see that you will get it! Contact us now and get the sort of answer you want to hear.

DEPENDABLE RELAY (CONTROLS) LTD 157 Regents Park Road, London, N.W.1. 01-722 8161

COAXIAL terminations DC-2.5 GHz.

 $2,5 \& 12$ WATT.

Series 600, 2, 5 and 12 watt Terminations are low reflection loads for terminating 50 ohm coaxial systems in their characteristic impedance. The frequency range is D.C. to $2.5 \mathrm{~K} \mathrm{mc} / \mathrm{s}$ with the V.S.W.R. of the termination less than 1.03 (.97) over the entire range for models fitted with E.I.D. $\frac{3}{4}$, Dezifix B, GR 874 or GR 900 connectors. In all 16 types of connector can be supplied.

TRIO INSTRUMENTS LTD. BURNHAM ROAD, DARTFORD, KENT. Telephone: Farningham 2082.

WW-091 FOR FURTHER DETAILS

Ballistics
Computers by Westinghouse.
Nine servo amplifiers with associated motors. Brand new in sealed containers. £95, delivered.

punches, readers, yerifiers and teleprinters at realistic prices to eouchtionists. mobile ShOWROOM CALLS OM REQUEST.

Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal amateur computer. Application leaflet. $\mathbf{£ 1 2 . 1 0 s . ~}$ post free.

COMPUTER TRAINING PRODUCTS

2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/8

WAYNE KERR 0.01\% Autobalance Bridge

WIDE RANGE a.f. bridge for precise measurements of single components or any LCR combination - including negative resistance.
AUTOBALANCE circuits give continuous readout, even of changing values. ANALOG OUTPUTS from in-phase and quadrature channels for operating recorders. COMPARATOR facilities and continuously variable backing-off controls permit discrimination to 10 parts per million.
SIMPLICITY of operation: a flexible lead arrangement gives 2, 3 or 4 -terminal connections.

AUTOMATIC compensation for lead impedance.
RANGES
C 100 attofarads - 1 Farad
G 1 picomho
L 10 nanohenrys
R 100 micro-ohms

- 10 kilomhos
DISCRIMINATION
Up to 6 figuregahen on all ranges.
FREQUENCY

Internal. 10,000 radians $/ \mathrm{sec}(1592 \mathrm{~Hz})$
1 kHz to order.
External: $200 \mathrm{~Hz}-20 \mathrm{kHz}$
OUTPUTS (both channels)
$0-100 \mathrm{mV}$

Rendar control knobs are designed for fast, precise indication. Made in a variety of styles with wings, skirts, concentric and many other features, they are supplied in a range of materials, colours and finishes (including plated) to suit all needs.

Further information available from:

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-4 CABLES: RENDAR, BURGESS HILL

WW-094 FOR FURTHER DETALS

FREQUENCY CHANGER FOR 110VA $60 \mathrm{~Hz}, 110 \mathrm{~V}, 220 \mathrm{~V}$ OUTPUT
R. GILFILLAN AND CO. LTD.. SOUTHDOWNVIEW ROAD. WORTHING. SUSSEX. Tel. (0903) 31587.

SPECIALIST SWITCHES are again giving the fastest switch service in the world
FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are gelling the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

WW-095 FOR FURTHER DETAILS

—AVONCEL— TM40 TROLLEY

EDITIONS FOR ALL MAKES AND MODELS OF OSCILLOSCOPES

PRICE INCIUDES DRAWER; CARRYING-UNIT: POWER-BDARD AND 2 BRAKED CASTDRS.

AVON COMMUNICATIONS AND ELECTRONICS LTD.
318 BOURNEMOUTH (HURN) AIRPORT, CHRISTCHURCH. HAMPSHIRE TEL. NORTHBOURNE 3774 TELEG. AVONCEL. CHRISTCHURCH

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:

* very low distortion content-less than .05\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time

£35.0.0

also available
Si452 Distortion Measuring Unit

* low cost distortion measurement down to $.01 \%$ with comprehensive facilities including L.F. cut switch. etc. £25.0.0

[^1]

s, 家
 MODEL 2000
 PLINTH SYSTEM

Designed to house SME precision pick-up arms in combination with leading makes of turntable, the Model 2000 Plinth System combines high-quality workmanship with ease of assembly. The basic unit is finished in selected veneers of teak, straight grained walnut, or rosewood. A one-piece hinged lid in heavy acrylic is reinforced with a polished stainless steel trim.

Motor boards in matching veneers are ready cut and drilled for screw-driver assembly with the appropriate pick-up arm and turntable. The range, which will be added to from time to time, includes a blank board which can be cut to special order.

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

D54 Solid State Dual-Trace Oscilloscope
 The D54 is an all solid state dual-trace 10 MHz portable oscilloscope. Wide time base range, broad bandwidth characteristics and

 calibrated deflection factors make the D54 well suited for general-purpose laboratory work and production line testing applications. Look at the features:$\square 10 \mathrm{MHz}$ Bandwidth at $10 \mathrm{mV} / \mathrm{cm}$ E All Solid State Design Emall Size-Lightweight FET Inputs $\square 22$ Calibrated Sweep Speeds Chopped and Alternate Switching $6 \times 10 \mathrm{~cm}$ Viewing Area Versatile Triggering-Including T.V. Line and Frame Sync. All these and more for only $£ 150.0 .0$. (U.K. price inclusive of delivery)

Write or phone for details TODAYIII

Telequipment

\square
Telequipment Ltd., 313 Chase Road, Southgate, London, N.14. Telephone: 01-882 1166. Telex No. 262004 For Overseas enquiries write to: Tektronix Limited, P.O. Box 48, Guernsey, C.I. A member of the Tektronix Group

Wireless World

Electronics, Television, Radio, Audio

Integrated circuit tester

Electronies in civil aviation

This month's cover symbolizes the report on electronics in civil aviation which will be found on p. 511.

OUR NEXT ISSUE

Pickup Survey-a critical review of the various types of transducer available. A Thermistor Hygrometer using a single i.c. operational amplifier is described.
Review of the London Audio Fair.

Contents

Domestic Broadcasting

A Design in Retrospect by 7. Dinsdale
Cassette System for $\frac{1}{4}$-in Tape
Simple I.C. Tester by D. E. O'N. Waddington
Conferences \& Exhibitions
Amateur Radio Show
Electronics in Civil Aviation
Stuttgart Radio \& TV Show
News of the Month
Letters to the Editor
Personalities
Active Filters-4 by F. E. J. Girling and E. F. Good
R.F. Amplifier for F.M. Tuner

Books Received
Living with Hi-Fi by Heather Dinsdale
Transistor Distortion Characteristics by 7. L. Linsley Hood
Announcements
Circuit Ideas
Wireless World Logic Display Aid-7
More Letters to the Editor
Test Your Knowledge questions and answers devised by L. Ibbotson
World of Amateur Radio
New Products
November Meetings
Literature Received
H.F. Predictions

Real \& Imaginary by "Vector"
SITUATIONS vacant
INDEX TO ADVERTISERS

Volume 75 Number 1409
Number 1409

How we set the trend in plastic film capacitors

Ten years ago, Mullard introduced the C296 series of plastic film capacitors to replace the paper components then used exclusively in consumer applications in the UK. The film used is polyethylene-terephalate generically known as polyester. This revolutionary film transformed the British capacitor market. It enabled Mullard to reduce component size by as much as 15% compared with paper types. Working voltages were up to 400 V d.c. Insulation resistances greater than $50,000 \mathrm{M} \Omega$ at $20^{\circ} \mathrm{C}$ were achieved for the first time in commercial quantities. The polyester film itself was nonhygroscopic and chemically inert. It was wound with aluminium using an extended foil technique to give minimal self-inductance. And the finished capacitors were encapsulated in hard, water repellent lacquer, which was unaffected by temperatures up to $150^{\circ} \mathrm{C}$.

New techniques New manufacturing techniques were then introduced in plastic film capacitors, which allowed a metallised layer to be deposited on the film. This reduced our capacitor
sizes by up to a further 50%. About this time, the general acceptance of printed circuits created a strong demand for various components in different shapes, with particular dimensions to close tolerances. And because we at Mullard anticipated this trend we now produce the C280 miniature metallised film capacitors. These small devices have radial terminations in the standard 1.E.C. $0 \cdot 1$ inch grid spacing, making them the economic answer to the problems of improving packing densities and reducing assembly production times. Due to their distinctive colour coding, small size and wide capacitance range the demand for these capacitors is far in advance of all others. The 400 V units have a more recent polyester film (polycarbonate) which reduces losses at frequencies of 20 kHz and above. This also applies to the C281 series with their axial leads and moulded encapsulation.

Development Work of course continues, and encouraging results are being achieved with capacitors for a.c. power handling, for example for interference suppression and power factor correction, using polypropylene films.

Higher demand The demand for discrete passive components has increased enormously during the last ten years. And today there is a
continual demand for polyester capacitors in the range $0.00{ }_{\mu} \mathrm{F}$ to $10_{\mu} \mathrm{F}$ for most applications in the domestic field.

Worth it ? Right from the beginning we've anticipated the changing requirements, tested new materials and techniques so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across our very wide capacitor range including electrolytic, variable and ceramic types. Mullard electronic components find applications as unexpected as astronomy and zoology, giving us experience in many technologies. Experience our customers now take for granted.

Mullard
 components for consumer electronics

Mullard Limited
Consumer Electronics Division
Mullard House Torrington Place London WCl

Wireless World

Domestic Broadcasting

Editor-in-chief:
W. T-COCKING, F.I.E.E

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant:

J. GREENBANK, B.A.

Drawing Office:
H. J. COORE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. PARSONS (Classified Adverisememl Manager)

Telephone: 01-928 3333 Ext. 538

It is now 20 years since the Copenhagen Plan for medium- and long-wave broadcasting in Europe was implemented and the present chaotic state in the medium-wave band beggars description.

There are those who consider that the situation in the medium-wave band is beyond redemption and that only a v.h.f. national network can provide a worthwhile service (see 'Letters' p.518). While we would whole-heartedly agree with this view on the grounds of the quality of service v.h.f. provides we would like to see a bolder plan introduced by the broadcasting authorities in this country for the efficient use of the medium-wave band. We are not necessarily pleading for a new European plan-the U.K. would probably be worse off as the result of such a reallocation-but, are the potentialities of this band being fully exploited? Have we moved very far since the introduction of the B.B.C.'s Regional Scheme in, was it 1936? We believe the aerials at Brookmans Park, London, are very little different from those originally used!

Talking of aerials. Readers may have seen in the lay press references to the scheme put up by Hughie Green for 100 local radio stations in the medium-wave band. At first sight this seemed ludicrous in the present congested state of the band but the scheme, which was rejected by the Post Office, depended, to some extent at least, on the use of directional aerials serving a very limited area of up to five miles radius with a low-power (2 kW) transmitter. While the use of such aerials would certainly avoid the stations causing interference with other transmitters sharing the frequencies it would not eliminate interference from Continental stations. Incidentally, Mr. Green's scheme was based on a survey conducted by a German company. A British company declined to carry out the work because the kind of publicity arising from the proposed scheme would impair its relationships with "two of its most important customers, the Post Office and the B.B.C ".

In our August leader we considered, somewhat philosophically, the utilization of the radio spectrum, suggesting that the channels should be "tailored" to the information they are to carry. Some readers took us to task for this; commenting that our attention should have been directed to the B.B.C.'s use of its existing resources. One reader, who listed the 16 frequencies used by the B.B.C. in the medium- and long-wave bands, asked why the technique of synchronizing transmissions (as was done during the 1939-45 war to prevent them being used for homing by enemy aircraft) is not more widely used. Synchronization does, of course, necessitate national network operation and therefore precludes any "regional" variations. Such a network, or networks, provided by the B.B.C. could, and should, be supplemented by low-power local stations of the type envisaged by Mr. Green-whether they be commercially operated or as a non-commercial enterprise by a local authority.

It may not generally be known that the B.B.C. has been experimenting with compatible single-sideband transmissions in an endeavour to improve the signal-to-noise ratio in the medium-wave band. When the results of the experiments have been assessed maybe we shall hear of a scheme as bold as the television changeover from 405 to 625 lines.

A Design in Retrospect

by J. Dinsdale, м.A.

Abstract

The designs for high-quality audio amplifiers published in 1961 and 1965 gave rise to several hundred letters from readers. In this article those letters referred to the designer have been analysed to establish the most popular topics of interest, and some of the more interesting suggestions and comments are examined in detail.

When Dick Tobey and I published our first articles in $19611^{1,2}$ describing the design of a transformerless high-quality audio amplifier using transistors, we did not expect to awaken more than a passing interest among a few enthusiasts. It was therefore with a mixture of surprise and delight that we received (and duly answered) over 100 letters from readers of Wireless World. Of these letters, the majority were either from engineers who were not conversant with transistor techniques (especially the use of complementary transistors and the application of a.c. and d.c. feedback) or from constructors wishing to know where certain components might be obtained. There were also a few letters from more perceptive readers who offered some useful advice and criticism, and these proved to be of great value later on in developing the mk.II system.

The circuit had originally been developed from a servo-amplifier, which was found to have an exceptionally good frequency response and low distortion. The idea of using the so-called quasi-complementary class B stage, in which complementary driver transistors are followed by an output pair of transistors of a single type had first been proposed by H. C. Lin in 1956^{3}. The circuit which Tobey and I devised took advantage of Lin's concepts, but incorporated a modified form of feedback which gave lower distortion while maintaining satisfactory gain and phase margins for the whole amplifier. Tobey and I were both very keen on sound reproduction at that time (mid-1959) and we were anxious to exploit the then very new devices called semiconductors, which were

[^2]only just becoming available to home constructors in the U.K. at reasonable prices. I was then listening (single channel) via a Williamson amplifier with Partridge output transformer feeding a 12 -in Magnavox loudspeaker in a bass reflex enclosure. My pickup at that time was a Collaro Studio ' P ', later to be replaced by the Decca ffss mk.I which, when used with the S.M.E. 3009 series 1 arm and Garrard 301 turntable, gave results which at that time I considered to be little short of miraculous. However, the size and weight of the Williamson amplifier, and the heat produced by the valve heaters, made the prospect of constructing another identical amplifier for stereo distinctly unattractive. So when we found that a transistor servo amplifier, which we had developed for the inertial navigation system of a guided missile, sounded very nearly as good as the Williamson, could be assembled on a printed circuit board 5 inches square, and required only 40 V d.c. at less than 1 A peak current to give 10W into a loudspeaker load, we decided to modify the design to make it as good as possible for high-quality sound reproduction.

The performance of the transformerless quasi-complementary circuit developed by Tobey and myself appeared to be far superior (on paper) to the circuits then available (which employed transformers) and listening tests seemed to confirm this.

The two articles published at the end of 1961 described a class B quasi-complementary transformerless power amplifier and a pre-amplifier with comprehensive input, filter and tone-control facilities. The techniques used are commonplace nowadays, but they attracted considerable interest when published. Features in the power amplifier which were novel at that time included the quasi-complementary output stage and the use of a thermal feedback loop (utilizing the variation with temperature of the voltage across a diode junction) to stabilize the operating point of the output stage (and hence crossover distortion) against changes in ambient temperature. The method of earthing the equipment for single-channel operation was discussed, with particular reference to the
high asymmetrical currents whith flow in the output stage of a class B amplifier. The article also suggested how to select suitable transistors in the light of cut-off frequency, gain and noise.

The pre-amplifier employed two transistors, and gave an adequate performance without being particularly elegant. The method of equalizing the playback characteristic on disc replay utilized the selfinductance of the magnetic pickup in order to avoid designing a high-impedance input circuit. This method was subsequently found to be both difficult to apply with a single channel, and distinctly undesirable for two-channel operation because it caused excessive cross-channel interference. The tone controls used a Baxandall-type circuit, and the output fed directly into the power amplifier. The point was made that by applying the feedback networks for both the tone controls and the filters around the same stage, the characteristics of the two controls interacted in a beneficial way to increase the slope of the h.f. filter when the treble control was set to maximum boost. The stereo balance control operated by varying the feedback ratio around the second stage. This provided only 6 dB variation between channels, a figure subsequently found to be inadequate, and also tended to interfere with the operation of the tone controls. The complete system had been in operation since October 1959, some two years before publication, and we hoped that most of the obvious defects had been eliminated.
The mk.II design was constructed during 1963, and details were published early in 19654,5. The reason for publishing the new version was to improve the areas of weakness in the previous design, and to provide full details of the construction, which our correspondence had shown were badly needed. It also gave an opportunity of discussing some of the more interesting points in the design. The principal area of difference was in the pre-amplifier, which had been largely re-designed. The range of input circuits was closer to that then available from valve amplifiers, and the method of equalization for disc replay had been made completely independent of the inductance of the pickup. The tone controls and filters were much the same as before, but the balance control now utilized a log/antilog twin-gang potentiometer to give an infinite

Table 1. Performance of Mk. II system

Output power 10W r.m.s. per channel
Frequency response Total harmonic distortion
Signal-to-noise ratio
Power requirements
Controls $\pm 3 \mathrm{~dB}$ from 35 Hz to 20 kHz $\pm 3 \mathrm{~dB}$ from 35 Hz to 20 kHz
0.3% at 1 kHz and 10 watts 0.3% at 1 kHz
70 dB at 10 W
40 V at 800 mA (max.) or 150 mA (average)
Input selector (microgroove. standard, radio. microphone. tape replay). treble, bass, filter. tape replay). balance, function volume,
(stereo. reverse stereo. mono) Radio: -60 dB at 10 kHz Mic: -50 dB at 10 kHz
Less than 0.25Ω

Channel separation
Output impedance
availability; the majority requested information on the $n-p-n$ transistor, originally the 2 N 388 A . The articles had not specified where this component could be obtained. This was an unfortunate omission as germanium n-p-n transistors with a $V_{C B}$ of 45 V are not easily obtained, even now. There were a few alternatives, such as the 2 N 2613 (RCA) and the AC127Z (Mullard), none of which was quite as good as the 2 N 388 A for its sustained gain over the specified working range of collector current. A number of writers proposed using alternatives especially the OC139 or OC140, as these were the only British germanium $n-p-n$ transistors then commonly available. Unfortunately, the value of $V_{C B}$ for the OC139 and OC140 is only 25 V , and it is possible for the full h.t. of 40 V to appear across the transistor. A number of disappointed constructors did in fact write saying that they had blown up OC139s in the circuit.

Several constructors attempted to use a silicon $n-p-n$ transistor, allied with a germanium p-n-p transistor, for the complementary pair, but the characteristics of the dissimilar materials only serve to upset the symmetry of the amplifier. In addition, the thermal loop via the diode, which compensates for changes in ambient temperature, relies on all the transistors possessing similar values of $V_{B E}$, and the effect of using a silicon transistor is to prevent this temperature compensation from operating correctly. If a silicon $n-p-n$ transistor is to be used, then the complementary $p-n-p$ transistor should also be silicon, to preserve the symmetry of the circuit. When the mk.II circuit was published it was equally difficult to obtain silicon $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors.

Component tolerancing

The components used in most circuits, and the audio amplifier is no exception, may be divided into three categories when it comes to tolerancing.

These are:-

(i) Components whose values are by no means critical, where $\pm 50 \%$ is more than adequate. This applies to most electrolytic capacitors, resistors used to suppress switch clicks, etc.
(ii) Components whose value determines d.c. operating points: $\pm 10 \%$ is normally adequate.
(iii) Components whose value sets a precise parameter, for example equalization of recording characteristics, roll-off frequencies, etc. Here, the tolerance should strictly be determined from the maximum acceptable departure from the desired characteristic.

In this design I decided to recommend $\pm 2 \%$ for the components in category (iii)

Many of the letters received, especially after the 1961 articles, referred to component

Table 3. Principal topics of correspondence
$\left.\begin{array}{lccc} & \begin{array}{c}\text { Number of Times } \\ \text { Mentioned } \\ \text { Topic } \\ \text { In Letters }\end{array} \\ \text { 1. Suppliers of n-p-n transistors } \\ \text { 2. Matching and equalization of } \\ \text { magnetic pickups }\end{array}\right)$
as a compromise between faithfulness to the R.I.A.A. equalization curve, and reasonable price and availability. It is also worth noting that any inherent accuracy of equalization is nullified by the action of tone controls. Nevertheless I received a number of letters complaining that the performance of an amplifier departed by 5 dB from the R.I.A.A. curve (one of these from a man who had used $\pm 20 \%$ capacitors) and other letters saying that a design which had to rely on $\pm 2 \%$ components could not possibly be a viable proposition. I think that here one literally pays one's money and takes one's choice, and I would recommend $\pm 2 \%$ tolerance where stated for those readers interested in achieving the published sensitivity (optional) or the standard equalization curves (desirable). Incidentally although the Mullard polyester capacitors specified in the equalization circuits are rated at $\pm 10 \%$ from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, intensive tests on these established that over the normal domestic ambient temperature range of 15° to $25^{\circ} \mathrm{C}$, the values remained within $\pm 2 \%$ of nominal.

All other resistors were specified as $\pm 5 \%$ even though in many cases $\pm 10 \%$ would have been adequate, on account of the high degree of negative feedback. The use of 5% resistors was principally to facilitate postal fault diagnosis, by ensuring that the d.c. operating conditions in all models of the amplifier would be closely controlled.

Tape recorder modifications

Many correspondents requested information concerning the use of the amplifier with domestic tape recorders. First of all, how should the amplifier be connected to the "record" input socket? This connection is normally best taken from the collector of the second transistor via a suitable coupling capacitor, the value depending on the input impedance of the tape recorder. The signal will be equalized at this point, and at a level of $30-50 \mathrm{mV}$ r.m.s.; all controls are bypassed since one normally relies on those of the tape recorder itself. If the input impedance of the recorder is $1 \mathrm{M} \Omega$ (a typical figure) then the coupling capacitor should be of value $0.5 \mu \mathrm{~F}$.

The earthing can also lead to trouble, and it may be found worthwhile to avoid possible earth-loops by disconnecting the tape recorder mains earth and using that of the pre-amplifier. This approach is satisfactory provided that the tape recorder is individually earthed again when it is disconnected from the preamplifier.

The other tape recorder queries mainly concerned input to the pre-amplifier. Although equalization for $7 \frac{1}{2}$ i.p.s. from a low output tape head was provided in my design, I really expected users to take the output from the replay pre-amplifier on the recorder itself into the radio or auxiliary sockets on the pre-amplifier. I was therefore surprised to learn that many users required information on equalization for tape speeds of $1 \frac{7}{8}, 3 \frac{3}{4}, 7 \frac{1}{2}$ and 15 i.p.s. at various sensitivities. The C.C.I.R. standard of $70 \mu \mathrm{~s}$ for $7 \frac{1}{2}$ i.p.s. was used in the published design. For the two lower speeds the time constants become 140μ s and $280 \mu \mathrm{~s}$, and the value of the feedback capacitor must be proportionately increased in each case. If the resistor in series with the feedback capacitor is changed, to alter the sensitivity, the capacitor value will need adjusting to preserve the correct time constant.

Disc replay equalization

There has been much discussion in recent years in Wireless World and elsewhere, on the importance of accurate equalization of the disc replay characteristic, and the best means of achieving this. As far as magnetic pickups are concerned, the most appropriate way of dealing with these is to present the device with the manufacturer's recommended load impedance (normally $47 \mathrm{k} \Omega$) and then to apply the R.I.A.A. replay characteristic by means of negative feedback. Provided that the high input impedance is achieved by feedback techniques, so that the base of the input transistor can be connected to ground via the pickup itself (and a suitable blocking capacitor), and the gain demanded from the stage is not excessive, this will result in low distortion and a good signal-tonoise ratio. It must be remembered here first, that if a transistor has a gain of (say) 100, then the amplifier stage containing this transistor should not be expected to give a gain greater than 10 ; and secondly that the R.I.A.A. characteristic requires nearly 10 times more power gain (18 dB extra voltage gain) at 20 Hz than at 1 kHz where sensitivity is normally specified.

In the mk. II design the input impedance is $47 \mathrm{k} \Omega$ closely, and the stage voltage gain in the 'LP' position is 12 at 1 kHz rising to about 110 at 20 Hz . This bears
favourably with the minimum specified gain of 100 for both Tr_{1} and Tr_{2}. Many correspondents have written to me complaining of a lack of bass in the 'LP' position. I have examined two such cases, and both were caused by low-gain transistors in $T r_{1}$ and $T r_{2}$ positions; the stage was just not capable of providing the extra 18 dB at 20 Hz . A final word of caution on this subject: it is always advisable to check the output waveform on an oscilloscope when measuring frequency response curves. There is otherwise the danger of starting the test at 1 kHz , and failing to notice that the additional gain at lower frequencies is causing the waveform to square off and hence give an incorrect reading. The correct method of conducting this test is to present the input of the preamplifier with the inverse of the R.I.A.A. playback characteristic, and then to check the output for a flat response at the appropriate level.

Turning to amplitude-sensitive pickups (the piezo-electric types such as crystal and ceramic) many letters have implied a basic misunderstanding of how these devices operate. Curve A in Fig. 1 shows the amplitude of movement of the recording (cutting) stylus when recording a flat signal at all frequencies. Curve B shows the output of a velocity-sensitive (magnetic) pickup tracking the signal of curve A; the output is proportional to the rate of change of magnetic flux linkage, and will thus increase with frequency. Application of the R.I.A.A. playback equalization (shown in curve C) to curve B will give a flat response. The output of a perfect amplitude-sensitive pickup would be expected to mirror curve A, but the output of crystal and ceramic pickups is purposely modified by the mechanical characteristics of the mounting in such a way as to compensate for the recording characteristic and provide a reasonably flat output under no-load conditions. However, the performance of these pickups has, in my experience proved somewhat disappointing and 1 have obtained far better response curves from correctly equalized magnetic pickups. The equivalent electrical circuit of a crystal or ceramic pickup may be approximated by a constant voltage generator in series with a capacitor, as

Fig. 1. Recording/ playback curves.

(a)

(b)

Fig. 2. (a) Equivalent circuit and (b) response of crystal pickup.
shown in Fig. 2(a). When this is loaded by a resistor, as must occur when it is con nected to the input of the pre-amplifier the resultant response is as shown in Fig. 2(b) the turnover frequency f_{1} being given by the expression

$$
f_{1}=\frac{1}{2 \pi C R}
$$

The value of C is fixed by the design of the pickup itself, and may lie in therrange $200-2000 \mathrm{pF}$, and the value of R is the apparent input impedance of the preamplifier as seen by the pickup.
There are three methods of loading a crystal pickup, as shown in Fig. 3:
(i) Employ a very high load-resistance (1 to $4 \mathrm{M} \Omega$) with no further electricald equalization since this is performed approximately by the mechanical circuit of the pickup. This will place f_{1} below the audible frequency spectrum.
(ii) Load the pickup with a relatively low resistance and equalize by using a feedback circuit composed of a series capacitor and resistor with the same time constant as the pickup capacitance and loading resistor.
(iii) Load the pickup by the more complex circuit described in my letter to Wireless World which provides, in combination with the mechanical circuit of the pickup, an output closely resembling that from a magnetic pickup. This may now be equalized exactly as for velocitysensitive devices.

Since the inbuilt mechanical equalization is not affected by electrical loading, the output of a crystal pickup when loaded by a low resistance as in method (ii) will only approximate to the output of a velocitysensitive device and equalization of this output by the conventional R.I.A.A. network will only approximate to an ideal response.
My choice of velocity-loading for crystal pickups was made because it permitted a single position 'LP' on the inpur switch, instead of two positions 'LP Magnetic' and 'LP Crystal'. In addition a number of high quality ceramic pickups require a loading impedance greater than $1 \mathrm{M} \Omega$ to achieve a bass response to 40 Hz using method (i) and my circuit is not ideally suited to this. Subsequent work has confirmed that resistive loading followed by equalization via method (ii) above is marginally best. Method (iii) is the easiest to implement with my published design, as in this case the feedback network is the same as that used for magnetic pickups. I would however emphasize that the optimum velocity-loading network varies for each pickup, \and is ideally associated with the pickup itself (mounted in the arm at the
cartridge terminals) rather than in the amplifier. It is possible to adopt more complex equalization networks, as advocated for example by Mr. J. L. Linsley Hood ${ }^{\text {B }}$, but my personal experience suggests that it is better to purchase a good magnetic pickup.

In spite of using the exact values of components for equalizing replay characteristics, the true response curves will not be obtained unless the treble and bass controls are set to a true 'flat' position, which may not coincide with the geometrical centre of rotation, or indeed may not be the same for both sections of a twinganged control. For this reason, several correspondents asked for the values of resistors for a switched control, and these are given in Fig. 4. The preferred switch is the Radiospares 2-pole 6-way midget wavechange switch, which is about the same diameter as the potentiometers it replaces.

Stereo switching

It was found convenient to carry out mode switching, i.e. stereo / reverse stereo / mono, at the output of the pre-amplifiers. The 'reverse stereo' position permits channels to be reversed so as to use the loudspeakers with the best bass response in the most appropriate channel (where non-identical speakers are employed); it can also be used to transpose the 'positions' of instruments from left to right, and reverse the 'direction' of trains and other stereo demonstration gimmicks. However, a number of readers have pointed out that by combining the two channels at this point for mono operation, the balance control must be set truly mid-way for correct cancelling of the out-of-phase component of the signal, and also the signal-to-noise ratio is degraded by 6 dB . These are certainly valid points, but the switching problems involved if the channels are paralleled earlier in the pre-amplifier make any alternatives undesirable.

Input switching

It is clearly a disadvantage to run the leads from the input sockets right up to the front panel for switching. A better arrangement would be to place the input switching wafer at the extreme rear of the unit, with wiring directly from the input sockets. The 'feedback switching' wafer should be placed at the front of the unit as at present, and the switch should of course have a long shaft.

Power, sensitivity and distortion

On occasion, correspondents have asked whether the output power can be increased. The power available from a transformerless class B output stage depends on the applied voltage and the loudspeaker impedance. More specifically it is given by

$$
P=\frac{(V-v)^{2}}{8 R}
$$

where $P=$ output power (r.m.s. watts), $V=$ supply volts, $v=$ volts lost in output transistors, etc., and $R=$ load impedance.

Thus for a given load impedance, the only way to increase the power is to increase the supply voltage. This is possible only if the transistors and other components will stand

Fig. 3. Methods of loading crystal pickups. In 2 and 3 the time constants of the loading and feedback networks must be matched.
the increased voltage without breakdown. Alternatively, the load impedance may be reduced (e.g. from 15 to 8Ω). In this event the additional power is supplied by increased currents in the output and driver stages, and this is liable to result in increased crossover distortion.

The sensitivity of the power amplifier is given closely by the expression

$$
\frac{R_{f}+R_{e}}{R_{e}}
$$

where K_{f} is the feedback resistor from the amplifier output to the emitter of the first transistor and R_{e} is the value of the unbypassed emitter resistor of the first stage. (In the mk. Il circuit, the sensilivity is

$$
3900+39
$$

39
i.e. 100.) The sensitivity of the pre-amplifier is given by

$$
A \frac{\left(R_{f}+R_{e}\right)}{R_{e}}
$$

where R_{f} is the impedance of the appropriate feedback network, R_{e} is the unbypassed emitter resistor of the first stage, and A is the attenuation of the input network (if any). If (as some readers have enquired) it is necessary to increase the sensitivity, this may be carried out in either the power amplifier or pre-amplifier or both. However attempts to do this may result in increased distortion, worsening of the signal-to-noise ratio, and impairment of the frequency response.

Several readers wrote to say they were experiencing severe distortion, and subsequent investigation showed that they were using a $3-\Omega$ loudspeaker with the $15-\Omega$ design. As a result, the output and driver

Fig. 4. Switched tone control networks.

Fig. 5. Loading network for high-sensitivity earphones.
stages were supplying a higher current than the design permits, and crossover distortion was excessive. I do not recommend reducing the load to below 8Ω (when using the $40-\mathrm{V}$ design) if distortion is to be kept reasonably low. It is worth noting that the component of crossover distortion remains fairly constant regardless of output power level, and as a result the distortion increases from 0.2% at 10 W to 0.5% at 0.5 W (both figures measured at 1 kHz). At higher frequencies the distortion is still larger. If the amplifier is to be used to drive earphones, which normally require a very low power, it is worth loading
the output with a resistor network in order to ensure that the amplifier itself operates at a power level of a few watts. Fig. 5 shows a suitable network for this purpose. If load impedances of less than 15Ω are to be used, the values of the coupling capacitors C_{7} and C_{8} should be increased in order to maintain a satisfactory bass response. As a rule of thumb, $1000 \mu \mathrm{~F}$ should be used with $15-\Omega$ loadspeakers, increasing to $2000 \mu \mathrm{~F}$ for $8-\Omega$ speakers.

The use of two electrolytics $\left(C_{7}\right.$ and $\left.C_{8}\right)$ is recommended for reducing the 'plop' sound when switching on both mono and stereo systems; a single pair of electrolytics shared by the earthy ends of both speakers is not recommended because it introduces audible cross-talk and distortion in stereo systems owing to the finite impedance (frequency-variable) of these components. It is worth noting that there will be audible hum when two electrolytics are used per amplifier unless a choke (e.g. 50 mH) is used in the power supply to provide additional smoothing.

If the power amplifier is to be run either as a separate unit or with a different preamplifier, it is important to ensure that the input is loaded to ground by an impedance of under $10 \mathrm{k} \Omega$. Failure to do this will not only reduce the signal-to-noise ratio but will prevent the series feedback from operating correctly.

One potential source of catastrophic failure in the power amplifier is the biasing diode, setting the quiescent current of the output stage. If this diode fails, or the bases of the driver transistors are open-circuited for any other reason, then the output transistors will both be turned hard on and will fail in less than one second. It is for this reason that the resistor in series with the diode should not be replaced by a potentiometer, as these are notorious for intermittent loss of contact. A good alternative would be to use a fixed resistor with a trimming potentiometer in parallel. Failure of the potentiometer would not then be catastrophic. It is possible to use in place of the diode a suitable transistor as a 'super diode', i.e. with its collector and base strapped together.

More than one reader has commented on
the increase of supply current with signal frequency; this is however quite normal with this amplifier. It arises because the output transistors (OC35s, etc.) have a very low cut-off frequency f_{T} of about 5 kHz . The supply current rises with frequency for two allied reasons: firstly as the gain of the output transistors decreases, the very high feedback around the amplifier automatically increases their base currents to maintain the correct amplifier gain; secondly, the non-conducting transistor does not cut off until just after the conducting transistor has started to turn on, and so there is a short period during which current flows through both transistors. In spite of the above situation, the performance of the complete amplifier remains within the quoted limits. Obviously, distortion increases with frequency, but total harmonic distortion is still below 1% at 15 kHz . Furthermore, the percentage of the audio power spectrum which lies above 5 kHz in music is very low, so the performance of music remains at a satisfactory distortion level.

Interested readers are referred to the note "Dinsdale Amplifier Mod" .

Transistor alternatives

It was perhaps inevitable that, from the beginning, queries would be raised regarding alternative transistors. In many instances there were a number of well-known alternatives; but it was with care that the 1961 articles specified the polarity, gain and voltage rating of each device. In spite of this, many correspondents enquired whether quite unsuitable transistors could be used; some complained that they had used these, and not unnaturally the devices had failed, often carrying more of the circuit with them because of the overall d.c. feedback. For the benefit of those about to embark on this design a list of currently available transistor alternatives is given in table 4, but this is by no means exhaustive. An important point concerns the complementary drive pair $\left(T r_{3} / T r_{4}\right)$. It is vital that both of these devices and the diode are of the same material (germanium or silicon). If a silicon pair is used, then two silicon diodes in series with the resistor should be employed.

Instability

A number of writers complained of insta-

Table 4. Transistor alternatives

	Transistor Number	Type	$\begin{aligned} & \text { Gain } \\ & \text { (Typical) } \end{aligned}$	Max. Working Voltege	Typical Types
会	$\left.\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right\}$	p-n-p. small-signal, low-noise	60 at $/ \mathrm{c}=1 \mathrm{~mA}$	10	$\left\{\begin{array}{l} \text { OC44 } \\ \text { OC75 } \\ \text { AC107 } \\ \text { SN2613 } \\ \text { (Selected for } \\ \text { (ow noise) } \end{array}\right.$
	1	D-n-D. small-signal, low-noise, high frequency	60 at $I_{c}=1 \mathrm{~mA}$	6	$\begin{aligned} & \mathrm{OC44} \\ & 2 \mathrm{~N} 2613 \end{aligned}$
	$\left.\stackrel{2}{3^{*}}\right\}$	p-n-p. sustained gain, over wide, current range	$30 \mathrm{at} t_{c}=100 \mathrm{~mA}$	40	$\begin{aligned} & \text { OC77 } \\ & \text { ACY } 17 \end{aligned}$
	4*		30 at $/{ }_{c}=100 \mathrm{~mA}$	40	$\left\{\begin{array}{l}\text { NKT227 } \\ \text { 2N385A } \\ \text { 2N388A }\end{array}\right.$
		wide, current range			$\left\lvert\, \begin{aligned} & \text { 2N1605A } \\ & \text { OC28 } \\ & \text { OC29 } \\ & \text { NKT401 }\end{aligned}\right.$
	$5 \& 6$	p-n-p. good turn-off characteristic	$30 \mathrm{at}{ }_{c}=3 \mathrm{~A}$	40	$\left\{\begin{array}{l}\text { AD140 } \\ \text { OC35 } \\ \text { OC36 } \\ \text { 2N2147 } \dagger\end{array}\right.$

bility. Without exception, the effect, which occurred only when pre-amplifier and power amplifier were connected together, took one of two forms:
(i) supersonic oscillation from 30 to 50 kHz .
(ii) subsonic oscillation at below 2 Hz .

The first of these is generally caused by feedback from the output of the power amplifier (loudspeaker terminal) to the input to the pre-amplifier between which two points the phase difference is such as to give positive feedback. If this oscillation (which tends to start as the volume control is advanced and is exacerbated by treble boost) is allowed to continue, it will rapidly lead to thermal breakdown of the output transistors and the destruction of high-frequency loudspeakers (especially ribbons). The remedy is to use screened input leads (a sound precaution anyway) and to ensure that the pre-amplifier and power amplifier are well screened within the unit itself. It is worth noting thn all complaints of this nature stemmed from equipment in which one of these points had not been complied with. The subsonic oscillation occurs in the pre-amplifier, and is due to the high-pass filter via the resistor coupling the emitters of the first and last transistors. Faulty decoupling capacitors will lead to this low-frequency motor-boating.

Noise testing

The input transistor of the pre-amplifier, $T r_{1}$, requires its base to be loaded to ground via not more than $10 \mathrm{k} \Omega$ in order to maintain the correct function of the emitter feedback. If this condition is not fulfilled, a serious degradation of signal-to-noise ratio occurs. Normally the base is loaded via the impedance of the microphone, pickup or tape head in use (or by padding resistors if these are in circuit). In fact resistive and inductive loading give an audible difference to the character of the background noise; some observers have suggested that the "pink" noise resulting from inductive loading is more pleasing than the "white" noise due to resistive loading. However, this illustrates the obvious need to provide the appropriate loading resistor (or transducer) at the input terminal before noise tests are carried out. Failure to do this gives a misleading picture, which a number of constructors were quick to discover, especially as open-circuit highgain input terminals have on occasion been known to pick up local radio interference. Thus the magnetic pickup terminal (for example) should be loaded to ground by about $2 \mathrm{k} \Omega$ (a typical pickup impedance) for testing signal-to-noise ratio.

In general the interposing of resistor networks between a signal source and the input transistor will degrade the signal-tonoise ratio. This is because the signal and noise are attenuated in equal manner, and in addition the resistors themselves will generate noise. However, where the signal has to be attenuated (as for example with high-output crystal pickups) it is worth while ensuring that the apparent source impedance presented to the input transistor is optimized to about $1 \mathrm{k} \Omega$ Table 5 shows the results of an experiment which illustrates this latter point, about which, incidentally, there has been much correspondence, including letters published in Wireless World. The signal-to-noise ratio is

Table 5. The effect of input loading on noise level

R_{1}	R_{2}	Signal/noise ratio
Ω	Ω	(dB)
100 k	1 k	60
1.2 M	12 k	55
4.7 M	47 k	40
10 M	100 k	21

largely dependent on the voltage amplifying transistors, especially $T r_{1}$ and $T r_{2}$ in the preamplifier and $T r_{1}$ in the power amplifier. The use of low-noise devices in these positions cannot be emphasized enough, with the added proviso that $T r_{1}$ in the power amplifier must also be a high frequency $(15 \mathrm{MHz})$ device to enable the feedback to operate correctly.

Earthing

The 1961 articles did not emphasize sufficiently the need for avoiding earth-loops, to judge from the correspondence on this subject he currents flowing in the output valves of the then conventional valve amplifiers were small, and the effects of incorrect earthing were negligible. The precautions necessary to avoid distortion due to the high asymmetrical currents flowing in the output of a transistor amplifier were mentioned in both articles, but correspondence still arrives complaining of troubles due to this cause. Rather than repeat the necessary precautions here, I would refer readers who are in doubt to the original articles and to the correspondence in Wireless World'. Two readers wrote describing the pick-up of radio/TV interference giving an audible signal. These phenomena were never entirely solved, as they ceased in both cases on re-wiring the systems, and could not be reinduced. They may have been due to a semi-dry joint acting as a detector diode.

Immediately after publication of the mk. II design in 1965, there was a considerable correspondence discussing methods of avoiding an earth loop. It was clear that the method proposed by Mr. C. Artus ${ }^{6}$ was far more elegant than that originally published, and I have now adopted this method. Most of the alternative earthing schemes proposed by readers failed to appreciate the need to prevent the asymmetrically-distorted output waveform from appearing in series with the input signals, and were therefore not valid solutions to the problem. However one method which several readers proposed was to design the complete power amplifier and pre-amplifier circuits symmetrically on either side of an earth 'tree-trunk'. This method avoids earth-loops, but it introduces other problems in the areas of overall screening between channels, screening between power amplifier and pre-amplifier in each channel, and wiring to the front panel controls. In addition, the complete board tends to be some 12 inches square, and this is not easy to accommodate in a cabinet. I still believe the Artus solution to be the most elegant.

Stabilized power supply

The power supply specified in both sets of articles consisted simply of an unstabilized capacitor-loaded bridge-rectified supply. The mk.II version included additional chokecapacitor smoothing. The disadvantages of this type of supply are first that the output voltage falls with prolonged loud sounds, and
secondly that with this fall in voltage there is a corresponding rise in hum level. The drop in output voltage can lead to premature "squaring off" of the waveform, and hence gross distortion and may also affect the "character" of the sound in an unmusical way. The increase of hum, which admitredly occurs only with loud sounds and is thus not immediately audible itself, produces a most unpleasant effect by modulating the output at 100 Hz . This effect is particularly noticeable with organ music. The remedy is to use a stabilized or semi-stabilized supply.

Pilot lamps and mains switching

The use of a d.c. pilot lamp has been criticized on the grounds of false economy. Nevertheless I have measured an improvement of 10 dB in hum level resulting from using a d.c. lamp. The use of a neon mains indicator introduces a "buzz", and steps must be taken to eliminate this with suitable r.f. chokes.

A further source of hum is the a.c. mains switch ganged to the volume control; if this switch can be positioned as far as possible from the pre-amplifier circuitry, so much the better. Placing the mains switch external to the amplifier is satisfactory, provided there is little chance of switching the amplifier on or off with the volume control at maximum rotation. Alternatively it might be possible to place the switch at the rear of the unit, with a long shaft connecting it to the front panel.

Fault diagnosis

Nearly half the letters I received described a set of symptoms and requested a diagnosis. I had carried out many tests during development of the circuit and had also helped personally in the construction and commissioning of over twenty amplifiers, so many of the symptoms were familiar, and could be identified. I always invited correspondents to let me know if my recommendations were successful, and many of them kindly replied giving me this information. This in turn helped others.

The greatest difficulty however occurred with letters describing modifications which were either proposed or which had been carried out and did not work, or which used different components to those specified. This situation frequently applied when commercial kits based loosely on the original design had been used. The kits or equipment often used cheaper components, and alternative transistors which were not suitable. In all of these cases, once the situation was established, it was possible to replace the faulty components with those originally specified, and in most cases the equipment then met the original specification.

I am always loath to recommend modifications especially where this involves personal expenditure by constructors, unless I have

Fig. 6. Test circuit to investigare effect of input loading on noise level.
personally checked and tested the proposed alterations. As may be imagined I do not have the time or money to check all of these queries personally, especially as many involved proprietary equipment which it was desired to connect to my amplifier. In general, I feel that an author cannot normally be expected to comment with authority on modifications to his design; at the same time, I welcome letters describing modifications which have been carried out successfully.

Use with commercial equipment

The 1965 article referred to the difficulty of designing equipment which will work equally well with every pickup, tape deck, microphone, tuner, and loudspeaker marketed. Sensitivities and impedances (which are often complex and non-linear) are by no means standardized, and one can choose only a reasonable compromise; this is, after all, what the manufacturers of commercial amplifiers do. Perhaps one should increase the number of input sockets and switched alternatives, but this would put the price out of the home constructor bracket.

Nevertheless, a number of letters either enquired whether a particular tape head (for example) would work with the amplifier, or else complained that a certain device did not work satisfactorily. In these latter cases, inspection of the manufacturer's literature (where available) was generally enough to explain why either the gain or input impedance of the amplifier were not suitable for the device in question. To offer alternative input circuits was a temptation that had to be resisted, because I could not guarantee that all the other performance characteristics of the amplifier would be maintained, without building and testing the proposed new circuit myself.

Conclusions

It is now ten years since the "Tobey-Dinsdale Amplifier" was developed. It is still advertised in both kit and made-up form, and a number of commercial equipments have been based on the original circuit. A conservative estimate based on the supply of kits and transistors by two well-known companies suggests that over ten thousand of these amplifiers have been manufactured. It is not now the best available. Recent tests have shown that the quasicomplementary class B output stage produces audible crossover distortion, especially at low signal levels, and this in turn leads to aural fatigue. Nevertheless, I would like to believe that the amplifier, appearing when it did, fulfilled a need by providing an incentive for more able designers than myself to identify and tackle the principal obstacles in the design of a high-quality amplifier. This they have now done, and many amplifiers now on the market give an excellent performance.

Can anything be learned from a retrospective study such as this? I hope that if I have the opportunity again to write an article describing a circuit I will try to remember the following points:
(i) All components should be precisely defined, and a number of commercial sources should be given.
(ii) Alternative components should be given whenever possible (especially semiconductors).
(iii) Suppliers of printed circuit boards and metal work should be named.
(iv) It is obviously impossible to satisfy everyone; however if the design can give a number of options which between them cover all anticipated uses, then constructors can make the appropriate choice.

Of course one tries to design a system which will give perfect reproduction of music, and I personally regard distortion figures, frequency response curves, and all the other scientific and pseudo-scientific terms as a tiresome but necessary means to the ideal end. But when I heard a visitor to the 1965 London Audio Fair say to his companion, "The trouble is all this music-it's a pity I can't sit down and listen to the hi-fi", I decided to forget about pleasing everybody.

I will also try to remember that when writing to an author with queries, all relevant information should be given and the enclosure of a st amped addressed envelope is appreciated. And finally, if the author's suggestions prove to be successful, then writing to tell him so will make him feel far happier and it may make it easier for him to diagnose similar faults on other people's equipment.

References

1. R. Tobey and J. Dinsdale, "Transistor Äudio Power Amplifier", Wireless World, November 1961. 2. R. Tobey and J. Dinsdale, "Transistor High Fidelity Pre-Amplifier", Wireless World, December 1961.
2. H. C. Lin, "Quasi-Complementary Transistor Amplifier", Electronics, September 1956.
3. J. Dinsdale, "Transistor High-Quality Audio Amplifier, pt.1", Wireless World, January 1965.
4. J. Dinsdale, "Transistor High-Quality Audio Amplifier, pt.2", Wireless World, February 1965.*
5. C. Artus, Letters to the Editor, Wireless World, February 1965.
6. J. Dinsdale, Letters to the Editor, Wireless World, February 1966.
7. J. L. Linsley Hood, "Modular Pre-amplifier Design", Wireless World, July 1969.
8. J. Dinsdale, "Dinsdale Amplifier Mod", Wireless World, May 1969.

- A reprint of these two articles is available from Dorset House, Stamford Street, London SE1, price Ss.

Appendix

Derivation of component values for R.I.A.A. disc equalization

$$
\begin{aligned}
& \text { Network impedance }= \frac{R_{1}\left[\frac{1}{p C_{1}}+\left(\frac{R_{2} / p C_{2}}{R_{2}+1 / p C_{2}}\right)\right]}{R_{1}+\left[\frac{1}{p C_{1}}+\left(\frac{R_{2} / p C_{2}}{R_{2}+1 / p C_{2}}\right)\right]} \\
&=\frac{R_{1}\left[1+p R_{2}\left(C_{1}+C_{2}\right)\right]}{1+p\left(C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}\right)+p^{2}\left(C_{1} R_{1} C_{2} R_{2}\right)} \\
&=\frac{R_{1}\left(1+p T_{2}\right)}{\left(\mathrm{I}+p T_{1}\right)\left(\mathrm{I}+p T_{3}\right)} \quad \text { where } T_{1}=\frac{1}{2}\left(b+\sqrt{b^{2}-a}\right) \\
& T_{2}=R_{2}\left(C_{1}+C_{2}\right) \\
& T_{3}=\frac{1}{2}\left(b-\sqrt{\left.b^{2}-a\right)}\right. \\
& \text { nd } b=C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2} \\
& a=4_{4} C_{1} C_{2} R_{2} .
\end{aligned}
$$

For the case where $T_{1}=3180 \mu \mathrm{~s}$

$$
\begin{aligned}
& T_{2}=318 \mu \mathrm{~s} \\
& T_{3}=75 \mu \mathrm{~s}
\end{aligned}
$$

It may be shown that:

$$
\begin{aligned}
& C_{1} R_{1}=.2940 \\
& C_{2} R_{2}=8 \mathbf{I} \cdot 2 \\
& C_{1} R_{2}=237
\end{aligned}
$$

(C in microfarads, R in ohms)
From these expressions the values of components for the equalization networks may be derived starting with a suitable value of R_{2} to set the sensitivity.

Standard R.I.A.A. curve for microgroove disc relay $f_{1}=50.049 \mathrm{~Hz}(3180 \mu \mathrm{~s}), f_{2}=500.49 \mathrm{~Hz}$ (318. $\mu \mathrm{s}$) and $f_{3}=2121.5 \mathrm{~Hz}(75 \mu \mathrm{~s})$.

Equalization network

Cassette System for $\frac{1}{4}$-in Tape

Tape Systems Lid, of Egham, Surrey, have developed a mechanically simple yet robus tape transport system for use with cassettes employing $\frac{t}{t}$-in tape. Together these comprise the Packette System-Packette being the trade name of the new cassette.

Besides employing inherent advantage over $\frac{1}{8}$-in tape with respect to mechanical strength, recording quality, alignment with the tape heads, and ease of manufacture, the Packette is edge driven. This action is achieved by building the pinch wheel into each Packette. There are both reel-to-reel and continuous-loop types.

The tape deck has a chassis of nylonreinforced plastic and few moving parts. It can be operated in any position and be fitted with a variety of a.c. /d.c. motors and

The plastic chassis loaded with a tape Packette and fitted with a drive motor.
tape heads to meet many intrumentation and audio requirements. The same deck can be driven at speeds down to $15 / 16$ i.p.s. and wow and flutter can be as low as 0.1% at $1 \frac{7}{8}$ i.p.s. Modified Marriott heads are employed for audio use-a composite erase record/play head-block has been developed for double track use such as in language laboratories where recordings are made on one track whilst a second track is in play-back.

The single drive motor employed runs at constant speed in the same direction for all operations-lape speed and direction changes are achieved by simple mechanical modules.

Of course there is no fundamental reason why traditional tape speeds should be employed in a new system-there simply has to be correct equalization for any speed chosen.

A Packette system has been developed for use in a language laboratory, and models are available from E. J. Arnold \& Sons Lid, Butterley Street, Leeds LS10 1AX.

How speed, atabiliy zacevagy coss only $x 20$

£290 buys you our LM 1450.
A great price for great performance.

Fifty measurements per second, ultra stability without zero control, 0.05% reading $\pm 0.05 \%$ full-scale, $10 \mu \mathrm{v}$
sensitivity and 140 dB common
mode rejection of interference
Small wonder the LM 1450 is satisfying customers right round the world.
And when we streamlined its price we streamlined its looks. When you make a change for the better, why do it by halves?

Phone Farnborough 44433 or write for full details.

low-noise recording tape

quiet as a mousel

don't buy any tape - buy EMITARP

THE RANGE OF EMITAPE AFONIC LOW-NOISE TAPE

STANDARD PLAY
The best general purpose tape, giving maximum durability at all professional speeds. Pre-stretched polyester base film of super strength.

LONG PLAY 50% longer recording time specially designed for multi-track recorders - pre-stretched polyester base film of super strength.

100
DOUBLE PLAY
Twice the recording time for a given size of spool - the perfect film for low speed, multi-track recorders - superflex polyester base film.

Maximum playing time on spools up to $5^{\prime \prime}$ dia.extended dynamic range - specially suitable for battery operated recorders - extra tensile polyester base.

Electronics in Civil Aviation

An impression of the current state of civil avionics obtained at a recent London conference

The devil we know is better than the devil we don't-and so say * nearly all of us. This message was repeated over and over again in various ways by speakers discussing diverse aspects of electronics in civil aviation at the Royal Festival Hall, London, September 15 th to 19 th.

On the face of it one would think that it would not be beyond the capability of the electronics industry to provide civil aviation with all they need in the way of control, measurement and computing equipment. In fact if the electronics engineers were given their head and if the aviation boys took things at their face value a whole host of new electronic aviation aids would soon appear but, if this happened, chaos, collision and catastrophe would be the order of the day.

Revolutionary equipment could well, on paper at least, do away with all the known limitations of existing systems but such equipment would certainly introduce a number of unknown features which would lead to hazardous situations simply because these features are unknown. This has been proved in the past, as was pointed out in a paper by J. Benjamin of the Royal Aircraft Establishment, in military aviation where strategic necessity has led to radical change, sometimes with disastrous consequences.

Another important factor to be taken into account when

A possible solution to the problem of clearly presenting navigation information to the crew was suggested by f. G. Carr and F. S. Stringer and is shown above. The c.r.t. display shows the outputs of four navigation systems-two inertial navigators, Loran and Decca. The display graphically shows the positional information from the four equipments and shows how the outputs of three of the equipments differ from the one selected, which happens to be inertial navigator No. 2.
considering change in civil aviation is that airborne equipment of the type we are considering requires large, very expensive, ground installations for support. Any change would mean that all the ground installations throughout the world would have to be replaced.

There is no question that a vast improvement must take place in the facilities available to civil aviation. However, this will be achieved by evolution and not revolution. Figures given by E. Davies, of Marconi, in a paper on surveillance radar showed that in the twelve months ended July 1968 the total aircraft movements (take offs or landings) at Heathrow, Gatwick, Luton and Stanstead was 400,000 . During the same period another 700,000 movements were contributed by 26 other airports in the London area. The average movements for the period worked out at 125 per hour with peaks in the region of 250 movements per hour. According to P. G. Masefield, chairman of the British Airport Authority, the number of movements by 1980 will triple. This means 20 runways will have to run at a constant rate of 40 movements per hour.

To handle the necessary amount of traffic "all weather" operation will become essential and automatic landing will become routine even in extremely adverse weather conditions.

Civil aviation therefore has to find ways of handling all these aircraft in all sorts of weather. This will mean across-the-board improvements in airborne and ground installations with the lion's share of the problem on the heads of electronics engineers.

Automatic landing

The problem here is not one of accuracy, existing systems are perfectly adequate in this respect; it is not one of reliability, because reliability can be had at a price; it is the overall integrity of the system. Integrity is a word that was much bandied about at the conference. In this context it means that a system will operate correctly when required and that it will be known to be operating within its specified limits at any particular time and may therefore be trusted.

Consider a typical automatic landing installation. The well known, and established, instrument landing system (i.l.s.), operating in conjunction with heading information is responsible for bringing the aircraft in line with, and just over the threshold of, the runway. Being a radio system relying on radiated beams it is sensitive to interference and, on a number of airfields, it just cannot be installed because of the terrain.

In the later stages of the landing radio altimeters on board the aircraft play an important part. These can be sensitive to multi-path reflections and aircraft attitude.

The automatic pilot and automatic throttle used to carry out the landing contains tens of thousands of electronic components, scores of motors, servo systems, amplifiers, integrator and feedback loops. How can one be sure that this complex system is 100% serviceable? Is it sufficient to fit three
of them and take the majority decision as being the right one? In this context the words fail-safe, fail-soft, fail-operative, fail-obvious, probability, comparator, monitor, duplex, triplex and duplicate monitored were repeated over and over again.

In most of the areas mentioned no real solutions to these problems exist as yet. In a paper by W. Hilton, of Sperry Gyroscope, a fail-obvious comparator for airborne systems was described which gave a warning if the monitored equipment or the comparator itself failed. With this system, if the comparator failed, the monitored equipment must also be considered to be unserviceable because the pilot, even if he knows that it is the comparator at fault, has no way of ensuring that the monitored equipment itself has not failed also. Even if the idea is extended indefinitely-a monitor to monitor the monitor, to monitor the monitor . . . there can still be no absolute certainty. The accepted thing is that the probability shall be that a system shall not fail more than once in 10^{7} landings.

Will the designers have to take into account freak conditions? For instance an aircraft returning to an airfield at which a visual landing is impossible due to bad weather and when, for some reason, a diversion airfield is not available. In a case such as this a pilot would want to know the degree of unserviceability of his equipment in order to determine whether an automatic landing is a justifiable risk. Probably the only way of doing this would be to employ a large number of equipment measuring sensors controlled by a digital computer.

With the i.l.s. the picture is a brighter one. Some time ago the R.A.E. designed c.p.i.l.s. (correlation protected instrument landing system) which is now being developed and will be produced by the Plessey Company.

The system employs hyperbolic phase fields and correlation detection to generate guidance misalignment signals with inherent integrity and, with suitable choice of transmitter modulation, the system is compatible with existing v.h.f. instrument landing systems. The only additional airborne equipment consists of a microwave aerial and mixer unit which may be fed directly into the existing i.l.s. The idea therefore conforms to the rule of evolution rather than change, it provides the pilot with a choice of v.h.f. or microwave i.l.s., and overcomes many of the v.h.f. i.1.s. interference and site problems.

Air traffic control

The other area of great difficulty is in air traffic control. It is thought that large digital computers will be able to perform the necessary predictions and calculations for the safety of all aircraft in the controlled area. This will include handling emergency situations and taking into account the presence of military aircraft which, according to E. Davies, may suddenly change flight level at rates of up to $60,000 \mathrm{ft}$ per minute.

The problem is in getting adequate information on all movements in the area so that the computers can be kept up to date on a rapidly changing situation.

In this field many improvements are required to radar systems. Airfield radar can be divided into two types; primary radar which is responsible for general surveillance and tracking, and secondary radar which consists of an airborne transponder that gives information on the aircraft carrying it when interrogated by a ground installation.

Primary radar needs to be of higher resolution to separate targets which are close together; higher scan rates must be achieved so that any new target may be quickly spotted; and dwell time on any particular target must be increased so that stationary clutter can be minimized and additional doppler information (velocity etc.) can be derived.

All these requirements are in obvious conflict and M. A. Radford, of Marconi, suggested that the solution may lie in the use of multiple receiver and electronic scanning techniques.

Secondary radar suffers from a variety of defects. One of these is difficulty in siting the aerial on the aircraft and even when two aerials are carried, contact is not certain due to the
screening effect of the airframe. With present equipments the only information transmitted is aircraft identity and height.

Secondary radar however is rapidly increasing in importance and will eventually oust the primary radar from its premier position. C. Ullyatt, of R.R.E., says that primary radar will probably be used mainly to handle those aircraft which for some reason cannot take part in the secondary radar system, and for keeping track of airfield ground movements. Mr. Ullyatt gave a paper describing a new transponder which followed the law of evolution. Basically it consists of an auxiliary unit which can be fitted to, and addressed through, the existing transponder. The new equipment would be capable of transmitting a great deal of information and during an emergency could transmit the state of the aircraft systems to the ground.

Navigation

Extremely accurate navigation is essential to enable aircraft to operate in the fairly close proximity required if the number of movements predicted for the future is to be met. J. G. Carr and F. S. Stringer, of the R.A.E. (Mr. Stringer described hyperbolic navigation systems in our August issue), suggested at the conference that two or more current navigation aids could be operated under the direction of a management digital computer and explained how a Comet-4 was being modified to do research along these lines. In this system a highly accurate point position fixing aid is used with a long-term reference system so that the limitations of both are overcome.

Mr. Stringer suggested that the Kalman filtering technique could be used to great advantage now that digital computers of adequate capacity are available. Although such a technique is not liable to become economically attractive until storage becomes cheaper.

With the Kalman technique, a mathematical error model of each of the sensors is stored in the computer, the parameters of these models are adjusted throughout the flight every time a position comparison is made so that as time progresses the model becomes a closer approximation to the truth. The computer uses these stored values of error parameters to correct the navigation information to produce position data that is more accurate than any of the sensors could have achieved separately. In effect the navigation system is being continuously calibrated during the flight, and the longer the flight the more accurate the system becomes.

Civil aviation is rapidly approaching a point when far reaching decisions on electronic equipment for the next decade will have to be taken. We can only hope that the evolution of suitable equipment will not be overtaken by the demands on the airlines for more airborne seats.

Correction

"Low-cost 15W Amplifier" Oct. 1969.
The common emitter resistor R_{6} in Fig. 1 should be $4.7 \mathrm{k} \Omega$ not $47 \mathrm{k} \Omega$.

Fig. 4, showing curves of t.h.d. against frequency for different powers and loads, was incorrectly annotated. The correct specifications are shown below.

Some highlights from the last German national exhibition

Good German citizens, and a good many non-Germans, flocked in their thousands to -e the 26 th German radio exhibition, the Deutsche Funkausstellung, which was held at Killesberg, iust outside Stutgart, from August 29th to September 7th. On the first three days, the Friday, Saturday and Sunday, 245,000 people attended the exhibition. Total attendance over the ten days that the exhibition was open was 703,000 which created an all-time record and exceeded all expectations.

Colour TV and hi-fi equipment were the principal attractions at the exhibition, coupled with a huge television studio, run by the first and second programme authorities A.R.D. and Z.D.F., which seated 1,400 people per performance. A clever idea here for people who could not get inside the studio was a travellator to convey them past the long observation window so that they all had a good view but were unable to loiter. High-quality speakers conveyed the sound to them.
One of several large halls, in fact the major area of Hall No. 1, was occupied by various exhibits and demonstrations of the Bundespost, the German equivalent of our Post Office, who included among them an historical exhibit of television apparatus. There was the 30 -line Nipkow mirror helix, an old 441 -line receiver, and a 180 -line or 441 -line camera that was used during the Olympic Games in 1936, where Walter Bruch (now Prof. Dr. Bruch) inventor of the PAL colour system, was employed as a camera operator.

Probably the most significant exhibit, however, was the $12-\mathrm{GHz}$ television broadcasting equipment, which was actually a working model, comprising transmitter, aerial, receiver dish and translator to Band IV and V channels. At present there are three television services available in Germany, and all the channels in Bands I, III, IV and V are apparently fully occupied by them.

To make room for additional services, which will include an educational one, the Bundespost has been experimenting with still higher frequencies, around 12 GHz , actually between 2.5 and 2.7 cm as was reported in Wireless World in July this year.

The exhibit showed the kind of equipment that would be used. The transmitter employs a conical aerial, with a reflector, which can be seen in the accompanying photograph, and has a circular radiation pattern in a horizontal plane. The reflector
receives energy from a vertical horn projecting from the apex of the cone. Weather protection is provided by a transparent cover which encloses the whole aerial.

