SIMPLIFY THE CALIBRATION

OF YOUR MULTI-RANGE INSTRUMENTS...

BRADLEY Calibrators had this feature * back in 1964, and they still lead in design
look at these specifications . . .
Model $127 \quad 0-509$ volts D.C. at an accuracy of 0.05%
Model $125 \mathrm{~B} \quad 0-511$ volts A.C. in 100 mV steps, at an accuracy of 0.2%, with extremely low harmonic distortion. Spot frequencies 50 ,
60,400 and 1000 Hz ., with alternative frequencies up to 2400 Hz . available
Model 132
D. C. Current up to 100 mA in $1 \mu \mathrm{~A}$ steps, at an accuracy of
0.05%. Range can be extended to 10 amps using the type 144 multiplier.
All models feature direct reading of percentage error, carry a one year guarantee of accuracy, and are fully portable. Their reliability has been fully proved by widespread use in standards laboratories and on production lines . . .Bradley Electronics are represented throughout the world Write to us for full details and the address of your nearest agent.

BRADLEY electronics

G. \& E. Bradley Ltd., Electral House,

Neasden Lane, London, N.W.10.
Tel: 01-450 7811 Telex: 25583

If you need power tetrodes at the right price look at this EEV range

Forced-air Cooled		Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Filament ratings	
Type	type					(V)	(A)
$\begin{aligned} & \text { 4CX1000A } \\ & 4 \mathrm{C} \times 1000 \mathrm{~K} \end{aligned}$	-	1.0	3.2	3.0	110	6.0	9.0
4CX1500B	-	1.5	2.7	3.0	30	6.0	9.0
4CX5000A	CV8295	5.0	16.0	7.5	30/110	7.5	75
4CX10,000D	CV6184	10.0	16.0	7.5	30/110	7.5	75
4CX35,000C	-	35.0	82.0	20.0	30	10	300
CR192A (6166A)	CV8244	10.0	9.0	6.9	60/220	5.0	175
Vapour Cooled	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	Frequency (MHz)	Filament rati (V)	(A)	Boiler unit
CY1170J	60	82	15	30	10	300	Integral
CY1172 (RS 2002V)	150	220	15	30	21	350	CY4120
$4 \mathrm{CX1000K} 4$	4CX10,000D	4CX35,0000		CY1170J		CY11	
For audio or linear single sideband amplifiers. $4 \mathrm{CX1000K}$ has a solid disc screen contact to permit	For audio, linear. single sideband or screen modulated r.f. amplifiers.	For audio am r.f. linear amp or Class C am or oscillators	mplifiers. plifiers mplifiers	For audio am Class C amp have a coaxi A range of gla available.	mplifiers, r.f. li lifiers or osci al metal-cera ass envelope	near a ilators mic types	ers or types e.

English Electric Valve Co Ltd Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me full data on your range of forced-air cooled and vapour cooled tetrodes. I am also looking for a power tetrode with the following parameters.

Output power (kW)	Anode voltage $\max (\mathrm{kV})$	Frequency (MHz)

NAME POSITION

COMPANY
ADDRESS
Please supply full catalogue of
signal recovervinstrumentation and

application reports. \quad| No grilling is too drastic for our |
| :--- |
| test department. Everything is |
| suspect until cleared. Quality |

PRODUCT FEATURE: Type 432 HighIZIPreamplifier, amplifies with high cmr (120dB) and low input capacitance (0.1 pF). £145 (U.K.).

Brookdeal

the preferred equipment for signal recovery

New pulse tetrode for low power radars added to EEV's range

The new C1179-a high vacuum beam tetrode designed primarily for the output stage of power amplifier pulse modulators in $5 \mathrm{~kW}-10 \mathrm{~kW}$ radars.

||||||||

C1179

C1148

C1149/1

C1150/1

C1166

Type	Service type	Anode dissipation max. (W)	Pulse output power (kW)	Anode voltage max.$\text { D.C. }(k V)$	Pulse anode current max. (A)	Heater ratings		Base
						(V)	(A)	
C1148	-	40	130	14.0	12	6.3	5.0	B5F
C1149/1	CV6131	60	330	20.0	18	26.0	2.15	B4A
C1150/1	CV427	60	205	17.5	15	26.0	2.15	B4A
C1166	-	60	205	17.5	15	6.3	9.0	B5F
C1179	-	18	65	8.0	9.0	6.3	2.8	B7A

Send for full data on the EEV range of pulse amplifier tetrodes

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777 Telex : 99103 Grams : Enelectico Chelmsford

Please send me full details on your range of pulse tetrodes.
I am particularly interested in using a pulse tetrode with the following parameters:

Pulse output power	Anode dissipation	Anode voltage	Pulse anode current
NAME		POSITION	
COMPANY			
ADDRESS			

This

intercom

 is not unique

Except in one respect. You don't have to tear the place apart to put the system in, expand it, change it, or take it out, because it works through one $8-\mathrm{mm}$ slim cable. It has all the things a good intercom should have, because we've years of experience in solving our own intercom problems. So, we designed out all the troublesome things and left in only efficiency.
It gives instant contact with thirty people. It can be answered from across the room. It has secrecy circuits and provision for secretary intervention to leave your top men undisturbed.
Speech is delivered clearly without distortion. The call signal is pleasing
but distinct. It has a "lock-out" system so that an absent executive can indicate his absence at once to any caller. This saves that vexing search for men who are simply not in the building. It can be provided with priority circuits for directors, and group calling to enable a number of men to respond simultaneously.
Have your secretary get in touch with us immediately for all the information about this unusually good intercom which is still not unique.

[^0]
PHILIPS

The secret is in the fixing of the Brewster window -the angled glass plate at each end of the tube. In many tubes the seal is made with an epoxy resin which eventually cracks and ruins efficiency by letting in air. EEV, on the other hand, use fusion sealed windows where the seal is as strong as any other part of the tube. Fusion sealing allows the tube to be heated to a very high temperature during manufacture, driving out all the gases in the tube surface which would otherwise contaminate the helium-neon filling. EEV tubes have been life tested up to 6000 hours which is two or three times the life generally expected from tubes employing epoxy sealing techniques. There is a standard range of EEV laser tubes available, full details of which can be obtained by filling in the coupon. If your laser design calls for a special tube give us brief details of what you need as we can probably meet your requirements.

Why EEV gas laser tubes

			Output powerat 632.8 nm	Bore diameter (mm)

Please send me full data on your range of gas laser tubes.
I am particularly interested in using a tube with the following parameters.
Wavelength (nm) Power Output (mW) Mode (Single or Multi?)
NAME POSITION

COMPANY
ADDRESS
 places? And you're held up for meters? Like an 0-5mA calibrated in pulsfrekvens? Or a jonkammarström meter specially calibraled from 10^{-10} to 10^{-4} ? Or a straightforward (but impossible to locate) 100 mA moving-coil job reading simply $0-35$ K $/ \mathrm{M} H H 2$ Relax. No problem at all. Anders are legending most types of meters in all sorts of languages every day of the week-and as often as not calibrating them specially into the bargain. Hand lettering specialists are standing by for the one or two off. Fast, accurate techniques are here for the quantity orders. Ring us. You'll find we are as fast at this sort of thing as we are at supplying standard meters off the shelf. ... and, as you know lor should know, that's fast.
N.B. The variety of meters in our new catalogue is a revelation-and now we've got extensive new centralised premises for a better-than-ever service.

Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompl supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

Don't take our word for it-test EEV flash tubes against the equivalents you're now using and learn why other users think so highly of those made by EEV. Incorporating extra heavy duty electrodes, EEV flash tubes are renowned for their reliability, long life (up to 10^{6} flashes) and high conversion efficiency. EEV liquid-cooled and air-cooled xenon flash tubes for pumping laser rods offer a wide range of input energy levels and they are capable of operation at high repetition rates.
Full details of the range are available on requestbut if your application calls for a flash tube that is not in the present range, tell us your requirement because we can probably make it for you.

Outstanding in quality, reliability and performance

EEV flash tubes

Typical operating conditions

Type	Energy input per flash max. (J)	Arc length (mm)	Bore diameter (mm)	Typical operating conditions			
				Voltage (kV)	Series inductance $(\mu \mathrm{H})$	Flash rate	Trigger voltage (kV)
XL615/7/3	600	76	7.0	2.5	400	1 per 15 sec.	12-16
XL615/9/4	1500	102	9.0	2.5	400	1 per 30 sec .	12-16
XL615/10/5.5	3500	140	10.0	2.5	400	1 per 30 sec .	16-20
XL615/10/6.5	5000	165	10.0	2.5	800	1 per 2 min .	20-25
XL615/13/6.5	10000	165	13.0	2.5	800	1 per 2 min .	25

Send for full details of the complete range of EEV flash tubes.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford

I am interested in EEV flash tubes for
(application).
Please send me data sheets on your full range.

NAME

 POSITIONCOMPANY
ADDRESS

Quality in quantity

At the Mullard Simonstone tube factory, quality control procedures operate at every production stage, from raw materials to final testing. Completely independently, the Technical Department checks every facet of tube construction, operation and life. Above you see an engineer carrying out one of the 111 measurements made daily on a proportion of monochrome tube production.

Working for the industry

The Mullard Central Applications Laboratory at Mitcham, Surrey, serves the electronics industry by solving today's circuit problems and carrying out worl on new techniques for the future.
The laboratory employs over forty engineers and scientists and has made many original contributions,

th to the development of television and the application cathode ray tubes. For instance it is an acknowledged orld leader in the development of line time-base shniques. C.A.L. has an enviable reputation, both for e quality of its application reports and in the standard 'service to Mullard's customers.

Keeping you in the picture
Mullard help does not cease with the sale of the picture tubes. Members of the Technical Services Depariment visit setmakers to introduce new products and advise on their application. Should a problem arise they represent the customer within Mullard and they are always on hand to discuss specific detail with setmaker engineers.

ubes than meets the eyel...

prepare now for tomprrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the probiems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.
Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.
 Correspondence Colleges
C. R.E.I. (London), Walpole House,

173-176 Sloane Street, London S.W.1. A subsidiary of McGraw-Hill Inc.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1. Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.

My interest is City and Guilds \square
please tick
General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND
ELECTRONICS EXPERIENCE

Eimac 250 kW Tetrode 4 CV 250.000 A now ready for Super-Power Transmitters.

The Eimac 4CV 250.000A is a ceramic-metal, vapour-cooled power tetrode intended for use at the 250 to 500 kilowatt output level.
It is recommended for use in class-C,
class-AB linear or push-pull,
and pulse operating modes.
The 4CV 250.000A can be used at full ratings for frequencies up to 30 MHz
For more detailed information on this or other high power tetrodes in the Eimac range, including their new $100 \mathrm{~kW}-50 \mathrm{MHz}$ and $50 \mathrm{~kW}-110 \mathrm{MHz}$ tubes, please contact:

Varian Associates Ltd.
Russell House / Molesey Road
Walton-on-Thames
Surrey / England
Tel.: Walton-on-Thames 28766

test match

HEATHKIT SCORE
 with their team of instruments

The opening pair, Heathkit DeLuxe Solid-State VVMs models IM-16 and $1 \mathrm{M}-25$, because of their excellent form and reliability, have quickly found a wide and appreciative audience. Their amazing versatility and style is always worth watching
They are supported by the Heathkit HV and LV stabilised power supplies, models IP-17 and IP-27, which also are first class contestants in many fields throughout industry. These, backed by the excellent cover of the wide range of other Heathkit test instruments, make a team strong enough to challenge anyone.
Even when batting on a really sticky wicket. Heathkit instruments will give a good innings for your money.
Photographs, many in full colour, of all the Heathkit team of instruments as well as their performance records, can be found in our latest catalogue, which is available to all enquirers on request. Send for your copy today.

Effective elimination of RF interference emanating from ancillary electrical equipment is paramount in a world extensively reliant upon its telecommunications services.

Erie offer a range of subminiature RF interference filters, providing up to 80 dB of attenuation from 10 kHz to 10 GHz and beyond.

Used the world over by engineering designers of electrical systems for aircraft, spacecraft, ships, submarines, land vehicles, and static installations.

Although a fraction the size of conventional filters, you still get full size performance:

* $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
* Coaxial and multi-section designs.
* 50-1500 V.d.c. Wkg.
* Hermetic sealing on many styles.
* Ferrite/Toroidal/Ceramic \& Monolithic Fabrication.

Write or phone Erie with your interference problems-we'll efiminate them.

THECOMMNNCATION ANO EECTRONC COMPONENS
 EXPORT-IMPORT
 Electric RC-Element Resistors
 Condensers
 Rotary resistances
 Electromechanical components
 Connectors
 Switches
 Ferrite materials
 Transformers
 Tube sockets
 Relays
 IMPORT Semiconductors, Electron tubes

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components

MY VITAL STATISTICS ARE $1-181^{7 \prime} \times 551^{7 \prime} \times 1-213^{" 1}$ 250V 10AMPA.C. SINGLE POLE SNAP-IN FIXING

now meet the family

Being a snappy little 1100 rocker who is getting around fast, I am often asked about my family. Now, having managed to persuade them to have their photograph taken with me, I have much pleasure in introducing them.

1109 -often seen around with me, is a most illuminating little pilot light with a variety of colour lenses. At times we are very close and can often be seen working together very harmoniously on a wide range of appliances and equipment.

The 1100 twins are going to be very popular and you can expect to see them on many companies' panels soon.

1110, the fat one, is double pole and the clever member of the family, he can operate two circuits at a time.

Like to know more about us? Give us a ring at 01-574 2442, we would certainly like to meet YOU some time. P.S. I have just been awarded my BS. 3955 approval certificate.
ARROW

Expand your Universe of Electronic Instrumentation with Hewlett-Packard

... for better solutions
to your measuring problems.

1 Pulse generator
 22 LF scopes
 3 Hybrid hot carrier diodes
 4135 MHz counter with 12 plug-ins
 5 Made in Britain

2 Hewlett-Packard
 2 Hewlett-Packard VP/S/LC/LF scopes

Fast rise time of less than 1.5 ns is achieved with hp 8004A pulse generator.

Combining VP (variable persistence) and S (storage) in an LF (low frequency) scope is novel and obviously very useful. Making this hp innovation in the dc-to-500 kHz range even more attractive is the LC (llow cost) dimension Two starage writing speeds $->20 \mathrm{~cm} / \mathrm{ms}$ and $>1 / 2 \mathrm{~cm} / \mu \mathrm{s}$ - are obtained by pushing the STD and FAST button respectively. In the STD mode, persistence is continuously variable from 0.2 s to 1 min or longer. It's 0.2 s to 15 s in the FAST mode. There is of course only one way of giving you flicker-free displays

1 You'll find the price as attractive as the 2.5 ns pulse width

We very deliberately set out to come up with a price so low that it brazenly belies the instrument's high performance. And by performance we mean: variable pulse widths as narrow as 2.5 ns at full output amplitude; variable pulse delay. 0 to 1 ms ; a rise and fall time of less than $1.5 \mathrm{~ns}: \pm 2 \mathrm{~V}$ DC offset. Repetition rate 100 Hz to 10 MHz . By means of double pulse operation, an effective repetition rate of 20 MHz is obtained. Also included are synchronous and asynchronous gating capability.
What it means is that, in addition to conventional applications. the 8004A is especially useful when you want to test a wide range of fast logic and memory circuits.
Ask us to send you the data sheet, peruse it at your leisure, and you'll agree that the price of $£ 279$ is in itself a pretty spectacular feature of the hp 8004A

WW 200 FOR FURTHER DETAILS
of all your LF measurements - variable persistence.
Storage time is 1 min to 8 hrs (STD mode) or 15 s to 1 hr (FAST mode)
The mesh storage in the $8 \times 10 \mathrm{~cm}$ CRT means bright displays without loss of trace brightness due to phosphor deterioration.

hp 1201 with dual-trace and $100 \mu \mathrm{~V} / \mathrm{cm}$ deflection factor: £ 826
hp 1207 with single-trace and $5 \mathrm{mV} / \mathrm{cm}$
deflection factor: $£ 678$.
in rack and cabinet versions.

3 It's price-cutting time
for hybrid hot carrier
diodes

A new hp manufacturing process did it: down went the prices of hybrid hot carrier diodes.
The 2800 series are epitaxial, planar passivated devices. Their unique design combines a conventional PN junction and a Schoitky barrier. The benefits are fourfold.

1. The high breakdown and high temperature ($200{ }^{\circ} \mathrm{C}$) operating and storage characteristics of silicon.
2. The low turn-on voltage of germanium.
3. The 100 picosecond speed of a

Schottky barrier majority carrier device.
4. The inherent resistance to shocks and vibrations of a planar diode. The latest additions to the series are two switching diodes featuring forward currents of 35 ma and 20 ma at 1 V (capacitance: 1.2 pfmax); there are also 1 GHz and 2 GHz mixers with 60 erg burnout and 6 dB noise figures: and a 2 GHz detector with -56 dBm tangential sensitivity. All are available as single units. pairs and quads. Ask for the data sheets on the 2800 series diodes.

WW202 FOR FURTHER DETALS

How about measuring the time it takes light to travel 10 feet?

Ww204 FOR FURTHER DETALS

- Your next hp instrument might well be British-made.
Over eighty products are today
manufactured by the hp plant at South
Queensferry, overlooking the Firth of Forth near Edinburgh.
In addition to communications test equipment, noise generators and related items designed in South Queensferry for world markets, the Scottish factory produces instruments which are especially popular in European and Commonwealth countries. Numerous hp customers therefore benefit from an important cost advantage.

Hewlett-Packard Lid. 224 Bath Road, Slough. Bucks. Great Britaln Tel. 33341
European headquarters
Hewlert-Packard S.A., rue du Bois-du-Lan 7
1217 Meyrin-Geneva, tel. 10221 415400

Measuring the 10 ns light takes to travel 10 ft . is strictly in the line of duty for the hp 5248 L counter with the new 52674 time

PYE SPANS THE WORLD

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

rely on

the vital contact

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:
Radio and Television Manufacturers. Radio and Television Service Departments. Radio Relay Companies.
Audio Equipment.
Electronic Equipment. Instrumentation. Computers.
Marine Radar.
Communication Equipment. Research and Development. Government Departments. Aircraft Military and Civil.
Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

AUDID FROM GARDNERS

Exceptionally wide band microphone and audio line matching transformers

FREQUENCY RANGE

$100 \mathrm{~K} . \mathrm{ohm}$ models $\pm 1 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. All other models $\pm 0.5 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. MAXIMUM AUDIO LEVEL +12 dBm (16 mW).
INPUT IMPEDANCE maintained to within $\pm 10 \%(\pm 20 \% \mathrm{j})$ at all frequencies within the range $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$ (to $5 \mathrm{kc} / \mathrm{s}$ only for $100 \mathrm{~K} . \mathrm{ohm}$ models).
MAGNETICALLY SCREENED
-50 dB reduction in hum pick up.

For professional recording and broadcast transmission equipment, these Octal-based plug-in transformers have a frequency response extending well beyond the audio range. The design achieves dynamic performance with minimum distortion atall levels

Type No.	Input Z Ohms	Pin Nos. \dagger	Output Z Ohms	Pin Nos.	Sec./Pri. Turns Ratio	Applications
MU. 7521	3.75/15*	1-3, 2-4	600 (C.T.)	6-7-8	6.32:1/12.64:1	Low Z. Mic/Line
MU. 7522	3.75/15*	1-3, 2-4	100K.	6-8	82:1/164:1	Low Z. Mic/Grid
MU. 7523	75/300*	1-3, 2-4	600 (C.T.)	6-7-8	1-41:1/2.82:1	Line/Line
MU. 7524	150/600*	1-3, 2-4	600 (C.T.)	6-7.8	1:1/2:1	Mixing: Bal./Unbal.
MU. 7525	600 (C.T.)	6-7-8	300/1.2K*	1-3, 2-4	1+1:1.41 (С.Т.)	Mixing : Hybrid \ddagger
MU. 7526	600 (C.T.)	6-7-8	2.5k/10k.*	1-3, 2-4	2.04:1/4.08:1	Line/Grid
MU. 7527	150/600*	1-3, 2-4	100K.	6.8	13:1/26:1	Line/Grid
MU. 7528	7.5/30"	1-3. 2-4	600 (С.T.)	6-7.8	4.47:1/8.94:1	Low Z. Mic./Line
MU. 7529	50/200*	1-3, 2-4	600 (С.T.)	6.7.8	1-73:1/3-46:1	Mic. or Line/Line
MU. 7530	10K. (C.T.)	6-7.8	10k.	$1-4$	1 (С.T.) :1	600 Line Bridging
MU. 7532	7.5/30*	1-3, 2-4	100K.	6-8	58:1/116:1	Low Z. Mic./Grid
MU. 7534	50/200*	1-3, 2 -4	100K.	6-8	22-4:1/44-8:1	Mic. or Line/Grid

Type MU. 7525 may be used in "Hybrid" circuits, as shown, to establish 2 to 4 wire operation in telephony. Accurate balancing of the windings enable guaranteed rejection of better than - 55 dB from $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Up to $-75 d B$ may be expected for normal rejection levels.

GARDNERSTRANSFORMERSLIMITED
Christchurch, Hampshire BH23 3PN. Tel. Christchurch 2284 (STD 02015 2284)
TELEX 41276 GARDNERS XCH

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct
reading dial on amateur bands.
- A mechanical filter enabling superb selectivity with ordinary IF transformers.
- Frequency Range: 550 kHz to 30 MHz (4 Bands)
-Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S $/ \mathrm{N}$ Ratio (at 10 MHz)
-Selectivity: $\pm 5 \mathrm{kHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When
using the Mechanical Filter.
- Dimensions: Width $\mathbf{1 5}^{\prime \prime}$, Height 7", Depth $10^{\prime \prime}$.

Model SP-5D

- Communications Speaker which has been designed exclusively for use with the 9R-59DE

Model HS-4

- Communications Head Phone

Model JR-500SE CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER
 - Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
 - Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
 - Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{S/N}$ Ratio (at 14 MHz)
 - Hi-Selectivity: $\pm 2 \mathrm{kHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
 - Dimensions: Width $13^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$

TO: B.H. Morris \& Co., (Radio) Ltd.
ww Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME
ADDRESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave, Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: $01-7904824$.

The SERIES 30 is a range of modular, mains operated d.c. power units with output voltages from 0.500 V at maximum current ratings. These all silicon units are a result of careful design, are small in size, robust in construction and give a high performance. Three standard lengths are available covering the complete output range.
For further details write for fully descriptive leaflet and free slide rule selector.

PERFORMANCE

Stabilisation ratio Temperature coefficient : Output resistance : Output impedance :

Ripple and noise
$>10,000: 1$. Typical 20,000:1. $\$ 0.005 \%$ per ${ }^{\circ} \mathrm{C}$.
$\$ 0.5 \mathrm{~m} \Omega+0.05 \mathrm{~m} \Omega$ per volt of output. $<0.1 \Omega$ to 200 KHz . $<0.5 \Omega$ to 500 KHz . $\$ 250 \mu \mathrm{~V}$ or $0.0005 \% \mathrm{p}-\mathrm{p}$. whichever is greater.
A.P.T.ELECTRONICINDUSTRIES LTD

COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items:

CN 15 watts 240 volts miniature model ($\frac{3}{16}$ ") bit 2 interchangeable spare bits $\left(\frac{5}{32}{ }^{n}\right.$ ard $\frac{3}{32}{ }^{n}$) = reel of resin-cored solder - heat sink for soldering transistors = felt cleaning pad - soldering iron stand = storage space for lead and plug.

DE-SOLDERING KIT

Efficient de-soldering is assured with this high speed method from Antex. Soldered joints soon dissolve leaving a clean finish, thanks to the exclusive Antex-designed suction nozzle. Operation is by compressed air from an airline or foot-pump. No vaclum supply is needed.
Two models are available, complete with 6 ft . nylon airline, 6 ft . 3 core flexible lead and $\frac{1}{8}$ " BSP Male and $\frac{3}{8} " 26$ T.P.I. Male Adaptors.

84/99/6 (Nen Trade)

FROM

32'6
actual size

CN 15 watts, fitted $\frac{3}{32}$ Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from . 040 (1 mm) up to $\frac{3}{18}$ " for $240,220,110,50$ or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares.World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.

PRECISION MINIATURE SOLDERING IRONS Made in England

Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8 Telex: 45296
Giro No. 2581000

Tandberg Series 11 the Professional's Portable

A 3 M wildife recording winner K. Briggs.

The Tandberg Series 11 is the finest truly portable tape recorder available in this country at the present time. Its specification, performance and design make it the perfect tape recorder for the professional. A pilot tape model is available to industry.

Compare our Performance -then Compare our Price!
Please send me full details on the Tandberg Series $11 \square$
The Tandberg 11-1P (for Industry) \square Please tick appropriate box(es)
NAME
ADDRESS

Post to

Industrial Division,
Elstone Electronics Led.,
Dept. W.W.1., Herefor
, 210 0 -

WW- 026 FOR FURTHER DETAILS

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 3rd Sept. 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. wws), 34a Hereford Road, London, W. 2
Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

are all the same to us

OUR SMALLEST ORDER
last year was for a single radio valve, value $7 / 6 \mathrm{~d}$., urgently needed for shipboard replacement and rushed by us through the Rotherhithe tunnel to the London Docks so that they could sail with the tide. . . .

OUR LARGEST ORDER
last year was for 28.546 valves worth nearly $£ 10,000$, all specially selected within special parameters for an electronics manufacturer whose name is a by-word in Industry.

Between these extremes we supplied a massive number of valves of one sort or another-used in everything from domestic television sets to porpoise-tracking equipment; from experimental laboratory hook-ups in Technical Colleges to nuclear magnetic resonance spectrometers:

The largest single valve independant

"0-max" sheet metal punches FOR QUICK AND CLEAN HOLES

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

Dymar put a one-man band into your test lab...

...so why buy the whole orchestra?

The majority of users o- electroric iest equipment require axcuracy wit.air band of meesarements thet is common to many operators. The Dynar System of test ins-runents covers this need ideally. We have avoided the temptation to ixcude more soghistication than the market wants. This means that your judget will stre forther yet cover ycur pooject development, zesearch cr quality control P.us features a:e:-
(1) all instruments are energised by a master meter unit
(2) the extreme flexibility of a proved plug-in system and
(3) the money-saving aspect.

Our explicit Short Form Catalogue will give you a run-down on our 700 Series - just complete the coupon or just pin it to your letterhead.
AYMAR
DYMAR ELECTRONICS LIMITED
Colonial Way Radlett Road W'atford Herts.
Telephone: 2 r297/8/9.

A.C. AND D.C VOLTMETERS - SEMICONDUCTOR TEST SETS - SIGNAL GENERATORS - NOISE FACTOR METERS - DISTORTION AND WAVEFORM WW- 031 FOR FURTHER DETALS

Farnell
 CVC1 Constant Voltage Constant Current Variable Bench Supplies
 With Automatic Change Over of Output Mode

*SEPARATE CONTROL AMPLIFIERS for both constant voltage and constant current operation.
*CLEAR indication of output mode, by means of front panel lights.
*HIGH DEGREE OF STABILISATION typically 0.002% in both modes.
*FEEDBACK TERMINALS are provided to compensate for voltage drop due to lead resistance.
*SEPARATE SWITCHING of mains Input and D.C. Output.
The CVC1 stabilised bench units type C500 £50 $\left(0-50 \mathrm{~V}\right.$ at $\left.\frac{1}{2} \mathrm{~A}\right), \mathrm{C} 1 £ 75(0-50 \mathrm{~V}$ at 1 A$)$ and C 2 f 78 ($0-30 \mathrm{~V}$ at $2^{2} \mathrm{~A}$) are continuously variable.
For full details, please contact us at the address below. (Please state if you require literature on our full range of power supplies, electronic instruments and digital logic equipment).

Farnell Instruments Limited,
Sandbeck Way,
Wetherby,
LS22 4DH,
Yorkshire.
Telephone: 0937 3541/6

WW-032 FOR FURTHER DETAILS

Count down. Cue light on. Tape running. Dry throat. Switch-back stomach. Rubber knees. Can't remember the intro .. . Oh yes, after three.

What else can go wrong?
Not my Reslo mike, thank goodness. Man, do I cling to that.

Here we go... loud and clear, with any luck I'll get off before they start throwing things.

Like golden discs.

Your Atlantic Bridge to the greatest names in the U.S. electronics, electrical, chemical, plastics and engineering industries

When you need components, instruments, equipment fast - you need Milo. Over 8 million dollars' worth of stock from over 100 major manufacturers at direct factory prices; ten years of success in international distribution and a staff of specialists to speed your order, means that you forget the problems.
A private telex line between Milo, Reading, and Milo, New York gives you prices, stock availability, delivery terms for one or a million components - in minutes.

Every detail of the shipping process, including import and export licences, customs declarations and export packaging is taken care of. Bulk purchasing and shipping guarantee to save you time, trouble and money.

HERE ARE SOME OF THE MANUFACTURERS WHOSE PRODUCTS ARE STOCKED BY MILO. FIND OUT TODAY WHAT MILO CAN DO FOR YOU.

IILO ELECTRONICS (UK) LTD.,
16 Kings Road, Reading. RG1 3AA. Berks.
Tel: 0734582151 Telex: 84554
YOUR DIRECT LINE TO MILO INTERNATIONAL 24 HOURS A DAY - 7 DAYS A WEEK

Racal and Airmec get togetherIt's the Instrument event of the year!

Racal have made a big name in digital-and Airmec in analogue instruments. What better than to combine the efforts?

The brilliant new Airmec 422
VLF Digital Signal Generator is an outstanding example of the results achievable by combining analogue and digital know how-
it will pay you to keep in touch with this get-together.

The highly successful
Airmec range is now obtainable from the Airmec Division of Racal Instruments, with plus features of greatly improved service thinking and good solid Racal back-up.

It's going to be interesting.

Take the back off any television set, radio, or stereo unit and ten to one, amid the mass of parts,you will find one of the hundreds of components made by Ariel. It makes you wonder why so many manufacturers specify our components above all others! The answer is simple. We have the very latest equipment in our five' $N o t t i n g h a m ~$ factories giving extensive toalroom ligh speed progression, pressing, injection and compeession moulding, coil and
transformer winding and vacuum impregnation facilites. But our progressive outlook does not end there; when we can't buy the correct plant or equipment we design and make it ourselves! If you would like any'further information about our products write to Ariel Pressings Limited, NG9 2PE or phone Nottingham 256141 and we will send you our new catalogue.

Ariel everywhere

PROXIMITY

SWITCH

YL2 GPA

 Machine Tool Control, Packaging, Sorting, etc. \star Senses ferrous objects. K Needs no mechanical force or pressure to operate. * Solid state sensing head includes constant voltage circult. \star Mains operated.
approx. $\mathbb{1} 12.10 .0$ dependent on quantity. OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

t 1 MILLION OPS.
5 amp. c/o Sub-minia. sure MIcro-switch.

12/6 each per I,000
VAQ

+ 10 amp . c/o PUSH BUTTON Panel mounting. Buttons in six colours. 4/4 each per 1,000.

Suitable for
CONVEYOR SYSTEMS PACKING MACHINERY PRESS GUARDS
Approximately $\mathbf{2 0 . 0} \mathbf{0} \mathbf{0}$ complete dependent on quantlty. \Rightarrow

SLB CAPACITY PROXIMITY SWITCH

Senses any object: PACKETS BOXES BOTTLES
CARTONS CANS empty or full, ferrous and non-ferrous materials.

STAINLESS PROBE
remote from 240v AC Power Pack which incorporates own 5 amp relay, and level control of GRANULES POWDERS LIQUIDS
 5 amp c/o Sub-miniature micro-switch.

LIMIT SWITCH
WL 10 FCA2

* 10 amp 2 circuit
* Roller lever actuator as illustrated.
Approx. 65/- each dependent on quantity, 5 other standard types available.

OTHER SIMILAR TYPES.

V-10-1A Solder Tags 2/3 each per 1,000

Screw Terms. 3/1 each per 1,000 VV-15 IC2 187 Amp Tags $2 / 6$ each per 1,000
v-10-1B

* 1 MILLION

OPERATIONS

+ 10 mmp c/o.
+ COMPARE OUR SPEC
8 OUR PRICES WITH

5/- each per 1,000.

CCR-5

New! Approx. 4/- each per 1000 Light force wire operated Micro-switch. Designed for even more economical coin operation mechanism.

100,000 PRODUCTS IN STOCK! WHY WAIT?

Elliott on-line computers are Europe's No. 1-and British to the memory core!
Elliott on-line computers are fast, reliable-available in quantity. Not through a sales office of a foreignbased company-but from a complete on-line computer design, manufacturing and servicing complex right here in Britain!
We've been making on-line computers longer than anybody. We graduated via instrumentation and control engineering-not punched cards or business equipment. For ten years, our 900 series computers have been used in every Elliott Automation computer-controlled system. This applications experience comes free with every computer.
Tested and proved under rigorous military conditions-Elliott 900 series computers have sold in hundreds throughout industry. They are compact, versatile, compatible, expandable, competitive-ranging from 12 to 18 bits and 8 K to 131 K words of core store.
For more information on prices, specifications, applications, deliveries-write, phone . . . or just call.

You won't need a visa-just a visiting card!

Marconi-Elliott Computer Systems Limited
A member of the GEC-EE group of companies Elstree Way Boreham Wood Herts England Tel: 01-953 2030

teginigal traninng in radio television and electronics

Whether you are a newcomer to radio and electronics. or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you tool Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful
NEW
SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building. your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert fuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Parkgate Road, London, S.W. 11
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

Your guide to the world of semiconductors

Circuit designers have a complete guide to the complex world of semiconductors in Motorola's range of technical publications. Robust, indexed. illustrated and authoritative. Motorola publications. Indispensable reading for all circuit designers.

Zener Diode Handbook.......................18s. 0d. Semiconductor Power Circuits Handbook \qquad f1. 2s. Od.
Silicon Rectifier Handbook..................18s. Od.
Switching Transistor Handbook£1. 2s. Od. Data Manual-1968 edition \& Supplements
£2. 15s. Od.
Integrated Circuits Design Principles \& Fabrication
£5. 16s. Od. Analysis \& Design of Integrated Circuits $£ 6.11 \mathrm{~s}$. Od. Fundamentals of Integrated Circuits....£4.10s. Od. Integrated Circuit Data Manual.
£2. 15s. Od. Prices include postage.
All obtainable from
THEMODERN BOOK CO.
19-21 Praed Sireet, London, W.2.
WW--044 FOR FURTHER DETAILS

Quad ability for technical design and styling has won a Council of Industrial Design award for 1969

INSULOID RIVEI CLIP

Another addition to the Insuloid range of cable fixing devices is the adjustable Rivet Clip.
Like all Insuloid products it is simple, quick and economical to use, and yet most effective for binding and fixing cables to panels. Just wrap the strap around the cables, push the rivet home and the bush will expand at the back of the panel to hold the clip securely in position. Two sizes in natural or black polythene are available.
INSULOID also manufacture cable ties, cable saddles, cable clips, cable entry and securing clamps, PVC covered aluminium straps, flexible cable trunkings and bus bar insulations. Write now for Catalogue:

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

 ANDERS ELECTRONICS LTD. $48 / 56$ BAYHAM PLACE, BAYHAM STREET LONDON NW1 TEL: 01-387 9092.WW-047 FOR FURTHER DETALLS

This is a high fidelity amplifier (.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.s.

Size $1^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$
Weight 20 lb .
$100 \mu \mathrm{~V}$ on $30 / 60$ ohm mic. input.
100 mV to 100 volts on gram/auxiliary
input $100 \mathrm{~K} \Omega$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms , balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and Hi Z gram.

this new Ferranti edge connector

hasG.PO. approval..

and a lot more!

The new Ferranti EPP Edge Connector has been designed for electronic telephone exchange equipment, and has Post Office Approval to Specification D2343, TYPE 206D.

And a lot more.
EPP is a new generation of Edge Connectors - offering many new features designed to improve efficiency and reliability.

Such as the one-piece construction of the wrapping post and spring contact. This form of construction removes the possible source of unreliability in two part welded constructions.

Such as the brand new design which allows each wrapping post/contact unit to be removed from behind the equipment. This operation can be carried out in seconds using a simple extraction tool, without even disturbing the printedcircuit board.

Such as the remarkably low insertion force required only $60 z$ maximum per pair of non-bridging contacts.

In addition to these new features, Ferranti EPP Edge Connectors retain many of the successful characteristics of earlier types - including the unique Ferranti 'rolling-leaf' spring contact with inherant stress-limiting properties, and the non-porous hard-gold plating 5 microns thick on the contact area.

12 and 18 pole single-sided $12+12$ and $18+18$ pole double-sided contacts are available.

Pole spacing $0.200 \mathrm{in}(5.08 \mathrm{~mm})$.
The advanced design of Ferranti EPP Edge Connectors, together with many proved-in-service features, offers equipment manufacturers a connector which is versatile, easy to use and extremely reliable.

Full details available from

Ferranti Ltd., Connector Sales Group,

Dunsinane Avenue, Dundee, DD2 3PN, Scotland. Tel: 038289311 Telex: 76166

FERRANTI

WW-050 FOR FURTHER DETAILS

KONTAKT "Cold Spray 75"

For rapid and effective fault location
Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - -42 centigrade. It can also be used to prevent heat damage during soidering processes, for the rapid freezing of small articies for blological and technical purposes and the prompt location of hairilne cracks and other faults in temperature dependent components.

Other Kontakt products:
Kontakt 60 and Kontakt 61 for relay contact cleaning. Plastic Spray 70, transparent protective lacquer. Insulating Spray 72.
Koneake WL. Spray Wash.
Antistatic Spray 100. Antistatic afent for plastics. Politur 80. Polish and cleaner. Fluid 101. Dehydrating Fluid.

Details from UK distributors.

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London, W. 1
Tel: 01-629 9556
WW-051 FOR FURTHER DETAILS
There is a VALRADIO transvertor for practically all applications, ranging
from the operation of power tools, refrizerators, video eape from the operation of power tools, refrigerators, video tape recorders, instruments, ulra for use in boats, cars, coaches, trains, coutry house plat For use in boats, cars, coaches, trains, country house plants, caravans, etc. Available for all usual D.C. volages from 12 V upwards.
The range is covered by three basic groups, having distinct characteristics, broadly as follows:
T series-Square wave, frequency tolerance +3 Hz .
Q series-Square wave, frequency tolerance $+\frac{t \mathrm{~Hz}}{}$
series-Sine save, frequency tolerance $+\frac{1}{2} \mathrm{~Hz}$.
Typical, type B12/500T Maximum output 650W $\mathbf{6 6 3 . 0 . 0}$ Typical type B24/30S Maximum ousput 30W 118.0 Input/output efficiency is over 80 per cent with most models. These are just a random selection, for the full range send for our informaive transvertor brochure WC2.
Remember-When you pay for VALRADIO products, the know-how and problems.
LTD., DepL W.C.2,
Browell's Lane, Felcham, Middx., England. Tel.: 01-890-4242.
vu= NOL=~~~N \qquad

WW-052 FOR FURTHER DETAILS

w-THERMOSTAIC SOLDERING ROONS

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts. Voltages available $12 \mathrm{v} ., 24 \mathrm{v}$., $100 / 120 \mathrm{v} ., 210 / 250 \mathrm{v}$. Five bit sizes from $\frac{1}{16}$ " to $\frac{d}{\prime \prime}^{\prime \prime}$.

59/6

MODEL WG150. For use on all circuits requiring a large number of joints. Power rating 150 watts. Voltages available 100/120v., 210/250v. Four bit sizes from $\frac{3}{16}$ " to $\frac{7}{16}{ }^{\prime \prime}$.

> major advance in heat controlled soldering.

ⓘ = TO AMTBITIOUS ENGINEERS

Haye you sent for your copy?

ENGINEERING OPPORTUNITIES is a highly informative 164 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a' recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electroaics Courses, administered by our Specialist Electronics Training Divisionexplains the benefits ofour Appointments Dept. and shows you how to qualify for five years ${ }^{\text {r }}$ promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send for your copy of "ENGINEERING OPPOR-

WHICH is YOUR

 PET 8UBJECT?
Radio

Television
Electronics
Eloctrical
Mochanical civil Production Automobily Aeronautical Plastics Building Draughtsmanshlp B. 8 ę. city \& Giuilds Gon. Cort. of Education otc., etc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

(Dept. 303B), Aldermaston Court, Aldermaston, Berkshlre

PRACTICAL EQUIPMENT

Basic Practical and Theor-
tic Coursea for beginnery in Radio, T.V., Electronica ete A.M.I.E.R.E.' Cthy Guilds Radlo Amateur's Exam. R.T.E.B. Certificate P.M.G. Cortificate Practical Radlo
Radio Taievision Servicing
Practical Electronics
Electronica Engincering Automation

INCLUDING TOOLSI

The specialist Electronics Division of B.I.E.T, NOW offors you a real laboratory training at home with practical equipment. Ask for details.

+OSTOONHON NON!

Please send me your FREE 164 -page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)
NAME \qquad
ADDRESS \qquad

\qquad

SUBJECT OR EXAM.

that interests me
\square
\square
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\square
\square
\square
\square
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\square
\square
\square

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

It is a 5 mm tubular L.E.S. E5/8 cap, overall length 15 mm . Just one of the many Vitality Instrument and Indicator Lamps, made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in Vitality Catalogue 69 may well be.

* Many a product owes its success to the intelligent addition of an indicator light

VITALITY BULBS

VITALITY BULBS ITD., MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY'ST. EDMUNDS, SUFFOLK. TEL: 02842071. WW-OSS FOR FURTHER DETAILS

whis rameo now ship E line明楼 transistors
 Ferranti

E line epoxy transistors include low cost, general purpose amplifiers and switches, high speed switches, neon drivers and low noise VHF amplifiers.
NPN and PNP complimentary types are available for most functions.

Further data and ex stock delivery from:

5 Loverock Road. Reading.Berks Tel: Reading 580616-9. Telex 84529 Ministry of Technology approved distributor. WW-OS6 FOR FURTHRR DETALS

YOU want PARTS URGENTLY -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business

We exist to supply the small user quickly with standard parts made by these Companles and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.
But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

[^1]

Model SR2

- Now with Sate Loaling Mechanism which does not recoil on release.
- Adjustable Suction Control.
- Re-positioned Felease Button for better haniling of tool.

Instantly removes unwanted solder from primec circuits and all o:her solder joints without damage to unit or conponer t. Saves valuabe tirre result. ing in inc eased product on.

WW-058 FOR FURTHER DETAILS

From laboratory to full industrial duties -

COVERED!

the genevac kinney range

Exceptionally compact, oil sealed rotary piston high vacuum pumps providing pressures of 1 torr or below

GKT, GKC SERIES -
INDUSTRIAL TYPE
Four single-stage pumps with speeds up to $500 \mathrm{ft}^{3} / \mathrm{min}$. Special patented balancing techniques eliminate harmful vibration - so you needn't bolt them down if you don't want to. Which makes this series ideal for both static and mobile applications.

GHS. GHD SERIES DUAL PURPOSE
For laboratory or industrial use. Capable of achieving ultimate pressures down to 5×10^{-4} And giving a 50% increase in pumping speed over previous models.

NRD-NRS SERIES -

LABORATORY TYPE
Provide a high vacuum testing facility down to 5×10^{-4} ultimate pressures, plus the ability to remove water vapour and gases from test environments.
All Kinney pumps are vibration-free, with low noise levels and full gas ballast facilities. Cost is low, design is compact and construction robust. Efficiency rating is very high and reliability is absolute.

Write for the Genevac Kinney publications ...
Vacuum Products Division,
generral engineering co. (RADCLIFFE) LTD.
Station Works, Bury Road, Radcliffe, Manchester.
Telephone 061-723 3271/3041 Telex 66200 Generalrad Manchester.

for lights or aerials

Manufacturers of the famous 'Tubewrights' range of standard towers and masts at heights of from 20 ft , to 164 ft .
SPECIAL TOWERS designed for greater heights, out-of-the-ordinary head loads, unusual wind conditions.
Specials. or standards when appropriate, for every purpose-stack supports. beacons, observation, micro-wave links and radar

- Foundation $\&$ erection service
- Wide varlety of headframes and crossarms
- All work to British Standard Specifications
- Highly qualified design team
- Customer-tailored, on-the-dot deliveries

Write now for general leaflet.

Unifab Structures Limited

Gale Road,
Kirkby Industrial Estate, Liverpool.
Telephone: 051-546 3401

C140 140 1 Laboratory Capacitor Bank
PVC1 Precision alr spaced capacitor with residual of only 5 pf VC6 Decade Capacitance Box with Alr apaced Capacitor to glve infinite resolution. Range 50pf to 1.1115μ f.

Other J.J. Products include Potentiometers. Decade Resistors and Inductors. Standard Resistors and Capacitors. Volt Ratio Boxes, Electronic Null Detectors. Power Loading Resistors and Eddy Current Dynamometers.

Write now for a demonstration

D.D. Lloyd Instruments Limifed

Brook Avenue, Warsash, Southampton SO3 6HP. Tel: Locks Heath 4221
WW-061 FOR FURTHER DETAILS

AUDIO \& DESIGN "HYPERTONE" LOUDSPEAKER

* Titanium Hyparbolic Radiating Element provides the highest standard of definition ever achieved.
\star Beryllium Copper Suspension provides low distortion bass.
\star Massive 6 lb . Ceramic Magnet for easier Power handling.
« Modular approach allows flexibility of design.
\star Enthusiasts please note, the HYPERTONE reproduces everything.
\star Frequency Response: Total integrated power within $4 \mathrm{db}-25 \mathrm{c} / \mathrm{s}$ to $22 \mathrm{Kc} / \mathrm{s}$.
* Impedance at $400 \mathrm{c} / \mathrm{s}, 8$ ohms or 15 ohms.
\star Power handling 15 watts R.M.S.

HYPERTONE
Suggested Retall Price £18.15.0

Write for further details and nearest Stockist:-
54 ROUNTON ROAD, CHURCH CROOKHAM, Nr. ALDERSHOT, HANTS. Tel: FLEET (02514) 3566

OTHER PRODUCTS IN OUR RANGE INCLUDE: LOUDSPEAKER CABINETS, MERCURY CONTACT PICK-UP ARMS, MICROPHONES, FLOOR STANDS and BOOM ARMS

The Big Little Integrals That Can Make Or Break Your Product.

SY173L
Single speed (2000 rpm) For record players.
DMF64R-02 Single speed (2400 rpm) For tape racorders.
RK201R Single speed (2400 rpm) For car players.
BF110R Single speed (2000 rpm) With electrical governor motor. For tape recorders.
BF200R Single speed (2200 rpm). For car recớders \& players.
ZF200R Variable speed (such as 1100, 2200 and 2800 ppm) With brushless \& transistor motors. For de luxe record players \& electronic calculators.
VM250B Single speed (3600 rpm) For auto tuners.
Specification for Sankyo micro motore

TTE	Onemem		Mund (V)	Rene of Where (v)	and Torpun ($0 \cdot \mathrm{~cm}$)	Row Sow (mm)	lose Curmant (mh)	$\begin{gathered} \text { Serring } \\ \text { Torpue } \\ (0-\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { Lne } \\ & \text { (ni) } \end{aligned}$	$\begin{aligned} & \text { Direction } \\ & \text { of } \\ & \text { Revoulson } \end{aligned}$
	$1 \mathrm{~m} / \mathrm{m})$	$\begin{aligned} & \text { (ngtu } \\ & (\mathrm{m} / \mathrm{m}) \end{aligned}$								
2virat	40	32.4	6	45-6	1	2000	80	35	600	Len
DMFATR.02	38	348	6	45-6	9	2400	140	30	600	Rumb
RK201*	479	48	132	$10 \sim 15$	30	2400	210	100	1000	Righ:
Henor	38	30	45	3.5-5.7	8	2000	160	30	1500	Runt
[2000	3	30 N	132	15.5-19-15	15	2200	180	30	1500	Rypm
2F200	46	50	9	6-9	20	2200	300	45	3000	Left R Rioft
UpBEOR	20	4.5	45	$45-6$	14	$\begin{aligned} & 3700 \\ & 5000 \end{aligned}$	160	60	30	Risht
Vmatom	${ }^{5}$	36.5	,	65-75	04	3600	45	25	500	Left Reyth

B Sankyo

Sankyo (Europe) Export und Import ©.m.b.M.: 4 Düsseldorf, BahnstraBe 45-47. W, Germany. Tel: 325652/3 Telex: $\mathbf{8 5 8 7 0 9 7}$ Cables: SANKYORGEL DÜSSELDORF
Sankyo Saiki Mfg. Co.. Ltd.: 17-2. Shinbashi 1 -chome, Minatoku. Tokyo 105. Japan. Tel : Tokyo 591-8371 Cables: SANYORGEL TOKYO

Watch it !

You should see what's happening in your business

How many aspects of your business need watching? Visual control of widespread industrial production processes; security monitoring; traffic control; document and data relaying are just some of the many areas in which an efficient closed circuit TV system can pay handsóme dividends.
Rediffusion provide economical CCTV systems custom built to your specific requirements, as well as a complete service covering all aspects of communications - from television and sound systems; public address, background music, intercom and telephone systems - to fire alarm and time control systems.
In fact any area of electronic communications necessary for the efficiency of your business - from planning, equipping and installing, to maintaining.

For further details contact:

WHY NOT

PUT US

TO TEST?

ELECTRICAL

 INDICATING INSTRUMENTS
PANEL MOUNTING

 OR PORTABLE, BUILT TO YOUR INDIVIDUAL REQUIREMENTS
AND

ELECTRONIC FLASH

 EQUIPMENTS OF ADVANCED DESIGN BYELECTRICAL INSTRUMENTS LTD.
CHILTERN WORKS,
TOTTERIDGE AVENUE,
HIGH WYCOMBE,
BUCKS.
Phone: 30931-4
WW-066 POR FURTHER DETAILS

Here are the features which make the $\$ 54$ such good value for money.....

SOLID STATE SINGLE-BEAM OSCILLOSCOPE

At £110 this oscilloscope must be seen to be believedAsk for a demonstration NOW!!!

Wireless World

Electronics, Television, Radio, Audio

This month's cover features the front panel of the amateur communications receiver to be described by D. R. Bowman in a series of articles beginning in this issue.
I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1

C I.P.C. Business Press Ltd, 1969

Contents

Broadcasting and the v.h.f. band
Amateur Communications Receiver-1 by D. R. Bowman
Are We Wasting Brain-power? by L. Ibbotson
News of the Month
ESRO space-probe to Mercury in 1975 ?
B.S. 9000 "Blatant violation of U.S. rights!"

International agreement on the Mallard project
Modular Pre-amplifier Design by f. L. Linsley Hood
H.F. Predictions

Wireless World Logic Display Aid-3
Announcements
Distortion Factor Meter by L. Haigh
Components on Show

Circuit Ideas

Satellite or Terrestrial Broadcasting?
M.O.S.-bipolar Amplifiers by f. A. Roberts and K. Rowlands

Two-colour Optical Combiner
Operational Amplifiers-6 by G. B. Clayton
Book Review
Letters to the Editor
Personalities
New Products
Test Your Knowledge questions © answers devised by L. Ibbotson
World of Amateur Radio
Literature Received

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex. Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; 22 15s Od. Overseas; 1 year $£ 215 \mathrm{~s}$ 0d. Canada and U.S.A.; $\$ 6.75 ; 3$ years $\subset 70 \mathrm{~s}$ Od. Canada and U.S.A.; 517.50 Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 201, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 20 Victoria Square, Clifton, 8. Telephone: 027233873. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260, Deansgate, 3. Telephone: 061-834 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

if you prefer to monitor with an oscilloscope instead of a meter...

here'sa professional-quality Itube ata lowest-ever price!

Once again, Thorn-AEI's renowned production engineering techniques have made possible a 1 -inch cathode ray tube, built to professionalperformance standards, at a price far lower than that of current competition-with quantity discounts to reduce it still further.
The BRIMAR D3-130GH 1 -inch tube has been specially designed for use in monitoring aspects of equipment performance where simple voltmeter and milliammeter readings are inadequate. Built into installations, it will save 'down-time' by early detection and quick location of faults.

Features include : Electrostatic focusing and deflection, small spot size, freedom from trapezium distortion, g.ood uniformity of focus. High sensitivity makes it ideal for transistor operation. Typical Operation
$V_{h} 6.3 V ; I_{h} 0.3 A ; V_{a 1+a 3+a 4} 1000 V$.
$\mathrm{V}_{\mathrm{a} 2} 100 \mathrm{~V} ; \mathrm{V}_{\mathrm{g}}$ (cut-off) -20 to -48 V .
Sy 58 to $88 \mathrm{~V} / \mathrm{cm}$.
Sx 80 to $120 \mathrm{~V} / \mathrm{cm}$.

For full technical data and prices, write or phone.
Пम०नN Thorn-AEI Radio Valves \& Tubes Ltd.,
7 Soho Square, London, WIV 6DN Tel : 01-4375233

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:

B. S. CRANK
J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. PARSONS (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

Broadcasting and the v.h.f. band

"The long-term future for radio in the U.K. lies principally with v.h.f." said Mr. Curran, director general of the B.B.C., when addressing members of the Radio Industries Cub in London in May. He went on to say "It is, I suppose, a visionary thought to suggest that the industry might agree that from a given date all sets manufactured in this country should include a v.h.f. element", and reminded his audience that in the U.S.A. it needed legislation to ensure that all television receivers covered the u.h.f. band.

Mr. Curran recalled that by 1960 the B.B.C. had invested about $£ 4 \mathrm{M}$ in v.h.f. radio networks and added "so far we are getting only a very partial return on that capital, because consumers are not equipped to receive the transmissions. It does not seem to make good economic or technical sense." We could not agree more.

The 1968 annual report of the British Radio Equipment Manufacturers' Association records that "growing public interest in v.h.f. broadcasts has encouraged manufacturers to equip 34% of their radio receivers [produced in 1968] with v.h.f. facilities". It is certainly significant that this is the highest output of v.h.f. receivers since 1958. During the five years to 1963 the output decreased to about 6000 (5% of the total), but there has been a gradual increase since and last year's output was about 119,000 . Undoubtedly the introduction under the aegis of the B.B.C. of the series of v.h.f. local radio stations in eight cities has helped to stimulate this interest. The B.B.C. certainly wants "to be in the business of local broadcasting" and Mr. Curran said "we believe that for a full service, day and night, the only complete and long-term solution is that which depends on v.h.f."

One aspect of v.h.f. broadcasting which many feel has not been fully exploited by the B.BiC. is stereo. Had the choice of stereo programmes been wider instead of being limited mainly to classical music there might have been a much greater demand for v.h.f. equipment. The B.B.C. would, apparently, like to expand the service but there are "serious financial difficulties . . . because of the additional cost of links between transmitters" but they are "investigating ways of easing this difficulty" whatever this may mean.

The growing interference on medium-waves will doubtless continue until we have a reallocation of frequencies in Europe but it is generally admitted by those who are in a position to know that, as a country, we cannot expect to be any better off as a result of this. In fact, we may be worse off in that we may have fewer frequencies for our use. This would make the use of the v.h.f. band still more necessary. Even so Band II is not without its own problems. Private Mobile Radio base stations have been allowed by the G.P.O. to operate between 87.5 and 88 MHz although this is part of the internationally allocated band for broadcasting. Due to the high field strength put down by these transmitters in their immediate vicinity the B.R.E.M.A. Report records that instances of cross-modulation or direct breakthrough have occurred.

One disquieting aspect of the use of v.h.f. for the national broadcasting service is that if it became the norm to produce v.h.f.-only receivers then one's listening would be limited to this country. It is to be hoped therefore that at the next European Broadcasting Conference for the allocation of frequencies in the medium- and long-wave bands each country will be allocated one or two frequencies which would be used primarily for external broadcasting. If these frequencies could be kept reasonably free from interference then those whose listening tastes extend beyond the shores of the U.K. will have the opportunity of satisfying their appetites.

Amateur Communications Receiver

Advanced design covering the $\mathbf{8 0}, \mathbf{4 0}, \mathbf{2 0}, 15$ and 10 metre bands 1: Design considerations

by D. R. Bowman, A.M.Inst. E., G3LUB

For many years the author's amateur radio station has included a complex home-built dual conversion valve receiver. Throughout this time a number of solid-state receivers have been constructed, though it must be admitted that none has approached the overall performance of the valve unit. The recent appearance of a number of new semiconductor devices coupled with the ever widening range of i.f. filters has prompted the author to re-appraise selected frequency band communication receiver design. A number of fundamental design requirements have been generally agreed for many years, but, in the final analysis, every receiver design is a compromise.

One of the biggest troubles is cross-modulation which can be experienced using almost all types of receiver. All one needs to do is to tune to say 7 MHz at night, listen, and then insert a 20 dB attenuator in series with the receiving aerial. The effect is most enlightening as low-power signals re-appear from under the highpower broadcast stations.

To reduce cross-modulation to the lowest level possible the selectivity must be as near to the front of the receiver as possible so as to reject the unwanted powerful signals before they can be amplified and cross-modulated in the mixer and to a lesser extent in the r.f. stages. Until recently first-rate i.f. selectivity has been unattainable above about 1 MHz and commercial filters were almost exclusively limited to frequencies in the region of 400 to 500 kHz . This limitation has forced designers either to accept poor image rejection or poor noise figures. Image rejection is a function of the r.f. circuit Q and the number of r.f. coils.

It will be shown that obtaining very high front-end selectivity and a good noise figure are conflicting requirements. It was this problem that led designers to introduce the dual conversion concept (Fig. 1). This system consists basically of a single conversion tunable receiver using a frequency band chosen to produce good image rejection, which in turn is fed from a range of h.f. converters each translating the required receiver band to the frequency of the tunable receiver. This use of a tunable i.f. also has the advantage of allowing the same basic tuning rate and dial calibration to be used on all received frequencies. The stability problems of tunable oscillators is also reduced as only one v.f.o. is required and it operates on a relatively low frequency, usually about 5 MHz . The first oscillator is invariably crystal controlled.

There are some problems in this type of system. The already mentioned need for selectivity at the front-end is not met, but by restricting the pre-i.f. gain to the minimum consistent with good noise performance and the use of low noise mixer circuits, this problem can be minimized. A good a.g.c. (automatic gain control) system controlling the r.f. gain is also essential. The other main problem, namely internally generated spurious frequencies, can be more or less overcome by the careful choice of conversion frequencies coupled with good physical screening. This said, it must be admitted that the dual conversion system is rather complex.

Recently a number of high-frequency crystal filters have become available. Although they are expensive, when it is realized that
the KVG XF9B 9 MHz filter (specified in the design) consists of a double lattice using eight crystals in addition to the two carrier crystals, the author considers that it is very good value for money. The ability to achieve good selectivity (see Fig. 2) at a high intermediate frequency lends itself to the use of a single conversion system (Fig. 3). The extremely narrow bandwidth of the 9 MHz filter led to the decision to design essentially for the single sideband reception for which the filter was intended. The performance of the completed receiver on c.w. is also very good and a.m. transmissions can be resolved using the exalted carrier

Fig. I. The block diagram of a typical dual conversion receiver.

Fig. 2. Attenuation curve for the $9 M H z K V G X F-9 B$ i.f. filter.

Fig. 3. The block diagram of a single conversion receiver.
method, i.e. the reception of only one sideband by zero beating the a.m. signal's carrier.

The choice of a high i.f. means that the image response to the required signal ratio is very high; remembering that the image is displaced by twice the i.f. in frequency from the required signal; in this case 18 MHz .

Although a number of first quality receivers have been designed using no r.f. amplifier preceding the mixer the author decided to include an a.g.c. controlled amplifier. The $40-\mathrm{dB}$ attenuation of signals that can be achieved ahead of the mixer does reduce the quantity of blocking and cross-modulation produced in the mixer stage of the receiver. The use of an r.f. amplifier also allows adequate pre-mixer selectivity to be used.

So far the proposed system appears too good to be true, however there is a disadvantage. To tune the high-frequency amateur

Table 1

range		local osc, MHz	h.f.osc. crystal MHz
metres	MHz		
$\begin{aligned} & 80 \\ & 40 \\ & 20 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 3 \cdot 5-4 \cdot 0 \\ 7 \cdot 0-7.5 \\ 14 \cdot-14.5 \\ 21 \cdot 0-21 \cdot 5 \\ \left\{\begin{array}{r} 28 \cdot 0-28 \cdot 5 \\ 28.5-29.0 \\ 29 \cdot 0-29 \cdot 5 \end{array}\right. \end{array}$	$\begin{gathered} 5 \cdot 5-5 \cdot 0 \cdot \dagger \\ 16 \cdot 0-16 \cdot 5 \\ 5 \cdot 0-5.5 \dagger \\ 30 \cdot 0-30 \cdot 5 \\ 37.0-37.5 \\ 37.5-38.0 \\ 38 \cdot 0-38 \cdot 5 \end{gathered}$	$\left.\begin{array}{l} \text { none } \\ 11 \\ \text { none } \\ 25.0 \\ 32 \cdot 0 \\ 32.5 \\ 33.0 \end{array}\right\} \text { (3rd overtone) }$

- funing direction reversed tsideband selectlon reversed

Fig. 4. The local oscillator synthesizer.

Fig. 6. Gain distribution throughout the receiver.
bands, say 10 metres, the local oscillator would have to tune either:

$$
\begin{aligned}
&(28 \text { to } 28.5)+9 \mathrm{MHz}=37 \text { to } 37.5 \mathrm{MHz} \\
& \text { or } \\
&(28 \text { to } 28.5)-9 \mathrm{MHz}=19 \text { to } 19.5 \mathrm{MHz}
\end{aligned}
$$

Either band is rather high in frequency for good stability using a free running oscillator and especially when it is realised that various switched ranges are required. It would be impossible to adjust the various tuning ranges so that the dual conversion systems advantage of a constant tuning rate and dial calibration on all ranges is achieved.
Various ideas were considered, the most promising being the heterodyne v.f.o. dating back to soon after the last war. It consists of a single range low-frequency v.f.o. fed to a mixer together with the output of an h.f. crystal oscillator; the output of the mixer circuit being tuned to the appropriate product (Figs. 4 and 5). This system was originally introduced as a means of avoiding the use of frequency multiplication with its associated output of unwanted frequencies. For receiver local oscillator use it is essential that the various frequencies are chosen carefully and that the unwanted components present in the output of the mixer circuit are not passed on to the main receiver mixer.

To avoid spurious signals within the bands the best v.f.o, frequency range is found to be 7.6 to 8.1 MHz , but this does mean that each amateur band covered requires a separate crystal (table I). If an odd one or two spurious whistles can be tolerated then, with a v.f,o. range of 5 to 5.5 MHz , two of the bands can be covered using no h.f. crystal oscillator.

$$
\begin{aligned}
& \text { required band } \quad \text { v.f.o. } \\
& (3.5 \text { to } 4 \mathrm{MHz})+(5 \text { to } 5.5 \mathrm{MHz})=9 \mathrm{MHz} \\
& (14 \text { to } 14.5 \mathrm{MHz})-(5 \text { to } 5.5 \mathrm{MHz})=9 \mathrm{MHz}
\end{aligned}
$$

One more slight disadvantage is that the receiver tuning direction will be reversed on one of the ranges. However, on 20 and 80 metres the receiver's performance is likely to surpass even the most advanced commercial unit.

It will be noted that one harmonic of the v.f.o. falls within the 15 -metre band. The amplitude of this spurious signal can be reduced to a very low level by careful v.f.o. circuit design in conjunction with extra filtering and good mixer design. This method of local oscillator frequency generation does lend itself to a constant tuning rate and dial calibration on all ranges.

The next basic decision that a receiver designer has to make is the gain distribution throughout the receiver (Fig. 6). At first sight it would seem that the best receiver would embrace the maximum signal gain.

The random motion of free electrons in wires and resistors generates small currents, even though the average over a finite time of these currents is zero. At any one time this contributes a small noise current to the circuit. From these small currents are derived voltages which are nąmed " white noise" because they spread more or less evenly throughout the frequency spectrum.

$$
\begin{aligned}
e= & 4 K . T . B . R . \text { Volts } \\
K= & \text { Boltzmann's constant } \\
& 1 \cdot 3 \times 10^{-23} \text { Joule per }{ }^{\circ} \mathrm{K} \text { (absolute) } \\
T= & \text { temperature of conductor in degrees Kelvin } \\
B= & \text { bandwidth of the complete system in hertz. } \\
R= & \text { resistance of conductor in ohmis. }
\end{aligned}
$$

For $25^{\circ} \mathrm{C}$:
aerial noise voltage $e=1.55 \times 10^{-20} \times B R$ volts
system bandwidth of $2 \times 10^{3} \mathrm{~Hz}$
aerial resonant impedance 75Ω :

$$
e=1.55 \times 10^{-20} \times 2 \times 10^{3} \times 75=0.023 \mu \mathrm{~V}
$$

As far as external noise is concerned it is generally accepted that
over the frequency range 1 to 14 MHz the minimum external noise level will be at least 30 dB above the ideal figure quoted above (Fig. 7). Even from 14 to 30 MHz the level can be expected to be only about 10 dB better. This external noise is made up from various sources. Electrical storms in widely separated parts of the world contribute noise in addition to cosmic sources originating from the milky way. It is generally accepted that a signal must exceed the noise level by at least 10 dB to be readable.

This sets the minimum noise level at 30 dB above $0.023 \mu \mathrm{~V}$ or $0.7 \mu \mathrm{~V}$, over the range 1 to 14 MHz , and 20 dB above $0.023 \mu \mathrm{~V}$, or $0.23 \mu \mathrm{~V}$ above 14 MHz .
For a 10 dB signal ratio the minimum detectable signal levels will therefore be $2 \cdot 1 \mu \mathrm{~V}$ from 1 to 14 MHz and $1 \mu \mathrm{~V}$ above 14 MHz .

Although these noise figures vary considerably from area to area they can be taken as a starting point.

In a well designed unit the vast majority of the receiver noise originates from the first r.f. stage; the succeeding mixer contributing only about 1 dB . To reduce cross-modulation to a lowlevel it is essential to reduce the amplitude of strong off-channel signals before they reach the mixer. To do this it would seem that a number of high- Q tuned circuits ahead of the r.f. stage could be used. It can be shown that in fact excessive pre-r.f. stage selectivity considerably worsens the overall noise figure. In general it can be said that the lowest noise figure coincides with minimum signal loss between aerial and the first r.f. amplifier device. Maximum power transfer occurs when the signal source is matched to the load. As noise performance is most important on the higher frequency ranges, 10 metres has been taken as the starting point.
Assuming stray capacitances to be of the order of 10 pF then the minimum value of C is taken as 15 pF which at 30 MHz resonates with $2 \mu \mathrm{H}$.

Assuming an unloaded Q of 100 then: $Q=(\omega L) / R$

$$
\text { therefore: } \begin{aligned}
R & =(\omega L) / Q \\
& =\left(2 \pi \times 30 \times 10^{6} \times 2 \times 10^{-6}\right) / 100=3.8 \Omega
\end{aligned}
$$

the dynamic resistance of the parallel tuned circuit R_{D} is:

$$
\begin{aligned}
R_{D} & =L /(C R)=\left(2 \times 10^{-6}\right) /\left(15 \times 10^{-12} \times 3.8\right) \\
& =35.1 \mathrm{k} \Omega
\end{aligned}
$$

If maximum power transfer from the aerial to the tuned circuit occurs then the value of R_{δ} is transformed up to Z_{D} and the effective resistance in parallel with the tuned circuit becomes

$R_{D} / 2=17 \mathrm{k} \Omega$. The tuned circuit must of course also match the input impedance of the amplifying device. The device chosen has an input impedance that varies with frequency. At 3 MHz it is very high dropping to as low as $20 \mathrm{k} \Omega$ at 30 MHz . It will be noted throughout this analysis that the reactive part of the devices input and output impedance is ignored. This can be justified as the reactive portion becomes part of a tuned circuit.
The total parallel resistance:

$$
(17 \mathrm{k} \times 20 \mathrm{k}) /(17 \mathrm{k}+20 \mathrm{k})=9.2 \mathrm{k}
$$

Therefore the circuit loaded Q is:

$$
\begin{aligned}
Q & =R_{p} /\left(\omega L_{p}\right) \\
& =\left(9.2 \times 10^{3}\right) /\left(2 \pi \times 30 \times 10^{6} \times 2 \times 10^{-6}\right)=24
\end{aligned}
$$

Therefore it is shown that minimum noise figure does not occur with maximum selectivity in the r.f. stage. A compromise has to be made between noise figure and selectivity. This does not mean that overall system selectivity has to suffer as this is determined by the i.f. filter. The best compromise is to trade excess r.f. gain for increased selectivity by reducing the loading on the r.f. to mixer coupling circuit. This has the extra advantage of increasing the r.f. amplifier's stability factor. Care must be taken not to reduce the gain too much. The author decided to aim for a noise figure of 12 dB on the l.f. bands and better than 8 dB on 10 metres.

R.F. amplifier

The requirements for the r.f. amplifier were as follows:
(1) Very good immunity to cross-modulation and blocking over the a.g.c. range.
(2) Low noise figure.
(3) A low reverse transfer admittance to avoid the necessity for circuit neutralization in association with high input-to-output isolation reducing resonant circuit interaction.
(4) An a.g.c. voltage range compatible with the i.f. amplifier requirements.
Cross-modulation distortion occurs when a device has a particular transfer characteristic and is fed with two differing frequency signals. As long as the transfer characteristic is linear or follows a square law then the gain applied to signal two is independent of the second signal's amplitude. If the transfer characteristic deviates from a linear or a square law the gain on signal one will be modulated by the amplitude of signal two.

An investigation into various semiconductor devices shows that only the field effect transistor has a transfer characteristic of approximately square law. Bipolar devices are particularly poor in this respect. During some earlier work the author found that even f.e.t. cross-modulation performance is determined in part by the choice of drain current operating point. Very poor performance is likely if reverse a.g.c. is applied to a single gate device. This disadvantage can be overcome by using two f.e.ts in a cascode circuit applying a.g.c. to the common base stage (Fig. 8).
R.C.A. have recently marketed an integral cascode device which has the advantage of a somewhat lower h.t. requirement than separate devices, as well as a very low reverse transfer admittance value.

These devices are marketed under an assortment of code numbers and vary in price from about 7 s to 14 s . The author tested the following types and at up to 30 MHz could find very little difference between them:-3N140, 3N141, TA7149 and 40500. (Since writing the MEM 564C has become available and is to be recommended since gate protection is incorporated).

The mixer and i.f. amplifier

If two signals differing in frequency are fed to a device with a square law characteristic, it is found that intermodulation will occur, i.e. addition and subtraction of the two input frequencies to produce other frequencies. Any deviation from square law will introduce cross-modulation and therefore the dual gate f.e.t. is as equally applicable to mixers as amplifiers. It has the added
advantage that the two signals can be fed to separate gate electrodes to provide considerable isolation between the local oscillator and the signal voltages. The characteristics of this mixer are such that the overload performance is improved with a limited reduction in oscillator drive voltage. The mixer gain is of course also reduced and spurious signal generation suffers a very much greater reduction. The optimum value of oscillator injection for the authors' application was 0.3 V . Lower voltages than this impaired the noise performance and, above 0.5 V , the unwanted harmonic generation becomes excessive (Fig. 9).

One of the many advantages of using the 3 N 140 , which is really intended for v.h.f. use, is the constant value of the output impedance over a range of 1 to 30 MHz .

The i.f. amplifier was designed with the following factors in mind:
(1) Maximum gain of 70 dB centred on 9 MHz .
(2) At least 80 dB of automatic gain control.
(3) Wide bandwidth, say 300 kHz , as one method of avoiding frequency shift with a.g.c. action. Note the selectivity is determined by an 8 -pole, 9 MHz , crystal filter.
(4) A.G.C. voltage sense and range compatible with the amplifier.

Many circuit configurations were considered for use in the i.f. amplifier. The use of common emitter transformer coupled stages was avoided due to the high value of reverse admittance, making either circuit neutralization or low gain per-stage essential to ensure an adequate stability factor. The cascode arrangement of bipolar devices was investigated. It was decided that there was little advantage in using field effect transistors in the i.f. amplifier as the cross-modulation problem is minimal after the very narrow bandwidth filter. The cascode arrangement was found to exhibit high-gain with a very low reverse admittance. The circuit also lends itself to a.g.c. control rather in the same manner as the r.f. amplifier. The control voltage is applied to the common base connected stage. This in turn means that the r.f. and i.f. controlled sections can easily be coupled together. It was found that the cascode arrangement induced very much less de-tuning of the i.f. transformers and by using low Q single tuned circuits very little change in the overall i.f. response occurs with a.g.c. action.

