\\ \title{
WirelessWorld\\ \title{
WirelessWorld \\ \\ March 1969 Three Shillings
} \\ \\ March 1969 Three Shillings
}

Improving an old loudspeaker

*STAR Performer

There are 20 good reasons why *STAR UHF Mobile Radiotelephone is the best radiotelephone in the world

*Standard Telephones Advanced Radiotelephones

For the Operator:

*Elegantly styled.
*Designed for safe use in vehicles.
*Excellent range and
penetration of built-up areas.
*Crystal-clear speech quality.
*Noise cancelling microphone.
*No ignition noise.
*Very low battery drain.
*Simple installation and removal.
*Anti-theft catch.
*High reliability.

For the Technologist:

*Meets world-wide specifications.

* 25 kHz and 50 kHz channel
separation.
*Printed UHF transmitter circuitry.
*Transmission line coupling of power transistors.
*Solid-state antenna change-over switching.
*Helical tuning in receiver.
*Quartz crystal filter.
*Quartz crystal discriminator.
*Integrated circuits.
*Fully solid-state.
That's how STAR Radiotelephone brings you the outstanding advantages of UHF propagation and brilliant design.
STC Mobile Radiotelephones Ltd., Oakleigh Road. New Southgate, London N.11. Telephone: 01-368 1200. Telex: 261912.

When is an Avo meter not an Avometer?

When it tests nuvistors, compactrons \& 13 -pin valves

The new Avo VCM163 Valve Characteristic Meter is one of the most versatile valve testers ever developed. With facilities for testing valves with as many as 13 pin connections (and 2 top caps), plus recently introduced types such as nuvistors and compactrons, the VCM163 provides both rapid fault diagnosis and comprehensive static/dynamic characteristics data. Nevertheless, it is even simpler to use than previous models - no backing-off is required. A separate meter displays mutual conductance values continuously during testing, and there is pushbutton monitoring of screen parameters. The full range of $h . t$. voltage -12.6 V to 400 V - can be applied to anode and screen, heater voltage is adjustable in 0.1 V steps from 0 to 119.9 and grid voltage may be varied continuously from 0 to 100 V (calibrated). Get complete information about the VCM163 from your local dealer or Avo Ltd, Avocet House, Dover,
 Kent. Telephone Dover 2626. Telex 96283.
 -a0011 headset design which brings tog Magnetic carbon or moving coll 1 mW gives comfortable listening "Marvellous". At last a new lightweight appearance and reliability. Comm room or high fidelity versions. Ainimises crosstalk. tinsel cable design mise exclusion. Nylon and sta full story from net" for microphone boom. New level with new phones. 4.5 ox . weight/ comfort. Tropicalized! So many new and desirable features

LIMIED Telephone Cables: Am

If you need power tetrodes at the right price look at this EEV range

Forced-air Cooled		Anode dissipation max. (kW)	$\begin{aligned} & \text { Output } \\ & \text { power } \\ & \text { (kW) } \end{aligned}$	Anode voltage max. (kW)	Frequency (MHz)	Filament ratings	
Type	$\begin{aligned} & \text { Service } \\ & \text { type } \end{aligned}$					(V)	(A)
$\begin{aligned} & \text { 4CX1000A } \\ & 4 \mathrm{Cx} 1000 \mathrm{~K} \end{aligned}$	-	1.0	3.2	3.0	110	6.0	9.0
4CX1500B	-	1.5	2.7	3.0	30	6.0	9.0
$4 \mathrm{CX5000} \mathrm{~A}$	CV8295	5.0	16.0	7.5	30/110	7.5	75
4CX10,000D	CV6184	10.0	16.0	7.5	30/110	7.5	75
4CX35,000C	-	35.0	82.0	20.0	30	10	300
CR192A (6166A)	CV8244	10.0	9.0	6.9	60/220	5.0	175
Vapour Cooled Type	Anode dissipation max. (kW)	Output power (kW)	Anode voltage max. (kW)	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Filament ratings	(A)	Boiler unit
CY1170J	60	82	15	30	10	300	Integral
CY1172 (RS 2002V)	150	220	15	30	21	350	CY4120
4CX1000K 4CX	000D	$4 \mathrm{CX35,000}$		CY1170J		CY117	
For audio or linear single sideband amplifiers. 4 CX1000K has a solid disc screen	io, linear. ideband ted r.f. rs.	For audio am r.f. linear amp or Class C am or oscillators	plifiers. plifiers mplifiers	For audio am Class C ampl have a coaxia A range of gla available.	plifiers, r.f. li ifiers or oscil al metal-cera ass envelope	inear a llators amic en e types	types e.

Ferrograph Series 7the simple recorder with thirty recording

 facilitiesThe Ferrograph Series 7 Tape Recorder is many instruments in one: If you just want to record without going into technicalities, it is the simplest instrument, handled by setting one or two basic controls. If, however, you need a recorder for hard, professional work, the Ferrograph will do it for you 24 hours a day, year in year out (that's why important communications centres specify it). If you need your recorder to produce the most complex effects, the Ferrograph recorder gives you a greater range of facilities than any other.
Available in Mono, and in Stereo with and without end amplifiers, embodying a unique range of recording facilities, including:

- All silicon solid-state electronics with FET input stages and wide input overload margins. - Vertical or horizontal operation.
- Unit construction: The 3 individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.
3 motors (no belts). 3 tape speeds.
- Variable speed spooling control for easy indexing and editing.
- Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.
- Provision for instantaneous stop/start by electrical remote control.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recording and insertions. - 81" reel capacity.

Endless loop cassette facility.
Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.
4 digit, one-press re-set, gear-driven index counter.
2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).

- Signal level meter for each channel © jerative on playback as well as record.
- Tape/original switching through to output stages.
Re-record facility on stereo models for multiplay, echo effects etc, without external connections.
Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment. Three outputs per channel i.e. (1) line outlevel response. (2) line out-after tone controls. (3) power output-8-15 ohms.

- Power output 10W per channel.
- Independent tone controls giving full lift and cut to both bass and treble each channel.
Retractable carrying handle permitting carrying by one or two persons.
U.K. Retail prices from $£ 150$ incl. P.T.

See and hear Ferrograph Series 7 recorders at your local Ferrograph stockist, or post coupon for details and address of nearest Ferrograph specialist (or ring 01-589 4485)
 WW- 011 FOR FURTHER DETALS

Be safe...use EEV magnetrons in your marine radar

Please send me full data on your range of marine magnetrons.
I am particularly interested in using a marine magnetron with the following parameters.

Frequency	Peak Ourput	Pulse	Pulse Repetition Range (MHz)
	Power (kW)	Rength $(\mu \mathrm{s})$	
NAME			

COMPANY
ADDRESS

AM

Take the Model 4311:
Apply It. The THRULINE 4311 Wattmeter, developed for air navigational aids such as DME, ATC, and other pulsed RF systems, will also measure and monitor almost any type of 50 -ohm RF transmission. Carry It. Direct reading and self-contained, the " 4311 " needs no additional instrumentation nor 60 or 400 Hz line power. Just pick it up, carry it to your equipment, connect and use.
Read It. The " 4311 " indicates CW or FM power up to 10,000 watts accurately, forward or reflected. Push the button and the "4311" scales the peak of pulsed or envelope power to 10,000 watts.
Compare It. There is no other like it. Scan the basic specs below then, put a BIRD in your hand. Send for bulletin 4311-67.

SPECIFICATIONS

PEAK PULSE OR ENVELOPE POWER MODE
Frequency Ranges: $0.45 \cdot 2300 \mathrm{MHz}$
Power Ranges: 1 W to 10 kW .
Accuracy: $\pm 8 \%$ of full scale.
Minimum Pulse Parameters: From a duty factor of 1×10.4, a pulse width of 0.4 microseconds, and a rate of 30 pps or higher, depending on the Element selected.

AVERAGE (CW) POWER MDDE
Frequency Ranges: $0.45-2300 \mathrm{MHz}$ Power Ranges: 1 W to 10 kW . Accuracy: $\pm 5 \%$ of full scale.
PRICE
on application

Now also available: AC-powered version for extended bench use.

New pulse tetrode for low power radars added to EEV's range

The new C1179-a high vacuum beam tetrode designed primarily for the output stage of power amplifier pulse modulators in $5 \mathrm{~kW}-10 \mathrm{~kW}$ radars.

C1179

C1148

C1149/1

C1150/1

C1166

Type	Service type	Anode dissipation max. (W)	Pulse output power (kW)	Anode voltage max. D.C. (kV)	Pulse anode current max. (A)	Heater ratings		Base
						(V)	(A)	
C1148	-	40	130	14.0	12	6.3	5.0	B5F
C1149/1	CV6131	60	330	20.0	18	26.0	2.15	B4A
C1150/1	CV427	60	. 205	17.5	15	26.0	2.15	B4A
C1166	-	60	205	17.5	15	6.3	9.0	B5F
C1179	-	18	65	8.0	9.0	6.3	2.8	B7A

Send for full data on the EEV range of pulse amplifier tetrodes

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777
Telex : 99103 Grams: Enelectico Chelmsford

Please send me full details on your range of pulse tetrodes.
I am particularly interested in using a pulse tetrode with the following parameters:

Pulse Output power	Anode dissipation	Anode voltage	Pulse anode current
NAME		POSITION	
COMPANY			
ADDRESS			

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quálity control really do keep in touch with tomorrow. So what more do you want?

PYE SPANS THE WORLD

rely on

 Q the vital contact

Pye 'Bantam' Portable
Fully tranalstorlsed tranamither and
Fully tranasiorlsed transmifter and
recelver Very hioh performagce receiver Crystal tither selectivity
$0-5 \mathrm{~W}$ transmitter output 250 mw O-5W Transmitter output 250 mW
audio power Long endurance wlth audio power.
rechargeable or dry battertes. Can
be used with erternal antenna to give be used with external antenna to give
greater range. Weatherproof.

Pye Single-Sideband
Radiotelephone
125W (D.e.p.) R.F. output Fully transistorised rêeiver C.W. Jacllitles provided. Sideband seloction
by crystal filter. Carries insertion for by crystampater. Comparriely. Fixed or mobille apolicallon Advanced trensmitter design.
-
eiver and transmitter Soldd-state receiver and transmitter
10-15W R.F. output Field-effect transistors used In recelver. Sultable
for all cllmates. Electronic. squelch. for all climates. Electronic squetei-
Desioned to meet all relevant spocificatlons.

Pye 5-Circuit UHF Radiotelephone
Compact 5 -chrcult rado terminal Fully- transistorlsed channelling
equipment-Frequency-shift algnalling Coulpment- Frequency-shift elgnaliling all parts of the world. Twelve
standard plant for terminals and standard
repeaters.
repeaters.

Pre 'Westminster'
Remote Mounted Radiotelephane Completely solid state 5-8W R.F. outout 1-10 channels with solld state Wwithing $\begin{aligned} & \text { Illuminated channel indi- } \\ & \text { cator. }\end{aligned}$ Suitable for all cllimates: Meets all relevant spectications.
equipment gives you instant-contact with mobility

PYE TELECOMMUNICATIONS LTD. Cambridge England Telephone: Cambridge (0223) 61222 Telegrams: Pyetelecom Cambridge Telex: : 81166

DERRITRON ELECTRONICS LIMITED Instrument division

Sedlescombe Road North, Hastings, Sussex.
Telephone Hastings 51372 Telex 95111

CT81 has 3 separate cues and a peak programme meter

The Plessey CT81 is the latest in the range of Plessey endless loop magnetic tape cartridge recorders. Manufactured to NAB or IEC standards the CT81 features three separate cues, a peak programme meter, direct capstan drive and solid state silicon devices throughout.
The 1000 Hz standard cue is automatically recorded with each depression of the record button. The 8000 Hz auxiliary cue to operate associated relays can be recorded during the initial recording or later as required.

The 150 Hz end oif message cue is recorded when the end cuebutton is depressed. For remote operation of associated equipment all functions are extended to a multi-way plug and socket at the rear of the unit.

A PPM or VU meter and auxiliary cuescanbeincorporated in anyCT80 model to suit your requirements.

For details of the complete range of Plessey desk mounted, recessed and rack mounted CT80 cartridge recorders contact your local Plessey office now.

PLESSEY Electronics

VALUABLE NEW HANDBOOK FREE EOMGINTIUOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Minirg - Water Supply - Petrol Tech.

RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amatcurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding - Eng. Pattern Making -Inspection-Draughtsmanship--Metallurgy - Production Eng.
AUTOMOBLLE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

We haye a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E., M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
british institute of engineering technology 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

 * HOW to get a better poid, more intererting job. * HOW to qualify for rapid promotion.* HOW to put some letters ofter your name and become a key man . . . quickly and easily.
HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can rake advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Basic Practical and Theo retic Courses for begin ners in Radio, T.V., Eleccronics, etc. A.M.I.E.R.E. Amateurs' Exam RT. E. B. Certificate, P.M.G. Certificate, Practical Radio Radio \& Television Ser vicing, Practical Electronics, Electronic Engineering, Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 446A aLDERMASTON COURT, aldermaston, berkshire.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS...
\qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

Phorograph of Chanaran 'Talkirg Orum' by courtesy of The Commonwealth Institure. Kensington High St.
... the oniy one
Modern data transmissions go farther and faster, and must be even more accurate and reliable. Only Trend can provide the sophisticated equipment necessary to test such systems.
If you use or manufacture data transmission systems, tap out a message to:

prepare for tomprow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best
No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

Member of the
 Association of British Correspondence Colleges

 C.R.E.I. (London), Walpole House,173-176 Sloane Street, Londun S.W. 1 A subsidiary of McGraw-Hill Inc.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.

My interest is City and Guilds \square
NAME
ADDRESS

ELECTRONICS EXPERIENCE
WW116

controlled soldering starts with an Enthoven preform

The right amount of solder, in the right place, every time. The right alloy to suit the surfaces to be joined. The right flux for effective wetting. The right heat-source. Enthoven know about this kind of thing, will give advice, supply preforms-cored or solid. Controlled soldering means economical soldering. Soldering with Enthoven preforms saves solder, time and wastage. Cuts costs. Produces a stronger, cleaner job. Enthoven supply washers, rings, shims and strips in a wide variety of alloys, cored and solid, and design to meet special requirements.

WW-21 FOR FURTHER DETALLS

2N 5172

Manufactured by GENERAL ELECTRIC (U.S.A.)

A High stability
A Long Life
A High Gain
A.x-stock, London

Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	25	V	Silicon NPN
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	5	V	Planar Passivated
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	25	V	Transistor in
Collector Current	I_{C}	100	mA	Epoxy Encapsulation
Dissipation (free air at $25^{\circ} \mathrm{C}$)	P_{T}	200	mW	
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	$100-500$	-	
Forward Current Transfer Ratio	$\mathrm{h}_{\text {fe }}$	$100-750$	-	
Gain Bandwidth Product	f_{T}	120	MHz	

RヨGTRE ELECTRDNICS LTロ.

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
- A mechanical filter enabling superb selectivity with ordinary IF transformers
- Frequency Range: 550 KHz to 30 MHz (4 Bands)
- Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S/N Ratio (at 10 MHz)
- Selectivity: $\pm 5 \mathrm{kHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{kHz}$ at $-6 \mathrm{~dB})$ When
using the Mechanical Filter.
-Dimensions: Width $15^{\prime \prime}$, Height 7", Depth $10^{\prime \prime}$.

Model SP-5D

*Communications Speaker which has been designed exclusively for use with the 9R-59DE.
Model HS-4

- Communications Head Phone

Model JR-500SE

 CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER- Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd ascillator.
- Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
- HI-Sensitivity: $1.5 \mu \mathrm{~V}$ for 10 dB S $/ \mathrm{N}$ Ratio (at 14 MHz)
* Hi-Selectivity: $\pm 2 \mathrm{kHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{kHz}$ at -60 dB
- Dimensions: Width 13 ", Height $7{ }^{-7}$, Depth 10 ".
 RECEIVERS \& name of nearest TRIO retailer

NAME AGE

ADDRESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave, Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: $01-7904824$

off-the-shelf-delivery for designers

Ring Muriel for off-the-shelf delivery of Fi'met Resistors in development quantities. You'll get them - and fast.

The new standard Filmet range meets all the requirements of DEF 5115-I Style RFG7-0.5 ... and at a price that's below standard for above standard stability.

Resistance range: Power Rating:
Temperature range :
100Ω to $360 \mathrm{~K} \Omega$ E 24 series. $\ddagger w, \ddagger w, \frac{d w}{}$ Multi-Rating. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Ring Muriel to get yourself in the book for fast delivery.

DO YOU NRED
 AN ACCURATE
 CURBENT
 SOURCE ROR
 SEMITCONDUCTOR TESMINTS.

The Bradley D.C. Current Calibrator 132 provides an extremely stable D.C. current source up to 100 milliamperes at an accuracy of 0.05%. An add-on unit, the Current Multiplier 144, extends the range to 10 amperes.
The 132 is used extensively by meter manufacturers because of its high accuracy and ease of use-just dial up the current required-and also because of its unique percentage deviation measuring device. Semi-conductor and thin film component manufacturers have found it invaluable for the evolution and production line testing of their products . . . Further the 132-144 combination with its unrivalled output of 10 amperes covers the testing of most types of meters.

We shall be pleased to send further details. INSTRUMENTS

is a dead one of these

Morganite killed if

The deceased would have become one of Morganite's Cermet Trimming Potentiometers - one, in fact, of the populår type 80 with a power rating of 0.75 W at $70^{\circ} \mathrm{C}$.
But it never made it. The crunch came when we examined all its tiny component parts at 500 times life size. That's quite a test. Imagine. for instance, the imperfections
you might find in a 40 yard cigarette. So it's not surprising that every once in a while we detect a spanner in the ointment And the penalty is death. The survivors are the most reliable trimming potentiometers you can find - and finding them couldn't be easier. Samples for evaluation or for development projects are waiting in stock, ready for your 'phone call.

We are the only British company which offers ohmic values from 10 ohms to 1 M ohms in the E6 range as well as the MIL-R-22097C series.
Put our Cermet trimming potentiometers through your test routine and watch how they stand up to it. Any that couldn't are long since dead.

FOR SUPERB QUALITY AND WORLD WIDE DISTRIBUTION HALTRON OFFER A VAST SELECTION OF VALVES FOR ALL AREAS OF RESEARCH AND INDUSTRY

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:
Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies.
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.
Marine Radar.
Communication Equipment.
Research and Development.
Government Departments.
Aircraft Military and Civil.
Ministry of Aviation Approved Inspection.
Air Registration Board Approved
Inspection.

FROM

32'6
ACTUAL SIZE
CN 15 watts, fitted $\frac{3}{32}$ "Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from $040(1 \mathrm{~mm})$ up to $\frac{7^{7}}{18}$ " for $240,220,110,50$ or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of sparesWorld-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.

PRECISION MINIATURE SOEDERING IRONS Made in England

Why have Racal stopped making specific-function instruments?

The Racal 815
Universal Counter/Timer

They haven't!

Racal pioneered the specific-function approach to digital instrumentation, exemplified in the successful Racal 800 Series, which offers high quality instruments at competitive prices - prices made possible by effective standardization. Racal have now augmented this range with the $815,50 \mathrm{MHz}$ Universal Counter-Timer: the last word in versatility. The standard features you expect in a Racal Counter are all included - high input impedance ($1 \mathrm{M} \Omega$), excellent sensitivity $(10 \mathrm{mV}$), exceptional stability (fast warm-up oscillator ages at less than 2 parts in 10^{8} per day and attains 1 part in 10^{7} in under 3 minutes), and the fast Racal patent dynamic readout (25 mS).

Additionally the very comprehensive facilities include three input channels, variable input-trigger level selection (-100 V to +100 V) with provision for d.c. level monitoring and an intensity modulation pulse to identify the precise measurement period on an oscilloscope.

In short, not just the usual all-rounder, this instrument is a truly universal Counter-Timer, any measurement not possible with the 815 will require a specific-function instrument. And that's where we came in.

Phone or write now for a demonstration at your premises or full data on the Racal 815

RACAL INSTRUMENTS LIMITED,
Bennet Road, Reading, Berkshire. Reading 85571 Telex: 84166
 smaller manufacturers, all three Armed Services, most government
departments including 10 Ministries, 23 public corporations, 43 educational authorities and Universities and countless radio and television retailers in 1,162 cities, towns
 and villages in 38 counties.

Pinnacle the largest single valve independent

PINNACLE ELECTRONICS LIMITED ACHILLES STREET • NEW CROSS • LONDON S.E. 14
Telephone: All departments-01-692 7285 Direct orders-01-692 7714

Get across loud and clear with AKG microphones!

AKG D-109
Dynamic miniature

AKG D-224

Advanced studio microphone, employing twoway cardioid principlethe latest in microphone technology-in slim, elegant form. High-quality dynamic microphone ideal for all broadcasting and studio broadcasting and studio
work. Incorporates bass
work. Incorporates bass
attenuation switch and pivoted stand attachment.

Find out more about AKG mikes from

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 16th April 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. ww6), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

Why pay for more sophistication than you can use?

The majority of users of electronic test equipment require accuracy within a band of measurements that is common to many operators. The Dymar System of test instruments covers this need ideally. We have avoided the temptation to include more sophistication than the market wants. This means that your budget will streach further yet cover your project development, research or quality control. Plus features are:-
(I) all instruments are energised by a master meter unit.
(2) the extreme flexibility of a proved plug-in system and
(3) the money-saving aspect.

Our explicit Short Form Catalogue will give you a run-down on our 700 Series - just complete the coupon or just pin it to your letterhead.

OTAAR

DYMAR ELECTRONICS LIMITED
Colonial Way Radlett Road Watford Herts.
Telephone: 21 297/8/9.

Please send me a copy of your Short Form Instrument Catalogue.

NAME

POSITION

COMPANY

ADDRESS

The Goldring caress... we call it transduction seduction

Smooth, breathing, open and graceful that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable
stylus assembly. It is as light as the cantilever itself - no massy magnets
 or coils to move! This design approach provides a texture of sound transparency previously associated with direct-coupled pickups. Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from
Desk HF, Goldring Manufacturing Co. (Great Britain) Ltd.,
${ }^{486-488}$ High Road, Leytonstone, London, E. 1 I,
or from your nearest dealer.

Blue Chips'

Erie Blue Chips are resistors. Thick film, metal glaze resistors built to satisfy the circuit designer's need for reduced physical size and increased reliability. Designed specifically for printed circuit boards, Blue Chips, with radial terminations at 0.2 in centres, make possible a packaging density up to double that of conventional cylindrigal resistors.

Resistance range:
1 ohm to 1 megohm with tolerances of $1 \%, 2 \%, 5 \%$ and 10%.

Wattage ratings:
$\frac{1}{8} w, \frac{1}{4} w_{1} \frac{1}{2} w$, with maximum
voltage 350 V d.c.
Temperature range :
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ with no derating, and an average TCR of $\pm 300 \mathrm{ppm} /{ }^{\circ} \mathbf{C}$.
Closer T.C.s. available.

'And this is their average size'

With these specifications it's no surprise that Erie Blue Chips are setting the pace in reslstor design and further advancing the rapid progress in circuit dependability.

RESLOSOUND microphones

Precision engineered give the sensitive acoustical performance required today

Cardioid Pencil Dynamic Microphone improved version of the well known Reslo CPD microphone. Most suitable for:
High Quality Music Recording.
General Sound Reinforcement.
General Sound Reinforcement. Loud close singing or speaking if used
with an amplifier incorporating reasonable with an amplifier incorporating reasonable bass cut.
Frequency response is smooth over the range $70 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$.
Rear response better than 20 dB below the front from $100 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{kc} / \mathrm{s}$ and over 14 dB from $1 \mathrm{Kc} / \mathrm{s}$ to $16 \mathrm{Kc} / \mathrm{s}$ dropping to 30 dB at upper presence frequencies. Impedance values: CPD2/L-30/50 ohms of 600 ohms.
Supplied with 18 of dual impedance cable £17.15.0.
£17.15.0.
CPD2/M 20010300 ohms, £17. 100
$\mathrm{CPD} 2 / \mathrm{H}-30 / 50$ ohms or $\mathrm{Hi}-\mathrm{Z}$
CPD $2 / \mathrm{H}-$
$£ 17.15 .0$.
£17.15.0.

floor stands

UD1

An improved uni-directional (super cardioid) high output hand or stand microphone incorporating an intemal ant ncorporarg applinemal pop filter. Supplied in a black presentation case with 18 ft . o directly connected screened cable. Available in low. medium and high impedances.
Recommended Retail Price
UD 1/L (50 or 600 ohms)
E19 10s. Od
UD 1/M (200-300 phms)
$f 19$ 5s Od
UD1/H (High impedance only)
f1910s Od

MS111

Lightweight microphone floor stand with folding legs. Adjustable from 3 ft . 7 in . to 5 ft . Weight $4 \frac{1}{2} \mathrm{Ib}$. Feet spacing 18 in . Folded length $37 \frac{1}{2} \mathrm{in}$. Finish: Legs and outer tube matt black, inner rube satin silver- $\mathbf{5 7 2 s}$ Od

Solid leg mlcrophone floor stand. Adjustable from 3 ft . in . to 5 ft .2 in . Weight 12 lb . Shown fitted with MS175 Boom attachment fully adjustable MS110A attachment fully adjustable
2 ft .8 in .104 ft . Weighi 8 lb .10 oz .
(length from fulcrum) 2 ff . 8 in . to 4 ft . Weight 8 lb .10 oz . Type MS100A with Hammertone enamelled outer tube and polished chrome inner tube and fittingc86s Od
Type MSIIOA with all polished chrome tubesE86s Od
Type MS 175 Boom atrachment-f7 14s 6d

- In addition to their World famous series of bi-directional and cardioid Ribbon Microphone Reslo manufacture a complete range of public address amplifiers and loudspeakers-line source and reflex horns.
Write or telephone for fullest particulars-

go onsay Jack Robinson! with which you 'tune in' visually to any transmitter in the 2 MHz to 30 MHz range with the new GEC-AEI Synthesised HF Receiver.

It represents a major break-through in professional HF Communications and embodies advanced engineering techniques. It is the only receiver currently available to meet the latest GPO Public Correspondence Service requirements. It is designed for the reception of HF transmission modes, A1: A2: A3: A3A: A3J and it exceeds the requirements for long term frequency stability and accurate frequency indication.

From the same design unit comes an associated HF frequency synthesiser, providing full synthesis in 100 Hz steps over the complete range 1 MHz to 29.9999 MHz .

Technical literature is available. Demonstrations can be arranged. Communications

Division
sec

Your first step to saving on instrumentation costs...

Latest Solid - State High - Impedance Volt - Ohm Milliammeter . . . IM-25

- 9 A.C. and 9 D.C. voltage ranges from 150 millivolts to 1500 volts full scale - 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{meg} \ldots$ measures from one ohm to 1000 megohms - il current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale- 11 megohm input impedance on D.C. - 10 megohm input impedance on A.C. - A.C. response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ volt A.C., 50 Hz - Circuit board construction for extra-rugged durability.

KIT K/IM-25
 Ready-to-use A/IM-25

£48.10.0 P.P. $1016 \quad £ 59.0 .0$ P.P. $10 / 6$

Latest Solid-State Volt-Ohm Meter, IM-16

- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}$, and $\times 1 \mathrm{megohm} \cdot 11 \mathrm{meg}$ ohm input on D.C. ranges, I megohm on A.C. ranges - Operates on either built-in battery power or $120 / 240$ volt A.C., 50 Hz - Circuit-board construction.

| KIT K/IM-16 | | Ready-to-use A/IM-16 |
| :--- | :--- | :--- | :--- |
| £28.8.0 | P.P. $10 / 6$ | £35.8.O P.P. $10 / 6$ |

FULL SPECIFICATION OF ANY MODEL AVAILABLE ON REQUEST!

Latest Variable Control Regulated High Voltage Power Supply . . I IP-I7

- Furnishes 0 to 400 voles D.C. @ 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variation -Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to -100 volts D.C. bias @) I milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off " while filament voltage is "on" - Modern circuit board and wiring harness construction $120 / 240$ volt A.C., 50 Hz operation.
$\begin{array}{lll}\text { KIT K/IP-I7 } & & \text { Ready-to-use A/IP-17 } \\ \text { £37.4.0 } & \text { P.P. 10/6 } & \text { £46.0.O }\end{array}$

Latest Solid-State, Voltage-Regulated, CurrentLimited Power Supply . . . IP-27

- Zener reference - Improved circuitry is virtually immune to overload due to exotic transients - 0.5 to 50 volts D.C. with better than ± 15 millivolts regulation - Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes - Adjustable current limiter: 30 to 100% on all ranges. Panel meter shows output voltage or current - "Pin-ball" lights, indicate "voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboratory power supply.

KIT K/IP-27

£46.12.0 P.P. $10 / 6$
Ready-to-use A/IP-27
£55.0.O P.P. 10/6

Many other instruments in range including SERVO CHART RECORDERS. SINE-SQUARE GENERATORS. TRANSISTOR CHECKERS. DECADE R and C BOXES

SEND FOR FREE 36-page CATALOGUE AND SEE WHY HEATHKIT MODELS ARE GOOD VALUE. The latest catalogue contains details of models for the Hi-fi and Audio Enthusiast, the Music Lover, the Tape Recordist and the Hobbyist. Models for Communications, Amateur Radio and Short-Wave Listening. Models for Education. Test and Service. There is something for everyone in this catalogue.

.. . is to send for the FREE Heathkit Catalogue

${ }^{31}$ Portable General-Purpose Service Oscilloscope OS-2 KIT $£ 24.18 .0$ Ready-to-use $£ 32.18 .0$ P.p. 9-
Vertical amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 3 MHz . Sensitivity; 100 mV r.m.s. per cm. at I kHz. Input impedance: 3.3 megohm shunted by 20 pF . Horizontal amplifier: Frequency response: $\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}$ to 300 kHz . Sensitivity: 100 mV r.m.s. per cm , at 1 kHz . Input impedance: 10 megohm shunted by 20pF. Time base generator: Range 20 Hz to 200 Hz . Automatic lock-in sync; Retrace blanking Voltage calibrator: I voit, peak-to-peak, 50 Hz . Controls: Brilliance and on/off switch, Focus, Astigmatism, Time base range switch and Fine Frequency, Vertical and Horizontal Gain, Vertical and Horizontal Position.

5^{n} Wide-band General-Purpose Oscilloscope 10-12u

 KIT $£ 36.18 .0$ Ready-to-use $£ 46.16 .0$ P.P. $10 / 6$Vertical sensitivity: 10 mV r.m.s. per cm at 1 kHz . Frequency response (referred to $(\mathrm{kHz}): \pm 1 \mathrm{~dB}, 8 \mathrm{~Hz}$ to $2.5 \mathrm{MHz}_{;} \pm 3 \mathrm{~dB}, 3 \mathrm{c} / \mathrm{s}$ to $4.5 \mathrm{MHz} ;-5 \mathrm{~dB}$ at 5 MHz . Rise time: 0.08 microseconds or less. Input impedance: (at 1 kHz) 2.7 Megohms at X1; 3.3 Megohms at $X 10$ and X 100 . Morizontal sensitivity: 50 mV r.m.s. per $\mathrm{cm} 2 \mathrm{at} \mid \mathrm{kHz}$. Frequency response: $\pm 1 \mathrm{~dB}$, 1 Hz to $200 \mathrm{kHz} ; \pm 3 \mathrm{~dB}, 1 \mathrm{~Hz}$ to 400 kHz. Input impedance: 30 Megohms at I kHz. Time base generator: Range, 10 Hz to 500 kHz in 5 steps, variable, plus 2 switch-selected pre-set sweep frequencies range. Synchronising: automatic lock-in circuit.

Portable Solid-State

Volt-Ohm Meter
IM-17
кIT £13.12.0 P.P. 6/-
Ready-to-use $£ 18.10 .0$ P.P. $6 /-$
4 gllicon Transintora Plue 1 Field Effect Tranniator and 1 Silicon Dlode. 11 Megohm Input hapadance on 1 Megohm Inpui to 1000 Volts Full Scale... Accuracy $\pm 3 \%$ of Full gecale.
i AO Voltage Rangen trom 1.2 Volt Full Beale to 1000 Volts Rang Boale. Accuracy $\pm \mathbf{5 \%}$ of Full \&cale. ${ }^{5}$ Resintance Measures from 0.2 ohms chroush 1000 megohms. AC Prequency Reoponse $\pm 1 \mathrm{db} 10 \mathrm{~Hz}$ to 1 MHz . ${ }^{4}{ }^{\circ}, 200 \mu \mathrm{~A}$ Meter, Eany o-Rean scale.

General-Purpose RF Signal Generator RF-1u KIT $£ 13.18 .0$ Ready-to-use $£ 20.8 .0$ P.p. $6 /-$ Frequency range covers 100 kHz to 200 MHz in six bands.
Band A, 100 kHz to 300 kHz ; Band B, 300 kHz to 1 MHz ; Band C. I MHz to 3.1 MHz ; Band D, 3.1 MHz to 10 MHz ; Band E, 10 MHz to 30 MHz ; Band F, 30 MHz to 100 MHz . Calibrated harmonics: 100 MHz to 200 MHz . Accuracy: 2%. Large accurately calibrated disc scales. Factory wired and aligned coil and band switch assembly. Modulated or unmodulated RF output. Output: Impedance, 75 ohms; Volcase, 100 mV . Modulation: Internal, $400 \mathrm{~Hz}: 30 \%$ depth; External, approx. 3 V across 50 K ohms for 30%. Audio Output: Approx. 4 V . Valve complement: $1-12 \mathrm{AT7}$. I-ECF80.

6" Valve Voltmeter, IM-13u KIT £22.8.0 Ready-to-use $£ 29.10 .0$ p.p. 7is Range D.C.: 7 Ranges $0.1 .5,5,15,50,150,500,1500$ volts full sciate. Input Resisite ance: 11 merohms. Sensitivity: 7,333 , 333 ohms per vole on 1.5 volt range. Circult: Balanced bridge (Pusth-pull) usinz twint eriode. Accuracy: $\pm 3 \%$ full sale.e. Rango A.C.: 7 R.M.S. Ren Ines: $0-1.15,5,15,50,150,500,1500$ r.m.s. Full scale. Freeg. Responso
 Capacitance: $\mathrm{M} \Omega$. Ohmmeter: 7 R Ranges: $\times 1,0 \times 10, \times 100, \times 1,000, \times 100$, $\times 1000$. \times IMEG. Measures 0.1 ohms to 1000 megohms with internal batterr. Mecer: $6^{6} 200^{\prime} \mathrm{A}$ A movement.

Portable In-circuit Transistor Tester, IT-18 KIT £15.6.0 p.p. 6/-Ready-to-use $£ 18.16 .0$ P.P. 6/-

 : Bip - Biis 4

- Long batter lito from aingle "D." cell errandy attached 3^{\prime} test leadl for lo or out powirod - Long battery life from single "D"cell orandy stached 3 " teat leads for la or out of circule

FREE

catalogue
Lenctilet thene and meny nors ta and roparte-ele rodeds for frovert
 Tape Fietapfit, Aotribat Radio, Shor-

DAYSTROM LTD.. Dedt. Ww3 GLOUCESTER GL2 6EE. Tel. 29451
\square Enclosed is E _, plus packing and carriage.
Please send model (s)
\square Please send FREE Heathkit Catalogue.
Name

(Please Print)
Address
City
Prices and specifications subject to change without notice.
E.E.I. manufacture quartz crystal units with a frequency range of 200 Hz to 200 MHz . S.E.I. quartz crystal units have improved frequency ageing characteristics. S.E.I. quartz crystal units are in glass envelopes to standard dimensions or metal cans with two-pin or wire ends. S.E.I. produce quartz crystal units to military specifications. $\mathbf{S}_{\text {. }}$.I. quartz crystal units have high frequency stability. B. $=$. I. quartz crystal units are available at all frequencies in the ranges: Fundamental mode $950 \mathrm{kHz}-17 \mathrm{MHz}$, Third overtone 17-52 MHz Fifth overtone 52 -200 MHz . . $=1$. send catalogues to anybody who asks for them. S.E.lyou won't forget the name - will you?

arz sec

Salford Electrical Instruments Limited

Peel Works, Barton Lane,
Eccles, Manchester.
Tel: 061-7895081 Telex: 66711
A Subsidiary of The General Electric Co. Ltd. of England

EMTRA EYES FROM RED IFFUSION

Visual control of dispersed industrial and production processes, monitoring security-risk areas, traffic control, document and data relay to central office - all need extra eyes. And Rediffusion can give them to you with an efficient and economical closed-circuit TV system, tailor-made to your exact requirements.
You can have extra ears too - public address, intercommunication, telephone, radio and tape-music amplification, fire alarm and time control signals.
Rediffusion are specialists in custom-built communication systems, each designed specifically for the job it has to do. Equipment supplied on a rental basis has the benefit of electrical and mechanical maintenance provided at no extra cost . . there are 98 maintenance centres throughout the country.
Write or 'phone for the facts

for your extra eyes contact

REDIFFUSION

ASTRONAUT HOUSE, HOUNSLOW ROAD, FELTHAM, MIDDLESEX. TEL. 01-890 6325 ww- 046 FOR FURTHER DETAILS

"THERMOSTAITC SOLDERING IRONS

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering.

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts.
Voltages available $12 \mathrm{v} ., 24 \mathrm{v}$., $100 / 120 \mathrm{v} ., 210 / 250 \mathrm{v}$.
Five bit sizes from $\frac{1}{16}$ "to $\frac{1}{4}^{\prime \prime}$.
59/6

" 0 -MAX" sheet metal punches FOR QUICK AND CLEAN HOLES

- Simple operation

- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Qbtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

"1-MAK" (electronics) LTD. Napier House, High Holborn, London, w.c.

sGc

Printed Circuits Design Printed Circuits

A fast, efficient design service is a matter of course at Printed Circuits Ltd. The production of all types of circuits to customer's exact requirements is covered by a speedy design or prototype service.

Short runs present no problem, but capacity is available for fast quantity production and the assembly of components. If your project demands quality, quantity, speed and price control - ring Coventry 24155 today.

Printed Circuits Ltd.,
Spon Street Coventry CV1 3BR
Tel: Coventry 24155
A subsidiary of The General Electric Co. Ltd. of England

6 mm tubular midget flange $\mathrm{S} 6 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

The big new name in stereo
 Nivico

A range for the enthusiast. Tape decks and recorders . . . matching amplifiers and tuners . . . AM/FM stereo receivers . . . solid state record players with AM/ FM radio . . . solid state modular stereo components with automatic record changers. All specialist designed for sound perfection.

Pick of the world's best

MODEL AST 103 EH
Bookshelf type solid state micro-component stereo amplifer. $24 w$ R.M.S. Tape monitoring switch. Stereo headphone jack. Frequency response 30 $20,000 \mathrm{~Hz}$. Wooden cabinet.
MODEL FRS 103 EH
Matching solid state AM/ FM multiplex tuner with AFC.

MODEL AST 140 E
AM/FM stereo tuner/amplifier. Output 36w R.M.S. Automatic stereo switching with stereo radar. Advanced cross tuning with fine tuning indicator. Graphic controls for bass, treble and volume. Frequency response $20-20,000 \mathrm{~Hz}$. Speaker selector, protection indicator and many outstanding features and specifications.

MODEL MSL 15 E
Solid state 4 -speed stereo record player with AM/FM tuner. M.P.X. prepared. Two $5+5 \mathrm{w} \mathrm{Hi}-\mathrm{Fi}$ amplifiers. 16 transistors, 7 diodes, FM-MPX jack, stereo headphone jack.

The sign of quality and technical advancement JVC NIVICO (VICTOR COMPANY OF JAPAN ITD.)

For full details write to the sole U.K. Distributors DENHAM \& MORLEY (OVERSEAS) LTD., Denmore House, 173/175 Cleveland Street, London, W.1. Tel: 01-387 3656/7/8

Loudspeakers for the Perfectionist

 CelestionStudio Series

DITTON 15

Celestion's outstanding bookshelf system designed for the enthusiast. The sound reproduction of this proven enclosure is truly exceptional, the three radiators giving a smooth and effortless performance-from Bach to Basiea superb recreation of the original in your home.

DITTON 25

The true sound of music-you'll hearit as you have never heard it before every 'nuance' and 'timbre' is reproduced with breathtaking realism by Celestion's new Ditton 25. An elegant slimline High Fidelity system designed for luxury installations.

Fill in the coupon for free brochure detailing the complete Ditton

Dependable can solve itl Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.
MICRO-SWITCH • TRANSISTORISED • HEAVY-DUTY . A/C LATCHING . 'SPECIALS' MADE TO YOUR OWN DRAWINGS
No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY (CONTROLS) LTD.
157 REGENTS PARK ROAD LONDON N.W.1. 01-722 8161
WW-054 FOR FURTHER DETAILS

LEVELL
 PORTABLE INSTRUMENTS

R. C. OSCILLATORS

With DIGITAL or ANALOGUE

frequency calibration

TYPE	TG66A	TG668	TGI50	TGI50M	TGI50D	TGI50DM
FREQUENCY	0.2 Hz to 1.22 MHz .		1.5 Hz to 150 kHz			
ACCURACY	$\begin{aligned} & \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \\ & \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 1 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \\ & \pm 3 \% \text { above } 300 \mathrm{kHz} \end{aligned}$		$\pm 3 \% \pm 0.15 \mathrm{~Hz}$			
DISTORTION	$<0.15 \%$ from 15 Hz to 15 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz		$<0.1 \%$ at $1 \mathrm{kHz},<0.3 \%$ from 50 Hz to 15 kHz , $<1.5 \%$ below 50 Hz and above 15 kHz .			
SINE WAVE OUTPUT	Source voltage variable from $30 \mu \mathrm{~V}$ to 5 V . Output impedance 600Ω at all settings.		Source voltage variable from $250 \mu \mathrm{~V}$ to 2.5 V , Output impedance $<250 \Omega$ above $250 \mathrm{mV}, 600 \Omega$ below 250 mV . Less than 1% variation of amplitude throughout frequency range.			
SQUARE WAVE OUTPUT	None		None		Variable up to 2.5 V peak. Rise time 1% of period $+0.2 \mu \mathrm{~S}$.	
OUTPUT METER	Expanded voltage scales and -2 dB to +4 dB . Scale length $3.5^{\prime \prime}$		None	$\begin{aligned} & 0 \text { to } 2.5 \mathrm{~V} \\ & \text { and } 10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$	None	$\begin{aligned} & 0 \text { to } 2.5 \mathrm{~V} \\ & \text { and }-10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$
POWER SUPPLY	4 type PP9 batteries, life 400 hours, or, A.C. Mains when: selected by batteries repanel control placed by Power Unit		2 type PP9 batteries, life 400 hours, or, A.C. Mains when batteries are replaced by Levell Power Unit.			
SIZE	$7^{\prime \prime} \times 10 \frac{1}{4} \times \times 7^{\prime \prime}$ Weight 12 lb .		$10^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep. Weight 6 lb .			
PRICES	¢150	¢120	$¢ 32$	¢42	¢ 35	¢45
+ Mains Power Unit	included	115	\&7 100			
+ Leather Case	65	65	$£ 4100$			

LEVELL ELECTRONICS LTD., Park Road, High Barnet, Herts. Phone 01-449 5028

THE WELBROOK ALL-SILICON INTEGRATED STEREO AMPLIFIER

PRICE $£ 48$
COMPLETELY ENCLOSED PANEL MOUNTING. TEAK CABINET £4 EXTRA.
ALSO AVAILABLE
AMPLIFIER P.C.B. MODULES AS USED IN THE ABOVE AMPLIFIER. BUILT AND TESTED.
MONO AMP 103 £8-0-0.
STEREO AMP 103 £15-0-0.

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S. INTO A 8Ω LOAD AND 10 WATTS R.M.S. INTO A 15Ω LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICK-UP, TUNER AND TAPE.
SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE. detailed illustrated literature AVAILABLE ON REQUEST.
TRADE ENQUIRIES INVITED.

WW-057 FOR FURTHER DETALLS

Components Ltd
5 Loverock Road • Reading • Berks • Tel: Reaḍing 580616-9 - Telex 84529 Ministry of Technology approved distributor. WW-058 FOR FURTHER DETAILS

IRWIN
ELECTRONIC ENGINEERS

POWER SUPPLY E.J. 32 £19.10.0
For low voltage high current sources, from 200.250 volt 50.60 Hz . Mains input.

Output voltages 0-18 D.C. and 0.12 A.C. are continuousiy vanable Separate scales for DC and A.C., callbrated at 230 volts input.
Maximum current available is 8 amps on D.C. or A.C. With A.C. output there is no effective reduction in voltage as current demand increases. With D.C. outputs nomal regulation exists and there is some voltage reduction
The ripple content for currents used in mos? transistor circuitry is effectively nil. A graph showing regulation and ripple content is mounted on the side.
The robust attractive metal case is $9^{-} \times 6^{\prime \prime \prime} \times 4^{-1}$
 The unit and apparatus connected to it areprotected by internal fuses.

SIGNAL GENERATOR E.A. 30 £23.10.0

A general purpose, mains operated. solid state fraquency generator with a frequency range of less than 1 Hz to 150 KHz in six switched ranges. Maximum output voltage is $2.2 \mathrm{Vr.m.s}$. Into 600 ohms. Protection is by an intemal 60 mA tuse. On the front are a frequency range switch. ON/OFF output control. sweep trequency control with a large clear scale. 4 mm output sockets and a
three-way socket to supply soparate $\frac{1}{1}$ watt three way socket to supply sopar
amplifierfoudspeaker (E.A. 34 belowi.
The strong and ettractive metal case is $9^{\prime \prime} \times 6^{\prime \prime} \times 4$.
CURRENT AMPLIFIER E.A. 34 £7.6.0
Plugs into the above Signal Generator. It has a current amplifier output stage and loud-speaker, speaker cut-out switch and 4 mm output sockets. The frequency range is $\pm 3-\mathrm{db}$ from 18 Hz 150 KHz The cable and plug are to connect to E.A. 30 .

It takes over one and a half years from conception to birth of a baby elephant. It takes an average of only forty minutes from the receipt of your order until the parcel is ready for the post.
We deliver the goods with the minimum of delay.
Which is more than can be said for the elephan: ITadicspares 13-17 Epworth Street: Lendon E.C.2. Tel: 01-253 9561
Telex 262341

Celestion PA

Loudspeakers for all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome.

Driver Units

Pressure type units are available with
 or without tapped 100 V line transformers. The following 'built-in' features are on all models - High Sensitivity. Weatherproof. Phase Equalising Throat and Self-centring Diaphragm Assembly

Re-entrant

 LoudspeakersRola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

Loudspeaker

in Glass Fibre

The Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks, chemical plants, plating shops, etc, where protection from the weather
 or corrosive atmosphere is vital.

XCELITE

Precision made hand tools for the professional

PLIERS
69CG Radio - TV Plier 70 CG Flat Nose Pliers 7ICG Round Nose Pliers

72CG Chain Nose Pliers
73CG Tip Cutting Pliers
74CG Diagonal Close Cutting Pliers A complete range of miniature lightweight pliers specially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio/T.V., electrical and jewellery work. Precision made for the expert with miniatures in mind.
Cushion grip handle, coil spring openers.

SEIZERS

32H 5" Staight Nose Junior 5" Scizer 42H 6" Straight Nose Seizer 33H $5^{\prime \prime}$ Curved Nose Junior $5^{\prime \prime}$ Seizer $43 \mathrm{H} 6^{\prime \prime}$ Curved Nose Seizer
Box joint construction, two position snap on lock. Precision machined from perfectly tempered stainless steel.
Holds like surgical clamp and acts as heat sink.
Straight or curved nose, in 5 " and 6 " sizes.
Distributed by:
Special Products Distributors Limited
81 Piscadilly London.W.1.
Tel: 01-629 9556 Cables: SPECIPROD London W.1. Full details on request.

Made in U.S.A.
WW- 062 FOR FURTHER DETAILS

Jack Socket accessaries

All these products are moulded in thermoplastic. They may be used with any of the standard range of Rendar Jack Sockets.

Further information available.

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL
＇Music when soft voices die， Vibrates in the memory－＇

CHASSIS and CASES
 Type N

 by
H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment 287/289 EDGWARE ROAD, LONDON, W. 2. Tel: 01-723 5891

BLANK CHASSIS

Of over 20 different forms made up to YOUR SIZE. (Maximum length 351 n ., depth 5 in.)
SEND FOR ILLUSTRATED LEAFLETS
or order straight away, working out total area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.
48 sq. in. $\quad 5 /-\quad 176$ sq.in. $\quad 10 / 4 \quad 304$ sq. In. $15 / 8$
80 sq. in. $6 / 4 \quad 208$ sq. in. $\quad 11 / 8 \quad 336 \mathrm{sq} . \mathrm{in} . \quad 17 /-$
112 sq. In. $\quad 7 / 9 \quad 240$ sq. in. 13/- 368 sq.in. 18/4
144 sq. in. 9/- 272 sq. in. 14/4 and pro rata.
P. \& P. 3/-. P. \& P. 3/6. \quad P. \& P. 4/6.

Discounts for quantities. More than 20 sizes kept in stock for callers.
FLANGES (\ddagger in., 音in.), 6d, per bend.
STRENGTHENED CORNERS $1 /$ e each corner.
PANELS: Any size up to 3 ft . at $6 / \mathrm{sq}$. ft. $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. ($18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. $5 / 3$). Plus post and packing.

CASES

ALUMINIUM, SILVER H			HAMMERED FINISH			
Typ	ee Size	Price		Type	Size	Price
N	$8 \times 6 \times 2^{*}$	18/-	W	12×7	$\times 7$	37/6
N	$6 \times 6 \times 3$	17/6	W	15×9	$\times 8$	48/6
N	$4 \times 4 \times 2$	11/-	Y	8×6	$\times{ }^{6}$	29/-
U	$4 \times 4 \times 4^{\text {\% }}$	11/-	Y	12×7		45/-
U	$5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}$	17/-	Y	$13 \times$ $15 \times$	$\times 7$	50/6
U	$8 \times 6 \times 6$	23/-		$17 \times$	\times	$72 / 6$
\cup	$9 \frac{1}{1} \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	24/-	Z	19×1	$\times 8 \frac{1}{2}$	78/-
U	$15 \times 9 \times 9$	49/-		Height		
W	$8 \times 6 \times 6$	23/-		Plus p	ost and	

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

TECHNICAL TRAINING by \square CS IN RADIO, TELEVISION AND

First-class opportunities in Radlo and Electronics await the IC S-trained man. Let i C S train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man she opportunity to acquire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing. Electronics, Computers. etc. Expert coaching for:

- C. \& G. TELECOMMUNICATION TECHNICIANS' GERTS.
- C. \& G. ELECTRONIC 8ERVICING.
- R.T.E.B. RADIO AND TV 8 ERVICING CERTIFICATE.
- RADIO amateur's examination.
- P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver. all under expert guidance. Transistor Portable available as separate course.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

WW- 067 FOR FURTHER DETALLS

Comprehensive range for civil and military authorities

 as well as domestic users in more than 50 countries.Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEONEK LIMITED

Burlleros ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detailed particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (S lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent

PRESTON X-MOD 135 WAVEFORM SOURCE

X-MOD 135 is a stable calibrated waveform source and, as with all X-MODs, it provides both front panel and rear patchboard connections for use either as a single test instrument or for incorporation with other X-MODs to form an automatic instrumentation system.

Range: 0.001 Hz to 10 kHz Stability: $<0.05 \% /{ }^{\circ} \mathrm{C}$ Low distortion waveforms: SINE-SQUARE-TRIANGLE Rise \& fall times: $<1 \mu \mathrm{sec}$. Twelve calibrated outputs plus vernier control Output: $100 \mu \mathrm{~V}$ to 10 V All-silicon semiconductors

Plug-in printed cards

ANOTHER IN THE COMPATIBLE X-MOD
INSTRUMENTATION SYSTEM

BRITEC LIMITED

17 Charing Cross Rd., London, W.C. 2 Tel: 01.9303070
WW-070 FOR FURTHER DETAILS Se invitan consultas sobre exportación. Exportanfragen erbeten.
\qquad WM \qquad WN——いい \qquad

Take nine modules and Solartron's CD 1400 main frames. Build any scope you need. It's that simple. And that versatile. The first oscilloscope with planned anti-obsolescence.

The modules at present available give you a choice of 3 amplifiers. Three time bases. And an $X-Y$ plotter.

You can have wide band width
differential input. Ultra-high gain, sweep delay or single shot.

And there are more transistorised modules in the pipeline. Modules that will keep your CD 1400 scope up to dateright into the 70's.

If you need any more information, drop us a line. We'll send you literature. Answer your questions.

There's no limit to what vse'll do for

The Solartron Electronic Group Ltd. Farnborough Hampshire England Telephone 44433

FRAMES FOR I.G.PACKAGING tarid ir mime systank

 Mr SYSTEM says
Why not
 consult our Design service?
A System that is adaptable to practically every known requirement - any size . . . any shape - with high temperature flame-resistant guide mouldings, which can be arranged to give any spacing between cards. Other features include built-in card identification facilities.

VERO ELECTRONICS LTD.

Industrial Estate, Chandlers Ford, Eastleigh, Hants. S05 32R. Tel: Chandlers Ford 2921/4. Telex: 47551
BRANCHES AND AGENTS THROUGHOUT THE WORLD

WW- 073 FOR FURTHER DETARLS

better

Hatfield Baluns provide a simple and effective solution to the problem of matching unbalanced to balanced impedances of different values. Illustrated, left to righe, are: 2 kW RF Transmitter Matching Unit, Type B52 Receiver Antenna Matching Unit and Type RT40, the latter being one of a range particularly suitable for matching rhombic antennae so coaxial systems. Ask for Folder B4/4 and for the latest edition of the Hatfield Short Form Catalogue.

SOUTH EAST ASIA-for prompt service and deliveries, contact HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 561, Napier, New Zealand.

HATFIELD INSTRUMENTS LTD., Dept. W.W., Burrington Way, Plymouth, Devon. Telephone: Plymouth (0752) 72773/5. Telegrams:

HATFIELD BALUN

 Sigjen Plymouth.

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than . 05%
\star an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
also available
Si452 Distortion Measuring Unit
* Jow cost distortion measurement down to $.01 \%$ with comprehensive facilities including L.F. cut switch. etc.

You have a choice of two Solartron's DVM's in the medium price range.

On the one hand; the LM 1426. Accuracy $0.01 \% \pm 1$ digit. Five digits, reading up to 11,000 full scale. Resolution to 10 microvolts. A further 2.5 microvolts with an additional $\times 4$ range.

On the other, you have the LM 1420. Reading up to 2,300 full scale. Internal Weston cell calibration.
$5,000 \mathrm{M} \Omega$ imput resistance and 150 dB noise rejection.

Now which is the bestone?
Both.
We've already delivered over 7,000 of the 1420 . For price performance it's unbeatable. It's the chosen instrument in many laboratories.

But Solartron also recognise the need for a slightly higher degree of accuracy, on occasion, and designed the 5 -digit LM 1426 to meet that need.

Which one you choose depends on the type of work you want it for.

Perhaps it'd be as well to send for both our data sheets. Especially if you're in two minds
GOLARIRON
A Schlumberger Company
A force to reckon with

FOR SPECIALISED APPLICATIONS TO YOUR INDIVIDUAL REQUIREMENTS

Backed by 40 years experience. Where 1 or 1000 off makes no difference.

JUST PHONE:
HIGH WYCOMBE 30931-4
OR WRITE TO:-
E.T.E.I. LTD. CHILTERN WORKS
TOTTERIDGE AVENUE
HIGH WYCOMBE BUCKS

AHUJA P. A. SYSTEM are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.
EEEUJE RIDIOS.13: DARYA GANJ DELHI-6. (INDIA)

Issued by Engineering Export Promotion Council Calcutta (India)

Why? Because you benefit from over 30 years' experience which Claude Lyons have accumulated in the voltage control field. In addition, you have a very wide choice from the extensive range of variable transformers available from Claude Lyons. Variable transformers are the most useful and versatile devices ever developed for the control of AC voltage. They provide smooth, continuous adjustment of voltage output from zero to line voltage and above, either hand-operated or motor-driven.

For full details of the Regulac* variable transformer range, write to Publicity Department, Hoddesdon.

Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10-15 $d B$ reduction of hiss. These improvements, of breakthrough magnitude, are valid at any time-even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

A301 features: Easy, plug-in installation solid state circuitry - modular, printed circuit construction . high rellability, hands-off operation. Performance parameters such as distortion, frequency response, transient response, and noise level meet highest quality professional standards.

New
A301 price: $£ 560$ f.o.b. London $\$ 1495$ f.o.b. New York

346 Clapham Road 'London S.W. 9 01-720 1111 ' Cables: Dolbylabs London
333 A venue of the Americas - New York N. Y. 10014 (212) 243-2525. . Cables: Dolbylabs New York

WW- 081 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockers from one power outlet. Poriable sockets from one power outet. Porta
or permanent fixing, compact units, or permanent fixing, compact units,
with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes. brochure from
LEXOR DIS-BOARDS LIMITED, Allesley Old Road, Coventry.
Telephone 72614 or 72207

WW-082 FOR FURTHER DETALS

WW-082 A FOR FURTHER DETALLS

TO: NOMBREX LTD

Exmouth. Devon. England
Please forward leaflets of your full range to:-
NAME

Please enclose 6d. stamps

Trade and Export enquiries please attach letterhead or Trade Card.

R. F. SIGNAL GENERATOR MODEL 29
Spin Wheel Tuning $£ 1.0 .0$ extra

MODEL 29-S

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
- Eight clear scales. Total length 40"
- Smooth vernier tuning-ratio $7 \frac{1}{\frac{1}{2}}: 1$
- Spin wheel tuning-optional extre
- Magnifier cursor-precision tuning
- Unique electronic scale calibration

Overall accuracy. better than 1.5\%

- Modulation, variable depth \& frequency

PRICE $\mathbf{f 2 0 . 0 . 0}$

MODEL 29-X

- Full specification of Model 29-S

AND
Integral Crystal Calibrator providing accuracy to $\pm 0.02 \%$
Postage \& Packing 7s. 6d.

Vortexion

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for $8 \Omega-15 \Omega$ and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER.

A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER/AMPLIFIER.

High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level.

Standard model 1 -low mic. balanced input and Hi Z gram.

10/15 WATT ELECTRONIC MIXER/AMPLIFIER.

This high fidelity 10/15 watt Ultra Linear Amplifier has a built-in Mixer and Baxandall tone controls. The standard model has 4 inputs, two for balanced 30Ω microphones, and one for pick-up C.C.I.R. compensated and one for tape or radio input. Alternative or additional inputs are available to special order. A feed direct out from the mixer is standard and output impedance of $4,7.5$ and 15Ω or 100 volt line are to choice. Designed for continuous operation on $19^{\prime \prime} \times 7^{\prime \prime}$ rack panel form or standard ventilated steel case.

30/50 WATT AMPLIFIER

With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5 .15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

200 WATT AMPLIFIER can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input $1 \mathrm{~mW} 600 \Omega$. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

ELECTRONIC MIXERS

Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12 way mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms. balanced, unbalanced or floating.

Send for literature and price lists to:

YOU WANT PARTS -almost immediately!

 URGENTLYSo what do you do?
You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

WW-085 FOR FURTHER DETAILS

Service calls hit you twice-your profits and your reputation and nothing is more wasteful than service calls that could be saved by better equipment design. You know of the occasion when all a Service Engineer did was turn a volume control up (from off!), and when the complaint was "fuzzy radio" he simply put the tuner back on station (fiddled with!), and the countless dead shorts with nails through speaker cables-or open circuits when plugs mysteriously fall off, or the cable itself gets cut in half.

This new range of sound equipment counters these problems, by careful applications design to give you: 1. Tuner Amplifiers for Radio Distribution systems with switched Tuners (AM,FM, AM/FM) and all engineer controls by internal presets. 2. A range of rock steady crystal controlled Tuners, AM,FM, and AM/FM. 3. A range of fully transistorised P.A. amplifiers (12W, 40W and 100W) with the S.N.S. 'Current-Lok' short and open circuit protection.

Manufacturers of: Transistor Amplifiers, Crystal AM and FM Tuners, Radiomicrophones, Cabinet and Line Source Loudspeakers, Loud-speaking Intercom Systems, Hotel Radio and Intercom Systems.

HO A member of The Firth Cleveland Group.

IT'S YOUR MOVE...

WW-087 FOR FURTHER DETAILS

Coubro \& Scrutton Ltd.

has absorbed all VHF. UHF. activities of Associated Aerials Ltd., and is handling the microwave reflector activities of Precision Metal Spinnings Ltd.

In keeping with this wider approach
the Company has changed its name to

C\&S Antennas Ltd

A central sales organisation has been established at Wentworth House, llford, to deal with overall antenna systems and projects on all frequencies-

LF TO MICROWAVES

-including initial survey and feasibility studies, design, site layout, supply, installation and final commissioning of antenna systems.

The new Company provides

 a COMPLETE ANTENNA SERVICEfor telecommunications and broadcasting engineersincluding antennas, structures and installation workleading to higher efficiency, reduced costs, and undivided responsibility for overall antenna performance.

Details of the wide range of antennas and services are available from:

C\&S Antennas Ltd
Wentworth House. Eastern Avenue, llford. Essex, England Telephone: 01-554-0102 Telex:25850 Cables: Antennas IIford (England)

Our experience in the manufacture of stabilised bench power supplies and knowledge of the latest market requirements have prompted a re-design of the well established ' L ' Series. Consideration has been given to the more advanced needs of the research and development engineer, but equally the basic features of a general purpose laboratory power supply, suitable for student use, have been retained.

Units Available

Prices
L.30A 0-50 Volts at $\frac{1}{2}$ Amp. £35
L.30B 0-30 Volts at 1 Amp.
L.30C $\quad 0-10$ Volts at 3 Amps (with adjustable over-voltage protection circuit)
£48
L. 30A/T $\}$
twin versions of L. 30 A and B above£70

Features

* Continuous variability of voltage and current settings
* Constant voltage or constant current operation
* Programmable output
* Extremely stable output against load/line variations
* Separate on/off switching of mains input and DC output
* Adjustable current limiting facility on all units
* Variable SCR over voltage protection circuit on L.30C.
* Clean functional design with precise monitoring of voltage and current by clear scale meter.

FARNELL INSTRUMENTS LTD.,
Sandbeck Way, Wetherby, Yorkshire
Telephone: $09373541 / 6$

How do we intend to sell cynical old you our public address equipment?

By offering you the three things you really want.

1. Low Price (like column speakers from £17.6.4.)
2. Durability (we back our muscles with a two-year guarantee.)
3. Quality specifications (Check ours).

The Radon Public Address Range is wide and growing. It consists of amplifiers, speakers and microphone equipment. We show the M50/6 sixchannel amplifier. Specifications below.

output. 50 wats r.m.s. (max. 64 watis)
outpu (other taps available). 156 : 15 . ohms (other taps available). 156 ohms Harmonic distortion: Approx 1% at full Harmonic distortion: Approx 1% at full
power. Frequency response: plus or minus power. Frequency response: plus or minus
$2 \mathrm{~dB} 20 \mathrm{c} / \mathrm{s}(\mathrm{Hz})$ to $35 \mathrm{Kc} / \mathrm{s}(\mathrm{KHz})$. Weight 38 lb Models available: M50/4. M50/6. M50/8 (suffix refers to channels)

In addition. the M/100.M/250.M/500 and $M / 1000$ are built to order. The suffix number refers to the wattage and preamplifying facilities are avallable as required.

Radon / A growing name in amplifiers, wall speakers, sound columns, complete audio and hi-fi equipment, tuners \& industrial electronics.

[^0]

TS Distortionless Servomechanical

Stabilisers provide high-speed, accurate stabilisation without distortion of waveform. Accuracy $\pm 0 \cdot 25 \%$. Correction speed up to $60 / 100$ volts per sec. Unaffected by load, frequency or power factor variations. 1 to 120 kVA single phase and up to 360 kVA three phase.

BTR Solid-State Electronic Stabilisers give high accuracy with extremely low distortion and no moving parts. Basic models : $\pm 0 \cdot 3 \%$ accuracy, 3% max. distortion without any filtering. Unaffected by load or frequency variations. Filtered models also available. 400 VA to 10 kVA .
Claude Lyons
CVR Constant Voltage Regulators offer considerable advantages over conventional constant voltage transformers at remarkably low cost. $\pm 0.3 \%$ accuracy, 3.5% max. distortion without any filtering. Unaffected by load or frequency variations. 360, 600 and 1200 VA .

The range also includes VB tap-changing types and PST high-current stabilised d.c. supplies.

For full details write to Publicity Department, Hoddesdon.

CLAUDE LYONS

Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161 Telex 22724
76 OId Hall Street, Liverpool L3 9PX. 051.227 1761 Telex 62181

AUDIO \& DESIGN M9BA TONE ARM

Unmeasurable friction due to my unique 'mercury contacts'. Built-in bias compensation

Let me help you get the best from your cartridge-l've got the (mercury) contacts.
HEIGHT ADJUSTMENT: sultable for turntable of 1.25 to 2.5 inches height with a nomlnal cartridge depth of 0.625 inches.
TRACKING ERROR: arranged for minimum distortion--maximum effective second harmonic distortion due to tracking error 0.58% (related to a recorded velocity of $10 \mathrm{~cm} / \mathrm{sec}$.)
BIAS: inbuilt magnetic anti-skating device.
EFFECTIVE MASS: Standard Version: less cartridge 9 grams. Alternative Version: less cartridge 11 grams.
MOMENT OF INERTIA: Standard Version: 7×10^{3} grams cm^{2} for nominal cartridge weight of 5 grams.
Alternative Version: 11×10^{3} grams cm^{2} for nominal cartridge weight of 10 grams.
LOW FREQUENCY RESONANCE: Standard Version: $10 \mathrm{e} / \mathrm{s}$ for nominal cartridge weight of 5 grams of compliance $20 \times 10-{ }^{6}$ $\mathrm{cm} /$ dyne.
Alternative Version: $8 \mathrm{c} / \mathrm{s}$ for nominal cartridge weight of 10 grams of compliance $20 \times 10.6 \mathrm{~cm} /$ dyne.

Write for further details from U.K. and World-wide marketing agent:-

KEITH MONKS (AUDIO) LTD
54 ROUNTON ROAD, CHURCH CROOKHAM, NR.ALDERSHOT, HANTS.
Tel: Fleet (02514) 3566

WW-094 FOR FURTHER DETALS

are widely used as standards in many Industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \div$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available In minlature switchboard and portable forms, In ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. $48 / 56$ BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-3879092.

WW-079 FOR FURTHER DETALLS

Thermal Converters by Ormandy and Stollery

E True R.M.S. regardless of waveform

- Responses from $0.1 \mathrm{~Hz}-500 \mathrm{MHz}$ and D.C.
- Fast response high output types
- Sensitivities from 750 microamps to 50 amps
- Matching pairs, sets, and quads, etc.,

ORMDNDY R PTOIIENT
3 VICTORIA PLACE, BRIGHTLINGSEA, ESSEX ENGLAND

Aaders
 is the name-

 pleased to/2 meter youNo matter what your meter requirements, we meet them. Fast. Anders holds the largest stocks in the U.K. for off-the-shelf delivery, so the meters you need yesterday, ordered today, can probably be with you tomorrow. In quantity, too. If you've got special problems like non-standard requirements, give us a ring. Our technical department creates panels to individual needs.
\qquad

50 (2)

The widest ranging and most comprehensive valve catalogue available from any independent supplier.

PINNACLE ELECTRONICS LTD ACHILLES STREET • NEW CROSS • LOMDON S.E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

Here are the features which make the $\$ 54$ such good value for money......

At £110 this oscilloscope must be seen to be believedAsk for a demonstration NOW!!!

Wireless World

Electronics, Television, Radio, Audio

This month's cover design introduces L. Ibbotson's article on the principles of parametric amplifiers. Against a background formed by a varactor diode capacitance/ voltage characteristic appears a parametric amplifier designed for operation at S-band microwave frequencies. Developed by Mullard for radio astronomy applications, the device has a pump frequency in the Q band.

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1

March 1969
Volume 75 Number 1401

Contents

3 -mile diameter radio telescope
P.O. contracts-more flexibility

$$
142
$$

British made?

Books Received
Parametric Amplifiers by L. Ibbotson
News of the Month

Solid State Oscilloscope by M. Phillips
Negative Feedback and Hum by G. W. Short
Letters to the Editor
Circuit Ideas

Announcements
Colour Television Receiver-10
Personalities
Operational Amplifiers-2 by G. B. Clayton
Resilient Variable Resistor f. B. Swainston

March Meetings
New Products

World of Amateur Radio
Literature Received
H.F. Predictions

Real \& Imaginary by "Vector"

Improving an Old Loudspeaker by H. C. Bennel-Clark

Goonhilly 2-communications and the battle for bandwidth

Thyristors and Associated Devices by W. D. Gilmour

More on Demonstrating Rectifier Action in Slow Motion by

Test Your Knowledge questions and answers by L. Ibbotson

(C) Iliffe Technical Publications Ltd., 1969

Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: W'iworld Iliffepres 25137 London. Cables! "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\mathcal{f} 215 \mathrm{~s}$ Ud Overseas; 1 year $โ 215 \mathrm{~s}$ Od. Canada and U.S.A.; $86.75 ; 3$ years $\not \subset 7$ Os Od. Canada and U.S.A.; $\$ 17.50$ Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 401, Lynton House, W'alsall Road, 22b. Telephone; 021-356 4838. BRISTOL: 11 Marsh Street, 1. Telephone: 0272 21491/2. COVENTRY: 8-10, Corporation Street. Telephone: 0203 25210. GLASGOW: 3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260, Deansgate, 3. Telephone: 061-834 4412. NEW YORK OFFICE U.S.A.: 300 East 42 nd Street, New York 10017. Telephone: 867-3900.

if you prefer to monitor with an oscilloscope instead of a meter...

here'sa professional-quality Itube ata lowest-ever price!

Once again, Thorn-AEl's renowned production engineering techniques have made possible a 1 -inch cathode ray tube, built to professional performance standards, at a price far lower than that of current competition-with quantity discounts to reduce it still further.

The BRIMAR D3-130GH 1 -inch tube has been specially designed for use in monitoring aspects of equipment performance where simple voltmeter and milliammeter readings are inadequate. Built into installations, it will save 'down-time' by early detection and quick location of fauits.
Features include : Electrostatic focusing and deflection, small spot size, freedom from trapezium distortion, good uniformity of focus. High sensitivity makes it ideal for transistor operation. Typical Operation
$V_{h} 6.3 V ; I_{h} 0.3 A ; V_{a 1+a 3+a 4} 1000 \mathrm{~V}$. $\mathrm{V}_{\mathrm{a} 2} 100 \mathrm{~V} ; \mathrm{V}_{\mathrm{g}}$ (cut-off) -20 to -48 V .
Sy 58 to $88 \mathrm{~V} / \mathrm{cm}$.
Sx 80 to $120 \mathrm{~V} / \mathrm{cm}$.

Fgr full technical data and prices, write or phone.

moni Thorn-AEl Radio Valves \& Tubes Ltd., 7 Soho Square, London, W1V 6DN Tel : 01-4375233

Wireless World

British Made?

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant

J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. LAMBERT (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

To what extent is British industry foreign owned, foreign dominated, foreign controlled? This is the question posed in the introduction to the book "British made?"* to be published this month. The authoress, Patricia Millard, rightly says there is no simple answer to this question either in terms of money invested from overseas or in the cost to our economy of profits sent abroad. She sets out to survey objectively various market sectors of industry-including electronics and telecommunications -in order to present the facts regarding overseas investments in the U.K. both directly in terms of subsidiary or associate companies and indirectly by minority holdings and licensing arrangements etc. Of the estimated $£ 2,250 \mathrm{~m}$ of overseas money directly invested in British industry 75% has come from the U.S.A. and apparently American investment accounts for some 17% of this country's manufacturing industry. At least 1,600 non-financial companies are said to be owned or controlled by American companies.

This the overall picture of this country's industry, but what of our particular industry? One sector of it, and the most rapidly developing, that of semiconductor manufacture is dominated by American money and know-how. Basil de Ferranti is quoted in "British made?" as having stated that 37% of integrated circuits sold in Britain are wholly imported from the U.S. and another 19% are imported in partly finished condition for assembly here. The import figures for semiconductors for 1968 show a total of $£ 15.3 \mathrm{~m}$ compared with $£ 11.4 \mathrm{~m}$ a year ago. Exports totalled $£ 4.6 \mathrm{~m}$ ($£ 2.7 \mathrm{~m}$). Even the few British companies which do manufacture semiconductors on a large scale-Marconi-Elliott, Plessey, Ferranti-have licensing agreements with American companies and, of course, Associated Semiconductors Manufacturers now owned by Mullard are consequently a subsidiary of the Dutch Philips company.

In the components and instruments fields overseas influence may not be so obvious. This is probably due to the fact that many of the companies, whose names are now household words, have been established in this country for so long that we have forgotten that they are offsprings of American parents.

Miss Millard says the facts she presents may shock and startle those who are complacent about British industry. In quoting from and commenting on her facts we are seeking to do neither for we know that the large majority of our readers, whose very livelihood depends on a virile and firmly established industry, are by no means complacent; our correspondence proves this! It is, however, a useful exercise to take stock and see what is really happening.

Because electronics manufacture depends on a continuously advancing technology and necessitates the investment of vast sums of money in $\mathrm{R} \& \mathrm{D}$, it is almost inevitable that the American industry, because of its financial and manpower resources, will set the pace in world electronics. If therefore we in the U.K. are to be in the running and are, for obvious reasons, unable to invest the necessary money and manpower we must take the alternative, if less gratifying, course of buying American know-how and accepting foreign investments. Does this, however, necessitate domination of the industry by overseas companies?

The alternative appears to be merging of companies into groups large enough to compete with the mammoth American corporations. However such mergers, while achieving "housekeeping" economies in R \& D costs, do not necessarily mean better R \& D resulting in more technically competitive products in the world market. On the other hand we must not overlook the efforts made by small independent companies in specialized sectors of industry to produce truly British made goods.

Surely the moral is for us to go it alone in a limited range of products where we are already doing well and to ensure that by accepting outside aid we do not stultify British endeavour.
*"British made?" published by Kenneth Mason Publications Ltd.

Improving Old Loudspeakers

Many old loudspeakers have excellent magnet and voice-coil assemblies but the cone suspensions and frequency response leave much to be desired. Methods of increasing the cone suspension compliance and cone rigidity are suggested

by H. C. Bennet-Clark*, B.Sc., Ph.D.

I have recently been concerned with a research project examining the courtship of fruit flies, ${ }^{1}$ in the course of which pulses of sound where played to the flies to simulate their own courtship sounds. The fly produces, by flapping its wings, a single cycle of pressure change; it was this pulse, lasting 3 ms , that we wished to reproduce from a loudspeaker.

Early experiments used a new commercial loudspeaker of the $£ 6-£, 8$ class; fed with the rounded sawtooth waveform that is the analogue of the fly's wing movement, the speaker did not transduce this accurately into a cycle of pressure rise and fall but produced a jagged rising waveform and a hang-over after the cessation of the applied signal. These are typical properties of cone loudspeakers. As the experimental programme was aiming to test the sensory limits of the flies, it was clear that a better transducer was required.

An old 12 in Goodmans unit, made about 1950, was lying around unused. As recent experiments elsewhere ${ }^{2}$ have been directed to redesigning the cone and cone surround, this seemed a suitable subject for experiment. The wit, before treatment, was unsuitably rough iṇ its response, having similar faults to the other unit. After treatment, it was capable of producing clear single sound pulses in the range from 100 to $1,000 \mathrm{~Hz}$. Since then, I have modified another 12 in Goodmans unit of about 1953 vintage and various other units all over 10 years old; two of these are used at home, and, subjectively, appear very much freer from transient distortion and troughs or peaks in the frequency response than they were before.

Some theoretical and practical considerations

The theory of operation of cone loudspeakers is well known and is treated elsewhere. ${ }^{3}$ Summarizing, it appears that for a 12 in unit of 10 in diameter cone to operate at 40 Hz , it should have a resonant frequency below this. If the piston is truly rigid, it will be fairly flat in its response up to a frequency determined by the cone diameter; for a 12 in unit this is about $800 \mathrm{~Hz}^{4}$ Above this frequency, the radiation resistance rises, the unit impedance rises and also the unit becomes increasingly directional.

Practical cone units are designed to cover a bandwidth up to maybe $6-15 \mathrm{kHz}$ and to be omni-directional in the process. This can be achieved by designing the cone so that at high frequencies only the inner part vibrates; in a practical unit, this is encouraged by corrugating the cone in a series of annuli, each of which is separated from its neighbour by the compliance of the corrugations. As each annulus has its own

[^1]resonant frequency, or range of resonant frequencies, internal damping of the cone is desirable and is achieved by use of a fluffy paper cone; even then, troughs and peaks of $\pm 12 \mathrm{~dB}$ are common in the cheaper or older designs.

From this, it follows that in response to a square wave input or to any fast transient, such a speaker will produce buzzes which are caused by the various peaks in its frequency response. To perform well, a speaker must have a flat frequency response.

This all suggests that several loudspeakers each of limited bandwidth and very flat response will perform better than a single wide range unit. It also suggests that a suitable approach might be to build very rigid pistons for the various units.

A flat rigid piston is difficult to make. ${ }^{5}$ Conical rigid pistons are also fairly difficult to make and, if very rigid, tend to become bells; a bell is essentially a disc or cone with rigid but elastic walls and can be excited at a number of different, quite sharp, resonances. Any approach to increasing the rigidity of the cone should introduce damping of bell-mode resonances if it is to be successful.

The effect of the cone suspension

The lower frequency limit of any cone unit is determined by its fundamental resonance. In many older 12 in cone units having corrugated paper surrounds, the resonant frequency is 50 to 100 Hz . Thus they cannot be expected to perform to present day $\mathrm{Hi}-\mathrm{Fi}$ standards, however they be enclosed.

The aim is that the cone should move axially as if constrained by a Hookean spring; symmetrically and linearly. Corrugated paper rarely meets these requirements and, by its

Fig. 1. Diagrammatic cross-section of a loudspeaker showing, on the left, where the cone should be cut to remove the surround and, on the right, the extent of the new foam surround.
stiffness, is not conducive to high efficiency as, at lower frequencies, the efficiency is mainly a function of cone mass and surround stiffness.

For the average living room, a power level of 0.3 acoustic watt will give an intensity level of about 100 dB . At 40 Hz , this power requires an excursion of about $\frac{1}{2}$ in by a 10 in diameter piston. ${ }^{4}$ This excursion must be linear.

Modifications to the cone surround

In the late 1950s, plastic polyurethane foam was used by Wharfedale as a cone surround. I modified a 12 in Goodmans then, giving it a foam surround, and it has been in use ever since. The cone has not become eccentric or detached and the resonant frequency was lowered from 75 Hz to 47 Hz . I have recently modified the other Goodmans 12 in unit. The resonant frequency was lowered from 54 Hz to 37 Hz . In both cases, the compliance was approximately doubled.

A suggested procedure for doing this to an existing unit is given here. On no account should the voice-coil spider be disturbed or the cone detached.

First measure the resonant frequency. By feeding directly from a signal generator, the resonance can be seen directly; this differs slightly from the infinite baffle resonance but the difference can be disregarded.
A suitable sheet of foam is obtainable at Woolworth's for 7 d . and is 15 in square and 5 mm thick. Mark upon it concentric circles of diameter equal to that of the outside of the loudspeaker chassis mounting gasket and the base of the cone of the loudspeaker (see Fig. 1). Cut out the annulus of foam and mark it into equal sectors- 4 or 8 are suggested.
Now for the point of no return! Cut out two similar opposite sectors of the cone surround, by slitting with a really sharp knife in the valley of the inner corrugation (see Fig. 1) and then lift off these sectors and the felt gasket from the chassis. Stick a sector of the foam onto the cone and the chassis using either Evo-stik or Copydex. The felt gasket can then be glued back.
Before everything sets solid, check that the cone still moves freely and does not scrape on the poles of the magnet. Then continue replacing the original surround. When finished, make sure the foam is really firmly stuck around its inner and outer edges. Leave the speaker 24 hours resting on its gasket, to ensure that this is really firmly stuck down. The final appearance can be seen from Fig. 2.

Increasing the rigidity of the cone

This is most easily done with a diaphragm that is truly conical-most are not, though, but the result can be the same. I have treated two 12in Goodmans units, an 8in Wharfedale FSAL and an anonymous 10 in unit all with equal success. Basically, the cone is built up by successive layers of expanded polystyrene and then stabilized with a skin of aluminium foil.

Suitable expanded polystyrene sheeting comes in rolls like wallpaper and in a variety of thicknesses. I bought a roll 22 in wide 33 ft long and 2 mm thick for 6 s 11 d and have enough left for another 10 speakers!

The main difficulty is to find a suitable adhesive as the sheeting dissolves in most organic solvents. You can use water pastes, shellac or Copydex. The last is probably the best as it sets quickly and is elastic. I have not had my speakers operating long enough to know how long it will last.

The cone is built up by glueing on sectors of expanded polystyrene. First, the cone dimensions must be measured: a 12 in Goodmans speaker has a cone about 10 in diameter of about 105° angle. Such a cone can be made from a circle by cutting a sector out of it. The cone angle can be measured by cutting a piece of paper to form a protractor and then measuring the angle. The table on page 101 shows the dimension required to make cones of various angles for a 10 in diameter conical diaphragm.

Fig. 2. Photograph of Goodmans 12 in loudspeaker showing the foam surround of eight sectors, after fitting.

Fig. 3. Goodmans 12in loudspeaker showing the cone being built up with sectors of expanded polystyrene.

Fig. 4. Goodmans 12in loudspeaker after frve layers of polystyrene have been fitted. The aluminium skin is cut and stuck down with Copydex.

In most units the angle of the diaphragm becomes more acute towards the centre. In this case, cut the sectors a little larger than the table indicates and fit them to the diaphragm.

Gluing the sectors to the diaphragm is quite quick. First, remove the dust-cover from the centre of the cone as the sectors must be attached as closely as possible to the whole of the diaphragm.

Smear an area of diaphragm rather larger than the sector with Copydex and fit the first sector snugly up to the centre and edge of the diaphragm. Press it down evenly all over and check that it is correctly fitted (Fig. 3). Fit the next 3 sectors and then, before gluing, check that the last sector fits snugly: if not, cut it to size and then fit it.

