Hass A transistor audio amplifier

W.W. colour receiver : decoding

SOLDER ON WITH P侖

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}(1 \mathrm{~mm})$ up to $3 / 16^{\prime \prime}$ For $240,220,110,50$ or 24 volts.

from
 32'6

If you want the best in soldering. Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

Antex, Mayflower House, Plymouth, Devon
Telephone: Plymouth 67377/8. Talex 45296. Giro No. 2581000

Complete precision

 soldering kit

This kit-in a rigid plastic "tool-box" - contains tool-box" - Contains everything you need
preclsion soldering.

- Model CN 15 watts miniature iron. fitred T" bit.
- Interchangeable spare bits. H^{2} ", 音".
- Reel of resin-cored solder
- Felt cleaning pact
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio
Shops or
sond cash to Antex.

G 18 watis. Ideal for miniature work on production lines. Interchangeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 220 or 110 voles. $32 / 6$

E 20 watts. Fitted with $1 / 4^{\circ}$ bit.
Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 16^{\circ}$. For $240,220,110$ or 24 voits.from $35 /$

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit. Inerchangeable bits $3 / 32^{\prime \prime}, 3 / 16^{\circ}$ and $1 / 4^{\prime \prime}$. Ideal for high speed production lines. For $240,220.110,24$ or 12 volts. from $35 /$.

F 40 watts. Fitted $5 / 16^{\prime \prime}$ bit.
Interchangeable bits $1 / 4^{*}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Very high temperature iron. Available for 240. 220, 110. 24 or 20 volts. from 42/6 Spare bits and elements for all models and voltages immediately available from stock.

With the Multimeter module and an optional a.c. converter, the new Avo Digital System measures not only a.c. and d.c. voltages but also a.c./d.c. current and resistance. Other plug-in modules convert the Display Unit into a Digital Timer/Counter, a Digital L.F. Generator and other high-performance laboratory digital instruments.

Even with the Multimeter module the System gives you:

- 45 ranges of d.c. voltage, current and resistance measurement
- 75 ranges of measurement including a.c. voltage and current if the optional a.c. converter card is inserted
- 10% over-range on all ranges without loss of accuracy
- fully floating guarded input accuracy (Vdc): 0.05\% of indication $\pm 0.05 \%$ of full range value
- full-range accuracy at quarter or half of full range
■ 50-way socket for print-out signal

You'd be surprised at the scope of our test facilities. Our test department has its own vibration sweep testing techniques. Quality Assurance is of such importance at Brookdeal that as much time goes into testing and proving as into actual manufacturing.

BROOKDEAL ELECTRONICS LIMITED, Myron Place, London, S.E.13. Telephone: 0†-852 7433.

PRODUCT FEATURE: Type 450 Low-Noise Amplifier gives 100 dB gain with 300 kHz bandwidth and better than 0.5 dB noise figure. $£ 185$ (U.K.).

Brookdeal

the preferred equipment for signal recovery

If you need power tetrodes at the right price look at this EEV range

Forced-air Cooled		Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	Frequency (MHz)	Filament ratings	
Type	Service type					(V)	(A)
$\begin{aligned} & \text { 4CX1000A } \\ & 4 \mathrm{CX1000K} \end{aligned}$	-	1.0	3.2	3.0	110	6.0	9.0
4CX1500B	-	1.5	2.7	3.0	30	6.0	9.0
4CX5000A	CV8295	5.0	16.0	7.5	30/110	7.5	75
4CX10,000D	CV6184	10.0	16.0	7.5	30/110	7.5	75
4CX35,000C	-	35.0	82.0	20.0	30	10	300
CR192A (6166A)	CV8244	10.0	9.0	6.9	60/220	5.0	175
Vapour Cooled	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kv)	Frequency (MHz)	Filament rat (V)	(A)	Boiler unit
CY1170J	60	82	15	30	10	300	Integral
CY1172 (RS 2002V)	150	220	15	30	21	350	CY4120
를							
4CX1000K 4C	,000D	4CX35,000		CY1170J		CY11	

For audio or linear single sideband amplifiers. $4 \mathrm{CX1000K}$ has a solid disc screen contact to permit use up to 400 MHz .

For audio, linear. single sideband or screen modulated r.f. amplifiers.

For audio amplifiers, r.f. linear amplifiers or Class C amplifiers or oscillators.

For audio amplifiers, r.f. linear amplifiers or Class C amplifiers or oscillators. Both types have a coaxial metal-ceramic envelope. A range of glass envelope types is also available.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me full data on your range of forced-air cooled and vapour cooled tetrodes. I am also looking for a power tetrode with the following parameters.

Output power (kW)	Anode voltage max (kV)	Frequency (MHz)
NAME		

COMPANY
ADDRESS

The Monsanto Model 100A Counter/Timer measures frequency up to 12.5 MHz , single period or frequency ratio; or counts total events. It has a crystal controlled clock and integrated circuits... Its price is $£ 300$. In addition, the range includes new models tailored to meet your needs . . . the 101A has

BCD output ... the 103A has four digit readout and a line-frequency clock and sells for $£ 185$... the 104 A is a preset counter (all five decades are presettable from 1 to 9) And the latest in the family, the 106A, is a fully reversible counter...We shall be pleased to send you full details.

Exclusive agent in U.K
G. \& E. BRADLEY LTD

Electral House, Neasden Lane, London, N.W.10. Telephone : 01-450 7811. Telex : 25583.

versatility in a small package

Be safe...use EEV magnetrons in your marine radar

	Type	Frequency Range (MHz)	Peak Output Power (kW) (Typical Operation)	Equivalents (not complete)
Brief data on some of the many types available. The complete range covers S -B and and X -Band types from $3-80 \mathrm{~kW}$.	M5063	3025-3075	50	2J70B
	2 J 42	9345-9475	8	ME1101, CV3676. MAG3, M526
	BM1002	9415-9465	21	JP9-15B
	M513B	9345-9405	22	JP9-15, YJ1110
	M515	9380-9440	25	YJ1120
,	M597	9380-9440	10	
	M598B	9380-9440	22	
	599A/B	9415-9475	3	$\begin{aligned} & \text { JPG-2.5D, } \\ & \text { JP9-2.5E, } 7028 \end{aligned}$
	M5022	9415-9475	30	YJ1121
	M5031	9345-9405	9	
	M5043	9380-9440	5.8	
	M5039	9345-9405	22.5	
M5063	M515		9/B	M513B

Send for full details of EEV marine magnetrons.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmstord

Please send me full data on your range of marine magnetrons.
I am particularly interested in using a marine magnetron with the following parameters.

Frequency	Peak Output	Pulse	Pulse Repetition
Range (MHz)	Power (kW)	Length $(\mu \mathrm{s})$	Rate (p.p.s.)

\qquad
COMPANY
ADDRESS

ABOUT TIME...

WHAT ABOUT IT? Well the two new Dial Timers above will cut costs for you - and space.
(Top) The Elremco Planetex a fully Solid State Dial Timer - delay or interval action versions. Choice of Solid State or Mechanical Output Switches - both plug in. Time ranges from 50 Milli-seconds to 30 minutes. (Bottom) The Planet V. An Electro-Mechanical compound Timer-Interval plus Delay or Both Actions on one unit. Visual indication of timing progress. Time ranges seconds to days.
Dimensions - Identical for both units, $2.9^{\prime \prime}$ square by $4^{\prime \prime}$ max.
Low cost automation timing devices - Elremco right on time - every time.
Full technical details, prices and discounts from :

New pulse tetrode for low power radars added to EEV's range

The new C1179-a high vacuum beam tetrode designed primarily for the output stage of power amplifier pulse modulators in $5 \mathrm{~kW}-10 \mathrm{~kW}$ radars.

IIIIIIII

C1179

C1148

C1149/1

C1150/1

C1166

Type	Service type	Anode dissipation max. (W)	Pulse output power (kW)	Anode voltage max.D.C. (kV)	Pulse anode current max. (A)	Heater ratings		Base
						(V)	(A)	
C1148	-	40	130	14.0	12	6.3	5.0	B5F
C1149/1	CV6131	60	330	20.0	18	26.0	2.15	B4A
C1150/1	CV427	60	205	17.5	15	26.0	2.15	B4A
C1166	-	60	205	17.5	15	6.3	9.0	B5F
C1179	-	18	65	8.0	9.0	6.3	2.8	B7A

Send for full data on the
EEV range of pulse amplifier tetrodes

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me full details on your range of puise tetrodes.
I am particularly interested in using a pulse tetrode with the following parameters:

Pulse output power	Anode dissipation	Anode voltage	Pulse anode current
NAME		POSITION	
COMPANY			
ADDRESS			

New Edition-Now Printing

Goodmans High Fidelity Manual is of inferest to beginners and enthusiasts alike - with articles on Stereo; an Introduction to High Fidelity, Stage-built systems, as well as full details of Goodmans High Fidelity audio products. Thinking of High Fidelity - first read Goodmans 28 page Manual.

Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address

Please send me full details of your range of UHF TV amplifier klystrons.
I am interested in a klystron with the following parameters:
Fiequency Range
Bandwidth
Power Level
NAME POSITION
COMPANY
AODRESS

Ferrograph New Generation Series 7-

Ferrograph Tape Recorders, Series 1 to 6, have been famous since 1949, and although Series 7 was introduced only a year ago it is already acknowledged as a classic. No other recorder to-day gives you quality like this, reliability like this, and offers so many desirable facilities.
It has the finest specification-and when Ferrograph gives you a figure, it is a conservative minimum. Ferrograph guarantees it. Every instrument is finally individually adjusted for optimum performance. With Ferrograph you know where you are-exactly.

Available in Mono, and in Stereo with and without end amplifiers; embodying a unique range of 30 features including:

- All silicon solid-state electronics with FET input stages and wide input overload margins. - Vertical or horizontal operation.
- Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame casily removable from cabinet for service or installation in other cabinets or racks.
- 3 motors (no belts).
- 3 tape speeds.
- Variable speed spooling control for casy indexing and editing.
- Electrical deck operation allowing presetting for time-switch starting without need for machine to be previously powered.
- Provision for instantaneous stop/start by electrical remote control.
- Immediate access head block for editing and cleaning.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recordings and insertions.

Adjustable reel height control.
Damped tension arms for slur-free starting.
84" reel capacity.
Endless loop cassette facility.

- Provision for signal operated switching units.
- Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.
4 digit, one-press re-set, gear-driven index counter.
2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
- Signal level meter for each channel operative on playback as well as record.
Tape/original switching through to output stages.
Re-record facility on stereo models for multi-play, echo effects etc., without external connections.
- Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
- Three outputs per channel i.e. (1) line out-level response. (2) line out-after tone controls. (3) power output - $8-15$ ohms.
- Power output 10W per channel.
- Independent tone controls giving full lift and cut to both bass and treble each channel. - Retractable carrying handle permitting carrying by one or two persons.
- Available in several alternative presentations.
U.K. Retail prices from $£ 150$ incl. P.T. Please see next page for list of Ferrograph Stockists

Listen for yourself

To know the Ferrograph New Generation Series 7 you must look at it, listen to it, for yourself. You will find New Generation instruments soon in stock at many of the best tape-recording and $\mathrm{Hi}-\mathrm{Fi}$ specialists in the country, including the following:

Ferrograph stockists

C. C. Goodwin (Saies) Lid $?$ The Broodway,

Francis of Streatham.
Tape Recorder Specialists,
169-173 Streatham High Road
.W. 16
Hampsiead High Fidelity,
91 a Heath Streer, N.W. 3
Imhofs,
112-116 New Oxford St.
W.C.I

Largs of Holborn,
76/77 High Holborn.
W.C. I

Nusound,
242/4 Pentonville Road.
Nusound.
82 High Holborn.
W.C.i

Nusound,
228 Bishopsgale.
E.C. 2

Nusound.
360 Kilturn High Road,
N.W. 6

Nusound,
36 Lewisham High S
S.E. 13

Nusound,
2 Maryland Station
E.IS

The Recorder Com
186. 188 West End Lone
W. Hampstead. N.W. 6
R. E. W. (Earlsfield) Ltd.,

266-268 Upper Tooring Road.
W.II
R. E. W. (Earisfiedd) Lid.

146 Charing Cross Raad
H.C. 2

Telesonic Lid.
22 Toulienham Court Rood,
W. 1

Teletape Lid.,
33 Edgware Road.
W. 2

Teletape Liden
84/88 Shaflesbury A ienue
W.I

Aberdeen
Aberdeen Radio Company
12 Hadden Street
Aberdoen Sound Centre Lid.
25A Belmont Si.

nstead

Raylec Limited,
43 Bu/N Parade.
High Sireet
Birmingham
Birmingham
Chas. H. Young Lid.
Chas. H. Young Ltd.,
170-172 Corporation Sireet.
Birmingham 4
C. H. (Hi-Fidelity) Lid 167-169 Bromsgrove Street.
Birmingham S

Cine-Equipments Ltd.,
Audio Visual Department,
Birmingham ;
Biachburn
Holdings Audio Cenire,
39-11 Mincing Lane

Black poond

F. Benfell Limited.

17 Cheopside.
(Abingdon Streel)
Bolton
Harker \& Howarth
Churchgare

Boscombr

Tape Recorders (Bournemouth) Lid. s74 Christehureh Road

Bournemouth

Forrester's,
National Radio Supplies Lud., 70.72 HoldenhursI Road

Brighton
Avery"
17 St. James's Street
Lanes Radio Led.,
/I Gardner Sf .
Bristor
Audio 8 ristol,
Park Sireet Avenue.
Bristol
Bristol \& West Recording Service Lud, 6 Park Row

Tape Recorder 是 Hi-Fi Centres Lid.
82 Stokes Crof
Bromley 32 Lerchworth Drive

Bury
Smith \& Son (The Rock) Led.
184 The Rack
Cambridge
University Audio,
\& 2 Peas Hill
Canterbury
Canterbury Hi-Fi Centre.
26 St. Dunstan's St.

Cardif

The Roath Radio \& Television Co 3/27 Morgan Arcade.

Sound Film Services (Cinema Liaison Lid.), 27 Charles St.
Tape Recorder \& Hi.Fi Centres Ltd., Oxford Arcade

Castue Douglas
John Michell,
141 King street
Coventry
Coventry Hi-Fi Cenire
13 Cisy Arcade

Coventry Tape Recorder Services, 33 King William Sireet

Crewe
Charlesworths of Crewe Led
28 Highrown
Darington
McKenna \& Brown Led.,
1/ Bond Gate
Derhy
Bucklands of Derby
11-49 London Road

Doncaster
Tom Jaques Lid..
Sound \& Electronic Engineets,
16 Wood Street

Dorchester
 Suttons,

Hardye A rcade
Edinhurgh
J. B. Fuhton Associates Lid.,

Edinourgh 3
J. J. Mitchel (Cameras) Lid.,

Haymarkei Corner.
Edinburgh /I

Epping
Chew \& Osborne Led.
188 High Street
Furnham
Lloyd of Keyworth Lid.
26/28 Downing St
Glasgow
McCormack Lid.
33 Rath Street
Gcodmayes
Unique Radio Lid...
High Roud

Gravesend

Beanett \& Brown (Gravesend) Lid
$58,60 b \& 60 \mathrm{c}$ Wrotham Road
Grimsty
Lincolnshire instrument $\mathbf{C} \mathrm{a}_{\text {. }}$
Hi-f House.
60.71 Carter
69.71 Cartergate

Gulldford
Merrow Sound LId.,
229 Epsom Road,
Merrow
P. J. Equipments Lid.,

3 Onslow Sireel
High Wyeombe
Hughes Photographic \& Hi-Fi
7 Specialists,
Huddersfield
Hudders
Woods.
The Music Shop,
New Street
Ilford
Nusound,
87-100 Iford Lane

Kettering	Salisbury
Paul Taylor \& Panners Ltd.,	Suttons Music Centre
1 Silver Sireer	blue Boar Row
Leeds Becket1 Film Services Led., Audio Visuat Speciallsts, 46-48 The Heudrow, Leeds LS/ 8EL.	Sherlield
	Sheffield Sound Centre.
	101 Ecelesall Road
	Solihull
	C. H. (Hi-Fidelity) Lid.,
Vallance Audio Lab., 20 New Marker St.	12 Drury Lane
	Southampton
Leicester United Film Service. 13 King Street	Hamilton Electronics (Southampton) Led.,
	35 London Road
	Suttons,
Liverpool Beaver Radio (L'pool) Lid., 20-22 Whitechapel	421 Shirley Road
	South Shields
	Saville's,
Lowestoft	5-7 Keppel Street
Hughes (Lowestoft) Lid., 62 London Road North	Stefford
	Tom Reekie Lid. 10 Bridge Street
Maidstone	
Sloman \& Pettit.	Stockpon
Pudding Lane	W. J. \& M. Baylis Lid., 61/ Gorton Road.
Mansfield	Reddish
Syd Booth, 11 Queen St.	
	Stockton on Tees Bond \& Mason,
Middicebrough	Radio-TV-Hi-Fi-Electrical, 94 Church Road
McKenna \& Brown Led. Linthorpe Road	
	Stoke on Trent Wilsons Radio Lid.
Newcastie	30.32 Liverpool Road
Redlion Square	Sudbury
	The Record Shop.
Newcastie upon-Tyne Turners (Newcastle-upon-Tynd) Ltd., Camera House. Pink Lane	King Sireet
	Sunderitand
	Saxons (Sunderland) Lid.. Photographic Dealers.
Norwleh	20-22 Waterloo Place
Suttons.	Swansen
16-18 Exchange Streer	Holt,
Notidngham	Radio, TV, Hi-Fi, Audio Electronics,
The Audio Centre,	Picton Arcade
28-30 Pelham Streef	Oxford Street
Peter Anson Electronics, 165 Arkwright Street	Teddington
	Daytronics Lid. 119A High Strees
Nottingham Tape Recorders Ltd., 11 Burton Street	Trure Fords (Prop E. J. E. Vivian) 9 Pydar Street
Oxford	
Westwoods,	Wealdstone
46 George Street, Oxford	K. J. Enterprises,
Plymouth	
Alber E. Ford Lid. 84 Cornwall Sirees	Whimslow
	The Hi-Fi \& Tape Recorder Lounge, Green Lane
Portsmouth H. R. Knight Lid. 71 Tangier Road	Woting D. H. Hughes \& Sons Lid. 29 High Street,
Ramsgate	
Tom Joyce, 147 Brimdary Road	Wolverhmpion M. R. Warner \& Son Lid., 26 ChapelAsh
Redcar McKenna \& Brown Lid. 135 High Sircet	
	Bowers \& Wilkins Lid., I Becket Buildings. Litlichampron Road
ReigateAlan Laurenson \& Co..9 Bell Strees	

VALUABIE NEW HANDBOOK Fí EE EMGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsnanship -IIluminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Structural Eng. - Road Eng. - HyEng. - Road Eng. - Hy-
draulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Destgn Sheet Metal Work - Welding Inspection-Draughtsmanship-Inspection-DraughtsmanshipEng.
AUTOMOBLLE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your carning power? A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E., Rour R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., CEN.M.G., CITY A.R.I.C.S. M.R.S.H.. A.M.I.E.D. A.M.I.Mun.E
GEN. CERT. OF EDUCATION, ETC

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

- HOW to get a better paid, mare interesting fob * HOW so qualify for rapid promotian.
* HOW to put same letters after your name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT	$\begin{aligned} & \text { INCLUDING } \\ & \text { TOOLS } \end{aligned}$
sic Practical and Theo	The
tic Courses for begin-	tranics
rs in Radio, T.V., Elec-	NOW
onics, etc. A.M.I.E.R.E.	real laboratory train-
City G Guilds Radio	ing ar home with
rtificate, P.M.G. Cer-	practical equipmen
icate, Practical Ra	
cing, Practical E	
onics, Electronics	
gineering, Autom	

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

to b.i.E.T., 446a aldermaston court,
aldermaston, berkshire.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS..
\qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

The Lilliput Series

ULTRA MINIATURE, INVERTER, WIDE BAND, CARRIER MATCHING, DRIVER AND PULSE TRANSFORMERS, A.F. AND SMOOTHING INDUCTORS

Gardners Lilliput series of Ultra Miniature transformers has been specifically developed for compatibility with other wired-in modules used on printed circuit boards. Exceptional performance has been achieved by a unique form of construction incorporating extremely thin (down to 3.2 microns) high permeability core materials and a very short length of coil turn. Transformers in this new series are particularly suitable for pulse and switching circuits with rise times of 10 nanoseconds or less

GT12A. Describes the Lilliput series of Ultra Miniature transformers and gives useful information and data on their application in transistor converter/inverter, wide band communication and high speed pulse circuits.

The Alpha Series

filters, delay lines, transformers, modulators, high stability INDUCTORS, TUNED CIRCUITS, OSCILLATORS

A range of custom built components from simple or hybrid transformers and modulators to highly complex multi-section filters or complete active networks of exceptional stability hermetically sealed to DEF. 5214 Humidity Class H1.

GT 16. Gives a general description of the Alpha series assemblies and describes their suitabllity for wound components where a high degree of stability is required.

Low Voltage Isolating and Auto Transformers

A comprehensive range of conventional double wound and auto transformers for applications in industry and in the home. Nearly 200 types are available in six different styles and with outputs from 6 volts to 240 volts and from 5VA rating to 2 kilowatts. All types are normally held in stock in reasonable quantities for immediate delivery.

GT 17. Everyone in the electronics indusiry uses low vollage, isolating and auto transformers at some time or other and this booklet describes the complete Gardner range of this type of transformer in a convenient and presentable form.

GARDNERS TRANSFORMERS LIMITED
Christchurch, Hampshire BH23 3PN. Tel. Christchurch 2284
Telex 41276 A. B Gardners Christchurch

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

Hhaltron RADIO VALVES \& TUBES

VALVES FOR:

Radio and Television Manufacturers.
Radio and Television Service Departments. Radio Relay Companies.
Audio Equipment.
Electronic Equipment. Instrumentation.
Computers.
Marine Radar.
Communication Equipment. Research and Development. Government Departments. Aircraft Mllitary and Civil. Ministry of Avlation Approved Inspection. Air Registration Board Approved Inspection.

ERIE Vibration-Proof Tantalum Type T41

Every T41 taritalum capacitor has more than one string to its bow. In addition to the supreme advantages of a solid tantalum construction, the T41 is proof against vibration and acceleration. It also has a moisture-proof nylon cladding in a flat rectangular package form for high component density.

Erie T41 solid tantalum capacitors are RIGHT ON TARGET for performance under arduous conditions.

Eme	
ELEETRONICS	
Luvired	Full details freely available on request from
	Erie Electronics Limited
18	South Denes
18	Great Yarmouth, Norfolk
	hone: 04934911 Telex : 97421

PYE SPANS THE WORLD

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

rely on

 the vital contact

PYE TELECOMMUNICATIONS LTD. Cambridge England Telephone: Cambridge (0223) 61222 Telegrams: Pyetelecom Cambridge Telex: 81166

ANOTHER CLEVER SWITCH BY 프웅

Now IR introdL ces a unique thyristor rated at 80 amperes and offering performance capability as yet unmatchable by any other manufacturer. Now you can toss cut complex firing circuits, get more power output per thyristor and the lowest cost system. The ACE thyristor allows low-amplitude soft firing and has the industry's highest di/dt rating (800 amps per microsec 3 nd), alorg with high-frequency performance to 10 kHz (250 amperes peak at 5 D Hz and 190 amperes peak at 5 kHz) It's rated up to 1440 volts (PTRV), provides $200 \mathrm{~V} / \mu \mathrm{s}$ $\mathrm{dv} / \mathrm{dt}$ and fast turr-off Advance specifications, application reports and devices available from

IR-The Current Slicersnow. International Rectifier, Hurst Green Exted, Surrey. Tel: Oxted 3215.

Comprehensive range for civil and military authorities as well as domestic users in more than 50 countries.

Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEONEK LIMITED

2a WESTBOURNE GROVE MEWS LONDON • W11 • ENGLAND

Not only peautirni, butit:

* Lightweight
* Tropicalised
* Practically unbrea a able
* High level phones
* Carbon or Magnet clevel
* Extremely comforiable
* Simple to service

The Astrolite headset is a unique design which brings together elegant appearance, high performance and reliability. Communicat ons 0 - high fidelity versions available.
For all the other desirable features
write or telephona:-

BERES=DRD AVE UE.WEMBLEY.MIDDLESEX
TELEPHOME J1-902 3991
CRAMS A VD CABLES: AMFLIVOX, WEMBLEY

18-27 JUNE OLYMPIA LONDON
Open 12.30 p.m. 18 June, then 9.30-6.30 daily except Sunday. Admission 10 s .
Sponsored by Britlsh Plastics with the Co.operation of the British Plastics Federation and with Euromap approval.

Model 9R-59DE

BUILT IN MECHANICAL FILTER

8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
- A mechanical filter enabling superb selectivity with ordinary IF transformers.
- Frequency Range: 550 KHz to 30 MHz (4 Bands)
- Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz)
- Selectivity: $\pm 5 \mathrm{KHz}$ at -60 dB ($\pm 1.3 \mathrm{KHz}$ at -6 dB) When
using the Mechanical Filter.
- Dimensions: Width 15", Height 7", Depth 10"

Model SP-5D

- Communications Speaker which has been designed exclusively for use with the 9R-59DE

Model HS-4

- Communications Head Phone

Model JR-500SE

 CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER- Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2 nd oscillator.
- Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
- Hi-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
- Dimensions: Width $13^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$
 TO: B.H. Morris \& CO., (Radio) Ltd. WW
Send me information on TRIO COMMUNICATION
ww RECEIVERS \& name of nearest TRIO retaller.

NAME
AGE
ADDRESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave。 Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: $01-7904824$
 places? And you're held up for meters? Like an 0-5mA calibrated in pulsfrekvens? Or a jonkammarström meter specially calibrated from 10^{-10} to 10^{-4} ? Or a straightforward (but impossible to locatel 100 mA moving-coil job reading simply $0.35 \mathrm{~K} / \mathrm{M} И \mathrm{H} 2$ Relax. No problem at all. Anders are legending most types of meters in all sorts of languages every day of the week-and as often as not calibrating them specially into the bargain. Hand lettering specialists are standing by for the one or two off. Fast, accurate techniques are here for the quantity orders. Ring us. You'll find we are as fast at this sort of thing as we are at supplying standard meters off the shelf.... and, as you know lor should knowl, that's fast.
N.B. The variely of meters in our new catalogue is a revelation-and now we've got extensive new centralised premises for a better-than-ever service.

Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

Anders Electronics Ltd., 48-56 Boyham Place, Bayham Street, London, N.W.1. Telephone: 01-3879092

6 industrial giants, 89 large manufacturers, 392 smaller manufacturers, all three Armed Services, most government departments including 10 Ministries, 23 public corporations, 43 educational authorities and Universities and countless radio and television retailers in 1,162 cities, towns
 and villages in 38 counties.

Pinnacle the largest single valve independent

PINNACLE ELECTRONICS LIMITED achilles street•new cross•London s.e. 14
Telephone: All departments-01-692 7285 Direct orders-01-692 7714

it’s clear to see...

DERRITRON ELECTRONICS LIMITED Instrument division

Sedlescombe Road North, Hastings, Sussex.
Telephone Hastings 51372 Telex 95111

Eimac 250 kW Tetrode 4 CV 250.000 A now ready for Super-Power Transmitters.

The Eimac 4CV 250.000A is a ceramic-metal, vapour-cooled power tetrode intended for use at the 250 to 500 kilowatt output level.
It is recommended for use in class-C,
class-AB linear or push-pull,
and pulse operating modes.
The 4 CV 250.000 A can be used at full ratings for frequencies up to 30 MHz .
For more detailed information on this or other high power tetrodes in the Emac range, including their new $100 \mathrm{~kW}-50 \mathrm{MHz}$ and $50 \mathrm{~kW}-110 \mathrm{MHz}$ tubes, please contact:

Varian Associates Ltd
Russell House / Molesey Road
Walton-on-Thames
Surrey / England
Tel.: Walton-on-Thames 28766

DATABOOK for 1969

Set up to date with the latest Mullard Data Book-just published. It contains details of Curremponents for Radio, picture tubes, semiconductors and. Each section, colour TV, Audio and Hifi applicationsludes comparables and coded for quick reference, equivalents information plus.

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS $-12 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$

Complete the coupon and post today.

| Please send me full details of the OUAD 50 Amplifier |
| :--- | :--- |
| NAME |
| POSITION |
| COMPANY |
| ADDRESS |
| (BLOCK CAPTTALS) |
| ACOUSTICAL MANUFACTURING CO. LTD., |
| HUNTINGDON. Telephone: Huntingdon (O480) 2561/2 |

Cameras a plenty...

but how quickly can you find the right low cost tube?

There is a growing range of closed-circuit equipment available, ranging from the simple black and white camera to sophisticated full-colour facilities. The time inevitably arrives when a replacement vidicon tube is needed quickly This is the service EMI sets out to provide. Our vidicon range provides a type for virtually every camera, where reliability. good resolution and high sensitivity are required Send for the EMI Vidicon replacement chart. Then, when you need a tube, simply, EDTIE EFTHITMIFS contact your distributor or EMI.

EMI ELECTRONICS LTD

prepare for tomorrow's

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems
Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1. Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.

My interest is City and Guilds \square please tick
General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND
ELECTRONICS EXPERIENCE
WW117

Your third hand

PIDAM (Plug-in Digital and Analogue Modules) perform all the usual logic functions, but, unlike other units, can be plugged in, using their B9A bases and can be quickly connected to the required configura-
tion. To help learning, the module covers are easily removable for circuit examination and sets of com. ponents are available.
The 22 modules have an enormous range of use, from a single MONO for a tachometer, to over 300 units in a is extreme simplicity. Design time is cut and laborate breadboards superseded and any reader of "Wireless World" could with PIDAM, build up a low cost system for his own needs. 6 NEW modules -send for free information.

PIDAM PLUG-IN
MODULES-PRICES
Prices range per module from $8 /-$ to $28 /$ - and all necessary accessories are supplied. A complete starting kit is only $\mathbb{C 2 0 1 9 5}$. 6d, (normally $\mathrm{C} 23 \mathrm{12s} .6 \mathrm{~d}$.).

Contil Cases

Contil cases are mass-produced to give lowest prices yet. In 21 -gauge steel. Finished hammer blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, including feet and screws.

R.E.C.M.F. Exhibition
Readers of Wireless World visiting stand No. G. 340 will be presented with a free model Contil instrument case.

CASE PRICES (All supplied with protective coated steel panels)
Nos. denote size in inches

867, 975

1277 white or black panel
1277 unboxed unpainted Zintec
1277 nylon-coated
16127
161275
161275
1910100 desk
Kit of five cases fill 19 s . Od, ineluding postage and packing, normally f 14 1 2 s . Od

PIDAM BROCHURE Send for this complere explanatory detalled examples and circuit diagrams of all modules. Examples and circuits glven include voicealarms, flashers, tachometer, timers, batch counters, etc.

ACCESSORIES
Flexible insulated test prods, colour red or fine steel clips at the cip. opened by button on top. High speed resetting. counter including bezel and socker with speed of over 40 operations per second 165/-. Plug in octal relay, 24 voles, with two changeovers' $17 / 6$.

REED SWITCH The West Hyde reed The West Hyde reed
switch works up to 2,000 operations per second with a life of up to $50,000,000,000$ operations when used in the recommended circuit. The hermetically sealed switch is protected in a brass tube and moulded into a polypropylene placing of the contents in relation to the mount ing screws. 30° nominal leads fitted. Used for Rev. Counters, flowmeters, burglar alarms, under and over speed monitors, etc. I at 14/$9 /$ as $10 / 6$ each, 100 a 9/- each.

'Brightlife' NEONS

25,000 hour average life. PC eype i" diameter, 6^{*} leads with resistor inside. Nine different caps available, $160-260 \mathrm{~V}, 10$ at $2 / 6$ each, 100 at $2 / 2$ each, 1,000 at $1 / 10$ each. 10,000 at $1 / 8$ each. Also available with 30° leads; 110 volt resistor values. PP type $\frac{1}{2}$ " diameter also supplied with 30° leads and 110 volt variants. 10 at $2 / 6$ each, 100 at $2 / 2$ each, 1,000 at $2 /$-each, 10,000 at $1 / 11$ each. Neon/resistor assemblies, 100 at 9 d . each, 10,000 at 7 d . each. Neons only, 100 at 7 d . each, 10,000 at $5 \frac{1}{2} \mathrm{~d}$. each. Neons driven by neon oscillator for 6 to 24 volt input down to 50 mW inpue. Neons driven by transistors with or without alphanumeric caps.

SUB. MINIATURE NEONS

The smallest yet, type

 "Q". Overall diameter言", body $.7{ }^{\text {" }}$, resistor mounced externally, medium intensity. Minimum quantity 10 at $3 / 6$ each, 100 at $3 /$-each, 500 at $2 / 10$ each.WEST HYDE DEVELOPMENTS LTD. 30 HIGH STREET NORTHWOOD MIDDX. Telephone: Northwood 2494I

The I Amp. transformer gives 6,10 , 18 voltage outputs. The TRA also gives TR 0-80-0-80-150. TRB at $37 / 6$ each. TRB at $37 / 6$ each

PLEASE NOTE All products ex. stock for norraal
quantities. Requantities.
tue
turn of post ser turn of post ser-
vice. Minimum order fl. Fully detailed

U.L. APPROVED (Appr. No. 32667)
U.S. MILITARY SPECIFICATION

Stockists: B.P.G. Ltd., Leicester 61460; Edmundsons Electronics Ltd., London, New X 9731; A. C. Farnell Ltd., Leeds 35lll; Gordon Wilson Ltd., Blackburn 59921; G.D.S. Ltd., Bucks. Slough 30211

DISTRIBUTORS FOR EIRE: SOUTHERN ELECTRONICS LTD. CORK 25488

OMRON PRECISION CONTROLS

DIVISION OF I.M.O. PRECISION CONTROLS LTD.
(Dept. W.W.9), 313 Edgware Road, London, W. 2
Tel. 01-723 2231

Astronic

 series 1700A complete range of transistorised plug-in modules and amplifiers

Details on Request from:ASSOCIATED ELECTRONIC ENGINEERS LTD

Latest release in the range of LM Microphones is the most sophisticated design yet. The robust, metal construction with its good back-to-front discrimination is ideal for speech reinforcement systems and recordings. Recommended retail price from $£ 12$ including built-in cable and quick release stand adaptor, depending on impedances.
For details of the LM300 and other superb microphones in the LM range, please ring or write to.
London Microphone Company Ltd
182.4 Campden Hill Road, London W.8. Telephone: 01-727 0711
(24 hour answering service) Telex 23894
WW-039 FOR FURTHER DETAILS
"Q max sheet metal punches FOR QUICK AND CLEAN HOLES

30 SIZES:
ROUND:
$\frac{3}{8}^{\prime \prime}$ to $3^{\prime \prime}$
SQUARE:
$\frac{11}{16}{ }^{\prime \prime}$ and $1^{\prime \prime}$
RECTANGULAR:
$\frac{211^{\prime \prime}}{32^{\prime}} \times \frac{15 \prime \prime}{16}$

Full list on application

- Simple operation
- Quick, clean holes (up to $\mathbf{1 6}$ gauge mild steel)
- Saves time and energy
© Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Obtainable from Radio. Electrical and Tool Dealers, Wholesale and Export Enquiries to:-

WW-040 FOR FURTHER DETAILS

Solartron give you the only fully-automatic LCR bridge with direct read-out to five figures.

No half answers, then knob twiddling or button pressing to get the other half.

We're offering you versatility, as well asspeed.

Automatic ranging covers 18 measurement ranges.

The short reading time applies to all ranges.

You have manual over-ride for component matching, to 0.01%.

3 terminals are provided for in-situ measurement.

There's a comprehensive electrical interface for systems use.

And repetitive sample and high speed trackmode.

You can use this bridge for direct measurement of $\operatorname{Tan} \delta$.

And full accuracy is maintained with adverse power factor.

That's a hell of a job for one LCR bridge to have to do.

But there's still more.
We'll tell you about it if you drop us a line.

So far we've only told you the half.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433 ww-041 FOR FURTHER DETALLS

Your first step to saving on instrumentation costs....

Latest Solid - State High - Impedance Volt - Ohm Milliammeter . . . IM-25

- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{meg} \ldots$ measures from one ohm to 1000 megohms - II current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale - II megohm input impedance on D.C. - 10 megohm input impedance on A.C. - A.C. response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., 50 Hz - Circuit board construction for extra-rugged durability.

```
KIT K/IM-25
                                    Ready-to-use A/IM-25
\(£ 48.10 .0\) p.p. \(10 / 6\) £59.0.0 p.p. \(10 / 6\)
```


Latest Solid-State Volt-Ohm Meter, IM-I6

- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1$ megohm - $11 \mathrm{meg}-$ ohm input on D.C. ranges,! megohm on A.C. ranges • Operates on either built-in battery power or $120 / 240$ volt A.C., 50 Hz - Circuit-board construction.

KIT K/IM-16 Ready-to-ưse A/IM-16
£28.8.0 P.P. $10 / 6$ £35.8.0 P.P. $10 / 6$

FULL SPECIFICATION OF ANY MODEL AVAILABLE ON REQUEST!

Latest Variable Control Regulated High Voltage Power Supply . . . IP-I7

- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to - 100 volts D.C. bias @ 1 milliampere maximum - Features separate panel meters for continuous monltor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament voltage is "on" - Modern circuit board and wiring harness construction - 120/240 volt A.C., 50 Hz operation.
KIT K/IP-I7
Ready-to-use A/IP-17
£37.4.0 P.P. $10 / 6 \quad £ 46.0 .0$ P.P. $10 / 6$

Latest Solid-State, Voltage-Regulated, CurrentLimited Power Supply . . . IP-27

- Zener reference - Improved circuitry is virtually immune to overload due to exotic transients - 0.5 to 50 volts D.C. with better than ± 15 millivolts regulation - Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes - Adjustable current limiter: 30 to 100% on all ranges " Panel meter shows output voltage or current " "Pin-ball" lights, indicate "voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboratory power supply.

KIT K/IP-27 Ready-to-use A/IP-27
£46.12.0 P.P. $10 / 6$
£55.0.0 p.p. $10 / 6$

Many other instruments in range including SERVO CHART RECORDERS. SINE-SQUARE GENERATORS. TRANSISTOR CHECKERS. DECADE R and C BOXES

A welcome awaits you at the Heathkit

shops and showrooms

Retall shops with showrooms and HI-fl demonstration factilites at
The London Heathkit Centre 233, Tottenham Court Rd. London W,I. The Birmingham Heathkit Centre 17-18 St. Martins House, Bull Ring, Birmingham 5.

There is a Showroom with Hi-fi demonstration facilities at the Daystrom factory, Bristol Rd, Gloucester.

Goods may be purchased at the retall shops at prices slightly higher than the advertised mail order price.

Orders may be placed at the retall shops for mall order despatch from the factory at mail order prices.

. . . is to send for the FREE Heathkit Catalogue

3^{n} Portable General-Purpose Service Oscilloscope OS-2
KIT $£ 24.18 .0 \quad$ Ready-to-use $£ 32.18 .0$ P.P. 9/-
Vertical amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 3 MHz . Sensitivity: 100 mV r.m.s. per cm . at I kHz. Input impedance: 3.3 megohm shunted by 20 pF . Horizontal amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 300 kHz . Sonsio tivity: 100 mV r.m.s. per cm . at 1 kHz . Input impedance: 10 megohm shunted by 20 pF . Time base generator: Range 20 Hz to 200 Hz . Automatic lock-in sync; Retrace blanking Voltage calibrator: 1 volt, peak-to-peak, 50 Hz . Controls: Brilliance and on/off switch. Focus, Astigmatism. Time base range switch and Fine Frequency, Vertical and Horizoncal Galn, Vertical and Horizontal Position.

5^{n} Wide-band General-Purpose Oscilloscope 10-12u KIT $£ 36.18 .0$ Ready-to-use $£ 46.16 .0$ P.P. $10 / 6$

Vertical sensitivity: 10 mV r.m.s. per cm at 1 kHz . Frequency response (referred to $\mid \mathrm{kHz}$): $\pm 1 \mathrm{~dB}, 8 \mathrm{~Hz}$ to $2.5 \mathrm{MHz} ; \pm 3 \mathrm{~dB}, 3 \mathrm{c} / \mathrm{s}$ to $4.5 \mathrm{MHz} ;-5 \mathrm{~dB}$ at 5 MHz . Rise time: 0.08 microseconds or less. Input impedance: (at 1 kHz) 2.7 Megohms at XI; 3.3 Megohms at X10 and X100. Horizontal sensitivity: 50 mV r.m.s. per cm at 1 kHz . Frequency response: $\pm 1 \mathrm{~dB}, 1 \mathrm{~Hz}$ to $200 \mathrm{kHz} ; \pm 3 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 400 kHz . Input impedance: 30 Megohms at 1 kHz . Time base generator: Range, 10 Hz to 500 kHz in 5 steps; varlable, plus 2 switch-selected pre-set sweep frequencies range. Synchronising: automatic lock-in circuit.

Portable Solid-State
 Volt-Ohm Meter IM-17
 KIT £13.12.0 P.P. 6/-
 Ready-to-use $£ 18.10 .0$ P.P. 6/-

4 Bllicon Tranalatore Plusi Field Effect Tranalator and 1 sllicon Diode. 11 Megohr Input Impedance on DC. 1 Merohm Input Impedance on AC. 4 DC Voltage Ranges from 1 Voit Full Scale 4 AC Voltinge Rangea from 1.2 Volt Full Bcale to 1000 Volte
 Ranges, 10 Ohms Center Bcale $\times 1$, $\times 100$, $\times 10 \mathrm{k}$. $\times 1 \mathrm{M} \ldots$
Meneures frorn 0.2 ohmn through 1000 megohms. AC Frequency Response $\pm 1 \mathrm{db} 10 \mathrm{~Hz}$ to 1 MHz . $41^{\circ} .200 \mu \mathrm{~A}$ Meter, Fagy-to-Read Bcales. Battery Powered for Portable Operation. Portable case of polypropylene. Test leads are built-in plua a jack for accesaory probes.

General-Purpose RF Signal Generator RF-1u KIT $£ 13.18 .0$ Ready-to-use $£ \mathbf{£} \mathbf{2 0 . 8 . 0}$ P.P. $\mathbf{6 / -}$ Frequency rango covers 100 kHz to 200 MHz in six bands. Band A, 100 kHz to 300 kHz ; Band B, 300 kHz to 1 MHz ; Band C. 1 MHz to 3.1 MHz Band D, 3.1 MHz to 10 MHz ; Band E, $10 \mathrm{MHz}^{2}$ to $30 \mathrm{MHz}_{\text {; Band }}$ F, 30 MHz to 100 MHz Calibrated harmonics: 100 MHz to 200 MHz . Accuracy: 2%. Large accurately calibrated disc scales. Factory wired and aligned coil and band switch assembly. Modulated or unmodulated RF output. Output: Impedance, 75 ohms; Voltage, 100 mV . Modulation: Internal, $400 \mathrm{~Hz} ; 30 \%$ depth; External, approx. 3 V across 50 K ohms for 30%. Audio Output: Approx. 4V. Valve complement: I-I2AT I-ECF8O.
6^{π} Valve Voltmeter, IM-13u
кіт £22.8.0 Ready-to-use $£ 29.10 .0$ P.P. $7 / 6$ Range D.C.: 7 Ranges: $0-1.5,5,15,50,150,500,1500$ volts full scale. Input Resistance: $1 t$ megohms. Sensitivity: $7,333,333$ ohms per volt on $t .5$ volt range. Circuit: Balaneed bridge (push-pull) using twin criode. Accuracy: $\pm 3 \%$ full scale. Range A.C.: 7 R.M.S. Ranges: $0-1.5,5,15,50,150,500,1500$ r.m.s. full scale. Freg. Response (5 v, range): $\pm 1 \mathrm{db} 25 \mathrm{~Hz}$ to 1 MHz . Accuracy: $\pm 5 \%$ full scale. Input Resistance Capacitance: $1 \mathrm{M} \Omega$. Ohmmeter: 7 Ranges: $\times 1, \times 10 \times 100, \times 1,000, \times 10 \mathrm{~K}$, $\times 100 \mathrm{~K}$, \times IMEG. Measures 0.1 ohms to 1000 megohms with internal battery. Meter: $6^{\circ} 200 \mu \mathrm{~A}$ movement.

Portable In-circuit Transistor Tester, IT-18

KIT £15.6.0 P.P. $6 /-$ Ready-to-use £18.16.0 P.p. 6/-

 Bille

FREE!

CATALOGUE

Becurbiet thele and may mare kita

 wask. Fept, Edechtionat, Hamis and
 mateta. Whal craper of wither to

DAYSTROM LTD., Dept. Wwa GLOUCESTER GL2 6EE. Tel. 29451
\square Enclosed is \boldsymbol{f} —_, plus packing and carriags.
Please send model (s)
\square Please send FREE Heathkit Catalogue.
Name
Address
City
Prices and specifications subject to change withour notice.

SHOWROOMS: LONDON: Tottenham Court Road. BIRMINGHAM: St. Martins House, Bull Ring. GLOUCESTER: Bristol Road ww-043 for further detalls

1) $1 \left\lvert\, 1\left[\begin{array}{llllll}4 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right.\right.$

A QuARTER OF \propto MILLION COPIES HAVE BEEN SOLD SINCE 1948

AERIAL HANDBOOK (second edition)
 176 pages, 144 illustrations.

PRICE (semi-stiff cover) 15/- (16/6 post free) Cloth bound 22/6 (24/- post free).

CABINET HANDBOOK

112 pages, 90 illustrations.
PRICE 7/6 (8/6 post free). Semi-stiff cover.

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound. PRICE 25/- (27/- post f́ree).

MUSICAL INSTRUMENTS AND AUDIO 240 pages, 212 illustrations. Cloth bound. PRICE $32 / 6$ ($34 / 6$ post free).

LOUDSPEAKERS

Fifth edition- $\mathbf{3 3 6}$ pages, 230 illustrations.
Cloth bound.
PRICE 25/- (27/- post free).

A TO Z IN AUDIO

224 pages, 160 illustrations. Cloth bound. PRICE $15 / 6$ ($17 /$-post free).

MORE ABOUT LOUDSPEAKERS

136 pages, 112 illustrations.
PRICE 8/6 (9/6 post free). Semi-stiff cover.
PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound. PRICE I8/6 (20/-post free).

AUDIO AND ACOUSTICS

168 pages, 140 illustrations.
PRICE $12 / 6$ ($13 / 6$ post free). Semi-stiff cover.
ABOUT YOUR HEARING
132 pages, 112 illustrations.
PRICE (semi-stiff cover) 15/6 (16/6 post free). Cloth bound 22/6 (24/- post free).
$\therefore-$

ITITRB FROW US.A

Dear Sir,
May 1968
Would you please forward me a list of your books and leaflets presently available. I have had several of your books but friends have failed to return them over the years. I think your books are the finest works on high fidelity available and I would like to add them to my library again.

Thank you very much. Vernon T. Randle, Dallas, Texas.
Extract of letter Irom Mr. Wendell C. Ward of Texzs, U.S.A. September 1968 I have recently read through Mr. Briggs' book " A to Z in Audio" and found it most interesting. It's refreshing to find a man who can write about what could be a dry subject with enthusiasm and humor.

PLEASE SEND BOOK ORDERS DIRECT TO OUR ILKLEY BRANCHBWS 13 WELLS ROAD, ILKLEY, YORKS.

