Wirele Better a.g.c.

, sweep the field. British designed, British developed, and British made, 5 BRITISH the KMK range features high contact capacity, moulded assembly for high insulation, phosphor bronze contact MIDGETS springs, 99.9% silver or silver cadmium oxide contacts, Swedish iron magnetic circuit, international contact clearance A E of 4 mm , life in excess of 5 million operations, connection by solder or push-on type '110' connectors, open relays mounting in any © BREAK position, and plug-in relays for international plugability. Unit prices are as low as $9 / 4 \mathrm{~d}$ (1,000 rate), substantially less $4988^{5} \mathrm{~S}$ for larger quantities.
15 These versatile new midgets are available with one, two or three B1C Changeover contacts rated up to 10 A at $250 \mathrm{Vac} / 6 \mathrm{Vdc}$, and RELAYS NEWS Keyswitch for complete price and technical details of these exciting new all-British KMK's.
Keyswitch Relays Ltd, Cricklewood Lane, London NW2; telephone: 01-452 3344; telex: 262754.

KEYSWITCH
 RELAYS

When is an Avo meter not an Avometer?

When it gives you (a) $\pm 0.3 \%$ accuracy, (b) (c) 100% solid state, (d) (e) (f) semiconductor characteristics data, (g) valve characteristics data, or (h) digital $L / C / R$ measurements.

PRECISION AVOMETER Measures d.c. d voltage($1.5-1500 \mathrm{~V}$ scales, $\pm 0.3 \%$ f.s.d.*), d.c. current $(1.5 \mathrm{~mA}-15 \mathrm{~A}$ scales, 0.5% f.s.d.*), a.c. voltage $(3 \mathrm{~V}-1500 \mathrm{~V}$ scales, $\pm 0.75 \%$ f.s.d.), a.c. current ($3 \mathrm{~mA}-15 \mathrm{~A}$, $\pm 0.75 \%$ f.s.d.). *meets B.S.S. $\mathbf{8 9 / 1 9 5 4}$ for precision-grade instruments.

1. MULTIMETER HII08 Battery-operated fully-transistorised, measures a.c/d.c. voltage $(100 \mathrm{mV}-1000 \mathrm{~V}$ scales, $\pm 4 \% / \pm 3 \%$ f.s.d.), a.c./d.c. current ($1 \mu \mathrm{~A}-3 \mathrm{~A}$ scales, $\pm 4 \% / \pm 3 \%$ f.s.d.), resistance $(2 \mathrm{k} \Omega-20 \mathrm{M} \Omega$ scales), power (-20 to $+60 \mathrm{db}, 9$ scales), r.f. voltage ($300 \mathrm{mV}-10 \mathrm{~V}$ scales, up to 250 MHz with external probe available separately).

c MULTIMETER CT471A Battery-oper100 ated fully-transistorised, sensitivity $100 \mathrm{M} \Omega / \mathrm{V}$, measures a.c./d.c. voltage (12 mV 1200 V scales, $\pm 3 \% / \pm 2 \%$ f.s.d.), a.c./d.c. current ($12 \mu \mathrm{~A}-1.2 \mathrm{~A}$ scales, $\pm 3 \% / \pm 2 \%$ f.s.d.), resistance $(12 \Omega-120 \mathrm{M} \Omega$ scales, $\pm 3 \%$ m.s.d.), h.f./v.h.f./u.h.f. voltage with multiplier (4V400 V scales up to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{~V}$ up to 1000 MHz).

d IN-CIRCUIT TRANSISTOR TESTER C. TT164 Direct-reading, easy to operate, accurate measurements under static and dynamic conditions. Collector voltage: continuously variable, $0-10 \mathrm{~V}$. Collector current: continuously variable $0-10 \mathrm{~mA}, 20 \mathrm{~mA}$, 30 mA . Measures beta ($150-300$ scales, $\pm 5 \%$) and leakage current ($300 \mathrm{nA}-1 \mathrm{~mA}$ scales).

- TRANSISTOR \& DIODE TESTER C TT537 Measures both transistor and diode characteristics. Collector voltage: continuously variable $0-12 \mathrm{~V}$, stabilised. Collector current: $1 \mu \mathrm{~A}-1 \mathrm{~A}$. Base current: $0.1 \mu \mathrm{~A}-50 \mathrm{~mA}$. Measures hfe (50-1500 scales, $\pm 3 \%$), leakage current ($50 \mu \mathrm{~A}-1.5 \mathrm{~A}$ scales), diode forward voltage drop ($1.5-5 \mathrm{~V}$ scales, $0-500 \mathrm{~mA}$ forward current) and breakdown voltage ($100-1000 \mathrm{~V}$ scales, $3 \mathrm{~mA} \& 200 \mu \mathrm{~A}$ currents limited on short circuit to $13 \mathrm{~mA} \&$ 1.3 mA).

f THANSISTOR ANALYSER MK2 Available in both mains-powered and batterypowered versions; provides accurate measurements in grounded-emitter configuration; accommodates high-power and switching types. Collector voltage: $0.05-12 \mathrm{~V}$ (up to 150 V external). Base current: 1.40 mA scales. Collector current: to 1 A in 5 ranges. Measures leakage current (from $2 \sharp A$), hfe (25-250 scales), saturation voltage, turnover voltage and noise factor.

© VALVE CHARACTERISTIC METER g VCM163 The most comprehensive instrument of its kind ever offered by Avo. Provision for testing nuvistors, compactrons and other special types with up to 13 pin connections. No need to back off standing anode current before measuring mutual conductance, which is continuously moniored under all conditions. Heater voltage: $0-119.9 \mathrm{~V}$ in 0.1 V steps. Anode and screen voltages: $12.6 \mathrm{~V}-400 \mathrm{~V}$. Grid voltage: $0-100 \mathrm{~V}$ continuous. Measures gm: 6-60mA/V f.s.d. in 3 ranges.

h UNIVERSAL BRIDGE B150 A batteryoperated general-purpose bridge with unique automatic digital display of measured component values. No multiplying factors required. Overall accuracy of inductance, capacitance and resistance measurements is $\pm 1 \% / \pm 1$ digit. Residuals 0.2 pF , $0.15 \mu \mathrm{H}$ and $2 \mathrm{~m} \Omega$. Internal 1 kHz oscillator \&9Vbattery, provision for externalsupplies.

Here are eight members of the Avo test equipment range that combine traditional Avo quality with some of the most advanced instrument technology available anywhere. Start your measurements with a standard Avometer, of course, but as your requirements develop and expand, remember the many other ways in which Avo can continue to help you. For full details, contact Avo Ltd, Avocet House, Dover, Kent. Telephone Dover 2626. Telex 96283.

AV Ω MEANS BASIC MEASUREMENTS ALL OVER THE WORLD ww-005 FOR FURTHER DETAILS

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:

Radio and Television Manufacturers.
Radio and Television Service Departments. Radio Relay Companles.
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.

Marine Radar.

Communication Equipment.
Research and Development.
Government Departments.
Aircraft Military and Civil.
Ministry of Aviation Approved Inspection.
Air Registration Board Approved
Inspection.

HHALTRON RADIO VALVES \& TUBES

English Electric Valve has developed cathode ray tubes with a new type of electron gun. Compared with normal tubes, the new gun achieves better resolution and a much sharper, clearer image on the screen. The improvement in resolution is $3: 2$ compared with normal CRTs.

Main features of the new tubes are:
1 The gun cathode and focusing assembly produce a laminar electron beam with very narrow divergence.

2 The beam has a uniform electron density, rather than the normal Gaussian distribution. and produces a spot with uniform brightness and a very sharp edge.

3 Aberrations are much reduced.
4 The spot size may be varied without defocusing.

5 The narrowness at the point of deflection minimises deflection defocusing.

6 No focusing coils or high-voltage focusing electrodes are needed so there is no danger of voltage breakdown causing damage to components.

7 If users accept a standard of resolution no better than normal CRTs, they may specify the new gun for tubes with shorter overall length or greater deflection angle, or both. with corresponding advantages in equipment design and compression.

8 The new laminar beam gun may be specified for any EEV CRT but is not for sale as a separate component.

Experimental samples of the new CRTs are available to users for assessment trials. Full technical data and advice about individual applications are available on request.

See the difference...

another clever
 the current slicers

Don't take our word for it-test EEV flash tubes against the equivalents you're now using and learn why other users think so highly of those made by EEV. Incorporating extra heavy duty electrodes, EEV flash tubes are renowned for their reliability, long life (up to 10^{6} flashes) and high conversion efficiency. EEV liquid-cooled and air-cooled xenon flash tubes for pumping laser rods offer a wide range of input energy levels and they are capable of operation at high repetition rates.

Full details of the range are available on request-but if your application calls for a flash tube that is not in the present range, tell us your requirement because we can probably make it for you.

Outstanding in quality, reliability

 and performance

EEV flash tubes

Type	Energy input per flash max. (J)	Arc length (mm)	Bore diameter (mm)	Typical operating conditions			
				Voltage (kV)	Series inductance (uH)	Flash rate	Trigger voltage (kV)
XL615/7/3	600	76	7.0	2.5	400	1 per 15 sec .	12-16
XL615/9/4	1500	102	9.0	2.5	400	1 per 30 sec .	12-16
XL615/10/5.5	3500	140	10.0	2.5	400	1 per 30 sec .	16-20
XL615/10/6.5	5000	165	10.0	2.5	800	1 per 2 min .	20-25
XL615/13/6.5	10000	165	13.0	2.5	800	1 per 2 min .	25

prepare for tomprrow's

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best
No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.
Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No, 49 and Advanced Studies No. 300.

'Spot on the target' is a dirty saying at EEV's vidicon plant because if minute particles of dust or dirt are left in vidicons during manufacture they can settle on the target and ruin the picture. Camera angles were restricted because it was risky to use vidicons upside down. To beat this problem EEV has invested many thousands of pounds in building the largest and most modern clean room in Europe so that EEV vidicons, made in these ideal conditions, are the cleanest on the market today. Because EEV vidicons can now be used upside down. CCTV cameras can be used pointing straight downwards-an obvious advantage in many
monitoring applications. This scrupulous cleanliness is characteristic of all EEV vidicons and is one reason why users know that the EEV range will meet practically all requirements. EEV make vidicons with separate mesh and with integral mesh, with magnetic focusing and with electrostatic focusing, and some are made so rugged that they can be used in the nose cones of rockets. EEV also offers a choice of photosurfaces with its vidicons. Full detajls of the wide standard range are available in the EEV brochure. If your application is so special that none of the many vidicons we make will meet your requirements, we can probably make one specially for you.

Send for your free copy today.

EEV vidicons work in any position

"Technicians Marvel Over The Complete Perfection

Model JR-500SE
CRYSTAL CONTROL TYPE DOUBLE CONVERSION communication receiver

* Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
* Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Hi-Selectivity: $\pm 2 \mathrm{kHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
* Dimensions: Width $\mathbf{1 3}^{*}$, Height $\mathbf{7}^{*}$, Depth $\mathbf{1 0}^{\circ}$.

TRIO ELECTRONICS INC. Tokyo, Japan

Sole Agent for the U.K
B. H. MORRIS \& CO. (RADIO) LTD.

84/88 Nelson Street, Tower Hamlets, London E, 1. Phone: 01.7904824
Exclusive Distributor in European Continent
TRIO KENWOOD ELECTRONICS S.A
160 AVE., Brugmann, Bruxell les 6, Belgium

Model 9R-59DE

built in mechanical fllter 8 tubes
communication receiver

* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical filter enabling superb selectivity with ordinary If transformers.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S/N Ratio (at 10 MHz)
* Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When use the Mechanical Filter
* Dimensions: Width $\mathbf{1 5}^{*}$. Height $7^{\prime \prime}$, Depth 10^{*}.

[^0]English Electric now has a new T camera tube, called an isocon, which can virtually see in the dark The isocon operates on the principle of disregarding the specularly reflected beam of the image orthicon and using the beam scattered by the target. The magnitude of this beam increasss with light level and, at low light level. gives a much better signal-to-noise ratio than that of an image orthizon. The dynamic range of the tube is also much greater, and noise in the darker parts of the picture is virtually eliminated.

Two experimental types are at present available - the 4 $\frac{1}{2}$ " P850 tube for viewing low intensity \boldsymbol{X}-ray fluoroscopic screens and the $3^{\prime \prime}$ P880 for low scene illumination in TV where good results are obtained when the photocathode illumination is only 10^{-4} foot candles. The P850 will, moreover, produce acceptable pictures even where the photocathode illumiration falls as low as 10^{-6} foot candles.

Apart from its obvious applications for TV generally - both colourand black-and-white - the isocon can be ap כlied to a whole range of specialist applications. The PE50 for instance, when designed into $\equiv n$ X-ray image amplifier, makes it possible to reduce the X-ray djsagé to a fraction of that formerly used. In night surveillance and recornaissance systems the P850 isocon has shown it will provide good pictures at incident light levels well below 10^{-6} foot candles which is the level of starlight illumination. Its apslication in astronomy is also extremely promising. It will enable medium sized telascores to participate in deep space and cosmblog cal programmes and it offers imp'essive results wher used with much larger telesccpes.

Furthar detailed information on tha isocol is available on request. EEV also provides a complete tech רical service which includes assistance with the dasign or redesign of camera equipment.

EEV image isocon The tube that can see in the dark

Newmarket Transistors' distributors have several distinguishing features

An eye for detail
little things like constant stock replenishment, reports on product development, new product pages for your Newmarket portfolio. Make sure you're on your area distributor's list.

Newmarket make a wide range of components with CV approval and sell them through selected distributors: that way service and product are equally reliable.

An ear for urgent calls
with all standard components
off-the-shelf and quantities of
hundreds within 24 hours
(thousands take a little longer).

Teeth to match

Newmarket equivalents of competitors' components are of ten less costly, more reliable.
All you need is the nerve to change. Ask for a Newmarket equivalent list.

You're not dealing with a far-flung post of a mighty electroniçs empire when you talk to a Newmarket distributor. He's a member of the team. Experienced, resourceful,
 fully-informed and fully-stocked. Try him. Your business is tomorrow and your Newmarket distributor is in tune with it.

face tomorrow's pace with Newmarket Transistors

the specialist semiconductor engineers with the distinguished personal service network:
LONDON Lugton \& Co. Lid., 209-212 Tottenham Court Road, W. 1. Call MUSeum 3261/9 CAMBRIDGE Combined Electronic Services Lid., P.O. Box IR, Gloucester Street. Call
COVENTRY Coventry Factors Lid.; Coronet house, 0 pper well Street. Call $21051 / \mathrm{C}$
HARLOW Standard Telephones \& Cables Ltd., Electronic Services Division, Edinbur CENtral 3866
HARROGATE G.S.P.K. (Electronics) Lid., Hookstone Park Trading Estate. Call 85415
HOUNSLOW Eastern Aero Electrical Services Led. Building 44, London (Heathrow) Airport, North. Call SKYport 1314 PORTSMOUTH S.D.S. (Portsmouth) Ltd., Hilsea Industrial Estate. Call 62332
 places? And you're held up for meters? Like an $0-5 \mathrm{~mA}$ calibrated in pulsfrekvens? Or a jonkammarström meter specially calibrated from 10^{-10} 10 10^{-4} ? Or a straightforward (but impossible 10 locatel 100 mA moving-coil job reading simply $0-35 \mathrm{KI} / \mathrm{M} 4 \mathrm{HZ}$ Relax. No problem at all. Anders are legending most types of meters in all sorts of languages every day of the week-and as often as not calibrating them specially into the bargain. Hand lettering specialists are standing by for the one or two off Fast, accurate techniques are here for the quantity orders. Ring us: You'll find we are as fast at this sort of thing as we are at supplying standard meters of the shelf and, as you know lor should knowl, that's fast.
N.B. The variety of meters in our new catalogue is a revelation-and now we've got extensive new centralised premises for a better-than-ever service.

Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

Ferrograph Series 7the simple recorder with thirty recording

 facilitiesThe Ferrograph Series 7 Tape Recorder is many instruments in one: If you just want to record without going into technicalities, it is the simplest instrument, handled by setting one or two basic controls. If, however, you need a recorder for hard, professional work, the Ferrograph will do it for you 24 hours a day, year in year out (that's why important communications centres specify it). If you need your recorder to produce the most complex effects, the Ferrograph recorder gives you a greater range of facilities than any other.

Available in Mono, and in Stereo with and without end amplifiers, embodying a unique range of recording facilities, including:

- All silicon solid-state electronics with FET input stages and wide input overload margins.
- Vertical or horizontal operation.

Unit construction: The 3 individual units i.e. tape deck, power unit and a mplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.

- 3 motors (no belts). 3 tape speeds.
- Variable speed spooling control for easy indexing and editing.
Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.
- Provision for instantaneous stop/start by electrical remote control.
- Single lever-knob deck operation with pause position.
- Independent press-to-record button for safety and to permit click-free recording and insertions. - $8 \pm$ " reel capacity.
- Endless loop cassette facility.

Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.

- 4 digit, one-press re-set, gear-driven index counter.
2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
- Signal level meter for each channel operative on playback as well as record.
Tape/original switching through to output stages.
- Re-record facility on stereo models for multiplay, echo effects etc, without external connections.
- Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
- Three outputs per channel i.e. (1) line outlevel response. (2) line out-after tone controls. (3) power output-8-15 ohms.

- Power output 10 W per channel.

Independent tone controls giving full lift and cut to both bass and treble each channel.

- Retractable carrying handle permitting carrying by one or two persons.
U.K. Retail prices from $£ 150$ incl. P.T.

See and hear Ferrograph Series 7 recorders at your local Ferrograph stockist, or post coupon for details and address of nearest Ferrograph specialist (or ring 01-589 4485)

VALUABLE NEW HANDBOOK FREE EOMBINITERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. - InstalGen. Electrical Eng. - Installations - Draughtsmanship

- Illuminating Eng. - Refrig-- Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng. Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Minring - Water draulics - Mining -
Supply

- Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.

MECHANICAL ENG.

Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel She Mral Work Sheet Metal Work - Welding Inspection-Draughtsmanship-Inspection-DraughtsmanishipEng.

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS IN. CLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MÁTHEMATICS, ETC.

```
Which qualification would increase your earning power?
A.M.I.M.I., A.R.I.B.A., A.I.O.B., C P.M.G., GITY A.R.I.C.S.,
M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY & GUILDS, GEN. CERT, OF EDUCATION, ETC
```


british institute of engineering technology

446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and easily. \star HOW to benefit from our free Advisory and Appointments Depts.
- HOW you can take advantage of the chances you are now missing.
t HOW, irrespective of your age, education of experience, YOU can :ucceed in any branch of Engineering.

32 PAGES OF EXPERT CAREER-GUIDANCE

PRACTICAL EQUIPMENT	$\begin{aligned} & \text { INCLUDING } \\ & \text { TOOLS } \end{aligned}$
	The specialist Elec-
tic Courses lor begin-	${ }_{B / \text { tronics }}$ Division of
rs in Radio, T.Y., Elec-	
tronics, etc. A.M.I.E.R.E.	real laboratory train-
City ${ }^{\text {a }}$, Guilds Radio	ing at home wish
Amateurs' Exam., R.T.E.B. Certificate, P.M.G. Cer-	practical equipmern.
tificate, Practical Radio,	Ask for details.
dio \& Television	
, Practical Elec-	
ics, Electronics	

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

Cut the operational and maintenance costs of your HF radio station right now -with STANFAST

Here's how

STANFAST Systems-the STC concept of automated h.f. radio stations-permit transmitting and receiving installation to be controlled completely by one man from a central location.
STANFAST Systems provide high speed frequency changing, automatic performance monitoring and rapid fault location affordingoptimum traffic handling capability and maximum revenue.

STANFAST Systems use the latest techniques in radio design, demand smaller sites and require less maintenance than hitherto. Initial capital cost is lower and return on investment is greater.

Standard Telephones and Cables Limited, Communications Division, New Southgate, London N. 11. Telephone: 01-368 1200. Telex: 261912.

Improved Performance

The advanced assembly jigging techniques used by Mullard provide precision alignment of the gun zomponents, minimize haze and ensure sharper focus.

Longer Life

The Mullard developed cathode nickel N44l coupled with the automated activation process and the most stringent raw material inspection ensure longer and consistent emission life.

ubes than meets the eyel...

What price performance like this?

Direct gating at 100 MHz . . . costs just $£ 784^{*}$ in the Racal 801R Digital Frequency Meter

Like all 800 Series instruments, the 801R, the latest in the line, is custom-designed for specific function, combining excellent sensitivity with high input impedance and exceptional stability. Gate times of 10 mS to 10 seconds and the RACAL patent dynamic readout give operational flexibilityinstant follow for fast tuning or resolution of 0.1 Hz . Remote control and BCD output are options of particular value to the Production Engineer. Measuring to 500 MHz (resolving to 1 Hz in just over one second) the 801/802 combination at $£ 1076$ * is value engineering at its best, true RACAL performance.

* price in U.K.Measures 10 Hz to 100 MHz
$1 \mathrm{M} \Omega$ \& 15 pF input impedance, $10 \mathrm{M} \Omega$ with your 'scope probe
50 mV sensitivity
2 parts in 10^{9} daily stability
500 MHz Resolution with fully automatic heterodyne converter 802
\square Remote control and BCD output options
\square 8-digit latched display

series

mTHERMDSTATIC soldering irons

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering.

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts. Voltages available $12 \mathrm{v} ., 24 \mathrm{v}$., $100 / 120 \mathrm{v}$., $210 / 250 \mathrm{v}$. Five bit sizes from $\frac{1}{16}$ ", to $\frac{1}{4}^{\prime \prime}$.

59/6

MODEL WG150. For use on all circuits requiring a large number of joints. Power rating 150 watts. Voltages available $100 / 120 \mathrm{v}$., 210/250v. Four bit sizes from $\frac{3}{16}$ " to $\frac{7}{16}{ }^{\prime \prime}$.

Sounds exactly what you want

Here's a professional tape recorder that you can use in the studio and in outside broadcast vans. Philips Pro' 12 meets a long standing requirement of studio sound engineers This portable two-channel recorder is designed to meet the high standards of sound quality and versatility expec ted of professional equipment. yet it is small and competitively priced. Recording and playback quality of the Pro' 12 is of a very high standard. Tapes prepared on a Pro' 12 are sui. table for immediate broadcasting. Even at the lowest tape speed of $33 / 4$ in / s, the sound quality is at least equal to the DIN 45511 studio equipment specification.
It features: • Twin-track stereo, twintrack mono and dual-track mono operation on $6.25 \mathrm{~mm}(1 / 4 \mathrm{in})$ wide tape (standard version). . Extra quartertrack stereo (special version). -Tape speeds of 9.5 and $19 \mathrm{~cm} / \mathrm{s}(33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s}$). Unique "constant load" tape transport. - Microphone, diode and line inputs for each channel.

- Facilities for mixing input signals of both channels. - Multiplay, sound on sound and echo effect. - Fade in and out and dubbing facilities. - Cueing and pause keys. - Line and monitoring outputs for each channel. - Monitoring with stereo headset or built-in loudspeaker, before or after tape. - VU-control of either channel. - Endof tape switch. . Remote control connection. - Horizontal or vertical operation.

Technical data

Tape speeds
$33 / 4$ and $71 / 2 \mathrm{in} / \mathrm{s}(9.5$ and $19 \mathrm{~cm} / \mathrm{s}$)
Tape
longplay ($1800 \mathrm{ft}-540 \mathrm{~m}$) or
doubleplay ($2400 \mathrm{ft}-720 \mathrm{~m}$)
Reels
Ciné type, max. 7 in (180 mm) Playing time
for longplay tape on 7-inch reel: at $71 / 2 \mathrm{in} / \mathrm{s}: 45 \mathrm{~min}$
for doubleplay tape on 7 -inch reel:
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \mathrm{~min}$
Deviation on absolute tape speed less than 0.8%

Wow and flutter

measured acc. to DIN 45507 with EMT 420 , at $7 \frac{1}{2} \mathrm{in} / \mathrm{s}: 0.08 \%$ at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 0.1 \%$

Frequency response

acc. to DIN 45511, playback
at $71 / 2 \mathrm{in} / \mathrm{s}: 60 \ldots 12000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$

at $71 / 2 \mathrm{in} / \mathrm{s}: 40 \ldots 18000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 60 \ldots 10000 \mathrm{~Hz}, 0-1.5 \mathrm{~dB}$ at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}: 40 \ldots 15000 \mathrm{~Hz}, 0-2.5 \mathrm{~dB}$ overall at $7 \frac{1}{2} \mathrm{in} / \mathrm{s}$:
$60 \ldots 12000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$
overall at $7 \frac{1 / 2}{} \mathrm{in} / \mathrm{s}$:
$40 \ldots 18000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$ overall at $3 \mathrm{3} / \mathrm{i} \mathrm{in} / \mathrm{s}$:
$60 \ldots 10000 \mathrm{~Hz}, 0-3 \mathrm{~dB}$
overall at $33 / 4 \mathrm{in} / \mathrm{s}$:
$40 \ldots 15000 \mathrm{~Hz}, 0-5 \mathrm{~dB}$
Signal-to-noise ratio
acc. to DIN 45405, weighted,
at $7 \frac{1 / 2 \mathrm{in} / \mathrm{s}:-56 \mathrm{~dB}}{}$
at $3 \mathrm{3} / 4 \mathrm{in} / \mathrm{s}:-52 \mathrm{~dB}$

Inputs

a. line: $100 \mathrm{mV}, 100 \mathrm{k} \Omega$
b. microphone: $\leq 1 \mathrm{mV}$ (unbalanced), suitable for microphones from 50 to 2000Ω
c. diode: $2-40 \mathrm{mV}, 20 \mathrm{k} \Omega$

Other inputs are available optionally

Outputs

a. line:
nom. $0.775 \mathrm{~V}, \max .4 \mathrm{~V}, 10000 \Omega$
b. monitor (stereo):
nom. $0.775 \mathrm{~V}, \max , 4 \mathrm{~V}, 10000 \Omega$
c. diode: $0.5-2 \mathrm{~V}, 100 \mathrm{k} \Omega$

Other outputs available optionally.

Power supply

110-117-127-220-245 V, 50 or 60 Hz
Power consumption: 80 W
Dimensions and weight
$52 \times 34 \times 24 \mathrm{~cm}$
$\left(20^{5 / 8} \times 133 / 4 \times 93 / 8 \mathrm{in}\right)$;
23 kg (50.6 lb)
For detailed information please write for our 8 page Pro' 12 brochure.

Electro-acoustics Division of
Philips Industries.
N.V. Philips' Gloeilampenfabrieken,

Eindhoven, the Netherlands

RADIOMASTS - not only design, manufacture and erect all sorts of towers - we can plan a complete station or scheme for you.
We also make the cheapest professional up-to-120-foot mast in the World - at 38/- per foot including fitting your aerials.

ru RADIDMASTS 눔 I9 CAOSS STREET MOULTON NORTHAMPTON
©E NNB 1RZ
2 06ロ4 43728

NEW IMPROVED Solne BETOUER

Model SR2

- Now with Safe toading Nechanism which does no recoil on release.
- Adjustable Suction Contrel.
- Re-positiones Release Bu:ton Tor better handling of tool.
Instantly removes unvanted solder from printed circuns
and all other solder joints without damage to unit or component. Saves valuable time resulting in increased protuction.

Muriel has a new trimmer figure

$$
(\cdot 75,84,86)
$$

New $\cdot 75^{\prime \prime}$ Cermet Trimming Potentiometers in two models:- Models 84 and 86 with a power rating of 0.33 W at $70^{\circ} \mathrm{C}$.
Ask Muriel to send you samples for evaluation and it'll be no sooner said than done!
While you're about it, ask for samples from the complete Morganite range. It's a full range; not only does it have versions to MiL-R-22097C, but it includes a second series of ohmic values from the E6 range.
Morganite Resistors Limited is the only British
company to offer you this choice.
Morganite Cermet Trimming Potentiometers are made with precision to withstand the rough and tough of everyday operation. Component parts are examined up to 500 X life size so that only the perfect are built into the product.
All Morganite Cermet Trimming Potentiometers are available in development batches -EX-STOCK.
Ring Muriel for facts and figures.

Morganite Cermet Trimming Potentiometers

MILLIONS OF OPERATIONS FOR 6d!

The GEC type RCX dry reed capsule will switch a 5 W resistive load several million times and is suitable for fast low level applications where reliability and long life are required. It is hermetically sealed and has a contact resistance of not greater than 150 milliohms. A fully automated production unit
has been set up to produce high quality reeds to an extremely severe Post Office telephone exchange specification, and the same modern techniques are being used on this industrial version which is offered at 6d in bulk quantities. Small quantities cost a penny or two more.

O80
THE M-O VALVE CO. LTD.
BROOK GREEN WORKS HAMMERSMITH LONDON W6
TELEPHONE: 01.6033431 TELEX: 23435

WW-028 FOR FURTHER DETAILS

WW- 029 FOR FURTHER DETAILS

For technical sound recording everything points to Revox

Sealed mains input section and cabinet safety link sacket.

Fully electronically stabilised pawer supply circuit.

Capstan motor serva zontrol panel maintaining speed accuracy to beter than 0.2% and incorporaity alectronic speed chacce from 73 to 31 ips .
fiead head of cap. stan motor.

Tape transport logic zontrol circuit panel.

Jug-in relays controling all functions and aliminating damage Trom inadvertent mis-
Professional practice glass-fibre panel with integral gold-plated switch contacts.
Capstan motor of patented construction. coolrunning, low current consumption and wow and flutter better than international broadcast requirements.

The Microphone with a Message

 EV 635A

... a simple message. If you're looking for professional results, use a professional microphone.
Radio and TV media, film units and recording studios throughout the world demand the best and get it - in an EV 635A Omnidirectional dynamic microphone. It can be used on a stand, hand-held or as a lavalier and is practically indestructible under normal conditions of use. An internal shock absorber greatly reduces the pick-up of cable or other noises generated by external contact, and the steel casing provides excellent magnetic shielding. Used outdoors, the 635A withstands the effects of high humidity and temperature extremes, salt air and severe mechanical shocks. A four-stage pop and dust filter eliminates the need for an external windscreen.

Specifications

Finish:
Non-reflecring matt satin nickel Net weight: 6 ounces without cable Cable connector:

Cannon XLR-3-12 complete with 18 ' 2 -conductor shielded broadcast type cable
Accessories:
Lavalier neck cord assembly and model 310 clamp

For more information about the EV 635A, write the sole U.K. distributors:

KEF

KEF Electronics Ltd.
Tovil - Maidstone • Kent Telephone Maidstone 57258

PHILIPS
Every aspect of microphone manufacture is covered by the makers of ten million of them-Philips. Presentation and directivity are made to suit requirements. In fact, whatever your needs, there's one in ten million for you. Please ask for full information.

PYE TVT LIMITED
PHILIPS SOUND
Addlestone Road, Weybridge Tel: Weybridge (97) 455।1. Telex: London 262319

"Q-max" sheet metal punches FOR QUICK AND CLEAN HOLES

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military. Naval, Air, G.P.O. and Ministry of Works: Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

Comprehensive range for civil and military authorities as well as domestic users in more than 50 countries.

Teonex now supplies a full range of British made valves and semi-conductors (or their Continental equivalents) to authorities operating stringent quality control, and to private individuals right across the world. Current price list and further particulars available on request from:

TEOMEX LIMITED

2a WESTBOURNE GROVE MEWS LONDON • W11 • ENGLAND

. . . increase efficiency, Jump mobility, speed up output and earn a corresponding bonus from higher profitability by specifying GEC-AEI Pocket VHF Transceivers.

The Courier series of fully transistorised FM and AM transceivers are amongst the smallest, lightest and most advanced of their type. They may be used in individual communications schemes, yet their complete flexibility enables them to be readily integrated into existing VHF systems.

GEC-AEI are major suppliers of VHF radio telephone equipment to the Home Office and independent Police Authorities.

Your Company will ask you for your recommendations. Have you got complete technial lieataure? Communications Division

SEC

PROXIMITY SWITCH

\star For Batching, Conveyors Machine Tool Control, Packaging, Sorting, etc. + Senses ferrous objects. * Needs no mechanical force or pressure to operate.
\star Solid state sensing head includes constant voltage circuit.
\star Mains operated.
approx. $£ 12.10 .0$ dependent on quantity.
DTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

* 1 MILLION OPS. 5 amp.c/o Sub-minia. ture Micro-switch.

2/6 each per 1,000

Suitable for
CONVEYOR SYSTEMS
PACKING MACHINERY PRESS GUARDS materials.

SLB CAPACITY PROXIMITY SWITCH
Senses any object : PACKETS BOTTLES CARTONS BOXES CANS
empty or full, ferrous and non-ferrous

STAINLESS PROBE

remote from $240 v$ AC Power Pack which
Incorporates own 5 amp relay. and level control of GRANULES POWDERS LIQUIDS

Approximately $£ 20.0 .0$ complete dependent on quantity.
LIMIT SWITCH
WL 10 FNJ
$\star 10$ AMP 2 CIRCUIT $\star 5$ INCH flexible actuator
as illustrated
as LOW AS $53 / 9 \mathrm{EACH}$.
five other standard types aYailable

V-10-1B

* I MILLION
* 10 amp.c/o.
\star COMPAREOUR SPEC.
\& OUR PRICES WITH
OTHER SIMILAR TYPES.
Screw Terms. 3/1 each per 1,000
V-10-1A Solder Tags 2/3 each per 1,000 VV-15 IC2 187 Amp Tags $2 / 6$ each per 1,000

PUSH-BUTTON SWITCHES Chrome rimmed flush square and flush round. Up to 4 switch blocks can be fitted. Slow break and make. 10 amps. Latest addition-Illuminated version.
U.L. APPROVED (Appr. No. 32667)
U.S. MILITARY SPECIFICATION

Stockists: B.P.G. Ltd., Leicester 61460; Edmundsons Electronics Ltd., London, New X 9731; A. C. Farnell Ltd., Leeds 35Ill; Gordon Wilson Ltd., Blackburn 59921; G.D.S. Ltd., Bucks. Slough 3021 I

DISTRIBUTORS FOR EIRE: SOUTHERN ELECTRONICS LTD. CORK 26488

OMRON PRECISION CONTROLS
 DIVISION OF I.M.O. PRECISION CONTROLS LTD.

(Dept. W.W.9), 313 Edgware Rcad, London, W. 2
Tel. 01-723 2231

WW--041 FOR FURTIIER DETAILS

are widely used as standards in many industries because:-

1) They are accurate ($50 \pm 0.3 \%$ or $\pm 0.1 \div$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONOON NW1 TEL: 01-387 9092. MINISTRY OF AVIA TION APPROVEO WW-042 FOR FURTHER DETAILS

Printed Circuits Assemble Printed Circuits

The production of all types of printed circuits, to customers' exact requirements, is covered by a fast, efficient design or prototype service.

Short runs present no problem, but capacity is available for fast quantity
 production, and the assembly of components. If your project demands quality, quantity, speed and price control - ring Coventry 24155 today

Printed Circuits Ltd.,

Spon Street Coventry CV1 3BR
Tel: Coventry 24155
A subsidiary of The General Electric Co. Ltd. of England

QUAD 500 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

QUAD
for the
closest approach to the original sound

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines. OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms. DIMENSIONS $-12 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$

Complete the coupon and post today

```
Please send me full details of the QUAD 50 Amplifier
NAME
POSITION
COMPANY
ADDRESS
(BlOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

\section*{NOW-Knight-Kits quality at new lower prices! \\ and anyone can build them}

Simple, step by step instructions enable you to build these right-up-to-date Knight-Kits hi-fi units at a much lower price than similar made-up units. Acclaimed by reviewers, the Knight-Kits range offers equipment to everyone's standards and specifications using professional components. Get your free Knight-Kit booklet now showing hi-fi units, 'scopes and test equipment, plus car tuning, photographic and other interesting electronic kits. Here are some typical examples.


KG 86550 Watts Sterea Amplifier 25 watts 1 HF per channel. Response
1 dB . 18 to 30.000 Hz . All silicon transistors for stability and cleaner 20.000 Hz t \(1 \%\) harmonic distortion \(\mathbf{c 3 4} 19 \mathrm{~s}\), 6d. Teak case extra C 414 s . Jd. plus 13s. Id. tax. Postuge 10s. Od. complete

KG 980 Stereo F.M. Receiver Combined Stereo F.M. Recelver and amplifier with 25 watts i.H.F channel. Hz Tuning range 88 to 108 MHz . Speaker outputs for \(4-160 \mathrm{hms}\), 555 Ms . 6 d . Teak case extra \&5 1s. 6 d . plus 14s. Od. tix. Tuning Heart \(\kappa 66 \mathrm{~s}\). 4d. Dlus El 12 iz . 8d.
 cax. Posiage 10m. Od. complete kit 5 s . Od cas


KG 795 Stereo Tuner All Silicon transistor Stereo F.M. Tuner. Frequency
response \(\pm 1 \mathrm{~dB} .30\) to \(15,000 \mathrm{~Hz}\), harmonic distortion less than \(1 \%\). 88 to 108 MHz tuning range. Matches KG 865 or other
 \(13 \mathrm{~s}, 0 \mathrm{~d}\). tax. Tuning Heart 563 s . 4 d . plus
g1 12 s . 8 d . tax. Postage 10 s . Od. complete kit.
5 s. 0 .


Roamer 5 band shortwave receiver A deluxe A.M. recelver able to cover world usual A. M. programmes. Covers 200 to 400 KHz and 50 KHz to 30 MHz 5 b bandswitched ranges with special features for
needle sharp separation and maxime sensitivity 10 microvolts for 10 dB signa to notse ratio). Automatic volume control


Auto Analyzer Kit This simple
to assemble kit to assembl
makes car
tune-ups makes
tune-ups
troule trouble-
shooting shooting fas
and esy wit
professlonal
results. to get more power performance and more milles peter Self pow perform actual road tests too Self powered with lots of special
ieatures. \(\& 23\)
17 s . 6 d Hostuat 10 s . OHi.


New 960 page Hobbies Manual 12 Hobbies Sections over 12,000 units \& components for dozens of

 ww-046 FOR FURTHER details



\section*{With DIGITAL or ANALOGUE frequency calibration}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & TG66A & TG66B & TGI50 & TGI50M & TG1500 & TGI50DM \\
\hline FREQUENCY & \multicolumn{2}{|l|}{0.2 Hz to 1.22 MHz .} & \multicolumn{4}{|c|}{1.5 Hz to 150 kHz} \\
\hline ACCURACY & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \\
& \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\
& \pm 1 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \\
& \pm 3 \% \text { above } 300 \mathrm{kHz}
\end{aligned}
\]} & \multicolumn{4}{|c|}{- \(\pm 3 \% \pm 0.15 \mathrm{~Hz}\)} \\
\hline DISTORTION & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(<0.15 \%\) from 15 Hz to 15 kHz \\
\(<0.5 \%\) at 1.5 Hz and 150 kHz
\end{tabular}} & \multicolumn{4}{|l|}{\(<0.1 \%\) at \(1 \mathrm{kHz},<0.3 \%\) from 50 Hz to 15 kHz , \(<1.5 \%\) below 50 Hz and above 15 kHz .} \\
\hline SINE WAVE OUTPUT & \multicolumn{2}{|l|}{Source voltage variable from \(30 \mu \mathrm{~V}\) to \(5 V\). Output impedance \(600 \Omega\) at all settings.} & \multicolumn{4}{|l|}{Source voltage variable from \(250 \mu \mathrm{~V}\) to 2.5 V . Output impedance \(<250 \Omega\) above \(250 \mathrm{mV}, 600 \Omega\) below 250 mV . Less than \(1 \%\) varlation of amplitude throughout frequency range.} \\
\hline SQUARE WAVE OUTPUT & \multicolumn{2}{|l|}{None} & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|l|}{Variable up to 2.5 V peak. Rise time \(1 \%\) of period \(+0.2 \mu \mathrm{~S}\).} \\
\hline OUTPUT METER & \multicolumn{2}{|l|}{Expanded voltage scales and -2 dB to +4 dB . Scale length 3.5"} & None & \[
\begin{aligned}
& 0 \text { to } 2.5 \mathrm{~V} \\
& \text { and }-10 \mathrm{~dB} \\
& \text { to }+10 \mathrm{~dB}
\end{aligned}
\] & None & \[
\begin{aligned}
& 0 \text { to } 2.5 \mathrm{~V} \\
& \text { and }-10 \mathrm{~dB} \\
& \text { to }+10 \mathrm{~dB}
\end{aligned}
\] \\
\hline POWER SUPPLY & \multicolumn{2}{|l|}{\begin{tabular}{l}
4 type PP9 batteries, life 400 hours, or, A.C. Mains when: selected by \\
batteries repanel control
\end{tabular}} & \multicolumn{4}{|l|}{2 type PP9 batteries, life 400 hours, or, A.C. Mains when batteries are replaced by Levell Power Unit.} \\
\hline SIZE & \multicolumn{2}{|l|}{\(7^{\prime \prime} \times 10 \frac{1}{4} \times 7^{\prime \prime}\) Weight 12 lb .} & \multicolumn{4}{|l|}{\(10^{\prime \prime}\) high \(\times 6^{\prime \prime}\) wide \(\times 4^{\prime \prime}\) deep. Weight 6 lb .} \\
\hline PRICES & 6150 & 4120 & 432 & ¢42 & \&35 & ¢45 \\
\hline + Mains Power Unit & included & 115 & \multicolumn{4}{|c|}{\(67 \quad 10 \quad 0\)} \\
\hline + Leather Case & 65 & 45 & \multicolumn{4}{|c|}{\[
6410 \quad 0
\]} \\
\hline
\end{tabular}

LEVELL ELECTRONICS LTO., Park Road,High Barnct,Herts. Phone \(01-4495028\)

\section*{EICOM sound equipment}

Multi-channel sound mixers built from a full range of modules to customer specifications and incorporat-
 ing all facilities required in modern broadcasting, recording, television and film dubbing techniques. Standard designs available for 12,24 and 36 channel desks.

EICOM
(NORTHAMPTON)
LIMITED

Elcom manufacture a full range of modules including input modules, output units, level amplifiers, equalisation units and p.p.m. units. Write for further information.

ELCOM (NORTHAMPTON) LIMITED
WEEDON ROAD INDUSTRIAL ESTATE
NORTMAMPTON TEI. 51873 . Cables: Elcom.


WW-049 FOR FURTHER DETAILS

Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.
MICRO.SWITCH . TRANSISTORISED HEAVY-DUTY A A/C LATCHING . 'SPECIALS' MADE TO YOUR OWN DRAWINGS
No order is too small, or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY COMPANY LTD.
157 REGENTS PARK ROAD LONDON N.W.1. 01-722 8161


WW-051 FOR FURTHER DETAILS


\section*{Let us help you} cut through it!

Procurement of elec. tronic components used to be thought of as a complex, time consuming procedure with a myriad of red tape details and problems. Not anymore - now you can join the growing list of companies that rely on the technical skills and services of Milo international, world-wide distributors of electronic components. Our team of experienced specialists will process your order with speed and efficiency from start to finish - immediate price and availability quotations, product information, application data, import certificates, export licenses, declarations, export packaging, delivery expediting, etc. And this all-inclusive service is provided for each order, no matter how small or large.

For whatever you may need in electronic components from the U.S.A., Milo International can satisfy your requirements with prompt delivery, at direct factory prices, from a huge in-stock inventory of thousands of components made by the leading American manufacturers including this partial listing:

Amperex
Arrow-Hart \&
Hegeman
Bourns
Burgess
Cannon
Centralab
Cinch-Jones
Clarostat
Cornell-Dubiller
Corning
Dale Electronics
Delco Radio

\section*{Eimac}

Electrons, Inc. Erie
General Electric General Electric Hardwick Hindle
Hickok
I.T.T.
J.F.D.
Kings

Littelfuse
Mallory Oak
Ohmite-Allen Bradley
Potter \& Brumfleld
R.C.A.

Raytheon
Simpson
Sola
Sola
Solitron
Sprague
Sprague
Stancor
Superior
Sylvanla
Texas Instruments
Transitron
United Transformer Vector
Xcelite

For immediate price and delivery quotations, contact Milo by mail, phone, cable or International Telex.


Ferranti IC Sockets have proved themselves a real boon to Printed Circuit Designers. Used in experimental layouts, the sockets save time, temper and quite often IC's.
Use Ferranti IC Sockets in your layout in place of IC's - you can then insert, withdraw, replace IC's without time-wasting soldering and unsoldering operations.

Ferranti IC Sockets are available for use with 8 lead TO-5 (S8), 10 lead TO-5 (S10) and 14 lead Dual-in-line encapsulations (S14).
Full details of Ferranti IC Sockets available from:

\section*{FERRANTI}
ferranti ltd., electaical connections group, DUNSINANE AVENUE, DUNDEE. Telephone: 0382-89311.

\section*{TECHNICAL TRAINING by}

ICS

\section*{IN RADIO, TELEVIISION AND} ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics awaic the I C S-trained man. Let I CS train YOU for a well-paid pose in this expanding field
IC \(S\) courses offer the keen, ambitious man the opportunity to zequire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing. Electronics, Computers, etc. Expert coaching for:
* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
* RADIO AMATEUR'S EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Seudents Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, all under expert guidance. Transistor Portable available as separate course.

POST THIS COUPON TODAY and find out how I C \(\$\) ean help YOU in your career. Fult details of IC \(S\) courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.


\section*{METER PROBLEMS?}


A very wide range of modern design instruments is available for \(10 / 14\) days' delivery.

Full Information from:
```

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

```


\section*{路名 \\ MODEL 2000 PLINTH SYSTEM}

Designed to house SME precision pick-up arms in combination with leading makes of furntable, the Model 2000 Plinth System combines high-quality workmanship with ease of assembly. The basic unit is finished in selected veneers of teak, straight grained walnut, or rosewood. A one-piece lid in heavy acrylic is reinforced with a polished stainless steel trim.


Motor boards in matching veneers are ready cut and drilled for screw-driver assembly with the appropriate pick-up arm and furntable. The range, which will be added to from time to time. includes a blank board which can be cut to special order.


Four-point spring suspension ddjustable for height and damping protects the motor board from acoustic feedback and external vibration.

\title{
The Goldring caress... we call it transduction seduction
}

Smooth, breathing, open and graceful that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable
stylus assembly. It is as light as the cantilever itself - no massy magnets or coils to move! This design approach provides a texture of sound transparency previously associated with direct-coupled pickups. Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from
Desk HF, Goldring Manufacturing Co. (Great Britain) Ltd., 486-488 High Road, Leytonstone, London, E. II, or from your nearest dealer.

\section*{EDDYSTONE COMMUNICATION RECEIVERS}

For the Professional or Amateur user who likes the Best.


840 C
670

\section*{M. R. SUPPLIES, LTD., \\ (Established 1935)}

Univeraally recognimed an suppliern of UP-TO-DATE MATERIAL, which does the job properly, Instant delivery. Satisfaction assured. Prices nett.
PAN FLOW EXTRACTOR PANS. Undoubtedly today'e greatert bargain for domeste orindutral use. Por \(200 / 250\) volt A.C. 7.500 cu , ft . per hour, Easlly installed, fitted weatherprool louvre which open when motor is switched on and close when off. Only 6\% in. dia. Our nett price only 27/5/0. (denpatch \(5 / 1\) ).
MINIATURE RUNNING TIME METERS (Rangamo). We have grest demande for this remarkable unit and now can supply immedlately from stock, \(200 / 250 \mathrm{~V}\). 50 c , aynchronous. Counting up to 9,999 hours, with \(1 / 10 \mathrm{th}\) indicator. Only 18 ins, square. with eyclometer dial, depth 2 ins. Many
Induatrial and domentic a pplications to indicate the running time of any electrical apparatua, easy tndurtrial and domentic app
to inetall, \(63 /\)-(des. 1/b).
SYNCBRONOUS TIME SWITCHES. (Another one of our popular apecialitlea) 200/240 v. 50c., for accurate pre-eet switching operations. Bangamo 3.254, providing up to 3 on-off operations per 24 hours it any chosen tirnes. with day-omltting device (use optionsi). Capacity 20 -ampa. Come


ELECTRIC FANS (Papat), for extrectlog or blowing. The moat exceptional offer we have ret
 41 in . बquare and 2 in . deep. Ideal for domestic or tridustrian use. Easy mounting, £3/5/-(des. 3/6). SMALL OEARED MOTORS. In aldition to our weil-known range (Lint GM. 564), we offr amall
 projection each side and enclosed searbor. Suitable for diaplay work and many industrial uacia. Only \(89 / 6\) (dem. \(3 /\) ).
miniature Coolimg fans. \(200 / 250\) w. A.C. With open type induction motor (no tinterference), Overail \(4 \operatorname{in}\). \(\times 34 \mathrm{in}\). \(\times 2 / \mathrm{in}\). Fipted 6 wilaided metal impeller. Ideal for projection lanp pooling,
AIR BLOWERS. Highly efficient u


 \(1.5 \mathrm{WG}, 12 \times 8 \times 9\) 1a., oullet 3/n. sq.. 213/17/6 (des. U.K. 7/6)
SYNCHRONOUS ELECTRIC CLOCK MOVEMENTS (an mentioned and recommended In many natlonal journals). \(200 / 250\) w. S0 c. Selt-giarting. Fitted apladles for hours, minutea and central
sweep second handa. Central one-hole firing. Dia. a \(\dagger \mathrm{th}\). Depth behind dial only lin. With back dust cover, 35/- (des. 1/6). Set of three braee hands in good plain dyle. For \(5 / 7 \mathrm{in}\). dis. 2/6 For \(8 / 10\) dia. \(3 / 6\) sel.
SYNCHRONOUS TIMER MOTORS (Sangamo), \(200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\). Selfotarting \(2 \mathrm{in} . \mathrm{din}, \times 1 \mathrm{fin}\). deep. Cholce of following gpeede: 1 r.p.mp, 12 r.p.h., 1 r.p.h., 1 rev, 12 hours, 1 rev. per day.
 -
SMALL BENCE GRINDERS. 200/250 V. A.C./D.C. WHh two 3 in . dlameter wheels (coarge and me
 max. dia., 500 CFM, \(£ 6 / 6 /\) - (des. 6/-).
IMmediate delfvery of Stuart Centrilugal Pampa, including stainleas steel (most modela).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01.636 2958)

\section*{"STETOMIKE" THE NEW STETOCLIP HEADSET \\ WITH \\ BOOM MICROPHONE}

STETOMIKE is the new revolutionary Stethoscope type headset fitted with a Boom-arm Microphone.
STETOMIKE is practically weightless compared with the usual conventional cumbersome heavy headphones (with Boom-arm Microphone) at present being used.
STETOMIKE is ideal for children and adul:s, and due to its lightness can be worn for long periods without discomfort or numbness.

STETOMIKE is constructed of pale grey high tensile plastic parts of advanced design. It uses the latest Danavox sensitive balanced armature microphone capsule and magnetic earphones.
STETOMIKE employs a simple unit construction and in the event of unavoidable damage, all items are quickly replaceable on the spot, by the readily available Danavox spare parts service.

STETOMIKE is competitively priced and is directly available to manufacturers and relevant wholesalers.

STETOMIKE is ideal for many projects includlng speech trainers, telecommunications, radio communications, educational and industrial training equipment, audio equipment and with C.C.T.V. cameras and control of Radio and TV studio personnel and production staff etc. and many other applications.


\section*{TECHNICAL SPECIFICATION \\ BOOM MICROPHONE}

Frequency response to 5000 Hz . Sensitivity at \(1000 \mathrm{~Hz}=-78 \mathrm{db}\) re \(1 \mathrm{~V} / \mu\) bar. Load \(=2000\) ohms.
Impedance at \(1000 \mathrm{~Hz}=2500\) ohms.
D.C. resistance \(=360\) ohms.

\section*{EARPHONE}

Impedances available \(=15,60,120,250,500\), 1000,2000 and 4000 ohms.
Frequency response \(=\) alternatives available. Maximum power handling capacity \(=30 \mathrm{mVA}\). TERMINATIONS
Co-axial cordage to both microphone and earphones eliminating cross-talk.

\author{
DANAVOX (GT. BRITAIN) LTD. \\ Electro-Acoustic Components and Hearing Aids LLOYDS BANK CHAMBERS - 186 WARDOUR STREET LONDON - W. 1 Telephone: REGent 1414/5/6
}

\section*{The technician's first choice in tape decks is a Brenell-}


Mk 5 Series 3 for spool sizes up to \(8 \frac{1}{4}\) " dia. Mk 510 Series 3 for spool sizes up to \(10 \frac{1_{2}^{\prime \prime}}{}\) dia. Prices from £45.18.0. including tax Head assemblies to customer's specification

Take this opportunity of obtaining the same high quality deck as supplied to recording and broadcasting studios, including the BBC
```

* 3 outer-rotor Papst motors
* Large, balanced flywheel
* 4 tape speeds
* Accommodation for up to 4 heads
* Digital counter
* Extremely low wow and flutter content

```

Also available:
Complete tape recorders, amplifiers, etc.: for example:

\section*{The Brene/l HI-FI Tape Link}
which has been specially designed for use with 3-headed tape decks and your high-fidelity installation


Write for full specifications
Choose Brenell for Recorders of unsurpassed reliability and performance

\section*{brenell}

BRENELL ENGINEERING CO. LTD. 231/5 LIVERPOOL RD., LONDON, N.1. Tel: 01-6078271(5 lines) 60480 ww--061 FOR FURTHER DETAILS


STOCKISTS


MODEL 8 ME. III


REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

\section*{LEDON INSTRUMENTS LTD}

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{WW-662 FOR FURTHER DETALS} \\
\hline - A & \\
\hline & CUT COSTS WITH \\
\hline & SPRRGUE \\
\hline & 36D SERIES \\
\hline HALF & CAPACITORS \\
\hline PDIC & With the following eight. \\
\hline & types you could halve your \\
\hline \(\underline{\mu}\) & cap \\
\hline & and design your ideal \\
\hline & power supply at \\
\hline & the ideal price. \\
\hline & Price Price \\
\hline 20 & 10-100 100 up \\
\hline 11,000 HF 100V & 69/- 66/- \\
\hline 7,800 \(\mu \mathrm{F} \quad 100 \mathrm{~V}\) & 56/6d \(54 /-\) \\
\hline \(14,000 \mu \mathrm{~F} \quad 75 \mathrm{~V}\) & 45/- \(4^{2} / 6 \mathrm{~d}\) \\
\hline 1 \(3,000 \mu \mathrm{~F} \quad 75 \mathrm{~V}\) & \(47 / 6 \mathrm{~d} \quad 45 / 6 \mathrm{~d}\) \\
\hline \(42,000 \mu \mathrm{~F} \quad 30 \mathrm{~V}\) & 52/6d 50/- \\
\hline \(36,000 \mu \mathrm{~F} \quad 30 \mathrm{~V}\) & \(44 / 3 \mathrm{~d}\) d \({ }^{2 /-}\) \\
\hline 24,000 \(\mathrm{FF} \quad 30 \mathrm{~V}\) & 34/- \(32 / 6 \mathrm{~d}\) \\
\hline 32,000 \(\mu \mathrm{F} \quad 25 \mathrm{~V}\) & \(33 / \operatorname{lod} \quad 32 / 3 \mathrm{~d}\) \\
\hline
\end{tabular}

Microfarads come cheaper from WeL


\section*{revised 2nd Edition now available}
(including 250 types added since original publication)

\section*{Pinnacle}

The widest ranging and most
comprehensive valve catalogue available from any independent supplier.

PINNACLE ELECTRONICS LTD ACHILLES STREET • NEW CROSS • LONDON S.E. 14
Telephone: All Departments-01-692 7285 Direct orders—01-692 7714

\section*{'Transmission Test Equipment?}


Left: Matfied Universal Milliwatt Test Set Type \(\mathbf{7 4 7}\) offers laboratory standards of accuracy in portable form and out-dates the necessity formore than one instrument to standardise signal level when working with \(75,135 / 140\) a and 600 ohms circuits. Operational amplifier boosts thermo-couple outpur giving two outstanding advantages: (1) Rugged taut band meter can be used: (2) Range -1 dBm to +1 dBm relative to Od Bm is expanded to cover scale length of greater than 4 in . The instrument is accurate to \(\pm 0.05 \mathrm{~dB}\) up to \(15 \mathrm{MHz}: \pm 0.1 \mathrm{~dB} 15 \mathrm{MHz}-20 \mathrm{MHz}\) and useful to beyond 30 MHz . Right: Hatfield Portable AF Level Measuring Set Type 758 with Level Oscillator frequency of 20 Hz to 20 KHz in 3 decades, accurate to \(\pm 1 \% \pm 0.5 \mathrm{~Hz}\). Output 600 ohms balanced, earth free


Above cemtre: Psophometer Type SPO 7525 ; left, Level Oscillator Type SPO 7806 and right Selective Level Meter Type SPO 7820. These three special instruments are made by us by arrangement with Transmission Division of G.E.C. (Telecommunications) Lid. . Coventry, who are responsible for the circult designs.
Ask for detailed literature and data sheets on the Hatfield Range of Transmission Test Equipmem.

HATFIELD INSTRUMENTS LTD.
DEPT. WW. BURRINGTON WAY. PLYMOUTH. DEVON

\section*{HATFIELD BALUN}

Telegrams: Sigjen. Plymouth

\section*{Hatfield have the answers}

WW-065 FOR FURTHER DETALLS

low drift high common mode rejection small size
low noise battery powered

Also:
wide range of general purpose dc amplifiers, bridge supplies and bridge units for instrumentation and control purposes.
FYLDE
Electronic Laboratories Ltd Oakham Cour, Preston. PR1 3XP Telephone: Preston 57560


\section*{ERIE Vibration-Proof Tantalum Type T41}

Every T41 tantalum capacitor has more than one string to its bow. In addition to the supreme advantages of a solid tantalum construction, the T41 is proof against vibration and acceleration. It also has a moisture-proof nylon cladding in a flat rectangular package form for high component density.


Erie T41 solid tantalum capacitors are RIGHT ON TARGET for performance under arduous conditions.

\section*{Loudspeakers for the Perfectionist}


Celestion's outstanding bookshelf system designed for the enthusiast. The sound reproduction of this proven enclosure is truly exceptional, the three radiators giving a smooth and effortless performance-from Bach to Basiea superb recreation of the original in your home.

\section*{DITTON 25}

The true sound of music-you'll hear it as you have never heard it before every 'nuance' and 'timbre' is reproduced with breathtaking realism by Celestion's new Ditton 25. An elegant slimline High Fidelity system designed for luxury installations.

Fill in the coupon for free brochure detailing the complete Ditton
 Series and explanation of the exclusive Celestion Auxiliary Bass Radiator (ABR) which has revolutionised compact loudspeaker design.


\section*{A No. 4 SET and 6-TRANSISTOR SUPERHET}

Clear. simple and rugged this unique system can build almost any electronic circuit. It is used by two thousand academic and industrial teaching establishments throughout the U.K. and by hundreds on the Continent and world-wide. Selected by the Council of Industrial design for all British Design Centres.

\section*{RADIO SETS NOS. 1 to 4.}

Provide a continuous course from simple diode detector through audio amplifiers to 6-transistor Superhet.

\section*{ELECTRONICS SET: (4 STUDENTS)}

For practical study, demonstration or experiment over a wide range of the basic electronic circuits.

theoretical circuit


PRACTICAL LAYOUT

E/106 V.LF. OSCILLATOR FOR METER DEMONSTRATION OF A.C. PRINCIPALS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{RADIO SETS} & No. 1 & £7 & 10 & 0 & \multirow{4}{*}{POST FREE} \\
\hline & No. 2 & £9 & 0 & 0 & \\
\hline & No. 3 & f13 & 10 & 0 & \\
\hline & No. 4 & £18 & 10 & 0 & \\
\hline & Set & £19 & 7 & 0 & \\
\hline
\end{tabular}

FULL DETAILS FROM
RADIONIC PRODUCTS LTD., (wws1)
ST. LAWRENCE HOUSE, 29/31 BROAD ST., BRISTOL BS1 2HF

\section*{VORTEXION}

The CBL/7T solid state Tape Recorder uses 8 low noise Field Effects Transistors on its twin channel Mic., P.U. and Playback inputs to give low intermodulation distortion, and the 10 watts sine wave 15 watt speech and music amplifiers each have less than \(0.05 \%\) harmonic distortion and less than \(0.1 \%\) intermodulation distortion at 10 watts output. "Before and After" monitoring on phones and by internal or external speakers is catered for, and separate power amplifier volume controls allow the speakers to be independently controlled from the headphones. \(30 / 50\) ohms balanced line Microphone and P.U. inputs can be mixed with the other channel via crossmix and an echo control.


All the facilities of the valve model C.B.L. are provided plus a few extras . . . The series 7 deck has variable speed wind in either direction, solenoid operation, provision for an external switch for remote run or voice operated accessory, and still lower wow and flutter figures. Mono versions also available.

Weight 52 lb .
Dimensions \(13 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 22^{\prime \prime} \times 9 a^{\prime \prime}\).

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1db Peak Programme Meter. 4-6-8-10 and 12 way mixers. Twin 2-3-4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of \(30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}\). Less than \(0.2 \%\) distortion at \(1 \mathrm{Kc} / \mathrm{s}\). Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output \(100-120 \mathrm{v}\) or \(200-240 \mathrm{v}\). Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of specch and music or over 30 watts on continuous sine wave. Main amplifier has a response of \(30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%\) distortion. Outputs \(4,7.5,15\) ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low inputs or 4 low mic. inputs.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms. At 20 watts output there is less than \(0.2 \%\) intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced input and Hi Z gram.

\section*{HEATHKIT Instrumentation for Laboratories}
(Heathkit models available Ready-to-use, as well as in easy-to-build kit form)


KIT K/IP-I7
£37.4.0

The Latest and mast practical innovation in electronic instrumentation is the exciting ultra-functional styling format from Heath. The instruments feature a unique cobinet frame consisting of the front and rear panels and side rails which completely supparts the component chassis independently from the top and bottom cabinet shells. This allows complete freedom from assembly, check-out, and calibration. The sturdy side rails conceal retractable carrying handles. The die-cast front panel bezel styled in chrome and black, the black side rails, and the beige front panels and cabinet shells give the instruments an oppearance os up-to-date as their functional performance.

Latest Solid - State High - Impedance Volt - Ohm Milliammeter . . . IM-25
- 9 A.C. and 9 D.C. voltage rangés from 150 millivolts to 1500 volts full scale - 7 resistance ranges, 10 ohms centre scale with multipliers \(\times 1, \times 10, \times 100, \times 1 \mathrm{k}, \times 10 \mathrm{k}, \times 100 \mathrm{k}\), and \(\times 1 \mathrm{meg} .\). measures from one ohm to 1000 megohms - II current ranges from \(15 \mu \mathrm{~A}\) full scale to 1.5 A full scale - II megohm input impedance on D.C. - 10 megohm input impedance on A.C. - A.C. response to 100 kHz - \(6 \mathrm{in} .200 \mu \mathrm{~A}\) meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or \(120 / 240\) volt A.C., 50 Hz - Circuit board construction for extra-rugged durability.

\section*{Latest Solid-State Volt-Ohm Meter, IM-16}
- 8 A.C. and 8 D.C. ranges from 0.5 volts to 1500 volts full scale - 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of \(\times 1, \times 10, \times 100, \times 1 \mathrm{l}, \times 10 \mathrm{k}, \times 100 \mathrm{k}\), and \(\times 1 \mathrm{megohm} \cdot 11 \mathrm{meg}\) ohm input on D.C. ranges, I megohm on A.C. ranges - Operates on either built-in battery power or \(120 / 240\) volt A.C., 50 Hz - Circuit-board construction.

Latest Variable Control Regulated High Voltage Power Supply . . . IP-I7
- Furnishes 0 to 400 volts D.C. @ 100 mA maximum with better than \(1 \%\) regulation for 0 to full load and \(\pm 10\) volt line variation - Furnishes 6 volt A.C. @ 4 amperes and 12 volt A.C. @ 2 amperes for tube filaments - Provides 0 to - 100 volts D.C. bias @ 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament voltage is " on" - Modern circuit board and wiring harness construction - \(120 / 240\) volt A.C., 50 Hz operation.

Latest Improved Version of the famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply . . . IP-27
- Zener reference - Improved circuitry is virtually immune to overload due to exotic transients - 0.5 to 50 volts D.C. with better than \(\pm 15\) millivolts regulation - Four current ranges \(50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}\) and 1.5 amperes - Adjustable current limiter: 30 to \(100 \%\) on all ranges Panel meter shows output voltage or current " "Pin-ball" lights, indicate "voltage" or "current" meter reading - Up-to-date construction - Unequalled performance in a laboratory power supply.

Many other instruments in range SERVO CHART RECORDERS SINE-SQUARE GENERATORS DECADE R and C BOXES, etc.

Full specification of any model gladly sent on request from:

\section*{HEATHKIT Instrumentation for Industry}

Here's Value in Oscilloscopes!


10.12U

SCOPE
\(3^{11}\) Portable General-Purpose Service Oscilloscope OS-2 KIT £24.18.0 Ready-to-use \(£ 32.18 .0\) P.P. 9/Vertical amplifier: Frequency response: \(\pm 3 \mathrm{~dB}, 2 \mathrm{~Hz}\) co 3 MHz . Sensitivity: 100 mV r.m.s. per cm . at I kHz . Input impedance: 3.3 megohm shunted by 20 pF . Horizontal amplifier: Frequency response: \(\pm \mathbf{3} \mathrm{dB}, 2 \mathrm{~Hz}\) to 300 kHz . Sensitivity: 100 mV r.m.s. per em , at I kHz . Input impedance: 10 megohm shunted by 20pF. Time base generator: Range 20 Hz to 200 Hz . Automatic lock-in sync; Retrace blanking Voltage calibrator: I volt, peak-to-peak, 50 Hz . Controls: Brilliance and on/off switch, Focus. Astigmatism, Time base range switch and Fine Frequency, Vertical and Horizontal Gain, Vertical and Horizontal Position.
\(5^{" 1}\) Wide-band General-Purpose Oscilloscope 10-12u KIT \(£ 36.18 .0\) Ready-to-use \(£ 46.16 .0\) P.P. \(10 / 6\) Vertical sensitivity: 10 mV r.m.s. per cmat 1 kHz . Frequency response (referred to \((\mathrm{kHz}): \pm 1 \mathrm{~dB} ; 8 \mathrm{~Hz}\) to \(2.5 \mathrm{MHz} ; \pm 3 \mathrm{~dB}, 3 \mathrm{c} / \mathrm{s}\) to \(4.5 \mathrm{MHz} ;-5 \mathrm{~dB}\) at .5 MHz . Rise time: 0.08 mieroseconds or less. Input Impedance: (at \(/ \mathrm{kHz}\) ) 2.7 Megohms at X1; 3.3 Megohms at \(\times 10\) and \(\times 100\). Horizontal sensitivity: 50 mV r.m.s. per cm at 1 kHz . Frequency response: \(\pm 1 \mathrm{~dB}, 1 \mathrm{~Hz}\) to \(200 \mathrm{kHz} ; \pm 3 \mathrm{~dB}, 1 \mathrm{~Hz}\) to 400 kHz . Input impedance: 30 Megohms at 1 kHz . Time base generator: Range, 10 Hz to 500 kHz in 5 steps, variable, plus 2 switch-selected pre-set sweep frequencies range. Synchronising: automatic lock-in circuit.


Here's Value in a Signal Generator and VVM!

RF-IU
GEN.


General-Purpose RF Signal Generator RF-1u KIT £13.18.0 Ready-to-use \(\mathbf{£ 2 0 . 8 . 0}\) p.P. 6/Frequency range covers 100 kHz to 200 MHz in six bands. Band A, 100 kHz to 300 kHz ; Band B, 300 kHz to 1 MHz ; Band C, I MHz to 3.1 MHz ; Band D, 3.1 MHz to 10 MHz ; Band E, 10 MHz to 30 MHz ; Band F, 30 MHz to 100 MHz . Calibrated harmonics: 100 MHz to 200 MHz . Accuracy: \(2 \%\). Large zecurately calibrated disc scales. Factory wired and aligned coil and band switch assembly. Modulated or unmodulated RF output. Output: Impedance, 75 ohms; Voltage, 100 mV . Modulation: Internal, \(400 \mathrm{~Hz} ; 30 \%\) depth; External, approx. 3 V across 50 Kohms for \(30 \%\). Audio Output: Approx. 4V. Valve complement: \(1-12 \mathrm{AT7}\). I-ECF80.

6" Valve Voltmeter, IM-13u
KIT £22.8.0 Ready-to-use \(£ 29.10 .0\) P.P. \(7 / 6\) Range D.C.: 7 Ranges: \(0-1.5,5,15,50,150,500,1500\) voles full scale. Input Resistance: 11 megohms. Sensitivity: 7, 333, 333 ohms per volt on 1.5 vole range. Circuit: Balanced bridge (push-pull) using twin triode. Accuracy: \(\pm 3 \%\) full scale. Range A.C.: 7 R.M.S. Ranges: \(0-1.5,5,15,50,150,500,1500\) r.m.s. full scale. Freg. Response (5v. range): \(\pm 1 \mathrm{db} 25 \mathrm{~Hz}\) co 1 MHz . Accuracy: \(\pm 5 \%\) full scale. Input Resistance Capacitance: \(1 \mathrm{M} \Omega\). Ohmmeter: 7 Ranges: \(\times 1, \times 10, \times 100, \times 1,000, \times 10 \mathrm{~K}\), \(\times 100 \mathrm{~K}, \times 1 \mathrm{MEG}\). Measures 0.1 ohms to 1000 megohms with internal battery. Meser: \(6^{\prime \prime}\) 200 LA movement.

\section*{Compare the specifications of Heathkit models and see why Heathkit models are such excellent value!}

Portable Solid-State
Volt-Ohm Meter
IM-17
KIT \(£ 13.12 .0\) P.p. \(6 /-\)
Ready-to-use \(£ 18.10 .0\) P.P. 6/-
4 Bilicon Translstora Plus 1 Pield Effect Tranaistor and 1 silicon
 to 1000 voits Full scale... Aceuracy \(\pm 3^{\circ} \%\) of Pull Acale. Full Voltage Ranges from 1.2 Volt Fuli Scale to 1000 Vott:

 to Read Beales. Battery Powered for Portable Oper
leads are buititia plus a jek for macesoury proben.



Portable In-circuit Transistor Tester, IT-18 KIT £15.6.0 P.p. 6/£18.16.0 p.p. 6/-- Tente tratinalstore out of circuit for In in or out of clreult
 - Teste ditedes in circuitior out of circuit for opent and ahorts type traniatory Matches NPN nend PNP iromintore

 - Long batlery life fimm aingle "D" cell - Handy attached \(g\) ' tent leado tor in or out of circuit checks - Frout panel wock et for lower power devicen - Rugged polypropylene case.


\section*{FREE! catalogue}

Descrber these: ond many morn kitu

 Tspo Revertht, Aoreltut Redie, Shert-
 Hobby Seve marey wat Hicetruty




SHOWROOMS: LONDON: Tottenham Court Road. BIRMINGHAM: St. Martins House, Bull Ring. GLOUCESTER: Bristol Road ww-073 for further detalls

\section*{BuIllers ceramics}
for the ELECTRONIC InduStry
(and Electrical Appliance Manufacture)


Frequelex-for high-frequency insulation.


Refractories for high-temperature insulation.


Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detciled particulars.

\section*{BULLERS LIMITED}

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent

\section*{AKG Headsets: High fidelity reproduction with comfort}


With any AKG Headset, you can be sure of perfect reproduction with no unnecessary background disturbance. Every AKG Headset is superbly designed to give maximum comfort combined with maximum efficiency


Find out more about AKG head-sets and microphones from:


WW-076 FOR FURTHER DETAILS

at work and at home!
Jack Peters knows the quality and reliability of the Weller soldering equipment he uses during the dayso he naturally chooses Weller for all the soldering jobs around the house. The same technical know-how and perfection go into both.
The world's widest range of quality soldering tools offers:
TEMPERATURE CONTROLLED IRONS with iron plated tips which control temperature without limiting


6 mm tubular midget flange \(56 / 8\) cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

\section*{VITALITY BULBS}

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071 WW-077 FOR FURTHER DETARLS

\section*{Jack Peters uses a MELLER}

performance. For mains or low voltage.
RAPID SOLDERING GUNS. Instant heat models. Just reach for the solder ... 4 seconds and the job's done.
LOW INITIAL COST. The range of Marksman Irons25, 40, 80, 120 \& 175 watt,-all have pretinned nickel plated tips.
There's a Weller soldering tool for every job and every pocket. Send for full details of our range.

\section*{CHASSIS and CASES}
by
H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment 287/289 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 5891

\author{
We shall be pleased to quote for all your component requirements.
}

\section*{BLANK CHASSIS}

Of over 20 different forms made up to YOUR SIZE. (Maximum length 35 in., depth 5 in.)
SEND FOR ILLUSTRATED LEAFLETS
or order straight away, working out total area of material required and referring to table below, which is for four-sided chassis in 16 s.w.g. aluminium.
\begin{tabular}{|c|c|c|c|c|}
\hline 48 sq . in. & 5/- & 176 sq . in. & 10/4 & 304 sq. in. 15/8 \\
\hline 80 sq. in. & 6/4 & 208 sq. in. & \(11 / 8\) & 336 sq. in. 17/- \\
\hline 112 sq. in. & 7/9 & 240 sq. in. & 13/- & 368 sq.in. 18/4 \\
\hline \[
144 \text { sq. in. }
\] & 9/- & \[
272 \text { sq. in. }
\] & 14/4 & and pro rata. \\
\hline
\end{tabular}

Discounts for quantities. More than 20 sizes kept in stock for callers.
FLANGES ( \(\frac{1}{4}\) in., \(\frac{3}{1} \mathrm{in}\). ), 6 d . per bend.
STRENGTHENED CORNERS I/- each corner.
PANELS: Any size up to 3 ft . at 6/- sq. ft. 16 s.w.g. (18 s.w.g.
\(5 / 3\) ). Plus post and packing.

\section*{Type N}


CASES
ALUMINIUM, SILVER HAMMERED FINISH
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Size & Price & & Type Size & Price \\
\hline N & \(8 \times 6 \times 2{ }^{\text {* }}\) & 18/- & W & \(12 \times 7 \times 7\) & 37/6 \\
\hline N & \(6 \times 6 \times 3\) & 17/6 & W & \(15 \times 9 \times 8\) & 48/6 \\
\hline N & \(4 \times 4 \times 2\) & 11/- & \(Y\) & \(8 \times 6 \times 6{ }^{*}\) & 29/- \\
\hline U & \(4 \times 4 \times 4^{*}\) & 11/- & Y & \[
12 \times 7 \times 7
\] & 45/- \\
\hline U & \(5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2}\) & 17/- & Y & \(13 \times 7 \times 9\)
\(15 \times 9 \times 7\) & 50/6
\(53 / 6\) \\
\hline U & \(8 \times 6 \times 6\) & 23/- & Z & \(17 \times 10 \times 9\) & 72/6 \\
\hline U & \(9 \frac{1}{4} \times 7 \frac{1}{2} \times 3 \frac{1}{2}\) & 24/- & Z & \(19 \times 10 \times 8 \frac{1}{2}\) & 78/- \\
\hline U & \(15 \times 9 \times 9\) & 49/- & & Height \(\times\) & \\
\hline W & \(8 \times 6 \times 6\) & 23/- & & Plus post and & \\
\hline
\end{tabular}

Type N has a removable bottom, Type \(U\) removable bottom or back, Type \(W\) removable front, Type \(Y\) all-screwed construction, Type \(Z\) removable back and front.

WW-079 FOR FURTHER DETALLS

THE TOA 'BLUE-LINE' RANGE
of solid state and valve amplifiers
SOLID STATE (AC/DC operation)
Model TA-266 (30 watts R.M.S.) E57.9.5 retail
Specification

Power supply:
Power consumption:
AC mains \((50 \mathrm{~Hz} / 60 \mathrm{~Hz})\) AC. 20 VA at non bat \(\mathrm{AC}: 20 \mathrm{VA}\) at non-signal 140 VA at max. output
\(D C: \quad 0.7 \mathrm{~A}\) at non-signal
4.7A at tated output
7.0A at max. outpur

Rated 30 watts
Max. 45 watts
\(3 \%\) at 30 watts
Low 48. 80. \(16 \Omega\) High (Balanced type) \(165 \Omega(70\) volts line \()\) \(3300(100\) volts line
Model TA-267 ( 60 watts R.M.S.)
£85.14.3 retail
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{Infut gain:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{MIC- \(2(50 \mathrm{~K} D)\) and \(30 \Omega\) balanced 3 mV} \\
\hline & MIC-3 (50K \(\Omega\) ) and \(30 \Omega\) balanced 3 mV & changeable \\
\hline & MAG-PMONO
(50K SN/equalizep) \(\quad 6 \mathrm{mV}\) & \\
\hline & AUX (500K S \()^{\text {) }} 250 \mathrm{mV}\) & \\
\hline Frequency response: & \multicolumn{2}{|l|}{\(20 \mathrm{~Hz}{ }^{-} 20.000 \mathrm{~Hz} \pm \pm \mathrm{dB}\)} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Bass: }-12 \mathrm{~dB} \text { at } 50 \mathrm{~Hz} \\
& \text { Treble: }-12 \mathrm{~dB} \text { at } 10 \mathrm{KHz}
\end{aligned}
\]}} \\
\hline Tone control: & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
S/N fatio: \\
Transistors \& diode:
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 65 d B \\
& 2 S C-694
\end{aligned}
\]}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \mathrm{SC}-536 \\
& 2 \mathrm{SC}-615
\end{aligned}
\]}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{\({ }_{4 \mathrm{H} 2 \mathrm{~B}-10 \mathrm{R}}^{2 \mathrm{SB}} \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\).} \\
\hline \multicolumn{3}{|l|}{Dimensions: \(\quad 106 \mathrm{H} \times 396 \mathrm{~W} \times 271 \mathrm{Dmm}\)} \\
\hline \multirow[t]{2}{*}{Weight: Moodel} & \multicolumn{2}{|l|}{6.1 kg} \\
\hline & TA-268 (100 watts R.M.S.) & \\
\hline
\end{tabular}
£105.15.9 retail

Also available - Valve Models

\section*{THE PA-100}

Background Music Machine incorporating a 15 watts R.M.S. amplifier and paging system.


Adaptability—Reliability -Design and Quality
Push-in-and-out cartridge track selector
\(4,8,16 \mathrm{ohm}\) plus 70 v and 100 v tappings. Microphone and phonograph input. £99.17.3 retail.

Over 200 items in the range
including microphones, stands, megaphones portable and rack-mounting equipment.

Sole importers and distributors:
AUDIO \& DESIGN (SALES) LTD..
40 QUEEN ST., MAIDENHEAD, BERKS.
Telephone: Maidenhead 25204 Telegrams: AUDESIGN, Maidenhead

\title{
The new 'WESTMINSTER' solid-state radiotelephone ...from PYE
}

\section*{designed for world markets}

The new range of 'Westminster' solid-state radiotelephones is ready for operation anywhere in the world. Pre-production models successfully endured every possible combination of adverse climatic, regional, shock and vibration extremes for over a year. This exacting field-test programme has proved the 'Westminster' range of radiotelephones suitable for global operation.
The 'Westminster' range is type-approved in many countries; dash, universal or motorcycle versions are available.


Pye Telecommunications Limited, Cambridgc, England.
Telephone: 022361222 Telex: 81166


Now-for the first time a


Now available to you is the world famous BD. 1 TURNTABLE in Kit Form for only \(£ 11.2 .4\) d. including p.t. The design is simplicity itself and the Turntable can be assembled by any person using the special spanner provided, a pair of pliers and a screwdriver.
This is a silent 2 -speed Belt Drive turntable with a performance that will meet the requirements of the di scerning enthusiast.

Fullest details on request to :
A. R. SUGDEN \& CO (Engineers) LTD. Market Place. Brighouse, Yorkshire. Tel:2142


\section*{Cameras a plenty...

\section*{but how quickly can you find

\section*{but how quickly can you find the right low cost tube?}

There is a growing range of closed-circuit equipment available, ranging from the simple black and white camera to sophisticated full-colour facilities. The time inevitably arrives when a replacement vidicon tube is needed quickly This is the service EMI sets out to provide. Our vidicon range provides a type for virtually every camera, where reliability, good resolution and high sensitivity are required Send for the EMI Vidicon replacement chart. Then, when you need a tube, simply \(\angle M V / 7 / 56 / 21 / T / F 5\) contact your distributor or EMI


\section*{coating unit}

This is the latest addition to the General Engineering range of Vacuum Coaters. It's the EC19, manually or automatically operated, which can be supplied with a comprehensive range of accessories; electron beam evaporation unit, quartz crystal mass and rate monitor, substrate heaters and work holders to suit all applications.

Further details from
VACUUM PRODUCTS DIVISION
General Engineering Co. (Radcliffe) Ltd.
STATION WORKS, BURY ROAD. RADCLIFFE, MANCHESTER.
Telephone: 061-723 \(3271 \& 3041\) Telex: 66200 Generalad Mchr.
G48/384.

\title{
DOLBY LABORATORIES INC. announce
}

New Increased Production Facilities New Low Prices

Because of the requirement for standardisation in the recording and exchange of master tapes, we have travelled more than 200,000 man-miles in the past two years to introduce our noise reduction system and to select and train our distributors in eighteen countries. Already over three hundred A301 units are in use by more than seventy studios throughout the world.

We now proudly announce that this international challenge has resulted in our third move to larger premises. We have just opened our new 10,000 square-foot laboratory, offices and factory in central London. For us, this expansion means
greater facilities for research, development and production - and for you the user, LOWER PRICES, together with the advantages of an even larger network of Dolby equipped studios.

New A301 price: \(£ 560\) f.o.b. London \(\$ 1495\) f.o.b. New York

If your studio is not in the network, write or telephone now for a complete price list and full technical information.

Leasing facilities are now available in the U.K. and the U.S.A.

a new NOMBREX instrument TO THE SPECIFICATION YOU REQUIRE AT A PRICE YOU CAN AFFORD

\section*{STANDARD MODEL 29-S}
- 150 KHz to 220 MHz -all on fundamentals.
- Eight clear bandspread scales. Total length 40"
- Smooth vernier tuning control-ratio \(7 \frac{1}{2}: 1\).
- Magnifier cursor for clarity and accuracy.
- Scale accuracy and discrimination \(\pm 1.5 \%\) or better.
- Unique electronic scale calibration control.
- Rapid spin wheel tuning as optional extra.
- Modulation-variable depth and frequency.
- Variable A.F. signal available externally.
- Provision for external A.F. modulation.
- Stabilized supply for long-term accuracy.

TRANSISTORISED R.F. SIGNAL GENERATOR STANDARD MODEL 29-S £20.0.0 XTAL CHECK MODEL 29-X £27.10.0
SPIN WHEEL TUNING
(ADD SUFFIX -/SPIN) EXTRA £1.0.0
U.K. Post and Packing 7/6d
```