Although two high-gain sections could be designed to provide the required gain, the author's previous experience suggested that to be sure of maintaining stability three stages incorporating a total of six transistors be used. The gain required is spread between the three stages. The possibility of using a capacitative potential divider across the i.f. coils to provide the consecutive base drive was investigated. It was found that the very long earth paths made a stable reproduceable design very difficult. The amplifier was very much easier to handle using low impedance coupling coils on the i.f. transformers.
During tests of the i.f. amplifier the a.g.c. gave the following performance: With a change of input signal of -50 dB below 200 mV the output dropped by -3 dB ; and a change of input signal of -80 dB produced a drop of -10 dB at the output. The amplifier had a gain of 90 dB , and showed tendencies towards instability only when this figure was exceeded.

The stage from which the a.g.c. is derived is a single transistor biased so that, with no signal, it is very nearly switched off. As the signal increases so the average collector current also increases and the collector voltage change is approximately proportional to the output of the i.f. amplifier.

For the reception of a single sideband transmission the normal fast attack, fast recovery, a.g.c. characteristic is useless. Because the transmission has no steady carrier wave the fast a.g.c. system tries to follow each syllable. One method of using a.g.c. with s.s.b. is to tailor the response to fast attack, slow delay. This has the effect of reducing the receiver's gain almost instantaneously, but delaying the release for the order of a second or so.

The detector frequency oscillator

The product detect or can be considered as a mixer in which the input i.f. signal is mixed with a beat frequency oscillator to produce

Fig. 9. Showing the relative conversion gain of several harmonics as a function of oscillator voltage (reproduced with the permission of R.C.A.),
an output whose frequency spectrum falls in the audio range. This system of detection is used to demodulate amplitude modulated signals which are treated as if they were single sideband transmissions. In a noiseless system there is a 3 dB signal loss relative to s.s.b. but under crowded amateur band conditions it is found that the ability to select either sideband reduces the chance of a heterodyne blotting out the a.m. signal.

Remembering that the i.f. bandwidth is only 2.4 kHz wide, it was decided not to incorporate a conventional a.m. detector due to the rather restricted audio response of 0 to 1.2 kHz that would result.

A number of product detector circuits were investigated including one using an f.e.t. The author decided that the extra expense of an f.e.t. detector was not warranted. The circuit used is a balanced bipolar arrangement which requires a very low b.f.o. injection voltage of about 100 mV . This small oscillator voltage requirement helps the constructor to avoid stray b.f.o. signals getting into early stages of the i.f. amplifier. The use of a high i.f. amplifier does tend to increase this risk. The detector will operate at low distortion, with an i.f. signal no greater than 10 mV , and exhibits a gain of the order of 10 dB .

At an early stage in the design it was decided to use a crystal controlled b.f.o., whereas, when using an l.f. system the crystal frequencies have to be specified accurately, it was found that at 9 MHz the frequencies can be easily adjusted over a few kHz . This final adjustment is carried out by connecting a small trim capacitance in parallel or series with the individual crystals. If the frequency is too high then parallel C is required and if too low, series C is required. The final frequencies being set 20 dB down either side of the filter characteristic. It will be noted later that the crystal ${ }^{\text {selection }}$ uses germanium diodes which allow the control switch to be positioned remote from the actual circuit.

This completes the description of the basic system and the points that have either been dealt with fleetingly or not at all will be covered in the practical description which starts next month. The receiver will show up well in comparison even with very expensive commercial units, but, it is complex and only constructors with considerable previous experience are advised to tackle its construction. The use of a valve voltmeter together with a signal generator would be very helpful, but not essential.
(to be continued)

Are We Wasting Brain-power?

A criticism of our system of "labelling"

By L. Ibbotson,* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

I recently attended a lecture at the Royal Society of Arts concerned with scientific and technological education; the occasion served to crystalize certain uneasy feelings which I have had for some time about the training of "electronicists".

It was not so much the main themes of the discussion which jarred as a particular underlying assumption which every speaker seemed to make. The premise which offends me is roughly that any group of individuals trained or in training will always fall into two distinct and well separated parts, the able and successful being one, and the much less able and less successful the other.

Examples abound in life of the application of this seemingly ubiquitous principle; thus we had, and in the view of many people should still have, the "grammar school child" and the "secondary modern school child". We have the technologist and the technician, the graduate and the National Certificate man, the good honours and the pass graduate, the Ph.D. and the B.Sc.

Educationists will seemingly defend this principle to the death; thus we are told "undergraduates should be sorted out as soon as possible into potential honours graduates and potential pass graduates". It seems that the principle applies however refined the group, thus again it is a favourite dogma of the university teacher that "We do not need to decide where to make the break between upper and lower second class honours, a significant gap in the results always appears".

Now if we were to investigate the relative physical stature of all the men in London we should find that the distribution of their heights is gaussian. So is the distribution of their weights and, so far as it can be measured, of their intelligence. How odd then that their academic and scientific abilities should polarize in this peculiar manner. Could it be that our method of measurement influences the result, or are we just prejudiced (with a good lacing of special pleading for the system which appears to include us in the top group!)?

Please don't think that I am putting the old red line "all men are equal", not at all. Fig. 1 is a rough sketch of a gaussian distribution. A certain attribute has a measure A. The ordinate in Fig. 1 represents the number of individual $d N$ having values of A lying within the small range $d A$. Suppose the attribute is aptitude in the field of electronics. Let us suppose that only

[^2]people in the upper ranges of aptitude would consider pursuing a career in the field. Then it seems likely that the graph of $d N / d A$ versus A for all people trying to make their living as electronicists will be of the form of Fig. 2. We shall expect to find small numbers of exceptional people grading down smoothly to much larger numbers of the mediocre. I certainly think that Fig. 2 will represent the spread of abilities of degree students.

We are told that when we have grouped our students we must teach them in different ways appropriate to the ability level of their group. I think that what we are in practice doing is to select two ability ranges, say $a b$ and $c d$ in Fig. 2. These form the assessed ability ranges of our two groups. The large number of individuals who lie in the range $b c$ must do one of two things. Either they will bluff their way into the higher group, or, being more honest or more lazy will fall into the lower group. The consequence is that the higher group must contain a large percentage of charlatans and the lower group a somewhat smaller percentage of under-achievers. In my view it is important that every electronicist should develop his skills as far as his place in Fig. 2 will allow. He should not be labelled and placed in his appropriate slot for all time because people have a tendency to be judged, and to judge themselves by their labels. On the other hand it is necessary that people should be graded, but the measuring instrument must be carefully designed and finely divided. Also it must be readily available for checking a person who thinks he has advanced.

I doubt the validity of the thesis that the more able man should be taught the subject in a different way to the less able man. The greater your ability the further you can progress in skill and in subtlety of understanding. Hence I should like to see a testing system consisting of a large number of grades or degrees, rather like the grades which can be achieved in pianc playing. Thus the person who had reached the 5th grade or degree might be considered suitable for the work normally described as "technician level", at the 7th degree that of "technologist level". Research and development might require training assimilated to the 9 th degree. This would clearly change the structure of technical education, since everyone would be required to pass through each degree. The time scaleneed not, however, be specified.

Anyone entering our field must be prepared for a lifetime of study (think of the rate at which the art advances) so that updating courses and degree endorsement testing should be readily available.

The professional institutions have lately closed the door on the non-graduate aspirant, and since this man is almost certainly a reformed under-achiever, I regard this as a retrograde step. In the scheme that I propose corporate membershif of a professional institution would depend only on assessec achievement in the profession; this is ultimately the only valic test of status.

ESRO space-probe to Mercury in 1975?

Several projects are being considered for inclusion in the European Space Research Organization's programme. Among them is an interplanetary probe for a Mercury fly-by mission. Mercury is the closest planet to the sun in our solar system and as yet has not been investigated by a space vehicle. What little is known about the planet has been obtained from measurements made on earth.

The projected Mercury probe, known as MESC, has been studied for ESRO by the German Messerschmitt-Bolkow Company. It would have a total weight of about 400 kg . including a scientific instrument payload of about 70 kg . The purpose of the trip would be to study the surface and atmosphere of the -planet and it would carry a photometer, polarimeter, microwave measuring apparatus and an infra-red radiometer. Two television cameras would also be carried for short range photography of the planet's surface; a resolution of about 200 m would be obtained. To study atmospheric space close to the sun a magnetometer and micrometeorite detectors would be included in the -payload.

MESO would be launched by an American Atlas-Centaur launcher into solar or--bit which would pass close to Mercury after 4 months' flight. It would carry an earthpointing high-gain telemetry aerial capable of transmitting data at 750 bits per second to be received by the American earth-stations using 65 m paraboloids or the station being built at Effelsberg in Germany which has a 100 m dish.

If the project is agreed upon, launch could take place in 1975.

Other projects being considered by ESRO are an Atmospheric Research Satellite (El--liott, Fokker and Dornier), dual-spin satellite for polar ionosphere research (ESTEC), scientific geostationary satellite (ESTEC), two cosmic ray satellites- $\cos \mathrm{A}$ and $\cos \mathrm{B}$ (ESRO)—and astronomical satellites (ESRO).

3.S. 9000, 'Blatant violation ff U.S. rights!'

-The Americans are attacking the implemenation of a tripartite agreement between West Jermany, France and Britain which will znable a component manufactured in one of
the countries to be accepted in the other countries without subjecting it to goods inwards and quality control inspection under B.S. 9000 .

Mr. I. D. Secrest, executive vice-president of the American Electronic Industries Assodation, said in a letter to the American Secretary of Commerce: "The effect of the agreement is to make uneconomical for users of electronic components in those countries to purchase components from any plants other than those located within their territories which have been certified by their governments as meeting the technical standards and quality control procedures contemplated by the agreement." Mr. Secrest went on to say: "The tripartite agreement creates an absolute embargo against exports of U.S. electronic components to the United Kingdom, France and West Germany. The agreement is not yet fully implemented. There is time to prevent this blatant violation of U.S. rights under existing trade agreements from occurring if there is strong and determined action by the United States." As

to the three countries during 1968 they are worried, but what form this strong action might take was not mentioned.
B.S.9000, and the projected tripartite agreement was the subject of a conference held in Eastbourne recently under the auspices of the British Electrical and Allied Manufacturers' Association. The papers that were read and the discussions which followed, are available in "Conference on British Standard 9,000 series of Specifications-Proceedings", price 30 s from the Industrial Control and Electronics Division of the association at: 8 Leicester St, Leicester Square, London W.C.2.

International agreement on the Mallard project

The United States, the United Kingdom, Canada and Australia have announced an agreement on continuation into Phase-2 of the advanced development of the Mallard project. This project is an unprecedented

A working demonstration of Rohde \mathcal{E} Schwarz's "hyperbolic technique" which allows contactless measurements to be made on large curved surfaces-primarily intended for parabolic reflectors.

international undertaking in which a joint tactical communications system is being developed for the armies and associated navies and air forces of the four nations involved.

A design for the future, the long-range task is being carried out in phases as an international co-operative venture. The first phase, which was begun in April, 1967, is nearing completion, and was devoted to intensive study and system design by both government and industrial teams. Three major system studies have been completed, two in the U.S.A. and one in the U.K. These studies were augmented and complemented by 58 separate studies of the techniques involved. Principal U.S. contractors were in two teams. One, led by the Radio Corporation of America, the other, led by Sylvania. The United Kingdom team included Plessey, Standard Telephones and Cables, General Electric Company and Marconi.

Since February, an International System Selection Board has been reviewing the three system studies at Asbury Park, New Jersey. This board has selected the best elements of the three studies and recommended a single system design for further development. The Board consisted of 160 highly qualified personnel from the four nations representing 19 major fields of interest.

Project management of the Mallard project is centred in a Program Management Board located near Fort Monmouth, New Jersey. Each nation furnishes a board member. They include Major General P. A. Feyereisen, U.S.A.; Brigadier H. Roper, U.K.; Col. D. Coughtry, Canada, and Lt.-Col. D. McMillen, Australia.

The next phase of the project, which will cover a period of approximately two years, will be devoted to modelling and simulation of the selected Mallard system design, as approved by the Program Management Board.

Mintech's computer design centre in operation

The Ministry of Technology's Atlas Centre for Computer Aided Design (c.a.d.) at Cambridge is fully operational and its teams of consultants are already working on some of the engineering industry's design problems. Owned and controlled by the Ministry, the centre is managed under contract by International Computers Lid who built the Atlas 2 computer on which the centre is based.

Mintech will co-operate with other organizations in suitable projects which are likely to contribute to the efficiency of industry by stimulating the effective use of computeraided design. In most cases the other organizations involved in these selected projects will be running c.a.d. or developing techniques which they wish to run or develop for their own purposes. Mintech will be prepared to share the costs and, where appropriate, financial risks. In return Mintech will retain sufficient rights in the results of sponsored projects to enable those benefits that are not commercially confidential to be passed on to other users.

The Atlas 2 system being used provides a multi-access service with concurrent batch processing and is an adaptation of the Cam-
bridge University Mathematical Laboratory operating system. Work may be initiated either through conventional peripheral equipment or from teletype or graphics terminals, some on a dial-in basis, using the s.t.d. system. Up to 100 jobs can be handled at one time. Each job is run intermittently for periods that depend on the resources required and on the resources available so that the central processor is used as efficiently as possible. A magnetic disc filing system with back-up magnetic tapes provides a centrally organized mechanism for the safe custody and efficient retrieval of information. Other software is provided to operate associated computers, their display systems and their interfaces with Atlas 2. The address for enquiries is:-Mintech Atlas Centre for Computer Aided Design, Madingley Rd., Cambridge, CB3 OHB.

Stolen; can you help?

The following equipment was stolen from a laboratory in Oxford:
S.E. Laboratories u.v. recorder type 3006 'DL' serial number 0346/1.
Telequipment Oscilloscopes type D.43R, serial number 6623, and type D.43, serial number unknown.

If you have any information on the whereabouts of these instruments please contact: The Superintendent, Thames Valley Constabulary, Cowley Police Station, Oxford Road, Cowley, Oxford.

Ultrasonic probe evaluation Any suggestions?

Many of the aids to quality control used by industry make use of some form of ultrasonic testing method in which an ultrasonic probe, or probes, is employed. These probes form an essential part of the inspection system, and many different types exist, each being adapted to particular test requirements. The resulting probes have usually performed their intended task, but when probes developed for one purpose are used for another purpose, or when comparison of results between equipment from different manufacturers is required, it is sometimes found that results are inconsistent because of the ill-understood characteristics of the probes. Since the functioning of ultrasonic probes is a complex matter it has been found difficult, on the basis of current knowledge, to define the probe characteristics that are important or which may be relevant to any specific application.

In an attempt to resolve this problem, the Nondestructive Testing Centre at Harwell has been asked to undertake a programme to define important probe characteristics, and, where possible, to develop methods of measuring them. The two classes of probe characteristics which will be investigated initially are those concerned with the shapes of beams emitted and with the frequency spectra which the probes are capable of producing. These two factors are interrelated, since the frequency characteristics in part determine beam shapes.

The programme has been set up with the approval of the N.D.T. Centre Advisory

Committee and, after consultation with industrial users of ultrasonic probes, representatives of interested Research Associations and the British Standards Institution. Further user experience and practical suggestions regarding the problems of probe characterization and the definition and measurement of characteristics will be welcomed. Please write to A. D. McEachern at The Nondestructivé Testing Centre, A.E.R.E., Harwell, Didcot, Berks.

Eurocontrol radar inaugurated at Shannon

An Anglo-French secondary radar system, SECAR, developed and supplied jointly by the Marconi Company and Thomson-CSF for Eurocontrol at the upper area control centre at Shannon, Eire, was inaugurated on 9th May.

SECAR will not only give air traffic controllers in Shannon their first radar contact with many of the airliners flying across the Atlantic, but it will also provide a positive identification of the aircraft. SECAR, a form of air-to-ground data link, is designed to provide a radar controller with the identity height and the "plan position" of any aircraft. The system caters for all four civil modes of interrogation.

Tunnelling memories

The Guidance and Control Systems Division of Litton Industries claims to be more advanced than anyone else in producing a non-volatile semiconductor store (a store which retains information after power has been disconnected). Their claim cannot be substantiated because no one else has published information on the subject although other firms are known to be working on the same lines.

Non-volatile semiconductor stores are made using m.o.s: field effect transistors in which a layer of silicon nitride is deposited on top of the silicon oxide gate dielectric. It is the layer of nitride that acts as the storage medium.

The silicon nitride has roughly the same electronic structure as semiconductor except that the conduction and valence bands are further apart. Between the two bands are discrete "centres" or "traps" that can store one or two electrons. The trapped electrons will stay where they are for years depending on the exact construction employed.
If an electric field of about $3 \times 10^{6} \mathrm{~V} / \mathrm{cm}$ (between about 20 and 40 volts in this case) is applied to the nitride the majority of the trapped electrons will leave the trap by tunnelling through the bulk silicon. Data is therefore written into the memory by applying either a negative or a positive field of 3 $\times 10^{6} \mathrm{~V} / \mathrm{cm}$. Whether a 1 or 0 is stored depends on the presence or absence of electrons in the traps.

The amount of charge held in the nitride region traps determines the transistor threshold voltage (the voltage at which the transistor starts to turn on). A transistor in the 0 state has a threshold of about -3 V and about -10 V in the 1 state. Interrogating the
transistor is accomplished by applying a voltage of -6 to -7 volts. If the transistor contains 0 it will switch on, if it contains a 1 it will not.

The design of the device is a trade off between the storage, read, and write times required. Litton expect to produce a memory operating at standard m.o.s. logic levels and with standard m.o.s. power supplies with a read and write time of 1 sec and a capacity of up to 40,000 bits per cubic inch. After this extension to a million bits in the same area will follow, say Litton.

European airlines communication network

The Sociéte Internationale de Telecommunications Aeronautiques (S.I.T.A.), Paris, has awarded Raytheon Company a $\$ 3.3$ million contract to supply a real-time communications network to serve more than 100 airlines in Europe and the Middle East
S.I.T.A., an association of international airlines, has ordered 18 computer-based message processing systems from Raytheon. The systems will provide real-time message interchange between the widely scattered offices of the airlines that comprise S.I.T.A.

The centres will be able to control and process messages received through Telex, Teletype or various types of existing agents' terminals currently used by the airlines in their communications and reservation systems.
S.I.T.A. currently operates a network of high-speed communications processors in Amsterdam, Paris, Brussels, London, Madrid, Frankfurt, Rome and New York.

The Raytheon systems will extend the network to many new locations including Lisbon, Las Palmas, Milan, Geneva, Hamburg, Istanbul, Stockholm, Prague, Vienna and other locations. Installation in these cities is scheduled from July 1970 through June 1971.

Weather data routing system

Much faster and more efficient handling of weather information for the United Kingdom is promised with the installation of a com-.puter-based, message switching system, valued at nearly $\$ 750,000$, in Britain's Meteorological Centre, at Bracknell within the World Weather Watch network.

The system is capable of handling a million weather bulletins a day and is to implement Bracknell in its role as a regional telecommunications hub on a World Trunk. The World Trunk is a medium/high speed data circuit for transmitting weather data around the globe.

The Automatic Relay System will also link key meteorological stations in the U.K. with Bracknell using the existing low-speed telecommunications network. The system will automatically edit the reports from the World Trunk and route the weather information to these meteorological stations without the need for any manual intervention.

The system will also provide automatic
facilities for transmitting facsimile chart information in an analogue form, or digital data information on the same channels, between the Regional Telecommunication Hubs.

The Congress of the World Meteorological Organisation, held in April 1967, agreed to set up World Weather Watch to provide an international weather sharing network. The network is to link Regional Telecommunications Hubs which are to be sited at major meteorological centres in Paris, Offenbach, Prague, Moscow, Cairo, New Delhi, Melbourne, Tokyo, Washington and Bracknell. Each Hub will have responsibility for collecting and collating the weather information over its own area and relaying it to the other Hubs. Bracknell is responsible for the United Kingdom, Ireland, Iceland, Greenland, Gibralter, The Netherlands, and four ocean weather stations, as well as merchant shipping in the Eastern Atlantic. The Marconi Automatic Relay System to be installed at Bracknell will handle this mass of weather data both from these outlying meteorological stations and the World Trunk.

Sounding of the lower atmosphere

The Australian Weapons Research Establishment, Salisbury, South Australia, has developed a technique for the acoustic sounding of the lower atmosphere which may be brought into use by the Australian Bureau of Metereology.

A 50ft diameter acoustic dish is used in a radar system which enables measurements to be made of air turbulence and temperature inversions up to an altitude of $5,500 \mathrm{ft}$.

One possible use of the technique could be for profiling atmosphere contamination, particularly fog conditions at airports. The new system is based on the fact that the velocity of sound waves is very sensitive to air temperature.

Australian radio telescope for lunar landing transmissions

At the American National Aeronautics and Space Administration's request the Commonwealth Scientific and Industrial Research Organisation's (C.S.I.R.O.) radio telescope at the Austrailian National Radio Astronomy Observatory at Parkes, New South Wales, will be made available for N.A.S.A's first manned lunar landing. It will relay TV signals from the moon to the U.S. during the Apollo XI mission scheduled for July.

Under present plans for the landing a TV camera will be erected on the moon's surface by the astronauts to record their activities. It is expected that signals from the 2 ft lunar module aerial will be received by N.A.S.A's 210 ft diameter aerial at Goldstone, California, or by the C.S.I.R.O. 210 ft aerial at Parkes, N.S.W' Soon after arrival on the moon, the astronauts will set up a 10 ft diameter high-gain aerial on the lunar surface. Transmissions from this aerial will be
received by tracking stations round the world.
The signals picked up at Parkes will be transmitted to Sydney by microwave through links provided by the Australian Post Office.

The converted picture will then be relayed from Sydney to a station at Moree, thence via the Pacific Intelsat III to Jamesburg, California, and to Houston. The prime function of the TV link is for monitoring and controlling the lunar operations. It is understood that Australian TV stations are considering the possibility of a direct release of the lunar transmission through Australian networks.

Marriage begets new airborne weapons system

Elliott Flight Automation have combined a number of their avionic products with products from their sister company Marconi, to form a comprehensive airborne weapons, navigation and control system called SWORD (Strike and Weapons Ordnance Delivery), announced at the Paris air show.

The complete system consists of a miniature Elliott inertial platform with an associated digital computer; a 920 M digital computer for central flight management, and as a navigation and weapons aiming processor; head-up display with digital electronics as the main flight instrument system; projection map display, control/indicator panel, head-down electronic display, and horizontal situation indicator together forming the tactical display, navigation and flight instrument system; automatic pilot and stabilizer system with a high-speed low-level flight fail operative option; air data computer; radar or laser range finder for line-of-sight operation; high-definition radar for terrain following and target acquisition; ranging low-light television for passive target acquisition; and doppler radar as an alternative navigation sensor. Also available as part of SWORD are the Marconi AD1410 v.h.f./h.f. communications and homing radio and the Marconi v.o.r./i.l.s. navigation receiver.

The equipment can be fitted in part as a number of the sub-systems are self supporting. The complete system is complemented by the Elliott C. 700 computer-controlled automatic test equipment and by the Retriever air control system, a mobile computercontrolled miniature operations centre capable of being installed in a field car to provide forward control of low-level tactical strike and reconnaissance operations.

CORRECTIONS

[^3]
Modular Pre-amplifier Design

Optimally designed stages that may be used separately or in several different combinations

By J. L. Linsley Hood, m.I.e.E.

The type of distortion introduced by a class A transistor amplifier operating at low signal level will be predominantly second harmonic and inoffensive to the eat. Although harmonic distortion is á convenient thing to measure, and makes a reasonable yardstick for comparative purposes, at low levels its presence is less important than that of the intermodulation effects which it causes. When a complex signal is transmitted through a non-linear element, intermodulation products

John Laurence Linsley Hood, born in 1925, was educated at Reading School, Acton Polytechulc, the Royal Technical College (Clasgow) and, after the war, at Reading University. In 1942 he joined the G.E.C. Research Laboratories at Wembley, working on magnetron development as junior member of a téam. In 1943 he joined the R.A.F. in aircrew but was transferred to work on radar. He subsequently worked with T.R.E. (Malvern) overseas. Afler a return to university he joined the Windscale Research Laboratories of the Atomic Energy Authority. He has̀ been in charge of the electronics team in the research laboratories of British Cellophane Ltd. since 1954.

between the separate components of the signal are formed, and these are readily apparent in the final audible result as a 'blurring', and loss of separate identity, of the individual components which make up the whole. A measure of this is the ease (or difficulty.) in distinguishing the words of a choral performance in the presence of an orchestral background, or in identifying the presence and nature of individual instruments in a large orchestra.

Measurements by a number of workers ${ }^{1}$ have indicated that the magnitude of intermodulation products can be much greater than that of the total harmonic distortion level, and the non-linearities which are likely to be of most importance in this respect are those at the low and high-frequency ends of the audible range.

At the moment, the performance of audio amplifiers is much superior in this respect to that of f.m. transmissions, tape recordings, disc replay systems or loudspeakers. However, advances in the manufacturing techniques of gramophone records, pickup cartridges and loudspeakers have allowed a continuing improvement in the performance of these in harmonic and i.m. distortion, and it is clear that any amplifier

Fig. 1. A likely combination of stages.
design offered at this time should have a very high standard of performance if it is to remain of continuing value over the next decade.

The author has designed a range of high-quality pre-amplifier stages. Each stage performs its required operation with negligible noise and distortion. When joined together, as for example in Fig. 1, the total harmonic distortion level is below 0.1% over the frequency range $20 \mathrm{~Hz}-20 \mathrm{kHz}$, at any tone-control setting, and for up to 2 V r.m.s. output. Each stage is capable of operating on its own and has an output impedance low enough for screened cable inter-connections to be made without high frequency loss.

Magnetic pickup equalization circuit

The required R.I.A.A. replay characteristic can be approximated by several different circuit arrangements. The most straightforward from the point of view of performance calculation is that shown in Fig. 2, employing a simple phase-inverting amplifier stage. If the gain of amplifier M is high enough, point Z becomes a virtual earth (see Appendix I), and the input impedance of the circuit equivalent to that of the input network B. The load resistance required by the pickup cartridge, usually $47-50 \mathrm{k} \Omega$, is provided by a suitable choice of R_{1}. With resistor R_{2} equal to R_{1}, stage gain is given by $\frac{R_{4}+R_{5}}{R_{5}}$ at the mid-point frequency (usually 1 kHz) if the impedance of C_{2} is large, and that of C_{3} small, in relation to R_{2}. Since the voltage output to be expected from most good quality magnetic pickup cartridges is in the range $4-10 \mathrm{mV}$ for a $5 \mathrm{~cm} / \mathrm{sec}$ recorded velocity, a gain of 10 is adequate for this stage. The required replay frequencyresponse curve shown in Fig. 3 can be obtained by a suitable choice of C_{2} and C_{3}. Since the two networks A and B determine the frequency response of this circuit, it is apparent that substitution of these can be made to provide a wide range of different performance characteristics without alteration to the circuit of the amplifier unit M.

The final circuit can be seen at the front of Fig. 1. Because phase inversion between input and output is required, and because the necessary gain is higher than can be obtained from any single transistor arrangement, a triplet circuit has been used.

Fig. 2. Phase-inverting amplifier stage used to obtain R.I.A.A. replay characteristic.

Fig. 3. Required R.I.A.A. frequency-response curve and circuit approximation to this.
$T r_{1}$ and Tr_{3} are high-gain, low-noise voltage-amplifying stages, and $T r_{2}$ is a phase and voltage transformation stage allowing the input transistor to be used in its most linear region. The output transistor has a low collector load resistance, to reduce distortion to the lowest possible level.
D.c. working-point stability is ensured by d.c. negative feedback through R_{3} and R_{2} to the base of T_{1}, and through R_{4} to the emitter circuit of the same transistor. The circuit R_{4}, C_{4} and C_{3} also provides the feedback path necessary, in conjunction with the input capacitor C_{1}, to provide an $18 \mathrm{~dB} /$ octave steep-cut rumble filter, with a turn-over frequency of 25 Hz (see Appendix II), and an ultimate attenuation of more than 40 dB at 8 Hz .

Capacitor C_{6} provides phase correction, and is essential for a clean square-wave response, and freedom from transient ringing, when used with a capacitive load.

The response of this circuit is particularly good, and it can deliver up to 1 volt output with distortion less than 0.02% from 100 Hz to 10 kHz .

Stages for ceramic cartridge equalization

Fig. 4 is an impedance conversion stage contributing less than 0.05% distortion at 1 kHz and having a flat response from 35 Hz to greater than 200 kHz , with $18 \mathrm{~dB} /$ octave roll-off below 35 Hz . This simple stage may be directly substituted for the magnetic cartridge stage of Fig. 1.

Alternatively, should it be required that the pre-amplifier be able to cope with inputs from both magnetic and ceramic cartridges, then switchable equalization networks for A and B can be provided. These are shown in Fig. 5. When used with a ceramic cartridge the output voltage is from 50 to 200 mV . To
preserve the required shape of the rumble filter characteristic it is necessary to alter the values of C_{4} and C_{5} from $25 \mu \mathrm{~F}$ to $12.5 \mu \mathrm{~F}$. The pre-amp response is then as shown in Fig. 5, curve 1 .

The performance of many ceramic pickup/amplifier combin-

Fig. 4. Impedance conversion stage for use with ceramic cartridge. This may be directly substituted for the magnetic cartridge stage at the front of Fig. 1.

Fig. S. Changes in equalization networks A and B of the magnetic cartridge input stage allowing direct use of ceramic cartridge. Components for network A are the same for the three curves show.

Fig. 6. Gain/frequency characteristics of the tone control stage.
ations is disappointing in comparison with that obtainable from a good magnetic cartridge with a similar amplifier. This is sometimes due to the mismatching between cartridge and amplifier, or through inadequate input impedance provision (in the modification shown in Fig. 5 this is $4.4 \mathrm{M} \Omega$), or due to the failure of the piezoelectric element within the cartridge to provide the required equalization for the 12 dB fall in voltage output anticipated when a recording having R.I.A.A. velocity characteristics is replayed on a displacement sensitive device. In the latter case, a very considerable improvement in the relative performance of the ceramic cartridge may be obtained by shunting part of the input resistor in the input network B by a small capacitor. Curves 2 and 3 in Fig. 5 show partial and complete correction respectively.

Tone-control stage

The tone-control stage is of conventional type, and uses a negative feedback system derived from the design due to Baxandall ${ }^{2}$. However, it differs from normal practice in that a junction field-effect transistor is used as the active element. Field-effect transistors have both lower noise levels and better linearity than bipolar transistors, and in this type of circuit the high input impedance results in negligible loading of the tonecontrol network. The stage gain needed in this circuit requires a high value drain load resistor, and the f.e.t. must therefore be followed by an emitter-follower to provide the low output impedance desired for easy interconnection of the separate units.

If the feedback tone-control network is to perform satisfactorily, both the input and output impedances seen by the network at its ends must be low in relation to the network input impedance when the sliders of the potentiometers are at the position nearest to the point being measured. Some form of impedance conversion circuit is therefore also needed between the volume control and the tone-control circuit. An emitter follower is also used at this point. The 0.001 F capacitor in the emitter circuit of Tr_{4} is to avoid the possibility of high frequency parasitic oscillation occurring if long screened leads are used to connect the base of Tr_{4} to the volume control.

The input to this section is taken through a switch from the gramophone pre-amplifier section, and other inputs provided with preset gain-equalization potentiometers. The switch is arranged to earth the inputs not in use, to minimize breakthrough between programme channels.

The gain/frequency characteristics of the stage are shown in Fig. 6.

Low-pass filter circuit

The voltage amplifying stage preceding the main amplifier should include a steep-cut low-pass filter that can be set to remove unwanted high frequencies. This can be done either by a suitable $L C R$ filter arrangement, or by an active filter giving an equivalent performance without the use of inductors. The circuit arrangements available for low-pass active filters are shown in Fig. 7. (b) is the well known circuit arrangement first employed in an audio amplifier design by P. J. Baxandall ${ }^{3}$, and (d) is the unity gain rearrangement of this circuit introduced by Sallen and Key ${ }^{4}$. The frequency response of all of these circuit T_{T} arrangements is similar, mutatis mutandis, to that shown in Fig. 8, and the circuit should be preceded or followed by a simple $R C$ filter if the type of response shown in the dotted line is required.

For a given overall stage gain, type (b) gives a much better distortion factor near the region of cut-off than (a), and (c) is marginally better than (b) when used with non-linear amplifier elements. The particular advantage of (c) however, is that it can be used conveniently with a very low-distortion two-transistor circuit.

The final stage, with the filter circuitry, is shown in Fig. 1. As
a matter of practical convenience, the component values of this zircuit have been chosen so that the required low-pass response is obtained when all of the capacitors ' C_{x} ' are of equal value to each other. The frequency response obtained with a given value of ' C_{x} ' can be found from Fig. 9. The user can interpolate between these to obtain turn-over frequencies at any points to suit his own requirements. If a ganged selector switch is employed .o give a range of turn-over frequencies, the switch arms moving contacts) should be connected to the junction of the resistors in the $R C$ filter and to the 470Ω resistor in the main filter network. In Fig. 1 the $0.0047 \mu \mathrm{~F}$ capacitor for ${ }^{\prime} C_{x}$ ' results in esponse being 3 dB down at about 18 kHz . With good quality orogramme sources this is a recommended capacitor value.
With capacitors of zero value, the response of the circuit is lat to about 100 kHz . The user should however arrange for the esponse to fall off above 25 kHz . (It is unlikely that the listener will find anything to gain from the parts of the sonic spectrum seyond this point.)

The optimum performance of this particular type of circuit arrangement is obtained when the overall gain is about 50 with eedback. A $20-40 \mathrm{mV}$ input is therefore adequate for this stage or the output voltages required.

The distortion level of this circuit is less than 0.03% at 2 volts r.m.s. output or less, at any frequency within the pass sand. The output impedance is less than 150 ohms over the -ange from 20 Hz to the cut-off frequency selected.

It is convenient, for several reasons, to operate at the $; 0-100 \mathrm{mV}$ level through the tone-control stages. At this outsut voltage level the distortion introduced by an $R C$ coupled .e.t. stage is less than 0.1% even without feedback, so that the naximum 'lift' settings of either 'bass' or 'treble' controls can10t give rise to unacceptable levels of distortion. It is also arge enough for the noise and inevitable 50 Hz pickup to be anobtrusive. Some attenuation is therefore desirable between he tone control unit and the steep-cut filter circuit. This is sbtained by the preset $2 \mathrm{k} \Omega$ potentiometer in the tone control :ircuit, which provides a convenient means for setting the over--ll gain of the amplifier system, and also as a coarse 'balance zontrol' in a stereo system. Fine balance between channels is sbtained by adjusting the 100Ω balance potentiometer in the sutput stage. This alters the stage gain over the ratio $6: 10$.

Zonstructional notes

The constructional tečhnique used by the author in building he prototype of this amplifier is similar to that used in the 10 -watt class A design described in Wireless World in April 1969, with the separate units laid out in mirror image form, as a stereo ,air on a single 4 in $\times 4 \frac{3}{4}$ in s.r.b.p. pin board. Two units of each ype can be accommodated on each board, laid out more or less in he form of the circuit diagram (or its mirror image).
In general, reasonable care should be taken to separate input rom output leads, and where the boards are to be mounted as a yroup within the same box, it would be wise to interpose a sheet netal screen between them.
The units are separately decoupled by $250 \mu \mathrm{~F}$ capacitors rom a common 24 -volt line, derived from a zener diode stabilzed $R C$ filter power supply. This supply is separate from the nain amplifier, and a 30 mA output is ample. Details of a suitable rower supply are given in Fig. 10. The expected working voltage on each of the unit sub-rails is about 15 volts.
Apart from the input transistor in the gramophone pre-amp init $\left(\mathrm{Tr}_{1}\right)$ for which the $\mathrm{BC109}$ is to be preferred, there is no ,articular reason why any modern silicon planar types should oot give an indistinguishable performance. For example, the 1-p-n types could be 2N3904, BC107/8/9, 2N3707 or BC184Ls. similarly, the p-n-p types could be 2N4058, 2N3906 or BC214Ls.

Although, in many cases, the use of $\frac{1}{4}$ watt resistors is sufficient,

Fig. 7. Circuit arrangements for active low-pass filter design.

Fig. 9. Graph and table of turn-over frequencies for different value of ' $C x$ '.

Fig. 10. Suitable power supply for any combination of stages.
it will probably be found simpler to use $\frac{1}{2}$ watt units throughout. 5% tolerance carbon film resistors are to be preferred.

The author has mounted the gramophone pickup equalization circuit in a separate small diecast box, immediately under the gramophone turntable unit, so that the leads from the gramophone are taken at a low impedance from the output of this unit. This has been very effective in reducing the hum picked up on the output leads to an imperceptible level.

Appendix I

The use of 'virtual earth' (null seeking) amplifier circuit arrangements is superficially ill-advised with input elements such as pickup cartridges, because it appears that as the operating frequency is increased, the input half of the balancing limbs will also change, with a resultant change in the gain of the circuit. In particular, a magnetic pickup cartridge may have an inductance of some $300-800 \mathrm{mH}$ and the impedance of this will exceed that of the input circuit in the range $12-20 \mathrm{kHz}$. This should clearly reduce the gain of the system by reducing the ratio of A to B .

However, on reflection, it can be seen that the amplifier operates as a null generating device, sensitive only to the current flowing in the input circuit to the 'virtual earth'. As the operating frequency increases, so the current flow through R_{1} will decrease, but so it would in any case, regardless of the amplifier, were the element simply connected across network B as the load recommended by the cartridge manufacturers (at these frequencies the impedance of C_{1} can be ignored), and the voltage across R_{1} measured by a perfect voltage amplifier. The decrease of current input into a given resistive load from a source having series inductance is simply an unfortunate fact of life, from which one cannot escape, whatever one's technique of measurement, and high impedance voltage amplifiers connected across the load, or low impedance current amplifiers connected in series with it, are alike in this respect, except that with transistors, the latter are a bit easier to contrive. The same argument is also applicable, in the appropriate context, to high impedance capacitative elements such as piezo-electric pickup cartridges. Once again, the voltage amplifier and current amplifier see the same phenomena in identical form. The necessary, and inevitable, corrections can be accomplished simply by the tonecontrol settings.

Appendix II

Although the R.I.A.A. replay characteristic suggests an approximately flat velocity response from $20 \mathrm{~Hz}-50 \mathrm{~Hz}$, this would effectively imply recording bass lift in this region, and the author suspects that this is not done, a constant modulation characteristic being used instead. The author has therefore, for

Fig. 11. Floating emitler collector-follower circuit referred to in Appendix II.
his own use, modified the values of the feedback elements as follows: $R_{5}-470$ ohms; $R_{6}-1.5 \mathrm{k}$ ohms; $C_{1}-0.47 \mu \mathrm{~F} ; C_{3}-6800 \mathrm{pF}$; and $C_{6}-6800 \mathrm{pF}$. These changes maintain the velocity response flat down to 25 Hz , with a rapid rumble attenuation below this frequency. Unfortunately the mid point gain of the circuit is reduced to 5 , and some additional amplification is therefore needed if it is desired to avoid working with the tone control circuit at the 20 mV level. the simple floating emitter collectorfollower circuit of Fig. 11 is therefore interposed, without coupling capacitors, between the output series resistor and the collector of Tr_{3}. The distortion contributed by this is less than 0.05%.

REFERENCES

1. Langford-Smith, F., "Radio Designers Handbook", Vol.4, ch. 72. 2. Baxandall, P. J., "Negative-Feedback Tone Control", Wireless World, October 1952.
2. Baxandall, P. J., "Gramophone and Microphone Pre-amplifier", Wireless World, January 1955.
3. Sallen, R. P. and Key, E. L., I.R.E. Trans. Circuit Theory, March 1955, p. 74-85.

H. F. Predictions-July

> - Median standard MUF
> $=-=-=$ Optimum traffic trequency
> $-\cdot-=$ Lowest usable HF

The charts show median standard MUF, optimum traffic frequency (FOT) and lowest usable frequency for reception in this country. LUFs were calculated by Cable and Wireless Lid for individual point-to-point telegraph circuits. Those for high-power broadcasting, will be similar, whilst those for amateur service, where e.r.ps are much lower, will be several MHz higher.
To make allowance for day-to-day variations of solar activity and seasonal trend over the month, commercial working frequencies are kept below FOT. Amateur 'openings' can be expected on bands up to 15% above MUF.

Observed solar activity for March was much higher than forecast, consequently predictions since then have been rather pessimistic as regards MUF.

Unique new RF power meters combine

D.C. to $1 \mathbf{G H z}$

TF 2501: 1 and 3W. f.s.d. £402*
TF 2502: 3 and 10W. f.s.d. $£ 44$ 'y
TF 2503: 30 and 100W.f.s.d. $£ 493$ (available shortly)
These compact new RF power meters are the most versatile and accurate portable instruments available. They combine a fast acting thermocouple for true mean power indication with a diode meter as a peaking indicator for transmitter tuning.
Advanced thin film techniques are used in the patented thermocouple unit, whose low-resistance heater forms part of the coaxial line to maintain the correct characteristic impedance from the load to the input socket. Thin film techniques have also made it possible to shrink the load resistors (the

STAR performer

20 good reasons why STAR UHF Mobile Radiotelephone is the best radiotelephone in the world

\star Elegantly styled.
\star Designed for safe use in vehicles.
\star Excellent range and penetration of built-up areas.
\star Crystal-clear speech quality.
\star Noise cancelling microphone.
\star No ignition ${ }^{-n}$ noise.
\star Very low battery drain.
\star Simple installation and removal.
\star Anti-theft catch.
\star High reliability.
\star Meets world-wide specifications.
$\star 25 \mathrm{kHz}$ and 50 kHz channel spacing
\star Printed UFH transmitter circuitry.

* Transmission line coupling of power transistors.
\star Solid-state antenna change-over switching.
\star Helical tuning coils in receiver.
* Quartz crystal filter.
\star Quartz crystal discriminator.
\star Integrated circuits.
\star Fully solid-state.

STC Mobile Radiotelephones Ltd., New Southgate, London N.11. Telephone: 01-368 1200. Telex: 261912.

Mobile Radiotelephones

Wireless World Logic Display Aid

3 : Clock generator, counter, code converter and character

 generatorsdesigned by B. S. Crank*

The clock generator multivibrator is built around a single integrated circuit type ZN330E which is mounted in position six (see Figs. 25 and 26) on board two. It will be seen from Fig. 29 that this integrated circuit is described as a dual four-input NAND gate although each gate is drawn with five input connections. The fifth connection, the one terminating in a dot on the periphery of the circle representing the gate, is connected to the internal resistor R_{1} (Fig. 28) and has direct access to the base of $T r_{1}$ via D_{5}. This means that a conventional multivibrator can be constructed merely by connecting two external capacitors to the integrated circuit as shown in Fig. 33.

Fig. 33

Fig. 34

Fig. 33. Clock pulse generalor circuit
Fig.34. First two slages of the Y counter

Counter

The counter is a straight conventional binary counter in which the J and K terminals of the bistables are not used. In order to accommodate the code converter, to be described later, the counter is spread-out over three boards (2,3 and 4). The counter consists of eight bistables (four ZN322E) with the output of one bistable driving the trigger input of the following bistable. The logic diagram and the position of the various integrated circuits on the boards is shown in Figs. 34, 35 and 36.

The bistable outputs $\bar{A}, \bar{B}, \bar{C}, \bar{D}, E, F, G, H$ are taken to board output connections where they will be fed to the inputs of the buffer amplifiers which will in turn drive the two dians. Notice that these variables have been printed in italics. Variables printed in italics are the direct outputs of the counter and must not be confused with ABCDEFGH which will be introduced later as the outputs of the code converter. Italic variables are used only for
certain counter internal connections, to drive the dian buffer amplifiers and to drive the code converter. The Y buffers are connected to the "not" outputs of the bistables to produce a negative going staircase and the X buffers to the "true" outputs of the bistables to produce a positive going staircase.

When the counter boards are built, not forgetting the input from the clock generator shown on Fig. 34, the board socket wiring can be started. This is simple at this stage and consists of interconnecting the various stages of the counter and connecting the counter to the buffer amplifiers on board one. This is shown on Figs. 34, 35 and 36.

Fig. 35.Sections of the counter that are on board Itree

Fig. 36. Final counter slages

[^4]
Testing the counter, buffer amplifier and dian assembly

When one is satisfied that all the previously described wiring has been carried out correctly the test circuit of Fig. 37 can be built. This test circuit will be used through-

Fig. 37. Test circuit interconnection diagram
out the construction of the rest of the logic circuits of the display aid and as such it should be set-up on a semipermanent basis, preferably on a bench where it does not have to be dismantled at the end of each session. Not only does the circuit test all the work done so far but it is a most valuable piece of test equipment for the rest of the equipment.

Switch everything on and adjust the oscilloscope (which should be set to external timebase) to produce one of the rasters shown in Figs. 3 or 13. It is possible that the standing d.c. potential at the output of the dians will be more than the oscilloscope X and Y shift controls can cope with. In this case it is permissible to block the d.c. by connecting capacitors, say about $0.22 \mu \mathrm{~F}$, in series with the output of the dians. If trapezium distortion is evident increase the value of the series capacitor.

Should the required pattern not be produced check the following points. With an oscilloscope a square wave should be observed at the output of the clock generator multivibrator; if there is no square wave the fault lies in the multivibrator. Look at the output waveform of each stage of the counter starting with stage A and finishing with stage H. Each waveform should be exactly half the frequency of the preceding one. A fault in the counter will easily be detected in this way. Check the output of each dian for a staircase waveform. If no waveform exists, or a waveform other than a staircase is produced, check all connections to the dians and buffer amplifiers.

When all is well the effect of operating the Venn switch will clearly be seen.

Code converter

The code converter, as mentioned earlier, it used to make the task of decoding the various functions of the display aid an easier one. It does once what would have had to be done several times if it were not included.

The code converter is divided into four sections, each section operating on a pair of outputs of the counter. It has a natural binary input and gives an output similar to that used along the edges of the Karnaugh map shown in Fig. 11.

The output of the code converter has a unit distance
property (each successive output differs by only one variable) over each pair of digits.

Consider the two tables set out below:
natural binary input output of code converter

0
1
2
3

B	\boldsymbol{A}	\underline{B}	\mathbf{A}
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

The aim is to design a logic circuit that with a natural binary input will produce the output shown. An examination shows that the variable B remains unaltered at both the input and the output, only A alters. A truth table for the required function is shown below:

B	A	A
0	0	0
0	1	1
1	0	1
1	1	0

From this:

$$
\mathrm{A}=A \bar{B}+\bar{A} B
$$

which is the exclusive OR function. It was seen earlier that this function can be performed with either the circuit of Fig. 30 or 32.

An additional complication arises from the fact that it is the output of the code converter that drives the rest of the logic çircuits of the display aid and that more than eight gates have to be connected to some of the code converter outputs. Because of this power gates, which can drive up to 25 other gates, have to be used in some places.

The logic diagram of the code converter, and the positions of the various integrated circuits on the boards are shown in Figs. 38, 39 and 40.

Fig. 38 shows the code converter required to produce the variables A and B. In an earlier section it was pointed out that if the wired OR connection was used the exclusive OR function could be performed with only two gates, one gate being fed with $\bar{A} \bar{B}$ and the other with $A B$. However, at the output of the code converter we require the complement of the output variable as well as the variable itself.

In Fig. 38 then the input to P12/IC4 is given by:

$$
\overline{\bar{A} B+A \bar{B}}=\overline{\mathrm{A}}
$$

This is inverted to give at P11/IC4:

$$
\bar{A} B+A \bar{B}=\mathrm{A}
$$

Notice that the B and \bar{B} outputs have a single NAND gate acting as an inverter to buffer the counter from the rest of the circuits.

Fig. 39 shows the code converter for the C and D, and E and F stages of the counter. This follows the same general rules as for the A and B stage with the exception of the introduction of some power gates. IC5/B3 for instance allows the C and E output variables to drive up to 25 other gates each. IC4/B3 and ICI/B3 are power AND gates. As only one input terminal is used they serve as
amplifiers only to increase the drive on the D, \bar{D}, F and \bar{F} outputs.

Fig. 40 shows the last of the code converters which operates on the G and H outputs. This follows the same general principle as the other converters with a minor variation. IC1/B4 is a dual power NAND gate and is effective on the G and \bar{G} outputs. As before the unmodified outputs, H and H in this case, are given the necessary drive in a dual power AND gate (IC2/B4) with only one input used.

To summarize, the complete output of the code converter can be written as:

$$
\begin{array}{ll}
\mathrm{A}=\bar{A} B+A \bar{B} & \overline{\mathrm{~A}}=\bar{A} B+A \bar{B} \\
\mathrm{~B}=B & \overline{\mathrm{~B}}=\bar{B} \\
\mathrm{C}=\bar{C} D+C \bar{D} & \overline{\mathrm{C}}=\overline{\mathrm{C}} D+C \bar{D} \\
\mathrm{D}=D & \overline{\mathrm{D}}=\bar{D} \\
\mathrm{E}=\bar{E} F+E \bar{F} & \overline{\mathrm{E}}=\bar{E} F+E \bar{F} \\
\mathrm{~F}=F & \mathrm{~F}=\bar{F} \\
\mathrm{G}=\overline{\mathrm{G}} H+G \bar{H} & \mathrm{G}=\overline{\bar{G}} H+G \bar{H} \\
\mathrm{H}=H & \overline{\mathrm{H}}=\bar{H}
\end{array}
$$

And the output sequence, or code, of the converter, taking the Y side as an example, is:

D	C	B	A
0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	0
0	1	0	0
0	1	0	1
0	1	1	1
0	1	1	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	0	0
1	0	0	1
1	0	1	1
1	0	1	0

For the sake of completeness a list of the pins at which the various variables are available is given below.

$$
\mathbf{Y}
$$

X

A. $P 5 / B 2$
E. P 8/B3
A. $\quad \mathrm{P} 6 / \mathrm{B} 2$
\bar{E}. \quad P $7 / B 3$
B. $P 7 / B 2$
F. $P 10 / B 3$
B. $\mathrm{P} 8 / \mathrm{B} 2$
\bar{F}. P 9/B3
C. $P 4 / B 3$
G. $P 4 / B 4$
$\bar{C} . \quad P 3 / B 3$
$\overline{\mathrm{G}}$. $\mathrm{P} \quad 3 / \mathrm{B} 4$
D. $P 6 / B 3$
H. $\mathrm{P} \quad 6 / \mathrm{B} 4$
D. P 5/B3
$\overline{\mathrm{H}} . \quad \mathrm{P} \quad 5 / \mathrm{B} 4$

Fig. 38. Part code converter

Testing the code converter

In order to test the code converter it is necessary to build the video amplifier as shown in Fig. 41. The amplifier can be built on any small piece of Veroboard or an old tag board or something similar. The input of the

(lefl) Fig. 41. Make-shift video amplifier
(right) Fig. 43. Forming the video equation
amplifier is connected to a probe and the output of the amplifier is connected to the Z input terminal of the oscilloscope connected as in Fig. 37.

Some oscilloscopes do not have a Z input terminal; however, one can usually be provided by making a connection to the cathode of the c.r.t. via a small capacitor, say $0.05 \mu \mathrm{~F}$. It is important to note that the cathode of the c.r.t., in an oscilloscope, is usually at minus e.h.t. and may be several kilovolts below earth potential. The capacitor used should be new and should have a working voltage of at least one-and-a-half times the oscilloscope's e.h.t. voltage. If, for instance, the 'scope's working e.h.t. is 1 kV the capacitor should be rated at 1.5 kV .

When the wiring of the code converters has been completed and visually checked for accuracy plug the boards into their correct positions and switch-on the oscilloscope and the +4.5 and +27 V supplies; at some stage the 4.5 V supply will have to be obtained from a bench power supply to handle the load. Adjust the oscilloscope controls to display a nice square matrix of dots; it is best to use the Venn mode (Fig. 3). Adjust the brightness control so that the dots are only just visible.

Place the amplifier probe on $\mathrm{P} 5 / \mathrm{B} 2$, some of the dots should glow brighter. A little thought will show that the dots which increase in brightness must be in the areas which are true for the variable A as $P 5 / B 2$ is the pin at which the variable A is available as was seen in the table.

Examine Fig. 42. This shows the matrix-raster and how the outputs of the code converters each correspond

Fig. 42. Addresses within the matrix-raster
to a particular column or row of the matrix. In the example above we placed the probe on A. Now A originates from the Y counter and so "addresses" horizontal rows of the matrix (as do B, C and D). E, F, G and H address the vertical columns of the matrix. With the probe on A the horizontal rows that will glow brighter will be those rows with a 1 under A in the list of code converter outputs at the left-hand side of Fig. 42. So, counting from the top, rows $2,3,6,7,10,11$ etc will be brighter.

If the probe is placed on \bar{A}, which is at $\mathrm{P} 6 / \mathrm{B} 2$, the rows that will be the brightest will be those with 0 under the A column of converter outputs (Fig. 42).

Using the same reasoning it is possible to test all the outputs of the code converter. For instance if the probe is placed on P6/B4, the variable H , the whole right-hand half of the matrix will be brighter because this is the area where a 1 appears under the H column.

Proceed to test all the sixteen outputs of the code converter that were listed with pin numbers earlier.

It is possible, due to differences in oscilloscopes, that the results will be the exact opposite to those required. When the probe is placed on A for instance all the rows corresponding to A are brighter. If this occurs in every test the simple remedy is to build another video amplifier stage to carry out another inversion.

Another point that may worry constructors is that the brighter areas in some cases will not be of even brightness. This is nothing to worry about as it is caused by the small size of the Z input coupling capacitor and can be ignored at this stage. If the constructor wishes to do something about it increasing the size of this capacitor will put things right.

If at any stage the desired pattern is not obtained check the connections in the appropriate section of the code converter using the circuit diagrams.

When the correct pattern has been obtained for each output of the code converter then the constructor can rest assured that all the circuits built so far are functioning perfectly.

These tests serve also to illustrate very clearly the whole concept of the display aid. They show how the various areas of the matrix correspond to the code converter output variables and how these variables can be used as a video signal to intensity modulate the c.r.t.

Composite video signal

The instrument has three modes of operation. When displaying Truth tables or Karnaugh maps the screen will be filled with a pattern of 0 s and 1 s . It would be reasonable to suppose, therefore, that the video signal would come from a circuit for generating 0 s and from a circuit for generating 1 s . This is the case. The signal that will produce an 0 on the screen face is designated F_{0} (Form 0). and, using the same argument, the form 1 signal is F_{1}.

As was seen in the introduction the Venn display is made up from a pattern of dots. Another signal will be introduced at this' stage that will be called Z. At the moment there is no point in complicating the issue by saying where this signal, Z, comes from, suffice to say that when Z exists, in the Venn mode, a bright dot is required on the tube face and when \bar{Z} exists no dot is required. If we represent the Venn mode by V, the equation for a video signal can be written as:

$$
\begin{equation*}
\text { Video }=F_{0}+F_{1}+V Z \tag{1}
\end{equation*}
$$

Fig. 43 gives a circuit that will produce this function. Notice that because we are employing NAND gates the negative form of each term is required to produce OR.

Character generators

The circuit that produces the F_{0} signal is such as to write an 0 in each of the 16 sub-matrices. Later on it will be discovered that another control signal decides in which sub-matrix an 0 is required.

An examination of Fig. 42 will show that the first row in each sub-matrix is addressed by $\overline{\mathrm{A}} \overline{\mathrm{B}}$ the second by $\mathrm{A} \overline{\mathrm{B}}$ and so on. In the other direction the variables E and F repeat themselves over each sub-matrix. In Fig. 42

(a)

(b)

Fig. 44. Deriving the expression for F_{0}
each sub-matrix is bordered by a dashed line. It follows that if we select the dots necessary to form the character 0 in one sub-matrix using only the variables A, B, E and F an 0 will be written in each sub-matrix because the variables employed repeat themselves over each sub-matrix in an identical fashion.

The dots to be selected to form 0s are ringed in Fig. 44(a). The code converter gave the address code a unit distance property over each pair of digits, thereby turning each sub-matrix into a Karnaugh map. Fig. 44(b) shows the Karnaugh map for the character 0. Each square represents a dot and each dot to be selected is shown as a 1.

The top of the Karnaugh map is adjacent to the bottom and the left-side is adjacent to the right-side for simplification purposes. Two loops will therefore enclose all the 1s on the Map. The map is solved as follows:

Fig. 45(a) shows the dots within a sub-matrix necessary to form the character 1 and Fig. 45 (b) shows the appropriate Karnaugh map. All 1s are adjacent and can be ringed with a single loop. One could apply the same simplification procedure as was used for F_{0}, however this is not necessary as by inspection it can be seen that:

$$
\begin{equation*}
\mathbf{F}_{1}=\overline{\mathbf{E}} \mathbf{F} \tag{3}
\end{equation*}
$$

It was mentioned earlier that the F_{0} and F_{1} circuits operate under the control of other signals. These signals are called W_{0} (Write 0) and W_{1}. The way in which these signals are derived will be discussed later. Incorporating these control signals in equations (2) and (3) gives:

$$
\begin{align*}
& \mathbf{F}_{0}=\mathrm{W}_{0}(\overline{\mathbf{A}} \mathrm{E}+\mathrm{A} \overline{\mathrm{E}}) \tag{4}\\
& \mathbf{F}_{1}=\mathrm{W}_{1} \overline{\mathbf{E}} \mathbf{F} \tag{5}
\end{align*}
$$

Now that the terms for the F_{0} and F_{1} signals have been precisely defined they can be substituted in equation (1) to give the complete video equation:

$$
\begin{equation*}
\text { Video }=W_{0}(\bar{A} E+A \bar{E})+W_{1} \bar{E} F+V Z \tag{6}
\end{equation*}
$$

The logic diagram that performs this function and the position of the various integrated circuits is shown in Fig. 46. In this drawing the white letters in black circles

(above) Fig. 45. Forming the expression for F_{1}.
(helow) Fig.46. The 1 and 0 character generators

Loop 1 consists of the terms:

$$
\begin{array}{llll}
\bar{A} & \bar{B} & E & \bar{F} \\
\bar{A} & \bar{B} & E & F \\
\bar{A} & B & E & \bar{F} \\
\bar{A} & B & E & F
\end{array}
$$

Selecting only common variables gives $\overline{\mathrm{A}} \mathrm{E}$
Loop 2 consists of the terms:
A $\bar{B} \bar{E} \bar{F}$
A B $\bar{E} \bar{F}$
A $\bar{B} \bar{E} F$
A B $\overline{\mathrm{E}} \mathrm{F}$
taking only common variables gives $A \bar{E}$ therefore:

$$
F_{0}=\bar{A} E+A \bar{E}
$$

(2)

refer to the equations above. For convenience the board socket has been drawn in two halves. This circuit can now be built on board five.

When satisfied with the board wiring the inter-socket wiring can be carried out. Notice that for the time being P17/B5, P18/B5 and P22/B5 are not connected to anything.

Testing the character generators

When the wiring has been completed the satisfaction of the reader tests can be commenced. For these tests it is necessary to simulate the W_{0} and W_{1} signals. To this end temporarily connect socket pin 18/B5 to the 0 V line, this will disable the 1 character generator.

Place the Venn switch in the Karnaugh map/Truth table position, connect the video amplifier probe to P23/B5 and switch-on the 'scope and other power supplies. A total of sixteen 0s should be displayed on the screen.

Switch-off, disconnect the earth from P18/B5 and reconnect to $\mathrm{P} 17 / \mathrm{B} 5$ to disable the 0 character generator. Switch-on and sixteen 1s should appear. On the satisfactory completion of these tests disconnect the earth from P17/B5, the probe can be left connected as it will be required in this position later on.

If trouble is experienced the probe can be used at earlier points in the circuit to locate the fault. If this is done intelligently the exact cause of the fault can be located within minutes. It is necessary to relate the logical quantity that should be present on a particular wire with the pattern on the screen. A full understanding of how the instrument functions is essential if this is to be done satisfactorily.

It is felt that the constructor has been given enough to occupy his time until our next issue is published. At this time details of the logic design and construction will be continued.

Announcements

A High-Fidelity Exhibition is being planned for next year by the Federation of British Audio, which has some 30 member companies and has its headquarters at 49 Russell Square, London W.C.1. The exhibition will be held at the Skyway Hotel, near London Airport, from April 23rd to 26th.

The 2nd United Kingdom Symposium on Electronics for Civil Aviation organized by the Electronic Engineering Association in conjunction with the Ministry of Technology and the Board of Trade will be held at the Festival Hall, London, from 15th to 19th September

Bendix Vacuum (CVC) is co-operating a symposium on "The Deposition of Thin Films by Sputtering" in the United States 9 th and 10 th September and in Europe 23rd and 24th October. Further details may be obtained from Bendix Vacuum Ltd., East heath Avenue, Wokingham, Berks.

An I.E.E. vacation school on "Systems engineering", co-sponsored by the I.E.R.E., will be held at the University of Lancaster from 8 th to 12 th September Further information from the Secretary, Control \& Automation Division, 1.E.E., Savoy Place, London W.C. 2.

Thorn Electrical Industries and RCA of the United States have announced an agreement whereby the two companies will form a joint operation for the manufacture of colour television tubes in the United Kingdom. The new company will be named Thorn Colour Tubes Ltd, in which Thorn will own 51% of the shares and R.C.A. Lid. 49%. The new company will bring together the Thorn manufacturing facilities at Brimsdown, Enfield, and those of R.C.A. Colour Tubes at Skelmersdale, Lancs.
Thorn Electrical Industries has acquired from AEI their 50% participation in Thorn-AEI Radio Valves and Tubes so that this company will be wholly owned by Thorn. It has been re-named Thorn Radio Valves and Tubes Ltd.

As part of a new five-year development plan that is expected to involve an investment of $\notin 1 \mathrm{M}$ in one specific project, Emihus Microcomponents Lid is extending its plant at Glenrothes, Fife. The investment is concerned with the manufacture of a completely new range of MOSFET integrated circuits and discrete devices.

Communication satellites. An agreement has been signed between the Philco-Ford Corporation and G.E.C.-Marconi Electronics to co-operate in developing and marketing spacecraft and equipment.

Ates Componenti Elertronici S.p.A., of Milan, manufacturers of semiconductors, have opened a U.K.Sales Office at Prospect House, Boston Manor Road, Brentford, Middx. (Tel: 01-560-8337).

Erie Technological Products Lid, South Denes, Great Yarmouth, Norfolk, have acquired control of Davall Electronics Ltd, of Northampton.

Racal Research Lid, Newtown, Tewkesbury, Glos, now offer thick film circuits in batches ranging from 10 to 10,000 , tested and packaged to individual requirements.

Fibre Light, Teknis House, Stoke Road, Guildford, Surrey, is a new company which has been formed to distribute "Teknis" continuous lengths of glass fibre optic non-coherent light guides.

Celdis Italiana S.p.A. is a new company, with headquarters in Milan and a sales office in Turin. It has been formed as the first step in a five-year plan by Celdis Ltd, of Reading, Berks, to establish a wide distribution organization throughout Europe.

Brookdeal Electronics Lid, 2 Myron Place, Lewisham, London S.E.13, have announced a marketing agreement with Keithley Instruments Inc. of Cleveland, Ohio, U.S.A. Keithley are to market the Brookdeal " 400 " series of lock-in amplifier systems.

Carston Electronics Ltd, 71 Oakléy Road, Chinnor, Oxfordshire, have been appointed sole U.K. agents for the Sharpe Instruments Division of Scintrex Inc., of Buffalo, New York. Sharpe manufacture headphones and microphone/headphone combination units.

The Modular Electronics Division of STC at Cefndy Road, Rhyl, will in future be known as the ITT Manufacturing Services Division.

Newmark Instruments Lid, Control Engineering Division, has received orders amounting to $\mathcal{L} 20,000$ for electronic motor speed control systems from Fukuhara Industrial \& Trading Company of Japan.

The Marconi Company has received orders totalling over $\ell \frac{1}{2} \mathrm{M}$ for highpower 50 cm radars and radar link equipment from the Board of Trade.

Emihus Microcomponents Lid have received an order worth more than f 40,000 for the supply of wet tantalum capacitors for use in the West German built Leopard tanks for Nato forces.

Honeywell Ltd have been awarded a contract worth more than $£ 1 \mathrm{M}$ from the Ministry of Technology, to supply radar altimeters for a number of R.A.F. and R.N. aircraft.

Pye Telecommunications Lid has received orders for mobile radio equipment totalling $£ 75,000$ from Abu Dhabi, one of the Trucial States in the Arabian Gulf. The system includes full radio telephony for the Abu Dhabi Police.

Standard Telephones and Cables Lid of London have received a follow-up order worth approximately $£ 160,000$ for STAN. $37 / 38 / 39$ instrument landing systems to be installed at Australian airports.

Decca has been awarded a contract by the Australian Government valued at $\$ 1.5 \mathrm{~A}$ million for the supply of a Decca Navigator chain to be located at Port Hedland, Western Australia.

Teleng L.td, manufacturers of u.h.f. and v.h.f. television distribution systems equipment, has moved to Arisdale Avenue, South Ockendon, Essex, RM15 STR.

Distortion Factor Meter
 Five-range instrument covering 0.1% to 100% full-scale

by L. Haigh

While high fidelity reproduction cannot be described as an exact science, since it is to some extent a subjective matter, it is an undoubted advantage to be able to measure the amount by which an audio amplifier and other components fall short of technical perfection. In the case of an audio amplifier, two main factors are frequency response and non-linearity. The first is comparatively easy to measure, requiring only an audio generator covering the required frequencies and a suitable output measuring meter.

Non-linearity, which means that the degree of amplification varies with the amplitude of the signal, requires more refined measuring equipment to determine its extent. Non-linearity has at least two effects, in that alien frequencies (harmonics) are introduced and when, as is almost always the case in practice, more than one frequency is being handled by the amplifier, further alien frequencies (intermodulation) are produced. The extent of non-linearity, can be readily expressed by the percentage of harmonics introduced by the amplifier compared with the fundamental frequency of the test signal.
British Standard 3860:1965, Part 3, sets out the position clearly as follows:-

Paragraph 9(a) "Measurement of harmonic distortion. To ascertain the output power at which the distortion becomes a specified value, it is convenient to use a distortion factor meter, which automatically sums the power in all the harmonics and gives the result as a percentage of the output voltage."

A block schematic diagram of equipment to measure total harmonic distortion is shown in Fig. 1. In addition to the amplifier under test, there are required,
(a) an audio generator, the total harmonic distortion of which should be lower than that of the amplifier being tested, or if not, a filter must be used to reduce harmonics. B.S.3860: 1965, paragraph 7, specifies that the audio generator's total harmonic distortion should not exceed one-fifth of that of the amplifier being tested.
(b) some form of output measuring device and
(c) a distortion factor meter.

Fig. 2(a) is a copy of a trace obtained on a Cossor model 1035 oscilloscope, using a sine wave directly from a low-distortion audio generator, the measured total harmonic distortion of which is less than 0.1%. This same signal source was then applied to a voltage amplifier, in this case a single triode valve, at sufficient strength to overload it and to produce a measured total harmonic distortion of 10%. The considerable flattening in Fig. 2(b) of the lower peaks shows the distortion to be mainly second harmonic. These waveforms were taken at a middle frequency where there was no phase shift of harmonic frequencies as compared with the fundamental. If oscillograms were taken at either very low or very high audio frequencies where phase shift does occur, the wave form of Fig.2(b) would slightly different, depending on the degree of phase shift.

While this trace is interesting, as showing the effect of one kind

Fig.1. Block diagram of the set-up for measuring amplifier distortion.

Fig.2. Oscilloscope trace of an $800-\mathrm{Hz}$ wave having less than 0.1% distortion (a) and 10% distortion (b).
of harmonic distortion on waveform, it also reveals that a high degree of distortion is needed to make a noticeable difference to it. An oscilloscope can, of course, be used in another way to reveal amplifier distortion, as well as phase shift, by connecting one set of deflector plates to the amplifier input, and the other plates to its output. Distortion will then be indicated by the departure of the trace from a straight line. To measure the total harmonic distortion of a high-fidelity amplifier, which can probably be regarded as one which, among other things, has a total harmonic content of 1% or less, a distortion factor meter is needed.

For certain purposes it may be more useful to be able to measure the percentage of the individual harmonics, but this needs relatively elaborate and expensive equipment, as well as taking much longer.

While B.S. $3860: 1965$ specifies a test frequency of 1000 Hz $\pm 2 \%$, as a standard for comparing one amplifier with another, it is useful to apply other test frequencies also. It is well known that some amplifiers show a considerable increase in harmonic distortion at very low and high frequencies compared with 1000 Hz . For this reason, this distortion factor meter has been made capable of measurement not only over the full range of audible frequencies, but beyond them at each end.

The principle of operation is simple, in that the fundamentalfrequency signal introduced into the amplifier is removed (and only that frequency), and the remaining signals, which mainly represents harmonics introduced by the amplifier, are compared with the fundamental before its rejection.

The instrument to be described uses 6 transistors and two diodes and is powered by a 12 -volt battery, the current consump-

Fig.3. Block schematic of distortion factor meter. The rejector is cut out in position D of switch 2 in Fig. 4.
tion being 6 mA . It has proved simple and reliable in use and as the percentage of distortion is indicated directly on the meter, readings can be taken quickly. It may be divided into three sections:-
(a) Input circuit
(b) Fundamental-frequency rejection
(c) Harmonic measurement.

Design of the distortion factor meter

Figs. 3 and 4 show respectively a block diagram of the instrument and the complete circuit. Taking each of the three sections in turn:-
(a) The input circuit comprises a simple attenuator and an emitter-follower transistor Tr_{1}. To give the full range of readings, the prototype requires an input of not less than 0.6 volt r.m.s., and for signals of this amplitude up to about 6 volts r.m.s. the switch S_{1} is closed. By opening S_{1} the maximum input which can be handled is about 250 volts. $T r_{1}$ has an input impedance of 100,000 ohms, which has little effect on the input attenuator, while its output impedance, being low is not affected by the rejector circuits which follow.
(b) The success or otherwise of these distortion-measuring equipments depends mainly on the circuit for rejecting the fundamental test frequency. To measure adequately distortion as low as 0.1%, an attenuation of at least 70 dB at the test frequency is needed. At the same time the second harmonic should be unchanged in value, or as nearly so as possible, or the accuracy of total distortion measurement will be impaired.

An attenuation of 70 dB corresponds to a voltage reduction, the load resistance remaining constant, to approximately 0.032% of its original value. Using this distortion-factor meter connected directly to the output from a really low distortion audio generator, it is readily possible to obtain a distortion reading of 0.03% or
less, showing that sufficient rejection of the fundamentalfrequency is attained by means of the filter circuit used.

While it is possible to use a Wien bridge circuit for rejection of the fundamental, and this has the advantage of needing fewer components than the twin-T filter, the latter was chosen, since the full output is available from it, compared with only one-third from the Wien bridge. In addition, both the input and output circuits can be earthed. The filter is variable and will reject frequencies from 20 Hz to 20 kHz . The basic circuit and principle is shown in Fig. 5 in which $R_{1}=R_{2}=2 R_{3}$ and $C_{1}=C_{2}=C_{3} / 2$ and the rejection frequency is $1 /\left(2 R_{1} C_{1}\right)$ with R_{1} in ohms and C_{1} in farads.

To cover the entire audio frequencies of 20 Hz to 20 kHz 5 switched ranges are used, each range having a ratio of about 4 to 1 . While it is possible to cover this band in three ranges with a 10-1 ratio, this would result in rather too great a variation in the input impedance of the filter.

Each range is covered by variable resistors or potentiometers, the coarse control being a 3-gang potentiometer, $R V_{2}$ and $R V_{3}$ of 50,000 ohms each and $R V_{4}$ of 25,000 ohms. To cover the slight mismatching of the capacitors C_{4} to C_{18} and the ganged potentiometer, medium matching controls $R V_{5}, R V_{6}$ and $R V_{7}$ are used, together with fine adjustments from $R V_{8}, R V_{9}$ and $R V_{10}$. These last need not generally be used, except to measure total distortion of less than 1%.

While the twin-T filter gives very high attenuation of the fundamental frequency it also reduces to a quite unacceptable extent the second and third harmonics. To improve its selectivity, negative feedback is arranged over the filter. This is provided by transistors $T r_{2}, T r_{3}$ and $T r_{4}$ and associated components. Tr_{2} and Tr_{4} are emitter-followers to provide a high input impedance (approximately 100,000 ohms) and low output impedance. Tr_{3} is adjusted, by means of the unbypassed emitter to earth resistors R_{12} and R_{13} to give a voltage gain of about 30. By taking the output from Tr_{4} via C_{22} and R_{17} to the input of the filter, sufficient negative feedback is applied to render the filter's attenuation of harmonics very small. Without negative feedback, the second harmonic is reduced by about two-thirds and the third harmonic by about 40%. With the degree of feedback used, the second harmonic is reduced by less than 10%, which allows reasonable accuracy of measurement of distortion.

Fig.4. Complete circuit diagram of distortion factor meter.