LEAFLETS GIVING A GENERAL OUTLINE OF THE ABOVE

 BOOKS ARE ALSO AVAILABLE POST FREE FROM THE ABOVE ADDRESS.```
Sold by Radia Dealers and Book Shops
Published by:
RANK WHARFEDALE LIMITED, IDLE, BRADFORD,
YORKSHIRE.
Tel. Bradford 6|2552.
```

Accurate and direct measurement of speed without coupling to moving parts

## frhim

## ResonantReedTACHOMETERS

for hand use or permánent mounting. Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive liferature on FRAHM Tachometers and Frequency Meters is freely available from the Sole U.K. distributors:

## ANDERS METER SERVICE

ANOERS ELECTRONICS LTO. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-3879092.

WW-045 FOR FURTHER DETALS


For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joint Miniature Cutters and Pliers including Tip Cutting Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools ask for Catalogue WW/69.

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

## Switch to the biggest single switching source in Britain!



[^0]Whatever your switching needs, Associated futomation can supply them from the biggest cente of switching technolagy in Britain. Under one roof, we produce a comprehensive range of switches and relays for every purpose-proximity and stepping switches, relays for all communication and control purposes, Iron D.C. to R.F., fronı dry circuits to 250 VA. Plus Britain's outstanding apolications engineering service to help you make the

One enquiry on/y-for a/l your relay needs. So-ask Associated Automation!
4. Stepping switches up to 25 ways. 8 banks, homing or non-homing.
5: Hermetically Sealed Relays 5A to 10A switching, 2 and 4 pole, available in a wide range of mounting styles.
6. Telephone/Telegraph Relays a range of low-noise conventional relays, specially designed for telephone/telegraph and dataswitchirg applications.

TO: ASSOCIATED AUTOMATION LTD. A member of the GEC Group of Companies 70 Ducden Hill Lane, London NW10. Telephone : 01-4598070.
Please send me your fully illustrated literature on (tick box applicable) $\square 1 \square 2 \square 3 \square 4 \square 56$ NAME

> COMPANY

MDDRESS
$\qquad$
W.W.

## AUDIO \& DESIGN M9BA TONE ARM



Unmeasurable friction due to my unique 'mercury contacts'. Built-in bias compensation

Let me help you get the best from your cartridge-l've got the (mercury) contacts.
HEIGHT ADJUSTMENT: suitable for turntable of 1.25 to 2.5 inches height with a nominal cartridge depth of 0.625 inches.
TRACKING ERROR: arranged for minimum distortion-maximum effective second harmonic distortion due to tracking error $0.58 \%$ (related to a recorded velocity of $10 \mathrm{~cm} / \mathrm{sec}$.). BIAS : inbuilt magnetic anti-skating device.
EFFECTIVE MASS: Standard Version: less cartridge 9 grams. Altemative Version: less cartridge 11 grams.
MOMENT OF INERTIA: Standard Version: $7 \times 10^{3}$ grams $\mathrm{cm}^{2}$ for nominal cartridge weight of 5 grams.
Alternative Version: $11 \times 10^{3}$ grams $\mathrm{cm}^{2}$ for nominal cartridge weight of 10 grams.
LOW FREQUENCY RESONANCE: Standard Version: $10 \mathrm{c} / \mathrm{s}$ for nominal cartridge weight of 5 grams of compliance $20 \times 10^{-6}$ $\mathrm{cm} / \mathrm{dyne}$.
Alternative Version: $8 \mathrm{c} / \mathrm{s}$ for nominal cattridge weight of 10 grams of compliance $20 \times 10^{-6} \mathrm{~cm} /$ dyne.

Write for further details from U.K. and World-wide marketing agent:-

## KEITH MONKS (AUDIO)LTD

54 ROUNTON ROAD, CHURCH CROOKHAM, NR.ALDERSHOT,HANTS.
Tel: Fleet (02514) 3566


## EEA

## N.C. BRONN LTD.

pacesetters in storage equipment

[^1]
## PRESTON X-MOD 704 VOLTAGE AMPLIFIER

X-MOD 704 is a precision low-level single-ended amplifier with ten calibrated gains selectable from 1 to 1000, and with a ten-turn vernier control for variable gain mode. It has an output capability of 10 volts at 100 milliamps.

Gain accuracy: $\pm 0.01 \%$
Gain bandwidth product of 10 MHz
Noise: $<\mathbf{2} \mu \mathrm{V}$ r.m.s.
Drift: $\left\langle\boldsymbol{1} \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right.$
Max. Frequency: 50 kHz
Input Impedance: > $\mathbf{5 0}$ megohms
Metered Output: $\pm 10 \mathrm{~V}$


## Destined for Higher Service

Morganite Filmet resistors are transcending themselves.
Rising to higher service in the top stability bracket. Proving more than worthy of their exalted position.
But then, the Filmet range was never restricted by the normal limitations of metal film resistors. Temperature coefficients
of 15 p.p.m. $/{ }^{\circ} \mathrm{C}$ don't grow on trees. Nor do selection tolerances as tight as $\pm 0.1 \%$. After passing all the control stages at our factory. Morganite Filmet resistors will stand up to your test routine, too.
Ask us for a quotation, and you'll find that Filmet's top
flight performance is matched by decidedly down-to-earth prices.
If, on the other hand, you're more concerned with 100 p.p.m. $/{ }^{\circ} \mathrm{C}$ TC and $1 \%$ tolerance, Filmet has good news for you, too.
Drop us a line, and we'll tell you more.

## A Armstrong

the high fidelity sound

## A STEREO

 TUNER-AMPLIFIER for the BUDGET SYSTEM

## 127 STEREO TUNER-AMPLIFIER $\mathbf{~ 4 3}$-13-9

OPTIONAL CASE As illustrated
£3-17-0
If you want high fidelity in the highest class don't buy the 127 Tuner-Amplifier ; it isn't meant for you. But if you want a good quality system that is a great deal better than the average radiogram, and your power requirements, as well as your budget, are of modest proportions, then this is meant for you.

The 10 watts power output, 5 from each channel, won't fill a hall, but it is more than adequate for most domestic purposes. The AM-FM Tuner incorporated is doubly attractive because, as well as covering the medium waveband, it has a performance on FM which is good enough to give excellent results on stereo radio once you add the optional M5 stereo radio decoder.
There are of course the usual facilities; pickup and tape inputs, tape recording outputs, bass and treble tone controls.
As we said at the outset, if you are after top-class hi-fi you don't want the 127, what you want is the Armstrong series 400 or series 500 models
For details and technical specifications of all models, plus list of stockists, post coupon or write, mentioning 4WW69.

ARMSTRONG AUDIO LTD., WARLTERS ROAD N. 7 Telephone 01-607 3213
name
address .......................................................................................................

4WW69


## IENM ELECTRONIC ENGINEERS

POWER SUPPLY E.J. $32 \mathbf{£ 1 9 . 1 0 . 0}$
For low voltage high current sources, from 200.250
volt $50-60 \mathrm{~Hz}$. Mains input.
Output voltages $0-18$ D.C. and $0-12$ A.C.. are continuousty variable. Separate scale
and $A . C$.. calibrated at 230 volis input
Maximum current available is 8 amps on or A.C. With A.C. output there is no on D.C. reduction in voltage as current demand increases With D.C. outputs normal regulation exists and there is some voltage reduction.
The ripple content for currents used in most transistor circultry is effectively nil. A graph showing regulation and ripple content is moumted on the side.


The unit and apparatus connected to it are protected
by internal fuses.


## SIGNAL GENERATOR E.A. 30 £23.10.0

A general purpose mains operated solid state frequency generator with a frequency range st less than 1 Hz to 150 KHz in six switched ranges. Maximurn output voltage is 2.2 V r.m.s. into 600 ohms. Protection is by an internal 60 mA luse. On the front are a frequency range switch. ON/OFF output control. sweep frequency control with a large ciear scale. 4 mm output sockets and a three way socket to supply a separate watt amplifier $/$ loud speaker (E.A. 34 below).
The strong and attractive metal case is $9^{-"} \times 6^{-} \times 4^{-1}$

## CURRENT AMPLIFIER E.A. $34 \mathbf{£ 7 . 6 . 0}$



From Claude Lyons - leaders in voltage control for over 30 years - an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.
The Regulac ${ }^{(1)}$ range of hundreds of models includes ganged assemblies for parallel and three-phase operation, dual-output, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.


Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.


## CLAUDE LYONS

Claude Lyons Limited
Hoddesdon. Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Street, Liverpool L3 9PX. 051-227 1761 Telex 62181

## ElCOM sound equipment

Multi-channel sound mixers built from a full range of modules to customer specifications and incorporat-
 ing all facilities required in modern broadcasting, recording, television and film dubbing techniques. Standard designs available for 12,24 and 36 channel desks.

Elcom manufacture a full range of modules including input modules, output units, level amplifiers, equalisation units and p.p.m. units. Write for further information.
(NORTHAMPTON) LIMITED

ELCOM (NORTHAMPTON) LIMITED
WEEDON ROAD INDUSTRIAL ESTATE


NORTHAMPTON Tel.:51873. Cables: Elcom.

WW-056 FOR FURTHER DETAILS

## DIFFERENTIAL DC AMPLIFIERS for use with dc energised transducers



Extremely versatile high performance dc amplifiers with choice of output stage to drive a wide range of indicating, recording and control devices. Also Bridge Supplies and Bridge Balance Units.

5V D E Electronic Laboratories Ltd., Oakham Court, PRESTON PRI3XP Telephone Preston 57560


6 mm tubular midget flange $\mathrm{S} 6 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

## Before we sell you a Shure microphone we try to ruin it

## just to make sure that you never will



Microphones have to be rugged. Think of the punishment they take. That's why Shure Safety Communications Microphones get a tremendous going over before we dream of selling them.

We drop them. We vibrate them. We fry them. We freeze them. We steam them in Turkish baths. We drag them behind fast moving cars. We subject them to all kinds of torture. Sand. Rain. Infra-red. Ultra-violet. Acids. Alcohol. Salt spray. Wind. Electrostatic fields. High altitude

## and still they work



This savage testing, backed by stringent quality control, ensures that every Shure communications microphone will give you reliable performance. And will go on doing so even under conditions where other microphones would pack up. Always use Shure, the microphones that never fail to get the message through.

## Communications

Controlled magnetic hand microphone providing a clear, crisp. highly intelligible voice response. Rugged and dependable. ideal for outdoor-indoor P.A., and communications.
Frequency response 200 to $4,000 \mathrm{cps}$ High impedance. High output. Model 414.

## Amateur Radio

Provides optimum radio communications performance from single sideband transmitters as well as AM and FM units. Response cuts off sharply below 300 cps and above 3.000 cps . ensuring maximum speech intelligibility and audio punch to cut through noise and interference.

For full details of Shure microphones, SEND IN THIS COUPON TODAY



## Listen!



## ENMESOUWT

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches $\times 14$ inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to:


EMI SOUND PRODUCTS LTO.: HAYES, MIDOX. TEL: 01-573.3888 EXT. 667 WW-060 FOR FURTHER DETAILS


Rendar control knobs are designed for fast, precise indication. Made in a variety of styles with wings, skirts, concentric and many other features, they are supplied in a range of materials, colours and finishes (including plated) to suit all needs.

Further information available from:

WW-061 FOR FURTHER DETAILS


Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.
MICRO-SWITCH • TRANSISTORISED . HEAVY-DUTY . A/C LATCHING . 'SPECIALS' MADE TO YOUR OWN DRAWINGS No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY (CONTROLS) LTD.
157 REGENTS PARK ROAD LONDON N.W.1. 01-722 8161



Service calls hit you twice-your profits and your reputation and nothing is more wasteful than service calls that could be saved by better equipment design. You know of the occasion when all a Service Engineer did was turn a volume control up (from off!), and when the complaint was "fuzzy radio" he simply put the tuner back on station (fiddled with!), and the countless dead shorts with nails through speaker cables-or open circuits when plugs mysteriously fall off, or the cable itself gets cut in half.

This new range of sound equipment counters these problems, by careful applications design to give you: 1. Tuner Amplifiers for Radio Distribution systems with switched Tuners (AM,FM, AM/FM) and all engineer controls by internal presets. 2. A range of rock steady crystal controlled Tuners, AM,FM, and AM/FM. 3. A range of fully transistorised P.A. amplifiers (12W, 40W and 100W) with the S.N.S. 'Current-Lok' short and open circuit protection.

## S.N.S. COMMUNICATIONS LTD. <br> 851 RINGWOOD ROAD. WEST HOWE BOURNEMOUTH <br> TELEPHONE: NORTHBOURNE 4845/2663 . TELEGRAMS: FLEXICALL BOURNEMOUTH . TELEX:41224 <br> 

Manufacturers of : Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones, Cabinet and Line Source Loudspeakers, Loud-speaking Intercom Systems, Hotel Radio and Intercom Systems.
HO
A member of The Firth Cleveland Group.

 unit and range of motor boards in teak, walnut, or rosewood. Spring suspension hinged acrylic lid with stainless-steel trim. Write for details to :

## TECHNICAL TRAINING by ICS <br> IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S-trained man. Let I C S train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambttious man the opportunity to acquire, quickly and easily, the specialized craining so essential to success.
Diploma courses in Radio/TV Engineering and Servicing. Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIG SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFIGATE.
- RADIO AMATEUR'S EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while buidding your own 5 -valve receiver, all under expert guidance. Transistor Portable available as separate course.
POST THIS COUPON TODAY and find ous how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics wlll be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.


## METER PROBLEMS?



A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937


## Morganite rolling stock

Ready to roll-MorganiteType S carboncomposition resistors. with a power rating of 0.5 W at $70^{\circ} \mathrm{C}$. If that reminds you of someone else's, you're right. Only. Type S is rather special.
Reliability has a lot to do with its success. Constant on-line checking, backed up by a
staggering 35 million component hours of laboratory testing in a year.
Type S is strong on performance, too. With a standard resistance range of $10 \Omega$ to $10 \mathrm{M} \Omega$ and selection tolerances of $\pm 5 \%, 10 \%$ and $20 \%$. Find out why we'll be
delivering 500 million Type $S$ resistors in 1969.Tryour rolling stock for yourself. Ring us for samples. Hustle them through your tests. Satisfy yourself.

Once you're convinced; ask us about prices. Then we'll really impress you.

## ǨMorgan



GORST ROAD
PARK ROYAL
LONDON, N.W. 10
Telephones:
ELGAR 1411/7
Telex:
London 25589

## 5VE.N.S. Radio Microphones Under £100!

This is the Type Mk III system used in Universities, Churches, Schools and in Television and Film Studios. A reliable system at a reasonable price.


We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. for full details please contact...
J.V.H. ROBINS, Marketing Director,
S.N.S. Communications Ltd.,

851 Ringwood Road,
Bournemouth.
Phone: Northbourne 4845.
A member of The Firth Cleveland Group. AC
WW-069 FOR FURTHER DETAILS

## BUILD THIS MICROPHONE MIXER



Ideal for multi-channel recording on one track, this high-quality five-channel audio mixer combines microphone and high-level signals into a single channel.

## EXTRA eight-page supplement "CONSTRUCTORS GUIDE"

A practical guide to electronics projects for both beginners and more advanced constructors. Plus many more interesting features all inside your April issue

## PRACTICAL



OUT NOW! 3/-


| Type | Dimensions |  | Flux Density Gauss | Pole Dia. In. | $\begin{aligned} & \text { Total } \\ & \text { Flux } \\ & \text { Maxwellis } \end{aligned}$ | Imp. ohms | Handling Capacity Watts | Bass <br> Res. <br> c/s | Frequency Response $\mathrm{c} / \mathrm{s}$ | Weight |  | Price* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth | Dia. |  |  |  |  |  |  |  | Ib. | oz. |  |
| HF. 816 | $4.218^{\prime \prime}$ | $8{ }^{\prime \prime}$ | 16.000 | 1.0 | 63,000 | U | 6 | 63 | 50-15 K | 4 | 8 | ¢8.15.0 |
| HF. 1012 | C413" | $10^{*}$ | 12.000 | 1.0 | 47.400 | U | 10 | 35 | 30-14 K | 4 | 4 | £6.8.0 |
| HF. 1016 | C44 | 10" | 16.000 | 1.0 | 63.000 | U | 10 | 35 | 30-15 K | 5. | 13 | ¢10.4.2 |
| HF. 1016 Major | C54** | 10" | 16.000 | 1.0 | 63.000 | 15 | 10 | 39 | 30-16 K | 6 | 0 | £13.1.11 |
| HF. 1214 | C61 ${ }^{\text {" }}$ | 12" | 14,000 | 1.5 | 106.000 | 15 | 15 | 39 | 25-14K | 9 | 10 | £14.0.7 |
| HF. 1216 | C72゙ ${ }^{\text {a }}$ | 12" | 16.000 | 1.5 | 121.140 | 15 | 15 | 37 | 20-16 K | 13 | 0 | £21.10.3 |
| T. 816 | C4\% | 8" | 16.000 | 1.0 | 63,000 | 15 | 15 | - | 1500-17 K | 4 | 8 | ¢8.6.9 |
| P2. 585 | \#" | 21" | 8.500 | 0.375 | 6.400 | 3 | 0.3 | 330 | 250-9 K | - | 3 | £1.10.6 |

- Includes 10\% P.T. surcharge

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance outstanding. Few speakers can equal, and none can excel the superb reproduction of the high fidelity speakers in the WhiteleyStentorian range.

## WHITELEY ELECTRICAL RADIO CO. LTD.

MANSFIELD • NOTTS • ENGLAND
Telephone: Mansfield 24762
LONDON OFFICE: 109 KINGSWAY. W.C.2. Telephone: 01-405 3074

# CUT PRODUCTION TIMES! - benefit from the Versatilityand Simplicity of our Systemised MODUE RIMK UNITS 

* ATtractive finish AND MODERN STYLING
* EX-STOCK DELIVERYAT COMPETITIVE PRICES
* GREAT VERSATILITY OVER 1.000 COMBINATIONS POSSIBLE
* Suitable for stan. DARD 19" RACK OR CASE MOUNTING
* FOR SPECIAL VARIATIONS CONSULT OUR DESIGN SERVICE


Industrial Estate, Chandlers Ford, Eastleigh, Hants. SOS 32R. Tol: Chandlers ford zez1/6. Telox: 47551 BRANCHES AND AGENTS TMROUCHOUT THE WORLD

## M. R. SUPPLIES, LTD., (Established 1935)

Unlvemally recognined an suppliers of UP-TO-DATE MATERCAL, which doea the Job properly.
Inntant delivery. Bintisfaction ansured. Pricea nett. Inntant delivery. Bitisfaction aveured. Pricea nett.
FAN FLOW EXTRACTOR PANS. Undoubtediy today'a greated bargain for domemtic or industral use. For $200 / 250$ volta A.C. $7,500 \mathrm{cu}$. It. per hour. Easily inchalled, itted weatherproof lonvrea
which open when motor is switehed on and close when ofic Only 6 in. dia. Our nett price which open when motor is
only $\mathrm{E} / 5 / 5 / 0$. (despetch $5 /-$ ).
MINIATURE RUNMING TIME METERS (Rangamo). We have great demanda for this remariable
 tindustrial and dornentic applicatione to indicate the running time of any electrical apparatus, easy to install, 63/- (des. 1/6).
SYACBRONOUS TIME SWITCEES. (Another one of our popular specialitlea) 200/240 ₹. 50 c ., for
 pactly housed 4 in . dia., 3 i in . deep, $86 / 4 / 6$ (dias. $4 / 6$ ). Also mine excellent make new dotaestio
 duty an above (less day-omiting), $\mathbf{E A / 1 4 / 0}$ (des. ग/b). Full tustructiona with each.

 SMALL GEARED MOTORS. In addition to our well-kown rabe (Lat GM.56s), we ofter amall open type 8.P. Unita Ouly $69 / 6$ (des. $3 /-$ ).
MINIATURE COOLING FANS. 200/250 F. A.C. With open typy induetion motor (no interference),





SYNOHRONOUS ELECTRIC CLOCK MOVEMEKTS (an mentioned and recommended in many nstionad Journals). $200 / 260$ vis 50 C . Self-starting. Fitted eplrilles for hourn, minutes and central
有 set.
SYNCRRONOUS TMER MOTORS (Sangamo). $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{a}$. Self-atarting 2 in . dian $\times 11 \mathrm{in}$.
 (des. 1/6).
SMALL BENCH GRINDERS. 200/250 \%. A.C./D.C. With tino Sin. dimmeter wheelis (coarse and bine surfacea). Bench mount. very useful honsehold or induatrial uadte. $\varepsilon 7 / 1 \% / 6$ (des. $6 /-\mathrm{s}$. EXTRACTOR FANS. Ring mounted s.l metal conatruetion. T/E induction motor, ailent opera-
tion, 8 in . blade, 10 in . max. dia., $400 \mathrm{CFM}, 85 / 15 /=$ (des. $\mathrm{B} / \cdot \mathrm{o}$. Same model 10 in . blade, 12 in .

IMMEDUATE DELIVERY of Stuart Centrifaga! Pumpi, incleding stainleas steel' (most models).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)


MODEL 8 MK. II


REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

## LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.


Type S-3 SAMPLING PROBE HEAD
The new Type S-3 Sampling Probe Head has a 350 -ps risetime and an input impedance of $100 \mathrm{k} \Omega$. paralleled by 2.3 pF . The Type S-3 is designed to measure high impedance signal sources and is easy to use when probing into miniature circuits. £187 plus £30.8s. duty

Type S-4 25-ps RISETIME
The new Type S-4 Sampling Head features a $25-\mathrm{ps}$ risetime, DC-to-14 GHz bandwidth, and a $50-\Omega$ input impedance. This step-ahead measurement capability gives increased detail and resolution when making fast pulse measurements.
£377 plus $£ 61.6 \mathrm{~s}$. duty

Type S-5025-psPULSE GENERATOR
The new Type S-50 Pulse Generator Head has a $25-\mathrm{ps}$ risetime, +400 mV amplitude and a pulse duration of 100 ns . The Type S-50 and Type S-4 feature high resolution, $35-\mathrm{ps}$ TDR measurements.
$£ 225$ plus $£ 36.13$ s. duty

Type S-51 18-GHz TRIGGERING
The new Type S-51, 1-to-18 GHz Trigger Countdown Head provides stable oscilloscope triggering to 18 GHz and displays to 14 GHz and above with the Type S-4 Sampling Head.
£214 plus £34.15s. duty

## Tektronix U.K. Ltd.

Beaverton House • P.O. Box 69 Harfenden . Hertfordshire Telephone: Harpenden 61251 Telex 25559

## See us at the

 INTERNATIONAL LONDON ELECTRONIG COMPONENT SHOW STAND No. 6118
## Faithful Reproduction



## with the

## Grampian TC12 Ioudspeaker

The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The loudspeaker is built of high quality materials to a rigid specification and is eminently suitable for good quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now.

Design for suitable cabinet available.

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifieks.

## Grampian sound EQUIPMENT

Send for leaflet giving full details
GRAMPIAN REPRODUCERS LTD
Hanworth Trading Estate, Feltham, Middlesex Tel: $01-8949141 / 3$ Cables REAMP. FELTHAM

## HOWELIS RADIO LTD. <br> MINISTRY OF AVIATION IMSPECTION APPROVED

## TRANSFORMERS

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION.
$0-50 \mathrm{KVA}$, "C"" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966)
$\begin{array}{llll}\text { Driver } & 22 / 6 & \text { Carr, } & 2 /- \\ \text { Mains } & 29 / 6 & \text { Carr, } & 4 / 6\end{array}$
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.
*MAINS TRANSFORMERS
$350-0-350$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 A. £1/15/-. Carr. $4 / 6$.
500 v. $300 \mathrm{~mA}, 6.3$ v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
$500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A.
£4/10/6. Carr. 6/6.
$525-0-525$ v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-. Carr. 6/6.

## *LOW VOLTAGE

30-0-30 v. 4 A. £2/12/6. Carr. 5/6.
28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 30 v. 250 m A., £4/5/6. Carr. 5/6.
*PRIMARIES 10-0-200-220-240 v.
70V LINE MATCHING TRANSFORMERS
Fitted with terminal panel, taps at $0.5,2,4$ and 8 W into 15 ohms 17/-. Carr. 2/-
Flying leads, taps at $1, \frac{1}{2}, 1,2$ and 4W into 3 ohms 14/6d. Carr. 2/-
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY

## CASH WITH ORDERS PLEASE

Cariton Street, Manchester 14, Lancashire TEL. (STD 061) 226-3411

WW-077 FOR FURTHER DETAILS

## TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT



Codes: Int. No. 2 Mercury/Pegasu, Mlliot 808,
2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT


TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; I ine Transformers and Equipment, Eine Transformers and Noise Suppressors, Racks and Conoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

## W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts. Tel.: Tring 3476 (3 lines) Cables: RaHno TRING STD: 044282 TELEX 82362



The widest ranging and most comprehensive valve catalogue available from any independent supplier.
PINNACLE ELECTRONICS LTD achlles Street - hew cross - lohdon s.e. 14
Telephone: All Departments—01-692 7285 Direct orders—01-692 7714



## is a dead one of these



## Morganite killed it

The deceased would have become one of Morganite's Cermet Trimming Potentiometers - one, in fact, of the popular type 80 with a power rating of 0.75 W at $70^{\circ} \mathrm{C}$.
But it never made it. The crunch came when we examined all its tiny component parts at 500 times life size. That's quite a test. Imagine, for instance, the imperfections
you might find in a 40 yard cigarette. So it's not surprising that every once in a while we detect a spanner in the ointment. And the penalty is death. The survivors are the most reliable trimming potentiometers you can find - and finding them couldn't be easier. Samples for evaluation or for development projects are waiting in stock, ready for your 'phone call.

We are the only British company which offers ohmic values from 10 ohms to 1 M ohms in the E6 range as well as the MIL-R:22097C series.
Put our Cermet trimming potentiometers through your test routine and watch how they stand up to it. Any that couldn't are long since dead.

## MORGANITE RESISTORS LIMITED

Bede Industrial Estate, Jarrow, County Durham
Telephone: Jarrow 897771

## Morgan

## Clatoursiss MODEL 15

## MICRO

SOLDERING
INSTRUMENT


## - EXTREME VERSATILITY

Range of 8 interchangeable bits, from $\frac{3}{6} \mathrm{in}$. (.047in.) to $\frac{3}{16} \mathrm{in}$., including new non-wearing PERMATIPS.

## - ULTRA-SMALL SIZE

Length $7 \frac{1}{8} \mathrm{in}$. Weight $\frac{1}{2}$ oz. Max. handle dia. $\frac{7}{16} \mathrm{in}$.

- EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts-equals normal 30/40. watt iron.

## - ALL VOLTAGES

The ADAMIN range includes five other models ( $5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue $A / 5$.

## LIGHT SOLDERNG DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Tol: 01-688 8589 \& 4559

SPECIALIST SWITCHES

## are again giving

 the fastest switch service in the worldFROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3, CHARD, SOMERSET

Write for design charts and prices or TELEPHONE-CHARD 3439

WW-084 FOR FURTHER DETAILS
TYPE BI2/2005
Input: $12 v-10+25 \%$.
Output: $115-230 \mathrm{v} \pm 10 \% .50 \pm \frac{\mathrm{Hz}}{}$.
PRICE 667.12 .0
OTHER SINEWAVE UNITS ranging from 30w up to 200 w are available from 12-24-50-110v D.C. input, prices El 18.0 .0 up to $\$ 75.0 .0$.
THE "S" RANGE have been speclally designed for operating frequency and waveform sensitive equipment such as video tape recorders, Hi-Fi amplifiers, precision instruments, etc.
FREQUENCY STABILITY ( $\pm \frac{1}{t} \mathrm{~Hz}$ ) with low distortion and good voltage regulation by the ferro-resonant method
WE SHALL BE HAPPY TO DISCUSS YOUR POWER CONVERSION PROBLEM:
CALL, WRITE, OR TEL. 01.8904837
EXPORT ENQUiRiES INVITED:-Demandes concernant lexportation solicités-Se invitan consultas sobre exportación -Exportanfragen erbeten.
VALRADIO LIMITED, Dept. C22 BROWELLS LANE • FELTHAM • MIDDLESEX • ENGLAND Tel: 01-890 4242
WN二~WN $\qquad$ w $\qquad$

## 10 mulimeters

These instruments have 54 dc ranges covering the measurement of voltage from $0.3 \mu \mathrm{~V}$ to 1 kV . current from 1 pA to 1 mA , and resistance from $0.3 \Omega$ to $1 \mathrm{kM} \Omega$. Left zero and centre zero scales are provided and a recorder output exists on all ranges.
Features are high input impedance on voltage ranges, low test voltage on linear resistance ranges, and large overload rating. The instruments are solid state powered by a self-contained battery. Lcw power consumption results in negligible warm-up drift.

Voltage Ranges:
$3 \mu \mathrm{~N}, 10 \mu \mathrm{~N}, 30 \mu \mathrm{~N} . . .1 \mathrm{kV}$. Accuracy $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~N}$ Noise $<0.5 \mu \mathrm{~N}$ p-p on the $3 \mu \mathrm{~N}$ range for source resist, up to $30 \mathrm{k} \Omega$. Drift $<0.7 \mu \mathrm{~N} / \mathrm{C}$ and $<0.3 \mu \mathrm{~N} /$ hour after warm-up of 2 mins. Input resist. $>1 \mathrm{M} \Omega \mu \mathrm{N}$ up to 10 mV . $>10 \mathrm{kM} \Omega$ from 30 mV to $1 \mathrm{~V}, 100 \mathrm{M} \Omega$ above 1 V . Rise time on $3 \mu \mathrm{~N}, 10 \mu \mathrm{~N}, 30 \mu \mathrm{~N}, 100 \mu \mathrm{~N}$ to 1 kV is $10 \mathrm{~s}, 3 \mathrm{~s}, 1 \mathrm{~s}$. $<1$ s.

## Current Ranges:

$3 p A .10 p A, 30 p A \ldots 1 \mathrm{~mA}$. Accuracy $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0.3 p A$. Noise $<0.7 p A p-p$ on the $3 p A$ range. Drift $<1 p A{ }^{\circ} \mathrm{C}$ and $<0.5 p A$ hour after warm-up of 2 mins. Input resistance $1 \mathrm{M} \Omega$ up to $1 \mathrm{nA}, 100 \mathrm{k} \Omega$ from $3 n A$ to $1 u A, 100 \Omega$, from $3 u A$ to 1 mA . Rise time on 3pA, 10pA, 30pA, 100 pA to 1 mA is $15 \mathrm{~s}, 5 \mathrm{~s}, 1.5 \mathrm{~s},<1 \mathrm{~s}$.

## Resistance Ranges:

$3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$. Accuracy $\pm 1 \% \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$ rising to $\pm 10 \%$ at $1 \mathrm{kM} \Omega$. Test voltage is 3 mV at f.s.d. on $\Omega$ ranges. Test currents are $1 \mu \mathrm{~A}$ and 1 nA on $k \Omega$ and $M \Omega$ ranges.

## Recorder output:

0 to +1 V at f.s.d. into not less than $1 \mathrm{k} \Omega$ on left zero ranges. -0.5 V to +0.5 V into not less than $5 \mathrm{k} \Omega$ on centre zero ranges.

## Max. Overload:

2 kV peak on V ranges. 350 V peak on mV , $\mu \mathrm{V}$, and pA ranges. 50 mA peak on $\mu \mathrm{A}$ ranges. 2 mA peak on nA ranges.

## Power Supply:

One type PP9 battery, life 1000 hours: or ac mains when a Levell Power Unit is fitted.

## Sizes \& Weights:

TM9A: $5^{\prime \prime} \times 7 \frac{1}{4}{ }^{\prime \prime} \times 4 \frac{1_{2}^{\prime \prime}}{} 4 \frac{1}{2} \mathrm{lbs}$. Meter scale length $3 \frac{1}{4}^{\prime \prime}$.
TM9B: $7^{\prime \prime} \times 10 \frac{1}{4}{ }^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} 8 \mathrm{lbs}$. Meter scale length $5^{\prime \prime}$, fitted with mirror.

LEVELL ELECTRONICS LTD.
PARK ROAD, HIGH BARNET, HERTS., ENGLAND Telephone: 01-4495028
Get where theaction is

Be among
experiencing the Decca

# 10Megohms inputi impedance [holhaCE IC] 

## 15CC Ranges


... that's the M1 Voltmeter from Linstead, one of a range of precision instruments of very high quality, equal to others costing many pounds more. Design is attractive, clear and simple to read, yet stands up to the knocks should the occasion arise.
Here's a brief specification but write to us and we will send you our illustrated leaflet giving full details.
15 AC ranges, 1 mV to 500 V - Frequency 10 Hz to 100 kHz 3 DC ranges, 0 to 400 v - Input impedance 10 megohms.


## M1 VOLTMETER $£ 26$.

## LINSTEAD ELECTRONICS

35. Newington Green, London, N. 16 Telephone: 01-254 4825.

## This high-performance counter costs $£ 260$...



## both with built-in memory!

The new Marconi Counter $/$ Timers represent the ideal combination - low cost coupled with exceptional performance.
The TF 2414 counter timer includes a memory at the
 of measuring facilities normally found only in more expensive counters.
The display memory makes for easier reading and increases the number of readings able to be taken at any given time.
The TF 2415 is priced at $£ 39$. It offers all the advantages of the TF 2414, but with the important additional facility of individual selection of start 'and 'stop' slope and trigger level, when used for time interval measure-
ment. It also performs multiperiod sampling and frequency ratio. Counting rates are at least:
TF $2414,12.5 \mathrm{MHz}$; TF $2415,20 \mathrm{MHz}$.
Both instruments are single-channel 6-digit visual readout counter timers designed to perform these basic functions: Frequency measurement - Waveform measurement $\cdot$ Time interval measurement $\cdot$ Totalizing counting

Send for full technical information.


Getting the right people to hear, wherever they may be on (or off) the premises, is efficient communication-essential to successful management.
Rediffusion can collect these ears for you, with a tailor-made audio installation designed to meet your exact requirementspocket paging, inter-communication, telephones, public address, radio, tape-music amplification, fire alarm and time control system.
Rediffusion can give you extra eyes too-for visual control of dispersed production processes, security-risk areas, traffic documentation and data relay-with an efficient and economical closed circuit TV system, made to measure.
Rediffusion provide complete electronic communication systems throughout commerce, industry and education-including maintenance for systems on a rental basis.


## couctr bournans com REDIFFUSION INDUSTRIAL SERVICES LTD



ASTRONAUT HOUSE HOUNSLOW ROAD FELTHAM MIDDLESEX. TEL: 01.8906325


Now-for the first time a
TURNTABLE KIT


Now available to you is the world famous BD. 1 TURNTABLE in Kit Form for only $£ 11135 \mathrm{~d}$. including p.t. The design is simplicity itself and the Turntable can be assembled by any person using the special spanner provided, a pair of pliers and a screwdriver.
This is a silent 2 -speed Belt Drive turntable with a performance that will meet the requirements of the discerning enthusiast.

Fullest details on request to:
A. R. SUGDEN \& CO (Engineers) LTD.

Market Place, Brighouse, Yorkshire.
Tel:2142

# Has red tape been complicating your procurement of electronic components from the U.S.A.? 



Procurement of

## Let us help you cut through it!

American-made elec.
tronic components used to be thought of as a complex, time consuming procedure with a myriad of red tape details and problems. Not anymcre - now you can join the growing list of companies that rely on the technical skills and services of Milo International, world-wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency Irom start to finish - immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export packaging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

For whatever you may need in electronic components from the U.S.A., Milo International can satisfy your requirements with prompt delivery, at direct factory prices, from a huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:

| Amperex | Elmac | R.C.A. |
| :--- | :--- | :--- |
| Amphenol | Electrons, Inc. | Raytheon |
| Arrow-Hart \& | Erie | Simpson |
| Hegeman | General Electric | Sola |
| Bourns | Hardwlck Hindle | Solitron |
| Burgess | Hickok | Sprague |
| Cannon | I.T.T. | Stancor |
| Centralab | J.F.D. | Superior |
| Cinch-Jones | Kings | Sylvania |
| Clarostat | Littelfuse | Texas Instruments |
| Cornell-Dubliler | Mallory | Transitron |
| Corning | Oak | United Transformer |
| Dale Electronics | Ohmite-Allen Bradisy | Vector |
| Delco Radio | Potter \& Brumfield | Xcelite |

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

## I LO International

World-Wide Electronic Component Suppliers
325 Hudson St., New York, N.Y. 10013/Tel 212-924-5000/ Cable MILOLECTRO, N. Y./ Int'l. Telex 62528 or 620715

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

## Simple versatile exciting to use



A No. 4 SET and 6-TRANSISTOR SUPERHET
Clear, simple and rugged this unique system can build almost any electronic circuit. It is used by two thousand academic and industrial teaching establishments throughout the U.K. and by hundreds on the Continent and world-wide. Selected by the Council of Industrial design for all British Design Centres.

## RADIO SETS NOS. 1 to 4.

Provide a continuous course from simple diode detector through audio amplifiers to 6-transistor Superhet.

## ELECTRRONICS SET: (4 STUDENTS)

For practical study, demonstration or experiment over a wide range of the basic electronic circuits.


THEORETICAL CIRCUIT


PRACTICAL LAYOUT

E/I06 V.L.F. OSCILLATDR FDR METER DEMONSTRATION OF A.C. PRINCIPALS

| RADIO SETS | No. 1 | £7 | 10 | 0 | POST FREE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. 2 | £9 | 0 | 0 |  |
|  | No. 3 | £13 | 10 | 0 |  |
|  | No. 4 | £18 | 10 | 0 |  |
| Elect | Set | £19 | 7 | 0 |  |

## FULL DETAILS FROM

RADIONIC PRODUCTS LTD., (wwal)
ST. LAWRENCE HOUSE, 29/31 BROAD ST., BRISTOL BS 12 HF

## YOU WANT PARTS <br> -almost immediately!

 URGENTLY
## So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072


WW-095 FOR FURTHER DETAILS

## TINSLEY SENSITIVE D.C. NULL DETECTORS

## RESLOSOUND microphones

Precision engineered give the sensitive acoustical performance required today


Cardioid Pencil Dynamic Microphone improved version of the well known Reslo CPD microphone. Most suitable for:
High Quality Music Recording.
General Sound Reinforcement.
Loud close singing or speaking if used with an amplifier incorporating reasonable bass cut.
Frequency response is smooth over the range $70 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$
Rear response better than 20 dB below the front from $100 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{kc} / \mathrm{s}$ and over 14 dB from $1 \mathrm{Kc} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$ dropping to 30 dB at upper presence frequencies.
Impedance values: CPD 2/L-30/50 ohms or 600 ohms.
Supplied with 18 of dual Impedance cable £17.15.0.
CPD 2/M-200 to 300 ohms. £17.10.0.
CPD 2/H-30/50 ohms or $\mathrm{HI}-\mathrm{Z}$.
f17.15.0.

## floor stands

## UD1

An improved unidirectional (super cardioid) high output hand or stand microphone incorporating an internal antipop filter supplied in an tack pop filter. Supplied in a black presentation case with 18 ft . of directly connected screened cable. Available in low. medium and high impedance

Recommended Retail Price:
UD 1/L (50 or 600 ohms)
£1910s. Od
UDI/M (200-300 ohms)
$£ 19$ Ss Od
UD1/H (High impedance only)
f1910s Od

## MS111

Lightweight microphone floor stand with folding legs. Adjustable from 3 ft . 7 in . to 5 ft . folding legs. Adjustable from 3 ft . 7 in . to 5 ft .
weight $4 \frac{1}{2} \mathrm{lb}$. Feet spacing 18 in . Folded ling th $37 \frac{1}{2}$ in. Finish: Legs and outer tube matt black. inner tube satin silver- $£ 72 \mathrm{~s} \mathrm{Od}$


Type MS 175 Boom attachment-¢7 14s bd


- In addition to their World famous series of bidirectional and cardioid Ribbon Microphone Reslo manufacture a complete range of public address amplifiers and loudspeakers-line source and reflex horns.
Write or telephone for fullest particulars

RESLOSOUND LIMITED
sprig gardens, london road, romford, essex
Tel. : Romford 61926 (3 lines) Telex 25356

## Fuirchild 7050 $3 \frac{1}{2}$ digit multimeter Immediate delivery from GDS

Fairchild's 7050 digital multimeter has been designed for sheer simplicity of use, combined with a high degree of accuracy, $\pm 0 \cdot 1 \%$ ( $\pm$ I digit). Dual Slope integration technique gives automatic zeroing and eliminates the need to continually check for zero drift.

Making full use of Fairchild Semiconductor integrated circuits, the 7050 is small, $3 \frac{1}{4} \times 6 t \times 7 \frac{1}{4}$ inches and weighs only 4 lbs. A hold facility is designed-in and displays are non-blinking. A tilt stand and current shunts are available as options.

Price $£ 199$


Full data from sole UK distributors
 GDS Sales Limited, Michaelmas House,

EAIRCHILI Salt Hill, Bath Road, STRUMENTATION Slough, Bucks.
Tel: Slough 30211
Telex: 84314 Chamcom Slough GDS


# Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics. 

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers. starts on 16th April 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. wws), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

## Celestion PA

## Loudspeakers for all Public Address Systems



## Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome.

## Driver Units

Pressure type units are available with or without tapped 100 V line trans. formers. The following 'built-in' features are on all models - High Sensitivity, Weatherproof. Phase Equalising Throat and Self-centring Diaphragm Assembly


## Re-entrant

Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

## Loudspeaker

 in Glass FibreThe Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks. chemical plants, plating shops, etc, where protection from the weather
 or corrosive atmosphere is vital.

Rola Celestion Ltd.<br>THAMES DITTON, SURREY TELEPHONE 01-398 3402 TELEX 266135



PHILIPS
Every aspect of microphone manufacture is covered by the makers of ten million of them-Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there's one in ten million for you. Please ask for full information.

PHILIPS SOUND Addlestone Road, Weybridge

## How do we intend to sell cynical old you our public address equipment?

## By offering you the three things you really want.

## 1. Low Price (like column speakers from £17.6.4.)

2. Durability (we back our muscles with a two-year guaranfee.)
3. Quality specifications (Check ours).

The Radon Public Address Range is wide and growing. It consists of amplifiers, speakers and microphone equipment. We show the M50/6 sixchannel amplifier. Specifications below.
 output: 50 watts r.m.s. (max. 64 wats) Output impedance and valtage: 15 .
ohms (other taps available). 156 ohms ohms (other taps available), 156 ohms
C.T. giving $50-0-50$ volts or 100 volts. Harmanic distortion: Approx $1 \%$ at full power. Frequency respanse: plus or minus $2 \mathrm{~dB} 20 \mathrm{c} / \mathrm{s}(\mathrm{Hz})$ to $35 \mathrm{Kc} / \mathrm{s}(\mathrm{KHz})$. Weight 38 lb . Models available: M50/4, M50/6. M50/8 (suffix refers to channels)

In addition. the M/100, M/250, M/500 and $M / 1000$ are built to order. The suffix number refers to the wattage and preamplifying facilities are vailable as required

Radon / A growing name in amplifiers, wall speakers, sound columns, complete audio and hi-fi equipment, tuners \& industrial electronics.

Our Public Address brochure gives the facts.
It's a useful thing to have around.
TO: The Radon Industrial Electronics Co. Ltd.,
Brooklands Trading Estate, Worthing, Sussex. Tel, Worthing 1063
Please send me a brochure:
Name
Address

## reliability

## DERRITRON ELECTRONICS LIMITED

Sedlescombe Road North, Hastings, Sussex. Tel: Hastings 51372 Telex: 95111

- low distortion over wide frequency range
- open and short circuit proof
built in, oscillator

WW-103 FOR FURTHER DETAILS



Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers:
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting

performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder . . . 4 seconds and the job's done.
LOW INITIAL COST. The range of Marksman Irons25, 40, 80, 120 \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

## THE DOLBY A301 AUDIO NOISE REDUGTION SYSTEM



Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10-15 dB reduction of hiss. These improvements, of breakthrough magnitude, are valid at any time-even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

A301 features: Easy, plug-in installation solid state circuitry . modular, printed circuit construction . hlgh reliability, hands-off operation. Performance parameters such as distortion, frequency response, transient response, and noise level meet highest quality professional standards.

New
A301 price: $£ 560$ f.o.b. London $\$ 1495$ f.o.b. New York

346 Clapham Road London S.W. 9 01-720 1111 Cables: Dolbylabs London

333 Avenue of the Americas • New York • N.Y. 10014 (212) 243-2525. . Cables: Dolbylabs New York



First, measure it - on the Rank Studio Flutter Meter. The Type 1740 measures accurately the degree of Wow and Flutter on sound recorders and reproducers.

For more information write to:
\& RANK EQUIPMENT
Woodger Road,
Shepherds Bush;
London, W. 12.
Tel. 01-743 2050

WW-107 FOR FURTHER DETAIS

## 100 WATTS AT LESS THAN 10/- EACH

THE NEW BRADMATIC TYPE
SSP2 SDLID STATE 100 WATT AMPLIFIER. A COMPACT, RDBUST UNIT FULLY PROTECTED against input and output OVERLOAD CONDITIONS. UNCONDITIONAL STABILITY WITH EXTREMELY LOW SELF generated noise.


## SPECIFICATION

Output
Total Harmonic Distortion
Frequency range
Signal-to-noise Ratio
(Unweighted)
Input Sensitivity
Operating voltage
Power Consumption
Ambient temperature range
Weight
100 watts R.M.S. into 4 ohms
Less than 1\%
20 Hz to $20 \mathrm{~K} . \mathrm{Hz}$ with 1 dB
: -86 dB below 100 watts
250 M.V. into 10 K . ohms
220-250 v. or 105-120 v. 50-60 cycles
150 V.A. at maximum output
: -10 to $+62^{\circ} \mathrm{C}$.
: 17 lbs
$\therefore 12^{\prime \prime}$ long $\times 4^{\prime \prime}$ deep $\times 6 \frac{1^{\prime \prime}}{}$ high

Positive or negative 32 volts at 100 M.A. unsmoothed feed is available via terminal strip. Should SSP2 amplifier be driven continuously in short-circuit output condition, an output fuse is fitted for complete protection.

A Peter Levesley Design
RETAIL PRICE: E45.0.0d (Packing \& carriage extra) Trade Enquiries Invitad

## BRADMATIC LIMITED

338, Aldridge Road, Streetly, Sutton Coldfield, Warks. Telephone: 021-353 3171

## Ferrograph F. 307 a new stereo amplifier



## the quality companion for the Ferrograph Series 7 tape recorders and any good Hi-Fi system

Ferrograph's Stereo Amplifier Type F307 was developed alongside the Ferrograph New Generation Series 7 Tape Recorders, to the same standards of quality and reliability. It is an integrated stereo amplifier with a unique combination of facilities, compatible with all Ferrograph Series 7 and with other top-quality recorders and Hi - Fi systems.

Features include : independent adjustment of each channel for tone and gain ; high power output ; frequency response 15 Hz to $30 \mathrm{kHz} \pm 1 / 3 \mathrm{~dB}$; minimal distortion, hum and noise; choice of four inputs.

See and hear this new instrument at your local Ferrograph stockist or use the coupon on page for details and name of nearest Ferrograph specialist.

## FERROGRAPH

The Ferrograph CoLtd
Mercury House, 195 Knightsbridge, London SW7
Telephone: 01-589 4485
WW-109 FOR FURTHER DETALS

## 16 los of high quality performance for only £55

The S51B is the answer for a low cost, easy to use single-beam oscilloscope.

Here are some of the reasons why:

- Small size-light weight $8^{\prime \prime} \times 7^{\mu} \times 15^{\prime \prime} .16 \mathrm{lb}$.

■ 5" flat-faced P.D.A. tube.

- Bandwidth DC-3MHz.
- Auto sync and trigger level control.
- Proven performance of over 20,000 S51's in use throughout the world
- Send for full specification now !!!



## Telequipment



# Wireless World 

Electronics, Television, Radio, Audio

Fifty-ninth year of publication


The front cover showing the W.W. Colour Receiver in operation symbolizes this month's instalment which deals with colour decoding.
I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

April 1969
Volume 75 Number 1402

## Contents

Balance of trade
Our Ads

Conferences \& Exhibitions

Books Received
News of the Month

Announcements
C. Driscoll
by P. Williams

Letters to the Editor

Hot-carrier Effect Transistor
Personalities
Circuit Ideas
New Products
World of Amateur Radio

April Meetings
Literature Received
H.F. Predictions

Simple Class A Amplifier by 7. L. Linsley Hood

Operational Amplifiers-3 by G. B. Clayton

1 Wireless World Colour Television Receiver-11
Wideband Linear Amplifier by R. Hirst

Acoustic Absorption Materials by 7. C. G. Gilbert and R.

Improving the Sound Quality of Pocket-radio Receivers

6 Apparent Wind-direction Indicator by M. I. Pope
Dinsdale Amplifier Mod. by 7. Dinsdale

Surface Temperature Thermometer by L. Nelson-fones

Test Your Knowledge questions and answers by L. Ibbotson

C I.P.C. Business Press Ltd, 1969
Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 ( 70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $D 2$ 15s Od. Overseas; 1 year R2 15s Od. Canada and U.S.A.; $\$ 6.75 ; 3$ years $/ 7$ Os Od. Canada and U.S.A.; $\$ 17.50$ Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11 Marsh Street, 1. Telephone: 0272 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: 0203 25210. GLASGOW: 3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260 , Deansgate, 3. Telephone: $061-834$ 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.


# Why we decided to make every part in this PAL delay line 

The PAL delay line is a precision item. But it also has to be inexpensive, and therefore mass-produced. The problems involved in getting the delay time of $63.94 \mu \mathrm{~s}$-an adjustment to a few thousandths of a microsecond-for just one, are quite formidable. To achieve it on an assembly line is practically impossible, unless you have everything under your own control.

When the PAL system was being developed, we found ourselves in an excellent position to develop the special glass delay line needed for the chrominance decoder. Delay lines weren't new to us. For the previous five years we'd been producing them for the computer industry. We therefore had considerable experience. Experience which few others in the television industry had and which enabled us to develop our delay line in parallel with the development of colour television itself.

Critical factors. The set designer's demands pose problems in design and in production (remember we're concerned with price too!). Our considerable experience gained in the computing industry made the design problems
relatively easy to overcome. But marrying them to mass-production was something quite new. Again we were fortunate in having vast experience in mass producing complex items for other areas of the electronics industry.

Any old glass? The Mullard delay line is made of glass and works on an electromechanical principle.

The glass is specially compounded to ensure consistent behaviour propagation velocities and good stability with changes in temperature. The blocks are cast to ensure complete uniformity and an absence of any internal stressing. One end is ground with two optically flat faces which are at a slight angle to each other and to which two transducers are connected. The electrical television colour signal enters one transducer and is converted into vibrations. These vibrations travel through the glass until they are reflected back from the end face to the second transducer. This converts them back into an electrical signal. In this way we halve the size of the delay line and help save space within the set.

Ground away. The end of the glass block opposite the transducers is then ground away under automatic control until the response is exactly right. We have found that this constructionapart from saving space - greatly simplifies the problem of delay time. adjustment to $63.943 \mu$ s at 4.433619 MHz .

Insertion loss. While the glass has some effect on the insertion loss, the major loss is in the transducer and the coupling to the glass. The transducers themselves have been developed from
ceramics selected for their long term stability as well as good mechanical properties. We have further reduced insertion loss by developing a new metal deposition technique and adhesives which create an intimate bond. As a result the overall insertion loss is only about 13 dB over the bandwidth
3.43 to 5.23 MHz .

The final step is the assembly of the delay line on its mounting plate with the associated input and output coils before final testing and inspection.

Worth it? Right from the beginning we "ve had everything under our control. So we can be sure that the product will give consistent service. And that we're producing it at the best possible price.
Consistently achieving these two aims with all our products has helped us build our reputation. A reputation which stretches across the electronics industry. Before we embark on any new project we can draw on the insight and experience we have gained-sometimes from unusual areas. We can employ our resources to provide the technically excellent products our customers demand.

## Mullard <br> components for consumer electronics

Mullard Limited
Consumer Electronics Division
Mullard House, Torrington Place
London W.C.1.

## Our Ads

Editor-in-chief:
w. T. COCKING, F.I.E.E.

## Editor:

H. w. BARNARD

## Technical Editor:

T. E. IVALL

## Assistant Editors:

B. S. CRANK
J. H. WEADEN

## Editorial Assistant

J. Greenbank, b.A.

## Drawing Office:

H. J. COOKE

## Production:

D. R. BRAY

## Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. LAMBERT (Classified Advertisement Manager) Teiephone: 01-928 3333 Ext. 538

Judging from the various letters we receive, and from the replies to last year's questionnaire, it seems that many readers do not fully understand the nature and function of advertisements. For example, it is not unusual for readers to refer to items in the editorial section as "advertisements", or to advertisers' announcements as "articles". Because we are a technical journal and the advertisements often have a high content of technical information, people seem to get the impression that these advertisements are essentially different from those appearing in newspapers and general magazines. In fact they differ only in the products or services described and in the manner of presentation. Their primary purpose is the same.

In a "free enterprise" economy, advertising, whether you like it or not, has become an integral part of the machinery of mass production and distribution. In so far as it helps to reduce the price of products by increasing the size of markets and thereby lowering the cost of manufacture it is obviously a good thing. To the extent that it has to persuade people to buy goods in order to keep the already established production and distribution machinery fully loaded (and therefore economic) it is not such a good thing. But the second feature is inseparable from the first, so we just have to lump it. Journals and other media co-operate in the system by providing the means for wide dissemination of the advertisements. In return they obtain a revenue which pays for a major part of the cost of their production. Without advertisements, for example, the price of Wireless World-just the editorial materialwould be about 7 s 6 d per copy.

From the reader's point of view advertisements have two aspects: (a) they are a service, in that they tell him what is available on the market, and (b) they are a commercial instrument in that they seek to make him part of the market, by persuading him to buy. The reader must therefore be careful to distinguish between these two functions. Probably most people would agree that, as a service, the advertisements in this journal are interesting and informative (and-dare we say it?-there are people who buy $W . W$. purely for the advertisements). But as soon as an advertiser goes into print he is starting to persuade: even a straight list of components and their prices automatically carries the implication that the products are worth buying. Any kind of print seems to have a spell-binding authority, which is sometimes justified and sometimes not by the semantic content. When, in addition, the image makers (e.g. the advertising agents) bring into play their highly developed arts of persuasion the critical thinking apparatus of the reader is almost certain to be swayed by unconscious emotional reactions to these images. "Brilliant transient response", "crystal-clear speech quality", "the secret is ....", "precision made", "smooth, breathing, open and graceful", "efficient", are no doubt justifiable as descriptive terms in somebody's book of values, but they are basically symbols designed to hypnotize, to stay further exploration of the meanings. Simple superlatives_-"world's best", "superb quality"-also have this power.

Where factual information is presented most advertisers are, of course, aware of their legal responsibilities (e.g. the 1968 Trade Descriptions Act). But even here, in order to persuade effectively, they must emphasize the most attractive features of their goods, and this sometimes results in a certain vagueness, notably in matters of price and performance. The "frequency response" which is really only a frequency range, the "accuracy" figure which is a percentage of an unstated quantity are familiar examples.

Wireless World accepts advertisements in good faith-that is, in the belief that the statements made can be justified. But all advertisements are essentially claims; the truth is not necessarily self-evident in the words and pictures-it sometimes has to be discovered. Caveat emptor.

# A 10-W design giving subjectively better results than class B transistor amplifiers 

by J. L. Linsley Hood, m.I.E.E.

During the past few years a number of excellent designs have been published for domestic audio amplifiers. However, some of these designs are now rendered obsolescent by changes in the availability of components, and others are intended to provide levels of power output which are in excess of the requirements of a normal living room. Also, most designs have tended to be rather complex.

In the circumstances it seemed worth while to consider just how simple a design could be made which would give adequate output power together with a standard of performance which was beyond reproach, and this study has resulted in the present design.

## Output power and distortion

In view of the enormous popularity of the Mullard " $5-10$ " valve amplifier, it appeared that a 10 -watt output would be adequate for normal use; indeed when two such amplifiers are used as a stereo pair, the total sound output at full power can be quite astonishing using reasonably sensitive speakers.

The original harmonic distortion standards for audio amplifiers were laid down by D. T. N. Williamson in a series of articles published in Wireless World in 1947 and 1949; and the standard, proposed by him, for less than $0.1 \%$ total harmonic distortion at full rated power output, has been generally accepted as the target figure for high-quality audio power amplifiers. Since the main problem in the design of valve audio amplifiers lies in the difficulty in obtaining adequate performance from the output transformer, and since modern transistor circuit techniques allow the design of power amplifiers without output transformers, it seemed feasible to aim at a somewhat higher standard, $0.05 \%$ total harmonic distortion at full output power over the range $30 \mathrm{~Hz}-20 \mathrm{kHz}$. This also implies that the output power will be constant over this frequency range.

## Circuit design

The first amplifier circuit of which the author is aware, in which a transformerless transistor design was used to give a standard of performance approaching that of the "Williamson" amplifier, was that published in Wireless World in 1961 by Tobey and Dinsdale. This employed a class B output stage, with series connected transistors in quasi-complementary symmetry. Subsequent high-quality transistor power amplifiers have largely tended to follow the design principles outlined in this article.

The major advantage of amplifiers of this type is that the normal static power dissipation is very low, and the overall power-conversion efficiency is high. Unfortunately there are also some inherent disadvantages due to the intrinsic


Fig. 1. Basic class $A$ circuits using (a) load resistor $R_{c}$ giving power conversion efficiency of about $12 \%$, (b) l.f. choke giving better efficiency but being bulky and expensive, and (c) a second transistor as collector load.
dissimilarity in the response of the two halves of the push-pull pair (if complementary transistors are used in unsymmetrical circuit arrangement) together with some cross-over distortion due to the low current non-linearity of the $I_{c} / V_{b}$ characteristics. Much has been done, particularly by Bailey ${ }^{\prime}$, to minimize the latter.

An additional characteristic of the class B output stage is that the current demand of the output transistors increases with the output signal, and this may reduce the output voltage and worsen the smoothing of the power supply, unless this is well designed. Also, because of the increase in current with output power, it is possible for a transient overload to drive the output transistors into a condition of thermal runaway, particularly with reactive loads, unless suitable protective circuitry is employed. These requirements have combined to increase the complexity of the circuit arrangement, and a well designed low-distortion class B power amplifier is no longer a simple or inexpensive thing to construct.

An alternative approach to the design of a transistor power amplifier combining good performance with simple construction is to use the output transistors in a class A configuration. This avoids the problems of asymmetry in quasi-complementary circuitry, thermal runaway on transient overload, cross-over distortion and signal-dependent variations in power supply current demand. It is, however, less efficient than a class B circuit, and the output transistors must be mounted on large heat sinks.

The basic class A construction consists of a single transistor with a suitable collector load. The use of a resistor, as in Fig 1 (a), would be a practical solution, but the best power-conversion efficiency would only be about $12 \%$. An l.f. choke, as shown in Fig. 1(b), would give much better efficiency, but a properly designed component would be bulky and expensive, and remove many of the advantages of a transformerless design. The use of a second, similar, transistor as a collector load, as
shown in Fig. 1(c), would be more convenient in terms of size and cost, and would allow the load to be driven effectively in push-pull if the inputs to the two transistors were of suitable magnitude and opposite in phase. This requirement can be achieved if the driver transistor is connected as shown in Fig. 2.

This method of connection also meets one of the most important requirements of a low distortion amplifier-that the basic linearity of the amplifier should be good, even in the absence of feedback. Several factors contribute to this. There is the tendency of the $I_{c} / V_{b}$ non-linearity of the characteristics of the output transistors to cancel, because during the part of the cycle in which one transistor is approaching cut-off the other is turned full on. There is a measure of internal feedback around the loop $T r_{1}, T r_{2}, T r_{3}$ because of the effect which the base impedance characteristics of $T r_{1}$ have on the output current of $T r_{3}$. Also, the driver transistor $T r_{3}$, which has to deliver a large voltage swing, is operated under conditions which favour low harmonic distortion-low output load impedance, high input impedance.

A practical power amplifier circuit using this type of output stage is shown in Fig. 3.

The open loop gain of the circuit is approximately 600 with typical transistors. The closed loop gain is determined, at frequencies high enough for the impedance of $C_{3}$ to be small in comparison to $R_{4}$, by the ratio $\left(R_{3}+R_{4}\right) / R_{4}$. With the values indicated in Fig. 3, this is 13. This gives a feedback factor of some 34 dB , and an output impedance of about 160 milliohms.

Since the circuit has unity gain at d.c., because of the inclusion of $C_{3}$ in the feedback loop, the output voltage, $V_{e}$, is held at the same potential as the base of $\mathrm{Tr}_{4}$ plus the base emitter potential of $\operatorname{Tr}_{4}$ and the small potential drop along $R_{3}$ due to the emitter current of this transistor. Since the output transistor $T r_{1}$ will turn on as much current as is necessary to pull $V_{e}$ down to this value, the resistor $R_{2}$, which together with $R_{1}$ controls the collector current of $T_{2}$, can be used to set the static current of the amplifier output stages. It will also be apparent that $V_{e}$ can be set to any desired value by small adjustments to $R_{5}$ or $R_{6}$. The optimum performance will be obtained when this is equal to half the supply voltage. (Half a volt or so either way will make only a small difference to the maximum output power obtainable, and to the other characteristics of the amplifier, so there is no need for great precision in setting this.)

Silicon planar transistors are used throughout, and this gives good thermal stability and a low noise level. Also, since there is no requirement for complementary symmetry, all the power stages can use $n-p-n$ transistors which offer, in silicon, the best performance and lowest cost. The overall performance at an output level of 10 watts, or any lower level, more than meets the standards laid down by Williamson. The power output and gain/frequency graphs are shown in Figs. 4-6, and the relationship between output power and total harmonic distortion is shown in Fig. 7. Since the amplifier is a straightforward class A circuit, the distortion decreases linearly with output voltage. (This would not necessarily be the case in a class B system if any significant amount of cross-over distortion was present.) The analysis of distortion components at levels of the order of $0.05 \%$ is difficult, but it appears that the residual distortion below the level at which clipping begins is predominantly second harmonic.

## Stability, power output and load impedance

Silicon planar n-p-n transistors have, in general, excellent high frequency characteristics, and these contribute to the very good stability of the amplifier with reactive loads. The author has not yet found any combination of $L$ and $C$ which makes the system unstable, although the system will readily become oscillatory with an inductive load if $R_{3}$ is shunted by a small condenser to cause roll-off at high frequencies.


Fig.2. Arrangement for push-pull drive of class $A$ stage.


Fig.3. Practical power amplifier circuit.


Fig.4. Gain/frequency response curve of amplifier.


Fig.5. Output power/frequency response curve of amplifier.


Fig.6. Distortion/frequency curve at $9 W$.


The circuit shown in Fig. 3 may be used, with very little modification to the component values, to crive load impedances in the range $3-15$ ohms. However, the chosen output power is represented by a different current/voltage relationship in each case, and the current through the output transistors and the output-voltage swing will therefore also be different. The peak-voltage swing and the mean output current can be calculated quite simply from the well-known relationships $W=I^{2} R$ and $V=I R$, where the symbols have their customary significance. (It should be remembered, however, that the calculation of output power is based on r.m.s. values of current and voltage, that these must be multiplied by 1.414 to obtain the peak values, and that the voltage swing measured is the peak-to-peak voltage, which is twice the peak value.)

When these calculations have been made, the peak-to-peak voltage swing for 10 watts power into a 15 -ohm load is found to be 34.8 volts. Since the two output transistors bottom at about 0.6 volt each, the power supply must provide a minimum of 36 volts in order to allow this output. For loads of 8 and 3 ohms, the minimum h.t. line voltage must be 27 V and 17 volts respectively. The necessary minimum currents are $0.9,1.2$ and 2.0 amps . Suggested component values for operation with these load impedances are shown in Table 1. $C_{3}$ and $C_{1}$ together influence the voltage and power roll-off at low audio frequencies. These can be increased in value if a better low-frequency performance is desired than that shown in Figs. 4-6.

Since the supply voltages and output currents involved lead to dissipations of the order of 17 watts in each output transistor, and since it is undesirable (for component longevity) to permit high operating temperatures, adequate heat sink area must be provided for each transistor. A pair of separately mounted Sin $\times 4$ in finned heat sinks is suggested. This is, unfortunately, the penalty which must be paid for class A operation. For supplies above $30 \mathrm{~V} \mathrm{Tr}_{1}$ and $\mathrm{Tr}_{2}$ should be MJ481s and $\operatorname{Tr}_{3}$ a 2 N 1613.

Table 1. Summary of componemt combinations for different lasd impedances.

| $z_{L}$ | $\checkmark$ | I | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ |  | $C_{1}$ |  | $C_{2}$ | $V_{\text {IN }}$ (r.m.s.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | 17 V | 2A | 47! | 1808 | 500" | 25 V | 5000" | 25 V | 0.41 V |
| $8 \%$ | 27 V | 1.2A | $100 \%$ | $560 \%$ | 250" | 40 V | 2500." | 50 V | 0.66 V |
| 15s | 36 V | 0.9 | $150 \Omega$ | 1.2k ${ }^{\text {c }}$ | 250 " | 40 V | 2500" | 50 V | 0.9V |



Sine wave performance at 1 kHz .9 watts, 15 ohm resistive load. Fundamental on scale of $10 \mathrm{~V} / \mathrm{cm}$. Distortion components on scale of $50 \mathrm{mV} / \mathrm{cm}$ with r.m.s. value of $0.05 \%$.


Square wave response at 50 Hz .


Square wave response. Sccle $10 \mathrm{~V} / \mathrm{cm}$. Frequency 50 kHz .15 ohm resistive load.

If the output impedance of the pre-amplifier is more than a few thousand ohms, the input stage of the amplifier should be modified to include a simple f.e.t. source follower circuit, as shown in Fig. 8. This increases the harmonic distortion to about $0.12 \%$, and is therefore (theoretically) a less attractive solution than a better pre-amplifier.

A high frequency roll-off can then be obtained, if necessary, by connecting a small capacitor between the gate of the f.e.t. and the negative (earthy) line.

## Suitable transistors

Some experiments were made to determine the extent to which the circuit performance was influenced by the type and current gain of the transistors used. As expected the best performance was obtained when high-gain transistors were used, and when the output stage used a matched pair. No adequate substitute
is known for the 2 N 697 /2N1613 type used in the driver stage, but examples of this transistor type from three different manufacturers were used with apparently identical results. Similarly, the use of alternative types of input transistor produced no apparent performance change, and the Texas Instruments 2 N 4058 is fully interchangeable with the Motorola 2 N 3906 used in the prototype.

The most noteworthy performance changes were found in the current gain characteristics of the output transistor pair, and for the lowest possible distortion with any pair, the voltage at the point from which the loudspeaker is fed should be adjusted so that it is within 0.25 volt of half the supply line potential. The other results are summarized in Table 2.

The transistors used in these experiments were Motorola MJ480/481, with the exception of (6), in which Texas 2 S034 devices were tried. The main conclusion which can be drawn from this is that the type of transistor used may not be very important, but that if there are differences in the current gains of the output transistors, it is necessary that the device with the higher gain shall be used in the position of $\operatorname{Tr}_{1}$.

When distortion components were found prior to the onset of waveform clipping, these were almost wholly due to the presence of second harmonics.

## Constructional notes

Amplifier. The components necessary for a $10+10$ watt stereo amplifier pair can conveniently be assembled on a standard "Lektrokit" 4 in $\times 4 \frac{3}{4}$ in s.r.b.p. pin board, as shown in the photographs, with the four power transistors mounted on external heat sinks. Except where noted the values of components do not appear to be particularly critical, and $10 \%$ tolerance resistors can certainly be used without ill effect. The lowest noise levels will however be obtained with good quality components, and with carbon-film, or metal-oxide, resistors.
Power supply. A suggested form of power supply unit is shown in Fig. 9 (a). Since the current demand of the amplier is substantially constant, a series transistor smoothing circuit can be used in which the power supply output voltage may be adjusted by choice of the base current input provided by the

Table 2. Relation of distortion to gain-matching in the output stage.

|  | Current gain <br> $\left(\mathrm{Tr}_{1}\right)$ | $\left(\mathrm{Tr}_{2}\right)$ | Distartion <br> (at 9 watts) |
| :--- | :--- | :--- | :--- |
| 1. | 135 | 135 | $0.06 \%$ |
| 2. | 40 | 120 | $0.4 \%$ |
| 3. | 120 | 40 | $0.12 \%$ (pair 2 reversed in position) |
| 4. | 120 | 100 | $0.09 \%$ |
| 5. | 100 | 120 | $0.18 \%$ (pair 5 reversed) |
| 8. | 50 | 40 | $0.1 \%$ |

Table 3. Power-supply components.

| $\mathrm{AMPZ}_{L}$ | Iout | Vout | $C_{1}$ | Tri/2 | MR1 | $\mathrm{T}_{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $15 \Omega$ | 1 A | 37 V | $\begin{gathered} 1000 \mathrm{l} \\ 50 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { MJ480 } \\ & \text { 2N697 } \end{aligned}$ | 5805 | 40 V | 1 A |
| $2 \times 15 \Omega$ | 2 A | 37V | $\begin{gathered} 5000 \mathrm{~V} \\ 50 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { MJ480 } \\ & \text { 2N697 } \end{aligned}$ | 5805 | 40V | 2 A |
| $8 \Omega$ | 1.25A | 27 V | $\begin{gathered} 2000 \mu \\ 40 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { MJ480 } \\ & \text { 2N697 } \end{aligned}$ | 5806 | 30 V | 1.26 A |
| 2×88 | 2.6A | 27 V | $\begin{gathered} 5000 \mathrm{u} \\ 40 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { MJ480 } \\ & \text { 2N697 } \end{aligned}$ | 5805 | 30 V | 2.6 A |
| $3 \Omega$ | 1.9A | 18 V | $\begin{gathered} 5000 u \\ 30 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { MJ480 } \\ & \text { 2N697 } \end{aligned}$ | 5805 | 20 V | 2A |
| $2 \times 3 \Omega$ | 3.8A | 18 V | $\begin{aligned} & 10.000 \mu \\ & 30 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \text { MJ480 } \\ & 2 \times 2 N 697 \end{aligned}$ | 7805T | 20 V | 4 A |



Fig.9. (a) Power supply unit, and (b) parallel connected transistors for high currents.
emitter follower $\operatorname{Tr}_{2}$ and the potentiometer $V R_{1}$. With the values of reservoir capacitor shown in Table 3, the ripple level will be less than 10 mV at the rated output current, provided that the current gain of the series transistors is greater than 40. For output currents up to 2.5 amps , the series transistors indicated will be adequate, provided that they are mounted on heat sinks appropriate to their loading.

However, at the current levels necessary for operation of the 3 -ohm version of the amplifier as a stereo pair, a single MJ480 will no longer be adequate, and either a more suitable series transistor must be used, such as the Mullard BDY20, with for example a 2 N 1711 as $\mathrm{Tr}_{2}$, or with a parallel connected arrangement as shown in Fig. $9(\mathrm{~b})$.