TO: NOMBREX LTD - EXMOUTH - DEVON
Please send leaflets of MODEL }29\mathrm{ and other
NOMBREX instruments to:-
NAME.
ADDRESS
PLEASE ENCLOSE STAMPS 6d.
W. }16

```

\section*{XTAL CHECK MODEL 29-X}

Includes all the versatile advanced features of the Standard Model 29-S

\section*{AND}

Integral Crystal Oscillator providing calibration check points throughout all ranges, for adjustment of scale accuracy to \(\pm 0.02 \%\). The crystal marker signal is available at R.F. socket for use externally.

PRODUCTION RELEASE-FEBRUARY 1969
WE ARE NOW BOOKING SAMPLE AND QUANTITY ORDERS: DELIVERY IN STAICT ROTATION.

\section*{TRADE AND EXPORT ENQUIRIES INVITED}

OUR CURRENT MODEL 31 WILL CONTINUE TO BE AVAILABLE.


Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10-15 dB reduction of hiss. These im provements, of breakthrough magnitude, are yalid at any time-even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

A301 features: Easy, plug-in installation . solid state circuitry . modular, printed clrcuit construction . high reliability, hands-off operatlon. Performance parameters such as distortion, frequency response, transient response, and noise level meet highest quality prolessional standards.

NEW Remote Changeover option cuts costs enables one A301 unit to do the work of two.

NEW NAB and DIN level setting meters simplify recorder galn calibration.

333 Avenue of the Americas . New York . N. Y. 10014 (212) 243-2525 Cables: Dolbylabs New York

RESLOSOUND

\section*{microphones}

Precision engineered give the sensitive acoustical performance required today

\section*{CPD2}

Cardioid Pencil Dynamic Microphone improved version of the well known Reslo CPD microphone. Most suitable for:
High Quality Music Recording.
General Sound Reinforcemen:
Loud close singing or speaking if used with an amplifier incorporating reasonable wass cut.
Frequency response is smooth over the Frequency response is
range \(70 \mathrm{e} / \mathrm{s}\) to \(16 \mathrm{Kc} / \mathrm{s}\).
range \(70 \mathrm{c} / \mathrm{s}\) to \(16 \mathrm{Kc} / \mathrm{s}\).
Rear response better than 20 dB below the fron from \(100 \mathrm{c} / \mathrm{s}\) to \(1 \mathrm{Kc} / \mathrm{s}\) and over 14 dB from \(1 \mathrm{Kc} / \mathrm{s}\) to \(16 \mathrm{Kc} / \mathrm{s}\) dropping to 30 dB at upper presence frequencies.
impedance values: CPD2/L-30/50 ohms of 600 ohms.
Supplied with 18 of dual impedance cable £17.15.0.
CPD2/M-200 10300 ohms. £17.10.0.
CPO \(2 / \mathrm{H}-30 / 50\) ohms or \(\mathrm{Hi}-\mathrm{Z}\)
£17.15.
Appropriate cable set to order

\section*{floor stands}

\section*{MS111}

Lightweight microphone floor stand with folding legs. Adjustable from 3 ft . 7 in , to 5 ft . Weight \(4 \frac{1}{2} \mathrm{lb}\). Feet spacing 18 in . Folded length \(37 \frac{1}{2}\) in. Finish: Legs and outer tube matt black. inner tube satin silver- \(\mathbf{8 7} \mathbf{2 s}\) od
MS100A stidid to nticomenen nood stand. Adjustable from 3 ft .4 in . to 5 h .2 in . Weight 12 lb . Shown MS110A fitted with MS175 Boom fitted with MS175 Boom
attachment
fully adjustable (length from fulcrum) 2 fL .8 in . to 4 ft . Weight 8 lb . 10 oz
Type MS100A with Hammertone enamelled outer tube and polished chrome inner tube and fittingC86s od
Type MS110A whth all polished chrome tubes86 6d

Type MS175 Boom attachment-£714s 6d
An improved uni-directional (super cardioid) high output hand or stand microphone, incorporating an internal antipop filter Supplied in a black presentation case with 18 ft of presentation case with 18 ft , of directly connected screened cable. Available in low. medium and high impedances.

Recommended Retail Price:
UD \(1 / \mathrm{L}\) (50 or 600 ohms )
f19 10s. Od
phms)
f19 5s Od
UD1/H (High impedance only)
f19 10 s Od
- In addition to their World famous series of bi-directional and cardioid Ribbon Microphone Resio manufacture a complete range of public address amplifiers and loudspeakers-line source and reflex horns.
Write or telephone for fullest particulars-

\section*{How do you measure the extraquality of EMII speakers?}


\section*{ENMIETUTU}

EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specially matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches \(\times 14\) inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to.
EMI
E MI SOUND PRDDUCTS LTD.. HAYES, MIDDX. TEL: 01-573-3888 EXT. 667


From Claude Lyons - leaders in voltage control for over 30 years - an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.
The Regulac range of huridreds of models includes ganged assemblies for parallel and three-phase operation, dual-cutput, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.


Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.

\section*{CLAUDE LYONS}
\(\Gamma_{L}\)
Claude Lyons Limited
Hoddesdon. Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Street, Liverpool L3 9PX. 051-227 1761 Telex 62181

\section*{Celestion PA}

\section*{Loudspeakers for all Public Address Systems}


\section*{Re-entrant Horns}

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and work shops and all indoor and outdoor locations where a high noise level has to be overcome.

\section*{Driver Units}

Pressure type units are available with

or without tapped 100 V line transformers. The following 'built-in features are on all models - High Sensitivity, Weatherproof, Phase Equalising Throat and Self-centring Diaphragm Assembly.


Re-entrant Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

\section*{Loudspeaker}
in Glass Fibre

The Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks, chemical plants, plating shops, etc, where protection from the weather or corrosive atmosphere is vital.


Rola Celestion Ltd. THAMES DITTON, SURREY TELEPHONE 01-398 3402 TELEX 266135

WW- 091 FOR FURTHER DETAILS

MODEL 15
MICRO
SOLDERING INSTRUMENT


\section*{EXTREME VERSATILITY}

Range of 8 interchangeable bits, from \(\frac{{ }^{3}}{6} \mathrm{in}\). (.047in.) to \(\frac{3}{16} \mathrm{in}\)., including new non-wearing PERMATIPS.
- ULTRA-SMALL SIZE

Length \(7 \frac{1}{1} \mathrm{in}\). Weight \(\frac{1}{2} \mathrm{oz}\). Max. handle dia. \(\frac{7}{16}\) in.
- EXTRA-HIGH

PERFORMANCE
Heating time 90 secs. Max. bit temp. \(390^{\circ} \mathrm{C}\). Loading 15 watts-equals normal 30/40watt iron.
- ALL Voltages

The ADAMIN range includes five other models ( \(5,8,12,18\) and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue \(A / 5\).

\section*{LIGHT SOLDERING DEVELOPMENTS LTD}

28 Sydenham Road, Groydon, CR9 2LL Tel: 01-688 8589 \& 4559


\section*{(1) RADFORD}

In an article in the Journal of the Audio Engineering Society for July 1967, Bart N. Locanthi, Vice-President, J. B. Lansing Sound Inc. describes the development of an ultra low distortion direct current audio amplifier. In it he says "... to get the highest accuracy possible, an English made RADFORD Low Distortion Oscillator was used which has less than \(0.01 \%\) harmonic distortion at 20 kHz ."


LOW DISTORTION OSCILLATOR (Series 2)
An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification
Frequency Range: \(\quad 5 \mathrm{~Hz} .500 \mathrm{kHz}\) ( 5 ranzes).
Output impedance:
Output Voltage:
Output Attenuation:
Sine Wave Distortion
Distortion:
Suare Wave Rise Time:
Monitor Output Meter:
Mains Input:
Size:
Weight:
10 Volts r .
\(0-110 \mathrm{~dB}\) continuously yarizble.
\(0.005 \%\) from 200 Hz to 20 kHz increasing to \(0.015 \%\) at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
Scaled 0-3, 0-10. and dBm.

Price:
\(174 \times .-250\) V. \(50 / 60 \mathrm{~Hz}\).
\(17 \frac{1}{2} \times 11 \times 8 \mathrm{in}\).
2516.


DISTORTION MEASURING SET (Series 2)
A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as \(0.002 \%\). Direct reading from calibrated meter scale.
Specification
Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
\(20 \mathrm{~Hz}-20 \mathrm{kHz}\) ( 6 ranges). \(0.01 \%-100 \%\) f.s.d. (9 ranges). \(100 \mathrm{mV} .-100 \mathrm{~V}\). (3 ranges).
Square law r.m.s. reading.
100 kOhms.
3 dB down at 350 Hz .
30 dB down at 45 Hz .
\(\pm\) I d8 from second harmonic of rejection Included battery.
\(175 \times 11 \times 8\) in.
15 Ilb .
Ci20.
Descriptive technical leafiets are available on request.

\section*{RADFORD LABORATORY INSTRUMENTS LTD. ASHTON VALE ROAD, BRISTOL 3 Telephone: 662301/3}

\(5^{n}\) rectangular double beam mesh tube. Signal and sweep oice of differential, ultra high gain, or wide band plug-in \(Y\) Amplifiers.
The Telequipment D53 is a sophisticated laboratory oscill likely to be at a down-to-earth price. It offers all the ext for some time to come required in a general purpose oscilloscope for some time to com Send for full details now.

TELEQUIPMENT<<>

\title{
Wireless World
}

\author{
Electronics, Television, Radio, Audio
}


This month's cover symbolizes the analysis of speech sounds into the phonemic components required for electronic speech recognition, as described in W. D. Gilmour's article. The chart is a speech spectrogram, provided by the speech recognition group at the National Physical Laboratory, and contains time, frequency and intensity information.

Iliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1

O Iliffe Technical Publications Lid., 1968 Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

January 1969
Volume 75 Number 1399

\section*{Contents}

1 Our Friend and Enemy
2 Watch Your Diode Measurements! by 'Cathode Ray'
4 Books Received
5 Electronic Speech Recognition-1 by W. D. Gilmour
8 Full-screen TV Standards Converter by R. E. Davies
11 News of the Month
Old thinking, new methods
Thick film domestic electronic equipment
15 Circuit Ideas
16 High-performance A.G.C. by L. Nelson-fones
19 Letters to the Editor
21 Stabilized Balanced Power Units by C. F. Ho
22 Digital Exposure Timer by G. Coates
27 H.F. Predictions
28 Wireless World Colour Television Receiver-8
34 Codes \& Code Converters-2 by N. M. Morris
38 B.B.C. Sound-in-Vision System
39 Announcements
40 Personalities
41 Literature Received
42 New Products
47 Test Your Knowledge questions and answers by L. Ibbotson
481969 Conferences and Exhibitions
49 World of Amareur Radio
50 January Meetings
52 Real and Imaginary by 'Vector'

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephore: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld lliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; L2 \(^{2} 15 \mathrm{~s} 0 \mathrm{~d}\) Oererseas; 1 year \(\ell_{2} 15 \mathrm{~s}\) Od. Canada and U.S.A.; \(56.75 ; 3\) years \(£_{7} 0 \mathrm{~s}\) Od. Canada and U.S.A.; \(\$ 17.50\) Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previois address. BRANCH OFFICES: BIRMINGHAAf: 401, Lynton Houst, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11 Marsh Street, 1. Telephone: 0272 21491/2. COVENTRY: 8-10, Corporation Sireet. Telephone: 0203 25210. GLASGOW': 3 Clairmont Gardens, C.3. Telephone: 041-332 3792 MANCHESTER: 260, Deansgate, 3. Telephone: 061-834 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900


\section*{Why we decided to make every part in this PAL delayline}

The PAL delay line is a precision item. But it also has to be inexpensive, and therefore mass-produced. The problems involved in getting the delay time of \(63.943 \mu \mathrm{~S}\) - an adjustment to a few thousandths of a microsecond-for just one, are quite formidable. To achieve it on an assembly line is practically impossible, unless you have everything under your own control.
When the PAL system was being developed, we found ourselves in an excellent position to develop the special glass delay line needed for the chrominance decoder. Delay lines weren't new to us. For the previous five years we'd been producing them for the computer industry. We therefore had considerable experience. Experience which few others in the television industry had and which enabled us to develop our delay line in parallel with the development of colour television itself.

Critical factors. The set designer's demands pose problems in design and in production (remember we're concerned with price too!). Our considerable experience gained in the computing industry made the design problems
relatively easy to overcome. But marrying them to mass-production was somet hing quite new. Again we were fortunate in having vast experience in mass producing complex items for other areas of the electronics industry.

Any old glass? The Mullard delay line is made of glass and works on an electromechanical principle.

The glass is specially compounded to ensure consistent behaviour propagation velocities and good stability with changes in temperature. The blocks are cast to ensure complete uniformity and an absence of any internal stressing. One end is ground with two optically flat faces which are at a slight angle to each other and to which two transducers are connected. The electrical television colour signal enters one transducer and is converted into vibrations. These vibrations travel through the glass until they are reflected back from the end face to the second iransducer. This converts them back into an electrical signal. In this way we halve the size of the delay line and help save space within the set.

Ground away. The end of the glass block opposite the transducers is then ground away under automatic control until the response is exactly right. We have found that this constructionapart from saving space-grearly simplifies the problem of delay time adjustment to \(63.943 \mu \mathrm{~S}\) at 4.433619 MHz .

Insertion loss. While the glass has some effect on the insertion loss, the major loss is in the transducer and the coupling to the glass. The transducers themselves have been developed from
ceramics selected for their long term stability as well as good mechanical properties. We have further reduced insertion loss by developing a new metal deposition technique and adhesives which create an intimate bond. As a result the overall insertion loss is only about 13 dB over the bandwidth

\subsection*{3.43 to 5.23 MHz .}

The final step is the assembly of the delay line on its mounting plate with the associated input and output coils before final testing and inspection.

Worth it? Right from the beginning we've had everything under our control. So we can be sure that the product will give consistent service. And that we're producing it at the best possible price.

Consistently achieving these two aims with all our products has helped us build our reputation. A reputation which stretches across the electronics industry. Before we embark on any new project we can draw on the insight and experience we have gained-sometimes from unusual areas. We can employ our resources to provide the technically excellent products our customers demand.

\section*{Mullard \\ components for consumer electronics}

\footnotetext{
Mullard Limited
Consumer Electronics Division
Mullard House, Torrington Place
London W.C.I.
}

\section*{Our Friend and Enemy}

\section*{Editor-in-chief:}
W. T. COCKING, F.I.E.E.

\section*{Editor:}
H. W. BARNARD)

\section*{Technical Editor:}
T. E. IVALL

\section*{Assistant Editors:}
B. S. CRANK
J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A.

\section*{Drawing Office:}

\section*{H. J. COOKE}

\section*{Production:}
D. R. BRAY

\section*{Advertisements:}
G. BENTON ROWELL. (Manager)
J. R. EYTON-JONES
R. LAMBERT (Classificd Advertisement Manager)

Telephone: 01-928 3333 Ext. 538

The arrival of a new year reminds us of a phenomenon which is widely used in electronics but also greatly misunderstood. Time is an essential part of all the eventgraphs in this journal which we call oscillograms or waveform diagrams. Without it they would all be vertical lines, differing only in length. It is a phenomenon which, because we confidently represent it as a spatial dimension (usually a straight horizontal line with the future on the right), we think we have fully understood. How typical of the intellectual arrogance of man that once he has locked up a phenomenon in a concept, once he has labelled and categorized it and drawn a picture of it, he considers that he has mentally disposed of it! Perhaps it is just as well we are arrogant. How else would electronics engineers have the nerve to tackle such formidable operations in the time domain as those required in the advanced television standards converter described in this issue? If they stopped to consider, for example, whether they are really measuring this quantity which they think they are measuring-having assumed it is a measurable quantity-they would not have the courage to continue.

Doubtless some eyebrows will be raised at the suggestion that time may not be measurable. But is it? Clocks, c.r.o. timebases, power alternators, atomic frequency standards are really only oscillators, working away on their own. They are self-maintaining repetitive devices, modelled by man on the natural mechanism by which he attempts to measure time, the rotation of the earth. In order to measure something it is usually necessary to apply the measuring instrument to the quantity to be measured - the ruler to the line drawn on paper, the voltmeter to the battery. It is difficult to see how a clock, whether mechanical or electronic, can be "applied to" or still less "connected to" time. It is just an enclosed system, sensitive to nothing but the internal parameters which govern its repetitive behaviour. The best ir can be said to do is to set up a humandefinition of time. The only measurement we can really be sure a clock performs is to count and scale the oscillations it itself produces.

Another assumption which engineers can be forgivèn for making is that time passes with a certain velocity-either it passes us or we are travelling along a time dimension laid out like a railway track. We assume that the velocity is constant and that the displacement of the point "now" relative to the time dimension is continuous and linear, like the electrical ramp function used in a c.r.o. timebase. But for all we know time may really be proceeding in an erratic manner, continually speeding up and slowing down. (Everyone's experience suggests that it may well do so!) If this were so, and our clocks are assumed to be independent mechanisms, it might be thought that the clock oscillations would show a corresponding erratic variation of frequency. On the other hand, since everything would be affected by this time behaviour, including our perception of the clock frequency, we would not be aware of any change in that frequency. To find out the truth of the matter one would, of course, need some external reference against which one could observe the behaviour of time-a fifth dimension if one considers time as being the fourth. . . At which point we will not venture to say more except to wish our readers A Happy New Cycle!

\title{
Watch Your Diode Measurements!
}

\author{
by 'Cathode Ray'
}

So you thought I was permanently earthed? No; just getting on with something else. And in the course of it I found that there still seems to be a lack of adequate warning about the possibilities of error in measuring voltages with the simple diode rectifier, two versions of which are shown in Fig. I.

The books tell you that provided \(C R\) (in megohm-microfarads) is large enough compared with the time period (in seconds) of each cycle of the a.v. input, the average d.v. output \(\left(V_{d}\right)\) is very nearly equal to the peak value of the a.v. \(\left(V_{a(p e a i)}\right)\). That is because \(C\) charges up to the peak voltage through the diode \(D\), and hasn't time to discharge noticeably before the next peak comes. A few of the books are sufficiently forthcoming to go on to tell you about the input impedance of this kind of rectifier. For (a), supposing the diode to be perfect, it is equal to \(R / 2\). Even fewer books tell you that for (b), which is the more likely one to be used, it is \(R / 3\), and at least one of them (failing to see that \(R\) is now continuously across \(V_{a}\) so draws a.c. as well as d.c.) lets you think that it too is \(R / 2\).

Apart from the mistake just mentioned, this is all right so far as it goes. The trouble is that it doesn't go nearly far enough, even for basic requirements. And a search in the I.E.E. Library for necessary information on the subject in books dealing with electrical measurements drew a complete blank. I am not counting "Radio \& Electronic Laboratory Handbook" by M. G. Scroggie, because he writes what I tell him. (If there are any others that escaped my search will the authors please let me know so that I can give them


Fig. I. Two forms of the single-diode peak rectifier. Type (a) cannot be used if the source of \(V_{a}\) includes a d.v. component or a series capacitor, so (b) is more often adopted.


Fig. 2. Input and output voltages and input current for the Fig. I(a) circuit.
due credit.) The said Scroggic wrote about it at great length in the Wireless World issues of March 1952 and June and July 1954, and mathematically in Wireless Engineer of February 1955, but as some of you may then have hardly been out of the playpen I am moved to deal with the subject now, at much less length.
There are two ways in which either of these rectifier circuits can be used for measuring alternating voltages. One is simply to connect a microammeter in series with resistor \(R\). Then, if \(R\) is the resistance of this resistor in megohms, each microamp signifies \(R\) volts of \(V_{d}\), and so (approximately) of \(V_{a(p e a i)}\). If the instrument is to disturb the voltage being measured any less than your ordinary voltmeter does, \(R\) must be large and the microammeter consequently a low-reading and therefore expensive and fragile one. The other method is to use a stable type of amplifier to energize a more robust meter.

If \(R\) is very large, you are liable to run into trouble with diode reverse current (leakage); remember, the diode is assumed to be perfect, which means alternately zero and infinite resistance. So IM \(\Omega\) is likely to be on the high side (it rules out all germanium diodes, for a start). However, for the sake of argument let us suppose it is attainable. Does it give you the impression that it will ensure a very high input resistance compared with your metalrectifier voltmeter?

We already know that to find the effective input resistance (call it \(R^{\prime}\) ) we must divide our \(I M \Omega\) by at least 2 . And unless we are to be confined to measurements between points that are conductively connected-no series capacitors-and have no bias voltages, we must use Fig. I(b), which means dividing by 3. And because that variety has the full a.v. across \(R\), in practice one must filter it out to some extent. That further reduces \(R^{\prime}\), as we shall see later. So if we allow for this, and a bit more for the imperfectness of the diode, \(R^{\prime}\) is unlikely to be much above \(200 \mathrm{k} \Omega\).

That still seems quite a lot compared with an ordinary lowreading a.v. meter, which at best is likely to be only one or two kilohms per volt. But what does it mean?

This is where we have to look more closely at the way the diode peak voltmeter works. Variety \(a\) is perhaps a little easier to study, though the principle is essentially the same for both. During the first positive half-cycle, \(D\) conducts and \(C\) is charged nearly to the peak input voltage. \(C\) and \(R\) have both been made large enough to hold nearly all this charge until the next positive peak arrives to make up any loss. Fig. 2 shows how a.v., d.v. and current vary during each cycle. The larger the product \(C R\), the less \(C\) discharges and the nearer the average \(V_{d}\) is to \(V_{a(p e a i)}\). If you wonder why people don't leave \(R\) out altogether in order to make the output exactly equal to the peak input and the instrument resistance infinite, the answer is that the backward resistance of the diode is more or less in parallel with \(R\) (via the source of \(V_{a}\) ) so would have to be infinite too; and, if it were infinite, \(C\) could never discharge, so the meter could only be used to measure voltages higher than the last one!

The point to notice in Fig. 2 is that the more nearly \(V_{d}\) comes up
to \(V_{a(p e a k)}\) the shorter the time available for charging and the sharper the pulse of current that has to be supplied by the voltage being measured. So the meter, which (if \(R\) in Fig. I(a) is IMS2) has an effective resistance \(R^{\prime}\) of \(0.5 \mathrm{M} \Omega\), is not at all like a \(0.5-\mathrm{M} \Omega\) resistor. Most of the time it is (except for diode leakage) an infinite resistance, but during the remainder of the cycle its resistance is quite low; in fact, if the impedance of \(C\) can be neglected, it is only the forward resistance of the diode. This has two very undesirable results when measuring the voltage of a highimpedance source-which presumably is what an "electronic" voltmeter is expected to do better than other types. The heavy current load at the input voltage peak cuts that peak and causes a corresponding error in the reading. And the waveform is distorted, so even if the diode meter were being used only to show relative audio level it would have a disastrous effect on fidelity.

On the other hand, if it was used to measure the voltage across a resonant circuit it really would behave towards it like a resistor of value \(R^{\prime}\), because such a circuit stores enough energy to meet a fluctuating load, just like the oscillating flywheel in a watch or clock.

If you get an electronic voltmeter beginning with a diode, the input resistance specified by its maker will probably be \(R^{\prime}\), which is valid only for tuned circuits. It is quite misleading for measurements on resistive circuits. For a \(\mathbf{1} \%\) source-resistance error, a Fig. I(a) diode voltmeter with \(R\) even as high as IMSI is actually worse, on ranges above 30 V , than an ordinary \(\mathrm{I}, 000 \Omega / \mathrm{V}\) a.c. voltmeter!

As the cited articles show, this error can be calculated from one thing-the ratio between the source resistance and \(R\). Conveniently, it is the same for both of the circuits in Fig. I, in spite of the fact that type (b) has a lower input resistance and consequently has the larger error when measuring across a resonant circuit. The aforementioned calculation assumes that the diode has zero forward resistance. But if instead of source resistance in the ratio we use a resistance \(r\), the calculated error holds good for \(r\) meaning either source resistance or diode forward resistance. Better still, provided that the ratio is less than \(1 / 10\) (as it must be if the error is to be less than about \(37 \%\) !) \(r\) can be taken as source resistance plus diode forward resistance, \(r_{s}+r_{d}\), as shown in Fig. 3. "Error" is the percentage by which \(V_{d}\) is less than \(E_{(p e a t)}\), the voltage being measured; to be precise, \(100\left(E_{(\text {peak })}-V_{d}\right) / E_{(\text {peak })}\).

Fig. 4(a) is a curve of error against \(r / R\), and (b) is an enlargement of the top part to show small errors more clearly. These curves apply, with gratifying exactness, to both calculated and measured results, so can be accepted with confidence, the more so as no one has shot them down since they were displayed in 1954.

As an example of their use, let us suppose \(R\) is \(1 M \Omega 2\) and we want to know the highest resistance a source of voltage can have to cause an error not more than \(1 \%\). Against \(1 \%\) in (b) we see \(r / R\) is 0.0003 . So the \(r\) in question is only 300 2. The diode forward resistance alone may well be as much as that, in which case nothing is left for source resistance.

Two comments can be made on that, one depressing, the other encouraging. The first is that as the voltage drop in the diode is reduced its resistance increases. So the more we try to reduce this error the more we increase its cause. (The "bottom-bend" distortion of the scale at very low readings is due to this.) The second is that we are reckoning error by comparison with an ideal diode having zero \(r_{d}\). In other words, our "error" is the difference between \(E_{(\text {peak })}\) and \(V_{d}\), which includes the difference shown in Fig. 2 between \(V_{a(p e a t)}\) and \(V_{d}\). The \(1 \%\) error in the above example (assuming \(r_{\boldsymbol{d}}=300 \Omega\) ) is wholly of the latter kind, internal, and can be allowed for in the calibration. More, by artificially increasing \(r_{d}\) and allowing for the resulting drop in meter deflection in the calibration, we can make the instrument less sensitive to external or source resistance, \(r_{s}\).

Fig. 5 shows the extent of this. In our example the allowable source resistance for \(1 \%\) error compared with the ideal (gross error) was, as we have seen, zero. By absorbing this \(\mathrm{I} \%\) in the calibration,


Fig. 3. Showing the Fig. 1(a) rectifier circuit applied to the voltage \(E\) to be measured, in series with its equivalent source resistance, \(r_{s}\). \(r_{d}\) is the resistance of the diode during its conducting phase.
(a)

(b)


Fig. 4. Percentage by which \(V_{d}\) is less than \(E_{(p e a k)}\) as a function of the ratio \(r / R\). Graph (b) shows the low-error range more clearly. \(r\) is nearly or exactly \(r_{s}+r_{d}\).
we make \(2 \%\) the relevant point in Fig. 4(b), from which we get \(r / R=0.0009\), or \(r=900 \Omega\). Of this, \(300 \Omega\) is the diode, so \(600 \Omega\) is allowable as source resistance for a net error of \(\mathbf{I} \%\). This corresponds to \(r_{d} / R=0.0003\) in Fig. 5, giving 0.0006 for \(r_{s} / R\), as above.

Suppose now we put \(1,700 \Omega\) in series with the diode, to bring \(r_{d} / R\) up to 0.002 . That allows \(r_{s} / R\) to be 0.001 , or \(r_{s}=1,000 \Omega\). An incidental advantage is that \(r_{d}\), being now mostly in the form of a resistor, is more precisely known than the diode forward resistance itself, which varies greatly during the conduction phase. We could of course increase the allowable \(r_{s}\) for \(1 \%\) error (or reduce the error for a given \(r_{g}\) ) by augmenting \(r_{d}\) more, but Fig. 5 shows that the amount needed goes up drastically for even a limited benefit, and the meter deflection for a given voltage is thereby reduced. Worse still, stray capacitances become much more effective in reducing the highest frequency at which accurate measurements can be made.

There is of course also an error at the low-frequency end if the reactance of \(C(=1 / 2 \pi f C)\) is not small compared with \(R\). A slight consolation is that when this error is serious the instrument is less affected by source resistance.

I mentioned earlier that the source-resistance error (but not the


Fig. 5. Ratio \(r_{s} / R\) sufficient to cause \(I \%\) net (or true sourceresistance) error, as a function of \(r_{d} / R\).


Fig. 6. The Fig. 1(b) rectifier has \(V_{a}\) as well as \(V_{d}\) in its output, so additional components are included for filtering, as in these two simple examples.
equivalent input resistance to resonant circuits, \(R^{\prime}\) ) for the Fig. \(I\) (b) circuit is practically the same as for (a). And, earlier still, that in practice (b) needs some kind of filter to reduce the a.v. component in the output. Fig. 6(a) and (b) are two such circuits. Note that in (b) \(R_{1}\) and \(R_{2}\) act as a potential divider, reducing the d.v. output. These circuits are assumed to work into substantially infinite impedance-a m.o.s.f.e.t., perhaps. Even for these circuits the \(r\) error is practically the same as before, up to about \(10 \%\), if \(R\) is taken as \(R_{1}\) in Fig. 6(a) and as \(R_{1}+R_{2}\) in (b), and \(R_{1} / R_{2}\) in either is not large. To complete the story, here is a table of \(R^{\prime}\), approximately. It is useful when working with energy-storing circuits.
\begin{tabular}{l|l} 
Circuit & \multicolumn{1}{c}{\(R^{\prime}\)} \\
\hline Fig. 1(a) & \(\frac{R}{2}\) \\
Fig. 1(b) & \(\frac{R}{3}\) \\
Fig. 6(a) & \(\frac{R_{1} R_{2}}{R_{1}+3 R_{2}}\) \\
Fig. 6(b) & \(\frac{\left(R_{1}+R_{2}\right) R_{2}}{R_{1}+3 R_{2}}\) \\
\hline
\end{tabular}

For assumptions and derivations, see the Wireless Engineer paper cited.

The whole of the foregoing article can perhaps be put with devastating clarity and brevity into the statement that the singlediode peak voltmeter is not a very good one. So next month we take a look at a two-diode circuit.

\section*{Books Received}

Systematic Electronic Fault Diagnosis by T. H. Wingate is an intriguing book. It is a programmed course of instruction in fault finding to be applied to electronic equipment in general. The examples used in the programme are mainly to do with the superhet receiver in valve and transistor forms. However, these examples are only used to illustrate the programme and fault diagnosis on any electronic equipment is claimed to improve by the use of this programme. The minimum knowledge required for entry to the programme is that of the operation of a superhet receiver. Experience with multimeters, oscilloscopes and signal generators is an advantage to the student, and so is a knowledge of the theory of measurements. The text is scrambled so the reading sequence is not the printed sequence. Numbered frames of information and questions lead, by the answers given, to other numbered frames. If you make a mistake you are told so and referred back to the frame containing the original question. The direct teaching sections of the book have the headings-symptom analysis, equipment inspection, signal injection and signal tracking, voltage
and resistance measurements, repair and replacement, and performance checks. Then follow three valve problems, a section on transistor techniques, and three transistor problems. Sectional tests are given, and a short but succinct reading list precedes a revision flow chart and valve and transistor superhet receiver circuits. Frames 383. Price 17s 6d. Sir Isaac Pitman \& Sons Ltd., Pitman House, Parker Street, Kingsway, London W.C.2.

Transistorized Amateur Radio Projects, by Charles Caringella, W6NJV, is a thoroughly practical book of twenty do-it-yourself circuits. Many of the projects are accompanied by suggested printed circuit board layouts, for which there are thin-paper negatives included at the back of the book. These negatives can be cut out and used directly in etching a printedcircuit board. The projects vary in complexity bur are grouped according to function-converters, transmitters, power supplies, test equipment, and accessories. Complete circuit descriptions are given in every case, along with full constructional details, photographs and complete parts lists. Cheap silicon planar transistors are used extensively 'in' the projects, which include an electronic c.w. keyer, a code practice oscillator, a transistor tester, a field strength meter, a speech compressor, low and high-powered regulated power supplies, an 80 and a 40 -metre novice c.w. transmitter, 2 - and 6-metre voice transmitters, and low noise 2-, 6-, 10-, 15and 20 -metre converters. Pp. 128. Price 25s. W. Foulsham \& Co. Ltd., Slough, Bucks, England.

Radio, by David Gibson, is a teach yourself book suitable for any intelligent child from about 9 years onwards. Absolutely no knowledge of electricity or electronics is assumed in the reader, the essential physics being lucidly covered in the first chapter on radio components. The real purpose of the book is as a guide to the construction of three types of receiver-crystal set, t.r.f., and a four-transistor superhet-and a two-transistor amplifier. The layout of components is lavishly illustrated with excellent colour photographs. (For attractive presentation the book could hardly be bettered.) The book ends with a recommendation on acrials, and a brief but interesting introduction to short-wave listening. Pp. 87 (plus a single page index); pric̣e 12s 6d. Brockhampton Press Ltd., Salisbury Road, Leicester, LE1 7QS.

Low-Noise Microwave Amplifiers, by H. N. Daglish, J. G. Armstrong, J. C. Walling and C. A. P. Foxell, is a review of the various types of low-noise microwave amplifiers available. The importance of such amplifiers lies in their use as low-noise microwave receivers, which, as the authors note in the introduction, could have been an alternative title for the book. After an introduction discussing the problem of noise and its various natural sources, seven chapters are devoted to discussing the categories of low-noise amplifiers for microwave frequencies. The chapter titles are: travelling-wave tubes; other low-noise electron-beam devices; solid-state masers; varactordiode parametric amplifiers; microwave-mixer and detector diodes; tunneldiode amplifiers; and microwave low-noise transistor amplifiers. There are nine pages of references and a concise index. Pp. 167. Price 45 s . The book is published, in association with the I.E.E., by Cambridge University Press, Bentley House, 200 Euston Road, London N.W.1.

Colour Television: A Background to Colour Tube Adjustments for the Service Engineer, by a Mullard publication. It is divided into two parts. Part 1 gives a short account of a shadowmask colour picture tube, an explanation of colour purity and convergence, and description of what factors govern picture quality. Part 2 gives simple step-by-step setting-up procedure. The picture tube and controlling assemblies are well illustrated by figures and circuit diagrams. Colour plates and diagrams show the effects of the various controls. Pp. 48. Price 17 s 6 d plus postage and packing from Mullard Lid., Distributor Sales Division, Mullard House, Torrington Place, London W.C. 1

The Promise of Space, by Arthur C. Clarke. The author, well-known for his science fiction writing, relates man's achievements in space over the past 20 years to what he sees as the possibilities in space technology in the 1970s and beyond. The book is essentially concerned with space craft, their orbits and means of propulsion, but inevitably communication and telemetry techniques are discussed. It was, of course, Arthur Clarke in his article "Extra-terrestrial relays" in the October 1945 issue of Wireless World who first outlined the principles of synchronous communication satellifes-an idea which he put forward in a letter published in \(W . W\). the previous February. Pp. 345. Price 70s. Hodder and Stoughton Lid., Warwick Lane, London E.C.4.

Covering, as it does, the years \(1918-1939\) Vol. 2 of Leslie Baily's B.B.C. Scrapbooks inevitably includes many references to the beginning of broadcasting and television. John Logie Baird's advertisement appealing for "someone who will assist (not financially) in making working model" for "seeing by wireless", which appeared in the personal column of The Times is reproduced. In the section "Television Begins" Baily, who was at the time wireless correspondent of the Yorkshire Evening News writes "it is astonishing to know that his [Baird's] knowledge of radio techniques . . . was so limited that he went to . . The Wireless World for help over the design of amplifiers." Pp. 208. Price 60s. George Allen \& Unwin Lid., Park Lane, Hemel Hempstead, Herts.

\title{
Electronic Speech Recognition
}

\title{
A two-part article on the phonemic elements of speech and circuit techniques employed in their identification. This month: basic principles
}

\author{
by W. D. Gilmour, B.A., M.I.E.E.
}

The automatic recognition of a spoken language (in this article English only is considered) can serve many obvious or not so obvious purposes. Thus commands could be spoken into a computer, or mechanisms controlled by voice inputs. Telephone numbers could also be requested verbally from a suitably equipped exchange. However, all existing recognising machines are not completely accurate, the best giving overall accuracies of not more than \(90-95 \%\), so that some form of storage of the whole message is required before it is entered into the controlled machine itself. The ultimate usefulness of the method in practical applications will thus depend on the characteristics of the system as a whole. As a simple example, 'voice dialling' of telephone calls in a simple step-by-step Strowger system would not be economic, because of the requirement for storage of the whole number for verification before transmission; however, with a computer-controlled exchange, the additional storage could easily be provided, and the elimination of the errors due to incorrect dialling, combined with the elimination of the dial and its associated apparatus, could prove economically viable, especially since some form of central processor, which could serve all lines on a time-sharing basis, would be already available.

At present some use of the automatic recognition of spoken digits is being attempted for tasks such as the sorting of parcels and stocktaking, where it is convenient for the operator's hands to be free for other tasks, but it is believed that no more complicated applications are yet in use.

The remainder of Part 1 of this article will deal with the basic characteristics of speech. Part 2 will describe the types of circuit which form the basis of practical special purpose recognition machines and will consider how these basic circuits can be built up into a complete mechanism.

Speech recognition is, of course, one specialised form of pattern recognition, and a general purpose pattern recognising automation could recognise speech.' On the other hand the variability of the input is greater than in many other pattern recognising applications, in that nominally identical utterances spoken by different speakers, or by the same speaker at a different time, are widely different; but conversely the total number of patterns to be distinguished is seldom more than about fifty, and the time sequence of the components of these patterns is invariant
for any master pattern. For reasons such as these, there is still a considerable future for special purpose apparatus in this field at least as a pre-coder for a more generalised piece of equipment, and the use of general purpose partern recognition equipment will not be considered further in this article.

\section*{The basic characteristics of speech}

Full descriptions of the production and characteristics of speech are available. \({ }^{2,3}\) In this article abnormal forms of speech, such as whispering and singing will not be considered, and the basic speech forming mechanism can be considered to be the set of resonamt cavities formed in the nose and mouth by suitable placing of the tongue, teeth and other articulators. These cavities are excited by a pressure wave periodically released by the opening of the vocal chords in voiced utterances, or for unvoiced utterances by a white noise source formed by a constriction in the system.

In men the chopping frequency set by the vocal chords generally lies between 100 and 150 Hz , and for women at about double this frequency range. Phoneticians discriminate definitely between voiced and unvoiced utterances, but in reality the discrimination is often not at all well marked, and either the characteristic changes during the utterance or else the white noise and vocal chord contributions to the driving waveform are approximately of equal energy. In broad outline the method of forming speech sounds is shown in Figure 1, which shows the state of affairs for a voiced continuing sound. The vocal chords produce a line spectrum as shown in (a). The resonant cavities have a transfer function as shown in (b), thus giving the combined output (c). The concentration of energy at the resonant frequencies of the cavities leads to the concept of formants and formant frequencies. Formants are defined as the peaks of acoustic energy created as described above. It is found experimentally that most voiced utterances have three formants: the first in the range \(200-750 \mathrm{~Hz}\); the second between 750 and 2200 Hz ; and the third generally above 2200 Hz . In unvoiced utterances the first formant is generally seldom observed, but well marked second and third formants can be seen in spectrograms. \({ }^{4}\) One such spectrogram is to be seen on the front cover of this issue.

It is convenient to split speech sounds into phonemes, which may be defined as the shortest segments of a language, which, if substituted one for another, convert one word into another. Many workers doubt the validity of the concept of phonemes, at any rate as far as machine analysis is concerned, finding less differentiation between some nominally distinct phonemes than between nominally identical phonemes spoken in different contexts or by different voices. To some extent this criticism is valid, but by a judicious use of differing parameters it becomes possible to differentiate many phonemes, which may not necessarily be those used by phoneticians, under most contectual restraints and for the majority of voices. In doing so, the large amount of decoding necessary if the alternative syllabic approach is adopted is avoided.

As an example of these effects the words 'kill' and 'col', which in the simplest phonetic notation differ in the vowel only, can be considered. If these words are spoken it will be found that the positions of the articulators for both the ' \(k\) ' and the ' 1 ' sounds will differ considerably, and these differences show up instrumentally. On the other hand both ' \(k\) 's will have the same lag from the initial release of pressure to the start of the subsequent voicing, and for all voices this pause will be very much longer than that for a ' \(p\) ', with which ' \(k\) ' could be confused on the basis of a simple frequency analysis. At the other end of the frequency scale for ' \(k\) ', allowing for the effects of context, confusion could occur with ' \(t\) ', but here separation could be achieved by the higher energy content and longer pause for ' \(k\) '.

Similarly, the terminal ' l ', which might instrumentally be confused with the final sound of the diphthong 'ou', can be separated therefrom by a higher second formant frequency.

Thus, by using all the available clues: energy, frequency analysis, and timing, it is possible to draw up a set of descriptors capable of separating most phonemes, or at least of grouping them into larger groups, from which unambiguous words can be formed.

Voices vary from each other, quite apart from differences due to dialect, in a number of ways:
In amplitude. However, a given speaker under quiet ambient conditions tends to hold his level to within \(\pm 6 \mathrm{~dB}\) for quite long periods. Shouting can increase the level by 20 dB or more.


Fig. 1. General formation of a voiced utterance.

In resonance. As shown in Fig. 1, the peaks in the driving spectrum do not necessarily coincide with the formant resonance, but if they do the formant will naturally be enhanced. Some speakers tend to adjust their pitch to obtain this effect, others do not. In addition some speakers seem to have abnormally low and others abnormally high damping of their cavities.
In speed and manner of talking. Speed can be controlled to a certain extent in experimental work by using a metronome, but it is much more difficult for a speaker to regularize his division of time on the different syllables within a word. Some vowels, such as 'oo' (zoo) are naturally stretched, whereas others such as ' \(a\) ' (bat) are naturally cut short. Some speakers accentuate such differences, others minimize them, and a machine cannot be expected to receive much help from any attempt to standardize these features.
In the proportion of high frequency energy present. Some speakers produce very high amplitudes of high frequency components on fricative sounds, even to the extent of almost whistling their ' \(f\) 's and ' \(s\) 's. A simple machine would class such speakers as 'abnormal' and refuse to respond to their utterances. A more complex machine could invoke the statistical features of speech to insert suitable audio weighting circuits to obtain a statistically normal specimen of speech from the abnormal input.
In testing any mechanical recognition system, therefore, a large number of voices should be used. However, a single voice shows considerable variation from day to day, and if
a satisfactory performance can be obtained on one voice over a protracted period of testing, it is to be expected that the performance on other voices might be adequate. On the other hand, as a machine learns its master's voice, so does the master learn the best way to present phonemes to the machine, subconsciously aiding it by his diction, so that the only final valid test is to present a number of untrained voices to the machine. Because of the day-today variability of voices, the use of recorded material is to be deprecated, unless each sample is used for a few runs only. It is also illuminating to watch the machine make mistakes, which are seldom likely to be identical on nominally identical samples.

It is well known that speech remains intelligible to man when it is severely distorted in amplitude. Thus the intelligibility of \(100 \%\) clipped speech is only slightly degraded. The effect of phase distortion on speech is also slight, but not entirely negligible as simple experiments with a tape recorder running backwards will confirm.

On the other hand it is known that intelligibility suffers at once if the frequency content is distorted, particularly if harmonic relationships are upset. Thus speech doubled overall in frequency (e.g. the 'Chipmunks') is barely intelligible, although smaller shifts can be tolerated. However, a single sideband signal with a misplaced carrier becomes unintelligible if the error in the carrier frequency is no more than a few tens of hertz. Similar problems occur with divers breathing a helium/oxygen mixture. It thus appears, prima facie, that the
frequency content of speech is its most important characteristic for human intelligibility. Further experiments using low and high pass filters show that much of the information content is contained in the second and third formants.

In man, the mechanism by which sound energy is applied to the inner ear is straightforward, but much less is known about the processing of the energy within the inner ear and in the brain. The cochlea is believed to act as a lossy transmission line \({ }^{5}\), so that high frequencies are attenuated close to the input (the stapes), whereas lower frequencies can propagate further inwards. Receptor organs are provided down the whole length of the cochlea, and it can be shown that relatively simple groupings of the outputs from these organs will enable local maxima and minima in the frequency-time pattern; positive and negative slopes; and local transitions in any of these quantities to be determined locally before the composite signal is applied to the brain \({ }^{6}\).
A machine of feasible complexity is unlikely to possess man's great adaptability to differing voices, dialects, and speeds and manners of talking. Nearly all machines so far built are much better at recognising their master's voice than the voices of strangers. In addition no speaker fails to elide certain phonemes and in connected speech the gaps between words are often very difficult to observe, and are nearly always less pronounced than pauses before unvoiced stops such as ' \(K\) '. At present therefore all machines attempting to identify phonemes rather than, say, words, require that the speech input should be spoken slowly and clearly, with interword gaps accentuated.

Phonetic alphabets are necessary in speech work because there are some 40 basic phonemes in spoken English. Any degree of phonetic complexity can be allowed for in an alphabet, but for non-specialists an alphabet with as many symbols as possible corresponding to normal English usage is preferable. Such an alphabet is the Initial Teaching Alphabet \({ }^{3}\), now used in some primary schools, and the phonetic values of these symbols are given in Table 1.

\section*{Classification of phonemes}

In this section the phonemes are classified by those features which have been found most reliable for machine recognition. These features may not be those used by the ear. Thus most voiced utterances are best classified for machine recognition by the period of the first formant, timed from the voicing instant; the ear, however, does not seem to make much use of this feature. The instrumentation of the measurements in a typical system will be described in Part 2 of this article, but to avoid repeating Table 1 , codings which will be referred to later are given now. Briefly, the A coding refers to the period of the first formant, the B coding refers to the frequency of the second formant with B1 high, and the C coding similarly refers to the frequency of the third formant. G refers to the level of sound pressure, with G7 representing a high level and G0 silence.

The major groups of phonemes used will

Table I: The Initial Teaching Alphabet and coded values

now be defined and are also listed in Table 1. Voiced continuants (VC). Phonemes in this group can be uttered in isolation and the utterance sustained indefinitely, or for diphthongs sustained indefinitely at any point. The first subdivision is the pure vowel group (VC-V), which are uttered with a relatively unrestricted vocal tract, and therefore have high energy and a well defined harmonic structure and a relatively lightly damped output waveform. Diphthongs (VC-D) consist of a combination of two or more vowel-like elements with a relatively slow and smooth transition between them. As such in normal phonetic terminology they consist of two or more phonemes, but if this approach is adopted on a machine great difficulty is found in specifying the boundaries, which are very dependent on context and speed of talking. (Thus in extreme cases ' \(\sigma\) ' could end as ' \(\omega\) ', although in normal diction it ends ' \(\omega\) '.) Consequently for machine identification it is better to treat diphthongs as entities.
Vowel compounds with \(-r\) (VC-R) form a large group in spoken English and are best treated as diphthongs. The final sound is far from invariant, but it is always produced with the vocal tract somewhat obstructed, so that energy falls at the end of the utterance.
Liquids or glides (VC-L) are a difficult group to place. They can occur in any context and are approached by a relatively slow transition from the preceding phoneme to a position of the articulators rather more dependent on context than is the case for other groups. The
vocal tract is more or less constricted, causing some diminution in energy, and in extreme cases a fricative-like quality to the utterance. Glides can occur between vowels, and it is important to distinguish between glides and diphthongs. For these reasons special circuits are often needed to select this group.
Nasals (VC-N) are produced by blanking off the oral cavity and opening wide the velum, so that most acoustic energy is radiated from the nostrils. With a conventional microphone considerably less energy is received from nasals than from voiced continuants with the oral cavity unobstructed.
Voiced fricatives (VC-F) are produced by forming a constriction in the oral cavity and thus adding high frequency random noise to the voiced sound. It is interesting to note that the peak amplitude often occurs half way between voicing instants with this group. The energy radiated and the amount of high frequency energy present vary very greatly from speaker to speaker and with context, so that the weaker members of this group (' \(v\) ' and 'th') are among the most difficult phonemes to detect. Unvoiced continuants (UC). Phonemes in this group can also be uttered in isolation and the utterance sustained indefinitely. However the vocal chords are not used and the acoustic output is thus noise-like in character. High frequency energy predominates. It should be noted that ' \(f\) ', ' \(h\) ', ' \(s\) ', and ' h ' are the unvoiced equivalents of ' \(v\) ', 'th', ' \(z\) ', and
' 3 , respectively, although it is difficult to make much use of this fact.
Stops (S). To form a stop, air pressure, from a voiced or unvoiced source, is allowed to build up behind an obstruction in the oral cavity and is then suddenly released. There is thus a period of silence whilst the pressure is building up, followed by a burst of high frequency energy whilst the opening is still constricted. The acoustic energy pattern resulting from these actions depends very much on context, but there are certain invariant characteristics relating the timing of the silent period and the high frequency content of the burst to the phonemic identification. Depending on whether the vocal chords are in use during the building up of pressure and during the subsequent release, stops may be divided into voiced (VS) or unvoiced (US) categories. The unvoiced stops ' \(p\) ', ' \(t\) ', and ' \(k\) ' are the equivalents of the voiced stops ' \(b\) ', ' \(d\) ', and ' \(g\) ', respectively.
The aspirate ' \(h\) '. This phoneme is so very variable that its machine recognition is difficult. It can occur voiced or unvoiced, with energy distribution greatly affected by context. it also has to be differentiated from the normal wheezes and breath tones which occur in any speech from time to time.

Table 1 shows the phonemes arranged in their groups, but before describing how a simple apparatus can be made to perform separations of phonemes, a few general notes on technique may be useful.

The remarks made above on the inadvisability of using recorded materials should be noted.

To display waveforms in raw or processed forms a storage cathode ray oscillograph is invaluable, as many samples can be compared with such an instrument in a way that would not be economically possible by any other method. The instant availability of the record
is also most useful. The Sonagraph type of instrument which displays a complete frequency spectrum of a 2 s sample of speech has been found to be of limited value, partly because of the time taken to process the record, and partly because the resolution of the very important first formant region is low. A more fundamental objection is that the analysis is on a frequency basis instead of on a period basis, timed from the voicing transient. A very full record of typical spectrograms of phonemes, alone and in combination, is available \({ }^{4}\). A more useful instrument, although still working in frequency bands, is the Hewlett-Packard Noise Analyser, which has a reasonable resolution in the first formant region and an instantaneous display with freezing facilities.

The microphone used has to meet a number of conflicting requirements:
a) It must be capable of being used close to the lips in order to reduce the effects of ambient noise, yet,
b) It must be insensitive to breath tones.
c) It must be free from resonances.
d) It should have some directional properties, again to reduce outside interference. e) It should be insensitive to the movement of the user, and should ideally move with his head, thus preserving a constant distance from lips to microphone.
It has been found that a good quality noisecancelling magnetic microphone, carried on a head-mounted boom so that the active area of the microphone is opposite the point of the chin and separated therefrom by 4 cm , proves satisfactory for most subjects. Every effort should be made to minimize all other sources of noise, including echoes of the speaker's voice, for speech recognition is difficult enough without producing a crop of spurious masking noises.

\section*{REFERENCES}

1 G. L. Clapper, 'Machine looks listens learns', Electronics, Vol. 40, No. 22, pp. 91-102 (30 Oct. 1967).

2 Sir Richard Pagel, 'Human Speech', London, Harcourt (1930).
3 J. L. Flanagan, 'Speech analysis, synthesis, and perception', Berlin, New York, Springer-Verlag (1965).

4 R. K. Potter, G. A. Kopp and H. G. Kopp, 'Visible Speech', New York, Van Nostrand (1947),
5 F. L. Putzrath and T. B. Martin, 'Speech recognition by neural networks', Proc. Nat. Electronics Conf., Vol. 17, pp. 311-316 (1961).
6 I. C. Whitfield, "Coding in the auditory nervous system', Nature, Vol. 213, No. 5078, pp. 756-760, (25 Feb. 1967).
7 J. Downing, 'The Initial Teaching Alphabel', London, Cassell (1962).

The simple special purpose phonetic equipment to be described in Part 2 makes use of a combination of analogue and digital circuits. The analogue circuits consist of filters, amplitude selecting circuits, amplifiers with a.g.c., and various inhibiting circuits. Most of the analogue signals are then digitalised using course quantization. Frequency-to-voltage converters are also used.

\title{
Full-screen TV Standards Converter
}

\title{
Changes American to European standards without reducing picture size and allows output to be locked to local sources
}

\author{
by R. E. Davies,* M.A.
}

Owing to the fact that different television standards have been adopted by various countries, exchanges of programme between them require the use of television standards conversion, unless the exchanges are carried out by means of cine film. Early forms of standards converter \({ }^{12}\) relied upon the imagetransfer principle, in which the picture to be converted is displayed on a suitable ca-thode-ray tube and is viewed by a camera working on the required standards; this method inevitably introduces significant picture impairments due to the characteristics of the cathode-ray tube and camera-tube used. With the advent of BBC-2 operating on 625-lines, it became necessary to develop a fully satisfactory method of converting signals generated on this system to the 405line standard. All-electronic "line-store" converters', which rely upon identical input and output field frequencies, were evolved and are in wide use today. With the increasing use of video lape recording and communication satellites, the exchange of programmes between countries using the 50 fields-per-second and 60 fields-per-second standards have become an almost daily occurrence; in the past these exchanges have relied upon converters exploiting the image-transfer principle. However, more and more countries are transmitting in colour and a pressing need for high-quality colour conversion has arisen. Image-transfer conversion for colour poses severe problems and, although some success has been recently achieved" using such methods, it was considered essential that an all-electronic converter, suitable for exchanges in colour and effecting the necessary change of field frequency, should be developed. In 1964 detelopment of two such all-electronic converters was started in the B.B.C. The converters required sufficient storage to hold one field of a television signal and came to be known as "field-store" converters. The proposals were based on the use of ultrasonic quartz-delays as the storage media since these seemed to offer the best chance of success in a reasonable time.

The first all-electronic converters was completed in 1967 and, on account of its relative simplicity, has two disadvantages. Firstly the size of the converted picture is reduced, and secondly, the output field frequency is rigidly locked to the input field frequency in a 5 to 6 ratio. The European and American colour field frequencies are respectively 50 Hz (exactly) and 59.94005

Hz , with relatively tight tolerances, and thus converted "live" signals are non-standard.

The second, more advanced, converter \({ }^{67}\) was completed recently. It does not suffer from the above disadvantages and, moreover, has the useful facility that the signal can be locked to local sources, allowing mixing, fading and like processes to be carried out with local signals.

The first major use of the B.B.C. advanced converter was for live coverage in Europe of the Mexico City Olympic Games. The signals were generated on the 525 -line standard and were transmitted by satellite to Goonhilly and thence by landline to London. After conversion the 625 -line signals were distributed both in the U.K. and to other countries via the Eurovision and O.I.R.T. links; a total of nine broadcasting organiza-

Fig. 1. Relative positions of lines on a screen at the 525 -line and 625 -line standards.


Fig. 2. Reproduction of a diagonal edge in a 625-line picture which has been derived from a 525 -line picture by repeating certain lines.

tions transmitted the pictures in colour and a further nineteen transmitted them in black-and-white.

\section*{Principles of the Advanced Converter}

A televised scene is described by means of discrete fields which are analogous to the frames of a cine film and show the successive positions of moving objects at regular intervals of time. Each field is divided into a number of discrete lines, each describing the brightness (and colour) of a narrow horizontal strip of the scene. In all modern television systems the interlace principle is used in which the lines interlace with each other on two successive fields. Half of the lines form field number 1 and all odd-numbered fields thereafter, while the other half form field number 2 and even fields thereafter. Two successive fields form a complete picture. The U.K. standard contains 625 -lines per picture (i.e. per two fields) and the field frequency is 50 per second. The American standard contains 525 -lines per picture at 60 fields per second.
The converter takes an input signal at the American standard and converts it to the U.K. standard by electronic processing. The conversion consists essentially of two processes. Firstly, the input line signals are used to construct, by interpolation \(\dagger\) between them, a set of output line signals; secondly, these signals are subsequently each delayed by an appropriate amount so that they occur at the correct times relative to a train of synchronizing pulses at the output standard.
Fig. 1 shows the relative positions of lines at the two standards on a screen, with the vertical scale considerably expanded. The left-hand set of lines at the 525 -line standard are more widely spaced than those on the right at the 625 -line standard. The simplest way of producing 625 lines given a set of 525 would be to choose the nearest one in each case. For example, in Fig. 1 lines No. 1, 2 and 3 on the left can be used for lines No. 1,2 and 3 on the right, line No. 4 on the left must be used for both lines No. 4 and 5 on the right; and lines No, \(5,6,7\) and 8 on the left can be used for lines No. \(6,7,8\) and 9 on the right. Thus some sequences of input 525 lines can be used directly as output lines, but approximately once every five lines an input line must be repeated. A

\footnotetext{
+ Interpolation means the process by which a new intermediate signal value may be derived from two existing values.
}
complete output field of \(312 \frac{1}{2}\) lines can be constructed by repeating just 50 lines of an input field of \(262 \frac{1}{2}\) lines.

The effect of repeating lines is illustrated in Fig. 2 which shows the appearance of a diagonal edge in the picture. At the 525 standard shown on the left, the edge is straight but if lines are repeated (here lines 2 and 7) to form a 625 -line picture the edge takes on a serrated appearance as shown on the right of Fig. 2. This problem was encountered in the development of line-store converters between the 625- and 405 -line standards and was overcome by interpolating between successive lines, Each output line is synthesized as a mixture of the video signals if two input lines in a ratio depending on the relative positions of the input and output lines. Fig. 3, which corresponds with Fig. 1, illustrates this process and shows a possible set of interpolation ratios which could be used. (These ratios are the fractions marked on the diagram.) Line signals are not now repeated but it should be noted that ouiput lines Nos. \(1^{\prime}\) and \(2^{\prime}\) are both generated from both input lines Nos. 1 and 2 and will appear simultaneously. As before 50 extra lines will be produced for each complete field.

To display the output lines sequentially, delay must be introduced into the signal path each time an extra line is generated. If the line durations on the two standards were identical, a delay unit equal to a line would be suitable. However, the actual line durations are approximately \(63.5 \mu \mathrm{~s}\) for the 525 -line standard and \(64.0 \mu\) s for the 625 line standard and the actual delay unit is chosen to make the output field of the correct duration. Since 50 extra lines are added to each field, 50 extra delay units are introduced and the delay unit must be one fiftieth of the difference between the field durations. In practice the value of the delay unit is \(66.3 \mu \mathrm{~s}\) approximately. While this choice of unit will result in correct output field duration, the timing of output lines will be in error by at most a few microseconds due to the difference in line durations between the standards.

The increase of delay in the store for one field is about \(3 \frac{1}{3} \mathrm{~ms}\). The following fields can be treated similarly so that a further \(3 \frac{1}{3} \mathrm{~ms}\) of delay must be introduced for each one. The process of increasing delay cannot continue indefinitely; however, after five input fields the delay has increased by \(5 \times 3 \frac{1}{3} \mathrm{~ms}\), i.e. \(16 \frac{2}{3} \mathrm{~ms}\) which is equal 10 the input field duration. A complete field is now stored in the delay units and it is possible to omit the next input field. The following input field can be used to form the next output field if the delay is returned to zero and there will be no interruption in the output signal. Fig. 4 shows a sequence of input fields and the derived sequence of output fields. Input fields Nos. 1 to 5 form output fields Nos. 1 105.

Input field No. 6 is omitted and output field No. 6 is formed from input field No. 7. In the long term the increase in the number of lines is balanced by the decrease in the number of fields and there is no overall accumulation of delay.

The omission of fields causes disturbances to the portrayal of movement in the television picture. A moving object in the scene


Fig. 3. Synthesis of 625 standard lines by interpolation between 525 , standard lines. For example, outpul line \(l^{\prime}\) is formed by adding nine-tenths of the amplitude of input line 1 to one-tenth of the amplitude of input line 2 .


Fig. 4. Sequence of input fields and the output fields derived from them.
appears to move smoothly for five fields but "jerks" to an unexpected position in the sixth field. This results in a "judder" at the frequency of field omission, namely 10 Hz . To reduce this effect a process of interpolation between successive fields is employed in the same way as interpolating between successive lines was used to improve the portrayal of diagonal edges.

\section*{Practical Conversion System}

Fig. 5 is an outline block diagram of the conversion system. The synchronising pulses associated with the input 525 -line signal are fed from the sync-pulse separator to a logic unit which supplies waveforms to control the actions of the interpolator and the delay store.

The interpolator contains a line delay \(\ddagger\) and a field delay \(\ddagger\) so that adjacent lines of a complete input picture can be made available simultaneously. These are mixed in appropriate ratios to form line signals suitable for the output standard.

On account of the difficulty of maintaining accurate matching between different signal paths, frequency modulation of a carrier is used for transmission through the delays and signal mixing is carried out by averaging
the modulation frequencies. Mixing is limited to the proportions \(\frac{1}{4}, \frac{3}{4}\) and \(\frac{1}{2}, \frac{1}{2}\). Two signal connections to the delay store are necessary 10 accommodate the extra lines.

The delay store consists of a number of ultrasonic delay units and it is arranged by means of switches that the signal can traverse each delay and bypass it. The delay durations are approximately in binary progression and the action is illustrated in Fig. 6.

Fig. 6(a) shows the arrangement of the first three stages of a delay store. The delay durations are binary multiples of a unit, \(T\), and the switches have two alternative states, also shown in the figure. Fig. 6(b) shows the switches in the "all-up" position so that signals entering the store at terminal \(A\) will traverse the store with no delay. If now an extra line signal is transmitted from terminal \(B\), coincident with a line at \(A\), it will traverse the \(1 T\) delay and emerge immediately following the line which entered at \(A\). By changing switch 2 to the "down" position at this time, one line may be made to emerge from the store following the other. The new path for signals requiring \(1 T\) delay is shown in Fig. 6(c). The next extra line can now enter the store at \(A\) and traverse the \(2 T\) delay, thereby arriving at switch 3 in time to be fitted into the sequence. Fig. 7 is a more complex diagram showing the increase of delay from 0 up to \(3 T\) units. It can be shown that the process can continue with an indefinite number of binary delays. When the maximum delay is reached the path which traverses all the delays is in use (i.e. entering at \(B\) in Fig. 6(b)) and it should be noted that the other path is also set up in which there is no delay in circuit. This path can be used immediately after a field is omitted when the delay returns to zero.

Following the delay store (see Fig, 5) timing errors due to differences between the line durations of the 525 and 625 standards and to imperfections in the delay store are removed in the timing corrector. In practice, since the input and output standards are not locked together in a fixed ratio, it is necessary to have a capacity rather greater than a line duration to accommodate slow changes in the relative phase of the two standards. A device similar to the line-store converter is used. The signal conversion is now complete and there remains only the addition of output standard synchronising pulses in the final processing unit.
\(\ddagger\) Ulerasonic quartz delay units are used as the storage medium in the converter. An acoustic wave is propagated through the quartz, crystal transducers attached to the quartz being used to generate the acoustic signal and recover the electrical signal. The quartz is usually in the form of a thin plate with many reflecting faces. Delays between about \(16 \mu \mathrm{~s}\) and 4 ms are obtainable with adequate response for television purposes.


Although, in principle, an electronic converter with sufficient bandwidth can handle colour signals equally as well as monochrome, certain difficulties arise in connection with the coding system. The incoming American N.T.S.C. signal is first transcoded \({ }^{9}\) to an intermediate colour system which is similar to N.T.S.C. but uses a higher subcarrier frequency. After conversion, the signal is transcoded again to the PAL system as required for the 625 -line standard.

\section*{Future Developments}

The advanced converter can accept both line and video tape recorded programme generated on the American standard and can handle both colour and monochrome signals. It is intended shortly to produce a converter working from the European 625 -line standard to the American 525 -line standard. Similar techniques will be used.

The use of a converter working on these principles to synchronise colour signals from remote sources on the same nominal scanning standards has also been suggested. \({ }^{10}\) It is operationally advantageous in a broadcasting system to have all signal sources synchronised together to allow mixing and cutting between them. A solution \({ }^{11}\) to this problem is already available but can be used only in certain circumstances.

Acknowledgement.-The author wishes to thank the Director of Engineering of the B.B.C. for permission to publish.

\section*{References}
1. "Conversion of television standards" by Lord, A. V. B.B.C. Quarterly, Vol. 8, No. 2, Summer 1953.
2. "A wide range standards converter" by Rout, E. R. and Vigurs, R.F. Journal of the Television Society, Vol 9, No. 12, October-December 1960.
3. "Television standards converters using a linestore" by Rainger, P. and Rout, E.R. Proc.I.E.E., Vol. 113, No. 9, September 1966, pp. 1437-1457.
4. "Methoden zur Farbnormwandlung NTSC-PAL zwischen Fernsehnormen unterschiedlichen V'ertikal frequenz" by Jaeschke, F. NTZ April 1968, pp. 177-181.
5. "Colour TV Standards Converter," Wireless World, Vol. 73, No. 10, October 1967, pp. 476-477.
6. "Field-store standards conversion" by Wharton,
W. and Davies, R. E. Proc. I.E.E., Vol. 133, No.

6, June 1966, pp. 989-996.
7. "Electronic standards conversion for transatlantic color television" by Rout, E. R. and Davies, R. E. J.S.M.P.T.E., Vol. 77, No. 1, January 1968, pp. 12-14.
8. "Ultrasonic delay lines" by Brocklesby, C. F., Palfreeman, J. S. and Gibson, R. W. lliffe, London (1963).
9. "Translating and Transcoding between ColourTelevision Systems with Common Scanning Standards" by Edwardson, S. M. Proc. J.E.E. Vol. 114, No. 1, Jan 1967.
10. British Patent Application No. 45588/66.
11. Picture source synchronisation-the Natlock system" by Bliss, J. L., Millar, 1.D.B. and Allen, D. J. E.B.U. Review, Part A, Technical, No. 107, February 1968.


Fig. 6. The delay store: (a) first three stages of the store; (b) "all up" connections; the heary line shows the zero delay path; (c) switch 2 "down" for selection of \(1 T\) delay.

Fig. 7. Transmission of line signals through delay store.


\section*{Old thinking, new methods and television}

The video telephone known as the Picturephone developed by the Bell Telephone laboratories of America may, in future, employ a bandwidth reducing principle that was devised as long ago as 1929 when the Nipkow disc was still the order of the day.

The bandwidth required for any signal is proportional to the amount of information that the signal has to contain. In a television signal, especially in video telephone applications, the same information is iransmitted frame after frame with only minor variations; lip or eye movement for instance. The bandwidth reducing principle, which would allow three Picturephones to share a line intended for only one, requires that the orlly information transmitted is the difference between the current frame and the previous one.

The television signal from the camera is translated into streams of pulses using the p.c.m. technique invented by an Englishman, Alec Reeves. A complete television field is stored in a delay line store and the next frame is compared with it. If there are any significant differences the difference information only is transmitted and the store is updated. The technique of transmitting the difference information only and using it to update a stored frame has been called "conditional replenishment" by Bell Labs (sounds a bit like a tea break!).

A video-telephone picture showing the areas of significant change in one-sixtieth of a second.


The television picture information employs an eight-bit p.c.m. code and a 7 -bit code is used for the position of difference signals.

The principle of transmitting television frame difference signals was described in an article "Saving Television Bandwidth" which appeared in the April 1953 issue of Wireless World and details of the Picturephone were given in the February 1968 issue.

\section*{Thick-film domestic electronic equipment}

The advantages of using thick-film circuits in domestic electronic equipment has been clearly demonstrated by the AEG-Telefunken Banjo Automatic 101 a.m./f.m. radio receiver. This receiver incorporates a thickfilm tuner, i.f. amplifier and audio amplifier (not the output stage) as separate modules. The receiver was released for sale in Germany in the autumn of 1967 and during the first six months not one module was returned for service. Since then returns, said to be barely recordable, have amounted to only a very small fraction of one per cent.

It is usual, after designing a circuit for thick-film production, to build it first in discrete component form so that all "bugs can be ironed out". The circuit is then drawn in a form compatible with thick-film techniques.

In a typical manufacturing process the conductor pattern would first be screen printed and then fired at 760 to \(1000^{\circ} \mathrm{C}\) on an alumina ceramic substrate. The firing fuses the conductor pattern into the substrate. A resistor pattern is then overprinted and fired on to the substrate and the values of the resistors are adjusted by sand-blasting part of the composition away. Capacitors are layed down by depositing first the bottom electrode and firing and then printing on a dielectric layer which is allowed to dry before depositing and firing the top electrode. Conductor cross-overs can be made by printing an insulating glaze on a fired conductor and depositing another conductor on top. Finally, lead-out wires, transistors and large capacitors are added as discrete components and the whole assembly is tested before encapsulation in a suitable protective coating. All the chemicals used by Telefunken were produced by Dupont. Telefunken are at present designing thick-film modules for television and record player applications.

\section*{University-industry scheme bears fruit}

In 1966 Professor Heginbotham of the Department of Production Engineering and Production Management at Nottingham University presented his ideas on automatic assembly methods for production lines. As a result of the interest aroused a consortum of five interested firms was formed, who contributed \(£ 500\) each. In return each firm received a basic "pick and place" machine. This machine lifts a component and positions it in its allotted place reader for fixing. The long-term hope was that firms would ask the department to develop the basic prototype into a machine more suited to their particular needs. For this, the firms would supply the necessary finance.

The plan is working well and detailed discussions are in progress with a number of firms. The first product to emerge from the scheme will be a machine for electron gun


The automatic assembly machine developed at Nottingham University for use in Mullard's picture tube plant at Simonstone. The machine assembles part of the electron gun.
assembly that will be used at the Simonstone plant of Mullard Ltd. The machine forms the grid 3 assembly by placing together three components and making eight welds.

\section*{GaAs diodes for microwave applications}

Nippon Telegraph and Telephone Public Corp. and Hitachi Lid, both in Japan, have developed a series of gallium arsenide diodes for microwave communications.

The efficiency of microwave diodes is determined in part by electron mobility. The time it takes for electrons to travel through the crystal of the diode base is critical because it limits frequency response. The maximum electron velocity is greater in gallium arsenide than in the commonly used germanium. However, unwanted impurities in the crystal have so far limited practical use of GaAs devices.

A Hitachi-NTT team has solved this problem through development of a special purifying process which increases electron mobility in the gallium arsenide crystals to a
figure which is close to the theoretical limit.
In practical microwave relay experiments a GaAs Gunn diode was used as an oscillator, replacing the conventional klystron. During 8,500 hours of continuous operation, the GaAs device achieved outputs of 150 mW at 13 GHz and 250 mW at 10 GHz , as a result of the low transit time characteristics of the purified crystal.

The high electron mobility lowered the noise of the Gunn diode, both in frequency and amplitude. The Gunn diode also outperformed the klystron in thermal characteristics.

In all, two types of diode have been produced and successfully tested under the joint research programme. These are bond-type for frequency multiplication and mixing, and diffusion-type for frequency multiplication.

\section*{European Physical Society}

The European Physical Society came into being on September 26th, 1968, in Geneva. Its inaugural conference will take place in Florence from the 8th to 12 th of April. One of the sessions, which will be of particular interest to Wireless World readers, is on quantum electronics and optics.

Anyone wishing to attend the conference should write for an application form to the Secretariat, European Physical Society, P.O. Box 1227 Carouge, Geneva, Switzerland.

\section*{Antarctic survey employs satellite navigation}

Equipment is to be fitted to the vessel Shackleton to enable it to employ the navigation satellite system on its latest exploratory mission. The object of the trip, which is organized by the British Antarctic Survey, will be to investigate the Scotia Ridge where normal optical navigation is very difficult because of persistent cloud cover.

The equipment will consist of a Magnavox satellite navigation system operating in conjunction with a Hewlett-Packard computer. The ship's position will be read-out every two hours to an accuracy of about 100 yds . Using the system it will be possible to relate magnetic and seismic data from different voyages to each other and the sea bed.

The satellite navigation system to be fitted in the Shackleton.



The new communications centre recently commissioned by the Parts and Accessories Department at Vauxhall Motors, Dunstable headquarters. The object of the centre is to speed up the supply of spare parts to the trade. The centre has the largest telephone answering system in the U.K., a teleprinter terminal and a computer visual display installation. Roughly 2,500 orders for spare parts, from a 58,000 item stock inventory, are processed each day.

\section*{Omega coverage extended}

The coverage of the Omega radio navigation system is to be extended to cover all parts of the world before the end of 1972 . The four transmitters in operation at the present time allow accurate position fixing to be carried out (within one mile) in the north Atlantic and in the eastern section of the north Pacific.

The additions to the system, as announced by the American Defense Department on October 22nd, will consist of another four transmitters sited to cover the western Pacific, the Tasman sea, the Indian Ocean and the southern tip of South America. Rather than seek permission to erect and operate American stations on the territory of other countries, the intention is to enlist the countries concerned in a joint operation the advantage of navigators of all nations.

During the past year American representatives have discussed the question of siting the transmitters with officials from countries in which the stations might be located. These overtures have been met with a "general enthusiasm" for the joint venture scheme.

The first U.K. merchant ships to install an Omega receiver are the Manchester Challenge and the new Cunard liner Queen Elizabeth 2. These receivers are manufactured by the Northrop Corporation of America and marketed in the U.K by Marconi Marine.

\section*{A replacement for the t.w.t.?}

Germanium avalanche diodes have converted direct current to both pulsed and c.w. power at room temperature with an efficiency of 43\% at the American Eell Telephone Laboratories. This represents more than three times the maximum efficiency obtained with the earlier Impatt (for impact avalanche tran-sit-time) mode of operation first reported by Bell Labs in early 1965. When operating in the new mode, the germanium diodes pro-
duced 5.3 W of c.w. power at 450 MHz , and 7.5 W of pulsed power at 3 GHz .

The new mode of operation resembles the Impatt mode during part of a cycle, but long delays due to "trapped" carriers occur during the rest of the cycle. Therefore the new mode has been named Trapatt, for TRApped Plasma Avalanche Triggered Transit.

Last year scientists at R.C.A. had obtained high efficiencies from pulsed silicon avalanche diodes at u.h.f. (from 500 to 1000 MHz ). These results were explained by saying that microscopic filaments were formed within the diodes. Because the enormous current densities that would occur in a filament would almost certainly preclude continuous operation, which is essential for most communications applications, only limited importance was attributed to the early results. The recent work established an alternative mechanism for high efficiency operation and in addition revealed natural phenomena which suppress filament formation in diodes operating in the Trapatt mode.

High efficiencies were observed at Bell Laboratories early in 1968 during studies of a wide variety of Impatt diodes. The formation of new modes of oscillation in these diodes depended critically on the external circuit conditions.

Therefore, several computer programmes were developed to simulate the new modes of oscillation. Precise measurements of experimental circuit and diode parameters provided the input data for these simulations. Computer-generated displays were then made to show how certain interdependent physical and electrical parameters within the diode vary as a function of time.

Essentially, it was discovered that the high efficiencies were the result of an alternate cycling of the diode between a zero-voltage, high current state (the "trapped plasma"), and an Impatt period, which is a highvoltage, low current state. The output frequency of a Trapatt diode is at most one half that of a corresponding Impatt diode.