The next layer is fitted in the same way but the joins between sectors should not be above those of the first layer but should be staggered. This is necessary to reduce the extent to which "bell-mode" vibration occurs; this particular mode of vibration is probably fairly highly damped by the laminated structure. Continue adding layers. The foam sheeting is 2 mm thick, so, for a $\frac{3}{8}$ in thick cone, you will need about 5 layers though I have used 4 with success. There is probably little advantage beyond this thickness in terms of gain in stiffness and you will increase the mass of the cone unduly.

After building up the cone, it must be finished with a rigid skin-this greatly increases the final rigidity of the laminate.

The skin is made of ordinary domestic cooking foil. The circular ring to make the cone should be cut about $\frac{3}{8}$ in larger and smaller in radius than the original polystyrene circles to allow rolling over at the inner and outer edges. For a larger speaker, it is best to use five sectors, as before (Fig. 4).

To glue the skin with Copydex, rather more care is needed. The aluminium foil has a very shiny side and a matt side. Smear Copydex very thinly and evenly over the matt side of the foil and over the cone. Then leave it to dry for about 5 minutes and stick the foil on, overlapping both at the edge and at the centre. The skin will be most unlikely to fit really tightly but it must be made to do so.

Aluminium is fairly ductile: rub the skin all over with a smooth polished tool-a ball point pen barrel is ideal-until it is attached all over. Then proceed with the other sectors. When all are fitted, they can be rolled over the apex and edge of the cone, which should be similarly treated with Copydex. This will give a smooth finish to the inside and outside of the cone.

If the skin does not stick (and it can be awkward), you may have to try shellac. This comes, conveniently dissolved in alcohol, as button polish and French polish, and should be painted on the cone and foil as with Copydex and allowed to get tacky. The procedure is then the same.

Performance testing; efficiency and resonance

The first thing you will have done is to test the freedom of the cone. This should be tested more carefully both after fitting the foam surround and after modifying the cone.

In the case of one of my 12 in Goodmans, the resonance was originally at about 55 Hz , after fitting the surround it was at 35 Hz and after fitting the polystyrene to the cone at 25 Hz . This gives quite a lot of useful information. The initial decrease of resonant frequency was to about $\sqrt{2}$ of the original, suggesting a two fold increase of compliance (a similar improvement was obtained with my other 12 in unit). When the cone was modified, the resonant frequency dropped by a further $\sqrt{2}$ suggesting that the cone mass had been doubled. The first will cause an increase in speaker sensitivity and the second a similar decrease.

But, to avoid later trouble, you should check that the cone movement is adequate and free. You must produce about 5 watts at 30 Hz and feed it into the speaker (or if this is not possible, 6-10 volts of a.c. from a transformer for a 15Ω speaker gives 2-6 watts). This should cause the diaphragm to flap through about $\frac{1}{2}$ in. By picking up the speaker and turning it,
it should be possible to find whether, at any point, the moving coil touches and magnet assembly-if it does, it will be only too obvious, as it will set up a scraping noise. Clearly, the speaker should not be mounted in such a position. My experience, though, is that this is one trouble that does not occur.

The speaker cone should be very rigid. A paper cone is quite easily dimpled by finger pressure, for quite small movements of the whole cone. By pressing anywhere on its surface, the cone of the 12 in modified speakers can be moved over $\frac{1}{4}$ in inwards before any deformation can be observed.

There are practical disadvantages in making the piston too thick and too rigid. If it is too thick, there will be serious coloration at some frequency caused by interference effects at the edge. There are also problems caused by the sharp transition from the rigid cone to the soft surround: these are to some extent reduced as the paper of the cone will protrude out from the body of the built-up cone. The effect of these two sources of non-linearity is likely to be fairly slight by comparison with those present in the original response. A serious coloration in one of the two 12 in units occurred at about 1.5 kHz and examination with a microphone suggested that there was a trough of about 15 dB and a peak of 6 dB about this point. Although this was above the normal range of input frequencies, it led to serious coloration when used for pulse operation. Its source was traced to the jar-shaped hole at the centre of the thickened cone, formed by the voice coil and magnet. It was very considerably damped by fitting a central plug consisting of 4 layers of polyurethane foam alternating with 3 layers of polystyrene foam. This plug also acts as a dust cover.

Suitable h.f. units

There are many h.f. units on the British market, most of them designed to operate above 3 kHz . At this frequency, my I.f. units become rather rough and highly directional. Probably the optimal crossover point is 1 kHz but, for reasons of convenience, I have used 1.5 kHz as Whiteley Electrical make cheap units with a slope of 12 dB per octave which can be readily modified to 7.5 e impedance at this frequency.

For simplicity, the h.f. unit should cover the band from 1 kHz to 15 kHz smoothly. Ideally, it may be better to use 3 speakers and only expect $3 \frac{1}{2}$ octaves from each, but, if a suitable h.f. unit can be found, it could be used. I had been given a Whiteley W.B.T. 10 horn h.f. unit which, as delivered, responds down to its flare cut-off frequency, 2 kHz .

Fig. 5. Diagram of horn-loaded tweeter, showing, on the left, a parallel sided mounting hole giving rough response and, on the right, the shape of hole to continue the exponential horn for smooth low frequency response.

TABLE ONE
Dimensions of arcs of circles to generate cones of 10 in basal and 2 in apical diameters.

Cone angle (deg)	Outer radius (in)	Inner radius (in)	Rernove sector of (deg)	Angle of each of 5 secters (deg)
80	7.8	1.55	128.5	46
90	7.05	1.4	105.5	51
100	6.5	1.3	84	55
110	6.1	1.2	65	59
120	5.8	1.15	48	62
130	5.5	1.1	33.5	65
140	5.3	1.05	21.5	68

Dimensions are correct to ± 0.05 in. or $\pm \frac{1}{2}{ }^{\circ}$
However, by extending the flare of the horn on to the mounting board (Fig. 5), its smoothness was increased and it does provide considerable output at 1.5 kHz , and is still responding at 1 kHz , without noticeable distortion.

The situation, however, is far from ideal: horn-loaded speakers are apt to distort below the cut-off frequency ${ }^{4}$ but this does not appear to be serious in my unit and it is fed via a 15 dB attenuator and so the power rarely exceeds 0.2 electric watt. Clearly, a better solution would be to obtain a horn unit capable of responding down to below 1 kHz . Such units are made but are apt to be expensive.

Suitable 1.f. unit enclosures

This subject has been well studied and is well documented elsewhere. As the modified l.f. unit will have a resonant frequency around 30 Hz , a bass-reflex enclosure will be very large-at least $8 \mathrm{cu} . \mathrm{ft}$-if tuned to the speaker resonance ${ }^{4}$ One solution seems to be to use a vented enciosure of reasonable volume, say $4 \mathrm{cu} . \mathrm{ft}$, and, by building an adjustable port, to adjust the enclosure to give a suitable bass response.

In my domestic system, I am using a pair of parallel-connected l.f. units, a 12 in modified Goodmans of 25 Hz resonant frequency and an 8in modified Wharfedale FSAL of 45 Hz resonance in a closed box of $7 \mathrm{cu} . \mathrm{ft}$. The impedance at 30 Hz is 18.5Ω at $45 \mathrm{~Hz}, 21.5 \Omega$ and the impedance curve is very flat, falling to a minimum of 12.5Ω at 500 Hz , rising thereafter to 17Ω at 1.3 kHz ; these are two parallel-connected 15Ω units. The h.f. unit is the W.B.T. 10 tweeter with a suitable 1.5 kHz crossover unit and attenuator. It appears that the use of two stagger-tuned 1.f. units has considerable advantages at the bottom of the response curve, but the topic does not appear to have been much examined or the technique sufficiently exploited. ${ }^{3,4}$

Hz
Fig. 6. (a) Graph of the axial frequency response of the two unit system measured with a constant voltage input giving a power of 0.1 watt at 500 Hz (b) Graph of the impedance of the 2 unit system against frequency. A 12 in and a 10 in unit are connected in parallel in a closed box of internal dimensions $29 \times$ 14×11 in. The impedance peak at 80 Hz corresponds with a peak in the frequency response in (a).

For producing acoustic pulses, I am currently using a damped enclosure of inside dimensions 29 in $\times 14$ in $\times 11$ in with no port. This box is damped with a layer of $\frac{1}{2}$ in felt pinned to lin battens away from the lin thick walls. The rear of the box is filled with a folded length of 2 in thick fibreglass roof insulation.

Early experiments used a single l.f. unit, a 12 in Goodmans and, while the response was smooth, it did not extend to very low frequencies. The present version uses the 12 in unit connected in parallel and in phase with a modified anonymous 10 in unit (purchased with a cracked cone for 25 s). These units are mounted above one another and loaded with slots to improve the h.f. radiation pattern. This arrangement gives a very flat impedance curve (Fig. 6b) and while the low frequency cut-off, at 55 Hz (Fig. 6a), is not outstandingly low, this is produced from a relatively small enclosure of about $2 \frac{1}{2} \mathrm{cu} . \mathrm{ft}$.

Test procedures

Most of the accepted test procedures require apparatus far beyond the scope of the amateur; most of us do not have access to anechoic chambers or pulsed sine-wave generators. A certain amount can be learnt by listening tests and by using a good quality microphone. In general, care is needed to avoid placing the microphone in a standing wave reflected from a wall and this situation can be aided by hanging the microphone from a cord and swinging it while recording.

By sweeping the output from a signal generator between 20 Hz and 2 kHz , the response can be examined subjectively. It is probable that you will notice any non-linearity exceeding 6 dB , but not the overall shape of the characteristic: this does not matter as what is mostly required is freedom from coloration. ${ }^{2}$ In this way, I was able to observe the 1.5 kHz coloration referred to earlier. The information thus obtained can be checked by use of a microphone; this suggested that the system used to produce acoustic pulses was without peaks exceeding 3 dB between 100 and $1,200 \mathrm{~Hz}$ and that, after suitable damping, the coloration at 1.5 kHz was of similar size. Below 100 Hz , the microphone response decreased rapidly and so no reliable information was obtained.

Later, owing to the kindness of Mr. C. S. Greeves of the National Engineering Laboratory, I was able to test the pulseproducing system in an anechoic chamber using Bruel and Kjaer measuring equipment. The results of this test are shown in Fig. 6(a). It will be seen that for a reference level of 70 dB , the axial response is 6 dB down at $50 \mathrm{~Hz}, 6 \mathrm{~dB}$ up at 80 Hz and that the rest of the curve is flat within $\pm 3 \mathrm{~dB}$, except for the trough at 1.5 kHz mentioned earlier.

Although the tests were made at discrete frequencies, care was taken to locate and plot the position of troughs and peaks and it is clear that the response over the working bandwidth of $150-1,000 \mathrm{~Hz}$ is adequate. Indeed, when coupled to a suitable tweeter vià a crossover unit and used as a domestic loudspeaker, the performance is very satisfactory.

Acknowledgements

I am grateful to the Director of the National Engineering Laboratory for the use of acoustical test facilities and to C. S. Greeves for his assistance with the measurements. For originally dispelling the illusion that the loudspeaker cone should not be violated, I owe grateful thanks to Dr. K. E. Machin.

References

1. Bennet-Clark, H. C., \& Ewing, A. W. "The love song of the fruit fly," New Scientist, 36 230-232, 1967
2. Harwood, H. D., "New BBC monitoring loudspeaker," Wireless World, March, April and May, 1968.
3. Moir, J. "High Quality Sound Reproduction" xiv + 591, Chapman \& Hall, London.
4. Langford-Smith, F. "Radio Designers Handbook" (revised edition) xi + 1498, Iliffe \& Sons, London. (Chapter 20, p.831-879 is relevant.) 5. Barlow, D. A. "Rigidity of loudspeaker diaphragms," Wireless World, December 1958.

Parametric Amplifiers

Basic Principles

by L. Ibbotson* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

The name "parametric amplifier" is given to a circuit in which signal amplification takes place in a component having a parameter which varies with the applied voltage. The variable parameter normally employed in practice is the capacitance of the $\mathrm{p}-\mathrm{n}$ junction in a semiconductor diode. In most types of amplifier the signal power is increased by taking energy from a d.c. supply. In a parametric amplifier, however, the signal power gained comes from an alternating source, called the "pump", which has a frequency higher than that of the signal. Despite this complication parametric amplifiers find considerable use, particularly at u.h.f. and microwave frequencies, because they can give good amplification with very low noise.

The usual text-book physical explanation of parametric amplifier action involves a capacitor with plates which are effectively moved towards and away from each other
*. West Ham College of Technology, London, E. 15

Fig. 1. Diode mixing circuit.

Fig. 2. Current/voltage characteristic of the diode in Fig. 1.
at appropriate times during the signal cycle. This explanation is not really satisfactory, and in any case relates only to a very special case-what is called a degenerate negative-resistance parametric amplifier (see later). A more acceptable general physical explanation is as follows. When a capacitor is charged and discharged by an applied sinusoidal voltage, energy is taken into the capacitor over half of a cycle and returned to the generator over the other half. If a small increment of charge δq is added when the voltage is V the increase in stored energy is $V . \delta q$. Similarly a reduction in charge stored δq results in a decrease in stored energy $V . \delta q$. The signal and "pump" osciflations are added together across the semiconductor diode referred to above. The diode has connected across it, in addition to the signal and pump circuits, a tuned circuit, known as the idler, which contains neither source nor load and which is tuned to the difference frequency between the signal and pump frequencies. Because of the non-linearity of the diode capacitance the idler circuit is coupled to the other two and it controls the relative phases of currents and voltages, in such a way that the pump adds charge to the diode capacitance when the total voltage across it is high and subtracts charge when the total voltage is low. The signal source, on the other hand, adds charge when the total voltage is low and subtracts it when the total voltage is high. In this way energy is transferred from the pump to the signal circuit.

In the analysis of this process which follows an attempt has been made to keep the mathematics simple by considering the specific case of an ideal diode having a junction with a relatively simple voltagecharge relationship.

Diode mixing

The action of a parametric amplifier is closely related to that of a diode mixing circuit, and it is useful to consider this type of mixer first.

If two signals of frequencies f_{1} and f_{2} ($f_{2}>f_{1}$) are added in a semiconductor diode then owing to the non-linearity of the diode characteristic, signals of other frequencies appear, including in particular frequencies $f_{2}+f_{1}$ and $f_{2}-f_{1}$. The normal circuit arrangement is shown in Fig. 1. Circuit I
is tuned to frequency f_{1} and circuit 2 to f_{2}, while circuit 3 is tuned to a further frequency $f_{3}=f_{1}+f_{2}$. In this arrangement $f_{2}>f_{1}$ and, of course, $f_{1}=f_{3}-f_{2}$ and $f_{2}=f_{3}-f_{1}$. The diode is to be regarded as a non-linear resistor with a characteristic as shown in Fig. 2. In the usual application, that of heterodyning, we would feed power into circuits 2 and 3. The two voltages at f_{2} and f_{3} added across the diode produce a circulating current with components at $f_{2}, f_{3}, f_{3}+f_{2}, f_{3}-f_{2}, 2 f_{2}, 2 f_{3}$ and probably higher order harmonics and sum and difference terms depending on the exact nature of the diode v / i curve. The current at frequency $f_{3}-f_{2}$ (which is f_{1}) develops a voltage across circuit 1 and thus power can be extracted from circuit 1 to feed a load.

The previous paragraph gives a standard explanation of mixer action, but the argument can be taken further. The voltage at f_{1} developed across circuit I also contributes to the voltage across the diode and will thus mix with the voltage at f_{2} to produce a component of current at f_{3} and with the voltage at f_{3} to produce a component of current at f_{2}. These currents will tend to feed power back through circuits 2 and 3 to the generators.
To generalize, if we take the circuit of Fig. I and feed power into any two of the tuned circuits, currents will circulate at all three frequencies (and at many others) and voltages will exist across all three tuned circuits. Detailed analysis shows that under all conditions the driven circuits show a net absorption of power from the generators and that the power output from the undriven circuit is smaller than either of the two power inputs (in mixer terms, conversion gain is not possible with a diode mixer).

Fig. 3. A variant of the mixing circuit in Fig. 1. This is also the basic arrangement of a parametric amplifier if the diode is a varactor diode.

Assuming that we can neglect tuned circuit losses, the power lost is dissipated in the resistance of the diode.

Instead of the circuit of Fig. I we could use that shown in Fig. 3. In this case, assuming again that circuits 2 and 3 are driven, currents at f_{2} and f_{3} add in the diode and generate voltages at f_{1} and various other frequencies. The voltage at f_{1} can drive a current through circuit I so that power can be extracted from circuit 1 . Again the current circulating in circuit 1 and the diode will mix with the current at f_{2} to feed power back into circuit 3 and with the current at f_{3} to feed power back into circuit 2 . The outcome is the same as before.

The varactor diode

A junction diode has a shunt capacitance because charge which is stored near the junction varies with applied voltage. At medium frequencies and below, the reactance of this capacitance is too high to have much effect so that the impedance of the average junction diode at m.f. may be regarded as a variable resistance. At u.h.f. and above, on the other hand, this capacitance becomes dominant-particularly in a type of diode, called a varactor, designed to exploit it.
In a linear capacitor the charge stored is proportional to the applied voltage; the ratio Q / V gives the capacitance value. If the charge is not proportional to voltage then we have a non-linear capacitor. In this case the only meaning which we can give to capacitance value is that of incremental or small signal capacitance defined as $\mathrm{d} Q / \mathrm{d} V$. The capacitance of a varactor diode is non-linear. A typical incremental capacitance/voltage curve is shown in Fig. 4. At microwave frequencies, to achieve variable resistance mixing as described in the previous section a point contact diode must be used. Suppose we use instead a varactor diode. The nonlinear capacitance generates sum and difference frequency signals as with the non-linear resistance, but we now find that under suitable circumstances one of the driven circuits can have more power fed back into it than it feeds out. This can be used to achieve amplification. We also find that conversion gain is possible. Here we have a parametric amplifier.

Mixing in a non-linear capacitor

In the following analysis simple ideal conditions are assumed. Consider the circuit of Fig. 3, which is the arrangement normally used in parametric amplifiers. Let the currents in circuits 1,2 and 3 be
$i_{1}=I_{1} \cos \omega_{1} \ell$
i. $=t_{2}^{r} \cos \omega_{2} t$
$i_{3}=I_{3} \cos \left(\omega_{3} t \downarrow \phi\right)$
This representation is completely general provided the currents at f_{1} and f_{2} are harmonically unrelated so that they go in and out of phase and we can chose our zero of time at an instant when the two currents are both maximum. Having done this we must
ascribe an arbitrary phase angle to the current at f_{3}.

The total current in the diode is given by

$$
\begin{align*}
i=I_{1} \cos \omega_{1} t & +I_{2} \cos \omega_{2} t \\
& +I_{3} \cos \left(\omega_{3} t+\phi\right) \tag{1}
\end{align*}
$$

Signs will be important in what follows. A positive current will be taken as one flowing in the forward current direction in the diode; a positive voltage as one appearing in the forward biasing direction across the diode.

Assuming that the diode impedance is purely capacitive the charge stored at any instant will be $\int i \mathrm{~d} t$. Hence from eqn. (I)

$$
\begin{align*}
q=\frac{I_{1}}{\omega_{1}} & \sin \omega_{1} t+\frac{I_{2}}{\omega_{2}} \sin \omega_{2} t \\
& +\frac{I_{3}}{\omega_{3}} \sin \left(\omega_{3} t+\phi\right)+Q \ldots \tag{2}
\end{align*}
$$

Q, the constant of integration, represents the charge stored in the diode in the absence of signals.
An ideal abrupt p-n junction has a voltage/ charge relationship of the form

$$
\begin{equation*}
v=a-b q^{2} \tag{3}
\end{equation*}
$$

where a and b are constants. This relationship will be assumed for the diode considered here.

From (3) it can be shown that the incremental capacitance of the diode is

$$
C=\frac{1}{2 b^{1}}(a-v)^{-1}
$$

This relationship is approximately that illustrated in Fig. 4 and is of a form with which the reader may be more familiar.

Substituting (2) in (3) the voltage appearing across the diode is given by

$$
\begin{align*}
v=a & -b\left(\frac{I_{1}}{\omega_{1}} \sin \omega_{1} t+\frac{I_{2}}{\omega_{\mathrm{\varepsilon}}} \sin \omega_{2} t+\right. \\
& \left.+\frac{I_{3}}{\omega_{3}} \sin \left(\omega_{3} t+\phi\right)+Q\right)^{2} \ldots \tag{4}
\end{align*}
$$

Squaring out and rearranging the terms in a convenient order gives
$v=a-\frac{b I_{1}{ }^{2}}{\omega_{1}{ }^{2}} \sin ^{2} \omega_{1} t-\frac{b I_{2}{ }^{2}}{\omega_{2}{ }^{2}} \sin ^{2} \omega_{2} t-$ $\frac{b I_{3}{ }^{2}}{\omega_{3}{ }^{2}} \sin ^{2}\left(\omega_{3} t+\phi\right)-b Q^{2}-\frac{2 b Q I_{1}}{\omega_{1}} \sin \omega_{1} t$ $-\frac{2 b Q I_{2}}{\omega_{2}} \sin \omega_{2} t-\frac{2 b Q I_{2}}{\omega_{3}} \sin \left(\omega_{3} t+\phi\right)$
$-\frac{2 b I_{1} I_{2}}{\omega_{1} \omega_{2}} \sin \omega_{1} t \sin \omega_{2} t$
$-\frac{2 b I_{1} I_{3}}{\omega_{1} \omega_{3}} \sin \omega_{1} t \sin \left(\omega_{3} t+\phi\right)$
$-\frac{2 b I_{2} I_{3}}{\omega_{2} \omega_{3}} \sin \omega_{2} t \sin \left(\omega_{3} t+\phi\right)$

To further simplify the terms of equation (5) into sinusoids and cosinusoids we must use the trigonometric relations

$$
\sin ^{2} A=\frac{1}{2}(1-\cos 2 A)
$$

and

$$
\begin{aligned}
& 2 \sin A \sin B= \\
& \quad \cos (A-B)-\cos (A+B)
\end{aligned}
$$

Since we are only interested in voltages at the three fundamental frequencies we can ignore the first five terms of equation (5). The last three terms expand as below

$$
\begin{aligned}
& -\frac{2 b I_{1} I_{2}}{\omega_{1} \omega_{2}} \sin \omega_{1} t \sin \omega_{2} t= \\
& \frac{b I_{1} I_{2}}{\omega_{1} \omega_{2}} \\
& \cos \left(\omega_{1}+\omega_{2}\right) t \\
& \quad-\frac{b I_{1} I_{2}}{\omega_{1} \omega_{2}} \cos \left(\omega_{2}-\omega_{1}\right) t
\end{aligned}
$$

$$
\begin{equation*}
-\frac{2 h I_{1} I_{3}}{\omega_{1} \omega_{3}} \sin \omega_{1} t \sin \left(\omega_{3} t+\phi\right)= \tag{6}
\end{equation*}
$$

$$
\frac{b I_{1} I_{3}}{\omega_{1} \omega_{3}} \cos \left[\left(\omega_{1}+\omega_{3}\right) t+\phi\right]
$$

$$
\begin{equation*}
-\frac{b I_{1} I_{3}}{\omega_{1} \omega_{3}} \cos \left[\left(\omega_{3}-\omega_{1}\right) t+\phi\right] \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& -\frac{2 b I_{2} I_{3}}{\omega_{2} \omega_{3}} \sin \omega_{2} t \sin \left(\omega_{3} t+\phi\right)= \\
& \quad \frac{b I_{2} I_{3}}{\omega_{2} \omega_{3}} \cos \left[\left(\omega_{2}+\omega_{3}\right) t+\phi\right] \\
& \quad-\frac{b I_{2} I_{3}}{\omega_{2} \omega_{3}} \cos \left[\left(\omega_{3}-\omega_{2}\right) t+\phi\right] \tag{8}
\end{align*}
$$

Taking the three fundamental frequency terms from equation (5) and the appropriate sum and difference frequency terms from (6) (7) and (8) we find that the voltage across the diode at f_{1} is

$$
\begin{align*}
v_{1}=- & \frac{2 b Q I_{1}}{\omega_{1}} \sin \omega_{1} t \\
& -\frac{b I_{2} I_{3}}{\omega_{2} \omega_{3}} \cos \left(\omega_{1} t+\phi\right) \tag{9}
\end{align*}
$$

at f_{2}

$$
\begin{align*}
& \begin{aligned}
& v_{2}=- \frac{2 b Q I_{2}}{\omega_{2}} \sin \omega_{2} t \\
& \text { at } f_{3} \\
& \quad-\frac{b I_{1} I_{3}}{\omega_{1} \omega_{3}} \cos \left(\omega_{2} t+\phi\right) \ldots \\
& \begin{aligned}
3 & =-
\end{aligned} \\
& \frac{2 b Q I_{3}}{\omega_{3}} \sin \left(\omega_{3} t+\phi\right) \\
&+\frac{b I_{1} I_{2}}{\omega_{1} \omega_{2}} \cos \omega_{3} t \ldots
\end{aligned}
\end{align*}
$$

We require to find the power delivered at each frequency to the diode.
Fig. 5 is a phasor diagram showing the
relative phases of signals at the same frequency which are represented as $\cos \omega t$, $\cos (\omega t+\phi),-\cos (\omega t+\phi),-\sin \omega t$, $-\sin (\omega t+\phi)$, assuming that ϕ is less than $\pi / 2$ radians. At f_{1} the current is phased as $\cos \omega_{1} t$ and the voltage has two components, one phased as $-\sin \omega_{1} t$ and the other as $-\cos \left(\omega_{1} t+\phi\right)$. By reference to Fig. 3 we see that the second voltage term has a resolved part in antiphase with the current and of peak value

$$
\frac{b I_{2} I_{3}}{\omega_{2} \omega_{3}} \cos \phi
$$

The fact that the in-phase component of voltage is in opposition to the current shows that power is raken from the diode, the amount being

$$
\begin{array}{r}
P_{1}=-\frac{1}{2}\left(I_{1} \times \frac{b I_{3} I_{3}}{\omega_{2} \omega_{3}}\right) \cos \phi \\
=-\left(\frac{b I_{1} I_{2} I_{3}}{2 \omega_{2} \omega_{3}}\right) \cos \phi \tag{12}
\end{array}
$$

The minus sign is used to show power

Fig. 4. Capacitance/voltage characteristic of a varactor diode.

Fig. 5. Phasor diagram showing relative phases of signals at the same frequency in Fig. 3.
extracted. By exactly similar reasoning power is taken from the diode at f_{2} and this is given by

$$
\begin{equation*}
P_{2}=-\frac{b I_{1} I_{2} I_{3}}{2 \omega_{1} \omega_{3}} \cos \phi \tag{13}
\end{equation*}
$$

At f_{3} the current is phased as $\cos \left(\omega_{3} t+\phi\right)$ and the voltage has components phased as $-\sin \left(\omega_{3} t+\phi\right)$ and $\cos \omega_{3} t$. In this case we see that power is delivered to the diode and is given by

$$
\begin{equation*}
P_{3}=+\frac{b I_{1} I_{2} I_{3}}{2 \omega_{1} \omega_{2}} \cos \phi \ldots \tag{14}
\end{equation*}
$$

If ϕ is $>\pi / 2$ and $<\pi$ the directions of power flow are reversed, but we see that power must either flow into the diode at both lower frequencies or flow out of the diode at both lower frequencies.

Adding equations (12) (13) and (14) together and bearing in mind that $\omega_{3}=\omega_{1}+\omega_{2}$ we find that

$$
P_{1}+P_{2}+P_{3}=0
$$

This is as expected since a capacitor does not dissipate power.

A much more important relationship which will be scen to follow from (12) (13) and (14) is \dagger

$$
\begin{equation*}
\frac{P_{1}}{f_{1}}=\frac{P_{2}}{f_{2}}=-\frac{P_{3}}{f_{3}} \tag{15}
\end{equation*}
$$

Sideband converters

Using the circuit of Fig. 3 with a varactor diode, we can feed an input signal at f_{1} to circuit 1 , a local oscillator signal at f_{2} to circuit 2 and take an output at f_{3} from circuit 3. Equation (15) shows that the power fed into circuit 3 from the diode is related to that fed into the diode from circuit I by

$$
P_{3}=P_{1} \frac{f_{3}}{f_{1}}
$$

(The minus sign is omitted because directions of power flow are specified.)

The theoretical power gain at the diode is f_{3} / f_{1}, but the actual conversion gain will be less than this. The input power must be greater than P_{1} to overcome losses in the
\dagger This is a special case of the Manley-Rowe equations.

input circuit, and the output power will be less than P_{3} because of losses in the output circuit. The diode, not being a perfect capacitor, will also introduce loss.

If we use the circuit as above we have an "upper sideband up-converter". By feeding the signal input to circuit 3 and taking the output from circuit i we achieve what is known as "parametric down conversion". Equation (15) indicates that this time we have a loss since

$$
P_{1}=P_{3} \frac{f_{1}}{f_{3}}
$$

The loss is due to the fact that power must flow in the same direction between the diode and the two lower frequency circuits. Thus the local oscillator actually absorbs power. We see that parametric down conversion is very inefficient; this is why pointcontact diodes are used for microwave mixing.

Negative-resistance parametric amplifier

The most common type of parametric amplifier is what is called the negativeresistance type. For this the basic circuit of Fig. 3 is utilized as in Fig. 6. The diode is a varactor diode. A generator capable of delivering high power at f_{3} is connected to circoit 3 as shown. This is the "pump". No generator is connected to circuit 2 and hence this is known as the "idler". The signal to be amplified is coupled to circuit 1 as shown, while the load into which the amplifier output signal is fed is also coupled to this circuit, as can be seen. If there is any exchange of power the direction of flow between the varactor diode and the idler must be into the idler since it has no generator. Hence power must also flow from the varactor diode into the signal circuit and not the other way.

Consider first circuit 2. It is shown in Fig. 7 with its internal losses represented by the series resistance $R_{2} . v_{2}$ is the voltage at f_{2} appearing across the diode and has a value indicated by equation (10). Since the circuit is resonant v_{2} must be in phase with i_{2}, hence the out-of-phase components of v_{2} must cancel. Thus referring to equation (IO) and Fig. 5 we see that

$$
\begin{equation*}
\frac{2 b Q I_{2}}{\omega_{2}}=\frac{b I_{1} I_{3}}{\omega_{1} \omega_{3}} \sin \phi \ldots \tag{16}
\end{equation*}
$$

The peak value of v_{2} is then given by

$$
\begin{equation*}
V_{2}=\frac{b I_{1} I_{3}}{\omega_{1} \omega_{3}} \cos \phi \tag{17}
\end{equation*}
$$

From Fig. 7 we see that

$$
\begin{equation*}
I_{2}=\frac{V_{\cdot 2}}{R_{2}} \tag{18}
\end{equation*}
$$

Combining (16), (47) and (18) together

$$
\begin{equation*}
\tan \phi=\frac{2 b Q}{\omega_{2} R_{2}} \tag{19}
\end{equation*}
$$

Fig. 7. Circuit 2 from Fig. 6 examined separately.
R_{2} represents the internal losses of the circuit.

Fig. 8. Circuit P from Fig. 6 examined separately.

Fig. 9. Equivalent circuit of Fig. 8, including the signal source v_{s} and the load R_{L}.

Equation (19) fixes the relative phases of the three currents in the diode.

Let us now consider circuit I. The basic arrangement shown in Fig. 8 will be seen to be equivalent to that of Fig. 9. Suppose first that $v_{s}=0$. By exactly the same reasoning as that applied to circuit 2 we can arrive at the requirement

$$
\begin{equation*}
\tan \phi=\frac{2 b Q}{\omega_{1} R_{L}} \tag{20}
\end{equation*}
$$

Now although ω_{1} is less than ω_{2}, resistance R_{L} will be very much greater than R_{2} (it is assumed that the losses in circuit 1 , which will be of the same order as those in circuit 2, are negligible compared to the load, and their effect is included in R_{L}). Hence the requirements of equations (19) and (20) are incompatible and no energy will be fed into either circuit; the device does not oscillate.

The effect of introducing a voltage v_{s} in series and in phase with v_{1} is equivalent to reducing the value of R_{L} by an amount sufficient to satisfy equations (19) and (20) simultaneously so that power can flow into circuits I and 2. The effective "resistance" of the source v_{s} is $-v_{s} / i_{1}$. Current i_{1} will come to a value such that (from (19) and (20))

$$
\omega_{1}\left(R_{L}-v_{s} / i_{1}\right)=\omega_{2} R_{2}
$$

rearranging,

$$
i_{1}=\frac{v_{8} \omega_{1}}{\omega_{1} R_{L}-\omega_{2} R_{2}}
$$

The power delivered to R_{L} is

$$
i_{1}{ }^{2} R_{L}=\frac{v_{s}{ }^{2} \omega_{1}{ }^{2} R_{L}}{\left(\omega_{1} R_{L}-\omega_{2} R_{2}\right)^{2}}
$$

If v_{s} were connected directly across the load the power delivered would be

$$
\frac{v_{s}{ }^{2}}{R_{L}}
$$

hence we have a power gain of

$$
\begin{equation*}
\frac{\omega_{1}^{2} R_{L}^{2}}{\left(\omega_{1} R_{J}-\omega_{2} R_{2}\right)^{2}} \tag{21}
\end{equation*}
$$

The effect is the same as if we connected a negative resistance in parallel with the load.

Inspection of expression (21) shows that if we increase the loading by reducing R_{L} the gain will go up. When $\omega_{1} R_{L}=\omega_{2} R_{2}$ the device will become unstable; this correlates with equations (19) and (20). To avoid any danger of this instability the gain is not generally set at greater than 20 dB .

Since the currents in the signal and idler circuits grow together we could put the load in the idler circuit and extract amplified power at f_{2}. The analysis is essentially the same as above; the device is known as a "negative resistance up-converter". By making circuit I the idler circuit and 2 the signal circuit we can extract amplified power from circuit I and thus use the device as a "negative resistance down converter".

Practical considerations

Since parametric amplifiers are used at u.h.f. and microwave frequencies the tuned circuits are resonant lines or cavities. On casual inspection it is often difficult to decide which sections of the structure resonate at the three frequencies. It is possible to have the idler and signal frequencies the same, and to allow their currents to circulate in the same resonant structure. This type of amplifier is described as "degenerate".
The load and source are coupled to the signal cavity through waveguides or coaxial lines. Since reflections in these can cause undesirable effects, an isolator or a circulator, depending on how the energy is coupled in or out, is usually incorporated with the device.

Books Received

Logical Design of Switching Circuits, by Douglas Lewin. A lucid book describing useful methods for designing logic circuits. Much has been published on switching theory, but this book describes the best techniques that have appeared. An engineering approach has been chosen, as distinct from the more usual mathematical treatment. The book begins with an introduction to digital systems, set theory and Boolean algebra, and progresses through the design of
various circuits to their actual implementation. There is a final chapter on automatic design and an appendix providing a useful introduction to computer programming. Problems with fully worked solutions appear throughout the book. The extensive references at the end of each chapter enable the reader to follow up and use current research papers. Suitable for final-year engineering students, it will also appeal to post-graduate students working in the field and to professional engineers. Pp. 368. Price 70s. Thomas Nelson \& Sons Litd., 36 Park Street, London W. 1.
B.B.C. Handbook 1969. Contains facts and figures relating to the organization and services of the B.B.C. Over 20 pages are given to a section on engineering in which radio and television transmitters throughout the U.K. are described along with complete lists of the frequencies and channels used. There are hints on how to get the best reception. Pp. 280. Price 7s. 6d. B.B.C. Publications (Handbook), P.O. Box 1AR, 35 Marylebone High Street, London, W.1.

Electronics: a general introduction for the non-specialist, by G. H. Olsen, has been written for those who are not specialists in electronic engineering and who find formal or examination texts unsuitable. Two early chapters explain the function of resistors, capacitors and inductors, and the ways that they affect circuits, and there then follows a generalized treatment of thermionic and semiconductor devices. Other chapters deal with power supplies, amplifiers, oscillators, the cathode-ray oscilloscope, photoelectric devices, logic circuits, and a variety of measuring instruments and test procedures. A comprehensive index is included. Pp.493. Price 84s. Butterworth \& Co. (Publishers) Lid., 88 Kingsway, London, W.C. 2 .

Digital Instruments is the first of a series of books under the overall title of Electronic Data Library. The authors are drawn from the engineering teams of well known digital instrument manufacturers. This first issue covers the techniques and instruments in digital electronic engineering, ranging over digital voltmeters, multirange meters, analogue to digital converters, counters and frequency meters, and including a practical appraisal of digital analysers. Also given is a list of equipment suppliers and a breakdown of instrument parameters. This book of 108 pages costs 42 s as an individual volume. Other volumes are titled Servo-systems, Video Techniques, AF Techniques, Modular Construction and Computer Techniques. The cost for the complete library is 9 guineas. William F. Waller, Book Division, Product Journals Lid., Summit House, Glebe Way, W. Wickham, Kent.

Beginner's Guide to Television, by Gordon J. King, aims to give a clear, concise, and fairly non-technical explanation of the subject. Starting with a survey of basic principles, a more detailed explanation of techniques and equipment for transmitting and receiving quickly follows. Practical information is given on using test cards for setting up a receiver, and photographs are used to make this clear. Other chapters describe television relay systems, communal aerials and "pay TV", the elements of colour television, and video tape-recording. The index is well composed. Pp.205. Price 18s. Hamlyn Publishing Group Lid., Hamlyn House, 42 The Centre, Feltham, Middx.

ITV 1969, A Guide to Independent Television, whilst in the main concerned with programme material contains three sections of technical interest titled Technical Operation, UHF and Colour, and VHF Transmitters. Pp .236 . Price 10 s 6 d . Independent Television Authority, 70 Brompton Road, London, S.W. 3 .

News of the Month

Goonhilly 2-
 communications and the battle for bandwidth

The climax of a great deal of intensive work came in mid-January when Britain's new earth station, Goonhilly 2 , locked-on to the Atlantic Intelsat 3 and added more bandwidth to our external communications capability. Goonhilly 2 is capable of handling 400 telephone channels and a television programme simultaneously.

The $27-\mathrm{m}$ diameter aerial structure was built by the Marconi Company based on a design commissioned by the Post Office from their consulting engineers, Husband \& Co. The electronics, also built by Marconi with some assistance from GEC-AEI, was built to a detailed Post Office specification.

As reported in "News of the Month" July, 1968, the number one aerial is being refurbished and will work the Indian Ocean Intelsat 3 later in 1969, if it is successfully launched. Some details of the Intelsat 3 network were given in our March, 1968, issue.

Goonhilly 2 has 210° freedom of movement in azimuth and may therefore be used
with either of the above two satellites. Auto-track uses the conical scan method, the motive power being provided by two thyristor controlled motors which drive bogies.

Signals are relayed by a microwave link to and from the International Telephone Services Centre in London. At the central building at Goonhilly, which houses all the aerial controls for both stations, outgoing signals are assembled into blocks of 24,60 or 132 channels at base band frequencies. The composite signals, including various control signals, then modulate 70 MHz carriers which are relayed over coaxial cables to the equipment at the aerial. Up-conversion then takes place and the various carriers are combined at low level to provide the final signal. This is fed to the transmitter which can produce $8-10 \mathrm{~kW}$ but would not normally be used above 1.5 kW to avoid intermodulation problems. For received signals a similar sequence of events takes place in reverse.

It was clear at the press conference that introduced Goonhilly 2 that the speakers were the "satellite boys" of the Post Office and there was some mention of the advantages of satellite over submarine cable systems. A talk with the "other half" of the Post

Office would have probably yielded opposite results. Whatever the pros and cons of the argument it is true to say that the Post Office is carrying out intensive research in both types of system in the bid for more bandwidth and probably to ensure we don't have all our carriers in one basket; the vulnerability of satellites to jamming and military action being well known.

On the cable front some interesting problems are resulting from the higher and higher frequencies being used. One of these is caused by the methods used to manufacture cables and the materials used in them. A small eccentricity of a capstan or other wheel during cable manufacture could result in a slight defect being formed at regular intervals along the cable. The slight impedance mis-match caused by these defects could normally be ignored. However, because of the regularity of the defect, at one frequency the reflections from these defects all occur in phase and become additive. The resultant peaks in the overall response are very sharp and can cause serious problems.

Of the future? Well apparently bandwidth isn't the most immediate problem so far as transatlantic telephone calls are concerned, although it may well be so soon. Most of the hold-ups occur, during peak periods, because of the lack of capacity of the London terminals-a matter which the Post Office says will be put right over the next few months.

When Intelsat 4 lifts-off the drawing board and into orbit an earth station will have to be provided to work it. This is the subject of talks that are in progress now. There appear to be two alternatives: a third earth station designed for the job or hire of a European station while one of the Goonhilly aerials is being modified.

Progress in the cable field will be slow and steady; higher and higher frequencies will be employed and bandwidth will be increased. Spin-off from this research will aid internal communications of the type being ex-

The 1000 ton aerial, Goonhilly 2, is shown on the left. On the right the first stages of the receiving system, which are housed in a cabin on the back of the dish, can be seen. The parametric amplifiers are cooled to a temperature of $-257^{\circ} \mathrm{C}$ to improve noise performance

perimentally tried at Washington New Town, Durham ("News of the Month" April, 1968); incidentally this system, which uses twin cable feeders, was demonstrated for the first time recently to local radio and television trade representatives. This will eventually lead to numerous piped television channels and videophone and computer terminal facilities being available to the householder.

Further on still all these methods are liable to be ousted by optical communications using coherent light, optical waveguides, and suitable satellites with almost unlimited bandwidth.

3-mile "diameter'" radio telescope

A new radio telescope to be built at the Mullard Radio Astronomy Observatory of the Cavendish Laboratory, Cambridge University, will have a resolving power equivalent to that of a paraboloid "dish" with a diameter as great as 5 km (3 miles). The resolving power will, in fact, be 1 to 2 seconds of arc. This is required for studying the fine detail in quasi-stellar radio sources (known as Quasars) and in radio galaxies, as part of a new programme aimed at understanding the physical mechanisms occurring within these sources of e.m. energy. The effective aerial diameter of 5 km will be obtained by the technique of "aperture synthesis" developed by Professor Sir Martin Ryle and his observatory team over some years. This is based on the use of several small aerials which are moved about-partly by human means on the ground and partly by the rotation of the Earth itself-so that they occupy successively the positions of the individual components of a much bigger aerial. As in earlier Cambridge radio telescopes, the system will also use interferometry to obtain extremely narrow, high-resolution aerial lobes, and correlation detection to pick out the wanted source signals from the general background noise, which is many times greater.

The 5 km telescope, which will cost the Science Rescarch Council about $£ 2,100,000$, will be built on the site of a 3 -mile stretch of railway track, near Barton village, south-west of Cambridge, which became available when the Cambridge to Bedford line was closed recently. It will consist of an east-west line of eight Marconi 42-ft steerable dish aerials (modified versions of those developed by the company for satellite communications) with a control room near the middle on the site of the derelict Lords Bridge railway station. Four of the dishes, to the west, will be fixed, with 1.13 km spacing, while the remaining four, to the east, will be moveable on bogies along a 1.17 km track laid to an accuracy of better than 1 mm on a stable concrete beam. The control room will contain a Marconi Myriad II time-sharing digital computer, which will be used both for calculating the required linear and angular positions of the movable aerials and for combining the signal values in each of 16 pairs of the possible pairs of dishes (giving simultaneously 16 interferometer spacings) to provide an output to drive an $\mathrm{X}-\mathrm{Y}$ plotter. This plotter will directly draw the required "maps" of the radio sources in the form of equal-energy contours. In addition the computer will be

An artist's impression of a large retractable solar array that will unfold itself in space to power satellites. It was developed by Hughes Aircraft Company for the U.S. Air Force. Each panel measures about $2 \times 3 \mathrm{~m}$.
used to control a complex cable delay network which will be necessary for equalizing the different phase delays of the signals from the various aerials (resulting, of course, from the different displacements of the aerials along the east-west line).

Initially the radio telescope will operate at 6 cm wavelength but later perhaps at 3 cm as well. Each 42-ft aerial will be a Cassegrain system with a horn to pick up the reflected signals, and will also carry at its hub the front end of a receiver, consisting of a parametric amplifier first stage followed by a mixer. It will therefore be the i.f. signals that will be sent to the control room for combining pairs of signals for the interferometric and correlation receiving processes.

P.O. contracts-more flexibility

It was announced at the recent annual dinner of the Telecommunication and Manufacturing Association that the Post Office, with the assistance of industry, has set up an "Advisory Group on Telecommunications Systems Definitions" to ensure that any new systems introduced into the communications network are compatible with each other and with existing equipment. The size of problems that the new group will have to tackle will be realized when it is stated that the Post Office is currently spending between $£ 300 \mathrm{M}$ and $£ 400 \mathrm{M}$ annually.

The group consists of five Post Office engineers who will be advised by two or three of the senior staff of G.E.C./A.E.I., Plessey and S.T.C. Their task will be to produce specifications for equipment that will be sufficiently detailed to ensure the required compatibility and, at the same time, will allow the contractor as much flexibility and room for innovation as possible. The days of the rigid "every nut and bolt type" specification which have come from the Post Office in the past are numbered.

This situation is made possible by the ending of the bulk supply agreement next October under which several firms manufacture the same component on a "share and share alike" basis under the same contract. With this situation very detailed specifications were essential and the resulting restric-
tions had to be accepted by the companies concerned.

From October the Post Office will have a free hand in the placing of contracts and can therefore accept a tender providing the best, or the most competitive answer to a specification and the companies will benefit by having a free hand.

G.E.C. opt out of Associated Semiconductors

G.E.C.'s one-third holding in Associated Semiconductor Manufacturers Ltd has been sold to Mullard for an undisclosed price; Mullard now have complete ownership. The sale was predictable since G.E.C. joined Marconi and Elliott under the English Electric banner. In fact it was announced in this section last month that the microelectronics interests of Marconi and Elliott are now controlled by a new company called G.E.C. Marconi Electronics L.td.

When Associated Semiconductors was formed in 1963 G.E.C.'s contribution amounted to $£ 2 \mathrm{M}$ and, under the terms of the agreement, G.E.C. reserved the right to dissolve the partnership in the event of changing circumstances.

T.E.M.A. apprentice awards

This year's awards of $£ 50$ each for the best final year technologist and technician apprentices of member-firms of the Telecommunication Engineering \& Manufacturing Association were made at the annual dinner of the Association on February 4th. In the Technologist Class (previously the graduate and student classes) the recipient was B. J. Stringfellow, B.E.(Elect.), graduate of Auckland University, who came from the New Zealand Post Office two years ago to A.E.I. (now G.E.C.-A.E.I.). The Technician award went to P. L. Prince who finished his apprenticeship with the Automatic Telephone \& Electric Company (part of the Plessey organization) last year. Nominees for the
award have to prepare a thesis on some aspect of their work.

Pneumatic colour film scanner

At a recent exhibition in London of television studio and control equipment by Fernseh g.m.b.h., a member of the Bosch Group, a 16 mm colour film scanner was demonstrated using a novel method of film transport. The conventional mechanical method of moving the film through the scanner by engaging a sprocket with holes on the edge of the film had been dispensed with and substituted by a pneumatic system which Fernseh described as a rapid pull-down mechanism. A precisely dimensioned cup shape is constructed just below the lens unit so that when the film is lying across the top of the cup it becomes an airtight chamber. This chamber is repeatedly evacuated of air through a valve in the base at 25 Hz frequency thus pulling down the film intermittently through one frame at a speed of 25 frames per second. The frame remains stationary during scanning.

The colour film scanner is otherwise similar electrically and mechanically to equipment designed for 16 mm perforated film. Scanning is achieved by the flying spot principle to avoid colour registration errors but because the pneumatic pull-down takes less than 1.3 ms (i.e. within 20 lines), more time is available for scanning each frame with a consequent increase in light output. Also with this type of uncoupled operation, rapid starting is possible, the runup time until the synchronous condition of the picture is reached being less than 0.1 s. A special synchronous motor is used for the drive. For mains-synchronized operation the equipment can be connected directly to the three-phase mains but for crystalcontrolled or externally synchronized opera-

Photograph of the film transport unit of the Bosch telecine equipment illustrating at " A " the cup-shaped vacuum chamber

tion the driving motor must be connected to a synchronous inverter accessory. Although the load on the film is no greater than in a normal intermittent projector, it is understood that the pneumatic pull-down principle is suitable for 16 mm film transport only, the larger 35 mm being too heavy for effective operation. In reverse running, the film is not transported through the gate by vacuum action and the picture obtained is unsuitable for transmission.

Exhibitions at Alexandra Palace

This year's Physics Exhibition will be held in London at Alexandra Palace between the 10th and the 13th of March. For the first time the Institute of Physics and the Physical Society, who are the organizers, will be charging a 2 s 6 d admission fee to all visitors who are not members of the Institute or the Society to help cover rising costs.
The exhibition handbook, which contains much valuable reference material, was published in mid-February and costs 10s per copy (postage is 3 s). The handbook can be obtained from the I.P.P.S., 47 Belgrave Square, London, S.W.1.

This year, and at future exhibitions, an open forum will be held. Distinguished speakers, known to hold different views, will speak briefly and then the discussion will be thrown open to any members of the audience who wish to express an opinion. This year's subject is "The Future of High Energy Physics" and there will be no restriction on attendance. The time and date? Thursday, March 13th, 3 p.m. The exhibition will be supported by a full programme of films and lectures.

While the Physics Exhibition is taking place in the Grand Hall, the Palm Court will be occupied by the Scientific Instrument Manufacturers' Exhibition.

Two-colour marine radar

Two 16 -inch cathode-ray tubes are used in a new marine radar introduced by G.E.C.A.E.I. The outputs of the two tubes, each of a different colour, are superimposed in an optical system and are viewed as a single image. One tube provides a true course conventional p.p.i. display. The second tube produces a display of auto-tracking markers that can be used to predict the future tracks of up to twelve ships.

The system, called COMPACT (Com-puter-Predicting and Automatic Course Tracking), has all the facilities of the Escort 650 radars for the true course display (vantage point off-centring, view ahead, and electronic bearing markers).

Early warning of an approaching radar target is provided by two guard rings placed at eleven and nine miles around own ship's position on the display. When either of these guard rings is cut by a closing target, an audible alarm is operated and a bearing indicator is displayed which identifies the target.

Collision avoidance facilities for use during coastal passages and in crowded waters are provided by the auto-tracking markers.

Up to twelve of these markers can be simultaneously used and are displayed in a bright green on the orange afterglow of the p.p.i. Each marker is placed over potentially dangerous targets and the audible warning operates if any marked target passes within a predetermined distance from the ship. In addition the dangerous target is identified by the flashing of the marker ring around the target.

A track-ahead control enables the operator to determine the position of all targets for up to 45 minutes ahead.
Ground stabilization of the radar picture can be provided by one marker channel. By placing this marker over a known navigational fixed point (buoy, etc.) all track lines are shown as true courses allowing for the effects of wind, tide and drift.

Multi-font page reader

A page reader being marketed in Western Europe by a new British company, Real Time Systems Ltd., is said to represent a significant step forward in the optical character recognition field. The page reader, called the Scan-data 300 , originates from America and will handle practically all typewriter, computer print out and typeset fonts. It will recognize capital and small letters in Gothic and Roman styles. It will cope with punctuation, special symbols, numerics and hand-printed matter. The input material does not have to be all in the same type style as mixtures can be handled without adjustment.

Having read a document, the page reader converts the data into a machine-language at 400 characters per second. A flying-spot scanning principle is employed.

Domestic receiver sales in America

Preliminary statistics released recently by the American Electronic Industries Association show that sales of domestic electronic equipment were higher in 1968 than 1967.

Colour television had a record year and sales exceeded those for monochrome for the first time. The actual sales of colour receivers were $5,829,150(5,224,499)$ and for monochrome television receivers $5,555,339$ $(5,434,702)$.

Radio sales, including car radios, increased by 5.7% to $21,293,259$. However, sales of radio receivers for home use fell by 4.7%. The overall radio receiver sales increase was due to a boom in car radio sales which were 20.1% up on last year with a total of $10,685,827$.

Environmental test facilities

EMI Electronics is offering industry the use of its comprehensive environmental test facility. Originally set up to test the Company's defence products its effectiveness has inevitably led to its use in the development of many of its commercial products, particularly those destined for use in airborne or
transportation environments. The company now welcomes inquiries from component and equipment manufacturers wishing to make use of the facility.

The facility comprises climatic and mechanical test laboratories that can test components and most of the equipment produced in the light and medium engineering industries. It is approved by the Ministry of Technology and the Air Registration Board with regard to the environmental test equipment and the calibration and standardization procedures and facilities available.

Test load sizes up to 2 cubic metres and 3000 kg weight can be handled depending on the shape and the test environment required. A comprehensive range of individual climatic and mechanical environments can be simulated as well as combinations such as temperature cycling with vibration. Components can be tested to most national, international and N.A.T.O. specifications.

Tactical naval system

Under a $£ 1 \mathrm{M}$ contract awarded by the Ministry of Defence Ferranti, with Decca Radar as principal sub-contractor, are to produce an equipment called Computer Assisted Action Information System.

The system was originally visualized by the Ministry of Defence and it represents a compromise between the ideal, and weight and cost.

In any particular naval force information that is available to one vessel may not be apparent to its consorts. With this system each ship in a force will be fitted with an equipment which stores information from "own ship's" sensors. This information is entered both automatically and manually and it can originate from a variety of sources including radar, sonar and other navigation equipment. The computer within the new equipment operates on this information and allows it to be superimposed, on request, on a radar p.p.i. display in alphanumeric form.
Information stored in "own ship" is transmitted by radio to all other ships in the force and vice versa, so that each ship has all

The photograph shows the very smart interior of a new mobile showroom that has been set-up by Marconi Instrmments. Some of the equipment is battery operated, the rest can be powered from an internal generator or from local power sources via a variable transformer. The showroom has left on a tour of Europe that will take the rest of the year.
the available information at the operator's disposal.

Ferranti will be supplying the computing equipment and Decca Radar the combined alpha-numeric/p.p.i. displays.

Federation of Science and Technology Institutes

It was agreed by the governing bodies of the Institutions of Biology, Chemistry, Mathematics and its applications, Metallurgists, and the Institute of Physics and the Physical Society to form a Council of Science and Technology Institutes which came into operation on February 1st.
The main objects of the Ccuncil are to speed communication between the Insti-

The British Radio Corporation has opened the new service depol, shown in the picture, in Manchester. Among other services the depot will provide round-the-clock repair fccilities for the Thorn 2,000 series colour television chassis, as fitted to Ultra, H.M.V. and Ferguson receivers.

tutes, to aim at adopting common terminology as far as qualifications are concerned, and to collaborate on matters of educational policy and other common interests.

Initially membership will be confined to the bodies listed above. However, in the future, it is possible that applications from other organizations, who have a minimum entry requirement of a University degree or its equivalent, will be considered.

Radio beacon for aircraft

Two private individuals in America, a lawyer and an electrical technician, have invented a device that is causing a great deal of interest in aeronautical circles. The device consists of a crash- and water-proofed radio transmitter with a range of about 70 miles that is actuated by the breaking of a very fragile electrical conductor. This conductor can be mounted either internally or externally and is fractured by the slightest stress. The lawyer, Harold R. Hine, Q.C., and the technician, Edward Dawson, say that in the past if an aircraft crashed and there were no survivors to turn on a distress beacon search operations have been difficult.

Loran pre-amplifier

Loran (LOng-RAnge Navigation) has been in use many years and is a system of v.l.f. transmitters constituting a hyberbolic position fixing system. In some areas the signal strength, the North Atlantic being an example, is too low to be reliable.

To counter this, as a result of discussions between B.O.A.C. and SGS, a low-noise tuned aerial amplifier was devised for use with Loran equipment. The pre-amplifier, which makes use of integrated circuits, has been flown by B.O.A.C. for some time now with success and will soon be going into full-scale production.

Solid-State Oscilloscope

Circuit details of a test instrument designed for work on colour TV receivers.

by Michael Phillips

To be capable of performing all the measurements needed on a colour television receiver an oscilloscope must be able to provide accurate results from d.c. up to the sub-carrier frequency of about 4.4 MHz. Experiments with a colour decoder confirmed that an elderly, low-frequency oscilloscope did not have sufficient bandwidth for such work and it was decided that the cheapest way of obtaining improved performance was to construct a new vertical amplifier as an add-on unit using the existing tube and e.h.t. supply. This was later extended to include a new timebase, X amplifier and square-wave calibrator.

An important requirement of this type of conversion is that the amplifiers should be designed to supply the high deflection voltages, 250 to 300 V peak-to-peak, needed by older types of oscilloscope tube. This was made easy by the availability of inexpensive silicon transistors intended for use as video amplifiers in television receivers, resulting in simple, low-power circuits giving high output voltages at bandwidths that would be difficult to achieve with valve amplifiers.

Performance figures which follow refer to a ${ }_{5} \mathrm{CPI}$ tube with a supply of 1.25 kV plus an additional 1.25 kV on the p.d.a. electrode and will be typical for most 13 cm . tubes of this vintage. With more modern, higher

Michael Phillips served in minesweepers during and after the war and then went to college in 1947. For five years, 1950-55, he was engaged on radio and test-gear development with Ultra Radio. He has been with Bush Radio, more recently Rank Bush Murphy, for the last 12 years and is now project leader for monochrome television development.

sensitivity tubes these figures can be improved upon since both amplifier gain and output voltage swing requirements are less. Possible modifications to the circuits are described later.

Vertical amplifier

The response of the vertical amplifier is flat from d.c. to 6 MHz and is 3 dB down at II MHz , the maximum sensitivity being 100 mV per cm . The gain can be switched for a $\times 10$ increase with a reduction in the $3-\mathrm{dB}$ bandwidth to 1.5 MHz . The circuit divides conveniently into two sections. Fig. I shows the pre-amplifier, which includes the input attenuator and all the controls, and Fig. 2 the output amplifier which should be situated as close to the tube base as possible. The input attenuator uses compensated potential divider sections presenting a constant input impedance of I $\mathrm{M} \Omega$ in parallel with approximately 20 pF . Attenuator switching sequences tend to be a matter of personal preference so a choice should be made from the values given in Table 1. For most purposes ordinary carbon resistors with a tolerance of 10% are
quite satisfactory and are much cheaper than high-stability types.

When using a high-impedance probe any difference in the input capacitance between different attenuator sections must be compensated for by adjustment of the probe trimmer. This can be avoided by connecting trimmer capacitors of about 10 pF maximum from each position of $S w_{2 a}$ to earth. A suitable probe consists of a $9.1 \mathrm{M} \Omega$ resistor shunted by a 3-12 pF trimmer and mounted in a metal tube (some cigar containers are ideal). The probe should connect to the oscilloscope through about
Table 1

Sensitivity	$R_{a}(\Omega)$	$R_{b}(\Omega)$	$C_{0}(F)$
200 mV	510 k	510 k	20 p
300 mV	680 k	390 k	39 p
500 mV	820 k	200 k	68 p
1 V	1 M	110 k	180 p
2 V	1 M	51 k	400 p
3 V	1 M	33 k	500 p
5 V	1 M	20 k	1 n
10 V	1 M	10 k	2 n
20 V	1 M	5.1 k	4 n
30 V	1 M	3.3 k	6 n
50 V	1 M	2 k	12 n

Values for the Y input attenuator of Fig. 1. A choice should be made for either $1-2-5$ or $1-3-10$ range sequences. Co for each section is a 30 pF max. mica compression trimmer.

Fig. I. Circuit diagram of the vertical preamplifier. Resistors are $I / 4 W$ carbon; capacitors are polyester type 250 V working unless otherwise marked. Preset resistors are 1/4W carbon.

I metre of screened coaxial cable with a resistive inner conductor (Ref. 1). The input impedance increases to Io $M \Omega$ but with an unavoidable attenuation of $10: 1$. Impedance matching between the input and the base of the first transistor is provided by a cathode follower valve V_{1}. A valve is used in this position to simplify the problem of allowing direct coupling to the input and to limit the effects of a severe voltage overload on the semiconductor devices in the amplifier. The anode voltage for V_{1} is derived from the h.t. + line via the emitterfollower Tr_{1} thus giving low-impedance decoupling down to zero frequency at the anode.

Although it would probably not be as robust a buffer device, an f.e.t. could no doubt be used to replace the valve cathodefollower if one wanted completely solidstate equipment. A commonly used circuit is the source-follower with the source supply voltage and/or the source load resistor adjusted for zero drift operation. Some useful information on the subject is included in Ref. 2. The valve is followed by a long-tailed pair phase-splitting amplifier, $T r_{2}$ and $T r_{5}$. Constant current transistors, $T r_{3}$ and $T r_{45}$ are used in the common emitter impedance to reduce the gain loss which occurs with resistors. Gain control is effected by selection of the resistors bridging the two emitter loads and pre-set resistors are switched for the $\times 1$ and $\times 10$ gain ranges with a common variable control in series for front panel adjustment of calibration.

The vertical shift control adjusts the d.c.
voltage on the base of $T r_{5}$; this ensures that the amplifier stages are operated in a balanced condition when the trace is along the centre line of the tube face whatever the d.c. level is at the input. Capacitance loading across the $6.8 \mathrm{k} \Omega$ collector resistors is reduced to a low value by using emitter-
followers $T r_{8}$ and $T r_{7}$, for coupling to the output stage and in practice the -3 dB response point due to the collector components is at about 30 MHz . Compensation for the fall-off in amplifier gain with frequency is provided by the 60 pF capacitor across the gain control resistors.

Fig. 2. Circuit diagram of vertical deflection amplifier and (right) an example of a heat sink required for Tr_{8} and Tr_{11}.

Fig. 3. Gircuit diagram of time-base trigger unit.

Fig. 4. Circuit diagram of ramp generator and horizontal output amplifier. Diodes are general purpose germanium types such as the OA8r.

Output from the pre-amplifier is at low impedance and open wire leads of 20 cm or more in length can be used to feed the output amplifier. This again uses the longtailed pair configuration with transistors as the common impedance. The circuit is shown in Fig. 2. With a total capacitance load due to the tube plates and the transistors of about is pF per collector, frequency compensation is necessary and is provided by the 80 pF capacitor linking the two emitters and by inductance in each collector load circuit. The coils need about 60 turns of 32 s.w.g. enamelled wire wound as a single layer on a former with a 4 mm core.

Turning now to the active devices used. V_{1} is a small, low-consumption triode or strapped pentode such as the EF9s/6AKs. The small size of Nuvistors makes them ideal and they are frequently used in commercial instruments. Transistors in the pre-amplifier are low-power silicon devices
typified by the BCio7 with an $h_{f e}$ of 125-500 and an f_{T} of about 85 MHz . The output amplifier uses high voltage transistors, suitable types being the BFI78 and the older BFiog from Mullard or the SGS-Fairchild BFI57. Small clip-on héat sinks will be required and a $2.5 \times 5 \mathrm{~cm}$ strip of thinnish copper or phosphor bronze formed to wrap round the transistor as shown in Fig. 2 will be satisfactory. A smear of silicone grease between transistor and sink assists heat conduction. Remember that the collectors are connected internally to the TOs case, so the heat sinks will be "live". A similar transistor can be used for $T r_{1}$ which operates with a $V_{c e}$ of about 60 V , a small heat sink again being required.
The output amplifier works with an h.t. of 120 to 150 V depending on the rating of the transistors and the output drive required. Current drain including the cathodefollower is about 30 mA .

Horizontal deflection

The horizontal deflection section consists of a trigger unit, a calibrated time-base and an X amplifier which includes an optional pre-amplifier for external signals. A circuir diagram of the trigger unit is shown in Fig. 3. An emitter-follower Tr_{12} takes its input from either the Y amplifier or an external source and is followed by a phasesplitting amplifier Tr_{13} and Tr_{14}, for polarity selection. Two transistors, ${T r_{15}}$ and $T r_{16}$, form a Schmitt trigger circuit and the differentiated output from this is used to trigger the time-base.

The time-base and amplifier, which is shown in Fig. 4, uses the emitter-coupled circuit described by Gilbert in Refs. 3 and 4 where a full account of the operation is given together with a most impressive list of advantages. Transistors $T r_{17}$ and $T r_{10}$ are coupled by the emitter-follower Tr_{18} and by
the charging capacitors. A positive-pulse through the trigger hold-off diode initiates the action, resulting in a negative-going linear ramp in the emitter circuit of Tr_{19}. $T r_{20}$ forms a source of constant charging current. There is a small step at the start of the ramp which shows up as a bright spot at the start of the trace. This can either be cancelled by the various means described in the references or minimised by using the negative-going square pulse at the emitter of Tr_{18} as a bright-up pulse on the c.r.t. Three preset resistors in the emitter of

Tr ${ }_{20}$ are switched to provide a $\times 1, \times 2$ or $\times 5$ multiplier for the decade capacitors selected by $S w_{5}$. Adjustment of $V r_{9}$ gives a variable interpolation. The total range is from 500 ms to $\mathrm{I} \mu \mathrm{s}$ per sweep.

An emitter-follower $T r_{21}$ couples the sweep to the main X amplifier which uses the same long-tail pair circuit as is used in the Y amplifier. The input is single-ended so shift voltages are applied to the other amplifier base. Frequency compensation is supplied by the capacitors from the shift control to earth and across the feedback

Fig. 5. Circuit diagram of optional X pre-amplifier.
resistor. This resistor can either be pre-set or, if it is mechanically convenient, brought out as a variable sweep-width control, preferably switched as a sweep multiplier. Transistors used in this section, Tr_{12} to $T r_{23}$, are of the same types as those in the Y amplifiers except for the Schmitt trigger circuit. Here it is recommended that OC_{44} or OC45 transistors are used. Although any transistor type can be used in this kind of circuit their behaviour with a large input signal is quite different. With sine-wave input the OC44/45 transistors produce a clean square-wave output with up to 60 V peak-to-peak input. Above this the tips of the sine-wave break through symmetrically. Experiments with the BCII_{3} silicon planar and the BCI 107 planar epitaxial transistors show unsymmetrical break-through with a much lower input of about 12 V peak-topeak. Alloy diffused transistors of the AFII4-115-116 family are the worst tried, with break-through at about 4 V input. These remarks apply to both the trigger unit and to the Schmitt trigger squaring circuit in the calibrator.

For the display of external signals, such as a wobbulator time-base, the sensitivity at the base of Tr_{21} will generally be sufficient. If extra gain is required, the a.c.-coupled circuit shown in Fig. 5 is suggested. This provides a sensitivity of about $100 \mathrm{mV} / \mathrm{cm}$ at a bandwidth of 5 MHz . The input attenua-

Fig. 6. Circuit diagram of square-wave generator.

Fig. 7. Circuit diagram of the h.t. + line stabilizer (a) and power supplies for the low potential lines (b).

tor is similar to the one used in the Y preamplifier and is followed by the Darlington pair Tr_{26} and $T r_{279}$ giving a stage gain of unity but an input impedance of several megohms. The amplifier which follows uses two transistors $T r_{28}$ and $T r_{29}$ as a common-emitter/emitter-follower pair. This last circuit, incidentally, is quite a useful one in its own right; it has a gain of ten and, with v.h.f. transistors such as those used in TV tuners and with a suitable peaking capacitor across the first emitter resistor, will maintain that gain to over 200 MHz .

For the X pre-amplifier most types of germanium h.f. transistors will be suitable or, with a reversal of all polarities, the silicon devices used in the other circuits.

Square-wave calibrator

This section generates a square wave with an output amplitude variable between 50 mV
and 4 V peak-to-peak from either an internal source at 10 kHz or at any frequency from 15 Hz to 20 kHz with a sine-wave input from an external a.f. generator. The circuit diagram in Fig. 6 shows a 10 kHz sine-wave oscillator $T r_{30}$, an emitter-follower buffer stage Tr_{31} into which can also be świtched the external input, and a Schmitt trigger circuit $T r_{32}$ and $T r_{33}$ to generate the squarewave. The emitter-follower output Tr_{36} feeds a simple attenuator which gives two ranges of output amplitude; 50 mV to 400 mV and 500 mV to 4 V . There are preset trimmers for adjusting the frequency and the mark/space ratio, and the trimmer capacitor in the Schmitt trigger circuit is used for setting an exact square-wave. Besides proving very useful for gain calibration, and adjusting the attenuator and probe compensation, the calibrator can also be used as a signal source for square-wave testing.

Fig. 8. Diagram showing use of additional time-base circuit to give delayed sweep for examining television video waveforms. Both time-bases are triggered by positive-going pulses only.

Fig. 9. Effect produced on square-wave by adjustment of compensating trimmers.

Fig. ıo. General arrangement of units inside oscilloscope.
X and Y main amplifiers

Power supplies

Supply for the $120-150 \mathrm{~V}$ h.t. line required by the output stages is most conveniently derived from a higher voltage by means of a cathode-follower valve as shown in Fig. 7. This provides an easily adjustable, low impedance source and the current, about 58 mA , is within the ratings of a small power valve such as the EL84. Four low voltages required can be obtained from a small transformer and rectifiers via transistors, $T r_{35}$ to $T r_{38}$, connected as emitter-followers. Power dissipated in the transistors is about 110 mW , except for Tr_{38} where it is about 900 mW , and in this position it is suggested that an AC_{127} or similar is used. If small power transistors like the OC81 are used for Tr_{35} and Tr_{36} there will be surplus power available for connecting to external units such as a wobbulator. A BCl_{107} is suitable for Tr_{37} and it can be mounted with the time-base assembly. The three other power supply transistors should be clipped to an aluminium plate or chassis to provide a heat sink.

Modifications

As explained at the beginning of this article the performance figures quoted throughout refer to the use of a 5 CPr tube under specified working conditions which give a deflection sensitivity of about $20 \mathrm{~V} / \mathrm{cm}$. If a more modern tube with better sensitivity is used, then high drive voltages will not be needed and the collector supply voltage to the output stages can be reduced to some 60 to 80 V . If the same basic input sensitivities of $100 \mathrm{mV} / \mathrm{cm}$ and $10 \mathrm{mV} / \mathrm{cm}$ are to be retained, then the overall gain must be reduced by increasing the values of the feedback resistors linking the bottom emitters of the long-tail pairs. Changes will also be needed to the values of the various frequency-compensating capacitors. The resulting increase in bandwidth will be most noticeable in the $\times 10$ gain position and, as an estimate, the 10 mV bandwidth with a $\mathrm{DNI}_{7} 7-78$ tube ($7.6 \mathrm{~V} / \mathrm{cm}$) should be about 4.5 MHz at -3 dB .

There are, of course, many other facilities that can be included to make a more complete oscilloscope system and it is the purpose here to suggest a few so that switching or the necessary space can be allowed for in case such circuits are required later. If the leading edge of a pulse is used to initiate the timebase sweep then this section of the input signal will not be visible for study unless a time delay is incorporated in the path of the vertical output amplifier. Such a delay can be introduced by using a properly terminated delay line of about 400 ns , and of adequate bandwidth, between the cathode of V_{1} and the base of Tr_{2}. It should be switched out of circuit on the $\times 10$ gain range where the degraded rise-time does not warrant its use. The time-base trigger circuit must, of course, be fed from the cathode of V_{1} and an additional trigger amplifier will be required.

For examining television waveforms, a delayed time-base sweep is needed. This can be achieved by duplicating the time-

Photograph of the Y preamplifier module.
base circuit and driving it from the trigger unit. The differentiated gate pulse from the new unit is then used to trigger the main time-base. This description will probably be made clearer by referring to the block diagram in Fig. 8.

Setting-up and calibration

To set up the correct d.c. working conditions in the Y amplifier, first adjust for the following voltages: $V r_{1}$ to give 72 V at V_{1} anode, $V r_{2}$ for IV at $T r_{3}$ base and $V r_{5}$ for 8.4 V at the base of $T_{r_{9}}$; all voltages positive with respect to the -I 2 V line. $V r_{2}$ is then finally re-adjusted for equal top and bottom limiting on a sine-wave signal of sufficient amplitude to cause overloading. During all these adjustments the Y shift control should be set for zero volts between the bases of $T r_{2}$ and $T r_{5}$. Since the amplifier is directly coupled, the preset gain controls $V r_{3}$ and $V r_{4}$ can be adjusted using a d.c. supply and a voltmeter as the calibration source.

Without access to a good oscilloscope the problem of adjusting the various frequencycompensating trimmers is rather like that of the chicken and the egg. Fortunately however, we can set as a starting point the $\times 1$ gain 100 mV position on the attenuator. In the absence of any instability the response of the amplifier should be as specified with no irregularities and, since there is no input compensation, this position can be used for displaying the calibrator unit output. V / r_{15} should be set for unity mark/space ratio and the trimmer in the Schmitt trigger C_{d}, to give a flat-topped square-wave. The effect on the waveform due to the adjustment of this and the other compensating trimmers is shown in Fig. 9. Once the output from the calibrator unit is satisfactory it can be used for setting the attenuator trimmers (C_{a} in Fig. I), by adjusting each one in turn to give a flat-topped square-wave display. The 50 Hz mains supply with a period of 20 ms forms a useful standard for setting the timebase range multiplier resistors, $V_{r_{8}}$ to $V r_{11}$, but for checking the shorter time decades and for setting the i μ s trimmer capacitor, a generator covering the appropriate frequencies will be needed.

Construction

Since tube sizes and the type and volume of e.h.t. supplies can vary a great deal it is not the intention here to describe the construction in detail. In the title photograph is shown the oscilloscope which has evolved from a series of re-builds as circuit improvements were made, from the original add-on units mentioned in the introduction. It comprises basically a box frame-work made of 1.25 cm angle aluminium. The various circuit sections are built as separate units on s.r.b.p. perforated panels (plain Veroboard) with plug and socket connections to the power supplies. The general disposition of the units is shown in Fig. Io.

The Y preamplifier and the trigger/timebase unit plug-in to the front of the instrument. Construction of the pre-amplifier is illustrated in the photograph above. The attenuator switch uses three wafers, the resistors R_{a} and the trimmers C_{a} being connected in parallel between the front two wafers, while R_{b} and C_{b} connect to the last wafer which is used solely as a common earth. The first panel is used for mounting $V_{1}, T r_{1}$ and their associated components, the remainder of the amplifier is wired on the second panel and the supply decoupling components on the rear one. The time-base is quite straightforward except for the choice of a time switch. The alternatives are: an eighteen way switch, separate six and three way switches or, the solution used here, two switches with concentric spindles.
Since the only real sources of heat are the tube and the two valves there are no ventilation problems, two 25 mm holes in the bottom and expanded metal mesh over half the back being all that is necessary.

REFERENCES

1. 'A Wideband Oscilloscope Probe', by L. Nelson-Jones. Wireless World August 1968, page 275.
2. Wescon/66 Technical Papers. Part 6. Session II on Field Effect Transistors.
3. 'Emitter-Timed Monostable Circuit', by B. Gilbert. Mullard Technical Communications, July 1961, P. 345.
4. 'Oscilloscope Timebase Generator', by B. Gilbert. Mullard Technical Communications, March 1964, p. 276.
The series of articles on the Wireless World Oscilloscope which appeared during 1963 and 1964, and which is now available in a set of five booklets, will be found generally useful for references.

Corrections

Some other Measuring Rectifiers

Owing possibly to some clod of earth still adhering to me after resurrection, or to a misguided attempt to be concise, an erroneous statement (in italics, too!) got through in "Some other Measuring Rectifiers" (Feb. issue). While it is true that the bridge rectifier type of voltmeter would correctly read r.m.s. values of square waves if it were calibrated in its natural mean values (because the mean and r.m.s.-and peak -values of square waves are all the same) it would not do so if the calibration incorporated the 1.11 factor converting sine-wave mean to r.m.s. My apologies.-"Cathode Ray"

High Impedance Multimeter

The author, V. R. Krause, regrets an error that occurred in Fig. 3 of his article "High Impedance Multimeter" in the February issue. The labelling of the range switch, S_{28}, is reversed; the 1 V range switch position should be labelled 300 V .

Circuit Ideas

In Fig. 2 in the contribution "A unity gain amplifier for very low-frequency filters" on p. 15 in the January issue the base of the output transistor should be connected to the collector of the preceding $p-n-p$ transistor; not to the junction of the complementary emitters as shown.

Negative Feedback and Hum

Economical method of reducing hum in an a.f. amplifier

by G. W. Short*

The amplifier shown in Fig. 1 (a conventional 'single-ended push-pull' affair using a circuit familiar in battery-operated equipment) produced an irritating hum when connected to a simple power pack with a bridge rectifier and one large reservoir capacitor. Measurement at the output revealed only about 2 mV of ripple voltage at the emitters of the output pair. This seemed to be much too small to account for the observed volume of hum, since the amplifier noise, which was about the same amplitude, was inaudible at normal listening distances.

The ripple on the positive line was found to be 200 mV peak to peak with only the quiescent current of the (class B) amplifier flowing. After some fruitless searching for hum in the intermediate parts of the amplifier I finally realised that the cause of the trouble had been staring me in the face all along. With 200 mV ripple on the power supply and only a few millivolts at the amplifier output the best part of the 200 mV was across the speaker, and busily at work forcing a hum current through it.

The path for the hum current goes through the lower output transistor. This offers practically no impedance. The transistor is an emitter follower of sorts to begin with, and there is overall negative voltage feedback which further reduces the output impedance. For practical purposes, therefore, the only significant impedance in the hum path is the loudspeaker coil. In my particular circuit this was passing about 12 mA of 100 Hz ripple-quite enough to produce an audible hum. Rather late in the day, I then looked up an article with the same title as this note, written some 22 years ago by Cathode Ray (W.W., May, 1946; reprinted in 'Second Thoughts on Radio Theory', Iliffe, 1955). Notwithstanding the fact that Cathode Ray dealt with pentodes with output transformers the article describes and illustrates with measured values exactly the same mechanism of hum production which occurred in my own transistor amplifier; i.e., a lowering of output impedance due to negative feedback providing an easy path for ripple on the supply line.

The reason why mains operated transistor amplifiers do not usually have their load slung between the output and the upper supply rail was now clear. On the other hand, this arrangement makes for higher efficiency and power output than those in

[^2]Fig. 1. The transistor amplifier circuit which emitted an abnormal volume of hum when connected to a simple mains rectifier unit. Hum-producing ripple current has a lowimpedance path through the lower output transistor to the speaker coil.

which the speaker is returned to the lower supply line and extra components are included to 'bootstrap' the top end of the driver load resistance.
It seemed a pity to sacrifice power and efficiency for the sake of a little extra smoothing. Unfortunately, smoothing chokes for high currents are expensive and not all that easy to find, and smoothing resistances drop too much voltage when the amplifier is driven hard and the current consumption rises. Readers may be interested in the simple and economical solution shown in Fig. 2. Here R_{1} and C_{2} are selected to provide the extra 20 dB or so of hum reduction needed when the amplifier is quiescent. The drop across R_{1} is not sufficient to bias D_{1} to conduction, so it has no effect. When the amplifier is driven, D_{1} conducts, and the voltage loss due to the extra smoothing section is thus limited to the forward drop (perhaps 800 mV if D_{1} is a silicon diode). The ripple current through the speaker coil now increases, of course, but in practice the

Fig. 2. "Swinging diode" smoothing system.
resulting hum is masked by the signal.
The arrangement is not unlike the 'swinging choke' smoothing circuits familiar in high-power class B valve amplifiers. It might be called a 'swinging diode' circuit.

In designing the extra smoothing section, the voltage at which a silicon diode starts to conduct can be taken as $500 \mathrm{mV}(600 \mathrm{mV}$ in high-current supplies, since the incremental resistance is then still relatively high). Since the diode has ripple voltage across it as well as the d.c. drop in R_{1} it is the sum of these that has to be considered. In practice, if C_{1} is big enough to provide reasonably good regulation, enough margin remains to make R_{1} usefully large. In some cases, it might be worth using two diodes in series to increase the hold-off voltage.

The biasing of the amplifier is perhaps worth a comment. The output stage uses germanium transistors and there is a gold-bonded diode in the bias network. At low temperatures, however, the bias voltage is developed, not by the diode but by the current through the resistance which shunts it. If there is a rise in ambient temperature, the forward voltage of the diode falls, and the diode then becomes the dominant element in the bias circuit.

The arrangement compensates for changes in ambient temperature but not for a rise in temperature of the output transistors. To arrange this, thermal feedback is necessary. This can be introduced by using two diodes in parallel, one in thermal contact with each output transistor. The bias is then set by whichever transistor is warmer.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Digital exposure timers

Page 22 of your January issue made me feel like the small child who inadvertently leaned on the fire alarm and turned out the whole brigade. I have read Wireless World as an amateur since 1920, and have occasionally had letters printed in its correspondence columns, but I did not think that any casual words from me would have induced another reader to do quite so much hard work as is implied in 'Grahame Coates' paper. May I offer him my felicitations-especially for his appreciation that photographers are really interested in log. relative times and not arithmetic absolute times. There are things in his design I would prefer changed for my own use-the double-or-half time change given by his left-hand switch seems to me inconveniently large, for instance. And I would want a minimum dispensed time in the region of 0.3 second. But these are small details.

My trouble is that I cannot afford to make up the Coates design. My firm is not an electronics one, and though we can use soldering irons when we have to, it would take quite fifty hours to lay out a full circuit and wire it up. Since the cost of one man per hour in the firm is about 50 s ., the total cost of making the timer would be unacceptable. We might, of course, induce a specialist firm to make one for us, but since they would (quite reasonably) expect to make a profit for themselves, I doubt whether a one-off job would come a great deal cheaper.

But . . . is it essential to go to such lengths of circuit complexity? I ask the question because we lately bought for our step-andrepeat camera a "Eurotima", which dispenses arithmetic times digitally. This cost us about $£ 20$ and is warranted to have higher accuracy and better repeatability than the Coates design itself. I haven't dared to open it up and look at its "innards", but am told that an ordinary $R C$ timing circuit and an operational amplifier are involved.

Now, if this kind of circuit is good enough with arithmetic time-scales, what is it about a \log. time-scale that drives people away from it and into the hands of the counter-cum-decoder type of circuit? Something there must indeed be, for no sane person would consider putting a couple of thousand components-or their equivalent in microcircuitry-into an instrument when a couple of hundred can be persuaded to give as good, if not better,
results. As a mere amateur, I cannot expect to know enough about electronics design to answer this question, but I wonder if some of the specialists can do so?
P. C. Smethurst,

Bolton,
Lancs.

The author replies

I would like to thank Mr. Smethurst for his kind comments, although the design had been in my mind for some time before his letter was published!