The total resistance in the rectifier "primary" circuit, including the transformer secondary winding, must not be less than $0.25 \Omega$. When the power supply, with or without an amplifier, is to be used with an r.f. amplifier-tuner unit, it may be necessary to add a $0.25 \mu \mathrm{~F}$ ( $160 \mathrm{~V} . \mathrm{w}$.) capacitor across the secondary winding of $T_{1}$ to prevent transient radiation. The rectifier diodes specified are International Rectifier pottedbridge types.

## Transistor protection circuit

The current which flows in the output transistor chain $\left(T r_{1}\right.$, $T r_{2}$ ) is determined by the potential across $T r_{2}$, the values of $R_{1}$ and $R_{2}$, and the current gain and collector-base leakage current of $\mathrm{Tr}_{2}$. Since both of these transistor characteristics are temperature dependent the output series current will increase somewhat with the temperature of $T r_{2}$. If the amplifier is to be operated under conditions of high ambient temperature, or if for some reason it is not practicable to provide an adequate area of heat-sink for the output transistors, it will be desirable to provide some alternative means for the control of the output transistor circuit current. This can be done by means of the circuit shown in Fig. 10. In this, some proportion of the d.c. bias current to $\mathrm{Tr}_{1}$ is shunted to the negative line through $T r_{7}$, when the total current flowing causes the potential applied to the base of $\operatorname{Tr}_{6}$ to exceed the turn-on value (about


Fig.10. Amplifier current regulation circuit.
0.5 volt). This allows very precise control of the series current without affecting the output power or distortion characteristics. The simpler arrangement whereby the current control potential for $\mathrm{Tr}_{7}$ is obtained from a series resistor in the emitter circuit of $\mathrm{Tr}_{1}$ leads, unfortunately, to a worsening of the distortion characteristics to about $0.15 \%$ at 8 watts, rising to about $0.3 \%$ at the onset of overload.

## Performance under listening conditions

It would be convenient if the performance of an audio amplifier (or loudspeaker or any other similar piece of audio equipment) could be completely specified by frequency response and harmonic distortion characteristics. Unfortunately, it is not possible to simulate under laboratory conditions the complex loads or intricate waveform structures presented to the amplifier when a loudspeaker system is employed to repreduce the everyday sounds of speech and music; so that although the square wave and low-distortion sine wave oscillators, the oscilloscope, and the harmonic distortion analyser are valuable tools in the design of audio circuits, the ultimate test of the final design must be the critical judgment of the listener under the most carefully chosen conditions his facilities and environment allow.

The possession of a good standard of reference is a great help in comparative trials of this nature, and the author has been fortunate in the possession, for many years, of a carefully and expensively built "Williamson" amplifier, the performance of which has proved, in listening trials, to equal or exceed, by greater or lesser margins, that of any other audio amplifier with which the author has been able to make comparisons.

However, in the past, when these tests were made for personal curiosity, and some few minutes could elapse in the transfer of input and output leads from one amplifier to the other, the comparative performance of some designs has been so close that the conclusion drawn was that there was really very little to choose between them. Some cf the recent transistor power amplifier circuits gave a performance which seemed fully equal to that of the "Williamson", at least so far as one could remember during the interval between one trial and the next. It was, however, appreciated that this did not really offer the best conditions for a proper appraisal of the more subtle differences in the performance of already good designs, so a changeover switch was arranged to transfer inputs and outputs between any chosen pair of amplifiers, and a total of six amplifier units was assembled, including the "Williamson", and another popular valve unit, three class B transistor designs, including one of commercial origin, and the class A circuit described above. The frequency response, and total harmonic distortion characteristics, of the four transistor amplifiers was tested in the laboratory prior to this trial, and all were found to


Layout of single channel of $10+10$ watl umplifier on standard 4 in $\times 4 \frac{3}{4}$ in 'Lektrokit's.r.b.p. pin board.


Underside of completed amplifier, with base cover remcved, showing external box-form heat sink.


[^2]-have a flat frequency response through the usable audio spectrum, coupled with low harmonic distortion content (the worst-case figure was $0.15 \%$ ).

In view of these prior tests, it was not expected that there would be any significant difference in the audible performance of any of the transistor designs, or between them and the valve amplifiers. It was therefore surprising to discover, in the event, that there were discernible differences between the valve and the three class B transistor units. In fact, the two valve designs and the class A transistor circuit, and the three class B designs formed two tonally distinct groups, with closely similar characteristics within each group. The "Williamson" and the present class A design were both better than the other valve amplifier, and so close in performance that it was almost impossible to tell which of the two was in use without looking at the switch position. In the upper reaches of the treble spectrum the transistor amplifier has perhaps a slight advantage.

The performance differences between the class A and the class B groups were, however, much more prominent. Not only did the class A systems have a complete freedom from the slight "edginess" found on some high string notes with all the class B units, but they appeared also to give a fuller, "rounder", quality, the attractiveness of which to the author much outweighs the incidental inconvenience of the need for more substantial power supply equipment and more massive heat sinks.

Some thought, in discussions with interested friends, has been given to the implications of this unlooked-for discovery, and a tentative theory has been evolved which is offered for what it is worth. It is postulated that these tonal differences arise because the normal moving-coil loudspeaker, in its associated housing, can present a very complex reactive load at frequencies associated with structural resonances, and that this might provoke transient overshoot when used with a class B amplifier, when a point of inflection in the applied waveform chanced to coincide with the point of transistor crossover, at which point, because of the abrupt change in the input parameters of the output transistors the loop stability margins and output damping will be less good. In these circumstances, the desired function of the power-amplifier output circuit in damping out the cone-response irregularities of the speaker may be performed worse at the very places in the loudspeaker frequencyresponse curve where the damping is most needed.

It should be emphasized that the differences observed in these experiments are small, and unlikely to be noticed except in direct side-by-side comparison. The perfectionist may, however, prefer class A to class B in transistor circuitry if he can get adequate output power for his needs that way.

## Listener fatigue

In the experience of the author, the performance of most well-designed audio power amplifiers is really very good, and the differences between one design and another are likely to be small in comparison with the differences between alternative loudspeaker systems, for example, and of the transistor designs so far encountered, not one could be considered as unpleasing to the ear. However, with the growing use of solid-state power amplifiers, puzzling tales of "listener fatigue" have been heard among the cognoscenti, as something which all but the most expensive transistor amplifiers will cause the listener, in contradistinction with good valve-operated amplifiers. This seemed to be worth investigation, to discover whether there was any foundation for this allegation.

In practice it was found that an amplifier with an impeccable performance on paper could be quite worrying to listen to under certain conditions. This appears to arise and be particularly associated with transistor power amplifiers because most of these are easily able to deliver large amounts of power at supersonic frequencies, which the speakers in a high quality
system will endeavour to present to the listener. In this context it should be remembered that in an amplifier which has a flat power response from 30 Hz to $180 \mathrm{kHz}, 90 \%$ of this power spectrum will be supersonic.

This unwanted output can arise in two ways. It can be because of wide spectrum "white noise" from a preamplifier with a significant amount of hiss-this can happen if a valve preamplifier is mismatched into the few thousand ohms input impedance of a transistor power amplifier, and will also cause the system performance to be unnaturally lacking in bass. Trouble of this type can also arise if transient instability or high frequency "ringing" occurs, for example when a reactive load is used with a class B amplifier having poor cross-over point stability.

## REFERENCE

1. Bailey, A.R., "High-performance Transistor Amplifier", Wireless World, November 1966; "30-Watt High Fidelity Amplifier", May 1968; and "Output Transistor Protection in A.F. Amplifiers", June 1968.

## Conferences and Exhibitions



## Operational Amplifiers

## 3. Applications

by G. B. Clayton, ${ }^{*}$ B.Sc., A.Inst.P.

The availability of inexpensive reliable operational amplifiers in integrated circuit and discrete component modular form makes possible a new approach to many electronic design problems. The approach involves the selection of a suitable amplifier and the connection of a few discrete components to it to form a complete subsystem. This offers a considerable simplification since it frees the system designer from amplifier design problems and in all probability it will displace discrete-component electronics in a wide variety of fields.
Early op. amps. were first developed for use in analogue computation. These amplifiers were generally single-ended input and output inverting amplifiers. The modern differential-input single-ended output amplifiers are more versatile and allow a greater variety of feedback configurations. Circuits developed for use in analogue computation are equally useful in many control and instrumentation applications, largely because of the ease with which input impedance and gain values can be accurately set The analyses of circuit behaviour presented in this article will be based on an ideal op. amp. performance; the important characteristics of practical amplifiers and the ways in which these differ from the ideal have already been considered. The ideal op. amp. concept is of sufficient importance to warrant restating: the ideal op. amp. has openloop gain, bandwidth and input impedance tending to infinity, and an output impedance, tending to zero.
The term "operational amplifier" really describes an amplifier suitable for use with a particular type of negative feedback. The basic form of the operational feedback circuit is illustrated in Fig. 1. In this circuit if a small voltage ( $e \varepsilon$ ) is assumed to exist between the differential input terminals of the amplifier, with a gain tending to infinity the output voltage fed back to the inverting terminal will force this voltage (es) to be negligibly small, i.e. the ideal op. amp. with negative feedback applied to it has a negligibly small voltage between its input terminals. This is one of the assumptions that is made in all simple analyses of circuit action. The other assumption normally made is that no current flows into the input terminals of the ideal amplifier. The phase inverting terminal $X$ is sometimes called the summing point and the two assumptions are called the summing

[^3]
(b)

Fig. 1. (a) Inverting amplifier employing "operational feedback". (b) A voltage "lever" analogy of the inverter connection. Point $X$ corresponds to the fulcrum, and the summation of currents at $X$ is analogous to the summation of moments about the point of balance.
point restraints. Summation of currents at $X$ must always be zero.

In the applications that follow it is assumed that the amplifiers have been frequency compensated (see March article) to achieve closed-loop stability. Amplifiers based on computing circuits will be dealt with first. All these amplifiers feature considerable isolation between input and output.

## Inverting amplifier circuits

## Unity Gain Inverter.



Features. Input impedance equals $R$; output impedance small, usually less than 1 ohm. Used wherever sign changes are necessary or to lower the impedance level of a signal.

Balanced Output Inverter.


Features. A combination of two unity gain inverters arranged to give a balanced output. Used for driving balanced loads or push-pull stages when earth reference is critical. The peak-to-peak output swing is double that of a single amplifier.

## Inverting Adder.



Features. A separate input resistor is used for cach input signal to be summed. Any number of inputs may be used; the output gives the inverted sum of all inputs. The summing point $X$ being a virtual earth, the inputs are effectively isolated from one another. If the individual input resistors are given values different from that of the feedback resistor the output is the sum of a series of terms each proportional to one of the input signals but each multiplied by some arbitrary coefficient, i.e.

$$
e_{o}=-\left\{e_{1} \frac{R}{R_{1}}+e_{2} \frac{R}{R_{2}}+e_{n} \frac{R}{R_{n}}\right\}
$$

## Adjustable Coefficient Inverters.



Features. A wide-range variable-gain amplifier; range from zero to very high values. Gain is not linear with respect to potentiometer rotation and the input impedance drops as the gain is increased.


Features. A narrower range of gain settings than in previous circuit, 0 to $R_{2} / R_{1}$, but gain is linear with respect to potentiometer rotation. Input impedance equals $R_{1}$.

## Non-inverting amplifier circuits

In these circuits the input signal is applied to the non-inverting input of the differential amplifier; the feedback is returned from the output to the inverting terminal as before. The feedback signal is effectively in series with the input signal and opposes the input signal; this makes for input impedances many times greater than the actual input impedance of the amplifier without feedback. Analyses are quite straightforward with the usual assumptions; the voltage between the two input terminals of the amplifier is assumed negligibly small in all cases. Noninverting circuits are subject to a com-mon-mode error. (Care must also be taken to ensure that the maximum common-mode voltage allowable at the input is not exceeded.) Non-inverting/inverting combinations are also included.

Unity Gain Follower.


Features. All the output voltage is fed back to the inverting terminal as negative feedback. Circuit has a very high input impedance and a low output impedance. Drift is half that obtained with the same amplifier connected as a unity gain inverter.

Follower with gain.


Features. A high input impedance and low output impedance, as before. The follower with gain is less demanding of commonmode performance, for with equal outputs the follower with gain has a smaller commonmode input signal than the unity gain follower.

Non-Inverting Adder.


With zero input current drawn by amplifier

$$
\begin{aligned}
& \frac{e_{1}-e_{A}}{R}+\frac{e_{2}-e_{\mathbf{A}}}{R}+\frac{e_{\mathrm{n}}-e_{\mathbf{A}}}{R}=0 \\
& e_{1}+e_{2}+\ldots e_{\mathrm{n}}=\mathbf{n} e_{\mathbf{A}}
\end{aligned}
$$

But $\quad e_{A}=e_{B}=e_{0} \frac{R_{1}}{R_{1}+R_{2}}$
Hence $e_{0}=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{1}{n}\left(e_{1}+e_{2}+\ldots e_{n}\right)$
Features. Any number of input signals may be used, a separate input resistor being used for each input. The output gives the noninverted sum multiplied by the coefficient $\left(1+R_{2} / R_{1}\right) 1 / n$. With two input signals and $R_{2}=\boldsymbol{R}_{1}, \boldsymbol{e}_{0}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}$.

## Subtractor.



$$
\mathbf{e}_{\mathbf{A}}=\mathrm{e}_{2} \frac{\mathbf{R}^{\prime}}{\mathbf{R}^{\prime}+\mathbf{R}^{\prime}}=\frac{\mathbf{e}_{2}}{\mathbf{2}}
$$

$$
\frac{\mathbf{e}_{1}-\mathbf{e}_{\mathbf{B}}}{\mathbf{R}}=\frac{\mathbf{e}_{\mathbf{B}}-\mathbf{e}_{\mathbf{0}}}{\mathbf{R}}
$$

$$
e_{B}=\frac{e_{1}+e_{0}}{2}
$$

But

$$
\mathbf{e}_{\mathbf{A}}=\mathbf{e}_{\mathbf{B}}
$$

$$
\text { Hence } \frac{e_{1}+e_{0}}{2}=\frac{e_{2}}{2}
$$

$$
e_{0}=e_{2}-e_{1}
$$

Features. The amplifier acts as a unity-gain differential-input single-ended output amplifier. A variation of this circuit is the subtractor with gain shown below.

## Subtractor with Gain.



## Adjustable Gain

Differential Input Amplifier.


Amplifier assumed to draw no current

$$
\frac{e_{1}-e_{B}}{R_{1}}=\frac{e_{B}-e^{\prime}}{R_{2}}, \quad \frac{e_{2}-e_{A}}{R_{1}}=\frac{e_{A}-e^{\prime \prime}}{R_{2}}
$$

But $\quad e_{A}=e_{B}$ and hence

$$
\frac{\mathrm{e}_{1}-\mathrm{e}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{e}^{\prime \prime}-\mathrm{e}^{\prime}}{\mathrm{R}_{2}}
$$

Also

$$
\frac{\mathrm{e}_{\mathrm{B}}-\mathrm{e}^{\prime}}{\mathrm{R}_{2}}-\frac{\mathrm{e}^{\prime}-\mathrm{e}^{\prime \prime}}{\mathrm{K} \mathbf{R}_{2}}-\frac{\mathrm{e}^{\prime}-\mathrm{e}_{0}}{\mathrm{R}_{2}}=0
$$

And $\quad \frac{e_{A}-e^{\prime \prime}}{R_{2}}+\frac{e^{\prime}-e^{\prime \prime}}{K R_{2}}-\frac{e^{\prime \prime}}{R_{2}}=0$
Remembering that $\mathrm{e}_{\mathrm{A}}=\mathbf{e}_{\mathrm{B}}$ subtraction gives

$$
\begin{aligned}
\frac{e_{0}}{R_{2}} & =2 \frac{\left(e^{\prime}-e^{\prime \prime}\right)}{R_{2}}\left(1+\frac{1}{K}\right) \\
\text { Hence } \quad e_{0} & =2 \frac{R_{2}}{R_{1}}\left(1+\frac{1}{K}\right)\left(e_{2}-e_{1}\right)
\end{aligned}
$$

Features. A wide range of differential gain settings is obtainable by adjustment of a single resistor $K R_{2}$. Gain does not vary linearly with $K$ so that gain variation obtained by rotation of a linear potentiometer will be non-linear. Linearity can be improved by putting a fixed resistor in series with the potentiometer, alternatively it is sometimes convenient to select specific calibrated gains by switching in selected discrete values of $K R_{2}$.

Subtractor (Differential Input Amplifier) with common mode voltage eliminated.


Features. Subtraction is accomplished by a process of inversion and summation. Both amplifiers are used in the inverting configuration and common-mode voltages are effectively eliminated.

## High Input Impedance

Differential Input Amplifier.


Features. The input stage uses two crosscoupled followers. It passes any commonmode signal at unity gain but has a gain $(1+a+b)$ for differential signals. An input stage consisting of two separately connected followers with gain would pass both common mode and differential signals at the same gain. The follower configurations give very high input impedances making the circuit insensitive to unbalance in source impedances. The output stage is a subtractor with gain! it is driven by the low output impedance of the differential input stage, enabling impedance levels in the feedback and divider networks to be kept low for good stability and bandwidth.

## Bipolar Adjustable Coefficient Circuit.



But $\quad e_{A}=e_{B}$

## Substitution gives

$$
\mathrm{e}_{0}=\left[\left(1+\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}\right) \rho-\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}\right] \mathrm{e}_{\mathrm{i}}
$$

Features. The circuit uses the adder subtractor technique to provide a wide and continuous range of coefficient adjustability, from a negative value $R_{2} / R_{1}$ through zero to a value plus one.

Adder, Subtractor.


Fig. 3. Booster using complementary emitter followers.
it is bypassed by a capacitor in order that the high frequency response of the emitter follower shall not be degraded by the presence of this collector resistor. The most efficient use of a single transistor emitter follower is when output currents of only one polarity are to be supplied, $n-p-n$ transistors for positive output currents and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ types for negative output currents.

A booster using complementary emitter followers (Fig. 3) provides greater efficiency and dynamic voltage range than those of the single emitter follower for the same power supply and drive voltage. The quiescent current carried by the transistors can be made quite small without limiting the output current capability of the booster. For posi-tive-going drive signals the output current is delivered by $T r_{1}$, while $T r_{2}$ takes the current for negative-going signals. Resistors in series with the collectors protect the transistors against excessive short circuit current.

## Books Received

Lasers, a survey of their performance and applications, by Ronald Brown, describes the history of lasers and the principles of their functioning. Background details of quantum and solid-state theory are given allowing the reader to grasp the basis of laser theory. Different types are fully described, and differentiated into solid, glass, gas, semiconductor, liquid, chemical and x-ray lasers. The control of laser beams and the principles of non-linear optics are described. The text is complemented by 100 line drawings and over twenty photographs of laser beams in action. Pp.268. Price 95s. Business Books Lid., Mercury House, Waterloo Road, London S.E.I.

Eurolec GB Pocket Guide 1969, Parts 1 and 2, gives an up-to-date picture of British electronics and instrument industry, taking account of all the significant changes in 1968. The first part covers over 1200 companies, giving for each the senior executive, location, products, distributors, number of employees, parent and related companies. The second part lists over 1500 foreign companies with representatives in Great Britain. Pp.256. Price 32s 6d. David Rayner Associates, Little Waltham, Essex.

## News of the Month

## Apollo-9 lunar module

The communication system in LM-3, the lunar module used in the latest Apollo programme exploit, consisted of two S-band transceivers, two v.h.f. transceivers, a u.h.f. command receiver, a signal processing unit and all the associated aerials.

Voice communication was achieved in two ways; for conversations with earth the S-band equipment was employed using a $1-\mathrm{m}$ steerable parabolic aerial or two fixed, in-flight, aerials; while communication berween the LM and the command service module was maintained at v.h.f.

Real-time commands for the navigation, propulsion and other systems were received at u.h.f. It is understood that for subsequent Apollo flights involving a lunar module, S -band equipment will be employed for command data.

The LM carried a four-channel voice recotder with a ten-hour recording capacity. The information so recorded, complete with time signals, cannot be transmitted back to earth, so analysis of the recording relies on the command service module's safe return to earth.

## Balance of trade

Detailed analyses of last year's imports and exports of electronic and radio equipment have not been issued by the various trade associations at the time of writing but a detailed perusal of the Board of Trade "Overseas Trade Accounts for the U.K." for December gives the overall, if not so detailed, picture.

Exports rose from $£ 130 \mathrm{M}$ in 1967 to $£ 154 \mathrm{M}$ last year, an increase of $19 \%$, but imports rose by $24 \%$ to $£ 104 \mathrm{M}$ in 1968 against $£ 85 \mathrm{M}$ the year before.

Here are some comparative figures for the various categories of equipment. Telecommunication, broadcasting and navigational equipment accounted for about $38 \%$ ( $£ 58.5 \mathrm{M}$ ) of last year's exports-an increase of $£ 7 \mathrm{M}$ over the previous year. This type of equipment also accounted for $£ 24 \mathrm{M}$ worth of imports which was $20 \%$ up on the 1967 figure. Domestic radio and television receivers and parts imported rose by nearly $£ 4 \mathrm{M}$ to $£ 13.18 \mathrm{M}$ whereas exports rose by only $£ 1.4 \mathrm{M}$ to $£ 7.27 \mathrm{M}$.

Audio equipment (amplifiers, microphones and loudspeakers) accounted for $£ 3.33 \mathrm{M}$ of our imports and $£ 3.84 \mathrm{M}$ of
our exports; both having increased by about $30 \%$.
As one would expect the import of semiconductor devices continues to rise-from $£ 11 \mathrm{M}$ to $£ 15 \mathrm{M}$ - whereas we exported only $£ 4.6 \mathrm{M}$ last year although this was an increase of nearly $£ 2 \mathrm{M}$ on the previous year.

Both imports and exports of computers and peripheral equipment increased by about $10 \%$; imports rose to nearly $£ 40 \mathrm{M}$ and exports to just over $£ 43 \mathrm{M}$.

The only category in which imports decreased and exports increased was scientific instruments. Equipment coming into the country fell by about $£ 70,000$ to just over $£ 3 \mathrm{M}$ whereas exports went up by some $£ 7 \mathrm{M}$ to nearly $£ 30 \mathrm{M}$.

## I.T.A. u.h.f. transmitters

The Independent Television Authority has allocated the first 26 of its u.h.f. transmitters to programme contractors. Each of the transmitters is co-sited, which means that the B.B.C. and the I.T.A. share the same aerial masts. Because of this, and because of the difference in coverage provided by u.h.f. when compared with v.h.f. transmitters the service areas of the programme companies will not be quite the same as they are at present.

The transmitters allocated so far are as follows:

| Contractor | Transmitter |
| :---: | :---: |
| London Companies ... | Crystal Palace |
|  | Sutton Coldfield |
|  | Waltham |
|  | Beckley |
| Granada | Winter Hill |
| Yorkshire Television | Emley Moor |
|  | Bilsdale |
| Scottish Television | Black Hill |
|  | Craigkelly |
| Harlech | Wenvoe |
|  | Mendip |
| Ulster Television | Divis |
| Southern Television | Rowridge |
|  | Dover |
|  | Hannington |
|  | Heathfield |
| Tyne Tees Television | Pontop Pike |
| Grampian Television | Durris |
| Anglia Television | Talcolneston |
|  | Sudbury |
|  | Belmont |
|  | Sandy Heath |
| Westward Television | Curadon Hill |
|  | Redruth |
| Border Television | Caldbeck |
|  | Selkirk |



The photographs show a television camera and monitor, produced by E.M.I., that will be used on the Concorde prototype 002 which is due to make its maiden fight from Filton, Bristol, shortly. The camera incorporates printed scan-coils and a 26 mm vidicon tube. The monitor employs a 230 mm (9 inch) tube and has been designed so that it may be rapidly positioned in from of the pilot should the nose of the aircraft fail to droop during the landing procedure.

## UK-4 project contracts

British Aircraft Corporation's Space and Instrumentation Group at Bristol is to be appointed prime contractor and co-ordinating design authority for the UK-4 scientific satellite project. The contract is being placed by the Ministry of Technology acting for the Science Research Council.
B.A.C. will be responsible for spacecraft design and project co-ordination and management. The Royal Aircraft Establishment, Farnborough, will be the research and development authority, and the Space Research Management Unit of the Science Research Council will be responsible for overall management.

The UK-4 satellite is due to be launched in 1971 by a National Aeronautics and Space Administration vehicle into a 550 km circular orbit of the earth at 80 degrees inclination. Incidentally, another satellite in the same series, Ariel-3, recently completed 10,000 orbits of the earth.

The main body of UK-4 will be in the form of a polygonal cylinder with a conical top. Four large booms around the base of the satellite provide mountings for some of the experiment sensors well away from the main body, to reduce the risk of reflection and other interferences, and also to provide a convenient platform for mounting some of

J. B. Atkinson of G.E.C.-A.E.I. (Electronics) Ltd. seen with a half-size modei of U.K.-4. G.E.C.A.E.I. will be producing a good deal of the electronic equipment for the satellite.
the solar cells. During launch these ibooms are wrapped around the fourth stage motor of the Scout launch rocket. After injection into orbit, the booms are deployed to an angle of $65^{\circ}$ relative to the spin axis of the satellite.

The satellite will be basically similar to the previous Ariel-3 satellite since this is of proven design. The prototype and development models will use certain existing UK-3 hardware, therefore the development programme will take less time than a new design. The UK-4 satellite will carry experiments from:
University of Birmingham electron temperature experiment and electron density experiment. University of Sheffield and Radio and Space Research Station-v.l.f. experiment and lightning impulse experiment. University of Manchester (Jodrell Bank) and R.S.R.S.-radio noise experiment. Another organization (to be determined)particle experiment.

## Satellite training

Nigeria is one of the first oversea countries to take advantage of an eight-week course on satellite earth station communications organized by the External Telecommunications Executive of the British Post Office.

Two Nigerian technicians are among 16 students taking part in the current programme at the E.T.E. Training School at Leafield, near Oxford.

## Low-power radar beacon

A radar beacon, which mounts on a buoy and transmits information on its position when triggered by a ship's radar signal, has been developed by G.E.C.-A.E.I. (Electronics) Ltd. The equipment provides a clear indication of areas to be avoided by shipping, and greatly
simplifies the problem of navigating near to land or in the vicinity of underwater hazards.

Named Seawatch 300, the system is asserted to have the best range performance for its size and weight. It supplements the established Seawatch lighthouses around the coasts of Ireland and Scotland. Seawatch Major is much larger in size and has an output of 20 watts, compared with 300 mW for Seawatch 300 .

Both systems operate on the same principle. On receipt of transmissions from navigational radars the beacons transmit signals which appear on the ships radar display show-
The new low-power ( 300 mW ) radar beacon from G.E.C.-A.E.I.

ing the range, bearing and identity of the beacon.

Radar beacon (Racon) responses are muck stronger than the ordinary strength echoes: from buoys and other small targets, ever when these are fitted with radar reflectors Detection range is increased from the norma 2 or 3 nautical miles to near the horizor ranges of 7 to 10 miles, or to a maximum o 12 miles where aerial height permits. Thi direct response of these systems makes buoy much easier to detect, particularly in heav. clutter.

## Calibration services extendec

The British Calibration Service, set-up ir 1966 by the Ministry of Technology, is expanding its services to include pressure, temperature and r.f. noise measurements.

Laboratories can now seek approval for r.f noise measurements as facilities will soon be available from the Mintech Electrical Inspection Directorate for calibrating noise standards. E.I.D. will have access to national standards for this kind of measurement at the Services Valve Test Laboratory, Haslemere Hants, a Ministry of Defence (Navy) establishment.

## Instrument standard agreement

Twenty-six national and international nuclear laboratories in Europe are to adopt a new standard, called CAMAC, for the design and manufacture of electronic instruments. Instruments designed to meet the standard will be electrically and mechanically compatible. This means that individual instruments can be interconnected via a specified data highway to form complex measuring systems. Such systems are independent of the choice of computer or other processing device. The new standard, if widely adopted throughout industry, will not only simplify the task of designing and commissioning measurement and control instrumentation systems but will also enable manufacturers to offer their products to a wider market.

The CAMAC design specification may be used free of charge, and without seeking permission, by any organization or company. Full details of the standard will soon be available in a Euratom report of which advance copies are available from the Electronics and Applied Physics Division, U.K.A.F. Harwell, Didcot, Berks.

The CAMAC standard was developed by the European Standards of Nuclear Electronics (ESONE) Committee which was set up in 1960 on the initiative of the Euratom Research Centre.

The standard anticipates and exploits, the growing use of automatic means of data acquisition and processing (especially on-line to digital computers or other equivalent equipment) and the widespread adoption of integrated circuits.

## Record sales of domestic equipment in America

The Electronic Industries Association report record sales in every category for domestic electronic equipment in America during 1968. The total sales in each category are as
follows: television receivers- 13.2 M ; radio receivers- 46.8 M ; record playing units6.5 M ; and tape equipment- 8.1 M .

Colour television receivers accounted for 6.2 M of the television total. It is interesting to note that 10 M of the television receivers were home-produced and 1.2 M were imported by manufacturers for sale under their own, U.S., brand name. In all, imported equipment accounted for about $11 \%$ of the total television sales; this is a steep rise over the 1967 total of $6 \%$.
Out of the total radio receiver sales of 34.3 M units (excluding car radios and radio-gramophone combinations) only 6 M units were home-produced and a further 5.7 M receivers of foreign manufacture with U.S. makers' labels were marketed. The 22.7 M sales of radio receivers with foreign brand names accounted for $66 \%$ of the total compared with $60 \%$ in 1967. Imports, therefore, accounted for $83 \%$ of the total radio receiver sales.

## New standard may make buying easier

British Standard 9000 is intended to replace the current tangle of specifications that are currently in use in this country (CV, DEF, etc.), making the task of component classification an easier one. B.S. 9000 goes a little further than other specifications in that the components should be of "assessed quality", inspected to the standard scheme and accompanied on delivery by a certificate of conformity to the standard. Certified test records will be kept by all manufacturers, and from the level of performance which these indicate a prospective purchaser can confidently assess the quality of the components in question.

Nearly 150 manufacturers, stockists and test houses have applied for approval under the scheme. So far two of the 22 publications listing the standard required of components have been produced.

## "You scratch my back...."

Hewlett Packard Ltd. have just issued a comprehensive application note entitled "Modern EMI Measurements". No doubt this courtesy will be reciprocated in the form of a booklet from EMI Electronics Ltd. called "Modern HP Measurements". (For those who don't know, EMI also stands for Electromagnetic Interference.)

## Sperry-Decca combine <br> to produce i.n. system

An inertial platform produced by Sperry and a doppler system from Decca Navigator have been combined to produce an inertial navigation system of low cost that is suitable for both military and civil applications.

The Sperry platform, type SGP500, is based on an earlier successful design, the MRG Mk. II twin gyro platform that has seen over 300,000 flying hours.

The Decca doppler is the latest of the series 70 range which has been specified, or is already in use, in the Jaguar, Transall C160,


In this picture the monitor, keyboard and controller forming the CC-30 display can be clearly seen.

BAC 1-11, Boeing 707, HS 125 and DC8-63.
In a complete inertial navigation system a computer would be used in conjunction with the platform and the doppler, and the performance of the system as a whole, and the number of options it offers would depend on the sophistication of the computer used. For civil applications Decca are recommending their Omnitrac 2B.

The new American military communications satellite dwarfs a full size model of the first synchronous communications satellite to be launched (Syncem).


## Visual display terminal

A relatively new company to Britain, Intercontinental Systems Inc. (UK) Ltd which was set-up last September at Woking, recently demonstrated a range of electronic writing machines for various applications and a visual display terminal and keyboard for feeding in and retrieving information from a computer.

The visual display, known as the CC-30, consists of a controller, keyboard and a 625line television receiver or monitor. Alphanumeric information is displayed in a 20 - or $24-$ line by 40 character format. The display will communicate with a computer in a serial mode at 1,200 bits/second asynchronous or 4,800 bits/second synchronous. When the terminal is located close to the processor parallel operation can be employed at 500,000 bits/sec.

## Largest communications satellite

A communications satellite as high as a twostorey building and about 3 m in diameter has been launched from Cape Kennedy. It was built by the Hughes Aircraft Company, California, at a cost of $\$ 30 \mathrm{M}$ for the American Department of Defense and the three Services to investigate the possibilities of using a synchronous satellite for tactical communications.

A new type of stabilization system, called Gyrostat, is being employed on the satellite which makes possible the tall rod-like shape. This, if proved successful, could have a significant effect on the future design of communications satellites which have to carry large aerial systems.

The satellite, which weighs 720 kg , has three aerials made up from five helical arrays and will operate in the u.h.f. and s.h.f. bands.


An unusual view of a Marconi aerial which is part of e radar installation that is nearing completion at Loxther Hill, Southern Scotland. The radar equipment employs a 500WW transmitter and will be linked directly to Prestwick Airport. In the picture part of the parabolic reflector can be seen and on the left is the linear waveguide that exterd's the full 52ft length of the aerial. Part of the geodetic radome can alsa be seen.

## Baird travelling award

The Royal Television Society ( 166 Shaftesbury Avenue, London, W.C.2) invites applications for the 1969 John Logie Baird travelling award. The award, worth $\{200$, is open to post-graduate students in U.K. educational establishments who are concernod with some scientific aspect of electronic engineering, television or allied technology. It is expected that the award will be made to someone in the 21- to 30 -year-old age group.

The award is intended to assist the successful applicant in undertaking a period of investigation abroad of about seven week:.

Application forms for the award are available from the above address.

## G.E.C.-A.E.I. satellite centre

A satellite development and ervironmental testing centre at Brown's Lane, Portsmouth, previously owned and financed by the Government and managed by G.E.C.-A.E.I. (Electronics) under an agency agreement, has now been taken over completely by G.E.C.-A.E.I.

The development centre is said to have
some of the most extensive testing facilities available anywhere in Europe and will enable the company to market satellites for a wide variety of uses. At the moment the company claim to have more electronic equipment in space than any other company outside the United States and have orders for more than $\AA_{8} \mathrm{M}$ worth of earth station equipment.

## Subscription TV in America

In a recent address to television dealers in America W. C. Fisher of the Zenith Radio Corporation explained some of the details of the forthcoming subscription television service. The service is made possible by the decision of the Federal Communications Commission, on December 12th last year, to allow about $80 \%$ of the American population to have subscription TV. This is in contrast to the situation in this country as, following restrictions made by the Government on the number of subscribers, subscription television was abandoned as being uneconomic under the impesed conditions.
In the American system programmes are conventionally broadcass "over-air" (the experiment in this country used wired-TV)
after being "scrambled". Each subscriber hires a decoder which is interposed between the aerial and the aerial socket of any standard domestic receiver. The decoder will handle u.h.f. or v.h.f. signals in colour or monochrome and additionally records details of any programmes that are watched by the viewer on a card for future costing.

## Motorola seek U.K. manufacturing site

The general manager of the semiconductor products division of Motorola recently visited Britain to inspect sites suitable for setting-up a semiconductor manufacturing plant. Sites in Cheshire, Hertfordshire, Lanarkshire and Dunbartonshire were examined. A final decision is expected shortly.

## Engineering degrees

Commenting in his presidential address at the I.E.E. dinner on February 20th on "the attitude of mind that continues to persist in this country that engineering is a subject subsidiary to science" Professor J. M. Meek instanced the reluctance of nearly all universities to use the word 'engineering' in the title of their degree except, in some cases, rather shyly in brackets following the word 'science'. In drawing attention to the matter he said he did not want to be thought of as an exponent of science friction, but rather "to emphasize that, if other professions such as medicine and law merit distinct degrees, then also the profession of engineering is no less worthy to do so".

## Pocket television receiver

An experimental television receiver, not intended for any commercial market at present, measuring only $90 \times 55 \times 28 \mathrm{~mm}$, has been developed by Motorola to demonstrate just what can be done with modern semiconductor devices. Most of the volume is occupied by the electrostatically deflected 25 mm c.r.t. and the four mercury pen-light cells which supply the power.

Altogether 43 transistors and diodes are employed in the receiver which at present operates on one channel only. Power consumption is about 1.5 W -half of this being used by the tube heater.

Picture shows the shirt-pocket television developed by Motorola Inc., of Chicago, U.S.A. It measures $90 \times 55 \times 28 \mathrm{~mm}$.


# Wireless World Colour Television Receiver 

## 11. Decoder Circuits

Before discussing the colour-decoding circuitry, the 0.6 - $/ \mathrm{sec}$ delay line for the luminance channel will be treated. This was deferred to the colour section because it is only essential for colour in spite of being fitted to the i.f. board. The line employed during the bulk of the development work is of Mullard design but it does not appear to be available commercially. Details of the construction are given in Fig. 1. It is a difficult component to make. It is not easy to stick the copper-foil strips and patches to the polyester-foil accurately in position, nor is it easy to wind 1350 turns of No. 46 wire evenly and without breaking


Copper patches Aroldited
STAGE 2


STAGE 3


Drill hole at each end 0.25 In dia. $\times 10 \mathrm{~mm}$ deep

## FINALLY

Tape overall with plastic tape for mechanical protection

Araldite lead-thro insulator into rod

Fig. 1. Constructional details of the $0.6-\mu \mathrm{sec}$ delay line are given here.
the wire unless a winding machine is available. Furthermore, both the Melinex sheet and the best adhesive are almost impossible to obtain in small enough quantities for making just one or two lines.

The merit of the design is its compactness. Where space permits the use of a physically larger component, as it does in this case, an alternative is available. This is the Delax type HH2500 flexible delay cable and this can be used with only minor changes to the circuit. The cable has a characteristic impedance of $2.9 \mathrm{k} /$, instead of $1 \mathrm{k} \Omega$, and for 0.6 usec delay its length is $12 \frac{1}{2}$ inches, including its terminations. It can, however, be bent to a diameter of not less than 5 inches. As it is coaxial with the outer earthed, it can be bent so that the ends come to the normal termination points on the i.f. board with the loop lying behind the board.
The cable has two pins at each end for soldered connections. The inner and outer conductors can readily be distinguished with an ohmmeter test, for the inner conductor is of noticeably higher resistance than the outer.

For impedance matching at the input, a $1.9-\mathrm{k} \Omega$ resistor must be connected in series with the inner conductor. If the two inner-conductor pins are soldered to the two pins in the i.f. board, shown in Parts 7 and 8 for the Mullard line, the $1.9-\mathrm{k} \Omega$ resistor can replace the wire connection between the input pin and the collector of $\operatorname{Tr}_{4}$. The cable pins for the outer can be soldered directly to the printed board for their earths.

At the output end, proper matching merely requires changing $R_{1}$ of the luminance amplifier (Part 6) from $1.2 \mathrm{k} \Omega$ to $6 \mathrm{k} \Omega$.

The cable is of German origin (Kabel und Metallwerke) and is available in this country from Aeon Laboratories, Beech Hill, Ridgemead Road, Englefield Green, Surrey.

A careful comparison of the performance of the two delay lines has been made. They were installed with a changeover switch so that a rapid comparison could be made and they were compared on a variety of both colour and monochrome pictures, including Test Card F. No observable difference between them was found.

We come now to the decoder circuits and here it may be helpful to refer to the block diagram in Part 10. In what follows the numbers in brackets refer to the numbered blocks in that diagram. The circuit starts in Fig. 2; we say 'starts' because there is so much of it that it is impracticable to include it all in one diagram. All told there are 359 parts involved, including 135 resistors, 73 capacitors, 15 transistors, 24 diodes and 3 double valves. With the exception of the valves and the components associated with them all the parts are assembled on two pieces of Veroboard each measuring $2 \frac{9}{16}$ inches by $13 \frac{1}{2}$ inches; the board is of the kind which is backed by copper strips. The component density is thus quite high.

The whole signal appearing at the emitter of $\mathrm{Tr}_{4}$ of Fig. 1 of Part 7 is fed to the decoder at $P_{1}$ in Fig. 2 of this article. This is the complete video signal; that is, it is the luminance $(Y)$
signal plus line and field sync pulses plus colour burst plus the chrominance signal components around 4.43 MHz . The capacitor $C_{1}$ and resistor $R_{1}$ form a simple high-pass filter (1) which removes the video signal and the sync pulses and leaves only the $4.43-\mathrm{MHz}$ signals. These are attenuated quite a lot but a 3-V peak-to-peak input (burst amplitude $0.25 \mathrm{Vp}-\mathrm{p}$ ) is sufficient.

The filter output is applied to an amplifier (2). This comprises transistor $\operatorname{Tr}_{1}$ which derives its base bias from two sources. One is a positive bias through $\boldsymbol{R}_{3}$ from the potential divider $R_{4}$; the other is a negative bias which comes through $R_{16}$ from the anode of $D_{1}$. As will appear later, this diode is fed with the burst at its cathode and it rectifies the burst to produce a smoothed output increasing negatively as the signal amplitude increases. In this way a.g.c. is applied to $\operatorname{Tr}_{1}$ and it acts to maintain the output burst and chrominance signals at a substantially constant level. The precise level is adjustable by $R_{4}$. The system is sometimes called automatic chrominance control.

The collector of $\operatorname{Tr}_{1}$ feeds a $2: 1$ step-down transformer $T_{1}$. The secondary feeds a burst amplifier $T r_{2}$ and also through $P_{2}$ a chrominance amplifier, which is located physically in another board and is not shown in Fig. 2. The burst amplifier (22) is straightforward with an output tuned circuit comprising $L_{1}$, stray capacitance, and the damping resistor $R_{12}$. The collector feeds a second burst amplifier and gate $\operatorname{Tr}_{3}$ through $C_{7}$. This stage (23) is cut-off for most of the time and is conductive only for the duration of a positive pulse applied at $P_{3}$. When it is so conductive current flows into $C_{8}$ and a small positive voltage is built up across it which holds the transistor cut-off when the pulse is absent. The pulse is derived from the line flyback by components in the other board and is timed to coincide with the colour burst. Thus $\operatorname{Tr}_{3}$ passes and amplifies only the colour burst
and cuts out the chrominance signals. The burst voltage appearing across the primary of $T_{2}$ is adjustable by $R_{4}$.

This transformer $T_{2}$ is a part of the phase discriminator (24). The secondary is centre-tapped and earthed to chassis. With respect to this point, therefore, the voltages at the two ends are equal in amplitude and opposite in phase. One side feeds $D_{1}$ and its rectified output is smoothed by $C_{11}$, the voltage being applied through $R_{16}$ to $T r_{1}$ as a.g.c.

The whole secondary output is applied through $C_{12}$ and $C_{14}$ to the diodes $D_{2}$ and $D_{3}$ in series. The diode loads are $R_{17}$ and $R_{18}$ and should be equal in value. Their exact value is unimportant and they are chosen to be $180 \mathrm{k} \Omega$ merely because this value is in the $10 \%$ tolerance range.

A locally-generated oscillation is introduced via $T_{3}$. Starting from chassis there is one closed path through $C_{15}$ the secondary of $T_{3}, D_{2}, C_{12}$ and the upper half (on the diagram) of the secondary of $T_{2}$. There is a second closed path through $C_{15}$, the secondary of $T_{3}, D_{3}, C_{14}$ and the lower half of the secondary of $T_{2}$. Let $V_{0}$ be the voltage across $T_{3}$ and $V_{\mathrm{b}}$ be the voltages across the two half-secondaries of $T_{2}$. Then the voltage applied to $D_{2}$ is, say, $V_{0}+V_{b}$, whereas that applied to $D_{3}$ is $V_{0}-V_{b}$. The two diode inputs are equal in amplitude if, and only if, the voltages are in phase quadrature. The rectified outputs of the two diodes are then equal and opposite and cancel to zero through the d.c. path which is via $R_{20}, R_{19}, R_{25}, R_{24}$ and $R_{15}$. This is the ideal condition when the local oscillator is running locked precisely in frequency to the burst and at $90^{\circ}$ in phase.

If there is a phase error $V_{0}$ will differ from one halfsecondary voltage by less than $90^{\circ}$ and will differ from the other by more than $90^{\circ}$. In the first case the peak voltage of the combination will increase, and in the second case it will decrease. The rectified outputs of the two diodes will no longer be equal;

Fig. 2. Circuil diagram of one of the two main boards of the decoder. It includes the common first-stage chrominance amplifier, the crystal reference oscillator and a.p.c. circuits, the colour-killer and the identity circuits.

one will increase and the other decrease. The mean output, smoothed by $C_{15}$, is applied through $R_{15}$ to the base of $T r_{4}$, ,which is a d.c. amplifier (25). Thus a phase difference other than $90^{\circ}$ between the burst and the local oscillator produces a d.c. output which increases with the magnitude of the phase error and is positive or negative depending on the direction of the error.

All this assumes that the frequency of the oscillator is exactly correct. In practice this will rarely be so when the equipment is switched on. In general terms, what happens when there is an initial frequency error is this. The output of the discriminator is varying at the difference between the two frequencies, but it
is not a sinusoidal variation and it has a mean value the sign of which depends upon whether the oscillator is higher or lower in frequency than the burst. This acts through the d.c. amplifier on the oscillator to change its frequency towards that of the burst and, if all is well, it eventually brings the beat frequency to zero and the oscillator is then locked in frequency with the burst. Since a certain discriminator output is required to hold the oscillator thus locked in frequency, there is necessarily a phase error between the oscillator and the burst. This can be kept small only if the oscillator frequency is initially very close to that of the burst.

There is a limit, too, to the range over which the circuit will

act to lock the oscillator and this depends mainly upon its bandwidth. This is settled by the values of $C_{15}, C_{16}, R_{22}$ and the other circuit resistances. The bandwidth is a compromise. If it is wide the pull-in range will be large but the lock will be affected by noise and interference. If it is narrow the pull-in range will be small but noise and interference will have little effect.

Once it is locked the oscillator will hold in lock over a greater range of variation of its parameters than it will pull in from the unlocked condition; that is, the hold-in range is greater than the


Fig. 3. The resultants of the local oscillator and the idealized swinging burst are shown at (a) and what actually happens in two successive lines at (b) and (c). The two resultants in each diagram represent the inputs to the two diodes of the phase discriminator.
pull-in range. This is a normal characteristic of automati phase control circuits (a.p.c.).

Because the pull-in range is small it is necessary to have th oscillator functioning at very nearly the correct frequency in th absence of any control. This demands a crystal-controlle oscillator (27). This is $T r_{5}$ which functions basically as a Colpitt oscillator. The crystal is connected between base and chassis, bu has in series with it the network $C_{17}, L_{2}, C_{18}$ and $D_{4}$. Also betwee, base and chassis are the two series-connected capacitors $C_{19}$ ani $C_{20}$ to the junction of which the emitter is connected. Th collector, of course, is returned to chassis through variou components.

The diode $D_{4}$ is a special type and is operated with revers bias. It has a capacitance which varies with the bias by abou 30 pF . It normally operates with about 6 V reverse bias. Althouglall diodes give about the same range of capacitance the meas capacitance varies quite a bit between different specimens of th. same type. The other components are included to allow for this-

The shunt capacitance $C_{18}$ is desirable to allow for the use of : diode of unusually low capacitance and the series-tuned circui $L_{2} C_{17}$ is tuned below resonance. It thus adds inductive reactanc, and behaves as a variable negative capacitance.

Thus with the proper mean bias applied to $D_{4}$ and with the a.p.c. system inoperative the oscillator frequency can be brough very closely indeed to the proper value just by the adjustment $o_{1}$ $L_{2}$. Two points $P_{4}$ and $P_{5}$, which are normally linked, are providec so that the oscillator can readily be disconnected for test purposes.

In the collector of $\operatorname{Tr}_{5}$ there is a tuned circuit $L_{3}$ tuned by the series-connected value of $C_{21}$ and $C_{22}$ and damped by $R_{33}$. A fraction of the collector voltage developed across this circuit is applied to the base of the emitter-follower $T_{6}$. Emitter bias isprovided by $R_{37}$ shunted by $C_{23}$ and the output voltage is developed across the primary of $T_{3}$ whence it is transferred to the secondary. It is also taken out through $P_{6}$ to the PAL diode switch (35) and the $90^{\circ}$ phase shifter (36) in the other board.

The tuning of $L_{3}$ affects the oscillator output and also controls its phase to some extent. It is easily tuned for maximum output by connecting an oscilloscope to $P_{6}$ and adjusting $L_{3}$ for maximum signal. However, this is not usually the best setting for $L_{3}$ and it is usually best to tune $L_{3}$ to a slightly lower frequency.

## Swinging burst

So far nothing has been said about the swinging phase of the colour burst. It has been assumed that it is $-\sin \omega t$ with the oscillator at $\cos \omega t$. In alternate lines, however, the phase of the burst is $\pm 45^{\circ}$ to this. Fig. 3 shows at (a) the case previously considered looked at from the point of view of the diodes $D_{2}$ and $D_{3}$, one resultant being applied to one diode and the other to the other diode. The voltage across the secondary of $T_{3}$ is represented by $\cos \omega t$ and the voltages across the two halves of the secondary of $T_{2}$ by $\pm \sin \omega t$. Completing the parallelograms and taking the diagonals gives the diode voltages. As the diodes are peak rectifiers only the amplitudes of the resultants are important.

The actual conditions with one phase of the swinging burst are shown at (b). The two phases existing on the transformer secondary are $\pm \sin (\omega t \pm \pi / 4)$ and the diagonals of the two parallelograms are of very different magnitudes.

In the burst of the following line the condition shown at (c) exists. The burst is now at $\pm \sin (\omega t+\pi / 4)$. The diagram is now a mirror image of the previous one. The diode which previously had the larger input now has the smaller and vice versa. The average output over any even number of bursts is thus zero, just as in case (a). The actual output, however, is positive and finite during one burst and negative and finite during the next; this forms one cycle alternating at half the line frequency, or about 7.8 kHz . This is passed by the filter circuit $C_{15}, C_{16}$ and $R_{22}$ and so appears at the output of the d.c. amplifier $T r_{4}$. It is necessarily applied to the capacitance diode $D_{4}$ and varies its capacitance in
iympathy. The oscillator, however, cannot change phase rapidly enough to follow it and is uninfluenced by these fluctuations. It hus behaves as if the burst phase were always the same at $-\sin \omega t$.

This a.c. component at half-line frequency is applied to $\mathrm{Tr}_{7}$ which acts as an amplifier with a collector load tuned to 7.8 kHz across which a large amplitude sinewave of 7.8 kHz is developed (29). This is fed to an emitter-follower $\operatorname{Tr}_{8}$ (30) with d.c. restoration by $D_{5}$ at the base. This clamps the negative half-cycle to chassis potential and so the output across $R_{44}$ is also a sinewave which is always positive to chassis. The resistor $R_{43}$ between the emitter of $\mathrm{Tr}_{8}$ and the capacitance tap on the tuned circuit provides some positive feedback.

In the absence of a colour burst the 7.8 kHz signal does not exist and so $T r_{g}$ is cut-off, even if only just. Its emitter is thus at chassis potential. The anode of $D_{8}$ is then at chassis potential and this diode is cut-off, since its cathode is positive to chassis by the voltage across $R_{48}$. Thus the point $P_{g}$ is at chassis potential and a transistor in the chrominance channel in the other board is cutoff.

When the swinging burst is received the 7.8 kHz signal appears at the cathode of $T r_{8}$ and is rectified by $D_{7}$ and a positive potential is built up across $C_{34}$. This exceeds the potential across $R_{48}$ and $D_{8}$ conducts virtually joining $P_{8}$ to $R_{48}$ and so applying positive bias to the transistor in the other board and making it operative. This is the colour killer (31) which renders the chrominance channel inoperative when receiving a monochrome transmission.

It should be noted that the colour killer is readily put out of action. All that is needed is to short-circuit $D_{8}$. This is often needed when testing the decoder, aligning its circuits and fault finding.

The $7.8-\mathrm{kHz}$ signal from the emitter-follower $\operatorname{Tr}_{8}$ is also applied to the identity circuit (32). The output of $D_{6}$ is a positive more-or-less half cycle in alternate lines. It is applied through $P_{7}$ to the bistable in the other board. If this is operating in the right phase it has no action. If it is operating in the wrong phase, however, it suppresses its normal triggering pulse so that the bistable stays in the same state for two consecutive lines, which brings it into the proper phase.

## Construction

Space does not permit the treatment of the chrominance circuits in this article so that these circuits must be deferred to next month. Instead we go on to deal with constructional matters. Details are given of the windings of the transformers including those used in the chrominance channel. There are seven transformers and all are wound on Mullard Ferroxcube FX2249 cores. Each core is a block of Ferroxcube which is pierced by two holes and it is wound by poking the wire through these holes. This is quite easy since no winding has more than six turns. Rather than put each winding on separately, it is better and easier to twist together loosely as many wires as there are windings and so wind all the windings for one core together. It is better because it gives somewhat tighter coupling between the windings.

The most difficult is $T_{4}$ since it has four windings of four turns each and unless the wires are twisted quite loosely it will be difficult to get the last turn through the holes.

The wires are easily sorted out afterwards with an ohmmeter. It is best to leave quite long leads and to slip coloured sleeving over the wires as they are identified. The leads can be shortened as required when the mounted transformers are connected up, but it is desirable even then to leave an eighth of an inch or so of sleeving on to keep the identification unmistakable. One lead in each transformer need not be colour-coded, of course. The transformers are mounted by sticking them to the upper surface of the Veroboard with Evo-stik.

It is important that the proper connections to the transformers be made. Reversing the leads to one winding of $T_{3}$, for instance, will reverse the phase of the locked oscillator, and this will result in the final colour picture being in complementary colours!

## TRANSFORMER WINDING DETAILS

$T_{1}$ Primary 6 turns; secondary 3 turns. Twist 2 strands of wire; wind 3 turns; untwist the rest of the wire and continue with 3 more turns of one wire only.


T, Primary 5 turns; secondary 10 turn
C.T. Twist 3 strands of wire; wind

5 turns.


T, Primary 5 turns; secondary 5 turns. Twist 2 strands of wire; wind 5 turns.


Black



T4 Primary 8 turns C.T.; secondary 8 turns C.T. Twist 4 strands of wire; wind 4 turns.


Ts Primary 6 turns; secondary 6 turns. Twist 2
strands of wire; wind 6 turns.


T6 Primary 4 turns; secondary 6 turns. Twist 2 strands wind 4 turns; untwist the rest of the wire and continue with 2 more turns.


T, 10 turns C.T. Twist 2 strands of wire; wind 5 turns.

All transformers are wound on Mullard Ferroxcube FX 2249 cores with No. 38 d.s.c. wire. All windings on a core are put on together by loosely twisting the appropriate number of strands together and winding the required turns of this composite wire. The core is a block of Ferroxcube which is pierced by two holes, through which the wire is readily poked. The windings are then sorted out with an ohmmeter.

The inductance $(\mu H)$ is four times the square of the number of turns, but varies by about $\pm 12.5 \%$ with different samples of core.

An effect of this nature is actually quite trivial and can be corrected by changing the phase of the bistable, which can be done by changing over the Identity lead from one side to the other. In some cases, however, wrong connections may produce complementary colours in, say, the $B-Y$ channel but not in the $\mathrm{R}-\mathrm{Y}$; this naturally completely upsets the $\mathrm{G}-\mathrm{Y}$ channel and it becomes quite difficult to sort out what has gone wrong by looking at a most weirdly coloured picture!

Details of the coils used in both this and in the chrominance circuits will be given next month.
Standard size Veroboard is used. Two pieces each $2 \frac{9}{16}$ inches wide by 17 inches long are needed. Each is cut to a length of $13 \frac{1}{2}$ inches and one of the pieces cut off is used for the chrominance output stage. The cutting must be carried out carefully and it is wise to clamp the board between two pieces of wood very close to the cutting line and to have the copper-clad side towards one when cutting. This minimises the chance of the copper strips being pulled off the board. The board is pierced with holes 0.15 inch apart. When a hole has to be enlarged, and this occurs only rarely, do it by drilling from the copper side.

A milling tool is available for removing the copper around any hole and so providing a break in a strip. It is a satisfactory tool and carries out its function better than a drill. There are a great many breaks needed and care must be taken to make sure that
they are all complete and that no whisker of copper is left bridge the gap. Similarly when soldering, care must be taken I see that solder does not cause a short-circuit between adjacel strips. There is very little tendency to this if a small iron is use and the board is kept horizontal. When the finished board mounted it is vertical, however, and if one then has to solder to there is quite a risk of solder falling downwards and bridging tthe next strip below.

Components have their leads bent at the proper points an inserted through the proper holes from the front. The board then turned over for soldering. Unless one is blessed with thre hands the component promptly falls out! The easiest way is to holthe board with one hand and press the component against th board with one finger of that hand. Then with a pair of pliers i the other hand bend over each lead at right angles at about onc eighth of an inch from the back surface and so that the bent ove wires lie lengthwise along the copper strips. Cut off the surplu wire so that there is about an eighth of an inch only lying alon the strips. On removing the finger the component will drop away from the board and hang on the bent over ends and so can readily be soldered. If it does not drop of its own accord the leads car be pushed down against the board.

It is necessary to choose physically small components especially resistors, if they are to go into the space available

Fig. 4. Photographs of the two sides of the board, showing the component layout, are given here. In order to reproduce them at a reasonable size they have had to be split, but there is sufficient overlap between them to prevent any difficulty.


Japacitors associated with tuned circuits are preferably silverednica types for they are both robust and quite low loss. Ceramic .ypes are suitable elsewhere, but their losses and temperature zoefficients are usually higher. The tuned circuits are mainly quite heavily damped and it is not so much the losses in them--elves that are important as the fact that they seem to vary quite a lot from one specimen to another.

The photographs of Fig. 4 show the layout of components and one of them shows a back view of the board with the positions of the breaks in the copper together with the few wires and components which are mounted on the back of the board.

The obvious thing to do is to use this photograph to make all the breaks in the copper right at the start. This is inadvisable, hhowever, and it is much safer to make them as one goes along. It is much too easy to make mistakes.

The best thing to do is to construct from the circuit diagram using the photographs as a guide.

The odd unwanted break which it is almost inevitable that one will make can, of course, be bridged with a piece of wire. When the job is completed, however, it is advisable to check each little piece of strip for continuity. Not only will this reveal any wrongly made break but it will also show up any hairline break in the copper. Such a break can be invisible and can be remedied by flooding the strip with solder, fortunately, it is a
rare event, but it can occur.
The transistors are normally mounted in three holes which are usually adjacent at right angles to the length of the board. The BF194 types have short lengths of copper wire soldered to them, because their tag spacing is different from the hole spacing of the board. The BC108 types, however, do not need this as they are already provided with wire ends. Do not forget that the order of leads for the BF194 is base, emitter, collector, whereas for the BC108 it is emitter, base, collector. This was referred to in the article dealing with the i.f. amplifier. Do not forget, also, that the can of the BC 108 is connected to the collector.

The transistors are usually mounted as they appear in the circuit with the collector lead towards the top of the board. Sometimes, however, a different arrangement is adopted. Notably in the case of $\mathrm{Tr}_{3}$, which has the collector towards the bottomedge.

The only unusual components are the Mullard thermistor VA1055S and capacitance diode BA102 and, of course, the quartz crystal. The one used was supplied by Cathodeon Ltd., for 4.433618 MHz , type S $159 / 20$ 2M wire.

The components of the signal channel of the decoder, with the PAL switch, $90^{\circ}$ phase shifter, synchronous demodulators, matrix and the first-stage colour video amplifiers are mounted on another board of the same size as the one used here. This will be described next month.


# Wideband Linear Amplifier 

# 1 to 30 MHz design with low intermodulation products 

by R. Hirst*

In high frequency communication equipment thermionic valves are still widely used in the design of new equipment. This is mainly due to the requirements of the transmitting side where semiconductors cannot supply sufficient power at the higher frequencies. A cursory examination of transistor manufacturers' data indicates that there are some devices capable of delivering quite considerable power at the upper frequencies; however, the problem is not simply one of delivering power but a matter of producing an output relatively free from intermodulation products. That is to say, no matter what the level of the input signal, the amplification factor of the transistor should be the same thus introducing a minimum of distortion due to the

* Standard Telephones and Cables Ltd.


Fig. 1. Oulpul characteristics of a commonemitter stage.


Fig. 2. Current gain versus collector current, common-emitter.
non-linearity of the transfer characteristic.

## Preliminary considerations

As it is necessary to achieve relatively high performance in respect of the intermodulation products some initial investigation into the operating characteristics of semiconductors is essential.

Common-emitter: The graph in Fig. I is a typical output characteristic curve of a transistor connected in the common-emitter mode. Using load-line I it can be shown that the current gain of this particular device at collector currents of 10 mA , 30 mA and 50 mA would be 66,58 and 50 respectively, indicating a condition of nonlinearity. If a smaller portion of the load


Fig. 3. Output characteristics, common-base.


Fig. 4. Voltage gain versus collector current, common-base.

line is utilised, a greater degree of linear may be achieved provided that the mo suitable current gain and collector current selected that will cover the required swir The graph in Fig. 2 presents load lines and 2 in a manner that visually indicat the linearity of the device at two give conditions. The portion A-B on load lis 2 is reasonably linear and if plotted Fig. I gives a swing of 8 V , as shown. Fro the two graphs the supply voltage, th quiescent collector voltage and collect current may be readily established for th most linear point of operation. In practic though tedious, this is a simple and effectimethod of determining the working par meters for linear operation in commc emitter connection.

Common-base: From an examination , manufacturers' data it is quite apparent tha the most linear mode of operation may $t$ found in the common base connection as th graph in Fig. 3 indicates. When translate into voltage gain versus collector current condition of almost perfect linearity i shown. The intermediate step of plottin current gain versus collector current ha been omitted as the linearity of the voltag gain developed across a given load is function of the linearity of the current gain of the device. For ease of comparisot between the common-emitter and common base type of connection, the graph is Fig. 4 is presented. This is in units o voltage gain derived from the input curren being approximately the output current as function of $R_{L} / R_{E}$ where $R_{L}$ is the collecto load and $R_{E}$, the emitter load.

Common-collector: This is more usually known as the emitter-follower and differs ir one main respect from the other twe methods of connection. The device does not give any voltage gain; however, it provides a current gain similar to that of the

g. 5. Typical mutual characteristic.


Fig. 6. A two stage amplifier.
:ommon-emitter and is therefore an :xcellent device for transferring power. It is often mistakenly assumed that an emittercollower, due to its inherent voltage feedback characteristic, reduces distortion. This is not so as the distortion that can be introduced may be just as severe as in any other method of operating a semiconductor.

It is essential, with an emitter-follower, to ensure that the input swing does not enter the non-linear portion of the mutual characteristic curve. That is, the collector current versus base-to-emitter voltage parameter indicated in the graph of Fig. 5. From this graph it can be shown that even a relatively low signal device may require a considerable quiescent current around which to swing the signal current, for linear operation.

## Circuit description

In the circuit of Fig. 6 a common-base amplifier and a common-collector stage have been combined to provide a gain of 13 dB delivering an output of 100 mW into a $50 \Omega$ load. From the published data the 2 N 3375 was selected for the output stage in