In addition to explaining the high efficiencies exhibited by a diode in the Trapatt mode, the analysis of the computer output also suggests that it may be possible to simulate on a computer a whole family of related microwave power generation modes, as yet unknown and unobserved.

For at least some applications, Bell Labs claim that avalanche diodes operating in the high-efficiency Trapatt mode may eventually replace the high-frequency travelling-wave tube, one of the last members of the electron tube family to be threatened by the continuing trend to solid-state devices.

The Trapatt mode was described in two letters to the Proceedings of the I.E.E.E., September issue.

\section*{New cable links to the Continent}

A \(£ 3 \mathrm{M}\) contract has been awarded to Submarine Cables Ltd, of the GEC-AEI group, by the Post Office. The contract is for three submarine cable systems to be installed between the U.K. and Germany, the U.K. and Belgium and the U.K. and the Netherlands.

The cable systems, which employ transissor repeaters and have a design life-time of 25 years, use 21 supergroups in each direction providing 1,260 telephone circuits at 4 kHz intervals. Where local conditions render it prudent the cables will be armoured.

\section*{New display contract for Heathrow}

Recommendations are being drawn up by the British Airports Authority's consultants Electronic Facilities Design Lid on new display equipment for Heathrow airport.

The new equipment will be needed because of the impending introduction of the Boeing 747, America's "Jumbo Jet", in 1970. The seating capacity of the new aircraft is 490, meaning that during peak periods baggage and passenger reception facilities will have to handle 5,000 arrivals per hour.

To cope with this flow comprehensive display and information equipments will be required. Various electronic and mechanical keyboard-operated displays are being evaluated for the system.

It will be interesting to see if the "wired in'" display systems will win the day over the more expensive, but more flexible, software controlled displays.

\section*{Lidar applied}

The diversity of the work carried out at the Ministry of Technology's Warren Springs Laboratory at Stevenage, Heris, can be assessed in a recently published annual report (H.M.S.O., price 9s 6d). The Laboratory's committee says that six firms have derived a new annual turnover of over \(£ 1 \mathrm{M}\) after spending only \(£ 15,000\) on sponsored research at the laboratory.

The laboratory has purchased a Lidar system (L.aser Radar-see "News of the Month" September 1968, p.307) to study the mechanics of smog production. Work on pollution of the atmosphere has shown that the importance of carbon monoxide as a pollutant may have been over-emphasised in the past and further work is going on to confirm this.

The twelve one-week courses on computer control of chemical and process plant held by the laboratory were well attended and the possibility of holding more is being discussed with a number of firms.

Methods of handling powdered and granular materials, of increasing importance in these days of thick film circuits, is also being studied.

\section*{Single-tube colour camera}

A single-tube colour television camera has been produced by R.C.A. that will be available in this country shortly at about half the cost of a conventional colour television camera. The operating principle is quite straightforward. Light from the scene to be televized passes through a striped filter before impinging on the target of a vidicon

Various display systems being demonstrated to the British Airport Authority at Heathrow. The large display at the centre of the picture is an Eidophor.



The single-tube colour television camera from R.C.A.
tube. The filter is divided into 250 vertical strips, alternate strips passing only red or only blue light.

The target is scanned in the normal way. However, in scanning, the electronic circuitry takes into account the fact that known sections of the target correspond to the blue component and other sections to the red component of the scene being televized. The signals corresponding to red and blue can therefore be reconstituted and by normal matrixing methods the green signal can also be formed.

The camera will be available initially with an N.T.S.C. output only. The camera weighs about 45 kgs and is 25 cm high, 12.5 cm wide and 63 cm long.

\section*{Military electronics in the ' 80 s?}
"Electronics; The Armor of the Eighties," was the theme of the address by Russel D. O'Neal, assistant secretary of the U.S. Arny at the Army Concept 85 Symposium, jointly sponsored by the Electronic Industries Association and the Army's Combat Development Command in America.

Gazing into the crystal ball and attempting to foresee the use that will be made of electronics in the eighties, Mr. O'Neal said; "I think we derive a clue to one answer by examining two contemporary systems. The countermortar radar, in use on the battlefield today, detects and tracks mortar shells in flight in order to compute the position of the mortars from which they were fired. The Sentinel radar system detects and tracks ballistic missiles with such precision that defensive missiles can be launched and guided to intercept them."

He said that on the basis of these two systems, "one is entitled to make a speculative extrapolation. I suggest for your consideration small, fast-scanning, phased-array radars, perhaps aided by infrared and able to detect and track incoming bombs, artillery shells and mortar rounds. Then counterweapons will be speedily, automatically and precisely directed against the incoming munition and will destroy or disable it before it arrives
within lethal radius of its target."
In addition to the detection, location and guidance aspects of electronics, Mr. O'Neal noted that electronic warfare would probably take place in the form of computer-controlled jamming devices. "Even laser range finders will be attacked and disabled electronically," he said.

\section*{Integrated circuit logic systems design and practice}

This is the title of a one-week course being held jointly by Mullard and the Northern Polytechnic in London. At the time of writing (late November) the first course has just been completed and according to the sponsors has been a great success. In all, seven courses are to be held at the rate of one each month for about twenty engineers.

The courses are intended for engineers as yet unfamiliar with the subject. The sessions are arranged to move progressively from an introduction to the theory of logic, to the use of integrated circuits in typical systems. A good deal of emphasis is being placed on practical work.

Interested readers should contact the Department of Electronic and Communications Engineering, Northern Polytechnic, Holloway Road, London N.7. The fee for the course, which includes all meals and hotel accommodation, is \(£^{26} 16 \mathrm{~s} 9 \mathrm{~d}\).

\section*{Weather radar ring completed}

The last of the eight wind-finding and weather-watching radar units to be installed in Australia has been commissioned at Darwin airport, Northern Territory.

Known as the W'F 44, the radar has been designed and manufactured by Plessey Radar Ltd, at a cost of \(\$ A 180,000\) a unit. The other units are at Brisbane, Queensland, Laverton, Victoria, Mt Gambier, South Australia, Port Hedland, W.A., Port Moresby, Territory of Papua-New Guinea, Sydney, N.S.W'. and W'oomera, S.A.

The radar has a dual role-it can be used to detect winds in the upper atmosphere for military, civil aviation, and general forecasting purposes, and to detect tropical cyciones

This fully-automatic equipment records signal generator frequency drift at the Fleetville Works of Marconi Instruments in St. Albans. Checks are carried out at two temperatures over a 15-hour period. The equipment was designed and assembled by the company's test gear maintenance section.

and storms up to 150 miles away.
Meteorologists at Darwin will be able to provide airline pilots with up-to-the-minute forecasts and warnings of extreme weather conditions at take-off and landing, particularly during the wet seasons when turbulence and thunderstorm activity are at their maximum.

\section*{Diploma of measurement and control}

The Institute of Measurement and Control has established its own diploma which is roughly equivalent to H.N.D. Accordingly an examination will be held in north and south England and in Scotland based on a syllabus designed by the Institute which has been used as a guide for many years in several schools and colleges.

The announcement was made by D.C. Nutting, president of the Institute, at the annual dinner of the Manchester section on November 14th. The diploma will have value in fields other than those of measurement and control, as Mr. Nutting said: "It may be called a diploma of a certain proficiency in automation, because automation depends entirely on control, which, in turn, cannot be exercised without measurement".

A further part two qualification specified by the Institute will allow the successful candidate to proceed to corporate membership. Details of part two will be announced by the Institute in the near future and will be comparable to a degree.

\section*{Martel contract}

An order worth several million pounds sterling has been placed with The Marconi Company by the Ministry of Technology, for television guidance systems for the first production models of the Anglo-French Martel guided missile.

This order follows a successful series of firing trials in which the performance of the complete missile system was confirmed. The missile is now being evaluated by the Joint Services Technical Unit, based at Boscombe Down. The missile has been developed jointly by Marconi (guidance), Hawker Siddeley Dynamics and Engins Matra of France.

A small sensitive television camera, carried in the nose of the missile, provides a highquality picture from which any type of target can be positively identified.

This "Missile-eye-view" is transmitted back to the launching aircraft, where the observer is able to follow the missile flight on a highbrightness television monitor.

A joystick control in the cockpit enables him to adjust the field of view of the camera, over a command radio link. Control signals are then generated within the missile itself to align the flight path with the axis of the television camera.

\section*{TV licence fees}

The increase in the television licence fees announced by the Postmaster General on July 23rd come into effect on January 1st when the monochrome licence is increased from \(£ 5\) to \(£ 6\) and that for colour from \(£ 10\) to \(£ 11\). The sound radio licence remains \(£ 1\) 5s.

The Regulations laid before Parliament on November 19th also introduce a new licence


Three atomic caesium beam clocks are to be employed at the Royal Greenwich Observatory at Herstmonceux. Two of the clocks have already been installed by Hewletl Packard.
for Old Persons' Homes. This will cover the; use by residents of sets in their own rooms and the fee will be 1s per resident. Homes will be eligible for the new licences provided they meet the following conditions:
(a) the purpose of the Home is to provide accommodation for pensioners:
(b) they have some communal facilities for their residents:
(c) they are provided by a local authority, or registered with the local authority, or provided by a housing association in collaboration with the local authority.

The existing Old Persons' Homes Licence introduced on March 1st, covers the use by residents only of battery-operated sets. The new licence covers both mains- and batteryoperated radio and television sets. The Postmaster General announced this extension on July 25 th.

The concession applies only to sets privately owned by residents and used in their own rooms. Any communal sets will still need to be licensed at the standard fee.

\section*{British t.t.l. range receives C.N. approval}

Ferranti Led. announces that C.N. (Common Network) approval has been granted by the design authority, the Royal Radar Establishment, Malvern, for t.t.l. integrated circuits in the Micronor 5 range. The qualification approval covers 32 plastic dual-in-line and flat-pack devices in the military series 5400 E and 5400 F , and in the industrial series 7400 E and 7400 F . This is the first occasion on which such approval has been granted for wholly British-designed, developed and produced t.t.t. integrated circuits.

\section*{Naval contract}

The digital Systems Department of Ferranti Ltd., with Decca Radar Ltd. as a major subcontractor, has been awarded a contract worth over \(£ 1 \mathrm{~m}\) to meet the Royal Navy's requirement for an automated operations room for frigates and similar ships. The system is known as Computer Assisted Action Information System (C.A.A.I.S.).

The equipment, based on a FM1600B computer, correlates information from sonar, radar and other electronic aids to target tracking and presents it in an easily assimilated form.

\section*{Circuit Ideas}

\section*{The first selection of readers' designs submitted in reply to our open invitation}


Fig.1. Conventional self-adjusting shunt diode noise limiter using thermionic diodes (see for example the A.R.R.L. Handbook).


Fig.2. Forzard characteristic of some semiconductor diodes.

Fig.3. Semiconductor version of shunt diode noise limiter; \(D_{2}\) compensates for forward voltage drop of \(D_{3}\).

circuit. The back-off diode should be of the same type as the shunt diode, \(D_{3}\); however, if the supply voltage is stable and ambient temperature variations are small, \(D_{2}\) may be replaced by an appropriate resistor with little loss in performance. Because of their relatively high slope resistance, the performance of point contact diodes is inferior to that of germanium gold bonded devices.

When the circuit of Fig. 3 was tested with a transistor receiver covering the 70 MHz amateur band, excellent suppression of car ignition interference was observed, even in the absence of a received carrier and with a peak-to-peak receiver background noise output at \(D_{3}\) anode of only 150 mV .
David A. Tong,
Chemistry Department,
Glasgow University

\title{
High Performance Automatic Gain Control
}

\title{
Circuitry employing high level detection and amplified and delayed a.g.c., for improved linearity at small signal levels, and obtaining greater audio output
}

\author{
by L. Nelson-Jones, M.I.E.R.E.
}

With the exception of certain specialized communications equipment, the majority of a.m. receivers, and tuners have some form of a.g.c. system to allow for widely differing signal levels, and to combat fading. Some years ago when thermionic valves were the rule for all such receivers, the a.g.c. performance of all but the cheapest receivers was of quite a high order. However with the almost complete takeover by semiconductors, particularly in the consumer market, the performance of many a.g.c. systems seems to have taken a big step backwards.
The almost universal use of low level detection systems may be one of the reasons for this state of affairs. The low level detector performs well from the detection point of view, but in producing only a low lèvel of d.c. output, does not lend itself well to the requirements of an a.g.c. system, or the inclusion of accurate a.g.c. delays.

\section*{High level detection}

Some three years ago the author started developing a high level detection system which incorporated delayed, but not amplified, a.g.c. This first step in itself gave much improved results, and was incorporated in a very successful automobile broadcast receiver.

Fig. I shows the circuit used. The delay of the application of a.g.c. comes from the emitter potential of the controlled stages. The transistor \(T r_{2}\) being reverse biased until the emitter potential of \(\operatorname{Tr}_{1}\) exceeds that of the controlled stages. The high level detector is a conventional diode circuit, but instead of a resistor, the diode load is the input of an emitter follower, resulting in a high value of load resistance, and enabling the whole secondary winding of a typical double tuned i.f. transformer to be coupled to the detector. The result is a d.c. rectified output linear up to several volts at the emitter of \(\operatorname{Tr}_{1}\). The limit to linearity being set by overload of the last i.f. amplifier. The detector diode and emitter follower are forward biased by the small voltage developed across the \(330 \Omega\) resistor in order to further improve the linearity at small signal levels. The greater complexity of the high level detector is offset to a great extent by the much higher level of audio output obtained at the emitter of \(T r_{1}\), (typically \(200-600 \mathrm{mV}\) r.m.s. for \(30 \%\) modulation).

\section*{Amplified a.g.c.}

Further development of the high level detector has led to a circuit having a similar number of components, but giving amplified, and delayed a.g.c.-see Fig. 2.

The high level detector itself is very similar to that of Fig. 1, except that silicor devices are used, and the forward bias is derived from two forward biased diodes \(D_{1}\) and \(D_{2}\). Now however instead of using an emitter follower in the a.g.c. contra system, a p-n-p transistor \(T r_{2}\) is connectec in the collector circluit of the \(\mathrm{n}-\mathrm{p}-\mathrm{n}\) emitter follower of the high level detector. This transistor is caused to conduct, producinea.g.c. current when the collector current o. \(T r_{1}\) rises to a point where the voltage drof across the collector resistor \(R_{1}\) exceeds the forward voltage required to cause \(T_{r_{2}}\) tc conduct, i.e. when \(\dot{R}_{1} \cdot I_{T r_{1}}=V_{\text {be: }}\) The emitter potential of \(T r_{1}\) will then have riser to a value of
\[
\frac{V_{b e} \cdot R_{2}(1+\beta)}{R_{1} \beta}
\]
which for \(\beta \gg \mathrm{I}\) approximates to
\[
\frac{V_{b e} . R_{2}}{R_{1}} .
\]

An emitter voltage of +2 volts was decidec upon, giving a value of \(R_{1}=1.5 \mathrm{k} \Omega\) witt a \(5 \mathrm{k} \Omega\) emittêr resis̀tor (volume contra potentiometer with log. track).
\(R_{1}\) is bypassed by an electrolytic capacitor in order to eliminate the audio component: of the collector cutrent of \(\mathrm{Tr}_{1}\). The a.g.c.

Fig. 1. \(\operatorname{Tr}_{1}\) provides a high value of load for detector diode \(D_{1}\) in the high level detector circuit. \(\operatorname{Tr}_{2}\) controls the current in \(\operatorname{Tr}_{3}\) and \(T r_{4}\), when the emitter of \(T r_{1}\) becomes more negative than the emitter of \(T r_{2}\).



Fig. 2. Delayed a.g.c. current is provided by \(\mathrm{Tr}_{2}\) when the voltage drop in \(R_{1}\) exceeds the forward bias of \(\mathrm{Tr}_{2}\).


Fig. 3. The a.g.c. current from \(\mathrm{Tr}_{2}\) reduces the gain of \(\mathrm{Tr}_{3}\) by reducing the current of the stage as the current in \(\mathrm{Tr}_{2}\) rises.


Fig. 4. The a.g.c. current from \(\mathrm{Tr}_{2}\) reduces the slope impedance of the diodes with increasing current in \(\mathrm{Tr}_{2}\), producing increased shunting of the load of \(\mathrm{Tr}_{3}\).
current from \(\operatorname{Tr}_{2}\) may be used in a number of ways, for instance :-

A resistor may be connected as shown in Fig. 3 so that an increase in current in \(\mathrm{Tr}_{2}\) causes a decrease of current in \(T r_{3}\), the controlled stage. This is of course normal reverse bias a.g.c., and has a number of disadvantages. First the controlled stage is called upon to handle the largest signals when it is least able to do so, through lack of current. Secondly under these conditions of low gain, and hence low current in the controlled stage, severe distortion of the modulation envelope can take place, unless very careful attention is paid to the application of the control current to the various controlled stages. It is also necessary to bypass the emitter resistor of the controlled stages to both r.f. and a.f. in order to combat distortion, as shown in Fig. 3. This is a point often overlooked by designers.

There is the alternative method of control, using the collector current of \(\mathrm{Tr}_{2}\) to vary the loss of a diode attenuator network. A suitable circuit is shown in Fig. 4. The diode network is used to shunt some high impedance point in the amplifier, so that the stage gain is progressively reduced by increasing current in \(\mathrm{Tr}_{2}\).

The use of a balanced circuit with two diodes ensures that the collector resistor of \(T r_{2}\) does not also shunt the signal path, and that the attenuator has a large linear region

(a)

(b)

Fig. 5. Additional delay is applied to early stages either by (a) placing a zener diode in series with the feed to the first diode attenuator \(D_{1} / D_{2}\), or by (b) reverse biasing these diodes.
for both positive and negative going signals, since the \(V_{f} / I_{f}\) curvature of the two diodes will cancel to a large extent so far as signals applied to the junction of the two diodes are concerned. The capacitor connected across the diodes ensures that the diodes are effectively in parallel at radio frequencies, whilst being in series to the d.c. control signal. The resistor shown dotted, is needed to ensure that there is a sharp knee to the a.g.c. characteristic. The diode current required to produce quite appreciable gain reduction in such a circuit is only of the order of a few microamperes, at which current the control transistor \(\mathrm{Tr}_{2}\) will have little current gain. The resistor bypassing the diodes ensures that the current in \(\operatorname{Tr}_{2}\) reaches a level at which the transistor has reasonable gain before the dtodes begin to conduct. With a bypass resistor of \(4.7 \mathrm{k} \Omega\), and with silicon diodes, the a.g.c. action begins when the collector current of \(T r_{2}\) reaches approximately \(250 \mu \mathrm{~A}\).

\section*{Practical application of the a.g.c. system}

It is normal in a receiver to apply a.g.c. to more than one stage, and also to apply additional delays to the various stages so that control is first applied to the later stages, and then to earlier stages as the
signal level rises. This staggering of the application of control is necessary in order to obtain the best overall signal to noise ratio.

Having established the level of signal at which the a.g.c. control loop commences to function, it is necessary to modify the conrrol circuits to all but the final controlled stage to ensure that they come into operation in the correct sequence. Figs. 5 (a) and 5 (b) illustrate two ways in which this may be achieved.

In Fig. 5(a) a zener diode is used so that the current in the diode attenuator connected to the earlier stage does not commence to flow until the current in the diode attenuator connected to the later stage has already produced considerable attenuation of the overall gain. The resistor shown dotted is sometimes needed to ensure a smooth transition as the first attenuator takes over.

In Fig. 5(b) a similar effect is produced by the reverse bias applied to the attenuator diodes.

Although many good transistor a.g.c. systems must have been designed over the last few years, very little seems to have been published about them, whereas nearly all textbooks, and manufacturers' literature contain simple a.g.c. systems, using low level detection and unamplified a.g.c.

The author has therefore attempted to


Fig. 6. Delayed and amplified a.g.c. system applied to an auromobile broadcast receiver. Fast attack with slow decay characteristics are given to the a.g.c. loop by the 125 and \(40 \mu F\) capacitors.
outline one method of approach which he has found to be most effective in producing a good a.g.c. performance, providing of course that it is correctly applied. It is important to ensure that overloading of stages does not take place. In this respect it is most important that no reverse bias a.g.c. is applied to the i.f. stage driving the detector, or insufficient power will be available, the stage will overload at high levels of signal, and a high level of distortion will be present in the detected output. It is also important to ensure that the delays chosen to separate the levels of operation of the a.g.c. loop on the various stages should have a small overlap. For example it is important to ensure that if the control range of the last controlled stage is say, 40 dB , then the second control loop must come into operation just before the signal has risen 40 dB above the level at which a.g.c. commences. This aspect is not normally a problem with diode attenuators since their effect is an increasing attenuation up until \(\operatorname{Tr}_{2}\) bottoms, so that it is obvious that earlier attenuators must come

Fig. 7. Audio and noise output versus input level for the circuit of Fig. 6.

into operation before this point or they will be totally ineffective. It is therefore only necessary to set suitable voltage levels for the changeovers, bearing in mind the available voltage excursion at the collector of \(T r_{2}\). The exact changeover points must be the subject of experiment, especially if the optimum noise and intermodulation performance is being aimed at, and in this respect a diode attenuator at the input of the receiver can greatly assist in reducing intermodulation, and may also be of assistance in protecting the input stage from voltage surges due to static. On the subject of noise and intermodulation the author would refer his readers to a most excellent book by Rheinfelder \({ }^{1}\) on these subjects.
Finally, Fig. 6 shows the system described, as applied to a recent automobile broadcast receiver, an application where a.g.c. is of great importance. The performance achieved is illustrated in Fig. 7. A transistor is used in the r.f. stage, with a diode attenuator at the aerial input. The mixer and oscillator stages use n -channel f.e.ts. The f.e.t. of the mixer stage is used with a transistor to form a cascode arrangement allowing a higher value of load impedance without instability problems. A low level of oscillator injection is used to reduce intermodulation and spurious responses. The f.e.t. oscillator stage is zener diode stabilized.

In Fig. 6, it will be seen that there is an additional electrolytic connected to the collector of \(\mathrm{Tr}_{2}\). This capacitor provides the a.g.c. time constant together with the capacitor in the base circuit of \(\mathrm{Tr}_{2}\). This arrangement results in a fast attack time and a slow decay time. The relative rate of decay to attack can be controlled by the value of the capacitors used, particularly the value of the capacitor in the collector circuit of \(T r_{2}\). In an automobile receiver a moderately slow decay has been found desirable with a very fast attack time, in order to both protect the listeners ears from sudden blasts of sound when tuning across the band, and to prevent sudden blasts of
noise as the vehicle passes under screening structures, such as railway bridges Finally a word of warning. It is tempting to place : small capacitor across the emitter resistor ol \(T r_{1}\) to further remove residual r.f. from the audio output, but to do so will cause a very adverse ratio of d.c. to a.c. load as seen by the detector, resulting in an inability to handle high modulation percentages. The input impedance of the a.f. stage followingthe detector should therefore be resistive ur to, and including, the intermediate frequency and the response of the amplifier shoulc be arranged to remove the small residual i.f component.

\section*{REFERENCE}
1. 'The Design of Low Noise Transistor Input Circuits' by William A. Rheinfelder, publishec by Hayden Book Company, New York.

\section*{"Noise in Transistor Circuits"}

In Part I of this article (Nov. issue) the footnote to the middle column of page 392 should read as follows:
*** The shot-noise formula is usually given in the form of equation (9), i.e. \(\boldsymbol{i}^{2}=2 q I_{\text {te }} B\). If, however, the device giving shot noise is fed with constant current, then the shot-noise voltage across it is given by: \(\overline{e_{N}}=2 q I_{a c} B r^{2}\), where \(r\) is the small-signal a.c. resistance of the device.

In Part 2 (Dec. issue) the following corrections should be made to Fig. 9. In diagram (b) the formula for the right-hand noise current generator should be \(\frac{\sqrt{2 q I_{c} B}}{r_{b^{\prime} e} g_{m}}\). In diagram (c) the right-hand current generator should be labelled \(-g_{m} v_{b^{\prime} e}\).

\section*{Letters to the Editor}

The Editor does not necessarily endorse opinions expressed by his correspondents.

\section*{Further Bailey amplifier mods}

1 read with interest the modifications of the 30-watt amplifier by Dr. Bailey in the November issue. It seems that I am not the only person who has been troubled by the reversible output electrolytic which is both big and expensive. Maybe it will be of interest to your readers to see how this capacitor can be eliminated if a power supply with positive and negative rails is used. As the main reason for using the output capacitor is to avoid d.c. voltages across the speaker, it is obvious that a heavy negative d.c. feedback could do the same thing. A double \(R C\) filter with a long time constant is used. In order to ensure good a.c. attenuation in the feedback loop, the bias resistors of \(\mathrm{Tr}_{2}\) have been changed. The lower part is in fact formed by the filter resistors in series with the speaker. No bad behaviour of the modification has been noticed, and it has furthermore been possible to put a complete stereo-amplifier into a box measuring only \(28 \times 19 \times 5 \mathrm{~cm}^{3}\).
Ole Holmskov,
Horning,
Denmark.
The author replies
I was very interested to read the letter from Mr. Holmskov. I quite appreciate his point regarding the size and cost of the output capacitor and agree that it would be better if it could be omitted entirely. For most speaker systems the amplifier will be quite safe with the capacitor omitted, even in the original circuit, bur difficulties arise if the output is short-circuited owing to the very low output impedance. As the d.c. output
impedance is so low ( 10 to 20 milliohns), then only a very small offset voltage will cause a large current to flow in a shortcircuited output. This will eventually destroy at least one of the power transistors unless an extremely large heat-sink is used. The same problems apply where the amplifier is used to drive into a transformer. What is required therefore, is a high output impedance at d.c., and negative current feedback at d.c. is therefore to be preferred to additional voltage feedback. I have not looked at possible means of doing this, but with one or two additional transistors it may be possible.

I therefore feel that the possibility of catastrophic failure exists in Mr. Holmskov's circuit, although admittedly under conditions of misuse. Nevertheless, amplifiers are liable to misuse, so I cannot help feeling that any loss in possible reliability is to be avoided, even at the cost of using an output capacitor. Arthur R. Bailey

\section*{Helical u.h.f. aerials}

Mr. Davies' article in the November issue in which he describes a helical aerial for the reception of Bands IV and V, prompts us to give a reminder that good aerial performance is an important factor in obtaining the best results from the u.h.f. relevision transmissions. Any suggestion which promotes the use of good domestic aerials is certainly to be welcomed. Whilst not wishing to detract from Mr. Davies' intentions in this direction, we must point out a serious drawback to the general adoption of circularly polarized receiving aerials.


In planning for national u.h.f. coverage of up to four television programmes with a limited number of available channels, it is inevitable that the same channels must be shared by a number of transmitters and relay stations. By employing horizontal polarization for the transmitters and vertical polarization for the relay stations, and assuming certain minimum performance characteristics for the viewer's aerials, it is possible to plan for acceprably low levels of co-channel interference. The assumed aerial characteristics in this context relate to the discrimination against the opposite polarization (i.e. against vertical polarization if the local transmissions are horizontally polarized and vice versa) and to the horizontal pattern which provides directional discrimination. (Recommended minimum characteristics are laid down by the C.C.I.R.) As a circularly polarized aerial will respond equally to any orientation of linear polarization, it will give insufficient protection against co-channel interference. To put it another way, the widespread use of aerials having no discrimination between horizontal and vertical polarization would have the effect of reducing the service areas of transmitters, because the limit of service would correspond to higher field strengths (up to 8 dB higher) to achieve the same standard of reception.

Mr. Davies suggests that the helical aerial is less prone to "flutter" effects. Whilst it is true that a radio link using circularly polarized aerials at both the transmitter and receiver terminals has some immunity from the effects of random reflections, it is difficult to see why helical aerials should be better on the average in this respect when the transmissions are linearly polarized.
J. L. Eaton,
L. F. Tagholm,
B.B.C. Research Department,

Tadworth,
Surrey.

\section*{Editorial comment}

The writers are perfectly correct, of course, in pointing out the potential danger of cochannel interference in some areas, if aerials which do not discriminate against the polarity of transmission of the unwanted station are used. We would go further and emphasize that this danger is not always appreciated on initial installation because all the u.h.f. transmitters planned for national coverage are not yet operating, and interference which is absent at that time may appear at some time later. The opening paragraph of the article did state that the characteristics of the helical aerial may be a disadvantage in some areas, and the question of co-channel interference is a case in point. However, while the transmission polarization may remain reasonably constant throughout the normal service area, the wave may arrive at a more distant receiving aerial displaced from the true vertical or horizontal, and in these cases the helical aerial may be used with advantage. The distance between transmitter and receiver at which the aerial described was used was 65 miles and while this is well outside the designated service area for the Oxford transmitter, there are many cases where viewers attempt reception from adjacent
areas until their locality is served by its own transmitter. It may be that even in urban areas with four local transmitters in operation, due to multiple reflections, the four waves may arrive at different angles of polarization. As regards the statement that the helical aerial is less prone to "flutter", this was based entirely on the author's practical experience. The aerial shown in our photograph is erected on a bungalow in the flight path of a large airfield which is approached by aircraft at a height of 500 ft . Under these conditions, when using a conventional horizontal Yagi array, large colour changes are produced on a colour receiver, but not when using the helix.-ED.

\section*{Correction}

It has been pointed out by E. H. Davies, the author of the article "A Helical Aerial for Bands 4 and 5", that the dimension S in Fig. 4. should have been drawn from the centres of the tubes.

\section*{Frequencies for amateur TV transmitters}

From a report appearing in The Engineer for 11th October 1968, it is understood that Mr. J. R. Brinkley of S.T.C. is urging that the lower limit of the ultra-high frequency band allocated to business radio should be extended downward from 450 to 420 MHz .

I wish to draw the attention of your readers to the fact that the bands from 425 to 429 MHz and 432 to 450 MHz are allocated on a shared basis to the Amateur Service and other users.

This portion of the sprectrum which Mr. Brinkley wished to annex is extensively occupied both by communications stations and some 70 privately owned television transmitters in all parts of the United Kingdom.

\section*{D. S. REID,}

British Amateur Television Club.

Until recently, the Amateur Service occupied a continuous band of frequencies from 426 to 450 MHz on a shared basis with other services. The G.P.O. told Wireless World that the other users, whose identity they cannot disclose, now have exclusive use of frequencies between 429 and 432 MHz and to compensate for the loss of this band of frequencies, the amateur band has been extended down to 425 MHz . (See also "United Kingdon Licence Changes" in this month's "World of Amateur Radio"). ED.

\section*{Improper oscillations in transistors}

Everyone well acquainted with the literature on the parameters of available transistors knows that one resistor and one capacitor cannot cause a transistor to oscillate. The limit of phase-shift of a single \(R C\) combination, the known phase shifts within the transistor itself, the rigid limits of voltage and current magnification in the three usable configurations; all these considerations seem to rule out such a possibility completely.

Happily, the transistor (like the well-known Columbian egg) does not read, and can there-
fore be persuaded to oscillate cheerfully under the conditions mentioned. There is but one proviso: the transistor employed must be of an appropriate species, namely one of planar or similar internal geometry, of reasonably high gain, and preferably of the high-frequency type.

Since the general introduction of silicon planar, high-frequency transistors, there have been occasional complaints of "spurious oscillations" when these newer devices have been directly substituted for the older types. What follows is not intended to provide an anodyne for the resulting headaches but, on the contrary, to elevate the oscillations themselves to a position of respectability, by giving them the dignity of a definition and a name.

For convenience and brevity, any transistor that can be induced to oscillate in a circuit recognisably similar to that in Fig. 1, will be said to exhibit "P-effect." The circuit shown represents the minimum necessary conditions under which the presence of the effect may be registered. Since \(C\) need only be very small in practice (a few pico farads), it might well be represented by the effects of associated wiring. This is mentioned so that anyone wishing to check the writer's conclusions may take the obvious precautions.

The components \(R\) and \(C\) act effectively as timing elements, \(R\) doubling rôles as a supplier of current bias to the transistor.

To produce the effect in a practical circuit, select a high-gain transistor, and with \(C\) equal to \(0.01 \quad \| \mathrm{F}\) and \(R\) a variable resistor of, say, 1 megohm, adjust the bias until, with a supply voltage of 9 volts, around 10 mA flows in the supply line. An audible tone may now be extracted at medium impedance from the base, or at low impedance from the supply line, the source impedance (assuming a battery to be used) providing the load.

By inspecting the resulting waveform (Fig. 2) the nature of the oscillation is immediately apparent. The steep transients and the familiar saw-tooth shapes, show that the term "relaxation oscillator" is appropriate.

As might be expected, the frequency is roughly proportionate to the inverse of the \(R C\) product, and the simple modification to the circuit shown in Fig. 3 allows this to be


Fig. 1.

Fig. 2.
(below)



Fig. 3.


Fig. 4.


Fig. 5.
verified over a fair range of frequencies
The addition of a second resistor (Fig. 4, may obscure the basic simplicity of Fig. 1. but introduces the interesting feature of series charging of capacitor \(C, R_{2}\) being now the principal timing element.

The introduction of a current limitingresistor is a natural temptation, especially as this can function as a formal load against which to extract the signal.

The results of such modifications are interesting. P-oscillations tolerate only trivial loads in both emitter and collector circuits. Moreover, the effects of both types of load are very similar. It appears, indeed, that the transistor "sees" such loads merely as an addition to the source impedance.

Predictably, P-oscillations are readily synchronised with sharp pulses applied 10 the base of the transistor, at a frequency slightly higher than the free-running value. This feature immediately suggests a number of practical uses.

In a letter, commentary must necessarily be abbreviated, so the following five short notes must do duty for a more elaborate analysis.
1. Thermal stabilization by feedback resistor (Fig. 5) is the more practical method.
2. Transistor noise in P-mode operation is a problem, but not an insuperable one.
3. Extended practical tests show that Poscillation is not a destructive process.
4. The range of frequencies obtainable is surprisingly great; the ratio \(1000: 1\) is typical.
5. At the upper frequency limit, the waveform closely approximates 10 a sinusoid of diminished amplitude.

Naturally, the writer has his own views on the precise nature and cause of these oscillations, but the need for brevity precludes comment on this relevant aspect.
D. B. PITT

Nottingham

\section*{The new EMITAPE JHFOMic range of low noise tape}
den't buy any tâpe buy ヨM T迎


Model G-18 watts. Fitted with \(\frac{3}{32}\) bit. Interchangeable spare bits \(\frac{1}{\frac{1}{8}}\), \(\frac{3}{16}\) " and \(\frac{1}{4}\) ". For 240,220 or 110 volts. 32/6


Model E-20 watts. Fitted with \(\frac{1}{\frac{1}{2}}\) "bit. Interchangeable spare bits \(\frac{3}{32}{ }^{\circ}, \frac{1}{18}{ }^{\text {" }}\) and \(\frac{3}{16}\) ". For 240,220 or 110 volts. FROM 35/-


Model ES-25 watts. Fitted with \(\frac{1}{6}\) bit. Interchangeable spare bits \(\frac{3}{32}{ }^{\prime \prime}, \frac{3}{16}\) " and \(\frac{1}{4}\) "。 For 240, 220, 110, 24 and 12 volts. FROM 35/-


Model F- 40 watts. Fitted with \(\frac{8}{18}\) "bit. Interchangeable spare bits \(\frac{1}{4}\) ", \(\frac{3}{18}\) ", \(\frac{1}{6} * \frac{3}{3^{2}}\) For \(240,220,110,24\) and 20 volts. FROM \(42 / 6\).


\footnotetext{

To: Antex, Mayflower House, Plymouth, Devon.
Please send me de-soldering kit \(\begin{aligned} & \square \text { (with foot pump) } \\ & \square \text { (without foot pump) }\end{aligned}\)
Please send me the Antex colour catalogue \(\square\) Please send me the following irons \(\square\)
Quantity Model Bit Size Volts Price

I enclose cheque/P.O. cash value
NAME
ADDRESS
}

COMPLETE PRECISION


Supplied in its own compact, rigid plastic container and includes all of these items.

CN 15 watts 240 volts miniature model ( \(\frac{3}{16}{ }^{\prime \prime}\) ) bit \(\cdot 2\) interchangeable spare bits ( \(\frac{5}{32}\) " and \(\frac{3}{32}{ }^{\prime \prime}\) ) - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand - storage space for lead and plug.

49/6
DE-SOLDERING KIT


Efficient de-soldering is assured with this high speed method from Antex. Soldered joints soon dissolve leaving a clean finish, thanks to the exclusive Antex-designed suction nozzle. Operation is by compressed air from an airline or foot-pump. No vacuum supply is needed.
Two models are available, complete with 6 ft . nylon airline, 6 ft .3 cote flexible lead and \(\frac{1}{8}{ }^{\circ}\) "BSP Male and \(\frac{3}{8} " 26\) T.P.I. Male Adaptors.

Or complete with foot-pump
84'(Nett Trade)

FROM
32'6
ACTUAL SIZE
CN 15 watts, fitted \(\frac{3}{32}^{\prime \prime}\) Ferraclad bit. The leading iron for miniature and micro miniature assemblies 18 interchangeable bits from \(.040(1 \mathrm{~mm})\) up to \(\frac{3}{16}\) for \(240,220,110,50\) or 24 volts.

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares.World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour catalogue will be supplied on request.


PRECISION MINIATURE SOLDERING IRONS Made in England

Antex, Mayflower House, Plymouth, Devon.
Telephone: Plymouth 67377/8 Telex: 45296
Giro No. 2581000

\section*{Balanced and Stabilized Power Units}

\section*{A balanced voltage supply unit and an economical voltage stabilizer}
by C. F. Ho,* m.Sc.(Eng.), M.I.E.R.E.

In circuit development work a power supply with both positive and negative outputs relative to a common terminal is often needed. To use two separate power packs to achieve this end is undesirable as there is a perpetual shortage of power supplies in most laboratories. Fig. 1 shows a circuit which permits the formation of two balanced supplies from a single unbalanced one. It was constructed as an adaptor to be used with the economical voltage stabilizer; however, it
*University of Hong Kong
may be employed with any conventional voltage regulator.

The circuit operates as follows: A voltage divider, \(R_{1}, R_{2}\) and \(R_{3}\), establishes a reference voltage at the base of transistor \(T r_{1}\) which is equal to half the input voltage. \(T r_{1}\) and \(T r_{2}\) form a differential amplifier where the base of \(T r_{2}\) is in the negative feedback path from the emitters of transistors \(\operatorname{Tr}_{5}\) and \(\mathrm{Tr}_{6}\). When unbalanced loads are connected to the output terminals, the output common terminal's potential tends to shift up or down with respect to the positive or negative rails. The

Fig. 1. Balanced power supply circuit.

resultant difference voltage, which occurs between the bases of \(T r_{1}\) and \(T r_{2}\), is amplified by the two differential amplifiers and is used to turn on \(\mathrm{Tr}_{5}\) or \(\mathrm{Tr}_{6}\) thus correcting the output voltage at the common terminal.

With the component values shown the unit can provide an output of up to 12 V at a maximum current of 250 mA . Larger output current is obtainable by replacing \(\mathrm{Tr}_{5}\) and \(T r_{6}\) with higher power transistgrs. Resistors \(R_{11}\) and \(R_{12}\) need not be used if the input voltage regulator is current limited.

\section*{Economical voltage stabilizer}

The voltage regulator, the circuit of which is shown in Fig. 2, is conventional. The potential divider, \(R_{12}, R_{13}, R_{14}\) and \(R_{15}\) samples the output voltage. An emitter-coupled differential amplifier formed by transistors \(T r_{6}\) and \(T r_{7}\) compares this sample with a reference voltage and the resultant difference signal is amplified by transistor \(T r_{5}\) and applied to the base of the control tlement \(T r_{3}\) and \(T r_{4}\). A pre-regulator, \(T r_{1}\), is employed to improve the input voltage regulation and to reduce the output resistance of the regulator

Short-circuit protection is incorporated by means of \(T r_{2}\). Under normal operation, \(\boldsymbol{T r}_{2}\) is not conducting. When the regulator output is short-circuited or overloaded, the potential at the base of \(\mathrm{Tr}_{2}\) becomes more negative than that at its emitter. Thus, the collector current of \(T r_{2}\) flowing through \(R_{6}\) is applied to the base of \(T_{r_{s}}\) and is sufficient to saturate the later. The control element has its base at ground potential and is turned off instantaneously. As soon as the short-circuit is removed, the regulator is restored to its normal operation. The overload trip-current is set by \(R_{3}\)

The output voltage of the regulator can be varied from 0 to 25 V at 500 mA . Output resistance is less than \(0.1 \Omega\) and maximum peak-to-peak ripple voltage is not more than \(200 \mu \mathrm{~V}\).

All diodes are formed by the base emitter junctions of CS9013 transistors. Incidentally all transistors are Fairchild planar silicon types.

Fig. 2. The circuit of the economical voltage stabilizer. The base-emitter junctions of transistors are used as diodes.


\title{
Digital Exposure Timer
}

\title{
Stable exposure times are obtained from a timer having a logarithmic scale with eighth-root-of-two intervals.
}

\author{
by G. Coates, B.Sc.
}

A reader's letter in Wireless World \({ }^{1}\) brought attention to the fact that present photographic exposure timers were not designed with photographers in mind! This timer is an attempt to resolve the position. It can increase exposures in increments of one-eighth stops; can time subsequent exposures at the same setting to within 10 ms ; and has an accuracy of better than one percent.

The main components, transistors, diodes and resistor's, can be bought from advertisers in this journal for about 3d, 2d, and \(1 \frac{1}{2} \mathrm{~d}\) each, respectively. In this way the timer can be built for less than \(£ 10\) including the case.

Although the timer has been designed as an enlarger exposure timer, sufficient details are given to enable the basic design to be modified to suit other applications.

The circuitry is quite extensive, and care should be taken to test surplus components before use, otherwise fault-finding becomes somewhat tedious.

\section*{Determination of the binary equivalent of each state}

For photographic purposes a timer is required whereby the ratio of each time increment to the one following is a constant.

If successive times of
\[
T ; a_{1} T ; a_{2} T \ldots \text { etc. }
\]
are required, then:
\[
\frac{a_{1} T}{T}=\frac{a_{2} T}{a_{1} T}=\frac{a_{3} T}{a_{2} T} \ldots \text { etc. }=\text { a constant }
\]
therefore:
\[
a_{1}=\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}} \ldots \text { etc. }
\]
and:
\[
\begin{equation*}
a_{2}=a_{1}^{2} ; a_{3}=a_{1}^{3} \ldots \text { etc. } \tag{1}
\end{equation*}
\]

If \(n\) divisions are required between binary stages, then:
\[
a_{n} T=2 T \text { or, } a_{n}=2
\]

From (1),
\[
\begin{aligned}
a_{n} & =a_{1}{ }^{n}=2 \\
\therefore a_{1} & =n \sqrt{2}
\end{aligned}
\]
and,
\[
a_{2}=2^{2 / n} ; a_{3}=2^{3 / n} \ldots \text { etc }
\]

Appendix I gives a rigorous proof that the time divisions for each state can be found on the counter by sampling the binary equivalent of the appropriate root of two. These binary numbers are independant of the basic time interval \(T\).

The time between one stage on the counter and the next can therefore be divided into any number of parts according to the basic law of the \(n\) th. root of two.

Appendix II shows how to calculate the binary equivalent of \(2^{x / n}\), so that the reader can construct a decoding network for a greater or lesser number of divisions between stages. For the timer described, however, the binary equivalents of \(2^{a / 8}\); where \(a=0,1,2 \ldots 7\) are given in the table below.
\begin{tabular}{c|l}
\hline Power of 2 & \begin{tabular}{l} 
Equivalent \\
Binary No.
\end{tabular} \\
\cline { 1 - 1 } 0 & 1000000 \\
\(1 / 8\) & 1000110 \\
\(1 / 4\) & 100100 \\
\(3 / 8\) & 1010011 \\
\(1 / 2\) & 1011011 \\
\(5 / 8\) & 1100011 \\
\(3 / 4\) & 1101100 \\
\(7 / 8\) & 1110101 \\
\hline
\end{tabular}


Grahame Coates was educated at Nottingham University from 1959 to 1962 during which time he specialized in automatic control systems and was president of the University Radio Society. He then joined the East Midlands Electricity Board as a graduate trainee, and is now an assistant commercial engineer with Eastern Electricity, responsible for power supplies, and for industrial development in the Luton district. His hobbies include electronics and photography.
evels of -9 V or O V ) and a binary number, between IOOO and -IIII can be written for any particular state. State IIOO would, or example, be \(1.5 T_{1}\).

If only one intermediate value between \(T_{1}\) and \(T_{2}\) were required, hen this would be \(2^{\text {i }} \cdot T_{1}=1.414 T_{1}\). There are eight possible itates, representing \(1.000 T_{1} ; 1.125 T_{1} ; 1.250 T_{1}\) etc. As 1.375 is tearest to I.414, this could be chosen.

The binary equivalent of 1.375 is I.OII, and therefore the desired ntermediate state would be when the output of stages \(1 ; 3\) and 4 -rre at I ; and stage 2 at O .

The outputs of the binaries are fed into a NAND gate, the diodes orming a tree as shown schematically in Fig. I. It is not necessary o use the complement output of the binary stage (at O ), as there is 10 ambiguity in this circuit.

There is an inaccuracy in following the \(n \sqrt{2}\) law, because 1.375 was chosen as the nearest "fit" to 1.414 . The absolute accuracy for zach value of \(n\) is different, but calculable, as shown in appendix III. The inaccuracy can be made as small as required by using a larger number of stages. The prototype timer has a seven-stage counter, increasing the \(n\)-root-two-law accuracy to \(0.85 \%\) or better.

With seven stages, \(64\left(=2^{6}\right)\) states are possible, of which eight are chosen to give the nearest fit to the timing law, giving eighth time values. In fact a greater number of divisions could be easily made, as the additional complexity of, say, twelve divisions would be very small (a matter of adding twelve diodes to the decoder).

A greater number of stages will increase the minimum timing -period ( \(T_{1}\) in Fig. 1) for a given input frequency, as this is divided by two for each stage. In this design, the number of stages, \(k\), is related to the minimum timing period, \(T_{m i n}\), and the input -frequency, \(f\), by the expression:
\[
T_{m i n}=\frac{2^{k-1}}{f}
\]

The accuracy of "fit" to any law is a function of the number of stages, and is \(100 \times 2^{-k} \%\) or better.

This seven-stage counter will time between \(T_{1}\) and \(T_{2}\) only. Times in excess of \(T_{2}\) can be obtained by reducing the input frequency. A nine-stage binary divider feeds the counter, so that nine ranges, each one time-value wide, can be selected, by adding the desired number of divider stages in front of the counter.

The outputs of the binaries are reset to I at the start. The first pulse sets all the stages to \(O\), switches the output on, and the count begins. The circuit is arranged to operate in this way, as otherwise the output would not necessarily switch on at the start of an input pulse.

Although the frequency of the mains can fluctuate by more than \(1 \%\), variations of this order only occur during periods of winter peak demand: normally fluctuations are smaller than this. For photographic purposes the error is negligible. Obviously, the accuracy could be increased up to the limit set by the decoding error by deriving the counter input from a crystal controlled oscillator.

\section*{Detailed description}

The timer utilizes sixteen bistable circuits. The bistable circuit used in the prototype is given in Fig. 2, and is that of a "preassembled logic unit" offered by one of the advertisers in W'ireless World for 5/-each.

Almost any bistable circuit is usable and that given for the Wireless W'orld digital computer \({ }^{2}\) could be used as an alternative, with appropriate changes in the line voltages.

Since times are derived from the 50 Hz mains supply, to obtain the required accuracy the decoder requires seven binary stages. Thus the smallest setting of the timer is \(2^{7} \times 10^{-2}=1.28 \mathrm{~s}\). The longest period required is 10 minutes, i.e. \(60,000 \times 10 \mathrm{~ms}\). The maximum count where 16 stages are used is \(2^{15}\) which is 59,904 , equivalent to a duration of 9 minutes 59.04 seconds. 16 stages are therefore required.


Fig. I. Counter waveforms.


Terminols \(S \&\) R not required for B 10 to B 17 ,
components \(D_{a}: C_{b} \& R_{d}\) npt required on \(B_{1}\) or \(T_{b}\) side of bistable B 17 , on \(T_{a}\) side these comprise \(\mathrm{G}_{2}\) terminal \(Q\) not required for \(B 18811\) to \(B 17\)

Fig. 2. Bistable circuit and logic diagram.

The counter logic diagram, and decoder circuits are shown in Fig. 3. 10 ms pulses in antiphase are fed into a pre-selected binary stage by \(S_{1 a}\) and \(S_{1 b}\). \(S_{1}\) allows for selection of the basic time periods, each equivalent to an increase in exposure of one stop. The time values are numbered from I to 9 in the prototype, as it is quite unnecessary to know the time in seconds for photographic purposes. Switching to the next higher time unit will double the timing period, which is precisely the method best suited for timing exposures.

One-eighth time values are selected from the outputs of \(B_{10}\) to \(B_{16}\) inclusive. These outputs are fed into a diode decoding network, the appropriate fractional time values being selected by \(\mathrm{S}_{2}\). \(S_{1}\) provides a one-stop increase or decrease in exposure whatever the position of \(S_{2}\).

Although the decoder looks complicated, it represents only the diode inputs of a diode-transistor NAND gate, \(\mathrm{G}_{1}\). The diodes are connected to the outputs of the bistable stages according to the presence of a I in the binary equivalent of each state.
\(\mathrm{B}_{17}\) is a bistable, the purpose of which is to lock off the output after one timing period.
\(\mathrm{G}_{3}\) is a NAND gate which drives the thyristor through a pulse amplifier. The load is on when the output is O .

The operation of the circuit is as follows:-
Assuming the a.c. load to be off, the output of \(\mathrm{G}_{3}\) will be I. \(\mathrm{S}_{5}\) is pressed closed, driving the reset line to I . This holds all the counter stages at \(I\) and drives the output of \(B_{17}\) to \(I\). As all stages of the counter are at I initially, \(\mathrm{G}_{1}\) output will be at O , whatever the position of \(S_{2}\). This output is connected to the input of theNAND gate, \(G_{3}\) and the output of \(G_{3}\) will therefore be at \(I\), holding the a.c. load off.

If \(S_{5}\) is now released, the counter will be allowed to count. The


Switches
\(S_{\uparrow}\) 3pole 9 way (1 to 9 : time value)
\(\mathrm{S}_{2} 1\) pole 8 way ( 0 to 7 : eignth time value)
\(\mathrm{S}_{3}\) Normally closed push-button (stop)
S4 2 pole 3 way (auto-tocus manual itunction)
\(\mathrm{S}_{5}\) Normally open push-button (start)
Fig. 3. Counter logic diagram and decoder circuits.


Fig. 4. Monostable circuit.
first 10 ms . pulse will ripple through the counter changing all the outputs to \(O\). \(G_{1}\) will go to \(I\), and \(G_{3}\) to \(O\), as both the inputs of the gate will be at I. The a.c. load will switch on as a result. The bistable, \(\mathrm{B}_{17}\) will not be affected, as a positive pulse through gate \(\mathrm{G}_{2}\) is required to switch it.

The count continues until all the diodes in the selected decoding tree, and \(D_{22}\), are connected to I outputs. The effect of this is to turn the output of \(G_{1}\) to \(O\) for the duration of 10 ms . A positive pulse through \(G_{2}\) switches the bistable so that gate \(G_{3}\) goes to \(p\), and remains at I whatever the state of \(G_{1}\); as the output of \(B_{17}\) is \(I\), and cannot be reset to \(O\) until \(S_{5}\) is again pressed. \(G_{3}\) thus switches the a.c. load off.
\(C_{1}\) is included in the circuit of \(G_{1}\) so that it's input has an inherent delay. This is necessary as when the counter ripples through a pulse to the end of the counter, (i.e. when \(B_{16}\) is about to change to I), the decoder diodes "see" a I on each stage for a short transient period.
\(C_{1}\) is selected such that the gate does not pass this transient, but passes the 10 mS . pulse at the end of the timed period.
\(\mathrm{S}_{\mathrm{A}_{\mathrm{b}}}\) includes a position to allow manual operation of the unit. One of the inputs of \(G_{1}\) is held at O by \(D_{23}\) connected to the oV
rail. No pulse can now be passed through \(G_{1}\), and the timer does not switch off until the stop button, \(\mathbf{S}_{3}\), is pressed.
\(\mathrm{S}_{3}\) may be used when timing to switch off the load before the end of the count. This is useful too when the apparatus is initially switched on, should \(\mathrm{B}_{17}\) fall into the "wrong" state.

The focus position of \(S_{4}\) allows the lamp to run at half-power, by gating the output so that one cycle in two is passed.

The same effect could have been obtained by half-wave rectifying the lamp supply, but in this case direct current would be drawn from the supply. This is undesirable, as it is usual for the lamp supply to be taken via a constant voltage transformer, when colour prints are made with an enlarger. (Variation in supply voltage would cause a variation in colour balance in the print). The operation of the constant voltage transformer would be adversely affected should it pass direct current.

20 ms pulses are obtained from the \(\overline{\mathrm{Q}}\) output of the bistable following the input bistable, selected by \(S_{1}\), The output goes to O about 3 ms . after the start of a half-cycle, thus it is not possible to apply these pulses directly to the output gate, \(\mathrm{G}_{3}\), as the Thyristor would have fired at the start of one of the two half-cycles which must be suppressed. The pulses are applied to a monostable, such that a positive-going pulse on the input causes the output to drop to O for about 27 ms .

Whilst \(S_{4}\) is in the "focus" position, the inputs of \(G_{3}\) from \(B_{17}\) and \(G_{1}\) are arranged to be at \(I\). A \(O\) on the input from the monostable will therefore cause the thyristor to stop conducting at the end of the current half-cycle. When \(S_{4}\) is in either of the other two positions, the monostable will remain off, with the output at \(I\), and will not affect the other modes of operation.

As the output of the monostable drops to O some 3 ms after the start of a half-cycle, it can only inhibit the output of the timer for the two subsequent half-cycles, and the duration of the quasi-stable state must be such that the monostable output returns to I at the end of the second half-cycle. Resistor \(R_{25}\) in the monostable should be selected to achieve this. The value used in the prototype was \(68 \mathrm{k} \Omega\). If an oscilloscope is not available for selecting this value, a d.c. voltmeter can be inserted across the lamp: \(R\) should be varied until the needle oscillates about its unenergised position.

The 50 Hz . input to \(S_{1 a}\) and \(S_{1 b}\) is derived from a 12 volt winding
on the mains transformer. The diodes, \(D_{30}\) and \(D_{3 i}\), provide pulses in antiphase for driving the d.c. inputs of the bistables.

The full circuits of the monostable, gates and thyristor output are shown in Figs. 4 and 5. The connexion of these circuits to the bistables is straight forward, and is indicated in Fig. 2, which also shows the diode decoding network connexions.

\section*{Power supplies}

Supplies of -9 V and +6 V are required. The power supply stabilizer regulates with only a small voltage drop across the series transistor. Also, it is cheap to construct with selected surplus transistors.

The power-supply circuit diagram is shown in Fig. 6. The prototype was designed to be used with a constant-voltage transformer, which had an isolated secondary winding.

The bridge rectifier, \(D_{26}\) to \(D_{29}\) connects each of the two poles of the supply alternately to the -9 V rail, which is therefore connected to the earthed chassis.

If the timer is to be used without an isolating transformer, either the components must be screened from earth (the screen being connected to the -9 V rail) or an alternative method of switching incorporated which does not require the circuits to be floating, otherwise 50 Hz hum will cause maloperation of the timer.

The 10 ms pulses are obtained from (B) and (C) (Fig. 6). These pulses are, in fact, half-sine waves: this does not matter, as the bistable connected to them will square them up for the following stages.
The n-p-n transistors of the stabilizer should be silicon planar types, and the serics stabilizer transistor \(\operatorname{Tr}_{5}\left(\operatorname{Tr}_{10}\right)\) should be germanium. This is essential, as the voltage across \(R_{17}\left(R_{18}\right)\) should be as large as possible for the efficient working of the stabilizer, but is limited to the difference between the base-emitter voltages of \(T r_{5}\) and \(T r_{6}\left(T r_{7}\right.\) and \(\left.T r_{8}\right)\). Loop instability is avoided without the use of a capacitor by selecting a high frequency transistor for \(T r_{9}\left(\operatorname{Tr}_{10}\right)\), and a low-frequency transistor for \(T r_{5}\) \(\left(T r_{7}\right) . R_{19}\) should be selected to give a voltage of -9 V , and \(R_{21}\) to give +6 V .


Fig. 5. Power control circuit.
Fig. 6. Power supply circuits.



The completed timer
(Right) Fig. 7. Completed assembly.

\section*{Construction}

The bistables and gates were built on a \(5^{\prime \prime} \times 33^{\prime \prime}\) piece of Veroboard, and the power supply on a piece \(33^{\prime \prime} \times 2 \frac{1}{2}\) ". The high packing density to achieve this was facilitated by pre-assembling the bistable circuits-the photographs make this clear.

No indicator lamps were used in the prototype, as the timer is used for colour printing which is carried out by the author in complete darkness-even a red light would affect the colour emulsion.

\section*{Operation}

The mode of operation is selected by \(\mathrm{S}_{4}\). In the auto position, the exposure is made by depressing and releasing the start button, \(\mathrm{S}_{5}\), the duration being set by the position of \(S_{1}\) and \(S_{2}\). This can be cut short, if required, by depressing the stop button.

The focus position allows the lamp to be run at half power. In this way a larger lamp can be used in the enlarger without overheating it, as it is left on for the longest period whilst the desired size and framing of the print is chosen. The final focusing can be carried out at full brightness by pressing and holding the start button. Alternatively, the manual position of \(\mathrm{S}_{4}\) can be used, which allows the exposure to commence by pressing \(S_{5}\), and finish by pressing \(\mathrm{S}_{3}\).
The timer described offers a method of timing based on a logarithmic law, with high accuracy and repeatability, and can be used for timing enlargements in black-and-white and colour.

Nearly all serious amateur photographers who process their own colour prints use the "white light" (one-exposure) method; whereby the colour corrections are made by inserting subtractive colour filters in the path of the light. This timer enables the tricolour (three-exposures through red, green and blue filters) method to be used too. This has hitherto been almost impossible, as the inaccurate repeatibility of other methods of timing made the cancellation of colour imbalance a matter of chance.

The timer also allows small adjustments to the exposure to be made without affecting the colour balance.

When used with the "white light" method, the timer allows the use of logarithmic filter factors, (see App. IV). This simplifies the calculation of exposures when changing filters to addition and subtraction, instead of multiplication and division.
The spare Veroboard connector indicated in Fig. 7 is reserved for circuitry allowing audible indication of completed timing periods.


No further details are given here, but the author hopes to publish details shortly.

\section*{Appendix I}

Consider a counter of \(k\) stages, with an input pulse period of \(\tau_{k}\) secs, then the period of the next stage is \(\tau_{k-1} \operatorname{secs},\left(=2 \tau_{k}\right.\) secs.) etc. to the first stage, the period of which would be \(\tau_{1}\left(=2^{k-1} \tau_{k}\right)\) secs.

The \(k\)-stage counter could exist in \(2^{k}\) different states. If the counter started counting from zero to a number, then the time T , taken to reach this number would be:-
\[
T=\phi \tau_{k}=2^{1-k} \phi \tau_{1}
\]
where \(\phi\) is an integer.
Expanding,
\[
=a_{1} \tau_{1}+a_{2} \tau_{2}+a_{3} \tau_{3} \ldots \ldots a_{k-1} \tau_{k-1}+a_{k} \tau_{k}
\]

The coefficients,
\(a_{1} a_{2}\) etc. can have the value of O or I , as the output of each stage of the counter can only be one of two states.
Thus:
\[
a_{1} a_{2} d_{3} \ldots \ldots a_{k-1} a_{k}
\]
is a binary number equal to \(\phi\).
In this design selection can be taken from only half of the possible states of the counter, as states are selected only when \(a_{1}=1\).
\(\phi\) is therefore an integer between \(2^{k-1}\) and \(2^{k}\); there are \(2^{k}-2^{k-1}=2^{k-1}\) integers, of which \(n\) are chosen so that \(T=2^{a / n} \tau_{1}\) ( \(a=\) an integer between O and \(n-1\) )
\[
\therefore \phi=2^{a \ln } \cdot 2^{k-1}
\]

The binary equivalent of each state is therefore obtained by calculating the binary number equal to the appropriate root of 2 and multiplying it by \(2^{k-1}\). (This, in effect, merely removes the "decimal" point from \(2^{n / n}\) expressed in binary form).

\section*{Appendix II}

\section*{Calculation of the binary equivalent of \(2^{x / n}\)}

If a binary number equal to \(2^{x / n}\) is written:
\[
\text { I. } a_{1} a_{2} a_{3} a_{4} \ldots \ldots a_{n}
\]
(the most significant digit must be an I)

Then, \(\quad a_{1}=\frac{1}{2}\) (decimal)
\[
a_{2}==\frac{1}{4}
\]
\[
a_{3}=\frac{1}{8}
\]
\[
\begin{aligned}
& a_{1}=2^{-1} \text { or } \mathrm{O} \\
& a_{2}=2^{-2} \text { or } \mathrm{O} \\
& a_{3}=2^{-3} \text { or } \mathrm{O}
\end{aligned}
\]
\[
a_{n}=2^{-n}
\]

Each digit may, of course, be zero, depending on the number changed to binary notation.

The decimal fraction of \(2^{x / n}\) is first calculated, and all possible coefficients of the binary number are subtracted from the fraction. A 1 is written for each possible subtraction, and a O for each impossible one.

The following example will make this procedure clear.

\section*{Example}

Calculate the binary equivalent of \(2^{\frac{1}{2}}\)
\[
\begin{aligned}
\log .2 & =\mathrm{Q} .3010300 \\
+2, & =0.1505150 \\
\text { antilog } & =1.414214
\end{aligned}
\]
\begin{tabular}{|l|c|}
\hline Decimal & Binary \\
\hline 1.414214 & 1 \\
1 & 1 \\
\hline 0.414214 & \\
0.5 & 10 \\
0.25 & 101 \\
\hline 0.164214 & \\
0.125 & 1011 \\
\hline 0.039214 & 10110 \\
0.062 & \\
0.03125 & 101101 \\
\hline 0.007964 & \\
0.015625 & 1011010 \\
0.007813 & 10110101 \\
\hline
\end{tabular}
\(\therefore\) binary number equal to \(2^{\frac{1}{2}}\), to seven significant digits.
\(=\) I.OIIOII
and the "binary equivalent" is IOIIOII.

\section*{Appendix III}

\section*{Calculation of errors}

The decoding error is the ratio of the decimal equivalent of the binary number used for decoding, to the actual decimal number.

For example, the decimal equivalent of IOIIOII is \(\mathrm{I}+0.25+0.125 \ldots\) etc. \(=1.421875\).

The percentage error is, therefore,
\[
\frac{100(1.421875-1.414214)}{1.414214}=0.542^{\circ}
\]

The maximum percentage error is plus or minus the duration of the \({ }^{(k+1)}\) th. significant digit, as a percentage of \(2^{1 / n}\).

\section*{Hence:}

Maximum decoding error \(= \pm 100.2^{-k} \cdot 2^{-1 / n} \%\).
The maximum error for this equipment is therefore, \(\pm 0.85 \%\).

\section*{Appendix IV}

\section*{Filter factor conversion table}

To find the logarithmic value of the filter factor, (filter value Fv) read the time value in the top row, and the fractional time value in the left column, for the appropriate factor.
E.g. find the filter value of 6: Nearest factor \(=6.2 ; F v=2 \frac{5}{8}\).
\begin{tabular}{l|c|c|c|c|c}
\hline & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 1.0 & 2.0 & 4.0 & 8.0 & 16 \\
\(1 / 8\) & 1.1 & 2.2 & 4.4 & 8.7 & 17 \\
\(1 / 4\) & 1.2 & 2.4 & 4.8 & 9.5 & 19 \\
\(3 / 8\) & 1.3 & 2.6 & 5.2 & 10.5 & 21 \\
\(1 / 2\) & 1.4 & 2.8 & 5.7 & 1.5 & 23 \\
\(\mathbf{5 / 8}\) & 1.5 & 3.1 & 6.2 & 12.5 & 25 \\
\(3 / 4\) & 1.7 & 3.4 & 6.7 & 13.5 & 27 \\
\(7 / 8\) & 1.8 & 3.7 & 7.3 & 14.5 & 29 \\
1 & 2.0 & 4.0 & 8.0 & 16 & 32 \\
\hline
\end{tabular}

When changing filters, the sum of the filter values of the old pack is subtracted from, and the sum of the filter values of the new pack is added to, the exposure (in time values).

Tables for fractions other than \(\frac{n}{8}\) can be calculated from the expression:
\[
\text { filter factor }={ }_{2} F^{\prime} v
\]

\section*{REFERENCES}
r. Smethurst, P. C., "Electronic Devices", Wireless World, August 1967. p. 404 (Letters).
2. "Wireless World Digital Computer," Wireless World, August 1967, pp. 369-37r.

\section*{H.F. Predictions-January}

Ionospheric and magnetic storms are becoming more frequent, a rough pattern being two disturbed periods per month spaced by about ten days. The 27-day recurrence cycle, which is moderately successful as a basis for longterm forecasts, places the first disturbance around the 5th to 9th. Paths crossing the auroral zones are subject to a variable excess, sometimes total, absorption. Most of the variations can be overcome by operating near the FOT as indicated by the Montreal LUF curve. When this correction is not required the predicted LUF drops to 3 MHz from 22.00 to 08.00 G.M.T. and peaks to 8 MHz at 16.00 . All LUFs are calculated by Cable \(\&\) Wireless for reception in the U.K. of point-to-point telegraph transmissions at quiet sites with directive aerials.

——Median standard MUF
- - - - - Optimum tratfic trequency
-. - - Lowest usable H F

\section*{Wireless World Colour Television Receiver}

\author{
8. I.F. amplifier construction and alignment
}

Several photographs show the layout of components on the printed-circuit i.f. board. The main copper area is at chassis potential and the \(-20-\mathrm{V}\) supply line is a copper ring around the periphery of the board. As explained in Part 7, the positive of the supply is the earthy side.

The transistors used in the vision i.f. stages are types BF167 for the first stage and BF173 for the other two. These are metal case types with a small projecting tag. Held upside down with this tag towards one and looking at the four connecting wires, the connections are base, emitter, collector and screen, starting with the wire to the left of the tag and going round clockwise. The BF 184 for the video stage has the same connections.

In the sound i.f. amplifier BF194 transistors are used. These are in moulded cases and held upside down with the flat side of the case towards one the connections are base, emitter,
collector, starting from the left. Apart from their cases the BF184 and BF194 are substantially identical.

The BC108, used for the a.g.c. circuits, is a metal-case type with a tag at the side, like the BF167, BF 173 and BF184, but there are three leads only. Note particularly that the order of connection is different; going clockwise and starting with the lead on the left of the tag, the order is emitter, base, collector.

Before mounting them it is a good plan to check all transistors and diodes with an ohmmeter. With the Model 8 Avometer on the ohms range, the forward resistance between base and emitter is about \(1.8 \mathrm{k} \Omega\) and the back resistance is too high to indicate; between emitter and collector the resistance both ways is too high to indicate.

The BC108 type has a somewhat lower forward resistance between base and emitter, around \(1 \mathrm{k} \Omega\). Diodes have a lower

Top view of the complete vision and sound i.f. amplifiers, first video stage and a.g.c. system. Note that \(C_{15}^{\prime}\) of \(0.01 \mu F\) is not shown in the circuit diagram of Fig. 1, Part 7. It is in parallel with \({C^{\prime}}_{15}\) save for its actual point of connection to the chassis.

forward resistance which varies from about \(500 \Omega\) to \(1 \mathrm{k} \Omega\) according to type, and a back resistance too high to indicate.

The test is a rough one and shows only gross defects. Nevertheless it definitely indicates a broken-down junction, for this will show low resistance in both directions. The test is also useful when the components are wired in circuit, but it is then less definite for there are nearly always other resistances in shunt which prevent an infinite reading of back resistance from being obtained. However, usually the resistance read in the forward direction will be lower than that in the backward.

The test can also be used to indicate the 'way round' of diodes for in some types this is not always completely clear from their marking. The forward direction of low resistance is, of course, with the positive of the ohmmeter battery applied to the anode and the negative to the cathode. It is all a little confusing; however, because it is the cathode of the diode which is indicated in red when a coloured marking is adopted because, when a diode is used as a rectifier, the d.c. output is positive at the cathode.

Then with the usual multi-range meter the terminal marking and lead colours are normally arranged to indicate polarity for the measurement of an external voltage, which means that when used as an ohmmeter with an internal battery the polarity of the voltages available at the leads for external use is the other way round. Thus, with the usual meter, forward conduction of a diode is obtained when the positive terminal of the meter is connected to the diode cathode!

It is advisable, of course, to check all components before mounting them. One does occasionally meet with good parts which are wrongly marked. In colour coding, brown and red or yellow and orange can be mistaken for each other in some lights, especially if all the resistors are not of the same make. This warning is not just academic, it actually occurred in the


General view of the i.f. board with the sound channel towards the front of the picture and the delay line on the right.
development of the equipment. A resistor coded for \(4.7 \mathrm{k} \Omega\) turned out to be \(470 \Omega\), this was actually wrongly marked for there was no question but that the band was red.

When mounting components on the printed circuit it is advisable to bend over the ends of the leads before soldering. It is advisable, however, not to have the component resting on the board on one side and the leads bent over tightly on the other. With the component resting on the board and the leads through the mounting holes in the board, bend the leads at right angles with about \(1 / 16\)-in clearance from the board. Then solder the leads to the board so that the component itself stands clear of the board by this amount.

This greatly facilitates the removal of the component if it should ever be necessary. By applying a soldering iron alternately to the two leads while pressing gently on the component it can be pushed back against the board so that the bent ends of the leads stand clear and can be straightened. A second application of the iron then allows the component to be easily removed.

Under view of the printed-circuit board. The two capacitors marked \(0001 \mu F\) are not shown on the circuit diagram. As explained in the text, they are extra capacitors to reduce feedback. They may or may not be necessary and, in some cases, others may be required.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Coil & Wire Gauge & Turns & Coil & Wire Gauge & Turns & Coil & Wire Gauge & Turns \\
\hline \(\mathrm{L}_{1}\) & 30 & 15 & \(\mathrm{L}_{6}\) & 24 & \(5 \frac{1}{2}\) & \(\mathrm{L}_{12} . \mathrm{L}_{13}\) & 40 & 22each spaced \(3.5 \mathrm{~mm}{ }^{*}\) \\
\hline \(L_{2}\) & 24 & 14 & \(L_{4} \mathrm{~L}_{8}\) & 38 & 25 each bifilar & \(L_{14} \cdot L_{15}\) & 40 & 22 each spaced \(3.5 \mathrm{mm*}\) \\
\hline \(L_{3}\) & 24 & 11 & \(L_{\text {\% }}\) & 42 & 75 on Neosid \(\mathrm{CH}_{2}\) core & \(L_{16}\) & 40 & \(18 \dagger\) \\
\hline \(L_{4}\) & 24 & 14 & \(L_{19}\) & 38 & 36 C.T. & \(L_{17}\) & 40 & \(12 \dagger\) \\
\hline \(L_{5}\) & 24 & \(3+1\) & \(\mathrm{L}_{11}\) & 42 & 70 & \(L_{18}\) & 42 & \(25+25\) bifilart \\
\hline
\end{tabular}
\(*_{12}\) and \(\mathrm{L}_{14}\) are at the bottom of the former
\(\dagger L_{18}\) is at the bottom of the former \(L_{19}\) is spaced 2.5 mm from \(L_{18} L_{16}\) is at the top of the former with no spaping from \(L_{19}\) All wire is s.w.g. enamelled copper. All coil connections are as viewed from underneath.

Fig. 1. In Part 7 the type numbers were given of Brayhead coil formers and cans. These are no longer available but identical parts can be obtained from Neosid under different type numbers. With two Bxceptions, all formers are type 722/1 with cans 7100. The exceptions are \(L_{7},{ }_{8}\) and \(L_{16},{ }_{17},{ }_{18}\), which have 722/4 formers and 7101 cans. All formers required a terminal base 5027. They all have a diameter of \(\frac{3}{16} \mathrm{in}\).; the available windjing length of the short ones is \(\frac{5}{8}\) in. and that of the long ones \(1 \frac{9}{16}\) in. \(L_{7}, 8\) and \(L_{18}\) have Neosid long screw cores \(4 \times 0.5 \times 12.7\); all other coils have short cores \(4 \times 0.5 \times 6 / 900\).

In particular, do not bend over the tags of the coil cans. If they are bent over the cans are very difficult to remove and in the process the tags usually break off. Let the tags pass straight through the board and let the solder pile up round the tags.

Details of the coils are given in one of the drawings (Fig. 1.) and in most cases the winding is straightforward. The visiondetector and the ratio-detector couplings are the most difficult because the whole detector circuits are included in the cans as well as the coils. The difficulty arises because there is little room within the cans and great care must be taken to avoid
short-circuits to the cans. Physically small components and subminiature diodes are essential.

The board is mounted on a pair of hinges alongside the luminance-amplifier board and connected thereto by leads of just sufficient length to permit either board to be lowered to the horizontal position with the other vertical. This can be done without the video lead exceeding about 3 inches, and the length of the others is not important. On the vision side all coil cores except that of the detector coupling are adjustable from the top; only the detector is adjustable from the bottom. On the sound side, however, each can has two cores, one adjustable from the top and the other from the bottom.

Details of the delay line will be given in a future article. It is not necessary until the colour circuits are brought into operation and on monochrome it serves no useful purpose save to provide some i.f. filtering. Until the colour circuits are operating, therefore, it can be replaced by an r.f. choke, which can be a duplicate of \(L_{9}\).

The tuner used is a commercial one and is the A.B. Metal Products "U.H.F. Quarter Wave Transistor Tuner". The connections for it are given in Fig. 2. This has two transistors, one acting as an r.f. amplifier and the other as a mixer-oscillator. This particular tuner consumes about 6 mA at full gain and about 10 mA at low gain, at 12 V . For it, resistor \(R_{32}\) is made \(560 \Omega\) and \(R_{33}\) is \(100 \Omega\) and a resistor of \(2.2 \mathrm{k} \Omega\) is connected between the two, but at the tuner end. This arrangement gives a tuner supply which varies berween about 10 V and 12.5 V with a.g.c. and brings the negative tuner line above the \(-20-\mathrm{V}\) line by the proper amount to give the correct minimum bias to the r.f. stage.

The drawings show the tuner connections. In addition to the components which are mounted on the underside of the printed circuit board of the tuner and which are supplied with it, a \(470-\Omega\) resistor \(R^{\prime}\) is connected as shown for the emitter resistor of the r.f. stage; a \(2.2 \mathrm{k} \Omega\) resistor \(R^{\prime \prime}\) is connected between the tuner positive and negative lines and a capacitor \(C^{\prime}\) of 68 pF is connected between the X terminal and the tuner case, the coaxial output cable being joined across this. This cable should not exceed 2 ft in length and the capacitance actually used for \(C^{\prime}\) must be modified in accordance with the length of cable actually used so that the total measures 72 pF .

In normal commercial practice receivers are dual standard and cover Bands I, III, IV and V. This receiver is 625 -line only and covers only Bands IV and V. The usual practice is to employ virtually two tuners, one for v.h.f. and the other for u.h.f. even if they are not physically separate. Generally, on u.h.f. the v.h.f. mixer is converted to an i.f. amplifier. The net result is that on u.h.f. there is one more i.f. stage operative than on v.h.f.

We are using a u.h.f. tuner feeding straight into a normal i.f. amplifier. The usual extra stage is missing and so the total gain is lower than is normal in commercial practice.

It was felt to be undesirable to fit an extra i.f. stage to the main amplifier because it was thought unlikely that adequate stability could be achieved. A trial shows that the sensitivity without this extra stage is adequate for many, if not for all, purposes. Used in central London with a normal u.h.f. aerial on the top of an eight-storey building, BBC-2 can be received well. A detector output of some 4 V p-p can be obtained at well below maximum gain. If greater sensitivity is needed, it is not difficult to build a single i.f. unit which can be fitted to the tuner, and its separation from the i.f. amplifier proper will greatly ease stability problems.

Many tuners, of course, are designed for all television bands and if one of these is used it will include this extra i.f. gain. The tuner employed must be left to the constructor's choice, for it must be remembered that television tuners are not things which are normally freely available on the retail market, just because there is little demand for them.

Any tuner should be usable with changes only to the feed resistors \(R_{32}\) and \(R_{33}\) and, possibly, to the coupling capacitance, but the constructor will have to work out for himself just what is needed.

Whatever is used, a good slow-motion drive is essential. Tuning for colour is much more critical than for monochrome, and so the constructor must be prepared to fit a different drive from the one provided with the tuner if a practical test shows it to be desirable.

We now come to alignment. It is almost essential to use a swept-frequency signal generator (wobbulator) and oscilloscope. A normal signal generator is also needed.

For the initial alignment of the amplifier disconnect the tuner i.f. input and plug the output leads of the signal generator into the input socket of the amplifier. Use an isolating mains transformer to feed the equipment for safety's sake and to ensure that the signal generator is not damaged as it may be if it is earthed and the receiver is live to the mains. Connect a voltmeter (e.g. Model 8 Avometer on \(10-\mathrm{V}\) range) across \(R_{17}\). It is advisable also to connect a \(0.001-\mu \mathrm{F}\), or thereabouts, capacitor across this resistor as a temporary measure to reduce the chance of the voltmeter leads introducing instability. Connected at this point the meter introduces less stray feedback than if joined to the detector load. Disconnect one end of \(D_{2}\) to render a.g.c. inoperative.

Set the signal generator (s.g.) to 37 MHz and adjust the core of \(L_{7-8}\) for maximum output. The s.g. will have to give a large output at first, and this must be reduced as necessary for a reasonable indication on the meter. When possible work at about 2 V output.

If no indication can at first be obtained, connect the s.g. between chassis and the base of \(\operatorname{Tr}_{3}\), inserting a \(0.001-\mu \mathrm{F}\) capacitor. There should then be no difficulty in obtaining sufficient output and, normally, an input of 20 mV is needed for 2 V output. The s.g. is unmodulated, of course.

Having tuned \(L_{7-8}\) at 37 MHz , adjust \(L_{6}\) and \(L_{5}\) in turn for maximum output at 38.5 MHz and 35.5 MHz respectively with the s.g. connected to the input socket. Leaving the s.g. so connected adjust \(L_{2}, L_{3}\) and \(L_{4}\) for minimum output at 33.5 MHz , 41.5 MHz and 31.5 MHz respectively. These adjustments are very critical and when the settings are nearly right the full output of the s.g. will probably be needed, and it may also be desirable to put the output voltmeter on the \(2.5-\mathrm{V}\) range.

It may happen that the tuning of the \(31.5-\mathrm{MHz}\) trap is much less determinate than the others. This is because it is trapping at a frequency at which the \(33.5-\mathrm{MHz}\) trap is still giving quite a lot of attenuation and the s.g. output may consequently not be enough to give a clear indication of proper tuning. If no reasonable proper setting can be found, screw the core temporarily

Fig. 2. Printed-circuit board of the tuner used in the development model. The actual arrangement used will depend upon the actual tuner employed and so must be worked out by the individual. In all cases, however, 0.001- \(\mu \mathrm{F}\) capacitors should be connected between the aerial feeder and tuner, with 1-M \(\Omega\) resistors as shown. This is because the chassis is live to the mains and the capacitors must be of at least 350 V working.



Fig. 3. Dummy tuner which can be used in place of an actual tuner for i.f. alignment.
right into the coil to make sure that at least it is not tuned above its correct frequency.