Taking the main points in order, the circuit was designed to keep the component costs as low as possible because the home constructor would prefer it this way. If the timer were to be produced commercially, the bistables would be replaced with i.cs which would increase the component cost by about $£ 11$, but reduce the one-off construction time to 12 hours or so.
I am not conversant with the "Eurotima", and consequently I cannot comment on its accuracy. However, my article may have underestimated the accuracy, as I now understand from the C.E.G.B. that the shortterm frequency variation is in the order of $\pm 0.2 \%$, and does not exceed $\pm 0.4 \%$ even at times of peak demand. The accuracy of repeatability depends only on the frequency stability of the mains.
As for the setting accuracy, if $R-C$ timing circuits are used, this depends on how accurately an operator can set a potentiometer. Alternatively, a switch would require close-tolerance resistors, or calibration of presets; both of which would introduce difficulties for the home constructor. In my circuit there is inaccuracy only in following the logarithmic law, and this is zero for unit time values.

Finally, I must point out that there are less than 400 components in the timer, or about 100 if the bistables are replaced with J-Ks. Perhaps Mr. Smethurst could justify the expense of the timer by the increase in productivity it could achieve: test strips can be taken at full aperture, and short exposures by correspondingly manipulating the aperture and time-value switch.

The "preassembled logic units" referred to in my article are no longer available. If surplus components are used, variations in transistor parameters may be so great that all the bistables may not reset; this can be overcome by inserting a $1 \mathrm{k} \Omega$ resistor be-
tween the reset diode and the reset line. The positive line voltage may also have to be reduced to 5 V to obtain consistent switching. G. Coates.

'High-impedance multimeter"

The design published in the February issue is not without interest but certain features of it cast doubt on some of the claims made for its performance.

On the 'resistance' ranges, the instrument can be corrected for variations in the voltage of the 1.5 V cell, but not for variations in the internal resistance of the celi. These can cause serious errors on the lower ranges. At mid-scale on the lowest range, the cell is called upon to deliver 75 mA , and an internal resistance of 10 ohms will cause a measurement error of -33%. At the extreme lowresistance end of the range the cell must supply nearly 150 mA , and the same internal resistance will then result in an error of -50%. On the ' 3 V a.c.' range (incorrectly labelled ' 100 V ' on the diagram) the loading of the step attenuator by the $5 \mathrm{M} \Omega$ input impedance of the transistor amplifier can cause an error of -4%. In view of this it is strange to read in the article that the $5 \mathrm{M} \Omega$ impedance is 'as high as can be satisfactorily handled'.

On this ' 3 V a.c.' range, the attenuator effectively puts $220 \mathrm{k} \Omega$ in series with the signal source as seen by the amplifier. Unless there is some happy combination of stray capacitances in the circuit this series resistance will have a devastating effect on the upper frequency response. Without compensation, a stray capacitance of only 1 pF at the attenuator output will cause an error of -30% at about 700 kHz . The suggestions regarding the choice of transistors need to be taken with some reserve. It is claimed that almost any small $n-p-n$ planar transistor will serve for use in the amplifier. This may be so in principle, but unless R_{1} is selected to suit the input transistor the amplifier may not be able to deliver enough output to provide full-scale deflection.

In selecting matched pairs of f.e.ts the designer began with 12 specimens and selected three satisfactory pairs. His initial stock gave him 66 possible pairs; a stock of three f.e.ts can only provide a choice of three possible pairs, which brings the odds for finding a pair matched within 10% down rather severely. What the would-be constructor of the meter needs to know is how many f.e.ts must be bought in order to give, say, an even chance of finding a suitable matched pair. This information is absent from the article.
G. W. Short,

Croydon.

Helical u.h.f. aerials

In our letter which was published in the January issue of Wireless World we pointed out the disadvantages of circularly polarized receiving aerials for u.h.f. television. In your editorial note, you suggested that rotation of polarization can take place over long distances, but in fact, the polarization of the transmitted wave is very well main-
tained not only within the service area but also well beyond. As we said, it is this fact which enables two transmitters to use the same channel with minimum mutual interference, provided they radiate the opposite polarizations. It is, therefore, essential that viewers use the correct aerial with the maximum discrimination against the orthogonal polarization.
J. L. Eaton,
L. F. Tagholm,
B.B.C. Research Dept.,

Tadworth,
Surrey.

Noise in transistor circuits

I would like to reply to Mr. Vanderkooy's comments (Feb. 1969) on my recent article on noise in transistor circuits. When I said that the use of the noise temperature concept "may be confusing to readers of the present article", I did not intend to imply that this concept is inherently more difficult than that of noise figure, but merely that, because it is a different approach from that used in the article, it might seem confusing to readers who had just assimilated the latter. I am very much aware that physics experiments are often done with very low source temperatures-indeed, I learnt quite a lot about noise by designing, in 1954, a very-low-noise valve amplifier* for the R.R.E. Low-Temperature Physics Group.

The negative feedback arrangement used in the above amplifier was essentially that shown in Mr. Vanderkooy's diagram, about 40 dB of negative feedback being applied to the cathode circuit of the input valve. Because of the very high source impedance referred to the grid, and its very low Johnson noise (because of the low temperature), gridcurrent noise had to be allowed for and the valve noise was therefore represented by a combination of current and voltage noise generators just as used nowadays for transistors. The negative feedback had no effect on the noise performance over the small band of frequencies centred on 800 Hz to which the output stage of the amplifier was tuned, except for the very slight Johnson noise introduced by the 400 -ohm feedback-voltage-injecting resistor in the input cathode circuit. While it does often seem to have been "naively expected" that the use of feedback in this manner, which raises the amplifier input impedance, would also raise $R_{\text {Sopo }}$ it is easy to see that this cannot be so when it is appreciated that the source Johnson noise, V_{N} and I_{N}, can all be represented by voltages acting in series with R_{s}, and that the negative feedback reduces the gain afforded to all of these equally, thus leaving the signal-to-noise ratio, and therefore the noise figure, unaffected. Hence the value of R_{S} which gives best noise figure without feedback will also give it with feedback. (Of course, the application of the feedback greatly increases the bandwidth of the part of the amplifier over which it is applied, but not the bandwidth of the input transformers,

[^3]and this would affect the noise figure if care were not taken to restrict the bandwidth over which the noise is measured appropriately. This consideration is taken care of, however, by the words "at any given frequency" in the first paragraph of the Negative Feedback and Noise section of my article.)
Peter J. Baxandall,
Royal Radar Establishment, Malvern.

Improper oscillations in transistors

In the January issue there is an interesting letter from Mr. Pitt on improper oscillations in transistors. The present letter provides some additional comments and the most likely cause of these oscillations.
(1) The oscillations never occur even if relatively small capacitors $(100 \mathrm{pF}$ and above) are placed across the power source at the transistor terminals.
(2) If the supply line has very litule inductance, or quite a large inductance, the oscillations seldom occur.

These two observations indicate that the oscillations are radio frequency in origin, quite high, and it was reassuring that I could by altering the supply leads bring the circuit into tune on a small portable v.h.f. receiver. If C is made very small, the oscillations probably become continuous, but if C is large the audible tones come through on the receiver. Since I do most of my experimenting at home, I could not study the circuit with a 100 MHz oscilloscope, but I feel certain that the relaxation characteristic of the oscillations is evidence of the selfquenching of the high-frequency oscillations by the relatively high $R C$ time constant. Hence the frequency of the audible tones is determined by the time that the capacitor C can cut off the transistor.

Thus, Mr. Pitt, although one resistor and one transistor cannot cause a transistor to oscillate, the inclusion of several unintentional inductances opens up several modes of oscillation. I suggest that the oscillations are not feasible for practical use, and am sure that the G.P.O. would agree.
John Vanderkooy,
University of Cambridge.

Quality in graduates

May an ordinary person without a degree ask Joe Tymebase, whose letter "Quality in Graduates" was published in February, just what he expects?

If there is anything at all in genetics, both extremes of intellect are recessives, which suggests that village idiots and geniuses are produced by a given population in roughly equal quantities. Many of the geniuses will be lost-however genetically capable a mind may be, it cannot think until it is filled with very great numbers of facts. This is why a medium intellect coming from understanding parents will always have the edge over a genius born into a family which is only interested in football pools, bingo and the like.
I notice a scream in the papers that more
students have been put in for A-level maths yet the percentage of passes has dropped. What do they expect? The more people enter for any exam, the more does the law of diminishing returns set in. In fact, though politicians assume there is an inexhaustible supply of geniuses in the country, the real truth is that perhaps 2% of the population can appreciate science enough to comprehend it, and only a small fraction of them will ever have any original ideas about it.

I am exceedingly sorry for the student population. They are picked to go to university because of their ability to pass an exam at $17 / 18$. Until they come out into the cold hard world nobody will know if any of them are intelligent, or whether they have the temperamental capacity to do hard work in employment. Yet they are cossetted by being given excellent grants on the taxpayer, and led to assume that once they have got their degrees they will know as much as Rutherford in his prime.

None of this helps Joe, I fear, but it explains why so many people these days think that the only thing about a job that matters is the salary it carries. Obviously, if they have been trained and are as good as anyone, it cannot be important what they jut into the job, for it will be just what anyone else could put in.

I only hope that it will comfort Joe to know that the mere peasants, such as myself, have long known that the possession of a research degree does not mean that its owner is in the least intelligent.
P. C. Smethurst,

Bolton,
Lancs.

Protection of engineers

Vector's two articles concerning redundancy have certainly touched a very sensitive spot. At a recent lecture I was sidetracked (with the chairman's consent) into replying to a question as to how companies wishing to economise could dismiss their senior engineers and appear to carry on just as well with juniors. My reply was that even after a man was dismissed his ideas, methods and innovations remained with his employers and could flywheel them along for a considerable period. I stated that I felt a redundancy claim should take this into account.

A solicitor in the audience took up my last point and stated that there was no common law covering a claim in this respect and that as yet no statutory provision had been made. He thought that as statutory legislation had now been undertaken there was no likelihood of a court creating new common law at present and suggested that an appointee should see his solicitor about a protective agreement under the Contracts of Employment Act, 1963. His last sentence was received with acid laughter.

I wound up by mentioning that a Trade Union had taken a full page advertisement in The Times devoted to protection of the senior employee, and whilst I could not go along with many of its policies and statements of its leader, I would recommend those interested to consider membership.
I. G. Abelson,

London, N. 14.

It's the oxide coated glass cane core that gives Electrosil resistors their phenomenally long endurance. Inert to oxidising influences which attack conventional film or wire wound resistors, they are also virtually impe vious to all other forms of environmental anc mechanical attack. This is because the oxide coating is molecularly fused to the glass core by a method unique to Electrosil. Utter reliability over long periods is the hallmark of an Electrosil resistor, and that's why
they are specified more than ever today for all applications where dependability is essential.
ELECTROSIL LIMITED P.O. Box 37, Pallion, Sunderland,
Co.Durham Telephone Sunderland 71481. Telex 53273
Electrosil
have the experience

Ournewtypist typed'oxthide resistors'

At least she'd heard how tough they are

The TF 2702 Inductor Analyser measures inductance at all frequencies from 20 Hz to 20 kHz , with currents up to $1,000 \mathrm{amps}-\mathrm{DC}, \mathrm{AC}$ or mixed! And it is sensitive enough for measurements at low current levels and for low- Q inductances at high accuracy.
There is no interaction between balance controls, and operation is even further simplified by a
c.r.t. detector, which rapidly indicates the direction of unbalance. A tunable voltmeter gives final balance. A full range of accessories is available

- Measurement range: $1 \cdot 3 \mu \mathrm{H}$ to $20,000 \mathrm{H}$
- Internal or external excitation frequencies
- Variable a.c. current and d.c. bias facilities

MARCONI INSTRUMENTS LTD
Longacres, St. Albans, Hertfordshire, England Telephone: St. Altoans 59292 Telex: 23350

Circuit Ideas

Instrument output amplifier

The amplifier shown was designed as an output amplifier for an instrument having a response from 0.1 Hz to 1 MHz . Other requirements included an input resistance of $1 \mathrm{M} \Omega$ and high stability of the standing d.c. output voltage

Instrument output amplifier.
during temperature and supply voltage changes. The gain requirement was a modest 10 dB . Standard output impedances of 600Ω and 75Ω were required and the amplifier was therefore designed to provide a relatively low output impedance of 5Ω. A complementary symmetry output section and overall voltage derived shunt feedback were therefore used. The danger of instability is eliminated by the use of a 150 pF phase compensation capacitor across the load resistor of $T r_{1}$. The relatively high input impedance required was easily obtained by the use of an m.o.s. transistor.

Since the m.o.s. transistor is connected in the common drain mode and output transistors are arranged as parallel common collecror stages, the open loop gain of 26 dB is provided by the common emitter stage Tr_{1}. The 27Ω resistor may be bypassed to provide a higher open loop gain if required. With the feedback arrangements shown the amplifier has total harmonic distortion of 0.05% for a 1 V r.m.s. output signal. The d.c. output voltage is held within 50 mV for a temperature change of $+30^{\circ} \mathrm{C}$ and supply voltage changes of $\pm 40 \%$.

The feedback resistor R_{f} shown ($3.3 \mathrm{M} \Omega$) can be increased to several hundred megohms if a very high input resistance is required. Since the feedback resistor provides the forward bias voltage for the m.o.s. transistor, care
should be taken to avoid leaky input capacitors which would change the effective bias voltage supplied to the gate.
J. Roberts,

Marconi Microelectronics,
Witham.
H. C. Davies,

University College, Swansea.

Amplitude modulator using operational amplifier

This circuit allows the amplitude of a repetitive signal to be controlled by a slowly varying voltage. The input was designed nominally for 600Ω; and a 400 mV signal will be con-

Shown below is full circuit of amplitude modulator using operational amplifier. Above is alternative input stage with high impedance.
trolled with almost negligible distortion at the output. Almost any high gain ($>10^{4}$) operational amplifier can be used. The peak negative value of the output signal is very nearly equal to the value of the negative control voltage. If planar $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors are used in place of the OC202 types the peak to peak value of the output voltage must not be allowed to exceed the base-emitter breakdown voltage of the first $\mathrm{p}-\mathrm{n}-\mathrm{p}$ device. The circuit has been used to control a 10 kHz sine wave, but full frequency tests have not been done. An alternative arrangement with high input impedance is also shown.
John Vanderkooy,
Royal Society Mond Laboratory,
Cambridge.

Simple amplitude modulator

A carrier signal is applied to the voltage amplifier $T r_{1}$, whose emitter is decoupled by C. The high collector resistor of this stage ensures that

Simple amplitude modulator.
the resistance through the emitter is high and that the gain therefore varies linearly with I. $T r_{2}$ is a linear amplifier producing a signal current at the collector which is a function of the modulating signal. This varying current thus causes the gain of $T r$, to vary. The output from the collector of $' T r_{1}$ will therefore be the carrier signal amplitude modulated by the modulating signal. The difference in frequency between the modulating and carrier inputs must be great enough for C to have a high reactance at the modulating frequency. A. E. Crump,

Broadstone,
Dorset.

Thyristors and Associated Devices

Their characteristics and uses

by W. D. Gilmour

The thyristor is a three-terminal semiconductor switching device with properties somewhat similar to the hot-cathode thyratron. Originally the general term for the device was "silicon controlled rectifier" or s.c.r., and this term demonstrates the first important property of the device-that in the reverse direction it behaves as a normal blocking diode, and it will never conduct (until its breakdown voltage is reached), with the anode negative (Fig. 1). With the anode positive conduction will still not occur until the gate terminal has been driven sufficiently positive, when the device will break down to a low impedance, with the current flowing limited only by the external load. This current will continue to flow until it is reduced below a critical value, the holding current, either by shunting the current in a parallel path, by reducing the applied voltage, or by breaking the current with a series-connected switch; then conduction will cease and will restart only when the gate terminal is reenergized. The similarity with the operation of a thyratron will be obvious, and the relative typical parameters are compared in Table 1.

The chief advantages of the thyristor are thus a lower conducting voltage drop, much smaller size and weight, and, if operated within ratings, a very much longer life, as

(a)

(b)

Fig. 1 (a). Characteristic of thyristor. In the reverse direction and in the forward direction until it is broken down the impedance is high. After the device is triggered in the formoard direction the impedance is low until the current is reduced below a critieal value -the holding current. (b) Conventional symbol for thyristor.

Table 1: Comparison between typical thyratron and thyristor parameters

Quantity	Thyratron	Thyristor
Paak inverse voltage (max.)	Several kV	About 800V
Peak current	Hundreds of amps	About 200A
Mean current	Tens of amps	About 100A
Conducting voltage drop	About 8 V	About IV
De-ionization time	Tens of microsecs	Microsecs
Gate conditions for braakdown	Tens of volts, tens of milliamps	Few volts. up to 100 mA
Holding current	Tens of milliampa	Tens of
	,	milliamps
Weight of typical power type	Several kilograms	1000

there are no gas clean-up effects to be allowed for. On the other hand, for brief non-repetitive overloads the thyratron may be more robust, and the very low voltage drop may lead to difficulties in turning off thyristors in d.c. circuits.

A development of the thyristor is the Triac, in which the gate controls conduction in both directions, thus allowing an undistorted a.c. waveform to be switched, as by a relay. Triacs will be discussed in more detail later.

Trigeering methods

The manufacturer's data for a thyristor will generally show typical characteristics of trigger voltage against trigger current, with superimposed limits showing levels at which no device will trigger, and at which all devices will trigger. From these curves it is simple to work out the required voltage and impedance of the triggering source. For the reliable triggering of all devices, it is useful to allow some 10 V from an impedance of not more than 300Ω for triggering, thus permitting a potential trigger dissipation of several hundred milliwatts, which could exceed the manufacturer's mean limits. A.C. coupling to the gate is therefore frequently used, as shown in Fig. 2 (a), (b), and (c).

Two special devices, the $p-n-p-n$ diode and the uni-junction transistor, provide excellent sources of triggering pulses. The former has the characteristics shown in Fig. 3, where it will be seen that at some critical applied voltage a negative resistance develops, and the circuit of Fig. 2 (d) shows how the capacitor, C, will suddenly discharge into the load formed by the gate of the thyristor as the critical voltage is exceeded. The circuit will continue to deliver gate pulses so long as the voltage is maintained across the driving circuit.

The uni-junction is a three-terminal device, with similar characteristics to the $p-n-p-n$ diode, in that the emitter will break down at a critical voltage, set, however, in this instance, by the voltage applied across the other two (base) terminals. Fig. 2 (e) shows a typical uni-junction triggering circuit.

The triggering pulse width and amplitude necessary to secure breakdown are to some extent related, but less so than for a thyratron, and in general triggering is independent of pulse width for lengths greater than a few microseconds. There is generally a short delay, typically one or two microseconds, between the application of the triggering pulse and the main breakdown, which is generally very rapid with modern avalanche methods of construction. In some earlier devices, however, the rate of rise of the main current had to be limited to allow time for the breakdown to spread completely across the main junction, and this limitation may still apply to devices passing more than ten amps.

D.C. applications

Complete logic systems can be built with thyristors, using the cheap plastic encapsulated or low current TO-S can types. The thyristor is basically a two-state device with hold, similar to a conventional RS flip-flop. This type of logic has uses when a number of logical actions are required at any time during a fairly long period, with restrictions on the sequence, especially if substantial output powers are required, for externai loads can be inserted in the anode leads. This use is, however, somewhat specialized and will not be discussed further here.

Combinations of relays, stepping switches: and thyristors lead to very useful circuits. For instance, consider the problem of ensuring that two uniselectors remain in step (Fig. 4 (a)). When the thyristor is fired bott armatures will close, but neither can be released, thus stepping the uniselectors on, until both interrupters are broken. The current through the thyristor will then be broken and it will revert to its non-conducting state. Both uni-selectors will then have moved, in synchronism, by one step. Thyristors used with relays can give holding circuits, with pulsed unlatching (Fig. 4 (b)) without the difficulties associated with mechanical or magnetic latching.

To turn a conducting thytistor off, the

Fig. 2. Triggering methods for thyristors: (a) direct d.c. pulse; (b) discharge of already charged capacitor; (c) use of emitter follower to secure low impedance drive pulse, together woith capacitor coupling to reduce mean gate dissipation; (d) use of $p-n-p-n$ diode; and (e) use of uni-junction.
current through it must be reduced below the holding current and kept below this value for a few microseconds. In d.c. circuits this can be done by physical interruption of the circuit, as in the example of the uniselectors given above, by shorting the thyristor by a contact or by a switching transistor, or by diverting the current into a sufficiently large capacitor (typically $50-250 \mu \mathrm{~F}$) switched into circuit by another thyristor, which in its turn ceases to conduct when its holding current falls below the critical value as the capacitor becomes fully charged.

Because thyristors can withstand very high peak currents, they form excellent devices for discharging capacitors in timebases, and for use in "electronic crowbars" -these are short-circuiting devices deliberately placed across the output of a power supply if too high a current is drawn from it; and they are used mainly in transmitters to give instant protection against arcs in the output circuits.

A.C. applications

With the coming of the Triac, described below, the principal application for unidirectional thyristors nowadays in a.c. circuits is as controlled rectifiers (Fig. 5a). In a typical full-wave application the rectifiers block normally in the reverse direction and will conduct in the forward direction only when triggered. By delaying the triggering point with reference to the conducting half cycle of the applied voltage waveform in the main circuit, the energy transferred into the output circuit can be controlled. Thus in the two extreme cases, if the thyristor is triggered at the start of the half cycle, the circuit will behave as a normal uncontrolled rectifier, with maximum transfer of energy, but if triggering is delayed until the end of the half cycle, no

Fig. 3. Characteristic of $p-n-p-n$ diode.
energy at all will be transferred. Intermediate triggering points will give transfers depending on the design of circuit. Thus, if a typical capacitor input circuit is used (these are quite permissible for low-power rectifiers, as thyristors can withstand higher repetitive surge currents than thyratrons of the same mean current rating), energy transfer can occur only when the instantaneous voltage of the input waveform exceeds that of the reservoir capacitor. Conduction in normal operation thus occurs only at the peaks of the input waveform and control is always exercised on the first quadrant of the input waveform between zero and the positive voltage maximum. With a resistive load, however, control is required over the entire forward half cycle. The simplest method of control is to delay the supply waveform by 90° and then compare this waveform with a d.c. level set by the quantity to be controlled, as shown in Fig. 5 (b). To secure a precise triggering instant, any of the normal pulse generating comparator circuits (Schmitt trigger, $\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}$ diode, or uni-junction) should be used. These circuits will also give a low-impedance drive pulse suitable for direct application to the gate of the thyristor.

This type of control circuit is quite suit-

Fig. 4. Use of thyristors with electromechanical switches: (a) Synchronous drive for two uni-selectors. The current flowing through the coils of UA and UB will be interrupted only when both interrupters are open, thus resetting the thyristor; (b) Latched relay. The relay woill release only when the thyristor is turned off, which may be done by four methods, shown from left to right: a second thyristor; switching transistor; second relay contact; or manual switch.

Fig. 5. Phase control of thyristors in a.c. applications: (a) Typical full-wave controlled rectifier. The capacitor C need be large enough only to give a low impedance return for the triggering pulses; (b) The main voltage waveform, V_{1}, is delayed by 90° to give a control waveform, V_{2}, not necessarily of the same amplitude. V_{2} is compared with a d.c. control level, showon dotzed for the two extreme values. If equality occurs at A, almost the whole half cycle, shoron shaded vertically is passed in the main circuit, but at B only a very small fraction, shown horison tally shaded, is passed.
able for powers of up to about 1 kW . For greater powers, the lagging power factor and the possible distortion of the waveform of the supply mains due to its finite impedance, together with the necessity for circuits to reduce the effect of interference caused by the sudden rush of current as the thyristor starts to conduct, makes this arrangement less attractive. It is recommended that, whenever possible, complete half cycles of the mains should be switched, closing the circuit at zero voltage, and controlling the power to the load by switching a controlled

Fig. 6 (a). Triac characteristics. In comparison with Fig. 1 (a), note that breakdown can occur in both directions. (b) Conventional Triac symbol. Sometimes the triangles are moved contiguously to give a simple zig-zag, as used in Fig. 7.

Fig. 7. Simple phase control using Triac with built-in diode.

Fig. 8. Logic interface using uni-junction and Triac. Note that the logic power supply can be earthed on one side and coupled capacitatively to the Triac.
number of cycles at a time. Thus a given power level might be maintained by switching three half cycles on, two off, four on, two off, four on, two off, three on, etc., to give any desired level. This regime of control is naturally most applicable to controlled circuits of large time constants, such as heating installations and large motors; it cannot of course be used for lighting installations.

Extinction of conduction in a.c. circuits gives no trouble, as the holding current is automatically reduced to zero and then reversed at the end of each half cycle.

To secure full-wave control on a.c. rectifier circuits without a transformer, two controlled rectifiers and two normal rectifers can be used in a bridge configuration, but this type of circuit is now mainly of academic interest, having been replaced by the Triac.

Triacs

The Triac is a symmetrical device with characteristics and conventional symbol shown in Fig. 6. By applying a small control voltage to the gate terminal with respect to one of the main terminals (conventionally No. 1) the main terminals conduct, and current will remain flowing, limited by the external load, until it is reduced, as in a thyristor, below the holding limit. A high impedance state is then restored between the main terminals until the gate is fired again. The gate voltage can be unidirectional, and thus full-wave control from a d.c. or pulse source can be achieved. Some Triacs are available with a built-in p-n-p-n triggering diode, thus leading to the very simple circuit of Fig. 7, which will control the application of mains voltage to the load according to the setting of the potentiometer.

Triacs without the diode mentioned above can be triggered by low-impedance pulses of a few volts, derived for instance from a uni-junction, and this allows them to be used as interfaces between low-voltage logic devices and mains-operated devices, as shown in Fig. 8.

As we have seen, thyristors and Triacs have properties which enable them to be used in a variety of useful applications where no other active components would give the same result nearly as economically.

Announcements

The second national symposium on logic design is to be held at the University of Reading on March 28th. Organized by the Logic Design Group of the British Computer Society, eight papers will be given on subjects including Digital Counting Techniques, Computer Aids to Logic System Design and Implementation of a Digital Controller using Wired Logic. Further details are available from the Conference Information Office, The British Computer Society, 23 Dorset Square, London N.W.1. Fee for non-members of the B.C.S. is $\{6$.

An international symposium on management and economics in the electronics industry, organized by nine institutions, including the I.E.E., I.E.R.E. and the British Computer Society, is to be held at the University of Edinburgh from March 17th to 20th 1970. Further
details will be available from the secretary, D. J. T. Williams, Ferranti Lid., Ferry Road, Edinburgh 5.

A residential symposium entitled 'Maintenance in Electronics'-will be held at Wood Norton Hall, Evesham, Worcs. The symposium, organized by the Society of Electronic and Radio Technicians, takes place from July 4 th to 7 th. Further details may be obtained from the Secretary, S.E.R.T., Faraday House, 8-10 Charing Cross Road, London W.C.2.

The reliability of electronic equipment will be the subject of a conference being organized by the I.E.E. in association with I.P. \& P.S., the I.E.R.E. and the I.E.E.E. The conference will be held at Savoy Place, London W.C.2, from December 10th to 12th.

Three lectures on physiology, organized by the I.E.E./I.E.R.E. medical and biological electronics group committee, will be held at the Medical College, St. Bartholomew's Hospital, Charterhouse Square, London E.C.1. The lectures are erititled 'Nerve impulse' (11th March), 'Transcutaneous information' (22nd April), and 'Peripheral auditory mechanisms' (20th May). Tickets for non-members are available, price 5 s each, from the I.E.E., Savoy Place, London W.C.2.

The second symposium on field effect transistors will be held at West Ham College of Technology, Romford Road, Stratford, London E.15, on May 6th and 7th. Details are available from the symposium organizer.

A two-day symposium on digital storage techniques will be held at Kingston College of Technology, Penrhyn Road, Kingston upon Thames, Surrev, on April 1st and 2nd. Details are available from R. V. Sharman, organizing secretary. Fee $\{10$.

LECO '70. The Council of Engineering Institutions, "federal body for Britain's chartered engineers," is organizing a major engineering congress which will open at the Royal Festival Hall, London on May 4th, 1970.

A new company in the optical character recognition field known as Real Time Systems Ltd, of 139A New Bond Street, London W.1, has been formed by Pennsylvania Research Associates Inc, U.S.A., and a group of British data-processing specialists. The company is marketing in Western Europe the multi-font page reading systems of Scan-Data Corporation, Pennsylvania, U.S.A.

The Electronics Division of Union Carbide UK Lid, is to manufacture field effect and dual transistors in the United Kingdom. The devices will be manufactured at the company's plant at Aycliffe, Co. Durhams

Cosmocord Lid has formed a new electronic instrument group to be incorporated in the existing electroacoustic division. The group will specialize in sound level test equipment, ear defending equipment, accelerometers, transducers and bearing analysers.

The marketing association between Technomark Lid and Radford Electronics Lid was dissolved on February 1 st . All sales and service matters will be dealt with from the premises of Radford Electronics Led at Ashton Vale Road, Bristol 3.

Additional colour equipment, to the value of £250,000, has been ordered from Pye TVT Ltd by Associated Television for the extension of its proposed outside colour television transmissions in London and the Midlands. The order is for 8 three-tube colour cameras, equipment to convert the two existing Pye outside broadcasting units from black and white to colour and extra monitoring, vision-mixing and pulse equipments.

A $£ 144,000$ contract has been awarded to Tellurometer (UK) Ltd, a company in the Plessey organization, for the supply of microwave distance measuring equipment to the Italian Army.

Decca Radar Ltd, have received orders, in excess of C 400,000 , for radar relating to the entire building programme of 29 Esso tankers, four of which are also fitting ISIS (Integrated Ship Instrumentation Systems).

Racal Instruments Litd has received an $\mathbb{C 8 2 , 0 0 0}$ contract from the British Royal Navy for the supply of digital counters.

Wireless World Colour Television Receiver

10. Chrominance circuit principles

The preceding articles of this series have dealt with the equipment entirely from the point of view of producing a good black-and-white picture. It has been stressed many times that such a picture is an essential prerequisite for a good colour picture and we repeat this once again in order that it shall not be overlooked. In this and following articles we shall deal with the chrominance circuits and their principles. There is nothing in these which is essentially difficult and the basic circuits of individual stages are mainly of quite familiar types.

As a whole, however, the chrominance circuitry is very unfamiliar to most people and the results of faulty components, incorrect connections or improper adjustment can be very strange indeed. There are so many parts involved that it is asking rather much to expect that the equipment will contain neither a faulty component nor a wrong connection. It is a wise precaution to check every component before connecting it into circuit, but even then carelessness in assembly and soldering can damage components.

In order to be able to find faults and to carry out the proper adjustments, it is necessary to understand the circuits. We shall accordingly devote this article to essential theory. Much of it will already be known to those who have studied the subject. There are certain important matters, however, which have either not been adequately treated or the implications of which have not been brought out previously.

At the transmitter three camera tubes are trained on the subject through red, green and blue filters and produce output signals proportional to the red, green and blue components of the colours in the scene. These are designated the R, G and B signals; they are then gamma corrected and are conventionally designated R^{\prime}, G^{\prime} and B^{\prime}. The object of all the intervening equipment is to enable these signals R^{\prime}, G^{\prime} and B^{\prime} to be developed between the three grids and cathodes of the receiving colour cathode-ray tube.

We are not concerned here with gamma correction nor with some of the subtle effects which result from it. For simplicity, therefore, we shall drop the primes to the letters and use R, G and B to refer to the gamma-corrected signals.

Because of the need to economise in bandwidth these signals are not transmitted directly in the R, G and B form. They are first processed or encoded.

First of all, the so-called luminance signal is produced, and is designated by the letter Y. This signal is obtained simply by adding together the proper proportions of the R, G and B signals according to the relation

$$
Y=0.3 R+0.59 G+0.11 B
$$

This is a video signal of full bandwidth which corresponds to the normal video signal of black-and-white television. If applied to a picture tube it will produce a monochrome picture. It contains all the information about the picture detail and its light and shade. Its bandwidth extends up to about 5.5 MHz and it modulates the vision carrier in amplitude.

In addition to this, two chrominance signals are formed, R Y and $B-Y$ and these have their bandwidths limited to about 1.2 MHz . The latter modulates in amplitude a sub-carrier of frequency $4.43361875 \mathrm{MHz} \pm 1 \mathrm{~Hz}$, hereafter called 4.43 MHz for short, whereas the $R-Y$ signal modulates in amplitude a sub-carrier of the same frequency but which differs in phase from the other sub-carrier by 90°. Furthermore, in successive scanning lines the phase of this $R-Y$ sub-carrier is changed by 180°.

After modulation the sub-carriers are suppressed and the signals remaining are added together in their proper proportions and then used to modulate the vision carrier in amplitude. Because of the precise sub-carrier frequency chosen the sidebands of the chrominance signal all fall between harmonics of the line-scanning frequency at which the energy of the Y signal is concentrated, thus minimizing mutual interference.

The complete signal as transmitted can be designated in the various ways shown by equations (1) to (4) in the Appendix. It is important to realize that the two amplitude-modulated sub-carriers do not exist as separate entities when they are added together; they form a signal in which the amplitude varies in accordance with the saturation of the colour and the phase varies in accordance with the hue.

The plus and minus signs in the equations indicate that the phase of the $R-Y$ signal is reversed in successive lines; that is, if the plus sign is taken for one line, the minus sign applies for the next. Under ideal conditions, this is also the signal obtained at the output of the detector in the receiver. In practice, of course, what is obtained is a more or less distorted version of this signal to which there are added noise and interference. We shall ignore this for the present, however. It is the purpose of the luminance and chrominance circuits of the receiver to accept the colour signal M and to convert it into three signals R, G and B between the grids and cathodes of the c.r. tube.

To enable this to be done a kind of synchronizing signal is needed for sorting out the colour components. This can be regarded as analogous to the line and field sync pulses which are always added to the vision signal for synchronizing the line and field timebases. The additional special signal for colour is known as the colour burst, or just burst for short. This comprises 10 ± 1 cycles of sub-carrier frequency inserted in the back porch of every line; that is, between the end of every line sync pulse and the start of the active portion of the line.

In the PAL system, which is all that we are concerned with here, the phase of the burst changes by $\pm 45^{\circ}$ on successive lines. Taking the phase of the $B-Y$ sub-carrier as reference, on lines for which the phase of the $R-Y$ sub-carrier is 90° the burst phase is 135°, while for lines for which the $R-Y$ sub-carrier is -90° the burst phase is -135°.

In order to decode the colour signal as received, it is necessary to generate in the receiver signals of exactly the same frequency as the sub-carrier used at the transmitter so that the

sub-carriers which have been suppressed at the transmitter can be reinserted. These locally-generated signals must also be in the proper phase, although for this a small error is tolerable. Again taking the $B-Y$ component as reference, there must be one local signal in phase with this and another at 90° to it which alternates in phase in successive scanning lines.

In practice, the burst signal is used to lock a local oscillator in frequency but with some small phase error; a pulse from the line timebase is used to operate a phase-reversing switch, and the changes of phase of the burst are used to keep this switching operation in the proper phase.

It is very important to understand all these phase relations and it is a little difficult to do so at first, for most of us are inclined to get in a muddle over phase relations, especially as they do not usually assume any importance in r.f. circuits. The vector diagram of Fig. 1 helps a great deal in sorting out the relations. The $B-Y$ component is taken as the zero of reference and is shown as the horizontal line-drawn from the centre to the right. The $R-Y$ component is drawn at 90°
 successive lines.
($\pi / 2$) to it, upwards and downwards for successive lines.
The corresponding phases of the colour burst are shown again drawn upwards and downwards for successive lines at a further $45^{\circ}, 135^{\circ}$ in all from the $B-Y$ axis. Their mean is the horizontal line drawn to the left from the centre at 180° to the $B-Y$ axis.

In Fig. 1 the $B-Y$ and $R-Y$ components are represented separately in the manner expressed in equation (1). Fig. 2 shows this again and also how they combine to form a single signal of varying amplitude and phase. Here V and U are used respectively to represent $R-Y$ and $B-Y$.

Turning now to the general form of the decoder, its block diagram appears in Fig. 3, and the complete signal represented by equations (1) to (4), plus the colour burst, is applied at its input. It will be remembered from the earlier articles that this signal is also passed through a delay line and video amplifier which provide some attenuation at 4.43 MHz , to the cathodes of the colour tube. Because of this the chrominance components, which are at 4.43 MHz are largely removed, and a signal $-Y$ is fed to the cathodes of the tube and is, of course, the equivalent of Y fed to the grids. In order to obtain R, G and B between grids and cathodes, therefore, we have to develop three signals $R-Y, G-Y$ and $B-Y$ for application of the three grids.

The summing of the luminance and colour difference signals is effected in the tube, for $-Y$ applied to the red cathode and $R-Y$ to the red grid give R between grid and cathode, and similarly for the other guns. At this point the discerning reader will raise an objection. He will say that this is not true because the Y signal which is applied to the cathode is wideband, whereas the $R-Y$ signal which is applied to the grid is narrow band, and he will be quite right. The letter Y is, in fact, being used with two meanings, one for the wideband luminance signal and the other in the narrow-band colourdifference expression.

As a result, the foregoing statement is true only for frequencies up to some 1.2 MHz . For frequencies above that the colour-difference signals $R-Y$, etc., disappear and the only input to the tube is the wideband $-Y$ signal applied to the cathode. This means that there is no colour in fine details. What we have, in effect, is a black-and-white picture upon which colour is superimposed in the large and moderate sized areas, but not in the fine detail. It has been determined by experiment that the eye is not very sensitive to colour in detail, and it is because of this that it is possible to restrict the bandwidth of the colour-difference signals. This arrangement is, in fact, common to all practical colour-television systems.

The decoder is fed with the complete video signal plus colour burst and sync pulses and it has to produce at its output three colour-difference signals, $R-Y, G-Y$ and $B-Y$. The whole signal is first applied to a high-pass filter (numbered 1 in Fig. 3), which removes the luminance signal and the sync pulses, leaving only the chrominance signal and burst which are all around 4.43 MHz .

The high-pass filter is a simple affair, being nothing more elaborate than an $R C$ coupling of small time constant. The signals are then put through a single-stage amplifier (2) with a.g.c. This stage, therefore, provides an output of substantially constant amplitude. The output feeds two separate channels. The chrominance channel starts with an attenuator (3) which forms the saturation control; it controls the amplitude of the colour-difference signals and so enables the depth of colour, or saturation, in the picture to be varied. This attenuator is a diode network controlled by a variable voltage and it has applied to it also a pulse from the line timebase which makes the attenuation very large during the line flyback and which, therefore, gates out the colour burst. The signals after the attenuator are thus the colour-difference signals in their suppressed-carrier form.

A single stage of amplification (4) follows and there are then
two possibilities. In simple PAL the signals are applied directly to the two synchronous demodulators (8) and (9) shown in Fig. 4. In delay-line PAL the arrangement is different. The signal is applied to a phase-splitter (5). One output is taken from the emitter and the other is taken from the collector and passed through a delay line (6) which gives a delay of one complete line, or, more precisely, 283.5 cycles of sub-carrier frequency. The delayed and undelayed outputs are adjusted to be of the same amplitude and their sum and difference are formed (7).

Consider the $B-Y$ component. The output of a certain scanning line appears at the emitter and the output of the preceding line with the opposite r.f. phase at the output of the
delay line. Subtraction of the two signals results in a doubleamplitude signal which is the mean of the signals from two lines. Since the $R-Y$ signals are reversed in phase in successive lines the two outputs are in the same phase and on subtraction they cancel out. Thus the combined output is $B-Y$ only. More important than this, however, is the facp that, because the combined output is the mean of two lines, phase distortion tends to be cancelled. This is actually the whole purpose of the PAL system.

With the $R-Y$ component the phase reverses in successive lines and so the addition of the two outputs gives a double amplitude $R-Y$ signal only, the $B-Y$ components cancelling.

Fig. 3 Block diagram of the complete chrominance equipment which provides the $R-Y, G-Y$ and $B-Y$ signals on the grids of the c.r. tube. This is driven at the cathode with a $-Y$ signal from the luminance amplifier and so R, G and B signals are effective between the grids and cathodes.

The two components are then applied separately to the two synchronous detectors.

If there is a phase error between the locally generated reference oscillation and the correct reference phase, the demodulation process is affected. With simple PAL, a leading phase error causes a shift of colour in one way from the correct, whereas a lagging error causes a shift in the other way. As a result of the phase alternation in successive lines, the error is leading on one line and lagging on the other. Successive lines depart from the correct hue in opposite directions, and if the picture is viewed from far enough away, the eye averages the two and gets the impression of the proper hue. With delay-line PAL the $R-Y$ and $B-Y$ signals are separated before the demodulators, with the result that a phase error in the reference signal causes no error of hue. This is dealt with in more detail in the Appendix.

The disadvantage of simple PAL is that with close viewing the alternation of lines of different hue can be seen and they usually appear to crawl up the picture. The effect is known as the Venetian or Hanover blind effect. It can occur, but to a much lesser extent, with delay-line PAL, if the circuits are not properly balanced.

The receiver is, of course, designed for delay-line PAL but it can actually be used as simple PAL merely by removing the delay line. In fact, under good conditions simple PAL gives an exceedingly good picture.

We now turn to the other channel of the chrominance circuitry. The chrominance signal and burst are first amplified in a single stage (22) and the output of this is applied to a second amplifier (23) which is normally biased beyond cut-off so that it is inoperative. A positive-going pulse, which is derived (33) from the line timebase, is applied to the base and renders the stage operative whenever the colour burst is present. The net result is that the colour burst appears greatly amplified at the output of this second stage but no other signals. The burst is rectified (37) and the resulting smoothed output applied as a.g.c. bias to the common input stage (2). The main output, however, is applied in push-pull to a pair of diodes (24) which also have an input in parallel from the local oscillator (28). This forms a phase discriminator which gives no output if the phase of the oscillator and burst are correctly related, but gives a d.c. output for a phase difference with a polarity depending on the direction of the difference. This is amplified by a d.c. amplifier

Fig. 4 Basic circuit of the PAL diode switch, 90° phase splitter and the troo synchronous demodulators
(25) and the voltage is applied to a variable capacitance diode (26) which is connected to the oscillator circuit (27).

The oscillator is of a conventional Colpitt's type using a quartz crystal as the tuned circuit. The frequency is thus always very close to the correct one, and the operation of the a.p.c. loop, is gradually to reduce any initial frequency error to zero and then to hold the oscillator in lock with the burst frequency. Unless the oscillator frequency is itself precisely correct, the control circuit cannot bring it into lock without there being a phase error between the oscillator and the burst.

The oscillator is provided with an emitter-follower output stage (28) to isolate it and from this the output is fed to three things, the phase discriminator (24), the PAL switch (35), and a 90° phase shifter (36).

The phase of the burst swings at line frequency by $\pm 45^{\circ}$ about a mean phase of 180° relative to $B-Y$. The oscillator cannot follow this and is locked by the mean phase, which is 180° relative to $B-Y$. In the absence of any phase error, it locks in at 90° to this mean phase. The oscillator thus locks in phase with the $(R-Y)$ signal component but whether it is the plus or minus phase depends on the design of the whole a.p.c. loop. A simple phase shifter (36) produces a 90° phase change and so a continuous oscillation in phase with the $B-Y$ component and this is correct for controlling the $B-Y$ synchronous demodulator.

The $R-Y$ demodulator requires an oscillation which reverses its phase in successive lines to keep it in step with the phase alternation of the $(R-Y)$ signal. This is carried out by the PAL switch (35). This is shown in essence in Fig. 4. The output of the oscillator emitter-follower is applied to a transformer T_{1}. Two secondary windings 3 and 4 are connected to a pair of diodes which are initially biased to be non-conductive. The diodes are rendered alternatively conductive by being connected to the two collectors of a bistable (34) in Fig. 3. During one line D_{1} is turned on and the voltage from winding 3 drives a current through it and through the primary of T_{2}. During the next line D_{1} is turned off and D_{2} on. It is now winding 4 which is operative in driving current through D_{2} and the primary of T_{2} and this current is in the opposite phase to that during the previous line. The output of T_{2} is thus an oscillation which reverses in phase on successive lines.

The bistable is triggered to change state every line by a pulse from the line flyback (33). Something more than this is needed, however, for as so far described it is a matter of chance whether the ouput of T_{2} is in step with the phase alternations of $R-Y$ or whether it is 180° out of step.

This is highly important, for if it is 180° out of step negative, or rather complementary, colours will result.

The whole purpose of the swinging colour burst is to enable this to be sorted out rather simply. Although this does not affect the crystal oscillator, which becomes locked to the mean phase of the burst, the discriminator (24) output contains a component of half-line frequency which also appears in the output of the d.c. amplifier (25). This is applied to a circuit tuned to 7.8 kHz (29) where it produces a fairly large amplitude sinewave of this frequency. This is applied through an emitter follower (30) and a diode (32) to the bistable. If it happens that this is running in the correct phase it does nothing. If it happens that the bistable is triggering in the wrong phase, the $7.8-\mathrm{kHz}$ signal suppresses one of the pulses from the line timebase and prevents it from triggering the bistable. This then stays in the same state for two lines and so comes into proper phase. This so-called identity circuit functions at most once every time the set is switched on in normal operation, but it is essential.

The $7.8-\mathrm{kHz}$ signal thus generated is also used for the colour killer. It is rectified and smoothed (31) to produce a d.c. bias which is applied to an amplifier (4) in the chrominance channel. This is otherwise biased beyond cut-off.

When a monochrome signal is received there is no colour burst. Therefore, no $7.8-\mathrm{kHz}$ signal is generated and the chrominance channel is blocked so that noise or interference cannot be passed to the tube grids through the chrominance channel. With a colour signal, the swinging burst produces the $7.8-\mathrm{kHz}$ signal which renders the chroma channel operative.

Reverting to Fig. 4, the oscillator is connected across winding 1 of T_{1}. Windings 1 and 2 form an auto-transformer and the voltage across the two is twice that of the oscillator. This is applied to the $C R$ circuit and ideally when the reactance of C is equal to the resistance of R the voltage across the primary of T_{3} equals that supplied by the oscillator but is 90° to it in phase.

The outputs of T_{2} and T_{3} are applied through resistors to the two diode bridges, the precise action of which is treated more fully in the Appendix. When the diodes are non-conductive the inputs are isolated from the outputs. This is during the negative half-cycles of the oscillator inputs. During the positive half-cycles all four diodes of a bridge conduct and the input is joined to the output through the forward resistances of the diodes.

In Fig. 3, the outputs of the demodulators (8) and (9) are applied to low-pass filters (10) and (11) and thence to the first video amplifiers (12) and (13). These stages feed two output stages (16) and (20), which are valve stages, and which feed the grids of the red and blue guns.
It is necessary to produce a $G-Y$ signal from the $R-Y$ and $B-Y$ signals. This is done in a matrix circuit (14). Suitable fractions of the $R-Y$ and $B-Y$ signals developed at the emitters of (12) and (13) are added together. Basically, we add $0.51(R-Y)$ to $0.186(B-Y)$, and this gives us $Y-G$. To reverse the phase the signal is applied to the emitter instead of the base of the input green channel amplifier (15) and thence to the output stage (18).
All three output stages are capacitively coupled to the tube grids and each is provided with a black-level clamp (17), (19) and (21) driven by a pulse from the line timebase.

The theoretical proportions of the $R-Y$ and $B-Y$ signals quoted above to produce $G-Y$ are not used in practice. Also the gains of the three amplifiers are not required to be identical. There are various factors which account for this. In the transmission the amplitudes of the two chroma signals are deliberately made unequal in the ratio $0.877 / 0.493=1.785$ red to blue. Instead of adding $0.51 / 0.186=2.74$ times as much $R-Y$ as $B-Y$ to get $G-Y$, we have to add $2.75 / 1.785=1.54$ times as much only. In addition to this the $B-Y$ amplifier gain must be 2.74 times that of the $R-Y$ to bring the outputs to the proper ratio.

In practice, the gain of the $R-Y$ amplifier is fixed, and adjustments for gain are provided in the $G-Y$ and $B-Y$ amplifiers. In addition, there is a matrix adjustment to control the $G-Y$ input. These adjustments enable correction to be made for variations of components and for the unequal sensitivities of the three guns of the colour tube.

When considering what happens, and especially when trying to diagnose the cause of some fault, there is one trap which must be avoided. This is the tendency to think that the $R-Y$ and $B-Y$ outputs of the synchronous detectors affect only the red and blue guns respectively. This is true after the first stages of the chrominance amplifiers. In these stages, however, the matrixing takes place and in them and before them the R Y and $B-Y$ signals each affect the inputs to all the guns.

The diagram of Fig. 5 is helpful in understanding what goes on. It illustrates the waveforms during one scanning line when the picture is a set of vertical colour bars in the order left to right, white, yellow, cyan (which is a kind of pale blue) green, magenta, red and black. The $Y, R-Y, G-Y$ and $B-Y$ waveforms at video frequency are shown. It is particularly to be noticed that some of the colour-difference waveforms become negative.

The envelopes of the $R-Y$ and $B-Y$ signals modulated

Fig. 5 Theoretical waveforms during one scanning line for a set of vertical colour bars in the order white, yellow, cyan, green, magenta, red and black.
on their sub-carriers and reduced in amplitude to the proper proportions are also shown; these are the waveforms which are designated V and U earlier in this article.

Their addition to form the composite chrominance signal must be performed vectorially, because the carriers are in phase quadrature. Their combination is shown in the diagram.

In the receiver the top waveform Y, but reversed in phase to be $-Y$, is the signal applied to the c.r.t. cathodes from the luminance amplifier. The next three waveforms are the ones applied to the grids, but modified somewhat in amplitude to take into account the differing sensitivities of the three guns and phosphers.

The waveforms $R-Y$ and $B-Y$ also exist at the outputs of the synchonous demodulators and at the bases and emitters of the first-stage $R-Y$ and $B-Y$ chrominance amplifiers, while $G-Y$ inverted will appear at the emitter of the $G-Y$ stage.

If delay-line PAL is used the V and U waveforms appear at the inputs to the $R-Y$ and $B-Y$ demodulators but, with simple PAL, it is the composite waveform at the bottom which is applied to both.

It may not be obvious at first how a negative colour-difference signal is conveyed in the modulation, for as they are drawn the modulation envelopes show no distinction between positive and negative video signals. There is no difference in the envelopes, but for a negative video signal the phase of the sub-carrier is at 180° to that for a positive signal.

Consider the $B-Y$ signal on green and magenta. On green the video amplitude is -0.59 while on magenta it is +0.59 . The modulated envelopes are identical but the sub-carrier phase is the normal one quoted earlier for magenta, but is 180° out of phase with this for green.

Taking these two colours again, for green, $R-Y=-0.59$ and $Y=0.59$, so $R=0, B-Y=-0.59$ and so $B=0$. Matrixing produces $G-Y=0.41$, giving $G=1$. For magenta, $R-Y=0.59$ and $Y=0.41$, so $R=0.18 ; B-Y=$ 0.59 , so $B=0.18$. Matrixing gives $G-Y=-0.41$ and so $G=0$.

The point to notice particularly is that when a colour contains no component of red, green or blue, the fact that that particular gun is inoperative does not mean that there must be no signal on its grid. There is always a Y signal on the cathode and there must be an equal signal on the grid to cancel it. For magenta, for instance, which has no green component, there must be a $G-Y$ output to cancel the effect of the luminance signal on the cathode.

APPENDIX

The Colour Signal

The modulation of the vision carrier is

$$
\begin{align*}
M=Y+C= & Y+0.493(B-Y) \sin \omega t \\
& \pm 0.877(R-Y) \cos \omega t \tag{1}\\
= & Y+U \sin \omega t \pm V \cos \omega t \tag{2}\\
= & Y+\sqrt{ }\left(U^{2}+V^{2}\right) \sin \left(\omega t \pm \tan ^{-1} \frac{V}{U}\right) \tag{3}\\
= & Y+A \sin (\omega t \pm \alpha)
\end{align*}
$$

The luminance signal Y and the colour-difference signals U and V are simple combinations of the gamma-corrected colour signals R, G and B from the camera tubes.

The combination of the two colour-difference signals U and V modulated on carriers in quadrature with suppressed carriers forms a signal

$$
C=A \sin (\omega t \pm \alpha)
$$

in which $A=\sqrt{U^{2}+V^{2}}$ represents amplitude and $\alpha=\tan ^{-1}$ (V / U) represents phase. Although each carrier is amplitude modulated the combination of the two is a frequency which is both amplitude and phase modulated. The amplitude A represents the saturation of the final reproduced colour and the phase α represents the hue of the colour.

Demodulators

In a diode bridge demodulator an oscillation $V \sin (\omega t+\phi)$ is generated locally and is applied through series resistors across one diagonal of a bridge of four diodes, as shown in Fig. 4. The diodes all conduct together whenever $\sin (\omega t+\phi)$ is positive, and they are all non-conductive whenever $\sin (\omega t+\phi)$ is negative. The diodes are thus conductive from $\omega t=-\phi$ to $\omega t=\pi-\phi$.

On the other diagonal of the bridge the chrominance signal is applied on one side and the output is taken from the other. For generality, we write this signal as $a \sin (\omega t+\theta)$. Then the smoothed output is the average value of this expression over the conductive periods of the diodes; that is,

$$
\begin{aligned}
\text { Output } & =\frac{a}{\pi} \int_{-\phi}^{\pi-\phi} \sin (\omega t+\theta) d \omega t \\
& =\frac{a}{\pi}[-\cos (\omega t+\theta)]_{-\phi}^{\pi-\phi}=\frac{2 a}{\pi} \cos (\theta-\phi)
\end{aligned}
$$

Simple PAL

For simple PAL, $a=A$ and $\theta= \pm \alpha$ and so

$$
\text { Output }=\frac{2 A}{\pi} \cos (\pm \alpha-\phi)
$$

$$
\text { If } \phi=0, \quad \text { Output }=\frac{2 U}{\pi} \propto B-Y
$$

$$
\text { If } \begin{aligned}
\phi= \pm \frac{\pi}{2} \text { Output } & =\frac{2 A}{\pi} \cos \left(\pm \alpha \mp \frac{\pi}{2}\right) \\
& =\frac{2 A}{\pi} \sin \alpha=\frac{2 V}{\pi} \propto R-Y
\end{aligned}
$$

If there is an error ϵ in the phase of the local oscillator, then for the $B-Y$ output, $\phi=\epsilon$ and

$$
\begin{aligned}
\text { Output } & =\frac{2 A}{\pi} \cos (\pm \alpha-\epsilon) \\
& =\frac{2}{\pi}(U \cos \epsilon \mp V \sin \epsilon)
\end{aligned}
$$

The $B-Y$ signal (U) is thus reduced slightly in amplitude, but has added to and subtracted from it in successive lines a small amount of the $R-Y$ signal (V).
For the $R-Y$ output, $\phi= \pm \frac{\pi}{2}+\epsilon$ and

$$
\begin{aligned}
\text { Output } & =\frac{2 A}{\pi} \cos \left(\pm \alpha \mp \frac{\pi}{2}-\epsilon\right) \\
& =\frac{2}{\pi}(V \cos \epsilon \mp U \sin \epsilon)
\end{aligned}
$$

Thus the $R-Y$ output is reduced slightly in amplitude and has added to it and subtracted from it in successive lines a small amount of the $B-Y$ signal.

If pairs of lines are viewed from a sufficient distance for them to merge the spurious components average to zero, and only a small error of saturation exists.

Delay Line PAL

In this system, the signal $A \sin (\omega t \pm \alpha)$ is added to and subtracted from one which has been delayed by a whole line and which is, therefore, $A \sin (\omega t \mp \alpha)$.

Addition gives

$$
A[\sin (\omega t \pm \alpha)+\sin (\omega t \mp \alpha)]=2 A \cos \alpha \sin \omega t
$$

Subtraction gives

$$
A[\sin (\omega t \pm \alpha)-\sin (\omega t \mp \alpha)]= \pm 2 A \sin \alpha \cos \omega t
$$

These reduce to $2 U \sin \omega t$ for addition and $\pm 2 V \cos \omega t$ for subtraction and complete separation of the $R-Y$ and $B-Y$ signals is effected prior to demodulation. The signals are applied to separate demodulators as before, but as they are separate a phase error in the local signal can only produce an effect on saturation and not on hue. Successive lines are reproduced with the same colour.

Personalities

G. G. Gourict, F.I.E.E., for the past four years head of the B.B.C's Research Department, has become chief engineer, research and development, and will coordinate the work of the Research and Designs Departments. The greater part of Mr. Gouriet's career with the B.B.C., which he joined in 1937, has been spent in the Research Department. In 1958 he left the Corporation, where he was then head of the television group in the Research Department, to become technical director of Wayne Kerr Laboratories L.td. He rejoined the B.B.C. in 1964. Mr. Gouriet is succeeded as head of the Research Department by R. D. A. Maurice, O.B.E., Dr.Ing., Ing.E.S.E., F.I.E.E., who has been head of the Designs Department since March last year. Dr. Maurice joined the B.B.C. Research Department in 1939 and after some years in the receiver and measurements section he transferred to the television group of which he became head in 1958 and assistant head of the Department in 1961.
K. O. Batsford, B.Sc., Ph.D., appointed head of the Materials Division of Standard Telecommunication Laboratories, Harlow, joined the organization in 1954 after obtaining a Ph.D. in surface chemistry at Queen Mary College, London University. Dr. Batsford was for several years concerned with X-ray crystallography, particularly in relation to the effects of crystal defects upon the performance of semiconductor devices. Two years ago he was made responsible for the physics and materials department. He now assumes responsibility also for the departments of chemistry of materials, and of ceramics and dielectrics.

John M. Spiers, B.A., recently appointed to the board of Multitone Electric Co. Lid. as commercial director will continue to be responsible for the Communications Division which he has managed for the past two-and-a-half years. He graduated at Gonville and Caius, Cambridge, and prior to joining Multitone Electric, was with Mullard Lid. and International Computers and Tabulators.
E. B. Stuttard, M.A., F.I.E.E., until recently technical manager of the Data Systems Group of S.T.C., has been appointed managing director of Racal-Milgo Lid., recently formed as an equal partnership between Racal Electronics and the Milgo Corporation of Miami, U.S.A. The company will man ufacture and market high-speed data modems (modulator-demodulators) and other

E. B. Stuttard
data transmission equipment. Mr. Stuttard, who read physics at Jesus College, Cambridge, spent three years in the Navy before going into industry. He was initially with Smith's Industries, then Hawker Siddeley Dynamics, and for the past four years has been technical manager of the Data Systems Group of S.T.C.
A. Lockett, who joined Aircraft Supplies Ltd. last year as deputy chief engineer, has been appointed chief designer. This Bournemouthbased company now manufactures the Midas aircraft accident data recorder. Mr. Lockett, who graduated from Manchester University with an honours degree in electrical engineering, spent eight years with the British Aircraft Corp. at Filton.
J. Maurice has retired as managing director of Lustraphone Lid. but remains on the board in a consultative capacity. The new managing director is Ronald L. Gaisher. George R. Pontzen, technical manager, has also joined the board.
J. R. Brinkley, F.I.E.R.E., an executive director of S.T.C., has been appointed adviser to the International Telephone and Telegraph Corp. (the American parent company) on the worldwide development of mobile radio. Mr. Brinkley, who retains his technical and marketing responsibilities for S.T.C. mobile radiotelephones, joined the company in April 1967. Prior to this he had been managing director of Pye Telecommunications Ltd. since 1956.
W. S. Metcalf, B.Sc.(Eng.), M.A., M.I.E.E., has joined Cathodeon Crystals Lid., a member of the Pye of Cambridge Group, as technical manager. Mr. Metcalf, who is 31, obtained his B.Sc. at Queen Mary's College, London, and his M.A. at Gonville and Caius College, Cambridge. He was until recently with the Cavendish Laboratories, Cambridge University, as technical officer responsible for providing specialized electronic design services to the various research groups. Mr. Metcalf has recendy returned from the United States where he spent nearly a year with the HewlettPackard Company in California, working on advanced measurements, integrated circuitry and studying new management techniques.
R. T. A. Standford, B.Sc F.I.E.E., has been appointed bead of Transmission Systems Division at Standard Telecommunications Laboratories, Harlow. He was leader of the Communications Department at the Plessey Company's Electronics Research Laboratory, Havant, Hampshire. Before that he obtained considerable experience in defence oriented communications and radar problems at the SHAPE Air Defence Technical Centre in Holland and with the Mullard Research Laboratories at Salfords.
D. R. Morse, F.I.E.E., has been appointed by the B.B.C. chief engineer, capital projects, and will co-ordinate the work of the Building Department and the two Planning and Installation Departments (Studios and Transmitters). Since November 1965, Mr. Morse has been head of Studio Planning and Installation Department. He joined the B.B.C. in 1947 and has latterly been head of the film unit in the Planning and Installation Department.

Robert L. Slattery, B.Sc., M.Sc., has joined Advance Electronics of Hainault, Essex, as group quality controller. He will be responsible for all aspects of quality and reliability in the Advance Group of Companies. He started his career in 1960 as a graduate apprentice with the Marconi Company after leaving Manchester University where he read electrical engineering for a B.Sc. Tech. degree. Later he obtained an M.Sc. in quality and reliability engineering at Birmingham University. He is 29 .

Donald Woods, M.I.E.E., has been appointed as the first incumbent of the Wayne Kerr Chair of Measurement Science at the University of Surrey. His first main tasks will be the setting up of research facilities for postgraduate studies, and the planning and teaching of measurement science with the emphasis on radio-frequency measurements and standards. The endowment by the Wayne Kerr Company of the Chair, which is in the Department of Chemical Physics headed by Professor V. S. Griffiths, was announced in April 1967. This Department forms part of the Faculty of Biological and Chemical Sciences. Mr. Woods, who is 61 , received his engineering training with Marconi's in Chelmsford. In 1935 he joined

D. Woods
the Aeronautical Inspection Directorate's Electrical Standards Laboratory where he first became interested in precision radio-frequency measurements. After war service he returned to the A.I.D. Laboratories, Harefield, as officer-in-charge of the radio and electricity section. Since 1956 he has been responsible at the Ministry of Aviation (now the Ministry of Technology) for the administration of basic research in telecommunications.

For the first time a former R.A.F. Boy-Entrant Wireless Operator has reached Air Rank. He is Air Commodore S.M. Davidson, C.B.E., who recently became Director of Signals (Air) at the Ministry of Defence. He joined as a Boy Entrant in 1939 and trained at No. 1 Electrical and Wireless School at Cranwell. He was commissioned in the General Duties Branch in 1942 and completed a signal leaders' course at No. 14 Radio School in 1944. In 1950 he transferred to the Technical (Signals) Branch. After work in the Air Ministry on research and development projects involving electronic equipment for current and future fighter transport and maritime aircraft, Air Commodore Davidson, who is 46 , attended the Joint Services Staff College. In 1963, he was assistant commandant at R.A.F. Locking, Somerset, and later was chairman of the Joint Signals Board in Aden and Command Electrical Engineer in the Near East.

Operational Amplifiers

2. Compensation techniques and more device characteristics

by G. B. Clayton,* B.Sc., A.Inst.P.

Last month various characteristics of integ-rated-circuit operational amplifiers were explained in turn. This second article starts with a discussion of methods of frequency compensation applicable to these amplifiers and concludes with further information on device characteristics.

Frequency compensation of an op. amp. consists of modifying the amplifier's open-loop frequency response in such a way that a desired closed-loop response is stable; the modification ensures that the criterion for stability (last month) is satisfied. The process is generally effected by the connection of compensating networks to points inside the i.c. made accessible by the manufacturer's provision of external connections. A particular amplifier can usually be compensated in a number of different ways; the method adopted is normally the one which will optimise other aspects of the amplifier performance which are affected by frequency compensation and which are of importance in the particular application. Slewing rate (see later) and noise performance both depend on the placing and values of the compensating networks. Compensation methods advocated by different manufacturers for their amplifiers differ in detail because of circuit differences, but the general principles involved in frequency compensation are the same for all amplifiers, and once the techniques are understood stability problems should not present too serious a difficulty.

Simple lag compensation. The simplest way of effecting frequency compensation is to shunt some signal point in the circuit dwith a relatively large capacitor. If the attenuation introduced by this capacitor is made to start at a low enough frequency it will ensure that the closed-loop response and modified open-loop response close at a rate of 6 dB per octave and the closed-loop response will be stable. The attenuation introduced by a single capacitor is readily evaluated from the equivalent circuit (Fig. 14) where R_{i} represents the effective internal resistance at the point in the circuit to which the capacitor is connected. The circuit has a first order response with break frequency $\omega_{c}=1 /\left(C R_{i}\right)$. Fig. 14 shows the method applied to an amplifier having an openloop response similar to the amplifier

[^4]

Fig. 14. Simple lag compensation.

Fig. 15. Lag compensation for maximum bandwidth.
considered in Fig. 13 last month. The intersection of the modified open-loop response and the closed-loop response is arranged to take place at the first break frequency of the uncompensated open-loop response. The required value of the compensating capacitor may be calculated by using eq. (5) from last month's article. Thus

$$
\begin{equation*}
\frac{1}{C R_{i}}=\omega_{c}=\frac{\omega_{01}}{1+\beta A_{V O L}} \tag{6}
\end{equation*}
$$

The equation gives the minimum value of C required to compensate for this particular closed-loop gain. For circuits having greater feedback and smaller closed-loop gains larger values of C would, of course, be required.
Lag compensation with a single capacitor is suitable for closed-loop applications not requiring wide bandwidth; an early roll-off in high frequency gain reduces broad band noise. Use of a compensating capacitor of magnitude greater than that given by eq. (6) may be advantageous in low frequency applications. It will make the circuit less susceptible to instability caused by capacitive loading or by stray capacitance in the feedback circuit. In applications requiring wider closed-loop bandwidths a method of frequency compensation which utilises part of the amplifier natural roll-off to obtain the necessary attenuation of loop gain can be used.

Compensation for maximum bandwidth with lag network. In this method of frequency compensation a series combination of a resistor R and a capacitor C is used instead of a single compensating capacitor (Fig. 15). With $R \ll R_{i}$ the network starts to attenuate with a break frequency $\omega_{1}=1 / C R_{1}$ at a rate approaching 6 dB per octave and with a phase shift approaching 90°. With increasing frequency the rate of attenuation and the phase shift start to decrease. The network breaks out at a frequency $\omega_{2}=1 / C R$ when the attenuation approaches its maximum value R / R_{i} and the phase shift returns to zero. The break out frequency ω_{2} is made to coincide with the first break frequency in the amplifier natural roll-off and the resistor R is chosen so that the attenuation R / R_{i} enables the amplifier natural roll-off to reduce the loop gain below unity before the second amplifier break frequency. Referring to Fig. 15,

Deccu solid-stute amplifiers

Ahigh-guin wide-band amplifier Up to 400MHI for only £100 Ahigh-gain wide-band amplifier Up to 400MHI for only £100 Ahigh-gain wide-band amplifier Up to 400MHI for only £100 Ahigh-gain wide-band amplifier Up to 400MHI for only £100

Frequency in MHz

- Frequency range $10-400 \mathrm{MHz}$
- Gain greater than 30 dB
- P.N.P. Epitaxial Planar Transistors
- Robust and Rugged

Or if your need is narrow-band I.F., why not ask for details of the Decca range of low-noise pre-amplifiers backed up by an extensive range of main amplifiers? Over 20 different types kept in stock.

Decca Radar

For full details contact -
Decca Radar Limited, Instrument Division, Lyon Road, Walton-on-Thames, Surrey.
Telephone: Walton-on-Thames 2885 I (Ext. 145)

AS AN EXTENSION TO THE RANGE
The McMurdo Red Range of Connectors now has additional features for greater versatility. Now you can obtain moulded in D.A.P. all sizes of the barrier polarised range plus 16,24 and 32 ways with Dowel Polarisation. For further information write or phone to our Technical Sales Department.

the mcmurdo instrument co. LTd., RODNEY ROAD, FRATTON, PORTSMOUTH. Tel : PORTSMOUTH 35361 - Telex 86112

Fig. 16. Slewing rate: illustration of waveform distortion resulting from rate limiting in an MCI430P i.c. amplifier. Lower trace: input waveform; upper trace: output waveform. (Vertical scale: $2 \mathrm{~V} /$ division. Horizontal scale $5 \mu \mathrm{~s} /$ division).

Fig. 17. (above) Test circuit for obtaining transient response. (below) Response of MCI430P amplifier obtained with the test circuit. (Vertical scale: 0.5 V/division for upper pair of traces, $2 \mathrm{~V} /$ division for lower pair. Horizontal scale $2 \mu s(d i v i s i o n)$.

Fig. 18. Observation of error voltage as a more sensitive indication of rate limiting, using MCi430P amplifier in Fig. 17 test circuit. Upper pair of traces: input and output waveforms. Lower trace : error voltage at amplifier input
the design equation for R (is R / R) in $\mathrm{dB}=\left(\beta_{V} A_{V}\right)$ in $\mathrm{dB}-(X)$ in dB . Once the necessary value of R has been calculated the magnitude of the required compensating capacitor is then obtained from $\omega_{0_{1}}=\mathrm{I} / C R$. These values give maximum closed-loop bandwidth with possibly some slight amount of peaking. If maximum bandwidth is not required additional stability margin can be obtained by reducing. R and increasing C.

Lead compensation. Some i.c. op. amps are provided with compensating points whereby a small capacitor connected between them produces a leading phase shift. This moves the second break frequency in the amplifier open-loop response to a higher frequency and enables larger closed-loop bandwidths to be obtained.

Combinations of lag and lead compensation can often be used to advantage, but with wide bandwidths circuit impedance levels must always be kept low to avoid undesirable effects of stray capacitance. It is always advisable to consult the manufacturer's data sheet on an amplifier before designing frequency compensation networks; these sheets normally include a considerable amount of information on frequency compensation that is relevant to the particular type of amplifier.

Transient response, slewing rate and full output frequency. Differences exist between the large-signal and small-signal response characteristics of operational amplifiers because of dynamic non-linearities or transient saturation that can occur with large signals. Amplifiers do not generally respond to large-signal changes as fast as their small-signal bandwidth characteristics predict, for circuit and transistor capacitances can be charged only as fast as their driving circuits allow. The effect is usually specified by the slewing rate of the amplifier, expressed in volts per microsecond and defined as the maximum rate of change of output voltage that the amplifier can give for a large step change. This inability of an amplifier to 'slew' faster than a limiting rate can lead to distortion of sinusoidal signals with a frequency in the pass band of the amplifier, even though their amplitude is below the maximum rated output voltage of the amplifier. The type of waveform distortion produced is illustrated in Fig. i6. The lower trace shows the input waveform and the upper trace the output waveform of an amplifier connected to give unity closedloop gain. The small signal bandwidth of this amplifier is 150 kHz , but the output shows definite rate limiting and the frequency is only 25 kHz .

Manufacturers sometimes state a value of the maximum frequency for full undistorted output of their amplifiers, but care should always be taken when consulting data sheets to determine under exactly what operating conditions slewing rate and full output frequency are specified. The two quantities are closely related and both depend on the magnitude and position of the networks used to frequency compensate the amplifier and also on the particular feedback circuit in which the amplifier is used. Frequency compensating networks con-
nected to a point in the circuit nearest to the input give the fastest slewing rates, but unfortunately here they have a minimum effect in reducing amplifier noise. A combination of compensating networks at input and output is usually found to give a reasonable compromise between fast slewing rate and low noise.

The transient response of an amplifier under particular circuit conditions can be investigated using a test circuit of the type shown in Fig. 17 (top). The amplifier is connected as an inverter and is driven by a pulse or square-wave generator having adjustable rise and fall times. In the test described here the amplifier (Motorola Type MCi430P) is used with ik Ω inpur and feedback resistors giving unity closed loop gain; frequency compensation (not shown) is applied to ensure closed loop stability. A double beam c.r.o. having much greater bandwidth than the amplifier under test is used to display input and output waveforms.
The following test procedure is adopted. Starting with the smallest signal that can be conveniently viewed on the c.r.o., the starting points of the signals applied to the two channels are superimposed with channel I inverted by the c.r.o. controls. The rise time of the input pulse is progressively decreased and the fastest rise time at which the two traces coincide is determined (upper two traces). This rise time is a measure of the closed-loop small-signal transient response of the amplifier. The oscillogram indicates a rise time of approximately 2 microseconds. The closed-loop smallsignal bandwidth of this amplifier is 150 kHz . Rise time and bandwidth are related by the approximate relationship $f=1 /\left(0.3 \mathrm{~T}_{r}\right)$. The amplitude of the input signal is now progressively increased, the sensitivity of the oscilloscope channels being proportionately decreased. The two traces progressively diverge because of rate limiting. The slope of the channel 2 trace gives the slewing rate of the amplifier for that amplitude of output signal. The oscillogram (lower trace in Fig. 17) indicates a slewing rate of approximately $0.5 \mathrm{~V} / \mu \mathrm{s}$.

The same test circuit shown in Fig. 17 may be used to measure the maximum frequency for full output for the amplifier, the pulse generator being replaced by a sinusoidal signal generator. The signal amplitude is set to the rated output maximum of the amplifier at some low frequency; keeping the amplitude constant, the frequency is increased until distortion is evident. It is difficult to detect the onset of distortion if the output signal of the amplifier is viewed. A more sensitive measure of the onset of distortion is given by observation of the error signal at the amplifier input (point A). In Fig. 18 the two upper traces show input and output waveforms with little evidence of distortion; the lower trace shows the error voltage at the amplifier input with clear evidence of distortion. A value of 22 kHz is obtained for the maximum frequency for full output for the amplifier in this particular circuit.

The maximum frequency for full output without distortion and the slewing rate both measured at unity closed-loop gain
are for many amplifiers related by the equation
slewing rate, $S=\frac{\mathrm{d} e_{o}}{\mathrm{~d} t_{\max }}=2 \pi f_{p} E_{o}$
The equation is readily derived by differentiation of $e_{\theta}=E_{\theta} \sin \omega t$. The results of the measurements described, $S=0.5 \mathrm{~V} / \mu \mathrm{s}$ and $f=22 \mathrm{kHz}$, give an approximate agreement with this relationship.

At higher closed-loop gains with less loop gain output distortion increases and the maximum frequency for full output is generally less than when measured at unity gain.

Part I Appendices

The following three diagrams were omitted from the appendices in Part I of this series (February issue, p. 58)

Appendix I Inverting amplifier

Appendix 2 Non-inverting amplifier

Appendix 3 First-order systems

Next month's article will be devoted to the applications of operational amplifiers. The availability of these devices makes possible a new approach to electronics design-the selection of a suitable op. amp. and the connection of a few discrete components to it-which offers considerable simplification since it frees the engineer from amplifier design problems.

Resilient Variable Resistor

The carbon-pile regulator brought up to date

A new mechanically variable resistance element of great versatility was on show at the recent Inventions and New Products Exhibition in London. In its simplest form, the "resilient variable resistor" is a two-terminal device whose resistance falls as pressure is applied. When the pressure is released, the device reverts to its original shape and resistance, hence the description "resilient". The r.v.r. is made from a mass of porous elastic material such as foam rubber, foamed polyurethane or foamed polystyrene. The essential criteria are that the material should be resilient and that is should have an open-cell structure. Conductive particles, such as powdered graphite, are introduced into the cells or added to the raw-material "mix" before foaming. Compressing the material increases the number of contacts between particles, and so lowers the resistance. The general form of variation is shown in Fig. 1.

The ratio of maximum to minimum resistance is more than ten when a uniform resitive body is used, but can be greatly increased by introducing nonlinearities. A possible form of wide-range variable resistor is shown in Fig. 2. A cavity is cut out of the main resistive body and partially filled with low resistance material. As pressure is applied, the initial resistance is high but eventually the upper contact plate touches the low-resistance body and the resistance falls abruptly. Resistance ratios in the region of 100,000 have been achieved using relatively crude structures. By shaping the various regions of the resistive mass the law may be changed.

It is claimed that laws which lend themselves well to manual speed control of small electric motors are easily obtained. This was borne out by a demonstration in which a model train was controlled by four r.v.rs in a d.c. bridge circuit (Fig. 3). This provides forward and reverse control. If desired, standby current can be reduced to zero by means of springs which lift one contact plate clear of its associated body of resistive foam when all pressure is taken off. Similarly, it is easy to arrange for the resistive mass to be short circuited by a pair of contacts which make at some desired high pressure. More com-

Fig. 1. Manner in which resistance varies with pressure.

Fig. 2. Possible wide-range r.v.r.

Fig. 3. Reversing motor control circuit. Opposite arms vary together.
plex tasks of control can be catered for by use of a joystick type of lever.

The British patent specification 1,059,186 (15th Feb., 1957) makes proposals for a number of complex multi-electrode devices which act as potentiometers, movement sensors, pressure transducers etc. The possible applications of the r.v.r. clearly fall into "power control" and "transducer" categories. In its present form the material, so far experimental, could be put to practical use at once for low-voltage power control applications. Before serious use of the r.v.r. as a sensor can be contemplated, information about its long-term stability, repeatability, and behaviour at different temperatures will be needed. The inventor, J. H. A. Lewis of 14 Ashdown Close, Maidstone, Kent, des eloped the r.v.r. in his spare time.

More on Demonstrating Rectifier Action in Slow Motion

High accuracy and permanent records can be obtained by an analogue computer method

by J. B. Swainston*

It is probably not generally appreciated how eminently suited the analogue computer is for the accurate, slow-motion demonstration of the behaviour of electronic circuitry such as the rectifier circuit discussed by Mr. T. Palmer in the February 1968 Wireless World \dagger. Whilst the method outlined in the article provides a valuable, easily understood visual aid with a minimum of equipment, an analogue computer, together with an X-Y plotter, will yield more accurate results and permanent records of the circuit response.

In using the analogue computer we may take, advantage of two of its most important features. The first is the ability to incorporate actual circuit hardware into the analogue program; the second is the facility for time scaling to reduce the frequencies of the phenomena being observed to a range which can be handled by the recording equipment to be used. This time-scaling is, in fact, implemented in hardware terms in Mr. Palmer's method through the use of a low frequency oscillator and a long time-constant filter following the rectifier ($20-30 \mathrm{secs}$). In this account of the analogue computer approach a simulation of this low frequency circuit will be described.
Fig. 1 shows the simple rectifier circuit which is to be stimulated.
Equations describing the behaviour of the circuit are

$$
\begin{gathered}
\mathrm{I}_{2}=\mathrm{I}_{1}-\mathrm{I}_{3} \\
\frac{\mathrm{de}}{\mathrm{dt}}=\frac{1}{\mathrm{C}} \cdot \mathrm{I}_{2} \\
\mathrm{I}_{3}=\frac{\mathrm{e}}{\mathrm{R}}
\end{gathered}
$$

$\mathrm{I}_{1}=\mathrm{f}\left(\mathrm{E}_{1}-\mathrm{e}\right) \quad$ (diode characteristic)
For the purposes of this exercise the following parameter values were chosen

$$
\begin{aligned}
& \mathrm{X}=1.6 \text { volts } \\
& (1)=0.7854 \text { radians } / \mathrm{sec}(7.5 \text { cycles } / \mathrm{min}) \\
& \mathrm{R}=12.5 \mathrm{k} \Omega \\
& \mathrm{C}=2000 \mu \mathrm{~F}
\end{aligned}
$$

Fig. 2 shows the analogue computer block diagram for the simulation of this rectifier circuit in real time. A noteworthy feature of this analogue circuit is the incorporation of the rectifier in order to provide its characteristic curve. By applying across this rectifier the actual voltage which is applied in the real circuit (the cathode is at virtual earth) the same current will flow through it. Since

[^5]

Fig. 1. Simple rectifier circuit
Fig. 2. Simulation of rectifier circuit
this current must also pass through the feedback resistor the output voltage of this amplifier is equal to the product of this resistance and the rectifier current. It is obviously a simple matter to select the appropriate value for the feedback resistor to yield the required output scaling on the amplifier.
An initial condition is set on the e integrator corresponding to the "steady-state" voltage. This value is easily determined by allowing the simulation to run until the startup transients have died away and noting the value of e at that part of the cycle at which the simulation is to be started during the demonstration.
Fig 3 shows the results obtained from this simulation. By using an X-Y recorder (or multi-channel strip recorder) we clearly demonstrate that the peak value of the rectifier current is reached before the peak value of e at that part of the cycle at which essentially exponential shapes of the current curves are obvious, something which is impossible to demonstrate using instantaneously reading meters. It is a simple matter for the student to check the current balance equation and he has a permanent record of the experimental results. Having grasped the basic principles of operation of

Fig. 3. Graphic results obtained from the simulated rectifier circuit
the circuit he can then experiment with different values of C and R simply by changing poteritiometer settings. The start-up behaviour could also be studied. It is a simple matter to extend this method to circuits containing two or four rectifiers and to circuits with higher order filters after the rectifier.

All this can be accomplished using a modest size computer (10 amplifiers or so) such as the desk-top transistorised models at present finding wide acceptanice in technical colleges and universities. Analogue computers used in this manner provide extensive facilities for the making of convincing visual aids.

"High-quality
 Electrostatic Headphones,"

Readers of the article by Dr. Wilson, published last December, may have wondered about the safety of the phones. If one of the d.c. isolating capacitors, shown in Fig. 4, were to short itself the wearer of the phones might suffer a lethal shock. The author recommends therefore that resistors-as large as tolerable-be interposed between the output points at the amplifier and the leads. With lead capacitance in the region of $100 \mathrm{pF}, 15-\mathrm{k} \Omega$ resistors will result in -3 dB at 20 kHz . Then 25 mA maximum would be available at the phones to shock the wearer. Inserting the resistors nearer to the phones would allow a higher value to be used but the remainder of the leads would be potentially dangerous. Besides the $15-\mathrm{k} \Omega$ resistors it is recommended that reliable 750 V d.c. capacitors be used for the $0.01 \mu \mathrm{~F}$ isolating capacitors.

March Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

3rd. R.S.A.-"Educational and training technology" by Dr. R. C. G. Williams at 18.00 at John Adam St., W.C.2.

4th. I.E.E.-"Review of progress in mercantile marine radiocommunications" by C. S. Burnham and G. J. McDonald at 17.30 at Savoy PI., W.C.2.

Sth. I.E.R.E.-"The implications of educational technology" by R. A. Becker at 18.00 at 9 Bedford Sq., W.C.1.

Sth. S.E.R.T.-Annual colour television lecture by D. Thompson at 19.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.
5th. I.P.R.E.- "Modern computer circuitry" by R. W. Stanton at 19.30 at Mullard House, Torrington P1, w.c. 1 .

6th. I.E.R.E.-Symposium on "The possibilities of airborne detection of clear air turbulence" at 10.30 and 14.00 .

6th. IE.E.-"International collaboration in radio science" Appleton Lecture by Prof. W. J. G. Beynon at 17.30 at Savoy P1, W.C.2.

7th. R.T.S.-"New television detector" by A. S. MacLachlan at 19.00 at the I.T.A., 70 Brompton Rd., S.w. 3 .

10th. I.E.E.T.E.-"Are aircraft electrics too complicated?" by H. Zeffert at 18.00 at the I.E.E., Savoy Pl., W.C. 2.

11th. I.E.E. \& I.E.R.E.-"Nerve impulses" by Dr. A. Richens at 17.30 at St. Bartholomew's Hospital, E.C.1.
12th. I.E.E.-"Data communications" by J. H . Rhodes at 17.30 at Savoy PI., W.C.2.

12th. B.K.S.T.S.-"Pulse code modulation sound for TV" by C. J. Dalton at 19.30 at the Royal Overseas League, Park P1., St. James's St., S.W.1.
13th. I.E.R.E. \& I.E.E.-Discussion on "Applications of digital computer systems in medical biology" at 10.00 at Savoy PI., W.C.2.

18th. Audio Eng. Soc. (U.K.)-"Testing by tone bursts" by S . Kelly at 19.00 at the Northern Polytechnic, Holloway Rd., N. 7.

19th. R.S.A. Trueman Wood Lecture "Society and technology" by Sir Solly Zuckerman at 18.00 at John Adam St., W.C. 2.

20th. I.E.R.E. \& I.E.E.-"Computers and communications in the control of train movement" by Dr. D. E. N. Davies at 18.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C. 1.
20th. R.T.S.-"Automatic production tesuing of colour receivers" by F. J. Wixley at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

21st. I.E.E. \& I.E.R.E.-Colloquium on "Airborne and spaceborne computers" at 10.00 at Savoy Pl., w.C. 2 .

26th. B.K.S.T.S.-"Paul Voigt's contributions to audio" (various speakers) at 19.30 at the Royal Institution, 21 Albemarle St., W.1.

27th. R.T.S.-"Television and data display techniques in civil aviation" by J. O. Clark and L. E. Hardy at 19.00 at the I.T.A., 70 Brompton Rd., S.W. 3.

31st. I.E.E.-"Array thinning" by Dr. P. Matthews at 17.30 at Savoy Pl., W.C.2.

BASINGSTOKE

Sth. I.E.E.-"Electronics and the haven finding art" by W. T. Eastwood at 18.30 at the Technical College.

BATH

3rd. I.E.E. and I.E.R.E.-"Post Office Tower" by S. G. Young at 18.00 at the Technical College.

BELFAST

11th. I.E.E. \& I.E.R.E.-"Education in electronics and its problems" by Prof. G. D. Sims at the Ashby Inst., Queen's University, Suranmillis Rd.

BIRMINGHAM

13th. I.E.R.E.-"The state of the art of sound reproduction" by R. Fisher at 19.15 at the Dept. of Electronic \& Electrical Engineering, the University.
25th. R.T.S. \& I.P.P.S.-Symposium on "Electronic display systems" at the University.

BOURNEMOUTH

20th. I.E.R.E.-"Thyristor electronics" by R. C. Dancy at 19.00 at the College of Technology.

BRADFORD

12th. I.E.E.-Faraday Lecture "Microelectronics" by P. E. Trier at 19.00 at St. George's Hall.

BRIGHTON

25th. I.E.E.-"Integrated p.c.m. telephony bit by bit" by H. B. Law at 18.30 at the College of Technology, Moulsecoomb.

BRISTOL

13th. S.E.R.T.-"Switching logic circuits" by S. L. Hurst at 19.45 at the Royal Hotel.
26th. I.E.R.E. \& B.C.S.-"Machine intelligence" by Dr. R. M. Burstall at 19.30 at the University.

CAMBORNE

11th. I.E.E. \& I.E.R.E.-"Industrial applications of static logic" by G. Clarke at 19.00 at the College of Technology.

CAMBRIDGE

13th. I.E.E. \& I.E.R.E.-"Closed circuit television for Education" by W. G. Beacon at 20.00 at the University Engineering Labs, Trumpington St .

CARDIFF

21 st. R.T.S-"Lenses for television" by T. P. Schofield at 19.00 at Llandaff Technical College, Western Ave.

31st. I.E.E. \& I.E.R.E.-"Digital data transmission" by M. B. Williams at 18.00 at the University of Wales Inst. of Science \& Technology.

CARMARTHEN

19th. I.E.E.T.E.-"Lasers" by Dr. J. A. Jones at 19.30 at Pibwriwyd Rural Technical College.

CHELTENHAM

18th. I.E.E.T.E.-"Medical electronics" by D. H. Follett at 19.30 at the North Gloucester Technical College; The Park.

CHRISTCHURCH

Sth. I.E.E.-"Computer controlled telegraph message switching" by J. A. Clark and B. Ogilvy-Morris at 18.00 at the King's Arms Hotel.

COSHAM

24th. I.E.E. Grads.-"Studio techniques in radio" by D. G. M. Stripp at 18.30 at Highbury Technical College.

COVENTRY

6th. I.E.E. \& I.E.R.E.-"Pulse code modulation" by G. H. Bennett at 18.30 at the Lanchester College of Technology.

DERBY

Sth. I.E.E.T.E.-"Electronic variable speed drives" by C. J. Teece at 19.30 at the Demonstration Theatre, E.M.E.B. Show rooms, Irongate.

DUMFRIES

11th. I.E.E.-"Thyristor control" by W. F. Dean at 19.30 at the Kings Arms Hotel.

EDINBURGH

12th. I.E.R.E.-"Automatic control of electricity generation in a grid control area" by F. D. Boardman at 19.00 at the Napier College of Science \& Technology, Colinton Rd.

27th. I.E.E.-Faraday Lecture "Microelectronics" by P. E. Trier at 19.00 at Usher Hall.

FARNBOROUGH

6th. I.E.R.E.-"Modern methods of traffic control" by D. G. Hornby at 19.00 at the Technical College.
18th. I.E.E.-"The role of graphics in computer aided design" by J. V. Oldfield at 18.30 at the Technical College, Boundary Rd.

GLASGOW

13th. I.E.R.E.-"Automatic control of electricity generation in a grid control area" by F. D. Boardman at 19.00 at the University of Strathclyde.

19th. I.E.E.-"Electronic measurement as a guide to archaeological research" by E. T. Hall at 18.00 at the S.S.E.B., Cathcart House.

26th. IE.E. Grads.-"Computer core stores" by R. G. Whyte at 19.30 at Strathclyde University.

GUILDFORD

26th. I.E.R.E-"Circuit design and microelectronicsi" by D. R. Hester at 19.00 at the Technical College.

hOVE

11th. I.E.E.- "Application of transistor techniques to relays and protection for power systems" by M. Legg, F. L. Hamilton and J. B. Patrickson at 18.30 at the S.E.E.B., 10 Queen's Gdns.

LEEDS

11th. I.E.E.Grads.-Silvanus P. Thompson Lecture "Colour television engineering" by C. B. B. Wood at 19.00 at the University.

20th. I.E.R.E.-"Design of a TV Studio" by P. Parker at 19.00 at the Dept. of Electrical \& Electronic Engineering, the University.

LEEDS

28th. S.E.R.T.-"Multiplex stereo broadcasting" by D. Holdsworth at Kitson College of Engineering \& Science, Cookridge St.

LEICESTER

24th. I.E.E. Grads.-"P.O. communications" by G. M. Wash \& B. Kennedy ai 19.30 at the University.

LETCHWORTH

18th. 1.E.E.- "Engineering in thyristor circuits" by D. B. Corbyn at 19.30 at the College of Technology.

LIVERPOOL

12th. I.E.E. Grads.-"P.C.M. as applied to the Post Office" by G. H. Bennet at 19.00 at M.A.N.W.E.B., Industrial Development Centre.

17th. I.E.E.- "Early days in radio research" by Dr. R. L. Smith-Rose at 18.30 at the University.

19th. I.E.R.E.-"Electronics in high-vacuum measurement" by R. G. Christian at 19.00 at the Dept. of Electrical Engineering and Electronics, the University.

LOUGHBOROUGH

13th. I.E.E. Grads.-"Performance of brushless synchronised motors" by R. Grigg and "Electronics in severe environments" by S. Bradley at 19.00 at the University of Technology.

MALVERN

26th. I.E.R.E.-"Reducing the cost of good reproduction" by P. J. Baxandall at 19.00 at the Abbey Hotel.

MANCHESTER

27th. R.T.S., I.E.E. \& I.E.R.E.-"The E.M.I. Colour camera" by J. P. James at 19.00 at Granada Studios.

NEWARK

26th. I.E.R.E.-"Colour television" by H. V. Sims at 18.30 at the Technical College.

NEWCASTLE-UPON-TYNE
3rd. I.E.R.E. \& I.E.E.-"Colour television" by B. J. Rogers at 18.30 at Rutherford College of Technology.

Sth. S.E.R.T.-"Closed circuit television" by J. B. Kitching at 19.00 at the Charles Trevelyan College, Maple Terrace.

25th. I.E.E.-Faraday Lecture "Microelectronics" by P. E. Trier at 19.15 at the City Hall.

NEWPORT

28th. I.E.E--"Stereophonic broadcasting" by G. J. Phillips at 18.30 at the Isle of Wight Technical College, Hunnyhill.

Paisley

18th. I.E.E.-"Computer aided instruction" by Capt. G. Huggett at 18.00 at the College of Technology.

PLYMOUTH

5th. R.T.S.-Fleming Memorial Lecture "Digital methods in television" by A. V. Lord at 19.30 at the studios of Westward Television Ltd.

21st. R.T.S. \& R.T.R.A.-"Colour television-convergence and purity" by Ian Nicholson at 19.45 at the Continental Hotel.

PONTYPRIDD

28th. S.E.R.T.-"Automatic control systems" by W. J. Lambert at 19.30 at the Glamorgan College of Technology, Llantwit Rd., Treforest.

PORTSMOUTH

19th. IE.E. Grads.-"Flexible modular data handling system for satellite use with particular reference to the Black ${ }_{2}$ Arrow programme" by E. K. Crompton at 18.30 at the College of Technology.

PORT TALBOT

20th. I.E.E.-"Colour television receiver design and maintenance" by G. D. Barnes at 18.00 at the Steel Co. of Wales.

READING

17th. I.E.E.-"Automatic landing of aircraft" at 19.30 at the Great Western Hotel.

27th. I.E.R.E.-"Electronic components, past, present and future" by G. W. A. Dummer at 19.30 at the J. J. Thomson Physical Lab, the University.

ST. HELENS

27th. I.E.E. Grads.-"Critical path analysis and P.E.R.T." by A. B. Hodgkiss at 19.00 at the Technical College, Water St.

seascale

13th. I.E.E.-"Concorde electronics" by H. Hill at 19.30 at the Windscale Club.

SOUTHAMPTON

12th. I.E.E. \& I.E.R.E.-"V.I.F. radio communication" by R. D. Holland at 18.30 at the Lanchester Theatre, the University.

SWANSEA

13th. I.E.E.-"The engineering of thyristor circuits" by D. B. Corbyn at 18.15 at University College.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Mar 10-13
Physics Exhibition
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. $10-13$
Scientific Instruments Exhibition
Scientific Instruments Exhibition
(Scientific Inst. Mftrs. Assoc., 20 Peel St., London W.8)

Mar. 10-14
Earls Court
Medical Engineering and Automation Exhib.
(Industrial Exhibitions, 9 Argyll St., London W.1)

Mar. 11-13
Kings Head, Harrow
Public Address Show
(Assoc. of Public Address Engrs, 394 Northolt Rd., Harrow, Middx.)
Mar. 25-29
Earls Court
Laboratory Apparatus \& Materials Exhib.
(U.T.P. Exhibitions, Racquet Court, London E.C.4)

CAMBRIDGE

Mar. 26-28
Selwyn College
Elementary Particles
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

CRANFIELD

Mar. 23-26
College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matthews, Department of Flight, College of Aeronautics, Cranfield, Beds.)

MANCHESTER

Mar. 31-Apr. 3
The University
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

NOTTINGHAM

Mar. 25-27
The University
Interactions among Elementary Excitations
in Solids and Liquids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

SOUTHAMPTON

Mar. 25-27
The University
Lasers and Opto-Electronics
(I.E.R.E., 9 Bedford sq., London W.C.1)

OVERSEAS

Mar. 2-11
Leipzig
Spring Fair
(Messehaus am Markt, DDR-701 Leipzig)
Mar. 48
Base!
Industrial Electronics Exhibition
(Sekretariat INEL. 69, CH-4000, Basel 21)
Mar. 5-7
\quad Accelerator Engineering \& Technology
Accelerator Engineering \& Technology
(E. H. Eisenhower, Center for Radiation Research, National Bureau of Standards, Washington, D.C. 20234)

Mar. 5-16
Sao Paulo
British Industrial Exhibition
(Industrial \& Trade Fairs, Commonwealth House, New Oxford St., London W.C. 1.)
Mar. 6-7
Huntington Beach
Acoustical Holography Symposium
(Douglas Advanced Res. Lab., McDonnel Douglas Corp., 5251 Bolsa Ave., Huntington Beach, Cal.)
Mar. 6-11
Paris
Festival du Son
(Fed. Nat. des Ind. Electroniques, 16 rue de Presies, Paris 15e)
Mar. 12-14
Cologne
Microwave Techniques
(H. H. Burghoff, Stresemann Allee 21, 6 Frankfurt/ Main 70)
Mar. 18-30
Rome
Electronics, Radio \& TV Show
(Rassena Int. Eletronica, Via Crescenzio 9, 00193 Rome)
Mar. 24-27
Scientific Congress on Electronics
(Rassena Int. Elettronica, Via Crescenzio 9, 00193 Rome)
Mar. 24-27
I.E.E.E. Convention \& Exhibition

New York
(l.E.E.E., 345 E. 47 th St., New York, N.Y. 10017)

Mar. 24-27
Munich
Semiconductor Device Research
(H. H. Burghoff, Stresemann Allee 21, 6 Frankfurv' Main 70)
Mar. 24-28
Paris
Remote Data Processing
(Soc. Francaise des Electroniciens et des Radioelectriciens, 10 av. Pierre-Larousse, Malakoff
Mar. 25-27
Data Transmission
(H. H. Burghoff, Stresemann Allee 21, 6 Frankfurt/ Main 70)
Mar. 28-Apr. 2 Paris
Components \& Electro-acoustics Show
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15e)
Mar. 31-Apr. 2 Cambridge
Electrohydrodynamics
(Prof. J. Melcher, do Dept. of Elec. Eng., Massachusetts Inst. of Tech., Cambridge, Mass. 02139)

New Products

Two Cossor Oscilloscopes

The CDU. 150 is the commercial version of the military CT. 531 oscilloscope from Cossor which has been chosen by the Government's Joint Departmental Radio and Electronics Measurements Committee to be the general purpose oscilloscope for the armed forces. This double-beam 'scope has a d.c. to 35 MHz bandwidth at $5 \mathrm{mV} / \mathrm{cm}$ sensitivity and a $1-\mathrm{M} \Omega$ input impedance shunted by 25 pF . The measuring accuracy is $\pm 3 \%$. Operating modes are: channel one only; channel two only; alternate sweep; chopped (25 kHz); and added (channel one \pm channel two). The Y amplifiers can be cascaded to give a $1 \mathrm{mV} / \mathrm{cm}$ sensitivity with a 3 Hz to 1 MHz bandwidth. The two timebases (A and B) can be operated in the following modes: A only, A intensified by B, A delayed by B, and A delayed by B gated. The 22 -step control and a variable control allows the A timebase to operate from $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $2.5 \mathrm{~s} / \mathrm{cm}$. The decade switched B timebase, which has a ten-turn variable control, operates between $1 \mu / \mathrm{cm}$ to $10 \mathrm{~ms} / \mathrm{cm}$. A five-times magnification switch increases all sweep speeds on both timebases by five ($\mathrm{A}, 20 \mathrm{~ns} / \mathrm{cm} ; B, 0.2 \mu \mathrm{~s} / \mathrm{cm}$ etc.). The X amplifier can be switched from $100 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$ with a bandwidth of d.c. to 3 MHz . The rectangular flat-faced $8 \times 10 \mathrm{~cm}$ single-gun mesh tube operates at 12 kV . Price is $£ 470$. The second 'scope from the same stable is the CDU.120. This double-beam instrument has a d.c. to 60 MHz bandwidth at $50 \mathrm{mV} / \mathrm{cm}$; increasing the gain to $1 \mathrm{mV} / \mathrm{cm}$ lowers the upper limit to 25 MHz . The Y input impedance is $1 \mathrm{M} \Omega$ shunted by 20 pF and the gain can be set to within 3% using the calibrated controls. Operating modes are: channel one only; channel two only; alternate sweep; chopped (1 MHz); and added (channel one \pm channel two). If desired channel two can be switched as a calibrated X amplifier with $1 \mathrm{mV} / \mathrm{cm}$ sensitivity and a d.c. to 6 MHz bandwidth. The main timebase has a range from $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm}$. A delaying timebase has a range from 0.1 to $10 \mathrm{~ms} / \mathrm{cm}$ switched in decade steps

with interpolation by a ten-turn multiplier. A multiplication facility is available which increases the speed of both timebases by a factor of ten ($10 \mathrm{~ns} / \mathrm{cm}$). The timebase offers a large number of switched facilities. The c.r.t. is a single-gun mesh p.d.a. tube with an $8 \times 10 \mathrm{~cm}$ display area. The X amplifier has a $500 \mathrm{mV} / \mathrm{cm}$ sensitivity and a 6 MHz bandwidth. The price is $£ 590$. Cossor Electronics Ltd., The Pinnacles, Elizabeth Way, Harlow, Essex.
WW304 for further details

Micro-motor

A d.c. micro-motor with transistor regulator equipment is announced by Sankyo of Japan. It has no slipping parts, such as brushes and commutator, and variable speed is obtained via an electronic control circuit. Clockwise or anticlockwise revolution is possible by means of a switch, the motor characteristics being the same in either direction. The motor is designated model

ZF 200 and it is available in 9 or 12 V d.c. versions. The rated torque is respectively 1960 and $4940 \mu \mathrm{Nm}$, and the current 280 and 350 mA . Speed can be regulated within the range 1000-3000 r.p.m. Starting torque is greater than $9800 \mu \mathrm{Nm}$ and starting time less than 0.5 s . Eight transistors and four diodes are employed. The motor measures $46 \times 50 \mathrm{~mm}$. Sankyo Seiki Manufacturing Co. Ltd., 17-2, 1-Chome Shinbashi, Minato-Ku, Tokyo, Japan.
WW $\mathbf{3 0 5}$ for further details

I.C. Range for Communications

Six integrated circuits from Plessey comprising a new family, the SL600 series, are designed for professional communications and are all fully compatible. They are claimed to offer benefits to transceiver equipment designers in terms of size and performance. Devices in the range are the SL610 (r.f. amplifier), 612 (i.f. amplifier), 621 (s.s.b. a.g.c. generator), 620 (VOGAD), 630 (audio amplifier) and 640 (double balanced modulator). All are priced at $\{66 \mathrm{~s} 6 \mathrm{~d}$ for quantities of 100 or more. The SL610 wideband r.f. voltage amplifier
is intended for use in the $2-76 \mathrm{MHz}$ communications band and offers a signal handling capability of 250 mV r.m.s. The SL612 i.f. amplifier has a voltage gain of 50 times and a bandwidth of $0.1-15 \mathrm{MHz}$. Designed for use in s.s.b. receivers, the SL,621 s.s.b. a.g.c. generator will follow fading signals but hold a fixed a.g.c. level during pauses in speech. The SL 620 VOGAD (voice operated gain adjusting device) is claimed to be the only commercially available i.c. capable of this function. It is designed to control the gain of the SL630 when this device is used as a microphone amplifier, and will hold the amplifier output level between 70 mV and 78 mV r.m.s. for a 35 dB range of audio input. Having a gain of 40 dB , the SL630 audio amplifier will operate from any supply in the range -6 V to -12 V and features a wide range logarithmic a.g.c. facility. The SL640 replaces the diode ring at frequencies up to 76 MHz . It eliminates transformers and requires no external adjustment for balance. Plessey Microelectronics, Cheney Manor, Swindon, Wiltshire.
WW322 for further details

Temperature Measuring Instrument

Surface temperatures in refrigeration systems through to heating systems, or temperatures of metal and plastics mouldings, can be monitored by the Mini-T range of temperature measuring instruments by Polkinghorne Industries. Three basic models, priced at about $£ 10$ each, cover respectively -50 to $100^{\circ} \mathrm{F}\left(-46\right.$ to $\left.38^{\circ} \mathrm{C}\right), 100$ to $250^{\circ} \mathrm{F}$ (38 to $121^{\circ} \mathrm{C}$) and 250 to $400^{\circ} \mathrm{F}$ (121 to $204^{\circ} \mathrm{C}$). Features include an accuracy of $\pm 2^{\circ} \mathrm{F}$ with a linearity of 0.2%. Response time is 5 to 10 seconds. A 1 m probe houses a thermistor sensor. Operating power is obtained from an internal stabilized power supply. The unit case measures $76 \times 70 \times 65 \mathrm{~mm}$ and is constructed of polystyrene. Polkinghorne Industries Lid., Lillyhall Industrial Estate, Winscales, Workington, Cumberiand.
WW $\mathbf{3 2 0}$ for further details

MF/HF Communications
 Receiver

A new general-purpose communications receiver by Redifon, model R550 "Altair", provides continuous frequency coverage from 200 kHz to 30 MHz . In the basic receiver, frequency synthesizer controls are used to set $\mathrm{MHz} \times 10, \mathrm{MHz} \times 1$ and $\mathrm{kHz} \times 100$ with a direct reading digital display, the rest of the tuning process being carried out on a v.f.o. dial. The v.f.o. has a 100 kHz sweep with digital read-out in steps of 0.1 kHz . Further subdivisions of the final digit give a resolution down to 10 Hz and a frequency accuracy of the order of 20 Hz . Frequency synthesis of the tuning process can be completed down to 0.1 kHz steps with an optional add-on adaptor. The receiver is solid-state and operates in c.w., m.c.w., d.s.b. and s.s.b. modes. A second add-on adaptor is available for i.s.b. reception. Front-end protection is provided against very strong aerial e.m.fs of up to 30 V with additional fuse protection for e.m.fs in excess of 30 V . Interlinked front-end and intermediate frequency a.g.c. systems are employed. The a:g.c. has a 130 dB range; a change of 110 dB in input signal results in an output change of less than 1 dB . Double conversion is employed with intermediate frequencies of 38 MHz and 1.4 MHz . Intermediate frequency bandwidths can be selected at $0.2,1$ or 3 kHz for $\mathrm{c} . \mathrm{w} ; 1$ or 3 kHz for m.c.w; 3 , 6 or 12 kHz for d.s.b; and 3 kHz for upper or lower sideband on s.s.b. or i.s.b. (or 6 kHz to order). The squelch level is adjustable and to guard against incorrect setting the squelch does not completely cut-off the output but reduces it by 26 dB to indicate that the receiver is still operative and to allow wanted signals to be heard. Sensitivity can be as high as $0.5 \mu \mathrm{~V}$ for 0.5 W a.f. output. Outputs
include an internal loudspeaker and two earphone sockets with separate provision for an external loudspeaker. Also provided are a $600-\Omega$ line output and a $1.4-\mathrm{MHz}$ i.f. (90 mV across 50Ω) output. The receiver is normally operated from mains supplies of $100 / 125 \mathrm{~V}, 200 / 250 \mathrm{~V} 47-63 \mathrm{~Hz}$ and in emergency it can be operated from a 24 V d.c. supply. Redifon Ltd., Communications Division, Broomhill Road, London S.W. 18.
WW 306 for further details

Frequency Synthesizers

Coming in three basic models, 622A, 633A and 644 A , a range of solid-state frequency synthesizers covering respectively $0-2 \mathrm{MHz}, 0-11 \mathrm{MHz}$ and $0-40 \mathrm{MHz}$ is announced by Fluke International. The frequency increments on each are 1 Hz with 0.1 Hz as an optional extra, and non-harmonically related signals are at least 90 dB below the fundamental over the greater part of the frequency range of each type. Phase noise is also low, the signal-to-noise ratio varying from 56 dB on the 644 A to 64 dB on the 622 A . All models include a

sweep/search oscilllator operating symmetrically about the chosen frequency. In the sweep mode, the triangular waveform employed obviates hysteresis effects during the return sweep. The provision of special configurations for particular purposes is afforded by the modular design. Basic prices including duty are: 622A $£ 3567,633 \mathrm{~A}$ $£ 3338$ and 644A $£ 5749$. Fluke International Corporation, Greycaines House, Greycaine Road, Watford, Herts.
WW 321 for further details

Pickup Arm and
 Remote Cueing Unit

Decca have recently released for home market distribution their International pickup arm and the Deccalift remote pickup control. The International p.u. arm employs magnetic bias compensation with three magnets arranged in repulsion to provide accurate neutralization of the forces which draw the pickup head towards the centre of the record. This is adjustable to suit different playing weights. The only bearing surface in the arm is an inverted jewelled universal pivot which enables the arm to move both laterally and vertically with negligible resistance to motion. Where lateral and vertical damping is reqnired, a damping fluid, supplied in a container with the arm, can be poured into a depression at the top of the pickup barrel and allowed to trickle through into a small chamber below, where it serves to retard movement of the arm in all directions. Magnetism is also used as the method of support for the p.u. arm, thus reducing rumble and shocks to the assembly. A novel way of checking the counterbalance for correct playing weight makes use of a length of solder, inserted in a slot behind the counter-weight and cut to the length indicated on a chart to simulate the required playing weight. Adjustment is made for correct balance, after which the solder is removed.
Deccalift is a motorized raising, lowering and cueing device which can be controlled remotely or from a switch on the motor-board. A 6 V a.c. supply is required for the motor which can be
obtained from a valve amplifier heater supply or via a mains voltage step-down transformer (a 6 V bell transformer would be suitable). The Deccalift is not recommended for use with autochangers. Prices: International pickup arm 25 gn , Deccalift 8 gn . Decca Special Products, Ingate Place, Queenstown Road, London, S.W.8.
WW 334 for further details

R.F. Heating Triode

The second of a series of industrial ceramic triodes from E.E.V. is a forced-air cooled type (BR1183) for industrial induction and dielectric r.f. heating. In construction, the filament/grid terminal is coaxial and the air-cooled radiator is integral with the anode. Ceramics replace glass. The BR1183 can operate at full ratings up to 50 MHz , giving an output of 70 kW under class C unmodulated conditions. Overall nominal length of the triode is 406 mm and overall nominal diameter is 254 mm . Weight is 18 kg English Electric Valve Co. Ltd., Chelmsford, Essex.
WW $\mathbf{3 0 9}$ for further details

Gunn-effect Devices

Three new Gunn-effect devices announced by Mullard operate over the frequency range 12 to 18 GHz . The three devices have the development type number 803 CXY followed by a suffix to indicate the power output. Devices with the suffix A have an output of 5 mW ; suffix $\mathrm{B}, 10 \mathrm{~mW}$; and suffix $C, 15 \mathrm{~mW}$. They are encapsulated in miniature pill packages which are suitable for coaxial or waveguide cavities. The devices require a supply of only 6 V d.c. and are suitable for use as local oscillators in J-band ($12-18 \mathrm{GHz}$) radar systems, test signal sources and transmitters and local oscillators in miniature doppler radar equipment. Mullard Ltd., Torrington Place, London, W.C. 1. WW $\mathbf{3 0 7}$ for further details

Video Test Equipment

Three companion video signal generators announced by E.I.L. of Haslemere are the TVT/1/PB sine-squared pulse and bar generator, the TVT / / / sawtooth generator and the TVT/1/LF 50 Hz squarewave generator. All are designed as transportable equipment and use semiconductors throughout. Model /PB provides an output signal of 1 V at 75Ω comprising a positive-going sine-squared pulse of 100 ns or 200 ns period for 10 and 5 MHz bandwidth systems, a $25 \mu \mathrm{~s}$ duration bar and a negative-going sync pulse of $4.7 \mu \mathrm{~s}$ duration, with a repetitive time of $64 \mu \mathrm{~s}$ (625-line TV waveform). Model /S also has a IV 75Ω output comprising a sawtooth, superimposed with a crystal-controlled colour sub-carrier waveform at 4.43 MHz . It allows non-linear distortion and differential phase/gain measurements to be made on amplifiers and transmission systems.

Preset controls allow adjustment of line frequency, sawtooth amplitude and sawtooth level. Model $/ \mathrm{LF}$ is a 50 Hz squarewave generator superimposed with line suppression and sync waveforms enabling low frequency response measurements to be made of wideband systems. A $1 V 75 \Omega$ output is again provided, comprising a 20 ms posi-tive-going squarewave complete with 11 ms blanking pulses and $4.7 \mu \mathrm{~s}$ negative-going sync pulses with a repetitive time of $64 \mu \mathrm{~s}$. The sync waveform can be switched off while the unit is locked to external line and field sources. All of the units operate from $200-250 \mathrm{~V} 40-60 \mathrm{~Hz}$ a.c. and their prices are: TVT / $/$ /PB $£ 120$, TVT $/ 1 / \mathrm{S} £ 140$ and TVT / $1 / \mathrm{LF}$ £95. Electrocraft Instruments Lid., Coombeswell, Farnham Lane, Haslemere, Surrey. WW 329 for further details

Service Aids

Two hand-held pressurized container spray products by Kontakt-Chemie of West Germany with applications in the radio and television field, have recently become available in this country. One is a colloidal graphite product which can be sprayed to any thickness to provide a conductive coating. It adheres firmly to glass, plastics and other smooth surfaces where it acts as an effective screen. The other is a soldering varnish for printed circuits where it functions as a soldering agent and a protective coating preventing the oxidization of platinums. It is equally suitable for production work or service. Each container holds 450 g of fluid. The GraphitSpray 33, as it is called, costs 21 s , and the soldering lacquer SK10, 12s 6d. Special Products Distributors Ltd., 81 Piccadilly, London W. 1.
WW 308 for further details

Microwave Signal Sources

Continuous tuning over the frequency range 850 to 2150 MHz is a feature of a new microwave signal source, type 6055, by Marconi Instruments Sanders Division. Of solid-state construction this instrument includes internal amplitude modulation, digital readout of operating frequency and low residual f.m. of the order of 1 p.p.m. The transistor oscillator, tuned by a resonant line terminated in a variable capacitance, operates at fundamental frequency. This frequency is indicated by a four-digit mechanical counter. Maximum output is typically 100 mW into a 50Ω load: the square-wave modulation is at a nominal frequency of 1 kHz , variable over a 200 Hz range. The instrument contains its own power unit and a wide range of coaxial components is available as accessories. Dimensions of the 6055 are: $100 \times$ $286 \times 204 \mathrm{~mm}$ and weight is 5 kg . Two further microwave signal sources, types 6457 and 6458 are similar in design and complement each other, the 6457 covering the range 1.5 to 5 GHz and the 6458 the range 4 to 12 GHz . The instruments are highly stable and feature a direct reading 1% frequency dial, internal sawtooth f.m.
and square-wave a.m., and provision for external modulation by sine or sawtooth waveforms. The r.f. signal is klystron driven, a non-contacting piston tuning the coaxial resonator. A high resolution potentiometer, ganged to the tuning shaft, forms part of an automatic tracking neiwork, which maintains optimum reflector potential conditions as the tuning is varied. Output from the oscillator is drawn via a capacitive probe, which is integral with the coaxial socket. The output level is controlled by the probe's penetration into the resonant cavity. Both f.m. and a.m. can be applied to the signal internally or externally. The internal square-wave a.m. generator can be varied from 1 to 4 kHz by a panel control. The sawtooth f.m. generator operates at 1.2 kHz . Marconi Instruments Lid., Sanders Division, Gunnels Wood Road, Stevenage, Hertfordshire.
WW301 for further details

Clock Waveform Modules

A stable 1:1 mark-space ratio clock waveform over a wide range of frequencies is offered in a new series of digital clock modules (series 420) from Arcturus Electronics. These are claimed to be capable of driving most major types of i.c. logic directly. Frequency stability is governed by an external crystal providing an a.c. voltage which is divided down to give a dual-phase square-wave output. A single $5-\mathrm{V}$ power supply is required. Connecting pins are spaced at multiples of 0.1 in . for use with standard circuit boards. Output frequencies are available in two ranges of $50-500 \mathrm{kHz}$ and $500-5000 \mathrm{kHz}$ and output "high" state voltage is 2.4 V ; "low" state 0.4 V . Epoxy resin encapsulation is used. Oscillator crystals should be cut for parallel resonance at twice the required frequency and a 32 pF capacitive load specified. Arcturus Electronics Lid., 6 Cadogan Lane, Belgravia, London S.W.1. WW302 for further details

R.F. Signal Generator

Details of two versions of an r.f. signal generator covering the frequency range $150 \mathrm{kHz}-220 \mathrm{MHz}$ have been released by Nombrex Ltd. Standard model 29-S operates on fundamentals with eight bandspread scales and a scale frequency accuracy within $\pm 1.5 \%$. Output impedance is 600Ω and the average maximum output is 100 mV . The attenuator is calibrated $0-10$ and is continuously variable. Modulation depth is $0-100 \%$ variable, and the modulation frequency is adjustable from 400 to 1000 Hz . The instrument is powered by a 9 V dry battery and there is stabilization against battery voltage variation. Model 29-X is covered by the same general specification as the 29-S but in addition it incorporates a crystal oscillator module providing harmonic calibration check points on all ranges. Using the scale calibrator panel control, which is common to both versions, a check-point accuracy of $\pm 0.02 \%$ can be achieved. Spin-wheel tuning is available as an optional extra on both models. Dimensions of the

generator àre $190 \times 146 \times 95 \mathrm{~mm}$ and the price is $£ 20$ (model 29-S); $£ 27$ 10s (model 29-X). Nombrex Let., Exmouth, Devon.
WW303 for further details

Stereo Tape Recorder

A successor to the Tandberg Series 12 tape recorder is announced by Elstone Electronics. Called Series 12 X , it is a self-contained stereo record and playback system using a new type of bias head which the makers claim provides exceptional frequency response at all speeds. The equipment comprises two 10W transistor amplifiers and twin internal loudspeakers, with a separate volume control for each channel and bass and treble controls. Available in 2- or 4-track three-speed versions, signal-to-noise ratio is 58 dB (4-track) and 60 dB (2-track). Multiple track synchronized recordings are possible. Two moving coil meters indicate recording levels. The recorder is designed for vertical or horizontal operation and costs 134 gn . Elstone Electronics Lid., Hereford House, North Court, off Vicar Lane, Leeds 2, Yorkshire. WW330 for further details

Integrated-circuit Tester

A simple go/no-go tester which performs functional operation tests on logic i.cs has been produced by the Aritech Corporation and is being marketed by Litton Precision Products. No programming is needed since the tester will circulate any initial conditions required by the device under test. Each device is put through a se-

quence of tests, with each test taking 5 ms , and a rotary switch on the front panel enables the selection of conditions of r.t.1., d.t.l., t.t.l. and e.c.l. logic. A range of adaptors is available for any i.c. family having up to 16 pins. Litton Precision Products, 95 High Sureet, Slough, Bucks.
WW327 for further details

Microwave Power Meter with Easy Zero Set

A microwave power meter which, with associated thermistor mounts, covers the range 10 MHz to 40 GHz , features what is described as automatic zero set. This means that instead of manually adjusting a control to zero the meter before making a measurement, the operator merely depresses a toggle switch momentarily. Once zero has been set on the most sensitive range, it remains accurate within 0.25% when switching from range to range. The meter (type 432A) has an accuracy of 1% of full scale on all ranges over temperatures of $0-55^{\circ} \mathrm{C}$. Full-scale measurement ranges are from $10 \mu \mathrm{~W}$ to 10 mW . The temperaturecompensated thermistor mounts are the same as those supplied with the existing 431 series power meters. These cover a frequency of 10 MHz to 18 GHz in coax and 2.6 to 40 GHz in waveguide. Performance improvement over previous power meters results from the use of d.c. to drive the meter's thermistor bridge circuits rather than the conventional a.f. bias current. Thermoelectric voltages from a.c. bias in the thermistors no longer affect measurement accuracy, thus enabling the 1% accuracy to be specified. Model 432A is manufactured in the U.K. and is priced at $\mathbb{L} 227$.

A built-in rechargeable battery pack (up to 24 hours' operation on one charge), is available for an additional f42. Hewlett Packard Ltd., 224 Bath Road, Slough, Bucks.
WW304 for further details

Amateur Band Mobile Aerial

A 2 -metre-band $(144-146 \mathrm{MHz})$ aerial for the radio amateur has been developed by Bantex from the construction design employed in their existing half-wave aerial in use with v.h.f. commercial mobile equipment. The aerial can be trimmed for best performance at operating frequency and a special base allows easy mounting on a car roof or wing. Bantex whip aerials are embedded in a glass fibre sheath, thus providing protection against corrosion. Price including carriage: $\ell^{5} 2 \mathrm{~s}$. Bantex Ltd., Truro House, Mark Road, Hemel Hempstead, Hertfordshire.
WW 328 for further details

Photo-electric Lighting Control

A lighting control unit for controlling lighting loads up to 10 A at 250 V a.c. without the need for separate contactors is offered by Photain Controls. It is suitable for the control of street lighting, loading bays, neon signs and all types of outdoor lighting. The new unit, type $250-10$, comprises two main parts: a base with socket and mounting bracket, and a translucent plastics domed housing with plug, and containing the electronic circuitry, photoconductive cell and switching relay. A 60 -second time delay prevents operation of the unit during short-term variations in ambient lighting intensity, and protection is provided against damage caused by mains voltage surges or lightning. Price: $£ 12$ 19s 6d. Photain Controls Ltd., Randalls Road, Leatherhead, Surrey.
WW331 for further details

Moisture-removing Chemical Spray

Wet electrical equipment can be recovered from corrosion by timely use of their water displacing fluid say the makers of Rocket WD-40, which is supplied in an aerosol container and which removes moisture from contact with metal, rubber and plastics surfaces. Electric motors and other moisture-sensitive machinery suffering water damage in a fire can be quickly returned to working order if they are "de-watered" within 36 hours. The fluid can also be sprayed on ignition components where ignition failure is caused by moisture due to flood or damp conditions, or in any position where rust prevention is required. Two
sizes of WD-40 are available at 9s 9d and 16s 9d. U.K. distributors: Cadulac Chemicals Ltd., The Bridge, Radcliffe, Lancashire. ww 318 for further details

Low-cost Reed Switch

A dry reed switch which can cost as little as 6 d each in bulk quantities is being offered by the M-O Valve Company. Its hermetically sealed contacts provide fast switching and long life. Known as type RCX, the reed is rated to switch $5 W$ resistive loading and the contact resistance is not greater than $150 \mathrm{~m} \Omega$. Suitable application is where reliable low-level fast switching is required. Overall length of the glass encapsulation is 27 mm . The M-O Valve Co. Lid., Brook Green Works, Hammersmith, London W.6.
WW 319 for further details

P.C. Board Assembly Unit

An adjustable unit into which printed circuit boards of various sizes can be inserted for the purpose of assembling components has been announced by Kingham Electronics. It will accept boards up to $255 \times 255 \mathrm{~mm}$, or numbers of smaller sizes up to 3.2 mm thick. A hinged mechanism allows the board to be turned over ready for cropping and soldering and an adjustable rubber pad retains components of varying heights. A turntable is fitted to allow the board to swivel. The unit, type KAPCBU, measures $305 \times 330 \times$ 130 mm high. Kingham Electronics Ltd., 17 Briary Wood Lane, Welwyn Heath, Herts.
WW 317 for further details

Bipolar L.S.I. Array

Custom designed 1.s.i. circuits in which standard wafers diffused with groups of functions can be interconnected to suit a user's particular requirements are made possible by the 4500 Micromatrix system introduced by SGS Ltd. A series of cellular arrays complete except for metal interconnection layers are produced in volume and stocked at their factory. The interconnection pattern of cell functions is determined by the customer and interconnections are carried out at the factory. The 4500 array comprises eight cells, each containing four 4 -input NAND gates, and it can be used to perform any function that can be carried out with 32 NAND gates and 28 bonding pads. Chip size is $80 \times 100 \mathrm{~mm}$ with an active area of $600 \mathrm{kmm}^{2}$. The Micromatrix can be packaged in a variety of ways depending on the number of pins and the form factor required. SGS (United Kingdom) Ltd., Planar House, Walton Street, Aylesbury, Bucks.
WW 336 for further details

Lower-power F.E.T. Operational Amplifier

A quiescent current of only $500 \mu \mathrm{~A}$ characterizes the microcircuit f.e.t. operational amplifier model 1402 from Philbrick Nexus Research Ltd. Power supply voltages can be from $\pm 4 \mathrm{~V}$ to $\pm 24 \mathrm{~V}$. The unit is housed in a TO-8 case. The input impedance of the amplifier is $10^{12} \Omega$. Bias currents of 10 pA and low wideband noise for both voltage and current are also f.e.t. characteristics. Phil-brick-Nexus Research, 81a North Street, Chichester, Sussex.
WW 348 for further details

Data Communication Modules

For use in high-speed data transmission systems, requiring a square-wave pulse with fast rise and fall times, a range of modules are available from C.P. Clare Electronics Lid. Operating speeds are up to 350 bauds with bias distortion down to 1% for specified drive conditions. The square-wave output is bounce-free, and has a rise time in the nanosecond region. Contact efficiency is high, and

transfer time is of the order of 0.5 ms . Complete isolation of $1000 \mathrm{M} \Omega$ is typical and the sealed contacts are capable of switching 100 W . Using solid-state single-or double-current drive gives an interface where drive power can be as low as 10 mW . To give minimum distortion at a specified frequency for transmission control, the module is adjusted on square-wave drive. For reception control, the module is adjusted on sine-wave drive. C.P. Clare Electronics Ltd., 43 Clarendon Road, Watford, Herts.
WW 347 for further details

Variable Counter/Timer

A new addition to Plessey's range of devices based on r.t.l. logic is a variable counter/divider, type SP260, comprising four binary counter elements arranged as a parallel clock counter. Any division ratio from 2 to 16 can be set by means of external connections, and control inputs are provided for selection between the full count of 16 or any other set division. Encapsulation is 14-lead flatpack. Plessey Microelectronics, Cheney Manor, Swindon, Wiltshire.
WW 324 for further details

Tunable Pulse Magnetron

For use in linear accelerators, where a long pulse is required, English Electric have produced a mechanically tuned 1300 kW S-band pulse magnetron, type M5058. Operation is possible with a pulse length up to $5 \mu \mathrm{~s}$, giving a peak output power of 1300 kW and a mean output power of 2 kW . This new model has the same mechanical outline as M5015 which is for use in short pulse accelerators. Both magnetrons are tunable over the range 2994 to 3002 MHz . The tuner mechanism is of low torque and is suitable for remote control by servo units via a flexible drive. Efficient cooling is ensured by an integral waterjacket. The cathode construction is sturdy: to minimize both frequency and power variations when the magnetron is orbited about a horizontal axis. English Electric Valve Company Ltd., Chelmsford, Essex, England.
WW 346 for further details

2 Watt I.C.
 Audio Amplifier

Two watts maximum output, 8 mV sensitivity and a wide range of possible supply voltages (9 V to 27 V) are attractive features of the integrated circuit amplifier PA 237 made by General Electric (U.S.A.). The package is dual-in-line with 8 leads and a heat transfer tab. It is offered from stock at 28s by Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 344 for further details

High-voltage Logic

Complementing their existing 9109 and 9112 high-level logic/c.c.s.l. interface elements, SGS

Ltd. have introduced type 9110 d.i.l. device comprising six high-level DT $\mu \mathrm{L}$ gates without input diodes to enable more complex functions such as flip-flops or shift registers to be constructed. Main areas of application are those where the use of c.c.s.l. is not possible due to either high voltage supply or high noise. The 9110 has a $V_{C C}$ operating range of $12-20 \mathrm{~V}$, minimum d.c. noise immunity of 6.5 V and a.c. noise immunity of 10 V at 150 ns . Output swings can be up to 18 V and it will operate with high capacitance loads. SGS (United Kingdom) Lid., Planar House, Walton Street, Aylesbury, Bucks.
WW 332 for further details

Dual Transistors

Two low-cost $n-p-n$ silicon planar dual transistors are available froom Texas Instruments Lid. They are packaged in 6-lead TO-5 cases and are especially suitable for low cost a.c. and d.c. amplifiers and applications where good thermal tracking between stages is required. Both devices have 50 volt $B V_{C E O}$ leakages below 100 na and minimum $h_{\text {FE }}$ of 25 at $100 \mu \mathrm{~A}$ and 40 at 10 mA collector current. Typical $f T$ is 50 MHz . The component transistors of type BCW25 are matched to better than $0.7 h_{\text {FE }}$ ratio, with $V_{B E}$. differential of 20 mV which varies less than 20 mV per ${ }^{\circ} \mathrm{C}$. Type BCW26 is an un-matched dual pair. Texas Instruments Ltd., Manton Lane, Bedford.
WW 345 for further details

Transcription Unit and Preamplifier

Two audio items from the Goldring company, shown for the first time at the Hi-Fi '68 Exhibition in Dusseldorf, were a transistor preamplifier unit, and the GL75 transcription unit mounted in a teak cabinet with a hinged Perspex cover and designated GL75 /P. The GL75 transcription unit employs a mains-operated 4 -pole constant velocity motor and a 4 kg non-magnetic turntable. Wow,

flutter and rumble measurements accord to DIN specifications. The pickup arm is fitted with counterbalance weight and bias compensation and has a tracking error claimed to be $\pm 0.8 \%$. A removable pickup headshell can accommodate any cartridge. Model VV7 stereo preamplifier is designed for coupling high quality magnetic cartridges to less sensitive amplifiers and it is small enough to be mounted under the turntable. It has its own mains power unit and provides a gain of approximately 40 dB at 1 kHz . Two silicon transistor stages are employed in each channel. The VV7 measures $120 \times 50 \times 40 \mathrm{~mm}$ and weighs 170 g . Unit prices: GL75/P $£ 442 \mathrm{~s} 8 \mathrm{~d}$, VV7 $£ 810 \mathrm{~s}$. Goldring Manufacturing Co. (Gt. Britain) Ltd., 486-488 High Road, Leytonstone, London, E. 11 .

WW 335 for further details

Miniature Thyristors

Cole Electronics of Croydon have announced that they are marketing a range of Siemens miniature thyristors in plastics housings. Four pi.v. ratings are available between 100 and 700 V , the higher rating permituing operation at normal mains voltage. Maximum d.c. current ranges from 0.85 A in a half-wave circuit to 2.4 A in a three-phase bridge using six thyristors with unsupported wiring ($T_{u}=45^{\circ} \mathrm{C}$). Equivalent current ratings when the devices are chassis mounted are $3-6.6 \mathrm{~A}$. The minimum trigger voltage at $T_{u}=$ $25^{\circ} \mathrm{C}$, at which all devices will fire, is 3 V and the maximum continuous gate voltage which will not initiate turn-on is 0.2 V . Cole Electronics Ltd., Lansdowne Road, Croydon, Surrey, CR9 2HB.
WW 342 for further details

Single-digit Indicator Tube

A numerical indicator tube type XNS1 by Hivac contains only the digit " 1 " and measures 6.4 mm diameter by 38 mm . The makers claim that it effectively doubles an instrument's display range, e.g. 999 becomes 1999. The XNS1 provides the same character height of 16 mm and glow characteristics as other side-viewing tubes in the Hivac range and is available with a clear bulb or with red or amber lacquer filters. Hivac Lid., Stonefield Way, South Ruislip, Middx.
WW 340 for further details

Differential Volume Control

Now available for use as a balance control for low-impedance twin speakers is Reliance Controls' type MWD wirewound potentiometer, a variation of existing type MW. Type MWD is less than 26 mm in diameter and is supplied with resistances to suit customer requirements. Using a double wiper technique, a reasonably constant impedance is maintained in a circuit while giving control of volume between two outputs. Reliance Controls Ltd., Drakes Way, Swindon, Wilts.
WW 338 for further details

V.H.F. Transistor

Transistor type 2N3209 by S.T.C. is a 400 MHz p-n-p epitaxial device packaged in a TO-18 case. It is designed for saturated and non-saturated switching at collector currents of up to 200 mA

and for r.f. and i.f. amplifier and oscillator circuits up to 100 MHz . It has a low saturation voltage and a $V_{\text {CEO }}$ rating of 20V. S.T.C. Semiconductors Ltd., Footscray, Sidcup, Kent.
WW 333 for further details

Miniature Diode Modulator

Weighing only 0.05 kg and measuring 35.6 mm long, p.in. diode modulator type $6053 / 3$ has been introduced by Marconi Instruments for use where cable length or available space is critical. It covers the frequency range 7.5 to 12.4 GHz , and applications include amplitude modulation, r.f. switching and signal source levelling. Insertion loss is 0.75 dB unbiased, and a

forward bias current of approximately 10 mA applied the attenuation obtained is greater than 20 dB . The frequency range can be extended for applications where an increase in insertion loss can be tolerated. The modulator uses o.s.m. connectors and the r.f. centre conductor is d.c. earthed, requiring no d.c. blocking capacitors. Marconi Instruments Sanders Division, Gunnels Wood Road, Stevenage, Hertfordshire.
WW325 for further details

TO-8 Photocells

Adding to their existing range of TO-18 and TO-s size photocells, Teknis are now marketing a series of larger photocells in TO-8 style. The new range is designated VT500 and is available in cadmium sulphide and cadmium selenide materials with peak spectral responses ranging from 515 nm to 67 nnm . Power dissipation is 0.5 W at $25^{\circ} \mathrm{C}$, but up to 2 W can be dissipated with an adequate heat sink. Maximum voltage is 300 V and the resistance
tolerance is $33 \frac{1}{3} \%$ at 21.5 lx . Teknis Lid., 31 Stoke Road, Guildford, Surrey.
WW 339 for further details

Low-cost diodes

The Fagor 'KSK' range of $1 \mathrm{~A}, 200$ to 1500 V (p.i.v.), silicon diodes can withstand nonrecurrent surge peaks of 40 A and repetitive peak currents of 5A. They are suitable for direct printed circuit board mounting, and available from the C.G.S. Resistance Co. Ltd., Marsh Lane, Gosport Strect, Lymington, Hampshire, SO4 9YQ.
WW 310 for further details

I.C. Op. amp

Analog Devices' model 801 i.c. operational amplifier has $4 \times 10^{-9} \mathrm{~A}$ maximum bias current, making it especially useful in circuits for active filters, integrators, and current-to-voltage converters. This model supersedes the 709, but is mechanically compatible, allowing direct substitution in existing layouts. The differential input impedance of the 801 is a minimum of $25 \mathrm{M} \Omega$ while the common mode impedance is a minimum of $500 \mathrm{M} \Omega$. Analog Devices Ltd., 38/40 Fife Road, Kingston upon Thames, Surrey.
WW 311 for further details

X-Y Recorder

A d.c. servo-system, self-lubricating potentiometers and a sapphire-tip pen to reduce wear and eliminate clogging-these are features of the X-Y recorder model 530 from Honeywell. A lowimpedance motor drive allows 2% maximum overshoot while the servo system allows a $20 \mathrm{in} / \mathrm{s}$ slewing speed (at $240 \mathrm{~V} / 50 \mathrm{~Hz}$). The differential input is floating and guarded on each axis. There are five ranges from $1 \mathrm{mV} / \mathrm{in}$ to $10 \mathrm{~V} / \mathrm{in}$, plus $\times 10$ vernier to $100 \mathrm{~V} / \mathrm{in}$. There is also an optional timebase with $\pm 1 \%$ short term accuracy at room temperature. Price: $£ 641$. Test Instruments Division, Special Products Group, Honeywell Controls Ltd., Eaton Road, Hemel Hempstead, Herts.
WW 312 for further details

Vector Function Module

Average or r.m.s. values of a signal, or the square root of the sum of the squares of two signals can be calculated by a vector function module, type 4352, introduced by Philbrick-Nexus. It is an encapsulated unit measuring $70 \times 40 \times 22 \mathrm{~mm}$ and it can be used where average, r.m.s. or $\sqrt{X^{2}+Y^{2}}$ functions must be provided. It replaces servo mechanisms for $\sqrt{X^{2}+Y^{2}}$ computations delivering an output into a $5-\mathrm{k} \Omega$ load without external circuitry. Accuracy is said to be $\pm 3 \%$ over a wide range of temperatures. The module can be applied as a data-processing tool, as a data-monitoring system to combine quadrature inputs for presenta-

tion as a single variable, and as a component in manufactured equipment. Averaging and r.m.s. operations are based on filtered values of one input signal with the output appearing as a positive voltage. The operation $\sqrt{X^{2}}+Y^{2}$ is based on instantaneous value of the function. Price $\{106$. Philbrick-Nexus Research, 81a North Street, Chichester, Sussex.
WW 313 for further details

Control Knobs

A family of collet-fixing control knobs in four styles and in grey, black and red has been announced by Radiatron Ltd. The knobs are designed to accept a wide range of push-on com-

ponents such as pointers and figure dials, skirts, caps, etc. Knob diameters are 9, 10, 14.5, 21, 28 and 36 mm , and spindle sizes $3,4,6,8,10 \mathrm{~mm}$, $\frac{1}{4}$ in., and tin. Radiatron Ltd., 7 Sheen Park, Richmond, Surrey.
WW 337 for further details

Monolithic Crystal Filters

A standard range of 10.7 MHz monolithic crystal filters, manufactured by Collins Radio of Newport Beach, California, can now be obtained from G. A. Stanley Palmer Ltd. Bandwidths range from 3 to 30 kHz at 6 dB , with a maximum of 100 dB

rejection and a 3 to 1 shape factor. Operation is possible from 40° to $85^{\circ} \mathrm{C}$. The complete range is supplied in flat pack cases. G. A. Stanley Palmer Ltd., Island Farm Avenue, West Molesey Trading Estate, Surrey.
WW 314 for further details

Digital dB Meter

A commercial equivalent of a digital dB meter originally designed for the Post Office is now available from Advance Electronics and is designated type DBM2. This is a portable instrument providing measurement and display of level over an 80 dB range $(+20$ to -60 dBm ref. 1 mW in 600Ω), and employing i.cs. Display is by three end-view neon indicators with polarity symbol. Range selection is automatic in SdB steps with an overriding "lock-on range" facility to hold any existing range between measurements for rapid point-to-point readings of similar values. Calibration accuracy of $0.1 \mathrm{~dB} \pm 1$ digit is quoted for the frequency range 100 Hz to

10 kHz , but the instrument may be used outside these limits for level comparison in the range 50 Hz to 30 kHz . Advance Electronics Ltd., Roebuck Road, Hainault, Essex.
WW 315 for further details

Synchro/Resolver Bridges

Intended for synchro, resolver and servo system testing, Astrosystems Inc. of America has introduced a range of bridges featuring 1 to 0.0001 deg resolution with arc accuracy of 2 s . These units are direct readout inductive instruments which combine the function of a decade synchro bridge and a decade resolver bridge. They are entirely passive, being constructed from precision toroidal transformers which are wound to accuracies of better

than one part per million. A full 360° range is provided and, due to the low output impedance, the output is insensitive to pick-up and loading errors. When there is a difference in angular position between the bridge setting and the input synchro-resolver angle, the bridge produces an error signal proportional to the angular difference. When the input synchro-resolver signal is equal to the bridge setting, the error signal is zero volts, or nulled. U.K. agents: Litton Precision Products, 95 High Street, Slough, Bucks.
WW 316 for further details

Contactless Potentiometer

In applications where a contactless type of potentiometric device is desirable, such as in coal mines and other underground installations, Salford Electrical Instruments have introduced an infinite resolution linear potentiometer based on the variable capacitor principle. To avoid making contact to a moving capacitor plate the unit is constructed of two capacitors effectively connected in series. One plate of each capacitor is varied and contact is made to the two fixed

plates. When used with suitable electronic circuitry, this capacitor provides a d.c. output voltage which varies in magnitude in direct proportion to the sensing shaft position. The ratio of output voltage to shaft position can be maintained linear to better than 1%. The associated electronic circuit is constructed on a printed board inside the potentiometer body. Salford Electrical Instruments Ltd., Barton Lane, Eccles, Lancashire.
WW 323 for further details

Transistor Tester

The latest portable tester for checking the leakage current and current gain of bi-polar transistors comes from R. M. S. Instruments of Chertsey. The instrument, type TT1, will measure current gain anywhere in the region of $5 \mu \mathrm{~A}$ to 100 mA , thus enabling circuit operating conditions to be reproduced. It is powered by an internal $9-\mathrm{V}$ battery which provides the collector voltage. Indication is given on a 76 mm moving-coil meter and a calibrated dial. The TT1 measures $230 \times 150 \times 75 \mathrm{~mm}$ and weighs 1.36 kg . R. M. S. Instruments Ltd., 24 Guildford Street, Chertsey, Surrey.
WW 326 for further details

New Resistor and Capacitor Range

Two new products added to the Dubilier range are metal glaze resistors and tantalum capacitors. The resistors are 6.5 mm long and will carry up to $\frac{1}{2} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. Load life stability at $\frac{1}{2} \mathrm{~W}$ rating is typically $\pm 0.65 \%$. Available in 1,2 and 5% tolerance. The tantalum capacitors are plain foil versions featuring wide temperature and long shelf life characteristics with a claim for high reliability. They will also withstand high ripple currents and have good thermal stability. Capacitance range is in the E 12 series $(0.33 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F})$ of preferred values with peak working voltages between 6.3 V and 160 V . Dubilier Condenser Co (1925) Ltd, Ducon Works, Victoria Road, North Acton, London W. 3.
WW 341 for further details

Small Car-radio Tuner

What the makers believe to be the world's smallest press-to-lock car-radio tuner unit is now in production at the factory of Sydney Bird \& Sons. Known as the Cyldon type AS50 it was developed to meet the trend by car designers of allocating less space for the radio unit (frontal presentation and particularly recess depth). Although the radio circuitry presents no problems the provision of a mechanical

press-button tuner is a limiting factor. The AS50 tuner dimensions fall within requirements specified by an international study group for a $177.8 \times$ 50.8 mm aperture, and it is not more than 50.8 mm deep. Five press-buttons can be fitted and up to six coils if a.m./f.m. operation is required. Permeability tuning is used and button travel does not exceed 96 mm . Reset accuracy is better than 2 kHz . Sydney Bird \& Sons Ltd., Cyldon Works, Fleets Lane, Poole, Dorset.
WW 343 for further details

Test Your Knowledge

Series devised by L. Ibbotson* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

10. Telecommunications Fundamentals

1. The rate at which information can be passed through a telecommunication channel depends on
(a) the carrier frequency
(b) the bandwidth
(c) the transmission loss
(d) the transmitter power.
2. The bandwidth required for television transmission is of the order of
(a) 100 Hz
(b) 15 kHz
(c) 470 kHz
(d) 4 MHz .
3. If music is to be transmitted over a carrier telephone system, three speech channels are normally used for one music programme. This is necessary
(a) to reduce the risk of interference from adjacent channels
(b) to provide sufficient bandwidth to accommodate all the important sound frequencies
(c) to reduce phase distortion
(d) because of the greater dynamic range of music compared to speech.
4. Two trains of rectangular pulses of voltage, each with a pulse repetition frequency of 1000 pulses per second, have pulse lengths of 1 microsecond and 10 microseconds respectively. If each pulse train were applied in turn to the input of an ideal low-pass filter with a cut-off frequency of 100 kHz the output would be

(a) a 1 kHz sine wave in each case

(b) similar to the input for the shorter pulses; a train of non-rectangular pulses in the case of the longer pulses
(c) similar to the input for the longer pulses; a train of non-rectangular pulses in the case of the shorter pulses
(d) a train of non-rectangular pulses in both cases.
5. Any two-port network having a 6 dB loss will give
(a) an output power which is one-quarter of the input power
(b) an output voltage which is one-half of the input voltage
(c) an output voltage which is 0.707 of the input voltage
(d) an output power which is 0.707 of the input power.
6. One of the following forms of distortion cannot be produced by a transmission line
(a) attenuation distortion
(b) phase distortion
(c) group delay distortion
(d) harmonic distortion.
7. Two sinusoidal voltages of different frequencies are applied in series to a diode. The current which flows will contain sinusoidal components
(a) at the two applied frequencies only
(b) at the two applied frequencies and harmonics of them only
(c) at the two applied frequencies and their sum and difference frequencies only (d) at the two applied frequencies and harmonics of them, and at sum and difference frequencies of all these.
8. The method of dividing a signal circuit into channels by "time division multiplex" can only be used for the transmission of
(a) speech and music
(b) single - sideband suppressed-carrier amplitude modulated signals
(c) frequency modulated signals
(d) pulse modulated signals.
9. The amplitude of a signal of which the highest frequency component is F hertz is to be sampled at intervals of time with the purpose of generating a pulse modulated signal. For the pulse modulated signal to specify the original signal completely
(a) is impossible
(b) the sampling rate must be greater than F samples per second
(c) the sampling rate must be greater than
$2 F$ samples per second
(d) the time duration over which a sample is taken must be greater than $1 / F$ siconds.
10. An audio frequency amplifier cannot employ valves or transistors working in
(a) Class A conditions
(b) Class AB conditions
(c) Class B conditions
(d) Class C conditions.
11. The application of negative feedback to an aperiodic amplifier generally results in
(a) an increase in bandwidth and a decrease in distortion
(b) a decrease in bandwidth and an increase
in distortion
(c) an increase in bandwidth and an increase
in distortion
(d) a decrease in bandwidth and a decrease in distortion.
12. With reference to a radio frequency power amplifier the disadvantage of Class C operation compared to Class B is that
(a) it is less efficient
(b) it cannot be used when the signal to be amplified is amplitude modulated
(c) Class C amplifiers are prone to oscillation
(d) Class C amplifiers cannot be used in push-pull.
13. A transmission line having a characteristic impedance $R+j X$ is fed by a generator with an internal impedance which is also $R+j X$. Maximum power will be delivered to a load connected to the line if the load impedance is
(a) $R+j X$
(b) $R-j X$
(c) R
(d) $j X$.
14. The signals from a teleprinter operating at a speed of 50 bauds are amplitude modulated on to a carrier. The minimum theoretical bandwidth required for transmission is
(a) 50 Hz
(b) 500 Hz
(c) $4,000 \mathrm{~Hz}$
(d) $10,000 \mathrm{~Hz}$
15. Above 100 MHz twin wire transmission line is rarely used, coaxial cable being preferred. The main reason for this is that at these frequencies
(a) twin line becomes lossy due to the increasing resistance of the wires
(b) suitable coaxial cable is easier to make than suitable twin line
(c) twin line radiates away a lot of energy
(d) the fact that the outer of coaxial cable
is at earth potential is advantageous.
16. Telephone lines are sometimes "lump loaded" with inductance at uniform intervals. The purpose of this is
(a) to reduce attenuation
(b) to make the line non-dispersive
(c) to reduce cross-talk
(d) to eliminate high frequencies.

World of Amateur Radio

Amateur Television

An international amateur television conference is to be held in Armentieres, France, during the week-end April 19-20, 1969, when it is expected that enthusiasts from several European countries will join the increasing number of French amateurs who are interested in television transmitting. Mr Cassanhiol (F3DD), 13 rue de Bellevue, Paris, will furnish full details of the programme which will commence at 0900 hours on Saturday, April 19. Cars will be available at Calais to drive overseas visitors direct to the conference, to which ladies are cordially invited.

Considerable interest in amateur television is reported from different parts of Belgium. Among the most active stations are ON4TG/T (Mons) and ON4HV /T (Antwerp) both of whom continue to arrange excellent local demonstrations. ON4GG, ON4HC and ON4ZZ have all constructed equipment for the reception of transmissions from $\mathrm{ON} 4 \mathrm{HV} / \mathrm{T}$ and all report the clarity of vision is equal to that offered by the local Channel 10 commercial station. Signals have also been received from ON4ZK /T. All vision transmissions take place on frequencies around 434.75 MHz while sound is transmitted around 144.54 MHz . ON4HV/T uses a QQEO3/20 valve for transmitting which produces a mean carrier level of about 8 watts. A 40 -element collinear is used as the aerial array.

I.A.R.U. Region I Conference- 1969

With less than three months to go before the Seventh Triennial Conference of I.A.R.U. Region I Societies opens in the Hotel Metropole, Brussels, on May 5th, more than half the subscribing member societies in the division have intimated their intention to be represented. Conference proposals and contributions have been received from a dozen societies and these are now being issued as Brussels Conference (B.C.) documents. Subjects to be discussed range from a German proposal to establish a system of world beacon stations, to a number of Russian proposals designed to give greater prominence to the treatment of amateur radio as a sport with the annual award of gold, silver and bronze medals to the leading "radio sportsmen". Proposals to limit the number of contests and certificates will be discussed, together with a range of v.h.f. subjects put
forward by the R.S.G.B., including one for wider use of the s.s.b. mode of transmission in the v.h.f. bands. The R.S.G.B. will also propose that more consideration be given to plans for reporting to official sources the persistent presence of non-amateur stations in "exclusive" amateur bands. The R.S.G.B. was the first society to set-up an "Intruder Watch" and its methods of reporting "intruders" are to be reported upon fully to the conference. The conference is being organized locally by the Belgian national society (U.B.A.) and the conference secretary is your contributor.

Canadian Licence Fees

Representatives of the A.R.R.L. Canadian Division, the Canadian Amateur Radio Federation, the Radio Amateurs of Quebec, the Saskatchewan Amateur Radio League and the Nova Scotia Amateur Radio Association recently met the director of the telecommunications bureau of the Canadian Post Office Department to discuss the proposal to increase by 400% the annual licence fee charged to Canadian radio amateurs. Among the interesting facts disclosed at the meeting was that approximately 75% of all Canadian licensed amateurs hoid an advanced amateur certificate and that the number of cancellations during the past year (414) had been four times normal. There were 11,000 licensees in force on August 31, 1968. No final decision has yet been reached by the telecommunications bureau but the representatives of Canadian amateur radio hope the arguments put forward, particularly their case for a three- or five-year licence, will lead to a less penal increase in licence fees.

Fox-Hunting Championships

On the continent of Europe, fox hunting (D/F) competitions are a regular summertime activity of many radio societies and clubs. Among the activities arranged by the executive committee of I.A.R.U. Region I Division are triennial European Fox-Hunting Championships. At the conference held in Yugoslavia in 1966 it was agreed to set-up a fox-hunt group under the chairmanship of Col. Carl-Eric Tottie (SM5AZO), of Stockholm, to produce a new set of international rules based on experience gained during past competitions. The proposed new rules have
been prepared and are at present being studied by Region I societies prior to the Brussels conference in May.

The rules have been published as a conference document (B.C.29) a copy of which can be obtained (price 1s. 6d. post free) from the Conference Secretary, G6CL.

'Aeronautical Mobile' contact

After calling CQ on two metres one Saturday afternoon recently F. J. Willshire (G8BKW), of South London, was surprised to hear a strong signal replying and signing WA1 JZB /Aeronautical Mobile. Suspecting that the caller was a "joker", G8BKW was delighted to discover that his CQ call had been answered by the navigator of a U.S. Boeing 707 military jet aircraft which at that moment was cruising at a height of $34,000 \mathrm{ft}$ over Cornwall, having just crossed the Atlantic. The operator, who gave his name as Mo, made contacts with several other U.K. stations before finally signing off.

Top Band DX

The first section of the 1968-1969 series of Transatantic Top Band (160 m) DX tests organized by Stewart Perry (W1BB), Winthrop, Mass., U.SA., was very success?ful, with KV4FZ (Virgin Islands) providing many Europeans with their first KV4 contact. Top Band signals were also reported for the first time from ZB2BY (Gibraltar) and 6W8CW (Senegal) by many participants in the tests. During the first part of the Transpacific Top Band tests many U.S.A. and Japanese stations were worked by KH6GLU (Hawaii). Two Japanese stations (JA2CLI and JA1RQR) succeeded in making numerous contacts with U.S. West Coast stations.

African Safari

David Dunn (GW3XRM), 25-year-old design draughtsman from Cardiff heads a team of four which left in early February on a trans-Africa expedition. During an eightmonth journey through North, East and South Africa, the team will make daily radio contact with Cardiff University and study the reliability of low-power shortwave communications.

N.R.S.A. Convention 1969

The Northern Radio Societies Association convention and exhibition is to be held this year in the Cumberland Suite, Belle Vue Gardens, Manchester, on Sunday, April 27. Details from R. M. Clarke (G8AYD), Hillside, Quickedge Road, Mossley, Ashton under Lyne, Lancs.

Maidstone Rally

Maidstone Y.M.C.A. Amateur Radio Society will hold a mobile rally and fete on Sunday, June 1, to celebrate the Y.M.C.A's golden jubilee.

Literature Received

"The Use of Semiconductor Devices" Pt. 1 is the first of a series to be published by The British Standards Institution, British Standards House, 2 Park St., London W.1. Pt. 1 is called General Considerations and costs 12s.
"Catalogue of Radio, Television and Electronic Books" from The Modern Book Co., 19-21 Praed St., London W.2, lists a wide range of books from a variety of publishing houses. The catalogue costs 2 s .

We have received a great deal of literature from the Du Pont Company, Du Pont House, 18 Breams Buildings, London E.C.4, which is concerned with chemicals for the electronics industry. (1) Plastics: consists of a folder containing two brochures and an article concerned with Teflon, p.t.f.e, and f.e.p. resins. (2) Film: a folder giving information on polyester, polymide and p.v.f. films (Mylar, Kapton and Tedlar). (3): a folder containing information on chemicals for thick films and thick-film techniques. (4) Freon: again a folder, containing information on chemicals and solvents for cleaning electronic assemblies. (5) Is concerned with the production of printed circuits.
(1) WW 401 for further details
(2) WW 402 for further details
(3) WW 403 for further details
(4) WW 404 for further details
(5) WW 405 for further details

Electronic Services (S.T.C.), Edinburgh Way, Harlow, Essex, have produced a supplement for their industrial catalogue. This lists integrated circuits and low-cost epitaxial planar transistors.
WW 406 for further details
(1) "Computer Careers for School Leavers" and (2) "Computer Careers for Graduates" are two booklets produced by International Computers Ltd, ICL. House, Putney, London S.W.15. They cover a full range of employment in design, manufacture, programming and selling.
(1) WW 407 for further details
(2) WW 408 for further details

Details of the laminates and services offered by Tufnol Lid, Perry Barr, Birmingham 22B, are contained in a new catalogue. Materials from Tufnol include paper-and fabric-based phenolic and epoxide laminates and plain and copper-clad glass fabric epoxide laminates.

WW 409 for further details

A useful article on noise measurement techniques is contained in a brochure from Dawe Instruments Lid, Concord Rd. W'estern Avenue, London, W.3. The brochure also gives details of the range of noise measuring instruments produced by the company.
WW 410 for further details
A stereo amplifier with a frequency response that is -1 dB at 30 Hz and 20 kHz and with a typical harmonic distortion of 0.1% is described in a leaflet from Welbrook Engineering \& Electronics Ltd, Brook St., Stockport, Cheshire.
WW 411 for further details
Anybody concerned with using resin will find the latest edition of "Resinotes" published by Cray Valley Products Lid, St. Mary Cray, Kent, of interest.
WW 412 for further details
(1) "Measuring Instruments" and (2) "Communications Equipment" are the titles of the latest catalogues from Rohde \& Schwarz which are available from Aveley Electric Lid, South Ockendon, Essex. Each catalogue describes a wide range of equipment.
(1) WW 413 for further details
(2) WW 414 for further details

A Digital Integrated Circuit Training Aid for home construction is described in a booklet produced by Mullard Lid, Mullard House, Torrington

Place, London W.C.1. Basically it shows how a patch-board can be made up containing four JK-bistables and four dual NAND gates with lamp read-outs and how this set-up can be used to patch-up numerous types of binary counters.
WW 415 for further details
High-speed pen recorders manufactured by Watnabe Instruments, of Tokyo, Japan, are described in a leaflet received from Environmental Equipments Ltd, Denton Rd., Wokingham, Berks. The frequency response is flat from d.c. to 30 Hz with a recording amplitude of 80 mm , or up to 80 Hz using a 40 mm recording amplitude.
WW 417 for further details
"D Subminiature Rectangular Connectors" is the title of the catalogue of Cannon Electric (GB) Ltd, Lister Rd., Basingstoke, Hants. It lists a wide range of connectors and accessories for connectors.
WW 418 for further details
Thyristors, triacs, diodes, fuse links, voltage surge protectors and other components are included in a new short-form catalogue from International Rectifier, Hurst Green, Oxted, Surrey. The catalogue, which is well presented, gives technical data and device outline drawings.
WW 419 for further details
Socket assemblies for crystals manufactured by the American company Augat Inc. are described in a catalogue (No. CS 868) available from Electrosil Ltd, Pallion, Sunderland, Co. Durham. Crystals may be fitted in the holders without adjusting latches or screws and it is stated that the crystals will not shake loose even under the most severe vibration.
WW $\mathbf{4 2 0}$ for further details

H. F. Predictions-March

MUFs are based on a predicted value for the ionospheric index (IF2) of 104. This gives curves almost identical to those of March 1968 for which the IF2 value was 111. Daytime MUFs on northern hemisphere routes are beginning to drop whilst trans-equatorial routes continue to be workable above 25 MHz .

LUF curves were drawn by Cable and Wireless I.td. for particular point-to-point telegraph circuits and serve to indicate when reception on the various broadcast and amateur bands should be possible.

- Median standard MUF
$-\infty-\infty$ Optımum traffic írequency
$-\cdots-\infty$ Lowest usable HF

Answers to "Test Your Knowledge"-10

Questions on page 142

1. (b). For an ideal system the maximum rate at which information can be transmitted is $\log _{2}(1+s / N)$ bits per second, where W is the bandwidth in hertz and $S /{ }_{N}$ the signal-to-noise power ratio.
2. (d).
3. (b). The base bandwidth of a carrier telephone channel is standardized at 4 kHz . This is sufficient for the transmission of intelligible speech, but music restricted to this bandwidth would be very "low fidelity"!
4. (c). The spectrum of a train of rectangular pulses consists of an infinite series of harmonics of the pulse repetition frequency. The pulses suffer littie degradation, however, if the components of frequencies greater than the reciprocal of the puise length are removed. Removal of components of lower frequencies than this distorts the shape and reduces the amplitude of the pulses.
5. (a). Solution (b) is correct only if the impedance is the same at the input and output.
6. (d). A transmission line is a linear circuit. Harmonic distortion can be produced only by a non-linear component.
7. (d). This is the basis of diode mixing. An appropriate tuned circuit, included in series, will develop a volrage at the desired difference frequency.
8. (d). The pulses representing the signals to be transmitted are interposed so that each signal in turn occupies the whole available bandwidth.
9. (c). This is the "sampling theorem".
10. (d). For class $A B$ or class B working the devices must be in push-pull.
11. (a). The gain of the amplifier is, of course, reduced.
12. (b). The amplitude of the output of a class \mathbf{C} amplifier is not proportional to the amplitude of the grid input.
13. (b). This follows from the maximum power transfer theorem. Notice that the load does not correctly terminate the line.
14. (a). The minimum theoretical base-bandwidth in hertz is half the signalling speed in bauds. The modulated carrier will require twice this bandwidth.

15. (c)

16. (a). For a normal telephone line adding inductance reduces the attenuation and also makes the line less dispersive. The amount of extra inductance which would be required to make the line non-dispersive, however, is generally far greater than can practically be added.

List No. D.810/G/Colour

List No. D. $280 / \mathrm{M} /$ Colour

List No. 0.590/M/Colour

Lise No. 0.862/Colour
A heavy duty Signal Lamp of open construction. The glass lens is available in five colours and is held by a chromed metal bezel. The modern design B.C. lampholder accept Pygmy Sign Lamps or Indicator Neons of the same size which are replaceable from the front or rear.

This medium sized model, with S.E.S. lampholder. represents a range of over twenty types. The basic differences are lampholder and/or body length. depending upon lamp preferred, but there is also a choice of plastic or glass lenses and/or plastic or metal bezel.

Two models representing different types of small Signal Lamp. D. 590 is typical of the small open construction range and D. 862 the tubular bodied types. Variations have different lampholders lens shapes and bezels.

Three typical Miniature types: 0.805 live body. S.6/8 lamps, D.674/1 insulated body. L.E.S lamps and $\mathbf{0 .} 22$ the latest model in this range accepting L.E.S. lamps.
List No. D.805/Colour
List No. D.674/1/Colour
List No. D.22/Colour

List No. D. 91 a/Colour Nolts

List No. D.925/Colour/Nots

Two neon Signal Lamps from our large range, most have in-built neons + resistor, are available for 110 V or 250 V . working and have a choice of clear or red lenses and normal or green neons.

SEND FOR BROCHURE NO. 1502/C FOR DETAILS OF OUR FULL RANGE A. F. BULGIN \& CO. LTD., BYE-PASS ROAD, BARKING, ESSEX. manufacturers of electrical and electronic components
TELEPHONE: 01-594 5588 (12 LINES) Private Branch Exchange

Real and Imaginary

By "Vector"

"Tall oaks from little acorns grow"

Let us consider the dossier of Jim Bandstop, electronics engineer and ex-group leader of Gargantuan Laboratories Inc. We'll start from the day when Jim, sitting moodily in his glass cage, sees the light. He is but a tooth on a small cog in a mighty machine. He is a goldfish in a highly expensive bowl. He is a hapless buffer between the chief of research who wants the impossible done yesterday and his junior minions whose taste and fancy run more towards the curves in the typing pool than on the square waves displayed on the $£ 5000$ analyser (which is at the moment earning its keep by supporting two cardboard cups of chateau automatique coffee).

It is at this point that a megajoule laser beam hits Jim Bandstop between the eyes. He has had enough. He wants out. The simple life; that's it. Down in the country, running his own small business. Better to be a big frog in a tiny pool-and all that jazz.

Going it alone

A year passes and his dream has come true. A small workshop in an olde-worlde village stands monument to Jim's resolve. And in other ways the year has borne fruit. Something of a level-response genius himself, Jim initiated one or two rather special hi-fi amplifier circuits and has supervised their development, skilfully hidden within the legitimate jobs in the lab. Now he is in the custom-built hi-fi market as a one-man manufacturer.

At first the going is sticky, for Jim is horning in on a limited market. But his designs are good and he has astutely established contacts beforehand, so it is not long before he is working all the hours there are to keep up with the demand. Mrs. Jim deals with the paper work while Jim does the assembly and test work. True, the idyll of life in the country has vanished, because neither has time to stand and stare; but apart from that (and some interference from H.M. Inspector of Taxes) all goes as merrily as a marriage bell. (H.M. Inspector, who spends his weekends wringing blood out of stones for practice, resolutely refuses to accept Jim's figures and insists on receiving them via a chartered accountant. The first extraneous overhead has arrived.)

Orders pile up and Jim decides to take on some help. He engages an experienced wireman, and a youth to do the odd jobs.

This, he decides, makes things much more efficient. It leaves him free to do the design work-the thing he is best at-and at the same time to keep a close eye on everything else. He can now diversify from hi-fi amplifiers into rather more ambitious enterprises.

Naturally, there are snags. Overheads begin to mount. Inspectors of this and that arrive at the workshop and insist on highly expensive alterations to the structure. In brief, the expansion exercise, which looked so profitable on paper, does not pay off to the same extent in reality. Nevertheless, the turnover increases considerably and things are looking up.
The trend continues; Mrs. Jim retires to go into production on her own account and her place is filled by a secretary and a typist. Jim changes from sweater and slacks to a neat business suit and is less preoccupied by design than by the machinations of the Income Tax Inquisitors. Both the plant and the number of employees swell visibly every year.
The time arrives when a further large expansion is desirable; a move to an establishment which might be properly described as a factory is clearly indicated. Jim gets out his neglected slide rule and does some quick sums. The simple life idyll is long since past. He must now move nearer to civilization, which means a far more expensive site; to get the kind of chassis he wants a machine shop is necessary, with a servicing workshop to keep the machines going. White-collar staff must also be imported to deal with the paper-work. All of them essential to the scale of the enterprise but parasitic in terms of actual production.

Ruefully Jim realises that a move into manufacture (as distinct from assembly) is going to take far more cash than he can provide. The solution obviously is to float a public company, and, surprisingly, this proves to be far easier than he would have expected.

In due course Bandstop Limited comes into production, with Jim (but now James) as managing director. An executive-type car is now essential, of course, and this is the precursor to other "essentials". The capacity of the factory is such that advertising becomes a permanent fixture on the debit side. Bandstop must take space at exhibitions; not so much that the firm can afford to do so as that it cannot afford not to be among those present.

The first few years leaves the shareholders dissatisfied with the pickings. James, who (as Jim) had achieved his success with first-class design and firstclass components, now finds himself under considerable pressure to bring up the profits by using cheaper materials and components. Not to put too fine a point on it, he receives an ultimatum-do it or get out. He does it. A company can never stand still. It must either go forward or back. By ruthless pruning on materials, James pushes this forward, trading on his past reputation for quality regardless of price. Now, however, he finds himself out of the limited quality market and engulfed in the run-of-the-mill, mass produced, squawk-box ratrace. Efficiency consultants appear upon the scene followed by time-and-motion study and those other ideologies that many of us know so well; all perfectly justifiable on paper, but all specialist little empires. Human nature being what it is, the first concern of the empire builders is to devote much effort towards justifying the further expansion of their domains (Who was it who said 'Lies, damned lies and statistics’?).

Parasitical growths

At the beginning of this yarn, Jim could control his business quite efficiently using only his brain and a simple filing system. James, managing director of Bandstop Ltd, is absolutely incapable of doing so in detail. Now his mass-production plant has to bear the burden of an ever-growing battalion of control departments, plus supporting services of all kinds. All essential to the size of the organization, all beneficial in some degree or other, but all, in the final analysis, parasitical growths drawing sustenance from the production area.

The final phase in the Bandstop saga is the company's take-over by a mammoth group. Either Bandstop Lid's profits and assets will now be milked to feed a sagging member company or its structure will be "rationalized" to prevent over-capacity within the group as a whole. James, who has for a long time been the biggest frog in a fair-sized pool, can now resign himself to taking orders from the Lord High Executioner Bullfrog, or resign. It is at this juncture we will leave him, making his decision.

The "One-Man-Bandstop" firm can, if it is on its toes, make rings around the mammoth group in terms of quality-for-price, and also in terms of deliveries. Concerning this last, I once traced the history of an order for an in-stock capacitor through the system of a large firm. The outcome shook me. By sticking to the established paper-work procedure the time-lapse between receipt of order and its posting to the customer could not possibly be less than 46 days. And that assumed that everyone concerned dealt with his piece of paper immediately it arrived on his desk. The resistors probably cost fourpence to make; taking everyone's time into account they were probably accounting for about $£ 15$ worth of the firm's money before they left the works. At, say, a shilling apiece to the customer.

Isn't it time there was some re-thinking about company structure?

SURGE SUPRESSED SOLID STATE

VOLTAGE CONTROL

- WITHSTANDS HEAVY INDUCTIVE LOADS
\star A.C. MOTOR SPEED CONTROLLER UP TO 1 h.p.
* TUNGSTEN : QUARTZ-IODINE LAMPS. (Studio \& Theatre dimming) POT. Concrol fitced or remote. INPUT 240 VAC 50 cps . OUTPUT 0.240

Synchronous motor CAM TIMERS

* QUICKER DELIVERIES
* 1.12 ADJUSTABLE CAMS
* 10 amp. CHANGEOVER MICRO-SWITCHES FITTED, SCREW OR. 25 in. AMP TERMINALS - DESIGNED FOR CONTINUOUS OPERATION Special Cams and Programming to
Customers' requirements
Quotation for 50 and upwards
COMPLETE PHOTO-ELECTRIC SENSOR in one unit
* REFLECTIVE TYPE WITH BUILT-IN LIGHT SOURCE * WILL AL5O OPERATE FR
REMOTE LIGHT SOURCE + MATCHBOX SIZE
K SENSES ANY OBJECT-COLOURS, THICK SMOKE
Operates from 12 V.A.C. Output signal 0.2 amp .100 V.
Approximatay $£ 5.10 .0$
 dependent on quantity

LATEST SOLID STATE VARIABLE VOLTAGE CONTROL * COMPLETELY SEALED \star СOMPACT
\& PANEL MOUNTING
230 v. A.C. Input $25-230$ volts outpue 5 amp. model $\varepsilon 8 / 7 / 6$
10 amp. model $\in 13 / 15 /$ P. P. Extra
CONSTANT VOLTAGE TRANSFORMERS automatic mains stabiliser

- No attention
- No Maintenance
- No Moving Parte - Corrected Wave Input: 195-250v. Output: 240 A . C . Accuracy: $=1 \%$ Capacity:
2 models a vailable
150 watts or 225 watts
Maintaln "spot-on" test-gear readings at all times. Fitted signal lamp and swifch.
Weight: 21 lb .
Size: $10 \times 6 \times 4 \mathrm{in}$. high. $\leq \mid 2.10 .0{ }_{20 /-}^{\mathrm{C} .} \mathrm{P}$.

20 Amp. LT. SUPPLY

 UNITAs supplied to Min. of Defence and Crown Agenes for overseas Gove. LATEST DESIGN HEAVY DUTY $12 / 24$ VOLT D.C. Output: Adjustable up to 20 AMPS. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, 0.20 amp . meter. Size $16 \times 12 \times 20 \mathrm{in}$. high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb . input: 220/230/240 v. A.C. 50 cycles. ONLY £32.10.0 Plus $\begin{gathered}\text { G.B. (Inland) }\end{gathered}$

30 Amp. LT. SUPPLY UNIT

UP TO 24 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading \star Fitted volemeter and ammeter. \star Instantaneous overload cut-out .
£55.0.0
C. \& P. 40/-G.8. (Inland).

Entirely suitable for plating plants,
Laborasory supplies, etc
5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification $\left\{\begin{array}{l}\text { Input: } 240 \text { v. A.C. } \\ \text { Output: } 0-260 \text { v. A.C. } 0-240 \text { v. D.C. }\end{array}\right.$
\star Smooth stepless voltage variation from 0 -Max. \star Current consistent t throughout the controlled range. \star Ammeter and voltmeter fitted, and neon indicator. \star Fully fused input and output. Strong steel case, with carrying handle and rubber feet. $11 \times 7 \times 14 \mathrm{in}$. high. € 30 . 0.0 Made in England.
CURRENT PRODUCTION-BUY DIRECT FROM MANUFACTURER

SINCLAIR Z.12 12 WATT INTEGRATED HI-FI AMPLIFIER \& PREAMP

12 watts R.M.S. continuous sine wave output

This is the recommended amplifier for those requiring greater power and a high degree of versatility. This eight special-transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $\mathbf{Z .} 12$ performs satisfactorily from a wide range of voltages and it can readily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the Z .12 to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size- $3^{\prime \prime} \times 1 \frac{3}{4} \times 1 \frac{1}{4}$ ". Class B Ultralinear Output: Frequency response from 15 to $50.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohms speakers may used in parallel: Input 2 mV into 2 Kohms : Output 12 watts R.M.S. continuous sine wave (24 watts peak): 15 watts music power (30 watts peak): Power require89/6 ments $6-20$ V.d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.

SINCLAIR MICROMATIC

- tunes over medium waves
- remarkable range and power
- magnetic ear-piece

SINCLAIR STEREO 25

De Luxe Pre-amplifier and Control Unit for Z .12 or any other good stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ within $\pm 1 \mathrm{~dB}$), radio, and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Nolume/Balance/Input are solid aluminium. Size $-6 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2} \frac{1}{2} \times 2 \frac{1}{2}$ " plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ. 4
 STABILISED MAINS POWER SUPPLY UNIT

Heavy duty transistorised power supply unit to deliver 18V.d.c. at 1.5A Designed specially for use with two Z.12 Amplifiers. etc., together with Stereo 25. Built. tested and guaranteed.
£4.19.6

the world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for yourself or ready built. tested and guaranteed. Its range, power and selectivity must be experienced to be believed: its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. The neat black case with aluminium fron panel and tuning control give the Micromatic elegantly modem appearance. Kit in fitted pack with earpiece, solder and instructions

ᄃir들ir

an 114

ACOUSTICALLY CONTOURED SOUND CHAMBER

- FREQUENCY RESPONSE 60-15,000 Hz
- LOAD HANDLING CAPACITY UP TO 14 WATTS
- BRILLIANT TRANSIENT RESPONSE
- 8 OHMS IMPEDANCE
- OF COMPACT AND ORIGINAL DESIGN

the most challenging loudspeaker development in years

Price is no longer an obstacle to the enjoyment of high-fidelity loudspeaker reproduction; nor is size a problem either. In the Sinclair 0.14 you will find a loudspeaker of such remarkable quality and so compactly and attractively styled that you will want to change to Sinclair as soon as you hear it. At Trade Exhibitions and both the 1968 Audio Fairs, experts have been greatly impressed on hearing the 0.14 against speakers costing many times more, proving beyond question that good reproduction does not have to be expensive.
Tests by an independent laboratory with a 0.14 drawn from stock show exceptionally smooth response between 60 and $15,000 \mathrm{~Hz}$ and well sustained output beyond both these figures. Its remarkable
transient response ensures beautifully defined separation of voices, instruments, etc. Much of the success of this Sinclair design comes from the use of materials quite different from those to be found in conventional speaker manufacture, and the unusual contours of the seamless, sealed pressure chamber allow the 0.14 to be conveniently positioned on shelves, the floor, in wall corners or flush mounted. The Sinclair 0.14 is finished in matt black with solid aluminium bar trim on the front. Size: $9 \frac{3}{4}$ in. square $\times 4 \frac{3}{2}$ in. deep. Try it in your own home by sending off the order form today. If you are not satisfied your money plus the cost of posting the 0.14 back to us will be returned in full.

post free anywhere in the u.k. £7. 19.6

SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when vou recelve if from us, your money will be refunded in full at once and whout quastion. Full sarvice facilities avallable to all
pufchasers.

EINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD, CAMBAIDGE Telephóne: OCA3-52731

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

phan

REGORD MAINTENANGE TAKES ANOTHER BIG STEP FORWARD! With these latest advanced products

NEW HI-FI PARASTAT

(Req'd.) Pat. App. 58216/67

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937
WW-108 FOR FURTHER DETAILS

LONDON microphones

Quality sound-at low cost
The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

NEW to the range: LM300 dynamic cardioid microphone incorporating top-quality movingcoil capsule. Gives maximum front-to-back ratio styling, robust metal case, natural anodised finish

	Low imp.	Dual imp.
LM 300 (Cardioid)	£1110	£12 100
LM 200 S	¢5 19	£6 15

LM 200S
E5 196
$\begin{array}{llllll}£ 5 & 19 & 6 & £ 6 & 15 & 0 \\ £ 4 & 19 & 6 & £ 5 & 15 & 0\end{array}$
E3 18
Home or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W.8.
Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894

WW-109 FOR FURTHER DETALLS

TACHOMETERS

\star High linear output

* Low driving torque
* Bidirectional output to $\frac{1}{4}$ of 1%
tolerance
* Brush life $100,000 \mathrm{hrs}$. or 10 years
continuous operation
* Temperature compensated
\star Ideal as speed transducers
Send for full details of these and other electronics products including speed control, speed indicators, etc., to:

NECO ELECTRONICS (EUROPE) LTD

WALTON RD., EASTERN RD., LONDON OFFICE: NORTH ST., COSHAM, HANTS. LAPHAM COSHAM $71711 / 5$ TEL: $01-622$ 0141/3 \& 3211/5

TELCDN METALS LTD., Manor Royal, Crawley, Sussex.
Telephone: Crawley 28800 Member of the BICC Group of Companies.

NEW
Litestat

TEMPERATURE

 CONTROLLED SOLDERING INSTRUMENTS- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable while running
- Available for all voltages
- Built-in indicator lamp
- Cool, comfortable, unbreakable Nylon handle
- Range of bit sizes, Copper or Philips ironcoated

Please ask for leaflet LT. 5

LIGHT SOLDERNG DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone: 01-688 8589 and 4559

\section*{| \mathbf{H}^{*} | RADFORD |
| :--- | :--- |}

In an article in the Journal of the Audio Engineering Society for July 1967, Bart N. Locanthi, Vice-President, J. B. Lansing Sound Inc. describes the development of an ultra low distortion direct current audio amplifier. In it he says ". . . to get the highest accuracy possible, an English made RADFORD Low Distortion Oscillator was used which has less than 0.01% harmonic distortion at 20 kHz .'

LOW DISTORTION OSCILLATOR (Series 2)
An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification
Frequency Range: $\quad 5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges).
Output Impedance:
Output Voleage: Outpur Attenuation: Sine Wave Distortion:

Square Wave Rise Time: Monitor Output Meter: Mains Input:
Size:
Weighe
Price:
600 Ohms.
10 Volts r.m.s. max.
$0-110$ dB continuously variable.
00 from 10 Hz and 100 kHz increasing to
0.015% at 10 Hz and 100 kHz
Less than 0.1 microseconds.
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$
$174 \times 11 \times 8$ in.
251 b.
$\mathrm{E} \mid 50$.

DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification
Frequency Range:
Distortion Range:
Sensitivity:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements: Size:
Weight:
Price:
Descr
RADFORD LABORATORY INSTRUMENTS LTD.
ASHTON VALE ROAD, BRISTOL 3
Telephone: 662301/3

M. R. SUPPLIES, LTD.,

(Established 1935)

Ooivernally recogniaed an suppiliers of UP-TO-DATE Material, which does the job properly. mastant deivery. Batisiwition assured. Pricea net.
FAN PLOW EXTRACTOR FABS, Ondoubtedily toderg greateat bargain for dormestic or induatral
 Which open/ when motor 1 in,
only $\mathbf{E} 7 / \mathbf{5} / \mathbf{0}$. (despatch $\$ / 0$),
miniture ruming time meters (Rengamo). We have areat deenande tor the remarkable
 induatrial and domentic applications to indicato the running time of any electrical apparatus, easy to In intall, 63/- (dea. $1 / 6$).
SYECHRONOUS TIME switches (Another one of our popular apecialites) 200/240 च. 50c., for accurnte pre-set awitching operations. Bangamo B.25t, prowiding up to 3 on-oti operitiona per
 pactly housed 4 in. dia., 3 lin deep, $88 / 4 / 8$ (den, $4 / 8)$. Aloo smme orcellent make new domestio

ELECTRIC FARS (Pappet), for extracting of blowing. The moat exceptional ofer we have yet made. $200 / 250$ v. A.C. Induction motor-silent runaing. 2,800 r.p.m. duty 100 C.P.M. Only
 8MALL GEARED MOTORS. In eddition to our well-known range (Liat GM. Sb4), we offer small open type B-P. Units 200/250 v. A.C., L. 6, 12, 24, 60 r.p.ra., approx. Bla. long, with lin. shant 69/6 (dea. $3 / \mathrm{s}$.
IIILATURE COOLIMG FANs. $200 / 250$ v. A.C. With open type induct lon motor (no interference), Overall $4 \ln . \times 3$ kin. $\times 2$ in. Fitted 6 -biaded metal lmpeller. Xden for projection lamp pooling hight duty extractors, etc., still only $28 / 6$ ((des. 4/6).
AIR BLOWERS. Highly efficient units Atted traductlon Lotally enclosed motor $230 / 260 \mathrm{\nabla} .50 \mathrm{e}$. 1 ph. Model BD.28. 60 CFM (free air) to 11.5 CFM at. 15 WG (nize approz.) $6 \times 6 \times 7 \mathrm{ln}$. Outlets

sYmchronous eLectrtc cloce novements (an mentioned and recommended to many
 beck duut cover, 35i-(dee. 1/6). Set of three brases handa in good plain atyle. For 5/7in. dis. 2/6 For $8 / 10 \mathrm{dis} .3 / 6$ net.
SYMCERONOUS TIMER MOTORs (8angamo). 200/250 v. 50 c/a Self-ptarting 2 in. de. $\times 1$ in. deep. Chotee of tollowing apeeds: 1 r.p.m.. 12 r.p.h., 1 r.p.th. ${ }^{1}$ rev. 12 hours. 1 rev. per day Any one $38 / 6$
(de. $1 / 6)$. (des. 1/o.
Small bench arifiers. 200/230 v. A.C./D.C. With two 3in. dlameter wheele (coarree and Ces). Beach mount. very uneful hounehold of industrial units. $8^{2 / 717 / 6}$ (des, $8 / \mathrm{o}$). ETTRACTOR FANS. Ring mounted all metal conarruction. T/E induetion motor, allent operm.

immediate delivery of staart Centifigail Pumph. including atalness ateel (most modela).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01.636 2958)

WW-114 FOR FURTHER DETAILS

Wholeste and
Retail enuiries
o: LINEAR PRODUCTS LTD Retoil enquiries to:
ELECTRON WORKS, ARMLEY, LEEDS

REPAIR SERVICE 7-14 DAYS
We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROYED

CONTRACTOR TO H.M. GOVT.

WW-116 FOR FURTHER DETAILS

$J O H N$ SMITH LTD.
09 SPON LANE - WE8T BROMWIGH - STAFFS. TEL. $021-5532516$ (3 LINES) WOODS LANE-CRADLEY HEATH - WARLEY WORCS. TEL. CR 69283 (3 LINES)

APEAK SOUND

aids to economical hi-fi

ES/10-15 BAXANDALL SPEAKER

AS DESCRIBED IN WIRELESS WORLD

''Rolls-Royce standards""

SAYS RALPH WEST.

Hi-Fi News

OCTOBER, 1968

"The immediate impression was of a thoroughbred
speaker, smooth and effortess...voices both speaking and singing were uncannily real
Once again we see the possibility of Rolls-Royce standards from comparatively cheap components . . . when you know how." Hi-FiNews Test Report. Oct. 1968.

A REVOLUTIONARY ADVANCE IN DESIGN LOGIC

THE PEAK SOUND ES/10-15 is the designer-approved kit of the sensational ioudspeaker designed and described by P. J. B axandall in Wireless World (Aug. \& Sept. 68). The frequency response extends from $60.14,000 \mathrm{~Hz} .(100-10.000 \mathrm{~Hz} . \pm 3 \mathrm{~dB})$. Everything is supplied to specification-the $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$ afrormosia teakfinished cabinet is cut and drilled for simple assembly: the equalising circuitry is ready for Immediate installation. The finished product is completely professional. It will astonish and delight you beyond words. See what Hi-Fi News says in full in its detailed report in its October issue. It is hard to believe so modestly priced a speisker could get so glowing a report.

Equaliser assembly $-36 /$ (${ }^{(P . P}$. $1 / 6 d$). $\begin{array}{ll}\text { Speaker Unit- } \\ 38 / \text { P. P. } & 8 / 11 \mathrm{~d} .\end{array}$ (P.P. 5/-). Cabinet parts (complete) £6.3.6, P.T. 12/8d. (Carr. 8/6d.). TOTAL COST

$$
\mathrm{f} 9.17 .6
$$

+ E1.1.7 P. T.
(Carr. 11/6d.)
Cross-over for additional bass unit 22/6d. IP.P. 3/6d.

a new Peak Sound hi-fi power amplifier

THE PEAK SOUND PA $12-15$ is a new power amplifier of excellent design and performance. Features include Class B output of 12 watts R.M.S. into 15 ohms:

43 dB neg. feedback frequency response from 10 Hz to $45 \mathrm{~Hz} \pm$ Bull and rested
0.5 dB : distortion at max. output less than 0.1%; input sensitivity400 mV ; power requirement 45 V D.C. which can be obtained from the Peak Sound heavy duty power unit (price $\mathbf{~ 5} .5 .0$). Size 5 " $\times 3$ n" $^{\prime}$ 1\%". Selected high gain closely matched transistors are used throughout. Full instructions are provided This sensibly designed throughout. Full ant. Pre-amp deralls available.
f5.19.6
(P.P. 2/6d.)

Kit. less heat sink
and base board.

Heat sink, drilled with bolts. nuts \& washers 6/-(P.P. 1/60.).
From dealers or sent direct in case of difficulty, POST FREE.

PEAK SOUND (HARROW) LTD.
 32 ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY. EGHAM 5316

```
TO PEAK SOUND
Please send
for which I enclose f
NAME
ADDRESS

SUIICON N.P.N. TRANSISTORS. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at \(1 / 6\) each or 45 per 100 .
-12 VOLT TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12 in. TUBE. Current drain only 700 mA ! Complete and tested \(\varepsilon 2 / 19 / 6\) only! Or in kit form:


TRANSISTORS
OC200, OC203, OC204, all at \(2 /-\) each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A 2G378A, all at \(1 / 6\) each.
Transistors similar to OC44, OC71 and OC72, all 1/- each.
Unmarked, untested transistors, \(7 / 6\) for 50 .
LIGHT SENSITTVE TRANSISTORS (similar OCP 71), 2/- each.
30 watt transistors (ASZ17), \(10 /=\) egch
30 watt transistors (ASZ17), 10/5 each.
ORP 12 Cadmium sulphide light sensitive resistors \(9 /-\).
RECTIFIERS
BY100, 800 p.i.v., \(2 / 6\) each, 24/- per doz., \(87 / 10 /-\) per 100,250 per 1,000 . BYZ13, 6-amp, 400 p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS
\(0.001 \mu \mathrm{~F} 400\) volts FAR BELOW COST PRICE!

\(\begin{array}{lllll}0.0015 \mu \mathrm{~F} \\ 400 \text { volts } \\ 0.0018 \mu \mathrm{~F} & 400 \text { volts } & \because & \because & 3 d \\ 3 d & 0.15 \mu \mathrm{~F} & 160 \text { volts } \\ 0.22 \mu \mathrm{~F} \\ 160 \text { volts }\end{array}\)
\(\begin{array}{lll}0.0018 \mu F & 400 \\ 0.0022 \mu \mathrm{~F} & 400 \text { volts }\end{array} \quad . \quad . \quad 3 d \quad 0.22 \mu \mathrm{~F} 160\) volts

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. \(10 /-\) per 100 .
PAPER CONDENSERS, MIXED BAGS, 0.0001 to \(0.5 \mu \mathrm{~F}\). \(12 / 6\) per 100.
RESISTORS! Give-away offer! Mixed types and values, \(\}\) to 1 watt. \(6 / 6\) per \(100,55 /-\) per 1,000 . Individual resistors 3 d each. Also to 3 watt close tolerance. Mixed values. \(7 / 6100,55 /-1,000\).
WIRE-WOUND RESISTORS, 1 watt to 10 watts. Mixed bags only.
16 for \(10 /-\) 16 for \(10 /\)-.
RECORD PLAYER CARTRIDGES


Small pick-up arms complete with cartridge and needle, io/- only.

\section*{UNREPEATABLE OFFER!}

GIANT SELENIUM PHOTO-CELLS. OUTPUT UPWARDS OF 5ma AT 6 6V FEW ONLY 10'- EACH

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/- only TRANSISTORISED SIGNAL TRACER KIT 10/- only. TRANSISTORISED REV. COUNTER KIT 10/-.

\section*{VEROBOARD}
\(2 \mathrm{hin} . \times 1\) in 0.15 in matrix \(1 / 1\)
3 in \(\times 2\) in 0.15 in. matrix \(3 / 3\)
\(17 \mathrm{in} \times 2\) lin. 0.15 in. matrix \(11 /-\) \(3 \operatorname{in} \times 3 \operatorname{inn} 0.15 i n\). matrix \(3 / 11\)

17 in \(\times 3\) in 0.15 in. matrix \(14 / 8\) \(\operatorname{Sin} \times 2\) in
5 in \(\times 3\) in \(0.15 i n ~ m a t r i x ~\)
\(5 / 6 / 6\)

3 i in \(\times 3\) iin \(\quad 0 \cdot 1 \mathrm{in}\) matrix \(4 / 9\)
 Spot Face Cutter 7/6 Pin Insert Tool 9/6. Terminal Pins 3/6 for 36 .
SPECIAL OFFER!
Five 2 itin \(\times 1 \mathrm{in}\). Boards and a cutter 9/9.
MULTIMETERS. 20,000 ohms per volt.
Ranges : a.c. \(1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}\)
d.c. \(250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}\).
d.c. 2sance: \(0 / 60 \mathrm{k}\), \(250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}\).

Special price £4/-/- only.

\section*{ELECTROLYTIC CONDENSERS}
\(0.25 \mu \mathrm{~F} \quad 3\) volt \(\mid 4 \mu \mathrm{~F} \quad 12\) volt
\(1 \mu \mathrm{~F} \quad 6\) volt \({ }_{4 \mu \mathrm{~F}}^{4 \mu \mathrm{~F}} 25\) volt
\begin{tabular}{ll|ll}
\(1 \mu F\) & 20 & volt & \(5 \mu F\) \\
\(1.25 \mu F\) & 16 & volt & \(6 \mu F\) \\
\hline & 6 volt \\
\(1 \mu \mathrm{~F}\)
\end{tabular}
\(\begin{array}{llll}2 \mu \mathrm{~F} & 3 \text { volt } & 8 \mu \mathrm{~F} & 3 \text { volt } \\ 2 \mu \mathrm{~F} & 350 \text { volt } & 8 \mu \mathrm{~F} & 12 \text { volt }\end{array}\)
\begin{tabular}{lc|ll}
\(2 \mu \mathrm{~F}\) & 350 volt & \(8 \mu \mathrm{~F}\) & 12 volt \\
\(2-5 \mu \mathrm{~F}\) & 16 volt & \(8 \mu \mathrm{~F}\) & 50 volt
\end{tabular}
\begin{tabular}{ll|l}
\(3 \mu \mathrm{~F}\) & 25 volt & \(10 \mu \mathrm{~F}\) \\
\(3 \cdot 2 \mu \mathrm{~F}\) & 64 volt & \(10 \mu \mathrm{volt}\) \\
\hline \(2 \mu \mathrm{~F}\) & 25 volt
\end{tabular}
\(\begin{array}{cc}3 \cdot 2 \mu \mathrm{~F} & 64 \text { volt } \\ 4 \mu \mathrm{~F} & 4 \text { volt }\end{array} \underset{10 \mu \mathrm{~F}}{20 \mu \mathrm{~F}} \quad 25\) volt
SKELETON PRE-SET POTENTIOMETERS \(100 \Omega\)
\(100 \mathrm{~K} \Omega\)
\(200 \mathrm{~K} \Omega\) \(500 \mathrm{~K} \Omega\) 500 K
680 K
PRE-SET SLIDERS
\(\begin{array}{rr}25 \mu \mathrm{~F} & 6 \text { volt } \\ 25 \mu \mathrm{~F} & 12 \text { volt }\end{array}\)
\(320 \mu \mathrm{~F} \quad 10\) volt \(400 \mu \mathrm{~F} \quad 6.4\) volt \(\begin{array}{ll}25 \mu \mathrm{~F} & 25 \text { volt } \\ 30 \mu \mathrm{~F} & 6 \text { volt }\end{array}\) \(\begin{array}{ll}30 \mu \mathrm{~F} & 6 \text { volt } \\ 30 \mu \mathrm{~F} & 6 \text { volt }\end{array}\) \(\begin{array}{ll}30 \mu \mathrm{~F} & 10 \text { volt } \\ 50 \mu \mathrm{~F} & 6 \text { volt }\end{array}\) \(50 \mu \mathrm{~F} \quad 6\) volt \(\begin{array}{ll}64 \mu \mathrm{~F} & 2.5 \text { volr } \\ 64 \mu \mathrm{~F} & 9 \text { volt }\end{array}\) \(\begin{array}{ll}64 \mu \mathrm{~F} & 9 \text { volt } \\ 100 \mu \mathrm{~F} & 9 \text { volt }\end{array}\)

All at 1/- each.
20 assorted
(our selection) - 10/-

ORMERS \(2 / 6\) each.
SMALL TRANSISTOR DRIVER TRANSFORMERS \(2 / 6\) each. CRYSTAL OR MAGNETIC LAPEL MIKES. 10/- each.
CRYSTAL TAPE RECORDER MIKES. \(12 /-\) each.
Orders by post to:

\section*{G. F. MILLWARD}
drayton bassett, near tamworth. staffs.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock
Exchanges, 231 Alum Rock Road, Birmingham 8 .

\section*{HOWELLS RADIO LTD. \\ MINISTRY OF AVIATION INSPECTION APPROVED}

TRANSFORMERS
STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION. TOROIDS, ETC
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
\begin{tabular}{llll} 
Driver & \(22 / 6 \quad\) Carr. & \(2 /-\) \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { Mains } & \text { 29/6 Carr. } & \text { 4/6 }\end{array}\)
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-.

\section*{*MAINS TRANSFORMERS}
\(350-0-350\) v. \(60 \mathrm{~mA} ., 6.3\) v. 2 A. £1/15/-. Carr. 4/6.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
\(500-0-500\) v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
\(525-0-525\) v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. £5/5/-. Carr. 6/6.

\section*{*LOW VOLTAGE}

30-0-30 v. 4 A. \(£ 2 / 12 / 6\). Carr. 5/6.
28 v .1 A., 28 v .1 A., \(28 \mathrm{v}\).1 A., 28 v .1 A., \(30 \mathrm{v}\).250 m A., 84/5/6. Carr. 5/6.
*PRIMARIES 10-0-200-220-240 v.
70V LINE MATCHING TRANSFORMERS
Fitted with terminal panel, taps at \(0.5,2,4\) and 8 W into 15 ohms 17/-. Carr. 2/-
Flying leads, taps at \(\frac{1}{2}, \frac{1}{2}, 1,2\) and 4 W into 3 ohms 14/6d. Carr. 2/-
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY CASH WITH ORDERS PLEASE
Cariton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411
WW-119 FOR FURTHER DETAILS

\section*{SPECIALIST SWITCHES are again giving the fastest switch service in the world}

\section*{FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET}

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch sẹrvice in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

\section*{Please note our address: \\ SPECIALIST SWITCHES P.O. Box 3, \\ CHARD, SOMERSET}

Write for design charts and prices or TELEPHONE-CHARD 3439


\section*{at work and at home!}

Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers :
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting

\section*{Jack Peters uses a WELLER}

performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder . . . 4 seconds and the job's done.
LOW INITIAL COST. The range of Marksman Irons\(25,40,80,120\) \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.


\section*{AVONCEL TROLLEYS}

FOR HOME AND EXPORT LARGE RANGE OF STANDARD

MODELS from £10. Also CUSTOM BUILT
TO SUIT YOUR EXACT REQUIREMENTS LOW COST • TOP QUALITY - QUICK DELIVERY QUANTITIES: 1 OFF TO 1,000 OR MORE
- AVONCEL -

AVON COMMUNICATIONS AND ELECTRONICS LTD. 318 BOURNEMOUTH (HURN) AIRPORT, CHRISTCHURCH, HAMPSHIRE TEL: NORTHBOURNE 3774

TELEG: AVONCEL CHRISTCHURCH
WW-122 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SBM

Continuous Rating \(3_{\frac{3}{4} / b \text {. at } 1 \text { in }}\) Instantaneous up to 16 lb .


Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.

KNAPPS LANE, CLAY HILL. BRISTOL 5. TELEPHONE 65-7228/9

Improved! Keviniector


The safest, quick and handy connector for electrical appliances is now available ex-stock
Only \(5^{\prime \prime} \times 3^{\prime \prime} \times 13^{\prime \prime}\) the MAINS KEYNECTOR is designed in modern style and attractive twotone colour. The unit eliminates the need of lerminating the mains inpul load of any electrical instrument or appliance with a plug. Also enables more than one appliance to be connected in parallol and usod slmultaneousily

Rating 13 amp .
39/6
P.P. extra

Send cash with order
1. 28-30 Rivington Street. London. E.C. 2

CYBERNAUT CONTROLS LTD. (ref. W.W. 14 ), \(28-30\) Rivington
WW- 124 FOR FURTHER DETAILS
WW-124 FOR FURTHER DETAILS

\title{
TRANSFORMERS coils CHOKES \\ LARGE OR SMALL QUANTITIES \\ TRADE ENQUIRIES WELCOMED \\ SPECIALISTS IN \\ FINE WIRE WINDINGS \\ MINIATURE TRANSFORMERS \\ RELAY AND INSTRUMENT COILS, ETC. \\ vacuum impregnation to approved standards
}

ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.6532261

CR4.8LZ

\section*{ROUOPTOELECTRONICS from PROOPS nrora \\ New Science Projects combine fascination of Optics with Electronics. \\ INFRA-RED TRANSMITTERS \& RECEIVERS}

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and solid state circuit design is combined with outstanding modulation and switching capabilities to provide infinite possibillties as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc... etc.

INFRA-RED PHOTO RECEIVER - MSP3
Ultra sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical tinks reception. Spectral response 9500 A. Robust, cylindrical package is coaxlal with incident fight to faclitate optical alignment and heat sinking.

85/-

max ratings
Total dissipation (in free atr, \(T_{\text {smb }}=25^{\circ} \mathrm{C}\).) ........ 100 mW . Derating Factor........ \(2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\). Output Current Intensity .........100mA. Voltage.........25V. Operating Temperature.........from Supplied complete with suitable Ienses, full Technical Data and Application Sheets including Line of Sight Speech Link.

GALLIUM ARSENIDE LIGHT SOURCE—MGA 100
Filamentless, infra-red emitter in a robust. sealed cylinder coaxial with beam to facilitate optical alignment and heat sinking.

post free
MAX RATINGS
Forward current If max. D.C . 000 mA . Forward peak current If max. (pk).......6A 6 power dissipation 1-0v.
When mounted on an aluminium hat \(\operatorname{sink} 1 \mathrm{in}\). \(x \frac{12}{} \mathrm{~h}\). \(x \frac{1}{2}\) in
Supplled complete with suitable lenses, full Technical Date and Application Sheets, including Line of Sight Speech Link.

MICRO-MINIATURE INFRA-RED DETECTOR - \(31 F 2\)
siltcon NPN photo-diode of passivated planar construction, suitable for punched card readers. counters. film sound track, etc. -

Infra-red devices (except 31F2) are supplied complete with suitable lenses, technicaldata and typical application information.

\section*{PHOTOCONDUCTIVE CELLS}

\section*{CADMIUM SULPHIDE CELLS (Cds)}

Inexpensive light sensitive resistors which require only simple circultry to work as light triggering units in wide range of dovices, such as: flashing or braakdown conscious - use with A.C. or D.C. Spectral response covers whole visible Hght range.


MKY251
Epoxy sealed \(1 \frac{1}{\mathrm{i}} \mathrm{in}\). diam. \(x \frac{1}{2} \mathrm{in}\). thick. Resistance at 100 Lux - 700 to 3,000 ohms. Maximum voltage 200 A.C. or D.C. Maximum current
500 mW .
\(\begin{aligned} & 12 / 6 \text { post free }\end{aligned}\)
 MKY101-C
Epoxy sealed. in. diam. \(x \frac{1}{\frac{1}{2}}\) In. Thick. Resistance at 100 Lux-500 to 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current MKY71


Glass seated with M.E.S. base. Glass envelope in. diam., overall length 1 in . Resistance at 100 Lux -50 Kohms to 150 Kohms . Maximum voltage 150 A.C. or D.C. Maximum current 75 mW . \(8 / 6\) post free

\section*{CADMIUM SELENIDE CELLS (Cdse)}

These have a higher dark resistance in a given period than Cadmium Sulphide Cells indicating much Yaster response. Sultable for alf Cds applications plus applications in chopper, electronic musical instruments, computer and other sophisticated circuitry. Time response shown in megohms is dark reslstance measured 10 secs. after 400 Lux light intensity is intercepted.

\section*{MKB5H}

Hermetically metal seated. \(\ddagger \mathrm{in}\). diam. \(x \$ \mathrm{in}\). thick. Time response 100 megohms. Resistance at \(1.000 \mathrm{Lux}-1 \mathrm{Kohm}\) to 10 Kohms . 50 A.C. or D.C. Maximum current 10 mW . Continuous curent 5 mW.

16/6 post free


MKB12H
Hermetically metat sealed 8 in. diam. \(x\) 冝 in. thick. Time response 100 megohms. Resistance at 1.000 Lux -100 ohms to 1.000 ohms. Resistance at 10 Lux -1 Kohm to 10 Kohms . Maximum voltage
50 A C . or D.C. Maximum current 80 mW . Continuous 30 mW .

16/6 post free

\section*{PHOTOGENERATIVE CELLS}

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifler as light trigger for alarm and counting devices, luminous fuxmeters, exposure meters, colorimeters, etc., Spectral response
covers visible light range. covers visible light range.

Type 1 - \(1 \frac{1}{2} \times 1\) 帚 in . Output 1 mA at 0.6 volts at 1.000


Lux 16 in. Output 1 mA at 0.6 volis at 1.000

ype \(2-28 \times 18 \mathrm{~mm}\). Output \(500 \mu \mathrm{~A}\) at 0.6 volts at
\(3 / 6\) post free
ype \(2-28 \times 18 \mathrm{~mm}\). Output \(500 \mu \mathrm{~A}\) at 0.6 voits at
\(3 / 6\) post free
1.000 Lux
Type 3-100 \(\times 50 \mathrm{~mm}\). Output 4 mA at 0.6 volt at 1.000
\(22 / 6\) post free 22/6 post free

\section*{FIBRE OPTICS}

Highly flexible light guldes that transmit light to inaccessible places as easily as olectricity is corfducted by copper wires, Fibre optics make it possible to control, miniaturize, split, reflect or transfer light from one source to many places at ance and to operate photo devices, logic circuits, or illuminate in ways never before pos sible. Proops offer both glass fibre optics or inexpensive Croron plastici fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS


All the basic components needed to demonstrate new wavs to use light in serious applications with glass fibre optics consisting of thousands of tibres tightly bundled in a flexible sheath whith 18, and 24 inch standard light and 6 mm widths, 24 inch win exit guide with \(2 \times 1 \mathrm{~mm}\). outputs. Non-random ' \(Y\) ' gulde. With \(2 \times 3 \mathrm{~mm}\). outputs, adaptors and battery operated liaht source. Supplied complete with card wallets containing technical data an illustrated applications.
£16
LOW-COST CROFON FLEXIBLE LIGHT GUIDE
Newly developed plastic fight transmitting media made by Du pont and consisting of 64 special plastic fibres, each sheath. Can be used for many serious prolects and inexible pensive prototype work. Ends can be ground flat, dyed or capped with Epoxy resin. Temp. range - \(40^{\circ}\) to \(176^{\circ} \mathrm{F}\) No loss of light through bending. 12-page data and applications booklet supplied.


\section*{Other advanced Solid-State devices}

\section*{RCA INTEGRATED CIRCUIT - CA3020}

Complete Audio or Servo Amplifier In one tiny package!
Preamp. phase invertor, driver and power output function in a single package only in in. diam. and tes in. high. Operates from single D.C. supply of 3 to 9 volits: high gain is coupled with bulit-in temperature compensation (-55 \({ }^{\circ}\) to \(123^{\circ} \mathrm{C}\) ) and wideband operation. Complete with deta and circuit applications. 42/-post free

RCA TRIAC - CA40432
Suitable for light dimming and motor control circuit Gate-controlled, full-wave, A.C. sillicon switch with integral trigger that blocks or conducts instantiy by applying reverse polarity voltage. Statable for A.C. operation up to 250 voits; controls currents up to 1440 watts. Size only \(i\) in. diam. \(x \frac{1}{\frac{1}{6}}\) in. high. Complete with heat sink, data and applications information.

45/- post free

-


\section*{HIFF equipment to suit EVERYPOCKZI}


\section*{Fully Hulustrated CATALOCUE}

COMPLETELY NEW 9th EDITION (1969) The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 10/- worth discount vouchers FREE WITH EVERY COPY
* 32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment. 70 pages of microphones, decks and Hi-F equipment.


6,500 ITEMS 320 BIG PAGES

\section*{LINEAR INTEGRATED CIRCUITS}

GENERAL ELECTRIC I WATT AUDIO AMPLIFIER PA234

\section*{IWMWEDITEE DESPATGT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 N 385 N & & 26302 & \(3 / 9\) & AF239 & 12/. & B2210 & 11/3 & 0 C 19 & 5. & 0 C 205 & 9. \\
\hline 2N388a & 15. & 26306 & 9/6 & Af186 & 12. & BY212 & 1/5 & OC20 & 33. & 0 C 206 & 10/6 \\
\hline 2N696 & 9/6 & 26339A & 5. & AF211 & 10/8 & 82213 & 5/4 & 0C22 & 13. & OC201 & 7/6 \\
\hline 2N697 & 98 & 26345B & 3 - & 45212 & 11/3 & B7x36/150 & \(2 \cdot\). & 0c23 & 15/ & OAP60 & a. \\
\hline 2N706 & 4. & 263718 & 4. & Asy27 & 5/8 & 84x36/300 & 3. & OC24 & 10. & ORP61 & * \\
\hline 2N706A & 6/6 & 263748 & 5. & ASY28 & 4/4 & B2793/C24 & 12/8 & OC25 & 68 & 08P63 & 9 \\
\hline 2 N 711 & 1\% & 26381 & 5. & Asy26 & 5/8 & BY21 & * & 0C26 & 12. & Sx831 & 1/4 \\
\hline 2N7114 & 7/8 & 20382 & 6. & ASY29 & 4/4 & GET 102 & *- & 0¢28 & 12/. & SX636 & 10/8 \\
\hline 2M1131 & 9/6 & 25002 & * & AS221 & 11. & GET 103 & 46 & OC29 & 15. & Sx638 & 12- \\
\hline 2N1132 & 7/6 & \(2 \mathrm{SO17}\) & & AR10 & 30.- & Getlli & 8 & 0¢30 & 71. & SZ200 & 15/. \\
\hline 2N1302 & 5 & 25018 & \% & AuY 10 & 39/6 & GETI14 & 4 & 0C35 & 9/6 & SVC1 & \(17 / 4\) \\
\hline 2N1303 & \(5 /\) & 25024 & 25. & BA115 & 27 & GET115 & 2. & 0¢36 & 13/. & \({ }^{\text {c }} 426\) & \(1 / 3\) \\
\hline 2N1304 & 5 & 25034 & 15. & 8Ar38 & \(3 /\). & GET573 & 7/6 & OCA1 & 3/5 & P346a & 8/ \\
\hline 2N1305 & 5. & 2S 702 & 15. & \(\mathrm{BC}^{\text {¢ }} 30\) & 7. & GM3788 & 6 & \(0 \mathrm{CL}_{2}\) & 4. & V405a & 9/3 \\
\hline 2N1306 & - & Aayli & 2 & BCr31 & 9. & 0 0, & 3/8 & 0 C 43 & s/. & tC401 & 5. \\
\hline 2N1307 & *- & Aar30 & 2. & BCY32 & 10. & 0447 & 1/8 & 0 C 44 & 3 - & tc402 & 48 \\
\hline 2N1308 & 10\% & \({ }_{\text {AC }} 107\) & 14/6 & BCY33 & 48 & 0 A 70 & 1/6 & 0ca & 3 /. & CIIIE & \(1 /\) \\
\hline 2N1309 & 10/5 & AC126 & 6.5 & BCY34 & 4/4 & 0 A 73 & 1/6 & OC71 & \(3 /\). & C400 & 9. \\
\hline 2N2369 & 5 & \({ }_{\text {AC12 }}\) & 6. & вCY38 & U. & 0A79 & 1/6 & OC12 & 4/5 & 26111 & 45/9 \\
\hline 2N2369A & 7/6 & AC128 & 4. & вС¢39 & 27/4 & \(2 \times 1079\) & 4/6 & 0 C 73 & 3/- & & \\
\hline 2N2648 & 10. & AC176 & 7/6 & BCY40 & 13/4 & 0A81 & \(1 / 6\) & 0 C 75 & 5. & EA403 & 3/6 \\
\hline 2N2147 & 17\%. & ACY17 & \(5 / 8\) & BCY54 & 15/3 & 0AB5 & 1/6 & 0 C 76 & 28 & & \\
\hline 2M2148 & & ACY18 & \(3 / 4\) & вCY70 & N/ & 0490 & 1/6 & 0 C 17 & /8 & C8383 & 3/6 \\
\hline 2N2160 & 149 & ACY19 & 4/4 & вCY7 & 18 & 0as1 & 1/6 & 0cs 10 & \(3 /\). & BC113 & 9- \\
\hline 2N2925 & 1 & \({ }^{\text {ač }} 20\) & \(3 / 8\) & BC2 11 & 10/4 & 0495 & 1/6 & 0C82 & 45 & BC118 & 7\% \\
\hline 2N3528 & 19/- & ACY21 & 4. & 80121 & 25/8 & 02300 & \(2 /\) & 0 0¢820 & \(3 /\). & BC125 & 14. \\
\hline 2N3702 & \(5 /\) & ACY22 & \(2 / 4\) & 80123 & \(32 /\). & 0A202 & \(2 \cdot\) & 0 C 33 & 4 - & 8C126 & 14. \\
\hline 2N3703 & \(5 \cdot\) & A0140 & 15. & \(8 \mathrm{Br} \times 13\) & 48 & 0A210 & \(6 / 4\) & 0C84 & 4. & & \\
\hline 2 N 3704 & 5. & AD149 & 11/1 & 8F184 & 7/6 & 0a211 & 9/- & 0 C 123 & 7/. &  & \\
\hline 2N3705 & \(\cdots\) & Aazil & 21/- & Byı0 & 5 - & OA2201 & 3/6 & 0 C 139 & *- & BUY11 & 15/- \\
\hline 2N3706 & 4.6 & A021I & 23/4 & BFY50 & 6. & OAL 202 & \(3 / 8\) & 0 Cl 40 & 12/. & & \\
\hline 2N3707 & 6,9 & afl02 & 18. & BF551 & \% & 0 02206 & 3/8 & 0 Cl 189 & - & & 11/- \\
\hline 2N3708 & 3/9 & Afl14 & 4/4 & Bry52 & 6 & OAR207 & 71. & 0 CLI 70 & 4. & MPF103 & 9/6 \\
\hline 2N3709 & 4 & AF115 & 4/4 & BFY53 & of. & 0anz \({ }^{\text {a }}\) & 318 & 0 C 171 & d & MPF104 & 10. \\
\hline 2 N 3710 & 5. & AF116 & 4/4 & BSx20 & \(1 / 3\) & OAz241 & \(3 / 3\) & 0c200 & * & MPF 105 & 10/6 \\
\hline 2N3711 & \(5 \%\) & Af11] & 4/4 & BSY27 & 4/4 & & \(3 / 6\) & OC201 & 10. & MJ491 & 30/3 \\
\hline 2N3053 & \(\stackrel{ }{ }\) & Af118 & 18\% & BSY95A & 3/4 & 042743 & 8 & & & M 4881 & \(27 /\). \\
\hline 2N3820 & 22 & AF139 & 15. & 日TY日7/100 & OR 28. & 0A2246 & 3/6 &  & 16/6 & 40361 & 13/3 \\
\hline 26301 & ess & Afl 181 & \(9 / 4\) & B7787/150 & OR31/- & 022273 & \(3 / 6\) & OC20a & - & 40362 & \(16 / 3\) \\
\hline
\end{tabular}

TIS43
TEXAS
6/9
Unlifunction transistor sim. 2 N2646
BEN300 etc. Data on request \(25-99\) 5/3d

\section*{24090 nax \\ 2N3819 \\ 8/-}

2N3055 15/-
\(25+13 /-100+11 /\)
AD161+AD162 NMNPR
\(12+\) PAIAS \(8 /-\) PAIR

\section*{2N2926 \\ VERY POPULAR NPN PLANAR}

2/-

\section*{CRS3/40AF \\ 12/6}

\section*{STC 400 Piv 3A ThYRISTOR}
\(25+11 /-100+10 / 3\)

\section*{BC107/8/9}
aTY PRICE ON
application
2/9
\(\square\)
BAILEY AMPLIFIER
painted circuit board 12/- each
NEW DATA BOOK- 1000 + TYPES -"DESIGNERS GUIDE TO BRITISH TRANSISTORS". \(25 /-+2 / 6\) P \& P.
\(40 \mathrm{KC} / \mathrm{S}\) TRANSDUCERS 55.18.0. PAIR + FREE TX/RX CIRCUIT.

LOW COST TYPES FROM STOCK SPEC. ON REQUEST \(1000+4 \frac{1}{2} d\) gP GERMANIUM TRANSISTDRS SPEC. ON REQUEST \(100+9 \mathrm{~d}\) NPN \& PNP SILICON PLANARS FROM 9d EACH 100 +


\section*{ELECTRONIP}

This monolithic integrated circuit will deliver I watt of continuous power to a 22 Ohm load. The device functions from a single power supply between 9 and 25 volts and is compatible with 8 and 16 Ohm loads; an 8 -lead dual-in-line package is used with a heat transfer tab. Applications: Record Players, Tape Recorders, TV, AM \& FM Receivers and general amplifier projects. Complete with data and design notes
Data Sheet only
RCA MULTIPURPOSE WIDE-BAND POWER
AMPLIFIER
CA3020
This very popular multistage direct coupled amplifier will provide 0.5 Watts power output from a single 9 Volts supply with a typical power gain of 75 dB . The amplifier is contained in a multilead TO5 package. Applications include AF Power Amplifiers, Video power Amplifiers, Power Switches and Multivibrators, Motor Control Amplifiers, Wide-Band Linear Mixers etca Supplied complete with free lead spreader, data and applications notes.. . . . . . . . . . . . . 37/6 Data Sheet only.

TAA263
This Linear AF amplifier requires a single 8 Voles (max.) supply and has a rypical power gain of 77 dB . It is housed in a TO .72 case (4-lead TO-18) and is intended for use from DC to 600 kHz .

GENERAL ELECTRIC PROGRAMMABLE UNIJUNCTION TRANSISTOR (PUT)

DI3TI
This PUT enables the \(\eta, R B B, I p\), and \(I_{V}\) characteristics of a normal unijunction to be programmed by selecting two external resistors. Applications: Timers, Relaxation oscillators, High Gain Phase Control etc. TO-98 package. Supplied complete with data and applications notes

1/6 post free
We are an International Rectifier Semiconductor Centre Terms, CWO. Post \& packing l/6. Mail Order only, please.

\author{
KINVER ELECTRONICS LTD., stone lane, kinver, stourbridge, worcs.
}

\title{
TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT
}


Codes: Int. No. 2 Mercury/Pecasus. Elliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT


TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES OATEL MDOEM CONYERTERS. TELEPRINTER SWITCHBOAROS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape
 and Ribbons; Polarised and specialised relays and Bases; Terminals phone Carriers and Repeaters; phone Carniers and Repeaters; Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

\section*{W. BATEY \& COMPANY}

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 ( 3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS} \\
\hline Matched for optimum performance. Compare
prices itith equitpment and eabinets purchased
Indvidually. & Bpecial incluaive price Fully wired unit
ready to "plug-tn." & \begin{tabular}{l}
'Package 1' 13 Watt System \\
* Garrard SP25 Mk. II 4-speed Player Unit,
\end{tabular} \\
\hline 'Package 3' 30 Watt System & 75 ¢ns. Carr. 25 P/um & \begin{tabular}{l}
on plinth. \\
Goidring CS90 Ceramic P.U. Cartridge.
\end{tabular} \\
\hline Goldring Transeription Turnt & & \({ }_{\star}^{\text {¢ }}\) \\
\hline  & s & Speclal inclusive price. \\
\hline \(\star\) Pair of Stanton Lo & Versatile Plinths & , \\
\hline . & &  \\
\hline A.E. For leaflet. Carr. 25/- ourcharge \(\star\) Pair of Stanton Loudgpeake &  & BLACKPOOL \(\begin{gathered}\text { AGENT APPOINTED } \\ \text { See addresses }\end{gathered}\) \\
\hline
\end{tabular}


\section*{LOUDSPEAKERS}
ntruction. Latent high effilency ceramic
magnets. Trested Cone surnuid


 5 Gns.

 THE 'YORK' HIGH FIDELITY 3 'SPEAKER SYSTEM
 £8.19.9


 GLOUCESTER
 \(\overline{\text { R.S.C. Ti } 66 \text { Watt HIGH FIDELITY SOLID }}\)
 R.S.C. COLUMN SPEAKERS Addrem. 15 ohm matchlius. TTpe cs7 15 wit




\[
10
\]
Roin

R.S.C. AIO 30 WATT ULTRA LINEAR






 INTEREST CHARGES REFUNDED

\section*{6 Gns.}
R.s.C. A11T 15 WATT HIGH FIDELITY AMPLIFIER



R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER 14 Gns. Oar
Or
mibe
mbed
mave


12in. High Quality LOUDSPEAKERS
\(\qquad\)
aix


FULLT TRAMBISTORIBED 200/2s0v. A.C. Malna. TEAEIETORS.
POSITION DIIPUT SELECTOR sWITCH EQUALIBATION Fad Tape Heade.
P.U. 400 mV . Microphone 4.5 mV . Tape Head 2.6 mV

 HAREOMIC DISTORTIOM at 10 watto 1,000 a.p.a. \(0.2 \%\) point to point wiring diagrams. \(11 \frac{1}{2}\) GnS paymenta \(31 / \mathrm{L}\) (Total \(118 / 3 / 9\) ). Or in Teak or Afmrmonis Yoil 4 Gms. and 9 monthly 19 Gns. CO MPONENTS ETC. ARE OF A EIOE BTANDARD AMD BUPPLWED BI

BLACKPOOL
BRADFORD 10 North Parade (Half-day Wed.). Tel. 25349
BRISTOL 14 Lower Castle St. (Half-day Wed.). Tel. 22904
BIRMINGHAM \(30 / 31 \mathrm{Gt}\). Western Arcade, opp. Snow DERBY 26 Osmaston Rd. The Spot (Half-day Wed.).
DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 68043 EDINBURGH 133 Leith St. (Half-day Wed.). GLASGOW 326 Argyle St. (Halif-day Tues.). Tel. CITy 4158 403 Sauchiehall St. (opp. Locarno) (Half-day Tues.). Tel. 332-1572
(Half-day Thurs.). Tel. 20505


MAIL ORDERS to: 102-106 Henconner Lane, Bramley, Lleeds Terms. No C.O.D. under
C.O. or C.O.D. Postage \(4 / 6\) extra under \(£ 2\).
\(5 / 9\) extra under 65 . Trade \(5 / 9\) extra under C5. Trade
supplied S.A.E. with enquiries please. Hi-Fi Catalogue \(4 / 6\). Open all day Sats. except

\section*{apecifications} COIPARABLE WITH UMITS
cOSTNG CORGDERABLY MORE

                                    A duAL CHABHIT, VErsion of THE SUPER 15. Employing



                                    P.U. (2) Ceramic or Cryatal P.U. (3) Redio/Aur. (1) Tape Eieadl
Microphone. Operation of the Input Beloctor 8 witch savures Appropri-


\section*{THESE UEITS ARE BYIMEMTLT SUTTABLE FOR DSE WITH AKY HAKE OF}
 TADED BY UBIAIO WITH PIRAT RATE ARCILLARY 191 GUS Unit factory built 28 Gas. or deponit \(87 / 5 /\) and 9 moathly paymenta \(58 / 3\) (Total 2 2ne \(13 / 3\) 20 LEICESTER 73 Dale St. (Half-day (Half-day Wed.) Tel. 28252 LEEDS 238 Edsware Road, \(w\) Tel. CENtral 3573 LIVERPOOL 96 Hieh Holborn, wCI Tel.PAD.) 1629 LONDON 60A Oldh 106 Tel. CENtral 2778 MANCHESTER 106 Newport Rd. (Half-day
Wed.). Tel. 47096 MIDDLESBROUGH 41 Blackett Street (opp. Fenwicks NEWCASTLE UPON 13 Exchangeday Wed.). Tel. 21469 TYNE 13 Exchange Street (Castle Market Blds.) SHEFFIELD

\section*{VALIES/SENI-COMDUGTORS BRAND NEW \& GUARANTEED}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 & 6\% & 6Ed & 8/- & \(30 \mathrm{Cl18}\) & 14/- & ECCO84 & \(8 / 6\) & EZ40 & \(8 / 6\) & PY81 & 0/- \\
\hline OB2 & \(61-\) & 6J4 & 9\% & 30Fs & 14/0 & ECC85 & 8/6 & EZ41 & \(8 / 8\) & PY82 & - \\
\hline IRs & 6/- & 6J6 & 3/6 & 30 FLl & 15\%- & ECP80 & 71 & EZ80 & \(8 / 8\) & PY83 & B \\
\hline 185 & 1/6 & 6K8 & 4/. & \(30 \mathrm{L15}\) & 16/- & ECF82 & \(7 / 6\) & E281 & 8/6 & PY88 & \(7 / 6\) \\
\hline IT4 & 3/- & 6L6 & 9/6 & 30 Pl 18 & 14\% & ECH35 & 11/- & Gz32 & 11/6 & PY800 & 8/- \\
\hline 104 & \(8 /-\) & \(66^{7}\) & 8/8 & \(30 \mathrm{PL1}\) & 15\% & ECE 42 & 11/- & Gz34 & 11/6 & PY801 & \(8 /-\) \\
\hline IU5 & 71. & 8807 & 8/0 & 30PL13 & 18/- & ECH81 & 8/8 & mU14 & \(8 /-\) & U25 & \({ }^{181-}\) \\
\hline 3 D 21 & 5\% & 68.37 & 7/- & 35LO & \(8 /-\) & ECE83 & \(8 / 6\) & Pabcbo & \(7 / 6\) & \({ }^{\text {U } 26 ~}\) & 16- \\
\hline 3A5 & 10\% & 68 L 7 & 8)- & 3524 & \(8 / 6\) & ECL80 & \(7 / 0\) & PCC84 & \(8 / 6\) & U191 & 14- \\
\hline 3 Q4 & 7. & 68N7 & 6/8 & 35w4 & 5/3 & ECL89 & \(\%\) & PCO85 & 81- & U281 & \% \\
\hline 886 & B\% & \(6{ }^{6} 7\) & \% & 50Bs & 6/6 & ECL83 & 10/6 & PCC88 & \(11 / 6\) & U301 & 11/- \\
\hline 5 V 4 & 81 & 6V8 & \(8 /\) & b0Cs & \(6 / 8\) & ECL86 & 9\%- & PCC89 & 11/6 & U801 & 28/6 \\
\hline \(5 \mathrm{B4}\) & 9/- & 6x 4 & 4/3 & 80 & \(7 \%\) & EF37A & \(8 /-\) & PCC189 & \(18 / 6\) & UABC80 & 81. \\
\hline 704 & 8/- & \(6 \times 6\) & \(81-\) & AZ31 & 101 & EF40 & 10. & PCA6 & 11/- & UAF48 & 10\% \\
\hline \(8{ }^{5} 4\) & \(8 / 6\) & 787 & 71 & DAF91 & 4/6 & EF41 & 918 & PC88 & \(11 /\) & UBC41 & \(8 /\) \\
\hline 73 & 5/8 & 708 & 8/8 & Dapga & \(7 \%\) & EF42 & 10/6 & PC97 & \(8 / 6\) & UBF80 & 71. \\
\hline \(5 \mathrm{z4}\) & \(8 /\) & 7 Y 4 & 8/6 & DF91 & 3/- & EF80 & \(5 /\) & PC900 & \(9 / 6\) & UBF89 & 7- \\
\hline 6/30L2 & \(18 / 6\) & 10c2 & 15\% & DF96 & 71 & EF85 & 8/6 & PCP80 & \(7 / 3\) & UOC84 & \(10 / 5\) \\
\hline \({ }_{6 A C 7}\) & 4/- & 10F1 & \%- & DK91 & 81- & EF86 & 7 & PCP89 & 71. & Uccss & - \\
\hline 6 A67 & 6/- & 10 Pl 3 & 15\% & DK92 & 8/9 & EF89 & 618 & PCP8 & \(9 /-\) & UCF80 & \(9 / 6\) \\
\hline 6AK5 & 5/- & 10P14 & 181- & DK96 & 81 & EF91 & \% & PCP98 & \(9 /-\) & UCH4? & 10/. \\
\hline 6als & 3/- & 12AT8 & \(6 /-\) & DL92 & 81 & EF92 & 1/ & PCF800 & 18/- & UCH81 & 7/- \\
\hline 6amb & 4/- & 12AT7 & 4/- & DL84 & 6- & EF183 & 71 & PCFP01 & 101- & UCL82 & \% \\
\hline 6AQS & 6/- & 12AU7 & b/- & DL86 & \(8 \%\) & EF184 & 71 & PCP802 & 101- & UCL83 & 10/- \\
\hline 6abs & 6/- & 12AX7 & 6/- & DY88 & 6/6 & ELs3 & \(17 / 8\) & PCFPos & 14/8 & UP41 & 10/\% \\
\hline 6ato & \(5 /\) & 12BA6 & 8/8 & E88CC & 18/8 & ELS4 & 11/- & PCLA2 & \(7 / 6\) & UF80 & 7 - \\
\hline caub & 8/8 & 12BE8 & 6/3 & EABC80 & 71. & ELAl & \(8 / 8\) & PCL83 & \(9 / 6\) & UP85 & \(7 / 6\) \\
\hline 68A6 & 4/8 & 128H7 & 8/8 & E180F & 15/- & ELat & 11/- & PCL84 & 8 & UP89 & 718 \\
\hline 6 BEs & 8/3 & 12 Q 7 & \(8 / 8\) & EAF42 & \(9 / 6\) & EL81 & 9/- & PCL85 & \(9 / 6\) & UL41 & 101. \\
\hline \(68 \mathrm{H6}\) & 8/- & 12897 & 716 & EB91 & 1/- & EL84 & 8/- & PCLA & 9\% & UL84 & \(7 /\) \\
\hline \(6 \mathrm{BJ6}\) & \(8 /-\) & 19AQS & 61. & EbC41 & 9/6 & EL85 & \(8 / 8\) & PFLL200 & 12/8 & UY41 & 7/8 \\
\hline \(68 \mathrm{R7}\) & 11/. & 20F2 & 14/- & EBC81 & 7 & EL9 & 1. & \({ }^{\text {PLI36 }}\) & \(10 / 8\) & &  \\
\hline \(6 \mathrm{Bz6}\) & 71. & 20 Ll & 18/- & EBP60 & 76 & EL95 & 818 & PL81 & 710 & VR1060/30 & \(6 / 6\) \\
\hline 0 CH & 3/8 & 20Pl & 12/- & EBP83 & 81- & EM80 & 716 & PL82 & 71. & & \\
\hline \({ }^{668}\) & 4/- & 20 P 3 & 12/- & EBF69 & \(7 / 6\) & EM81 & 8. & \({ }^{\text {PLS }}\) & - & MA & \\
\hline 6CD8 & 80/- & 20P4 & 22/6 & EOC40 & 11/6 & EM84 & \(7 / 8\) & \({ }^{\text {PLL5 }}\) & 14/9 & отн & \\
\hline 6 CH 6 & 6\%- & 25L6 & \(8 / 8\) & Eccs 1 & \(8 \%\) & EM87 & 776 &  & 146 & TYPES & \\
\hline \({ }_{6}^{6018}\) & 101\% & \({ }_{30 \mathrm{Cl}}^{2085}\) & 8/8/6 & ECC883 & \(8 \cdot\) & EY86 & \(\%\) & PY80 & \({ }_{\text {/ } / 8}\) & stock. & \\
\hline \multicolumn{8}{|c|}{TRANSISTORS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
SILICON \\
POWER DIODES
\end{tabular}} \\
\hline 2N696 & 8/- & AP116 & //8 & BBYes & 15/9 & \(0{ }^{0} 73\) & 8/- & & & & \\
\hline 2N697 & 51- & \({ }_{\text {AF117 }}\) & 4/6 & B9Y56 & \(17 / 1\) & 0C74 & \({ }^{6 /-}\) & \({ }^{60}\) P.I.V & &  & 7/6 \\
\hline 2 N 708 & 3/- & AF119 & 4/8 & B8Y65 & \(1 / 6\) & \({ }_{0}^{0.785}\) & 4/6 & \(70{ }^{290}\) P.I. & & 700 P.I & 710 \\
\hline 2N708A & 4/- &  & 12/8 & B8Y78 & 76 & \(0 \mathrm{OC7B}\)
\(0 \mathrm{CH7}\) & \(4 / 6\) & \({ }^{1} 1 \mathrm{PMM}\) & & 100 & \\
\hline 2N708 & 4/- & AfY28
BCl07 & 8/8 & B8Y79
B8Y95A & 7/8 & \(0 \mathrm{OC78}\) & \(5 /-\) & 140 P.I & & & 3/- \\
\hline \(2 \mathrm{N744}\) & 1. & BCl08 & 3/6 & BUY10 & 12/6 & \(0 \mathrm{C81}\) & 4/- & 165 M & 1/- & P. & \\
\hline 2N753 & 4/8 & BCl09 & 48 & GET106 & 4/6 & OC81M & 2/6 & \({ }^{1} \mathrm{P}\) & & 600M & \\
\hline 2 N 914 & 4/8 & BC170 & 3/- & OET113 & \% & Oc81D & \(3 / 8\) & \({ }^{25} 00^{25}\) & & \({ }^{500}\) P PMP & \\
\hline \({ }^{2} \mathrm{~N} 916\) & \(4 / 8\) & \({ }_{8 C 179}\) & \(3 / 8\) & GET878 & 4/6 & \({ }_{0}^{0 C 81 D}\) & 2/68 & \({ }_{6} 00\) AM & & 1000 P.I. & \\
\hline 2N930 & \(5 /-\)
\(5 /-\) & \({ }_{\text {BCY }}\) & 4/6 & MAT100 & 719
\(8 / 8\) & \({ }_{\text {OC139 }}\) &  & 500 M & & 000 P.I. & \\
\hline 2N1711 & 6/8 & BCY 39 & 4/6 & MAT120 & 719 & OC140 & 9/6 & 400 P.I. & & 650 MA & 8/8 \\
\hline 2N1893 & 8/* & BCY 42 & \% & MATI21 & 8/6 & \(0 \mathrm{Cl169}\) & 4/8 & & & & \\
\hline 2N2160 & 1411 & BCY43 & 5 H & NET210 & 5/- & 0 OCl 70 & 4/6 & \multicolumn{4}{|l|}{THYRISTORS} \\
\hline 2 N 2147 & 17/6 & BCY70 & 6/8 & NKT211 & 51. & \({ }_{0}^{0} 0\) & \(4 / 8\) & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SILICON CONTROL}} \\
\hline  & 8/9/9 & \({ }_{\text {BCY }}{ }^{\text {BCY }}\) & 10/6 & NKT212 & 5/9 & \({ }^{0} \mathbf{O C 2 0 1}\) & \({ }_{7 / 8}^{61}\) & & & & \\
\hline 2N2926 & 1/5- & BFIIS & 1/6 & NKT214 & 3/9 & OC203 & 6/- & \multicolumn{4}{|c|}{RECTIFIERS} \\
\hline 2 N 3053 & 7/8 & BPX12 & 8/6 & NKT215 & 3/9 & OC202 & 0/- & 400 P.I & & 400 P.I.V & \\
\hline 2N3055 & 18/6 & BFX13 & 6/6 & NKT216 & 9/8 & OC204 & \(6 /\) & 3 A) & & 7 AMP & \\
\hline ENs705 & B/- & BFY10 & 4/6 & NKT217 & 9/8 & \(8 \mathrm{Tl40}\) & 1/- & 100 P.I. & & 500 P.I. & \\
\hline 28102 & 8/8 & BFY11 & 4/6 & NKT219 & 10 & \(8 \mathrm{TlH1}\) & 6-1 & 7 AMP & 18/8 & 100 AMP & 78/6 \\
\hline 28103 & 6/8 & BPY17 & 4/6 & NKT223 & \(5 /-\) & XA104 & 4/8 & 200 P.I. & & & \\
\hline 28104 & 6/8 & BPY18 & 4/6 & NKT224 & 3/9 & XA124 & \(1 / 6\) & 7 AMP & 15/6 & & \\
\hline AC107 & \(4 / 6\) & BFY19 & 4/6 & NKT225 & \(3 / 0\) & XA125 & \(1 / 6\) & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{ZENER DIODES}} \\
\hline AC126 & 416 & BPY50 & 4/8 & NKT229 & 5/- & XB112 & 3/- & & & & \\
\hline ACl27 & \(4 / 8\) & BFY51 & 4/7 & NKT240 & \(4 / 8\) & \({ }^{\mathrm{XCl43}}\) & 71 - & OAz200 & & OAzz08 & 8/6 \\
\hline AC128 & 4/6 & BFY 52 & \(4 / 6\) & NKT403 & 15/6 & PHOTO & & OAZ201 & & OAz209 & \(8 / 6\) \\
\hline AC165 & \(4 /\) & BFY90 & 12/8 & NKT405 & 14/3 & Trangis & & OAzzoz & \(8 / 6\) & oazz10 & \(6 / 6\) \\
\hline \(4 \mathrm{AC167}\) & \(4 / 6\) & B8X19 & 5/6 & NKT261 & 4/3 & Tors & & OAz203 & \(8 / 6\) & OAz211 & \\
\hline AC176 & 5/8 & 88X 20 & 5/8 & NKT1043 & \(71 / 8\) & 0CP71 & 12/6 & OAZ204 & 818 & OAz212 & 6/6 \\
\hline ACY19 & \(4 / 6\) & B8x 40 & 13/9 & OC19 & 7/8 & & & OAz205 & \(8 / 6\) & OAz213 & \\
\hline ACY20 & \%/8 & B8x 41 & 17\%- & \({ }_{0}^{0 c 23}\) & 8/88 & & & OAZ206 & \(8 / 6\) & OAZ227 & 15/- \\
\hline \({ }_{\text {ACY }}\) & 4/6 & B6Y10
BSY 11 & 8/- & OC25
00626 & 6/8 & SIGN & AL & OAZZ207 & & & \\
\hline ACY28 & 6\% & BdY26 & 4/8 & OC28 & 8/8 & DIOD & ES & \multicolumn{4}{|l|}{\begin{tabular}{l}
STC. 1 WATT SERIES \(6 \%\) \\
2.4/2.7/3/3.9/4.3/13/16/18/20/30
\end{tabular}} \\
\hline ACY 40 & 48 & \({ }^{888} 827\) & 4/8 & \({ }^{\text {OC3 }} 3\) & \(8 / 6\) & IN34A & 4/- & \multicolumn{4}{|l|}{133 volt, \(5 / \sim\) esch.} \\
\hline ACY 41 & \(4 / 6\) & BEY28 & 4/6 & \({ }^{\text {OC36 }}\) & \(8 / 6\) & Oas & 3/- & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Z serien. All voltages from 3.650 volt. \(280 \mathrm{~mW}, 2 / 6 \mathrm{ca} .1 .6 \mathrm{w}\). 4/- ea. 7 w. 5/- each.}} \\
\hline \(4 \mathrm{Al40}\) & \(8 / 8\) & B8Y29 & 1/8 & 0 CHI & \(8 /\) & oa70 & \&/- & & & & \\
\hline AD149 & 18/- & B8Y38 & \(1 / 8\) & 0 OCH & \%- & OA79 & \%/- & & & & \\
\hline AD161 & \(8 /\) & B8Y 39 & \(4 / 6\) & OC4 & 1 1- & OA81 & \(2 \%\) & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{PLEASE ADD}} \\
\hline ADl62 & 8/8/- & B8Y51 & 7/9 & OC45 & 3/6 & OA885
OA90 & \&/- & & & & \\
\hline AP14 & 6/6 & B8Y53 & \(8 / 8\) & 0 Cl 1 & 3/- & O491 & 2\% & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{POSTAGE}} \\
\hline AP115 & 4/6 & B8Y54 & \(9 / 8\) & 0 C 78 & 4/- & OA95 & 2/- & & & & \\
\hline
\end{tabular}

First grade quality Moving Coil panel meters available ex-stock. S.A.E. for illustrated




No. A Mg qualty precision
Inatrument made for the Minintry by Airmec. Fre-\(20-80 \mathrm{Mc} / \mathrm{s}\). AM CW/PM. Incor-
porates preclalon dial, level meter, preclan attennator \(1 \mu \mathrm{~V}-100 \mathrm{Mv}\) Operation from 12 volt D.C. or 0/110/200/200 A.C. Bize \(12 \times 8 \mathrm{f} \times \mathrm{in}\). Suppilied in brand new
condition complete with all conneetors, fully tested, 845. Carr. 20\%.


TE-I6A TRANSISTORISED
SIGNAL GENERATOR


MHZ.
MHZ. An inexpensive inst rument for the handy-
man. Operatea on \(9 \mathrm{v}^{2}\) battery. Whide eany to
read scale. 800 KHZ modulation. \(81: \times 38\) KH2
\(\times 3 \mid:\) Completo Instructions and leads.

FTELD TELEPHONES TYPEL. Gexerator ringing, metal casen. Operato on 2 1.5 F. hatterles (not
supplied.) Excellent condition. \(\mathbf{8 4} .10 .0\) per pair.

\section*{MARCONI TEST EQUIPMENT} EX-MILITARY RECONDITIONED. TF 144G STANDARD SIGNAL GENERATORS, \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\), \(£ 25\). Cart. \(30 /-\mathrm{V}\)
TF 885 VIDEO OSCILLATOR \(0-5 \mathrm{~m} / \mathrm{cs} £ 45 \mathrm{Carr} 30 /-1\) T.F. \(105 \mathrm{M}, \mathrm{kc} / \mathrm{s}, 200 / 250 \mathrm{v}\). A.C. 280 . Carr. 30 TF 142 E DISTORTION FACTOR METER \&20. Carr All above offered in excellent condition, fully tested and checked SET, Brand New, £75. TFI37I WIDE BAND MILLIVOLI METER, Brand New, £50.

\section*{Variable Votitage Thansfonmilit \\ Brand new, guaranteed and carriage pald \\ High quality construction. Input 230 v. \(50-60\) cycles.
Output full variable from 0.260 volts. Bulk quantities available. Output full variable from \(0-260\) volts. Bulk quantities
1 amp.- \(25 / 10 /-; 2.5 \mathrm{amp} .-£ 6 / 15 /-5 \mathrm{amp}\). \(£ 9 / 15 / \mathrm{s}\) : \\ \begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{7}{*}{}} \\
\hline & & & & & & \\
\hline
\end{tabular}


\section*{ADVANCE
TEST EQUIPMENT}

Brand new \& bored in original sealed cartons, VM.76. VALVE VOLTMETER. R.F. mea-
Burementa in exceas of \(100 \mathrm{Mc} / \mathrm{s}\) \& \(\mathrm{D} . \mathrm{C}\). surements in excess of 100 Mc/e \& D.C.
messurements up 10000 . 100 th mecuracy of measureme D.C. range 300 MV Lo 1 KV. A.C.
\(\pm 2 \%\).
range a00 MV to 300 RMS. Resistance \(0.02-600 \mathrm{M}\). Price fy2.
vm. 78 . A.C. MILLVOLT METER. TMA sistorised. I Mv-300v. Frequeuce \(1 \mathrm{c} / \mathrm{s}\) VM.79. UHT MLLIVOLT METER. Transishrised. A.C. range H1B. AUDIO EIGNAL GENERATOR. \(15 \mathrm{c} / \mathrm{b}-\) \(50 \mathrm{Kc} / \mathrm{a}\), sine or squse wave. Price £230.
JIB. AUDIO SIGNAL GENERATOR. 15c/a-s0 Kc/s. Price
JR8. AUDIO SIGNAL GENERATOR
per 1 B Except per J1B except atitod with output meter \(£ 35\)
TT1S. TRANSISTOR TESTER. \(£ 37 / 10 /-\)
Caitiage \(10 / \sim\) per item.

LELAND MODEL 27 BEAT FREQUENCY OSCI LLATORS a.c. Oftered in excelient condition. \(\mathbf{8 1 2 / 1 0 /}\)

G. W. SMITH \& Co. (Radio) Ltd. 3-34 Lisle St., W.C.2. ALSO SEE OPPOSITE PAGE

 mcale. Buill in meter
protectinn. \(0 / .6 / 2.6 / 10 /\)
\(50 / 250 / 500 / 1,000 ~ v\). D.C. 80/250/500/1,000 v. D.C.
 \(100 / 5003 \mathrm{~K} / 10 \mathrm{E} / 100 \mathrm{~K} / 10 \mathrm{M} /\)
\(0 / 10 \mathrm{M}\);


LAFAYETTE 57 Ranke Super volto. \(125 \mathrm{mvv}-1000 \mathrm{v}\). D.C. A.O.
votha \(1.5 \mathrm{v}-1000 \mathrm{v}\). D.C. Cur
 +81 db . Overioad protection


NEW MODEL 500 30,000 O.P. with overlosd protection, mirror
acalo. \(0 / . / 2 / 2.5 / 10 / 25 / 100 / 250 / 500\)
 \(250 / 500 / 1,000\). A. A. \(0 / 50 \mu \mathrm{~A}\)
\(5 / 50 / 500 \mathrm{~mA} .12 \mathrm{mp}\). D.C 0/60k/6 mez/60 meg
£8/17/6. Post paid.

MODEL TE-90 50.000 O.P.V. mirror seale orerlogd protec.
tion. \(0 / 3 / 1 / 2 / 6 / 30 / 60 / 1,200\)
 \(16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 16\). MEA D.C.
\(-20-63 \mathrm{db} . ~ £ 7 / 1010\).
 MODEL TE-12. 20,000 0.P.V.
\(0 / 0.6 / 6 / 30 / 120 / 600 / 1.200 /\)
\(3,000 / 6,060\) v. D.C. \(0 / 6 / 40 / 120 /\) \(3,000 / 6,000\) v. D.C. \(0 / 6 / 30 / 120 /\)
\(600 / 1,200\) v. \(A . C .0 / 6 \mu \mu / 6 /\) \(0 / 6 \mathrm{GNOLA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{M} \mathrm{PR} . \mathrm{J}\)
\(60 \mathrm{Mez.D} .50 \mathrm{PP} .2 \mathrm{MFD}\) ع5/19/6.

\section*{MODEL TE-80. \(20,0000.8 .7\)} 0/10/50/100/500/1,000 v. D.C. \(00-50 / 4.500 / 1,000\). \begin{tabular}{l}
\(0 / 6 \mathrm{~K} / 00 \mathrm{~K} / 690 \mathrm{~K} / 6\) mes. \\
\(\varepsilon 4 / 17 / 6\). P. \& P. \\
\hline \(1 /\). .
\end{tabular}

 to \(_{3 / 6 .}+17 \mathrm{~dB}\). £12/10/-


MODEL TE-10A. 200k O/ Volit \(8 / 25 / 50 / 250 / 500 / 2,500 \mathrm{v}\) A.C. \(0 / 6 \mathrm{~K} / 6\) mes. ohm. -20 to \(10-0.100 \mathrm{mfd} \cdot\)
\(69 / 8.100-0.1 \mathrm{mfd}\). PROPESSIONAL 20.000 MOLTITESTER. TMPE matly overlosil protec-
tion, mirror acale. Rangea


NEW STAR SR-200 SSB AMATEUR RECEIVER
An exciting new recelver covering 6 amateur mands \(160 / 80\) calibrator. Product detector. Automatic noline moter. Cryatal
 2 eraninhars, 2 diodes. 220/240 V. A.C. Supplied brand new R209 Mk. II COMMUNICATION RECEIVER

 receiver sult
able for tropl-
 hands. AM
CW/PM opera tion. 1 ncorpor
ates precision ates precision
venier drive. B.F.O. Aerial trimmer, Interial Apeaker and excelleat condition. fully teated and checked, 215
Oerr. 20\%-. TO-3 PORTABLE OSCILLOSCOPE. \(3^{*-1}\) TUBE
 Y amp. Bensluivity. IV \(\mathrm{p}-\mathrm{p} / \mathrm{CM}\). Bandwith 1.5 opp

 bandwidth 1.5 epo-800
KHZ. Input imp. 2 meg 0 20 PF. Time hase 2 meg 0 10 eps- 300 KHZ. Bya chronization. Intemsi/az\(140 \times 215 \times 3300 \mathrm{MM}\)
Weight Wele. Supplied brand new


AVOMETERS Supplied in excellent condition fully tested and checked. Com pleads and instruc Model \(7 \quad £ 13 / 10 / 0\)

TRANSISTORISED LC.R. A.C MEASURING A now BRIDG


11 LOMFD. 6 Ranges
\(\pm\) 2\%. TURNG RATIO \(1: 1 / 1000-1: 11100\)
 Opernted from 9 volts. \(100 \mu \mathrm{~A}\), Meter Lndicstion,
Attractive 2 tone metal case. Size \(71^{\circ} \times 5^{\circ} \times 2^{\circ}\) ERO. P. \& P. 5/-. Viriable range 0-111
db. Connectione. Unhalanced Tand
Bridice T. Bridge T. Imped
ance 600
ohms Rnce
Rnine ( 0.1 db \(\times\)
10 ) \(+(1 \mathrm{db} \times 10)\)


40 db . Frequency: 1 CC to \(200 \mathrm{KHZ}(-3 \mathrm{db})\) Accuracy: \(0.05 \mathrm{db} .+\) indication db \(\times \underset{\text { maximum inp }}{0.01}\). Budt in coo o load reaistance with interraal/


UNR-304BAND
COMMUNICATION RECEIVER
Covering \(550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). Incorporates variable BFO for CW/SSB reception. Built-in speaker and phone jack. Metal cablinet. Operation 220/240 v. A.C. Supplied brand new, guaranteed with instructions. 13kns. Carr. 7/6.


TRIO COMMUNICATION RECEIVER MODEL 9R-59DE 4 hand receiver covering \(500 \mathrm{Kc} / \mathrm{e}\) to \(30 \mathrm{Mc} / \mathrm{a}\), continuous
and electrical bandupread on \(10.15,20\), 40 and 80 metres 8 valve plus 7 diode circult. \(4 / 8\) ohm output and phone
 Y. A.C. mains. Besutifully designeds siane \(7 \times 18 \times 10 \mathrm{in}\). With inatruction manual and service data £39.15.0. Carrage paid Trio Commaniantion Type Headphones.
Normaly \(£ 5.19,6\). Our price £3.15.0 if purchased with


NEW LAFAYETTE SOLID STATE


HA600 RECEIVER
\({ }^{5}\) BAMD AM/CW/SSB AMATEUR AND SHORT WARE,
 end © \({ }^{2}\) mechanical fillery © Hage diel - Produot
 Wh. 18 Ibi. EXCEPTIONAL VALUE E45. CABR. 10/-0 S.A.E. FOR POLL DETALS.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER
A completely new tranalitorised recetiver cororing 152-174 Mc/a. Pully tuneable or crystal controlled (not supplied) for Axed frequency opernion Incorporates MINTE-
ORATED CIRCUITB. Bult-in oppeaker and illuminated dial. Bquelch and volume controil. Tape recorder outpui 12 v . D.c. Ner. earth.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER


19 translators, 8 diodes. IHP muatic power 30 watte
 \(3-16\) ohms. Separate \(L\) and R volume controls. Treble and bass controls. Stereo phone fack.


\section*{GARRARD}

GARRARD RECORD DECKS. FULL CURRENT RANGE OFFERED BRAND NEW AND GUARANTEED AT FANTASTIC SAVINGS.


ERP22 Mono e6.10.0 *BP2s MKII \(\mathbf{~ 1 1 1 . 1 9 . 6}\) 8RP22 Btereo 86.19 .6 *ELSS 111.19 .6 1025 Mono \$7.10.0 A70 MKII \$12.10.0 1025 Stereo 27.19 .6 *АT60 MKL \(\mathbf{E 1 8 . 1 0 . 0}\) *2026 stereo 28. 8.0 *EL65 ER5 -2025T/C Mono/ AP75 0 - 3000 stereo 29.19 .8 BL7s 299.0 .0 sL95 235. 0.0

Carriage/insurance 7/8 extra any mode
- Bpecial offer bane and cover avaliable for these Full range of Garrard accemeories availmble
E.M.I. SI NGLE PLAYERS

COMPUTER TAPE
\(3,800 \mathrm{ft} . \mathrm{xt}\) in. on 10 f ln . NAB BPOOLS. Used

MINIATURE WAFER SWITCHES


4 pole, 2 way- 3 pole, 3 way- 4 pole, 3 way -2 pole, 4 way- 3 pole. 4 way-2 pole, 6 way -1 pole, 12 way, All at \(3 / 8\) each, \(30 /-\) dozen, your asmortment.
\begin{tabular}{|c|}
\hline WATERPROOF HEATING \\
ELEMENT \\
26 yards lengh 70WT, Sell-regulating \\
tempenture control. 10/- poot free. \\
\hline
\end{tabular}

BLANKET SWITCH
Double pole with nean let into abde so lum inoun tin dark, Ideal for diark room light or for case. \(5 / \mathrm{B}\) each. 3 heat model \(7 / 8\) new plast


MAINS TRANSISTOR POWER PACK
 -orking). Takes the place of any of the following batteries PP1, PP3, PP4. PPR, PPI, PP9, ant others, Kit comprives mains tranupormer rectifer, amotaing and load resingor, condenaery sta
plus \(3 / 6\) pootuge


PP3 ELIMINATOR. Plas your pocket radio Irom the mainsi nave EA, Complete component
kit comprises
4 rectifers mains dropper resistancees, mmoothing condemer and instruc Lions, only' \(6 / 6\) plus \(1 /\)-post.


SPRING COIL LEADS


ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by Smith's these unita aro as fitted to many top quality cookers to control the oven. The clock is malns driven and frequency controlled so it in extremely accurate. The two small disis enable switch on and off timen to be accurately set. Ideal for awitching on tape
recordera. Offered at only a fraction of the regular price-new and recordera.
unused only \(39 / 6\). less than the value of the clock wione post and insurance \(2 / 9\).

\section*{INFRA-RED}

\section*{HEATERS}

Make up one or these lateat lype heater Ideal for bathroom, elc. They are simpla
 to make from our ensy-to-follow instructions uses sulas enclosed elemeuts denigued for the oorrect illustreted. 19/8. plus 4 - post and ins. Pull switch \(3 /\) - extra.


2)kW FAN HEATER

Three pooition swtehing to auk
charges in the weather. 8witch up for full heater \((2 \mid \xi \mathrm{F})\), swith down
for hair heat \((1 \nmid \mathrm{~kW})\), wwitch central blowe cold for summer cooling sdjustable thertnostat acta as anto control and safety cut-out. Complete
lit \(£ 3.15 .0\). Post and ins. 7/6.

AC FAN
Small but vers powerful maine motor with 64 in blades. Ideal for cooling equlpment or as extrac tor. Bllent but very efficient. 17/8, post \(4 / 6\) Mounts from back or front with 4 BA screws.


FLUORESCENT CONTROL KITS Each kit comprises seven titetns-Choke, 2 tube end instructons. Suitable for normal duoreacent tubes or instructions. Suituble for normal guorescent tubes or Choken are super-allent, montly resin fllied. Kit A-
 and 12 kn . miniature tubes. 10/6. Postage on Kits \(\ddot{A}\) and s \(4 / 6\) for one or two tita then \(4 / 6\) for each two tita
ordered. Kit. \(\mathbf{O}\) D and \(\mathbf{E} \$ / 6\) on first kit then \(3 / 6\) tor
 each kit kit ordered. Kit M M
\(3 / 6\) on each two kith ordered.

TELESCOPIC AERIAL
 UBA serew. \(7 / 6\).

Where postage is not stated then orders
over \(£ 3\) are post free. Below 63 add \(2 / 9\). over 63 are post iree. Below 63 add \(2 / 9\).
Semi-conductors add \(1 /-\) post. Over \(i\)

ELECTRONICS (CROYDON) LTD
Dept. Ww, 266 London Road, Croydon CRO-2TH Also \(102 / 3\) Tamworth Road, Croydon


WW-128 FOR FURTHER DETAILS


UN ALL YOUR BURPLUS EQUIPMENT DIRECT FROM AC MAINS

We make a plug in Power Supply unit, input 200/250 rolts \(50 \mathrm{c} / \mathrm{A} A \mathrm{ACmalns}\), Output to run any of the sety on attractive louvered steel cuse, with full coneeting leads, plugs as anckets.
o. 19 Recelver 23.10 .0 , carriage \(10 \%\). R.O. Receiver E4.0.0. Carriage \(10 /\)-. 8.1132 Recelver 23.10 .0 , carriage 101 8.1155 Receiver \(\mathbf{2 3 . 1 5 . 0}\), carriage \(10 /\) 8. 1475 Recelver 23.15 .0 , cartinge \(10 /\) P.C.R. Receiver \(\mathbf{£ 3} \mathbf{1 0 . 0}\), carringe \(\mathbf{1 0 /}\),

Enquiriea invtted for Power Supply nnits to ru any type of equalpment not listect

No. 19 bet trangmitter and megeivbe Mains input power supply unit to run this popular ready to plug in. Oniy \(\mathbf{2 8 . 1 0 . 0}\), carriage \(10 /\)

\section*{ARESSEA TRANSIRCC.}

Compact V.H.F. Trans/Hec. Fita in the pocket. Consists of Mike/Speaker, amplifier to operate up to 100 miles depending on cerrain. Oparaten from dry batteries. Com pletely self-contained. Cost Govt over C5S each. Regulations state must not be operated in UK so please mention "For Dismatitling purposes only" when ordering. Price £2. 10.0 each, p. \& p. 10/. Two scte for \(\mathbf{2 5 . 0 . 0}\), post free. Pour set. \(£ 8\), carriage free. Bulik sale of 10 seta E15, carriago 21. Export enquiries invited.

miniature moving coil speakers 1tin. dimmeter. Only \(3 / 6\) each, p. \& p. 1/6. Two tor 8/6 post free. Four for 15/- post free.

GANDY MAINS POWER BUPPLY UMIT Input 240 volts AC. Output 250 volts 80 m.a. DO
6.3 V . at 2 amps plua 12 volta st 2 ampu. Built on a robust compact chasisis, Containing double isolated transformers, smoothing chokes, capacitors and silicon rectifiers. In momi hit form with full instruce
toons for completion. ONLY \(25 /-\) plus \(\mathrm{B} /\) - carriage.


Bull purchase euables us to offer the following trana rormer at a ridiculoualy 10 o price. Made by a farnou manufacturer and folly tested and guaranteed,
OHARGER TRANBFORMERE, \(0-9-15\) volts. amp. \(8 / 6\) each, p.p. 2/6. Two for \(17 / 6\) post free TRANBIBTOR POWER PACE TYPEE, 6.3F at
2 amps. \(5 / 6\) each, p.p. \(2 /-12\) volt at 2 amp. \(12 / 6\) 2 amps. \(5 / 6\) each, p.p. \(2 /-.12\) volt at 2 anp. \(12 / 6\)

DEPT. WW10, CAWOODS YARD,
MITL STREET, LEED8 日,


\&60. Caff. 207-
2. FAST NEUTRON MONITORS (Burndepl 1407C) for measuilng neutrons in the energy range 0.15-15 meV . E 100.
3. Radlation Monitors (Burndept \(8 \mathrm{~N} 110 \mathrm{MK} . \mathrm{V}\) ) \(0-5 / 50 / 500 / 5 \mathrm{k}\). c.p.s. Brand rew. \(\$ 100\). Alpha and Beta Gamma probes available at extra cost.
4. PORTABLE RADIATION MONITORS (BuIndept BN 132) \(0-5 / 50 / 500 / 5 \mathrm{k}\) c.p.s. With built-In gamma probe. Brand new. E50 complete with carrying harness.
S.A.E. for literature. 10\% discount for

Educational Authorities.
LARGE CAPACITY ELECTROLYTICS. \(2,000 \mu \mathrm{~F} .30 \mathrm{v}\).; \(2,500 \mu \mathrm{~F} .25 \mathrm{v} . ; 2.500 \mu \mathrm{~F} .50 \mathrm{v} . ; 4,000 \mu \mathrm{~F} .90 \mathrm{v} . ; 5,000 \mu \mathrm{~F}\). \(25 \mathrm{v} . ; 7 / 6\) ea. \(5,000 \mu \mathrm{~F} .50 \mathrm{v}\). ; 10,000 \(\mu \mathrm{F} .30 \mathrm{v} . ; 16,000 \mu \mathrm{~F}\). \(10 \mathrm{v} .10 / \mathrm{e}\) e. p.p. 1/-
SPEAKER BARGAINS. E.M.I. \(13 \times 8 \mathrm{ln}\). with double Tweeters \(15 \mathrm{ohm}, 65 /-\), P.P. \(5 /-\). AS above less iweeters 3 of 15 ohm, 45/-ea., P.P. 5/-.
FANE 12 in. 20 watt (Dual Cone), 95/-. P.P. 5/-
CAR RADIO SPEAKER \(7 \times 4 \mathrm{ln} .3 / 5 \mathrm{ohm} .18 /=\theta a\). P.P. 2/6

\section*{EXTRACTOR/BLOWER}

FANS (Papst)
100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2\) in. 2800 r.p.m. Wonderful buy at \(50 /\) - ea. 240 v . A.C.


SPEAKER SYSTEM ( \(20 \times 10 \times 10 \mathrm{In}\).) Made to spec. from \(\frac{3}{3}\). board. Finished in black leathercloth. \(13 \times 8 \mathrm{in}\). speaker with twin iweeters co
\(50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{c}\). E7.10. P.P. \(10 /\)-. PHOTOMULTIPLIERS 6262 and 6262b. E15 oa. RELAYS H.D. 2 pole 3 way 10 amp . contacts. \(12 \mathrm{v} . \mathrm{w} .7 / 6 \mathrm{ea}\), LIGHTWEIGHT RELAYS (with dust-proof covers)
\(4 \mathrm{c} / \mathrm{o}\) contacts. \(12 \mathrm{v}, 100\) ohm, of \(24 \mathrm{v}, 500\) ohm \(7 / 6\) ea.

MINIATURE KEY SWITCHES.
DEAC BATTERY PACKS \(\left(5 \times 4 \frac{1}{2} \times 1 \frac{1}{5} \mathrm{in}\right.\).) containing 3 cells giving 4 volts at 5 a.h. \(35 / \mathrm{e}\). P.P. 5

SOLARTRON PULSE GENERATORS (OPS 100C)
\(50 \mathrm{c} / \mathrm{s}=1 \mathrm{~m} / \mathrm{c}\). 60 ) \(50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}\). \(\mathbf{8} 60 \mathrm{each}\). Carriage 50/-
WOBBULATORS TYPE 210 (Metrix) 0-220 M/c. Sweed width \(1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}\). £40. Carriage \(30 /-\)

THYRISTOR LIGHT DIMMERS
\[
\begin{aligned}
& 500 \text { watt Module 45/- } \\
& 1000 \text { watt Module } 60 / \text {. }
\end{aligned}
\]

These modules may be fitted into standard socket boxes and made up into banks as required.
5 kW DIMMERS in metal cabinel C20 ea.

\section*{TRANSFORMERS}
H.T. TRANSFORMER (Parmeko 'Neptune') Pilm. 200/ 250 v . Sec. \(350=0-350 \mathrm{v}\). \(150 \mathrm{~m} . \mathrm{a}\). 6.3v.@ \(1 / 2 / 6 \mathrm{amp}\). 35/-. P.P. 5/-. Matching Choke 10h 180 m.a. 12/6.
E.H.T. TRANSFORMER (Parmeko 'Neptune') \(3,000 \mathrm{v}\). 280 m.a. E12/10/0. P.P. 50/:. \(200 / 250 \mathrm{v}\). Sec. \(0-1 / 0-\) L. T. T/O-27v. 30 amp. \(\mathbf{2 7 . 1 0}, 15 \mathrm{amp}\). E5. P.P. \(15 /=\). L.T. TRANSFORMER Prim. 200/250v. Sec. \(0 / 25 / 35 v\) L.T. TRANSFORMER
30 amp. 27.10. P.P. \(20 /-\)

30 amp. E7.10. P.P. 20/-*
STEP-DOWN TRANSFORMERS PIIm. 200/250v. Sec 115 v . 1.25 amps. \(25 /-\) ea. P.P. 5/.
L.T. TRANSFORMERS Prim.
3.5 amp models \(20 /-; 5 \mathrm{amp}\) model \(25 \mathrm{j} /\) Sec. \(8 / 12 / 20 / 25 \mathrm{v}\). I.T. TRANSFORMERS Prim. 240 v . Sec. 14 v .
ea. P.P. 2/6. ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240 v . A.C. 85/- Ea, P.P. B/-
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240v. A.C., 20/- ea. P.P. 5/-.

COPPER LAMINATE PRINTED CIRCUIT BOARD ( \(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{1}\) in.), \(2 / 6\) sheet, 5 for 10/-
Also \(11 \times 9 \ln , 4 /-2\) Also \(11 \times 9 \mathrm{ln} ., 4 /-\) ea., 3 for \(10 /\)

\section*{BULK COMPONENT OFFERS}

100 Capacitors (latest types) 50 pF to \(.5 \mu \mathrm{~F}\)
250 Resistors it and it watt.
250 Resistors \(\frac{1}{3}\) and
150 Hi -Stab Resistors, \(\frac{1}{2}, \frac{1}{2}\) and 1 watt.
150 Hi -Stab Resistors, \(\frac{1}{2}, \frac{1}{2}\) and 1
25 Vitreous W/W Resistors, \(5 \%\).
28 Vitreous W/W Resistors, 5\%.
12 Precision Resistors .1\% (several standards included).
12 Precision Capacitors 1 and \(2 \%\) (several standards included).
12 Electrolytics (miniature and standard sizes).
ANY ITEM \(12 / 6\). ANY 5 ITEMS \(50 /-\)
TELEPHONE DIALS (New) 20/- ea. Amplified TELEPHONE HANDSET (706) 27/6. P.P. 2/6.

EXTENSION TELEPHONE (TYPO 70 Black or 2 tone Grey. 68/-. P.P. 5/•.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank \(\frac{1}{2}\) wipe 65/-. 10 bank \(\frac{1}{2}\) wipe 75/.

REED RELAYS 4 make \(9 / 12 \mathrm{v}\). ( 1,000 ohm.) \(12 / 6\) ea. 2 make \(7 / 6\) ea. 1 make \(5 /\) - ea. Reed Switches (1 1 ln.\() 2 /\). ह̂ per doz.
CONTINUOUS LEVEL MONITORS (Burndept BE307) complete with Sensing Probe. £25.
Translstorised PROXIMITY SWITCHES (Burndept LEVEL CONTROLLER (Burndept BE305),
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 interruption per min., comprises: Light Source, Sensing Head, Control Unit. \(£ 15\).
S.A.E. Literature.

COLD CATHODE TUBES (Hivac XC25) \(2 /-\) ea Quantity quotations on request.

\section*{PATTRICK \& KINNIE}

81 PARK LANE - ROMFORD - ESSEX
ROMFORD 44473
"Wew Loon melody six meo. AND LONG WAVES. WITH SPEAKER AND EARPIECE 6
 outport. Tuning condenses. high " \(\mathrm{a}^{-}\)
ferite rod senial. 3 in. speater. and pewsonal earpiect for private listening. B4 \(\approx 4 \approx 2 \mathrm{~m}\). Buibling Cost \(89 / 6\).


Roamer six. 6 wavebands MW1, MW2. SW1. SW2. LW ANO TRAWLER BAMD. 8 hans istors and 2 diodes. Fenite ood and
 P. \& P. 4/8. Plans and Patis list 2 . Itree with parsl). Peisconal Earpiece with swithed sockot for private

PDCKET FIVE. MED. AND LONG waves s irawler bano io approx 50 moves WITM SPEAKER AND EARPIECE 5 transistors and 2 diodes. furmete tod aerial. huning com.
 P. \& \(P\) Pin Pat Bualding Costs 44/6. thee with pers).

SUPER SEVEN MED LONG AND Thawler band. 7 transistors and diodes 3in speaker. 2 Rff, stages. push pull output ate. \(7 \boldsymbol{7} \times 5\} \times 1\) fin Total Builiding Coses \(69 / 6\). P. SP. \(4 / 6\). Plans and Pans liss \(2 /\) - Hree with perst Personal Eappuce with smiched socket tor private fistening. 5miched

transoma five meo. and IONG and trawlea band to upprox 50 metres WITH SPEAKER AND EAR PIECE. 5 transistors and 2 diodes. lemite cod senas, moung ceil spenkel. 6f \(\times 4 \times 1 \mathrm{fin}\) Total Buinding Cosse 47/8.P.\&P. 39. Plans and Paras list \(1 / 6\) litree with pansl.
 ROAMER SEVEMMK .7 WAVE-BANOS-MW1, mwz. LW, SWI. SWz. SW3. and thawlea band. 1 transistors and 2 diodes Fertie rod aena and teloscopic aerial Socket tor car aetial \(7 x\) din 3peaker. Arspaced ganged funing condenser tic. Sue \(9 \times 7 \times\) din Tow Builing Coss \(55 / 19 / 6\). P. \& P. \(7 / 6\) Personal eargiece with switched socket tor poivate listening 5/- Extra. Plans and Parts list 3 - Ifree win pantl.

\section*{RADIO EXCHANGE CD. LTD. Dept WW. 61 High Street, Bedford. 'Phone 023452367}


Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/ofi switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

\section*{7-STATION INTERCOM}
( 1 MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. 3tin. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gns. P. \& P. 14/6 in U.K.

\section*{TRementiEPHONEAMPITIER}


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long FIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 V . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.),
169 Kensington High Street, London, W. 8

\section*{ \\ }

TRANSISTORS PRICE

\author{
AClo7 \\ AC126 \\ AC127 \\ \(A C 128\)
\(A C Y 17\) \\ ACY17 \\ AFIIS
AFII6 \\ AFII6
AFII7 \\ AFII品 \\ AFII9 \\ AFI
AFI
AF \\ AFI39
BFYSO \\ BFYSO
BSY25 \\ BSY25
BSY26 \\ BSY 26
\(8 S Y 27\)
BSY 28 \\ BSY28
BSY29 \\ BSY29
BSY95A \\ OC41 \\ OC44 \\ \(\mathrm{OC45}\)
\(\mathrm{OC71}\) \\ \(0 C 71\)
\(0 C 72\)
\(0 C 73\) \\ \(0 \mathrm{OC73}\)
0 CBI \\ \(0 \mathrm{OC81}\) \\ OC83 \\ OC1 39
}


PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS
OVER \(£ 4\)

\section*{TRY OUR X PACKS FOR UNEQUALLED VALUE}

\section*{XA PAK}

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45,71,72,
81, etc.
PRICE 15 PER 1000

\section*{x PAK}

Silicon TO. 18 CAN type eransistors NPN/PNP mixed lots; with equivalents to \(O C 200-1,2\) N706a. BSY27/29, BSY95A
```

RICE E5,5,0 PER 500

```
PRICE C10 PER 1000

\section*{XC PAK}

Silicon diodes miniature slass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31. 39 and DKIO, etc.

PRICE 45 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK. P/P \(2 / 6\) PER PACK (U.K.)

TRANSISTORS ONLY 1/- EACH SILICON - PLANAR - N.P.N. - P.N.P All these types available
\begin{tabular}{llllllll} 
2N929 & 2N706 & 2S131 & 2S103 & 2N696 & 2N1613 & 2S733 & BFY 10 \\
2S501 & 2N706A & 2S512 & 2S104 & 2N697 & 2N1711 & 2N726 & 2S731 \\
BCI08 & 2N3011 & 2S102 & 2N2220 & 2N1507 & 2N1893 & 2N2484 & 2S732
\end{tabular}

All tested and guaranteed transistors-unmarked.
Manufacturers over runs for the new PRE-PAK range.

\begin{tabular}{|c|c|}
\hline NEW UNMARKED & UNTESTED PAKS \\
\hline \(25 \begin{gathered}\text { BSYOSA } \\ \text { NPN Silicon }\end{gathered}\) & TRANSISTORS 10\% \\
\hline  & TRANSISTORS 10/- \\
\hline  & TRANSISTORS 10/- \\
\hline  & ZENERS 10/- \\
\hline 25 EFY50-1-2 & TRANSISTORS 10/. \\
\hline \(10{ }^{4}\) amp. Stud. & RECTIFIERS 10/- \\
\hline \(25 \begin{gathered}\text { BC107-8-9 } \\ \text { NPN Slilcon }\end{gathered}\) & TRANSISTORS 10\%- \\
\hline 40 IN914-6 OA200/202 & 2 DIODES 10/- \\
\hline \[
180 \text { Min. Germ, } \begin{aligned}
& \text { Gigh } \\
& \text { Guality }
\end{aligned}
\] & DIODES 10/- \\
\hline 25 2N706A \({ }^{\text {2 }}\) NPN Silicon & TRANSISTORS 10/- \\
\hline
\end{tabular}
PRE-PAK.N.605 POWER
TRANSISTOREQUIVALENT \(5 /\) - QRCi
TONKT3OI-2.3.4RY SET
COMPLIMENTARY SET
NPN/PNP GERM. TRANS.

\section*{PRE-PAKS}

Selection from our lists
\begin{tabular}{|c|c|c|c|}
\hline No. & & & Price \\
\hline BI & & Unmarked Trans. Untested & - 10\% \\
\hline B2 & & Photo Cells Inc. Book of Instructions & - 10\% \\
\hline B6 & 17 & Red Spot AF Transistors & \(\triangle 10 \%\) \\
\hline B6A & 17 & White Spot RF Transistors & - 10\% \\
\hline 89 & & ORP 12 Light Sensitive Cell & - 9/- \\
\hline B53 & 25 & Sil. Trans, \(400 \mathrm{Mc} / \mathrm{s}\) | Brand New & - 10\% \\
\hline 854 & 40 & .. \({ }^{\text {.. NPN To } 5 \text { Trans Volcage }}\) & 1. 10/. \\
\hline B55 & & .. ., NPN Tol8 \& Gain Fallou & \% 10/. \\
\hline 856 & 40 & . NPN/PNP All Tested & - 10\% \\
\hline 868 & & Top Hat Recs. \(750 \mathrm{M} / \mathrm{A} 100-800\) PIV & - 10/. \\
\hline B69 & & Diodes. Gid-Bnd. Germ Sil. Planer & - 10/. \\
\hline 874 & & Gld-Bnd. Diodes. 2-OA9, 3-OA5 & - 10/. \\
\hline 875 & & Comp. Set. 2G371, 2G381 2G339A & - 10\% \\
\hline C2 & & Unijunction Transistor 2N2160 & - 15\% \\
\hline C32 & & Top Hat Recs. 15100 Type & - 15/- \\
\hline C35 & & Unijunction Transistor \(=\) to 2N2160 & - 15/- \\
\hline Al & & Silicon Reccifiers BY100 Type & - 20/ \\
\hline A3 & & Mixed Marked and Tested Transistors & - 20/- \\
\hline A21 & & Power Transistors I-AD149/I-OC26 and 3 others & \[
.20 /=
\] \\
\hline & & AND MANY MORE & \\
\hline
\end{tabular}

\section*{JUST INTRODUCED}

2 BRAND NEW ITEMS!!!
PAK 8.78
Integrated Circults, Mixed
Umtested, Types include:
MIC 930,932.936.944.945.
\(946,948.950,9518962\).
These are STC Type Numbers.
Data \& Circuits supplied with orders.
PAK B.79
Genuine I.T.T. Fully
Tested and Marked Diodes
in 4007,1 Amp. 1000 Volt.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rek
counter for any car. counter for any car.

FREE CATALOGUE AND LISTS for: -

\section*{ZENER DIODES} TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD beware of imitations

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS


The DORSET (600mW Output)
7-transistor fully cunable M.W.-L.W. superhet portable-
with baby alarm facility. Sec of parts. The lacesc modulized with baby alarm facility. Set of parts. The latest modulized SIIes: \(12^{*} \times 8^{\prime \prime} \times 3^{*}\)
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price \(\mathbf{5} 5.5 .0\) plus \(7 / 6\) p. \& p. Circuit \(2 / 6\). FREE WITH PARTS The ELEGANT SEVEN MK. III (350mW Output) 7-transistor futly tunable M.W.-L.W. portable. Set of parthed and drilled printed circuit board-back printed for foolproof construction
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price \(£ 4.9 .6\) plus \(7 / 6\) p. \& \(p\).
Circuit 2/6. FREE WITH PARTS


\section*{50 WATT AMPLIFIER AC MAINS 200-250V}

An extremely reliable general purpose valve Suitable for use with; mics organs etc. Separate bass and treble controls. Output impedance 3,8 and 15 ohms.

Price 27 gns. plus 201. p. \& p INTEGRAL PRE-AMP.
Specifications: Power Output (into 3 ohms speaker) 10 watts. Sensitivity (for rated output): 1 mV into 3 Kohms ( 0.33 microamp). Total Distortion (at KHz ): At 5 wates \(0.35 \%\) At rated output \(1.5 \%\). Frequency Response: Minus 3 db
points 20 Hz and 40 Khz Speaker: \(3-4\) ohms. ( 3.15 ohms points \({ }^{\text {may }}\) be used). Supply voltage: 24 vv D.C. at 800 mA . ( \(6-24 \mathrm{~V}\) )
 CONTROL ASSEMBLY: (ineluding resistors and capacitors). I. Volume: Price \(5 /-.2\). Treble: Price \(5 /-\). 3. Comprehensive bass and ereble: Price \(10 /-\) The above 3 izems can be purchased for use with the X101. POWER SUPPLIES
FOR THE X101: PIO1 M (for mono) \(35 /=\mathrm{p}\). \& p. 4/6: PlOI S (for stereo) 42/6 FOR THE

\section*{The CLASSIC}

CONTROLS: Selector Switch. Tape Volume. Treble. Bass. 2 position scrateh fiker and 2 position rumble filter.
SPECIFICATION: Sensitivities for 10 watt output
at 1 KHz Tape Head: 3 mV (at 31 i.p.s.). Mag. P.U.: 2 mV . Cer.P.U
80 mV . Radio: 100 mVV . Aux. 100 mV . Tape/Rec. Ourpur: 100 mV . Equalisation for each input is correct to within \(\pm 2 \mathrm{~dB}\) (R.I.A.A.) from 20 Hz to 20 KHz . Tone
Control Range: Bass \(\pm 13 \mathrm{~dB}\) at 60 Hz . Treble +14 dB at 15 KHz . Total Distortlon: (for 10 watt output) \(<1.5 \%\). Signal Noise: \(<-60 \mathrm{~dB}\). AC Mains \(200-250 \mathrm{v}\).

The RELIANT MARK II 10w Solid-State High Quality Amplifier Specifications: Output: 10 watts. Output Impedance: 3 to 4 ohms. Inputs: \(1 . \times\) xeal mic 10 mV . 2 . gram \(/\) radio 250 mV . Tone Concrols: Treble concrol range \(\pm\)
12 dB ai \(10 \mathrm{KHz;} \mathrm{Bass} \mathrm{control} \mathrm{range} 13 \mathrm{~dB}\) at 100 Hz . Frequency response: 12 dB at 10 KHz Bass control range \(\pm 13 \mathrm{~dB}\) at 100 Hz . Frequency response:
Minus 3 dB points are 20 Hz and 40 KHz . Signal to Noise Ratio: better than 60 dB . Minus 3 dB points are 20 Hzz and 40 KHz . Sig nal co Noise Ratio: better than 60 dB . Transistors: 4 silicon Planar cype and 3 Germanium type. Mains input: 220-250V.
A.C. Size of chassis: \(10^{\circ} \times 3 y^{\circ} \times \mathbf{2 n}^{\circ}\). A.C. Mains, 200-250V. For use with Std. or A.P. records, musical instruments, all makes of pick-ups and mikes. Two inputs L.P. records, musical instruments, all makes of pick-ups and mikes. Two inputs
with control for gram. and mike. Built and tested. \(8^{\pi^{\prime 2}} \times 5^{m}\) speaker to suit.

RELIANT MARK \(116 \frac{1}{2} \mathbf{g n s}\). plus \(7 / 6 \mathrm{p}\). \& p . In teak finished case.

\section*{THE VISCOUNT}

Integrated High
Stereo Amplifier
SPECIFICATIONS: Outpur: 10 wates per channel inco 3 to 4 ohms speakers ( 20 watts monoral). Input: 6 position rotary selector switch ( 3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All inputs 100 mV . into 1.8 M ohm. Frequency response: \(40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}\). Tone controls: Separate bass and treble controls. Treble 13db lift and cut at 15 KHz . Bass 1506 lift and \(200-240 \mathrm{v}, 50-60 \mathrm{~Hz}\) size \(122^{\circ} \times 6^{\prime \prime} \times 27^{7}\) in teak.finished case. Buils and rested. PRICE I 34 gins. POSTAGE \& PACKING 7/6d. EXTRA.

\section*{CYLDON}

4 TRANSISTOR
U.H.F. TUNER

Brand new. Complete with circult diagram.
£2.10 + 1\%-9. 8 p.

CAR TRANSISTOR IGNITION SYSTEM (by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed siticon ransistor mounted in finned heat-
sink, high output Ignition coil, ballast resistor and hardwear (screws, washers, etc.)
Price \(\mathbf{~} 4.19 .6\) p. \& p. \(5 /\)-extra.

\section*{MOTEK}

3 Speed 2 track Tape Deck complete with heads, takes 7 in spool. Incorporating 3 motors. A.C. mains, 240 volts, listed as \(£ 21.0 .0\)
Our Price \(£ 9.19 .6\) plus \(10 /\) p. \& \(p\)
RADIO \& TV COMPONENTS (ACTON) LTD.
\(21 A\) High Street, Acton, London, W. 3 Orders by post to our Acton address please Also at 323 Edgware Road, London, W. 2

\section*{COLOMOR (ELECTRONICS) LTD. \\ 170 Goldhawk Rd., London, W.I2. \\ Tel. 01-743 0899}

BOONTONSTANDARD SIGNAL GENERATOR MODEL 80. Frequency \({ }^{2-}\) \(400 \mathrm{Mc} / \mathrm{s}\) in 6 ranges . AM.,
\(400 \mathrm{and} \mathrm{i}, 000 \mathrm{c} / \mathrm{s}\) and exter nal modulation. Provision for pulse modulation. Piston eype attenuator \(0.1 \mu-100 \mathrm{mV}\) separate meter for modu lation level and carrier level Precision flywheel tuning 117 v. A.C. input. With in struction
riage \(30 \%\).


POLARAD UHF SIGNAL GENERATOR. Frequency \(950 \mathrm{me} / \mathrm{s} /\) \(2.400 \mathrm{mc} / \mathrm{s}\) in one range. Attenuator 0.1 m - 200 mV . Sync. selector internal square wave, sin \(\boldsymbol{y}\) pasitive and negative
rate multiplyer \(\times 1\) \& \(\times 10\). Pulse rate \(30-420 \mathrm{c} / \mathrm{s}\). Pulse delay \(2.5-350 \mathrm{u} / \mathrm{sec}\). \(30-420 \mathrm{c} / \mathrm{s}\). Pulse delay \(2.5-350 \mathrm{u} / \mathrm{sec}\).
Pulse width 5 microsec (incorporating Pulse width . 5 microsec (incorporating
square wave
switch). Modulation: Square Mave sw internal square wave, external positive and negative. ©llo. Carriage 30/-.
As above but frequency \(3,830-11,050\) \(\mathrm{me} / \mathrm{s}\), counter read out, pulse delay XI , \(\times 10\) and \(X 100\) at 2.20 microsecs. Pulse rate, \(\times 10, \times 100, \times 1,000\) at \(1-10 \mathrm{e} / \mathrm{s}\).
E165. Carriage \(30 / \mathrm{l}\) E165. Carriage \(30 /\)

MARCONI SIGNAL GENERATOR TYPE TF 144 G . \(85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}\). Excellent laboratory cested condition, with all necessary accessories with in-
struction manual, \(645 . \quad\) P. \(\&\) P. \(15 /=\).

MARCONI SIGNAL GENERATOR TF \(801 / \mathrm{A} / \mathrm{l}\). \(10-300 \mathrm{Mc} / \mathrm{s}\) \begin{tabular}{l} 
in 4 bands. Ineernal at \(400 \mathrm{c} / \mathrm{s}\). \(1 \mathrm{kc} / \mathrm{s}\). \\
External \(50 ~ c / s ~ t o ~\) \\
\hline \(10 \mathrm{kc} / \mathrm{s}\). Output
\end{tabular} External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{kc} / \mathrm{s}\). Ousput
\(0-100 \mathrm{db}\) below 200 mV from 75 ohms source. 885 . P. \& P. \(20 \%\), including necessary connectors, plugs, and innecessary conne
struction manual

BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903. Frequency range \(6.800-11,000 \mathrm{mc} / \mathrm{s}\), directly calibrated. Pulse race \(40-400\) \(\mathrm{c} / \mathrm{s}\) and \(\times 10\) multiplyer, delay \(3-300\) \(\mathrm{U} / \mathrm{sec}\). Wideh 05 to \(10 \mathrm{U} / \mathrm{sec}\). Input lat external Output delayed and undelayed syncronised directly calibrated attenu. ator. E85. Carraige 30/-
dawe valve volt meter TYPE 613B. Range \(0.03 v\) to 300 v in nine ranges. Frequency \(20 \mathrm{e} / \mathrm{s}\) to 2


SOLATRON LABORATORYREG ULATED POWER UNIT MODEL SRS I51 A. Variable voltage. positive output: 20-250v; \(250 / 500 \mathrm{v} \times 300 \mathrm{~mA}\)
(metered). Negative output 0 -170v (metered). Negative output 0-170v
(unmetered). Fixed negative output (unmetered). Fixed negative output 170 v . Two separate 6.3 v and 5 amp ourpues. \(\begin{aligned} & \text { H.T. Sales -mA meter switch. } \\ & \text { Sato } \\ & \text { 200/250v A.C. } 50\end{aligned}\) H.T. Salety curout. 200
c/s. \(\mathbf{E 4 5}\). Carriage \(30 /\).

MARCONI YIDEO OSCILLATOR TF \(885 A\). Sine wave output \(25 \mathrm{c} / \mathrm{s}\) \(50 \mathrm{c} / \mathrm{s}\) to \(150 \mathrm{c} / \mathrm{s}\) in 2 bands. Freq accu \(\pm 2 \% \pm 2\) e/s. Power supply \(100 / 125\) \(200 / 250\) v. A.C. \(\not 455\). (Ditto bue 25/12 \(\mathrm{mc} / \mathrm{s}\) in 3 bands/885A/I). E85. Carriage 40/

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy \(0.03 \%\) and \(300-1,000 \mathrm{Mc} / \mathrm{s}\) with accuracy \(0.3 \%\). Additional band on harmonics \(5.0-6.25 \mathrm{Mc} / \mathrm{s}\) with accuracy \(+{ }^{+}-2 \times 10-0\) recorporating calibrating
\(10-6\)
\(120 / 220\) vartz A.C. mains. Carriage 22 .

AIRMEC FREQUENCY STAND ARD METER TYPE 761. 10c, 100 c lokc, lookc, IMc. EBO. Carriage 30/.

COSSOR OSCILLOSCOPE TYPE 1049. 645. Carriage 30/.

Fuller descriptions of the following upon request.
SIGNAL GENERATOR TYPE 62 COMPLETE WITH P.S.U.
HEWLETT-PACKARDELEC. TRONIC COUNTING UNIT.
MICROWAVE SPECTRUM ANA LYZER TYPE SA II MANUFAC TURED BY RACAL
DAWE STORAGE OSCILLO. SCOPE TOGETHER WITH TRACE SHIFTER.
SIGNAL GENERATOR CT 218 (FM/AM) MARCONI TF 937. \(85 \mathrm{kc} / \mathrm{s}\) to \(30 \mathrm{mc} / \mathrm{s}\) in 8 ranges. Oucput level variable in I db steps from \(1 \mu \vee\) to 100 mV into 75 ohms. Also 1 volt out puts down to \(0.1 \mu \mathrm{c} / \mathrm{into} 7.5\) ohms. and \(3 \mathrm{ke} / \mathrm{s}\). Variable mod. depths and and \(3 \mathrm{kc} / \mathrm{s}\). Variable mod. depths and and \(2 \mathrm{mc} / \mathrm{s}\). F.M. at frequencies above \(394 \mathrm{kc} / \mathrm{s}\). Monitor speaker for bea detection. Panclimatic. 100 to 150,200 to 250 V A.C. 45 to \(100 \mathrm{c} / \mathrm{s}\). Weigh 117 Ibs. Measurements \(17^{*} \times 20 \frac{1}{2}^{{ }^{\prime \prime}} \times\)
\(172^{\circ}{ }^{\circ}\). E85. Carriage 30/.
"S" BAND SIGNAL GENERATOR No. 16 MADE BY SPERRY \(79-11\) cma ( \(2727-3797\) mcs.). Power output cma ( 001 micro watts-1 mW. as 72 ohms. Modulation: \(A\) unmodulated CW . \(B\) square wave modulated by internal free running modulator with PRF variable from 400 c to 4 kc . C Square wave modulated by internal modulator triggered by external source either sine or square, \(20-100 \mathrm{v}\) sine or \(20-100 \mathrm{v}\). p. co
p. \(£ 85\). P. \& P. \(30 /\).

BOONTON " Q" METER TYPE 160A. Frequency range \(50 \mathrm{kc} / \mathrm{s}\) to \(50 \mathrm{mc} / \mathrm{s}\). "Q " range \(0-250\) with mul ciplier of 2.5 . Main tuning capacitor \(30-500 \mathrm{pF}\) with separate \(\pm 3 \mathrm{pF}\) interpolating capacitor. Power supply 220/250vAC, 675 . Carriage 30/-. AVO VALVE TESTER MODEL 3. Measurement of mutual conductance \(0-100 \mathrm{~mA} / \mathrm{V}\) in four ranges. Screen \(0-300 \mathrm{v}\). , panelled \(0-400 \mathrm{v}\)., grid \(0 /-100 \mathrm{v}\), Filament 0/126v, Insulation \(0 / 10 \mathrm{~m}\) ohms. Recrifying valves and signal diodes can be rested under load conditions, short circulting of electrodes and cathode insulation can also be measured. Complete with data book @ E45. Carriage \(30 /\)
FURZEHILL SENSITIVE VALVE VOLTMETER TYPE 378 B/2. Accurate measuring \(A F\) and \(M F\) voltages up to \(250 \mathrm{kc} / \mathrm{s}\) in the ranges 10 mV (full scale) to 100 v . (full scale). Logarithmetically divided. A db scale provided for \(0-20\) db , 0 db being ImV . Automatically set for monitoring the inpue slenal for monitoring the input slgnal if
required. \(220 / 250 \mathrm{v}\). A.C. \(\mathbf{E 2 7 / 1 0 /}\). Pose and packing \(10 /\).
END OF RANGE:
MARCONI VALVE VOLTMETER Type T.F.428. 69. Carriage 10/-
SIGNAL GENERATOR. Type C.T.53. Without chart El 10 , with chart 222. Carriage \(15 /-\).
P. C. RADIO LTD.

170 GOLDHAWK ROAD, W. 12
SHEpherd's Bush 4946





\section*{50 AMPS}
 INPUT 230 V . A.C. \(50 / 60\)
BRAND NEW. Keenest prices in
the country. All Types (and spares)
from \(\frac{1}{2}\) to 50 amp . available from stock.
\(0-260 \mathrm{v}\). at I amp. \(0-260 \mathrm{v}\). at 2.5 amps . \(0-260 \mathrm{v}\). at 4 amps . \(0-260 \mathrm{v}\). at 5 amps . \(0-260 \mathrm{v}\). at 8 amps . \(0-260 \mathrm{v}\). at 10 amps .
\(0-260 \mathrm{v}\). at 12 amps . \(0-260 \mathrm{v}\). at 15 amps . \(0-260 \mathrm{v}\). at 20 amps . \(0-260 \mathrm{v}\). at 37.5 amps \(0-260 \cdot v\). at \(50 \mathrm{amps} . .\). . 6920 20 different types avallable 20 DIFFERENT TYPES AVAI
FOR IMMEDIATE DELIVERY.


\section*{LATEST TYPE SOLID STATE VARIABLE CONTROLLER}


5 Amp. AC/DC VARIABLE VOLTAGE OUTPUT UNIT
 smooth stepless volt-
evariation over range. Price \&30 P.\& C. 22 .
7 Amp. A.C./D.C. Mk. II Variable Output Power Unit Input 230 V. A.C. Output continuously VARIABLE from 0 to 260 v. A.C. OR 0 to 230 v. D.C. at 7 a. Robustly constructed in and ammerer. Size 17 in . \(\times 12 \mathrm{in}\). X 7 in . Weight 36 lb .

\section*{OPEN TYPES}

Designed for Pane
Mounting. \(50 / 60\)
Input 230 v. A.C. Input 230 v. A.C.
Output variable. \(0-260 \mathrm{v}\).
1 amp ..... \(\leqslant 100\)
65100
\(2 \frac{1}{2} \operatorname{amp} \ldots \ldots<6 \quad 126\)
- AMP.



\section*{SERVICE TRADING CO}

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium
Sulphide Photocell. Relay Transistor and Sulphide Photocell. Relay Transistor and
Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operORP 12 and Circuit \(10 /-\) post paid. 220/240 A.C. MAINS MODEL
incorporates mains iransformer rectifier and special relay with \({ }^{3} \times 5 \mathrm{amp}\). mains c/o contacts. Price ine.
circuir \(47 / 6\), plus \(2 / 6 \mathrm{P}\) \& P .
PHOTO ELECTRONIC COUNTER
Can be set for counts of up to 500 per minute. \(210-250 \mathrm{v}\) A.C. powered. Kit of Components, including photo cell, high speed non-resettable counter, transformer, relay, etc., cogether with clear circuit diagram, E3/2/6,
plus \(3 / 6 \mathrm{P}\). \& P. With resetcable counter, E4/2/6, P. \& P.
3- LIGHT SOURCE AND Г MOUNTING
Precision engineered light source
with adjustable lens assembly and
vers with adjustable lens assembly and 0 MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair \(\mathbf{2} / 15 / 0\) plus \(3 / 6\)
P. \& P.


GAN DE GRAAF ELECTROSTATIC GENERATOR, fitted with motor drive for 230 V. A.C. giving a potential of approx.
50,000 volts. Supplied absolutely complese including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is
ing completely safe, and ideally suited
for Sehool demonstrations. Price \(\varepsilon 7 / 7 /-\), plus \(4 / /-\mathrm{P}\). \& P. L't. on req.

\section*{200/250 v. AC HORSTMAN} 20AMP TIME SWITCH

\section*{2 on/off every 24 hrs , at any pre-set time}

Fitted in metal case 36 hr . spring reserve.
Used but fully tested. Fraction of maker's price. \(£ 3.19 .6\) plus \(4 / 6 \mathrm{~d}\). post and pack. Available with solar dial on requese.


220/240v. A.C. COOLING UNIT 2,300 r.p.m. 6 in . blade size. Smooth sion. Continuously rated. Indlvidually tested. Offered at fraction of maker's price, \(62 / 15 /-\) P. \& P. \(7 / 6\). LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp ., \(11 /=\), plus \(2 / 6\) P. \& P.
30 volt 5 amp ., \(16 /\), plus \(2 / 6 \mathrm{P}, \&\) P.
- NICKEL CADMIUM BATTERY

Sintered Cadmium Type \(1.2 \mathrm{v}, 7 \mathrm{AH}\). Size: height 3 in., width \(2 \| \mathrm{ln}\). \(\times\) 1 \(\frac{1}{1 / 3}\) in. Weight: approx. 13 ozs. 3 in., width \(2 / 1 \mathrm{n}\).
Ex-R.A.F. Tested \(12 / 6.1 \mathrm{P}\) P. \& P. \(2 / 6\).

\section*{DRY REED SWITCHES}
\(2 \times\) lamp Dry Reeds (makes contacts) mounced in 870 ohm \(9-18 \mathrm{v}\) coil. Size \(3 \mathrm{in} . x \frac{3}{} \mathrm{in}\). \(\times \frac{1}{2} \mathrm{in}\). New. Price 8/6 per pair. Post Paid.
6 of the above mentioned units ( 12 Reeds) fitted in metal box. Size 4 in . \(\times 34 \mathrm{in}\). \(\times 1 \frac{1}{2} \mathrm{in}\). Mfg, by Elliote Bros. New 45/- each. Post Paid. Telephone Dials (New) 14'6d. Post Paid. SOLAR OILFILLED CONDENSER. 240 mid . for 230 V.A.C. 600 vole D.C

AUTO TRA NSFORMERS. Step Up, step down. 110-200-220-240 v. Fully shrouded. New. 300 wart type, 63 each. P. \& P. 4/6. 500 wate type, \(64 / 2 / 6\) each.
P. \& P. \(6 / 6\). 1,000 wate type, \(65 / 5 /-\) each. P. \& P. \(7 / 6\).
- LEVER MICRO SWITCH

Brand new lever operated micro switch.
20 amp. A.C. Price \(4 / 6\) each plus \(1 / 6\) P. \& P. 5 for El post paid.
MOVING COIL HEADPHONE AND MIKE Soft rubber ear-pieces with M/C Mike fitted 5 -way plug as on No. 19 sec. New, in maker's packing, \(16 / 6\),
plus \(3 / 6 \mathrm{C}\). \& \(P\)


\section*{A.C. CONTACTOR}

2 make and 2 break (or \(2 \mathrm{c} / \mathrm{o}\) ) 15 amp . contacts. \(230 / 240 \mathrm{v}\). A.C. operation. Brand new, 22/6 plus
 CONDENSERS



POWER RHEOSTATS (NEW) Enamel, hig embedded in Viereous designed for continuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES:
25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm \(7 \mathrm{a} ., 500\) ohm 45 a . 1,000 ohm 280 mA ., \(1,500 \mathrm{ohm}\) \(230 \mathrm{~mA}, 2,500\) ohm .2a. Diameter 3tin. Shaft length tin. dia. 1 in., 27/6. P. \& P. I/6.
50 WATT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /\) 2,500 ohm, \(21 / 2\) P \& \& P. \(1 / 6\).
25 WATT \(^{2 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500 ~}\) ohm, 14/6, P. \& P. I/6.
Black Silver Skirted knob calibrated in Nos. 1-9. If
in. dia. brass bush. Ideal for above R heostats, \(3 / 6\) each.


Ceramic construction, wind-

UNISELECTOR SWITCHES
NEW 4 BANK 25 WAY


8-BANK 25-WAY FULL WIPER 24 v . D.C. operation, \(\in 7 / 12 / 6\), Plus \(4 / \mathrm{P}\) \& \(P\).

\section*{RELAYS}

BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, ete.
MINIATURE PLUG IN RELAYY COMPLETE WITH BASE, AT A A
FRACTION OF MAKER'S PRICE FRACTION OF MAKER'S PRICE COIL WORKING
\begin{tabular}{|c|c|c|c|}
\hline COIL & WORKING & & \\
\hline 0 & VOLTAGE & CONTACTS & PRICE \\
\hline 280 & 6-12 & \(2 \mathrm{c} / \mathrm{O}\) & 14/6 \\
\hline 280 & \({ }^{9}-18\). & \(4 \mathrm{c} / \mathrm{o}\) & 15/6 \\
\hline 700 & \(12-24\) & \(2 \mathrm{c} / \mathrm{o}\) & 12/6 \\
\hline 700 & 16-24 & \(4 \mathrm{c} / \mathrm{o}\) & \(15 / 6\) \\
\hline 700 & 16-24 & 4 M 2 B & 12/6 \\
\hline 1250 & 20-40 & \(2 \mathrm{c} / 0\) Heavy Ducy & \(12 / 6\) \\
\hline 2500 & 30-50 & 2 cio Heavy Duty & \(12 / 6\) \\
\hline 5800 & 50-70 & \(4 \mathrm{c} / \mathrm{l}\) & 10/- \\
\hline 9000 & 40-70 &  & 10\% \\
\hline
\end{tabular}

\section*{SEALED RELAY}

230 VOLT AC COIL
Two c/o 5 amp concaces. Plugtin 1.O. Base.
Price \(14 / 6 \mathrm{~d}\). inel. base. Post Paid.
Three e \(/ 05 \mathrm{amp}\) contacts. \(17 / 6\). inel. base.
Post Paid.
SANGAMO WESTON
Dual range voltmeter. \(0-5\) and \(0-100 \mathrm{v}\).
D.C. FSD 1 mA . In D.C. FSD I mA. In carrying case with
eests prods and leads. \(32 / 6\). P. \& \(P\). \(3 / 6\).

\section*{GALVANOMETER}

300-0-300 microamp. Calibrated 30-0-30. Mounted in sloping front case
C2/10/-. P. \& P. 3/6 D.C. Voltmeter \(0-3 \mathrm{~V}\) and \(0-15 . V \in 2\) plus \(3 / 6 \mathrm{P} .8\) \& P. D.C. Ammete \(0-6 \mathrm{amp}\). and \(0-3 \mathrm{amp}\). \(62,3 / 6\) P. \& P. The. Ammeter. ching instruments 66, P. \& P. 6/6. 2tin. dia. Allar \(21 /-\) each.
A.C. VOLTMETERS \(0-25\) v., \(0-50\) v., \(0-150\) v. M.I \(2 \frac{1}{\mathrm{tin}}\). Flush round all at \(21 /-\) each. P. \& P. extra.
\(0-300\) v. A.C. Rect. M-Coil 2 in.


\section*{‘AVO' METER MODEL 7}

Supplied fully checked and tested on Complete with batceries and leads. Price \(\leqslant 13 / 10 /-\) P. \& P. \(7 / 6 \mathrm{~d}\). Avo Leather Carrying Case \(3 /\).

\section*{'AVO' POWER AND DECIBEL EXTENSION UNIT}

For Model 7 and 7X "AVO" Meters. This'resistance box will permit values from 500 to 1,500 ohms to be obtained. Supplied complete with leads. 42/6 p. \& p. 4/6.
-"AVO" 25,000 VOLT D.C. MULTIPLIER For E.T.M. Complete with leads. New and boxed, 21 For E.T.M.
P. \& P. \(6 / 6\)
L.T.TRANSFORMERS
All primaries \(220-240\) volts.
Sec. Taps
SERVIGE TRADING CO.
SHOWROOMS NOW OPEN
Many Bargains for the caller.

9 LITTE NEWPORT STREET,

\section*{Wilkinsons FOR RELAYS \\ P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN large stocks held of miniature sealed relays}

\begin{abstract}
CONNECTING WIRE 1/024: 7/0076; or 14/0048 PVC covered in various col
E4 per 1.000 ydls , post \(6 /-\) MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt. 1.5 ampere. Size \(2^{2} \times 1.18^{\prime \prime} \times 0.63^{\prime}\). Welght 1 it 0 . Ideal for model work, \(12 / 6\) each. \(120 /\) doz. post, \(1 / 6\).
STROBOSCOPE FORK. 125 cycles. P.O. No. 5. STROBOSCOPE FORK. 125 cycles. P.O. No. 5. 30/- each post \(2 / 6\). SIZE 58. From \(90 / \mathrm{l}\). 11 Way and off. 8 to 24 Pole: also 4 Pole 12 Way and 54 Pole onloff.
SOLENOIDS tyme 3E in stock at \(17 / 6\) each
CERAMIC AND PAXOLIN WAFER SWITCHES available from ptock at keen prices, wend for list. 24 wray Double Pole Pax Wafer Switches \(12 / 6\) each, post \(2 / 6\). for ioin. panels heavy angle brase, \(150 / \%\), cre \(20 \%\). Desk Onits for Racks 30/-, cre \(7 / 6\).
BANKS OF 5 SWITCHES flush mounting in strong bakelite case made for Aircraft use 12/6.
MINIATURE BUZZERS. 12 v . with tone adjuster, \(7 / 6\). SPECIAL OFFER
43.500 Condensers 0.1 mfd 150 volts T.M.C.
43.500 Condensers 0.1 mfd 150 volts T.M.C.
wire ended \(£ 15\) per 1.000 or offer to elear lot. PLASTIC FILM CONDENSERS TMC S125017LM PLASTIC-FILM CONDENSERS TMC S 125017 LM AIR BLOWERS. \(200 / 250\) volt. A.C. cylindrical 7 in . 7 in . suitable for intake or extraction, \(1 / 50\) th h.p. Ell \(1 / 15\) th h.p. E11. \(1 / 10\) th h.p. €14.
ELCOM STUD SWITCHES. 12 pole 2 way or 3 way typea on 3 Banks. break before make action \(50 \%\) ea. GEARED MOTORS. 3 r.p.m. or \(\frac{1}{2}\) r.p.m. 4 watta very powerful. reverglble 24 V. AC \(35 /-\) post \(2 / 6\), can be SUB-MINIATURE LAMPS. Flying leads 0.75 volts
50/ 100. Sound powered type DHRR, 17/6. Post 3/\% MICRO SWITCH. Burgeag MK4BR, ro
KEY SWITCHES ONE HOLE FIXING with knohs. Stop/2 change over locking 2 position \(7 / 6\). stop/4 C.O. non-locking 2 josition 10/6. 6 C.O.
lock \(/ 2\) C.O. lock 3 powition \(17 / 6\). ock/2 C.O. lock 3 position \(17 / 6\).
BATTERIES Portable 6 Vo
metal case uncharred \(110 \%\).
\end{abstract}

\section*{PHOTOGRAPHIC EQUIPMENT}

Dallmeyer Prolection Lens \(F=65 \mathrm{~mm}, 35 \mathrm{~mm}\) mount 70 / each. post 2/6. Condenser Lenses. Plano-Convex optically ground and polished \(17^{\circ}\) dia. \(2 t^{\circ}\) focus \(7 / 6\) each. post \(2 /-\) \(1^{\prime \prime}\) dia \(3^{\prime \prime}\) focus \(10 /=\) each, post 2/6. \(6^{\circ}\) dia. \(10^{\circ}\) focus 35/6 post \(4 / 6\).
Photofloods G.E.S. 230 volts 1,000 watts \(10 /-\) ea., post \(7 / 6\) \(9^{\circ}\) square case. Ideal apotisht \(70 /-\) each. post \(10 / \%\).
HICH SPEED COUNTERS
31
\(\times\)
counts in., 10 counts wers with 4 second w
figures.
following following voltages



B-MINIATURE Microswitch Honeywell S.P.D.T type 11 SM1 TN 13 size \(t^{\circ} \times\) i \(^{\circ} \times \delta^{\circ} 6 / 6 \mathrm{ea}\). or mounted In flves for \(22 / 6\) post free
DIGITALINDICATOR. KGMM5 28 vt. 0 to \(9.50 /\) ea SPEAKERS ELAC Sin. ROUND. 9700 GruRs. 30 JACK PLUG \(2 / 6\).
\[
2_{2 / 6}^{2} \text { Point post with }
\]

crew.on cover. 2/6. post 9d
nost 1/6.
PLUG-IN RELAYS. Tondex 4 change-over HD con tacts 28 v . D.C. or 240 . A.C. With base and cover, 35/- ea RELAYS, 24 volt DC, 4 make, 4 break heavy duty contacts with dust cover, I2/6 each, quantitiea available outlets 3 bridging 5 non-bridging 50 volts. NEW \(£ 8 / 10 /\) STABALIZED POWER UNITS RACAL Ingt. type PU 156C. A.C. input \(200 / 250\) v. D.C. output positive HT \(200 / 300 \mathrm{v}\). stabilized Load current 250 mA negative HT
L. WILKINEON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY

ROBUST AIRCRAFT PUSH 5C/808 of bakelite barrel type constructlon. with \(11^{\text {F }}\) square 4 hole bakelite circle to prevent it belng used accidentally. Samples \(5 / 6\) each large quantities a vailable.
MAGNETIC COUNTERS Veeder Root with zer reset. 800 counts per minute, counting to 999,909. 11 or 125 volts AC or 110 volts IDC. \(65 /-\) each, post \(3 /\) METERS GUARANTEED. Complete list available Microamps \(0 / 1002 \mathrm{in}\) MC \(40 /\) Microamps \(0 / 5002 \mathrm{in}\). MC 25/Microamps \(0 / 5002 \mathrm{lin}\). MC Milliamos \(0 / 502 \mathrm{kln}\). MC.
Milliamos \(0 / 500\) 3 in. MC Milliamps \(0 / 5003 \mathrm{in}\). MC Amps \(50-0-502 \mathrm{~m}\). Voles 5/0/5 2 tin. MC. . Yolts \(0 / 202 \mathrm{in}\). MC.
 MICROAMPS \(0 / 30\) scaled in Rontrens 21 in . MC 45/LEAK DETECTOR A.E.I. mains powered 635 ea. (T) Moving Iron AC ONE HOLE FIXING SWITCHES SINGLE POLE. Double Throw. 3 OMp. 250 © A.C. can be used as on/ \(18 / \rightarrow\) per dozen. \(130 /-\) per 100.

MASTER CONTACTOR. Precision made. Contacts making and breaking twhee per second in soundproof case with thermostat controlled heating. 12 or 24 v . \(18 / 6\) post
"VISCONOL-CATHODRAY" CONDENSERS \(001 \mathrm{mfd} .10 \mathrm{kV}, 5 /-: .002 \mathrm{mf} .15 \mathrm{kV}, 9 /-: .02 \mathrm{mf}, 10 \mathrm{kV}\) . \(025 \mathrm{mf} .2 .5 \mathrm{kV} .5 / \rightarrow 05 \mathrm{mf} .5 \mathrm{kV}, 91=0.1 \mathrm{mf} 4 \mathrm{kV}\). RESIST 0 . \(0.5 \mathrm{mf} .2 .5 \mathrm{kV}, 1 \mathrm{~T} / 6: 1 \mathrm{mfd} .2 \mathrm{kV} .17 / 6\) RESISTORS, wire wound or carbon, votentiome BRIDGE MEGGERS SERIES I. With resistance BRIDGE MEGGERS SERIES I. With resistan
boI and leads, 1,000 ₹., \(0-100\) megohms. \(£ 60\) ea.

\section*{LATEST RELEASE OF}

RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance \(2.5-600\) ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from \(£ 45\) to \(£ 60\), carr. \(£ 2\).
*SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, \(£ 3\) each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L 7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; 17 \& 18; 23 \& 24; and 27 and 28. Price \(12 / 6\) each. \(2 / 6\) post. By-pass Capacitor K. \(98034-1,3 \times 0.05 \mathrm{mfd}\). and M. 980344 , \(3 \times 0.1 \mathrm{mfd}\)., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of \(3,10 /\)-, post \(2 / 6\). Block Condenser, \(3 \times 4 \mathrm{mfd}\)., 600 v ., \(£ 2\) each, 4/- post. Output transformers 901666-501 27/6 each,

\section*{4/- post.}
* Available with Receiver only
S.A.E. for all enquiries. If wishing to call at

Stores, please telephone for appointment.
W. MILLS

3-B TRULOCK ROAD, TOTtenham, N. 17
Phone: Tottenham 9213

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range \(50 \mathrm{kc} / \mathrm{s}\). to \(30 \mathrm{mc} / \mathrm{s}\). With set of nine coils. Complete HRO 5T SET (Receiver, Coils and Power

COMMAND RECEIVERS; Model 6-9 Mc/s., as new, price \(£ 5 / 10 /\) - each, post 5/-.

COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25W output, directly calibrated. Valves \(2 \times 1625\) PA; \(1 \times 1626\) osc.; \(1 \times 1629\)
Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(\mathrm{E} 3 / 10 / \mathrm{each}, 10 / \mathrm{l}\) Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(\mathrm{E} 3 / 10 /\) - each, \(10 / \mathrm{h}\) post.
Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

BC-433G COMPASS RECEIVER; Freq. 200-1,750 Kc/s. in 3 bands, uitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps . Receiver only \(£ 5\) each, carr. 15/-

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , \(400 \mathrm{c} / \mathrm{s} 3\) phase, \(\mathrm{f} 6 / 10 /\) each, \(8 /-\) post. Converter 12 v D.C. input, 110 v A.C. @ 40 mA output, \(25 /\). each, post \(2 / \mathrm{m}\).
CONDENSERS: \(150 \mathrm{mfd}, 300\) v A.C., £7/10/- each, carr. \(15 / \mathrm{c} .40 \mathrm{mfd}, 440 \mathrm{v}\) A.C. wkg, £5 each, \(10 / \mathrm{most}\). \(30 \mathrm{mfd}, 600\) v wkg. D.C., £ \(3 / 10 /-\) each, post \(10 /-\). \(15 \mathrm{mfd}, 330\) v A.C. \(w k g\)., \(15 /-\) each, post \(5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6 \mathrm{cach}\), post \(2 / 6\).
\(10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 / \mathrm{m} .8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}\), post \(3 /-8 \mathrm{mfd}, 600 \mathrm{v}\), \(10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 / \mathrm{l} .8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6\) each, post \(3 / \mathrm{-} .8 \mathrm{mfd}, 600 \mathrm{v}\), \(8 / 6\) each, post \(2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v} \mathrm{wkg}\). EB each, post \(7 / 6\). \(2 \mathrm{mfd}, 3000 \mathrm{v} \mathbf{w k g}\)., £2 each, post \(7 / 6.0 .25 \mathrm{mfd}, 32,000 \mathrm{v}, \frac{2}{2} / 10 /\) ecach, carr. \(15 /-.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-\) each, \(1 / 6\) post. 0.01 Mfd . MICA 2.5 Kv . Price £1 for 5. Post \(2 / 6\).

RACK CABINETS: 6 ft . by 19 in ., and 16 in . depth, with rear door and safety switch, C 5 , carr. \(£ 2\)
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: \(£ 25\) each, carr. £1. AVOMETERS : Model 47A, £9/19/6 each, \(10 /\) - post. Model 7x, £13/10/- each, 10/- post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat \(\cos\) ).
OSCILLOSCOPE Type 13A, \(100 / 250\) v. A.C. Time base \(2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}\). Bandwidth up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\). and \(1 \mathrm{Mc} / \mathrm{s}\). Double Beam tube. Reliable general purpose scope, £22/10/- each, 30/- carr.
COSSAR 1035 OSCILLOSCOPE, £30 each, 30/- carr.

> RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils, heavy duty, M. \& B. \(30 /-\) each, \(4 /\) post. GPO Type 600,10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M . E2 each, \(6 /-\) post.
> 12 Small American Relays, mixed types \(£ 2\), post \(4 /\)-.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 £25 each, £2 carr.
ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps., all on 275 deg. scales, \(£ 30\) each, \(£ 2\) carr.
HEWLETT PACKARD TYPE 400C: 115 v .230 v . input \(50 / 60 \mathrm{c} / \mathrm{s}\). Freq. range \(20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}\). Voltage range: \(1 \mathrm{mV}-300 \mathrm{~V}\). in 12 ranges. Input impedance 10 meg ohms. Designed for rack mounting, \(\mathbf{£ 3 0}\) each, carr. \(15 / \mathrm{F}\).
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price \(£ 7 / 10 /-\), \(£ 1\) carriage.
FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, 60-
\(95 \mathrm{Mc} / \mathrm{s}\). AMERICAN EQUIPMENT: 5C-640 Transmitter, 100-156
\(\mathrm{Mc} / \mathrm{s} ., 50\) watt output. For 110 or \(230 \%\). operation. ARC 27 trans-ceivers,
28 v. D.C. input. Also have associated equipment. BC-375 Transmitter.
\(\begin{aligned} & \text { BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ } \\ & \text { GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical }\end{aligned}\)
\(\begin{aligned} & \text { GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical } \\ & \text { CY } 1288 / \text { GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast }\end{aligned}\)
\(\begin{aligned} & \text { CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast } \\ & \text { Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, }\end{aligned}\)
\(\begin{aligned} & \text { Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, } \\ & \text { CM.23; Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth }\end{aligned}\)
Control Units, 260/CRD. Test Set URM.44, complete with Signal Generator
TS.622/U.

VARIABLE POWER UNTT: complete with Zenith variac 0-230 v., 9 amps.; 2 tin. scale meter reading \(0-250 \mathrm{v}\). Unit is mounted in 19 in . rack, £ \(16 / 10 /\) - each, 30/- carr.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v.D.C. @ \(2 \mathrm{amps} .\), £2/10/- each, carr. 12/6. AUTO TRANSFORMER: 230-115 v.; 1,000 w. £5 each, carr. 12/6. 230-115 v.; 300 VA , 23 each, carr. \(10 /\)-.
OHMITE VARIABLE RESISTOR: 5 ohms , \(5 \frac{1}{\mathrm{amps}}\); or 2.6 ohms at 4 amps . Price (cither type) \(£ 2\) each, \(4 / 6\) post each.

POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two \(\times 9 \mathrm{H}\) chokes and 10 mfd . oil filled capacitors. Mounted in 19 in . panel, \(£ 6 / 10 /-\) each, \(£ 1\) carr.
TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times\) 3C24's; complete wit filament transformer 230 v. A.C. Mounted in 19 in . panel, £4/10/-each, \(15 /\) - carr POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps. D.C. output. Wt. approx. 100 lbs., \(£ 17 / 10 /-\) cach, \(30 /\)-carr. SMOOTHING UNITS suitable

ADVANCE TEST EQUIPMENT: VM76 Valve Voltmerer, 778 each; VM78 A.C. Millivoltmeter (transistorised) £55 each; VM79 UHF Millivoltmeter (transistorised) \&125 each; J1B Audio Signal Generator \(\mathbf{£ 3 0}\) each; TT1S Transistor Tester (CT472) £37.10 each. 10 per cent Discount for schools, colleges, etc. on the above items. Carr. 10/- extra per item.

INDICATOR UNIT TYPE CRT.26: complete with CV1526 Cathode Ray Tube (3EG1). ( \(3 \times\) CV138; \(3 \times\) CV329; \(1 \times\) CV858; \(2 \times\) CV261; \(6 \times\) Crystals). Complete with brilliance and focus controls. Suitable for converting into a small oscilloscope ( \(10 \times 8 \times 6 \mathrm{in}\)., wt. 15 lb .) \(\& 5 \mathrm{each}\). Post \(10 / \mathrm{F}\).

NIFE BATTERIES: 6 v. 75 amps., new, in cases, 15 each, \(£ 1\) carr.; 4 v. 160 amps, new, in cases, \(£ 20\) each, £1 \(10 /\) - carr. L.R. 7 Cells, only 1.2 v. 75 amps., heavy surge for starting and can be stored for long periods withour any give a their performance.

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in a 3in. diameter case. Price 30/- each, postage 5/-.

UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- cach, post 4/-
FREQUENCX METERS : LM13 or BC-221; \(125-20,000 \mathrm{Kc} / \mathrm{s}\)., \(\mathbf{2} 25\) cach., carr. 15/-. TS.175/U, £75 each, carr. £1. TS323/UR, \(20-450 \mathrm{Mc} / \mathrm{s}\)., £ 75 each, carr. 15/-. FR-67/U : This instrument is direct reading and the results are presented directly in digital form. Counting rate: \(20-100,000\) events per sec. Time Base Crystal Freq.: \(100 \mathrm{Kc} / \mathrm{s}\). per sec. Power supply: \(115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}\)., £100 each,
carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range \(450 \mathrm{c} / \mathrm{s}-\) \(22 \mathrm{Kc} / \mathrm{s}\)., directly calibrated. Power supply \(1.5 \mathrm{v} .-22 \mathrm{v}\). D.C. £12/10/-each, carr. 15/-.

CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal' screen, \(\mathbf{£ 3 / 1 0 / - ~ e a c h , ~ p o s t ~ 7 / 6 . ~}\)

APNI ALTIMETER TRANS. REC., suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\), complete with all valves 28 v. D.C. 3 relays, 11 valves, price \(£ 3\) each, carr. \(10 /\).

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., \(30 /-\) each, 4)- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., \(£ 2\) each, 5/-post.
MOTORISED A CTUATOR: 115 v . A.C. \(400 \mathrm{c} / \mathrm{s}\). single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price \(£ 2 / 10 /-\) each, postage 5/- (ex equipment).
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. \(25 \mathrm{lbs} .\), rating intermittent, price £3

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

Model PM-4: 28 v. D.C. (3) 2 amps., 4,500 r.p.m., output 40 wates continuous duty complete with magnetic brake. Price \(\& 2\) each, possage \(4 /\) -
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts, price \(25 /\) - each, postage \(4 /\) -
A.C. Motor 115 v. \(50 \mathrm{c} / \mathrm{s}\). \(1 / 300\) H.P., 3,000 r.p.m. Capacitor \(1 \mathrm{mfd} ., 25 /-\) post 3/-. Dalmotor SC5, 28 v. D.C. at 45 amps; 12,000 r.p.m. output 750 W.
(approx. \(1 \mathrm{~h} . \mathrm{p}\). ), brand new, \(£ 2 / 10 /-\) each, post \(7 / 6\).

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v. a.c. operation. In used condition, £20 each, carr. £1.

MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6 in. scale. 1 microw. to 6 W . £ 25 each. Carr. \(15 /-\) MARCONI DIVERSITY RECETVERS; Consisting of \(2 \times C R .150\) 's and

MARCONI DEVIATION TEST SET TF-934: Freq. \(2.5-100 \mathrm{Mc} / \mathrm{s}\). Can be extended to \(500 \mathrm{Mc} / \mathrm{s}\). Deviation range \(0-5,0-25\) and \(0-65 \mathrm{Kc} / \mathrm{s}\). \(\mathbf{~} 35 \mathrm{cach}\), carr. £1.

CANADIAN C52 TRANS/REC.: Freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\) on 3 bands. R.T. M.C.W. and C.W. Crystal calibrator etc., power input 12 V . D.C., new cond. complete set \(£ 50\). Used condition working order \(£ 25\). Carr. on both types \(£ 2 / 10 /\) Used power units in working order \(£ 2 / 5 /\). . Carr 10/-

COAXIAI TEST EQUIPMENT: COAXWITCH—Mnftrs, Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N", female connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/-each,
post \(7 / 6\). CO-AXIAL SWITCH-Mnftrs. Transco Products Inc post 760 . Co-AX1AL SW Ne, Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw, (New) \(£ 6 / 10 /-\) each, \(4 / 6\) post. 1 pole, 4 throw,
Type M1460-4. (New) \(£ 6 / 10 /-\) each, \(4 / 6\) post.

TERMALINE RESISTOR UNITS: type 82A/U, 5000 W , freq. \(0-3.3 \mathrm{KMC}\) Max VSWR 1.2 Type "N" female connectors, etc. Brand new, £30 each, carr. 15/-.

PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR Type 219, \(100-1,000 \mathrm{Mc} / \mathrm{s}\). (New) ع65 each, post \(12 / 6\). FREQUENCY METER: Type \(587-\mathrm{A}, 0.250-1.0 \mathrm{KMC/SEC}\). (New) £75 each, post \(12 / 6\). FIXED ATTENUATOR: Type \(130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}\). (New) £5 each,
post \(4 /-\) FIXED ATTENUATOR: Type \(1157 \mathrm{~S}-1\), (new) 6 each, post \(5 /-\).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

\section*{DUXFORD ELECTRONICS (W.W.) 97/97A MILL ROAD, CAMBRIDGE}

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale \& Retail Premises)

\section*{MINIMUM ORDER VALUE 5/- \\ C.W.O. Post and Packing \(1 / 6\) \\ DISCOUNT \\ 10\% over \(£ 3\) \(15 \%\) over \(£ 10\)}

CERAMIC DISC CAPACITORS (Hunts.). \(500 \mathrm{~V} \pm 20 \% ; 100,220,330 \mathrm{pF}\) \(-20 \%+80 \% ; 470,680,1,000\) pF. 5d. each
ELECTROLYTIC CAPACITORS (Mullard). \(-10 \%\) to \(+50 \%\).


POLYESTER CAPACITORS (Mullard)
Tubular, \(10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mathrm{NF}, 7 \mathrm{~d}, 0.033,0.047 \mathrm{LF}, 8 \mathrm{~d}\). 0.068 , \(0.1 \mu \mathrm{~F}\), 9 d . \(0.15 \mu \mathrm{~F}\), IId. \(0.22 \mu \mathrm{~F}\), \(\mathrm{i} /-.0 .33 \mu \mathrm{~F}\), \(1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3\).
\(1 \mu F, 2 / 8\).
\(400 \mathrm{~V}, 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d}\).
\(0.033,8 \mathrm{~F}, 8 \mathrm{~d} .0 .0 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.033 \mu \mathrm{~F}, 8 \mathrm{~d}\). \(0.047 \mu \mathrm{~F}, 9 \mathrm{~d}\). \(0.068,0.1 \mu \mathrm{~F}\), \(11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}\), 2/3. \(0.47 \mu \mathrm{~F}, 2 / 8\).
Modular, metallised, P.C. mounting, \(20 \%\), 250V: \(0.01,0.015,0.022 \mu \mathrm{~F}\), 7d. \(0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 \mathrm{dd} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 5\). \(0.47 \mu\) F, \(1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3\). \(1 \mu \mathrm{~F}, 2 / 9\).

POLYSTYRENE CAPACITORS: \(5 \%, 160 \mathrm{~V}\) (unencapsulated): \(10,12,15\), \(18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470,560\), 680, 820pF, 5 d . \(1,000,1,500,2,200 \mathrm{pF}\), \(6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}\), \(7 \mathrm{~d} .6,800\), \(8,200,10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}\).
\(1 \%\) ioov (encapsulated): \(100,{ }^{120}, 150,180,220,270,330,390,470,500,560\), \(680,820 \mathrm{pF}, 1 /-1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}\), \(1 / 3\). \(4,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6618,000,22,000\), \(27,000,33,000,39,000 \mathrm{pF}, 1 / 9,0.047,5,000,0.056 \mu \mathrm{~F}, 2 / .0 .068,0.082,0.1 \mu \mathrm{~F}\), 2/3. \(0.12 \mu \mathrm{~F}\), 2/9. \(0.15,0.18 \mu \mathrm{~F}, 3 /-0.22 \mu \mathrm{~F}, 4 /-.0 .27,0.33 \mu \mathrm{~F}, 5 /-.0 .39 \mu \mathrm{~F}, 5 / 9\). \(0.47,0.5 \mu \mathrm{~F}, 6 / 3\).
JACK PLUGS (Screened): Heavily chromed, fin. Standard: 2/9 each Side-entry: \(3 / 3\) each.

JACK SOCKETS ( tin . Plug): With chrome insert, 2/9 each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contactes.
POTENTIOMETERS (Carbon): Long life, low noise, iW at \(70^{\circ} \mathrm{C}\). \(\pm 20 \% \leq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}\). Body dia., sin. Spindle, lin. \(x\) in. \(2 / 3\) each. Linear: \(100,250,500\) ohms. etc., per decade to 10 M . Logarithmic: \(5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}\), etc., per decade to \(5 M\).

SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100 , 250, 500 ohms, etc., per decade to SM.
Miniature: 0.3 W ac \(70^{\circ} \mathrm{C} . \pm 20 \% \leq 4 \mathrm{M}, \pm 30 \%>1 \mathrm{M}\). Horizontal \(10.7 \mathrm{in} . \times\)
 Submin. 0.1 W at 70 C . \(\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}^{2}\). Horizontal ( \(0.4 \mathrm{in} . \times 0.2 \mathrm{in}\). P.C.M.) or Vertical ( \(0.2 \mathrm{in} . \times 0.1 \mathrm{in}\). P.C.M.) mounting, lod. each.

RESISTORS (Carbon film), very low noise. Range: \(5 \%, 4.7 \Omega\) to IM \(\Omega\) (E24 Series); \(10 \%\). \(10 \Omega\) to 10M \(\Omega\) (E12 5 eries)
10
\(1 W(10 \%)\) ) ifd. 100 off per value \(12 /-\). iW ( \(5 \%\) ), 2 d . 100 off per value \(13 / 9\). IW \((10 \%), 2 \mathrm{~d} .100\) off per value \(13 / 9\). \(1 \mathrm{~W}(5 \%), 2 \frac{1}{} \mathrm{~d} .100\) off per value, \(15 / 6\).
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81,
 5/3. OC \(25,7 /-\). OC 35 , B/-. OC23, OC \(28, ~ \mathrm{~B} / 3\).
SILICON RECTIFIERS ( 0.5 SA ): 170 P.I.V... 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., \(3 / 9.1,500\) P.I.V., \(4 /-0 \quad(0.75 A)\) : 200 P.I.V.b \(1 / 6.400\) P.I.V., \(2 /-\)
 THYRISTOORS (SA): 100 P.I.V.,. B/-. 200 P.I.V., \(10 /-.400\) P.I.V., \(15 /-\)
SWITCHES (Chrome finish, Silver contacts: 3A 250V, 6A 125 V ., Push Buttons: Push-on or Push-off 5/-. Tasgle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/=
PRINTED CIRCUIT BOARD (Vero)

 \(5 / 3\).
RECORDING TAPE (Finest quality MYLAR-almost unbreakabie).
Standard Play: Sin., 600 ft ., 7/6. Sţin., 850ft., \(10 / 6\). 7in.. \(1,200 \mathrm{ft}\)., \(12 / 6\).
 18/-. (Add 9d. postage and packing per reel).

Send S.A.E. for January, 1969 Catalogue

LABORATORY TEST EQUIPMENT Purchased direct from leading manufacturers \& distributors
high value resistance BOX TYPE R. 7003


Spucification Range: 0.01-11.10 Megohm in 0.01 ratiog: 0.IW per step Cass: Hemmer finsheod sive thamel.
List price E80. Out prís f22.10.0.
mutiual inductance 80X TYPE R. 7005
Specification.
Range: \(0-11,110 \mathrm{mH}\) in
a.002 mH divisions
Accurae:'
\(\pm 0.3 \times \frac{0.012}{1 / 2 / 8 x}\)
 inductance in mH set on
the box fequency range \(0-2.5 \mathrm{Kca}\) for atidecade Maximum current: 0.5 A tor decades la lor vario. meter tooth primary an secondany windings).
List price f65. Our price f26.10.0

PORTABLE WHEATSTONE BRIDGE
 10.05 to 5 ohms 20.51050 ohms 3510500 ohms 450 to 5.000 ohms 5500 to 50.000 ohmes Scaless: Swithed
 Case: Moulded plasic. Internal Source: UV. Oev bantery. Humidfo: Up to \(80 \%\) RM Dimensions: 200 ュ \(110 \times 65 \mathrm{~mm}\) Weight: 0.9 kg
```