INPUT CIRCUIT
FUNDAMENTAL FREQUENCY REJECTOR CIRCUIT

Of the six contacts in each arm of S_{2}, one (indicated by D) is used to disconnect the filter, so that by setting the switch S_{3} of the measuring amplifier at 100%, the input signal can be adjusted by $R V_{1}$, and if necessary S_{1}, to give a full-scale reading of 100 on the meter M, and this is the reference level.

When the filter, by means of the required capacitance range and adjustment of the variable resistors $R V_{2}$ to $R V_{10}$ has been set to reduce the fundamental frequency as much as possible, any alternating voltage across R_{16} represents distortion, noise or other spurious signals. The noise and distortion introduced by this distortion factor meter are of the order of 0.02%, so that for most purposes, alternating voltages read on the meter can be regarded as representing distortion.
$T r_{5}$ and $T r_{6}$ with associated components and the meter M comprise a sensitive a.c. millivoltmeter, or it could be regarded as a millivoltmeter if it were calibrated. It is, of course, used for comparison, in conjunction with the potentiometer S_{3} and resistors R_{18} to R_{23}, of the harmonics, left after the rejection of the fundamental, with the fundamental. By returning the lower ends of C_{27} and C_{28} to the emitter of T_{5}, some negative feedback is provided, which is useful in adjusting the amplifier gain to some extent. The potentiometer made up of S_{3} and resistors R_{18} to R_{23} form the distortion range control. When S_{3} is in the position shown in the diagram (f) the meter indicates between 10% and 100% distortion, as well as being used to adjust the input signal to give a reading of 100 when the filter is switched out of use.

Lower degrees than 10% of distortion require the switch S_{3} to be moved towards R_{18} and in the position for full gain the meter gives a maximum reading of 0.1% distortion. The switch S_{3} gives the following maximum distortion ranges: (a) 0.1%, (b) 0.3%, (c) 1%, (d) 3%, (e) 10% and (f) 100%.

Construction

The layout of the components is not critical, but if low levels of distortion are to be measured, it is essential to enclose the equipment in a metal case, which is connected, of course, to the earth line of the circuit. In radio workshops and laboratories there is considerable pick up of $50-\mathrm{Hz}$ voltages from the mains unless reasonable screening is used.

TABLE 1

Range	Frequency	Capacitance
A	20.80 Hz	$C_{4}=C_{3}=0.15 \mu \mathrm{~F}, C_{14}=0.3 \mu \mathrm{~F}$
B	80.320 Hz	$C_{6}=C^{\prime}=0.04 \mu \mathrm{~F}, C_{18}=0.08 \mu \mathrm{~F}$
c	320.1280 Hz	$C_{8}=C_{5}=0.01 \mu \mathrm{~F}, C_{16}=0.02 \mu \mathrm{~F}$
O	filter disconnacted	
E	$1.25-5 \mathrm{kHz}$	$C_{10}=C_{1,}=2,500 \mathrm{pF}, C_{17}=5.000 \mathrm{pF}$
F	5.20 kHz	$C_{12}=C_{13}=620 \mathrm{pF}, C_{19}=1,250 \mathrm{pF}$

As the harmonic amplifier $T r_{5}$ and $T r_{6}$ gives high gain, it is advisable to keep its input leads away from the output. Apart from these two points the layout of components is a matter of convenience of construction and operation.

As there are a fairly large number of controls a front panel area of not less than $12 \mathrm{in} . \times 10 \mathrm{in}$. is advisable and 16 gauge aluminium is suitable, if a vertical flange is provided to stiffen it. In the prototype, a chassis of $3 \frac{1}{2} \mathrm{in}$. deep is used and the capacitors C_{4} to C_{18} are mounted underneath with the switch S_{2}. High-stability resistors have been used throughout to reduce noise and for the same reason capacitors with higher working voltages than are necessary for safety have been used.

The values of the capacitors, C_{4} to C_{18}, form, of course, the capacitance elements of each of the five ranges and their values are shown in Table 1.

To obtain some of these values of capacitance it will probably be necessary to connect more than one in parallel (or in series), and in any event a capacitance bridge should be used to measure them. The exact values are not of vital importance, except that too great a divergence will affect the range of frequencies covered. What is important is that C_{4} and C_{5} are within, say 5% of each other and that C_{14} is within 5% of double the value of C_{4} and C_{5}. The same consideration applies to the other four ranges.

A 12 -volt battery is used and as the current consumption is only 6 mA , any transistor receiver type of battery may be used. As the collector current of T_{6} is low, there is no risk of damage to the meter through overloading.
While it is not strictly necessary for the operation of the instrument, some form of scale with five ranges marked A, B, C, E and F and with the approximate frequencies, increase the convenience and speed of operation, if it is attached to the control knob of the three-gauge coarse rejection control $R V_{2}, \mathrm{KV}_{3}$ and $R V_{4}$.

The transistors used have rather short connecting leads, and so it is important to use a pair of pliers or similar device to form a heat sink when soldering them into position. Most of the components and the transistors are mounted on tag boards above the chassis in the prototype, as this form of construction lent itself well to the numerous changes and experiments which have been needed in developing this instrument.

Adjustment

When the wiring has been completed, the only adjustment required is the setting of the preset variable wire-wound resistor $R V_{11}$, which is in the emitter circuit of $T r_{5}$. Increasing its value reduces the gain of the measuring amplifier by increasing the negative feedback applied from the collector of $T R_{6}$ to the emitter of $T r_{5}$. It is suggested that it should be adjusted by:-
(a) Setting S_{3} to the 100% position.
(b) Closing $S_{\text {, }}$
(c) Adjusting $R V_{1}$ to maximum
(d) Setting S_{2} to position D (filter out)
(e) Applying an audio voltage of approximately 0.5 to 0.7 volt r.m.s.
(f) Adjusting $R V_{11}$ to obtain a full-scale reading on the meter.

This setting determines the sensitivity of the instrument; that is, the minimum input signal to allow the full range of distortion measurements to be made. Constructors may have their own ideas as to its setting and the sensitivity required, but with the prototype a sensitivity of 0.5 to 0.7 volt r.m.s. has proved satisfactory in use.

Operation

As shown in Fig. 1 the amplifier under test is supplied with a low-distortion sinewave of the required frequency, either from a low-distortion oscillator or the more usual type of oscillator with a filter. An output meter and the distortion-factor meter are connected, in parallel, to the amplifier output.

If a voltage amplifier is under test the output meter will probably be a valve voltmeter or a transistor a.c. millivoltmeter with voltage ranges as required. When the required output has been obtained from the amplifier, as measured, the distortion meter is brought into operation, and the following sequence is advised.

1. Set S_{3} to 100%
2. Set S_{2} to position D (filter disconnected)
3. Switch distortion meter on:
4. Adjust RV_{1}, and if input to meter is high enough, open S_{1}, to obtain the full-scale reading, 100 on the meter.
5. Switch S_{2} to the required frequency band.
6. Set the medium frequency controls $\mathrm{RV}_{5}, \mathrm{RV}_{6}$ and $R V_{7}$, and, fine frequency controls $R V_{8}, R V_{9}$ and $R V_{10}$ to approximately their middle positions.
7. Adjust $\mathrm{RV}_{5}, \mathrm{RV}_{6}$ and RV_{7}, (three gang) to obtain the minimum meter reading. If this is below 10% of full scale, move S_{3} to the 10% position.
8. Adjust $\mathrm{RV}_{5}, \mathrm{RV}_{6}$ and RV_{7} in turn, and repeat adjustments until the minimum meter reading is obtained.
9. With each reduction of the meter reading below 30% of full scale move S_{3} to the next lower distortion setting. It will usually be found that for working below 1%, that is, when the meter shows a reading of 100 on the 1% distortion setting of S_{3}, that the fine frequency controls $R V_{8}, R V_{9}$ and RV_{10} will be required.
10. The general principle, of course, is to reject the fundamental frequency introduced into the amplifier, by means of repeated adjustments of the frequency controls RV_{5} to $R V_{10}$, to obtain the lowest meter reading. That meter reading, when related to the setting of S_{3}, indicates the total harmonic distortion of the amplifier under test.

With a little practice the above adjustments can be made quickly. While the meter will not be damaged by overload on

Fig.5. Basic circuit of twin-T filter used to reject the fundamental frequency.

Fig.6. Simple tuned filter for 1 kHz to reduce the harmonic content of an audio signal generator.
account of the small collector current of T_{6}, there is no point in overloading it unnecessarily. A few simple precautions will obviate this, such as:-
(a) If it is required to move the main frequency control $\mathrm{RV}_{2}, \mathrm{RV}_{3}$ and RV_{4}, set S_{3} to 100%.
(b) Set S_{3} to 100% before making any adjustments to the signal generator or the amplifier.

If the input signal to the meter is too small to give a fullscale reading in (4) above, the meter can still be used but it will be necessary to multiply the final setting by a fraction, as follows:-

Final distortion reading, say, 0.25% x $100 \div$ (input reading on setting up).

For example, if a reading of 50 can be obtained, the final meter reading of distortion should be multiplied by $2 . \mathrm{RV}_{1}$ can be adjusted to give a meter reading which allows a convenient multiplier to be used, such as 2,3 or 4 .

Acknowledgements

It is suggested that readers and constructors of this meter may find it helpful, if they wish to make standard tests of amplifiers for harmonic distortion, to obtain B.S.3860:1965. This can be obtained for 6 s , plus postage, from British Standards Institution, Sales Branch, 101 Pentonville Road, London, N.1.

The author wishes to thank Dr. Arthur R. Bailey, for his article in Electronic Technology, Febuary 1960 on "Low distortion Sine Wave Generator". This instrument uses a Twin-T filter for producing sine waves and a brief reference in the article to using this filter for measuring distortion suggested this instrument.

Acknowledgement and thanks are also due to Mr D. E. O'N. Waddington, for his article on a "Silicon Transistor Millivoltmeter" in March 1966 Wireless World. The writer built one of these instruments and it is most useful for audio-frequency measurements. The circuit of its output stage and meter-rectifier arrangement has been used in the distortion-factor meter.

Appendix

A filter circuit for use at a frequency of approximately 1 kHz to enable the usual type of Wien bridge audio generator to be used is shown in Fig. 6.

Provided that the generator's frequency is stable, its distortion can, by means of a simple tuned circuit interposed between the generator and the amplifier under test, be reduced to about one-fifth. If it is desired to operate at other frequencies, it is necessary, of course, to use different values of inductance and capacitance. It must be emphasised that this arrangement is less convenient than using a low-distortion (say less than 0.05% distortion) oscillator, but it makes possible measurements with a much less expensive generator.

To operate such an arrangement, it is necessary to vary the frequency of the generator until maximum output is obtained from the filter, and this can be done by setting S_{2} to position D and S_{3} to 100%. The remaining operations are the same, of course, as without the filter. For a filter of 1 kHz an air-core inductance of 200 mH with a parallel capacitance of $0.13 \mu \mathrm{~F}$ are needed. It is essential not to use an iron core, as this itself introduces considerable distortion. The inductance consists of 4200 turns of No. 34 s.w.g. enamelled-copper wound on a former $\frac{1}{2} \mathrm{in}$. in diameter and 1 in . wide. No insulation between the layers of the wire is needed, but they should be wound on the wooden or paxolin former reasonably tidily.

The usual type of Wien Bridge oscillator produces distortion in the region of 0.2% to 0.5%, and such a filter by reducing this distortion to less than 0.1% makes it possible to measure lower levels of distortion with a comparatively inexpensive generator.

Components on Show

A selection of items seen at the London Electronic Components Show

Complete p.w.m. amplifier.
(a)

(b)

L.F. signal
(c) (AGAGANA

Sum of (c) \& (b) applied to modulator
(d)

P.W.M. output modulator

Generation of a p.w.m. carrier.
95% to be obtained-only 5 to 10% of the power taken from the supply appears as heat in the active devices.
The generation of a p.w.m. carrier is shown above. After power amplification the pulse train is applied to a low-pass filter, the output of which is the original 1:f. signal. This signal is fed to the load in a conventional manner.

Raising the p.r.f. from the usual 100 kHz or so (used in previous closed loop and open loop designs) to about 2 MHz has the following advantages: (1) small cheap filters can be used to reduce radiation to a level adequately meeting BS.800: 1954; (2) the intermodulation products between the pulse and 1.f. analogue frequencies are very small; (3) wide-bandwidth signals up to 0.5 MHz may be amplified; and (4) the ratio between switching frequency and the modulation frequency is so large that more than 30 dB of feedback can be applied without instability.

The high speed modulator is built around an experimental integrated circuit, incorporating a triangular-wave generator, modulator, level changer and driver unit.

The performance of the modulator is such that a modulation index of 0.95 can be obtained at 1 MHz and 0.9 at 2 MHz , for a total analogue harmonic distortion less than 0.5% and 1% respectively. The switching power output circuit, which can also operate up to 2 MHz has been encapsulated in a block $50 \times 22 \times 14 \mathrm{~mm}$. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW511 for further details

Nickel cadmium cells

The Special Battery Division of Ever Ready is manufacturing a range of rechargeable fully sealed maintenance-free nickel cadmium cells. The range comprises six button cells, nine cylindrical and two rectangular cells.

In small quantities the prices are from 3 s 10 d for the smallest (90 mAh) button cell to 97 s for the larger 10.0 Ah rectangular cell. Some of the chief characteristics of the nickel cadmium electrochemical system are: (1) almost flat voltage curve throughout discharge; (2) specially suited to continuous high rates of discharge (very low internal resistance); (3) operation over temperature range $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$; (4) can be charged and discharged again and again depending on conditions of use; (5) indefinite shelf life between $-60^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$; and (6) good charge retention characteristics especially at low temperature. Two solid-state constant current chargers are available. Model CH 12 will charge up to 12 cells in series and costs $£ 20$. Model CH20 will charge up to twenty celis in series and costs $£^{28}$. The Ever Ready Company (Great Britain) Ltd, Hockley, Essex.
WW507 for further details

Digital volt/ohmmeter

This is a low-cost Russian instrument of the electro-mechanical type; all control and switching functions are accomplished by relays. The meter has automatic range and polarity selection and automatic positioning of the decimal point in the four-digit display. Significant figures from the performance data are: voltage measurement range 0.01 to $1,000 \mathrm{~V}$ d.c. with an accuracy of $\pm 0.2 \%$ ± 1 digit; the input resistance is $1 \mathrm{M} \Omega$. Re-

sistance measurements can be made between 100Ω and $1999 \mathrm{k} \Omega$ with an accuracy of \pm $0.3 \% \pm 1$ digit. The measurement cycle takes three seconds. Power supply requirements are as follows: $-220 \mathrm{~V} \pm 10 \%$ at 50 Hz or $220 \mathrm{~V} \pm 5 \%$ at 400 Hz or $115 \mathrm{~V} \pm 5 \%$ at 400 Hz . The instrument weighs 66 lb and measures $325 \times 220 \times 415 \mathrm{~mm}$. It costs $£ 128$ complete with a full complement of spares. Agents in this country are Z \& I Aero Services Ltd., 44a, Westbourne Grove, London W.2. WW 505 for further details

Solid-state communication Receiver

Frequency coverage from 10 kHz to 30 MHz in ten overlapping ranges is provided by the Eddystone EC 958 communication receiver introduced at the Components Show. Basic circuit configuration is governed by the tuning range in use, single or double conversion being employed at frequencies up to

1.6 MHz . At higher frequencies triple conversion is used, the additional i.f. providing an incremental tuning facility which is absent on the lower frequencies. Circuit arrangements permit continuous tuning over any selected range in the high-frequency band, or high-stability operation with incremental coverage in steps of 100 kHz . In the latter mode, frequencies are readable to within 200 Hz and the first oscillator is locked to harmonics derived from an overcontrolled master oscillator having a longterm stability of the order 1 part in 10^{7}. High stability working at frequencies below 1.6 MHz is possible by using an external synthesizer.
Reception facilities cover c.w., a.m. and s.s.b. and (with the addition of an optional module) f.s.k.
The set, the front panel of which measures $426 \times 134 \mathrm{~mm}$, can be supplied with a matching panoramic display unit (upper unit in accompanying photograph) for applications where visual signal analysis is required. This unit (EP961) covers 50 kHz to 60 MHz using three plug-in r.f. tuners. All three tuners employ double conversion.

Eddystone Radio Ltd., Alvechurch Rd, Birmingham 31.
WW 514 for further details

Mosaic multiplexers for Concorde

Plessey have developed a mosaic chip, consisting of eight balanced-channel multiplexers, for use in Concorde's data handling system. Small analogue signals are fed continuously from the aircraft's monitoring transducers to the switch inputs. Any one of the eight signals may be switched through the
multiplexer, by feeding in an appropriate address, which is then stored and decoded to select a switch. The switch output is then fed to the magnetic flight-test recording system. The single chip replaces an array of discrete f.e.t. switches and t.t.l. currently being used in Concorde 001 and 002. Its incorporation will enable the installation to be reduced from nine racks to only one. The whole multiplexer chip is set in a 40 lead pack. The Plessey Co. Ltd, Ilford, Essex.
WW509 for further details

Modular digital measuring system

The basic structure of this modular instrument shown by Farnell is a display unit (incorporating the power supplies for the main frame and the various modules) below which is an access port to accommodate the plug-in units. This main frame, which measures $245 \times 175 \times 350 \mathrm{~mm}$, includes a non-blinking digital display which incorpor-

ates a polarity display and a wrong-polarity warning indicator. It also has a printer output socket at the rear. It operates from a.c. supplies from 110 to 250 volts, $47-400 \mathrm{~Hz}$, and has a 5 MHz counter response.
Four plug-in modules are at present available converting the display unit into either a digital d.c. voltmeter, 1 MHz counter-timer, capacitance meter or an ohmmeter.

The voltmeter module (DCV 100) is an integrating type utilizing a photo-chopper stabilized voltage-to-frequency converter and precision gate, providing true integration for best noise rejection with no drift or zero offset. It maintains a high input impedance throughout its range and its a.c. rejection characteristics ensure maximum accuracy. It measures 0.1 mV to 1000 V in five ranges.

The counter/timer (DFM 100) displays frequencies from 0.1 Hz to 1 MHz and periods from 0.1 ms to 999 sec . Over-range capability provides up to 7 digit resolution with accuracy of $\pm 0.0005 \%$ of reading ± 1 digit. Where a six-digit readout is required the first three figures are read on the kHz range and the last three on the Hz range. Its internal crystal-controlled timebase checks frequency at $1 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 100 kHz . Gate times are 1 ms to 10 s in five ranges.

A Wheatstone bridge circuit with automatic null-point is incorporated in the ohmmeter module (DOM 100) which enables impedances from 0.001Ω to $1000 \mathrm{M} \Omega$ to be displayed with an accuracy of $\pm 0.1 \%$ of
reading ± 1 digit for seven of the ten ranges.
Capacitances from 1 p...F to $10^{6} \mathrm{M} \mathrm{F}$ are displayed in eight ranges without manual balancing or nulling using the DCM 100 module.

Farnell Instruments Ltd, Sandbeck Way, Wetherby LS22 4DH.
WW 513 for further details

Ceramic power triode

A further r.f. power valve (BR1182) has been added to the series of industrial ceramic triodes being developed by English Electric Valve company for both induction and dielectric radio-frequency heating. Of coaxial filament/grid terminal construction, this tube is forced-air cooled and has a ceramic /metal envelope. It can operate at full ratings up to 50 MHz , and under class C unmodulated conditions will give an output at the valve anode of 50 kW . The valve, which is 371 mm high and 254 mm in diameter, has a maximum continous anode dissipation rating of 15 kW . The net weight is approximately 35 lb (16 kg).

English Electric Valve Co., Chelmsford, Essex.
WW 516 for further details

P.V.C. clad instrument cases

A range of instrument cases was announced by West Hyde at the exhibition that employs p.v.c. coated steel side panels and p.v.c. coated aluminium front and back panels in 24 different sizes. The cases arrive packed flat for assembly by the customer to minimize storage and handling problems. Main advantages claimed for the p.v.c. finish are ease of cleaning, no paint to be scratched, ease of marking out, resistance to scuff marks and attractive appearance. The cases

are called the Mod- 2 range, and as an example, one measuring $9 \times 10 \times 6.5 \mathrm{in}$. costs 58 s 6d. complete with chassis. West Hyde Developments Ltd., 30 High St., Northwood, Middlesex.
WW 503 for further details

Radio interference suppressor

It is well known that the performance of a suppressor depends on the load connected to it. It can be shown theoretically that there is always a critical load, for a given frequency,

which results in the worst performance of the suppressor even to the extent of there being an actual voltage gain rather than a loss. The 'critical' loads are those which form a series resonant circuit with Thévenin's impedance of the suppressor. Consequently the transmission gain condition can be avoided by introducing damping components in the suppressor circuit. Such damping is the subject of Royal Aircraft Establishment Patents JR 2351/01 and JX 2491/01. The curves in the above diagram show that by the simple procedure of adding a resistor to a conventional suppressor a general improvement of 20 dB is obtained. Royal Aircraft Establishment, Farnborough, Hants.
WW510 for further details

Double-beam oscilloscope

One of the main features of this new oscilloscope is the large useful screen area ($10 \times$ 8 cm) in a case that is only 35.5 cm long. The short-necked tube responsible for this has been developed for this 'scope and it employs a p.d.a. and an e.h.t. of 4 kV . In order that the complete leading edge of waveforms can be viewed a 170 ns delay-line has been incorporated in the Y amplifiers. Y bandwidth (rise-time 19 ns) extends to $18 \mathrm{MHz}(-3 \mathrm{~dB})$ at $20 \mathrm{mV} / \mathrm{cm}$ or to $5 \mathrm{MHz}(-3 \mathrm{~dB})$ at $2 \mathrm{mV} / \mathrm{cm}$. An 11-position Y attenuator ($20 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$) operates in conjunction with an $\times 1 / \times 10$ switch; max. allowable input is $\pm 500 \mathrm{~V}$ peak. Provided measurements are made within $\pm 20^{\circ} \mathrm{C}$ of the setting-up temperature accuracy is $\pm 5 \%$. Input impedance is 1 M shunted by 35 pF on all ranges. The following Y channel functions are provided by a five-position switch ($\mathrm{CH}=$ channel): (1) CH1 only; (2) CH2 normal or inverted; (3) alternate between CH 1 and CH 2 ; (4) chopped CH 1 and $\mathrm{CH} 2($ at 100 kHz$) ;(5) \mathrm{CH} 1$ and CH 2 added algebraically. The built-in calibrator provides a $1 \mathrm{kHz}(\pm 2 \%)$ square wave with less than a 10 s rise time at 100 mV or $1 \mathrm{~V}(\pm 1 \%)$. The timebase has 21 ranges in a 1-2-5 sequence from $200 \mathrm{~ns} / \mathrm{cm}$ to $1 \mathrm{~s} / \mathrm{cm}$ with a switched expansion of $\times 1$ or $\times 5$. The triggering facilities provided are fairly comprehensive and synchronization can be obtained from either channel, an external source or from the line frequency. The timebase can be triggered from negative or positive waveforms and will
free-run. The normal polarity and slope controls are incorporated. S E Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex.
WW 500 for further details

Kit volt/ohmmeter

Available ready to use or in "Heath Kit" form a new instrument features a single 12 -position function selector switch and is capable of measuring a.c. or d.c. volts, or ohms. Indication is by a $114 \mathrm{~mm}\left(4 \frac{1}{2} \mathrm{in}\right)$ meter which employs colour coded scales that match up with coloured lettering on the range switch for convenience. The test leads are permanently connected to the instrument and a storage space is provided for them in the meter's polypropylene case; however, a jack socket is provided for connecting accessory probes, should these be required.

The specification is as follows:-d.c. volts$1,10,100,1000$, f.s.d., $\pm 3 \%$ accuracy, input impedance $=11 \mathrm{MO}$; a.c. volts- 1.2 , $10,100,1000$ f.s.d., $\pm 5 \%$ accuracy, input impedance $=1 \mathrm{M} \Omega$, frequency response \pm 1 dB from 10 Hz to 1 MHz ; ohmeter-centre scale reading 10Ω, ranges $\times 1, \times 10^{2}, \times 10^{4}$, $\times 10^{6}$ (measures 0.2Ω to $1 \mathrm{G} s$) .

The instrument, which is type $1 \mathrm{M}-17$, costs $£ 12.18 \mathrm{~s}$ in kit form or $£ 17.18 \mathrm{~s}$ ready to use, and is available from Daystrom Ltd., Gloucester, GL2 6EE.
WW506 for further details

Circuit Ideas

Frequency divider with variable tuning

Frequency division by means of bistable stages is a well established technique. Division by any integer can be achieved by means of feedback or gated forward feed. The output waveform is rectangular, and if a sinusoidal output is required it is necessary to use a narrow-band filter which will transmit the fundamental frequency, or some selected harmonic, and reject the other harmonics. The most popular audiofrequency narrow-band filter is the parallel T feedback amplifier, but tuning of this type of circuit has until fairly recently been inconvenient because it involved the simultaneous variation of 2 or 3 components with fairly accurate ganging. However, a modification of the parallel T circuit which allows tuning by means of a single variable
resistance has been published by Douce and Edwards ${ }^{1}$. By connecting this network in the feedback path of an amplifier, a narrowpass amplifier of variable frequency is produced.

Since the rectangular waveform form the bistable stages is rich in odd harmonics, it is possible to tune the selective amplifier to the 3 rd , 5 th, etc., harmonic of the divided frequency. The overall effect is therefore to multiply the frequency of any sinewave by a factor $\frac{m}{n}$ where $m=1,3,5 \ldots$

$$
\text { and } n=1,2,3 \ldots
$$

A greater degree of frequency discrimination is required to separate a higher harmonic, so that it is difficult to achieve a reasonably pure sinewave output for values of m greater than about 7 with a single tuned amplifier. Fig. 1 shows a circuit designed to divide an input frequency by 2 , with sinewave, output,

over a range of input frequency from about 5 to 20 kHz . Fig. 2 shows examples of input and output oscilloscope traces.
F. C. Evans,

University of St. Andrews.

1. J. L. Douce and K. H. Edwards, "A simple null filter with variable notch frequency", Electronic Engineering, July 1964, p. 478.

Fig. 2. Input and output waveforms for the circuit of Fig. 1. The input is the upper trace in each case. (a) $5 k H z$ input, $\frac{m}{n}=\frac{1}{2}$.
(b) 1.7 kHz input, $\frac{m}{n}=\frac{3}{2}$.

Shunt stabilizer with hum cancellation

The voltage stabilized power supply for a constant load, such as a pre-amplifier or a tuner unit, is often obtained by using a zener diode as a shunt stabilizer. However, greater flexibility of operating voltage is available if the "amplified diode" (see Peter Williams' letter in the February 1969 issue) is used. Moreover, with an active shunt component now in place

Fig. 1. Shunt stabilizer with hum cancellation.
of the zener diode, there arises the possibility of reducing, by cancellation, the mains ripple in the output (often desirable in the above low signal-level units).

If $V R$ and C_{1} are added to the standard supply circuit (see Fig. 1), then by adjustment of $V R$ the ripple at the output can be reduced by at least an order of magnitude. This improvement will be maintained throughout input voltage changes of about $\pm 10 \%$, and load current fluctuations of about $\pm 25 \%$. For optimum ripple attenuation R_{2} should be somewhat larger than $R_{1}\left(R_{2}\right.$ is present to

Fig. 2. Constant current source for stabilizer.
reduce the power dissipation in the transistor), and C_{1} should be large enough that no appreciable phase advance in the correction signal occurs. A typical suitable value of $V R$ is 25 k !.

However, if further attenuation of ripple is required, or if large variations in supply voltage and load current are expected, then the circuit of Fig. 1 should be driven by the constant current source shown in Fig. 2.
R. D. L. Mackie,

Edinburgh 9.

Correction. "Sunchronized oscilloscope timebase generator" (June). The bistable, Tr_{2} and $T r_{3}$, was incorrectly drawn. The connection between the collector of $T r_{2}$ and the base of $T r_{3}$ should not be tied to the positive rail.

Marconi complete naval communications

A complete range of communications equipment using s.s.b, i.s.b and all other modes of h.f and m.f transmissions, designed specifically for naval communications systems.

- Simple, precise and highly accurate continuous decade selection of frequencies in 100 Hz steps.
- Rigid stability controlled by a single high accuracy frequency standard.
- Extreme simplicity of operation combined
with versatility of service and high quality performance.
- Synthesizers and wideband amplifiers employed in these systems, which make maximum use of semiconductors.
- NATO codified.
- Complete system planning and installation.
This new range of Marconi equipment has already been used in the modernization of the communications of 10 Navies.

Marconi naval radio and radar systems

A Member of G.E.C.-Marconi Electronics Limited

-18cancurio

 great facility for service
red range

Member of the Louis Newmark Group,

with access to the combined facilities
of all other member companies.
Write for catalogue and quotation to:
McMurdo Instrument Co. Ltd., Rodney Road,
Portsmouth, Hants. Tel: 35361. Telex: 86112.

Satellite or Terrestrial Broadcasting?

Future possibilities and current projects disclosed at Montreux television symposium

Broadcasting engineers-whose livelihoods depend on our apparent willingness to go on absorbing more and more audio-visual information-are now applying themselves to the task of providing additional services for the world. In areas where broadcasting is already highly developed, such as Europe, it is a matter of finding new technical means to transmit extra programmes (produced in some cases by private or specialist organizations). In other areas, like India, Mongolia and Africa, the task is to bring services to people who at present have none at all or are very restricted (e.g. some sound but no television). In all this the emphasis is on television, which is demanded automatically, as a right, by the programme producers of Europe and as the latest modern medium by the broadcasters just starting in Africa and Asia.

It was in fact at a recent television conference that the various technical means now being considered by the engineers were brought together and examined - the 6th International Television Symposium and Technical Exhibition at Montreux, Switzerland (19th-23rd May). At a "round table conference" on world broadcasting which was one of the high points of the proceedings, the picture presented was that there are three main systems available - direct broadcasting from satellites, terrestrial broadcasting using new frequency bands where necessary, and cable distribution systems. This line-up could be simplified into a contest between terrestrial and extra-terrestrial transmissions, or between radio and cable, but, of course, whether one technique is better than another depends largely on local factors such as population density, coverage required, economic conditions and languages used. For example, small countries, or large countries containing many different language areas, might well find the selective technique of cable distribution more suitable than the "blanket" coverage of satellite broadcasting.

In conventional terrestrial broadcasting the situation doesn't look very expansive, at least in Europe. Now that Band V has been largely occupied, European attention is focused on Band VI (11.7 to 12.7 GHz). J. Feldmann and G. Heinzelmann from W. Germany-where there is considerable interest in developing private television broadcasting systems-gave an account of propagation tests in this centimetric-wave region of the spectrum. It was envisaged that 75 channels of 8 MHz each might be obtained in this band $(600 \mathrm{MHz}$ altogether), but this would depend on satellite frequency allocations and in fact the total spectrum space available might turn out to be only 300 MHz . A trial network of several $12-\mathrm{GHz}$ omni-directional transmitters had been set up and these were modulated with signals conforming to the television standards used in W. Germany (625 lines, 5 MHz vision bandwidth, negative modulation). The signals were intended to be picked up "line of sight" by parabolic aerials and fed to converters attached to standard television sets providing reception in Bands I, III, IV and V. Results showed that gaps in coverage were produced by

Intelsat IV communications satellite, a full-size model of which was displayed at Montreux. Measuring $17 f$ ft 6 in high, it has five times the communications capacity of Intelsat III satellites now in service, being capable of relaying 12 television programmes simultaneously or up to 6000 two-way telephone calls.
Reception is at 6 GHz over a 500 MHz band using two of the horn aerials; transmission is at 4 GHz over 500 MHz , using two horn aerials (17° beamwidth) or the two dish aerials (4.5 width) to give steerable "spotlight" beams. The cylindrical structure, covered with 50,000 solar cells, will rotate at 60 r.p.m., but the aerial assembly is mechanically de-spun so that the aerials will be continuously pointed towards the earth. Companies from 10 countries are assisting the main contractors, Hughes Aircraft. The third and fourth satellites will be assembled by the British Aircraft Corporation.
zones of total "shadow" behind obstacles, so that transmission to all houses in a town could not be ensured at reasonable cost. Consequently individual reception-one receiver per house-hold-would not be practicable, and the best solution would be to transmit with low or medium e.r.ps to a limited number of good receiving sites at which community cable distribution systems would be set up. It might be possible to provide eight programmes in densely populated areas.

The characteristics of cable distribution systems were discussed by J. J. Geluk of the Netherlands and L. Richard of Belgium, and statistics were given to illustrate the growth of this form of broadcasting, which was largely based on the use of communal receiving aerials (c.a.t.v. systems) except in the U.K. For example there were now about 2,250 c.a.t.v. systems operating in the U.S.A. and in the near future the figure was expected to rise to about 5,000 . There were about one million relay subscribers in the U.K. Advantages were quality of reception and elimination of aerials, but installation costs were high (estimated at 4,500 dollars per kilometre of system). Speakers from Asia (H. Matsuura, Japan) and Africa (A. H. Antar, Mali) felt that c.a.t.v. systems had particular advantages in their own areas where there were many different languages and religions. It was envisaged by all speakers that c.a.t.v. systems could, if required, receive their signals from direct broadcasting satellites.
R. P. Gabriel (Rediffusion International, U.K.) described an interesting new cable system that gave even greater selectiveness by allowing the subscriber to dial any one of a large number of programmes (typically 36) provided at a programme exchange. Each subscriber had a standard television set plus a unit containing a frequency converter and a telephone-type dial, and this installation was connected by a two-pair cable through a junction box (bringing in neighbouring subscribers) to a local programme exchange, which served a 0.1 square mile area and up to 5,000 subscribers. The system has been tried out in Rediffusion television studios at Teddington, Middx, and has recently been demonstrated to the F.C.C. in the U.S.A. for consideration.

Systems for India

The satellite-borne transmitter is, of course, the most advanced and exciting prospect for television broadcasting and has been the subject of speculation ever since it was first suggested by Arthur Clarke in his classic article in Wireless World*. India is one country particularly interested in this technique-as a means of bringing social and economic enlightenment to its millions of people spread over huge areas-and F. P. Adler (Hughes Aircraft Company, U.S.A.) revealed in an invited lecture that a large team of Indian engineers had been working with his company on the design of suitable satellites and receiving systems. One satellite broadcasting station being considered was a u.h.f. transmitter producing 80 watts of r.f. power and using a $20-\mathrm{ft}$ dish aerial that would give a 4 degrees beam covering the whole of India. Details of this and other designs being studied are shown in the table. Some 5,000 receiving stations were being planned, 3,000 of these being communal stations for direct reception in remote villages while 2,000 were for re-broadcasting in more densely populated areas.

In general Dr. Adler envisaged the use of u.h.f. ampli-tude-modulated vestigial-sideband signals for direct broadcasting (e.g. with 24 dB -gain, 3 -metre diameter parabolic, or 12 dB gain, corner-reflector, receiving aerials) and u.h.f. or microwave frequency-modulated signals for community distribution (3-10 metre receiving aerials). With distribution systems there would be one-channel reception for small towns and multi-channel reception for large metropolitan areas. There were economic problems in choosing for a given area between direct broadcast-

[^5]| Satellite designs for use in India | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Band | u.h.f. only | microwave only | u.h.f. \& microwave combined | u.h.f. only |
| Frequency | 860 MHz | 4 GHz | $860 \mathrm{MHz} / 4 \mathrm{GHz}$ | 860 MHz |
| Aerial size | 20ft | 4 ft | 20t/4ft | 30 ft |
| R.F. power | 80W | 114 W | $160 \mathrm{~W} / 64 \mathrm{~W}$ | 80W |
| Effective radiated power | 51.5dBW | 52.4dBW | $54.5 \mathrm{dBW} / 51 \mathrm{dBW}$ | 52dBW |
| Video channel capacity for TV | one | two | two | one |
| Telephone channel capacity | none | 1800 two way (3 carrien) | 2400 iwo way
 (4 carrier) | none |
| Launch vehicle | Thor Delta | Thor Delta | Atlas Centaur | ATS-F |
| Orbit weight | 5001 b | 5001 b | 1340 lb | - |

ing and distribution, the main factors being the number of receiving sets needed in the area and the initial cost of the satellite receiving equipment. Dr. Adler said that the Intelsat IV class of communication satellites now being built (see illustration) was also suitable for a variety of broadcasting applications, but in general the purpose-built direct broadcasting satellites he described were somewhat different in structure-a central transmitting equipment dwarfed by huge, flat rectangular "wings" covered with solar cells to generate the necessarily large electrical power. He predicted that by 1975 it would be possible to generate powers of $12 \mathrm{~kW}-25 \mathrm{~kW}$ from such solar batteries.

In Europe, according to G. Hansen (European Broadcasting Union, Brussels), most countries are in favour of a satellite direct-broadcasting scheme using beam widths of about 1 degree. Such a beam would cover, say, the whole of the U.K. but would be too wide for smaller countries like Belgium and Holland. He foresaw that additional broadcasting services, perhaps in the 1980 s , might well be a combination of 1 -degree beam satellite transmissions and cable distribution. G. J. Phillips (B.B.C., London) discussed the technical possibilities in more detail, and the picture that emerged was of a number of geo-stationary satellites (perhaps 30 launched over a period of 10 years) producing a series of just overlapping 1 -degree coverage areas, and providing two extra programmes in all countries of Western Europe. He thought it might be possible for coverage to be measured in units of half-a-degree beam width and that individual countries could be allocated as many of these units as they required. Beam cross-section need not necessarily be circular but could be elliptical (as might be desirable with satellites positioned over the Equator).

Transmission frequencies would be in the 11.7 to 12.7 GHz band and it would be necessary to use frequency modulation or some other system such as "hybrid-p.c.m." which improved signal /noise ratio at the expense of a large bandwidth requirement. Amplitude modulation, even with the narrow 1-degree beam, would not give a good enough picture at the receiver if the transmitter were restricted to the few kilowatts of supply power that could be expected from solar batteries in the next decade. With f.m., however, it would be possible to operate satisfactorily with a few hundred watts of r.f. power. A deviation of 15 MHz would be desirable and with this it would be possible to provide one television programme per 100 MHz of available spectrum. An advantage of centimetric-wave over u.h.f. transmissions was that quite small "dishes" could be used for reception-a 1-metre diameter aerial would have a 2-degree beam width-so that good discrimination between transmissions could be obtained. Costs for Western Europe were estimated as 1,200 million dollars for constructing and launching 30 satellite stations, and, assuming the cost of a single receiver and aerial to be 80-100 dollars, a total of 10,000 million dollars for reception.

Among various comments, H. Juskevicius (Organisation Internationale de Radiodiffusion et Télévision, Prague) remarked that required coverage areas in Eastern Europe were similar to those in Western Europe but pointed out that there were considerable differences in time across the O.I.R.T. region.

He felt that there were possibilities for all three systems of broadcasting discussed but that there was still much work to be done in developing established methods of terrestrial broadcasting in places like Mongolia before any advanced projects were started. G. Bartlett (National Association of Broadcasters, U.S.A.) gave the impression that America was very satisfied with its already highly developed system of broadcasting and he could not see any radical changes taking place during his lifetime. He was somewhat scornful of present and future European schemes which involved costs to the viewer-the lucky Americans having everything paid for by the advertisers -and remarked that "satellite direct broadcasting violates all the principles on which our system is based".

The exhibition running concurrently with the symposium provided a valuable shop-window for European broadcasting engineers and contained a fair proportion of recently introduced equipments. The most interesting of these-RCA v.t.r. cartridge recorder/player, RCA one-tube colour camera, Philips digitally controlled colour camera, Ampex v.t.r. random access programmer-have already been described in our report on the American N.A.B. Show in Washington (May issue, p. 230). Other new items at Montreux were a 3 -tube separate-luminance colour camera from Fernseh; a Marconi studio vision mixer using a solid-state matrix, digital control logic and integrated circuits; a colour and monochrome video test pattern generator with a digitally constructed circle in the pattern, from Philips; an English Electric 3-inch image orthicon camera tube with a modified electron optical system giving improved signal /noise ratio; a PAL encoder from Rank Cintel; and from E.M.I. a simplified 4 -tube colour camera, based on an existing design and intended for colour telecine and slide and caption scanning.

During the exhibition Ampex announced that they now have available adaptors to enable their standard 3.4 MHz bandwidth helical-scan video tape recorders to record good quality PAL or SECAM colour video signals as well as N.T.S.C. colour signals. They gave an impressive demonstration using their standard VR-7003 recorder. The adaptor is based on the FAM (Frequency and Amplitude Modulation) technique, invented some years ago by the German Institut für Rundfunktechnik, which overcomes the picture degradation caused by the effect of a v.t.r's poor timebase stability on the colour subcarrier in the composite signal. In this technique a luminance signal and a 2.65 MHz subcarrier are recorded, and the subcarrier is frequency modulated by a colour difference signal $R-Y$ and

Ampex v.t.r. controller allowing randam access to material on on or more video tape recorders. Television frames are individually addressed to allow automatic searching.
amplitude modulated by a colour difference signal $-(B-Y)$, these having been derived from the original composite signal. During replay the subcarrier is frequency and amplitude demodulated to recover the colour-difference signals. Inputs and outputs of the adaptor are R, G, B signals or colourdifference signals. The demonstration was warmly applauded when the audience saw the excellent quality of the displayed recording.

A new service, for recording colour television programmes on film, was presented by its originators, Colour Video Services Ltd. (London). The red, green and blue components of the colour signal are separately displayed on three 7 -inch high-resolution cathode-ray tubes, each having the correspondingly coloured phosphor. The three colour-component pictures are then spectrally filtered, and the rasters are brought into registration by a dichroic mirror optical system to form a real image which is photographed on to 16 mm colour motionpicture film. A feature of the system is that the camera uses a continuous-motion mechanism for pulling the film. The process is claimed to produce better quality film recordings than are possible by photographing a conventional colour television display tube.

EMI simplified 4-tube colour camera working as a slide scanner operated from a remote control panel.

RCA video tape cartridge recorder/player with 18 cartridges, each providing 1-3 minutes' playing time.

M.O.S.-Bipolar Amplifiers

A discussion of wideband amplifiers, with high input impedance, built by coupling a metal-oxide-silicon field-effect transistor directly to a bipolar transistor

by J. A. Roberts* and K. Rowlands ${ }^{\dagger}$

Although there are a number of circuit techniques open to the circuit designer who requires a high input impedance amplifier, the m.o.s.-bipolar approach is particularly attractive when a wideband amplifier is required. Advances in m.o.s. technology have appreciably improved the stability and noise properties of the m.o.s. transistor, and its use in linear circuits is therefore likely to increase considerably.

A large number of m.o.s.-bipolar amplifier configurations are possible, and Fig. I illustrates some practical forms. Of particular value are circuits that permit d.c. coupling between input and output; for such circuits may be conveniently cascaded, and if phase inversion occurs d.c. coupling between input and output will alleviate the stability problem.

The common drain to common emitter connection has the characteristically high input impedance of the field effect transistor and the useful voltage gain of the bipolar transistors. ${ }^{1}$ The circuit shown in Fig. I(a) will be examined in detail since it can easily be arranged to provide the qualities outlined above. The method of analysis can, however, be extended to the other forms. Since the gate takes no significant bias current it takes up the terminal voltage of the bias resistor. The bias voltage must be sufficient to ensure that the gate and source voltage is well above the transition voltage (turn-on voltage) of the p-channel enhancement m.o.s. ($2 \cdot 5-4.5$ volts) without being so large as to turn the device hard on, or limit the dynamic range of the amplifier. Where possible in the circuit outlines shown in Fig. I, the gate bias resistor is terminated at the drain as this is often a satisfactory bias condition. In some cases a better bias condition is possible as shown for the common drain to common emitter ($p-n-p$) case.

The circuit arrangement shown in Fig. 2(a) provides a stable connection system. The resistor R_{f} provides the voltage bias for the enhancement m.o.s.t. $T r_{1}$. The overall d.c. negative feedback stabilizes the working point of the amplifier. The resistor R_{f} may be split and by-passed with a capacitor to prevent a.c. negative feedback. The input resistance then becomes simply the value of the resistor that is employed between the by-pass capacitor and the gate.

[^6]The resistor may be made as large as $500 \mathrm{M} \Omega$. It should be noted, however, that the gate capacitance, and any coupling capacitor used to connect the signal source to the amplifier, will have to be charged via the feedback resistors. The amplifier will not reach its correct operating condition until these capacitors have been fully charged.
The circuit of Fig. 2(a) has limited bandwidth due to the effects of Miller capacitance ($g_{m} R_{L} C_{b^{\cdot} \cdot}$), capacitance $C_{b^{\prime} e}$ and the relatively high driving impedance provided by the m.o.s.t. The bandwidth of -this simple circuit may be considerably improved by the addition of a resistor R_{1} as shown in Fig. 2(b). The bandwidth of the amplifier is determined by the resistor R_{1} and the combined effects of Miller capacitance and the hybrid-pi capacitance $C_{b^{\prime}}$ e. Consequently the bandwidth may be improved at the cost of lower gain by reducing R_{1}. The circuit Fig. 2 (b) has a bandwidth of 3.5 MHz as shown in Fig. 3. The d.c. feedback provided by R_{b} stabilizes the supply current to within 7% for a temperature rise above ambient of $50^{\circ} \mathrm{C}$. A good substitute for the MEO413 is type $2 \mathrm{~N}_{4} 289$.

The amplifier requires a 12 V supply from which it draws about 14 mA at $25^{\circ} \mathrm{C}$. The maximum peak-to-peak output voltage before signal compression can be observed is 2 V.*

Circuit analysis

The output characteristics of the E6018 m.o.s.t. are shown in Fig. 4.

The operating point of the m.o.s.t. may be found from

$$
I_{D}=\frac{V_{B E}}{R_{1}}
$$

and

$$
V_{D S}=V_{D D}-V_{B E}
$$

where
$V_{B E} \approx 0.6 \mathrm{~V}, V_{D D}=12 \mathrm{~V}$
and

$$
R_{1}=68 \Omega
$$

[^7]The gate/source voltage $V_{G S}$ corresponding to the bias point may be found from Fig. 4. The collector to emitter voltage, $V_{C E}$ is

$$
V_{C E}=V_{B E}+V_{G S}
$$

The voltage across R_{L} is

$$
V_{R L}=V_{D D}-V_{C E}
$$

which gives the current through R_{L}, i.e. the collector current as

$$
I_{C}=\frac{V_{D D}-V_{C E}}{R_{L}}
$$

We can now obtain the approximate mutual conductance (at $25^{\circ} \mathrm{C}$) of the bipolar device from

$$
\begin{equation*}
g_{n}=39 I_{C} \mathrm{~mA} / \mathrm{V} \tag{1}
\end{equation*}
$$

when I_{C} is given in milliamperes.
The input resistance (neglecting $r_{\Delta b}$) can now be obtained from

$$
r_{b^{\prime} e}=\frac{\beta}{g_{m}}
$$

where β is the low frequency current gain. Neglecting $r_{b b}$ does not lead to serious errors at the relatively low currents employed. The output resistance of the bipolar transistors can also be neglected as it is large compared with load resistor R_{L}. Ar expression for the low-frequency gain can be easily derived using the component transfer matrices. The transfer matrices showr below the equivalent circuit Fig. 5 are multiplied to obtain the transfer characteristics of the amplifier. ${ }^{2,3}$ From the fina matrix the voltage gain is

$$
G_{V}=\frac{1}{A}=-\frac{R_{L} g_{m_{1}} g_{m_{2}}}{\frac{1}{r_{d s}}+\frac{1}{R_{1}}+\frac{1}{r_{b^{\prime} e}}+g_{m_{1}}}
$$

The output resistance is

$$
R_{o}=\frac{B}{A}=R_{L}
$$

The gain relation gives a value which is $15 \%(1.2 \mathrm{~dB})$ above that measured due tc the optimistic value of mutual conductanct provided by equation (I). A rough estimate of the bandwidth can be obtained if the total capacitance across $\mathrm{X}-\mathrm{Y}$ can be founc (Fig. 5). The hybrid-pi capacitance C_{b}. may be obtained from the relation

$$
C_{b^{\prime} e}=\frac{g_{m}}{2 \pi f_{T}}
$$

Coninued on page 330

(a) Common drain to common emitter ($p-n-p$)

(e) Common source to common bose ($p-n-p$)

(i) Common arain 10 common collector ($p-n-p$)

(b) Common arain to common emitter ($n-p-n$)

(t) Common source to
common bource to $(n-p-n)$

(j) Common aroin to common collector ($n-p-n$)

(C) Common source to common emitter ($p-n-p$)

(g) Common drain
common base $(p-n-p)$

(k) Common source to
common collector ($p-n-p$)

(d) Common source to

(n) Common drain to
common base $(n-p-n)$

(l) Common source to common collector ($n-p-n$)

Fig. 1. Basic practical arrangements for high input impedance p-channel enhancement m.o.s.-bipolar amplifiers.

Fig. 2(a). Common drain to common emitter amplifier with feedback.

Fig. 2(b). Wideband common drain to common emitter amplifier.

(a)

(b)

Fig. 3. Frequency response of amplifier shown in $2(b)$.

Fig. 4. Characteristics of the E6or8.

after multiplication.

Fig. 5. The l.f. equivalent circuit and transfer matrices.

$$
\left|\begin{array}{cc}
-\frac{\frac{1}{r_{d s}}+\frac{1}{R_{1}}+\frac{1}{r_{b R}^{\prime}}+g m_{1}}{R_{1} g m_{1} g_{m 2}} & -\frac{\frac{1}{r_{d s}}+\frac{1}{R_{1}}+\frac{1}{r_{b R}^{\prime}}+g m_{1}}{g m_{1} g_{m 2}} \\
0 & 0
\end{array}\right|=\left|\begin{array}{cc}
A & B \\
C & D
\end{array}\right|
$$

where f_{T} is the gain bandwidth product. The Miller capacitance can be found from the gain of the bipolar stage ($G v_{1}^{\prime}=g_{m_{2}} R_{L}$) and a knowledge of the internal feedback capacitance of the transistor $C_{b^{\prime} c}$. Since $C_{b^{\prime} c}$ is not usually given and in any case stray capacitances will add to the total effect, it is not unreasonable to use the value of $C_{o b}$ commonly provided on data sheets. The total capacitance across $\mathrm{X}-\mathrm{Y}$ is now

$$
C_{T}=g_{m} R_{L} C_{o b}+C_{b \cdot e}
$$

again neglecting the effect of $r_{b b}$. Since the resistance across $\mathrm{X}-\mathrm{Y}$ is approximately the resistance R_{1} for the example given in Fig. 2(b) the radian half-power bandwidth is

$$
\omega_{B}=\frac{1}{R_{1}\left(g_{m} R_{L} C_{o b}+C_{b^{\prime} e}\right)}
$$

This relation gives a value which is 30% below the measured results if the value of $C_{o o}$ max. given by the data sheet is used. When a higher order of accuracy is required the y parameters of the device at frequency of interest and at the appropriate current and voltage levels should be measured. The admittance matrices can then be converted to the required transfer matrices. If a higher gain is required without loss of bandwidth the simplest approach is to use a m.o.s.t. with a higher mutual conductance. The Marconi E6019 with a g_{m} of $6-8 \mathrm{~mA} / \mathrm{V}$ increases the gain of the amplifier to 32 dB without any component changes being required.

H.F. amplifiers

Amplifiers employing a common emitter stage suffer from bandwidth limitations for the reasons given above. The circuits of Fig. I that employ a grounded base stage offer a much greater bandwidth at the cost of reduced voltage gain. The gain reduction arises from the difficulty of driving the low input impedance of the grounded base stage. It becomes essential to use a high $g_{\mathrm{m}} \mathrm{m} .0 . \mathrm{s} . \mathrm{t}$. such as the E6019 in order to obtain useful voltage gain. The nominal bandwidth of the circuits having a grounded base stage is given by

$$
\omega_{B}=\frac{1}{R_{L} C_{o b}}
$$

In practice wiring inductances raise the bandwidth and bandwidths greater than 100 MHz have been observed. The circuit shown in Fig. 6 provides a voltage gain of 10 dB at 40 MHz .

Fig. 6. Common source to common base wide-band amplifier.

Impedance transformation

The common drain to common collector circuits provide a high order of impedance transformation with a voltage gain of less than unity. The common source to common collector circuits can be arranged to provide a useful voltage gain whilst achieving an output impedance sufficiently low for most applications. The bipolar transistor should obviously be chosen and biased so that β is maximized.

Input capacitance

The input capacitance of the amplifiers is frequency dependent since $C_{i s s}$ is frequency dependent. The input capacitance will also, of course, depend on the amplifier configuration and layout. Where Miller effect is absent or negligible (due to low first stage gain) the value of $C_{i s s}$ at the frequency of interest may be taken as an initial estimate of the amplifier input capacitance. For the E6018 and E6019 devices at I kHz, $C_{\text {is }}$ can be taken as 3.5 pF and 13 pF respectively. These values are largely independent of gate voltage.

ACKNOWLEDGEMENTS

The authors wish to thank Professor W. Gosling of the University College of Swansea and Mr. R. Ingless of the Marconi-Elliott Microelectronics Company, Witham, for their assistance during this work.

References

1. Gosling, W., 'Amplifiers Combining Bipolar and Field Effect Transistors; Electronic Engineering, August 1967.
2. Olsen, G. H., 'Matrix Algebra', Wireless World, March 1965.
3. Paull, S., 'Topics in Advanced Mathematics for Electronics Technology', John Wiley \& Sons Inc., New York (1965).

Appendix

Circuit analysis by matrix methods

The general network equations for the two-port network shown in Fig. 7(a) are

$$
\begin{aligned}
V_{1} & =V_{2}+Z I_{2} \\
I_{1} & =I_{2}
\end{aligned}
$$

The above relations can be rewritten in transfer matrix form as

$$
\left|\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right|=\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right| \quad\left|\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right|
$$

where

$$
\begin{aligned}
& A=\frac{V_{1}}{V_{2}} I_{2}=0=1 \\
& B=\frac{V_{1}}{I_{2}} V_{2}=0=Z \\
& C=\frac{I_{1}}{V_{2}} I_{2}=0=0 \\
& D=\frac{I_{1}}{I_{2}} V_{2}=0=1
\end{aligned}
$$

Fig. 7(a). Two port network-series impedance. (b). Shunt admittance.

Fig. 8(a). Current generator corresponding to non-inverting connections.
Fig. 8(b). Current generator corresponding to inverting connections.
so that

$$
\left|\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right|=\left|\begin{array}{ll}
1 & Z \\
0 & 1
\end{array}\right| \quad\left|\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right|
$$

The transfer matrix (TM) for a series impedance (Fig. 7(a)) is therefore

$$
\mathrm{TM}=\left|\begin{array}{ll}
1 & Z \\
0 & 1
\end{array}\right|
$$

The shunt admittance shown in Fig. 7 (b) can similarly be shown to correspond to the matrix

$$
\mathrm{TM}=\left|\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right|
$$

Active devices

The idealized equivalent circuits of an active device are shown in Fig. 8. The input impedance, feedback impedance and output impedance are infinite in these representations. The polarity of the current of the current generator shown in Fig. 8(a) corresponds to the non-inverting connections such as common collector, common drain etc. The elements of the transfer matrix of Fig. 8(a) are

$$
\begin{aligned}
& A=\frac{V_{1}}{V_{2}} I_{2}=0=\frac{V_{1}}{V_{1}}=1 \\
& B=\frac{V_{1}}{I_{2}} V_{2}=0=\frac{V_{1}}{g_{m} V_{1}}=\frac{1}{g_{m}} \\
& C=\frac{I_{1}}{V_{2}} I_{2}=0=\frac{0}{g_{m} V \infty}=0 \\
& D=\frac{I_{1}}{I_{2}} V_{2}=0=\frac{0}{g_{m} V_{1}}=0
\end{aligned}
$$

The transfer matrix of Fig. 8(a) is therefore

$$
\mathrm{TM}=\left|\begin{array}{cc}
1 & \frac{1}{g_{m}} \\
0 & 0
\end{array}\right|
$$

The polarity of the current generator shown in Fig. 8(b) corresponds to inverting connections such as common emitter and common source. The transfer matrix of Fig. 8(b) is

$$
\mathrm{TM}=\left|\begin{array}{rr}
0 & -\frac{1}{g_{m}} \\
0 & 0
\end{array}\right|
$$

The transfer matrix of an ideal grounded base or grounded gate circuit is

$$
\mathrm{TM}=\left|\begin{array}{cc}
0 & \frac{1}{g_{m}} \\
0 & -1
\end{array}\right|
$$

The inevitable departure from the ideal active device (such as finite output impedance etc.) are easily handled by considering the finite values as series or shunt components requiring an additional matrix (as demonstrated in Fig. 5).

Multiplication

The transfer matrix of a cascade of two-port networks is obtained by multiplying the individual transfer matrices, i.e. where

$$
\mathrm{TM}_{1}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

and

$$
\mathrm{TM}_{2}=\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right|
$$

$\left(\mathrm{TM}_{1}\right)\left(\mathrm{TM}_{2}\right)=$

$$
\left|\begin{array}{ll}
\left(a_{11} b_{11}+a_{12} b_{21}\right) & \left(a_{11} b_{12}+a_{12} b_{22}\right) \\
\left(a_{21} b_{11}+a_{22} b_{21}\right) & \left(a_{21} b_{12}+a_{22} b_{22}\right)
\end{array}\right|
$$

(i.e. row I by column 2 etc.)

$$
=\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|
$$

It is important to note that

$$
\left(\mathrm{TM}_{1}\right)\left(\mathrm{TM}_{2}\right) \neq\left(\mathrm{TM}_{2}\right)\left(\mathrm{TM}_{1}\right)
$$

The final matrix elements ($A B C D$) contain the required amplifier (or network) transfer characteristic since

$$
\begin{aligned}
A & =\frac{1}{\text { voltage gain }} \\
\frac{B}{A} & =\text { output impedance } \\
D & =\frac{1}{\text { current gain }} \\
\frac{A}{C} & =\text { input impedance }
\end{aligned}
$$

$$
\frac{1}{A D}=\text { power gain }
$$

Two-Colour Optical Combiner

An optical system that will combine two coplanar images-for example two patterns displayed side by side on the same cathoderay tube screen-has been devised by A. V. Krause of 20th Century Electronics Lid (see diagram (a)). The value of the system lies in the fact that the two images can be in different colours, and there are potential applications in colour television monitoring, "head-up" displays in aircraft, oscillographic presentation of phenomena, and industrial inspection. A familiar system of optical combining is that used in the "trinoscope" fot colour television picture monitoring; but here the images to be combined (on red, green and blue cathode-ray tubes) are arranged at right angles to each other. The feature of Krause's system is that the images are in the same plane and can in fact be very close together.

A practical difficulty in setting up the conventional trinoscope is that the rasters on the three c.r. tubes must be accurately superimposed, and this demands extremely delicate mechanical and electrical adjustments. If the Krause system is used for combining two television-type pictures this problem can be avoided because the two images can be displayed on two halves of a common scanning raster as shown in diagram (b); it is then only necessary to make one linear mechanical adjustment to the mirror system in order to make points P^{\prime} and Q^{\prime} coincide with points P and Q in the combined
image. Furthermore, there is no registration problem if the vertical scan is non-linear as shown in (b): points $Y^{\prime \prime}$ and Z^{\prime} will automatically coincide with points Y and Z. Of course, the accuracy of registration in (b) depends on the linearity of the horizontal scan, but Krause says that if the middle points of the two rasters are made exactly coincident by adjustment the rest of the scan can progressively depart from linearity up to about 1%. Three-colour combining should also be possible.

The system was demonstrated to Wireless World in two experimental forms. The first was oscillographic: two Lissajous figures (made different colours by filters in front of the c.r.ts) were superimposed for comparison by a small version of the system designed for viewing though an eyepiece or for projection on to a ground glass screen. The second form was in a closed-circuit colour television system using the two colour-components red and cyan. The original scene was analysed into the two colour components by the system in (a) working in reverse, in conjunction with two filters, and the two adjacent images were focused on to a vidicon pick-up tube and transmitted to the display system electrically as one picture. At the receiving end the two images were presented side by side on a single monochrome cathode-ray tube, and again with two filters and a larger model of the optical combiner they were re-assembled into a complete colour picture.

[^8]
(a)

Operational Amplifiers

6. Integrators and differentiators

by G. B. Clayton,* B.Sc., A.Inst.P.

One of the most widely used "building bricks" in electronics is the integrator, in which the output voltage is proportional to the integral with respect to time of the input voltage. The following circuits are various types of integrators based on operational amplifiers.

Single Input Integrator.

With the usual summing point restraints,

$$
I=\frac{e_{1}}{R}=-C \cdot \frac{d e_{0}}{d t}
$$

Thus

$$
e_{0}=-\frac{1}{C R} \int_{0}^{t} e_{i} \cdot d t
$$

Features. The time $T=C R$ is called the "characteristic time" of the integrator. It is sometimes useful to think of $1 / T$ as the integrator "gain" in terms of volts-persecond output per volt input.

Summing Integrator.

$$
\begin{aligned}
I_{t} & =I_{1}+I_{2}+I_{3}=-C \frac{d e_{0}}{d t} \\
\frac{e_{1}}{R}+\frac{e_{2}}{R}+\frac{e_{3}}{R} & =-C \frac{d e_{0}}{d t}
\end{aligned}
$$

Thus $e_{0}=-\frac{1}{C R} \int_{0}^{t}\left(e_{1}+e_{2}+e_{3}\right) d t$
Features. The output gives the integral of the sum of the input voltages with its sign changed. Any number of inputs may be used. The single amplifier performs the
function of both adder and integrator. By using unequal input resistor values the contributions to the output of the several inputs may be weighted in inverse proportion to the resistor values.

Augmenting Integrator.

$$
\begin{aligned}
& I_{i}=I_{\ell}=\frac{e_{i}}{R} \\
& e_{0}=-\left(I_{t} R_{0}+v_{c}\right) \\
& e_{0}=-\left(\frac{e_{i}}{R} R_{0}+\frac{1}{C R} \int_{0}^{t} e_{1} d t\right)
\end{aligned}
$$

Features. The output is a composite signal made up of two components, one component proportional to the input signal added to another component proportional to the time integral of the input signal. Like the simple integrator, the circuit may be adapted to the summation of several input signals by the addition of appropriate input resistors.

Differential Integrator.

Subtraction gives

$$
\frac{e_{2}-e_{1}}{R}=C \frac{d e_{0}}{d t}
$$

Thus

$$
e_{0}=\frac{1}{C R} \int_{0}^{t}\left(e_{2}-e_{1}\right) d t
$$

Features. Reset and hold problems (see later) are increased with this circuit because of the two capacitors and it may be found more convenient to perform the differential integrator operation using a combination of an inverter and simple integrator (see below).

Differential Integrator using two amplifiers.

Integrator drift, integrator reset

In the case of practical integrator circuits, amplifier input offset voltage and bias current cause a continuous charging of the feedback capacitor when the applied input voltage is zero; this means that the output voltage of a free running integrator drifts until the amplifier eventually saturates. The drift rate at the output of a free-running simple integrator due to amplifier offsers is given by the relationship:

$$
\frac{d e_{0}}{d t}=\frac{V_{i o}}{C R}+\frac{I_{b}}{C}
$$

Integrator drift may be adjusted to zero under a particular set of conditions and at a particular time by cancelling the effects of the amplifier offsets with a suitable balancing control; however, amplifier offsets are temperature dependent and also show some long-term time dependence. This means that the zero drift condition established with a balance control is not maintained and a free-running integrator always eventually drifts to one of its saturated states. Practical integrators have to be provided with some means of setting their output voltage at some required value at the start of the integrating time.

Examination of the integrator drift relationship shows that drift due to voltage offset is a function of the integrator "gain" ($I / R C$), while the drift due to bias current is determined by the value of the feedback capacitor alone. For a particular integrator "gain" the relationship suggests that minimum drift can be obtained by using a value of C large enough to make the bias current contribution to drift negligibly small compared to the voltage offset contribution. In fact it may not always be practicable with a particular amplifier to use the value of C dictated by the relationship, for the required value of C may be so large and consequently expensive (and perhaps leaky) that it may be better to choose a different amplifier with a lower bias current to achieve a small required value of drift rate. Another factor that has to be borne in mind is that the larger C the smaller R for a
particular characteristic time and consequently the smaller the resultant input impedance of the integrator.

Integrator with Balance Control and Reset.

Features. With the relay reset switch open and e_{i} zero $R V$ is adjusted for zero drift. With S closed the feedback capacitor is discharged and the initial output of the integrator is set to zero. A small series resistor R^{\prime} is included to limit the capacitor discharge current and so protect the relay sontacts and capacitor. The start of the -integrating time is initiated by the opening of S.
-Integrator Run, Set, Hold, Modes.

Teatures. With the switch in the "set" oosition the initial value of e_{0} may be set to any desired value within the capability of the -amplifier;

$$
\underset{\substack{e 0}}{e_{0}}=-\frac{R_{2}}{R_{1}} E_{r e f}
$$

When switched to the "run" position the sircuit integrates the input voltage and

$$
e_{0}=-\left(\frac{1}{C R} \int_{0}^{t} e_{i} d t+e_{t=0}\right)
$$

if the integrator is switched to "hold" the ntegration is stopped and ideally the output hen remains constant at any value it may lave reached. In practice leakage currents and amplifier bias current cause drift in the 'hold" mode. In the "run" mode, ampli--ier input offset voltage causes an additional sror current and consequent increase in -lrift as explained in the previous section. For integrators to be operated with long "run" and "hold" times it is essential that he temperature coefficients of bias current and offset voltage be very small, and this cormally involves the use of a choppertabilized type of amplifier. The demand or low drift with temperature performance of the amplifier is less strict for shorter "run" nd "hold" times.

Initial Conditions Reset with Separate Amplifier.

Features. With this circuit arrangement the integrator initial output is set by adding the initial conditions using a separate adder The integrator itself is set to zero with a single switch.

Electronic Switch
(suitable for resetting integrators).

Features. Diode D_{1} is reverse biased by a value of the control voltage $\left(e_{c}\right)$ greater than 2 volts and the output from the unity gain inverter causes D_{2} also to be reverse biased. Under these conditions the diode bridge D_{3}, D_{4}, D_{5} and D_{6} is conducting, and a conducting path exists between points A and B. With a negative value of control voltage D_{1} and D_{2} become conducting and the bridge diodes are reverse biased, opening the path between points A and B. When the switch is to be used as an integrator, reset points A and B are connected across the integrator feedback capacitor.

Integrator with A.C. Coupling.

With $\quad \mathbf{C}_{\mathbf{i}} \mathbf{R}_{\mathbf{f}}=\mathbf{C}_{\mathbf{i}} \mathbf{R}_{\mathbf{i}}=\tau$

$$
\frac{e_{0}}{e_{1}}=-\left(\frac{j \omega \tau}{i+j \omega \tau}\right)^{2} \frac{1}{R_{i} C_{1} j \omega}
$$

Features. For integrator applications not requiring a response down to d.c., relay resetting may be dispensed with and integrator drift leading to amplifier saturation can be prevented with a circuit of this type. The circuit acts as an integrator for frequencies $\omega>1 / \tau$; for frequencies below this value it acts as a differentiator.

Differentiators

Simple Differentiator.

$$
\begin{array}{ll}
& \begin{array}{l}
I_{1}=C \frac{d e_{1}}{d t} \\
\text { But } \\
\text { Thus }
\end{array} \\
I_{1}=I_{t}=-\frac{e_{0}}{R} \\
& e_{0}=-C R \frac{d e_{1}}{d t}
\end{array}
$$

Alternatively we write

$$
\begin{aligned}
& \frac{e_{0}}{e_{i}}=-\frac{\mathbf{Z}_{i}}{\mathbf{Z}_{i}} \\
& \frac{e_{0}}{e_{i}}=-j \omega C R
\end{aligned}
$$

The simple differentiator circuit shown above is not realisable in practice. The Bode plot for a simple differentiator response ($e_{0} / e_{i}=-j \omega C R$) cuts the unity gain axis at a frequency $\omega=I / C R$; the gain then increases with frequency at a rate approaching $6 \mathrm{~dB} /$ octave. The rate of closure between this curve and the open loop response curve for an amplifier having a $6 \mathrm{~dB} /$ octave roll off is thus 12 dB /octave, making the simple differentiator circuit inherently unstable. Also since the gain of the circuit increases with frequency it is very susceptible to random noise.

Achieving differentiator stability

A resistor R_{1} (see next page) placed in series with the input capacitor prevents instability and helps to reduce high frequency noise. Further it reduces the effective magnitude of the capacitive loading

Achieving Differentiator Stability.

on the signal source driving the amplifier. At frequencies above $\omega_{1}=1 / C R_{1}$ the amplifier acts as an inverter with gain $-R / R_{1}$ and the rate of closure between the open loop and closed loop response becomes $6 \mathrm{~dB} /$ octave thus ensuring closed loop stability. The frequency ω_{1} is arranged to be greater than the signal frequencies of interest.

Reduction of Differentiator Noise.

Improved rejection of high frequency noise may be obtained by the connection of a capacitor C_{f} in parallel with the feedback resistor R. If $C R_{1}$ is made equal to $C_{f} R$ the two networks have the same break frequency and combine to attenuate frequencies above $\omega_{1}=1 / C R_{1}$. The circuit is now in fact identical in form to the a.c. integrator considered earlier.

Like the operational integrator the differentiator circuit can be adapted to summation by the addition of appropriate input paths; also by making use of the noninverting input terminal of the amplifier a difference differentiator can be achieved.

Summing Differentiator.

$$
e_{0}=-\left[C_{1} R \frac{d e_{1}}{d t}+C_{2} R \frac{d e_{2}}{d t}+C_{3} R \frac{d e_{3}}{d t}\right]
$$

Difference Differentiator.

Book Review

Intended primarily, but by no means exclusively, as a text for university electronic engineering students, who are expected to have the necessary theoretical background but who may be rather "green" as far as practical knowledge is concerned, "Amplifying Devices and Low-Pass Amplifier Design" by E. M. Cherry and D. E. Hooper is an outstandingly good book.* This explains certain features which may seem, at first sight, to be rather unbalanced-for example, in Chapter 1, appear the words "a knowledge of manipulation in the complex frequency plane is assumed in this book", whereas, in Chapter 17, the resistor colour code is given and explained.

The two Australian authors, already well-known for their valuable published papers, \dagger have both spent a good deal of time in industry as well as in the teaching profession, and while theoretical matters are presented in an exceptionally sound, and sometimes novel, manner, there is a commendable emphasis throughout the book on the nonideal, or engineering, aspects of design

Though most of the discussion is, of course, concerned with transistor circuits, valve circuits are also considered, and a very well thought out treatment of the charge-control concept provides a unifying approach embracing ordinary transistors, f.e.ts and valves. The inclusion of a good deal of valve material is defended partly because valve equipment is still in widespread use, but also because it helps to emphasise the continuing tradition in good electronic circuit design, which goes back for more than thirty years. It is argued that this should be valuable to the increasing num-

[^9]ber of young engineers who seem unaware of the significant developments of the valve era and make "new" discoveries of well-established techniques.

It is very refreshing, for once, to see great emphasis laid on the importance of mutual conductance as a transistor parameter, and a debunking of the widely held notion that a transistor must be regarded as a current-operated device, quite different in nature from a valve. It is therefore not surprising to find that the authors have a preference for the hybrid- π equivalent circuit.

The great advantages of minimising interaction between amplifier stages by intentional mismatching are clearly presented, and it is shown how this technique leads to simple and predictable designs.

The discussion of transistor parameters and their dependence on type, working conditions and temperature is particularly good, and the authors are not afraid to say "If the general nature of a transistor is known, an intelligent guess is often the best way for arriving at its parameters".

While statistical ideas about reliability are well presented, it is emphasised that significant improvements come more from careful investigations of the physical reasons for failures than from the mere use of more impressive statistical techniques.

There is a short, but very good, summary of transistor physics, an extensive treatment of negative feedback principles and practice, and a good deal of sound information on non-linearity distortion, transformers, 1.f. and h.f. compensation of amplifier stages, d.c. amplifiers, class B amplifier, secondary breakdown, overioad effects, distributed amplifiers, integrated circuits, and a very down-to-earth chapter on "Components, Construction and Reliability". This last chapter contains the comment "If pen-and-paper design is an art, then completion of the job to the hard-ware stage is an art of a higher order"

The sections on noise were found a little disappointing, seeming to make some topics appear rather more difficult than necessary. Indeed, if any adverse criticism of the book as a whole is possible, it is that, out of a praiseworthy enthusiasm to be very thorough and accurate, the authors occasionally make it difficult for the reader to see the wood for the trees.

A few rather unconventional terms and symbols are used, but they have been carefully chosen and add character to the exposition. The term "dynamic response" is used to mean either frequency response or time response, according to the context. "Spot noise" means noise at a particular frequency. And a pear-shaped symbol is used for the active device, when it is not desired to be specific as to whether it is an ordinary transistor, an f.e.t or a valve.