Now connect the s.g. between chassis and the emitter of the mixer stage in the tuner with a \(0.001 \mu \mathrm{~F}\) capacitor in series and connect the tuner cable to the i.f. board. Tune the i.f. circuit in the tuner for maximum output at 36 MHz , and then \(L_{1}\) of the i.f. amplifier. This completes the initial, somewhat rough, adjustments.

Replace the s.g. by the wobbulator and set it for a sweep of at least 15 MHz centred on 37 MHz . If it has no internal marker system or one of doubtful accuracy use the s.g. to provide a marker. The output to feed the oscilloscope can be taken from \(R_{17}\) or from the output of the delay line but with the latter the trace will be inverted. Adjust the controls to obtain a trace of reasonable amplitude. With the usual linear vertical amplifier of the oscilloscope it will not be possible to see at the same time the response within the pass-band and that due to the traps outside it. If there is a beautifully flat-topped response in the pass-band, beware; something is probably overloading!

To see the trap response it is necessary greatly to increase the input and overloading will then occur within the pass-band. Set up in this condition so that the three troughs of the traps, two below the pass-band and one above, can be seen. Set the marker to 33.5 MHz and adjust \(L_{2}\) so that the trough occurs precisely at this frequency. Then set the marker to 31.5 MHz and similarly adjust \(L_{4}\); it should now be quite easy to see when this is correctly tuned. Repeat with \(L_{3}\) and the marker at 41.5 MHz .

Now reduce the input so that the pass-band response shows clearly. Vary the i.f. gain control. Full gain will not normally occur with the control fully at one end of its travel. Starting from the maximum-gain end, the gain will usually increase slightly at first, reach a maximum and, as it is turned further, will steadily decrease. This arises because there is an optimum bias on \(T r_{1}\) for maximum gain. If \(R_{27}\) and \(R_{28}\) are chosen to provide this optimum bias with \(R_{29}\) at minimum-resistance, there is a danger that in some cases maximum gain would not be obtainable because of adverse component tolerances. In other cases, with tolerances the other way, the condition of reduced gain at minimum \(R_{29}\) could still occur. To avoid this \(R_{28}\) has been deliberately chosen so that with all likely tolerances maximum gain will be obtainable.

Increase \(R_{29}\) from the position of maximum gain, at the same time increasing the input if necessary and watch the shape of the response curve. Ideally, the shape of the curve should not change; in practice, it will do so. There are two factors which make it change. One is the variation of input and output impedance of \(T r_{1}\) with base bias. This cannot be avoided and the amplifier has been designed to minimize this effect. It will cause some change, but not a great amount. The second factor is feedback in the amplifier. The first thing to look at, of course, is the connection to the oscilloscope. Screened cable will, of course, be used, and a by-pass capacitor across \(R_{17}\) has already been recommended. There should be no trouble from this, therefore, but if touching the emitter affects the trace try \(10 \mathrm{k} \Omega\) in series with the oscilloscope lead and a further by-pass capacitor after it. Apart from this, try extra by-pass capacitors around the chassis, of \(0.001-0.002 \mu \mathrm{~F}\). The capacitors mounted on the
underside of the board, and visible in the photographs, are for this purpose and proved sufficient. The original hand-made model, which was referred to last month, actually needed rather more, which is a little surprising in view of the higher conductivity of copper sheet compared with deposited copper. One cannot guarantee that exactly the same by-passing will be needed in every case.

At this stage do no more than endeavour to reduce the change of shape with gain by extra by-passing. It will normally suffer a further reduction as the circuits are aligned for the proper bandwidth, for this will reduce the maximum gain and so the effects of any internal feedback.

The response at the high-frequency side of the pass-band is affected mainly by \(L_{6}\), and \(L_{7}\) is adjusted mainly for symmetry of response. The coil in the tuner has very little effect on the shape of the response for it is heavily damped by the mixer; it is normally adjusted for maximum amplitude of the trace. At the low-frequency end of the pass-band \(L_{1}\) and \(L_{5}\) have most effect.

Set the gain control for an output at least 6 dB below maximum and if the equipment permits about 10 dB below. Adjust \(L_{7}\) for the best symmetry. Set the marker at 39.5 MHz and adjust \(L_{6}\) so that the marker appears half way down the high-frequency side of the response trace. At the same time adjust \(L_{7}\), as necessary, to preserve a rough symmetry.

Set the marker at 35 MHz and now adjust \(L_{1}\) and \(L_{6}\) so that the marker is half way down the trace on this low-frequency side, again adjusting \(L_{7}\) as necessary for symmetry. If it is possible to obtain a \(6-\mathrm{dB}\) response at a frequency lower than 35 MHz down to a minimum of 34.5 MHz , well and good, but it is unlikely that it can be brought much below 35 MHz since the bandwidth is limited by the trap circuits. Variations are likely to arise only because of tolerances on the capacitors in the traps.

The i.f. carrier is to be set at 39.5 MHz and the \(6-\mathrm{dB}\) bandwidth must not be less than 4.5 MHz if the colour components of the signal are to be passed. If it is a little greater, up to the maximum of 5 MHz , definition will improve a little but there is a greater likelihood of sound-channel interference.

The aim in adjustment should be to secure a \(4.5-\mathrm{MHz}\), or slightly more, bandwidth and within the passband the trace should be symmetrical and smoothly rounded with the maximum just below 37 MHz .

When this has been achieved as nearly as possible increase the gain while watching the trace, and reducing the wobbulator output as necessary. Notice how the shape of the trace varies. If all is well the total bandwidth may increase slightly, although not to an extent which is noticeable without actual measurement. The curve is likely to become double-humped and the lowfrequency hump may be a bit higher than the other. Readjust \(L_{7}\) for equality of height of the humps and measure the peak-to-trough ratio and the \(6-\mathrm{dB}\) bandwidth. If the peak-to-trough ratio does not correspond to a ratio in excess of \(1-\mathrm{dB}\), if the \(6-\mathrm{dB}\) bandwidth is not less than 4.5 MHz , and if the \(6-\mathrm{dB}\) point still falls at 39.5 MHz all is well, but it is now necessary to check that at low gain the response has not deteriorated too much. If it has, then a compromise adjustment may be needed. In general, it is more important to have the proper response at \(6-10 \mathrm{~dB}\) below full gain than at full gain, because the amplifier will rarely have to operate at full gain. If it did a.g.c. would not be working; for a.g.c. to work at all the i.f. gain must always be below maximum, for it comes into action first on the i.f. amplifier.

If it should happen that the shape of the response is affected much more than has been indicated by the gain control, then one must get down seriously to tracing the causes of feedback in the amplifier, for such feedback is almost certainly the cause of the trouble.

The sound i.f. amplifier is adjusted using the s.g. set at 6 MHz . Connect it through a capacitor between chassis and the bases of \(T r_{8}\) and \(T r_{7}\) in turn, adjusting \(L_{16}\) first and then \(L_{14}\) and \(L_{15}\)
for maximum output as read on a voltmeter connected across \(C_{42}\). Then connect the s.g. between chassis and the base of \(T r_{4}\), again with a series capacitor, and adjust \(L_{12}\) and \(L_{13}\). Readjust all cores except \(L_{18}\) carefully for maximum output. Set the s.g. output so that there is some 3 V to 6 V across \(C_{42}\). Pick a pair of matched resistors of some \(80-200 \mathrm{k} \Omega\). The exact value is unimportant but it is necessary that they should be alike within some \(1 \%\). Connect them in series across \(C_{42}\) and join a milliammeter from their junction to the junction of \(R_{46}\) and \(C_{38}\). The \(1-\mathrm{mA}\) range of the meter can be used at first and reverse the meter leads if it reads wrong way. Adjust \(L_{18}\) for zero current. Turning the core one way will increase the current, turning it the other way will reduce it. It does not follow that the way of reducing current is the correct one, for the initial setting may be one which is right outside the range of the discriminator. If turning the core to reduce the current does not bring it to zero and then reverse the current, turn it the other way. It should then pass through a maximum, come right down to zero and then reverse. For a precise zero setting reduce the meter range to \(50 \mu \mathrm{~A}\) and check the zero-setting of the meter.

Now readjust the primary \(L_{17}\) for maximum voltage across \(C_{42}\), and then check the zero setting of \(L_{18}\).

With the signal generator still applied to the base of \(T r_{4}\) and still set at 6 MHz connect an oscilloscope to the collector of \(T r_{4}\). The oscilloscope must be one having a Y amplifier which gives at least fair gain at this frequency and the input to \(\operatorname{Tr}_{4}\) should be no more than is needed to give a reasonable height of trace. Adjust \(L_{11}\) for minimum output. If the timebase can be adjusted to observe the waveform it will probably be found that this minimum is at 12 MHz , the second harmonic of the input, the fundamental output being too small to be seen. This arises partly because of harmonics in the source but mainly because the input is being applied to a transistor which is initially biased at cut-off and which thus acts as a good harmonic generator.

Now set the s.g. to 4.43 MHz and adjust \(L_{10}\) for minimum output. This circuit will give only a small reduction of output when tuned.

When aligning the amplifier it is neither necessary nor desirable to have the timebases and luminance stage operating. They can all be put out of action by removing the fuse \(F_{2}\) of Fig. 1, Part 4, so that only the transistor power supply is operative.

With only tuner and i.f. amplifier working, one can search for a signal using the oscilloscope connected to the emitter of \(\operatorname{Tr}_{4}\) as an indicator, although it is helpful to have an audio amplifier and loudspeaker connected also. When tuned for maximum vision signal no trace of the colour burst will be visible. Tuning to the \(6-\mathrm{dB}\) point at 39.5 MHz should make the burst distinctly visible. As transmitted it has the peak-to-peak amplitude equal to that of the sync pulse, but as displayed on the oscilloscope it will have an amplitude of only about one-half of this, since it falls at or near the other \(6-\mathrm{dB}\) point of the response curve. For it to be seen at all, of course, the oscilloscope itself must be able to respond to it and it is necessary, therefore, for its amplifier to have a response extending to at least 5 MHz . This will also be necessary for checking in the colour circuits.

If the colour burst is not obtainable, do not at once conclude that something is wrong. BBC2 does not always transmit a colour signal; there are occasions when only a monochrome picture is transmitted and with this there is no colour burst!

There are two controls on the i.f. board which must be set on a signal. They are \(R_{29}\), Set i.f. Gain, and \(R_{18}\), Set Signal Level. With a weak signal both will have to be set for maximum output. With a moderately strong signal a.g.c. will control so well that \(R_{29}\) may appear to have little effect, for as i.f. gain is increased by this control a.g.c. acts to offset its action. It does, however, affect the ratio of i.f. to r.f. gain and so may under some conditions of signal strength affect the signal-to-noise ratio. In general,

therefore, \(R_{29}\) should be adjusted for the best results while watching a picture.

The normal operating output at the emitter of \(\operatorname{Tr}_{4}\) is about 4V p-p of vision signal including sync pulse; i.e., from the tip of the sync pulse to peak white. This gives an output signal to the picture tube which is normally greater than is necessary and which is reduced to the proper value by the contrast control. If the signal is strong enough, the output should be adjusted to 4 V p-p by means of \(R_{18}\). The minimum output from \(\operatorname{Tr}_{4}\) for a reasonable picture with the contrast control at maximum is about 2 V p-p.

A table of voltages in the i.f. board is included with this article. Those for the no-signal condition should reproduce themselves reasonably closely in different amplifiers. Those for the signal condition naturally apply only for a particular signal input and are included only to give some guidance about the sort of changes which occur with a signial.

In conclusion, if it is desired to carry out i.f. alignment without a tuner it can be done fairly well by using a dummy tuner coil. Make another coil identical with \(L_{1}\) and connect it in the arrangement shown in Fig. 3. For an s.g. of \(50-\Omega\) output impedance the two resistors are not needed; but with the usual \(75-\Omega\) output they are wanted. The connection between the dummy and the i.f. board is made using the piece of cable which will be used with the tuner. The coil in the dummy is then treated just as if it were the i.f. coil of a tuner. The coil is a reasonable approximation to an actual tuner output circuit, but final alignment must always be done with the actual tuner.

\section*{Notes}

In the photographs of the luminance amplifier in Part 6 a capacitor is shown labelled \(C_{22}\). This is in error. It should be labelled \(C_{3}\). In Fig. 1, Part 7, the Set i.f. level control is labelled \(K_{8}\) instead of \(R_{18}\).

The printed-circuit board used for the i.f. amplifier described in Part 7 and in this article was supplied by Stanmore Electronic Services of 40 Coledale Drive, Stanmore, Middlesex. It costs 22 s . 6 d . plus 1 s . 6 d . postage.

\section*{Additional Reading}

Colour Receiver Techniques, by T. I). Towers, is based on the twelve articles originally published in Wireless World from January to December 1967. It gives an account of current U.K. colour receiver practice. The emphasis is practical rather than theoretical. The first seven chapters describe the signal handling parts of the set. Chapter 8 describes power supplies, and chapter 9 aerials for colour television. The final two chapters describe test equipment and the "setting-up" of the colour receiver. The book is provided with a comprehensive index. P'p. 88. Price 35s. Hliffe Books Lid., 42 Russell Square, London W.C.1.

\section*{Codes and Code Converters}

\section*{2. Mapping techniques and code converters}

\author{
by N. M. Morris, B.Sc., M.I.E.E., M.I.E.R.E.
}

The various types of code systems described in Part 1 (Nov. 1968) can be displayed pictorially in a form which has become known as the Karnaugh map, after \(M\). Karnaugh, its inventor. \({ }^{1,2,3}\) A simplified treatment is given here to introduce mapping methods to readers who are unfamiliar with the technique. In what follows positive logic levels (see Part I) are assumed, unless a statement is made to the contrary.

In the discussion of logic in Part I it was stated that the whole population of any community could be divided into binary combinations. If the whole population is represented by the area inside the whole rectangle in Fig. 9(a), then its division into two sections comprising those who are \(A\), say adults for example, and those who are not \(A(\bar{A})\) is as shown. The fact that the two divisions are allocated equal areas on the map is of no mathematical significance. In the figure \(A\) is allocated the value or "weight" of unity while \(A\) is given zero value.

When two variables \(A\) and \(B\) are considered there are \(2^{2}\) or 4 possible combinations. These are shown by placing two onevariable maps side by side as in Fig. 9(b). Variable \(A\) is now given the value \(2_{10}\) or \(\mathrm{IO}_{2}\), and \(B\) the value unity or or \(\mathrm{I}_{2}\). Both \(\bar{A}\) and \(\bar{B}\) have zero or \(\mathrm{OO}_{2}\) value. The upper lefthand cell in Fíg. 9 (b) is the intersection of \(\bar{A}\) and \(\bar{B}\). It is therefore given the value \(\mathrm{OO}_{2}\) or zero. The upper right-hand cell is the intersection of \(A\) and \(\bar{B}\) and has the value \(\mathrm{io}_{2}=2_{10}\). Other cells are located in this manner.

N. M. Morris, who graduated from Kings College, Durham University (now the University of Newcastle-upon-Tyne), spent II years in industry and then went to the North Staffordshire College of Technology, where he has been for the past 10 years and is now a senior lecturer in electrical and electronic engineering. His first book, on control engineering, has just been published.


(d)

Fig. 9. Karnaugh maps for (a) one, (b) two, (c) three and (d) four variables.

A three-variable map comprises two twovariable maps placed side by side as shown in Fig. 9(c). A feature of the Karnaugh map is that the change in the binary combination when moving from one cell to an adjacent one is a unit-distance change. That is, the code combination changes by only one bit. Consider cell \(A B \bar{C}\left(\mathrm{IO}_{2}\right)\). The adjacent code combinations are OIO, 100 and III which are unit-distance changes from 110 .

A four-variable map comprises two threevariable maps placed side by side as shown in Fig. 9(d). Here the weights given are \(A=100 \mathrm{O}_{2} \quad\left(8_{10}\right), \quad B=0100_{2} \quad(410)\), \(\underline{C}=00 \mathrm{IO}_{2}\left(2_{10}\right)\) and \(D=000 \mathrm{I}_{2}\left(\mathrm{I}_{10}\right)\) with \(\bar{A}=\bar{B}=\bar{C}=\bar{D}=0000\). As the Karnaugh map increases in size it is necessary to provide a method of locating the cells and to this end the code combinations of \(A\) and \(B\) are listed along the top of the map and combinations of \(C\) and \(D\) are shown down the left-hand side of the map. The code combinations for the various cells are as shown and it should be noted that the change between adjacent cells is again unit-distance. Inspection of the top and bottom rows of the matrix shows that each cell at the top of a column may be regarded as being adjacent to the cell at the bottom of the column since the change between them is a unit-distance one. This leads to the idea of a cylindrical version of the map in Fig. 10 in which the top and bottom of Fig. 9 (d) are joined. Inspection of the lefthand and right-hand columns of Fig. 9(d) shows that adjacent cells exist. All adjacent cells can be connected by joining the ends of Fig. 10 together to form a toroidal shape.

A five-variable map is constructed by placing two four-variable maps side by side and a six-variable map by placing two fivevariable maps side by side. This is about


Fig. 10. The Karnaugh map may be wrapped in the form of a cylinder since the upper and lower cells are adjacent.


Fig. 11. Minimisation of the logical function using the Karnaugh map.


Fig. 12. Illustrating a method of grouping an odd number of cells.
the useful limit of the Karnaugh map since both five- and six-variable maps call for considerable mental gymnastics in their use.

\section*{Minimisation using the map method}

Logical problems are presented in many forms and it is often necessary to reduce the -problem to its simplest form, known as the minimal form.

Consider the statement
\[
\begin{aligned}
Y=\bar{A} \cdot B \cdot \bar{C} \cdot D & +A \cdot B \cdot \bar{C} \cdot D+ \\
& +\bar{A} \cdot B \cdot C \cdot D+A \cdot B \cdot C \cdot D
\end{aligned}
\]

Each term is shown on the Karnaugh map in Fig. II as a " 1 "; the expressions in the other cells, being non-existent, have the value zero. The simplest expression for \(Y\) can be deduced either by a process of logical algebra from the above expression or from the Karnaugh map. The latter method is discussed here.

By associating blocks of adjacent cells in binary groups i.e. 2, 4, 8,16 etc., the simplest expression can be obtained. In Fig. II the four cells are all adjacent to one another and can be grouped as the intersection of \(\dot{B}\) and \(D\), giving
\[
Y=B . D
\]

When an odd number of cells has to be -grouped, three in Fig. 12, it is not usually possible to reduce the relationship to the simple form above. Here binary groupings of adjacent cells are made until all the cells marked with is are covered. In Fig. 12 the minimal solution obtained by this method is the logical sum (OR) of the two groups of is enclosed in the full lines, that is
\(\bar{A} \cdot B \cdot D+B \cdot C \cdot D=B \cdot D(\bar{A}+C)\)
An alternative approach is to say that the three is in Fig. 12 describe the area which is ( \(B\) and \(D\) ) and not the cell \(A \cdot B \cdot \bar{C} \cdot D\), that is
\[
\begin{equation*}
B \cdot D \cdot \overline{A \cdot B \cdot \bar{C} \cdot D} \tag{2}
\end{equation*}
\]

The form of network which satisfies Fig. 12 which is finally chosen is dependent on which of equations ( 1 ) or (2) is the most convenient. If the function \((\bar{A}+C)\) is formed at some other point in the network and the function \(\overline{A \cdot B \cdot \vec{C} \cdot D}\) is not, then the form given by equation ( 1 ) is used, otherwise the network of equation (2) may offer advantages. The logical network satisfying equation ( 1 ) is shown in Fig. 13.

The minimal network is the one which gives the minimum number of logic gates together with the minimum number of interconnections between them.

\section*{"Can't happen" conditions}

In many code sequences certain combinations cannot be allowed to occur. These are described as "can't happen" conditions and are utilized in minimisation techniques to give simple solutions.

Consider a problem in which an output signal is needed if the conditions \(A \cdot \bar{B} \cdot C \cdot D\) or \(\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D\) exist. In addition the following code sequences cannot possibly occur: \(\bar{A} \cdot B \cdot \bar{C} \cdot D, A . B . \bar{C} \cdot D, A . \bar{B} \cdot \bar{C} \cdot \bar{D}\), \(\bar{A} \cdot \bar{B}, C . D, \bar{A}, B . C . D\) and \(A, B . C . D\). In Fig. 14 the code conditions which give an output are marked with is and the "can't happen" conditions with \(X\) s.
Since the states marked with \(X\) s can't happen they can be regarded as is for the purpose of minimisation. This allows Fig. 14 to be minimised as shown, which gives a simple network giving an output if variable \(D\) alone exists, irrespective of the conditions of variables \(A, B\) and \(C\).

\section*{Codes represented on the Karnaugh map}

The Karnaugh map is an ideal medium for plotting code sequences. Consider the codes given in table 13. The codes are mapped in Figs. 15(a) and (b) for the 8421 b.c.d. and unit-distance codes respectively, the numbers in the cells representing the decimal values of the code sequence. The start of the sequence (zero) is signified by \(S\) to avoid confusion with the zeros in the binary code groups and the first code combination (number one) is signified by \(W\).

\section*{Non-decimal to decimal code converters}

A method of determining the logical requirements for non-decimal to decimal code conversion for the code in Figs. 15(a) and (b) is shown in Figs. 16(a) and (b) respectively.
In Fig. I5(a) both the \(S\) and \(W\) conditions cannot be looped with any "can't happen" conditions, hence they must be defined in

Table 13-Codes illustrated on the Karnaugh maps in Figs. 15(a) and (b)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Decimal value} & \multicolumn{4}{|l|}{8421 b.c.d} & \multicolumn{4}{|l|}{A unit-distance code} \\
\hline & A & B & C & D & \(A^{\prime}\) & B & \(C^{\prime}\) & \(\mathrm{D}^{\prime}\) \\
\hline S & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline W & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 2 & 0 & & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline 3 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\hline 4 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline 5 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 6 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline 7 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 8 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 9 & & & 0 & & 0 & 0 & 0 & 0 \\
\hline 10 to 15 & \(\times\) & \(\times\) & X & & \(\times\) & X & X & \(\times\) \\
\hline
\end{tabular}
\(\mathbf{S}=\) "Start" or zero.
\(W=\) First code combination or number one.
\(X=\) "Canit happen" condition.


Fig. 13. One network which satisfies the Karnaugh map in Fig. 12.


Fig. 14. "Can't happen" conditions can be utilised to simplify the solution of problems.

Fig. 15.
Representation of (a) the 8421 b.c. \(d\). and (b) a unitdistance code on Karnaugh maps.

Fig. 16. Possible grouping of cells to give the code converter logic for (a) the \(842 I\) b.c.d. and (b) a unitdistance code.

(a)

(b)

(b)


Fig. 17. The completed code converter using positive logic AND gates for (a) the 8421 b.c.d. and (b) a unit-distance code.


Fig. 18. Modification of the code converter to use NOR gates.
terms of all four variables \(A, B, C\) and \(D\). Conditions 2, 3, 4, 5, 6 and 7 can each be associated with a "can't happen" condition, allowing the logic to be minimised in terms of threc variables. Signals 8 and 9 can each be looped with three \(X \mathrm{~s}\). The procedure is similar in Fig. 16(b), the code converter logic being listed in table 14 together with appropriate logic networks for Figs. 16(a) and (b) in Figs. 17(a) and (b) respectively.

Since and gates are used to detect the code condition, a logical " 1 " appears at the output of the appropriate gate whenever the code group exists, the outputs of all the other gates being zero.
nand gates may be used to detect the

Table 14-Code converter logic for table 13
\begin{tabular}{|c|c|c|}
\hline Decimal value & 8421 b.c.d. to decimal logic & Unit-distance code to decimal logic \\
\hline S & \(\stackrel{A}{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}\) & \(\overline{A^{\prime}} \cdot \mathbf{B} \cdot \overline{\mathbf{C}}^{\prime} \cdot \overline{\mathbf{D}^{\prime}}\) \\
\hline w & \(\bar{A} \cdot \underline{C} \cdot \mathrm{D}\) & B. \({ }^{\prime}\) D \({ }^{\prime}\) \\
\hline 2 & A.C. \(\bar{D}\) & \(B^{\prime}\) C \({ }^{\prime}\) D' \({ }^{\prime}\) \\
\hline 3 & A.C. \({ }^{\text {a }}\) & B.C.D \\
\hline 4 & B. C . \({ }^{\text {d }}\) & A.C. \({ }^{\text {d }}\) \\
\hline 5 & B.C. \({ }^{\text {d }}\) & A. \(\mathrm{C}^{\prime}\), \(\mathrm{D}^{\prime}\) \\
\hline 6 & B.C. \({ }^{\text {c }}\) & \\
\hline 7 & B. C. \({ }^{\text {d }}\) & \(A^{\prime} \cdot B^{\prime} \cdot \mathrm{C}^{\prime} \cdot \mathrm{D}^{\prime}\) \\
\hline 8 & A.D & A \({ }^{\text {B }}\) \\
\hline 9 & A. D & \(\bar{A}^{\prime} \cdot B^{\prime}\) \\
\hline
\end{tabular}
code combinations, each gate having the same inputs as the equivalent and gate. A logical " 0 " appears at the output of the appropriate NAND gate whenever the code groups exists, the outputs of all the other gates being logical " I ". This can be understood by inspecting the device matrix for the positive logic and gate (Fig. 5(b)). NOR gates can be used if the input logic levels are inverted, the nor gate giving a logical " \(I\) " at its output when the correct code sequence is detected. Thus to detect the decimal value 3 in the 842 I b.c.d. code the inputs to the NOR gate would be \(A, \bar{C}\) and \(D\) as shown in Fig. 18(a). To detect the decimal value 4 in the unit-distance code inputs \(\bar{A}^{\prime}, \bar{C}^{\prime}\) and \(D^{\prime}\) are required as shown in Fig. 18(b). OR gates can be used if the input logic lines are inverted as in the nor gates and the code sequence is detected when a logical "o" appears at the output of the gate, as in the case of the nand gate. That is the or gate operates in negative logic.

\section*{Decimal to non-decimal code conversion}

The logical network required to convert a decimal code to a non-decimal code is obtained by inspecting the columns of the binary code. If it is required to convert the decimal code to the 842 I b.c.d. there are ten input lines \(S, W, 2 \ldots 7,8\) and 9 , one of which is at the logical " \(I\) " level and the others at the " \(o\) " level. The four output lines from the network are designated \(A, B\), \(C\), and \(D\), where \(A\) is the most significant bit.
Inspection of the \(A\) column of table 13 shows that the \(A\)-line must provide an output when either the 8 -line or the 9 -line is energised. This is expressed symbolically as
\[
A=8+9
\]

Here no mathematical significance can be applied to the plus sign. The other columns yield the following expressions from which the code converter network in Fig. 19(a) is drawn.
\[
\begin{aligned}
& B=4+5+6+7 \\
& C=2+3+6+7 \\
& D=W+3+5+7+9
\end{aligned}
\]

If the decimal input is to be converted to the unit-distance code in table 13 the logic required is defined by the following which result from an inspection of each column of the code. The logical block diagram is shown in Fig. 19(b).
\[
\begin{aligned}
& A^{\prime}=4+5+6+7+8 \\
& B^{\prime}=S+W+2+3+4+5+6+ \\
& \quad+7+8+9={ }^{\prime}=1 \prime \prime \\
& C^{\prime}=2+3+4+5 \\
& D^{\prime}=W+2+5+6
\end{aligned}
\]

It is of interest to note that in the unitdistance code the \(B^{\prime}\) line remains at the logical " \(I\) " level irrespective of the states of the input lines and that the decimal 9 input line is redundant since no connections are made to it. In both networks the \(S\)-line is redundant.

Fig. 19. Logic for decimal to (a) the 842 I b.c.d. and (b) a unit-distance code converters.



Fig. 20. Schematic diagram for a non-decimal to non-decimal converter.


Fig. 21. Karnaugh map for code \(M\).



Fig. 22. Grouping of cells on the Karnaugh map to give the logic to convert from code \(M\) to code \(N\).

\section*{Non-decimal to non-decimal code conversion}

Utilising the principles already outlined a non-decimal to non-decimal converter can be developed using decimal as an intermediate stage. The block diagram of such a converter is given in Fig. 20. This process might at first be thought uneconomic, but inspection of the Karnaugh maps often yield a degree of simplification in the overall result. Depending on the type of logical devices used, intermediate decimal values may not be available in the final form of the converter.

Suppose it is necessary to convert from code \(M\) to code \(N\) in table 15. The

Table 15-Non-decimal to non-decimal code conversion
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Position in the code} & \multicolumn{4}{|l|}{Non-decimal code M} & \multicolumn{3}{|l|}{Non-decimal code N} \\
\hline & A & B & c & D & A & \(B^{\prime}\) & \(c^{\prime}\) \\
\hline S & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline W & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline 3 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 4 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline 5 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 0 & 0 & & & 1 \\
\hline 7 & 0 & 1 & 1 & 0 & & 0 & 1 \\
\hline 8 to 15 & X & \(x\) & \(x\) & X & X & X & \(x\) \\
\hline
\end{tabular}
\[
\begin{aligned}
S & =\text { "Start" or zero. } \\
W & =\text { First code combination or number one. } \\
X & =\text { "Can't happen" condition. }
\end{aligned}
\]

Karnaugh map of code \(M\) is drawn out in Fig. 21 showing the intermediate decimalcoded values of each cell. Inspecting the columns of code \(N\) gives the following logical equations.
\[
\begin{aligned}
& A^{\prime}=W+2+5+6 \\
& B^{\prime}=2+3+4+5 \\
& C^{\prime}=4+5+6+7
\end{aligned}
\]

The areas representing \(A^{\prime}, B^{\prime}\) and \(C^{\prime}\) are
grouped in Fig. 22 together with appropriate "can't happen" conditions. The area representing \(A^{\prime}\) encompasses the cells \(W\), 2,5 and 6 which is the area \(\bar{C}\) AND NOT the area represented by cell 3 , that is
\[
C^{\prime}=\bar{C} \cdot \overline{3}
\]

Following this line of reasoning the following equations for \(B^{\prime}\) and \(C^{\prime}\) are obtained
\[
\begin{aligned}
& B^{\prime}=\bar{B} \cdot \bar{S} \\
& C^{\prime}=A \cdot \overline{3}+C \cdot \bar{S}
\end{aligned}
\]

Cell \(S\) is defined by any of the following three combinations: \(\bar{A} \cdot \bar{B}, C, \bar{D}, \bar{B} \cdot \underline{C} \cdot \bar{D}\), \(\bar{A} \cdot \bar{B} \cdot \bar{D}\) and cell 3 by any of \(A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}\), \(A \cdot \bar{B} \cdot \bar{D}, \bar{B} \cdot \bar{C} \cdot \bar{D}\). If we select the combination \(\bar{B}, C\) and \(\bar{D}\) as input lines to generate \(S\), then \(\bar{S}\) is generated by the NAND gate shown in Fig. 23. Similarly \(\overline{3}\) is generated by a nand gate with input lines \(A, \bar{B}\) and \(\bar{D}\). The network shown in Fig. 23 assumes positive logic levels throughout.

Fig. 23. Block diagram of the non-decimal to non-decimal code converter.


The final form of the converter can be modified to use other gates in the manner described earlier in the article by inverting the logic levels.

Acknowledgement. The author wishes to thank the Principal of the North Staffordshire College of Technology for permission to publish this article.

\section*{REFERENCES}
I. "A chart method for simplifying truth functions", by E. W. Vetch. Proc. Assoc. Computing Machinery, p. 127, May 1952.
2. "The map method for synthesis of combinational logic circuits", by M. Karnaugh. Communication and Electronics, No. 9, p. 539, Nov. 1953.
3. "Economical logic", by H. R. Henly. Wireless World, p. 518, Oct. 1965.

\section*{Our Next Issue}

Operational Amplifiers. High-gain d.c.coupled amplifiers, usable for a miltitude of functions in electronics, are now widely available in packaged and integrated-circuit form. The first article of a short series will deal with their electrical characteristics and describe methods of testing them.

Solid-state Multimeter. Constructional details of a high-impedance f.e.t. multimeter, which incorporates some novel circuitry, will be given. The instrument has 18 ranges covering a.c. and d.c. voltage, and ohms.

\title{
B.B.C.Sound-in-Vision System
}

\title{
Pulse code modulated sound inserted in a video waveform allows full television transmission on a single circuit
}

The distribution of B.B.C. televsion programmes from studio centres to the transmitting stations uses an extensive network of G.P.O. cables and microwave links. Separate circuits, and often different routes, are used for the vision and sound. A useful simplification of operational requirements would result if the vision and sound signals were to share a single circuit. Such a system has been developed by the B.B.C. Research Department for use with 625-line television signals. If adopted, this system would save \(£ 100,000\) each year in G.P.O. land-line charges.

\section*{The System}

The B.B.C. sound-in-vision system is essentially a form of time-division-multiplex in which the circuit is available to the sound signal for a period of 3.8 us within each 4.7 us line synchronizing interval, and the vision signal occupies the circuit during the remainder of the time; these 3.8 Ls periods
are symmetrically disposed with respect to the leading and trailing edges of the line synchronizing pulse. The leading edges of the line synchronizing pulses are preserved during transmission.

The sound signal is sampled at twice the television line frequency. This permits an audio bandwidth of 14 kHz to be transmitted. The two samples produced during each line period are converted to pulse code modulation (p.c.m.) signals; the two groups of pulses are then delayed, compressed in time and inserted into the television waveform during the next line synchronizing interval.

The system uses a 10 -digit binary code. Thus, 20 sound pulses together with a marker pulse which identifies the start of the sound pulse group, i.e. 21 pulses in all, are accommodated within each line synchronizing period. An example of the resulting sound-in-vision signal is shown in Fig. 1.

In order to provide room for the sound pulses throughout the field blanking interval it is necessary to extend alternaté equalizing pulses from 2.35 ts to 4.7 Is , but no

Fig.1. 625-line video waveform during line blanking interval, showing p.c.m. signal-a marker digit and two ten-digit groups-inserted in the line synchronizing pulse, followed by the colour burst.

other changes to the video signal are necessary before the sound pulses and video signal are combined.

At the receiving terminal the sound pulses are extracted and reconverted to normal audio signals and the video waveform is restored to standard form.

The sound pulses are of the 2 T form, that is, a raised cosine having a half-amplitude duration of 182 ns . The complete group of pulses occupies only \(3.8 i \mathrm{~s}\); the spacing between the pulses is therefore 173 ns . It will be noted from Fig. 1 that two adjacent pulses combine to give an overall amplitude slightly higher than that of a single pulse; this is because with 173 ns spacing, the signal amplitude at the peak of a pulse may contain contributions frott pulses immediately preceding and following it.

Pulse code modulation and the use of high-amplitude pulses ensure that the sound signal is immune from all but the most severe interference and distortion. However, it is equally important to ensure that the presence of the sound pulses does not in any way impair the vision signal. If the phase and /or amplitude of low-frequency components is not correctly preserved by the transmission eircuit, the post-line-synchronizing blanking level may be perturbed by variation in the mean level of the sound pulse groups preceding it. The pulse groups are therefore arranged within the linesynchronizing period in such a way as to reduce variation in their mean level to a minimum. The techniques used rely on the fact that substantial changes in the pulse groups representing consecutive samples of the sound signal are ráre, and that the changes that do occur are most likely to affect the least significant digits. First, one of the two pulse groups within each synchronizing pulse is complemented-that is, ones

are exchanged for zeros and vice versa. Secondly, the two pulse groups are interleaved, so that the nth digits from each group appear consecutively. Finally, the digits are arranged in the reverse of the normal order, so that the least significant instead of the most significant digits come first. Thus the complete pulse train is made up as follows: marker pulse, the two least significant digits, one of which is complemented, and so on, ending with the two most significant digits. The complementing and interleaving of digits from alternate groups provides a signal of the form shown in Fig.1, which shows the sound-in-vision waveform with a d.c. input applied to the coder.

The digit train is gated into the television waveform during the \(3.8 \mu\) interval, and any noise or other irregularities present in the incoming television waveform during this period are therefore removed. The leading edge of the synchronizing pulse is, as already mentioned, left untouched because it is the main timing reference of the composite video waveform.

\section*{The Equipment}

A block diagram is shown in Fig. 2. The compressor and expander form a syllabic companding system which ensures that the mean signal level into the analogue-to-digital converter is as high as possible. The compandor does not take the usual form, but is actuated only by high frequency components in the signal, which have been boosted in a pre-emphasis unit. It gives an inprovement of 13 dB in the signal-to-noise ratio of the p.c.m. system and thus renders the 10 -digit system slightly better in this respect than one which used 12 digits but no compandor.

The analogue-to-digital converter samples the audio-frequency signal presented to it at twice-line rate, and delivers an output in p.c.m. form to the combiner unit. This unit accepts the vision signal, clamps it during the back porch, and inserts the sound pulses.

The reverse procedure is carried out at the receiving terminal. The combined sound-in-vision signal is fed to the separator unit from which a clamped and restored vision signal is produced. Separated sound pulses are decoded in the digital-to-analogue converter which delivers an audio-frequency signal.

Many picture monitors required at points along the link will not lock if a sound-invision signal is connected to them. A cheap and simple pulse code remover has therefore been developed which removes the sound pulses from the inputs to such picture monitors so that they may continue to be used in the normal way.

The input and output terminals of the sound-in-vision equipment handle sound and vision at normal levels and impedances -sound at zero level into \(600 \Omega\), vision at 1 volt peak-to-peak into \(75 \Omega\). The complete sending and receiving terminal equipments each occupy a height of about 14 in within a normal 19 in báy. Extensive use is made of integrated circuitry for the digital operations together with discrete transistor circuits for the analogue operations.

\section*{Performance}

The equipment will accommodate variations in line frequency up to \(\pm 1\) part in 50 and will operate satisfactorily in the presence of moderate amounts of distortion on the circuit. If the maximum levels of all forms of noise and distortion permitted in two of the longest U.K. vision links in tandem are present simultaneously, the system will tolerate an additional 12 dB degradation (to 27 dB unweighted) in the signal-10-noise ratio. Provided that the presence or absence of sound pulses can be correctly detected, distortions and noise on the link have no effect at all on the decoded sound signal.

The p.c.m. sound channel has the following characteristics:

Response/frequency characteristic:
\(\pm 0.5 \mathrm{~dB} 50 \mathrm{~Hz}\) to 10 kHz
\(\pm 0.7 \mathrm{~dB} \mathrm{30Hz}\) to 14 kHz
Non-linear distortion for full modulation at 1 kHz : 0.1\% 2nd harmonic \(0.07 \%\) 3rd harmonic
\(0.02 \% 4\) th harmonic
Signal/noise ratio 70 dB (r.m.s. signal/r.m.s. weighted noise)

\section*{Announcements}

Marconi and Elliott have rationalized their avionic interests and established a new service depot for London's airports. For many years Marconi has maintained a depot within the Heathrow airport for the repair of airborne navigation and communication equipment. This will be closed next spring and the service depot moved to the Elliott-Automation establishment at Stanmore from which it will serve other major airports including Gatwick, Luton and Stanstead.

Microwave Systems Lid., Hunting Gate, Hitchin, Hertfordshire, have been appointed exclusive agents in the U.K. for Frequency Engineering Laboratories of Farmingdale, New Jersey, U.S.A., manufacturers of test and measuring equipment.

As from January lst, Fluke International Corporation, of Watford, Herts, will become sole distributors for the entire range of Burr-Brown operational amplifiers for the U.K. and Eire.

Polymer Consultants Lid., The Ancient House, Ardleigh, Nr. Colchester, Essex, have been appointed sole U.K. distributors of the crystals and crystal products manufactured by Minhorst Kristall Chemic GmbH \& Co., Meudt, of West Germany.
An agreement has been concluded between Marconi International Marine Co. L.td. and the Northrop Corporation, California, U.S.A., under which Marconi Marine have exclusive rights for the marketing of Omega receivers in the U.K. and the Republic of 1 reland.

Thorn Electrical Industries L.td. has acquired for Thorn Bendix L.td., the whole of the share capital of Greenpar Engineering Ltd., manufacturers of coaxial connectors, inter-series adaptor kits, attenuators and probes.

The Leeds University Television Centre, at present under construction, has placed orders with EMI Electronics Lid. for television equipment to the value of £ 100,000 . The new centre will consist of two main studios, demonstration classroom, control rooms, central operations room and a technical equipment area. The equipment includes seven EMI camera channels type 206, and vision mixers.

Storno L.td., of Camberley, Surrey, have been awarded a \(\{220,000\) contract by the Ministry of Defence (Navy), for the supply of v.h.f./f.m. portable radiotelephones.

Plessey Radar has received a \(\{237,000\) contract from the Ministry of Technology, for two radio environmental monitors for use with instrument landing systems. These are designed to increase safety levels during aircraft blind-landing by monitoring potential radio interference in the vicinity of aircraft immediately prior to touch-down.

Granger Associates Ltd., announce that their paremt company in California has received a \(\$ 335,000\) contract for their high frequency s.s.b. transmitters, receivers and accessories for an inter-island communications network in the western Pacific.

The Automobile Association has placed an order with Pye Teiecommunications Lid., valued at \(£ 50,000\), for additional and new equipment to expand its radio-telephone network. The scheme will now cover the whole of the British Isles.

Decca has been awarded a contract by the United States Coast Guard for the installation of river radars in 25 push row boats operating on the Mississippi and its tributaries, and based in St. L. ouis, Missouri.

Pye TVT Lid., of Cambridge, have been awarded a contract to supply equipment for a new sound broadcasting centre, by the Government of Gambia. Pye will supply equipment for two general purpose studios, a continuity suite, a ralks studio and control rooms associated with these.

Ferranti Lid, of Edinburgh, have been awarded a contract by the Ministry of Technology for the design and supply of an experimental airborne laser ranging sensor.

Plessey Electronics Group have received an order valued at \(\ell 300,000\) from the British Overseas Airways Corporation for the supply of Plessey "AIDS" (Aircraft Integrated Data Systems) Type PV 740 for B.O.A.C.'s theet of Boeing 747 aircraft.

Dynamco Lid., of Chertsey, Surrey, have received orders to the value of nearly \(\$ 400,000\) from American companies for more than 300 of their 71 Series oscilloscopes.
The Boeing 747 "Jumbo-Jet", is scheduled to make its inaugural flight from Seatte in late December. Nineteen Boeing 747s have been ordered by B.O.A.C., Air france and Lufthansa and all of these aircraft are fitted with dual Marconi AD370, automatic direction finding equipment.

Wayne Kerr is setting-up a technical advisory service at its Chessington, Surrey, laboratories. This is in addition to the departments dealing with the normal sales enquiries which remain at New Malden.

Plessey Communications Systems Ltd., have moved from offices at 8 Arundel Street, London W.C. 2 to new headquarters at Tolworth Rise, Surbiton, Surrey. Involved in the move are the sales administration offices, service H.Q., and accounts departments as well as the London service depot operating at present from Marshalsea Road, S.E.I.

The London service department of the Ferrograph Company Lid, has been transferred from 84 Blackfriars Road, S.E.1, to Edgware Road, Colindale, N.W.9. (Tel: 01-205 5575)

Dolby Laboratories, of 590 Wandsworth Road, London S.W.8, have moved to new premises at 346 Clapham Road, S.W.9. (Tel: 01-720 1111)

General Instrument (U.K.) L.td., have moved their London offices to Stonefield Way, South Ruislip, Middx. (Tel: 01-845 1288)

Britimpex Lid., of 16-22 Great Russell Street, London W.C.1, have moved to 8-12 Rickell Street, London, S.W.6. (Tel: 01-385 0883)

Harmsworth Townley and Co., component distributors, have moved to new premises at Wellington Road, Todmorden, Lancs. (Tel.: Todmorden 2601)

The new address of the Radio Socicty of Great Britain is 35 Doughty Street, London W.C.1. (Tel.: 01-837 8688)

\section*{Personalities}

Major-General Eric S. Cole, C.B., C.B.E., has retired from the managing directorship of Granger Associates, of Weybridge, Surrey, which he ioined on its formation in 1963. Major-General Cole, who is continuing as a director of the company, retired from the Army in 1961. His last appointment was that of director of telecommunications at the W'ar Office. He is well known in amateur radio circles (his call sign is G2EC) and was president of the Radio Society of Great Britain for 1960/61. Granger Associates' new managing director is Robert J. F. Whistler, B.SC., M.IIE.E., who has also been with the company since it started, initially as a sales engineer. He has been a director since 1965, and deputy managing director for the past year. Mr. Whistler, aged 48, was commissioned in Royal Signals in \(1939^{\prime \prime}\) and retired with the rank of major in 1962. He received an external London University degree in engineering from the Royal Military College of Science.

R. J. F. Whistler

Luis Alvarez, professor of physics at the University of California Radiation Laboratory and a director of the Hewlett-Packard organization since 1957, has been awarded the 1968 Nobel Prize for physics. In announcing its selection, the Swedish Academy of Science cited Professor Alvarez' "decisive contributions to elementary particle physics, particularly his discovery of a large number of resonance states, made possible through his development of
the technique of using hydrogen bubble chamber and data analysis". The prize, created by Alfred Nobel and first awarded in 1901, this year is valued at \(£ 29,000\).
"For his distinguished contributions to optics, especially by establishing the principles of holography" Professor D. Gabor, F.R.S., has received the Rumford Medal of the Royal Society. Dr. Gabor is emeritus professor of applied electron physics in the University of London, senior research fellow at Imperial College of Science \& Technology, L.ondon, and staff scientist in the C.B.S. Laboratories, Stanford, U.S.A. Dr. Gabor, who is also well known for his original work on the flat "picture frame" television tube, came to this country from Hungary in 1934 and worked in the B.T.H. Research Laboratory, Rugby, until he joined the staff of Imperial Coltege in 1949.
B. W. Manley, B.SC., D.I.C., F.Inst.P., is appointed commercial product manager for professional valves and tubes in Mullard's Industrial Electronics Division. Mr. Manley joined Mullard Research Laboratories after graduating from London University in 1953. Initially he was concerned with microwave devices and electron-beam focusing systems. In 1957 he was put in charge of a group dealing with storage and camera tubes. Latterly, as a section leader in the Vacuum Physics Division of the Laboratories, he has been associated with research in the field of image intensifiers for military and civil applications and eleciron multipliers.
J. V. S. Tyndall has become commercial mannager of the Industrial Electronics Division of Mullard Lid. He joined the company's technical service department in 1944 and transferred to the valve measurement and application laboratory in 1949. He went over to the commercial side of the company in 1951 and in 1958 was appointed commercial product manager of the electron optics group. From 1966 until recently Mr. Tyndall was general manager of Mullard Inc. in the United Sfáles.
C. B. Charlton, B.Sc., A.R.I.C., has been appointed chief engineer of Advance Filmcap Lid., the new capacitor subsidiary of Advance Electronics Lid. He will head the Design Engineering Department of the new plant at Wrexham, Denbighshire. Mr. Charlton was latterly with the Dubilier Condenser Company, prior to which he was research manager with Hunts' Capacitors Lid. and divisional manager of the T.M.C. Components Division.
B. H. Paren, M.I.E.E., has been appointed director of the Telecommunication Engineering \& Manufacturing Association in succession to R. A. Moir, O.B.E. Mr. Paren has been engaged in the contract and technical liaison side of the telecommunications industry and in co-ordinating its affairs with the Post Office. He is a founder member of the Joint Electronic Research Committee set up by the Post Office and industry.

B. H. Paren

With the Plessey Electronics Group reorganization of its Radio Systems Division, which will now comprise the Avionics Systems Unit, the Commercial Systems Unit and the Defence Systems Unit together with the Development Laboratories at Ilford, West Leeigh (Hants.) and Braxted (Essex), three new appointments have been made. W. T. Eastwood, formerly chief engineer at West Leigh, becomes manager of the Avionics Systems Unit, responsible for the Division's activities in airborne communications and electronic equipment. B. A. Clarke, formerly general sales manager of the Division, becomes manager of the Commercial Systems Unit with responsibility for civil communications equipment. D. S. Tatnall, formerly chief engineer at the Ilford Development Unit, will manage the Defence Systems Unit which handles a wide range of ground and shipborne communications and electronics systems.
1. W. Dick, who joined the seagoing radio officer staff of Marçoni Marine in 1949 after service with the Royal Air Force, has become commercial manager. He trans-
ferred to the company's shore staff at Liverpool in 1955 and three years later was sent on special missions to Peking and Shanghai before taking over as representative, South-East Asia. In 1962 he joined Norsk Marconikompani A/S., Oslo, as general manager, and later became manageing director. Since October, 1967, he has been at Chelmsford in the capacity of management executive.
M. T. M arwood, appointed administration manager of Marconi Marine, joined the company in 1965 as management executive and in 1966 was placed in control of the company's sound systems activity. He served for twenty-t wo years in the Royal Navy, rising to the rank of lieutenant-commander, and on retirement from the Service in 1958 joined the telecommunications division of A.E.I. From 1961 until he joined Marconi Marine he was sales manager, marine communications department.

Kenneth Finney has been appointed export manager, Western Hemisphere, by British Insulated Callender's Cables Lid. Mr. Finney served with Automatic Telephone and Electric Company in India from 1946 to 1952, first as managing director of its local trading company and later as liaison officer 10 the Indian Government. In 1955 he relurned to London as export manager of A.T. \& E. (now part of Plessey) and since 1959 has been managing director of the Plessey Company's Brazilian subsidiaries.

Vic. Newman, Grad.I.E.R.E., aged 36, has been appointed commercial manager of the newly formed Instrument Division of Coutant Electronics, of Reading. He joined Coutant last year, as regional sales manager, from Plessey Automation where he was assistant sales manager for optical character recognition computer peripherals. Prior to that Mr. Newman was with Advance Electronics L.td., for four years. Before coming into the electronics industry he served with the Royal Navy and specialized in radar and radio communications.

Max Settelen, manager of S.T.C.'s Aviation Division, has been elected chairman of the steering committee of the European Organization for Civil Aviation Electronics. Set up in Lucerne in 1963 EUROCAE now has member organizations from Relgium, France, Italy, the Netherlands and the U.K. Mr. Settelen joined S.T.C.'s associated company in Switzerland in 1945 on leaving the R.A.F. where he had been a technical signals officer.

\section*{OBITUARY}

Philip Lever, who died on 7th November at the age of 68 , had been joint managing director of E. R. (Factors) Lid., of Harrow Road, London W.9, since the formation of the company over 35 years ago. He was also managing director of Lasky's Holdings Lid.

\title{
if you prefer to monitor with an oscilloscope instead of a meter...
}

\section*{here'sa professional-quality It tube ata lowest-ever price!}

Once again, Thorn-AEI's renowned production engineering techniques have made possible a 1 -inch cathode ray tube, built to professional performance standards, at a price far lower than that of current competition-with quantity discounts to reduce it still further.

The BRIMAR D3-130GH 1 -inch tube has been specially designed for use in monitoring aspects of equipment. performance where simple voltmeter and milliammeter readings are inadequate. Built into installations, it will save 'down-time' by early detection and quick location of faults.
Features include : Electrostatic focusing and deflection, small spot size, freedom from trapezium distortion, good uniformity of focus. High sensitivity makes it ideal for transistor operation. Typical Operation
\(V_{h} 6.3 V\) : \(I_{h} 0.3 A ; V_{a 1+a 3+a 4} 1000 \mathrm{~V}\).
\(\mathrm{V}_{\mathrm{a} 2} 100 \mathrm{~V} ; \mathrm{V}_{\mathrm{g}}\) (cut-off) -20 to -48 V .
Sy 58 to \(88 \mathrm{~V} / \mathrm{cm}\).
Sx 80 to \(120 \mathrm{~V} / \mathrm{cm}\).



TS Distortionless Servomechanical
Stabilisers provide high-speed, accurate stabilisation without distortion of waveform. Accuracy \(\pm 0 \cdot 25 \%\). Correction speed up to \(60 / 100\) volts per sec. Unaffected by load, frequency or power factor variations. 1 to 120 kVA single phase and up to 360 kVA three phase.

BTR Solid-State Electronic Stabilisers give high accuracy with extremely low distortion and no moving parts. Basic models : \(\pm 0 \cdot 3 \%\) accuracy, 3\% max. distortion without any filtering. Unaffected by load or frequency variations. Filtered models also available. 400 VA to 10 kVA .
Claude Lyons

CVR Constant Voltage Regulators offer considerable advantages over conventional constant voltage transformers at remarkably low cost. \(\pm 0 \cdot 3 \%\) accuracy, \(3.5 \%\) max. distortion without any filtering. Unaffected by load or frequency variations. 360, 600 and 1200 VA.

The range also includes VB tap-changing types and PST high-current stabilised d.c. supplies.

For full details write to Publicity Department, Hoddesdon.


CLAUDE LYONS
Claude Lyons Limited
Hoddesdon. Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Street, Liverpool L3 9PX. 051-2271761 Telex 62181

\section*{Literature Received}
"Safety priculutions in the use of electrical equipment" is a booklet prepared by the Imperial College of Science and Technology. Its aim is to draw attention to the hazards involved in all kinds of laboratory and workshop activity, and to point out the precautions which must be taken. The booklet is available from The Registrar, Imperial College, London, S.W. 7 at 3 s per copy.

A leaflet called "High-gain Horns" describes a range of nine horn aerials for operation from 1.12 to 12.4 GHz that give a nominal 28 dB gain. Demornay Bonardi, 1313 N. Lincoln Avenue, Pasadena, CA. 91103 , U.S.A.
WW 401 for further details
"C.C.T.V and V.T.R. Catalogue" contains details of the services and equipment \$ffered by Holiday Brothers who hold distribution agencles in the north of Ehgland for many companies atound the world in the closed-circuit television field. Hollday Brothers (Electronic Wholesalers) Lid, 61B Show Heath, Stockport.
WW402 for further details
A leaflet from Colton Audio Products gives details of a range of reccord accessories, such as styli, pick-up heads, microscopes, wheel and belt dressing, anti-static cloths, pickup lifts and record cases. Colton arit Company (Lapidaries) Ltd, The Crescent, London S.W.19.
WW403 for further detalis
Instrument cases (1) and instrument racking equipment (2) are the subject of two catalogues from Bedco Ltd. The first lists cases from the small bench instrument size to floor standing units in a wide variety of shapes and sizes and also includes aluminium diecast boxes. Similarly the second catalogue contalins details of racks of all shapes and sizes and includes information on blower units. Bedco Ltd, Datum Division, Colne Way, Trading Estate, By-Pass, Watford, Heç̣ts.

\section*{(1) WW404 for further detail \\ (2) Wiw 405 for further details}
"J259" is the title of a nine-plage booklet which describes computer operated circuit test system for multi-terminal electronic circuits-such as integrated and hybrid circuits; and citcuit boards. Teradyne U.K. Ltd, Swallow Street, London W.1.
WW406 for further details
"'Precision Miniature Motorizèd Stepattenuators" 10 remotely cofftrol signal level in special purpose test equipments are desctibed in a booklet from Weinschel Engineering. The attenuators will operate from d.c. 1018 GHz . Weinschel Engineering, Galthersburg, Maryland, U.S.A.
WW 407 for further details
Bi-directional gate controlled thyfistors (Quadracs or Triacs) manufactured by the Electronic Control Corporation are listed with performance data in a leaflet we have received. Quadracs enable efficient power controllers to be made with very few components. The types listed in the leaflet are suitable for voltages up to 700 and clitretits up to 40 A . Claude I.yons Lid, Valley Works, Hoddesdon, Herts.
WW 408 for further details
Pòwer controllers for a.c. are the subject covered in a product information leaflet from P. Allen Bentiett Lid. Models are available that will handle inputs from 100 to \(480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\) and provide outputs from 10 to 400 A . Control over the output Voltage can be exercised by a potentiometer or an external low power d.c. source. The units employ no moving parts. P. Allen Bennett Lid, Orgreave Road, Sheffield, S13 9NN.

\section*{WW 409 for further details}
"Tin in Your Industry" is a 48 -page booklet that gives facts and a few figures about the uses of in (it crops up in the most unexpected places) and
about the tin industry in getteral. Interesting reading. W. T. Duhne, 55/61 Moorgate, London, E.C.2.
WW 410 for further details
"Control Instruments", the catalogue of Ether Ltd, gives Hetails of potentiometric indicating temperature controllers, potentiometric indicators, "scanners", temperature regulators, indicators and contrbllers, strip-chart recorders, strain gauge indicators, thyristor assemblies and various types of Iransducers. Ether Lid, Caxton Way, Stevenage, Herts.
WW 411 for further details
Brief details of the Tektronix S-130 digital measuring sytem are given in a leaflet we have received. It is intended to measure the performance of active devices under simulated operating conditions. A disc storage unit ęables details of 1600 meăsurements, which can be carried out at a rate of 100 per second, to be stored. Tektronix U.K. Lid, Beaverton House, Harpenden, Herts.

\section*{WW 412 for further details}
"Loudspeakers for the Perfectionist" is a booklet that gives technical information on the Ditton 10 Mk 11 and the Ditton 11 and 25 loudspeaker systems. Rola Celestion Lid, Ferry Works, Thames Dition, Surrey, England.
WW \(\mathbf{4 1 3}\) for further details
The 1968 /69 catalogue of Heathkit is now avallable. Among the new items are a 30-W f.m. stereo receiver (AR-14) and an fm. sterco tunet (AR-17). Also introduced is the analogue digital designer (EU-801-A), which is an advanced logic trainer using t.iJ. integrated circuits, afd the 805 digital instrument. The 805 is a multi-function instrument with the following operating modes; event counter, frequency meter, digital voltmeter, ratio meter, time interval meter, period meter, and voltage integrator. The logic employed is compatible with the EU-801-A. Daystrom Ltd, Gloucester GL2 6EE،
WW 414 for further details
Stentorian loudspeaker systems, types LC /93, /94 and /95, from Whiteley Electrical are described in a leaflet we have received. Also included in the leaflet, in tabular form, is a list of other high-fidelity loudspeakers with technical data and mounting détails. Whiteley Electrical Radio Co. Ltd., Mansfield, Nouts.
WW 415 for further details
The application's manual for the Sinclair 10-W integrated circuit audio amplifier shows how the amplifier can also be used as an intercom. amplifier, a d.c. amplifier and siren/burglar alarm. It shows how the tone control circuits are wired and gives instructions for stereo operation. Sinclair Radionics Ltd, 22 Newmarket Road, Cambridge.
WW 416 for further details
An analdgue computer for teaching purposes that will perform a variety of mathematical functions including third order differential equations manufactured by A. M. Lock \& Co. is described in a leaflet produced by them. Two or more computers can be linked together to solve more complex problems. A. M. Lock and Co. Ltd., Pridential Buildings, Union Street, Oldham, Lancs. WW 417 for further details
Reed relay catalogue. Aped relays in a variety of packages with various contact configurations capable of handling currents up to 1.5 A and voltages up to 5 kV are covered in this catalogue. Electrothermal Engineering L.td, 270 Neville Road, London E. 7.
WW 418 for further details
Panel mounted holders for Mallory Batteries produced in Ireland by the Coleraine Instrument Co., and marketed in this country by H. Tinsley and Co. L.rd, Werndee Hall, South Norwood, London S.E.25, are the subject of a leaflet we have received. The holders, which are made in a variety of sizes for panel thicknesses up to 9.5 mm , are made from nickel plated steel (as are the batteries), thereby reducing the danger of corrosion.
WW 419 for further details
"Guide to Modular systems" is 16 page page booklet produced by Aim Electronics describing a family of modules that cover three brancfits of measurement technology i.q. signal recovery, pulse generation and wateform sampling. The modules can be fltted into a racking system and interconnected to produce the required test set-up. Aim Electronics Lid, 71-73 Fitzroy St, Cambridge.

\section*{WW 420 for further details}

A variety of test equipment, the majority of which is for audio, Hidio and television (including colour television), is described in a new shoft-form catalogue produced by Grưndig (Great Britain) Ltd, London S.E.26.
WW 421 for further details
"Electronic Instruments" describes a range of pulse generators, a d.c. micro-volt/ammetet and an r.f. microvoltmeter manufactured by Lyons Instruments. It also lists othet companies and their products for which Lyons have the agency. Lyons' Instruments Lid, Hoddesdon, Herts.
WW 425 for further details

\section*{Stereo Decoder}

A stereo decoder unit which contains its own mains power supply and is suitable for use with valve or transistor f.m. tuners has been introduced by Averine Electronics. Constructed on a glass fibre p.c. board the decoder is easily incorporated into a hi-fi system and is fully compatible. Indication of a stereo broadcast is given by a pilot lamp which may be mounted in any convenient position. Hum and noise is said to be -70 dB and channel

separation -30 dB . Frequency response is 50 Hz \(18 \mathrm{kHz} \pm 1 \mathrm{~dB}\). The size of the decoder module is \(101 \times 50.5 \times 25.3 \mathrm{~mm}\) and the price \(£^{9} 5 \mathrm{~s}\). Averine Electronics, P.O. Box 6, Ruislip, Middx.
WW 330 for further details

\section*{Frequency Doubler}

Specialists in signal recovery equipment, Brookdeal Electronics are now marketing an advanced version of their wideband sinusoidal frequency doubler, type 423. This instrument is regarded by the makers as an essential part of phasesensitive detection systems and it was developed specifically for use in the reference channel of a "lock-in" small recovery system where the required signal is at twice the frequency of the modulating waveform. Its operation is very simple; when a sinewave is applied at the input, one double the frequency is available at the output. The wideband feature eliminates the risk of phase/ frequency errors. Input impedance is \(250 \mathrm{k} \Omega\) and 20 pF ; output impedance \(600 \Omega\) at 3 V r.m.s. maximum. Frequency range 1 Hz to 300 kHz . A built-in meter indicates \(1-3 \mathrm{~V}\) r.m.s. The 423 operates from normal mains supplies, weighs 2.5 kg and measures

\(87 \times 218 \times 285 \mathrm{~mm}\). Brook-deal Electronics Lid, 2 Myron Place, Lewisham, London, S.E. 13. WW301 for further details

\section*{High-voltage Germanium Power Transistors}

Two epitaxial-base germanium power transistors from Motorola, the 2N5324 and the 2N5325, combine low saturation voltage (typical of germanium transistors) with high voltage capability and fast switching speeds (typical of silicon transistors). The collector cut-off current is only 7 mA maximum at the rated \(V_{\text {cex }}\) ( 325 V for the 2 N 5325 and 250 V for the 2 N 5324 ) along with maximum \(V_{C E(s a t)}\) of 0.5 V and \(V_{B E(t a t)}\) of 0.75 V at 10 A collector current. Minimum gain is 20 at 5 A , and power dissipation is 50 W at a case temperature of \(25^{\circ} \mathrm{C}\). Minimum \(f \mathrm{f}\) for both transistors is 2 MHz . Maximum switching speeds at 5 A collector current are tr \(15 \mu \mathrm{~s}, t \mathrm{~s} 10 \mu \mathrm{~s}\), and if \(7 \mu \mathrm{~s}\). The units are packaged in T0-3 cases. The quantity price ( 100 or more) is \(£ 113 \mathrm{~s} 1 \mathrm{~d}\) for the 2 N 5324 and \(£ 24 \mathrm{~s} 1 \mathrm{~d}\) for the 2N5325. Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middx.
WW310 for further details

\section*{White Reference for Colour Television}

By fitting a colour matching fluorescent tube in place of the normal high-efficiency tube in their inspection lamp, and using neutral-density filters, Bloctube of Aylesbury, have produced an Illuminant \(D\) reference source for the adjustment of colour television receivers. Illuminant \(D\) is the new reference white (colour temperature \(6,500^{\circ} \mathrm{K}\) ), recently adopted by the B.B.C. in place of Illuminant \(\dot{C}\), for colour TV transmissions. A neutral density step-wedge film fitted over the tube is compatible with the colour TV test card and allows adjustment of the grey scale. The instrument can be offered-up to the step-wedge pattern on the screen for direct comparison. The instrument is available in 240 V 50 Hz or 110 V 60 Hz versions fitted with 4 metres of mains lead. Its price is \(\AA 10\) and delivery is six weeks. Bloctube Controls Ltd., Bicester Road, Aylesbury, Bucks. WW \(\mathbf{3 2 5}\) for further details

\section*{Radiotelephone Frequency Calibrator}

Although all v.h.f./u.h.f. mobile radiotelephone equipment in this country uses crystal-controlled oscillators to meet the stability specification of the licensing authority, the crystal must be frequently checked against ageing and environmental drift effects, to ensure that the equipment is kept "on channel." To meet this requirement, Racal In-
struments have produced a v.h.f./u.h.f. calibrator with an accuracy which is claimed to be better than 1 Hz using a zero-beat technique. To achieve this without the use of synthesizers or digital frequency meters, it is fundamentally necessary that in the system under test, the transmitted frequency and the channel spacing should be harmonically related, as is the case in the U.K. It is also necessary to know the approximate frequency of the channel under test. Because the channel frequency is a multiple of the channel spacing frequency, the transmitted waveform of any channel can be sampled at channel spacing frequency. If the channel frequency is correct the sample will always be taken at the same point in the waveform and the calibrator will give a d.c. output. If the frequency being measured is incorrect, successive samples will occur at different points on the waveform and an a.c. component will be generated. The calibrator is called type 850 and is based on the Racal type \(8405-\mathrm{MHz}\) oscillator. This provides a locking signal to a \(1-\mathrm{MHz}\) stage, the output being further divided by 10 , then by 2,4 and 8 respectively giving sample rates of 50,25 and 12.5 kHz . A 0.8 ns gate pulse is applied to a sampling gate receiving the input signal. The instrument is normally operated using a telescopic aerial, but where high noise level makes operation difficult it can be coupled directly to the v.h.f./u.h.f. equipmment. Available in either bat-

tery- or mains-operated version, the 850 measures \(108 \times 229 \times 298 \mathrm{~mm}\) and weighs 3.6 kg . The cost is about \(£ 200\). Racal Instruments Ltd., Crowthorne, Berkshire.
WW337 for further details

\section*{Industrial Radar}

A new industrial tool, in the form of a miniature battery-operated radar, can measure velocities of up to \(100 \mathrm{~m} . \mathrm{p} . \mathrm{h}\)., whether a body is travelling in a straight, angled or curved path. In addition it can measure high rotational speeds of the order of 1 million r.p.m. The instrument, called Allscott Mini-Radar type MRJS, is fully portable (operation is from a 12 V battery) and is also provided with facilities for connection to external instruments such as a digital counter or oscilloscope. The basis of the Mini-Radar is a Gunn-effect diode which generates a power output of 5 mW maximum c.w. at 13.4 GHz . Data recovery circuits include 16 semiconductors, of which 8 are i.cs, all mounted on a printed circuit. Indication of target speed is shown on a moving coil meter at the rear of the case, the range and sensitivity depending largely on the radar cross-section area of the target. Beam width is \(28^{\circ}(3 \mathrm{~dB})\) in E plane and \(35^{\circ}\) in H plane. The unit is in a cast aluminium case measuring approximately \(120 \times 95 \times 60 \mathrm{~mm}\)

plus the horn aerial projection. James Scott (Electronic Engineering) Ltd., Carntyne Industrial Estate, Glasgow E.2., Scotland.
ww 306 for further details

\section*{TV Transmitter Devices}

Among new devices shown by Mullard at the last International Broadcasting Convention and Exhibition, were three ceramic-to-metal tetrodes for use in Bands I and III television transmitters. They were types YL1420, YL1430 and YL1440, intended for use in broadband amplifiers and they have maximum anode dissipation of 6,12 and 1.5 kW respectively. All are forced air cooled. Another new device for television transmitters and translators was a multi-cavity air-cooled klystron type YK1005. Under typical operating conditions in a television transmitter it can deliver an output power of 10 kW . Permanent magnet focusing and depressed collector operation simplifies cooling problems. Mullard Ltd., Torrington Place, London, W.C.1.
WW 317 for further details

\section*{Temperature-stable Reference Diodes}

Three reference diodes from SGS-Fairchild have temperature coefficients that are almost zero. Compared with zener diodes, which have a temperature coefficient of greater than 1000 parts per million per degree centigrade, the new diodes, types BZX45, BZX44 and BZX43, have coefficients of 50,20 and 10 parts per million respectively. Each unit consists of two diodes on one silicon chip in a T0-18 can. One diode is a zener working in the reverse condition, and the other is an ordinary diode working in the forward condition. All three new diodes have a nominal zener voltage of \(6.7 \mathrm{~V} \pm 5 \%\), and maintain their temperature coefficient characteristic at a current level of \(100 \mu \mathrm{~A}\) over the temperature range 0 to \(100^{\circ} \mathrm{C}\). Also, the dynamic impedance is low. SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.
ww 309 for further details

\section*{Low-cost Laser}

In an effort to beat American competition in the European market for low-priced lasers, Scientifica, London, has produced a new portable model B17/L.


Functionally similar to the existing B17 gas laser range, its special feature is the ease with which the output wavelength can be changed. The wavelength is normally 6328A but it can be changed to 11523A or 33912A if desired. Uniphase power output is approximately 1 mW . The laser is normally supplied with one spherical and one plane mirror. Solid-state electronics incorporate the time delay and automatic trigger. The laser tube is a d.c. hot cathode type and the beam width at the exit aperture is 2 mm . Dimensions are \(90 \times 128\) \(\times 425 \mathrm{~mm}\) and weight approximately 4.5 kg . It is mains operated. Price \(\Omega 160\). Scientifica and Cook Electronics Ltd., 148 St. Dunstan's Avenue, Acton, London, W. 3.
WW 305 for further details

\section*{I.F. Amp/Discriminator I.C.}

Housed in a plastics dual-in-line package, an integrated circuit, type PA189, by General Electric of America performs the function of a high-gain i.f. amplifier and discriminator for use within the consumer market. It may be adapted to meet a wide variety of television and f.m. receiver requirements. These devices are available at \(\{2\) is each

for small quantities from Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 311 for further details

\section*{Counter/Timer}

Monsanto model \(101 \mathrm{~A}, 12.5 \mathrm{MHz}\) counter/timer is a later version of model 100A embodying the additional features of b.c.d. output and provision for an external timebase. It is a half-rack unit employing i.cs and it can measure frequency from 5 Hz to 12.5 MHz , frequency ratio of \(1-10^{5}\), and time interval or single period of \(10 \mu \mathrm{~s}\) to \(10^{6} \mathrm{sec}\). The crystal-controlled clock stability is better than 5 parts in \(10^{7} /\) day and sensitivity is 50 mV r.m.s. A 1 MHz internal frequency standard is available at the rear panel and an external frequency standard of \(3 \mathrm{~Hz}-5 \mathrm{MHz}\) can be applied to the unit. Slave units connected in cascade can be used to extend range or resolution in multiples of 5 digits. Monsanto are in New Jersey, U.S.A. and their British Agents are, G. \& E. Bradley Ltd., Electral House, Neasden Lane, London, N.W.10. WW \(\mathbf{3 0 3}\) for further details

\section*{Compact Audio Unit}

Combining standard hi-fi units into one compact cabinet is a speciality undertaken by Holdings of Blackburn. In the photograph is shown one such combination comprising the Thorens TD150A deck and Shure magnetic cartridge with a Sansui \(400 \mathrm{f} . \mathrm{m}\). tuner/amplifier. Different cabinets are available to accommodate the Sansui 2000 and 5000 units. Holdings believe that the satisfactory operation of the units in close proximity can be attributed to the efficient screening on the Sansui unit. Initially, complete systems only will be available but it is expected that cabinets will

shortly be released separately at about 14 gn each. Holdings of Blackburn Ltd., Mincing Lane/Darwen Street, Blackburn, Lancs.
WW 308 for further details

\section*{Office Intercom System}

A new advanced type of intercom system manufactured by Philips and marketed by Pye TVT Lid., is claimed to supersede the conventional internal telephone system by offering several advantages. These include simple installation and expansion of the system and instant contact (conversation is possible with any position at the touch of a button). No central exchange is required and facilities for group calling are provided. The Philips intercom system can be supplied in two versions, type M100 and type M30 according to the facilities required. The M100 comprises a control unit and a continuous 8 -pair cable which runs throught the premises and to which the control unit and up to 100 stations are connected in parallel. The control unit is small and silent in operation and can be mounted in any convenient place, on a wall. Each office has its own output socket into which can be plugged any of the following stations: (1) master station, fitted with the full range of number and function selection keys; (2) executive station, similar to master station but allowing incoming calls to be routed to secretary station; (3) secretary station, similar to master station but with separate line to executive station and (4) substation which can receive and answer callis but from which calls cannot be made.

All stations are available with handsets fitted if it is required to make confidential calls. A station can be moved and plugged in to any socket in the system without changing the number.

The M30 differs from the M100 by being an "all-master" system capable of accommodating up to 30 stations. A 20 -core cable is required with a maximum length of approximately 800 metres. Besides enabling any position to call any other position, the M30 also has group calling facilities. When a person is absent, his station can be lockedout and any calling station will then receive a visual "engaged" signal. Both intercom systems use transistors throughout and operate from 110 to \(245 \mathrm{~V}, 50\) or 60 Hz . Pye TVT Ltd., Addlestone Road, Weybridge, Surrey.
WW 314 for further details

\section*{Television Modulator}

To convert domestic off-air television receivers to enable them to receive video signals direct from a c.c.t.v. system, General Avionics has produced

a sound-vision modulator, series 400 . The series includes four models designed to cover 625-line v.h.f. and u.h.f., 405 -line v.h.f. and the American 525 -line standard. The modulator is crystal-controlled at the chosen channel frequency and preset gain controls provide for input levels above those specified. Video input is 0.3 V composite minimum and input impedance is \(75 \Omega\) video, \(5 \mathrm{k} \Omega\) audio. The r.f. output is sufficient to drive up to 12 receivers. Mains or dry battery driven versions are available. Dimensions are \(219 \times 51 \times 120 \mathrm{~mm}\) and the price \(\{30\) 12s 6 d . General Avionics Associates Lid., Victoria House, Victoria Road, Woking, Surrey.
WW 307 for further details

\section*{Inverter Series}
' S ' series inverters by \(G \& R\) Electronics are 400 Hz , stabilized, sinewave, single- or three-phase modular units in various ratings from 50 to 500


VA, with nominal 24 V d.c. input. Compatible units are available to convert the input required to normal a.c. mains. The normal output voltage is 115 V , but alternatives are available to order including separate low power 20 or 26 V a.c. outputs. Output is stabilized against load and input changes and output power is limited under excess load conditions by means of a re-entrant limiting circuit. This enables the units to be employed for motor starting and other high inrush loads where the initial load presented may be as much as ten times the normal running load. The waveform satisfies the requirements of synchro and servo systems. Synchronization facilities can be provided to lock frequency to an external 400 Hz signal. The illustration shows a three-phase 100 VA unit dȩsignated \(3 \mathrm{~S}-100\). G \& R Electronics Lid., 23 New Street, Salisbury, Wilts.
WW \(\mathbf{3 2 9}\) for further details

\section*{Turns-counting Dials}

Multidials are eleven-turn devices with a total count of 1099, designed for mounting in locations where high precision adjustment is required. The first significant numeral appears in a special

viewing window. The units are designed to fit \(\frac{1}{4}\) in diameter shafts but will also fit \(\frac{1}{8}\) in and \({ }_{i}{ }_{i}\) in shafts using an adaptor. Torque is \(14123 \mu \mathrm{Nm}\) and rotation speed can be as high as 1500 r.p.m. There is no backlash and no creep when locked. Finish is in satin chrome with black plastics knobs. Guest Electronics Ltd., Nicholas House, Brigstock Road, Thornton Heath, Surrey, CR4 7JA.
WW 333 for further details

\section*{R. F. Switching Diode}

A new silicon alloy switching diode, intended for power applications, such as aerial duplexing at base stations and transmitter/receiver isolation in mobile radio telephones, where previously electromechanical devices were used, has been introduced by M.C.P. Electronics. Type PSV100 is a \(p-n\) junction device available in a choice of three packages. Sealed in a DO-14 package it has the suffix " \(L\) " and is capable of switching 18 W of power in a s.p.d.t. circuit between 20 and 250 MHz , into a \(50-\Omega\) line. Suffixes " D " and " J " will handle 50W. M.C.P. Electronics Litd. Station Wharf Works, Alperton, Middlesex.
WW 313 for further details

\section*{Low-drift Op Amps}

Ultra-low drift operational amplifiers types ADO72A and ADO-72B by Fairchild Controls have guaranteed temperature coefficients of 0.5 and \(1 \mu \mathrm{~V}\) per deg C respectively. Long term stability is typically \(10 \mu \mathrm{~V} /\) week. Other features are high gain ( \(500,000 \mathrm{~min}\) ), high common-mode rejection ( \(250,000: 1\) ), high power supply rejection \((5 \mu \mathrm{~V} / \mathrm{V}\) max) and input and output protection. The gain/ bandwidth product is typically 800 kHz and gain roll-off is typically \(6 \mathrm{~dB} /\) octave. The amplifiers are

designed to operate over a voltage range of -6 to -20 V and are housed in low profile, \(37 \times\) 10 mm packages. Fairchild Controls, 423 National Avenue, Mountain View, California 94040. European office: Seestrasse 233, 8700 Kusnacht, Zurich, Switzerland.
WW 335 for further details

\section*{Mobile R/T}

A range of new solid-state mobile radio-telephones by Philips is being marketed in the U.K. by FieldTech Ltd. Designed for use in all types of road vehicles and smaller marine craft, the equipment comprises a v.h.f. or u.h.f. transmitter/ receiver and built-in loudspeaker in a case measuring \(230 \times 230 \times 65 \mathrm{~mm}\). The same case can house 3,10 or 20 W v.h.f. or \(5 / 10 \mathrm{~W}\) u.h.f. versions with provision in the basic unit for selective calling without requiring add-on units. Channel spacing of 12.5 kHz is used, and up to 12 channels can be accommodated. A portable version is available powered by an internal accumulator which is automatically re-charged from the vehicle's battery when the set is placed in the mounting tray. Base stations of the same physical

size and power ratings as the mobile units operatt from a.c. mains and can be controlled remotely via land-line if required. FieldTech Ltd., Londor Airport, Hounslow, Middx.
ww 332 for further details

\section*{New Triacs}

Three new triacs announced by Quarndon Electronics comprise two 6-A types in a choice ol either TO-48 or TO-66 case, and a 10-A versior in a TO-48 case. All types are available witt voltage ratings of 200,600 and 800 V and featurs high triggering sensitivity in the normal operating modes. These devices are suitable for use ir power control applications in a.c. circuits. Quandor Electronics (Semiconductors) Ltd., Slack Lane Derby.
ww 336 for further details

\section*{Precision Potentiometers}

A new range of single-turn precision potentiometers in which the resistive element is of con ductive plastics is announced by Pandect of Hight Wycombe, who claim that this type of track offer: virually infinite resolution coupled with excep tional reliability and long service life. Producec in five of the international frame sizes for synchro servo units (sizes \(11,15,18,20\) and 30 ) the potentiometers are intended mainly for instruments and electronic equipment with stringent requirements. In construction, ganging of multiple units on a common axis is provided for, up to: maximum of 8 elements. The range include: standard and special resistance values and linear non-linear and sine/cosine versions. Resistance values are typically \(500 \Omega\) to \(25 \mathrm{k} \Omega\) (standard), and \(250 \Omega\) to \(200 \mathrm{k} \Omega\) (special). Operating torques range from 2471.5 to \(6355.3 \mu \mathrm{Nm}\). Ambient temperature range is \(55^{\circ}\) to \(125^{\circ} \mathrm{C}\) and

service life \(5 \times 10^{7}\) cycles. P'andect Precision Components Lid., Wellington Road, High Wycombe, Bucks.
WW 334 for further details

\section*{I.C. Breadboard}

Model ICB727 has been added to the range of i.c. breadboards by Spectrum Electronics giving provision for the connection of 8 sixteen-lead and 4 fourteen-lead dual-in-line circuits. It features solderless inter-connections throughout and is claimed to reduce damage to i.cs to a minimum. Each pin of the 12 i.c. sockets is brought out to a four-way socket which can be connected to any adjacent socket by colour-coded leads. Common power and earth points are available at each socket, terminated in 2 mm binding posts. Two storage

drawers are provided for i.cs and leads. The ICB727 measures \(160 \times 160 \times 160 \mathrm{~mm}\), weighs 680 g , and costs \(£ 19\) each for small quamities. Spectrum Electronics Lid., Deneway House, Potters Bar, Herts.
WW 318 for further details

\section*{Miniature Terminals}

A new series of miniature terminals, type L1726, with a current rating of 10 A and a breakdown voltage greater than 4 kV d.c. is announced by Belling \& Lee. It includes a captive head available in six colours and a socket in the top for pluggingin auxiliary miniature connections. The cross-hole in the clamping gap accepts wires up to 1.9 mm diameter, i.e. 15 s.w.g. solid wires or \(40 / .0076\) stranded conductors. A 5.3 mm mounting hole is required; the stem is terminated in an integral solder spill for rear-of-panel connections. Belling \& Lee Lid., Gt Cambridge Road, Enfield, Middx.
WW 319 for further details