Fig. 7. Input resistance curves.


Fig. 9. Gain versus frequency performance of the amplifier.
emitter-follower connection and a 2 N 3866 was chosen to provide a common-base input amplifier. The most suitable operating point of the output stage was computed in a manner similar to that indicated in the graphs of Figs I and 2 with the result that a quiescent emitter current in the order of 120 mA was established for the 2 N 3375 at a supply voltage of 30 V .

The amount of gain required determined the collector load of the input stage in the following manner:
$R_{L}=\frac{V_{\text {out }}\left[R_{s}+r_{e}+r_{b}(1-\alpha)\right]}{V_{\text {in }} \alpha}$.
As a 13 dB gain represents approximately a voltage gain of four and a half times and with a source resistance, $R_{s}$, in the order of $50 \Omega$ it is possible to neglect $r_{e}$ and $r_{b}(1-\alpha)$ due to two parameters being negligibly small proportions of the total. The value of the collector load can now be more simply calculated as:

$$
R_{L}=\frac{4.5 \times R_{8}}{\alpha}=234 \Omega
$$

However this total of $234 \Omega$ has to be con-
sidered in conjunction with the parallel input resistance of the output stage which may be calculated as follows:

$$
\begin{align*}
r_{i n} & =r_{b}+\left(\beta \frac{r_{e}}{I_{e}(\mathrm{~mA})}\right)+\beta R_{L_{2}} \cdots  \tag{2}\\
& =10+(30 \times 0.25)+(30 \times 50) \\
& =1517 \Omega
\end{align*}
$$

where the current gain of the output stage is $30, r_{b}$ is approximately $10 \Omega$ and $R_{L_{2}}$ is in the order of $50 \Omega$. For silicon grown transistors $r_{e}$ can be considered to be $35 \Omega$.

A collector load of $230 \Omega$ was calculated as the parallel combination of the results of expressions (I) and (2), but to ensure that the gain parameter was met, a final value of $220 \Omega$ was chosen as the practical value. It was gratifying to find in practice that the gain was only 1 dB higher than calculated even though expressions (1) and (2) are approximate. As the collector load had been determined by gain considerations it was necessary to include in the collector circuit a I $\mu \mathrm{H}$ choke to offset the capacitive load due to strays and input capacitance of the output stage in order to maintain the gain at 30 MHz . Both the transistors used had a
very high $f_{T}$ and the design takes full advantage of this. The overall response, indicated in the graph of Fig. 9, was obtained without the introduction of any external feedback. The whole circuit has proved to be highly stable.

The input resistance had to be in the order of $50 \Omega$ throughout the frequency range so a series resistor was introduced into the input circuitry. The graph in Fig. 7 indicates the input resistance of the transistor in curve $A$ and the final input resistance, taking into account the input resistor $R_{1}$, in Curve B.

A lot of store is quite often placed in rigorous mathematical treatment of some of the parameters surrounding semiconductors; however, in the majority of instances, when dealing with devices having spreads in the order of $300 \%$ common sense should prevail and provide answers well suited to the occasion.

In the final circuit of Fig. 8, two circuits similar to that in Fig. 6 are combined to provide a total gain of 26 dB . As it is not necessary to provide more than 5 mW of power to drive the output pair, $T r_{3}$ and $T r_{4}$, the emitter follower stage $T r_{2}$, in the first half of the amplifier, is provided by a lower power device, the 2 N 3866 , biased for a suitable operating point as indicated in Fig. 5.
There tends to be a spread in the most linear point of operation of a device so a potentiometer was included in the biasing chain to ensure that the final, and most crucial, stage of the amplifier could be biased to precisely the best point. The emitter resistors of $\operatorname{Tr}_{1}$ and $T r_{3}$ were chosen to be as high as possible consistent with power requirements and at the same time low enough to allow for a relatively large swing across the common base stages in order to avoid the introduction of a high harmonic content.

With the supply voltage at 30 V , the emitter voltage of $T r_{4}$ is 14.7 V and the collector voltage of $\mathrm{Tr}_{3}$ is 15.4 V . As previously stated the quiescent condition of the output and preceding stages is set up by adjusting $R V_{1}$. Due to the d.c. feedback introduced by $R V_{1}$, the circuit automatically adjusts itself to work to the specification over the range $-5^{\circ}$ to $+50^{\circ} \mathrm{C}$. The final stage, $T_{r}$ requires a heat sink of reasonable proportions due to the relatively high quiescent power dissipated within the device.
It must be pointed out that while the input resistance is held relatively constant over the frequency range, the output resistance may change by as much as three times due to the gain spread of the output transistor, $T r_{4}$, and may be calculated in the following manner:

$$
\begin{equation*}
R_{o u t}=\frac{R_{L}\left(T r_{3}\right)}{\beta\left(T r_{4}\right)} \tag{3}
\end{equation*}
$$

Therefore, for circuits requiring an accurate return loss characteristic some further computation will have to be made.

It is essential when laying out this amplifier that the collector to base connections are kept as short as possible so that
the minimum stray capacitance is introduced into the circuit.

The supply decoupling is also very important and the appropriate capacitor should be placed directly from the collector of the output stage to the earth rail where the emitter resistor, $R_{\xi}$, is terminated. This ensures that the output current does not return via any of the input circuitry. The decoupling of the input stage should be between the termination points of the collector and emitter of $T r_{1}$. The positive and negative supply tracks, if printed circuits are employed, should be as wide as possible. The positive supply lead should be taken directly from the point on the rail where the collector of $T r_{\psi}$ is connected and the negative return should be taken from the junction of $R_{9}$ and the negative rail. The earthy end of the input signal lead must be taken directly to the earthy end of the emitter resistor of $\operatorname{Tr}_{1}$.
If the points above are noted, the amplifier will prove to be extremely stable.

The amplifier is capable of delivering up to nearly half a watt of power if considerably increased intermodulation and harmonic distortion can be tolerated.

## Announcements

A conference and exhibition on the subject of electronics and education will be heid at Sheffield University from March 25 th to 28 th. The organizers are Design Electronics in conjunction with Sheffield University and Kingston College of Technology. Further details are available from D. A. R. Wallace, Design Elect onics, 33-39 Bowling Green Lane, London E.C. 1.

A summer school on applied optics will be heid at the Imperial College of Science and Technology from 9th to 20th June. Further details may be obtained from the Registrar, Imperial College, London S.W. 7. (Fee: \&35.)

A new, 36 -frame, 35 mm , colour filmstrip entitled "Integrated Circuits" is now available from the Mullard Educational Service. The filmstrip ( $C^{2}$ ) may also be obtained as a set of slides ( $(210 \mathrm{~s}$ ) from the Slide Centre Lid, Porıman House, 17 Brodrick Road, London S.W. 17.

Electric \& Musical Industries Lid, of London, and Varian Associates, of California, have announced the formation of two joint companies. Varian/E.M.I., based at Palo Alto, California, and E.M.I.-Varian Ltd, at Hayes, Middlescx. The U.K. company will incorporate the power tube division of E.M.I. and will market reflex klystrons, and microwave and power tubes.

British Insulated Callender's Cables Lid and Re-liance-Clifion Cables Lid have announced an agreement with a view to Reliance-Clifton becoming a member of the B.I.C.C. group.
Lennard Developments Lid, 497 Green Lanes, London N.13, are to market the Rainer-Walton cartridges and replacement styli.
B.F.I. Electronics Ltd, Sinclair House, The Avenue, London W.13, have announced their appointment as sole U.K. representatives for the following American companies: Textool Products Inc., Irving, Texas, manufacturers of semiconductor and i.c. test sockers; Microdyne Instruments Inc., Waltham, Mass., who
manufacture manual and semi-automatic i.c. tester and Film Microelectronics Inc., Burlington, Mass manufacturers of metallized substrates and chip resistor

Litton Precision Products International Inc. have bee appointed the exclusive sales and marketing organiz: tion in the U.K. by the Takeda Riken Company, ( Japan, manufacturers of electronic counters, digitu voltmeters, electrometers, automatic digital integrato and data acquisition systems.

Waycom Lid, has been appointed by A. S. Akers, th Norwegian semiconductor manufacturer, the sole U.K supplier of hybrid i.es which are to be custom-built t individual requirements.

Sifam Electrical Instrument Co. Lidd, Woodlan Road, Torquay, Devon, has appointed selling agents is Sweden. The agents, Teltronic AB (Eugen Eriksson), wil handle Sifam's entire range of moving-coil measurin instruments.

General Test Instruments Lid have been appointed U.K representatives for Non-Linear Systems Inc., of Cali fornia. The American company manufacture digita voltmeters, data logging systems and automatic environ mental test systems for large-scale integrated circuits.

Prosser Scientific Instruments Lid, 1 Northampior Street, Cambridge, have been appointed sole U.K distributors for the products of Thermo Systems Inc who specialize in anemometers.

Electroustic Ltd, of 73b North Sireet, Guildford, Surrey, have been appointed sole U.K. agents for the range of terminals, single-pole sockets, crocodile clips, miniaturized plugs and sockets etc. manufactured by Richard Hirschmann of West Germany
The Radio Systems Division of Plessey Electronics Group has received a $£ 500,000$ order from the Ministry of Technology for its gun sound ranging system which incorporates radio links. All locating batteries in the British Army will be re-equipped with this system of locating hostile artillery.

Marconi navigation and audio systems valued at ¢,500,000 will be fitted to the fleet of Trident III airliners due for delivery to British European Airways in 1970. Twenty-six aircraft will each use the Marconi VOR/ILS navigation system, incorporated in triplicate into the blind landing system, a tadio compass in duplicate and a solid-state audio system.

Abbey Electronics \& Automation Ltd., Delamare Road, Cheshunt, Herts, have been awarded contracts totalling $£ 50,000$ for sonar test equipment by the Admiralty.

Elliott Space and Weapon Automation Lid, under a contract worth more than $£ 500,000$, are to supply the radar simulation and data handling system called Instilux to Eurocontrol's Institute of Air Navigation Services at Luxembourg.

Ekco Electronics, of Southend-on-Sea, Essex, a member of the Pye of Cambridge group, have announced a contract valued at approximately $£ 200,000$ from B.O.A.C. for the supply of weather radar systems for the airline's Boeing 747 fleet.

Burndept Electronics (E.R.) Lid has received a $£ 5,000$ order for search and rescue beacon equipment (S.A.R.B.E.) from B.O.A.C. for use in its Bocing 747s.

The Marconi automatic direction finder, type AD370, has been selected for both Concorde prototypes and also the two pre-production models.

International Marine Radio Company, of Croydon, Surrey, has received an order from the Ministry of Defence (Navy) for the supply of Solas II portable survival transmitter-receivers.

Pye TVT Ltd has received a contract for the supply and installation of a new television studio in Baghdad, which will be linked with the national network and used for educational broadcasts. The equipment comprises: three $4 \frac{1}{2}$-in image orthicon cameras, telecine equipment, vision and sound mixing equipment, pulse equipment and ancillary items.

The new address of the Telecommunication Engineering and Manufacturing Association is Portland House, Stag Place, London S.W. 1 (Tel: 01-828 7965).

# Acoustic Absorption Materials 

# Their characteristics and applications 

y J. C. G. Gilbert*, m.I.E.R.E., A.t.C.L., and R. C. Driscoll*, M.I.E.R.E.

jound reproduction almost invariably takes place in a closed oom, which may be a lecture theatre, a concert hall, or a femestic living room. The desirable acoustic properties may be different in each case, but they are of fundamental importance n the design of all of them.

This is not to say that the reflection of sound in large enclosures can always be precisely described. The science of room acoustics involves a study of the complex way in which sounds are reflected backward and forward from the boundaries of a room, and from objects contained in it, and of how to measure the effects of these reflections and the properties of different materials in absorbing or otherwise controlling the resultant sound field. Additionally, psychological factors, the listeners' personal preferences must be borne in mind in the design of listening rooms or studios, so that the measurement of the desirable properties of a listening room becomes a difficult problem, and has received much attention.

## Room resonances and reverberation time

When a sound is radiated continuously in a room, the repeated reflections from its boundaries etc., mean that the resultant sound field will be of higher intensity than it would be in the open air. The initial build-up of sound pressure at any point is due first to the direct arrival of energy from the source, and then to the many indirect waves which have undergone reflection. These random reflections may have any relative phase


Fig. 1. Types of absorber mechanism: (a) porous absorber; (b) resonant panel; (c) perforated panel; and (d) Helmholtz resonator.

[^4]relationship so that the energy build-up at this point may not be uniform. At certain frequencies, however, it would be found that a great many reflected waves arrive in phase, resulting in pressure or intensity maxima, due to the so-called "normal modes" of the room. These resonances, often called "Eigentones" can be calculated from the expression
$$
f_{n}=\frac{c}{2} \sqrt{\left(\frac{n_{1}}{L}\right)^{2}+\left(\frac{n_{2}}{B}\right)^{2}+\left(\frac{n_{3}}{H}\right)^{2}},
$$
where $L, B, H$, are the linear dimensions of the room, $n_{1}, n_{2}$ and $n_{3}$ integers representing the orders of the modes and $c$ the velocity of propagation of sound ( $344 \mathrm{~m} / \mathrm{s}$ ). For example, the first axial standing wave between the two walls of a room spaced by its length of say four metres will occur at a frequency of
$$
\frac{c}{2} \sqrt{\left(\frac{1}{4}\right)^{2}}=43 \mathrm{~Hz}
$$

Axial modes, i.e., standing waves occurring between two opposite faces of the enclosure, are believed to contribute the most significantly to the "colouration" of the direct sound field. It is desirable that these resonances be as many as possible, spaced closely throughout the audible frequency range, rather than appearing over particular regions and so upsetting the broadly uniform response trend.

When the sound source in the room is turned off the reflected energy takes a certain time to decay; the effects of this reflected or reverberant energy are very dependent upon the time taken for it to decay to inaudibility.

The reverberation time, defined as the time required for the intensity of a sound at a given frequency to fall to one millionth of its initial value ( 60 dB fall), is considered one of the most important single parameters in assessing the acoustic properties of a room. Now the acoustic intensity at a point in a closed room in which a sound is being continuously produced can be several times higher than would be the case in the open air, and this "gain" in intensity is proportional to the reverberation time for any given enclosure; a large reverberation time will therefore help to ensure that a weak sound be heard. On the other hand a large reverberation time will mask the recognition of any new source of sound, such as the next phrase from a lecturer. The choice of the most suitable value of reverberation tume will therefore depend upon the nature of the sounds to be produced, sometimes being a compromise between loudness and intelligibility. The most acceptable conditions for a speaker and audience seem to correspond to a reverberation time of about 0.8 second for a small auditorium, rising to 1.5 seconds for enclosures of volume one million cubic feet or more. Enclosures designed as music rooms should be more reverberant than similar-sized lecture theatres. The optimum reverbera-
tion time ranges from 1.0 second in small rooms for soloists to 2.5 seconds for organ music in large churches.

## Absorption and absorption coefficient

In order to obtain good acoustical conditions in a listening room, a specification of the sound-absorbing properties of the various

(a) Glass-fibre. Available in $20-\mathrm{ft}$ rolls of various widths, lin \& 2in thick. Used in loudspeaker enclosures, and in roof insulation.

(b) Treetex Decorac (top) Perfotex acoustic tiles. Decorac available in 16 -in and 24 -in squares, $\frac{3}{4}$ in or lin thick. Perfotex in 16 -in squares or $4 \mathrm{ft} \times 8 \mathrm{ft}$ sheets, $\frac{1}{2}$ in thick.

(c) Expanded polystyrene. Small tiles or large $8 \mathrm{ft} \times 4 \mathrm{ft}$ sheets up to 3 in thick available. Perforated sample is Jablite, in 1, 2, or 3 ft squares or large sheets.
materials which can be used to control reverberant sounc energy is required. A sound-absorbent material is one which can dissipate as frictional (heat) losses, some part of the sounc energy incident on or penetrating its surface.

In porous materials, these losses will be due to the motior of air in small holes or passages offered by the material surface Conduction between the air and the material fibres will take place because of temperature differences which exist due tc the sound wave, and frictional losses due to relative movement of the fibres themselves also occur. These mechanisms operate at the higher audible frequencies (above 500 Hz ). At low frequencies, frictional losses are due to the material vibrating as

(d) Halltex acoustic fibreboard. Decorative panelling widely used on walls and ceilings.

(e) Gypklith. Building slabs of wood/wool material.

Provides both thermal and sound insulation. In many sizes and thicknesses. Density 281 b per cubic foot.

| Material | Mounting | Typical absorption coetficient |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 125 | 250 | 500 | 1000 | 2000 | 4000 | 6000 | 8000 ( $\mathrm{Hz}_{2}$ ) |
| Glass-fibre | Laid on floor or stuck to wall. or on battens | 0.1 | 0.35 | 0.55 | 0.65 | 0.75 | 0.80 | 0.75 | 0.75 |
| Acoustic tiles | Screwed to ceiling. floor, etc. | 0.1 | 0.2 | 0.4 | 0.5 | 0.45 | 0.5 | - | - |
| Acoustic tiles | Mounted on battens | 0.3 | 0.45 | 0.5 | 0.55 | 0.65 | 0.8 | 0.55 | 0.5 |
| Potystyrene | Mounted on frame. work of battens on wall | 0.05 | 0.15 | 0.4 | 0.35 | 0.2 | 0.2 | - | - |
| Acoustic fibrebeard | Concealed nail fixing with grooved joints | 0.1 | 0.2 | 0.4 | 0.5 | 0.45 | 0.5 | - | - |
| Wood/wool materials | On heavy battens | 0.1 | 0.25 | 0.6 | 0.75 | 0.6 | 0.75 | 0.8 | 0.8 |

Fig. 2. Some of the more common absorbent materials with tabulated absorption coefficients.
whole. The absorption coefficient, symbol $\alpha$, for an absorbent laterial is a quantity defining the ratio of the energy of an acident sound wave transmitted through, i.e. lost to, the absorber $\rho$ that reflected. It is known that this ratio will vary with the ngle of incidence of the wave, so that its quoted value is the tatistical average of all the possible coefficients, i.e. for all possible angles of incidence of the sound. It is easy to ensure hat this situation exists for the purposes of measurement.

## Types of absorber mechanism

The most frequently encountered types of absorber mechansm are shown in Fig. 1, together with absorption/frequency :haracteristics. Porous absorbers form the great majority of hose in common use, including felts and fabrics, acoustic llasters and fibre tiles, and glass fibre. Increasing the thickness of a porous absorber will extend absorption to the lower frequencies, as will mounting the material an inch or so away from the reflecting surface, as in a resonant panel absorber. -If the porous absorber is perforated, and mounted on battens away from the wall, then Helmholtz resonance also occurs at higher frequencies, so that high absorption over a wide frequency range is here possible. Special Helmholtz resonators are also occasionally employed. The resonant frequency can be conveniently changed by varying the mouth opening exposed to the incident wave; two practical examples are the use of these absorbers in both the Royal Festival Hall and Queen Elizabeth Hall, London. The acoustics of these halls may thus to some extent be modified to suit different performances.

## Measurement of absorption coefficient

To ensure an entirely random sound field, necessary for the measurement of the absorption coefficient of an acoustic material, a special enclosure is needed. One requirement is that with no absorbers present it should have a very large reverberation time over a wide frequency range, so that high intensity reflected waves can easily be produced; the chamber should be of irregular shape if selective resonances are to be avoided. The reverberation chamber at the National Physical Laboratory has a volume of 9,700 cubic feet and a total surface area of 2,780 square feet. The surfaces are of rendered brickwork or concrete, the walls are non-parallel and the ceiling is sloping. The reverberation time at 250 Hz is 17 seconds. The sound sources are loudspeakers, fed with frequency-modulated audio signals. Measurements are made at mean frequencies at octave intervals from 125 to $4,000 \mathrm{~Hz}$, and at higher frequencies up to $8,000 \mathrm{~Hz}$. The decay of intensity in the chamber is measured over a 70 dB range, with the aid of a high-speed level recorder, and the reverberation time determined. The experimental result is then used in the standard formula:-
Reverberation time $=\frac{0.049 \mathrm{~V}}{-S . \log _{\mathrm{c}}(1-\bar{\alpha})}$ (due to Eyring).
$V$ is the enclosure volume in cubic feet, $S$ its total surface area in square feet, and $\bar{\alpha}$ the average absorption coefficient. A value is carefully determined both with and without the specimen under test being present, and the loss of reflected energy due to its insertion is then obtainable. The average absorption coefficient $\bar{\alpha}$ is related to $\alpha$ by $\bar{\alpha}=A \alpha \mid S$ where $A$ is the surface area of the specimen absorber alone. The average coefficient therefore represents the absorption coefficient of that material which when covering the entire surface of the chamber absorbs the same energy as the specimen of area $A$. (At frequencies above 1 kHz , corrections to this formula are required due to the absorption of sound in air.)

A few of the more common absorbent materials commercially available are illustrated in Fig. 2, together with a table of values of absorption coefficient. It will be noted that specification of


Fig. 3. Reproduction of transient sound at 500 Hz in the Royal Albert Hall (a) before treatment and (b) after treatment.
the method of mounting is important to the results obtained at low frequencies. For more detailed information of price and availability the manufacturers should be consulted, particulars being given at the end of this article; the reader is also referred to the publication by H.M. Stationery Office ${ }^{1}$, in which the results of measurement of a wide range of absorbents are listed and discussed. The heavier wood/wool materials are used in the basic construction of homes and industrial buildings, to control the level of external noise, and to provide thermal insulation. Acoustic tiles, plasters, plastics and fibreboard are now very widely used as decorative wall or ceiling surfaces in colleges and offices, to provide acoustic correction and to reduce the annoyance from airborne noise.

Glass-fibre, in addition to its wide domestic use as a thermal insulator, is a very useful absorber for the lining of loudspeaker enclosures. At the normal modes of vibration of the enclosure, the acoustic impedance due to the enclosed air becomes reactive; a high reactance presented to the loudspeaker diaphragm reduces the power radiated. The overall response curve is made smoother by lining the enclosure with an acoustic absorber having a high absorption coefficient at the first resonant (normal mode) frequency, and at all frequencies above. If the enclosure is filled with such a material, the velocity of sound in the air enclosed is reduced, i.e. the effective volume is increased. Since the reaction on the rear of the diaphragm due to the enclosed air varies inversely with its volume, it follows that the lowfrequency response of the system will be extended. This permits the design of smaller enclosures, with the advantage that the electrical impedance presented to the amplifier is more uniform.

## Royal Albert Hall acoustics

An interesting example of acoustic treatment is the recent project undertaken at the Royal Albert Hall, by Airo Ltd. ${ }^{2}$, in association with the B.B.C. The great character of the building has for many years been accompanied by unfortunate acoustics. This has not been troublesome to most of the audience though attempts have in the past been made to solve the problem. The latest venture, however, has shown very promising results.

The volume of the hall is approximately 3.5 million cubic feet; the presence of an echo is almost inevitable, due to the large scale of the building and to the presence of the dome, which represents about one third of the total volume. The reverberation time is 3.0 seconds at 500 Hz . This figure was considered over long, but equally important, because of the concave shape of the plaster walls, and the dome, focusing of the reflected sound occurred, with the result that in certain positions the echo had a higher intensity than the direct wave. (See Fig. 3.)

This problem could not be solved simply by absorbing the incident energy; apart from being costly this would have resulted in too low a reverberation time, and would have detracted from the appearance of the hall. The aim was to reduce the intensity of the echo and to optimize the reverberation time at a value of 2.4 seconds at 500 Hz . This was achieved by suspend-


Fig. 4. Polyester/glass-fibre diffusers as used in the Royal Albert Hall undergoing tests in an anechoic chamber.
ing above the hall about one hundred polyester/glass-fibre diffusers, of various diameters ranging from 7 to 12 feet, and covering about half the roof area. The diffusers, called "flying saucers" by their designers, are shown in Fig. 4.

The lower convex surfaces provide a scattering of the incident sound, so that the intensity of the echo is reduced and a more diffuse sound field returned to the audience. In addition, the distance of travel of these reflected waves is shorter, so that the time interval between direct wave and echo is also reduced. That part of the wavefront which is not obstructed travels up to the surface of the dome, and after reflection becomes incident on the upper surfaces of the "flying saucers", where it is absorbed by impregnated glass-fibre material. The final result is that the ratio of direct to reverberant energy at low frequencies is increased and the reverberation time reduced to the desired 2.4 seconds at 500 Hz . It is understood that more experiments in this hall are to be conducted.

## Conclusions

The volume and geometric shape of an enclosure, as well as the sound absorbing properties of the materials used in it, are important in the design of listening rooms. Experience has shown that the energy lost to a given area of acoustic absorber varies with the sub-division of that area into smaller units, and with their positioning in the enclosure, even if this is an irregularly shaped reverberation chamber of the type discussed. The measured results thus obtained are therefore a characteristic of the particular enclosure, and not of the material alone. At the present time it is not possible to ensure exact agreement between the results obtained in different enclosures, so that the figures quoted for the materials illustrated in Fig. 2 are "rounded" to the nearest 0.05 unit.

The reverberation time is an important index of the acoustic properties of a room, and several workers such as Knudsen ${ }^{3}$,
have suggested curves giving optimum values, justified by experience, for different enclosure volumes and sound sources. When, however, the reverberation time reaches its optimum value, other factors become important, as the example considered above clearly shows. Many years ago the B.B.C. ${ }^{4}$ erected two studios of identical linear dimensions, one with plain surfaces and the other with corrugated walls. The measured reverberation times were similar, but the subjectively assessed performances were entirely different. This was due to the wide difference between the ratio of direct to reverberent enetgy for the two rooms, so that the diffusion of sound is as important as absorption.

It has been suggested that for precise measurements the complex acoustic impedance (the complex ratio of pressure to air particle velocity, analogous to the ratio of voltage and current in an electric circuit) of the material be employed rather than its absorption coefficient, and this may become the more fundamental approach ${ }^{5}$. It is hoped that these techniques will enable a more detailed understanding of the behaviour of sound waves in closed rooms, and so permit the design of acoustic materials with accurately specified properties.

## References

1. "Sound Absorbing Materials", E. J. Evans and E. N. Bazley, published by H.M. Stationery Office.
2. "Airo", Acoustical Investigation and Research Organisation Ltd, Hemel Hempstead, Herts.
3. "Architectural Acoustics", V. O. Knudsen, published by John Wiley.
4. "Design of Broadcasting Studios", Kirke, F.Inst. Elect.Engrs., April 1936.
5. "Sound Absorbing Matérials", Zwikker and Kosten, Elsevier Publishing Co.

Some manufacturers and distributors of the acoustic absorbing materials illustrated in Fig. 2: Fibreglass Ltd; Gyproc Products Ltd; Jablo Plastics Industries Ltd; C. Leary \& Co., Ltd. (Halltex); and Treetex Acoustics Ltd.

## Amendment

"Digital Exposure Timer" (Jan. 1969)

In case there is any confusion about the connections of $\mathrm{B}_{17}$ to the gating circuits, the author has supplied the fuller circuit diagram shown below.


Astually. Electrosi s unique method of resistor manufacture ensures all three in one process. The resistive oxide filmis fused to an optical quality glass cane core at ed heat - this results in a tough componert with a diamend hard coating. Inert to all the common for ns of anvironmental attack the oxide resistor is always reliable and because the production process is continuous (not by batch) the precise standards of performance are consistently maintained.

That's why Electrosil resistors are the lirst choice of circuit designers in every sector of the electronic equipmentindustry:
ELECTROSIL LIMITED P.O. Box 37. Pallion, Sunderland, Co. Durham. Telephone Sunderland 71481. Telex 53273

Electrosil
have the experience
LIBITED

Makeittoughhescid
Makeitreliable,he scid


# Vortexion 

These electronic Stereo Mixers range from

## STEREO MIXERS

 $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.


# Also available Monaural Electronic Mixers:- 

4 Way Monaural Mixers
6 Way Monaural Mixers
8 Way Monaural Mixers
10 Way Monaural Mixers

3 Way Monaural Mixers with P.P.M.
4 Way Monaural Mixers with P.P.M.
6 Way Monaural Mixers with P.P.M.
8 Way Monaural Mixers with P.P.M.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than $0.2 \%$ distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-200 \mathrm{v}$ or $200-400 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Base and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db . and over 30 times damping factor. At 20 watts output there is less than $0.2 \%$ intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and Hi Z gram.

# mproving the Sound Quality of 

## ?ocket-radio Receivers

if P. Williams*

number of types of physically small low-cost transistor ortable radio receivers have similar circuits, consisting of a equency changer, two i.f. stages and a detector, followed by n audio section comprising a driver stage feeding a class B ush-pull output stage, transformer-coupled to a loudspeaker. the a.f. stages of such a receiver purchased by the author are hown in Fig. 1. The sound output of the receiver was of poor uality and at low volume severe crossover distortion was vident. The output (from a 3 -inch speaker), was almost ompletely lacking in bass - such bass as was present being ery distorted.

## Modifications

The first improvement to sound quality was made by simply ncreasing the quiescent current of the output transistors very lightly. (The quiescent current of each output transistor was pnly about 1 mA after modification.) This modification was sarried out, while listening to a local station at low volume so that crossover distortion was very evident, by paralleling the bias resistor $R$ with various high resistances until a value was Sound which gave reduced crossover distortion. The frequency response, however, was still very unsatisfactory, bass present in the output being very small and rather distorted because the "constant current" nature of the output stage did not provide loudspeaker damping, resulting in a rise in ourput with frequency.

Negative feedback, taken from the voltage across the loudspeaker and including the whole of the a.f. amplifying circuit, immediately suggests itself as a cure. However, there is usually not enough surplus gain available for this purpose to allow a large gain reduction. A further point is that if the feedback yoliage is taken to the bottom of the volume control so as to include all a.f. stages the detector diode a.c.-to.d.c. load ratio is degraded, leading to a reduction in the modulation depth which can be handled without distortion. Both these difficulties can be avoided by using the circuit shown in Fig. 2.

Positive feedback is taken to the top of the volume control from an early part of the a.f. circuit, where distortion is small, and negative feedback to the bottom end of the volume control. By a suitable choice of values it is possible to maintain the gain at about the same value as before the introduction of feedback while still applying a large amount of negative feedback from the output. The effect of the positive feedback is to maintain a high detector a.c.-to-d.c. load ratio. A full analysis shows that the effect of the combined positive and negative feedback is to reduce greatly the a.f. amplifier distortion which usually occurs mainly in the output stage.

Results obtained with the modified circuit were, as expected, a much improved bass response and increased loudspeaker

[^5]

Fig. 1. Circuit diagram of the original amplifier and output stages


Fig. 2. Amplifier and output stages modified by the addition of positive and negative feedback. The $500 k \Omega$ resistor is connected by trial and error method to the end of the driver transformer winding which gives a slight increase in sound output
damping factor. A further benefit of the better frequency response was an apparent increase in the signal-to-noise ratio when the receiver was tuned to a weak station.

## Stability

A complete discussion of the stability of the a.f. system with feedback is beyond the scope of this short article. Instability might be expected at very-high or very-low frequencies where the phase shift of the whole amplifier without feedback reaches $180^{\circ}$. If the phase shift affects the response of the earlier part of the amplifier at a lower frequency than it affects the output stages, the positive feedback can improve the stability of the whole system when negative feedback is employed.

# Apparent Wind-direction Indicator 

# A simple instrument for small boats that indicates the difference between the apparent wind direction and boat heading 

by M. I. Pope*, B.Sc., Ph.D.

It is perhaps surprising that research into the performance of sailing boats has only been carried out on a significant scale in the past two decades. In the United Kingdom, substantial advances in this field ${ }^{1}$ are due to the work of the Department of Aeronautics and Astronautics at Southampton University.

One of the problems encountered in obtaining optimum windward performance in sailing dinghies and yachts, is to achieve a compromise between the ability of a boat to point as closely as possible to the direction of the apparent wind, and yet maintain a relatively high speed through the water. The various factors which determine a yacht's pointing ability are too numerous and complex to discuss here, but a detailed explanation will be found in a recent book by C. A. Marchaj. ${ }^{2}$ Considerable difficulty is often experienced in assessing how small adjustments to the hull and rigging of a boat have affected the windward performance; it is here that the use of water speed and apparent wind direction indicators can be helpful.

The equipment described here is light in weight and of low cost. A simple wind vane is used to rotate the moving plates of an airspaced variable capacitor which in turn alters the time constant in a multivibrator. This assembly is attached to the mast head of the boat and a light, 3 -way lead connects it to a transistorised differential voltmeter mounted, together with the batteries, in the boat's cockpit. A circuit diagram of the two units is shown
*College of Technology, Portsmouth.
in Fig. 1. Any change in the angle between the fixed and moving plates of the capacitor alters both the frequency and the mark-space ratio of the multivibrator output signal, but has little effect on the amplitude. However, operation of the indicator depends only on the change in the mark-space ratio. The output signal from the multivibrator is not electrically integrated, but is fed directly to the differential voltmeter, which relies on the inertia of the moving coil microammeter to give a steady reading; this method has been found entirely satisfactory in practice.

By a suitable choice of component values, an approximately linear relationship has been obtained between the angle of separation of the fixed and moving plates of the capacitor, over the range 10 to 100 degrees, and the indicated collector current of $T r_{2}$, as measured by a moving coil milliammeter (Fig. 2). The voltage change at the collector of $\mathrm{Tr}_{2}$ is measured by the centre-zero differential voltmeter directly in degrees.

The mast-head unit was built around a twogang 500 pF air-spaced tuning capacitor, of the type used in portable transistor radios; the associated components being mounted on a printed circuit board attached to the capacitor. To reduce friction to a minimum, one of the wipers making contact with the moving plates of the capacitor should be removed and the ball races supporting the moving plates should be dismantled and degreased before being assembled and lubricated with a trace of clock oil. Take care not
to over tighten the end bearings! Goor electrical contact between the moving plates and the body of the capacitor is ensured by soldering a light, flexible coil of copper braic between the two. Also, a stop screw should be fitted to the spindle to limit rotation to 11 C degrees. The capacitor, together with it:associated components, is mounted vertically in a light metal case, as shown in Fig. 3.

The wind vane is formed by joining a Tufnol extension spindle to the capacitor shaft; the upper end of which is drilled to carry a horizontal 16 s .w.g. steel rod, about 10 inches long. A "Paxolin" vane was mounted at one end of the rod, which was counter-balanced by a lead weight.
To set up the apparatus, the wind vane is adjusted so that the capacitor plates are $55^{\circ}$ open when the vane is pointing directly ahead of the boat; the microammetef can then be set to zero using the $2 \mathrm{k} \Omega$ potentiometer $V R_{1}$. The wind vane is then moved so as to point $45^{\circ}$ either side of the ahead position, and the gain of $T r_{3}$ set by the $5 \mathrm{k} \Omega$ potentiometer $V R_{2}$, to make the microammeter read to + or $450 \mu \mathrm{~A}$ as appropriate. The meter should now give a direct reading of the angle between the heading of the boat and the direction of the apparent wind, $1^{\circ}$ being equivalent to $10 \mu \mathrm{~A}$.
The apparatus has been tested on an Albacore racing dinghy and found to operate satisfactorily under conditions of steady winds and reasonably calm water. In more disturbed water, instability of the boat caused some hunting of the wind vane, with consequent



Fig. 3 Some details of the wind-vane and sapacitor unit
fluctuation in the meter readings. However, it is reasonable to suppose that this effect could be greatly reduced by improvement in mechanical design of the mast head unit. In any event the relative stability of a keel boat should enable even the existing prototype apparatus to function satisfactorily in disturbed waters.

## REFERENCES

1. "Annual reports of the Advisory Committee for Yacht Research", University of Southampton, Department of Aeronautics and Astronautics.
2. Marchaj, C. A., "Sailing Theory and Practice" (1964) Adlard Coles, London.

## Corrections

## "Solid-State Oscilloscope"

The values of two resistors given in this article in the March issue were incorrect. The collector resistor of $\mathrm{Tr}_{16}$ (Fig. 3) and the emitter resistor of $T r_{32}$ (Fig. 6) should both be 2.2 k , not 47 k and 22 k as shown. Transistor types in the power supply (Fig. 7(b)) should be as follows, and not as described in the text: $\boldsymbol{T r}_{35} \mathrm{BC} 107, \operatorname{Tr}_{36}$ $\mathrm{AC} 127, \operatorname{Tr}_{37} \mathrm{OC} 81, \operatorname{Tr}_{38} \mathrm{AC} 128$. The rectifier eircuit submitted by the author and shown in Fig. 7 has the bridge rectifiers connected as a short-circuit across the transformer. If bridge rectifiers are used they require separate 20 V windings. With a single winding, half-wave rectifiers only must be used. The description of the vertical amplifier refers to $6.8 \mathrm{k} \Omega$ collector resistors. These should be $8.2 \mathrm{k} \Omega$ as correctly shown in Fig. 1.

# Dinsdale Amplifier Mod. 

Output stage using 2N2147s

A number of readers have enquired about the modifications necessary when using 2 N 2147 s in the output stage of the power amplifier. The reason for advocating the use of 2 N 2147 s (or other high-frequency power transistors such as OC 29 s ) is that the enhanced h.f. response of the power amplifier and the reduced h.f. harmonic distortion not only provide a greater degree of realism, but also reduce the onset of aural fatigue.

The 2 N 2147 is manufactured by RCA, and may be obtained from the company's U.K. distributors: Electronic Component Services Lid, Roberts Electronics Ltd or Semicomps (Northern) Led. It is a germanium drift-field p-n-p power transistor intended for use in high-fidelity ainplifiers where wide frequency range and low distortion are required. Its principal advantages are the high values of d.c. beta ( $h_{F E}=150$ at $I_{c}=1 \mathrm{~A}$ ), and gain-bandwidth product ( $f_{T}=4 \mathrm{MHz}$ ).

Its voltage breakdown, collector current and power dissipation ratings are more than adequate for this circuit, and it is constructed in a TO-3 can with a thin mounting flange which may easily be fitted on to the standard amplifier heat sinks.

When using it in the amplifier circuit, the recommended quiescent current of $10-15 \mathrm{~mA}$ in the output stage ( $20-25 \mathrm{~mA}$ overall) must be set up as prescribed by adjusting $R_{9}$, and it will be found that values of $56-82$ ohms are necessary (cf. 22-33 ohms if conventional junction transistors are used). Experiments have been carried out using two OAS diodes in series with a smaller resistor, but no audible improvement is noticeable. In general, $R_{1}$ must also be made slightly higher to ensure that the output d.c. level rests at half the applied line voltage, and valucs of 330 k to 390 k have been found to be suitable. It is important to ensure that this setting-up procedure is carried out: too low a quiescent current will result in high values of crossover distortion, and failure to balance the two sections of the push-pull output will cause premature squaring of one halfwaveform.

Use of these transistors will increase the useful bandwidth of the amplifier to about 100 kHz , but unfortunately it will also introduce the tendency for self-
oscillation at supersonic frequencies to occur. This effect (which normally manifests itself only when the amplifier output is effectively open-circuit) may be reduced by connecting a 15 -ohm $\frac{1}{2}$-watt resistor in series with a $0.1 \mu \mathrm{~F}$ capacitor permanently across the output. Extra care must be taken to ensure that capacitive coupling between pre-amplifier input and power amplifier output does not occur, otherwise the whole system will oscillate, and it is also advisable to use non-inductive 1 -ohm resistors ( $R_{14}$ and $R_{15}$ ) in the emitter leads.

A correspondent has indicated that when using 2 N 2147 s the amplifier will drive electrostatic loudspeakers; however, I have not had the opportunity to verify this.

The audible improvement from this modification is a greater degree of clarity; snare drums and cymbals benefit especially. However, the 2N2147s appear to have a higher value of $V_{C E(a r)}$ than conventional junction transistors, and the effect of this is to limit the peak-topeak output to about 32 volts (with a 40 -volt supply). This limits the output power to some 8 watts into a $15-\mathrm{ohm}$ load, and the onset of gross distortion therefore occurs at a lower listening level.

Those readers who have incorporated OC29s will find the improvement with 2 N 2147 s very marginal; those who have used OC35s or OC36s may find the modification desirable as long as they can accept a reduction in the maximum available power. As far as audible quality is concerned, there seems little to choose between the OC29 and 2N2147.
J. Dinsidale

## An invitation

If you are a newcomer to Wireless World you may not know that any original circuit trick or dodge, using active or passive components, can be submitted for possible inclusion in our "Circuit Ideas" feature (see page 185). If you have such an idea, send us a concise description or a series of notes. $f^{\text {S }}$ is paid for each idea published.

## Letters to the Editor

## The Editor does not necessarily endorse opinions expressed by his correspondents

## Why not angular frequency?

I wonder if the authorities who are responsible for such matters have ever considered the following situation?

In the vast majority of cases when we make any calculation which is concerned with frequency $f$ we have to multiply it by $2 \pi$. Would it not save a lot of trouble if instead we wrote our specifications and calibrated our instruments in terms of angular frequency $\omega$ ? It would not of course be so convenient for use in connection with wave-motion or rotating machinery, for which the use of hertz or cycles per second has a much greater meaning, but life would be made a little easier for those who deal mainly with reactive elements. To a certain extent this practice is already with us in that the Post Office uses lining-up tone at $\omega=5000$ (or $f=792$ ) and component bridges commonly use $\omega=10,000$ (or $f=1584$ ).

Apart from the obvious difficulties which are associated with any such change, can you or any of your readers see any objection to this idea?
R.C. Whitehead,

Northern Polytechnic,
London N. 7.

## Colour receiver <br> sound output

Despite the reasonable misgivings of the designer of your colour TV receiver, there are surely constructors who will wish to get the best sound possible within the general limitations stated. They could start by modifying the suggested output stage simply as shown in my sketch, taking the negative feedback from the secondary of theoutput transformer. "Cathode Ray" showed, several years ago, that taking negative feedback from the primary worsens the signal-to-hum ratio.

True, this requires a respectable output transformer, but the constructor who is this interested will have that anyway. Also the loudspeaker may assume mains potentialbut who touches it? Anyway, it is surely not beyond possibility that the constructor can polarize his mains connectors correctly and reliably?

Although it seems unlikely that anyone will seriously want to feed an output from the set into an external audio amplifier, some will certainly want to connect tape recorders, and

one of the double-wound speaker isolating transformers marketed by Radiospares will safely feed either with at least tolerable results. The effect of such a transformer, properly used, is in my experience negligible on the great majority of programmes. Very few TV sound transmissions seem to be anything like as good as the system allows.

For the few which are, the split sound channel which your designer suggests would certainly be feasible. One needs, as I have successfully used, a pint-sized speaker of the usual kind on either side of the screen, a bassonly enclosure somewhere nearby (mine was the "plinth" on which my first small set stood, and was slung below its bigger successor), and a reasonably powerful output stage with suitable simple crossover arrangements. If the small speakers are polarized correctly there will be no trouble with the apparent source of the sound. But these speakers should not be anything special; too much treble merely tends to get messed up with that abominable whistle which most sets still radiate.
G. C. Balmain,

Slough,
Bucks.

I was interested to read the comments in the February instalment on the W.W. Colour Television Receiver on high-quality sound from television broadcasts. My own experience is that the human eye is the primary influence on the position of the 'image' when experiencing audio-visual stimuli, and that the relative position of the loudspeaker is therefore of secondary importance. Most people I have
asked admit that, when they become psychologically 'involved' in a film or a television programme, the sound appears to come from the appropriate actor's lips; in other words the visual image creates in the brain a form of pseudo-stereophony. If one mounts an experiment to demonstrate this, the subjects must be unaware of their participation, otherwise the results are liable to be biased.

I therefore feel that there is much to be said for incorporating TV sound into a highquality domestic sound reproducing system and I have experienced such installations where the screen of a monochromatic receiver could be positioned either between the two loudspeaker enclosures (wired of course as mono), or alternatively on top of one of the enclosures. In this latter instance it made little difference whether the distant enclosure was muted or not, provided the listener had become mentally involved in the programme.

As regards the best way of extracting the sound signal, the method used in this instance for monochromatic signals was to connect a high-quality microphone transformer at the a.f. detector. This transformer was of course capable of isolating a.c. mains. The use of a transformer need not result in a deterioration of the sound quality: many first-class microphones and magnetic pickups use them.

With regard to sound from colour receivers, although I have not carried out this work myself, I imagine that use of the special transformer mentioned above at the discriminator output, or a split i.f. strip as advocated in your article, should suffice.

It would be very interesting to hear other readers' views, first on the psychological impact of a sound source detached from the screen, and secondly on more appropriate ways of extracting the audio signal from the television receiver.

## J. DinsDale,

Cranfield,
Bedford.

## "Tall oaks from little <br> acorns grow"

The most surprising thing about 'Vector's Bandstop Lid (a company evidently much more imaginary than real), about which he wrote in the February issue, is that it should ever have grown at all. Bandstop Lid seems to have been founded on the belief that if you build a better mousetrap the world will beat a path to your door to buy it. The world will do no such thing. It won't know about it, for a start. Personal contacts and word-of-mouth recommendations are splendid things, as far as they go, but they don't make for a high growth rate.

Jim Bandstop's best plan would have been to find a less exacting job-he was clearly not cut out to be a group leader in a commercial research lab.-and then to have developed his amplifier business as a sideline. He might then have educated himself about marketing, an aspect of business about which he was as innocent as a new-born babe. Most probably he'd never have become rich, but then the idea was to escape from the rat-race, wasn't it? Technical excellence is not incompatible with profitability. I don't see RollsRoyce going bankrupt and, nearer home,
here are some very successful instrument irms. Even manufacturers of high-grade audio amplifiers have been known to make noney out of excellence. They do not, however, urn out goods "regardless of price", nor do hey expect to sell them without advertising. The Vectors and Bandstops of this world make a fundamental error when they condemn the ifficiency experts and marketing organizations as "parasitic growths". They are as necessary to a manufacturer as stomach bacteria to a zow. Failure to realise this has been a major factor in helping the Americans to penetrate so deeply into our markets.
3. W. SHORT

Groydon,
London.

## 'Piccolo'

In your February issue you comment in your editorial on the tardiness in certain quarters to exploit new ideas-in this case 'Piccolo'. I take it the Post Office, as the major commercial user of radiotelegraph communication in this country, is not excluded from your comments and perhaps I could make one or two observations to put the matter in the correct perspective.

The Post Office thoroughly examined the 'Piccolo' system in 1963 and came to the conclusion that it gave a highly satisfactory service under poor signal conditions, but that it did not exploit scarce frequency spectrum space adequately and required a much higher frequency stability in the bearer circuit than some competing systems.

We fully appreciated the merits of the system, but also the disadvantages of using it as part of a public telegraph network, and saw no reason for departing from the currently well-established, internationally accepted, system employing narrow deviation frequency modulation and multiplex techniques backed up by error correction. The excellent allround performance achieved by these techniques over some ten years has vindicated the soundness of this choice.

You may not be aware that a system employing these so-called 'conventional' techniques was provided by the Post Office for the transmission of press messages and newscopy to and from the Q.E. 2 on her sea trials and was the system used to produce the two issues of the Daily Telegraph that were printed on board.
T. DAw'SON,

Director of Public Relations,
G.P.O.,

London E.C.1.

## 'Solid-State <br> Oscilloscope"

The signal breakthrough which Mr. Phillips observed (March issue, page 110) when using alloy-diffused and planar transistors in his Schmitt trigger circuits is caused by breakdown of the base-emitter junctions at excessive reverse bias voltages. 'Excessive' in this context can mean as little as 0.3 V for alloydiffused types, and 3 V for planars.
Silicon transistors can, however, be used. In the p-n-p Schmitt triggers of Figs. 3 and 6

of the article, type 2 N 4285 , which has a reverse breakdown rating of 35 V , can be substituted directly. I do not know of any $\mathrm{n}-\mathrm{p}$-n planar transistors with such a high $V_{E B}$ rating, but the usual cheap types such as BC 168 can be used if a diode is added to protect the base-emitter junction of the first transistor ( $D_{1}$ in the accompanying diagram). A diode with a reverse voltage rating above 15 V would appear to be adequate for the oscilloscope circuits. Incidentally, it might be useful to insert a diode with a much higher reverse rating in the base lead of $T r_{12}$, in case somebody tries to trigger the timebase directly from the mains!
G. W. Short,

Amatronix Lid,
Croydon.

## Protection of engineers

The view given by 'Vector' in the January issue that trade unionism is not the answer to the problem of providing protection for qualified engineers is one which is probably shared by many people.

You should, I feel, publicise as much as possible the suggestion that the learned institutions must take action to fill the void.

It may be relevant that recent moves have been made by the Engineers Guild to form a so-called union in order to counter action by established unions aimed at attracting qualified engineers to their ranks.
J. M. Faithfule,

Plymouth,
Devon.

## The human computer

In criticising my description of the human computer, Messrs. Conway, Hunt and Liston put forward in their letter in the December issue some conventional, but by no means universally accepted, dogmas about the nature of the life process. The points they raise were carefully discussed with a number of biologists and physicists before I wrote the article and I found those whom I consulted much more constructive and encouraging than your correspondents.

The weakness of their particular school of biological teaching is that it is assertive rather than analytical and that it hides behind unexplained words. Thus it is sufficient that one gene 'dominates' another, without offering any explanation of the mechanism of 'domination'. Similarly, the life process is stated to be 'chemical' but who has ever seen a self-organizing chemical process? Atomic frequencies are held to be infinitely stable
but where is the proof of this statement and is an infinitely stable oscillation feasible? Your correspondents are entitled to their views on these matters but in a subject area where ignorance greatly exceeds knowledge they are not entitled to be dogmatic nor to be purely destructive.
While a number of the points which I have raised are debatable and were intended for debate, the assertion by your correspondents that genetic and environmental information are so different that they cannot be compared is surely quite unacceptable. That human individuals are constantly comparing the relative strengths of their instinctive and intellectual response to situations and problems is a matter of everyday experience. The alternative would be to act only from 'pure reason' or 'pure instinct', with no guide as to which course to adopt.
I believe that my suggestion that the twa streams of human information are compared by a process of non-linear mixing is the only one which will satisfy common experience on the one hand and the rigorous requirements of communication theory on the other.

The consequent deduction that genetic and environmental information are of precisely equal importance is, I consider, inescapable and if accepted this deduction must, I believe, be of the greatest significance in the future analysis of human behaviour.

I believe that just as Harvey identified the circulation of the blood it is essential to identify the system of information flow in the individual and I am surprised that no one, including your correspondents, has risen to the challenge of my article and proposed an alternative or a better information flow diagram than that proposed by me.
J. R. BRINKLEY,

St. Johns Wood,
London N.W.8.

## C.E.I. Part II Examinations

It may be worthy of reporting in Wireless World that colleges are now preparing for C.E.I. Part II courses, which will replace the I.E.E. Part III

The Leicester Regional College of Technology (soon to become the City of Leicester Polytechnic), is to launch a C.E.I. Part II course on a 38 -week, full-time basis. This first course will commence on the 28th April 1969 and will end on the 16th May 1970.

Because the number of subjects is now six, compared with the three subjects required for the I.E.E. Part III examinations, it is found necessary to extend the studies over more than one session; thus, there will be nine weeks in the summer term, and the remaining 29 weeks commencing September 22nd 1969. H.N.D. students may find this a convenient course, since their studies will normally finish in April.

The Department of Electrical Engineering at this college will provide a range of subjects which, in addition to "The Engineer in Society", will give the technical coverage required for I.E.E. and I.E.R.E membership. A. Tranter,

Dept. of Elec. Eng.,
Leicester Regional College of Technology.

# Surface Temperature Thermometer 

# A simple yet accurate design using variation of diode forward voltage drop for measurement of heat sink temperatures from 0 to $100^{\circ} \mathrm{C}$ 

by L. Nelson-Jones, M.I.E.R.E.

This article describes the design and construction of a portable instrument for the measurement of surface temperatures in electronic and other equipment. It was designed specifically for the measurement of heat sink temperatures, though many other applications spring to mind.

Originally when development was started a thermistor probe was considered. After a great deal of work this was dropped in favour of the diode probe to be described. This was because of the difficulty encountered in obtaining a linear scale with a thermistor without recourse to complex techniques.

Fig. 1 shows the forward characteristic of a typical high conductance planar diode similar to that used in the author's instrument. It will be seen that the temperature coefficient of the diode depends on the forward current.

The simple theory of a forward biased junction ${ }^{1}$ suggests a temperature coefficient of $3.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for silicon, and $2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for germanium at around room temperature. In practice, at current densities corresponding to 1 mA of forward current in the type of diode used, the temperature coefficient is usually in the region of 2 to $2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. (In the author's experience there is also correlation between forward voltage at a given current, and temperature coefficient for any particular diode type.)

Fig. 2(a) is a histogram of 50 diodes BAY31 taken at random from diodes, old and new, from more than one manufacturer. These measurements were made with the object of establishing the sort of spread of forward voltage, at 1 mA , that one could expect. From these 50 diodes, 16 were selected as representative and their temperature coefficient was measured over the range 20 to $100^{\circ} \mathrm{C}$. Fig. 2(b) indicates the range of temperature coefficients found and the approximate correlation with forward voltage ( $V\rangle$ ). Further measurements on the type 1N4448 diode selected for the final design indicate that a diode with a $V$, between 0.55 and 0.65 V at 1 mA is suitable. The 1N4448 was chosen because its $V_{f}$ is guaranteed within a fairly narrow spread, and because it is economically priced and very small in size.

Fig. 1 indicated that the temperature coefficient of a diode does not vary with temperature at 1 mA (a conclusion in agreement with all the author's own measurements). These indicate that linearity to within $\pm 0.25 \%$ over the range 0 to $100^{\circ} \mathrm{C}$ is quite


The prototype instrument
possible and that the majority of diodes achieve linearity of this order.

## Diode testing

The bridge circuit used for testing the diodes is shown in Fig. 3. The circuit consists of a constant current generator supplying 1 mA to a decade resistance box whose reading in ohms will then be equal to the diodes $V_{f}$ in mV when the bridge is balanced. The circuit may also be used with a resistance box (going up to $10 \mathrm{k} \Omega$ ) to check the constant voltage circuit used in the instrument. To this end the $18 \mathrm{k} \Omega$ resistor used to supply the diode with 1 mA of forward current may be disconnected. A stabilized supply is essential. The current source is set to 1 mA using the $5 \mathrm{k} \Omega$ resistor with a meter in place of the resistance box and with the bridge indicator disconnected.

## The thermometer bridge circuit

A bridge circuit is used in the final design so that the forward voltage of the diode may be balanced out and the indicator made to read zero at $0^{\circ} \mathrm{C}$ (or at any other minimum temper-
ature chosen). Having thus balanced out the diode forward voltage the meter then indicates any change in diode forward voltage due to a change of diode temperature. Two arms of the bridge circuit, shown in Fig. 4, are therefore variable: (1) the diode voltage varies with temperature, and (2) the variable resistance arm which is used to balance the bridge at $0^{\circ} \mathrm{C}$. This type of bridge must be supplied from a very stable voltage source, since it is not used at null (for temperatures other than $0^{\circ} \mathrm{C}$ ), and also because it contains a diode which has a non-linear voltage/current relationship. In addition, because of the very small changes involved, it is essential that the resistors used for the bridge arms are very stable, therefore, metal oxide, metal film, or wirewound types should be used. Carbon or carbon film resistors, although called "high-stability", should not be used because of their high and variable negative temperature coefficient. Finally the meter movement, which is wound with copper wire, must have some form of temperature compensation applied.

Meter temperature compensation
The expected temperature coefficient of the


Fig. 1. Forward characteristics of a typical high-conductance diode


Fig. 2(a). Spread of forward voltage oblained from a random selection of 50 diodes type BAY31 when operated at a current of $1 m A$.
Fig. 2(b). Shows some correlation of temperature coefficient and forward voltage for the BAY31.
meter was that of copper wire namely about $+0.39 \% /{ }^{\circ} \mathrm{C}$, and for the S.E.W., MR.45.P movement specified a value of $+0.37 \% /{ }^{\circ} \mathrm{C}$

## TABLE ONE

If a meter other than the one specified is used it will be necessary to measure its resistance and use a different value for $R_{i}$. The value of $R_{\mathrm{g}}$ may be selected from the table below.


Where $A$ is the meter resistance in ohms. $B$ is the value of $R_{B}$ in ohms and $C$ is the remperature coefficient of the $R_{0} \cdot R_{9}$ combination in $\Omega^{\circ} \mathrm{C}$.


Fig. 4. Basic temperature sensing bridge.

Fig. 3. Test circuit for diode and zener diode temperature coefficients.

Fig. 5. Complete circuit of the instrument.

was measured. No other effects could be found up to $40^{\circ} \mathrm{C}$, other than this resistance change. There was no shift of zero and, with a constant current feed, no change in deflection at f.s.d.

Thermistor compensation was decided upon. A suitable value of thermistor should have a temperature coefficient at $20^{\circ} \mathrm{C}$, of the same order as the meter, the thermistor being shunted to obtain this. An S.T.C. type KR.102.C was selected and was measured over the range 0 to $40^{\circ} \mathrm{C}$ with various values of shunt resistor. The results, in $\Omega /{ }^{\circ} \mathrm{C}$, are given in table one. For the meter movement specified the correct value of shunt resistor is $390 \Omega$. With these compensating components in circuit the error in indicated reading is less than $0.3^{\circ} \mathrm{C}$ from 10 to $30^{\circ} \mathrm{C}$ ambient and less than $0.7^{\circ} \mathrm{C}$ from 0 to $40^{\circ} \mathrm{C}$.

It will pay to measure the resistance of the meter used, as anyone having the Electroniques catalogue will notice that in this the
movement used is quoted as $1050 \Omega$, whereas in fact the author's meter measured $880 \Omega$ at $20^{\circ} \mathrm{C}$.

## Stabilized voltage source

For this part of the instrument the circuit described by Peter Williams", a "Ring of Two", is used (see Fig. 5). The starting problem mentioned by Mr. Williams is evident when modern low leakage transistors are used, especially at low ambient temperatures. Mr. Williams suggested the use of a resistor between the bases of the two transistors, but commented, that although this cures the starting problem it does detract from the performance of the circuit. The author has therefore used a resistor across one of the transistors to simulate leakage, and, if this is placed across the transistor feeding the diode not used to supply the temperature bridge, little effect will be noticed from its presence.

A value of $470 \mathrm{k} \Omega$ is used (although a much higher value is sufficient to cure the problem) in order to ensure that the circuit will start even at the lowest ambient temperature.

## Final design

The circuit of the final design (Fig. 5) follows the ideas outlined above, but one or two additional points are worthy of note.

With the "ring of two" circuit satisfactory operation is obtained over a wide range of battery voltages because the stabilized output is not affected until the transistors bottom; this occurs just after the collector potentials have reached equality. Therefore it is only necessary to ensure that there is a positive difference of collector voltage for the circuit to operate satisfactorily. In the final design a switch is included which connects the meter movement in series with a $100 \mathrm{k} \Omega$ resistor to give the meter a 10 V f.s.d. which is used to measure the collector voltage difference. With a new set of batteries this difference approaches 8.5 V so, before zero difference is reached the batteries must fall to just over half their initial voltage. A long battery life is therefore achieved.

The temperature compensation resistors are left in circuit in the battery check position of


Fig. 6. The interior of the prototype instrument.


Fig. 7. The tip of the diode probe with the diode fixed in position.
the meter switch, $S_{2}$, purely as a matter of convenience in the layout of the printed circuit used.

## Calibration

A variable resistor in the emitter of $T r_{4}$ is included so that the current through the zener diode $Z D_{2}$ can be set to the level giving zero temperature coefficient. If this is not required a fixed value of $620 \Omega$ may be substituted for $R V_{1}$ and $R_{2}$, to give a zener current of 5 mA . At this fixed current the spread in temperature coefficient of a 5.6 V zener diode can cause an error in the indicated reading of the thermometer of up to $\pm 1^{\circ} \mathrm{C}$ for an ambient temperature range of $\pm 20^{\circ} \mathrm{C}$.

The variable resistor $R V_{1}$ is initially set to give a voltage across $R_{2}$ of $3.75 \mathrm{~V}(20 \mathrm{k} \Omega / \mathrm{V}$ meter on the 10 V range), which provides a zener current of $5 \mathrm{~mA} . R V_{2}$ is then set to zeroresistance and $R V_{3}$ is set to bring the meter needle on scale (the exact reading is not important). A hot soldering iron is then held near (not touching) the diode $Z D_{2}$. If this causes a change of meter reading $R V_{1}$ should be adjusted slightly and the procedure repeated again when the diode has cooled. If now the change produced is less, continue to adjust $R V_{1}$ in the same direction until no change in meter reading is produced by gentle heating. If the change is increased alter $R V_{1}$ in the opposite direction until no change is produced on heating. It should be noted that changing $R V_{1}$ will in itself cause a change of meter reading due to the slope resistance of the zener,


Fig. 8. Internal construction of the diode probe.


Fig. 9. The thermometer in use.
however, it is the change due to heating only, that should be observed.

Having made the above adjustment, the following procedure should be followed.

The scale of the meter is already divided into the correct number of divisions since 0 to $100 \mu \mathrm{~A}$ represents 0 to $100^{\circ} \mathrm{C}$. The probe is first immersed in a mixture of cold water and ice cubes (in about equal quantities) which must be kept very well stirred. The zero set control $\left(R V_{3}\right)$ is then set for a reading of $0^{\circ} \mathrm{C}$. Next the probe is placed in a water bath which is raised to $100^{\circ} \mathrm{C}$ (if the water is already boiling the probe should be held in the steam close to the water for about 30 seconds to minimize thermal shock). With the probe in the boiling water (preferably checked with a good quality mercury-in-glass thermometer, since the boiling point is frequently not quite $100^{\circ} \mathrm{C}$, the weather and altitude both affect this to an extent ${ }^{3}$ ) adjust the span control $\left(R V_{2}\right)$ to make the meter read $100^{\circ} \mathrm{C}$ or the corrected figure if necessary.
Allow the probe to cool for a minute or so and then return it to the water/ice mixture which should be kept well stirred. The original zero reading should be obtained. If not, it should be adjusted and the process repeated until the meter reads correctly at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
When using a mercury-in-glass thermometer, check whether it is for complete or partial immersion and act accordingly. Also note that a temporary depression of the zero of such a thermometer occurs on cooling from $100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C} .{ }^{3}$ There should be no need to measure the water/ice mixture providing it is well stirred at all times since this provides a very accurate source of $0^{\circ} \mathrm{C}$ even using tap, and not distilled, water

## Accuracy

After setting up as described the prototype was in agreement with a good mercury-inglass thermometer within $0.75^{\circ} \mathrm{C}$ over the whole scale and there was no trace of hysteresis.