For reception a parabolic aerial is employed, as in the photograph, which is mounted on a mast together with a translat-

Transmitting aerial for the experiniental television service on 12 GHz .

Receiving paraboloid, with translator on the mast, for the 12 GHz service.
or to convert the microwave frequency range to, say, u.h.f., so that it can be applied to a normal domestic receiver.

In the experimental model shown the receiving aerial would cost about DM. 200 (approximately $£ 20$), but the translator was estimated 10 cost about DM. 8,000 , which would render the system too expensive for any but the largest blocks of flats. It was expected, however, that by quantity production, using a quartz crystal controlled oscillator and a cavity resonator type of tuning system, the price could be reduced considerably. The system is envisaged for use only in the centre of a town which it could 'flood' with direct radiation. Its maximum radius of service is about 20 km (about 12.5 miles).

Novel Car Aerial

One of the surprises among the commercial exhibits was a new type of car radio aerial called the Alpha 3 and shown by Hans Kolbe \& Co. under their 'fuba' brand name (which they always spell with a small ' f '). It was designed by Hans Kolbe in conjunction with Professor Meinke, of the Institute for High Frequency Technique at Munich.

Incorporating a wing mirror, it is intended to be used as such. This alone is an asset today when vandals enjoy an orgy of snapping off telescopic aerials.

Inside the housing is a printed-circuit panel containing three aerial loops and two

Wing mirror car aerial introduced by Hans Kolbe.
transistor amplifiers, one for a.m. and the other for f.m. Even in car radios in Germany where there are some .000 v.h.f. stations it is necessary to make provision for f.m. reception, and this aerial system covers all a.m. broadcasting frequencies from 150 kHz to 25 MHz as well as the v.h.f./f.m. range in Band II.

The rim of the mirror forms part of the aerial pick-up system. It is made of rustless steel and is shaped to fit in its spring-loaded mounting as a ball joint, so that it can be adjusted in its application as a wing mirror.
 showing the printed circuit. board.

Its internal construction can be seen from the accompanying illustration. The aerial loops, mirror rim and the electronic assembly form an integrated whole whose impedance matches the transistor input elements. The low impedance of the device helps to avoid interference pick-up. On v.h.f. the aerial loops form a bandpass circuit which rejects interference from transmissions outside the v.h.f. radio band, even though their field strength may be high. In the wideband a.m. coverage special design features are incorporated to prevent static interference and cross-modulation. The outputs of the two amplifiers are combined and matched to the coaxial cable. Also a protective diode is provided to by-pass static surges, which can wreck the input transistor in a car radio receiver.

Power supply to the amplifiers is taken via a separate lead from the car's electrical system, and the amplifiers will operate on 6 V to 15 V at $5-11 \mathrm{~mA}$.

The price of the Alpha 3 aerial in Germany is expected to be about DM. 90 (say £9).

Cheaper V.T.Rs

Another surprise was the sudden appearance of video tape recorders by several manufacturers at the domestic-user level of about DM.2,000 (£200). Blaupunkt (a member of the Bosch Group and known in the U.K. as Blue Spot), Grundig, and Telefunken all showed prototypes, and Philips had two models, one (type LDL 1000) priced as low as DM.1,880.

Telefunken uses $\frac{1}{2}$ inch tape on 18 cm (about 7 inch) reels at $19 \mathrm{~cm} / \mathrm{sec}$ (about $7.5 \mathrm{in} / \mathrm{sec}$) giving a playing time of 60 minutes. It is said to be equally suitable for colour and monochrome recording, and the company hope with improved tape oxides to
better the present 3 MHz bandwidth.
Philips use $\frac{1}{3}$ inch tape, of which a length of 480 metres (a little under $1,600 \mathrm{ft}$) will run for about $\frac{3}{4}$ hour. The instrument uses transistors throughout and operates from the mains. Of transportable proportions, it weighs 12 kg (about $26 \frac{1}{2} \mathrm{lb}$). Sound and synchronizing signals are carried on narrow edge bands.

Home Cine TV

Something more than a coincidence must have led NordMende to produce at the same exhibition as the series of domestic, or entertainment, video tape recorders their Colorvision equipment. This unit comprises a colour television receiver and an 8 mm film scanner and reproduces the cine film on the screen of the TV receiver. The optics and film transport mechanism were developed in association with another company, Paillard S.A. (Bolex).

It is quite a domestic piece of equipment housed in a large console cabinet. The colour receiver occupies the left half of the cabinet and the film scanner, together with a separate tape cassette unit for the sound commentary, the right-hand half.

Advantages claimed for this method of reproducing cine film pictures are that it is silent in operation, does not require complete blacking-out of the room, provides the user with complete control through his TV receiver of such parameters as brightness, contrast and colour saturation, a still picture (it can hold one frame as long as required without any risk of overheating), it can be left ready for use in a living room without any need for elaborate setting-up procedure, and of course it provides the purchaser with a built-in 25 -inch colour receiver.

The model on show was a prototype (but it was being demonstrated) and the price was not fixed, but it was believed it would be somewhere around DM.4,000 (about $£ 400$).

Full technical details are not available, but visible inspection showed that the film scanner employed a raster on the screen of a small oscilloscope and that the film passed through an optical lens system continuously, without a frame-by-frame gate. It is not clear, for instance, how the 18 picture-per-second sequence that they quote for the Super-8 film is synchronized with the picture frequency of the receiver; nor how

Philips domestic sound and vision recorder type LDL 1000.
the continuous film transport can be stopped to produce a still.

From the film scanner the picture is broken up optically by dichroic mirrors into its red, green and blue components, which are then converted electrically into colourdifference signals prior to their application to the receiver. The sound commentary is quite independent, but it is incorporated in the same compartment as the film scanner.

All-embracing home entertainment

Another quite original idea shown by NordeMende was the Vario-Center, a fully comprehensive high-fidelity domestic sound and vision entertainment device in a severely contemporary but original styling. In appearance it resembled a large sphere with three slices cut off the sides to provide flat vertical surfaces, and a fourth slice off the top to present a flat horizontal surface.

On one of the vertical surfaces is mounted a NordeMende integrated stereo amplifier with a four-band a.m./f.m. tuner and control unit, with $30+30 W$ continuous sine-wave output (model 8002/ST); on another surface is their model 8002/T4 tape recorder; and on the third the latest (hybrid) transistor 25 -inch colour TV receiver. On the horizontal surface at the top is a Perpetuum Ebner PE2020 record player with a Shure M75MG cartridge.

Loudspeaker systems comprise two semispherical enclosures each with three bass, three middle and two tweeter units. They can each handle up to 50W.

Electronic record players

Because the show was national, several importing companies held private shows in various parts of the town. One of these was held by Paillard-Bolex G.m.b.H., of Munich, who are distributors in Germany for the Swiss-made Thorens equipment.

They were showing an entirely new Thorens disc record playing deck (type TD125) with several interesting features. One feature is the shock-absorbent mounting for the turntable and pickup. Only the turntable and pickup, together with some electronic components are mounted on the chassis, and the whole chassis assembly weighs about 15 lb . Its inertia, together with the springy suspension, enables quite violent vibrations to be absorbed.

The only link between the two, apart from the springy suspension, is the ($10: 1$ ratio) drive belt, a soft slim rubber band which absorbs any vibration. No gears are employed, and there is no mechanical speedchange device. Driving power for the 16 -pole

Thorens record player which fearures a shock-absorbent mounting for the turntable and pick-up.

Simplified diagram of the Blaupunkt v.h.f. television tuner using varicap diodes.
synchronous motor is derived from a 20 W transistor amplifier driven from a Wien bridge oscillator, whose frequency determines the speed of the turntable in three steps for 16, 33 and 45 r.p.m. Rumble is claimed to be better than -68 dB (DIN 45539 weighted standard).

For speed monitoring, stroboscopic markings for 50 and 60 Hz mains on the underside of the turntable base are optically conducted to a window at which they can be compared with a neon lamp. A variable potentiometer provides $\pm 2 \%$ correction. The deck can be operated from battery or mains.

Finally, a feature that can be seen in the Thorens photograph is a new st"le for switch knobs that was evident on quite a number of stands in the exhibition. This is the large flat type of knob seen in the foreground, which measures about $50 \times 30 \times 6 \mathrm{~mm}$ and looks like a bar of chocolate. The three, seen here are slide-type controls for speed change, on /off and pickup raising and lowering.

In contrast to the entirely free suspension of the Thorens was that of Braun in their new PS 600 record player, which they cautiously state to be their first automatic player. This one lifts and lowers the pickup automatically, but it can also be adapted to change records. Its vibration-absorption is similarly effective, but to avoid the possibility of an oscillation being set up in the freely-floating system they have equipped it with critical hydraulic damping. Like the Thorens, too, this player has electronic control and electrical speed change.

Braun also introduced at the show a new type of loudspeaker cone which they call a 'Kalottenmembran'. Used as the middle-frequency unit in their 4-unit L. 710 enclosure (two bass, one middle and one high-note) the new material permits a 'flatter' cone angle and thus provides a better 'spread' of sound in the upper frequencies.

Electronic TV tuning

Monochrome television was to be seen on every set-maker's stand, but colour was claiming the attention of both exhibitor and visitor. From the British observer's point of view the most interesting feature, both in colour and monochrome, was capacitancediode tuning used by all but one manufacturer (Körting).

One of the great simplifications of the

Grundig all-band television tuner, with electronic tuning and band-swicching, compared with a standard matchbox. It has no moving parts.
diode tuning technique is that once the circuits are set up and aligned, tuning of any number of stages can be effected by the adjustment of a single potentiometer. Press-button tuning is reduced practically to the need to switch a single low-voltage lowcurrent d.c. line, each button being associated with its own potentiometer. As a result, remote control by a multi-way cable is simply an extension of the press-button unit on the set, and no motors are required.

Several manufacturers offered remote control, some by cable-less ultrasonic devices. Saba was actually demonstrating an ultrasonic remote control that changed programme and controlled colour saturation and volume. It was interesting to observe that all manufacturers included saturation adjustment on ther remote-control units, and some included contrast was well. These facilities of course require motors.

A simplified diagram of the Blaupunkt v.h.f. electronic tuner, shown in the accompanying drawing, which is representative of general practice in Germany. In addition to diode tuning it also incorporates diode band switching, and both tuning and band switching include the u.h.f. tuner, which is omitted from our simplified diagram.

Three circuits are tuned by BA142 diodes, as shown by the diode/capacitor symbols used in Germany to present a varicap diode. Band switching is effected by three BA136 diodes and an AA142 diode. On the right is shown the assembly of programme selector switches and potentiometers, of which there are usually six or seven, with a single lead between it and the tuner. Another lead would be necessary for band switching, of course, and that is controlled by an
angular adjustment of the slider potentiometer shaft. Power supply for tuning is always derived from an integrated-circuit voltage-stabilizing circuit. Slide-type controls seem to have taken over from rotary knobs in most kinds of domestic equipment.
Prices in Germany for colour receivers range generally around DM. 2,300 for a 25 inch table model, DM. 2,000 for 22 inch and DM. 1,700 for 19 inch. For monochrome 23 inch is the norm, and a table model would sell at about DM. 550 upwards.

A number of exhibitors had two loudspeakers in their 25 -inch table colour TV receivers and some had tone controls, but a rather unexpected innovation from the country that originated the PAL system was the provision on two or three makes of colour tone controls. These take the form of slider potentiometers calibrated with red or yellow at one end and blue the other, and they attenuate the blue gun emission (for a 'warmer' colour) or vice versa.

Prices of colour sets were all fixed by registration with the Kartelamt, but monochrome prices were all 'recommended', as they are here. Either way there is an added 'value tax', equivalent there to our purchase tax except in severity. It is always included in the quoted price and it amounts to 11% of the retail value of the goods. It is added at all stages along the distribution line and is still 11% even if the price is cut, because the final seller charges the full tax but deducts from it what has already been paid at other stages down the line. It sounds as though administration might be expensive.

The special Funkausstellung stamp.

News of the Month

Register of engineers

The creation and administration of a composite register of "the engineering community" is foreshadowed by an announcement from the Council of Engineering Institutions. At a meeting of the Board on September 4th it was unanimously resolved that "the Council of Engineering Institutions will, in collaboration with other interested parties and subject to the agreement of the Privy Council, initiate the formation of an organization to create and administer a composite register covering the principal sections of the engineering community, currently chartered engineers, technician engineers, and engineering technicians".

A working party, consisting of one representative from each of the fourteen Institutions within C.E.I., which include the I.E.E. and I.E.R.E., under the chairmanship of Sir Arnold Lindley, has been set up to implement the resolution. The first duty of this working party will be to prepare a submission to the Privy Council to get agreement to such modifications to the C.E.I. Charter and By-Laws as may be necessary and then to determine which other interested parties should be invited to collaborate.

Aesthetics and electronics

The Marconi-Elliott Microelectronics factory at Witham, Essex, has won for the London architects Anthony B. Davies and Associates the gold medal award for industrial architecture made triennially by the Incorporated Association of Architects and Surveyors.

The sampling technique used in pulse code modulation, which was invented by Alec Reeves, of Standard Telecommunications Laboratories, Harlow, is symbolized on one of the four stamps issued to mark the establishment of the new Post Office Corporation.

Colour TV show

The colour television show organized by the B.B.C., I.T.A. and B.R.E.M.A. started its tour in Leicester on October 14th. The venues and dates for the exhibitions until the end of the year are: Stockport, Town Hall, Oct. 27-Nov. 1; London, Euston Station forecourt, Nov. 8-29; Birmingham, Mecca Ballroom, Dec. 5-10; Glasgow, McLellan Galleries, Dec. 16-20.

Incidentally, according to B.R.E.M.A., deliveries of colour receivers for August were 1,000 higher than for the same month of 1968 but the total of 60,000 for the first eight months of the year was 18,000 lower.

Technical design competition

Designers and technicians under the age of 35 , who are still undergoing professional training or who have not worked professionally for more than two years, can take part in the competition for the Braun prize for technical design.

This competition which is to be held in 1970, is the second of its type. The first was held in 1968 when Germany and Japan won the major awards. The winning individuals or teams can receive up to DM 25,000 ($=£ 2,500$). To give some idea of the range of designs eligible, in 1968122 projects were filed-from a cooking plate to a transportation system.
The competition is sponsored by Braun Aktiengesellschaft, 6242 Kronberg / Ts., Postfach 115 116, Germany, in co-operation with "Gestaltkreis" of the Federal Association of German Industries.

Airfield control radar

An X-band airfield control radar, called the ACR430, intended to meet the needs of small airfields has been introduced by Plessey Radar. The new equipment, which replaces the earlier ACR424 has a dual role in that it continuously radiates one beam for general purposes.

A single aerial reflector system fed by twin horns and dual transmitter/receivers provides the two-beam coverage. One horn illuminates the reflector to give a cosecant squared pattern for surveillance. The other horn partially illuminates the reflector producing a pencil beam with the accuracy
required for surveillance radar approaches. Circular polarization is used to reduce the effects of precipitation clutter.

The output from a particular horn-transmitter/receiver combination can be switched to either or both displays which, together with the master control unit, can be up to 1,000 metres away from the aerial without the need for line amplification equipment. Two 300 mm (12 inch) diameter displays provide selection of four range scales from 4 to 32 nautical miles.

European multi-role combat aircraft

A European company was set up, on the signing of an agreement in Munich recently, called Avionica Systems Engineering GmbH which will be responsible for planning the electronic systems for the European multirole combat aircraft. The company will have its headquarters in Munich and will consist of members drawn from the following three companies: Elliott Automation and Advanced Military Systems Ltd [U.K.], Elektronik-Systems-Gesellschaft [West Germanyl, and FIAR-CGE and Selenia Industries Elettroniche Associate S.p.A. (Italy).

The new company will receive a contract for the electronic systems for the new aircraft from Panavia, which is also a consortium consisting of: the British Aircraft Corporation, Messerschmitt-Bolkow-Blohm and Fiat from the same three countries.

The Ferranti award

The British Computer Society has set up an annual award for the best candidate in its professional examinations.

The award, which is $£ 150$ donated by Ferranti, will be made by the council of the society on the recommendations of the chairman of the education board.

The first recipient of the award was Geoffrey Hollis who is a computer systems analyst with the Gulf Oil Company.

Solar flare early warning installation

A system of 24 -hour forecasts of the best frequencies to use in the shortwave band has been worked out by Swedish Telecommunications Administration. This will make use of a telescope installed for this purpose on the roof of a building at Farsta outside Stockholm. The telescope will be used to register solar flares and provide an early warning of disturbance to radio communications.

Tape player for colour

Lasers and holographic techniques have been employed by R.C.A. to play back, through a colour television set, full-colour programmes recorded on very cheap transparent plastic tape. A laboratory model of the SelectaVision tape player system was recently unveiled in America and is expected to be on sale to the public in the early 1970s. The cost should be about $\$ 400$ for the player and less than $\$ 10$ for a half-hour recorded tape. The system is claimed to be as easy to operate as a record player.

"The engineer is a woman'"

In an effort to encourage women to enter the engineering professions the Ministry of Technology has produced a film called "The Engineer is a Woman". In the film five women from mechanical, civil, electronic and electrical engineering, explain how and why they became engineers. The film is intended for 13- to 18 -year-olds and can be obtained free of charge for non-theatrical use from: The Central Film Library, Bromyard Avenue, Acton, London W. 3 .

Semiconductor expanded

plant

The Ferranti semiconductor assembly plant at Ormsgill, Barrow-in-Furness, is to be doubled in size to over 50,000 sq.ft. By about mid 1970 the plant will be capable of fissembling more than 20 million semiconductor components per year from material processed at the "parent" plant at Gem Mill, Chadderton, Oldham.

Data book demise

After being well known to engineers for over 30 years the Mullard Data Handbook, which consisted of a large number of black loose leaf folders, is to be discontinued. In its place three multi-part books are being prepared which will list data in the same format as before, on Mullard's design range of components.

Book one (blue cover) of the new series will cover semiconductor devices and integrated circuits and will be divided into six parts. Book two (orange cover) will deal with valves and tubes and will have five parts. Book three (green cover) will be in three parts and will provide data on components and materials.

Users who took out new subscriptions to the original handbook service during or after

Operational Ampli-fiers-Pt. 10

We regret the omission from this issue of the concluding instalment of the series of articles on operational amplifiers by G. B. Clayıon.

May 1968 will receive equivalent replacements from the first set of the new publication free of charge.

The fourteen parts will cost 12s each and should be available between now and January 1970, depending on the part required. Every year each part will be up-dated and reprinted and will be available at the same price; 12s. Orders for the new handbook should be sent, with remittance, to Central Technical Services, Mullard House, Torrington Place, London W.C.1.

Mini-computer

A physically small computer, known as the 18 C , is being developed by Arcturus Electronics Ltd, with the backing of the National Research Development Corporation. It uses medium scale i.cs and has a 16 -bit word length. Parity checks are built in. Data can be manipulated between several registers without returning to the main memory. It has a multi-register configuration-two registers may be used as index registers. The memory may vary in size from 256 to 32,000 words. Production is to begin soon and the 18 C will be available in a desk-top console on a seven-inch tall standard rack-mounted package. Both versions will hold up to 8,000 words of memory or interfaces for peripheral devices. It is expected that the selling price with 4,000 18-bit words of memory and a Teletype ASR 33 will be under $£ 4,000$. A system with 256 words of memory could, in quantity, sell for under $£ 2,000$.

Portable radio receives weather broadcasts

Zenith Radio Corporation have produced an a.m./f.m. portable radio with all the usual facilities plus a pre-tuned channel of 162.55 MHz . On this frequency there are almost continuous broadcasts in America giving information on local weather and water conditions, so the radio should be popular with all those who enjoy "messing about in boats". The price in the U.S.A. will be just under $\$ 50$.

Satellite link for Indonesia

Indonesia's new communications satellite ground station will link the country with the U.S.A., Europe, Japan, Australia, Hong Kong, Singapore and Malaysia. The station is located in Djatiluhur, Java, approximately 100 km from the capital and was built by the defence communications division of International Telephone and Telegraph Corporation. It is equipped to provide a variety of international communication Services-ielephone, telegraph, facsimile, leased channel service, alternate voice-data and both colour and monochrome television.

I.E.E.-I.E.R.R.E. liaison

For some time there has been gradual drawing together of the I.E.E. and the I.E.R.E. and many joint meeungs and conferences have been arranged. Now a joint liaison committee has been set up "To examine, and to report on, the advantages, disadvantages and problems of possible methods of combining the activities of the two institutions in a manner which would be in the best interests of the members of both institutions, and to make recommendations for the closer working together of the two institutions."

A panoramic view of the "largest semiconductor factory in Europe"; Mullards at Southampton. With almost 400,000sq.ft. of floor space and a staff of 3,000 Mullards are endeavouring to obtain a larger share of the world's semiconductor market. Dr. F. E. Jones, managing director of Mullard, has predicted that by 1980 the market for transistors will be $16,000 \mathrm{M}$ units and for integrated circuits $8,000 \mathrm{M}$ units, requiring over 1,000 tons of silicon a week. Mullard have other semiconductor plants at Stockport and Blackburn and are building another at Thornaby in Yorkshire which should start production at the end of the year and will eventually have a floor area of 200,000 sq. f t.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

The B.B.C. should think again

Now I have heard everything! Twenty years after implementing the Copenhagen Wavelength Plan, nearly fifteen since v.h.f, broadcasting was begun, and just at the time when this service has reached the remotest parts of the Kingdom, the British Broadcasting Corporation is "prepared to consider" reallocating the medium-frequencies! Why? Where is the technical and economic sense in this?

Do the B.B.C's engineers really think that they can hoodwink the public at large into believing that by transmitting Radio 1 on two medium-frequencies to cover the country, all the interference problems will disappear overnight? This reallocation would end the daytime distortion caused by interaction between the ground-waves of adjacent transmitters using 1214 kHz , but it will certainly do nothing to overcome the night-time fading and the ear-splitting beat interference from the Albanian station at Scutari. Neither is $908 \mathrm{kHz}_{z}$ going to be satisfactory with the East German Burg transmitter occupying this channel.

Radio 1 is supposed to be a national programme, so surely it should take its place alongside Radios 2, 3 and 4 on v.h.f. where the service coverage extends-potentiallyto 99.7% of the population. If money is not available to establish a complete nationwide Radio 1 v.h.f. network, then I think that the B.B.C. should be required to give an undertaking that all the proposed local stations should carry it at least during the evening periods when the medium-frequency transmissions are subject to fading and foreign interference.

Again, why bother at this time to improve Radio 4 m.f. coverage when that achieved on v.h.f. will still be better by between one and two per cent of the population?

In proposing to reallocate and improve m.f. reception and thereby continue the side-byside duplication of three programmes on two entirely different transmission systems, the B.B.C. is going to leave itself and we listeners in as big a muddle as ever. V.H.F. receiver sales will be retarded and a useful opportunity to work out with fellow E.B.U. Members a phased close-down of non-essential transmitters lost.

If the B.B.C. is still staffed by competent professional broadcasters and engineers, why
do they not put forward a bold, imaginative Plan for the seventies rather than palliatives more suited to the fifties? This, sir, is a sincere plea to ask the B.B.C. to think again.

AUSTIN UDEN,

Aylesbury,
Bucks.

Logic Display Aid

During the building and testing of the Wireless World Logic Display Aid, which is an extremely useful and clever device for the laboratory, we have found a number of errors.

The first anomaly is on page 258 of the June issue and concerns component values in the dian circuit. Resistors $R V_{S}(12)$ and $R V_{7(14)}$ in the circuit are of 500Ω but were found to be too low in value to reduce the current sufficiently to control the output voltage to the required level. Actual measured values in the boards built were $R V_{5(12)} 3.6 \mathrm{k} \Omega$ and $R V_{7(14)} 1.56 \Omega$, but $10 \mathrm{k} \Omega$ components were used as these were available at the time.

The multivibrator, IC6/B2 on page 311 July issue was found to run at about 12 kHz with the capacitors of the shown value. Using $0.022 \mu \mathrm{~F}$ raised the frequency to about 24 kHz which was considered to be satisfactory.

An error is to be found on page 377 of the August issue, Fig. 62. Pin 5 of IC2 should go to pin 16 socket 7 and not 17 as shown.

When construction had reached board 8 it was found that in the assembly a ZN330E was fitted for IC4 as in the component list, but a ZN362E was needed. The component list states one too many ZN330Es and one too few

Fig. 1

ZN362E. The ZN330E was used in position 4 on board 8. The extra gate needed was found on board 8 , IC5, the wiring of which is shown in Fig. 1.

Fig. 64 also has an error; pin 1 and pin 12 of IC3 should go to pin 8 of IC4.

On page 419 , Fig. 66 , pin $8 / \mathrm{B} 2$ should be relabelled pin 23/B2. The K signal comes from P9/B8 not P5/B6 and the T signal from P5/B8, not $\mathrm{P} 9 / \mathrm{B} 6$.

A different arrangement for the video was employed as shown in Fig. 2. This provides bright-up pulses only when clock pulses and video are present, completely eliminating any

Fig. 2
fly back signals. The second gate was used as an inverter so providing positive or negative bright-up as this may be required for future use in the instrument built. Also a more sophisticated video amplifier was used, as a circuit board was salvaged from a project abandoned some time ago.
H. J. BACON,

Barking Regional College of Technology.
The author replies:
I am much indebted to Mr. Bacon for taking the trouble to note the errors in the article. This will make life easier for other constructors. His idea of providing a switch to select either positive or negative going brightup pulses is a good one. Yet another way of obtaining satisfactory video blanking will be described in part 8 of the series of articles as the original blanking circuit did not perform very well with some oscilloscopes.

I would be very pleased to hear from others who have used the display aid for teaching as it would be useful to have an assessment of the instrument's value as a teaching aid and to hear of the students' reaction to it.
Brian Crank.

F.M. receiver bandwidth

It is disappointing to find Mr. L. Ibbotson stating, in his otherwise informative contribution, that something like 180 kHz i.f. bandwidth will provide 15 kHz audio bandwidth when a maximum frequency deviation of 75 kHz is employed (W.W. June 1969, "Test Your Knowledge", Q.9).

The i.f. bandwidth (for a single sinewave tone) is determined by the Bessel expansion of the equation for the modulated wave:

$$
\begin{aligned}
& e=E \sin \left(\omega_{d} d-m \cos \omega_{m} t\right) \text { i.e. } \\
& e=E \\
&-\mathcal{J}_{0}(m) \sin \omega_{1}(m) \cos \left(\omega_{c} \pm \omega_{m}\right) t \\
&-\mathcal{J}_{2}(m) \cos \left(\omega_{c} \pm 2 \omega_{m}\right) t \\
&+ \\
& \ldots \text { etc. to infinity. }
\end{aligned}
$$

$\mathcal{I}_{n}(m)$ is the Bessel coefficient of the first kind, order n and argument m modulation index $=\frac{\text { deviation frequency }}{\text { modulating frequency }}$
the standard convention is that the significant sidebands are all whose amplitude is greater than 1%.
In the case quoted, the mod. index $=75 / 15$ $=5$, and reference to a table of Bessel Functions will show that $\mathcal{J}_{8}(5)$ is the last order of argument 5 which is greater than 1% (it is 1.841%, whereas $f_{9}(5)$ is 0.552%). Hence there are 8 pairs of significant sidebands.
The bandwidth $=2 \times n \times \bmod$. freq., where n is the number of pairs of sidebands. With 8 pairs,
bandwidth $=2 \times 8 \times 15 \mathrm{kHz}=240 \mathrm{kHz}$.
From above it will be seen that if the i.f. bandwidth is only 180 kHz , then mod. freq. $=$

$$
\frac{180}{2 \times 8} \mathrm{kHz}=11.25 \mathrm{kHz}
$$

A listening comparison will quickly demonstrate the validity of the foregoing, the 'rule of thumb' sets really are disappointing. One -iuch may be the 'F.M. Tuner Using Integrated Circuits' described in the same issue. If its bandwidth (3 dB down) is in fact 160 kHz , then it will have an audio bandwidth of only 10 kHz .
L. E. WaUGH,

New Malden,
Surrey.

The author replies:

I agree with the result quoted by Mr. Waugh that if we wish to include all side frequencies with an amplitude greater than 1% of the unmodulated-carrier amplitude, then for a modulating frequency of 15 kHz and a maximum deviation of 75 kHz an i.f. bandwidth of 240 kHz is required. I do not agree, however, that this is the standard convention. Some authorities, it is true, claim that all side frequencies with amplitudes greater than 2% of the unmodulated-carrier amplitude should be included-this would require the inclusion of 7 pairs of side frequencies and hence a bandwidth of 210 kHz .

I do not agree that restricting the i.f. bandwidth to 180 kHz will restrict the received audio bandwidth to 11.25 kHz ; f.m. does not work that way. If an audio signal with components up to 15 kHz is radiated, then the same range of audio signal components will be received-together with an amount of nonlinear distortion products determined by the degree by which we restrict the i.f. bandwidth. L. Ibbotson.

Listener fatigue and ultrasonics

In an article in the April, 1969, issue Mr. Linsley Hood suggested that "listener fatigue" may be due to the ability of many transistor amplifiers to give large power outputs at supersonic (ultrasonic) frequencies which cause a , response in modern high-quality speaker systems.

I have been carrying out experiments deliberately feeding "white noise" through a high-pass filter to Mr. Linsley Hood's class A amplifier which was coupled to a commercial three-speaker high-quality reproducing system. This arrangement was found to be capable of producing a vague feeling of discomfort over a period of some hours whether
or not normal programme material was being handled.

Further experiments with specific ultrasonic frequencies indicated that, with my apparatus, the discomfort was noticeable only at fairly high power levels (3 W or more), and at frequencies just out of audible range ($20-$ 25 kHz).

Other evidence on this subject has been obtained from users of high-powered ultrasonic cleaning equipment, who report vague feelings of discomfort and a desire to move away when working in the vicinity of such apparatus.

Bearing in mind that, although normal programme material may not contain appreciable signals at ultrasonic frequencies, such unwanted signals can arise in equipment; there seems to be a strong argument for always using a steep-cut low-pass filter circuit with high-quality amplifiers.

The extra realism or "presence" sometimes claimed for apparatus having a response far beyond the sonic spectrum may in fact be a very mixed blessing.
Norman W. Vale,
Mickleover,
Derby:

Second-order active filter

I would like to correct various errors which crept into my note 'A Simple SecondOrder Active Filter' (Wireless World, April 1969, p. 185).

The formula quoted was derived using a high gain infinite input impedance amplifier; it should have been

$$
\frac{e_{0}}{e_{i}}=\frac{-\mathbf{I}}{\mathbf{1}+\alpha s T+(s T)^{2}}
$$

where $\tau=R C$ and the 3 dB frequency is given by

$$
w_{c}=\frac{I}{T}
$$

The degree of peaking is governed by choice of α, with critical damping (no peaking) for $\alpha=2$. However, critical readers will have noticed that my values for

$$
c_{s}\left(=\frac{\alpha c}{3}\right)
$$

for the practical responses given, do not agree with the theoretical transfer function. This is due to the finite input impedance of the transistor pair. This does not detract from the utility of the circuit however. Better agreement would be obtained by reducing both R and R_{c} (33 k) and increasing C.
John Firth,
Ottawa,
Canada.

Operational amplifiers

Your August, 1969, issue includes Part 7 of the series of articles on operational amplifiers by G. B. Clayton which contains two points on which I would like to comment. The first concerns the circuit diagram under the heading 'Monostable Multivibrator (1)'. If this diagram is correct the circuit cannot work
in the manner described by the author, for a negative pulse cannot be applied to terminal A from the input point labelled 'trigger'. If, on the other hand, diode D_{2} is shown the wrong way round, the waveform labelled $e A$ will have a positive level, in the stable state, whose value depends partially on the value of the unlabelled resistor adjacent to D_{2} on the figure.

The other point worth a comment concerns the section 'Regenerative Comparator'. The author's illustration of a rectangular hysteresis loop illustrates a common situation in which the loop gain is high for all values of output p.d. e_{o} except those very close to the saturation values. But this is a particular case. Regenerative circuits such as these reach their threshold levels when the loop amplification reaches unity, and for small values of the feedback ratio A the switching points can occur at values of e_{0} that are considerably less than the saturation values. There is a further comment worth making in relation to this situation. If integrated circuit operational amplifiers are used as regenerative comparators with small hysteresis, as required in many applications, it will be found that the elimination of high frequency parasitic oscillations becomes a very difficult problem indeed. It may become necessary then to use two stages. The first stage is a non-regenerative comparator with the required degree of amplification obtained by negative feedback and the second stage is a regenerative comparator with ample hysteresis and well-defined threshold levels.

H. Sutcliffe,

Professor of Electronic Engineering, University of Salford.

The author replies:
I would like to thank Professor Sutcliffe for his comments. The circuit diagram under 'Monostable Multivibrator (1)' is in error, the diode D_{2} has been shown the wrong way round. The positive level of the waveform e_{A} shown in the text as βV_{o}^{+}max will, as Professor Sutcliffe points out, be partially dependent on the value of the unlabelled resistor, the effect is small however if as I had assumed (but neglected to state) the value of R_{1} is considerably less than the value of the unmarked resistor.

Regarding his second comment, the use of low β and hence small hysteresis is, I would think, likely to give rise to parasitics at switching in any form of regenerative comparator, whether using i.c. op. amps or not. I would therefore consider the case discussed in the text as being the usable form of a regenerative comparator circuit although it is strictly a particular case. Professor Sutcliffe's comment will make readers aware of the difficulties of using small hysteresis with regenerative comparators.
G.B. Clayton.

More "Letters" are on p. 535

Personalities

This year's I.E.E. Faraday Lecturer is J. H. H. Merriman, C.B., O.B.E., M.Sc., A.Inst.P., F.I.E.E., a director of the new Post Office board. Mr. Merriman, who is 54 , and a physics graduate of the University of I.ondon, joined the Post Office Research Station, Dollis Hill, in 1936. Six years ago he became assistant engineer-in-chief of the l'ost Office, and in 1965 deputy engineer-in-chief. Two years later he was appointed to the new post of director of engineering and in August 1967 he became senior director: development. He was recently appointed member for technology of the board of the new Post Office Corporation. Last Deceniber Mr. Merriman accepted the invitation to become visiting professor in the department of electronic science and telecommunications at the University of Strathclyde, Glasgow.

John A. Saxton, D.Sc., Ph.D., the new chairman of the Electronics Division of the I.E.E., is director of the Radio \& Space Research Station at Dition Park, Slough, Bucks. Dr. Saxion, who is 55 , was, until his appointment to the Research Station in 1965, director of the U.K. Scientific Mission in Washington, D.C., and scientific attaché at the British Embassy there. He was for a time on the staff of the college before joining the Radio Division of the National Physical Laboratory, and in March last year he accepted a visiting professorship in physics at University College, London.

Donald G. Fink, general manager of the Institute of Electrical and Electronics Engineers, New York, has received the Outstanding Civilian Service Award of the United States Army Electronics Command "For his outstanding and dedicated service since 1963 as a member, vice-chairman, and chairman of the United States Army Electronics Command Electronics Advisory Group, Fort Monmouth, New Jersey, which has materially assisted in the advancement of the systems concept in tactical communications and resulted in great benefits to the Electronics Command and the Army".

Sir Raymond Brown, O.B.E., Comp.I.E.R.E., has relinquished his appointment as Head of Defence Sales of Her Majesty's Government, which he had held for over three years, and has rejoined Racal Electronics Lid as president. Sir Raymond, who, until his Government appointment, was chairman and managing director of the company of which he was co-founder, was knighted in this year's Birthday Honours. E. T. Harrison continues as chairman of the board and chief executive.

Bryan 1. H. Wilson, M.A. A.M.Inst.P., has become chief scientist at the Allen Clark Research Centre of The Ilessey Company, at Caswell, Northants, which he joined in 1953 and where he has been leader responsible for solid-state research since 1963. He is a graduate of Jesus College, Cambridge, where he took the natural sciences tripos. Much of Mr. Wilson's early work was concerned with the development of silicon integrated circuits. Subsequently, his activities have included the development of photocells and thermoelectric materials.
C. R. Knowles, M.A., is appointed chief engineer, and S. Woodcock, B.Sc., products manager responsible for selling and marketing in the components group of Ferranti's Electronic Display Department. The components group manufactures cathode-ray tubes (and associated coils), valves and photon devices. Mr. Knowles, who is 32, graduated in natural sciences from Jesus College, Cambridge. He joined Ferranti L.d in 1961 as a development engineer in the cathode-ray tube laboratory. He became chief development engineer for valves in 1967 and was made assistant works manager in October of that year. Mr. W'oodcock, after military service in the Far East, graduated from Leeds University in 1950 and joined Ferranti in 1951 as a member of the physical laboratory. He worked initially on the development of the aluminizing process for TV picture tubes and on phosphor screens, but later switched to work on industrial and radar tubes. Since 1966 he has been chief engineer, c.r.t. development.

Arthur I. Llewelyn, O.B.E., B.Sc., has been appointed director of the Ministry of Technology's Computer Aided Design Centre, Cambridge, which began operating earlier this year, and aims to develop the application of c.a.d. techniques in indusiry in co-operation with Cambridge University. Mr. Llewelyn, after studying at the University of Wales Engineering Department, Cardiff, joined Bawdsey Research Station at the outbreak of war where he was concerned with the early developments of radar, and later was responsible for early airborne pre-control andnavigationalcomputing systems. In 1960 he took up an appointment with NATO as scientific adviser to the Allied Air Forces Central Europe. Mr. Llewelyn returned to the U.K. in 1965 and joined the Ministry of Technology and has latterly been head of the Computer Advisory Service.

This year's recipient of the David Sarnoff Gold Medal of the American Society of Motion Picture and Television Engineers is Peter C. Goldmark, B.S., Ph.D., president and director of research of C.B.S. L.aboratories, Stamford. He started his professional career with Pye Radio in Cambridge, where in 1935 he was in charge of television engineering. Dr. Goldmark, who was born in Budapest, Hungary, received his doctorate in physics from the University of Vienna, and after service with P'ye went to the United States and joined the Columbia Broadcasting System as chief engineer in 1936. In addition to his position in C.B.S. which he has held since 1954 Dr . Goldmark is a visiting professor in medical electronics in the Department of Radiology at the University of Pennsylvania Medical School.
W. Roy Thomas, F.I.E.E., aged 51, is appointed group technical executive of Plessey Electronics Group where he will be responsible for co-ordination of all research and development work for the research centres, at West Leigh and Roke Manor. Mr. Thomas had been with Ellioti-Automation since 1952 where latterly he was group chief scientist, a director of Elliott Space \& Weapon Automation L.td and E A Radar Systems Lid and chairman of Elliott Electronic Tubes Lid. From 1939 to 1952 he was with the Royal Aircraft Establishment, Farnborough, where he was concerned with work which culminated in the design of the TRIDAC three dimensional missile-aircraft simulator. At Elliots he was responsible for the development of FACE, the field artillery control system using the 920B computer. Latterly Mr. Thomas co-ordinated the activities of the six research laboratories of Elliott Automation concerned with advanced techniques in computers, avionics, radar, optoelectronics microcircuits and space. Mr. Thomas is chairman of the joint E.E.A./S.B.A.C. avionics research committee for guided weapons, space and electronics. He is also the
U.K. representative on the organizing executive committee of EUROSAT.

Frank H. Taylor, F.I.E.E., has been appointed a senior principal research engineer at Standard Telecommunication Laboratories, Harlow, Essex, which he joins from S.T.C's Radio Producis Group, New Southgate. Mr. Taylor had been technical manager and systems manager for the group's aviation and communications business.
P. J. Allin, B.Sc., A.M.I.E.E., aged 28, has joined Intercontinental Systems Inc. (UK) Lid, of Woking, as terminal systems engineer. Mr. Allin oblained his degree in electronic engineering at the City University (formerly Northampton College) after which he spent six years at the Central Electricity Research Laboratories in I.eatherhead. Since 1966 he has been with Cable and Wireless as an electronics designer.
R. O. K. Turvey, B.Sc.(Eng.), M.I.E.E. has been appointed general manager of Cole Electronics' manufacturing division (formerly known as C. A. Cook I.id.) at Wickford, Essex. Mr. Turvey held previous appointments as chief engineer of the Transmission Division of A.E.I. Woolwich and as manager of the Terminal Equipment Department of Submarine Cables Ltd.
C. P. Crompton, M.I.E.R.E., who joined Orbit Controls I.td, of Cheltenham, as a senior project engineer on its formation 18 months ago, has been appointed chief engineer. Mr. Crompton, who is 41 , previously held senior engineering posts with Advance Controls Lid., Racal Communications I.td., and the Sperry Gyroscope Co.

The appointment of EIvin F. Collins as electronics production manager is announced by Solartron Electronic Group, Farnborough. He succeeds Dennis Burton, recently appointed director of production. Mr. Collins, aged 38, has been with Solartron for eleven years, latterly as product manager for digital instruments. Prior to joining Solartron he worked as a test gear engineer with the Ministry of Supply.
G. W. Mackenzie, M.I.E.R.E. has been appointed by the B.B,C. Head of Enginering, Northern Ireland. He joined the Corporation in 1941 at the Edinburgh studio centre. In 1954 he became a lecturer in the Engineering Training Department where, since 1963, he has been head of the technical operations section.
T. Aspin has been appointed technical manager of the Industrial Electronics Division of Mullard L.td and becomes a director of Associ:
Semiconductor Manufacturers Lid and of the Mullard Radio Valve Company Lid. Mr. Aspin joined Mullard in 1946 and since 1966 has been general product manager of the company's Consumer Electronics Division.

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\circ}$ (1 mm) up to $3 / 16^{\circ}$ For 240, 220, 110, 50 or 24 volts.

from 326

for your miniature soldering fron.

G 18 watts. Fitted $3 / 32^{\circ}$ bit for miniature work on production lines. Interchangeable spare bits, $1 / 8^{\circ "}, 3 / 16^{\circ "}$ and $1 / 4^{\circ *}$ available. For 240.220 or 110 volts, 32/6.

E 20 warts. Fitted with $1 / 4^{\prime \prime}$ bis.
Interchangeable spare bits $3 / 32^{\prime \prime}$, 1/8'". $3 / 16$ " wailable. For $240,220,110$ volts. From 35/.

Complote precision soldering kit

This kit-in a rgid plastic "tool-box" - contains

- Model CN 15 watts miniature rom fitted - bit. Interchangeable spare bits. 易", 高"
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron

From Electrical and Radio Shope or
send cash 498 "How-ro-Solder"-a mine of information and professional
to Antox.

15 watts - 240 volts
Fitted with nickel plated bit ($3 / 32^{\prime \prime}$) and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.
--

PRECISION MINIATURE SOLDERING IRONS
Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8.
Telex: 45296, Giro No. 2581000.
\square Please send me the Antex colour catalogue

\squarePlease send me the following irons Quantity Model Bit Size Volts Price
\qquad

I enclose cheque/P.O./cash value

NAME
ADDRESS

STARPHONE bySTC

The World's Smallest UHFRadiotelephone

The Starphone is unique. It's the first radiotelephone designed to go in the pocket without external wires or rods. Operating on UHF, STC Starphone has an astonishing penetration of buildings and steel structures, and can give you instant two-way communication with your staff over a wide area.

Write for details to STC Mobile Radiotelephones Limited, New Southgate, London N. 11. England. Telephone: 01-368 1200 . Telex: 261912.

STC

Active Filters

4. Basic theory: Active circuits

by F. E. J. Girling* and E. F. Good*

The essence of active-filter design is ealisation of 2 nd-order response with 2 factor $>\frac{1}{2}$ without using both capacitance and inductance. Three simple -eedback loops are analysed: (1) two ags and negative gain, (2) a lag-lead -network with positive gain, (3) a -alanced parallel-T network and -regative gain; and the basic relationthips between available gain and maxinum Q are derived. An abstract discussion of sensitivity to variations -n amplifier gain and in passive com--onent values is also attempted.

st-Order network

We have seen in Part 2 that the two Istrder transfer functions $I /(1+p T)$ and $T /(\mathrm{I}+p T)$, can be realised with $C R$ setworks; and it follows that any transfer nction that can be reduced to a product of st-order factors can in principle be realised y a $C R$ network (though buffer amplifiers nay be very helpful in a practical situation). -There is no active-filter problem.

-ind-Order networks

For a 2 nd-order transfer function, for xample

$$
1 /\left(1+\frac{1}{q} p T+p^{2} T^{2}\right)
$$

he condition of $q=\frac{1}{2}$ marks a dividing line: when $q<\frac{1}{2}$ passive $C R$ realisation is yossible, but when $q>\frac{1}{2}$, not. (The :ondition $q<\frac{1}{2}$ is, of course, covered by the garagraph above, since then the transfer iunction may be resolved into two real -Ist-order factors.) The limitation can be emoved, however, by the use of gain and eedback.
For the basic system with 100% feedback shown in Fig. I(a)

$$
\begin{equation*}
\frac{V_{o u t}}{V_{i n}}=\frac{\mu}{1-\mu} \tag{1}
\end{equation*}
$$

If, therefore, as in Fig. i(b),

$$
\mu= \pm A F(p)= \pm A F_{1}(p) / F_{2}(p)
$$

where $F_{1}(p)$ and $F_{2}(p)$ are the numerator 3nd denominator respectively of $F(p)$,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{(\pm A) F_{1}(p)}{F_{2}(p)-(\pm A) F_{1}(p)} \tag{2}
\end{equation*}
$$

The aperiodic gain constant is written ($\pm A$) so that A may be a positive quantity whether the amplifier gain is positive or negative. In general this simplifies the labelling of diagrams and discussion of changes in the magnitude of A. In addition in the following analysis, to emphasise the difference and to avoid confusion when making comparisons, A is used when the gain factor is negative and K when it is positive. Three circuit configurations will be analysed:

1. A two-lag network and negative gain,
2. A lag-lead (Ist-order band-pass) network and positive gain,

${ }^{\text {or Royal Radar Establishment }}$

Fig. I(a). Schematic of active feedback system; (b) the same in which μ is arbitrarily divided into a
frequency-dependent factor and an aperiodic factor.

Fig. 2. A basic method of increasing Q factor.
3. A balanced parallel-T network and negative gain.

Two lags and negative gain

The transfer function of a two-lag network may conveniently be written as shown in Fig. 2, so that q_{0} and T_{0} are the initial values of q and T for the system; i.e., the values before feedback is applied. By setting $\beta=1$ the system becomes of the same form as Fig. I, and by substituting in equn. (2)

$$
F_{1}(p)=1, F_{2}(p)=1+\frac{1}{q} p T_{0}+p^{2} T_{0}^{2}
$$

the loop-closed transfer function is obtained as

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}}= & -\frac{A}{1+\frac{1}{q} p T_{0}+p^{2} T_{0}^{2}+A} \\
= & -\frac{A}{A+1} \times \\
& \frac{1}{1+\frac{p T_{0}}{q_{0}(A+1)}+\frac{p^{2} T_{0}^{2}}{A+1}} \tag{3}
\end{align*}
$$

Comparison with the standard form for a 2nd-order denominator, $1+p T / q+p^{2} T^{2}$, then gives

$$
\begin{equation*}
T=T_{0} /(A+1) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
q=q_{0}(A+1)^{1} \tag{5}
\end{equation*}
$$

Thus, remembering that the nominal cut-off or undamped resonant frequency $\omega_{c}=1 / T$, we find that the application of feedback multiplies both ω_{c} and q by $(A+1)^{1}$. The effect is shown in Fig. 3, although these curves are drawn for the situation where A is constant and the varying parameter is the feedback fraction β. By substituting $I / p T$ for $p T$, or otherwise, the corresponding results for a loop containing two leads are found to be that q is multiplied and ω_{c} is divided by $(A+1)^{1}$.

Generally the dependence of cut-off frequency on amplifier gain is undesirable in a practical circuit. But there are ways of reducing it to a second-order effect, for example by combining the amplifier and one of the lags into a feedback integrator; and the relation between q and loop gain, equn. (5), still applies.
When

$$
\begin{equation*}
A \gg 1, q=q_{0} A^{\frac{1}{2}} \text { approx. } \tag{6}
\end{equation*}
$$

from which the sensitivity of q to small changes in zero-frequency gain, A, is obtained as

$$
\begin{equation*}
\frac{\Delta q}{q}=\frac{1}{2} \cdot \frac{\Delta A}{A} . \tag{7}
\end{equation*}
$$

This is a satisfactory result to the extent that there is no magnification of errors, and one would expect that in a practical circuit A would be stabilized by using an amplifier of much higher gain, say A_{0}, reduced to the required gain A by negative feedback-

$$
\begin{equation*}
A=\frac{A_{0}}{1+A_{0} \beta^{\prime}} \tag{8}
\end{equation*}
$$

Fig. 3. Showing the effect of negative ģain and feedback on a two-lag network. A is constant, β varies.

Black's formula, which may be rearranged to

$$
\begin{equation*}
\frac{1}{A}=\frac{1}{A_{0}}+\beta \tag{9}
\end{equation*}
$$

Thence, by differentiation, if β is constant

$$
\begin{equation*}
\frac{\Delta A}{A}=\frac{\Delta A_{0}}{A_{0}} \cdot \frac{A}{A_{0}} \tag{10}
\end{equation*}
$$

which is the well-known result for a negative-feedback system, viz. relative changes in closed-loop gain are proportional to relative changes in open-loop gain multiplied by the ratio closed-loop gain to open-loop gain (i.e., the ratio of required gain to available gain). Thus, in principle, by making A_{v} / A large enough the dependence of A on A_{0} can be reduced as much as may be desired. It is to be expected, however, that in practice when $A_{0} / A \rightarrow \infty$

Fig. 4. Nyquist plot for feedback loop with two lags and negative gain.
it will be found that A is affected by changes in β, and that equn. (7) becomes effectively

$$
\begin{equation*}
\frac{\Delta q}{q}=-\frac{1}{2} \cdot \frac{\Delta \beta}{\beta} \tag{11}
\end{equation*}
$$

This result also is satisfactory, as it again shows that the circuit does not exaggerate changes in component values.
Because for a passive $C R$ network $q_{0} \ngtr \frac{1}{2}$, and often because of practical constraints is considerably $<\frac{1}{2}$, equn. (5) shows that even for a moderate value of q (say $q=5$) a quite high minimum value of A is needed. Consequently in a "designable" circuit, where a higher intrinsic gain will be used than the minimum needed, the gain used may be of the order 1,000 or more. This may seem a high price to pay. Nevertheless the two-lag loop (if the high-pass equivalent is included) is the basis of all the preferred methods of realising active filters -because of the low sensitivity to errors in component values. This low sensitivity derives from the fact that if A is a real number; i.e., shows no appreciable phase shift over the band of frequencies for which the magnitude of the loop gain is $\geqslant 1$, the system is essentially stable no mapter what variations there may be in gain or in component values. This is made clear by the Nyquist plot for the ideal loop. Each lag contributes a maximum phase shift of 90°, and together they give a cardioid-

Fig. 5. Block diagrams for synthesis of feedback loops containing two lags, or their analogue (two leads, or two "tuned circuits").
shaped curve as shown in Fig. 4. The curve does not cross the horizontal axis, the limiting phase shift being 180°, and so can never encircle the point I , jo.

The results of this analysis of the two-lag loop are summarized in the block diagrams of Fig. 5, which can be useful as the starting point for some practical designs, particularly of bandpass filters using the low-pass to bandpass transformation rules.

Equns. (4) and (5) give the initial value T_{0} that must be chosen to give a closed-loop value T as

$$
\begin{equation*}
T_{0}=q T / q_{0} \tag{12}
\end{equation*}
$$

and the value of gain, A, required to raise q_{0} to q as

$$
\begin{equation*}
A=\left(q / q_{0}\right)^{2}-1 \tag{13}
\end{equation*}
$$

These results are incorporated in Fig. s(a). When the passive network can be represented as two equal isolated lags, Fig. $s(\mathrm{~b}), q_{0}=\frac{1}{2}$, and $q / q_{0}=2 q$. Consequently $T_{0}=2 q T$, and $A=4 q^{2}-1$. Where there are two unequal lags, they may be multiplied together and treated as case (a). Since q_{0} will be $<\frac{1}{2}, A$ will be greater than for case (b).

The discussion of two simple lags and gain may appear to be an out-of-date approach when it is already known that many practical circuits are going to be built around high-gain operational amplifiers used as integrators. But loop gain is of such fundamental importance to the design of an active filter, that it is always necessary at least to know that enough has been provided to satisfy a given specification. A high-gain integrator is easily shown to be equivalent to a lag and gain, and the results of this section will be found to provide a unified basis for the analysis of a wide range of problems.

A lag-lead network, or network with "tuned-circuit" response

The transfer function for tuned-circuit response, with centre frequency $\omega_{0}=1 / T$, Q factor q_{0}, and normalized to unity gain at the centre frequency is

$$
\frac{\frac{1}{q_{0}} p T}{1+\frac{1}{q_{0}} p T+p^{2} T^{2}}
$$

Except that the gain at the centre frequency is always less than unity, the transfer function of a passive $C R$ lag-lead network is of the same form and may be represented as in Fig. $6, k<$ I. (See Part 3,equn. (23) and Table I.)

Substitution in equn. (2) gives for the transfer function with the feedback loop closed:

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\frac{k K}{q_{0}} p T}{1+\frac{1}{q_{0}} p T+p^{2} T^{2}-\frac{k K}{q_{0}} p T} \\
& =\frac{\frac{k K}{q_{0}} p T}{1+\frac{1-k K}{q_{0}} p T+p^{2} T^{2}} \tag{14}
\end{align*}
$$

This shows that the feedback leaves the centre or resonant frequency unaltered (which was to be expected from consideration of symmetry), and increases the Q factor [if $0<k K<I$], since now

$$
\begin{equation*}
q=q_{0} /(1-k K) \tag{15}
\end{equation*}
$$

Clearly as $k K \rightarrow 1$ the increase in q becomes very great, and when $k K>1$ the Q factor becomes negative and the circuit will oscillate. The system is, in fact, equivalent to the familiar application of "reaction" to a tuned circuit in a simple radio receiver. As a method of increasing Q factor, and gain at the centre frequency, the system is very effective, but likely to be tricky unless means can be found to stabilize the performance.

The sensitivity to small relative changes in loop gain is easily derived from equn. (15) by differentiation and substitution as

$$
\begin{equation*}
\frac{\Delta q}{q}=\frac{\Delta(k K)}{k K}\left(\frac{q}{q_{0}}-1\right) \tag{16}
\end{equation*}
$$

When $q \gg q_{0}$ relative changes in loop gain are exaggerated by the factor q / g_{0} approximately, and this is a useful warning if q_{10} and k may be taken as constant and K is the factor most susceptible to uncontrolled changes.

The same conclusion can be deduced from the Nyquist plot, which, as shown in Fig. 7, is a circle passing through the origin, the diameter $O D$ representing $k K$ the loop gain at the centre frequency. When $q / q_{0} \gg I_{2}$ $\mathrm{OD} \rightarrow \mathrm{I}$, since as equn. (IS) tells us, $q / q_{0}=1 /(1-O D)$. Small changes in OD then give much greater relative changes in the gain margin ($1-O D$) and consequently large changes in performance over a band of frequencies corresponding to a section of the plot centred on the point D; i.e., at and around ω_{0}

However, when a gain factor critically affects performance, the factor and consequently the performance may (and should) be stabilized by feedback, as is well known (see equans. (8), (9), et sequ.). Then $K \rightarrow I / \beta$ very nearly, and β is typically determined by two resistors as shown in Fig. 8, so that

$$
\begin{equation*}
K=1 / \beta=\left(r_{1}+r_{2}\right) / r_{1} \tag{17}
\end{equation*}
$$

and the sensitivity of K to changes in r_{1} and r_{2} is given by

$$
\begin{equation*}
\frac{\Delta K}{K}=-\frac{\Delta r_{1}}{r_{1}}\left(1-\frac{1}{K}\right) \tag{18}
\end{equation*}
$$

and a similar expression (without the prefixed minus sign) for $\Delta r_{2} / r_{2}$.

When $K \gg 1$ changes in r_{1} and r_{2} cause proportional changes in K, and so, because of the magnification of errors in K shown by equn. (16) for $q \gg q_{0,}$ working in this region necessitates holding $\left(r_{1}+r_{2}\right) / r_{1}$ to a much tighter tolerance than the required tolerance on q. Even when $K=2,\left(r_{2}=r_{1}\right)$, changes in either resistance cause changes in K which are relatively only half as great. Admittedly accurate and stable resistors are not difficult to come by, but as a general principle it is preferable to avoid this region. When $K \rightarrow 1, \quad\left(r_{2} \ll r_{1}\right)$, the sensitivity of K to changes in r_{1} and r_{2} becomes very small; and of great interest is the limiting condition when 100% negative feedback is applied, then $\beta=1, r_{2}$ dis-
appears, and $K=A_{\mathrm{v}} /\left(A_{0}+1\right)$, thus $K \rightarrow \mathbf{1}$ as $A_{11} \rightarrow \infty$ and does not depend on the accuracy of any component. Performance is still affected by k and q_{0}, and as these are in general mutually dependent, the system will now be analysed explicitly as a loop containing a lead-lag network.

If the frequency-dependent network can be represented by the lead-lag transfer function

$$
\begin{align*}
& \frac{p T_{2}}{1+p T_{2}} \cdot \frac{1}{1+p T_{1}} \\
& =\frac{p T_{2}}{1+p\left(T_{1}+T_{2}\right)+p^{2} T_{1} T_{2}} \\
& k=\frac{T_{2}}{T_{1}+T_{2}}, \text { and } q_{0}=\frac{\sqrt{T_{1} T_{2}}}{T_{1}+T_{2}} \tag{21}
\end{align*}
$$

Hence, substituting in equn. (15), we find

$$
\begin{align*}
q & =\frac{\sqrt{T_{1} T_{2}}}{T_{2}(1-K)+T_{1}} \tag{23}\\
& =\frac{1}{x(1-K)+\frac{1}{x}}\left[\text { where } x=\sqrt{\frac{T_{2}}{T_{1}}}\right] \tag{24}
\end{align*}
$$

When $K<\mathrm{I}$, this expression is of a familiar form and gives

$$
\begin{equation*}
q_{m a x}=\frac{1}{2 \sqrt{1-K}} \tag{25}
\end{equation*}
$$

when the ratio of time constants

$$
\begin{equation*}
x^{2}=\frac{1}{1-K} \tag{26}
\end{equation*}
$$

Thus when $K=\frac{3}{4}, q_{\text {max }}=1 ; \quad K=\frac{1}{1} \frac{5}{6}$, $q_{\text {max }}=2 ; K=\frac{63}{64}, q_{\text {max }}=4$; etc. This behaviour is shown in the lower and righthand half of Fig. 9.

When $K=\mathrm{I}$, there is no maximum and

$$
\begin{equation*}
q=x=\sqrt{\frac{T_{2}}{T_{1}}} \tag{27}
\end{equation*}
$$

Fig. 6. Positive gain and a network with "tuned-circuit" response, given by equn. (14).

Fig. 7. Nyquist plot for positive-feedback loop containing lead-lag network.

Fig. 8. Positive-gain amplifier with gain stabilized by feedback.

Fig. 9. Illustrating equn. (25). Shows the effect of the gain K and the ratio T_{2} / T_{1} on a lead-lag loop with positive gain.

As already mentioned we can make $A \rightarrow I$ very closely by applying 100% negative feedback to a high-gain amplifier, as for example by the emitter-follower connection. Provided that the Q factor aimed at is not too close to $q_{m a x}$, as given by equn. (25), performance depends almost only on the ratio of the two time constants. The information about $q_{\text {max }}$ contained in equn. (25) is perhaps easier to interpret if we substitute $A_{0} /\left(A_{0}+1\right)$ for K [where $A_{0}=$ internal gain]. The equation then becomes

$$
\begin{equation*}
q_{\max }=\frac{1}{2} \sqrt{ }\left(A_{0}+1\right) \tag{28}
\end{equation*}
$$

This result is the same as that deduced for two lags and negative gain, equn. (5), when $q_{0}=\frac{1}{2}$ (the maximum possible value), and $A=A_{\mathrm{o}}$ (the full internal gain of the amplifier); and the identity demonstrates that in circuits which do not exaggerate the effect of component tolerances as q is raised there is no substitute for amplifier gain. When

$$
\begin{equation*}
K>1, q=\infty \text { when } x^{2}=1 /(K-1) \tag{29}
\end{equation*}
$$

This is shown by the curves in the upper and left-hand part of Fig. 9. By choosing K correctly high Q factors can be obtained with any value of T_{2} / T_{1}. But in general in this region, except close to the diagonal representing $K=1$, it can be seen from the shape and spacing of the curves that high values of Q factor are obtained at the expense of high sensitivity to both K and the ratio T_{2} / T_{1}; i.e., the faftiliar disadvantages of positive feedback appear.

Active filters using a balanced parallel-tee network

It has been shown in Part 3 that the paralleltee network consist of a low-pass network and a high-pass network connected in parallel; and also that if the input voltage is introduced at the foot of the tees bandpass response is obtained and the network may be analysed as a lag-lead network and a lead-lag network in parallel. The existence of these parallel paths gives the parallel-tee network some special properties which can be useful. But, in general, filter circuits using the parallel-tee network contain, from one point of view, redundant components; i.e., they contain more components than the minimum necessary to obtain the specified order of response. Synthesis and analysis depend on the assumption that the six components of the network are accurately matched. Such circuits therefore fall outside the main theme of this series. They do, however, show a very modest gain requirement for a given Q factor compared with the two-lag loop. It is of interest, therefore, to derive the relation between q and available loop gain for the feedback system shown in Fig. 10(a). The notion behind the setting up of such a system is, of course, that as feedback is increased the response at high and low frequency is depressed and the $-3 / \mathrm{dB}$ points move closer together.

The effect is shown in Fig. 10(b), which is drawn for the situation where A is constant and the feedback fraction β is the parameter which is varied. The figure has been drawn for $q_{0}=\frac{1}{2}$, the greatest value that can be
obtained from a passive $C R$ network: in practice q_{0} is likely to have a lower value, say \ddagger (see Part 3).

By setting $\beta=1$, so that the zerofrequency loop gain is simply $=-A$, and substituting in equn. (2), we find

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{-A\left(1+p^{2} T^{2}\right)}{1+\frac{1}{q_{0}} p T+p^{2} T^{2}+A\left(1+p^{2} T\right)^{2}} \\
& =-\frac{A}{A+1} \times \\
& \frac{1+p^{2} T^{2}}{1+\frac{1}{q_{0}(A+1)} p T+p^{2} T^{2}} \tag{30}
\end{align*}
$$

which shows that

$$
\begin{equation*}
q=q_{0}(A+1) \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
q \simeq q_{0} A, \text { when } A \gg 1 . \tag{32}
\end{equation*}
$$

Thus $q / q_{0} \propto A$, and consequently for $q / q_{0} \gg \mathrm{I}$ a much smaller value of A is required than in a two-lag loop (where $\left.q / q_{o} \propto A^{1}\right)$.

The linear relationship between q and A gives

$$
\begin{equation*}
\frac{\Delta q}{q}=\frac{\Delta A}{A} \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\Delta q}{q}=\frac{\Delta q_{0}}{A_{0}} \cdot \frac{A}{A_{0}} \tag{34}
\end{equation*}
$$

(a)

(b)

Fig. ro. (a) Feedback loop containing parallel-T network. (b) Shows increases in Q factor by application of feedback.
when A is obtained from an amplifier of high gain, A_{0}, to which additional negative feedback is applied.

It can hardly be emphasized too strongly, however, that performance is sensitive to unbalance in the parallel- T network, and that consequently errors in component values can easily invalidate the results derived above.

Loop gain and through gain

It is the nature of the closed feedback loop that determines the inherent characteristics of the resulting resonant circuit, viz. the undamped resonant frequency and the Q factor, which manifest themselves in the denominator of transfer functions of the type $F(p)=V_{\text {out }} / V_{\text {t }}$. It is, of course, often possible to enter or leave the circuit in several ways, and this gives a choice of numerator functions. But provided all voltage sources are of effectively zero internal impedance so that they do not alter the impedances of the branches into which they are introduced, and that all output voltages are observed without adding any appreciable shunt admittance,* the denominator of $F(p)$ is invariant, being a reflection of the natural motion of the circuit (i.e., of the way in which transients decay).