\section*{Simple Programming Board}

To assist error-free programming, a new \(40 \times 20\) matrix board with \(6.4 \times 12.7 \mathrm{~mm}\) hole spacing has been developed by Sealectro. The new board provides mechanical separation between each distinct programme function and the extra space between holes makes for easier marking. Silverplated contacts are used. Sealectro Lid., Walton Road, Farlington, Portsmouth, Hants.
WW \(\mathbf{3 3 1}\) for further details

\section*{Epoxy-packaged Complementary Transistors}
S.T.C. Semiconductors has extended its range of epoxy-packaged epitaxial transistors with complementary types BSW72-75 ( \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) ) and BSW82-

\(85(\mathrm{n}-\mathrm{p}-\mathrm{n})\), featuring \(V_{\text {CEO }}\) ratings of up to \(40 \mathrm{~V}^{\prime}\) and a gain specified over the current range \(10-500 \mathrm{~mA}\). The TO-92 package has lead spacing conforming to TO-18. S.T.C. Semiconductors L.t., Footscray, Kent.

WW 323 for further details

\section*{Tunnel Diodes}

Gallium arsenide tunnel diodes which provide microwave oscillator designers with a wide selection of capacitance values are announced by Interplanetric. The thermal characteristics of these devices allow higher output powers than are possible with germanium types. They are inherently stable, thermally, and have a wide voltage swing making them well-suited to switching and logic circuitry. The capacitance range is \(1-100 \mathrm{pF}\) and cut-off values from \(5-25 \mathrm{GHz}\). Storage temperature is from \(-65^{\circ}\) to \(+85^{\circ} \mathrm{C}\). Interplanetric, 39-49 Cowleaze Road, Kingston on Thames, Surrey.
ww 321 for further details

\section*{Versatile Trigger Circuit}

A multiple function trigger circuit, now available from Westinghouse Electric Corporation in an eight-pin dual-in-line package, will operate at low voltage (e.g. 3 V ) and handle high surge currents ( 2 amp through the silicon controlled rectifier). Other features of the unit include low standby current, high sensitivity, and a choice

of three input channels to fire the thyristor. Agents: Ulira Electronics (Components) L.d., Microelectronics Division, 35-37 Park Royal Road, London, N.W. 10.
WW 324 for further details

\section*{Spectral Analyzer}

Among laser equipment shown at the symposium on the "Engineering Uses of Holography," at the University of Strathclyde in Glasgow, in September, was a high-resolution spect roscopic system, designed for use in the analysis of c.w. gas laser mode structure, introduced by Spectra-Physics of America. It comprised an analyzer head and an electronic control unit which provides the driving and display circuitry necessary to produce a trace of laser mode intensity at optical frequency on the screen of a c.r.t. An outstanding feature of the optical spectrum analyzer, designed model 420,
is the use of a mode-degenerate, confocal interferometer in the analyzer head. This is aligned at the factory making alignment of the head to the incident beam easy in use. Applications of the 420 include observations of the transverse mode structure of lasers, monitoring the output of "single-frequency" lasers, detection of phaselocking effects and study of the general characteristics of mode structure in lasers. Two alternative analyzer heads are available, models 421 and 422. Model 421 is designed for use with helium-neon 632.8 nm lasers and has a free spectral range of 2 GHz , while model 422 is designed for use with argon-ion lasers and has a free spectral range of 10 GHz . The control unit provides the scanning and bias voltages for the analyzer head as well as the horizontal sweep voltage for a Tektronix 560 series oscilloscope. It can be used with both analyzer heads. An optional optical isolator, comprising a disc of plastics circular polarizing sheet mounted in a rotatable housing, prevents any back-scattered light from feeding back into the laser. Although the analyzer heads do not specularly reflect the laser beam back on itself, the use of an optical isolator is generally desirable. U.K. office: Spectra-Physics S.A., Queensway Estate, Glenrothes, Fife, Scotland.
WW 315 for further details

\section*{Lockable I.C. Sockets}

Oxley Developments are marketing a socket designed specially for the interconnection of integrated circuits of the d.i.l. type ( \(2 \times 11\) con-

tacts). The socket contains a locking device which clamps the male and female contacts together firmly holding the plug-in unit in place and keeping the contact resistance to a minimum. When the socket is in the unlocked position, modules can be inserted or extracted. Oxley Developments Co. Lid., Priory Park, Ulversion, North Lancs.
WW 322 for further details

\section*{Desk-top Calculator}

At the recent Electronic Instruments Exhibition, Manchester, Hewlett Packard showed a programmable desk-top electronic calculator, designed to perform complex operations commonly encountered in scientific and engineering problems. It is designated type 9100A. The keyboard includes functions such as logarithms, exponentials, hyperbolic and trigonometric functions and their inverse, as well as co-ordinate transformations. All keys are labelled in English or common mathematical symbols. The 9100 A has wide application in the

solution of problems in a.c. circuits and in aeronautics, stress analysis and triangulation problems. Hewlett Packard, 224 Bath Road, Slough, Bucks. WW 328 for further details

\section*{Silicon Solar Cells}

A range of silicon solar cells now available from Photain Controls have a peak spectral response ( \(560 \mu \mathrm{~mm}\) ) which corresponds with the maximum sensitivity of the human eye. This feature, coupled with their very rapid response times, makes the cells suitable for a wide range of industrial and commercial photo-electric applications. They are sensitive to low illumination levels, require no bias voltage supply and have a stable output, These cells are claimed to have a useful sensitivity in the blue region, the total spectral response range being from 400 to 1100 lm . Half-sensitivity spectral width is \(440-770 \mu \mathrm{~m}\). Electrical output ranges from \(10 \mu \mathrm{~A}\) at 32 lux to \(300 \mu \mathrm{~A}\) at 1076 lux and output is constant over the temperature range -50 to \(+132^{\circ} \mathrm{C}\). The cells are mounted in acrylic resin cases, metal cans with glass windows or epoxy coated, and can be supplied with effective sensitive areas from \(0.123 \mathrm{~cm}^{2}\) to \(2 \mathrm{~cm}^{2}\). Photain Controls Lid., Randalls Road, Leatherhead, Surrey.
WW 339 for further details

\section*{Video Level Generator}

A test signal at line frequency, similar to the C.C.I.R. test signal No. 2 but with the front porch and set-up interval omitted, is provided by type SNF video standard level generator made by Rohde \& Schwarz. Output voltage is IV p-p with a stability of \(\pm 1 \%\). A sinewave burst having the same frequency as the colour sub-carrier is included for checking conditions at colour sub-carrier level. The generator is suitable for checking the level of


TV transmission paths with PAL, N.T.S.C. and SECAM systems. Rohde \& Schwarz, 80 Mühldorfstrasse, Munich, Germany.
WW 327 for further details

\section*{M.O.S. Switches}

Two m.o.s. multiplex switches, type \(\mu \mathrm{M} 3700\) (4-channel switch) and type \(\mu\) M3705. (8-channel switch), produced by SGS-Fairchild to complement their existing devices, are available in two versions to cover different signal ranges of -5 V to +5 V and 0 to 5 V and are suitable for operation over the temperature range \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). The 3700 is a 14-icad flatpack device and the 3705 is a 16 -lead d.i.l. device. Both are inicnded as basic
switching elements for signal routing applications such as airborne or ground instrumentation and can be employed in anologue and digital data transmission. SGS-Fairchild Ltd., Planar House, W'alton Street, Aylesbury, Bucks.
WW 320 for further details

\section*{New Photodiodes}

Two subminiature sensitive photodiodes announced by Mullard are designed for use in high-speed punched card and tape reading machines. Types BPY68 and BPY69, they are symmetrically diffused silicon devices that can operate with a positive or negative bias. Their spectral response extends from 0.6 to \(0.97 \mu \mathrm{~m}\), with a peak occurring at approximately \(0.82 \mu \mathrm{~m}\). The BPY68 is a silicon version of the germanium photodiode type CAP12, which has a similar envelope, but with a sensitivity of \(0.3 \mu \mathrm{~A} / \mathrm{lux}\) compared with only \(0.05 \mu \mathrm{~A} / \mathrm{lux}\) for the CAP 12 . Its diameter is approximately 2.8 mm and (excluding

the leads) its length is 9.5 mm . The diameter of the BPY69 is only 2.1 mm -equal to that of the pitch of the holes in punched tape. The sensitivity of the BPY69 is \(0.15 \mu \mathrm{~A} / \mathrm{lux}\). Both diodes are fitted with an integral glass lens. They have a maximum breakdown voltage of 60 V and a dark current of not more than S0nA. Mullard Ltd., Torrington Place, London W.C. 1 .
WW 316 for further details

\section*{Portable Soldering Tool}

A new departure in soldering tools, the Express 2000 is a battery-operated portable type, powered by a rechargeable nickel-cadmium cell. It is intended for intermittent soldering jobs, the number of joints that can be made on one fully-charged battery being in excess of 100 . The battery itself has a working life of 3000 charge cycles and is supplied with the tool. Two bits, of 3 mm tip and 1.5 mm tip, are supplied. The Express 2000 costs

\(\mathcal{L}^{9} 13 \mathrm{~s} 6 \mathrm{~d}\), plus \(\{216 \mathrm{~s} 6 \mathrm{~d}\) for an optional charging unit. Henri Picard \& Frère Lid., 34/35 Furnival Street, London, E.C. 4
WW 304 for further details

\section*{"Pocketfone"' Car Adaptor}

Users of Pye u.h.f. "Pocketfone" receivers can now obrain an adaptor which enables the receiver to work inside a car without the disadvantage of screening. When the receiver is clipped into the adaptor it is automatically connected to a trickle charger which charges the internal battery, and an amplifier in the adaptor unit with a separate loudspeaker boosts the output up to 3 W via a separate volume control. Pye Telecommunications Lid., Cambridge, Cambs.
WW 302 for further details

\section*{I.C. Audio Amplifier}

Recently introduced to the General Electric (U.S.A.) range of i.c. linear amplifiers, type PA234 IW audio amplifier is available from Jermyn Industries in development quantities at 15 s 9 d each. This new i.c. operates from a supply voltage of \(9-25 \mathrm{~V}\) and is compatible with 8,16 and \(22 \Omega\) loads. A cooling tab facilitates heat sink connection, but the package will dissipate 750 mW in free air at \(25^{\circ} \mathrm{C}\). To complete the amplifier circuit the number of external passive components required is only three capacitors and three resistors. The circuit illustrated below has input impedance of \(100 \mathrm{k} \Omega\), an output impedance of \(2 \Omega\) and 1 W output with an input of 600 mV . Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 312 for further details


\section*{Marconi \\ -pioneers of S.S.B and I.S.B -announce the newest in an extensive range of receivers}

\section*{HYDRUS offers}
* Exceptional versatility
* Very high reliability
* All solid-state, incorporating the latest field effect transistors
* High stability
\(\star\) Frequency synthesis tuning
\(\star\) Fast re-tune and change of operating mode
\(\star\) Panclimatic operation
\(\star\) Available for operation in many transmission modes


The Marconi Company Limited Radio Communications Division Chelmsford, Essex, England

AN 'ENGLISH ELECTRIC' COMPANY


The new HYDRUS high quality
low-cost
H.F receiver for international point-to-point services

FREQUENCY RANGE 1.5 TO 30 MHz I.S.B, S.S.B, D.S.B, F.S.K, C.W



Photogaph of Ghanaıan "Talking Drum" by courtesy of The Conmonwealth Insitute, Kensingtan High St.

\section*{... the only one}

Modern data transmissions go farther and faster, and must be even more accurate and reliable. Only Trend can provide the sophisticated equipment necessary to test such systems.
If you use or manufacture data transmission systems, tap out a message to:

St. John's Works, Tylers Green, High Wycombe, Bucks. Tel: Tylers Green 322 \& 654

\title{
Test Your Knowledge
}

\author{
Series devised by L. Ibbotson,* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.
}

\section*{8. Electromagnetic Radiation}
1. One of the following forms of radiation is not electromagnetic:
(a) radiation
(b) \(\propto\) radiation
(c) radiant heat
(d) microwave radiation.
2. A travelling electromagnetic wave in free space has electric and magnetic fields which are:
(a) in phase and in the same direction
(b) in the same direction, but have an arbitrary phase relationship
(c) in phase and at right angles to one another
(d) at right angles, but have an arbitrary phase relationship.
3. The direction of propagation of an electromagnetic wave in free space is:
(a) along the electric field
(b) along the magnetic field
(c) in the plane of the electric and magnetic fields and bisecting the angle between them
(d) perpendicular to the surface containing the electric and magnetic fields.
4. The direction of polarization of a linearly polarized electromagnetic wave is taken as:
(a) the direction of the electric field
(b) the direction of the magnetic field
(c) the direction bisecting the angle bet ween the electric and magnetic fields
(d) the direction of propagation.
5. At a fixed point in a medium in which a circularly polarized plane electromagnetic wave is propagating:
(a) the electric and magnetic fields both rotate and vary in amplitude sinusoidally with time
(b) the electric and magnetic fields both remain constant in amplitude, but rotate in direction with the passage of time
(c) the electric field remains constant in amplitude and rotates while the magnetic field remains fixed in direction but varies in amplitude sinusoidally with time
(d) the magnetic field remains constant in amplitude and rotates while the electric field remains fixed in direction but varies in amplitude sinusoidally with time.
6. With reference to plane electromagnetic

\footnotetext{
* West Ham College of Technology, London, E. 15
}
waves the relationship between circular polarization and linear polarization is:
(a) none
(b) only that a circularly polarized wave can be formed by combining together two linearly polarized waves
(c) only that a linearly polarized wave can be formed by combining together two circularly polarized waves
(d) a linearly polarized wave can be formed from two circularly polarized waves and a circularly polarized wave can be formed from two linearly polarized waves.
7. \(3 \times 10^{8}\) metres per second is the velocity of:
(a) plane electromagnetic waves in free space only
(b) plane electromagnetic waves in any medium
(c) all forms of electromagnetic radiation in free space only
(d) all forms of electromagnetic radiation in any medium.
8. The ratio of peak electric to peak magnetic field strengths in a travelling transverse electromagnetic wave:
(a) is the same in all cases
(b) depends on the shape of the wavefront
(c) depends on the medium in which the wave is propagating
(d) depends on the intensity of the wave.
9. The electric field strength of an electromagnetic spherical wave in a loss-free isotropic medium:
(a) does not vary with distance from the centre
(b) falls off linearly with distance from centre
(c) falls off as the square of the distance from the centre
(d) falls off as the fourth power of the distance from the centre.
10. An isotropic dielectric medium which supports a transverse electromagnetic wave:
(a) is non-dispersive in all cases
(b) is dispersive in all cases
(c) is non-dispersive if the permituvity is proportional to frequency
(d) is dispersive if the permittivity varies with frequency.
11. The total reflection of a plane electromagnetic wave at the boundary between two
isotropic media can only occur if:
(a) the phase velocity in the medium in which the wave is propagating is less than the phase velocity which the wave would have in the medium beyond the boundary
(b) the permittivity of the medium beyond the boundary is greater than that of the medium in which the wave is propagating
(c) the medium beyond the boundary contains free charges
(d) the boundary between the two media is abrupt.
12. In order that a parallel beam of electromagnetic radiation may propagate:
(a) the diameter of the beam must be very large compared to the wavelength
(b) the radiation must be at light frequencies or above
(c) the radiation must be monochromatic
(d) the medium must be free space.
13. The quantum theory implies that the energy associated with an electromagnetic wave exists in the form of a stream of particles called photons:
(a) in all cases
(b) only if the radiation is incoherent
(c) at optical frequencies and above, but not at lower frequencies
(d) unless the radiation is monochromatic.
14. Electromagnetic radiation is coherent if:
(a) its energy is not quantized
(b) its wave fronts are plane
(c) it is produced by currents flowing in a conductor, not by atomic emission
(d) the phase difference between the oscillations at any two points in the medium does not change with time.
15. The most important difference between light produced by a laser and light produced by any other available source is that the laser light:
(a) is coherent
(b) is at a fixed frequency
(c) is not quantized
(d) can be pulsed.
16. A small generator situated in space far from the earth or any other body emits a parallel beam of electromagnetic radiation. As a result of this the generator will
(a) rotate about a fixed axis
(b) move in the direction of the beam propagation
(c) move in the opposite direction to the beam propagation
(d) move in a direction perpendicular to the beam.

\section*{Answers and comments, page 51}

\section*{"Test Your Knowledge-7"}

In the set of questions on Valves (December 1968 issue, p.470) some words were accidentally omitted from question 5 . The end of the question should read as follows:-
(c) a rise in temperature of the cathode due to ion bombardment
(d) an increase in the anode area due to thermal expansion.

\title{
1969 U.K. Conferences and Exhibitions
}

Further details are obtainable from the addresses in parentheses

\section*{LONDON}

Jan. 6-11
R.H.S. Halls

Inventions and New Products Exhibition
(Business Conferences \& Exhibitions, Mercury House, Waterloo Rd., London S.E.1)
Jan. 13-17
U.S. Trade Center

American Computer Display Equipment
(U.S. Trade Center, 57 St. James's St., London S.W.1)

Mar. 10-13
Alexandra Palace
Physics Exhibition
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. \(10-14\)
Earls Court
Medical Engineering and Automation Exhib.
(Industrial Exhibitions, 9 Argyll St., London W.1)
Mar. 10-14
Earls Court
Electronic Production Equipment Exhib.
(Industrial Exhibitions, 9 Argyll St., London W.1)
Kings Head, Harrow
Public Address Show
(Assoc. of Public Address Engrs, 394 Northolt Rd. Harrow, Middx.
Mar. 25-29
Earls Court
Laboratory Apparatus \& Materials Exhib.
(U.T.P. Exhibitions, Racquet Court, London E.C.4)

Apr. 21-25
Savoy Place
Switching Techniques for Telecom Networks (I.E.E., Savoy Pl., London W.C. 2)

Apr. 22-30
Engineering and Marine Exhibition
Olympia
(F. W'. Bridges \& Sons, Commonwealth House, New Oxford St., London W.C.1)
May 6-8
Savoy Place
Power Thyristors and their Applications
(I.E.E., Savoy PI., London, W.C.2)

May 20-23
Olympia
Electronic Component Show
(Industrial Exhibitions, 9 Argyll St., London W.1)
June 10-20
I.M.E., Mark Lane

Marine and Shipping Conference
(Institute of Marine Engineers, 76 Mark Lane, London E.C.3)
July 2-4 Lasers in Medicine
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 2-6
Grosvenor House
Educational \& Training Technology
(I.E.E., Savoy PL., London W.C.2)

Sept. 8-12
Microwave Conference
(I.E.E., Savoy PI., London W.C.2)

Sept. 15-17
.Savoy Place

Savoy Place
Trunk Telecommunications by Guided Waves
(I.E.E., Savoy Pl., London W.C.2)

Oct. 1-4
R.H.S. Hall
R.S.G.B. Redio Communications Exhibition
(P. A. Thorogood, 35 Gibbs Green, Edgware.)

Oct. 16-22
Ulympia
Audio Fair
(C. Rex Hassan, 42 Manchester St., London W. 1)

\section*{BELFAST}

Sept. 9-12
Queen's University
Nonlinear Optics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

BIRMINGHAM
May 2 \& 3
Grand Hotel
Service-its place in Marketing
(Society of Service Managers, 1 Tichborne Close, Frimley, Surrey)

\section*{BRIGHTON}

Feb. 16-21
Hotel Metropole
Oceanology Conference
(G.P.S. Exhibitions, 6 London St., London W.2)

Sept. 24-26 University of Sussex
Nuclear Structure \& Elementary Particle
Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

CAMBRIDGE
Mar. 26-28
Selwyn College
Elementary Particles
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 8-12
Man-machine Systems St. John's College
Man-machine Systems
(D. Whitfield, Applied Psychology Depr., University
of Aston, Birmingham 4)

\section*{CANTERBURY}

July 23-25 University of Kent
Digital Methods of Measurement
(I.E.R.E., 9 Bedford Sq., London W.C.1)

\section*{CRANFIELID}

Mar. 23-26
College of Aeronautics
Aerospace Instrumentation Symposium
(N. O. Matthews, Department of Flight, College of Aeronautics, Cranfield, Beds.)

\section*{DURHAM}

Sept. 16-18 The University
Applications of Dynamic Modelling
(I.E.E., Savoy PI., London W.C.2)

\section*{EASTBOURNE}

May 6 \& 7
Grand Hotel
Automated Inspection
(Scientific Instrument Research Assoc., South Hill, Chislehurst, Kent BR7 5EH)
June 3-5
Congress Theatre
Microelectronics Conference
(I.E.E., Savoy PI., London W.C.2)

\section*{EXETER}

Sept. 16-19
The University
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

\section*{KINGSTON-ON-THAMES}

Apr. \(1 \& 2 \quad\) Col. of Technology
Digital Storage Techniques
(Dr. R. V. Sharman, College of Technology, Pen-
rhyn Rd., Kingston-on-Thames)

\section*{MANCHESTER}

Jan. 7-9
The University
Solid State Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Mar. 31-Apr. 3
The University
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

June 30 July 3
Computer Science \& Technology
(I.E.E., Savoy PI., London W.C.2)

Aug. 25-29
The University
Datafair
(Brit. Computer Soc., 23 Dorset Sq., London N.W.1)
Sept. 29-Oct. 3
Belle Vue
Electronics, Instruments, Controls \&
Components Show
(Inst. of Electronics, Balderstone, Rochdale, Lancs.)

\section*{NORWICH}

Apr. 15-18
University of E. Anglia
Physics of Liquids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

\section*{NOTTINGHAM}

Mar. \(25-27\)
\(\quad\) Interactions among Elementary Excitations
in Solids and Liquids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

\section*{PLYMOUTH}

Jan. 14 \& 15
Col. of Technology
Position Measurement \& Instrumentation (R. T. Macdermott, Dept. of Elec. Eng., College of Technology, Plymouth)

\section*{SOUTHAMPTON}

Mar. 25-27
The University
Lasers and Opto-Electronics
(I.E.R.E., 9 Bedford Sq., London W.C.1)

Apr. 15-18 The University
Computer Aided Design
(I.E.E., Savoy P1., London W.C.2)

\section*{YORK}

Apr. 16-18
The University
Thin Films Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

\section*{Overseas Conferences and Exhibitions}

\section*{JANUARY-MARCH}

Jan. 21-23
Chicago
Reliability Symposium
,
(R. Brewer, Associated Semiconductor Manufacturers Ltd., Millbrook Ind. Est., Southampton, SO9 7BH)
Jan. 28-31
Ellenville, N. Y
Information Theory
(J. Wolf, Dept. of Elect. Eng., Polytechnic Institute of Brooklyn, 333 Jay St., Brooklyn, New York 11201)

Feb. 10 \& 11
Washington
Transducer Conference
(H. P. Kalmus, Harry Diamond Laboratories, Dept. of the Army, Washington, D.C. 20438)
Feb. 19-21
Philadelphia
Solid-State Circuits Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Mar. 4-8
Basel
Industrial Electronics Exhibition
(Sekretariat INEL 69, CH-4000, Basel 21)
Mar. 5-7 Washington
Accelerator Engineering \& Technology
(E. H. Eisenhower, Center for Radiation Research, National Bureau of Standards, Washington, D.C. 20234)

Mar. 5-16
Sao Paulo
British Industrial Exhibition
(Industrial \& Trade Fairs, Commonwealth House, New Oxford St., London W.C.1)
Mar. 6-11
Festival du Son
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15 e )
Mar. 24-27
New York
I.E.E.E. Convention \& Exhibition
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017 )

Mar. 24-28
Paris
Remote Data Processing
(Soc. Francaise des Electroniciens et des Radioélectriciens, 10 av. Pierre-Larousse, Malakoff)
Mar. 28-Apr. 2 Paris
Components \& Electro-acoustics Show
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15e)

\section*{World of Amateur Radio}

\section*{United Kingdom Licence Changes}

Effective November 1, 1968, United Kingdom amateur sound and television licences were amended in respect of the 4 -metre and \(70-\mathrm{cm}\) bands. The width of the 4 -metre band has been extended downwards by 75 kHz to provide a total bandwidth of \(675 \mathrm{kHz}(70.025\) to 70.7 MHz ) while the \(70-\) cm band has been split in two with the lower section falling between 425 and 429 MHz and the upper section between 432 and 450 MHz . Previously the band extended from 426 to 450 MHz . The change has been brought about by the allocation of a band of frequencies between 429 and 432 MHz to a new service in the U.K. The amendments to the \(70-\mathrm{cm}\) band have led to an alteration in the frequency limits for amateur television which is now permitted between 425 and 429 MHz and 432 and 445 MHz .

\section*{Christoforo Colombo Prize}

Charles Newton (G2FKZ) of London, has been awarded the Christoforo Colombo prize in the technical section of the 16th International Communications Conference in Genoa, Italy. The citation reads "For the careful work carried out during the International Geophysical Year, for the study of the phenomenon of radio electrical propagation in the presence of aurora borealis and for the scientific works presented to high level conferences which are a clear mark that the radio amateurs' work has already reached high scientific importance". The award, announced by the president of the Italian Ministers' Council during the closing session of the conference, is the first formal recognition by an international professional body in recent times of the work of United Kingdom radio amateurs.

\section*{Canadian Amateur Radio History}
"From Spark to Space", is the title of a history of amateur radio in Canada produced by a small group of members of the Saskatoon Amateur Radio Club. Of special interest from the United Kingdom point of view is the account of the early transatlantic tests as seen through the eyes of Canadian participants, particularly Major William Barrett (VE1DD), of Halifax, who also recounts how the Royal Order of Transatlantic Brasspounders came into existence. The ROTAB trophy, donated by the late Gerald Marcuse (G2NM), is the premier award of the Radio Society of Great Britain.
"From Spark to Space" can be obtained from the Saskatoon Amateur Radio Club, Saskatoon, Canada, price \(\$ 2.00\)

\section*{The September Floods \& the R.A.E.N.}

Although a full report on the part played by the Radio Amateur Emergency Network during the September floods has not been published, sufficient is known to record that the user services in the badly affected Surrey area failed to call upon the network until a somewhat late hour. When help was sought, no time was lost, and the Surrey group put in a 5 -day stint, working from 9 a.m. to 8 p.m. daily, in the flood area.

One unforeseen use of the network was to direct a petrol tanker supplying fuel for the 112 drying machines manned by about 200 R.A.F. personnel who were not equipped with radio. Base stations working on 4 metres were installed at Molesey and Esher and these were supplemented soon afterwards by a further link on 2 metres. With the assistance of G3GOX /G2AVC at Hounslow, acting as mobile control, up to five messages were passing every minute during the peak period. Altogether about 200 messages were accounted for in written form. Out of a total membership of 37 in the Surrey R.A.E.N. group, 20 took an active part in the operation.

\section*{New R.S.G.B. Headquarters}

After a stay of 25 years at New Ruskin House, Little Russell Street, London, W.C. 1, the headquarters of the Radio Society of Great Britain has moved to 35 Doughty Street, W.C.1. The new building was acquired for the sum of \(£ 32,500\) and a further sum (around \(£ 8,000\) ) has been spent on redecorations and the installation of central heating, furnishings, etc. With the change the society has lost its cryptic telephone number " 7373 ", the new one being 837 8688.

\section*{Royal Naval Amateur Radio Society}
W. Metcalfe (G3TIF), honorary secretary of the Royal Naval Amateur Radio Society, has moved to Edmonton, Canada. The new secretary is radio superintendent R. Malcolmson who may be contacted \(\mathrm{c} / \mathrm{o}\) H.M.S. Mercury, Leydene, Hants. Associate membership of the society has been extended to include members of the Merchant Navy and foreign navies. The next on-the-air

Morse code practice run will commence at 1900 hours on January 7, 1969, on 3520 kHz .

\section*{Christmas Lecture}

The education committee of the Radio Society of Great Britain is preparing material for a Christmas lecture dealing with amateur radio to be given at the Science Museum London, on January 4, 1969. The lecture will be delivered once in the morning at 11 a.m. and again in the afternoon at 3 p.m.

\section*{Another History Planned}

Mrs Louise Moreau (WB9BBO), 1036 East Boston Street, Altadena, California, 91001, is preparing a history of women radio amateurs and is particularly interested in obtaining information and anecdotes about some of the early lady operators. Miss Barbara Dunn (G6YL) (who is still active), was England's first lady amateur with Mrs Dorothy Burns (GM2IA), occupying the same position in Scotland. Both ladies were first licensed about 40 years ago.

\section*{Amateur Radio Conference in Brussels}

More than 40,000 radio amateurs in Europe, Asia and Africa will be represented by delegates from upwards of 30 members from societies in the International Amateur Radio Union (Region I Division) at a triennial conference to be held at the Hotel Metropole, Brussels, from May 5 to 9, 1969. Papers covering a wide range of subjects are at present being prepared by member societies and will be issued early in the new year as conference documents. The conference is being organised, on behalf of the executive committee of the division, by the Belgian national society (U.B.A.).

\section*{Top Band Transatlantic First-timers \({ }^{\text {B }}\) Test}

European radio amateurs who have not yet succeeded in making a transatlantic two-way contact on Top Band ( 160 metres) are reminded that a series of tests for their special benefit will take place on February 2, 1969 , between 0500 and 0730 g.m.t. Reports of contacts made during the tests should be sent to the organiser Stewart S. Perry (W1BB), 36 Pleasant Street, Winthrop 20152, Mass, U.S.A. Participants should call "CQ DX TEST FT FT".

\section*{Northern Radio Societies Association}
R. M. Clarke (G8AYD), Hillside, Quickedge Road, Mossley, Ashton-upon-Lyne, Lancs., gives notice that a convention of the ten societies forming the N.R.S.A. will be held in the Cumberland Suite, Belle Vue Gardens, Manchester, on Sunday, April 27, 1969. In the past more than 4,000 people have attended N.R.S. conventions which have become one of the largest events in the amateur radio calendar. Mr. Clarke, who is manager of the convention, will be pleased to hear from any organisation desirous of reserving stand space.

JOHN Clarricoats G6CL

\section*{January Meetings}

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

\section*{LONDON}

2nd, I.E.E.-Discussion on "Harmonic generators using varaciors and step recovery diodes" at 17.30 at Savoy PI., W'C.2.

7th. I.E.E-Colloquium on "Engineering applications of spectral analysis" at 14.30 at Savoy Plo, W.C.2.

7th. S.E.R.T.-"Transistor audio amplifiers" by 1). R. Hyde at 19.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.I.

8th. I.E.R.E.-"Speech and vocoders" by L. C. Kelly at 18.00 at 9 Bedford Sq., W.C. 1

91h. Inst. of Electronics-"Linear integrated circuits" by J. R. Whitbread at 18.45 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.1.
13th. I.E.E.T.E.-"Microelectronics-the next decade" by Dr. Ian M. Mackintosh at 18.00 at the I.E.E., Savoy PI., W.C. 2.

15 th. Inst. of Navigation-"Marine radar display systems" at 17.00 at the Royal Institution of Naval Architects, 10 Upper Belgrave St, S.W.1.

15th. I.E.R.E.-Discussion on "Auto manual and back-up control problems in plant operation" at 18.00 at 9 Bedford Sq., W.C. 1 .

17th. R.T.S.-"Electronic equipment for educational and industrial technology-what we have and what we need" by Dr. L. C. Jesty at 19.00 at I.T.A., 70 Brompion Rd., S.W. 3.

20th. I.E.E.--"Kirchhoff and after- 120 years of network topology" by Dr. G. S. Brayshaw at 17.30 at Savoy PII, W.C. 2.

20th. I.E.E.-."Computer aided instruction" by Capt. G. Huggett, R.N., at 17.30 at Savoy Pl., W.C. 2.
22nd. I.E.E.-"Education in electronics" by Prof. J. Brown at 17.30 at Savoy P1., W.C.2.

22nd. I.E.E. \& IE.R.E. Grads.-"Coaxial in telephone and television transmission" by C. H. Parker at 18.30 at Savoy PI, W.C.2.

23rd. I.E.E.-Discussion on "Hill climbing where is it going?" at 17.30 at Savoy P1., W.C.2.

23rd. R.T.S.-"Colour receiver servicing: a critical appraisal" by B. A. Barnard at 19.00 at I.T.A., 70 Brompion Rd., S.W. 3.
27th. I.E.E.-"Beyond the horizon radar" by Prof. E. 1). R. Shearman at 17.30 at Savoy PI, W.C.2.

29th. I.E.R.E.-"Training professional engineers and technicians" by F. Metcalfe at 18.00 at 9 Bedford Sq., W.C.1.

30th. I.E.E.- "Some considerations in the design and operation of a particular real-time system" by W. C. Dunlop at 17.30 at Savoy PI., W.C. 2 .
30th. IE.E.-Discussion on "Linear integrated circuits" at 17.30 at Savoy PI, W'C.2.

30th. I.P.R.E.-"Ferrites" by E. Adcolt at 19.30 at Mullard House, Torrington P1., W.C. 1 .

\section*{BATH}

9th. S.E.R.T.-"Colour television receivers" by B. J. Rogers at 19.45 at the Technical College, James St. West.

\section*{BELFAST}

21st. 1.E.E. Grads.-"Mathematics and engineering" by T. Ambrose at 18.30 at the Astiby Institute, Queen's University, Stranmillis Rd.

28th. IERE.-"Satellite communication systems and the diverse engineering lechniques which they require" by C. F. Davidson at 18.30 at the Ashby Institute, Queen's University, Stranmillis Rd.

\section*{BIRMINGHAM}

27th. I.E.E. \& I.P.O.E.E.-"Electronics in the postal service" at 18.00 at the M.E.B. Offices, Summer I.ane.

\section*{BRADFORD}

9th. I.E.R.E.-"Computer aided electronic circuit design" by P. E. Love at 19.00 at the University.

\section*{BRISTOL}

15th. I.E.E., I.E.R.E. \& R.Ae.S.-"Practical uses of navigational aids" by W. J. Inglefield at 19.00 at the University.
16th. I.E:E.-"Technician courses, examinations and awards" by J. Cotterell at 18.30 at the Technical College.

\section*{CAMBRIDGE}

30th. IE.R.E. \& I.E.E.-"Inertial navigation" by Prof. A. Stration at 20.00 at the University Eng'g Labs., Trumpington St .

\section*{CARDIFF}

6th. I.E.E-"Concorde" by H. Hill at 18.00 at the Inst. of Science \& Technology.
15th. I.E.R.E.-"Linear microelectronics" by S. O. Davidsen at 18.30 at the Inst. of Science \& Technology.

15th. I.E.E.T.E.-"The laser beam and its applications" by C. S. Grace \& L. G. Penhale at 19.30 at the Inst. of Science \& Technology.

17th. S.E.R.T.-"Communications in space" by G. L. Griffiths at 19.30 at the Llandaff Technical College, Western Avenue.

\section*{CHELMSFORD}

21st. I.E.R.E.-."Underwater telemetry" by G. I'earce at 19.00 at the Civic Centre, Duke St.

\section*{CHESTER}

6ih. I.E:E.-"Computer aided design using light pen techniques" by D. B. Welbourn at 18.30 at the Town Hall.

\section*{CHRISTCHURCH}

8th. 1.E.E.-"Lasers in electronic systems" by D. Briggs at 18.00 at the King's Arms Hotel.

\section*{EDINBURGH}

7th. I.E.E. Colloquium on "Metrication in electrical engineering" at 18.00 at the Cartion Hotel.

8th. I.E.R.E. "Automatic character recognition by computer" by Dr. A. Coombs at 19.00 at the Napier College of Science \& Technology, Colinton Rd.

14th. I.E.E.-"The impact of integrated circuits on the role of circuit designer" by A. G. I. Cressell \& R . Towell at 18.00 at the Cartion Hotel.

\section*{EVESHAM}

14th. I.E.E.-"Electronic telephone exchanges" by V. E. Mann at 19.00 at the B.B.C. Club.

\section*{FARNBOROUGH}

7th. I.E.E.-"Stereophonic broadcasting by G. J. Phillips at 18.30 at the Technical College.

16th. 1.E.R.E.-"Thick film technology" by R. G. Finch at 19.00 at the Technical College.

\section*{GLASGOW}

9th. I.E.R.E.-"Automatic character recognition by computer" by Dr. A. Coombs at 19.00 at the University of Sirathclyde.

13th. I.E.E.-"The impact of integrated circuits on the roie of circuit designer" by A. G. I. Cressell \& R . Towell at 18.00 at Strathclyde University.

29th. I.E.E. Grads. - "Colour television engineering" by C. B. B. Wood at 19.30 at Strathclyde University.

HULL
30th. I.E.E.-"World communications" by Prof. C. Cherry at 18.30 at YE.B. Offices.

\section*{LEEDS}

28th. 1.E.E.-"Microelectronics and the future" by Prof. G. D. Sims at 18.30 at the University.

\section*{LEICESTER}

21st. I.E.R.E.-"Application of research to industry" by J. Dixon at 18.30 at the University Physics Lecture Theatre.

\section*{LIVERPOOL}

15th. I.E.R.E.- "Radiometric measurements" by C. Goodwin at 19.00 at the Dept. of Electrical Eng'g and Electronics, the University.
20th. I.E.E.- "Electronics in marine applications" by M. Adams at 18.30 at the University.

29th. I.E.E.-"The technician and his training in modern industry" by H. L. Hazlegrave at 18.00 at the University.

\section*{MANCHESTER}

6th. I.E.E.-Christmas Holiday Lecture: "Solid state technology" by Prof. E. A. Ash at 11.00 and 15.00 at the Institute of Science \& Technology.

29th. I.E.E. Grads.-"Electroluminescence" by A. R. Peaker at 18.45 at U.M.I.S.T.

\section*{MIDDLESBROUGH}

22nd. IE.E. Grads.-"The engineer and society" by G. Baker at 18.30 at the Cleveland Scientific Institution.

\section*{NEWCASTLE-UPON-TYNE}

8th. S.E.R.T.-"Medical Electronics" by E. Chicken at 18.45 at the Charles Trevelyan College.

\section*{OXFORD}

8th. I.E.E.-"Pulse code modulation" by G. H. Bennett at 19.00 at the College of Technology.

\section*{PLYMOUTH}

8th. R.T.S.-"The lead oxide vidicon and its use in colour cameras" by B. Pover at 19.30 at the Studios of Westward Television Lid.

\section*{PORTSMOUTH}

7th. I.E.E. Grads.- "Colour television" by H. J. Bradley at 18.30 at the College of Technology

\section*{READING}

16ih. I.E.R.E.-"Modern tools of systems engineering" by G. C. Tarr at the J. J. Thomson Physical Lab., the University.
21st. I.P.R.E.-"Some unusual applications of thyristors" by J. H. Gibbons at 19.30 at the Gt . Western Hotel.

\section*{RUGBY}

21 st. I.E.E. Grads.-"Colour television engineering" by C. B. B. Wood at 18.15 at the College of Engineering Technology.

\section*{SHEFFIELD}

8th. I.E.E.-"Recent advances in computer aided design service for industry"' by \(E\). Wolfendale at 18.30 at the University.

\section*{SOUTHAMPTON}

21st. I.E.R.E.-"Satellite earth stations" by Dr. G. H. Bryant at 18.30 at the University.

\section*{STAFFORD}

13th. IE.E.-"Applications of lasers" by Prof. E. D. R. Shearman at 19.00 at the College of Technology.

\section*{STEVENAGE}

16th. I.E.E.-"Microelectronics" by K. J. Dean at 19.30 at the College of Further Education.

\section*{SUNDERLAND}

23rd. I.E.E. Grads. -"Colour television" by 1' H. Beards at 18.30 at the Technical College.

\section*{SWANSEA}

9th. IE.E.-"Introducing integrated circuits" by P. Cooke at 18.15 at the University College.

\section*{SWINDON}

7th. 1.E.E-"Benefits and implementation of metrication" by A. J. Gilbert at 18.15 at the College.

\section*{WINCHESTER}

22nd. IE.E. \& B.C.S.-"A small educational digital computer" by D. M. Taub at 18.30 at I.B.M., Hursley Park.

\section*{Answers to "Test Your Knowledge"-8}

\section*{Questions on page 47}
1. (a). \(\alpha\) radiation consists of a stream of helium nuclei.
2. (c)
3. (d). This is the direction of the "Poynting vector".
4. (a).
5. (b). The electric and magnetic fields remain at right angles and rotate together.
6. (d). Two circularly polarized plane waves of equal amplitude and opposite senses of rotation propagating together in the same direction add to form a linearly polarized plane wave. Two linearly polarized plane waves of equal amplitude with their directions of polarization at right angles and their phases differing by \(\pi / 2\) propagating in the same direction add to form a circularly polarized plane wave.
7. (c). For any transverse electromagnetic wave the phase velocity is \(1 / \sqrt{\epsilon \mu} .3 \times 10^{s} \mathrm{~m} / \mathrm{s}\) is the value of \(1 / \sqrt{C_{0} \bar{\mu}_{0}}\)
8. (c). This is the wave-impedance; its value for transverse electromagnetic waves in a given medium is \(\sqrt{\mu}\) e
9. (b). Since the power propagating out through a given solid angle is constant the intensity is inversely proportional to the square of the distance from the centre. The electric field strength is proportional to the square root of the intensity.
10. (d). The phase velocity is \(1 / \sqrt{\epsilon \mu} \mu\) is effectively the same as in free space (ferrimagnetic dielectrics are not isotropic) so that if varies with frequency the phase velocity will also vary with frequency and hence the medium will be dispersive.
11. (a). Total reflection occurs at a boundary between two isotropic media when the direction of propagation of the wave makes an angle to the normal to the boundary greater than 8 where
\(\sin \theta=\frac{\text { incident phase velocity }}{\text { phase velocity beyond the boundary }}\)
This equation has no solution if the incident phase velocity is greater than the phase velocity beyond the boundary, and reflection does not occur.

The result applies even where the transition from one medium property to the other is gradual provided we define the boundary as the surface at which the transition between medium properties has reached half way.

In a region of space where free electrons occur the phase velocity is greater than that in empty space; this accounts for reflections from the ionosphere.
12. (a). The beam spreads owing to the effect of diffraction. If the aperture in wavelengths is very large the amount of spreading can be very small; a scarchlight beam is a good example of this.
13. (a). Solution (c) is a common fallacy.
14. (d).
15. (a).
16. (c). The photons emitted have momentum, hence the law of conservation of momentum indicates that the generator must move in the opposite direction to the photons.


BULGIN PIONEERS OF GLASS ENCLOSED FUSES AND FUSEHOLDERS SINCE 1930 AND STILL LEADING

The House of Bulgin, first to introduce \(1 \frac{1}{4}{ }^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}\) Fuses and Fuseholders to the British Radio Industry in 1930, have now extended the range to cater for every modern requirement. Of High Quality and with reliable characteristics these fuses and holders are now specified by every leading Electrical Manufacturer.


A new, all moulded, panel mounting Fuseholder accepting \(1^{\prime \prime} \times \frac{1^{\prime \prime}}{}\) fuses rated at 250 V . 5Amp. The body is moulded from polished black phenolic material, fixes to panel by two 6BA bolts and has fitted connection tags accepting solder or 187 series push-on-tabs. The front fuseholding cap is moulded from red phenolic material. fixes by Bayonet action, is flush to the body front when fitted and has a screwdriver slot to aid removal.

\section*{}

\section*{a selection from our range of over 150 varieties OF FUSES AND FUSEHOLDERS}


Liet No.D.F 826/Volv/Col.
Neon Indicating Fuseholdar.


List No. F 315 for \(1 \frac{1}{\text { n }} \times \mathbf{1}^{\prime \prime}\) Fuses List No. F 316 for \(\mathbf{1}^{\prime \prime \prime} \mathrm{K} \mathrm{f}^{\prime \prime}\) Fuses


List No. F.316/s fer \(1^{\prime \prime} \times \mathbf{t}^{\prime \prime}\) Fuses


List No. F. 155 for \(11^{\prime \prime} \times \frac{1^{\prime \prime}}{4^{\prime \prime}}\) Fuses
List No.F. 55 for \(1 \frac{1}{*}{ }^{\prime \prime} \times \frac{1}{4}\) "Fuses List No. F. 156 for \(1^{\prime \prime}\) a \(\mathfrak{t}^{\prime \prime}\) Fuses


List No. F 267/PC for 20 mm . \(\times 5 \mathrm{~mm}\). Fuses


List No. F27/2 for 14." \(\times\) f" \(^{\prime \prime}\) Fuses


List No. F26/2 for two


Usi No. F 296 for 20 mm . 5 mm . Fuses. List No. F 297


 Fuses fuses


The entire range of Bulgin Quick and Delayed Action Glass Cartridge Fuses. Quick Action Wire Ended Ceramic Fuses and Edison Screw Cap Fuses are listed together with the range of Panel and Base mounting Fuseholders in our newly published six page technical brochure illustrated right.

SEND FOR BROCHURE No. 1532/C FREE ON REQUEST
A. F. BULGIN \& CO. LTD., BYE-PASS RD., BARKING, ESSEX. MANUFACTURERS OF ELECTRICAL AND ELECTRONIC COMPONENTS
TEL: 01-594 5588 (12 LINES) Private Branch Exchange.
 ww- 103 FOR FURTHER DETAILS

\section*{"All we like sheep . . ."}

So help me, I hadn't intended to return to the subject of takeovers (oh, very well, Dr. Stickler, if you insist, takesover) but to judge from correspondence received it's a subject that could do with some more airing.

In the November issue I instanced the case of one Joe Tymebase, a research and development man in his fifties, who got the chopper as a consequence of a financial takeover. Now Joe was fictional in the sense that I had had no one person in mind when I wrote the piece. As they say on the fly-leaf of a novel, any resemblance to persons living or dead is purely coincidental.

Then, a few days after publication, came a letter signed 'Joe Tymebase' and with it four pages of autobiography which followed the fictional Joe's career in every single particular, but with added detail. And this wasn't fiction; it was set down as fact.

So closely did the one tally with the other that it gave me rather a turn. If Rodin, having put the final touches to The Thinker, had been tapped on the shoulder by it and asked for a cigarette, I know how he would have felt. As for me, I'm considering packing in electronics and applying for a job in the Civil Service which appears to be the only area of expansion.

Joe's letter was disturbing; all the more so bepcause it isn't a diatribe against the wicked bosses. Taken at its face value, it's a straightforward bit of reportage, restrained and with a leavening of wry humour (you have the knack, Joe, if I may quote the Editor). Unfortunately Joe didn't give his real name or address so I couldn't contact him for verification. All one can say is that his story has the ring of truth.

Joe, it seems, was 55 , in a senior position after 30 years with his firm and regarded by one and all as 'fireproof. Before the takeover there was a lot of smooth talk about expansion and the additional labour that would be required. Who could blame him for feeling safe?

The takeover completed, a new and amalgamated K and D department was built in another district and Joe's advice was sought and taken regarding the equipment. The new district was described in the Works magazine as 'lying in the heart of the beautiful countryside, with all local amenities' (Joe went house-hunting there and found that the local amenities appeared to consist of used car dumps).

He describes how the crunch came and he
and 499 associates of similar age received the copper handshake. The publicity boys, adepts at constructing silk purses out of sow's' ears, published numerous pictures of happy employees who had decided to retire.

This done (says Joe) a rumour was circulated around the company "another 500 in two months' time". At this, many of his not-so-old ex-colleagues saw the red light and got out under their own steam. This was exactly what was wanted; it enabled young blood to be recruited (at cheaper rates) in true American tradition.

There is much more, but the ending must suffice. Joe was luckier than most; after a time on the Labour Exchange he got a job, but not in electronics. As he points out, it was a classic example of the Selective Employment Tax in reverse-the transfer of highly skilled personnel from essential industry into a non-essential occupation.

Now, before we get too hot under the collar, we must be fair about all this. There may be another side to the story and I hope Joe will not misunderstand me when I say that for all we know he may be the type who's born with a chip on his shoulder (although I've never known one who lasted 30 years with one firm).

But that is not the real issue. Even if his account is also fiction-and something tells me that it isn't-we all know only too well that there is absolutely nothing to prevent this situation occurring anywhere and at any time if expediency (in the form, perhaps, of share-iuggling) dictates. That is the point. That is the essential wrongness of it all.

\section*{Vulnerability of R\&D}
"Takeover" executions are not, of course, exclusive to electronics engineers but, because of the high proportion of R \& D in our industry (the second highest of all manufacturing industries), they are more vulnerable. Inevitably, when two major concerns merge the most likely sections to come under the chopper are the duplicated R \& Ds. Moreover, ours is a "man power" based industry, with a higher content of personnel per \(£ 1000\) of output than the large "plant and machinery" based industries like petroleum or detergents for instance.

If we try to find the root cause within the
electronics industry we shall fail because we are being far too parochial. This evil is a world cancer whose fibres are everywhere. It is aptly summed up in an advertisement I saw the other day which says "Working for money is a poor way of making money". We are all tainted with this philosophy; Mister Average has his football pools and his bingo hall. Mister Tycoon has his stocks and shares to manipulate. There is no fundamental difference. We are all conditioned to it by an educational system which, while paying lipservice to the humanities, has as its yardstick of success the acquisition of money. Some manage to evade the trap; but the Old Boy who is invited to orate on Prize Day is not the one who has become a doctor in a dockland slum but the one who has made a million.

In the days of the dark satanic mills the poor had two things which made life toler-able-the bottle or a faith in a hereafter. In the Welfare State we can't afford the bottle and our faith is confined to material things. Inevitably we have become predatory animals with the business world a natural jungle; so don't blame Mister Tycoon when the chopper falls, Joe. It's just that tycoons happen to have more killer instinct than the rest of us.

The bigger the organization, the easier the executions become, for remoteness is a significant factor. Few of us, I imagine, would enjoy a steak if a daily wallow in a slaughter-house was made obligatory. Similarly, it is easy to sack 500 human beings if they are merely names on a list; not so easy if you know that Jim Smith's wife is crippled with arthritis or that the future of Harry Brown's son at university depends on a stroke of your pen.

So what to do? If the human race was sensible it would reform its educational system to teach tomorrow's children that moral responsibility ta their fellows is more important than arithmetic. In short, it should create a situation in which the original Frys and Cadburys and (in our own field) the Frank Murphys, would constitute a norm and not misguided freaks.

But we won't, of course. In the electronics industry we shall probably do nothing at all and continue to be bought and sold at auction like sheep. I don't think rabid trade unionism is the answer, either. Then what?

\section*{Protection from the Learned Societies?}

If we must deal in palliatives rather than in cures, there is the suggestion I made in the November issue, namely that the Learned Societies should take a hand. After all, the main aim of such is to protect the status of the qualified engineer and there isn't much status attached to being bought and sold is there? There is a precedent in the British Medical Association, which seems to be able to look after its members very effectively.

This isn't asking for the moon. It's just common justice that the men who make the profits for the shareholders should have some say in the fortunes of their company and enioy a degree of protection which at present is singularly absent.



\section*{Synchronous motor} CAM TIMERS
* Quicker deliveries
* 1-12 adjustable cams
* 10 amp. CHANGEOVER MICRO-SWITCHES

FITTED, SCREW OR . \(25^{\circ}\) AMP TERMINALS
* Designed for continuous operation Special Coms ond Programming to Quotation for 50 and upwards

COMPLETE
PHOTO-ELECTRIC SENSOR in one unit
* REfLECTIVE TYPE WITH builtin light source
* WILL ALSO OPERATE FROM remote light source
- Matchbox size
* SENSES ANY OBJECTCOLOURS, THICK SMOKE
 Operates from \(12 \mathrm{~V} . \mathrm{A} . \mathrm{C}\). Output signal 0.2 amp .100 V £5.10.0 dependen

LATEST SOLID STATE VARIABLE VOLTAGE CONTROL * COMPLETELY SEALED * COMPACT
- PANEL MOUNTING

230 v. A.C. Input \(25-230\) volts output. 5 amp. model E8/76 P. P. Extra

\section*{CONSTANT VOLTAGE TRANSFORMERS} AUTOMATIC MAINS STABILISER * No attention
* No Maintenance
- No Maintenance - No Moring Parts Corrected Wave
Input: \(195-250\) v. Output: 240 A . C . Accuracy: Capacity:
2 models available 150 watss or 225 :
 Maintain "spor-on" rest-gear readings at all simes. Fieted signal lamp and switch. Weighe: 21 lb . high \(\leq 12.10 .0\)



\section*{20 Amp. LT. SUPPLY UNIT}

As supplied to Min. of Defence and As supplied to Min. of Defenc LATEST DESIGN HEAVY DUTY \(12 / 24\) VOLT D.C. Output: Adjustable up to \(\mathbf{2 0}\) AMPS. CONTINUOUS at \(12 / 24\) voles. FULLY FUSED, Neon Indicator, 0.20 amp . meter. Size \(16 \times 12 \times 20 \mathrm{in}\). high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lb . input: \(220 / 230 / 240\) v. A.C. 50 cycles. ONLY £32.10.0 Plus 40/: c. \& G G. (Inland)

\section*{30 Amp. LT. SUPPLY UNIT}

UP TO 24 v. D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading \(\star\) Fitted voltmeter and ammeter. \(\star\) Instancaneous overload cut-out. input: Mains A.C. Robust construction, 2 tone finish, steel case.
\[
\text { E55.0.0 } \begin{aligned}
& \text { C. \& P. 40/- G.B. (Inland). } \\
& \text { Encirely suitable for platin }
\end{aligned}
\]

Entirely suitable for plating plants.
5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification \(\left\{\begin{array}{l}\text { Input: } 240 \mathrm{v}, ~ A . C . ~ \\ \text { O. } \\ 0-240 \text { v. D.C. }\end{array}\right.\)
\(\star\) Smooth stepless voltage variation from 0-Max. \(\star\) Current consistent throughout the comtrolled range. \(t\) Ammeter and voltmeter fitted, and neon indicator. \(\star\) Fully lused input and output.
\(£ 30.0 .0\) C. \& P. in England.-Gt. Britain (Inland).
CURRENT PRODUCTION-BUY DIRECT FROM MANUFACTURER

\section*{NEW Mankuliti STEREO AMPLIFIER}

INTRODUCING A NEW ALL SILICON TRANSISTORISED HI-FI AMPLIFIER INCORPORATING TWO INDEPENDENT POWER SUPPLIES TO GIVE VERY LOW CROSSTALK AND A UNIQUE DESIGNED CIRCUIT WHICH ELIMINATES DISTORTION RISE AT LOW LEVELS. POWER-OUTPUT IS 15 WATTS R.M.S. INTO A \(8 \Omega\) LOAD AND 10 WATTS R.M.S. INTO A \(15^{\circ} \Omega\) LOAD. INPUT FACILITIES TO COVER ALL TYPES OF PICK-UP, TUNER AND TAPE. SPECIFICATION AND PERFORMANCE FAR IN EXCESS OF PRICE RANGE.

DETAILED ILLUSTRATED LITERATURE AVAILABLE ON REQUEST. TRADE ENQUIRIES INVITED.

EXTRACT FROM TYPICAL TEST CHART AT 1 KHz INTO A \(8 \Omega\) LOAD.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
OUT-PUT \\
R.M.S.
\end{tabular} & \begin{tabular}{c} 
TOTAL \\
DISTORTION
\end{tabular} \\
\hline 15 W & \(0.1 \%\) \\
10 W & \(0.07 \%\) \\
5 W & \(0.06 \%\) \\
1 W & \(0.06 \%\) \\
0.5 W & \(0.05 \%\) \\
0.1 W & \(0.05 \%\) \\
\hline
\end{tabular}

\section*{PRICE £48}

COMPLETELY ENCLOSEDPANEL MOUNTING TEAK CABINET EXTRA.

WELBROOK \(\underset{\substack{\text { ENGINERRGG } \\ \text { ELEETRONICs }}}{\text { LTD. }}\) BROOKS STREET, HIGHER HILLGATE, STOCKPORT, CHESHIRE

061-480 4268

FERRANTI DESIGNED HI-FI AUDIO EQUIPment available in kit or built-up FORM. DETAILS AND PRICE-LIST ON REQUEST.
A.C. SOLENOID TYPE SAM

\section*{Continuous Rating 140z. at \({ }_{4}^{3} \mathrm{in}\) Instantaneous up to \(5^{\frac{1}{2}} \mathrm{l}\) b.}

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.
 KNAPPS LANE, CLAY HILL. BRISTOL 5. TELEPHONE 65-7228'9 WW-I05 FOR FURTHER DETAILS


\section*{AVONCEL TROLLEYS}

FOR HOME AND EXPORT LARGE RANGE OF STANDARD MODELS from \(£ 10\). Also
CUSTOM BUILT
TO SUIT YOUR EXACT REQUIREMENTS LOW COST • TOP QUALITY • QUICK DELIVERY QUANTITIES: I OFF TO 1,000 OR MORE
- AVONCEL -

AVON COMMUNICATIONS AND ELECTRONICS LTD. 318 BOURNEMOUTH (HURN) AIRPORT, CHRISTCHURCH, HAMPSHIRE TEL: NORTHBOURNE 3774 TELEG: AVONCEL CHRISTCHURCH

WW-106 FOR FURTHER DETAILS



> ALL OBTAINABLE FROM YOUR LOCAL SPECIALIST OR DIRECT:


AHUJA P. A. SYSTEM are manufactured in India's largest and most well equipped Plant. These are highly popular in over 25 countries on account of high quality and rugged construction and most competitive international prices.

\section*{AKIUJA RADIOS, 13 - DARYA GANJ} DELHI-6. (INDIA)
Issued by Engineering Export Promotion Council Calcutta (India)

\section*{APEAK SOMND aids to economical hi-fi}

ES/10-15 BAXANDALL SPEAKER

\section*{"Rolls-Royce standards"}

SAYS RALPH WEST,
Hi-Fi News
OCTOBER, 1968


The immediate impression was of a thoroughbred
speaker, smooth and effortless ... voices both speaking and singing were uncannily real Once again we see the possibility of Rolls-Roycu standards from comparatively cheap components . . . when you know how." Hi-FI News Test Report. Pages 1208/1211. Oct 1968

\section*{A REVOLUTIONARY ADVANCE IN DESIGN LOGIC}

THE PEAK SOUND ES/10-15 is the designer-approved kit of the sensational loudspeaker designed and described by \(P\). J. Baxandall-in Wireless World (Aug. \& Sept. 68). The frequency response extends from \(60-14,000 \mathrm{~Hz}(100 \cdot 10.000 \mathrm{~Hz} . \pm 34 \mathrm{~B})\). Everything is supplied to specification-the \(18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}\) afrormosia teak cabinet is cut and drilled for simple assembly; the equalising circuitry is ready-made for immediate installation. The finished product is completely professional. It will astonish and delight you beyond words. See what HimiNews says in full in its detailed report in their October issue. It is hard to believe so modestly priced a speaker could get so glowing a report

Equaliser assemb́ly -36/- Speaker Unit-38/-: Pur Tax-8/1d.: Cabinet parts (complete) E6.15.0 TOTALCOST £10.17.1 \(x\)-over for adiditiona
oass unit- \(22 / 6\).

\section*{a new \\ Peak Sound hi-fi power amplifier}

THE PEAK SOUND PA 12-15 is a new power amp. lifier of excellent design and performance. Features include Class B output of 12 watts R.M.S. into 15 ohms :
43dB neg. feedback frequency response from 10 Hz to \(45 \mathrm{~Hz} \pm\) 0.5 dB : distortion at max. output less than \(0.1 \%\); input sensitivity400 mV : power requirement 45 V D.C. which can be obtained from the Peak Sound heavy duty power unit (price \(£ 5.5 .0\) ). Size \(5^{\prime \prime} \times 33^{\prime \prime} \times\) 11". Solected high gain closely matched transistors are used throughout. Full instructions are provided. This sensibly designed unit will appeal to all for whom reliability and good design are important. Pre-amp detalls available.


From dealers or sent direct in case of difficulty, POST FREE

\section*{PEAK SOUND (HARROW) LTD. \\ 32 ST. JUOES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY. EGHAM 5316}

\section*{TO PEAK SOUND}

Please send
for which I enclose \(£\)
NAME
ADDRESS


\section*{JOHN SMITH LTD.}

209 SPON LANE - WEST BRONWICH - STAFFS. TEL. O2I-553 2516 (3 LINES) WOODS LANE • CR ADLEY HEATH - WARLEY - WORGS. TEL. CR 69283 (3 LINES)

WW-110 FOR FURTHER DETAILS

\section*{HOWELLS RADIO LTD. \\ MINISTRY OF AVIATION INSPECTION APPROVED}

\section*{TRANSFORMERS}

STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION.
0-50KVA, "C" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).
\begin{tabular}{llll} 
Driver & \(22 / 6\) & Carr. & \(2 /-\) \\
Mains & \(29 / 6\) & arr & \(4 / 6\)
\end{tabular}
L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. 1/-

\section*{*MAINS TRANSFORMERS}
\(350-0-350\) v. \(60 \mathrm{~mA} ., 6.3\) v. 2 A. £1/15/-. Carr. 4/6.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6.
\(500-0-500\) v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
525-0-525 v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. 55/5/-. Carr. 6/6.

\section*{*LOW VOLTAGE}

30-0-30 v. 4 A. £2/12/6. Carr. 5/6.
28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 28 v. 1 A., 30 v. 250 m A., 84/5/6. Carr. 5/6.
*PRIMARIES 10-0-200-220-240 v.
70V LINE MATCHING TRANSFORMERS
Fitted with terminal panel, taps at \(0.5,2,4\) and \(8 W\) into 15 ohms 17/-. Carr. 2/-
Flying leads, taps at \(\frac{1}{4}, \frac{1}{2}, 1,2\) and 4 W into 3 ohms 14/6d. Carr, 2/-
CHASSIS, CABINETS \& PRECISION METTALWORK
ELECTRONICS - DEVELOPMENT \& ASSEMBLY

\section*{CASH WITH ORDERS PLEASE}

Carlton Street, Manchester 14, Lancashire
TEL. (STD 061) 226-3411

\title{
ROOPTOEIECTRONICS From PROOPS \\ \\ INFRA-RED TRANSMITTERS \& RECEIVERS
} \\ \\ INFRA-RED TRANSMITTERS \& RECEIVERS
}

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Miniaturized construction and sofid state circuit design is combinad of applications. Miniaturized construction and solld state circunt design is combinad ties as short distance speech and data links, remote relay controls, safety devices. burglar alarms, batch counters, level detectors, etc., etc

INFRA-RED PHOTO RECEIVER - MSP3
Ultra sensitive detector/amplifier for infra-red (Gallium Arsenide) or visible Ilght optical links Ulira sensitive detector/amplifiet for infra-red (Gallium Arsenide) or visible inght optical links
reception. Spectral response 9500 A . Robust. cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking.
85/-

MAX RATINGS
Total dissipation fin free air, \(T_{a m b}=25^{\circ} \mathrm{C}\).) \(\quad . \quad . \quad . \quad 00 \mathrm{~mW}\). Derating Factor........ \(2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\). Output Curfent Intensity ..... 100 mA . Voffage.......25V. Operating Temperafure..........fom Supplied complete with suitable lenses, full Technical Data and Application Sheets, Including Line of Sight Speech Link.


Infra-red devices (except 31F2) are supplied complete with suitable lenses, technical data and typical application information.
-When mounted on an aluminium heat sink \(1 \mathrm{in} . \times 1 \mathrm{in} . \times 1 \mathrm{in}\). including Line of Sight Speech Link.

\section*{FIBRE OPTICS}

Highly flexible light guides that transmit light to inaccessible places es easily as electriclty is cordducted by copper wires. Fibre optics make it possible to control, miniaturize, split. reffect or transier light from one source to many places at once and to operate photo devices. logic circuits, or illuminate in ways never before possible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS

\section*{PHOTOCONDUCTIVE CELLS}

CADMIUM SULPHIDE CELLS (Cds)
tnexpenslve light sensltive resistors which require only simple circuitry to work as light triggering units in a wlde range of devices, such as: flashing or breakdown conscious - use with A.C. or D.C. Spectral response covers whole visible light range.


MKY251
Epoky sealed \(1 \frac{1}{1}\) in. diam. \(x \frac{1}{d}\) in. thick. Resistance at 100 Lux - 700 to 3.000 onms. Maximum voliage 200 A.C. or D.C. Maximum current
500 mW .
12/6 posf free MKY101-C Epoxy sealed. 8 in. dilam. \(x \frac{1}{3}\) in thick. Resistance at 100 Lux -500 to 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current 150 mW . \(10 / 6\) post free

\section*{MKY71}

Glass sealed with M.E.S. base. Glass envelope 务 in. diam., overall length 1 in. Resistance at \(100 \mathrm{Lux}-50\) Kohms 10150 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW . \(8 / 6\) post free

\section*{CADMIUM SELENIDE CELLS (Cdse)}

Thase have a higher dark resistance in a given period than Cadmium Sulphide Cells. indicating much faster response. Suhtable for all Cds applications plus applications in chopper. electronic musical instruments, computer and other sophisticated circuitry. Time response shown in meegohms is dark resistance measured 10 secs. after 400 Lux light intensity is intercepted.

\section*{MKB5H}

Hermetically metal sealed. \(\frac{1}{d}\) in. diam. \(x \frac{1}{\frac{1}{1}}\) in. thick. Time response 100 megohms. Resistance at 1,000 Lux -1 Kohm to 10 Kohms. Resistance at 10 Lux- 50 Kohms to 1 megohm. Maximum voltage

16/6 post free


MKB12H
Hermetically metal sealed \(\frac{8}{8} \mathrm{in}\). diam. \(\times \frac{3}{2} \frac{3}{6}\) in. thick. Time response 100 megohms. Resistance at 1,000 Lux \(=100\) ohms to 1,000 ohms. 100 megohms. Resistance al 1,000 Lux -100 ohms to 1,000 ohms.
Resistance at 10 Lux-1 Kohm to 10 Kohms. Maximum voltage 50 A C. or D.C. Maximum current 80 mW . Continuous 30 mW . \(16 / 6\) post free


All the basic components needed to demonstrate new ways to use light in serious applicatlons with glass fibre optics consisting of thousands of wibres tightly bundled in a flexible sheath with ferruled, optically polished ends. Kit includes 12. 18, and 24 inch standard light guides in 1.5 . It and 6 mm widths, 24 inch twin exit guide with \(2 \times 3 \mathrm{~mm}\). outputs. adaplors and battery operated liaht source. Supplied complete with card wallets containing technical data and Hustrated applications.
£16
LOW-COST CROFON FLEXIBLE LIGHT GUIDE
Newly developed plastic light transmitting media made by Du Pont and consisting of 64 speclal plastic fibres, each sheath. Can be used for many serious projects and inex sheath. Can be used for many serious projects and hex-

capped with Epoxy resin. Temp. range - \(40^{\circ}\) to \(176^{\circ} \mathrm{F}\). No loss of light through bending. 12-page data and applications booklet supplied.
\[
\text { Minimum order-2ti. } \quad 8 / 6
\]

\section*{Other advanced Solid-State devices}

\section*{RCA INTEGRATED CIRCUIT - CA3020}

Preamp, phase invertor, driver and power output function in a single package only 3 in . diam. and \(\frac{3}{18} \mathrm{In}\). high. Operates from single D.C. supply of 3 to 9 volts gives maximum output of more than is watt for 22 mA consumption. Low distorition. high gain is coupled with buitt-in temperature compensation ( \(-55^{\circ}\) to \(123^{\circ} \mathrm{C}\) )
and wideband operation. Complete with data and circuit applications. 421-post free

RCA TRIAC - CA40432
Suitable for light dimming and motor control circuits
Gate-controlled, full-wave, A.C. silicon switch with integral trigger that blocks or conducts instantly by applying reverse polarity voltage. Sరitable for A.C. operation up to 250 volts; controls currents up to 1440 watts. Size only \(z\) in.
diam. \(x\) in high. Complete with heat sink, data and apolications diam. \(x \frac{3}{16}\) in high. Complete with heat sink, data and applications
information.
45/- post free
 on microammeter or used with ampllfler as light trigger for alarm and counting devices, luminous fluxmeters, exposure meters, colorimeters, etc., Spectral response covers visible light range

stroor positree

\section*{PHOTOGENERATIVE CELLS}

Type 1 - \(1 \frac{1}{\frac{1}{2}} \times 1 \frac{3}{16} \mathrm{in}\). Output 1 mA at 0.6 volts at \(: .000\) Type \(2-28 \times 18 \mathrm{~mm}\). Output \(500 \mu \mathrm{~A}\) at 0.6 volts a Type 3-100 \(\times 50 \mathrm{~mm}\). Output 4 mA at 0.6 volt at 1.000

GALLIUM ARSENIDE LIGHT SOURCE—MGA 100 Filamentless, infra-red emiter
alignment and heat sinking.

forward curremt If max. \({ }^{\circ}\) D.C........ 400 mA . Forward peak current Lf mox. (ptk).......6A Power dissipation .600 mW .

Supplied complete with suitable lenses, full Technical Data and Application Sheets.

MICRO-MINIATURE INFRA-RED DETECTOR - 31 F2.
silicon NPN photo-diode of passivated planar construction, suitable for punched card readers. \(28 / 6\) post toe

\section*{SINCLAIR Z.12 \\ 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP}

\section*{12 watts R.M.S. continuous sine wave output}

This is the recommended amplifier for those requiring greater power and a high degree of versatility. This eight special-transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The \(Z .12\) performs satisfactorily from a wide range of voltages and it can readily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the \(Z .12\) to your precise requirements. Two may be used for stereo. when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size- \(3^{\prime \prime} \times 1 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{4}\) ". Class B Ultralinear Output: Frequency response from 15 to \(50.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\) : Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohms speakers may used in parallel: Input 2 mV into 2 Kohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak): 15 watts music power ( 30 watts peak); Power require-

89/6 ments 6-20V.d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.


\section*{SINCLAIR MICROMATIC}tunes over medium waves
remarkable range and power
- magnetic ear-piece

\section*{SINCLAIR STEREO 25}

De Luxe Pre-amplifier and Control Unit for \(Z .12\) or any other good stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to 20.000 Hz within \(\pm 1 \mathrm{~dB}\) ). radio. and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Nolume/Balance/Input are solid aluminium. Size \(-6 \frac{1}{2} \times 2 \frac{1}{2}\) " \(\times 2 \frac{1}{2}^{\prime \prime}\) plus knobs. Built. tested and guaranteed
£9.19.6

\section*{SINCLAIR PZ. 4 \\ Stablised mains power supply unit}

Heavy duty transistorised power supply unit to deliver 18 V .d.c. at 1.5 A . Designed specially for use with two Z.12 Amplifiers. etc., together with Stereo 25. Built, tested and guaranteed.
£4.19.6

\section*{the world's smallest radio}

This fantastic little British pocket receiver is available in kit form to build for yourself or ready built. tested and guaranteed. Its range. power and selectivity must be experienced to be believed; its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modem appearance. Kit in fitted pack with earpiece, solder and instructions
Built, tested and guaranteed
59/6
Mallory Mercury Cells RM. 675 (2 reqrd)
each 2/9

SINCLAIR RADIONICS LTD. 22 Newmarket Rd. Cambridge. TeI. OCA-3 52731 WW- 113 FOR FURTHER DETAILS

\section*{Acclaimed by all who heard it at the 1968 Audio Fairs}


\section*{SINCLAIR \\ 014}
- ACOUSTICALLY CONTOURED SOUND CHAMBER
- FREQUENCY RESPONSE 60-15,000 Hz
- LOAD HANDLING CAPACITY UP TO 14 WATTS
- brilliant transient RESPONSE8 OHMS IMPEDANCE
- OF COMPACT AND ORIGINAL DESIGN
- AN ALL-BRITISH PRODUCT

\section*{the most challenging loudspeaker development in years}

Price is no longer an obstacle to the enjoyment of high-fidelity loudspeaker reproduction; nor is size a problem either. In the Sinclair 0.14 you will find a loudspeaker of such remarkable quality and so compactly and attractively styled that you will want to change to Sinclair as soon as you hear it. At Trade Exhibitions and both the 1968 Audio Fairs, experts have been greatly impressed on hearing the 0.14 against speakers costing many times more, proving beypnd question that good reproduction does not have to be expensive. Tests by an independent laboratory with a Q. 14 drawn from stock show exceptionally smooth response between 60 and \(15,000 \mathrm{~Hz}\) and well sustained output beyond both these figures. Its remarkable
transient response ensures beautifully defined separation of voices, instruments, etc. Much of the success of this Sinclair design comes from the use of materials quite different from those to be found in conventional speaker manufacture, and the unusual contours of the seamless, sealed pressure chamber allow the 0.14 to be conveniently positioned on shelves, the floor, in wall corners or flush mounted. The Sinclair 0.14 is finished in matt black with solid aluminium bar trim on the front. Size: \(9 \frac{3}{4}\) in. square \(\times 4 \frac{3}{4} \mathrm{in}\). deep. Try it in your own home by sending off the order form today. If you are not satisfied your money plus the cost of posting the 0.14 back to us will be returned in full.
post free anywhere in the u.f. \(\mathbf{£ 7} \mathbf{~ - 1 9 . 6}\)

\section*{SINCLAIR GUARANTEE}

Should you not be completely satisfied with your purchase when you recelve it from us, your money will be refunded in full at once and without question. Full service facllities available to all purchasers.
order form brings prompt delivery sent to you post paid
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Please send Post free min}} \\
\hline & & \\
\hline I & ADDRESS & \\
\hline I & & \\
\hline I & & \\
\hline | For which / enclose cash/cheque/money order. & & ww. 169 \\
\hline
\end{tabular}

\section*{R.S.T. valve mail order co.}

BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16


\section*{TELEPRINTERS•PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT}


Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and special

2-5-6-7-8. TRACK AND MULTIWIRE EQUIPMENT
 telegraph automation and computer peripheral accessories


\section*{W. BATEY \& COMPANY}

Gaiety Works, Akeman Street, Tring, Herts
Tel.: Tring 3476 (3 lines) Cables: RAHN


STD: 044282 TELEX 82362

WW-115 FOR FURTHER DETAILS

\section*{SPECIALIST SWITCHES are again giving the fastest switch service in the world}

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types \(\mathrm{H}, \mathrm{DH}, \mathrm{HC}\), and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

\section*{Please note our address: \\ SPECIALIST SWITCHES CHARD, SOMERSET}

Write for design charts and prices or TELEPHONE-CHARD 3439



\section*{J E S AUDIO INSTRUMENTATION}


Illustrated the Si 452 Distortion Measuring Unit -low cost distortion measurement down to . \(01 \%\) £25.0.0.

Si451 £30.0.0.
Comprehensive Millivoltmeter

Si453 £35.0.0.
Low distortion Oscillator
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

TRANSFORMERS coils CHOKES

LARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN

\section*{FINE WIRE WINDINGS}

MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO GP.O. A.WRE LE B., B B.C.ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-6532261 CR4.8LZ

EST. 1933

\author{
WW-118 FOR FURTHER DETAILS
}

WW-119 FOR FURTHER DETAIL............................................


Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to subs and subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos. pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. \(7 / 6\) in U.K.


Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

\section*{7-STATION INTERCOM}
( 1 MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. 3 lin. Speakers Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 gis. P. \& P. \(14 / 6\) in U.K. WW-120 FOR FURTHER DETAILS


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLI FIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid, A must for every telephone user. Useful for Volume Control. Operates on one \(9 v\) battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8


\section*{ELECTROVILUE}

\section*{RAPID MAIL DRDER SERVICE}
all goods brand new－attractive discounts NO SURPLUS OR SECONDS
\(\star\) Unbeatable Value in New30 watt BAILEY AMPLIFIER complement
MJ481 NPN \(\}\) matched pair output £2．19．0 MJ491 PNP 40361 NPN
0362 PNP matched pair drivers \(£ 1.10 .3\)
40361 126； 40362 16／9
40362 PNP
Total for one channel \(£ 7.8 .0\) list；with \(10 \%\) discount only \(£ 6.13 .3\)
Total for two channels \(£ 14.16 .0\) list；with \(15 \%\) discount only \(£ 12.11 .8\) ．
Power Supply Kit（single rail）
\(£ 4.10 .0\) Power Supply Kit（single rail）\＆4．10．0
G．E． 2 N 2926 plastic range： \(\mathbf{1 8 V} \mathbf{2 0 0 m W}\)
Red spot \(\beta=55\) to \(1102 / 3\)
Yellow spot \(\beta=150\) to \(3002 / 9\)
Orange spot \(\beta=90\) to \(1802 / 6\)
reen spot \(\beta=235\) to \(4703 /\)
2 N 2926 ，our choice of colour \(2 / 2\) each， 10 for \(21 /\)－．
High reliability ceramic types available：
CS 2926 red \(3 / 9\) ；orange \(4 /-\) ；yellow \(4 / 3 ;\) CS2925 \(25 \mathrm{~V} \beta=235\) to \(4705 /-\) ．

Texas SILECT range
\(2 \mathrm{~N} 3704 \mathrm{~B}=90 \mathrm{~V} 8 \mathrm{~mA}\) NPN
2N \(3704 B=90\) to 330
2N \(3705 B=45\) to 165
\(2 \mathrm{~N} 3702 \mathrm{~B}^{25 \mathrm{~V}}=600 \mathrm{~mA}\) to 300 PNP
\(2 \mathrm{~N} 3702 \beta=60\) to 300
\(2 \mathrm{~N} 3703 \mathrm{~B}=30\) to 150
small signal NPN
2N3707 low noise
\(2 N 3711 \beta=180\) to 660
small signal PNP
2N4058 low nois
\(2 N 4062 \beta=180\) to 660

BC107 SERIES
\(4 /-\quad \mathrm{BCl} 10745 \mathrm{~V} \beta=125\) fo 500 \(\begin{array}{ll}4 /- & \mathrm{BC} 10745 \mathrm{~V} \beta=125 \text { to } 500 \\ 3 / 8 & \mathrm{BC} 10820 \mathrm{~V} \beta=125 \text { to } 900\end{array}\) BC10920V \(\beta=240\) 10900
\(4 / 9\)
\(3 / 9\)
BC167 SERIES 80 mW 300 M \(\mathrm{BC1} 6745 \mathrm{~V} \beta=125\) to 500 \(\begin{array}{lll}\text { BC16 } 20 V \\ B=125 & \text { to } 900 & 2 / \\ \text { BC169 20V } \beta=240 \text { to } 900 & 2 / 3\end{array}\)


FETs MPF105 25 V ，max．，gm \(=2\) to \(6 \mathrm{~mA} / \mathrm{V}\) ，low noise \(8 /-\) ．
Minl TRANSISTORS WITH mighty SPECIFICATIONS
2N4285 PNP hFE \(35-150\) at 10 mA it 7 MHz min
2N4286 NPN 30 V hFE over 100 at \(10 \mu \mathrm{~A}\) to 1 mA fT 280 MHz typ
2 N 4289 PNP 60 V hFE over 100 at \(100 \mu \mathrm{~A}\) to 1 mA fT 170 MHz typ
2 N 4291 PNP 40 hFE over 100 at 100 mA complementary driver／
\(\left.\begin{array}{l}\text { 2N } 4291 \text { PNP } 40 \mathrm{~V} \text { hFE over } 100 \text { at } 100 \mathrm{~mA} \\ \text { 2NPN } 40 \mathrm{~V} \text { hFE over } 100 \text { at } 100 \mathrm{~mA}\end{array}\right\} \begin{gathered}\text { complementary driver／} \\ \text { output }\end{gathered}\)
2 N 4294 NPN 30 V UHEF，N．F． dBB max at 100 MHz fT 570 MHz typ B5001 Power， \(14.3 W\) at \(100^{\circ} \mathrm{C}\) base temp．Insulated base，T066 size． Prices：2N4285 to 2N4292，2N3794 3／3；B5001 \(13 / 6\) ．
RECTIFIERS 100 V PIV 3 A type TS1， \(2 /-; 400 \mathrm{~V}\) PIV 3 A type TS4，2／9． 850V PIV tA type BY \(2383 / 9\) ； 1000 V PIV 1．5A type \(1 \mathrm{~N} 50543 / 11\)
FOR FURTHER DATA
FOR FURTHER DATA on the above semiconductors and many others，see

\section*{ZENER DIODES}
\(\star\) PEAK SOUND PRODUCTS
CIR－KIT No． 3 Pack，12／6：adhesive copper strip， \(5 \mathrm{ft}, \times 1\) or \(\frac{1}{\mathrm{H}} \mathrm{in}\) ． \(2 /\)－：
 \(2 \mathrm{gin} . \times 3 \mathrm{in} ., 2 / 6: 2 \mathrm{in} . \times 3 \mathrm{zin}\) ．， \(1 / 9\) ． ALL PEAK SOUND PRODUCTS AS ADVERTISED

\section*{＊SUPER QUALITY NEW RESISTORS}

Carbon film high stab，low noise

\(1 / 4 W^{W} 10 \% \% .7 \Omega\) to \(10 \mathrm{M} \Omega 1 / 9\) doz．， \(13 / 6\) per 100 ．
\(1 / 2 \mathrm{~W} .{ }^{2} \% 4 \Omega\) to \(10 \mathrm{M} \Omega 4 \mathrm{~d}\) ．each， \(3 / 3\) doz．， \(25 / 10\) per 100
\(1 \mathrm{~W} 10 \% 4.7 \Omega\) to \(10 \mathrm{M} \Omega 4 \mathrm{~d}\) ．each， \(3 / 3\) doz， \(25 / 10\) per 100 ．
\(1 / 6\) less per 100 if ordered in complete 100 ＇s of one ohmic value
\(1 / 6\) less per 100 if ordered in complete
Please state resistance values required．
QUALITY CARBON SKELETON PRE－SETS： \(100 \Omega, 250 \Omega, 500 \Omega\) ， \(1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 20 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega, 200 \mathrm{~K} \Omega\) ， \(250 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega, 1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega\)

\section*{\(\star\) ELECTROLYTICS}

SUB－MIN．，C426 RANGE（ \(\mu \mathrm{F} / \mathrm{V}\) ）： \(0.64 / 64,1 / 40,1.6 / 25,2.5 / 16,2.5 / 64\) ， \(4 / 10,4 / 40,5 / 64,6.4 / 6.4,6.4 / 25,8 / 4,8 / 40,10 / 2.5,10 / 16,10 / 64,12.5 / 25,16 / 10\) ， 16／40，20／16，20／64，25／6．4，25／25，32／4，32／10，32／40，32／64，40／2．5，40／16， \(125 / 16,160 / 2.5,200 / 6.4,200 / 10,250 / 4,320 / 2.5,320 / 6.4,400 / 4,500 / 2.5\) ， \(1 / 4\) each．
MINIATURE \((\mu \mathrm{F} / \mathrm{V}): 5 / 10,10 / 10,10 / 25,25 / 10,50 / 109 \mathrm{~d}\). each． \(25 / 25\) ，
\(50 / 25,100 / 10,200 / 10,1 /-\) each． \(50 / 50,2 /-100 / 50,2 / 6.250 \mu \mathrm{~F} 25 \mathrm{~V} 2 / 6\). t POTENTIOMETERS（short spindle）： \(100 \Omega\) to \(10 \mathrm{MO} \mathrm{lin}, 5 \mathrm{~K} \Omega\) to \(5 \mathrm{MM} \log 2 / 3\) each．Dual，long spindle； \(10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}\) lin or log， 10／6d．each

\section*{ELECTROVALUE SERVICES INCLUDE}

COMPONENT DISCOUNTS： \(10 \%\) for total order value exceeding \(£ 3\) list．
Post and Packing．Up to 1 ． OVERSEAS ORDERS WELCOMED－Carriage at cost．
CATALEGUERDERS WELCOMED－Carriage at cost． 200 up－to－date semiconductors available from stock as well as many other components，also transistor equivalents table．Invaluable to
experimenter and designer．Everything at best possible prices．

Dept．WW．1，32A St．Judes Road，Englefield Green，Egham，Surrey
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{行} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline  & 5 既 50 &  \\
\hline  &  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 尽 &  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \[
\hat{E}_{6}
\] & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \(\square_{\square}^{2}\) \％ & \\
\hline &  &  \\
\hline & & \\
\hline &  &  \\
\hline & 는 & \\
\hline & 咢 &  \\
\hline
\end{tabular}

\section*{ELECTRONIC BROKERS LIMITED}

\(\qquad\)



 49／10／－
KELVIN HUGHES FIVE－PEN RECORDER COMPLETE WITH AMPLIFIERS，ind oitered complete in free
standing consul．Fully overhauled and in excellent
condition．Cost： \(11,200+\) when new．Our price： 2450.


MAGNETIC FLUX
MEASURING SET
TS 13A．Range 1，200－9，600
er of nagnet．Pole fince diamet．
EVERSHED
MEGGER
ME GGER
250 volt，

\section*{Insulation tester weg，
bulth
buth four decade}

\section*{briges with ratio arms
giving ratios of \(100-10\)
\(-1-0.1+0.01\) and}

\section*{Selector switch for
insulation．resistanc}
ments．229／10／－ TRIMPOTS 990 OB－WIrewound Micropot
Poteatiometer．Low nolse．Brand new，by well
knowa manufacturer． 1 watl an \(70^{\circ} \mathrm{C}\) ． 100 ohous known manuracturer．
and whove \(\pm 5 \%\) ．Avaliable in the following
zalue：Ohma： \(5,12,25,50,100,230,400 ; 1 \mathrm{~K}, 2 \mathrm{~K}\),
\(2.6 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}\) ．Price， \(1-9-20 /=\) each， \(10-25=\) \(2.6 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}\) ．Price． \(1-9 \mathrm{~h}=20 /\) each， \(10-25\)
\(15 / \mathrm{eanch}, 25.50-12 / 6\) each， 50 mad over 10 －each SPEECH INVERTER M1．7181－A The R．C．A．Bpeech lnverter is in device intended
for use in radiotelephone inmallations where
privacy privacy In an prime conklderathon．The equipment Hy brid Transformers ensbles parallel two－wa convernatione on aingle telephone palr line at Whh inverslon，speech fed tato the tranamitting unintelligible signala．These signals whll remain unintelligible until they pas through a recelving
inverter circult at the otherend of the convenicg． tion channel．（Used only under Licence in U．K
（U．O．A．）． HYSTERESIS REVERSIBLE MOTOR．Incorporat ing two colln．Wach

ELECTRONIC BROKERS LTD．\({ }^{8}\) BROADFIELDS AVE．，ED GWARE

 Of the TK-s00f: incorporates many unlque TR10 featuresuclading Automatic electrical switch lig of - MPX backgruund nolse suppression alter circuit ellminates secondary aignal and "beat" interference
 TION: 21 tramistors, 15 Gernanium and 8 sulicon dioder and 1 Zener diode. 3 walves. Prequency range:
 mod. Capture ralio: 24 AB . Buperbly ntyled and finished hammer enamel and brushed alloy cabiuet size Lasky's Price 38 Gns.

\section*{FOSTER CRITERION}

HI-FI BOOKSHELF SPEAKER SYSTEM
This eartremely high quality hooknhelf speaker aystem by the world famous twerter tna seuled inflaite bamte enctosure with handsome oiled watnut finish. units and at lanky to criterion is superior to many larger and moje expensive
 gilding \(15 \mathrm{~W}, 8 \Omega\) impedance. Cabinet contructed from fin. Maminate with molustle gauze. Phono thput it rear. List Price \(\$ 12.10 .0\)
Lasky's Price £8.8.0
2 for \(\{16\)


\section*{GARRARD RECORD PLAYERS}

AUTOCHANGERS
2025.
8025.
\(8 L 95\)

3000 MM with etereo cart
AT60 Mk. II
A70.
GARRARD BASES \(\qquad\)

SINGLE PLAYERS

WB1 £3/5/8 WH2 e4/13/8 WB4 \(£ 5 / 6 / 11\) CLEARVIN PERSPEX COVERS
SPECIAL INTEREST ITEMSI

\section*{LASKY'S PRECISION}

\section*{PANEL METERS}

Preciaion made ln Japan by TTC. Each meter bored and Pully kuaran-
teed with all firitok nuts and washers. Alzes are of tront panel.
SPECIAL QUOTATIONS FOR QUANTITIES

\section*{Add \(1 / 6\) Post on each.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MK-38A & 1 ta & MK-45A & 21 n & MK-65A & 31n. sq. & KR-65 & \(31 \times 3 i u\). & KR-52 & \(3 \times 21\) \\
\hline 1 mA & 29/6 & 1 tra & . \(20 / 6\) & 1 mA & ..38/6 & 1 mA & ...38/6 & 1 ma & . 38/6 \\
\hline 5 ma & \(27 / 6\) & 5 mA & 28/6 & 5 mA & 38 & 5 mA & - . \(37 / 6\) & 3 mA & 38/6 \\
\hline 100 ma & \(27 / 6\) & 100 ma & 28/6 & 100 mA & 38/6 & 100 ma & ...38/6 & 100 mA & /6 \\
\hline 300 v & \(27 / 6\) & 300 V & 28/6 & 300 V & 38/ & 300 V & \(38 /\) & 300 V & 35/0 \\
\hline \(50 \mu \mathrm{~A}\) & \(37 / 6\) & -0, \({ }^{\text {a }}\) & 49/6 & в0¢A & 59/6 & 30MA & 59/6 & \(50 \mu \mathrm{~A}\) & 56/- \\
\hline 1 max 8 & mit 20/8 & 1 ma s & tr 32/6 & 1 mA S & ntr 38/6 & 1 ma S & mir 49/- & 1 ma s & mtr \(39 / 6\) \\
\hline \(100 \mu \mathrm{~A}\) & ..37/6 & \(100 \mu \mathrm{~A}\) & ...42/6 & \(100 \mu \mathrm{~A}\) & ...52/8 & \(100 \mu \mathrm{~A}\) & . . 56i/- & \(100 \mu \mathrm{~A}\) & -.52/8 \\
\hline 600, \({ }^{\text {a }}\) & ...28/6 & \(500 \mu \mathrm{~A}\) & . . 35/- & \({ }_{500 \mu} \mathbf{A}\) & ...42/- & \(500 \mu\) 这 & .. 46/- & \(500 \mu \mathrm{~A}\) & 45/- \\
\hline
\end{tabular}


\section*{Branches \\ 207 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 3271 Open all day Salurday. early closing 1 pm Thursday 33 TOTIENHAM CT. RD., LONDON. W. 1 Tel.: 01.6362605 Open all day. 9 a.m \(-6 \mathrm{p} . \mathrm{m}\) Monday to Salurdav \\ 152/3 FLEET STREET, LONDON. E.C. 4}

Open all day Thursday. earty closing 1 p m Salurday


ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL

\section*{VALVES/SEMI-CONDUCTORS BRAND NEW \& GUARANTEED}
OA 2
OB 2

\section*{\begin{tabular}{l|l|l|l|}
\hline \(5 /-\) & 6 EF 5 & \(8 /-\) & 30 Cl
\end{tabular}}

\section*{TRANSISTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N696 & 5/- & AFIRg & 12/- & B8Y5 & 178 & 0 CF 4 & 5/- & \[
{ }^{60 \text { P.I.V. }} 290
\] & \[
\begin{aligned}
& 400 \text { P.I.V. } \\
& 8 \text { AMP }
\end{aligned}
\] \\
\hline \(2{ }^{2} 697\) & 5/- & ABY28 & 6/8 & H8Y Y \({ }^{\text {d }}\) & 4/6 & 0 C 75 & 4/8 & 20 P .1 V . & 700 P.I.V. \\
\hline 2 N 706 & 3- & BCior & 48 & H. \({ }^{\text {Y } 78}\) & 7/8 & \(0 \mathrm{C76}\) & 4/8 & 1 AMP 3/6 & 100 АМР \\
\hline 2N706A & 1/- & BC108 & 3/6 & B8Y79 & 7/6 & \(0 \mathrm{C77}\) & 4/6 & 140 P.I.V. & 5/- \\
\hline 2 N 708 & 4/- & BClioy & 4/6 & B8Y95A & 3/6 & \(0 \times 78\) & \(51-\) & 165MA 1\% & P.I.V \\
\hline 2N743 & 4- & BC170 & 3/- & BUY10 & 12/6 & 0081 & 4- & 150 P.1.V & 500MA 3/6 \\
\hline 2N744 & & \(\mathrm{BCl}^{2}\) & \(3 / 8\) & GET106 & 4/6 & OC81M & \(2 / 6\) & 25 AMP 101- & 800 P.1.V. \\
\hline 2N753 & 4/6 & BCl73 & 3/8 & GET113 & 5/- & OC81D & 3/- & 200 P.I.V. & \({ }_{5} \mathrm{AMP}^{7 / 6}\) \\
\hline 2 N 914 & \(4 / 6\) & 13CY31 & 4/6 & GET873 & 4/6 & Ocaidy & \(2 / 6\) & 6 AMP 3/6 & 1000 P.I.V \\
\hline 2 N 916 & \(4 / 8\) & BCY34 & 4/6 & GET874 & 46 & \(\mathrm{OCP}^{2}\) & 4/6 & 400 P.I.V. & 6 AMP. \(7 / 6\) \\
\hline 2N629 & 4/6 & BCY39 & 4/6 & mation & 719 & OC83 & 5/- & sooma 3/ & 00 P.I. \\
\hline 2 N 930 & \(5 /-\) & BCY 42 & 5/- & Matiol & \(8 / 8\) & OC139 & \(7 / 8\) & 400 P.1.V. & b0MA 6/6 \\
\hline 2N1613 & \%- & BOY43 & \(8 /\) & Matizo & 7/9 & OCl 40 & 916 & \({ }^{6}\) AMP 5/8 & \\
\hline 2N1711 & \(8 / 6\) & BCY70 & \(8 / 6\) & MATI21 & 8/6 & OC169 & 4/6 & & \\
\hline 2 N 1893 & 8/- & BCY71 & 10/6 & NK T210 & 5/- & OC170 & 4/6 & THYRI & TORS \\
\hline 2 N 2160 & 1411 & \({ }^{\text {BCY772 }}\) & \({ }^{6 / 6}\) & NKT211 & 5/8 & OC171 & 4/6 & SILICON & ONTROL \\
\hline \(2{ }^{2} 2147\) & 17/ & BP115 & \({ }_{8 / 8} 8\) & N K T212 & 3/8 & \({ }^{0} \mathrm{OC200}\) & 8/8 & & \\
\hline \({ }^{2 N} 2 \mathrm{~N} 2426\) & 7/6 & \({ }_{\text {BPX }}^{\text {BFI }}\) & \(6 / 6\)
\(6 / 8\) & NKT213 & 3/9 & 00201
00203 & \%/8 & RECT & IERS \\
\hline 2N3055 & 19/6 & BPY 10 & 4/8 & NKT215 & 3/9 & OC20]s & 6/- &  & 7 P.1.Y \(18 / 6\) \\
\hline 2 N 102 & 8/6 & BFY11 & 4/6 & NKT216 & \(9 / 8\) & \(\mathrm{OCP}^{204}\) & 8/0 & 100 Y.1.v. & 500 P.I.V. \\