Werght: 0.9 kg
List once E 25.0

```


Specaication Type: Moving Coil. O.C. Ranges: \(0-75 \mathrm{mV}\).
 15-30A. Stale Lengtt: 82 mm Accurag: \(1.0 \%\) Shunts: 1 0.3-0.75 amps 2 1.5-7.5 amps 3 15-30 amps Csese: Mouldad plastic. Carring Casse. Stove enamelled metal List price £ 30 . Our price \(\mathbb{1}\) 12.19.6.

POTENTIOMETRIC 6 POINT
STRIP CHART RECORDER
For use with thermocouplers. pryometers and other a.m.f. \(6 \xi^{\prime \prime}\) chart with; pen speed \(\theta\) secs Accuracy \(\pm 0.5 \%\) : 10 thart speeds \(20-720 \mathrm{~mm}\) hr. Tropicalised Inctuding tools \& spares Listad at over \(£ 200\). Our price 579.10 .0 .12 point varsion avalable at \(£ 9910.0\).

Carriage extra on
the above equipment

Electronic Brokers Ltd 49-53 PANCRAS ROAD LONDON N.W. 1.
Telephone: 01-837 7781/2
decade capacitance BDX TYPE R. 7004


Specification Range: 0.00002 uF -1 Iuf in 0.00002 uF steps Accuracy: \(0.05 \%\) frequency Range: \(40 \mathrm{c} / 2-10 \mathrm{~K} / \mathrm{cs}\) for ali dectades encepl
stove enamel

MUTUALINDUCTANCE COIL TYPE R. 7006


Ranges: 0.80 \& 0.300 uA . D.C. 0.3 .0 .3080 .120 mA D.C. 1.2 \& \(\quad 12\) amps D.C \(0.8-3\) \& \(6 \cdot 30 \mathrm{~mA}\). A. 24.120 mA AC. \(0.24-1.2 \mathrm{~A}\). AC. \(\quad 3-12 \cdot 30-300-800\) 1.200 \& 6.000 V. af \(0.6-3.2 .4-12,6.30\). \(60-300\),
\(120-800.240-1.200\) \& \(1,200.6 .000\) V. A.C. 3333 ohms.


 20.000 ohme vol Input Resistance
Temperature Range: -10 to \(+50^{\circ} \mathrm{C}\) Oimensions: 255 215 \# 170 mmm . Weight: 8 kg g Supplied with: 2 voltag dividers. R.V. leads. spare rectili
List price \(\mathrm{C25}\). Out price \(\mathrm{f12.19.6}\).

PLUG TYPE RESISTANCE BOX

fing Temperature: \(+1010+35^{\circ} \mathrm{C}\) Operating Humidity: Up to \(80 \%\) R
Werght: 4 kg
List prict 220 . Our prite 58.17 .6 .

\section*{PORTABLE
RECORDING} MILLIAMMETER Specification. Type: Moving Coill O.C. Ranges: O-500 milliScale Lenqth: 127m Speeets: 20. 60. 180.600 .1800 a 5400 mm m. Precision: \(1.5 \%\)
Shums: \(\quad 75 \mathrm{mV}\) (Internall. Operating Temperaure: +5 to \(+50^{\circ} \mathrm{C}\) Dimensions: 180h \(163 \mathrm{w} \times 245 \mathrm{~mm}\) Weight 5.5 kg gears, imts. pipelte, scale ram. gears, ints, pipelte, sca
plate sid component tase.
List price f65.
Our price
f35

\section*{ELECTRONIC BROKERS LIMITED}

THIN FILM UNIT EQUIP. MENT FOR PROTOTYPE AND BATCH PRODUC.
TION MICRO CIRCUITS

The equipment in thin list was in opern-
tion for a few months and due to the caccellation of a Government contract is now available. This egnipment cost
e10,000 end ofters tremendous onpor tanity for setearch of commerthi ork anjantions to branch ont into thin
film circitry. OPFERS PLEASE.
Scherflute of thin fitm unit equipmen
1. Vacuum Chamber, by Consolidated
2. Hot Gas Microbonder Type B+00 Fitted with: Subatrate Holder

 Thermocompresen ion Bonder Type B 800 by G. V. Planer Lid. Mierocircuit Handiling Equlpment. Cervice Ring Berial No. ERIGY/339 Motorined attachment Berml No.
FE19/524 by \(\mathbb{C}\). V. Planer L.d.
 Current Controller Type CEBI/P
Berial No. CEB7/43+ Dy
G. Plander Lith.
Resistance monitor Type RMr Berial No. RM2/522 by G. V. Plas

Rotating Bubstrate Holder with pulsing units by G.V. Planer Lui. Luminar flow beach Twin Rasamire cabinet fited with: Bunvic Vapour Degreaner
Berial No. 870726 (R2521) Planer Led.
Mettier P120 Bulance Med-Lab Thermostatc Oven
12. Musuifer
12. Maknifer Blereage
23. Prani Vhicuum Gauge (Edwarde with 2 Gauge Heads
Surface Prafle Monitor, Type
BPMio Consiating of: Detector Unit wih Traverse Faclitity «Control Unt inclading preasure
senaitive pea recorder by P. V. \({ }^{\text {senaitlve pe }}\) Planer Led.
15. Apex. A.C. \({ }^{2}\) No. 248 S Turn Pelleting Presa Consisting of Hydraulic Press \& 4 in . dia. M(60) Felleting Out ft
Substrate Henter supply Variuc
 Hauser 10tin. acreen shadow Graph alace varioun adecillary equipmenta

RECORDING INSTRUMENTS FOUR CHANNEL HIGH SPEED PEN RECORDER by Kelvitin Hughen, with Pour channel amplitar., giving a trequency range
of \(0-1006 / \mathrm{c} / \mathrm{s}\). The Recorver conalat, hafically of anget
 coil units, each with a styllin arm atheched. The
atifueas of the coll unit suppension enables the otirnteas on the cold unit suppension ensbler the
instrument to withatand the effects of vibration And acceteration
 Exxellent condition. E1998,
N.B. Two channel veraion aralluble, givling \(\pm\) \(16.5 \mathrm{~m} . \mathrm{m}\). deflection.
FIVE CHANNEL PEN RECORDER complete with fly
Marimum trace widhh of \(\pm 2\) c.m. per channel.
Frequency respone
 Mains operated, complete in free standing consul.
Pully overhumed Cort \(11200+\) Our price \(£ 450\)

EAC DIGIVISOR MK. II DIGITAL Ideally vultrable for use
In conjunction
 tranisitorised decade
counting devices. counting devices. No No
need lor umpliflers or
 required to charge the
digite. The Diorvisor diglis. The Diolvison
theorporates in moving
 throut ement wich movea a hrannlucent scale through an optical asptem and the resultant sligle
phane image is prolected on \(\mathrm{Acreco}\). . The trane





HYBRID UNIT MI-7182 Tbe Hybild Unit It denignod for use with the Epeech Inverter where
it is desirable to operate the output of \(a\) receiving It is desiratie to operate the output of a recelving
circuit and the input of tran inaliting olrout romm
 characteristlic are essentially conktant. When the
Hybrid Unit Is properly connected and batanced to the lline, high attenuution will be provided
between he recelver output circult and the trans. mitter input circuit. \(£ 10 / 10 /\) -
OSCILLOSCOPE DARTRONIC 381 Fully orverhauled DC-9 meg.
Bennititith 100 millivolu

VACTRIC 144. WAY HIGH SPEED MINIATURE SAMPLING SWITCHES, conaisiting of 24 negrmenta ta plx
bank. sooo amplea per necond can be obtanined
from these ewitches. Ideally gultable for dath frorn these owitches. Ideally nutable for dath
logeing application. Low inherent nolse and con-
 the most dirticull trannducers.
Pulse generator for digital counting. Pular generator for
Brand new. \(£ 25\)
UNISELECTORS



\section*{LOW COST ELECTRONIC \& SCIENTIFIC EQUIPMENT \& COMPONENTS}

ELLIOT HIGH SPEED CARD READER type D \(4 / 3280\) column.
Wul take 400 carda per minute.
Excellent condition
HIGH SPEED TAPE PUNCH G.E.C. teletype BR PE II. Consist of reperformited unit 6-9 holes adjustable.
Motor unit. Maina operated,
Buse and cover. Motor unit. Maina operate
Excelleat conditloa. 875

DIFFERENTIAL PRESSURETRANSDUCERS by glfam Led. G.B. Type H33 Range \(\pm\) gomm
Our Price \(£ 10\) 10s.
Dowty Moos Ministure Servovalve Type 20/463/005 Price
Dowty Moog Miniature Servovalve Type 10/190/001 Price £45
BRAND NEW S.E. LABORATORIES TRANSDUCER complete with encapsulated Amplifer/demodularor B.e. tila
Prequency D.C.- 80 c.p.e.
Avaliable in the following ranges:
gE150


SAFETY OHM METER BY EVERSHED AND VIGNOLES Bultuble for cunting coniact and revistance of circuits. where



\section*{R.S.T. valve mail order co.}

BLACKWOOD HALL, 16A WELLFIELD ROAD
STREATHAM, S.W. 16
\begin{tabular}{|c|c|c|c|c|c|}
\hline 161718 & ECLL800 & PL500 14/6 & X 8 8/100 & 12AD6 11/- & 20414 61- \\
\hline ACT9 500,- & \(301-\) & PLS08 290- & 3001 & 12AE6 9/8 & 20416 6/- \\
\hline ARP38 13/- & EF9 20/- & PL509 29/- & 3/200 & 12AT6 4/9 & 20416 6/6 \\
\hline Az31 10/- & EP37A 7/- & PLT402 18/6 & 120 & 12AT7 4/8 & 20417 8\% \\
\hline BT19 60/- & EF39 8/- & PT15 15/- & 266 15/- & 12AC7 6 / & 2N247 9/6 \\
\hline BT79 57/- & EP41 10/- & PX4 14/- & 2319 20/- & 12AX7 B/3 & 2N565 12/6 \\
\hline BT89 67/- & EP50 5/- & PX25 12/6 & 2759 23/- & 12BA6 6/- & AC107 9/- \\
\hline C1C \({ }^{20}\) & EF80 6/- & PY32 10/8 & \(2800 \quad 20\) & 12BE6 6/3 & AC127 7/6 \\
\hline CBL31 18/- & EF86 6/8 & PY33 10/9 & 2801 301- & 12E1 20/- & ACl28 6/6 \\
\hline cch3s 15/- & EF\%9 5/6 & PY81 5/9 & 2803U 15/- & 12K70T \(7 /\) & ACY19 4/9 \\
\hline CV5 95/- & EF91 3/6 & PY82 5/3 & OA2 8/- & 12K80т 81 - & \(\mathrm{ACY}^{40}\) 4/9 \\
\hline CV74 801- & EF92 2/8 & PY83 7/- & \(\mathrm{OH2}^{\text {che }}\) & 12070T 6/- & ACY21 4/9 \\
\hline cv82 50]- & EF98 15/0 & PY500 18/6 & 024 8/6 & 13 E 1 190/- & AD140 13/6 \\
\hline CV315 80]- & EF183 8/8 & PY800 9/6 & \(1 \mathrm{CPPS}^{120 /-}\) & 20 P 4 20/- & AF114 7/- \\
\hline cVas4 110/- & EF184 7/- & PY801 \(9 / 8\) & \(1 \mathrm{B3GT} \quad 7 / 3\) & 248! 110/- & AFlis 7- \\
\hline Cv370 3001- & EPr04 201- & P7730 10/- & \({ }_{12}^{122} 823 /-\) & \({ }^{25254}{ }^{8 / 3}\) & AF116 7- \\
\hline CV372 57/- & EP804 21/- & QP41 400/- & \(2 \mathrm{D}^{21}{ }^{\text {8/6 }}\) & 25250T 8/- & AF17 \(8 / 6\) \\
\hline CV488 50/- & EFP60 10/- & v02/6 & \(2 \mathrm{Casa} 1401-\) & 25760T 8/8 & BY100 4/6 \\
\hline CV428 45/- & RH90 7/8 & 45/- & \({ }_{2043}{ }^{201-}\) & 27M1 72/6 & aptori \(61-\) \\
\hline CV429350j- & ELA3 12/6 & 03/10 & \(2 \mathrm{E228} 5\) & 30 Cl 5 15/- & OET875 \(6 /-\) \\
\hline CV1144 \(00 /\) &  & 87/6 &  &  & NKT211 6/- \\
\hline CV1385 & \(\begin{array}{ll}\text { ELL36 } & \text { 9/8 } \\ \text { ELA1 } & 10 / 8\end{array}\) & 03/20 & \({ }_{3 \mathrm{~S}}^{35 \mathrm{~L}} 167 \mathrm{~m} \mathrm{~m}^{9 /-}\) & \[
\begin{array}{ll}
30 \mathrm{F5} & 17 /- \\
30 \mathrm{FLl} & 16 /-
\end{array}
\] & \(\mathrm{NKT}^{\text {NKT214 }}\) 7/-8 \\
\hline & ELA? 10/6 & 105/- & 801- & 30 L 15 17/- & NKT2178/- \\
\hline 180/- & ELal 9/- & 105/- & 3 A 5 7/- & \(3017817 /\) & ¢KT218 6/- \\
\hline CV1526 80 & ELA4 4/9 & 6.40A & 3B24 201- & 30 Pl 19 16/- & NKT228 8/- \\
\hline CV2155 32/8 & Elds \(7 / 9\) & 1001- & 3 B 240 M & \(30 \mathrm{PL1}\) 16/- & NKT404 \\
\hline CV2306 & \({ }_{\text {ELB6 }}^{\text {EL }}\) 8/3 & 8/40 & 110/- & \(30 \mathrm{PL13} 18 / \mathrm{B}\) & 8 \\
\hline 3501- & EL90 \(6 / 8\) & \(90 /\) & \(3 \mathrm{B241m}\) & \(30 \mathrm{PL14} 15 /-\) & NKT875 \({ }^{\text {6/- }}\) \\
\hline CV2312 35, & EL95 8/6 & QQO5/10 & 1101- & \({ }^{35140 T} 9 /-\) & NKT677 \(51-\) \\
\hline CV4003 10-- & E1360 24/- & 70!- &  &  &  \\
\hline \[
\begin{aligned}
& \text { CV } 400410 /- \\
& \text { CV } 40058 /
\end{aligned}
\] & \(\begin{array}{ll}\text { ELL820 } & \text { 6/- } \\ \text { ELa21 } & \text { /- }\end{array}\) & \[
\begin{array}{ll}
\text { Q870/20 } & 5 / 6 \\
\text { O87B/20 } & 5 / 6
\end{array}
\] & \[
\begin{array}{ll}
3 \mathrm{SC24} & 607- \\
3 \mathrm{BC45} & 65 /-
\end{array}
\] & 357AOT B/6 \(4 \times 1501\) & \[
\begin{array}{ll}
\text { OCl } 13 & 20 /- \\
\text { OCl }
\end{array}
\] \\
\hline  & EL822 \(16 /-\) & 8876/20 5/6 & \(3{ }^{3} 21435 /-\) & 200\% & OC20 18/- \\
\hline CV4007 7/ & ELL80 20/- & 20/- & \(3 \mathrm{E29}\) 80/- & socs 8/3 & \(0 \mathrm{C24} 1 \mathrm{l} /-\) \\
\hline CV4014 7/- & EMS4 21/- & Q883/3 7/8 & \(4 \mathrm{C35}\) 300/- & 50CD6 & 0025 11/- \\
\hline CV4015 10/- & EM80 7/6 & Q892/10 4/- & 4 CX 250 B & \(31 /-\) & Oc28 7/6 \\
\hline CV4034 8/- & EM81 8/3 & Q895/10 5/6 & \({ }^{240}\) & 7/6 & \(00^{08} 818 /-\) \\
\hline CV4025 71- & EM84 7/6 & Q8108/45 & \(4 \times 150 \mathrm{~A}\) & 85 Al 25/- & Oc29 15/- \\
\hline CV4031 7/- & EN32 25/- & & & \({ }^{85 A 2} \quad 7 / 3\) & 6 \\
\hline CV4033 7/- & EY51 7/6 & Q8150/15 & \({ }^{4 \times 1500}{ }^{200 /-}\) & \({ }^{881} 18000\) & OCA4 \(41 / 8\) \\
\hline CV4044 12/- & \({ }_{\text {EY81 }} 71-\) & Q8150/30 \({ }^{8 /-}\) & 250B &  & \(\begin{array}{ll}\text { OCA5 } & 4 /- \\ \text { OC71 } & 4 / 6\end{array}\) \\
\hline \[
\begin{aligned}
& \text { CV } 404510 /- \\
& \text { CV } 404690 /-
\end{aligned}
\] & \(\begin{array}{ll}\text { EY833 } & 8 / 6 \\ \text { EY84 } & 8 /-\end{array}\) & e/- & 180/- & \(90 \mathrm{Cl} 12 /-\) & \(\mathrm{OCl7}^{\text {O/- }}\) \\
\hline \[
\begin{aligned}
& \text { CV4046 } 0,- \\
& \text { CV } 404812 / 8
\end{aligned}
\] & EY86
\% & 50/36 & 4 M & 9000 25/- & OC74 8/- \\
\hline CV4062 17/8 & E7/40 8/8 & 20/- & & \(9150{ }^{\text {a }}\) 25/- & 07758 \\
\hline CV +u6s 301- & E241 9/8 & & \(37 / 6\) & \(\begin{array}{lll}150 \mathrm{~B} 2 & 11 / 6 \\ 150 \mathrm{~B} 3 & 818\end{array}\) & \begin{tabular}{ll} 
OC76 \\
OC77 & \(81-\) \\
\hline \(1-\)
\end{tabular} \\
\hline CY30 12/6 & EZ80 5/8 & & \(5 \mathrm{Cz2}\) 3201- & \(\begin{array}{ll}150 \mathrm{B3} & 8 / 8 \\ 801 & 9 / 6\end{array}\) & \begin{tabular}{ll}
0077 \\
0678 & \(8 /-\) \\
\hline \(1 /\)
\end{tabular} \\
\hline \begin{tabular}{ll} 
DAF91 \\
DAF96 & 7/6 \\
\hline 78
\end{tabular} & \(\begin{array}{ll}\text { EZ81 } & 5 / 8 \\ \text { OT1C } & 57 / 8\end{array}\) & & 8R4GY 10/6 & \({ }_{803} 85 /-\) & 0 CSl \\
\hline Dac90 10/6 & GU20 100/- & Q81209 \(7 / 3\) &  & 807 8/- & \(0 \mathrm{OC31D}\) \\
\hline DET3 & GU21 100/- & QVO3.12 & BV40
SY3at
8/- & 811 35/- & OC81M \({ }^{\text {5/6 }}\) \\
\hline 1,000 & GY501 15/- & 12 &  & 751- & OCsidm \\
\hline DET19 7- & Oz30 10/- &  &  & U8A & 0c88 8/- \\
\hline DET20 2/6 & C7.32 101- & 8-20 & 6 AKS 5/- & 7054 & Ocsa
OC82
b/- \\
\hline & \(\begin{array}{ll}\text { G734 } \\ \text { G237 } & 11 /- \\ 15 /-\end{array}\) & 27/6 & 6AK6 12/6 & \(723 \mathrm{~A} / \mathrm{B}\) & 0 C 83 \\
\hline & \({ }_{\mathrm{H} 63} 18 \mathrm{l}\) & Q Y 3-125 & \({ }^{6 A L 5} 3 /-\) & 180 & \(\mathrm{OCl}^{\text {Of9 }}\) 8/- \\
\hline 110/- & HMID \({ }^{\text {H/ }}\) & 180/- & 6AM6 3/6 & 725A 240/- & OC170 71- \\
\hline DET24 & 13/6 & R10 16/- &  & \({ }_{8298}^{8298}{ }^{601}\) - & \(0 \mathrm{Cl71}\) 8/- \\
\hline 50/- & 35/- & R17 8/- & \({ }_{6 A 05}^{6494}\) 8/8 & 8334 3601- & Ocza \\
\hline T25 151- & KT61 17/6 &  & 8 8A86 \(6 /-\) & \({ }^{887}\) 806A \(15 /-\) & 8x642 \({ }^{3 / 6}\) \\
\hline \({ }^{91}\) 7/8 &  & \(\mathrm{RG19}_{\text {R }} / 500^{7 / 8}\) & \(\begin{array}{ll}84868 \\ 6 A B 7 & 16 /-\end{array}\) & \(\begin{array}{ll}806 \mathrm{~A} & 18 / 7 \\ 872 \mathrm{~A} & 576 \\ 8726\end{array}\) &  \\
\hline \({ }_{\text {DH63 }}{ }^{\text {Dr96 }}\) 81. & KT87 45/- & \(80 /\) & 6 6TA \(4 / 9\) & 931 A 72/6 & XA112 4/8 \\
\hline DH77 4/9 &  & 3/1250 & \(\mathrm{CAUSET}^{\text {80/- }}\) & 9354 513 & XA125 5/- \\
\hline DE32 719 & к T81 & \(8142{ }^{120 /-}\) & \({ }_{\text {eb4a }} \begin{aligned} & \text { 20/- } \\ & 20 /-\end{aligned}\) & \({ }^{955} 513 /-\) & X A141 7/- \\
\hline DK91
DK92
8/- & (aEC) 35/- &  & \({ }_{\text {6BA6 }}^{\text {6B4 }}\) cri- & \(\begin{array}{ll}2050 \\ \text { B644 } & 15 /- \\ 40 /-\end{array}\) & \(\begin{array}{ll}\text { XA142 } & 8 /- \\ \times \text { Al43 } & 8 /-\end{array}\) \\
\hline  &  & 8130 & \({ }_{6 B E 6}^{61 /-}\) & 8651 7/3 & - \\
\hline DL66 25/- & \({ }_{\text {KTW66 }}{ }_{\text {KT }}\) &  & \({ }_{6}^{68 H 6}\) & 5654 & TUBES \\
\hline DL92 8/3 & &  &  & 5672 7/- & \({ }^{16831} 80 /-\) \\
\hline DL94 8/9 & M505 800 - &  &  & \(\begin{array}{ll}8687 \\ 8691 & 10 /- \\ 95 /-\end{array}\) & \(\begin{array}{ll}\text { 2APl } & 80 /- \\ \mathbf{3 B P 1} & 50 /-\end{array}\) \\
\hline  & M513 800/- &  & \(6 \mathrm{6} 97 \mathrm{~A} \%\) & \(\begin{array}{lll}85894 & 30 /-\end{array}\) & \(3 \mathrm{DP1}\) 40\%- \\
\hline  & ME140015/- & 8TV280/80 & \(6 \mathrm{BR7}\) 17/- & \({ }^{8202}\) 102 \(15 /-\) & \(3 \mathrm{PGO} 50 /-\) \\
\hline Dis19 30-- & ME150125/, & 95/- & \({ }_{6888}^{6888}\) & 5749 101- & \(3{ }^{3} \mathrm{P} 7\) 19/- \\
\hline DY86 6/- & \(\begin{array}{ll}\text { N37 } & 17 / 8\end{array}\) & 8U2150 12/6 &  & \(\begin{array}{ll}8783 & 12 /- \\ \\ \\ 8784 & \\ 35 /-\end{array}\) & \({ }_{50 \mathrm{CPI}}\) \\
\hline \begin{tabular}{ll} 
DY87 & \(8 /-\) \\
\hline \%
\end{tabular} & N78 19/- & \[
{ }_{12 / 6}
\] &  &  & \begin{tabular}{ll} 
68P1 \\
6CP1 & \(35 /-\) \\
\hline 5.
\end{tabular} \\
\hline DY802 9/8 & PCas 11/6 & & \(6 \mathrm{C4} \quad 5 /-\) & \({ }^{5878} 680 /-\) & \({ }_{5 P 97} 35 /-\) \\
\hline \[
\begin{aligned}
& \text { E880C } 12 /- \\
& \text { E180F } 178
\end{aligned}
\] & \({ }^{\text {Pros }}\) 11/6 & 110/- &  & \({ }^{5879}\) 130- & 888 L 80/- \\
\hline E810\% \(50 /-\) & \({ }_{\text {PCPO }}{ }_{\text {PCPO }}\) & -1010/ & \({ }_{6 C H 6}^{8 C D 60} 87 / 6\) & \(\begin{array}{ll}5893 & 150 /- \\ \\ 8889 & 10 /-\end{array}\) & \\
\hline E1820C \(22 / 8\) & 10/8 & TH41 32/8 & \(6_{6 C L 6}^{8 / 6}\) & \(\begin{array}{ll}88902 & 17 /-\end{array}\) & \(\mathrm{ACR22}^{\text {C27A }} 180 /-\) \\
\hline Eaticso & PCCO4 618 & T740 60j- & 60W4 12/- & \({ }_{8063} 101-\) & CV960 76/- \\
\hline 6/8 & PCC8s 8/- & U19 35/- & 6D4 15/- & 6057 10/- & CV966 35/- \\
\hline EAF42 10/- & PCC89 10/6 & U24 24/- & 6DK6 9]- & 6058 10/- & CV1526 80/- \\
\hline  &  & U25 15/6 &  & \({ }^{6059}\) 18/- & CV158750/- \\
\hline EBCA1 \({ }_{\text {E }} / 9\) &  & \(\begin{array}{ll}\text { U28 } & 15 / 8 \\ \text { U191 } & 13 / 9\end{array}\) & 81333
BJ6C & \begin{tabular}{ll}
6080 \\
6061 & \(12 /-\) \\
\hline \(1 /-\)
\end{tabular} & CV158835 \\
\hline EbC90 4/9 & PCP200 16/- & U404 7/8 & \(6 \mathrm{6} 8 \quad 3 / 8\) & 6062 14/- & 120/- \\
\hline EBr80 7/6 & PCPP201 15/6 & U801 23/8 & 63797 & 6063 7/ & /B/16 \\
\hline EBP83 \({ }^{\text {E/- }}\) & PCP80018- & UABC80 6/6 & 6 6 7 CO 2/- & 6064 \%- & 78/- \\
\hline  & PCPr301 9/8 & UAP42 7-- & \begin{tabular}{ll} 
6K80 \\
6Lf0 & \(3 /-\) \\
\hline 18
\end{tabular} & \({ }_{6065}^{6058}\) & ECR30 35/- \\
\hline  & & UCH42
UCH81
10/- &  & \(\begin{array}{ll}6067 & 10 / \\ 6080 \\ 80 /-\end{array}\) &  \\
\hline ECOC33 15/- & PCF806 13/- & UCL82 7/6 & 17/8 & 6072 12/. & O9D 801- \\
\hline 50040 17/8 & PCH200 & UCls3 10/- & 68Q7M 7/6 & 6111 12/6 & \(096801-\) \\
\hline c70 151- & 12/6 & ULA1 12/- & 6970 8/- & 6146 27/6 & O9L 80/- \\
\hline E0c81 8/- & PCL82 \(7 / 9\) & ULS4 7/- & \({ }^{6897}\) 8/- & 725 A 12/- & vCR97 35]- \\
\hline  & PCL83 10/3 & UV6 14/- & \(6837 \mathrm{M}^{71-}\) & 7475 14/- & R139 \\
\hline  & CLS \(8 / 8\) & UU7 14/- & 68L7at 8/- & 9903 9/- & 50/- \\
\hline \({ }_{\text {ReCers }}\) 7/8 & \begin{tabular}{ll} 
PCLES \\
PCLS6 & \(9 / 3\) \\
\hline \(8 / 3\)
\end{tabular} & UV8 \({ }_{\text {UY41 }} 18\) 14/8 &  & \({ }^{9004}\) Diodes \({ }^{2 / 8}\) & A \\
\hline ECFso & \({ }^{\text {PD } 5000989}\) & UY85 6/8 & \(6 \times 4\) 1/0 & Transiltora & - \\
\hline ECP82 6/6 & PENB420/- & VLs63130/- & 6x50 4/6 & 18113 4/6 & 35/- \\
\hline RCH35 11/6 & PEN45DD & VP4B 25j- & \(7 \mathrm{B7} \quad 7 / 6\) & 18115 4/6 & . 516 \\
\hline  & \({ }^{121 /-}\) & VB105/30 \({ }^{\text {B/8 }}\) & \(\begin{array}{ll}705 & 15 /- \\ 700 & 15 /-\end{array}\) & \begin{tabular}{lll}
18131 & \(4 / 3\) \\
2151 \\
\hline 18
\end{tabular} & 80/- \\
\hline & FL200 & & 706 16/- & 2152 & 17 A \\
\hline  & \(\begin{array}{ll}\text { PI } 36 & 14 /- \\ 10 / 9\end{array}\) & VR150/30 & \(\begin{array}{ll}717 & 8 / 6 \\ 787 & 45\end{array}\) &  & 788 \\
\hline ECL82 71- & PL/81 8/- & W81m 12/8 & \(\begin{array}{ll}784 & 8 / 8\end{array}\) & 203828 & 48 \\
\hline ECLA3 10/3 & PL82 8/6 & \(\times 78\) 32/6 & 11E3 70/- & 20401 51- & vcrsi7c \\
\hline 18CL86 9/- & PLS4 & 81 45/- & 2 ACB 10\% & 20402 & 461- \\
\hline & Valves test & relessed & . spectif & required. & \\
\hline Express p Ordinary Over Tel. & tage 9d. pe stage 6d. p postage . 769 0199/1 & valve. valve. & \begin{tabular}{l}
Mond \\
Compl
\end{tabular} & \begin{tabular}{l}
through \\
a.m.-5.30 \\
range of \\
ilable from
\end{tabular} & Saturday m. Tubes 4.5.0. \\
\hline
\end{tabular}

SEND S.A.E. FOR LIST of 6,000 TYPES


We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W9/65 (WW)
WALKER-SPENCER COMPOMENTS LTD.
5, High Street, Kings Heath, Birmingham, 14.
Telephone: 021-444 3155 (Sales) and 5278
WW-130 FOR FURTHER DETAILS
'VEEDER ROOT'
6 Figure Counters Resetable \(45 v\). D.C 30/-. p.p. 5/
Trade terms available for quantities
also "Racal"
Frequency Counters
type SA20 \(\mathbf{f 6 0}\) p.p. \(£ 1\)
THE TRADING POST, 4 CASTLE STREET HASTINGS, SUSSEX. Telephone: Hastings 2875

WW-131 FOR FURTHER DETAILS

\section*{TRICKETT}

\section*{70 PARK ROAD, CONGRESBURY, BRISTOL}

Schools \(\mathbf{1 5 \%}\) off. Goods over 10s. P/P free except where shown.

 D.CINIATURE HOUR METERS, SANGAMO WESTON. 380/450V., \(50 \mathrm{c} / \mathrm{s}\). 0-9999 and tenths. New at fr ea, used at 25.
ELECTROTH He mat, s.a.e. for list. Use for bridges, Calibration, etc. 2t. REL.
 9d. ez., \(7 / 6\) doz. 2 mid. 150 V Tube, 9 d . ez. 1 mid. 20 V .11 mid . 150 V metal tubes, CASTANETS. \(140 \mathrm{mfd} .30 \mathrm{~V} . ; 50 \mathrm{mfd} .70 \mathrm{~V}\); 100 mfd .35 V .; 1s. 6d. ea.
VALVES. Sas.e. for ilst of ex. equipment and new at ls., 2s. 6d. and 5s. ea.
BELLING LEE Min. fuse holders. Is. ea., 10a. doz. 2N706. 2s. 6d. 2 N 697 3n. \(6 d\).


S.a.e. for lists of other units and components. All goods guaranteed.

\section*{TREMENDOUS CLOSING DOWN SALE}

WHOLESALE STOCKIST SHORTLY EMIGRATING HAS VAST STOCKS OF THE FOLLOWING FOR BULK OR OUTRIGHT SALE: AMPHENOL, BENDIX, BELLNG LEE, BURNDEPT, BELLERMAN-DEUTSCH, MCMURDO, PAINTON, CONNECTORS, ETHER, HELLERMAN-DEUTSCH. MCMURDO, PAINTON, CHESTER PLUGS \& SOCKETS OF ALL TYPES, PRINTED EDGE CONNNECTORS bY CONTINENTAL CONNECTORS \& U.E.C.L. L.P.A. Watertight BOURNS, M.E.C. \& RELIANCE Miniature trimming \& Flatpor Potentiometers Sub-miniature type TOS trimming potentiometers, CLARE-PENDAR Computer Switches, Condensers, Capacitors, Resistors, Transformers, American Headsers, Ball-Races, Servo, Syncro. Draz-Cup Motors, Magslips, Tachometer Generators,
Fuses \& Fuse-holders, V.H.F. \& Transmitting Units in G.P.O. type Racks, Oxley Fuses \& Fuse-holders, V.A.F. \& \(T\) ransmitting Units in G.P.O. type Racks, Oxicy
\& Harwin Components and hundreds of other miscellaneous and varied components and spares. Would also consider selling complete manufact Effects Book value in excess of \(£ 100,000\). Only Firms or Individuals interested in bulk buying can be entertained. Would accept outright offer for complete business if convenient. Full Lists ready by February 1969. Please write in first instance eo: BOX No. 505 .


\section*{EVERYTHING BRAND NEW AND TO SPECIFICATION - NO SURPLUS} PROMPT DEPENDABLE SERVICE - Large Stocks - catalogue available
```

* Unbeatable value in SEMI-CONDUCTORS
30 watt BAILEY AMPLIFIER
MJ481} matched pair output {2/19/=
40361
40362 } matched pair driver {1/10/3.
40361 12/6;40362 16/9; BC125 12/-; BC107 2/9; BC109 2/9.
Main 12mp. PC board 12/6 each but FREE with each complete transistor set.
Total for one channel {7/8/- list; with 10% discount only }£6/13/
Total for two channels f14/16/-; with 15% discount only £12/11/8.

```

\section*{* G.E. 2N2926 PLASTIC range. PRICES REDUCEDI} Red spot \(=55\) to \(1102 / 3\).
Orange spot \(=90\) to \(1802 / 3\). Yellow spot \(=150\) to \(3001 / 9 . \quad \begin{aligned} & \text { Absolutely } \\ & \text { Green spot }=235 \text { to } 4702 / 3 .\end{aligned}\)

\section*{\(\star\) TEXAS SILECT range.}

30 V 600mA npn
\(2 \mathrm{~N} 3704 \mathrm{~B}=90\) to \(3303 / 9\).

25V 200má pnp
\(2 N 3702 \beta=601030003 / 6\).
\(2 N 370 \beta=30\)
\(2 N 37 \beta=30\) to \(1503 / 3\).
Small signal npn
\(2 N 3711 \beta=180\) to \(6603 / 11\).
Small signal pnp
2N4058 low noise 4/9.
\(2 N 4026 \beta=180\) to \(6604 / 3\).
PRICES REDUCEDI
BC107 series
300 mW 300 MHzfT , T018 \(\mathrm{BC} 10745 \mathrm{~V} \beta=125\) to \(5002 / 9\) \(\mathrm{BC} 10820 \mathrm{~V} \beta=125\) to \(9002 / 6\). \(\mathrm{BC} 10920 \mathrm{~V} \beta=125\) to \(9002 / 9\) BC167 series
180 mW 300 NHzfT T092
 \(\mathrm{BCl} 16820 \mathrm{VB}=125\) to \(9002 /-\)
\(\mathrm{BCl} 16920 \mathrm{~V}=240\) to \(9002 / 3\). BC1
BC 109
20 V B
BC
240
to 900
\(2 / 3\) BC109 and BC169 are low noise.
BC167 BC168 and BC169 are plastic.

\section*{t FETS. PRICES REDUCED /}

A brand new FET. 2N5163 \(1.8 \mathrm{~mA} / \mathrm{V}\) min., \(5 /\) - only. MPF 10525 V max., \(\mathrm{gm}=2106 \mathrm{~mA} / \mathrm{V}\) low noise \(7 / 6\). 2 N 381925 V max. gm 2 to \(6 \mathrm{~mA} / \mathrm{V}\),, low noise \(9 /\)

\section*{\(\star\) MINI TRANSISTORS. PRICES REDUCEDI}

2N4285 pnp hFE 35 to 150 at 10 mA fT 7 MHz min . Veb 35 V max 2 N 4286 npn 30 V hFE over 100 at \(10 \mu \mathrm{~A}\) fT 280 MHz typ.
2 N 4289 pnp 60 VFE over 100 at \(100 \mu \mathrm{~A}\) to 1 mA fT 170 MHz typ. 2 N 4291 pnp 40 V hFE over 100 at 100 mA
2N 3794 npn 40 V hFE over 100 at 100 mA complementary driver/output. 2 N 4292 npn 30 V UHF N.F. 6 dB max at 100 MHz IT 570 MHz typ. B5041 Power 14.3 W at \(100^{\circ} \mathrm{C}\) base temp. 35 V , hFE over 100 at 0.5 A Insulated \(\mathbf{T 0 6 6}\) size mounting surface.
Prices: 2N4285 to 2N4292, 2N3794 2/11; B5041 13/6.

1000 volt 1.5 A GENERAL PURPOSE RECTIFIER type iN5054 3/6 only 100 V 0.75 A miniature rectifier type TSI \(1 / 9\). 400 V type TS4 \(2 / 3\).

\section*{7.ENER DIODES}
\(3 V\) to \(27 \mathrm{~V} 5 \% 400 \mathrm{~mW}\) alt preferred voltages. \(4 / 6\) each.

\section*{- NEW TRANSISTOR BARGAINS}

All power types supplied with free insulating sets
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2N696 & 5/6 & 2N1613 & 6/6 & 2N4060 & 4/3 & BC147 & 4/3 \\
\hline 2N697 & 6/- & 2N1711 & 7/4 & 40250 & 15/. & BC148 & 3/6 \\
\hline 2N706 & 3/5 & 2N2147 & 16/9 & 40406 & 16/3 & BC149 & 4/3 \\
\hline 2N1132 & 13/- & 2N2369A & 6/9 & 40408 & 14/6 & BD123 & \(24 / 3\) \\
\hline 2N1302 & 4/. & 2N2646 & \(9 / 6\) & AC126 & 6/6 & BF194 & \(7 /\). \\
\hline 2N1303 & 4/- & 2N2924 & 5/- & AC128. & 6\% & BFX29 & 12/3 \\
\hline 2N1304 & 4/- & 2N2925 & 5/9 & AC176 & 11/. & BFX84 & 7/5 \\
\hline 2N1305 & 4/. & 2N3053 & 5/6 & ACY17 & 8/. & BFX85 & 8/3 \\
\hline 2N1306 & 6/9 & 2N3054 & 15/6 & AD161 & 7/- & BFX88 & 7/9 \\
\hline 2N1307 & 6/9 & 2N3055 & 16/6 & AD162 & 7/. & BFY51 & 4/- \\
\hline 2N1308 & 8/9 & 2N3391A & 5/6 & AF114 & 7/- & BSX 20 & 4/6 \\
\hline 2N1309 & 8/9 & 2N3706 & 3/3 & AF124 & 7/6 & NKT403 & 14/10 \\
\hline
\end{tabular}

Peak Sound PA.12-15

\section*{Amplifier}

This remarkable new power amplifier module delivers 11.5 watts R.M.S. into 15 ohms and has a maximum distortion ievel of only \(0.1 \%\) in Kit Form as advertised \(12 /\) for heat sink assembly and plus \(12 /\) - for heat sink assembly and Unit kit \(£ 4 / 19 /\)-. Pre-amp kit \(£ 1 / 7 /\) plus \(6 / 3\) for mono controls, or \(£ 1 / 9 /\) for stereo. Active Tone-filter kit only 19/6 plus mono controls 5/- or stereo 16/-. Discounts not available on basic kits only.

\section*{DISCOUNTS}
\(10 \%\) on orders for components for \(10 /-/ \%\) or more. \(15 \%\) on orders for components for L 10 or more. POSTAGE and packing up to order for \(£ 1\), add \(1 /-\). FREE on orders for £1 or over.
Overseas orders welcome-Carriage
charged at cost. charged at cost.

\section*{CATALOGUE}

Send \(1 / 6\) for our comprehensive 1969 Catalogue. Invaluable to every serious experimenter, designer and constructor.
+ RESISTORS
METAL OXIDE type TR5. 0.5 watt \(2 \%\) tolerance. Very low noise low temperature coefficient, low drift. A PROFESSIONAL resistor All E24 preferred values \(10 \Omega\) to \(1 \mathrm{M} \Omega\).
Price: 1 to 11.10 d ; 12 to \(24,9 \mathrm{~d}\).; 25 up, 8d.
CARBON FILM high stab low noise. \(10 \% 1 \Omega\) to \(3.3 \Omega\). 1W \(5 \% 3.9 \Omega\) to \(1 \mathrm{M}, 1 / 10\) doz. \(14 / 6100\). \(4.7 \Omega\) to \(10 \mathrm{M} \Omega, 1 / 9\) doz., \(13 / 6\) 100.
dis.
\(\frac{1}{2} 5 \% 4.7 \Omega\) to \(10 \mathrm{M} \Omega, 2 / 2\) doz., 171-100. \(1 \mathrm{~W} 10 \% 4 \cdot 7 \Omega\) to \(10 \mathrm{M} \Omega, 3 / 3\)
doz. \(25 / 10100\) doz., \(25 / 10100\).
\(1 / 6\) less per 100 if ordered in complete 100 's of one ohmic value. Please state resistance values required.
CARBON SKEL.ETON pre-sets: \(100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega\), \(2.5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega\), \(25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 200 \mathrm{k} \Omega\), \(25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 200 \mathrm{k} \Omega\),
\(250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega\), \(250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega\),
\(2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega\). Vertical \(2.5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega\). Vertical
or horizontal mounting. Smald or horizontal mounting. Small
high quality, \(1 /\) - each; Sub-min type 11d. each.

\section*{t ELECTROLYTICS}

SUB-MIN., C426 range ( \(\mu \mathrm{F} / \mathrm{V}\) ): \(0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16\); 0.64/64; \(1 / 40 ; 1.6 / 25 ; 2.5 / 16 ;\)
\(2.5 / 64 ; 4 / 10 ; 4 / 40 ; 5 / 64 ; 6.4 / 6.4 ;\) \(2.5 / 64 ; 4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6.4 ;\)
\(6.4 / 25 ; 8 / 4 ; 10 / 2.5 ; 10 / 16 ; 10 / 64 ;\) \(6.4 / 25 ; 8 / 4 ; 10 / 2 \cdot 5 ; 10 / 16 ; 10 / 64 ;\)
\(12.5 / 25 ; 16 / 10 ; 16 / 40 ; 20 / 16 ;\) \(\begin{array}{llll}12 \cdot 5 / 25 ; & 16 / 10 ; & 16 / 40 ; & 20 / 16 \\ 20 / 64 ; & 25 / 6 \cdot 4 ; 25 / 25 ; 32 / 4 ; & 32 / 10\end{array}\) \(\begin{array}{cccc}20 / 64 ; & 25 / 6 \cdot 4 ; & 25 / 25 ; 32 / 4 ; 32 / 10 ; \\ 32 / 40 ; & 32 / 64 ; & 40 / 2 \cdot 5 ; & 40 / 16 ;\end{array}\) \(\begin{array}{llll}32 / 40 ; & 32 / 64 ; & 40 / 2 \cdot 5 ; & 40 / 16 ; \\ 50 / 6 \cdot 4 ; & 50 / 25 ; & 50 / 40 ; & 64 / 10 ;\end{array}\) \(\begin{array}{lrr}50 / 6.4 ; & 50 / 25 ; & 50 / 40 ; \\ 80 / 2.5 ; & 80 / 16 ; & 80 / 25 ; \\ & 100 / 6.4\end{array}\) \(80 / 2 \cdot 5 ; \quad 80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ;\) 125/4; 125/10; 125/16; 160/2.5; 200/6.4; 200/10; 250/4; 320/2.5; 320/6.4; 400/4; 500/2.5; **Price reduction \(1 / 3\) each
MINIATURE ( \(\mu\) F/V): \(5 / 10 ; 10 / 10\) : 25/10; \(50 / 10\), 9 d . each; \(25 / 25\) 25/10; \(10 / 10 ; 9 \mathrm{~d} . \mathrm{m}^{25} ; 200 / 10,1 /\) each; \(50 / 50 ; 100 / 25,1 / 6\) each; \(100 / 50\); 250/25, 21 - each.
LARGE ( \(\mu \mathrm{F} / \mathrm{V}\) ): \(1000 / 50,7 / \cdot\) : 2000/50, \(9 / 3 ; \quad 5000 / 50,17 / 6\); \(5000 / 25,10 / 3 ; 2500 / 64,15 /\). Vertical clips for above types, 9 d . each.

\section*{t CAPACITORS}

Ceramic disc: \(20 \% 500 \mathrm{~V}\) : 1000 pF \(2000 \mathrm{pF}, 5000 \mathrm{pF} ; 50 \mathrm{~V}: 0.01 \mu \mathrm{~F}\) \(0.02 \mu \mathrm{~F}, 0.03 \mu \mathrm{~F}, \dot{0} 0.05 \mu \mathrm{~F}\). Mylar film: \(10 \% 100 \mathrm{~V}: 1000 \mathrm{pF}\), \(2000 \mathrm{pF}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}\) Polystyrene: \(5 \%, 160 \mathrm{~V}: 22 \mathrm{pF}\) and preferred values to 820 pF . ALI at 5 d . each.
Polyester: \(250 \mathrm{~V} 20 \%: 0.01,0.015\),
\(0.022,0.033,0.047,0.068 \mu \mathrm{~F}\)
7 d \(0.022,0.033,0.047,0.068 \mu \mathrm{~F}, 7 \mathrm{~d}\), each; \(0 \cdot 1 \mu \mathrm{~F}, 8 \mathrm{~d}\).
Polyester: \(250 \mathrm{~V} 10 \%: 0.15,0.22\), \(9 \mathrm{~d} ; 0.33,1 / 2 ; 0.47,1 / 6 ; 1 \mu \mathrm{~F}, 2 / 3\); \(2-2 \mu \mathrm{~F}, 41\)-.

\section*{* POTENTIOMETERS}

Short spindle: \(100 \Omega\) to \(10 \mathrm{M} \Omega\) lin \(5 \mathrm{~K} \Omega\) to \(5 \mathrm{M} \Omega \log\)., std values only, \(2 /-\) each. Long spindle: \(4 \cdot 7 \mathrm{~K}\) lin. or log.-ONLY \(2 / 6\) each. Long spindle dual stereo: 10 K , \(22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K} \Omega \mathrm{lin}\). or 108. 10 K log/anti-log ONLY \(8 / 6\) each.

SLYDLOK FUSES 15 amp , \(\mathbf{1 / 6}\) ea., \(\mathbf{1 5} /-\mathrm{per}\) doz
HEADPHONES. Carbon H/Mics., 5/- ea. P. \& P 2/6. DLR5 Bal. Armature, 9/6. P. \& P. 2/6. M/Coi with ear muffs and wired M/C mic., 12/6. P. \& P 2/6. No. 10 Assembly \(M /\) Coil with \(M / C o i l\) Mic.
12/6. P. \& \(\mathrm{P}_{-} 2 / 6\).

TRUVOX LOUDSPEAKERS. Re-entrant type, ideal for public address, enclosed in waterproo produce directional reproduction at 5 watts. \(7.5 \Omega\) 27/6 each. Carr. 5/-.
SMALL MOTORS. \(12-24\) v. D.C., reversible, with gears attached, \(10 /=\) ea.; with blower attach ment, \(10 / \mathrm{-} \mathrm{ea.;} \mathrm{with} \mathrm{fan} \mathrm{assembly} ,10 / \mathrm{e} \mathrm{ea}\); each item post \(2 / 6\).

TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valves except 832s and Relay. 21/- ea. Cart, 4/-
SIEMENS HIGH SPEED RELAYS. H96B type, \(50+50\) ohms. \(6 /-\) ea.; Type H69D, \(500+500\) ohms, 5/- ea.; Type H96E, \(1,700+1,700\) ohms, \(5 /-\) ea. Carr. 1/-
TELE L" TYPE FIELD TELEPHONES. Thes telephones are fitted in strong steel case complete new condition and tested. 50/- per pr. Carr, 7/6.
POST OFFICE TYPE RELAYS. 3,000 sers. 2 c/o slugged coil only; \(2 \mathrm{c} / \mathrm{o}\), slugged coil 500 ohms. 6/-ea. Carr. 1
MORSE KEYS. No. 8 assembly complete with VIBRATORS. 12 v. 4 pin, 12 v. Plessey Type VIBRATORS. 12 v. 4 pin, 12
12SR7. Syn. \(7 / 6\) ea. Carr. \(1 /-\).
ELECTRO MAGNETIC COUNTERS. Register up to 9999, coil res. 3002. 5/mea. Carr. 1/not re-setable. Ex-equipment.
MODULATION TRANSFORMERS. 150 watts, suitable for pair 813 s , driving 313 s . Size \(6 \mathrm{in} . \times 5 \mathrm{in}\) \(\times 3\) in. Brand new, boxed. Price 27/6. Carr. \(4 / 6\) LIGHTWEIGHT HEADSET (part of " 88 " W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil earpieces Our price \(20 /-\) ea. Carr. 3/-. Also Super Light
200 AMP. 24 v. D.C. GENERATORS. Type P3
ex-Air Ministry, 99 ea. Carr. \(10 / 6\). ex-Air Ministry, 89 ea. Carr. 10/6.
Generators. Type 02. 3,000 watts, 30 v. D.C. Rotary
Rotary Convertors. Type 8. D.C. Input 24 v .,
A.C. Output \(115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}, 3\) phase, 1.8 amps. A.C. Output 115

Invertors. Type 201A (5UB6300). D.C. 25/28 v r.p.m. 8,000, A.C. 115 v. \(1600 \mathrm{c} / \mathrm{s}\), single phase. All above iterns ex-gov. stock, in used condition P.C.R. 12 v. VIBRATOR POWER PACKS. CONDENSERS. . 1 mfd . 1,500 v. Sprague, paper. 9d. ea., 7/6 doz
HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade termingls and wander plug \(1 / 6\) pr., \(15 /-\) doz. pairs. P. \& P. 1/6 ca. doz.
FATIGUE METERS. 24 v . D.C. Consisting of \(6 \times 469\) D Relays. \(500 \times 500 \Omega\). \(6 \times 300 \Omega\) Electro Mag. counters.
AMERICAN AUTOPULSE 24 v . PUMPS for mounting between carb. and main fuel tanks as auxiliary pump. New-30/- ea. P. \& P.5/-. 7 g.p.h. Size \(7 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{i} \mathrm{in}\).
Telephone Hand Generators. No. 26 A.N. Air Spaced Condensers. American, top quality, large. 60 p.f. Only \(10 /-\) ea. P. \& P. 1/6.
W/S REMOTE CONTROL UNIT "EE," Mk. 2. As supplied with "19" W.S. \&1. P. \& P. 7/6. W.S. 19 VARIOMETERS. 17/6. P. \& P. 4/6 S.T.C. MINIATURE SEALED RELAYS, TYPE 4184 G D, \(700 \Omega 24 \mathrm{v}\). (will work efficiently on 12 v . 6 or more post paid.
SMALL D.C. MOTORS. \(2 \mathrm{in} \times 1 \mathrm{in} . \times 1\) in Rated 24 v., will work on 12 v . din. length drive

CONDENSERS. 8 mfd .600 v . Brand New. Cornell Dubilier Paper Condensers, 4 in \(\times 3 \frac{1}{2} \mathrm{in}\).
\(1 /\) in. with fixing clips. \(7 / 6\) ea. P. \(\&\) P. \(2 /-\).

Tel. BIRKENHEAD 6067
Terms Cash with Order

\section*{PıFıRALEE \(\begin{aligned} & \text { Ploase Noto our New Adtress is Now } \\ & 10 \text { Chapel St London N.W.I Phone } 01-7238753\end{aligned}\)}


LEDEX rotary solenoid switches suitable for all types of remote circuir selection and a variety of switching operations-brand new stocks-no waiting -off the shelf deliveries of the following types:
(1) Miniature eype 1 pole 12 positions 3 banks wafer dia. \(1 \frac{1}{2}\) in., \({ }^{3}\) position foot mounting operating voltage.
24 Volts D.C...................................... \(50 /\).
(2) Miniature type -1 pole 7 position 5 banks 1 in. dia. wafers Miniature type
for flange mounting. Operating voltage 12 Voles D.C... \(50 /\) -
(3) Miniature type- 1 pole 12 position 1 bank plus 1 pole 6 position I bank ceramic insulation. Operating voltage
\(36-48\) Volts D.C.........................................45/-
(4) Standard type with 1 in. wafers, 2 pole 12 position 6 banks plus 2 pole 12 position 2 bank in ceramic insulation. . . 80/-
(5) Standard type as above, I pole 2 positions with long shaft to enable user to build up wafers to suit requirements.
Voleage 48 Volts D.C.......................................

\section*{"ELECTRONIC STETHOSCOPE" TYPE S104}

This instrument is a normal high-grade stethoscope to which are added two special earpieces bulte into unit and terminated to a coaxial socket. Impedance 15 ohms with the aid of a low-power amplifier and small microphone. The: inseruments could offer endless possibilitics. Offered brand new by famous manufacturer.
A.E.I. HIGHLY STABILISED P.S.U. R2240 This fully eransistorised unit is variable between \(3-30\) Voles D.C. with a maximum load of 2 amps. Supplied brand new at only
\(E 22 / 10 / 0\), carriage \(20 /\)-. List price E 73 .


\section*{MODERN LATE TYPE ROTARY STUD SWITCHES}

By Cinema Engineering U.S.A. in the following types
(1) 2 poles 9 positions on each pole, heavy dury 5 amps size \(1 \frac{1}{3}\) in. (2) 2 poles 5 positions on each pole 3 banks rating as above. Both switches have heavy duty silver contacts, regular panel mounting with standard spindle, size 13 in . square \(\times 3 \frac{1}{\mathrm{i}}\). spindle length lin. Prices are 25/- and 45/- each, brand new. Wehave many types in stock, please phone your requirements

\section*{HIGHLY STABILISED P.S.U. OF U.S.A. MANUFACTURE}

Regulation between \(7-15\) Voles at 20 amps . Full overload protection incorporated, plus metered output. on volt and amps. This unit is built to a very high specification. For bench or rack mounting, size 19in. \(x\) 8in. deep. A.C. input is \(\begin{aligned} & 115 \text { volts }-1 \text { phase. } \\ & \text { Price } 625+30 /-P . P .\end{aligned}\)

\section*{"BARGAINS OF THE MONTH"}
"One Micovac Valve Volemeter for one eighth of original price." Will measure \(0-480\) Vole \(A . C\). as frequencies up to \(200 \mathrm{Mc} / \mathrm{s}\)., 0.480 Volt D.C. with centre zero facilities \(0-10\) Megohms reistance in 5 ranges. This extremely accurate meter was made co Services specification and comes complete with R.F. Probe, full instructions in guaranteed working order. Battery powered (not supplied). Price is only 69/19/6 + 10/6 P.P. Excellent condition. Completely portable.

Portable Non-spillable 12 Volt 4 Amp hour Lead Acid Batteries. These are a very modern type battery fully sealed but not dry charged, they are terminated with screw terminals, brand new and guaranteed, with full instructions, the size is about she same as she Perdio portable TV type basteries and you know how much shey were. Our price is \(45 /\). If you are still guessing, the size is roughly 4 in . square. 2/6 P.P.

\section*{THORNE ELECTRONICS BATCH COUNTER MODEL CB22}

Complete with head amplifier, these are disconcinued models fully transistorised, will accept sine or square wave pulses, these units will totalise from 9999 to 1 . settable within this range. List price \(\mathbf{£ 1 2 0}\), our price complete \(\mathbf{2 2}+10 /-\mathrm{P} . \mathrm{P}\).

\section*{DIGITAL VOLTMETERS!}


Digimeter Type B.I.E. 2123 is a fully transistorised multi-range instrument possessing the following distinctive features
Electrical Characteristics:
D.C. Ranges: 10 mV to 400 Volts in four ranges ( 1,000 Volss for positive voltages)
Accuracy: the greater of \(\pm 0.1 \%\) of \(\pm 1\) digit. A.C. Ranges: 100 mV to \(\overline{\mathbf{2}} \mathbf{5 0}\) Volts r.m.s. in three Accuracy: the greater of \(\pm 0.5 \%\) or \(\pm 1\) digit over the frequency range \(30 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{Kc} / \mathrm{s}\). Range Change in manual.
Input Impedance: D.C.-15 Mohm on two lower ranges, I Mohm on two higher ranges.
A.C.A.C. coupled, approximately equivalent to a shunt impedance of 8 Kohm in serles with the parallel impedances 180 Kohm and 550 pF . inpur Characteristies: Single ended, floating. The potential between terminal connected to. O and earth shou
250 Volts \(A C\)
Inpur Filter: 55 dB attenuation at \(50 \mathrm{c} . \mathrm{p} . \mathrm{s}\)
input Filter: Sime: 300 msec .
Sampling Rate: I reading per 2 secs or manually controlled.
Power Supply: \(100 / 120\) Voles \(200 / 250\) Voles 50 c.p.s.
Mechanical Characteristics:
Dimensions: \(10^{3} \mathrm{in}\), high \(\times 7 \mathrm{in}\). wide \(\times 13 \mathrm{in}\). deep. Weight: 15 lbs.
Display Details: Three digit with decimal poine indication. Character Height Iin.
At the price we can offer these instruments, no laboratory can offord to be without onel They ore ideally Brand new in manulacturer's
packing. With Handbook.
p92.10.0 packing. With Handbook Carriage extra at cost
IMMEDIATE DELIVERY
D.C. AMPLIFIERS BY HAWKER SIDDELEY
D.C. AMPLIFIERS BY HAW
TYPE TGA2

Using eransistors throughout this small amplifier has gains up 1,000 , and high inpus impedance in the order of provides continuous adjustment over each range. Fast overload recovery and excellent linearity. All controls are on front panel. Inputs and outputs are at rear terminated by chassis connector. Offered at a very low price of E24/10/0 + 7/6 P.P.

WE HAVE IN STOCK A LARGE VARIETY OF RELAYS, H.T. INPUTS, CERAMIC ROTARY SWITCHES, MICS, etc., etc. AS YET NO LISTS ARE READY SO RING US PRIOR TO PLACING FORMAL ORDER

\footnotetext{
We have In stock a large and varied range of test instruments including Bridges Le and \(r\) of all sypes, Muirhead wave analysers. Hewlett Packard and Solartron Pulse Generators. D.C. voltage calibrators variable, for meter calibration, etc. Audio Generators Marconi, Hewlett Packard, Ultra Low Band Pass Filters by Krohn-white, transistorised milli-voltmeters portable types from I Mr to 300 Mv digital voltmeters, esc. Most of the above instruments are new or litsle used and of current manufacture, all instruments are guaranseed for three months. Let us know your requirements and really save money.
}

Goodman's Industries POWER OSCILLATOR TYPE D120. Frequency Range \(10 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{Kc} / \mathrm{s}\) in three directly calibrated ranges, power ourpus 1,000 watts, supply 240 Volts A.C., as new con-
dition. Price \(£ 125\), carriage as cos? dition. Price \(\mathbf{£ 1 2 5}\), carriage at cost.

\section*{INDUSTRIAL POWER AMPLIFIERS}

Output 175 watts can be supplied with variable frequency oscillator \(10 \mathrm{c} / \mathrm{s}\) so \(14 \mathrm{Kc} / \mathrm{s}\). C/w with all usual facilities for, I9in. rack mounting supply volts 250 Voles A.C. Price \(\mathrm{E49/10/0}\)
HIVOLT PORTABLE E.H.T. GENERATOR Variable output from 0 to 10 kv . O.C., Megohms range 200 to \(10^{3}\). A small modern completely portable instrument. Fully transistorised \(\mathrm{c} / \mathrm{w}\) batteries. Weight complete 21 Ibs. New con-
dition........................................ \(£ 35\)

\section*{ENGLISH ELECTRIC INSULATION}

\section*{TESTERS}

Type TO5443/20-10 kV with variable currenc control and ionisation amplifier. Small portable unit for A.C. mains operation. Price......... \(\leqslant 30\) B.P.L. Cat. No. ZD00506. Measures capacitance under full working loads (variable volzage selection), easy to operate. C/w voltmeter, leakage erc. Range .2 mfd. to 2.200 mfd . A modern etc. Range in mid. to 2 nement in new condition, and guaranteed aceurate. Price.........635 +20/- P.P.

AN/APR4 VHF COMMUNICATIONS AND SEARCH RECEIVERS


Frequency range \(38-1,000 \mathrm{Mc} / \mathrm{s}\). Accuracy \(1 \%\). ohms. Power. Output impedance 600 or 4 , Price complete with three tuning units....... 690 All cuning unics have Auto Tune Mechanism.
fatigue meters Mk. IB
This extremely light self-contained instrumene measures and records g forces from an acclerometer in the ranges of 0.05 to 1.95 g on the six high-speed councers, all counters are clearly marked with the relative \(g\) forces enabling a per-
manent record to be kept. The only power remanent record to be kept. The only power re-
quired is 12 or 24 Vole D.C. for relay operation quired is 12 or 24 Vole D.C. Tor relay operation Six \(6 \times 6 \times 4\) in., weighs 4 lbs . Price.. E9/19/6
\(\mathrm{C} / \mathrm{w}\) accelerometers. OSCILLOSCOPE TYPE 13A
Double beam. Time base \(2 \mathrm{c} / \mathrm{s}\) to \(750 \mathrm{Ke} / \mathrm{s}\). Band Double beam. Time base \(2 \mathrm{c} / \mathrm{s}\) to \(750 \mathrm{Ke} / \mathrm{s}\). Band \(100 \mathrm{Kc} / \mathrm{s}\) and \(1 \mathrm{Mc} / \mathrm{s}\). Cathode follower probe for H.F. testing. Operates from A.C. mains 100 to 250 Voles. A complerely reliable quallity instrument. Supplied fully checked with all leads. graticule, visor, circuit, etc. \(\mathbf{6 2 / 1 0 / 0 \text { . Ideal }}\) radio and TV servicing. etc. \(\quad\) P.P. 30/-

RF SIGNAL GENERATORS BY A.T.E. Specially designed for operators of VHF mobile equipment, shese units are of very small size and are complesely portable, the interior cirsuit and high standard. There are swo models with attenuated outpus. CW and Modulation. Type MIP Range \(215-270 \mathrm{Mc} / \mathrm{s}\); Type MIG Range \(49-52 \mathrm{Mc} / \mathrm{s}\); both models are powered by U2 dry cell, direcrly calibrated and built into grey hammer tone alloy case, brand new. Our price is only \(£ 10+\$ / 6\) P.P. for bosh models.
MARCONI POWER OUTPUT METERS TYPE TF340
Measures \(5 \mathrm{~mW}-5\) watts F.S.D. A small portable instrumens In excellent condition. Only \(\mathbf{f} / 2 / 10 / 0\) \(+7 / 6\) P.P.

TRANSISTOR STEREO \(8+8\) Mk. 11 Now using sillicon Tranisiators in firat five stagen on each channel
reauting in even lower nolse level with lmouroved nemativity. A really firmbeclax H1-Fis sureo Ampliner Kit. Uee 14t traunistorn
 Buitable for use with Ceramic or Crytal cartridgea. Output
 attrective tront panel knots. wire, solder. nuta, boltan-no exrat to buy. Bimple step by atep instructions easable any
conatructor to build an amplifier to be proud ol. Briet Apectil
 \({ }^{8}\) PRPICES: Amolitier Kit \(£ 10 / 1\) OVO; Power Pack Kit \(£ 3 / 0 / 0\); Cabinet Cis \(^{2 / O / O}\). ALL POST FREE
circuit diagram, construction details and parts lint (free with
 I.m.t. \(\begin{gathered}\text { HJGE PORCHASE! } \\ \text { 4-SEED PLAYER. }\end{gathered}\)
Heavy \(8 ;\) in. metal turniable. Low
Huttel pertormance \(200 / 250 \mathrm{r}\). shaded motor (90. Map. Complete with \({ }_{\text {LP }}^{2} /=8\) mono cartidge with \(\mathrm{t} / \mathrm{o}\) atrill for LIMITED NUMBER ONLY 63/-
LATEST GARRARD MODELS. All typen avallabie 1000, BP25,
Soon, AT60 etc. Send B.A.E. for iatert Bargain Prices.
QUALITY RECORD PLAYER AMPLIFIER MK. A top-qually record player amplifer employing heavy dut separate basa, treble and volume controle. Complete whth output

and apeaker ready to fit linto cabitiet below. PRICE \(97 / 6\)
DE LUXE QUALITY PORTABLE R-PLAYER CABINET MK 2 bila. above. Whil take amplifer sove and tny B.8.H. or GARRARD Autochanger or single Plaver Uait (except AT60
of 8 P26). Size \(18 \times 16 \times\) Sin. PRICE 78/6. Carr.9/6.
HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
S.A.E. oll enquiries. Open all day Soturday (Wednesday I p.m.)
HARGES QUOTED AP PLYTO U.K. ONLY.P. \& P. OH OVERSEAS ORDERS charged extra.


MPLIFIER MODEL HA3 Designed for Hi-Fi reproduction of
records. records. bult i.C. masina oreention.
Ready buthed heary gauge Ready buat on platid heary gulge d. \(x\) chln. \(h\). Ineorporates ECC83,
ELs4. E780 Valren ELL8. EZ80 valves. Heary duty,
double wound mains transformer and output transformer matched tor 3 obm apesker, separate bsem, treble
and volume controls, Negative teed leads extended for remoto mounting of controlal be detached and been apecially deaigned for un and our quantity order enables us HSL "FOUR" AMPLIFIER KIT Blmilar in appearance to HA 34 sbove but employn entirely \(78 / 6\) P. \& P. 6/.,

GIOH GAIM 4-TRANSISTOR PRINTED CLBCDIT
- Pegk output in excess of 1 il watt. . All atandard British - Oenerous size driver and output translormers. Output tranaformer lapped for 3 ohm and 15 ohm npeakers. Transis.
Corn (GET 114 or 61 Mullard OC81D and matched pair of OC81, o/p). - 9 volt operathon. © Everything nupplived, wifre, bitcery thona and elicuit diagrami \(2 / 6\) (Free with Kit). All parta gol
separstely. \(8 P E C I A L ~ P R I C E ~ 45 /-. ~\)
P. \& bullt and teated \(52 / 8\). P. P. A atylinhly fininhed monAural amplifter with ath \({ }_{2}\) EL84e kn puhh-pull both muspoduction sud weparategligible hum. and gram allow recorde and minouncements to folow each other. Fully output tranaformer to P P ume controls, and neprarate bam and treble controls are provided
riving good int and cut. Valve line-up: 2 ELB4s, ECC83. EF8B



4-SPEED RECORD PLAYER BARGALSS

\section*{Mning model. Alt binad new in maker's orizinal packing.} E. M. I. Model 889 Sinkle Player with antt monnted ptuk-np arm


\section*{DIOTRAN} SALES
 P.O. BOX 5
WARE, HERTS
TEL, WARE 3442 We will also bu
yoursurplus toc
OSend us you
lists.
OVER 3 MILLION SILICON ALLOY \& GERM. TRANSIS TORS AVAILABLE FOR IMMEDIATE DELIVERY. MANUFACTURER

TRANSISTORS


Type and Conseruccion A1. Germ. Audio. N.P.N. TOA3. Germ. A.F Germ. R.F. \begin{tabular}{ll} 
A. Germ. R.F. & T0. \\
& \\
\hline \(0-5\) \\
\hline
\end{tabular} Ag. Germ. A.F. \(\quad\) A.F.R.F.
\(2 G 300\) ND

\section*{FFRODUCTION SURPLUS.}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{I/- TESTED TRANSISTORS I/each ONEPRICEONLYPNP.NPN, each} \\
\hline BClob & 2N696 & 2N1132 & 2N2220 & 25733 \\
\hline YS & \({ }^{2} \mathbf{2 N} 707\) & \({ }_{2} \mathrm{NII7II}^{2}\) & 2N37711 & 2N34 \\
\hline FSI & 2 N 708 & 2N2904 & 25102 & 2N2906 \\
\hline 884 & 2N930 & \({ }_{2}{ }^{\text {N2924 }}\) & 25104 & \({ }^{2} \mathbf{2 N 2 9 0 7}\) \\
\hline X88 & 2 N 1131 & 2 N 2926 & 25732 & 2 N 3702 \\
\hline From M & Manufacturer & Over-r & & 2 N 3703 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{GERM. PNP AND NPN TRANSISTORS TESTED, UNMAAKED \(1 / 6\) EACH}} \\
\hline & & & & \\
\hline 126 & \({ }_{\text {ACr }}{ }^{\text {c }}\) 2 7 & NKT141 & NKT113 & \\
\hline \({ }^{\text {ACl }}\) AC128 & \({ }^{\text {ACr2 }}\) & NKT & & \\
\hline & ACr30 & NK1212 & \(\bigcirc\) & \({ }_{2 G} \mathrm{G}\) \\
\hline Cr19 & \({ }^{\text {acr }} 31\) & NKT214 & OC71 & \\
\hline & ACY34 & NKT215 & \(\bigcirc \mathrm{C} 72\) & \\
\hline & ACY35 & NKT271 & C75 & 2 G 374 \\
\hline
\end{tabular}



SLIDEWIRE VHEATSTONE bridge
£15.15.0



SILICON MICROALLOY JUNCTION DIODES
WIRE ENDED, FOR USE UP TO 20 MC/E

D223B, 150 p.1.v. 50 ma

SILICON 'TOP HAT' RECTIFIERS


INTEGRATED CIRCUIT AMPLIFIERS R.C.A. TYPE CA 3020 TO-5 encapalated 12 lead Audio Amplifier quinhers Maximum Po -M Gutput 550 mW Boadwidth \(6 \mathrm{mc} / \mathrm{s}\) Total harmonic distortion \(1 \%\) Seneftivity 3.5 mW . Mux. peal signal input \(\pm 3 \mathrm{~V}\). Maxe nignsl current drain 47 mA . Voltage equired OENERAL ELECTRZC TYPE PAg22 Epony moulded four-in-line pla package plus heat sink lead, equlvient on sir N-P-N watt. Into 15 ohms. No tranaformer required. Full signal current irmin 155 mA from a 22 V nource. PRICE 40 /- P. and \(P\). \(2 /\) uppled complete wil pplinco rata
GENERAR ELECTRIC TYPE PA234-Fpoxy moulded fourin. tors, three dioden and three resintors. The clrcuit is a complet -watt A.F. Amplifer and requiren only three resistors and three apacitors. Power supplies 9 to 23 V. Lasd mperdsice 8, 16 and 2 ohms. 1 watt output for 600 mV input. PRICE \(27 / 6\) p.p. \(2 /\).

\section*{THYRISTORS}

Blue spot:
120 mA :
200 plv 5 amps . Gate Voltage \(3,25 \mathrm{~V}\) -
CR \(80-121\)
CR 100.151 A .80 Amps. 25 piv
CR \(100-201 \mathrm{~A}, 100 \mathrm{Amps}\).
CR \(100-201 \mathrm{~A}\). 100 Ampge 300 pl
CR \(100-351 \mathrm{~A}, 100 \mathrm{AmpR}\). 350 plv
CR \(100-101 \mathrm{~A}, 100 \mathrm{Amps}\).
CR \(100-401 \mathrm{~A}, 100 \mathrm{Ampse} .400 \mathrm{plv}\)
CR
\(100-501 \mathrm{~A} .100 \mathrm{Amps} .500 \mathrm{plv}\)
por all CE series Minimain gate firing voltage ls 3 Y at 70

\section*{DRY REED INSERTS}

Glank dry reed Ineerts approx. tin. dia. \(x\) lin. long with arial be operated by permanent magnet or 30 -50 Amp-turna reluy coils. PRICE 18/- per doz., post free.

MULTIMETERS TYPE 108-IT
 D.C. current 0.5-5-50-500 mA. Renistance: \(2.000-20,000\) ohms- 2 -20 megohms. Power output calibration for 600 ohms lime,

\section*{TYPE MFI6}
D.C. Voltage range \(0-0.5-10-50-250-500 \mathrm{~V}\) D.C. current ranges: \(500 \mu \mathrm{~A}-1(0) 100 \mathrm{~mA}\) Realistance ranges: 100 Ma a 1 Mg The meter is almo callbrated for capacity and output level meanurementm. Senaltivity 2000 OV. Dimensions: 11 in . \(\times 3 \mathrm{sin}\). \(\times 1 \mathrm{fin}\). Price \(24 / 5 / \%\).

WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) IN \(\&\) FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED. ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.


\section*{Head Office}
44a WESTBOURNE GROVE, LONDON, W. 2

Tel. PARK \(5641 / 2 / 3\)
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: LANgham 8403
A.R.B. Approved for inspection and release of electronic valves, tubes.
klystrons, etc.

\title{
Has red tape been complicating your procurement of electronic components from the U.S.A.?
}


Procurement of American-made elec tronic components used to be thought of as a complex, timeconsuming procedure with a myriad of red tape details and problems. Not anymore - now you can join the growing list of companies that rely on the technical skills and services of Milo International, world•wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency from start to finish-immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export packaging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

For whatever you may need in electronic components from the U:S.A., Milo international can satisfy your requirements with prompt delivery, at direct factory prices, from a huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:
\begin{tabular}{lll} 
Amperex & Eimac & R.C.A. \\
Amphenol & Electrons, Inc. & Raytheon \\
Arrow-Hart \& & Erie & Simpson \\
Hegeman & General Electric & Sola \\
Bourns & Hardwick Hindle & Solitron \\
Burgess & Hickok & Sprague \\
Cannon & I.T.T. & Stancor \\
Centralab & J.F.D. & Superior \\
Cinch-Jones & Kings & Sylvania \\
Clarostat & Littelfuse & Texas Instruments \\
Cornell-Dubilier & Mallory & Transitron \\
Corning & Oak & United Transformer \\
Dale Electronics & Ohmite-Allen Bradley & Vector \\
Delco Radio & Potter \& Brumfield & Xcelite
\end{tabular}

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.

\section*{I I LO International}

World-Wide Electronic Component Suppliers

\section*{CLASSIFIED ADVERTISEMENTS}

DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col. inch.
LINE advertisements (run-on): 7/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 / \%\). SERIES DISCOUNT: \(15 \%\) is allowed on orders for tweive monthly Insertions provided a contract
is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o
WOX NUMBERS: Ress Worset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

\section*{JUNIOR TEST ENGINEER}

Duties include the responsibility for routine measurements in connection with the manufacture of Tape Recorders and Record Players and assistance in the technical control of the factory. Previous experience of Radio or Television desirable but knowledge of other electronic products could be a suitable qualification. Good salary and promotion prospects for the right man. Applications in writing please to:-

Personnel Manager,
British Radio Corporation,
Denton Island, Newhaven, Sussex.
Independent Television News Limited requires a
SUPERVISORY ENGINEER
with detailed knowledge and practical experience of Colour Television Engineering including semiconductor and integrated circuitry techniques. Applicants should have an ability to impart this knowledge formally or informally. The successful candidate will be responsible to the Chief Engineer for Vision Maintenance Services. He will work the hours required by the post but it is envisaged that these will be on a five day week basis. Current ACTT Salary \(£ 2,458\) per annum (revised rates under negotiation). Permanent post. Pension Scheme and Free Life Insurance.
Candidates should telephone or write to the Personnel Manager, Independent Television. News Limited, Television House, Kingsway, London, W.C.2. Telephone 01-405-7690.

\section*{BERMUDA VACANCYelectronics engineer}

A qualified technician is required for workshop and field maintenance work in Bermuda. The majority of the work is in TV and Radio, but there is also a requirement for work on specialist equipment for transmitting stations, hospitals, ship-toshore radio, marine radar, etc. A single man is preferred.

Remuneration by way of basic salary and incentive bonus. A good man can expect to earn in the region of \(\{1,750\) per annum.

The appointment will be initially for a minimum of one year and passage to Bermuda will be paid by the Company. Completion of 3 consecutive years service with the Company will qualify for payment of return passage.

Application in own handwriting should give full personal details, wlth age, education, academic qualifications, experience and previous appointments, with references, and should be accompanied by a recent photograph. Forward to:-

General Manager,
BELL SERVICES LIMITED,
P.O. Box 98, Paget, Bermuda.

\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397 54II

\title{
V.H.F. TEEEVISON RELAY \& COMMUNAL AERAL SSTTEMS
}

We are planning a considerable expansion of our activities and have the following vacancies:

\section*{I. A SENIOR ENGINEER}
to have control of all aspects of systems design, planning, estimating, installation and commissioning.

\section*{II. ENGINEERS}
capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:

BRITISH/RELAY
The General Manager, Special Services Division, British Relay House,
41, Streatham High Road, S.W. 16


The Stock Exchange require two
\[
\begin{aligned}
& \text { Television } \\
& \text { Service Engineers }
\end{aligned}
\]

Later this year, as the Stock Exchange continues its programme of modernisation, a closed circuit television system is being installed for the display of market prices.
To maintain this system, two experienced Television Service Engineers are required. Appropriate Television and Radio servicing certificates are essential, and applicants must be able to prove their ability as competent Service Engineers by suitable trade test.
Attractive salaries are offered in the region of \(£ 1,500-£ 1,600\) p.a. with these positions and fringe benefits include a non-contributory pension scheme. Applications giving brief details of qualifications and experience should be sent to: The Personnel Officer, Council of the Stock Exchange, 61 Threadneedle Street, EC2.

\section*{EIECTRONIC TECHNCLANS}

\section*{Marconi}

\author{
Can offer you
}

\section*{NON-TIED HOUSING IN A NEW TOWN ATTRACTIVE SALARY ANNUAL SALARY REVIEWS GOOD WORKING CONDITIONS 37-HOUR WORKING WEEK}

At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

Please telephone or write for an application form to :-

Mrs. B. Bridgen, Personnel Officer, The Personnel Dept., The Marconi Company Limited, Christopher Martin Road, Basildon, Essex.

Phone: Basildon 22822.

\section*{RADIO TECHNICIANS}
with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships : Single SideBand Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF and MF Low Voltage Servo Recorders, Digital Telemetering Equipment.

Salary scale \(£ 782-£ 1304\) per annum according to age, plus \(£ 120\) overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone: Greenock 24291.

\section*{ELECTRONIC ENGINEERS}

The Redifon Group of Companies require experienced engineers with an electronics background who like to get things done. There are several vacancies and these will appeal to you if you are currently holding a position of Project Manager, Project Engineer, or Designer, especially if you are concerned with complete systems of some kind. Experience and an ability to get on with the job are more important than formal qualifications, and you will be judged entirely on the basis of what you can do.
If you are looking for a challenging career in the Electronics Industry and have mature experience in one or more of the following fields we would like to hear from you:

\section*{ANALOGUE COMPUTERS COMMUNICATIONS DIGITAL COMPUTERS BADAR SONAR V.H.F.}

The jobs will carry good salaries and assistance with re-location expenses may be given. There is a contributary pension scheme coupled with free Life Assurance. Good welfare benefits and sick pay scheme.

Please telephone or write, quating ref RSD/169 to: R. F. Goodsman, General Manager, REDIFON LIMITED.
RADAR SIMULATOR DIVISION, Kelvin Way, Crawley, Sussex.
Telephone: Crawley 30201 Ext. 1
(If possible, give a telephone number where you can be contacted)

\section*{REDIFON *}

A Member Company of the Rediffusion Organisation.

\section*{TEST ENGINEER}

We require a keen young Audio Test Engineer to work on high quality professional transistorised mixing desks for use in television and sound broadcasting and recording studios.
Experience in this or a similar field is desirable, although a man with the basic knowledge of semi-conductor circuitry would be considered. Above all the person we are looking for should be reliable and accurate in his work. Apply to:
W. Tory, General Manager,

Neve Electronic Laboratories Ltd., Cambridge House, High Street, Melbourn, Nr. Royston, Herts.

\section*{OPPORTUNITIES WITH}

\section*{Marconi}

\section*{MEMBLEY}

\section*{Test methods development/liaison engineer}

To assist in planning the provision of test facilities and devising test methods for use in Production Test Department dealing with wide range of communications transmitters and receivers, data-handling equipment, radar, and various electronic aids. Liaison with development engineers to solve technical problems encountered during production. Wide production test experience, or relevant technical experience in the Regular Forces. HNC would be an advantage.

\section*{Test engineers}

With knowledge of Circuitry and able to undertake testing and fault finding of a wide range of communications transmitters and receivers, data-handling equipment, radar, and a variety of electronic aids. Should have previous production test experience or similar experience as ex-regular Forces' Technicians.
Salaries will be negotiated according to experience and are reviewed regularly. Excellent Contributory Pension Fund and Life Assurance Scheme, 37-hour week.

Please apply by letter quoting REF/WW/2, giving age, education, experience and present salary to:
D. M. McPhail, Personnel Officer The Marconi Company Limited Lancelot Road, Wembley, Middx.

\section*{ASSISTANT PRODUCTION MANAGER}

Assistant Production Manager required for factory in West Africa assembling radio and television receivers. Practical experience of all aspects of line assembly and testing required, with ability to plan assembly line and control staff. Excellent opportunity for young man to assume early responsibility and earn good salary.

Tours of 15 to 18 months with generous paid leave. Furnished accommodation provided.

Details of experience to Box \(5053 \mathrm{c} / \mathrm{o}\) Paper.

\section*{SIGNALS ENGINEERING LABORATORIES}
R.A.F. Northolt

RUISLIP, Middlesex
Ministry of Defence (Air Force Department)
ELECTRONICS ENGINEERS (graded Experimental Officer) for work on
(i) Radar and Navigation Aids, Air Traffic Control and Blind landing. Experience of Microwave measuremenes and pulse tech niques essential; knowledge of display systems desirable.
(ii) Telecommunications, Navigational Aids, Telemetry and Data Processing. Experience of HF, VHF, UHF and line communications and knowledge of digital techniques essential; familiarity with integrated circuits desirable.
The work involves circuit design, laboratory measurements and field investigations. Some outside duty at R.A.F. Stations at home and abroad will be involved, and an ability to maintain good relations with service personnel at all levels is necessary.
QUALIFICATIONS: Degree, H.N.C., or equivalent in appropriate subject.
SALARY (Outer London) (minimum age 26):〔1,589-£1,985.
Prospects of permanent pensionable appointments.
APPLICATION FORMS from the Head of Laboratories at the above address. Closing date 6th March, 1969.


\section*{Require an AUDIO ENGINEER}
at their Headquarters at Raynes Park. S.W.20. Must have good theoretical knowledge and wide practical experience of maintaining all types of Public Address and Sound Distribution equipment. Some construction of special units involved. Occasional visits to racecourses throughout the country required. Clean driving licence therefore an advantage. Preferred age \(25-45\). Salary \(£ 25\) to \(£ 27\) per week. Good working conditions. Canteen facilities available. Contributory pension scheme after qualifying period.

Applications in writing with full details to Secretary.
RACECOURSE TECHNICAL SERVICES LTD.
88 Bushey Road, Raynes Park, London, S.W. 20. 01-947 3333

\section*{MEDICAL RESEARCH COUNCIL CYCLOTRON UNIT,}

Hammersmith Hospital. London, W.12. invite applications for the following posts.

\section*{GRADUATE ELECTRICAL ENGINEER}

Age 21-23, with a good honours degree, required to assist in accelerator development. Initially the work would entail development of Ion Sources for the M.R.C. cyclotron with opportunities in design and construction of special magnets, beam transport systems and data handling techniques. An interest in gaseous discharges, electromagnetism or electronics would be an advantage. Starting salary (under review) \(£ 1,110-£ 1,240\) according to age. 30 days leave.

\section*{ELECTRONICS ENGINEER}

Age 25 minimum. Pass degree, H.N.C. or equivalent. Several years practical experience, used to modern Semiconductor techniques. To join small group concerned with the design and construction of equipment of high engineering standard for use on and around the M.R.C. cyclotron, varying from integrated circuits to high current power supplies. Technical Officer category. Starting salary \(£ 1,109-£ 1,468\) according to age and experience.
JUNIOR TECHNICAL OFFICER (Electronics)
Age 20-25. Two ' \(A\) ' levels or H.N.C. depending on age. To help with development and construction of electronic equipment of widely varying type for use on M.R.C. cyclotron. Starting salary £838-£1,109.

Initial application, giving career particulars, should be sent to the Director, M.R.C. Cyclotron Unit, Hammersmith Hospital, Ducane Road, London, W. 12.

enjoy exciting new scope now in

\section*{Air Traffic Control}

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and DataExtraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be \(£ 869\) (at 19) to \(£ 1,130\) (at 25 or over); scale maximum \(£ 1,304\) (rates are higher at Heathrow). Non-contributory pensions for established staff.
Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.


\section*{ASSISTANT SIGNALS OFFICER METEOROLOGICAL OFFICE MINISTRY OF DEFENCE (AIR FORCE DEPARTMENT)}

ELECTRONIC ENGINEER (man or woman, aged at least 23) for a post of Assistant Signals Officer at the Meteorological Office Headquarters in Bracknell, Berks.
Duties relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the U.K. system making optimum use of computers.
Qualifications: Either (a) Corporate Membership of the Institution of Electrical Engineers, the Institution of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their examinations, or (b) 1 st or 2 nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience in Telecommunications or Electronic Engineering. Wide knowledge of telecommunications and aptitude for planning, including some experience of planning for automation in telecommunications essential.

Salary (national) : \(£ 1,087\) at age \(23-£ 1,761\) at 34 or over (possibly higher if at least 35 ). Scale maximum \(£ 2,065\). Non-contributory pension.

Write to Civil Service Commission, Savile Row, London W1X 2AA, or telephone 01-734 6010 Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" Service), for application form, quoting S/6960/68. Closing date 25th March 1969. Candidates who have already applied should not do so again.

\footnotetext{
The 5 GeV Electron Synchroton NINA, housed at Daresbury Laboratory in north-west Cheshire, is being used for research into high energy physics by university and resident groups. It is, however, being continuously modified both to increase its efficiency, reliability and operation and to improve its performance, particularly in respect of accelerated beam intensity.
}

\section*{RADIO FREQUENCY SYSTEMS}

\section*{A Senior Scientific Officer}
is required to investigate various aspects of the acceleration process of NINA, particularly the effects of beam loading on the RF accelerating system and also injection into the synchroton. Applicants must be familiar with radio frequency techniques at UHF and with systems involving waveguides and cavities. They must also possess at least a second class honours degree in physics or electrical engineering and must have a good mathematical background and the ability to programme computers in Fortran. At least three years' post graduate experience is required.

\section*{A Senior Experimental Officer}
is required to initiate and be responsible for developments of the existing RF accelerating systems. These include very high power amplifiers at 408 and 2856 MHz , waveguides and resonant cavities, together with complex electronic programme and feedback circuits. The work will include speclal component development and improving diagnostic equipment and the flexibility of the systems. It will also entail some responsibility for the day to day running of the plant, particularly dealing with faults beyond the scope of the regular erews. Applicants must be fully conversant with and have wide experience in modern techniques in radio engineering at UHF and in electronics. They must also possess at least a pass degre or HNC or equivalent in physics or electrical engineering.
Starting salary will be assessed according to age, qualifications and experience on the following scales:
Senior Scientific Officer
£1,925- \(£ 2,372\)
Senior Experimental Officer \(\quad \mathbf{£ 2 , 2 2 0}=\mathbf{£ 2 , 7 2 0}\)
The superannuation scheme is non-contributory. Advice and assistance to obtain house loans is available. Write for application form quoting reference number DL/275/M to:


Personnel Officer, Science Research Council, Daresbury Nuclear Physics Laboratory, Darestury, Nr. Warrington.

\section*{GRUNDY \& PARTNERS LTD. require \\ ELECTRONICS INSPECTOR}

The man required must be fully experienced and capable of working from circuit diagrams. Mainly semi-conductor equipment. Excellent rates of pay. Knowledge of E.I.D procedure an advantage but not essential. Apply to

Mrs. Lloyd,
GRUNDY \& PARTNERS LIMITED,
3 The Causeway,
Teddington, Middx.
Telephone: 01-977-3402

\section*{UNIVERSITY OF SHEFFIELD}

Senior Technician required for Electronics Section of Department of Physics. Duties of Section are designing, maintenance and production of electronics equipment for teaching and research. Previous experience essential. Salary £987-£1,225 per annum with basic qualification. Supplement for approved higher qualification. Write to the Bursar (B.130), The University, Sheffield S10 2TN.

Electro-Medical Service Department requires

\section*{ENGINEERS}
for testing and servicing electronic apparatus. Applicants should be aged 23-30, and should be of H.N.C. standard. Apply in first instance in writing to:

\section*{SIEREX LTD.,}

Electro-Medical Dept., Heron House, Wembley Hill Road, Wembley, Middx.

\section*{DERRITRON}
have a vacancy for a

\section*{TELECOMMUNICATIONS ENGINEER}

Experience in the design and development of MF and VHF Marine Radio or similar equipment, and S.S.B. Transmitter Receivers, using modern semiconductor valve circuits.
Excellent prospects in this rapidly expanding Division. Personnel with appropriate qualifications and experience apply to

The Chief Engineer,
Derritron Electronics Ltd.,
Sedlescombe Road North,
Hastings, Sussex.

\section*{RADIO OPERATORS}

PREFERABLY WITH PMG2 CERTIFICATE, REOUIRED IMMEDIATELY FOR DUTY ON METEOROLOGICALOFFICE OCEAN WEATHERSHIPS.

Salary Scale £871-£1309 per annum (revised rates under negotiation) according to age, plus \(£ 157\) overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British Subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone : Greenock 24291.

\section*{INSTRUMENT SYSTEMS ENGINEER}

\section*{The Job}

Designing and commissioning electronic aircraft simulator instrument systems in association with analogie and digital computer equipment.

\section*{The Man}

Qualified and/or experienced engineer who has a knowledge of aircraft instrument design theory and a sound understanding of servo and synchro techniques. Applicant should also have a knowledge of analogue and digital computing techniques.

\section*{The Rewards}

Long term career. High job interest in association with the airline industry. Good working conditions. Contributory pension scheme coupled with free Life Assurance. Good welfare benefits. Excellent salary.

Apply giving brief details of experience and qualifications, quoting reference W.W.2369, to H. C. Hall,

REDIFON LIMITED FLIGHT SIMULATOR DIVISION
Gatwick Road, Crawley, Sussex Telephone: Crawley 28811



\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

\section*{ELECTRONICS INSTRUCTOR}

Due to our expanding interests in electronic calculating machines and small computers, we have a vacancy for an additional instructor to join our team based in Central London. After a comprehensive training period, he will assist in the progressive training of service engineers, both from the U.K. and overseas, on the digital techniques used in our equipment. He must also be prepared to carry out training courses abroad at a later date.

The successful applicant will not necessarily have had experience with electronic calculating machines, but he will have a sound knowledge of basic electronic principles and practical experience in electronics, radio, television, radar, or similar fields.

Previous experience as an instructor is not considered to be absolutely essential, but might well be an advantage. We are most anxious to find someone who has the ability and a real desire to teach fellow technicians.

Anyone interested in this vacancy is invited to send full details of his qualifications and relevant experience to Mr. D. D. Davies, Sumlock Comptometer Ltd., The Island, Uxbridge, Middlesex.

\section*{ELECTRONIC SERVICE ENGINEEIR}
required with knowledge of cinematograph projection and sound equipment. Training will be given to applicant with limited experience. Pension scheme. Five-day week. Apply in writing, briefly stating age and experience to Personnel Manager, Rank Film Processing Lid., North Orbital Road, Denham, Nr. Uxbridge, Middlesex.

\section*{Freelance Electronic Designer}
required. Experienced in Photo-electric and Audio techniques. To design in liaison with Technical Department of established company.
Small well-equipped lab. available if necessary. Time to suit applicant.
Write in first instance to:
Dubreq Studios Ltd.,
15 Cricklewood Broadway,
London, N.W. 2

\section*{UNIVERSITY OF BRISTOL Dept. of Extra-Mural Studies Weekend Courses in Colour Television-Spring 1969}

\section*{ELECTRONIC TECHNICIAN}
to assist with maintenance and operation of a 2 MeV linear accelerator and associated equipment in connection with cancer research. Keen practical interest in electronics essential. Salary in accordance with MRC technical scale according to age, qualifications and experience, all grades considered Apply to:
Direcror B.E.C.C.,
Research Unit in Radiobiology, Mount Vernon Hospital,
Northwood, Middx.

\section*{THE GENERAL POST OFFICE} has vacancies for

\section*{RADIO OPERATORS II}

\section*{at its}

COAST RADIO STATIONS
Applications are invited from men between 21 and 35 years of age who must hold either the Postmaster General's First or Second Class Certificate of Competence in Radiotelegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.
The posts which will be temporary in the first instance, carry a salary scale of £765-£1,129, depending on age at entry, but successful applicants will be eligible to enter the open competitive selection for permanent appointment to be held in the spring and autumn of 1969.
Applicants should write to: The Inspector of Wireless Telegraphy, Union House, St. Martin's-le-Grand, London, E.C.1, or telephone 01-432 5628 for further information.


\section*{SOUTHERN}
AVELEY ELECTRIC LTDव17 31810373 ＾ヨ7ヨАヲ
we require
CALIBRATION and
SERVICE ENGINEERS have you
－ 3 to 5 years calibration or service experience
O．N．C．／H．N．C．
are you
－between 25－40 years of age do you have
－self drive and initiative
－ability to work with minimum supervision

\section*{do you want}
－a well paid interesting post you do then contact
Personnel Manager
Aveley Electric Itd．，South Ockendon Essex Tel：South Ockendon 3444

INDEPENDENT TELEVISION

\section*{ENGINEERS，ASSISTANT ENGINEERS}
and

\section*{TECHNICAL ASSISTANTS}
for the operation and maintenance of television equipment at their Southampton Studios．The successful applicants would be required to live in the Southampton area and would be employed on shift duty．The Company is expanding and later this vear will occupy a new studio centre fully equipped for colour television． The following qualifications should be held：

Engineers Higher National Certificate in electrical engineering or equivalent．preferably with experience with a Broadcasting Company or Broadcast Equipment Manufacturer．
Assistant Engineers Ordinary National Certificate in electrical \＆Tech．Assistants engineering or equivalent．
Before appointment applicants will be required to undertake a colour blindness test．

Rates of Pay：
Engineers A．C．T．T．Grade＇D＇£1876 p．a．
Assistant Engineers A．C．T．T．Grade＇E＇£ 1582 p．a．
Technical Assistants A．C．T．T．Grade＇H＇£1295 p．a．
Canteen facilities and an excellent Pension Scheme available．
Please apply in writing to：
The Personnel Officer，
Southern Television，Ltd．， Northam，
Southampton，
SO9 4YO

\title{
CHALIENGING OPPORTUNITIES in CANADA
}

Radio and Electronic Technicians with a desire to see more of the world can find rich rewards by joining Canadian Marconi Company．Technicians are required for maintenance duties on Northern installations．
Successful applicants will enjoy minimum salaries of \(\$ 8,479\) plus first－class prospects for rapid advancement and further substantial rises during the first year．There are also genuine opportunities for promotion to supervisory grades with salary ranges of over \(\$ 13,500\) per annum．
Food and accommodatlon is provided free for the employee （no family accommodation），in addition to heavy duty clothing．Assistance with air passage is available．
A chance of a lifetime is offered to accrue substantial savings．

CAN YOU QUALIFY？

Formal training and experience in maintenance of communi－ cations type equipment is required with special emphasis on：

\section*{Microwave}

\section*{Tropospheric Scatter}

Communications Systems
Telephone and Carrier（Multiplex）
If you have three or more years＇experience in installation or maintenance on this type of equipment together with recog－ nized qualifications，i．e．City and Guilds，Higher National or equivalent，the answer is Yes！Interviews will shortly be held in London and possibly in the provinces．Please send brief career details，quoting WW 2988H，to Mr．D．S．Howell， Canadian Marconi Company，P．O．Box 540，Station ＂O＂，Montreal 379，Quebec，Canada．

\section*{IMPERIAL COLLEGE}

Control Systems Group
Applications are invited from ELECTRONICS ENGINEERS to join a select team concerned with advanced control engineering projects, in order to assist development of the special computer interface equipment required for this work. Degree or H.N.C. with experience of digital techniques required; some experience in mechanical design, programming, or instrumentation an advantage.
Salary in range \(£ 1,455\) to \(E 1,865\) (Experimental Officer grade). Superannuation Scheme. Details of experience to Professor Westcott, Centre for Computing and Automation, Imperial College, London, S.W.7, by 28 February 1969.

AGA (U.K.) Ltd. are expanding the operation of their Electronics Division and require the following personnel:

\section*{SALES ENGINEER}

Aged about 30, qualified to H.N.C. level in applied physics, not less than 3 years' experience in telecommunications equipment or crystal oscillator design. Field sales experience an advantage, possession of driving licence essential. Salary around \(£ 1,500\) per annum. Quote details of experience and qualifications.

\section*{APPLICATIONS SERVICE ENGINEER}

Aged about 25 , qualified to H.N.C. level in applied physics with experience of modern electronic apparatus. Driving licence essential. Salary around \(£ 1,300\). Quote details of experience and qualifications.

\section*{AGA (U.K.) LTD. (Ref. WAR)}

77 HIGH STREET • BRENTFORD • MIDDLESEX

\section*{digital \\ COMPUTERS • MODULES}

We are now manufacturing our famous range of PDP computers in the United Kingdom and require

\section*{COMPUTER TECHNICIANS}
to assemble and commission these computers at our factory in Reading. Applicants should have O.N.C. Electrical or G.C.E. 'O' level in relevant subjects. Experience in the testing and repair of transistorised pulse equipment would be an advantage but product training will be given. Salary will be commensurate with experience and ability.

Applications in confidence to: Personnel Department, Ref. WW 46 ,
DIGITAL EQUIPMENT CO. LIMITED ARKWRIGHT ROAD, READING, BERKS. Telephone: 85131

RANK PRECISION INDUSTRIES Require a

\section*{TEST EQUPMENT CALIBRATION ENGINEER}
for the regular calibration of the equipment in our electrical test room, and the location and rectification of minor faults.
The successful applicant will:
-BE familiar with calibration techniques for electronic voltmeters, signal generators, oscillators, counter-timers and similar instruments for D.C. to 10 MC -s.
-BE able to make reliable measurements.
-BE expected to work with minimum supervision.
-BE aged \(25-35\) years.
-PROBABLY hold a C. \& G. certificate (Servicing).
The Salary- \(£ 22 \mathrm{p} . \mathrm{w}\). or more depending on age and experience.
The company operates a comprehensive contributory pension scheme, free life assurance, and other fringe benefits.
Apply to: The Personnel Manager, Rank Precision Industries, Rank Pullin Controls, Phoenix Works, Great West Road, Brentford, Middlesex. Tel. 01-560-1212.

\section*{ILIFFE BOOKS}

ELEMENTS AND CIRCUITS FOR AUTOMATIC CONTROL

By T. PUCHALKA and A. WOZNIAK
English translation edited by N. G. Meadows. Ph.D., B.Sc., C.Eng., M.I.E.E.

This book gives examples of typical elements of control systems and discusses their application in systems for automatic control.
It opens with a chapter dealing with fundamentals of control theory, which is of interest in its own right and also gives a fundamental basis for subsequent work. This is followed by an extended treatment of the dynamic behaviour of electrical circuits and electrical machines as elements in control loops. together with various aspects of non-linear behaviour. The third chapter is devoted to a discussion of selected elements of electrical control systems, classified on the basis of single-loop block diagrams. Finally, the book deals with stability criteria, stability synthesis and the general dynamical analysis of selected systems.
221 pp. 146 illus. 50 s net. 1 s 6 d postage.
obtainable from leading booksellers

ILIFFE BOOKS LTD 42 RUSSELL SQUARE LONDON, W.C.1.

\title{
Computer Engineering
}

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1150\) per annum, plus bonus. Shift allowances are payable, after training, where
applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.




\section*{AIRTECH \\ TEST ENGINEER ELECTRONICS}

To undertake testing and fault finding on UHF and VHF communication equipment Qualifications to O.N.C. standard or similar experience as ex-regular H. M. Forces. Excellent opportunity for promotion within a small team working to rigid specifications. Free transport from approximately a 15 -mile radius
Pension and life assurance scheme.
Write glving details to -
Personnel Officer,
AIRTECH LIMITED, Haddentham, Near Aylesibury, Bucks.

\section*{PERKIN-ELMER LIMITED of BEACONSFIELD}
is actively engaged in the development and manufacture of automatic analytical equipments using infra-red, ultra-violet, nuclear magnetic resonance and other techniques.

The Company is in the process of considerable expansion and requires:-

\section*{ELECTRONIC TEST ENGINEERS \& TEST OPERATORS}

The Job Descriptions for these appointments call for a sound knowledge of modern electronic circuits and the ability to diagnose faults logically and systematically using standard test methods. O.N.C. (Elec.); City and Guilds Technicians Certificate or equivalent is desirable, but applications will be considered from those who have good practical test experience.

Apply to:-
L. H. Oates,

Personnel/Training Manager,
PERKIN-ELMER LTD.,
Post Office Lane,
Beaconsfield, Bucks.
Beaconsfield 5151

\section*{EEECTRONIC SERVICE ENGINEERS}

The Installation and Maintenance Division of E.M.I. Electronics Lid. urgently requires engineers with drive and ability to assist with the division's rapidly expanding work programme.

The successful candidates will be engaged on work in one of the following areas:-
*Servicing and calibration of a wide range of electronic instruments.
*Installation and Maintenance of automation, numerical, digital and multiplex systems.

Applicants should have had several years experience of the maintenance of electronic equipment. These vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions.

Excellent commencing salaries and staff benefits.

\section*{\(5 / \mathrm{F} / \mathrm{T} 5 \mathrm{~B}=5,2\)}

Applications giving concise career and personal details to:-
M. L. WATERS - GROUP PERSONNEL DEPT
E.M.I. LTD BLYTH ROAD HAYES MIDDX
\(w w / 3 / 69\)

\section*{SALE BY AUCTION}

By direction of the Executors of ROBERT E. OWEN ESQ. in the matter of REOSOUND ENGINEERING \&
ELECTRICAL COMPANY and by
direction of REOSOUND SERVICES LIMITED

\author{
"REOSOUND WORKS" REDDICAP'TRADING ESTATE \\ COLESHILL ROAD \\ SUTTON COLDFIELD WARWICKSHIRE
}

\author{
Sale of \\ PUBLIC ADDRESS EQUIPMENT \\ and COMPONENT PARTS \\ Including: \\ Amplifiers, Transformers, Resistance Units, Valves and Transistors, Sixteen P.A. Units complete, Re-entrant, Horn \& Cabinet Type Speakers, Microphones and Column Stands, Turntables "Reosound" Cable Drums \& Cable, Test Equipment. CORTINA D/L ESTATE CAR, 1967
}

\section*{NEALE \& ALLDRIDGE}

Will sell the above by Auction on the Premises on WEDNESDAY, 26th FEBRUARY, 1969, commencing at 11 a.m. On View TUESDAY, 25th FEBRUARY, \(10 \mathrm{a} . \mathrm{m} .-4 \mathrm{p} . \mathrm{m}\). Catalogues obtainable from the Auctioneers' Offices "CORNWALL HOUSE," 50 NEWHALL STREET, BIRMINGHAM 3. Telephone: 021-236 2066/9. Or "SABENA HOUSE," 36 PICCADILLY, LONDON, W.I. Telephone: 01-734 5571/3.
N.B. The Sheet Metal Working Plant and Machinery will also be included in this sale.

\footnotetext{
SITUATIONS VACANT
FULL-TIME technical experlenced salesman reA quired for retail sales: write giving details of age, previous expertence, salary required to-The Manager, Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.
CHIEF SOUND RECORDIST required by the CENTRAL COFFICE OF INFORMATION for its Radio Division which is responsible for the production and fast transmission of radio programmes on magnetic tape and disc or by circuit for use by broadcasting stations overseas. Programmes vary from brief Interviews to
half an hour in length and total output is about half an hour in length and total output is about
50 hours per week, in some 30 languages Th.) Chief
 Sound Recordist will have engineers and sound recordists and will be tenance engineers and sound recordists and ans. His
responsible for all sound recording operations. duties will include the management of recording studios and copying channels, and the servicing of static and portable equipment. He will supervise recording by
outside conuractors and lialse closely with the GPO outside conlractors and haise wire circuits within the O.K. and line facilities to overseas territorles. He will be responsible for the plannlng, design and Installation of such new facilities as may be required by the development of the service and by technical advances In the
medium. Salary \(£ 1,850-£ .3,355\) per annum. Please medtum. Salary \(£ 1.850-£ 2,355\) per annum. Please
send postcard for application form to Manager (PE/A/185/EW). Department of Employment and Productivity, Professional and Executive Register. Atlantic House. Fartingdon Street, London, E.C.4. Closing date for completed application forms 6 March, 1969 . DESIGN DEVELOPMENT ENGINEER for laboratory tuners and quality tape recorders. Only persons holding a stmilar position need apply. Salary according to experience. Apply to Elizabethan Electronics Ltd. Ref: W.W.1. Crow Lane, Romford, Essex. Tel. Romiord 64101 .

EXPERIENCED TV Engineer required. Permanent D position, good salary. Transport avallable if reing TV service REM RADIO, 79 保 to cope with expandTel. Ashford 5336 (Middlesex).
}

E Lectronics and instrumentation engineer work with a team investigating diseases of the heari -and lungs, and to be responsible for the maintenance or MS4 mass spectrometer. automation of exerclise tests
and
an whole-bocy piehysmorraph now th use tor and a whole-body plethysmograph now in use for
epidemological studies, ecc. Degree or H . \(\mathrm{N} . \mathrm{C}\). preterred.
 F.S.S.N. Applicatens in intithe to the Secretary, Rovai London, W.12. quotint reterence \(2 / 117\) (b).
\(\mathbf{E}_{\text {of }}^{\text {LECTRONICS TECHNICIAN }}\) required for Department in malntenance and development of electronic apparatus.

 \(\mathbf{E}_{\text {development }}^{\text {LECTROMNICIAN }}\) required to assist in the Tange of electronic appparatus for research and teaching. Tange or electronic apparatus for research and teaching.
Applicants should possess or expect to obtain H.N.C or
 in the range \(8817, \mathcal{E} 1,182\) according to qualifciations
and experience. Five day 372 hour week with 25 working and experience. Five day 37 hour week with 25 working
days holdday. Application torms from the Secretary. days holiday, Application forms from the Secretary,
Queen Elizabeth College, Compden Hill Road, w.8. 2131 \(\mathbf{E}^{\text {XPERIENCED Assistant Service Manager required by }}\) Eura well established Radio and Melevision Manufac-
tur the Clty.
Permanent
positlon with
Bood



F JRE PAID to USA for Electronic Technician, or Junlor EngIneer-Interesting postion-diode lasers
carbon dioxlde lasers-laser equipment. Seed
Electrontec Corporatiton, 258 East Street. Lexington, Massi-
Chusetts 02173 , USA.
I 329

 Romford 64101 .
\(\mathbf{R}^{\text {EDIFON LTD }}\) COMMUNICATIONSIT TEST fuly experienced TELEcommencing salarles. We would particularly welcome enquiries from ex-Service personnel or personnel
gbout to leave the Services. Please write kiving fult sbout to leave the Services. Please write kiving full
detalls to The Personnel Manager, Rediton Ld.
Res. detalls to-The Personnel Manager, Rediton Lid.
Bromhill Rd.' Wandsworth, S.W.18.
[26 \(\mathbf{S}^{\text {ENIOR TECHICIIAN for varled and interesting work }}\) covering design, construction, tesing, and main-

 Ofticer
Street, w. W. 11 ).
\(\mathbf{T}_{\text {facturers }}^{\text {ETS }}\) of car
 Eliectrontes. Litd. Ref:
Essex. Tel. Romord 64101. U for post of CHIEF ELECTRONICS TECHNICIAN IN IN THE SCHOL OF NATURAL SCIENCES. The Work involves repair, callbration and construction of a wide range of electronic teaching and research equapmentic
a joint electronics/instruments
workshop exist, and a

 K3, 132 -K 4,392 p.a. (K1 \(=11 /\) /8d. sterling). Salary supple-
mented


 University Councll. © \(90 / 91\) Tottenham Court Road,
London, W.1, from whom partuculars are avallable
\(\mathbf{W}^{\mathrm{E}}\) EnAve Vacancies for Four Experienced Test \({ }^{[2132}\) Applteants are in our Proderection Test Department.
 to Expansion Prorramme. Please apply to Perso
 Works. Hatis Road. Cambridge. Tel. Cambrldge 51351
 sary iltensed engineers with capleal and/or neces-
 Berks.

\section*{SITUATIONS WANTED}
\(\mathbf{T}_{\text {Inter, }}^{V}\) Ensineer, improver, with Clty ant Guilds. R.T.E.B. shop, seeks bench oosition. North London area. Box
WW 325 Wireless Worid.

\section*{ARTICLES FOR SALE}
\(B\) for Colour:-Leading British makers dual \(405 / 625\) six position push button transistorised tuners \(£ 5.5 .0\),
\(405 / 625\) transistorised sound \(\&\) vislon \(I F\) panels \(£ 2.5 .0\), incl. circuits and data. P/P \(4 / 6\). Bastc dual purpose \(4 / 6\). New UHF tuners Incl. valves. slou motion drive \(405 / 625\) IF \& output chassis incl clrcuit \(45 /-\mathrm{P} / \mathrm{P}\) 4/6 \(\begin{array}{llll}\text { Ferguson } & 625 & \text { IF amplifer chassis incl. circuit } & 19 / 6, \\ \text { Ultra } 625 & \text { IF amplifier plus } 405 / 625 & \text { switch assy incl }\end{array}\) \(\begin{array}{llll}\text { circuit } & 25 /-\mathrm{P} / \mathrm{P} & 4 / 6 \text {. New VMF turet tuners: } / \mathrm{P} \\ \text { Cyldon } \mathrm{C} & 20 /- \text { Pye CTM } & 13 \mathrm{ch} \text {. Incremental } 27 / 6, P / P\end{array}\)
 channel colls. New freball tuners \(58 / 6\), used good condition \(30 /-\) salvaged \(15 /=\) P/P \(4 / 6\). LOPTs, Scan
coils. Frame output transtormers, Mains droppers etc. avallable for most popular makes. TV signal boosters avallable for most popular makes. TV slgnal boosters
transistorised Pye/Labgear B1/B3, or UHF battery
operated \(75 /-\) UHF mains operated \(97 / 6\) UHF mastoperated \(75 /-\) UHF mains operated \(97 / 6\), UHF mast-
head \(95 /=\) post Iree. Enquiries Lnvited, COD despatch head 95/- post free. Enquiries Lnvited, COD despatch
avaliable.
MANOR SUPPLIES, 64 GOLDERS MANOR DRIVE, MANOR SUPPLIES, 64 GOLDERS MANOR DRIVE,
LONDON N.W. 11. CALLERS 589B HIGH RD. N. LONDON N.W.11. CALLERS 589B HIGH RD.
FINCHLEY
O1.445 9118.
\(\mathbf{B}^{\text {UlLD IT }}\) in a dewbox quality plastics cabinet.
 Colour TV components for "WW" recelver, Scans,


 Marconi V.Vmeter TF \(4288 / 1\). £8. Dawes Freq Meter
ELEKON Star Bargali Offers. Assorted Wire-Wound
Resistors, 100 for only \(12 / 6\). Submintature Plug-in
Crystals, type \(326.985 \mathrm{MHz}, 12 / 6\); type 627.025 MHz Crystals, type \(326.985 \mathrm{MHz}, 12 / 6 ;\) type 627.025 MHz ,
\(12 / 6\) RM4 Metal Rectifers, \(5 /\) Elekon Enterprises, 30 Baker Street, London, WIM 2DS. Telephone
\(01-4865353\).
GENERAL RADIO \(1602-\mathrm{B}\) Admittance Bridge plus tions, Ell, Tee, N, C, BNC Adaptors. \({ }^{50} \mathrm{~cm}\). Sre-devaluation £ 249 hardly used. Wayne-Kerr Attenuator \(0-60 \mathrm{~dB} 0.5 \mathrm{~dB}\) steps, 75 ohms, BNC. G-R857A Oscllator \(96 / 520 \mathrm{MHZ}\) with P5. J. Page, Medmenham Mill, Marlow, Bucks
(Hambleden 478). Best offers secure.
[324
NEW Lustraphone dynamic hand microphones with £2 each. Racal digital frequency counters, Model SA20. \(10 \mathrm{~Hz} / 100 \mathrm{kHz}\), overhauled. \(£ 40\). Enquiries: Mr. Butler Multitone Electri
Tel. \(01-253\)
8022 .

Butier.
N.1.
\([323\)
SPECIAL OFFER: 1 Oscilloscope, 3 Telegraph Code Converters, I Control Monitor, I Signal Distributor Drive, \({ }^{1}\) Power Supply, complete in steel cabinet, used
but in good condition (American Military Surplus Equipment), manufactured by Teletype Corpn., USA, now Equapment, manuiactured a total price of \(£ 60\) for.b. Hamburg
(original acquisition value when new: \& 3,700 ). Write (original acquisition value when new: \& 3,700). Write
to Box W.W. 2138 wireless world.
STOPWATCHES? Before you buy send 8d. in stamps for our illustrated catalogue and save money. Lenses
and prisms catalogue also avallable. Lind-Alr (Optronics) and prisms catalogue also avallable. Lind-Air (Optronics)
Ltd., Dept. CWW, 18 and 53 Tottenham Court Road, London, W.1. Tel. Ol-580 1116 . 2107
\(T \mathrm{HE}\) IDEAL PANEL Mounting Meter Movement for F.S.D. \({ }^{\text {any }}\) Sensitive Test Meter, etc. 200 Minc in Amp only \(39 / 6\). P. \& P P. Free. Limited number only. Walton's WIreless Stores, 55 A Worcester Street, Wolverhampton,
Staffs.

\section*{BUSINESSES FOR SALE}

COUNTRY Retall Television and Radio Business for Sale. OWNER RETIRING. Turnover for last four
years \(£ 31,600\) ner annum. Further detalls from Box

\section*{BUSINESS OPPORTUNTIES}

COMPANY interested in new ideas would be willing compact Marine RT/TX/RX. G.P.O. Specs. Box WW327, Wireless world

\section*{TEST EQUIPMENT E SURPLUS
ANDSECONDHAND}

SIGNAL generators, oscilloscopes, output meters, wave etc, etc., in stock,-R. T. \& I. Electronics, Ltd., Ash-
ville Old Hall, Ashville Rd., London, E.11. Ley. 4986.

RECEIVERS AND AMPLIFIERSE SURPLUS ANO SECONDHAND
HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, Ashetc. etc. in stock.-R. T. \& I. Electronics, Ltd.,
Ashille Old Hall, Ashville Rd., London, E.11. Ley,
[986.

\section*{NEW CRAM AND SOUND EQUIPMENT}

Consult first our 70-page thustrated equipment Catalogue on H1-Fl (5/6). Advisory service, generous terms to members. Membershlp \(7 / 6\) p.a.-Audio Supply
Assoclation. 18 Blenheim Road. London, W. 4 CLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris. 343 Argyle St., Glasgow, C. 2

> TAPE RECORDINA ETC.
> IF quality, durability matter, consult Britaln's oldes tapes. (Excellent tax-iree fund raisers for schools, churches.) Modern studlo facilities with Steinway Grand.-Sound News, 18 Blenhelm Road, London, W. 4. TAPE to disc transfer, using latest feedback disc Cutters; EPs irom 22/-; s.a.e. leaflet.-Deroy,
High Bank, Hawk St., Carnforth, Lancs.

\section*{VALVES}

Valve cartons by return at keen prices; send \(1 /-\)
for all sarnples and Iist.-J. \& A. Boxmakers, \(75 a\)

\section*{FORHIIRE}

COR hire CCTV equipment including cameras, monitors, video tape recorders and tape-any period.

\section*{AATICLES WANTED}

 Electronics, Ltd." Ashvile Old Hall. Ashvilie Rd., LonWanted eddystone communteation recelvers.

 High St., West Bromwich. Stafls. Tel. Wes. 0186 . [72 W ANTED Slemens Standard High Speed Relays Please oontact with details of quantity and price. Tel \({ }^{250}\) Ohm/250 Ohm Double Colls.
\(01-4053832\).

\section*{VALVES WANTED}



\section*{SERVICE \& REPAIRS \\ \(\mathbf{R}_{\text {with }}^{\text {Epairs.-Our modern service department equipped }}\) R with the latest test equipment Including a wow and futter meter and multiplex stereo signal generator
is able to repar HI FI and tape recording equipment to manufacturers standard, Welesontc Lit.; 92 Tot-
tenham Court Rd., London, W.1. 01-638 8177.
[21}

\begin{abstract}
\section*{CAPACPTYAVAILABLE}

A IRTRONICS, Ltd., for coll winding, assembly and anlt sheet metal work.-3a Walerand Rd.. London FULL or Partial Manulacturing or Assembly Capacity Ravailable for small Electronic Units.-J. D. R. Ltd.
9 Mallow Street, London, E.C.1. \(01-253366\).
[ 332 GREEN ELECTRONICS for Colls and Transformers circuits. "Templecombe". Cleveland Road. Worcester Par, 【322 METALWORK, all types cabinets, chassls, racks, for small milling and capstan work up to 1 n bar.-
pHILPOTT'S METAL PHILPOTI'S METALWORKS. Ltd., Chapman St. \(\mathrm{O}^{\mathrm{N} \text { YOUR STAFF, but not on your payroll; com- }}\) precise requirements. Box W.W. 308 Wireless World. Small company with equipment and knowhow for testing of "Thick Film" clrcuits seeks working arrangement with Electronic company to exploit the potential SMall Metal Presswork and Toolmaking Capacity E.C.1. \(01-253\) 3661.
\end{abstract}

\section*{TECHNACAL TRAINANG \\ \(B^{\text {ECOME "Technically }}\) Qualified" in your spare time guaranteed diploma and exam. home-study courses
in radio. TV, servicing and maintenance. R.T.E.B., In radio. TV. servicing and maintenance. R.T.E.B.
City \& Guilds. etc., highly informative 120 -page Guide-free.-Chambers College (Dept. 837 K ). \({ }_{116}\) CITY \& GUILDS (Electrical, etc.), on "Satisfaction For detalls of modern courses in all branches of electrical engineering, electronics, radio, T. V. automation, (Dept. 153K). Aldermaston Court, Aldermaston, Berks
D.M.G. Certificates, and Clty \& Guilds Examinations. And Electronics. Study at home with world famous ICS. and Electronics. Study at home with world famous ICS.
Write for free prospectus to ICS, Dept. 443, Intertext
House, London, S.W.11.
[25 \(\mathrm{R}_{\text {apio officers see the world, Sea-golng and shore }}\) Grants avallable. Day and boarding students. Stamp TV and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B.; housands of passes: for tull detalls of exams tee terms; tratntng courses (including practical equipment) in all branches of radio. TV, electronics, etc., write for 132 page handbook-iree; please state subject.- British
Institute of Engineering Technology (Dept. 150K).}


\section*{BOOKS, INSTAUCTIONS, ETC.}

Manuals, circuits of all Brttish ex-W.D. 1939-45 R.E.M.E. Instructions; s.a.e. for 11 st, over 70 types.-
W. H. Balley, 167 a , Moffat Road, Thornton Heath R.E.M.E. Instructions; s.a.e. for list, over 70 types.-
W. H. Bailey, 167 a , Moffat Road, Thornton Heath,
Surrey, CR4-8PZ.

\title{
Become part of a professional audio success story
}

In only two and a half years the Dolby Audio Noise Reduction System has become internationally recognised as providing a new premium quality master recording standard. Moreover, domestic versions of this revolutionary new system are already being licensed abroad. But this is only the beginning of the story; much more needs to be done in applying the system to a host of exciting new applications.

In our new spacious quarters in south London (about two miles south of Chelsea), we are embarking upon a phased programme of expansion. London staff, now numbering 20, will soon be considerably increased in all respects - engineering, production, marketing, and administration. At the moment, however, the focus is on an electronics engineer and a good audio sales engineer. If you measure up to our present requirements write or telephone our Chief Engineer, Mr. D. P. Robinson.

\section*{AUDIO ENGINEER-ELECTRONICS c.£2,300}

The job: To design a variety of new audio products, both professional and consumer, based on Dolby noise reduction techniques.
The qualifications: An absorbing interest in audio, a degree in electrical engineering or physics, electronic circuit design talent, familiarity with latest solid-state circuit techniques (including IC's), age about 25-30.

\section*{AUDIO SALES ENGINEER C.£2,500}

The job: To demonstrate and sell the Dolby A301 professional noise reduction system to recording studios, motion picture studios, radio and television authorities, and other users.
The qualifications: Experience as recording engineer or A \& R man, a thorough understanding of studio procedures and techniques, a reasonable understanding of electronics, a desire and ability to sell, age about 25-30.

If your qualifications do not meet our immediate requirements but you feel you would like to become a member of our growing team, write to us giving full detalls; we will consider your application in relation to our future plans.


\section*{DOLBY LABORATORES INC.}

346 Clapham Road,
London, S.W. 9
Telephone: 01-720 1111

\section*{ILIFFE BOOKS}

\section*{COLOUR TELEVISION}

\section*{VOL. I: PRINCIPLES AND PRACTICE}
P. S. CARNT, B.Sc.(Eng.), A.C.G.I., C.Eng., F.I.E.E., Leader of Colour T.V. Group Laboratories, R.C.A. Ltd., Zurich, and G. B. TOWNSEND, Ph.D., B.Sc., F.Inst.P., A.K.C., A.M.I.B.M., C.Eng., F.I.E.E., Head of Engineering Research. Thames Television Ltd.

A working knowledge of black and white television is assumed, and while the treatment is largely non-mathematical, the more advanced mathematics are given in the appendices. Most aspects of transmission and reception are discussed, though the emphasis is on the latter. For the service engineer, chapters on fault-finding have been added which illustrate the practical approach. Block diagrams and full circuits are included.

\section*{CONTENTS}

Colour Measurements. Colour Picture Tubes. Cameras and Film Scanners. Transmitter Coding. Specification in N.T.S.C. Systems. Transmitter Coding Circuits. Introduction to Colour Receiver Design. Colour Receiver Amplifiers. Colour Receiver Decoding Circuits. Colour Receiver Reference Frequency Generators. Operation of the Shadow Mask Tube. Colour Receiver Test Equipment and Performance Measurements. Receiver Installation. Colour Receiver Fault Finding. Monochrome Reception on N.T.S.C. Signals. Shortcomings of N.T.S.C. Systems. Appendices.

487 pp. 233 illustrations. 16 pp. plates- 8 in colour.
85s. net, 86s. 8 d . by post.

\section*{ILIFFE BOOKS LTD.}

42 RUSSELL SQUARE, LONDON, W.C. 1

Men capable of working without supervision, and willing to work overseas, are required for the installation, modification, maintenance and setting-up of (a) radio transmitters and receivers, remotely tuned aerial systems, teleprinters and voice-frequency telegraph equipment over a worldwide network, or (b) very high power transmitters, receiving equipment, tape recorders, generating plant, etc. at several high power broadcasting stations, or (c) a wide variety of telephone subscribers apparatus, machine telegraph and other specialised equipment, or (d) microwave receivers, associated test equipment, recorders and audio amplifiers.

SALARY (nationa!): \(£ 1,032\) (at 21) to \(£ 1,119\) (at 23) to \(£ 1,347\) (at 28 or over), rising to \(£ 1,521\). with prospects of increases to \(£ 2,283\) on promotion. Non-contributory pension.

\section*{Home and Overseas}

Numerous opportunities to travel.

QUALIFICATIONS: O.N.C. in Engineering including a pass in Electrical Engineering A, or City and Guilds Intermediate Certificate in Telecommunications (old syllabus i.e. Subject No. 50) plus Radio II, or Intermediate Telecommunications Certificate (new syllabus i.e. Subject No. 49) plus Certificates in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B, or equivalent standard of technical education; and at least 5 years' appropriate training and experience.
Write to Civil Service Commission, Savile Row, London, W1X 2AA, for application form, quoting S/7102/1. Closing date 21st March 1969.

\section*{HILH-GRADECOMPUTERYTICS}

\section*{BY \\ SPRAGUE : MALLORY}
\(2,000 \mu \mathrm{~F} \quad 50 \mathrm{~V} 4 \times 2\) in. 10/\(3,000 \mu \mathrm{~F} \quad 55 \mathrm{~V} 4 \times 2 \mathrm{in} .10 /-\) \(4,000 \mu \mathrm{~F}\) 30V \(4 \frac{1}{2} \mathrm{x}\) 13 in. 10/\(7,200 \mu \mathrm{~F}\) 40V \(4 \frac{1}{2} x \quad 2\) in. 10/\(10,000 \mu \mathrm{~F} \quad 6 \mathrm{~V} 3 \times 1 \frac{3}{8} \mathrm{in} . \quad 6 / 2\) \(10,000 \mu \mathrm{~F} \quad 15 \mathrm{~V} 4 \times 2 \mathrm{in} .8 /-\) \(10,000 \mu \mathrm{~F} \quad 33 \mathrm{~V} 4 \times 2 \mathrm{in} .10 /-\) \(12,500 \mu \mathrm{~F}\) 16V \(4 \times 2 \mathrm{in} .10 /-\) \(15,500 \mu \mathrm{~F}\) 10V \(4 \times 2 \mathrm{in} .10 /-\) \(60,000 \mu \mathrm{~F} \quad 8 \mathrm{~V} 4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\). 10/\(70,000 \mu \mathrm{~F} \quad 13 \mathrm{~V} 4 \times 3 \mathrm{in} .12 / 6\) All above have screw terminals Price reductions for bulk quantities
\(\frac{1}{2} \mathrm{in}\). Tape \(2,400 \mathrm{ft} .800\) B.P.I tested \(\mathbf{£ 1 0 - 0} \mathbf{0} 0\)

Welding Machines ; for dual operation model STI 240 Volts Transformer Discharge Type \(\mathbf{£ 1 2 5}\)

Siemens Plug-in Relays Type 162B 700 ohms 17/6

Slydlok Fuse Holders 30 amp Type 3034 5/6
5 in. Oscilloscope Tube SE5J/P31 £4-19-6 (Personal shoppers only).

Big selection of miniature and subminiature Electrolytic Condensers from \(1 \mu \mathrm{~F} 15 \mathrm{~V}\) to \(100 \mu \mathrm{~F} 15 \mathrm{~V}\) @ 1/- over \(100 \mu \mathrm{~F} @ 1 / 6\) each.

\section*{CAPACITORS}
\(268 \mu \mathrm{~F} .1500\) VRMS 6/-

\section*{RADIO CLEARANCE (1965) LTD.}

27 TOTTENHAM COURT ROAD, LONDON, W.1. Phone 01-636 9188 and 162 HOLLOWAY ROAD, LONDON, N.7. Phone 01-607 7941

AMATRONIX LTD (WW)
GUARANTEED TO SPEC. NO SECOONDS NO RE-MARKS. ORDERS OVER \(10 /=\) U.K. P. P
 AF239 B-5000
BD 121

BCl 107
\(\mathrm{BC1}\)
BC 168 B
BF224
\(\qquad\)
4/-2N3 \begin{tabular}{l|l|l}
\(4 /-2 N 3707\) \\
\(1 / 4\) & \(2 N 3794\) \\
\hline & \(2 N 3983\) \\
\hline
\end{tabular}

HIGH SLOPE R.C.A. MOSFETS
Best buys in FETs. N.chan insulated



AMPLIFIER PACKAGES (Component Kits)
Low standby currens, high efficiency, simplicity
AX \(\mathrm{A}^{3} 9 \mathrm{~V}, 800 \mathrm{~mW}\) in 8 ohms, low distortion, \(22 / 6\). AX4 \(18 \mathrm{~V}, 2 \mathrm{~W}\) or 24 V , 4 W , iow distortion, is ohms, \(30 / \mathrm{h}\) RECEIVER PACKAGE AX9
Complete component kit (everything except case and ov battery) for a sensitive t.r.f. receiver. You don't know how well a simple e.r.f. can work until you've buil this one. Two r.f. stazes. amplified a.8.c., all siticon ferrite rod, J.B. Dilemin tuning cap., earphone, brand new top-grade miniature components. The ideal' set for the young constructor, easy to make but much more than Loud earphone reception, but a \(3-8\) ohm speaker can also be used. Only 45/-. All parts sold separately.
LOW-COST LINICS
AUDIO POWER AMPS: PA.234, IW, 22V, 22 ohms, 24/CA3020, \(550 \mathrm{~mW}, 9 \mathrm{~V}\), high gain, wide band (needs o.p
 TAA \(320,15 \%\)
MINIATURE POWER PACK COMPONENTS MT9 MAINS TRANS, \(0-230-250 \mathrm{~V}, 9-0-9 \mathrm{~V}, 80 \mathrm{~mA}\), slze It. \({ }^{\text {a }}\) q., with data sheet giving regulation curves for pushpull, bridge and voltage doubler rectifiers, \(11 /\)-. TINY
SELENIUM BRIDGE (finger-nail sized) rated 30 V rms SELENIUM BRIDGE (finger-nail sized) rated 30 V rms,
150 mA d.c., \(3 / 6\). Larger brother, \(x 1^{\circ} \times\) is

TRANSFILTERS (BRUSH CLEVITE)
iexoelectric eeramic filters for i.f. amplifiers. Interstage couplers, TO-02 type, \(9 /\). Series tuned, for emitter
by-pass, etc. TF-01, \(7 / 6.465 \& 470 \mathrm{kHz}\).

Cash with order. Moil order only.
396 SELSDON ROAD, SOUTH CROYDON SURREY, CR2 ODE


NEDNS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM Iogic modules. CONTIL and BRIGHTLIFE produces are all ex-stock. For details see February and April issues, advertisements. For further decails use reader service card. New prices on new leaflet. All customers on mailing list will receive chese automatically.

WEST HYDE DEYELDPMENTS LIMITED, 30 HIGH STREET, NORTHWODD MIDDX

Telephone: Northwood 24941
WW-134 FOR FURTHER DETAILS

\section*{WE PURCHASE}

COMPUTORS TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT PLUGS AND SOCKETS, MOTORS, TRAN.
SISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIO: METERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS, CABLES, ETC. PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE, EDGWARE, MIDDLESEX.
TEL. OI-958 9842

\section*{EXCLUSIVE OFFERS}

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH \(x\) 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING

DOUBLE SIDED CABINETS
having the following unique features

\(\star\) Double dided the cablaets will take rack panel
both aides, that back and from and they are
drilled and tapped drilled and tapped
all the way down avery in. for thit purpose.
\(\star\) Fitled "latantit" (World Patentt)
fally adjustable rack panel monntis both verticaly these sllow the rack panels to be receased it deatred the panelance. atted with pro jecting compo nonta nad it
denired to enclos them by doors.
\(\star\) All edzen and corners rounded.
All interior attings, tropicalised and ruat prooled and panivited.
tain-la Cable Dacto-remorable.
* Badt-in Blower Dacto一remorable.
\(\star\) ventiated and insect proofed tops.
t Deteahable side panels.
* Full lengit instantly detachable doors fitted eapazuolette
bolta available it ordered with cabinets.
 meat £107 betore devaluation.
Finiabed in srey primer and in new condition.
OUR PRICE £26 10 O
(Carriaze extra).
(Fall lenath doorn e5 each extra).
You do not require doora il you are going to mount panel front and beck and do not with to anclose them
40-pare list of over 1,000 different items in stock
evailable-keep one by you.

Compater Tepe Eecorder Reprodacers of highest ounlity in 6 th . Cabinets-sull details and price on requent.
\begin{tabular}{|c|c|}
\hline Ollin's 500 . Telephone Radio Transmitters Antotune 2 to \(18 \mathrm{~m} / \mathrm{ca}\) 230v. inpat new & \\
\hline 8 Track Dati High Speed Tape Readers & ¢60 \\
\hline Mason Illaminated Drawiag Tebles \(36^{\circ} \times 24^{*}\) & 17 \\
\hline Ampheaol Convector Assembling Machines & ¢ \\
\hline Teletype Model 28 Page Printers L & 85 \\
\hline * Teletype Model 28 Tape Punchee LXD & 55 \\
\hline \(\star\) Stelma Telerraph Distortion Monitor & 55 \\
\hline *5tt. Motorola enclosed Cabisete 19 & 17 \\
\hline Times Facsimile Trasamitter Rece & 75 \\
\hline *Telecype Model 14 Tape Punche & 20 \\
\hline 8-497/URR Sizal Generators & 85 \\
\hline \(\star\) OS-8 Oncillonec & 25 \\
\hline *Jet Aireralt Joyntick Handles with Switchen & \\
\hline A.A.R.A.I. A & \&1 \\
\hline 12000 ohm. DPDT Sealed & 21 \\
\hline TM Type TRR-2 Re & 214 \\
\hline Freiz Airport "Weather Man" & £25 \\
\hline 75 foot high Lattice Triangalar Wind ad Masts & \(\underline{2855}\) \\
\hline Unielectors 10 bant 23 wby & \\
\hline Precision Mains Piter U & \\
\hline Marconi HR 22 SSB Recei & 875 \\
\hline *Avo Geiker Coantern new & \\
\hline Telerrapa Code-Decode Msc & £17 \\
\hline
\end{tabular}

Carriageeztra at cost on all above.

We bave a lapge quantity of "bits and pieces"
we cannot liat-please sead ut your requiremente wo can probably help-all ouquiriea asawered.

\section*{P. HARRIS ORGANFORD - DORSET}

WESTROURIE 65051

\section*{BAILEY 30W AMPLIFIER}

All parts are now available for the 60 -volt single supply rail version of thls unit. We have also designed a new Printed Circult intended for edge connector mounting. This has the component locations marked smaller at 44 in . by 2 in. Price in SRBP.material \(11 / 6 \mathrm{~d}\) In fibreglass \(14 / 6 \mathrm{~d}\). Original Radford design. SRBP 12/-. Fibreglass 6/-. This does not have component locations marked.

BAILEY 20W AMPLIFIER.
All parts in stock for this Amplifier including specially derigned Printed Circuic Boards for pre-amp and power amp. Mains Transformer for mono or stereo with billar wound Secon Thermistor \(35 / 6 \mathrm{~d}\). pose primary for use 5\%
Trifilar wound Driver Transformer, 22/6d., post \(1 /-\). Miniature Choke for treble filser, \(7 / 6 d\)., pose 6 d
pose 9d
post 9d
Reprint of " Wireless World " articles, 5/6d. post free

DINSDALE IOW AMPLIFIER.
All parts still available for this design including our new power amp. P.C. Board with power transistors and heat sinks mounted direcsly to P.C. All parts for stereo cose approximately \(\mathbf{E 2 4}\). Reprint of articles \(5 / 6 \mathrm{~d} .\), post \(f r e e\).

\section*{HART ELECTRONICS,}

321 Great Western St., Manchester 14
The firm for "quality".

Personal callers welcome, but please note we are closed all day Saturday.

\section*{SOURCEBook of electronic circuits}

Over 3.000 modern electronic circuits complete with values of all parts organized in 100 logical chapters for quick reference and convenient browsing. by John Markus
172/6
Postage FREE
WORLD RADIO-TV HANDBOOK 1969. 35/-. Postage I/-.

THE INTEGRATED CIRCUIT DATA BOOK. 50/-. By Motorola. Postage \(2 / 6\).

HI-FI YEAR BOOK 1968/69. 15/Postage 1/-.
AUDIO AMPLIFIERS. \(10 / 6\). Postage 1/-.

RCA SOLID-STATE HOBBY CIRCUITS MANUAL. \(17 / 6\). Postage I/-.

COLOUR TELEVISION by \(G\). N. Patchett. 40/-. Postage I/-.

LOGICAL DESIGN OF SWITCHING CIRCUITS by Douglas Lewin. 70/-. Postage \(2 / 6\).
GEC TRANSISTOR MANUAL. 21/Postage 2/-

\section*{THE MODERN BOOK CO.}
bRITAIN'S LARGEST STOCKIST
of British and American Technlcal Books
I9-2I PRAED STREET, LONDON, W. 2
Phone PADdington 4185 Closed Sat. I D.m.
WW-135 FOR FURTHER DETAILS

BEST PRICES• BEST PRICES•BEST PRICES•BEST PRICES

\section*{SELL"wisASH}

THE LARGEST AND BEST BUYERS IN•THE COUNTRY UAITED EEECTRONICS ETD
* Best Prices * Prompt Settlement
* Immediate Spot Offers \(*\) Fast Collection We buy
PLUGS AND SOCKETS-MOTORS-TRANSISTORS-VALVES-RESISTORS-CAPACITORS POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC. Any quantities considered. Send lists of goods available. DON'T DELAY - contact Mr. Astor or Mr. Kahn -

UNITED ELECTRONICS LTD
12-14 Whithelo St. LONOON. W.1. Tel: 01-580 4532. 01-580 1116, 01-636 5151. Telex: 27931

BEST PRICES•BEST PRICES•BEST PRICES•BEST PRICES


\section*{GODLEYS}

SHUDEHILL, MANCHESTER 4 Telephone: BLAckfriars 9432

Agents for Ampex, Akal, Ferrograph, Tandberg, Bryan, Brenell, B. \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans; Wharfedale, Garrard, Goldring. Dual, Decca, Record Housing, Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

\section*{LAWSON BRAND NEW TELEVISION TUBES}

Complete fitting instructions
are supplied with every tube.
12 Types £4.10.0
14" Types \(\mathbb{£ 4 . 1 9 . 0}\) 17" Types \(\mathbf{6 5 . 1 9 . 0}\) 19 " Types 66.19 .0 \(21^{\prime \prime}\) Types \(£ 7.15 .0\) 23" Types \(\mathbf{6 9 . 1 0 . 0}\) \(19^{\prime \prime}\) Panorama \(£ 8.10 .0\) \(23^{\circ}\) Panorama \(£ 11.10 .0\) 19* Twin Panel \(\mathbf{1 9 . 1 7 . 6}\) 23" Twin Panel \(\mathbb{1} 12.10 .0\) Carriage and insurance \(12 /\)
he conrinually increasing demand for tubes of the very hishest performance and reliability is now being met by he new Lawson "Century 99" rang* of C.R.T.s.

Century 99" are absolutely brand new tubes hroughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99" are a complete range of tubes in all sizes for all British sets manufactured 1947-1968.


\section*{LAWSON TUBES}

\section*{18 CHURCHDOWN ROAD} MALVERN, WORCB. Tel. MAL 2100
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{1 GOODS GUARANTEE} \\
\hline \multicolumn{5}{|r|}{\multirow[t]{9}{*}{\begin{tabular}{l}
CONVERTOR/BATTERY CHARGER. Input 12 v . D.C. Output \(240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\). 170 watt max. Inpur 240 v . \(50 \mathrm{c} / \mathrm{s}\)., outpur 12 v. 5 amp D.C. Fully fused with indicator lamps. Size \(9 \frac{1}{1} \times 10 \times 4 \frac{1}{2} \mathrm{in}\). Weight 19 lbs. An extremely compact unit that will give many years reliable service, supplied with plug and lead. Only E4/10/-. P. \& P. 15/- extra. \\
As above-fully serviceable-perfect interior but soiled exterior cases, \&3. P. \& P. 15/- exera.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|r|}{\multirow[t]{8}{*}{\begin{tabular}{l}
DISTRIBUTED WIDE BAND AMPLIFIERS Various types, e.g. E.M.I. type 2 C complete with power unit. Frequency range \(50 \mathrm{c} / \mathrm{s}\). to \(100 \mathrm{mc} / \mathrm{s}\)., gain of 12. \&8/10/-. P. \& P. \& 1 extra. \\
DEKATRON SCALERS/TIMERS. models from \(66-\mathrm{El} 12\). \\
RATEMETERS. Various types available with or without E.H.T. power supplies.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{DEKATRON COUNTER tubes type GCIOB, 10/- each.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{G.M. TUBES. Brand New. G24/G38/G60 at 35/each. G53/1 at \(\mathbf{f 8}\) each.}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{SOLARTRON stab. P.U. type A5516 300 v .50 m} \\
\hline \multicolumn{5}{|c|}{\(10 /\)-: AS517 300 v . 100 mA ., ¢6. P. \&} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TRANSISTOR OSCILLATOR. Variable frequenc
\(40 \mathrm{c} / \mathrm{s}\). to \(5 \mathrm{kc} / \mathrm{s} .5\) vole square wave o/p, for 6 to 12 v ,}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{D.C. inpur. Size \(18 \times 11 \times 1 \mathrm{l}\)} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{VENER encapsulated "flip-flop" eype TS.2A. Complete with base \(21 /=\) or 4 for \(\mathbf{4} / 15 / \%\).}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{MULLARD pot cores type LAI, 8/6 ea. (brand new boxed).} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TIMER UNIT consisting of standard mains input}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{(conservative); GEC bridge rectifier; detachable accu-}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{rate 1 sec. timer sub-chassis with transistor STC type TS2, \(2 \times\) I2AU7; one 500 ohm relay heavy ducy con-} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{tacts 2 make; lamps, fuse, switch etc., etc., in case size \(10 \times 10 \times 5 \mathrm{in}\). Ideal for battery charger, one second}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{timer, transistor power supply. etc.} \\
\hline \multicolumn{5}{|l|}{\multirow[b]{3}{*}{FAST NEUTRON MONITORS (Burndepe type 1262B). Complete with new set of Mallory cellis and}} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{1262B). Complete with new set of Mallory celis and carrying harness. 10 only. P. \& P. 10\%.} \\
\hline \multicolumn{5}{|c|}{T GEA} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{OSCILLOSCOPES. Cossor DB 1035 E20; 1049 £30.
Hartley 13A DB E20.}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{MARCONI Sig. Gen. 144G \(85 \mathrm{ke} / \mathrm{s}\). 25}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{carr. 11 . MARCONI U.H.F. Gen TF5 \(17150-300 \mathrm{me} / \mathrm{s}\). E5/10/. carr. Cl .} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{AlRMEC Valve millivolemeter 784. Gin. rectangular}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{200 micro amp. meter calibrated - 10 db to +10 db ; and \(0-10 \mathrm{mv}\); range \(-40 \mathrm{db} / \mathrm{x} 1 ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100\)} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
48. Carriage \(15 /\). \\
CT49 AUDIO FREQUENCY METER fre. range \(450 \mathrm{c} / \mathrm{s}\). so \(22 \mathrm{kc} / \mathrm{s}\)., directly calibrated. Power supply
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|r|}{\multirow[t]{5}{*}{\begin{tabular}{l}
SOLARTRON RESOLVED COMPONENT INDICATOR sype VP 250 20c/s-20kc/s. As New 485. \\
Als o available SOLARTRON Precision AC Millivolemeter type VF252. As New \(£ 50\).
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

PLESSEY PLUGS \& SOCKETS Mk. IV. 2way Brand New 10/6 pr. Cleaned ex-eq. 7/6 pr 4 way Brand New \(10 / 6 \mathrm{pr}\). Cleaned ex-eq. \(7 / 6 \mathrm{pr}\). 6 way Brand New \(12 / 6\) pr. Cleaned ex-eq. \(7 / 6\) pr. 12way Coax. Brand New \(7 / 6\) pr. Cleaned ex-eq. \(11 /-\mathrm{pr}\).
Coax. Brand New 7/6 pr. Cleaned ex-eq. 5/- pr.

\section*{RELAYS}

3,000 Series \(5 \mathrm{k} / 0 \mathrm{hms}, 2\) pole make H.D. contacts,
S.T.C. sealed 2 pole co. 48 V . only. Complete with base 6/- each.
COURTENAY TIMER unit. Accurate I sec. timer \({ }^{\circ}\) variable mark space ratio. Input \(12 V A C\) or DC. Heavy duty relay contacts \({ }^{\circ} \mathrm{o}\) switch external equip ment e.g. flashing lights. Chassis mounting size
\(6 \times 31 \times 3 \mathrm{~h}\). Tested with circuir diagram. \(22 / 6\) each SELENIUM RECTIFIERS
Double bridge 12 v .6 amps continuous rating. Size \(3 \frac{3}{6} \times 3 \frac{1}{4} \times 2 \mathrm{in}\)., 9 plate, \(8 / 6\) each.
Quad bridge 12 Y. 12 amps continuous rating, \(21 / \% \ldots\)
EHT RECTIFIERS. Brand New. T 36 EHT \(20-3 / 6\) ea T16 HT \(80-6 / 6 \mathrm{ea}\). T 36 EHT BO \(6 / 6 \mathrm{ca}\). T36 EHT 240 -126 ez.
DIODES new CV448/425, \(1 /\) each
TRANSFORMERS. All 200/250 inputs 18 v .6 amp continuous rating tapped 9-0-9 at \(18 / 6\) each. 18 v . GARDNERS NEPR
GARDNERS Neprune series. Brand new. 460-435-\(410-0-410-435-460,230 \mathrm{~mA}\). \(600-570-540-540-0\)
v. 250 mA . Two separate windings. \(\mathbf{C} 3 / 10\).
FRACTIONAL H.P. MOTORS. 240
Brand new. Ideal models, fans, etc. \(6 / 6\) each.
METROSILS. Ideal pulse suppression, \(2 /-\) each. E.H.T. CONDENSERS. 7.5 kV . working. 0.1 mfd , \(5 / 6\) each; \(0.25 \mathrm{mfd} 8 / 6\) each.
BrandNew 5 kv working 2 mid 22/6 ea; \(0.25 \mathrm{mfd} 10 / 6\) ea. VISCONOL EHT Condensers. Brand New \(0.015 \mathrm{BK} \times 6 / 6\) each. \(0.00215 \mathrm{~K} \vee 8 / 6 \mathrm{ea} .0 .012 \mathrm{~K} v 5 /-\mathrm{ea}\) \(0.000525 \mathrm{KV} 16 /-\) ea.
BATTERY HOLDERS. Brand New. Le/grey plastic With solder tag connections.
Chassls mounting, clip in I U2 battery \(2 / 6\) ea Panell mounting t-Vidör VII battery \(1 / 9 \mathrm{ea}\).
BE゙LLING" \& LEE io pin plug/socket, \(3 / 6\) each.
Cash with order. CALLERS WELCOME
CHILTMEAD LTD.
22. Sun Street, Reading, Berks.

Off Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 ( \(9 \mathrm{a} . \mathrm{m}\). 0 . 10 p.m. \()\)
Tel. No. Reading 65916 ( \(9 \mathrm{a} . \mathrm{m}\). to \(10 \mathrm{p} . \mathrm{m}\).)

SWANCO PRODUCTSLTD.
ounap AMATEUR RADIO SPECIALISTS G3PQe NEW EQUIPMENT
Sommerkamp P-Seriea Equipment:
PR-dx-500 doubleconversions superhet \(160-10\) rnetred 130
FL-dx- \(500 \mathrm{B8R} / \mathrm{MM} / \mathrm{CW}\) tranmitter, 240 watte PEP 145 FL-dx-2000 Ithear amp.o 1200 wattu PEP
Sommerinmp FT-dx-1S0 tmancelver \(80-10\) metre
Sommerkamp FT-dx-500 trancelver \(80-10\) metre
Swan Line Equipment
Swan 350C Transcelver \(80-10\) metrea
wan 500 C tranacelver \(80-10\) metr
wan \(230-X C\) Power nuply
Eddystone Radio Ltd.
Eddyatone EA12 Amateur band recelver \(160=10\)
Eddyatone 940 Communicatione receive
Eddymone 840 Commanications rect
Eddystone EC10 transiatorised Communication
Eddystone EB3S shortwave is PM. receiver
Trio Communications Equipment
Trio TS-500 88B Trancelver with a.c. P8U \& with
8plit 1requency V. P .O. \begin{tabular}{lrlll} 
& 231 & 0 & 0 \\
Trio JRSOOSB Amatur Band Recelver \(80-10\) inetre & 39 & 15 & 0 \\
\hline 89 & 10 & 0
\end{tabular}
Lafayette Receivers
alayette Hasoo Amateur Band Recelver 80-f
Letatres Haboo molid itate recelver
Halleratter Equipmeat:
8X130 Communtcationa recelver
SX122 Communleations recelver
SX146 Amateur hand receiver.

hoseley Electronics (Beams):
A-33r. Tri-band three-element beam
A-32Jr. Tri-band tro-flement beatn
TA-31Jr. Tri-band dipole \(\begin{array}{rrr}11 & 5 & 0 \\ 11 & 0 \\ 15 & 0\end{array}\)

\section*{PRINTED CIRCUITS}

LARGE AND SMALL QUANTITIES. FACILITIES AT REASONABLE PRICES. ASSEMBLY SERVICE ALSO AVAILABLE K. J. BENTLEY \& PARTNERS,

Si GREENACRES ROAD.
OTL. \(061-6240939\) LANCS.

\section*{PRINTED CIRCUITS \\ Small quantities are not expensive, we have}
full artwork and assembly facilities.
Let us quote you for any quantity.
OFRECT ELECTRONic systems LTD.
Harrogate B525B

\section*{FOR YOUR. \\ SYNCHRO \& SERVO REQUIREMENTS:}

SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST., ORPINGTON, KENT. Tel: 31066, 33976 Also at CROYODN. Tel: \(01-6881512\)


Channelmaster Rotator
Antomatic Tenn-A-Liner
Compass Tenn-A-Luer
Rotator Alignoment Benrithg
Ball Bearing Guy Blog
Parik Air Electronica:
R-Metre Tranamitter (complete with Mic., etc.).....
Kurer Airecatt.
80 \(\mathbf{0} 0\)
recelver.
Sky Bandit Aircraft recelve
Coneorde Alrcraft recelver
Jet Set Aircraft recelver
Swanco/CSE Equipment:
2-A10 Tranamitler
Type 2 A.T.M.A. Aerial
G-WHIP Antennat
G-Whip Moblue Antenna Range. Lightwelghtdesign. Hellcal wound. superior perforinance. B.A.E. Ilusrated Brochure und Prices.

Codar Radio Com
CR. 20 A recelver.
 \(\begin{array}{rr}2 & 5 \\ 19 & 10 \\ 5 & 18 \\ 7 & 19 \\ 7 & 5 \\ 8 & 17 \\ 6 & 15 \\ 9 & 15\end{array}\) 0000000 ?

CR.45RB recelve \(\begin{array}{ll}2 & 1 \\ 11 & 19 \\ 18 & 19 \\ 8 & 10 \\ 11 & 10 \\ 2 & 10 \\ 15 & 17 \\ 2 & 4\end{array}\) Partridse Electroaics:
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline Joystick Stand & 52 & 6 & shure 201 ….. 518 & \\
\hline Jorntick De-luse & & 0 & Shure 208 & \\
\hline Type 3 Tuner & 215 & 0 & Bhure 444 ….. 1215 & \\
\hline Type 3A Tuner & & 8 & shure 4014 .... 615 & \\
\hline Type 4 Tunet & & 0 & shure 275sK & \\
\hline Type 4RF Tune & & & sture 2rsa & \\
\hline
\end{tabular}

Echelford Commanications: Halson Electrical Serrice
B1/44 Melre Tx
\(\begin{array}{lll}\text { M1/44 Metre Tx... } & 40 & 0 \\ \text { C1/44 Metre convtr. } 10 & 10\end{array}\)

\section*{Moblie Antenna}

Full Range of KW Equidment avaliable to order
Full Range of Drake Equiproent avaliable to order
Frull Range of Heathktt Equipment avallable to order
SECOND-HAND EQUIPMENT
Many Itemn in stock, including: Eddystone 870/A. 850C. B.40, AR88D, AR8RLF, HRO, R209. SR550, 9R5S. DX4OU, VFO-1U, Dxionu, ldiwo, Laiso, Panda Cub. KW Vanguard, Lafayette Larmue. Your. elinea, please.
Full service facilities-Recelvers re-aligned. Tranmmitters

\section*{SWANCOPROUUCTSLTD.}

Dept. W 247 Humber Avenue COVENTRY

Telephone:
Hours: Mon. Tues., Wed., Fri,, Sat.,
Coventry 22714
Thurs. \(9 \mathrm{a} . \mathrm{m}\). to 12 noon

\section*{OSMABET LTD.}

WE MAKE TRANBFORMERS AMONGST OTHER THINGS
 \(100 \mathrm{w.37/6} \mathrm{i} 150 \mathrm{w} .47 / 6 ; 200 \mathrm{w} .60 /-; 300 \mathrm{w} .80 / \mathrm{F}, 400 \mathrm{w}\) \(100 /-; 500 \mathrm{w} .115 /-600 \mathrm{w} .125 /-; 1,000 \mathrm{w} .180 / ;-1,5\)
\(300 / \cdot ; 2,000 \mathrm{w} .400 / ; 3,000 \mathrm{w} .500 /=4,000 \mathrm{w} .600 /-\mathrm{s}\) MAINS ISOLATION TRAMSFORMERS. Input \(200-2\) \(1: 1\) ratlo, 100 w. \(80 /-: 200\) w. \(130 /-: 500 \mathrm{w} .290 /\) MAINS TRANSFORMERS. IAput 200-240 r.a.c. TXI, \(425-0-425 \mathrm{~F}\).


 INSTRUMENT TRANSFORMER Prim 200/. 50 . 1.5 is., 21


 \(40-50-60-70-80-90-100 \cdot 110,10-0-10,20-0 \cdot 20,30-0-30,40-0-40\), \(50-0-60\) च. a.c. \(1 \mathrm{amp} 52 / 6\).


MIDOET MANS TRANSFORMER. F.W. rectifcation, aize \(2 \times 18 \times 12\) ins... prim \(200 / 240\) v. a.c., output 20
\(12-0-12 \mathrm{v} .0 .25 a ; 9-0-9 \mathrm{v} .0 .3 \mathrm{a}\)., all at \(18 / 6\) each.
COLOUR TELEVISTON WW; as specifled, choke \(\mathrm{Ll}, 60 / \mathrm{c}\); transformer T1, 57/6. Field Output Trahuformer 60/-

 PP tran
\(65 /-;\) MRT/10, \(7 / 10\) watt malti ratio, \(30 /-\).
CHOKEs. Inductance \(10 \mathrm{H}, 65 \mathrm{Ma}\). \(10 /-; 85 \mathrm{Ma}, 12 / 6 ; 150 \mathrm{Ma}\), \(21 /\) - © ©ying leads, clatep conetruction.
Carriage extra all tranaformery from \(8 / 6 \mathrm{Gd}\). each.
TRAMEYORMERS WOUND TO YOUR SPECLICATION. EATTERYELIMINATORS, PPP,200/250 v. a.c., 9 v. d.c. 150 Ma , 45/-. PP3, ditco, 15 Ma 17/6. p. \& p. 2/6d.
fluORESCENT LT LIGHTING. Input, \(0,12,24\) r. d.c., range tith ings, laverters. 8.A.E. Iists.
BULE TAPE ERASER. 200/250 v. a.c. suitable any aize apool, 42/8. P. \& P. 3/-
LOUDSPEAEERS, New shock, famous make, 3 or 15 ohma,
15 watt, \&5: 25 watt. \(£ 5 ; 35\) watt, £ 7 . P. \& P. ©/-each. Lints.

 TEST METERS. Whe variety, all reduced byand new. Linta B.A.E.
S.A.E. all enquiries please. Mail Order only.
46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel: 01-9589314

WW-138 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER \& MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. \(\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{ft} & 2 / 2 & 5 \mathrm{in} . & 600 \mathrm{ft} & 6 / \% \\ 5 \frac{1}{3} \mathrm{in} . & 900 \mathrm{ft} & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{f} . & 9 / \%\end{array}\right.\)

D.P. \(\left\{\begin{array}{llllll}3 \mathrm{in} . & 350 f \mathrm{t} . & 4 / 6 & \text { Sin. } & 1,200 \mathrm{ft} . & 12 /= \\ 5 \text { zin. } 1,800 \mathrm{ft} . & 16 / \mathrm{l} & 7 \mathrm{in} . & 2,400 \mathrm{ft} . & 20 / \mathrm{l}\end{array}\right.\)

Posrage on all orders 1/6
COMPACT TAPE CASETTES AT HALF PRICE
60,90, and 120 minutes playing time, in original plastic library boxes. \(12 / 6\) each. MC \(12018 / 3\) each.

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

\section*{BEST PRICES•BEST PRICES}

\section*{CONNECTORS}
most manufacturers' surplus StOCKS ARE SOLD TO
UNITED ELECTRONICS
We pay the highest prices Contact
Mr. Astor or Mr. Kahn
UNITED ELECTRONICS LTD
12/14 Whitfield St., London, W. 1 Tel: \(01-5804532.01-5801116\).
\(01-5805151\). Telex: 27931

BEST PRICES • BEST PRICES


This useful handbook gives detailed information and circuit diagrams for British and American Government surplus Receivers. Transmitters and Jest equipment. etc.. also contained are some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross reference valve and transistor guide. This book is invaluable to Radio Clubs. Universities and Laboratories. Latest edition priced at \(35 /\)-per volume plus \(5 /-p \& p\). Only obtainable from us at:

GILTEXT LTD.,
24, Stansfield Chambers.
St. George Street.
LEEDS. 1

TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R., also "C". \& "E" cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

\section*{J. Black}

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

\section*{TüDD sentiva?
icuno suonis}

MODERK DESK PHONES, red, green, blue or topaz, 2 tone grey or black, with lntertial bell and handset with 0.1 dia.
E4/10/-. P.P. \(7 / 6\). E4/10/-. P.P. 7/6.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES In BakeItte cave with Junction box handset. Thoroughly overhauled.
Guaranteed.
ef/10/- per unlt. 20-WAY PRESS-BUTTON INTER-COM TELEPRONES in Bakethe cane with jubetion box. Thoroughly overhauled. Guaran-
teet. \(£ 7 / 15 /=\) per Unit. TELEPHONE COILED HAND SET LEADS, 3 core, 5/6. P.P. 1/• ELECTRICITY SLOT METER ( \(1 /\) / In itot) for A.C. Inalna. Pixed
 available. Reconditioned as new, 2 yeara' guarantee. QUARTERLY ELECTRIC CHECK METERS. Reconditioned an new. 200/250 \% 10 A. 42/6: 10 A. 52/6:.20 A. 57/6. Other amperages mailable. 2 years' guarantec. P.P. \(5 \%\) B-BARK UNISELECTOR SWITCEES. \({ }^{25}\) contacta, allernate
wiplng \(£ 2 / 15 /-; 8\) bank half wipe \(£ 2 / 15 /=; 6\) bank hall wlpe wiplng £2/15/-; 8 bank halt wipe £2/15/-; 6 bank hat wipe, WIRELESS SET No. 38 A.F.V. Freq, range \(7.3 \mathrm{to} 9.0 \mathrm{Me} / \mathrm{s}\). Work \(=\) ing ranke it to 2 milem. Size 10 of \(x 4 \times 6\) in. Weight \(6 i l \mathrm{lb}\). Includen power nupply 8ib,-and spare valves and wibratur also
tank aerial with base \(£ 7\) per pair or \(£ 3100\) single. P.P.25/FINAL END SELECTORS. Relayn, various callery, also 19 Receivers in stock. All for callers only.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

\section*{TRAIN TODAY FOR TOMORROW}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY

CLOSED CIRCUIT TV
ELECTRONICS-many new courses
ELECTRONIC MAINTENANCE
INSTRUMENTATION AND
SERVOMECHANISMS
- COMPUTERS
- PRACTICAL RADIO (with kits)

PROGRAMMED COURSE ON
ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:


SURPLUS HANDBOOKS
19 net Circuit and Noten
1155 net Clrcult and Notes
H.R.O. Technieal Inatructions

38 net Technkeal Instructions
46 set Working Instructions
BC. 221 Circuit and Notea
Waverneter Clans D Tech. Inat
18 set Clircult and Noten
BC. 1000 ( 31 net ) Clreult and Notes
R. 107 Clreuit and Noten

AR.88D Instruction Man 1 al
62 set Clrcuit and Notes


52 eet Bender and Recelver circuita \(7 / 6\) pont tree.
 Mait order onty to.
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WW-141 FOR FURTHER DETAILS


CAPACITY 15pf to \(111 \mu \mathrm{~F}\) RESISTANCE \(0.1 \Omega\) to \(100 \mathrm{~K} \Omega\) INDUCTANCE 1 mH to 10 H VOLTAGE DIVIDERS and WHEATSTONE BRIDGES

LIONMOUNT \& CO. LTD.
BELLEVUEROAD, NEW SOUTHGATE,
LONDON, N.II, ENGLAND
WW-142 FOR FURTHER DETAILS


\section*{WANTED-}

Redundant or Surplus stocks of Transformer Rederials (Laminations, C. cores, Copper uire, etc.),
Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W. 4
44 Grecn Lane, Fendon, N.W
Tel. 01-203 1855 and 3033

BAKER I2in. DE-LUXE MKII LOUDSPEAKER


\section*{MINETTE \\ AMPLIFIER} For Hi-Fi Record Players. A.c. Mains Transformer. Chassis size \(7 \times 3 \frac{1}{2} \times 4\) in. high. Valves ECL82, EZBO. Two Quality output 3 ohm matching. Bargain offer complete Quath engraved control panel, valves, knobs,
volume and tonecontrols, wired and tested. Post \(5 / 6\)
\(69 / 6\) TRANSISTOR AMPLIEIER Dlus DYNAMIC MICROPHONE Dlus DYNAMIC MICROPHONE
A self-zontained fully port-
able mini pia syetem Manny able minip.a.syatem. Many
uses--Parties, Baby Alarm Intercom, Telephone or Record player. Ampllifer,
otc. Attractive rexine covetc. Attractive rexine covered cabinet size \(12 \times 9 \times\)
in. with powerful \(7 \times 4\) in.
ipeaker and four transistor speaker and four tranalstor one watt power amplifier
plus ultra sensitive microphone. Uses PP9 battery. Brand new in Makers' carton
 with full makers' guarantee.


THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
\begin{tabular}{lll} 
200/250 A.C. & \(42 / 6\) & \(\begin{array}{l}\text { Post } \\
\text { Leafiet S.A.E. }\end{array}\) \\
\hline
\end{tabular}
EXTENSION SPEAKER
Black plastic cablinet speaker with 20 ft . lead for transistor radio, intercom, mains \(\begin{aligned} & \text { radio, tape recorder. } \\ & \text { Size: } 7 \text { tin. } \times 5 \text { in. } x 3 \mathrm{in} .\end{aligned} \quad 30 /-\begin{aligned} & \text { Post } \\ & 2 / 6\end{aligned}\) RETURN OF POST DESPATCH - CALLERS WE RADID COMPDNENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON. Tel: 01-684 1665

R \& R RADIO
51 Burnley Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED


\section*{ELECTRICAL MEASURING INSTRUMENT REPAIRERS}

\section*{EKPPRESS METER SERVICE}

131 ACTON LANE, LONDON, W. 4 TEL: 01-995 0725

\section*{BAILEY 30 WATT AMPLIFIER}

An audibly unbeatable kit as supplied by us to Industry and Govt. Send for free details. 10 Transistors as specified \& Pcb \(\mathbf{6 6 . 1 0 . 0}\) 20 Transistors as specified \& 2 Pcb \(\mathbb{C 1 2 . 1 0 . 0}\) RI-R27 \& Por \(11 / 6\) CI-C6 (Mullard) 9/6 Mullard Capacitors \(2500 \mathrm{mFd} / 64 \mathrm{vw}\) 15/6 each Finned solid Ali Heatsinks \(4 \times 4 \frac{1}{3} \mathrm{in}\). \(12 / 6\) each Texas 1820 K 20 Bridge Rects 200 piv/2a 25/: Photostats of May and Nov. articles \(8 / 6\) set MOTOROLA/IC STEREO PREAMP ( \(0.1 \%\) THD) £3 (As described on page 332 September WW) A. 1 FACTORS. 72 BLAKE RD.. STAPLEFORD, NOTTS.

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}
- Rate: 7/- PER LINE. Average seven words per line.
- Name and address to be included in charge if used in advertisement.
- Böx No. Allow two words plus \(1 /=\)

Charges etc., payable to "Wiraless World" and crossed " \& Co."
- Press Day 6 March for April 1969 issue.

\section*{ADJUSTABLE HOLE \& WASHER CUTTERS}

The right tool for trepanning holes I"- \(12 \frac{1}{2}\) " in diameter Models

Adjustable hole and washer utters \(18 \%\) Tungsten High Speed Tool bits


Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bit stock shank
AKURATE ENGINEERINGCO. LTD Cross Lane, Hornsey, London, N. 8 TEL. \(01-3482670\)

WW-143 FOR FURTHER DETAILS

\section*{Vuart \\ }

ECONOMICAL! ACCURATE! RELIABLE!


THE QUARTZ CRYSTAL CO. LTD. O.C.C. Works, Wellington Crescent.

WORLD RADIO \& T.V. HANDBOOK

\author{
1969 ED. \(42 /-\quad\) P.\&P. \(1 / 3\)
}

Radio Communications Handbook by R.S.G.B hew ed. \(63 /-\). P. \& P, 4/6.
Transistor Substitution Handbook. New 8th d. 16/-. P. \& P. 1/3.

Hi-Fi Year Book 1969. 15/-. P. \& P. 1/9.
Mullard Colour TV. Colour tube adjustments or the Service Engineer. 17/6. P. \& P. I/3
Designers Guide to British Transistors by Kampel. 25)-. P. \& P. 1/6.
Amateur Radio Call Book 1969. Ed. by R.S.G.B
R.C.A. Hobby Circuits Manual. 17/-. Postage 1/3 TV Fault Finding by Data, 405 and 625 lines. \(8 / 6\)

Electronic Noveley Designs by Kampel. 8/6
UNIVERSAL BOOK CO
12 LITTLE NEWPORT ST., LONDON, W.C. 2
(Leicester Square Tube Station)
WW-145 FOR FURTHER DETAILS

\section*{Appointments Vacant Advertisements appear on pages 111-124}




ADCOLA HOUSE, GAUDEN ROAD LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4
WW- 002 FOR FURTHER DETAILS

\title{
TO MANUFACTURERS OF SOLDERED JOINTS
}


Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering Complies with B.S. 219, 441, DTD 599A. B.S.3252, U.S. Spec, QQ-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is \(215^{\circ} \mathrm{C}-419^{\circ} \mathrm{F}\) Ministry approved under ref. DTD/900/4535

Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{STANDARD GAUGESIN WHICH MOST ALLOYS ARE MADE AND LENGTHS PER LB. IN FEET.} & \multicolumn{4}{|l|}{STANDARD ALLOYS INCLUDE LIQUIDUS} & \multicolumn{4}{|l|}{HIGH AND LOW MELTING POINT ALLOYS} \\
\hline S.W.G. & INS. & M.M. & \[
\begin{array}{r}
\text { FT. P } \\
60 / 40 \\
\hline
\end{array}
\] & R LB.
SAVBIT & TIN/LEAD & \[
\begin{aligned}
& \text { B.S. } \\
& \text { GRADE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MELT } \\
& { }^{\circ} \mathrm{C} .
\end{aligned}
\] & TEMP & ALLOY & DESCRIPTION & \[
\begin{gathered}
\text { MELTII }
\end{gathered}
\] & TEMP.
\[
{ }^{\circ} \mathrm{F} \text {. }
\] \\
\hline 10 & . 128 & 3.251 & 25.6 & 24 & & & & & & & & \\
\hline 12 & . 104 & 2.642 & 38.8 & 36 & 60/40 & K & 188 & 370 & & with very low melting & 145 & 293 \\
\hline 14 & . 080 & 2.032 & 65.7 & 60.8 & & & & & T.L.C. & point & & \\
\hline 16 & . 064 & 1.626 & 102 & 96.2 & Savbit No 1 & - & 215 & 419 & & & & \\
\hline 18 & . 048 & 1.219 & 182 & 170 & & & & & & Contains \(2 \%\) Silver & & \\
\hline 19 & . 040 & 1.016 & 262 & 244 & 50/50 & F & 212 & 414 & L.M.P. & for soldering silver & 179 & 354 \\
\hline 20 & . 036 & . 914 & 324 & 307 & & & & & & coated surfaces & & \\
\hline 22 & . 028 & . 711 & 536 & 508 & 45/55 & R & 224 & 435 & & & & \\
\hline 24
26 & . 022 & . 568 & 865
1292 & 856
1279 & & G & 234 & 453 & P.T. & use when a lead free & 232 & 450 \\
\hline 26
28 & . 018 & . 475 & 1292 & 1279
1892 & 40/60 & \(G\) & & 45 & & solder is essential & & \\
\hline 30 & . 012 & . 314 & 2730 & 2695 & 30/70 & \(J\) & 255 & 491 & & & & \\
\hline 32 & . 010 & .274
. & 3585
4950 & 3552
4895 & & & & & H.M.P & solder to B.S. Grade 5S & 301 & 574 \\
\hline 34 & . 009 & . 233 & 4950 & & 20/80 & v & 275 & 527 & & & & \\
\hline
\end{tabular}

\section*{FXTRUSOL \\ EXTRUSOL is a new concept in \\ ADVANTAGES OF EXTRUSOL}
solder for solder machines, baths and pots used in the electronics industry.
EXTRUSOL is a very high purity soider which is also substantially free of oxides, sulphides and other undesirable elements.
The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.
EXTRUSOL can be
released under AID authority and conforms with USA QO-S-571d
1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF manUFaCTURE UNTIL IT IS USED


A section of a
typical cast solder bar. Note the surface dross and general contamination

A section of an EXTRUSOL bar with the plastic coating removed showing no dross or contamination.

EXTRUSOL is supplied in \(1-\mathrm{lb}\). and 2-1b. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

\section*{Ask for full details on}
solders, fluxes, soldering chemicals, on your company's notepaper.```


[^0]:    Our Public Address brochure gives the facts.
    It's a useful thing to have around.
    TO: The Radon Industrial Electronics Co. Ltd.
    Brooklands Trading Estate, Worthing, Sussex. Tel: Worthing 1063
    Please send me a brachure:
    Name
    Address

[^1]:    * H. C. Bennet-Clark graduated with a B. Sc. in zoology from University College, London in 1955. During National Service he taught wireless theory at the R.A.F. Yatesbury. He then did research for a Ph.D. in Zoology at Cambridge. At the University of Edinburgh he has recently been concerned with mechanical systems in insects, including the energetics of flea jumping.

[^2]:    * Amatronix Led.

[^3]:    *"The Design of a Very-Low-Noise 800c/s Selective Amplifier and Input Transformers" by P. J. Baxandall, R.R.E. Journal, No. 37, October 1955.

[^4]:    * Liverpool College of Technology

[^5]:    *EAI Electronic Associates AB,
    Swedish subsidiary of Electronic Associates Inc. $\dagger$ Demonstrating Rectifier Action in Slow Motion, T. Palmer. Wireless World, February 1968, p. 709.