Another good feature is the inclusion of 65 pages of practice examples at the end. Many of these are of a type very different from those usually given in examinations. There is quite a lot of explanatory text in some of the exercises, which thus constitute a valuable appendix to the main text. The associated questions are sometimes of a design type, not having a unique correct answer, and they are often very thought-provoking. The authors say that such problems do not result in an increased load on the teacher, for the circuits designed can be built and tested experimentally

The style of writing is consistently excellent, as also are the printing and diagram drawing. Almost no errors have been spotted, and it is evident that the book, which took five years 10 write, has been prepared with very great care.

It seems most unfortunate that the publishers have decided to set the price as high as $£ 14$, which will surely prevent most private individuals from buying it, though it is to be hoped that all technical libraries will do so. However, it would be money well spent for anyone who is prepared to study the book thoroughly and derive the full educational benefit from so doing.
P. J. Baxandall

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Who's to blame?

I have been investigating a number of commercial transistor amplifiers in order to select one to work in combination with a popular "bookshelf" loudspeaker for use as a monitor loudspeaker in the very confined space of mobile sound-control rooms.

Included in the specification to be met by these amplifiers was that they should provide 10 watts r.m.s. into 15Ω, distortion products at this or any lower power not to exceed 0.1% at 1 kHz , or 0.2% at 100 Hz .

Although some amplifiers met this specification, even they produced noticeable distortion on programme when driving the bookshelf speaker.

The manufacturers of the commercial loudspeaker quote a value of 8 to 15Ω as the speaker impedance. Inspection of the combined impedance and phase angle curves obtained for this unit (Fig. 1) however reveals a resistive impedance of 45Ω at $70 \mathrm{~Hz}, 25 \Omega$ at 2 kHz and about 8Ω elsewhere. Thus, when driving the speaker, the power capability of an amplifier which will supply 10 watts r.m.s. in 15Ω will be halved at 2 kHz .

But this is not all; the above figures refer to r.m.s. sine-wave power. What happens when the amplifier handles programme?

The impression of loudness gained by the listener is a subjective effect based upon the integration of sound energy over some unspecified time. Since the ear determines loudness by the energy in the waveform and not by the amplitude alone, it seemed a good idea to examine the relationship between the peak and r.m.s. values of programme waveforms. For a sine wave peak value equals $\sqrt{ } 2$ times the r.m.s. value, but for a miscellany of live programmes, the peak value was found to
be, on average, $2.86 \sqrt{ } 2$ times the r.m.s. value.
Consider the effect of this on say an amplifier with a 50 volt rail. Maximum r.m.s. (programme) voltage across load

$$
=\frac{50}{2.86 \times 2 \sqrt{2}}=6.2 \mathrm{~V} \text { r.m.s. prog. }
$$

But resistive impedance of the loudspeaker is 45Ω at 70 Hz , therefore maximum r.m.s. (programme) power which can be supplied to the loudspeaker without clipping
$=\frac{6.2^{2}}{45} \mathrm{~W}=0.85 \mathrm{~W}$
This means that using a low efficiency loudspeaker of the type described, there will almost always be some clipping distortion at a reasonable listening level, particularly when, as is likely, some bass lift is used. The effect of the clipping will depend on the time clipping actually takes place. Tests published by the B.B.C. indicate that distortion due to such clipping is inaudible if the period is shorter than 2.5 ms . As the length of the period increases, the sound becomes brighter until perceptible distortion occurs.
W. R. SEymour,

New Malden,
Surrey.
'B.B.C. Engineering Training Supplement No.6. "Programme Meters"

Sterile symbology

It has been said that a camel is a horse designed by a committee and indeed, the recent publication by the British Standards Institution of Section 22 to BS.3939: "Block symbols for telecommunications transmission and general applications", must rank as the outstanding nightmare of the season.

Fig. 1
(W. R. Seymour)

The essence of block diagrams is the removal of all extraneous detail so that the reader is able to see what the device achieves. Theré is not, or should not be, any need to show how that end is achieved; this is the proper purpose of the circuit diagram. Thus Section 22 is something of an enigma merely because of its existence.

The very first symbol, an open square, is the only one which is relevant to a block diagram; inside it should be written the function of the equipment that it represents. Oddly the second symbol is an alternative to the square namely an oblong. This basic pure simplicity becomes suspect however when the rectangle appears again as symbol no. 22.12.1 where it represents exchange equipment and yet again as symbol no. 22.13 .2 where it represents an unspecified material in lasers and masers.

The third symbol is equally pleasing to the simple mind; a straight line represents a signal path and also, no. 22.9.11, tape printing (a qualifying symbol).

In 22.2.1 a square with a capital G printed inside it, represents a non-rotating generator (the user of this symbol must be careful not to confuse the reader with a different G which represents conductance); and in 22.6.18 where, with a capital B printed inside it (nothing to do with susceptance) it represents a phase-changing network. In case of confusion the B may be replaced by Φ; I wonder Y? I am slightly startled by the symbols for a non-rotating sawtooth generator (dentist's drill?) and a non-rotating noise generator.

Attenuator symbols nos. 22.6.1 and 22.6.2, consisting of squares with the letters $d B$ inside, might be mistaken by the simpleminded for amplifiers, but maybe $d B$ uses less ink than att.

In the same section the distinction between an attenuation equalizer and a pre-emphasis device is too fine for me but it does help with the impression that the following symbols, for expander and compressor, relate to bandwidth changing devices.

My favourite (22.6.8) is the interference suppressor which can only be interpreted as an all-stop filter; and very effective too. Symbol no. 22.7.6-equipment for connecting a 4 -wire input to either a 2 -wire output or a 4 -wire output depending on the receipt of a control signal-has two inputs and two outputs and appears to consist of a terminating set, a balancing network and a perforated tape; presumably the tape stores all the possible control signals.

The Section closes in style. Symbol 22.13.24 represents a maser used as an amplifier with external permanent magnet and
with crystal in cavity resonator windowcoupled to rectangular waveguide and loopcoupled via a coaxial cable to a pump generator; it is probably coincidence that it closely resembles a flushing toilet even though the generator is non-rotating.

Will this madness ever cease? Were I to translate a German document into French and send it along to a Kurdistan reader with a French dictionary I might well be certified but apparently it is acceptable to present technical information in code and tell the reader to buy an expensive copy of BS.XYZ if he wishes to untangle it. If BS stands for British standard why cannot we use English instead of hieroglyphics?
K. H. Green,

Slough, Bucks.

Television v.h.f. bands

With regard to J.H.W"s article "Is there a future for the television v.h.f. bands?" in the May issue, it would seem that he fears that some or all v.h.f. television transmissions will be closed down seven years after duplication of BBC-1 and I.T.A. commences. This is not at all the case. It is true that the ultimate objective of duplication of 405 -line services in the u.h.f. bands on 625 lines and in colour is the closing down of the former, thus leaving the v.h.f. bands free for re-engineering to $625-$ line standards. But no 405 -line service will be closed down until an adequate 625 -line service is available to replace it.

It may be that J.H.W's seven-year period has come from the fact that this duration is considered to be the average life of a television receiver but we are all aware that, assuming the average life to be close in value to the median life, 50% of receivers will last longer than seven years; in fact appreciable numbers may last very much longer. The life of television receivers is one important factor, but another is the need to ensure the existence of adequate field strengths of 625 -line television services before the shutting down of the 405 -line ones.

H. T. Greatorex,

Engineering Information Department,
B.B.C., London W.1.

We were surprised to read the comment by J.H.W., that the receiver industry seems wary of offering single-standard u.h.f.-only sets in advance in those areas where all three existing programmes will be available on u.h.f. 625 lines.

Since the earliest forecast date for the BBC-1 and I.T.A. 625-line programmes (in the first four major regions only) is still some months away, it should be obvious that there is no demand for these receivers as yet and any supplies delivered to dealers would, therefore, remain in their stock until nearer the opening date. Designs of single-standard sets are, of course, ready, and some manufacturers have started production, to be held in stock for the time being.

His other comments regarding the continued manufacture of dual-standard receivers are also rather misleading; the facts are that a little under half the population will still have to depend on v.h.f. for their 405 -line BBC-1 and I.T.A. pictures at the end of this year, and although this number will steadily decrease
over the following few years there will still be a significant proportion unserved by u.h.f. in the mid-'70s. Naturally therefore, manufacturers will continue the production of dualstandard sets for some years to come to serve these viewers.

The receiver manufacturers are once again faced with the difficult problem of planning their advance production without knowing all the facts.
R. L. Bоoth,

British Radio Equipment
Manufacturers' Association
London W.C.1.

Logic display aid

In the design of the Wireless World Logic Display Aid described by B.S. Crank (May 1969), it is hard to justify the effort in displaying a Venn diagram at the same time as a Karnaugh map. It is a fact when three variables are involved, each device is a topographical transform of the other and both convey the same information. The figure demonstrates this point far better than any words can.

Although the Venn diagram is excellent for presenting the idea of overlapping sets, and this was its original purpose, the Karnaugh map is far more useful particularly in switching theory. It can be extended to cover any number of variables, while the Venn diagram is restricted to three. Furthermore, the arrangement on a regular matrix makes visualization of the functions represented much easier.

It would probably be worthwhile to redeploy the components so that the size of the map could be varied. Then it would be possible to show a three variable map on 2×4 matrix and the Venn diagram would be superfluous. F. E. Sanville,

Bath University of Technology.

The author replies

Mr. Sanville's letter is most interesting and he is of course quite right in pointing out that the Karnaugh map and the Venn diagram both convey the same information; this is to be expected as they both consist of a number of overlapping areas.

It is difficult to understand why Mr . Sanville suggests omitting the facility for showing the Venn diagram when he himself points out that the Venn diagram and Karnaugh map have different purposes. The Venn diagram is excellent for presenting the idea of overlapping sets and is, therefore, particularly suitable for the beginner. The

Karnaugh map, on the other hand, has a larger number of other uses and may be employed in more advanced instruction and circuit design. In any case, there is no reason why they should both be displayed at the same time; in fact the basic instrument cannot do this. The extra circuitry for multiple displays, added as modifications, is minimal.
It would be possible quite easily to vary the size of the map. However, this would require extra front panel controls and was rejected for this reason. With the display as it stands, and if only three variables are employed, the Karnaugh map appears twice in the same matrix.
Finally, if the user was prepared to let each dot represent a particular combination then up to ten variables could be accommodated. (1024 dots).
B. S. Crank.

Negative feedback \& hum

I am afraid Mr. G. W. Short (March issue p.116) has fallen into a trap with his suggested "swinging diode" arrangement. He has been unwise enough to assume that music is invariably scored throughout the sound spectrum and that signals occasioning sufficient current drain to cause the diode to be biased into conduction will contain enough bass information to mask the hum.

A particularly unpleasant case that comes to mind is of high woodwinds playing loudly resulting in heavy current drain whilst nothing is playing in the bass.

Mr. Short is, however, not alone in his mistake. Many commercial amplifier designers rely on the fact that at low currents a simple single capacitor power supply is relatively smooth and they too rely on the music masking the hum that arises when the current drain increases. Mr. J. Dinsdale has found an example where the hum from such an arrangement has beat with an organ pedal note giving especially unpleasant sound, so the arrangement appears vulnerable from both treble and bass signals.
The heater winding of a mains transformer from discarded valve equipment makes an effective, if rather bulky, choke, or a low-grade power transistor may be used as an active filter for similar cost to the power diode Mr. Short suggests.
I. G. Abelson,

London N. 14.
The author replies:
I suppose it is possible to find some kind of input signal that will show up the defects of any design. If Mr. Abelson is trying to make the point that a well smoothed power supply is better than a badly smoothed one then it goes without saying, but I suggest that there is another way of avoiding his particular difficulty, namely to turn down the volume!

My own amplifier design was a cheap and cheerful medium-fidelity job. In the case of the commercial designs which he criticises (which are presumably hi-f amplifiers) I think it is as well to remember that there are two distinctly different ways in which ripple on the supply line can impair the performance.

The first is straightforward entry of the hum into the amplifier circuit, where it gets mixed up with the input signal and appears

at the output. This is avoided in good commercial designs. The other is that with large signals the ripple causes intermodulation without ever finding its way into the signal path as usually understood. The mechanism can be seen with reference to Fig. 1, which shows the output of a rather badly smoothed mains supply unit. The mean voltage is V_{1}, but the troughs of the ripple take the voltage down to V_{2}. As signals of increasing amplitude are applied a point is reached where the amplifier is overloaded at V_{2}. The tips of the signal wave are thus modulated by a 100 Hz sawtooth, and the result is a nasty buzz or rattle. If the signal frequency is nearly harmonically related to 100 Hz beats will be heard as well.

It will be obvious that this effect occurs only when the amplifier is driven so hard that it would be almost at the point of overload even if the supply were perfectly smooth. Improving the smoothing, even in a supply with peak-to-peak ripple of 20% of the mean d.c. voltage will produce less than 3 dB more distortionless output. The improvement may well be worth having, especially if you have an old mains transformer going begging, but it is not spectacular. In a commercial design, it would be cheaper to raise the supply voltage in the first instance, and hope the purchasers will not try to get a quart out of a pint pot.
The use of a transistor in an active smoothng circuit will usually reduce the available sower output still further. The transistor must save enough collector-emitter voltage even -luring the troughs of the ripple. At the sort of urrents involved this knocks about 1 V off he available supply voltage.
J. W. SHORT

Audio amplifier performance

have read with great interest the excellent state of the art" review, of high-quality udio amplifier design, given by Mr . R . Villiamson in the June issue and I applaud -he common sense and lucidity of his apprais1. However, in the section dealing with the -lesign of the output stages, Mr. Williamson uggests that the problems associated with -lass B designs are either non-existent or are f a temporary nature, and I am left with the nhappy feeling that this may be an overmplification of the problems involved.
It is clearly desirable to devise techniques or instrumental measurements to quantify .e performance of audio amplifiers, in order sat progress in this field can be put on a roper basis, but we are, unhappily, still in le state in which there is not general agreetent on the correct measurements to make , predict the acceptability of the result to re listener. In these circumstances, we still
have to rely on the evidence of our ears to tell us whether the performance of a given design is good or bad, and some of this evidence suggests that class B transistor output stages are sometimes less pleasing to listen to than the performance on paper would suggest.

Because the most noteworthy outward and visible difference between class B transistor amplifiers, which may sound unpleasing, and the traditional thermionic valve class A power amplifiers, which usually do not cause auditory offence, is the kink in the curve of an output sinewave as the voltage waveform intersects the axis, the audible malfunction is usually categorized as "crossover distortion", and assumed to be due to dissimilarities in the two halves of the output stage, to be minimized by symmetry and made negligible by negative feedback. However, when these steps have been taken, and the purity of the sinewave performance is such that the measured harmonic distortion is of the order of 0.02%, the difference in performance is still audible. I believe that this is due to three separate things.
(1). The reduction in harmonic distortion due to crossover phenomena is normally accomplished by the use of substantial amounts of loop negative feedback, taken around a loop containing, of necessity, a large number of phase shifting elements. The provision of an adequate gain and phase margin of stability increases in difficulty as the number of elements within the loop and the feedback factor is increased, so that beyond a certain point the reduction in the nominal distortion content is offset by a worsening in transient performance. However, this is only part of the problem, in that when a transistor which is conducting is driven into cut-off the input impedance abruptly changes from a large capacitance in parallel with a low non-linear resistance into a very high resistance in parallel with a much smaller voltage-dependent capacitance. At this transition the loop feedback stability margin may be much impaired, but this may not be visible except on an arrested transient which stops short somewhere near the crossover point. Such waveforms do occur in speech and music.
(2). Although it may be desirable to construct systems in which the two halves of the output stage are symmetrical, this is not possible because $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors rely for their action on different types of current carriers. This leads to differences in the transfer characteristics, especially at the higher frequencies, and can cause a "point of inflexion" distortion on transfer from one to the other, which is indistinguishable on a distortion meter from crossover distortion.
(3). Hole storage. When a transistor which has been conducting heavily is abruptly turned off-as can readily happen in a class B audio output stage-the presence of uncollected minority carriers within the base region prevents the current flow from ceasing as rapidly as would be expected, and for a brief period the transistor behaves as a resistor (or even as an electrical delay line) giving a current output uncontrolled by the potential on its base. P-n-p transistors suffer more from this problem than $n-p-n$ ones because of the nature of the carriers, and although
this problem can be minimized by the use of transistors with a high transition frequency, and by using low resistance base-emitter return paths, this is a source of transient distortion which may be worsened rather than improved by the use of full complementary symmetry in the output stage.

Although transistor and circuit developments are likely 10 minimize the importance of these effects, some of these are quite fundamental in their nature, and liable always to be a potential source of difficulty in class B designs, unless elaborate measures have been taken to circumvent them. The recognition of this fact and the adoption of alternative class A circuitry may, in fact, be good economic sense in high-quality systems, and not a "sweeping of problems under the R. \& D. carpet" as was implied.

However, if the economies of class B operation are really so necessary, and the shortcomings of this system are, on balance, more conspicuous at low volume levels, surely the answer is to use a system which operates in class A up to a watt or two, and retreats into class B on the transients where the higher powers are momentarily demanded.
J. L. Linsley Hood,

Taunton,
Som.

The Emley Moor saga

I enjoyed reading the little piece in your June issue (p.256) about the remarkable achievements of the I.T.A. at Emley Moor following the collapse of their 1250 -foot mast. But I expected to see some reference to the restoration of the BBC-2 service, because our u.h.f. aerials were also on this mast.

BBC-2 was, in fact, back on the air at Emley Moor after only 44 hours, using a temporary 60 -foot mast. True, this provided only a limited service but this was considerably extended (to more than 2 million people) when we brought into use a 300 -foot mast on Easter Monday. This mast, made up from two 200 -foot masts stored at Skelton in Cumberland was brought to the site and erected in four days. This must be some sort of record!*
H. T. Greatorex,

Engineering Information Dept.,
B.B.C., London W.1.
*It is indeed. We apologise for the oversight. ED.

Motor using piezo-electric effect

In the description of the above motor given in the May issue, page 227, there is an error in the first paragraph which can be corrected by interchanging the two phrases in line 12. This would then read 'clamping the first magnet, de-energizing the other magnet.'

This error is important in that it would prevent the motor from resisting an applied load since it implies that at one stage in the stepping cycle both clamps are off. In the sequence actually used this condition can never occur and at least one clamp is energized at all times.
GORDON C. JOyCE,
Royal Radar Establishment,
Gt. Malvern,
Worcs.

Personalities

Group Captain E. Fennessy, C.B.E., B.Sc., F.I.E.E., managing director of the Electronics Group of the Plessey Company, has accepied the invitation to become managing director, telecommunications, of the Post Office. Gp. Captain Fennessy joined the Plessey Group in 1965 when they acquired the ground radar and data-handling divisions of Decca Radar of which he was managing director. Gp. Capt. Fennessy, who is 57 and a graduate of London University, served on the staff of No 60 (Radar) Group, R.A.F., for the major part of the war having previously been with the original Air Ministry radar research team at Bawdsey Manor from 1938. He joined the board of the Decca Navigator Company in 1945.

G:oup Captain E. Fennessy
E. A. W. Spreadbury, F.I.E.R.E., for the past two and a half years editor of our associate journal Electrical E Electionic Tiade, has retired. He joined the Tiade laboratory staff in 1937 and was technical editor for 25 years until his appointment as editor in 1966. Prior to joining the Trader Mr. Spreadbury spent 14 years in the radio industry. Mr. Spreadbury has also retired from the chairmanship of the Society of Electronic and Radio Technicians which he has held since the inauguration of the society in 1964. The new chairman of S.E.R.T. is Kenneth Tempest, head of the Electrical Engineering Department, Carshalton College of Further Education.

Professor Kurt Hoselitz, Ph.D., F.Inst.P., F.I.E.E., has been appointed director of the Mullard Research Laboratories. Dr. Hoselitz, who is

Prof. K. Hoselitz
52, was educated at the Universities of Vienna and Bristol. He gained his Ph.D. at Bristol in $19+2$ and subsequently joined the Permanent Magnet Association as a research scientist. In 1952 he joined Mullard Research Laboratories to establish the Solid State Physics Division and for the past five years has been deputy director of the Laboratories. He is a visiting professor in physics at the University of Surrey.

Appointments designed to strengthen the development of electronic and space systems activities of the Guided Weapons Division of British Aircraft Corporation outside the guided weapons field are announced. D. Rowley, M.A., F.R.Ae.S., is appointed executive director responsible for the overall management of the electronic and space systems activities comprising the Space and Instrumentation Group at Bristol and the Precision Products, Industrial Products and Plastic Products Groups at Stevenage. Mr. Rowley was previously general manager at Bristol. A. T. Slater, M.B.E., M.A., is appointed general manager of the G. \mathbb{K}^{*}. Division and S. A. Smith, M.A., A.F.R.Ae.S., is appointed general manager Bristol Works. Mr. Slater was previously general manager, Stevenage, and Mr. Smith, deputy general manager, Bristol.

Three new appointments are announced by the Weapon Systems Division of Ferranti Lid., Wythenshawe, Manchester. A. M. Bell, B.Sc., will in future be responsible for promoting and co-ordinating the sales of all military electronic equipment. He has been associated with the Ferranti systems for Bloodhound ground-to-air missiles for 15 years, including four years as resident engineer in Australia. F. W. Gee now has special responsibility for technical liaison on future radar, sonar and visual training simulators. Until recently he was a Flight Lieutenant at the R.A.F's Radio Introduction Unit. I'. W. Smith, B.Sc., is to lead a new group which will be responsible for the preparation of engineering proposals and for product planning within the Weapon Systems Division. Mr. Smith has been closely involved with the development of Ferranti computers and display systems.

John V. N. Granger, A.B., M.S., Ph.D., chairman of the board of Granger Associates, Palo Alto, California, has been nominated for president of the Institute of Electrical and Electronics Engineers in 1970. At Harvard, Dr. Granger became a teaching fellow in physics and communications engineering, instructing in the pre-radar school for Army and Navy officers. During World War II he joined the AngloAmerican team working on radar at T.R.E., Great Malvern. Dr. Granger entered Harvard again in 1946. A year later he became a research fellow in electronics and group leader in the Electronics Research Laboratory. He earned his Ph.D. in 1948 with a thesis on low-frequency aircraft aerials. In 1949, Dr. Granger joined Stanford Research Institute to organize and supervise the aerial research programme. He resigned in 1956 when he formed Granger Associates.

John Leith, who joined what is now SGS (United Kingdom) Lid. three years ago from Rank Bush Murphy, where he was engaged on development work on radio receivers and record players, has become sales manager of the Consumer

[^10]
P. Hubble

Dept. During the early part of his career he spent two years in the United States working in the Development Lab. of Radiation Incorporated, Florida, and prior to joining Rank Bush Murphy was with Multitone. SGS also announce the appointment of Paul Hubble as distributor co-ordinator. Mr. Hubble, who is 37 , joined SGS two and a half years ago. He was at one time Midlands representative for the Sub Assemblies Division of the Mullard Equipment Co. Lid. (now MEL Equipment) and before that spent three years on digital control equipment sales with the Instrument Division of Ericsson Telephones Lid. (now Thorn Bendix).

Geoffrey Laycock, M.Sc., F.Inst.P., United Kingdom marketing and sales manager for Honeywell's Computer Control Division, has been appointed director of marketing for the Northern Europe region. Based at the Watford sales headquarters, Mr. Laycock will control all marketing and sales activities in Great Britain and Scandinayia, as well as export activities to some other countries. He has been with the Computer Control Division since its formation in 1966. Prior to that he was manager of the special systems division within the Industrial Products Group. Mr. Laycock is a graduate of St. Andrews University. Honeywell also announce the appointment, within the Northern Europe region, of Richard Killick, M.A. (Cantab.), as director of engineering. He will be based at the divisional systems engineering headquarters at Hemel Hempstead. Previously chief engineer of the division's systems development team, Mr. Killick has been with Honeywell since early 1967. Prior to joining the company he was manager of technical support activities within G.E.C's computers and automation group.
G. R. Gamble, an honours graduate in physics from the University of Surrey, has joined Brookdeal Elec tronics Lid as applications engineer After leaving university, Mr. Gam ble, who is 25 , joined the Plessey Company as a communications de velopment engineer in the Electron: ics Design Development Unit, whers he stayed until taking up hi: present position.
nigh quality and reliability of Electrosil glass-tin-oxid. resistors in instruments, telephone exchanges, computers, automation, missiles and, in fact, in every type of electronic equipment. Over and over acain glass-tin- כxide proves its superiority. For example, rece t independent tests by a major equipment manufacturer showed that Electrosil 100 p.p.m. C5 resistors gave a more consistent performance on foad and temperature stability than metal film resistors by six competing suppliers.

Electrosil resistors owe their reliability to the unique glass-tin-oxide construction. Consistently high quality is assured by a most thorough programme of Cuality
our plant)
Inexpensive components initial v, Electrosil oxide resistors work cn for decades saving you maintenance and replacemerit costs. (Therein lies their irresistibility).

Electrosil Ltd. P.O. Box 37. Pallion. Sunderland, Co. Durham. Tel. Sunderland 71481. Telex 53273.

Electrosil

limiteo

The one that keepson resising is the one you can't resist

MSTMSUCCESS

SALES NOW EXCEED £12,000,000

More and more countries are buying Marconi Self-Tuning h.f systems...

and one good reason is:

ECONOMY IN SKILLED MANPOWER

- Centralized station control by one man who need not be technically skilled.
- Full remote control of transmitting and receiving complex extends this concept to allow complete stations to be unmanned on a routine basis.
- Built-in MST reliability means that only a nucleus of high grade technicians required to service a full h.f complex.
- Reduction of manpower requirements can be of the order of 5 to 1 .

and other good reasons are:

Reduced capital outlay

MST designs reduce demands for space, and need for standby equipment. Installation costs are decreased.

Increased reliability

Maximum use of solid state techniques plus the use of wideband amplifiers reduces number of moving parts, gives higher reliability and longer equipment life.

Traffic interruption reduced

Frequency changes and retuning accomplished in less than one minute without loss of traffic.

World-wide acceptance

30 countries throughout the world have ordered more than $£ 12,000,000$ worth of MST equipment to improve their communications services.

New Products

B.C.D. Programmer

A clever idea is a new b.c.d. programmer manuactured by Ghielmetti, AG, of Switzerland, and narketed in this country by Data Precision Equipment) Ltd. The programmer is based on a mall plastics block which contains four switches -hat are operated by a plastics plug engraved with -he decimal number it is desired to programme. Jach plug has raised surfaces that actuate the witches in such a way as to form the desired inary code. The blocks containing the switches nay be plugged into 3 mm matrix boards or fitted o printed circuits. The blocks and the plugs are vailable in a variety of colours and any four-bit i.c.d. code can be accommodated. Complete rogrammes can be stored by fitting the plugs into sheet which holds them captive, in this way ntire programmes can be changed in a single -peration. Data Precision (Equipment) Ltd, .ondon House, Duke St., Woking, Surrey.

NW $\mathbf{3 0 5}$ for further details

- Miniature Mains ransformers

range of miniature power transformers is availsle from Belclere. Using 240 V 50 Hz primary the llowing outputs are provided: $3-0-3 \mathrm{~V}$ at 200 mA ype ES3876), $6-0-6 \mathrm{~V}$ at 100 mA (type ES4147), $-0-9 \mathrm{~V}$ at 66 mA (type ES4148), $12-0-12 \mathrm{~V}$ at 50 mA ype ES3874) and $20-0-20 \mathrm{~V}$ at 30 mA (type S3875). If the centre-tap is not required the folwing outputs can be obtained respectively: $-V$ at $100 \mathrm{~mA}, 12 \mathrm{~V}$ at $50 \mathrm{~mA}, 18 \mathrm{~V}$ at $33 \mathrm{~mA}, 24 \mathrm{~V}$ at 5 mA and 40 V at 15 mA . Standard t ransformers are or printed circuit mounting. They measure $5.4 \times 25.4 \times 19 \mathrm{~mm}$, are varnish impregnated and st $15 \mathrm{~s} 6 \mathrm{~d}\left(77 \frac{1}{2} \mathrm{p}\right)$ plus postage and packing. A amped version is slightly larger and has 38 mm xing centres. Clamps are $6 \mathrm{~d}\left(2 \frac{1}{2} p\right)$ extra and an terwinding screen, if required, is $9 \mathrm{~d}(4 \mathrm{p})$ extra. he Belclere Co. Ltd, 385/387 Cowley Ruad, xford.
'W 327 for further details

ficrowave Impatt)scillators

ew Impatt oscillators in the X and J bands inounced by Varian Associates, provide powers $\cdot 400 \mathrm{~mW}$ at $10-12.4 \mathrm{GHz}, 200 \mathrm{~mW}$ ' at $12.4-15 \mathrm{GHz}$, id 100 mW at $15-17.5 \mathrm{GHz}$. Improved thermal inding between the semiconductor mesa and the ode package permits more rapid dissipation of :at developed at the junction and thermal coficients of $10^{\circ} \mathrm{C} / \mathrm{W}$ are now available. Because the cillators operate in a relatively low Q circuit of $10-150$ they are suitable for operation in an jection locked mode giving improvements in an m . and f.m. noise and frequency stability. pplications include parametric pumps, drivers
for Q-Band multipliers and Doppler transmitters. Varian Associates Ltd, Russell House, Molesey Road, Walton-on-Thames, Surrey.
WW 312 for further details

Sound Level Meter

K.S.M. Electronics are now marketing a sound level meter designed to simulate a human ear and provide objective measurements of sound levels within a range extending from near audibility to above the pain threshold. Using an internal movingcoil microphone, sensitivity is 24 to 140 dB . There

is a built-in calibrator. The sound level meter is battery-operated and its dimensions are 102×102 $\times 226 \mathrm{~mm}$. K.S.M. Electronics Ltd, Bardmore Works, Bradmore Green, Brookmans Park, Hatfield, Herts.
WW307 for further details

Gas Laser

Scientifica and Cook Electronics Ltd, have developed a small gas laser-model B.15. Power output is 0.5 mW uniphase and 1.0 mW multiphase at a wavelength of $6,328 \AA$. The beam diameter is 2.5 m approximately at the exit aperture. Weighing about 4 kg and measuring $9 \times 9 \times 37 \mathrm{~cm}$ the laser runs off the mains, is guaranteed for 6 months, and costs C. S6. Scientifica and Cook Electronics 9 Ltd, 40-48 High Street, Acton, London, W.3. WW 311 for further details

Memory Voltmeter

Model 5203 from Sintrom Electronics Ltd, is a portable broad-band (d.c. to 20 MHz) instrument capable of measuring, storing and displaying pulses and transients as short as 50 ns in the range
$0-1000 \mathrm{~V}$. The range can be extended to 30 kV using an external probe. Accuracy is 1% of full scale for wide-band readings and 0.25% (± 2 bits) for narrow band. The peak value on the digital display remains indefinitely until reset or until a pulse of greater amplitude is applied. (Alternative display versions are available giving an analogue on a panel meter, or multi-channel measurements of transient voltages.) Other features of the instrument include: provision for remote programming of mode, range and reset; analogue outpur signals, which may be used to drive a low-frequency

strip chart recorder; BCD output for simplified interfacing with printers, card punches, and data loggers; and off-scale and off-zero indicators to ensure readout accuracy and sample and hold capability. The dual-shielded cabinet prevents radiated transient pick-up or common-mode errors. Operation can be from battery or mains. Prices from $£ 480$ for the analogue version. Sintrom Electronics Ltd, 2 Castle Hill Terrace, Maidenhead, Berks.
WW 304 for further details

"Chip" Capacitors

Multi-layer capacitor chips for incorporation into integrated circuits are available from the Radio Resistor Co. in a wide range of capacitance values, with or without tin-plated electrodes. The range is also available as complete components with radial terminations and synthetic coated finish in a capacitance range of $470-47,000 \mathrm{pF}$. Dimensions of the complete component are approximately $7 \times 5 \times 0.06 \mathrm{~mm}$ thick. Available tolerances on both types are either $\pm 20 \%$ or $\pm 10 \%$ and working voltage is 63 V d.c. These capacitors are manufactured by Rosenthal Isolatoren G.m.b.H. U.K. agents: The Radio Resistor Co. Ltd, 9-11 Palmerston Road, Wealdstone, Harrow, Middlesex.
WW 303 for further details

Test Waveform Generator

Feedback Ltd, announce the release of a solidstate waveform generator, the TWG500. The instrument provides simultaneously sine, square and triangular waveforms over the frequency range 1.01 Hz to 100 kHz . Also incorporated is a calibrated phase-shift control for the generation of variable-phase sinewaves. Two main output channels may be connected, via push-button switches and attenuators, to any of the seven waveforms available. One channel provides a level up to 20 V peak, the other provides normal or inverted outputs (or both) at levels up to 10 V peak. Both output amplifiers are accessible to external input for the processing of external signals. All waveforms are available at 2 V peak-to-peak for monitoring purposes. Comprehensive triggering and gating facilities are provided. Initiated manually or by external signal with independent triggerlevel and polarity controls, the instrument is capable of operating in a variety of modes ranging from single cycle to gated bursts of integral numbers of cycles. The application of a voltage
from 0 to 10 fully sweeps the decade range selected, with the output frequency directly proportional to the applied voltage. When used with a suitable oscilloscope the generator provides all the neces-

sary facilities for frequency and transient response testing, giving direct null balance readings. Using an additional generator to sweep a particular frequency range, it is possible to generate gain or loss against frequency displays on the oscilloscope. Price \{334. Feedback Ltd., Park Road, Crowborough, Sussex.
WW 302 for further details

Meter-checking Alarm

The MA21C alarm system, from J. D. Jackson Electronics, provides a method of keeping critical meter readings under constant surveillance. Warning of deviation from the correct reading is given by a loud tone calling the attention of the operator to the offending instrument. The basic alarm is battery operated and portable. It employs integrated circuitry and has facilities for plugging in two photo-electric sensor heads. The heads are stuck to the front glass of the instrument under observation, after which, passage of the pointer past either head will trigger the alarm. A single head may be used to detect either a high or low reading, while two heads are needed to cover both high and low readings. Alternatively a single head may be set up over the pointer after which deviation of the pointer in either direction will trigger the alarm. The alarm will be actuated regardless of the speed at which the pointer passes the head and will continue to sound until manually re-set by push button. The MA21C may be applied to all kinds of pointer type instru-

ments including meters, thermometers and pressure gauges and will function equally well when used with either conventionally marked instruments or instruments with black scales and white pointers. Effects of ambient illumination and temperature variation are minimized by built-in compensation whilst sensitivity is such that the knife type pointer of an Avo model 8 test meter may be readily detected. The instrument is 'fail safe' in that the alarm will sound if drift occurs under extreme environmental conditions. Battery deterioration and bulb failure will also trigger the alarm. J. D. Jackson Electronics, Egglestone Works, Limbard Street, Newark, Notts.
WW 331 for further details

Metal Film Resistors

Morganite Resistors Ltd have increased their range of "Filmet" metal film resistors by the introduction of the FC55. A $\frac{1}{8}$ watt resistor con-
forming to DEF 5115, pattern RFG7-0.125, it is available over the range 6Ω to $270 \mathrm{k} \Omega$ with a temperature coefficient from $\pm 15 \mathrm{p} . \mathrm{p} . \mathrm{m} /{ }^{\circ} \mathrm{C}$ and tolerances from $\pm 0.1 \%$. E24 ohmic values are standard, but other values can be supplied to customer requirements. Morganite Resistors Ltd, Bede Industrial Estate, Jarrow, Co. Durham. WW 321 for further details

Miniature Digital Panel Meter

The Instrument Division of Coutant Electronics has announced the latest addition to their line of digital instruments. This is a range of ten miniature low-cost digital panel meters, with a basic type number CDM. 100 , which have been designed to replace conventional analogue meters for d.c. voltage and current measurements. For minimum size and maximum reliability these meters have been designed with integrated circuits and silicon planar transistors. A particular feature of the range, for data-logging and measuring systems, is a built-in 1248 binary coded decimal (BCD) output facility. Five separate models are available for d.c. voltage measurement and five for direct surrent measurement. Accuracy is 0.1% of actual reading (± 1 digit) for voltage, and 0.5% of reading for current. The five voltage meters have a full-scale reading of $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V , respectively. The five current meters have full-scale readings of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}$,

10 mA and 100 mA , respectively. Input impedance for the voltage meters is 100 megohms for the two lowest ranges and 10 megohms for the three highest: the resolution of all meters is onethousandth of full scale. The individual model numbers specify the range, e.g., the 100 V meter is known as CDM. $100 / 100 \mathrm{~V}$ and the 1 mA meter is given the number CDM. $100 / 1 \mathrm{~mA}$. All models, except the CDM. $100 / 1000 \mathrm{~V}$, have an overrange of 60% giving a maximum reading of 1599 . Up to 1000 V may be applied to any voltage meter and all current meters will safely withstand over 100 mA . Each CDM. 100 is fitted with three separate numeral tubes (each capable of displaying any number from 0 to 9) and an indicator tube which, when energized, displays only the digit one; the three numeral tubes together display numbers up to 999 and the indicator tube operates as the digit one on a 1000 reading and also as the highest digit on overrange. (No agreed standard nomenclature yet exists to describe this arrangement, but some American companies refer to this type of instrument as a ' $3 \frac{1}{2}$ digit meter'.) Common mode rejection is 70 dB and the assessing period is 10 milliseconds; the operating temperature range is $+10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. The meter measures only 114 mm wide by 70 mm high and 190 mm deep. The cost is 6.95 . Coutant Electronics Ltd, Instrument Division, 5 Loverock Road, Reading, Berks.
WW 333 for further details

M.O.S.Ts

Single m.o.s. f.e.ts, types 3 N 163 and 3 N 164 , and dual m.o.s. f.e.ts, types 3N165 and 3N166, do not require gate protective diodes. The input impedance of these Union Carbide devices is very high and
leakage of $T_{D S S}$ is 200 pA maximum for the 3 N163. The transient gate-to-source voltage for both duals and singles is guaranteed at $\pm 125 \mathrm{~V}$. In switching operations the range exhibits a delay time $t_{d(o n)}$ of 12 ns max., and a rise time t_{r} of 24 ns max. for singles, and 30 ns max. for duals. The dual devices are matched within a 100 mV gate-source threshold voltage differential. Union Carbide U.K. Ltd, P.O. Box 2LR8, Grafton Street, London, W.1. WW $\mathbf{3 1 3}$ for further details

Decade Box

J. J. Lloyd Instruments Ltd have introduced a new heavy-duty decade resistance box $\mathrm{HD1/L}$ The lowest decade of this unit is in the form of a high dissipation potentiometer calibrated from 0 to 10 ohms with a resolution of approximately

0.2 ohm and will pass a maximum current of 5 amps. The remaining decades utilize precision vitreous enamel resistors and are rated at 160 watts per decade, except for the upper decade where the rating is limited by voltage and not current. The whole instrument is housed in a screened steel case and is double insulated, so that it may be used safely at voltages up to 1 kV . Accuracy at $20^{\circ} \mathrm{C}$ is $\pm 1 \%$ throughout the switched range. The range is 0 to 111,110 ohms, in steps of 0.2 ohm. J. J. Lloyd Instruments Ltd, Brook Avenue, Warsash, Southampton, SO3 6HP.
WW 318 for further details

Integrated Circuit Modules

A range of low-cost logic modules is available from Honeywell Lid. Called the μ-Pac series 320 , the range is compatible with other Honeywell X-Pac integrated circuit modules and is designed for systems operating at 2 MHz . Initially included in the new range are gated flip-flop, counter, NAND, multi-input NAND, transfer gate, buffer register, power amplifier, decimal/octal decoder and selection gate modules. The range will be expanded in the near future. Honeywell Ltd, Great West Road, Brentford, Middlesex.
WW 319 for further details

Plastic Potentiometers

The recently formed Rotating Components Group of Ferranti Ltd, has announced the introduction of a new product line-conductive plastic potentiometers. These have been developed over

the past few years to provide a range of environ mentally proven components ol high stabilits and virtually infinite resolution. The new potentiometers are continuously rotatable through $36($
degrees and provide an electrical output through 340 degrees (standard) or any angle up to 350 degrees (special). The resistance tolerance is 10% (standard) or 5% (special), and life expectancy is better than ten million sweeps. Operating temperature range is -55 to $+100^{\circ} \mathrm{C}$. The first types introduced in the new range are the type 20 and the type 11 HL . The type 20 provides a resistance range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$. Up to eight sections can be ganged together, with as many as eighteen aps per section. Standard linearity is $\pm 0.25 \%$. The type 11 HL has a resistance range of 500Ω o $5 \mathrm{k} \Omega$, and is available in two configurations: he type 11 HLl , a single gang model without inde terminals; and the type 11 HL 2 which is available in units up to six gangs and is fitted with side erminals. Standard linearity is 0.25%. Rotating Components Group, Ferranti Led, Crewe Toll, Ferry Road, Edinburgh.

WW 329 for further details

Versatile Vice

A multi-position vice, the Spannfix-Vario, has been -lesigned specifically for the assembly of electronic omponents and printed circuits. The standard rase is fitted with clamps for bench fixing and :omprises a universal toggle joint which can be

cked by a lever. The working attachments are tted to this joint enabling the workpiece to be scured at any angle. Vice jaws are 42 mm wide ith a maximum capacity of 45 mm . The p.c. Jard holder is available in two sizes. The smaller ze will take boards from 25 to 220 mm wide and re larger size will take boards from 30 to 240 mm ide. Construction is of light alloy with hardened eel for parts which are subject to wear. Henri icard \& Frere Ltd, 34/35 Furnival Street, London C. 4

'W324 for further details

:adiation Tolerant ransistors

ew from Texas Instruments Ltd are two radia-on-tolerant silicon ${ }^{*}$ small-signal transistors signed for general purpose switching and nplifier applications. They are said to be the ost radiation-tolerant complementary-paired :vices currently available. Both have f_{T} ratings om $800-1500 \mathrm{MHz}$, and both use the TO46 ickage. 2 N 5332 is a p-n-p transistor with a orst-case static forward current transfer ratio FE) of 10 at $I_{C}=20 \mathrm{~mA}$ after exposure to a :utron fluence (time-integrated neutron flux nsity) of 10^{15} neutrons $/ \mathrm{cm}^{2}$. The 2N5399 is an p-n device with a worst-case $h_{F E}$ of 12 after posure to the same neutron fluence and at the
same collector-current level. These transistors are noteworthy because of their low (less than 3 to 1) $h_{F E}$ degradation following exposure to neutron fluence of $10^{15} / \mathrm{cm}^{2}$. The pre-radiation $h_{\text {FE }}$ for the 2 N 5399 ranges between 30 and 90 (typically 50) at $I_{C}=20 \mathrm{~mA}$. Pre-radiation $h_{F E}$ for the p-n-p version 2N5332 is 20 to 80 (typically 40) at the same I_{C} level. $B V_{C B O}$ for the p-n-p unit is 20 V , and 25 V for the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ device. $V_{C E}$ ratings are 12 and 15 V , respectively. Both radiationtolerant transistors are made with a processing technique that utilizes very shallow diffusion profiles, high concentration of impurity dopants, and minimum area. Texas Instruments Lid, Manton Lane, Bedford.
WW 332 for further details

Cable Jointing Machine

A machine which has been designed by the G.P.O. and by the Plessey Company produces more reliable joints in shorter time, when compared

to earlier methods, and is intended for use on telephone cables although many other applications are possible. There is no need to strip the wires before jointing. The wires are laid in the jaws of the electro-hydraulic machine and a button is pressed, the insulation is penetrated, the wires are cold welded together and the joint is protected by a wrap around insulating sleeve, all in a single operation and in less than three seconds. The insulating sleeves are held in an easily replaceable magazine. Plessey Company, Kembrèy Street, Swindon, Wilts.
WW 306 for further details

Variable-frequency Power Source

A variable-frequency power supply rated at 120 W continuous output has been added to the range marketed by LTV Ling Altec Ltd. The new model

PPA120VA, complete in its own free-standing cabinet, can be used as a general purpose laboratory power supply to provide any frequency between 40 Hz and 10 kHz . The output voltage is continuously variable between zero and 100%.

Fixed or variable frequency sources can be used. The low distortion allows the amplifier to be used in high-power audio systems. LTV Ling Altec Ltd , Baldock Road, Royston, Herts.
WW $\mathbf{3 0 8}$ for further details

Programme Selector for Varicap Tuners

A tuning assembly by ITT is designed to store the tuning positions of 12 v.h.f. and four medium-wave band programmes in receivers with

Varactor diode tuning. The 16 carbon resistance films for the potentiometer and the switch contacts are printed on a single substrate. Connection of the 12 v.h.f. tuning potentiometers is such as to provide an overlap of 2 MHz between adjacent switch positions. A large knob, which operates the switch for programme changing, contains a smaller knob which engages with the selected potentiometer when it is depressed thus allowing retuning to be carried out by the user. ITT, Edinburgh Way, Harlow, Essex.
WW 334 for further details

Pulse Generator

Pulse generator model T15-S by K.S.M. Electronics is a solid-state instrument with an internal oscillator range of 15 Hz to 15 MHz . A delay circuit and pulse-width circuit each have a range of 30 ns to 30 ms . Rise and fall times can be controlled independently in the range 10 ns to 30 ms thus

allowing waveforms of different shapes to be produced. An independently controlled positive and negative output pulse up to 10 V in amplitude is provided with d.c. levels variable from -3 V through to +3 V allowing a variable offset voltage about earth. Single, double or groups of pulses can be obtained. K.S.M. Electronics Ltd, Bradmore Works, Bradmore Green, Brookmans Park, Hatfield Herts.
WW317 for further details

Programmable Voltage Source

A voltage source announced by Oltronix gives a remotely programmable output voltage range from 1 mV to 200 V in increments of 1 mV . Other programmable functions include output polarity, floating or chassis earth and internal or external sensing of output voltage. Line regulation is 2 parts in 10^{5} and load regulation $1 \mathrm{mV}+5$ parts in 10^{5} output voltage. Recovery time is 200 mA with automatic current limiting at 230 mA . The unit,
type A200, is protected against short-circuit and overload. Programming is by contact closure in an 8421 b.c.d. format at a maximum current of 25 mA . Supply voltage is $240 \mathrm{~V} \pm 10 \%, 0.5 \mathrm{~A}, 50 \mathrm{~Hz} \pm 6 \%$. Dimensions are $480 \times 90 \times 254 \mathrm{~mm}$ and weight 7 kg . Oltronix UK Ltd, 99 Bancroft, Hitchin, Hertfordshire.
WW 320 for further details

Fast Power Switches

Eight $n-p-n$ silicon power transistors for highvoltage, fast-switching, and high-current applications are announced by Motorola. At 2A collector current the maximum saturation voltage ($V_{C E}$ sai) is only 0.7 V and maximum rise time 100 nsec . Types 2N5336-39 are devices in TO39 cases (up to 6 W dissipation) and types $2 \mathrm{~N} 5427-30$ are 7A devices in TO66 cases (up to 35W dissipation). Sustained $V_{\text {CEO }}$ is 80 V for the first two of each series and 100 V for the second two. Motorola Semiconductors Ltd, York House, Empire W'ay, Wembley, Middx.
WW 314 for further details

Lightweight Oscilloscope

A new oscilloscope announced recently by Dynamco is a solid-state lightweight model with 15 MHz bandwidth and costing 355 . It is fitted with a general purpose single-channel Y amplifier

with a basic deflection factor of $50 \mathrm{mV} /$ division and a switched $\times 10$ a.c.-coupled pre-amplifier. The timebase module provides calibrated sweep rates of 0.5μ s to $0.2 \mathrm{~s} /$ division. A switched $\times 10$ magnifier gives a maximum sweep speed of $50 \mathrm{~ns} /$ division. Dynamco Ltd, Hanworth Lane, Chertsey, Surrey.
WW 336 for further details

Digital Volt/Ohm Meter

Model 9000 Volt/Ohm meter marks the debut in the digital voltmeter field of Systron-Donner, of Concord, Colorado. This instrument can be panelmounted, used on the bench top or fixed on a swivel

mount above the bench area. The makers say a quick response input amplifier eliminates hunting and enables the d.v.m. to track varying inputs.

Noise rejection is 80 dB and reading accuracy is 0.1% of reading on d.c. and ohms. Measurement ranges selected by front panel control are: 1,10 , 100 V and 1 kV , and $1 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$ in five steps. U.K. agents: Aveley Electric Lid, South Ockendon, Essex.
WW $\mathbf{3 3 5}$ for further details

Tunable TR Limiter

A new X-band TR limiter (BS908) introduced by English Electric Valve Co. Lid, combines a high Q cell with a varactor limiter stage. The addition

of the limiter stage gives added protection against spike leakage, which in turn reduces noise deterioration and limits crystal burn-out. For use in marine radar applications the BS908 is tunable over the frequency range 9250 to 9550 MHz , and will work in duplexers with up to 75 kW transmitted power. Overall dimensions are height 96.85 mm , width across mounting flange 41.28 mm and depth 39.5 mm . Net weight is approximately 250g. English Electric Valve Co. Ltd, Chelmsford, Essex.
WW 301 for further details

Rack and Panel Connector

Cannon connector type RTG-18 is for rack and panel mounting and features a shell-less design with crimp removable contacts. The contacts are in numbers of $39,26,20,16$ and 10 (DIN specification 41618) and contact cavities can be left empty to

provide additional arrangements. The blade-type pin contact and knife-edge socket contact are said to require low insertion and removal forces. Contact finish is silver. The RTG-18 insulator features a monobloc construction giving high mechanical strength and good electrical characteristics. Cannon Electric (Great Britain) Lid, Lister Road, Winchester Road, Basingstoke, Hants.
WW 323 for further details

Instrumentation Tape Recorder

The Philips ANA-LOG 7, is an advanced IRIG compatible transportable instrumentation tape recorder providing up to seven data channels

and one voice channel on a half-inch tape. The dual-capstan crystal-controlled tape transport has four speeds with an overall ratio of $1: 32$. The tape is protected by a closed cassette and is threaded into the machine automatically. The complete electronics for record and replay, in either f.m. or direct record modes, is contained in a single plug-in module for each channel. Equalization for each tape speed is selected automatically. Frequency response is $0-10 \mathrm{kHz} . \mathrm{m}$. and 250 Hz 100 kHz direct recording. Power requirement is $110-250 \mathrm{~V}$ at 50 or 60 Hz , or 24 V d.c. Pye T.V.T. Ltd, Cambridge.
WW 326 for further details

Relay for P.C. Board

A relay, for direct mounting on 0.1 in (2.54 mm) grid centre printed-circuit board, is available from Oliver Pell Controls Ltd. Contact arrangements are 2,4 and 6 changeover and 6 or 8 make

or break, at 1 A or 5 A ratings. The relay stands 30.1 mm above the board and widths vary from 24.4 mm to 36 mm . Depths are all constant at 18.5 mm . Oliver Pell Controls Lid, Cambridge Row, Woolwich, London, S.E. 18.
WW 310 for further details

Transistor Test-set

Labgear Ltd announce a transistor test-set which combines the functions of a dynamic transistortester and that of a test-signal generator. Essentially a serviceman's fault-finding unit, the set provides direct reading of important transistor characteristics and particularly gives indication of the current gain and also of the collector leakage current of transistors in common emitter connection. A plug-in signal injector probe is supplied with the set, permitting "in-circuit" fault localization. There is a built-in a.c. mains operated power supply although, to maintain absolute portability, the set can be battery powered. Equipment under test can be powered from the external d.c. output available from two spring terminals on the top of the unit. Labgear Ltd, Cromwell Road, Cambridge.
WW 328 for further details

Test Your Knowledge

ieries devised by L. Ibbotson*, B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

4. Two-port networks

Of the four networks referred to below -lect the one which asymmetrical
(a) Fig. 1
(c) Fig. 3
(b) Fig. 2
(d) Fig. 4

Of the four networks referred to below lect the one which is balanced
(a) Fig. 1
(c) Fig. 3
(b) Fig. 2
(d) Fig. 4

Three of the networks referred to below e electrically equivalent at all frequencies rovided there is no external connection stween input and output). Select the "odd an out".
(a) Fig. 1
(c) Fig. 5
(b) Fig. 2
(d) Fig. 7

At a particular frequency it is found that -hen an impedance of value Z is connected to e output terminals of the network shown in g. 9 the input impedance is also $Z . Z$ is
(a) an image impedance
(b) an iterative impedance
(c) the characteristic impedance
(d) the design impedance.

With the output terminals of the network .own in Fig. 9 short-circuited the input imedance, $Z_{S 1}$, is measured. The output ter--inals are now open-circuited and the input pedance, Z_{01}, is measured. Both thes easurements are made at the same frelency. The square root of the product of i_{1} and Z_{01} gives at that frequency
(a) the image impedance
(b) the iterative impedance
(c) the characteristic impedance
(d) the design impedance.

The network of Fig. 10 is related to those Figs. 1 and 5 in that
(a) its two image impedances have the same values as their characteristic impedances (b) its two iterative impedances have the same values as their characteristic impedances
(c) the phase shift which it produces at any frequency is the same as that of both in series
(d) the attenuation which it produces (under matched conditions) is the same as that produced by the two in series.

Fig. 8 shows an attenuator network with haracteristic resistance of 600Ω and a rated enuation of 6 dB . Its insertion loss is 6 dB (a) under all conditions
(b) only if the load impedance is 600Ω resistive

(c) only if both the load impedance and the generator internal impedance are 600Ω resistive
(d) if either the generator internal impedance or the load impedance or both are 600Ω resistive.
8. The network of Fig. 8 is connected between a generator and a load. The voltage appearing across the output terminals is half that at the input terminals
(a) under all conditions
(b) only if the load impedance is 600Ω resistive
(c) only if both the load impedance and the generator internal impedance are 600Ω resistive
(d) if either the generator internal impedance or the load impedance or both are 600Ω resistive.
9. The outputs of the networks referred to below are all short-circuited. The input impedance will be purely reactive in all but one case. It is
(a) Fig. 4
(b) Fig. 6
(c) Fig. 9
(d) Fig. 10.
10. The network shown in Fig. 1 may be regarded as a T section from a ladder network (this allows us to use well known standard formulae to determine its transmission properties). The elements of the ladder network are series capacitors and shunt inductors of values respectively
(a) $2 \mu \mathrm{~F}$ and 1 mH
(b) $2 \mu \mathrm{~F}$ and 2 mH
(c) $\frac{1}{2} \mu^{F}$ and 1 mH
(d) $\frac{1}{2} \mu \mathrm{~F}$ and 2 mH .
11. The network of Fig. 7 is high-pass filter with a cut-off frequency of 3560 Hz and a design impedance of 45Ω. IT is used to terminnate a transmission line of characteristic impedance 45Ω and its output terminals feed a 45Ω load. A signal of frequency 1 kHz is applied to the input of the line. Most of the energy reaching the end of the line is
(a) absorbed in the load
(b) absorbed in the network
(c) reflected back along the line
(d) radiated away.
12. The network of Fig. 5 is
(a) a constant k high-pass filter
(b) a constant k low-pass filter
(c) a constant k band-pass filter
(d) not constant k, and has transmission properties which are not obvious by inspection.
13. The network of Fig. 6 is
(a) a constant k high-pass filter
(b) a constant k low-pass filter
(c) a constant k band-pass filter
(d) not constant k, and has transmission properties which are not obvious by inspection.
14. The transmission properties of a symmetrical lattice network of pure reactances, such as the one shown in Fig.7, can be deduced by considering the frequencies at which poles and zeros occur for the reactances of the series and diagonal arms. A transition between a stop and a pass band occurs at each frequency where
(a) a pole for one arm coincides with a zero for the other
(b) a pole for one arm coincides with a pole for the other, or a zero coincides with a zero
(c) either a pole or a zero for one arm coincides with either for the other
(d) a pole or zero occurs for one arm, but neither occurs for the other.
Answers and comments, pages 345

World of Amateur Radio

How much compromise in transceiver design?

A major change in recent years in professionally designed equipment for the amateur market has been the emerging of the compact h.f. transceiver, usually intended primarily for s.s.b. operation. British, American and Japanese equipments and kits have appeared on the market in considerable numbers. While, in the best examples, such equipments provide extremely effective performance, despite their small size, there is some concern that, in order to keep prices as low as possible, performance specifications have sometimes been pared to a minimum. For example, to give the stability required for s.s.b. working, multi-conversion receivers with crystal-controlled first oscillators are almost always used. When highgain, automatic-gain-controlled r.f. amplifers and high-gain mixers are used, such equipments tend to become vulnerable to cross-modulation from loud, local stations. To some extent, this problem can often be overcome by modification of the a.g.c. arrangements or the fitting of additional r.f. gain controls. Another problem arises from the very different duty cycle imposed on power supplies during s.s.b., c.w., and r.t.t.y. operation. For whereas s.s.b. has a duty cycle of the order of 12%, that for c.w. is about 45%, while r.t.t.y. is 100%. There is thus a tendency to skim the "iron" in the power units on the grounds that s.s.b. is the main requirement; similar considerations often result in selectivity characteristics tailored to s.s.b. rather than c.w. requirements. While the task facing designers in this field is a difficult one, there can be little doubt that, in some respects, the demand for all-purpose, low-cost equipments for the amateur is resulting in compromise designs.

U.K. 'B'" licences still soaring

Amateur licence totals in the U.K. at April 30th again underlined the impact of the 1968 concession to holders of the " B " licences (for which no Morse Test is demanded, and which carry a G8-three-letter callsign) when it was agreed that operation would be permitted on the popular 144MHz band. With 1530 " B " licences in force at April 30th (compared with 872 a year ago), these now represent over 10% of the total of fixed amateur station licences. This increase of 658 compares with the corres-
ponding figure of 390 (from 12785 to 13175) for "A" licences. The " B " licence is now not only attracting substantially more newcomers than the full " A " licence, but appears to have resulted in a substantial falling off in numbers applying for "A" licences. There has also been a remarkable increase in " B " mobile licences which have shot up in the 12 months from 55 to 172. Amateur television licences at 188 show practically no change.

L12B for another Heyerdahl expedition

The callsign LI2B, made famous by its use during Thor Heyerdahl's Kon Tiki expedition in 1947, has again been allocated to his re-creation of an ancient Egyptian papyrus boat, the Ra. This has set out from Africa in an attempt to show that it would have been possible for such vessels to have sailed to South America, and thus explain similarities between the Egyptian and Aztec civilizations. Radio equipment is carried primarily for emergency purpose, but, as on the Kon Tiki raft, is to operate also as an amateur station.

V.H.F. changes discussed at Brussels

The recent I.A.R.U. Region 1 meeting in Brussels is understood to have recommended the introduction of a number of important changes for European v.h.f. operation, including the voluntary allocation of more frequency space for c.w. (telegraphy) and amateur television operation, as well as the moving of regular beacon transmissions to the higher frequency, rather than the lower frequency, edges of the bands. Concern is also being expressed among European amateurs at the increasing tendency of some stations to operate on telephony in the c.w. segments of the h.f. bands. Frequencies voluntarily reserved for c.w. are: $3500-3600$; $7000-7040 ; 14000-14100$ (r.t.t.y. around 14090); 21000-21100; 28000-28200 kHz.

Moonbounce contacts and v.h.f. news

A further "moonbounce" contact has been made by Peter Blair, G3LTF, of Chelmsford, Essex, with the Californian amateur, Peter Laakmann, WB6IOM, on 1296 MHz . The American signals peaked 12 dB over noise in a bandwidth of 100 Hz and signals were copied for 80 minutes. These amateurs have developed a new code to facilitate passing simple messages by varying the dash fre-
quency and spacing, claimed to be effective at signal-to-noise ratios some 6 dB lower than for morse. A group of Danish amateurs using the callsign OZ8EME is conducting $432-\mathrm{MHz}$ moonbounce tests with 900 watts transmitter output and a 20 ft parabolic aerial. A two-way contact on 2300 MHz exceeding 100 miles was achieved on May 11th when A. Wakeman, G3EEZ, on Clee Hill, communicated with L. W. G. Sharrock, G3BNL, on the Chilterns, using pulse modulation. A new 433.81 MHz beacon station, callsign G3SUT (later to be changed to GB3SC), has its aerials mounted 300 ft up on the B.B.C. Sutton Coldfield television transmitter mast. F.S.K. is used, and aerials are beamed north and southeeast.

The "Amateur" Prisoner-of-War

A well-known amateur who, while a pris-oner-of-war from 1941-45 in Oflag $9 \mathrm{~A} / \mathrm{Z}$, built and operated secret radio sets, has died at his home in Harrogate. He was Ernest Shackleton, M.B.E., who held the amateur licence G6SN since 1935, and who was widely respected for his knowledge of workshor practice and skill in constructing equipment After the end of the war, Capt. Shackletorreturned to the P.o.W. camp to retrieve the equipment; one of the receivers is in the Imperial War Museum in London.

July contests and mobile rallies
Enhanced activity on the bands concernec can be expected during the followins R.S.G.B. contest periods (times in G.M.T.) 1.8 MHz c.w. 21.00 July 5th to 02.00 July 6th; 144 MHz 16.00 July 5th to 14.00 July 6th; 3.5 to 28 MHz c.w. high-power field day 17.00 July 12th to 17.00 July 13th; and 432 MH : portable July 20th $10.00-16.00$.

Large attendances continue to be recordec at mobile rallies. Among those being helc during July are: South Shields (Bents Parl Recreation Ground) on July 6th and intend ing visitors should oblain free parkink tickets from D. Foster, G3KZZ, 4 Marlborough Street, South Shields; July 6tl= Colchester Zoo; July 13th New Forest (Stone, Cross Airfield); July 13th Worcester; Jul: 27th Cornish Radio Amateur Club.

In Brief: Stratford-on-Avon Radio Club wil be operating GB3SUA from July 11th to 13 th to celebrate the 700 th anniversary o the formation of the Guild of the Holy Cross, the beginning of local government is the town. Operation will be on $3.5,14,2$ and 28 MHz . Information on the event fron M. J. W. Webb, G300Q, 14 Townsend Roac Tiddington, Stratford-upon-Avon GB3WRA is to be operated by a group o local amateurs from the annual w'ycomb Show on the Rye, High Wycombe on Sep tember 6th on all bands from 1.8 to 70 MHz Information from A. C. Butcher, G3FSN, $71-$ Hughenden Avenue, High Wycombe, Buck

The U.S. Navy recently closed down it. amateur operations in the Far East, apar from hospital ships . . . A new Radir Amateur Satellite Corporation has beet formed in Washington, D.C., to try to obtait facilities for further launchings of amateu communications satellites.

PAT HAWKER, G3V

Answers to

"Test Your

Knowledge"-14
Questions on page 343
-1. (c). Fig. 4 appears at first sight to be asymmetrical, but each series arm can be split into two equal parts both parts consisting of an inductor in series with a sapacitor) without altering the electrical properties.

2. (b).

3. (c). Fig. 1 and Fig. 2 are equivalent; series impedance an be moved from one arm to the other without altering he transmission properties provided it is not moved o the other side of a shunt impedance. Fig. 7 is the attice equivalent of Fig. 1 (as can be seen by applying -Bartlett's bisection theorem). Fig. 1 and Fig. 5 are sections of the same ladder network, so that their propagation onstants are the same, but their characteristic impedances sre different.
4. (b). The network is quite obviously asymmetrical.
i. (a). If the network were symmetrical it would give -he characteristic impedance. Note that the terms image or iterative impedance are sometimes applied to a ymmetrical network, but in that case they are synonynous with characteristic impedance.
-. (a). Fig. 10 is a half-section of Fig. 1 and also of "ig.s. The image impedance at the port marked "in" a Fig. 10 is the same as the characteristic impedance of Fig.1; the image impedance of the port marked "out" is the same as the characteristic impedance of ig. 5.
5. (d).
6. (b). The solutions to this and the previous question mply that if we have a switched attenuator matched It its input but not at its output, the attenuator setting will not indicate correctly the relationship between sutput and input voltages, but a change in the attenuator etting in dB will give the same change in output voltage n dB.
(c). The other three networks contain only reactnces. Whatever currents flow in these reactances no nower is absorbed, therefore the input impedance cannot ave a real part.

0 . (c). The reactance of a series element from the adder must be twice the reactance of a $1 \mu \mathbb{F}$ capacitor. dence its capacitance must be $\frac{1}{2} \mu \mathrm{~F}$.

1. (c). In its stop-band a filter attenuates by reflecting nergy, not by absorbing it.
2. (a).
3. (d). A network of this configuration is a constant band-pass filter if the series and shunt arms have the ame resonant frequency. This network has in fact two ass-bands.
4. (d). Foster's reactance theorem indicates that for ither arm a reactance versus frequency plot has a ositive slope at all points, and that poles and zeros lternate on the frequency axis. For a lattice network $0=\sqrt{ } Z_{S} Z_{D}$ so that Z_{O} changes from real to imaginary he criterion for a cut-off frequency) where Z_{S} and Z_{D} hange from having opposite signs to having the same gn . If the reactance curves for Z_{S} and Z_{D} are plotted n the same graph it will be apparent that this will ccur where one has a pole or zero and the other neither.
THE CHOICE MINIATURE SWITCHES
AND MICRO SWITCHES

Togile S.P.C. O
2A. 250VA

Lis: No. SRM $270 / 2$ Push-Puch DPC.O $2 \mathrm{~A} .250 \mathrm{~V} \text {. }$	List No. SM 446/2. Push-Pull. DPC.O 2A. 250 V .	Lier No. SM. $591 /$ Term Slide S.P.M.B 34.250 V .
List No. SM. 319 Key S.P.M.B. 3A. 250 .	 List No. SM.482/Term Toggle S.P.C.O. 2 A .250 V .	List No. SRM. $265 /$ Term/SO Push-Push. S.P.C.O. 2 A. 250 V ~

List No. SM. 253.
Semi-Rotary S.P.M.B. 3A. $250 \mathrm{~V} \sim$
 Toggle. D.P C 0. 8 contact \sim

List No. S. 800 Qution Operator S.P C.O. 8A. 250 V .	List No. S. 520532. Button Operator S.P.C.O. 3 A .250 V ,	 List No. S. 500505. Butron Operator S.P.C.O. 5A. 250 V .	List No. S. 695. Open Blade S.P.C.O. 3A. 250 V
List No. S.801. 2 Push Gutton Twin S.P.C.O. 8A. 250 V .	List No. S. 530 W. Wire Operator S.P.C.O. 3A. 250 V .	List No. S. 800/L Leat Oderator S.P.C.O. 8A 250V.	List No. S. $736 / \mathrm{MA}$. Magnetically Operated. S.P.C.O. 3A. 250 V .

SEND FOR
MINIATURE SWITCH BROCHURE NO. 1509/C MICRO-SWITCH BROCHURE NO. 1501/C

OVER
A. F. BULGIN \& CO. LTD.

BYE PASS RD, BARKING, ESSEX. 01-594 5588
4,000
VARIETIES

Literature Received

CATALOGUES

The 1969 components stock catalogue of ITT Electronic Services (Edinburgh Way, Harlow, Essex) is now available. It contains over 1,000 pages and lists numerous components. WW 401 for further details
"Electronic Grade Chemicals" (Hopkin \& Williams Ltd, Chadwell Heath, Essex) lists and gives the composition of a wide variety of chemicals. WW 402 for further details

Printed circuit edge connectors and plugs and sockets are the main subject of a catalogue from Ultra Electronics (Components) Lid (Fassets Road, Loudwater, Bucks), although some switches and tools are also included. WW 403 for further details.
The range of "Cermet" trimming potentiometers and "Filmet" metal film resistors are described in a catalogue received from Morganite Resistors Lid, Bede Trading Estate, Jarrow, County Durham. WW 404 for further details.
"Numerals and Indicating Tubes" is the title of ia leaflet listing the alphanumeric cold cathode tubes manufactured by AEG-Telefunken, Fachbereich Röhren, Vertrieb, 7900 Ulm, Soflinger Strắsse 100. WW 405 for further details.

The components group of S.T.C. have produced an Acoustic Products catalogue. S.T.C. Ltd, Acoustic Sub-Division, West Harlow, Essex. WW 406 for further details.
Test equipment manufactured by Wayne Kerr (New Malden, Surrey) bridges, analysers, oscillators, special purpose instruments, etc.-are described in a new catalogue. WW 407 for further details.
We have received four catalogues describing components produced by the Japanese Mitsumi group available from Ataka \& Co., (U.K.) Ltd, Roman House, Wood St., London E.C.2. They are: (1) Polivaricon trimmer capaci-tors-i.f. transformers; (2) Micro synchronous motors-trimming potentiometers; (3) f.m. and television tuners and sub-assemblies; (4) Cs photoconductive cells-cell lamps. (1)-WW 408, (2)-WW 409, (3)-WW 410, (4) -WW 411 for further details.

A supplement to the XceLite catalogue (No. 166) contains details of professional hand tools (mostly various screw and nut drivers) fabricated in beryllium-copper or nickel-chrome. XceLite products are marketed by Special Product Distributors Lid, 81 Piccadilly, London, W1V OHL. WW 412 for further details.

Saturable core output/driver transformers, inverter transformers, converter/inverter drive modules and communication inductors are described in a catalogue available from Gardners Transformers Lid, Somerford, Christchurch, Hampshire. WW 413 for further details.
Copper clad laminates to (1) -DIN40802 and (2)-DIN7735 are described in two catalogues received from Dynamit Nobel AG, 521 Troisdorf, Cologne, Germany. (1)-WW 414 and (2)-WW 415 for further details.
Entertainment semiconductors produced by Ates Componenti Elettronici S.P.A. of Milan are described in a quick selection guide obtainable from their London office at Prospect House, Boston Manor Road, Brentford, Middx. WW 416 for further details.
Two booklets describing the range of PIXIE and NIXIE readout tubes and associated equipment manufactured by the Burroughs Corporation are available from V'almore Electronics Lid., 11-15 Betterton Street, Drury Lane, London W.C.2. The information given includes technical data and some application notes. WW448 for further details.
"The World's Most Complete Electronic Tube Purchasing Directory" is the title of a booklet produced by the Metropolitan Supply Company,

468 Park Avenue South, N.Y., N.Y. 10016, U.S.A. It lists some 500 currently popular industrial, entertainment and military valve type: Manufacturers names, price (U.S.A. currency) and quantity discounts ar supplied, but no technical information. WW 449 for further details.

APPLICATION NOTES

"Hybrid Microcircuits for D-to-A converters" is the title of an application note (TP 691) we have received from Sprague which discusses thin filr hybrid microcircuits and tantalum nitride and nickel chromium resisto networks. Literature Service, Sprague Electric Company, Marshall St., Nort. Adams, Mass. U1247, U.S.A. WW 417 for further details.
The title of this next application note is self explanatory "Design anc application of a Monolithic Voltage Regulator with Foldback Curren Limiting'. It is available from Transitron Electronic Lid, Gardner Road Maidenhead, Berks. WW 418 for further details.
"How to measure Group Delay on a Swept-frequency Basis" (77/4) is very good publication explaining what group delay is and how it may b measured. Hewlett-Packard, 224 Bath Road, Slough, Bucks. WW 419 fo further details.

We have received six application notes from Ates, (Prospect House, Bosto Manor Road, Brentford, London) they are (1) "A New supply circuit fo solid-state TV without mains transformers"; (2) "Audio Hi-Fi Preamplifier' (3) "High Fidelity 20-W Audio Amplifier"; (4) "Design of a Particula D.C.-D.C. Converter"; (5) "Low-cost Complementary Symmetry 15 W an 5W Hi-Fi Audio Amplifiers"; (6) "Design of Transistorized Vertical Defler tion Output Stages for Monochrome IV Receivers." (1)-WW 421 (2)-WW 421, (3)—WW 422, (4)—WW 423, (5)—WW 424, and (6)-WV 425 for further details.
"Processing Instructions for Trolitax Glass /Epoxy Laminates" give advice on handling problems. Dynamit Nobel AG, 521 Troisdorf, Cologn Germany. WW 426 for further details.
"C Series Selenium Surge Suppressors" (19-13) gives a number ' applications and other information on the range manufactured by Westin house Brake and Signal Company, Semiconductor Division, 82 York Wa London N.1. WW 427 for further details.
"An Introduction to the Techniques of Mass-Soldering Printed Cis cuits" details methods and gives hints. Multicore Solders Ltd., Hem Hempstead, Herts. WW 428 for further details.

PRODUCT DATA

"High Speed Clock Channels" describes a device for retiming clock rat for glass delay line memories where severe ambient conditions preclude thuse of normal techniques. Corning Glass International, S.A., 3 Cork S London W.1. WW 429 for further details.
The Radio telephone model FM-5 $(148-170 \mathrm{MHz})$ is described in a leaf from Hallicrafters Co., 600 Hicks Rd., Rolling Meadows, Illinois 6008, U.S WW 430 tor further details.
C.R.Ts and associated products. We have received details of the followir products from Ferranti, Gem Mill, Oldham, Lancs:- c.r.ts (1) type 5G /7 (2) type $5 \mathrm{~J} / 75$ and (3) type $9 \mathrm{~B} / 75$; (4) c.r.t. mounting unit M400; (computer display unit CDU 21A and (6) guard ring diode GRD7. (1)-W 431, (2)-WW 432, (3)-WW 433, (4)-WW 434, (5)-WW 435 ar (6) -WW 436 for further details.