\hline 28103 & \({ }^{8 / 6}\) & BrY 17 & 4/6 & NKT217 & 9/8 & \({ }_{8}^{8 T 140}\) & 4/- & 7 AMP 13/6 & \(100 \mathrm{AM1}{ }^{\text {P }} 79 / 8\) \\
\hline 28104 & 6/8 & BFY18 & 4/6 & NKT219 & 49 & 8T141 & 4/6 & 200 P.I.V. & \\
\hline \({ }^{\text {ACl0 }}\) & \(4 / 6\) & BPY19 & 4/6 & NKT223 & \({ }_{3}^{5 / 8}\) & \begin{tabular}{l}
X 1104 \\
\(\times 1124\) \\
\hline 1
\end{tabular} & & 7 AMP 15/6 & \\
\hline AC126 & 4/6 & BFY50 & 4/6 & NKT224 & 38 & X A124
\(\times 123\) & \(4 / 6\) & & \\
\hline AC127 & 4/6 & BPY51 & 4/- & NKTTzes & \(3 / 9\) & XA123 & 4/6 & ZENER & DIODES \\
\hline AC128 & \(4 / 6\) & BPY \({ }^{\text {S3 }}\) & 4/8 & NKT229 & \({ }_{4} / 18\) & XB112 & 31. & OAz200 12\% & Oazzer 8/6 \\
\hline \({ }_{\text {ACl }} 65\) & 4.- & \({ }^{\text {Br }} \mathrm{C}\) & 12/6 & NKT240 & 1 4/8 \({ }^{\text {4/8 }}\) & YC1610 & 7/- & OAzzat 10\% & OAz209 8/8 \\
\hline ACl67
ACY19 & \(4 / 6\) & H8X19
B8X20 & 5/6 & NKT403 & \(18 / 8\)
143 & PRETOL & & OA720\% 818 & 0 0az2l0 6/8 \\
\hline \(\triangle \mathrm{CrO}^{29}\) & 49 & BsX 40 & 13. & NKT261 & \(4 / 8\) & TORS & & OAZ203 \(18 / 8\) & \(\begin{array}{ll}0.2 Z 211 & 8 / 8 \\ 0 A Z 212 & 8 / 8\end{array}\) \\
\hline ACY21 & 4/6 & B8x+1 & 17/- & OC23 & \(8 / 6\) & OCP7 & 12/6 & \(\begin{array}{ll}\text { OAz20-4 } & 8 / 6 \\ \text { OAz205 } & 8 / 6\end{array}\) & \(\begin{array}{ll}\text { 0 AZ212 } & 6 / 8 \\ 0 \text { AZ213 } & 6 / 8\end{array}\) \\
\hline ACY2\% & \(4 /\) & B8Y10 & \(5 /-\) & OC25 & 7/6 & & & \(\begin{array}{ll}\text { OAZzeot } & 8 / 6\end{array}\) & 0Az227 15\% \\
\hline \(\mathrm{ACY}^{\text {ACY }}\) & 46 & \({ }^{\text {B8Y Y }}\) 826 & 5/6 & \({ }^{\text {OC2 } 28}\) & \(88 / 8\) & & & OAZ207 9/8 & - \\
\hline AD140 & 8/8 & B8Y 27 & 4/6 & 0 C 35 & \(8 / 8\) & & & 8TC. 1 WATT & IES 3\% \\
\hline AD149 & 16/- & B8Y28 & 4/6 & 0c36 & 8/6 & SIGN & &  & \\
\hline AD16I & 8/- & B8Y29 & 1/6 & OC41 & \(8 /-\) & DIOD & ES & 2 series. All \({ }^{\text {a }}\) & tayes froma 3.9. \\
\hline \({ }^{\text {ADP162 }}\) & 8/5/0 & B8V38 & 4/6 & \({ }^{\text {OC4 }} \mathbf{0}\) & \$/- & IN34A & 3/- & 50 volt. 250 m & . \(2 / 6 \mathrm{ca}\) cal 1.5 w. \\
\hline \[
\begin{aligned}
& \text { ADT140 } \\
& \text { API14 }
\end{aligned}
\] & 18/- & B8Y39
B8Y 51 & 7/6 & OC44 & 3/1- & 0.5
OA70 & \(3 /-\)
\(2 /-\) & 4/- ea. 7 w. 5 & earlb. \\
\hline AFI 15 & 4/6 & \({ }^{\text {B8Y5 }}\) & \(8 /\) & 0c70 & 3/- & OA79 & \(2 /-\) & & \\
\hline AFII6 & \(4 / 6\) & B8Y53 & \(8 / 8\) & 0 C 71 & 3/- & OA81 & \(2 /\) & & \\
\hline AF|17 & \(4 / 6\) & 88Y54 & 988 & \({ }^{00472}\) & 4/- & OA90 & \(2 /\) & POS & AGE \\
\hline AP119 & 4/6 & B8Y53 & 18/9 & \(0 \mathrm{Cz3}\) & 5/- & OAPB & & & , \\
\hline
\end{tabular}

\section*{CLEAR PLASTIC PANEL METERS}

First grade quality Moving Coil panel meters available ex-stock. S.A.E. for illustrated leaflet. Discounts for quantity. Type MR 38P, \(1 / 1 / 2 \mathrm{in}\). square fron


\section*{TE-20RF SIGNAL}


GENERATOR
Accurate wide range
nirnal generator cover.
ing \(120 \mathrm{kc} / \mathrm{s}-260\) Mc/s. ing \(120 \mathrm{ke} / \mathrm{s}-260 \mathrm{Mc}\) Mc/s.
on 6 bands. Disecly
cullbrated. callbrated.
R.F. attenuat R.F. Attenua
eration \(200 / 240\)
Brand Bration new wit
tione, \(£ 15\).

TE22 SINE SQUARE WAVE AUDIO GENERATORS


Output Impedance
200 v. A.C. opers-
tion. Supplied brand
tion. Supplied brand
new and guaran.
teed with inatruc-
tion manual en
leade, E16.10.0.
Carr. \(7 / 6\).
ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 \(20-200.000\) cpa. Square
Wave \(20 \cdot 30.000\) cpas. \(0 / \mathrm{P}\) Hice 2.20 .3 mp

Variable R.F. Attenus-
ton. Int.Ext. Mostula-


LAFAYETTE TE-46 RESIST. ANCE CAPACITY


ANALYSER


impedance turn
ratlo insulation
2001250 v. A.C.
Brand New, \(£ 17.10\)
Carr. \(7 / 6\).

\section*{AVO CT. 38 ELECTRONIC MULTIMETERS} High quality
measures A.C.
and range instrument
Resistance and
D.C. Voltage:
Power output.
Ranges
D.C. Resistance and Power output. Ranges D.C.
volts \(250 \mathrm{mV}-10,000\) v. ( 10 meg \(\Omega-110 \mathrm{meg} \Omega\) input). D.C. current \(10 \mu \mathrm{~A} 25 \mathrm{amps}\). Ohms: \(0-1,000 \mathrm{meg} \Omega\). A.C. volt \(100 \mathrm{mV}-250 \mathrm{v}\). (with R.F. measuring bead up to \(250 \mathrm{Mc} / \mathrm{s}\) ). A.C.
current \(10 \mu \mathrm{~A}-25 \mathrm{amps}\). Power output 50 microcurrent \(10 \mu \mathrm{~A}-25 \mathrm{amps}\). Power output \(50 \mathrm{micro-}\)
watts- 5 watts. Operation \(0 / 110 / 200 / 250 \mathrm{v}\) A.C suatts-5 watts. Operation in perfect condition, complete with Supplied in perfect condition, complete with
circuit lead and R.F. probe, \(£ 25\). Carr. 15/-,

TYPE I3A DOUBLE BEAM OSCILLOSCOPES BARGAIN

ADMIRALTY
B. 40 RECEIVERS


Weight 114 lb . Offered \(\ln\) good warking condition.
 B41 L.P.
ع17/10/-
CLASS D. WAVEMETERS

dyne Irequenc
ing 1.7-8 Me/s
6 r. D.C. Ide
use. Available
condition f.5
Or brand new

diat, level meter, precision atteanator \(1 \mu \mathrm{~V} \cdot 100 \mathrm{M}\). Operation from 12 volt D.C. or 0/110/200/250 v. A.C. Size \(12 \times 81 \times 3 \mathrm{in}\). Bupplied in brand new lented. £45. Carr. 20/-.


FIELD TELEPRONES TYPE L. Gemerator ringing metul cases. Operate on 2 1.5 \% , hatterles (ant
supplled.) Excellent cunditione \(\mathbf{~} 4.10 .0\) per pair.

\section*{MARCONI TEST EQUIPMENT EX-MILITARY RECONDITIONED, \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\), \(£ 25\). Саाт. \(30 /\). TF 885 VIDEO OSCILLATOR \(0.5 \mathrm{~m} / \mathrm{cs} £ 45\) Cart \(30 /\) T.F.105M. BEAT FREQUENCY OSCILLATOR \\  \\ TF 142E DISTORTION FACTOR METER \&20. Carr. 20/TF 1100 VALVE VOLTMETER, Brand New, \&50. TF 1267 TRANSMISSION TEST}

\section*{Vavioble Volcege Thandsidulils}

Brand new, guaranteed and carriage paid.
High quality construction. Input 230 v. \(50-60\) cycles.
Output fult variable from \(0-260\) volts. Bulk quantities available.
1 amp. - £5/10/-; \(2.5 \mathrm{amp} .-£ 6 / 15 /-; 5\) amp.- \(£ 9 / 15 /-\);


\section*{TEST EQUIPMENT}

VM.76. VALVE VOLTMETER. R.F. mea-
auretnents in excess of \(100 \mathrm{Mc} / \mathrm{s}\) \& D.C,
mesarretnent up to 1000 v with accuracy of
meanuremente up to 1000 v with accuracy of
\(\pm 2 \%\) D.C. range 300 MV to KV . A.C.
tange 300 M V to 300 V RMM. Resistance
0.02-500 M. Price E72. METER. Tran-

nistorised. A.C. range \(10 \mathrm{Mv}-3 \mathrm{~V}\). D.C.
current range \(0.01 / \mathrm{A}\) current range 0.01/A- 0,3 Ma. Besistance
1 ohm- 10 ingoghme. \(£ 125\).
H1B. AUDIO SIGNAL OEMERATOR. £30.
118.
 per J1B except nitied with output meter \(£ 35\).
TTIS. TRANSISTOR TESTER. \(£ 37 / 10 /-\)

LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS

G. W. SMITH
\& Co. (Radio) Ltd. 3-34 Lisle St., W.C.2.
also see opposite page


\title{
IMWEDITIE DESPATGH
}


\section*{TIS43A tase \(6 / 9\) \\ Unijunction transistor sim. 2N2646 BEN300 etc. Data on request \(25-99\) 5/3d
\(100+4 /\). \\ 2N3819 \\  \\ 2N3055 15/- \\ \(25+13 /-100+11 / \cdot\)}

\section*{AD161+AD162 \\ NPN/PNP \\ COMPLEMENTARY PAIR 10/-} 12 + PAIRS \(8 /\)
2N2926 VERY POPULAR
NPN PLANAR
\(25+1 / 10100+1 / 6\)

\section*{CRS3/40AF}

SIC 400 PN 3 A thYRISTOR
\(25+11 / \cdot 100+10 / 3\)

\section*{ELECTRONIC}

\section*{COLOMOR (ELECTRONICS) LTD. \\ Tel. 01-743 0899}

170 Goldhawk Rd., London, W.I2.


POLARAD UHF SIGNAL GENERATOR. Frequency \(950 \mathrm{mc} / \mathrm{s}\) \(\mathrm{mV}-200 \mathrm{mV}\). Sync. selector interna square wave, sin., positive and negative rate mulkiplyer XI \& X10. Pulse rate \(30-420 \mathrm{c} / \mathrm{s}\). Pulse delay \(2.5-350 \mathrm{u} / \mathrm{sec}\). Pulse widsh .5 microsec (incorporating
square wave swisch). Modulation: square wave switch). Modulation:
CWFM, internal square wave, external positive and negative. \&llo. Carriage 30/.
As above but frequency \(3,830-11,050\) \(\mathrm{mc} / \mathrm{s}\), counter read out, pulse delay XI, \(\times 10\) and \(\times 100\) at 2.20 microsecs. Puls El65, Carriage \(30 /\).

MARCONI SIGNAL GENERATOR TYPE TF \(144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}\). Excellent laboratory tested condition struction manual, E45, P. \& P. \(15 / \mathrm{F}\),

MARCONI SIGNAL GENERA TOR TF \(801 / \mathrm{A} / \mathrm{I}\). \(10-300 \mathrm{Mc} / \mathrm{s}\). in 4 bands. Internal at \(400 \mathrm{c} / \mathrm{s}\). I \(\mathrm{kc} / \mathrm{s}\). External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{ke} / \mathrm{s}\). Output a 100 db below 200 mV from 75 ohms
source. \(\& 85 . \mathrm{P}\). \(\& \mathrm{P} .20 /\), including necessary connectors, plugs, and Inseruction manual.

BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903 Frequency range \(6,800-11,000 \mathrm{mc} / \mathrm{s}\);
directy calibrated. Pulse rate \(40-400\) c/s and X 10 multiplyer, delay 3-300 \(\mathrm{U} / \mathrm{sec}\). Width .05 to \(10 \mathrm{U} / \mathrm{sec}\). Inpur for external syncronisation and modu lation. Ourput delayed and undelayed syncronised directly calibrated attenu ator. \(\mathbf{6 8 5}\). Carraige \(30 \%\)

DAWE VALVE VOLT METER TYPE 613B. Range 0.03y so 300v in nine ranges. Frequency \(20 \mathrm{c} / \mathrm{s}\) to 2 \(\mathrm{me} / \mathrm{s}\). An. rectangular meter. 250 v
\(50 \mathrm{c} / \mathrm{s} \mathrm{f} 17 / 10 /\). Carriage \(30 /\).

SOLATRON LABORATORY REG ULATED POWER UNIT MODEL SRS 151 A. Variable voltage, positive output: 20-250v; 250/500v \(\times 300 \mathrm{~mA}\) (metered). Negative output 0-170v (unmetered). Fixed negative output
170 v . Two separate 6.3 v and 5 mmp outputs. Volts -mA meter switch. H.T. Safety cutout. 200/250v A.C. 50 \(\mathrm{c} / \mathrm{s}\). E45. Carriage 30/-

MARCONI VIDEO OSCILLATOR TF 885A. Sine wave ourput 25 c/ \(50 \mathrm{c} / \mathrm{s}\) to \(150 \mathrm{c} / \mathrm{s}\) in 2 bands. Freq. accur \(\frac{ \pm}{20} 0 \pm 2 \mathrm{c} / \mathrm{s}\). Power supply 100/125/250 \(\mathrm{mc} / \mathrm{s}\) in 3 bands \(/ 885 \mathrm{~A} / 1\) ). C85. Carriage 40/.
PRECISION VHF FREQUENCY METER TYPE 183. \(20-300 \mathrm{Mc}\) /s with accuracy \(0.03 \%\) and \(300-1,000 \mathrm{Mc} / \mathrm{s}\) on harmonics \(5.06 .25 \mathrm{Mc} / \mathrm{s}\) with ace curacy \(+-2 \times 10.4\). Incorporating calibrating quartz \(100 \mathrm{kc} / \mathrm{s}+-5 \times\) \(100^{\circ} 120 / 220\) v. A.C. mains. 485 . Carriage 62.

AIRMEC FREQUENCY STAND. ARD METER TYPE 761. 10c, 100c.

COSSOR OSCILLOSCOPE TYPE 1049. 245. Carriage 30/

Fuller descriptions of the following upon equest.

SIGNAL GENERATOR TYPE 62 OMPLETE WITH P.S.U.

HEWLETT.PACKARD ELE

MICRIOWAVE SPECTRUM ANALYZER TYPE SA 18 MANUFAC. TURED BY RACAL.

DAWE STORAGE OSCILLO: TRACE SHIFTER.

SIGNAL GENERATOR CT 218 (FM/AM) MARCONI TF 937. 85ke/s to \(30 \mathrm{me} / \mathrm{s}\) in 8 ranges. Output level variable in I db steps from \(\mathrm{l} \mu \mathrm{V}\) to 100 mV into 75 ohms. Also I volt outputs down to \(0.1 \mu \mathrm{Y}\) into 7.5 ohms. nternal \(\bmod\) at \(400 \mathrm{c} / \mathrm{s}\), \(1 \mathrm{kc} / \mathrm{s}, 1.6 \mathrm{kc} / \mathrm{s}\) and \(3 \mathrm{kc} / \mathrm{s}\). Variable mod. depths and and \(2 \mathrm{mc} / \mathrm{s}\). F.M. at frequencies above \(394 \mathrm{kc} / \mathrm{s}\). Monitor frequencies above detection. Panclimatic. 100 so 150,200 - 250 V A.C. \(45 \mathrm{sa} 100 \mathrm{c} / \mathrm{s}\). Weight \(117^{1 / b s .}\) Measurements \(17^{7^{*}} \times 201^{\circ} \times\)

WINDSOR MODEL I50A OUTPUT POWER METER. 5 mW to 5 W F.S.D., 2.5 to 20,000 ohms. \& \(15 / 10 / \%\). Post and packing (S)

BOONTON " Q " METER TYPE 160 A . Frequency range \(50 \mathrm{kc} / \mathrm{s}\) to \(50 \mathrm{mc} / \mathrm{s}\). "Q" range 0.250 with mul-\(30-500 \mathrm{pF}\) with separate \(\pm 3 \mathrm{pF}\) inter polating capacitor. Power supply \begin{tabular}{l} 
polating capacitor. Power supply \\
\(220 / 250 \mathrm{vAC}, ~\) \\
\hline 75 . Carriage \(30 / \%\).
\end{tabular}

AVO VALVE TESTER MODEL 3. Measurement of mutual conductance 0.300 y panelled \(0-400 \mathrm{y}\). grid \(0 \%-100 \mathrm{y}\) Filament \(0 / 126 \mathrm{v}\), Insulation \(0 / 10 \mathrm{~m}\) ohms. Rectifying valves and signal diodes can be tested under load conditions, short circuiting of electrodes and cathode insulation can also be measured. Complete with data book (a) 45 . Carriage 30/-

FURZEHILL SENSITIVE VALVE VOLTMETERTYPE 378 B/2. Accurate measuring AF and MF voltages up to
\(250 \mathrm{kc} / \mathrm{s}\) in the ranges 10 mV (full scale) \(250 \mathrm{kc} / \mathrm{s}\) in the ranges 10 mV (full scale) to 100v. (full scale). Logarithmetically divided. A db scale provided for \(0-20\) \(\mathrm{db}, \mathrm{o} d \mathrm{~b}\) being ImV . Automatically set zero for every range. A lack is provided required. \(220 / 250 \mathrm{v}\). A.C. \(627 / 10 \%\). Post and packing \(10 /\) -

END OF RANGE
MARCON GOLVE VOLTMETER.

SIGNAL GENERATOR. Type C.T.53. Without chart 610 , with chare 622. Carriage \(15 / \mathrm{F}\).

\section*{P. C. RADIO LTD. 170 GOLDHAWK ROAD, W. 12}

SHEpherd's Bush 4946

VALVES







 \begin{tabular}{l}
- \\
\hline- \\
\hline- \\
\hline 6 \\
\hline 6 \\
\hline- \\
\hline 6 \\
\hline 6 \\
\hline
\end{tabular}








D.C. MOVING COIL METERS
\(100 \mu \mathrm{~A}\). 31 in . square panel colib \(0-2 \mathrm{w} \ldots \ldots\). .
200 A . 2 in . round panel, sealed calibro-30 \(200 \mu \mathrm{~A}\). 2 i in . round panel
\(500 \mu \mathrm{~A}\). \(2 \frac{1}{2}\) in. round proi. \(500 \mu \mathrm{~A}\). 2 in . round panel
\(750-0-750 \mu \mathrm{~A}\). 2in. round plug-in \(1 \mathrm{~mA} .2 \frac{1}{\mathrm{i}} \mathrm{in}\). round panel 1 mA . 2 in . round panel sealed 5 mA . 2 in. round elip-fix pancl or proj. \(10-0-10 \mathrm{~mA} .2 \mathrm{i} \mathrm{in}\). round panel \(0-30 \mathrm{~mA} .2 \frac{1}{\mathrm{i}} \mathrm{in}\). round panel \(75 \mathrm{~mA} .2 \frac{1}{\mathrm{i} i n}\). plug in 100 mA . Itin. proj.
100 mA . \(1 \frac{1}{2} \mathrm{in}\). round panel
100 mA . \(2 \frac{1}{2} \mathrm{in}\). round panel
500 mA . \(2 \frac{1}{1} \mathrm{in}\). round panel
2 amp . 2in. round panel
25 amp. 3 दin. round proj.
50 amp . 2 i in. round pancl
\(0-1.5 \vee \& 0-150 \vee 3\) terminals round panel
20 VDC 2 in. square panel
100 V 4 in . round panel
150 VDC 4in. round panel
\(150-0150 \mathrm{~mA}\). 3 'in. round panel.
1.5 KV with res. 2 in . round pane

MOVING IRON METERS
15 VAC \({ }_{2}\) in. round panel
500 VAC 2 fin. round clip fix

MINIATURE METERS. General

\(25 \mathrm{~mA} D . C ., 20 /-1\)
\(65 \mathrm{~mA} . \mathrm{D}_{2}, 18 / \ldots 3 /-\)
"S" METER FOR H.R.O. RE-
"S" METER FOR H.R.O. RE-
CEIVERS. Brand new, \(62 / 10 /\). Carriage
Paid U.K. MINIATURE "PENNY
SIZE'" METERS. lin. round, flush
ring nut mounted 500 m A \(F S D\), cal
brated 0-1 MA. 20/-. P. \& P. 3/\%.
NULL METER (unscaled 25-0-25
micro-ohms) 3 in square panel. \(45 /-\).
NAGARD OSCILLOSCOPE TYPE
DE 103, E85. Carriage 10/=,
LOSCOPE 2'in. tube. 622 los.
Carriage 30/
HEWLETT-PACKARD VTVM
MODEL
for A.C., D.C. And resistance notasure-
ments with A.C. meas. in excess of
\(100 \mathrm{mc} / \mathrm{s}\); D.C. polarity reverse facility
and 7 resistance ranges. Large easily
readable meter. A . range 1.300 V in readable meter. A.C. range 1.300 V in
6 ranges. D.C. range \(1.1,000 \mathrm{~V}\) in 7
ranges. Resistant \(0-50\) Mohms.
E22/10/-Carriage \(15 / 2\).
RF WATT METER PM16. Frequency
RF WATT METER PM 16 . Frequency
\(0.2-500 \mathrm{me} / \mathrm{s}\), 3 ranges \(0-150,0-600\), 0-1,500w. Impedance 51.5 ohms. " \(N\) " eype connector. E75. Carriage 40/-
PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency
signals within the range from 20signals within the range from 20
20,000 c.p.s. to an accuracy of \(1.0^{\circ}\). sinusoidal between 2 and 30 v . peak. In excellent condition together with handbook and necessary connector. \(£ 45\). 25/- Carriage 30/.

SPARES FOR AR.88D. RECEIVERS. Ask for
sclection
INSET MICROPHONE for cele-
FIELD TELEPHONES TYPE "F" FIELD TELEPHONES TYPE "F
Housed In portable wooden cases Excellent for communication in- and including batceries and \(1 / 6 \mathrm{ch}\) mile field cable on drum Complecely new 66/10/-. Slightly used, \(65 / 10 /\)-. Carriage 10/.
s abor TELEPHONES TYPE Per pair including bacteries and \(1 / 6 \mathrm{th}\) mile field cable on drum. 65/10/. HARTiage 10/
HARNESS "A" \& " \(\mathbf{B}\) " control units, punction boxes, headphones, micro29/4/FT. AERIALS each consisting of cen 3ft., fin. dia. rubular screw-in with adapeor to fit ehe 7 in rod acrial lated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Absolutely hrand new and complete ready to erece, in canvas bag. 63/9 6. P. \& P. \(10 / 6\).
300 W 15V JAP Petrol Generator Charging set). 1260 W 35 . Carriage 35 CHARGING SET. Com plere with switchboard. New \(£ 45\). Carriage 40/.

\section*{L.T. SUPPLY UNIT RECTIFIER} No. 19. Consists of two separate 12 V DC circuits each rated at 3 amp , which may be used independently, giving two connected in parallel giving 12 V 6 amps or connected in series giving 24 V at 3 amps. Ideal for bactery charging, DC power supply. etc. \(100 / 250 \mathrm{~V}\) AC input. Brand new, complete wish con-
nectors. \(66 / 19 /\). Carriage \(9 /\).
approx. 4,000 r.p.m. Ideal for small rans, running models, miniature drills grinders, etc. 12/-. P. \& P. 2/-.
MECHANICAL TIMED DELAY RELAYS. Coil resistance 150 ohms, working from 12-40v D.C. Adjustable delay within range of few seconds. \(17 / /\)
HIGH SPEED ULTRA SENSITIVE PLUG IN RELAYS with two
separate windings each of 1685 ohms separate windings
LOW INERTIA 24V D.C. MOTOR, UNIVERSAL GALVANOMETER SHUNTS. 25/-. P. \&. P. 3/

\section*{FOR EXPORT ONLY}

Installation Kits for CIl/R2IO Sets 53 TRANSMITTER made up to " as COLLINS TCS. Complete installaPOWER S
POWER SUPPLY UNITS FOR RECEIVERS R 210.
R.C.A. TRANSMITTER TYPE ET Cryse. mult. and \({ }^{2-20} \mathrm{Mc} / \mathrm{s}\), complete with M.O. Fully tested and guaranteed. All spares available.
BC 610E \& BC 6101 TRANS amplifier BC 614E. Acrial euning unit BC 939A, exciter units, tank coils, ece Fully tested and guarantecd. All spares available.
No. 19 HIGH POWER SETS. By incroducing RF Amplifier the output tations supplied


CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNEC. TIONS. ALL PRIMARIES \(220 / 240 \mathrm{v}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & SEC. TAPS & AMPS & Price & & R. \\
\hline 1 A . & 25-33-40-50. & 15 & 6910 & \({ }^{\circ}\) & \(10 / 6\) \\
\hline & 25-33-40-50. & 10 & ¢6 19 & 6 & 8/6 \\
\hline 1 C & 25-33-40-50. & & 6519 & 6 & 8/6 \\
\hline & 25-33-40-50. & 3 & 1312 & 6 & \(7 / 6\) \\
\hline 2A & 4-16-24-32 & 12 & ¢6 10 & 0 & \(7 / 6\) \\
\hline 28 & 4-16-24-32 & & 4417 & 6 & \(7 / 6\) \\
\hline 2 C & 4-16-24-32 & 4 & 63 & 0 & 6/- \\
\hline 2 D & 4-16-24-32 & 2 & ¢2 & 6 & 5/- \\
\hline \(3 A^{*}\). & 25-30-35 & 40 & 61417 & 6 & 15/- \\
\hline 38** & 25-30-35 & 20 & \(E 9\) & 6 & 916 \\
\hline 3 C & 25-30-35 & 10 & 26 10 & 0 & 716 \\
\hline 3 D & 25-30-35 & 5 & 63 15 & & 6/6 \\
\hline 3 E & 25-30-35 & 2 & 6215 & 0 & 6/6 \\
\hline 4A*. & 12-20-24 & 30 & [11 15 & 0 & 101- \\
\hline 48 & 12-20-24 & 20 & ¢7 10 & 0 & 8/6 \\
\hline 4 C . & 12-20-24 & 10 & C4 15 & 0 & 716 \\
\hline 4 D & 12-20-24 & 5 & 635 & 0 & 6/6 \\
\hline 5 5 & 3-12-18 & 30 & ¢8 15 & 0 & 7/6 \\
\hline 58. & 3-12-18 & 20 & 66 10 & 0 & 7/6 \\
\hline 5 C & 3-12-18 & 10 & & & 6/6 \\
\hline 50 & 3-12-18 & 5 & 6212 & 6 & 6/6 \\
\hline 6A & 48-56-60 & 2 & 635 & 0 & 5/6 \\
\hline 68 & 48-56-60 & 1 & 62 & & 5/6 \\
\hline \(7 A^{*}\). & 6-12 & 50 & 69 & 6 & 9/6 \\
\hline 78 & 6.12 & 20 & & 0 & \(7 / 6\) \\
\hline 7 C & 6-12 & 10 & 6310 & 0 & 6/6 \\
\hline 7 D & 6-12 & 5 & 6210 & 0 & 5/6 \\
\hline 8A & 12-24 & 1 & <1 9 & 6 & 5/6 \\
\hline 9 A & 17.32 & 8 & 6512 & 6 & 5/6 \\
\hline 10a. & 9-15 & 2 & 61 & 0 & 5/6 \\
\hline 11 A . & 6-3 & 15 & 62 & 0 & 5/6 \\
\hline 12A. & 30-25-0-25-30 & 2 & 63 & 0 & 5/6 \\
\hline
\end{tabular}

Note: By using the intermediate taps many other voltages can be obtained.
Example: No. I. \(7-8\)-10-15-17-25-33-40-50V. if
2.
5. \(3-8-12-16-9-120-24-32 \mathrm{~V}\)
3.

\section*{CONSTANT VOLTAGE TRANSFORMERS}

By Advance. Input \(190-260\) v. SO cycles. Output 230 v . at 60 watts. Type M.T. 161A.

DIGITAL HOUR METERS 6 figs inc. 1/10ths, \(1 / 100\) ths 40v. A.C. but complese with eransformer for 240 v . A.C. operation. All in plastic case. Size \(6 \frac{1}{2} \times 6 \frac{1}{4} \times 3\) in. Cond tion as new \(45 /\). P\& P \(5 /\). .


9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-785।
01-262-5125
AMERICAN OIL FILLED CAPACITORS
10 MFD
\begin{tabular}{ccccc}
1500 V & DC WKG & \(17 / 6\) & \(3 / 6\) & car \\
600 V & \("\) & \(\because\) & \(12 / 6\) & \(3 /\) \\
1000 V & \("\) & \(\because\) & \(15 / 6\) & \(3 / 6\) \\
7500 & \("\) & \("\) & \(12 / 6\) & \(3 / 6\) \\
600 V & \("\) & \(\because\) & \(10 / 6\) & \(3 /\) \\
600 V & \("\) & \("\) & \(8 / 6\) & \(3 / 6\) \\
1000 V & \("\) & \("\) & \(5 /\). & \(2 /\)
\end{tabular}

\section*{BRITISH TYPES}

\section*{\(\begin{array}{cll}\text { T.C.C. } & 25 \mathrm{MFD} & 300 \mathrm{~V} \text { AC WKG } \\ ., & 10 & 350 \mathrm{~V} \text { DC WGK }\end{array}\) \\ 350 V DC WGK
500 V
600 V}

\section*{EX COMPUTER LOW VOLTAGE STABILISED POWER SUPPLIES}

\section*{Open chassis. Re-condt-}

Choke/capacity translstorlserfect.
ing. Ripple better than \(3000: 1\). Incorpor-
ates printed circuit S.C.R. Board for overload protection and overload switch with manual re-set
button. Insulation of high standard. Designed for \(120 / 130\) volts. A.C. operation, buz transformer for 200240 volts. A.C. mains supply included in list price. DIMENSIONS: \(6 \mathrm{in} . \times 6 \mathrm{in}\), square \(6 y \mathrm{in}\). long according to type
\(\begin{array}{ll}6 v-8 A & 40 \\ 12 v-20 A\end{array}\)
\(12 v-20 A \quad 626\)
All \(12 / 6\) carriage.

\section*{HEAVY DUTY L.T. TRANSFORMERS}

PRI 240 volts. Sec. Tapped. 4, 6, 11 voles. 150 amps. C13/19/6. Carr.
2 PRI 220, 235, 250 voles. Sec. No. I: 55 volts, 24 amps; No. 2: 14 voles, 10 amps; No. 3: 60 volts, 2 amps. Conservatively rated, tropically finished. 2 PR10/6. Carrn 15/-
3 PRI 240 volts. Sec. 24 voles, 12.5 amps . Conservatively rated. 85/.. Carr. 7/6
PRI 240 voles. Sec. Tapped. \(53.6,55.2\) voles, 10
amps. "C" core. \(5 /-C 16\) amps. "C" core. 75/-. Carr. 7/6.
6 PRI \(220-240\) voles. Sec. Tapped. 75, 80 voles, \(2 \cdot 4\) amps and 6 volts, I amp. "C" core. Tropically rated. 79/6. P.P. 7/6.
7 PRI 240 voles. Sec. 45 voles, \(25 \mathrm{~m} / \mathrm{A}\) and \(I\) volt,
\(\frac{1}{1}\) amp. "C"' core. 17/6. P.P. 4/-.
PRI 230 voles. Sec. Tapped. 130,65 volts, \(85 \mathrm{~m} / \mathrm{A}\) Pits, 5 amps, 6 volts, I amp. I7/6. P.P. S/-
10
14 PRI 220-240 v lead connections. Size \(7 \times 6 \frac{1}{2} \times 6 \mathrm{in}\). \(\mathrm{fi} / 3 / 19 / 6\). Carr. 17/6.

\section*{1. \\ ULTRASONIC CLEANERS \\ }
(Burndept B.E.352) 60 watt model. Supplied Brand New complete with stainiess steel tank \(9 \frac{3}{3} \times 6 \frac{1}{3} \times 4\) in ع60. Сагr. 20/-.
2. FAST NEUTRON MONITORS (Burndept 1407C) for measuring neutrons in the energy range 0.15-15
meV . 100.
3. Radiation Monitors (Burndept BN 110 MK V) \(0-5 / 50 / 500 / 5\) k. c.p.s. Brand new. \(£ 100\). Alpha and eta Gamma probes availa at erta cosi
4. PORTABLE RADIATION MONITORS (BuIndepl BN 132) 0-5/50/500/5k. c.p.s. With bullt-in Gamma probe. Brand new: \(\mathbf{5 0}\) complete with cariving hạness.
S.A.E. for literature. \(10 \%\) discount for Educational Authorilles.

LARGE CAPACITY ELECTROLYTICS. \(2,000 \mu \mathrm{FF} .150 \mathrm{v}\) \(4,000 \mu\) F. 90 v. \(7 / 6\) ea. \(6,300 \mu \mathrm{FF} .63 \mathrm{v}\); \(10,000 \mu \mathrm{~F} 30 \mathrm{v}\).: screw terminals. P.P. 1/- ea.
SPEAKER bargains. E.m.I. \(13 \times 8\) in. with double Tweeters \(15 \mathrm{ohm}, 65 /-\), P.P. 5/-. As above less iweeters 3 of \(15 \mathrm{ohm}, 45 /-\) ea., P.P. 5/-
CAR RADIO SPEAKER \(7 \times 4 \mathrm{in} .3 / 5 \mathrm{ohm} .15 /-\) ea. P.P. \(2 / 6\)

> EXTRACTOR/BLOWER
> FANS (Papst)
> 100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in}\). 2800 r.p.m. Wonderful buy at \(50 /-\) ea.


SPEAKER SYSTEM ( \(20 \times 10 \times 10 \mathrm{in}\).). Made to spec. from \(\frac{2}{6}\) in. board. Finished in black leathercloith. \(13 \times 8\) in. speaker with iwin tweeters complete with cross-over. PHOTOMULTIPLIERS 6262 and 6262b. f15 ea.
SILICON DIODES RS220af 2/- ea., £1 doz:; RS240 3/ea., 30/- doz.; RS280 4/- ea., 40/- doz.; IS \(103 / \mathrm{BY} 100\) 4/- ea., 40/- doz.; RAS310af (avalanche) 6/- ea., 60/doz.; IS413
20/- ea., RS812 - 40\%/- ea., RS845 60/- өa.


MINIATURE KEY SWITCHES. (P.O. LeveI Type 1000). centre off. \(2 \mathrm{c} / 0\) each way. \(7 / 6\) ea.

DEAC BATTERY PACKS \(\left(5 \times 4 \frac{1}{3} \times 1 \frac{1}{2} \mathrm{in}\right.\).) containing cells giving 4 volts at 5a.h. 35/ . P.P. 5/~, SOLARTRON PULSE GENERATORS (OPS 100C)
\(50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}\). \(\mathbf{~} 60\) each. Carriage \(50 /-\) WOBBULATORS TYPE 210 (Mertix) 0-220 M/c. Sweep width \(1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}\). £40. Cartlage \(30 /\)

THYRISTOR LIGHT DIMMERS
500 watt Module 45/-
1000 watt Module 60/
These modules may be fitted into standard socket boxes and made up into banks as required.

5 kW DIMMERS in metal cablnet £20 ва.

\section*{TRANSFORMERS}

3 PHASE L.T. TRANSFORMERS (Gardners ' \(C\) ' Core)
 Delia connette
 3/0.9/0.27v. 30 amp. E7.10. 15 amp. E5. P.P. 15/-.
L.T. TRANSFORMER Prim. 200/250v. Sec. O/25/35v. 30 amp. \(£ 7.10\). P.P. \(20 /-\)
STEP-DOWN TRANSFORMERS Prim. 200/250V. Sec. 115 v .1 .25 amps , 25/- ea. P.P. 5/.
L.T. TRANSFORMERS Ptim. 240v. Sec. 8/92/20/25v. 3.5 amp models 20/; 5 amp model 25/-. P.P. 5/6.
L.t. TRANSFORMERS Prim. 240v. Sec. 14v. 1 amp 10/e. \(1.8 \mathrm{amp} 1 \mathrm{~B} /-\) ea. P.P. 2/6.

ELECTRIC SLOTMETERS (1/-) 25 amp . L.R. 240v. A.C. 85/- еа. P.P. 5/
Quarterly electric check meters, 40 amp.

COPPER LAMINATE PRINTED CIRCUIT BOARD \(\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{2}\right.\) in.), \(2 / 6\) sheet, 5 for 10
Also \(11 \frac{1}{2} \times 6 \frac{1}{2}\) in., \(4 /=\) ea., 3 for \(10 /-\)

\section*{BULK COMPONENT OFFERS}

100 Capacitors (latest types) 50 pF to \(.5 \mu \mathrm{~F}\)
250 Resistors that and
150 Hl -Stab Resistors, \(\frac{1}{6}\) o \(\frac{1}{2}\) and 1 watt.
25 vitreous \(\mathrm{W} / \mathrm{W}\) Resistors. \(5 \%\).
12 Precision Resistors .1\% (several sfíandards included).
12 Precision Capacitors 1 and \(2 \%\) (several standards
included).
12 Electrolytics (miniature and standard sizes).
ANY ITEM 12/6. ANY 5 ITEMS 50/-.

TELEPHONE DIALS (New) 20/- ea. Amplifled TELEPHONE HANDSET (706) 27/6. P.P. \(2 / 6\).

EXTENSION TELEPHONE (Type 706) Black or 2 tone Grey. 65/-. P.P. 5/-.
UNISELECTORS (Brand new) 25-way 75 ohm .8 bank \(\frac{1}{2}\) wipe 65/-. 10 bank

\section*{COMPUTER LOGIC BOARDS. Containing 426240} 10 2N1301, 2 2S103, etc. 30/- ea.
BOARD contalning 14 BCZ11, 2 OC122, 2 trimpots, etc. CONTINUOUS LEVEL MONITORS (Buindept BE307) complete with Sensing Probe. \(£ 25\).
Transistorlsed PROXIMITY SWITCHES (Buindept BE315) sensing speed 120 per min. 〔16.
LEVEL CONTROLLER (Burndep BE305). ©8.
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 interruption per min., comprises: Light Source, Sensing S.A.E. Literature.

COLD CATHODE TUBES (Hivac XC25) 2/-ea

\section*{PATTRICK \& KINNIE}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline SOLID STATE-HIGH & H FIDELITY & \multicolumn{2}{|l|}{Acclaimed by everyone} \\
\hline & & \multicolumn{2}{|l|}{MAYFAIR ELECTRONIC ORGA} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline & & \multicolumn{2}{|l|}{} \\
\hline & & & \\
\hline & &  & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & &  \\
\hline  &  &  & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{4}{*}{} & & \multirow[t]{2}{*}{NEW - MALLORY LONG LIFE \(50^{\circ}\). OFF LIST PRICES} & \\
\hline & & & \multirow[t]{2}{*}{} \\
\hline & &  & \\
\hline & & LIFE are regulred.
OUANTITIES AVAILABLE. & \multirow[t]{2}{*}{} \\
\hline & & & \\
\hline
\end{tabular}

\section*{HI-FI equipment to suit EVIZRYPOGKI}

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD.

for all leading makes AMPLIFIERS TUNERS DECKS SPEAKERS MICROPHONES TEST EQUIPMENT SYSTEMS
ALL WITH DISCOUNTS
Ask for Hi-Fi-Slock List Leaflet 16.17
WRNSRDDII HR

\section*{Fullustrated CATALOCUE}

COMPLETELY NEW 9th EDITION (1969) The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 10/- worth discounit vouchers FREE WITH EVERY COPY
* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 210 pages of components and equipment.
* 70 pages of microphones, decks and Hi-Fi


\section*{6,500 ITEMS} 320 BIG PAGES

\section*{Send today7'6筌}

\author{
303 Edgware Road, London, W.2. Mail Order Dept. \\ all types of Components, Organ Dept. (01) 723-1008 is 309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Deckstor) 723 sse3
}

BH-PAK Gumanit silfabino or MONEY BACK
KING OF THE PAKS Unequalled Value and Quality
SUPER PAVS BI-PAK NEW—UNTESTED
SEMICONDUCTORS


500 Chesham House 150 Regent Street London, W. 1


The DORSET (600mW Output)
with baby alarm facility. Set of parts. The latest modulized and pre-alignment techniques makes this simple to build. Sizes: \(12^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}\)
MAINS POWER PACK KIT: \(9 / 6\) extra.
Price \(\mathbf{5} 5.5 .0\) plus \(7 / 6 \mathrm{p} . \&\) p. Circuit \(2 / 6\). FREE WITH PARTS The ELEGANT SEVEN MK. III (350mW Output) 7-transistor fully tunable M.W.-L.W. portable. Set o
parts. Complete with all components, including ready parts. Complete with all components, including ready for foolproof construetion.
MAINS POWER PACK KIT: \(9 / 6\) extra
£4.9.6 plus \(7 / 6\) p. \& p
Circuit 2/6. FREE WITH PARTS


50 WATT AMPLIFIER AC MAINS 200-250V An extremely reliable general purpose valve
Amplifier-with six electronically mixed inputs. Amplifien-with six electronically mixed inputs
Suitable for use with: mics, guitars, gram, cuner Suitable for use with: mics, guitars, gram,
organs etc. Separate bass and treble controls.

Price 27 gns. plus 20/-p. \& p.

\section*{XIOI}

IOw. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP.
Specific
10 watts
Sensitlvity (for rased outpue): ImV ineo 3 Kohms ( 0.33 microamp). Total Distortion (at I KHz): At 5 wates \(0.35 \%\); At rated output \(1.5 \%\). Frequency Response: Minus 3 db
points 20 Hz and 40 Khz . Speaker: 3.4 ohms. ( \(3-15 \mathrm{ohms}\)
 may be used)
may be used)

Price \(49 / 6\) plus \(2 / 6\) p. \& p
CONTROL ASSEMBLY: (including resistors and capacitors). 1. Volume Price 50. 2 . Treble: Price \(5(.3\). Comprehensive bass 101 POWER SUPPLIES The above 3 items can be purchased for use with the X101. POWER SUPPLIES

\section*{The CLASSIC}

CONTROLS: Selector Switch. Tape
Speed Equalisation Switch ( \(3 \frac{3}{2}\) and \(7 \frac{1}{2}\) i.p.s.) Volume. Treble. Bass. 2 position
SPECIFICATION: Sensitivities for 10 watt output
80 mV . Radio: 100 mV Aux. 100 mV . Tape/R.P.U.: 2 mV . Cer.P.U.:
80 mV . Radio: 100 mV . Aux. 100 mV . Tape \(/\) Rec. Outpur: 100 mV . Equalisation
 Control Range: Bass \(\pm 13 \mathrm{~dB}\) at 60 Hz . Treble \(\pm 14 \mathrm{~dB}\) at 15 KHz . Total Distor
tion: (for 10 watt output) \(<1.5 \%\). Signal Noise: \(<-60 \mathrm{~dB}\). AC Mains \(200-250 \mathrm{v}\). Size \(121^{\prime \prime}\) long, \(44^{\prime \prime}\) deep, \(29^{\prime \prime}\) high. Price 8 gins. plus \(7 / 6\) p. \& p
Teak finished case.
The RELIANT 1OW SOLID-STATE HIGH OUALITY AMPLIFIER
Specifications: Output: 10 watts. Output

mpedance: 3 to
radio 250 mV . Tone Controls: Treble control range \(\pm 12 \mathrm{~dB}\) at 10 KHz ;
are 20 Hz and 40 KHz . Signal to Noise Ratio better response: Minus 3 dB points 4 silicon Planar type and 3 Germanium type. Mains input: \(220-250 \mathrm{~V}\). Aransistors: chassis: \(10^{\prime \prime} \times 33^{\prime \prime} \times 2^{\text {. A.C. Mains, } 200-250 \mathrm{~V} \text {. For use with Sid. or L. P. records, }}\) musical instruments, all makes of pick-ups and mikes. Two inputs with concrol or gram. and mike. Bullt and tested. \(8^{\prime \prime} \times 5^{\prime \prime}\) speaker to suit. Price \(14 / 6\) plus 1/6p. \& p. Crystal mike to suit \(12 / 6\) plus price 55.5 .0 plus \(5 /-\) p. \& p.
\(1 / 6\) p. \& p.

\section*{THE VISCOUNT}

SPECIFICATIONS: Output: 10 watts per channel ineo Amplifier
ut: 6 position rotary sele into 3 to 4 ohms speakers 3 pos, stereo), P.U., Tuner, Tape and Tape Rec. Sensitivities: All inputs 100 mV . into 1.8 M ohm. Frequency response: \(40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}\). Tone controls; Separate bass and treble controls. Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and \(250-240 \mathrm{v}, 50-60 \mathrm{~Hz}\). Volume conerols: Separate for each channel. AC Mains input: Size \(121^{\circ} \times 6^{\circ}\)

PRICE 13 in teak-finished case. Buile and tested.
\begin{tabular}{c|c} 
CYLDON U.H.F. THREE-IN-ONE HI-FI 10 WATT SPEAKER \\
TUNER
\end{tabular}

TUNER
Complete with PC
and PCB6 Valves.

Size \(4^{\circ}\)
Comple wis
ath
cuit
\(35 / \mathrm{p} .8 \mathrm{p} .3 / 6\)
three matched ceramic magnet speakers ith ame, comblning over net work. Peak handing power 10 watts. Impedance 15 ohms. Flux denslty 11.000 gauns. Renonance \(40.60 \mathrm{c} / \mathrm{s}\). Fro-
 p. © p. Stmilar speaker to the above without sweeters in 3 and 15 ohman. \(\quad\) Price \(39 / 6\) plus \(5 /\) p. \& p.

\section*{MOTEK}

3 Speed 2 track Tape Deck complete with heads, takes 7in spool. incorporating 3 motors. A.C. mains, 240 voles lisced as 221.0 .0 Our Price \(\mathbf{E 9 . 1 9 . 6}\) plus \(10 / \mathrm{p}\) \& \& .

\section*{RADIO \& TV COMPONENTS (ACTON) LTD.} 21A High Street, Acton, London, W. 3
Orders by post to our Acton address please. Also at 323 Edgware Road, London, W. 2 Personal callers only at our Edgware address.
\begin{tabular}{|c|c|c|c|}
\hline ATM/SEA & &  &  \\
\hline & & & \\
\hline & & & 1 \\
\hline & & & \\
\hline 园 & 2-ma & & 7 域 \\
\hline - & & & \\
\hline tunen unirs & & & \\
\hline & &  & \\
\hline &  &  & 7\%...es \\
\hline  & SHIMPMEGSOS & & \\
\hline & & cole & \\
\hline & & & \\
\hline & & & \\
\hline - & 2mememem & & \\
\hline & & & \\
\hline Ftas \(=\) &  & Insta/ Your oun & \\
\hline & & Thatphoxe & \\
\hline SCOOP PURCHASE & Alduluts & & \\
\hline SALEE [ & & & 2me \\
\hline & &  &  \\
\hline  & & & \\
\hline  & & RLIFISTX/Ex & \\
\hline & & 5 & \\
\hline cole & & & \\
\hline & & & meancem \\
\hline \(x=z=\) & & & \\
\hline & P0145 & Cournovir & 2ax \\
\hline  & & & \\
\hline RECEIVER KIT & & & \\
\hline & & & mane \\
\hline & - \(=\) ava & \%minmen &  \\
\hline \(=5=\) &  &  & + \\
\hline
\end{tabular}


BECKASTAT
This ie an instant thermostat almply plug your appliance toto ft and its lead into wall plug. Adjuetable setting for normal air tempera. turen 13A loading. Will anve th:
cost in s seasom 18/6-P. sin. \(2 / 9\).

DRY JOINT TESTER
The moat re liable way of testing for a dry folnt ta to measure circuit boand. Our kit for doing this comprises a thrge-scale
 zero setting, and a wiring diagram with instructions. The only additlonal lemas you will need are a battery, nome wire. a pair of test rods. Price 18/6. Pontage and Insurance \(2 / 6\).
REED-SWITCH ulatable for dozenn of conveyor-bett switchting. These sre nimply glash encased wwither-bertswichting. These are aimply gians. jermaneat magnet coll. A spectal buy enablea us to ofler
inese at \(2 / 6\) each, or \(24 /-a\) dozen. Sultable magnets BLANKET SIMMERSTAT Athough looking like, and Hitted an an ordinary blanket
awith this is in fact g device for switching the blanket ons
for varying time periode, thus giving a complete control from of to full heat. Alan sultable for controlitig the Lemperature of any, other applinnces uning up to 1 smp .
Listed at \(27 / 6 \mathrm{each}\). we offer thene while our stock lanta at only \(12 / 6\) each.
Made by smiths.M. Electrica, these are almost silent ranning, but are very powerfuh They operate from normal 240 V.
nuaina and the final-whaft apeeds is R.P.M. 15/-.Ps In. \(2 / 9\). THERMOSTATS

 hox for wall mounting \(5 /-\) P. A P. 1/P.
Type " B " 15 amp. This is a 17 in . long rod type maile by Wh. the fumous sunvic Co. Bpindle adjuats thit
from 50 to 550 deg. F . Internal screw alter the setting so this could be adjumable over 30 deg. W 1000 deg. P.
Butable for enstroling furnace, oven kiln, immersion heater or to make name-ntart or Are alarna. 8/6 plua \(2 / 6\) post and Type "D". We call the the Ice.stat as it cuts is and out
at mround freezing point. \(2 / 3\) smps. Han many usen, one of which would be to keep the loft pipea from freezing. If a
 7/6. plun \(1 /-\) post liquid -particularly, thase in glans tranks, vate or sinksthermostat in held (half nubmerged) by rubber sucker or wire clip-ldesl for fish tanks- developers and cheminca
hathe of all typer. Adjuatable over range 50 deg. to
150 dea. \(\boldsymbol{P}\). Price \(18 / \%\), plus \(2 / 0\) post and insurance.

ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by 8mith's these unita are as fitted to many top quality cookers to control the oven. The cloek is maing driven and frequency conon and off times to he accurately set. Ideal for awlitching on tape recorders. Ofered at only a fraction of the regular price-new and
unumed only \(38 / 6\). lena than the value of the clock nlone-pont and nured only 3 .

\section*{INFRA-RED} HEATERS
Make up one of thene latent type heaters Ideal for bathroom, etc. They are simple
to make from our eany. to-follow instructlons
aner silica enclosed elements deaigned for the correct infra-red wave length ( 3 microns). Price for 750 watts elemeat, all parts metal casing at lustrated. 18/6. plus \(4 / 6\) post and


ORILL CONTROLLER Electronically changes speed from approximately 10 revs, to
maximum. Full power at all maximum. Full power at all includes all parta, case, everything and full instructions \(19 / 8\), plus \(2 / 6\) post and Insurance. Or
29/6. Plus \(2 / 6\) post.



THIS MONTH'S SNIP
Electric Clock with 3 amp switch
made by Bralthe for Dreamand. Thene are maitu driven and irequency controlled so are extremely accurate. The dial
enables "switch-on" time to be accurately set. sertch off is 3 hours later or by manual control. Intended for awitching
 In neat plasulc case with mains lead snd two outlet plugn

\section*{VARYLITE}


Will dim Huorescent or incandescent lighting up to 600 W . from full brilliance to out. Pitted on MaK. Fjush plate. anme sixe and fixing as stabdard wall switch ao may be fitted in place of this, or mount on aurface. Price complete in heary platictc box with conirol knob, \(£ 3.19 .6\)

INDICATOR LAMP
Panel mounting, conulits of neon lamp in red Plastic lens with
renistor in leade for mans operathon 2/64. each 24j- dozen.


SPRING COIL LEADS as inted to telephones, 3 itted to telephones,
4 core \(2 / 6 \mathrm{~d}\). each, 3 core \(2 /\) -

Multi Purpose Neon Test Dait. Robunt, uneful and inatructive. tests innulation, capacity, continuity, resintor, volume
controla, al mo acta an atgral injector and L.T. fault finder, kit comprlises neon indleator, 4 -way water switch, ebonite tubes. renistora.condensera, terninalf, etc., with ditagratn, only \(8 / 6\). plus \(2 /\). poat and inaurance
5 Puah Switch. One push operater malne on/orn awiter, the 2/8.
 plus \(4 / 6\).
Experimentiak with ultra violes? Phallipm U.V. lamp. 16/6: Experimenting with ultra viole
holder and contrul gear 19/6.
G.E.C. Black Lirth Tube for experiments and special lighting control gear. 19/6. plue \(4 / 6\) post.
Cloek Motor. 230 w. 30 cpn synchronous-self starting, \(6 / 6\) Pentode Output Tranformer. 8tandard size, 40-1, ex-
equlpment but \(0 \mathrm{~K}, 4 / 3\) each. \(48 /\)-doz. Pont grald. E.H.T. Condenser, bol mifd. \(5 \mathrm{kV}, 8 / 6\) each. Eeon Mains Tester, \(1 / 3\) each, \(12 /\) - doz.
Rotary Cam Opersted Switch. 12 positionn each of which
 Rotary Cam Operated Switob . A positions: Iat ponition all
 Breat Mierophone. Fitae American made dynamic type. aduastable on breast plate with neck atraps, 7/6. post \(4 / 6\). Cireular Fluorescent. 22 whit, Qin. dlam, tube complete with
choke. atarter, holders and chrome clips, 29/6, pont, etc. \(4 / 6\). Midget Belay t win 250 ohm colle she 2 . 1 in . \(\$\) pairs changeover contact, \(7 / 6\) eaph.
P.O. Type Relay. Twin 200 ohm coiln, size approx. 3in. \(2 i n . ~ x f\) in. 4 pulp changeoper contacts, \(8 / 8\) ench.
Printed Circuit Board. Edre Connector, wolder termations, 32 contacta, atandard apacing for veroboand, etc. 6in . long but eavily cut. \(7 / 6\) each. \(80 /\) doz. Sub-Miniature Silicon Diodes. General purpose type with gold-plated leadn. 1/e each or \(7 / 6\) per dozen.
Mearake Tapes. 225 ft . Tape on \(3 / \mathrm{h}\). spools, normaly \(~\)
\(/ 6\)
each, We offer \(\$\) tapea for \(12 / 6\).
White Circular Flex Ideal for lighting drops, twin made by
Bicc. Usually \(8 d\) y d . 100 yd. coll for \(30 /\) - plus \(6 /\) - postage BICC. Usually \(8 d\). yd., 100 yd. coll for \(30 /-\) plus \(6 /-\) postage.
Edrewise Control. Morganite, as fitted many tranalstor radius, 2 K or 3 K with switch, 26 each or \(24 /\), per dozen.
 thsurance \(3 /-\mathrm{F}\). Silicon Reetifier. Equiv. BY 100750 mA 400 V ., 10 for \(20 /\). Miniture Pickup for 7 in . records made by Commocode,
crystal cartridge with sapphire atylus only \(3 / 8\) or 36 - dozen. Telescopie Aerial for radlo or trammitter, chi ome plated Midget Neons for maminy indicatorn, etc., \(1 / 3\) each or \(12 / 0\) dozen.
Compreanon Trimmers. Twin \(100 \mathrm{pF}, 1 /\) - each; \(9 /\) - per dozen.
\(\operatorname{3in}\) PM Loudipeaker, 3 ohin, 12/6;80 ohm 13/6.

\section*{ELECTRONICS (CROYDON) LTD}

Dept. Ww, 266 London Road, Croydon CRO-2TH

\section*{NO EXCUSES! NO DELAYS! FROM STOCK! UARIIBLE VOLTAGE TRANSFORMERS \\ 5 Amp. AC/DC VARIABLE VOLTAGE}


50 AMPS

 OUTPUT UNIT
 smooth stepless volt.
age variation over range
7 Amp. A.C./D.C. Mk. II Variable Output Power Unit Inpue 230 V. A.C. Output continuously VARIABLE from 0 to 260 v. A.C. OR 0 so 230 v. D.C. at 7 a. Robustly const ructed in
metai case, complete with saiety fuse, neon indicacor, voltmeter metal case, complece with saletrluse, neon ndiciph 36 lm and ammezer.
Price \(639 / 10 / \%\)
\begin{tabular}{|c|c|c|c|c|}
\hline  &  & CONSTANT VOLTAGE TRANSFORMER &  &  \\
\hline
\end{tabular}

\section*{SERVICE TRADING CO}

Poslage and Cartiage shown below are iniand onis. For
Overseas ploase ask io oversation. plocse ask fe do por quotation. We do pot
insue a catalorue or list.

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium Circuit. Now supplied with new Siemens High 5peed Relay for 6 or 12 volt operations. Price \(25 /-\), plus \(2 / 6 \mathrm{P}\). \& P.
ORP 12 and Circult \(10 /\) - post paid.

\section*{220/240 A.C. MAINS MODEL}
incorporates mains eransformer rectifier and special
circuit \(47 / 6\), plus \(2 / 6\) P. \& P.
Can be set for counts of up to 500 per minute. \(210-250 \mathrm{~V}\) A.C. powered. Kit of Components, including photo cell, high speed non-resettable counter, transformer plus \(3 / 6\) P. \& P. With resettable counter, E4/2/6, P. \& P LIGHT SOURCE AND PHOTO CELL MOUNTING with adiustable lens assembly and
ventilated lamp housing to take
 ORP 12 or similar cell with optic window assembly for are single hole fixing. Price per pair E2/15/0 plus \(3 / 6\)
 Easy to use source of U.V. for dozens of practical and experimental uses.
\begin{tabular}{lllllll}
12 & volt 36 & watt & \(A . C . / D . C\). & \(S B C\) & \(6 / 6\). & P. \& \\
12 & P. & \(1 /=\) \\
\hline
\end{tabular} Transformer to suit the above. Input 200-240 12 volt 36 watt, \(21 /\)-. P. \& P. 2/6. Input \(200-240\) v. A.C. FLUORESCENT PAINT. Red, yellow, green and In oz jars. Ideal for use with the above Ulera Violet Bulbs, \(11 /-\) plus \(2 / 6\) P. \& P.
\(200 / 250\) V. AC HORSTMAN 20AMP TIME SWITCH
2 on/off every \(24 \mathrm{hrs}\).28 any pre-set tim
Fitted in metal case 36 hr . spring reserve.
Used but fully tested. Fraction of maker'
COPPER LAMINATE PRINTED CIRCUIT BOARD. Largesheet \(15 \frac{1}{2} \times\) Skin. Price \(3 / 9,3\) for \(10 /\) post paid.

\section*{UNIVERSAL DEM}

om-
posite apparatus, ly bulte Transformer and electro-magnet with removable coils and pole pieces,
tapped for 230 tapped for 230 v .,
220 v ., \(110 \mathrm{v} ., 115 \mathrm{v}\)., 6. \({ }^{12}\). These coils are
An also used for D.C.
19 plus 15 Complete with all accessor


INSULATED TERMINALS Available in black, red, whice yellow, blue and green
17/- per doz. P. \& P. 2/-.
AUTO TRANSFORMERS. Step up, sep down. \(110-200-220-240 \mathrm{v}\). Fully shrouded. New. 300 war type, E3 each. P. \& P. 4/6. 500 watt type. E4/2/6 each.
P. \& P. \(6 / 6\). 1,000 watt Eype, \(65 / 5 /=\) each. P. \& P. \(7 / 6\). 230 VOLT A.C. GEARED MOTORS Type DI5G 5 r.p.m. I.7/b. inch, \(\varepsilon 2 / 9 / 6\), P. \& P. \(3 /\)
Type B16G 80 r.p.m. \(26 / \mathrm{b}\). inch, \(£ 2 / 2 / \mathrm{P}, \mathrm{P}\). \& \(\mathrm{P} .3 / 1\) Type Di6G 13 r.p.m. I.45/b. inch, \(£ 2 / 17 / 6\). P. \& P. \(3 / \mathrm{a}\) DRY REED SWITCHES
New special offer of Dry Reed Switches, \(\frac{1}{2}\) amp. Contact
it \(\times 1 \neq \mathrm{in} ., 4\) for \(10 /\), post paid.
SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled, 4
speed adjustable 10 w.p.m. to as
high as desired. Weight \(2 \frac{1}{2} 1 \mathrm{~b}\). \(\mathrm{EA} / 12 / 6\) post paid.

A.C. CONTACTOR

\section*{2 make and 2 break (or \(2 \mathrm{c} / \mathrm{o}\) ) 15 amp} Brand new. \(22 / 6\) plus \(1 /-P\). \& \(P\).

CONDENSERS


220/240v. A.C. COOLING UNIT 2,300 r.p.m. Gin. blade size. Smooth powerful mozor. All metal construc ested. Oflered at fraction of maker ested. Offered at fr

100 WATT POWER RHEOSTATS
 (NEW) Ceramic construction, windEnamel, heavy duey brush assembly designed for continuous duty.
AVAILABLE FROM STOCK IN AVAILABLE FROM STOCK IN
THE FOLLOWING II VALUES 1 ohm l0a., 5 ohm \(4.7 \mathrm{a}, 10\) ohm 3a. 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm 230 mA 2,500 ohm 2a. Diameter 3tin. Shaf 230ma., 2,500 ohm .2a. Diameter 3tin. Shaft
length kin. dia. Jjin., \(27 / 6\). P. \& P. \(1 / 6\). 50 WATT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500\) 2,500 ohm \({ }^{21}\) WATT \(^{21}\) ÓP. \& P. 1/6. \(/ 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500\) ohm, 14/6, P. \& P. \(1 / 6\).
Black Silver Skirted knob calibrated in Nos. \(1-9.1 \frac{1}{2}\) in. dia. brass bush. Ideal for above Rheostats, \(3 / 6 \mathrm{each}\).

\section*{}

TWO EASY TO BUILD KITS USING XENON WHITE + \(\times\) TRIGGERING CIRCUITS. PROVISION FORGEX- + TERNAL TRIGGERING. 230-250w. A.C. OPERATION. instruments in the laboratory or workshop. If is and phoographic fields, also in the entertainment
and business. It is used a great deal in she motor industery
and is a real tool as well as an interesting scientific EXPERIMENTERS "ECONOMY" KIT. I to 36 t lash per sec. All electronic components including NDUSTRIAL "ADVANCED" KIT. I \({ }^{\circ} 80\) FIash
NE SEC. IDEAL FOR LABORATORY OR SCHOOL er sec. IDEAL FOR LABORATORY OR SCHOOL
SE. Fully isolated from the malns supply by specially abilised ciming circuit. Higher outpur flash and ate.
 for above Strobe Kits. Price 8/6 post pald.

PARVALUX TYPE SD19 230/250 VOLT AC REVERSIBLE GEARED MOTOR
30 r.p.m. 40 lb ins. Position of ory
spindle adjustable to 3 different angles. Mounted on substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A really powerful mozor offered at a fraction of maker's
price. 6 gns . P. \& P. 10/. price. 6gns. P. \& P. \(10 /=\) Latest American. New. Plastic THYRISTOR 400 P.I.V. 8 amp. Complete with data sheet. 19/6

\section*{"AVO MODEL \(7 \times\)}

PANCLIMATIC
Offered fully tested and in excellen condition. Complete with carrying case, leads and instructions
C14, plus 10/-Reg. Pose.

"AVO" 25,000 VOLT D.C. MULTIPLIER New and boxed, \(21 /=\) P. P. \& P. \(6 / 6\).
NICKEL CADMIUM BATTERY
Sintered Cadmium Type 1.2 v .7 AH . Size: height 3 in., width \(2 / 1 \mathrm{n} . x\) / \(1 / \mathrm{in}\). Weizht: approx. 13 ozs.
Ex-R.A.F. Tested \(12 / 6\). P. \&. \(2 / 6\).

34R SILCON. SOLAR CELL
nected, output up to 2 V . at 20 mA . in sunlight, coles As ustincy of Earth Satellites, 45/e, P. \& P. \(1 / 6 \mathrm{~d}\)
PRECISION INTERVAL TIMER from 0-30 seconds (reperitive). Jewelled balanced movemen

50k 45 TURN PRECISION WIREWOUND CONTROL Fly leads. \(1 \frac{1}{6} \frac{1}{} \times 1\) in. made by M.E.C. Led. \(10 /\) pose paid. LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp ., \(11 /\)-, plus \(2 / 6\) P. \& \(P\)

MOVING COIL HEADPHONE AND MIKE Solt rubber earopieces with M/C Mike fitted 5.way plug as on No. 19 set. New, in maker's packing, \(16 / 6,1\) plus \(3 / 6 \mathrm{C}\). \& P .
A.C. AMMETERS \(0-1,0.5, \overline{0-10}, \overline{0-15}, \overline{0.20} \mathrm{amp}\). F.R 2 fin . dia. Allat \(21 /\) each. tif. Flush round all at \(21 /-\) each. P. \& P. extra.
 - - - - MINIATURE UNISELECTOR banks of 11 positions, plus homing bank. 40 ohm coil. removed from equipment and tested. 22/6, plus \(2 / 6\) P, \& P.

\section*{UNISELECTOR SWITCHES}

NEW 4 BANK 25 WAY
25 ohm coil, 24 v. D.C. operation.
8-BANK 25.WAY FULL WIPER
8-BANK 25.WAY FULL
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
RELAYS \\
BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, etc. MINIATURE PLUG IN RELAYS FRACTION OF MAKER'S PRICE
\end{tabular}}} \\
\hline & & & \\
\hline COIL & WORKING & & \\
\hline \(\square\) & VOLTAGE & CONTACTS & PRICE \\
\hline 280 & 6-12 & \(2 \mathrm{c} / \mathrm{o}\) & 14/6 \\
\hline 280 & \(9-18\) & \(4 \mathrm{c} / \mathrm{O}\) & 15/6 \\
\hline 700 & \(12-24\) & \(2 \mathrm{c} / \mathrm{O}\) & \(12 / 6\) \\
\hline 700 & \(16-24\) & 4 clo & 15/6 \\
\hline 700 & 16-24 & 4 M 2 B & 126 \\
\hline 1250 & 20-40 & \(2 \mathrm{c} / 0\) Heavy Duty & \(12 / 6\) \\
\hline 2500 & 30-50 & \(2 \mathrm{c} / \mathrm{O}\) Heavy Duty & 12/6 \\
\hline 5800 & S0-70 & 4 clo & 10\% \\
\hline 9000 & 40-70 & & 10/- \\
\hline & & POST PAID & \\
\hline
\end{tabular}

\section*{SEALED RELAY}

\section*{30 VOLT AC COIL}
wo change over 5 amp contacts. Plug-in I.O. Base.
Price 14/6d. incl. base. Pose Paid.

\section*{SANGAMO WESTON}

Dual range voltmeter. 0.5 and \(0-100 \vee\) D.C. FSD 1 mA . In carrying case with

\section*{GALVANOMETER}

300-0-300 mieroamp. Calibrated
30-0.30. Mounted in sloping front case
E2/10/.. P. \& P. \(3 / 6\) D.C. Voltmeter
\(0-3 V\) and \(0-15 . \sqrt{2}\) plus \(3 / 6\) P. \& P. D.C. Ammeter


\(230 / 250\) v. A.C. SOLENOID Heavy dury eype. Approx. 31b. pull.
\(17 / 6\) plus \(2 / 6 \mathrm{P}\) \& P . \(7 / 6\) plus 2/6 P. \& 12/24 \(\quad\) D.C. SOLENOIO Approx. 8 oz. push, \(8 / 6\) plus \(1 / 6\) P. \& P
 230 v. A.C. giving a potential of approx. 50,000 volts. Supplied absoluzely complete including accessories for carrying out a
number of interesting experimencs, and full instructions. This instrument is completely safe, and ideally suited for School demonserations. Price
\(\& 7 / 7 /-\), plus \(4 / / \mathrm{P}\). \& P. L'i. on req.

\section*{L.T. TRANSFORMERS}

\section*{All primaries \(220-240\) vole}

\(30,40,50 \mathrm{v}\). at 5 a mps.
\(10,17,18 \mathrm{v}\) at 10 amps .
\(6,12 \mathrm{v}\), at 20 amps.
\(6,12,20 \mathrm{v}\). as 20 amps
24 v, at 10 amps.
pensonal calers only
9 LITTLE NE WPORT STREET

Wilkinnons F OR RELAYS


BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS - QUOTATIONS BY RETURN Large stocks held of miniature sealed relays

\section*{INCLUDING HIGH SPEED G.E.C. - SIEMENS • S.T.C. - ERICSSON • E.M.I. - BEST MAKES} 25,000 IN STOCK DETAILED LIST ON REQUEST



SUB.MINIATURE Microswiteh Honerwell S.P.D.' type 11 SM1 TX 13 size \(\exists^{\circ} \times 1^{\prime \prime} \times 1^{\prime \prime} 6 / 6\) ea. or mounted in tives for \(22 / 6\) post free.
DIGITALINDICATOR. KGM M5 28 vt .0 to \(9.50 / \mathrm{ea}\). SPEAKERS ELAC 5 in . ROUND. 9700 Gauss. 30 JACK PRES
JACK PLUGS. 2 Point with
gcrew on cover, 2/6, wost 9d
PO 201 on headphone cord \(3 /\).
PIUG IN RELAYS
PLUG.IN RELAYS. Dondex \& change-over HD con RELAYS. 24 v. D.C. 4 make 4 break LID \(12 / 6\) each.


ROBUST AIRCRAFT PUSH 5C/898 of bakelite harrel type construction, with
fixing top with actual push below the level of ait tixing top with actual push below the level of a
bakelite circle to prevent it being used accidentally, bakelite circle to prevent it being used accidentally.
Samples \(5 / 6\) each barge quantities available. METERS GUARANTEED. Complete list avallable

 Microamps \(0 / 5002 / \mathrm{hn}\). MC \(37 / 6\) Milliamps \(0 / 5024 \mathrm{Ln}\). MC. Milliamps \(0 / 5003 t \mathrm{in}\). MC Amps \(50-0.50\) 2hn. Volts \(5 / 0524 \mathrm{~m}\). M Voles \(0 / 202 \mathrm{in}\). MC Volts \(0 / 10\) A.C. 34 in . MCR 70/MICROAMPS \(0 / 50\) scaled in Rontgens \(24 \mathrm{in} . \mathrm{MC} 45 /\) LEAK DETECTOR A.E.I, Malns powered 635 eat PORTABLE VOLTMETERS \(0 / 250\) Moving ITOM AC DC. 6 hn . scale, in polished wood case, \(\mathrm{ET} / 10 / \mathrm{m}\).

ONE HOLE FIXING SWITCHES SINGLE POLE. Double Throw, 3 OFF or CHANGE.OVER switch. \(18 / \rightarrow\) per dozen. \(130 /-\) per 100 .


CLOCKWORK MECHANISM, Preclaion made. Contacta making and breaking twice per second in sound proof case with thermostat controlled heating. 12 or 24 v 18/6 jost 6/
"VISCONOL.CATHODRAY" CONDENSERS. .001 mfd. \(10 \mathrm{kV} .5 / .002 \mathrm{mf}, 15 \mathrm{kV}, 9 /=02 \mathrm{mf}\). 10 kV 9/-: \(02 \mathrm{mkf}, 17 / 6 ; 0.5 \mathrm{mf} .2 .5 \mathrm{kV}, 17 / 6 ; 1 \mathrm{mfd} .2 \mathrm{kV} .17 / 6\). RESISTORS, wire wound or carbon, potentiomet BRI, condensers, quantities ex-stock it ME PGERS SERIES I. With resistanc box and leads. 1,000 v., \(0-100\) megohms. 660 ea.

\section*{LATEST RELEASE OF}

RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control; R.F. \& A.F. variable controls. Price \(£ 87 / 10 /-\) each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from \(£ 45\) to \(£ 60\), carr. \(£ 2\).
SET OF VALVES: new, £3/10/- a set, post 7/6; available with Receiver only. SPEAKER: new, \(£ 3\) each, post \(10 /\)-. HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post \(5 /-\) AR88 SPARES. Antenna Coils L5 and 6 and L 7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; \(17 \& 18 ; 23 \& 24 ;\) and 27 and 28 . Price \(12 / 6\) each. \(2 / 6\) post. By-pass Capacitor \(\mathrm{K} .98034-1,3 \times 0.05 \mathrm{mfd}\). and M.980344, \(3 \times 0.1\) mfd., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of 3, \(10 /-\), post \(2 / 6\). Block Condenser, \(3 \times 4 \mathrm{mfd}\)., 600 v ,, £2 each, 4/- post. Output transformers 901666-501 27/6 each, 4/- post


\section*{MARCONI SIGNAL GENERATORS}

\section*{TYPE TF-I44G}

Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(+1-1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms \(100 \mathrm{mV}-1\) volt52.5 ohms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Measurements: \(19 \frac{121}{1} \times 10 \mathrm{in}\). The above come complete with Mains Leads, Dummy Acrial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/-. DISCOUNT OF \(10 \%\) FOR SCHOOLS, TECHNICAL COLLEGES, etc.

\begin{abstract}
HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range \(50 \mathrm{kc} / \mathrm{s}\). to \(30 \mathrm{mc} / \mathrm{s}\), , with set of nine coils. Complete HRO 5T SET (Receiver, Coils and Power Unit) for \(£ 30\), plus \(30 / \mathrm{-carr}\).
COMMAND RECEIVERS; Model \(6-9 \mathrm{Mc} / \mathrm{s}\), as new; price \(£ 5 / 10 /\) - each, post 5/.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves \(2 \times 1625 \mathrm{PA} ; 1 \times 1626\) osc.; \(1 \times 1629\) Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(83 / 10 /\), each, \(10 /=\) post.
Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by . C. Evenson and O. R. Beach.)

BC-433G COMPASS RECEIVER; Freq. \(200-1,750 \mathrm{Kc} / \mathrm{s}\). in 3 bands, suitable for aircraft, boats, etc. Complete with 15 valves, power supply input 24 v. D.C. at 2 amps. Receiver only \& 5 each, carr. 15/-.
\end{abstract}

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps \(400 \mathrm{c} / \mathrm{s} 3\) phase, £6/10/- each, \(8 /-\) post. Converter 12 v D.C. input, 110 v A.C.,
\(60 \mathrm{c} / \mathrm{s}\) ( 2.73 amps .0 .300 Kva , £15 each, carr. £1. Converter 230 v D.C. input, \(60 \mathrm{c} / \mathrm{s}\) @ \(2.73 \mathrm{amps} .0 .300 \mathrm{Kva}, £ 15\) each, carr. £1. Convertcr 230 v D.C. input,
115 v output \(60 \mathrm{c} / \mathrm{s} @ 2.73 \mathrm{amps} .0 .300 \mathrm{Kva}\), \(£ 15\) each, carr. \(£ 1.24 \mathrm{v}\) D.C. input, 115 v . output \(60 \mathrm{c} / \mathrm{s} @ 2.73 \mathrm{amps} .0 .300 \mathrm{Kva}, ~ ¢ 15 \mathrm{ea}\)
CONDENSERS: \(150 \mathrm{mfd}, 300\) v A.C., \(£ 7 / 10 /\) - each, carr. \(15 /-.40 \mathrm{mfd}, 440\) v A.C. \(w \mathrm{~kg} ., \mathrm{E} 5\) each, \(10 /-\) post. \(30 \mathrm{mfd}, 600 \mathrm{v}\) wkg. D.C., \(£ 3 / 10 /-\) each, post \(10 /-\)
 \(10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 / \mathrm{l} .8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}\), post \(3 / \mathrm{m} .8 \mathrm{mfd}, 600 \mathrm{v}\) \(8 / 6\) each, post \(2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v} \mathrm{wkg}\)., K 3 each , post \(7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v} \mathrm{wkg}, \mathrm{f} 2\) each, post \(7 / 6.0 .25 \mathrm{mfd}, 32,000 \mathrm{v}, \mathrm{g} / / 10 /-\) each, carr. \(15 /-.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 / \mathrm{m}\) each, 1/6 post.
AERIAL MASTS: 40 ft ., complete with base, \(£ 10\) each. Carr. £2.
RACK CABINETS: 6 ft . by 19 in ., and 16 in . depth, with rear door and safety switch, £5, carr. £2.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: £25 each, carr. £1.
AVOMETERS : Model 47A, £9/19/6 each, \(10 /\) - post. Model 7x, £.13/10/- each 10/-post. Excellent secondhand cond. (Meters only). (Batteries and Leads extraat \(\operatorname{cosi}\) ).
OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base \(2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}\) Bandwidth up to \(5 \mathrm{Mc} / \mathrm{s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\). and \(1 \mathrm{Mc} / \mathrm{s}\). Double Bearn tube. Reliable general purpose scope, \(£ 22 / 10 /-\) each, \(30 /-\) carr.
COSSAR 1035 OSCILLOSCOPE, \(£ 30\) each, \(30 /-\) carr.

RELAYS: Relay Unit (with 9 American relays) 24 v. D.C., 250 ohm coils. heavy duty, M. \& B. 30/- each, 4/- post. GPO Type 600,10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with \(1 \mathrm{M} ., \mathrm{E} 2\) each, \(6 /-\) post
12 Smali American Relays, mixed types £2, post 4/-.

CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869 \& 25 each, 82 carr.

ROTAX VARIAC \& METER UNIT: Type 5G.3281. Reading 0-40 v., 0-40 mA and 0.5 amps ., all on 275 deg. scales, \(\mathbf{£ 3 0}\) each, \(£ 2\) carr.
HEWLETT PACKARD TYPE 400C: 115 v. 230 v . input \(50 / 60 \mathrm{c} / \mathrm{s}\). Freq. range \(20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}\). Voltage range: \(1 \mathrm{mV}-300 \mathrm{v}\). in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, \(£ 30\) each, carr. \(15 / \mathrm{F}\)

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price \(25 /-\), post 5/-.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price \(£ 7 / 10 /-\), \(£ 1\) carriage.

FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, 60\(95 \mathrm{Mc} / \mathrm{s}\). AMERICAN EQUIPMENT: 5C-640 Transmitter, 100-156
\(\mathrm{Mc} / \mathrm{s} ., 50\) watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, Mc/s., 50 watt output. For 110 or 230 v. operation. ARC 27 trans-ceivers, BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893 GRC 32A; Filter D.C. Pouer Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Erection Kits, 1186/GRC; Directional Antenna CRD.6; Comparator Unit, EM.23; Directional Control CRD.6, \(567 / \mathrm{CRD}\) and \(568 / \mathrm{CRD}\); Azimuth Control Units, 260/CRD. Test Set URM.44, complece with Signal Generator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac 0-230 v. 9 amps.; 2 kin . scale meter reading \(0-250 \mathrm{v}\). Unit is mounted in 19 in . rack, \(£ 16 / 10 / \mathrm{e}\) each, 30/- carr
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, £2/10/- each, carr. \(12 / 6\). AUTO TRANSFORMER: 230-115 v.; 1,000 w. £5 each, carr. 12/6. 230-115 v.; 300 VA , L 3 each, carr. 10/-
OHMITE VARIABLE RESISTOR; 5 ohms, \(5 \frac{1}{2} \mathrm{mps}\); or 2.6 ohms at 4 amps Price (either type) \(£ 2\) each, \(4 / 6\) post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two \(\times 9 \mathrm{H}\) chokes and 10 mfd . oil filled capacitors. Mounted in 19 in . panel, \(\mathbf{£} 6 / 10 /=\) each, \(£ 1\) carr.

TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3 \mathrm{C} 24\) 's; complete wit filament transformer 230 v. A.C. Mounted in 19 in . panel, £4/10/- each, \(15 /=\) cars POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. Wt. approx. 100 lbs, , \(17 / 10 /-\mathrm{cach}, 30 /-\mathrm{carr}\). SMOOTHING UNITS suirable for above f \(7 / 10 /-\mathrm{each}, 15 /=\mathrm{carr}\)

\section*{SIGNAL GENERATORS:}

MARCONI TF-144G: freq. \(85 \mathrm{Kc} / \mathrm{s}\) - 25 Mc is, internal and external modulation, power supplies \(200 / 250 \mathrm{v}\). A.C. (secondhand cond), price 825 ea.; carr. \(30 /\)-.
CT53. Freq. range \(8.9-300 \mathrm{Mc} / \mathrm{s}\). with Calibration chart. Output \(1 \mu \mathrm{~V}-100 \mathrm{mV}\) internal square wave and sinewave modulation at \(100 \mathrm{c} / \mathrm{s}\)., external modulation \(50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}\)., 230 v . A.C. Complete with chart, etc., price £27/10/- ea., carr. £1.
MARCONI CT. 480 and \(478: 1.3-4.2 \mathrm{Mc} / \mathrm{s}\), F.M. or A.M., price \(\$ 75\) each \(_{5}\) carr. 30/-.

NIFE BATTERIES: 6 v. \(75 \mathrm{amps} .\), new, in cases, \(£ 15\) each, £1 carr.; 4 v. 160 amps, new, in cases, \(£ 20\) each, \(£ 110 /-\) carr. L.K. 7 Cells, only 1.2 v .75 amps. new, \(£ 3\) each, 12 - cars. The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.

FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in a 3 in . diameter case. Price 30/- each, postage 5/-.
UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, ع2/5/- each, post 4/-
FREQUENCY METERS: LM13 or BC-221; 125-20,000 Kc/s., \(£ 25\) each. carr. \(15 /-\) TS.175/U, £75 each, carr. £1. TS323/UR, \(20-450 \mathrm{Mc} / \mathrm{s}\)., £ 75 each , carr. 15/-. FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: \(20-100,000\) events per sec. Time Base cary © 1 .

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range \(450 \mathrm{c} / \mathrm{s}-\) \(22 \mathrm{Kc} / \mathrm{s}\)., directly calibrated. Power supply 1.5 v.-22 v. D.C. £12/10/- each, carr. 15/.
CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium persistence complete with nu-metal screen, £3/10/- each, post 7/6.

APNI ALTIMETER TRANS./REC., suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\). , complete with all valves 28 v. D.C. 3 relays, 11 valves, price \(\mathbf{8 3}\) each, carr. \(10 / \%\)

GEARED MOTORS: 24 v. D.C., current 150 mA, output 1 r.p.m., 30/-each, 4/= post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., \(£ 2\) cach, \(5 /=\) post.
MOTORISED ACTUATOR: 115 v. A.C. \(400 \mathrm{c} / \mathrm{s}\). single phase, reversible, thrust approx. 3 inches complete with limit switches, ctc. Price \(£ 2 / 10 /\) each, postage \(5 /-\) (ex equipment)

Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. \(25 \mathrm{lbs} .\), rating intermittent, price £3 each, post 5/-.
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.
Model PM-4: 28 v. D.C. @ 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price \(£ 2\) each, postage \(4 /-\).
Model SR-2: 28 v. D.C. 7,000 r.p.m., duty intermittent, output 75 watts,
price \(25 /-\) each, postage \(4 / *\)
A.C. Motor \(115 \mathrm{v} .50 \mathrm{c} / \mathrm{s} .1 / 300 \mathrm{H} . \mathrm{P} ., 3,000 \mathrm{r} . \mathrm{p} . \mathrm{m}\). Capacitor \(1 \mathrm{mfd}, 25 /-\) post
 (approx. 1 h.p.), brand new, \(£ 2 / 10 /-\) each, post \(7 / 6\).

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v. a.c. operation. In used condition, £20 each, carr. £1.
MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6 in. scale. 1 microw. to 6 W . \& 25 each. Carr. 15/-.
MARCONI DIVERSITY RECEIVERS; Consisting of \(2 \times \operatorname{CR} .150\) 's and associated equipment. £175 each. Carr. £5
CANADIAN C52 TRANS/REC.: Freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\) on 3 bands. R.T. M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond., complete set \(£ 50\). \(7 / 10 /=\) few only Carr \(15 /\). Power Unit for Rec., new \(\varepsilon 3 / 5 /-\) Used power units in working order £2/5/-. Carr 10/-.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" fernale connectors fitted to receive UG-21/U series plugs. New in ctns., \(\mathbf{1 6 / 1 0 / - \text { each, }}\) post \(7 / 6\). CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type
M1 \(460-22,2\) pole, 2 throw. (New) \(6 / 10 /-\) each, \(4 / 6\) post. 1 pole, 4 throw, M1460-22, 2 pole, 2 throw. (New) \(£ 6 / 10 /\) - ea
Type M1460-4. (New) \(£ 6 / 10 /-\) each, \(4 / 6\) post.
TERMALINE RESISTOR UNITS: type 82A/U, 5000 W , freq. \(0-3.3 \mathrm{KMC}\) Max VSWR 1.2 Type "N" female connectors, etc. Brand new, £30 each, carr. 15/-.

PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR: Type 219, \(100-1,000 \mathrm{Mc} / \mathrm{s}\). (New) £65 each, post \(12 / 6\). FREQUENCY METER: TYPe \(587-\mathrm{A}, 0.250-1.0\) KMC/SEC. (New) \&75 each, post \(12 / 6\). FIXED ATTENUATOR: Type \(130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}\). (New) £5 each,
post \(4 /-\). FIXED ATTENUATOR: Type \(1157 \mathrm{~S}-1\), (new) \& each, post \(5 /-\).


BRAND NEW PAK • JUST RELEASED
Replaces our very popular B． 39 pak．short lead components－All factory marked and mounted on printed circuit panels．
averate contents
80 TRANSISTORS \＆DIODES 50 HIGH TOLERANCE RESISTORS

ALL
FOR 20 VARIOUS CAPACITORS

\author{
Please stote when ordering Pak P．I． \\ 2／－P．\＆P．with this Pak．
}

\section*{PRE－PAKS}
\begin{tabular}{|c|c|}
\hline No． & \\
\hline B1 & 50 Unmarked Trans．Unt \\
\hline B2 & 4 Photo Cella Tne．Book of lustruetions \\
\hline B6 & 17 Red spot Ar Trabeistora \\
\hline в6a & 17 White Epot RF Transintors \\
\hline в9 & 1 ORP 12 Light Seraitive Cell \\
\hline B53 & 25 gil Trans． \(400 \mathrm{Mc} / \mathrm{m}\)（ Brand new \\
\hline 4 & 40 ．．．．NPN To 5 Trans．Voita \\
\hline B35 & 40 ．．．．NPX To 18 \＆Gain Pallout \\
\hline 856 & 40 ．．．．NPN／PNP All T \\
\hline н66 & \(150 \mathrm{Germ}\). M in．Diodea，Untested \\
\hline B68 & 10 Top Het Rece． \(750 \mathrm{~m} / \mathrm{A} 1000-800 \mathrm{PI}\) \\
\hline 869 & 20 Diodes，Gid－Bnd．Germ sll．Pluner \\
\hline H74 & \(5014 \cdot \mathrm{Bnd}\) ．Dioden，2－OA9．3－OA5 \\
\hline B75 & 3 Comp．Set．20371，20381，20339＾ \\
\hline н77 & 2 Comp．Pair Ad161 \＆AD162． \\
\hline C3 & 1 Unijunction Trandistor 2N216 \\
\hline C：32 & 6 Top Hat Recs． 18100 Type \\
\hline c3s & 3 Unijubetion Tranas \(=\) to 2 N 216 \\
\hline \({ }^{\text {A }}\) & 7 sillicon Rectinera bytoo type \\
\hline \(\mathrm{A}^{3}\) & 25 Mixed Marked and Tested Transistor \\
\hline A21 & 5 Power Tranuistors 1－AD149／1．OC26 and others \\
\hline & 100 Bil．Germ．Trans．All Rejects \\
\hline F3 & 2 NPN \＆PNP Comp．Pair \\
\hline
\end{tabular}

\section*{SEMICONDUCTORS EXSLRIBUTED \(\quad \begin{aligned} & \text { BL－PRE－PAK LTD．DEPT，B．} \\ & 222-224 \text { WEST ROAD，WESTCLIFF－ON－SEA，ESSEX }\end{aligned}\)}

TRY OUR X PAKS FOR UNEQUALLED VALUE
XA Pax
Germanlu
Germanhium PNP type transigtors，
equivalents to \(A\) large part of the OC range，i．e．44，45， 7.
PRICE 85 per 1000 XB PAK gulicon TO－18 CAN type tranniatora NPN／PNP mized loth，with equilvaienth to OC200－1，2N706a，B8Y953，and PRICE \(25 / 5 /\)－per 500

XC PAX
Bilicon diodee miniature glan typen，
Anished bleck with polarity marked nished black with polarity marked
equiralent to OA200，OA202．BAY 31 equid DK 10，etc．
39．DICE． 851.000

All the above untented panks have an average of \(75 \%\) or more good semiconductors．Free pack
Oridery mumt not be lems than the minimum amounta quoted per pack， \(\mathrm{P} / \mathrm{P} 2 / 6\) Per Pack（U．K．）
THESE VERY POPULAR UNTESTED BRANO NEW TRANSISTOR PACKS ARE STILL AYAILABLE．
\begin{tabular}{|c|c|c|c|c|c|}
\hline 25 &  & TRANSISTORS 10／－ & 10 &  & RECTIFIERS 10／－ \\
\hline 10 &  & TRANSISTORS 10／－ & 25 &  & TRANSISTORS 10／－ \\
\hline 25 &  & TRANSISTORS 10／－ & & IN914－6 OA200／202 & DIODES 10／－ \\
\hline 10 & 10 WATT BILLCON all voltages & ZENERS 10／－ & &  & DIODES 10／－ \\
\hline 25 &  & TRANSISTORS 10／－ & 25 &  & TRANSISTORS 10／－ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Transistors Price & SPECIAL OFFER & POWER TRANEIETORS Oc20．．．．．．．．．．．．10／－ \\
\hline  & Stock Clearance of Manufacturers &  \\
\hline Acl28．．．．．．．．．．\({ }^{3 /-}\) & Rejers & \({ }_{0} 028 \ldots \ldots \ldots .{ }^{5 / 6}\) \\
\hline  & Rejects．Limited Num &  \\
\hline OC201．．．．．．．．．．1／11 & UHF／VHF Tuner Units．Consisting &  \\
\hline  & of： 2 AFI86， 2 AFI78，Tuning Con－ &  \\
\hline OC140．．．．．．．．．．． \(3 / 6\) & densors．All Coils and Comps etc．： & \\
\hline  & Price 10／－each．Post \＆packing U．K．2／6d． &  \\
\hline в8Y95а．．．．．．．．．．3／－ & Price 10／－each．Post a packing U．K．2／00． & 1N914．．．．．．．．．．．．\({ }^{\text {d／6 }}\) \\
\hline FREE \(\boldsymbol{\rightarrow}\) ¢ & St Ever logic kitb，Laarn for sournelf how com－ & GREAT NEWS \(\boldsymbol{*} \boldsymbol{*}\) \\
\hline Packs of your own choice so the value of \(10 /\) with all orders over 64. & puters work，even make one for yourselt．Full thatruction for noughte and crowen machine，binary countera，timers．etc． ＂Norkit Junior＂ 28 a＂Norkit semior＂ 218 ．DETAILA FREE & We now give a writeen guarantee with all our rested semi－conductors． \\
\hline
\end{tabular}

MAKE A REV．COUNTER FOR YOUR CAR．THE＂TACHO－ BLOCK．＂This encapaulated block will turp any 0.1 mA meter ioto a linesr and accurate rep．counter
for any car．State 4 or 6 －cylloder

NO CONNECTION WITH ANY OTHER FIRM．MINIMUM ORDER 10／－，CAsE WITH ORDER PLEASE．Add \(1 /\) post and packlig per order．OVEREEAS ADD EXTRA FOR

\section*{NEW STANDARD} CASES from OLSON

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & Width DIm．A & Height Dim．B & Depth Dim．C & Type & Width Dim．A & Height Dim．B & Depth Dim．C \\
\hline & inches & inches & inches & & inches & inches & inches \\
\hline 25A & \(6 \frac{1}{2}\) & \(4 \frac{1}{2}\) & \(4 \frac{1}{2}\) & 61 & \(15 \frac{1}{2}\) & \(7 \frac{1}{2}\) & \(9 \frac{1}{2}\) \\
\hline 258 & \(6 \frac{1}{2}\) & \(4 \frac{1}{2}\) & 61 & 62 & \(17 \frac{1}{2}\) & \(8 \frac{1}{2}\) & \(9 \frac{1}{2}\) \\
\hline 26A & \(8 \frac{3}{4}\) & \(5 \frac{3}{4}\) & \(6 \frac{1}{4}\) & 63 & 161 \(\frac{1}{2}\) & \(9 \frac{1}{2}\) & \(9 \frac{1}{2}\) \\
\hline 26B & 83 & \(5 \frac{3}{4}\) & \(8 \frac{1}{4}\) & 64 & \(15 \frac{1}{2}\) & \(7 \frac{1}{2}\) & 121 \(\frac{1}{2}\) \\
\hline 27A & 121 & \(7 \frac{1}{2}\) & \(5 \frac{1}{2}\) & 65 & 171 \(\frac{1}{2}\) & \(8 \frac{1}{2}\) & 1212 \\
\hline 27 B & \(12 \frac{1}{4}\) & \(7 \frac{1}{2}\) & 8 & 66 & \(16 \frac{1}{2}\) & \(9 \frac{1}{2}\) & \(12 \frac{1}{2}\) \\
\hline 28A & 14 & \(10 \frac{1}{2}\) & \(6 \frac{1}{2}\) & 75A & 12音 & 5 \％ & \(6 \frac{1}{2}\) \\
\hline 28B & 14 & 101 \(\frac{1}{2}\) & \(8 \frac{1}{2}\) & 758 & 12. & \(5 \frac{8}{8}\) & 9 \\
\hline 29A & 10 & ， & 6 & 76A & 12． & \(7 \frac{7}{8}\) & 6 \\
\hline 29B & 10 & 4 & 8 & 76B & 128 & \(7 \frac{1}{6}\) & 9 \\
\hline 30A & 12 & 5 & 6 & 77A & 145 & \(6{ }^{\text {a }}\) & \(6 \frac{1}{2}\) \\
\hline 308 & 12 & 5 & 8 & 778 & 14零 & \(6{ }^{\text {雰 }}\) & 9 \\
\hline 31 A & 14 & 6 & 6 & 81 & 4 & 4 & 61 \\
\hline 31 B & 14 & 6 & 8 & 82 & 5 & 5 & \(8 \frac{1}{81}\) \\
\hline 40A & 4，\(\frac{1}{2}\) & \(6 \frac{1}{2}\) & 6 & 83 & 6 & 6 & 1018 \\
\hline 408 & \(5 \frac{3}{4}\) & 83 & 6 & 84 & 6 & 7 & 121 \(\frac{1}{8}\) \\
\hline 40C & \(5 \frac{3}{4}\) & \(8 \frac{3}{4}\) & 8 & & & & \\
\hline
\end{tabular}

Quotations gladiy given for customers＇own specifications and special requirements
WRITE FOR FURTHER DETAILS TO
OLSON ELECTRONICS LTD．，FACTORY NO． 8 5－7 LONG ST．LONDON E2

TEL：01－739 2343


Cybernaut controls lto．（ref．w．w．12），28－30 Rivington Street．London．E．C． 2
WW－123 FOR FURTHER DETAILS

\section*{LONDON microphones}

\section*{Quality sound－at low cost}

The London Microphone range offers you quality microphones， good characteristics－and good looks，too，at remarkably little cost．Made in Britain．


NEW to the range：LM300 dynamic cardioid microphone incorporating top－quality moving－ over a frequency range of \(50-15,000 \mathrm{~Hz}\) ，Elegant styling，robust metal case，natural anodised finish．
\begin{tabular}{|c|c|c|}
\hline & Low imp． & Dical imp． \\
\hline LM 300 （Cardioid） & \＆11 100 & ¢12 10 \\
\hline LM 200 S & ¢5 196 & c6 15 \\
\hline LM 200 & £419 & C5 15 \\
\hline LM 100 & ¢3 & \\
\hline
\end{tabular}

Home or overseas trade enquiries welcome．Write or ring for details
LONDON MICROPHONE CO．LTD．
182／4 Campden Hill Road，London，W．8．
Tel：01－727 0711． 24 Hr．Answering Service．Telex 23894

SILICON N.P.N. TRANSISTORS. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at \(1 / 6\) each or \(£ 5\) per 100
*TRANSISTORISED FLUORESCENT LIGHT. 8 WATT 12 in . TUBE. Current drain only 700 mA ! Complete and tested \(£ 2 / 19 / 6\) only! Or in kit form:


TRANSISTORS
OC200, OC203, OC204, all at \(2 /-\) each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A, 2G378A, all at \(1 / 6\) each.
Transistors similar to OC44, OC71 and OC72, all \(1 /\) each.
Unmarked, untested transistors, \(7 / 6\) for 50 .
\({ }_{30}\) LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each.
30 watt transistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light sensitive resistors 9 -
RECTIFIERS
BYZ1, 800 p.i.v., \(2 / 6\) each, 24/- per doz., \&7/10/- per 100, \(£ 50\) per 1,000. BYZ13, 6 -amp, 400 p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS
FAR BELOW COST PRICE!


 Condensers. Well assorted. Mixed types and values, \(10 /\) - per 100 , Polystyrene PAPER CONDENSERS, MIXED BAGS, 0.0001 to \(0.5 \mu \mathrm{~F}\). \(12 / 6\) per 100.
RESISTORS : Give-away offer! Mixed types and values, \& to \(\frac{1}{3}\) watt. \(6 / 6\) per \(100,55 /-\) per 1,000 . Individual resistors 3d each. Also h to 3 watt close tolerance. Mixed values. \(7 / 6100,55 /-1,000\).
WIRE-WOUND RESISTORS. I watt to 10 watts. Mixed bags only.
16 for 10 . 16 for 10 -
RECORD PLAYER CARTRIDGES


\section*{UNREPEATABLE OFFER!}

\section*{GIANT SELENIUM PHOTO.CELLS. OUTPUT UPWARDS OF 5 ma AT \(\cdot 6 \mathrm{~V}\) FEW ONLY 10'- EACH}

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/- only TRANSISTORISED SIGNAL TRACER KIT 10/* only. TRANSISTORISED REV. COUNTER KIT 10 /-

\section*{VEROBOARD}
\(\begin{array}{lll}21 \mathrm{in} . \\ 3 \text { in } & 1 \text { in } & 0.15 \text { in matrix } \\ 3 / 1\end{array}\)
3 in \(\times 2 \mathrm{hin} 0.15 \mathrm{in}\). matrix \(\quad 3 / 3\)
3 in \(\times 3\) in 0.15 in . marrix \(3 / 1\)
5 in \(\times 2 \operatorname{lin} 0.15\) in matrix \(3 / 11\)
5 in \(\times 3\) in 0.15 in matrix \(5 / 6\)
\(17 \mathrm{in} \times 2 \mathrm{in} .0 .15 \mathrm{in}\). matrix \(11 /=\) \(17 \mathrm{in} \times 3 \mathrm{iin} 0.15 \mathrm{in}\). matrix \(14 / 8\) \(\begin{array}{ll}3 \operatorname{lin} \times 2 \operatorname{lin} & 0.1 \text { in matrix } \\ 3 / \text { in } \times 3 \text { in } & 0.1 \text { in matrix } \\ 3 / 9\end{array}\) \(\begin{aligned} & 3 \operatorname{lin} \times 3 \text { in } 0.1 \text { in matrix } \\ & 5 / 9 / 9 \\ & 5 \text { in } \times 2 \text { in } 0.1 \mathrm{in} \text { matrix } \\ & 4 / 7\end{aligned}\)
Spot Face Cutter 7/6 Pin Insert Tool 9/6. Terminal Pins 3/6 for 36. SPECIAL OFFER!
Five \(2 k\) in \(\times 1 \mathrm{in}\). Boards and a cutter \(9 / 9\),
MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. \(1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}\)
d.c. \(250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mathrm{\mu A}\)
d.c. \(2,500 \mathrm{~V}, 50 \mathrm{~N}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}\).

Special price £4/-/- only.

\section*{ELECTROLYTIC CONDENSERS}


Orders by post to:

\section*{G. F. MILLWARD}

DRAYTON BASSETT. NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

\section*{DUXFORD ELECTRONICS (W.W.) 97/97A MILL ROAD, CAMBRIDGE}

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale \& Retail Premises)

\section*{MINIMUM ORDER VALUE 5/-}
C.W.O. Post and Packing 1/-

DISCOUNT
\(10 \%\) over \(£ 2\)
\(15 \%\) over 55
CERAMIC DISC CAPACITORS (Hunts.). \(500 \mathrm{~V} \pm 20 \%: 100,220,330\) pF \(-20 \%\). \(+80 \%\); \(470,680,1,000\) pF. 5d. each.
ELECTROLYTIC CAPACITORS (Mullard). \(-10 \%\) to + 50\%
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 V & \({ }_{8}\) & \({ }_{32}{ }^{\mu \text { F }}\) ) & 64 & 125 & & 250 & 400 \\
\hline 6.4 V & 6.4 & 25 & 50 & 100 & & 200 & 320 \\
\hline 10 V & 4 & 16 & 32 & 64 & & 125 & 200 \\
\hline 16 V & 2.5 & 10 & 20 & 40 & & 80 & 125 \\
\hline 25 V & 1.6 & 6.4 & 12.5 & 25 & & 50 & 80 \\
\hline 40 V & 1 & 4 & 8 & 16 & & 32 & 50 \\
\hline \(64 V\) & 0.64 & 2.5 & 5 & 10 & & 20 & 32 \\
\hline Price & 1/6 & 1/3 & 1/2 & 1/- & & 1/1 & 1/2 \\
\hline \multicolumn{8}{|l|}{Smiall (all values in \(\mu \mathrm{F}\) )} \\
\hline & 800 & & 1,250 & & 2.000 & & 3.200 \\
\hline \({ }^{6.4} \mathrm{~V}\) & 640 & & 1,000 & & 1.600 & & 2.500 \\
\hline 10 V & 400 & & 640 & & 1.000 & & 1.600 \\
\hline 16 V & 250 & & 400 & & 640 & & 1,000 \\
\hline 25 V & 160 & & 250 & & 400 & & 640 \\
\hline 40 V & 100 & & 160 & & 250 & & 400 \\
\hline 64 V & 64 & & 100 & & 160 & & 250 \\
\hline Price & 1/6 & & 2/- & & 2/6 & & 3/- \\
\hline
\end{tabular}

POLYESTER CAPACITORS (Mullard)
Tubular. \(10 \%\), \(160 \mathrm{~V}: 0.01,0.015,0.022 \Omega \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068\), \(0.1 \mu \mathrm{~F}_{\mathrm{i}} 9 \mathrm{~d}\). \(0.15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /=0.33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 3\) \(400 \mathrm{~V}=1,000,1,500,2,200,3,300,4,700 \mathrm{pF}\), 6d, 6,800 pF, 0.01. 0.015, 0.022 \(\mu \mathrm{F}, 7 \mathrm{~d}\). \(0.033 \mu F_{1} 8 \mathrm{~d}\). \(0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}\), 2/3. \(0.47 \mu \mathrm{~F}, 2 / 8\).
Modular, metallised, P.C. mounting, \(20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}\). \(0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-0.0 .33 \mu \mathrm{~F}, \mathrm{I} / 5\). \(0.47 \mu \mathrm{~F}, 1 / 8\). \(0.68 \mu \mathrm{~F}, 2 / 3\). \(\mathrm{I}_{\mu \mathrm{LF}} \mathrm{L} / 9\).
POLYSTYRENE CAPACITORS: \(5 \%, 160 \mathrm{~V}\) (unencapsulated): \(10,12,15\) \(18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470,560\) \(680,820 \mathrm{pF}\) 5d. \(1,000,1,500,2,200 \mathrm{pF}\), 6d. 3,300, 4,700, \(5,600 \mathrm{pF}\), 7d. 6,800 \(8,200,10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}\).
680 , 820 pF, \(1 /-1,000,1,200,1,500,1,800,2200,270,330,390,470,500,560\), \(4,700,5,000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{p}, 16,18,900,22,000\) \(27,000,33,000,39,000 \mathrm{pF}, 1 / 9\). \(0.047,5,000,0.056 \mu \mathrm{~F}, 27 .=0.068,0.082,0.1 \mu \mathrm{~F}\),
 \(0-47,0.5 \mu \mathrm{~F}, 6 / 3\).
JACK PLUGS (Screened): Heavily chromed, fin. 5tandard: 2/9 each Side-entry: 3/3 each.
5tandard (Unscreened): 2/3 each.
JACK SOCKETS (tin. Plug): With chrome insert, \(2 / 9\) each. Available with Break/Break, Make/Break, Break/Make, Make/Make contacts.

POTENTIOMETERS (Carbon): Long life, Jow noise, \(\frac{T}{} \mathrm{~W}\) at \(70^{\circ} \mathrm{C}\) \(\pm 20^{\circ} \leqq 1 M, \pm 30 \%>1 M\). Body dia, tin. Spindle. lin. \(\frac{1}{2}\) in. \(2 / 3\) each. Linear per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100 250,500 ohms, erc., per decade co 5 M .
Miniature: 0.3 W at \(70^{\circ} \mathrm{C} .+20 \% 3 \mathrm{M},+30 \%>1 \mathrm{M}\). Horizontal ( 0.7 in . 0.4 in . P.C.M.) or Vertical ( 0.4 in . 0.21 n. P.C.M.) mounting, 1/- each

RESISTORS (Carbon film), very low noise, Range: \(5 \%, 4-7 \Omega\) so IM \(\Omega\) (E24 Series); \(10 \%\). \(10 \Omega\) to 10M \(\Omega\) (E12 Series).
W (100). 13 d . (over 99 , 1 -d.), 100 off per value \(12 /\).. \(\mathrm{W}(5 \%\) ), 2d. (over 99 13/9. W 5 . 5 .

SEMICONDUCTORS: OAS, OABI, 1/9. OC44, OC45, OC7I. OCBI, OC8ID, OC82D, 2/-. OC70, OC72, 2/3, AC107, OC75, OCI70, OCI71, 2/6 AFII5, AFII6, AFII7, ACYI9, ACY21, 3/3. OC140, 4/3. OC200, 5/-. OCI39 \(5 / 3,0 C 25,7, O C 35,8 / 4,0 C 23, O C 28,8 / 3\)

SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/.. 800 P.I.V., 3/3 1,250 P.I.V.3 3/9. 1,500 P.I.V.. 4/0. (0.75A): 200 P.I.V., 1/6. 400 P.I.V., 2/0. THYRISTORS (5A): 100 P.I.V., \(8 /=200\) P.I.V., \(10 / \% 400\) P.I.V., \(15 /-\)

SWITCHES (Chrome finish, Silver contacts: 3A 250V 6A 125V., Push Butrons: Pusthon or Pust-off 5/-0. Toggle Swirches: SP/ST, 3/6. SP/DT, 3/9 SP/DT (with centre position) 4/.. DP/ST, 4/6. DP/DT, 5/ .

PRINTED CIRCUIT BOARD (Vero)

 \(5 / 3\).
RECORDING TAPE (Finest quality MYLAR-almost unbreakable)
Standard Play: 5 in ., 600fe, 7/6. \(5^{3} \mathrm{in}\)., 850 fk ., \(10 / 6\). 7 in ., \(1,200 \mathrm{ft}\)., \(12 / 6\) Long Play: \(3 \mathrm{in} ., 225 \mathrm{ft}\)., 4/-. \(5 \mathrm{in} ., 900 \mathrm{ft}\)., 10/6. 5 \$in., \(1,200 \mathrm{ft},. 13 /-, 7 \mathrm{in} ., 1,800 \mathrm{ft}\). 18/-.
Send S.A.E. for January, 1969 Catalogue
radio communication HANDBOOK
by R.S.G.B Postage 4/6.

\section*{63/-}

INDUSTRIAL CIRCUIT HANDBOOK. Pub S.G.S. Fairchild. \(15 /\). Postage I/6.
THE APPLICATION OF DIODETRANSISTOR MICROLOGIC. Pub S.G.S. Fairchild. 12/6. Postage 1/6

THE APPLICATION OF LINEAR MICRO-CIRCUITS. Pub S.G.S. Fairchild. \(30 /\). Postage \(2 /\)-.
TELEVISION ENGINEERS' POCKET BOOK by J. P. Hawker \& J. A. Reddihough. 21/-. Postage 1/e. COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. 40\%. Postage I/-
Mullard COLOUR TELEVISION. 17/6. Postage 9d.
RCA HOBBY CIRCUITS MANUAL 17/6. Postage 1/-
Inter. G.E.C. S.C.R. MANUAL 4th
ed. \(25 /-\). Postage \(2 /-\).
inter. G.E.C. TRANSISTOR MANUAL 7th ed. 21/-. Postage \(2 /\)-. NEW CATALOGUE 2/-
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
British and American Technical Books
19-21 PRAED STREET, LONDON, W. 2 Phone PADdington 4185

\section*{WW-125 FOR FURTHER DETAILS}

Thanks to a bulk purchase we can offer

\section*{BRAND NEW}
P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Theit qualicy is as good as any other on the market, in no way are the tapes fauly and are not to be confused with despatch service

Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. \(\{3 \mathrm{in}\). 160 fe . \(2 /=\mathrm{Sin}\). 600fr. 6/L.P. \(\left\{\begin{array}{llllll}5 \frac{1}{2} \mathrm{in} . & 900 \mathrm{ft} & 8 /- & 7 \mathrm{in} . & 1.200 \mathrm{ft} & 9 /= \\ 3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} . & 8 / 6\end{array}\right.\)

 Postage on all orders 1/6

We can also offer, BRAND NEW PRE-RECORDED LANGUAGES COURSES in GERMAN, FRENCH, SPANISH AND ITALIAN.

Each course consists of 26 step-by-step lessons recorded at 37 i.p.s. suitable for two- and fourtrack machines and supplied complete with handbook. Normal retail price \(\$ 9 / 6\).

Our price \(19 / 6\) per course.

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

\section*{AMATRONIX LTD (WW)}

DISCOUNT TRANSISTORS. Quantity prices (in
brackets) when You buy ANY FIVE, same kype or
MIXED. All NEW GUARANTEEO TO SPEC. No econds. Quick delivery U.K. post paid on 10/=: List 4d., rree with orders





 HIGH SLOPE R.C.A. MOSFETS
Best buys in FETs. N-chain., insulated gate, depletion
mode. Useful d.c. to v.h.f. Triode 40468 , \(7.5 \mathrm{~mA} V\). N.F. 4 dB serul 100 MHz , Crss 0.12 pF . Igss 0.2 nA (all mpp ) Nil this for only \(8 / 4\) ( \(7 / 65\) ). Terrode \(3 \mathrm{~N} / 40\), 18 dB 8 sin,
3.5 dB N.F. 200 MHz , 10 mA , Acts as cascoder.f. amp. 3.5dB N.F. ai 200 MHz . \(10 \mathrm{~mA} / \mathrm{V}\). Acts as cascod
or mixer. \(19 /-(17 /-)\). (Like Mullard BF 528\()\).

AMPLIFIER PACKAGES (Component Kits)
Low szandby current, high efficiency. simplicity
\(\mathbf{A} \times 29 \mathrm{~V} .300 \mathrm{~mW}\) in \(10-20 \mathrm{ohms}\), \(12 / 6\).
\(\begin{aligned} & \text { AX } \\ & \text { A }\end{aligned} \mathrm{A}^{2} 18 \mathrm{~V}, 800 \mathrm{~mW}, 2 \mathrm{~W}\) or 24 V , ohms, low distorsion, \(22 / 6\)
AX\& \(18 \mathrm{~V}, 2 \mathrm{~W}\) or 24 V , AW , low distortion, \(15 \mathrm{ohms}, 30 / \mathrm{m}\) RECEIVER PACKAGE AXP
 know how well a slmple e.r.f. can work until you've built shis one. Two r.f. stages, amplified a.g.c., all silicon circuitry. Tinned and drilled printed cct. board, wound new top-grade miniature components. The ideal set for the young constructor, easy to make but much more than a toy. MW only, adaptable to other bands (hints given).
Loud earphone reception, but a \(\mathrm{J}-\mathrm{B}\) ohm speaker can also be used. Only 45/-.
LOW-COST LINICS
AUDIO POWER AMPS: PA234, IW, 22V, 22 ohms, 24/\%. CA3020, 550 mW , 9 V , high gain, wide band (needs o.p.
 \(28 d B\) TAA320, \(15 /-\)
MINIATURE POWER PACK COMPONENTS
MTS MAINS TRANS, 0-230-250V, \(90-9 \mathrm{~V}, 80 \mathrm{~mA}\), size If'sq., with data sheet giving regulation curves for push pull, bridge and voltage doubler reccifiers, \(11 / \mathrm{M}\) TINY
SELENIUM BRIDGE (finger-nail sized) rated 30 Vms
 TRANSFILTERS (BRUSH CLEVITE)
 by-pass, etc., TF-01, \(7 / 6,465\) \& 470 kHz .

396 SELSDON ROAD, SOUTH CROYDON SURREY. CR2 ODE

\section*{TACHOMETERS}
\(\star\) High linear output
\(\star\) Low driving torque
\& Bidirectional outpur to \(\frac{1}{4}\) of \(1 \%\) olerance
Brush life 100,000 hrs. or 10 years continuous operation
* Temperature compensated
* Ideal as speed transducers

Send for full details of these and other electronics products including speed control, speed indicators, etc., to:

\section*{NECO ELECTRONICS (EUROPE) LTD}

WALTON RD., EASTERN RD., LONDON OFFICE: NORTH ST COSHAM, HANTS. CLAPHAM, LONDON, S.W. 4 COSHAM 71711/5

TEL: \(01-6220141 / 3 \& 3211 / 5\)

Your choice of Live SocketsInstantly!
A Lexor DIS-BOARD gives you up 106 sockets from one power outlet. Portab or permanent fixing. compact units,
with safety neon. Over 1,000 socket combinations available from socke All types of fittings and finishes. brochure from
LEXOR DIS-BOARDS LIMITED, Allesley Old Road. Coventry.
Telephone 72614 or 72207

WW-127 FOR FURTHER DETAILS




WHEIDEWIRE WHEATSTONE BRIDGE
£15.15.0
 0 ohris with multiplier sethige or \(1 \cdot 1 \cdot 100-1010\). ponvin



For quantiven ended, epoxy encapmulated. \(4 / 6\)


\section*{INTEGRATED CIRCUIT AMPLIFIERS}
R.C.A. TYPE CA3020 TO-5 encapaulated 12 lead Aud lo Amplifier equivalent to neven N-P-N Transistors, three diodes and pleven


GENERAL ELECTRIC TYPE PA222 Epoxy moulded tonr-in-line 8 pin package plue heat sink lead, equivalent to alx N.P.N.
tranniators, one diode and mis realitorn. Max. power output 1 wath into is ohme. No tranaformer required. Pull elgnal current Araln 115 mA from a 22 V mource. PRICE
Suppled complete with applecatlon data.

\section*{THYRISTORS}

\section*{Lom currem}
rue spont; 200 plv 3 Ampr. Gate Vollage 3.2 siv
High current
CR \(80-021\) A. 80 Amps. 23 plv
CR \(100-151 \mathrm{~A}\)
CR
\(100-201\)
A.
100
Amps. 200 piv
CR \(100-201 \mathrm{~A}, 100 \mathrm{Amps}, 200 \mathrm{piv}\)
CR \(100-225 \mathrm{~A}, 100 \mathrm{Amps}\).250 pi

CR \(100-351 \mathrm{~A}, 100\) Amps. 330 piv
CR \(100-401\) A, 100 Amps. 400 pl
CR \(100-501\) A. 100 Amps. 500 pl

DRY REED INSERTS
Glasen dry reed insert, appros. tin. dia. \(\times 1 \mathrm{in}\). Innk with axial leall. One "make" contact of 100 mA . capacdty at 50 V . Citn
he operated by permanent maknet or \(30-50\) Amp-turns relay he operated by permanent maknet or
colls. \&RICE \(18 /-\) per doz., pont free

MULTIMETERS TYPE 108-1T
 D.).C. current \(0.5 .5-50-500 \mathrm{~mA}\). Renitance: \(2.0000-20.010\) ohmmen


\section*{TYPE MFI6}
A.C. and O.C. voltage ranger. 1 ( D.C. current ranges: \(\quad\) Renintance rangen: \(100 \mathrm{M} \cap \cdot 1 \mathrm{M} \cap\) The




WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) IN \(£\) FOR HANDLING AND POSTAGE.
all mail orders must be sent to head OFFICE AND NOT TO RETAIL SHOP.



\section*{SALONS INTERNATIONAUX DES} COMPOSANTS ELECTRONIQUES ET DE L'ELECTROACOUSTIQUE
FROM MARCH 28th TO APRIL 2nd 1969 - PORTE DE VERSALLLES - PARIS

This is the oldest Components Exhibition started in 1934 It became international in 1958 and has proved increasingly successful each year with a growing number of exhibitors and visitors.
In 1969, the International Exhibition of Electronic Components will be bigger and better than ever: 1.000 exhibitors from 20 countries... 150.000 visitors from all over the world. are expected.

Technical Seminars, which will be a part of the Exhibition, will discuss the latest developments in the field of technology The Audio-equipment Exhibition, held in association with the Electronic Components Exhibition, is open to engineers and technicians from all over the world and takes place at the same time and at the same place

\section*{InTERNATIONAL CONFERENGE ON REMOTE DATA PROCESSING}

Scientific, technical and economic aspects. Programm and registration conditions on request.

\section*{APPOINTMENTS VACANT}

DISPLAYED SITUATIONS VACANT AND WANTED: \(£ 6\) per single col. inch.
LINE advertisements (rum-on): \(7 /\) - per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 / \mathrm{o}\). SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
```