In simple cases the nature of the transfer functions obtained from the various possible connections can often be predicted from inspection of the circuit. Thus, for example, in Fig. II(a) for an input V_{1} there is a two-lag network between input and output, and the response is low-pass. For an input
${ }^{\text {a }}$ There are parallel arguments for current sources and current outputs.

Fig. It. Showing how a change in the position of the input can convert a low-pass filter to band-pass and vice versa.

Fig. 12. Active parallel-T system with alternative input connections.
V_{2} there is a lead-lag network between input and output, and the response is simple band-pass (or "tuned-circuit"), with (of necessity) $T(=1 / 1, \mathrm{c})$ and q the same as for the response to V_{1}. Similarly in Fig. 11(b) for an input V_{1} there is a lead-lag network between input and output, and the response is simple band-pass: for an input V_{2} there is a two-lag network between input and output, and the response is low-pass. These properties are not peculiar to active networks, and examples of the multiple responses that can be obtained from a passive network have been given in Part 3.

For each circuit, if one transfer function is known, simple reasoning will lead to the others. Thus we already know that for Fig. $\mathrm{ro}(\mathrm{a})$ the transfer function for an input V_{1} is, using equn. (3), and in Part 3 equn. (3) and Table I
$\frac{V_{\text {out }}}{V_{1}}=-\frac{A}{A+1} \cdot \frac{1}{1+p T / q+p^{2} T^{2}}$
where

$$
\begin{aligned}
& T=\sqrt{\frac{C_{1} C_{2} R_{1} R_{2}}{A+1}} . \\
& q=\frac{\sqrt{(A+1)\left(C_{1} C_{2} R_{1} R_{2}\right)}}{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}
\end{aligned}
$$

and we can derive the transfer function for V_{2} from this equation by finding a relation between V_{1} and V_{2} and substituting.
V_{1} can be replaced by a current source V_{1} / R_{2} in parallel with R_{2}, and V_{2} by a current source $V_{2} p C_{2}$ in parallel with C_{2}. The two current sources are effectively connected between the same two nodes (the output impedance of the amplifier being by definition zero) and so will give the same output if they are equal to one another, $V_{1} / R_{2}=V_{2} p C_{2}$. Hence the wanted relationship is $V_{1}=V_{2} p C_{2} R_{2}$, and the required transfer function

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{2}}=-\frac{A}{A+1} \cdot \frac{p C_{2} R_{2}}{1+p T / q+p^{2} T^{2}} . \tag{36}
\end{equation*}
$$

For Fig. Io(b) we have, from equns. (14), (15), and Table I of Part 3

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{1}}=\frac{k K p T / q_{0}}{1+\frac{1}{q_{0}}(1-k K) p T+p^{2} T^{2}}, \tag{37}
\end{equation*}
$$

where
$k=\frac{C_{2} R_{2}}{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}$,
$\frac{1}{q_{0}}=\frac{C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}}{\sqrt{ }\left(C_{1} C_{2} R_{1} R_{2}\right)}$,
$T=\sqrt{ }\left(C_{1} C_{2} R_{1} R_{2}\right)$
i.e.
$\frac{V_{\text {out }}}{V_{1}}=\frac{K p C_{2} R_{2}}{1+\frac{1}{q_{0}}(1-k K) p T+p^{2} T^{2}}$.
By the method of the previous paragraph we then find $V_{2}=V_{1} p C_{2} R_{2}$, and consequently

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{2}}=\frac{K}{1+\frac{1}{q_{0}}(1-k K) p T+p^{2} T^{2}} . \tag{39}
\end{equation*}
$$

Superficially this 1.p. transfer function suggests that gain is not stabilized by feedback. In a practical situation, however, we should have $K=A_{0} /\left(\beta A_{0}+1\right)$, where $\beta A_{0} \gg 1$.

To keep the analysis as simple as possible Fig. Io(a) was drawn with the parallel-tee network in the forward path. To obtain "tuned-circuit" response the input, now called V_{2}, could be reconnected as in Fig. 19 (Part 3), leading to the arrangement shown in Fig. 12. Other examples of the multiple-response potentialities of one basic loop will be found in later parts

R. F. amplifier for f.m. tuner

In reply to the letter in last month's issue regarding the problem of radiation from the local oscillator of the integrated circuit f.m. tuner described in the June issue, the author (G. J. Newnham), stated that a suitable r.f. amplifier was being prepared. Below we give the circuit diagram and layout he has supplied.

The 90 MHz amplifier employs a $316-04$ i.c. made by Marconi-Elliott Microelectronics. Both coils consist of five turns of $18 \mathrm{~s} . \mathrm{w} . g$. (0.3in diameter, 0.25 in long), and L_{1} is centre-tapped.

BAILEY AMPLIFIER REPRINT

In our September issue we announced that the reprint of the articles by Dr. A. R. Bailey on his $20-\mathrm{W}$ and $30-\mathrm{W}$ amplifiers and pre-amplifier "will be on sale within the next month". We regret that plate-making and printing difficulties have seriously delayed publication. It now seems likely that the reprint will not be available until the end of November. We apologise to the many readers whose orders have not been executed.

New Books

Transistor Audio and Radio Circuits, from Mullard, is a manual of established and practical circuits for use by radio and audio service engineers, equipment manufacturers, students and home constructors. A wide range of circuits, from portable radio receivers to high-quality amplifiers is presented in detail and a chapter is devoted to test equipment. The chapter headings are: silicon and germanium transistors; basic h.f. circuits; basic a.f. circuits; radiograms, record players and portable radios; tape recorders; car radios; high-quality audio equipment; high-quality f.m. tuners; test equipment. Appendices cover biasing arrangements for h.f. circuits, B.B.C. test-tone transmissions, and six data charts and nomograms. Pp. 205. Price 30s, (p. and p. 2s.) Mullard Lid, Mullard House, Torrington Place, London W.C. 1 .

Servicing with the Oscilloscope, by Gordon King, presents the oscilloscope, from a practical standpoint, as a valuable aid to servicing and fault-finding in radio, television and audio equipment, including the latest stereo-radio and colour television circuits. The illustrations include many photographs of oscilloscope traces encountered when testing both faulty and correctly operating equipment. Pp. 176 including a three-page index. Price 28s. Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London W.C. 2 .
Hi-Fi and Tape Recorder Handbook, by Gordon J. King, is based on the author's previous book The Practical Hi-Fi Handbook published by Odhams Books in 1959 and now out of print. There are fifteen chapters written in a technically uncomplicated manner. The first chapter discusses special terms in the audio vocabularyincluding decibel, phon, and harmonicsand explains the principles of recording and of stereophony. The rest of the book expands all these terms in relation to voltage amplifiers, valve and transistor power amplifiers, loudspeakers and disc and tape systems. The final chapter is on video tape-recording. Detailed circuits and photographs of commercial equipment are used in the discussions. There are two appendices-on amplifier specifications, and on test tapes and recordsand a good index. Pp.304. Price $\{2$. Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London W.C. 2.

Glide Path, by Arthur C. Clarke, recalls the struggles of a group of scientists, flyers and specially trained servicemen to perfect a radar talk-down system for planes during World War II. This novel is not prophetic, but documents a rapid and important technical development in communications. Pp. 229. Price 30s. Sidgwick \& Jackson Ltd, 1 Tavistock Chambers, Bloomsbury Way, London W.C.1.

Living with Hi-Fi

A wife's definition of 'tolerance'

by Heather Dinsdale

Although I have a great deal of sympathy for wives whose husbands seem to be married to a car, or a fishing rod, or a set of golf clubs, I claim a special consideration for those poor wives like myself whose husbands are dedicated to sound reproduction (I use the phrase advisedly) in any shape, form or size. To start with, all the work has to be done indoors; there is none of this banishing him to the garage, the river or the golf links. The

Husbands . . . dedicated to sound reproduction
hi-fi units invade the whole house, interconnected with long snake-like cables which are always placed just inside doorways for the unwary wife and children to trip over. The mess is not even confined to the visual senses; the most execrable sounds literally shake the house from time to time, especially when the baby has just been put to bed. This is all performed in the name of the great god hi-fi. ("I'm sorry, but the baby will just have to get used to it.")

The sheer size of the loudspeakers is another thing. Before we got married I was given my annual brainwashing at the Audio Fair, and I gradually learned that large loudspeakers sound better than small. My great mistake was to admit this. Now, my protests that we are being crowded out of house and home by bigger and bigger speakers are countered by impossible rationalizations. ("But you did say at the Audio Fair that those huge horns sounded very good.")

It is bad enough giving house room to completed hi-fi units; up to a point they
have their uses for standing vases of flowers on, but the flowers mysteriously disappear shortly before the whole house shakes to the closing scene of "Götterdämmerung". (Presumably the vases would shatter if they were left in the room.) But those of you who think that I am being unreasonable have not had to live with an amplifier through all its stages from design and development to demonstration. There are, in fact, five distinct phases: design, development, testing, manufacture and demonstration.

The design phase begins quietly. It is characterized by my hustand developing an increasing absent-mindedness and loss of memory where household chores (e.g. wash-ing-up) are concerned. For some reason this loss of memory does not apply to meal-times. Scraps of paper covered in hieroglyphics are left all over the house, and the slide-rule features prominently. The postman staggers up the drive laden with manufacturers' catalogues, and I find myself taking down meaningless telephone messages. Isn't it funny how the 'phone always rings while I'm feeding the baby; perhaps I ought to tell Mrs. Parkinson!

Testing

Once the design is completed, development can begin. This is normally done on the floor. I have carried out a careful research pro-
gramme on the action of vacuum cleaners, and I can now report that resistors and transistors are always sucked up in preference to dirt and dust. ("Have you seen a thing looking like a little striped shrimp? It's gone where? But that was part of a matched set-took me hours. You'll have to empty the bag.") During the development phase, various instruments with small television screens appear and stand around the room. These offer infinite attraction to the children. ("Don't touch that-it's Daddy's. Yes, that's a green snake. No, you mustn't feed it.") I have discovered that there is a technique for getting solder out of carpets, but not for removing the actual burn mark. We have solved this latter problem by using a dark brown rug, and the smell of burning hair disappears quite quickly if you leave the windows open. At one time I got very upset when I thought he wanted to use the breadboard, but I know now that a breadboard is not a board, and has nothing to do with bread, either. Once the breadboard has been made, we start the testing phase. Previously, testing has consisted of making measurements on meters but now the ears are assaulted. Certain records have been earmarked (sic) 'demonstration quality' and these are played at varying volumes, with small modifications made to the amplifier between each test. I must admit that some of these records do sound extremely good-in moderation. Unfortunately, after it has been struck about 12 times in the hour, Donner's hammer (in "das Rheingold") seems to take up residence in my head. When we lived in a flat, the neighbours downstairs remarked one day on the apparent proximity of the railway station. I hadn't the heart to explain that we had recently invested in a Transacord recording of Pacifics (whatever they may be), and we were "just trying it out". It is, incidentally, an interesting and valuable fact that both our children enjoy very loud sounds, but it doesn't help in the subjective assessment of noise levels. ("But Darling, how can I hear if there is any hum or hiss if the baby's bawling in the background.")

When the tests have been finished we may go back to the drawing board, in which case the whole rigmarole I have described is liable

to be repeated. Otherwise, we proceed to manufacture. I must admit that the units finally produced look quite presentable. Thank goodness that the breadboards don't last for ever!

Manufacture

Manufacture requires extensive use of the kitchen table for "metal bashing". ("Can't possibly use the garage-too damp and draughty.") The metal arrives as large sheets, and is first carefully marked out. Next the holes are drilled on the table or the floor as convenient, using a thick board as a back. ("I'm afraid the drill missed the board, Dear. I don't think the hole is too noticeable.") I once thought that drilling was the final operation, but no! Most of these little holes are pilots. Some of them have to end up square, and these produce the worst sound of all. A small vice is clamped to the kitchen table, and the small holes are opened out using hacksaws and files. The screeching sound is really dreadful. It fills the head, and seems to continue long after the work has been completed. A thin film of metal dust covers everything for days afterwards. After the holes have been cut, the metal is bent (blessed relief, this operation is silent), and we come to painting. Normally I quite like the smell of paint, but the crackle-finish paint with which all the metal work is treated has the most horrible odour. I was intrigued at the beginning to see whether the attractive crackle finish came straight out of the tin, and was disappointed to see that it looked just like conventional paint. Then the awful truth slowly dawned on me. The paint had to be treated in the gas cooker-my cooker-and despite my protests, the horr-
ible smelly paint was bundled into the oven. I carefully examined the oven after the operation, and mercifully the smell had disappeared. The Sunday joint tasted just as good as ever the following day, so now we cure crackle paint quite regularly. ("Don't know what you were rabbiting about! It must be done in the oven, whether it smells or not.")

The little components are fixed on to printed circuit boards, which first have to be designed. After a roughly pencilled layout, adhesive black tape is carefully stuck in position, along with small circles and other rather rude-looking shapes. This process can be carried out anywhere, including railway carriages and even in bed. Unfortunately it leaves a trail of short black suicky pieces wherever it goes. Removing short pieces of sticky tape from the carpets is even more difficult than removing solder, and it is hard to keep the children away from it. Luckily, this phase does not last long, but when the boards come back, all cut and drilled, I must say goodbye to the kitchen table again. Soldering irons are very useful for determining the melting point of plastics. We soon discovered that plastic tablecloths melt easily and give off an obnoxious smell when burnt, and we now have a selection of household articles, including an alarm clock, a salad fork and a toy duck all with neat round holes depicting the path of the soldering iron.

If anyone asks me what is the most effective domestic missile, I reply without hesitation: wire ends from cutting resistor leads to size. The short wires boomerang back and forth across the room, and it is only by sheer good fortune that the whole family have not sustained serious injuries. The wires lodge in the most unusual places and continue to

This process can be carried out anywhere . . . even in bed!
turn up months after the exercise in ballistic missiles has finished. I found many years ago as a child that the most effective way of locating dropped drawing pins is to crawl around on hands and knees. I can report with feeling that the best way of finding dropped wire ends is to sit on the upholstered fumiture without too many clothes on.

Demonstration

When manufacture has been completed, we come to the final phase: demonstration. This resembles the earlier testing phase, but is more intensive. In addition, visitors turn up at the most unexpected times to "hear the new amplifier". We also have long listening sessions while minute adjustments are made. At about this time, I begin to think that perhaps it has all been worthwhile, because of the fine musical results. We have also met a number of interesting people and been in correspondence with many more.
I read once of some advice to young girls thinking of marriage: "Don't, but if you must, don't marry an engineer." If you marry an audio engineer, be prepared for a completely different way of life, governed by the everlasting search for better sound quality, in which all normal domestic planning is

Advice to young girls . . . don't!
subordinate to loudspeaker positioning and the need to allow the designs to appear. In every engineer there is a designer trying to get out, and if you try to inhibit him, then sullenness sets in, leading to moroseness and maybe a lot worse.

I must conclude: he's been muttering for some weeks about designing a colour television set, and I am getting more and more worried about what this might entail. I might as well not bother; if he has decided to do it, then it must be done, and a mere wife is powerless to stop it. At least our test-cards will be in colour (I doubt if he will have time for actually watching programmes) and as the work proceeds the sound of metal-bashing, the smell of burning plastic, and the barrage of small wires will ensure that I know exactly what he is doing.

I wonder what the children will be when they grow up?

Transistor Distortion Characteristics

The performance of transistors in voltage amplifying circuits

by J. L. Linsley Hood

Developments in transistor manufacture have led to the ready availability of inexpensive devices. In particular, the planar silicon types (which are characterized by high gain, low leakage current, low noise and good high frequency characteristics) allow the construction of a.c. amplifying circuits having a performance which is better than all but the best of existing valve circuits.

Unfortunately, when transistors are used as voltage amplifiers the shape of the base voltage/collector current characteristics gives rise to waveform distortion, and the conditions which are most favourable for high stage gain and high input impedance (high collector load impedance, low I_{c}) are also those which lead to high levels of (predomimantly second-harmonic) distortion.

The performance of five different silicon transistor types is shown in Figs.1-3, and that of two germanium types in Fig.4, as measured at 1 kHz using circuit A . In each case the actual value of the emitter bias resistor was adjusted so that the collector voltage was equal to half the supply voltage.

In general, the higher the current gain of the transistor, and the larger the collector load resistor, and the output voltage as a proportion of the supply voltage, the greater the total harmonic distortion. Also, as would be expected from the I / V curves, the silicon transistors gave higher distortion levels than the germanium types, and also, in the cases examined, had higher current gains.

No significant difference in performance was observed between different transistors of the same type having similar current gains, although those of planar construction gave a somewhat higher gain/distortion ratio than those with diffused junction.

This type of non-linearity is important, for example, in audio pre-amplifier tone control circuitry, where compensation networks in the negative feedback path are employed as in circuit B, to modify the gainfrequency characteristics. At the mid-point frequency of such an amplifier, the gain may be unity and the distortion factor consequently very low, but where the feedback is reduced in order to obtain, say, treble or bass lift, the output distortion will increase by the same amount.

Also, conventional audio power amplifiers may require an input signal of the order of $0.6-1.0 \mathrm{~V}$ r.m.s. (equivalent to $1.7-2.8 \mathrm{~V}$ peak to peak) and as can be seen from Figs.1-3, a simple transistor amplifier of the type shown

Fig. 1. Curves of total harmonic distortion against output voltage for a Mullard $n-p-n$ silicon BC109 with $\mathrm{h}_{\mathrm{fe}} \simeq 300$.
$\mathrm{h}_{\mathrm{fe}} \simeq 300$.
Circuit A.

$$
\int^{2} \underset{V_{\text {out }} \text { (Peak to peak) }}{4}
$$

Fig. 2. Broken-line curve for Motorola n-p-n silicon 2N3904 with $\mathrm{h}_{\mathrm{fe}} \simeq$ 200. Other curves for Motorola $p-n-p$ silicon
2N 3906 with

Fig. 3. Curves for Ferranti $n-p-n$ silicon $2 N 697$ with $\mathrm{h}_{\mathrm{fe}} \simeq 80$, and Texas Instruments $n-p-n$ silicon 2 N3707 with $\mathrm{h}_{\mathrm{fe}} \simeq 180$. Circuil A.

in circuit A would introduce $1-2 \%$ harmonic distortion. If 0.1% total harmonic distortion is the target figure, the largest output which could be obtained from such a circuit would be some 180 mV peak to peak, equivalent to some 60 mV r.m.s.

The use of negative feedback improves matters, but the reduction in distortion is accompanied by a reduction in gain. Using a higher supply voltage will increase proportionately the output signal voltage available at a given distortion level, and a single stage amplifier of this type, such as shown in circuit C , operating from a 15 V supply rail and designed to have an output of 1 V r.m.s. at 0.1% t.h.d., has a stage gain of only 4 or 5 .

Since the reduction in the distortion is more nearly equal to the reduction in gain when the open loop gain is high, a better answer is to use a two-stage amplifier, such as that shown in circuit D. Here the output transistor is operated under favourable conditions, with a fairly low value of collector load resistance, and with an input circuit of fairly high impedance, while the input transistor is only required to deliver a small output voltage swing. The open loop gain of the circuit is approximately 8000, and the total harmonic distortion over the frequency range 20 Hz to 20 kHz is less than 0.04% at 8 V peak to peak. Since the stage gain is determined by $\left(R_{1}+R_{2}+R_{3}\right) / R_{1}$, if R_{1} is reduced the gain (and distorion content) will be proportionately increased. For example, if $R,=20 \Omega$, the stage gain will be 100 , and the distortion factor at 8 V peak to peak will be 0.1%.

The use of such a circuit as the final stage of an audio pre-amplifier ${ }^{\text {- }}$ allows the preceding stages to operate at lower output voltage levels, with advantage in terms of harmonic distortion. Further, several such stages could be used in cascade, with passive $R C$ or $L C$ networks, for tone control purposes.

[^3]Announcements
'Sound 70 International' is the title being given to next year's exhibition of the Association of Public Address Engineers. It will not be held at Harrow as in the past but at the Camden Town Hall, Euston Road, London N.W.1, from 10th to 12th March.

The 1st International Exhibition of Recreation and Leisure will be held in Geneva, Switzerland from May 28th to June 7th 1970. The organizers are making a special feature of amateur radio activities.

The British Computer Society is moving its headquarters from Dorset Square to 29 Portland Place, London W.1.
"Talking About Colour Television" is the title of the latest filmstrip produced by the Mullard Educational Service. The film is intended for students with a working knowledge of monochrome television and is available, with a 54 -page teacher's book, from The Slide Centre Ltd, Portman House, 17 Brodrick Road, London S.W. 17.

RCA has announced plans to invest more than $\mathbb{C} 375,000$ in a new plant in Jersey, Channel Islands, as an improved base for expanding its commercial electronic products activities in Europe.

ITT Components Group Europe has opened a new branch office at 28d Glenacre Road, Cumbernauld, Scotland.

GNT Automatic A/S (has moved from St Helens Place, London, to 10 College Road, Harrow, Middx. (Tel: 01-863 4378).

Guest Electronics Lid., Nicholas House, Brigstock Road, Thornton Heath, Surrey, will in future be known as Guest International Lid.

Davall Electronics Led, which was recently acquired by Erie Electronics Lid, South Denes, Greal Yarmouth, Norfolk, has been re-named Eric Controls Lid.

Crouzet (England) Lid, of Brentford, Middx, announce that they are changing their name to Crouzet Litd and will shortly be adding aerospace electronics and process control equipment to their products.

Alfred Imhof Ltd have announced that conditional contracts have been exchanged whereby their parent company Parnell Investments Lid will acquire the entire issued share capital of Bedco Lid. There will be a single trading company called Imhof-Bedco Lid.

Danish agents. SEMCO, of Copenhagen, have been appointed agents for components manufactured by Electrosil Lid, Pallion, Sunderland, Co. Durham.
A Canadian company is being formed jointly by International Computers Lid and International Management Associates. The company, International Computers (Canada) Lid, will have exclusive rights to market the I.C.L. 1900 Series computers in Canada.

Technical Measurement Corporation (U.K.) Lid, 14 Yeading Lane, Hayes, Middx, have been appointed European distributors for Nuclear Equipment Corporation, of California, manufacturers of solid-state deeectors and preamplifiers, non-dispersive x-ray photon spectrometers and NIMAMP operational amplifiers for nuclear applications.

V-F Instruments Lid, Gloucester Trading Estate, Hucclecote, Gloucester GL3 4AA, have been appointed exclusive U.K. agents for Data Device Corporation, of New York. The range of products manufactured by the American company includes: operational amplifiers, A/D converters, D/A converters, multiplexers, logarithmic modules and instrumentation amplifiers.

Racal Elektronik GmbH, 5300 Bonn, Adeuauerallee 89 a, is a new company formed by the Racal Electronic Group in Western Germany.

The Beyer microphone company of Western Germany has formed a company in the U.K. for the distribution of its products. The new company, Beyer Dynamic (G.B.), is operating from 1 Clair Road, Haywards Heath, Sussex.

The audio products of the Pioneer Electronic Corporation of Tokyo are to be markered in Britain by the Hi-Fi Division of Shriro (UK) Lid, 8 Bush I.ane, Cannon Street, London E.C.4.

Celdis Ltd, Reading, Berks, have been appointed by General Instrument (UK) Lid to market their range of semiconductors and tantalum capacitors.
An agreement has been signed between GEC-AEI (Elecironics) Lid of Stanmore, Middlesex, and Kollsman Instrument Lid of The Airport, Southampion, for the manufacture and sale by Kollsman of various types of induction digitizer. These units, developed and patented by GEC-AEI Electronics, give a digital representation of the angular position of a shaft.

The Digital Systems Department of Ferranti Lid has been awarded a contract by the Ministry of Defence valued at over $\{300,000$, for the manufacture of digital data link equipment for the Royal Navy.

Plessey Radar has received orders valued at approximately $£ 50,000$ for the WF3 windfinding radar 10 be supplied to meteorological organizations in Australia, Ceylon, Pakistan and the U.K.

Pye TVT Lid has installed an $[8,000$ closedcircuit television system for surveillance on the east and west towers of the Severn Bridge.

Redifon Lid, Wandsworth, London S.W. 18, has been awarded a contract for the manufacture and installation of eleven ship radio stations. Five stations are to be built for Canadian Pacific Steamships Lid, the remainder for the Bibby Line and ACL, the Atlantic Container Line consortium. The company is also supplying $\ell 85,000$ worth of radio equipment for twenty-six BP and Shell tankers.

Police walkie-talkies. Rank Telecommunications has received an order from the Metropolitan Police, valued at $\{122,000$, for the supply of Mitre two-way personal radio transceivers.

Plessey Telecommunications Group has received contracts worth over $\{350,000$ from the G.P.O. for eight electronic telephone exchanges.

The G.P.O. has awarded a contract worth almost \& 300,000 to Standard Telephones and Cables Lid, for the provision of a microwave radio system to transmit bulk telephone traffic and television signals between Birmingham and Bristol.

Eastern Electricity have awarded a $\int 0.5 \mathrm{M}$ contract to Ferranti for the supply of telemetry/telecontrol equipment to be used for the remote supervision and control of over 400 Eastern Electricity substations.

Circuit Ideas

I.C. driver for power amplifier

By virtue of its very large input and output voltage ranges and excellent common mode rejection, i.c. type 709 may be made the basis of a power amplifier. Obtaining sufficient voltage swing to drive a complementary class B output stage, is achieved by complete exploitation of the bootstrap principle. Suppose that the op. amp. gives a maximum output swing $\pm V_{o}$ and will operate with a common mode input voltage in the range $\pm V_{i}$, both V_{o} and V_{i} being measured relative to the op. amp. power supply in the normal way. Both sides of the op. amp. power supply are bootstrapped in phase with the output in such a way that, when the output is at $+V_{0}$ the supply has been bootstrapped up by an amount equal to V_{i} so that the input is now at $-V_{i}$. Thus the total swing obtained relative to earth is $\pm\left(V_{0}+V_{i}\right)$. Typical values for a 709 running off $\pm 15 \mathrm{~V}$ supplies are $V_{0}=$ 14 V and $V_{i}=10 \mathrm{~V}$, giving a total peak-topeak swing of 48 V which should increase to about 55 V if the 709 is run at its rated limits.

This principle has been employed in the circuit shown. C_{2}, R_{1}, R_{2} and the corresponding primed components cause the op. amp. power supply to be bootstrapped by about $40^{\circ}{ }_{0}$ of the output voltage, and the capacitors also provide a bootstrap for the drivers in the normal way. The d.c. voltage across the load is held by feedback to a few millivolts (the 709 input offset voltage) and the gain is such that row output is obtained from just under 200 mV input. $\quad C_{1}$ was a $500 \mu \mathrm{~F}$, reversible electrolytic, but $50 / \mathrm{F}$ would be adequate for normal audio purposes and it could probably be an ordinary, polarized component. Alternatively it could be omitted completely if one were prepared to tolerate a few tenths of a volt d.c. across the load or to trim the 709 offset voltage to zero. The diodes between the 709 inputs eliminate any possibility of latch-up occurring, and the frequency compensation components shown were found to give an adequate margin of stability in the circuit built. It was necessary to use a fairly low-impedance signal source (below about $5 \mathrm{k} \Omega$), otherwise strong high-frequency oscillation occurred, but

Power amplifier employing op. amp. type 709.
this is thought to be a result of the particular circuit layout employed.

The 3 dB points for the circuit given were at about 1.5 Hz and 150 kHz . Distortion was not measured, but it should be very low since the circuit has roughly 55 dB of negative feedback at low frequencies.
J. M. A. Wade

Cavendish Laboratory,
Cambridge

Constant amplitude oscillator

A stable sinusoidal output, independent of any change in supply voltage, can be obtained using the circuit shown below. The output from the wien bridge oscillator is fed back to the gate of the f.e.t. after rectification and smoothing. Since the drain-source voltage is much less than the gate-source voltage (negative), the dynamic resistance

Uscillator giving constant amplitude sinewave output with unstable supply.
of the f.e.t. varies linearly with the latter. Any variation in supply voltage, which apparently changes the output, will change the dynamic resistance of the f.e.t. keeping the output constant. The frequency of oscillation of the circuit shown is 5 kHz . Variation in frequency is only 0.02% with a 30% change in supply voltage.
A. Basak

Chelsea College of Science \& Technology, London S.W. 3

An invitation

If you have developed or happened upon an original circuit configuration to perform a simple or a complex operation, or have used standard components in an unconventional manner, we would like to hear from you. Send a concise description, in the form of a circuit diagram and notes, and we will consider its publication as a circuit idea. $£ 5$ is paid for each contribution published.

The way we make resistors is unique. To an extremely tough optical gless "hearn" we fuse, molecule for molecule, an oxice fim. At great heat. The result is an extra, diamondlike hardness and toughness that defies deterioration under the most adverse conditions ... Iong after humidity, for example, has eroded the less robust tupes of film resistor. Electrosil resistors are vir:ually unaffected by thermal and mechanical snock, too. That's why they are specified more than
ever today for the electronics industry, where high reliability is paramount.

Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham. Telephone: Sunderland 71481. Telex: 53273.

Electrosil

have the experience

Electrosil resistors are forever

Oras near forever as resistors can get

Marconi LINCOMPEX...

Marconi radio terminal equipment

Marconi, foremost in the design of radio terminal equipment, have added to their already comprehensive range-Lincompex-the means of compensating for the variable characteristics of h.f propagation.

Lincompex

Developed from the original British Post Office design to give a service on h.f radio telephone circuits comparable with high-quality, long-distance cable. Improved service, fewer 'repeats' and greatly increased service hours make Lincompex the key to direct 'subscriber to subscriber' contact on long distance h.f circuits.

...the most advanced system available

- SMALL SIZE: Only one 7 in . shelf per channel.
- LOW COST: Introduction of new techniques has considerably reduced capital cost.
- RIGID STABILITY: Expertly engineered circuitry, including microcircuits, gives the high degree of stability and linearity required for successful operation.

Marconl LINCOMPEX is designed for association with Marconi H5510 series of Terminal Equipments and built to maintain for years its designed performance.

Marconi Telecommunications Systems

The Marconi Company Limited, Radio Communications Division, Chelmsford, Essex

Wireless World Logic Display Aid

7: Some more modifications and a description of the prototype

designed by B. S. Crank*

This month sees the end of the description of the instrument. Next month's article, the last in this series, will be devoted to a few logic circuits that may be used with the instrument for instructional purposes. The last two possible modifications will now be described.

7: Enabling any display area to be switched to any mode of operation
This is an extension of modification 6 and the only requirement is that modification 4 should have been carried out. Four complete sets of control switches laid out as in the left hand side of Fig. 85 are incorporated. The switches are mounted in four rows, one row for each display area, and each row contains Venn, Truth, and Karnaugh control switches plus switches to control the content of the Truth table third column. The switches marked S_{0} are pressed when it is desired to have no third column (two-variable Truth table) in any particular display area. The S_{0} switches have no connections to them and therefore do not appear in any of the circuit diagrams, their sole purpose is to mechanically cancel the associated $\mathrm{C}=0$ and $\mathrm{C}=1$ switches.

Each row of switches fitted in this modification (do not confuse with modification 8 switches of Fig. 85) consists of two sets of three-button miniature radio switches, supplied by G.W. Smith, and as specified in the parts list for the basic instrument.

By gating the outputs of the bistables Q and W each row of switches is made operative for one display area only. The outputs of all the switches are then combined in gating to produce the control signals for the basic logic circuit. Fig. 86 gives the extra circuitry necessary.

The outputs of the bistables Q and W are combined in NAND gates $1,3,4$, and 5 to produce signals corresponding to each display area. These outputs are the negative form of the required address signal ($\bar{Q} \bar{W}, \bar{Q} \bar{W}, \bar{Q} W$, and QW). Each of these four signals is fed to a set of three mode control switches (Venn, Truth and Karnaugh). The output of all switches for the same mode (four each for Venn, Truth and Karnaugh) are combined in NAND gates 18,20 and 21. For instance, all the Venn switches are connected to gate 18 to provide the V control signal for the main logic unit.

Imagine that the following switches are pressed, S_{1}, S_{7}, S_{13}, and S_{18}, and also imagine that both the X and the Y counter hold all zeros. The bistables Q and W will be reset so the \bar{Q} and \bar{W} lines will have a voltage upon them. Both inputs to gate 1 will therefore be UP and the output of gate 1 will be DOWN. Notice that the outputs of

[^4]

Fig. 85. Layout of the switches on the front panel.
gates, 3,4 and 5 will be UP because at least one of their inputs will be DOWN.

The DOWN at the output of gate 1 will appear at the input of gate 18 via S_{1} so that the output of gate 18 will be UP, switching the main logic unit into the Venn diagram mode of operation. The inputs to gates 20 and 21 will either be UP, or open, so that the outputs of these gates will be DOWN as will the T and K control signals. Notice that because the output of gate 18 is DOWN the output of gate 19 will be UP, switching both dians to the Venn operating mode.

Sixteen pulses from the clock generator will trace the first column of dots in display area 1. The sixteenth pulse will set bistable Q and bring the beam in the c.r.t. to the top-left-hand dot of display area two. Now the Q and \bar{W} lines will be UP.

The output of gate 3 will go down and the outputs of gates 1,4 and 5 will go UP. The output of gate 18 will go DOWN and the output of gate 19 will go UP. The V control signal will therefore also be DOWN and the dians will be switched to the Venn/Karnaugh mode.

The DOWN at gate 3 will be relayed via S_{7} to gate 20 and the K control signal will go UP switching the main logic unit to the Karnaugh map mode of operation. All other outputs of this circuit to the main logic unit will be DOWN.

Fifteen more pulses from the clock generator will trace the first column of dots in display area 1 . The sixteenth next pulse will set the first bistable in the X counter (E) and reset the Y counter to all zeros. $\bar{Q} \bar{W}$ will now exist and the main logic unit will be switched to Venn operation (gate 1,5 , and gate $18 / 19$) in the same way as before. The second column of dots will then be traced out, first in display area number 1 and then in display area number 2
with a change-over to Karnaugh operation in between.
This process will repeat itself sixteen times with the main logic unit being switched from Venn to Karnaugh operation as the dot passes out of display area 1 into display area 2. After the sixteen repetitions the beam will be at the bottom right-hand corner of display area two (having scanned both display areas one and two), 512 clock pulses will have been generated, the X and Y counter will be in the following state $\mathrm{ABCDQE} F \mathrm{FH} \overline{\mathrm{W}}$ and the main logic unit will be in the Karnaugh mode of operation.

One more clock pulse will drive the counter to $\bar{A} \bar{B} \bar{C} \bar{D} \bar{Q} \bar{E} \bar{F} \bar{G} \bar{H} W$ and place the spot at the top left-hand corner of display area number three. $\bar{Q} W$ now exists. Gate $4, S_{13}$ and gate 21 will cause the main logic unit to be switched to the Truth table mode. When display area number four is reached QW will exist and gate $5, S_{18}$ and gate 21 will keep the instrument in the Truth table mode. After 512 more clock pulses both display areas three and four will have scanned and the process will repeat itself starting with display area number one again.

At the same time as all this was going on the output variables of the instrument, as decoded by the various variable forming logic circuits and controlled by the V , K , and T control signals derived from Fig. 86, were being fed to some sort of external logic circuit. The output of this logic circuit was being used to intensity modulate the
c.r.t. beam either directly or via the 1 and 0 character generators as dictated by the V, K, and T control signals.

From the above description it can be seen how any of the display areas could have been switched to any of the operating modes if desired. If, for instance, S_{2}, S_{7}, S_{12}, and S_{17} had been pressed, all four displays areas would operate in the Karnaugh map mode. If the buffer stages only of Fig. 84 were incorporated then a six variable Karnaugh map would result. It is advised that these stages be added with this modification because of the greater flexibility afforded.

Having described the circuitry required to produce the V, K and T control signals it is now necessary to have a look at the third column of the Truth table and the Truth table variable T_{c}.

Output $\overline{\mathrm{GH}}$ from the main logic unit, which, if you remember, addresses the third column of the Truth table, is inverted in gate 2 to form GH, and is fed to gates $7,10,13$ and 16. Also fed to these gates are the four combinations of Q and W which have been inverted in the gates $6,9,12$ and 15 . The switches $S_{4}(b), S_{9}(b), S_{14}(b), S_{19}(b)$ select $C=0$ in the Truth table by feeding the outputs of gates 7 , 10,13 , and 16 to gate 22. The output of gate 22 is inverted in gate 23 because the main logic unit requires the inverse of the $\mathrm{T}_{\mathrm{c}}=0$ signal. For $\mathrm{T}_{\mathrm{c}}=1 S_{5}(b), S_{10}(b), S_{15}(b)$, $S_{20}(b)$ and gates 24 and 25 are employed.

Fig. 86. The circuit of modification 7 .

These switches can therefore be used to cause all 1 s to be displayed in the third column of a Truth table (T_{c}). Another pole (a) on the same switches causes the C_{T} or $\overline{\mathrm{C}}_{\mathrm{T}}$ output variable of the main logic unit to be gated with Q and W area addressing signals which are combined in gate 26 to provide C_{T} for the main logic unit. This ensures that when $\mathrm{C}=0$ in column three of a Truth table $\overline{\mathrm{C}}_{\mathrm{T}}$ is presented to the external logic circuit, when $C=1$ then C_{T} is output.

As mentioned earlier the switches S_{0} (Fig. 85) do not have any electrical connections and serve only to cancel out the $C=0$ and $C=1$ switches so that the C column of the Truth table is blank.

8: Adding individual comparison facilities for each display area
This modification is carried only when modifications 4 and 7 have been incorporated. It enables up to two external logic circuits to be connected to the Display Aid and enables any display area to be switched to show the output of circuit one or the output of circuit two or the difference between circuit one and circuit two. The circuit diagram is shown in Fig. 87.

Z and $\overline{\mathrm{Z}}$ inputs to the instrument are provided by the two transistor double inverter stages. The gating system is identical to that shown in Fig. 79 and described under modification 3, only now there are four of them, one for each display area. An additional gate for each display area ($35,36,37$ and 38) combines the output of the comparators with the area address signals available at gates $6,9,12$, and 15 of Fig. 86.

The output of gates $35,36,37$, and 38 are combined in gate 39 to provide the Z input for the main logic unit. The layout of the switches is shown at the right hand side of

Fig. 85. Taking area one as an example: closing S_{21} will show the output of external circuit one in area one; pressing S_{22} will show the output of external circuit number two in area one; pressing both S_{21} and S_{22} will show the difference between external circuits one and two in area one.

Switch combinations

It will be interesting at this point to see how the various photographs shown in part one of this series (p. 198, May issue) were produced.

In photograph A a binary full adder was connected to the display aid, the SUM output was connected to the Z input. The switches which were pressed were as follows:
area one: Truth table (S_{3}); C $=0\left(S_{4}\right)$, and circuit one (S_{21}).
area two: Truth table (S_{8}); C $=1\left(S_{10}\right)$ and circuit one (S_{23}),
area three: Karnaugh map (S_{12}); and circuit one (S_{25}), area four: Venn diagram (S_{16}); and circuit one (S_{27}).

For photograph B the external logic circuit was an AND gate with its output connected to the Z_{1} input of the display aid. The input of the AND gate was connected to the output variables $\overline{\mathrm{A}}, \overline{\mathrm{B}}$ and $\overline{\mathrm{C}}$. Switch positions were as follows:
area one: Truth table $\left(S_{3}\right) ; \mathbb{C}=0\left(S_{4}\right)$, and circuit one $\left(S_{21}\right)$
area two: Truth table (S_{8}); C =1 (S_{10}), and circuit one $\left(S_{23}\right)$

Fig. 88. A block diagram showing the interconnection of units in the type U instrument.
area three: Venn diagram (S_{11}); and circuit one (S_{25}) area four: Karnaugh map (S_{17}); and circuit one (S_{27})

In photograph C the output variable A was connected directly to the Z_{1} input and the output variable \bar{A} was connected to the Z_{2} input of the display aid. Switch positions were as follows:
area one: Venn diagram (S_{1}); and circuit one (S_{21})
area two: Karnaugh map $\left(S_{7}\right)$; and circuit one $\left(S_{23}\right)$
area three: Venn diagram (S_{11}); and circuit two (S_{26})
area four: Karnaugh map (S_{17}); and circuit two (S_{28})
Two binary adders were used to produce photograph D. One of the adders was deliberately made unserviceable and its SUM output was connected to Z_{1}. The sum output

To the three stages of switching for the other display areas
(Above) Fig.89. Part practical layout for type U instrument. The two i.cs are $Z N 346 E s$.

ZN330E
ZN330E

the type U instrument.
of the serviceable adder was connected to Z_{2}. Switch positions were as follows:
area one: Venn diagram (S_{1}); and circuit one (S_{21}) area two: Venn diagram (S_{6}); and circuit two (S_{24})
area three: Venn diagram (S_{11}); and difference (S_{25} and S_{26})
area four: Karnaugh map (S_{17}); and difference (S_{27} and S_{28})

The above examples were given in order that the reader may see how to operate the instrument so that the various logic and switching circuits can be more readily understood.

Building the type U logic display aid

The prototype instrument was type U as mentioned in the list of compatible modifications given last month and as such incorporates modifications 4,7 and 8 . It is proposed to give some practical details of this instrument, but of course it would be impossible to give the same detail for all 21 types.

The system block diagram is shown in Fig. 88. This does not require any comment, however, it should be of value when the time comes to interconnect all the various units.

Fig. 89 gives a wiring diagram for the switching circuits for display area number one. The three switching circuits for the other three display areas are wiredup in almost the same way. The only difference is that the $\overline{\mathrm{GH}}$ output of the main logic circuit only requires to be inverted once (gate 2, Fig. 86) which is done in Fig. 89. This means that when all four stages are wired-up there will be three spare two-input gates. These can be used to partly fill the need for some of the buffer-amplifiers needed for the E and F variables for six-variable Karnaugh map operation.

Fig. 90 shows how the output side of the switching circuit is wired-up. The numbers near the integrated circuits of Figs. 89 and 90 correspond to the gate numbering in Figs. 86 and 87.

If one examines Fig. 73 (p.421, September issue) the necessary components for modifications 7 and 8 can be seen mounted on a board on the extreme right behind the mains transformer. The board in the foreground, bolted to the main logic unit, contains the parts necessary for modification 4.

Faults on this part of the circuit (modifications 7 and 8) can be very, very trying. The reader is advised to take extreme care with the construction. It is a good plan to adopt some form of colour-coding system, particularly with the switch wiring, and stick to it.

The switches themselves do not have any mounting holes, so the procedure adopted in the prototype was to solder them to mild steel angle which was bolted to the front panel; however, this is a matter of personal preference.

The description of the Wireless World Logic Display Aid is now complete and we wish you well with the construction.

Next month, in the last article in this series, a simple modification will be described showing how the aid may be used with a 19-inch oscilloscope and some external logic circuits will also be suggested.

Amplifier efficiency

Mr. Vanderkooy's letter (August issue, p.381), set me thinking. Why waste audio power in an emitter load, why not replace it by a constant current source adjusted to give the correct standing current, and, of course, having a relatively high dynamic impedance? (Fig. a.). The only a.c. load is now provided by R, and so the emitter of the output transistor should be at half the supply potential.

With the transistor full on, current through the load will be, instantaneously, $(V / 2) / R$ and with it cut off, the current will be I. These two currents should be equal, i.e. $I=V /(2 R)$, e.g. with a supply of 30 volts and load of 15 ohms, the standing current should be 1 amp . Efficiency should be 25% if the constant current source is ideal and the output transistor has zero saturation voltage.
To test the theory, I used Mr. Vanderkooy's circuit, replacing the 22 -ohm emitter resistor by the hurriedly devised and far from ideal arrangement of Fig. b. Using a supply of 32 volts and a standing current of 1 amp , output power at the onset of symmetrical clipping was just over 5 watts. Increasing the supply to 40 volts and the current to 1.2 amps , the maximum output rose to nearly 10 watts, an efficiency of about 20%. This is not a new idea-a similar circuit was used by P. F. Ridler for the output stage of his "Low Distortion RC Oscillator"(W.W., August 1967, p.383), and it needs a fairly large heat-sink area, but ten watts or so may be obtained without resorting to water cooling! Of course, all one has to do now is to drive the lower transistor and one arrives at Mr. Linsley Hood's class A circuit!
IAN G. JOHNSON,
Farnborough, Hants.

Radio in airship R100

The Electrical Engineering Squadron at this Station has undertaken to renovate, on behalf of the Royal Air Force Museum, the experimental receiver, Type RX18A, from the R100 airship.

We would be grateful if you could publish this appeal for information on the receiver, especially with regard to valve types and coil winding details.
R. M. Harrison (F/O),
R.A.F., Syerston,

Newark, Notts.

Test Your Knowledge

Series devised by L. Ibbotson* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

18.: Waveguide components and techniques

In all the questions it is assumed that the basic waveguide is standard rectangular and that it is propagating the dominant mode.

1. The behaviour of a waveguide component or circuit can often be inferred by analysis of the equivalent twin-transmissionline circuit. In constructing the analogue the transmission-line wires are taken to lie:
(a) along the centre lines of the broad walls of the guide
(b) along the centre lines of the narrow walls of the guide
(c) along a pair of opposite corners of the guide
(d) along a pair of adjacent corners of the guide separated by a broad guide wall.
2. If a waveguide component, in which changes of guide dimensions occur, is to be designed with the aid of the equivalent transmission-line circuit, appropriate values of line impedances to use for the various guide sections are in each case:
(a) the wave impedance of the section of guide
(b) the wave impedance multiplied by the narrow guide dimension
(c) the wave impedance multiplied by the wide guide dimension
(d) the wave impedance multiplied by the narrow guide dimension and divided by the wide guide dimension.
3. A waveguide component may be found to contain an "iris" (a thin metal plate or plates perpendicular to the guide axis extending part of the way across). The purpose of the iris is generally to:
(a) protect the component by providing a point at which sparking will occur first if the component is overloaded
(b) "match out" a mismatch in the component
(c) suppress higher order modes
(d) prevent dust from reaching certain parts of the component.
4. A waveguide component is required to have a slot in the guide wall parallel to the axis of the guide, and the slot must not radiate a significant amount of microwave energy. The slot:
(a) may be anywhere in the guide walls
(b) may be anywhere in a wide wall, but must not be in a narrow wall
(c) must be either along the centre line of a wide wall or a narrow wall
(d) must be along the centre line of a wide wall.

[^5]5. In order to determine, with the aid of a Smith Chart, a point at which a susceptance can be placed to match a mismatched waveguide termination, three of the following need to be known (and nothing more). Select the redundant information:
(a) the v.s.w.r.
(b) the position of the voltage minimum nearest to the source of mismatch
(c) the frequency
(d) the guide-wavelength.
6. The principle of reciprocity is obeyed:
(a) by all waveguide components
(b) by no waveguide components
(c) by all waveguide components except certain ferrite devices
(d) only by certain waveguide components containing ferrites.
7. If the construction of a waveguide component requires two similar small discontinuities to be introduced into the guide, the distance between them:
(a) should be as small as possible
(b) should be as large as possible
(c) should be a whole number of half guide-wavelengths.
(d) should be an odd whole number of quarter guide-wavelengths.
8. In a microwave resonant cavity the electric and magnetic fields:
(a) have maximum amplitudes which coincide in space, and are in phase
(b) have maximum amplitudes which coincide in space, and are in phase quadrature
(c) are in phase, and the maximum amplitude of one coincides in space with the minimum amplitude of the other
(d) are in phase quadrature, and the maximum amplitude of one coincides in space with the minimum amplitude of the other.
9. It is desired to build a resonant cavity, to resonate at a given frequency, having as high $\mathrm{a} Q$ as possible (the general form of the cavity being specified). The cavity should be designed to have:
(a) as large a volume as possible
(b) as large a surface area as possible
(c) a maximum ratio of volume to surface area
(d) a minimum ratio of volume to surface area.
10. A resonant cavity terminates a waveguide. The v.s.w.r. in the guide at the
resonant frequency of the cavity is found to be $2: 1$ and the position of the standing-wave pattern at resonance is the same as its position when the frequency is well away from resonance. The coupling parameter of the cavity is:
(a) zero, (b) $\frac{1}{2}$, (c) unity, (d) 2.
11. Most microwave generators require to feed a waveguide in which the V.S.W.R. at the input does not exceed a specified value (often 1.5:1). If a generator feeds a waveguide with a large mismatch the main effect is:
(a) electrical breakdown in the waveguide
(b) a reduction of power output from the generator in all cases
(c) a change in generator frequency only
(d) both power output and frequency instability.
12. In a waveguide choke coupling an effective good contact is achieved at the waveguide wall by moving the actual point of physical contact one quarter wavelength back along a half-wave short-circuited guide section (the choke). The choke ring cut into the flange always has a much wider slot than the gap between the flanges (which forms the first half of the choke). The reason for this is:
(a) convenience of manufacture
(b) to give the joint broad-band properties.
(c) to prevent arcing at the corner
(d) so that dirt will not be trapped in the choke ring.
13. In a simple coaxial line to waveguide transformer (probe launching section) the distance between the probe and the shortcircuit in the guide should be approximately:
(a) one half free-space wavelength
(b) one half guide wavelength
(c) one quarter free-space wavelength
(d) one quarter guide wavelength.
14. In a directional coupler the coupling holes:
(a) must be in broad faces of both guides
(b) must be in narrow faces of both guides
(c) must be in the broad face of one guide and the narrow face of the other
(d) may be either in the broad faces of both guides or the narrow faces of both guides.
15. In a compensated magic T (hybrid junction):
(a) each arm is isolated from the other three
(b) each arm is isolated from two of the other three
(c) each arm is isolated from the arm opposite
(d) only one pair of arms are isolated from each other.
16. Of the forms of attenuator listed below one reflects energy rather than absorbing it.
It is:
(a) the resistive film attenuator
(b) the piston attenuator
(c) the flap attenuator
(d) the rotary vane attenuator.

Answers and comments, page 549

Our clue finders are "battery powered" for portability; "tough" for reliability; and "economical".

Our range of portable battery/mains oscilloscopes covers the majority of service requirements.

Advanced technology and design ensure fast detection of

equipment failure.
 we'll solve your problem

Prices from £ 130 .
For further advice or technical information write or ring.

SE Laboratories (Engineering) Limited. North Feltham Trading Estate, Feltham, Middlesex Telephone:01-890•1166\&5246(sales);01.890•5876(works). Telegrams:Selab,Feltham. Telex: 23995 Northern Sales Office, Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 3255

TEGHNICAL TRAINIIN in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW

 SELF-BUILD RADIO COURSESLearn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

Colour TV

mono TV. radios. RAOIOGRAMS. CAR RAOIOS. RECORO PLAYERS. TAPE RECOROERS.

Here in 4 handy volumes you have on call the vital repair information needed to beat the frustration and time loss that fritters away the opportunity to earn more. Packed with 2.657 circuits, printed panel and component layout diagrams. tables and waveform graphs, it covers over 1.000 of the popular 1965-69 TVs. Radios. Radiograms. Car Radios, Record Players, and Tape Recorders-including the latest information on COLOUR TV.

GUARANTEED MONEY SPINNER
Written by a team of expert Research Engineers. Radio \& TV Servicing speeds up repair work for year after year-there's no other publication like it and is much sought after in the trade-guaranteed to speed up repair work and increase your earnings.

OVER 2,175 PAGES

Over 1,000 popular models from 1965-1969.
ALL THESE MAKES COVERED
Aiwa, Alba. Baird, Beogram. Beolit. Blaupunkt. B.R.C., Bush. Carousel. Cossor, Danserte. Decca. Defiant. Dynapor. Oynatron. Eddystone. Ekco. Elizabethan. Ever Ready. Ferguson. Ferranti. Fidelity. G.E.C.. Grundig. Hacker. H.M.V.. Hitachi Invicta, K.B.. Klinger. Kolster-Brandes. Loewe Opta. McMichael. Marconiphone. Masteradio. Monogram, Motorola, Murphy. National. Newmatic. Pam. Perdio. Pato-Scort. Philco. Phillps. Portadyne. Pye. Radiomobile, Radionette, R.G.D., Regentone. Roberts' Radio, Robux, Sanyo. Sharp. Smith's Radiomoblle, Sobel. Sony. Standard. S.T.C., Stella, Stereosound. Telefunken. Teletron. Thorn, Trans Arena, Ultra, Unitra, Van Der Molen. World Radio.

Examine Radio \& TV Servicing at home without obligation to buy-send no money-just post coupon today.
Sent by post on 7 days FREE TRIAL

COSSOD fistriv sopers

Please write or phone for further details:

Cossor Electronics Limited, Instruments Division.
The Pinnacles, Elizabeth Way, Harlow, Essex. Telephone: Harlow 26862

rate eclipse

The apertures in a cathode ray tube gun must be aligned precisely in spite of production tolerances in the six or more electrodes involved. Errors of the order of a tenth of a thou make all the difference if a round, crisp spot is to be maintained. The requirement is a dead fit for each component, no less. To this end, BRIMAR have developed their own methods for the production of assembly jigs to meet these exacting requirements.

Even after assembly in such accurate jigs as these, the guns are still subjected to rigorous 100% inspection ; including a final optical test of alignment, where even fractional differences mean rejection.

And in addition to this, BRIMAR have an unparalleled capability in chemistry, electron optics and vacuum physics enabling them to

BRIMAB

offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the electronics industry, covers advice on tube characteristics, operating conditions and associated components.

Tailored packaging and reliable delivery to meet production schedules are also part of the BRIMAR Service.

Want to know more about BRIMAR Industrial Cathode Ray Tubes?-ask to see our latest catalogue.
thorn Thorn Radio Valves and Tubes Ltd.
7 Soho Square, London, W1V 6DN Tel: 01-4375233

World of Amateur Radio

the field. His death was equally tragic. He was executed by the Germans in November 1944 on suspicion of espionage when caught searching for fragments of an exploded V2 rocket in a prohibited area.

There can be little doubr that the Dutch concerts helped create the demand by wireless enthusiasts in the U.K. for the start of regular broadcasting. In 1921, following an appeal in Wireless World, about $£ 750$ was subscribed by British enthusiasts to allow the concerts to continue.

Television interference

The recently released Post Office statistics for cases of interference to television and radio reception in 1968 show a marked increase in the number ascribed to amateur and other transmitters. Of 70,254 interference cases closed by the P.O. investigators, 1151 or just over 1.5% were ascribed to amateur transmitters. The number has risen apprecíably in the past five years or so. It is widely believed by amateurs that modern TV receiver installations, particularly those fitted with transistor wideband mast-head (or back-ofset) pre-amplifiers, are much more susceptible to strong local signals on frequencies far removed from the TV channels than older receivers. Another increasing problem is the number of viewers using set-top aerials which can be much more susceptible to interference.

Amateurs are however hoping that the spread of u.h.f. television will result in a marked easing of the position, since instances of amateurs causing interference on Bands IV and V are far rarer than on v.h.f.

The Post Office statistics also show the rising incidence of interference generated by thermostat controls in domestic gas and oil-fired central heating systems, particularly after some months of operation. Electrical interference from such contact devices now exceeds that from electric motors, previously the most frequent cause of interference.

In Brief: Membership of the R.S.G.B., in the year to June 30 th , rose by 1347 to a total of 15,392-this compares with an increase of 644 in the previous year. The membership now includes rather over one-half (some 8000) of all British licensed amateurs. Its overseas membership is $1378 \ldots$. The Australian Post Office has approved the installation by amateurs of unattended v.h.f. repeater stations operating on the $144-\mathrm{MHz}$ band The French P.T.T. is to support, at the next congress of the Universal Postal Union, a proposal that would admit QSL cards in the "small packet" post . . . The Scottish v.h.f. convention is being held at The Carlton Hotel, North Bridge, Edinburgh, on October 26th; the convention includes a dinner, lectures and an exhibition (GM3OWU, "Westerlea", 9 Juniper Avenue, Juniper Green, Midlothian, EH14 5EG) . . . For the first time amateurs have spanned the English Channel using the $10-\mathrm{GHz}$ band. Dain Evans, G3RPE, operating portable near Dover contacted the French amateur station F2FO/P near Cap Gris Nez. The British station had an output of only 15 mW with a 10 -inch dish aerial.

Pat Hawker, G3VA

New Products

Sub-miniature Television Camera

A sub-miniature television camera (type BC1103), believed to be the smallest commercially available in the world, has been designed by E.M.I. for inspection of the inside of pipes and for operation in inaccessible locations under arduous conditions. The BC1 103 consists of two units, the cylindrical camera head and a camera control unit. The camera head measures only 24 mm in diameter and 122 mm in length, is complete with integral lens and lighting unit, and is sealed to prevent the ingress of moisture and dirt. A 13 mm (t-inch) vidicon camera tube is used and the high performance head amplifier employs f.e.ts and integrated circuits. The lens lighting unit incorporates a lens with an angle of view of approximately 40°. The $\mathrm{f} / 6$ camera lens gives adequate depth of field for pipes of bore from 25 mm to 65 mm . The camera head can be connected to its associated control unit by up to 65 m of steel reinforced camera cable. The camera control unit

(shown in the photograph with the camera) weighs only 19 kg . The control unit provides all the power, scanning and processing circuits for the camera channel. Broadcast type 625/525 line synchronizing pulses ensure compatibility with all makes of video monitors and video tape recorders. Three camera controls (target, beam and electrical focusing), in addition to the lighting intensity controls and the power on /off switch are mounted on a recessed front panel. An air pump is fitted to the camera control unit to provide cooling and to enable the camera head to be operated continuously in ambient temperatures up to $45^{\circ} \mathrm{C}$. E.M.I. Electronics L.td, Hayes, Middx.
WW307 for further details

Digital A.C./D.C.Multimeter

Apart from the benefits gained from a digital display, the TE 360 multimeter from Guest International exhibits best-case accuracy figures of $\pm 0.1 \%$ of reading, $\pm 0.1 \%$ of f.s.d., and is capable of a wide variety of measurements. These include 20 ranges covering a.c. and d.c. voltage and d.c. current, and five ranges of resistance. Voltage may be measured up to 1 kV , current up to 2 A , and resistance up to $2 \mathrm{M} \Omega$

Input impedance varies from $10 \mathrm{M} \Omega$ to $1 \mathrm{kM} \Omega$ on d.c. volts and is $10 \mathrm{M} \Omega$ on all a.c. voltage ranges. The display includes 3 digits and over-range indication, polarity and decimal points. Readings are given at 0.2 s intervals and there are optional facilities for b.c.d. and print command outputs. Power requirements are 115 or $230 \mathrm{~V}, 50$ to 60 Hz . A battery version is available. Price $£ 198$. Guest International Lid, Nicholas House, Brigstock Road, Thornton Heath, Surrey, CR4 7JA. WW 327 for further details

Video Test-signal Generator

A complete set of signals for checking and measuring the video characteristics of television studio equipment, transmission links and transmitters is provided by a new test-signal generator available from Pve Unicam. All signals generated conform to C.C.I.R., I.E.C., and C.M.T.T. requirements. The generator, lhilips I'M $5572 / 74$, features integrated-circuit design virtually throughout and consists of three modules which are housed in a case 132 mm high. The three units-blanking mixer and power supply unit, sine-wave generator and pulse generator-are interconnected by either cable or plug-in connectors, and the complete generator can be expanded through the addition of further modules. The sine-wave unit can be used as a fixed-frequency, multiburst or video-sweep generator. In the first mode of operation it provides $1-10 \mathrm{MHz}$ signals variable in 1 MHz steps. In the second, it produces $1-5 \mathrm{MHz}$ multiburst signals with or without black-white reference lines, and in the third it gives sweep signals from 100 kHz 10 MHz with or without 1 MHz markers. Various types of test signal for checking the performance of video-transmission circuits, videoamplifiers, etc., are provided by the pulse generator unit. These include square-wave, sawtooth, staircase and sine signals. Square-wave signals are available with repetition rates of 0.5 and 50 Hz , and 15 and 250 kHz , and all have risetimes of less than 60 ns . However, filters can be switched in to ensure standard risetimes. Sawtooth signals

provided consist of line-frequency sawtooths with or without intermediate lines at the black-white level. The staircase signal has either five or ten steps. Both types of signal can have superimposed $1-10 \mathrm{MHz}$ or colour sub-carrier signals added in the blanking mixer. Where a superimposed colour sub-carrier is used with the above signal, it is also possible to switch in a colour-burst signal. The amplitude of all components in the composite signal can be adjusted via controls on the blanking mixer, and other controls permit, for example, black-white signals to be clipped or limited as required. It is also possible to invert the set-up level and include or exclude frame information from the composite signal. Pye Unicam Ltd, York Street, Cambridge.
WW310 for further details

Four-quadrant Multiplier

Philbrick/Nexus Research, is now offering a small four-quadrant multiplier. The model 4450 is compatible for use as a computing element in the laboratory and, in applications where an accurate multiplication process is required with no limitations as to the polarity of the input signals. Several applications such as modulation, frequency doubling, and power measurements, can be accomplished using the model 4450 . The multiplier operates at rated accuracy to 10 kHz with full output voltage capabilities to 100 kHz , Its output is representative of the instantaneous product of two input signals. Only one external

trim is required for setting up. An optional scale factor trim mav be used to improve accuracy to $\pm 0.6 \%$ typical (± 1, maximum) referred to 10 V full-scale output. When scale-factor trim is not used, accuracy is $\pm 1 \%$ typical and $\pm 2 \%$ maximum. The price of the model 4450 in quantities of $1-9$ is $£ 4110$ s each. Philbrick/Nexus Research, 81 a North Street, Chichester, Sussex. WW309 for further details

Frequency-synthesized Drive Unit

An h.f. drive unit, designated type GK 203, is announced by the Communications Division of Redifon. All solid-state and self-contained, with integral power unit, the GK 203 uses frequency synthesis to develop 285,000 channels in 100 Hz steps from 1.5 to 30 MHz and to generate modulated signals in seventeen selectable modes of transmission. The new unit can be used with
most h.f. transmitters and linear amplifiers. While the GK 203 will accept an input from an external frequency standard, it incorporates an internal reference source which can be used as a standard for other equipment. Where several of these drive units are used, an economy may be effected by omitting the reference source from all except one master unit. Transmission modes cover c.w., m.c.w., d.s.b., compatible a.m., s.s.b. with fully suppressed carrier or with pilot carrier at -16 dB or -26 dB levels, and, as an optional extra facility, i.s.b. at either of two pilot carrier levels. On all services employing a single sideband the u.s.b. or 1.s.b. mode is selectable by a front-panel switch. Automatic volume compression can be switched in to maintain a high modulation index even at

low speech levels, and automatic voice or tone activation of transmit/stand-by switching can also be selected. Sidetone and two forms of muting are available for associated receiver, to provide aerial muting or a.g.c. desensitizing. Redifon Lrd, Broomhill Road, Wandsworth, London S.W.18.
WW329 for further details

6,000-watt Amplifier

A 6,000 -watt amplifier has been developed by Derritron. Whilst primarily designed for operating with a 19501 l thrust vibrator, this amplifier can be used as a variable frequency power source. The amplifier incorporates an oscillator and a closed-circuit water cooling system, and uses silicon transistors throughout. Check-our facilities are included and the amplifier is protected against overload. Derritron Electronics Lid, Sedlescombe Road North, Hastings, Sussex.
WW314 for further details

Multi-waveform Generators

The series 500 waveform generators from Environmental Equipments is designed to provide the functions of many different instruments, such as square-wave generator, sine-wave oscillator, sweep generator, f.m. modulator, variable repetition-rate pulse-generator, ramp and raster generator, stimulation and simulation signal in medical research, control signals for aerospace and environmental testing. These generators feature bipolar-sine, square, triangle, ramp, reverse ramp and pulse outputs. In addition models 504 B and 505 B add haversine and havertriangle waveforms. The wide frequency range extends from 0.0001 Hz (greater than 2 hours) to 1 MHz (1μ) covering requirements from biological to radio frequencies. Models 503B and 505B offer precise control of frequency by an external voltage. By applying a 0 to $+5 \mathrm{~V}, 0$ to -5 V , or 0 to $\pm 2 \frac{1}{2} \mathrm{~V}$ the frequency can be swept
over a $50: 1$ range-usable range is 100:1. All models have triple output amplifiers giving pushpull output if required, high output voltage, and adjustable d.c. offset. Gating, triggering (single shot) and variable start/stop phase are also available. Typical waveform specifications are: sine distortion, less than 1%, triangle linearity better than 99%, square wave rise/fall times 50 ns . Environmental Equipments Lid, Denton Road, Wokingham, Berks.
WW338 for further details

Solid-state High-voltage Equipment

Miles Hivolt have produced an instrument enabling a 25 kV 1 mA supply to be contained within a panel height of only 133 mm . The output of this instrument, the Hivolt TH25, can be shortcircuited indefinitely, or load flash-over can occur without damage either to the driver transistors or the associated circuits. Plug-in printed circuit boards are used in a modular design. The e.h.t. generator comprises an oscillator module and a moulded voltage multiplier stack. The TH25 is fully metered for current measurement. The voltage is set by means of a ten-turn potentiometer. Although the Hivolt TH25 is produced in such a small size, heat dissipation has been kept extremely low and there is no undue temperature rise. The equipment is designed for bench or rack mounting. Alternatively, the company are supplying the model TH20 which may be accommodated in manufacturers' equipment and as such does not require metering. In this case the voltage adjustment is by means of a ten-turn preset potentiometer normally set by the user within the range $10-20 \mathrm{kV}$. Miles Hivolt Ltd, Shoreham, Sussex.
WW306 for further details

Transistor-switched Indicator Lamps

Available from Oxley Developments is a new range of transistor-switched indicator lamps, for use with negative logic. They use a $p-n-p$ transistor, and are switched ON by a negative signal. The new units have complementary characteristics to the current range of transistor-switched indicator lamps. The "Barb" feature permits simple fixing on the front of the panel and allows close grouping of the units. The removable lens cap, available in seven colours, facilitates bulb replacement from the front of the panel. Also, lens caps can be supplied which are virtually unbreakable. Oxley Developments Company Ltd, Priory Park, Ulverston, North Lancs.
WW319 for further details

Digital Integrated Circuit Tester

A compact, low cost, integrated circuit tester, manufactured by John Reeve Instruments, (designated the 51B) provides push-button selection of any test pin on most standard types of d.t.l. and t.t.l. circuits. Measurements are displayed on a 5 in scale-length meter. Fully protected against overload and fitted with self-contained variable

power supplies and a pulse generator, the instrument is completely portable. Flexibility in operation is assured by utilizing manual control and dispensing with the need for programming cards. Up to 16 circuit pins are provided for on the basic instrument and packages of any configuration may be tested by using test sockets with adaptors which plug into the front panel of the instrument. The tester can be used in conjunction with various items of ancillary equipment for checking other types of logic or displaying circuit characteristics on a transistor curve tracer. Fully automatic functional tests and semi-automatic test sequencing can be carried out using special plug-in units. Price £235. John Reeve Instruments, 8 Ownstead Gardens, South Croydon, Surrey. CR2 OHH.
WW303 for further details

Digital Clock and Time Code Generator

A series of integrated circuit digital clocks and time code generators is available from Sintrom Electronics. The digital clock, the 30,000 , designed for use with computers, data logging, data processing and digital readout systems requiring real or elapsed time inputs, is available in over 7,000 standard versions. Outputs, in b.d.c. or Nixie decimal front panel displays, can be in units of less than a second or as long as a month. The b.c.d. output is available in serial and/or parallel format. A wide variety

of timebases is available. An interlock circuit allows the external system to 'hold' the clock during readout without introducing any timing error. The time code generator, which provides I.R.I.G. and N.A.S.A. time code formats in both modulated carrier and level shift forms in addition to b.c.d. outputs, provides timing information to analogue recorders as well as to digital systems. Many versions are available with choices of timebase, power supply, output format and displays. Sintrom Electronics Ltd, 2 Castle Hill Terrace, Maidenhead, Berks.
WW331 for further details

L.F. Signal Generator

A v.l.f. and l.f. signal generator (type 422) is announced by the Airmec division of Racal. It is a solid-state crystal-monitored digital-display instrument, and has a continuously variable output from 0.005 Hz to 50 kHz . The 10 V square

and sinewave outputs are available via a built-in matched $600 \Omega 80 \mathrm{~dB}$ attenuator and an unattenuated triangular output is provided at 5 V p-p about earth. The 422 is suitable for many applications, including the audio, servo and medical fields. A coarse tuning control gives continuity of tuning by making the direction of rotation for frequency increase reversible for successive half-ranges of the frequency decade switch. This "zig-zag" arrangement obviates the necessity of reversing the coarse control back over its full travel when switching between decades. Accuracy is up to ± 2 parts in 10^{5} with stability of 1 in 10^{4} over 30 min . The precision with which selected frequencies are displayed is demonstrated by the least significant digit in the readout indicating micro-hertz for the lowest frequency range. The use of high-frequency basic oscillatory circuit ensures that the output frequency can be altered with no appreciable time delay. This, together with the fast presentation readout time of 110 milliseconds for any frequency, enables changes of output frequency of the instrument to be effected and displayed instantaneously. Racal Instruments Lid, Bennet Road, Reading, Berks.
WW302 for further details

Miniaturized Reed Switch

The FR/Hamlin reed switch MTRR-2 has been reduced in size. The glass length is now $0.54 \mathrm{in}(13.7 \mathrm{~mm})$ instead of 0.625 in , but the diameter remains at 0.090 in . Contact rating is 10 W maximum at 250 mA . The off-centre gap makes the MTRR-2 ideal for permanent magnet applications. FR Electronics, Wimborne, Dorset.
WW334 for further details

Megohmmeters

General Radio have announced two new megohmmeters; types 1863 and 1864. These meters are useful for measuring insulating materials as well as capacitor or semiconductor leakage. Although similar in appearance and accuracy, their operating ranges differ in order to meet differing needs. The 1863 can measure resistances from $50 \mathrm{k} \Omega$ to $20 \mathrm{~T} \Omega\left(2 \times 10^{13} \Omega\right)$ at five test voltages from 50 to 500 V . The 1804 (illustrated) can measure resistances from $50 \mathrm{k} \Omega$ to $200 \mathrm{~T} \Omega$ at 200 test voltages from 10 to 1000 V . Each

has an output voltage that is proportional to meter reading for limit testing. General Radio Company (U.K.) Led, Bourne End, Bucks. WW301 for further details

Op. Amp. Power Supply

Weir's compact new model 915/912 power supply is suitable for use with most makes of operational amplifier requiring a balanced 12 or 15 V regulated d.c. supply at currents up to 100 mA . The units have long-term overload and short-circuit protection effected by constant current limiting at approximately 120% of rating. The two outputs can also be used in series to provide single outputs of 30 V or 24 V at 100 mA . Both outputs have dual remote sensing for use where the power unit has to be located at some distance

from its load. Connections can be made via a printed circuit edge connector which is supplied with the unit. Regulation drift is less than 0.05%. Ripple and noise are less than $1 \mathrm{mV} p-\mathrm{p}$. Weir Electronics Ltd, Durban Road, Bognor Regis, Sussex.
WW318 for further details

Wire-wound Resistors

Impectron now distribute a resistor, called the Cerwistor, in which instead of the usual method of winding the resistance wire on the outside of a tube or bar of porcelain it lies inside the porcelain. This construction ensures that even the thinnest resistance wire is given mechanical protection. The Cerwistor is small in relation to the rated dissipation, and its flat body takes up very little space. It is available in 3-, 5-, 8 - and 10 -watt ratings at standard preferred values as recommended by I.E.C. series E24 which means 24 values between 1 and 10 , between 10 and 100 , etc. The insulation resistance is greater than $1000 \mathrm{M} \Omega$ (with silicon protection even greater than $100,000 \mathrm{M} \Omega$). Standard tolerance is $\pm 5 \%$ of the nominal resistance value, better tolerances can be supplied as specials. Impectron Lid, King Street, London W. 3.
WW315 for further details

Miniature Stabilized Power Unit

The PU40 miniature power unit from Fenlow provides stabilized d.c. voltages between $\pm 10 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ set by two external resistors. The input is the mains supply of 210 to 225 V 40 to 60 Hz . It is an encapsulated unit measuring approx. $82 \times 63 \times 25 \mathrm{~mm}$ and has the following performance. Output current 40 mA on each line with short-circuit protection. Line regulation is 0.01% for input voltage variation between 210 and 255 V . The no-load to full-load regulation is 0.01%, and the total noise and ripple less than 2 mV on each line. The unit is intended to drive a number of operational amplifiers, but its price of $£ 20$ should mean that it will find much wider applications as a building block for use in small

mains-powered instruments and also for experimental work in the laboratory. Fenlow Electronics Lid, Whittet's Eyot, Jessamy Road, Weybridge, Surrey
WW308 for further details

Contact Cleaner

A glass fibre eraser available from Garfory' Lilley and Brother is suitable for contact and commutator cleaning, as well as for the preparation of joints prior to soldering. This brush will remove not only oxidization, but many forms of contamination from copper, aluminium, steel, etc., without damage to the components. The eraser consists of a stiff glass fibre brush mounted in a pencil shaped metal body. The exposed brush length can be adjusted for wear by a screw device fitted at the top of the body. Refills are available in boxes of 25 brushes. Garford-Lilley and Brother Ltd, 3 Hampton Court Parade, East Molesey, Surrey
WW336 for further details

Trimmer Potentiometer

Reliance Controls have introduced four new trimmers. The CW' 52 miniature wire-wound trimmer is unsealed and available in a resistance range of 20Ω to $20 \mathrm{k} \Omega$ with a resistance tolerance of $\pm 10 \%$. Mechanical adjustment is 20 turns. Pin configuration is $0.2 \mathrm{in}, 0.3 \mathrm{in}$ and 0.4 in with 0.5 in between the outer pins. The CW5 2 can also be used for panel mounting and allows for adjustment through a panel up to $\frac{1}{5}$ in thick. The CW52 is thus an unsealed version of the already established fully sealed CW'51. The CW53 and CW54 are two new sealed trimmers with the same electrical specification as the CIW52. The CW53 is

based on a dual in-line configuration with a 0.5 in spacing along, a 0.3 in spacing across, the body. The wiper connections on this trimmer are duplicated for mechanical stability. The CW54 has a $0.3 \mathrm{in}, 0.4 \mathrm{in}$ and 0.1 in pin configuration with 0.7 in between outer pins. The CWS5 is an unsealed version of the CW54 with identical electrical specifications. All these trimmers are manufactured with terminals of gold-plated brass and wipers of gold-plated beryllium copper. Reliance Controls Ltd, Drakes Way, Swindon, Wilts.
WW311 for further details

D.C. Amplifier

Advance Industrial Electronics announce the introduction of the new Zeltex Model 240 f.e.t.-
input differential amplifier designed for use in low-level d.c. transducer, gain-switching and un-loading-circuit applications. The unit features a built-in feedback network, adjustable closed-loop gain. Gain is set to any value between 1 and 1000 with an external resistor. High input impedance (10^{11} ohms) and an 80 dB common mode rejection ratio (at any gain setting) make the Model 240 suitable for industrial, medical and biological applications. The gain-bandwidth product is 1 MHz min . The unit can be soldered to a p.c. board or plugged into an optional mating connector. Price (1-9) £37. Advance Industrial Electronics, Raynham Koad, Bishops Stortford, Herts. WW321 for further details

Universal Digital Comparator

A digital comparator, the 6003 B , designed to provide computer decision-making facilities when used in conjunction with any digital output detice, is now available from Sintrom. It will accept síngle or multiple input data-groups from the parent digital equipment, compare the input to present limits, and within 20 ms indicate one of five possible output decisions. The decision signals are in the form of contact closures and front panel lights. The model 6003B will accept

information from any digital equipment with outputs in 1-2-4-8 or 1-2-4-2 parallel b.c.d. form, whether the signal indicates frequency, voltage, capacitance, data card or computer information. One comparator can provide up to five output decisions, totalling 17 digits maximum and limit settings can be quickly made by means of front panel thumbwheel switches or remote programming from other equipment. Comparator units can be stacked to increase output decisions. Sintrom Electronics Lid, 2 Castle Hill Terrace, Maidenhead, Berks.
WW316 for further details

Transient Amplitude Detector

A battery-operated transient amplitude detector capable of reproducing a 30 ns width pulse 10 90% amplitude accuracy has been developed by, and is now available from, Electro-Metrics Corporation, a subsidiary of Fairchild Camera and Instrument Corporation. The unit, designated model TAD-66, makes use of a high impedance differential probe for handling input signals from 0.001 V to 25 V . Four peak detectors, operating in parallel, sample and hold the input signal after amplification-iwo operating on the normal input and two on the input inverted-to assure fully redundant peak detection. The outputs of each pair of peak detectors are fed to amplitude comparators. Each comparator sees only the highest signal level that was fed to the detectors. A timing and sampling system alternately samples the outputs of the comparators to provide a pulse train, each pulse representing the highest transient seen during the sample time of the peak detectors. Sampling rates are variable from 10 Hz to 1200 Hz from built-in triggering, or up to 10 kHz from external triggering. Slow sampling rates provide data that can be displayed on oscilloscopes and X-Y plotters. At the highest rates, the outputs are handled by a computer or other fast reacting device. The 30ns pulse-width handling capability means that the TAD-66 will handle signals accurately at frequencies from 10 Hz to up to nearly

50 MHz . If amplitude accuracy is not important and only indication of a transient is required, the unit will sample, hold and provide an output indication of a transient with a width of only a very few nanoseconds. The unit is battery-operated and has both a 600Ω balanced output and a 50Ω single-ended output for connecting to external display devices. Fairchild Electro-Metrics Corporation, 88 Church Street, Amsterdam, New York 12011, U.S.A.
WW313 for further details

Digital Multimeter

Fluke International announces a digital multimeter which uses an analogue-to-digital converter with only one-fifth of the parts normally required. The unit, Model 8300 A , has five digits plus 20% over-ranging. The basic unit measures 0 to 1100 V d.c. in three ranges. Sampling speed is 25 ms . Low-cost options include a.c. voltage, millivolt-ohms, external reference (ratio) and fully isolated remote programming and data output. Because the new a.-d. technique substantially cuis down on the number of components used, a number of operating characteristics are improved. The new technique used in the Fluke 8300A is

based on storage capacitors, a single b.c.d. counter and a resistive ladder network to serially determine and display all digits. It is called the recirculating remainder A to D system. Fluke International Corporation, Garnett Close, Watford WD2 +TT.
WW 322 for further details

Transistor Arrays

Two general-purpose transistor arrays have been added to the range of linear i.cs available from R.C.A. The CA3026 and CA3054, which contain dual independent differential amplifiers with associated constant current transistors on a common monolithic substrate, have wide applications in low-power systems at frequencies from d.c. 10 120 MHz . Bias and load resistors have been purposely omitted to allow maximum application flexibility. The monolithic construction of the arrays gives close electrical and thermal matching between each pair of amplifiers, making these devices particularly useful in dual channel applications. The six n-p-n transistors which form each pair of amplifiers are general purpose types exhibiting low l.f. noise and a gain bandwidth product in excess of 300 MHz . The CA 3026 is contained in a hermetic 12 -lead TO-5 package and is rated for operation from -55° to $+125^{\circ} \mathrm{C}$. The CA3054, which is electrically identical to the CA3026, is contained in a 14 -lead dual in-line plastic package for applications requiring a limited operating temperature range, between $0^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. The
many applications of these devices include dual sense amplifiers, dual Schmitt triggers, multifunction combinations, i.f. amplifiers, product detectors, doubly balanced modulators and demodulators, balanced quadrature detectors, cascade limiters, synchronous detectors, pairs of balanced mixers, synthesizer mixers and balanced cascode amplifiers. The CA3026 and CA3054 are available at 15 s 6 d each for quantities of 100 plus from R.C.A's three distributors: Semicomps Northern Lid, Robert Electronics Lid, and Electronic Component Supplies (Windsor) Lid. Large orders of 1,000 plus should be made direct to R.C.A. Ltd., Sunbury-on-Thames, Middlesex.
WW324 for further details

Oscilloscope Probe Adaptor

Sealeciro have developed a new right-angled sub-miniature adaptor for use with oscilloscope probes. Designated Conhex 55-005-0119, the device will convert standard shielded probes to right angled devices and is particularly useful for

multiple test point monitoring in complex circuitry. The unit can be screwed into the end of the oscilloscope probe assembly in place of the standard tip. All metal parts are gold plated and the insulator is of Tefion. Sealectro Lid, Farlington, Portsmouth, Hants.
WW317 for further details

Remote Programming Digital Multimeter

Dana Electronics announce a new range of programmable digital meters-the 4433/235 (nonisolated output) and the $4434 / 235$ (isolated output). Both have isolated programming facilities for a.c., d.c., ohms and active filter as standard. The 4434 has the added feature of a built-in delayed command generator. These delays are appropriate to the function or filter speed called up and release the systems engineer from settingtime problems. The delayed command can be

over-ridden at any time by direct command. Prices: $4433 / 235-£ 1,050 ; 4434 / 235-\Omega 1,150$. Dana Electronics L.d., Dallow Road, Bilton Way, Luton, Beds.
WW326 for further details

Monolithic Linear Multiplier

A monolithic linear four-quadrant multiplier, the MC1595, is available from Motorola. The output voltage is a linear product of two input voltages and a constant scale factor. The circuit is so designed that the scale factor and the input/output voltage ranges can be adjusted by the user to accommodate a wide variety of applications. Good linearity is obtained-typically 0.5% error for the X -input and 1% for the Y -input. Other features of the MC1595 are good temperature stability and an input voltage range of $\pm 10 \mathrm{~V}$. Applications of the MC1595 include arithmetic opera-
tions (multiplication, division, squaring, finding square roots, and determining mean square), detection (a.m., f.m., phase and synchronous), modulation /demodulation (a.m. and balanced), frequency doubling, direct reading electric power measurements, trigonometric operations, and electronic gain control. Also available is a relaxed specification version with a temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, known as MC1495L. The multiplier is housed in a TO-116, 14-pin, dual in-line ceramic package. Motorola Semiconductors Lid, York Hose, Empire Way, Wembley, Middx.
WW330 for further details

P.C. Board Holder

The Keyston Mark 11 printed circuit work-holder is suitable for bench mounting or free standing. The work frame accepts boards up to 15×10 in ($380 \times 250 \mathrm{~mm}$) and up to $\frac{\mathrm{in}}{\mathrm{in}}$ (3 mm) thick and the working angle may be adjusted to suit the individual operator. The trunion mountings have

positive notch locations allowing the board to be reversed in a single operation. Extra guide rails can be fitted for simultaneous multi-assembly of smaller boards. A foam component-clamping pad is available. Keyston Engineers Ltd, 8 Tettenhall Road, Wolverhampton, Staffs.
WW312 for further details

Instrument C.R.T.

The M-O Valve Co. announces an extension to its range of high performance instrument c.r.ts, with the introduction of the 1400 B -a single gun, mesh-p.d.a. type having a display of $10 \mathrm{~cm} \times 8 \mathrm{~cm}$

and an overall length of only 35 cm . The X -sensitivity is $11 \mathrm{~V} / \mathrm{cm}$ and the Y -sensitivity $5 \mathrm{~V} / \mathrm{cm}$. Deflection linearity is better than 5%. A typical final anode voltage for the 1400 B is 12 kV and under these conditions it can be used in oscilloscopes having bandwidths of 100 MHz . The M-O Valve Co. Ltd, Brook Green Works, London W.6. WW323 for further details

"'Communications" Transistors

Twenty new "communications" transistors manufactured by T.R.W. Semiconductors Inc, California, are now available from M.C.P. Electronics. All are designed to be capable of withstanding severe mismatch under adverse load or phase conditions. These 12.5 V devices are divided into four families. The five designated 2N5687-91 are for use in the $20-88 \mathrm{MHz}$ band and they range in power from 1.5 to 40 W . Series $2 \mathrm{~N} 5702-6$ is for use in the $144-175 \mathrm{MHz}$ band with a similar
output power range. Five transistors designated 2N5697-5701 cover the $450-470 \mathrm{MHz}$ band and have power outputs from 0.25 to 20 W . The fourth series, $2 \mathrm{~N} 5710-14$, is specifically designed for high level a.m. modulation applications. Power output in this group ranges from 0.3 to 20W. M.C.P. Electronics Ltd, Alperton, Wembley, Middlesex. WW305 for further details

Electronic Switches

Now available from Interplanetric is a range of electronic switches, which employ Schottky diodes, for applications where high reliability, small size and fast switching is required. With low distortion and good transient response, the performance is claimed to be superior to that of balanced mixers used as switches. Low-loss, wide band, ferrite networks further contribute to the efficiency of the switches. Switching port voltages have been selected such that a positive voltage turns the switch on, and a negative voltage turns the switch off, thus avoiding the threshold uncertainty which results when zero switching voltage is used. Models are available with a built-in driver operating from a standard unipolar switching input compatible with common integrated circuitry. Interplanetric, 39-49 Cowleaze Road, Kingston upon Thames, Surrey.
WW332 for further details

Pulsed J-band Gunn Diode

A pulsed J-band ($12-18 \mathrm{GHz}$) hybrid mode Gunn effect oscillator has been announced by Plessey. Designed principally for use in high resolution, short range radar, these devices are made from epitaxial gallium arsenide layers grown by a process originating from the Allen Clark Research Centre at Caswell. The devices can be operated in both coaxial and waveguide cavities. Power outputs are up to 5 W under $1 \mu \mathrm{~s}$ pulsed conditions, and p.r.fs up to 50 kHz . Conversion efficiencies are between 7 and 12%. Rise times are typically less than 2 ns , and typical input requirements are $30 \mathrm{~V}, 2 \mathrm{~A}$. Plessey Components Group, Microelectronics Division, Cheney Manor, Swindon, Wiltshire. WW333 for further details

Heatsink Extrusion

The latest heatsink material to be added to the Jermyn range is the A25/2007. This extrusion offers a very large surface area with a substantial mounting web for the semiconductor. A feature of the extrusion is its light weight: for example a thermal resistance of $0.5^{\circ} \mathrm{C}$ per watt is typical for the heatsink type A25/2022 which is black anodized and has an overall size of approx. $115 \times$ $120 \times 140 \mathrm{~mm}$ long. The extrusion is also available in lengths up to 1 metre. Jermyn Industries, Vestry Estate, Sevenoaks, Kent. WW325 for further details

Radiotelephone Fixed Station

A new radiotelephone fixed station has been announced by Pye Telecommunications Ltd. Known as the F30FM, the fixed station, which is fully solid-state, is suitable for simplex or duplex operation in one of four frequency bands in the range $32.5-174 \mathrm{MHz}$. There is

a choice of $12.5 \mathrm{kHz}, 20 / 25 / 30 \mathrm{kHz}$ or $40 / 50 / 60$ kHz channel spacing and the transmitter has a power output of 30 W . Modular construction in conjunction with printed circuit sub units provides easy access to all components and simplifies servicing. Pye Telecommunications Ltd, St Andrew's Road, Cambridge.
WW337 for further details

Low Reverse-leakage Rectifiers

Solitron of America announce a series (F927) of high-voltage axial lead, low reverse-leakage rectifiers. The series has a pi.v. range of 5,000 to $25,000 \mathrm{~V}$ and a reverse leakage of $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$, and will handle 0.5 A at $55^{\circ} \mathrm{C}$ in free air. The

devices can be applied in all standard, single and polyphase rectifier circuits. The units are corona free and said to meet stringent electrical, mechanical and environmental specifications. Solitron Devices, Inc, 256 Oak Tree Road, Tappan, N.Y.10983, U.S.A.

WW320 for further details

Phase Sensitive Detector

AIM Electronics announces a new phase sensitive detector type PSD 122A which has an output drift less than 0.005% per ${ }^{\circ} \mathrm{C}$ and with a full scale deflection of $\pm 5 \mathrm{~V}$. This means that zero drift is less than $250 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Linearity is better than 0.05% and there is an overload indicator which shows when the incoming signal is outside the permitted limits. The dynamic range is over 70 dB . The instrument has its own meter built in. The unit accepts a reference signal of over 100 mV r.m.s., which is used either as a quadrature or in-phase reference to the measured signal. The measured signal is 1 volt r.m.s. for full scale deflection of the meter (corresponding to ± 5 volts at the monitor socket). The sensitivity may be increased to $1 \mu \mathrm{~V}$ r.m.s. input for full scale deffection by the use of AIM's standard range of filters and amplifiers. The PSD 122A has an input bandwidth of 150 kHz and a noise equivalent bandwidth of 0.025 Hz . Price $£ 147$. AlM Electronics Ltd, The River Mill, St. Ives, Huntingdon. WW 304 for further details

November Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

Sth I.E.E.-"Some feasibility studies of synchronized oscillator systems for p.c.m. telephone networks" by M. R. Miller and "Wisdom: a method of synchronizing distributed systems to a p.c.m. system" by P. A. Wing at 17.30 at Savoy Pl., W.C. 2.

5th I.E.R.E.-"C.A.D. of communication systems and circuits" by I'. S. Brandon at 18.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C. 1.

6th K.T.S.-"The application of silicon diode arrav targets in television camera tubes" by A. J. Wooigar and C. J. Bennett at 19.00 at the I.T.A., 70 Brompton Rd., S.W.3.

7ih I.E.E.-Colloquium on "Bio-electrical engineering and power sources" at 14.30 at Savoy PI., W.C.2.

7th Brit. Acoustical Soc.-"Microwave acoustics" at 17.00 at Imperial College, S.w. 7.

11th I.E.R.E.-Discussion on "Studies of the lower atmosphere by modelling techniques" at 18.00 at 9 Bedford Sq., W.C.1.
12th I.E.E.- "Mintech and the electronics industry" by I. Maddock at 17.30 at Savoy PI., W.C.2.

12th I.E.E.- "Noise problems in measurement" by Dr. E. A. Faulkner at 17.30 at Savoy Il., W.C.2.

12th I.E.R.E.-"I.ocomotive-borne computer for continuous train control" by M. S. Birkin at 18.00 at 9 Bedford Sq., W.C. 1 .
12th Soc. Environmental Eng.-"The British calibration service" at 18.00 at Imperial College, Mech. Eng. Dept., Exhibition Rd., S.W. 7

12th S.E.R.T.-"Industrial electronics" by A. F. Giles at 19.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C. 1.

13th I.E.R.E./I.E.E.-Second lecture on "Physiology for engineers" at 18.00 at St. Bartholomew's Hospital Medical College, E.C. 1.
13th R.T.S.--"Colour recording-a look at the 'video printing' and 'Vidtronics' systems" by R. J. Venis and J. Muliner at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

14th I.E.R.E./I.E.E.-Discussion on "Computer standardization: bane or blessing?
(an examination of the issues especially with respect to $1 / 0$ interfaces)" at 14.15 at Savoy I'I., W.C.2.

17th I.E.E.-Discussion on "Alternatives to degree examinations as a means of assessment" at 17.00 at Savoy PI., W.C.2.
18th I.Mech.E.-Discussion on "Computer aided design" at 09.30 at 1 Birdcage Walk, S.W. 1
18th I.E.R.E.-"Solid state television receivers-a pattern of second generation designs for monochrome and colour" by P. L. Mothersole at 18.00 at the London School of Hygiene \& Tropical Medicine, Keppel Si., W.C.1.

19ih I.E.E.-Discussion on "Instruments for the recovery of signals from noise" at 17.30 at Savoy PI., W.C.2.

20th Inst. Electronics.-"A technique for the evaluation of data communication networks" by M. B. Ashdown at 18.30 at the London School of Hygiene \& Tropical Medicine, Keppel St., WV.C.1.

21st I.E.E.-Colloquium on "R.F. and microwave industrial heating" at 10.00 at Savoy II., W.C.2.

21 st I.E.E.- "Recollections of the early days of the thermionic valve industry" by
S. R. Mullard and L. S. Harley at 17.30 at Savoy PI., W.C.2.

26th I.E.R.E.-"Management by objectives" by D. Simpson at 18.00 at 9 Bedford Sq., W.C.I.

27th R.T.S.-Symposium on "Professionalism and training in educational television" at 17.00 at the I.T.A., 70 Brompion Rd., S.W. 3.

BELFAST

25th I.E.R.E.-"Audio frequency hi-fi amplifiers" by I. Hardcastle at 18.30 at the Ashby Inst., Queens University, Stranmillis Rd.

BIRMINGHAM

12th R.T.S.-"Electronic video recording" by Sir Francis McLean at 19.00 at Broadcasting House, Carpenter Rd.

BRIGHTON

11th I.E.R.E.- "The place of the library in electronic engineering" by Miss E. Garratt at 18.30 at the College of Technology.

BRISTOL

19th I.E.E./I.E.R.E.-"E.M.I. 2001 colour television camera" by I. J. P. James at 19.00 at the University.

27th I.E.E.-Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 18.30 at Colston Hall.

28th I.E.E.-Faraday Lecture at 10.00 (students) at Colston Hall.

CAMBRIDGE

13th I.E.R.E./I.E.E.- 'Digital control of radar displays" by H. Giles at 20.00 at the University's Engineering Labs, Trumpington St.

CARDIFF

121h I.E.R.E.-"Moire fringe measurement and numerical control of machine tools" by A. T. Shepherd at 18.30 at the University of Wales, Inst. of Science \& Technology.

13th-"The electron microscope" by B. Rees at 19.00 at the University of Wales Institute of Science \& Technology, Cathays Park.

14th S.E.R.T-"Traffic control" by A. Gregory at 19.30 at Llandaff Technical College, Western Avenue.

CHATHAM

20th I.E.R.E.-"The Concorde flight control and landing systems" by 1). M. Fryer at 19.00 at the Medway College of Technology.

COVENTRY

13th I.E.R.E.-"The use of light frequencies in communications" by R. B. Dyott at 19.15 at the Lanchester College of Technology.

DORKING

5th I.E.E.-"Medical electronics" by Dr. D. W. Hill at 19.30 at Martineau Hall, Dorking Halls.
25th I.E.E.-"Computer aided design" by J. A. Weaver at 19.30 at the Star \& Garter Hotel.

DURHAM

26th I.E.E.T.E.-"Modern techniques of air-traffic control" by J. Henderson at 19.30 at the Universitv's Science Labs, South Road

GloUCESTER

18th I.E.E.T.E.-"Electrics and electronics in aircraft" by H. Hill at 19.30 at the Technical College, Brunswick Rd

HIGH WYCOMBE

18th I.E.E.-"Elementary principles of digital computers" by L. F. Cowan at 19.15 at the College of Technology.

HUDDERSFIELD

27th IE.R.E.-"Lasers" by Prof. O. S. Heavens at 19.00 at the College of Technology, Dept. of Electrical \& Electronic Engineering.

LEICESTER

13th I.E.R.E.- "Ground station aerials for satellite communications" by D. H. Shinn at 18.30 at the University Physics Lecture Theatre.

LIVERPOOL

12th I.E.R.E.-"Aircraft and instrumentation" by C. A. Williams at 19.00 at the University's Dept. of Electrical Engineering.

LOUGHBOROUGH

18th I.E.R.E./.E.E.-"Impact of microclectronics for circuit engineers" by C. S. Den Brinker at 18.30 at the University of Technology, Edward Herbert Bldg.

MAI.VERN

13th I.E.R.E.-"Airborne collision avoidance systems" by S. S. D. Jones at 19.30 at the Abbey Hotel.

MANCHESTER

18th I.E.R.E.-"Automobile electronics" by W. F. Hill at 19.15 at the Renold Bldg., U.M.I.S.T., Altrincham St.

27ih S.E.R.T.-"Siereo broadcasting" at 19.30 at Renold Bldg, U.M.I.S.T.

NEWCASTLE-UPON-TYNE

5th S.E.R.T.- "The Post Office Tower of London" by A. W. Mead at 19.30 at the Charles Trevelyan Technical College, Maple Terrace.
12th I.E.R.E.-"Application of positive temperature coefficient thermistors" by C. G. Smith at 18.00 at the Polytechnic (Rutherford College), Dept. of Physics \& Physical Electronics.

NEWPORT, I.O.W.

14th I.E.R.E. "Radar in a marine environment" by H. Giles at 19.00 at the Technical College.

PLYMOUTH

13th I.E.E./I.E.K.E.-"Satellite communication" by J. Lawson at 19.00 at the University.

READING

24th I.E.E--"Hi-fi" by J. Moir at 19.30 at the J. J. Thomson Laboratory, the University, Whiteknights Park.
25th I.E.R.E.-"Automatic test equipment" by O. H. Davie at 19.30 at the J. J. Thomson Laboratory, the University, Whiteknights Park.

RUGBY

18th I.E.E.-Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 14.30 (students) and 19.30 (public) at the Granada Cinema.

RUGELEY

61h l.E.R.L.-"Electronic musical instruments" by Leslie E. A. Bourne and B. Arnold at 19.00 at Shrewsbury Arms Hotel, Market St.

SOUTHAMPTON

25th I.E.E.-Faraday Lecture "People, communications and engineering" by J. H. H. Merriman at 10.30 and 14.30 (students) and 18.30 (public) at the Guildhal!.

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

ACTIVE DEVICES

We have received the following literature from Nobel Electronics, Nobel House, 5-7 High St, Welling, Kent.

Semiconductor summary 1969, listing STC digital and linear i.cs, transistors and diodes WW401
Semiconductor price list for above catalogueWW402
RCA Great Britain Ltd, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middx, have produced the following publications:

RCA solid-state products guideWW403
SK series replacement guide
Mounting hardware supplied with semiconductor devices......WW404
Mullard minibook No. 3 "Semiconductor devices" has been prepared by the Mullard educational department as an introduction to semiconductor devices for those with only a very basic knowledge of electronics. It is available from Mullard Educational Service, Torrington Place, London W.C.1, price 5s.
Amendments for the AEI Semiconductors and Technical Data Book have been prepared by AEI Semiconductors, Carholme Road, Lincoln.

12A, amendments for Vol. 1
WW406
12B, amendments for Vol. 2
WW407

PASSIVE COMPONENTS

West Hyde Developments, 30 High St, Northwood, Middx, have published a catalogue which describes the Contil Mod-2 range of p.v.c. coated instrument cases

WW408
Ferranti Ltd, Dunsinane Ave, Dundee DD2 3PN, Scotland, has the following microwave literature available:

The full range of products manufactured by Oxley Developments Co. Ltd, Priory Park, Ulverston, Lancs., such as Barb insulators, plugs and sockets and trimmer capacitors, is described in a catalogueWW411 Received from Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk, the following literature:

Moulded track potentiometers
WW412
Additional data sheets and price list for Erie catalogue
WW413
"Battery replacement guide" gives the RCA equivalent for batteries in the domestic products of over 300 manufacturers. RCA Great Britain Ltd, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middx.

WW414

HARDWARE

The "Zip Twist" fastener, which can be pushed on to studs of fragile material and given a quarter-of-a-turn to lock and which has a self-threading action for removal, is the subject of a leaflet from the Carr Fastener Co. Ltd, Stapleford, Nottingham NG9 8AJ
The "Pana Vise", which is a bench mounted vice allowing work to be held a any compound angle within a half sphere, is described, with accessories, in literature from Special Product Distributors, 81 Piccadilly, London WIV OHL

WW416
P.T.F.E. shapes, including rod, tube, sheet, strip and sleeving, are described in publication from Polypenco Lid, Gate House, Welwyn Garden City, Herts.

WW417

EQUIPMENTS

A Ins rise-time sampling unit, the type S-5, which has a $1 \mathrm{M} \Omega-15 \mathrm{pF}$ input impedance, is described in a leaflet from Tektronix UK Ltd, Beaverton House, Harpenden, Herts

WW418
The following two booklets are available from Aveley Electric, South Ockendon, Essex:

Systron Donner analogue computers ($10 / 20-40 / 80$)
WW419
Aveley news (monthly) giving information on equipment imported from Germany

WW 420

A digital integrated circuit tester (type 51B) is the subject of a leaflet from John Reeve Instruments, 8 Ownstead Gardens, Sanderstead, South Croydon, Surrey CR2 OHH

WW421
A series of low-noise broadcast quality microphone amplifiers are described in a leaflet from Elcom (Northampton) Lid, Weedon Road, Industrial Estate, Northampton

WW422
A wide range of instrumentation is described in a booklet "New electronics for measurement, analysis and computation" from Hewlett-Packard, 224 Bath Rd, Slough, Bucks

WW423

GENERAL INFORMATION

Available from the City and Guilds of London Institute, 76 Portland Place, London WIN 4AA, a publication called "SI Symbols, abbreviations \& conventions", price 2 s .
We have received two more books in the "Measurements concepts" series from Tektronix U:K. Ltd, Beaverton House, Harpenden, Herts. They cost 10s each including postage.
"Spectrum analyzer measurements" and "Automated test systems".
The latest edition of the British Amateur Electronics Club Newsletter contains a report of the Club's exhibition of electronic games and articles of constructional interest. Mr. C. Bogod, 26 Forrest Road, Penarth, Glam.
The following literature has been produced by the British Standard Institution, 2 Park Street, London W1Y 4AA:

PD6435: "Instructions to technical committees for the preparation of generic specifications for electronic parts of assessed quality", price 21s.
BS9500: "Sockets of assessed quality for electronic tubes and valves and plug-in devices: generic data and method of test," price 16 s .

HF Predictions - November

It will be seen that the MUF for Johannesburg is just below 35 MHz for an eight-hour period with very small variations. This should provide excellent conditions in the $26-\mathrm{MHz}$ broadcasting band and the $25-\mathrm{MHz}$ amateur band. The South America curve tends to a similar shape and favourable daylight conditions can also be expected. The Far East route will require full use of frequency complements to combat the continually changing MUF.

LUFs depend partly on geographic variation of atmospheric noise level and therefore, unlike MUFs, do not apply to both directions of a route. Those shown were calculated by Cable \& Wireless Ltd for reception of specific point-to-point services in the U.K. but serve as a guide for all modes and services.

Answers to ${ }^{6}$ Test Your Knowledge"-18

Questions on page 536

1. (a) The analogy is often justified by regarding the -guide as consisting of two centre-line strips joined by a conuminous row of quarter-wave stubs (making up the rest of the guide walls) on each side. This analysis is not, however, strictly correct since currents in the broad faces of the guide walls are not entirely transverse.
2. (d) This result is arrived at by considering the average value of the mean-square voltage across the wide faces of the guide, and the power flowing in the guide.
3. (b) Depending on its form the iris is equivalent to an inductance, capacitance, or combination of the two, shunting the guide. Its normalized admittance can be calculated from its dimensions.
4. (d) The slot must not interest lines of current flow in he guide walls.
5. (c) The position for the susceptance (post or iris) is found in terms of guide-wavelengths distance from the reference voltage minimum.
6. (c) Waveguide isolators, circulators and gyrators are non-reciprocal. These all use ferrite materials.
7. (d) In this way the reflections from the two cancel. The smaller the number of quarter-wavelengths (at the design frequency) the greater the range of frequencies over which the reflections will almost cancel.
8. (d)
9. (c) The energy stored depends on the volume of the cavity, the power dissipated on the cavity surface area.
10. (b) Since the standing wave pattern is in the same position at resonance as it is well away from resonance the cavity is undercoupled. Hence the coupling parameter is $1 / \mathbf{w}$.s.w.r.
11. (d) Since the source of reflection is genèrally many wavelengths from the input any slight change in frequency will cause a large change in the impedance which the guide presents to the generator. This, in turn, affects both the frequency and power output of the generator.
12. (b) This is an application of the high-low impedance principle in which alternate quarter-wave sections of high and low impedance guide are used.
13. (d) The wave travelling towards the short circuit suffers a reversal of phase on reflection, and this, added to the phase lag of a radians introduced by the journey to the short circuit and back, causes the wave reflected from the short circuit to be in phase with the wave propagated directly in the required direction in the wave guide.
14. (d) To couple out energy from a guide a hole has to interrupt only lines of current flow, but the fields stimulated in the other guide must be correctly oriented to propagate in that guide.
15. (c) Matching elements are incorporated in the junction to achieve this condition.
16. (b) In the piston attenuator the atenuation is provided by a section of cut-off waveguide.

the chuice

 \square
 PREESTON BOWPONENTS

 are known all over the world

 are known all over the world FOR FOR originality originality

 and Quality

 and Quality}
TAKE SWITCHES

Bulgin Moulded Insulation Switches are manufactured by the latest automatic methods with constant testing assuring that the highest standards of performance and finish are always maintained. All front of panel parts are plated in brilliant chrome, except where moulded operators are used, these are black. Internal contacts and solder tags are heavily silver plated for the best possible connection, all other metal parts are suitably protected against corrosion. and the polished black moulded bodies give excellent insulation.
A wide range of different models are available. Operation can be Toggle, Biased Toggle, Biased Push-Push (successional) Action, Push-Pull, Slider, key and Semi-Rowary shaft. Connection in all cases is to Solder Tags, with screw Terminals available to order as an alternative on some of the models. A wide range of modifications can be supplied, to agreed quantity orders. Proof test $=2 \mathrm{KV}$. at $50 \mathrm{c} / \mathrm{s}$ I.R. $\$ 100 \mathrm{M} 52$ drawing or recovered at 500 V .
The comprehensive range of Bulgin proprietary Switches of "laminated" construction, have, during recent years been supplemented by improved models of "moulded body" construction. Careful attention to design, and new production techniques have largely offset increased costs to the advantage of our customers. Every effort has been made to cover the largest field of application, without wasteful duplication or perpetuating types for which no reasonable demand now exists.

In the Profes-
sional and Commercial field the moulded range is increasingly being used and preferred and with this in mind we have produced a Wall Chart illustrating and describing the complete range of Moulded Switches now available, cross referenced to the old laminated types which they are replacing. in order to assist our customers select the current versions. In addition to this we also have a single sheet leaflet available showing the detailed test and inspection reports on SM.259/PD Single Pole type. the SM270/2 Double pole change over type and the SM.277/2. SM301/2. High Rating. D.P.M.8. and Double pole change over types. Ask for ref.

SEND FOR COMPREHENSIVE MOULDED SWITCH/LAMINATED SWITCH EQUIVALENT LIST REF 1536/C.

[^6]
Real \& Imaginary

by Vector

"Plus ça change, plus c'est la même chose"

This month I'm going to do something that I'm rather good at, namely sitting back and letting someone else do the work. The excuse for doing so is contained in a paper read at a meeting of the Institution of Electrical Engineers under the title "Co-ordination of Research in Works and Laboratories".
In his introduction H. R. Constantine, the author, reminds us that to be a great and prosperous nation today implies being at the forefront in scientific genius and in engineering capacity. He then takes his first sideswipe at us by saying that there was a time when this country was able to hold its own against any other nation, but that we are now in the process of falling asleep while others surpass us.
He goes on to say that the reasons why we have lost our commercial supremacy are not to be found in any lack of ability or want of inventive genius. Our backsliding has been mainly due to the lack of responsiveness by government authorities, manufacturers and financial leaders to the needs of scientific genius. Many examples (he says) could be given of new ideas or inventions devised by British brains which have been ignored here and have subsequently been taken up abroad. The situation is aggravated by the national characteristics of selfishness and stubbornness which prevents a Britisher from communicating his methods to his fellow workers. (Strong meat for any Learned Society to digest!)

Arguing for more co-ordination in research the author notes that powerful banking organizations exist to offer a stronger financial front against foreign competition while various employers' associations are in being to further business. There are also selling organizations to promote exports, so why not a research combine also?
He then sets out one approach to the problem. This envisages the establishment of a vast national research laboratory (or complex of laboratories) under the control of a government-appointed body consisting of en-gineer-representatives of universities and industry. The administrative side would be undertaken by another body, chosen for its business ability.

This maxi-laboratory would take over the whole of the pure research now done by universities, colleges, technical institutions and private or works laboratories. Any manufacturer who wanted a given matter researched would apply to the central au-
thority who would be in a position to tell him what had already been done in that particular line and to advise him regarding the best way to continue. Any research project brought to a successful conclusion would be passed to the central 'bank' where it would be freely available to any British manufacturer who wanted it. (Note that these suggestions apply only to pure research; each manufacturer would be free to conduct his own applied research.)

Having painstakingly built a nationalized edifice brick by brick (only a few of the main features have been decribed above) the author puts a substantial charge of high explosive in its basement and proceeds to light the blue touchpaper. The proposal (he maintains) is impracticable on grounds of cost. He then expounds an alternative scheme. This, much abbreviated, is a method of co-ordinating existing laboratories. It proposes a central board of control composed of private individuals representing the various interested parties-universities, manufacturers and so on. This board would keep full records of what individual laboratories were doing and would maintain records of published research work on the largest possible scale. The board would be given full powers to order any laboratory to undertake a specific piece of research or to leave another alone.
One essential feature of the scheme is to provide a posse of travelling engineers whose duties would be to visit the various laboratories at frequent intervals and to report back to H.Q. giving general and detailed accounts of what was afoot, or of research that was needed. New ideas would also be culled. As with his first suggestion the author recognizes that one of the prime requirements would be the establishment of an efficient central records office.
At this juncture the author pauses to consider the evils of continuing with a muluplicity of independent laboratories, each working in comparative ignorance of what others were doing. He makes the following points:-
(1) In general, manufacturers' laboratories tend to attempt too many researches at once and are not properly equipped to do any one of them.
(2) They are usually under the ultimate control of a top executive whose orientation is towards sales, not research.
(3) It is physically impossible for each individual firm to acquire and maintain a
technical library on a scale that ensures it contains information on everything.
(4) Each laboratory is intensely jealous of all rivals and will on no account let others know what it is doing. As a result, twenty firms could be carrying out exactly the same research work.
Item (4) is clearly a major stumbling block and the author is at pains to deal with it. In his scheme a manufacturer's research information would be sent to the central board under a strict seal of security; it would be used primarily for records purposes, to ensure that overlapping of projects did not take place.
University laboratories would still continue with their routine laboratory training programmes; the central board would be interested only in the absolutely new experimental work in hand. The board would work in close liaison with the univepsity authorites, merely ordering that specified research should be carried out over a certain period and giving general instructions as to how it should be approached.
Patents are one of the headaches in any such scheme and the author deals faithfully with this problem also. He suggests that an equitable solution would be to invest the central board with the responsibility of deciding whether it was worth while to take out a patent application in any given circumstance; if it were, the board would do so, paying all the attendant expenses. It would then proceed to dispose of the rights to those manufacturers declaring themselves interested, in consideration of agreed payments. After these payments had been pooled, the inventor and his assistants would be appropriately rewarded.

The author concludes by saying that in spite of the detailed proposals set out, the chief purpose of the paper is to draw attention to the need for fresh thinking on how research could best be handled, both in the national interest and for the benefit of manufacturers and universities. His final words are an appeal to the Institution to take the initiative and convene a conference of all potentially interested parties, "in order to settle in the first place the absolute necessity for some such concerted action and to come to some decision as to the general outlines that such a scheme would have".
In the discussion that followed the reading of the papers, the proposals were damned with faint praise. Some words of the final speaker are, I think, worth recording:
"I am perfectly certain it is a waste of energy to try to centralize the whole business of research . . overlapping lof research projectsl is a very good thing. There is a certain sporting element in overlapping and I think if an Englishman is to make any progress in research or anything else he must be able to feel that there is a certain amount of sport at the back of it all-money is not sufficient. There must be that sporting element of rivalry"
And that's about all I've room for; the paper itself is very much longer. But one final word if I may: The paper was read before the Institution just over fifty years ago and was published in the gournal of the I.E.E. in October, 1920. Meanwhile, relax. You're not being nationalized yet.

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1 . The $\mathrm{Z}-30$ high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or PZ -6. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.
Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet and templates provided enable you to position them. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

z-30 TWENTY-FOUR WATT CONTINUOUS SINE WAVE POWER AMPLIFIER

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $\mathbf{Z - 3 0}$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 manual.

SPECIFICATIONS

Power output-15 watts continuous sine wave into 8 ohms using a 35 volt supply: 24 watts continuous sine wave into 3 ohms using a 30 volt supply.

APPLICATIONS

High fidelity amplifier: car radio amplifier: record player fed direct from pick-up. Intercom: electronic music and instruments: P.A.. laboratory work, etc. Full details of these and many other applications are given in the manual supplied with your $Z .30$.

Ready buif, tested and guaranteed, with 2.30 manual.

89/6

Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio: better than 70 dB unweighted.
Distortion: $\quad 0.02 \%$ total harmonic distortion at full output into 8 ohms and at all lower output levels.
Size :
$3 t \times 2 \ddagger x$ inches.
Input sensitivity: $\quad 250 \mathrm{mV}$ Into 100 Kohms.
Damping Factor:
>500.
OutpurClass AB
Loudspeaker impedances 3 to 15 ohms.
Power requirements: 8 to 35 V.d.c.

STEREO SIXTY PREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Inpur sensitivities-Radio-up to 3 mV : Magnetic Pickup- 3 mV Correct within \pm $1 d B$ on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxillary-up to 3 mV . - Output-1 volt.
- Signal-to-noise ratio-better than 70 dB
- Channel marching - within 1 dB .
- Tone Controls-TREBLE + 15 to -15 dB at 10 KHz ; BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA
- Power requirement-PZ.5 or PZ. 6 - Power requirement-P2.5 or P2.6. with black brush
- Mounting on cabinet front by spindle bushes and adjustable brackets.

Ready built, rested and guaranteed
£9. 19s. 9d.

SINCLAIR POWER SUPPLY UNITS

PZ-5
30 volts unstabilised-sufficient to drive two Z-30's and a Stereo 60 for the majority of domestic applications.

Price: £4. 19s. 6d.
PZ-6 35 volts stabilised-ideal for driving two Z-30's and a Stereo 60 when very low efficiency speakers are employed.

Price: $£ 7.10 \mathrm{~s}$. 6 d .

AT THE AUDIO FAIR STAND 95

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service purchase
 22 NEWMARKET ROAD, CAMBRIDGE Pleose send

SINCLAIR IC-10

10 WATT MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thickl

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has an output power of 10 watts. It contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a 5 -year guarantee on each IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

USE THIS ORDER FORM FOR YOUR IC-10

I TO: SINCLAIR RADIONICS LTD.. 22 NEWMARKET RD.. CAMBRIDGE	
IPlease send	
\| .	NAME
\| .	ADDRESS
I	
1	
\| for which l enclose cash/cheque money order	

SPECIFICATIONS

Output: Frequency response Total harmonic distortion: Load impedance:
Power gain: Supply voltage: Size:
Sensitivity:
nput impedance: Adjustable extemally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.
SINCLAIR
IC-10

AUDIO PHOTO-CINE FAIRS, OLYMPIA, STAND 95 SINCLAIR RADIONICS LIMITED 22 NEWMARKET RD, CAMBRIDGE Tel: 022352731

peak sound
 Δ
 peak sound

A NEW DESIGN FROM PEAK SOUND

think of hi-fi this way

OTHER PEAK SOUND PRODUCTS
ES. 10-1 5 Bassandall
Loudspeskers as described
in Wirsless World.
SA. 10-10 Economy Stereo
Amplifier in kit form
"Cir-Kit" circuir building strip.
Matching Stereo Tuner Modules aveilable shorty.

Think of a stereo amplifier delivering 12 watts R.M.S into 15 ohms per channel and having a total harmonic distortion of 0.1% at full output at 1 kHz . Think what an overload factor of 29dB means on all inputs. Think what it means, too, to have a top-flight amplifier housed in a cabinet of elegantly original design that is both beautiful and completely practical back and front. Think what such an amplifier with its many desirable features might cost - then remember that by assembling the Peak Sound "Englefield" yourself from the pre-built lab. tested modules we design and make, you can own One of the best designed amplifiers you have ever heard for about £38. The ease with which you can do this will delight you. So will the performance and appearance of the complete equipment. The Englefield system enables you to use the exclusive design cabinet for either a $12+12$ watt assembly or $25+25$ watt assembly, the pre-amp and tone control unit module being common to either. Each has its own built-in necessary power supply unit.

SPECIFICATION

Using two Peak Sound PA 12.15 s . SCU 400 and PS 45 K Power output per channel 13 watta into 15Ω : 18 w into 8Ω : 24 w into 3Ω. all R M S
Frequency bandwidth -10 Hz to 45 k Hz for $1 \mathrm{d8}$ at 1 wall
Total Harmonic Distortion at 1 kHz at 115 w into 15 s
Input senartivities- Mag P.U $\quad 35 \mathrm{mV}$ imp.
Mag P.U 35 mV Imp
R|A.A.
equalized Tape-
100 mv linear: Radio 100 mV
linear
29aB on all input channels -65 d 8 on all inputs
Volume: Trebia $1+12$ to $\begin{array}{ll}-12 d 8 \text { af } 10 \mathrm{kHz}: \text { Bass } \\ -12 d 8 & \text { to }+12 d 8 ~ \\ -100 \mathrm{Hgl}\end{array}$ ilter $9 \mathrm{kHz}^{10}+12 \mathrm{~dB} 100 \mathrm{~Hz}$) ctave: 9 kHz of 12 dB /per octave: Mo
Balance
Jang iwo PA 2515 amplifiers and PS/68S power supply

35 w into 8 watts

Name

Address

Write your stockists name and address in margin below and cut out with coupon if necessary.

M/T FTICOPE EST. 1921

MEGGERS 500 volts 1000 Megohms with test leads. in leather case with strap C38.

 with fixing clip. Volen o/l 2 in. MC $44 /$. O/5 ACIDC MI 3 jin . $55 / \mathrm{m}$ MC $42 / 6$ with clip. $0 / 503 / 2 / \mathrm{In}$. MC Min . $42 / 6$ with clip. $0 / 402 \mathrm{in}$. MICROAMPS O/5O scaled in Rontgens 2 i in . MC $50 / \mathrm{m}$ CELL TESTING VOLTMETERS $3-0-3 V D C$. complote with leads and Prods in leather case 3 in . scale 40/. eamph, post $3 /-$ -

PORTABLE VOLTMETERS $0 / 250$ MI AC/DC Sin. scale in FREQUENCY METERS $45 / 55$ C.p.s. 230 V AC 6 in . dia. flush round $\mathbf{2 1 0 . 1 0 . 0}$	
$.02 \mathrm{mfd} 10 \mathrm{KV} 10 / 0.0252 .5 \mathrm{KV}$	
$2.5 \mathrm{KV} / 7 /-.05 \mathrm{mfd} 5 \mathrm{KV} 9 /-.01$	LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size 554 pole GEARED REVERSIBLE MOTORS by Crouzet Led. 1 in.p.m. or 3 r.p.m. 24 volts A.C. ${ }^{4}$ Watts $37 / 5$ each, can be operated from 230 volts with our 20 r. . Transformer. JACK PLUGS. 2 point screw on cover, 2/6, post $1 /$ on headphone cord, $3 /$, each, post 201 SUB MINIATURE MACKS 3 point $10 H 17392 / 6$ each.

St $6 / 6$ each, or mounted in fives 22/6 poss frec.
HIGH SPEED. Type llSMITNI3, size $t^{\circ} \times 1^{\circ} \times$ HIGH SP'EED COUNTERS. $3^{\circ} 1^{\circ} \times 1{ }^{\circ} \times 10$ counts per second with 4 figures. The following D.C. Voltages are avillable: $6 v$ vi, 12 v ., 24 v , 50 v . or 100 v . $35 /-$ each.
VEEDER ROOT MAGNETIC CO UNT Counting to 999,999 , 110 voles or 125 volts A.C. Or 110 voles D.C. $65 /-$ each, post $3 /-$-. $1.13^{\circ} \times 0.63^{\circ}$, only It oz.; quantities available, $12 / 6$ each, $120 /-$ doz., post $1 / 6$.
 each displaying Il messages in letters, symbols and numbers, C 35 complete.

 STABILIZED POWER UNITS. Racal insts. AC input 200/250v. nogative HT $150 v$, stabillized 15 mA . new unused, current 250 mA , 4 each. EQUIPMENTRACKS P.O. STANDARD TY'PE, 6ft. U Channe
 DOUBLE TAIODE E88CC. Mullard \& Brimar, $12 /$ each. ECCBI, Marconi, $4 / \%$ each. 128H7, Brimar, $7 / 6$ each. GET875, $5 / 6$ each. Send for seock lise.
HANDSETS P.O. type with press in handie, and sound powered earpiece, carbon mic.,
4 core flex and plug YA 6451 , $17 / 6$ each, 800 available. core flex and plug YA 6451 , $17 / 6$ each, 800 available.
HEADPHONES, Balanced Armature 56Ω complete
flex and plug in portable wood case (YA 6401), 18/= each. EQUIPMENT WIRE T024, 7,0076, 14,0048PVC covered 100 and 200 yd . reels. All colours $80 /-$ per 1000 yds., post $6 /$., Multicore standard 8 core cable individually
L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
Phone: 01-684-0236 Grams: WILCO CROYDON WW-115 FOR FURTHER DETAILS

Sole Distributors
Super Electronics Ltd.
5 VIOLET HILL, LONDON N.W. 8
TELEPHONE: MAIDA VALE 8281
WW-117 FOR FURTHER DETAILS

F.A.L.'PHASE 50' Public Address Amplifier

$\star 50$ Watts Output (Peak Rating) \star High Sensitivity \star Output matching for speakers from $3-30$ ohms $\star 3$ separately controlled inputs \star Separate Bass and Treble Controls \star Frequency Response 22 c.p.s. to 30 Kcs. available from your local dealer

SEND S.A.E. FOR FULLY descriptive LEAFLET

FUTURISTIC AIDS LTD., 103 Henconner Lane, Leeds 13
WW-116 FOR FURTHER DETAILS

W.H.M.

WOW AND FLUTTER METER (R.M.S)

MODEL I\|

SYDNEY HOUSE, 35 VILLIERS ROAD, WATFORD
WDI-4AL

WW-118 FOR FURTHER DETALLS

DC DIFFERENTIAL AMPLIFIER FE-153-BD £38-10-0

low drift

high common mode rejection
small size battery powered

Also:

wide range of general purpose dc amplifiers, bridge supplies and bridge units for instrumentation and control purposes.
FYLDE
Electronic Laboratories Ltd Oakham Court. Preston. PR1 3XP Telephone: Preston 57560
WW- 120 POR FURTHER DETAILS

Release notes and certificates of accuracy on request.

REPAIR 8ERVICE 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments,
industrial and precision of all types of instruments,
industrial and precision grade to BSS.89.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

THANSFORMEHS

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL APPLICATIONS UP TO 100 KVA. "C" CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

Samples from our standard production ranges:-

* Mains

350-0-350V. 60mA., 6.3V. 2A. 220
$500 \mathrm{~V} .300 \mathrm{~mA} .6 .3 \mathrm{~V} .4 \mathrm{~A} ., 6.3 \mathrm{~V}$. IA

219

$500-0.500 \mathrm{~V} .0 .25 \mathrm{~A} ., 6.3 \mathrm{~V} .4$ Act., 6.3V. 3 Act., $5 \mathrm{~V} .3 \mathrm{~A} . \quad . . \quad . \quad . \quad 419$.
$525-0-525 \mathrm{~V}, 0.5 \mathrm{~A} ., 6.3 \mathrm{~V} ., 6$ Act., 6.3 V .6 Act., 5 V .6 A 5136
*Low Voltage
$30-0-30 \mathrm{~V}, 4 \mathrm{~A}$. 12 6
$28 \mathrm{~V} .1 \mathrm{~A}, 28 \mathrm{~V}, 1 \mathrm{~A}, 28 \mathrm{~V}$. $1 \mathrm{~A}, 28 \mathrm{~V}, 1 \mathrm{~A} ., 30 \mathrm{~V}, 250 \mathrm{~mA} . \quad . \quad . .4150$

- Primaries $10-0-200-220-240 \mathrm{~V}$.

20W Transistor Amplifier (W.W. Nov. 1966)
$\begin{array}{lllllllllllll}\begin{array}{llllll}\text { Driver } & . & . & . . & . & . . \\ \text { Mains } & . & . & . & . & . . \\ & . & 1 & 4 & 6 \\ \text { Mis }\end{array} & . . & . & . . & . . & . . & . . & . & 1 & 19 & 6\end{array}$
Mains
L.P. Filter, Chassis Mounting

126
L.P. Fileer, Printed Circuit Mounting . . \qquad . .. 156

70V \& 100 V Line Matching

Fitted with terminal panel, taps at $0.5,2,4$ and $8 W$. into 15 ohms
Flying leads, eaps at 4. 1, 1, 2 and 4 W . into 3 ohms... $7 / 3$ each in 100 Lots

Prices inclusive of postage and packing, each For small quantities, cash with order, please

HOWELLS RADIO LIMITED

CARLTON ST., MANCHESTER, M14.4GT 061-226 3411
WW-121 FOR FURTHER DETAILS

GAREX ELECTRONICS
 MAIL ORDER
 CHINNOR, OXON

GAREX TWOMOBILE TX complete, £35.
GAREX FOURMOBILE complete, $£ 35$.
TW PHASE 11 TRANSVERTER 28-144 MHz, £69.
TW PHASE 11 Matching Power Unit, £34.
15 watt QQVO3-10 TX less case (heaters) PSU mod. and crystal, 6 or 12 v . Heaters. Post $4 / 6, \mathbf{£ 8 . 1 5}$.
20 watt plus. QQVO3-20a. or 6-40a. TX as above, but fitted into diecast box. Post 4/6, £14.10.
70 cm Aerial c/o relay 50 v . working 50 ohm. 150 watts. New. Post $2 / 6$, E3.5. Matching B.N.C. Plugs, 6/- each.
6 pf Butterfly capacitors with short shaft. $\frac{1}{8}$ "dia. New. Post 6d., 5/-.
We will be restocking Birmingham Branch with components and kits, etc., from the first week in October. Many new items. Saturdays $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. Sundays, $10 \mathrm{a} . \mathrm{m}$. to $2.30 \mathrm{p} . \mathrm{m}$. G3MMJ in attendance.

Garex Wholesale Ltd., 1189 Bristol Road South, Birmingham 31. 021-475 6453.

OUR GUARANTEE IS YOUR SATISFACTION SPECIAL EXPORT SERVICE

Callers welcome, please telephone G3MMJ ex ZS6OP Kingston Blount 476 OTH45-476

Northern area agents: Derwent Radio, Scarborough, Yorks. Scarborough 63982

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch,Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us atmanufacturers' prices e.g. IN9141/3d. \square IN916 1/11d. \square 2N697 4/5d. \square 2N706 2/3d. $\square 2 N 706 A$ 2/9d. $\square 2 N 9295 / 8 d$. $\square 2 N 1613$ 4/8d. $\square 2 N 3011$ 9/1d. $\square 2 N 3053$ 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. \square BFY50 4/8d. \square BFY51 3/9d. \square BSY27 18/- \square BSY95A 3/3d. \square C407 4/6d. \square CA3012 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. OA200 1/9d. \square OA202 1/11d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS and RCA, these quasi circuits set new standards in quality and performance. Each kit is complete with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board.

2 A	£7. 0. 0
25A	£8. 5. 0
40A	£9. 0. 0
70A	£10.10. 0

Any two will make an outstanding stereo equipment.

TRS SECTION 1

The following amplifiers are styled and kitted by T.R.S. using quality components and backing them with well presented instructions and backed by T.R.S. service. Valves and transistors are included as appropriate. All are self-powered unless stated.

MULLARD SERIES

3-3 MONO
3 watt output, tapped for 3 and 15 ohms. 5ensitivity: 100 mV . Bass and treble controls.
Kit ... 87.19 .6 (Carr. 7/6) Built and tested $\mathbb{1 0 . 1 0 . 0}$ (Carr. 7/6) 5-10
Still ranks as one of the best designs ever, 5 valves, 10 watts, o/p for 3 and 15 ohms.
Basic Kit (requiring pre-amp stage) $\quad . \quad\{10.10 .0$ (Corr. $7 / 6$) Built E13. 0.0 (Carr. 7/6) Basic, with passive control system \&12.10.0 (Carr. $7 / 6$) Built ... £15.15.0 (Carr. 7/6)

2 VALVE PRE-AMP

5 input switching plus auxiliary tone controls, etc.
Kit 66.19 .6 (Carr, 5/6) Built . $5-10$ E9.10.0 (Carr, $5 / 6$)
BASIC $5-10+$ D VALVE PRE-
AMP
Built and tested $\mathbf{6 2 1 . 1 0 . 0}$ (Corr. 10/-) $10+10$ STEREO
A highly efficient and dependable
stereo unit with the best of Mullard

AMPLIFIER \& TUNER KITS

and T.R.S. features. O/P transformers tapped for 3 and 15 ohms. Can accept ceramic or crystal P.U. direct otherwise pre-amp is necessary.

Kit Built

 Built and test. $2+2$ VALVE STEREO AND PRE-AMPBuilt and tested $\mathbf{6 1 3 . 1 9 . 6 \text { (Corr. 7/6) }}$ T.R.S. $4+4$

Transistor amplifier based on Mullard modules and produced to provide good quality and appearance at low cost. $4+4$ watts output. For $3-15$ ohms speakers. Input switching, etc. Bass and treble controls. Simple module assembly. Amp and pre-amp with front panel and knobs.
Kit
Teak sided cabinet
67.19.6 (Carr. 3/6)

C1.17.6 (Carr. 2/6)
24V. Power pack 62. 5.0 (Carr. 2/6) Complete kit inc. OIN plugs and sockets .. \&12.10.0 (Carr. 7/6)
T.R.S. F.M. TUNER

Assemblies from modules obtainable separately. Features interstation suppression, A.F.C., etc. Modules and chassis, scale and tuning drive come to E 15.15 .0 (Corr. $7 / 6$) Mains power unit
62. 5.0 (Carr. 3/-)

Cabinet to match " $4+4$ "
El.17.6 (Carr. 2/6)

Multiplex decoder for stereo
(10.10.0 (Carr. 2/6)
T.R.S. 6 VALVE AM/FM

TUNER

With power supply, valves, large illuminated station-named scale. Push button on-off and wave change, "magic eye" indicator. Tunes Med. waves and F.M. Diode output for tape.
Kit with power unit
f12.10.0 (Carr. 7/6)
Kit less power unit 111.10 .0 (Carr. $7 / 6$)

5-10 MULLARD 10-10
MODULES
T.R.S. 12 watt-15 ohm amplifier as specified in Practical Wireless. 12-12 Stereo amplifier.
built $\mathbb{E 5 . 1 9 . 6}$
Kit, complete $\quad . \quad$ © 4.11 .0
SINCLAIR Z.30-New power amplifier, as advertised \&4. 9.6 SINCLAIR STEREO SIXTY Pre-amp/tone control .. $£ 9.19 .6$ SINCLAIR PZ.5 power supply unit $\mathbf{4 . 1 9 . 6}$ SINCLAIR IC-10 integrated circuit amplifier and pre-amp. 8.9 .6

SINCLAIR "MICROMATIC" MIDGET RADIO RECEIVERsmaller than a matchbox.
Kit
Built
59/6

6 VALVE AM/FM

TRS SECTION 2

COMPONENTS, ACCESSORIES, etc.

TRS SECTION 3

PLAYING UNITS, CARTRIDGES \& PLINTHS

101 in . die-cast $\mathrm{t} / \mathrm{table}$, cueing device and councerbalance. Less cartridge In maker's carton .. $£ 11.19 .6$ (Carr. 7/6) GARRARD LM. 2025
With Sonotone 9TA/HC cartridge and With Sonotone 9TA/HC cartridge and
lift control ... $£ 10.19 .6$ (Corr. 7/6) PLINTHS

CARTRIDGES

When bought together with playing unies. Decea Deram, $\mathbf{6 5 . 5 . 0}$; BSR TCB/H (Stereo 28/6: Sonorone 9TA/HC, 60/-; Acos GP.93-1, 30/-.

TRS SECTION 4

MATERIALS, LOUDSPEAKERS, etc.

VINAIR-Latest I.C.I. Cabinet and OH-White,Fawn, Black, etc. $3 / 6$ per sq. 4 , Multiples of 6 in. cut.
Send IV- for Samples-Refundoble. BONDACOUST-Speaker Cabines Acoustic Wadding (as used by leading
 ENAMELLED COPPER WIRE New 2 oz, reel prices $/ \mathrm{m}, 3 \mathrm{~g}-34 \mathrm{~g}$,
$14 \mathrm{~g}-20 \mathrm{~g}, 3 /-22 \mathrm{~g}-28 \mathrm{~g}, ~ 3 / 6 ; 5 / 0 \mathrm{~g}$
$4 / 3 ; 36 \mathrm{~g}-38 \mathrm{~g}, 4 / \mathrm{m} ; 39 \mathrm{~g}-40 \mathrm{~g}, \mathrm{~s} /-$. Oeher gauges quored for. PVE CONNECTING WIRE 10 Colours (for Chassis wiring, etc.) Single or stranded Conductor 3d. peryd $1 \mathrm{~mm} ., 2 \mathrm{~mm} ., 3 \mathrm{~d}$. y $\mathrm{d}, \mathrm{i} 3 \mathrm{~mm} ., 4 \mathrm{~d}$, yd. EXCLUSIVE T.R. TAP E BARGAIN Professional quality full frequency Mylar presented in coloured simulated leather

5	in.	900 ft.	$2 / 6$	51
7	in.	$1200 \mathrm{ft} .17 / 6$		

3 in., $1 / 6 ; 4$ in., $2 /-5$ in.. $2 /-5 ; 5$ in.

PLASTIC REEL CONTAINERS 3 in. $1 / 6 ; 5$ in $2 /-5$ in. 2/3; 7 in., 2/6. VEROBOARD-All standard sizes stocked.
$2 \| \times 3 /-31,21 \times 5,3 / 8 ; 31 \times 31,1 / 9 ;$
$3 \| \times 5,5 / 2 ; 17 \times 21,12 / 6 ; 17 \times 31,15 /-$ Accessories-Term Pins, $1 /$ - doz., $3 /-$ pks. Face Cutser, 7/3. Pin inserting tool, "CIR-KIT"-Adhesive copper strip, 5 in. by $1 / 16$ in. ${ }^{\text {SPOOL }}$.
WAFER SWITCH ASEMBLIES $1 \times 12,2 \times 6,4 \times 3,3 \times 4$ way wafers $4 / 6$
Shafting assemblies, with washers, etc. $6 / 6$ PLUGS AND SOCKETS
Phono plugs, $1 /-$; sockets, $1 /-$; per pr, $1 / 6$ -pin plugs, $C \mathrm{O}^{3-\mathrm{N}}$-pin sockets, 1/6. VOLUME CONTROLS 14 in. dia, Long Spindles. Famous make. Guaranteed 12 months.

Log or Linear tracks

ditto Centre Tapped 5 w 3/6; DP Sw. 5/ditto Centre Tapped i/ Megohm Lor, 1 Megohm \quad Twin Ganged Stereo controls Ifs. Sw. S/Long Spindles.
All values 5000
hims to 2 Megohms.
Less Sw. Each $8 / 6$
 STEREO BALANCE CONTROLS Log/Anti-Loz 5K, lok, i Mez. I Mer, RESISTORS
Full Range 10 ohms- 10 Megohms. Midget type, modern ratings.)
$0 \% \mathrm{fw}, \mathrm{fw}, 4 \mathrm{~d} . \mathrm{i} \mathrm{Iw}, 6 \mathrm{~d}$.

 disto $102 \mathrm{Meg}-10$ Meg.
Sd. itw, $6 d$. $1 \% \mathrm{Hi}^{\mathrm{hms} 2 / 3 \text {) }}$) w , 2/- (10 ohms-100 WIRE WOUND RESISTORSCOATED TYPES
Stand. values 25 ohms- 10000 ohms
SP SPECIAL VALUES $515 \mathrm{~K}-35 \mathrm{~K}$;hms $1 / 3$ PRESET WIRE WOUND POTTS Slotted K nurled Knob T. V. Type.
25 ohms -20 Kohms, $3 / 9$. 50 Kohm 25 ohms-20 Kohms, $3 / 9 ; 50 \mathrm{Kohms}, 4 / 6$ ditto carbon erack SCK-2 Mes., 3/9 1OK-2.2Meg., 2/- $1 / 20$ ohms-5K, $2 / 6$
SKELETON PRE-SETS use. 100 ohms- $\mathbf{2 . 5}$ Mes 2 PD STANDARD W/WOUND POTS 100 ohms 50000 ohms .. Each 7/6

FOR BETTER BARGAINS

RADIO COMPONENT SPECIALISTS

70 BRIGSTOCK ROAD THORNTON HEATH SURREY

Telephone: OPEN ALL DAY SATURDAYS
THE MAIL ORDER SUPPLIERS FOR PERSONAL ATTENTION he written clearly on one side of the poper ond coss of corriage odded. Where not quoted, please od as 8 ORDERS $\begin{gathered}\text { tib, il you with the difference. S.A.E. brings latest T.R.S. Lises. } \\ \text { credit }\end{gathered}$

2\}kW FAN HEATER
Three postion suitching to sult
changes in the weahet. gwitch up changes in the weathes. Gwitch up
for full heater ($2 \phi \mathrm{k} \mathrm{W}^{\prime}$), awitch down
 blowe ouhd for summer coolling sdjuntable thermostat act na nuto

FLUORESCENT CONTROL KITS

 Inatructloun. Sultable for normal Auoreccent tubee or Che new "Crolux' Lubes for finh tanks and tadoor plants. $15-20 \mathrm{w}, 19 / 8$. K Kit $\mathrm{B}-30.40 \mathrm{w} .19 / 6$. KIt $\mathrm{C}-80 \mathrm{~m}$.
19/6. KIt 1.2in. minlature 'tubes. $19 / 6$. Poatage on Klta A and B $4 / 6$ for one or two kith then $4 / 6$ for each two kite
 each kit ordered. Kht
each two kita ordered.

BECKASTAT
Thle In an inotant therrnostat. it and its lead lapto wall plug. Adjustablo esettug for normal air cempersturea. 13 A looding. Whi save lits cont in anersor.
Port and ins. $2 / 9$

$-\longrightarrow$ REED SWITCHES
 Olana encased. awitchen operated by exterinal magnet-gold

 welded contactu. We can now offer 3 lypen: dimeter. Win Mnakare. Iin. long x approximastely tin. diameter. Win 18/- per dopen. Fately $\| 1 \mathrm{n}$. whde. The glandard Type flatiened out, mon that it can be fited into a mmaller apace or a larger fuantity may be macked into a suare solenold. Kating 1 smp 200 volts.
Price $8 /-$ each. 83 per dozen. $1 / 3$ each. $12 / \mathrm{f}$ dozen.
13 each. 12ℓ - dozen.
80 r.p.m. Geared Motor. This it a powerful unlt, driven by a
 boxes may be detsched. It is. th fact, monnt mesarimg Io $\ddagger / 1$ n. wide, tin. long. $35 /-$.
 Perpex case for aunh mounting. Dial size approximately
2 Ha . Tide. The acale la not eugraved but has of red part In the centre and a green part to the loft of centre. Scale could be cleaned ofland re-written to sult your particular reyurre-
nente. Regular price probably over es each, our price $29 / 6$ esch.
Betrery Record Player. Mude by Collaro. This is mide up on anit plate with speed aelector and plck up. The turntable Atited with the funcous "Atudio cartridge. Price 68/6. Poat and lan. $6 / 6$
 85 Wate Tubular Element. Very well made, unit. The ietment is wound on - poreelain former then oncaeed in a

pued sa single pole, 10 A. contacte 250 volt working. Bingle hoie Axing. $2 / 6$ each. 24 - dozen.
Door 8 witeh, Contacts open when pluager In depreased Maite by Arrow. $3 / 6$ each. $38 /-$ per dozen. 230 volt working Rotary Appliance switec. $16 \mathrm{~A}, 230$ rolt on moulded ceranilo
 This in an excellent Lotally encloned motor, powerful enough otc. Its npeed is 1.450 pm . Maide, wanaing machine

FLEX BARGAINS

 Bcreenedlasulated and cobourex, the
3 corese lald together and metal braided overall. Price
15 A 3
3 cores, protected by tough rubber sheath then black coltod braided with white tracer. A normal domeetic fiex as fitted
 10A a Core Noo-kink Thax. As above but cores are 28/0076 or cut 10 your length $1 / \theta y \mathrm{~d}$. yd . 1005 d . coll $\mathbf{£ 7 . 1 0 . 0}$ A 2 Core Flex. An above, but 2 cores each 23,0076 as used

3-CORE WATERPROOF FLEX

8A. 23/0076 clrcular PVC covered as nited to electric drill and most portable appliances, dieal ertension lead. Regrla Elliot Sealed Contset Reed Relay. Three clrcuits cloned by vol or looma. $8 / 6$ each.
Slim Tubular Mierophone. For hand holding or frontal plugs for cassette tape recorder but sultable for most amps. 18/6
S00MA Moviag Coll Meter. 21 n. funh mounting round meter
TANGENTIAL HEATER UNIT

UNIT
Winter ls coming
but act today and but act today and
you won't dis.
may. This heater unf. This the very
untest type, most Intest type, most
eflctent mad
quiet running. Io blower heatere costing $\mathcal{C 1 5}$ and more. Wh hav or and Unlts complete, wired ready to fit into canees, i.e. motor impeller, 3 kW , heater switchlog 1 , 2 and 3 kW . nnd with thermal anfety cut-out. Can be fitted lnto any metal line
case or cabinet. Only need on/ofis awitch,' 70/6. Postage and case of cabinet. Ony need on/s.
insurance $6 / 6$. Don't mise this.

STEREO CABINET
Size 25 in . $\times 14 \mathrm{ln}$. $\times 9 \mathrm{tin}$. deep-apeaker compartment each end. Oeptre portion with hinged lid and removable bottom has platiorm for autochanger and room for ampliter. Two tone (red and grey) rexine covered but lou apenker ends need metal
Carriage and packing 15/.

SOLDER GUN A muat for every busy man, ives alnont Instant heat; alao illuminate BIO JOB 250 watt model $98 / 6$ (saver you over E 3.10), poat and the. $6 / 6$.

BUY TIME SLOT METERS

If you Mre out equipment such na TV apta by the hour then thene shot
metern are what you require. We have 3 typen Rd meteriare what you require. We have 3 typen, ge. un hour, $1 /-$ and hour
and $1 / 6$ ni hnur. Brand new. Made oy the famous Weton Company. and $1 / 6$ and hnur. Brand new. Mat

HORSTMANN 'TIME \& SET' SWITCH

(rama hmp 8 witch). Juat the thing it you want to come home to a witch on tme of your electric fires, etc., up to can delay the eething thme or you can use the Ares, ettch to, up to 14 hours from
of up to 3 hour. Equall on perfod price probably around 25 . Bpecial snip price 29/8. Pout and
ins. 4/6. ANELS
DISTRIBUTION PANELS
Jart what you need for work bench or lab. $4 \times 13 \mathrm{mmp}$
sockets in metal box to take standand 13 mmp funed

ELECTRIC TIME SWITCH

Made by Brnithathene are AOmalnsoperated, NOTCLOCK WORK Idesil for mounting on rack or shelf or can be bulk into box with
13 A encket. 2 completely and justeble time periods per 24 hour sA ehangenver contacte will nwitch circuit on or off during thene perioda.

3 STAGE PERMEABILITY TUNER

This Tuner in a precinion inntrument made by the famoun "Cyldon" Company for the equally famous Radiomoblie Car Railo. it is a medumn ware tuner
(but set of longwave colla avallable as an extra if requifed) with a frequency

THE TWENTYLITE

A Flunrescent Ilghting uolt tanade by the famolas Athan company, with auper allent
polyester Allied ehoke and radlo suppressed t tarler. The tube springs in astud
out and the whole uit to beant out and the whole ubit is beautifully
made and tinished while enamel. Amaz. made and finduhed White enamel. Amaz-
ingly evonotnical. If laft on all the thme unit). Mensures 2 tt , long. Is ldeal Kitchen, Bedroom, Hallwmy, Porch, Loft, etc. (uses t unit). Measures 2tt, Iong. Is ldeal Kitchen, Bedrom, Hallway, Porch, Lott. etc. Don't
misa this amazing offer, $38 / 6$ with tube. Assembled ready to inatill. Pont nad Ins
$6 / 6$ extra.

DREAMLAND CLOCK SWITCH

The wonderful DREAMLAND mains operated clock switch will antomatically awitch your blanket on and off each evening and you will always have a warm bed. It's luminoua; you can always ace the tlme and it's a really beautiful unit. Anldesigift. Can almo cont rol taperecorder, radio, lamp, ete.. up to $500 \mathrm{w}, 38 / 6$ plus $3 / 6$ post and ins.

1 WATT AMPLIFIER PRE-AMP head Gistorn -hutghy equally uftablent made for microphone or pich tapeLimited quantity $28 / 6$. Full circult diage ar plek up.
tape controls $5 /-$. be controls $\$ /$

VARYLITE

Will dim incandeacent lighting ap to 600 whtt from full brilliance to out.
 may be fited la place of this. of mount
plastic boz with control knob $£ 3.18 .6$.

HI FI BARGAIN

FULL F1 18 INCE LOUDSPEAEER. This is undoubtedy one the finest loudepeakern that we have- Thin is undoubtediy one of ond li atrongly recomanended for Hi -Fi load and Bhythro atal frame public addreas.
Plux Density 11,000 ganss-Total Flux 44,000 Maxwellm-Power
Hand

 18th. 100 watt $£ 24 \cdot 10.0$.

MINIATURE WAFER SWITCHES

2 pole, 2 way - 4 pole, 2 way- 3 pole, 3 way4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way2 pole, 6 way- 1 pole, 12 why. All at $3 / 6$ WATERPROOF HEATINA ELEMEENTATING
26 yarda length $70 W$. Sel-ragulating
temperature control. 10/- pont' free.

AC FAN

Binall bat very powerful
maina motor with 64 in . blades. Ideal for cooling equipment or as extracefficlent. 17/6, post $4 / 6$. efficlent. 17/6, post $4 / 6$. Mount from back or
front whit ABA berews.

QUICK CUPPA
Minl Immeralon Heater, 350 w . 200/240v-
Boila full cup in about two Use any socket or lamp holder. Haviene ni bednide for tea, baby's lood, otc. $18 / 6$,
poost and innurance $1 / 6$. 18 v , car mode post and insur
alao available.

RADIO STETHOSCOPE

Easiest way to fand find--tracen algnal
from nerial to speaker-when algnal stope you've found the fauk. Une It on pleto kit comprisess two special transis. tors and Anp parts
 instead of earpiece $7 / 6$

MAINS TRANSISTOR POWER PACK

 sble output operate traniator ats and amplifiers. Adjust Working. Taked the place of any of the following batcertes: PP1, PP3, PP4, PP8, PP7, PP9, and others, KIt comprises: condensers and tatructions. Real anip loed resistor plus $3 / 6$ postage.PROTECT VALUABLE
FROM THERMAL RUNAWAY OR OVERHEATtrumstars, otc., which use beat-atnks can easily be
protected. simply make the contaot the rmostat part of equipment renerally, can
 by having thermontats in atrategle apots on the calng, Our 90 deg. to 190 deg. F. or with the dinl removed range netting PHILIPS TRIMMER 0-30pf an old deslgn but one which has
never been bethered.
fir each. $10 /-~ d o z . ~$
 ROTISSERIE ROTISSER
MOTOR
MOTOR
Very powerful 7 r.p.ma., operates fróm
tandard A.C. mains. $29 / 6$, plus $3 / 6$ P., \& $P_{\text {. }}$

SPRING COIL LEADS

na fitted to teiephones.
\&/6 ench, 3 core $2 /=$ each,

PP3 BATTERY ELIMINATOR

 Rua your armall iranalstor radio ifomthe maina-full wave circult. Made up ready to wire tato your set nid
sdJustable high or low current.
$8 / 6$ each.

INSTRUMENT BUZZER

0.0005 mFd TUNING

CONDENSER
Proved design, ideal for strait
circuits $2 / 6$ each. $84 /-$ doz.

> Where postage is not stated then orders
over $C 3$ are post frec. Below $\$ 3$ add $2 / 9$. Semi-conductors add $1 /-$ post. Over Ci
post free. S.A.E. with enquiries please.

Double Beam，Single Beam and Differential Types Available Now
Telequipment D55
E．M．I．WM8．DC－15 MHz
Price
t95
695
$\mathbf{6} 100$
f 100
E 225
695
6105
$\begin{array}{r}6 \\ \hline\end{array}$
849
655
855
675
$\epsilon 125$
$E 22$
$\begin{array}{r}635 \\ 6 \\ \hline\end{array}$
625
$t 150$
640
635
618
Please write for further details
＂SPECIAL OFFER＂
Solartron Highly Stabilised P．S．U． Model SRS I5IA
Putput $20-500 \mathrm{y}$ ．in two ranges．Positive line at 300 mA ．Variable output 170 v ．fixed；0－170 v． variable．Two A．C．outputs at 6.3 v．A．C．are provided．
These units are offered in first－class condition． For A．C．mains． $200-250$ v．A．C．Overall case dimensions $20 \times 16 \times 10$ ins．approx． Price $€ 35$ ．\quad Packing and carriage 30／－ Hand book available with P．S．U．
＊TRANSISTORISED STABILISED＊ Low Voltage P．S．U．Type 4D
$3-30 \mathrm{v}$ ．D．C．at 3 amps．Fully variable．
Current limiting control．
Sensing facilities for remote operation．
Protected and fused for $110 / 250$ v．A．C．mains． Small size only： $5 \frac{1}{2} \times 5 \times 11$ ins．deep．
Stability：1000－1．
Ripple：$I \mathrm{mV}$ ．max．Weight： 16 lbs ．
These units are buile to high present－day standards and are offered BRAND NEW BOXED at $\$ 20$ inclusive of post and packing．

ALSO AS ABOVE

1 amp model．Type 48
Size $4 \times 3 \frac{1}{2} \times 7$ ins．Weight： 6 lbs．
Price $\mathbf{E 1 3 . 1 0 . 0}$ inclusive of post and packing．

UHF RECEIVER R．D．O．

With 3 R．F．cuning units to cover $38-1000 \mathrm{MHz}$ ． These receivers are built to U．S．Navy specifica－ tions and are ideally suitable for laboratory and communications use．For 240 v．A．C．operation． Price El 05.

Post and packing 40／－

PORTABLE 12 v．BA゙がきRIES

 Non－spillable lead acid type．Rating： 12 v ．4 amp．hours，will withstand heavy overloads 4 amp．hours，
without damage．
Size $4 \times 4 \times 4$ ins．Weight： 4 lbs ．
Supplied fully sealed／charging instructions． BRAND NEW BOXED $45 / \mathrm{F}$ ．Post and packing $4 / 6$ Ideal for Model Boats and Photo Floods，etc．

A．E．I．MINIATURE UNISELECTORS Coil resistance 250 ohms．Type 2200A．Supplied with base．Quantities available．

Price $\mathbb{E 4}$ ．19．6
VIBRATING REED FREQUENCY METERS Range $55-75 \mathrm{c} / \mathrm{s}$ in 2 scales，having total length of 10 ins．for 110 v ．（or 240 v ，with transformer）． Manufacturer：Trub Tauber，Zurich．Price \＆12．10．

NIFE BATTERIES－NICKEL IRON We have for disposal complete sets comprising 2 batteries to a total of 12 V ．at $180 \mathrm{amp} /$ hours． Supplied filled as NEW CONDITION
Price $\mathbb{4} 45$ per set．Carriage extra．

DIRECTIONAL COUPLERS FOR
REFLECTOR POWER MEASUREMENT One of the major uses of a directional coupler is to obtain a sample of the R．F．Power in a trans－ mission line and apply it to an indicator．We can supply couplers with a power handling capacity of up to 300 Watts，the response is flat over the $66-88 \mathrm{Mc} / \mathrm{s}, 156-184 \mathrm{Mc} / \mathrm{s}$ and $200-450 \mathrm{Mc} / \mathrm{s}$ bands． Two pick－up probes are mounted on the coupler， one giving incidence the other reflective power the voltage developed is rectified and may be fed to a calibrated meter，C／W 50 ohm plugs． Price 60／－．

R．F．ATTENUATORS TYPE A38

These attenuators are contained in a screened cast case and are suitable for the audio to VHF range up to $300 \mathrm{Mc} / \mathrm{s}$ ．Input level 0.5 watts max． Impedance 75 ohms．Attenuation 80 dB in steps of 20 dB ．Weight： 9 oz．Panel mounting．List price fl 10 ．Special offer price $85 /$ post paid．

BURNDEPT R．F．PLUGS
These difficult－to－obtain plugs，suitable for Londex aerial，C／O relays and other types of equipment， are supplied NEW EX CABLES at $4 / 6$ each or 3 for $12 /-$ ．Post and packing 6 d ．

EDDYSTONE DIALS

Complete tuning unit，Catalogue No．898．Com－ plete with logging scale／flywheel tuning and fixing instructions．Supplied BRAND NEW BOXED． 70／－．Post and packing 4／6．

EDDYSTONE DIE－CAST BOXES
Contains sensitive amplifier originally intended for amplification of P．E．cells．C／W input socket，fuse， signal lamp，P．S．U．（mains）amplifier，fully transis－ torised．BRAND NEW 32／6．Post and packing 2／6．

LEDEX ROTARY SWITCHES

Standard wafer size： 13 ins．Single－pole 12 －way， 3 －bank flange mounting． 48 v ．D．C．coils．Minimum voltage 30 v．D．C．Supplied BRAND NEW $45 /-$ Similar to above but one wafer with long spindle to enable user to make up to own requirements． Coil voltage： $30-48$ v．D．C．BRAND NEW $35 /-$

NON－INDUCTIVE RESISTORS

These are high quality heat sink type．Rated at 15 ohms， 250 watt．Size only $4 \frac{1}{2} \times 2 \times 2 t$ ins． A Dale product at a surplus price．Only $19 / 6$ each， post and packing $2 / 6$ ．

IMHOFS INSTRUMENT CASES

Finished in mottled grey stove enamel with satin Finished in mottled grey stove enamel with satin
finish trim．Size width for standard 19 in．equip－ finish trim．Size width for standard 19 in．equip－
ment．Height 10 ins．Depth 15 ins．With front ment．Height 10 ins．Depth 15 ins．With front
panel and ventilated rear panel．Supplied BRAND panel and ventilated rear panel．Supp
NEW $£ 4.10 .0$ each．Carriage $10 /-$.

COMMUNICATIONS RECEIVERS

Redifon R50M． $16.5 \mathrm{Kc} / \mathrm{s}-32 \mathrm{MHz}$ in 8 bands． These well－known receivers are in world－wide These well－known receivers are in worially built to marine specifications． use．Especially built to marine specifications． Price as new $\neq 105$ ．Used model reconditioned to
specification $\notin 85$ ．Supplied with mains 240 v．A．C． specific
P．S．U．

CINCH PRINTED CIRCUIT
 CONNECTORS

Edge type，gold plated．Length 5 ins．30－way， 5／16 spacing． 4 for 10／－．Post and packing 1／－． Quantities available

HIGH VALUE RESISTANCE
BOX TYPE R． 7003
Specification．Range： $0.01-11 \cdot 10$ Megohm in 0.01 Megohm divisions．Accuracy： 0.05 per cent． Maximum power rating： 0.1 watt per step．Case： Hammer finished stove enamel． List price $£ 60$ ．Our price $£ 22$ ． 10.0 ．

PORTABLE WHEATSTONE

BRIDGE
Specification．Type：Moving Coil Galvanometer． Ranges：（1） 0.05 to 5 ohms；（2） 0.5 to 50 ohms； （3） 5 to 500 ohms；（4） 50 to 5,000 ohms；（5） 500 co 50,000 ohms．Scales：Switched．Slidewire： 0.5 to 50．Galvanometer Scale： $10-10$ ．Case： Moulded plastic．Internal Source： 4 v ．Dry battery． Operating Temperature：+10 to +35 deg．C． Operating Humidity： 0 to 80 per eent $0 . \mathrm{m}^{\mathrm{kg} \text { ．}}$ List price E 25 ．Our price $\mathrm{E9.19.6}$ ．

PORTABLE MULTIRANGE METER

Specification．Ranges： $0-60$ and $0-300 \mu \mathrm{~A}, \mathrm{D} . C$. $0-3,0-30$ and $0-120 \mathrm{~mA}$, D．C． 1.2 and 12 amps D．C． 0.6^{-3} and $6-30 \mathrm{~mA}$ ．A．C．24－120 mA A．C． $0.24-12$ A．A．C． $3-12-30-300-600-1,200$ and 6,000 v．D．C． $0.6-3,2 \cdot 4-12,6-30,60-300,120-600$ $240-1,200$ and $1,200-6,000$ v．A．C． $3-333 \mathrm{ohms}$ ， $0.3-30 \mathrm{Kohms}, 0.03-3$ mezohms D．C．Resistance -12 Kohms， 0 Decibels．Frequency： 50 cps．Input Resistance D．C．20，000 ohms／volt．Input Resist Resistance D．C．： 20,000 ohms volt．Input Resist ance A．C．： 2.000 ohms voit．Temperature Range mm ．Weight： 8 kg ．Supplied with 2 voltage mm．Weight： 8 kg．Supplied with 2 voltage
dividers，$H . V$ ．leads，spare rectifiers， 1.5 and 22.5 v ．battery

List price $£ 25$ ．Our price $£ 10.19 .6$ ．
RHODE AND SCHWARZ EQUIPMENT Polyskop II． $0.5-1,200 \mathrm{MHz}$ ．
Diagraph Type ZDD． $300-2,400 \mathrm{MHz}$ ．
Signal Generator and Klystron Power Supply
Type SMCB． $1 \cdot 7-5,000 \mathrm{MHz}$ ．
UHF Signal Generator Type SCR．1，000－ $1,900 \mathrm{MHz}$ ．

UHF Millivoltmeter Type URV．

BOONTON SIGNAL GENERATOR
TS 497／B／URR
Attenuation 0.1 micro v － 100 mV ．
Supplied in very good condition．
Supplied in very good condition．
Frequency coverage： $2-400 \mathrm{MHz}$ ．
SCHOMANDLE FREQUENCY METER FDI with Type FDMI Adaptor
Range： $30-900 \mathrm{MHz}$ ．
Approved by G．P．O．as standard for mobile communications equipment，etc．

MARCONI DIGITAL FREQUENCY METER TF 1325／2
Range，with plug－in，up to 220 MHz ．
Supplied AS NEW E325 with plug－ins．
ADVANCE FREQUENCY COUNTER TIMER－TYPE TC IA
6 digit in line read out．
List price $£ 390$ ．Our price $£ 95$.
FLUKE DIFFERENTIAL V．T．V．M．
MODEL 821A
Range： $0-500 \mathrm{v}$ ．and $001-10 \mathrm{v}$ ．as null detector．
ENGLISH ELECTRIC INSULATION TESTERS
Fully variable to 10 kV ．Metered output on voltage and current for 240 v ．A．C．operation． voltage and current for 24 each．
Supplied AS NEW at 63 ．

Marconi TF913 AM／FM signal generator． Marconi TF894 audio tester $10 \mathrm{c} / \mathrm{s}-12 \mathrm{KHz}$ Marconi TF899 A．C．millivoltmeter
Marconi TFI95 BFO range $0-40 \mathrm{KHz}$
Marconi TFI 400 double puise generator
Marconi TF723A crystal calibrator
Marconi TF762C UHF signal generator 200－ 400 MHz
Marconi TF3 40 output power meter
Marconi TF102 amplitude modulator
Marconi TFllo4 television sweep generator
Marconi TF6758 pulse generator
Marconi TF6758 pulse generato
Marconi TF886A circuit magnification meter
Marconi TF329G／I circuit magnification
Marconi TF329G／．．．．．．．．．
meter
Marconi TFl345／2 digital frequency meter with 2 plug－ins．Range continuous to 220 MHz ．As new
Marconi TF890A／4RF＂X band signal gen－ erator
Marconi Type 6456 dual erace plug－in for TF2200 oscilloscope
Marconi TFl44G signal generator $\ddot{8} 5 \mathrm{KHz}$ 25 MHX

RuOPTOEIECTRONICS fram PROOPS mun New Science Projects combine fascination of Optics with Electronics.

INFRA-RED TRANSMITTERS \& RECEIVERS

INFRA-RED PHOTO RECEIVER - MSP3

Ulira sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links reception. Spectral response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alfignment and heat sinking.

85/

max ratings
Total dissipation (in Ifee aith, $T_{\text {omb }}=25^{\circ} \mathrm{C}$) $\quad 100 \mathrm{~mW}$. Derating Factor......... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Outpur Current Intensity $\quad 100 \mathrm{~mA}$. Voltage $\quad . \quad 25 \mathrm{~V}$. Operating Temperature . From Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
Inexpensive light sensitive resistors which require only simple circuitry to work as lights, exposure meters, brightness controls, automallc porch lights, etc, Not polarity conscious - use with A.C. or D.C. Spectral response covers whole vislble light range.
 MKY101-C
Epoxy sealed. In, diam. x in. thick. Resistance at 100 Lux -500 to 50 mW . Maximum voltage $150 \mathrm{~A} . \mathrm{C}$. or D.C. Maximum curreni

MKY71

Glass sealed with M.E.S. base. Glass envelope in in. diam.. overall length 1 in. Resistance at 100 Lux - 50 Kohms 10150 Kohms. Maximum

PHOTOGENERATIVE CELLS

REED SWITCH COILS \& CAPSULES

i mal of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact disadvantage of electro-mechanical relays: hermetically sealed contact isolation ensures longlife aliability. Small enough to combine with solid-state components on printed circuit boards. Ideal for witching matrices, binary kis, control systems. etc. These were removed intacr from highly expensive computer mechanisms and are guaranteed to be in perfect working order. Each capsule end for the removal and replanement or nd to
Types available
R/C2 Two reed switches. contacts normally open. Size overall: $1 / \mathrm{k} \times \mathrm{i} \times \mathrm{in} .5$ - post free R/C4 Four reed swithes. contacts normally open. Size overall: $1 i x i x \mid$ in 10 -post free R/C6 Six reed switches. 4 contacts normally open, 2 normally closed. Size overall: 1 i $\times 1$ if \times in.
$15 /$ post free

Unique devices in a brand new electronic field that can be exploited in a wide rang of applications. Miniaturized construction and solid state clrcuit design is combined with ourstanding modulation and switching capabilities to provide infinite possibiti ties as short distance speech and data links. remote relay controls, safety devices burglar alarms, batch counters, level detectors, etc., etc.

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 Filamentess. infra-red emitter in a robust, sealed cylinder coaxial with beam to facilltare oplical
alignment and heat sinking.

post free
max ratings
Forward current IF max." D.C..... 400 mA . Forward peak current If mox." (pk)......6A Power dissipation $\quad . \quad 600 \mathrm{~mW}$. Derating factor for $T_{\text {amb }}$ greater than $25^{\circ} \mathrm{C}$. Reverse voltage V_{R} max aluminium hear sink $1 \mathrm{in} . x \frac{1}{1} \mathrm{in} . x \frac{1}{2}$ in.
Supplied complete with suitable lenses, full Technical Data and Application Sheets. including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easlly as electricity is conducted by copper wires. Fibre optics make it possible to control. and to operate photoct devices, lagic circuits, or one source to many places at once sible. Proops offer both glass flbre optics or Inexpensive Crofon plastic fibres for hundreds of experinents or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS

Basic fibre optic components that demonstrate new ways of employing light in serious appliallons. Two kits are available : each contains hign-grade glass-fibre light guides consisting lexible sheaths with ferruled, optically polished ends. together with connecting and light source components. Each is supplied complete with card wallets containing technical and application data

Contains: $3 \mathrm{~mm} . \times 18 \mathrm{in}, 6 \mathrm{~mm}$. $\times 12 \mathrm{in}$. light
guides: 1.5 mm . Y 'guide with two 12 in . long tails: 24 in. long 12 exit component for cading or punched card applications. 24 in . lengiths of Grofon 64 filament and monofilament plastic light guide. Also, coherent solids consisting of 25 mm . diam. Field flattening lens. 6 mm . $\mathrm{mm} \times 25 \mathrm{~mm}$ image inverior Complete with 2-way adaptor, fibre optic torch and batteries $3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and $3 \mathrm{~mm} / 1.5 \mathrm{~mm}$ connectors.
£16
£28
LOW-COST CROFON FLEXIBLE LIGHT GUIDE

Newly developed plastic light transmitting media made by Du Pont and consisting of 64 special plastic flbres, each . 10 in. diam. and bundled together in a tough. flexible sheath. Can be used for many serious projects and inexpensive prototype work. Ends can be ground flat, dyed or No loss of light through bending. 12-page data and applications booklet supplied.

RCA TRIAC - CA40432

Sutable for light dimming and motor control circuits
Gate-controlled, full-wave. A.C. silicon swith whith integral frigger that block or conducts instantly by applying reverse polarity voltage. Suitable for A.C operation up to 250 volts; controls currents up to 1440 watts. Size only $\frac{8}{}$ In. diam. $x \frac{1}{1 /}$ in. high. Complete with heat slnk. data and applicatlons
information. 45/-post free

1 K 80

P. C. RADIO LTD.

170 GOLDHAWK RD., W. 12 01.7434946

ELECTRONIC ANTENNA CHANGEOVER SWITCH

Automatically erensfors antenne for $T X$ to $R X$ and vite vorsa without the of erenamiteing power and provides gein of 26 Db in recolving sensitivity. with buile-In powar supply unis for 220/250v AC. Our own manufaceure. full description and pries upan requese.

MARCONI TEST EQUIPMENT

EIGNAL OENERATOR TYPE TF 937 (CT 218). Frequancy range:-35 ${ }_{200} \mathrm{~Hz}-30 \mathrm{mHz}$. 50 ft . Frequancy scale. 200 kHz so 2 MHz . Built-in Crystal
calibrasor Singwave A.M. V.F.M. Outcalibrasor Sinewave A.M. V.F.M. Out-
put:-D.I9V-IV t95. Carriage $30 /-\mathrm{c}$

PM DEVIATION METER TYPE TF 7918. Frequency range: $4-250 \mathrm{MHz}$ deviation $1-75 \mathrm{kHz}$. Specifleation and price on application.

VTVM TYPE TF OSB (No. 3, ET 200). Ranges:-AC $0-150 \mathrm{v}$ in 5 ranges;
$0-1500 \mathrm{v}$ with muleiplier. DC $100-0-100 \mathrm{v}$ in 5 ranges. Fraquency: $20 \mathrm{~Hz}-100 \mathrm{MHz}$. 685. Carriage 18/-

NOISE GENERATOR TYPE TF 987/1. Frequency range:- 100 kHz 200 MHz . Noise factor calibration:0.30 in four ranges, directly calibrated.
Impedance 71 ohm . \&40. Carriage $30 /$.

TILEMETAY StATION We are able to offor, one only, Talamatry Station of very recent ing Helical Antenna, oscilloscope receiver and essociased units, Ampex sape recorder and power supply for the entre instalation. Incerested cllents with a knowledge of this sype of equipment are in vired to phone or write for further
particulars. particulars.
PRECISION VHF PREOUENCY Merink TYpe 183. 20-300 Mc/s with acturacy $0.03 / 8$ and 300 , Mion Mc/ on harmonies $\$.0-6.25 \mathrm{Me} / \mathrm{s}$ with ac euracy $+-2 \times 10^{\circ}$ Incorporating callbrating quarks $100 \mathrm{ke} / \mathrm{s}+-5 x$

PYE EQUIPMENT

4 CHANNEL H. FATRANE

 MITTER R LELCIV AR BTATION. Comprising PTC 941 Crysesl-cen-erollad Recelver 1.614 mes. Sensterolled Recelver l.s-14 mes. Sensl-
elvity I mierovole for IW. ouepue tivity I mierovolt for IW, output ARC ${ }^{\text {at }}$ II sow Transmieser for RT, CW and MCW operation with push-buteon control for salection Full details and spacification on
reguask. RANER F.M. MOTILE
RADIO TELEPHONE. Transmittar output 7-10W: double superhat recaiver, $12 y$ DC positive or negative earth. Full details and specifleation
Carriage $30 /-$

BOONTON " Q * METER TYPE 160A. Frequency range $50 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s} . ~ " Q "$ range 0.250 with mulripliar of 2.5. Main tuning capacitor 30.500 pF with saparate $\pm 3 \mathrm{pF}$ interpolating capacicor. Power supply
$220 / 250 \mathrm{vAC}$. $\mathbf{2 7 5}$. Carriage $30 /$-.

FOR EXPORT ONLY

S3 TRANSMITTERS. All sparas available. COLLINS TCS. Complere installations and spare parts. 62
WIRELESS SETS. Complots inWIRELESS SETS. Complote in. stallations and spare parts. P.S.U.
for C42
C 45
$12 v$ TRANSMITTERS ET 4336. Complate installations and all sparat. Complete installations and all sparas. No. IS WIRELESS SETS. H.P. SETS and all spares R. 210 RECEIVERS with all nocessary VOLUME METER (VU), 20-0-+3 VU, 3 fin. square, flath $\leqslant 10$, post paid. B?TTA OAMMA Probe type L314. Without connector \mathbf{Q} 2.10.0.
DE MOVINO COIL METERS $50 \mu \mathrm{~A} 2 \mathrm{fin}$. Sq, panel. 32/6, $200 \mu \mathrm{~A} 2 \neq \mathrm{in}$. rd. panal. 27/h. 1 mA 21 in . rd. panal. 25 mmp .3 iln . rd. proj. $27 / \mathrm{h}_{\mathrm{c}} 100 \mathrm{v}$. 4 in . rd. panel. $25 /=$ FULL LIST OF OUR VERY LARGE STOCK OF METERS ON REQUEST.
29/41 FT, AERIALS each conslasing of sen Jit., fin. dis. subular seraw-in sactions. Ift. (0 -action) whip aspial with adaptor to fit the 1 n . rod, insulated base, stay plate and stay sabombluely prand now and complese ready to erect in cenves bae E1/9/6. P. \& P. 10/6. HARNTSS "A" an "re" centrol unite Hunction boxes, handphones, micro junction bex
 Housed in portable wooden cases. doors for up to 10 mll . Pa including bateries, fully zestad. © $\mathbf{6} 10.0$. Carriage 10/-.

To:-COLOMOR ELECTRONICS W.12.

MPF10211/MPF108 MPPIO $_{10 / 6}^{10 /-}$ Z Range ${ }^{10 / 6}$ Z Banfol
Zoser doden
them. zan range
 28 range
|Please send me your full list of Tast Equipmane Maters
Valves Valves

Addrass.

TRANSISTORS, ZENER DIODES etc.

oc

CRe1/10 5/CR81/90
$0 \mathrm{OR} 1 / 80$ $0 \mathrm{BE1/80} 10$ CRs1/35
 C8B3/20
CRsa/30
CRE25/02/ 11

SOLATRON EQUIPMENT
VP 252 VALVE VOLTMETER. In nine ranges. $10: 1$ attenuator input; aceuracy 1%. Frequency range: 10 Hz to 100 kHz . Input Impadance: apecifletion upon requess. E33.10.0. Carringe 15/-
\qquad
 CAUMONTKALE E E (RANK
DOONTON SIONAL OENERATOR TS $497 / \mathrm{E} / \mathrm{Z}$ UR, 2400 MHz .69 . TS 418 E/U SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. $\leqslant 105$, Carr. $30 / *$ AVO SIGNAL OENERATOR CT 37E, $2-225 \mathrm{MHz}$. 58.10 .0 . Cerr. $18 /$
TELEPHONE ENQUIRIES rolating to TEST EQUIPMENT Ahould

Tybos ond

An extremely flexible closed-circuit system made by Britain's largest manufacturer of electronic equipment. The basic system comprises two units-camera and control monitor. The units are fully transistorised with a wide use of printed circuitry making for compact size, simple installation and high reliability (both in and out of doors). High sensitivity and 625 line resolution ensure excellent picture quality under normal lighting conditions. Closed circuit television provides the penetrating, all-seeing eye that scans, inspects, controls and directs-that is today accepted as invaluable in almost every aspect of industry, commerce, transport and education. A wide range of accessories are available which further increase the system's almost limitless applications.

A LIMITED QUANTITY OF COMPLETE SYSTEMS AVAILABLE

SYSTEM SPECIFICATION Scanning standards: 625 line, 50 fields, $2: 1$ interlace. Horizontal resolution: 600 lines, Bandwidth: $8 \mathrm{Mc} / \mathrm{s}$ over complete system. Linearity: $\pm 2 \%$ positional error. Geometry: $\pm 2 \%$ of rectangle averaged over picture. Auto Sensitivity: over the range $60: 1$ in light value-normal picture obtained with illumination of only 2 ft . candles (50% subject reflectance) at lens aperture of $\mathrm{f} / 2$. Spectral Response: Panchromatic. Ambient Temperature: Max. temperature for all units $-30^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. Power requirements $90 / 130 \mathrm{v}$. and 200/240 V. A.C., $50-60 \mathrm{c} / \mathrm{s}$. Consumption: 45 watts including camera. Camera Lenses: Standard 16 mm . cine lenses with " C " mounts are normally used. Accessories : See under Camera and Control Monitor.

CAMERA

Totally enclosed dustproof unit only $3 \frac{1}{4} \times 4 \times 10 \frac{1}{2}$ in., weighing 4 lb . Finished in two-tone blue/grey. Vidicon tube. Automatic sensitivity control enables the camera to maintain full picture quality over a brightness range of $60: 1$. 625 line width of $8 \mathrm{Mc} / \mathrm{s}$. All supplies are , frame synchronised to mains supply. 600 lines horizontal picture definition with a band width of $8 \mathrm{Mc} / \mathrm{s}$. All supplies are obtained from the control monitor (consumption 5 watts),

CAMERA ACCESSORIES

Lonses: Superb quality 25 mm . $(1 \mathrm{in}) \mathrm{f} /$.1.8 . "C" mount lenses made especially for this system are available. also a limited quantity of motorised zoom lenses.
Remotely Controlled Weatherproof Pan and Titt Heads: Pan 340° at 6° per sec. Tilt $+50^{\circ}$ at 4° per sec $230 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ operated.
Remotely Controlled Pan and Tit for Indoor Use Only : Details as above.
Weatherproof Camera Housing: Windscreen Wiper. 75 w . heater. internal circulation fan, mounting bracket for

CONTROL MONITOR

14 In. screen, overall size $16 \times 14 \times 18 \mathrm{in}$. (excluding Remote Control Unit on which Monitor is shown), weight 30 lb . Panel controls provided: Mains on/off. Contrast. Brightness, Remote Focus. Preset controls (under side panels) include Frequency lock. Monitor height. Frame linearity. Camera height, Camera width, Auto sensitivity, Camera linearity, Cable colrection, Video Gain. Beam Current, Y shif, Electrostatic focusing for camera and monitor. Additional input: Video -100 mV peak white positive into 50 ohms: Synch. 2 v . peak/peak negative. Output: 100 mV peak white positive 2 v . peak/peak negative. Ambient temperature range $-30^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$.

ACCESSORIES

Remote Control Switching Unit (shown under Control Monitor): Controls auxiliary functions at the camera, i.e pan/tit, zoom, windscreen wiper. etc. Size $18 \times 14 \times 3 \mathrm{in}$., welght 8 lb
Distribution Unit: Used for selecting the required picture from those available on the control monitors and distributing it to the appropriate viewing monitor. Size $19 \frac{1}{2} \times 13 \frac{1}{2} \times 8 \frac{1}{\mathrm{in}}$., weight 30 lb
Viewing Monitors: These are conventional domestic type receivers-19 in. and 23 in . models available
Owing to the complexity and limited quantity of unita available this equipment is available to CALLERS ONLY.

LASKY'S BASIC SYSTEM PRICE

1-camera (complete with Vidicon) less lens, 1-Control Monitor, 25 yds, of cable. PRICES FOR LENSESANDACCESSORIES ON APPLICATION.

TMK METER KITS AMmain

 moter sectio ond movement mounted in position; the model 200 also has the rotary manga selector in posestion The mighoss

MODEL 200

20.000 Q.P.V. Muttimete. Features 24 matawoment rangas with mirror secip. Lerga $3 \times 2 \mathrm{~m}$ mete.

PECIFICATION:
OCV:0-0.6 \&. 30-120-600-1.200V at 20KOPA
$A C V=08 \cdot 30 \cdot 120-800-1.200 \mathrm{~V}$ al 10 NO
OC Current: $0-0.06-8.60-600 \mathrm{~mA}$
Rosittence: $0 \quad 10 \mathrm{~K} \cdot 100 \mathrm{~K} \cdot 1 \mathrm{M} \cdot 10 \mathrm{M} / \mathrm{hms} 158$

LASKY'S KIT PRICE 85/- Posi $3 / 6$
MODEL 5025
50,000 O PY FEATURING 57 MEASUREMENT RANGES compact cabinot. The range seliected is clanty indicated on the actual move lace taciluating instant idemification wethout tationg
 SPECIFICATION

- DCV: 0.0.25-2.5-10-50-250-1.000V of 25kJOPV 0-0.125-1.25-5 0-25-125 500 V a 50 KOPF .
ACV: 0-3-10-50-250-1,000V at $2.5 \mathrm{KOPN} 0.1 .5 \cdot 5 \cdot 25-125-500 \mathrm{~V}$ at 5 KOPW OC $\mu \mathrm{A}: 0.25 \mu \mathrm{~A}$ a $125 \mathrm{~mA}: 0.50 \mu \mathrm{~A}$ ot 250 mA

OCAmpa: :-5A al $125 \mathrm{mV}: 0-10 \mathrm{~A}$ at 250 mV .
Output Copactor $(0.1$ iff, 400 VW$)$ In series win ACV renges
- Oecibeis: -20 to +81.5 dB is 10 anges
 fion Strong testiom plastic handie Completo wath test leads.

LASKY'S KIT PRICE

$$
£ 10.10 .0
$$

Also available aeady-built and
TMK 100K BUILT AND TESTED
A highly eccurote Multimeter uting : $10 \mu \mathrm{~A}$ Meter hand celibiorerdio $O C$ eccurecy of $\pm 3 \mathrm{~K}$ of full scalie Specal lostures uitre lago metion score.
 widch gives instiont wontification without taking rour ayes fomm the meter An audibe buzas ie provided lot basy shart tessing SPCC. DCV ranges: 0.5 .2 .5 .10 .50 .250 .500 .1 .000 V a $100 \mathrm{KOPW} . \mathrm{ACV}$ angess 3.10. $50.250 .500,1.000 \mathrm{v}$ or Oecobel: $-1010+49$ cer Confintiry tert Aufibe buarr Operatis on
 Weiph 410

LASKY'S
 ${ }_{\text {PRICE }}^{\text {AASK }} £ 19.10 .0$

TTC Model C-1051

POCKET MULTIMETER, READY-BUILT A compiraty new dessign 20.000 O.P.V. pociver madiumer win mirol Bcele ond buir-in thermel protection Excteptionaly lorpes woyy ro wor recested salection mith

 H) TO

 test leads and buttery.

$$
\text { LASKY'S PRICE 75/- post } 2 / 6
$$

GET YOUR LĀSKY'S AUDIO-TRONICS PICTORIAL

TE-20 RF SIGNAL GENERATOR
 hesuoney anges cover of 120 KHz in 6 bands pus one hat momic band Dual

 bondel a $120 \cdot 320 \mathrm{KHz}$ \& $320 \cdot 1000 \mathrm{KHz}$ C. 1.3. 4 MHz D .3 .2 .11 MHz E

TTC MODEL C-1000
 of OC manges 4\% on AC anges 2 2 jin square meter. SPCCIFCATIONS: ACN ronges: 0 -í. 50.250 .1 .000 V al IK.D.P. . ACN ranges: $0.10,50,250100 \mathrm{~V}$ at IK.O.P. Y. OC curoent: $0-1.100 \mathrm{ma}$ Resistance: 0.150 K)hms $(3.000$ ohms contre stale).
 Complefe with tosi hadde bartery and in

$\begin{aligned} & \text { LASKY'S } \\ & \text { PRICE }\end{aligned} 39 / 6$

AVAILABLE NOW! THE IC-403 integrateo circuit AMPLIFIEA MODULE
Onginality devetioned tot computer and apace propecto
these fing modules-sias onty 25 a 10×5 mollimetress
 repisen the most mading beakthough in orcu
derign since the imtroducton of the trassistor. He

 - completa oudio omplfier of 3W output
 TME IC 403 IS AVALLABLE FROM STOCK EXCLUSIVEY FROM LASKYS-COMPIETE WITH INSTRUCTION OATA ANOSUGGESTEO carcuit applications. free instruction oata leaflet dn request. just send saf.

LASKY'S PRICE 49/6 post 1/6. 2 for 95/- post free.

Also available from stock Sinclair IC-10. 59/6 post free.
DENSHI BOARD KITS $\begin{gathered}\text { EDUCATIONAL } \\ \text { cincuit svitem }\end{gathered}$
The DENSHI BOARD system enables the young experimenter duce a wide range of transisto duce a wide range of ransistol t.on-without soldering or the use Cf any tools at all I Basically the system comprises a slotted clicuit toard into which plug-in com to produse UD to 30 different clieulis. The components are Incapsulated in transparent plastic blocks beating the applopilate cricuit symbol and value thus enabing even ite complete damentas of circuitry efter Only e
faw morrents study. Each DENSHI

BOARD KIT comes complete with 80-page manual of circults and data THESE ARE JUST A FEW OF THE CIRCUITS YOU CAN BUILD IN MINUTES: VARIOUS RADIO RECEIVERS, AMPLIFIERS, MORSE CODE PRACTICE DEVICE, SIGNAL INJECTOR, SIGNAL TRACER, WIRELESS MUCR BPHONE, DENSHI BOARD KIT SR-1A comprises; Base board; iuner block; 4 resistors: morse key; antenna lead; crystal earphone; varlous bildge and connecting pieces and 80 page manual. This kit permits the bullding of 16 basic circuits.

DENSHI BOARD KIT SR-2A as SR-1A plus: $25 B$ transistor for AF: 2 resistors; 1 capal

LASKY'S PRICE £7.2.6 ${ }^{\text {posic }}$

ELEGTROVALIE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS CATALOGUE WITH FULL TECHNICAL DATA-1/6d.

30 WATT BAILEY AMPLIFIER COMPONENTS

MJ481 $\left.\begin{array}{l}\text { MJ491 }\end{array}\right\}$ metehed pair outpue

40361 \} matched pair drivers
59/-
40361 12/6, BCI25 12/-, BC1073/6, 40362 16/9,
$3 \mathrm{BCl} 26 \quad 12 /-, 8 \mathrm{BClO9} 3 / 6$
Total for one channel $\mathbf{6 7 . 9 . 6}$ list, with $\mathbf{1 0 \%}$ discount only 〔6.14.6.
Total for two channols $\mathbb{1} 14.19 .0$ list, with 95% discount only EI2.14.0
Complete power supply kit $\mathbf{4} 4.14 .6$ mono of stereo, subject to discount.
Complete regulared power supply kit 9.5 .0 sublect to discount. Further details on application.
2N2926 PLASTIC range Silicon NPN, I20MHz TT:
Red spot $\beta=55$ to 110
Orange spot $3=90$

Orange spot $\beta=90$ to $180 \cdots \quad . \quad \therefore \quad . \quad$| $2 / 3$ |
| :--- | :--- | :--- | :--- |

Toxas Sllect range, TO92, $30 \mathrm{~V}, 600 \mathrm{~mA}$ NPN
$2 N 3704 \beta=90$ to 330
$2 N 3705 \beta=45$
$2 N 3705 \beta=45$ so 165
25 V 200 mA PNP
$2 N 3702 \beta=60 t 0300$
$2 N 3703 \beta=30$ to 150
Small aignal NPN
$2 N 37113=180$ to 660

NEW PLESSEY INTREGRATED CIRCUIT POWER AMPLIFIER TYPE SLA03A Operates with IBV power supply. Sensitivity 20 mV into 20 M .0 hms .
Output 3.0 wates into 7.5 ohms.

ZENER DIODES

解 500 mW . All preferred voleages.
SINCLAIR IC. 10 INTEGRATED CIRCUIT AMP. \& PRE-AMP.
This remarkable monolithic integrated circuit amplifier and preamp is now available for dispateh from stock. it is the equivalent of 13 transistor/18 resistor circuit plus 3 diodes and the first of lts kind ever. It is D.C. coupled and applicable for an unusually wide the manu
pose free

NETT

PEAK SOUND AMPLIFIER KITS

The new Engleileld Kits

Brilliant new styling and available In two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into 15Ω - 13 watts R.M.S. Price $£ 38.4 .0$ Net

STEREO 25 WATTS PER CHANNEL

Supplied in kit form with complete amplifier, pre-amplifier and regulated power supply modules. Output per channel into 15Ω - 28 watts R.M.S. Price $\mathbf{E 5 8 . 1 5 . 0}$ Net Brief specification: Total harmonic distortion IKHz, $11.5 \mathrm{~W}, 15 \Omega 0.1 \%$.
Inputs:
Magnetic, RIAA 3.5 mV
$\begin{array}{ll}\text { Ceramic } & 35 \mathrm{mV} \\ \text { Tape } & 100 \mathrm{mV}\end{array}$
Radio $\quad 100 \mathrm{mV}$
Signal to noise ratios:
Better than 60dB all inputs.
ENGLEFIELD CABINET to house either above assemblies (as illustrated) ©6.0.0.
OTHER PEAK SOUND PRODUCTS AS ADVERTISED.

BARGAINS IN NEW TRANSITORS Alt power fyes suples with

Telephone: Egham 5533 (STD 0784-3)

Bl-PRE-PAK

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS OVER $\varepsilon 4$

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to a large pare of the OC range, i.e. $44,45,71,72$, 81, etc.
POST \& PACKING 4/6 U.K

XB PAK

silicen TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706a, BSY27/29. BSY95A

PRICE 445 PER 500 PRICE C8 PER 1000
POST \& PACKING $2 / 6$ U.K.
XC PAK
Silicon diodes miniature glass types, finished black with! polarity marked, equivalents to OA200, OA202, BAY3I-39 and DK10 etc

PRICE E4-10 PER 1000
POST \& PACKING $2 / 6$ U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMI CONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

HUGE CLEARANCE OF UHF/VHF TUNER UNIT REJECTS

STOCKS ALMOST EXHAUSTED! PLACE YOUR ORDERS NOW!!!

 FANTASTIC TRANSISTOR VALUETU.2. CONTAINING 2 AF186's \& 2 AF178's
TU.3. CONTAINING 2 AF186's \& 2 AF178's PLUS WAVEBAND SLIDER SWITCH
PRICE 10/- EACH UNIT PRICE 12/6 EACH UNIT
P \& P 2/6d. EACH UNIT
All the Units have many other components e.g. Capacitors. Resistors, Coils and Tuning Condensors etc.
AlL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA

NEW UNMARKED UNTESTED PAKS INTEGRATED CIRCUITS. DATA \& CIRCUITS OF TYPES. 10
$\begin{array}{lll}878 \quad 12 \quad \text { SUPPLIED WITH ORDERS } & 10 /-\end{array}$

880	8	DUAL TRANS. MATCHED O/P
PAARS NPL.SIL.INTO- 5 CAN	$10 /-$	

B82 10 | OC45. OC81D \& OC81 TRANS |
| :--- |
| MULLARD GLASS TYPE $10 /-~$ | 200 TRANSISTORS. MAKERS REJECTS NPN.PNP SIL :

$\begin{array}{lll}\text { B84 } 100 & \text { EQUIV. TO OAZOO, OA202 } & 10 /- \\ & 150 & \text { HIGH OUALIN GERMM }\end{array}$

866	150	DIODES MIN. GLASS TYPE	$10 /-$			
B86	50	SIL. DIODES SUB. MIN.	$10 /-$		B87 100	GERM. PNP TRANS. EQUIV.
:---	:---					
TO OC44, OC45, OCB1. ETC. $10 /-$		STLTRANS, NPN, PNP. EQUIV. TO OC200/1, 2N706A.				

$888 \quad 50$	BSY95A. ETC	-
	7 WATT ZENER DIODES.	

B60	10	MIXED VOLTAGES	$10 /-$
H5	$\mathbf{1 6}$	1 AMP. PLASTIC DIODES $50-1000$ VOLTS	$\mathbf{1 0} /-$

H6 $40 \quad 250 \mathrm{~mW}$. ZENER DIODES
10/-

B2	$\begin{gathered} N T \\ 4 \end{gathered}$	STED \& GUARANTEED РНOTO CELLS. SUN BATTERIES. INC. BOOK OF INSTRUCTIONS	PAKS 10/-
877	2	AD161-AD162 NPN/PNP TRANS. COMP. OUTPUT PAIR	10/-
879	4	IN4007 SIL. REC. DIODES 1000 PIV 1 AMP. MINIATURE	10/-
881	10	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-
889	2	5 SP5 LIGHT SENSITIVÉ CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
891	8	NKT163/164 PNP GERM. TO - 5 EQUIVALENT TO OC44. OC45	10/-
B92	4	$\begin{aligned} & \text { NPN SIL TRANS. } A 06=B S \times 20 . \\ & 2 \text { N2369. } 500 \mathrm{MHz} .360 \mathrm{~mW} \end{aligned}$	10/-
B93	5	GET113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10/-
899	200	CAPACITORS, ELECTROLYTICS. PAPER, SILVER MICA. ETC. POSTAGE ON THIS PAK $2 / 6$	10/-
B96	5	2N3136 PNP SIL. TRANS. TO- 18 HPE $100-300$ IC. 600 mA . 200 MHz	10/-
B98	10	XB112 \& XB102 EOUIV. TO AC126 AC156. OC81/2. OC71/2. NKT271. ETC.	10/-
H4	250	MIXEO RESISTORS POST \& PACKING 2/.	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectfiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-2/- P \& P on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev. counter for any car.

20/-aach

FREE CATALOGUE AND LISTS
for: -
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10\% CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

MULLARD DATA BOOK
SEMICONDUCTOR \& VALVE DATA \& E QUIVALENTS $3 / 6$ POSTAGE 6d

EACH

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

HR
 QUALITY COMPONENTS AND EQUIPMENT

NEW RANGES FOR THE AMATEUR AND PROFESSIONAL USER

\qquad

* 50,000 OHMS PER VOLT MULTIMETER

 reversing wicth. Complete with batteries,
Yeadi ind Smitructiont
AFIOS Price e.10.0 P.p. $2 / 6$ Leather case $28 / 6$

* SINE/SQUARE WAVE AUDIO GENERATOR

 TE22. Price E16.10.0.

\because DELUXE SINE-SOUARE

ORC 27 A Price $£ 2810$ Opo.10/.
*VACUUM TUBE VOLTMETER

* TRANSISTOR POWER AMPLIFIERS

* oC Stabilised power supply

Swheched DC
Stabillsed suabils UP TO 1 AMP. putsup 12 Vals.
3 Idicicator lamp
fully tor each voltege. mains operated Negligitbere ripple SE101A Price £8 150

* FIELD STRENGTH METER 5-Ranges $1-250 \mathrm{mc} / \mathrm{s}$. Filled $200 \mu \mathrm{~A}$
metor, Earphone output. Calibrated ${ }_{\text {FL3OHA }}^{\text {luning scoles. Price }} 72 / 6$ pp.2/
 meter. FSI Price 45/- pp.2/6 * TRANSISTORISED
INTERCOMMS

* 20,000 OHMS PER VOLT multimeter

 on $1 / 25_{0} \mathrm{~m}$.
SMn. Al=d
or capasitance.

Model 200H
(Leather case, Price 15)
\qquad

.

NO EXCUSES! NO DELAYS! FROM STOCK! UABIIBBLE YOLTAGE TRANSFORWIERS

 INSULATION TESTERS (NEW)
 500 VOLTS, 500 megohms Price £28 carriage paid.
 1,000 VOLTS, 1,000 megohms,
 § 34 carriage paid.
 5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT $\begin{array}{ll}\text { Output } 0-260 \mathrm{v} . ~ A . C . ~ \\ \text { Output } & 0-240 \mathrm{v} \text {. D.C. }\end{array}$ Fitted large scale am- meter and voltmeter. Neon indicator, fully fused. Serong ateraccive metal case $15 \mathrm{in} . \times$ 8 tin. $\times 6$ in. Weighe 24 8łin. X6in. Weighs 24 lb. Infinitely variable, smoothstepless voltage, smoothstepless voltage variation over range. variasion over range. Similar in appearance so illustrasion below. manm

 \{ 36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit INPUT OUTPUT CONTINUOUSLY VARIABLE 0.36 .
 Fully isolated. Fitted
 metal case with voltmeter. Am- $\$$
 meter, Panel Indicator and chrome $\left\{\begin{array}{l}\text { handles. Input and Output fully } \\ \text { fused. Ideally suited for Lab, or }\end{array}\right.$

 CONSTANT VOLTAGE TRANSFORMER
 SERVICE TRADING COMPANY

SERVICE TRADING CO

LIGHT SENSITIVE SWITCHES Kit and parts Including ORP. 12 Cadmium Sulphide Phozocell. Relay Transistor and Clicuit. Now supplied with new Slemens High Spaed Relay for 6 or 12 voli operations. Price $25 /-$, plus $2 / 6 \mathrm{P}$. \& P.
ORP 12 and Circult $10 /=$ post pald.

220/240 A.C. MAINS MODEL Incorporates maini transformer rectifor and special circuit 47/6, plus 3/6 P. \& P. circuit 47/6, plus $\frac{3 / 6 \text { P. \& P. }}{\text { LIGHT }}$ SOURCE AND PHOTO CELL MOUNTING
Precialon englneered light source
with edjustable lens assembly and

E
里 0 ventilated lamp houslng to take ORP.I2 or slmilar cell with optic window. Both unirs are ainglo hole fixing. Price por pair e2/i5/0 plus $3 / 6$
P. A.P.

IN8ULATED TERMINAL8 Available In bieck, red, whit Y Y/low, per dor, P. \& P. $2 /=$,

SANGAMO WESTON
Dual range volemeter. $0-5$ and $0-100 \mathrm{~V}$. D.C. FSD I mA. In carrylng case with
sests prods and leads. $32 / 6$. P. \& P. $3 / 6$.

RADIO ALTIMETER

This precision Instrument is
basod on a 24 v. D.C. LOW basod on a 24 v. D.C. LOW
INERTIA (integrating) Motor.
The Motor orives two

olerance gear-trains, including slipping clutch. Offered at fraction of manufacturer's price: $32 / 6$, plus $6 /-\mathrm{P}$. \& P. LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 vole $3 \mathrm{amp} ., 11 /-$, plus $2 / 6$ P. \& P
30 volt 5 amp., $16 /$, plus $2 / 6$ P. \& P.

AUTO TRANSFORMERS. Sep up, step down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt P. \& P. 6/6. 1.000 watt type $65 / 15 / \mathrm{Feach}$, P. \& P. $7 / 6$. COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet $15 \frac{1}{2} \times 5 \frac{1}{i n}$. 3 for $10 /=$ post paid.
(3 minimum order).

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision tooled. speed adjustable $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$. to as high as desired. Waight $2 \ddagger 16$. $44 / 12 / 6$ post paid.

NEW MODEL

HIGM FREQUENCY

TRANSISTORISED MORSE OSCILLATOR
Adjustable tone control. Fitted with moving coll speaker also earpitece for personsl monitoring. Complate with
morse key. $45 /$ plus $3 / 6 \mathrm{~d}$. p. \& p .

NICKEL CADMIUM BATTERY

1.2 v. 35 AH. size 81 high $\times 3 \times 1$. 30% each, plus $4 /$

 Pintered Cedmium Type 1.2 v . 7 AH . Size: hoight 3 i in., widet 2 in. x Itin
DRY REED SWITCHES

$2 \times$ lamp Dry Reads (makes concects) mounted in 870 ohm 9 -10v coil. Size $3 \mathrm{in} . x$ 3 fin. x tin. New. Price $8 / 6$ par palr. Post Pald.
of the above mentloned unles (12 Reeds. 6 colls) firted in motal box. Size $4 \mathrm{in}, \times 3 \mathrm{in}$. \times Itin. Mig. by Elliote Bros. New 45/- atch. Post Paid.
Telephone Dlals (New) 14'6d, Post Pald. 250 v. A.C. SOLENOID
havy duty type. Approx. 3lb. puil
12 v. D.C. SOLENOID
pprox. lib. pull. IO/G, P. \& P
50 v. D.C. SOLENOID

50 v. D.C. SOLENOID

PRECISION INTERVAL TIMER

 From 0-30 seconds (repetitive). Jewelled witch. Ex. equipment; tested. $17 / /$, plus 216. CONDENSERS
New at a fractio
2.500 mid .100
10,000 mid. 35

FROPOWER RHEOSTATS
 (NEW) Coramic constructlon windEnamel, haavy duty brush assembly designed STOCK IN THE FOLLOWING II VALUES 100 WATT I ohm IOa., 5 ohm 4.7e., 10 ohm 3e $25 \mathrm{ohm} 20 ., 50 \mathrm{ohm}$ l.4e., 100 ohm le., 250 ohm $7 \mathrm{e}, 500 \mathrm{ohm} 45 \mathrm{e} ., 1,000 \mathrm{ohm} 28 \mathrm{cmA}$. $1,500 \mathrm{ohm}$ 230 mA ., $2,500 \mathrm{ohm}$.2e. Diameter 3 ith . Shaft length i/n. dis. $19 / \mathrm{In}_{1}$. 27/6, P. \& P. 1/6: 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 2,500 ohm. All at 21/-, P. \& P. P. 1/6. 25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ 25 WATT $10 / 25 / 50 / 100 / 250 / 5$ ohm, All at $14 / 6$, P. \& P. $1 / 6$. Bleck Silver Skirted knob callbrated In Nos, I-9. If in. dia. brass bush. Ideal for above Rheostats, J/6 aach.

* THREE EASY TO BUILD KITS USING XENON WHITE
\% LIGHT FLASH TUBES. SOLID STATE TIMING * TRIGGERING CIRCUITS. PROVISION FOR EX. inseruments in the laboratory or workshop. It is
invaluable for the study of movemens and checking
of speeds. Many uses can be found in the psychiatric and photographic fields, also in the sintertainment EXPERIMENTERS "ECONOMY" KIT I to 36 Flash per sec. All electronic components NEW INDUSTRIAL KIT
 - HY-LYGHT STROBE
* This strobe has been designed for use in large - the light output at 30 f.p.s. and utilizes a silica
tube for longer life expectaney, printed circuiz for easy
assembly, also aspectal trigger coil and output capacitor.
Light 7-INCH POLLISHED REFLECTOR Ideally suited
7
for above Strobe Kits. Price $10 / 6$ \& $2 / 6 \mathrm{p}$. g . or * pose paid withkits. PARVALUXTYPE SD19230/250VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 Ib . Ins. Posit
drive spindle adiustable different angles. Mountie to 3 tantial cast aluminium ban sub equlpmene. Tessed and in irs class running order. A really fraction of maker's price. 6 gns

BODINE TYPE N.C. 1

 GEARED MOTOR(Type I) 71 r.p.m. torque 10 lb . In. (Type 2) 28 r.p.m. torque 20 lb . in
 reverslble $1 / 80 \mathrm{th}$ h.p. 50 cycle. 28 mp The above ewo prectsion made U.S.A. motors are offered In 'as new' condition. Input voltage of motor $230 / 240 \mathrm{v}$ A.C. Inpue complate with eransformar for $230 / 240 v$ A.C. Input
former $\mathbf{E 2 . 2 . 6}$ plus $4 / 6 \mathrm{~d}$ P \& P $6 / 6 \mathrm{P}$. \& P. or less eransThese motors are id azl \&or P. urtains, display stands, vending ting aerials, drawing LARGE DIGIT 12 v.D.C. MAGNETIC COUNTER
4 in . drum, callbrated 1-9. Figures 1 i in . high $\frac{10}{} \mathrm{in}$. wide. Set of 1 m , Ib . Ic/o
contacts operated by drum cam. The units can be used in pairs and are ideally sulted for batch or lap recording or for the many purposes where
large easily read numerals are required,
VEEDER ROOT COUNTER 230 V. A.C. 50 cycle 5 figure counter 230 v. GEARED MOTOR (as illustrated)
6 R.P.M. or 10 R.P.M
230 v. A.C. non-reversible, approx

MINIATURE UNISELECTOR 3 banks of 11
homing bask. 40 ohm
plus $24-36$ v. D.C. operation. Carefully removed from equlpment and
UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm eoil, $24 \times$. D.C. oporation. 6s.17.8, plus $2 / 6 \mathrm{P}$. \& P.
6 BANK 25 WAY FULL WIPER 25 . ohm coill, 24
66 . 10.0 , plut $2 / 6$ P. D.C.
a. 8-BANK 25-WAY FULL WIPER
24 r.D.C. oparation, $67 / 12 / 6$, plus 4/- P. \& P

RELAYS

BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, otc. MINIATURE PLUG IN RELAYS AT A HIGHLY COMPETITIVE PRICE

WORKING

COIL	WORKING D.C. VOLT	CONTACTS	PRICE
170	9-12	$4 \mathrm{clo} \mathrm{H.D}$.	14/6
170	$9-12$	$3 \mathrm{c} / \mathrm{O}+1 \mathrm{H} . \mathrm{D}$.	12/6
280	6-12	$2 \mathrm{c} / \mathrm{o}$ incl. base	14/6
280	$9-18$	$4 \mathrm{c} / \mathrm{o}$ incl. base	15/6
700	12-24	$2 \mathrm{c} / 0$ Incl. base	12/6
700	$16-24$	$4 \mathrm{c} / \mathrm{o}$ incl. base	15/6
700	16-24	4M 28 incl. base	12/6
250	20-40	2 e/o H.D. incl. base	12/6
2500	30-50	$2 \mathrm{c} / 0 \mathrm{H.D}$. incl. base	$12 / 6$
9000	40-70	$2 \mathrm{c} / 0 \mathrm{incl}$, base	101.
	H.D. $=$ Hea	vy Duty	T PAID

MINIATURE RELAYS

- 12 vole D.C. operation. 2 c/o 500 M.A. coneaces. size lin. $x t x \frac{1}{1}$ in. Price $11 / 6$ Post paid
$30-36 \mathrm{v}$. D.C. operation. $2 \mathrm{c} / 0500$ M.A. contacts.
3.200 ohm coil. Size only $i \times \frac{1}{1} \times 4$ in. 86 past paid.

230 VOLT AC RELAYS

contacts, $17 / 6$ Post Paid.

LONDEX four c/o 3 amp
A.C. AMMETERS 0-1, 0.5, 0-10.0.15, 0-20 amp. F.R $2 \neq i n$. dia. Allat $21 /$ each. $2 \frac{1}{i n}$. Flush round all at $21 /-$ each. P, \& P, extra. M. $0-300$ v. A.C. Rect. M-Coil 2 tin.
$0-300$ v. A.C. Rect. M-Coil 3 $\frac{1 n}{}$. Type W23

SANWA MULTI RANGE TESTERS
 NEW MODEL UD-50 MULTI

 TESTER, 20,000 O.P.V. MIRRORSCALED WITH OVERLOAD PRO. SCALED WITH OVERLOAD PRO 0.5 v., 5 v. 250 v., 1,000 v. A.C. voles
 $0.5 \mathrm{~mA}, 5 \mathrm{~mA} ., 50 \mathrm{~mA} ., 250 \mathrm{~mA}$. Size: $5 \mathrm{t} \times 3 \mathrm{~m} \times 18 \mathrm{in}$ Complate with beterias $\mathbf{~} 7.5 .0$
end test prods.

RING TRANSFORMER

functional Versatlle Educationa

This multi-purpose Auso Tranaformer, with
lirge centre aperture, can be uste as Doubl wound currene Tranuformer. Auto Tranuformer
H.T. or L.T. Tranuformer. by Almply hand wind ins she required number of curnithrough the conte E. 8 . Uiing she RT, 100 V . A. Model she ouspur could be wound Price: RT.joova jil's eurni par volr, $6250+3 / 6 \mathrm{p}$. and p .
demonstration transformer (STENZYL TYPE) Two removable colls
tapped ate
0,110,
220 tapped
and $6,12,36$ volts respecs.
and tively. A composite apparatus designed for class demonstration. Electro Magnetic Induction, lumping ring,
induction lamp, relationship between fiold intensity and
 ampere rurns, Inducsion L.T. TRANSFORMERS All primaries $220-240$ voles
Type No. Taps

$$
\begin{aligned}
& \text { pe No. } 34 \text { Sec. Taps } \\
& 30,32,34.36 \mathrm{v} . \text { at } 5 \text { amps. } \\
& 30,40,50 \mathrm{v} \text {. at } 5 \text { amps. }
\end{aligned}
$$

$$
\begin{aligned}
& 30,40,50 \mathrm{v} \text { at } 5 \mathrm{amps} \\
& 10,17.18 \mathrm{v} \text { at } 10 \mathrm{amp} \\
& 6.12 \mathrm{v} \text {. at } 20 \mathrm{amps} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 17,18,20 \mathrm{v} \text { at } 20 \mathrm{amps} . \\
& 6,12,20 \mathrm{at} 20 \mathrm{mps} .
\end{aligned}
$$

SHOWROOMS NOW OPEN
AMPLE PARKING

TYPE I3A DOUBLE BEAM OSCILLOSCOPES BARGAIN

An excellent general purpooe D/B oselllloscope. T. B. 2 cp $750 \mathrm{Kc} / \mathrm{e}$. Bandwidth $5.5 \mathrm{Mc} /$ ating vollage 0/110;200/250 A.C. Supplied in excellen working condition. e22/10/Or complete with all screm e2fien. Curriake 30

MARCONI CT44

 TF956 AF ABSORPTION WATTMETER £20. Carr. 20\%.SOLARTRON CD. 1016 OSCILLOSCOPE Double beam. D.C.To B Mc/s. Excellent condl

CLASS D. WAVEMETERS

CLASS D WAVEMETERS No. 2 operation. Complete with calibrotion charth Excellent condition $\mathbf{2 1 2 / 1 0 / 0 . \text { Carr. } 3 0 / \text { -. }}$
EDDYSTONE V.H.F. RECEIVERS 770R. $19.165 \mathrm{Mc} / \mathrm{s}$. E150
Both types in excellient condition

LELAND MODEL 27 BEAT $20 \mathrm{Kc} / \mathrm{s}$. Output 5 K or 500 ohms. $200 / 250$
 A.C. Ontere
Carriage $10 /$

ARF- 100 COMBINED AF-R SIGNAL GENERATOR
 20.200 .000 cpm . Bquare arye $20-30.000$ eps. O/
HIGH [MP

 On. Incorporates duad purpose meter to monitor
P output and $\%$ nood. on R.F. $220 / 240 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. VOLTAGE STABILISER TRANS FORMERS. ${ }^{780-260 \mathrm{v} \text {. input. Output } 230 \mathrm{~s}}$ Avallable 150 w or 226 w . E12.10.0. Cerr. $5 /$ TE-20RF SIGNAL GENERATOR
 Accurate wide range
algnal generator cover
ing $120 \quad \mathrm{ke} / \mathrm{s}-260$
Mc / s. on 8 bandi. Directly Calbrated. eration 200/2
Brand new, tions. £15

PEAK SOUND PRODUCTS

Full range of Amplutier, kits, speakers in ntock E22 SINE SQUARE WAVE AUDIO GENERATORS
 20 cpe to Square Output ime 5.000 ohms. 200 250 r. A.C. operation,
new and gularan-
teed with inatruc ${ }_{\text {tion manual }}^{\text {tead }, ~} \mathrm{El6.10.0}$. MARCONI
TF885 VIDEO OSCILLATORS $0.5 \mathrm{mc} / \mathrm{B}$ Bine Square Wave 845 , Carr. 201LAFAYETTE TE-46 RESISTANCE

 ohms. Also checks
impedance turns
ratho insulation ratio insulation
$200 / 250$ Brand New. $£ 17.10$

MARCONI TF,I42E DISTORTION FACTOR METERS

TY75 AUDIO GENERATOR

Bine Wave $20 \mathrm{CPg}-200 \mathrm{Kc} / \mathrm{s}$ Square Whave 20 CPB - 30 output. Output suriable up to
6
volts.
$220 / 240$
volta A.C. E16. Carr. 7/6. Bize $210 \times$ $150 \times 120 \mathrm{~mm}$.

MARCONI TF195M BEAT FREQUENCY OSCILLATORS TE-20D RF SIGNAL GENERATOR
 Accurate Elde range elg.
Hish generator covering
$120 \mathrm{Kc} / \mathrm{s}-\mathrm{B} 00 \mathrm{Mc} / \mathrm{B}$ on 6 bands. Directy can brated. Varisble RF.
sttepuator, XLeal socket for calltrian
tion. $220 / 240 \mathrm{~V}$. A.

ADVANCE TEST EQUIPMENT
 ments in ezcens of $100 \mathrm{Mc} / \mathrm{e}$ and D.C. measure-
mente np to 1000 v . with nccuracy of $\pm 2 \%$. D.C. VM.79, UHP MILIIVOLTMETER. Translutorived. 0.3 Ma. Reasistance 1 ohm -10 megohiuns. $£ 125$. HIB. AUDIO SIGNAL OENERATOR. $50 \mathrm{Kc} / \mathrm{s}$, dine or squnre ware. Price $£ 30$.
18 B . AUDIO SIGNAL GENERATOR.

GARRARD

Full current range offered brand new and guaranteed at fantastic savings

 Stereo

 228.70.
28.

Criagefinaurance $7 / 6$ extri any modelo
-B4 Banes $\mathrm{E} 3 / 1 \mathrm{l} / \mathrm{/q}$
Perspex cover $£ 3 / 10 / 0$. - Bpecial offer base and cover avallable for these
modela at 84.15 .0 . Camt, $5 /$.,

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, IHP musle power 30 watt.
at 8 ohms. Res. $30-20,000 \pm 2 \mathrm{~dB}$ at 1 w . Distortlon 1% or less. Inputa 3 mV and 250 mV . Output
$3-16$ ohms. Beparate \mathbf{L} and \mathbf{R} volume controle. Treble and bans controls. stereo phone Jack.

Brand new, guaranteed and carriage paid
High quality construction. Input 230 v 50 cycles.
Output full variable from $0-260$ volts. Bulk quantities available
1 amp . $-85 / 10 / \mathrm{F} ; 2.5 \mathrm{amp}$ - $-58 / 15 /-; 5 \mathrm{amp}$. $\mathrm{f} 9 / 15 /$
8 amp.- $14 / 10 /-10 \mathrm{amp}$.- $218 / 10 /$-; 12 amp .- $221 ; 20 \mathrm{amp}$ - 23

MULTIMETERS for EUERY purpose:

MODEL TE-90 50.000 Mirror geale overiosd grotec-
dion. $0 / 3 / 12 / 60 / 300 / 600 / 1,200$
. D.C. $0 / 8 / 30 / 120 / 300 / 1200.0$ V.D.C. $0 / 6 / 30120 / 300 / 1.200 . \overline{ }$ $6 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 16 \mathrm{MEO} 0$

MODEL TE-80. 20,000 O.P.V $0 / 10 / 80 / 100 / 500 / 1,000$ V. A.O
$0 / 5 / 25 / 50 / 230 / 500 / 1,0000$.
D.C. $0-50 \mu \mathrm{~A}$.
$5 / 50 / 500 \mathrm{~mA}$ D.C. $0-50 \mu \mathrm{~A} .5 / 50 / 500$
$06 \mathrm{KK} / 60 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg}$.
m

84/17/6.
TE-51, NEW $20,000 \Omega$
VOLT MULTMMETER, with overlowd protectlon, and
nolirro
scale, $0 / 6 / 60 / 120$, 1,200 v. A.C. $013 / 30 / 60 / 300 / 2$
$600 / 3.000 \mathrm{~F} . \mathrm{D} . \mathrm{C} .0 / 60 \mu \mathrm{~A} / 12$ /soom A.D.C. $0 / 80 \mathrm{~K} / 6$ mes
ohm. $8 \mathrm{~m} / \mathrm{B}$. P. \& P. $2 / 6$.
 MODEL 20 k Q/Volt $5 / 25 / 50 /$ $250 / 300 / 2,500$ v. D.C. ${ }^{5 / 25 / 50 / 10 / 50 /}$
$100 / 500 / 1,000$ v. A.C. $0 / 50 \mu \mathrm{~A} /$

MODEL TE-70, 30,000 O.P.V $0 / 3 / 15 / 80 / 360 / 600 / 1,200$
D. $. \mathrm{C}, 0 / 6 / 30 / 120 / 60 / 1,200$
A. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$
 MODEL TE-12, 20,000 O.P.V $3 / 0.6 / 0 / 30 / 120 / 600 / 1,200$
 $60 \mathrm{Meg.a} .50 \mathrm{KP} / \mathrm{PF}^{2} \mathrm{MPD}$

 LAPAYETTE 87 Range SuperSOK
volvi. Mulkimeter.
D. volts $125 m \mathrm{~m}-1000 \mathrm{v}$. A.C.
volte $1.5 \mathrm{~F}-1000 \mathrm{D}$. D.C. Cur-
tent $25 \mathrm{AA}-10$ Amp. Ohms rent $25 \mu A-10$ Amp. Ohms
$0-10$ Meza. D.B. -20 to $+81 / 10 / \%, \mathbb{P}, \& \quad \mathbb{P}, 3 / 6$.

MODEL PT-34. 1,00 O.P.V.O/ $60 / 30 / 1,550 /$
$600 / 1.000 \mathrm{~V}$ a.c. end d.c. $01 / 1100 / 500 \mathrm{~mA}$.
d.c. $0 / 100 \mathbb{K} \mathrm{~B} 38 / 6$.
 d.c. $0 / 100 \mathrm{~K}$ \& $38 / 6$.
P. A P. $1 / 6$.

TRANSISTOR FM TUNER
 6
Higy
TRANBABTOR TUNER BIZE ${ }_{21}^{2 N L Y} 3$ In. $x \operatorname{in}$. x 2Jin. 3 I.F. stangea
Double tuned dion Crimbleator. ande output to feed moat amplifier. Operaten
$88-108 \mathrm{Mc/n}$. Ready on 9 volt battery. Coverage $88-108$ Mc/n. Ready
bullir ready for ube. Fantastio value for money E6/7/6. P. \& P. $2 / 6$.
BTEREO MULTIPLEX ADAPTORS, $99 / 6$.

SINCLAIR EQUIPMENT

 212. 12 watt amplidier 88/6. STEREO 25. Pre-amplifer £9/19/8. Q. $1+$ Bpeakere $£ 7 / 19 / 6$. NOW AVAILABLE ICIO. $59 / 6$ ALL POBT PAID. SPECLAL OFFER$2 \mathrm{Z12}$ amps. P24 Power Gupply Oleno 25 Preamplifer Q. 14 Bpesket 35 watt Integrated Ampliner SYSTEM ${ }_{\text {£ }}^{128}$ 35 wath integratod Amplifiter, $£ 28$.
sell-powered FM Tuner, £25. Cart. $1 /$.
ECHO HS-606 STEREO
HEADPHONES

HOSIDEN DHO4S
2-WAY STEREO HEADPHONES

Ebch headphone contalas Buitit in individual leval controls. $25-18.000$ e.p.e tereo plug. E5/18/6. P. P 2/6.

TRANSISTORISED	
TWO-WAY	
TELEPHONE	
INTERCOM	
Operative over mmazingly long	
cations. Beautifully finished	
In ebony. supplied completewith batiertes and will brackets,	
£6/19/6 pair. P. \& P. 3/6.	

TEIII DECADE RESISTANCE ATTENUATOR db. Co range 0-111 Uahulanectlons.
 $10)+(1 \mathrm{db} \times 10)$
$+10+20+30+$
40 db . Frequency: DC to $200 \mathrm{KHZ}(-\mathrm{sb})$.

 CAR LIGHT
Heary duty tight flauber employn a condenser dincharge principle operating on eloctro
 cal relay. (An tiset.)
Housed in strong plastio Housed in strong plastio
case. lashing
rate
 $\begin{array}{ll}\text { minute. } 12 & \text { volt D.C. } \\ \text { operation. } & \text { Maximum }\end{array}$ Iowd 6 ampa. Blze 2 Hith
dia. by tia. Supplited brand new at atraction
of oriminat cout. $6 / 6$ each RECORDING HEADS
 Marriots \& track beads. Pont extra. Record/Play back. high imp.
Eirase, low imp.

AMERICAN RECORDING TA

 MAXELL TAPE CASSETTES

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5125

AMERICAN HIGHLY STABILISED
POWER SUPPLY UNIT

Reguiation between 7.15 voles D.C. at 20 amps. Fitted 0-30 D.C. ammetor, 0-15 D.C. voltmater and overload pro-
tection switch. Built to very high specification. Bench or tection switch. Built to 2 very high specification. Bench or
rack mounting. Size $19 \times 8 \times 17 \mathrm{ins}$. A.C. input 110 v . 50 cycles. Ex equipment but guaranteed in perect condition. Maker's price in excess of 6200 . Our price 625 . Carr. 30)-
$240 / 110$ vole 400 watts, Mains. Transformer available if $240 / 110$ volk, 400
required. $£ 3$ extra.

SPECIAL OFFER OF L.T. TRANSFORMERS

Pri $110-120 \mathrm{v} .200-240 \mathrm{v}$. See. rapped 12,$18 ; 24,30 \mathrm{v} .8 \mathrm{a}$.
Table top connectlons. Fully eropicalised. 75/.. Carr. $7 / 6$. Table top connections. Fully cropicalised. 75/.. Carr. 7/6 Pri tapped Illov. 220-250v. Sec. 55v. 24a., T4v. 10a., 60v. 2a Terminal connections. Size $9 \times 7 \frac{1}{2} \times 7$ ins. Weighe 651 bs 610.19.6. Carr. 15/-.

Pri tapped $200-250 \mathrm{v}$. Sec. 46 v . Very conservatively rated at 29 amps. Size $11 \times 7 \times 7$ ins. Weight 75 lbs. approx. Manufactured
Pri 240 v . Sec. 12 v .90 amps. Open frame flying leads. Size $71 \times 6 \frac{1}{3} \times 6 \mathrm{ins}$. El3.19.6. Carr. $15 /=$.

DIGITAL HOUR METERS 6 figs inc. $1 / 10 \mathrm{chs}$, $1 / 100$ ths 40 v. A.C. but complete with transformer for 240 v . A.C. operation. All in plastic case.

(ELECTRONICS) LTD.
 Samson's

LOLECTRON N W

SMITHS SYNCHRONOUS MOTORS
A.C. $200-240$ v. 4 r.p.m. 3 In . dia. Length of spindle . Pin. 22/6.
P. \& P. 2/6. As above, 1 r.p.m. 22/6. P. \& P. $2 / 6$.

AMERICAN SYNCHRONOUS MOTORS
A.C. $230 \mathrm{v}, 50$ cycles, 6 r.p.h. 2 itin . diz. cog spindle. 12/6. P. \& P. $2 / 6$.

YENNER SYNCHRONOUS MOTOR
A.C. 240 v .50 cycles, 40 r.p.m. 2 lin . dia. Length of spindle lin. 12/6. P. \& P. 2/6.

1004 ohms BERCO SLIDING RESISTORS 18 ins 45/. P. \& P. $7 / 6$. 30 ohms 1.25 amps 5 .T. Righe angio geared drive $19 / 6$. P. \& P. $5 / 6.45+12$ ohms $6.5 / 4$ amps 5 ingle Tube Fixed Length 22 Ins . $25 /$-. P. \& P. $7 / 6$.
G.P.O. 3000 TYPE RELAY (New and Boxed) 20,000 ohms Heavy Duty Contzcts. $2 \mathrm{NO}, 2 \mathrm{M}$. $15 /$., Po \& P. P. 2/75 ohms Normal Contacts. 3M, $1 \mathrm{~B}, 1 \mathrm{CO} .6 /$ P. \& P. $2 / \%$
500 ohms Heavy Duty Contacts. 3M, 3B, 150 ohms Heavy Duty Contacts. 2 M. $6 / 1$. P. \&. \& P. $2 /$..

TYPE TQP. 250 vVIC TANK THERMOSTATS
Type TQP. 250 v .15 amps NC. 5 amps NO. $190-70$ des. F. Length of stem iolains. 25/0. P. \& P. 5/\%

AC 220-240v. SHADED POLE MOTORS 1.500 r.p.m. Double spindle. Length 0.9 in . and $0.6 i n$.
size $3 \times 3 \frac{1}{2} \times 2$ ins. New and Boxed. $10 / 6$. P. \& P. $3 / 6$

BURGESS MICRO SWITCHES

Type MK 3BR/74. Norm closed or Norm open. tin. raised Press Button. 8/6 for three. P. \& P. 2/6

SIEMENS MINIATURE RELAY BASES
Type T.STV 24 C. 6 Contacr pin. 4 Coil pins. Cartons of 20 inc. spring elips. 15/- P. \& P. 2/-.

PULLEN SHUNT WOUND 24v, OC REVERSIBLE MOTORS
Type 610 H.P. I/75 r.p.m. 3,500 Cont/R. New and boxed 15%. P. \& P. 3/6.

MAINS ISOLATION TRANSFORMERS
Pri tapped 240-220-110v. Sec. 240 v . 1200 watts. Built into metal case with ewin 13 amp Socket outlet, on/off switch neon indicator and carry handle. E16.10.6. Carr. 15/-

GARDNER'S POTTED TRANSFORMERS Pri Tapped $200-240 \mathrm{v}$. Sec. 35 v .7 .2 amps. Conservatively rated
$57 / 6$. Carr. $6 / 6$.

NEW PRICES ON NEW COMPONENTS

RESISTORS
High stablilty, carbon film, low nolse. Capless construction, molecular ternination bonding.
DImenslons (mm.): Body: iw: 8×2.8
Leads: ${ }_{35}^{W}$
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series) 5% rankes; 4.70 hms to 1 Mesohm (E24 Renard Series) Prices-Der Ohmic value.

	each	10 off	25 off	100 oft
tW 10%	2 d .	1/6	3/3	10/4
+W 5\%	2 d d.	1/9	3/8	11/8
+W 10\%	2 d d.	1/9	3/8	$11 / 7$
1W 5\%	3d.	2/-	4/-	12/10
Subminiature Polyester film, Modular for P.C. mounting. Hard edozy resin encapsulation. Radial leads. $\pm 10 \%$ tolerance. 100 Volt working.				
Prices-per Capacitance value ($\mu \mathrm{F}$)				
	each	10 off	25 off	100 off
$0.001,0.002,0.005,0.01,0.02$.	6 d .	4/3	8/4	30/-
0.05	8 d .	6/-	$12 / 6$	41/8
$0 \cdot 1$	10d.	7/1	15/6	51/-
0.2	1/2	10/-	20/10	68/6
Polsstyrene film. Tubular, Axial leads. Unemcapsulated $\pm 5 \%$ or $\pm 1 \mathrm{pf}$ tolerance. 160 Volt Working.				
Prices-yer Capacitance value ($\mu \mu \mathrm{F}$)				
10, 12, 15, 18, 22, 27, 39, 99, 47.	each	10 off	25 off	100 off
66, 68, 82, 100, 120, 180, 220,				
270, 850, 390	5d.	3/7	7/9	24/-
470, 560, 680, 820, 1.000, 1,500		4/-	8/8	26/8
2,200, 3,300, 4,700, 5,800 ..		5/-	10/10	33/4
6,800, 8.200. 10,000, 15.000 ..		6/ $=$	13/-	40/-
22,000		6/9	18/-	45/4
OTENTIOMETERS (Carbon)				
Superior grade enclosed controls. Low rotational nolse. Body dia., lin. Spinde.				
Insear: 1 K to 2 M . (1 W at $40^{\circ} \mathrm{C}$).				
Logarithmic: 5 K to 2 M . (dW at $40^{\circ} \mathrm{C}$).				
Prices per obmic value	$\begin{aligned} & \text { each } \\ & 2 /- \end{aligned}$	$\begin{aligned} & 10 \text { off } \\ & 18 / 4 \end{aligned}$	$\begin{aligned} & 25 \text { off } \\ & 41 / 8 \end{aligned}$	$\begin{gathered} 100 \mathrm{off} \\ 150 \% \end{gathered}$
GANGED STEREO POTENTIOMETERS (Carbon) $\dagger W$ at $70^{\circ} \mathrm{C}$. Long Spladle.				
Logarithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$.				
Prices per ohmic value	esch	$10 \text { off }$	$\begin{aligned} & 25 \text { off } \\ & 162 / 6 \end{aligned}$	$\begin{gathered} 100 \text { off } \\ 575 /- \end{gathered}$

SKELETON PRE-SET POTENTIOMETERS (Carbon)
Hish quality pre-sets sultable for printed circuit bosrds of 0.1 in . P.C.M. 100 ohms to Horlzontal ($0.7 \mathrm{in}+0.4 \mathrm{In}$. P.C.M.) or Vertical ($0.4 \mathrm{in} \times 0.2 \mathrm{in}$. P.C.M.). Subminlature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2.5 \mathrm{M}, \pm 90 \%$ above.

POLYESTER CAPACITORS (Mullard) ${ }^{2 /-}$
Tubular 10%, $180 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .039,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$
$0.15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 1,0.47 \mu \mathrm{~F}, 1 / 6,0.68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8$.
 2/3. 0.47 HF, $2 / 8$. 2/-, OC70, OC72, 2/3. AC107, OC7b, OC170. OC171, 2/6, AF115, AF118, AF117 ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3, OC25, 7/-. OC85, 8/OC23, OC28, $8 / 3$.
SILICON RECTIFIERS (0.5A) : 170 P.I.V.. 2/9. 400 P.I.V., 3/-. 800 P.I.V.. 3/3. 1,250 P.I.V.. 3/9. 1,500 P.I.V., 4/-. (6A): 200 P.I.V., 3/-., 400 P.I.V., 4/-. 800 P.I.V., PRINTED CIRCU

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 / 6$

\longrightarrow LOW cost electronic and scientific equipment and components

BRAND NEW LABORATORY TEST EQUIPMENT-AT LESS THAN HALF PRICE!

HIGH VALUE RESISTANCE BOX TYPE R. 7003

Negohm divisions. Accurecy: 0.00% Meg. In 0.01 pished stove enamel per step. Case: Hammer

MUTUAL INDUCTANCE specincation. Range: $0-11.100 \mathrm{mHH}$ in 0.002 mH divisions. Accuracy: $\pm\left(0.3 \times \frac{0.012}{\mathrm{M}}\right) \%$ where $\mathrm{M}=$ Talue of mutuml inductance $\mathrm{in} m \mathrm{~m}$ net on the hom. Frequency range: $0-2.5 \mathrm{~K} / \mathrm{ca}$ for all decoden
except $\times 1=0-15 \mathrm{~K} / \mathrm{cs} . \mathrm{Maxinum}$ current: $0.5 A$ except $\mathrm{X1=0-15} \mathrm{~K} / \mathrm{cs}$. Maximum current: 0.5 A
for decaden 1 A for variometer (both primary and secondary dinginga). Cave: Pollshed teak. Lit price
265. Our price $\mathbf{E 2 6 . 1 0 . 0 \text { . }}$

PORTABLE WHEATSTONE BRIDGE
 1. 0.00 to 5 ohros. Coll Oalvanotneter. Ranges? Cames: s. 80 to 5,000 ohma. 5.500 to 50,000 ohmm ever Bcale: $10-0-10$. Case: Moulded plantic iternal Bource: 4V. Dry battery. Dtmensions

STOP PRESS

6 Pen Event Recorder, 6 in . Chart
Wdith. Available in wide ringe of chat apeods. Avaluble in wide range of chart
mounted $\mathbf{8 7 9 . 1 0 . 0}$ Cone to eult extra.
Burrough E-102 computer. Complete
with calculator. 225 word itore. 2450 .

PORTABLE MULTIRANGE

 2. $4-12$. $6-300060-300,120-660,240-1,2000$,
 $0.03-3$ mesohms D.C. Resistance -12 to +78 Dectbela. Frequency: 80 cps. Input Reaistance D.C.: 20,010 ohins/volt. Input Resiatnice ohma $/$ volt. Dimensions: $255 \times 215 \times 170$ mim. Weight: 8 kg . 8upplled with 2 voltage dividers, H.V. lea Wist price teas. Our price 212.19.8. P. \& P. 15

+ ILLUSTRATED
t leaflets \quad available

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A CRADING WHICH MAY BE INSPECTED AT OUR PREMISES DURING THE POST.

AUTOMATIC CRYSTAL
THICKNESS SORTING THICKNESS SORTING
MACHINE FVIly

 extreme interest to manufacturers of semi-
conductars it in conductors. It in offered in yood condtion
at a quarter of tis original list price. It in
suitable for the at a quarter of tis orginal list price. It
sultabie for the morting of germanturn and
allicon dicen. The unit can eort up sllion dicen. The unit can wort up Wi, 2,400
plecea min bour. Our price $£ 750$. Purther
intormation. information available on request. Coms
plete with manual and abares.

TRANSFER FUNCTION ANALYSER OSIO3/VP 253 electro-mechanical appliestiona and wervomeachanamm. Resolvee metwork reaponse
niguals simultaneousiy into in. aiguala simultaneouniy into in-phase or
qualratire componente. Permita direct qumirahire componest. Permits direet frequeney remponse using cartenian co
ondinate. High nendtivity $50 \mathrm{mV} / 1 \mathrm{dd}$.
 Rugh accuracy neanurement of true \mathbb{R} M.B.
volts. Lint price 21,600 . Our price $\mathbf{2 5 9 5}$. OSCILLATORS

DAWE 443B AUDIO SWEEP OSCILLATOR AND CON for a low sweep oucllator covering the entire suilio range. Providing constant o/p voltape and bugarthimic trequency scale. Suitabie for automatic measurrinent and
recording of
trequency recording of frequency retponate curves of
four terminal networt, aud io amplifier, Lape recordera, studio and concert halla.
 0.6 dB at 1 w output into matching DAWE 444C AUTOMATIC F SWEEP OSCILLATOR (NEW) Ampllude $0 \cdot 10 \mathrm{~V}$. Prequency Range 5月z
 of 10 ocheven/min. Frequency Res
0.3 dB . 889.10 .0 . Cartiage extre.

(DEPT. WW)		
TESTED SCR'		
1200 B/B		
TRANE. CODE D		
TEXAS. Our price 5/- eas.		
D AND Co		

QUALITY-TESTED PAKS

Matchod Trans. OC41/46/81/81D

8u. Tran. 28803 PN
4 2ener Dodes 250 mW 3-12V
Zener Dioden 1 33v 3\% Tol

Power Trais. Oczo 100 V
ON 202 8il. Diodes Bub-min.

OA81 Diodes
OC72 Trasiln
${ }^{0} \mathbf{O C 7 2}$ Tranalistors
8 Gi. Recta 400 P1V 500 mA
${ }^{5}$ GETB8 Trans. Eqvt. OC4

61 N914 Bul. Dlodes 75 PIV 735ma.
8 OA95 Germ. Diodes sub-min.
3 NPN Germ. Trasa. NET773 Eqv.

${ }_{2}$ OC22 Power Trans. Germ
4 AC128 Traus. PNP Bygh Oa
4 AC127/128 Comp. pair PNP/NPN
${ }_{3}$ CG62H Germ. Dlodes Eqvt. Oif
AF116 TYpe Trans.
AReorted Germ. Dlodes Markel
AC126 Germ. PNP Trans.
3 AF117 Traps.
Oc171 Trans.
OC71 Type Trans.
12 Volt Zenera 400rn W,
10 A 600 PIV gil. Rectu.
 12 N910 NPN SII, Trans. VCB 10 1000 PIV 811. Rect. 1.5 EA R 53310 A
B8Y95A 81. Oczo0 BIt. Trans. TK201A...................... Zener Dloden 3 -15V 8ub-minn.
2N1132 PNP Epltarial 2N697 Epltaxial Planar Tranar sii.
Qerm. Power Trane. Equt. OCie
 1 Tunnel Dlode AEYY 11050 Mc/
2 2N2712 8in. Epoxy Planar HPEZ2 ${ }_{2}^{8}$

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY.
If any sale item is 'sold-out' when order received we shall substitute items of equal value. electrolytic capacitors

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS

2 pf	5 pf	12 pf	25 pf	50 pf	80 pf	135 pf	180 pf	250 pf	680 of	$1,000 \mathrm{pf}$	
3.9 pf	6 pf	15 pf	27 pf	58 pf	82 pf	140 pf	190 pf	330 pf	800 pf	1,000 pf	2,500 pf
4 pf	8 pf	18 pf	30 pf	62 pf	100 pf	158 pf	200 pf	420 pf	820 pf	1,500 pf	3,000 pf
4.7 pf	10 pf	22 pf	39 pf	72 p¢	125 pf	170 pf	240 pf	600 pf	900 pf	2,200 pf	6,200 pf
	,								Total:		

COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS No. Price

$1,000 \mathrm{pf}$	3d. each	400 V
$1,500 \mathrm{pf}$	3d. each	
$1,800 \mathrm{pf}$	3d. each	
$2,200 \mathrm{pf}$	3d. each	
.15 uf	6d. each	160 V
.22 uf	6d. each	160 V
.27 uf	6d. each	160 V
1 uf	$1 /=$ each	125 V

25% discount lots of 100 per type.
50% discount lots of 1,000 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! ! !
P.N.P. Audio. Untested, unmarked. MAINLY O.K.
N.P.N. Silicon. R.F. types unmarked ALL USEABLE $10 /-$ per 100 POWER OUTPUT (Similar OC35) ALL TESTED 4/- each E2 dozen
SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR
SHORTS. Gain of 20/50 6d. each, 50/100 9d, each, 100/200 1/- each
Transistors similar to OCP 71 (Light sensitive) $2 /-$ each.
RECTISTORS. 400 volt BTY 79 7/6d, each. SCR 51 (10 amp) \&1 each. CTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current type 1N4006. 2/6 each, 24/- dozen, £7/10/- 100. S.T.C. $3 / 4$ (400 volt) $2 / 6$ each, $24 /-$ dozen, $£ 7 / 10 /-100$. BYZ 13 or 19 (6 amp) $2 / 6$ each, $24 /-$ dozen,
$\mathrm{K} 7 / 10 /-100$.

RECORDING TAPE GIVE-AWAY:
ALL BRITISH MADE, BEST QUALITY. $5^{\prime \prime} 600^{\circ} 7 / 3 \mathrm{~d} .59^{\prime \prime} 900^{\circ} 9 / m$ $7^{\prime \prime} 1,200^{\prime} 12 /-3^{\prime \prime}$ 'odd-ends'-may be standard, long or double play-bu minimum $150^{\circ}-2 / 3 \mathrm{~d}$.
MAINS DROPPER TYPE RESISTORS. Hundreds of types from .7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted". 10/- per dozen.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half pricel Circular, 67 mm . diameter $5 /$. each. $50 \mathrm{~mm} . \times 37 \mathrm{~mm}$. 3 for $10 / \mathrm{m}$.

GANGED STEREO POTS. $250 \mathrm{~K} 2 / 6 \mathrm{~d}$. each.
SKELETON PRESETS. Mixed. 6/- dozen.
VOLUME CONTROLS. meg. 1 meg. with D.P. switch. 2/- each.
TELEVISION REMOTE CONTROLS. Philips. Contain 11' 7-way cable, 1 double pot., 5 resistors, two condensers, $10 /-$ each. (Cost $£ 3 / 3 /-$.)
THIN CONNECTING WIRE. 10 yds $1 /-, 100 \mathrm{yds} 7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds} .50 / \mathrm{e}$ CO-AXIAL CABLE. Black. 6d. yard, £1 50 yds.
CRYSTAL MIKES. 10/- each.
RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) GP94/1 30/- (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/-(Stereo) ACOS GP94/1 with diamond needle 37/6d.
TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt 12° tube, Reflector type $59 / 6 \quad 15$ watt 18° tube, Batten type $\quad 70 / 6$
Complete with tube. Postage $3 / \mathrm{m}$
TRANSISTORISED SIGNAL INJECTOR KIT $10 /$
$\begin{array}{llllll}\text { TRANSISTORISED SIGNAL TRACER KIT } & . & . & . & 10 /- \\ \text { TRANSISTORISED REV. COUNTER (CAR) } & \cdots & . . & . & 10 /-\end{array}$
VERO-BOARD

$23^{\prime \prime} \times 1^{\prime \prime} \times .15$		1/3	$17^{\prime \prime} \times 33^{\prime \prime} \times .15$		14/8
$33^{\prime \prime} \times 21^{\prime \prime} \times .15$	\ldots	$\therefore \quad 33$	$3 \mathrm{3} \times 21 \times .1$		4/2
$33^{\prime \prime} \times 33^{\prime \prime} \times .15$	\cdots	. 3/11	$33^{\prime \prime} \times 39^{\prime \prime} \times .1$.	4/9
$5 \times 2{ }^{\circ \prime} \times .15$.	$3 / 11$	$5 \times 2 \times .1$.	4/7
$5^{\circ}{ }^{\circ} \times 39^{\prime \prime} \times .15$		- 5/6	$5^{\prime \prime} \times 31^{\prime \prime} \times .1$		5/6
$17^{\prime \prime} \times 2$ ² $^{\prime \prime} \times .15$		11/-			

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36. Spot Face Cutter and $52^{1^{\prime \prime}} \times 1^{\prime \prime}$ boards $9 / 9 \mathrm{~d}$. Terminal Pins $3 / 6 \mathrm{~d}$. for

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum 2^{\prime}-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321

ALL GOODS GUARANTEED

CONVERTOR/BATTERY CHARGER. Input 240V 50 c/a. output 12 y 5 anp DC. Input 12v. DC. output 240 v AC. 170 watt max. With fuse and indicator lampan. Size
$91 \times 10 \times 4$ in. Weight 191 b . An extremely compact unit that will cive many yeara reliable service. Supplied with plug and lead. Only $\mathbb{E} 4 / 10 /$. P. \& P. 15/- extra. As above-fully serviceable perfect interior but solled
exterior cases. $£ 3 . P$. \& $P, 15$. extra.

RACAL EAUIPMENT

RA 17 Recelver 165 . RA \& Recelver 225. One KiloWatt Linear PA complete with power supplies in 6 ft . enclosed cabinet. 1.5 to 25 mea cycles requiring 100 nilli watt drive, In brand new cond CS50. Digital Frequency Counte
Prices $£ 30$; $£ 45$; and $£ 65$.
G.M. TUBES. Brand new. G24/G38/G60 st 27/6 ea G58/1. brams cased, e6 er.
PHOTOMULTIPLIERS. 6097B at CS ea. EMI 6097 X st $18 / 10 /=$ ea.
SOLARTRON stab. P.U. type AS516 300y 50 mA . TRANSISTOR OVCILA. E6. P. \&. P. 10/* extra. $40 \mathrm{c} / \mathrm{s}$ to B ke/s. 5 SCILLATOR. Variable frequency DC input. Size if $\times 1 / \times 1$ tín. Not encapsulated. Brand new. Boxed. $11 / 6$ ea
TIMER UNIT, consiating standard mains input trangformer $200 / 240 \mathrm{v} 50 \mathrm{c} / \mathrm{s} ;$ output 18 v o amp (con1 sec timer subchassia with transistor sTC type T89. $\frac{1}{2} \times 12 A U 7$; one 500 ohm relay heavy daty contact 2 make; lamps. fuse. switch. etc.. etc. In case. Size $10 \times 10 \times 5 \mathrm{in}$. Ideal battery charger. one second timer, transistor power supply. etc.
Tested and guaranteed working. £2/15/- ea. P. \& P. 15/-.

OSCILLOSCOPES

Comor DB 1035. 620 ; 1035 Mk. 2. E 25 : 1035 Mk . 3 E32/10/-i 1049. ©22/10/-: 1049 Mz. 3. £30: CT52. £15 HARTLEY 13A. E18/10/-. Carriage 30/- ex tra.
ADVANCE Sisnal generator type D.1. $2 \mathrm{mc} / \mathrm{s}$ to $190 \mathrm{mc} / \mathrm{s}$. Sine sind aquare mod. With original charts. Excellent condition. $\$ 12 / 10 /-$. P. \& P. \&1.

RELAYS
Omron/Schrack octal baned plug-In relays. 2 pole c/o
$5 A, 230 v$ and By. State which. Brand new. Boxed. 12/6 ea.
G.E.C. 4 pole c/o $6 / 12 \mathrm{v}$ operation 180 ohms. Platinum contacts. Brand new. Boxed $12 / 6$ ea.
Min. VARLEY type VP4. 4 pole c/o 430 ohm or 15 K / hm. Brand new 6/6 ea. pole c/0 430 ohm or 1 3.000 series. 500 ohms 2 po conditlon. 4/6.
8.T.C. sealed! 2 pole c/o $48 \mathrm{~V}, 2.500$ ohm $3 / 6 \mathrm{ea}$

CARPENTERS polarised Single pole c/0 20 and 65 ohm coll as new. complete with bage $9 / \mathrm{s}$ ea. Single pole choonous chopper AEI type CK4. As new $17 / 6$ ea Top connector $2 / 6$ ea.
COLVERN Pots. Brand new. 10; 50; 100; 250; 500 ohms; 1:2.5; $5 ; 10 ; 25 ; 50 \mathrm{k}$ all at $2 / 6 \mathrm{ea}$. Spectal Brand new MORGANITE $250 K$ Lin. sealed. Normal price 9/- our price $3 / 6$ ea
INSTRUMENT POTENTIOMETERS. 3^{*} Colverns $5,25,50,100$ ohms; $2 \cdot 5,25 \mathrm{~K}$. All at $7 /=$ ea.
HIGH RESOLUTION Potentlometer. 25K. 80 turns AIMA with knoh. $6 / 6$ each. ALMA Drecis $3.25 \mathrm{~K} 0.1 \%$ /. ea
DUBILIER Electrolytic Capacitors. 32mfd 350 v DC. Brand new, 1/9 ea.

EL84 VALVES. EI. eq. Teated. 7/- pair.
PANEL SWITCHES. All high quality. SP, 1/- ea. DP, 2/- ea.: DP 2w, 3/6 ea
COURTENAY TIMER unlt. Accurate 1 gec timer Variable mark space ratio. Input 12v AC or DC. Heary duty relag contacts to switch external equinment, ek. with circuit diagram. 22/6 ea.
TRANSISTORISED stahlliser unit. High quallit. Input 24 v raw DC, output 20 v sinoothed, and 12 v Gainp. Brand new. Superb value at $25 /-$ ea.
Geared Motors. $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ synchronous. Geared down to 80 r.p.m. Brand new. $50 /$ ea. P. \& P. $7 / 6$ ea.
Mullard OC 35 's. 4/- ea.
E.H.T. Oondersers. 7.5 kV working. $0.1 \mathrm{mfd}, 5 / 6$ ea.:

Brand new $5 \mathrm{kV}{ }^{0.25 \mathrm{mfd}}$ at $10 / 6$ ea.; $10 \mathrm{kV} 0.05 \mathrm{mfd} 7 / 6$ ea VISCONOL E.H.T. Condensers. Brand new. 0.002 SURGESS M M O O O
BURGESS Micro Switches V3 b930. Brand new $6 / 6$ ea. BULGIN panel mountlig Lamp holders. Red. Brand new $2 / 3$ ea. PLESSEY pluss and sockets. Mark 1 and 7 Brand new PLESSEY plu
TRANSISTOR Stabllised Power Unit. $48 \mathrm{v}, 4 \mathrm{smp}$. TRANSISTOR Stabilised Power Unit. 48v, 4 smp Manufactured by E.M.I. Open chassis. Brand AMERICAN TX tuning units. TU7B $4.5-8.2 \mathrm{Mc} / \mathrm{s}$. VALVE VOLTMETERS. Marconl TF809. $57 / 10 \%$ carriage 10/: :TF428B, $\subset 3 / 15 /-$. carriage $10 / \cdot$: Airmec 784, EB , carriage $16 /$.

POLARAD SPECTRUM ANALYSER. 5° dis. Superb condition. Write or phone for details.

ATTENUATORS. STC push button 0/100 Dbs in 1 Db steps. DC $50 \mathrm{Mc} / \mathrm{s} .75 \mathrm{ohm} \mathrm{Imp} . \mathrm{C} 12$ ea.

19h. Rack Mounting CABINETS. 6ft, high. 2ft. deep. Side and rear doons. Fully tapned; complete with
Carriage at and wit.
SOLARTRON storage Oscilloscone type QD910 Erceptional condition. Carefully checked. CI75 each

SPECIAL OFFER

$$
\begin{aligned}
& \text { V.H.F. Recelver type } 715 \text { by BOC. Complete } \\
& \text { tested and working (leas cryptal). } 12 v \text { IDC input. } \\
& \text { Ideal conversion } 2 \text { and } 4 \text { meters. La good condtion. } \\
& \text { Bupplled with conversion data. Only } \& 3 / 10 /- \text {. }
\end{aligned}
$$

LABORATORY OSCILLOSCOPE. Solartron CD 643. Sin. tuhe. DC. $12 \mathrm{Mc} / \mathrm{s}$. Rise time 30 M Mlcro/s. TG $100 \mathrm{M} \mathrm{rec} / \mathrm{cm}$ to $0.1 \mathrm{Micro} / \mathrm{s} / \mathrm{cm}$ with no expansion;
with expansion 20 M Micro/s/cmin. Fine condition. NOW with expr
only 680 .

SOLARTRON EOUIPMENT
S.B. Oscilloscone. Type CD 513. $\$ 35$.

Pulse senerator. Type OPS 100C. $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mo} / \mathrm{s}$. $£ 25$. Lahoratory Amplifer. Type AWS51A. $15 \mathrm{c} / \mathrm{a}$ to 950 kc/B. \&40. Stablised P.U. Type SRS 152. $£ 12 / 10 /$.
MIC-O-VAC type 22 (CT54) Volts: Current: Ohms DC to $200 \mathrm{mc} / \mathrm{s}$ with probe. leads etc. As new $\mathrm{E}_{\mathrm{P}} .10 .0$.

CINTEL Microeecond Counter Chronometer. 6 digit.
CINTEL Microeecond Counter Chronometer. 6 digit.
Start-stop terminals. In nne oondition © 20 . Carr. $25 /$.
CINTEL Transigtorized Nucleonic Scalers with adjustable discriminator. count of 10 to the 5. In as new condition. $837 / 10 /$ each. Carr. $15 / \%$ AIRMEC Counter type 885 , 6 decades; bright vertical dipplay; sate faclilities. Very good condition
MULLARD Transistorized Analogue to Digltal Convertor Model L 281 . As new. 830 . Carr. 15/SUNVIC IDC Chopper Amplifier type ELLIOTT Dynamometer Model 5999 . Aocuracy 0.5 fsd. Perfect condition. \& $12 / 10 /-$ es. P. \& P. 1.
Spectal digcount to Universitlea, Bchools. etc.

MARCONI Audio Frequency Absorption Wattmeter type TF95B (CT44). Large 6° gcale. 1 micro watt to 6 watt. Excellent condition. 15 . P. \& P. 10/
BC221 Freauency Meter, 17.10 .0 ; with built-in Stab P.U. E22.10.0. Carriage 15/-. With Charts. METERS
TAYLOR $100-0.100$ micro amp. Scale size $4 \times 2 \mathrm{ln}$ Interial lamp scaled ${ }^{6}-0$. 6 . $£ 2$ ea. E.H.T. Electrostatic. Ernest Turner, etc. 0/750v. $£ 2$ ea GRIFFEN EEORGE. 3in. round. In sloped open ended case with terms. AC $50 \mathrm{c} / \mathrm{s}$. 3 types avallable $0 / 20$: $0 / 100$: and $0 / 250 \mathrm{v}$. \&l ea.

TRANSFORMERS. All standard lnputs.
18 v 6 amp and 12 v \& amp. Sep. windings, $18 / 6$ ea
18 v 12 smps at 63 es.
3 kV .5 mA . * $0.5 \mathrm{amp} \times 2.4 \mathrm{v} 1.1 \mathrm{amp}$. Frand new 5 ea.. ex. еq.. $63 / 10 /=$ ea. $350-0-35075 \mathrm{~mA}$. $5 v 2$ ampe $\times 2$ 21/- ea.
Gardners $6 \cdot 3 \mathrm{v} 2 \mathrm{~A} ; 6.3 \mathrm{v} 1.5 \mathrm{~A} ; 6 \cdot 3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{2} \times 41 \mathrm{in}$ Aariners. Potter. Multi 6.3° g combine to give 48 v at 4 smps or 6.3 at 45 A . With $350-0-350$ at 50 mA . A new. 62/10/- ea,
Parmeko/Gardners. Potted. 475-80-0-60-475 at 160 mA aparate winding 215.0215 at $45 \mathrm{~mA} ; 8.3 \mathrm{~V} 5 \mathrm{~A}$: 8.3 y $0 \cdot 75 . A: 5 \mathrm{~F} 3 \mathrm{~A}$. As new. $£ 3$.ea. Gardiers 400-350-0.350.400 at 250MA; 0/4/6.3v $4 \mathrm{amp} X$ 2: 0/4/6.32 amp: 0/4/5 3.5A. In original bores. C4/i0/inc. post. Gardiners 2 kV 10 MA . As new. ©3 incl. postage. postase. 8.3 v at 2 amp $\times 4.22 / 6 \mathrm{e}$ e
Parmeko 65 v 1 amp. Separate 0.18 .24 v at 0.5 amp . $30 /$ - ea Gard/Parm/Part. $450-400-0 \cdot 400-450$. 180 MA. $2 \times 6.3 \mathrm{v}$. 3 each.
E.H.T. Brand new 5 kV 5 MA with rectifler heater windling. Size $3 \times 3 \times 3$ inn. 27/6 ea.
ADVANCE Constant Voltase Transformers. 6 volte 30 Watt. As new E3 ea. P. \& P. 10/
Gardners $4 V 30$ anps. Brand new. e $i / 10 /$ incl. postage. 3 for $\leqslant 3 / 10 /$-incl. nostage. Spectal price bulk
CHOKES. $5 \mathrm{H} ; 10 \mathrm{H}$; 15 H ; up to $120 \mathrm{~mA} .8 / 6 \mathrm{ea}$. Up
 requirements. please.
PULSE AMPLIFIER. Type 1430A. Head amp atc. $0 \mathrm{c} / \mathrm{s}$ to $3 \mathrm{Mc} / \mathrm{s}$ 625. Carriage $30 /$.
SERYOMEX. Stabilized D.C. Power supplles type Cs. 0-s0 Volta. 0.7 amps. Sedaralo viling 0.15 Volts meters. \&40. Type 38 . bench mounting. $0-15$ Volts, plUGS EOCKETS. Quantity Brand New Cannon. Electromethods. Belling, Amphenol. etc. Mans of American manufacture. The Lot $£ 140$.
Cash with order \qquad Post paid over 10/-
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chitemead' prices. Calters welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

22 SUN STREET • READING • BERKS,
Off Cumberland Romd (Cemetery Junction) Tel. No. Reading 65916 (9 1.m. to 10 p.m.)

THE HI-FI AND TAPE RECORDER HANDBOOK
 by Gordon J. King

40/-
SERVICING WITH THE OSCIL
LOSCOPE by Gordon J. KIng. 28/-. Postage 1/-
THE SEMICONDUCTOR DATA BOOK by Motorola. 60/-. Postage $5 /-$. POWER CIRCUITS DCTAMICROWAVE by RCA. 20\%. Postage $1 /$. MODERN RELAY TECHNIQUES by M. L. Gayford. 50/-. Postage $1 / 6$. PRACTICAL INTEGRATED CIRCUITS by A. J. McEvoy $18 / \mathrm{-}$. Postage

SOURCEBOOK OF ELECTRONIC
CIRCUITS by John Markus. I72/6. Postage Free.
FET PRINCIPLES, EXPERIMENTS
AND PROJECTS by Edward M. Noll. 40/-. Postage $1 /$

RADIO COMMUNICATION

 HANDBOOK by R.S.G.B. 63/-. Postage 4/6.SCR MANUAL by International General Electric Company. 25/-. Postage 2/-. CATALOGUE 2/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Brisish and American Technical Books 1921 PRAED STREET, LONDON, W. 2
Phone PADdington 4185 Closed Sat. 1 o.m. WW-141 FOR FURTHER DETAIIS

Television Origination, Equipment

2 Complete E.M.I. Type 404 Telecine comprising:
A. 2×35 MM. Type GK 37 Modified.
1×16 MM. Type EL 5001 Modified. Vidicon Camera. Type 201.
Waveform Monitor. Type 302.
Picture Monitor. Type 301.
405/625. Optical and Magnetic Sound. Camera \& Interconnecting Cables. Pedestal Mounted. Power Supplies, etc.
B. Similar to above.

Slide Projector Type 408.
In Place of 16. MM.
E.M.I. Industrial Camera, Cable, Power Supply.
$2 \times$ E.M.I. Stabilising Amplifiers. $2 \times$ E.M.I. Sync Pulse Generators. Control Panel, Power Supplies. E.M.I. Oscilloscope WM8, Trolley, All First Class Condition.
Please reply to Box W.W. No. 2559

Electro-Yech sales

NEW HYSTERESIS MOTORS BY WALTER JONES. Type $14050 / 12,240 \mathrm{v} .50 \mathrm{c} / \mathrm{s} 1500 \mathrm{RPM}$ cont. rating, output $2.0 \mathrm{oz} / \mathrm{in}$. Size: Length (less spindie) 31°. Width $21^{\circ} \times 2 \frac{12^{\prime \prime}}{}$. spindle :- $\times 3 / 16^{\circ}$. Weight 3 lb . Maker's price in region of $\mathrm{E22.10.0}$. Our price 67.15.0 each. P. \& P. 5/न

New 75-0.75 Micro-ammeter by Sifam. 750 ohm movement, clear reading, 5μ divisions \times 1°; plastic front, prolection $1{ }^{1}{ }^{-1}$ (tapering forward). Size: $\frac{1^{\circ}}{\frac{1}{2}} 43^{3} \times 38^{\circ} \cdot 57 / 6$ each. P. \& P. 2/6.

New "Croydon" $1 / 50$ th HP, cont. rating 240v. A.C. motor, 1500 RPM, foot mounted. Size: $3 \mathrm{I}^{\circ}$ high $\times 5^{\circ}$ long + spindle length $11^{\prime \prime} \times f^{\prime \prime}$ dia. A really beautiful motor at A really beautiful motor at price. 66.10 .0 each. P. \& P. 5/-.

Robust M.E.S. Dual-circuit Panel Lamp by Thorne, adiustable length with press-to-test dome. $1^{\prime \prime}$ fixing hole. Available red, green, amber. $10 / 6$ each. P. \& P. free.

Isolation Transformers. 1 to 1.250 v . input, 250 v . centre tapped out, at 2 K.V.A., mounted in metal case measuring $82^{*} \times 81^{\prime \prime} \times 11^{\prime \prime}$ high. Weight 651 b . $618.10,0$ P. \& C. 25/-.

We have a large quantiey of Mullard Pot Cores, certain types only, also a very large quantity of Denco Neosid iron-duse cores. These items are suitable for industrial users and we would be pleased to give details upon request. Also in stock very large quancity of Torroid rings. Samples upon request.

EIECTROTICH SALES

SCHRACK ROTARY STEPPING RELAY RT304 48v. coil (28 ohm). The relay has 48 basic segments shorted in step by the 4 sweep contacts to 4 poleplates (banks of 12). There are 2 secondary switches: (1) one c/o $\mathrm{H} /$ Duty contact set which changes over and back with each step; (2) ewo H/Duty changeovers which changeover on each 12th step and return on the
 following pulse. Size: Base $3 t^{*} \times 1 \frac{1}{}^{*} \times 4!^{*}$ high. New in maker's packing, limited supply, also few only, as above, but 110 v . ($1,290 \mathrm{ohm}$ coil), E6.10.0 each P. \& P. free.