A check of the surface temperature of a thin metal container containing boiling water showed no difference of reading between a contact reading of the outside surface and complete immersion in the water. Silicone Grease (Midland Silicones M.S.4) was used to ensure a good surface contact, a normal precaution in surface contact thermometry.

## Construction

The instrument is constructed in a die-cast aluminium case (S.T.C. type 46R.064A). The majority of the components are located on a printed circuit attached to the meter terminals. In the photograph (Fig. 6) the variable resistor $R V_{1}$ is mounted on the case but this could well be mounted on the printed circuit. The front of the instrument has a Perspex overlay, lettered on the reverse side. The lettering is covered by two coats of white cellulose paint. The overlay is held in place by the meter, the two switches and the two chrome plated 4B.A. screws in the lower half of the panel. The battery compartment is lined with a polyurethane foam sheet as shown in the photograph. A thin plywood panel is placed across the case resting against the cast ribs which is held in by the lid. The cast rib round the lid can be filed away immediately above this

## COMPONENTS REQUIRED

Resistors

| $R_{1}$ | 470k $\Omega$ | $R_{\text {s }}$ | $100 \mathrm{k} \Omega$ | $R^{\text {g }}$ | $\Omega \dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{2}$ | $470 \Omega$ | $R_{8}$ | 2.4k $\Omega$ | $R \mathrm{~V}$, | 1kS ${ }^{\text {H }}$ |
| $R_{3}$ | 1k $\Omega$ | $R_{7}$ | $270 \Omega$ | $R V_{2}$ | 1k ${ }^{2} 5$ |
| $R_{4}$ | $5.1 \mathrm{k} \Omega$ | $\boldsymbol{R}_{8}$ | $390 \Omega$ | $R V_{3}$ | 10035 |

-10\%, 0.25 W carbon composition. all other fixed resistors 2\% metal oxide type TR.5. Electrosil. tThermistor type KR. $102 \mathrm{C}\left(5 \%, 20^{\circ} \mathrm{C}\right)$ Electroniques. jWirewound printed circuit mounting potentiometer. Spotentiometer type T10. Electroniques.

Semiconductors


All diodes available from Electroniques.

Miscellaneous

| $\left.\begin{array}{l} S_{1} \\ S_{j}^{\prime} \end{array}\right\}$ | Radiospares slide switches | $M_{1} \ldots \ldots . .0$ to $100 \mu \mathrm{~A}$ batteries |
| :---: | :---: | :---: |
| $\left.\begin{array}{l} S_{A} \\ P \end{array}\right\}$ | 3 -pin audio | case ... type 46R. 064At |

- SEW, type MR.45.P †Diecast aluminium. Both from Electroniques.
Note: silicon grease type MS. 4 can be obtained from Electrovalue, 6 Mansfield Place, Ascot, Berks.
panel so that the panel slots into the lid thereby locking the panel in position.

The marking " $\mu \mathrm{A}$ " on the meter is gently scraped away with a sharp razor blade. The dial is then made matt again with a typewriter eraser and the lettering " ${ }^{\circ} \mathrm{C}$ " is put on using Letraset, or Blick Dry-Print. Make sure that the peg of the meter zero setting screw is correctly engaged with the lever of the movement before you close the meter case up again.

## Diode probe

The construction of the probe tip is shown in the photograph (Fig. 7) and an illustrated cross section of the probe is given in Fig. 8. The tip is made of aluminium sheet ( $10 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. - 0.128 in ), preferably of a hard alloy. The thickness of this sheet is reduced around a central island of full thickness and of 0.25 in . diameter, so that it is just small enough to fit into the end of the 0.25 -inch internal diameter paper base phenolic tube. A small slot is cut across the centre and the diode is fixed into this with Araldite adhesive. (The twin-tube pack obtainable at most ironmongers.) This adhesive is also used to attach the tip to the tube and to fit the plug and terminals at the top. The tip is filed flush when the adhesive has set and the end is polished flat $t 0$ ensure good thermal contact. The author found it an advantage to have the tip at a slight angle to the tube, however, this is a matter of choice. Fine coiled leads of 40 s.w.g. enamelled, or enamelled single silk wire are used to connect the diode to the terminals in order to minimize the conduction of heat along the wires.

## REFERENCES

1. M. V. Joyce and K. K. Clarke, Transistor Circuit Analysis, Addison Wesley Publications Co. Inc., world student series edition.
2. P. Williams, "Ring of Two Reference", W'ireless World, July 1967, pp. 318-322.
3. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, Longmans, Green and Co. Ltd., London.

# Hot-carrier Effect Transistor 

Transistor à effet porteur chaud

Since the development of the hot-carrier diode considerable research has been carried out on both sides of the Atlantic into the application of majority carrier conduction, in particular the recent achievements in France at the Centre d'Etudes en Semiconduction under Professeur Georges Bodet, have been outstanding.
The following is a resume of the results (previously unpublished) of the research made possible by the grant of 15 million francs at the instigation of President de Gaulle, with the avowed intention of placing France in the forefront of international electronics.
That this work has been crowned with success is indicated by the entry of yet another name into technical terminology; after Schottky comes the Bodet effect.
The greater electron mobility and virtual immunity to storage of minority carriers found in the hot-carrier diode is now well known. At zero-bias the mechanism of electron flow between the electrodes in the h.c.d. consists of a constant exchange so that the net current is zero.
When the junction is forward biased the energy of the electrons is increased so that they are injected into the metal of the 'anode' with large kinetic energy or temperature, compared with the electrons at equilibrium in the metal, hence the name "hot carrier".
The real point of departure from known phenomena came as a result of attempts to increase the electron current across the junction. With high levels of forward bias the resulting high electron flow caused internal heating which in itself increased the mobility of the electrons; but with reduction of bias it was found that conduction remained at a high level until temperatures returned to almost room ambient.

During the period between reduction of bias and the eventual fall in temperature most of the electrons were found to be concentrated in the anode, so much so that an actual potential could be measured across the junction, with all bias removed. This in itself is being separately investigated with the purpose of developing a high efficiency thermal battery-possible applications being powering of satellite vehicles' equipment
by solar radiation-and is likely to place French space research at a distinct advantage over those of the U.S.A. and U.S.S.R.

To exploit this otherwise enormous but uncontrolled increase in electron mobility an intrinsic layer was introduced between the electrodes. The intrinsic region has almost negligible doping, and consequently a very high resistance. This high resistance results in extremely low junction capacitance, but has the somewhat undesired effect of demanding a considerably higher forward bias to maintain the thermo-agitation of the donor electrode.

It was a logical development to increase the temperature by separate means; a small length of resistance wire buried in the electrode required quite a low potential to increase the electron energy. Even so, a further undesired but so far unsolved effect was found in that the device required several seconds pre-heating before super-energy electrons were available.

At the present time only n-type majority carrier devices have been developed; the equivalent p-type has eluded the C.E.S. team.

To return to the intrinsic layer, it should be explained that with a sufficiently increased forward bias between the original electrodes the electron energy could be increased to the extent that, despite the high resistance of the intrinsic layer, electrons could be made to pass right through.

If the intrinsic layer were reverse biased the resistance could be increased so that electron flow was reduced to virtually zero; thus the current could be controlled by varying the bias on the layer, much in the same way as the gate functions in an f.e.t.

However, many nuclear collisions occurred causing excessive current requirements in the intrinsic layer bias. The real breakthrough came with the discovery that the intrinsic layer could be replaced by a mesh electrode surrounded by a vacuum.

There is no doubt that the Bodet effect will come as a cold shock to a sensitive part of the U.S. semiconductor industry.
Translated from the French by a correspondent.

## Personalities

Norman D. Summers, M.I.E.E., has been appointed divisional manager of Plessey Components Group's Professional Components Division at Titchfield, Hampshire. Previously he was technical manager of the Division's engineering laboratory. He joined Plessey in 1954 as a senior component engineer after six years with Siemens Bros. Company as a telephone circuit design engineer. John R. Ashman, who joined Plessey in 1963 as a senior engineer, takes over from Mr. Summers as technical manager of the Division's engineering laboratory. He was previously chief engineer of the engineering laboratory.

Peter Rainger, B.Sc., F.I.E.E., has become head of the B.B.C. Designs Department, in succession to Dr. R. D. A. Maurice, O.B.E., who was recently appointed head of the Research Department. Mr. Rainger joined the B.B.C. in 1951 after graduating at London University. He served first in the Planning and Installation Department and joined the television recording section of the Designs Department in 1953. He was appointed head of the section in 1956 and head of studio group early in 1968. Mr. Rainger is best known for his work on television standards conversion. He led the teams which developed the first all-electronic $525 / 625$-line standards converter and the first electronic $50 / 60$ field converter, also capable of handling colour signals. This work has been recognized by the award of the J. J. Thomson Premium of the I.E.E., the Geoffrey Parr Award of the Royal Television Society and an Emmy Award of the National Academy of Television Arts and Science of the U.S.A.

Christopher Newport, Ph.D., M.I.E.E., a graduate of Birmingham University, has been appointed engineering director for Series 16 computer systems at Honeywell's Computer Control Division in Framingham, Mass. Dr. Newport was formerly manager of the division's information systems operation, which designs and develops communications and display systems. Prior to joining the division in

1967 he had been concerned with developing systems for message switching, traffic control and display at the Marconi Company in Chelmsford.

Gordori Barrow, B.Sc., has been appointed product sales manager of the Quartz Crystal Division of ITT Components Group, Harlow, Essex. After graduating with honours in physics at Manchester University,


## G. Barrow

Gordon Barrow, who is 31 , joined Standard Telephones \& Cables, a subsidiary of ITT, in 1962. In 1965 he went to Union Carbide as sales engineer, later becoming sales manager.

Alan Burke, F.I.E.R.E., chief engineer of British Relay, has been appointed to the board of directors. Mr. Burke originally joined British Relay in 1948 and after National Service went to the B.B.C. for two years. He rejoined British Relay in 1953 and was chief development engineer from 1962 until 1964 when he was appointed chief engineer.
P. White, B.Sc., A.C.G.I, was recently appointed chief development engineer of Link Electronics Lid. of Ruislip, Middx. Educated at Imperial College, Mr. White was with Ferranti and then joined the B.B.C. Designs Department where he was involved in the recent award-winning design of the field store standards converter.
D. S. Campbell, D.Sc., F.Inst.P., has joined the TCC Capacitor Division of Plessey at Bathgate, Scotland, as technical manager from the Company's Allen Clark Research Centre at Towcester, Northants. He came to Plessey from S.R.D.E., Christchurch, in 1953 and since 1963 has been visiting lecturer and visiting senior lecturer in material science at Imperial College, London. Dr. Campbell, who is 40, graduated in physics at London University where he recently received his doctorate for his work in materials science at the Allen Clark Research Centre and at Imperial College, with particular reference to his work on thin films. Plessey also announce the appointment of P. J. Harrop, Ph.D., who is 29 , as controller of research and development of the TCC Capacitor Division. He also comes from the Company's Allen Clark Research Centre, which he joined in 1966 from A.E.R.E., Harwell. Dr. Harrop studied at Brunel University.

Keith A. Riley, who is 30 , has been appointed product manager of the Medical Group of S.E. Laboratories (Engineering) Limited, of Feltham, Middlesex. He will be responsible for all the company's medical products, which include transducers, defibrillators, Harco basic monitors and equipment for patient monitoring, theatre monitoring and blood flow measurement. For the past $4 \frac{1}{2}$ years Mr. Riley has been with Hewlett-Packard.

John Nicholls, Grad. I.E.R.E., has become chief engineer of the newly formed Instrument Division of Coutant Electronics Ltd, of Reading. He joined the company in 1965 from Ferranti Ltd where he was concerned with integrated-circuit development. Prior to. joining Ferranti he was with Specto Avionics developing aircraft "head-up" displays and before that he was at University College carrying out research into the upper atmosphere. He is 31 .

Al Jenkins has been appointed manager of the Electro-Mechanical Division of ITT Components Group, Harlow, Essex. He joined ITT in 1956 at Standard Telecommunications Laboratory, where he worked in the digital systems division. Transferring to the Components Group, he first went to Magnetic Materials Division and later Rectifier Division.

Andy Thomson is appointed sales manager of the Electronics Division of Union Carbide U.K. Led. He has been a sales engineer with the Division for the past three years and will be responsible for U.K. sales of Union Carbide's range of Kemet solid tantalum capacitors and semiconductor devices. He takes over from Gordon Barrow, whose appointment with the Crystal Division of ITT Components Group is announced above.
T. D. McCrirrick, FI.E.E., F.I.E.R.E., is now head of the B.B.C. Studio Planning and Installation Department, in succession to D. R. Morse, F.I.E.E., who was recently appointed chief engineer, capital projects. Mr. McCrirrick joined the B.B.C. in 1943 and after serving at several radio studio centres transferred to the Television Service in 1949. Since 1967, he has been head of engineering, television recording and is succeeded by L. H. Griffiths, M.A., B.Sc., M.I.E.E., who joined the B.B.C. in 1951 in the film unit of the Planning and Installation Department. Since April 1966 he has been senior television planning engineer. This position in the Studio Planning and Installation Department is being filled by D. P. Leggatt, B.Sc., M.I.E.E., who joined the Corporation in 1953 and served for two years in the Engineering Information Department followed by four years in the Planning and Installation Department. After three years in the Television Service, latterly as engineer-in-charge of television recording he returned to the Planning and Installation Department in 1965 as head of the film unit. Since 1966 he has been head of the television studio and outside broadcast section.
H. T. Greenfield, who has joined Grampian Reproducers Ltd as deputy managing director, has for the past nine years been sales director of Clarke \& Smith Manufacturing Co. Prior to 1958 Mr. Greenfield was for 17 years with Telephone Rentals Lid.

Dennis P. Taylor, who joined Hewlett-Packard Lid. in 1962 and has latterly been Northern European manager, was recently appointed managing director in succession to David Simpson who has resigned to join George Kent Ltd as group manufacturing director. Mr. Taylor, who is 38, spent six years with Solartron Electronics Group before joining HewlettPackard as marketing manager.
F. K. Poulton, M.A., has been appointed managing director of the London Electrical Manufacturing Company and of associated Ceramic Products Lid. Mr. Poulton joined the Components Group of the Plessey Company from the aircraft industry in 1959. At that time he was based at Swindon and became divisional manager of the Capacitor Division. When Plessey acquired the Telegraph Condenser Company, Mr. Poulton became commercial director of T.C.C.
W. H. Jamieson, until recently sales office manager for Abbey Electronics \& Automation Ltd., of Cheshunt, has been appointed commercial manager. Prior to joining the company a year ago he was assistant sales supervisor with Marconi Instruments (Sanders Division) at Stevenage. He is 37.


The price is special, too!

## Not quite, but the only rectangular $3^{\prime \prime}$ tube on the market...

Another example of Thorn-AEI's renowned production engineering techniques - a top-quality oscilloscope tube at a minimum price.
The Brimar D7-200GH is the only rectangular tube available in the 3 inch size. The tube has a relatively flat screen and employs a mono-accelerator for reduced power requirements. With an overall length of only 18 cm , it provides a $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ display of waveforms or TV pictures.
Features include electrostatic deflection and focusing. Good geometry is ensured by specially developed production control techniques. Small spot size and focus uniformity over the entire screen give good resolution at all points of the useful screen area. High-deflection sensitivities permit the use of inexpensive transistor circuits.
Applications include:
alpha-numerical readout devices,
waveform monitors,
data processing equipment.
voltage and power output indicators,
educational equipment, etc.-
and of course, popularly-priced oscilloscopes.

| Val + a3+a4 | 800 | 1200 | V |
| :--- | ---: | :---: | :---: |
| $V_{\text {a2 }}$ | 50 to 150 | 75 to 225 | V |
| $V_{g}$ (for cut-off) -20 to -40 | -30 to -60 | V |  |

thorn Thorn-AEI Radio Valves \& Tubes Limited
7 Soho Square, London, W1V 6DN Telephone 01-4375233

# Wecanmould yourfuture -andevendyeforyou! 

Plastic mouldings feature extensively in the millions of tiny fasteners and connectors that we make every week. Which in practice works out at hundreds of millions of mouldings per year.
We injection mould in glass filled polycarbonates, nylon, polypropylene, polythene, polystyrene and acetal resins for the electrical and electronics industries and compression mould to

of .001 in ., with contact spacings as close as .050 in . And our research and development boys are constantly working to push these specifications to even finer limits.
We injection mould bits and pieces

for practically every other industry you care to mention. And make the dies and moulds for these parts in our own toolroom. And if the raw material doesn't happen to come in the colours we require - and they often don't we dye the mouldings in our own dye house.

From which you'll gather that we have all the facilities to tackle any small moulding job. When we say small we're referring to size, not quantity as we've already indicated we work in millions not dozens!

We don't leave off there either! By themselves plastic mouldings can only perform a certain number of functions. But marry them to metal and you can really start doing things. Make currents flow, or change. Make lights glow and valves

forth. Adding the metal bits can be difficult if you don't have the knowhow. But we have it. Lots of it. And we'll even make the metal parts for you as well, if you like! In any metal, with any refinements such as plating, tempering, soldering, riveting etc, etc thrown in.

Carr Fastener Company Limited
Stapleford, Nottingham
Telephone: Sandiacre 2661
CARR FASTENER

UNITED=CARRGROUR

## Zircuit Ideas

## Large space-mark ratio multivibrator

The addition of a transistor and a diode to the basic astable multivibrator allows a large space-mark ratio to be attained without requiring the power supply to provide vastly different currents during the mark and space periods. The limitation in the basic astable is that the larger timing capacitor must charge through a collector load resistor during the shorter time interval. The circuit operates as follows:When $T r_{2}$ goes "off", $D_{3}$ is reverse biased and $T r_{3}$ acts as an emitter follower to charge $C_{2}$. This results in the waveform at the collector of $\mathrm{Tr}_{2}$ rising much more rapidly and $C_{2}$ charging in a shorter time.

The circuit was constructed first with $D_{3}$ and $T r_{3}$ omitted. The maximum spacemark ratio obtained was $20: 1$, the pulse at the collector of $\mathrm{Tr}_{2}$ then being roo $\mu \mathrm{s}$ in base width but with a rise time of $95 \mu \mathrm{~s}$. With the inclusion of $D_{3}$ and $T r_{3}$ the same pulse was obtained at the collector of $\mathrm{Tr}_{2}$ when the mark space ratio was $1500: 1$, whereas with a space-mark ratio of $99: 1$, i.e. at the collector of $\mathrm{Tr}_{2}$ a $100 \mu \mathrm{~s}$ pulse every roms, the rise time of the pulse at the collector of $\mathrm{Tr}_{2}$ was $5 \mu \mathrm{~s}$. A similar circuit configuration may be used to improve the recovery time of a monostable multivibrator.
K. D. Cliff,

Sutton,
Surrey.


Astable miltivibrator circuit.



Circuit of active filter, and mpical curves
obrained.

## Low-power two-rail instrument supply

This circuit, using two transistors and a single zener diode, provides two stabilized supplies of opposite polarity. The negative feedback loop, $T r_{1}$ and $T r_{2}$, maintains the positive rail at

$$
\frac{R_{1}+R_{2}}{R_{2}}\left(V_{\mathrm{Z}}+V_{13 E_{2}}\right)-V_{\mathrm{Z}}
$$

relative to $\circ \mathrm{V}$, provided $R_{L}$, draws more current than $R_{L_{2}}$. This difference provides the current to operate the zener diode. Thus the circuit is most suited to operation where the load currents are constant, or the difference between them is constant. If the load current is required to vary, the zener


Low-power two-rail supply.
diode should have a low dynamic resistance and the loop gain provided by $T r_{1}$ and $T r_{2}$ should be kept high by making $R_{3,}$ large . The base current of $T r_{1}$ should not be allowed to rise above half the collector current of $T r_{2}$, and to this end $T r_{1}$ may be a compound emitter follower. The voltage gain of $T r_{2}$ is however limited to $R_{3} / r_{e}$ where $r_{e} \approx \frac{25}{I_{e_{2}(\mathrm{~mA})} \Omega}$ so that no increase in gain is obtained by raising $R_{3}$ further once $r_{e_{2}}$ is large compared to $\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)} h_{\text {FEE }}$.
D. I. H. May,

Plymouth, Devon

## Simple second-order active filter

The circuit is used with an operational amplifier for various applications requiring a low-pass filter. The transfer function is
$c_{11}=\frac{-1}{1+\alpha(s T)+(\alpha s T)^{2}}$ (where $\Upsilon=R C$ )
The version shown uses only two transistors. It will be seen that various degrees of underdamping may be obtained by variation of $\alpha$. Only $C_{s}$ has been varied here to illustrate the responses more clearly, and hence curves do not have the same cut-off frequency. $\operatorname{Tr}_{1}$ should be a low-current type ( $h_{\mathrm{FE}}>50$ at $I_{c}=10 / 4 \mathrm{~A}$ ). The cut off slope is $12 \mathrm{~dB} /$ octave.
I. M. Firth,

Uttawa, Canada.

## New Products

## Return Loss Bridge

To specify sending and terminating impedances of television equipment in terms of return loss over a band of frequencies, a method which is gaining preference, requires the use of a measuring bridge. A simple reasonably-priced instrument developed specially for this purpose is the return loss bridge type 131 by Michael Cox Electronics. This is of Wheatstone type, with modifications to allow for single-ended source and detector. The source can be any television test signal generator, such as pulse and bar, or augmented pulse and bar, multiburst, or frequency sweep generators. The source feeds the ratio arms which are high precision 75 ohm resistors, with a third resistor to complete a delta section, and making the arms appear as a 6 dB loss splitter pad. This is done because in most cases, the unknown impedance has to be connected to the bridge via a short length of cable. In order to balance out the copper loss in the cable, the reference impedance should also be connected via a similar length of cable. By adding the third 75 -ohm resistor, the bridge presents a 75 -ohm source impedance to the two cables. The detector has to be connected across the two reference and unknown connectors and should therefore be a balanced device. As most available oscilloscopes or waveform monitors are unbalanced devices, with inadequate gain for the amplitude of crror signal produced by the bridge, the use of a high gain wideband differential amplifier in an integrated circuit, solves this problem. To allow the bridge to be balanced over the band of frequencies ( 10 MHz ) adjustment for stray capacitance is provided. Two further refinements are provided. In cases where the return loss is less than 28 dB , the error signal may exceed the "window" of the differential amplifier. To allow for this, a built-in -10 dB ped may be switched in to attenuate the source signal. To calibrate the error signal displayed on the oscilloscope, a $2 \%$ reduction in impedance can be switched into one side of the bridge. This represents 40 dB return loss. For accurate measurement of the loss, the oscilloscope amplitude is noted at frequencies of interest, and the unknown impedance disconnected; an attenuator inserted in the source feed is then set to give the same oscilloscope deflection as before. The attenuator setting in dB is the return loss of the unknown impedance. The bridge measures $18.5 \times 117 \times 56 \mathrm{~mm}$ and is avail able in battery- or mains-operated version. Price E45 (battery), $£ 50$ (mains). Michael Cox Electronics, 56 Upper Grotto Road, Twickenharn, Middlesex.
Ww 301 for further details

## Precision Crystal Oscillator

Extremely high stability is claimed by the manufacturers, Ebauches S.A., of Switzerland, for oscillator type B-1322, which is available in the frequency range 8 kHz to 5 MHz . A choice of sine-
wave or squarewave output is provided. The parameters of the squarewave make the oscillator suitable for feeding directly into i.cs without the need for intermediate buffer stages. Both the oscillator circuit and quartz crystal are contained within a proportionally controlled oven as protection against changes in ambient temperature and all connections are made via solder terminals on the base of the unit. A hermetically sealed version is produced. To compensate for crystal ageing the oscillator frequency can be adjusted by 5 parts in $10^{6}$. Typical performance features for a $1-\mathrm{MHz}$ oscillator include an ageing rate of 1 part in $10^{9}$ per day after 30 days, and a frequency variation with temperature of less than 5 parts in $10^{8}$ over the range $-40^{\circ}$ to $+75^{\circ} \mathrm{C}$. Output voltage is $1 V$ r.m.s. (sinewave) and the supply required is 12 or 24 V d.c. U.K. agents: Newmark Instruments Ltd., 143-149 Great Portland Street, London W.1. WW 302 for further details

## Ten-way Delay Line

A wide choice of close tolerance delay times from 2.5 ns to 500 ns , all from one size module, are provided by a tapped delay line named Silver Star by the Johnson Matthey Group. The module comprises ten tapped equal delay sections encapsulated in epoxy resin and measuring $66 \times 12.7 \times 8.1 \mathrm{~mm}$. Maximum working voltage is 125 V d.c. and terminal wires are spaced to suit p.c. boards' 2.54 mm matrix. Full technical information is available from: Matthey Printed Products Lid., William Clowes Street, Burslem, Stoke-on-Trent, Staffordshire ST6 3AT
WW 303 for further details

## Microwave Oscillator Transistor

A special arrangement of the base and emitter terminals of RCA's transistor TA7403 makes for possible increased efficiencies in microwave
equipment operating in the L and S bands. Th is a new silicon overlay transistor intended primari for power oscillator applications in receivers ar power sources, and it features a low-loss cerami metal coaxial package with low inductance ar low parasitic capacitances. The TA7403 is simila to the 2 N 5470 except that the external feedbac required by the 2 N 5470 to sustain oscillations not required. A typical unit operated at 21 V ca provide 600 mW of power at 2 GHz with 259 efficiency, and 100 mW at 3 GHz . RCA Gre: Britain Lid., Lincoln Way, Windmill Road, Sur bury-on-Thames, Middlesex.
WW 304 for further details

## Dynamically Balanced Thyristors

By adjusting the parameters of thyristors to opu mum values, Mullard has produced a new range c dynamically balanced types which do not requir compensation networks often necessary with con ventional thyristors. Five devices in the new serie are labelled type BTX92 followed by suffix 80C $900,1000,1100$ or 1200 as a direct indication o the crest working reverse voltage. Average on-stat current is 16 A and maximum junction temperatur. is $125^{\circ} \mathrm{C}$. These thyristors have shorted gate-to cathode structures and use field-assisted turn-or techniques. They can tolerate rapid increases ir voltage and current and will operate under arduous conditions. The $d V / d t$ and $d I / d t$ ratings are $200 \mathrm{~V} / \mu$. and $100 \mathrm{~A} / \mu \mathrm{s}$ respectively, coupled with an $\boldsymbol{r}_{\text {i }}$ rating of $400 \mathrm{~A}^{2} / \mathbf{S}$. Encapsulation used is $\mathrm{SO}-36$ Mullard Ltd., Torrington Place, London W.C. 1 WW $\mathbf{3 0 5}$ for further details

## Crystal Oscillator for Printed Circuits

A thick-film oscillator which can be preset to any frequency in the range 5 to 75 MHz , and is de-1 signed for mounting on a 2.54 mm printed circuit matrix, has been added to the Salford crystal oscillator range. The new oscillator, type QCi 260 is hermetically sealed and operates from a 9 V d.c. supply. Output is 500 mV sinewave into a $50-\Omega$ load. Initial tolerance is quoted as $\pm 10$ p.p.m. at $25^{\circ} \mathrm{C}$ and frequency variation over the temperature range $-30^{\circ}$ to $+80^{\circ} \mathrm{C}$ is 30 p.p.m. Salford Electrical Instruments Lid., Peel Works, Barton Lane, Eccles, Manchester.
WW 306 for further details

## Television Aerial Tester

A Siemens signal level meter (so called by the manufacturer although it does not operate on the $\mathrm{m} / \mathrm{c}$ meter principle) for measuring TV receiving aerial signals of any transmission standard is introduced to the U.K. by Cole Electronics. An oscilloscope display is incorporated and the amplitudes of the signal under test are displayed on the screen as a function of time. Time deflection is at field or line frequency selected by a switch Facilities are provided for control of the vision channel frequency response enabling the related sound signal to be measured thus obtaining the two principal measurement points in any one TV channel. The measurement method used is specially adapted for television signals. A test pulse added to the signal during deflection, is adjusted in amplitude to the desired test level, the amplitude control being linked to the front scale. (The test level of interest will normally be the peak white level, or the sync pulse level, depending on the direction of modulation.) When the r.m.s. voltage corresponding to the highest amplitudes of modulation $V_{k}$ is related to the reference voltage $V_{\infty}$ the ratio is presented as a dB figure. The channel level $N_{k}\left(20 \log V_{k} / V_{o}\right)$ can be read off the scale in decibels above $1 \mu \mathrm{~V}$, since the scale calibration
$V_{0}=1 \mu \mathrm{~V}$. A blanking pulse added to the signal place of the test pulse enables aerial orientation be optimized. Frequency coverage is continuously riable over the three bands $40-100,160-230$ id $470-860 \mathrm{MHz}$. Inputs at r.f. have an impedance $60 \Omega$ (nominal) and measurements can be made om approximately 26 to 129 dB , corresponding , $20 \mu \mathrm{~V}$ to 3 V . Operating power can be obtained om 220 V 50 Hz mains or 12 V d.c. Dimensions of re instrument, type SAM390, are $410 \times 110$ : 400 mm . U.K. agents: Cole Electronics Lid., -15 Lansdown Road, Croydon, Surrey, CR 9 2HB.「W 307 for further details

## Jual Output Pulse Generator

lodel PG-23 by Lyons Instruments is a silicon ansistor pulse generator providing rise and fall mes better than $5 n s$, repetition rates from 1 Hz - 10 MHz , single or double pulse ( 20 MHz effective ngle pulse rate) or square wave, plus wide range mntrol of pulse width ( 20 ns to 200 ms ) and of slay ( -10 ns to +200 ms ). Simultaneous positive ad negative outputs are available which are varisle independently over a 40 dB range up to 10 V ito $50 \Omega$ A normal/complement facility is pro-

vided independently on each output. Outputs are fully protected against short-circuit. Other facilities include manual one-shot operation, synchronous gating and variable width sync output pulse. Dimensions are $60 \times 380 \times 355 \mathrm{~mm}$ and the price ${ }^{235}$. Lyons Instruments Ltd., Hoddesdon, Hertfordshire.
WW $\mathbf{3 0 8}$ for further details

## Digital Universal Testmeter

Model X-3A by N.L.S. of California is a multifunction meter with digital readout. It is of i.c. construction using logic techniques avoiding the use of separate plug-in function modules. All functions are selected by a front panel mode switch. Measurements are: d.c. volts from $10 \mu \mathrm{~V}$ to 1 kV in six ranges; a.c. volts from 0.5 to 300 V in three ranges; ohms from $10 \mathrm{~m} \Omega$ to $2000 \mathrm{M} \Omega$ in nine ranges; and current from 10 pA to 200 mA in eight ranges ( 2 A with external shunt). A "HI-MED-


LO" switch simplifies operation in production line testing, and an analogue output, scaled zero to $\pm 6 \mathrm{~V}$ at 1 mA , can be used to drive an alarm monitor or recorder. A fourth digit $100 \%$ overrange virtually doubles the measurement capability. U.K. agents: General Test Instruments Ltd, Gloucester Trading Estate, Hucclecote, Gloucestershire GL3 4AA.
WW 309 for further details

## 25 mm Tape Splicer

A one-inch ( 25 mm ) magnetic recording rape splicer is announced by Multicore, based on their $\frac{1}{2}$ in and $\frac{1}{4}$ in models. It enables diagonal or butt joins to be made in the wider tape used for video recording and computer work. Two swinging

clamps grip the tape in the channel of the splicer block which is chrome finished and mounted on a plastics base. Price of the splicer, type 22, complete with tape cleaning accessories is $£ 718 \mathrm{~s}$. ( $£ 7.90$ ). Multicore Solders Ltd., Hemel Hempstead, Hertfordshire.
WW 310 for further details

## I.F. Receiver

Micro-Tel Corporation, of America, has announced that their new i.f. receiver, model IF 240 , is available in the U.K. from B \& K Instruments. This receiver is designed for aerial pattern measurements, attenuator calibration and measurement, and as a general purpose laboratory receiver. Commonly available signal sources can be used as local oscillators and arr internal a.f.c. system minimizes the need for a.f.c. to be applied to the local oscillator, although a d.c. output voltage is available for

this purpose if required. An internal step attenuator permits i.f. substitution measurements up to 103 dB and a sample of the swept output of the amplifier is displayed on a c.r.t. to provide a tuning aid for microwave signals. A bolometer output is available at the front panel. Source level compensation, crystal current, a.f.c. and normal or expanded reference levels are indicated on a panel meter. Input is at 75 MHz c.w. or a.m. with i.f. bandwidths of $0.3,5$ or 100 kHz . U.K. agent: B \& K Instrument Lid., 59 Union Street, London S.E.1. WW 311 for further detalls

## Control Knobs

Four new models, K4-7, have been introduced to the Rendar range of control knobs. The K4 model is designed with a built-in pointer and it can be supplied in many colours in phenolic or thermoplastic materials. Designed to fit spindle sizes from 0.125 in to 0.281 in (and comparable metric sizes), the K 4 pointer knob measures 0.8 in in diameter,

1.5in from handle end to pointer tip and 0.6in in depth. A similar but smaller pointer knob is also available, designated as the K7 model. Where faster positioning is required, a crank handle knob is available with a 1.25 in diameter ( K 5 model) or 1.5 Sin (K6). The knob fits on a 0.250 in or 0.281 in spindle and is moulded in a.b.s. plastics in various colours. New accessories include interchangeable figure dials and stators which permit easy change of knob function. Control knobs can be supplied in several finishes, including bright metal, polished brass and aluminium-turned. Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex. WW 312 for further details

## Encapsulated Differential Amplifier

Differential amplifier type 15B-2 will accept direct signal injection, without an extra resistive input network, making it suitable for high impedance applications in bridge amplification, null detectors, voltage comparators and measurement of electrical potentials in biological research Maximum supply and input voltage is $\pm 18 \mathrm{~V}$, output voltage $\pm 10 \mathrm{~V}$. Frequency response bandwidth is 1000 kHz . Other details include input offset voltage $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input offset current 0.01 nA , and input impedance $100,000 \mathrm{M} \Omega$ Operating temperature range is $-30^{\circ}$ to $+80^{\circ} \mathrm{C}$. The $15 \mathrm{~B}-2$ is totally encapsulated in a case measuring $51 \times 30 \times 15 \mathrm{~mm}$. Ancom Ltd., Devonshire Street, Cheltenham, Glos.
WW $\mathbf{3 1 3}$ for further details

## Linear Sweep Generator

Barry Research model LSG-6 is a linear sweep generator providing highly accurate fixed or sweepfrequency signals in the range $0-50 \mathrm{MHz}$. The sweep end-points are digitally selectable and the output frequency is an absolutely linear function of time. The design, based on the Hewlett Packard 5100 B frequency synthesizer, avoids the use of phase-locked loops and yet obtains phase- and amplitude-continuous frequency switching (except across the four, integer 10 MHz transitions). The

spectrum of the output signal is said to be exceptionally pure and permits signal arrival-time measurements to an accuracy of 100 ns . The generator is entirely solid state with plug-in digital circuit boards. Digital frequency readout is provided. Barry Research, 934 East Meadow Drive, Palo Alıo, California, 94303, U.S.A.

## WW314 for further details

## Comparison Frequency Standard

Rapid monitoring of secondary frequency standards and electronic counters using the highly stable Droitwich long-wave transmitter as a frequency reference is made possible by type XKD standard frequency receiver by Rohde \& Schwarz. This unit receives the $200-\mathrm{kHz}$ signal emitted by the Droitwich transmitter and compares it with the 100 kFz output of the equipment under test. If the two frequencies are not in synchronism, the recurrence

frequency and rise tendency of the sawtooth signal delivered by the XKD gives information about the magnitude and direction of the phase and frequency deviation. A built-in meter has an error ( $\Delta \mathrm{f} / \mathrm{f}$ ) of less than $3 \times 10^{-8}$. If a recorder is connected to the set, the measurement error is smaller than the error of the Droitwich frequency standard ( $\Delta \mathrm{f} / \mathrm{f}< \pm 5 \times 10^{-10}$ ). This instrument was first shown at the 1968 Hanover Fair. Rohde \& Schwarz, Mühldorfstrasse 15 , Munich 80, Germany.
WW315 for further details

## A.F. Filters

Audio active filters announced by M.C.P. Electronics have applications in tone squelch systems in mobile radio telephones and in radio remote control systems employing multi-tone switching. The filters come in three separate families. First are the BPF1500 bandpass series offering a choice of centre frequency between 5 Hz and 10 kHz with a stability of $\pm 0.3 \%$, over an operating temperature range $-30^{\circ}$ to $+70^{\circ} \mathrm{C}$. A $Q$ of $50 \pm 10 \%$ is achieved with 20 dB rejection $\pm 5 \%$ of centre frequency. Next come type LPF1101 thick film low-pass active speech filters with a specified 18.1 B per octave cut-off. Cut-off frequencies between 20 Hz and 20 kHz can be provided. Operating voltage can be from 6 to 15 V and power consumption is 5 mW . Lastly there is a series of active filters designed as substitutes for mechanical reeds and may be used in the same circuitry. It employs a Wein bridge in conjunction with a low-voltage monolithic amplifier and has a frequency stability of better than $\pm 0.3 \%$ over the temperature range $-30^{\circ} 10+70^{\circ} \mathrm{C}$. Centre frequencies range from

5 Hz to 10 kHz and the $Q$ is $40 \pm 20 \%$. Prices of these items are from $\{10$ to $\{20$ depending on requirement specifications and quantity. M.C.P. Electronics Ltd., Alperton, Wembley, Middlesex. WW316 for further details

## Microwave Oscillator Transistor

A microwave transistor, featuring a coaxial package with a special arrangement of the base and emitter terminal connections that makes possible increased efficiencies in self-excited power oscillators used in microwave equipment, is announced by RCA of America. This new silicon overlay transistor, type TA7403, is intended primarily for power oscillator applications in receivers and power sources that operate in the L - and S -band ranges. It features a low-loss, ceramic-metal, coaxial package with low inductance and low parasitic capacitances and it can be mounted in coaxial, stripline, and lumped constant oscillator circuits. The emitter is connected to the flange for increased internal feedback to provide higher efficiency at $S$-band frequencies in Colpitts oscillator circuits. The TA7403 is similar to the 2 N 5470 except that the internal base-to-emitter connections have been reversed, thus dispensing with external feedback between collector and emitter to sustain oscillations. A typical unit operated at 21 volts can provide 0.6 watt of power at 2 GHz with $25 \%$ efficiency; and provide 100 mW at 3 GHz . RCA Electronic Components, 415 South Fifth Street, Harrison, N.J.07029, U.S.A.
WW317 for further details

## Laser Accessory

Mode locking accessory, model 360 by SpectraPhysics, is able to convert the output of their model 125 helium-neon laser into a narrow pulsewidth generator. The $125 / 360$ combination generates a precise train of extremely narrow pulses with peak power greater than 1W. The 360 is used as the controlling element in an oscillating servo-loop. Pulse spacing is approximately 13 ns . Narrow band frequency modulation of the $125 / 360$ system at a frequency rate of 75 MHz

$\pm \Delta \mathrm{f}$ is possible by disconnecting the feedback circuit and inserting an external modulator into the element. Spectra-Physics Lid., Queensway Estate, Glenrothes, Fife, Scotland.
WW 318 for further details

## 24-package I.C. Card

Cardic 24 is a copper clad, epoxy glass laminate card by A.P.T. for mounting up to 24 i.cs, dual in line, 14 or 16 leads. Printed power supply leads run to each i.c. and a 24 -way edge connector provides plug-in facilities at 2.54 mm pitch. The cards are designed to allow easy insertion and withdrawal of i.cs without damage to the device or wiring. They measure $165 \times 89 \mathrm{~mm}$ and cost

\&1 2s ( $£ 1.10$ ). These cards also form part Lektrokit assembly number 10 which incluc components for a complete rack mounting fram work with 12 sockets, guides and Cardic 24 car for $\{2310 \mathrm{~s}(\{23.50)$. A.P.T. Electronic Industri Lid., Chertsey Road, Byfleet, Surrey.
WW 319 for further details

## Impedance Meter

The ability to measure quickly and witho calculation, any complex impedance, such those met with in aerials, transmission line filters, capacitors, inductance coils etc., is pr vided by the Metrix impedance meter tyl IX704A. The instrument comprises two unit a measuring unit, made up of a $50-\Omega$ rigid coaxi line fitted into a standard chassis with detecta fixed along the length of the coaxial element it measure the r.f. voltages taken at different poin of this line; and a computing unit which consis) of three printed discs designed around the Smit chart. The magnitude of the various r.f. voltage are displayed on three independent meters. Th IX704A has a bandwidth of $50-1000 \mathrm{MHz}$. IT Metrix, Chemin de la Croix-Rouge, Boite Postal 30-74, Annecy, France.
WW 320 for further details

## Pillars and Spacers

Nylon moulded insulating pillars known as Transi pillars are manufactured by R. D. Edwards for ust as spacers, stand-offs and terminal points. They are said to be unbreakable in normal use, the major advantage claimed over ceramic spacers. The range comprises four diameters from $\frac{1}{4}$ to $\frac{5}{6}$ in (6.316 mm ), in lengths from $\frac{1}{2}$ to 2 in ( 12.7 to 50.8 mm ) and in three combinations of stud/insert fitting. A fourth variation is in the form of a spacer with a clearance hole. The stud/insert type can be screwed together to extend their length. Price $\AA^{7} 10$ s (7.50) per 100 pieces. R. D. Edwards Industrial Instruments Ltd., Stanley Road, Bromley, Kent. WW321 for further details


## STC

# STAR performer 

## 20 good reasons why STAR UHF Mobile Radiotelephone is the best radiotelephone in the world

* Elegantly styled.
$\star$ Designed for safe use in vehicles.
* Excellent range and penetration of built-up areas.
$\star$ Crystal-clear speech quality.
* Noise cancelling microphone.
* No ignition noise.
* Very low battery drain.
* Simple installation and removal.
* Anti-theft catch.
* High reliability.
* Meets world-wide specifications.
$\star 25 \mathrm{kHz}$ and 50 kHz channel spacing.
$\star$ Printed UHF transmitter circuitry.
$\star$ Transmission line coupling of power transistors.
$\star$ Solid-state antenna change-over switching.
* Helical tuning coils in receiver.
$\star$ Quartz crystal filter.
$\star$ Quartz crystal discriminator.
* Integrated circuits.
* Fully solid-state.

STC Mobile Radiotelephones Ltd., New Southgate, London N.11.
Telephone: 01-368 1200. Telex: 261912.



## NEW IMPROVED Solle ALTMUEB <br> Model SR2

- Now with Safe Loading Mechanism which does not recoil on release.
- Adjustable Suction Control.
- Re-positioned Release Button for better handling of tool.

Instantly removes unwanted solder from printed sircuits and all other solcer joints without damage to unit. or component. Saves valuable time esulting in increased production.

21 GERMAIN STREET, CHESHAM, BUCKS

Chesham
4808/9

## Know the latest from C.I.

No. 2


## Count up, count down counter SERIES 943

Now in quantity production, this new C.I. counter has been produced with the needs of the Gaming and Amusement Machine manufacturers in mind. Nevertheless, it will have many other outlets where a robust unit of uncomplicated design is needed.
The three drum wheel bank can be indexed by solenoid actuators in either direction. The wheel bank registers from 000 to 999 where a stop prevents an additional pulse zeroing the wheels. Similarly the counter cannot subtract from 000 to 999 . When readout is 001 , a subtract pulse will find 000 and a change-over micro-switch will operate. Approximately $6 \frac{1}{2}{ }^{\prime \prime}$ high, $4 \frac{1}{2}$ " wide, $3 \frac{1}{2}{ }^{\prime \prime}$ deep. 230 volts. AC 50 cycle supply. Other operating voltages available.

## ELAPSED TIME METER SERIES 36

Records time in hours and tenths of hours an electric circuit or machine has been in use: provides data on servicing and plant maintenance.


## COUNTING INSTRUMENTS LIMITED

Elstree Way, Boreham Wood, Herts. Tel : 01-953 4151
A MEMBER OF THE G.H.P. GROUP LIMITED

Please send details of Series 943 Counter Series 36 Elapsed Time Meter

Name $\qquad$ Position $\qquad$

Company $\qquad$

Address
ww

## eed Switch

ong-life reed switch, type RL 12, meeting G.P.O. cification T4547, is available from Mullard. force equivalent to 58 ampere-turns ensures sure of the contacts, and 27 ampere-turns will


Id them closed. Closure time is 1 ms and release ne $50 \mu \mathrm{~s}$. Current of 100 mA can be switched 11 A can be carried by the closed contacts. Inlation resistance between the reeds exceeds $)^{s} \mathrm{M} \Omega$ and minimum breakdown voltage is 1000 V . esonant frequency is approximately 1650 Hz . mbient operating temperature range extends on $-55^{\circ}$ to $+100^{\circ} \mathrm{C}$. Mullard Lid., Mullard ouse, Torrington Place, London W.C. 1.
'W 322 for further details

## '.C. Connectors

'escribed as microminiature connectors for use tith standard 1.6 mm circuit boards, series 1064
announced by Ultra Electronics. The contact itch is only 1.27 mm between centres which is aid to adequately meet the demand for a high ensity package. Diallyl phthalate is used for je body and the contacts are gold-plated. Connecors are supplied with double-sided contacts in izes ranging from $10+10$ to $64+64$ contacts. jontacts are designed to grip the surface area of he board over the effective length of the contact rea thereby eliminating local high-spots and educing contact resistance. It also enables low ontact pressure to be used permitting easier inertion and withdrawal. The two- or four-row erminals can be selected for solder or spot weld :onnection. Ultra Elecironics (Components) Ltd., -19 Bridport Road, Greenford, Middlesex
-WW 323 for further details

## Versatile Stroboscope

Observation of cams, gears, motors and vibrating parts is provided by a white light stroboscope, type 6 K , manufactured by Dawe Automation. The instrument covers the rate 300-6000 flashes per minute in two ranges and is sufficiently powerful for photography. Triggering

is by means of an internal oscillator or contact closure and accuracy is $2 \%$. A highintensity flash tube with an output of 10 W is incorporated. The instrument measures $165 \times$ $215 \times 165 \mathrm{~mm}$ and weighs 3 kg . Price: [ 45 . Dawe Automation Lid., South Hill Lodge, South Hill Avenue, Harrow, Middx.
WW 324 for further details

## Metal Oxide Resistors

High-voltage probes for digital voltmeters, meter multipliers, defiection circuits etc, are specific applications for an extended range of metal oxide glaze resistors by Victoreen with values up to 2500M \& The MOX3, MOX4 and MOX5 series employ thick-film techniques and are based on the standard $\frac{1}{4}$ in ( $6.3-\mathrm{mm}$ ) overall diameter size and are respectively 76,102 and 127 mm long. They can withstand 7.5 kV per 25 mm of the length for resistance values above critical and can dissipate 2.5 W per 25 mm of length below critical resistance values at $70^{\circ} \mathrm{C}$. Temperature coefficients range from 200 to 600 p.p.m. Tolerances available are down to $\pm 0.5 \%$ and stability is less than $1 \%$ fullload drift in 2000 hours. U.K. agents: Walmore Electronics L.d., 11-15 Betterton Street, Drury Lane, London W.C. 2 .
WW 325 for further details

## Radio "Bug'’ Detector

Radio "bugging" equipment used for industrial espionage is the target of a new detection device by Leonard Wadsworth \& Co. This counterespionage tool is a sweep unit which will detect the presence of a.m. or f.m. radio transmitters operating between 10 and 250 MHz , at a distance of 8 metres. The frequency range is swept in sequence through four bands and when a note

is heard the instrument locks on to the signal which, say the makers, enables the operator to determine if the signal is from a legitimate local transmitter or from a clandestine unit. Having established that the room contains hidden illegal equipment, a probe enables the offending equipment to be located. Leonard Wadsworth \& Co. Lid., Broadway House, Broadway, London S.W.19. WW 326 for further details

## V.H.F. and U.H.F. Communications Aerials

Telecommunications aerials introduced by J Beam comprise a double 8 -element slot-fed Yagi array and a 12 -element heavy-duty array, both for u.h.f., and an end-fed Yagi and an end-fed single dipole for v.h.f. A feature of the v.h.f. Yagi, which is designed for operation in the frequency range $50-250 \mathrm{MHz}$ and is shown in the photograph, is the dual use of a coaxial air-spaced matching stub which also forms the aerial mounting. This does not interfere with the radiating portion of the aerial and does not introduce any distortion or coupling. No insulator is required at the centre of the dipole so that a rigid mechanical structure is possible.


Similarly, on the standard dipole model a socket on the base of the aerial enables the lower end of the dipole and feeder to be fitted inside a scaffold mast. J Beam Engineering Lid., Rothersthorpe Crescent. Northampion.
WW 327 for further details

## Photoelectric Keyboard

Disadvantages associated with mechanical switches in data entry keyboards have been eliminated in the PK 200 series keyboard, announced by the Digitronics Corp., of New York, which features photoelectric encoding. Depressing a key causes shutters to move which interrupt light beams, the resultant light pattern being detected by photocells. The photocells' resistance value is changed from $3000 \Omega$ (logic 0 ) to $200 \mathrm{k} \Omega$ (logic 1) and a data strobe is generated with each key operation to ensure proper sampling of data. Layouts can contain from 10 to 75 keys; the basic unit includes all the characters and functions normally required for data input operations. Digital code output can be any selected code containing up to 14 bits. U.K. agents: BFI Electronics Lid., Sinclair House, The Avenue, London W. 13.
WW $\mathbf{3 2 8}$ for further details

## Stable F.M. Tuner

A new crystal-controlled f.m. tuner unit by S.N.S. Communications comes in two versions: type FMT/1C single channel; and type FMT/4C four-channel switched unit. The unit comprises an r.f. amplifier, mixer with separate crystal oscillator, four stages at i.f., detector and audio amplifier. Power requirement is 9 V d.c. $15 \mathrm{~mA}^{\text {, }}$ and an optional power unit, type PSU 2, is available. Sensitivity is given as $10 \mu \mathrm{~V}$ for 30 dB signal to-noise ratio, reception being within the frequency range $88-100 \mathrm{MHz}$. Output via an unbalanced screened lead is $5 \mathrm{k} \Omega$ impedance, the level continuously variable $0-500 \mathrm{mV}$ at 22.5 kHz deviation. The screen can be connected to the positive or negative line (positive common line is fitted as standard). Bandwidth of the i.f. channel is 350 kHz and i.f. rejection is 50 dB . Image rejection 55 dB . Model FMT/4C is switchable over 6 MHz , but for optimum performance over the four channels, the sensitivity figures become slightly impaired. The unit size is $51 \times 102 \times 152 \mathrm{~mm}$ deep. S.N.S. Communications Lid., 851 Ringwood Road, West Howe, Bournemouth, Hants.
WW 329 for further details

## World of Amateur Radio

## Amateur Radio in Czechoslovakia

Notwithstanding the political difficulties currently existing in Czechoslovakia amateur radio continues to prosper under the new Federal Republic which came into existence on January 1st. The new Republic consists of two separate republics-Czech and Slovak. The Czech republic comprises the historic territories of Bohemia (amateur prefixes OK1, OL1-5) and Moravia and Silesia (OK2, OL6 and 7), while the Slovak republic consists of the eastern part of the country (OK3, OL8-0). Thus in spite of internal changes, amateur prefixes have not been changed. The position regarding the amateur radio organizations in the country is, however, undergoing change. In the Czech republic, a Czech-Moravian union of radio amateurs-Ceskomoravsky Avaz Radioamatero (C.R.A.)-has been established as successors to the earlier organizations C.A.V. and C.R.A. The new C.R.A. is quite distinct from the previous semi-military organization Svazarm (formed by the State in 1952) but in the Slovak republic Svazarm continues to hold sway (having the support of the State) and thus retains control over OK 3 amateurs. However, amateurs in the eastern part of the country have formed an independent organization (Slovak Union of Radio Amateurs) which operates in partnership with C.R.A. The State authorities have not yet recognized the existence of S.R.A. but as both C.R.A. and S.R.A. are national-level societies within the Federal Republic they intend to form a common representative committee under the title Czechoslovakian Radio Amateurs (C.S.R.A.) for international purposes and to co-ordinate internal affairs between C.R.A. and S.R.A. Members of the committee of C.S.R.A. may thus, in due course become the supreme representatives of Czecho slovakian amateur radio at the international level. The only amateur radio magazine published in the country is issued by an official military authority. As no facilities exist for the transfer of money abroad Czechoslovak amateurs find difficulty in obtaining English or American technical publications.

## Scientific Studies Bulletin

Prepared for the Scientific Studies Group of the Radio Society of Great Britain by Ray Flavell, G3LTP, of Wokingham, Berkshire, the "R.S.G.B. Scientific Studies Bulletin" is the successor of a series of Newsletters entitled "Project Lerwick" produced by Mr. Flavell for the Society during the International

Quiet Sun Year (1965). The new publication begins just in time to take up the continuing story of scientific study at a period of sunspot maximum. The first issue (dated NovemberDecember 1968) was devoted in the main to summaries of what had been happening during the previous three years and included dates of solar rotations, Zurich sunspot numbers and Lerwick geomagnetic storm data all for the period 1966-1968. Of particular interest in that issue was an account by Alec Low, GM3GUI, of Friockhein, Angus, Scotland, of the auroral opening which occurred on October 31st-November 1st, 1968. The second issue (January 1969) recorded day-by-day coverage of solar and geophysical events, made possible, first, through the co-operation of the director of the Radio and Space Research Station, Slough (Dr. John Saxton) who provided copies of the daily "ursigramme" messages sent to Slough by teleprinter from Meuden, and second, through the assistance of Dr. W. F. Stewart of the Institute of Geological Sciences, Edinburgh, who provided geomagnetic data originating from Lerwick Observatory.

## The I.A.R.U.

The current calendar of the International Amateur Radio Union records that with the recent admission of societies in Monaco, Mauritius and Surinam, Union membership has reached the all-time high of 80 , of which total 33 are subscribing member societies in I.A.R.U. Region I Division (Europe, Africa and parts of Asia). During 1968 the world population of radio amateurs showed an average increase of $6.4 \%$ and of $6.1 \%$ in the case of licensed amateurs. The need for a strong international body was emphasized during the year when the International Telecommunication Union announced plans to hold a World Administrative Radio Conference on space communication during the late months of 1970. Because the World Conference is expected to discuss frequencies at present allocated to amateurs, I.A.R.U. member societies are being urged to ascertain the position being taken by their respective governments prior to the conference.

Applications for the I.A.R.U. Worked All Continents Award (W.A.C.) resulted in the issue during 1968 of 2000 certificates to amateurs in more than 20 countries. These awards included special endorsements for single sideband (837), teleprinting (3), Top Band (3) and 3.5 MHz (1) operation.

The calendar records that the Germ society (D.A.R.C.) has the largest number members $(18,717)$ with the R.S.G.B. in seco place with 14,500. But, whereas, in Germa out of a total of 13,485 licensed transmitte $10,408(75 \%)$ are members of D.A.R.C., $t$ U.K. position reveals that out of a total 12,300 licensees only $7,500(61 \%)$ are memb of R.S.G.B. As R.S.F. of the U.S.S.R. ha provided no statistical information since 199 their figures cannot be included. Tt Yugoslav society (S.R.J.) reported a tot membership of 30,000 but only 4,800 ( $16 \%$ hold a transmitting licence.

## International V.H.F. Convention

The Annual International V.H.F. Conve tion arranged by the V.H.F. Committee the R.S.G.B. will be held at the Winnir Post Hotel, Whitton, Twickenham, Middx., c Saturday, April 26th, when the guest honour at the dinner will be Col. St. Q. Severi O.B.E., a well known figure at postwar I.T. Administrative Radio Conferences. Fu details of the programme can be obtaine from F. E. A. Green, G3GMY, 48 Boroug Way, Potters Bar, Hertfordshire.

## S.S.B. 2 -metre Contest

Tom Douglas, G3BA, of Coventry, wa the winner of the first 2 -metre s.s.b. contes organized by the R.S.G.B. or any othe national organization. His score of 212 wa 17 points higher than that achieved b . "Mike" Dormer, G3DAH.

## "U.K.W. Beriche"

An English edition, of this well-known anc unquestionably the most up-to-date of al v.h.f. amateur radio publications, is nou available. Originally printed in German the English version (published quarterly) can bc obtained from D. Hayter (G3JHM), 4 New. ling Way, High Salvington, Worthing, Sussex, who is the U.K. representative. The title of the English edition is V.H.F. Communications.

## Vale O.M.

Harold Walker, who died recently at the age of 70 , was one of the best-known amateurs in the early days. Operator of WBX prior to World War 1 and of 20 M in the early '20s he helped to form the Radio Transmitters' Society in 1923. He became Treasurer under the chairmanship of Ian Fraser (now Lord Fraser of Lonsdale, C.H.) when his colleague, P. P. Eckersley, was president. Harold Walker joined the B.B.C. in December 1923 and became a member of the development (later research) department.

## U.K. Licensing Authority

The new address of the Radio and Broadcasting Department of the Post Office-the licensing authority for amateur radio in the United Kingdom-is Waterloo Bridge House, Waterloo Road, London, S.E. 1 (Tel. 01-928 7878).

John Clarricoats (G6CL)

## est Your Knowledge

# 1. Transistor common emitter amplifier indamentals 

eries devised by L. Ibbotson,* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

The small-signal a.c. input resistance of te transistor in the amplifier of Fig. 1 is 85 k \& The amplifier is fed from a smallgnal voltage source of low internal impeince, and the amplifier output is open circuit. he mid-band voltage gain will be of the der of
(a) unity
(b) 70
(c) 140
(d) 210 .
. Two exactly similar circuits as shown in ig. 1 are connected in cascade. The resulting wo-stage amplifier is fed from a small signal oltage source of low internal impedance and ts output is open circuit. The mid-band voltage ain (expressed as a ratio) will be
(a) twice that of a single stage measured under similar conditions
(b) about $1 \frac{1}{2}$ times that of a single stage measured under similar conditions
(c) the square of that of a single stage measured under similar conditions
(d) about half of the square of that of a single stage measured under similar conditions.
3. The voltage waveform shown in Fig. 2 is applied to the input of the amplifier shown in Fig. 1. The voltage waveform appearing at the output will be (apart from the amplification)
(a) the same as the input
(b) the same as the input, but delayed by
$2 \frac{1}{2}$ milliseconds
(c) the input inverted
(d) the input inverted and delayed by $2 \frac{1}{2}$ milliseconds.
4. If the amplifier of Fig. 1 has the resistor $R_{2}$ removed
(a) the small-signal gain of the amplifier will increase, but the temperature stabilization will be lost
(b) the small-signal gain of the amplifier will fall to zero
(c) the amplifier properties will be unchanged so long as the temperature does not rise
(d) the transistor will be destroyed.
s. With no input signal the current in the base lead of the transistor in the circuit of Fig. 1
(a) has a conventional direction of flow into the transistor
*West Ham College of Technology, London, E. 15 .
(b) has a conventional direction of flow out of the transistor
(c) may flow in either direction
(d) is zero.
6. A tuned radio-frequency amplifier is shown in Fig. 3. The collector connection is made at the point $P$ rather than $Q$
(a) to give an adequate bandwidth
(b) to prevent oscillation
(c) to improve the temperature stabilization of the stage
(d) to increase the gain.
7. Some radio frequency amplifiers have a circuit consisting of a resistor in series with a capacitor connected between X and Y in Fig. 3. The purpose of this is
(a) to reduce distortion
(b) to increase the bandwidth
(c) to provide automatic gain control
(d) to counteract the effects of internal feedback in the transistor.

(a) 250 milliwatts.
(b) 2.5 watts.
(c) 5 watts.
(d) 10 watts.
11. If in the circuit of Fig. 4 the output transformer were removed and the loudspeaker connected directly in the collector circuit, the maximum undistorted power output would
(a) remain the same
(b) increase
(c) decrease
(d) drop to zero.
12. The significance of the maximum collector dissipation curve shown on the characteristics in Fig. 4(b) is
(a) the load line must not cross it
(b) the load line may cross it at the low voltage end, but not at the high voltage end (c) the load line may cross it at the high voltage end, but not at the low voltage end (d) the load line may cross it at any point, but the operating point must not lie above it.

Answers and comments, page 193.



Fig. 4.
(a)

8. Fig. 4(a) represents an audio frequency power amplifier; 4(b) shows the collector characteristics of the transistor together with an a.c. load line and a maximum collector dissipation curve. The output transformer has a $1: 1$ turns ratio. The impedance of the loudspeaker (assumed resistive) is
(a) $3 \Omega$
(b) $6 \Omega$
(c) $9 \Omega$
(d) $12 \Omega$
9. The common emitter current amplification factor ( $\alpha^{\prime}, \beta$ or $h_{F E}$ ) of the transistor in the circuit of Fig. 4 has a value in the region of the operating point of about
(a) 20 .
(b) 40 .
(c) 50 .
(d) 70 .
10. The maximum power output obrainable without gross distortion from the amplifier of Fig. 4 is about

## April Meetings

## Tickets are required for some meetings: readers are advised, therefore to communicate with the society concerned

## LONDON

2nd. I.E.E.-"Low-noise travelling-wave tubes" by J. G. Armstrong, B. Dunford and J. Willard at 17.30 at Savoy PI., W.C.2.

10th. I.E.R.E. \& I.E.E.-Colloquium on "Modern trends in magnetic disc storage" at 15.00 at 9 Bedford Sq., w.C. 1 .

10th. Instn of Electronics-"Opto-electric semiconductor devices" by D. F. Dunster at 18.45 in the Manson Theatre, London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.

11th. R.T.S.-"Recent developments in camera tubes" by A. C. Dawe at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

14th. I.E.E. Grads.-"Robots" by Prof. M. W. Thring at 18.30 at Savoy P1., W.C. 2

15th. I.E.R.E.-Symposium on "Communications and navigational satellites for ships and aircraft" at 14.30 at 9 Bedford Sq., W.C.1.

16th. I.E.E.-"Information display rechniques" by D. W. G. Byatt at 17.30 at Savoy Pl., W.C.2.

16th. B.K.S.T.S.-"Recent research in the development of high-quality loudspeakers" by R. E. Cooke $\$$ L. R. Fincham at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.I.

17th. I.E.E.-Discussion on "Electromagnetic and other flow measurements" at 17.30 at Savoy Pl., W'.C.2.

17th. R.T.S.-Fleming Memorial Lecture "The open university" by Prof. Walier Perry at 19.00 at the Royal Institution, Albemarle St., W.1.

18th. I.E.E.-"Image orthicon targets" by Prof. R. L. Beurle and W. E. Turk at 17.30 at Savoy PI., W.C. 2.
21st. 1.E.E.T.E.-"Tomorrow's Europe-the role of the electrical and electronic engineering industries" at 18.00 at I.E.E., Wavoy Pl., W.C.2.
22nd. I.E.E. \& I.E.R.E.-"Transcutaneous information" by Dr. T. A. Quilliam at 17.30 at St. Bartholomew's Hospital, E.C.1.

22nd. I.E.R.E.-"Hill-climbing self-optimization for industrial process control" by Z. J. Jelonek at 18.00 at 9 Bedford Sq., W.C. 1 .

23rd. I.E.R.E.-"The future of thin and thick films in microelectronics" by Dr. P. L. Kirby at 18.00 at 9 Bedford Sq., W.C. 1 .

23rd. B.K.S.T.S.-"Some transistor amplifier problems and their practical solutions" by P. J. Baxondall at 19.30 at the Royal Overseas League, Park Pl., St. James's St., S.W.1.

24th. I.E.E. - 60 th Kelvin Lecture on "Pursuit of measurement" by Prof. R. V. Jones at 17.30 at Savoy PI., W.C. 2 .

24th. I.E.R.E.-"The marketing concept" by M. W. Lauerman at 18.00 at 9 Bedford Sq., W.C.1.

25th. I.E.E. Grads. - "Telemetry and remote control" by S. H. Woodham at 18.30 at the Assembly Hall, Westminster Technical College, Vincent Sq., S.W. 1.
28th. I.E.E.-"Educational television" by W. Kemp at 17.30 at Savoy Pl., W.C. 2.

30th. I.E.E-Discussion on "Transistor microwave power amplifiers" at 17.30 at Savoy II., W.C.2.
BATH
17th. I.E.E.-"Electronics and the automobile" by W. F. Hill at 18.00 at the Technical College.

## BELFAST

16th. I.E.E. Grads.-"Thyristors and their applications" by J. H. Parker at 18.30 at the Ashby Inst., Queen's University, Stranmillis Rd.

22nd. I.E.R.E.-"Modern methods of traffic control" by D. G. Hornby at 18.30 at the Ashby Inst., Queen's University, Stranmillis Rd.

## BIRMINGHAM

24th. I.E.E.-"Teaching methods employed on the training of B.B.C. technical staff" by H. Henderson at 18.15 at the University of Aston, Gosta Green.

28th. I.E.E.-"Computers and design" by G. A. Montgomerie at 18.00 at M.E.B. Offices, Summer Lane.

## BRIGHTON

22nd. I.E.E. Grads.-"The thyristor cycloconverter" by D. R. Aubrey at 18.30 at the College of Technology.

## CAMBRIDGE

1st. I.E.E.-"The Cambridge one-mile telescope" at 19.30 at the College of Art \& Technology

## CARSHALTON

22nd. S.E.R.T.-"Video tape recorders" by P. Leggatt at 19,30 at the College of Further Education, Nightingale Rd.

## CARDIFF

1st. I.E.E. Grads.-"Amateur radio" by L. D. W'atts at 19.00 at Llandaff Technical College.

## CHELMSFORD

8th. I.E.R.E.-"Receivers for satellite ground stations" by P. J. Cott at 19.00 at the Civic Centre, Duke St.

14th. I.E.E.-"The management of major electronic projects" by J. W. Sutherland at 18.30 at the Lion \& Lamb Hotel.

## COLCHESTER

22nd. I.E.R.E.-"Man-machine systems engineering" by B. R. Gaines \& Dr. J. L. Gedye at 19.00 at the University of Essex, Wivenhoe Park.

## DUNDEE

29th. I.E.E. Grads.-"Information storage and retrieval systems for the engineer" by D. Anderson at 19.30 at the University.

## DURHAM

23rd. I.E.E.T.E.-"The electron microscope, its development and application" by Dr. B. E. P. Beeston at 19.30 at the University Science Laboratories, South Rd.

## EASTBOURNE

29th. I.E.E.-"Colour television" by B. J. Rogers at 18.30 at S.E.E.B., Westords, Willingdon Rd.

## EDINBURGH

1st. I.E.E.-"A model superconducting motor" by
A. D. Appleton at 18.00 at the Carleton Hotel.

16th. I.E.E.T.E.-"Decca navigation" by A. Brooker-Carey at 19.00 at Heriot Watt University.

## EVESHAM

22nd. I.E.R.E. \& I.E.E.-"Interesting aerials" by M. Maclese at 19.00 at the B.B.C. Club.

## FARNBOROUGH

22nd. I.E.E.-Lecture by Prof. E. R. Laithwaite at 18.30 at the Technical College, Boundary Rd.

## LEEDS

15th. I.E.E. Grads.-"Aircraft equipment" by G. B. Sugden at 19.00 at the University.

## MANCHESTER

1st. IEE.- "Government future policy with reg: to technology" by I. Maddock at 18.15 at U.M.S.S.T.

17th. I.E.R.E.-"Trends in supervisory telemet ing systems" by G. S. Kermack at 19.15 at the Rens Bldg, U.M.I.S.T., Altrincham St.
23rd. I.E.E.-"Low-noise microwave amplifiers"
D. Lynes at 18.15 at U.M.I.S.T.

## MIDDLESBROUGH

2nd. I.E.E.-"Application of transistor techniques relays and protection of power systems" by F.
Hamilton at 18.30 at the Cleveland Scientific Inst.
23rd. I.E.E. Grads.-"Radio control systems appli to models" by A. Pearson at 18.30 at the Clevela Scientific Inst.

## NEWCASTLE-UPON-TYNE

9th. I.E.R.E.-"Satellite communications-state the art" by J. K. F. Jowett at 18.00 at the Inst. Mining and Mechanical Engrs., Neville Hall, Westga Rd.

## NOTTINGHAM

22nd. I.E.E.-"Holography" by W. R. Bradford 18.30 at the University.

## PARKSTONE

17th. I.E.E. Grads.-"Experimental speech recogn tion system" by A. Witts and "Principles and applica tions of data logging" by J. A. Whitfield at 18.30 at th Central Hotel, Ashley Cross.

## PLYMOUTH

15th. I.E.E.T.E.-"Colour TV-principles an applications" by M. Cosgrove and I. M. W'aters at 19.3 at the College of Technology, Tavistock Rd.

## PRESTON

16th. I.E.E.-"The Institution-today and in th future" by Dr. G. F. Gainsborough at 19.30 at Harri College.

## READING

24th. I.E.R.E.-"Computer graphics" by B. $S$ Walker at 19.30 at the J. J. Thomson Physical Labora tory at the University.

## SHEFFIELD

9th. I.E.E. Grads.-"Concorde" by H. Hill at 18.34 at the University.

## SOUTHAMPTON

24th. I.E.E.-"The place of the technician in the engineering industry" by H. L. Haslegrave at 18.30 at the University.
29th. I.E.E. Grads.-"Thyristor controllers" by P. Bowler at 18.30 at the University.

## SWANSEA

10th. I.E.E.- "The design and application of M.O.S. linear integrated circuits" by J. Roberts at 18.15 at University College.

291h. U.C. Radio Soc.-"Stereophony and highfidelity audio" by J. Hamm at 19.30 at Faculty of Applied Sciences, University College.

## TORQUAY

17.h. I.E.E.-"Holography" by W. R. Bradford at 14.30 at Electric Hall.

## WOLVERHAMPTON

24th. I.E.R.E.-"Television studio equipment and operations" by C. R. Longman at 19.00 at the College of Technology.

## Late March meetings in London

26th. B.K.S.T.S.-"Paul Voigt's contributions to audio" (various speakers) at 19.30 at the Royal Institution, 21 Albemarle St., W. 1.

27th. R.T.S.-"Television and data display techniques in civil aviation" by J. O. Clark and L. E. Hardy at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

31st. I.E.E.-"Array thinning" by Dr. P. Mathews at 17.30 at Savoy PI., W.C.2.

## Answers to ${ }^{6}$ Test Your Knowledge'"-11

 Zuestions on page 191.. (b). Since the collector load ( $R_{V}$ ) can be assumed to $x$ much smaller than the output impedance of the ransistor the current gain of the stage is approximately $i_{/ e}$. Hence the voltage gain will be $h_{j e} R_{L} / r_{i n}$ and $r_{L} \simeq r_{i n}$.
2. (d). The second stage loads the first, and, since $R_{E} \simeq T_{i n}$, approximately halves its open-circuit gain.
3. (c). It is a common fallacy that an amplifier of this sort produces a mid-band phase shift of $180^{\circ}$. It in fact produces a signal inversion which is the same as a $180^{\circ}$ phase shift for a sinusoidal input signal only.
4. (b). The base current will be so large that the transistor will be driven into saturation.
5. (c). The current ( $1-\alpha I_{c}$ flows into the base, the leakage current $I_{C B O}$ flows out (the symbols have their usual meanings). This circuit tends to maintain $I_{e}$ almost constant so that at high temperatures $I_{\text {CBO }}$ may be greater than $(1-\alpha) I_{e}$ and hence the net current flow is outwards; at lower temperatures the net flow is inwards.
6. (a). The effect is to decrease by auto-transformer action the $L / C$ ratio presented to the transistor, thus reducing the loaded $Q$. This allows convenient values of $L$ and $C$ to be used in the tuned circuit (their product, of course, determines the frequency) without a damping resistor which would waste power and reduce the gain.
7. (d). This is one form of "unilateralization" which may be required if the internal feedback is large as it often is in germanium alloyed transistors.
\% (b). This can be deduced from the slope of the load line.

9 (a). It can be seen from the characteristics that a change of base current of 50 mA at constant collector voltage corresponds to a change of collector current of about 1 amp .

10 (b). The maximum peak to peak swing of collector potential is about 11 V , of current about 1.8 A , for no gross distortion. This corresponds to a power output of $1.8 \times 11 / 8 \simeq 2.5 \mathrm{~W}$.
11. (d). The base potential is effectively fixed, hence the omitter current cannot fall very far. With 1 amp of curtent the voltage drop across $6 \Omega$ is 6 V ; the transistor will therefore be in saturation somewhere near the point on the current axis of the characteristics $I_{C}=1 \mathrm{amp}$.
12. (d). For a class A amplifier the operating point determines the maximum mean power dissipated in the uransistor.

FOR THE LATEST
DEVELOPMENTS IN
ELECTRONIC COMPONENT DESIGN VISIT STAND No.E203

The House of Bulgin has led the World in precision Electronic Component design for well over 40 years and this year are pleased to announce that many new additions to their existing range will be on show at the R.E.C.M.F. Exhibition. Olympia. May 20th23rd 1969.
Notable items are: a range of O.P.C.O. Moulded Insulation Switches with various actuating means; three versions of a Switched Indicator Unit. which can be legended to customers' own requirements; a universal 7 -pole + earth Plug and Socket for inlet and/or outlet uses rated 6A. 250 V AC: further Moulded Insulation Switches alternative or replacement to our S. 277 O.P.C.O. and/or outlet uses rated 6A. 250 AC: further Moulded Insulation Swithes alternative or replacement to our S. 277 D.P.C.O. Switch rated 8 A . 250 V AC. Other components still under development will also be on show together with a representative selection of our range of over 15,000 standard components.


## A. F. BULGIN \& CO. LTD., BYE-PASS RD., BARKING, ESSEX manufacturers of electrical and electronic components

# Literature Received 


#### Abstract

"Integrated Circuit Data Book" is a substantial 960-page volume listing all the digital and linear integrated circuits manufactured by Motorola and it forms a useful companion to the "Semiconductor Data Book" published earlier. The book gives performance data, test circuits and application notes, and, unusually, it includes an integrated circuit equivalents list. The book is available from The


 Modern Book Company, 19-21 Praed St, London W.2, at $\{210$ s plus 5 s postage."Bulletin of Special Courses in Higher Technology, Management Studies and Commerce" is compiled by the London and Home Counties Regional Advisory Council for Technological Education, Tavistock House South, Tavistock Square, London W.C.1. It gives details of special advanced courses held in London and the Home Counties which do not regularly appear in college calendars or prospectuses. The bulletin, which consists of 117 pages, is available from the above address, price 9s.
We have received a copy of a booklet; "Sound System Equipment" Part 1, General; which sets out the decisions of the International Electrotechnical Commission regarding standardization. Copies may be obtained from the British Standards Institution, British Standards House, 2 Park St, London W.1, price 23 s plus 2 s postage.

A large wallchart giving information on communications satellites in general and Intelsat 3 in particular is available from: Marketing Services, E2/9043, TRW Systems Group, One Space Park, Redondo Beach, California 90278, U.S.A.; price $\$ 3.95$.

Circuit details of a crystal clock employing plastic encapsulated transistors are given in application note number 34 from Ferranti Ltd., Gem Mill, Chadderton, Oldham, Lancs. The clock uses a 100 kHz crystal oscillator driving monostable dividing circuits and will operate from an HP2 cell for about a year. WW 401 for further details
"Noise at work" from Hewlett-Packard, 224 Bath Rd, Slough, Bucks, is a booklet which shows how the Hewlett-Packard noise generator can be used in a cross correlation technique in the design of process control systems.
WW 402 for further details
The latest edition of the Radiospares catalogue, Jan/March, 1969, is now available from Radiospares, P.O. Box 427, 13-17 Epworth St, London E.C.2.
WW $\mathbf{4 0 3}$ for further details
A new catalogue concerned with coaxial connectors of various shapes and sizes is available from Precision Connectors Ltd., 56/58 Green St, Forest Gate, London E. 7.
WW 404 for further details
A guide to the structure of the British Electronic Valve Industry is given in a booklet published by B.V.A. and V.A.S.C.A. Copies of the booklet which is called "British Valve and Semiconductor Industry" are available from the General Secretary, B.V.A.V.A.S.C.A., Mappin House, 4 Winsley St, Oxford St, London WIN ODT.
WW 405 for further details
"Platinum" is the title of a booklet produced ty International Nickel, Thames House, Millbank, London S.W.1. It gives details of the metal's properties, its alloys, composites and compounds and reviews its applications.
WW 406 for further details
A teleprinter terminal unit which forms a compact interface between a teleprinter and a radio receiver system is described in a leaflet from Redifon Lid., Broomhill Rd, Wandsworth, London S.W.18.
WW 411 for further details

# Video-recording boosts efficiency at all levels Ampex VP-TOO3 speeds your communications, helps suevyone imporeve his performance 

Videotape recording is simply the ability to record pictures and sound... and reproduce them almost at once. The Ampex VR-7003 recorder does this to international

Marketing Director Gets full value from the VR-7003 in terms of research analysis. It's a quick, efficient way to tape results of group discussion. package testing, brand name tests, etc.-and play them again and again.

Works Manager Can record production processes in sound and vision-end replay them again and again. Says the VR-7003 is a vital way to analyze critical operations in terms of Value Engineering -and no need 10 interfere with current production llow.
professional standards. It represents a distinctinvestment for any modern-thinking company ...expressed here in the added efficiency experienced by key personnel.

Sales Directer Closely involved with training of recruits and uses VR-7003 extensively. Insists it's the best way to get trainee salesmen to study their own practice performances-specially useful is the VR-7003's instant replay. And tape is easily erased for nex attempt.

Managing Director When he's at a meeting he wants more than a short-hand transcript to remember it by-he's glad he invested in the perfect sound/vision recording that's easy to play back as reminder or documentation. Fav. ours the VR-7003 for disseminating product information too. Also says it's helpful as a visual aid for training young executives -subject in which MD takes fatherly interest. Trainee can easily play back data at leisure in ordinary, slow, or stop motion.

Man who introduced the VR-7003

Knows he doesn't need to be modest any more

Ampex VR-7003 only low-cost video system providing assured interchangeability-between machine, line standards, and components $\square$ superb quality picture and complete stopmotion facilities $\square$ portable-plugs into ordinary power point $\square$ rapidly becoming The World Standard for organisations using CCTV recording equipment $\square$ can be linked to closedcircuit console $\square$ made by Ampex-world leaders in magnetic recording equipment and inventors of videotape reconding.

## AMPEX

Call your Ampex man for application details and technical specifications
Ampex Great Britain Ltd. AcreFoad, Reading. Berks, England. Arnpex Europa G.m.b.H., Elbestrasse 1, 6 Frankfurt Main, Germany. Ampex S.A., Via Eerna2, Lugano,Switzerland. Ampex, 14 Avenue Pierre Grenier, 92-Boulogne France

REGORD MAINTENANGE TAKES ANOTHER BIG STEP FORWARD! With these latest advanced products

## NEW HI-FI PARASTAT



A.C. SOLENOID TYPE SBM/T

Continuous Rating $3^{\frac{3}{4} / \mathrm{l} . \text { at } 1} 1 \mathrm{in}$ Instantaneous up to 16 lb .


Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3 -phase.

KNAPPS LANE, CLAY HILL, BRISTOL 5. TELEPHONE 65.7228/9
WW-120 FOR FURTHER DETAILS

## SPEED CHECK! <br> Revs per Minute or anything else per minute-

## P.I. ELECTRONIC TACHOMETER

Type P.I/L with light probe
Type P.I/M with magnetic probe

* Imposes no load
* No mechanical connection required
* Ideal for inaccessible places
* Lightweight for easy movement

External D.C., Battery, and
Marine engine speed versions available from-

## NECO ELECTRONICS (EUROPE) LTD.,

WALTON RD., EASTERN RD. COSHAM. HANTS.
COSHAM $71711 / 5$ TEL: 01-622 0141/3 \& 3211/5

# FACTS at your fingertips... 

TERADERYAR TRADER YAR

All the information you need in one compact, quick reference volume-the standard trade directory for radio and electrical dealers and service engineers. This completely up-to-date Year Book includes: Service depots; Directory of principal trade organisations. Legal guide; Rates of pay; Valve data; TV Station guide; Specifications; Wholesalers; Proprietary names directory; Buyers' guides; Trade addresses, etc.
500 pages 35 s . net, 37 s . 6 d . by post.
Obtainable from:
IPC Electrical-Electronic Press Ltd.
Dorset House, Stamford St., London, S.E.I or order from your bookseller

## THE WELBROOK <br> ALL-SILICON INTEGRATED STEREO AMPLIFIER



PRICE £48
COMPLETELY ENCLOSED PANEL MOUNTING. TEAK CABINET £4 EXTRA. also available
AMPLIFIER P.C.B. MODULES AS USED IN THE ABOVE AMPLIFIER. BUILT AND TESTED.
MONO AMP 103 £8-0-0.
STEREO AMP 103 £15-0-0.

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S. INTO A $8 \Omega$ LOAD AND 10 WATTS R.M.S INTO A $15 \Omega$ LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICK-UP, TUNER AND TAPE
SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE. DETAILED ILLUSTRATED LITERATURE AVAILABLE ON REQUEST.
TRADE ENQUIRIES INVITED.

BROOKS STREET, HIGHER HILLGATE, STOCKPORT, CHESHIRE. 061-480 4268.

FERRANTI HI-FI AUDIO DESIGN BOOKLET AVAILABLE 5/- EACH. COMPLETE WITH WELBROOK PRICE-LIST.

WW- 122 FOR FURTHER DETAILS

## LONDON microphones

Quality sound-at low cost The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

NEW to the range: LM300 dynarnic cardioid microphone incorporating top-quality moving coil capsule. Gives maximum front-to-back ratio over a frequency range of $50-15,000 \mathrm{~Hz}$. Elegant styling, robust metal case, natural anodised finish.

|  | Low imp. |  | Dual imp. |  |
| :---: | :---: | :---: | :---: | :---: |
| LM 300 (Cardioid) | £11 10 | 0 | £12 10 | 0 |
| L.M 200S | £5 19 | 6 | £6 15 |  |
| LM 200 | £4 19 | 6 | 2515 |  | $\begin{array}{lllllll}\text { LM } 200 \\ \text { LM } 100 \text { (Omi) } & £ 4 & 19 & 6 & £ 5 & 15 & 0 \\ £ 3 & 3 & 0 & £ 3 & 18 & 6\end{array}$ Home or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD. 182/4 Campden Hill Road, London, W.8.

Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894
WW-123 FOR FURTHER DETAILS

## 41/ mux mulus fis SCKETS

Make a reliable contact with Oxley P.T.F.E. insulated 'Barb' Plugs and Sockets. Subminiature and miniature versions for chassis or printed circuit mounting. OXLEY DEVELOPMENTS COMPANY LTD.



## SINCLAIR STEREO 25

Pre-amp/Control Unit for Z. 12, or other good Stereo assemblies. Switched inputs for P.U lequalised to R.I.A.A. curve from 50 to $20.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ ). Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel Control knobs for Bass/Treble/Volume/Balance Input are solid aluminium. Size- $6 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in $x$ $2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed With instructions manual.
£9.19.6

## SINCLAIR PZ. 4 STABILISED MAINS POWER SUPPLY UNIT

Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5A. Designed specially for use with two Z. 12 Amplifiers together with Stereo 25. Built, tested and guaranteed.

99/6

## SINCLAIR MICROMATIC

This fantastic little British pocket receiver is available as a kit or ready built. Its range, power and selectivity must be experienced to be believed; its quality outstandingly good. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. With aluminium front panel and tuning control.

Kit in fitted pack with earpiece, solder and instructions

49/6
Built, tested and guaranteed

59/6
Mallory Mercury Cells RM 675 (2required) each $2 / 9$


## SINCLAIR GUARANTEE

provision for plug-in remote and switched tuning units (available separately). The amplifier and loudspeaker are equally outstanding and well worth comparing for yourself. Ask your dealer for a demonstration or write or ring us for a leaflet.
Stereo Amplifier 29 gns
System 2000 F.M. Tuner 25 gns
 System 20008 ohm loudspeaker 12 gns
Sinclair Radionics Limited, 22 Newmarket
Road, Cambridge. Tel. Cambridge 52996
coils. They have become an integral part of the printed circuit and never need adjust-ment-another step in increasing reliability and reducing the final price.
Almost all other tuners use the Foster-Seeley discriminator or the ratio detector. The System 2000 tuner uses a pulse counting discriminator. This is free from drift and possesses a lower level of distortion than any other system. Inter-station noise suppression, mains tuning and stereo indicators ogether with a sensitivity for full limiting of ated. An additional attractive feature is Sinclair launch their System 2000 range with the amplifier, tuner and speaker shown here. The tuner and amplifier are separate units which may be mounted together for convenience. Each is complete in itself and may be used with existing high fidelity equipment. The System 2000 uses new components which reduce costs, increase performance and improve reliability.
For example, look at the circuits of mosi F.M. tuners and you will find that they vary very little. Look at the System 2000 tuner.
You will notice the absencc of conventional

## WEYRAD

## COILS AND I.F. TRANSFORMERS

| P. 9 SERIES | $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils. |
| :---: | :---: |
| P. 55 SERIES | $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils. |
| T. 41 SERIES | $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor. |

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

## OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

## Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-fncused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 extension barrel, doubleended probe, gun and solder. £4 126. Full details and nearest stockist frōm:


USED THROUGHOUT THE WORLO, SANWA'S
EXPERIENCE DF 30 YEARS ENSURES ACCURACY, EXELIABILITY, VERSATILITY. UNSURPASSEO TESTER PERFORMANCE COMES WITH EVERY SANWA
6 Months Guarentes - Excellent Repair Service
Model P-18
Model JP 50
Model U-50D
Model 360-YTR
Model AT- 1
Model 380.CD
Model F.80TRO
Modal 430-ES
Model 430-ES
SOLE IMPORTERS IN U.K:

WW-129 FOR FURTHER DETAILS


## J E S AUDIO INSTRUMENTATION



Illustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to
. $01 \% \quad$ £25.0.0

Si451
£30.0.0
Comprehensive Millivoltmeter $350 \mu$ Volts 20 ranges

Si453
£35.0.0
Low distortion Oscillator sine-square-RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE.




## LINEAR INTEGRATED CIRCUITS

G.E. TYPE PA234 I WATT AUDIO AMPLIFIER. Delivert I W. continuous power into 22 Ohms. Single supply, Dual-in-line. G.E. Type PAzJo LOW LEVEL AMPLIFIER

CA TYPe CA3020 WATT WIDE-BAND POWEA C to video power amplifier. Motor control, wide band mixers, etc. RCA TYPE CA3035 ULTRA HIGM GAIN AMPLIFIER 129 dB as 40 kHz can, use separately or together. Overall voltage gain typically MULLARD Type TAA263 A.F. AMPLIFIER
 MULLARD TYPE TAABIO LOW NOISE AUDIO PRE-AMPLIFIER 32/
G.E. TYpe 2N5306 DARLINGTON PAIR
ery low level, low noise. hrs $=7,000$ min. and $1 \mathrm{it}=60 \mathrm{MHz}$ as $100^{\circ} \mathbf{2 m A}$."
 G.E. TYPE DIBTI PROGRAMMABLE UNIJUNCTION TRAN. for timers, relaxation oscillators, etc. $\eta$, $\ddot{R B B}, \operatorname{lp}, \mathfrak{j}$ are programmabie.

All the above are available with data sheets at $1 /-$ extra per data sheet Data sheets may be purchased separasely at $1 / 6$ each, pose free.

| NPN Types |  | PNP Types |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2N3704 Med. power | 3/9 | 2 N 3702 Med . power | 3/6 | TiS44 | NPN Fast switch |  |
| 2N3705 Med, power | $3 / 4$ | 2 N 3703 Med , power | $3 / 3$ | TiS49 | NPN Fast iwitch |  |
| 2N3707 Low level | 4/- | 2N4058 Low level | 4/6 | T1550 | PNP Fast switch |  |
| 2N3708 Low level | ${ }^{2 / 5}$ | 2 N 4059 Low level | $3 / 5$ | $2 \mathrm{2N3819}$ |  | 9/- |
| BC182L Low level BCIBJL Low level | $3 / 3$ $2 / 5$ | BC212L Low level BC213L Low level | 3/9 ${ }^{3} / 9$ | 2N3820 | P-Channel FET | $18 / 9$ |
| BCIsaL Low level | $3 / 2$ | BC214L Low level | 4/- |  |  |  |

PROFESSIONAL COMPONENTS AT REALISTIC PRICESI
Send NOW for our brand new Components Catalogue, as only 2 - posz free. This catalogue is packed with informasion on a host of yp-to-the-minute components by leading manufacturers. Included are Integrated Circuits, Silicon and Germanium Please note that all goods supplied by us are brand new and guaranteed zo fully Conform to the manufacturers published specifications.

KINVER ELECTRONICS LTD., STONE LANE, KINVER, STOURBRIDGE, WORCS.

## MrODPTOELECTRONICS FPOM PROOPS

 nroraNew Science Projects combine fascination of Optics with Electronics.

## INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in brand new electronic fleld that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching capabillties to provide infinite possibilities as short distance speech and data links, remote relay controls, safety devices burglar alarms, batch counters, level detectors, etc., etc.

INFRA-RED PHOTO RECEIVER - MSP3
Ultra sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links Ultra sensitive dotector/amplifier for infra-red (Gallium Arsenide) or visible ight optical links faciltate optical alignment and heat sinking.

85/ $\qquad$
MAX RATINGS
Max RATINGS
Output Current Intensity
air, $\mathrm{Tamb}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$.
100 mW . Derating factor
25V. Operating Factor $\quad 2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Supplied complere with suitable lenses, full Technical Data and Application Sheers including Line of Sight Speech LInk.

GALLIUM ARSENIDE LIGHT SOURCE—MGA 100 Filamentless, intra-red emit

$\qquad$
MAX RATINGS
Forward current If max. D.C...... 400 mA . Forward peak current If max. ( pk ) . 6 A Power dissipation* 600 mW . Derating factor for Temb greater than $25^{\circ} \mathrm{C}$
Reverse voltage $V_{R}$ max 1 -OV.
 including Line of Sight Speech Link.

MICRO-MINIATURE INFRA-RED DETECTOR - 31 F2 silicon NPN phoro-diode of passivated planar construction. surtable for punched card reader counters. film sound track, etc.

## PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)
inexpensive light sensitive resistors which require only simple circuitry to work as light eriggering units in a wide range of devices, such as: flashing or breakdown lights, exposure meters. brighthess controls, sutomatic porch lights. etc. Not polarity
conscious - use with A.C. or D.C. Spectral response covers whole visible light range.


MKY251
Epoxy sealed $1 \frac{1}{2}$ in. diam. $x \frac{1}{2}$ in. thick. Resistance at 100 Lux -700 to 3.000 ohms. Maximum voltage 200 A.C. or D.C. Maximum current 500 mW . $12 / 6$ post free
 MKY101-C Epoxy sealed. : in diam. $\mathbf{x} \frac{1}{1}$ in. thick. Resistance ar 100 Lux -600 to 150 mW . MKY71
Glass sealed with M.E.S. base. Glass envelope $\frac{5}{1} \mathrm{in}$. diam. overall voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

CADMIUM SELENIDE CELLS (Cdse)
These have a higher dark resistance in a given period than Cadmium Sulphide Cells. indicating much faster response. Suitable for all Cds applications plus applications in chopper, electronic musical instruments. computer and other sophisticated circulery. Time response shown in megohms is derk reslstance measured 10 secs . after 400 Lux light intensity is intercepted.

MKB5H


Hermetlcally metal sealed. $\frac{\lambda}{} \mathrm{in}$. diam. $x$ d in, thick. Time response 100 megohms. Resistance of $1.000 \mathrm{Lux}-1 \mathrm{Kohm}$ to 10 Kohms 50 A.C. or D.C. Maximum Eurrent 10 mW . Continuous current 5 mW . 16/6 post free MKB12H
Hermetically metal sealed in. diam. $x \frac{1}{6}$ in. thick. Time response 100 megohms. Resistance at 1.000 Lux-100 ohms to 1.000 ohms. Resistance at 10 Lux -1 Kohm to 10 Kohms. Maximum voltage
$50 \mathrm{~A} \mathrm{C} .\mathrm{or} \mathrm{D.C}$.Maximum current 80 mW . Continuous 30 mW .

16/6 post free

## PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting covers visible light range.

Type 1 - $1 \frac{1}{1} \times 1$ 年 $\operatorname{in}$. Output 1 mA at 0.6 volts at 1,000
Type 2-28 $\times 18 \mathrm{~mm}$. Output $500 \mu \mathrm{~A}$ at 0.6 volts at Type 3-100 $\times 50 \mathrm{~mm}$. Output 4 mA at 0.6 volt at 1.000 22/6 post free

## FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible placee as easily as electricity is conducted by copper wires. Fibre optics make it possible to control. miniaturize, splti. reflect or transfer light from one source to many places at once sible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS


All the basic components needed to demonstrate new ways to use light in serious applications with glass fibre optics consisting of thousands fibrus 18, and 24 inch standard light quides In $1.5,3$ and 6 mm wldths. 24 inch iwin exit gulde with $2 \approx 9 \mathrm{~mm}$. outputs. Non-random ' $Y$ ' guide with $2 \times 3 \mathrm{~mm}$. Cutputs, adaptors and battery operated llaht source. Supplied complete with card wallets containing technical data and illustrated applications.

LOW-COST CROFON FLEXIBLE LIGHT GUIDE Newly developed plastic light transmitting media made b Du Pont and consisting of 64 special plastic fibres, each 010 in . diam. and bundled together in a lough. llexible sheath. Can be used for many serious projects and mexpensive prototype work. Ends can be ground flat, dyed or capped with Epoxy resin. Temp, range - $-40^{\prime \prime}$ to $176^{\circ} \mathrm{F}$ applications booklet supplied.


8/6
Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT - CA3020
Complete Audio or Servo Amplifier in one tiny package! Preamp, phase invenor, driver and power output function in a single package only $\mathbb{i}$ in. diam, and $\frac{1}{16}$ in. high. Operates from single D.C. supply of 3 to 9 voits high gain is coupled with built-in temperature compensation (-55 ( $55^{\circ}$ distonio $123^{\circ} \mathrm{C}$ ) and widabamd operation Complete with data and circuit applications.

42/-post free

RCA TRIAC - CA40432
Suitable for light dimming and motor control circuits
Gate-controlled. full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Stitable for A.C diam. $x \frac{3}{2}$ in high. Complere with heat sink dat and applications information.

45/-post free

$\qquad$


Proops Bros. Ltd., 52 Tottenham Court Road, London WIP OBA Telephone: 01-580 0141
 fitted with two 2-pin American so
on/off switch, and carrying handle.

# © \& 5 wonn's <br> (ELECTRONICS) LTD. 

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5 125

## NEW H.T. TRANSFORMERS All by famous makers.

Primaries tapped 200-250 volts.
Sec. $450-400-0-400-450 \mathrm{v} .180 \mathrm{~m} / \mathrm{a} .2 \times 6.33 \mathrm{v} .3 \mathrm{~A}$. 5 v. 3 A.

55/-. P \& P 7/6
Sec. $350-300-0-300-350 \mathrm{v} .50 \mathrm{~m} / \mathrm{a} .2 \times 4-6.3 \mathrm{v} .3$ A. 4-5-6.3 v. 4 A.

37/6. P \& P $7 / 6$ Sec. $315-\mathrm{Q}-315 \mathrm{v} .110 \mathrm{~m} / \mathrm{a} .175-0-175 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}$. 4-6.3 v. 3 A. 6.3 v. C.T. 4 A. 6.3 v. C.T. 2 A. 6.3 v. 2 A. "C" core. 50/-. P \& P $7 / 6$ Sec. $300-0-300$ v. $60 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{~A} .25 / \mathrm{F} . \mathrm{P}$ \& $\mathrm{P} 5 / \mathrm{c}$ Sec. $250-0-250$ v. $70 \mathrm{~m} / \mathrm{a} .6 .3$ v. 2 A. 6.3 v. A 1. "C'" $\begin{array}{ll}\text { core sealed. } \\ \text { Sec. } 400 \mathrm{v} .290 \mathrm{~m} / \mathrm{a} . & \text { " } \mathrm{C} \text { " core. } \\ \text { 29/6. P \& P 5/- } \\ 75 / \mathrm{c} \text {. P \& P } 7 / 6\end{array}$ Sec. $400-390-370 \mathrm{v} .6 \mathrm{~m} / \mathrm{a}$. "C' core. Sec. 400 v. $25 \mathrm{~m} / \mathrm{a} .25$ v. $25 \mathrm{~m} / \mathrm{a}$. "C"" core

17/6. P \& P 3/6
Sec. 400 v. $4 \mathrm{~m} / \mathrm{a} .3$ v. 5 A. $\quad 15 / \mathrm{L} . \mathrm{P}$ \& P $3 / 6$
 Sec. $2 \times 125$ v. $260 \mathrm{~m} / \mathrm{a}$. "C" core. Sec. $130-65$ v. $85 \mathrm{~m} / \mathrm{a} .6 .3$ v. 5 A. 6.3 v . I A. (Pri. 230 v. only).

19/6. P \& P 5/-

## MISCELLANEOUS OFFERS

Sunvic Water Tank Thermostats. Type TQP $70-190^{\circ}$ F. 250 v. A.C. 15 A. contacts.

29/6. $P$ \& $P 4 / 6$ G.P.O. 20 way Jack Panels. Type 320 BN . New. 15/-. P \& P 2/6 Micamold 4 mfd .600 v. wkg. Tubular Single Hole Fixing Capacitor.

## POWER

American ex-Computer Highly Stabilised and Smoothed Power Supply Units. Regulation from 7 to 15 volts D.C. at 20 Amps. Front panel fitted voltmeter ( $0-15 \mathrm{v}$.) and ammeter ( $0-30 \mathrm{~A}$.) on/off switch and indicator, D.C. overload switch and voltage adjustment control. Size I9in. wide $x$ 18 in . deep $\times 7 \mathrm{in}$. high. Bench or rack mounting. A.C. input 115 v. 50 cycles. $240 / 115 \mathrm{v}$. transformer can be supplied at nominal $50 /$ extra. Units built to high specification. In perfect condition. 25 ex warehouse.

DAWE AUDIO SWEEP OSCILLATOR
AND CONTROLLER TYPE 443B
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$ in a Single Sweep Logarithmic Scale Calibration. Accuracy $=1 .=1 \mathrm{c} / \mathrm{s}$. Power supply 110 v . and $200-250 \mathrm{v}$. Dimensions: $19 \times 12 \times 13$ ins. Supplied Brand New with Instruction Manual.


Less than hall Maker's Price. $£ 125$, ex warehouse. Send 6 d . Stamp for Daca Sheet.

## DAWE AUTOMATIC L.F. SWEEP

Type 444C. $5 \mathrm{c} / \mathrm{s}$ to $5000 \mathrm{c} / \mathrm{s}$ in a Single Range. 6 -inch dia. dial with Logarithmic Calibration over $216^{\circ}$ of Arc. Fre. Accuracy $\pm 5 \%$. Output continuously variable up to 10 v. R.M.S. into Voltmeter Power Supply. 110 v , and $200-240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Dimensions: $19 \times 18 \times 19 i n s$. Supplied Brand new with Instruction Manual, Less than half Maker's Price. \&100. Send 6d. Stamp for Data Sheer.

## TRANSFORMERS COILS

 CHOKESSPECIALISTS IN
FINE WIRE WINDINGS MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS. ETC
VACUUM IMPREGNATION TO APPROVEO STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY $01-6532261$ CR4.BLZ EST. 1933

WW-133 FOR FURTHER DETALS


## AVONCEL TROLLEYS

FOR HOME AND EXPORT LARGE RANGE OF STANDARD MODELS from £10. Also CUSTOM BUILT TO SUIT YOUR EXACT REQUIREMENTS LOW COST • TOP QUALTY - QUICK DELIVERY QUANTITES: I OFF TO 1,000 OR MORE

## - AVONCEL -

AVON COMMUNICATIONS AND ELECTRONICS LTD. 318 BOURNEMOUTH (HURN) AIRPORT, CHRISTCHURCH, HAMPSHIRE TEL: NORTHBOURNE 3774

TELEG: AVONCEL CHRISTCHURCH


## ( RADFORD

In an article in the Journal of the Audio Engineering Society for July 1967, Bart N. Locanthi, Vice-President, J. B. Lansing Sound Inc. describes the development of an ultra low distortion direct current audio amplifier. In it he says "... to get the highest accuracy possible, an English made RADFORD Low Distortion Oscillator was used which has less than $0.01 \%$ harmonic distortion at 20 kHz ."


## LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification
Frequency Range:
Outpue Impedance:
Output Voltage:
Output Attenuazion:
Sine Wave Distortion:
Square Wave Rise Time: Monitor Output Meter: Mains input:
Size:
Weight:
Price:
5 Hz -500
600 Ohms .
10 Voles r.
10 Volcs r.m.s. max
0.110 dB
$0.005{ }^{\circ}$ continuously variable.
$0.015 \%$ ram 200 Hz to 20 kHz increasing to
Less than of 10 Hz and 100 kHz .
Scaled $0-3.0$ microseconds.
$100 \mathrm{~V} .-250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
$175 \times 11 \times 8 \mathrm{in}^{10}$.
${ }_{25}{ }^{2} 16 \times 11 \times 8 \mathrm{in}$.
25150.
$f 150$.


DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as $0.002 \%$. Direct reading from calibrated meter scale.
Specification
Frequency Range:
Dissortion Range:
Sensitivity:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ f.s.d. (9 ranges).
100 mV . 100 V . (3 ranges).
100 mV . 100 V. ( 3 ranges)
Square law r.m.s. reading.
100 khms .

$\pm 1$ dB from second
$\pm$ frequency to 250 kHz harmonle of rejection
Included battery.
$171 \times 11 \times 8$ in.
15 tb.
$\$ 120$.
RADFORD LABORATORY INSTRUMENTS LTD.
ASHTON VALE ROAD, BRISTOL 3
Telephone: 662301/3

## THRILLING QUOTATIONS

 BRAND NEW FULLY GUARANTEED ORIGINAL ELECTRONIC COMPONENTS OF HIGH QUALITY(OVERsTOCKS FROM TEE AltERATION OF THE PRODUCTION LINE) EEAMPLES of our SPECIAL OFFER I/1969:
(a) SEMICORDUCTORS—Minimum order 100 p.

AILL EIECCTRONIC COMPONENT8 are BRAND NEW of HIGH QUALITY FULLY
Our dellyeriea are ex-stock ZURICH/Bwitzertand by AIR.MAIL C.O.D. Postage and Our dellyeried are ex-stock ZURICH/Bwitzertand by AIR.MAIL C.O.D. Postag
packing will be charged at delf-costa. Please requegt our complete pree special offer $1 / 1960$

EUGEN QUECK CH-8810 HORGEN

Switzerland

Ingenieur-Büro Import-Export Bahnholstr. 5.

TRICKETT, 70 Park Road, Congresbury, Bristol
Schools $15 \%$ off. Goods over 10s. PIP tree except where shown. OSCILLOSCOPES: DOUBLE BEAM, TELEQUIPMENT TYPE D3IR. STABILIZED F/Us. ROBAND ELECTRONICS. ALL $1 / \mathrm{Ps}$. $200 / 250 \mathrm{~V}$, 50 Hz .
 MINIATURE HOUR METERS: SANGAMO WESTON: $380 / 450 \mathrm{v}$. 50 Hz . ELECTROTHERMALPRECISTORS:
RELAYS AND SEMIICONDUCTORS See February. for list of values. 2s. each. CAPACITORS: 8 mid. $600 \mathrm{v.}, \mathrm{paper}$,6 s . each. 10 mid. 35 s verisement Santelum, Is. each,
 VALVES: S.a.e. for lises of new and ex equipment eypes. ód. each. VALVES: S.a.e. for lises of new and ex equipment eypes.
ELESEY ECCA1. ECCG2, ECCB3 as 2s. each.
PLESSESY MIICRO SWITCHES 4 D E C/OVER, $2 / 6$ each. LICON min. MICRO G.E.C. UNISELECTORS NEW AND BOXED, 4 Bank, 24 war, 24 v. D.C.

BELLING LEE MINIATURE FUSE HOLDERS, Is. each; 108 . doz M/C METERS. 0-100 Micro amps. 3.5 ins. round. 258 . each
GERMANIUM XTALS. G.E.C. CG 63 H., 58 . doz. RECTILINEAR PRESET
POTS: $5 K$ KiL UKCONOITIONAL MONEY BACK SUARANTEE S.A.E. FOR LISTS OF OTHER COMPONENTS


We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W9/65 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-4443155 (Sales) and 5278


BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1
HE VALVE SPECIALISTS Telephone PRIMROSE 9090 THE VALVE SPECIALISTS Telephone PRIMROSE 9080
GLOUCESTER ROAD, LITTLEMAMPTON, SUSSEX. Litulehamplon 6743 Please forward all mail orders to Littlehampton

|  |  | 16BW6 | 12.9 | - |  | 20D1 |  | 305 | 1/6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 168 | 11 | $8 \times$ |  |  |  | 306 | 13/- | D |  |  |  |
| OZA | 1/3 | $64_{4}$ | 2/8 | $6 \times 5$ | 8/- | 20 F | 14 | 807 | $11 / 8$ | DM7 | 7/6 |  |  |
| 14 |  | 606 | $3 / 8$ |  | 12/6 | 201 |  | 956 | - |  |  |  |  |
| 1 AB |  | c8 | 11/- |  | 10/9 | 20 P | 17 | 1821 | 10/6 |  | $8 / 6$ | - |  |
| 147 |  | 6 CD | 19/6 | $7 \mathrm{B7}$ | 7 - | 20 P |  | 5763 | 10/- |  |  | ECL |  |
| C5 | 4/9 | 6CH |  | ${ }^{\text {c } 68}$ | 8/- | 20 P |  | 7193 | 10/6 |  | $8 / 8$ | - |  |
| 1 Ds | $8 / 8$ | acw |  | 787 | /6 | 20 Pb | 18 | 7475 | 1/- | DY8 |  |  |  |
| 1 D 6 |  | 6D3 | 7/8 | R\% | 121- | $2{ }^{2} 86$ | 7/6 | A1834 | 20/- | DY |  | ECL |  |
| 1 PD | $8 /$ | ${ }^{618}$ | 3/- | 787 | 20/4 | 2510 | T 5/6 | A21:4 | 101- | Esor |  |  |  |
| 1 PD | 3/0 | 6F | $8 / 9$ | \% | - | 25 Y 5 | 6- | A3042 | 15) | E83F | 84/- |  |  |
| 166 | 6/- | F60 | 4/- | 7 Y | 16 | 25 Y | 8/6 |  |  | E8scc | 12/- |  |  |
| 1H5 | 倍 |  | 3/3 | 9B7 | 71 | 25 Z |  |  | 1 | E180 | 17/6 |  |  |
| 114 | 2/6 | $6 \mathrm{Fl3}$ | /6 | $9{ }^{7}$ | 9/- | 257 | 7- |  | EN/ | E114 | $10 / 6$ |  |  |
| 1LD5 |  | 6F14 | 151- | 10 C | 12/6 | 25 Z | 8 |  | 19/6 | Easo | $1 / 6$ | EF37A |  |
| LNS | $81-$ | $6{ }^{6} 15$ | 9/6 | $10 \mathrm{C2}$ | 101- | 30 Cl | 8 | - | N4/9 | EA7 | 13/- | Er39 |  |
| N | 7/8 | 6 F 17 |  | 10 D | $81-$ | 30 Cl | 13/6 |  | (5) | EAB |  | 40 |  |
| 1R5 | 5/6 | 6 F18 | 716 | $10{ }^{1}$ | 14/7 | 30 Cl | 12/6 |  | 19/6 | EAC9 | 3 | F41 |  |
|  |  | 52 | - | 10 F | 15- | 30 Cl | $8 / 8$ |  |  | EAF | $8 / 8$ | EF42 |  |
| 185 |  | 6 F2 | 19 | 10P9 | $91-$ | 30 FS | 13/6 |  | 19/8 | EB3 | 7/6 | EF50 |  |
|  |  | $6 \mathrm{~F}^{28}$ | 10/6 | 10 Fl 18 | 7/8 | 30 F | 13/ |  |  | EB4 |  | EP34 |  |
| 1U5 |  | ${ }^{6} 32$ | 3/- | 10LD | 101 | 30 | 16 |  | 101- | EB91 | $2 / 8$ |  |  |
| 2 D 21 |  | 6-6 |  | 101 1 | 13/- | 30 F |  |  |  | EBC3 | 20 | EF |  |
| 3 At | 3/6 | 6H60 | 1/9 | 10P14 | $12 / 6$ | 301 | 81- | AC | 112- | EbC41 |  | EP83 |  |
|  | 10-1 | BJ5 |  | 1246 | $3 / 6$ | $30 \mathrm{LL5}$ | 13/9 |  |  | EbC81 | 5/9 | EF85 |  |
| $3 \mathrm{B7}$ |  | 6J6 |  | 12AC | 7/- | $30 \mathrm{Ll7}$ | 13/ | AT | $2 / 3$ | EBC |  | EF86 |  |
|  | 3/9 | $6 J 70$ | 4/9 | 12AD |  | 30 P 4 | 12/ |  |  | EbC | 18 | EF89 |  |
| 394 | 8/8 | 6.770 | 8/6 | 12AE | 6 | 30 P |  | AL31 | $8 / 9$ | Ebr |  | EF91 |  |
| 305 | 61- | $6 \mathrm{6KO}$ | 5/- | 12at | 18 |  | 17/6 |  | ${ }^{76}$ | ebr |  | F9 |  |
|  | $4 / 9$ | 6K70 | $2 /$ | 12AT | 8 | 30 | 13/0 | BLa3 | 10/- | EbF | 6/3 | Er9 |  |
| $3 \vee 4$ | ${ }^{5 / 6}$ | $6 \mathrm{K70}$ | 4/6 | 12AUE | 19 | $30 \mathrm{P1}$ | 12/ | CL33 | 18/6 | EBL | 1 |  |  |
| $5 \mathrm{St} \mathrm{C}^{0}$ | $8 / 8$ | 6 K 80 |  | 12AU2 |  | 30 PL | 13/ |  | 10/ | Ecs | $1 /$ | EF183 |  |
| 5U40 |  | 6 K |  | 12AV | /6 | 30 PL 13 | $315 /$ | C | 10/8 | EC53 | 12/6 | EF1 |  |
| 5 V |  |  | 19/6 | ${ }^{1} \times 7$ |  | 30 Pl | 15/ | CY3 | 7/6 | ECS |  |  |  |
| 5 Y | B/6 | 62 | $7 / 8$ | $12 \mathrm{AY7}$ | 9/1 | 30 PL | 151- | D | 6/ | EC70 | 4/9 | EL32 |  |
|  | $81-$ | 6L7a |  | B46 |  | 35 As | 15/- | D7 | 2/3 |  | 10/3 | Lu3 |  |
|  | 6/8 | ${ }^{6 L 18}$ | - | 12 BE | 5/8 | 35 Lb |  | Dac3 |  | EC8 | 10/3 | EL |  |
| 30L | 12/6 | 6L19 | 191- | 12 E | 17/- | $35 \mathrm{W4} 4$ | 4/6 | DAF9 | 3/9 | EC92 | 8/6 | EL |  |
|  | $8 / 8$ | 6LDT20 | 818 | 12170 | 8/6 | 3573 | 10/- | Dar9 | 6/- | ECC3 | 5/6 | E1 |  |
| 6 AC | 3/-1 | ${ }_{6 \times 1}{ }^{\text {a }}$ | 8/8 | 12 K 5 | 101- | 338.4 | 49 | DCCO | 10/ | Eucs | 4/8 | E1. ${ }^{\text {a }}$ |  |
| 6AK | $4 / 6$ | $6 \mathrm{P1}$ | 12/- | 12K7GT |  | 3525 |  | DD4 | 10/6 | HOCl | 29/1 | + |  |
| 6 A | $8 /$ | 6P125 | 12- |  |  | 50As | 21/10 | DDT | 8/3 | ECC34 | 29/6 |  |  |
| 6ALS | 218 |  | (2) |  | 4/6 | 50R5 | 6/3 | DF33 | 7 | ECC | 9/6 | EL8 |  |
|  | 18/6 | $6^{622}$ | 251- |  |  | 50 C | 6/3 | DF9 | 2, | zoc | 3/9 | EL83 |  |
|  | 硅 | 6070 |  |  | 6/9 | 50CD | $41 /$ | DF96 | 6/ | ECCP | 6 | , |  |
|  | 4/8 | 697 c | 8/6 |  | 4/- | 5016 | 6/- | DF97 | 10- | EDCE | , | EL |  |
| 6AR6 | $201-$ | ¢8 | $7 /$ | 3 | 3 | 72 | 6/6 | DH63 | ${ }^{61}$ | dec | 8/8 | 1 |  |
| bat6 |  |  | 7- | 128H7 | 3 - | 85 A | $8 / 8$ | DH76 | 4/6 | EOC8 |  | EL91 |  |
|  | $8 /$ | 68 C 7 | 8/8 | 12837 | 4/8 | 90A | $7 / 8$ | DH77 | 4/- | Fect | 71 | EL95 |  |
| 6ave | 5/6 | 6807 | $8 /-$ | 128 K 7 | 4/8 | 90 A | 87/6 | DH81 | 10/9 | 8 CCl | 8/6 | ,M |  |
| 6 B | 1/6 | 68 H 7 | - | 12897 | T7/8 | 90 C | 34 | DK 32 | $7 /$ | - |  | EM |  |
| 68E6 | $4 / 8$ | 68 | 8/8 |  |  |  | 1 | DK40 | 10 | ECF80 | 8/8 | EM |  |
| $6_{683}$ | $7 / 6$ | 68 | 4/8 | 12 Y 4 | - | ${ }_{1501}$ | 18 | DK9 | $5 / 6$ | ECF82 | 6/8 | EM8- |  |
| 8 BJO | ${ }^{8 / 6}$ |  |  |  |  | 1501 | 14/6 | DK ${ }^{\text {d }}$ | $7 / 8$ | ECFP | 9/- | EM |  |
|  | \%/1/ |  |  |  | 12/ | 185 | 3/8 | DK9 | 71 | ECP8 |  | EM87 |  |
|  | $8 / 8$ |  |  |  |  |  | 5 | D1 | 81. |  |  | EY61 |  |
| 8 |  | 6 C 7 | 7- | 19AQ6 | 4/8 | 302 | 0/6 | D1 | 1/9 | ECH33 | 22/8. |  |  |
| 6B87 | 18 |  | 3/8 | 1 | 40/ | 303 | 15 | DL94 | 5/6 | ECH35 | 5/0 | RY84 |  |



## NO EXCUSES! NO DELAYS! FROM STOCK! tailable voltage thansforinens



Double Wound Variable Transformers Fully isolated, low tension Secon
dary wlnding. Input 230 v. A.C. dary winding. Input 230 viA A.C.
VARIABLE $0-36 \mathrm{r}$. A.C.
$0-36 \mathrm{v}$. at 5 amp . $9.12 .6-$
p. \& p. 8
15/- p. \& c.
These fully shrouded Transfor-
mers, designed to our specifica
mers, designed to our specifica-
tions, are ideally suited for Educa-
tlonal, Industrial and Laboratory
use.

5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input 230 V. A.C
Oupput $0-2600^{\text {V. A. A.C }}$
Output $0-240$ v. D.C
Fitesed Fitted large scale ammeter and volemeter. fused. Serong iterac fused. Strong ateray-
sive mesal case $15 \mathrm{in}$.
8tin. $x$ bin. Weight 24 lb. Infinitely variable.

smooth stepless volt-
age variation over rang
7 Amp. A.C./D.C. Mk. II Variable Output Power Unit Inpue 230 v. A.C. Ouepur continuously VARIABLE from 0 to 260 v. A.C. OR 0 to 230 v. D.C. at 7 a. Robustly constructed in and ammeter.

## OPEN TYPES <br> 



## LATEST TYPE SOLID STATE VARIABLE CONTROLLER



## SERVICE TRADING CO

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 vole operations. Price $25 /$, plus $2 / 6 \mathrm{P}$. \& P.
ORP 12 and Circuit $10 /=$ post paid.
220/240 A.C. MAINS MODEL
 incorporates mains transformer rectifier and special relay with
circuit $47 / 6$, plus $2 / 6$ P. \& P. -LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered ligh Precision engineered light source
with adjuscable lens assembly and with adjustable lens assembly and
ventilated lamp housing to cake 08 ventilated lamp housing to cake
MBC bulb. Separase photo cell MBC bulb. Separase photo cell mounting assembly for
ORP. 12 or similar cell with opric window. Borh uniss are single hole fixing. Price per pair $\mathbf{E} 2 / 15 / 0$ plus $3 / 6$
P. \& P. P. P P.

VAN DE GRAAF ELECTROSTATIC GENERATOR, fitted with motor drive for 230 v . A.C. giving a potential of approx.
50,000 voles. Supplied absolutely complete 50,000 voles. Supplied absoluzely complete including accessories for carrying out a
number of interesting experiments, and full number of interesting experiments, and full instructions. This inserument is for School demonstrations.
for School demonstrations. Price
$\mathrm{C} 7 / 7 / \mathrm{F}$. plus $4 /-\mathrm{P} . \& \mathrm{P} . \mathrm{L}^{2}$. on req.

## 200/250 v. AC HORSTMAN 20AMP TIME SWITCH

2 on/off every 24 hrs. at any pre-set time. Fitced in metal case 36 hr . spring reserve. Used but fully cested. Fraction of maker's Available with solar dial on requese.
 LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /=$, plus $2 / 6$ P. \& P
30 volt 5 amp., $16 /$, plus $2 / 6$ P. \& P
NICKEL CADMIUM BATTERY
Sintered Cadmium Type 1.2 V. 7AH. Size: height Jin., width 2 iin. $X$ l sin. Weight: approx. 13 ors. Ex-R.A.F. Tested 12/

## DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes concacts) mounted in 870 $8 / 6$ per pair. Pose Paid.
6 of ehe above mentioned units ( 12 Reeds) fitced in metal box. Size 4 in . $\times 34 \mathrm{in}$. $\times 1 \frac{1 i n}{}$. Mfg. by Elliott Bros. New $45 /$ each. Pose Paid
Telephone Dials (New) 14/6d. Post Paid. SOLAR OIL-FILLED CONDENSER. SOLAR for 230 V.A.C. 600 vols D.C.
240 mfd.
Overall size $14 \mathrm{in} . \times 9 \mathrm{in}. \times 5 \mathrm{in}$. plus fees. Overall size 14 in . $\times 9 \mathrm{in}$. $\times 5 \mathrm{in}$. plus feet.
Weight 46 lb . Guaranceed surer's packing. Price $\mathbf{2 7 / 1 0 / - \text { . Carriage } 1 5 / - 2}$
AUTO TRANSFORMERS. Step up, step down. $110-200-220-240 \mathrm{v}$. Fully shrouded. New. 300 watt type, 63 each. P. \& P. 4/6. 500 watt type. \&4/2/6 each.
P. \& P. $6 / 6$. 1,000 watt type, $5 / 5 /-$ each. P. \& P. $7 / 6$.

## - LEVER MICRO SWITCH

Brand new lever operated micro $s$ witch
20 amp. A.C. Price $4 / 6$ each plus $1 / 6$ P. \& P
20 amp. A.C. Price

- MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5-way
 SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled,
speed adjustable 10 w.p.m. to as
high as desired. Weight $2 \frac{1}{2} 16$. t4/12/6 post paid. NEW MODEL HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable cone concrol. Fitted with moving coll speaker,
also earplece for personal monitoring. Complete with also earplece for personal monitoring. Complete with morse key. 45/- plus 3/6d. p. \& p.
- 1 34R SILICON SOLAR CELL
$4 \times .5$ vole unit series con.
nected, output up to 2 V .
at 20 mA . in sunlight. at 20 mA . in sunlight,
30 times the efficiency of Earth Satellites, 45/-. P. \& P. $1 / 6 \mathrm{~d}$. CONDENSERS
New at a fraction

ALL MALL ORDERS. ALSO CALLERS AT:
LOABRIDGMAN ROAD,


Poltage and Carriaze shown Postage and Carriaze shown
below are inland only. For
Overneat please ask for



100 WATT POWER RHEOSTATS (NEW) Ceramic construction, windEnamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FROM STOCK IN THEFOLLOWING II VALUES: 1 ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2a., 50 ohm l.4a., $100 \mathrm{ohm} 1 \mathrm{a} ., 250 \mathrm{ohm}$ 7a., 500 ohm 45a., 1,000 ohm 280 mA ., 1,500 ohm
 length Win. dia. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 10$ PATT
50 . ${ }_{25}^{2,500 \text { ohm, 21/-, P. \& P. 1/6. }} \mathbf{2 5 0 / 2 5 / 5 0 / 1 0 0 / 2 5 0 / 5 0 0 / 1 . 0 0 0 / 1 . 5 0 0 / 2 . 5 0 0}$ ohm, $14 / 6$, P. \& P. $1 / 6$.
Black Silver Skirted knob calibrated in Nos. $1-9.1 \frac{1}{1}$
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.


K LIGO EASYTO BUILO RITS USING XENON WHITE TRIGGERING CIRCUITS. PROVISION FOR EX. The Strobe is one of the most useful and interesting
instruments in the laboratory or worksho. It is
invaluable for the study of movernent and checking of speeds. Many uses can be found in the prychiatric
and photographic fields. also in the entertainment business. It is used a great deal in the motor industry
and is a real tool as well as an interesting scientific
device. EXPERIMENTERS "ECONOMY" KIT. I to 36 Veroboard S.C.R. Uniiunction Xenon Tube + instrucINDUSTRRIAL "ADVANCED" KIT. I to BO Flash
per sec. IDEAL FOR LABORATORY OR SCHOOL
USE. Fully isolated from USE. Fully isolated from she mains supply br specially
wound transformer. 500 . FLASH CIRCUIT and
stabilised timing circuit. Higher output flash tube. stabilised timing circuit. Higher output flash tube.
Price 88.8 .0 plus $7 / 8 P$ P 8 P.
SIINCH POLISHED REFLECTOR. Ideally suited OIINCH POLISHED REFLECTOR. Ideally

PARVALUXTYPE SD19230/250VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Posit drive spindle adiustable different angles. Mounted on sub-
stantial cast aluminium base. Ex-
equipment. Tested and
class running order. A
fraction of maker's price. 6 gns .


BODINE TYPE N.C. 1

## GEARED MOTOR

(Type I) 71 r.p.m. corque 10 Ib , inches Reversible $1 / 70$ th h.p. 50
(Type 2) 28 r.p.m. 2) 28 r.p.m. torque 20 lb in rever-
sible $/ / 80$ th h.p. 50 cycle .28 simp.
The above two precision made U.S.A. motors are offered in 'as new' condition. Input volage of motor
IISv A.C. Supplied complete with transformer for $230 / 240 v$ A.C. input
Price, either cype $\$ 2.17 .6$ plus $6 / 6$ P. \& P. or less transformer $£ 2.2 .6$ plus $4 / 6 \mathrm{~d}$. P . \& P .
These motors are ideal for rotating aerials, drawing curtains, display stands, vending machines ete. _un $230 / 250$. A.C. SOLENOID
 $17 / 6$ plus $2 / 6$ P. \& POLENOID 12/24 $\quad$. D.C. SOLENOID
Approx. 8 oz. push, $8 / 6$ plus $1 / 6$ P. \& P.

## A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$ ) 15 amp .
contaces. 230/240
Brand new. 22/6 plus 1/-P. P.

## PRECISION INTERVAL TIMER

From '0-30 seconds (repectitive). Jewelled
Opanced movement. 230 Lever re-set.

Latest American. New. Plastic THYRISTOR 400 P.I.V. 8 mmp . Data sheet. $19 / 6$ post paid.

COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet $15 \frac{1}{3} \times 5 \frac{1}{3} \mathrm{in}$. Prise $3 / 9,3$ for $10 \%$ post paid

MINIATURE UNISELECTOR 3 banks of 11 posisions, plus $24-36$ homing bank. 40 ohm coil. 2436 v. D.C. operation. Carefully removed from equipment and
cested. $22 / 6$, plus $2 / 6$ P. \& P .

UNISELECTOR SWITCHES
NEW 4 BANK 25 WAY
25 ohm coll. 24 v. D.C. operatio
8-BANK 25-WAY FULL WIPER 24 v. D.C. operation, C7/12/6. Plus $4 /-$ P. \& $P$.

| RELAYS <br> BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, ete. MINIATURE PLUG IN RELAYS COMPLETE WITH BASE, AT A FRACTION OF MAKER'S PRICE |  |  |  |
| :---: | :---: | :---: | :---: |
| COIL | WORKING VOLTAGE | CONTACTS | PRICE |
| 280 | $6-12$ | $2 \mathrm{c} / \mathrm{o}$ | $14 / 6$ |
| 280 | $9-18$ | $4 \mathrm{c} / \mathrm{O}$ | $15 / 6$ |
| 700 | $12-24$ | $2 \mathrm{c} / 0$ | 12/6 |
| 700 | 16-24 | $4 \mathrm{c} / \mathrm{o}$ | $15 / 6$ |
| 700 | 16-24 | 4M 2B | 12/6 |
| 1250 | 20-40 | 2 c/o Heavy Dury | 12/6 |
| 2500 | 30-50 | 2 c/a. Heavy Duty | $12 / 6$ |
| 5800 | 50-70 | $4 \mathrm{c} / \mathrm{o}$ | 10\% |
| 9000 | 40-70 | $2 \mathrm{c} / \mathrm{o}$ | 10/- |

## SEALED RELAY

230 VOLT AC COIL
Two c/0 5 amp contacts. Plug-in 1.O. Base
Price /4/6d. incl. base. Post Paid.
Three c/o 5 amp contacts. 17/6. incl. base. Pose Paid.

## SANGAMO WESTON

## Dual range voltmeter. $0-5$ and $0-100 \mathrm{~V}$.

 D.C. FSD I mA. In carrying case withtests prods and leads. $32 / 6$. P. \& P, $3 / 6$.

A.C. AMMETERS $0.1,0.5,0.10,015,0.20$ 2 F. $2 \frac{1}{4}$ in. dia. All at $21 /$ each.
A.C. VOLTMETERS 0.25 v., 0.50 v.. 0.150 v. M.I 2 in . Flush round all at $21 /$ each. P. \& P. extra. a-300 v. A.C. Recr. M-Coil 2 in.
a- 300 v. A.C. Rect. M-Coil 3 tin. Type W23.

## 'AVO' METER MODEL 7

Supplied fully checked and cessed on all ranges and in excellent condition Price $\& 13 / 10 /-$. P. \& P. $7 / 6 \mathrm{~d}$.
Avo Leather Carrying Case $30 /$. (Regret not sold separately)

## 'AVO' POWER AND DECIBEL EXTENSION UNIT

For Model 7 and 7X "AVO" Meters. This resistance box will permit values from 500 to 1,500 ohms to be obtained. Supplied complete with leads. $42 / 6$ p. \& p. $4 / 6$.

## SPEEDIVAC HIGH VOLTAGE

 HIGH FREQUENCY GENERATOR Input $100 / 110$ volts or $200 / 250$ volts AC/DC. Ourput 19 KV variable. Ideal for testing insulation, vacuum, leakage path, gas discharge lamps, neon esc. A useful ozone and HF supply. Manulactured by Edwards High Vacuum Lid. Brand new in maker's polished woodencarrying case. Offered at fraction of maker's price. carrying case. Offered
\& 10.0 .0 plus $7 / 6 \mathrm{~d}$. p. \& p .

## -L.T. TRANSFORMERS

| All primaries $220-240$ volts. <br> Type No. Sec. Taps | 4 |  |  |
| :---: | :---: | :---: | :---: |
| $30,32,34,36 \mathrm{v}$ at 5 amps . | 4 | 0 | 6/- |
| 30, $40,50 \mathrm{v}$, at 5 mmps . | 66 | 0 | 6/6 |
| $10,17,18 \mathrm{v}$ as 10 amps . | 4410 | 0 | 4/6 |
| $6,12 \mathrm{v}$. 2 s 20 amps . | 4517 | 6 | 6/6 |
| $17.18,20 \mathrm{v}$. at 20 amps . | C6 12 | 6 | \$/6 |
| $6.12,20 \mathrm{v}$. at 20 mmps . | 66 | 0 | 7/6 |
| 24 v . at 10 amps . | 4415 | 0 | $5 / 6$ |
| 4, 6, 24, 32 v . at 12 amp | 4610 |  | 6/ |

## RESISTORS

High stability, carbon film, low noise. Capless construction, molecular terminacion bonding.
Dimensions (mm): Body: $\begin{aligned} & 1 \mathrm{~W} ; 8 \times 2.8 \\ & 1 \mathrm{~W}: 10 \times 4.3\end{aligned}$
Prices-per Ohmic value


POLYESTER CAPACITORS (Mullard)
Tubular. $0 \%$, 60 V : $0.01,0.015,0.022$ @F, 7d. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.33 \mu F, 1 / 3 . \quad 0.47 \mu F, J / 6,0.68 \mu F, 2 / 3$. $400 \mathrm{~V} ; 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}, 6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}$. $11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}$,
$2 / 3$. $0.47 \mu \mathrm{~F}, 2 / 8$. 2/3. $0 \cdot 47 \mu \mathrm{~F}, 2 / 8$.
Modular, Subminiature, Epoxy encapsulation, Polyester film, P.C. mounsing. $10 \%$, $100 \mathrm{~V}: 0.001,0.002,0.005,0.01,0.02 \mu \mathrm{~F}, 6 \mathrm{~d}, 0.05 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.1 \mu \mathrm{~F}, 10 \mathrm{~d}$,

POLYSTYRENE CAPACITORS: $5 \% 160 \mathrm{~V}$ (unencapsulated): $10,12,15$ 18, 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, $680,820 \mathrm{pF}, \mathrm{Sd} 1,001,50,22,.200 \mathrm{pF}, 8 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}, 7 \mathrm{~d}, 800$, $1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150.180,220,270,330,390,470,500,550$,
$638,820 \mathrm{pF}, 1 / \mathbf{3}$. $1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900,4,700$, $5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6.18,000,22,000,27,000$ 0.1 $0.47 \mathrm{0} .5 \mu \mathrm{~F}, 7 / 6$.

JACK PLUGS
Standard (Unscreened): 2/3 each.
JACK SOCKETS ( ${ }^{\prime} \mathrm{in}$. Plug): With chrome insert, $2 / 9$ each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts.

POTENTIOMETERS (Carbon): Long life, low noise, $W$ at $70^{\circ} \mathrm{C}$.
 per decade to 5M.

SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, erc., per decade 20 5M.
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% ~ \preceq \frac{1}{2} \mathrm{M}_{\mathrm{P}} \pm 30 \%>\$ \mathrm{M}$. Horizontal ( 0.7 in . $\times$ -4in. P.C.M.) or Vertical ( 0.4 in . $\times 0.2 \mathrm{in}$. P.C.M.) mounting, $1 /-$ each.
Submin. 0.1 W at $70^{\circ} \mathrm{C} \pm 20 \% \leq 1 \mathrm{M}_{4} \pm 30 \%>1 \mathrm{M}$. Horizontal ( $0.4 \mathrm{in} . \times 0.2 \mathrm{in}$.
SEMICONDUCTORS: OAS, OA81, 1/9. OC44, OC45, OC71, OC81, OC8ID, OC82D, $2 /=$ OC70, OC72, 2/3. AC107, OC75, OC170, OCI71, 2/6. AFII5, AF116, AFII7, ACYI9, ACY21, 3/3. OCI $40,4 / 3$. OC200, 5/-. OC139. 5/3. OC25, 7/-. OC35, 8/-. OC23, OC $28,8 / 3$.

SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., $4 /=.(0.75 \mathrm{~A}): 200$ P.I.V.il $1 / 6.400$ P.I.V., $2 /-$ 800 P.I.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V., 5/-. 800 P.I.V., $6 /=0$
THYRIST'ORS (5A): 100 P.I.V., 8/. 200 P.I.V., $10 / .400$ P.I.V., $15 /=$. THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., 10/.. 400 P.I.V., 15/-.
SWITCHES (Chrome finish, Silver contacts: 3A 250V, 6A 125V., Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. PRINTED CIRCUIT BOARD (Vero)
0.15 in . Maerix: 3 itin. $x 2 \frac{1}{2} \mathrm{in}$., $3 / 3$. $5 / \mathrm{in}, \times 2$ in., $3 / 11.3$ inin. $\times 3$ igin., $3 / 11$,
 $5 / 3$.

Send S.A.E. for January, 1969 Catalogue
DUXFORD ELECTRONICS (W.W.) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (O223) 63687

(Visit us-at our new Mail Order, Wholesale \& Retail Premises)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/6

## All overseas enquiries \& orders please address to: COLOMOR (ELECTRONICS) LTD.

I70 Goldhawk Rd., London, W.I2.
Tel. O1-743 0899

## BRUEL \& KJAER

The following three inserumenes are supplied with all leads, aceessories, and maintenance manuals.
B \& K BEAT FREQUENCY OSCIL. LATOR TYPE 1013. Frequency 200LATOR TYPE 1013. Frequency 200-
$200,000 \mathrm{c} / \mathrm{s}$, aceuracy $+-10 \mathrm{c} / \mathrm{s}$, oulput matching $6,60,600,6000$ ohms. Output power approx. 2.5W at 6,000 ohms and 1.5 W at 6 ohms. Output voltage accuracy better than +-1 db . Output attenuator in 10 db steps from 0.4 mV to 12.5 r continually variable in each step. Frequency scanning, zutomatic output regulator, frequency
modulator.
B a K FREQUENCY ANALYZER
TYPE $2105,47.12000 \mathrm{c} / \mathrm{sineight}$ anges TYPE $2105,47-12.000 \mathrm{c} / \mathrm{s}$ in eightranges
directy read on large illuminated scale. directly read on large illuminated scale. Accuracy betrer than $1 \%$. 6225 .
B \& K LEVEL RECORDER TYPE 2304. A high speed recording instrument designed for the measurement of
reverberation time, noise level and the frequency response of microphone and loudspeakers. \$325.
BOONTON STANDARDSIGNAL GENERATOR MODEL TS 497 (Military version of eivil model 80.) Frequency $2.400 \mathrm{mc} / \mathrm{s}$ in 6 ranges. AM., 400 and $1,000 \mathrm{c} / \mathrm{s}$ and external modulation. Provision for pulse modulation. Piston type attenuator $0.1 \mu-100 \mathrm{mV}$ separate meter for modulation level and II7y A.C. input With Instruction 117 y A.C. input. With
manual, 695 . Carrlage $30 /$.
MARCONI SIGNAL GENERATOR TYPE TF/44G, $85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. TORTYPETF144G, $85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$. with all necessary accessories with instruction manual, 645 . P. \& P. 15/MARCONI SIGNAL GENERA. TOR TF $801 / \mathrm{A} / \mathrm{I}$. $10-300 \mathrm{Me} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. s . Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. \&85. P. \& P. 20/-, including necessary connectors, plugs, and instruction manual.
BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903. Frequency range $6,800-11,000 \mathrm{mc} / \mathrm{s}$,
directly calibrated. Pulse rate $40-400$ directly calibrated. Pulse rate $40-400$ $\mathrm{c} / \mathrm{s}$ and X 10 multiplyer, delay 3.300 $\mathrm{U} / \mathrm{sec}$. Width 05 to $10 \mathrm{U} / \mathrm{sec}$. Input lacion. Ourpur delayed and undelayed syncronised directly calibrated attenu. ator. ©85. Carralge 30/-.
DAWE VALVE VOLT METER TYPE 6138. Range 0.03 v to 300v in nine ranges. Frequency $20 \mathrm{c} / \mathrm{s}$ to ${ }^{2}$ $50 \mathrm{c} / \mathrm{s} \mathrm{f} 17 / 10 / \mathrm{e}$. Carriage $30 / \mathrm{F}$
SOLATRON LABORATORY REG. ULATED POWER UNIT MODEL SRS 151 A. Variable voltage. positive
ourput: $20-250 \mathrm{vi} 250 / 500 \mathrm{v} \times 300 \mathrm{~mA}$ (metered). Negative output $0-170 \mathrm{v}$ (unmetered). Fixed negative output 170 v . Two separate 6.3 v and 5 amp outputs. Volts -mA meter switch. H.T. Saiety cutout. $200 / 250 \vee$ A.C. 50

MARCONI VIDEO OSCILLATOR TF 885A. Sine wave output $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands, squarewave output $50 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{c} / \mathrm{s}$ in 2 bands. Freq. aceur. $\frac{ \pm 2}{200}{ }^{2} \mathrm{c} / \mathrm{s}$. Power supply $100 / 125 / 2$ $\mathrm{mc} / \mathrm{s}$ in 3 bands/885A/1). E85. Carriage 40/=.
PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy $0.03 \%$ and $300-1,000 \mathrm{Mc} / \mathrm{s}$
with accuracy $0.3 \%$ Additional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with accuracy $+-2 \times 10^{-4}$. Incorporating calibrating quartz $100 \mathrm{kc} / \mathrm{s}+-5 x$
$10-120 / 220$ v. A.C. mains. 885. Carriage $£ 2$.
AIRMEC FREQUENCY STAND. ARD METER TYPE 761. JOC, 100c, loke, looke, IMc. E80. Carriage 30/-:

POLARAD UHF SIGNAL GENERATOR. Frequency $950 \mathrm{mc} / \mathrm{s} /$ $2.400 \mathrm{me} / \mathrm{s}$ in one range. Attenuator 0 $\mathrm{mV}-200 \mathrm{mV}$. Sync. selector interna square wave, sin., positive and negative rate multiplyer X| \& X10. Pulse rate $30-420 \mathrm{c} / \mathrm{s}$. Pulse delay $2.5-350 \mathrm{u} / \mathrm{sec}$. Pulse width .5 mierosec (incorporating square wave switch). Modulation: posisive and negative. \&llo, external posic
$30 / \%$
As above but frequency $3,830-11,050$ $\mathrm{m} / \mathrm{s}$, counter read out, pulse delay XI, rate $\times 10$, X 100 . 21000 microsecs. \&165. Carriage $30 \%$

COSSOR OSCILLOSCOPE TYPE 1049, C45. Carriage 30/.
Fuller descriptions of the following 3 instruments upon request.
SIGNAL GENERATOR TYPE 62 COMPLETE WITH P,S.U

MICROWAVE SPECTRUM ANA LYZER TYPE SA 18 MANUFAC

DAWE STORAGE OSCILLO SCOPE TOGETHER WITH TRACE SHIFTER.

SIGNAL GENERATOR CT 218 (FM/AM) MARCONI TF 937 $85 \mathrm{ke} / \mathrm{s}$ to $30 \mathrm{me} / \mathrm{s}$ in 8 ranges. Output level variable in I db steps from $1 \mu \mathrm{~V}$ to 100 mV into 75 ohms. Also I volt outinternal mod as $400 \mathrm{c} / \mathrm{s}$, $1 \mathrm{kc} / \mathrm{s}$, $1.6 \mathrm{kc} / \mathrm{s}$ and $3 \mathrm{kc} / \mathrm{s}$. Variable mod, depths and deviation. Crystal calibrator $200 \mathrm{ke} / \mathrm{s}$ and $2 \mathrm{mc} / \mathrm{s}$. F.M. at frequencies above $394 \mathrm{kc} / \mathrm{s}$. Monitor speaker for bea detection. Panclimatic. 100 to 150,200
 171 ¹". E85. Carriage $30 /$.
"S" BAND SIGNAL GENERATOR No. 16 MADE BY SPERRY. 7.9-1 cma (2727-3797 mcs.). Power oucpue .001 micro wates- 1 mW . at 72 ohms. Modulation: A unmodulated CW , B square wave modulated by internal free running modulator with PRF variable
from 400 c to 4 kc . C Square wave modulated by internal modulator triggered by external source either sine or square, 20-100v. sine or $20-100 \mathrm{v}$. p. $t 0$ p. $£ 85$. P. \& P. 30\%.

BOONTON " Q " METER TYPE 160 A . Frequency range $50 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s}$. "Q" range 0.250 with multiplier of 2.5. Main cuning capacitor polating wapacleor. Power supply $220 / 250 \vee A C$, 675 . Carriage $30 / \mathrm{h}$.

AVO VALVE TESTER MODEL 3. Measurement of mutual conductance $0-100 \mathrm{~mA}$ in four ranges. Screen $0-300 \mathrm{v}$. , panelled $0-400 \mathrm{v}$. grid $0 /-100 \mathrm{v}$, Filament $0 / 126 v$, Insulation $0 / 10 \mathrm{~m}$
ohms. Rectifying valves and signal diodes can be cested under load conditions, short circuiting of electrodes and cathode insulation can also be measured. Complete with data book (a) 445 . Carriage $30 /=$

FURZEHILL SENSITIVE VALVE VOLTMETERTYPE 378 B/2. Accurate measuring AF and MF voltages up to
$250 \mathrm{kc} / \mathrm{s}$ in the ranges 10 mV (full scale) co 100 v . (full scale). Logarithmetically divided. A db scale provided for $0-20$ $\mathrm{db}, 0 \mathrm{db}$ being $I \mathrm{mV}$. Auromatieally sec zero for every range. A jack is provided for monitoring the input signal if
required. $220 / 250 \mathrm{v}$. A.C. $627 / 10 \%$. required. $220 / 250 \mathrm{v}$. A.C. €27/10/-

END OF RANGE
MARCONI VALYE VOLTMETER. Type T.F.428. 49. Carriage 10/-.

SIGNAL GENERATOR. Type C.T.53. Without chart EIO, with chart c22. Carriage 15/.

VALVES

| AR8 5/- | Ecces 4/3 |
| :---: | :---: |
| ARP3 3/- | LOC83 5/6 |
| ARP12 $3 / 8$ | ECC84 6/- |
| ARTP1 6/- | ECC8s 5/8 |
| ATP4 $2 / 3$ | ECcas 8/- |
| AZ31 9/8 | ECCO8 7/- |
| BD78 40/- | ECCO1 4/- |
| BLb3 10/- | ECC189 9/8 |
| BT35 16/- | ECF80 8/4 |
| BT45 180/- | ECFA2 8/8 |
| BT83 85/- | ECH $3511 /-$ |
| CV102 3/- | ECH42 10/- |
| CV103 4/- | ECH81 8/9 |
| Cv315 | ECH83 8/6 |
| (matched | ECL80 7/6 |
| paira) 1201- | ECLA2 6/- |
| Cv315 | ECL83 10/9 |
| (eingle) ${ }^{\text {30/- }}$ | ECLs6 8 8/6 |
| OY31 7/6 | EF88 3/6 |
| D41 3/3 | EF37A 8/- |
| D77 3/- | EF39 6/- |
| DA100 26 | EF40 9/9 |
| DAP9a 716 | EFr ${ }^{\text {d }}$ 9/9 |
| DD41 4/- | EP42 13/6 |
| DET20 2/- | EF50 4/6 |
| DET25 10- | EF80 4/8 |
| DF91 3/- | EPB5 8/6 |
| DF92 2/6 | EF93 8/3 |
| Drab 7/6 | EFB9 3/- |
| DK92 M- | Er91 3/- |
| DK96 8/- | EF92 2/6 |
| DL63 8/- | EP95 5/- |
| DL92 4/- | EFIB3 8/8 |
| DLe3 4/- | EF184 7/- |
| DL94 8/6 | EH\% 7/6 |
| DL96 8/- | ELS31 16/- |
| DLsio 12/- | FL32 3/9 |
| DY48 6/- | ELad 10/3 |
| DY87 8/6 | E1.35 5/- |
| E80F 18/- | EL38 24- |
| Esscc 8/- | EL4 10/3 |
| E90C0 8/- | ELA2 11/- |
| E91H 7/- | ELs0 8/- |
| E920C 5/- | E181 8/8 |
| E1800C 7/- | EL84 4/9 |
| E182CC 18/- | ELA5 6/- |
| E1148 8/6 | EL91 2/8 |
| Easo 1/- | EL95 5/3 |
| EA76 7/- | ELasbo 22/- |
| Fabcso 6/- | EM31 6/- |
| EAC91 3/- | EMmo 7/- |
| EAF43 9/3 | EM81 8/- |
| Eb91 2/- | EMA4 7/- |
| EBC33 8/- | EM87 11- |
| EBCA1 8/- | EN92 5/- |
| EBC81 6/6 | E8U74 80/- |
| EBF'80 7/6 | EY51 76 |
| Ebre3 8/6 | EYRA 8/6 |
| EBF89 8/- | EY88 8/8 |
| zC53 8/- | EY91 2/8 |
| EC70 4- | Ez40 7/6 |
| EC90 4/- | E\% ${ }^{\text {d }}$ 8/6 |
| EC91 8/- | EZ800 5/- |
| Ercc33 12/- | EZ81 51- |
| ECO3s 13/8 | FW4/5008/- |
| ECC40 10/8 | FW4/800 |


 $\mathbf{U} 2$
$\mathbf{U} 29$
$\mathbf{U} 29$
$\mathbf{U} 5$
$\mathbf{U} 8$
$\mathbf{U} 1$
$\mathbf{U}$
$\mathbf{U} 8$
$\mathbf{U}$









COMMR
 odazantee

D.C. MOVING COIL METERS

50 micro amp 2 in. square panel 300 mA 21 in. square panel 20-20mA 2 in . Round panel $30-0-30 \mathrm{~mA} 21 \mathrm{in}$. round panel $70-150 \mathrm{v} 2 \mathrm{in}$
and figures
$250 \mathrm{v} 2 \frac{1}{2}$ in. round panel
$200 \mu A$. 2 in . round panel, sealed calibro- 30 $200 \mu \mathrm{~A}$. 2 l in . round panel $500 \mu A .2 \frac{1}{2} \mathrm{in}$. round proj
1 mA .2 in . round panel sealed
5 mA .2 in . round clip-fix panel or proj. $10-0-10 \mathrm{~mA} .2 \mathrm{in}$, round panel $0-30 \mathrm{~mA} .2 \mathrm{fin}$. round panel $75 \mathrm{~mA} .2 \frac{1}{4}$ in. plug in
100 mA . It in. proj.
100 mA . I $\frac{1}{\mathrm{t}} \mathrm{in}$. round panel $100 \mathrm{~mA} .2 \frac{1}{\frac{1}{i n} \text {. round panel }}$ $500 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. round pan 2 amp. 2 in . round panel 50 amp . $2 \frac{1}{4} \mathrm{in}$. round panel
$0-1.5 \mathrm{~V}$ \& $0-150 \vee 3$ terminals round panel 20 VDC 2 in . square panel
150 VDC 4 . round panel
150-0 1500 mA 11 . rone 1.5 KV with res. 2 in . round panel

## R.F. METERS

$120 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. round panel amp. 21 in . square panel

## MOVING IRON METERS

15 VAC $2 \frac{1}{2} \mathrm{in}$. round panel
50 amp 21 in. round clip fix
 $32 /-$
$22 / 6$ 17/6
 $12 / 6$
$22 / 6$ 22/6 SIZE" METERS. MIATUE "PENNY Found, flush $2 / 6$ ring nut mounted $500 \mu \mathrm{~A}$ FSD, caliNAGARD OSCILLOSCOPE TYPE DE $103, \notin 85$. Carriage 10/-iC OSCIL. LOSCOPE 21 in . cube 220/250v. A.C.
$\qquad$ 542B ELECTRONIC COUNTER. Withoue plug in unit this instrument will measure frequencies from $10 \mathrm{c} / \mathrm{s}$ to
$10.1 \mathrm{mc} / \mathrm{s}$ and periods of from $0-10 \mathrm{kc} / \mathrm{s}$. Frequencies are read in $\mathrm{kc} / \mathrm{s}$ with the decimal point automatically positioned, or microseconds again with the decimal or microseconds again with the decimal tion is in eight places, first six on neon lamp decades, last two on meters. Self
check facility from Interna! $100 \mathrm{kc} / \mathrm{s}$ and $10 \mathrm{mc} / \mathrm{s}$ frequency-scandards. Full decails and price on request. Plug in unit to extend the range to $100 \mathrm{me} / \mathrm{s}$ is an
optional extra. $222 / 10 /$. Carriage $15 /$. Optional extra. $£ 22 / 10 /$. Carriage 15/-.
RF WATT METER PMI6. Frequency $0.2-500 \mathrm{mc} / \mathrm{s}, 3$ ranges $0.150,0.600$ $0.2-500 \mathrm{mc} / \mathrm{s}$. type connector, E75. Carriage $40 /$-. 32/- ufactured recenely by Control Elec tronies Inc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from $20-$
20,000 c.p.s. to an accuracy of 20,000 e.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or non-
sinusoidal between 2 and 30 v . peak. In
selection.
INSET MICROPHONE for telephone handsec, $2 / 6$. P. \& P. $2 /$-. FIELD TELEPHONES TYPE "F Excellent portable wooden cases. out-doors for up to 10 miles. For pair including batteries and $1 / 6 \mathrm{ch}$ mile field $\mathrm{C} 6 / 10 /$-. Slighty used $\mathrm{f} / 10 / \mathrm{l}$. Carriage FIELD TELEPHONES TYPE ""L" FIELD TELEPHONES TYPE "L" As above but in portable metal cases.
Per pair including batteries and $1 / 6 \mathrm{ch}$
mile field eable on drum. $\mathbf{E 5} / 10 /=$. Carriage $10 /$.
HARNESS "A" \& "B" control units, lunction boxes, headphones, micro29/4IFT. AERIALS each consisting of ten 3 fr., 年in. dia. subular screw-in sections. Ilfe. (6-saction) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies.
pegs, reamer, hammer, etc. Absolutely pegs, reamer, hammer, etc. Absolutely in canvas bag, $\in 3 / 9 / 6$. P. \& P. $10 / 6$. 300W 15V JAP Perrol Generat Charging set 35 V EHARGING SET. Com plete with switchboard. New $£ 45$. L.T. SUPPLY UNIT RECTIFIER No. 19. Consises of two separate 12 V DC circuits each rated at 3 amp , which may be used independently, giving two separate outputs of 12 V at 3 amps, connected in parallel giving 12 V 6 amps 3 amps. Ideal for battery eharging, input. Brand new, complete with coninput. Brand new,
nectors. $: 6 / 19 /=$. Carriage $9 /=$

SMALL $28 V$ MOTORS. $150 / 200 \mathrm{~mA}$ approx. 4,000 r.p.m. Ideal for small fans, running models, miniazure drill
grinders, etc. $12 /-$. P. $\& P$ P. $2 /$.
MECHANICAL TIMED DELAY RELAYS. Coil resistance 150 ohms, working from $12-40 v$ D.C. Adjustable delay within range of few seconds. $17 /$. P. \& P. 3/-.

HIGH SPEED ULTRA SENSITIVE PLUG IN RELAYS with two LOW \& P. 2/-.
LOW INERTIA $24 V$ D.C. MOTOR, UNIVERSAL GALVANOMETER SHUNTS. $25 / \mathrm{L}$. P. \&. P. 3/-.

## FOR EXPORT ONLY

Installation Kits for CII/R2IO Set: 53 TRANSMITTER made up to ${ }^{\circ}{ }^{\prime \prime}$ as COLLINS TCS. Complete installations and spare parts.
POWER SUPPLY UNITS FOR C42 \& C45. 12 v and 24 v .
R.C.A. TRANSMITTER TYPE ET 4336. $2-20 \mathrm{Mc} / \mathrm{s}$., complete with M.O. Cryse. muls. and speech ampl. Fuily rested
available.
BC GIOE \& BC 6101 TRANSMITTERS. Complete with speech BC 939A, exciter units, tank coils, ect. Fully eest
available.
No. 19 HIGH POWER SETS. increased to 25 wats. Complete installations supplied.


The DORSET (600mW Output)
7-transistor fully runable M.W.-L.W. superhet portable-
with baby alarm facility. Set of parts. The latest modulized with baby alarm facility. Set of parts. The latest modulized
and pre-alignment echniques makes this simple to build. Mizes: 12 S POWER PACK KIT: 9/6 extra.
Price $£ 5$.5.0 plus $7 / 6$ p. \& p. Circuit $2 / 6$. FREE WITH PARTS The ELEGANT SEVEN MK. III (350mW Output) 7-transistor fully tunable M.W.-L.W. portable. Set of
parts. Complete with all components, including ready etched and drilled printed circuic board-back printed for foolproof construction. MAINS POWER PACK KIT: $9 / 6$ extra.
Price $\mathbf{~ 4 . 9 . 6}$ plus $7 / 6$ p. $\&$ p.
Ciscuit $2 / 6$. FREE WITH PARTS
50 WATT AMPLIFIER AC MAINS 200-250V


An extremely reliable general purpose valve Amplife with six eiectronicaliy mixed inputs.
Suitable for use with: mics, guitars, gram, cuner, organs etc. Separate bass, and ereble controls. Ourpur Impedance 3.8 and 15 ohms.

Price 27 gns. plus 20/ p. \& p.

XIOI
IOw. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP.
Specifica

## 10 wates.

Sensitivity (for rated output): ImV into 3 Kohms $(0.33$
mieroamp). Total Discortion (at I KHz): As 5 watets $0.35 \%$. At rated output $1.5 \%$. Frequency Response: Minus 3 db points 20 Hz and 40 Khz. Speaker: 3-4 ohms. (3-15 ohms may be used).
may be used).

Price $49 / 6$ plus $2 / 6$ p. \& p
CONTROL ASSEMBLY: (including resistors and capacitors). I. Volume:
 The above 3 items can be purchased for use with the $\times 101$. POWER SUPPLIES
FOR $\times 101:$ Plol $M$ (mono) $35 /-\mathrm{p}$. \& p. $4 / 6$ : Plol (stereo) $42 / 6 \mathrm{p}$. \& $\mathrm{P} .4 / 6$.

## The CLASSIC

CONTROLS: Selector Switch Tape
Speed Equalisation Switch (3i and 7 in i.p.s.s). volume. Treble. Bass. 2 position scratch filter and 2 position rumble filker.
SPECIFICATION: Sensitivities for 10 wate outpue at 1 KHz . Tape Head: 3 mV (at 3 I i.p.s.). Mag. P.U.: 2 mV . Cer.P.U. 80 mV . Radio: 100 mV . Aux. 100 mV . Tape/Rec. Output: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz 20 20KHz. Tone
Control Range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total Distortion: (for 10 watt output) $<1.5 \%$. Signal Noise: < -60 dB . AC Mains 200-250v. Size $12 \mu^{\prime \prime}$ long, $41^{\prime \prime}$ de ep, $2 z^{\prime \prime}$ high.
Teak finished case. Buile and tested. Price $8 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p. The RELIANT MARK II $10 w$ Solid-State High Quality Amplifier
 12 dB at 10 KHz ; Bass control range $\frac{13 \mathrm{~dB}}{}$ az 100 Hz . Frequency response:
Minus 3 dB points are 20 Hz and 40 KHz Signal to Noise Ratio: better than 60 dB .
 A.C. Size of chassis: $101^{\circ} \times 41^{\circ} \times 24^{\circ}$. A.C. Mains, $200-250 \mathrm{~V}$. For use with Std. or
L.P. records, musical instruments, all makes of pick-ups and mikes. Two inputs L.P. Records, musical instruments, all makes of pick-ups and mikes. Two inputs
with concrol for gram. and mike. Bullt and tested. $8^{40} \times 5^{\circ}$ speaker to suit.
Price $14 / 6$ plus $1 / 6$. Price $14 / 6$ plus $1 / 6 \mathrm{p}$. \& p. Crystal mike to suir $12 / 6$ plus $1 / 6 \mathrm{p}$. \& p .
$6 \frac{1}{2}$ gis. plus $7 / 6$ p. \& p. In ceak finished case.

## THE VISCOUNT

Integrated High
Stereo Amplifier
SPECIFICATIONS: Output: 10 watts per channel into 3 co 4 ohms speakers (20 watts monoral). Input: 6 position rotary selector switeh (3 pos. mono and I.8M ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone controls: Separate bass and treble controls. Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for each channel. AC Mains input:


## CYLDON

4 TRANSISTOR
U.H.F. TUNER

Brand new.
Complele wlth circull dlagram. £2.10 + 1/- 0. 8 f .

## CAR TRANSISTOR IGNITION SYSTEM

 (by famous manufacturer)For 6 volt or 12 volt positive earth systems. ComprisIngs sectial high voltare working herrempicilly
scaled sfilicon transistor mounted in firmed heatscaled hiliton transistor mounted in finned heaz-
sink, high ouput innition coil, ballast resistor and hardwear (screws, washers, etc.)
Price 〔4.19.6 p. \& p. 5/-extra.

## MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in spool. Incorporating 3 motors. A.C. mains, 240 volts, listed at $£ 21.0 .0$.
Our Price £9.19.6 plus $101 /$ p. \& p.

RADIO \& TV COMPONENTS (ACTON) LTD. 21A High Street, Acton, London, w. 3 Orders by post to our Acton address please. Also at 323 Edgware Road, London, w. 2

## R.S.T. Valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD
STREATHAM, S.W. 16




Express postage 9d. per value.
Ordinary postage 6d. per valve. Over 55 postage free.
Tel. $01.7690199 / 1649$

$$
\begin{gathered}
\text { Monday through to Saturday } \\
9 \text { a.m.- } 5.30 \text { p.m. } \\
\text { Complete range of TV Tubes } \\
\text { available from } \mathbf{4 . 5 . 0} \text {. }
\end{gathered}
$$

SEND S.A.E. FOR LIST of 6,000 TYPES



An excellent general purpose
D／B osclldocope．T．B． 2 cpus． D／B osell oscope．T．B． 2 epu $750 \mathrm{Kc} / \mathrm{s}$ ．Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$
Senallivity $33 \mathrm{Mv} / \mathrm{cm} .0$ Oper． Senallivity $33 \mathrm{Mv/cm}$ ．Oper．
ating vollage $0 / 110 / 200 / 200 \mathrm{v}$ ． A．C．Supplied In excellent working condition， $282 / 10 /$－
Or complete with all accen－ Or complete with all accen
sorien，probe，letids，lid，ete £25．Cartiage $30 /$ ．
ADMIRALTY B． 40 RECEIVERS High












R209 Mk．II COMMUNICATION RECEIVER
 twon．Incoppor
ates atea prectinion
veraler drive B．P．O．Aerial trimmer，internal apeaker and
12 v, D．C．internal power supply．Supplied in oxcellent condition，fully tested und checked，£15
 $2 \%$ C．lopFt $\pm 2 \%$ TURNS RATIO $1: 1 / 1000-1: 11100$ ． © Ranged $\pm 1 \%$ ．Bridge voltage at 1.000 CPS．
Operated from 9 volts． $100 \mu \mathrm{~A}$ ．Meter indlication． Attractive 2tone metal cose．gize $77^{\prime \prime}$
£20．P．\＆P．5／－． ADVANCE TEST EQUIPMENT Brand new A boxed th original keated cartone
VM．78．VALVE VOLTMETER．R．P．mea－ VM．78．VALVE VOLTMETER．R．P．Thes－
auremeats in excesp of 100 Mc／s \＆D．C． meakuremente up to 1000 v ．with accuracy of
$\pm 2 \%$ ．D．C．range 300 MV to 1 KV．A．c．
range 300 MV to 300 V HMS．Resistance O．O2－600 M．Price £72． sistorbed．Mr－30．Mrequence Vm．79．UHF MILLIVOLT METER．Tran－
aistorised．A．C．range 10 Mv－ 3 V ．D．C． aistorised．A．C．range $10 \mathrm{Mv}-3 \mathrm{~V}$ ．D．C
curcant range $0.01 / \mathrm{A}-0.3 \mathrm{Ma}$ ，Hestatance 1 ohm－ 10 megohmh．E125．
H1B．ADDIO SIONAL GENERATOR． $15 \mathrm{c} / \mathrm{h}-$ $50 \mathrm{Kc} / \mathrm{y}$ ．sine or Bquare wiave．Price 830 ．
J1B．AODIO $15 \mathrm{c} / \mathrm{s}$ S0 Kc／s．Price E30．
J2B．AUDIO SIGNAL GENERATOR per j1B except fitted with output meter 235
TTIS．TRANBISTOR TESTER．£37／10／－
Carriage 10／－per Item．



## Variable Voliage TRANEFDRMERA

Brand new
High quality construction．Input 230 v ． $50-80$ cycles．
Output full variable from $0-260$ volts．Bulk quantities available
 $8 \mathrm{amp} .-£ 1 / 10 /-: 10 \mathrm{amp} .-18 / 10 /-; 12 \mathrm{amp} .-£ 21 ; 20 \mathrm{arp} .-£ 37$


## GEW PANEL MIETERS

## Special quotations for quantities


CLEAR
PLASTIC
METERS



## $80 \mu \mathrm{~A} . \ldots . .$. $50.0-50 \mathrm{~A}$ $100 \mu \mathrm{~A}$ <br> $100-0-100 \mu \mathrm{~A}$ $500 \mu \mathrm{~A}$

$800 \mu \mathrm{~A}$
1 mAA
5 mA
10 mA
50 mA
100 mA
100 mA
800 ma
1 amp
Type MR．52P．


## tas．




ype M．R．85P．

| $50 \mu \mathbf{A}$ ． | 89／6 |
| :---: | :---: |
| $50-0-50 \mu \mathrm{~A}$ | 59／6 |
| $100 \mu \mathrm{~A}$ | 59／8 |
| 100－0－100 $\mu \mathrm{A}$ | 59／6 |
| $200 \mu \mathrm{~A}$ | 55／－ |
| 600 ma | 52／6 |
| $500-0.500 \mu \mathrm{~A}$ | 49／8 |
| 1 mA | 48／6 |
| $1.0 \cdot 1 \mathrm{~mA}$ | $49 / 8$ |
| 5 ma | 49／6 |
| 10 mA | 49／6 |
| 50 mA | 49／6 |
| 100 mA | 49／6 |
| 500 mA | $49 / 6$ |
| 1 mmp ． | 49／8 |
| 5 atup． | 49／6 |



## Type MR．65P．

50 ma

$$
\begin{aligned}
& 27 / 6 \\
& 27 / 6
\end{aligned}
$$



TRANSISTOR FM TUNER
 GIGRANBISTOR
HUNHERULITY
TUNER TNER ${ }^{\text {SIZE }}$
ONLY
$6 \ln . x \ln , x$ $2 j \ln 3$
In．F．
Doublagen． Double tuned dis．
criminator，ample
output to criminator，Ample
output to i ed mont
amplitiers． O amplitiers．Operate
$88-108 \mathrm{Moj}$ ．Ready on buil reazis for une．Fantastic value tor money， STEREO MULTIPLEX ADAPTORS，日目有．


TE－16A TRANSISTORISED
SIGNAL GENERATOR


| ${ }^{5}$ Khages $400 \mathrm{KHZ}-30$ |
| :--- |
| MHZ. | MHZ．An inexpenslve

instrument tor the handy
 Latcery．Wide ensy to
read seale． 800 KHZ
KHz modilation． $51^{\circ} \times 85^{-} \times$．
$\times 31^{\circ}$ ．Complete with $\times 3{ }^{\circ}$ ．Complete with