Received from Electrosil Lid, P.O. Box 37, Pallion, Sunderland, Co. Durhar data on the C3 glass-tin-oxide resistor. WW 437 for further details.
Various infra-red detectors are described in literature available from th Barnes Engineering Co., 44 Commerce Rd., Stamford, Connecticut 0690 U.S.A. WW 438 for further details.

Brimar have sent us literature on two c.r.ts these are:- (1) V4100/P16, 3 flying spot scanner; (2) M38-100-/GH, -/W, 15 in data display/monitor tut Thorn Radio Valves \& Tubes Lid. 7 Soho Square, London W1V 6D (1) -WW 439 and (2) —WW 440 for further details.

A portable spectrum analyser for 10 Hz to 50 kHz is described in a leafl available from Systron Donner Corp., $148++$ Oxnard St. Van Nuys, Califc nia 91409, U.S.A. WW 441 for further details.
A mains operated crystal clock manufactured by Venner Electronics Lts Kingston By-Pass, New Malden, Surrey, is the subject of a new leaflet. W 442 for further details.
Soldering products. The following products are described in leafle obtainable from Multicore Solders Ltd, Hemel Hempstead, Herts. (Activated surface preservative. (2) non-corrosive liquid flux. (3) rosin for flux. (4) protective coating. (5) solvent cleaner. (1)-WW 443, (2)-W 444, (3)-WW 445, (4)-WW 446 and (5)—WW 447 for further details.

NATO, RN, NASA, BBC, use Uher tape-recording equipment...

...so does John Harding.

Engineer by trade, music-lover and stereo enthusiast by inclination.

He knows that Uher is chosen to record signals from space. To help train the Royal Navy in weapons systems. Tc capture the sounds of history being made.

He knows that Uher equipment is best for his own purposes as well.

Tough yet sensitive, compact yet versatile, it gives him the finest sound reproduction he could wish for.

The first happy gurgling of his first-born child, the racket of a machine under test, the full grandeur of a symphony orchestra-John Harding has them all taped.

Taped by Uher because he
doesn't reckon he can do any better than that.

Professionals pick Uher equipment as the tools of their trade.

But they're equally available, equally accurate, equally satisfactory, for the discerning amateur. There's a Uher tape-recorder to meet your requirements.

DISTRIBUTED IN THE U.K. BY BOSCH

Chtessulat

SOLDERING INSTRUMENTS

Have a look at your present soldering irons. Are they really giving you the performance and service you're paying for? Is there really a model suitable for your size of work? Or are you making do with a tiny bit in a big iron? Or vice versa? Do they have the cool, comfortable feel, the elegance, of a LITESOLD? Drop one on a concrete floor-does it survive? Can you easily and cheaply replace the bits? Can you service it yourself? Are the models you want available for any voltage? Are they listed at 32 shillings or so each, with discounts for quantity?

Yes? Then we must be preaching to the converted, for you are surely a LITESOLD user already.

Well, if you are, or even if you're not, you may be interested in the new PHILIPS ELECTROLYTICALLY IRON COATED BITS. They last up to 75 times longer than copper, and are a big advance on all previous iron coatings.

LIGHT SOLDERING DEVELOPMENTS LTD

audio

tone burst generator

Frequency range 1 Hz to 20 kHz
Signal starting and stopping phase can be varied $\pm 30^{\circ}$ approx.
Pedestal output +5 Volts
Synchronising pulse +5 Volts 10μ secs.
Counts On and Off 2, 4, 8, 16, 32, 64, 128 cycles Price £125.0.0

Kelly Acoustics
Romagna.
6. Bycullah Avenue.

Enfield. Middlesex
Telephone 01-363 7890

Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Governmënt specifications.
MICRO-SWITCH • TRANSISTORISED . HEAVY-DUTY . A/C LATCHING . 'SPECIALS' MADE TO YOUR OWN DRAWINGS
No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY (CONTROLS) LTD. 157 REGENTS PARK ROAD LDNDON N.W.1. 01-722 8161

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WHERE THE GOING IS TOUGH, THE NEED FOR QUALITY VITAL gOVERNMENTS AGREE ON TEONEX VALVES.

Governments all over the world have chosen TEONEX Valves for vital civil and military roles requiring compliance to E.V.S. or M.I.L. standards. In spite of rising demand for these valves from government departments the world over, increased production facilities have made it possible to offer the TEONEX range (incorporating the entire range of British-produced valves or their Continental equivalents) for use outside the U.K. only. Price list and technical specifications may be obtained from:

TEONEX LIMITED

Export Enquiries Only Please!
2a Westbourne Grove Mews,
London, W.II, England
WW-082 FOR FURTHER DETAILS

то: NOMBREX LTD
 Exmouth. Devon. England

Please forward leaflets of your full range to:-
NAME

Please enclose 6d. stamps

Trade and Export enquiries please attach letterhead or Trade Card.

R. F. SIGNAL GENERATOR MODEL 29
Spin Wheel Tuning £1.0.0 extra
Postage \& Packing 7s. 6d.

MODEL 29-S

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
- Eight clear scales. Total length $40^{\prime \prime}$
- Smooth vernier tuning-ratio $7 \frac{1}{2}: 1$
- Spin wheel tuning-optional extra
- Magnifier cursor-precision tuning
- Unique electronic scale calibration
- Overall accuracy, better than 1.5\%
- Modulation, variable depth \& frequency

PRICE £20.0.0

MODEL 29-X

- Full specification of Model 29-5

AND
Integral Crystal Calibrator providing accuracy
to $\pm 0.02 \%$
Integral Crystal Calibrator providing accuracy
to $\pm 0.02 \%$ PRICE £27.10.0

M. R. SUPPLIES, LTD.,

 (Established 1935)Ubiveraaly recognied an suppliers of UP-TO-DATE MATERLAL, whleh doen the job property. Instant dell rery. Bat wactict on anaured. Prices nett.
FAN FLOW EITRACTOR FANS. Undoubtedy today'n greatent bargain for domentic or induatrial nie. Por $200 / 250$ volt. A.O. 7,son cu. It. per hour. Fially inntalled, atted weatherproof louvre which open when motor is switched on and clow when oft. Only 8 in . din. Our nett price only 28/2/6 (deapatch 7/6).
mILATURE RUNNING TIME METERS (Angamo). We have great demands for this remariable 9 untt and now ean mupply lmmedintely from shock, $200 / 250 \%$. 50 e . asychmonoun. Counting up to 9,999 boura, with $1 / 110$ th ladicator. Only if Inn. aquare, with cyclometer dial. depth 2 ina, Many
nduatrial and domestic applications to indicate the runolng time of any olectrical appuratun, easy to inntall, $63 /=$ (dea. $1 / 6$).
SYMCHRONOUS TIME 8 WITCEES, (Another one of our popular apecialliles) 200/240 v. 50c., for ceurate pre-set ewitching operations. Bangamo 8.254, providing up to 8 on-oft operations per 24 hours at any choaen times, with dey -omitting derice (use optionap). Capacity $20-\mathrm{amps}$. Com pectly houaed 4 in . dia., 3 ln . deep, $88 / 4 / 6$ (den, $4 / 0)$. Aso anme ercelient make new domentic duty as above (less day-omitting). $24 / 14 / 0$ (des. 4/6). Full instructions with emeh.
 4/la. equare and 2in. deep. Ideal for domestic or Lnduatrial use. Eany moantlag, £3/5/= (des. 3/6). BMALL GEARED MOTORS. In addltion to our well known range (Llot GM.564), we offer smal open type B. P. Unith 200/2so v. A.C., 1, B, 12, 24, 60 r.p.m., approx. Sln. long. with 1ta, shatt projection emek alde and enclosed gearboz. 8uliable for diaplay work and many indurtrial usee Only 6810 (des. $1 \cdot$).
MDIATURE COOLIMG FANs. 200/250 v. A.C. With open type induction motor (no interference),

Th BLOwers H1gly mem untt ntted liduct

 x 9in. outlet 2 inn . 8 q., $211 / 25 / 6$ (des. $6 /-$). Model $8 \mathrm{D} 28,280 \mathrm{CrM}$ (tree air) to 127 CFY at U.K. 7/8)

SYNOBRONOUS ELLECRIO CLOCE MOVFMENT8 (an mentioned and recommended in many nationai Journals). $200 / 250$ F. 50 a . Reif-ntartigg, Fitted aplndes for hourn. minutea and central beck duat cover. $39 / 8$ (den. $2 / \mathrm{O}$). Set of three brams handu in rood plata atyle. For b/7in. dic. 2/6
For $8 / 10$ dis. $3 / 6$ ret.

SMALL BEFCR GRIWDERS. 200/250 F. A.C./D.C. WIth two 3 ld . d lemeter wheels (coarse and fine surfaces). Bench mount, very useful bousebold or ladurtrial unith. $87 / 17 / 8$ (des. $6 / \%$).
 max. dia., 500 CFM, \&ei12/6 (des, $0 /-$).
Imediate prlivery of stant Contrifugal Pampe, locluding itainleas iteel (mont modela).
M. R. SUPPIIES, Itt., 68 New Oxford Street, London, W.C. 1 (Telephone: 01.636 2958)

WW-083 FOR FURTHER DETAILS

Tive In CHANE OF Solid STATE A.C. MAINS AMPLIFIERS
 Employing oniy high grade components and transistors

LT55 6 WATT AMPLIFIER
A High Fidelity unit providing excellent results at modest output levels.
Frequency Response $30-20,000 \mathrm{cps}-2 \mathrm{~dB}$ Senaltivity 5 mv (max).
Harmonle Distortion 0.5% at $1,000 \mathrm{cps}$. Output for 3-8-15 ohm Loudspakers.
Input Sockete for 'Mike' Gram and Radio
Tunar/Tape Recorder
Controls (5) Volume, Bass, Treble, Mains Switch, Input Selector Switch.

LT66 12 WATT STEREO AMPLIFIER

A twin channel version of the LT55 providing up to 6 watts High Fidelity output on each channel.
Switched Input Facilities Socket (1) Tape or crystal PU (2) Radio Tuner (3) Ceramic PU Microphone.
Controle (6) Volume, Bass. Treble. Balance, Mains Switch, Inpuf Selector Switch, Stereo, ons.
Facia Plate Rigid Perspex with black/silver background and matehing black edged knobs with spun silver centres.

Recommended
Retall price
9 GNS
Size $94 \times 2 z \times 5 k i n$.
If mquired an ateractlve mood cabinet تrth

Recommended Retall price

16 GNS
Size $12 \times 3 \frac{1}{2} \times 6 \mathrm{in}$. Pleose send a siamped addressed envelope for full descriptive details
of obove units, also TUNER/AMPLIFIRS STEREO and MONO.

Wholesale and

Retail enquiries to:
LINEAR PRODUCTS LTD ELECTRON WORKS, ARMLEY, LEEDS

CHASSIS and CASES

Type N

CASES

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed constructlon, Type Z removable back and front.

BLANK CHASSIS

FOUR-SIDED 16 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2^{\prime \prime}$	6/3	2/11	$10 \times 8 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	12/-	5/6
$7 \times 4 \times 1 \frac{1}{2}$	6/-	3/2	$12 \times 7 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	12/-	5/11
$7 \times 5 \times 2^{\prime \prime}$	7/6	3/5	$12 \times 9 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	13/9	71.
$8 \times 4 \times 2^{\prime \prime}$	7 -	3/4	$13 \times 8 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	13/9	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3^{\prime \prime}$	14/6	6/6
$9 \times 7 \times 2^{\prime \prime}$	9/3	4/10	$14 \times 10 \times 21^{\prime \prime}$	16/-	$8 / 7$
$10 \times 4 \times 2 \frac{1}{2}^{\prime \prime}$	9\%	3/9	$15 \times 10 \times 2 \frac{1}{3}$	$16 / 6$	$9 / 1$
$12 \times 4 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	10/-	4/3	$17 \times 10 \times 3{ }^{\prime \prime}$	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			

TO FIT OUR CASES

Size	Price	Base	Size	Price	Base
$7 \times 51 \times 1 \frac{1}{}{ }^{\prime \prime}$	7/-	3/9	$12 \times 64 \times 2$ "	10/9	5/11
$7 \times 53 \times 2^{\prime \prime}$	7/9	3/9	$14 \times 8{ }^{3} \times 2^{\prime \prime}$	13/6	7/11
$11 \times 6 \frac{3}{4} \times 1 \frac{1}{2}^{\prime \prime}$	10/-	5/6	$154 \times 93 \times 2 \frac{1}{1 "}^{\prime \prime}$	17/-	$9 / 6$
$11 \times 63 \times 2^{\text {n }}$	10/-	5/6	$17 \frac{1}{1} \times 97 \times 2 \frac{1}{21}^{17}$	18/6	10/6

WITH BASES

PANELS: Any size up to 3 ft . at 6/-sq. ft. 16 s.w.g. (18 s.w.g. 5/3) Plus post and packing.

H. L. SMITH \& CO. LTD.
 Electronic Components - Audio Equipment

$287 / 289$ EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891

We shall be pleased to quote for all your component requirements.

 AVAILABLE
Originally developed for computer and space projects-inese tiny
modules-size only $25 \times 10 \times 5$

millimetres-represent the most amazing breakthrough in circuit design since the introduckion of the transistor. The nernal cipcouit mo hinger than annhad-is encapsulated in anit. The IC-403 is an Integrated power and pre-amplifier requiring only the additlon of tone and volume controls. power source and speaker to form a complete audio amplifier of 3 W output SPECIFICATION (ratings at $25^{\circ} \mathrm{C}$: Output power typicaly 3 W from 250 mV input. Frequency esponse 20 Hz to $80 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Power amp. distortion 0.3% (at 1 W .400 Hz). Pre-amp. gain 24dB. Power amp. gain 26dB. Max. operating voltage 21V. Min. operating load 7.5 ohms. Noise level -75 dB . Pre-amp. input imp. 2M/Ohms. Power amp. input tmp. 100 M ohms. Pre-amp. and power amp. D.C. Input current 50 nA. THE IC-403 IS AVAILABLE FROM STOCK EXCLUSIVELY FROM LASKYSCOMPLETE WITH INSTRUCTION DATA AND SUGGESTED CIRCUIT APPLICATIONS

LASKY'S PAICE

AD-76K MAGNETIC CARTRIDGE
New high compliance stereo magnetic cartridge that really breaks the quality/price berrter SPECIFICATION: Diamond Stereo LP stylus. Compliance $10 \times 10-$ emv/dyne. Frequency response $20-20.000 \mathrm{c} / \mathrm{s}$. Channel separation 20dB. Output mmV . Tracking pressure
grammes. Standsrd $\frac{1}{2}$ in. mounting. Replacement Dlamond stylus available. Fully gueranteed

LASKY'S PRICE ONLY 90/-
FGET YOUR LSKY' AUDO-TRONICO PICTORー-
CS PICTORIAL

 Branches
207 EDGWARE ROAD, LONDON, W. 2
Tel.: 01-723 3271
33 TOTTENHAM CT. RO.. LONDON, W. 1
Tel.: 01-636 2605 Open all day. 9 a.m. -6 p.m. Monday to Salurday 152/3 FLEET STREET,LONDON, E.C. 4

Tel: Q1-353 2833
Open all day Thursday, early closing 1 p.m. Saurrday
High Fidelity Audio Centres
42-45 TOTTENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573 Open all day. 9 a.m. -6 p.m. Monday to Saturday
118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789 Open all day Saturday, eariv closing 1 p.m. Thursday
ALL MAIL ORDERS AND CORRESPONDENCE TO:
3.15 CAVELL ST., LONDON, E. 1 Tel: 01-790 4821

JOHN SMITH LTD.
209 8PON LANE - WE8T BROMWICH - 8TAFF8. TEL. 021-553 2516 (3 LINES) WOOD8 LANE - GRADLEY HEATH - WARLEY - WORC8. TEL, CR 69283 (3 LINES)

WW-087 FOR FURTHER DETALS

AVONCELTM40 TROLLEY

EDITIONS FOR ALL MAKES AND MODELS OF OSCILLOSCOPES

$5 \begin{aligned} & \text { EACH } \\ & \text { PLUS } £ 1 \\ & \text { CARRIAGE }\end{aligned}$

PRICE INCLUDES DRAWER: CARRYING-UNIT POWER-BOARD AND 2 BRAKED CASTORS

AVON COMMUNICATIONS AND ELECTRONICS LTD. 318 BOURNEMOUTH (HURN) AIRPORT. CHRISTCHURCH. HAMPSHIRE TEL. NORTHBOURNE 3774.

TELEG. AVONCEL. CHRISTCHURCH

WW-088 FOR FURTHER DETALLS

SANWA

USED THROUGHOUT THE WOALD. SANWAS EXPERIENCE OF 30 YEARS ENSURES ACCURACY PERFORMANCE COMES WITH EVERY SANWA PERFORMANCE COMES WITH EVERY SANWA 6 Monthe' Guarantee - Excellent Repalr Service Model P.18
Model JP 50
Model U-500
Model 360 -YTR
Model AT-1
Model 380-CO
Model F-BOTRO
Model 430 .ES

[^11]

PROTECT VALUABLE DEVICES

FROM THERMAL RON AWAZ OR OVERHRAT Iranaistors, etc., which une brat-sink: cas eanlly be protected. Almply make the contact thermostat part of quipment kenerally, can
also bedequately protected
by having thermontats in atretegle apote on the casing. Our 0 deg. to 100 deg . F. or with the dial removed rang between between 80 to 800 deg. F. Price 10% -

ROTISSERIE

MOTOR

230 VOLT
SOLENOID

See in the Dark INFRA-RED BINOCULARS

These Infri-red blaocolars when fed from bigh voltage avorce will onuble objects to be seen in the dark, provided tube containa compiote optical lena syateman well an the Intra-red ooll. These opticalaystems can be used as lenses for blacoulary lormp part of the Anmy night drting (Tabby equipment). They are unued and bellered to be in good working order bnt sold whbout a guarrantee. Price $\$ 3 / 17 / 6$.

DRILL CONTROLLER Electronically chazgea speed from approxtmately 10 reve. to maximnem. Pull power at all
peed. by inger-tpo control,
Kit tncludea all parta, caze, Krerrchinges and parta, case,
thull linetruc- $10 / 6$, plua $2 / 6$ poot and themrance. Op svalable made up
2e/8. Plua $2 / 6$ post.

FLEX CABLE BARGAIN

$23 / 0076$ triple cora P.V.C. ocrered. clrcular, normally | cold at $1 / 8 \mathrm{yd}$. Our price 100 yd . coll e 3.19 .6 . Pont and |
| :--- |

ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by Brath'e these untta are an atted to many top quality cooker to control the over. The elock is matina driven and frequency oon
 recorders. Offered at only a fractlon of the regular price-new and mused only $39 / 6$. les than the valne of the clock alone-post and

MAINS MOTOR

Precieion mado-a uaed th record decka and ape recordern-ldeal Ano for axtractor fans, blower, heator, etc. Now and perfect. Sndp at $9 / 6$ post free. Lor firnt one taen if tor each one ordered. 12 and over

THIS MONTH'S SNIP

DEAC RECHARGEABLE BATTERY

$1.2 \mathrm{~V} .2 .000 \mathrm{~mA} / \mathrm{hr}$. type (2000 DKZ). Bire 2 in . dit. \times th. thick appror. Tremendous Balp price $25 /-$ esch. NEW AND UNUBED.

LAST CHANCE FOR THIS GARGAIN Cassette loaded dictation machime Battery opersted and with all sccesoorles. Really @4.19.6, brilimintly denigied for apeed and emetency canaetto takea normal spools, dropet in sad out Ior eany losding-all normal functions- oncessoriee has on/ot iwith earlecece-cryatel microphone MTSA THIS UNREPEATABLE Dick OFFE-DON- BRND

PROCESS TIME CONTROLLER

ade by 8mitha, motorlsed and masins driven, enablea 15A circult to e atarted up to 18 bours to adrance and to ntay on for a period from 15 motoutes to 8 hourr. Totally enclosed in metal boz with glath frome

NICAD RECHARGEABLE BATTERIES

$3-6 \mathrm{~V} 500 \mathrm{~mA}$ aine $1 \mathrm{i} \times 14 \mathrm{in}$, dia. really powertul will dellver 1 amp for thour. Regular price $32 / 6$ our price $17 / 6$ each. New end guarantoed

Other voltages available, single ceil $1 \cdot 2 \mathrm{~V}$ VV6. 5 coll 6 V 28/6. | Other voitages availa |
| :--- |
| 9 cell, $10-8 \mathrm{~g} .4$ |

TELESCOPIC

AERIAL

for portable, car radio or transextends from 78 to 47 . pas Hole ta bottom for r
 MOVING COIL METER BARGAIN

 Panal moteriare alwaya being needed and they are jolly take advantage of thls offer: 2 in. moving coil fluth mounting meters only $8 / 8$. These are actually R.P. metera nad cost you have to do to to remove the thermocouple and you will have a 2.3 ma , meter which you can make into almoutanything by addiag shants or series realator. New and unneed.

MAINS TRANSISTOR POWER PACK Desigued to operate transiator acta and amplifers. Adjuat: able outpat 6v.. $9 \mathrm{v} ., 12$ volts for up to 500 mA (ciass 8 porking). Takes the plece of any of the following batterfee:
PP1, PP3, PP4, PP8, PP7, PPQ, and others. Kit comprises PPl, PP3, PP4, PPB, PPF, PPG, and others. Kit comprises: condensern and instructions. Beal onip at ouly $16 / 6$, plus $3 / 6$ postage.

REED-SWITCH

Gultable for dozent of different appllicmtions, such as burglar sulable for dozeni of direrent applicatioas, such as burglar encased switches which can be opersted by a paesing pthesenat $2 / 6$ each, or 84 . these at $2 / 6$ etach, or 84 - dozen. sutable magnets

SPRING COIL LEADS
as fitled to telephonea, 4 core
$2 / 6$ each, 3 cors $g /-$ eatch.
MINIATURE RELAY
American muke-B90 ohm coll $20-30$ volt operation-

EXTRACTOR FAN Cleans the alr at the rete of 10,000 ouble feet per hour, At the pull of cooking exmolls before, ehey dirty decontions. Suitable for Hitchens,
bathrooms, factories, changing rooms ouc., it's ao quitet it can hardly be heard. Compact, 6 in, ceasing with It in. tan blades. Sultable wherever It in necesaary to move alr tast. Kit comprised motor. fan blades, theet nector and flalug brackets.
$39 / 6$ plus $6 / 6$ pout and that.

ELECTRONICS (CROYDON) LTD

Dopt. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

Muntersitain

 SUPER ELECTRONICS LIMITED
 5 VIOLET HILL, LONDON, N.W. 8.
 WW- 090 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Si451
£30.0.0 Comprehensive Millivoltmeter 350 , Volts 20 ranges

Jllustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to . 01%
£25.0.0
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

WW-091 FOR FURTHER DETAILS

easier

 faster
 RF MEASUREMENT
 WITH THE
 hatfield le jooal rf bridge

[^12]Telephone: Plymouth 10752) 72773/5. Cables: Sigjen Plymouth.

HATFIELD BALUN

[^13]
OROPTDELECTRONICS fram PROOPS nrorr
 New Science Projects combine fascination of Optics with Electronics.
 INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching capabilities to provide infinite possibin ties as short distance speech and data ins. remore pic. burglar blarms, batch counters. level detectors, etc.. etc.

INFRA-RED PHOTO RECEIVER - MSP3
Ultra sensitive detector/amplifier for infràred (Gatlium Arsenide) or vsible light optical links reception. Spectrat response 9500 A . Robust, cylindrical package is coaxial with incident light to facifitate optical alignment and heat sinking.
85/-

MAX RATINGS
Total dissipation (in tree dir. Tamb $=25^{\circ} \mathrm{C}$.). Output Current Intensity. 100 mA . Voltage

100 mW . Derating Factor $-30^{\circ} 10+125^{\circ} \mathrm{C}$ including Line of Sight Speech Link.

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 Filamentless, infra-fed emitter
alionment and hear sinking.
 post tree

MAX RATINGS
 D.C .400 mA . Forward peak current If max
600 mW . Derating factor for Tamb greater than $25^{\circ} \mathrm{C}$ Forward current 1.0 V .

Reverse voltage Va max 1. OV.

- When mounted on an aluminium heat $\operatorname{sink} 1$ in, $x \frac{1}{4}$ in. $\times \frac{1}{4}$ in
Supplied complete with suitable lenses. full Technical Data and Applicarion Sheets including Lline of Sight Speech Link

MICRO-MINIATURE INFRA-RED DETECTOR-31F2

silicon NPN photo-diode of pas counters film sound twack etc

Infra-red devices (except 31F2) are supplied complete with suitable lenses, technical data and typical application information.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)

Inexpensive light sensitive resistors which require only simple circuitry to work as light triggering units in a wide range of devices, such as: flashing or breakdown conscious - use with A.C. or D.C. Spectral response covers whole visible light range

MKY251
Epoxy sealed $1 \frac{1}{\mathrm{t}} \mathrm{in}$. dilam. $\mathrm{x} \frac{1}{\mathrm{l}} \mathrm{in}$. thick. Resistance at $100 \mathrm{Lux}-70010$ 3.000 ohms. Maximum voltage 200 A.C. or D.C. Maximum current
500 mW .
$\mathbf{1 2 / 6}$ oost free MKY101-C Epory sealed. 8 in . diam. $\boldsymbol{x} \downarrow \mathrm{in}$. thick. Resistance at 100 Lux -500 to 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current
150 mW .
$10 / 6$ post free MKY71
Glass sealed with M.E.S. base. Glass envelope $\frac{5}{16}$ in. diam.. overall length 1 in. Resistance at 100 Luk - 50 Kohms 10150 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

CADMIUM SELENIDE CELLS (Cdse)
These have a higher dark resistance in a given period than Cadmiuni Sulphide Cells, indicating much faster response. Suitable for all Cds applications plus applieations in chopper, electronic musical instruments, computer and other sophisticated circuitry. light intensity is intercepted.

MKB5H
Hermetically metal sealed. $\frac{1}{4} \mathrm{in}$. diam. $x \frac{1}{\frac{1}{2}}$ in. thick. Time response 100 megohms. Resistance at 1,000 Lux-1 Kohm to 10 Kohms . Resistance at 10 Lux -50 Kohms 101 megohm. Maximum voltage
50 A.C. or D.C. Maximum current 10 mW . Continuous current 5 mW . 16/6 post free

MKB12H
Hermetically metal sealed $\frac{1}{}$ in. diam. x 产 in. thick. Time response 00 megohms. 'Resistance at $1.000 \mathrm{Lux}-100$ ohms to 1.000 ohms. Resistance at 10 Lux - 1 Kohm to 10 Kohms. Maximum voltage
$16 / 6$ post free

PHOTOGENERATIVE CELLS

Selenlum cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trlgger for alarm and counting devices, luminous fluxmeters, exposure meters, colorimeters, etc., Spectral response covers visible light range.

Type 1-1 $1 \frac{1}{x} \frac{1}{1 / 3} \mathrm{in}$. Output 1 mA at 0.6 volts at 1,000 Type 2- $28 \times 18 \mathrm{~mm}$ Output 500 kA at 0.6 volts al 3/6 post free Type 3-100 $\times 50 \mathrm{~mm}$. Output 4 mA at 0.6 volt at 1,000
Type 2-28 × 18
Outpur 500

22/6 post free

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as easily as electricity is conducted by copper wires. Fibre optles make it possible to control, miniaturize, split. reflect or transfer light from one source to many places at once and to operate photo devices. logic clrcuis. or inmote Croton plastic fibres sible. Proops offer both glass fibre opplics or ins in a fascinating new science.

RANK TAYLOR-HOBSON
ENGINEERS KITS

All the basic components needed to demonstrate new ways to use light in serious applications with glass fibre optics consisting of thousands of fibres tightly bundled in a flexible sheath with ferruled. optically polished ends. Kit includes 12 18. 6 mm widths. 24 inch iwin exit guide with $2 \times 1 \mathrm{~mm}$. outputs. Non-random ' Y ' guide with tht soure. Supplied complete with card wallets containing technical data and illustrated applications.
£16
LOW-COST CROFON FLEXIBLE LIGHT GUIDE Newly developed plastic light transmitting media made by Du Pont and consisting of 64 spectal plastlc fibres, each sheath. Can be used for many serious projects and thex. pensive prototype work. Ends can be ground flat, dyed or capped with Epoxy resin. Temp. range - 40° to $176^{\circ} \mathrm{F}$. No loss of light through bending. 12-page data and applications booklet supplied.

$$
\begin{aligned}
& \text { Minimum ortar- } 2 \text { th } \\
& \text { 8/6 } \\
& \text { per root post thee }
\end{aligned}
$$

Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT - CA3020
Complete Audio or Servo Amplifier in one tiny package 1
Preamp. phase invertor, driver and power output function in a single package only z in diam. and $\frac{3}{1}$ in. high. Operates from single D.C. supply ol 3 to 9 volits; glves maximum output of more than $\frac{1}{2}$ watt for 22 mA consumption. Low distortion, hith gain is coupled with buill- in temperature compensation (- 55° to $123^{\circ} \mathrm{C}$) 42/- post free

RCA TRIAC - CA40432
Sultable for light dimming and motor control circuits
Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Staitable for A.C. operation up to 250 volss; controls currents up 101440 watrs. Size onty in.

45/-post free

ORGAN BUILDERS!

SILICON N.P.N. TRANSISTORS SUITABLE FOR FREQUENCY DIVIDER CIRCUITS $1 / 6 \mathrm{~d}$. each or E_{5} per 100 .

Latest list of transistor stock. All brand-new and to manufacturers specifications.							
NKT11	9/3	NKT401	18/-	BFX84	6/6	2N2219	10/9
NKT12	7/3	NKT402	19/3	BFX85	$8 /$	2N2219A	12/6
NKT72	5/-	NKT403	16/-	BFX86	6/6	2N2220	7/3
NKT73	5/-	NKT404	13/3	BFX87	8.	2N2221	8/6
NKT124	$8 / 6$	NKT405	14/9	BFX88	$7 / 3$	2N2221A	10/-
NKT125	5/9	NKT406	13/3	BFY50	$5 /$.	2N2222	10/9
NKT126	5/-	NKT420	$40 /-$	BFY51	4/6	2N2222A	126
NKT135	5/-	NKT451	13/3	BFY52	$5 /$	2N2297	93
NKT137	6/6	NKT452	12/6	BFY53	4/6	2N2368	4/6
NKT210	5/9	NKT453	8/-	BFY90	29/6	2N2369	4/6
NKT211	5/-	NKT603F	6/6	BSX19	4/6	2N2369A	5/-
NKT212	5/-	NKT613F	7/3	BSX20	4/6	2N2483	8/6
NKT213	6/6	NKT674F	$5 /$	BSX60	18/6	2N2484	10/8
NKT214	4/6	NKT677F	4/6	BSX61	10/-	2N2220A	10/8
NKT215	5/-	NKT713	5/-	BSY95A	3/8	2N2904	10/8
NKT216	10/-	NKT717	8/-	2N696	5/-	2N2904A	12/-
NKT217	10/9	NKT734	5 -	2N697	5/-	2N2905	15/6
NKT219	5/-	NKT736	6/6	2N706	3/-	2N2905A	18/-
NKT223	5/9	NKT773	4/6	2N706A	3/-	2N2906	126
NKT224	4/6	NKT781	5/-	2N708	$4 / 6$	2N2906A	13/3
NKT225	4/6	NKT10419	$5 /$	2N709	11/6	2N2907	14/-
NKT229	5/-	NKT10519	$5 / 9$	2N914	5/-	2N2907A	20/9
NKT237	7/3	NKT10339	6/6	2N918	11/6	2N3053	5/9
NKT238	4/6	NKT10439	7/3	2N929	7/3	2N3055	20/9
NKT239	5/-	NKT12329	11/6	2N930	81-	2G345	4/-
NKT240	4/6	NKT12429	14/*	2N1131	8/6	2G371	4/\%
NKT241	5/-	NKT13329	5/-	2N1132	10/-	2G378	4/-
NKT242	3/-	NKT13429	$5 /-$	2N1302	4/6	OC22	10/-
NKT243	14/-	NKT35219	22/3	2N1303	4/6	OC204	6/-
NKT244	$3 /$	NKT16229	11/6	2N1304	5/-	OC44	6/-
NKT245	3/9	NKT20329	12/6	2N1305	5/-	OC45	6/-
NKT261	3/9	NKT20339	8/6	2N1306	6/6	ASZ17	10/-
NKT262	3/9	BC107	4/6	2N1307	6/6		
NKT264	3/9	BC108	3/-	2N1308	8/6	Quantity	
NKT271	3/9	BC109	4/6	2N1309	8/6	Discount:	
NKT272	3/9	BCY55	70/-	2N1613	$5 / 9$		
NKT274	3/9	BCY70	$5 /-$	2N1711	6/6	$25 / 4$	
NKT275	3/9	BCY71	9/3	2N1893	12/6	100/	10\%
NKT281	5/-	BCY72	4/6	2N2217	7/3	100/299	15\%
NKT302	16/6	BDY20	22/3	2N2217A	15/6	1,000	25\%
NKT304	13/3	BFX29	11/6	2N2218	8/6	1,000	25\%
NKT351	11/6	BFX 30	13/3	2N2218A	10/	all one type.	

Unmarked transistors (tested) similar to:
2N753 1/6, BSY28 1/6, BSY65 1/6, OC44 1/6, OC711/e, OC72 $1 /-$.
LIGHT SENSITIVE TRANSITORS (similar to OCP71), 2 - each LIGHT SENSITIVE TRANSITORS (similar to OCP71), 2/- each. ORP12 CADMIUM SULPHIDE LIGHT-SENSITIVE RESISTORS

GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 ma AT 0.6 VOLTS FROM DAYLIGHT
67 mm . diameter $10 /=\mathrm{each}, 50 \mathrm{~mm}$. $\times 37 \mathrm{~mm}$. 2 for $10 / \mathrm{m}$

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES. GP 67/2 Mono $15-$ GP $91 / 3$ Compatible $£ 1$, GP $93 / 1$ Crystal Stereo 25/-, GP 94/1 Ceramic 25/

TRANSISTORISED SIGNAL INJECTOR KIT 10/-, SIGNAL. TRACER KIT 10/-, CAR REV. COUNTER KIT $10 /-$.

VEROBOARD

$21 \mathrm{in} . \times 1 \mathrm{in}$. 0.15 matrix 2 in. $\times 1$ in. 0.15 matrix
34 in. $\times 21$ in. 0.15 matrix
31 in. $x 3$ in. 0.15 matrix $3 \mathrm{in} . \times 2 \mathrm{in}$.0.15 matrix
5 in.
2 $5 \mathrm{in} . \times 3 / \mathrm{in}$.0.15 matrix
$17 \mathrm{in} . \times 24$ in. 0.15 matix $17 \mathrm{in} . \times 2$ in. 0.15 matrix $\begin{array}{lll}3 / 3 & 3 i \mathrm{in} . & x 24 \mathrm{in} .0 .1 \text { matrix } \\ 3 / 11 & 3 i \mathrm{in.} \times 3 \mathrm{in} .0 .1 \text { matrix } \\ 3 / 11 & 5 \mathrm{in} . & 21 \mathrm{in} .0 .1 \text { matrix }\end{array}$ Spot Face Cuter $7 / 6$ Pin $11 / \%$, Special Offer! Spot Face Cutter and 522 in. $\times 1$ in. boards, $9 / 9$ onlyl

PAPER CONDENSERS, Mixed bags $0.001 \mu \mathrm{~F}$ to $0.5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /-$ per 100 .
1,000. Wire-wound resistors and values, $\frac{1}{2}$ to 1 watt. $6 / 6$ per $100,55 /-\mathrm{pe}$ Transistors. Mixed, unmarked, mainly O.K. $7 / 6$ for 50 .

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALP NORMAL PRICE! 8 watt 12 in. tube. Reflector type £2/19/6. 15 watt 18 in. Batten type £3/19/6. OR CARAVAN HOLIDAYSI A BRIGHT I.IGHT FOR VERY LITTLE CURRENTI

ELECTROLYTIC CONDENSERS

$0 \cdot 25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	10 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	12 volt	$400 \mu \mathrm{~F}$	$6 \cdot 4$ volt
$1 \mu \mathrm{~F}$	20 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt		
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$6 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	6 volt		
$2 \mu \mathrm{~F}$	3 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt		
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	12 volt	$50 \mu \mathrm{~F}$	6 volt	All at $1 /-$ each.	
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	50 volt	$64 \mu \mathrm{~F}$	2.5 volt		
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	9 voit	20 assorted	
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	25 volt	$100 \mu \mathrm{~F}$	9 volt	(ourselection) $4 \mu \mathrm{~F}$	4 volt
	$20 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt		$10 /-$	

Orders by post to:

G. F. MILWARD

DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8 .

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and speclal purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Abstract

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprintér Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filers; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment;

 Miscellaneous Accessories, Teleprinter and Teletype Spares.
W. BATEY \& COMPANY

Galety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

WW-093 FOR FURTHER DETAILS

LONDON microphones

Quality sound-at low cost

The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little good characteristics-
cost. Made in Britain.

NEW to the range: LM300 dynamic cardioid microphone incorporating top-quality movingcoil capsule. Gives maximum front-to-back ratio
over a frequency range of $50-15,000 \mathrm{~Hz}$. Ejegant over a frequency range of $50-15,000 \mathrm{~Hz}$. Elegant
styling, robust metal case, natural anodised finish.

	Low imp.	Dual imp.
LM 300 (Cardioid)	£11 100	£12 10
LM 200 \$	£5 196	£6 15
LM 200	£419	£5 15
LM 100 (Omni)	£3 30	E3 18

Hone or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD. 182/4 Campden Hill Road, London, W.8. Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894

WW-094 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SAM

Continuous Rating 14oz. at sín Instantaneous up to $5^{\frac{1}{2}} \mathrm{l} /$.

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.
 KNAPPS LANE. CLAY HILL. BRISTOL 5. TELEPHONE 65-7228/9

RACAL RA－I7
First ministry release of these world famous communication receivers．Frequency range $500 \mathrm{Kc} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s}$ ．Available in excellent condition fully tested and guaranteed．$£ \mid 50$ Carr．
CLASS D．WAVEMETERS

CLASS D WAVEMETERS No．${ }^{2}$

$\sqrt{8-80}$MARCONI CT44 TF956 AF ABSORPTION WATTMETER

ع20．Carr． $20 /$
LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS FREQUENCY OSCILLATORS

AVOMETERS
Supplied in excellent condition fully tested
and checked．Com－ $\underset{\text { and checked．Com－}}{\substack{\text { and } \\ \text { plete } \\ \text { with } \\ \text { procls，}}}$ leads and instruc－ Model 47A \quad £9／19／6

SOLARTRON CD． 1016

> HAMMARLUND SP600JX COMMUNICATION RECEIVER High quality proteastonal dual conversion communication

 orered in exellent condilion fully tested and shecked．
$\& 100$ each．Pex onis．

OSCILLOSCOPE

MARCONI TEST EQUIPMENT Ex－Military Reconditioned． TF 1440 standard Bigual Generators，Bs Ke／s－25 Me／a，$£ 25$.
 TF 195 M Best Frequeacy 0 scillator， $0.40 \mathrm{ke} / \mathrm{g}, 200 / 250$ v．A．C．
R20．
Carr． $30 /$ ． ${ }^{2 \mathrm{~T}} 142 \mathrm{E}$ Ditiorion Factor Meter，£20．Carr．20／－．All above

Peralue type sD19 $230 / 250$ M A．C．Reveralble． 30 f．p．p．m．to ib．inh．Complete with capactoor．
Excelient condtion． $88 / B$ ．Carr． $10 /$ ． AMERICAN RECORDING TAPES

 SINCLAIR EQUIPMENT PZ．Fower supply Unit 89／8 ，inco 2s，Pre－Amplider $£ 9 / 19 / 6$ ． Micromaticer Radio Kit $48 / 6$ ．Bultt 59／6． ALL MPECLAL OFFER Pramplifer
with two Q． 14 Bpaciker
NEW SINCLAR
${ }_{⿷ 匚 ⿳ 亠 口 冋}^{£ 22}$
（mearated Amplifier．©29．
 MODEL TE－90 50，000 O．P．V． Mirror seaie oreflosd prote

NOW OPEN IN EDGWARE RD．

MODEL TE－80．20．000 O．P．

RCA COMMUNICATIONS

 RECEIVERS AR88D

$$
\text { vanable selectivity, etc. Price } £ 87.10 .0 \text {. Carr. } \varepsilon \text { 2. }
$$

$\underset{\substack{\text { MODEL } \\ 0 / 3 / 15 / 60)}}{ }$ $0 / 3 / 15 / 160 / 301 / 1000 / 1,200,1$
D．C． $0 / 6 / 330 / 20 / 2001 / 200$

for EVERY purpose？

～ MODEL TE－12．20，000 O．P．V．
$0 / 0.6 / 6 / 301201600 / 1,2001$
$3,00 / 6,000$ v．D．C． $0 / 6 / 601201$
$600 / 1,200$ v．A．C． $0 / 601 / 1 / 6 /$ $600 / 1,200$ F．A．C． $0 / 60 \mu \mathrm{Al} / 61$
$60 / 60 \mathrm{~mA}, 0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 6 \mathrm{Meg} . \mathrm{l}$

MODEL PT－34．1，000 O．P．V．O10／50／250

AUTO TRANSFORMERS
$0 / 118 / 230 \mathrm{v}$ ．Step up or atep down．Fully shrouded．

1.500 W ． $8610 / 0 . \mathrm{P}$ ．\＆P． $8 / 6$
7.500 W ． $15 / 1010$, P．d P． $20 /$

SOLARTRON CD．7115．2
OSCILLOSCOPES
265．Carr． $50 /$－：
EDOYSTONE V．H

Both types in excellent condition．
COSSOR IO49 DOUBLE BEAM
OSCILLOSCOPES D．C．coupled．Rand width $1 \mathrm{Kc} / \mathrm{s}$ ．Pe
e25．Carr．30／：－

RECORDING HEADS Reuter track．An Atted to Collaro Mk．IV low dmp，erase．Lower track．only．Brand new $10 / 8$ palf．
Cosmocord \ddagger track heads：
Record／replay．High imp．
Erabe．If iva limp．．．
65／－
$201-$
Record／Playback，high imp．
Erase，low limp．．．．．．．．．．

TEIII DECADE RESISTANCE ATTENUATOR Variable range 0－111
db．Connections．

－2－2	
	Accurate wide range sig－ na／generator covering
	$120 \mathrm{KC/G-500} \mathrm{Mc} / \mathrm{s}$ on
	6 bands．Directly cail－
	brated．Variable RF．
	attenuator，mudlo output．
	Hion． $220 / 240 \mathrm{~V}$ ．A．O．
	Brand new wilh lintruc－
－－	tions．E15．Carr．7／6．
	8 6ize $140 \times 215 \times 170 \mathrm{~mm}$ ．

FULL RANGE OF Componente Valves Semi－ uctors Receivers Test Equipment AT RISCOUNT PRICES

G．W．SMITH
 8．Co．（Radio）Ltd．

also see opposite page

GARRARD

Full current range offared brand new and guaranteed ot fantastic sovine

 -1025 Mono - 2025 Btereo $\quad 17.18 . \mathrm{B}$ -2025T/C Mono/
Btereo
28.17.8 $\begin{array}{ll}-3000 \text { Etereo } & 28.17 .8 \\ \text { - } & 8.18 .6\end{array}$ AP75
401
$8 L 75$
$8 L 95$ 214.
828.

889. Cartiage/losurance 7/0 extra athy model. | 289. |
| :--- |
| 235. 0.0 | WB4 Beses $23 / 18 / 6$. Perspex cover $23 / \mathrm{M} / 0$ - Epectal offer bune and cover arailable for these modela at 84.15.0. Carr. 5/9

TRANSISTOR FM TUNER

 HIGH GUARLITY TUNER BIZE ONLY Rin. $x \sin , X$ 21 in .3 I.F. stages.
Double tuned din.
criminator, ample criminator, ample
output to feed most
ampliners, built resdy for ure. Fautentic value for mones.

High quality constriction. Input $230 \mathrm{v} .50-60$ cycles
High quality constriction. Input 030 . 0 . 0 位k quantities available. 1 amp. - $85 / 10 /-2.5 \mathrm{amp} .-88 / 15 / \mathrm{c} ; 5 \mathrm{amp} .-29 / 18 /$ $8 \mathrm{amp} .-214 / 10 /-; 10 \mathrm{amp} .-818 / 10 / \mathrm{F} ; 12 \mathrm{amp} .-821 ; 20 \mathrm{amp} .-237$
volt A.C. 81 lue $191 \times 13\} \times 16 \mathrm{in}$. Welgh e28/10/0, carr. 30\%. With elreutid diagranis. L.F. voration of above. $15 \mathrm{Kc} / \mathrm{s}-700$

R209 Mk. II COMMUNICATION RECEIVER
 II ralvo high
grado coni-

bends. AM AM
$\mathrm{CW} / \mathrm{FM}$ opera-
tion, Incoppor
stes prectsion
veraler drive B.F.O. Aerial trimmer. internal apeaker and excellent condthion, fully $\mathbf{S 1 5 . 0 . 0}$ Carr.

TRANSISTORISED LLC.R. A.C MEASURING
A now portable Now of
bridge ortering ex-
cellent rango nad
socuracy at iow cont.
Ranges: R, $10-2$

2\%\%MrD. 110 Range
\pm 2\%. TURN8 RATIO $1: 1 / 1000-1: 11100$. B Rangee $\pm 1 \%$. Bridge voltage at 1,000 CPB
Operated from 9 volt. $100 \mu \mathrm{~A}$. Meter indication. Atractive 2 Lone metal came. gize 71" $\times 8^{\circ} \times 2^{\circ}$.

ADVANCE TEST EQUIPMENT Brand new and boxed in original apaled cartons.
VM.78. VALVE VoLTMETMR. A.F. meanurements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and D.C. mesure
mente up to 1000 y . with mecurwey of $\pm 2 \%$ D. range 300 MV to 1 KV . A.c. range 300 MV to 300
 IMr- 300%. Frequency 1 c/oto $1 \mathrm{Mc/a}$. Price 255. A.C. rage $10 \mathrm{Mv}-3 \mathrm{~V} . \mathrm{D}, \mathrm{C}$. current range $0.01 / \mathrm{A}-\mathrm{C}$
0.3 Ma . Reaistance 1 ohm- 10 megohma. 2125 . 0.3 Ma . Reairlance 1 ohm 11 megorm is E / L B0 Kc/a, aine or square wave. Price £30.
T18, AODIO SIONAL GENERATOR.
Kc/e. Price R30. JRB. AUIO SIONAL GENERATOR.
except atted with output meter s36.
TT1S. TRAMB18TOR TESTER. E37/10/-
SOLARTRON MONITOR
An extremely high quality oncilloncope whh time Separate mains power supply, $200 / 250 \mathrm{~V}$. Bupplled
ti excellent condition with cabled, probe, ofc.
recelved from Ministry, $28 / 18 / 6$. Cart. sol-,
 RECEIVER $150 \mathrm{ke} / \mathrm{b}-400 \mathrm{Ko} / \mathrm{A}$ AND $550 \mathrm{Ec} / \mathrm{s}-30 \mathrm{Mo} / \mathrm{s}$. F.E.T. tront ond 2 mechanieal filter M Huge dial Produc detector Varlable BFO Nolselimiter © Ban Meter 24tio. Bandpreed con Wt. 18 IDA. EXCEPTIONAL VALUE EA5. OARR. $10 /-$
S.A.E. FOB PULL DETAILS. TATE VHF PF-60 SOLID
FM RECEIVER
FM RECEIVER Mc / s. Fully tuneable or eryisial controlled (not supplled) for fired frequency operation. Incorporate in INTE
ORATED CIRCUITs. Bulli-in apeaker and Inlominted dial. Bquelch and volume controle. Tape recorder outputh

Variable Voltage TRAMSFOMMEIF

 Type MR.38P.
$50 \mu \mathrm{~A} ~$

$$
\begin{aligned}
& 100 \mu \mathrm{~A} \\
& 100-0-100 \mu \mathrm{~A} \\
& 200 \mu \mathrm{~A} \\
& 500 \mu \mathrm{~A}
\end{aligned} \ldots .
$$

${ }_{\substack{1 \mathrm{~m} \\ 1 \mathrm{~m} \\ 2 \mathrm{~m} \\ \mathrm{~m} \\ \mathrm{~m} \\ \mathrm{~A}}}$ 100.1 m
2 mA

5 mA | 2 mA |
| :--- |
| 8 mA |
| 10 mA |
| 20 mA |
| 80 mA |
| 100 mA |
| 180 mA |
| 200 mA |
| 300 mA |
| |

$121 / 32 \mathrm{in}$.
1/32in.

$$
\begin{aligned}
& 800 \mu \mathrm{~A} \\
& 800-0-500 \mu \mathrm{~A}
\end{aligned}
$$

Type MR.45P
$50 \mu \mathrm{~A} . \ldots . .$.
$50-0.50 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$
$1001-0-100 \mu$
$100.0-10$
$500 \mu \mathrm{~A}$
$800 \mu \mathrm{~A}$
1 mA
8 mA
8 mA
10 mA
80 mA
100 mA
8
500 mA
1 mmp
Type MR.52P

$50 \mu \mathrm{~A}$ $50-0-5$

${ }^{50-0-50} 10 \mu \mathrm{~A}$

86/7/6. P. \%PLTIPLEX ADAPTORB, pe/G.

TE-I\&A TRANSISTORISED SIGNAL GENERATOR

MODEL ZQM TRANSISTOR CHECKER
It heo the fullent capa-
ctity for checking on

$200 \mathrm{D}+1 \mathrm{MEO}, \mathrm{Bupplied}$ eomplete with InutruoLAFAYETTE TE-46 RESISTANCE

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-097 FOR FURTHER DETALL

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2 Tel: 01.930.3070
WW-098 FOR FURTHER DETALLS
INVERTERS

> R GILFILLAN AND CO LTD SOUTHDOWN VIEW ROAD WORTHING SUSSEX WORTHING $31587 / 8$

NO EXCUSES! NO DELAYS! FROM STOCK! UARILBLE VOLTAGE TRANSFORUERS

50 AMPS

INPUT 230 v. A.C. $50 / 60$

 BRAND NEW. Keenest prices in the country. All Types (and spares) from to to 50 amp . available from stock.$0-260$ v. at I amp. 65100 $0-260$ v. at 2.5 amps. .. e 6150 $0-260 \mathrm{v}$. at $4 \mathrm{amps} . . .$. \&9 0 $0-260 \mathrm{v}$. at 5 amps . $0-260$ v. at 8 amps $<1410 \quad 0$ $0-260 \mathrm{v}$. at $10 \mathrm{amps} . . . \mathrm{E} 18100$ $0-260 \mathrm{v}$. at $12 \mathrm{amps} . . .$. E21 0
 $0-260 \mathrm{v}$. at $20 \mathrm{amps} . . . \mathrm{E} 57 \mathrm{O}_{0} 0$ $0-260 \mathrm{v}$. at $50 \mathrm{amps} .$. . . 4920 20 different types avallable FOR IMMEDIATE DELIVERY.

SPEEDIVAC

HIGH VOLTAGE HIGH FREQUENCY GENERATOR
Input $100 / 110$ volts or $200 / 250$ volts AC/DC. Output 19 KV variable. Ideal for testing insulation, vacuum, leakage path. gas discharge lamps, neon etc. A useful ozone and HF supply. Manufactured by Edwards High Vacuum Led. Brand new In maker's polished wooden carrying case Offered at fraction of maker's price. $£ 10.0 .0$ plus $7 / 6 \mathrm{~d}$. p. \& p.

5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Inpue 230 V. A.C Ourpur 0-260 V. A.C. Fitted large scale ammeter and voltmeter. Neon Indicator, fuily fused. Strong attractive metal case 15 in . x 8 itin. x bin. Weighs 24 lo. Infinitely variable, smoothstepless voltag variarion over range. o illustration bearance

I AMP.

SERVICE TRADING COMPANY

SERVICE TRADING CO
 Ortar

LIGHT SENSITIVE SWITCHES Sulphide Photocall. Relay Transistor and Circuit. Now supplied with new Siemens
High Spesed Relay for 6 or 12 vols oper High Spesd Ralay for 6 or 12 vole oper. ORP 12 and clrcult $10 /$ post pald.

220/240 A.C. MAINS MODEL
 pelay with $\times 5$, MAIS circult $47 / 6$, plus $2 / 6$ P. \& P . MOUNTING wrech adion anginearad light source with adjustable lens assombly and
vantilated lamp housing to cake

果 $\quad, \quad y$ $0-1=$ MBC bulb. Separate photo cell mounelng assembly for ORP. 12 or similar cell with optic window. Both unies ara single hole fixing. Price per pair $22 / 15 / 0$ plus $3 / 6$
P. P .

VAN DE GRAAF ELECTROSTATIC GENERATOR, fieted with motor drive for 230 V. A.C. siving a porential of approx. including accessories for cerrying out a number of interesting experiments, and full nin instructions. Thls instrument is completely safe, and ideally suited for School demonstrations. Price
$\in 7 / 7 / \%$, plus $4 /-$ P. \& P. L't. on req.

RADIO ALTIMETER

This precision Instrument is
based on a 24 v. D.C. LOW
INERTIA (Integrating)Motor.
The Motor drives two
precision pors throush close tolerance gear-trains, including at fraction of manufacters slippling clutch. Offered at fraction of manufacturar's price: 32/6, plus 6/- P. \& P. 30 vols 3 mmp., $11 / \mathrm{m}$, plus $2 / 6$ P. \& P.
30 vole 3 mp., 11%, plus $2 / 6$ P. \& P.
30 vole 5 amp., $16 / \%$, plus $2 / 6$ P. \& P.
NICKEL CADMIUM BATTERY SInterad Cadmlum Typa 1.2 v. 7AH. Sizes helght 3 In., width 2/In. x Iflin. Walsht: approx. 13 ozs.
Ex-R.A.F. Tested $12 / \mathrm{S}$. P. P. $2 / 6$. Ex-R.A.F. Tested 12/6. P. \& P. 2/6.

DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes coneaces) mounced in 870 ohm 9-18v coil. Size 3 in
8/6 per pair. Post Pald.
6 of the above mentioned units (12 Reeds, 6 coils) fitced in metal box. Size $4 \mathrm{in} . \times 3 \mathrm{inn} . \times 1 \mathrm{in}$. Mfg. by Elliotr Bros. - - -ater- - Totamone Dint man ine SOLAR OIL-FILLED CONDENSER. $?$ 240 mfd . for 230 V.A.C. 600 vole D.C. Overall size l 4 in . $\times 9 \mathrm{in}$. $\times 5 \mathrm{fin}$. plus feet.
Weighe 46 lb . Guaranteed perfect. ManufacWeight 46 lb . Guaranteed perfect. Manufac-
turer's packing. Price $£ 7 / 10 /=$. Carriage $15 /$.
AUTO TRANSFORMERS. Siep $\rightarrow \rightarrow$ -$110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt eype $\$ 3 / 10 /-$ each, P. \& P. $4 / 6.500$ wate eype $£ 4 / 12 / 6$ wach, P. \& P. $6 / 6$. 1,000 watt sype $15 / 15 / \mathrm{H}$ each, P. \& P. $7 / 6$. LEVER MICRO SWITCH
Brand new lever operated micro switch. Brand new lever operated micro switch.
20 amp. A.C. Price $4 / 6$ each plus $1 / 6$ P. \& P. 5 for El post paid.

- MOVING COIL HEADPHONE AND MIK MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike firted 5 -way
plug as on No. 19 set. New, in maker's packing, $16 / 6$, plug as on No.
plus $3 / 6 \mathrm{C}$. \& P.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision tooled, speed adjustable 10 w.p.m. so as high as deslred. Weight $2 \frac{1}{} \mathrm{lb}$. $44 / 12 / 6$ post paid.

NEW MODEL

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker. morse key. 45/- plus 3/6d. p. \& p. 34R SILICON SOLAR CELL $4 \times .5$ volt unit series con-
nected, output up to 2 v . at 20 mA . in sunlight, 30 simes the effiency of Earth Satellites, 45/.. P. \& P. $1 / 6 \mathrm{~d}$. CONDENSERS
New at a fractio
2.500 mfd .100
10.000 mfd .35
4,000 mfd.

ALL MAIL ORDERS. ALSO CALLERS AT: 57 BRIDGMAN ROAD W.4. Phone: fis 1560

220/240v. A.C. COOLING UNIT
 tion. Continuously rated. Individually tested. Offered at fraction of maker's

POWER
 RHEOSTATS
 (NEW)
 Coramic construc ing embedded in
 brush embedded in Virions.

yy duty Enamel, heavy, duy brush assembly designod STOCKIN THE FOLLOWING II VALUES: 100 watt I ohm $10 \mathrm{a} ., 5$ ohm 2.7 a. ., 10 ohm 3 ar ., $7 \mathrm{a} ., 500 \mathrm{ohm} 45 \mathrm{a} ., 1,000$ ohm 280 mA ., $1,500 \mathrm{ohm}$ 230 mA ., 2,500 ohm . 2a. Diameter 3 tin. Shaft length in. dia. A in., 27/6. P. \& P. 1/6.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 /$ 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 1$ 25 WATT 2, ${ }^{2} / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm
Black Silver Sklrted knob calibrated in Nos. I-9. If

STROEESTROOELSTROEE

 PARVALUXTYPE SD19230/250VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 Ib. ins. Position of drive spindle adjustable to ${ }^{3}$ different, angles. Mounted on sub stantial cast aluminium base. Ex equipment. class running order. A really class running order. A reall
 BODINE TYPE N.C. 1 GEARED MOTOR
(Type I) 71 r.p.m. torque 10 Ib . in
Reversible $1 / 70 \mathrm{th} \mathrm{h.p}$.50 cycle. 38 a mp Reversible 170 th h.p. 50 cycle. 38 mp . (Typa 2) 28 r.p.m. torque 20 evele. 28 mp amp
reversible $1 / 80 \mathrm{th}$
h.p. 50 eycle
 offered in 'as new' condirion Input voleage of are offered in 'as new' condition. Input voleage of motor $230 / 240 v$ A.C. input Price, either type $£ 2.17 .6$ plus
former $\mathbf{£ 2 . 2 . 6}$ plus $4 / 6 \mathrm{~d}$. P. \& P . former £2.2.6 plus $4 / 6 d$. P. \& Porating aerials, drawing curtains, display stands, vending mach 230/250 v. A.C. SOLENOID
Heavy ducy type. Approx. 31b. pull Heavy duty type. A
$17 / 6$ plus $2 / 6 \mathrm{P}$. \& P
$17 / 6$ plus $2 / 6$ P. \& P.
$12 / 24$ v. D.C. SOLENOID
Approx. 8 oz. push, $8 / 6$ plus $1 / 6$ P. \& P.

A.C. CONTACTOR

coneaces. 230/240
C̄T82 NOISE GENERATOR
Ideal for atignment of all eypes of com-
munication and VHF receivers. Self con-
tained audio output meter and mains tained audio
power supply. power supply. Mc / s Frequency range
$100 \mathrm{Ke} / \mathrm{s}$ 20 160 Mc Nohm or 75 ohm impedance
Noise figure range to 20 db .

\qquad

ample parking

Latost Amorican. Naw. Plastle THYRISTOR 400 P.I.V. 8 amp. Data sheet. $19 / 6$ post pald. COPPER LAMINATE PRINTED CIRCUIT BOARD. Larze shoet $15 \mathrm{f} \times 5 \mathrm{fin}, 3$ for $10 /$ - post pald.
3 minimum order). $(3$ minimum order).

MINIATURE UNISELECTOR

3 banks of 11 positions, plus
homing bank. 40 ohm coll. homing bank. 40 ohm coil. $24-36$ v. D.C. operation. Carefully removed from equipment and
eested. $22 / 6$, plus $2 / 6 \mathrm{P}$. \& P .

UNISELECTOR SWITCHES NEW

 4 BANK 25 WAY FULL WIPER> 25 ohm coil, 24 v. D.C. E5/17/6, plus $2 / 6$. P. \&.

8-BANK 25-WAY FULL WIPER

SEALED RELAY 230 vole AC Coil. Three $\mathrm{c} / \mathrm{O} 5$ amp. concacts. $17 / 6$ Post Paid.
 A.C. AMMETERS $0-1, \overline{0.5}, \overline{0.10}, \overline{0-15}, \overline{0-2} 0 \mathrm{mp}$. F.R 2tin. dia. Allat $2 l /$ each.
A.C. VOLTMETERS $0-25$ v., $0-50$ v., $0-150$ v. M. A.C. VOLTMETERS $0-25$ v.g $0-50$ v., $0-150$ v. M.
2 fin. Flush round all at $21 /=$ each. P. \& P. exera. 0-300 v. A.C. Rece. M-Coll 2 tin.29/-

PRECISION INTERVAL TIMER

From 0-30 seconds (repeticive). Jewelled

 balanced movement. Lever re-sec.Operates 230 V. A.C. 5 amp. c/o microOperates 230 V. A.C. 5 amp. c/o micro-
switch. Brand New $17 / 6$ plus $2 / 6$ P. \& P.

'AVO' MODEL 47A

Ex-Admiraley in first class condition, complece with Instrucsions, leads and cas
f $9 / 19 / 6$ P. \& $\mathrm{P} .10 /$. 'AVO' MODEL 48A
Ex-Admiraley in good condition with inseructions, leads, plus D.C. Shuncs for 120 Amp and 480 Amp. A.C. Transformer for 60 Amp , and 240 Amp . Multiplier for 3600 volt.
Complete ourfig in fitted case. $\& 15 / 0 / 0$, P. \& P. $10 /$.

dEMONSTRATION TRANSFORMER

 (STENZYL TYPE) Two removable coils are tapped at $0,110,220$ voles,and $6,12,36$ voles respectively. A composite appar-
atus designed for class demonstration. Electro magnesic induction, jumping ring, induction lamp, relationship between field intensity and
ampere curns, induction ampere turns, induction
melting, are just a few of the modified model. flullo possible experiments. New modified model. L.T. TRANSFORMERS All primaries $220-240$ voles.
Type No.
Sec. Taps Trpe No. $34, \mathrm{Sec}$. Taps
$1 \quad 30,32,34,36 \mathrm{v}$ at 5 amps.

$17,18,20 \mathrm{v}$. at 20 amps .
$6,12,20 \mathrm{v}$, at 20 amps .

R.S.T. Valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

——————

[^14]$\stackrel{9}{1}$

TRANSFORMERS

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL APPLICATIONS UP TO $100 \mathrm{KVA}$. . "C" CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

Samples from our standard production ranges:-
*Mains
$350-0.350 \mathrm{~V}, 60 \mathrm{~mA}, 6.3 \mathrm{~V}, 2 \mathrm{~A}$.
$500 \mathrm{~V} .300 \mathrm{~mA} .6 .3 \mathrm{~V} .4 \mathrm{~A}, 6.3 \mathrm{~V}$. IA.
210
3199
$500-0-500 \mathrm{~V} .0 .25 \mathrm{~A} ., 6.3 \mathrm{~V} .4$ Act., 6.3 V .3 Act., $5 \mathrm{~V}, 3 \mathrm{~A} . \ldots 2199$
$525-0-525 \mathrm{~V} .0 .5 \mathrm{~A} ., 6.3 \mathrm{~V} ., 6$ Act., 6.3 V .6 Act., 5V. 6A. $\quad \therefore \quad . \quad 5136$
*Low Voltage
30-0-30V. 4A.
2190
28 V . IA., 28 V . IA., 28 V . IA., 28 V . IA., $30 \mathrm{~V} .250 \mathrm{~mA} . \quad . \quad . \quad . \quad . \quad 419150$

- Primaries 10-0-200-220-240V.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver
$\begin{array}{lll}1 & 4 & 6 \\ 1 & 16 & 6\end{array}$
Mains
L.P. Filter, Printed Circuit Mounting

70V \& 100V Line Matching
Fitted with terminal panel, taps at 0.5,2,4 and 8 W . into 15 ohms $8 / 6$ each in 100 Lots
Flying leads, taps at $\frac{1}{}$, 1, 1, 2 and 4 W . into 3 ohms.. $6 / 9$ each in 100 Lots

Prices inclusive of postage and packing, each.
For small quantities, cash whth order, please.

HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER, M14 4GT 061-226 3411

WW-100 FOR FURTHER DETAILS

LINEAR INTEGRATED CIRCUITS

G.E. TYPE PA 2372 WATT AUDIO AMPLIFIER

This amplifier is capable of delivering 2 Watts power output to a 16 ohm load, the input voltage required being typically 8 mV . An 8 lead dual-in-line package with heat and capacitors are used for bias, feedback and frequency response conerol. No transired
G.E. TYPE PA234 I WATT AUDIO AMPLIFIER 23/Dellvery Watt continuous power into 22 ohm load, also compatible with 8 and 16 ohm
loads. Single supply line 9 to 25 volts. Dual-in-line package with heat transfor tab. G.E. TYPE PALIO LOW LEVEL AMPLIFIER $\quad 21 /=$ RCA TYPE CAJO2O WATT WIDE-BAND POWER AMPLIFIER 32/= RCA TYPE CAJOJS ULTRA HIGH GAIN AMPLIFIER gain typicaily 129 dB at 40 kHz . MULLARD TYPE TAA263 A.F. AMPLIFIER
MULLARD TYPE TAABIO LOW NOISE A UDIO PRE.AMPLIFIER J2/-
G.E. TYPE 2N5306 DARLINGTON PAIR.
$11 / 6$
Very low level, low noise. Partieularly suited for pre-amplifier input stages and low
drive medum speed switching. hrk $=7,000 \mathrm{~min}$ \& $\mathrm{fT}=60 \mathrm{MHz}$ at $10=2 \mathrm{~mA}$.
MULLARD TYPE TAAJ20 M.O.S. L.F. PRE-AMPLIFIER 13/5 Ultra high input resistance. Consists of M.O.S.T. input stage followed
transistor amplifier stage. Ideal for use with crystal pick-ups, simers etc. G.E. TYPEDIJTIPROGRAMMABLE UNISUNCTION TRANSISTOR For timers, relaxation oscillators etc. η, RBB, IP, ivare programable by mean of two external resistors.

All the above are avallable with data sheets at $1 /-$ extra per data sheat. Data sheets may be purchased separately at $1 / 6 \mathrm{each}$, post free.

PROFESSIONAL COMPONENTS AT REALISTIC PRICESI Send NOW for our brand new Components Catalogue, at only $2 /-$ post free. This catalogue is packed with information on a host of up-to-the-minute components by Transistors. Diodes, Rectifiers, Resfseors, Capacitors, Pluge and Sockecs, ere. conform to manufacturer's oublished specifications. 15 per cent, Cash with order please.

KINVER ELECTRONICS LTD., stone lane, kinver, stourbridge, worcs.

SPECIALIST SWITCHES
 are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types $H, D H, H C$, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

Wi/kínsons ${ }_{\substack{\text { sigi } \\ 192 i}}^{\text {sit }}$ tor RELAYS D.0. TYYE 3000 AND 600

BUILT TO YOUR SPECIFICATION

Contacts up to 8 changeover * QUICK DELIVERY

* KEEN PRICES

KEYSWITCHES. 3 POSITION TYPE 212 2C lock $/ 2 \mathrm{C}$ lock
4 C lock $/ 4 \mathrm{C}$ lock $17 / 6$.
Type 2902 C non/lock oC lock $17 /$ o.
Type 295
Many other types avallable. Knobs 8 Cl .

VISCONOL CATHODRAY CONDENSERS. OOI mfd $10 \mathrm{KV} 5 / \mathrm{m} .002 \mathrm{mfd} 15 \mathrm{kVg}$ $2.5 \mathrm{KV} 17 / 6.1 \mathrm{~m} / \mathrm{d} 2 \mathrm{KV} 17 / \mathrm{s}$.
LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size $\$ 5.4$ pole Way and of Ahy 24 pole way and of 210% pole On/Of 150% SOLENOIDS only size $3 E 115.2$ ohms $48 \mathrm{VDC} 17 / 6$ each.
ONE HOLE FIXING SWITCHES. D.P.T. 3 amp 250 信 10.10 .0 d .
IACK PLUGS. 2 point scrow on cover, $2 / 6$, post $1 /=$, PO 201 on headphone cord, 3/- each, poss $2 / \omega_{0}$, AIR BLOWERS, $200 / 250$ vole A.C. cylind rical 7°
$1 / 50$ th h.p. $610.1 / 15$ th h.p. $611.1 / 10$ th h.p. E14.
HIGH SPEED COUNTERS. 31" $\times 1$ ". 10 counts per second with 4 flgures. The following D.C. voltages are available: 6 v ., $12 \mathrm{v}, \mathrm{i} 2 \mathrm{vv}$, 50 v . or 100 v . $35 / \mathrm{e}$ each. VEEDER ROOT MAGNETIC COUNTERS with zero reset 800 counts per minute, PHOTOGRAPHIC LAMP HO USES with pair of 6° lenses mounted in a squre $3 /$ ideal spotlight, $70 /=$ each, post $10 /=$, MINIATURE SILVER ZINC ACCUMULATOR. 1.5 vole 1.5 amper
$\times 0.63^{\circ}$, only If oz, quantities available, $12 / 6$ each, $120 /=$ doz., poss $1 / 6$. BRIDGE MEGGERS 1000 Voles $0 / 100$ Mesohms with Resistance Box $0 / 9999$ Ohms, 660 each

RESISTORS EX STOCK IN QUANTITY WIRE WOUND, HIGH
STABILITY CARBON, ETC., BEST MAKES AT LOWEST POSSIBLE
PRICES
L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
Phone: THO 0236

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $187 / 10 /=$ each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, £3 each, post 10/- HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price $10 /-$ each, post $2 / 6$. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24 ;$ and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.1 \mathrm{mfd}$., 3 for $10 /$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v , £2 each, $4 /$-post. Output transformers $901666-501$ 27/6 each,

4/- post.

- Available with Receiver only.
S.A.E. for all enquiries. If wishing to call ot Stores, please telephone for appointment.

Abstract

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., Unit) for £ 30 , plus 30/-carf. COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$,, as new, price $£ 5 / 10 /$ - each, post 5/-. COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves $2 \times 1625 \mathrm{PA}$; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $\mathbf{8 3} / 10 /-$ each, $10 / \mathrm{F}$ post. Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve lline-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $£ 3 / 10 /-\mathrm{each}, 10 /-$ post.

ROTARY CONVERTERS: Type $8 \mathrm{a}, 24$ v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $\varepsilon 6 / 10 /$ - each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25/- each, post $2 /$ -
CONDENSERS: $150 \mathrm{mfd}, 300 \mathrm{v}$ A.C., $£ 7 / 10 /-$ each, cart, $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. £5 each, $10 / \mathrm{F}$ post. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C., $£ 3 / 10 / \mathrm{e}$ each, post $10 / \mathrm{-}$ $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. Wkg., $15 / \mathrm{-}$ each, post $5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6 \mathrm{each}$, post $2 / 6$ $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 8$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}$, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$ $8 / 6$ each, post $2.6 .4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg. 83 each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., 82 each, post $7 / 6.0 .25 \mathrm{mfd}, 32,000$ v, $2 / 10 /-$ each, cart. 15%. Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /-$ post.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: £25 each, cart. £1. OSCILLOSCOPE Type 13A, $100 / 250 \mathrm{v}$. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to Mc / s. Calibration markers $/ 10 /$ each, $30 /$ carr.
Beam tube. Reliable general purpose scope, $£ 2 / 10 /$ - cac
COSSAR 1035 OSCILLOSCOPE, $£ 30$ each, $30 /$ carr.

RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., E 2 each, 6/- post.
12 Small American Relays, mixed types £2, post 4/-
CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, £2 cart.
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
HEWLETT PACKARD TYPE 400C: 115 v .230 v . input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. HEWLETT PACKARD TYPE $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance 10 megohms . Designed for rack mounting, $\mathbf{\$ 3 0}$ each, carr. $15 /$-.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 / \%$, $£ 1$ carriage.

FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, 6095 Mc/s. AMERICAN EQUIPMENT: BC-640 Transmitter, 100-156 Mc/s., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, 28 v. D.C. input. Also have associated equipment. BC-375 Transmitter, BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ GRC 32 A ; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unt, Control Units, 260/CRD. Test Set URM.44, complete with Signal Generator
TS.622/U.

VARIABLE POWER UNTT: complete with Zenith variac $0-230$ vag 9 amps.; 2 fin. scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19 ln . rack, £16/10/-each, 30/-carr.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /-$ each, carr. $12 / 6$. AUTO TRANSFORMER: 230-115 v.; 1,000 w. \&5 each, carr. 12/6. 230-115 v.; 300VA, 83 each, carr. $10 /$.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps. Price (either type) $£ 2$ each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, $395-0-395$ ched capacitors. 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes
Mounted in 19 in . panel, $66 / 10 /-$ each, El carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s ; complete with TX DRIVER UNIT : Freq. $100-156 \mathrm{Mc} / \mathrm{s}$ in 19 in . panel, $84 / 10 /-$ each, $15 /-\mathrm{carr}$. POWER UNIT: 110 v. or 230 v . input switched; 28 v . @ 45 amps. D.C. output. Wt. approx. $100 \mathrm{lbs.}, \mathrm{£17/10/-} \mathrm{each}, \mathrm{30/-} \mathrm{carr} .\mathrm{SMOOTHING} \mathrm{UN1TS} \mathrm{suitable}$ for above $£ 7 / 10 /$ - each, 15/- carr.
DE-ICER CONTROLIER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor 20-30 vo, 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay relay etc., sealed in steel case ($4 \times 5 \times 7 \mathrm{ins}$.) $£ 3$ each, post $7 / 6$.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7 / 10 /$ each, $15 /$ - carr.

ADVANCE TEST EQUIPMENT: VM76 Valve Voltmeter, $£ 78$ each; VM78 C. Millivolrmerer (transistorised) $£ 55$ each; VM79 UHF Millivoltmeter (transistorised) £125 each; J1B Audio Signal Generator $£ 30$ each; TT1S Transistor Tester (CT472) £37/10 each. 10 per cent Discount for schools, colleges, etc. on the above items. Carr. 10/-, extra per item.

INDICATOR UNIT TYPE CRT.26: complete with CV1526 Cathode Ray Tube (3 EG1). ($3 \times$ CV138; $3 \times$ CV $329 ; 1 \times$ CV858; $2 \times$ CV261; $6 \times$ Crystals). Complete with brilliance and focus controls. Suitable for converting into a small oscilloscope ($10 \times 8 \times 6 \mathrm{in}$., wt. 15 lb .) \& 5 each. Post $10 / \mathrm{F}$.
NIFE BATTERIES: 6 v .75 amps , new, in cases, £15 each, £1 carr.; 4 v .160 amps, new, in cases, £20 each, £1 $10 /$-carr. L.R. 7 Cells, only 1.2 V. 75 amps., new, $£ 3$ each, $12 /$-carr. The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters 0.9999 , with lockin and reset controls mounted in a 3 in . diameter case. Price 0.9999, with lockin,
30/- each, postage 5/-

UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- each, post 4/-
FREQUENCY METERS: BC-221, meter only $\mathbf{8 3 0}$ each, BC- 221 complete with stabilised power supply $£ 35$ each, carr. $15 /-$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$, $£ 25 \mathrm{each}$, carr. $15 /-$ TS.175/U, 275 each, carr. £1. TS323/UR, $20-450 \mathrm{Mc} / \mathrm{s} ., £ 75$ each, carr. 15/-. FR-67/U: This instrument is direct reading and the results ase presented
directly in digital form. Counting rate: 20-100,000 events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., £ 100 each, carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq, range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{~K} \mathrm{c} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v}$. D.C. $\mathrm{\$ 12} / 10 /-$ each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /-$ each, post $7 / 6$.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 10/-

> GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /-$ each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ post. Actuator Type SR. $43: 28$ v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 bs., sating intermittent, price $£ 3$ each, post $5 /-$. SYNCHROS: and other special purpose motors available. British and American ex stock. List available $6 d$.

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v . a.c. operation. In used condition, \&20 each, carr. £1.

MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6in. scale. 1 microW. to 6W. \&25 each. Carr. $15 /-$.

MARCONI DIVERSITY RECEIVERS; Consisting of $2 \times C R .150$'s and associated equipment. \&175 each. Carr. £5.
MARCONI DEVIATION TEST SET TF-934: Freq. $2.5-100 \mathrm{Mc} / \mathrm{s}$. Can be MARCONI DEVIATION TEST SE
CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12 V . D.C., new cond. complete set $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /$ Transmitter only $£ 7 / 10 /-$ (few only) Carr. 15/\%. Power Unit for Rec., new £3/5/Used power units in working order £2/5/.. Carr 10/-
AVOMETERS: Model 47A, £10 each, 10/- post. Model 7, £12/10/- each, 10/post. Excellent secondhand cond. (Meters only-batteries and leads extra, at cost.)
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ ع3 each, 5/- post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \%$ £ $3 / 10 /-$ each, $5 /-$ post.

TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft . L 9 for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female connectors fitted to receive UG-21/U series plugs. New in ctns., $88 / 10 /-$ each,
 Type M1460-4. (New) £6/10/-each, $4 / 6$ post.
TERMALINE RESISTOR UNTTS: type 82A/U, 500 W , freq. $0-3.3 \mathrm{KMC}$ Max VSWR 1.2 Type " N " female connectors, etc. Brand new, £ 30 each, carr. 15/-.
PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR: Type 219, $100-1,000 \mathrm{Mc} / \mathrm{s}$. (New) 665 each, post $12 / 6$. FREQUENCY METER: Type 587-A, $0.250-1.0$ KMC/SEC. (New) 275 each, post $12 / 6$.
FIXED ATTENUATOR: Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC} / \mathrm{SEC}$. (New) \&5 each, FIXED ATTENUATOR: Type 130c, $2.0-10.0 \mathrm{KMC} / \mathrm{SEC}$. (New) \&5 each,
post 4/-. FIXED ATTENUATOR: Type $1157 \mathrm{~S}-1$, (new) 66 each, post $5 /-$.

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

BOOKS FROM BUTTERWORTHS

STC Monograph No. 1

MODERN RELAY TECHNIQUES

By M. L. Gayford, B.Sc., C.Eng., M.I.E.E., D.I.C.

1969155 pages illustrated $£ 2 \mathbf{1 0 s}$.
This book is the first in a series of monographs being produced in collaboration with Standard Telephones and Cables Limited. It surveys the theory and practice of light-current and medium current relays used in the communications, electronics and light-power fields, showing the many areas where the electromagnetic relay is likely to continue to offer advantages over solid-state switching. Telephone and modern industrial types of relay are described in detail together with practical design and application information. The book provides useful reference material for H.N.C. courses, postgraduate courses on communications, electronics, industrial control, electrical engineering, and others, and for Post Office examination courses. Further volumes in this series will deal with such topics as relays, microphones, industrial transducers and microminiaturization.

QUESTIONS AND ANSWERS ON COLOUR TELEVISION

By J. A. Reddihough
1969108 pages illustrated 10 s .
The aim of this book is to provide a simple, practical account of colour television and reception. Like the other volumes in the Newnes-Butterworth Questions and Answers Series, Colour Television presents a step-by-step, easy to follow approach to the subject. The chapters deal with: Colour Signals and Transmission. Picture Displays on Colour Tubes. Decoding the Chroma Signal. Convergence. The book is based on the PAL system throughout ; an elementary knowledge of radio and television has had to be assumed.

EVERYMAN'S WIRELESS BOOK

Revised by R. E. F. Street
1968368 pages illustrated 21 s .
A new edition, completely re-written to cover present day practice, of a popular book for radio amateurs and experimenters, this volume deals with basic theory, components, receiver circuits and practical servicing methods, and contains much useful reference information.

BEGINNERS GUIDE TO TRANSISTORS

By J. A. Reddihough
1968160 pages illustrated 15 s .
This simple but comprehensive account of transistors makes a highly readable introduction for the younger reader as well as for the layman of any age.

GAREX ELECTRONICS MAIL ORDER CHINNOR, OXON
 Transmitters ready working: for 2 metres.
 $68 \mathrm{H} 6,6 \mathrm{BH} 6, \mathrm{QQV} 03-10$, QQV03-10, less case, $£ \mathbf{s} . \mathrm{d}$. modulator, P.S.U. and crystal. $6 v$ or $12 v$ heaters.
 $$
\begin{array}{lllll} P \& P 4 / 6 & 8 & 15 & 0 \end{array}
$$

 P \& P 4/6

 P \& P 4/6

 8150

 8150
 As above but with QQV03-20a in P.A. Fitted into diecast box $9 \mathrm{in} . \times 6 \mathrm{in}$., overall height 6 in . Delivery 7 days
 P \& P 4/6 12100
 Complete Power Supply Units, ready working.
 Toroidal transformer.
 $12 v$ dc in $265 v$ at 150 ma dc out .. $P \& P 4 / 6 \quad 318 \quad 0$
 $12 v \mathrm{dc}$ in 375 v at 150 ma dc out .. P \& P P $4 / 6$
 Toroidal Transformers
 $12 v$ dc in $265 v$ at 150 ma out $2 \frac{1}{4} h \times 2 \times 1 \frac{5}{8} \quad 150$ $375 v$ at 150 ma out $2 \frac{3}{4} \mathrm{~h} \times 2 \frac{1}{2} \times 2 \frac{1}{2} \quad P 2 / 6$ 390 v at 200 ma out $2 \frac{7}{8} \mathrm{~h} \times 2 \frac{1}{2} \times 2 \frac{1}{2} \quad 1 \quad 2 \quad 7 \quad 6$ 400 v at 200 ma plus 250 v at $150 \mathrm{ma} 3 \frac{1}{2} h \times 2 \frac{3}{4} \times 2 \frac{1}{4} P \& P 4 / 6 \quad 218 \quad 6$
 All potted, including circuits.
 Orders and deliveries for Birmingham area can be collected from Garex Wholesale Ltd., 1189 Bristol Road South, Birmingham 31. 021-475 6453.
 OUR GUARANTEE IS YOUR SATISFACTION
 SPECIAL EXPORT SERVICE. All June issue items still available
 Callers welcome, please telephone G3MMJ ex ZS6OP Kingston Blount 476 OTH45-476
 Northern area agents: Derwent Radio, Scarborough, Yorks. Scarborough 63982

TRANSFORMERS

COILS CHOKES

LARGE OR SMALL QUANTITIES TRADE ENQUIRIES WELCOMED
SPECIALISTS IN

FINE WIRE WINDINGS
 MINIATURE TRANSFORMERS RELAY AND INSTRUMENT COILS, ETC. VACUUM IMPREGNATION TO APPROVED STANDARDS

```
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-6532261
CR4.8LZ
EST. 1933
```

WW-102 FOR FURTHER DETAILS

TRICKETT, 70 Park Road, Congresbury, Bristol
 Schools 15% off. Goods over 10s. P/P free except whero shown.

MARCONI NOISE GENERATORS TYPE TF 987/I Used, 215 10s. ea. carr. 1 .

ONE ONLY. ROBOT RECORDER 36 INDUSTRIAL 35 mm . CAMERA. With 200 ft. magazine; Motor tranport; power unit: Timer $8 / \mathrm{H}$ Value over $2200-$ our price $£ 65$.
ONE OMLE. TEXAS INSTRUMENTS DYNAMIC MICRO WELDER. NO. CPWA 296A. Very clean; Hardly used. $£ 60$.
STABILIZED POWER UNITS BY ROBAND ELECTRONICS: Transistor Typ 1: 12 V.D.C. 1.1A Type 2: 1H V.D.C. 1.1A. Type 3: 20 V.D.C. 1.1A. Type $4: 24$ V.D.C. 1-1A. Type S:12 V.D.C. 2-1A. Valve Type A: 250 V.D.C. 150 Ma. Type B: 330 V.D.C. $300 \mathrm{M}_{\mathrm{a}}$. both plus 6.3 v 3 A . twice. RELAYS; LONDEX PLUG IN LOK 4 C. With hase 4 p. C/OVER 28 V.D.C. and 240 V.A.C. $5 /-\mathrm{ean}$ ELECTROTHERMAL PRECISTORS. 2 n. at 0.1% W.W. B.A.E. for liat.

TUBULAR CERAMICS: at $1 / 4$ Doz. $0.5 \% ; 1 \cdot 5$ pf., 2.2 pf., 3.9 pf., 4.7 pf., 8.6 pf., 6.8 pf., 8.2 pf., FALVES; EX EQUIPMENT AT $1 / 8$ em. TO CLEAR S.A.E. FOR LIST.
TRANSISTORS: Types OC470; OC4I; BCY $39 ; 28701 ; 2 N 697 ; 2 N 2223$ all new manufacturers TRANsISTORS: Types OCA70; OCAI; BCY $39 ; 28$.
markinge 2/-ea.
PLESSET MICRO swITCEES. 4p. C/Over. $2 / 6 \mathrm{ca}$.
GERMANIUM XTALS. G.E.C. CG 63H 5/- doz. GERMANIUM BRIDGE RECTS: suituble for battery chargers, Tranalistor mains supplies ete. $8 / 6 \mathrm{p} . \mathrm{p} .2 /$
RECTILINEAR POTS: 10 K ;; 30 K ; $5 / \mathrm{l}$ - a. Colvern W/W. $1 \mathrm{~K} .8 /-$
FULL UNCONDITIONAL MONEY BACX GUARANTEE
S.A.E. FOR LISTS OF OTHER COMPONENTS AND UNITS

PACKS OF YOUR OWN CHOICE UP TO
the value of 10/- WITH ORDERS OVER E4

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP sype transistors, equivalents so a large part of the OC range, i.e. 44, 45, 71, 72
81 , etc.

```
PRICE \(\angle S\) PER 1000
```

POST \& PACKING 4/6 U.K.

x PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A

PRICE 45.3 .0 PER 500
PRICE 410 PER 1000
POST \& PACKING 2/66 U.K
XC PAK
Silicon diodes miniature slass types, finished black with:polarity marked, equivalents to OA200, OA202, BAY3I-39 and DKIO, etc.

PRICE $\angle S$ PER 1000
POST \& PACKING 2/6 U.K.
ALL THE ABOVE UNTESTEO PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMI. CONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS, ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

TRANSISTORS ONLY 1/- EACH SILICON - PLANAR

 All these types available| 2N929 | 2N706 | $2 S 131$ | $2 S 103$ | $2 N 696$ | $2 N 1613$ | $2 S 733$ | BFY 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | $2 S 512$ | $2 S 104$ | $2 N 697$ | $2 N 1711$ | $2 N 726$ | $2 S 731$ |

All tested and guaranteed for gain and leakage-unmarked.
Manufacturers' fall outs from the new PRE-PAK range.

$\begin{aligned} & \text { NEW TI } \\ & 82 \quad 4 \end{aligned}$	STED \& GUARANTEED P PHOTO CELLS. SUN BATTERIES. INC. BOOK OF INSTRUCTIONS	PAKS 10/-
8772	AD161-AD162 NPN/PNP TRANS. COMP. OUTPUT PAIR	10/-
8794	IN4007 SIL REC DIODES 1000 PIV 1 AMP. MINIATURE	10/-
88110	REED SWITCHES COMP. WITH COILS \& MAGNETS	10/-
8892	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
8908	LATEST TYPE REED SWITCHES GREEN GLASS. G.P. O. TVPE	10/-
8918	NKT163/164 PNP GERM. TO -5 EQUIVALENT TO OC44, OC45.	10/-
8924	NPN SIL TRANS. AO6 $=8$ BX20. 2N2369, 500 MHz .360 mW	10/-
8935	$\begin{aligned} & \text { GET113 TRANS. EQUIV. TO } \\ & \text { ACY } 17-21 \text { PNP GERM. } \end{aligned}$	10/-
8946	NPN SIL. PLANAR EPITAXIAL trans. CSA Simular to BSY38 OR BC10B	10/-
B96 5	2N3136 PNP SIL TRANS. TO- 18 HPE $100-300 \mathrm{IC}, 600 \mathrm{~mA} .200 \mathrm{MHz}$	10/-
89810	$\times 8112$ \& XB102 EQUIV. TO AC126 AC156. OCB1/2, OC71/2. NKT271. ETC.	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Oniy 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev. counter for any car.
State 4 or 6 cylinder.
20/-aach

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

NEW PRICES ON NEW COMPONENTS

RESISTORS
Hich stablity, carbon Alm. low nolse. Capless construction. molecular termination
Dimenslong (mmo): Body: tW: 8×2.8

Leads: 95

10% ranges; 10 Ohms to 10 Megohms (E12 Renard Serles). 5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Serles).
Prices-per Obmic value.

)	each	10 off	25 off	100 off
${ }_{6} \mathbf{W}$	10\%	2d.	1/6	3/3	10/4
+W	5\%	21 d.	1/9	3/8	11/8
iW	10\%	2 d d.	1/9	3/8	$11 / 7$
tW	5\%	3 d .	2/-	4/-	12/10

CAPACITORS
5\%
${ }_{3}{ }^{1}$ d.
Subminlature Poly
$\pm 10 \%$ tolerance. 100 Volt working
Prices-per Capacltance value ($\mu \mathrm{F}$)

Polystyrene alm. Tubular, Axial leads. Unencapsulated $\pm 5 \%{ }^{20 / 10} \pm 1$ or tolerance 180 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
10, 12, 15, 18, 22, 27, 98, 90, 47, each $56,68,82,10$
$270,990,890$
470, 560, 680, 820, 1.000, 1,500 $2.200,8,300,4,700,5.600$ 5d. $2.200,8,300$,
$8,800,8,200,10,000,15,000$ 22.000

10 off

$3 / 7$	$7 / 9$
$4 /-$	$8 / 8$
$5 /-$	$10 / 10$
$6 / 1$	$13 /-$
$6 / 9$	$18 /-$

100 off 24/$26 / 8$
$33 / 4$

POTENTIOMETERS (Carbon) $2 \ln . x \ln$. Tolerance, 20% Lipear: 1 K to 2 M . (1 W at $40^{\circ} \mathrm{C}$)
Logarithmic: 5 K to 2 M . ($\$ \mathrm{~W}$ at $40^{\circ} \mathrm{C}$)
$\begin{array}{llllll}\text { Prices per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 2 /- & 18 / 4 & 41 / 8 & 150 /\end{array}$
GANGED STEREO POTENTIOMETERS (Carbon)
tW at $70^{\circ} \mathrm{C}$. Long Spindle.
Logarithmic and Linear: $5 k+5 k$ to $1 \mathrm{M}+1 \mathrm{M}$.
Prlces der ohmle value
each
10 oft
25 off
100 off
SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quallty pre-sets suitable for printed circult boards of 0.1 ln . P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.9 W at $70^{\circ} \mathrm{C}$. $\pm 20 \%$ below +M , $\pm 30 \%$ above 1 M Horlzontal ($0.7 \ln +0 \cdot 4 \ln$. P.C.M.) or Vertical ($0 \cdot 4 \mathrm{in} . \times 0 \cdot 2 \mathrm{ln}$. P.C.M.). Subminlature
0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below 2.5 M . $\pm 80 \%$ above.

ELECTROLYTIC CAPACITO
Subminlature (all values in $\mu \mathrm{F}$)

Subminl			alues	In $\mu \mathrm{F})$						
4V..	.	.	8		32	64	125		250	400
6.4 V	. .	.	8.4		25	80	100		200	820
10 V	.	.	4		16	32	64		125	200
16 V	.	\cdots	2.8		10	20	40		80	125
25 V	.	.	$1 \cdot 6$		6.4	$12 \cdot 5$	25		50	80
40 V	.		1		4	8	16		92	50
64 V	.	.	0.64		2.5	8	10		20	32
Price	-		1/4		1/3	1/2	1/-		1/1	1/2
Small (all	values	In μ	LF)							
4 V		800		1.260		2.000		8.200
6.4 V	.	.		640		1.000		1,600		2.500
10 V	.	.		400		640		1,000		1,600
18 V	.	-		250		400		640		1.000
23 V	.	.		180		250		400		640
40 V	.	.		100		180		250		400
64 V	.	\cdots		84		100		180		250
Price	\cdots	. ${ }^{\text {a }}$		$1 / 6$		2/-		2/6		3/-

Tubular 10%. $160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .039,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .088,0.1 \mu \mathrm{~F}, 9 \mathrm{~d}$, $0.15 \mu \mathrm{~F}, 1 \mathrm{Id}, 0.22 \mu \mathrm{~F}, 1 / \mathrm{T} .0 .38 \mu \mathrm{~F}, \mathrm{I} / \mathrm{J}, 0.47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / \mathrm{l}$. $400 \mathrm{~V}: 1.000,1.500,2.200,9,800,4,700 \mathrm{pF}, 6 \mathrm{~d}, 6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$, $0.039 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .008,0.1 \mu \mathrm{~F}, \mathrm{Ild} .0 .15 \mu \mathrm{~F}, 1 / 2,0.22 \mu \mathrm{~F}, 1 / 6,0.38 \mu \mathrm{~F}$, SEMICONDUC.
SEMICONDUCTORS: OA3. OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D. ACY19. ACY21, 13. OC29. OC28, 8/3. SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-, 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1.500 P.I.V., 4/-. (6A): 200 P.I.V.. 3/-., 400 P.I.V., 4/-. 600 P.I.V., PRINTED CIRCUIT BOARD (Vero)

 SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE

Telephome: CAMBRIDCE (0223) 63687
(Visit us at our now Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/- C.W.O. Post and Packing 1/6

CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES $220 / 240 \mathrm{v}$.

- Completely enclosed in beautifully finished metal case fitted with ewo 2-pin American sockets, neon indicator on/off switch, and carrying handle.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-5125

L.T. SUPPLY UNITS TYPE S.E.S.
A.c. inpur
R. 20
oles. 240
on
Out

ratine.
seilentu
full
fell wav
bridgere
bifide rec
tification.
inet
ammeter
ammer
neon Indi-

cator, housed in strong metal case. Size $17 \times 7 \times 68$.
As above, but 50 yolts 6 ampss $614 / 10 /-$ Carr. $15 /$
SPECIAL OFFER OF L.T. TRANSFORMERS
Pri $110-120 \mathrm{v},-200-240 \mathrm{v}$. Sce. tapped $12,18,24,30 \mathrm{v} .82$ Table top connections. Fully rropicalised. 75/. Carr. 7/6 manufactured for she Phoenix Tele phone Co
Pri tapped $200-250 \mathrm{v}$. Sec. 46v. Very conservatively rated at 29 amps. Size $11 \times 7 \times 7$ ins. Weight 75 lbs . approx. Manu factured by Partridge. E12.19.6. Carr. 15/-.
Pri tapped IlOv. 220-250v. Sec. 55v. 24a., 14v. 10a., 60v. 2a All windings very conservatively rated. Tropically finished. Terminal connections. Size $9 \times 7 \mid \times 7$ ins. Weight 65 lbs El0.19.6. Carr. 15/-

CROUZET GEARED MOTORS
A.C. $110-230 \mathrm{v}$. 10 wates. R.p.m. 80,10 , 1 . Size: dia. 21 ins. depth 2 ins., length of spindle $\&$ ins, 22/6. Any type. P \& $P 3 / 6$

DIGITAL HOUR METERS 6 figs inc. $1 / 10$ ths; $1 / 100$ ths 40v. A.C. but complece with eransiormer
operation. All in plastic case. operation. Al in plastic case
Size
$\times \frac{1}{2} \times 6 \frac{1}{2} \times 3$ in. Condition as new $45 /-\mathrm{P}$ \& $\mathrm{P} 5 /-$.
T.C.C. VISCONOL CAPACITORS
$25 \mathrm{mfd}, 275 \mathrm{v} . \mathrm{wkg}$ A.C. $17 / 6$. P \& $\mathrm{P} 5 /=.60 \mathrm{mfd}$ 275v. wke
 ${ }^{4} \mathrm{md}$. 600 v . wkg. D.C. subechassls mtg. $6 / \mathrm{F}$. P P $2 /$ 8 mfd. 750 v . whg. $\mathrm{D} . \mathrm{C}$. sub-chassis mtg. $10 / 6 . \mathrm{P}$ \& $\mathrm{P} \quad 2 / 6$.

AMERICAN TYPES

Aerovox 8 mfd . 1000 v . wkg. D.C. 12/6. P \& P 2/6. Micamold 8 mid. 600 v wkg. D.C. $8 / 6$. P \& P $2 /$. Micamold 4 mid .600 v wkg. D.C. tubular single hole fixing. $7 / 6$. P \& P $2 /$-. All capacitor supplied new and guaranseed.

SPECIAL OFFER. BLOCK CAPACITORS G.E.C. 8 mid. 600 V . D.C. wkg. Six for $29 / 6$. Carr. $7 / 6$ Dubliner. I mid. 600 v . wkg. Six. for $9 / \%$ p \& P $3 / 6$. T.C.C. 2 mid. 500 v , wkg. Three for $7 / 6$. P \& P 2/6. T.C.C. 0.1 mfd 500 v . wkg. Six for $6 / 6$. P \& P $2 / 6$.

PORCELAIN GIANT E.S. LAMP HOLDERS Length 4 ins. Dia. of skirt 3 ins. Three for $17 / 6$. P \& P $5 /$ E.S. standard size. Three for B/6. P \& P 2

COMPUTER EXTRACTOR FANS Manufactured by Papst. A.C. 220-240v. Cap Manufactured by Papst. A. Ci. 220-240v. Cap
start. 100 c.f.m. 2800 r.p.m. Size $41 \times 4\} \times 2$ ins. start. 100 c.f.m. 2800 r.p.m. Size $4 \times 44 \times 2$ ins.
Ex-equipment. Guaranteed
In perfecs order. 45/.. Сarr. 5/-

> G.P.O. 20-WAY JACK STRIPS Type 320 NN . New. $15 /-\mathrm{P}$ \& P $2 /-\mathrm{c}$
fIELD TELEPHONE CABLE
Type D3 Single. $1 / 3$ mile drums. Ideal for outside telephone systems. Unused. Fraction of maker price. 50/.. P \& $\mathrm{P} 7 / 6$.

PYREX AERIAL INSULATORS

Type 13. Length 7in. 8/6. P \& P 2/-.

SANGAMO WESTON

Special offer $3 \frac{1}{2}$ inch Round Panel Meters. Double reading $0-50$ and $0-100$ micro/A. Scaled $0-8$ and $0-16$ kilovolts. Brand new in maker's cartons. List price over 65 . Our price 25s.

3 INCH SQ. FLUSH 0-80V. D.C. METERS 1000 @/V. 2 in in. hole. By famous maker. Brand new. Boxed 17/6. P \& P $2 /$.

Latest I2-page Price List of transformers, chokes, capacitors and electronic components. Please send capacitors and electronic com
6 d . stamp

a complete stereo system for 28 gns

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting etther upright or horizontally.
Type 1 SPECIFICATION:
Impedance 10 ohms. It incorporates Goodmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $21^{\prime \prime}$ iweeter,
 $67^{\prime \prime}$. Incorporating Elac. $10 \frac{1}{*}^{\prime \prime} \times 6 \frac{1}{" \prime}^{\prime 2} 10.000$ lines and $2 \frac{1}{\prime \prime}^{\prime \prime}$ tweeter. 3 ohms impedance Garrard Changers from E7.19.6d.p\& p 7/6d. Cover and Teak finish Plinth E4.15.0d. 7/6d. $p \& p$.

6 Int \qquad 9 GNS. ${ }^{+8 / 6}$. p. $^{7 / 2}$ The Duetto is a good quality amplifier, altractively styled and finished It gives superb reproduction prevlously associated with emplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: 3 watts per channel into 10 ohrms speakers.

INPUT SENSITIVITY: Suitable for medium or high outpul crystal cartridges and funers. Cross. talk better than 30 dB at $1 \mathrm{kc} / \mathrm{s}$.

```
CONTROLS: 4 -position selector switch \((2\) pos mono \& 2 pos. stereol dual ganged volume
``` control.
TONE
TONE CONTROL: Treble lift and cut. Separate on/off switch. A preset balance control.

\(8 \frac{1}{2}\) GNS SPECIFICATION: Sensitivities for 10 watt output at 1 KHz . Tape Head: 3 mV lat \(31 \mathrm{i} . \mathrm{p} . \mathrm{s}\). Equalisation 2 mV . Cer.P.U.: 80 mV . Radio: 100 mV . Aux, 100 mV . Tape/Rec Output: 100 mV . Control Range: Bass input is correct to within \(\pm 2 \mathrm{~dB}\) (R.I.A. A.) from 20 Hz to 20 KHz . Tone watt output) <1.5\%. Signal Noise: \(<-60 \mathrm{~dB}\). AC Mains \(200-250 \mathrm{v}\). Size \(12 \frac{1}{\frac{1}{2}^{\prime \prime} \text { long. } 44^{*} \text { deep. }}\) 24" high. Builh and tested.

\section*{The Trownt} Integrated High Fideliry Transistor \(13 \frac{1}{2}\) GNS. Steroo Amplifiev
\(+7 / 6\) p. \& \(p\). SPECIFICATION OUTPUT: 10 watts per channel into 3 to 4 ohms speakers (20 watis) monoral. INPUT: 6 -position rotary selector switch 13 pos, mono and 3 pos stereol. P.U. Tuner. Tape and Tape Recout Sensitivities: All Inputs 100 mV into 1.8 M ohm.
FREOUENCY RESPONSE: \(40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 20 \mathrm{~B}\).
TONE CONTROLS: Separate bass and treble controls, TREBLE 13 dB lift and cut (at 15 KHz) BASS 15 dB lift and 25 dB cut (at 60 Hz).
VOLUME CONTROLS: Separare for each channel.
AC MAINS INPUT: \(200-240 \mathrm{v}, 50-60 \mathrm{~Hz}\).
SIZE: \(12 \frac{1^{\prime \prime}}{} \times 6^{\prime \prime} \times 2 \frac{z^{\prime \prime}}{}\) in teak-finished case. Built and rested. p \& \(\mathrm{p} 7 / 6 \mathrm{~d}\).

\section*{THE DORSET}
(600mW Output)
7-transistor fully tunable M.W. L.W. superhet portable with baby alarm facility. Set of parts. The latest modulized and prealignment lechniques makes this simple to build. MAINS POWER PACK KIT: \(9 / 6\) extre
Price \(\mathbf{£ 5 . 5 . 0}\) plus \(7 / 6\) p. \& p. Circuit \(2 / 6\). FREE WITH PARTS
The ELEGANT SEVEN MK. III (350 mW Output)

7-transistor fully tunable M.W. L.W. portable. Set of parts. Complete with all components. including ready etched and drilled printed circuit board-back printed for foolproof construction:
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price \(\mathbf{£ 4 . 9 . 6}\) plus \(7 / 6\) p. \& p.
Circuit 2/6. FREE WITH PARTS

X101

\section*{10w. SOLID-STATE HI-FI AMP WITH} INTEGRAL PRE-AMP.

Specifications: Power Output (into 3 ohms speaker) 10 watts. Sensltivity (for rated output): 1 mV into 3 K ohms \((0.33\) microamp) Total Distortion lat 1 KMz): At 5 watts \(0.35 \%\) : At rated output 1.5\%. Frequency Response: Minus 3 dB points 20 Hz and 40 KHz Speaker: 3.4 ohms. \((3-15\) ohms may be used). Supply voltage
24 v D.C. at \(B 00 \mathrm{~mA} .\{6.24 \mathrm{~V}\). may be used).
\[
\text { Price } \mathbf{6 9 / 6} \text { plus } 2 / 6 \text { p. \& p. }
\]

CONTROL ASSEMBLY: (Including resistors and capacitors). 1. Volume: Price 5/. 2. Treble Price 5/. 3. Comprehensive bass and treble: Price 10/.. The above 3 trems can be purchased for use with the \(\times 101\). POWER SUPPLIES FOR X101: P101 M (mono) 35/- p. \& p. 4/6: P101
50 WATT AMPLIFIER

AC MAINS 200-250V
An extremely rellable general purpose valve Amplifierwith six electronically mixed inputs. Suitable for use with: mics. guitars. gram. Tuner. organ. etc. Separate
bass and veble controls. Output impedance 3. 8 and bass and
15 othms

Price 27 gns. plus \(20 /-p . \& p\).

SPECIFICATION
OUTPUT: 10 watts into a 3 ohms speaker
INPUTS: (1) for mike (\(10 \mathrm{~m} . \mathrm{v}\).). Input (2) for gram. radio (250 m.v.) individual bass and treble
TRANSISTORS: 4 silicone and three germanium.
MAINS INPUT: \(220 / 250\) volts
SIZE: \(10 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{\mathbf{1}^{\prime \prime} \times 2 \frac{1}{2}}\).
MIKE TO SUIT (CRYSTALI: \(12 / 6 \mathrm{~d}+1 / 6 \mathrm{~d}\). \(\&\). \(p\)
\(8^{\prime \prime} \times 5^{\prime \prime}\) speaker \(14 / 6\) d. \(+3 /\) p. \& \(p\).
Mk.|l \(6 \frac{1}{2}\) gns \(+7 / 6\) p. \& p. In teak-finished case.
CYLDON
2 TRANSISTOR
U.H.F.TUNER

Brand new
Complete with circuit diagram.
\(\mathbf{£ 2 . 1 0 + 1 / - p . \& p . ~}\)

\section*{CAR TRANSISTOR IGNITION SYSTEM}
loy famous manufncturer)
For 6 volt or 12 volt positive earth systems. Comprising special high voltage working hermetically sealed stlicon tran sistor mounted in finned heat-sink. high output ignition coil

Price \(£ 4.19 .6\) р. \& p. 5/- extra.

\section*{MOTEK}

3 Speed 2 track Tape Deck complete with heads, takes 7 in. spool Incorporating 3 motors. A. C. malns. 240 volts, listed at \(£ 21,0.0\)
Our Price \(£ 9.19 .6\) plus \(10 /-\mathrm{p} . \& \mathrm{p}\).

\section*{SEMICONDUCTORS \\ BRAND NEW FULLY GUARANTEED}

 FAIRCHILD
L900 \(1 / 1-\) Buffer
L914
II \(/-\) Dual Gate
L923
I4/- JK Flip Flop MULLARD
TAA263 \(18 / 6\) Linear AF Amplifier
TAA293 \(25 / 6\) General purpose Amplifier
TAA241 \(72 / 6\) \(\begin{array}{ll}\text { TAA2 } \\ \text { TAA } 320 & \text { 12 } \\ \text { I } / 6 \\ \text { M.O.S. Pre Amplifier }\end{array}\)

A. MARSHALL \& SONS (LONDON) LTD.
\(01-4520161 / 213\)

RESISTORS
Watt \(10 \%\) 4d. Watt \(5 \%\) od
Watt 5\% 6d. 1 Watt 5\% 5d.
5 Watt 5\% 2/- \(\quad 1\) Watt \(5 \% 1 / 9\)
Watt 5\% 1/9

SEND od. Stamp for catalogue
PANEL METERS
38 Series-FACE S17 All
100
200
500
50.0 50.0 .50
\(100.0-100\)
500

CAPACITORS
Alarge range available.
Electrolytic, Poiyester. silvered Micas, Poly-
stryene, Ceramic, disc (see cat. for full list).
Examples: \(\begin{array}{llll}1000 \mathrm{mfd} 50 \mathrm{~V} & 7 / 6 & 2000 \mathrm{mfd} 25 \mathrm{~V} & 8 / 6 \\ 2500 \mathrm{mfd} 25 \mathrm{~V} & 9 / 6 & 5000 \mathrm{mfd} 25 \mathrm{~V} & 12 / 6\end{array}\) PRESETS
Standard on Sub-miniature
Horizontal POTENTIOMETERS
Minlature

\section*{VEROBOARD}
 \(17^{\circ} \times 21^{\circ} .15\) Blanks \(13 /-\)
LARGE RANGE SPEAKERS FROM STOCK
LARGE RANGE SPEAKERS FROM STOCK
- CALLERS WELCOME

\section*{All overseas enquiries \& orders please address to}

\section*{COLOMOR (ELECTRONICS) LTD.}

170 Goldhawk Rd., London, W. 12.
Tel. 01-7430899

\section*{BRUEL \& KJAER}

The following three instruments are supplied with all leads, accessories, and maintenance manuals.
B \& K FREQUENCY ANALYZER TYPE 2105. 47-12,000 \(\mathbf{C / s}\) in eight ranges directly read on large illuminated scale. Accuracy better than \(1 \%\). \(E 225\).
B \& K LEVEL RECORDER TYPE 2304. A high speed récording instrument designed for she measurement of reverberation time, noise level and she irequency response
SOLATRON OSCILLOSCOPE TYPE CD 642.2. Laboratory type screen dia. Sin., band width OC
\(\mathrm{mc} / \mathrm{s}\). Rise time approx. \(30 \mu\) secs, \(\mathrm{me} / \mathrm{s}\). Rise time approx. \(30 \mu \mathrm{secs}\),
sensitivity approx. \(100 \mathrm{~cm} / \mathrm{s}-65 \mathrm{v} . / \mathrm{cm}\). with \(\times 1\), \(\times 10, \times 100\) multipliers and
fine expansion control. Controlled bright up, Z modulation. \(\mathbb{C} 130\). Carriage 40/-
SOLATRON OSCILLOSCOPE TYPE 7115.2 . Frequency range up to The time base circuit gives switch speeds from \(3 \mathrm{~cm} \mu / \mathrm{secs}\). to \(0.3 \mathrm{~cm} / \mathrm{s}\) without expansion and variable expansion of up to \(\times 10\) is also incorporated. Planastron circuit in the time base pro-
vides further delay variable for 10 vides further delay variable for 10
\(\mu / \mathrm{secs}\). to \(10 \mathrm{~m} / \mathrm{seconds}\). The double \(\mu / \mathrm{secs}\) to \(10 \mathrm{~m} / \mathrm{seconds}\). The double
beam display is obtained by a beam beam display is obtained by a beam
switching technique providing single switching technique providing shinge beam, alternate switch or
switching. 885 . Carriage \(30 /-\)
BOONTONSTANDARDSIGNAL GENERATOR MODEL TS497. (Military version of civil model 80.) Frequency \(2-400 \mathrm{me} / \mathrm{s}\) in 6 ranges. AM., tion. Provision for pulse modulation. Piston type attenuator \(0.1 \mu-100 \mathrm{mv}\) separate meter for modulation level and carrier level. Precision flywhel cuning. \(117 v\) A.C. input. With inscruction manual, 695: Carriage 30
MARCONI SIGNAL GENERA. Excellent laboratory tested condition with all necessary accessories with in-
struction manual, 445 . P. \& P. \(15 /\). MARCONI SIGNAL GENERA. TOR TF 801/A. \(10-300 \mathrm{Mc} / \mathrm{s}\). in 4 bands. Internal at \(400 \mathrm{c} / \mathrm{s}\). I \(\mathrm{ke} / \mathrm{s}\).
External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{ke} / \mathrm{s}\). Output \(0-100 \mathrm{db}\) below 200 mV from 75 ohms source. \&85. DITTO but 801/A/1 with additional high level output. ©89. Boch
P. \&. P. 20/, including necessary conP. \&. P. 20/-, including necessary con-
nectors, plugs, and inscruction manual BROA
SIGNA SIGNAL GENERATOR TYPE 903. Frequency range \(6,800-11,000 \mathrm{mc} / \mathrm{s}\), directly calibrated. Pulse rate \(40-400\)
e/s and \(\times 10\) multiplyer, delay \(3-300\) \(\mathrm{U} / \mathrm{sec}\). Width .05 to \(10 \mathrm{U} / \mathrm{sec}\). Input for external syncronisation and modulation. Output delayed and undelayed syncronised directly calib
ator. \(£ 85\). Carraige \(30 /-\)
DAWE VALVE VOLT METER TYPE 613B. Range \(0.03 v\) vo 300 v in nine ranges. Frequency \(20 \mathrm{e} / \mathrm{s}\) to 2 \(50 \mathrm{c} / \mathrm{s}\) f \(17 / 10 /=\) Carriage \(30 /\)
SOLATRON LABORATORY REG ULATED POWER UNIT MODEL SRS 151 A. Variable volcage, positive output: 20-250v; 250/500v x 300 mA (metered). Negative outpur 0-170v output 170 v . Up to 0.5 amps. Two separate 6.3 v and 5 amp outputs. Volts mA meter switch. H.T. Safety cut-our.
\(200 / 250 \mathrm{v}\). A.C. \(50 \mathrm{c} / \mathrm{s}\). 645 . Carriage \(30 \%\). MARCONI VIDEO OSCILLATOR TF 885 . Sine wave output \(25 \mathrm{c} / \mathrm{s}\)
co \(5 \mathrm{Mc} / \mathrm{s}\) in 2 bands, Squarewave output \(50 \mathrm{c} / \mathrm{s}\) co \(150 \mathrm{c} / \mathrm{s}\) in 2 bands. Freq accur \(\pm 2 \% \pm 2 \mathrm{c} / \mathrm{s}\). Power supply \(100 / 125 j\) \(\pm 2 \% \pm^{2} \mathrm{c/s}\). Power supply
\(200 / 250\). A.C. 655 . (Diteo but \(25 / 12\)
\(\mathrm{me} / \mathrm{s}\) in 3 bands \(/ 885 \mathrm{~A} /\) (1). E85. Carriage me/s
AIRMEC FREQUENCY STAND. \(10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{Mc}\). \(\mathbf{6 8 0}\). Carriage \(30 /\),

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy with 0 ceuracy \(03 \%\) Addicional \(\mathrm{Mc} / \mathrm{s}\) on harmonics \(5.0-6.25 \mathrm{Mc} / \mathrm{s}\) with ac curacy \(+-2 \times 10^{-4}\). Incorporating \(\begin{array}{ll}\text { calibrating quartz } 100 \mathrm{kc} / \mathrm{s}+ & -5 \times \\ 10-420 / 220 \text { v. A.C. mains. } & \mathbf{8 8 5} \text {. }\end{array}\) Carriage 62.

POLARAD UHF SIGNAL GENERATOR. Frequency \(950 \mathrm{mc} / \mathrm{s}\) 2,4V-200 mV. Sync. selector incernal square wave, sin., positive and negative rate multiplyer \(X: \& \times 10\). Pulse rate \(30-420 \mathrm{c} / \mathrm{s}\). Pulse delay \(2.5-350 \mathrm{u} / \mathrm{sec}\) Pulse width 5 microsec (incorporating square wave switch). Modulation CW F M, internal square wave, external positive and negative. \&llo. Carriage 30/-.
As above but frequency 3,830-11,050 \(\mathrm{mc} / \mathrm{s}\), counter read out, pulse delay \(X 1\) rate \(\times 10 \times 100 \times 1.00\) microsecs. Pulse f165. Carriage \(30 /\)

COSSOR OSCILLOSCOPE TYPE 1049. C45. Carriage 30/.

Fuller descriptions of the following 5 instr
SOLATRON STORAGE OSCIL LOSCOPE TYPE GD 910
SIGNAL GENERATOR TYPE 62 COMPLETE WITH P.S.U MICROWAVE SPECTRUM ANA TURED BY RACA

DAWE STORAGE OSCILLO SCOPE TOGETHER WITH E SHIFTER.
"S" BAND SIGNAL GENERATOR No. 16 MADE BY SPERRY. 7.9-1 \(\mathrm{cma}(2727-3797 \mathrm{mcs}\).\() . Power output\)
.001 micro watts- 1 mW . at 72 ohms Modulation: A unmodulated CW B square wave modulated by internal free running modulator with PRF variable from 400 c to 4 kc . C Square wave modulated by internal modulator triggered by external source either sine
or square, \(20-100 \mathrm{v}\), sine or \(20-100 \mathrm{v}\). p. to or square, 20-100v. sin
p. \&85. P. \& P. 30/-.
BOONTON " Q " METER TYPE 160 A . Frequency range \(50 \mathrm{kc} / \mathrm{s}\) co \(50 \mathrm{mc} / \mathrm{s}\). \(\mathrm{Q}^{\text {" }}\) range \(0-250\) with mul \(30-500 \mathrm{pF}\) with separate \(\pm 3 \mathrm{pF}\) incer polating capacitor. Power supply
\(220 / 250 \mathrm{vAC}\), © 75 . Carriage \(30 /\).
AVO VALVE TESTER MODEL 3. Measurement of mutual conductance \(0-300 \mathrm{y}\). panelled \(0-400 \mathrm{y}\). srid \(0 \%-100 \mathrm{v}\) \(0-300 v .\). panelled \(0-400 \mathrm{v} ., \mathrm{grid}\)
\(0 /-100 \mathrm{v}\)
Filament \(0 / 126 \mathrm{v}\). Insulation \(0 / 10 \mathrm{~m}\) Filament Rectifying valves and signal
ohms. Rection diodes can be tested under load conditions, short circuiting of electrodes and cathode insulation can also be measured. Complete with data book 445. Carriage 30/-.

NAGARD OSCILLOSCOPE TYPE DE 103, \(£ 85\). Carriage \(10 /-\)
PORTABLE SONTRANIC OSCIL LOSCOPE 2 in. tube 220/250v. A.C.
£ 22 l0s. Carriage \(30 /-\).

HEWLETT-PACKARD MODEL \(524 B\) ELECTRONIC COUNTER Without plug in unit this instrument will measure frequencies from \(10 \mathrm{c} / \mathrm{s}\) to
\(10.1 \mathrm{mc} / \mathrm{s}\) and periods of from \(0-10 \mathrm{kc} / \mathrm{s}\). \(10.1 \mathrm{mc} / \mathrm{s}\) and periods of from \(0-10 \mathrm{kc} / \mathrm{s}\)
Frequencies are read in \(\mathrm{kc} / \mathrm{s}\) with the decimal point automatically positioned and time is read in seconds, millisecond point automatically posicioned. Regisera tion is in eight places, first six on neon lamp decades, last two on meters. Sel check facility from internal \(100 \mathrm{ke} / \mathrm{s}\) and \(10 \mathrm{mc} / \mathrm{s}\) frequency standards. Full details and price on request. Plug in unit for extra range, \(100 / 220 \mathrm{mc} / \mathrm{s}\), is an optiona extra. E22/10/-. Carriage 15/.
RF WATT METER PMI6. Frequency \(0.2-500 \mathrm{me} / \mathrm{s}, 3\) ranges \(0.150,0.600\)
0.1 .500 w . Impedance 51.5 ohms. "N" type connector. E75. Carriage \(40 /\).

VALVES

"S" METER FOR H.R.O. RECEIVERS. SUB-MINIATURE "PENNY SIZE" METERS. lin. round, flush ring nut mounted 500 \&A FSD, calibrated 0.1 mA . \(20 /-\). P. \& P. 3/-

\section*{MOVING IRON METERS}

15 VAC 2 tin. round panel 50 amp 21 in. round panel
D.C. MOVING COIL METERS
\(300 \mathrm{~mA} 2 \frac{1}{1}\) in. square pane! \(20-20 \mathrm{~mA} 2 \mathrm{in}\). Round panel
\(30-0-30 \mathrm{~mA} 2 \frac{1}{2}\) in. round panel
\(70-150 \mathrm{v} 2 \mathrm{in}\). square, black dial luminous hand nd figures
\(\frac{1}{2}\) in. round panel
200,1 A. 2 in . round panel, sealed calibro- 30 mA. 2
mA. 2 in. round panel seal
5 mA .2 in . round panel sealed....
5 mA . \(2 i n\). round clip-fix panel or proj.
\(10-0-10 \mathrm{~mA}\). 24 in . round pane
\(0-30 \mathrm{~mA}\). 2tin. round pane
\(75 \mathrm{~mA} .2 \frac{1}{\mathrm{in}}\). plug in
\(00 \mathrm{~mA} .1 \frac{1}{1}\) in. round panel
\(100 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}\). round panel
500 mA .21 in . round pane
2 amp . 2 in . round panel
25 amp. \(3 \frac{1}{2} \mathrm{in}\). round proj.
\(0-1.5 \mathrm{~V}\) \& \(0-150 \mathrm{~V} 3\) terminals round panel 20 VDC 2 in . square pane
100 V 4 in . round panel
150 VOC 4 in, round pancl
\(150-0.1500 \mathrm{~mA} 31 \mathrm{in}\). round........
1.5 KV with res. 2 in . round panel
R.F. METERS
\(120 \mathrm{~mA} .2 \frac{1}{4} \mathrm{in}\).

\section*{ELECTRONIC ANTENNA CHANGEOVER SWITCH}

Automatically transfers antenna for \(T X\) to \(R X\) and vice versa without the of transmitting power and provides gain of 26 Db in receiving sensitivity, with built-in power supply unit for 220/250v AC. Our own manufacture, Full description and price upon request.

27/6
19/

22/6 17/6 201/ \(250 \mathrm{kc} / \mathrm{s}\) in the ranges \(10 \mathrm{~m} V\) (full up to to 100 v . (full scale). Logarithmetically \(\mathrm{db}, 0 \mathrm{db}\) being 1 mV . Automatically set zero lor every range. A jack is provided for monitoring the input signal if required. 220/250v. Post and packing 10/-
R 216 AM/FM HIGH CLASS COM. R 216 AM/FM HIGH CLASS COM
MUNICATION RECEIVER. \(19 \mathrm{mcs}-\) MUNICATION RECE 30 kc to 120 kc , complete with original
\[
\begin{aligned}
& \text { unit } \text { 655. Carriage }^{30 /} \\
& \text { PYE CHANNEL }
\end{aligned}
\]
\(\qquad\) MITTER RECEIVER STATION. Comprising PTC 941 Crystal-controlled microvolt for IW, oulput at all fre quencies at 1006 S/N and PTC 931
60 W Transmitter for RT, CW and MCW operation with push-button control for selection of any one of four
pre-set channels. Full details and pre-set channels. Full details and
specification on request. PYE RANGER TYPE PTC 8002. FM mobile radio telephone. Frequency
range \(68-174 \mathrm{mHz}\) on any spot frequency in five bands, transmitter output 7-10W into 50 ohms. Double superhet
receiver. Power supply \(6,12,24 v \mathrm{DC}\). Positive or negative earth. \(£ 45\).

\section*{INSET MICROPMONE for} INSET MICROPHONE for
phone handset, \(2 / 6\). P. \& P. 2/-.
FIELD TELEPHONES TYPE "F" Excellent for communication in cases. Excellent for communication in- and out-doors luding bateries and \(1 / 6 \mathrm{ch}\) mile field cable on drum. Slighely used, \(\mathrm{E} / \mathrm{/lo/} \mathrm{\%}\). Carriage 10/-.
HARNESS " \(A\) " a " \(B\) " control units, unction boxes, headphones, micro

29/4IFT. AERIALS each consisting of ten 3f.. fin. dia. cubular screw-in with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, ecc. Absolutely in canvas bag, \(\mathbf{3} / 9 / 6\). P. \& P. \(10 / 6\).

\section*{300W 15V JAP Petrol Generator} (Charging set). C35. Carriage \(15 /\).

\section*{l260W \(35 V\) CHARGING SET. Com-
plete with switchboard. New 445 .} Carriage 40/.
L.T. SUPPLY UNIT RECTIFIER No. 19. Consists of two separate 12 V may be used independently, giving two separate outputs of 12 V at 3 amps, separate outputs of connected in parallel giving 12 V 6 amps or connected in series giving 24 V at 3 amps. Ideal for battery charging.
DC power supply, ete. \(100 / 250 \mathrm{~V} A C\) Input. Brand new, complete with con-
nectors. \(\mathbf{£ 6 / 1 9 / .}\). Carriage \(9 /\).

\(\infty\) 年为worn
Now

SPARES FOR AR.8BD. RECEIVERS Ask for your needs from our huge selection.
SMALL 28 Y MOTORS. \(150 / 200 \mathrm{~mA}\) lans run 4,000 r.p.m. Ideal for smals grinders, etc. \(12 /-\). P. \& P. \(2 /\)-.
MECHANICAL TIMED DELAY RELAYS. Coil resistance 150 ohms, delay within range of few seconds. \(17 /\) P. \& P. 3/-

HIGH SPEED ULTRA SENSITIVE SEU IN RELAYS with ewo 12/-. P. \& P. 2-
UNIVERSAL GALVANOMETER

FOR EXPORT ONLY
Installation Kits for CII/R210 Sets
53 TRANSMITTER made up to " as
COLLINS TCS. Complete installaions and spare parts.
POWER SUPPLY UNITS FOR C42 C45. 12 v and 24 v .
R.C.A. TRANSMITTER TYPE ET 4336. 2-20 Mc/s., complete with M.O. Cryst. mult. and speech ampl.
Fully tested and guaranceed. All spares available.
BC 610E B BC 6101 TRANS. MITTERS. Complete with speech BC 939 A , exciter units, tank coils, ect. Fully rested and guaranteed. All spares available.
No. 19 HIGH POWER SETS. increased to 25 Amplifier the output lations supplied \(01-7434946\)

\section*{HIFF equipment to suit EVZRYPOCKI}

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
AND SAVE UP TO 255 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for all leading makes AMPLIFIERS TUNERS DECKS

MICROPHONES TEST EQUIPMENT HEADPHONES CARTRIDGES, etc

Terrific Savings
COMPLETE SYSTEMS from \(\mathbf{\$ 4 6}\) - Saves \(\mathbf{£ 1 2 . 1 0 . 0 1}\)
It will PAY YOU
Send for new \(B\)-page illustrated Hi-fillist 16/17.

\section*{Fulls froted CATALOGUE}
The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with \(10 /\) worth disc
FREE WITH EVERY COPY
* 32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment * 70 pages of microphones. decks and Hi - Fi equipment.

\section*{6,500 ITEMS 320 BIG PAGES}

303 Edgwaro Road, London, W.2. Mail Order Dept. all types of Components, Organ Dept. (m) 723-1008/s 309 Edgware Road, London, W.2. High Fidelity Sales, P.A and Test Equipment. Record Decks(01) 723-0s3

\section*{}

\section*{KING OF THE PAKS Unequalled Value and Quality CIIDER DAKC BI-PAK NEW-UNTESTED SEMICONDUCTORS}
Satisfaction GUARANTEED in Every Pak, or money back.
PAK NO.
\[
\text { NO. Glass Sub-min. General Purpose Germanium Diodes } 10 /
\]
\[
\begin{array}{ll}
\text { U2 } & 60 \\
\hline \text { U3 } & 75 \\
\hline \text { U4 }
\end{array}
\]
\[
75 \text { Germanium Gold Bonded Diodes sim. OA5, OA47 } 10
\]
\[
40 \text { Germanium Transistors like OC81, AC128 }
\]
\[
60200 \mathrm{~mA} \text { Submin. Sil. Diodes }
\]
\[
60200 \mathrm{~mA} \text { Submin. Sil. Diodes } \ldots \ldots
\] 10 Silicon Rectifers Top-Hat 750 mA up to 1000 V \(10 /\) 50 Sil. Planar Diodes 250 mA OA/200/202 20 Mixed Volts 1 Watt Zener Diodes 30 PNP Silicon Planar Transistors TO-5 sim. 2N1132 12 Silicon Rectifiers EPOXY BY126/127 30 PNP.NPN Sil. Transistors OC200 \& 2510 150 Mixed Silicon and Germanium Diodes 530 NPN Silicon Planar Transistors TO-5 sim. 2N697 10 103 -Amp Silicon Rectifiers Stud Type up to 1000 PIV \(10 /\) 30 Germanium PNP AF Transistors TO-5 like ACY 17-22 10 86 -Amp Silicon Rectifiers BYZ13 Type up to 600 PIV 10 30 Silicon NPN Transistors like BC108
121.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV.. 10 30 A.F. Gernanium alloy Transistors 2G300 Series \& OC71 10 10 1-Amp Glass Min. Silicon Rectifiers. High Volts 30 Madt's like MAT Series PNP Transistor 20 Germanium 1-Amp Rectifiers GIM up to 300 PIV.. 10 \(25300 \mathrm{Mc} / \mathrm{s}\) NPN Silicon Transistors 2N708, BSY27 .. 10 30 Fast Switching Silicon Diodes like IN914 Micro-min 10 Experimenters' Assortment of Integrated Circuits, un-
tested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces.
U29 101 Amp SCR's TO-5 can up to 600 PIV CRSI/25-600 .. 20 U30 15 Plastic Silicon Planar trans. NPN 2N2924-2N2926 U31 33
\(\qquad\)
15 Plastic case 1 Amp silicon rectifiers \(\mathbf{W} 4000\) series. . \(10 /\)

Code Nos. mentioned above are given as a guide to the type of QUALITY-TESTED PAKS 6 Matched Trans. OC44/45/81/81D 16 Red 8pot AF Trane. PNP \(\delta\) gilicon Rects. 3 A 100-400 PIV 10 A 8 Hicon Recta. 100 PIV 12 A scR 100 PIV
8ll
Trans. 28303 PNP Zener Dioden \(250 \mathrm{~mW} 3-12 \mathrm{~V}\) 200 Me/a sul. Trans. NPN B8Y26/27
Zener Dlodes IW 33V \(5 \%\) Tol zener Diodes IW \(33 V\)
High Current Trans. OC42 EqV. High Current Trans. OC42 Eqvt.
Power Transistors 10 OC26 1 OC35 o 81 licon Rects. 400 PIV 250 m 1 OC75 Transiutorm \(10 \ldots\) 1 Power Trans. OC20 100 V .
0 OA202 84 . Dloden Sub-min. 2 Low Noise Trane NPN 2 N929/30
1 BU. Trans. NPN VCH 100 2T86 OA81 Dhodes. OC72 Transistors
gu. Recter 400 PIV 500 mA GET884 Trane. Eqrt. OCA4
5 GET883 Trane. Eqve. OC4 2 N 708 Bil Trans. \(300 \mathrm{Mc/s}\). NPN
GT31 LF
Low
Noise Germ Tran
6 PNP IN914 Sul. DIodes 7S PIV TFral. NPN Germ. Trans. NKT773 Eqv \({ }_{0} \mathrm{ACl} 30\) Power Trans. Germ. \({ }^{0} \mathbf{O C 2 5}\) Power Trans. Gefth. ACl27/128 Comn. pair PNP/NPN 2N1307 PNP 8witching Trana,
CG62H Germ. Diodes EqVL. OA7i. CG62日 Germ. Diode AFsirted Germ. Dlides Mark
AC126 Germ. PN Trans. - Sulicon liects. 100 PIV 750m AF117 Trabi.
\({ }_{3}\) OC81 Type Tr
52 2N2926 sul. Kpoxs
7
OC71 Type Trans.
\({ }_{2} 28701\) sil. Trans. Texas
312 Volt Zenera 400 mW
210 A 600 PIV 84 Recta. isis R 3 BCLOA BLI. NPN High Gain Trana 12 2N910 NPN SiL. Trans. VCB 10
21000 PIV SUI. Rect. 1.5 A R53310 AI 3 B8Y95A sil. Tran. NPN \(200 \mathrm{Mc} / \mathrm{A}\) C200 811. Trans. 8il. Power Recta. BYZ13
Sil. Power Trans. NPN \(100 \mathrm{mc} / \mathrm{g}\). TK201A Zener Diodes 3-15V Sub-min. 2N1132 PNP Epliazial Planar \(8 i 1\)
2N697 Epitaxial Planar Trant. 81 4 Oerm. Power Tranc. Eqv 2 sul. Trana. 200 Mc/a. 60 veb ZTs3/81. 2 2N 2712 Sil. Epozy Planar HFE'225 8 sil . and GeFOLL RANGE OF ZENER DIODES
1-5W (Top-Hat).......3/6 each
low (\(\mathrm{so}-10 \mathrm{gtud}\)).....5/- esch
눈운\begin{tabular}{l}
Alf fully teatedt \(5 \%\) tol. and marked \\
Etate voltage required. \\
\hline
\end{tabular}
TRANSISTOR EQVT: BOOK
82 pages of crose reterencee to
trans. and diodes. ispen includ trans. and diodes. typea inclur
British, European. American andJapmene. specially imported by
BI-PAK
BRAND NEW TEXASGERM. TRANSISTORS
Cod
Pak No and Guaran\(10 \%\)
\(\therefore 10 \%\)
\(10 \%\)
\(10 \%\)
FREE
One 10/- Pack of your own
choine free with orders
valued 54 or over.GERM. RECTIFIER SINGLE-PHASE BRIDGE. Mullard type
OEX \(51 /\) B. P. Output Vha.2N2060 NPN SIL. DDAL TRANS2N2060 NPN SIL. DUAL TRANS
CODE D1689 TEXAS. OUR
PRICE \(5 /\) - eachPRICE 51689
\begin{tabular}{l}
SIITTOB \\
2 N 1893 \\
\hline
\end{tabular}

\[
\begin{aligned}
& 2 N 1893 \\
& \text { CoDED } \\
& \text { To } 1
\end{aligned}
\]
Please note To avoid anyPLEABE NOTE. To avold anyour Customers und enable us to
keep our "By Return Postalkeep Our "By Return Pontal
service" which in second to note,
we
we have re-organized and stream-
lined our Debpatch Order Depart-ment and wo now requeat you tosend all your orders together with
Your remittance, direct to our
Wirehouse and Despatch Depart.Wour remitunces direct to ourment, poatal address: BI-PAES
SEMICONDUCTORS, Daspath
Dept., P.O. BOX 8, WARE,

INTEGRATED CIRCUITS
 bitio lead T0-6) BP305A, 6 -Ipput AND BP3te, \(8 / 6\) each. 7 -lmput No BP315A. Dual (8ate, 8-Input NOR GATE. \(9 / 6\) esch NOR gate (expandable), 9/6 each,
BP320A, J-K-Binary el ment, \(11 / 6\) each.
B P332A. Dual 3 -Input gate, \(9 / 6\) each. BI-PAK MOMOLTTHIC AMPLIFIERS
BP709C, Operational amp
lifier, \(15 /\) each.
liffer (with Zener out
put, \(12 / 6\) each.
BPfier (with direct out
put). \(12 / 8\) each.
Bl'501, w/de hand ampl
BP301, Whde hand ampll
fier, 18 8.- ozeh. band amgar, 14/- asch. BR210G, General purpose
amplifier (T0-5 8 lead).
(voltage or current amp.), 12/6 each.
OTHER MONOLTTHC DEVICES
8/6 eseh
This device
This device le e monolithle I.C. that act, a comblaed trigger circult for control ling striac. It in detygned
to pulse the gate of to pulse the gate of a Chyristor at the point on
zero supply voltage, and zero supply voltage, and
therefore eliminate radlo
frequency interference frequency interference
when used with resiutive when used with restant D13D1 slllcon Unlla
wwitch 10/-each.
 having thyristor electrica characteratice but Fith a
node gite and a built"Zener" diode between
gnte and cathode. Full gnte and cathode
data, and application cir
cults avilable on request
\(\qquad\) PARCEILD U.S.A.
RTUL MICROLOGIC
INTEORATED CIRCUIT Epory care T8-s lea temp. range \(15^{\circ} \mathrm{C}\). to \({ }^{5} 5^{\circ} \mathrm{C}\)
UL900, Buffer, \(10 / 6\) gach UL914, Buffer, \(10 / 6\) each gate. \(10 / 6\) each.
ULs23
J-K flip-flo
UL23. J-K-flip-flop, 14/0 Complete data and circuits
for the Fulirchild I.C.'s available fin booklet form priced 1/6.

\section*{MULLARD I.C}

TAItier, \(70 /\) operational amp-
TAA263, Linear AF ampll TAA293, Ceneral purpos TAA293, Geaeral purp
ampliner, \(21 /\) sach.
CA 3020 RCA (U.S.A.)
LINEAR INTEGRATED LINEAR CIRCUITS Audio Power Amplifer,
\(30 /\) esch. Owing to the mass of 1.0,
printed raatter often re printed riatter often
quired by customers in quired by customers.
connection whi the I.C.'
themselves we ask you. help une in the reproducing this Herature
by adding 2 s . towards
eame. This is only neces. same. This is only necea
sary. When a number of
different shen kary when
dliferen
required.

500 Chesham House 150 Regent Street London, W. 1

\section*{With Pitman Books}

\title{
you're always \\ on beam!
}

\section*{PRINCIPLES OF COLOUR \\ TELEVISION SYSTEMS}
C. R. G. REED. 50s net

This book provides an up-to-date and critical comparison of the various European and American colour systems, written primarily for engineers who are not colour TV specialists.

\section*{RADIO COMMUNICATION \\ J. H. REYNER \& P. J. REYNER. 60s net SECOND EDITION}

Here is a book covering the work required for the City and Guilds Telecommunications Technicians' Certificate (Radio Subjects) to final year. Emphasis has been given to semiconductors and other modern developments.

SIR ISAAC PITMAN \& SONS LTD the pitman publishing group

WW-103 FOR FURTHIER IDETAIIS

\section*{ELECTROVALUE SPECIALIST SUPPLIERS OF TRANSISTORS IN TYPES TO SUIT ALMOST ALL NEEDS}
- HIGHLY COMPETITIYE PRICES
- WIDE RANGE OF COMPONENTS
- BAILEY AMPLIFIER PARTS—KIT-BUILT
- POWER SUPPLY KIT
- PEAK SOUND PRODUCTS AS ADVERTISED
EVERYTHING BRAND NEW AND TO THE ADVERTISED SPECIFICATION

1969 CATALOGUE now ready. Send \(1 / 6\) for your copy COMPONENT DISCOUNTS. \(10 \%\) on total order over 13.0.0. \(15 \%\) on tozal order over \(£ 10.0 .0\), unless stated otherwise. POSTAGE AND PACKING on orders up to \(\mathbb{C l}\), add \(\mathrm{I} /\)-; over, post OVERSEAS ORDERS WELCOMED. Carriage charged at cost.

\section*{ELECTRDVALUE}

32A ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY Telephone: Egham 5533 (STD 0784'3)

\title{
P. F. RALFE
}

\section*{"OSCILLOSCOPES" \\ BARGAINS}

\section*{Available this month}

DARTRONIC MODEL 415
This modern single beam scope has all the facilities for high-speed measurements
Frequency Response \(=\) D.C. \(15 \mathrm{Mc} / \mathrm{s}\).
Internal Calibration.
Time Base 20 range \(-2 \mu s-1\) sec \(x\) expansion \(\times 8\) 5 eriggering modes. Differential amps' P.D.A tube. Part eransistorised.

\section*{TELEQUIPMENT MODEL 520} Single beam. \(4 i n . ~ t u b e ~ D . C .-~\)
portable. Reconditioned. Mc/s small
Rervice scope portable. Reconditioned. Ideal service scope for TV and radio. Servicing. ere.
Price only \(\mathrm{C} / 8 / 10 / 0\). Post/packing \(15 /\).

\section*{TELEQUIPMENT MODEL 720}

Single beam. D.C. \(5.5 \mathrm{Mc} / \mathrm{s}\) at 3 db down incernal callbracor \(\times\) expansion \(\times 10\). tin. modern tube. \(10 \mathrm{Mv} / \mathrm{per}\) e/m max. sensitivity Excellent
condition. Only \(227 / 10 / 0\). Post/packing \(15 / \mathrm{m}\).

Cossor Model 1049 Double Beam
Cossor Model 1052 Double Beam
Solartron Model 514
Solartrón 7115/2 Double Beam
Bradley Type 148 A miniazure portable single beam. Completely solid state, for battery or mains operation. Band width D.C.- \(6 \mathrm{Mc} / \mathrm{s}\). Supplied as new c/w handbook. Only 255. Lavoie Industries (U.S.A.) single beam oscilloscope of special interest to \(35 \mathrm{Mc} / \mathrm{s}\), this instrument has all the facilities of the latest high price scopes.
Send for further details.
Price as new, 225 . DB Plug-in available.
CAPACITANCE BRIDGE ELECTROLYTIC
B.P.L. Cat. No. ZD00506. Measures capacitance under full working loads (variable voltage seleccion), easy to operate. C/w voltmeter, leakage current meter, balance indicator, discharge switeh. etc. Range 2 mid. to 2.200 mfd . A modern instrument in new condition, and guarante
accurate. Price 635 plus \(20 /\) pose/packing.

AN/APR4 YHF COMMUNICATIONS AND SEARCH RECEIVERS

Frequency range \(38-1,000 \mathrm{Mc} / \mathrm{s}\). Accuracy \(1 \%\). Five I.F. stages. Output Impedance 600 or 4,000 ohms. Power supply ils Volts A.C. (internal), All suning uniss have Auso Tune Mechanism.

FATIGUE METERS MK. IB This extremely light self-contained instrument measures and records g forces from an acclero-migh-speed councers, all counters are clearly marked with the relative \(g\) forces enabling a permanent record to be kept. The only power required is 12 or 24 Vole D.C. for relay operation \(\operatorname{Six} 6 \times 6 \times 4\) in, weight 4 ibs. Price \(69 / 19 / 6\). \(\mathrm{C} / \mathrm{w}\) accelerometers.

\section*{OSCILLOSCOPE TYPE I3A}

Double beam. Time base \(2 \mathrm{c} / \mathrm{s}\) to \(750 \mathrm{Kc} / \mathrm{s}\). Band width up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers at \(100 \mathrm{Kc} / \mathrm{s}\) and \(\mathrm{Mc} / \mathrm{s}\). Cashode follower probe for
H.F. testing. Operates from A.C. mains 100 to H.F. testing. Operates from A.C. mains 00 to
250 Voles. A completely reliable quality instru250 voles. A completely reliable quality instrument. Sule, visor, circuit, etc. \(\mathbf{E 2 2} / 10 / 0\). Ideal graticule, visor, circuit, etc. \(\quad\) ese/packing \(30 /\).
radio and
HEWLETT PACKARD MODEL 130A OSCILLOSCOPE
\(1 \mathrm{Mv} / \mathrm{cm}\) sensisivity D.C.- \(300 \mathrm{Kc} / \mathrm{s}\) similar
vertical, horizontal amplifiers, ideal X.Y. plotting facilities. 21 calibrated ranges direct reading, input attentuator 14 ranges. As new condition. Price 695. Post/packing 20/\%.

\section*{D.C. AMPLIFIERS BY HAWKER}

SIDDELEY TYPE TGAZ
Using transistors throughout this small amplifier has gains up 1,000 , and high input impedance in the order of \(10 \mathrm{M} \Omega, 5-6\) voltage gain ranges, and variable control provides continuous adjustment over each range. Fast overload recovery and excellent linearity. All concrols are on front panel. Inputs and outputs are at rear terminated by ¢24/10/0 plus \(7 / 6\) post/packing.

\section*{H/H ELECTRONICS AUDIO OSCILLATORS}

The very latest in Solid State Audio-generators, Type STW I50A. Sine \& Square Wave. Range \(1.5 \mathrm{~Hz}-150 \mathrm{KHz}\). These instruments were designed for the professional market and have a high performance specification. We can offer these instruments at only £42/10/-.
* Battery and Mains Powered. *Brand New Guaranteed.

\section*{FREQUENCY METER \\ TYPE BC22I}

We have a few available as a reasonable price Range \(125 \mathrm{Kc} / \mathrm{s}-20 \mathrm{Mc} / \mathrm{s}\) Hetrodyne sype unit suitable for measuring and calibrating she frequency of transmitters, oscillators, signal generquency of transmitters, Oscillats and receivers, etc. Offed in first ciass ators and receivers, etc. Offered in first class
condition at only \(\mathbf{E 2 2 / 1 0} 0\), post/packing \(10 / 6\).

\section*{FREQUENCY METER TS 186/UP}

This portable crystal controlled hetrodyne instrument has a frequency range 100 to 10,000 \(\mathrm{Mc} / \mathrm{s}\). Type of reception CW.MCW pulse input better than \(500 \mu \mathrm{~V}\)-iv. Output \(10 \mu \mathrm{v}-20 \mathrm{w}\). Output impedance 250 ohms (audio). Accuracy \(\pm .01 \%\). Guaranteed, condition A.I. Price only 875.

\section*{FREQUENCY METER DIGITAL READOUT}

Frequency range up to \(100 \mathrm{Kc} / \mathrm{s}\) for 19in. rack mounting or bench use. Offered brand new, 475.
A.E.I. STABILISED P.S.U. R2414 This fully transistorised power supply is variable between \(3-53\) Voles at 0.1 Amps. Excellene regulation from \(0-1 \mathrm{~A}\) less than 10 Mr change in output voltage. Stability better than 10 Mv for mains supply change of \(10 \%\). Ripple better than 0.75 Mr. Supplied brand new at only \(\mathbf{1 2 2 / 1 0 / 0}\). Carriage 20/-.

\section*{"SPECIAL OFFER" \\ CURRENT SERIES}

Highly seabilised power supply TS. 3 unies, by famous manufacturer. These power supplies are suitable for use as a bench instrument or building into larger equipments. Ripple betcer than I Mv peak to peak. Variable between 3-30v D.C. Load 0-3 Amps with current limiting sensing conerol for remote operation. Offered brand conerol for remote operation. Offered brand

ALSO AS ABOVE TSI
Load \(0-1\) Amps with same spec. Lise \(\mathbb{2 2}\), our price 6 \(12 / 10 / 0\), post/packing \(7 / 6\).

\section*{PARVALUX DOUBLE REDUCTION GEARED MOTORS}

Normal foot mounting, totally enclosed, small size, mains operated. Final drive, right angle spindle at I r.p.m. Ideally suitable for aerial rotation, etc. Supplied as new, 70/-, post free.

\section*{HIGH SPEED AIR BLOWERS}

Suitable for fume extraction, forge blowing and ventilation. These units are of convensial snail type with fixing plate and 240 Volt A.C. motor (cap start). Size approx. \(12 \times 12 \times 10 \mathrm{in}\). Supplied in excellent condition. Price only \(\mathbf{6 1 0}\). Carr. 15/-.

MINIATURE PORTABLE SIGNAL GENERATORS. MIG Ideally suitable for field work, battery powered. Frequency range \(45-92 \mathrm{Mc} / \mathrm{s}\). Actenuated output \(10 \mu v-0.1\) Volt output, impedance 75 ohms. Frequency modu. lation with \(1.000 \mathrm{C} / \mathrm{s}\). Supplied brand new at only \(69 / 19 / 6\). post/packing \(4 / 6\).

\section*{REFLECTED POWER MEASUREMENT DIRECTIONAL COUPLERS. IOAE}

One of the major uses of a directional coupler is to obtain a sample of the RF Power in a transmission line and apply it to an indicator. We the RF Power in a transmission ine and apply it 80 an indicator. We can supply couplers with a power handling capacity of up
the response is flat over the \(66-88 \mathrm{Mc} / \mathrm{s}\), \(156-184 \mathrm{Mc} / \mathrm{s}\) and \(200-450 \mathrm{Mc} / \mathrm{s}\) the response is flat over the \(66-88 \mathrm{Mc} / \mathrm{s}\), \(156-184 \mathrm{Mc} / \mathrm{s}\) and \(200-450 \mathrm{Mc} / \mathrm{s}\)
bands. Two pick-up probes are mounted on the coupler, one giving bands. Two pick-up probes are mounted on the coupler, one giving
incidence the other reflective power, the voltage developed is rectified incidence the other reflective power, the voltage developed is rectified
and may be fed to a calibrated meter, \(\mathrm{C} / \mathrm{W} 50\) ohm plugs. Price \(60 /\)-.

\section*{RF ATTENUATORS—ADVANCE TYPE A 38}

These attentuators are contained in a screened cast case and are suitable for the audio to V.H.F. range up to \(300 \mathrm{Mc} / \mathrm{s}\). Input level 0.5 watts max. Impedance 75 ohms. Ateentuation 80 dB in steps of 20 dB . Weight 9oz. Panel mounting. List price 110 . Special offer price \(85 /\) post paid.

\section*{"PERISTALTIC PUMPS" HR FLOW INDUCER}

TYPE MHRE 72 L WATSON MARLOW LTD.
These very versatile pumps have facilities for two feed lines. The pumps are standard type bur less variable speed control. Ideally suitable for highly corrosive liquids. Offered as new for A.C. mains operation, at the greatly reduced price of \(\mathbf{6 2 4 / 1 0 / 0}\). Post/packing \(10 / \%\)

\section*{LEDEX ROTARY SOLENOID SWITCHES}

Miniature type I pole 7 position 5 bank \(1 f i n\). dia wafers, for flange mounting, operating voltage 12 Vole D.C. \(50 /=\), post/packing \(2 / 6\). Supplied brand new.

Portable non-spillable 12 volt 4 amp hour Lead Acid Batteries. These are a very modern sype battery fully sealed bue not dry charged they are terminated with screw terminals, brand new and guaranteed, with full in struckions. The size is about the same as the Perdio port able TV sype batteries and you know how much they were. Our price is \(45 / \cdots\).
you are still guessing, the size is roughly tin. square. Post/packing 2/6.
EDDYSTONE DIE-CAST BOXES
Contains sensitive amplifier originally intended for amplification of P.E. cells. C/W input socket, fuse, signal fully P.S.U. (mains) amplifier, fully 32/6. Post/packing 2/6.

BECKMAN HELIPOTS Type A 30K ohms. Ten Turn \(\frac{1}{4}\) spindles supplied. New.
boxed. Price only \(47 / 6\) each.
BURNDEPT RF PLUGS These difficule-so-obsain plugs, suitable for the Londex aerial c/o relay and many other types of equipment are offered new, ex. equippacking 6 d .

> AT LAST

Surplus to Requlrements Pairs of \(4 \times 250\) series valvebases. The bases are of the forced-air type, heavily silver plated, insulation is P.T.F.E. Supplied as new, firted so base plate. Price 69/6 per pair. Post/packing \(3 / 6\).
SIGNAL GENERATORS Marconi CT 218.
Marconi TF 867 .
Marconi TF 867 A . R.F. Signal Generator. Let us know your requirements.

\section*{HIVOLT PORTABLE} INSULATION TESTERS
Variable output from 0 to 10 Kv D.C. Megohms range 200 to \(10^{3}\). A small modern completely portable instrument. Fully transistorised C/W batteries. Weighe complere 21 lbs. New condition. 635.

\section*{DALE HEAT SINK RESISTORS}

We still have some available in two values, 15 ohms 250 watt, 800 ohms 250 watt. These non-inductive resistors are a quarter of the size of anything available completely sealed againse moisture and extromely reliable. Ideally suitable for dummy loads, etc. Special price only 27/6, post/packing \(2 / 6\).

\section*{"SANG-AMO WESTON"}

200 上A Edgewise meters, scale 0-200, white face black numerals. Model 2 tin Brand new. Boxed with fixing bracket. \(35 /\), pose/packing \(2 / 6\)

MARCONI WAVE ANALYSER
MODEL TF 455E
Range \(0-16 \mathrm{Kc} / \mathrm{s}\). Excellent condition. Phone for further details.

\section*{AIRMEC WAVE ANAYSER MODEL 853}

Range \(30 \mathrm{Kc} / \mathrm{s} \cdot 30 \mathrm{Mc} / \mathrm{s}\).
MUIRHEAD
WAVE ANALYSER MODEL K-I34-A
Range.
HEWLETT
PACKARD PULSE GENERATOR
Model 212A. Brand new C/W hand book. Pulse length \(0.07-10\) micro secs. Pulse amplitude 50 volt peat into 50 ohms. Pulse polarity Positive or Negative. Send for full details. Price \(\mathbf{8 8 5}\),

\section*{ELECTRONIC BROKARS}

MAGNETIC TAPE STORAGE DECK Hali-Inch tape, 7 -bit read-withe heads. 537 -bit word per hach.
Ex. equlpment, but new condition. Would malke ideal tape transport. Few only, \(£ 7210.0\), including racuum blower assenibly.

AMPEX FR300
Tape Deck in free atanding
cabinet less heads, \(£ 79.10 .0\). EMI BTRI Tape Recorder fulls over-
hauled \(£ 175\)

BRAND NEW COMPUTER TAPES Mude by well known manulacturers, \(2,400 \mathrm{fl}\). \(£ 6.10 .0\) complete requirements. Tht oxtre cont. Brand new tape ntorare cassette oases for 101 in . spools \(17 / 6\). For \(8 \%\) in. \(15 /-\). Brand new
empty spools 10 in in. \(17 / 6\). 8; in. \(15 /-\).

UNISERVO MODEL 72 MAGNETIC TAPE UNIT
This unit conalsts of 8 chapnel read-write head. One track contains aprucket pulse, one contains parity
(Check-bits) pulse, and the remaining aix contain data any dix bith code can be used to record on and be read from the tape. Data cin be read in either a backward or forward direction. The unit contains
circuits for recelving and storing inatruction aignats. ircuits or recelying and storing instruction aignik
Recording dennity 220 chaructere per luch. Tape
apeed 100 din per minute. \(£ 295\). Excellent condition opped 100 in per minute. £285. Excellent condition

AUTOMATIC CRYSTAL
THICKNESS SORTING MACHINE
 is of extreme interest to manufacturers of sem conductore. It is onfered in gond condition at a sorting of original list price. It is sultable for the 0.16 in . dis. or \(0.04 \mathrm{in}-0.12 \mathrm{in}\). The unit can mort up to 2,400 plecell an hour. Plck rup 8750 . Our price Complete with mannal and spares.

PROGRAMME BOARDS BY SEALECTRO. These boards are basicaliy a mult poie mutt throw switch device consisting of a
X Y Matrix with two contact decke in the Z Plane
runnlig at 90 degrees to ench other. Contact is made running at 90 degrees to ench other. Contact is rasde
by ether, ahorting or pluging ti pins. Ideal for prototype work. etc. Boarda avallable in \(24 \times 60\)
2 plane. \(\mathrm{E12/10/0}\). Dicde loaded plna avallable \(1 / 3\) each. \(12 / 10 / 0\). Dinde loaded pins avaliabi.
 PLANES

Ferrile core memary planen with wired Ferrite cores. intereating exhibit in the demonstrution of a am an puter. Mounted on plastic materiat, frames \(3 \times 8\) in. Conaising of nustrixer so \(\times 20 \times 4\) cores each one
Individually addremashe and divided into 2 halvea
with lindependent sense and inh lbit wires. 88.10 .0 . Memory Core Store consluting of 10 planes each of 8 K cores complete with \(X Y\) selection diodes. Each plane is dividect into 22 independent halves
each with 2 sense and inhlblt wiren. \(£ 49.10\).

FERRANTI HIGH SPEED 5 HOLE 200 CHARACTERS per second optical reader. HOLLERITH 80 COLUMN CARD VERIFIER By ICT. Type No. H 129/2489.
Good condtion 895.

\section*{FILE DRUM STORES TYPE}

Can store up to 1 mililion words, excellent condition to give furt
\(£ 79.10 .0\).
Creed Reperforatora Model 257 hole. Creed Veritlers
BRAND NEW S.E. LABORATORIES TRANSDUCER
Prequency D.C.-60 e.p.a.
Available in the following rauges
BE150, BE50 or BE165A.

0.200 p.n.l. \(\quad 0.750\) p.s.s.i. List price \(870+\)

VACTRIC I44-WAY HIGH SPEED MINIATURE SAMPLING SWITCHES, consisting of 24 segmenta in alx frosn these switchen. Ideally sultable for date logging appllcation. Low inherent noise and conLact resistance permittligg high upeed sampling of
the most diffeut tranaduciens Pule the most diffeult tranducers. Pulae generator for
digital connting. Brand new. \(£ 25\).

F.B.D. \(\pm 10 \mathrm{~F}\), with aensitivity control set to maximum. F's.D. \(\pm\) SIV. Accuracy: Reaponase such an to provide a record of a \(3-5\)
c/s signal with not nuore than \(30 \%\) leas of c/a sigual with not more than \(30 \%\) lees of
ampitude as compared with a d.e. signal of valus equal to the peak a.c. amplitude. Rower required: 230 volts and any of the following
polarised voluages: \(\begin{array}{lll}50 \mathrm{~V}-50 \mathrm{c} / \mathrm{s} & 1115 \mathrm{~V}-60 \mathrm{c} / \mathrm{s} & 120 \mathrm{~V}-100 \mathrm{c} / \mathrm{s} \\ 58 \mathrm{~V}-60 \mathrm{c} / \mathrm{s} & 200 \mathrm{~V}-60 \mathrm{c} / \mathrm{s} & 20 \mathrm{~V}-1,100 \mathrm{c} / \mathrm{s}\end{array}\) Performance: Uwing Teiedelta Perormance: Uning Teledelios paper enabling three reparate channeln to be recorded abmul-
tanoonaly. Char speed \(12 \mathrm{in} . \mathrm{mmin}\), chart width
12 in , 3 itin \(12 i n, 31 \mathrm{in}\). per channel. Wt. 671 lb . size:
\(22 \times 21 \times 11 \mathrm{in}\).

SOLA CONSTANT VOLTAGE

ADVANCE TRANSISTORISED DC STABILISED POWER UNITS

SINGLE PEN RECORDER BY RECORD ELECTRICAL

(Mluas.). 3 In . chart, sennitivity 500 micro amps.
Coll res. 1.53 k . Fully tuterchangeable gears Coll rea. 1.s3k. Fuly luterchangeable gears
available to nake a wide runge of chart apeeds. available to make a wide ringe of chart apeede.
\(200 / 250\). Gize: \(8 \times 11 \times 6\) th. Brand new-
complete with cotaplete with chart and tak. List over 1100 .
Our price \(\mathbf{~} 49.10 .0\). Our price £49.10.0.

DIFFERENTIAL PRESSURETRANSDUCERS by sifam Lut. O.B. Type H 33 Range \(\pm\) e00MB
Our price
£18.10.0.
 KENT STRIP.
CHART CHART
INDICATING INDICATIN
RECORDER ATING
RDER
th 97 in. 10 inv. Sensltivity \(\pm 0.17\) of
source impedance 100 ohma. Apeed of
sec. for full-scale travel. Chart ppeeds

FOUR CHANNEL HIGH SPEED PEN RECORDER

By Kelvin Hughes, with four channel amplifer giving a frequency, range of \(0-100\) c/s.
The Becorder consists baically of magnet arrying in its poles four stifity suspended moving colf units, each with a stylin arm attached. The
ntifness of the coil unit sugpenalon enables the instrument to withstand the effects of vibration and acceleration. Sensitivity \(\pm 3 V\) input for full
somele defiection of \(t 7.5 \mathrm{~mm}\). Mains operated \(\begin{aligned} & \text { scale deflection } \\ & 6 \text { chart speeds: } 0.5 ; 1 ; 2 ; 4 ; 8 ; \text { and } 16 \mathrm{~cm} / \mathrm{sec} \text {. }\end{aligned}\) Excellent condition. \(£ 149 / 10 / 0\).
N.B. Two channel version a wailable, giving \(\pm\)
i6.5 m.m. defection.

MINIATURE
DIGITAL

 hand decimal point sad degree. Available to special onder, words and other charaters or colour, at cost of
artwork or phater. Liet price figna. Our price 49/6. EAC DIGIVISOR Mk. II DIGITAL READ-OUT
Idenily muitable
for use in con for use in con-
function with decade countling
devicen. No need
lor anipliting ior amuplifiers \({ }^{\circ}\)
relaya se only lew milliwaitu of
power are rebe dlgith. Tha DIGIVIBOR incorporates a moving coll movement syatem and the resultant single plane image is projected on a sereen. The trabslucent seale is mado 250 mictuamp. Image beight \(i\) incations: Size \(19 / 16 \times 2\)

ALL ORDERS ACCEPTED SUBJECT SPECTED AT OUR PREMHISES OUR-
INETRADING HOURS OR WILL BE SENTO ONAAPLICATION THROUGH
THE POST.

\section*{LOW COST ELECTRONIC AND SCIENTIFIC EOUIPMENT AND COMPONENTS}

HYSTERESIS REVERSIBLE MOTOR.
Incorporating two coill. EAch coll when eyergized

 reduced to \(30 /\) -

\section*{LOW TORQUE HYSTERESIS
MOTOR MA23} Ideal for inst rument
chart driven, extremely

MYSTERESIS CLUTCH MOTOR with integral cluteh, allowing the motor to drop out of eagagement with the gear train. thercby
faclitating eany resetilng when uned in timers or Pratitaing eary reseting when used in timers or
in conjunction with a light epring. 6 oz. torque at

 detector tor the comparion of ironation
of very high resintancea. \(\mathbf{~} 88.10 .0\).

VARI-PACK High Stability Power Light. portable and rugged construction. Con-
trolled outpui voltage of zero to 800 volis. D.C. A.c. Output \(2 \times 3.15\) at 3 amps. A.C. curre
\(100 \mathrm{~m} / \mathrm{a}\). Ripple 0.2 volts max. \(£ 19-10.0\).

PORTABLE WHEATSTONE
BRIDGE

Speciflcation.
Type: Moving
 hims. A. 80 to 5,000 ohme. 3.300 to 50,000 50. Galcanometer geale: 10-0-10. Case:
Mouded plastic. Internal Bource: +V . Dry mattery. Operating Temperature: +10 to +1.5 deg. C. Operating Humbility: Up to \(80 \%\) R. \(\mathbf{H}\). Dimensions: \(200 \times 110 \times 65\) rum. Weight: \(0.9 / \mathrm{kg}\).
List price E 25 . Our price \(£ 8 / 18 / 6\).

REPEAT CYCLE TIMERS
These timers repeat a set cycle of nwitching operathons via a cam and micronult
motor is energised. Bingle Cam RB 21 ln 2 min., 3 ruin., \({ }^{4}\) min... \({ }^{5}\) min.. \({ }^{6}\) min. cyclen
 4 Cam, 5 min. cycles ais \(54 /\) in 4 min.s and

 5 minin. min.. 3 min. 4 min.,

Specifcation Type: Moving Coil D.C. Rangen:
\(0-75 \mathrm{mV}, 0.3 \mathrm{~V}, 3.15-150 \mathrm{~V}, \$ 2150-450 \mathrm{~V}, 0.3-0.75 \mathrm{~A}\),

 Case: Btove enamelled metal.
List price \(£ 30\). Our price £12/19/6.

FIFTEEN TURN \(5400^{\circ}\) ROTATION \(25 \mathrm{~K} / 25 \mathrm{~K}\)
\(46 / \mathrm{K} / 46 \mathrm{~K}\)

TWENTY TURN \(7200^{\circ}\) ROTATION 250 ohms. General Controla. . PXM130 1 Meg......General Controls. . PXM130

156 TURN 56, \(160^{\circ}\) ROTATION
FIVE TURN \(1800^{\circ}\) ROTATION

SINE COSINE
Colvern 8601
Colvern 9501
.10 K

PRECISION BECKM
\(14,400^{\circ}\) ROTATION
Wirewound Precision Potentlometer. 8E 107A 20 watte

Maseoni VHF circuis marnitication meter.
Range: Max. Q 1204. Frequency 1.4 M Hg Range: Max. Q 1200. Frequency \(£ 69.10 .0\)
Wide Range Oscillator Type 400 This unit covera the rangefrom \(0.1-1000 \mathrm{e} / \mathrm{s}\) :
Thin unit dueto tisextremely low frequency drift and conntancy of output permits accurate checking of low frequency WAYNE KERR V.H.F. Admittance Bridge B80
Balanced messurementa from \(1 \cdot 100 \mathrm{mmeg}\) Impedance Range capacitance 0 - 220 rr .
Conductance 0.100 milloams. Inductance
0.1 micmhenry 50 milliherrys whb 0.1 microhenry to 50 millihetrys with metera from \(1 \mathrm{Mc} 100 \mathrm{Mc} . . . \mathrm{F}\). £149.10.0 PHILLIPS D.C. Microvoltmeter GM 6020
Range \(10^{\circ}\) Micro volt - 1000 volt D.C.
1100 pA - Inpur impedance 1 Mohm 10 rf .
TRANSFER FUNCTION
Prequency range 0.1 c/s to \(\mathrm{Kc} / \mathrm{s}\) covering mechaniwms. Resolves network responase
signals simultanevaly into in phane or quadrature componentw. Permith direet irequency reaponse usiag carvosian co-
ordinates. Eatablishes data for Nyquist ordimater. Entabinhes data for Nyquist
diagran. attenuation phase response and ot her servo characterintics. Gives network
phase/amplitude reaponse from \(0.1 \mathrm{c} / \mathrm{s}\) to
 vector quandrant in volved. 40 db releotion
on amplitude. High senaitivity \(50 \mathrm{mV} / \mathrm{md}\). High accuracy meanurement of true R.M.B. volta. List price 21,600 . Out price \(\$ 595\).
 TRANSISTORISED LOW VOLTAGE POWER SUPPLIES

incorporating
- C.C. PAR Pan for overload projection.
OYERLOAD IVITH MANUAL RREET button. RIPPLE belter, beter than \(3000: 1\)
CHOKR OF CAPACITOR tranaisworiacd I20//I30 volt A.C. INPUT.
6 Volt 9 Amp.
6 Volt 12 Amp.
6 Volt 9 Arnp.
6 Volt 12 Amp.
6 Yolt 16 Amp.
12
12
20
20

12
20
24
30
30
38
\(8 x\)
30 Volt
54 Vott
Ex.equip
laborator
Ex.equipme
laboratory.
Carr. 30/

BRAND NEW LABORATORY TEST EQUIPMENT-AT LESS THAN HALF PRICE!

Specification, Range: \(0.01-111 \mathrm{Meg}\). In 0.01
Megohm dlviniona. Accuracy: \(0.05 \%\). Maxtmum Megohm divimonn. Accuracy: \(0.05 \%\). Maximum
power rating: 0.1 W per step. Case: Hatumer power rating: 0.1 W List price \(£ 60\). Our price £22/10/-

DECADE CAPACITANCE
BOX TYPE R.7004

Specifcation. Range: \(0.00002 u F \cdot 1 u F\) in
0.00002 F \(0.000(\mathrm{v} 2 \mathrm{uF}\) steps. Accurncy: \(0.5 \%\). Frequency
Kange: \(40 \mathrm{c} / \mathrm{s} .10 \mathrm{Kc} / \mathrm{s}\) for all decades except Kanze: \(40 \mathrm{c} / \mathrm{s} \cdot 10 \mathrm{Kc} / \mathrm{s}\) for all decmides except
\(\mathrm{XI}=40 \mathrm{c} / \mathrm{s} \cdot \mathrm{Sc} / \mathrm{K}\). Case: Hammer flufthed stove enamel.
Last price \(£ 60\). Our price \(828 / 10 / \%\).

PORTABLE RECORDING AMMETER

Specification. Type: Moving Coill, D.C. Ranre:
0-1 amp. D.C. Chart Width: 100 mum. Scaio
 Leagth: 127 mrn. Chart Speeds: \(20,60,180,600\), \(1800 \mathrm{and} 5400 \mathrm{~mm} / \mathrm{hr}\). Precision: \(1.5 \%\). 8 hunts \(: ~\) \(75 \mathrm{mV}\left(\right.\) Internal) \({ }^{180}\) Operating Temperature: +5 \(t 0+50^{\circ} \mathrm{C}\). Dimeusions: \(180 \mathrm{~h} x 163 \mathrm{w} x\) rollm, gearn, inks, pipette, acale teraplate and
componeat case. List price c65. Our price 535. Recorting Ammeter 0.5 anpw. AcC. rectifled

Ranges: 0.60 \& \(\begin{gathered}\text { Bpecincention. } \\ 0-300 \mu A .\end{gathered}\)

 \(1.200-6,000 \mathrm{~V}^{2}\). A.C. \(3-333\) ohms, \(0.3-80 \mathrm{Kohma}\) \(0.03-3\) megohms D.C. Resistance -12 to +78 Drelbels. Prequency: 50 cps . Input Resirtance
D.C.: 20,000 ohms/volt. Iaput Mesintatace A.C. D.C.: 20,000 ohms/ volt. Input rimitece A.C
2,000 ohms/volt. Temperature Range: 10 +50 deg. C. Dlmensions: \(255 \times 215 \times 170 \mathrm{~mm}\). Weight: A kg. Bupplled with 2 roltage dividers H.V. leauls, ephre rectilern.
batiery
List price 225 . Our price \(£ 12 / 19 / 8\).
t ILLUSTRATED
\(\rightarrow\) LEAFLETS

\footnotetext{
ELECTRONIC BROKERS LTD., 49-53 PANCRAS ROAD, LONDON, N.W.1. Tel: 01-837 7781/2 Cables: SELELECTRO
}

(Buindept B.E.352) 60 watl model. Suppiled Brand New complete with stainless steel tank \(9 \frac{3}{4} \times 6 \frac{1}{2} \times 4 \frac{1}{2} \operatorname{in}\). £60. Санг. 20/-.
2. FAST NEUTRON MONITORS (Burndept 1407C) for measuring neutrons in the energy range 0.15-15 meV. \(\mathbf{5 1 0 0}\).
3. Radlation Monitors (Burndept BN 110 MK, V) \(0-5 / 50 / 500 / 5 \mathrm{k}\). c.p.s. Brand new. £100. Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (Burndept BN 132) \(0-5 / 50 / 500 / 5 \mathrm{k}\) c.p.s. With bulit-in Gamma probe. Brand new. \(\mathbf{£ 5 0}\) complete with

\section*{S.A.E. for literature. \(10 \%\) discount for}

Educational Authorlties.
LARGE CAPACITY ELECTROLYTICS. \(2,000 \mu \mathrm{~F} .30 \mathrm{v}\). : \(2,500 \mu\) F. 25 v . \(; 2,500 \mu\) F. \(50 \mathrm{v} .: 4,000 \mu\) F. \(90 \mathrm{v} . ; 5,000 \mu \mathrm{~F}\). 10v. 10/- ea. p.p. 1/.
SPEAKER BARGAINS. E.M.I. \(13 \times 8\) in with double Tweeters \(15 \mathrm{ohm}, 65 / \%\), P.P. \(5 / \mathrm{F}\). As above less i weeters O/ 15 ohm, 45/: ea., P.P. 5/
FANE 12 lm .20 watt (Oual Cone), E5. P.P. 5/-
CAR RADIO SPEAKER \(7 \times 4 \mathrm{in} .3 / 5 \mathrm{ohm} .15 /-\) ea. P.P. \(2 / 6\)

\section*{EXTRACTOR/BLOWER}

FANS (Papst)
100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2\) in. 2800 r.p.m. Wonderful buy at 50/- ea. 240v. A.C.

SPEAKER SYSTEM (\(20 \times 10 \times 10 \mathrm{in}\)). Made to spac. from \(\frac{z}{3} \mathrm{in}\). board. Finished in black leathercloth. \(13 \times 8 \mathrm{in}\). speaker with iwin tweeters complete with cross-over. 50c/s-20k/c. E7.10. P.P. 10/-.
PHOTOMULTIPLIERS 6262 and 6262b. E15 ea.
RELAYS H.D. 2 pole 3 way 10 amp . contacts. \(12 \mathrm{v} . \mathrm{w}, 7 / 6\) ea. LIGHTWEIGHT RELAYS (with dusi-proof covers) \(4 \mathrm{c} / \mathrm{o}\) contacts. \(12 \mathrm{v}, 100 \mathrm{ohm}\) or \(24 \mathrm{v} .500 \mathrm{ohm} 7 / 6 \mathrm{ea}\).

HIGHSPEED MAGNETIC COUNTERS (\(4 \times 1 \times 1 \mathrm{in}\).) 4 digit \(6 / 12 \mathrm{v} .24 / 48 \mathrm{v}\). (state which), 6/6 ea. P.P. 1/-.

PYE OHMMETER TYPE 10B. 500 v. test. 3 meg, ohm20 k . meg. ohm. 200/250v. A.C. Brand new instrument £30. P.P. 30/-.

\section*{POT CORES TYPE LA 3. 10/- ea}

71 WAY PLUG \& SOCKET (Palnton Series 159). Gold plated contacts with hood \& retaining clips. \(30 /\) pair.

50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacis 20/- pair. 34 way version 15/- pair

VALVE MILLIVOLTMETER (Marconl TF899) 0-2v complete with R.F. probe. E8/10/- D.p. 10/..
LOGIC BOARDS with 31 ACY40s- 38 diodes etc. 20/-ea P.P. 2/6.

CO-AX. RELAYS (magnetic devices) I change-over 12 v.w. 20/- өа.
SOLARTRON PULSE GENERATORS (OPS 1O0C) \(50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}\). \(\mathbf{£} 60\) each. Carriage 50/-
WOBBULATORS TYPE 210 (Metrix) \(0-220 \mathrm{M} / \mathrm{c}\). Sweep width \(1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}\). \(£ 40\). Carriage \(30 / \%\).

\section*{TRANSFORMERS}
H.T. TRANSFORMER (Parmeko 'Neptune') Prlm. 200/ 250v. Sec. 350-o-350v, 150 m.a. 6.3v. @) \(1 / 2 / 6 \mathrm{mp}\) 35/\% P.P. 5/-. Matching Choke \(10 \mathrm{~h} 180 \mathrm{~m} . \mathrm{a} .12 / 6\).
E.H.T. TRANSFORMER (Parmeko 'Neptune') \(3,000 \mathrm{v}\) 280 m.a. £12/10/O. P.P. 50/-
L.T. TRANSFORMERS Prim. 200/250v. Sec. 0-1/0-3/0-9/0-27v. 30 amp . €7.10. 15 amp . E5. P.P. \(15 /\)
L.T. TRANSFORMER Prim. 200/250v. Sec. O/25/35v 30 amp . E7.10. P.P. 20/
STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec, 115 v . \(1.25 \mathrm{amps}, 25 /\) - 8 . P.P. \(5 /-\)
L.T. TRANSFORMERS Prim. 240 v . Sec. \(8 / 12 / 20 / 25 \mathrm{v}\). 3.5 amp models 20/-; 5 amp model 25/-. P.P. \(5 / 6\).
L.T. TRANSFORMERS Pilm. 240v. Sec. 14v. 1 amp 10/ea. P.P. \(2 / 6\).
\(85 /-\) as. P. SLOTMETERS (\(1 /-\)) 25 amp . L.R. 240 v . A.C 85/- aa. P.P. 5/-
240 v . A.C. \(20 /=\) ELECTRIC CHECK METERS, 40 amp

COPPER LAMINATE PRINTED CIRCUIT BOARD (\(8 \frac{1}{\frac{1}{2}} \times 5 \frac{1}{2} \times \frac{1}{1}\) in.), \(2 / 6\) sheet, 5 for \(10 /\) Also \(11 \times 9\) in., \(4 /-\) ea, 3 for \(10 /-\)

\section*{BULK COMPONENT OFFERS}

100 Capacitors (latest types) 50 pF to \(.5 \mu \mathrm{~F}\). 250 Resistors \(\frac{t}{2}\) and \(\frac{1}{2}\) watt.
150 Hi -Stab Resistors, \(\frac{1}{2} . \frac{1}{2}\) and 1 watt.
25 Vitieous W/W Resistors, \(5 \%\)
12 Preciston Resistors \(1 \%\) (several standards included).
12 Precision Capacitors 1 and 2\% (several standards included).
12 Electrolytics (minlalure and standard sizes).
ANY ITEM 12/6. ANY 5 ITEMS 50/.
TELEPHONE DIALS (New) 20/- ea. Amplified TELEPHONE HANDSET (706) 27/6. P.P. \(2 / 6\).

EXTENSION TELEPHONE (TYPE 706) Black or 2 tone Grey. 65/-. P.P. 5/-
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank \(\frac{1}{2}\) wlpe \(65 / . .10\) bank

REED RELAYS 4 make 9/12v. (1.000 ohm.) 12/6 ea 2 make 7/6 e日. 1 make 5/- ea. Reed Swithches (\(1 \frac{3}{4}\) in.) 2/ea. £1 per doz.

CONTINUOUS LEVEL MONITORS (Burndepi BE307) complete with Sensing Probe. E25.
Transistorised PROXIMITY SWITCHES (Burndept BE315) sensing speed 120 per min. £16.
LEVEL CONTROLLER (Burndept BE305). C8.
LIGHT SWITCH. COUNTER. (BuIndept BE290) 750 Interruption per min., comprises: Light Source, Sensing S.A.E. Liherature.

\section*{PATTRICK \& KINNIE}

81 PARK LANE • ROMFORD•ESSEX
ROMFORD 44473

\section*{UNIVERSITY OF LEEDS see the latest ELECTRONIC INSTRUMENTATION}

\section*{1 16 ELECTRONICS EXHIBITION}
including MEDICAL ELECTRONICS

to be held in the
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
1st, 2nd, 3rd July Daily 10 a.m. - 6 p.m.

\section*{a unique and indispensable guide to prominent people in the electrical industry 1968-1969 electrical WHO'S WHO \\ Recognised as the standard guide to leading men and women in the electrical} and electronics industries, the ELECTRICAL WHO'S WHO now contains some 8,500 biographies. Over 1,000 new names are included so shat, eaking into account those who have died or who have left the induseries, the number of entries has increased by 250. Inclusion in this section is at the Editor's invitation and no charge is made for entries. To add to the value of the directory we have again produced an index to the personnel of companles, boards, associations, ecc., compiled from lists provided \(9^{11} \times 6^{11} 567\) pp Published for ELECTRICAL REVIEW by
ILIFFE BOOKS LTD 42 Russell Square, London, wC1

transistorized a.f. sigmal generator TVPE R21 Frequency: 15Hz to 20 kHz in three canges Constame Amplinude over the whole tre: quency range Frequency Reading: Ditect off the
 typltal \(3 \%\) Oulpur Vohage: 0 ID IV RMS con
timuousky variabe Harmanit 0 nistartion: Better than 1\%. Batlen Life: Over 300 houra Oimensions 6 inutunx3in
PAIEE: 11.00 lincluding batteryl Carl 2/6 iUK onlyl.

transistor stablizeo POWEA SUPPIY TYPE R31/A Output Voltage: 0 to +30 V . \(\begin{array}{ll}0 & \text { to } \\ \text { variable }\end{array}\) 30V. continuously variable
Output Output Current. wip to 1.5A Automatic everioad and shont circuit protection
Votsagy metered
Votrage metered Resistance
0.08 ohm .

Repulatio
load belter than load to no less than \(1 \mathrm{mV} \mathrm{m} / \mathrm{p}\) Dimensions: 6inn 4 inxl 2 in

CONSTANT - CURRENT BATIERY CHARGER TYPE RA1. The adiustable constant-cullent nickel cadium tell charget will delver \(1-20 \mathrm{~mA}\) indicated on A fromt panel mester.
This batter charger will accommodate at
east 10 cells in series having capachies
op to 1 Ah
The instrument is completeltr safe and cannot
de damaged ty shon-ecitcuiting the output
tetminals an reversed battery connections
Dimentions: 6 inx 4 ina 3 3in deep

michowave equipment. 3cm (Mictrowave) Equipment is dasignes rinctipally to demonsuale opsical properties of electromagnetic radiation as well as lor general experiments in the X.Band Prien: Trians 5 inx 7 thnn 3 tin dee

PRICE: 627.10 .0 . Cart. \(17 / \% 13\) STEPHENSON HOUSE, FLEET ROAD, LONDON, N.W.3. Telephone: 01-586 0806
thansistor power supply type rza Output Voltage: \(0-15 \mathrm{~V}\) cominuousily varable Output Curren: : 0-0.5A fup to 1 A at lowet condition better then \(0.1 \%\). Ripple: not greale! than 1 mV p/o Automatit checuit protection deep Voltage and Current indicated on deep Voliage and PaICE: \(\mathbf{E 1 7 . 1 0 . 0}\). Cart. 12/6 (U.K anly).
O.\&R.ELECTRONICS LTD.

These instruments have dc ranges covering the measurement of voltage from \(0.3 \mu \mathrm{~V}\) to 1 kV , current from 1 pA to 1 mA or 1 A , and resistance from \(0.3 \Omega\) to \(1 \mathrm{kM} \Omega\). Left zero and centre zero scales are provided and a recorder output exists on all ranges.
Features are high input impedance on voltage ranges. low test voltage on linear resistance ranges, and large overload rating. The instruments are solid state powered by a self-contained battery. Low power consumption results in negligible warm-up drift.

\section*{Voltage Ranges:}

\(3 \mu N, 10 \mu N, 30 \mu N \ldots 1 \mathrm{kV}\). Accuracy \(\pm 1 \% \pm 1 \%\) f.s.d. \(\pm 1 \mu N\). Noise \(<0.5 \mu \mathrm{~V}\) p-p on the \(3 \mu \mathrm{~V}\) range for source resist, up to \(30 \mathrm{k} \Omega\). Drift \(<0.7 \mathrm{JV} /{ }^{\circ} \mathrm{C}\) and \(<0.7 \mu \mathrm{~V} /\) day after warm-up of 2 mins. Input resist. \(>1 \mathrm{M} \Omega / \mu \mathrm{V}\) up to 10 mV . \(>10 \mathrm{kM} \Omega\) from 30 mV to \(1 \mathrm{~V}, 100 \mathrm{M} \Omega\) above 1 V . Rise time on \(3 \mu \mathrm{~N}, 10 \mu \mathrm{~N}, 30 \mu \mathrm{~N}, 100 \mu \mathrm{~N}\) to 1 kV is \(10 \mathrm{~s} .3 \mathrm{~s}, 1 \mathrm{~s}\). \(<1\) s.

\section*{Current Ranges:}
\(3 p A, 10 p A, 30 p A \ldots 1 m A(1 A\) for Type TM9BP). Accuracy \(\pm 2 \%\) \(\pm 1 \%\) f.s.d. \(\pm 0.3 p A\). Noise \(<0.7 p A\) p-p on the \(3 p A\) range. Drift \(<1 \mathrm{pA}{ }^{\circ} \mathrm{C}\) and \(<1 \mathrm{pA}\) day after warm-up of 2 mins. Input resistance \(1 \mathrm{M} \Omega\) up to \(1 \mathrm{nA}, 100 \mathrm{k} \Omega\) from 3 nA to \(1 \mu \mathrm{~A}\). \(100 \Omega\) from \(3 \mu \mathrm{~A}\) to 1 mA , \(0.12 \Omega\) from 3 mA to 1 A on type TM9BP. Rise time on \(3 \mathrm{pA}, 10 \mathrm{pA}\), 30pA, 100 pA to 1 mA is \(15 \mathrm{~s}, 5 \mathrm{~s}, 1.5 \mathrm{~s},<1 \mathrm{~s}\).

\section*{Resistance Ranges:}
\(3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega\). Accuracy \(\pm 1 \% \pm 1 \%\) f.s.d. up to \(100 \mathrm{M} \Omega\) rising to \(\pm 10 \%\) at \(1 \mathrm{kM} \Omega\). Test voltage is 3 mV at f.s.d. on \(\Omega\) ranges. Test currents are \(1 \mu \mathrm{~A}\) and 1 nA on \(\mathrm{k} \Omega\) and \(\mathrm{M} \Omega\) ranges.

\section*{Recorder output:}

0 to +1 V at f.s.d. into not less than \(1 \mathrm{k} \Omega\) on left zero ranges. -0.5 V to +0.5 V into not less than \(5 \mathrm{k} \Omega\) on centre zero ranges.

\section*{Max. Overload:}

2 kV peak on V ranges. 350 V peak on \(\mathrm{mV}, \mu \mathrm{V}\), and pA ranges, 50 mA peak on \(\mu A\) ranges. 2 mA peak on \(n A\) ranges.

\section*{Power Supply:}

One type PP9 battery. life 1000 hours; or AC mains when a Levell Power Unit is fitted.

\section*{Sizes \& Weights:}

TM9A: \(5^{\prime \prime} \times 7 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime} 4 \frac{1}{2} \mathrm{lbs}\). Meter scale length \(3 \frac{1}{4}\) ".
TM9B: \(7^{\prime \prime} \times 10 \frac{1^{\prime \prime}}{} \times 5 \frac{1}{2}^{\prime \prime} 8 \mathrm{lbs}\). Meter scale length \(5^{\prime \prime}\), fitted with mirror.
TM9BP: As TM9B + current ranges up to 1 A .

TYPE TM9A
TYPE TM9B

Leather Case TM9A £4.10. Leather Case TM9B and TM9BP £5. Mains power supply unit \(£ 7.10\).

LEVELL ELECTRONICS LTD.
PARK ROAD, HIGH BARNET, HERTS., ENGLAND Telephone: 01-4495028

\title{
TECHNICAL TRAINING by IC S IN RADIO, TELEVISION AND
}

First-class opportunities in Radio and Electronics await the IC S trained man. Let IC S train YOU for a well-paid post in this expanding field.
I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing. Electronics, Computers, etc. Expert coaching for: * C. \& G. TELECOMMUNICATIONTECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEURS' EXAMINATION.
* P.M.G.CERTIFICATES IN RADIOTELEGRAPHY

Examination Students Coached until Successful
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multi-meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how 1 C S can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

International Correspondence Schools
(Dept. 173), Intertext House, Parkgate Road London, S.W. 11

\section*{NAME}

Block Capitals Please
ADDRESS

\section*{HENRY ELECTRIC LEEDS}

EDDYSTONE ECIO battery (or mains) operated. \(550 \mathrm{ke} / \mathrm{s}\) to \(30 \mathrm{Me} / \mathrm{s}\) for CW, SSB or AM. Mobile or fixed communications. Rugged, compact and light. E59.10.0. Carriage paid.

TRIO 9R-59DE. General coverage \(550 \mathrm{Kc} / \mathrm{s}\) to \(30 \mathrm{Mc} / \mathrm{s}\). Amateur frequencies bandspread on separate ealibrated dial. Elegant. Great value,
outstanding performer. \(£ 42.10 .0\). Carriage paid, outstanding performer. \(£ 42.10 .0\). Carriage paid.
Both these receivers and full range Eddystone and Both these receivers and full range Eddystone and
Trio equipment immediate delivery.

LEARNING MORSE! Transistor code oscillators incorporates speaker and earphone. Key terminals
and pitch control. Very smart. E4.9.0. inc. P \& P.

DURAL MASTS 28ft. 2 in . diameter, bright finish. Steel strength, feather light. In two sections including jointing sleeve. base ppl
Only E12.15.0. Carriage paid.
henry ele ctric lTD.
60 HARROGATE ROAD, LEEDS, LS7 4LA

\section*{LINEAR INTEGRATED CIRCUIT}
R.C.A. CA3036- equivalent to two matehed transistor pairs in "super-alpha" connection. 9 V operation, Suitable for Stereo Record Player R.C.A. CA3020 equivalent to seven n-p-n tran R.C.A. CA3020-equivalent to seven n-p-n tranSuitable for use as 500w. Audio Amplifier. 30/- plus GENERAL ELECTRIC PA222-equivalent to six \(\mathrm{n} \cdot \mathrm{p}-\mathrm{n}\) transistors, one diode and six resistors. 22v operation. Suitable for use as 1-1.2 watt Audio Amplifler.
GENERAL ELECTRIC PA234-1-watt
Audio A mplitier for battery voltage of 9 to 25 V . and for output Ioads of 8,16 , or 22 ohms. Only 3 capacitors and 3 resistors, are required for making up at
complete amplither delivering 1 watt for an input
 GENERAL ELECTRIC PA237. SImilar to PA234 but delivering power of 2 watts. . \(40 /-\) plus 2/- P.P. MOTOROLA MC1709CG Operational Amplifer. 500 m W. Open loop gain 45,000 . Out put voltage swing \(\pm 14 \downarrow\). Output impedance 150 ohms.

\section*{TRIACS TYPE 40432 (Gated bl-directional ilicon Thyrintors with integral trigerer. The trias will control up to 1440 watt at 240 V maing freguency. supplied complete with heat sinis, data meet and
application atheets for motor control and dimmer circulto
\(37 / 6\) each.}

\section*{SEMICONDUCTORS}

The following leaflets are available free of charge TRANSISTORS AND INTEGRATED CIRCUITS with full specffeations and prices of over 200 types POWER RECTIFIERS AND ZENER DIODES

MULTIMETERS TYPE \(108.1 T\)
24-range preclnion fortable meter. \(\delta .000\) o.p.v. D.C. Volls 2.5-10-50-250-500-2500V. A.C. Volts: \(10-50-800-250-500 \cdot 2560 \mathrm{~V}\) D.C. current \(0.5-5-50-500 \mathrm{~mA}\). Resintance: \(2.000-20,000\) ohma-2 c8/5/- P. \(7 / 6\). Deension \(71 \mathrm{lu} \times 6 \mathrm{in} .+31 \mathrm{in}\). Weight 34 Hb

TYPE MF16
D.C. Voltage range 0-0.5-10-50-250-500
A.C. Yoltage range \(0-10-30-250-500 \mathrm{~V}\).

Denistance ranges: \(100 \mathrm{M} \Omega-1 \mathbf{M} \Omega\). The meter inalso callbrated for capascity and output level measurements. Sensitivity \(2000 \Omega \mathrm{~V}\) Accuracy \(\pm 2.5 \%\) for D.C. and \(\pm 4 \%\) for A.C. measurements. Dimenelong: 4 jin \(\times 3\) in. \(\times 1\) in. Price \(24 / 5 /\)

WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) in \(\{\) FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST be SENT TO hEAD OFFICE AND NOT TO RETAIL SHOP.

TWO NEW OSCILLOSCOPES FROM RUSSIA

\section*{CI. 5 SINGLE BEAM}
\(10 \mathrm{mc} / \mathrm{s}\) passband, triggered sweep from \(1 \mu\) sec. to 3 sweep from \(1 \underset{~ s e c . ~}{\mu}\) sulisec. Free running time
mile mulisec. Free running \(20 \mathrm{c} / \mathrm{s}\) to \(200 \mathrm{kc} / \mathrm{s}\). built-in time marker and amplitude calibrator, \(3-\mathrm{in}\). cathode ray tube with telescopic vicwing hood \(549 / 10 / 0\)

CI-16 DOUBLE BEAM
OSCILLOSCOPE \(5 \mathrm{mc} / \mathrm{s}\) passband separate Y1 and Y2 amplitlers cathode ray tube. Calibrated triggered sweep from \(0.2 \mu \mathrm{sec}\). to 100 millisec . per cm . Free running time buse \(50 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{mc} / \mathrm{s}\). Built-in time basc calibrator and amplitude cailFull details on request.

Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2

\section*{Tel.: PARK 5641/2/3}

Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD.,
LONDONW.2. Tel:LANgham 8403
A.R.B. Approved for inspection and
release of electronic valves. tubes
release of ele
klystrons, esc.

\section*{WE WANT TO BUY:}

723A/B; 2K25; 4C35-50/- paid subject to tese Please offer us your special valves and tubes

\section*{Tossong ELECTRONIC}
components \(15931(10)\)

```

Advertisements accepted Ap to JULY 11 for the space being available.

```

\section*{UNIVERSITY OF ST. ANDREWS} Department of Chemistry

Applications are invited from candidates with an ordinary degree, H.N.C. or equivalent qualification in Electronics for the position of TECHNICAL OFFICER in the Department of Chemistry. The successful applicant will be expected to assist in the servicing of spectrometers and in the development of electronic equipment. The new chemistry bullding is equipped with Mass Spectrometers (MS-902 and MS-10), N.M.R. Spectrometers (HA100 and R-10) and a Decca E.S.R. Spectrometer in addition to I.R. and U.V. Spectrometers. Salary in the range: \(£ 1,050-\mathrm{fl}, 400\); grant towards removal; pension scheme. Applications with the name of a referee should be sent before loth June, 1969, to the Deputy Secretary, University of St. Andrews, College Gate, St. Andrews, from whom further particulars may be obtained.

2266

\section*{University of Salford}

Audio-Visual Media Centre; Television and Film Service

Applications are invited for the following posts:

\section*{EXPERIMENTAL}

OFFICER (Ref VM/2/WW)
To be responsible to the Director for the alignment, testing and maintenance of the technical equipment testing and maintenance with the University Television and Film assoclated with the University Service-cameras, monitors, videotape recorders, tele-Service-cameras, monitors, videotape recorders, telecine, and sound recording and reproduction systems.
He will supervise all technical operations in the TV studios, including picture quality and sound balance.
The successful candidate should have a degree or equivalent qualification in Electrical Engineering. Some understanding of closed-circuit TV operations and experience of videotape recording would be an advantage.
Commencing salary will be on the scale \(£ 1.095-£ 1.485\) (bar)- \(\mathbf{E 1 . 7 1 5}\) p.a.

\section*{TECHNICIAN (Ref VM/3/WW)}

To work under the supervision of the Experlmental Officer in the Television and Film Studios. He will be responsible for the adjustment, maintenance and operation of Siudio equipment ; cameras, lighting, and sound facilities.
Qualifications should include the equivalent of "O" level GCE passes in Mathematics and Physics (ONC or City and Guilds Intermedlate Technicians' Certificate will be considered acceptable). Candidates will be expected to demonstrate knowledge of TV. Experience in Television engineering will be an advantage.
Salary will be on the scale \(\mathbf{1 8 1 5 - £ 1 , 0 7 5}\) p.a.
Applications, giving details of age, qualifications and experience, together with the names and addresses of two referees, should be sent to the Registrar, University of Salford, Salford M5 4 WT, by 5 July, 1969, quoting appropriate reference number.

\section*{COMMUNICATIONS INTERNATIONAL}

Our clients enjoy the enviable reputation of being not only one of Britain's most progressive companies, but also one of the world's largest manufacturers of telecommunications and electronics equipment. As such, they have made a substantial contribution in the field of microwave communications electronics and have pioneered the application of highly advanced systems on an international scale.

The Company can provide virtually unlimited scope for a really worthwhile career in one of the most stimulating and challenging areas of work available today. With its expansion activities, the Company is able to offer opportunities to

\section*{DESIGN DRAUGHTSMEN}
who will have an O.N.C. or equivalent qualification and machine, tool or model shop experience, preferably with some practical electrical knowledge. They will be responsible for the preparation and completion of drawings from sketches, and the design of wiring and circuits, as well as mechanical/ electrical jigs. They will be able to work from advanced engineers' drawings and specifications.

Salaries will be negotiable and will be generous in accordance with experience. First-class working conditions in rural surroundings. Assistance with housing. (Reference number C/581/S/WW).

\section*{TEST TECHNICIANS}
who will hold an O.N.C. in electrical engineering and/or have considerable practical experience in the field of testing and fault-clearing all types of land-line and microwave equipment.

Very attractive salaries and excellent opportunities for promotion and advancement are offered.

The location is a modern, spacious plant in Basildon, Essex, and the Company offers first-class working conditions in rural surroundings. (Reference number \(\mathrm{C} / 582 / \mathrm{S} / \mathrm{WW}\)).

Write to A K Appointments Limited, London WIA IDS, or telephone 01-734 6404 (day) or 01-734 2476 (after 5.30 p.m.) for an application form, quoting relevant reference number. Your identity will not be disclosed without your permission.

PROFESSIONAL AND MANAGEMENT SELECTION

\section*{Product Test Technicians}

\section*{Career Opportunities with IBM Manufacturing}

We need high calibre men to fill vacancies created by promotion and programme expansion.

\section*{The job}

Is to commission the latest IBM products and systems in production at the Scottish plant, near Greenock, and requires an intimate knowledge of the equipment under test, which can include computers, punched card and tape peripherals, magnetic disk and tape storage, high and low speed printers, visual display units, multiplexors, Teleprocessing and optical character recognition equipment. The products have to be tested thoroughly, and all faults traced and rectified. The work is interesting and absorbing, and the prospects for the right man are good.

\section*{Training}

Will be a mixture of formal and "on the job" instruction. We will teach you all you need to know about IBM equip-ment-providing your basic knowledge is to the required level.

\section*{Pay and conditions \\ Starting salaries will be excellent.}

Benefits include a non-contributory pension, immediate free life assurance and full sickness pay for up to 26 weeks in any 12 months. The 254,000 square feet plant is modern and situated in a pleasant rural valley. There is a subsidised restaurant.

Working conditions are excellent and there are good recreational facilities in the area. IBM will assist with removal expenses where applicable.

\section*{The man}

Will be at least 18 and probably less than 30 and have a strong electronic background, with experience in, for example, the testing of electronic products, maintenance of radio, radar or TV or similar work in the armed forces.

He will probably have, or be near to attaining, a qualification such as HNC, ONC, first class PMG, final RTEB, or final City and Guilds (Course Nos. 47, 48, 49, 57, 300). A knowledge of transistor circuitry and the use of oscilloscopes will be a distinct advantage.

If you have what we need, and are keen to join a vigorous, expanding and up-to-the-minute industry, please write, giving details of your age, experience and qualifications, and quoting ref. No. PT2/WW/968
to: Personnel Selection Officer, IBM United Kingdom Limited, P.O. Box 30, Spango Valley, Greenock.

\title{
There is scope, variety and responsibility as a
} RaDIO TECHNICIAN in Air Traffic Control Join the National Air Traffic Control Service, a Department of the Board of Trade, as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.
Entrance qualifications: you should be 19 or over, with practical experience in at least one of the main branches of telecommunications.

Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment. including computers, radar and data extraction. automatic landing systems and closed-circuit television. Work is based on Civil Airports such as Heathrow, Gatwick and Stansted, Air Traffic Control Centres, Radar Stations and other specialist establishments.

Starting salary is \(£ 869\) (at 19) to \(£ 1,130\) (at 25 or over): scale maximum \(£ 1.304\) (higher rates at Heathrow), and some posts attract shift-duty payments. Your career prospects are excellent and every opportunity and assistance is given to study for higher qualifications. The annual leave allowance is gopd and there is a non-contributory pension scheme for established staff.

National Air Traffic Control Service

\section*{\(B B\) STUDIO PLANNING AND INSTALLATION DEPARTMENT requires ENGINEER (Method Study)}

The postholder is required to study and analyse the procedures and techniques employed at the various stages of planning and installation work within the Department. He will be required in collaboration with others in the Department to devise quantified recommendations for improvement and to monitor the effectiveness of these as they are implemented.
Applicants must have recognised electronic engineering qualifications to degree standard and be able to demonstrate an analytical and imaginative approach to a wide range of problems. Practical experience in method study or value analysis would be an advantage. Personal qualities are important since the effectiveness of the post will depend largely on the holder's ability to attract and maintain the co-operation of others.

Commencing salary \(£ 2130\) to \(£ 2360\) p.a. in a scale having a maximum of \(£ 2705\) p.a.

Quoting reference no. 69.E.2127.W.W., apply for application forms to the Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1 AA.

2264

\section*{ELECTRONICS EXPORT SALES ENGINEER}

\section*{based on PARIS}

Rapidly expanding French electronics firm specialising in T.V. and F.M. translators and transmitters seeks a mature export sales engineer.

\section*{Candidates must}
-speak and write absolutely perfect English
-like travelling. The work entails about 4 months a year away from Paris. (Australia, Asia, the Americas)
-be at least 28 years old
-have at least 3 years technical/commercial experience in our field
-be technically and intellectually solid
-be commercially dynamic
Candidates are preferred who speak a little French and Spanish

\section*{This is a responsible position}

Exactly the right man will be offered a salary of at least 30000 F (\(£ 2,500\)) per year.
Curriculum vitae in English, in writing, with photograph to L.G.T.-4 rue de Garches, 92 ST. CLOUD-France, as soon as possible.

\title{
GOVERNMENT OIP MALAWI requires \\ \\ TELECOMMUNICATIONS \\ \\ TELECOMMUNICATIONS OFFICER OFFICER [CIVIL AVIATION]
} [CIVIL AVIATION]
}

To serve on contract for one tour of 24-36 months in the first instance. Salary in scale \(£ 955-£ 1905\) a year (inclusive of Overseas Addition), point of entry according to experience. In addition, a supplement of \(£ 196-£ 244\) p.a. is payable by the British Government direct into officer's bank in U.K. Gratuity at rate of \(25 \%\) provided officer completes 30 month tour. Generous paid leave. Furnished accommodation. Education and outfit allowances. Free passages. Contributory pension scheme available in certain circumstances.
Candidates, 25-45, should possess City and Guilds Telecommunications Technician's Certificates (Intermediate) plus at least two ' \(B\) ' year certificates and in
addition not less than four years' experience in radio/ radar maintenance after serving a recognised apprenticeship or similar training. Applicants lacking formal educational qualifications but with extensive experience can be considered.
The officer will be responsible for the installation and maintenance of telecommunications and radio navigational equipment at airports throughout Malawi.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.r., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/68inif/WF

\section*{UNIVERSITY OF SOUTHAMPTON}

\section*{Department of Physiology and Biochemistry}

SENIOR TECHNICIAN to undertake developmental and maintenance work in electronics workshop. Experience in construction and maintenance of electronics equipment used in advanced scientific laboratories preferable. The person appointed will be expected to fill a vital role in a rapidly expanding research and teaching department. Salary scale: 6957-£1,195 per annum plus supplementation for approved qualifications. Applications, giving details of age, qualifications, experience and the names of two referees should be sent to the Deputy Secretary, The University, Southampton, SO9 5NH, quoting Reference WW. 2221

\section*{UNIVERSITY OF KENT AT CANTERBURY}

Applications are invited for a post of technician from 1st August, 1969, on the salary scale £722-£1,007 for the University's audio-visual aids service. The person appointed will assist in the operation and maintenance of the University's closed circuit television network which is to come into operation in the autumn together with work on other audio-visual aids.
Further particulars and application forms may be obtained from the Registrar, Beverley Farm, The University, Canterbury, quoting reference T.69/4.

\section*{Bib-Naremiiltadromices}

\section*{ELECTRONIC TECHNICIANS}

\section*{Marconi can offer you}

Attractive salary. Annual salary reviews Good working conditions. 37-hour working week Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

\section*{Marconi 부소옹}

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone : Basildon 22822.

\section*{ENGINEER \\ Overseas TelemetryTelecommunications}

BP wish to recruit an engineer qualified to H.N.C. standard, to operate and maintain a telecommunications/telemetry network in the Arabian Gulf. Applicants, aged 25-35, should have experience with microwave radio, solid state digital data telemetry and control systems. Ideally, they should also be conversant with modern medium power, MF, HF and VHF single and multichannel radio, radar and small auto telephone exchange.

The posting will not provide married accommodation, but three weeks leave granted in U.K. after three months in the Gulf. Two-year contract initially with possibility of pensionable service.
Please write giving brief details of age, qualifications and experience, quoting reference F. 645/2/8/9WW to:

\section*{Mr. M. J. Telfer,}
B)

External Recruitment,
The British Petroleum Company Limited,
Britannic House, Moor Lane,
London, E.C.2.

\section*{Science Research Council \\ RADIO AND SPACE RESEARCH STATION}

Staff are required for research on radio techniques used to study the Earth's environment and to provide basic information needed ment and to provide basic information needed
in the development of communications. The in the development of communications. The
work involves the design of apparatus, measurement programmes in the laboratory and in the field, and the analysis and interpre tation of results. The programme includes experiments in rockets and satellites, often in close liaison with Universities. Posts are mainly at Slough but some staff are needed for work near Winchester using the Station' 82 ft. steerable aerial.
Posts are available for qualified Electronics Engineers and Physicists as Assistant Experimental Officers. Well-qualified people over the age of 26 with several years research or other suitable technical experience can be appointed in the higher grade of Experi mental Officer A E O's can also be appointed with A level passes and could be given oppor with Alevel passer and could be gein hiph tunities for

\section*{QUALIFICATIONS}

University or C.N.A.A. degrec, H.N.C. of equivalent qualification. Applicants under 22 years of age require five G.C.E. passes, two of which must be at ' \(A\) ' level in science or mathematical subjects.

SALARIES
A.E.O. between \(£ 650\) and \(\mathbb{£ 1 , 3 8 5 \text { . Commenc- }}\) ing salary at 26 years or over \(£ 1,150\).
E.O. between \(\mathbb{4}, 514\) and \(£ 1,910\).

Non-contributory superannuation scheme.
Please write or telephone SLOUGH 24411 for an application form.

\section*{The Secretary,}

Radio and Space Research Station, Ditton Park, Slough, Bucks.

\section*{AGRICULTURAL RESEARCH COUNCIL}

Unit of
Invertebrate Chemical Physiology
Applications are invited for the post, described below, in the newly formed Unit of Invertebrate Chemical Physiology under the Hon. Directorship of Professor A. W. Johnson, F.R.S., of the University of Sussex. The appointment would however be to the Sub-Unit which is under the direction of Dr. J. E. Treherne and is situated at the University of Cambridge.
ASSISTANT EXPERIMENTAL OFFICER with experience in the design and construction of electronic laboratory equipment, to work with a group carrying out research on comparative Neurophysiology and membrane biophysics.

\section*{Qualifications}
A.E.O., age 22 and over-pass degree, H.N.C. or equivalent: under 22, G.C.E. in 5 subjects including 2 at advanced level.

Salary Scale: Assistant Experimental Officer \(£ 650\) (at age 18) to \(£ 1,150\) (maximum starting salary at age 26 or over) to \(£ 1,385\).

Applications with two referees to:
Dr. J. E. Treherne, University of Cambridge, Department of Zoology, Downing Street, Cambridge.

\section*{RADIO TECHNICIANS}

\author{
INSTALLATION AND MAINTENANCE £1100-£1500
}

\section*{THE WORK}

Opportunities exist for Radio Technicians to undertake interesting work involved with the maintenance and installation of equipment at airfields, inland and marine mobile networks and on North Sea drilling rigs.

\section*{THE REQUIREMENTS}

Applicants should have experience in one or more of the following types of equipment.
* VHF/UHF base station/mobile equipment.
* HF Receivers and Transmitters up to 1 KW using SSB, ISB and FSK techniques.
* Remote control systems operating over GPO landlines.
* Teleprinters and Telegraph machines and error correction equipment.

Applicants must have a UK driving licence and be willing to work outside working hours on a call-out roster basis.

\section*{THE OFFER}

The posts offer excellent career prospects and you would be based at Southall and London Airport. Benefits include membership of a good Airport. Benefits include membership of a good
Contributory Pension and Life Insurance Scheme and concessions on holiday air fares can be obtained to most parts of the world after one year's service.

\section*{THE COMPANY}

IAL are a fast expanding world-wide company engaged in the fields of communications, aviation services and engincering.

Please write stating brief details of age and career to date to: Personnel Officer (R), Inter national Acradio Limited, Aeradio House, Hayes Road, Southall, Middlesex.

\section*{ELECTRONICS ENGINEER}

Required by MEDICAL RESEARCH COUNCIL CYCLOTRON UNIT. Age 25 minimum. Pass degree, HN.C. or equivalent minimum. Pass degrec, H.N.C. or equivalent. modern semiconductor techniques. To join small group concerned with the design and construction of equipment of high engineering standard for use on and around the M.R.C. cyclotron, varying from integrated circuits to high current power supplies. Technical Officer category. Starting salary \(£ 1,169-\mathrm{Kl}, 518\) according to age and experience.
Initial application, giving career particulars, should be sent to the Director, M.R.C Shoulotron Un Unit Hammersmith Hospital, Ducane Road, London, W. 12.

\footnotetext{
COLLEGE OF I.M.R. COMMNS., Brooks \({ }^{*}\) Bar, Manchester 16, invite applications from suitably qualified persons for the following:

ASSISTANT LECTURER IN MARINE RADIO. P.M. G. Cert., and up-to-date knowledge of the rechnical syllabus essential. Radar and other qualifications and/or teaching experience an advantage, taken into account when fixing salary, based on the Burnham Scale.

ASSISTANT LECTURER IN MARINE RADAR. Applicants must hold the B.O.T. Radar Maintenance Certificate, and should also have had Radar experience as a marine Radio Officer and/or service engineer.
Both positions available September 1969.
Write Principal, giving in confidence full details of experience, education, present salary, etc.
}

\title{
Use your HND with the New Post Office in COMMUNICATIONS ENGINEERING
}

The Post Office, with its \(£ 2000\) million development programme is in the top ten of the world's industrialised concerns and offers you tremendous scope for the application of your talents.

You will find yourself in the expanding world of communications assisting in planning, design and management of such demanding projects as:
- Electronic telephone exchanges
- Postal mechanisation
- Digital and analogue transmission and switching systems
- Application of computer techniques
- Micro-wave radio and satellite communications

To be eligible, you need ' \(O\) ' level English Language and one of the following: HND in electrical or mechanical engineering or in physics, IEE (pts. 1, 2 \& 3), IERE (sections A \& B), I.MECH.E. (pts. 1, 2 \& 3), or CEI (pts. 1 \& 2) in subjects acceptable to one of the institutions named, or exempting qualifications. Starting salaries can range up to \(£ 1397\) (Inner London). There are good prospects of promotion to posts with salaries above \(£ 2000\) in four to five years.

For full details ask your operator for a
free call to
FREEFONE 284. Or write to:
Richard Mayne B.Sc. (Eng), C.Eng., MIEE,
Post Office Appointments Centre,
(ref. no ZH. 155/77/1),
23 Howland Street, LONDON W1P 6HQ.

\section*{numantun}

\section*{RUGELEY STAFFORDSHIRE}

\section*{TEST ENGINEERS}

Several vacancies have arisen for engineers who wish to be engaged in testing a wide range of valve and semi-conductor industrial control equipment, including digital systems. A working knowledge of electrical/electronic circuitry is essential.
These are interesting permanent staff situations, and the salary paid will be commensurate with ability and experience.
The Company is situated in rural surroundings, and yet is close to several large towns. Housing is available at moderate prices.

Applications for these positions, stating age, qualifications and previous relevant experience, should be addressed to the Personnel Officer.

\section*{}

\section*{ELECTRONIC TECHNICIANS}
are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Testers, Test Technicians or Senior Test Technicians according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please apply in writing, giving brief details including age, experience and salary to

The Recruitment Manager,
Marconi Instruments Ltd.

miLongacres, St. Albans, Herts.

CITY AND COUNTY OF BRISTOL
bRISTOL TECHNICAL COLLEGE
DEPARTMENT of NAVIGATION MARINE RADIO and RADAR
Appllcations invited for following posts: Ref. No. L696/40/1

\section*{LECTURER GRADE II in RADIO and RADAR}

Duties to commence Ist September 1969, or as soon as possible thereafter.
Applicants must hold a First Class P.M.G. Certificate in Wireless Telegraphy and the B.O.T. Radar Maintenance Certificate. Additional qualifications such as H.N.C. (Electronics) Aircraft Radio Maintenance Engineer's Licences \(A\) and \(B\) an advantage.

Ref. No. L696/4 \(1 / 1\)

\section*{LECTURER GRADE I \\ in RADIO and RADAR}

Duties to commence on lst January 1970. Applicants must hold a First Class P.M.G. Certificate in Wireless Telegraphy and the B.O.T. Radar Maintenance Certificate. Additional qualifications an advantage.
Salary Scales: Lecturer II .. \(£ 1,725-£ 2,280\) (under review) Lecturer I* .. ©1,035-61,735 * A higher salary scale for candidates with degree or equivalent qualifications. Starting salary dependent upon teaching and industrial experience.
Further particulars and application forms (to be returned within fourteen days of this advertisement) from Registrar, Bristol Technical College, Ashley Down, Bristol BS7 9BU Please quote appropriate Reference Number in
all communications.
2265

\section*{ELECTRONIC ENGINEER}
required by leading telecommunications company, experience in digital techniques and modern telephone and telegraph equipment desirable

\section*{TELEPRINTER MECHANICS}

Top grade teleprinter mechanies required with experience in Tele-type and CREED equipment knowledge of electronics and general felegraph circuits advantageous.
Good prospects, Non-contributory pension plans.
COMMAERCIAL CABLE COMPANY
Mackay House, Wormwood Street, E.C. 2
2236

\section*{Computer Engineering}

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1150\) per annum, plus bonus. Shift allowances are payable, after training, where
applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

\section*{APPOINTMENTS}

\section*{SITUATIONS VACANT}

A ircraft radio engineers and Mechanles with A specific workshop experlence in one of the following: VHF/HF, ILS/VOR, ADF or WEATHER RADAR. Pension Scheme. \({ }^{3}\) weeks holiday per year Apply: (C.1.) Ltd.. Willow Road, Colnbrook. Bucks. Tel.
Colnbrook 2654 .

A FULL-TIME technical experienced salesman reA quired for retall sales: write giving detalls of age, Henry's Radio. Ltd., 303 Edgware Rd., London. W. 2
B. B.C. has a vacancy in Engineering Division for BEPARTMENT. He will be responsible for the overall DEPARTMENT. He will be responsible for the overall
manufacture of prototype electronic units for use by manuracture telen and sound services. These units are made in the Department's Model Shop or by contractors working from preliminary drawings or sketches. The postholder will organise the work of the rechiclans, nstrument makers and Hiremen the operation of the Department's component stores. Applicants must be quallfed engineers. possessing rinc or the equivaient in electrical engineering. They must possess such mechanical knowledge as will enable them to concture to the design of equipment from the manuactur in development work in the electronic field and a knowledge of drawing office practice would be an advantage. Commencing salary \(£ 2,130\) to \(£ 2,360 \mathrm{p} . \mathrm{a}\). in a scale having a maximum salary of 2,703 p.a. Quotink reference no. \({ }^{69 E .2126 \mathrm{~W} . \text { W. apply for appilcation }}\) Orms the

ELECTRONics ENGINEER required to develop Einstruments for blochemical research and maintain and modify existing equipment. Previous experience with electro-optical instruments an advantage. Appir cants should hold an H.N.C. In Electrical Engineering or Applied Physics Commencing salary PATHOLOGY, Westminster Medical School, London. s.w.1.

ENOINEERS interested in spare time writing income Eplease contact Technical Journalist and indicate electronic subjects on which they are prepared to

EXPERIENCED ENGINEER required for repair and C calibration of electronic test equipment. Apply:

Philips records limited have a vacancy for an Electronics Engineer in the Maintenance Department. Applicants would be responsibie ior the maintenance and servicing of disc transcripolicating equilpment. A thorough knowedge of latest transistor technlques and up to date test equip. ment will also be required A good knowledge of Neumann Cutting Lathes would be an advantage yeirs old and should possess H.N.C. or O.N.C. in electronics. Please apply in writing to the PERSONNEL MANAGER. Phulps Records Limited, Record Works. Walthamstow Avenue, London, E.4.
\(\mathbf{R}^{\text {EDIFON LTD. require fully experienced TELE- }}\) R COMMUNICATTONS TEST ENGINEERS and ELECTRONICS
salarles. from ex-Servict personnel or personne! about to leave the Services. Please write giving full detalls toThe Personnel Manager, Redifon Ltd.. Broomhill Road.
Wandsworth. S.W.18.

THE Unlversity of Sheffeld. C.C.T.V. Engineer in the CLOSED CIRCUIT TELEVISION SERVICE tenable from 1st October. 1969, to take charge of all technical aspects of the work, including the operation and maintenance of the present equipment, distribution should be university graduates or have comparable professional qualifications in electronlc engineering and good experlence in broadcasting or C.C.T.V. The appointment will be made in the academic grade of Seninr Experimential Officer; salary in the range of £ 1,685-2.365 with F.S.S.U. provislon. Further particushould be sent by 30th June, 1969, Quote Ref.: R. \(2 / \mathrm{BH}\).

UNIVERSITY OF BRISTOL. Department of development work. Previous Technician required work would be an advantage althoush not essential Salary according to age. qualifcations, and experience Applicants should send full detalls to THE SECRETARY. Department of Physiolosy, The Medical School,
University Walk, Bristol, BSB ITD.
\(W^{\text {e }}\) have vacancies for Four Experienced Test Engineers in our Production Test Department. Applicants are preferred who have Experience of Fault Finding and Testing of Mobile VHF and UHF Mobile to Expansion Prosramme. Please apply to Personne Manager, Pye Telecommunications Lid., Cambridke \begin{tabular}{l}
Works. Haig Road, Cambridse. Tel. Cambridge 51351. \\
\hline 777
\end{tabular}

\section*{SITUATIONS WANTED}

Physicist, Experienced Graduate, Optics and Electronics, seeks Technical work ai home, writing. editing, etc.i Rood
\(01-4590873\) (Liondon). French and German-Phone
[37B

\section*{MISCELLANEOUS}

\footnotetext{
A mateur constructor residing Hendon. N.W. radio construction. etc. Box W.W. 2290 Wireless world.
}

\section*{Fưirit ASSISTANII ENGINEESS \\ (TELECOMMUNICATIONS)}

Vacancies are available in five of the Board's Areas for Fourth Assistant Engineers to work in the telecommunications field. A large supervisory control and indication system of an electronic/electromechanical type is being installed in each Area and these engineers are required, in the first case, to assist in the installation, commissioning and maintenance of this equipment, but they will ultimately have opportunities to work in private automatic telephone equipment. mobile radio and other telecommunication equipment within the Board.

During the first period of service, the selected engineers will be required to work in Areas other than the one in which they are appointed, for training and assistance with the supervisory control scheme programmes.
Applicants should have a good basic knowledge of electronics and preferably of automatic equipment. They should have obtained a technical education to C. \& G. final certificate or to O.N.C. or H.N.C. level in suitable subjects.
Salary within the range \(£ 1.345 / £ 1.715\) p.a. plus \(£ 60\) p.a. N.J.B. Cunditions.
Applications should be made to the Manager of the appropriate Area at the address shown below, before 30 June 1969.
Manchester Area: Linley House, P.O. Box 493, Dickinson Street.
Manchester M60 1RR.
South Lancashire Area: 2 St. George's Road, Bolton.
Peak Area: Union Street, Oldham
West Lancashire Area: Hartington Road, Preston PR1 8LE
Pennine Area: Jubilee Street, Blackburn.

\section*{norweb electricity}

\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:

\author{
Works Manager, \\ Rediffusion Vision Service Ltd., \\ Fullers Way South, \\ Chessington, Surrey (near Ace of Spades). \\ Phone: 01-397 5411
}

\title{
COMMWNCCATON \& CALL SYSTEMS
}

\section*{Speech \& Visual}

Our steadily increasing volume of business, at home and overseas, now creates a requirement for additional engineering staff. We have immediate vacancies for Senior and Junior engineers with good practical experience in any of the following aspects of the work:

> System design. Planning and Estimating. Installation control. Test and commissioning.

The work is varied and interesting, with frequent opportunities for travel, and for contacts with other organisations. Applications, which will be treated in strict confidence, should be sent to:

\section*{BRITISH/RELAY}

\author{
The General Manager, Special Services Division, British Relay House, \\ 41 Streatham High'Road, S.W.16.
}

\section*{PLANNING ENGINEERS}

\author{
required in the fields of
}

\section*{ELECTRONIC TEST GEAR}

\section*{ELECTRONIC EQUIPMENT ASSEMBLY} ELECTRICAL ROTATING MACHINERY PRECISION MACHINING

Continued expansion within the Company's Ilford region creates vacancies for Planning Engineers with experience allied to one of the above activities. Successful applicants will have sound engineering background giving wide knowledge of electronic test equipment, assembly techniques or machining processes. A qualification at ONC level is desirable. Realistic salaries will be negotiated and there are attractive prospects within this progressive organisation. Replies giving details of experience and quoting reference ILF/831/P to the Technical Staff Manager, The Plessey Company Limited, Ilford, Essex.