Precision Motor-driven Potentiometer
By "Precision Line" (U.S.A.). Con-
tinuous track with 2 platinum contact wipers set at $90^{\circ} \mathrm{C} . \mathrm{W}$. resistance 300 ohm only, $\pm 5 \%$ LIN $\pm 0.5 \%$, ball bearing spindle column. Size: dla. $113 / 32^{\circ}$, height $11 / 32^{*}$, spindle length $11 / 32^{\circ}$ by t^{*} dia. These potentiometers were purchased by the importer at a cost of approx. $£ 25$ each. Our price
 of approx. 25 each. Our
f6.15.0 each. P. \& P. free

Berco Rotary "Regavole," variable voltage trans. formers input 240 v . $50 / 60 \mathrm{eps}$., output $120-0-120 \mathrm{v}$. ae 6 amps. Not new, but in lst class condition. Few only, 69.10.0. P. \& C. 10 /.

K.L.G. Sealed Terminals. Type TLSt AA, overall lengeh $11 / 16^{*}$, box of $100,25 \mathrm{~s}$. Type TLSI BB, overall length P. \& P. Free.

D

MINIATURE "LATCHMASTER" RELAY Either 6, 12. or 24v. D.C. operation. One make one break, con-
tacts rated 5 amps at 30 voles. Once current is applied, relay remains latehed untit input polarity is reversed. Manufactured for high
 quirements by
Sperry Gyro-
scope Co. Size: Length \mathbf{H}^{*}, dia. $9 / 16^{\circ}$ (including mount) Actual size as illustrated. Please state vertical or horizontal mount. $\mathbf{6 3 . 1 0 . 0}$ each. P. \&. free.

New beautifully-made 3 change-over Key-Switch. Neat action, either locking or spring-return, as required determined by reversing fix-ing-plate. Attractive plastic prestle. Available red, green, grey, cream. Limited number

New "Magnetic Devices" solenoid 240v. A.C. Type 42117, 1 to 3 ib . pull, frame size $11^{2} \times$ $18^{\circ} \times 1^{\prime \prime}$. 20/- each. P. \& P. free.

$4 \frac{1}{2}$ v. to 9 v . Solenoid. $1^{\prime \prime}$ pull. Very powerful, length $1 f^{\prime \prime}$, dia.

"AUTOMATIC ELECTRIC"

 enclosed relays$6 \mathrm{v} .50 \cap 2 \mathrm{c} / \mathrm{o}, 14 / 6$ $24 \mathrm{v} .470 \Omega 4 \mathrm{c} / \mathrm{o}, 15 / 6$
$48 \mathrm{v} .2 .780 \mathrm{n} 4 \mathrm{c} / \mathrm{o}, 15 / 6$ $48 \mathrm{v}, 1,260 \Omega \mathrm{c} / \mathrm{o}, 18 / 6$ P. \& P. free.

MINIATURE

B.P.L 500-0/500 Micro-Ammeter. 13/16" Diam scale. Through-Panel mounting. 45/-. P. \& P. free.

LABORATORY EQUIPMENT. We have a very wide range of laboratory equipment of all kinds; centrffuges, ovens, balances, etc.; all types of lab. glassware far too diverse to advertise or to enter into correspondence over. All new equipment but well under maker's prices. Callers only. We are sure you will be delighted with the variety of items available to you at our newly acquired premises at:
264 Pentonville Road, N.I (one min. from Kings X Station). Tel. TERminus $7401 / 2$

WW-130 FOR FURTHER DETAILS

 Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 1 st January 1970.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept.wwio), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

R.S.T. Valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD
STREATHAM, S.W. 16

R13/203
$1201-$

12ACE 101-

\qquad

Express postage 9d. per valve.
Ordinary postage 6d. per valve. Over 65 postage free.
Tel. $01.7690199 / 1649$

SEND S.A.E. FOR LIST of 6,000 TYPES

SPECIAL MONEY SAVING DISCOUNTS

on the Best Hi-Fidelity Equipment on the Market Today

AMPLIFIERS	Rec.		Playing decks	ec. Retail Price	Discount Price	
ARENA F210 2×10			GARRARD 401			
Sutereo Amplifier reak case	${ }_{625} 280$	229 617 5	GARRARD AP75		${ }_{6} 17$	
DULCL 207 M as above			GAR	661210	c 5	
GOODPMANS Maxamp teak or	C30	121 is	GARRARD Sl9s		634 830 80	
LEAK Waln	C54 0 0	42	GARRARD SL65	${ }^{1} 18184$	614	
$\begin{gathered} \text { LEAK St } \\ \text { model } \end{gathered}$		44310	GARRARD SL55	${ }^{1013} 17878$	${ }^{4} 11418$	
LEAK Ste	65910	648	GA	$\begin{array}{llll} \\ 12 & 4 & 10\end{array}$	410	
Leak 5	663 689 10	(50 6	GARRARD 2025	611311	410	
Leak ste	64610	${ }_{639} 100$	GARRARO ${ }^{\text {GOLORING }}$	10 625 625		
NKKO	c9s 0	C84 10	GOLORING GL75	63515	428	
Ger	C64	C54 10		${ }^{466} 188$	237 210	
ROGERS RAV		c 3	THORENS TDI50A	${ }^{2} 35146$	63110	
ROGEERS RAVENSBROOK'		13410	THORENS TOISOAB	$\begin{array}{r}639 \\ 63 \\ \hline 68\end{array}$	${ }_{654}{ }^{3} 510$	
$\sin ^{\text {in teak }}$ caus		65910	Plinths, sops and accessories of above available at 10% discount on retall price.			
SANSU	680 654 64 12					
ROGERS Cader M			Stereo Cartridges			
$\square_{\text {OLsed }} 33$ Cont	63710	[34 10				
303 Power Amplifier	C98	6210 622	AUDIO TECHNICA AT66	${ }^{6} 6{ }^{6} 8$	¢3 10	
TELETON	628		SHURE 3	6_{12}^{19}	81110	
FM TUNERS			SHURE 3	C12 011	${ }^{16}$	
AREN	C3	63415	SHURE 44 E	41516	${ }^{112} 19$	
Dutci	${ }_{629}{ }_{6} 29$	21810	SHURE M75	${ }^{2} 2188$	${ }^{23} 35$	
GOODMA			LDRING CS90	${ }_{6} 40$		
ere	C82 10	c70 10	LDRING boo	$\mathrm{Cl}^{3} \mathrm{O}$	[11 12	
	651106	639100	TEREO TAPE DECKS ANO RECORDERS			
AK Stereo T		<48 10				
QUAD Stereo Tun	(c51		AlWA TP 1006H prolessional\| 620718 0	6169 10		
TUNER AMPLIFIERS			rofession	61646	613910	
ARENA TI 500 teak only	664		tape recordar	E63 10	1710	
			tape recorder, 2 detachab			
ARMSTRONG 425	${ }^{698}$	279100	SANYO MR80i stereo ta	100	88910	
B \& O Beomaster 1000 GOODMANS 3000		$\begin{aligned} & 94 \text { 100 } \\ & 697 \text { (with } \\ & \hline \end{aligned}$		47900	667100	
		deco	BATTERY/MAINS PORTABLE TAPE RECORDERS			
		- 61200	GRUNDIG C 2200	697		
	(129 6110	114 10 6147 10	NATIONAL ROU015	C22	23180	
SANYO DC60 $\times 30$ watts rms	¢169 69	${ }^{689} 100$	NATO NAL ROIS35 NATIONAL ROI585			
			NATHONAL RQIS8S ${ }^{\text {NatiO }}$			
teleton			TOSHIBA Recorder			
rms	64300				${ }^{\text {unis }}$	
fier with 2 speaker enclosures	67019		ARP RD 303E	62980	-	
			COMPLETE HI-FI SYSTEMS			
SPEAKERS			Illips Gf818 Philips auto-			
(Prices quot specified)						
ARENA HTI4 bookshelf type			RADON 404 SYSTEM Garrard SP25. separate 2×8 watt amplifier, 2 bookshelf eype	651		
ARENA HTIO ieak or rose-	6143	61210				
	E1	17 617 17 18	Wípakers, teak or blond oak T/C. integrated 2×4 wate	65740	649	
CELESTI						
- Mans Maxim ii			er, 2 separate speak-		449196	
GOODMANS Maznum K	[40	K29 15 \%				
LEAK Sandwich	C23					
LOWTHER A Acousta PM6			Eion turnsale, masnetic			
LOWTHER Accousta PM7	55510	55010 \%	fitted hinged perspex			
	C43 10	63710 \%	inue finisparate speaker	C82 19	675	
UAD Elertrort	666	659100	SANYO DC534E Transcription turntable, marnetic cart-			
	C33 12	229100	ridge, integrated tuner/ amplifier. 2×12 watts rms. decoder, fitted hinged pers-			
Wharfenale Super Linton						
ARFED	6	832196		413210	$\begin{array}{rll} 6119 & 10 & 0 \\ 432 & 10 & 0 \end{array}$	
Kit ${ }_{\text {kreme }}$	61017		eching SANYO peakers per palr	637160		

All goods are in manufacturer's sealed cartons and are insured against loss or damage in transit. Guaranteed "by return" service. Add 7/6 to all orders for p. Ep. Send cash/cheque with order to:

Smith's Radio Service (Wolverhampton) Ltd.

Mail Order Department, 26 Victoria Street, Wolverhampton, Staffs. Tel: Wolv. 29246

NEW TITLES
 FROM BUTTERWORTHS IIIFFES - NEWNES

Electromagnetic

Theory: Problems and Solutions
Volume 1
By K. Foster, MA, and R. Anderson, BSc.
This book provides in convenient form a number of carefully selected problems and solutions which the student often finds lacking in his other teaching books. The authors believe that the subject of electromagnetism cannot be thoroughly understood until the student has been able to spend some time solving problems on the subject matter. The selection of problems has been made with various criteria in mind: techniques the student must acquire, representative problems from exam papers, development of the necessary elusive 'feeling for the subject' and practical examples based on experimental results derived from field platting equipment. This volume should admirably meet the needs of students who are undergoing the first year of a course of electromagnetic theory for an engineering, physics or mathematics degree.
1969212 pages illustrated limp 30s.

Radio and Line
 Transmission-Vol. 1
 2nd Edition

By G. L. Danlelson, MScTech, BSc, CEng, MIEE.
This volume and its sequel (coming shortly) are written with the intention of providing a broadly-based introduction to the subject of communications and to the basic theory necessary to its understanding. In this second edition, the opportunity has been taken of bringing the material of the book into line with recent developments and with changes in the major syllabuses, particularly that of the City and Guilds.
1969276 pages 239 illustrations 25 s.

Television Engineering Principles and Practice Volume 3:
 Waveform Generation

By S. W. Amos, BSc, CEng, MIEE, D. C. Birkinshaw, MBE, MA, CEng, FIEE, and K. H. Green, CEng, MIERE.
The first edition of this textbook written by members of the BBC Engineering Division was very well received. Now sections, such as information on circuits based on transistors, have now been added to the original material which deals with the application to television of sinusoidal, rectangular, sawtooth and parabolic waves. Also, sections dealing with the generation of waves have been extensively re-written. Television engineers and engineering students should find this volume most helpful.
1969268 pages 156 illustrations 70 s.

Available from your bookseller or:
THE BUTTERWORTH GROUP
88 Kingsway
London WC2
WW135-FOR FURTHER DETAILS

gENUINE ONCE A YEAR CLEARANCE SALE

25 ONLY TO CLEAR. All brand new and in original CASES \& PACKING. Currently being advertised at $£ 85-0-0$ for
used ones.
OUR PRICE while they last 225-0-0 P. \& P. 30/-. And these are NEW with money back guarantee.

TRADE ENQUIRIES FOR QUANTITY RATE

MARCONI TFBOI-/A SIGNAL GENERATOR $10=300 \mathrm{mc} / \mathrm{s}$ in 4 bands. Internal mod at $400 \mathrm{c} / \mathrm{s}$ $1 \mathrm{Kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Kc} / \mathrm{s}$. Output $0-100 \mathrm{db}$. Below 200 mv at 75 a source. Complete will full kit of spares. All leads and instruction book.

12 only to clear in mint condition. $0-100 \mathrm{Kc} / \mathrm{s}$. Auto or Man. count.

${ }_{\text {paice }}^{\text {OUR }} £ 25$
 P. \& P. £1-0-0

TRADE ENQUIRIES FOR QUANTITY
6 only left to clear at $£ 50$ each This signal generator is currentily advertised at double this firure. Ours are in mint condition and oomplete with all leads. (Money hack if not satisfled.) Marconi A.M. F.M. slgnal generator T.F. 937 (CT218). 56 F.T. film scale, $85 \mathrm{Kc} / \mathrm{s}=$ $30 \mathrm{mc} / \mathrm{s}$ in 8 rankes. Output: 1 uv- 100 mv at 75 ohms. Bigh level output of 1 v . Internal modulation $400 \mathrm{c} / \mathrm{s}=1 \mathrm{Kc} / \mathrm{s}=1.6 \mathrm{Kc} / \mathrm{s}=3 \mathrm{Kc} / \mathrm{s}$. A.M. $15 \mathrm{Kc} / \mathrm{s}=90 \mathrm{Kc} / \mathrm{s}$. Deviation F.M. Extnl. $=$
$50 \mathrm{c} / \mathrm{s}=12 \mathrm{Kc} / \mathrm{s} . \quad$ Built-in eryatal callbrator.

We also have 5 T.F. 948 models left at the asme rldiculous price of C50, which are the same as above, but frea. range $20-80 \mathrm{mc} / \mathrm{s}$ in 2 bands with F.M. deviation up to $600 \mathrm{Kc} / \mathrm{s}$.
We hold very large stocks of test equipment, telenrinter and telegraph enulpment. Millions of new condensers. Industrial valvea and components. (Trade enquirís invited.) Send $2 / 8$ for stock list.

THE TRADING POST

technical division
4 CASTLE STREET, HASTINGS, SX. Telephone: Hastings 2875
WW-132 FOR FURTHER DETAILS

EDDYSTONE

 COMMUNICATION RECEIVERSFROM $\mathbf{£ 5 9 - 1 0 - 0}$ covering 10KHZ-870MHZ ILLUSTRATED LEFT-830/7 HIGH GRADE G.P. HF/MF RECEIVER COV ERING 300KHZ-30MHZ IN 9 RANGES. double CONVERSION FROM 1.5 MHZ. PANORAMIC UNIT FOR VISUAL DISPLAY.

south coast eddystone centre

 COSH \& HAMMOND29 BEACH RD., LITTLEHAMPTON, SUSSEX.TEL: 4477 EXPORT WELCOMED-RANGE IN STOCK-COMPONENTS WW-133 FOR FURTHER DETAILS

USED THROUGHOUT THE WORLO, SANWAS EXPERIENCE DF 30 YEARS ENSURES ACCURACY reliability, Versatility. unsurpassed tester performance comes with every sanwa 6 Months Guarantee - Excellent Repair Service Madel P-IB
Model JP 50
Model U-50D
Model 360-YtR
Model $380 . C D$
Model $380 . \mathrm{CD}$
Modet F-80TRO
Model 430 -ES
$\begin{array}{lrl}63 & 7 & 6 \\ 55 & 10 & 0\end{array}$
$\begin{array}{lll}\text { £3 } & 7 & 6 \\ 65 & 10 & 0\end{array}$
$\begin{array}{r}6117 \\ 613 \\ \hline\end{array}$
$\begin{array}{lr}613 & 5 \\ \text { f13 } & 15\end{array}$
$\begin{array}{rrr}£ 13 & 15 & 0 \\ \text { £19 } & 0 & 0\end{array}$
$\begin{array}{lll}119 & 0 \\ \mathrm{f} 51 & 0 & 0\end{array}$

LATEST RELEASE OF

 RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from £45 to $£ 60$, carr. $£ 2$.
*SET OF VALVES : new, $£ 3 / 10 /$ - a set, post 7/6; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; 17 \& 18; 23 \& 24; and 27 and 28. Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, 3×0.01 mfd., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/- post. Output transformers 901666-501 27/6 each, 4/- post.

MARCONI SIGNAL GENERATORS

TYPE TF-I44G

Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $+/-1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: contiruously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements: $19 \ddagger \times 12 t \times 10$ in. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/-. DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C.. @ 1.8 amps , ROTARY CONVERTERS: Type $400 \mathrm{c} / \mathrm{s} 3$ phase, $\varepsilon 6 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA $400 \mathrm{c} / \mathrm{s} 3$ phase, c8/10/- es
output, 25% each, post $2 / \mathrm{F}$
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /$ - each, carr. $15 /-40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C., $\mathrm{E} 3 / 10 /-$ each, post $10 /-$
 $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}$, post $3 / \mathrm{c} .8 \mathrm{mfd}, 600 \mathrm{v}$,
 each, post 7/6. $0.25 \mathrm{mfd}, 32,000$, 25 Kv . Price \&1 for 5. Post 2/6. Capacitor: each, $1 / 6$ post. 0.01 mfd . M1CA
$0.125 \mathrm{mfd}, 27,000 \mathrm{w}$ wg. $£ 3.15 .0$ each, $10 /-$ post.
AVO MULTLRANGE No. 1 ELECTRONIC TEST SET: £25 each, carr. $£ 1$. OSCILLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s}, 750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $22 / 30 /$ each.
COSSOR 1049 Mk . 111, £45 each, $30 /$ - carr.
RELAYS: GPO Type 600 , 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $\Sigma 2$ each, $6 /-$ post.
12 Small American Relays, mixed types £2, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; Many Prices and further details on request 6 d .

GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m. $30 /$-each, /- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $\varepsilon 2$ each, 5/-post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m.s, output 26 watts, 5 inch serew thrust, reversible, torque approx. 25 lbs. , rating intermittent, price $£ 3$ each, post 5/-.

SYNCHROS : and other special purpose motors available. Britiah and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /-$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $\$ 7 / 10 /-$, £1 carriage.

FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, 60$95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: BC-640 Transmitter, 100 -156 $\mathrm{Mc} / \mathrm{s} ., 50$ watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, 28 v.D.C. input. Also have associated equipment. BC-375 Transmitter, GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinct Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Directional Anterina CRD.6; Comparator Unit, CM. 23 . Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth TS.622/U.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. © 2 amps., $82 / 10 /-$ each, carr. $12 / 6$.
AUTO TRANSFORMER: 230-115 v.; 1,000 w. L5 each, carr. 12/6. 230-115 v.; A00VA, \&3 each, carr. 10\%.
OHMITE VARIABLE RESISTOR: 5 ohms, 51 amps; or 2.6 ohms at 4 amps. Price (either type) 82 each, $4 / 6$ post each.
POWER SUPPLY UNTT PN-128: 230 v . A.C. input, 395-0-395 v. output @ 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors Mounted in 19 in . panel, £6/10/-each, \&1 carr.
TX DRIVER UNIT: Freq, $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s ; complete with
filament transformer 230 v . A.C. Mounted in 19 in . panel, £4/10/- each, $15 /-$ carr.

POWER UNIT: 110 v. or 230 v . input switched; 28 v. @ 45 amps. D.C. output. Wt. approx. $100 \mathrm{lbs} ., ~ £ 17 / 10 /$ - each, $30 /$ - carr. SMOOTHING UNITS suitable for above $£ 7 / 10 /-$ each, $15 /$ carr.
DE-ICER CONTROLL.ER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. 235 ohms colith Chronometric governor $20-30 \mathrm{v}$., 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenolds, 1 delay relay etc., sealed in steel case ($4 \times 5 \times 7 \mathrm{ins}$.) 83 each, post $7 / 6$.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7 / 10 /$ eech, $15 /-$ carr.

[^7]NIFE BATTERIES: 4 v. 160 amps , new, in cases, $\mathbf{~} 20$ each, $\mathrm{f} 1 \mathrm{l} 10 /$ carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 30/- each, postage 5/-.
UNISELECTORS (ex equipment): 5 Bank, $50 \mathrm{Way}, 75$ ohm Coil, alternate wipe, £2/5/- each, post 4/-.
FREQUENCY METERS: BC-221, meter only £30 each, BC-221 complete with stabilised power supply $£ 35$ each, carr. $15 /-$. LM $13,125-20,000 \mathrm{Kc} / \mathrm{s}$, $£ 25 \mathrm{each}$, carr. 15/-. TS. $175 / \mathrm{U}, \mathrm{X} 75 \mathrm{each}$, carr. £1. TS323/UR, $20-450 \mathrm{Mc} / \mathrm{s}$, , 75 each, carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting raţe: $20-100,000$ events per sec. Time Base Crytal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: 115 v , $50 / 60 \mathrm{c} / \mathrm{s}$., £100 each, carr. £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{~K} \mathrm{c} / \mathrm{s}$., directly calibrated. Power supply 1.5 v.-22 v. D.C. $£ 12 / 10 /-\mathrm{each}$, carr. ${ }_{3}^{2}$
CATHODE RAY TUBE UNIT: With 3 in . tube, colour green, medium persigtence complete with nu-metal screen, $£ 3 / 10 /-$ each, post $7 / 6$.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s} .$, complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /-$.

MARCONI	TEST EQUIPMENT					
	TF-142F	Distortion Factor	Meter			c85 each
	TF-1274	VHF Bridge Osc	llator	.		£75 each
	TF-1275	VHF Bridge Det	ctor	\cdots		\&75 each
	TF-1067/1	Heterodyne Freq	uency M			c85 each
	TF-899	Valve Millivoltm	ter	.		E35 emch
	TF-978	VHF Admittance	Bridge	.		C85 each
	TF-894A	Audio Tester .	.			c75 crach
	TF-868	Universal Bridge	-			E.75 each
	TF-329G	Circuit Magnifica	tion M			E45 each
	TF-428/2	Valve Volimeter	-			/10- each
	TF-726C	UHF Signal Gen	erator			¢65 each
	TF-934	Deviation Test M	Meter			£35 each
	6075A	Deviation Test M	eter			c85 each
	TF-987/1	Noise Generator				£20 each
	TF-956	(CT.44) A.F. Ab	sorption	Watt		£20 each
FIRZ HILL	V. 200	Sensitive Valve V	oltmete			£35 each
	B. 810	Incremental Indu	ctance			£75 each
SOLATRON	CD-513	Oscilloscope ..	-	-		E45 each
SOLATRON	CD-513-2	Oscilloscope	.	..		$10 /-$ each
	AW-553	Power Amplifier	.	.		E30 each
AIRMEC	Type 701	ignal Generator	.			£50 each
POLARAD	Type MS	G-1 Microwave Mc / s	Signal	Gene		\&100 each
PHILLIPS	Type GM	6008 Valve Voltm	eter . .			c35 each
DAWE	Type 402C	Megohm Meter	.	-	-	£12 each

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc,, power input 12V. D.C., new cond, M.C.
complete set $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /=$,
Transmitter only $£ 7 / 10 /$ (few only) Carr. $15 /-$. Power Unit for Rec., new $£ 3 / 5 /-$. Used power units in working order $22 / 5 / \mathrm{F}$. Carr $10 / \mathrm{F}$.
AVOMETERS: Model 47A, £10 each, 10/- post. Excellent secondhand cond. (meters only).
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ £3 each, 5/- post. 90 ohms per step. 10 p
total value 900 ohms. 3 Gang. Tolerance $\pm 1 \%$ £3/10/- each, $5 /-$ post.

TEL.ESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . \& 5 cach $+10 /=$ carr. Or £ 9 for two $+£ 1$ carr. (brand new condition).

[^8]ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

KEYTRONICS

52 Earls Court Road, London, W.8.
MAIL ORDER ONLY
01.478 .8499

WW-137 FOR FURTHER DETAILS

TRANSFORMERS

COILS
LARGE OR SMALL QUANTITIES
CHOKES
trade enquiries welcomed
SPECIALISTS IN
FINE
WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY $01-6532261$

CR4.8LZ
EST. 1933

CTruer for interveted lircuits

LINEAR INTEGRATED CIRCUITS FOR
ALL YOUR REQUIREMENTS

Plessey Type SL403A 3 Watt Audio Amplifier
49/6

G. E. Type PA230 Low Level Amplifier .. 21//
G.E. Type PA234 1 Watt Audio Amplifier
G.E. Type PA237 2 Watt Audio Amplifier
$21 /$.
G.E. Type PA246 5 Watt Audio Amplifier

RCA Type CA3000-D.C. Amplifier
34/-

ACA Type CA3011 Wide Band Amplifier 57/-

RCA Type CA3020 $\frac{1}{2}$ Wart Wide Band Amplifier
RCA Type CA3028A Differentia//Cascode Amplifier (120 MHz)
RCA Type CA3029 Operational Amplifier
RCA Type CA3035 Ulitra High Gaín Amplifier
Mullard Type TAA263 A.F. Amplifier
Mullard Type TAA293 General Purpose Amplifier
Mullard Type TAA310 Record/Playback Pre-Amplifier
Mullard Type TAA320 MOS LF. Amplifier
G.E. Type 2N5306 Darlington Pair
G.E. Type 013 T1 Programmable Unijunction Transistor separately at $1 / 6$ each post free.
Send now for our COMPONENTS CATALDGUE at only $2 /$ - post free. This catalogue is packed with information on a host of up-to-the-minute componems by leading manufacturers. Included are International Rectifier Products. Resistors, Capacitors, Veroboard. Plugs and Sockets, switches etc.
Please note that all goods supplied by us are brand new and guaranteed to fully conform to the manufacturer's published specifications.
DISCOUNTS: Order Value of $£ 5-10 \%$: Order Value over $£ 10-15 \%$. Cash with ordep
nlease Post and packing 1/6 per order.

GELEGTRONIDSLTD
 STONE LANE KINVER
 STOURBRIDGE WORCS Telephone: KINVER 2099

WW- 138 FOR FURTHER DETAILS

ELECTRONICS

APPOINTMENTS LTD.

NORMAN HOUSE • 105/109 STRAND • LONDON •W.C. 2
TEL•OI-836 5557

WW-139 FOR FURTHER DETAILS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to 8ubs and 8ubs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter•departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

7-STATION INTERCOM

(1 MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{\mathrm{i}} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De.Luxe Pcrtable Transistor TELEPHONE AMPLI. FIER which enables you to take down long FIER which enables you to take down long elephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to perate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W 2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

Complete stereo system - 28 gns.

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veaeer, with matahing vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Type 1 SPECIFICATION:
Impedance 10 ohms. If incorpcrates Gondmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $21^{\prime \prime}$ tweeter. Teak finish $12^{\circ} \times 63^{\prime \prime} \times 57^{\prime \prime} .4$ guineas each. $7 / 6 \mathrm{~d}$. p . Ep Type 2 as type 1. Size $17 \frac{1}{2}^{\prime \prime} \times 10 \frac{7}{}_{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime}$, Incorporating Elac $10 \frac{1^{\prime}}{2} \times 6 \frac{1^{\prime}}{4}$ 10,000 lines and $2 \frac{1}{2}$ "weeter. 3 ohns impedance $5 \frac{1}{2}$ guineas plus $7 / 6 \mathrm{~d} . \mathrm{p} .8 \mathrm{p}$.
Garrard Changers from E7.19.6d. p. © p. 7/6d. Cover and Teak finish Plinth $\mathrm{C4} .15 .0 \mathrm{~d}$. 7/6d. p. © p

- erate Integrated Trensistor Stereo Amplifier
 9 GNS.

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: 3 watts per channal into 10 ohms speakers

INPUT SENSITIVITY: Suitable for redium or high output crystel cartridges and tuners. Cross-tak better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTIdges and tuners. Cross-tale better than (2 pos. mono and 2 pos. stereo) CONTROLS: 4 -position sele
dual ganged volume Control.
TONE CONTROL. Treble lift and cut. Separate on/off switch. A preset balance control.

Whe blassic teak finished case 81 $\frac{1}{2}$ GNS. plus $7 / 6$ p. \& p.
Buit ond tested

SPECIFICATION

Sensitivies for 10 watt output at 1 KH : into 3 ohms. Tape Head: 3 mV (at $3 \frac{1}{4}$ i.p.s.). Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Tuner: 100 mV . Aux. 100 mV . Tape/Rec. Output: Equalisation for e日ch input is correct 13 dB within $\pm 2 \mathrm{~dB}$ (R.I.A. A) from 20 Hz . 20 Hz . Treble +14 dB Control Renge: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total Distortion: (for 10 watt output) $<1.5 \%$.
Signal Noise: $<-60 \mathrm{~dB}$. AC Mains $200-250 \mathrm{v}$. Size $12 \frac{1}{2}^{*}$ long. Δt^{*} deep. 24^{*} high.

OUTPUT: 10 watts 2er channel into 3 to 4 ohms speakers (20 watts) monoral. INPUT: 6-position rotary selector swith 13 pos. mono and 3 pos. stereol. P.U. Tuner. Tape and Tape Rec. out Sensitivities: All Inputs 100 mV into 1.8 M ohm.
FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 20 \mathrm{~B}$.
TONE CONTROLS: Separate bass and treble controle. TREBLE 13 d 8 lift and cu: (at 15 KMz) BASS: 15 dB lifh and 25 dB cut (at 50 Hz).
VOLUME CONTROLS: Separate for each channel. AC MAINS INPUT: $200-240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Viacount Mark II for use with magnetic pick ups spacification as above. Fully equalised for magnetic pick ups. Suirable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Inpur Impedance 47 k .15 gns plus $7 / 6$ p. \& p.

OUTPUT: 10 walts into a 3 ohmês speaker INPUTS: (1) tor mike ($10 \mathrm{~m} . \mathrm{v}$.) Inpur TRANSISTORS: 4 silicone and three germenium.

THE DORSET

 (600mW Output)£5.5.0
plus 7/6 p. \& p. Circuit 2/6. FREE WITH PARTS MAINS POWER PACK KIT: 9/6 extia.

THE RELIANT MK.II
Solld State
General Purpose Amplitior In teak-finished case
$6 \frac{1}{2}$ GNS.
$+7 / 6 \mathrm{p} .8 \mathrm{p}$.

MAINS INPUT: $220 / 250$ volts
SIZE: $10 \mathfrak{T}^{\prime \prime} \times 44^{\prime \prime} \times 2 \frac{1}{2}$
MIKE TO SUTTCRYS
MIKE TO SUIT ICRYSTAL): 12/6d. $1 / 6 \mathrm{~d}$ \&
$8^{7} \times 5^{\prime \prime}$ seaaker $14 / 61$. 4 3/-p. \& P.
Mk. 1 5jens. $+7 / 6 \mathrm{~d}$. p. \& p. Iess Teak-finished case.

7-tranaistor fully sumable M.W.-L.W. superthet portable Set of paris. Complete with all components. Including ready etched and drilled
foolproof construction

ELEGANT SEVEN MK. III
(350 mW Output)
£4.9.6
plus 7/6 P . \& p
Circuit $2 / 6$. FREE WITH PARTS
MAINS POWER PACK
KIT: 9/6 extra.

X101 10w. SOLID-STATE HI-FI AMP

With Integral Preamp.
Specificationsi. Power Ourpur linto 3 ohms speaket

 $\begin{array}{llll}5 & \text { metts } & 0.35 k: & A t \\ \text { Ressponse: Minsus } \\ 3\end{array}$
 vohage: 24v D.C. at $800 \mathrm{~mA} .(6-24 \mathrm{v}$ maty be useef).

69/6 plus 2/6 p. 8.
control assembir: lincluding msistors and capaciors). 1. Volume Price 5 -

50 WATT AMPLIFIER

 with six electronically mixed inputs. Suitable for use with: weble gutars. gram, tuner, organ. etc. Separate bass and
controls. Output impedance
und
und

SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head 2 DUO speaker systems size $12 \times 6 \frac{x}{}$. ${ }^{2}$. Plinth (less cover) and the DUETO stereo amplifier. All above items

19 GNS. plus 20\%

MOTEK

3 speed 2 track Tape Deck complete with nesads. Takes 7 in. spool. Incorporating 3 ${ }_{\text {E21 }}$ mutors. A.C. mains. 240 volis, listed at

Our Price $£ 9.19 .6$

CA8005 RF Amplifler with $100 \mathrm{mc} / \mathrm{s}$ bandwidth. Max. dissipation 26 mW . For use us RF ampilfler, balanced mixer, product detector or self-osciliating míxer.
CA8012 Wide Band Amplifler (up to $20 \mathrm{mc} / \mathrm{s}$), sultable as IF Amplifler for VHF/FM recelvers. $22 /$ CA 3020 General Purpose Audio Amplffer of 550 mW output.
CA3036 Buffer Amplifter conslating of two "super alpha" pair of transistors sultabie for stereo pick-up systems.
The above four I.C's are in TO5 encapsulation PA222 Andio Ampllfer providing a max. output of
PA234 Audlo Ampllfier providing a max. output of PA237.
watts Audlo Amplifer
.
PA237 2 watts Audio Amplifler.
The above three I.C's are in epoxy moulded double The above three I.C'
four-in-line package.
MC1700CC General Purpose operational amplifler in TO-09 case. TAA268 3-stage direct coupled amplifler for use
from DC to $600 \mathrm{kc} / \mathrm{s}: 70 \mathrm{~mW}$ dissipation. Output from DC to $600 \mathrm{kc} / \mathrm{s}$: 70 mW dissipation. Output TAA 2983 -stage ampliter with connection brought out to the mdividual leads. Band width $600 \mathrm{kc} / \mathrm{s}$ TAA820 MOST input stage followed by a $20 /$ tranststor stage. 200 mW dissipation.
Data sheets are avallable for all the above I.C's.

WESTINGHOUSE EPOXY ENCAPSULATED WIRE ENDED MINIATURE RECTIPIERS
 NS408, 1,000 p.L.v.. 3 anpa D.C.; mar, aurge 200A. Diameler

ZENER DIODES

$\begin{array}{llll}\mathrm{K} 8139 \mathrm{~A} & 3.9 \mathrm{~V} & \mathrm{KR1B8A} & 6.8 \mathrm{~V} \\ \mathrm{~K} 817 \mathrm{~A} & 4.7 \mathrm{~V} & \mathrm{D} 814 \mathrm{~A} & 7 . \mathrm{eV}\end{array}$
K8iseA 5.6 V D814B ${ }_{\text {B. }}^{\text {B.8 }}$ 5 watta 8 stud mounted 25% toleranco ${ }_{22}^{27}$ D 816 A
toleranco
39V D8160
D188D
$\begin{array}{ll}27 \\ 33 V & \text { D8168 } \\ 3816 \mathrm{~V}\end{array}$
56 V Dp17A
All at $7 / 6$

D814V
Delt
11.3 V

D814
D814 $11.0 V$
$12.6 V$
wathe geud Mounted $\mathbf{2 5 \%}$
$\begin{array}{ll}\text { 4.7V } & \text { D8151 } \\ \text { 5.8V } & \text { D815A } \\ \text { 6.8V } & \text { D815B }\end{array}$
$\begin{array}{ll}\text { 8.2V D815V } \\ 10 \mathrm{~V} & \mathrm{D} 815 \mathrm{~g}\end{array}$
8RV D817R
$\begin{array}{ll}200 \\ \text { O2 } & \text { D817V } \\ \text { D817G }\end{array}$

12 V D815D
$\begin{array}{cc}\text { 18V } \\ \text { 18V } & \text { D815E } \\ \text { D815Z }\end{array}$

SPECIAL OFFER OF
PNP GERMANIUM TRANSISTORS

 iree air or $1 \cdot 1$ W on heat nink. Price, per palr, $8 /$ /Max. collector-base voltage - 2 VV . Max collector current 30 mmA .
Price, each

SILICON MATCHED DIODE PAIRS IN4981 Two dhodes in common TO92 epoxy case. Beparate anode lemis and joint cathode. Dhoder are statlenlly and slinat ion 200 mW . Salable for TV horizontal phave discrimisatora
and nimilar applicationa. Price $3 /$ etach. Considerable discount and mimilar ab

DIGITAL VOLT-OHMMETER BK 2-6

Flectro-mechanical instrument with sequential energization of electro-magnetic relays. Projection systern display. Automatic range and polarity
voltage measurement range

> 0.01 to $1,000 \mathrm{~V}$. D.C. only. Accuracy: Input resistance: $\quad 1$ megohm minimum Resistance measurement rance: Resistance measurement range: 100 ohms to $1999 \mathrm{k} / \mathrm{hhms}$ Accuracy: Sampling: Hand-operated, local or $\begin{array}{ll}\text { Power supplles: } & \text { remote } \\ & 115 \mathrm{~V} . / 23\end{array}$

PRICE - £I28.0.0

TRIACS TYPE 40432

Gated bi-directonal Silicon Thyristors with integral erigger. The triac will control up to 1440 watts a sheet mand frequency. Supplication complete with dats dimmer circuits. $8^{\text {m/ }} / 8{ }^{2}$
$87 / 8$ each

FULLY GUARANTEED

FIRST QUALITY VALVES

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: PARK 5641/2/3 Cables: ZAERO LONDON Retall branch (personal callers only) 85 TOTTENHAM COURT RD., LONDON W.2. Tel: LANgham 8403
A.R.B. Approved for inspection and
release of electronic valves, tubes, klystrons, etc.

APPOINTMENTS VACANT

We're young, successful, and expanding

The Dolby Audio Noise Reduction System has in only three years changed international studio practice, providing a new master recording standard. The system is briefly described in our advertisement on page 40 of this issue.
As well as designing and manufacturing professional equipment (of which 80% is exported), we research into consumer applications, and recently the first domestic tape machines using a simplified version of the system were released under license in the U.S.A. But this is only the beginning of a long line of new applications.
We are situated in south London in a modern four-storey building which includes laboratories, offices and production facilities. We are still small - just 60 people - but are expanding rapidly in all departments; the search is for people who have the capability of growing with us. Prospects are excellent and the rewards attractive. We have these immediate technical vacancies:

ELECTRONICS ENGINEERS

ELECTRONICS

ENGINEER
(PRODUCTION)

We are looking for several top-flight engineers under 30, with a university degree in physics or electrical engineering and at least two years' experience in electronic circuit design. The jobs involve not only research and development, but in addition the design of both professional and consumer products, based on Dolby noise reduction techniques. Where products are concerned, the designer will liaise with the production department during all stages of manufacture.
Candidates should be familiar with modern techniques - ICs and FETs, for example - and should be experienced in both linear and non-linear circuitry as applied in the frequency range dc to 20 MHz .
Salaries from $£ 1,800$ to $£ 2,500$. Write or phone with brief details to David Robinson, Chief Engineer.
The candidate will be a graduate engineer under 30 , with a university degree in physics or electrical engineering. He will be responsible to the Production Manager for electronic aspects of production. These will include the design and introduction of specialized test equipment and procedures, together with the provision of general technical advice to the electronic test department. He will liaise with the engineering department on technical matters and will have the opportunity of investigating and introducing new production techniques. He will have a minimum of two years' design experience and preferably experience also in giving technical support in a production department.
Salary from $£ 1,800$ to $£ 2,500$. Write or phone with brief details to Bob Tallon, Production Manager.
DESIGN DRAUGHTSMAN Flexibility is the keynote in our requirement for a design draughtsman under 30 for a position in the Design Department, which is responsible for all design aspects of the company.
His primary duties will be to interpret details from design schemes and prepare complete mechanical manufacturing drawings for the production of light electro-mechanical units. In due course, he will be expected to produce his own design schemes from initial sketches or proposals. He must have some understanding of electronic circuits and be capable of developing, from initial circuit information, the necessary tape masters and associated details for printed circuit production.
The candidate must also have an artistic inclination, for as a secondary activity he will assist in the layout and preparation of artworks for advertising, technical literature and exhibitions.
It is essential that his draughting and presentation should be of the highest standard.
Salary from $£ 1,500-£ 2,200$. Write or phone with brief details to Ron Free, Senior Designer.

DOLBY LABORATORIES

346 Clapham Road, London, S.W. 9
Telephone: 01-720 1111

if they know something about radio transmitters, receivers, ancillaries or systems.
If you have been in the business anywhere from two to twenty years we've a place for you at our Communications Division, London, S.W. 18

For details of our red carpet treatment ring Ted Jackson, our top man in handbooks, at 01-874 7281 (he thinks he is ex-directory so try 01-399 1917 if it's more convenient out of office hours).

REDIFON *

A Member Company of the Rediffusion Organisation

SERVICE ENGINEERS

Our Instruments Company is currently expanding its activities and range of products.

Senior and Intermediate vacancies exist at the Service Department situated in Reading Berks.

The Department is furnished with modern test and fault finding equipment and the work is varied and interesting. Equipments are modern analogue and digital devices incorporating the latest techniques in instrumentation.

Previous servicing experience is desirable but our main requirement calls for an enthusiastic sound approach to the servicing of our wide range of products.

Applications in writing please to.
Mr. L. A. Jemmett.
Racal Instruments Ltd.,
Bennet Road.
Reading,
Berks.

COHIDNATE engmincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,250$ per annum, plus bonus. Shift allowances are payable. after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday. pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road.
London, NW2
quoting publication and month of issue.
Plan your future with

Rank Precision Industries Limited

BROADCAST DIVISION

RANK CINTEL

The Cintel section is rapidly expanding its Development and Research Departments of professional television studio equipment．To strengthen their teams the following engineers are required．

senior electronic design engineer

To work on development work on T．V．studio equipment． Successful applicant should have experience in this field together with B．Sc．or Dip．Tech qualification．Salary up to £2．500．

senior mechanical

designer

To work on colour telecine machines and other allied broad－ casting equipment．The work which is varied involves the development of small mechanisms and electromechanical devices．Salary up to $£ 2,500$ ．

intermediate engineers test engineers

Are also required to assist in the Cintel programmes．

works staff

Bench Testers：To work on the professional T．V．studio equip－ ment．No special qualifications are required for these positions but some experience in the T．V．field is preferable．

TELECOMMUNICATIONS

The Telecommunications section has been in the field of communication for many years and holds major contracts． Increased activity demands new teams for work on Military Communication Equipment．

Its The Rank Organisation

Holders of The Queen＇s Award to Industry for 3 successive years．

section leader－

military communications

Will be required to build up a team for the following pro－ jects．New lightweight man portable equipment，H．F．and V．H．F．channel generator by frequency synthesis．Initially the work involves responsibility for design aspects of an H．F．equipment undergoing a quality assurance programme． Age immaterial．Salary up to $£ 2.500$ ．

senior development engineers

To assist the section leader on the above projects．Success－ ful applicants should have experience in this field together with the ability to lead in an objective fashion．

intermediate engineers test engineers

Are also required to assist in the Telecommunications programmes．

works staff

Testers：To work in the Test and Inspection department on the Telecommunications programmes．Experience in this field is necessary for most positions．

These positions carry good salaries together with the ex－ cellent fringe benefits available to all Rank Organisation employees．Sick Pay entitlements and holiday entitlements have recently been increased．
Location initially at Welwyn Garden City，moving to the new factory at Ware，Herts，before June 1970.
Applications to：

Personnel Manager，
 Rank Precision Industries Ltd．，
 Bessemer Road，
 Welwyn Garden City，Herts．
 Tel：Welwyn Garden City 23434

That's Burroughs. And choosy about the company we keep. Are YOU a top dog? With the right sort of pedigree? Degree in engineering, (Honours Graduate or Ph.D.) with inbred ability and the stamina to hold your top place in a highly competitive field? Then BURROUGHS is the place for you.

DEVELOPMENT ENGINEERS

(Mechanical or Electronic)

to join one of the foremost companies in Britain's fastest growing industry. In addition to your degree you will have a minimum three to five years' experience in one or more branches of a light engineering industry and require to have the ambition and talent to go to the top in one of the world's greatest companies.
The positions on offer give an opportunity for top dogs to get in at the beginning of an engineering expansion programme in Burroughs, Cumbernauld and further develop personal engineering skills and promotion prospects.
Salary is no stumbling block-we know we have to pay top salaries for top dogs.
Our plant is located in the green belt between Stirling, Edinburgh and Glasgow. You can readily commute from a rural village or market town with facilities for golf, angling, yachting or ski-ing and still be within easy reach of excellent schools and universities.
Please write or telephone (reverse charges) to:-
Tom Bennett,
Engineering Division,
Burroughs Machines Ltd.,
Cumbernauld,
Scotland.
Tel. 22111 (ext. 29)

DEMEN EMBNIEANTG
 New opportunities in electronics

E.M.I. Limited offer worthwhile careers to experienced Design Engineers in the following categories :-

MICROELECTRONIC DESIGN

Working in close liaison with Production Engineers with the responsibility for the design of new tooling methods. A good knowledge of Jig and Tool work is required.

TELEVISION DESIGN

The work involves the design of custom-built T.V. Studio and Outside Broadcast Vehicle Equipment and would be of interest to persons familiar with Commercial Quantity Production Methods. JIG \& TOOL DESIGN
A vacancy has occured for an experienced Jig and Tool Designer to undertake Jig and Tool Design in all its aspects

SPECIAL PURPOSE MACHINERY

DESIGN

For interesting and varied work on the design of new special purpose Machinery and Tools.

There are also vacancies for Draughtsmen to carry out the design of printed circuit boards from diagrams and experience of packaging techniques would be an advantage

For all the above positions a minimum of O.N.C. or equivalent qualification is required. Starting salaries are attractive, being commensurate with qualifications and experience.

Working conditions are excellent and full social and welfare facilities including a contributory pension scheme with free life assurance are available.

Apply in writing stating area of Interest to.

EMI

 M. A. JONESPERSONNEL OFFICER
GROUP PERSONNEL OEPARTMENT, E.M.I. LTO., BLYTH ROAD, HAYES, MIDOLESEX
GMTCAREEIS

RADIO ENGINEER

FOR

UGANDA

We have a vacancy for a well trained radio engineer with a good knowledge of electrical and electronic problems.

The person we are looking for should be a good organiser, must have real interest in his work and must be willing to train local staff. There are unlimited opportunities as the successful applicant will receive on the spot training in our medical and X-ray dept. This will necessitate regular journeys to all parts of Uganda. Our terms of service are good, the climate is wonderful and the work unusual. We offer good local and overseas leave facilities.

Those interested should write to:
Twentsche Overseas Trading Co. (Uganda) Ltd.,
P.O. Box 7160,

KAMPALA,
Uganda,
giving details of previous experience, age and marital status.

THE DEPARTMENT OF CIVIL AVIATION, ZAMBIA Require

Radio Engineers

Salary in scale up to $\mathbf{E 2 7 8 2 .}$ Tour of 36 months offered. Generous leave on full salary. $\mathbf{2 5 \%}$ End-of-Tour gratuity.

Commencing salary according to experience in scale Kwacha 2736 (£Stg.1596) rising to Kwacha 3216 ($£$ Stg. 1876) a year, plus an Inducement Allowance of $£$ Stg. 568 - £Stg.615. A Direct Payment of $£ \operatorname{Stg} .268-£ \operatorname{Stg} 291$ is also payable direct to an officer's U.K. Bank account: Both gratuity and direct payment are normally TAX FREE. Free passages. Quarters at low rental. Children's education allowances. Generous leave on full salary or terminal payment in lieu. Pension scheme available under certain circumstances.
Candidates must be under 55 years of age and should possess
8 years relevant experience following :-
(i) an apprenticeship of 5 years, or
(ii) possession of a Service Trade Certificate, or
(iii) possession of an I.C.A.O. certificate or
(iv) equivalent.

In addition, candidates should have a sound experience of the theoretical principles of and experience in the maintenance of the first two and at least one other of the following groups of communications and navigational aid systems:

1. Medium powered H.F. Transmitters and associated Receivers:
Frequency Shift Keying; S.S.B. and D.S.B. Equipment; Medium Frequency Non-Directional Radio Beacons.
2. Low and High powered V.H.F., A.M. Equipment.
3. V.H.F. Omni range; Automatic VHF Direction Finders. Distance Measuring Equipment.
4. Instrument Landing System.
5. Radar X Bank Terminal and P.P.I Talk Down Equipment.
6. Audio and Remote Control Equipment; Public Address Equipment; Afrport Magnetic Tape Recorders; Inter Office Communication; Underground Control Cables; Impulse and D.C. Switching System.
7. Teleprinter Telegraphy (torn tape) and associated Page Printers; Tape Recorders (autoheads); Semi-Automatic Message Switching System.
Duties include the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centre.
Possession of a valid driving licence will be an advantage.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2Z/690315/WF.
join the men who lead

Device Technology Engineer

A qualified man is urgently required to work as a senior member of a team at present engaged on the aspects of choice and design of solid state devices. These include microcircuits and hybrid circuits for use in high reliability equipment.
Applications are invited from Electronics Engineers or Physicists with a sound knowledge of microcircuit technology and design. At least three years' experience in the application of the above mentioned devices is essential.

Please write or phone for on application form, quoting Rof. 1462. to: Mr. E. Buckmaster,
1462 Personnel Department.
British Aircraft Corporation, Guided Weapons Division.
Stevenage, Herts. Tel: Stevenage 2422.

RESEARCH and DEV ELOPMENT

 ELECTRONIC

 ELECTRONIC ENGINEERS

 ENGINEERS}

...OUR WORK

Expanding exports and the increasing complexity of our products have intensified our development programmes for digital and analogue computers, linkage and special purpose computer peripherals. We wish to establish new teams of electronic engineers and if you are interested in joining us
... YOUR QUALIFICATIONS should include a degree, H.N.C. or equivalent. You should have relevant experience, coupled with enthusiasm and ability and

... YOUR REWARDS

with Redifon will be a good salary, stability of employment, a wide range of interesting work and an opportunity to expand your experience into new fields in ...

...OUR COMPANY

We design and manufacture flight simulators and electronic teaching machines for world-wide markets. The laboratories are situated in a pleasant part of Sussex at Crawley, mid-way between London and the South Coast.

Application forms may be obtained from:
H. C. Hall, Personnel Manager, REDIFON LIMITED.
Flight Simulator Division, Gatwick Road, Crawley, Sussex.

Telephone: Crawley 28811

MAINTENANCE TECHNICIANS

Computicket are moving rapidly towards the full implementation of their entertainment seat booking system. This service. which operates in real-time. will ultimately involve hundreds of on-line C.R.T. terminals sited in a wide variety of public places.
vanety of public places. London area to perform a vital role in this exciting new service.
Applicants should have had experience in the maintenance of electromechanical and electronic equipment situated in the field and should be happy to find themselves part of a technically advanced but none-the-less consumer orientated team.
Condtions of employment are attractive and salary will be in the region of £ 1.500 p.a.

Electrical Engineers

Rolls-Royce and Associates Limited is engaged in an extensive programme of design, development and procurement of nuclear propulsion plant. We have immediate vacancies for:-

Electronic Engineers

to be responsible for the design, development and engineering of nuclear reactor control and instrumentation systems. Applicants should be of graduate status.

Electrical Designers

to be responsible for the preparation of design schemes. Applicants should have H.N.C. in Electrical Engineering and have completed an engineering apprenticeship. A minimum of 2 years' drawing office experience is essential.
Salaries are commensurate with age, qualifications and experience. A generous proportion of relocation costs will be met by the Company with special assistance for house purchase where necessary.

Please apply in writing, or by telephone for an application form to The Personnel Manager,
Rolls-Royce and Associates Limited,
P.O. Box 31, Derby DE2 8BJ or telephone Derby 61461 extension 213.

University of Reading department of psychology Electronic Engineer (A.E.O.)

Applications are invited for the post of ASSISTANT EXPERIMENTAL OFFICER in the Departmert of Psychology. Applicants must have an H.N.C. in Electronics or equivalent qualifica. tion. The successful applicant will be expected to be familiar with the design and assembly of simple analogue and digital electronic equipment, such as Timers. Logic for automation of experiments, High Sensitivity Audio and D.C. Amplifiers for electroshysiological work. Experience in the use of semi-conductor devices and integrated circuits would be an asset. The applicant will be expected to supervise the servicing of existing equipment; there will be a good opportunity to gain experience in servicing a small computer. The initial appointment will be made at A.E.O. level. Salary $£ 872-£ 1,454$ per annum. The point of entry will depend on qualifications and age. Applications, quoting M.62, to Assistant Bursar (Personnel), University of Reading, Reading. Berks.

HENRY'S RADIO LTD.
303 EDGWARE ROAD, LONDON, W. 2
HAVE THE FOLLOWING VACANCIES IN THEER ORGANISATION
ORGAN DEPARTMENT
Young man incerested in Electronic Musical Young man incerested in Electronic Musical Instruments with a good general knowledge of Write, or Telephone 723-1008/9 Extn. 1 or 2.

SALES ASSISTANTS

Young mian with a good general knowledge of HIGH FIDELITY EOUIPMENT required for our retail HiFFI SALES DEPT. Please contace MR. STEVEN:, Telephone 723-6963. 2585

CHIEF TELEPHONE ENGINEER OVERSEAS

International Aeradio Lid are a thriving world-wide organisation of some 3500 employees engaged in the fields of communications and with 18 overseas subsidiary and associate companies. Major expansion has created the requirement for a Chief Telephone Engineer for one of the group's associated Telephone companies in the Arabian Gulf area. He will supervise a team of expatriate engineers and be responsible for the engineering administration and short-term carrying functions. A good theoretical background is essential together with specialist practical knowledge in at least two of the following fields:
a) Electronic Common Control Exchanges.
b) Local junction and subscriber's distribution network.
c) Subscriber's apparatus including PABX's.
d) Telex systems.
e) Coaxial cable transmission systems.
f) VHF radio relay transmission systems.

The position offers unusually good career prospects to the right man. A substantial tax-free starting salary will be offered including in addition. free furnished accommodation, marriage, child and educational allowances, free leave passages and medical attention, and concessions on holiday air fares after a year's service.

Please apply stating briefly details of age and qualifications to:

PYE TVT the leaders in closed circuit television

Supervisory Test Engineers Studio Equipment-Audio

Two competent men are required for sections engaged on fault-finding and testing to specification of a wide range of professional audio equipment including mixing desks, power amplifiers and ancillary units for O.B. vehicles.
Good experience with solid state amplifiers and ability to carry out measurement are essential.
We offer attractive salaries and conditions of employment. Local housing may be made available.
Please apply with brief details of experience to:

Personnel Officer, PYE TVT LIMITED Coldhams Lane, Cambridge, Telephone Cambridge (0223) 45115

QUFD

If you think:
a. You'd like to work for Quad,
b. You have the right qualifications,
c. It would be better to work in Huntingdon* than in the big city rat-race,
drop us a line. We urgently need technicians and engineers for both Audio and VHF, and would be pleased to discuss the prospects with you.
Write initially, giving full details of your training and experience to:

Mr. J. H. Walker, The Acoustical Mfg. Co. Ltd., St. Peter's Road, Huntingdon.

* Look it up on the map: Quad helped to put it there!

THE GENERAL POST OFFICE has VACANCIES for RADIO OPERATORS II at its COAST RADIO STATIONS

Applications are invited from men between 21 and 35 years of age who must hold either the Postmaster General's First or Second Class Certificate of Competence in Radiotelegraphy or an equivalent Certificate issued by a Commonwealth Administration or the leish Republic.
SALARIES HAVE BEEN INCREASED and the scale now begins at £807, for those entering at the age of 21 , pising to a maximum of $£ 1,188$. There will be a further increase on 1 st January, 1970.
The posts will be temporary in the first place but successful applicants will be eligible to enter the open competitive selection for permanent appointment.
Applicants should write to: The Inspector of Wireless Telegraphy, Union House, St. Martin's-le-Grand, London, E.C. 1 ortelephone 01-432 5628 for further information.

Ex-Service TECHNICIANS

A number of ex members of H.M. Services have joined us recently as prototype engineers working successfully on complex electronic equipment. We have three more vacancies and would like to hear from those who have left H.M. Service or are about to leave.

Apply: Personnel Officer, Pye TVT Limited, Coldhams Lane, Cambridge.

Telephone Cambridge (0223) 45115
2557

THE UNIVERSITY OF HULL
 AUDIO-VISUAL CENTRE SOUND SUPERVISOR

The Audio-Visual Centre in the University is engaged in the production; to fully professional standards, of television programmes, films and sound recordings for educational purposes. Applications are invited for the post of Sound Supervisor. Preference will be given to candidatés with an H.N.C. or equivalent qualification together with experience in the operational and mainfenance aspects of professional sound broadcasting and recording equipmient. The duties will be to assist in both operations and maintenance of the equipment used in the Centre. Salary range: $£ 1,578-£ 2,006$.
Further particulars may be obtained from the Registrar to whom applications (3 copies) should be sent by 27th October, 1969.

2592

CONTINUOUS

Expansion

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane. Basildon, Essex. wave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require

Test Technicians
 Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced resting staff for work on complex transmission systems
Candidates should hold an ONC in elec. trical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

University of Birmingham Department of Medicine ELECTRONICS TECHNICIAN
required for work concerning the development and maintenance of electronic and physical apparatus used in medical research. Qualifications: O.N.C. or equivalent. Experience in digital forms of data acquisition desirable but not essential.
Salary: £773-£1,077.
Apply: Assistant Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Edgbaston, Birmingham, 15, quoting reference: 417/T143.

2555

TEST ENGINEERS AND INSPECTORS

Owing to rapid expansion due to large export orders on Marine Radar we have urgent vacancies for

TEST ENGINEERS

with a good electronic background, and preferably with radar experience. EIECTRO MECHANICAL INSPECTORS MECHANICAL INSPECTOR
Please apply in writing to the Personnel Officer The Plessey Company Limited Martin Road, West Leigh, Havant Hampshire quoting ref. HAV/169/B

CAREERS IN RECORDING

PHILIPS PHONOGRAPHIC INDUSTRIES in Baarn, Holland, offer excellent career possibilities to young men between 22 and 30 years of age to join the Classical Recording Department as trainees.
Candidates will be required to reside in Holland and should have a thorough knowledge of at least one European language, ideally German or French.

A good musical knowledge is essential and experience in the audio field would be an advantage.

Duties will include editing recorded tapes according to instructions in the score and responsibility for the installation and maintenance of recording equipment.

Please apply in writing, sending brief details of age, education and work experfence to:-
The Personnel Officer,
Philips Records Limited,
Stanhope House,
Stanhope Place,
LONDON, W.2.
Initial interviews will be held in London.

PYE TVT the leaters in closed circuit television
 Electronic Design Engineer Pulse and Logic Circuitry
 A vacancy of exceptional interest for a young design engineer has arisen. He will join a team working on television studio equipment using digital techniques of an advanced nature.
 Applicants will be of at least H.N.C. standard and have three years or more of design experience using transistor and integrated circuits
 Age preferably 24/30.
 Attractive conditions of employment and commencing salary will be offered.
 Please apply with brief employment details to:
 Personnel Officer,
 PYE TVT LIMITED
 Coldhams Lane, Cambridge.
 Telephone: Cambridge (0223) 45115

Due to expansion there are excellent opportunities for Test Engineers in our laboratories and production departments, testing Radio, Navigator and Survey equipment.
Applicants with first-class background of T.V. and Radio Servicing or Telecommunications, Electronic and Control Circuiting should apply giving details of experience. Conditions are excellent and salaries will be commensurate with ability and experience.

[^9]
THE UNIVERSITY OF LEEDS

British National Cosmic Ray Experiment, Haverah Park, Near Leeds.

Required immediately an EXPERIMENTAL OFFICER to assist with the design and development of electronic apparatus. Minimum qualifications: degree or equivalent in physics or electronic engineering.

Salary in range $£ 995-£ 1,460$. Applications should be made in writing, giving details of qualifications and experience, to the Administrative Assistant, Physics Department, University of Leeds, Leeds, LS2 9JT.

DUBLIN
 BROADCAST ENGINEER

With experience of maintenance and development of TV and sound studio equipment.
Required for radio and TV production and training studios.
Applications with a resume of relevant experience should be sent to the Director, The Communications Centre, Booterstown Avenue, Co Dublin. Terms of contract negotiable.

ELECTRONICS TECHNICIAN

to be responsible to Group Engineer for maintenance, calibration and installation of a wide range of electronic equipment used in medical and engineering fields of Hospital work. Qualifications to level of H.N.C. desirable with wide experience in maintenance and calibration of electronic equipment
Salary range £1030 to £1365 p.a. Starting salary may be above minimum. Post offers ideal opportunity for man to join vital and growing service with prospects for advancement.

Application forms from Group Engineer, Reading and District Hospital Management Committee 3 CRAVEN ROAD - READING • BERKS.

2584

TECHNICAL ASSISTANT

Men under 30 with science or engineering degree or equivalent required to work in London office of large firm of patent agents, to deal with inventions covering a wide range of subjects and to be trained to join the surprisingly highly-pald ranks of Chartered Patent Agents.

Write Mr. R. L. Andrews, 28 Southampton Buildings, Chancery Lane, London, W.C.2, or telephone 4055611.

URGENTLY REQUIRED

ALL TYPES OF RADIO TELEPHONE EQUPPMENT
ESPECIALLY PYE CAMBRIDGE AND VANGUARD MOBILES. ALSO BASE STATIONS ANY CONDITION, WORKING OR NOT. Top prices paid. WE ALSO REPAIR ALL TYPES OF RADIO TELEPHONE EOUIPMENT

SOUTHERN RADIO \& T.V. SERVICE

1 BACK HAMILTON STREET SALFORD 7

LANCS.

GOVERNMENT OF UGANDA

REQUIRES

BROADCASTING ENGINEERS

to serve on contract for one term of 21-27 months in the first instance. Salary according to experience in scale Uganda Shg.21120-27780 (CStg.1232-1620) a year, plus an Inducement Allowance, normally tax free, of £Stg.778-886 a year, paid direct into the officer's bank in U.K. Gratuity 25% of total emoluments drawn. Liberal paid leave. Accommodation provided at reasonable rental. Outfit and education allowances. Free passages. Contributory pension scheme available in certain circumstances.
Candidates must possess the City and Guilds Final Certificate in Telecommunications (with Radio) or an equivalent qualification and have wide practical ex-
perience of technical broadcasting equipment including transmitting and studio control equipment.
The officer will be required to undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations and studios; outside broadcasts and recordings in remote districts, and to give assistance with the training of junior engineering staff.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690995/WF.

CLARKE \& SMITH MANUFACTURING CO. LTD. have vacancies for
Audio Electronics and Small Mechanism Design Engineers
to work on Language Laboratory Systems and Electronic Equipment for Education Projects. Good salaries and progressive positions. Applicants, who should have qualifications equivalent to H.N.C. standards, should apply to:

Mr. T. A. Julian,
Wallington
Wallington
Surrey,
Tel:01-
Tel: 01-669 4411

West Sussex County Education Committee BOGNOR REGIS COLLEGE of EDUCATION Upper Bognor Road • Bognor Regis - Sussex Applications are invited for the post of

TECHNICIAN

for Closed Circuit Television
Person appointed will be expected to have sound practical knowledge of cameras, control and recording equipment used in Closed Circuit Television and be capable of carrying out day to day maintenance. Applications will be considered from those with relevant experience in the electronics field who desire to extend this to Television. Salary scale: $£ 930-£ 1,095$ per annum, according to experience. Additional remuneratlon payable in respect of certain specialist qualifications.
Application form and further details from the Administrative Officer at the College. 2590

Radio Technicians INSTALLATION AND MAINTENANCE £1,100-£1,500
 YOUR WORK

Will be concerned with the maintenance and installation of equipment at sirfields. inland and marine mobite networks and on North Sea drilling rigs. You will be basec at Southall and London Airport and you may also be required to make brief trips

OUR REQUIREMENT

You should have experience in one or more
HF Receivers and Transmitters up to 1 KW using SSB. ISB and FSK technicues:
Remote control systems operating over G.P.O. landlines:
Teleprimters and Telegraph machines and error correction equipment.

OUR OFFER

Includes membership of an excellent contributory pension and life assurance scheme and concessions on holiday air fares can be obtained at nominal cost to most parts of the world. after a year's service. Salary will be negotiated and range from E1.100-£1.500.

YOUR FUTURE

Excellent long-term career prospects are offered for both U.K. and Overseas employment.
IAL are a tast-expanding world-wide Company. engaged in the field of communications. aviation services and engineering
with over 3.000 emplovees bround the world.
Please write stating briefly age and experience to the

Personnel Officer (R),

IAL
INTERNATIONAL AERADIO LIMITED
aeradio house - hayes road - southall - middlesex

PYE TVT the leaders in closed circuit television

Electronic Test Engineers

 TV Broadcast EquipmentDue to rapid expansion we have several additional vacancies for test engineers to work on a variety of units making up an advanced system of TV broadcast equipment.
Applicants will preferably have several years' experience of testing TV transmission broadcast equipment and be thoroughly familiar with the use of complex oscilloscopes for critical measurements of test parameters.
Attractive conditions of employment and commencing salary will be offered.
Please apply with brief employment details to:

Personnel Officer PYE TVT LIMITED
Coldhams Lane, Cambridge. Telephone Cambridge (O223) 45115

reterererererererer Electrical Engineer

The Industrial Applications Department of the Electrical Research Association has a vacancy for an Electrical Engineer.
The successful applicant will be working with a group required to make investigations into the generation, propagation and measurement of high frequency transient disturbances in control and computer systems.
QUALIFICATIONS required are a degree, H.N.C. or equivalent in Electrical Engineering, with preferably industrial or research experience, in high frequency pulse techniques or electronic circuitry.
SALARY: this appointment will be in a grade with
 salary depending on qualifications and age which is likely to be between 22 and 28 years.
Please apply to
The Personnel Officer, Ref: 1A2,
Electrical Research Association,
Cleeve Road, Leatherhead, Surrey.

THE UNIVERSITY OF HULL AUDIO-VISUAL CENTRE STUDIO ENGINEER

(Videotape and Telecine)
Applications are invited for the post of Studio Engineer (Videotape and Telecine) in the Television Studios of the University's Audio Visual Centre. Preference will be given to candidates with an H.N.C. or equivalent qualification, logether with experience in the maintenance and operational aspects of magnetic recording equipment (either one inch helical scan or two inch broadcast) and/or Telecine equipment. The duties will be to operate and maintain videotape recording and Telecine equipment used in the Centre and if necessary further training will be given.
Salary range: $£ 1,056 \cdot £ 1,311$.
Further particulars may be obtained from the Registrar to whom applications (3 copies) should be sent by 27th October, 1969.

2593

UNIVERSITY OF BIRMINGYAM Department of Electron Physics Electronics Engineer

required to join the space research group in the Department of Electron Physics. The work is concerned with the design of electronic instrumentation for scientific rockets and satellites. The successful candidate will be expected to follow a project from initial design through environmental testing and space vehicle installation to pre-launch count down. This programme involves travel within the U.K. and to overseas launch sites. The post requires specialist experience in complex analogue solid state circuits and applicants should possess Grad. I.E.E.E., H.N.D., H.N.C. or equivalent qualificatlons. Those wishing to see something of the work before making a formal application are invited to telephone Professor J. Sayers, $021-472$ 1301. Ext. 1801.
Salary £1380- £2045.
Applications should be sent to the Assistant Applications should be sent to the Assistant
Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Birmingham 15, reference 105/TO/155. 2561

RADIO AND INSTRUMENTATION ENGINEERS

Required for WEST AFRICAN PROJECTS
C.O.D.E.C.O.

62 STEPHYNS CHAMBERS - BANK COURT
MARLOWES • HEMEL HEMPSTEAD - HERTS
2403

DEPUTY SUPERINTENDENT OF POLICE
 (Signals Branch)
 Government of Brunei

Candidates, must have City and Guilds Telecommunications Intermediate Certificate, with not less than five years' experience. Experience in a Police Force or Armed Forces is desirable.
The Officer is to assist the Force Signals Officer in installasion, mainsenance and servieing of V.H.F. and H.F. equipment, supervision of Signals Stores and Workshops and Scaff.
Salary range $22,125-22,518$ P.A. plus inducemens allowance (2441-2474) P.A. The Appointment is on contratt with gratuity for one tour of three years.
Candidates, who should be Nationals of the United Kingdom or Republic of Ireland, should apoly quoting RC216/28/02 giving full name; age, qualifications and experience to:

The Appointments Officer,
MINISTRY OF OVERSEAS DEVELOPMENT, Room E301, Eland House, Stag Place, London, S.W.I.

THE COLLEGE OF AERONAUTICS

The following appointments are to be made in the High Frequency Section of the DEPARTMENT OF ELECTRICAL AND CONTROL ENGINEERING and are open to candidates who have experience in waveguide techniques.

TECHNICAL OFFICER LABORATORY STEWARD

The vacancies are in the high frequency and radar laboratories which are concerned with postgraduate teaching and research in radar, radio and microwaves. Experience in the aviation field is not an essential requirement.

The TECHNICAL OFFICER will supervise the day-to-day activities in the laboratorles and be responsible for the construction of specialised experimental equipment. Candidates should have passed the graduateship examination of the I.E.E., I.E.R.E., or possess a H.N.C. or equivalent qualification. Salary in scale rising to $\mathbb{E 1 , 6 2 3}$ p.a.

The LABORATORY STEWARD, who should have relevant training and experience, will be appointed in a scale rising to $\{1,077$ with a supplementary allowance of $E S O$ p.a. for possession of a H.N.C. or equivalent qualification.
37 hour week of five days, generous holidays, staff superannuation and sick pay schemes.
Application form from Staff Records Officer. The College of Aeronautics, Cranfield, Bedford.

SITUATIONS VACANT

A FULL-TIME technical experienced salesman reA quired for retall sales: write giving detalls of age, previous experience, salary required to-The Manager,

A SSISTANT MAINTENANCE ENGINEER required by A the CENTRAL OFFICE OF INFORMATION for their Radio Division. Candidates should have had wide experience in maintenance of professional tape recording and studio equipment Theoretical knowledge to City and Guild Intermediate level would be an advantaike,
as would experience in sound recording. Salary according as would experience in sound recording. Salary according
to expertence and quallinations on a range $\mathbb{E} 1.215$ to \& $1,560 \mathrm{pa}$. Five-day week of 41 hours (inclusive of meal breaks). 18 days pald annual leave. Please send postcard for application form to Manager (PEA/274/ EW). Wireless World, Department of Employment and Productivity, Professional and Executive Register,
Atlantic House, Farringdon Street, London, E.C.1. Atlantic House, Farringdon Sticet, Clorms, 30 , October, 1969.
[2602
A UDIO DEVELOPMENT ENGINEER. Electro-Musical A Industry. Watkins Electric Music Lid., 66 Oftey Road, London, 8.w.9. Tel. 01-735 6568. Please write in
[2574

CHESTER. Experienced TELEVISION ENGINEER With a liking for the occasional quality Hi Fi job TV Deld mechanic. 5-day 40 -hour week. Independent frm. Please write giving past experience to Mr. P. K. Caveen, PETERS (ELECTRICAL) LTD., 2 Charles
[2570

NORTH STAFFORDSHIRE COLLEGE OF

Constituent College of the Proposed North Staflord hire Polytechnic. ENGINEERINO DEPARTMENT (Electrical and Electronic Division). Appllcations are nvited from candidates with a University Derree or an (a) SENIOR LECTURER IN ELECTRICAL ENGINEERINO: (b) LECTURER GRADE II IN ELECTRICAL ENGINEERING. The successiful candidate for post (a) will be responsible for subjects in the feld of coma muntcstions engineering, including Telecommunications Televiston and Radio. He will be required to undertake the organisation of short courses in Telecommunica-

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.
Entrants may be graded as Testers, Test Technicians or Senior Test Technicians according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company.
Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please apply in writing, giving brief details including age, experience and salary to

The Recruitment Manager,
Marconi Instruments Ltd.
 Longacres, St. Albans, Herts.

Member of GEC-Marconi Electronics Limited
2530

For some of our distributors in AFRICA we require

SERVICE MANAGERS

They will be responsible for the organisation, administration and promotion of our distributors' Service Departments, including spare parts management.

A good practical and theoretical technical background in radio and television is necessary and experience of service and spare parts administration is important. Further requirements are a background in Service Workshop management and training of repairmen.
Products to be serviced include television, radio and household appliances. Salary commensurate with qualifications and experience.

Applicants should submit full background details.
Apply to Box No. W.W. 2558.

MICROWAVE ENGINEERS

OVERSEAS

THE POSTS

Excellent career opportunities exist for Microwave Engineers to join the International Aeradio worldwide organisation for overseas employment.

OUR REQUIREMENTS

The men selected will be responsible for the maintenance of a solid set wideband multihop microwave system. Applicants should have experience in the following: \star Overall system appreciation.

* Alignment and testing procedures of solid state microwave systems and the associated supervisory and terminal carrier channelling equipment.
* Preventive maintenance procedures and rapid and accurate fault diagnosis on the above types of system.

YOUR FUTURE

IAL offers first-class career prospects. The company is fast expanding with over 3,000 employees engaged in the fields of telecommunications at more than 50 bases around the world. The present turnover is in the region of $£ 8$ million per annum and is expected to exceed the $£ 19$ million mark within 10 years.

OUR OFFER

Includes a substantial tax-free salary: marriage, children's and educational allowances, free furnished accommodation, medical attention and leave passage

To apply for one of these positions please write giving brief details of age, qualifications and career to date to:

General Manager Personnel,
IAL
INTERNATIONAL AERADIO LIMITED

aemadio mouse hayes road southall midolesex

will be expected to encourage research in these fields tive duties. The successful candidate for post (b) will be required to teach Radio and Television Servicing subjects, and should have some experience in Colour TV work. In additton. he will be expected to assist with the normal range of Telecommunicattons and Electronic Subjects covered by the Department. Salary Scale: £2.417. Further detalls and appllcation forms obtalned from the Registrar. North Staffordshire College of Technology, College Road, Stoke-on-Trent. College
[2577 ELECTRONIC PROTOTYPE WIREMAN, wide techEnlcal knowledge, seeks position overseas; permanent or contract.-Reply Rex. W. Harris. 36 Cilfton Road,
London, N.8. R ADIO ENGINEER for installation/service Yacht RR.T., Automatic Plots, some Radar. Clean driving licence essential. Must Hue in or near London. Knowledge and liking of boating an advantage. Telesonic REDIFON LTD, require fully experienced TELER COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquirtes the Services. Please write giving full detalls to The Personnel Manager, Redifon Ltd., Broomhtil Road,
Wandsworth, S.W.18.
[26
SERVICE ENGINEER. We spectalise in the repair Recorders and sime of 16 mm Sound Prolectors. Tape another engineer with some knowledge of Audio Ampliffers. Must be able to drive, Write: Burgess Lane $\&$ Co. Ltd. Thornton Works, Thornton Avenue, Chis-
wick. London, W.4.
TAPE RECORDER ENGINEER required for workshop London. Write to paxicting machines in Central London. Write to PAXDICTATOR (SOUTHERN) LTD.
THE UNIVERSITY OF LEEDS: Department of Physics. Electronlcs Techalelan required for post in electromics workshop involving maintenance and bullding
of a wide range of prototype apparatus. O.N.C. or equivalent. Salary on scale $£ 773$ - $£ 1,077$ Piease apply in writing, glving detalls of quallfications and experience, to the Administrative Assistant, Physics Department, The Unlversity, Leeds, LS2 9JT. [2564
WE HAVE VACANCIES for Four Experienced Test Applicants Finding and Testing of Mo have Experience of Fault Equipment. Excellent Opportunities tor promotion due Manager Works, Pye Teiecommunications Ltd., Cambrids Extn. 327. 15 MeV LINEAR ACCELERATOR. Assistant to help mechanical knowledge; accelerator experience not essential. Salary up to $£ 1,200$. Applications to SecreCambridge. Tennis Coart Road, Cambridge.
[2575

ARTICLESIFOR SALE

BRAND NEW ELECTROLYTICS, $15 / 16$ volt $0.5,1,2$, B 5, 6, 8, 10, 15, 20, 30, 40, 50, 100, 200 mfds ., 8d. Mullard 25 voit $6.4,12 \cdot 5,25,50,80$ mids., 10 d ., $1 \cdot 6$. 160 mids., $1 /=$ Minimum order $7 / 6$., postaze $1 /=$ per order.-The C.R. Supply Co., 127 Chesterfeld Road,
Sheffield, S8.
[2587
$B^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet $12 \mathrm{in} . \times 21 \mathrm{in}$. \times any length. D.E.W. Lrd. (W), Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leaflet.
Write now-Right now.
Colour T.V. Large-Screen Projectors, Cintel Model 20630, 6-ft. picture from RGB video inputs. 2 units lot as seen or offers. Box WW. 2569 Wireless World 400 COLOUR T.V. PARTS for W.W. Colour Set; large Ketteringham, Wymondham, Norfolk. How to Use Ex-Govt. Lenses and prisms. Booklets, ENGLISH, \& 29 RAYLEIOH RD. HUTTON. BRENT WOOD. ESSEX.
INTEGRATED CIRCUITS at lowest price. GE Type PA 234, Watt Audlo Amplifier $17 / 6$ each tnc. data. 25 Volt, 200 mW , hie 100 min . Epoxy for economy Passivated for reliabllity, $1 / 9$ each. C.W.O. P. \& P. 1/per order, JEF ELECTRONICS, 12 York Drive, Grappen[2565 5 Ring 01-723 4143, weekday evenings. T ELESCOPIC AERIAL MAST, ex Covernment, al Buyer collects. ROPER, 84 Goldthorn Hill, Wolver hampton
UFO DETECTOR CIRCUITS, dats, 10 s . (refundable) Paraphysical Laborstory (UFO Observatory),
D 396
UHF KITS and T.V. SERVICE SPARES. Suitable for Colour: Leading British Makers dual $405 / 625$ six position push button transistorised tuners
$405 / 525$
transistorised sound 5
\&s. 405/525 transistorised sound \& vislon IF panels ${\underset{\text { curpose }}{ } 2 \text { 15s. } 0 \mathrm{~d} \text {. Incl. Circults and data, P/P 4/6. Basic dual }}_{405 / 625}$
 UHF tuners, PLESSEY incl. valves $55 / \%$. P/P $4 / 6$. EKCO/FERRANTI 4 position push button type. incl. valves, leads, knods £ 510 s . Od.. P / P 4/6. SOBELL/ GEC UHF tuner kit incl. Valves, right angle slow motion drive assy, leads. fittings, knobs, instructions
 put chassis incl, circuit 32/6, P/P $2 / 6$. Ultra 625 IF P / P 4/6. New VHF tuners, Cyldon C 20/O. Ekco 283/ 330 range $25 / \%$, Pye CTM 13 ch . Incremental $25 / \%$ P/P 4/6. Many others available incl. large selection channel colls. Fireball tuners. used good cond. 30/-. Push button tuners RGD $612 / 619$ type used good cond. 30/-,
P / P 4/6. LOPTs, Scan colls, Frame output trans:formers, Mains droppers etc., avallable for most popu-

Commercial Product Engineer for Gas Discharge Tubes

This vacancy should prove attractive to a professionally qualified engineer with industrial experience, preferably in development and production or the design of electronic equipment. who now wishes to embark on a commercial career.
He would be responsible to the Commercial Product Manager for the Technical/Commercial product policy for a wide range of hot and cold cathode gas discharge tubes and similar devices, such as Numerical Indicators, Counters, Thyratrons and Reed Inserts. He should be prepared to travel frequently, both within the U.K. and overseas. Expected to negotiate on technical and commercial matters, he must be able to work together with Market, Production, Development and Research Personnel at all levels. This job is located at Mitcham, Surrey Please write to the Personnel Manager, Mullard Linited, Mullard House, Torrington Place, London, W.C.1., quoting reference RBT/ 1019
$\xrightarrow{\text { Mullard }}$

UNIVERSITY OF CAMBRIDGE

 CAVENDISH LABORATORY
ELECTRONICS ENGINEER

To collaborate with physicists in design construction and implementation of electronic circuitry incorporated in experimental apparatus in the Surface Physics research group of the laboratory.

Experience in solid state circuitry essential

Degree or equivalent in electronic engineering or physics desirable.

Salary in range up to $£ 1,400$ p.a. depending on experience, qualifications and age.

Applications to:
The Secretary,
Cavendish Laboratory, Free School Lane, Cambridge.

OXLEY ${ }^{\circ} \Phi$
 Applications are invited for the position of
 Assistant to the Works Director
 of Oxley Developments Company Ltd., Ulverston.

Applicants must be about 30 years of age and have Higher National Certificate or a degree in Science. Preference will be given to someone with all or part of the following experience or qualifications:-
(1) Knowledge of modern manufacturing methods in electronics, small mechanical components and mechanisms
(2) Assistant or deputy to a Works Manager in a thriving concern.
(3) Experience in dealing with people, production control, and shop floor conditions; experience in cost accounting.
Oxley Developments is a vigorous and expanding Company offering scope and opportunity for the right man. The Works are located in open countryside at the southern end of the Lake District.
Applications giving details of education, qualifications, experience and salary and including copies of two references or names and addresses of referees to be addressed to:

The Personnel Manager,
Oxley Developments Company Ltd. PRIORY PARK • ULVERSTON • NORTH LANCASHIRE

NCR SYSTEMS TESTERS

To bring-up, fault find and prove functions of electronic systems used in complex business machines by logical diagnosis. Candidates should possess an O.N.C. (Electrical) or R.T.E.B. Certificate, or City and Guilds Certificate (Subjects 47, 48 or 49) and have experience in one of the following areas:-

Computers, Radar, Tele-communications, Radio and T.V., etc.
These are Staff appointments carrying attractive salaries which are fully commensurate with qualifications and experience. Other employment conditions include 3 weeks' Annual Holiday, Pension Plan, etc. Effective assistance with housing will be provided.

```
NAME............................................. AGE...............
ADDRESS
QUALIFICATIONS
S...
``` \(\qquad\)
``` ......
```

For Application Form return coupon to :-
The Personnel Department,
THE NATIONAL CASH REGISTER CO.
(Manufacturing) LTD.,
Kingsway West,
DUNDEE DD1 9 QY

?
 CIVILSERVICE

RADIO AND ELECTRONIC ENGINEERS
Board of Trade (Civil Aviation)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
Qualifications: Degree with 1 st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
Age: 23 and normally under 35 on 31st December, 1969 (extension for H.M. Forces or Overseas Civil Service).
 Pensionable appointments. Good prospects of promotion.
Application Forms are obtainable by writing to the Civil Service Commission, Savile Row, London, W1X 2AA, or by telephoning 01-734 6010, ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" service). Please quote S/85/ASO.

CLOSED CIRCUIT TELEVISION ENGINEER MARCONI MARINE

MARCONI MARINE is a major supplier of shipborne television installations and equipment and an engineer is required in the Company's Television Section at Chelmsford for the system planning of closed circuit and entertainment television systems.
Applications are invited from Engineers with practical experience of closed circuit television systems and in particular it would be desirable that this experience has been obtained with a major equipment manufacturer.
Additionally, experience in the development of television broadcast equipment would be advantageous coupled with experience in system costing.
Qualifications of H.N.C. level are necessary but the prime requirement is to produce practical results at the right price.

Applications, in strictest confidence, to:
Personnel and Operating Manager,
The Marconi International Marine Co. Ltd.,
Elettra House, Westway,
Chelmsiord, Essex

AIR FORCE DEPARTMENT RADIO TECHNICLANS

Starting pay according to age, up to $£ 1,189$ p.ą. (at age 25) rising to $£(, 500$ p.a. with prospects of promotion.

> Vacancies at RAF Sealand, Near Chester
> RAF Henlow, Bedfordshire
> and RAF Carlisle, Cumberland

Interesting and vital work on RAF radar and radio equipment.
Minimum qualification, 3 years' training and practical experience in radio engineering.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:
Ministry of Defence, CE3h (Air),
Sentinel House,
Southampton Row,
London, W.C.I.
Applicants must be UK residents.

Lar makes. TV signal boosters transistorised PYE/ Labgear B1/B3, or UHP battery operated 75/-. UHF
mains operated 97/6. UHF masthead $85 /-$ pasi free. mains operated 97/6, UHF masthead 85/-, past free. SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. CALLERS 589B, HIGH ROAD. N, FINCHLEY, N. 12 (near GRANVILLE RD.). Tel. 01-448 9118 . [60

Abstract

QUALIFIED experienced Design Engineer aeek Q Financial Support to develop small company manufacturing high reliablity control equipment. Possible for assembly/servicing ease; continuous research and expansion. Box No. W.W. 2569 Wireless world.

TEST EQUIPMENT ESURPLUS ANO SECONDMAND

MARCONI TF890A/4 Radar Test Set $8500-9680 \mathrm{mac} / \mathrm{s}$ istor Power Montior, Spectrum Analyser, Directive Feed Assembly, brand new, makers' guarantee. 021-454 8305. SIGNAL generators, oscllloscopes, output meters, wave voltmeters, frequency meters, multi-range meters,
etc., etc., in stock.-R. T. \& I. Electronics, Ltd., Ash. ville Old Hall, Ashville Rd., London, E.11. Ley. 4986.
${ }_{[2566}^{[64}$

RECEIVERS AND AMPLIFIERSA
 \section*{SURPLUS AND SECONDHAND}

HRO Rx5s, efc. AR88, CR100, BRT400, G209, S640, Ashville Old Eld Elock, Ashilile Rd., London, E.11. Ley, NEW GRAM AND SOUND
EOUIPMENT
CONSULT Arst our 76 -page Illustratéd equipment catalogue on HI-Fi (6/6). Advisory service, generous
terms to members. Membership $7 / 6$ pia.-Audio Supply terms to members. Membership 7/6 p.a-Audio Supply 01-995 1661 .
GLASGOW.-Recorders bourht, sold; exchanged; Cameras, etc., exchanged for recorders or vice

TAPE RECORDINQ ETC.

Fr quality, durablity matter, consult Britala's oldest tapes. (Excellent tax-free fund ralsers for schools, churches.) Modern studio facinities with steinway Grand. Sound News, 18 Blenheim Road, London. W.4.
[28-995 TAPE to disc transfer, using latest reedback dise cutters: EPs from 23/-: 8.a.e. leaflet.-Deroy,
Eigh Bank, Hawk St., Carnforth, Lancs.

VALVE cartons by return st keen prices; send $1 /$ tor all samples and list.-J. \& A. Boxmakers. 75 . Godwin St. Bradford. 1.

FOR HIRE

FOR hire CCTV equipment including cameras, monitors, video tape recorders and tape-any period. -Detalls from Zoom Television. Amièrsham s001. [78

ARTICLES WANTED

PYE Radlotelephones, AM10D, AM10B, AM25T. Austen, 1 Valebridge Rd., Burgess Hill, Phone 3409. [2579 Wanted, all types of communicalions recelvers Electronics, Ltd. Aspmile Old Hall, Ashville Rd., London, E.11. Ley. 4986. [2491

WANTED-Earilest Marcond wireless equipment, Hallicrafters Dual Diversity model DDI, eirca 1930.-R. Hanselman, 914 Columblan, Oak Park, iunols, U.S.A.. 60302 . [2595
M25B
WANTED-small quantity PYE Vanguards-AM25B with connecting cables and cradles, must be clean
and serviceable. Price and detalls please to: Raymond and serviceable. Price and detalls Dlease to: Raymand McAteer, Radlo Engineer, Main Street, Garvagh, Co.
Londonderry, N. Ireland.
[2568
WaNTED, televtsions, tape recorders, radiograms, Hew valves, transistors, etc. Stan Willetts, 37
St., West Bromwich, Stafis. Tel. Wes. 0186. [72

VALVES WANTED

We buy new valves, transistors and clean new components, large or small, quantitles. all detalls. quotation by return.-Walton's Wireless Stores, ss
Worcester St.. Wolverhampton.
[62

SERVICE \& REPAJRS

YOU MAKE IT, let us install and maintain it.
WhGTHPACITYAVAILABLE
A IRTRONICS, Ltd.. for coll winding, assembly and unit sheet metal work- 3 B Walerand Rd., London S.E.13. Tel. $01-852$ 1706.
[61 ELECTRONIC and Electrical Manufacture and East Midlands Instrument Co. Ltd., Bummergangs Lane, Galnsborough, Lincs. Tel. 3260. [88 METALWORK, all types cablnets, chassls, racks, for smail milling and capstan work up to lin bar.PHILPOTT'S METALWORKS, Ltd., Chapman St. Lough borough.
Plastic Injection Moulding Specialists in ahort runs Oup to 1 oz: Low tooling costs.-K. T. Plastics Ltd. Dept. 10, 23 Hunters HIL South Rulslip. Middx.

FANTASTIC
 SPEAKER BARGAIN

Famous Eny"Ish. 12" high flux. heavy cone, 10 15 ohms 12 -month guarantee $39 / 6$
2 for 70 - (P \& \& $1.6 / 9$) \quad 39/6
NEW RELEASE
HI-FI COLUMN SPEAKER CABINET
Beautitully made Surable for 7.12- speakers Rosewood linash Screwed and ylued. Attractive
 hole athove Mart II de lues model (Carr. 10.7 . Writh
12 spaaker as adverised above 12 speaker as adve
$68 / 50$ (Cam 10%) 95/-
ELECTRAMA
Dept Ww80. 15 High St Hailsham. Sussex

VACUUM

OVENS, PUMPS, PLANT. GAUGES, FURNACES, ETC. GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. heaters. free catalogue.
V. N. BARRETT \& CO. LTD.

I MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917-8-9

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS RESISTORS, CAPACITORS, POTENTIO, METERS, RELAYS TRANSFORMERS, ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.I. 01-837 7781

for good
Sound \rightarrow EQUIPMENT

GRAMPIAN REPRODUCERS LTD Hianworth Trading Estate, Foltham, Middllesex

WW- 143 FOR FURTHER DETAILS

THIS is another

If YOU WANT A REAL GEM CONTACT

AFTER ALL, WE'RE IN THE EMERALD ISLE

WW-144 FOR FURTHER DETAILS

PRINTED CIRCUITS

Small quantities are not expensive, we have full artwork and assembly facilitios.

Let us quote you for any quantity. 0FREGT ELECTRONIC SYSTEMS LTD. Hookstone Park, Harrogate Harrogate 86258 Telex 57962

R \& R RADIO
51 Burnley Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152 VALVES BOXED, TESTED \& GUARANTEED

EBF80	3/-	PCC84	3/-	PY82
3/				

EBF89	3/6	PCFBO	3/-	U191	4/6
ECC82	3/-	PCF82	3/6	U301	4/6
ECL80	3/-	PCL82	4/-	6 623	5/-
Ef80	1/6	PCL83	4/-	10814	/-
EF85	3/-	PCL84	5/-	20P5	3/-
EF183	3/6	PL36	5/-	30F5	2/6
EFI84	3/6	PL81	4/-	30 L 15	5/-
EY86	4/-	PL83	4/-	30 P 12	4/6
EL41	5/-	PY33	5/-	30 Cl 15	5/-
EZ40	4/6	PY81	3/6	30 PLI 3	5/6
EBC41	4/6	PY800	3/6	30PL14	5/6

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. $01-203$ is55 and 3033

GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d, stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL a nd BRIGHTLIFE products are all ex-stock. For decails see Auguse and October 1969 issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED.
30 HIGH STAEET, NORTHWOOD, MIDDX.

Telephone: Northwood 24941

FOR YOUR...
 SYNCHRO \& SERVO REQUIREMENTS:

SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST., ORPINGTON,KENT. Tel:31066, 33976 Also at CROYOON. Tel: 01.6881512 and LYOD, KENT. Tel: LYOD 252
modules designed to meet every application

The Telford range of Oscilloscope Cameras includes many unique features not normally found in Oscillography. Their modular construction allows the user to select the camera and interchangeable accessories to meet his exact need.

Type A Polaroid Pack back parallax-free viewer-other types available. Viewing systems include parallax-free viewing during exposure Adaptors for all popular scopes - Lenses $\$ 1.5,\{1.9,\{2.8$, f3.5, with choice of objectimage ratios - Accessories include solenoid operation and data recording - Film backs: "Polaroid 10 second prints: roll, pack or cut film, all conventional materials including 35 mm .

TECHNICAL TRAINING by ICS IN RADIO, TELLEVISION AND

First-class opportunities in Radio and Electronics await the I C S trained man. Let ICS train YOU for a well-paid post in this expanding field
I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * C. \& G.TELECOMMUNICATIONTECHNICIANS' CERTS. * C. \& G. ELECTRONIC SERVICING.

* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
- P.M.G.CERTIFICATES IN RADIOTELEGRAPHY

Examination Students Coached until Successful
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multi-meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

WW- 145 FOR FURTHER DETAILS
DIOTRAN

S.C.R': 16AMP (unplated) 100 PIV
400 PIV All tested guaranteed.

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSIS. TORS AVAILABLE FOR IMMEDIATE DELIVERY.
MANUFACTURERS END OF PRODUCTION SURPLUS.

TRAN A 1 $\hat{A}^{A}{ }^{3} G$ A 6 Ge A A A A B A 10 Sil experim A\&toA		tion NTO-1 PTO-S p T0-1 P T0-5 PNP F.F.-R.F. 2 PNP TO-5 S0-2 ed 80% G fect device		
1/- TESTED TRANSISTORS 1/each ONEPRICE ONLYPNP.NPN. eac				
	2N696	2N1132	$2 \mathrm{~N} 2220{ }^{\text {2573 }}$	
${ }^{\text {BCL }} 109$	2 N 997	${ }_{2}{ }^{\text {N1613 }}$	2 N 37	2 N 339
	${ }_{2}{ }^{2} \mathrm{~N} 708$	${ }_{2}$ 2N2904	2N37010	2N2902N2902N269
BFX84	2 N 929	2 N 2955	251	
	${ }_{2}^{2 N 93 O}$	${ }_{2}{ }^{2} 212924$		2N2696
From Manufacturers' Over-runsUnmarked				
	ED, PN	ED	TRANSISTORS TO:-1/6 EACH	
${ }^{\text {ACl }} 125$	ACY	AC	NKT677	
	ACY	NK	N	
${ }_{\text {ACl }}{ }^{\text {c }}$ 2	ACY29	NKT212		
${ }^{\text {ACPI30 }}$ ACY19	${ }_{\text {ACH30 }}$	NKT213	45	
${ }^{\text {A Cry }}$				
C21	ACY 35	NKT271	$\bigcirc \mathrm{C} 75$	

TRANSISTOR EQVT. BOOK

2.500 cross references of transistors-British, European, American and dapanese. A must for every eransistor user.
Exelusively distributed by DIOTRAN SALES. $15 /-$ EACH. Post and Packing costs are continually rising. Please add 1 towards same. CASH WITH ORDER PLEASE. OUANTITY QUOTATIONS FOR ANY DEVICE LISTED
BY RETURN.

TO-5 METAL CAN SILICON
 $2 \mathrm{~N} 697, \mathrm{BFYS}, 2 \mathrm{NN} 1893,68$ per
500 pieces. $61310 / 0$ for 1,000 pieces. HIGH Q UALITY SILICON TURE DO-7 Glass Type, suifable
 BAY38, $15130,15940,200,000$ to clear
at 64 per
TEED 8000 pieces. GUARAN.
GOOD.

FULLY TESTED DEVICES AND
QUALITY GUARANTEED-SURPLUS TO REQUIREMENTS
O A202 sillicon Diode, Fully Coded
150 PIV 250 mA Qey. Price 430 per 1,000 pieces. BYIOO SIL. RECT'S 800 PIV 550 mA -49 2/6 each; 50-99 2/3 each; $100-999$ 2/- each: ,000 up 1/10 each. Fully Coded. Ist Qlty.

TEXAS $2 G 171$ A/B
EqVE OCH1 Germ. Gen. Purpose Trans

$1-99$ $100-499$

$100-499$
$500-999$
$500-999$
1000 up
All Brand 9 d.

Vast mixed lot of subminiature glass diodes. Comprising of Silicon, Germ. Point Contact and Gold
Bonded types plus some'zeners. 500,000 available as Lowest of Low Price,
1,000 pieces $\{3.0 .0,5,000$ pieces $\mathbf{〔 1 3 . 1 0 . 0 . ~ 1 0 , 0 0 0 ~ p i e c e s ~} \mathbf{2 3 J}$.

OVERSEAS QUOTATIONS BY RETURN SHIPMENTSTOANYWHEREINT゙HE WORLDAT COST

MATRONIX LTD (WW)				
TRANSISTORS-MINT, NO SFCONDS, NO RE-MARKS. GUARANTEED TO SPEC.				
AD161/162	10	51	2 N 3055	16/6
F239	10			
B-5000	11			
B0121		MC140	N3983	
BC107B		8F115	N4058	
BC168B			N4285	
BC169C		TIS60M 4/3	N4289	
BF167	3	S61M 4	2N4291	
BF178		06	2N4292	
		2960		
OTES. Our AD161/2 are comp. matched prs.				
BF115; $2 \mathrm{~N} 3794=$ mini $3704 ; 2 \mathrm{~N} 4291=\mathrm{minl} 3702$;				
2 N 4289 is h		pnp	is hi-re	
VEB S1 pnp substitute for Ge types; IS557 is				
800 p.i.v. 500 mA TV rect.; MC140 is 3W npn St with insulated collector for easy heat sinking.				
$7.5 \mathrm{~mA} / \mathrm{V}$ typ. at 100 MHz , 7/6. MEM564C,				
NF 3.5dB typ. at 200 MHz . Slm. Mulard BFS28.				
Only 16/-. (For WW communications Rx.)				
INTEGRATED CIRCUITS-PA234, new dual-in-line 1 W audio amp, with data, 24/-: CA3020,				
TO-5 push-pull amp., usable to 6 MHz .28				
TAB101, translstor quad for ring modulator, 21/-:				
TAA263, 3-stage low level a.f. amp., 16/8.				
efficient transformerless class B power amps. Low				
standby current, reversible polarity, simple circuliry, no adjustments.				
A $\times 29 \mathrm{~V}, 300 \mathrm{~mW}$ in $10-20$ ohms, other loads usable,				
12/6: AX3 9V, 800 mW in 8 ohms, $20 \mathrm{mV} \ln 20 \mathrm{~K}$				
put, 22/6;	$A \times$	$24 \mathrm{~V}, 5 \mathrm{~W}$ in	ohms,	n
15 ohms , input 100 mV in 40 K . Operable 18 V with				
12 mA standby current and 2.3 W output. Uses AD161/2 output pair with silicon low-level stages.				
Still only 30/-. Ax5, 12V, 3W in 3 ohnis, 39/6.				
Osmor MT9, $9.0-9 \mathrm{~V} 80 \mathrm{~mA}$, 12/6. Eagle MT6, $6-0.6 \mathrm{~V}, 100 \mathrm{~mA}, 13 / 6$: MT12, 12-0-12V, $50 \mathrm{MA}, 13 / 6$.				
A comprehensive data sheet giving regulation				
arves for all these transformers with push-pull,				
$5-80 \mathrm{~V}$ supplied free with orders. Tiny Se bridge,				
suits all these, 3/6.				
Mail order only. Cash with ordẹr. Llst 8d., free with orders, U.K. post free on orders over 10				
396 Selsdon Road, South Croydon, Surrey, CR2 ODE				

WW-146 FOR FURTHER DETAILS

OSMABET LTD.

WE MAKE TRANBFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS, $0-110-200-220-240$ ₹ a.c. up or down,

 MAINS ISOLATION TRANSFORMERS. Input $200-240$ v a.c... MAINS TRANSFORMERS. Prim $200-240$ w w.e. TX1. $\mathbf{4 2 0 - 0}-125$ | $250 \mathrm{Ma}, 6.3$ |
| :--- |
| $250-0.250$ |
| |

 INSTRUMENT TRANSFORMERS. PrIm 200/250 F Rec., OMT4

 2 amp OMT4/2 80/-: OMTB/1 tapped sec. $40-50-60-80-90-100-$

 MIDG MIDGET MAINS TRAMSFORMERS. FW rectification, alze
2
0.15
11
 OUTPUT TRANSFORMERS. Mullard $5 / 10$ UL $87 / 8: 7$ watt
atereo UL $56 /=; 3$ watt PPS $30 /=$ PP $11 \mathrm{~K} / \mathrm{k}-7.5 \cdot 15 \mathrm{ohm} 21 /=$;
 50) watt (K T68 etc.) $135 /-100$ whtt $210 /-;$ auto matching
translormer 10 watt, $3-7.5-15$ ohm, up or dowi 11/6. CHOKES. Inductance $10 \mathrm{H}$. . $65 \mathrm{Ma} 12 /-; 88 \mathrm{Ma} 15 /-; 150 \mathrm{Ma}$
$21 /-$ Flying leads, clamp construction.
W.W. COLOUR TELEVISION RECEIVER Transtormera and choke as specifed.

Carriage extra on all tranaformers $4 / 6$ minimum.
BOLK TAPE ERASERS. $200 / 250 \mathrm{v}$ a.c., immediate and complete erasure of any size tpool of magnetlo tape, alao nuitable for
Lape head demagnetization. $42 / 6$. P. \& P. $3 /$. FLDORESCENT LJGHTING. 12 LTT. complete mitings, 12 ins. 8 watt $110 /-21$ inn. 13 watt $130 / ;$ special offer 18 ini. 15 wath 95/-. Tranai
LOUDSPEAKFRS. Complete range, famous make, 25 watt
$107 /=; 38$ watt $130 /=; 50$ watt $320 /$, etc., etc. $P . \&$ P. $16 /-$, 1lluntrated lista.
 Carriape ertra on all order.
b.a.E. ALL ENQUIRIES PLEASE, MAIL ORDER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX, HA8 $8 Y G$. Tel: 01-958 9314

PARMEKO MRAND NEW! TRANSFORMERS
Primary $110 \mathrm{v}-250 \mathrm{v}$ Secondary $330-0-330 \mathrm{v}$. 100 mA and 6.3 y . at 2 ampa, 6.3 v . at 2 amps and 6.3 . at. 1 amp. Conservatively
rated. Fully impreRasted. Electrontatic sereen. Sudtable for

Transistor Stereo 8+8 Mk. 11
Now uelng silicon Trafnintors in firnt fre stagee on each channe
reaulting tu even lower noine level with troproved senaityity

 futearated pre-amp, with Bas, Treble and volume controln. for any speakers from 3 to 15 ohmu. Compact deaign, all parts supplied includinf drilled metal work. Cir-KIt hoard, attractive
front panel knobs, wire, solder, nuta, bolts - no extras to buy. Sront pazel knobs, wire, solder, nuts, bolts-no extras to buy.
simple step by step Inatructiona chable any constructor to bulid
 $\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{a}$. Basa boost appror. to +12 dB . Treble cut
 PRICES: Amplifier Kit \&10/10/0: Circuit diagram, coustruction detalls and parts list (free with

GI FI CELESTION SPEAKEIAL OFFERI 1,000 line maknet with specially treated cone rarround $10-18$

Q QUALITY RECORD PLAYER AMPLIFIER MK. II double wound mains tranistormer. ECC83. EL84, EZ80 malres.
Beparute bass, treble and volume contruls Complete with out put transformer matebed for 3 obm speaker. 81 Ize $7 \mathrm{in}, \mathrm{w}$. $\times 3 \mathrm{ln}$. d. x 6in. h. Redy bult and tented. PRICE $75 / \%$.
ALs AVAILABLE mounted on board with ALsO AVAILABLE mounted on buard with output tranaforme
and apeaker realy to at into cabinet below. PRICE 87/0 and apeaker realy to tit into cablinet below. PRICE $87 / 8$.
P. \& P. $7 / 6$. DE LUXE QUALITY PORTABLE R-PLAYER CABINET MK. 2
 GARRARD Autochanger or alngle Piaver Unit (ese
or $\$$ P25). 8ize $18 \times 15 \times 8 \mathrm{in}$. PRICE $78 / 6$. Carr. $9 / 6$.

170 HIGH STREET, MERION, LONDON, S.W. 19 Telephone: 01.540 3985 S. A.E. oll enacirifes.

Open all day Saturday (Wednesday 1 p.m.)

50% of OUR BUYING PRICE

Ex-distributor offers remainder of stock. TO CLEAR-in new condition.
T.C.C. CAPACITORS

Electrolytic, paper, mixed dialectric
Send for stocklist or telephone your enquiries to:-

JAMES SCOTT (ELECTRONIC AGENCIES) LIMITED.
90 WEST CAMPBELL STREET. GLASGOW C. 2
041-221 3866. Ext. 309
WW-147 FOR FURTHER DETALS

It's the Newest, Safest and Quickest way to connect Electrical Equipment to the mains
No plugs-no sockets-no risk electrical. from an oscilloscope to an electric drill. simply open the fuse housing. depress the keys. insent the wies and close the housing. A neon light on the front of the Keynector glows to indicate proper connection. Multi-parallel connections can be made up
to 13 amps Keys are colour coded and lettered LEN for quick Idenitication. The Keynector
casing is in two-tone plastic and
measures 5 in. $\times 3$ in $\times 1$ izn.
issued by
E.B. INSTRUMENTS
division of electronic brokers lto

WW— 148 FOR FURTHER DETAILS

EXCLUSIVE OFFER

AMPEX

MODEL FR-100 A

DATA TAPE

RECORDER-REPRODUCERS

COMPLETELY FITTED in 6 it. TOTALLY ENCLOSED CABINETS With recording and reproducing Amplitiert
 AINTERCHANGEABLE \star l' $^{-2}$ TAPE. 3 TRACKS. \#APACTYY.

A
BY DTEMS.

*DC to 30,000 eycles

- UP TO 10,000 Pulee Rate. \star DRIFT FREE WITHIN 1% \star SERYO CONTROL to 0.75 *TRACK TImming $5 \mu / \mathrm{s}$. \star ACCURACY 10^{8} per week MELEOTRONICS IN

*POWER INPUT 105/125v 48 to $500 \mathrm{~s} / \mathrm{C}$.
A Made In U.S.A. these tine unda cont the Americon overament 89,000 eath before devalastion

Full detalis on appllestion.

FREE

40-page list of over 1,000 different iteme in atock avalable-keep one by you.
*Marcond HR 110 Communications Recefiers Candleatick microphoses with punh to talk * G.B.C. Platio Punching asd Biodiar \star Lattioe He htweinbt ateel triangular Aerisi 0 feet hirh triangular Lattige Mat Sections, galv, 6 inch zides with mating lugs for joining - Uaiversal Demultiplexera.

Candientiok Miorophones
McElroy Iape Pullers..
\star Tinsley Phase-nplitting Potentlometers © E.M.I. WM-3 Mebsuring Onoilloscopen t 54 inch dia. Meteorolorical Balloons. Minch ais. Mewrolorical Baloon.......... \&1 10
 $\star 455 \mathrm{k} / \mathrm{ca}$ Mechanical Band Pass Filters

* 7 track ' $^{\circ}$ tape hend a ssemblies with rollert. . $£ 30$ K1. New Magnetio Recording Tape made by
E.M.I, (USA) 3600 ft on N.A.B. Spoola E.M.I, (USA) 3600 ft on N.A.B. Spoola $\star 1^{*}$ Used ditto "Scoteh" Brand $4800 \mathrm{ft}$.
\star M.E. 11 R.F. Watameters up to $500 \mathrm{~m} / \mathrm{cm}$. * T.D.M.S. Sets send/recelve in eabinets.. - Collina 500 w. Radio Telephone Trans mitters Autotune 8 to $18 \mathrm{~m} / \mathrm{cs} 230 \mathrm{v}$.
8 Traok Data Eleb Speed Tape Readers - Mason Illuminated Drawina Tables $50^{\circ} \times 36^{\circ}$ Amphenol Connector Assembliag Machines *Stelma Telegraph Distortion Moaltors 5 ft . Motorola enelosed Cabinets 18 \star Teletype Model 14 Tape Puaches ©TS-497/URR Sianal Generatora $8 / 400 \mathrm{~m} / \mathrm{cs}$ - Barsh Trana/Receivere sad Aerials \star Sigma 12000 obm. DPDT Sealed Relaya \star Frein Airport "Weather Man" Masts .73 Hoot bigb Lattice Trianguler Wiad up - Unhelectors 10 bank 25 way ex. new....... £1 15 - Precision Malas Filter Units new........... £ 10 Marcond HR. 22 ssb Receivers $2 / 32$ ma/cs...... 2 . 710 A Avo Geiser Counters now

11 zooda

We have a larze guantity of "bita and pieces"

 wo cannot int-blease send na sout regnirementswe can probably help-all enquirien answered.

P. HARRIS
ORGANFORD - DORSET BHIS 6ER
WESTBOURNE 65051

ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes I"- $12 \frac{1^{\prime \prime}}{2}$ in diameter In our range of 17 Models

Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits

W'rite for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. OI-348 2670

WW-150 FOR FIJRTHER DETAILS

ZONONON CENFR:I? Rado SToRJS

 MODERM DESE PBONES. red, green, blue or topaz, 2 tone grey of bleke, with internal bell and handzet with 0-1 dis. 24/101-. P.P. 7/6.
10-WAY PRESS-BCTTON INTER-COM TELEPHONES ID Bakelite care =ith junction bor handeet. Thoroughis overhauled. 20-wAy precs butcon
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake
itie cane with function box Thoroughly overhauled. Guaran teed. $£ 7 / 15 /$ - per unit.
TELEPHONE COKLED HAND SET LEADS, 3 core, 5/6. P.P. 1/eleectricity slot meter (i/- in alot) for A.C. mains. Fixed
 availubio. Reconditioned as now, 2 jearo' guarantee.
quarterly electric eheck meters. Reconditioned ${ }^{2}$ An дee.. 200/250 v. 10 A. 42/6; 15 A. 52/6; 20 A. 57/6. Other moperages avallable. 2 years giarantee. P.P. ©/ B-BANK OHISELECTOR SWITCHES. 25 contacts, alternate wiphg $£ 2 / 15 /-; 8$ bank half wlpe $28 / 15 /-; 6$ bank hall wipe,
25 contacts 47/6. P.P. 3/6. FINAL END SELECTORS.
Recelvers in atock. Ali for callera only.
23 LISLE ST. (GER 2989) LONDON W.C. 2
Closed Thureday 1 p.m. Open all day Saturday

BAILEY 30 WATT AMPLIFIER

 $\begin{array}{llll}\text { BCI } 25 / 126 / 40361 & 12 / & 40362 & 16 / \% \\ \text { MJ481 } & 26 /= & & \text { MJ491 } \\ \text { M } & 30 /=\end{array}$ MJ481 26/:- low noise) \& P. $10 / 6 \mathrm{Cl}$ C6 (Mullard) $7 / 6$
R1-R27 (5\% low RI-R27 (5% low noise) \& P. $10 / 6$ Cl-C6 (Muliard)
Mullard C43I $2500 \mathrm{mFd} / 64 \mathrm{vw}$ with clip Mu H/S $\begin{array}{lll}\text { Ali H/Sink (Drilled } 2 \times \text { TO3) } 4 \times 4 \frac{3}{2} \text { in. } & 10 / 2 \\ \text { Silicon F.W. Bridge Rectifier } 200 & \end{array}$ Milicon F.W. Eridge Rectifier 200 p.i.v. $2.5 A$

LINSLEY HOOD CLASS A AMP

$\begin{array}{ll}\text { Set } 10 \text { C.F. R's } 5 /- \\ \text { MJ480 (Matched for }<0.1 \% \text { T.H.D.) } & \text { Set } 5 \text { Capacitors } 22 / 6 \\ \text { M2 }\end{array}$ MJ48I (Matched for $<0.1 \%$ T.H.D.) per pair $42 / 6$ 2N3906/2N4058/2N697/2Ni613 56 BCIO9 4/: $\begin{array}{ll}\text { MPFIO3 } & 8 / 6\end{array}$ Pair of H/Sinks as spec'd for Mono $5 \times 4 \mathrm{in}$. Lektrokit Pinboard $4 \times 4 \frac{1}{i}$ in...pins \& Layout $5 / 6$ MJ480 16/6 Hunts KA112BT $2500 \mathrm{mFd} / 50 \mathrm{vw} 12 / 6$ Mains Trans. Varn. Impres'd $40 \mathrm{v} / 2 \mathrm{~A}$ or $30 \mathrm{v} / 2 \mathrm{tA} 51 /$. Mains Trans. Varn. Impres $20 \mathrm{v} / 2 \mathrm{~A} / \mathrm{or} 30 \mathrm{v} / 2 \frac{1}{1} \mathrm{~A} 51 /=$
A.E.I. Silicon Bridge Rect. 200 p.i.v./SA Send SAE for Lists inc'g. OCT WW ISW AMP A.I FACTURS. 72 BLAKE RUAD, STAPLEFORD.NOTTS.

AMERICAN
 TESt and communcations Eoulpment * General catalogue an 104 1/6 *
 SUTTON ELECTRONICS

LAWSON BRANID NEW TELEVISION TUBES

12" Types 84.10 .0
14° Types 84.19 .0
17° Types 85.19 .0
19° Types 66.19 .0
21° Types E7.15.0
$23^{\prime \prime}$ Types 89.10 .0
19" Panorama 88.10 .0
23" Panorama Ell. 10.0 19° Twin Panel E9.17.6
23" Twin Panel £12.10.0
Carriage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ $21^{\prime \prime}-23^{\prime \prime}-1510$

The continually increasing demand.for zubes of the very highest performance and reliability is now being met by the neto Lavson" Century 99" range of C.R.T.s.
"Century 99 " are absolutely brand new tubes throughous manufactured by Britain's largess C.R.T manufacturers. They are guaranteed so give absoluzely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and light output; together with high reliability and very long life.
"Century 99 " are a complese range of rubes in all sizes for all British sets manufactured 1947-1968.
Complete fitting instructions are supplied with every tube.
2 Years full replacement guarantee WW-151 FOR FURTHER DETALL

LAWSON TUBES
8 CHURCHDOWN ROAD MALYERN, WORCS. Tel. MAL 2100

BAILEY PRE-AMPLIFIER
High quality pre-amplifier circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless versatility with a maximum output of circuit of grea suitable for driving Bailey 20W and 30W Amplifiers Linsley Hood Class A Amplifier and many others. Al normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing atest modifications 7 in . by 3 zin . features edge con nector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyeste capacitors and metal oxide resistors where specified

BAILEY 3OW AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connecto mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also miler at $14 / 6$ 2 1 . Price $\frac{1}{}$ SRBP material $1 / / 6$ d

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially derigned Printed Clrcuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo primary for use with CZ6 Thermlstor, $35 / 6 \mathrm{~d}$., post
5).

Trifilar wound Driver Transformer, 22/6d., post 1/ower Amp., $12 / 6 \mathrm{~d}$., post 9 d
Reprint of "Wireless World " articles, 5/6d. post free.
DINSDALE IOW AMPLIFIER
All parts still available for this design
Reprint of articles $5 / 6 \mathrm{~d}$., post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special mate black anodised Mecalwork and all power supply omponents.

PLEASE SEND S.A.E. FOR ALL LISTS

HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday

$\square\left\{\begin{array}{ll}80 & \square \\ \square & \square\end{array} \begin{array}{l}\text { PRINTED } \\ \text { CIRCUITS }\end{array}\right.$

electronic equipment manufacturers Large and small quantities. Full design and Prototype Service, As semblies at Reasonable Prices. G.P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-624 0939

symbol of quality trade only

 for electronic components-by return| PUCKA ENTERPRISES | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| ${ }_{\text {cbis }}$ | | | | | | | |
| | | | | | | | |
| | | | | 促 | | | |
| | | | | ${ }_{\text {UBPA }}$ | | | |
| DAF | | | | U | | | |
| | | | | | | | |
| | | | | UC | | | |
| | | | | UC | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | 10.2 | | |
| | | | | UM | | 12AT | |
| | | | | UY | | ${ }_{12 \mathrm{AUG}}$ | |
| | | | | UY | | 12 | |
| EABC | 818 | | | 08 | | 1280 | |
| EAPA | | | | | | 20 DI | |
| EbCP1 | \% | PCFP | | 1 cs | | ${ }_{20 \mathrm{P}}^{2}$ | |
| 6 B | 81 | | | ${ }_{185 / \mathrm{DK}}^{1 / \mathrm{l}}$ | | ${ }_{2}^{20 p 5}$ | |
| | | $\mathrm{Pc}_{\text {Premol }}$ | | | | | |
| | | PCPBO | | | | | |
| | | PCCF | | | | | |
| | | | | | | | |
| | | (| | | | ${ }^{3}$ | |
| | 1012 | ${ }_{\text {PCL }}$ | | | | | |
| | | $\mathrm{PCL}_{\text {PCL }}$ | | | | sppld | |
| | | | 321 | | | \% | |
| | | ${ }_{\text {PLPa }}$ | | | | 30 FL | |
| | | | | | | 30L1/Pec | |
| | | | | 82/301 | | | |
| | | | | ${ }_{8}^{\text {fac }}$ | | | |
| | 10 | ${ }_{\text {PLSbo }}$ | 14 | | | | |
| | | | | ${ }^{88}$ | $14 / 8$ | ${ }^{3} \mathrm{PLL}, 1$ | |
| | | | | | | 0P | |
| | | | | | | ${ }_{3}^{3} \times 1.3$ | |
| | | PY | 514 | ${ }_{6 J 6 / E C c 91}$ | | ${ }_{35}$ | |
| ${ }_{\text {ELI90 }}$ | | PY83 | | | | ${ }_{3584 \mathrm{C}}^{35 \mathrm{Z}}$ | |
| EM84 | | | | | | 2050 | |
| ¢ ${ }^{\text {P }}$ | | | | | | | |
| 207 b Belsize Road, London, N.W. 6 | | | | | | | |
| | | | | | | | |

WW-152 FOR FURTHER DETAILS

TECHNICALTRAINING

$B^{\text {ECOME }}$ "Technically Quallifed" in your spare time, Buaranteed diphoma and exam. home-study courses
 Gulde-free.-Chambers College (Dept. 837K), ${ }_{[16}$ Holborn. London
CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes. For detalls of modern courses in all branches of elec elc.; send for. 132 -page handbook-iree.-B.I.E.T. (Dept. 152 K). Adermaston Court. Aldermaston, Berks.
[13

R adio omcers see the world. Sea-golng and shore Grants avallable: Day and boarding students. Stamp Grants avallable. Wirless College, Colwyn Bay.
for prospectus. Wir
TECHNTCAL TRAiNing in Rado. TV and Electronics 1 through world-famous ICS. For details of proven home-study courses writes ICS, Dept. 443, Intertext
House, Stewarts Road. London, S.W.8.

TV and radlo A.M.I.E.R.E., Clty \& Gullds. R.T.E.B.; 1 certs., etc., on satisfaction of refund of tee terms: thousands of passes; for full detalls of exams and home training courses (Including practical equipment) in all branches of radio, TV, electronics, etc., write for 132page handbook-free; please state subject.- British
Institute of Engineering Technology (Dept. 150K). Aldermaston Court. Addermaston, Berks.

Cationsmut TUITION

CNGINEERS.-A Technical Certincate or quallicaEtion will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng. Gullds, A.M.I.M.I.. A.I.O.B., and G.C.E. Exams. Dlploma courses in all branches of EngineeringMech. Elec. Auto, Electronics, Radio, Computers, Draughts, Bulldigig, etc.-For full detalls write for FREE 132 -page gulde: British , Aldermaston Court, Ing Technology (Dept. 15iK), Adermaston Court,
Aldermaston, Berks. KINGSTON-UPON-HULL Education Committee. 1 College of Technology. Principal: E. Jones, M.Sc., F.R.I.C. TME courses for P.M.G. certificates and the College of Technology, Queen's Gardens, Kingston-upon College of Technology, Queen's Gardens, Kingston-upon-
[18

- BOOKS.INSTRUCTIONSIETC:

MANUALS, circults of all British ex-w.D, 1939-4s M wireless equipment and instruments from orlginal W.E.M.E. Ealley. 167a Mortat Road. Thornton Heath,

BAKER "SUPERB" 20 WATT
I2in. LOUDSPEAKER BRITISH MADE THROUGHOU
Suitable for all Hi-Ft Systems. Provides rich clear sound recreating the musical spectrum virtually flat $\pm 5 \mathrm{~dB}, 20-17,000$ cps. Latest double, cone with massive "Ferroba", ceramic magnet. Flux density 16,500 gauss. Bass resonance 22 -26cps. Plastic Cone surround
Price $\mathbf{1} 15$ Post Free

EMI TAPE MOTORS
(200.240v. A.C.) Clock wise I, 360 R.P.M. off load Heary duty 4 pole 100 mA . Spindle $\sqrt{\frac{1}{2}} \times \frac{4}{6}$ in , diameter.
Size $3 t \times 2 t$.
 PRICE $\quad 17 / 6 \quad 2 / 6$
TRANSISTOR AMPLIFIER WITH LOUDSPEAKER Aini Eif-contained portable mini-p.a. syatem. Many usef-Partios, Baby Alarm,
Intercom. Tolophone or Intercom, Telephone or
Record player Amplifier Actractive roxine covered
cabinet ine $12 \times 9 \times 4$ in.
 wpeaker and four tranistor
sper One watt power amplifier. Uses PP9 battary. Brand
 now in Maker's carton
full maker's zuarmite.

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{ll}\text { 200/250 A.C. } \\ \text { Leaflet S.A.E. } & 42 / 6 \\ & \text { Post } \\ \text { 2/6 }\end{array}$
EXTENSION SPEAKER
Smart plastic cabinet speaker with 20 ft lead for transistor radio, intercom, main
 RETURN OF POST DESPATCH - CALLERS WELCOME AETURN OF POST DESPATCH - CALLERS WELCOM
HI-FI STOCKISTS - SALES - SERVICE-SPARES RADIO COMPDNENT SPECAASTS 337 WHITEHORSE ROAD, CRQYDON. Tel: 01-684 1665

Thanks to a bulk purchase we can offer

BRAND NEW
 P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes áre boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes, 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} . & 2 /- & 5 \mathrm{in} . & 600 \mathrm{fc} & 6 / \% \\ 5 \text { Sin. } & 900 \mathrm{ft} . & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 /-\end{array}\right.$ L.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & \text { Sin. } & 500 \mathrm{ft} . & 8 / 6 \\ 5 \sin , & 1,200 \mathrm{ft} & 10 / \mathrm{l} & 7 \mathrm{in} . & 1,800 \mathrm{ft} & 13 / 6\end{array}\right.$
 Postage on all orders $1 / 6$

COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes. $12 / 6$ each. MC $12018 / 3$ each.

STARMAN TAPES
28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

WW-153 FOR FURTHER DETALLS

SITUATIONS VACANT

TEST ENGINEERS at Marconi, Wembley

Electronics and Telecommunications Engineers are required to undertake testing and fault finding of a wide range of Communications Transmitters and Receivers, Data Handling Equipment and a variety of Electronic Aids.

Applications are invited from Test Engineers with previous experience of Product Testing and from ex-Regular Service Technicians with the appropriate Forces training and experience.

This is an opportunity to work in a rapidly expanding industry; we offer attractive salaries, good conditions of service, canteen, pension scheme, and we are situated within easy reach of rail and road services. A 37 -hour, five-day week is worked ($8.30 \mathrm{am}-4.24 \mathrm{pm}$).

Marconi

תacis
 he ouem a awand poimouitay

Please call, telephone or apply by letter giving age, education, experience and present salary, quoting reference WW/WW/2 to: The Assistant Personnel Officer, The Marconi Company Limited, Wembley Works, Lancelot Road, Wembley, Middlesex. Tel: 01-902 9421.

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

ELECTRONICS COMPONENTS

Guest-Resistors, Capacitors, Newmarket-Transistors, Amplifiers, etc., in stock, from official distributors.

G.S.P.K. (Electronics) Limited HOOKSTONE PARK, HARROGATE

 Tel: Harrogate 86258
INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 115-130

Racal Instruments, L	$\begin{gathered} \text { Page } \\ 43 \end{gathered}$
Radio \& TV Components, Ltd.	113
Radio Components Specialists.	135
Radio Exchange Co.	107
Radiospares, Lid	134
Rediffusion Industrial Services	44
Rendar Instruments	62
Reslo Mikes	48
Roband Electronics Ltd.	34
Rola Celestion Lid.	50
Ralfe, P. F.	85
R.R. Radio	131
R.S.C. $\mathrm{Hi}-\mathrm{Fi}$ Centres, Lid	99
R.S.T. Valves.	108

Teclare Ltd. 131
Telcon Ment Lta 27
106
Telemeter 106
131
26
Teonex, Lid $\begin{array}{r}26 \\ 74 \\ \hline\end{array}$
Tinsley, H., \& Co. $\begin{array}{r}74 \\ 25,27 \\ \hline 108\end{array}$
Trading Post

Trend Electronics Lid.108
50
30
Trio Corporation

Trio Instruments Lid...................... | 60 |
| :--- |
| 83 |

United-Cart Supplies, Ltd 54
Valradio, Lid. 32, 36
Vitality Bulbs, Ltd.
Vortexion, Ltd.. 48
6
Watts, Cecil E., Lid.. 55
, 61
Wayne Kerr, The, C 56
41
Wellbrook Eng. \& Electronics
West Hyde Developments, Lid 131
112
Wilkinsons, L (Croydon), Lid 56,80
Yukan 134
 \title{
CLEARWAY
 \title{
CLEARWAY to lower production costs with
 ADCOLA
 Precision Tools
}

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS—STOCK ITEMS \star SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

Adcola House - Gauden Road • London • SW4 TeI. 01-622 0291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:
name
company
address

and tomorrow there will be thousands more

Throughout the world leading electronic manufacturers are continually emptying reels of Ersin Multicore 5 core solder, to make reliable soldered joints. Some reels contain 3,752 feet ($\mathrm{I}, \mathrm{I} 44$ metres). It's the solder they have depended on for consistent high quality for more than 30 years.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints and do not already use Ersin Multicore Solder it must be to your advant-
age to investigate the wide range of specifications which are available.

Besides achieving better joints-alwaysyour labour costs will be reducedand substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms and Pellets-Cored or Solid -and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

Should you have any soldering problems or require details on any of our products please contact us at :

[^0]: St. John's Works, Tylers Green, High Wycombe, Bucks. Telephone No.: Tylers Green 322 \& 654 Telex 83621 \& 83625

[^1]: J. E. SUGDEN \& CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS.

 Tei: Cleckheaton (OWR62) 2501

[^2]: Jack Dinsdale, aged 31, graduated in mechanical sciences at Trinity College, Cambridge and subsequently took a postgraduate diploma in advanced engineering at The College of Aeronautics, Cranfield. He spent several years with Elliott Automation and recently became senior research engineer with the Unit for Precision Engineering at the College of Aeronautics where he is responsible for the application of electronic control and digital computing techniques to machine tools and measuring machines.

[^3]: 'Linsley Hood, J. L., "Modular Pre-amplifier Design", Wireless World, July 1969.

[^4]: * assistant editor, Wireless World.

[^5]: * West Ham College of Technology, London, E. 15.

[^6]: A. F. BULGIN \& CO. LTD.

 Eye Pass Rd., Barking, Essex.
 Tel: O1-594 5588 (12 lines)

[^7]: ADVANCE TEST EQUIPMENT: VM78A.C. Millivoltmeter (transistorised) £55 each; TT1S Transistor Tester (CT472) £37/10/- each; VM77C Valve Voltmeter $\& 40$ each. Carr. 10/- extra per item.

[^8]: COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female connectors fitted to recelive UG-21/U series plugs. New in ctns., $8: / 10 /-$ each, post $7 / 6.2$, 2 pole, 2 throw. (Ncw) $66 / 10 /=$ each, $4 / 6$ post. 1 pole, 4 throw, M1460-22, 2 pole, 2 throw. (New) $66 / 10 /$ each
 Type M1460-4. (New) $66 / 10 /-$ each, $4 / 6$ post.

 PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, 0.250-1.0 KMC/SEC. New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, $2.0-1157 \mathrm{~S}-1$, (new) £6 each, post $5 / \%$.

[^9]: DEGGOdf

 Apply quoting Ref. NAV/29/C to The Personnel Officer, The Decca Navigator Company Ltd., 88 Bushey Road, Raynes Park, London, S.W. 20 . Tel : Wimbledon 8011.