Adverisements accepted up to JANUARY 10 for the FEBRUARY lisue, subject to space belng available.

```

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

\section*{THE COLLEGE OF AERONAUTICS}

The following appointments are to be made in the High Frequency Section of the DEPARTMENT OF ELECTRICAL AND CONTROL ENGINEERING and are open to candidates who have experience in the radio, radar or electronic fields.

TECHNICAL OFFICER

\section*{TECHNICIAN}

The vacancies are in the high frequency and radar laboratories which are concerned with postgraduate teaching and research in radar, radio and mierowaves. Experience in the aviation field is not an essential requirement. The TECHNICAL OFFICER will supervise the day-to-day activities in the laboratories and be responsible for the construction of specialised experimental equipment. Canspeciaised experimental equipmaduateship didates should have passed the graduateship examination of the I.E.E., I.E.R.E., or possess in scale rising to \(\{1,517\) p.a.
The TECHNICIAN, who will have received relevant training and experience, will be remunerated in a scale rising to \(\{1,007\) with a supplementary allowance of \(£ 50\) p.a. for possession of a H.N.C. or equivalent qualification.
37 hour week of five days, generous holidays, staff superannuation and sick pay schemes.
Application form from Staff Records Officer, The College of Aeronautics, Cranfield, Bedford.

\section*{ASSISTANT FORCE WIRELESS OFFICER}

Required by the Government of Botswana Police Department to serve on contract for one tour of 2-3 years in the first instance. Salary in scale equivalent to \(£ 1524\) - \(£ 2094\) a year, inclusive of Inducement Allowance, point of entry according to experience. Gratuity at rate of \(25 \%\) of aggregate salary plus Inducement Allowance. Generous paid leave. Furnished accommodation at moderate rental. Education Allowance. Free passages. Contributory pension scheme available in certain circumstances.

Candidates, 30-45 years, should possess City and Guilds Intermediate Certificate or equivalent, or practical experience preferably in the Police or Armed Forces giving comparable ability. Several years' experience in the electronics or radio field preferably in connection with H.F., S.S.B. and V.H.F./ F.M. and ideally in Police communications are required.
The officer will undertake installation, operation and maintenance duties on police radio network comprising H.F., S.S.B. or V.H.F./F.M. stations up to 500 watts throughout Botswana.

Apply to Crown Agents, M. Dept., 4 Millbank, London, S.W.1, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference \(\mathrm{M} 2 \mathrm{~K} / 681122 / \mathrm{WF}\).

\section*{Engineering Instructors}

\section*{Bring ICL your engineering skill and teach tomorrow's experts}

We need you to train ICL Field Service Engineersthe men who look after ICL customer installations. Their job is clearly crucial. So therefore is yours. And this is reflected in the kind of opportunity we offer you.

Qualifications
You should Be aged 21-35
- Have City and Guilds Electronics Technicians, or HNC Electronics or equivalents.Have previous teaching experience in engineering or radarHave computer experience (although this is not essential)

\section*{Training}

You will be thoroughly trained on a specific type of computer. You will become an expert on it-able to instruct others with complete assurance.

\section*{Place of work}

Headquarters of ICL Customer Engineering Services: a fine modern building at Letchworth, Herts. The town is close to beautiful countryside and within easy reach of London. Assistance with removal expenses may be given.

Write: giving brief details of your career and quoting reference WW B645 to A. E. Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London, S.W. 15

\section*{The Computer Industry}

International Computers Limited

\section*{Exceptional opportunities for WIRELESS TECHNICIANS}

The Home Office requires Wireless Technicians to work on installation and maintenance of V.H.F. and U.H.F. communications systems at various locations in England and Wales

\section*{WE OFFER}
* Starting salary of up to \(£ 1130\) (according to age), rising to \(£ 1304\) with additional allowances of up to \(£ 125\) if working in the London area * Good prospects of promotion, the top technical posts draw more than \(£ 2300\) a year and staff who obtain professional qualifications may rise still further
* 40 hour week with overtime payable
* 18 working days paid holiday a year, rising to 30 days, plus public and privilege holidays amounting to \(81 / 2\) days
* Excellent prospects of qualifying for a pensionable post after one year's service

\section*{WE REQUIRE}
* City and Guilds Intermediate Telecommunications Certificate or evidence of an equivalent standard of proficiency
* Sound practical experience of construction and maintenance of V.H.F. and U.H.F. equipment
* Working knowledge of modern workshop techniques

Further information, please, about the work, pay and prospects of a WIRELESS TECHNICIAN.

NAME
ADDRESS

Post to:- Director of Telecommunications Home Office, Room 208, Horseferry House, Dean Ryle Street, London S.W. 1.


COMPUTERS

\section*{"SEA" THE WORLD WITH DIGITAL}

FIELD SERVICE ENGINEERS of a high calibre are required for the servicing and maintenance of our computers aboard ships in all parts of the world. Applicants should be qualified to B.Sc., H.N.D., or H.N.C. standard or equivalent and have relevant experience in the computing or allied technologies.

Tours of duty will be of approximately 90 days duration followed by leave. Attractive bonuses will be paid on the completion of each tour.

These positions would probably suit ex sea going Radio Officers

Applications in confidence should be sent to the
Personnel Departunent, Ref. WW35
Digital Equipment Co. Limited
Arkwright Road, Reading, Berks.
Tel: ORE4-85131

\section*{MARCONI}

\section*{ELECTRONIC}

\section*{TEST ENGINEERS}

Our Test Department is responsible for testing and fault finding on a wide range of Marconi equipment; airborne communication and navigation aids, radar; broadcasting; and space, radio and line communications. There are excellent career prospects both within the Test Department and in other areas of the expanding Marconi Company.

We wish to hear from men with a proven career record in the electronics industry, who, preferably should have gained qualifications to at least \(C \& G\) Telecommunications Intermediate standard.

Members of H.M. Forces in the electronic fitter categories would find these positions of particular interest.

Please write for brochure to Mr. M. J. Shepherd, Staff Personnel Officer, Chelmsford Works, The Marconi Company Limited, Marconi House, Chelmsford, Essex, quoting reference WW/E/42.

\section*{4- \\ }

Decca Radio and Television require Test Engineers for their Test Gear Laboratory.

Applicants should possess an O.N.C. and have at least one year's experience in Television.

This is interesting and varied work with good pay and conditions.

\author{
Apply quoting reference R/T 113 to. \\ Personnel Officer \\ Decca Radio and Television 15/17, Ingate Place \\ Queenstown Road Battersea. SW8
}

DEGGD


\section*{Our Test, Test, and Test again, Engineer}

The chap who is experienced enough to work with minimum supervision . . . flexible enough to assimilate new techniques . . . and resourceful enough to think of some answers as well as finding the snags . . . that'll be the chap who'll be our new Test Engineer.
And an interesting future he will have-working on latest state-of-the-art and integrated circuit equipment over a full range of SSB and ISB transmitters and receivers from watts to kilowatts, including new narrow-shift F.S.K. systems with frequency synthesis. If you are interested, and want to know more, write or ring:

Mr. P. J. Horwood, Senior Test Supervisor, REDIFON LIMITED,
Broomhill Road, Wandsworth, S.W. 18 Telephone: 01-874 7281

\section*{YORKSHIRE IMPERIAL}
require a young

\section*{GRADUATE ELECTRONIC ENGINEER}
o join an established Electronics Laboratory situated at the Company's Headquarters at Leeds.
The work will involve the design and development of digital techniques for data processing. non-destructive testing and control systems.
The successful candidate will be involved in both practical and theoretical work and must possess sufficient motivation to see a project through from the idea stage to a piece of proven production equipment.

The Company offers attractive conditions of employment including a Pension and Life Assurance Scheme and Profit-Sharing Scheme.
Written applications, containing full details of age. qualifications, experience and present salary should be marked 'Reference 38221 -Confidential' and addressed to:

The Senior Appointments Officer,
Company Personnel Services,
Yorkshire Imperial Metals Ltd.,
P.O. Box 166,

Leeds, LS1 1RD.

EDITORIAL assistant with prospects of early promotion to assistant editor is required for international journals dealing with applications of MICRO. WAVES and OPTICS. Some interest or experience in these areas is an advantage. Applications from graduates or near graduates in engineering or physics, to G. B. Shorter, lliffe House, 32 High Street, Guildford, Surrey. Tel. Guildford 71661.

\section*{NEWCASTLE General hospital (1060 beds)}

\section*{CHIEF CARDIOLOGICAL TECHNICIAN}

Applications invited for the above post. The person appointed will be responsible for the technical work of the Electrocardiography Department and electronic functions in the associated cardio/radiological assessment unit. This is an extremely interesting post and calls This is an extremely interesting post and calls
for a high standard of knowledge in the for a high standard of knowledge in the
electronics field. Further planned developments include an intensive coronary care unit and the Chief Technician will be required to maintain the complex electronic equipment to be installed there.

Salary \(£ 1,010-£ 1,240\) p.a. Whitley conditions.

Applications with names and addresses of two referees, to Hospital Secretary, Newcastle General Hospital, Newcastle upon Tyne, NE4 6BE, within two weeks.

\title{
SENIOR TELECOMMUNICATIONS IISTRRUMENT TEST TECHNICLIANS
}

If you have a thorough knowledge of r.f. circuitry and measuring techniques and are familiar with the use and maintenance of telecommunications test gear, we have a number of opportunities in our Production and Proprietary Service Departments at St. Albans and also in our Government Service Unit at Luton which should be of interest to you.

These challenging jobs involve testing complex new products with limited guidance and servicing and recalibrating a wide range of equipment to Company or Customer specifications under conditions which may call for individual responsibility in devising test methods and procedures.

These positions offer the experienced technician an opportunity to broaden his experience and to progress to posts of even higher techrical responsibility.

Working environment and conditions of service are attractive and include an excellent pension scheme and free life assurance. Some assistance may be given with re-location in appropriate cases.

Please apply in writing, stating experience, salary, age and qualifications to:-
The Recruitment Manager (WW 2890J),
Marconi Instruments Limited,
Longacres, St. Albans, Herts.

\section*{SWITZERLAND}

SERVICE ENGINEER
Service Engineer, single, wishes work in Switzer land. 20 years' experience Radio, TV, etc. 14 years self-employed. Teetotal, clean icence.
Willing to train for specialised equipment. J. Bateman, 22 Sutherland Avenue, Burnham-onSea, Somerset.

\section*{UNIVERSITY OF EAST ANGLIA}

Applications are invited for the post of
LANGUAGE LABORATORY TECHNICIAN
in the Language Centre. Candidates should have some knowledge of radio and experience with tape recorders and preferably also experience of recording. Salary will be at a point on scale \(£ 722-£ 1007\) or \(£ 692\) \(\mathbf{8 9 7 7}\) per annum.
Applications should be sent to The Director, Language Laboratory, University of East Anglia, University Plain, Norwich, NOR 88 C , as soon as possible.

\section*{TECALEMIT (ENGINEERING) LIMITED PLYMOUTH DEVON \\ ELECTRONICS ELECTRICIAN}

Preferably within the age range of 25-35 for the maintenance and development of electronic equipment and controls.
A working knowledge of transistor techniques is essential and previous experience in Industrial Electronics an advantage.
Academic qualifications are desirable but the primary requirement is for a man of good practical experience and ability.
Please apply in writing stating career to date and present salary to:

\author{
PERSONNEL OFFICER \\ TECALEMIT (ENGINEERING) LTD., \\ PLYMOUTH, \\ DEVON \\ A member of the Tecalemit Group of Companies
}

\section*{It's Racal 'quality year'}

And we are looking for a good quality

\section*{Service Engineer}
to help us maintain our standards of after sales service.

Specification:-
Wide general experience
Good knowledge of circuit applications
Experience with H.F. S.S.B.Communications Equipment

Optional Extras:-
City \& Guilds or O.N.C. or H.N.C
Power Consumption :-
Approximately \(£ 1350\)
Applications in writing please to:
Mr. P. Cousins
Group Personnel Manager Racal Electronics Limited, THE RACAL GADUP Western Rd., Bracknell, Berks

\section*{0
 OPERATE A TELEVISION UNIT FOR HORSERACING}
and require

\section*{TELEVISION ENGINEER}
for operation and maintenance of the MCR .

\section*{QUALIFICATIONS}

\section*{OPPORTUNITIES}
* HNC. City \& Guilds or * The Company is planning equivalent further expansion in the
* Experience in operation and maintenance of high grade television equipment
fields of television and elec. tronics
* Good salary and prospects
* Willing to travel

RACECOURSE TECHNICAL SERVICES LTD., 88 Bushey Road, Raynes Park, London, S.W.20.

\title{
Govermment of ZAMBIA \\ \\ REQUIRES
} \\ \\ REQUIRES
} POSTAL ENGINEERS

\section*{TELECOMMUNICATIONS, PLANNING and EVALUATION}

Professional Engineers required for telecommunications by the GOVERNMENT OF ZAMBIA, General Post Office on contract for one tour of 36 months in the first instance. Commencing salary according to experience in scale. Kwacha 2784 rising to Kwacha 4464 a year ( \(£\) Stg.1624-£Stg.2605) plus inducement allowance of \(£ \mathrm{Stg} .348-£ \mathrm{Stg} .429\) a year. Gratuity \(25 \%\) of total salary drawn. A direct payment of £Stg.233£Stg. 350 is also payable direct to an officer's home bank account. Both gratuity and supplement are normally TAX FREE. Free passages. Quarters at low rental. Children's education allowances. Liberal leave on full salary or terminal payment in lieu. Special terms of service apply to serving civil servants including employees of the General Post Office.

Candidates should have a recognised degree in telecommunications or electrical engineering or equivalent qualification. This should be followed by several years of experience with a telecommunications organisation. The duties of the posts are varied. They include planning of trunk and telegraph multiplex systems and radio systems, also the technical and economic evaluation of local and trunk line development policy in the field of underground cables and open wire lines.

\footnotetext{
Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K/6i6io/WF.
}

\title{
Expansion at Westrex
}

Westrex Co. Ltd., famous for their Telecommunications, Public Address and Cinema Projection and Recording Equipment, offer new opportunities to help meet their rapid expansion.

\section*{DEVELOPMENT/ DESIGN ENGINEER}
for specialised work associated with motion picture and public address equipment including audio frequency amplifiers, power units, filters, network, etc.
Location: Cricklewood

\section*{DEVELOPMENT/ DESIGN ENGINEER}
for specialised electro-mechanical, telegraphic apparatus associated with data processing and computer peripheral units including logic circuitry and sophisticated mechanical devices. Location: Cricklewood

\section*{SENIOR FIELD ENGINEER}
for work associated with data processing and computer peripheral units referred to above, based on London but must be willing to travel in this country. Car and expenses provided.

\section*{SENIOR DRAUGHTSMAN}
for specialised light, electro-mechanical work, associated with motion picture, public address and telegraphic type of equipment. Location: Cricklewood

All Applicants must have a sound technical background plus several years practical experience. Initiative and the ability to accept responsibility will lead to promotion. Excellent salary and prospects to the right applicants.
Apply in writing to: The Chief Engineer, WESTREX COMPANY LIMITED, 152 Coles Green Road, London, N.W.2, or telephone 01-452 5401 Extension 12.


\section*{Computer Engineering}

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns,
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1150\) per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

\section*{Electronic Technicians}

\section*{Ampex Quality Control Department now has vacancies for electronics technicians. Successful applicants will be responsible for fault finding and testing a complete range of sophisticated magnetic recording equipment.}

Experience gained in the electronic industry or radio or television servicing would be an advantage or a qualification of O.N.C. standard.

Attractive salary based on qualifications and experience will be paid and the company operates an excellent range of Life Assurance and Pension Schemes, etc.

Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, (Tel.: Reading 84411).
AMPEX

\section*{GOVERNMENT OIF THE GAMBIA}

REQUIRES BROADCASTING ENGINEER
to serve on contract for one tour of twenty four months in the first instance. Salary in scale up to \(£_{2424}\) a year (point of entry according to experience) which includes an allowance normally tax free, of £672-£900 a year paid direct to officer's bank account in U.K. by British Government. Gratuity of \(25 \%\) of aggregate emoluments drawn. Low income tax. Generous paid leave. Education and Outfit Allowances. Furnished accommodation at reasonable rental. Free passages. Contributory pension scheme available in certain circumstances.
Candidates, 25-45 years, must possess City and Guilds Intermediate Certificate, O.N.C. in Telecommunications or B.B.C. Grade 'C', and should preferably have experience of medium and short wave transmitters and
in operating and maintaining sound broadcast studio equipment in a tropical country. The engineer will be responsible for the operation and maintenance of all the technical equipment in the studio building, which will include three studios, a main control room, outside broadcast and recording equipment, the air conditioning plant and an emergency diesel generator. He will also be required to undertake extensive technical staff training.

Apply to CROWN AGENTS, M. Dept., 4 Millbank, London, S.W.I. for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference M2K/68ioo3/WF.

\title{
PROFISSONAL APPONIMEIS
}

\section*{ELECTRONICS}

We are one of the World's leading designers and manufacturers of Flight and Radar Simulators and we export a high proportion of our products. Ours is a highly sophisticated complex product, incorporating both digital and analogue computers, which provides a fascinating challenge to Engineers of all grades.

We have vacancies for:

> ELEGTRONIC ENGINEERS DEVELOPMENT ENGINEERS SYSTEMS ANALYSTS [TECHNICAL] SERVICE ENGINEERS SYSTEMS TEST ENGINEERS TECHNICAL AUTHORS DRAUGHTSMEN LECTURERS

We are based in Crawley, 26 miles from the sea and 31 miles from London. We have a contributory Pension Scheme coupled with free Life Assurance, and a good sick pay scheme. Canteen and Social Club facilities are àvailable. If you are interested in joining us, write immediately giving brief details of career and quoting reference WW169 to:
H. C. Hall, Personnel Manager REDIFON LIMITED Gatwick Road, Crawley, Sussex Telephone: Crawley 28811


A Member Company of the Rediffusion Organisation

\section*{EG}

\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shorened courses for men who have had previous training. Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

\section*{STAVELEY-SMITH CONTROLS LIMITED \\ SERVICE ENGINEERS}

Vacancies exist for Marine and Industrial Electronic Service Engineers in our London (Barking), Manchester, Liverpool, Birmingham and Glasgow Depot areas. Applicants must be either ex-seagoing personnel and/or experienced Industrial Service Engineers, residential within ten miles of above depots.
All applicants must hold clean driving licence, be willing to travel and be of British birth.

All positions are Staff, with contributory Superannuation.
Apply in writing, stating experience to:-
68 Grosvenor Street, MANCHESTER, 1.

\author{
ADMIRALTY CABLE SHIPS "BULLFINCH" and "St. MARGARETS" \\ (each 1511 tons gross) based at Plymouth require
}

RADIO OFFICER (man only) aged at least 20 and normally under 35 with at least 2nd Class PMG Certificate.
SALARY: \(£ 1,239-£ 1,892\) plus free victualling. Non-contributory pension. WRITE to Civil Service Commission, Savile Row, London, W1X 2AA, or telephone 01-734 6010, ext. 229 (after 4.30 p.m. 01-734 6464 "Ansafone" Service), for application form, quoting S/370. Closing date 3rd January, 1969.

\section*{Test Engineers}

\section*{AT MARCONI WEMBLEY}

Due to a further expansion of the Test Department, applications are invited from ELECTRONICS and TELECOMMUNICATIONS ENGINEERS to fill positions at the Company's Wembley establishment.
Applicants are expected to have a knowledge of Circuitry arid be able to undertake testing and fault finding of a wide range of Communications Transmitters and Receivers, Data Handling Equipment, Radar, and a variety of Electronic Aids. Domestic Radio/TV service engineering experience is unsuitable.
We are looking for Engineers with several years' production test experience in these fields or for ex-Regular Service Technicians with appropriate Forces' training and experience.

A 37-hour, five-day week is worked (8.30am-4.24pm) with occasional paid overtime. We are well served by frequent rail and road transport services from most areas.

\section*{Marconi 종ㅈㅇ옹}

Please apply by letter giving age, education, experience and present salary. quoung reterence WW/V/2 to: D. M. McPhail, Personnel Officer, The Marconi Company Limited, Wembley Works, Lancelot Road, Wembley, Middlesex. Tel:01-902 9421
an english electric company

SITUATIONS VACANT A quitred for retall sales: write giving detalls of age, prevlous experience, salary required to-The Manager,
Henry's Radio, Ltd., 303 Edgware Rd. London. W. 2.

CITY \& COUNTY OF BRISTOL, Bristol Technical College. Applications invited for following post: Senior Technician T.3. (Ref. T686/49/2). Salary Scale: £895- \(\mathbf{2} 1.055\). Starting salary dependent upon age, qualifications and experience. An additional \(£ 50\) or \& 30 Will be pald to a candidate with appropriate
Nationa! Certicate or \(C\).
\& cants should be over 21 and hold Intermediate City \& Guilds in Electronics or Radlo Communications, or other appropriate qualifications. Duties include servicing and maintenance of electrontc and electrical equipment as used in Merchant Ships and Civil Aircraft. 38 -hour,
5 -day week with usual holiday and sick pay schemes s-day week with usual holiday and sick pay schemes,
Permanent superanuable post. Further particulars and application forms (to be returned within 14 days of this advertisement) from Resistrar, Bristol Technical College, Ashley Doun, Bristol, BS7 9BU. Please quote reference number T686/49/2 In all communications. \({ }_{[2105}\)
DESIGN DEVELOPMENT ENGINEER for laboratory tuners and quality tape recorders. Only persons, V.H.F. a similar position need apply. Saly persons holding experience. Apply to Elizabethan Electronics Led., Ref: W.W.1. Crow Lane, Romford. Essex. Tel. Romford 64101.
\([2108\)

DOLBY LABORATORIES require another TEST DENGINEER for professional audio equipment. We are an expanding organisation who require the services of a test engineer of H.N.C. standard who is experienced in the acurate testing and fault finding of transistorised to a modern bulding in Clapham Road, with excellent working conditions and the position offers a good salary and prospects to the right man. Please contact:- Mr P. Lindsley. Production Manager, Dolby Laboratories Inc. Tel. 01-720 1111, 346 Clapham Road, London, S.H. 9 (near Clapham North and Stockwell Under-
ground Stattons).

EXPERIENCED TV Engineer required. Permanent E position, good salary. Transport avallable if required. This is an addition to staff to cope with expanding TV service. REM RADIO, 79 Church Road, Ashford.
Tel. Ashford 5336 (Middlesex).

GUATEMALA: Small radio station requires volunteer Cradio tecnician to assist in establishing relay stations and radio schools. Interesting post concerning the development of remote areas. Volunteer terms: Write: CIIR/OV. 38 King St., London, w.C.2. [74
PHOTO-STAFF CONSULTANTS LTD. require Sentor Audio Visual Mechanic for S.W. London and Liverpool areas. This post carries a high salary for a man experlenced in \(16 \mathrm{~m} / \mathrm{m}\) sound equipment, i.e.
Optical, Mechanical, Audio, etc. (Selling abllity an Optical, Mechanical, Audio, etc. (Selling ablllty an REG 1918, or call at 25 Oxford Street, London. W.1.
PRINTED CIRCUITS-An experienced Screen Printer Photographer is offered interesting work in
Devon. Good prospects for advancement. Company house avallable. Full personal details to Box WW 2112 Wireless World.
PRODUCTION MANAGER-Electronics. An experienced and adaptable Radio Production Enameer is modation avallable and every prospect for advancement. Full personal details to Box W.W. 2111 Wireless

R ADIO AND TAPE RECORDER TESTERS AND f pay; \(8 \mathrm{a} . \mathrm{m}\). to \(5 \mathrm{n} . \mathrm{m}\). Five-day week. Elizabethan Electronics Ltd. Crow Lane. Romford, Essed. Tel. Romford 64101.
REDIFON LTD, require fully experlenced TELE COMMUNICATIONS TEST ENGINEERS. Good commencing salartes. We would particularly welcome about to leave the Services. Please write giving full detalls to-The Personnel Manager, Redifon Ltd.. Broomhill Rd., Wandsworth, S.W. 18
\(\mathbf{S}^{T}\) Electronic Techniclan HOSPITAL, London, E.C. 1 and asslst in development on two Linear Accelerators. Salary on scale £801 to £1.140 p.a. including L.Wtg. according to qualisications and experience. Write to he Clerk to the Governors quoting Ref. No. ASC/[674

TESTERS and Trouble-Shooters required by manuf facturers of car radios, tape recorders. record players, etc. Good rates of pay. Apply to Elizabethan Electronics Ltd. Ref: W.W.2, Crow Lane, Romford,
Essex. Tel. Romford 64101 .

TV RETAIL BUSINESS of the highest standing, Eestablished over 40 years N.W. London. Owner requires PERSONAL ASSISTANT with servicing experience. Good position and prospects for keen and capable man. State afe and detalls of experlence. Box
W.W. 2119 Wireless World.

We Have Vacancies for Four Experienced Test Engineers in our Production Test Department, Applicants are preferred who have Expertence of Fauti Equipment. Excellent Opportunties for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Lid., Cambridge Works, Hais Road, Cambridge. Tel. Cambridge 51351 [77.
Exin. 327
\(W_{\text {ilcensed engineers }}^{\text {EST }}\) Lith invite "A" and "B" sary equipment to commence Radio Workshop. Alter native propositions may be considered. Write full detadls to-White Waltham Alrfield, near Maidenhead,
Beiks.

\section*{ARTICLES FOR SALE}

\section*{BBC2 K1TS and T.V. SERVICE SPARES. Suitable \(\begin{array}{lll} & \text { for Colour:-Leading British makers dual } & \text { 405/625 } \\ \text { position push button transistorised tuners } & \text { £ } 5.5 .0 \text {. }\end{array}\) six position push button transistorised tuners \& 5.5 .0 , incl. circuits and data, P/P 4/6. Basic dual purpose \(405 / 625\) transistorised tuners incl. circult \(£ 2.10 .0\), P/P 4/6. New UHF tuners incl. valves. slow motion drive assy, knobs, leads, fittings \(25.12 .6 \mathrm{P} / \mathrm{P}\) 4/6. Sobell/GEC Ferguson 625 IF ampliffer chassis incl, clrcuit 19/6; Uitra 625 IF amplifier plus \(405 / 625\) switch assy incl
circuit \(25 / \sim\) P/P \(4 / 6\). New VHF turret tuners:-
 4/6. Many others avallable incl. large selection channel colls. New freball tuners \(56 / 6\). used good
condition \(30 /-\) salvaged \(15 /-\) P/P \(4 / 6\). LOPTs, Scan coils. Frame output transformers. Mains droppers etc. available for most popular makes. TV signal boosters transistorised Pye/Labgear B1/B3, or UHF battery operated \(75 /=\) UHF mains operated \(97 / 6\), UHF mast head \(95 /-\) post free. Enquirles invited, COD despatch avallable. SUPPLIES, 64 GOLDERS MANOR DRIVE. LONDON N.W.11. CALLERS 589B HIGH RD., N. F1-445 9118.}

BUILD IT In a DEWBOX quality plastics cablnet. \(B_{2}\) in. \(x 2 \frac{1}{2} \mathrm{in}\). \(x\) any length. D.E.W. Led. (W), Ringwood Rd.. FERNDOWN, Dorset. S.A.E. for leaflet. Write now-Right now
CLEKON STAR BARGAIN OFFERS. Assorted wire Ewound resistors \(12 / 6\) per 100 ; Japanese miniature tuning capacitors for medium/long wavebands \(5 /-; 3\) in loudspeakers 8 ohms high-flux magnet rated 500 milliwatts output 10/=i a real scoop in Mullard pot cores LA2 402 7/6 each; LA5, LA6, LA7, LA1221. LA1247, LA2000, LA2303, LA2503 12/6 each; FX1653 15/FX2240 7/6, FX2575 12/6, Slemens pot cores 57 T 5 N 22, \(56 \mathrm{~T} 6-200 \mathrm{~T} 26\) 12/6. Spectal quotations for bulk quantities of any of above. A wide range of preclsion ballbearings is offered for disposal, detalls on request. We thank our many customers for their patronage in 1968 Enterprises, 30 Baker Street, London, WIM 2DS 01-486 5353 (24 hours a day).
NEW, genuine, Mullard OC75 Transistors \(1 / 9 \mathrm{~d}\). each or 18/- per doz. Add 6d. p. \& p. for orders less than 12. Same day service. Television Maintenance, la Barras
Lane. Coventry, CVI 3BU. OFFERS for Creed Perforator Type 7P/N3. Brand Orew, unused. Reynolds, 5 Headland Way, Lingfeld. Surrey.
NE 12-channel Oscillograph Type 1200A, manuiacOtured by Southern Instruments Ltd. Price £250 (Suitable for vibration investization.) One A.F. Panoramic Analyser Model 1950/2 manufactured by Industrial Electronics. Price £25. J. Black, 44
Hendon. N.W.4. Tel. 2031855 or 203 3033. SMITHS MOTORS, \(230-250\) volts, 2 watts, \(\frac{1}{}\) rev per minute, brand new, 22/8. Phillips Tape Cassette Motors, 9 volts, manufacturer's price approx 40lard or price \(20 /\) prises, 30 Baker Street, London, W.1. M2DS. Telephone 01-486 5353 .
STOPWATCHES? Before you buy send 8d. In stamps \(S\) for our lllustrated catalogue and save money. Lenses and prisms catalogue also available. Lind-Air (Optronics) Ltd., Dept. CWW, 18 and 53 Tottenham Court Road London, W.1. Tel. 01-580 1116.
tor
THE IDEAL PANEL Mounting Meter Movement for F any Sensitive Test Meter, etc. 200 Micro Amp
 Wireless Stores, 55 A Worcester Street, Wolverhampton, Staffs.
TRANSFORMERS. Range of outputs up to IKVA Quotations by return. SOLENOIDS, ac or dc, substantial ranke in stock. Quotations by return. Magnaborough TRANSISTOR stabilised modular power supplies, out 1 put \(5-30 \mathrm{~V}\) preset. 1A-3A-5A units. Made to sell a \(£ 26\) to \(£ 49\) each. Unused over-production run. Approx qty. 60 pes. Exceptional barrain at \(\mathbb{E} 9 / 19 / 6\) each nett Descriptive 309 Wireless World and
Video Tape, A wide range of \(\frac{1}{2}\) in, \(3_{3}\) in and 1 in Elape at very keen prices. Write for detalls 2DS 01-486 5353.
22 REELS unused Scotch in recording tape. [2117

\section*{BUSINESS OPPORTUNITES}

A LONDON RETAIL TELEVISION and Electrical A Business of the highest standing requires Executive envisaged on retirement of present managing director This is an exceptlonal opportunity to acquitc a sound proftable business established over 40 years. Principals only should write in confidence, stating age and details of background and experience, indicating amoun Of capital avaliable. Box W.W. 2120 Wireless world. \(122 \mathrm{Mc} / \mathrm{s}\) Radio Telephone suitable for use on the Market thelr design. If so, please write Box W.W 2102. Wireless World.

\section*{TEST EQUIPMENT - SURPLUS}

AND SECONDHAND
Signal generators, oscilloscopes, output meters, wave voltmeters, irequency meters, multi-range meters, etc., etc., in stock-R. T. \& I. Electronics, Led., Ash TEST EQUIPMENT: Solartron Storage Oselliliscope, Type QD910. Reconditioned, \&150, Solartron Osclili-
scope, Type CD711S.2. Recondltioned, \&65. General Purpose Signal Generator. Worklng, \(£ 12 / 10 / 0\). Advance

\section*{TECHNICIAN}

Progressive Electronic Component Manufacturers, situated in the Lake District, require a Technician to work in close conjunction with Electronics Engineers and Physicists, in the development, and subsequent production, of precision glass components.
The successful applicant should be capable of working on his own initiative.
A knowledge of laboratory workshop practice, and basic physics, would be advantageous. Assistance given in finding local accommodation.
Applications, stating age, experience etc., to be sent to:
THE PERSONNEL MANAGER,
OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY PARK, ULVERSTON, NORTH LANCASHIRE

\title{
ELECTRONIC TEST ENGINEERS
}

> PYE TVT LIMITED, WEYBRIDGE DIVISION wish to appoint Engineers to work on a wide range of professional television equipment for a world wide market.
> Engineers appointed would be required to work on colour and monochrome equipment incorporating the latest transistor/pulse circuitry techniques.
> Previous experience of professional television equipment is not essential, but applicants must have a sound technical knowledge of transistor circuitry, plus experience of equipment testing.
> We offer attractive salaries and conditions, making this a worthwhile career opportunity.

Apply to:
Personnel Officer
PYE TVT LIMITED
WEYBRIDGE DIVISION
Addlestone Road
Weybridge, Surrey

\section*{REDIFFUSION COLOUR and MONOCHROME TELEVISION RECEIVER DESIGN}

Two senior engineering appointments are to be made in our new and well-equipped Engineering Laboratories conveniently situated SW of London near to Kingston-upon-Thames. These opportunities are created by the expansion of our activities, including colour television, and applications are invited from engineers experienced in the following fields:
1. TELEVISION RECEIVER DESIGN AND DEVELOPMENT
2. MECHANICAL DESIGN OF TELEVISION AND TEST EQUIPMENT

These positions will be particularly attractive to engineers intent on taking on a high degree of responsibility and establishing themselves in key positions in the Company.
Salaries will recognise ability and experience and assistance with re-housing will be given. Applications should state brief details of experience, qualifications and age and will be treated in strict confidence.
Two further vacancies exist for younger engineers who wish to gain experience in design for production. Day release for studies will be granted.

\section*{Chief Engineer:}

REDIFFUSION VISION LIMITED

\section*{SERVICE TECHNICIANS}

Experienced electronic engineers, minimum qualifications ONC/City \& Guilds, to service and repair a wide range of electro-acoustic instruments. Driving experience essential.
Excellent salary and opportunities for advancement. Write or telephone for immediate interview.
Personnel Department, Amplivox Ltd., Beresford Avenue, Wembley. Tel.: 01-902 8991


We have vacancies for
FOUR EXPERIENCED TEST ENGINEERS
in our Production Test Department. Applicants are preferred who have experience of Fault Finding and Testing of Mobile VHF and UHF Mobile Equlpment. Excellent opportunities for promotion due to expansion programme.

Please apply to Personnel Manager
PYE TELECOMMUNICATIONS LTD., Cambridge Works, Haig Rd., Cambridge. Tel: Cambridge 51351, ext. 355

\section*{Radiomobile}

BRITAIN'S CAR RADIO SPECIALISTS
Require:

\section*{technca saf TECHNICAL SUPERVISOR}

A good knowledge of transistor theory, together with practical knowledge and experience of radio trouble shooting is essential.

\section*{LINE SUPERVISORS}
-with previous experience in the Electronic Industry

\section*{RADIO REPAIRERS \& TECHNICIANS}

Previous transistor radio repair experience necessary
All the above positions offer good promotional prospects together with competitive rates of pay and fringe benefits.

Please contact: The Personnel Manager.
RADIOMOBILE LIMITED,
Goodwood Works, North Circular Road, London, N.W. 2 (GLA O171)
\(\qquad\)

Signal Generator. Production Pushbutton pre-set type, With calibrated out-put watt meter and bullt-in speaker Pulse Generator \({ }^{2}\). Tel West

\section*{RECEIVERS AND AMPLIFIEFS-}

SURPLUS AND SECONDHAND
HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640 1 etc., etc., in stock.-R. T, \& I. Electronics, Ltd. Ashville Old Hall, Ashville Rd., London, E.11, Ley,
4986.

\section*{NEW GRAM AND SOUND \\ EQUIPMENT}

CONSULT first our 70-page illustrated equipment catalogue on Hi-Fi (5/6). Advisory service, Eenerous Association. 18 Blenhelm Road. London. W. \({ }^{01}\).995 1661.
GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2

\section*{TAPE RECORDING ETC.}

TF quality, durability matter, consult Britain's oldest transfer service. Quality records from your suitable tapes. (Excellent tax-free fund ralsers for schools, Grand.-Sound News, 18 Blenheim Road, London, w. 4. 01-995 1661 .

\section*{VALVES}

ValVE cartons by return at keen prices; send \(1 /-\) Godorin St., Bradford, 1.

\begin{abstract}
\section*{FOR HIRE}

GOR HIRE-C.C.T.V. equipment including camera, monitor, video tape recorder and tape, from £25 per day.-Detalls from Zoom Television Ltd., Amersham,
\end{abstract}

\section*{ARTICLES WANTED}

MARCONI: Radlograms, Targ 44 or Arg 45, 46, 49 Box WW 307 Wireless World
TELEPRINTER TERMINAL urgently required, keyElliot 503 periorator and reader. 8-hole in ASC 11 or Friden. Box W.W. 2116 Wireless World.
Wanted, all types of communications recelvers Electronlcs, Lid. Ashvilie Old Hall, to R. T. \& I. don, E.11. Ley., 4986.
[63
WANTED Eddystone communication receivers. W.P. Radio Services, Ltd., 51 County Rd., Liverpool, 4. Tel. Alntree 1445.
Wanted, televisions, tape recorders, radiograms, new valves, transistors, etc.-Stan Whletts, \({ }^{37}\)
High St., West Bromwich, Statis. Tel. Wes. 0186 . [72 WaNTED-back copies of Wireless world, JuneOctober 1968, up to 5/- a copy. T. Bason, \(\frac{1}{1}\)
[ 306

\section*{EVALVES WANTED}

WE buy new valves, transistors and clean new comquotation by return.-Walton's Wireless Stores, 55 \begin{tabular}{l} 
Worcester St., Wolverhampton. Wireless Stores, \\
[65 \\
\hline 62
\end{tabular}

\section*{SERVICE \(\&\) REPAIRS}

R EPAIRS.-Our modern service department equipped and futter meter and multiplex stereo signal generator is able to repair H1 Fi and tape recording equipment to manufacturers' standard. -Telesonic Ltd., 92 Tottenham Court Rd., London, W.1. 01-636 8177.
[21

\section*{CAPACITY AVALLABLE}

A IR'TRONICS, Ltd., for coll pinding, assembly and unit sheet metal work.-32 Walerand Rd., London,
S.E.13. Tel. \(01-852\) 1706.

COILS, I.F. Transformers, all types of wave winding, Chokes and Pot Core assembles. Small batch or large-scale, production undertaken. Apply: Olson Electronics Ltd., Factory No. 8, 5-7 Long Street, London,
E.2. Tel.: \(01-739-2343\). METALWORK, all types cablnets, chassis, racks, Netc, to your own specification; capacity avallable for small mliling and capstan work up to lin bar.PHILPORT'S
ON YOUR STAFF, but not on your payroll; com precise requirements. Box WW 308 Wireless to you precise requirements. Box W.W. 308 Wireless Worid. SMaLL electronic unit production. Capacity avallable Dlyision, \(9-10\) manufacture. J.D.R. Lid. Small Unit Dlvision, 9-10 Mallow Street, London, E.C.1. 01-253 3661.

\section*{TECHNICAL TRAINING}
\(\mathbf{R}^{\text {ECOME "Technically Quallfed" in your spare time }}\) B guaranteed diploma and exam. home-study course In radio. TV. servicing and maintenance. R.T.E.B. Guide-free. -Chambers College (Dept. 837K), 148 Guide-free, Chambers College (Dept. 837K), \({ }_{[16}\)
Holborn, London, E.C.1. CITY \& GUILDS (Electrical, etc.), on "Satisfaction For detalls of modern courses in all branches of elec trical engineering, electronics, radio, T.V., automation. etc.: send for 132 -page handbook-free.-B.I.E.T (Dept. 152 K ), Aldermaston Court, Aldermaston, Berks.


\section*{TELECOMMUNICATIONS} TECHNICIAN

BP require a Telecommunications Technician for Libya. Applicants aged 25-35 should possess City and Guild Technician standard 4 th year or equivalent, and have several years experience in maintenance of as many as possible of: Linear amplifiers and associated drive units, V.F.T. terminal equipment. Autospec error correcting equipment, modern communications receivers, small telephone exchanges and teleprinter equipment.

The post does not provide married accommodation but frequent and generous home leave is granted. Initially the posting is intended for one year.

Please write, giving details of age, qualifications and experience quoting reference R. \(10367 / 8 \mathrm{WW}\) to
Mr. P.J. Montanjees, External Recruitment,
The British Petroleum Company Limited,
Britannic House, Moor Lane, London, E.C.2.
P.M.G. Certificates, and Clty \& Gullds Examinations. Also many non-examination courses in Radio, TV and Electronics. Study at home with world famous ICS. House, London, S.W.11. to ICS. Dept. 443. Intertex
adio officers see the world. Sea-going and shore
appointments. Trainee vacanctes during 1969. Grants avallable. Day and boarding students. Stamp. for prospectus. Wireless College, Colwyn Bay. Stamp
[12 SERVICE ENGINEERS-up-date your technical knowLedge of Radio, TV \& Electronles thro" proven
home-study courses. Detalls from ICS, Dept. 442, Intertext House, London, SW11. \(T\) verts, radio A.M.I.E.R.E., City de Gulids. R.T.E.B.; thousands of passes; for full detalls of exams and home tratning courses (including practical equlpment) in all branches of radio. TV. electronics, etc., write for 132pase handbook-iree; please state subject.-British Institute of Engineering Technology (Dept. 150K).
Addermaston Court, Aldermaston, Berks.

\section*{BAILEY 30 WATT AMPLIFIER}

\section*{(0.1\% THD 20Hz-25kHz-See May/Nov} WW).
The finest kit available as supplied by us to Industry and Gove. Send for f́ree details.
10 Transistors as specified \& Pcb \(\quad 66.10 .0\) 20 Transistors as specified \& 2 Pcb fl 2.10 .0 RI-R27 \& Pot II/6 Cl-C6 (Mullard) 9/6 Mullard Capacitors \(2500 \mathrm{mFd} / 64 \mathrm{vw} 15 / 6\) each Finned solid Ali Heatsinks \(4 \times 4\) iin. \(12 / 6\) each Finned solid Ali Heatsinks \(4 \times 41 \mathrm{in}\).
Drake Transformers \(22 \mathrm{t}-0-22 \mathrm{lv}\) at 2 a each \(45 /-\) Drake Transformers \(22 \mathrm{t}-0-22 \mathrm{y}\) at \(2 \mathrm{a} \quad 45 /-\)
Texas IB20K 20 Bridge Rects 200 piv/2a
45/Photostats of May and Nov, articles \(8 / 6\) set CZ6 3/6 \(500 \mathrm{mFd} / 25 \mathrm{vw} 5 / 6\).
MOTOROLAIC STERED PREAMP ( \(0.1 \%\) THO) £3 (As described on page 332 September WW) A. 1 FACTORS. 72 BLAKE RD. STAPLEFORD. NOTTS.

\section*{TUITION}

CNGINEERS.-A Technical Certificate or qualificaEion wlll bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.). City \& Gullds, A.M.I.M.I A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of EngineeringDraughts, Bullding, etc.- For full details write for FREE 132 -page guide: British Institute of Engineering Technology (Dept. 151K). Aldermaston Court, Aldermaston, Berks.
KINGSTON-UPON-HULL Education Committee. K College of Teclinology. Princlpal: E. Jones, M.Sc., F.R.I.C.

FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate-Information from College of Technology. Queen's Gardens, Kingston upon
Hull.
E.M.I. TAPE RECORDER

Model T.R.52/2c
NEAR MINT CONDITION £150
A. E. WRIGHT \& SON

10 Church Street. Dowlais, Glam.

UNIVERSITY of St. Andrews. Five day Residential 23rd to \(28 t h\) March. 1969 . Keep pace with latest developments. Brochure: Extra-Mural Dept., Unlversity of \(9 t\). Andrews.

\section*{BOOKS, TNSTRUCTIONS, ETC.}

MANUALS. circuits of all British ex-w.D. 1939-45 Mireless equipment and instruments from original R.E.M.E. instructions; s.a.e. for list, over 70 types.W. H. Balley, \({ }^{167 a}\). Moffat Road, Thornton Heath,
Surrey. CRt-8PZ.

Patentee offers Design of Electro-Mechanical device for development by British manufacturer.
The Design employs large numbers of Solenoids and identical P.C.S. and should be simple and cheap to produce for home and overseas markets. Interested principals of specialist firms are invited to write for a copy of drawings and specification with option on sole rights to:

\footnotetext{
G. R. GREEN,

Red Roofs, Bath Road, Taplow, Bucks.
}

\section*{ELECTRONICS TECHNICIAN required by University Laboratory Department in IRELAND}

Duties will include construction of miniature transmitters, laboratory maintenance. Salary \(£ 1,150\) to \(£ 1,400\) according to qualifications and experience. Applications with names of two referees to BOX NO. 5050.

\title{
NEW FROM ILIFFE
}

\section*{Colour Receiver Techniques}

\author{
T. D. TOWERS, M.B.E., M.A.(Camb.), M.A.(Glasgow), B.Sc.,C.Eng., M.I.E.E., A.M.I.E.R.E., F.C.P.S.
}

This book is based on 12 articles printed in 1967 in the "Wireless World" and is one of the first publications to give an account of current U.K. practice in the design of colour television receivers.

The style of this book is simple and clear, with a minimal use of mathematics, presenting a logical, easily assimilated guide to the complexities of colour television receivers, starting with a clear exposition of the characteristics of the U.K. PAL "swinging burst" signal.
The general plan of a colour receiver is discussed thoroughly before dealing with the designers of individual sections (including the aerial-treated as part of the receiver). After a chapter reviewing the sections in relation to a complete receiver, the book concludes with two essentially practical chapters on colour test equipment and servicing procedures.

\section*{CONTENTS}
\begin{tabular}{ll} 
The Colour Television signal & \begin{tabular}{l} 
Elements of the Colour Tele- \\
vision Receiver
\end{tabular} \\
The Colour Tube & Using a Three-coloured Pen- \\
colour Decoding "Matrix" & cil of Light \\
Replacing the Missing \\
Circuits & Colour Subcarrier \\
Sorting out the Colour & \begin{tabular}{l} 
D.C. Power Supplies \\
Signals
\end{tabular} \\
\begin{tabular}{ll} 
Circuit Round-Up
\end{tabular} \\
Colour TV Test Equipment & "Setting-Up" a Colour TV \\
Set
\end{tabular}

88 pp. 79 illustrations. 35s. net, 36 s. by post

ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C. 1


TRANSISTOR STEREO \(8+8\) Mk. II Now using silicon Transistors in lirat tive atages on each chanuel
resulting in even lower noise level with fraprovert gensitivity A really firmbeclan H1.Fi Stereo Amplither K it. Usew is transistor glving 8 watts puwh pult output per chanael (1fW. mono) Sulable for use with Ceranic or Cryatal cartridges. Outpu stage for any apeakerfitrom 3 to 15 ohms. Compact design. at parts suppiled Including drilled metal work. Cir-kit board
attractive front panel knobs. wire. oolder, nuts, bolta-n extras to buy. simple atep by step, instructions ensble an constructor to build an ampliferer to be proud of. Briet Spec
fication: frea, remmane \(+3 \mathrm{~dB}, 20.20 .000 \mathrm{c} / \mathrm{s}\). Baes bon

 circuit dingram)

(HUGE PURCHASE
Heavy Biin. metal turntable. Lo flutter performance \(200 / 250\) v. shaded
motor ( 80 . Ahp). Complete with
lateat type ith itwelght pickup arm and mono cartidge with to atyll fo LIMITED NUMBER ONLY 63/

\section*{ATEST (GARRABD MODELAS. All typer available 1000 ,}

QUALITY RECORD PLAYER AMPLIFIER MK. II A top-quality record player smplline employing heravy dut separate bass, treble and volume controls Complete with outpu 81n. I. Reails built and tented. PRICE 75 AL8O AVAILABLE mounted on hoard "ith output tranatormer DE LUXE QUALITY PORTABLE RECORD PLAYER CABINET Uncut inotor board wize \(141 \times 12 \mathrm{in}\)., clearance 2 in . below,
5 (in. above. Will take funpliter above and any B.s.R. ot GA ARARD Autochanger or single Player Unit (except ATBO


AMPLIFIER MODEL HA3 Designed for Hi-Fi reproduction o Ready built on plated heary gauge Ready built on plated heavy gauk
netal chaswlm, wize 7 jits. w. \(x \quad 4 \ln\)
 double vound lanina Heavy duty and output trinnitormer tramehed for
3 ohm spaker and volutne controls. Negaure feed ,ack line. Output \(4 f\) watts. Pront panel can be detached and been apecially deaigned for us and our quantity order enables ul offer them complete with knola, walves, etc., wired and teated HSL "FOUR" AMPLIFIER KIT
Anullar \(\operatorname{In}\) appearance to HA 34 above but emplor: entirel


HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT - Peak output in excess of 11 watts. All atandard Britinh componentn. Buil on printed cifcule panel, size \(6 \times 3 \mathrm{in}\) - Generous aize driver and output transiormers. Outpu ransformer tapped for 3 ohm and 15 ohrn mpeakera. Tranaly
ora ( GET 114 or 81 Mullard OC81D and matched pair of OC81 ops). © volt operation. O Everything supplied. wire, bathiry cllp. solder, ele. Comprehensive eaw to follow instruco eparately. SPECIAL PRICE 45
puilt and tested \(52 / 6\). P. \& P.

me controla, and separate baan and treble controla are provided Iving rood lift and cut. Valve line-up: 2 LLB4a, ECC83. EF88 parts). All paris sold separately. ONLY \(£ 7 / 9 / 6\). P. \& P. \(8 / 6\). Also avaluable ready built and legted complete with standard
mput wocketa. \(£ 9 / 5 /-\). P. \& P. \(8 / 16\). 4-SPEED RECORD PLAYER BARGAINS aing models. All brand new in maker's original packing. E.M.I. Moder \({ }^{\text {nnd }}\) mono cartidge \(£ 5.5 .0\). B.S.R UA 25 with latest mono compatible Cart.
\(£ 6196\)

PLEASE NOTE: \(P\). \& \(P\) CHARGES QUOTED AP. ON OVERSEAS ORDERS charged extra.

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985 S.A.E. all enquiries. Open all day Saturday (Wednesday I p.m.)


SALES
Nowhere in the world can you buy
We are the largest purchasers of 保 ye will also buy manufacturers' surplus stocks, and yoursurplus stock
WARE. HERTS
WARE, HERTS
c

TESTED, AND NPNARKD TRANSIST


POWER TRANSISTORS


\begin{tabular}{|c|c|}
\hline Type No. & PIV Amp \\
\hline 2N1595 & 50 \\
\hline 2 N 1596 & 100 \\
\hline 2 N 1597
2 N 1598 & 200
300 \\
\hline 2N1599 & 400 \\
\hline BT \(\times 30-500\)
BT \(\times 30.600\) & 500
600 \\
\hline
\end{tabular}

\section*{TO-46 CASE (STUD)} \(\begin{array}{lll}\text { Type No. } & \text { PIV Amp } & \\ 2 \text { IT71 } & 50 \\ \text { 2 } 177 \\ 2 \text { N1772 } & 100 & 4.7 \\ 2 N 1174 & 200 & 4.7 \\ 2 N 1776 & & \end{array}\)
SILICON PLANAR PLASTICTRANON PLANAR PLASTIC
Hfe 20 SISTORS. 2N 3708 VCB30Hie 20-60. All marked, fully tested and
guaranteed. 1 off \(1 / 1\) each: 100 off 10 d .
each; 500 off 9 d . each; 1,000 off 7 d .each.TO.IB METAL CAN SILICON
PLANAR TRANSISTORS. VERY
HIGH QUALITY 99\% good. TyPEHIGH QUALITY \(99 \%\) good. TR Ty
\(2 \mathrm{NFO6}\) BSY 27 G7.10 per 500 piece
\(\mathbf{E 1 2 . 1 0}\) per 1.000 pieces.HIGH OUALITY SILICONPLANAR DIODES. SUB-MINIA
TURE DO-7 GIASS TYPEreplacements for F Type. sulzable
BAY 38,15130 , 15940,200 OA202,at 64 per 1,000 pieces. GUARAN
TEED \(80 \%\) GOOD.MIXED SILICON PLANAACASE. Transistors so fill a number of
requirements like 2 N706, \(2 N 708\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Sub.Min, Plastic I Amp Sil, Rect.} & \begin{tabular}{l}
fully tested devices and \\
QUALITY GUARANTEED-SURPLUS
\end{tabular} \\
\hline Type No & PIV Each & A 202 Silicon Diode. Fully Cod \\
\hline IN4001 & 50 .. 1/3 & 150 PIV 250 mA Qey. Price 630 per 1,000 piece \\
\hline IN4002 & \(100 . .1 / 6\) & ORP 12 Cadmium sulphide Cell. \\
\hline \(1 \mathrm{~N}^{2} 003\) & 200 .. 2/0 & 1-249/\% each; \(25-99\) 7/- each; 100-999 6/- each \\
\hline IN4004 & 400 .. 2/9 & 1.000 up \(5 / 6\) each. Made in Holland. \\
\hline IN4005 & \(600 . .1 / 3\) & 100 SIL. RECT'S 800 PIV 550 mA \\
\hline IN4006 & \(800 . .3 / 9\) & 1-49 2/6 each; 50-99 2/3 each; 100-999 2/ \\
\hline IN4007 & 1,000.. 4/9 & 1,000 up \(1 / 10\) each. Fully Coded. Ise Qley \\
\hline
\end{tabular}

\section*{2,500 cross references of equnsistors-BOOK} American and lapanese. A must for every transistor use
Exclusively discributed by DIOTRAN SALES. \(15 / . \mathrm{EACH}\) Post and Packing costs are continually rising. Please add I, OUANTITY QUOTATIONS FOR ANY DEVICE BY RETURN.

Vast mixed lot of subminiature glass diodes. Com-
prising of Silicon, Germ, Poine Conect and Gold
Bonded typot Bonded types plui some' Zeners. 500,000 available a
Lowese of Low price.
1,000 pieces \(\$ 3.00,5,000\) pieces \(13,10,0,10,000\) pleces 621 OVERSEAS QUOTATIONS BY RETURN SMIP. MENTSTOANYWHEREINTHE WORLDAT COST

\section*{EXCLUSIVE OFFERS}

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH \(x\) 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique features

\(\star\) Double oided bake rack panela back mad front and the ar are
drilled and tappod drilled and tapped
all the way down all the way down
overy fim. for thle purpose.
\(\star\) Fitted "Inatantit" (World Pateate)
fully adjuatable ruck panel mountis both vertically and horizontally rack panele to be receared it dasired the panela ste jerting compodesired to enclos
- All edgen and cornert rounded.
\(\star\) All interior attings, tropicalised and rust prooled and pasnivated.
* Bultia cabje Dueta-removable.
\(\star\) Built-in Blower Ductu-removable
t Detachable side panels.
\(\star\) Full lenkli instantly detachable doora atted espagnoletie bolts available it ordered with cabinets.
\(\star\) Made in Californit. U.S.A., cost the American Govern ment \(£ 107\) belore devaluation.

\section*{OUR PRICE £26 100}
(Full leagth doors \(£ 5\) each extra).
You do not require doors it yon are roing to mount padelt tront and back and do not wiab to enclone them.

40-page list of over 1,000 different itoms in stock avaliable-keep one by you.

Computer Tape Recorder Reproducers of highent quality
in ft . Cabineta-full detaila and price on request.
\begin{tabular}{|c|c|}
\hline pater 8 track Tape Readers & \\
\hline * Teletrpe 5 track Tape Readers & \(\underline{29} 10\) \\
\hline - Varidea 5Kva & 0 \\
\hline * Stelma TDA-z T.D.M. Se & 555 \\
\hline * Moldar \(\mathbf{1 0}\) way Aerial Multi-coupleri & c9 \\
\hline . 5 tt. 6 in . totally enclosed 18 in . Cabine & 118 \\
\hline \(\star 75-100 t\) High Lattice Wind-ap Masta & 2286 \\
\hline * Mars Airport Reoor & £175 0 \\
\hline \(\star\) - Track Teletypewriteri & \\
\hline \(\star 7\) Track Tape Readeri & ¢ 4 \\
\hline © Philco CLR Microwave Multiplez Radiophone & \(£ 250\) \\
\hline \(\star\) Rectiders, 8-phase input 28 v. 200 A . out & £35 \\
\hline \(\star\) Stelme Telaprinter Moaitori & \\
\hline * Stelma Lofic Onfte, octal bate & \\
\hline * Uniselectora 10 bank 25 way or new & \&1 15 \\
\hline *Precision Maita Filter Unll & 5 \\
\hline * Aro Gelzer Cometera & £710 \\
\hline *Illaminated 4 section S witches & \\
\hline *Teletype Model 88 Power Sapply Unita & \\
\hline *Teletype Model 28 Function Bozes & ¢5 \\
\hline \(\star\) R.C.A. \(480 \mathrm{me} / \mathrm{s} 5 \mathrm{el}\). Yeri beamı & \\
\hline \(\star\) Metro-Vickern Yacoum Pumps 230 ه. A.C & ¢22 10 \\
\hline * Beckman Heliopots 30K and 50 K & 110 \\
\hline \(\star\) R.C.A. 25 watt Projector Speakers, ranke 1 mile & \\
\hline *Marconi H.R.22 SSE Receivera \(2 / 32\) & ¢80 \\
\hline * Marconi He. 2 SSE Recelvers & £75 0 \\
\hline \(\star\) AN/UPM-1; Spectrum Analyseri 10/16,000 me/B & \\
\hline *AM/URM 39, 34, 35 and 36 Sienal Generatorı & R \\
\hline * Narda 500 w, Uitrasonic Cleazera & 2850 \\
\hline \$ Monitor Type 56 and Power Uaits ......... Carriageestra at cont on allabove. & ¢7 \\
\hline We have a larse quantity of " bits and we cannot liat-pleass aend us your reguir we can probably help-all enquiries a & \[
\begin{aligned}
& \text { ecen " } \\
& \text { ment: }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{P. HARRIS ORGANFORD - DORSET \\ westroorne bsosi}

\section*{SWANCO PRODUCTSLTD.}
asmap AMATEUR RADIO SPECIALISTS a3pqQ NEW EQUIPMENT

Sommerkamp P-Seriea Equipanent:
FR-DX- 500
double converaion
FR-DX-Sry double conversion superheterodyne
FL-DX 500 88B/AM/CW tranixet, \(160-10\) metreo
antenna complete wlath built-in power, supply atid
FL-DZ-2000 Hient amplifier. 960 wate PEP
Sommerikamp FT-DX-500 transcelver, \(80 \cdot 10\) inet res \(\frac{1}{2} 5\)
\(\begin{array}{lll}145 & 0 & 0 \\ 110 & 0 & 0 \\ 250 & 0 & 0\end{array}\)
Swan Line Equipment:
\(8 w a n 500888\) Trancelver, \(80 \cdot 10\) metres
8 wan \(35088 B\) Transeiver, \(80-10\) nietrea
Sran 230-XC Power supply ( 20 suit 800 or 350 )
Swan 110 VPO atad sdapler
Hallicrafter Equlpment:
SX-130 Communlcatioua recelver
SX-128 Cormmunication

HT-48 88B Trazamitter, \(80 \cdot 10\) metren
Eddystone Radio Led.:
Eddyatose EAl2 Ambur Bende Receiver, \(160 \cdot 10\)
metres
Eddyntone 840 C Communcations recelver
Eddystone EB3s receiver
Eddyntone EB38 recejver
\begin{tabular}{c} 
Trio Communicatione Receivers: \\
Trio \(J\) JR-60 \\
\hline 14 tubes
\end{tabular}
 Trio 9R68 tube commumications receiver.
Trio 9R59DE 8 tube Trio JR500SE Amateur banda recelver \(80-10 \mathrm{~m}\). Latayette Commanicatione Receivers:
HA-500 A Diateus bands recelver, \(80-0\) metres,
BA-700
Communications recelver (with prod delector) .............................. produc HA-850 Amateur bande
K.W. Electronics Ltd.
K. W. Electronics Ltd. 201 Annteur banda Receiver 160
K.W. Vespa Mk. 4 Hada Receiver, 160 m .10

PSU)
Mosle) Electronics (Besms):
TA-331. Tribaud three-element beam
TA-31Jr. Tribsend djpole
\(\begin{array}{ll}\text { V-3Jr. } & \text { Triband vertical } \\ \text { TD-8jr. } & \text { Wire Trap Dfpole }\end{array}\)
Channelmaster rotatore
Park-Air Electronica LId.:
Park-Air Electronics Lid.:
2-Metre Tranmiter (complete with mic., etc.)....
Jet Set Aiscraft recelver.
8if Bandit Aircraft recetrer
Eurer Atrcraft, short, medlum, and long wave
recelirer
Swanco/CSE Equipment:
wanco/CSE 2A10 solld atate transmitter
Swanco/CSE EAE soldd atate recelver
able antenna II A.T.M.A. moblie/日red/Dort.
Swazco/CSE antoty mobile buicrophone Type MM8
y.lem .....

Exira colle (when more than one band is required)
cheltord na spiceri per palin
chelford B1/4 tranamitter for 4 metree
Echelford M1/4 tranamitter (matne or probile)
Pull range of Drake Equipmenter avalable to orde.
Full range of Heake Equipment available to order.
Codar Radio Company


Partridge Eleetronles: Joyatlek std. Joystick de luze Type 3 tuner..
Type 3 A tuner Type \& tuber. Type 4 ISF tuiner

Many iterns in second-HAND EOUTPMENT

 Your onquaries please.

Full Service Paclities-recelvers re-aligned, tranmalters serviced,
Mluntrated Catalogue 7/6 post paid.

\section*{SWANCO PRODUCTSLTD.}

Dept. W 247 Humber Avenue COVENTRY

Telephone:
Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m.

SELLYOUR ELECTRONIC EQUIPMENT AND COMPONENTS FOR CASH
THE LARGEST AND BEST BUYERS IN THE COUNTRY UNITED ELECTRONICS LTD

\title{
* Best Prices * Immediate Spot Offers \\ * Prompt Settlement \\ *Fast Collection \\ We buy
}

PLUGS AND SOCKETS-MOTORS-TRANSISTORS-VALVES-RESISTORS-CAPACITORS
POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC. Any quantities considered. Send lists of goods available. DON'T DELAY-contact Mr. Astor or Mr. Kahn-

\section*{UNITED ELECTRONICS LTD}

12-14 Whitfielo St, LONDON, W.I. Tel: 01-580 4532. 01-580 1116, 01-636 515t. Telen: 27931

WE ARE BREAKING UP COMPUTERS COMPUTER PANELS (as shown) 2 in. \(\times 4 \mathrm{in} .8\) for \(10 /=\) 100 for \(65 /=+\mathbf{P}\). \& P. 6/6: 1.000 for \(630+\) carr.

EXTRACTER/BLOWER
FANS (TAPST) 100 C.F.M. It \(x\)
\(411 \times 21\). \(2800 \mathrm{R}, \mathrm{P} . \mathrm{M} .{ }^{200 / 250}\)
volt A.C. \(35 /=\) each. P. \& P. \(5 /\). POWER TRANSISTORS sim
to \(2 N 174\) ex. eqpl. 4 for \(10 / \mathrm{l}\).
OVERLOAD CUT OUTS. Panel mounting in the TRANSISTOR COOLERS TO5, \(7,8 \mathrm{amp}\) TO3 \(18 /\)-doz. P. \& P . 9 d .
MINIATURE GLASS NEONS. \(12 / 6\) doz
NEW MIXED DISC CERAMICS. 160 for \(10 / \mathrm{m}\)
LONG ARM TOGGLE SWITCHES, ex. eqpt.
SPST \(13 / 6\) doz. DPST \(17 /=\) doz. DPDT 22/6 doz.
LARGE CAPACITY ELECTROLYTICS
4in. \(2 i n\). diam. Screw terminals.
All at \(8 /-\) each \(+1 / 6\) each \(P\) \&
\(5.000 \mathrm{mF} \quad 55 \mathrm{~d} . \mathrm{c}\). \(w \mathrm{~kg}\) \& \(P\).
\(1.500 \mathrm{mF} \quad 150\) d.c. \(w \mathrm{~kg}\).
\(\begin{array}{ll}\mathbf{4 . 0 0 0 \mathrm { mF }} & \mathbf{7 2 V} \text { d.c. } \mathbf{W k g} \text {. } \\ \mathbf{6 . 3 0 0 \mathrm { mF }} & 72 \mathrm{~V} \text { d. }\end{array}\)
\(\begin{array}{lll}6.300 \mathrm{mF} & 72 \mathrm{~V} \text { d.c. } w \mathrm{~kg} \text {. } & \\ 16.00 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w \mathrm{~kg} \text {. Send } 1 / . \text { stamps }\end{array}\)
\(5.000 \mathrm{mF} \quad 12 \mathrm{v}\) d.c. wkg. for list
KEYTRONICS, 52 Earls Court Road,
WW-138 FOR FURTHER DETAILS

\section*{WANTED-}

Redundant or Surplus stocks of Transformer Elaterials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.),

Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, pluys and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12
```