linatractions and leads．
£7／19／6． $\mathrm{P} / \mathrm{P} 4 /$ ． 49／6

$\longrightarrow$ TRANSISTOR CHECKER


$$
\begin{aligned}
& \text { checkin } \\
& \text { Bpec. } \\
& \text { Bi }
\end{aligned}
$$

## $39 / 6$ $39 / 6$ $39 / 6$ $39 / 6$ $38 / 6$ $39 / 6$ $39 / 6$ $39 / 6$ $38 / 6$ $45 /-$ $65 /-$ $38 / 8$ $38 / 6$ $38 / 6$ $39 / 6$ $39 / 6$ $38 / 6$ $39 / 6$ $39 / 6$ $39 / 6$



TE－20RF SIGNAL GENERATOR


ARF－100 COMBINED AF－RF SIGNAL GENERATOR


## Wism

35
D

(Burndept B.E.352) 60 watt model. Supplied Brand Now complete with stainless steel tank $9 \frac{3}{4} \times 6 \frac{1}{4} \times 4 \frac{1}{2} \mathrm{in}$. 860. Carr. 20/-.
2. FAST NEUTRON MONITORS (Burndept 1407C) for measuring neuttons in the energy range 0.15 -15 $\mathrm{meV} . ~ £ 100$.
3. Radiation Monitors (Burndept BN 110 MK. V) $0-5 / 50 / 500 / 5 k$. c.p.s. Brand rew. £100. Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BUITdept BN 132) $0.5 / 50 / 500 / 5 \mathrm{k}$ c.p.s. With bullt-in Gamma probe Brand new. C 50 complete with carrying harness.
S.A.E. for literature. $10 \%$ discount for Educational Authorities

LARGE CAPACITY ELECTROLYTICS. $2,000 \mu \mathrm{~F} .30 \mathrm{~V}$. $2.500 \mu$ F. $25 \mathrm{v}_{\mathrm{g}}: 2,500 \mu$ F. $50 \mathrm{v}. ; 4,000 \mu \mathrm{~F} .90 \mathrm{v} . ; 5,000 \mu \mathrm{~F}$. 25 v : $7 / 6$ ea. $5,000 \mu \mathrm{~F} .50 \mathrm{v} .: 10,000 \mu \mathrm{~F} .30 \mathrm{v} . ; 16,000 \mu \mathrm{~F}$. $10 \mathrm{v} .10 /=$ ea. p.p. $1 /$.
SPEAKER BARGAINS. E.M.I. $13 \times 8 \mathrm{ln}$. with double Tweeters $15 \mathrm{ohm}, 65 / \mathrm{o}$, P.P. $5 / \mathrm{o}$. As above less tweeters Tweeters $15 \mathrm{ohm}, 65 / \%$, P.P. 5/.
3 or $15 \mathrm{ohm}, 45 /$. ea., P.P. $5 /$.
FANE 12 In. 20 watt (Dual Cone), 95/.. P.P. 5/-
CAR RADIO SPEAKER $7 \times 4 \mathrm{in} .3 / 5$ ohm. $15 /-$ ea. P.P. $2 / 6$
EXTRACTOR/BLOWER FANS (Papst)
100 c.f.m. $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in. 2800 r.p.m. Wonderful buy at 50/-ea. 240v. A.C.


SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{ln}$.$) . Made to \mathrm{spec}$ from $i$ in. board. Finished In black leathercloth. $13 \times 8 \mathrm{in}$. speaker, with iwin iweeters complete with cross-over. 50c/s-20k/c. 27.10. P.P. TO,

RELAYS H.D. 2 pole 3 way 10 amp. contacis. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (with dust=proof covers) $4 \mathrm{c} / \mathrm{o}$ contacts. 12 v .100 ohm . of $24 \mathrm{v} .500 \mathrm{ohm} 7 / 6 \mathrm{ea}$.


MINIATURE KEY SWITCHES. (P.O. Lever Type 1000), centre off. 2 c/o each way. 7/6 ea.

DEAC BATTERY PACKS ( $5 \times 4 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$.) containing 3 cells giving 4 volts at $5 \mathrm{a} . \mathrm{h}$. $3 \mathrm{~F} /-$. P.P. $5 /-$.

SOLARTRON PULSE GENERATORS (OPS 100C) $50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}$. $\mathbf{5} 60$ each. Carrlage $50 /$ -

WOBBULATORS TYPE 210 (Metrix) $0.220 \mathrm{M} / \mathrm{c}$. Sweep width $1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}$. $\mathbf{4 0}$. Carrlage $30 /$ -

## THYRISTOR LIGHT DIMMERS

 500 watt Module 45/These modules may be fitted into standard socket boxes and made up into banks as required.5 kW DIMMERS in metal cabinet $£ 20$ ea.

## TRANSFORMERS

H.T. TRANSFORMER (Parmeko 'Neptune') Prim. $200 /$ 250 V Sec. 350-0-350v. 150 m a 6.3 v (a) 1/2/6 Pim. 200/ P.P. 5/-. Matching Choke 10 h 180 m.a. $12 / 6$.
E.H.T. TRANSFORMER (Parmeko 'Neptune') $3,000 \mathrm{v}$. 280 m.a. $£ 12 / 10 / 0$. P.P. $50 /$ -
L.T. TRANSFORMERS Prim. 200/250v. Sec. 0-1/0-3/0-9/0-27v. 30 amp. £7.10. 15 amp . £5. P.P. 15/ L.T. TRANSFORMER Prim. 200/250v. Sec. $0 / 25 / 35 v$ 30 amp. £7.10. P.P. 20/
STEP-DOWN TRANSFORMERS PiIm. 200/250v. Sec. $115 \mathrm{v} .1 .25 \mathrm{amps}, 25 /-$ ea. P.P. $5 /$.
L.T. TRANSFORMERS Prim. 240 v . Sec. $8 / 12 / 20 / 25 \mathrm{v}$.
3.5 amp models $20 /-; 5 \mathrm{amp}$ modol $25 /-$ P. $5 / 6$. 3.5 amp models $20 /-; 5 \mathrm{amp}$ model 25/a. P.P. $5 / 6$.
L.T. TRANSFORMERS Prim. 240v. Sec. $14 \mathrm{v} .1 \mathrm{amp} 10 / 4$ e日. P.P. $2 / 6$.
ELECTRIC SLOTMETERS (1/-) 25 amp . L.R. 240v. A.C 85/- ©a. P.P. ${ }^{\text {B/ }}$
240v, A.C. 20/: ea PRIC CHECK METERS, 40 amp

COPPER LAMINATE PRINTED CIRCUIT BOARD ( $8 \frac{1}{2} \times 5 \frac{1}{3} \times \frac{1}{1} \mathrm{in}$ ), $2 / 6$ sheot, 5 for 10/•. Also $11 \times 9$ in $4 \%$ ea, 3 for $10 /$.

## BULK COMPONENT OFFERS

100 Capacitors (latest types) 50 pF to $.5 \mu \mathrm{~F}$
250 Resistors $\frac{1}{2}$ and $\frac{1}{2}$ watt.
250 Resistors $\frac{1}{3}$ and 1 watt.
150 HI -Stab Resistors, $\frac{1}{2}$, $\frac{1}{\text { a and }} 1$ watt.
25 Vitreous W/W Resistors. $5 \%$
12 Precision Reslstors $1 \%$
12 Precision Resistors .1\% (several standards 12 Precision Capacitors 1 and 2\% (several standards included).
12 Electrolytics (minlature and standard sizes).
ANY ITEM 12/6. ANY 5 ITEMS 50/.


REED RELAYS 4 make $9 / 12 \mathrm{v}$. ( 1,000 ohm.) $12 / 6$ ea 2 make $7 / 6$ ea. 1 make $5 /-\theta a$. Reed Switches ( $1 \frac{1}{4} \mathrm{in}$. ) $2 /-$ ea. $£ 1$ per doz.
CONTINUOUS LEVEL MONITORS (Buindept BE307) complete with Sensing Probe. E25.
Translstorised PROXIMITY SWITCHES (Burndept BE315) Sensing SDeed 120 Der min. £16.
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 interruption per min.. comprises: Light Source, Sensing Head, Control Unit. $£ 15$.
S.A.E. Literature.

COLD CATHODE TUBES (Hivac XC25) 2/- -a Quantity quotations on request

PATTRICK \& KINNIE
81 PARK LANE R ROMFORD $\cdot$ ESSEX
ROMFORD 44473

## LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O. H.F. tone control, R.F. \& A.F. variable controls. Price \&87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price $10 /-$ each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23$ \& 24 ; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.1 \mathrm{mfd}$., 3 for $10 / \mathrm{F}$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/- post. Output transformers 901666-501 27/6 each, $4 /$-post.

- Available with Receiver only.
S.A.E. for all enquiries. If whaing to call at

Stores, please telephone for appointment.

Phone: Tottenhom 9213
HRO RECEIVER. Model 5T. This is a famous American High Frequency
superhet, suitable for CW, and MCW, reception crystal filter, with phasing
$\begin{aligned} & \text { controi. AVC and signal strength meter. Freq. range } 50 \mathrm{kc} / \mathrm{s} \text {. to } 30 \mathrm{mc} / \mathrm{s} \text {., } \\ & \text { with set of nine coils. Complete HRO } 5 \text { T SET (Receiver, Coils and Power }\end{aligned}$
$\begin{aligned} & \text { with set of nine coils. Compl } \\ & \text { Unit) for } £ 30 \text {, plus } 30 \text { - carr. }\end{aligned}$
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /-$ each,
post 5/-.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s, approx. 25 W
$\begin{array}{lll}\text { output, directly calibrated. Valves } 2 & 2 \times 1625 \mathrm{PA}_{;} 1 \times 1626 \text { osc.; } 1 \times 1629 \\ \text { Tuning Indicator; Crystal } 6,200 \mathrm{Kc} / \mathrm{s} \text {. } & \text { New condition- } 83 / 10 /- \text { each, } & 10 /-\end{array}$
post. Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by
R. C. Evenson and O. R. Beach.)
AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6 A K 5$; and
$1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $\mathrm{c} 3 \mathrm{each}, 7 / 6$ post; or Rec.
with 24 v . power unit and mounting tray $\mathrm{k} 3 / \mathbf{1 0} /-\mathrm{each}, 10 /$ post.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 / 10 /-$ each, $8 /-$ post. Converier 12 v D.C. input, 110 v A.C., $60 \mathrm{c} / 3$ @ $2.73 \mathrm{amps} .0 .300 \mathrm{Kva}, \mathrm{E}_{15}$ each, carr. £1. 24 v D.C. input, 175 v D.C. (a) 40mA output, $25 /-$ each, post $2 /-$.

CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600$ v wkg. D.C. $83 / 10 /-$ each, post $10 /-$. $15 \mathrm{mfd}, 330 \mathrm{~V}$ A.C. wkg., $15 /-$ each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}$, poss $3 /-88 \mathrm{mfd}, 600 \mathrm{v}$,
 each, post $7 / 6$. 0.25 mfd , 32,000 v, $7 / 10 /-$ each, carr. $15 /-.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}$, $4 /-$
each, $1 / 6$ post. 0.01 Mfd MiCA 2.5 Kv . Price \&1 for 5 . Pos: $2 / 6$.
avo multirange no. 1 ELECTRONIC TEST SET: $£ 25$ each, carr. £1.
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$, and $1 \mathrm{Nc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /-$ each, $30 /$ cart.

RELAYS: Relay Unit (with 9 American relavs) 24 v. D.C, 250 ohm coils,
heavy dury M. \& B. $30 /-$ each, $4 /-$ post. GPO Type 600,10 relays (@) 300 heavy duty, M. \& B. $30 /-$ each, 4 - post. 12 Small American Relays, mixed types $£ 2$, post $4 \%$.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 £25 each, $£ 2$ carr.
ROTAX VARIAC \& METER UNIT: Type 5G. 3281 . Reading $0-40 \mathrm{v} ., 0-40 \mathrm{~mA}$ and 0.5 amps ., all on 275 deg. scales, $£ 30$ each, $£ 2$ cars
HEWLETT PACKARD TYPE $400 \mathrm{C}: 115 \mathrm{v} \cdot 230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$ in 12 ranges. Input impedance 0 megohms. Designed for rack moung
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, $£ 1$ carriage.

FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, 60$95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: BC-640 Transmitter, $100-156$ 28 v v. D.C. input. Also have associated equipment. BC- 375 Transmitter, 28C-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893 GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY $1288 / \mathrm{GRC} 32 \mathrm{~A}$; Antenna Box Base and Cables CY $728 / \mathrm{GRC}$; Mast Erection Kits, 1186 /GRC; Directional Antenna CRD.6; Comparator Unit, CM. 23, Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth Contro Units, 260/CRD. Test Set URM.44, complete with Signal Generator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac 0-230 $\mathrm{v}_{\mathrm{ol}} 9 \mathrm{amps}$; 2 iin . scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19 in . rack, $£ 16 / 10 /-$ each, 30/- carr.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2 / 10 /$ each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. © 2 amps., £2/10/- each, carr. 12/6. AUTO TRANSFORMER: $230-115 \mathrm{v} . ; 1,000 \mathrm{w} . £ 5 \mathrm{each}$, carr. 12/6. 230-115 v.; 300VA, £3 each, carr. 10/-
 Price (either type) $£ 2$ each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 V. A.C. input, 395-0-395 v. output © 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounied in 19 in . panel, $£ 6 / 10 /$-each, El carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$ 's; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $£ 4 / 10 /-$ each, $15 /$ - carr. POWER UNIT: 110 v . or 230 v . input switched; 28 v @ 45 amps . D.C. output. W't. approx. $100 \mathrm{lbs} .$, ci $1 / 10 /-$ each, $30 /$-carr. SMOOTHING UNITS suitable for above $£ 7 / 10 /$ - each, $15 /$ - carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. ( 235 ohms coil). Stud switch 30 -way relay operated, one five-way ditro, D.C. timing motor with Chronometric governor 20-30 v., 12 r.p.m.; geared to two
relay etc., sealed in steel case ( $(4 \times 5 \times 7$ ins.) $£ 3$ each, post $7 / 6$.

ADVANCE TEST EQUIPMENT: VM76 Valve Voltmeter, $£ 78$ each; VM78 A.C. Millivoltmeter (transistorised) $£ 55$ each; VM79 UHF Millivoltmeter (transistorised) \&125 each; J1B Audio Signal Generator $\mathbf{~} 30$ each; TT1S Transistor Tester (CT472) $37 / 10$ each. 10 per cent Discount for schools, colleges, etc. on the above items. Carr. 10/-, extra per item.

INDICATOR UNIT TYPE CRT.26: complete with CV1526 Cathode Ray
 oscilloscope ( $10 \times 8 \times 6 \mathrm{in}$., wt. 15 lb .) $£ 5$ each. Post $10 /-$

NIFE BATTERIES: 6 v .75 amps , new, in cases, E 15 each, $£ 1$ carr.; 4 v .160 amps, new, in cases, $£ 20$ each, $£ 1$ 10/- carr. L.R. 7 Cells, only 1.2 v. 75 amps., new, $\mathbf{y}$ each, 12 - carr. The above batteries are low resistance designed to give a their performance.

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price 30/- each, postage 5 .

UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- cach, post 4/-
FREQUENCY METERS: LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$, $£ 25$ each, carr. $15 /$ TS.175/U, £75 each, carr. \&1. TS323/UR, $20-450 \mathrm{Mc} / \mathrm{s}$, $£ 75$ each, carr. $15 \%$ FR-67/U:'This instrument is direct reading and the results are presented directy in digital form. Counting rate: 20-100,000 events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$, $£ 100$ each, carr. £1.

CT. 49 ABSORI'TION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{~K} \mathrm{c} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{v} . \mathrm{D} . \mathrm{C} . \mathrm{\varepsilon} 12 / 10 /-$ each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3 in . tube, colour green, medium persistence complete with nu-metal screen, $\mathbf{\varepsilon} 3 / 10 /-$ each, posi $7 / 6$.

APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 V. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /-$

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /$ cach, 4/- post. Assembly unit with Leicherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, 5/- post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs ., rating intermittent, price $\mathrm{£}^{3}$ each, post 5/=,
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6 d .

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v . a.c. operation. In used condition, £20 each, carr. £1.

MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION MARCONI DIVERSITY RECEIVERS; Consisting of $2 \pm$ CR. 150's and associated cquipment. £175 each. Carr. £5.

MARCONI DEVIATION TEST SET TF-934: Freq. $2.5-100 \mathrm{Mc} / \mathrm{s}$. Can be extended to $500 \mathrm{Mc} / \mathrm{s}$. Deviation range $0-5,0-25$ and $0-65 \mathrm{Kc} / \mathrm{s}$. $£ 35 \mathrm{cach}$, carr. $£ 1$.

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond., complete set $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /-$ -
com Transmitter only £7/10/-(few only) Carr. 15/-. Power Unit for Rec., new $£ 3 / 5 /$-. Used power units in working order $£ 2 / 5 /=$. Carr $10 /-$ -
AVOMETERS: Model 47A, $£ 10$ each, $10 /$ post. Model 7, $£ 12 / 10 /$ each, $10 /-$ post. Excellent secondhand cond. (Meters only-batteries and leads extra, at cost.)

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /$ - post. 90 ohms per step. 10 positions, 0.9 ohms. ${ }^{\text {total value } 900 \text { ohms. }} \mathbf{3}$ Gang. Tolerance $\pm 1 \% ~ £ 3 / 10 /-$ each, $5 \%$ post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72 RS ; two-circuit reversing switch, 75 ohms, type "N"' female conncctors filted to receive UG-21/U series plugs. New in ctns., $\mathbf{\varepsilon 6 / 1 0 / - \text { each }}$ post 7/6. CO-AXIAL $11460-22$ throw. (New) $26 / 10 /-$ each, $4 / 6$ post. 1 pole, 4 throw, Type M1460-4. (New) 6 /io/- cach, $4 / 6$ post.
TERMALINE RESISTOR UNITS: type 82A/U, 5000w, freq. 0-3.3 KMC Max VSWR 1.2 Type "N" female connectors, etc. Brand new, C 30 each, carr. 15/-.
PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR Type 219, $100-1,000 \mathrm{Mc} / \mathrm{s}$. (New) £65 each, post 12/6. FREQUENCY
 FIXED ATTENUATOR: Type $130 c, 2.0-10.0 \mathrm{KMC/SEC}$. (New) 25 each,
post 4/-. FIXED ATTENUATOR: Type $1157 \mathrm{~S}-1$, (new) 86 each, post $5 /-$ -

# Here's money-making repair data for over 1000 POPULAR MODELS 

From 1969 right back to 1965 !



CONDENSERS. 8 mfd 600 v. Brand New. Cornell Dubilier Paper Condensers, 4 in $\times 3$ iin. $x$ 1 tin. with fixing clips. $7 / 6 \mathrm{ea}$. P. \& P. 2/-.

SLYDLOK FUSES $15 \mathrm{amp} ., 1 / 6 \mathrm{eg} .$, 15/- per doz.
HEADPHONES. 5 amp. $1 / 3$ ea. $13 /$ Doz.
 mic., 12/6. P. \& P. 3/-. No. 10 Assembly M/Coil with $\mathrm{M} / \mathrm{Coil}$ Mic., 12/6. P. \& P. 3/-.

SMALL MOTORS. 12-24 v. D.C., reversible, with gears attached, $10 /=$ ea.; with blower attachment, $10 /-$ ea. ; each item post $2 / 6$.

TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valves excepr 832s and Relay. $21 /-$ ea. Cars. $4 / \ldots .832$ valves
$7 / 6$ ea. P. \& P. 2/- ea. valve, used. 7/6 ea. P. \& P. 2/- ea. valve, used.

SIEMENS HIGH SPEED RELAYS. Type H69D, $500+500$ ohms, $5 /-$ ea.; Type H96E, $1,700+1,700$ ohms, 7/6 ea. Carr. 1/-.
"TELEL" TYPE FIELD TELEPHONES. These
telephones are fitted in strong steel case complete telephones are fitted in strong steel case complete
with Hand Gen. for calling each station. Supplied in with Hand Gen. for calling each station. Supplied in
new condition and tested. $50 /=$ per pr. Carr. $7 / 6$.

MORSE KEYS. No. 8 assembly complete with leads, terminals and cover, $6 / 6 \mathrm{ea}$. Carr. 2/6.

VIBRATORS. 12 v. 4 pin MALLORY TYPE 6634 C . 6/- ea. 12 v. 7 pin Plessey Type $128 R 7$. 7/6 ca. Carr. $1 / 6$.

ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. $300 \Omega$. 5/- ea. Carr. 1/-. not re-setable. Ex-equipment. Open type.

LIGHTWEIGHT HEADSET (part of "88" W. to highest Ministry Spec. Moving coil earpieces. Our price $20 /-$ ea. Carr. $3 /$. Also Super Lightweight hand ser, $10 /$ - ea. Carr. $2 / \mathrm{m}$.

200 AMP. 24 v. D.C. GENERATORS. Type P3 200 AMP. 24 v. D.C. GENERA
ex-Air Minisiry, £9 ca. Carr. £1.

Generators. Type $02.3,000$ watts, 30 v. D.C.
\& ea. Carr. $15 / \mathrm{C}$ \&6 ea. Carr. 15/-.

Rotary Convertors. Type 8. D.C. Input 24 v., A.C. Output 115 v. $400 \mathrm{c} / \mathrm{s}, 3$ phase, 1.8 amps. £5 ca. Carr. £1.

Invertors. Type 201A (5UB6300). D.C. 25/28 v. r.p.m. 8,000, A.C. 115
c. v. $1600 \mathrm{ca} / \mathrm{s}$, single phase. All above items ex-gov. stock, in used condition.

CONDENSERS. 1 mfd. $1,500 \mathrm{v}$. Sprague, paper. 9 d . ea., $7 / 6$ doz. . 500 v. $5 / 6$ doz. postage
on 12 of on 12 of ea. item 2/-.

HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade terminals and wander plug.
$1 / 6$ pr., $15 /-$ doz. pairs. P. \& P. $1 / 6$ ea. doz. 1/6 pr., $15 /-$ doz. pairs. P. \& P. 1/6 ea, doz.

FATIGUE METERS. 24 v. D.C. Consisting of $6 \times$ H96D Relays, $500 \times 500 \Omega .6 \times 300 \Omega$ Electro Mag. counters, etc. $£ 2 / 10 /-$ ea. Carr. $6 /$.

AMERICAN AUTOPULSE 24 v. PUMPS for mounting between carb, and main fuel tanks as Size 7 in $\times 2 \frac{1}{2} \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$.

Telephone Hand Generators. No. 26 A.N. In wooden case. 7/6 ea. P. \& P. 4/6.
S.T.C. MINIATURE SEALED REI.AYS, TYPE 4184 G D, $700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 v .
D.C.) (ex-equipment). 2 C/overs. 7/6. P. \& P. $1 /$. 6 or more post paid.

SMALL D.C. MOTORS. $2 \mathrm{in} \times 1$ iñ. $\times 1 \frac{1}{i n}$. shaft. Ideal for model makers, erc. $10 / 6 \mathrm{ca}$.


Tel. BIRKENHEAD 6067
Terms Cash with Order.

# ELEGTROVALIE 

## EVERYTHING BRAND NEW AND TO SPECIFICATION • NO SURPLUS PROMPT DEPENDABLE SERVICE• LARGE STOCKS -ATTRACTIVE DISCOUNTS

RESISTORS FOR 10d. EACH?
That's because they are type TR. 5 METAL OXIDE
Triple rating: $\frac{1}{}$ watt general purpose $3 \%$ stability; $\ddagger$ watt high stability $2 \%$ stability; t watt semi precision $1 \%$ stability. Stability quoted for $25,000 \mathrm{hrs}$. ( 3 years) at full rating. Selection tolerance $2 \%$, noise under $0.1 \mu \vee / V$. Cheaper in quantity: 25 to
999 d . each; 100 and over 8 d . each; 100 of one value 7 d . each AND DISCOUNT! 999 d. each; 100 and over 8 d . each; 100 of one value 7 d . eac
Heavy demand may cause remporary shortage of some values.

- CARBON FILM

High stability, low noise. IW $10 \%$ 经 to $3.3 \Omega$; $1 \mathrm{~W} 5 \% 3.9 \Omega$ to $1 \mathrm{M}, 1 / 10 \mathrm{doz}$. $14 / 6100$. $4 W 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 1 / 9 \mathrm{doz} .13 / 6100$ + $1 \mathrm{~W} 5 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 2 / 2$ doz., 17/- 100 . $1 \mathrm{~W} 10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 3 / 3$ doz., $25 / 10100$.
$1 / 6$ iess per 100 if ordered in complete 100 's of one ohmic value. Please state resistance values required.
CARBON SKELETON pre-sets: $100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 2 \cdot 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M}$ $\Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting. Small high quality, $1 /-$ each Sub-min type 11d. each.

## * MYLAR FILM CAPACITORS

Printed circuit type, $100 \mathrm{~V}, 10 \%$ tolerance: Values: $0.001 \mu \mathrm{~F} ; 0.002 \mu \mathrm{~F} ; 0.005 \mu \mathrm{~F} 5 \mathrm{~d}$. each. $0.01 \mu \mathrm{~F} ; 0.02 \mu \mathrm{~F} ; 0.03 \mu \mathrm{~F} ; 0.05 \mu \mathrm{~F}$ 5d. each. $0.1 \mu \mathrm{~F} 7 \mathrm{~d}$. each.

## * CERAMIC DISC CAPACITORS

Hi-K type for printed circuits, $20 \%$ tolerance. Values: $500 \mathrm{~V}: 0.001,0.002,0.005 \mu \mathrm{~F}$ 4d. each $50 \mathrm{~V}: 0.01,0.02,0.05 \mu \mathrm{~F}, 4 \mathrm{~d}$. each.
Polyester: $250 \mathrm{~V} 20 \%: 0.01,0.015,0.022,0.033,0.047,0.068 \mu \mathrm{~F}, 7 \mathrm{~d}$. each; $0.1 \mu \mathrm{~F} 8 \mathrm{~d}$. Polyester: $250 \mathrm{~V} 10 \%: 0.15,0.22,9 \mathrm{~d} . ; 0.33,1 / 2 ; 0.47,1 / 6 ; 1 \mu \mathrm{~F}, 2 / 3 ; 2 \cdot 2 \mu \mathrm{~F}, 4 / \mathrm{F}$

## * MULLARD C426 SERIES ELECTROLYTICS

Sub-miniature, axial leads. Values: ( $\mu \mathrm{F} / \mathrm{V}$ ): $0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5 / 64 ;$

 250/4; 320/2.5; 320/6.4; 400/4; 500/2.5. All $1 / 3$ each.
MINIATURE ( $\mu \mathrm{F} / \mathrm{V}$ ): $5 / 10 ; 10 / 10 ; 25 / 10 ; 50 / 10$, 9 d . each. $25 / 25$; $50 / 25 ; 100 / 10$; MINIATURE ( $\mu$ F/V): $5 / 10 ; 10 / 10$, 1 - each. $50 / 50 ; 100 / 25,1 / 6$ each. $100 / 50 ; 250 / 25,2 /$ each.

* MEDIUM RANGE ELECTROLYTICS

Axial leads. Values ( $\mu \mathrm{F} / \mathrm{V}$ ): 50/50 1/6; 100/25 1/6; 100/50 2/-; 250/25 2/-; 250/50 Axial leads. Values ( 1 F/V.

* LARGE ELECTROLYTICS (High ripple currents)

Can type with tags. Values: $1000 \mu \mathrm{~F} 25 \mathrm{~V} 5 / 3 ; 2000 \mu \mathrm{~F} 50 \mathrm{~V} 9 / 3 ; 2500 \mu \mathrm{~F} 64 \mathrm{~V} 15 / \mathrm{F}$
Can type with tags. Values:
$2500 \mathrm{~F} 70 \mathrm{~V} 19 / 6 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 17 / 6$. Clips 9 d . each.
$\star$ RECTIFIERS
1000 V PIV, $1.5 \mathrm{~A}, 1$ N5054 3/6; 0.75A 100V TS 1 1/9; 400V TS4 $2 / 3$.

## $\star$ POTENTIOMETERS

Long plastic spindle. Values: lin and log: $4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$, $470 \mathrm{~K}, 1 \mathrm{M}, 2.2 \mathrm{M} 2 / 6$ each
470K, $1 \mathrm{M}, 2 \cdot 2 \mathrm{M} 2 / 6$ each. Sterco matched,
antilog $8 / 6$ each
Please note: Only the above values are available. With double pole switch $2 / 3$ extra
E

Discounts
$10 \%$ on orders for components for $£ 3 / \%$ or more. $15 \%$ on orders for components for $£ 10$ or more. POSTAGE and packing up to order for $£ 1$, add 1/-, FREE on orders for
£1 or over. Overseas orders welcome-Carriage charged at \&1 or over. Overseas orders' welcome-Carriage charged at
cost.

Compare our prices-and our service
$\star$ G.E. 2 N2926 PLASTIC range. PRICES REDUCED I $\begin{array}{ll}\text { Red spot }=55 \text { to } 1102 / 3 & \text { Yellow spot }=150 \text { to } 3001 / 9 . \\ \text { Orange spot }=90 \text { to } 1802 / 3 & \text { Green spot }=235 \text { to } 4702 / 3 .\end{array}$

## $\star$ TEXAS SILECT range. PRICES REDUCEDI

30 V 600 mA npn $\quad$ BC107 series

$2 N 3705 \beta=45$ to $1653 / 5 . \quad$ BC107 $45 \mathrm{VB}=125^{\prime}$ to $5002 / 9$
2 NV 200 ma pnp . $65 \mathrm{~s} / \mathrm{s}$
2N3702 ${ }^{2 N a}=60$ to $30003 / 6$.
$2 \mathrm{~N} 370 \mathrm{~B}=30$ to $1503 / 3$.
Small Signal npn
2N 3707 low noise 4/-.
$2 \mathrm{~N} 3711 \beta=180$ to $6603 / 11$.
Small signal pnp
2N4058 low noise $4 / 9$.
$2 \mathrm{~N} 4026 \mathrm{\beta}=180$ to $6604 / 3$.
BC108 20V $=125$ to $9002 / 6$.
$\mathrm{BCl} 10820 \mathrm{VB}=125$ to $9002 / 6$.
$\mathrm{BCl} 10920 \mathrm{VB}=125$ to $9002 / 9$.
BC167 series
180 mW 300NHzfT. T092

$\mathrm{BCl} 6820 \mathrm{VB}=125$ to $9002 / \mathrm{2}$.
$\mathrm{BC} 16920 \mathrm{VG}=240109022 / 3$.
BC167, BC168 and BC 169 are plastic.
$\star$ FETS. PRICES REDUCEDI
A brand new FET. $2 \mathrm{~N} 51631.8 \mathrm{~mA} / \mathrm{V}$ min. $5 /$ - only. MPF 10525 V max., $\mathrm{gm}=2$ to $6 \mathrm{~mA} / \mathrm{V}$ low noise $7 / 6$. 2 N 381925 V max. gm 2 to $6 \mathrm{~mA} / \mathrm{V}$, low noise $9 /-$

- MINITRANSISTORS. PRICES REDUCEDI

2N4285 pnp hFE 35 to 150 at 10 mA fT 7 MHz min. Veb 35 V max 2 N 4286 npn 30 V hFE over 100 at $10 \mu \mathrm{~A} \mathrm{fT} 280 \mathrm{MHz}$ typ.
2 N 4289 pnp 60 V hFE over 100 at $100 \mu \mathrm{~A}$ to 1 mA fT 170 MHz typ.
2 N 4291 pnp 40 V hFE over 100 at 100 mA .
2 N 3794 pnp 40 V hFE over 100 at 100 mA complementary driver/output. N 4292 npn 30 V UHF N.F. 6 B max at 100 MHz IT 570 MHz typ. B5041 Power 14.3 W at $100^{\circ} \mathrm{C}$ base temp. 35V, hFE over 100 at 0.5 A . Insulated T066 size mounting surface.
Prices: 2N4285 to 2N4292, 2N3794 2/11; B504। $13 / 6$.

1000 volt 1-5A GENERAL PURPOSE RECTIFIER type iN5054 $3 / 6$ only.
100V 0.75 A miniature rectifier type TSI $1 / 9$.
400 V type TS4 $2 / 3$.

ZENER DIODES 3 V to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all preferred voltages $4 / 6$ each.
$\star$ NEW TRANSISTOR BARGAINS
All power types supplied with free insulating sets

| A/l power types suphed |  |  |  |  |  |  |  |
| :--- | :---: | :--- | :---: | :--- | :---: | :--- | ---: |
| 2N696 | $5 / 6$ | 2N1613 | 6/6 | 2N4060 | $4 / 3$ | BC147 | $4 / 3$ |
| 2N697 | $6 /-$ | 2N1711 | $7 / 4$ | 40250 | $15 /-$ | BC148 | $3 / 6$ |
| 2N706 | $3 / 5$ | 2N2147 | $16 / 9$ | 40406 | $16 / 3$ | BC149 | $4 / 3$ |
| 2N1132 | $13 /-$ | 2N2218 | $11 / 6$ | 40408 | $14 / 6$ | BD123 | $24 / 3$ |
| 2N1302 | $4 /-$ | 2N2369A | $6 / 9$ | AC126 | $6 / 6$ | BF194 | $7 / 6$ |
| 2N1303 | $4 /-$ | 2N2924 | $9 / 6$ | $5 /-$ | AC128 | $6 /-$ | BFX29 |
| 2N1304 | $4 /-$ | 2N2925 | $5 / 9$ | AC176 | $11 /-$ | BFX84 | $7 / 5$ |
| 2N1305 | $4 /-$ | 2N3053 | $5 / 6$ | ACY17 | $8 /-$ | BFX85 | $8 / 3$ |
| 2N1306 | $6 / 9$ | 2N3054 | $15 / 6$ | AD161 | $7 /-$ | BFX88 | $7 / 9$ |
| 2N1307 | $6 / 9$ | 2N3055 | $16 / 6$ | AD162 | $7 /-$ | BFY51 | $4 /-$ |
| 2N1308 | $8 / 9$ | 2N3391A | $5 / 6$ | AE114 | $7 /-$ | BSX20 | $4 / 6$ |
| 2N1309 | $8 / 9$ | 2N3706 | $3 / 3$ | AF124 | $7 / 3$ | NKT403 | $14 / 10$ |

## PEAK SOUND <br> AMPLIFIER KITS

PA/12-15 12 wats 15 ohms $\$ 3 / 19 / 6$ Net. KP/P2 Pre-amp kit $£ 1 / 7 /-$ Net. KP/C2 Tone control kit 19/- Net. PS/45/K Power unit kit $84 / 19 /$ - Net. Accessories: Vol. control $10 \mathrm{~K} \log$ I/P selector switch 4P3W 4/9. Treble 100 K selector switch 4 P . (or 250 K ) Balance Iin.; Bass 220 K lin. (or 250K) Balance (for stereo) 10K log/anti-log Heal sink
6/-; CIR-KIT strip $5 \mathrm{ft} . \times$ tin. $2 /-$
CIR-KIT boards (main amp) 4/.; others $1 / 9$. Output capacitor $1000 \mu \mathrm{~F}$ $50 \mathrm{~V} 7 /$-, clip 9 d .

DEPT. WW.3, 32a ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY'
Telephone: Egham 5533 (S7D 0784-3)

## BAILEY 30 WATT AMPLIFIER

Transistor complement $£ 7 / 8 /$ per channel PC boards for main amp. 12/6 each or free with channel of transistors. November 1968 WW reprint giving amplifier and power supply circuit 1/post free.
Power supply kit complete $\varepsilon 4 / 5 / 0$ Amplifier kit complete including TRS resistors where applicable $£ 9 / 8 /=$ All components sold separately (see catalogue).

## CATALOGUE

Our latest 1969 catalogue is packed with up to the minute items and invaluable technical information for every serious experimenter, constructor and designer. READY NOW. Send $1 / 6$ for your copy without delay.

## Wilkinsons FOR RELAYS P.O. TYPE 3000 AND 600 <br> BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN LaRGE STOCKS HELD OF MINIATURE SEALED RELAYS

CONNECTING WIRE 1/024: 7/0076; or 14/0048
PVC covered in varjous colours $100 \& 200$ yard reels.
C4 ner 000 sds. MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt, $1^{5}$ ampere, Size $2^{\circ} \times 1 \cdot 13^{\circ} \times 0 \cdot 63^{\circ}$. Weight 11 or .
Ideal for model work, $12 / 6$ each. $120 /=$ doz., post $1 / 6$. IdTROBOSCOPE FORK. 125 cycles. P.O. No. E. LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS. SIZE
13 pole, 11 way and off $170 /=, 24$ pole, 11 way and off $1110 /=$ way and off $210 /=$,,$~$ 13 pole. 11 way and
54 pole On/Ofi $150 /=$
SOLENOIDS type $3 E$ in stock at $17 / 6$ each
CERAMIC AND PAXOLIN WAFER
GERAMIC AND PAXOLIN WAFER SWITCHES Double Pole Pax Wafer Switches $12 / 6$ each. post $2 / 6$. Way P.O. STANDARD RACKS $6 f$ U U channel ssides drilled Ior itsin. panels heavy angle base. $150 \%$, cge $20 \%$. Desk MINIATURE BUZZERS. PLASTIC.FILM CONDENSERS TMC S125017LM $0.9+0.1 \mathrm{mfd} 500 \mathrm{~V}$ thso $1 \mathrm{mfd} .1 \% .150 \mathrm{~V}$. TOC $20 /$ each. AIR BLOWERS. $200 / 250$ volt. A.C. cylindrical 7 in . $\overline{0}$
Fin. Rultable for intale or extraction, $1 / 50 \mathrm{~h}$ h.p. $£ 10$.
 typea on 3 Banks, break before make action $50 \%$ ea GEARED MOTORS, 3 r.p.In. or 1 r.p.m. 4 watts very powerful, reversible 24 V. AC $35 /$. post $2 / 6$, can be
operated from 230 v with our $20 /$ Transformer. operated from $230 \%$ with our $20 /$ Transformer


PHOTOGRAPHIC EQUIPMENT
Dalimeyer Prolection Lend $\mathbf{F}=65 \mathrm{~mm}, 35 \mathrm{~mm}$ mount $70 /-$ each, post $2 / 6$. Condenser Lenses. Plano. Convex optically
ground and polished $14^{*}$ dla. $24^{\prime \prime}$ focus $7 / 6$ each, post $2 /-$


$$
\text { post } 4 / 6 \text {. }
$$

Photofloods G.E.S. 230 volts 1,000 watts $10 / \mathrm{e}$ ea., post $7 / 6$. LAMP HOUSES with pair of $6^{\circ}$ lenses mounted in a HIIH SPEED COUNTERS


SUB-MINIATURE Microawitch Honeywell S.P.D.T. in flves for $22 / 6$ post free.
JACK PLUGS. 2 Polnt
gerew-on cover. $2 / 6$. post 9 d .
PO 201 on headphone cord $3 /{ }^{2}$.


PO 201 on headphone cord 3/e. post 1/6. PLUG-IN RELAYS, Tondex it change over HID con tacts 28 v. D.C. or 240 v. A.C. with base and cover, $35 / \mathrm{ea}$.
RELA YS. 24 volt DC, 4 make. 4 break heavy duty contacts with dust cover. $12 / 6$ each. quantities avallable. UNISELECTOR DIGIT SWITCHES 8 level 12 outlets 3 bridging 5 non-bridging 50 volts. NEW $68 / 10 /-$ PU 156 C . A.C. input $200 / 250$ v. D.C. output positive HT 150 Y. 8tabillzed 15 mM . NEW ${ }^{645}$. to 3 phase 4 h.p. $4(\mathrm{H}), 440$ volt Motor 50 cycles 1450 r.p.m.

TERMINAL BLOCKS 2 way. 5C/ 430 or 3 way
or $\& 20$ per 1,000 .

MAGNETIC COUNTERS Veeder Root with zero react. 800 counts per minute, counting to 990, ,ith zero 110 Or 125 volta AC Or 110 rolts DC. $65 /-$ each, poett $3 /-$.
VACUUM CONDENSERS, 25 pf., 32 KV, $27 / 6, ~$ MESETER
 Microampsol100 1 in MC
 Microamps $0 / 5002 \mathrm{in}$. MO $37 / 6$ Milliamps $0 / 502 \ln$. MC. Amps $50-0-502 \mathrm{Ln}$ MC. Amps $0 / 52 \mathrm{in}$. MC.
Voles $0 / 2021 \mathrm{Lin}$ MC
Volts $0 / 10$ A.C. $3110 .$.
MICROAMPS $0 / 50$ scaled in Rontzens $2 l$. PORTABLE YOLTMETERS 0/250 Moving Iron AC
ONE HOLE FIXING SWICCHES SINGLE POLE. Double Throw. 3 amp. 250 . A.C. can be used as on/
OFF or CHANGE-OVER switch. $18 /=$ per dozen. $130 /=$ per 100

MASTER CONTACTOR. PRecist making and breaking twior. Precision made. Contacts thernostat controlled heating. 12 or 24 v . $18 / 6$ poot $6 /-$ $001 \mathrm{mfd} .10 \mathrm{kV} 5 \mathrm{~K}^{2}$ THODRAY" CONDENSERS $: 025 \mathrm{mf} .2 .5 \mathrm{kV}, 5 /-, 05 \mathrm{mf}, 5 \mathrm{kV}, 9 /-10.1 \mathrm{mf} 4 \mathrm{kV}$ $1=; 6 \mathrm{kV}$. $17 / 6: 0.5 \mathrm{mf}$. $2.5 \mathrm{kV}, 17 / 6 ; 1 \mathrm{mfd} .2 \mathrm{kV} .17 / \mathrm{l}^{2}$
RESISTORS, wire wound or carbon, votentiometers, condensers, quantitles ex ${ }^{\text {stock at low prices. }}$
BRIDGE MEGGERS SERIES I. With resistance box and leads, 1.000 ₹., 0-100 megohms. $\mathbb{6} 0$ eat

KEY SWITCHES ONE HOLE FIXING with | knobs. Stop/2 change over locking 2 position $7 / 6$. |
| :--- |
| Stop/4 C.O. non-locking 2 position |
| $0 / 6.6$ C.0. | lock/2 C.0. lock 3 position $17 / 6$.



run all your surplus equipment direct from ac mains
We make a plus in Power Bupply units, input 200/20sc Yolte 50 c/s $A$ AO maina, Output to run any of the set
Ilsted below. The unlto are brand new Ilsted below, The untro are brand new and conalned
In an attractive louvered ateel case, with full conIn an stractive louvered steet
necting leads, plugs $\&$ socket
No. 19 Recelver $\mathbf{£ 3 . 1 0 . 0}$, carriage $10 /$
H. R.O. Recelver $\mathbf{~} 4.0 .0$,
H.R.O. Recetver $£ 4.0 .0$, cartinge $10 /$.
R.1122 Recelfer $£ 3.10 .0$ cartiago 10 R. 1132 Recelver $£ 3.10 .0$, carriage $10 /$.
R. 1155 Becelver $£ 3.15 .0$, cartuge $10 \%$.
R 151 R. 1478 Recefer 23.15.0, cartiage 10/P.C.B. Recelver $£ 3.10 .0$, carriage $10 \%$.

Enauirtes invrited tor Power Bupp
any type of equipment not listed.
any type of equipment not listed.
No. 19 set transmitter and receiver
Matns input power supply unit to run thle popular ready to plug in. Only £8.10.0, carringe $10 /$ -


Compact V.h.F. Trans/Rec. Fits in the nerinl, transmlitter Mike/Apeaker, amplliter to operate up to 100 milies depending on terrain. Operates from dry batteries. Com pletely sell-coutained. Cost Gort. over 25 ch. Begulatlons state must not be operated In UK so please mention
Dlamantling purposes onfy" Dlamantling purposes only" when
ordering. Price 22.10 .0 each, $p$. \& $p$. ordering. Price $\mathbf{2 2 . 1 0 . 0}$ each, p. \& $p$.
10\%. Two sets for $\mathbf{~} 5.0 .0$, poat free. $10 \%$. Two sets for $\mathbf{E 5 . 0 . 0}$, poat free.
Four sets $£ 8$, cartiage free. Bulk sale Four sets £8, carriage free. Buik sal
of 10 nets 215 . carriage 21 . Expor enquililes invited.


MINIATURE MOVING COIL SPEAKERS $1 / \mathrm{th}$. diameter. Only $3 / 6$ each, p. \& p. 1/6. Two
 rohust compact chastis. Containing double isolated
transformers, emmoothing chokes, cappetiors and
Bllicon rectifiers. In semi kit form with full instuctransformers, minoothing chokes, capactiors and
SIlicon rectifiers. In semi kte form with full instruc-
tions for completion. ON LY $25 /-$ plus $5 /$ carriase. Scoop PuRCHASE SALE A
Bulk purchase enables us to offer the following transs
formere at a ridiculously low price. Mado by a famous formers at a ridiculously low price. Made by a famoue
manufacturer and fully teated and guaranteed. manufacturer and fully terted and guaranteed.
CHARGER TRANBFORMERE. 0.9 .15 volta. 2 amp. $9 / 8$ each, p.p. $2 / 6$. Two for $17 / 6$ post free.
TRANEIBTOR POWER PACK TYPES. 6.3 v \& 2 amps. $5 / 8$ each, p.p. $2 /-12$ volt at 2 amp . $12 / 6$
each, p.p. $2 / 6$. (4) CID: ESEIENTITIC ETO MIPT. WW10, CAWOODS YARD.

4SEITION WTERCOM


Solve your communication problems with this new 4-8tation Transistor intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66ft. and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER Jdeal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

## 7-STATION INTERCOM

( I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. 3 tin. Speakers. suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.


Why not increase efficiency of Office, Shop an Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

fULLY TESTED AND MARKED


PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER E4

## TRY OUR X PACKS FOR UNEQUALLED VALUE

## XA PAK

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81 , ete.

PRICE LS PER 1000

## XB PAK

Silicon TO-18 CAN cype transiscors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE 45.5.0 PER 500
PRICE \&10 PER 1000

## XC PAK

Silicon diodes miniature lass eypes, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, etc.

PRICE CS PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF $75 \%$ OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

P/P 2/6 PER PACK (U.K.)

## TRANSISTORS SILICON <br> ONLY 1/- <br> N.P.N.

 All these types available 2N929 2N706 2SI31 2SI03 2N696 2N1613 2S733 BFYIO $\begin{array}{llllllll}2 S 501 & 2 N 706 A & 2 S 512 & 2 S 104 & 2 N 697 & 2 N 171 I & 2 N 726 & 2 S 731\end{array}$ $\begin{array}{llllllll}\text { BCl08 2N301I 2Sl02 2N2220 2NI507 2NI893 } 2 N 2484 & 2 S 732\end{array}$$\begin{array}{lll}2 N 1711 & 2 S 733 & \text { RFY } \\ \text { 2N726 } & 2 S 731\end{array}$
2

All tested and guaranteed for gain and leakage-unmarked
Manufacturers' fall outs from the new PRE.PAK range.


| NEW UNMARKED UNTESTED PAKS |  |
| :---: | :---: |
| 25 ESPY Sililion T | TRANSISTORS |
|  | $1-$ |
|  | TRA |
| $10 \begin{aligned} & \text { 10 Watt Slilico } \\ & \text { All } \\ & \text { Voltages }\end{aligned}$ |  |
| $25 \begin{aligned} & \text { BFY50.1-2 } \\ & \text { NPN Silicon }\end{aligned}$ | TRANSISTORS 10/- |
| $10 \begin{aligned} & \text { a amp. Stud. } \\ & \text { Silicon }\end{aligned}$ |  |
| $25 \begin{gathered}\text { BC107-8-9 } \\ \text { NPN Silicon }\end{gathered}$ | TRANSISTORS $10 \%$ |
| $40 \begin{aligned} & \text { NSM14-6 OA O200/202 } \\ & \text { Sub. Min. Silicon } \end{aligned}$ | 22 |
| $150 \mathrm{Min}_{\substack{\text { Migh } \\ \text { Herm. } \\ \text { Quality }}}$ | DIODES 10/- |
|  | TRANSIST |
| PRE.PAK.N. 605 POWERTRANISTO.N.EUIVERENT 5/- each |  |
| COMPLIMENTARY SETNPNPNP GERM, TRANS. $2 / 6$ pair |  |

## PRE-PAKS

Selection from our lists


B1 50 Unmarked Trans. Untested $\quad 10 /$
B2 4 Photo Celis Inc. Book of Instructions - 10/-
B6 17 Red Spot AF Transistors - 10\%
B6A 17 White Spot RF Transisters

- 10\%

B9 I ORP 12 Lighe Sensitive Cell - 9/.
85325 Sil. Trans. 400 Me/s ${ }^{1}$ Brand New - 10/-
BS4 40 .. NPN To S Trans Voltage . $10 /-$
B5S 40 .. .. NPNTol8 \& Gain Fallouts 10/-
$\begin{array}{lllll}\text { B5 } 56 & 40 & \text {.. } & \text {.. NPN/PNP } & \text { All Tested } \\ \text { N } & \text { - } & 10 / \%\end{array}$
B68 10 Top Hat Recs. $750 \mathrm{M} / \mathrm{A} 100-800$ PIV $-10 /$.
86920 Diodes. Gld-Bnd. Germ Sil. Plane: - 10\%
B74 5 Gld-Bnd. Diodes. 2-OA9. 3-OA5 - 10/-
377 CidBnd. Diodes. 2 OA. 3 OAS
B79 4 IN 4007 diodes 1000 P.V. 1 amp
B75 3 Comp. Ser. 2G371, 2G381, 2G339A
C2 I Unijunction Transistor 2N2160
C35 3 Uniunction Transtor - 15/
Al 7 Silicon Rectiers BY100 Type-2160-151
A3 25 Mixed Marked and Tested Transistors - 20/
A21 5 Power Transistors 1-AD149/1-OC26 and 3 others $\qquad$

JUST INTRDDUCED 2 BRAND NEW UNTESTED, UNMARKED PAKS
РАК 8.78
Integrated Circuits, Mixed
17 Untested, Types Include:
MIC 930, 932, 936, 944.945 946. 948. 950, 951 \& 962 These are STC Type Numbers. Data \& Circuits supplled with orders.

## PAK B8o

DUAL TRANSISTORS
MATCHED O/P. PAIR
IN TO. 5 CAN

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev.
counter for any car.
State 4 or 6 cylinder.

FREE CATALOGUE AND LISTS for: -

## ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ post and packing per order. OVERSEAS ADD EXTRA FOR AIR MAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

## ELECTRONIC EROKERS



## PRECISION BECKMAN 40 TURN 14,400 ROTATION

20 wath at $40^{\circ} \mathrm{C} .3$ t ${ }^{\circ}$ - Dismeter. Bervo Mounting.

THREE TURN $780^{\circ}$ ROTATION $100 / 2$
300
1 K
10 K
10 K
10 K
20 K
10 K
FIFTEEN TURN $5400^{\circ}$ ROTATION



Beckuran
Beckeran
Beckman General C Beckman
Beckman
Becktran
eckman

## Modet

 A...A.
.82501 Prine
$60 \%$


## 

OUR CHANNEL HIGH SPE PEN RECORDER by KiGH SPEED The Recorver consiats basically of a magnet carrying In it poles four atlifily suppended moving
coll unds, each with a tyly arm attached. The coll units, each with a stylis armin attached. The
stifness of the coll unit ouspension ennbles the and accelerntio
Mascceleration. Excellent condition. 185
N.B. Twion channel versio 16.5. Tw.m. detlection version available, giving

FIVE CHANNEL PEN RECORDE complete with fiv
Chat width 9 in.
Maximum trace width of $\pm 2$ c.m. per channel.
Frequency reaponse flat to $60 \mathrm{c} / \mathrm{m}$. Malns operated, conmpiete in free ritandlag consut.
Fully overhauled Cost $£ 1200+$ Our price $£ 450$

HYSTERESIS CLUTCH MOTOR with litegral clutech allowing the motor to drop out of engagement with the gear trath. thereby
facilitating easy renetting whea used lo timers or facilitating easy reneting when used in thmers or
to conjunction with a light spring. 6 oz. or



PORTABLE SINGLE PEN RECORD. ER BY RECORD ELECTRICAL


TRANSITROL 2 POSITION INDICATING TEMPERATURE CON. TROLLEA
ETHER


ETHER
TYPE 990

direct deflecting
units for indicating and controlling eemperature accurately over a wide range. Suttable where a
aignal can be converted Into D.C. Senaitivity aignsl can be converted into D.C. Sensitivity
10 ohmps per M.V. Minmum F.8.D. 8 M.V. Cold junction compenasion. thermocouple breal protection. Coppe compennation. Callbrated scale
length, 6.5 in ., 0 onon degreen centigrade accuracy
 Matine supply $100-260 \mathrm{v}$. Control ewitching and Thermocouple connections alt at back of case. Our price £22.10.0. List price E49. New. condition.

sultable for
MINIATURE DIGITAL


Operater on a rear prolection 6.3 pilot dening lects through isponding digit vewing cerceen at the front of the wint.
3 If
 and derree. Avalisble to special order other charactera or colour, at cont of
platen. List price 6 gna. Our price 49 ;

DIFFERENTIAL PRESSURE DUCERS by gitam Ltd. G.B. Type.
Range $\pm 900 \mathrm{MB}$
Reslintanci Range $\pm 900 \mathrm{Mr}$
Our Price
£19.10.

HOLLERITH 80 COLUMN READER. Complete with Verifler B
No. H 129/24

FERRANTI HIGH SPEED SH CHARACTERS per second reader.

LOW TORQUE MYSTERESIS

Ideal for lantrament chart, drives, extremely where ambient moise
levela are low. Having a levela are low. Having a
high atartlug torque a relatively high inertin lood can be driven



HYSTERESIS REVERSIBLE M Incorgorating two coils. Each coll when will produce opposite rotation of the oats
240 volt 50 cycle, ir.p.m., $\frac{t}{}$ r.p.m., $1 /$
$1 / 10$ r.p.m. 121 volt 60 cycles $1 / 10$ ro.s 1/10 r.p. m., 120
redueed to $30 /-$.

POTENTIOMETRIC 6 POINT STRIP CHART RECORDER BEAI Por use with thermocouplers, pyrometera a

 Listed at over Ezevi Our price $\mathbf{8 7 9 . 1 0 . 0}$.

meanurement
be measured in terms of an electicul signal
width 97 in 10 mV .2 . Senelivity 0.17 makie: Bpeed of operation 33 sec . for fuli-arale Chart speede ; in., 3 in., 6 it. per hour. Sing
£49.10.0. $£ 49.10 .0$.
EAC DIGIVISOR Mk. II DIG READ-OUT
Ideally
nuitable
for use in con1deally nuitabl
for use in coo
junction wit
trandstorised drandstorised
decade counting devices. No need
for amplitiers or
 fow milliwatte of
power are re
quired to charge
the digits. The quired to charge
DIGIVISOR incorporates a moving coul mo Which moves a transiucent mate thmugh an o aystem and the resulant ningle plane tupa
projected on acreen. The translucent ncale lis
to repreant digita 0.9 . Specifications: 6.3 to represent digits $0-9$. Bpecificationa: 6.3
250 micromp. Image height in. Bixe $49 / 1$ 250 micromp. lmage height it in. Bixe $49 / 1$
$39 / 64 \times 1 / \mathrm{in}$. Our price 3 it On . List price 8

## $B$ <br> LOW COST ELECTRONIC AND SCIENTFIC EQUIPMENT AND COMPONENTS

D NEW S.E. LABORATORIES SDUCER complete
/demodulator B.E. $441 / 2$
3 D.C. 60 c.p.


VACTRIC I44-WAY HIGH SPEED MINIATURE SAMPIING
SWITCHES, conninting of 24 segmenta in als SWITCHES, conninting of 24 segmenta in slx from theae artches. Ideally suitable for data hogging appllcation. Low inherent noise and coti
tact resistance permitting high speed sampling of the resistance permilting high speed sampling Pulse generator for digitial counting. Brind new. £25

SAFETY OHM METER BY EVERSHED AND VIGNOLES Buitable for tenting contuct and resibtance of circuite wher
current must never exceed apecinc amount. Ratige: $0 \cdot 3$ ohms
Liot price 831
103


ADVANCE TRANSISTORISED DC STABILISED POWER UNITS


SPEECH INVERTER M1-7181-AI The R.C.A. Bpeech Inverter in a device intended for use is radioThe equipmeat when whed in conjunction with the R.C.A. M1-7te2 Hybrid Transformers ensbles parslles two-wny con-
vermstions on a single telephone puir line at each terminal of the communications aystem. With lovernion, speech fed into the
tramamitting inverter circuit will feed the radio tranamitter with unintelligibios siguals. These niguale will remain unatilligible untll of the communication channel. (Uned only under licence in U.K. , A.A.) £12.10.0
 esirabie to operate the outpot of a receiving circuit and the input of a tranumitting circuit froma a a propelly conneoted and balunced to the line, hlgh itte
icircult and the trabsritier input circuit. $\mathbf{\Sigma 1 0 . 1 0 . 0}$


## IITAL MAGNETIC DATA

 ORAGEDECKren track record replay heads lead delemly for use sa iudto ateren. ti-track reconding units or dsta ntorage.
ord and Playback Heads encamed in common unit. This unique closespacilig operstor to monitor Hend will elumbe 3 minimum. Head Rerinhance to ohso e.p.n.- $30 \mathrm{Kk} \mathrm{K} / \mathrm{sec}$ with Respoonne spprox. he/s. Deck driven by one synchironous rind motors. Wou and futter-detect it revip mechanism. Bpeed s7। i.p. nec. oved Capstany Head can be eanily rereaponding to any speed can be fitted.) od and are brought out to separste F deck function or auxiliary equipment. Pinlahed in bruah-alumbilum and natt-black. Bize: $27 \times 26 \times 8 \mathrm{in}$ eight ven Track record replay head, exconuputer, complete with golides, little uned. £12.10.0. -MPEX FR300 Tape Deck in free atunding Git. cabinet lees heads, e99.10.0 omputatlons of monall complex or repetitly
alculatiog problems. Little ured. $£ 495.0 .0$


## $\star$ BRAND NEW LABORATORY TEST EQUIPMENT

 PURCHASED DIRECT FROM LEADING MANUFACTURERS \& DISTRIBUTORS

Specification, Range: $\quad 0.00002 \mathrm{uF-1up}$ in
0.00002 F atepa. Accuracy $0.05 \%$. Freyuency 0.00002uF atepa. Accuract $0.0 .5 \%$. Freyuency
Range: to c/a-10 Ku/s for sil decade except
 Lot price 260. Our price e28:10/-
MUTUAL INDUCTANCE COIL

A specisl price of $£ 35$ is olfered if the High Value Retiatance Boz, Decade Capacliape Box, Mutual Inductapee Boz. Matadl Iofuctance
Coil.


Ranges: 0-60 * $\begin{gathered}\text { specification. } \\ 0.300 \mathrm{~m}\end{gathered}$ 1. 0.05 to 5 ohms. 2.0 .5 to 50 ohmar. 3.5 to 500 ohins. 4. 50 to 5,000 olims. 5.500 to 50,000 ohms. Scales: Switched. Slidewire: 0.5 to 50 . Gaivano-
meler Bcale: 10-0.10. Caie: Moulded plastic. $\begin{array}{ll}\text { Interial Source: } 4 \mathrm{~V} \text {. Dry lasterg. Operating } \\ \text { Temperature: }+10 \text { to }+35 \text { dea } \mathrm{C} & \text { Operating }\end{array}$ Temperature: +10 to +35 deg. C. Opernting


SET OF MEASURING INSTRUMENTS


Apecification Type: Moving Coil D.C. Rangee:
$0.75 \mathrm{mV}, 0.3 \mathrm{~V}, 3-15-150 \mathrm{~V}, 3-150-450 \mathrm{~V}, 0.3-0.75 \mathrm{~A}$
 $1.0 \%$. Shunta: $1.0 .3-0.75$ smpa. 2. 1.5.7.5 nmpm.
3.150 ampa. Case; Moulded plantic. Cartylug Cose: Stove etumelled metal.
List price 230 . Our price $£ 12 / 19 / 6$.

## 4

 rolls, gears. Isik s, pipette, sosie temph
case. Lift price $\$ 6.5$. Our price $£ 35$.

## NEW 48" FOLOING MACHINES SHEET METAL bench model by parker



Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.


Carriage Free
WW-139 FOR FURTHER DETALLS

## INVERTERS

## M.O.S.T. INTEGRATED CIRCUIT D.C. LOGIC <br> Ideal for EDUCATIONAL PURPOSES INDUSTRIAL LOGIC - LOGIC EXPERIMENTS

Each unit consists of two separate 3 -input NOR gates in a 10 -iead TO- 5 can, and is new and guaranceed.
Specification: Supply, -24 $\pm 1 \mathrm{~V}$; logic levels, 0 to - 3 V and - 12 to -24V; power dissipation, approx. 20 mW per gate when on; noise immunity, typically 2 V with $\frac{1}{2} \mathrm{~V}$ guaranteed; speed, up to 200 KHz depending on load conditions.
Prices per circuit: $1-3,15 /-; 4-9,13 / 6 ; 10-24,12 /-; 25-99,11 /-; 100$ and over, 10/-. Terms, cash with order.
Guarantee: The circuits are guaranteed against a data sheet for one year
ACACIA HOUSE ELECTRICAL LTD., I Shortiands Close, Helmdon, Brackley, Northants.

## a unique and indispensable guide to prominent people in the electrical industry 1968-1969 electrical <br> 

Recognised as the standard guide co leading men and women in the electrical and electronics industries, the ELECTRICAL WHO'S WHO now contains some 8,500 biographies. Over 1,000 new names are included so that, taking into account those who have died or who have left the industries, the number invitasion and no charge is made for eneries.
To add to the value of the directory we have again produced an index to the personnel of companies, boards, associations, etc., compiled from lists provided by the organisations themselves.
9" x 6" 567 pp 65s. net 69s. 6d. by post Published for ELECTRICAL REVIEW by
ILIFFE BOOKS LTD 42 Russell Square, London, wC1

Multi Purpone Neon Test Onit. Robust, useful and hatructive, tents innulation, capacity, continuity, resletor, yoiurne concomprises meon indicator, 4-way wafer switch, ebonite tubes. resilitors-condensers, terminais etc., with diagram, Tuning Condenser, solid di-electric .000srafd. varisble A.E.I. Fractional Z.P. Motor. $200 / 250$ v. $50 / 60$ e.p.s. oclosed. continuous rating $1 / 40$ h.p.e ex cquip. perfect Experimenting with ultra violet? Phulipe U.V. lamp, 16/6 oider and control gear 19/6.
G.E.C. Black Lisht Tube for experiments and specina lighting control gear, 10/6, plus $4 / 6$ pont. $14 / 6$ each; holdera and Clock Motor. 230 甲. 50 c.p.e. sybchronous-self starting, $8 / 6$ Pentode Ontput Transformer, Btandard aize, $40-1$, ex quiptnent but OK, $4 / 3$ ench, $48 /-\mathrm{doz}$. Poat paid.
E.B.T. Condenses. $0-1$ mifd. $5 \mathrm{kV}, 8 / 6$
Kion mains Terter, $1 / 3$ pach, $12 /-$ doz.

Fiood Lamy Control. Our dim and full awitch is |deal for controlling photo thod lampa; it given two lampa to neries. Wher appo full brilliunce and lamps off. Similar control of circuit can be split exachy in hats. Technically the switch is known as a donble-pole change over with off. Our price $\mathbb{1 / 6}$. Sub-Miniature Silicon Dlodes. General purpose type with old-plated lewils, $1 /-$ each or $7 / 8$ per dozen.
ach, we offer 4 inpes for 12/6. White Circular Flex. Ideal for ilghting dropa twin made by Edrewine Control. Morayite, coil Edrewise Control. Morganite, as atted many tramalator
radios, 2 K or 5 K whh awitch. $2 / 8$ each or $84 /-$ per dozen. $12 \nabla$. Inverter. Full tranalstorised for operating a $20-$ wat fluorencent tube, size 6 in . long $\times 11 \times 1 \mathrm{i} . \mathbf{2 3 . 1 0 . 0 \text { . Post }}$ Silicon Rectifer
ilicon Rectifer, Equiv. BY100 $75 \mathrm{~mA} 400 \mathrm{w}, 10$ for $20 /-$ Miniature Pickup for 7 nn . records made by Cosmocole, Headphones. Ex-WD unused and perfect, low rematance Slagle with headbund $4 / 6$. Double with headband $8 / 6$. Midget Neons for mains indicntorn, etc., $1 / 3$ each or $12 /$
Compression Trimmers. Twin $100 \mathrm{pF}, 1 /$ each ; $9 /-$ per dozen 3in. PM Loudspeaker. 3 ohm. 12/6: 80 ohm. 13/8.
Rotary Cam Operated $S$ witch. 12 pomitions each of which
lose separate palr of contacts except the lant which leave thema all open. Contacta rated ut 250 v . 16 arops. $15 /-$ each Rotary Cam Oparated 8 witch. 4 ponttions: 1at posithing all
 16 amps. $8 / 6$ each.
Pocket Test Meter, mearures AC volte ( 3 ranges), DC volts $(3$ raiges). ohms, millit amps. ideal to carry around. Com
piete with iturtruct Breast Miorophone. Fine American-insde dyamic type,
adjustable ou breant plate with neck itraps, $7 / 6$, post $4 / 6$. Circolar Pimorescent 22 wutt yio diam tube complewith circular Fluorescent. 22 watt, yin. diam. tube complete with Midret Relay twin 250 ohm colts, size approx. $1 / \mathrm{ln}$.
1 in. $x$ Ita. 4 pulrs changeover contacts, $7 / 6$ each.
Printed Circuit Board, Edre Connector, solder terminations. 32 contacts, standard apacing for veroboard, etc. 6 in . long but enstly cut, $7 / 18$ each, $80 /$ - doz, 12/- doz.


Electric clock with 20 amp switch Male by smalthin these unith are an fitted to many top quality cookers to control the oven. The clock is minins driven and
frequency controlled so it in extremely accurate. The two small dials enable switch on and or times to be nceurately set--mino on the left is another time or alarm-this may be set in minutes ap to 1 hour. At the end of the period a bell will sound. Ortered


Will dim Incandencent lighting up to 600 watt from full brilliance to out Itted on M. K. Aush plate, same size and fixlng an atandsrd wall swthk on may be fitted in place of this, or mount
platic box with control knot $£ 3.19 .6$.

MAINS TRANSISTOR POWER PACK
Denigned woperate tranaistor nets and amplifiers. Adjustworking). Taken the place of any of the following batterie PP1, PP3, PP4, PPG, PP, PPO, and othe fa. Kh comprise: maine trannormer rectiter, stioothing and load reaistor, plus $3 / 6$ postage.

nPP3 ELIminator. Play your pocket radio from the mainsl ssve 2 sc . Complete component kit comprises ${ }^{4}$ rectifiers-maing dropper tiona, only' $8 / 6$ plus $1 /$ - post.

## MINIATURE WAFER SWITCHES

## datieth 4 pole, 2 way- 3 pole, 3 way- 4 pole, 3 way

 -2 pole, 4 way-3 pole, 4 way-2 pole 6 wry-1 pole, 12 way. All at $3 / 6$ each, $36 /-$ dozen, your assortinent.

Soil Warming Element
30 yd . heav, P.V.C. covering 12/6

## SPRING COIL LEADS <br> ar fited to telophones. 4 core

50 ohm 50 watt Wire-Wound Pot-metors, 8/8 each. Mer Minalure, Potameter Morkanite standatd Itho spindle 1 Mez minieture. Pot-meter Morganite preset ecrewdriver control. 9d, each: 8/-per dozen. Pre-Set 100 K by Welwy wieh intitical bakelite knob, 1/each: $9 /-$ per dozen, 100 I Potature type with double pole switch and mtanasad Iin. sptadle, by Morganite, 2/0 ench; 18/- per Battery Motor 1 hin . long. 7 in . dia.. operatee from 3 v. upwards. reversble, opeed variable by changing vorage or resistance, $4 / 6$ each; $50 /-$ dozet.
Thermal Relay. Can be used to delay the supply of HT while heaters warm up, of will eriable 15A homd to be controle price $7 / 8$ each. ${ }^{2}$. Siemens High Speed Relay. Twin 1,000 ohm colls. Platidum Toggle Swisch Bargain. 10 A 250 v , normal one hole fitting, 2/8 each; or $30 /$ - per dozen.
Eleetilo Lock. 24 v. coll, but rewinduble to other voltages, Eloetrio Lo
$4 / 8$ each.

[^6]PRECISION IMPEDANCE BRIDGES
Marconi TF868/1 good used condition.... $£ 65$ Marconi TF2700 as new
Mareoni TF373D reconditioned.
ned.........

Bradiey Model 131 litele used.
....... 135 B.P.L. Model UB202 good used condition. . 445 The above instruments are in guaranteed serviseable condition.

## SPECIAL OFFER AVO LTD.

 TRANSISTOR ANALYSER MODEL TAThese extremely versatile instruments are offered in first class and serviceable condition incorporates all facilities for transistor testing. List price $£ 115$.......... only $£ 40$

## HIGH QUALITY RF SIGNAL GENERATORS

Marconi $801 / \mathrm{D}$ Range $10-470 \mathrm{me} / \mathrm{s}$ this model is in as new condition and guaranteed for three months............................ $\leqslant 150$ Marconi TFI066A/2 FM/AM $10-470 \mathrm{mc} / \mathrm{s}$. as new condition guaranteed three months $\leqslant 225$ Rhode \& Schwarz Model SDR-41022 300-1,000 $\mathrm{mc} / \mathrm{s}$ little used condition............... $\mathbf{~} 125$
Advance B4A2 $100 \mathrm{kc} / \mathrm{s}-70 \mathrm{mc} / \mathrm{s}$ as new. . $£ 18$
Advance Q1 $7.5-250 \mathrm{mc} / \mathrm{s}$
Advance EI $100 \mathrm{Kc} / \mathrm{s}-60 \mathrm{mc} / \mathrm{s}$............cis 6 General Radio U.S.A. 605B $500 \mathrm{kc} / \mathrm{s} 30$ $\mathrm{me} / \mathrm{s}$.
.635
General Radio 8048 7-330 Mc/s
. 622
AVO Lid. CT378 2.225 Mc/s as new. . . . . $£ 40$ All the above generators have internal mains power supply units.

LEVELL TRANSISTOR AND MULTI. TESTER MODEL TM. 1
Small portable battery powered instrument in first class condition. Price only. . ....... $£ 12$

AUDIO FREQUENCY GENERATORS Levell Transistor Oscillator RC Type TG 150......................................... $\mathbf{f 1 6 / 1 0 / 0}$ MarconiTFI95L $0.40 \mathrm{ke} / \mathrm{s}$ sine wave ...... f 15 BSR LO50A $2 \mathrm{c} / \mathrm{s}-16 \mathrm{Kc} / \mathrm{s}$ sine wave .... $£ 12$ Advance HI O-50 kc/s sine square. . . . . . $\mathbf{4} \mathbf{2 5}$ Advance HIB 0-50 kc/s sine square . . . . . $£ 22$ Cintel Model 1873 Square wave and pulse generator $0-250 \mathrm{ke} / \mathrm{s}$.

## REFLECTOMETERS BY ATE

This equipment consists of reflectometer suitable for VSWR measurements at frequencies from 5 to $500 \mathrm{Mc} / \mathrm{s}$ and as a power output meter incorporating a non inductive dummy load for RF measurements up to 200 watts impedance 50 ohms all stages are interconnected by " $N$ " type connectors these units are mounted on a 19 inch rack fully equipped and no extra fixings are necessary, offered at a fraction of original cost, brand new boxed. Price only.

## COMMUNICATIONS RECEIVERS

Redifon R50 $13.5 \mathrm{Ke} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$
Hammerlund SP600 $550 \mathrm{kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{s}$. CRI50/2 10-60 Mc/s.
Murphy B40 $640 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Marconi Electra $260 \mathrm{Kc} / \mathrm{s}, 25 \mathrm{Mc} / \mathrm{s}$. Hallicraters $\$ \times 28550 \mathrm{Kc} / \mathrm{s}, 42 \mathrm{Mc} / \mathrm{s}$. All receivers in first class condition.

## AUDIO GENERATORS

Listed below are a selection of first class instruments at much reduced prices.

Advance HIB, sine square wave. Range up to $50 \mathrm{Kc} / \mathrm{s}$. As new. Price . . . $£ 22 / 10 / 0$.

Advance HI . Sine square $5 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$.
Price .................................... $\mathbf{4 5}$
$\mathrm{H} \& \mathrm{H}$. Sine square range $1.5 \mathrm{c} / \mathrm{s}$ to 150 $\mathrm{Kc} / \mathrm{s}$, fully transistorised as new. Our price ...................................... $\& 40$

Hewlett Packard (Sine Wave). Range $190 \mathrm{c} / \mathrm{s}$ to $64 \mathrm{Kc} / \mathrm{s}$. Brand new.... 645 Muirhead 695A Decade Osc'. Muirhead 638A Decade Osc. Both excellen condition. Price each. ............... 655

Levell Transistor RC OSC' eype TG 150 Range $1.5 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{Ke} / \mathrm{s}$. Our price. 617/10/0
B.S.R. LO50A. Range $2 \mathrm{c} / \mathrm{s}$, $16 \mathrm{Kc} / \mathrm{s}$.

Price . . . . . .............................. 15
Marconi TF195L 0-40 Ke/s outputmeter, etc. Price

615
TS $382 \mathrm{~F} / \mathrm{U}$ (U.S.A.) Range $0-200 \mathrm{Kc} / \mathrm{s}$.
with calibrator, etc. New. Price . . . . . $<45$

## SQUARE WAVE GENERATOR

Range $100 \mathrm{Kc} / \mathrm{s}-1 \mathrm{mc} / \mathrm{s}$ (uncalibrated).


Cincel 1873 square wave and pulse generator. Range $0-250 \mathrm{Kc} / \mathrm{s} . . . . . . . \notin 35$

## DIGITAL VOLTMETERS

Hewlett Packard type 405CR cost 6375 Our price ............................ $\mathbf{1 2 5}$

Weir Electronics Type DV500 Mk2, as new list $£ 115$. Our price ............. 655

Gloster BIE 2113. See previous W/W Cost price $\mathbf{\text { f198. Measures A.C., D.C. }}$ volts . ................................... $£ 90$

DIGITAL FREQUENCY METERS
Racal model SA520, this current series DVM is portable, lighe and accurate. List $\mathbf{6 9 9}$. Our price as new . . . . . . . . . $£ 60$

DIGITAL FREQUENCY METER
$0-100 \mathrm{Ke} / \mathrm{s}$. Beckman (U.S.A.).
Racal ModeISA520 portable transistorised. Range $0-500 \mathrm{Kc} / \mathrm{s}$. As new List $£ 98$. Our Price

## ADVANCE MODEL TC2A COUNTERTIMER

Range $0-1 \mathrm{mc} / \mathrm{s}$. Time greater than 3 micro secs. to approx 28 hrs. this instrument is in first class, little used condition. Portable, fully transistorised. Price with manual
List over $£ 240$.

| PORTABLE MULTIRANGE METER CATALOGUE NO.: R. 7020 |  |
| :---: | :---: |
| SPECIFICATION |  |
| Type: Magnetoelectric. |  |
|  | Ranges: 0.60 \& 0.300 UA, D.C. $0.3,0.30 \& 0.120$ |
|  | mA, D.C. 1.2 \& 12 amps D.C. $0.6-3 \& 6-30 \mathrm{~mA}$, |
|  | A.C. $24-120 \mathrm{~mA}$, A.C. $0.24-1.2$ A, A.C. 3 -12-30- |
|  | $300-600$ 1,200 \& 6,000 V, D.C. 0.6-3; 2.4-12; 6-30; 60-300; 120-600; 240-1.200 \& 1,200-6,000 |
|  | V.A.C. 3-333 ohms; $0.3-30 \mathrm{~K}$ ohms 0.03-3 megohms |
|  | D.C. Resistance -12 to +78 Decibels. Frequency: |
|  | 50 c.p.s. Input Resistance D.C.: $\mathbf{2 0 , 0 0 0 ~ o h m s / v o l e . ~}$ |
|  | Input Resistance A.C.: $\mathbf{2 , 0 0 0} \mathrm{ohms} /$ vole. Temperature Range: -10 to $+50^{\circ} \mathrm{C}$. Dimensions: |
|  | $255 \times 215 \times 170 \mathrm{~mm}$. Weight: 8 kg . Supplied |
|  | with: 2 voleage dividers, H.V. leads, spare |
|  | rectifiers, 1.5 \& 22.5 V battery. Only $£ 12 / 19 / 6$ |

## CINEMA ENGINEERING ROTARY STUD SWITCHES

I pole, 40 way, 3 banks............. 20/-
4 pole, 3 way BB \& M, 3 bank ........ . 30/-
I pole, 33 way, 2 bank...
2 pole, 5 way, 2 bank.
2 pole, $3 W$ BBM 2 bank
I pole, 7W. BBM, I bank .......... . 25/-
2 pole, 5W. BBM, I bank ........... 25/-
All the above are new with heavy duty Ratings. P.P.2/6.

## DALE PRODUCTS INC. HEAT SINK RESISTORS

These Resistors are non inductive and make excellent dummy loads. 15 ohms, 250 watts. 800 ohms, 250 watts.
200 ohms, 75 watts.


This fully transistorised unit is variable between 3-30 Voles D.C. with a maximum load of 2 amps. Supplied brand new at only $\mathbf{6 2 2} / \mathbf{1 0} / \mathbf{0}$, carriage 20/. List price f 73.

O-I amp. AEI TRANSISTORISED STABILISED P.S.U. R24I4
3.53 Volts, fully variable by coarse and fine controls. These P.S.U. are continuously rated. The D.C. output is completely isolated from earth. A voltmeter and ampmeter are provided on front panel. Offered brand new at $\mathbf{£ 2 2} / \mathbf{1 0 / 0}$. P.P. 20/-

## $0-600$ V 0-500 MA

A.E.I. STABILISED P.S.U. R2130

Outputs D.C. 0-600 V. Adjustable in one continuous range + Unstabilised D.C. Voltage of $\mathrm{Vo}+120$ to $\mathrm{VO}+220$ Volts + two independent 6.3 V. A.C., centre tapped outputs 5 amp. each. Brand new boxed

DIRECT CURRENT AMPLIFIER
Contalns "Brown Convertor", for continuous balance system and associated eircuit. Complete less valves (5) Brand new . . . . . . . . . . . . . . . . . . . . 50/- P.P. 4/6

OSCILLOSCOPES
AVAILABLE THIS MONTH
Tektronix 541 B . With eype "L" plug in mint condtion. Fully demonstration. Guarantee 3 months, half manufacturers list price.
Solartron CD711S/2.............. 685 Solartron CD643/2 ................ $£ 125$ Solartron CD316 .................. 625 Solartron CD 523 ................. . $£ 50$

BURNDEPT RF PLUGS
These difficule to obrain plugs suitable for the Londex aerial c/o relay and many other types of equipment are offered. New, ex. equipment at $4 / 6$ each. P.P. 6d.

COSSOR 1049 Mk 3 DB.
D.C. coupled, a few available in first class condition. Complete, less graticule . . 635

COSSOR, PORTABLE 1052
Double beam general purpose. Scope ideal TV and radio service ................ 635

BRADLEY 148A
General purpose miniature scope. Battery or mains. Fully transistorised band width D.C. $6 \mathrm{mc} / \mathrm{s}$. Price . . . . . . . . . . . . . . . $£ 55$

TELEQUIPMENT SERVICE SCOPE TPYPE S3I. DC-8 Mc/s. List price $\mathbb{C 7 8}$. Our price. Excellent condition........... $£ 35$ We have many types in stock from ¢ $12 / 10 / 0$, the above scopes are in futly serviceable condition. We also repair and overhaul and recalibrate any type of scope. Write or phone for quotation.

HARTLEY TYPE 13A DB We stlll have some available. Band width $2 \mathrm{c} / \mathrm{s}-5.5 \mathrm{Mc} / \mathrm{s}$, fully overhauled, the best buy in scopes for TV and radio service. Complete with all leads, etc. Price E22/10/0 With circuit diagram and instructions.

EDDYSTONE DIE CAST BOXES Contains sensitive amplifier originally intended for amplification of P.E. Cells C/W input socket, fuse, signal lamp. P.S.U. (Mains) Amplifier, fully transistorised. Brand new........32/6 P.P. 2/6

## AMATRONIX LTD (WW)

ALL GOODS NEW, TOP GRADE GUARANTEED TO SPEC. NO SECONDS ADI61/2c.p. 12/8|BF225

 HIGH SLOPE R.C.A. MOSFETS
Best buys in FETs. N-chan. insulated gate, deplection mode. Useful d.c. to v.h.f. riode $40468,7.5 \mathrm{~mA} / \mathrm{V}$

 or mixer. 17/-. (Like Mullard BFS28). Low cross-mod
AMPLIFIER PACKAGES (Component Kits)
Low stand by current, high efficiency, simplicity.

A ${ }^{3} 39 \mathrm{~V}, 800 \mathrm{~mW}$ in a ohms, low distorsion, 22/5,
RECEIVER PACKAGE AX9
Complete componens kit (everything except case and know how well a simple e.r.f. Can work until you've buils chis one. Two r.f. stages, amplified a.g.c., all silicon circuitry. Tinned and drilled printed cet. board, wound errite rod, J.B. Dilemin tuning cap., earphone, brand the young constructor, easy to make but much more than a toy. MW only, adaptable to other bands (hints given). oud earphone reception, but a $3-8 \mathrm{ohm}$ speaker can also be used. Only 45/-. All parts sold separately
LOW-COST LINICS
AUDIO POWER AMPS: PA234, $1 \mathrm{~W}, 22 \mathrm{~V}, 22$ ohms, $24 /$ rans), $28 /=$ RF/IF AMPSt: CA 3011 , ampllimiter for 0 . $\begin{array}{ll}\text { TAB } & \text { I } 20,7 \mathrm{MHz}, 18 \% \text {. IMPEDANCE CONVERTER }\end{array}$

MINIATUAE POWER PACK COMPONENTS MT9 MAINS TRANS, $0.230-250 \mathrm{~V}, 9-0-9 \mathrm{~V}, 80 \mathrm{~mA}$, size It" sq., with data sheet giving regulazion curves for pushpull bridge and volzage doubler rectifiers, $11 /$ TINY
SELENIUM BRIDGE (finger-nail sized) rated 30 V rms. 150 mA d.c., $3 / 6$. Larger brother, $1^{*} \times 10^{*} \times{ }^{t^{*}}$
 TRANSFILTERS (BRUSH CLEVITE) Piezoelectric ceramic filters for i.f., amplifiers. Interstage
couplers, T0-02 sype. $9 \%$ Series cuned, for emityer by-pass, etc., TF-01, $7 / 6.465 \& 470 \mathrm{kHz}$.

396 SELSDON ROAD, SOUTH CROYDON SURREY, CR2 ODE

BAILEY 30W AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also smaller at $4 \frac{1}{i n}$. by $2 \frac{1}{l} \mathrm{in}$. Price in SRBP material $11 / 6 \mathrm{~d}$. In Fibreglass $14 / 6 d$. Original Radford design. SRBP $12 /-$. Fibreglass $16 /$. This does not have componen locations marked.

BAILEY 20W AMPLIFIER.
All parts in stock for this Amplifier including specially aesigned Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo with bifilar wound secondary and special 218 V primary for use with CZ6 Thermistor, $35 / 6 \mathrm{~d}$., post 5i-.
Trifilar wound Driver Transformer, 22/6d., post 1/Miniature Choke for treble filter. $10 / 6 \mathrm{~d}$., post 6 d. P.C. Board Pre-Amp 15/-, post 9d. Power Amp. 12/6d., post 9d.
Reprint of "Wireless World " articles, 5/6d. post free

DINSDALE IOW AMPLIFIER
All parts still available for this design including our new power amp. P.C. Board with power transistors nd heat sinks mounted directly to P.C. All parts eprint of articles 5/6d post fre

PLEASE SEND S.A.E. FOR ALL LISTS.
HART ELECTRONICS,
32I Great Western St., Manchester 14
The firm for "quality".

Personal callers welcome, but please note we are closed all day Saturday.

## Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelverite and finished in Plastic-coated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.
Now all Aluminium surfaces are coated with a stripable plastic for protection during manufacture and
transit. All edges are polished.
LIST OF PRICES AND SIZES
which are made to fit Standard Alloy Chassis Width Depth Height $4^{*}$ Height $6^{\circ}$ Height $7{ }^{*}$

| Wideh | Depth | $\begin{gathered} \text { Heigh } \\ \in \text { s. } \end{gathered}$ | $4$ | Heigh Es. |  | Height |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64" | $3{ }^{*}$ | 12 | 6 | 15 |  | 18 | 0 |
| $64^{\prime \prime}$ | 4\%" | 13 | 6 | 18 | 0 | 10 | 0 |
| 8." | $37^{\circ}$ | 15 | 0 | 10 | 0 | 11 | 0 |
| $8{ }^{\text {" }}$ | $63^{\circ}$ | 11 | 0 | 16 | 6 | 111 | 3 |
| $10{ }^{\prime \prime}$ | $7{ }^{\text {\% }}$ | 18 | 6 | 115 | 6 | 118 | 9 |
| $12{ }^{\circ}$ | 3 | 11 | 0 | 16 | 6 | 111 | 0 |
| 12*** | $50^{\circ}$ | 18 | 0 | 114 | 0 | 117 | 6 |
| $12{ }^{\prime \prime}$ | $8{ }^{\circ}$ | 116 | 0 | 23 | 0 | 27 | 3 |
| 14** | $3{ }^{\prime \prime}$ | 15 | 0 | 111 | 6 | 114 | 0 |
| $14{ }^{1}$ | $9{ }^{\text {2 }}$ | 23 | 0 | 215 | 9 | 218 | 6 |
| $16{ }^{\circ}$ | $6{ }^{\circ}$ | 118 | 6 | 26 | 3 | 211 | 6 |
| 16" | 10\% | 210 | 0 | 35 | 0 | 311 | 9 |

CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases All $21^{\circ}$ Walls

|  |  |  |  | 3. | d. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6^{\prime \prime} \times 3^{\prime \prime}$ |  | 6 | $10^{\prime \prime} \times 7^{\prime \prime}$ | 8 | 6 | $14^{\prime \prime} \times 3^{\prime \prime}$ | 7 |
| $6^{*} \times 4$ " | 5 | 9 | $12^{\prime \prime} \times 3^{\prime \prime}$ | 6 | 9 | $14^{*} \times 9^{*}$ | 14 |
| $8^{\prime \prime} \times{ }^{\prime \prime}$ | 6 | 6 | $12^{\prime \prime} \times 5^{\prime \prime}$ | 7 | 6 | $16^{*} \times 6^{\prime \prime}$ | 10 |
| $8{ }^{\prime \prime} \times 6^{\prime \prime}$ | $\checkmark$ | 9 | $12^{\prime \prime} \times 8^{\prime \prime}$ | 10 | 9 | $16^{\prime \prime} \times 10^{-1}$ | 16 |

Pose 3s. Od. per Order.
Discounts available on quantities.

## E. R. NICHOLLS <br> MANUFACTURER OF ELECTRONIC INSTRUMENT CASES

 Depl. W.W., 46 LOWFIELD ROAD, STOCKPORT CHESHIRETel.: 061-480 2179

## New from /LIFFE

# WORKED EXAMPLESIN ELECTRONICS AND TELECOMUNICATIONS 

-Problems in Telecommunications<br>Vol. 3

B. HOLDSWORTH, B.Sc., C.Eng., M.I.E.E., M.Sc. and Z. E. JAWORSKI, Dip.Eng., D.I.C., C.Eng., M.I.E.E., M.I.E.R.E.

This, the third of four volumes, has been written to meet the needs of students preparing for the B.Sc. Final examination in Telecommunications, for Part III of the I.E.E. Line and Radio Course, and for the C.E.I. Part II examination in Communications Engineering. Each chapter deals with one main topic and contains a selection of representative examples which enable the reader to acquire a thorough grasp of the principles involved.

278pp. 162 illustrations
25s. net 26 s . 2 d . by post.

## PRINCIPLES OF PAL COLOUR TELEVISION

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting). 154pp. 59 illustrations.
35 s . net case 36 s . 2 d . by post
21 s . net student edition 22s. 2d. by post.

|  |  |
| :---: | :---: |
|  | AMPLIFIER $\qquad$ excrilent quatiry and pleasing design at a price yo can attond $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ <br>  <br> LASKYY PRICE $\square$ £29.0.0 SPECIAL OFFER $\qquad$ Moving Magnet Cartridse. <br> LASKY'S P:IICE £21 <br> High Fidelity Audo Centres <br> 42-45 TOTENHAM CT. RD., LONDON, M. 1 Tel.: 01-580 2573 Open all day, 9 a.m.-6 p.m. Monday to Saturday <br> 118 EDGWARE ROAD, LONDON, W. 2 <br> Tel.: 01-723 9789 Open all day Saturdey, early closing 1 p.m. Thursday <br> ELL ST., TOWER HAMLETS, LONDOK E. 1 TEl.: 01-790 4821 |
| THREE NEW METERS BY |  |
|  |  |
| Model PL-436 <br> 20.000 O.P.V. Multitesier for 1 se amateur or protessional. Features marror curtent: 50, O ohms end scale $665,650.6 .5$ ( and 65 K ehens cente scale). Oecibuts $53 \times 43 \times 2$ in |  |
|  |  |
| Model 5025 <br> 50.000 O.P.V. Murtitastel suntatle for all protessional and educa <br>  at $50 \times 0 . P \mathrm{PV}$. ACN renges: 1.5 V to 1000 V in 10 tanges 11.5 to ohms Detibels: -20 to +815 dB in 10 ranges Operates on |  |
| L13.10.0 |  |
| 100,000 O.P.V. LAB" Model |  |
|  |  |
| LASKY'S PRICE f19.10.0 |  |
| TTC $\begin{aligned} & \text { Model } \\ & \text { C-1051 }\end{aligned}$ |  |
|  |  |
| 1 i |  |
| It ine |  |
|  |  |
|  |  |
| Branches |  |
| 207 EDGWARE ROAD, LONDON. W. 2 Tel.: 01-723 3271 |  |
| 33 TOTEENHAM CT. RD., LONDON, W. 1 Tel.: 01-636 2605 |  |
| Open all day, 9 am. -6 p.m.m. Monday to Saturday $152 / 3$ FLEET STREET, LONDON, E.C. 4 |  |
|  |  |
| ALL MAIL ORDERS AND CORRESPONDENCE T0: 3-15 CAVELL ST., TOWER HAMLETS, LONDOL E. 1 Tel.: 01-790 4821 |  |

FEBRUARY<br>FET PRINCIPLES, EXPERIMENTS AND PROJECTS by Edward M. Noll 49 EASY

TRANSISTOR PROJECTS by Robert M. Brown and Tom Kneitel PHOTOFACT TELEVISION COURSE 40/- net by the Howard W. Sams Engineering Staff
SERVICING
DIGITAL DEVICES 26/- net by Jim Kyle

## MARCH

understanding
ELECTRONICS
UNITS AND
STANDARDS
by Farl J. Waters
USING SCOPES IN
TRANSISTOR CIRCUITS
by Robert G. Middleton transistor tV TRAINING COURSE 35/- net by Robert G. Middleton INDUSTRIAL TRANSISTOR CIRCUITS by Allan Lytel

## APRIL

101 QUESTIONS \& ANSWERS ABOUT colour tv

$$
15 /- \text { net }
$$

by Leo G. Sands HAVING FUN IN
ELECTRONICS

## by Leo G. Sands

101 EASY AUDIO
PROJECTS
by Robert M. Brown and Tom Kneitel
PRACTICAL
DESIGN WITH
TRANSISTORS
by M. Horowitz


TRANSISTOR STEREO $8+8 \mathrm{Mk}$. II Now using silicon Trangistors in Arst five stages on each ehannet




 attractive tront panel knobe wire, solder, nuth, bother no
extras wo buy. Slmple step by step intructlons enable any extran to buy. Simple atep by otep inder, netlons enabie any
constructor to build an ampllier to be proud of. Brief Speci-
 teedhack 18 dB . over main mp. Power requirements 25 v . at
.6 mmp
 Cirruit dhatam, construction details and parte list (free with
kit) $1 / 6(8 . \mathrm{A} . \mathrm{E}$.).

E.M.I. H-SGE PURCHASE!

Heary 8 in. metal turntable. Low
futhei perlormance futher performance $200 / 250 \mathrm{w}$. shaled
motor 90 F . tap). Complete with
 And mono carriage mith io
LIMITED NUMBER ONLY $63 /-$.


LATEST GARRARD MODELS. All typer avallable 1000
3000 , AT60 etc. Send S.A.E. Sor Latest Bargain Prices.
QUALITY RECORD PLAYER AMPLIFIER MK. II A top-quality record player mmplifer employing heary duty
double wound mains tranaformer. ECC33. ELs4, EZ80 valueal

 and speaker ready to at into cablnet below. PRICE $97 / 6$.


 A stylinhly fin lohed mon-
Aurai amplifier with an Aural amplifier with an
out put of 14 watts from
2 ELs 4 in purh.pull super reproductlon of both music and apeech,
with negligible hum. mith negligible hum.
Beparate inputs for mike and gram allow recorda and aunouncementh to follow each other. Fully
ahrouded rection wound output transformer to makch 3.150 apeaker

 and EZ80 rectuber. Simple instruction bookle' $1 / 6$ (Free with parto), All parts rold reparately. ONLY £7/8/8. P. "P P. 8/6. Alno arailable ready buitt and teated complete with itandard
input socketa. $\mathrm{E} / 5 / 5 / \mathrm{P}$. \& P. B/6. 4-SPEED RECORD PLAYER BARGAINS Maina models. All brand gow in maker's orikinal packing.
E.M.I. Model gay single Plajer with unit mounted pick-uD and


HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19
S.A.E. all enquiries. Open all day Saturday (Wednesday I p.m.)

PLEASE NOTE: P. \& P. CEARGES QUOTED AP OM OVERSEAS ORDERS charaed extra.



Batters Powered Portable Reslatance Bridge．Range 0.5 to
50 ohma with multiplier gettinga of $0.1-1-100.1000$ providing


TRIACS TYPE 40432
Gated bi－directional silicon Thyristora with integral trigger． The trime will control up to 1440 watts at 240 V maing frev
quency．Supplied complete with heat aink，data aheet and quency，suppled complete with heat sink，dimmen circults 37／6 each．

```
UNIJUNCTION TRANSISTORS 2N2646
```

UNIJUNCTION TRANSISTORS 2N2646
Mower disslpution 300mW R.M.S. Buav-to-Bane voltage 35V
Mower disslpution 300mW R.M.S. Buav-to-Bane voltage 35V
Mmx. Peak emliter,

```
Mmx. Peak emliter,
```

INTEGRATED CIRCUIT AMPLIFIERS R．C．A．TYPE CA 3020 TO． 5 encapsulated 12 lead Audio Amplifier equivalent to seven N－P－N Transistorn，three diodes and eleven
resistors．Maximum Power Out put 550 mW ．Bandwidth $6 \mathrm{mc} / \mathrm{s}$ ． Total harmonic distortion $1 \%$ senstitivity $3.5 \mathrm{~m} \mathbf{W}$ ．Max．peak aighal input $\pm 3 V$ ．MaI．Rigual curreat druin 47 mA ．Voltag requr Pur
GENERAL ELECTRIC TYPE PA222 Epoxy moulded four－in－line
 watt．Into 15 ohmb．No tran aformer required．Full signal current draln 155 mA from a 22 V a source．PRIC
Bupplied complete with application data．
OENERAL ELECTRIC TYPE PAR34－Epoxy moulded four－ln
 1－watt A．F．Amplifer and requires only three reaintofs and thre
 THYRISTORS

Blue apot； 200 ply 5 amps．Gate Voltage 3.25 V at 120 mA
igh enrrem
CR $80-021 \mathrm{~A} .80 \mathrm{Ampr} .25 \mathrm{piv}$
CR $100-201 \mathrm{~A}, 100$ Amps． 200 plF
 CR $100-301 \mathrm{~A}, 100$ Ampar 300 plV CR $100-351 \mathrm{~A}, 100 \mathrm{Amps}$ ． 350 plV
CE．100－501A． 100 Aipps． 300 plv

HIGH POWER STUD MOUNTED HIGH IS W ZENER DIODES
SERIES D815， 8 watts dissipation：4．7，5．6，6．8，8．2，10．0，12．0， 15.0 18．0V．
SERIES D816， 5 watto dissipation： $22,27,33,39,47,56,68,82$, A山l at $7 / 6$ each．Order for ten or more（mas be mixed） $6 / 8$ each．

MULTIMETERS TYPE 108－1T
 $2.5-10-50-250-800-2500 \mathrm{~V}$ ．A．C．Volts： $10-50-100-250-500 \cdot 2500 \mathrm{~V}$ ．
D．C．current $0.5-5-50-500 \mathrm{~mA}$ ．Resitance： $2,000-20,000$ ohms－2
 TYPE MFI6
D．C．Voltage range $0-0.5 \cdot 10-50-250-500 \mathrm{~V}$
A．C．Voltage range $0-10-50-250-500 \mathrm{~V}$
D．C．current ranges： $500 \mu A-1 \mathrm{M}-10 \mathrm{~mA} A$ ， capacty and output level meanurements．sendiluvity $2000 \Omega \mathrm{~V}$ ． Accuracy $\pm 2.3 \%_{0}$ for D．C．and $\pm 4 \%$ for A．C．

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $£$ FOR HANDLING AND POSTAGE．

NO C．O．D．ORDERS ACCEPTED ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP．


## Get across loud and clear with AKG microphones!



Find out more about AKG mikes from
AKK microphones 150 Regent Street London, W. 1

## CLASSIFIED <br> DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col. inch. <br> LINE advertisements (run-on): $7 / \cdot$ per line (approx. 7 words), minimum two lines. <br> Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$. SERIES DISCOUNT: $15 \%$ is allowed on orders for twelve monthly insertions provided a contract is placed in advance. <br> BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Sireet, London, S.E.I. <br> No responsibility accepted for errors.

ADVERTISEMENTS

# BBC <br> <br> ENGINEERING DIVISION <br> <br> ENGINEERING DIVISION <br> TRANSCRIPTION RECORDING UNIT 

TRANSFER ENGINEER (tape to disc)/TECHNICIAN (DISC CUTTING) required by BBC Transcription Recording Unit, Shepherds Bush, London, W.I2. Applicants must have previous experience in the operation of Neumann Disc Cutting Lathes or similar equipment in the cutting of lacquered discs for processing in both mono and stereo to the highest standards. A background of audio engineering would be an asset. Permanent pensionable post. Starting salary $£ 1,400$ to $£ 1,550$ depending upon relevant experience rising to $£ 1,775$ maximum. Applications should be addressed to Engineering Recruitment Officer, BBC, London WIA IAA, quoting reference 69.E. 2030 W.W.

## ELECTRONICS INSTRUCTOR

Due to our expanding interests in electronic calculating machines and small computers, we have a vacancy for an additional instructor to join our team based in Central London. After a comprehensive training period, he will assist in the progressive training of service engineers, both from the U.K. and overseas, on the digital techniques used in our equipment. He must also be prepared to carry out training courses abroad at a later date.

The successful applicant will not necessarily have had experience with electronic calculating machines, but he will have a sound knowledge of basic electronic principles and practical experience in electronics, radio, television, radar, or similar fields.

Previous experience as an instructor is not considered to be absolutely essential, but might well be an advantage. We are most anxious to find someone who has the ability and a real desire to teach fellow technicians.

Anyone interested in this vacancy is invited to send full details of his qualifications and relevant experience to Mr. D. D. Davies, Sumlock Comptometer Ltd., The Island, Uxbridge, Middlesex.

# V.H.F. TELEVISION RELAY \& COMMUNAL AERIAL SYSTEMS 

We are planning a considerable expansion of our activities and have the following vacancies:

## I. A SENIOR ENGINEER

to have control of all aspects of systems design, planning, estimating, installation and commissioning.

## II. ENGINEERS

capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:
BRITISH/RELAY
The General Manager,
Special Services Division, British Relay House, 41, Streatham High Road, S.W. 16

This Company is one of the largest simulator manufacturers in the world and exports over $50 \%$ of its products. The ever-increasing demand for sophisticated training aids to match the complexity of modern aircraft has given rise to vacancies for engineers.

## SENIOR DEVELOPMENT ENGINEERS

We are currently engaged on a develcpment programme to significantly advance the state of our Visual Systems which are used in conjunction with Flight Simulators to provide a necessary training tool to the World's Airlines. Physicists and development engineers are required for this interesting work which involves the latest optical and electronic techniques.
Successful candidates will be capable of original thought in depth and able to offer some experience in optical systems, scientific photography, television cameras or related subjects.
We will be happy to show you the factory on either 14 th or 15 th March, or to hold an interview in London. Or if these arrangements are inconvenient, you name the date; we want to meet you. (1969 holidays will be discussed at interview.) Applications, with details of experience, should be sent to:-

The Personnel Manager,
REDIFON AIR TRAINERS LIMITED,
Bicester Road, Aylesbury. Bucks.
Telephone: Aylesbury 4611

## UNIVERSITY OF SOUTHAMPTON

## Department of Electronics

An EXPERIMENTAL OFFICER experienced in digital techniques required to take charge of the day-to-day running of several research and teaching projects. A number of the projects are linked to a Honeywell 516 computer and familiarity with a computer or similar system is essential. Applicants should be graduates or hold associate membership of a relevant professional institution.
A TECHNICIAN or CONTRACT ASSISTANT is required for support work in the above field. Experience of a digital system is highly desirable for this post. Appropriate qualifications desirable.
A JUNIOR TECHNICIAN is required to work in the field of microelectronics. Some knowledge of chemistry or photography is desirable for this post, but full training will be given. 4 G.C.E. "O" levels required.
Salary Scale for Experimental Officers rises to $£ 1,830$ per annum plus F.S.S.U. Salary scale for Technicians or Contract Assistant $\{692-£ 1,195$ plus supplementation for approved qualifications. Salary scale for Junior Technicians $£ 352-£ 595$ according to age and qualifications.
Applications giving details of age, qualifications, experience and the names of two referees should be sent to the Deputy Secretary, The University, Southampton, SO9 5NH.

# ASSISTANT ENGINEERS <br> <br> Grade 1 <br> <br> Grade 1 (TELECOMMUNICATIONS) 

Required by EAST AFRICAN POSTS AND TELECOM MUNICATIONS CORPORATION to serve on contract for one tour of 24 months in the first instance. Commencing basic salary equivalent to $£ 1417$ p.a. rising to $£ 1620$ p.a. plus an allowance, normally tax free, of $£ 822-£ 886$ p.a. paid by British Government direct into officer's bank in U.K. Gratuity at rate of $25 \%$ total emolunients. Furnished accommodation. Generous paid leave. Overseas Installation Grant. Education allowances. Free passages. Contributory pension scheme available in certain circumstances.
Candidates, $28-40$, should possess a City and Guilds Intermediate Certificate (Telecomms) and in addition a pass in one of the following:- Telegraphy Grade 2, Radio Grade 2, Line Transmission Grade 2. Applications are invited in either of the following categories:-
Category 'H' (Carrier and Transmission)
Candidates should have a thorough knowledge of the installa-
ion, lining up and maintenance of 3 and 12 channel carrie. telephone systems, both valve and transistorised. A knowledge of voice frequency repeaters. VF telegraph systems and muliichannel VHF radio technique would be an advantage.
Category 'B' (Radio)
Cand idates should possess a thorough knowledge of installation and maintenance of HF and VHF radio equipment. A knowledge of carrier and telegraph equipment and microwave experience would be an advantage.
In addition all recruits will be expected to take a real interest in the field training of local staff "on the job"

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London S.W.1., for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K/680714/WF.

## B日G FILM

## RECORDISTS

BBC tv requires fully qualified and experienced technicians as Holiday Relief Film Recordists ( $£ 31.5 .0 \mathrm{~d}$. per week) and Assistant Film Recordists ( $£ 23.7 .0 \mathrm{~d}$. per week) for the summer months.
Initial appointment for two months. Possibility of extension for further four months.

Based in London.
Write, giving age and full particulars of relevant experience to :

General Manager, Film Operations and Services,

Television Film Studios, Ealing Green, London, W.5.

## SESMIC OBSERVERS

with analogue or digital field experience required for overseas service on land or sea, by

## GEOPHYSICAL SERVICE INTERNATIONAL

who offer a good salary and foreign bonus, ample leave on full pay and foreign bonus, medical insurance scheme, life insurance, profit sharing and a pension plan. Those interested please write to:

## The Personnel Manager

Geophysical Service International Ltd.
Canterbury House, Sydenham Rd.,
Croydon, Surrey
quoting ref. 12/68, or telephone 01-686 6511

## ELECTRONICS AUTHORS ARE <br> 

if they know something about radio transmitters, receivers, ancillaries or systems.
If you have been in the business anywhere from two to twenty years we've a place for you at our Communications Division, London, S.W. 18

For details of our red carpet treatment ring Ted Jackson, our top man in handbooks, at 01-874 7281 (he thinks he is ex-directory so try 01-399 1917 if it's more convenient out of office hours).

## REDIFON

[^7]
# Computer Engineering 

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / \mathrm{f} 1150$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

Plan your future with


## TH <br> CIVILSERVICE

## RADIO AND ELECTRONIC ENGINEERS <br> Board of Trade (Civil Aviation)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
Qualifications: Degree with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.

Age: 23 and normally under 35 on 31st December, 1969 (extension for Forces or Overseas Civil Service).
Salary (Inner London): On the scale $£ 1,212-£ 2,190$ depending on age and qualifications. Salary under review. Pensionable appointments. Good prospects of promotion.
Application Forms are obtainable by writing to the Secretary, Civil Service Commission, 23 Savile Row, London, W1X 2AA, or by telephoning 01-734 6010 Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone"'Service). Please quote $\mathbf{S} / 85 / \mathbf{A S O}$.

## CITY AND COUNTY OF BRISTOL

 BRISTOL TECHNICAL COLLEGEDEPARTMENT/ OF NAVIGATION marine radio and radar
Applications invited for following post, duties to commence Ist September, 1969.

## Ref. L.696/20/1 SENIOR LECTURER IN RADIO AND RADAR

Applicants must hold a First Class P.M.G. Certificate in Wireless Telegraphy, and the B.O.T. Radar Maintenance Certificate. Additional Qualifications, such as Aircraft Radio Engineers Licence ( $A \& B$ ) or H.N.D. in Electrical Engineering or Electronics, an advantage.
Salary Scale: Senior Lecturer $\mathbf{6 1 , 2 8 0 -} \mathbf{6 1 , 5 9 5}$ Further particulars and application forms (to be returned within fourteen days of this advertisement) from Registrar. Bristol Technical College. Ashley Down, Bristol B57 98U.
Please quote ref. no. L696/20/I in all communications

This Company is one of the largest simulator manufacturers in the world and exports over $50 \%$ of its products. The ever-increasing demand for sophisticated training aids to match the complexity of modern aircraft has given rise to vacancies for engineers.

> SOFTWARE DEVELOPMENT ENGINEERS
B.Sc., H.N.C. or equivalent in Electrical/Aeronautical Engineering. Physics or Maths. Prog-amming experience is essential.
The men we need are required to assist in the develop. ment of various software packages for the latest generation of Honerwell and S.D.S. computers which are used in Real Time Process Control applications.
We will be happy to show you the kactory on either 14 th or 15 th March, or to hold an interview in London. Or if these arrangements are inconve רient, you name the date; we want to meet you. (1969 holidays will be discussed at interview.)
Applications, with details of experience, should be sent to:-
The Personnel Manager
REDIFON AIR TRAINERS LIVITED.
Bicester Road, Aylesbury, Bucks. Telephone : Aylesbury 4611.
REDIFOND
A Member Company of the Rediffusion Organisation

## RADIO OFFICER

British Rail have a vacancy for a Radio Officer on their Weymouth-Channel Islands passenger ships. Applicants must hold 1st Class P.M.G. certificate and have had at least three years experience at sea. Salary Range: $£ 1,280.7 .6$. to $£ 1,863.17$.6. per annum. Leave in accordance with N.M.B. Section ' $A$ ' agreements.Additional payments will be made for weekend work at sea or in port. Aggregation allowance payable.

Please apply to:-

Shipping Services Manager, Shipping \& International Services, British Rail, WEYMOUTH QUAY, Dorset.

Telephone: WEYMOUTH 6363 Ext. 36.

## FORCE WIRELESS OFFICER

Required by the GOVERNMENT OF BOTSWANA POLICE DEPARTMENT to serve on contract for one tour of 24-36 months in the first instance. Salary in scale equivalent to $f_{1} 1,939^{-2,149}$ a year plus Inducement Allowance £ 517-600 a year, according to experience. Gratuity at rate of 25 per cent of basic salary. Generous paid leave. Furnished accommodation at moderate rental. Education allowances. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 30-45 years, must possess City and Guilds Intermediatc or equivalent, or practical experience preferably in the Police or Armed Forces giving comparable ability. Proven administrative ability and service in a position of authority in Police or Armed Forces is essential. The officer selected will undertake installation, operation and maintenance of the Police Radio Network comprising H.F., S.S.B. and V.H.F./F.M. stations up to soo watts and will have control of and responsibility for the Police Communications Section.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I.
for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference, $\mathrm{M}_{2} \mathrm{~K} / 68084^{2} / \mathrm{WF}$.

## ASSISTANT INSTRUCTOR H.F. RADIC COMMUNCATIONS

Due to the expansion of our customer training facilities we require the services of an ASSISTANT INSTRUCTOR-H.F. RADIO COMMUNICATIONS.

Responsibilities will include lecturing, organising, syllabus planning and dealing with the extramural requirements of Trainees.
The Company provides a high level of training to customers, engineers and technicians (the school is situate in Reading but the position may require some overseas travel) and it is essential that applicants are fully conversant with modern H.F. Communications systems.

The position may well suit an ex-member of the regular Forces who has previous lecturing experience.

Applications in writing please, to:-

THE RACAL GADUP
The Group Personnel Manager, Racal Communications Limited, Western Road,
Bracknell, Berkshire.

This Company is one of the largest simulator manufacturers in the world and exports over $50 \%$ of its products. The ever-increasing demand for sophisticated training aids to match the complexity of modern aircraft has given rise to vacancies for engineers.

## SYSTEMS DESIEN ENGINEERS

B.Sc./H.N.C. Elect. or Aeronautical Analogue/ Digital Systems experience with preferably Aeronautical or Avionic background. Willing to travel, etc.
We would welcome people with the following backgrounds:-

Systems design; Servo Mechanisms design; Real Time Programming; Flight Testing; Auto pilots; Aircraft Performance; Stability and Control, Avionics.

They will be employed in:
The analysis of aircraft systems and the preparations of systems for use with analogue and digital computers to simulate aircraft behaviour; investigation of customers' requirements, preparation of schemes using logic and digital computer techniques, detail design of systems and to manage project from inception to completion.

We will be happy to show you the factory on either 14 th or 15 th March, or to hold an interview in London. Or if these arrangements are inconvenient, you name the date; we want to meet you. (1969 holidays will be discussed at interview.)
Applications, with details of experience, should be sent to:-

## E

## RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are ayailable for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court: London, S.W.5. Tel.: 01-373 8721.

## GRANADA TELEVISION

## Electronic Engineers for Operational Television

We have a number of vacancies at the TV Centre in Manchester for men with a good knowledge of television engineering to work in all aspects of Granada's production and transmission operations. These cover studio sound and vision, videotape, telecine, transmission switching and maintenance of equipment. Entry points and salaries depend on experience and qualifications. Salaries will range between $£ 1,295$ and $£ 1,876$ p.a.
Housing prospects in the Manchester area are excellent and we will give assistance with housing and removal expenses. Generous Granada Group Pension and Life Assurance Scheme. Write full details age experience and qualifications, quoting Reference EE/WW to Kevin Crumplin, Granada Television, Manchester 3.

## Communications Officer

BOAC has a vacancy for a Communications Officer at Heathrow Airport-London.
His duties will be to assist in ensuring the efficient functioning of ground communications facilities at Heathrow Airport which will include telephone, telegraph. facsimile and public address services.

Candidates for this appointment must have a good knowledge of telephony and in particular of the operation of PABX's No. 4. PAX's both step by step and cross-bar. intercommunication and public address systems. Experience in telephone traffic studies and a knowledge of GPO practices and services and telegraph and facsimile systems would be an advantage

Salary according to experience will be in the range of $£ 1.558$ per annum to $£ 1.819$ per annum.
There is an excellent pension scheme and opportunities exist for holiday air travel.
Write to:
Manager Selection Services (100WW),
BOAC
PO Box 10, HOUNSLOW, Middlesex.
BOAC

## ROYAL HOLLOWAY COLLEGE

 (University of London)Englefield Green, Surrey
PHYSICS DEPARTMENT SENIOR ELECTRONICS TECHNICIAN
Required to assist with the design and construction of equipment used in Teaching and Research in Physics. This is interesting and non-repetitive work ondesigning, building, and servicing a wide range of electronic instruments. E.T. certificate, O.N.C. or experience of development or servicing electronic equipment would be an advantage. Salary on the scale $£ 987-$ 〔1,125, with London Weighting and qualifications allowance. 4 weeks Holiday, Superannuation. Applications to the Secretary.

## KENT COUNTY COUNCIL

KENT EDUCATION COMMITTEE
Closed Circuit Television in Schools
TECHNICIAN/PRODUCTION ASSISTANT required for Ist July 1969 for Closed Circuit Television scheme for schools to be introduced in the (C1,055 to © $£ 1,265$ a year). Apolicants will be based on ( $C 1,055$ to © 1,265 a year). Applicants will be based on
a studio in Dover and should have a sound practical a studio in Dover and should have a sound practical
knowledge of the use of cameras, control and recording equipment involved in closed circuit television and be capable of taking charge of the equipment in a studio. The person appointed will also be expected to assist with production.
Applications by letter, giving the names and addresses of two referees, to County Education Officer (TI), Springfield, Maidstone, by 3lst March 1969.

COLLEGE OF I.M.R. COMMNS., Brooks' Bar, Manchester 16, invite applications from suitably qualified persons for the following:
ASSISTANT LECTURER IN MARINE RADIO. P.M.G. Cert., and up-to-date knowledge of the technical syllabus essential. Radar and other of the technical syllabus essential. Radar and other tage, taken into account when fixing salary, based on the Burnham Scale.
ASSISTANT LECTURER IN MARINE RADAR. Applicants must hold the B.O.T. Radar Maintenance Certificate, and should also have had Radar experience
service engineer.
Service engineer.
Write Principal, giving in confidence full details of experience, education, present salary, etc.

## CITY AND COUNTY OF BRISTOL EDUCATION COMMITTEE BRISTOL TECHNICAL COLLEGE DEPARTMENT OF ELECTRICAL ENGINEERING

Applications invired for posts of:
(a) SENIOR TECHNICIANS (Grade T3).
for following laboratories:
(al) ELECTRIC CIRCUITS \& ELECTRONICS. Ref. (o2) $1693 / 2 / 2$ (T3)
(o2) ELECTRICAL MACHINES. Ref. T693/21/I
(b1) ELECTRICALINSTALLATION WORKSHOPS Ref. T693/3/2 (T2).
Post (al) Experience required in Radio and TV, or Post (a2) Experience required
Post (a) Electrical Power Equip maintenance of
Post (bl) Experience required in Elecerical Contract. ing Industry or Electrical maintenance.
Duties include maintenance and construction of equipment, and servicing of laborazory and workequipmens,
shop classes.
Salary Scales: Grade T3 C895- 11,055
Grade T2 E765-6895.
Starting salary in accordance with age, qualifications and experience.
650 or
and $\mathbf{6 5 0}$ or 630 per annum extra for fications or equivalent.
38-hour, 5-day week with usual holiday and sick pay schemes. Posts superannuable.

Application forms (to be returned within fourteen days of this advertisement) from Registrar, Bristol Technical College, Ashley Down Brissol BS7 9BU. Please quote appropriate Reference Numberin all communications.

## 

## Marconi

Can offer you
NON-TIED HOUSING IN A NEW TOWN ATTRACTIVE SALARY ANNUAL SALARY REVIEWS GOOD WORKING CONDITIONS 37-HOUR WORKING WEEK

At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

Please telephone or write for an application form to :-
Mrs. B. Bridgen, Personnel Officer, The Personnel Dept., The Marconi Company Limited, Christopher Martin Road, Basildon, Essex.

Phone: Basildon 22822.

This Company is one of the largest simulator manufacturers in the world and exports over $50 \%$ of its products. The ever-increasing demand for sophisticated training aids to match the complexity of modern aircraft has given rise to vacancies for engineers.

## CIRCUIT DESICN ENGINEERS

H.N.C. or preferably degree or dip. tech. $+3-5$ years experience in LF circuit design or control eng. They will be employed in a large range of work including the design of Logic units and sub-systems. A.C. and D.C. amplifiers for use with servo mechanisms, analogue computers and audio equipments; Oscillators, radar wave form generators, etc.
We will be happy to show you the factcry on either 14 th or 15 th March, or to hold an interview in London. Or if these arrangements are inconvenient, you name the date; we 'want to meet you. (1969 holidays will be discussed at intervew.)
Applications, with details of experience, should be sent to:-

The Personnel Manager. REDIFON AIR TRAINERS LIMITED.

Blcester Road, Aylesbury, Bucks. Telephone: Aylesbury 4611 REDIFOND
A Membar Company of the Rediffusion Organisation

## LONDON TRANSPORT CHIEF SIGNAL ENGINEER'S DEPARTMENT OPPORTUNITIES IN TELECOMMUNICATIONS

Men with good telecommunications and electronics knowledge are required to be responsible for radio and television equipment on London Transport.

The work which may involve shift duties consists of maintajning, testing and fault finding on audio equipment, VHF fixed/ mobile radio and closed circuit television equipment.
A sound knowledge and experience of these categories of work are required. The possession of City \& Guilds Certificates (or equivalent) in Telecommunications

Subjects 49 and 300 would be an added advantage.

The rate of pay including variable incentive bonus averages $£ 24.10$ s.0d. for a 5 -day, 40 hour week. Additional payments are made for overtime, night work and week-end working.
These positions offer: Free Travel on and off duty, sick pay and pension schemes.

Please apply to the :
Recruitment Centre, (Ref. RL), 280 Old Marylebone Road, N.W.1.

We have vacancies for
EXPERIENCED TEST ENGINEERS
in our Production Test Department. Applicants are preferred who have experience of Fault Finding and Testing of VHF and UHF Mobile Equipment. Excellent opportunities for promotion due to expansion programme.

Please apply to Personnel Manager
PYE TELECOMMUNICATIONS LTD., Cambridge Works, Halg Rd., Cambridge. Tel: Cambridge 51351, ext. 355

# Telecommunications Technical Officers <br> BOARD OF TRADE (CIVIL AVIATION DEPARTMENT) 

Posts for men aged at least 23 for work on Radar, Data Processing Equipment, Navigational Aids and Communications Equipment at Civil Aerodromes and other stations in the United Kingdom.
QUALIFICATIONS: O.N.C. in Engineering (including a pass in Electrical Engineering A), or City and Guilds Intermediate Certificate in Telecommunications Engineering (old syllabus i.e. subject No. 50) plus Radio II, or Intermediate Telecommunications Certificate (new syllabus i.e. subject 49) plus Certificate in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B, or equivalent standard of technical education. At least 5 years' appropriate experience essential.
SALARY (national): from $£ 1,119$ (at age 23) to $£ 1,347$ (at 28 or over on entry); scale maximum $£ 1,521$ (somewhat higher in London). Salaries under review. Promotion prospects. Non-contributory pension.

WRITE to Civil Service Commission, Savile Row, London, WIX 2AA, or TELEPHONE 01-734 6010 Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" Service), for application form, quoting $S / 207 / 68$. Closing date 1st April 1969.

## COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 54II

Bench engineer fully experienced in all sections, also improver wanted. Five day week, excellent prospects.
KINGS RADIO, 151 Sloane St., S.W.I Tel: Sloane 1797

## INSTRUMENTS FOR SALE <br> SIGNAL GENERATORS. R.F.T. $-10-240 \mathrm{MHz}$ in 10 ranges with coarse and fine ourput controls. Ourpur impedance $60 \Omega$. Ourpur level $0.5 \mu \mathrm{~V}$ to 50 mV . AIRMEC MODEL $365-20-300 \mathrm{MHz}$. Output level 100 mV . Output impedance $53 \Omega$. c165 WAVEMETER. Type R.F.T.- $30 \mathrm{KHz}-30 \mathrm{MHz}$ with built-in crystal calibrator and coarse and fine tuning. METER. Airmec Type $206-20 \mathrm{~Hz}$ PHASE METER. Airmec Type $206-20 \mathrm{~Hz}$ 100 KHz. ALL IN GOOD WORKING ORDER BOX NO. 5054

## UNIVERSITY OF SOUTHAMPTON <br> Department of Chemistry Electronics Engineer

The post calls for the development and servicing of instruments in a large chemistry department with a strong interest in spectroscopy. Facilities are excellent and a wide range of instrumentation is employed including $100 \mathrm{~m} / \mathrm{c}$ N.M.R., Raman, I.R., U.V., E.S.R., spectrometers, lasers, etc. Candidates should have a degree or appropriate professional qualifications and considerable ability in electronics, including design, together with an interest in optics and instrument design and be able to run a small team of technicians. The position is permanent. Salary on scale for Experimental Officers £1,240 to $\mathrm{Kl}, 930$ per annum. Please write stating age, qualifications, experience and giving the names of two referees, preferably previous employers, to the Deputy Secretary. The University. Highfield, Southampton SO9 5 NH , quoting reference WW .

## C.S.E. (AIRCRAFT SERVICES) LTD. OXFORD AIRPORT - KIDLINGTON

## Electrician <br> Electronic Wireman Radio Technician

It you are one of these, a job awaits you at C.S.E. (Aircraft Services), Kidlington. The work covers the preparation of Wiring and Components and the Installation into modern aircraft (including the Jetstream), of Radio and Electronic Systems Equipment.
Weekly Staff Status, Pension Scheme, Free Life Assurance, Sickness Allowance.

## Apply in first instance to:-

THE ADMINISTRATION SUPERVISOR
C.S.E. (AIRCRAFT SERVICES) LTD.

## OXFORD AIRPORT

KIDLINGTON OXFORD
Telephone: Kidlington 3931

## AIRBORNE ELECTRONICS SERVICE TECHNICIANS

RCA is an international electronics company with diverse interests in the field of electronic engineering. Part of our Service Division is operating in the South of England and is engaged on servicing and maintaining airborne electronic equipment, particularly AIRBORNE RADARS, ELECTRONIC NAVIGATIONAL AIDS and HF, VHF and UHF COMMUNICATIONS.

A number of interesting vacancies have arisen which offer excellent opportunities for developing the initiative and furthering the career of young men between 22 and 35 . They must have relevant experience preferably on the specific equipment mentioned above.

These positions carry monthly paid staff status with excellent fringe benefits. including three weeks paid holiday each year. A competitive salary will be paid and there are excellent promotion prospects.

Please write or 'phone for an application form to:-
Mr. R. G. Hancock, RCA Limited, Sunbury-on-Thames, Middlesex. Telephone: Sunbury 85511.


## SERVICE TECHNICIANS

Experienced electro engineers, minimum qualifications O.N.C./City and Guilds, to service and repair a wide range of electro-acoustic instruments. Driving experience essential.
Excellent salary and opportunities for advancement. Write or telephone for immediate interviews.

Personnel Department,
Amplivox Limited,
Beresford Avenue, Wembley, Telephone 902-8991.

## TECHNICAL SALES MANAGER

## Manufacturers of Laminates for Printed Circuits and technical products

based in North West, under British and American direction, wish to appoint a TECHNICAL SALES MANAGER to cover a wide range of LAMINATED PRODUCTS for

## COMPUTER, ELECTRONICS \& AUTOMOTIVE

 industries and other technical applications.Essentials: Previous experience in the industry.
Well proven Sales performance.
Drive and initiative in respect of new products.
Electrical, mechanical or chemical background favoured.
Excellent prospects in fast growing newly established Company. Attractive conditions. Salary will be negotiated. Please write with essential details in confidence to Box 5055.

## Pye Telecommunication OF CAM The largest exporters of VHF/UHF radioteleph equipment in the world require: DESIGN DRAUGHTSMEN

Type of work and experience: We require electronic engineers and design draughtsmen to join teams engaged in the design and development of fixed mobile and portable UHF and VHF transmitters and receivers. These teams are responsible for all aspects of designing and development through to the production line

Applicants should have experience in economic design for quantity production in the same or similap field of activity.

Education. Appropriate degree or diplomas preferred or proven experience of comparable level will be considered.

Age: 20-40 years
Company contribution Pension Scheme.

## PyeTelecommunicationsLtd

Newmarket Road, Cambridge Tel: 022361222

## Telex 81166

Chief Electronics Technician required for the maintenance, commissioning and development of electronic equipment for cardiorespiratory investigation and research at the Brompton Hospital, Fulham Road, London S.W.3. This is a new and responsible position requiring considerable experience, preferably in the bio-medical electronics field. H.N.C. standard is expected. Salary $£ 1,419-£ 1,600$ p.a., but an exceptional candidate may be offered a higher salary.
Further information and application form from the Laboratory Superintendent (CT.BH), Department of Electronics, Chelsea College of Science and Technology, Manresa Road, London S.W.3.

## DEVELOPMENT GROUP

## providing ADVANCED ELECTRONICS TECHNOLOGY for RESEARCH

requires additional member. Day release if working for suitable qualification. Salary in range £847-£1,182. Applications to Professor G. R. Hall, Department of Chemical Engineering \& Chemical Technology, Imperial College, London, S.W.7.

## THE UNIVERSITY OF ASTON IN BIRMINGHAM electrical engineering dept. M.Sc. COURSES October 1969 to September 1970

Graduate courses, of one year duration, leading to a Master's Degree are offered in Electrical Engineering and in Precision Measurement and Instrumentation.
M.Sc. in ELECTRICAL ENGINEERING (Ref. M.Sc.8)
One-third of the lecture work will cover mathematics and electrical engineering materials. The remaining time will be devoted to one specialist (o) Communication Systems
(b) Consrol Systems
(c) Design and Pulse and Digital Circuits and Systems
(d) Electrical Machines
(e) Power Systems

The Science. Research Council has accepted this course as suitable for tenure of its advanced course
scudentships.
M.Sc. in PRECISION MEASUREMENT AND INSTRUMENTATION (Ref. M.Sc.27)
This course is run by an interdepartmental group comprising Electrical Engineering, Mathematics, Mechanical Engineering, Physics and Production Engineering departments
Both courses are open $t 0$ applicants who have graduated in science or engineering or who hold
equivalene professional qualifications. part of either course (without examination) may do so by arrangement.
Application forms and further particulars (quoting ref. no.) may be obtained from:
THE HEAD OF THE DEPARTMENT OF ELECTRICAL ENGINEERING.
THE UNIVERSITY OF ASTON IN
BIRMINGHAM.
BIRMINGHAM 4.

# Teiecoumuncations OFFICR 

## (CIVIL AVIIATION)

Required by the GOVERNMENT OF MALAWI to serve on contract for one tour of $24-36$ months in the first instance. Salary in scale $£ 955-1905$ a year (inclusive of Overseas Addition), point of entry according to experience. In addition, a supplement of $£ 100$ is payable by the British Government direct into officer's bank in U.K. Gratuity at rate of $25 \%$ provided officer completes 30 month tour. Generous paid leave. Furnished accommodation. Education and outfit allowances. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 25-45, should possess City and Guilds Telecommunications Technician's Certificate (Intermediate) plus at least two ' B ' year certificates and in addition not less than four years" experience in radio/radar maintenance after serving a recognised apprenticeship or similar training. Applicants lacking formal educational qualifications but with extensive experience can be considered.

The officer will be responsible for the installation and maintenance of telecommunications and radio navigational equipment at airports throughout Malawi
Apply to CROWN AGENTS, M. Dept., 4 Millhank, London, S.W.1., for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K/681117/WF.

## KODE LTD. <br> DATA PROCESSING EQUIPMENT

## ELECTRONIC SERVICE TECHNICIANS

and

## SITE TECHNICIANS

for the Greater London Area
Required to join a service team of a progressive Data Processing Co. The successful candidates will have Electro-Mechanical experience, but preference will be given to those with some basic semi-conductor knowledge.
The ability to work without supervision will be rewarded with a good salary and a company vehicle. Full training on the company's equipment will be given.

Apply with summary of career to:-

> The Service Manager Kode Limited, Calne, Wiltshire. Tel. Calne 3771

## Maintenance Engineers

# You can do better for yourself in computers 

ICL, Britain's biggest computer manufacturer, needs service engineers in the London area and Surrey. The job-keeping customer installations at peak efficiency-demands dedication: and offers special rewards. A thorough training in computers will be given.

## Career development

In the UK alone there are well over 1,000 ICL computer installations now and every week numbers increase. Overseas there are ICL installations in 70 countries. So the scope for Field Service Engineers is enormous.

## Qualifications

You should:

- Beaged 21-35
- Have City and Guilds Electronics Technicians Certificates, or HNC Electronics or equivalents
- Have experience in electronics (perhaps in HM Forces)
- Actively want responsibility, and the chance to get on.

Write: giving brief details of your career and quoting reference WW. 929 to A. E. Turner, International Computers Limited, 85-91 Upper Richmond Road, Putney, London, S.W. 15.

International Computers Limited

## APPOINTMENTS

## ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

## CIVILIAN RADIO TECHNICIANS AIR FORCE DEPARTMENT

## Are you

* INTERESTED IN DOING VITAL WORK ON RAF RADAR AND WIRELESS EQUIPMENT?
* 'Aged 19 and over, of good educational standard with at least 3 years' training and practical experience in radio/radar servicing?
If so we offer
$\star$ Good pay. Salaries start at up to $£ 1,130$ p.a. (according to age) and rise to $£ 1,304$ by annual increments.
$\star$ Good prospects of promotion (top posts in excess of $£ 2,000$ p.a.).
丸 Excellent prospects of a good pension or a gratulty after 5 years' service.
Ł 5 days week. 3 weeks 3 days annual leave rising to 6 weeks, plus public holidays. Vacancies exist at:

RAF Sealand near Chester, RAF Henlow in Bedfordshire and periodically at other RAF stations.
Write to
MINISTRY OF DEFENCE, CE 3(H)(AIR),
SENTINEL HOUSE, SOUTHAMPTON ROW, LONDON, W.C.I, or call at No. 30 MU, RAF SEALAND, between the following times:

Monday to Friday 8.30 to 4 , Saturday 8.30 to $\$ 2.30$

## Eif-Maremiliecthonits

## EASAMS

EASAMS staff are playing an ever increasing role in applying total systems thinking to problems of national importance.

We continually have vacancies at all levels for people of high calibre with an interest in systems engineering to work on a fascinating range of projects in the military, space and civil fields.

While preferring those with academic or professional qualifications, our need is basically for men and women of high intellectual capability with enthusiasm and imagination.

We are interested in contacting those who would prefer to concern themselves with the relationships
between black boxes rather than the detailed circuitry within them. Our particular interest at the moment is for those with experience or interest in

- Radar and microwave systems design and performance assessment
- Data processing and data transmission
- Display technology
- Control systems

Those who wish to join a rapidly छxpanding company with a flexible sutlook and the highest standards of jerformance should send a brief personal summary 10: The Managing Jirector, E-A Space \& Advanced Vilitary Systems Limited, 35/41 Park Street, Camberley, Surrey

## TV ENGINEERS

ARE YOU INTERESTED IN COLOUR SERVICE? DO YOU HAVE A HOUSING PROBLEM ?
If so read on for Radio Rentals have a vacancy for a top.grade engineer in the Chiswick area for whom a large s/c 3 -bedroom company flat is avallable. Good salary, commission and car allowance or new Escort Estate car, colour training will be arranged.
Apply to

AREA MANAGER, RADIO RENTALS, 83a High Rd., Balham SW12. Phone $01 \mathbf{- 6 7 5} 0191$

## Technical Authors

Applications are invited from authors with established ability and experience in the following fields:
Digital Anology; Data Processing; Servo Systems; Navigational Aids; Solid state radar; Electronic instrumentation; Electro-mechanical systems.
Formal qualifications to H.N.C., and a minimum of 3 years in the engineering industry, will be an advantage.
Generous salaries according to experience and qualifications. Please apply in writing to: The Technical Publications Manager, Irwin Technical Limited,
109-123, Clifton Street, London, E.C.2.

## RADIO AND TAPE RECORDER ENGINEER

Are YOU interested in working in a modern, well equipped Radio-Tape Recorder Service Department?
If so, WE can offer you an interesting job where you will be able to work on the latest Uher and Bluespot audio equipment. We offer a good starting salary, N/C pension scheme and staff canteen.
Please apply to:
The personnel manager
BOSCH LIMITED
Rhodes Way, Radlett road, Watford, Herts

## YOU COULD CREATE AN ELECTRONICS JOURNAL

A young electronics development engineer (25-30) with a flair for writing and organization is required to start a new journal for electronics development engineers. Applicants must have had some formal training and practical experience in semiconductor circuit development. A knowledge of the subject and industry is more important than experience in journalism, This is a great opportunity to enter technical journalism and to help create a new publication for engineers. While the applicant will be given his head to develop the journal he will have avallable to him the advice and guidance of experienced editors. Write giving career details etc. to General Manager, lliffe Science \& Technology Publications Ltd., 32 High Street, Guildford, Surrey.

## TEST AND CALIBRATION ENGINEERS

This Company is one of the largest simulator manufacturers in the world and exports over $50 \%$ of its products. The ever-increasing demand for sophisticated training aids to match the complexity of modern aircraft has given rise to vacancies for engineers with the following experience:
Knowledge of basic radar circuitry; using both valves and solid state devices including timesharing display systems, and be familiar with the use of general electronics test equipment and techniques;
Experience of airborne A1 equipment would be of special advantage
Or a sound electronic background being familiar with a.c. and d.c. feedback amplifiers, timer circuits, regulated power supplies and associated control systems.
Knowledge of analogue computing techniques would be of special advantage and applicants should be capable of accurate work with minimum supervision after training.
Or a theoretical and practical knowledge of hydraulic systems and be capable of working to fine limits on aircraft control run calibration and allied systems.

We will be happy to show you the factory on either 14th or 15 th March, or to hold an interview in London. Or if these arrangements are inconvenient, you name the date; we want to meet you. (1969 holidays will be discussed at interview.)
Applications, with details of experience, should be sent to:-

The Personnel Manager,
REDIFON AIR TRAINERS LIMITED.
Bicester Road, Aylesbury, Bucks. Telephone: Aylesbury 4611

## Honeywell

E.D.P. DIVISION

TEST
EQUIPMENT DESIGN

We urgently require engineers experienced in either
radar,
computers, telecommunications
or other allied electronic fields. Service or civilian training given equal consideration. Certificates could be advantageous but are not essential. Mechanical and/or artistic ability would be a valuable asset. This is a unique opportunity to enter the stimulating and self-satisfying design field.
T.E.D. is a relatively new and rapidly expanding group looking for fresh concepts to assist our growth.

Sound like you?
It could easily be.

Applications stating brief details of age, qualifications and experience to Personnel Manager

## SITUATIONS VAGANT

A FULL-TIME technical experienced salesman re previous experience, salary required to-The Manager, previous experience, salary required to- The Manager,
Henry's Radio. Lid. 303 Edgware Rd., London. W. 2 .

EXPERIENCED TV Engineer required. Permanent E position, good salary. Transport avallable if re-
quired. This is an addition to stafl to cope with expand quired. This is an addition to staif to cope with expand-
ing TV service, REM RADIO, 79 Tel. Ashord 5336 (Midalesex).
ELECTRONICS TECHNICIAN required by Universils tunity to paint for servicing and development. Oppor of further study. Salary on scale rising to $£ 995$ or £ 1,200 according to qualifications and experience. Apply in writing to The Superintendent. University
Chemical Laboratory, Lensfield Road, Cambridge. [2151

ELECTRONICS: man required to be responslble for apparatus for the Department, elther as Departmental Research Assistant "A" (Graduate, in scale £1,450 to $£ 2,425$ ) " "B" (technical qualification. scale $£ 850$ to $£ 1,900$ or Princlpal Technician (H,N.C. or
equivalent skill) in scale $£ 1,180$ to $£ 1,494$. Writen equivalent skill) in scale $£ 1,180$ to $£ 1,494$. Written by 9th March to: Administrator, University Laboratory of Physiology, Oxford. [2152
GLECTRONICS TECHNICIAN required for DepartE ment of Physiology to assist in electronic work shop, both in maintenance and development of
electronic apparatus. Salary on scale $£ 722$ to $£ 1,007$ electronic apparatus. Salary on scale $£ 722$ to $\mathcal{E l , 0 0 7}$ p.a. Apply: Personnel Adviser. Univercity of Birming-
ham. P.O. Box 363, Birmingham 15, quoting reference
$429 / \mathrm{T} / 272.1$.
$[2153$

GLAMORGAN COUNTY COUNCIL EDUCATION C COMMITTEE. COUNTY SCIENTIFIC INSTRUMENT REPAIR SERVICE, INSTRUMENT REPAIRER for the repair and malntenance of scientific laboratory equipsets from schools throughout the County ares work shop centre established in CWMAMAN, ABERDARE. Applicants must have had previous experience in this type of work. Salary in accordance with Grade 3 of
the Technicians and Technical Stafis Division 8895 by annual increments of $£ 1,055$ per annum. Additions (varying from c 30 to is 50 per annum) will be made salary may be above the minimum of the scale. Age limit 55 years. Application forms (to be returned by 14th April) and further particulars are obtainable from Director of Education, County Hall. Cardiff. Richard
John, Clerk of the County Councli.
$R^{E D I F O N}$ LTD. require fully experlenced TELEELECTRONICS INSPECTORS. Good commencing salarles. We would particularly welcome enquiries Irom ex-Service personnel or personnel about to leave
the Services. Please write giving full detalls to the Services. Please write giving full details to
The Personnel Manager, Redifon Ltd., Broomhill Road, The Personnel Manager, Redifon Ltd., Broomhlil Road,
Wandsworth, S.W.18.

THE UNIVERSITY OF LEEDS; PHYSICS DEPARTniclan to join the British National Cosmic Ray Research project at Haverah Park. near Leeds. The work involves construction and maintenance of electronic apparatus. Minimum qualifications: ONC or equivalent. Salary dependent upon qualifications and experience, on a scale £ $722-£ 1,007$. Applications in writing giving age and experience, should be sent to the Administrative Assistant, Physics Department, The University, Leeds
LS2 9JT. TV RETAIL BUSINESS of the highest standing, requires PERSONAL ASSISTANT with servicing experience. Good position and prospects for keen and
capable man. State age and details of experience. Box capable man. State age and

URGENTLY required by R. Barden Ltd.. BRANCH plus comm. Apply MR. GROBER. CLISSOLD 8811 .

Vacancies occur for two additional Instructors to commence in April 1969 at the Wireless College, Colwyn Bay, North Waies, to assist in preparlng students with the prospects of advancement. Applicants should hold a P.M.G. certificate. Recent marine operating and/or teaching experience is desirable but not absolutely essentlal. Write in the first instance to the
Principal.
$W_{\text {Engineers in our Production Test Department. }}$ Applicants are preferred who have Expertence of Fault Appicants are preferred whobling and Testing of Moble VHF and UHF Mobll
Equipment. Excellent Opportunities for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd.; Cambridge Works, Haig Road, Cambridge. Tel. Cambridge
Extn. 327
[77

WEST London Aero Club Invite "A" and "B" sary equipment to commence Radio Workshop. Alter-
native propositions may be considered. Write full native propositions may be considered. Write full
detalls to-White Waltham Alrfeld, near Maidenhead, Berks.

YOUNG MAN with good working knowledge of tape recorders and other assoctated professional equip studio. Please write to: R.T.. 30 Old Compton Street,
W.1., giving detalls of age and experience.
[2161

YOUNG (ca 20 ) technical assistant required by Sound Recording Studio maintenance department. Some relevant expertence useful, but must have
practical aptitude. Apply: Mr. King. IBC STUDIOS
LTD., 35 . Portland Place, W. 01.5802000 .

## SITUATIONS WANTED

WIDELY experienced electrical engineer/technical college lecturer, bored with watching television. magazines. Box W.W. 340 Whreless World

## ARTICLES FOR SALE

$\mathrm{B}^{\text {BC2 }}$ KITS and T.V, SERVICE SPARES. Sultable ix position push bution transistorised tuners $£ 5.5 .0$. $405 / 625$ transistorised sound \& vision IF panels $£ 2.15 .0^{\circ}$ incl. circuits and data, $P / P$ 4/6. Basic dual purpose
$405 / 625$ transistorised tuners incl. circult $£ 2.10 .0, P / P \quad$. 405/625 transistorised tuners incl. circult £2.10.0, P/P
$4 / 6$. New UHF tuners incl. valves. slow motion drive 4/6. New UHF tuners incl. valves. slow motion drive $405 / 625 \mathrm{IF} \&$ Output chassis incl circuit $45 /-\mathrm{P} / \mathrm{P} 4 / 6$. Ferguson 625 IF amplifier chassis incl. circuit 19/6,
Ultra $625 \quad$ IF amplifer plus $405 / 625$ switch assy incl
 Cyldon C 20/~, Pye CTM 13 ch . incremental $27 / 6$, P/P 4/6. Many others available incl. large selection colls. Frame output transformers, Mains droppers etc. available for most popular makes. TV signal boosters translstorised Pye/Labgear B1/B3, or UHF battery operated $75 /-$, UHF mains operated $97 / 6$ UHF masthead 95/- post free. Enquiries invited, COD despatch MANOR SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON N.W.11. CALLERS 589B HIGH RD.. N. FINCHLEY N.12. (near GRANVILLE RD.) TEL.
$01-4459118$.
$B_{15}^{\text {RAND new miniature Electrolytics with long wires. }}$ mids. 7s. 6d. per dozen, postage is. The C.R. Supply

BUILD IT in a DEWBOX quality plastics cabinet. Ringwood Rd FERNDOWN Dorset. S.A.E. for leaflet Write now-Right now.

CLEKON Star Bargain Offers. Assorted Wire-Wound C Resistors, 100 for only 12/6. Subminiature Plug-in 12/6. RM4 Metai Rectifiers. 5/.-Elekon Enterprises, 30 Baker
$01-4865353$. Street, London, wiM 2DS. Telephone
$\{343$ JOURNALS I.E.R.E./Brit.I.R.E., 93 issues Apr. 60
to Dec, 67 . Offiers to Box W.W. 337 Wireless World.

LAB, CLEARANCE, X-TAL controlled pulse gen's., L Cambrldge/Ellott recorders, microwave spectrum Anniysers, E.M.I. Studio tape recorders, P.S.U.S, selective amps/VTVM's, test equipment, etc. $\begin{aligned} & \text { Lower } \\ & \text { Beeding } 236 \text {. }\end{aligned}$ [338
"R ADIO-MIKE" (Lustraphone), Used maybe only $\begin{array}{llll}\text { bargain at } £ 60 \text { Horntons Electronics Ltd., } & \text { 18/19 } \\ \text { Freeman } & \text { Street, Birmingham 5, } & 021-643-0972 . & {[2158}\end{array}$
$\mathbf{R}_{\text {Serial }}^{\text {OHDE and Schwarz Polyskop } 1 \text { model BN4244/2/50 }}$ $\mathbf{R E S e r i a l ~}^{\mathrm{F} 1737 / 6}$ (current price £1,200). As new in on.o. Marshall, "Braehead", Balbardle Road, Bathgate, West Lothian, Scotland. , Balbardie Road, Batheate;

STOPWATCHES? Before you buy send 8d. in stamps © for our illustrated catalogue and save money. Lenses and prisms catalogue also available, Lind-Air (Optronics) Ltd., Dept. CWW, 18 and 53 Tottenham Court Road,
London, W.1. Tel. $01-580$ 1116.

SURPLUS STOCKS. Belling Lee Aerial Accessories, niversalms 3 ins $18 /-$. Cranked Arms 3 ft . Music Dealers. Whitmarley Pedestal Record Display Stands. carry 104 records, 3 per tier, 7 In., $10 \operatorname{In}$.
and 12 in . Thlef Proof locked. As new. f 27 each (cost and 12 in . Thief Proof locked. As new. £ 27 each (cost Equipment. RE702 Extension Amplifiers £17. A.L.C. Units $174.25 \mathrm{Mc} / \mathrm{s}$. \&5. Pilot Carrier Generators 174.25 $\mathrm{Mc} / \mathrm{s} £ 6$. Advance Voltage Regulators 250 volt 50 cycles,
 Root 9 in. E 20 . Powerful Hi Fi Amplifying Equipment. Kllowatt Racked Amplifiers £ 195 , unvalved $£ 145$. 30 with Pre-amp Misers £18. Electrostatic Speakers Acoustical Mfg. £35. Voigt Corner Horns with P.M. units £ 12 . Willamson 10 watt by Rogers £ 10 . All perlect. Sold subject Buyer's collection, after inspection/
demonstration. Reduction for bulk purchase. Wired demonstration Reduction for bulk purchase. Wired
Colour Vision Ltd., 8 milfield Road. Whickham. NewColour vision Lid., 8 Milfield Road. Whickham, New-
castle upon Tyne. Telephone, Whickham 887351 . $[341$

THE IDEAL PANEL Mounting Meter Movement for F.S.D. $41^{\circ} \times 4$ ?" In clear plastic case. Our special price only 39/6. P. \& P. Free. Limited number only. Walton's Wireless Stores, 55 A Worcester Street, Wolverhampton,
Staffs.

TRANSFER function analyser type 120, Serial No. 551. T by Servo Consultiants Ltd. Offers to Metrubond
'WIRELESS WORLD" 1951-1956 Bound. 1957-1962 7 Rayens Cross Road. Long Ashton, Bristol. Tel: Long 27 Rayens Cross Road. Long Ashton, Bristol. Tel. Long
Ashton 2131.0

## BUSINESSES FOR SALE

COUNTRY Retail Television and Radio Business for sale. OWNER RETIRING. Turnover for last four
years $£ 31,600$ per annum. Further detalls from Box WW328 wircless world.

## BUSINESS OPPORTUNITIES

A LONDON RETAIL TELEVISION and Electrical A. Business of the highest standing requires Executive Director. Eventual complete take-over of business
envisaged on retirement of present managing director envisaged on retirement of present managing director. proftable business established over 40 years. Principals onty should write in confidence, stating age and of capital available. Box W.W, 2157 Wireless World.

## TEST EQUIPIENT - SURPLUS

 ANDSECONDHANDSIGNAL generators, oscllloscopes, output meters, wave etc., etc., in stock.-R. T. \& I. Electronics, Ltd.. Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986.

## RECEIVERS AND AMPLIFIERS- SURPLUS AND SECONDHAND

$H^{R O}$ Retc., etc., etc., AR88, CR100, BRT400, G209, S 640 , Ashetlle etc. in stock-R. T. \% I. Electrontcs, Ltd.,
4986.

## NEW GRAM AND SOUND EQUIPMENT

Consult frst our 70-page illustrated equipmant catalogue on $\mathrm{Hi} 1-\mathrm{Fl}(\mathbf{5} / 6)$. Advisory service, generous terms to members. Membersip
Association,
$01-995$
Blenhelm

G LASGOW.-Recorders bought. sold, exchanged; ceameras, etc., exchanged for rect recorders or vice-
versa. - Vlictor Mortis, 343 Argyle
St.,
Glasgow,
C.2.

## TAPERECORDING ETC

IF quality, durability matter, consult Britain's oldest transfer service. Quality records from your suitable tapes. (Excellent tax-free lund raisers for schaole,
churches.) Modern studio facilities with Stelnway churches.) Modern studio faclitles with Stelnway
Grand.-Sound News, 18 Blenhelm Road, London, W.4. 01-995 1661. [28

TAPE to disc transfer, using latest feedback disc Hicutters; EPs from 22/-; s.a.e. leaflet,-Deroy,
High Bank, Hawk St., Carnforth, Lancs.

## FOR HIRE

FOR hire CCTV equipment including cameras, | monitors, video tape recorders and tape-any period. |
| :--- |
| Details from Zoom Television, Amersham 5001. |
| 75 |

W ANTED, all eypes of communcations receivers Electronics, Ltd.., Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986.
$W^{\text {ANTED }}$, televisfons, tape recorders, radiograms. High new., Walves. transistors, etc.-Stan Willetts, 37

## VALVES

Valve cartons by return at keen prices; send 1/Godwin St., Bradford. 1. ${ }^{10}$

## VALVES WANTEO <br> $\mathbf{W}^{\text {E buy }}$ new valves, transistors and clean new com-  <br> W ANTED Scrap Valves type TY5-500, TY6-800, 

CAPACITY AVAILABLE
A IRTRONICS, Ltd., for coll winding, assembly and unit sheet metal work.-3a Walerand Rd., London,
S.E.13. Tel. 01-852 1706.

FLECTRONIC Wiring and Assembly, P.C. Boards, tast delivery. Box W.W. 336, Wireless World.

## COLOUR TELEVISION

Full-time three-week courses
28th April to 16th May
2nd June to 20th June 23rd June to 11 th July

## Apply:

Registrar, Leeds College of Technology, Calverley Street, Leeds, 1, for course brochure,
"THE PRINCIPLES OF COLOUR TELEVISION"

METALWORK, all types cabinets, chassls. racks, for etc., to your own speciflcation, capacity available PHILPOTT"S METALWORKS. Ltd., Chapman St.
[17

SMALL Metal Presswork and Toolmaking Capacity available.-J. D. R. Lid. 9 Mallow Street, London $01-253$ [33]
E.

## TECHNICAL TRAINING

$B^{\text {ECOME "Technically }}$ Quallifed" in your spare time B guaranteed diploma and exam. home-study courses In radio. TV, servicing and maintenance. R.T.E.B., City \& Gullds, etc., highly Informative 120 -page Holborn, London, E.C.1. [16

CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes For detalls of modern courses in sil branches of elec etc.; send for 132 -pare handbook-free-B.I.E.T (Dept. 152 K ). Aldermaston Court, Aldermaston, Berks.
P.M.G. Certificates, and City \& Guilds Examinations. Also many non-examination courses in Radio, TV and Electronics. Study at home with world tamous ICS Write for free prospectus to ICS. Dept. 443, Intertex -
$\mathbf{R}^{\text {ADIO officers see the world. Sea-going and shore }}$ 1 appointments. Trainee vacancles in April and Sept Grants avallable. Day and boarding students. Stamp for prospectus. Wireless College, Colwyn Bay. [12

TV and radlo A.M.I.E.R.E., City \& Gullds. R.T.E.B. certs. etc., on satisfaction or refund of fee terms; thousands of passes; for lull detafls of exams and home training courses (including practical equipment) in a branches of radio. TV, electronics, etc., write for 132 pase handbook-iree; please state subject.-British
Institute of Engtneering Technology (Dept. 150K), Aldermaston Court, Aldermaston, Berks. [15

## TUITON

ENGINEERS. - A Techntcal Certifcate or qualifica Etion will bring you security and much better pay Eiem. and adv. private postal courses for C.Eng. Gutlds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams Diploma courses in all branches of EngineeringMech.. Elec., Auto, Electronlcs. Radio. Computers, Draughts, Bullding, etc.-For Iull details write for
FREE 132 -page guide: British Institute of Engineer Ing Technology (Dept. 151K), Aldermaston Cour Aldermaston. Berks. [14

KINGSTON-UPON-HULL Education Committee. K. College of Technology. Principal: E. Jones, M.Sc. FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate-Information from College of Technology, Queen's Gardens, KIngston upon

SERVICE ENGINEERS -up-date your technical know h ledge of Radlo, TV \& Electronics thro' proven text House. London, SW11.

MANUALS. circults of all British ex-W.D. 1939-45 REWireless equipment and instruments irom origina W. H. Balley, 167a. Moffat Road. Thornton Heath Surrey, CR4-8PZ

## NEW FROM /LIFFE

## Colour Receiver Techniques

T. D. TOWERS, M.B.E., M.A.(Camb.), M.A.(Glasgow), B.Sc.,C.Eng., M.I.E.E., A.M.I.E.R.E., F.C.P.S.

This book is based on 12 articles printed in 1967 in the "Wireless World" and is one of the first publications to give an account of current U.K. practice in the design of colour television receivers.

The style of this book is simple and clear, with a minimal use of mathematics, presenting a logical, easily assimilated guide to the complexities of colour television receivers, starting with a clear exposition of the characteristics of the U.K. PAL "swinging burst" signal.

The general plan of a colour receiver is discussed thoroughly before dealing with the designers of individual sections (including the aerial-treated as part of the receiver). After a chapter reviewing the sections in relation to a complete receiver, the book concludes with two essentially practical chapters on colour test equipment and servicing procedures.

## CONTENTS

The Colour Television signal
The Colour Tube
Colour Decoding "Matrix" Circuits

## Sorting out the Colour

 SignalsAerials for Colour Television
Colour TV Test Equipment

Elements of the Colour Television Receiver

Using a Three-coloured Pencil of Light
Replacing the Missing Colour Subcarrier
D.C. Power Supplies

Circuit Round-Up
"Setting-Up" a Colour TV Set

88 pp. 79 illustrations. 35s. net, 36 s. by post

ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C. 1

# Insililioscop <br> CAMERAS 

modules designed to meet every application

The Telford range of Oscilloscope Cameras Includes many unique features not normally found in Osci lography. Their modular construction allows the user to select the camera and interchangeable accessories to meet vis exact need

Type A Polaroid Pack back parallex-free viewer-other types available. Viewing systems include parallex-free viewing during exposure - Adaptors for all popular scopes - Lenses f1.5, f1.9. f2.8, 13.5, with chaice of object/ image ratios - Accessories include solenoid operation and data recording - Film backs: Polaroid 10 second prints: roll, pack or cut film, all conventional materials including 35 mm .

## TELFORD PRODUCTS LTD

Registered trade mark of Polaroid Sorp. of U.S.A. 4 WADSWORTH ROAD GREENFORD MIDDLESEX ENGLAND Tele: 01-998-1011 THE DAVALL PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP

## GONOON CENTRAL RaDIo stoRES

MODERN DESK PHONES, red, green, blue or topaz, 2 tone

10-WAY PRESS-BUTTOX INTER-COM TELEPEONES II Bakeithe case with junction bor handset. Thoroughly overhaulad Guaranteed. $£ 6 / 10 /=$ per unit.
RO-WAY PRESS-BUTTON IMTER-COM TELEPBONES In Bakeitte case with fonetion boz. Thoroughly overhaued. Quarsil
TELEPHONE COILED HAITD SET LEADS, 3 core. 5/6. P.P. 1/ ELECTRICITY SLOT METER (1/- lo slot) for A.C. nains. Fired tarir to your requirements. suitable for botels, etc. 200/250 10 A. $80 /-15$ A. $90 /-, 20$ A. $100 /-$-. P.P. $7 / 6$. Other amperage avaisble. Recondinoned as new, 2 geare gluarantee. QUABTERLY ELECTRIC CBECX METERS. Reconditloned amperages availabie. 2 yeara' guarantee. P,P. $\overline{/} /=$. 8-BANK UMISELECTOR SWITCHES, 25 contacts, alternate wiping £2/15/-; 8 bank half wlpe $£ 2 / 15 / \cdot ; 6$ bank hal! wipe.
25 contacts $47 / 6$. P.P. $3 / 6$. TIRELERS SET 6 .
WIRELEES sET No. 38 A.P.V. Preq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{m}$. Wirk. Ing range
Includes power supply sib.-and spare valves and vibrator als ank aerial with hase. \&7 per pair or 23100 single. P.P.25/-. FINAL END SELECTORS. Relayn. various callern, also 10
Recelvera in atock. All for callery only, 23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

## The RADIO AMATEURS HANDBOOK 45/-

1969 ED. by A.R.R.L. Postage 4/6 Radio Communication Handbook by R.S.G.B 63/-. P. \& P. 4/6.
F.E.T. Prjnciples, Experiments and Prolects by Noll. 40/- P. \& P. 2/-
49 Easy Transistor Projects by Brown. 16/a P. \& P.

Practical Power Supply Circuits, both valve and transistors, by Shields. 24/-. P. \& P. 1/4.
Basic Theory and Application of Transistors new ed., by U.S. Army. 14/6. P. \& P. I/6.
Designers' Guide to British Transistors by Kampel. 25/-. P, \& P, 1/6.
Practical Oscilloscope Handbook by Turner 25/-. P. \& P. 1/6.
Silicon-Controlled Rectifiers by Lytel. 21/= P. \& P. 1/6

Audio Amplifiers, new ed., by Davies. $10 / 6$. . \& P. 1/-.
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

WW-147 FOR FURTHER DETAILS

BEST PRICES• BEST PRICES• BEST PRICES• BEST PRICES

## SELL"widA

THE LARGEST AND BEST BUYERS IN THE COUNTRY UNITED ELECTRONIGS LTD

* Best Prices *Prompt Settlement
* Immediate Spot Offers * Fast Collection We buy
PLUGS AND SOCKETS-MOTORS-TRANSISTORS-VALVES-RESISTORS-CAPACITORS POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC Any quantities considered. Send lists of goods available. DON'T DELAY-contact Mr. Astor or Mr. Kahn -

UNITED ELECTRONICS LTD
12-14 WHITFIELO ST.. LONOON. W.I. Tal: 01-580 4532. 01.580 1116. 01.636 5151. Telex: 27931

## TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:

- RADIO/TV ENG. \& SERVICING

AUDIO FREQUENCY
CLOSED CIRCUIT TV
ELECTRONICS-many new courses ELECTRONIC MAINTENANCE
INSTRUMENTATION AND SERVOMECHANISMS
COMPUTERS
PRACTICAL RADIO (with kits)
PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS

Guaranteed Coaching for:
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Cert.
Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy
General Certificate of Education

| Start today - the ICS way <br> INTERNATIONAL <br> CORRESPONDENCE SCHOOLS <br> Dept. 230 Parkgate Rd., London, S.W.ll. <br> Please send FREE book on |
| :---: |
| Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
| Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
| . 4.69 |

WW-148 FOR FURTHER DETAILS

## ALL GOODS GUARANTEED

## CONVERTOR/BATTERYCHARGER. Input 12

 D.C. Output 240 v. $50 \mathrm{c} / \mathrm{s}$. 170 wate max. Input 240 v . $50 \mathrm{c} / \mathrm{s}$., output 12 v .5 amp D.C. Fully fused with indicator lamps. Size $9 \frac{1}{2} \times 10 \times 4$ in. Weighe 19 lbs . An extremery compact unit that will give many years reliable service, suppliedE4/10/\%. P. \& P. $15 / \mathrm{extra}$.
As above fully serviceab
soiled exterior cases, \&3. P. \& P. 15/- extra.
DISTRIBUTED WIDE BAND AMPLIFIERS Various cypes, e.g. E.M.I. cype 2C complete with power unit. Frequency range $50 \mathrm{c} / \mathrm{s}$. to $100 \mathrm{mc} / \mathrm{s}$. gain of 12 . $68 / 10 /-$ P. \& P. $f 1$ extra
DEKATRON SCALERS/JMERS. Various models from C6-612
RATEMETERS. Various type
without E.H.T. power supplies.
DEKATRON COUNTER eubes eype GCIOB 10/ each.
G.M. TUBES. Brand New. G24/G38/G60 at 35/ each. G53/I at 68 each.
SOLARTRON stab. P.U. type AS5 16300 v. 50 mA ., 63/10/-: AS517 300 v. 100 mA . 66 . P. \& P. $10 /$ extra TRANSISTOR OSCILLATOR. Variable frequency D.C. input. Size $1 \frac{1}{1} \times$ itin. Not encapsulated D.C. input. Size $11 \times 1 t \times$
Brand new. Boxed. $11 / 6$ each.

VENER encapsulated "filp-flop"
VENER encapsulaced "ip-flop" type TS.2A. Com
MULLARD pot cores type LAI, 8/6 ea. (brand new boxed).
TIMER UNIT consisting of standard mains input ransformer 200/240 v. 50 cycle; output 18 v. 4 amp (conservative); GEC bridge rectifier; decachable accu rate I sec. timer sub-chassis with transistor STC type TS2. $2 \times 12$ AU7; one 500 ohm relay heavy ducy con $10 \times 10 \times$ lacts 2 make; lamps, fuse, switch etc., ecc., in case size $10 \times 10 \times$ sin. Ideal for batcery charger, one second timer, transistor power supply, etc.
FAST NEUTRON MONITORS Each. P.P. 15/ 1262B). Complete with new set of Mallory cells and carrying harness. $£ 10$ only. P. \& P. 10/-
OSCILLOSCOPESEST GEAR
OSCILLOSCOPES. Cossor DB 1035 £20; 1049 $£ 30$ CT53 SIGNAL GENERATOR
charts f 15 . With made-up charts $\mathbf{6 7} / 10 /$. Carr $15 /$ All in good working order and complete with leads AIRMEC Valve millivoltmeter 784. 6in. rectangular 200 micro amp. meter calibrated - 10 db to +10 db and 0.10 mv .; range $-40 \mathrm{db} / \times 1 ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100$ C8. Carriage 15/-
CT49 A UDIO
CT49 A UDIO FREQUENCY METER fre. range $450 \mathrm{c} / \mathrm{s}$. to $22 \mathrm{ke} / \mathrm{s}$., direcely calibrated. Power supply
$7.5-22$ v. D.C. $\mathrm{f} / 10 / \mathrm{m}$. Carr. $15 /=$ (in original carton).
SOLARTRON DOUBLE BEAM OSCILLOSCOPE CD7IIS.2. Tested and in first class condition. 655.
SOLARTRON PULSE GENERATOR type
OPS 100C. $£ 35$.
PLESSEY PLUGS \& SOCKETS Mk. IV 2way Brand New $10 / 6$ pr. Cleaned ex-eq. $7 / 6$ 4 way Brand New 10/6 pr. Cleaned ex-eq. $7 / 6$ pr 6 way Brand New 12/6 pr. Cleaned ex-eq. $7 / 6 \mathrm{pr}$ 12 way
Coax.
Coax. Brand New $7 / 6$ pr. Cleaned ex-eq. 5/-pr.
RELAYS
3,000 Serles 5 k/ohms, 2 pole make H.D. contaets 2/6 each
S.T.C. sealed 2 pole co. 48 V . only. Complete with base 0 each.

COURTENAY TIMER unit. Accurate 1 sec. timer variable mark space ratio. Input $12 \mathrm{~V} A C$ or $D C$ Heavy duty relay contaces to switch external equip ment e.g. flashing lights. Chassis mounting size $6 \times 31 \times 3 \mathrm{in}$. Tested with circuit diagram. 22/6 each SELENIUM RECTIFIERS
Double bridge $12 v_{0} 6$ amps continuous rating. Size $3 i \times 3 i \times 2 \mathrm{tin} .99$ plate, $8 / 6$ each.
Quad bridge 12 v . 12 amps consinuous rating. $21 /$ EHT RECTIFIERS. Brand New. T36 EHT $20-3 / 6$ ea. TI6 HT 80- $6 / 6$ ea. T36 EHT $80-6 / 6$ ea. T36 EHT 240 DIODES
DIODES new CV448/425, $1 /$ - each
and 12 v . I amp. Separate windings $13 / 6$ vact 6 amp 12 amps at 63 each.
GARDNERS Neptune series. Brand new. 460-435-$410-0-410-435.460,230 \mathrm{~mA} .600-570-540-540-0-570-600$ v. 250 mA . Two separate windings. $63 / 10 / \mathrm{-}$

PHOTOCELLS equivalent to OCP71 $3 / 6$ each. METROSILS. Ideal pulse suppression, 2/- each E.H.T. CONDENSERS. 7.5 kV . working. 0.1 mfd , $5 / 6$ each: $0.25 \mathrm{~m} / \mathrm{d} 8 / 6$ each.
Brand New 5 kr working $2 \mathrm{mfd} 22 / 6$ ea; $0.25 \mathrm{mfd} 10 / 6 \mathrm{ea}$ VISCONOL EHT Condensers. Brand New $0.0158 \mathrm{Kr} 6 / 6$ each. $0.00215 \mathrm{Kv} 8 / 6 \mathrm{ea}$. $0.012 \mathrm{Kv} 5 / \mathrm{e} \mathrm{ea}$. $000525 \mathrm{Kr} 16 /-\mathrm{ea}$
with solder tag connections.
Chassis mounting, clip in IVidor VII $1 / 9 \mathrm{ea}$.
Panel mounting i-Vidor VII battery $1 / 9 \mathrm{ea}$.
$2 / 9 \mathrm{ca}$.
$3 / 6 \mathrm{ea}$.
BËLLING" \& LEE i'o pin plug/socket. $3 / 6$ each
Cash with order.
Pose paid over 10/-

## CHILTMEAD LTD.

22, Sun Street, Reading, Berks.
Of Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 ( $9 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$.)
 T.R. G.D.X./20.C Brand new fully transistorised and fully portable Communications Recelver. Epecifications: 4 complete muges $550 \mathrm{~K} / \mathrm{ca}$. to $30 \mathrm{M} / \mathrm{ca}$. covering all ammeur bande, shipping and trawler bands, and broudeast band. A highly efliclent double tuned auperhet, comprising $\mathrm{B} / \mathrm{P}$ aeria tuning section, A.Y.C. and built in B.F.O. tor C.W. of s8B reception. Ideal for fixed or mobile reception. With speaker and headphone output. Hammer flaished robus ateel case of pleaning modern denign. Size approx $9 \times 7 \times 6 \mathrm{in}$. Brtinh manufacture. Due to bulk purchastng wo can offer these excellent receivers at leas than half thelr nornal worth. Complete with handbook £16.10.0. carriage and infurance $15 / \cdot$. Headphones if required $17 / 6$ extra $2 / 6$ p.p.
 MILL STREET, LEEDS, 9


WW-149 FOR FURTHER DETAILS

## SURPLUS HANDBOOKS <br> 19 set Circuit and Noten 1155 set Circult and Notes <br> | H.R.O. Technidal Instruction |
| :--- |
| 38 |
| 8 | <br> 46 set Working Instructions <br> 88 set Technical 1nstruction BC. 221 Chreult and Notes <br> BC. 221 Clircult and Notes Wavemeter Cass D Tech. I <br> 18 set Clrcuit and Notea <br> BC. 1000 (31 set) Clicult and Notes <br> RR. 107 Circuit and Notes <br> AR.88D Inatruction Manua <br> B2 set Circuit and Notea Circult Diagram <br>  <br>  <br> 52 set Bender and Receiver circuila $7 / 6$ pont fre Reaintor Colour Code Indicator $2 / 6$ p/p <br> 8.A.E. with ali enquirles please. Postage rates apply to U.K. only, <br> INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WW-150 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.

MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c covered Wire 7/0048, 7/0076, 14/0076 etc P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

## J. Black

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 08-203 3033

## EXCLUSIVE OFFERS

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH X 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
double sided cabinets
having the following unique features

the cabinete will takre rack panial
both aides, that botb asden, that hat
buek and
front and hay ar
anilled and tapped all the way down
overy tin. for thi purpose.
$\star$ Fittod "Inasiantit iady adjuatabie rater panel mount
both rertically and horizontally pack panela to b receaped it denired the inatance, if the panels are
fitted with profeecing compo-
nentig and it it desired to enclo

- All edges and corners rounded.

All intarior attinga, tropicalised and ruat prooled and passrated
Badtrin Cable Ducto-semovable.
\&Built-in Blower Dactu-removable
$\star$ Ventilated and innect prooled tope.
$\star$ Detachable aide pariels.

* Full lenath instantly detachable doora
bolto availa ble if ordered with cabinets.

Made in California, U.S.A., cont the American Govera ment 2107 before deraluation.
Finimhed in grey primer and almost new condition
OUR PRICE £26 10 O
(Carriage extra).
(Full leagth doorn e5 each extra).
You do not require doors if you are going to mount panels tront and back and do not with to enclose them.

## 40-page liat of over l.000 diferent ltems in atock

 available-keed one by gou.Computer Tape Recorder Reproducert of hirbent quality six speeds, in 6 tt. Cablinets-full details and price on request.

P. HARRIS

## SWANCO PRODUCTSLTD.

ganap AMATEUR RADIO SPECIALISTS


Many ltema in stock, lacluding: Eddystone $870 /$ A, $840 \mathrm{C}, \mathrm{B} .40$, AR88D, AR88LF, HRO, H209, BR550, 9R59, DX4OU, VFO-1U, DX100U, LG300, LO50, Panda Cub, KW Vauguard, Imayette Starlite, etc. Your enquiries, plesse.
Full service facilities-Receivers re-aligned, Tranamalters

## SWANCO PRODUCTSLTD.

Dept. W 247 Humber Avenue COVENTRY

Telephone:

Hours: Mon. Tues., Wed., Fri., Sz Coventry 22714 Thurs. $9 \mathrm{a} . \mathrm{m}$. to 12 noon

## GOVT. RLUS

This wseful handbook gives detailed information and circuit diagrams for British and American Government surplus Receivers. Transmitters and Test equipment. etc.. also contained are some suggested modification details and improvements for the equipment. Incorporat ed in this revised edition is a surplus/commercial cross eference valve and transistor guide. This book is invaluable to Radio Clubs, Universities and Laboratories. Latest edition priced at 35/. per volume plus 5/- p \& p. Only obtainable from us at:

GILTEXTLTD.,
24, Stansfield Chambers.
St. George Street
LEEDS, 1.

## WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

## GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriors 9432
Agents for Ampex, Akai, Ferrograph, Tandberg. Bryan, Brenell, B. \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual Decca, Record Housing. Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

## GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new

## 6d. stamp for catalogue

F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

## WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

## THE DESIGNER'S GUIDE TO BRITISH TRANSISTORS

## Comprehensive ratings, characteristics

 and test conditions of more than a thousand transistors. Comprehensive Equivalents List of II manufacturers by I. J. KampelPrice 25/-
Postage 1/-
TAPE RECORDER SERVICING MANUAL by H. W. Hellyer. 63/-. Postage 3/6.
THE ELECTRONIC MUSICAL INSTRUMENT MANUAL by Alan Douglas. 55/-. Postage 1/-
FEEDBACK CONTROL THEORY
FOR ENGINEERS by P. Atkinson.
50/-. Postage 1/-.
TRANSISTORS FOR AUDIO. FREQUENCY by G. Fontaine. 78/-. Postage $2 / 6$.
TRANSISTOR SERVICING GUIDE by R.C.A. 35/-. Postage 1/-
JUNCTION TRANSISTOR CIRCUIT ANALYSIS by S. S. Hakim. 45/-. Postage 2 /
HI-FI IN THE HOME by John Crabbe. 40/-. Postage $2 / 6$.
SCR MANUAL by G.E. Company. $25 /$-. Postage $2 /$.

NEW CATALOGUE 2/-

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sot. 1 D.m
WW-151 FOR FURTHER DETAILS

## OSMABET LTD.

WE MAKE TRANSFORMERS AMONGST OTHER THINGB

AUTO TRANSFORMERS. $0.110-200-220-240$ N. a.c. up or down tuily shrouded, Atted terminal blockn, 50 . $25 /=$ i 75 w. $32 / 8$ $100 /-500 \mathrm{w} .115 /-; 600 \mathrm{w}$. $125 /-; 1,000 \mathrm{w} .180 / \mathrm{F}-1,500 \mathrm{w}$ $300 /-; 2,000$ w. $400 /-; 3,000 \mathrm{w}$. $500 /-4,000 \mathrm{w}, 600 / \mathrm{l}$. | MAINS ISOLATION TRANSFORMERS. Input 200- |
| :--- |
| 1: 1 ratlo, $100 \mathrm{w} ..80 / \cdot: 200 \mathrm{w} .130 /-; 500 \mathrm{w} .290 / \cdot$ |

MANS TRANSFORMERS. Input 200-240 t.a.c. TX1, $425-0$ - 425

 $65 \mathrm{Ma}, 6.3$ v. 1.5 а., 22/6; MT2, 230 v. 45 Ma. 6.3 v. 1.b a., 21/ INSTRUMENT TRANSPORMERS. Prim 200/250 v. A.c., OMT/
 0 MT / /5, Tapped aec., $40-50-80-80-90-100-110 \mathrm{~T}$. giving, $10-20-3$ \$0-0.50 v. a.c. 1 amp 60/-
heater transformers. Prim 200/250 v. a.c. 6.s v. 1.5 a.


MIDOET MAINS TRANSFORMER. F.W, rectiacation, alze

COLOUR TELEVISION WW; as specifed, choke LL, 60/-; transiormer Tl, 57/6. Field Output Transformer 60/-
OUTPUT TRANSFORMERS, Mullard $5 / 10$. ULL G0/-; 7 watt

 $65 /-9$
$10 / 6$.
CHOKES. Inductance 10 R , $65 \mathrm{Ma}$. 20/-; $85 \mathrm{Ma}, 12 / 6 ; 150 \mathrm{Mb}$, 21/-; flying leads, clamp construction.
Carriake extra all transformera from $3 /$ fid, each.
BATTERY ELIMMATORS. PP0, 200/230 v. B.c., 9 r.d.c. 180 Ma 45/-, PP3, ditto, 15 Ma, 17/6, p. \& p. 2/6d.
floorescent lt lightima. Input, 6, 12, 24 v. d.c., range
BULE TAPE ERABER. 200/250 v , ate., sultable any size apooi, 42/6. R. © P. a/:
LOUDSPEAKERS. New stock, famoum make, 3 or 15 ohrnk, LOUDSPEAKERS. Ex equipment, perfect. Elac, Goodmana,

s.a.e. all enuuirles, please. Mail order only 46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel: 01-9589314

## Thanks to a bulk purchase we can offer <br> BRAND NEW <br> P．V．C．POLYESTER \＆MYLAR RECORDING TAPES

Manufactured by the world－famous reputable British tape firm，our tapes are boxed in polyzhene and have fiteed leaders，etc．Their quality is as good as any other on the market，in no way are the tapes faulty and are not to be confused with imported，used or sub－standard tapes．24－hour despatch service．

Should goods not meet with full approval，purchase price and postage will be refunded．

S．P．$\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} . & 2 / \mathrm{F} & 5 \mathrm{in} . & 600 \mathrm{ft} . & 6 / \% \\ 5 \text { 米 } \mathrm{in} . & 900 \mathrm{ft} . & 8 / \% & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 / \%\end{array}\right.$
L．P．$\left\{\begin{array}{llllll}3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} . & 8 / 6 \\ 51 \mathrm{in} . & 1,200 \mathrm{ft} . & 10 / \mathrm{l} & 7 \mathrm{in} . & 1,800 \mathrm{ft} . & 13 / .\end{array}\right.$
D．P．$\left\{\begin{array}{lllll}3 \mathrm{in} . & 350 \mathrm{ft} & 4 / 6 & \text { Sin．} & 1,200 \mathrm{ft} . \\ 5 \text { 弪in．} & 1,800 \mathrm{fe} . & 16 / \mathrm{m} & 7 \mathrm{in} . & 2,400 \mathrm{ft} . \\ 20 /-\end{array}\right.$
Postage on all orders $1 / 6$

## COMPACT TAPE CASETTES AT HALF PRICE

60,90 ，and 120 minutes playing time，in original plastic library boxes．
MC 60 9／－each．MC 90 12／6 each．MC 120 18／3 each．

## STARMAN TAPES

28 LINKSCROFT AVENUE ASHFORD，MIDDX．

Ashford 53020

WW－153 FOR FURTHER DETAILS

## WE ARE BREAKING UP COMPUTERS

COMPUTOR PANELS（ag 1／6 p．\＆P．Guarinteed min． 35 tratsistors； 25 for $£ 1$ p．de p． $3 / 6$
min． 85 trangistors： 100 for $65 /$ ， min． 85 transistors： 100 for $65 / 9$ ； 1.000 for $£ 30+$ cart．

SPECIAL OFFER： 500 TO18 transistors on bosrds for $64+$ 4／6 D．\＆ D ．
POWER TRANSISTORS sim．
 to 2N174．

PANELS with 2 nower transistors aim．to OC28 on each board + components． 2 boards（ $4 \times 0 \mathrm{O} 28$ ） 10／－p．\＆p． $2 /$
OVERLOAD CUT OUTS．Panel mounting in the followlig valuea 5／－each ：2，3，4，5，7， 8 amp．
TRANSISTOR COOLERS TOS．7／6 doz． MINIATURE GLASS NEONS． $12 / 6 \mathrm{doz}$ ．

150 PIV． 10 amp．BRIDGE RECTIFIERS on
FINNED HEAT SINK． $12 / .+2 /$. p．$\&$ ，ea．
LONG ARM TOGGLE SWITCHES．EX，eqpt． 8PST $13 / 6 \mathrm{doz}$ ．DPST $15 /=$ doz．P．\＆$p$ ．shl type 2／－doz．
LARGE CAPACITY ELECTROLYTICS
4 in． 2 in ．dium．Screw terminals．
Ali at $6 /-$ each $+1 / 6$ each $p$ ． p ．
1.500 mF each $+1 / 6$ each $p$ ．\＆
$4.000 \mathrm{mF} \quad 72 \mathrm{~V}$ d．c． wky ．
$6.6003 \mathrm{mF} \quad 45 \mathrm{~V}$ d．c． $\mathbf{w k g}$ ．
16.000 mF

12 V d．c．wk．
KEYTRONICS． 52 Earls Court Road． London．W．8．

Mail order only．
an even better buy at 35／－ EXTRACTOR／BLOWER FANS
 2800 R．${ }^{\prime}$ M． 200
each．P．\＆D． $5 / 6$ ．

## WE PURCHASE

COMPUTORS TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT．
PLUGS AND SOCKETS，MOTORS，TRAN－ SISTORS，VALVES AND KLYSTRONS， RESISTORS，CAPACITORS，POTENTIO－ METERS，TEST EQUIPMENT，RELAYS TRANSFORMERS，METERS，CA＇BLES，ETC． PROMPT PAYMENT \＆COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED
8，BROADFIELDS AVENUE，EDGWARE， MIDDLESEX． TEL．01－958 9842

## PRINTED CIRCUITS <br> Small quantities are not expensive，we have

 full artwork and assembly facilities．Let us quote you for any quantity．
OFRECT
ELECTRONIC SYSTEMS LTD． Hookstone Park，Harrogate
Harrogate 85258

WW－154 FOR FURTHER DETAILS

吥包PRINTED CIRCUITS
and electronic equipment manufacturers Large and small quantities Full design and Prototype Service and Assemblies at Reasonable Prices．

Let us solve your problems
K．J．BENTLEY \＆PARTNERS
18 GREENACRES ROAD．OLDHAM Tel：061－6240939

## AMERICAN

TEST ANO COMMUNICATIONS EQUIPMENT $\star$ General Catalogue an／103 $1 / \mathrm{*}$ Manuals offered for most U．S．equipments
SUTTON ELECTRONICS
Salthouse，Nr．Holt，Nortolk．Cley 289

## DAMAGED METER？

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L．Glaser \＆Co．Ltd． We specialise in the repair of all types and makes of INSTRUMENT $\begin{gathered}\text { ammeters，Mumetirange Test } \\ \text { Meters，Electrical Thermometers，}\end{gathered}$ REPAIRS $\quad \begin{aligned} & \text { Recording Instruments，Leak } \\ & \text { Detectors，Temp．Controllers，all }\end{aligned}$ Detectors，Temp．Controllers，all
types Bridges \＆Insulation Testers，etc．
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry．For prompt estimate and speedy delivery send defective instruments by registered post，or write to Dept．W．W．：－

L．GLASER \＆CO．LTD．
1－3 Berry Street，London，E．C． 1
Tel．：Clerkenwell $5481-2$

## SEMICONDUCTORS BRAND NEW AND FULLY GUARANTEED

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN914 | 2／－ | 2N3054 | 15 | BCY34 | 4／61 | BSY29 | 6 |
| 1N916 | $1 / 6$ | 2N305S | 15／－ | BCY38 | 5／6 | BSY38 | 16 |
| 15010 | 3／－ | 2N3702 | 41－ | BCY 39 | 66 | BSY39 | 4／6 |
| 15020 | 3／6 | 2N3703 | 4／6 | BCY40 | 716 | BSY40 | 5／6 |
| 15021 | $4 /-$ | 2N3704 | 5／6 | BCY42 | 66 | B5Y51 | 10／6 |
| 15025 | $5 /-$ | 2 N 3705 | 416 | BCY43 | $6 / 6$ | BSY52 | $10 / 6$ |
| 15113 | 3 | 2N3706 | $4 / 6$ | BCY54 | 7／6 | BSY53 | 9／6 |
| 15120 | $2 / 6$ | 2N3707 | 4／－ | BCY70 | $5 / 6$ | BSYS4 | 10／8 |
| 15130 | 2／6 | 2N3708 |  | BCY7 | $9 / 6$ | BSY78 | $9 / 6$ |
| 15131 | $2 / 6$ | 2 N 3709 | 4／－ | BCY72 | 5／－ | BSr79 | $9 / 6$ |
| 15132 | $2 / 6$ | 2N3710 | 4／6 | BCZ10 | 4／6 | BSY95A | 3／6 |
| 2G301 | 4／－ | 2N3711 | 4／－ | BCZ11 | $4 / 6$ | BY100 | $4 / 6$ |
| 2G302 | 4／－ | 2 N 3819 | 101－ | 8D121 | 19／6 | BYX10 | 5／6 |
| 2 G 303 | 4／－ | 2N3820 | 23／6 | BO123 | 23／6 | BYZ10 | － |
| 2G371 | 3／－ | 2N4058 | 6／6 | 8D124 | 17／－ | BYZ11 | 7／6 |
| 2N696 | 5／－ | 2N4059 |  | BFIIS | 4／6 | BYZ12 | 6／－ |
| 2N697 | 51 | 2N4060 | 5／－ | BF117 | 10／6 | BYZ13 | 5／－ |
| 2N698 | 4／6 | 2 N 4061 |  | BF167 | $6 / 6$ | GET103 | 5／－ |
| 2N706 | 3 | 2N4062 | 56 | BF173 | 716 | GET113 |  |
| 2N706A | $3 /$ | 2N4254 | $9 / 6$ | BFl80 | $8 / 6$ | MPF102 | 8／6 |
| 2N708 | 4／－ | 2N4255 | $8 / 6$ | BF｜81 | $8 / 6$ | MPFF103 | 7／－ |
| 2N929 | 5／6 | AAZ13 | 2 | BFIB4 | $7 / 6$ | MPF104 | 716 |
| 2N930 | $6 / 6$ | AAZ15 | 2／6 | BFI94 | $6 / 6$ | MPFI05 | 8／－ |
| 2 N 1131 | $9 / 6$ | AAZ17 | 2／6 | BF224 | 6／6 | NKT216 | 10／6 |
| 2N1132 | $9 / 6$ | ACl07 | 6／－ | BF225 | $6 / 6$ | NKT217 | 8／6 |
| 2N1302 | 4／6 | ACl26 |  | BF237 | 6／6 | NKT261 | $4 / 6$ |
| 2N1303 | 4／6 | AC127 | 3／－ | BF238 | 6／6 | NKT262 | 416 |
| $2 \mathrm{~N} / 304$ | 5／6 | AC128 | 4／－ | BFW57 | $7 / 6$ | NKT264 | $4 / 6$ |
| $2 \mathrm{~N} / 305$ | $5 / 6$ | AC176 | $61-$ | BFW58 | $7 / 6$ | NKT271 | 4／6 |
| 2N1306 | 6／6 | AC187 | 12／－ | BFW59 | 6／6 | NKT272 | 4／6 |
| 2N1307 | $6 / 6$ | ${ }^{\text {A Cl }} 88$ | 12／－ | BFW60 | 6／6 | NKT274 | 4／6 |
| 2N1308 | 8 | ACY17 | 5／－ | BF×12 | $5 / 6$ | NKT275 | 4／6 |
| 2 N 1309 | 8 8－ | ACYIB | 5／－ | BFX13 | $5 / 6$ | NKT281 | 5／6 |
| 2N1507 | 5／6 | ACY19 | 5／－ | BF×29 | 12／6 | NKT403 | 15／－ |
| 2 N 1613 | $6 / 6$ | ACY20 | 4／－ | BF $\times 30$ | 15／－ | NKT404 | 12／6 |
| 2 N 1711 | 6／6 | ACY21 | 5／－ | BFX35 | 19／6 | NKT405 | 15／－ |
| 2N1889 | 8／－ | ACY22 |  | BFX43 | 8／6 | NKT613 | 6／6 |
| 2N1893 | 8 8／ | ACY28 | 4／－ | 8F×68 | 13／8 | NK 6874 |  |
| 2N2102 | 13／6 | ADI40 | 8 ／－ | BFX68A | 14／6 | NKT677 | 5／－ |
| 2N2147 | $17 / 6$ | ADI49 | 8／－ | BFX84 | $8 /$ | NKT713 | 5／6 |
| 2 N 2148 | 12／6 | ADIsi | $7 / 6$ | BFX85 | 10／ | NKT773 | 5／6 |
| 2N2160 | 14／6 | AD162 | 7／6 | BFX86 | $8 /-$ | NKT781 | 6／－ |
| 2 N 2193 | 5／6 | AFI14 | 5／－ | BFX87 | 10／－ | NKT801 |  |
| 2N2193A | 5／6 | AFII6 | S／－ | BFX88 | 5／－ |  | 15／6 |
| 2N2194A | 5／6 | AFli | 5／－ | BFX92A | 12，6 | NKT80 |  |
| 2N2217 | 6／－ | AFI24 | 5／－ | BFX93A | 15／－ |  | 19／6 |
| 2N2218 | 6／－ | AF127 | 5／－ | BFY10 | $4 / 6$ | NK |  |
| 2N2219 | 6／－ | AFlai | 6／6 | BFYII | 1／6 | NKTool | 22／6 |
| 2N2220 | 5／－ | AFl 86 | 11／－ | BFYI7 | 4／6 | OAS | 2／6 |
| 2N2221 | 5／－ | AF239 | 12／－ | BFYI8 | 4／6 | OA9 | 2／－ |
| 2 N 2287 | 21／6 | AFZ 12 | 5／6 | BFY19 | $4 / 6$ | OA70 | 1／6 |
| 2N2722 | $5 /-$ | ASY26 | 4／6 | BFY41 | 10／－ | OA73 | 2／－ |
| 2N2368 | 6／6 | ASY27 | $8 / 6$ | BFY43 | 13／6 | OA79 | 1／9 |
| 2N2369 | 76 | ASY28 | $6 / 6$ | BFY50 | 4／6 | OABI | 1／6 |
| 2N2369A | 5／－ | ASY29 | $4 / 6$ | BFY51 | 4／6 | OAB5 | 2／－ |
| 2N2539 | $4 / 6$ | ASYS2 | 11／9 | BFY 52 | 4／6 | OA90 | 2／－ |
| 2N2540 | 4／6 | ASZ20 | 7／6 | BFY56 | 10／－ | OA91 | 1／6 |
| 2N2646 | 116 | AsZ21 | 4／6 | BFY56A | 11／6 | O495 | 1／6 |
| 2N2696 | 6／6 | BAX13 | $2 / 6$ | BFY76 | $9 / 6$ | OA200 | 2／－ |
| 2N2904 | 8／－ | BAXI6 | 219 | BFY77 | 11／6 | OA202 | 2／－ |
| 2N2904A | 8／－ | BAY31 | 2／6 | BFY90 | 12／6 | OC26 | 5／6 |
| 2N2905 | 8／－ | BAY38 | 3／6 | 85 $\times 19$ | 5／6 | ${ }^{\circ} \mathrm{C} 28$ | 5／6 |
| 2N290SA | 8／－ | BC107 | 3／6 | BS $\times 20$ | 5／6 | $\bigcirc{ }^{\circ} \mathrm{C} 35$ | $5 / 6$ |
| 2N2906 | 8／－ | BCIOB | 3／6 | 85 $\times 21$ | 5 | OC36 | 5／6 |
| 2N2906A | 8／－ | BC109 | 3／6 | BS $\times 26$ | 10／8 | $0 \mathrm{OC4}$ | 3／－ |
| 2N2907 | 8／－ | BCl13 | 6／6 | BS $\times 27$ | 10／6 | OC45 | 2／6 |
| 2N2907A | 8／－ | 8 Cl 18 |  | B5 $\times 28$ | 6／－ | $\bigcirc \mathrm{OC71}$ | $2 / 6$ |
| 2N2923 | 5／－ | BCi25 | 13／6 | BS $\times 29$ | 10／6 | OC72 | $2 / 6$ |
| 2N2924 | 5／－ | BC147 | 5／－ | BS $\times 60$ | 19／6 | OC75 | 4／6 |
| 2N2925 | 5／6 | BCl48 | $4 / 6$ | B5 $\times 61$ | 12／6 | OC81 | 4／－ |
| 2N2926 |  | BCl49 | 5／－ | BS $\times 76$ | $4 / 6$ | OCBID | 3／－ |
| ＂Green | 3／6 | BC182 | $4 / 6$ | 8S $\times 77$ | 81 | $\mathrm{O}^{\circ} \mathrm{C} 83$ | 4／6 |
| ＂Yellow | 3／3 | BCi83 |  | BS $\times 78$ | $8 /-$ | OC139 | 6／6 |
| Oran |  | BC184 | $4 / 6$ | BSYio | 5／6 | OC140 | 6／6 |
| Red | 2／9 | BCY30 | $7 / 6$ | BSYH | 5／6 | －C200 | 5／6 |
|  | $2 / 6$ | BCY31 | 4／6 | BSY26 |  | －C201 | 5／6 |
| 2N301！ | 5／－ | BCY32 | 5／6 | 8SY27 | 4／－ | $\bigcirc$ | 8／6 |
| 2N3053 | 1 | BCY33 | 3／6 | BSY28 |  | P 36 | 5／6 |

SPEAKERS（ 3 ohm ）


## THYRISTORS

1 AMP： 50 V 5／， $100 \mathrm{~V} 5 / 6,200 \mathrm{~V} 7 / 6,400 \mathrm{~V} 9 / 6$.
3 AMP： 50 V ／i， $100 \mathrm{~V} 7 / 6,200 \mathrm{~V} 8 /-, 300 \mathrm{~V} 9 /-, 400 \mathrm{~V} 10 / 6$. Equivalent BYT 91／100R 15／－each．

## ZENERS

1 WATT $10 \%$ 2．7－33V 4／6 I WATT 5\％I．R．3．3－20V．7／6
400 M／W 5\％STC 3．3－30 S／－

| Fairchild |  |
| :--- | :--- |
| L900 | $11 /-$ |
| L914 | $11 /$ |
| L923 | $14 /=$ |


| R．C．A．INTEGRATEDCIRCUITS |  |  | | |
|---|---|---|---|---|
| CA $300530 \%$ | $\begin{aligned} & \text { CA3014 30/- } \\ & \text { CA AO18 30/- } \\ & \text { CA3019 276 } \\ & \text { CA3020 27/- } \end{aligned}$ | $\begin{aligned} & \text { CA3021 42/6 } \\ & \text { CA3023 32/6 } \\ & \text { CA3036 20/- } \end{aligned}$ |
| CA301120－ |  |  |
| CA3012 25／－ |  |  |
| CA3013 30／－ |  |  |
| DATA SHEETS | CA3020 27／－ | 2／－per |
| Presets std．，horiz．or vert． |  | 1／6 |
| Potentiometers，Log／Lin |  | 3／3 each |
| Silvered Micas， | －820pf． | 1／2 |
| up to 2000 p．f． |  |  |
| Min．Electrolytics，MFD／VOLTS． |  |  |
| $50 / 15$ 100／15 100／12 $30 / 10$ 80／6．4 $25 / 6.4100 / 6 \quad 320 / 10$ |  |  |
|  |  |  |  |  |
| $\begin{array}{lllll}125 / 4 & 40 / 16 & 64 / 25 & 250 / 12 & 25 / 25 \\ 50 / 25 & 25 / 50 & 1 / 6 & \text { each．}\end{array}$ |  |  |
|  |  |  |  |  |
| $\begin{array}{lll}\text { cel } \\ 100 / 25-2 /- & 4 / 40=1 / 9 & 1000 / 25=5 / 9\end{array}$ |  |  |
| $50 / 50-2 /-\quad 1000 / 12=3 / 9 \quad 500 / 6=2 / 6 \quad 500 / 50=4 / 9$ |  |  |
| 250／25－2／ $500 / 25=3 / 9 \quad 250 / 50=3 / 0$. |  |  |
| VEROBOARD RESISTOR |  |  |
|  |  |  |  |  |
| $31^{\circ} \times 21^{\circ} \times 3 / 6$ \％wate $10 \%, 4 \mathrm{~d}$ |  |  |
| $38^{*} \times 310^{* / 3}$ |  |  |
| $31^{\circ} \times 5^{\circ} .5 / 6 \quad 3$ watt， $1 / 6$ |  |  |
|  |  |  |  |  |
| $17^{\circ} \times 3!^{\circ}, 16 / \mathrm{m}$ |  |  |
| $5^{\circ} \times 21^{\circ}, 4 / 3$ |  |  |

SEND Gd．STAMP FOR CATALOGUE

## A．MARSHALL \＆SON

（LONDON）LTD．
28 CRICKLEWOOD BROADWAY， LONDON，N．W． 2
$01-4520161 / 2 / 3$
CALLERS WELCOME

## HILH-GRADECOMPUTERYYTICS

## BY <br> SPRAGUE : MALLORY

$2,000 \mu \mathrm{~F} \quad 50 \mathrm{~V} 4 \times 2$ in. $10 /=$
$3,000 \mu \mathrm{~F} \quad 55 \mathrm{~V} 4 \times 2 \mathrm{in} .10 /-$
$4,000 \mu \mathrm{~F} \quad 30 \mathrm{~V} 4 \frac{1}{2} \mathrm{x}$. $1 \frac{3}{8} \mathrm{in}$. 10/-
$7,200 \mu \mathrm{~F}$ 40V $4 \frac{1}{2} x$ in. 10/-
$10,000 \mu \mathrm{~F} \quad 6 \mathrm{~V} 3 \times 1 \frac{3}{8} \mathrm{in}$. 6/-
$10,000 \mu \mathrm{~F} \quad 15 \mathrm{~V} 4 \times 2 \mathrm{in} .8 /-$
$10,000 \mu \mathrm{~F}$ 33V $4 \times 2 \mathrm{in} .10 /-$
$12,500 \mu \mathrm{~F}$ 16V $4 \times 2 \mathrm{in} .10 /-$
$15,500 \mu \mathrm{~F}$ 10V $4 \times 2 \mathrm{in} .10 /-$
$60,000 \mu \mathrm{~F} \quad 8 \mathrm{~V} 4 \frac{1}{2} \times 2 \frac{1}{2}$ in. 10/-
$70,000 \mu \mathrm{~F} \quad 13 \mathrm{~V} 4 \times 3$ in. 12/6
All above have screw terminals Price reductions for bulk quantities
$\frac{1}{2} \mathrm{in}$. Tape $2,400 \mathrm{ft} .800$ B.P.I. tested $\mathbf{£ 1 0 - 0} \mathbf{0}$

Welding Machines ; for dual operation model STI 240 Volts Transformer Discharge Type £125

Siemens Plug-in Relays Type 162B 700 ohms 17/6

Slydlok Fuse Holders 30 amp Type 3034 5/6

5 in. Oscilloscope Tube SE5J/P31 £4-19-6 (Personal shoppers only).

Big selection of miniature and subminiature Electrolytic Condensers from $1 \mu \mathrm{~F} 15 \mathrm{~V}$ to $100 \mu \mathrm{~F} 15 \mathrm{~V}$ @ 1/- over $100 \mu \mathrm{~F} @ 1 / 6$ each.

## CAPACITORS

$268 \mu$ F. 1500 VRMS .. 6/-

## RADIO CLEARANCE (1965) LTD.

27 TOTTENHAM COURT ROAD, LONDON, W.1. Phone 01-636 9188 and 162 HOLLOWAY ROAD, LONDON, N.7. Phone 01-607 7941

## LAWSDN IBRANIDED TELEVISION TUIBES

Complete fitting instructions The continually increasing demand for tubes of the very
are supplied with every tube.

## 12 Types $\{4.10 .0$

$14^{*}$ Types $£ 4.19 .0$ 17" Types $\mathbb{1 7 . 1 9 . 0}$ 19" Types £6.19.0 21 Types £7.15.0 $23^{\prime \prime}$ Types $£ 9.10 .0$
19" Panorama 88.10 .0 23" Panorama \&11.10.0 19" Twin Panel 19.17 .6 23 Twin Panel £12.10.0
Carriage and insurance $12 /$ -
highest performance and reliability is nowo being met by the new Lawoson "Century 99" range of C.RTs
"Century $99^{\prime \prime}$ are absolutely brand new tubes throughout manufactured by Britain's largest C.R.T. mamufacturers. They are guaranteed to give absolutely superb performance soith needle sharp definition screens f the pery latest type giving meximun Contrast and the vary lacs typer gith and light out long life.
"Century 99" are a complete range of tubes in all sizes for all British sets manufactured 1947-1968.

2 YEARS FULL REPLAGEMENT GUARANTEE WW-155 FOR FURTHER DETAILS


LAWSON TUBES

18 GHURGHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

## BAILEY 30 WATT AMPLIFIER

An audibly unbeatable kit as supplied by us to Industry and Govt. Send for free details. 10 Transistors as specified \& Pcb $£ 6.10 .0$ 20 Transistors as specified \& 2 Pcb $£ 12.10 .0$ RI-R27 \& Pot $11 / 6 \quad$ CI-C6 (Mullard) $9 / 6$ Mullard Capacitors $2500 \mathrm{mFd} / 64 \mathrm{vw}$ 15/6 each Finned solid Ali Heatsinks $4 \times 4 \frac{1}{3} \mathrm{in}$. $12 / 6$ each Texas 1B20K20 Bridge Rects 200piv/2a 25/Photostats of May and Nov. articles $8 / 6$ set MOTOROLA/IC STEREO PREAMP ( $0.1 \%$ THD) £3 (As described on page 332 September WW) A. 1 FACTDRS. 72 BLAKE RD.. STAPLEFORD, NOTTS.

## VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC. GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. HEATERS. fREE CATALOGUE.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON,

CRO 2PQ. 01-684-0193

## ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes !"-12 $\frac{1}{2}^{\prime \prime}$ in diameter In our range of 17 Models

Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits


Write for illustrated brochure of our full range with straight or Morse taper $1-4$ or Bitstock shank.

All modets available from stock
AKURATE ENGINEERING CO. LTD.
Cross Lane, Hornsey, London, N. 8
TEL. $01-3482670$
WW-157 FOR FURTHER DETAILS


ECONOMICAL! ACCURATE! RELIABLE!


THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works. Wellington Crescent

New Malden. Surrev (01.942 0334 \& 2988)
WW-158 FOR FURTHER DETAILS

## SPECIAL CLEARANCE OFFER

B.B.C.-2 \& COLOUR TV AERIAL ふin FHHHHH onLr

For loth or root fixing. Complete with mounting arm. State Channel required or nearest transmitter. Hundreds sold. Special low-loss required or nearest transmitter.
co maist rathen $2 / 3 \mathrm{yd}$. Socket 2/6.

SPEAKER BARGAIN!
Famous English $12^{\prime \prime}$ high tux. heavy cone 10 response. 15 ohms (P.\& I. 5/6)

39/6
ELECTRAMA
Dept WW73 WEST STREET, EASTBOURNE

## FOR ALL ENQUIRIES TO WIRELESS WORLD

Please 'phone:
$01-9283333$
EDITORIAL DEPT.
Exf. 3
SPACE DEPT. (DISPLAY)
Exf. 251
CLASSIFIED (SALES) DEPT.
Ext. 538
MAKE-UP AND COPY DEPT.
Exf. 215

BAKER I2in. DE-LUXE MKII LOUDSPEAKER BRITISH MADE THROUGHOUT Suitable for any hi-fi system.
Provides truly
rich
sumnd Provides truly rich sound
recreating the musical sectrum recreating the musical spectrum
viruually fat $\pm 58 \mathrm{c}, 25-16,000$ virrually that $\pm 5 d$, $25.16,000$
cps. Latest double cone with speclal "Ferrobaa"
sper
ceramic magnet. Flux density 14,000 gauss. Bass resonance 32 -38icps. 15 watts $\begin{aligned} & \text { British rating. voice }\end{aligned}$ coils avallable 3 or 8 or 15 ohms. Price $\mathbf{£ 9}$ Post Free


## MINETTE

AMPLIFIER For ALL Record Player A.c. Mains Transformer. Chassl's size $7 \times 3 \frac{1}{2} \times 4 i n$. high. Valves ECL82, E180. Two Quality output 3 ohm matchinge negative feedback with engraved control panel, valves, knobs, $69 / 6$ whth engraved control panel, valves, knobs,
volume and tone controls, wired and tested. Post $5 / 6$
$69 / 6$ TRANSISTOR AMPLIFIER plus DYNAMIC MICROPHONE plus DYNAMIC MICROPHONE A solf-contained Pully porty
able mini pa.a. system. Many
useomarties, Baby Alarm Intercom, Telephone or Record Player. Amplifier. etc. Attractive rexine cov-
ored Cobinat alze $12 \times 9 \times$ 4 In ., with powerful $7 \times 4 \mathrm{in}$. speaker and four transietor one watt power amplifier phone. Usez PP9 battery. Brand now in Makers' carton



THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER

| 200/2s0 A.C. | $42 / 6$ | $\begin{array}{l}\text { Post } \\ \text { Leafiet S.A.E. }\end{array}$ |
| :--- | :--- | :--- |

## EXTENSION SPEAKER

Smart plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains radio, tape recorder, etc. $30 /=$ Post
RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON. TEI: 01-684 1665

## BEST PRICES•BEST PRICES

## CONNECTORS

MOST MANUFACTURERS' SURPLUS STOCKS ARE SOLD TO UNITED ELECTRONICS
We pay the highest prices Contact
Mr. Astor or Mr. Kahn
UNITED ELECTRONICS LTD
12/14 Whitfield St., Londion, W. 1 Tel: 01-580 4532. 01-580 1116. 01.636 5151. Telex: 27931

## BEST PRICES• BEST PRICES

## FOR YOUR. SYNCHRO \& SERVO REQUIREMENTS!

SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST..ORPINGTON,KENT. TEI: 31066, 33976 Also at CROYOON. Tel: 01-688 1512 and LYOD, KENT. Tel: LYOO 252

## CLASSIFIED ADVERTISEMENTS

## Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 7/- PER LINE. Average seven words per line.

- Name and address to be included in charge if used in advertisement.

NAME

ADDRESS

- Box No. Allow two words plus I/-.
- Charges etc., payable to "Wireless World" and crossed " \& Co."
Press Day Ioth April for May 1969 issue.



# INDEX TO ADVERTISERS <br> Appointments Vacant Advertisements appear on pages 117-131 

Page
A1 Factors
136
Acacia House Electrical, Ltd ..... 110
Acoustical Mfg. Co., Ltd. ..... 29
Adcola Products, Ltd. ..... Cover iii
Akurate Eng. Co., Ltd. ..... 136
Amatronix, Ltd ..... 112
Ampex G.B., Ltd ..... 83
Amplivox, Ltd. . ..... 21
Anders Electronics, Ltd ..... 24,40
A.N.T.E.X., L.td ..... Cover ii
A.P.T. Electronics ..... 72
Armstrong Audio Ltd ..... 44
Arrow Electric Switches, Lid ..... 15
Associated Electronic Engineers, Ltd ..... 36
Audix, B. B., Ltd ..... 67
Avo, Ltd. ..... 1
92
Avon Communications \& Electronics, Ltd.-
Barret, V. N ..... 136
Barnet Factors, Led. ..... 90
Batey, W., \& Co. ..... 56
Bentley Acoustical Corporation Lid. ..... 96
Bentley, K. J. ..... 135
Bi-Pak Semiconductors ..... 116
Bi-Pre-Pak, Ltd ..... 107
Black, J. ..... 133, 134
Bradley, G. E., Lid ..... 4
73
Bradmatic Lid ..... 73
Britec, Lid.
13
British Institute of Engineering Technology ..... 13
Brookdeal Electronics, Lid. ..... 42
B.S. Radio \& Electrical Stores ..... 104
Buckingham Press, Lid ..... 104
Bulgin, A. F., \& Co., Ltd. ..... Edit 193
Burgess Products Co., Ltd. ..... 88
Carr Fastener Co., Ltd. ..... 80
Chiltmead ..... 133
Counting Instruments L.td. ..... 82
C.R.E.I. (London) ..... 31
C. \& S. Antennas, Lid. ..... 34
Daystrom, Lid ..... 38-39
Decca Special Products ..... 62
Dependable Relays, Ltd ..... 48
Derritron Electronics, Lid. ..... 26, 71
Derritron (Reslosound), Ltd ..... 68
Diemos, Ltd ..... 136
Diotran, Lid ..... 114
Dolby Laboratories, Lid. ..... 72
Duxford Electronics ..... 98
Elcom \& Co., Lid. ..... 46
Electrama ..... 137
Electronic Brokers ..... $108,109,135$
Electronic Remote Control Co., Ltd.6
Electronics (Croydon), Ltd. ..... 110
Electrosil, Ltd ..... 77
Electrovalue ..... 105
Electro-Winds, Ltd ..... 92
Elliott Automations Lid. ..... 41
E.M.I. (Sound), Ltd. ..... 48
E.M.I. (Tubes), Lid. ..... 30
English Electric Valve Co., Lid ..... 3,5, 7, 9
Erie Electronics, Ltd.
$10,11,12,-3$
Ferrograph, The, Co., Lid. ..... 114
Fylde Electronics Ltd ..... 46
Gardners Transformers, Ltd. ..... 14
G.D.S. Sales ..... 68
Gilfillan \& Co., Ltd. ..... 110
Giltext, Ltd.


Glaser, L, \& Co., Ltd Page Globe, Scientific, Ltd.......................... . . . 106, 133
Godleys, Ltd......................................... . . 134
Goodmans Industries, Ltd...................... 8
mpian Reproducers, L

Hall Electric, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . 16
Harris Electronics (London), Ltd. .
Harris, P........................................... 133
plus Co., Lid.....................
Hatfield Instruments, Ltd. . . . . . . . . . . . . . . . . . . . 58
Henrys Radio, Ltd. .................................. . 93
Holford, F., Co., Lid. . . . . . . . . . . . . . . . . . . . . . . . . 134
Howland-W
Iliffe Books....................... 84, 110, 112, 131
89
Instructional Handbook Supplies. ................ . . 133
International Correspondence Schools......... 50, 132
International Rectifier Co., Led. . . . . . . . . . . . . . . . 19
Irwin \& Partners, Ltd. . . . . . . . . . . . . . . . . . . . . . . . 44
Jackson Bros. (London), Ltd...................... . . 33
Keytronics......................................... 135

Lasky's Radio, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . 113


Light Soldering Developments, Ltd.............. . . 60
Linstead Electronics, Ltd.......................... . 62
London Central Radio Stores ..................... . . 132
London Microphone, Ltd. .................... . 36, 85
.

Marconi (Instruments) Ltd. . . . . . . . . . . . . . . . . . . 63
Marshall, A., \& Son (London), Ltd............... 135

Mills, W....................................... . . . 102, 103
Milo International . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
lern Book Co............
Monks, K., Audio, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . 43, 51, 59
Morganite Resistors, Ltd.. . . . . . 42
M.R. Supplies, Ltd................................. . . 54

Mullard, Lid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 76

Nicholls, E. R. .................................. . . . 112
Neco Electronics (Europe), Ltd. . ................ 84
Nombrex, Lid......................................... . 58
Ofrect Electronic Systems, Ltd................... . 135
Osmabet, Lid.............. . . . . . . . . . . . . . . . . . . . . . 134
ey Developments, Lid.

Park Royal Porcelain Co., Ltd. . . ................. . . 52
Patrick \& Kinnie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
P.C. Radio, Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98, 99

Pinnacle Electronics, Led....................... . . 25, 57
Politechna (London), Ltd. . . . . . . . . . . . . . . . . . . . 116
Practical Electronics.................................. 52

Pye T.VT, Ltd......................... 70
Page
Q Max (Electronics), Ltd. ..... 36
Quality Electronics Ltd. ..... 88
Quartz Crystal Co., Ltd. ..... 136
Queck Eugen ..... 94
Radford Electronics, Ltd ..... 94
Radio \& TY Components, Ltd. ..... 100
Radio Clearance (1965), Ltd. ..... 136
Radio Components Specialists. ..... 137
Radio Exchange Co. ..... 92
Radionic Products, Ltd. ..... 66
Radiospares, Lid. ..... 136
Radon Industrial Services, Ltd. ..... 70
Ralfe, P. F. ..... 111
Rank Audio Visuals, Ltd. ..... 73
Rank Wharfedale, Lid ..... 40
Rediffusion Industrial Services, Ltd ..... 64
Render Instruments ..... 48
Rola Celestion, Ltd. ..... 69
R.S.C. Hi-Fi Centres, Lid. ..... 95
R.S.T. Valves ..... 100
Samsons (Electronics), Lid. ..... 92
Service Trading Co. ..... 96, 97
Servo \& Electronic Sales, Lid ..... 137
Shure Electronics, Lid ..... 47
Sinclain Radionics, Ltd ..... 86, 87
S.M.E., Ltd. ..... 50
Smith, G. W. (Radio), Ltd ..... 101
S.N.S. Communications, Lid. ..... 49, 52
Solartron Electronic Group, Ltd. ..... 37
Specialist Switches, Lıd. ..... 60
Starman Tapes ..... 135
S.T.C. Radio Division ..... 81
Sugden A. R. \& Co. (Engineers), Ltd. ..... 64
Sugden, J. E. ..... 88
Super Electronics, Ltd ..... 88
Sutton Electronics, Lid ..... 135
Swanco, Lid ..... 134
Tektronix U.K., Ltd. ..... 55
Telequipment, Ltd. ..... 74
Telford Products, Ltd. ..... 132
Teonex, Ltd. ..... 20
Thorn A.E.I. (Radio Valve \& Tubes), Led. ..... 79
Tinsley, H., \& Co., Ltd. ..... 67
Trickett.


ADCOLA HOUSE, GAUDEN ROAD LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4
WW-002 FOR FURTHER DETAILS


## Bib

Wire Stripper \& Cutter Model 3
Strips insulation without nicking the wire. Cuts wires and cables cleanly. Semi-permanently adjusted. Price 4/6d.


## Bib

Wire Stripper \& Cutter Model 8
De luxe version of Model 3, incorporating a unique 8 gauge selector. Plastic covered handles Price 9/6d.

## NEW! <br> Bib Automatic Opening Wire Stripper \& Cutter Miodel 6 <br> Fitted with automatic opening spring for quick repetitive flex and cable stripping. Screw adjusts stripper for usual wire sizes. Easy-grip plastic handles and handle locking ring. Price $8 / 6 \mathrm{~d}$. each.



Bib Recording Tape Splicer Model 20
For quick and accurate editing. Precision made, chrome plated clamps, mounted on non-slip base. Complete with razor cutter
Price 19/6d.


Bib $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Video Tape Splicer Kit Model 3.1 Suitable for editing video tapes made on Sony Recorders. Fitted with tape clamps. Complete with a packet of Size M cutters, Size E kit and Size L Hi Fusters in plastic box. Price $£ 9.10 .0$. New! Bib $1^{\prime \prime}$ Video Tape Splice Kit Model 22 Packed in plastic container with 8 razor cutters, 6 special fluff.free head and capstan cleaning cloths and bottle of Bib instrument cleaner. Details and price on application.


Bib Tape Head Maintenance Kit Size E
Specially designed to maintain the tape heads and other parts of the tape recorder in clean condition. Suitable for reel to reel or cassette tape recorders. Contents: Bottle Bib Instrument Cleaner. Two blue Tape Head Applicator tools. Two white Tape Head polisher tools. 10 applicator and polisher sticks. Double-ended brush. Packet cleaning tissues. Instruction leaflet; all in a Folding Plastic Wallet. Price $16 / 10 \mathrm{~d}$. inc. P.T Applicator and polisher tools and sticks are available separately.

## Bib Professional Tape Head Maintenance Kit

Size K For Service Organısations, Recording and Breadcasting Studios. Contains bulk quantities of items listed under Size E. Price $£ 3.9 .8$. inc. P.T.



[^0]:    choice you need.

    1. Mercury Wetted Releys bounce-free relays for Jow-noise and low-level to 250 VA switching.
    2. Dry Reed Relays hermetically-sealed 2. Dry Reed Relays hermetically-sealed sizes; packaged to give 1 to 12 pole relays. izes; packaged to give 1 to 12 pole velays.
    3. Proximity $\mathbf{S w i t c h e s ~ a ~ r a n g e ~ o f ~ p r o x - ~}$ imity switches for both industrial and aerosautical applications.
[^1]:    Send your FREE BROCH- JNAME
    IURE $\square$ or Send $\square$ (how many) Budger Storage
    Units © $\mathbf{E 1 7 5} 5 \mathrm{~s}$. in green
    I or groy

    Dept.Ww Eagle Steelworks. Herwood, Lancs. Tel: 69018 London: 25.27 Newlon SL., W.C.2. Tel: 01 -405 7931

[^2]:    Looking doron on the completed amplifier.

[^3]:    *Liverpool College of Technology.

[^4]:    * Dept. of Electronic and Communications Engineering, Northern Polytechnic, London.

[^5]:    *Department of Applied Physics, University of Wales Institute of Science and Technology

[^6]:    Where postage is not stated then orders
    over 63 are post free. Below 63 add $2 / 9$. Over 63 are post free. Below $\mathrm{C3}$ add $2 / 9$. peomi-conductors adree. S.A.E. with enquiries please.

[^7]:    A Member Company of the Rediffusion Organisation