\section*{PLESSEY}

\section*{ARTICLESTOR SALE \\ A \(_{\text {CY28/OC81/OC72/OC71, }}^{\text {OC22, OC25, OC35, } 5 /-,}\) TESTED, Post \(1 / \therefore\) BELL, 59 Fairfield Drive, Monkseaton, Northumberland. \\ \(\mathbf{A}_{211}^{\mathrm{F}}\) SIGNAL GENERATOR Type HIB Radivet Type As new, "Levell" Transistor AC Voltmeter type TM2B. As new, never been used, what offers?-J. WADEY,
23 Pudding Lane, Maldstone 53034 .
[2288}

A MPMETERS. \(6 \mathrm{in} .\mathrm{Dial} \mathrm{Flush} \mathrm{Type}. \mathrm{A.C} .\mathrm{or} \mathrm{D.C}\). A 15,30 or 50 amp. New \& Boxed. Ex-Gov., 45/- ea Post-Paid. H. W. ENGLISH, 469 RAYLEIGH RD.
HUTTON BRENTWOOD, ESSEX. OOD. ESSEX

ATOMOBILE STEREO 8 track Tade Player, 12 volt.
e27. Two Loudspeakers, \&3. Box W.W. 379 WIreless World.

BATTERY CHARGERS-240 voll Heavy Duty 12 volt :5 amp. compact Battery Chargers-fitted 0-20 amps meter, fuse, battery and mains lesds. on-off switch
charging rates. This "Power Imp" is carefully load tested spares and service guaranteed from manufacturers-£9.17.6. carriage Iree.-MALDEN TRANSFORMER SUPPLIES, 134 London Road, Kingston-on-Thames. Phone \(01-546\)
7534. Ciiro A/C no. 307-3157.
\([2286\)
\(\mathbf{B}^{B C 2}\) KITS and T.V. SERVICE SPARES. Sultable for B Colour: Leading Brittsh Makers dual 405/625 six position push button transistorised tuners if 5 s . Od., \(405 / 625\) transistorised sound \& vision IF panels C2 155 . Od. Incl. ctrcuits and data, P/P \(4 / 6\). Basic dual \(£ 2\) 10s. \(0 \mathrm{~d} ., \mathrm{P} / \mathrm{P}\) \& \(/ 6\). OHF list avallable on request. £2 10s. 0d.., P/P 4/6. UHF ist avaliable on request. EKCO/FERRANTI 4 position push button type. incl, valves, leads, knobs \& 510 s . Od., P/P 4/6, SOBELL GEC UHF tuner kit incl, valves, right angle slow motion drive assy, leads, fittings, knobs, instructions
E5 18s. 6 d ., P/P \(4 / 6\). FERGUSON 4 position push button transistorised UHF tuners incl. leads of knobs \&5 15s. Od, P/P \(4 / 6\). SOBELL/GEC \(405 / 625\) IF \& output chassis incl. circult \(42 / 6, \mathrm{P} / \mathrm{P}\) 4/6. Uitra 625 IF amplifier plus \(405 / 625\) switch assy incl. circuit \(25 /-\) P/P 4/6. New VHF tuners, Cyldon C 20/-. Ekco 283/ 330 range \(25 /-\). Pye CTM 13 ch . incremental \(25 / \boldsymbol{2}\), P/P 4/6. Many others available incl. large selection channel button tuners RGD \(612 / 619\) type used good cond. 30/P/P \(4 / 6\). LopTs. Scan colls. Frame output transformers, Mains droppers etc., availaple for most popular makes. TV signal boosters transistorised PYE/ Labgear B1/B3, or U.HF battery operated \(75 / \%\). UHF
malns operated \(97 / 6\), UHF masthead \(85 /-\) posi iree Enquiries invited. COD despatch avaliable. MANOR Enquirles 64 GOLDERS MANOR DRIVE, LONDON N.W.11. CALLERS 589B. HIGH ROAD. N. FINCHLEY',
N. 12 (near GRANVILLE RD.). Tel. 01-445 9118. [60

BAND New Miniature Electrolytics with long wires,
15 B 15 volt. \(5,1,2,5,6,8,10,15,20,30,40,50\),
\(100.200 \mathrm{mids} .7 / 6\) per dozen, postage 1 s . THE C.R.

BUILD IT in a DEWBOX quality plastics cabinet. Ingwod Rd. FERNDOWN Dorset. S.A.E. Lor (W), Write now-Right now. [76

CLEARANCE stock of Belling \& Lee electrontc equipC ment consisting of masthead amplifters with terminal units and power packs, Eliminoise receiver transfermers, fuseholders with neon indicating lamps, television matns filters with and without leads, Instrument transformers. Young, \(154-156\) Blackiriars Road, London, S.E.1. Tel.
[2287

FLEKON Special Offers. Mullard Pot Cores, LAl, ELA2, LA2402, LA2406, 7/6, LA4, LA5, LA6, LA7, LA2303, LA2503, LA2504, LA2509, 12/6. RM4 Metal Rectifiers (\(250 \mathrm{~V} 250 \mathrm{M} / \mathrm{A}\)) \(5 / 2\). Assorted Wire-wound
Resistors, 100 for only 12/6. Green Disc Ceramlc Capacitors. 3d. each, 100 for \(20 /-, 500\) for \(\mathbf{4} 4,1,000\) for \&6. BY100 Rectifers, 3/3.-ELEKON ENTERPRISES, 30 Baker Street, London, WIM 2DS. Telephone 01-486 5353 .

FM/MW/SW, 10T/RADIO, 95/: 1.000 , Sets, C.I.F., 10 Athenaeum St., Plymouth. \(\quad\) [380

How to Use Ex-Govt. Lenses and prisms. Booklets. 1 Nos. 1 \& 2 , at \(2 / 6\) ea. List Free for S.A.E. H. W. ENGLISH. 469 RAYLEIGH RD., HUTTON, BRENT-
WOOD, ESSEX.
[87

MICROWAVE Standing wave indicator bridge 1M 81/UP new condition, and bolometer bridge.

NEW MOTOR GENERATORS. 12 volt input, \(240 v\). \& output, \(200 \mathrm{w}, ~ \& 3\) 17s. 6 d . H. duty Twin 400 w . £ 610 s .0 d . C. paid. C.O.D. \({ }^{3 / 6}\) ex. S. S. O'Brien,
1 Hightown, Waterfoot, Rossendale, Lancs.
[358

NUT DRIVERS in 22 sizes B.A. A/F \& N.M. Send Rd. Croy. FOR LISTS to Bargain Spot, 268 London

SOLARTRON CD.711S/2 oscilloscopes, dual beam, in Dexcellent working order, \& 90 each. Carriage extra. nr. Chichester.

THE IDEAL PANEL Mounting Meter Movement for 1 any Sensitive Test Meter, etc. 200 Micro Amp F.S.D. \(4 \mathrm{~m}^{\prime \prime} \times 4 \mathrm{~h}^{\prime \prime}\) in clear olastic case. Our special price only isess stores 55 . Free. Limited number only. Walton's Staffs.
UFO DETECTOK CIRCUITS, data, 10s. (refundable) Paraphyslcal Laboratory (UFO Observatory).
Downton, Wilts.
WIRELESS WORLD, 1933 to 1964 inclusive. Would Pilsbury, \(3 \psi\) Hillerest Drive, Little Sutton, Wirral.

\section*{EDUCATIONAL COMPUTERS}

For all materials connected with the educational use of the computer. Advisory department staffed by qualified science and mathematics teachers, free to educationists and amateurs. Digital computers. analogue computers and peripherals bought and sold Realistic prices

COMPUTER TRAINING PRODUCTS
Lordship Lane, Letchworth. Letchworth 4536

\section*{EQUIPMENT FOR SALE}

EMI Type L2B profe
with manual, 625 .
compass Gacehouse, D.F. RX with hand bearing ype TS 13 AP 3 ant., 645 .
625 each.
TS 12 AP Standing Wave Meter, 225.
R65/APN9 Loran Rx, includes iscope \& position indicator, 845 .
S-45A/APM 33 cm siznal generator, \(£ 30\)
EMI Type 6097 and 95248 photomultiplier, new
Bases for above, \(10 / 6\) each.
2 Pye "Reporter" Car Radio Telephones, with Pye "Reporter"
Murphy 405 line CCTV Camera P.U. and Sync. generators, Zoom lens, focus and zoom remote control motors, all perfect, \(¢ 125\).
Collins TCS 12 Mobile TX/RX 75 watt RF complete dynometer ANT cuning unit and cables 1.5/12 MHZ 640 .
Radar TV video and sync. generator, 65,
TS-33/AP 3cm waverneter, 15.
ndicators, Magnesyn Compass, 65 each
Beam antenna drive motor and gear unit, \(£ 3 \mathrm{los}\). \(4 \mathrm{~K} \times 49\) bit word \(3 \mu \mathrm{sec}\). core store by Plessey, brand new, 6250 o.n.o.
DONALD BLAKEY LTD., 24 Dover Road, St. Annes-on-Sea, Lancs. Tel. St. Annes 21053.

\section*{TEST EQUIPMENT - SURPLUS ANDSECONDHAND}

SigNal generators, oscilloscopes, output meters, wave Doltmeters, frequency meters, multi-range meters, ville Old Hall. Ashville Rd., London, E.11. Ley. 4986.

\section*{RECEIVERS AND AMPLIFIERSH SURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, Ashville Otc., Hall, Ashville Rd., London. E.11. Ley. 4986.

\section*{NEW GनAM AND SOUND EQUIPMENT}

CONSULT first our 70-page illustrated equipment Catalogue on \(\mathrm{Hi} 1-\mathrm{Fi}\) (\(5 / 6\)). Advisory service. generous terms to members. Membershlp \(7 / 6\) p.s.-Audio Supply
Association.
London.
W. 4. Association. 18 Blenheim Road. London. W.4.
\(01-995.1661\). 01-995 1661.
\(\mathbf{G}^{\text {LASGOW.-Recorders bought, sold, exchanged; }}\) versa.-Victor Morris, 343 Argyle St., Glasgow, C.2.

\begin{abstract}
HATRTAPECORDING ETC.
D YNAMIC LEARNING MaCHINE, Whether or not accessories such as Time Switches, Pillow Spakers. accessories such as Lame switches, Pilow Speakers.
Speclal Tapes for Leaning, Language Courses. GCE Courses, Professional Courses, etc., etc. Credit Terms available, Get with it Take advantage of these new. simpler. Taster educational techniques. Courses and accessorles now also available tor cassette recorders. Pass exams. Realise ambitions. improve personality. \(9-5.30\). Sat. \(9-1\). Institute of Tape Learning (ww), 153 Fellows Road, London, N.W.3. \(01-722\) 3314. [2296
F qualits, durablity matter, consult Britain's oldest transfer service. Quality records from your sultable
tapes.
(Excellent
tax-free find ralsers for shools, tapes. (Excellent tax-free fund raisers for schools,
churches.) Modern studio facllitles with Stelnway Grand.-Sound News, 18 Blenheim Road. London, W.4.
\(01-995\)
[28
Tape to disc transfer, using latest feedback disc cutters; EPs from \(22 /-\) Bis \(^{\text {s.a.e. leaflet.-Deroy. }}\)

Time switch with fraction-of-minute accuracy. 1 Ideal for automatic recording from radio, TV. laboratory use. where ordinary time switch inadequate. P.C. for detalis to N.R.S., (WW). 153 Fellows Road, London, N.W.3. 01 -722 3314.
[2295
\end{abstract}

\section*{VALVES}

Valve cartons by return at keen prices; send 1/-

\section*{FOR HIRE}

For hire CCTV equipment including cameras, E monitors, video tape recorders and tape-any period,
- Details from Zoom Television. Amersham 5001 . 75 K EEP in touch on that diffcult job. Weekly Hire Communications Coll UHF Radio Telephones. Radio

 MIXING CONSOLES
Customed to your needs, requirements and style. Large or Small. For all Recording, Broadcast, Re-recording, Programme Production and Discotheque Applications.
A complete Design and Production Facility at your DIsposal.
AUDIO DYNAMICS Manufacturing Audio Engineers MOIETY • SEEND • WILTS Telephone: Seend 224

\section*{CITY \& COUNTY OF BRISTOL \\ bRISTOL TECHNICAL COLLEGE dEPARTMENT OF Navigation, MARINE radIo and radar}

Applications invited for the following post-duties to commence 1st September, 1969

\section*{Ref. No. T696/39/1 SENIOR TECHNICIAN (GRADE T.3)}

Salary Scale: £895-£1,055
Starting salary dependent upon age, qualifications and experience. \(£ 50\) or \(£ 30\) extra paid for appropriate National Certificate or C. \& G. qualifications.
Applicants should be over 21 and hold Intermediate City \& Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft.
38-hour, 5-day week with usual holiday and sick pay schemes.
Permanent pensionable post.
Further particulars and application forms (to be returned within fourteen days of this advertisement) from Registrar, Bristol Technical College, Ashley Down, Bristol BS7 9BU
Please quote Ref. No. 1696/39/1 in all communications

\section*{ELECTRONIC SERVICE ENGINEERS}

The Installation and Maintenance Division of E.M.I. Electronics urgently requires engineers with drive and real ability to work when necessary on their own initiative and assist with the divisions rapidly expanding work programme.

The successful candidates will be engaged to work in one of the following areas:-
\(\star\) Servicing and calibration of a wide range of electrical instruments.
* Installation and Maintenance of automation,
numerical, digital and multiplex systems.
Applicants should have had several years' experience of the maintenance of electronic equipment, and these vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions.

Excellent commencing salaries and staff benefits.
FAMOCAHEERS
Applications giving concise career and personal details to:-
EMI
M. L. WATERS - GROUP PERSONNEL DEPT
E.M.I. LTD blyth road hayes middx

\section*{PROMOTIONAL SALES MANAGER}

As a result of expansion, OXLEY DEVELOPMENTS are seeking a man with proved business acumen and a high degree of technical knowledge to co-ordinate and promote sales both in the home market and overseas and to control external Sales Personnel. Engineering qualifications to H.N.C. standard desirable. Commercial experience essential.

The successful applicant will be required to live in the desirable residential area of Ulverston on the fringe of the English Lake District with all the pleasant benefits such a part of the country provides. Salary will be negotiated according to qualifications and experience,
Applications, which will be treated in confidence, to be addressed to:
The Personnel Manager,
Oxley Developments Company Limited,
Priory Park, Ulverston, North Lancashire.
2238

\section*{SALES ENGINEER}

Due to further expansion Telequipment require another Sales Engineer to sell their wide range of oscilloscopes.
Candidates should be educated to HNC standard and should be familiar with oscilloscope circuitry and applications. Good basic salary plus commission, profit sharing scheme and company car

\section*{Apply in writing to:}

Mr. D. H. Denyer, Telequipment Ltd.
313 Chase Road, Southgate, London, N. 14
2267

\section*{ELECTRONIC ENGINEERS}

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

\section*{DEPARTMENT OF AGRICULTURE AND FISHERIES FOR SCOTLAND}

MARINE LABORATORY ABERDEEN
Applications are invited from men only for the post of TECHNICAL OFFICER GRADE III to assist in the maintenance and development of electronic equipm.
water movernents.
An O.N.C. in Electrical Engineering or Applied Anysics or City and Guilds Electrical Technicians Certificate (No. 57) or similar qualification will normally be required and all candidates must have served an apprenticeship or have had equivalent training appropriate to this post and have had at least 3 years experience (although this condition may be waived for younges candidates).
The salary which is now under review, varies according to age and experience from \(£ 940\) (age 21) to \(£ 1,206\) (age 25 or over) to \(£ 1,347\) maximum). The post will be unestablished initially but there are pr .
pensionable employment.
Application forms and further details from the Secretary, Department of Agriculture and Fisheries for Scotland, Room \(172(\mathrm{C})\), St , Andrew's House, Edinburgh, EHI 3DA Applications must be returned by 30th June, 1969.

\section*{SCIENTIFIC ASSISTANT}

Applications are invited from candidates (Boys and Girls) with passes in at least four G.C.E. "O" Level subjects, including English Language, Mathematics and/or a Science subject. Duties concerned with physics and electronics applied to communications.
Age limits 16 to 20. Salary at \(16: £ 430\), rising by birthday increments to \(£ 630\) at 20, \(£ 880\) at 25 , and then by further increments to \(£ 1,100\).

Prospects of promotion to Experimental Officer grade in salary ranges \(£ 650-£ 1,385\) and £1,514-£1,910.

Application forms available from:-
Recruitment Officer (SA/3),
Government Communications Headquarters,
"Oakley", Priors Road,
CHELTENHAM, Glos. GL52 5AJ

We buy new valves, translstors and clean new components, large or small quantities. all details, Wotation by return,-Walton's Wireless Stores,
Worcester
St.. Wolverhampton.

\section*{SERVACE \& REPAIRS}

N YOUR STAFF, but not on your payroll; commis sioned technical writing of all types to your precise
requirements. Box W.W. 347 Wireless world.

\section*{CAPACITYAVAILABLE}

A IRTRONICS, Ltd., ior coll winding, assembly and A wiring of electronic equipment, transistorised subUnit sheet metal work.-3a Walerand Rd., London S.E.13. Tel. 01-852 2706 .

ELECTRONIC and Electrical Manufacture and Eassembly. Prototypes and short production runs

FACTORY has capactty for wiring, assembly, P.C. Tel. Boards, etc., in W.1. Excellent standard of work.
\([37-1578\).

METALWORK, all types cabinets, chassis, racks, M1 etc., to your own specification, capacity avallable for small milling and capstan work up to lin bar.Loughborough.

WIRING and Assembly P.C. Boards, Sub-assemblies, Equipments, etc. Quallty workmanship. Immediate capacity. Box W.W. 383 Wireless World.

\begin{abstract}
TECMNICAL TRAINING
\(B^{\text {ECOME "Technically Qualifed" in your spare time, }}\) B guaranteed diploma and exam. home-study courses In radio. Guilds, etc., highly informative \(120-\mathrm{pag}\). Guide-free.-Chambers College (Dept. 837K), \({ }_{\text {[18 }}^{148}\)
Holborn, London, E.C.1.

CITY \& GUILDS (Electrtcal, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes For details of modern courses in all branches of elec irical engineering, electronics, radio, T.V., automation, etc.; send for 132 -page handbook-free,-B.1.E.I
(Dept. 152 K), Aldermaston Court, Aldermaston, Berks,
\end{abstract}
P.M.G. Certifcates, and City \& Cuilds Examinations. A Aso many non-examination courses in Radio, TV Write for free prospectus to ICS. Dept. 443 , Intertex House. Stewarts Road, London, S.w.8.
\(\mathbf{R}^{\text {ADIO oncers see the world. Sea-golng and shore }}\) R appolntments. Tralnee vacancles in Sept. and Jan. Grants avallable, Day and boarding students.
for prospectus. Wireless College. Colwy Bay.
\(T \mathrm{~V}\) and radto A.M.I.E.R.E., Clty \& Gullds, R.T.E.B. 1 certs., etc., on satisfaction or refund of fee terms thousands of passes; for full detalls of exams and home training courses (Including practical equipment) in all
branches of radio. TV, electronics, etc., write for \(132-\) pare handbook-free: please state subject.-British Institute of Engineering Technology (Dept. 150K) Aldermaston Court, Aldermaston. Berks.
— TUITION
ENGINEERS.-A Technical Certificate or quallacaElem. and adv. private postal courses for C.Eng. Elem. And adv. private (Mostal courses for C.Eng., Gulds. A.M.I.M.1., A.1.O.B., and O.C.E. Exams. Diploma courses in all branches of EngineeringMech. Elec., Auto, Electronics, Radio, Computers,
Draughts, Bullding, etc.-For full details write for Draughts, Bullding, etc.-For full details WFite for tng Technology (Dept. 151 K), Aldermaston Court,
Aldermaston. Berks. Aldermaston, Berks.

KingSton-UPON-HULL Education Committee 1 College of Technology. Principal: E. Jones, M.Sc. F.R.I.C.

FULL-TIME courses for P.M.G. certlficates and the Radar Maintenance certificate.-Information from Colleze of Technology, Queen's Gardens, Kingston-upon-
Hull. TECHNICAL TRAINING IN Rado, TV and Electronics Through world-famous ICS. For detalls of prover House, Stewarts Road, London, S.W.8. \({ }^{24}\)

\section*{BOOKS.INSTRYCTIONSZETO.}

MANUALS, circuits of all British ex-w.D. 1939-45 R.E.m.E.ess equipment and Instructions; s.a.e. for list, over 70 typesW. H. Balley, 167s Moffat Road, Thornton Heath. Surrey, CR4-8PZ. Mort Rod, [66

DIOTRANSALES POR BOX 5 WARE, HERTS
TEL. WARE 3442

EX-COMPUTER PANELS I.B.M, Size
2in. \(\times\) Ain, WiHh TRANSSTORS, DIODES,
RESISTORS, CAPACITORS, RESISTORS, CAPACITORS, etc. Over
tillion aiready Sold out to the Trade.
70,000 only left at our Ridiculous Price of 70.000 only left at our Ridiculous Price of K per 100 panels or CIS per 1.000 panels
Plus carriage 6 .

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSIS. TORS AVAILABLE FOR IMMEDIATE DELIVERY. MANUFACTURERS END OF PRODUCTION SURPLUS.

\[
\begin{aligned}
& 1.492 / 6 \text { each; } 50.9921 / 3 \text { each; } 100-999 \text { 2/- each; } \\
& 1.000 \text { up } 1 / 10 \text { each. Fully Coded. 1si Qley. }
\end{aligned}
\]

\section*{TTHYRISTORS(S.C.W's) AND CODED:
TO.5 CASE} TO. 5 CASE
Type No.
PIV Amp
2NI595

FULLY TESTED DEVICES AND OA TO REQUIREMENTS OA 202 Silicon Diode. Fully Coded.
150 PIV 250 mA Qey. Price 130 per 150 PlV 250 mA Qey. Price 130 per 1,000 pieces.
ORPI2 Cadmint \(1-249 /-\) each; \(25.997 \%\) each; 100
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{TO-IS METAL CAN SILICON PLANAR TRANSISTORS. VERY HIGH QUALITY \(99 \%\) sood. TYDe 2 N706 BSY27 67.10 per 500 pleces; \(\$ 12,10\) per 1,000 pieces.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2N692 80016
TO-46 CASE (STUD)}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{} \\
\hline & & \\
\hline & 2 N 1772 & 100 \\
\hline cor & \({ }_{2}{ }^{\text {N } 1776}\) & 200
300
4.7 \\
\hline ANAR DIODES. SUE & \({ }_{2}{ }^{2 N 1777}\) & 4004.7 \\
\hline TURE DO-7 Glass Type. sultab & \(2 \mathrm{NI778}\) & 5004.7 \\
\hline replacements for OA200, OA202 & 2N2619 & 6004.7 \\
\hline BAY3B. IS130, \(15940,200,000\) zo cle & BTY79-150 & 1504.7 \\
\hline TEED \({ }^{\text {at }}\) Der 1,000 gieces. GUARA & BTY79-250 & 2504.7 \\
\hline & BTY79-400 & 4004.7 \\
\hline
\end{tabular}

We will also buy our surplus stock -Send
lists.

TRANSISTOR EQVT. BOOK 2,500 cross relerences of eransistors-British, Eurodean, Exclusively distributed by DIOTRAN SALES. 15/. EACH. Post and Packing costs are continually rising. Please add \(1 /-\)
towards same. CASH WITH ORDER PLEASE QUANTITY QUOTATIONS FOR ANY DEVICE by RETURN.

Vast mixed lot of subminiature glass diodes, Com-
prising of Silicon, Germ, Point Contact and Gold Prising of Silicon, Germ, Point Contact send Gold
 OVERSEAS QUOTATIONS BY RETURN SHIP. MENTS TOANYWHERE INTHEWORLDAT COST

\section*{The RADIO AMATEURS HANDBOOK 45/-}

1969 ED. by A.R.R.L. Postage \(4 / 6\) Radio Communication Handbook by R.S.G.B. \(63 /\). P. \& P. \(4 / 6\).
F.E.T. Principles, Experiments and Projects by Noll. 40/- P. \& P. 2/-.
49. Easy Transistor Projects by Brown. 16/0. P. \& P. \(1 / 3\).

Practical Power Supply Circuits, both valve and ransistors, by Shields. 24/-. P. \& P. 1/4.
Basic Theory and Application of Transistors, new ed., by U.S. Army. 14/6. P. \& P. I/6.
Designers \({ }^{\circ}\) Guide to British Transistors by Kampel. 25/-. P. \& P. 1/6.
Practical Oscilloscope Handbook by Turner. 25/-. P. \& P. 1/6.
Silicon-Controlled Rectifiers by Lytel. 21/-. P. \& P. I/6.

Audio Amplifiers, new ed., by Davies. \(10 / 6\).
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

WW-106 FOR FURTHER DETAILS

\section*{TRANSFORMER LAMINATIONS enor-} mous range in Radiometal. Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

\section*{J. Black}

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

electronic equipment manufacturebs Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. oldham Tel: 061-624 0939

WW-107 FOR FURTHER DETAILS

\section*{BEST PRICES• BEST PRICES}

\section*{CONNECTORS}

MOST MANUFACTURERS' SURPLUS STOCKS ARE SOLD TO
UNITED ELECTRONICS
We pay the highest prices Contact
Mr. Astor or Mr. Kahn
UNITED ELECTRONICS LTD
12/14 Whitfield St., London, W. 1 el: 01-580 4532.01.580 1116 01-6365151. Telex: 27931

BEST PRICES • BEST PRICES

SWANCO PRODUCTSLTD.
\begin{tabular}{|c|c|c|c|}
\hline ounap AMATEUR RADIO SPECIALISTS & \multicolumn{3}{|r|}{G3PQQ} \\
\hline KET EQUTPMENT & & & \\
\hline \multicolumn{4}{|l|}{Sommerkmp F-Series Equipment:} \\
\hline FR-dx-500 double conversionsuperhet 160.10 metren & 130 & & 0 \\
\hline FL-dx-500 888/AM/CW trinsmitter. 240 watte PEP & 145 & & 0 \\
\hline FLedx-2000 linear amp., 1200 watti PEP & 100 & & \\
\hline Sommerkmp FT-dx-150 tranacelver \(80-10\) metrea. . & 215 & & \\
\hline Sommerkamp FT-dx-500 trancelver 80-10 metres., & 250 & 0 & \\
\hline \multicolumn{4}{|l|}{Swan Line Equipment:} \\
\hline Sman 350C Tranaceiver 80-10 metrea & 216 & 0 & 0 \\
\hline 8wan 500C transceiver 80-10 metrea & 283 & & \\
\hline Swan 230-xC Power supply a.c. . . & & & \\
\hline \multicolumn{4}{|l|}{Eddratone Radio Lid.} \\
\hline Eddystone EA12 Amateur band recelver 1tio-10 inetres & & & \\
\hline Eddy jone 940 Communleatlons recelver & & 0 & \\
\hline Eddystone 840C 8hort wave receiver & & 0 & \\
\hline Eddyatone EClo tranaiswrised Communications recelver & & & 0 \\
\hline Eddyatone EB35 mhortwave \& F.M. reeplver & & & 4 \\
\hline Eddstode EB36 mhortwave broadcast recelver & & 5 & \\
\hline \multicolumn{4}{|l|}{Trio Commanication Equipment:} \\
\hline Trio TS-500 A8B Tranceiver with a.c. PaU tolth 8 plit frequency V.P.O. & & & \\
\hline Trio 9 R 59 DE Communication recelver & & & \\
\hline Trio JRSOOSB Amateur band Receiver \(80-10\) metrea & & 10 & \\
\hline \multicolumn{4}{|l|}{Latajette Recejrera:} \\
\hline & & & \\
\hline & & 2 & \\
\hline Lefajette EA 600 solid state receiver & & 0 & \\
\hline \multicolumn{4}{|l|}{Hallicratier Equipment:} \\
\hline 8×130 Communicationn recelver & & 15 & 0 \\
\hline Sx122 Communications recelver & 148 & & \\
\hline \(8 \mathrm{S1} 48\) Amateur hand recelver & 137 & & \\
\hline HT46 88B transmitter (worls in tranaceive with 8X1 46 recelver) & & 5 & 0 \\
\hline \multicolumn{4}{|l|}{Moseley Electronics (Reams):} \\
\hline TA-33Jr. Tri-band three-element beam & 27 & 5 & 0 \\
\hline TA-32Jr. Trionand two-elernent beam & 19 & 5 & 0 \\
\hline TA-31dr. Tri. hand dipole & & 11 & \\
\hline Y-3Jf. Tri-hatad & & & \\
\hline TP-3Jr. Wire trap dipolo & & & 0 \\
\hline \multicolumn{4}{|l|}{Part Alr Electronica:} \\
\hline 2-Metre Transmitter (complete with Mic., etc.) & 80 & 0 & 0 \\
\hline Kurer Alreratt, short, medium, and long wave recelver. & & & 3 \\
\hline Sky Badit Alreraft receiver & & 10 & 0 \\
\hline Concorde Aircraft receiver: & & & \\
\hline \multicolumn{4}{|l|}{8wanco/CSE Equipment:} \\
\hline 2-A10 Trambi & & & \\
\hline 2-AR Receiver.... & 44 & & \\
\hline Type 2 A.T.M.A. Aeria & \[
\begin{array}{r}
9 \\
2
\end{array}
\] & 15 & \\
\hline
\end{tabular}
-
G-Whip Moblle Anteriha Range. Jijhh weightdenign. Helical wound. Superior performance. B.A.E. Ilus. erated Brochure and Prices.
Codar Radio Company:

Echelford Communleations: Enlson Electrical Services: \({ }^{81 / 44}\) Metre Tx.

Full Range of KW Equipment available to order. Full Range of Drake Equipment avaluble to order Full Range of Henthrit Equipment a vailable to order

\section*{SECOND-HAND EQUIPMENT}

Mang liems in stock, Includlag: Eddyetone EC10, 827, AR88D, AR88LF, HRO, R209, SR550, 4R59, DX40U, VFO. 1 Starfite, etc. Your enquiries. please. Full service qacilitied-Recelvera realigned, Tranamitter Serviced, etc.

Dept. W 247 Humber Avenue COVENTRY

Telephone:
Hours: Mon. Tues., Wed., Fri., Sat., Coventry 22714 Thurs. 9 a.m. to 12 noon

\section*{ALL GOODS GUARANTEED \\ CONVERTOR/BATTERY CHARGER. Inpuk
\(240 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}\), Output, \(12 \mathrm{v}, 5 \mathrm{amp}\) D.C. Input 12 v . D.C. output \(240 \mathrm{v} . \mathrm{A} . \mathrm{C}\). 170 Watt max. With fuse and indicator lamps. Size \(9 \frac{1}{2} \times 10 \times 4!\mathrm{in}\). Weight 19 lb . An extremely compact unit that will give many years
reliable service, supplied with plug and lead. Only reliable service, supplied
E4/10/. P. \& P. \(15 /\). exera. \\ As above-fully serviceable perfect interior but soiled exterior cases, ©3. P. \& P. 15/-extra. \\ Synchronous chopper A.E.1, type CK4. As new 22/6 each. Top connector \(2 / 6\) each. Carpenters
polarised relays. Single pole c/o 20 ohm and 65 ohm coils. As new, complete with base, 14/- each. AMPHENOL. Blue 12 -way ribboned plug and socket, gold plated. Ex eq, but mint, 22/6 a pair. Miniature Belling Co-ax double plug and socket, ex eq., as new, 7/-. 3-pair plug and socker holder.
3/- each. 3/- each. \\ 250 y. D.C. Working \(0.1 \%\). Plastic. \(45^{\circ} \mathrm{C}\). As new. 250 v. D.C. Working \(0.1 \%\) at \(45^{\circ}\) C. As new, \({ }^{2} 3\)
each. Elestrometer valve. Brimar 6857 . Brand new. boxed. \(10 / 6\) each.}
G.M. TUBES. Brand New. G24/G38/G60 at 35/each. G53/1 at 48 each.
SOLARTRON stab. P.U. type AS5 \(16300 \mathrm{v}\).50 mA . E3/10/-; AS517 \(300 \mathrm{v}, 100 \mathrm{~mA}\). \(\mathrm{f6}\). P. \& P. \(10 /-\mathrm{extra}\). TRANSISTOR OSCILLATOR. Variable frequency D.C. input. Size \(1 \frac{1}{8} \times\) 1! \(\times\) Ifin. Nor encapsulated. Brand new. Boxed. \(11 / 6\) each.
TIMER UNIT consisting of standard mains inpur transformer \(200 / 240\) v. 50 cycle; output 18 v .4 amp (conservative); GEC bridge rectifier; detachable accurate I sec. timer sub-chassis with transistor STC type TS2, \(2 \times 12 \mathrm{AU7}\); one 500 ohm relay heavy duty contacts 2 make; lamps, fuse, switeh etc., etc., in case size \(10 \times 10 \times \sin\). Ideal for battery charger, one second timer, transistor power supply. etc.
Tested and guaranteed working \(£ 2 / 15 /\) -
OSCILLOSCOPES

Cossor DB 1035, £20; 1035 Mk. II, \(\mathbf{£ 2 5 ; 1 0 3 5 ~ M k , 3}\) \(32 / 10 \%\) : 1049 € 30 ; 1049 Mk. 3, \(£ 35\). C'52 \(£ 18 / 10 \%\) HARTLEY 13A. Now only EIB. EMI type WM2. f40, All seopes carefutty serviced and in excelient condiAMPLIFIERS, Compact unit by Parmeko-rated 17 watts, capable of double. 2-KT66; ECC81; 2-EF86; \(5 \cup 4\), matching to 15 ohms . High impedance or transormer input. Standard mainsinpur. Size \(14 \times 8 / \times 8\) high. Fully tested. \(68 / 10 /\) - ineluding carriage.

\section*{D.B. Oscilloscope, type CD7IIS.2, 65 S.B. Oscilloscope, type COS13, \(\mathbb{3} 35\). \\ Pulse Generator, type OPS 100 e . 625.}

ECKO ELECTROMETER sype N572 for use in the range \(10-8\) to \(10-14\) amps.
connecting cables. As new, 64
KELVIN \& HUGHES Mark 5 Single channel
RELAYS
Omron/Schrack octal based plug-in relays. 2 pole c/o 5 A .230 V and 6 V . State which. Brand new, boxed. \(12 / 6\) each.
G.E.C. 4 pole c/o. 6/12V. operation 180 ohms. PLATINUM contaces. Brand new, boxed. 14/6 each. 3,000 Series 500 ohms 2 pole c/o \& 2 make. As new condition \(4 / 6\) each.
S.T.C. sealed 2 pole co. 48 V . only. Complete with Standard Pots. Brand new. 250K; 500K; I meg: Standard Pots. Brand new. 250K; 500K; I meg:
2.5 meg. all at \(1 / 9\) each.
Transistor, 25005 , NKT403/452 at 6/8 each. All COURTENAY TIMER unit. Accurate 1 sec . timer variable mark space ratio. Input I2V AC or DC Heavy duty relay contacts to switch external equipment e.g. flashing lights. Chassis mounting size
\(6 \times 31 \times 3\) in. Tested with circuit diagram. 22/6 each \(6 \times 31 \times 3\) in. Tested with circuit diagram. 22/6 each CRT-modern replacement for the VCRI38A. Blue trace with PDA available, \(27 / 6\) each. Bases \(3 / 6\) each. TRANSFORMERS. All \(200 / 250\) inputs 18 v .6 amp and \(12 \mathrm{v} . \frac{1}{2}\) amp. 5 me
12 amps at TRANSFRMERS. \(3 \mathrm{kV} .4 .5 \mathrm{~mA} .4 \mathrm{~V} .0 .5 \mathrm{mmp} \times 2\). 4 V. 1.1 amp. Brand new, \(£ 5\) each. Ex eq. ©3/10/- each. \(350-0-35080 \mathrm{~mA} ., 5 \mathrm{~V} .2\) amps \(\times 2.21 /\) each. 6.3 V t 2 amps \(\times 2\). \(10 / 6\) each. \(350-0-350\) at 1 amp. Standard Gardners \(6.3 \mathrm{~V}-2 \mathrm{~A} ; 6.3 \mathrm{~V}-1.5 \mathrm{~A} ; 6.3-0.1 \mathrm{~A}\), size \(3 \times 18\) \(x\) din. As new 14/0 each
Gardners \(4 V 30\) amps. Standard Input. Brand new. 62/5/- each inc. postage.
CHOKES. 5 H., \(10 \mathrm{H}_{4,} 15 \mathrm{H}\). up to 120 mA ., \(8 / 6\) each. Large quankicy LT, HT, EHT transformers Your requirements please.
Geared MOTORS. 240 V 50 cycle synchronous, Geared MOTORS. 240 V 50 cycle \(5 y n c h r o n o u s, ~\)
geared down to 60 r.p.m. Brand new. \(50 /-\) each. geared down to 60 r.p.m. Brand new. 50/- each Pair MULLARD PHOTOCELLS equlvalent to OCP7I \(2 / 6\) each E.H.T. CONDENSERS. 7.5 kV . working. 0.1 mid, \(5 / 6\) each; \(0.25 \mathrm{mid} 8 / 6\) each.
BrandNew 5 kv working 2 mid 22/6 ea; \(0.25 \mathrm{mfd} 10 / 6\) ea VISCONOL EHT Condensers. Brand New 0.002 15Kv \(8 / 6\) ea. \(0.012 \mathrm{Kr} 5 /-\mathrm{ea} .0 .000525 \mathrm{~K} v 16 / \mathrm{e} \mathrm{ea}\). Cash with order. Post paid over \(10 /\). FOR CALLERS. Always a large quantity of components, 'ransformers, chokes, vales, 'Chiltmead' prices. Callers walcome

\section*{CHILTMEAD LTD.}

22, Sun Street, Reading, Berks. Off Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 (\(9 \mathrm{a} . \mathrm{m}\). to 10 p.m.)

\section*{GEARED MOTORS}

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new

6d. stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

\section*{BAILEY 30 WATT AMPLIFIER}

An audibly unbeatable kit as supplied by us to Industry and Gove. Send for free details. 10 Transistors as specified \& Pcb \(\mathbf{E 6 . 1 0 . 0}\) 20 Transistors as specified \& 2 Pcb \(\quad £ 12.10 .0\) R1-R27 \& Pot \(11 / 6\) Cl-C6 (Mullard) \(9 / 6\) Mullard Capacitors \(1250 \mathrm{mFd} / 40 \mathrm{vw} 8 /-\) each Finned solid Ali Heatsinks \(4 \times 4 \frac{13}{2}\) in. \(12 / 6\) each Finned solid Ali Heatsinks
Int. Rect. Bridge Rects 200P.I.V./I.8A 25/a int. Rect. Bridge Rects 20. P.I.V.1.8A 2A 47/6 Transformer 230/40/50, E.S., 45v @ \(2 A\) 47/6
Photostats of May and Nov. articles \(8 / 6\) set
Photostats of May and Nov. articles \(\quad 8 / 6\) set
Linsley Hood Amp - Send for List
A. 1 FACTORS. 72 BLAKE RD., STAPLEFORD, NOTTS.

\section*{WE ARE BREAKING UP COMPUTERS}

\section*{COMPUTER PANELS (as} ghown) 2 in . \(x 4 i n .10\) for \(10 /-t\)
\(1 / 6 \mathrm{p} . \& \mathrm{p}\). Guaranteed min. 3. transistors: 25 for \(\mathbb{C l}\) D. \& D. \(3 / 6\) \(\min .85\) transistors; 100 for 65/1,000 for \(630+\) carr.
GIANTPANELS \(51^{\circ} \times 4^{\prime \prime} \mathrm{min}\) ductors. resistors, capacitors etc £ \(341+2 /-\mathrm{p}\). \& p
SPECIAL OFFER: 300 TO18
 trankistors +200 SI . diode gates
on boards for \(£ 4+4 / 6 \mathrm{p}\). \& p.
POWER TRANSISTORS sim, to 2N174 ex eqpt. 4 for \(10 / \mathrm{m}, \mathrm{p}\). \& p. 1/6.
Above on Fluned Heat Sink, \(£ 1\) for \(4+5 /-\) D. \& D.
PANELS with 2 power transistors sim. to OC28 on each board +
TRIMMER POTS on \(2^{\circ} \times 4^{\prime \prime}\) bls. + T4. caps. and other components. \(100 \Omega, 500 \Omega, 15 \mathrm{~K}, 20 \mathrm{~K}\). Please state requirements. 5 for \(10 /-+2 /-\mathrm{p}\). \& p.
OVERLOAD CUT OUTS. Panel mounting in the following values 5/- each: 2. 3, 4, 7, 10 mmp . MINIATURE GLASS NEONS. \(12 / 6\) doz.
Ex computer 'MEMORY' FERRITE CORE STORE. 4.000 bits per plane on undamaged wires.
\(25 /-\) per plane \(+3 /-\) p. di p.
NEW RECORDING TAPE, Iow noise. \(1^{\prime \prime}\) tape on
\(5^{\prime \prime}\) reels, 900 ft . unused. fl per reel, post free
LARGE CAPACITY ELECTROLYTICS
4 in. 2 in . diam. Screw terminals.
All at 6/- each \(+1 / 6\) each p. \& p.
4.000 mF

72 V d.c. wkg.
\(4,000 \mathrm{mF}\)
\(10,000 \mathrm{mF}\)
12 V d.c. \(\mathbf{w k g}\). \(w \mathrm{~kg}\).
AN EVEN BETTER BUY AT 35/EXTRACTOR/BLOWER FANS (PAPST) 100 C.F.M. \(4 t \times 4\). \(\times 2 \mathrm{in}\).
2800 R.P.M. \(200 / 250\) voit A.C. \(35 /-\) 2800 R.P.M. 200

Rusty fans available. dirty but guaranteed working. \(i l\) each \(+5 / 6\) p. \& p .

KEYTRONICS. 52 Earls Court Road.
London. W.s.
Mail order only.

\section*{HANDBOOK OF TRANSISTORS, SEMICONDUCTORS, INSTRUMENTS AND MICROELECTRONICS}

In this time-saving, up-to-date handbook you get not only practical, applicable information, but also full coverage of background material and rechnical nomenclature. by Harry E. Thomas
150/-
Postage FREE
RADIO AMATEUR'S HANDBOOK 1969 by A.R.R.L. 45/-. Postage 4/-
SEMICONDUCTOR POWER CIRCUITS HANDBOOK by Motorola. 20/-. Postage 1/-.
PRINCIPLES OF COLOUR TELEVISION SYSTEMS by C. R. G. Reed. 50/.. Postage I/
MICROWAVE SEMICONDUCTOR DEVICES AND THEIR CIRCUIT APPLICATIONS edited by H. A. Watson. 210\%. Postage FREE.
FET PRINCIPLES, EXPERIMENTS AND PROJECTS by Edward M. Noll. 40/-. Postage !
PRINCIPLES OFPAL COLOUR TELEVISION by \(H\). \(V\). Sims. \(21 /=\) Postage 1/-
TRANSISTOR POCKET BOOK by R. G. Hibberd. 25/-. Postage I/-. INTEGRATED CIRCUIT DATA BOOK by Motorola. 50/-. Postage I/

\section*{CATALOGUE 2/-}

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET,

LONDON, W. 2
Phone PADdington 4185
Closed Sat. 1 p.m.

\section*{OSMABET LTD．}

WE MAKE TRANBFORMERs amongst OTHER tHINGE AUTO TRANSFORMERS，0－110－200－220－240 『．a．c．up or down，

 w．750／－
 MAINS TRANSFORMERS．PrIm 200－240 w．a．c．；TX \(1+25-0-425\) v

 NGTRUNENT TRANSFORMER
NSTRUMENT TRANSFORMERS．Prim 200／250 थ．a．c．O MTA／I

 HEATER TRANSFORMERS．Prim \(200 / 20\)
 12 a． \(150 / 24\) 甲． 1.5 a a． \(27 / 6 ; 3 \mathrm{a}\) a． \(58 /-5 \mathrm{~s}\) a．75／－； 8 a ． \(108 / 6\) 2 a． \(150 /\)
MIDGET MAINS TRANSFORMERS．FW rectifcation，size
 COLOUR TELEVISION．WW，an specitied，choke L1 60／－ translormer TI \(67 / 6\) ；held output trahsiofmer \(60 /=\) OUTPUT TRANSFORMERS．Mullard \(5 / 10\) ．ULL．67／6： 7 watt 66，etc．）．3－15 ohms， \(75 /-\mathrm{M}\) Mult ratio \(7 / 10\) wati 301 （KT matching tranaformer， \(3,7.5\) ． 15 ohma up or down to 10 watt 11／6．

Carriage estra all tramaformers from \(3 /\)
Battery eliminators，PPy \(200 / 250\) v．r．c．， 9 v．d．c． 150
Ma，45／－；PP3 dito 15 Ma， \(17 / 8\) P．\＆P．2／6． Ma，45／－；PP3 ditto \(15 \mathrm{Ma}, 17 / 6\) ．P．\＆P．2／
FLUORESCENT LIGHTING LT，Input，6，12，24 v．d．c．range， nitings，invertera，B．A．E．liets．
SULX TAPE ERASER，200／250 ©．a．c．Immedinte and complete 42／8．P．\＆P．3／o，B．A．E．Leatilet． LOUDSPEAKERS．Complete radge，famoun make，as watt，£7：
25 watt，\(£ 5 ; 15\) watt，\(£ 5\) etc．elc．P．\＆P．H／－ench．B．A．E．Livt． LOUDSPEAKERS．Ex equipment．pertect，ELac，Goodmans，

A．E．ALL ENQUIRIES PLEABE．MAIL ORDER ONI．Y． 46 KENILWORTH ROAD，EDGWARE， MIDDLESEX Tel： 01.9589314

WW－110 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer

\section*{BRAND NEW}

P．V．C．POLYESTER \＆MYLAR RECORDING TAPES

Manufactured by the world－famous reputable British tape firm，our tapes are boxed in polythene and have fitced leaders，etc．Their quality is as good as any other on the market，in no way are the tapes faulty and are not to be confused with imported，used or sub－standard tapes．24－hour despatch service．

Should goods not meet with full approval，purchase price and postage will be refunded．

S．P．\(\left\{\begin{array}{llllll}3 \text { in．} & 160 \mathrm{fc} . & 2 / . & 5 \text { in．} & 600 \mathrm{ft} . & 6 / \% \\ 5 \frac{1}{4} \mathrm{in} . & 900 \mathrm{ft} . & 8 / \% & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 /\end{array}\right.\)
L．P．\(\left\{\begin{array}{llllll}3 \mathrm{in} . & 225 \mathrm{ft} . & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} . & 8 / 6 \\ 5 ⿻ \mathrm{l}, \mathrm{in} . & 1,200 \mathrm{ft} . & 10 /- & 7 \mathrm{in} . & 1,800 \mathrm{ft} & 13 / \mathrm{l}\end{array}\right.\)

Postage on all orders \(1 / 6\)
COMPACT TAPE CASETTES AT HALF PRICE
60，90，and 120 minutes playing time，in original plastic library boxes．
MC \(60 \% /\) each．MC \(9012 / 6\) each．MC \(12018 / 3\) each．

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE ASHFORD，MIDDX．

Ashford 53020

\section*{GODLEYS}

SHUDEHILL，MANCHESTER 4
Telephone：BLAckfriars 9432
Agents for Ampex，Akai，Feprograph，Tandberg， Bryan，Brenell，B．\＆O，Vortexion，Truvox，Sony，Leak． Quad，Armstrong，Clarke \＆Smith，Lowther，Fisher， Goodmans，Wharfedale，Garrard，Goldring，Dual， Decca，Record Housing，Fitrobe，G．K．D．，ete． Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

CAPACITY 15 pf to \(111 \mu \mathrm{~F}\)
RESISTANCE \(0.1 \Omega\) to \(100 \mathrm{~K} \Omega\)
INDUCTANCE 1 mH to 10 H
VOLTAGE DIVIDERS and
WHEATSTONE BRIDGES
LIONMOUNT \＆CO．LTD．
beLLEVUEROAD，NEW SOUTHGATE，
LONDON，N．II，ENGLAND
Tel：Enterprise 7047
ar．
62 net Circuit and Notee
R．F． 24,28 and 28, A．1134 T．T1154．CR． 300, BC． 312, BC． 342 ．
52 set sender sud liecelver circulte \(7 / 6\) post free．
B．A．E．wht all enquirtes please．
Posiage rates apply to U．K．only．
INSTRUCTIONAL HANDBOOK SUPPLIES
materials（Laminations，C cores，Copper wire Electronic Components（Transistors，Diodes，etc．），

Good prices paid
een Lane，Hendon，N．W
\(01-2031855\) and 3033

\section*{EXCLUSIVE OFFERS}

LATEST TYPE，HIGHEST QUALITY 78 INCHES HIGH \(x\) 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOỦBLE SIDED CABINETS
having the following unique features

Double ended－ tele rack panels both iden，that iat and they are drilied and tapped
all the war down all the way down
every fin．Ior this
purpose． purpose．
－Fitted＂Inatantil＂
（World Patente） （World Patento）
lally adjustable
 both vartically
and horizontally and horizontally
－these allow the rack panelo to be receased If denired the instance，th the panele are jecting compo－
nenta and it nentr and it it desired to enclio．
them by doort．
＊All edzes and cornera rounded．
t All interior attings．tropicalised and runt prooled and
＊Bualt－in Cable Ducts－removable．
\(\star\) Built－in Blower Ducta－removable
\(\star\) Ventilated and insect prooted tops．
\(\star\) Detachable side panels．
－Full lenzth instantly detachable doors atted espaguoiette
＊Made in California，U．S．A．．cont the American Govera
Finished in Erey primer and almont new condition．

\section*{OUR PRICE £26 10 0}
（Full leanth doori 25 each extra）
You do not require doori it you are roing to mount panelf tront and back and do not wioh to enclose them．

40－page ist of over 1,000 different items in stock a vaila ble－keep one by you．

Compnter Tape Recorder Reproducera of hirbest quality air speeds．in 6 ft ．Cabinete－full details and price on request．
t 10 feet hish triangular Lattice Mast Sections， kalv． 8 inel sides．
\(\begin{array}{rr}£ 8 & 0 \\ £ 125 & 0\end{array}\)
\＆Ualversal Demultdplexera．．．．
\(\star\) R．C．A．OP－8 Broadeast Amplitiera
\(\star\) MeElroy Tape Pullera．
＊Tinsley Phase－splitting Potentiometers
\(\star\) E．M．L．WM－3 Mensuring Oscilloscopes
\(\pm\) Marconi TF－1055 Noise Measuring Sets
＊Micrometer Wavemeters Goneral Electrie \(\star 455 \mathrm{k} / \mathrm{cs}\) Precinion Band Pass Filtera．．．．．．．．．£23 10 \(\$ 7\) track i＂tape head assemblies with rollers．： \(\mathbf{8 3 0} 0\)
 \(\star 2^{2}\) Ured ditho＂Seoteb＂Brand 4800 tt．．．．．．．．\(£ 40\) \(\star\) T．D．M．S．Sets sead／receive in cabinets．．．．．． 88010 ＊Collins 500 w．Radio Telephona T
\＆8
mitters Autotune 2 to \(18 \mathrm{~m} / \mathrm{cs} 230 \mathrm{v}\) ．
inpat new
\begin{tabular}{ll}
P．U．R． \\
£40 & 0 \\
\hline 17 & 10
\end{tabular}
\(\star^{8}\) Track Data Hieh speed Tape Readers ＊Mason illuminated Drawing Tablen \(50^{*} \times 36^{\circ}\) \(\star\) Armphenol Connector Assombling Machinas \(\rightarrow\) 54，Motorola enclosed Ca binets \(19^{\circ}\) ． tTelotype Model 24 Tape Punches． \(\star\) TS－497／URR Bigan Generatorn \(2 / 400 \mathrm{~m} / \mathrm{ca}\) \(\star\) Jet Aircraft Joyitiek Eandles with Switcher
＊S．A．R．A．H．Aerial， \(48^{-}\)high
\＃Sirma 12000 obm．DPDT Sealed Relay \＄Freiz Airport＂Woathor Man＂Masti．．．．．．
\＄75 loot bigh Lattice Trisogular Wind up \(\star 75\) Moot high Lattice Trisogular Wind up \(\mathbf{~} \mathbf{~ M 8 8 5}\) \＃Uniselectors 10 bank 25 way ox．new
\＆Precision Malna Filter Units new．．．． \(\star\) Marcoad HR． 22 SSB Receivers \(2 / \mathrm{d} 2 \mathrm{~m} / \mathrm{cs}\) \(\star\) Avo Geiker Conatera new \(\begin{array}{rr}£ 95 & 0 \\ 88 & 10\end{array}\) 0
0
0
10
\(\star\) Telegraph Code－Decode Machines．
All

We have a lapre quantity of＂bita and pleces＂ we cannot list－please send us your requiremente

\section*{P．HARRIS ORGANFORD－DORSET \\ WESTBOURNE 65051}

BEST PRICES • BEST PRICES•BEST PRICES • BEST PRICES SELLECASH THE LARGEST AND BEST BUYERS IN THE COUNTRY
UNITED ELEGTRONIGS LTD

\author{
* Best Prices * Prompt Settlement * Immediate Spot Offers * Fast Collection \\ We buy \\ PLUGS AND SOCKETS-MOTORS-TRANSISTORS.VALVES-RESISTORS.CAPACITORS POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC. Any quantities considered. Send lists of goods available. DON'T DELAY-contact Mr. Astor or Mr. Kahn- \\ UNITED ELECTRONICS LTD \\ 12-14 Whitflelo St. LONODN. W.1. Tel: 01-580.4532. 01580 1116. 01-636 5151. Telex: 27931
}

BEST PRICES•BEST PRICES• BEST PRICES•BEST PRICES
 WW-112 FOR FURTHER DETAILS

\section*{TONOON CENTRAL idADIO STORES}

MODERN DESE PRONES, red, green, blue or topaz, 2 tone grey or black. wit
\(\mathbf{E 4 / 1 0 / - .}\) P.P. 7/6. 10-WAY PRESS-BUTTON INTER-COM TELEPRONES In Bake Iite case Fith lunction box bandset. Thoronghly overta uled 20-WAY PRESS-BUTTON INTER-COM TELEPRONES In Bake Ifte care with Junction boz. Thoroughly overlauled. Guarail teed. \(87 / 15 /=\) per Unit.
TELEPEONE COILED HAND SET LEADS, 3 core, 5/6. P.P. 1/-, ELECTRICITY SLOT METER (\(1 /\) - in alot) for A.C. Thains. Fired tarifl to your requirements. Sulable for hotels, etc. \(200 / 250 \mathrm{~N}\) 10 A. \(80 /-15\) A. \(90 /-20\) A. \(100 /-\) P.P. 7/6. Other amperages
available. Reconditioned an mew, 2 years" gurantec. QUARTERLY ELECTRIC CHECE METERS. Reconditioned an new. \(200 / 250\) v. 10 A. \(42 / 6 ; 15\) A. \(52 / 6 ; 20\) A. 57/6. Other amperakes availeble. 2 yearu' guarantee. P.P. \(\overline{\text { ® }}\). 8-BANK UNISELECTOR SWITCHES. 25 contacts, alernate Wlping £2/15/:-8 bank hall wipe £2/15/-: 6 bank half wlpe, WIRELESS SET No. 38 A PV. ing range it to 2 malles. Size \(10 \| \times 4 \times 8\). \(\times\). \(9.0 \mathrm{Me} / \mathrm{s}\). WorkIncludea power tank aerial with bape. \(£ 7\) per pair or \&3 100 eingle. P. P. \(23 / 0\) FINAL END SELECTORS. Relays, varlou callera, 10 23 ISIE ST. (GER2 238) LONOON M.C. 2 Closed Thursday 1 p.m. Open all day Saturday

\section*{LAWSDN TRAND NEW TELEVISION TURES}

Complete fitting instructions are supplied with every tube. 12" Types \(£ 4.10 .0\) 14* Types \(\mathbf{~ 4 . 1 9 . 0}\) 17" Types E5.19.0 19" Types \(\mathbf{6 . 1 9 . 0}\) \(21^{\prime \prime}\) Types \(£ 7.15 .0\) \(23^{\circ}\) Types \(\$ 9.10 .0\) 19" Panorama \(£ 8.10 .0\) 23* Panorama E 11.10 .0 19' Twin Panel E9.17.6 23" Twin Panel EI2.10.0
Corriage and insurance \(12 /\) -

The continually increasing demand for tubes of the very highest performance and reliability is noro being met by the neto Lawoson "Century 99 " range of C.R.T.s.
"Century 99" are absolutely brand new tubes throughout manufacrured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very lasest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century \(99^{"}\) are a complete range of tubes in all sizes for all British sets manufactured 1947-1968.

2 YEARS FULL REPLACEMENT GUARANTEE

LAWSON TUBES
18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

BAILEY 30W AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit insended for edge connector mounting. This has the component locations marked and is roller tinned for case of assembly. Size is also In Fibreglass \(14 / 6 \mathrm{~d}\). Original Radford design SPBP 12/. Fibreglass 16\%. This does not have component locations marked.

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo
with bifilar wound secondary and special 218 V primary for use with CZó Thermistor, 35/6d., post \(5 i=\)
Trifilar wound Driver Transformer, 22/6d., post \(1 /\) Miniature Choke for treble filter, \(10 / 6 \mathrm{~d} .\), post 6 d. post 9d.
Reprint of "Wireless World " articles, 5/6d. post free.

DINSDALE IOW AMPLIFIER
All parts still available for this design including our new power amp. P.C. Board with power transistors and heat sinks mounted directly to P.C. All parts or stereo cost approximately 624.
Reprint of articles \(5 / 6 \mathrm{~d}\)., post free.

LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply components.

PLEASE SEND S.A.E. FOR ALL LISTS.

\section*{HART ELECTRONICS,}

32I Great Western St., Manchester I4 The firm for "quality".

Personal callers welcome, but please note we are closed all day Saxurday.

INTEGRATED CIRCUIT DEVICES FROM GENERAL ELECTRIC, U.S.A.

All new and perfect-NOT REJECTS
PA237 2 watt audio amplifier. Smaller than a
2N5305, Silicon Monolithic Darifington Amplifiers suitable for preamps requiring
low-level, high gain, low noise. The size of a transistor
LI4B Light Detector Planar Silicon photoDarlington Amplifier, with a base lead to control the sensitivity and gain. and accepts light from a very narrow angle. The size of a transistor narrow 29/6 Transistors 2 N 2926 Orange spot or Green spot \(5 / 9\) Data sheets on all of the above \(1 /\) - each.
EDE'S STUDIOS, 274 Haydons Road, Wimbledon, S.W.19. Telephone: 01-542 5327

\section*{DAMAGED METER?} Have it repaired by Glaser Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of INSTRUMENT ammeters, Multirange Test REPAIRS Meters, Electrical Thermometers, Recording Instruments, Leak Detectors. Temp. Controilers, all Types Bridg
As contractors to various Government Departments wo are the leading Electrical Instrument Repairers in the Industry. For prompt estimate and speedy dellvery send defective instruments by registered post, or write to Dept. W.W.:-

\section*{GLASER INSTRUMENTS} 1-3 Berry Street, Londom, E.C. 1

WW-113 FOR FURTHER DETALLS

\section*{} for electronic components-by return

\section*{ADJUSTABLE HOLE \& WASHER CUTTERS}

The right tool for trepanning holes I"- \(12 \frac{1^{\prime \prime}}{}\) in diameter
in our range of 17 Madels

Adjustable hole and washer cutters 18\% Tungsten
High Speed Tool bits

Write for illustrated brochure of our full range with straight or Morse taper I-4 or Bitstock thank
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. O1-3482670

WW-115 FOR FURTHER DETAILS

FOR YOUR

\section*{SYNCHRO \& SERVO}

REQUIREMENTS:
SERVO \& ELECTRONIC SALES LTD. 43 HIGHST.,ORPINGTON, KENT. Tel:3IO66, 33976
\[
\begin{aligned}
& \text { Also at CROYDON. Tel: } 01-6881512 \\
& \text { and LYDD, KENT. Tel: LYDD } 252
\end{aligned}
\]

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624

\section*{AMERICAN \\ TEST AND COMMUNICATIONS EQUIPMENT \\ * GENERAL CATALOGUE AN/103 1/- * \\ SUTTON ELECTRONICS \\ Salthouse, Nr. Holt, Norfolk. Cley 289}

\footnotetext{
NEONS. PRINTED CIRCUIT BOAROS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are
ex-stock. For details see June and Auguse 1969 issues, advertisemencs. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED, 30 high street, northwood, middx.

Telephone: Northwood 24941
}

BAKER "SUPERB" 20 WATT

I2in. LOUDSPEAKER BRITISH MADE THROUGHOUT Suitable for all Hi-fi Systems. Provides rich clear sound recreating the musical spectrum virtually flat \(\pm 5 \mathrm{~dB}, 20-17,000\) cps. Latest double cone with magnet. Flux density 16,500 mauss, Bass resonance 22-26eps. gauss. Bass resonance 22-26eps.
Plastic Cone Surround. Coils available 8 or 15 ohms.
Price \(£ 15\) Post Free

MINETTE AMPLIFIER
ALL Record Player Mains Iransformer. Chassis size \(7 \times 3 \frac{1}{4} \times 4\) in high. Valves ECLB2, EZ80. Two Quality output 3 ohm matching. Bargain offer complete with engraved control panel, valves, knobs,
volume and tone controls, wired and tested. Post 5/6 \(69 / 6\) TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A self-contained portable mini-p.a. iystem. Many Intercom, telephone or or Record Player Amplifier. Attractive rexine covered
cabinet
size
\(12 \times 9 \times 4\)
in. with powerful speaker and lour transistor One watt power amplifier new in Maker's carton with
full maker's guarantee.

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
\(\begin{array}{ll}\text { 200/250 A.C. } \\ \text { Leaflet S.A.E. } & 42 / 6\end{array} \begin{aligned} & \text { Post } \\ & 2 / 6\end{aligned}\)
EXT'ENSION SPEAKER
Smart plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains

RETURN OF POST DESPATCH - CALLEPS WELCDME RETURN OF POSI DESPATCH - CALLERS WELCDM RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON. Tel: 01-684 1665
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{5 I Burnley Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152} \\
\hline \multicolumn{6}{|l|}{VALVES BOXED, TESTED \& GUARANTEED} \\
\hline EBF80 & 3/- & PCC84 & 3/- & PY82 & 3/- \\
\hline EBF89 & 3/6 & PCF80 & 3/- & U191 & 4/6 \\
\hline ECC82 & 3/- & PCF82 & 3/6 & U301 & 4/6 \\
\hline ECL80 & 3/- & PCL82 & 4/- & 6 F23 & 5/- \\
\hline EF80 & 1/6 & PCL83 & 4/- & IOP14 & 3/- \\
\hline EF85 & 3/- & PCL84 & 5/- & 20P5 & 3/- \\
\hline EF183 & 3/6 & PL36 & 5/- & 30F5 & 2/6 \\
\hline EF184 & 3/6 & PL8I & 4/- & 30 L 15 & 5/- \\
\hline EY86 & 4/- & PL83 & 4/- & 30 Pl 12 & \(4 / 6\) \\
\hline EL41 & 5/- & PY33 & 5/- & 30 Cl 15 & 51- \\
\hline EZ40 & 4/6 & PY81 & 3/6 & 30 PLI 3 & 5/6 \\
\hline EBC41 & 4/6 & PY800 & 3/6 & 30 PL 14 & \\
\hline \multicolumn{6}{|c|}{POST. ONE VALVE 9d. TWO TO SIX 6d. OVER SIX POST PAID.} \\
\hline
\end{tabular}

\section*{PRINTED CIRCUITS}

Small quantities are not expensive, we have full artwork and assembly facilities.

Let us quote you for any quantity. OFRECT Hookstone Park, Harrogatc Harrogate 86258 Telex 57962

\section*{16 mm and 35 mm Dubbing Theatre Equipment}

Complete system for sale, including mag. and opt. sound recorders, 8 Channel console, sound heads, selsyn drive units, power units, Theatre horns, Footage Counter. Majority by R.C.A. Space required for multi-track system. Also 2 C.C.T.V. systems
All professionally maintained and fully operational. May be seen working in London area. Box W.W. 2272 Wireless World

NEW! HSL. 700 Mono Transistor Amplifier

complementary palf. Output tranaformer coupled to 3 ohm Frull wave bridge rectifler power supply for \(A\). C. mata \(2000-2 \cdot 40\) v, Contruls: Bass. Treble. Volume/on/ofi. Punction selector for
PU1, PU2. Tape, Radio. The HBL. 700 Is stonkly on rigid ateel chamais, bronze hammer ratmel finish, wize :atin.

Tape \(-110 \mathrm{~m} / \mathrm{v}\), I meg. input impedance.
Output power meanured at I Ke-6.2 watts R Mg intn 3 ohma
 to 12 db at \(100 \mathrm{c} / \mathrm{s}\). Treble, +10 db to -10 db at \(10 \mathrm{Kc} / \mathrm{s}\). The H\$L. 700 has been deuigned for true high fidelity reproduction rom Radio Tuner, Gramanphone deck hind Tape Recorder pre
amp but in alan capable of belog uned in conjunction with a gultar by connectug to PU1 socket and the petak output power will then be in the rexion of 15 watts.
supplied ready bullt and texted. complete with knobs, att ractive cut to gutt your housing requiremente), fulf circuit dingram and \begin{tabular}{llll}
operating \\
instructiona. & OUR \\
\hline
\end{tabular}

4-SPEED RECORD PLAYER BARGAINS Mains models. All brand new in maker's orikinal packing,
B.S.R OA25 with tateat mono compatibe Csit...... \(£ 6\) in

All plua Carriage and Packing \(6 / 6\)
LATEST GARRARD MODELS.
All typer avallable 1025, 2023. 8P25, 3000. AT60 etc. Send
Transistor Stereo 8+8 Mk. II
 really firntelass \(\mathbf{H i} \cdot \boldsymbol{H Y}\) Stereu Anplifier Kil. Usees it tranalstors glving a watts push pull output per cliannel (1BW, mono),
integrated preamp, with Bans. Treble und Volume contmola.: Suitable for use with Ceramic or Crystal cartridges. Output stage supplised linctuding drilled metal work. Cir-Kit buard, attractive front panel knobs. wíre, solder, nuta, boits no extras to buy,
slmple step by step invtructiona enuble any constructor to build amplitier to be proud of. Brié Bpeciticatlon: Fred, renponse
\(\pm\) : d B, \(20 \cdot 20,000 \mathrm{c} / \mathrm{s}\). Buss troost approx. to +12 dB . Treble cut approx. \(10-18 \mathrm{~dB}\). Negatlve feedlanck 18 dB . over mains amp.
Power requirementa 25 V . at 6 umpa. PRICES: A mplifier Kit \(10 / 10 / 0\); Power Pack Kit \(\mathbf{8 3 / 0 / 0}\)
Clircuit duaprau, construction details and parts list (free with
kit) \(1 / 8\) (B.A.E.).

PEAK SOUND BI-FI EQUIPMENT incladink the P. W. DOUBLE 12 STEREO AMPLIFIER as featured in Practical Wireless April, May and Jone issues.
 Sejarate bass, trebie and volume controls Complete with output
 ALSO AVAILABLE mounted on board with output trannforiner
and apeaker ready to fit into cablinet below. PRICE \(97 / 6\). DE LUXE QUALITY PORTABLE R-PLAYER CABINET MK. 2
 OARRAKD Autochanker or ingle Phyer UnIt (except AT60 3-VALVE AUDIO AMPLIFIER MODEL HA34

renords. A.C. maitins operation.
reor
Rends.
 d. \(x\) thin. h. Incorporates ECCA3.
ELSA, EZ80 valven. Heavy duty double wound maina transformer and output transformer matched for
3 ohm speaker, separate bass, treble back Itre. Output if watts. Front yanel can be detached and lealn extended lor remote mounting of controle. The HA34 han
been apecially designed for un end our quantity order enablen us been opecially designed lor un and our quantity order enablen un
to ofrer then complete with knobs, valves, etc., wired and teated for only \(£ 4 / 5 /=\). P. \& P. \(6 /\)

HAVERSON SURPLUS CO. LTD.
170 HIGH STREET, MERTON, LONDON, S.W. 19
Telephone: 01.5403985
S.A.E. all enquiries.

Open all day Saturday (Wednesday 1 p.m.)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K.
ONLI. P. \& P. ON OVERSEAS ORDERS CHARGED EXTRA.
[4STATION INTEECOM

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/'talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

\section*{7-STATION INTERCOM}
(1 MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. \(3 \frac{1}{2} \mathrm{in}\). Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory
Price 27 gns. P. \& P. \(14 / 6\) in U.K.

Transistor \(155 P 1015\) AYMTFE

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8

\section*{INIDEX TO ADVEIRTISERS}

\section*{Appointments Vacant Advertisements appear on pages 95-106}

ADCOLA HOUSE, GAUDEN ROAD LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4

\section*{...and tomorrow there will be thousands more}

Throughout the world leading electronic manufacturers are continually emptying reels of Ersin Multicore 5 core solder, to make reliable soldered joints. Some reels contain 3,752 feet (\(\mathrm{I}, \mathrm{I} 44\) metres). It's the solder they have depended on for consistent high quality for more than 30 years.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints and do not already use Ersin Multicore Solder it must be to your advant-
age to investigate the wide range of specifications which are available.

Besides achieving better joints-alwaysyour labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms and Pellets-Cored or Solid -and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

\section*{NEW! EXTRUSOL \\ The first oxide free high purity extruded solder for} printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems or require details on any of our products please contact us at:

MULTICORE SOLDERS LTD.,
Hemel Hempstead. Herts
Phone: Hemel Hempstead 3636
Telex: 82363```

[^0]: Electro-acoustics Division of Philips Industries,
 N. V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.

[^1]: United-Carr Supplies Ltd.,
 Frederick Road, Stapleford, Nottingham.
 Sandiacre 8072 STD ONO 2398072

[^2]: * Mr. Ibbotson has taught "light-current" electrical subjects at all levels including City and Guilds, H.N.C., H.N.D., B.Sc.(Eng.) and postgraduate courses.

[^3]: "Modified Treble Filter for Bailey Preamplifier" (June). The two response curves in Fig. 2 p. 275 are shown with the switch positions and capacitor values transposed. Maximum roll off is given by C_{3}.
 "Labelling Components"; (Letters, June, p. 272). We regret that an error occurred in Mr. Müller's letter. For " $1000 \mu \mathrm{~F}$ " read " $10000 \mu \mathrm{~F}$ ".

[^4]: *Assistant Editor, Wireless World.

[^5]: "Extra-terrestrial Relays", October 19+5, p. 305.

[^6]: * Marconi-Elliot Microelectronics.
 \dagger University College of Swansea.

[^7]: * In order to preserve the highest possible input impedance the E6o18 is not gate protected. Care impeuld be taken to earth all mains operated test should be taken to earth all mains operated test
 equipment. In very dry environments static charges equipment. In very
 may be large envigh to break down the gate oxide. The gate should therefore be connected to the drain until the transistor is ready for use.

[^8]: The optical principle of the combiner is shown at (a). Diagram (b) represents two halves of a common scanning raster on a cathoderay tube (non-linear in the vertical direction).

[^9]: * John Wiley \& Sons (1968), 1036 pages, price \{14.
 \dagger e.g. E. M. Cherry, "An engineering approach to the design of transistor feedback amplifiers", J. Brit. I.R.E., Vol 27, No. 127, Feb. 1963; and E. M. Cherry and D. E. Hooper, "The design of ide-band transistor feedback amplifiers", Proc. I.E.E., Vol. 110, No. 375, Feb. 1963.

[^10]: f. Leith

[^11]: PLEASE WRITE FOR ILI
 TERS IN U.K:
 SOLE IMPORTERS IN U.K:
 (0)ALITY ELGTRONIGS LTD.

 47-49 HIGH STREET, KINGSTON-UPON - THAMES, SURREY. Tel:01-546 4585

[^12]: hatField instruments lid., Depl. WW, Burrington Way. Plymouth, Davon.

[^13]: or example. measurements can be made with or without direct current or voltage polarisation of the componen measured. and the source of voltage or current polarisation is not in series with the measuring circuit. The instrument is outstandingly simple to use. measuring the RF characteristics of inductors. varactors. diodes iransistors, resistors, transtormers: erc.. with the application of e wide variation of direct current or voltape and there is negligible shift in zero setting when changing range or frequency.

[^14]: 26414
 20415