RING 4452713

```

4450749
9587624

\section*{SPECIAL AUTUMN OFFER} B.B.C.-2 \& COLOUR TV AERIAL
 for fringe areas (in) (com sur)
For lof or roof fixing. Complete with mounting arm. State Channel required of nearest iransmituer. Hundreds sold. Special low-loss et \(2 / 6\)


\section*{SPEAKER BARGAIN!}

Famous English \(12^{*}\) high fux. heaxy cone 10
 35/-

\section*{ELECTRAMA}

Dept WW 72 WEST STREET, EASTBOURNE
WW-139 FOR FURTHER DETAILS

\section*{LAWSON BRAND NEW TUBES}

Complete fitting instructions are supplied with every tube. Terms: C.W.O. Carriage and Insurance 10\%.

\section*{LAWSON TUBES}

18 CHURCHDOWN ROAD MALVERN, WORCS.

Tel. MAL 2100

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
"Century \(99 "\) are absolutely brand netv tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99 " are a complete range of pubes in all sizes for all British sets manufactured 1947-1967.

12 YEARS FULL REPLACEMENT GUARANTEE WW-140 FOR FURTHER DETAILS


12"-64: 10:0
14"- \(55: 10: 0\)
17"-65:19:0 19"- \(\mathrm{E6}: 19: 0\)

\section*{ALL GOODS GUARANTEED}

CONVERTOR/BATTERY CHARGER. InPUE 12 v . D.C. Output \(240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\). 170 watt max. Input 240 v . \(50 \mathrm{c} / \mathrm{s}\)., output 12 v . 5 amp D.C. Fully fused with Indicator lamps. Size \(91 \times 10 \times 4 \mathrm{lin}\). Welghe 19 lbs Anextremely compace unis that will give many years
reliable service, supplied with plug and lead. Only reliable service, supplied
E4/10\%. P. \& P. \(15 /-\) exera.
As above fully serviceable-perfect interior but As above fully serviceabe-periect int
soiled exterior cases, 63 . P. \& P. \(15 /\) extra.
DISTRIBUTED WIDE BAND AMPLIFIERS Various types, e.g. E.M.II type 2C complete with
power unit. Frequency range \(50 \mathrm{c} / \mathrm{s}\). to \(100 \mathrm{mc} / \mathrm{s}\)., power unit. Frequency range \(50 \mathrm{c} / \mathrm{s}\). to
gain of \(12.68 / 10 /\). P. \& P. EI extra.
DEKATRON SCALERS/TIMERS
models from E6- \(\$ 12\).
RATEMETERS. Various types available with or
withoue E.H.T. power supplies
DEKATRON COUNTER tubes sype GCIOB, 4-DIGIT RESETTABLE HIGH SPEED COUNTERS. 10 counts per second. \(1,000 \mathrm{ohm}\) coil \(36 / 48 \mathrm{v}\). D.C.. \(17 / 6\) each.

SOLARTRON stab. P.U. type AS516 \(300 \times .50 \mathrm{~mA}\). E3/10/-: AS5I7 300 v. 100 mA .ite. P. \& P. \(10 /\) - extra. 40 NASISTOR OSCILLATOR. Variable frequency
 Brand new. Boxed. \(11 / 6\) each.
VENER encapsulated "flip-flop" eype TS.2A. Complete with base 21/- or 4 for 63/15/.
MULLARD pot cores type LAI, 8/6 ea. (brand new
boxed). UNIT consisting of standard mains inpus transformer 200/240 v. 50 cycle; output 18 v . 4 amp (conservative); GEC bridge rectifier; detachable accuTS2. \(2 \times 12\) AU77 one 500 ohm relay heavy duty contacts 2 make; lamps, fuse, switch etc., etc., in case size \(10 \times 10 \times 5\) Sin. Ideal for battery charger, one second timer, eransistor power supply. ete. \(10 \%\), P. \& P. \(15 /\).

FAST NEUTRON MONITORS (Burndept eype 12628). Complese with new set of Mallory cells and carrying harness. 110 only. P. \& P. 10/-.

OSCILLOSCOPES. COSSOR DB 1035 E20; 1049 E30. Hartley 13 A DB 620.
MARCONI Sig. Gen. \(144 \mathrm{G} 85 \mathrm{ke} / \mathrm{s}, 25 \mathrm{me} / \mathrm{s}\). 220 , carr. LI. MARCONIU.H.F. Gen TFSI7 \(150-300 \mathrm{me} / \mathrm{s}\). C5/10/, carr. 11.
AIRMEC Valve millivolemeter 784. 6in. rectangular 200 micro amp. meter calibrated - 10 db to +10 db ; and \(0-10 \mathrm{mv}\); ; range \(-40 \mathrm{db} / \times \mathrm{l} ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100\) C10. Carriage \(15 /\)
CT49 AUDIO FREQUENCY METER fre. range \(450 \mathrm{c} / \mathrm{s}\). to \(22 \mathrm{kc} / \mathrm{s}\), directly callbrated. Power supply
\(1.5-22\) v. D.C. \(6 / \mathrm{io} / \mathrm{C}\). Carr. \(15 /\) (in original carton).

One only SOLARTRON PRECISION A.C. MILLIVOLTMETER VF252. I \% accuracy, all ranges. 1.5 mV .-ISO v. i.s.d. 6in. Linear scale ance. AS NEW only 685 .

VOX SPEAKER CABINETS. Brand new. All black with gold crim. Very attractive. Size \(21 \times\) size \(18 \times 18 \times\) gin. deep requires 110 in. speaker 65/10/-
Very special-heavier gauge cabiner \(24 \times 18 \times 9\) in. deep requiring 2 1Oin. speakers El .
Stereo enthusiases-any pair LI reduction.

Brooks Crystals \(2 \mathrm{me} / \mathrm{s} .7 / 6\) each.
3,000 Series \(5 \mathrm{k} / \mathrm{ohms}, 2\) pole
3,000 Series \(5 \mathrm{k} / \mathrm{ohms}, 2\) pole make H.D. contaets \(2 / 6\) each.
Siemens sealed HS 48 v . speo type H96E, 3/- each. Siemens min. with dust cover, 6 pole make or break 1,250 ohms, brand new, boxed, \(4 / 6\) each. Bases \(2 /-\) -
S.T.C. sealed 2 pole co. \(24 \mathrm{~V} / 48 \mathrm{~V}\). State which. ComS.T.C. sealed 2 pole co.
plete with base b/ each.

SELENIUM RECTIFIERS
Double bridge \(12 \mathrm{v}, 6\) amps continuous rating. Size \(38 \times 33 \times 2 \mathrm{jin} .9\) plate, \(8 / 6\) each.
Quad bridge 12 v .12 amps continuous rating, \(21 /=\) TRANSFORMERS All 200 each.
TRANSFORMERS. All \(200 / 250\) inputs 18 v .6 amp continuous rasing tapped \(9-0-9\) at \(18 / 6\) each. 18 v H.T. TRANSFO.
\(50 \mathrm{~mA} 63 \mathrm{BANSFRMERS} .\mathrm{Gardners} \mathrm{250-0-250}\) \(50 \mathrm{~mA} .6 .3 \mathrm{~V} .1 \mathrm{amp} ; 6.3 \mathrm{~V} .2 \mathrm{amp}\), size 21
As new 25 - each. Matching choke \(7 /=\) each.
GARDNERS Neptune series. Brand new. \(460-435\) 410-0.410-435-460, \(230 \mathrm{~mA}, 600-570-540-0.540-570-600\) \(\vee .250 \mathrm{~mA}\). Two separate windings. \(63 / 10 / \%\)
FRACTIONAL H.P. MOTORS. \(240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}\). Brand new. Ideal models, fans, ece. 6/6 each. METROSILS
E.H.T. CONDENSORS. 7.5 kV . working. 0.1 mfd, E.H.T. CONDENSORS. 7.5 kV . working. 0.1 mid
\(5 / 6\) each: 0.25 mfd \(8 / 6\) each. BELLING \& LEE 10 pin plug/socket, \(3 / 6\) each.
Post paid over \(10 /-\) CALLERS WELCOME
CHILTMEAD LTD.
22, Sun Street, Reading, Berks.
Tel. No. Reading 65916 ( 9 a.m, to \(10 \mathrm{p.m}\).)

Brand pew fully tranmistorised and fuliy portable Communications Receiver. Bpecifications: 4 complete ranges \(350 \mathrm{~K} / \mathrm{ca}\). to \(30 \mathrm{M} / \mathrm{CB}\), covering all amateur bands, ohipping and trawler bands, and broadeant band. A highly efficient double tuned superhet, comprising \(\mathrm{R} / \mathrm{F}\) aerial tuning section A.V.C beilt in B.P. for CW, or g8B reception. Ideal for fixed or moblle reception. With apeaker and headphone output. Hammer finished robust teel care of pleasing modern devign. gize approx \(9 \times 7 \times 6 \mathrm{mn}\). British manufacture. Due to bulk nurehasing we can offer these excellent recelvers at lesa than half thelr normal worth. Complete wilh handbook \(£ 16.10 .0\), carriage


DEPT. W.W., 24 CAWOODS YARD, MILL STREET, LEEDS, 9.

\section*{R \& R RADIO \\ 51 Burnley Road, Rawtenstall Rossendale, Lancs \\ Tel.: Rossendale 3152}

YALVES BOXED, TESTED \& GUARANTEED
\begin{tabular}{|c|c|c|c|c|c|}
\hline EBF80 & 3/- & PCC84 & 3/- & PY82 & 3/- \\
\hline EBF89 & 3/6 & PCF80 & 3/- & U191 & 4/6 \\
\hline ECC82 & 3/- & PCF82 & 3/6 & U301 & 4/6 \\
\hline ECL80 & 3/- & PCL82 & 4/- & \(6 F 23\) & 5/- \\
\hline EF80 & 1/6 & PCL83 & 4/- & 10P14 & 3/- \\
\hline EF85 & 3/- & PCL84 & 5/- & 20P5 & 3/- \\
\hline EF183 & 3/6 & PL36 & 5/- & 30F5 & 2/6 \\
\hline EFI84 & 3/6 & PL8I & 4/- & 30 LI 5 & 5/- \\
\hline EY86 & 4/- & PL83 & 4/- & 30 PI 2 & 4/6 \\
\hline EL41 & \(5 /-\) & PY33 & 5/- & 30 CIS & 5/- \\
\hline EZ40 & 4/6 & PY8I & 3/6 & 30 PL 13 & 5/6 \\
\hline EBC41 & 4/6 & PY800 & 3/6 & 30 PL 14 & 5/6 \\
\hline
\end{tabular}

\section*{WE PURCHASE}

COMPUTORS TAPE READERS AND
ANY SCIENTIFIC TEST EQUIPMENT. ANY SCIENTIFIC TEST EQUIPMENT.
PLUGS AND SOCKETS. MOTORS, TRAN. PLUGS AND SOCKETS. MOTORS, TRAN: SISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACITORS, POTENTIOTRANSFORMERS, METERS, CABLES ETC PROMPT PAYMENT \& COLLECTION TURN YOUR CAPITAL INTO CASH

ELECTRONIC BROKERS LIMITED
8, BROADFIELDS AVENUE, EDGWARE MIDDLESEX.
TEL. \(01-9589842\)

\section*{WORLD RADIO \& T.V. HANDBOOK \\ 1969 ED. JOHANSEN \\ P \& \(P, 1 / 3\)}

For orders received before January 15 the price will be \(35 /-\) P. \& P. I/3.
Radio Communications Handbook by R.S.G.B. 63/-. P. \& P. 4/6.

Transistor Substitution Handbook. New
8th ed. \(16 /\). P. \& P. 1/3.
Colour TV. PAL System by Mullard. 12/6. P. \& P. 1/3.
Amateur Radio Techniques by R.S.G.B. 12/6. P. \& P. 1/3.
Modern Dictionary of Electronics by Graf. New ed. 70/.. P. \& P. 4/6
Electronic Musical Instrument Manual New ed. by Douglas. 55/-. P. \& P. 2/
Silicon Controlled Rectifiers by Lytel 21/-. P. \& P. 1/3.
F.E.T. Circuits by Turner. 25/-. P. \& P. 1/3

\section*{UNIVERSAL BOOK CO. \\ 12 LITTLE NEWPORT ST., LONDON, W.C. 2} (beicester Square Tube Station)

SLYDLOK FUSES \(15 \mathrm{amp} ., 1 / 6 \mathrm{ea}\). , \(15 /\) - per doz. HEADPHONES. Carbon H/Mics., 5/- ea. P. \& P 2/6. DLR5 Bal. Armature, 9/6. P. \& P. 2/6. M/Coi with ear muffs and wired M/C mic., 12 6. P. \& P 2/6. No. 10 Assembly \(\mathrm{M} / \mathrm{Coil}\) with \(\mathrm{M} / \mathrm{Coil}\) Mic. 12/6. P. \& P. 2/6.
TRUVOX LOUDSPEAKERS. Re-entrant type ideal for public address, enclosed in waterproo wooden case, complete with steel baffle designed to produce directional reproduction at 5 watts. \(7.5 \Omega\)
sMALI MOTORS with bears attached, \(10 /-\) ea.; with blower attach ment, \(10 /=\) ea.; with fan assembly, \(10 /-\) ea.; each item post \(2 / 6\).
TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valves except 832s and Relay, 211-ea. Carr. 4

SIEMENS HIGH SPEED RELAYS. H96B type \(50+50\) ohms. 6/- ea.; Type H69D, \(500+500\) ohms,
\(\mathrm{S} /-\mathrm{ea} \cdot\); Type \(/ \mathrm{H} 96 \mathrm{E}, 1,700+1,700 \mathrm{ohms}, 5 /-\) ea.
"TELE L" TYPE FIELD TELEPHONES. Thes relephones are fitted in strong steel case compler new condition and cested \(50 /\) per pr. Carr \(7 / 6\)

POST OFFICE TYPE RELAYS. 3,000 sers c/o slugged conl only; \(2 \mathrm{c} / \mathrm{o}\), slugged coil 500

MORSE KEYS. No. 8 assembly complete with leads, terminals and cover, 6/6 ea. Carr. 2/-.
VIBRATORS. 12 v. 4 pin, 12 v. Plessey Type 12SR7. Syn. \(7 / 6\) ea. Carr. 1/-
Electro magnetic COUNTERS. Register up to 9999 , coil res. \(300 \Omega\).

MODULATION TRANSFORMERS. 150 watts suitable for pair 813s, driving 313s. Size 6in. \(\not\). \(\times 3\) inin. Brand new, baxed. Price 27/6. Carr. 4/6 LIGHTWEIGHT HEADSET (part of "88" w Set Equipt.) complete with Boom mic., carbon made ot highest Munstry Spec. Moving coll earpieces weight hand set, 10/- ea. Carr. 2/-.
200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, 99 ea. Carr. 10/6.
Gencrators. Type 02. 3,000 watts, 30 v. D.C
Rotary Convertors. Type 8. D.C. Input 24 v. Rotary Convertors. Type 8 . D.C. Input 24 V .
A.C. Output \(115 \mathrm{v} 400 \mathrm{c} / \mathrm{s},\).3 phase, 1.8 mmps \({ }^{5} 5\) ea. Carr. 10/:
Invertors. Type 201A (5UB6300), D.C. 25/28 v r.p.m. 8,000, A.C. \(115 \mathrm{v} .1600 \mathrm{c} / \mathrm{s}\), single phase £10 a. Carr. inc.

All 12 , VIBRATOR POWER PACK.
P.C.R. 12 v. VIBRATOR POWER PACKS CONDENSERS. . 1 mfd. 1,500 v. Sprague paper 9d ea, \(7 / 6 \mathrm{doz}\)
HEAVY DUTY TERMINALS. Ex-equipt. Black only, will take spade terminals and wander plug 1/6 pr., 15/- doz. pairs. P. \& P. 1/6 ea. doz.
FATIGUE METERS. 24 v. D.C. Consisting of \(6 \times 469 \mathrm{D}\) Relays. \(500 \times 500 \Omega\). \(6 \times 300 \Omega\) Electro Mag. counters, etc. \(\mathbf{£ 3 / 1 0 / - ~ e a . ~ C a r r . ~ 4 / 6 . ~}\)
AMERICAN AUTOPULSE 24 v. PUMPS for mounting between carb, and main fuel tanks as
auxiliary pump. New- \(\mathbf{3 0} /-\) ea. P. \& P. \(5 /-7 \mathrm{~g} . \mathrm{p} . \mathrm{h}\) Size \(7 \ln \times 2\) in. \(\times 2 \frac{1}{2}\) in.
Telephone Hand Generators. No, 26 A.N In wooden case. \(7 / 6\) ea. P. \& P. 4/6.
Air Spaced Condensers. American, top quality large. 60 p.f. Only \(10 /-\) ea. P. \& P. \(1 / 6\).
W/S REMOTE CONTROL UNIT "E," Mk. As supplied with " 19 " W.S. £1. P. \& P. 7/6. W.S. 19 VARIOMETERS. \(17 / 6\). P. \& P. 4/6 S.T.C. MINIATURE SEALED RELAYS, TYPE 4184 G D, \(700 \Omega 24 \mathrm{v}\). (will work efficiently on 12 v . D.C.) (ex-equipment). 2 C/overs, 7/6. P. \& P. 1 6 or more post paid
SMALL D.C. MOTORS. \(2 \mathrm{in} \times 1 \mathrm{in} . \times 1 \frac{\mathrm{in}}{}\) Rated 24 v ., will work on 12 v . Iin. length drive shaft. Ideal for model makers, etc. 10/6 ea.
CONDENSERS. 8 mfd .600 v. Brand Ncu Cornell Dubilier Paper Condensers, 4 in \(\times 31 \mathrm{in}\). \(\times\) 1 in. with fixing clips. \(7 / 6 \mathrm{ea}\). P. \& P. 2/-


Te1. BIRKENHEAD 6067
Terms Cash with Order.

\section*{OLSON \\ DISTRIBUTION PANELS}


Complete with fixing brackets and 4 plastic feet, \(6 f t\). cable 13A. plug and spare fuse



WW-130 FOR FURTHER DETALLS
DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER


BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2
Tel: 01-930.3070
WW-131 FOR FURTHER DETAILS

\section*{ADJUSTABLE HOLE E WASHER CUTTERS}

\section*{The right} tool for trepanning holes I"-12 \(\frac{1}{2}^{\prime \prime}\) in diameter

In our range of 17


Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank.

All models ayoilable from stock
AKURATE ENGINEERING CO. LTD.
Cross Lane, Hornsey, London, N. 8
TEL. 01-348 2670
WW-132 FOR FURTHER DETAILS

> NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAMM IOgic modules. CONTIL and BRIGHTLIFE produces are all ex-scock. For details see December and February I969 issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED, 30 HIGH STREET, NORTHWOOD, MIDDX. Telephone: Northwood 24941

WW-133 FOR FURTHER DETAILS
\(7 / 0076\) R.F. Cable Black Sheathed Bicc ref T3171 and equivalent. 100 yard coils @ 30/each including postage and packing. Price for larger quantities on application. TRANSFORMER LAMINATIONS Enormous range in Radiometal. Mumetal and H.CR., also "C" \& "E" cores. Case and Frame assemblies.
UNISTORS large quantities available \(£ 12\) per 1.000 types \(03 / 2\). Q3/5 and \(08 / 5\). Full details and samples on request.

\section*{J. Black}

44, GREEN LANE, HENDON, N.W.4. Tel:-01-203 1855
\(\longrightarrow\)

\section*{Grampian
SOUND EQUIPMENT}

\section*{GRAMPIAN REPRODUCERS LTD} Hanworth Trading Estato, Feltham, Middlesex

WW—135 FOR FURTHER DETAILS


THE QUARTZ CRYSTAL CO. LTD.
New Malden. Surrey \(\quad(01-9420334 \& 2988)\) WW-136 FOR FURTHER DETAILS

\section*{hich closs metallic}

HAMMERED ENAMEL
MAKES FANTASTIC DIFFERENCE TO PANELS
- aas hundreda of enthusiastle users.

Crackle' pattern appears Hke mastc. on wood and metal. No undercoat. Air dries 15 MIN, to hard, glones Green; Black; Lt. \& Dk. Blue. Send for details or send \(1 / 9\) ( + 9d. pontpk"g.) for
FINNIGAN SPECIALITY,
PAINTS, Dept. W.,
STOCKSFIELD. Tei. 2280 STOCKSFIELD. Tel.
Northumberland.

WW-137 FOR FURTHER DETAILS

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:
- RADIO/TV ENG. \& SERVICING

AUDIO FREQUENCY
CLOSED CIRCUIT TV
ELECTRONICS-many new courses
ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND

SERVOMECHANISMS
COMPUTERS
- PRACTICAL RADIO (with kits) PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:


WW-142 FOR FURTHER DETAILS

PRINTED CIRCUITS
LARGE AND SMALL QUANTITIES.
FULL DESIGN AND PROTOTYPE ASSEMBLY SERVICE ALSO AVAILABLE
K. J. BENTLEY \& PARTNERS,

18, GREENACRESROAD,
Tel. 061.6240939 LANCS
Tel. 061 -624 0939

\section*{FOR YOUR}

SYNCHRO \& SERVO REQUIREMENTS!
SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST., ORPINGTON.KENT. Tel: 31066,33976 Also at CROYDON. Tel: 01.6881512 and LYDD, KENT. Tel: LYDD 252

\section*{AMERICAN}
test and communications equipment * General Catalogue an/103 \(1 /-\star\) manuals offered for most U.S. equipments

\section*{SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289}

\section*{LONOON CENTRAL idadio stocte}

MODERN DESK PBONES, red, green, blue or topaz, 2 tone
grey or black. th internal bell und handeet wha \(0-1\) dia. grey or black. with
£4/10/-. P.P. \(7 / 6\).
E4/101-. P.P. \(7 / 6\).
10-WAY PRESS-EUTTON IMTER-COM TELEPHONES in BakeUite case with junethon box han
Guaranteed. \(£ 6 / 10 /\) per unit.
20-WAY PRESS-EUTTON INTER-COM TELEPHONES in Bakelite "ase with junetion box. Thoroughly overhathed./ Guaram Leed. \(£ 7 / 15 /-\) per Unit.
TELEPHONE COILED HAND SET LEADS, 3 core. 5/6. P.P. 1/ELECTRICITY SLOT METER (I/ - in nlot) for A.C. maina. Fixed \(10 \mathrm{~A} .80 \%, 15 \mathrm{~A} .90 /-, 20 \mathrm{~A} .100 / \cdot\) P.P. \(7 / 6\). Other amperages available. Reconditioned as new. 2 years' guarantee QUARTERLY ELECTRIC CHECK METERS. Reconditioned as new, 2000/250 v . 10 A. \(42 / 6 ; 15 \mathrm{~A} .52 / 8 ; 20 \mathrm{~A}, 57 / \mathrm{B}\). Othar amperages avallabie. 8-BANK UNISELECTOR SWITCHES. 25 contacta, alternate wiping \(\varepsilon 2 / 15 /-:{ }^{3}\) bank hal
25 contact \(47 / 6\). P. \(\mathrm{B}^{\prime}\) 3/B.
WIRELESS SET No. 38 A.F.V. Freq. range 7.3 to \(9.0 \mathrm{Mc} / \mathrm{s}\). Work-
 Includen power nupply 816 .-and pare valves and vibrator alio FiNAL END SElectors. Relaya, various callere, also 18 liecelvers in atock. All sor callera only.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

\section*{VACUUM}

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECOROERS, PYROMETERS, OVENS,

> R. F. HEATERS. FREE CATALOGUE.
V. N. BARRETT \& CO. LTD. 286A Lower Addiscombe Road, Croydon.
CRO7DH. Tel: 01.6546470 , \(01-6543972\).

WW-143 FOR FURTHER DETAILS

\section*{FET SATELLITE BAND CONVERTERS}
\(136-138 \mathrm{MHz}\). IFs. \(20-22,28-30 \mathrm{MHz}\). post and packing 3/9 \(£ 16\)
Send S.A.E. for illustrated brochure of converters and preamplifiers \(25-600 \mathrm{MHz}\).

JXK CONVERTERS
Peel House, Porters Lane, Ospringe, Faversham, Kent.


\section*{PRINTED CIRCUITS}

Small quantities are not expensive, wo have
full artwork and assembly facilities.
Let us quote you for any quantity.
OFRECT ELECTRONIC SYSTEMS LTD. Hookstone Park. Harrogate Harrogate 85258

\section*{CONNECTORS}
most manufacturers' surplus STOCKS ARE SOLD TO
UNITED ELECTRONICS
We pay the highest prices Contact
Mr. Astor or Mr. Kahn
UNITED ELECTRONICS LTD
12/14 Whitrield St., London, W. 1 Tel: 01-580 4532, 01 -580 1116 01.5805151 . Telex: 27931

BAILEY 30W AMPLIFIER
All parts are now avaitable for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also smaller at 4 in. by 2\(\}\) in. Price in SRBP material \(11 / 6 d\). In Fibreglass 14 . Fibreglass \(16 /\). This does not have componen 12/-. Fibreglass 16/-. This does not have component locations marked

BAILEY 20W AMPLIFIER.
All parts in stock for this Amplifier including specially designed Princed Circuit Boards for pre-3mp and power amp. Malns Transformer for mono or sterco with bifilar wound secondary and special 218 V primary for use with CZ6 Thermistor, \(35 / 6 \mathrm{~d}\)., post Si-.
Trifilar wound Driver Transformer, 22/6d., post 1/-. Miniature Choke for ereble filver, \(7 / 6 \mathrm{~d} .\), , poss 6 d . P.C. Board Pre-Amp 15/\%., post 9d. Power Amp. 12/6d., pose 9 d .
Reprint of " Wireless World " articles, 5/6d, posef́ree

DINSDALE IOW AMPLIFIER.
All parts still available for this design including our new power amp. P.C. Board with power eransistors and heat sinks mounted directly to P.C. All parts for stereo cost approximately \(\mathbf{E 2 4}\)
Reprint of articles \(5 / 6 d\)., post free.

\section*{HART ELECTRONICS,}

32I Great Western St., Manchester 14 The firm for "quality".

Personal callers welcome, but please note we are closed all day Saturday.

\section*{OSMABET LTD.}

WE MAKE TRANSFORMERS AMONGBT OTHER THINGS AUTO TRANSFORMERS. \(0 \cdot 110 \cdot 200 \cdot 220 \cdot 240 \mathrm{r}\). n.c. up or down,

 (1) \(1: 1\) ratio. \(100 \mathrm{w} .80 /-:-200 \mathrm{w} .130 /-\mathrm{i} ~ 500 \mathrm{w} .290 / \mathrm{-}\) -



 INSTRUMENT TRANSFORMER. Primn 200/250 . . a.e., OMT/4,





MIDGET MAINS TRANSFORMER. F.W. rectincation, malze

COLOUR TELEVISION WW: ng apecilied, choke IL1, 60/-
transformer T1, \(57 / 6\). Field Output Transformer \(60 /=\) transformer T1, 5\%/6. Field Output Trannformer 60/\% stureo UL. 501 - OPSECI 66 . stereo iran. 21/-: 0 P3, \(301-\)

CHOKES. Inductance \(10 \mathrm{H}, 65 \mathrm{Ma}\). 10/-; 85 Mas 12/8; 150 Ita 21-: thyink leats damp cunatruction
Carrage extra all tramsormers from \(3 / 6 d\), each
TRANSFORMERS WOUND TO YOUR SPECIFICATION
BATTERY ELIMINATORS. PP9, 200/250 v. ace. 9 v . d.c. 150 Ya 45--
FLUORESCENT LT LIGHTING. Input. 6, 12, 24 v. d.c., Tange BLK TAPE ERASER A00 30
BULK TAPE ERASER. \(200 / 250 \mathrm{v}\). a.co, Buitable any size apool,
LOUDSPEAKERS. Sew stock, fanount make, 3 or 15 ohms, LOUDSPEAKERS. Ex equipment, periect. Elac, Goodmans,
Plessey, etc., \(\%\) ohms, only, \(5 \mathrm{in} .7 / 6: 0\) in. \(10 / 4 ; 7 \times 4\) in., \(7 / 6\);
 TEST METERS. Wide variety, all reduced, brand now TEST METE
8.A.E. all enquiries ulease

46 KENILWORTH ROAD, EDGWARE MIDDLESEX Tel: 01.9589314


\section*{valuable books for the radio and electronic engineer!}

\title{
Generation of High Magnetic Fields
}

\author{
D. H. Parkinson, M.A., D.Phil., F.Inst.P., and B. E. Mulhall, M.A., Ph.D.
}

A comprehensive study of the subject covering the whole range of the techniques which may be employed and also the whole range of possible fields up to the extreme limits.
160 pp. 81 illustrations. 80 s . net. 81 s . 6 d . by post.

\section*{Transistor Bias Tables}

\author{
Vol. II: Silicon. E. Wolfendale, B.Sc.(Eng.), F.I.E.E.
}

This collection of accurately computed tables has been compiled to assist anyone wishing to design or build a transistor amplifier. The tables are on similar lines to the author's previous transistor bias tables for germanium transistors but a more sophisticated computer programme has been written which enables a greater degree of opti= misation to be built into the compilation of the tables. This should enable the tables to be used directly to provide the values of the three resistors required for the conventional blas circuit for silicon transistor.
82 pp. 25s. net. 26 s . 6d. by post.

\title{
Electronics and Instrumentation
}

\author{
Robert L. Ramey
}

Provides a sound groundwork for understanding the basis of existing instruments and their applications; also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.
55s. net. By post 58 s . 321 pp. 128 illustrations.

\section*{ILIFFE BOOKS LTD.}

\section*{DAMAGED METER?}

Have it repaired by Glaser Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of NCTRUMENT Voltmeters, Ammeters, MicroINSTRUMENT ammeters, Mulirange Test Recording Instruments, Leak REPAIRS Detectors, Temp. Controhers, al types Bridge
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in we are the leadiag Electrical Instrument Reparrers ia he industry. For prompt estimate and speedy or write to Dept. W.W.:-
L. GLASER \& CO. LTD.

1-3 Berry Street, London, E.C. 1 Tel.: Clerkenwell 5481-2
SURPLUS HANDBOOKS
19 set Circuit and Noten H.R.O. Technical Inatruction 38 sel Technical Inatructions 88 set Technical Instructions BC. 221 Ctrcuit and Notea Wa vemeter Clase D Tech. Inst 18 set Clrcuit and Noten
BC. 1000 ( 31 set) Carcuit CR. 100/B. 28 Clrcutt its sind Note R. 107 Circult and Notes AR.88D Lastruction Mant 18/-p/p \(8 d\).
\(6 / 8 \mathrm{p} / \mathrm{p}\) 万d. R.F. 24, 25 and 26. A.1134 free. R.1116/A, R.1224/A, R.1335, C. 348 J . BC. 348 (E.M.P.), BC.624, 22 set. Reastor Colour and Recelver ctrcults \(7 / 6\) pont free.
B.A.E, Iticator \(2 / 6, \mathrm{p} / \mathrm{p}\) bd.
8.A.E, with all enquiries mirase.
Poatage rates apply to U.K. only.
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WW-146 FOR FURTHER DETAILS

BAKER I2in. DE-LUXE MKII LOUDSPEAKER
Suitable for any Hi-Fi System. Suitable for any Hi-Fi System.
Provides truly rich sound
recreating the musical spectrum recreating the musical spectrum Lirtually flat from \(25-16,000 \mathrm{cps}\). "Ferroba" ceramic magnet. Flux density 14,000 gauss. Bass resonance \(32-38 \mathrm{cps}\). 15 watts British rating. Voice coils available 3 or 8 or 15 ohms
Price \(\mathbf{E 9}^{9}\) Post Free


\section*{MINETTE} AMPLIFIER For Hi-Fi Record Players. For Mi-Fi Record Players
 Chassis size ECL82, Ez80. Two high. Valves
stagative Quality output 3 ohm matching. Bargain offer complete with engraved control panel, valves, knobs, 796 volume and tone controls, wired and tested. Post 5/6 \(7 / 6\)

\section*{TRANSISTOR} AMPLIFIER HI-GAIN
Many uses, Intercoms, Baby Alarms, Guitar Practice, Telephone or Record Player Ampllier. 10 mV . input. ONE WATT OUTPUT. Wooden cabinet \(12 \times 9 \times 4 \mathrm{in}\). Four transistors, fitted \(7 \times 4 \mathrm{in}\). speaker. Yolume control. Jack
 socket. Uses PPY battery.

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
\[
\begin{array}{ll}
200 / 250 \text { A.C. } & 35 /=\begin{array}{c}
\text { Post } \\
\text { Leaflet S.A.E. }
\end{array}
\end{array}
\]

EXTENSION SPEAKER
Black plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains radio, tape recorder,
Slize: \(7 \mathrm{tin}, \times 5 \mathrm{tin} . \times 3 \mathrm{in}, 30 /=\begin{aligned} & \text { Pos } \\ & 2 / 6\end{aligned}\)
 radio component specialists 337 WHITEHDASE RD., CROYDON. TEl.: OI-684 1665

R, C \& L BOXES


CAPACITY 15 pf to \(111 \mu \mathrm{~F}\)
RESISTANCE \(0.1 \Omega\) to \(100 \mathrm{~K} \Omega\) INDUCTANCE 1 mH to 10 H VOLTAGE DIVIDERS and
WHEATSTONE BRIDGES
LIONMOUNT \& CO. LTD. bellevueroad, NEW SOUTHGATE,

LONDON N.II, ENGLAND Tel: Enterprise 7047
WW-147 FOR FURTHER DETAILS

\section*{GODLEYS}

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Agents for Ampex, Akzi, Ferrograph, Tandberg, Bryan, Brenell, B. \& O, Vortexion, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Whariedale. Garrard, Goldring, Dual, Decca. Record Housing, Fitrobe, G.K.D., ete.
Any combination of leading amplifiers and speakers demonstrated without the slighsest obligation

\title{
CLASSIFIED ADVERTISEMENTS
} Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: T/- PER LINE. Average seven words per line.
Name and address to be included in charge if used in advertisement.

NAME

ADDRESS

Box No. Allow two words plus \(1 /\).
- Charges etc., payable to " Wireless World" and crossed " \& Co."

Press Day 8 January for February 1969 issue.


\title{
AUDAC V.H.F Simultaneous Translation Systems
}

We continue to complete export contracts for the supply of simultaneous translation systems to overseas governments.
Based on the combinatlon of the famous Audac Radlomicrophone Systems. combined with a new range of R.F. Inductive Loop equipment, Audac Systems now offer considerable advantages over fixed installations
The use of Audac equipment for this purpose demonstrates another example of the varied applications our Radiomicrophone Systems are fulfilling around the World.

AUDAC the most versatile Radio Microphones in the world
aUdac marketing company limited / carey road / wareham / dorset TELEPHONE WAREHAM 2245.


Integrated Ratio Microphone Cordles SHURE Unisphere Mire phone System, eliminates background nolse Operates in

ITansmitm Pack TVT Sue: \(2 \mathrm{H}^{\prime \prime} \times 1 \mathrm{ld}^{\prime \prime} \times 1 \mathrm{~h}^{\prime \prime}\)
\(189 \mathrm{~mm} \times 43 \mathrm{~mm} \times 31 \mathrm{~mm}\) A separate pockef trans. mitter unit of minimum size and welght. For use with


Portable Receiver Unit RXS Sice: \(4^{\prime \prime} \times 1 \mathrm{f}^{\prime \prime} \times 6^{n}\) \(102 \mathrm{~mm} \times 26 \mathrm{~mm} \times 127 \mathrm{~mm}\)
Nertow or wide band oderation Nortow or wide band operation.
Firted into leather carning case Telescopit or strap aerial.

\section*{WW-148 FOR FURTHER DETAILS}

\section*{INDEX TD ADVEIRTISERS \\ Appointments Vacant Advertisements appear on pages 105-118}



For increased efficiency, find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
* 3 DAY REPAIR SERVICE \(\star\) INTERCHANGEABLE BITS —STOCK ITEMS \(\star\) SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.

ADCOLA TOOLS have been designed in co-operation with industry and developed to serve a wide range of applications. There is an ADCOLA tool to meet your specific requirement. Find out more about our extensive range of efficient robust soldering equipment.

ADCOLA PRODUCTS LTD
Adcola House. Gauden Road London. SW4 Tel: 01-622 0291/3 Grams: Soljoint, London. SW4


\title{
TO MANUFACTURERS OF SOLDERED JOINTS
}


Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering Complies with B.S. 219, 441, DTD 599A. B.S.3252, U.S. Spec. QQ-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is \(215^{\circ} \mathrm{C}-419^{\circ} \mathrm{F}\) Ministry approved under ref. DTD/900/4535

Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications

STANDARD GAUGESIN WHICH MOSTALLOYS are made and lengths per lb. in feet.
\begin{tabular}{|c|c|c|c|c|}
\hline S.W.G. & INS. & M.M. & FT. P
\(60 / 40\) & \[
\begin{aligned}
& \text { R LB. } \\
& \text { SAVBIT }
\end{aligned}
\] \\
\hline 10 & . 128 & 3.251 & 25.6 & 24 \\
\hline 12 & . 104 & 2.642 & 38.8 & 36 \\
\hline 14 & . 080 & 2.032 & 65.7 & 60.8 \\
\hline 16 & . 064 & 1.626 & 102 & 96.2 \\
\hline 18 & . 048 & 1.219 & 182 & 170 \\
\hline 19 & . 040 & 9.016 & 262 & 244 \\
\hline 20 & . 036 & . 914 & 324 & 307 \\
\hline 22 & . 028 & 711 & 536 & 508 \\
\hline 24 & . 022 & . 558 & 865 & 856 \\
\hline 26 & . 018 & . 46 & 1292 & 1279 \\
\hline 28 & . 014 & . 375 & 1911 & 1892 \\
\hline 30 & . 012 & . 314 & 2730 & 2695 \\
\hline 32 & . 010 & . 274 & 3585 & 3552 \\
\hline 34 & . 009 & . 233 & 4950 & 4895 \\
\hline
\end{tabular}

STANDARD alloys include
LIoUidus
\begin{tabular}{c|c|c|c} 
& \multicolumn{3}{|c}{ LIQUIDUS } \\
TIN/LEAD & B.S. & \multicolumn{2}{|c}{\begin{tabular}{c} 
MELTING TEMP \\
\({ }^{\circ}\) C.
\end{tabular}} \\
& GRADE \\
60/40 & K & 188 & 370 \\
Savbit NO 1 & - & 215 & 419 \\
\(50 / 50\) & F & 212 & 414 \\
\(45 / 55\) & R & 224 & 435 \\
\(40 / 60\) & G & 234 & 453 \\
\(30 / 70\) & J & 255 & 491 \\
\(20 / 80\) & \(V\) & 275 & 527 \\
& & &
\end{tabular}

HIGH AND LOW MELTING POINT ALLOYS
\begin{tabular}{|c|c|c|c|}
\hline ALLOY & DESCRIPTION & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MELTING TEMP. } \\
& { }^{\circ} \mathrm{C} \text {. }{ }^{\circ} \mathrm{F} .
\end{aligned}
\]} \\
\hline T.L.C. & Tin/Lead/Cadmium with very low melting point & 145 & 293 \\
\hline L.M.P. & Contains 2\% Silver for soldering silver coated surfaces & 179 & 354 \\
\hline P.T. & Made from Pure Tin for use when a lead free solder is essential & 232 & 450 \\
\hline H.M.P & High melting point solder to B.S. Grade 5 S & \[
\begin{aligned}
& 296 \text { - } \\
& 301
\end{aligned}
\] & \[
\begin{aligned}
& 565 \\
& 574
\end{aligned}
\] \\
\hline
\end{tabular}


EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.

EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.
The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be
released under AID authority and conforms with USA QQ-S-571d

\section*{ADVANTAGES OF EXTRUSOL}
1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF manUFACTURE UNTIL IT IS USED


A section of a typical casi solder bar. Note the surface dross and general contamination.

A section of an EXTRUSOL bar with the plastic coating removed show ing no dross or contamination.

EXTRUSOL is supplied in \(1-\mathrm{Ib}\) and \(2-\mathrm{lb}\). Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

\section*{Ask for full details on} solders, fluxes, soldering chemicals, on your company's notepaper.

MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD HERTS. PHONE HEMEL HEMPSTEAD, 3636. TELEX 82363```


[^0]:    TO: B.H. Morris \& Co., (Radio) Ltd.
    Send me information on TRIO COMMUNICATION
    RECEIVERS \& name of nearest TRIO retailer.
    NAME:
    ADDRESS:

