PORTABLE FREQUENGY STANDARD

 re

ELECTRONICS

 TELEVISION
RELAYS ex stock in 7 days

*C.S.a. approved in canada and grieat britain

KEYSWITCH

RELAYS
KEYSWITCH RELAYS LIMITED
120/132 Cricklewood Lane • London. NW2. Tel: 01-4523344 Telex: 262754

Editor-in-chief
W. T. COCKING, F.I.E.E

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALI

Editorial Assistant
B. S. CRANK

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL
 (Manager)

J. R. EYTON-JONES
lliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H . Mansell
Dorset House, Stamford Street, London, S.E. 1

Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address.
(c) Ilifie Technical Publications Ltd., 1968. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

ELECTRONICS TELEVISION, RADIO, AUDIO

FEBRUARY1968

665 Technical Manpower
666 Portable $1-\mathrm{MHz}$ Frequency Standard
672 Distortions Inherent in P.W.M.
by L. Nelson-jones

677 Log-Periodic Television Aerial
678 Transistor Rationalization
by T.D. Towers
668 European Space Research
684 GaAs Miniature Radar
685 Acousto-electric V.H.F. Transmitter
693 Emitter-coupled Emitter-timed Multivibrators-2
by G. B. Clayton
696 The Simple Transistor Equivalent Circuit and the Impedance Transforming Node
by R. V. Leedham
by G. W. Short
by R. S. Roberts
by D. J. Grover
by D. Wilkinson
by T. Palmer

SHORT ITEMS

671 Further Notes on "V.H.F. Signal Generator"
692 Computer-aided Circuit Construction
692 Monolithic F.M. Discriminator
692 Picosecond Pulses Observed in Q-switched Lasers
707 Advice on Materials Technology

REGULAR FEATURES

665	Editorial Comment	698	World of Amateur Radio
683	Books Received	700	H.F. Predictions
686	World of Wireless	706	Literature Received
688	Personalities	707	News from Industry
690	Letters to the Editor	710	New Products
692	Technical Notebook	718	February Meetings

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines), Telegrams/Telex Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriprions: Home; $£ 265 \mathrm{Od}$. Overseas: $£ 215 \mathrm{Od}$. Cunada and U.S.A. $\$ 8.00$. Second-Class mall privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401. Lynton House, Walsall Road, 22b. Telephone: Birchflelds 4838. BRISTOL: 11 Marsh Street, 1, Telephone: Bristol 21491/2. COVENTRY:8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. 260, Deansgate, 3. Telephone: Blackfriars 4412.
East 42 nd Street, New York 10017. Telephone: 867-3900

BRIMAR offers the most comprehensive range of monitor tubes in the country, together with the widest selection of phosphors.
The tubes range in size from $5^{\prime \prime}$ to $23^{\prime \prime}$. They can be used for television camera viewfinders, studio quality monitors, data displays and closed circuit television - twenty tubes in all! They have been designed to give maximum resolution under high ambient lighting conditions.
A variety of mounting and implosion protection methods, including self protection bonded glass faces are available from BRIMAR who are Britain's leaders in implosion protection.
Common features include magnetic deflection, electrostatic focus and aluminised screens.
The phosphors. In addition to the standard type for television, a wide selection of others is available offering varying degrees of persisience and colour.

....OR A MORE PERSONALISED SERVICE!

Every BRIMAR tube is backed by a first-class technical service and assistance on any type of problem involving its use in monitors - from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal basis. Please telephone or write for full details.

Thorn-A.E.I. Radio Valves \& Tubes Ltd. 7 Soho Square, London W1. Telephone : 01-4375233

Wireless World

ELECTRONICS,
TELEVISION, RADIO, AUDIO

Technical Manpower

T1 HE present shortage of scientists and technologists in the electronics industry, and the increasing demand for them, are highlighted in a recently issued study* by the Manpower Research Unit of the Ministry of Labour. This fact is widely known, of course, and is borne out by the enticingly worded display advertisements in the technical and lay press; indeed one company has said that it can cost a year's salary in advertisements to fill one vacancy!
This manpower study was conducted among 36 firms who, between them, have on their payrolls about 70% of the industry's 370,000 or more employees. The 72 page report covers the whole occupational structure of the industry and it is significant that scientists and technologists account for 6%, and technicians 6% of the industry's employees. In the capital goods sector the two categories each account for some 11%. (These figures contradict the usually quoted ratio of four technicians to each technologist.) Moreover, although the estimated total increase in staff over the five years from 1965 to 1970 is expected to be 28% the increase in scientists and technologists in the capital goods sector is foreseen as 49%.

It is obvious therefore that the present situation is unlikely to change for some time to come unless something can be done to encourage young people of both sexes to see a future in engineering. This note was struck forcefully by Major General Sir Leonard Atkinson in his recent I.E.R.E. presidential address. He said "If we [as a nation] are to survive and prosper we must reverse the accent on classical education and turn more to science and engineering. . . . The excitement of creating new tools . . . can only be engendered by stimulating a love of mathematics and physics-not by revering Latin and Greek, which, however commendable in humanistic studies, will never create . . . a transistor. . . . I believe that the newer places of learning should concentrate on courses and degrees in engineering and technology rather than trying to emulate the pattern of degrees in general science which suited the country's needs when older universities were established." This concern is also voiced in the Manpower report which records that several companies have expressed disquiet that some of the technological universities have been developing along more academic lines and losing, or loosening, their links with industry.

Little reference is made in the Manpower report to the question of the "brain drain" but Sir Leonard aphoristically sums up the present situation in the phrase "brains are like hearts-they go where they are appreciated"!

One large organization is quoted in the Ministry's study as saying " We cannot make use of arts graduates as scientists and technologists." However, the report adds, "it seems possible that there is scope for some replacement of scientific and technological manpower by suitable arts graduates, at least in some areas that are not 'technical'", Having elected to take an arts degree, is one to be debarred from making a contribution in a technological industry? After all, the ability to think analytically is not confined to science graduates. The arts graduate would obviously not want to take an engineering degree course, but could not postgraduate reorientation or conversion courses be devised by the colleges of technology which would help to equip the arts man for an engineering post? If this were done we might well find many of the long-standing vacancies in engineering filled.

* "Manpower Studies No. 5: Electronics" H.M.S.O.

VOL 73 NO 14

FEBRUARY

Portable 1-MHz Frequency Standard

By L. NELSON-JONES, A.M.I.E.R.E.

Uses crystal oscillator phase locked to 200 kHz B.B.C. Droitwich transmission

THE increasing accuracies being demanded in the generation and measurement of radio frequencies; together with the increasing use of digital frequency measuring instruments, make a frequency standard a necessary part of most laboratories today. The degree of accuracy required will naturally depend on the work in hand, and a number of types of standard are currently employed. These range from simple crystak or tuning fork oscillators to highly stable lenticular or Essen Ring crystal oscillators with elaborate temperature control, and for the very highest accuracies atomic standards are used. In addition, a number of transmitters radiate standard frequency transmissions throughout the radio spectrum, and for a very full treatment of this subject the author would refer readers to the excellent Wireless World article by J. McA. Steele*.

The l.f. and v.l.f. transmissions are most suitable for general use as frequency standards, and of these the 200 kHz transmission of the B.B.C. Radio 2 programme from the Droitwich transmitter is in many ways the most useful, since it is a continuous transmission and is not keyed or interrupted as many other transmissions are.

It is possible to use the 200 kHz transmission direct as a standard, with sufficient amplification and successive limiters to remove the amplitude modulation. The author has seen such a specially built receiver which

[^0]

Laurence Nelson-Jones, who is 38, is now a principal engineer with the Data Equipment Division of the Plessey Automation Group at Poole, Dorset, but he has spent the major part of his career (1953-65) with Kelvin Hughes which he joined after National Service in the R.A.F. At Plessey he is working on computer peripheral equip. ment, having previously spent a short time with S.T.C. at Basildon on p.c.m. repeater design.
successfully used this method and which "piped" a standard 100 kHz signal through a group of laboratories.

An alternative for removing the modulation from the generated standard frequency is to compare the phase of the standard frequency transmission with the phase of a local oscillator and use the output of the phase comparator to control the local oscillator frequency so that it is locked to the standard transmission. The phaselock system may then have a sufficiently long response time that it does not respond to the instantaneous phase modulation caused by the amplitude modulation of the transmitted carrier, and so the local oscillator will be free from the effects of this modulation.

The type of local oscillator used is of little importance so far as long term accuracy is concerned since the oscillator is locked to the transmission, but so far as short term accuracy is concerned a crystal oscillator is much to be preferred, for the following reasons: First, because of the narrow resonance bandwidth of the crystal, it will not respond to any but the slowest changes in the frequency control circuit, and it thus assists materially in removing the effects of carrier modulation. Secondly, because of the narrow "pull-in " range of such an oscillator, quite a good frequency standard is still available even if the standard frequency transmission should fail.

The portable frequency standard described uses a 1. MHz crystal oscillator, together with a variable capacitance diode and a blocking-oscillator divider $(\div 5)$ in a phase-lock loop. A sampling technique is used rather than a phase sensitive detector. The frequency of the output is that of the crystal (1 MHz) but the output is provided by a non-saturating emitter coupled multivibrator locked to the crystal frequency. The output pulses are of 120 ns width, with fast tise and fall times. The instrument is battery operated. Fig. 1 is a block schematic showing the main functional units of the frequency standard. A complete circuit diagram is given in Fig. 2. 200 kHz receiver.-A ferrite rod aerial 8 inches long is contained in the paxolin tubc forming the handle above the unit (see photo). This handle also contains the tuning capacitors for the ferrite rod, and the trimmer is accessible through a small hole in the rear of the tube.

The coupling coil of the aerial is connected to the receiver through a coaxial cable. The ferrite rod must, of course, be mounted clear of the case in this way in
order to avoid screening from the case, and instability caused by pick-up from the internal circuitry. The aerial rod used is the type made for the "Contessa" portable receiver, with the medium wave and car coupling coils discarded. (This item together with the other tuning coils, the crystal, etc., may be obtained from Henry's Radio Ltd.) It is important to ensure that, as the tuning and the coupling coils of the ferrite rod are wound over one another, the earthy ends of the two windings are adjacent, or the losses and stray capacitances of the coils will be very serious.
The first two stages of the receiver are conventional grounded-emitter r.f. amplifiers. These stages are,
however, run at only about $600-700 \mathrm{~mA}$ of collector current, so that their gain is less than the maximum available from such a stage. This reduction of gain ensures a high margin of overall stability in the receiver, and avoids the necessity for neutralization. The $15 k!2$ damping resistors across the primary windings of both stages are required, not to damp the tuned windings themselves, but to prevent oscillation of the stages at the self-resonant frequency of the primary windings which are very loosely coupled to the main tuned winding. The damping resistors have little effect on the gain at 200 kHz .

The third stage of the receiver (Tr 3) is also of the

Fig. 1. Block schematic showing principle of operation of the frequency standord.

Fig. 2. Circuit diagram of the instrument. All resistors are $\frac{1}{4} \mathrm{~W}$ (10%, unless indicated). All tuning copacitors ond 47 pF and 680 pF of $1-\mathrm{MHz}$ oscillator and 820 pF capacitor of multivibrotor are silvered mica. $2,200 \mathrm{pF}$ of blocking ascillator is polyester. All other capacitors are ceramic. Values below 100 pF are N750, higher values are HI-K.

grounded-emitter type, but the load is a tightly coupled tuned transformer connected directly in the collector circuit.' No adjustment of the tuning is provided as the working Q of the transformer is 3 . The tolerances of the components therefore have little effect on the resonant' impedance of the transformer. The secondary of the transformier is coupled by a twisted pair to the driver stase of the sampling gate.

The transformer (Tl) is wound on a Denco iron-dust pot core assembly Type 10 D . The primary winding,

Fig. 3. Frequency divider waveform. $x=1 \mu s /$ div. $y=1 V / \mathrm{div}$.

Fig. 4. Sampling gate waveform. $x=1 \mu s / d i v . ~ y=2$ V/div.

Fig. 5. Output palse waveform. $x=0.6 \mu \mathrm{~s} / \mathrm{div} . \quad y=0.5 \mathrm{~V} / \mathrm{div}$.
(On above reproduced photos, div. $=0.5 \mathrm{~cm}$ approx.)
of 160 turns of 40 s.w.g. enamelled copper single silk covered wire, is wound with 100 turns in one of the outer slots and 60 turns in the centre slot of the bobbin. The secondary is wound with 40 turns of 34 s.w.g. enamelled copper wire in the other outer slot. These windings give a primary inductance of 1 mH . The iron dust adjusting core may be fitted if desired but, as has been said, it will have little or no effect on the gain due to the low working Q .
$1 \mathbf{M H z}$ crystal oscillator. - The circuit operates at the fundamental parallel resonance of the crystal, which is an S.T.C. Type 4044 (AT cut). An adjustable capacitor is included in series with the crystal so that the oscillation frequency may be pulled to exactly 1 MHz . The variable capacitance diode D1 is also connected at this point. The variable capacitance is mounted on the front panel so that the phase-lock may be adjusted.
A number of diode types were tried as reverse biased variable capacitance devices, since no diode specially selected for this purpose was available at the time. Standard diode types range in effective capacitance from the $200-500 \mathrm{pF}$ of the 400 mW zener diodes to only $1-4 \mathrm{pF}$ of such high speed diodes as 1 N 914 and 1 N 916 . It was found that a diode with a suitable range of capacitance for this application could be found among the smaller rectifier diodes such as OA200, OA202, 1S120 series, and 15130 series, CV7040, etc. An OA200 was used in the prototype. The electrical Q of such diodes is probably not high, but as the oscillator is fairly tightly coupled the effect of the diode being connected is negligible, nor is the amplitude greatly affected by the amount of reverse bias applied to the diode.

Blocking oscillator frequency divider.-A number of locked divider circuits were tried, but that used ${ }^{2}$ was found most suitable on a number of counts: (1) It is very stable, and is relatively unaffected by temperature and voltage variations. (2) The variable resistor is at earth potential on one side, making it easier to bring this control out. (3) The use of a blocking oscillator enables a suitable sampling pulse to be generated directly.
The divider is coupled to the crystal oscillator through a small capacitor, and the waveform at the base is available on a socket on the rear panel for adjustment purposes together with the $5 \mathrm{k} \Omega 2$ variable resistor of the divider circuit. The waveform is shown in Fig. 3, as it appears when set to the correct division ratio.

The transformer T2 is wound on a Mullard ring core Type FX1593 (obtainable from Henry's Radio Itd.) or FX308, nylon coated. If the uncoated core FX1593 is used, it should first be covered with a layer of insulation, as the abrasive nature of the ferrite quickly strips the enamel from the wire in winding. In the prototype the core was first wound toroidally with very narrow strips of paper " masking" tape.
The primary (collector) winding is of 25 turns of 34 s.w.g. enamelled copper wire and occupies about a third of the periphery of the core, wound as a single layer.
The secondary (base) winding is of 12 turns of 34 s.w.g. enamelled copper wire, also wound as a single layer adjacent to the primary.
The coupling winding to the sampling gate is of 6 turns of 34 s.w.g. enamelled copper wire, wound in a single layer in the remaining space.
In the prototype a 4 B.A. nylon screw was then passed through the centre aperture and secured in place by a nylon nut. The whole assembly, except for the remaining thread, was then dipped in cellulose enamel to lock
the wires in position. (An equally suitable coating would be obtained with one of the polyurethane varnishes.) The excess thread was then used to mount the toroidal transformer onto the chassis with a second nut.
The phasing of the windings, together with the relative position of the windings, is indicated on the circuit diagram (Fig. 2).
Sampling gate and d.c. amplifier.-The driver stage of the sampling gate (Tr4) is a conventional grounded emitter stage, with a degree of d.c. feedback since the base bias potentiometer is connected to the collector. This configuration does not result in any great degree of a.c. feedback since the source impedance is low (around 300 (?). In normal operation in the Bournemouth area, where the 200 kHz signal is none too strong, this stage is driven fully into limiting; indeed full limiting takes place in this stage over nearly the whole of the 360° of rotation of the receiving aerial. Only near the two nulls in the response is there any appreciable reduction in the signal fed to the sampling switch ($\operatorname{Tr} 5$).

At full signal the collector potential of $\operatorname{Tr} 4$ swings between -2.4 V and -7.4 V . The waveform at this point is shown in Fig. 4.

The notch in one side of the waveform is due to the loading effect of the sampling switch during the sampling period, and is typical of the waveform when phase-lock is established.

The sampling switch $\operatorname{Tr} 5$ is brought into conduction for approximately $1 \mu \mathrm{~s}$ every $5 \mu \mathrm{~s}$ by the sampling pulse generated in the blocking oscillator divider. This pulse is applied through a limiting resistor between the base and emitter of Tr5. During the sampling period, therefore, the emitter circuit of $\operatorname{Tr} 5$ is connected to the collector of Tr4. The average d.c. potential at the emitter of Tr5, after smoothing by the RC network feeding this level to Tr6, is approximately a fifth of the potential of the collector of Tr4, and will therefore vary between approximately -0.5 V and -1.5 V , depending on the relative phase of the sampling pulse and the 200 kHz signal at the collector of Tr4. The gain of the d.c. amplifier Tr6 is determined by the ratio of the collector load to the emitter resistor, and with the meter in circuit is approximately eight times. Thus the collector potential of Tr6 will vary from the "botomed" state which is just reached when the collector is at -1 V up to about -6.5 V at minimum base input.

The potential at the collector of Tr6 is applied to the reverse biased diode D1 through a $100 \mathrm{k} \Omega$ resistor to afford isolation between the d.c. amplifier and the crystal oscillator, and to minimize the loading on the crystal oscillator.

Output pulse generator ${ }^{1}$.-The output pulses are generated by a non-saturating emitter-coupled multivibrator locked to the crystal oscillator frequency through the small coupling capacitor between the emitters of Tr8 and $\operatorname{Tr} 9$. The lock-in of the stage is set by the variable emitter resistor of Tri0.

The output pulse at the collector of $\operatorname{Tr} 10$ is of approximately IV amplitude and is positive-going. An almost identical negative-going pulse is available at the collector of $\operatorname{Tr} 9$ if required. The output waveform as viewed on the author's oscilloscope (of 4.5 MHz bandwidth and 80 ns risetime) is shown in Fig. 5. The pulse has, however, been examined on an oscilloscope of 4.5 ns risetime, when the pulse was seen to be rectangular in shape. The risetime ($10-90 \%$) was 20 ns , and the falltime 30 ns . There was a slight overshoot on leading and trailing edges. Unfortunately no camera was available at the

Fig. 6. Modification to d.e. omplifier output circuit for obtai,ing higher short-term accuracy.

time to record the waveform. If this pulse is to be conveyed over any distance it should be coupled via $75-$ 80Ω coaxial cable terminated at the receiving end, or the waveform will be hopelessly mutilated, and the harmonic content greatly reduced.

An effect was observed on the wide-band oscilloscope which confirms the finding of appreciable though small harmonics in the output pulse waveform at 200 kHz intervals. It was observed that if the scope was triggered at a speed which was a multiple of $5 \mu \mathrm{~s}$ then the trace was sharp, whereas if it was triggered at another speed the pulses were very slightly blurred due to a cyclical phase modulation of the 1 MHz crystal oscillator by the blocking oscillator divider operating at 200 kHz . Something of this effect is just about visible in Fig. 5 where the base of each fifth pulse is slightly different.

In practice the effect is of little consequence, the main effect being to give harmonics in the output at 200 kHz intervals in addition to the main ones at 1 MHz intervals. If, however, the effect were felt to be undesirable it could largely be eliminated by placing a buffer stage between the crystal oscillator and the blocking oscillator divider.

The choice of a narrow pulse for the ouput was made in the interests of equality of harmonic levels at the even and odd harmonics. A blocking capacitor is included in the output lead to prevent damage to the 82Ω collector load from short circuiting of the output terminals.

Setting-up procedure.-As will be seen in the photograph on page 666, there are three controls on the front panel. An on/off switch is on the left. A meter switch adjacent to the meter permits a check of the battery voltage in the upper position and connects the meter as a phaselock indicator in the lower position. (The meter used on the prototype had a right-hand zero.) The large dot on the meter scale merely indicates a suitable setting for the pointer when setting the phase-lock, it being the average of optimum settings at minimum (7 V) and maximum battery voltage. The third, rotary, control is the variable capacitor of the crystal oscillator used to set the phase-lock.

To set up the instrument correctly the knob is slowly turned from left to right when the beat scen on the meter wilf slowly drop in frequency until at about 1 Hz the beat will cease suddenly. Further movement of the knob moves the pointer of the meter over the scale until at the limit of the phase-lock range the meter suddenly starts beating again, the frequency rising as the knob is further turned. The correct setting is achieved by turning the knob to the position where the oscillations first cease, and then further adjusting the knob until the pointer of the meter is over the centre of the scale (at the dot mentioned above). Normally if this setting is not disturbed the unit can be switched off, and then on again, when it will drop back into correct lock within about 1 second.

Accuracy.-The $0.22 \mu \mathrm{~F}$ capacitor at the collector of Tr6 provides additional smoothing of the voltage fed to variable capacitance diode D1, but it is of insufficient capacitance to eliminate any residual modulation present in the 200 kHz waveform of the collector of $\operatorname{Tr} 4$, and hence present in the voltage of the collector of Tr6. The effect of residual modulation is to cause short-term
 standard, showing 200 kHz receiver that also appears below (Fig. 8).

Fig. 8. The $200-\mathrm{kHz}$ receiver separated from the instrument.

Fig. 9. Circuit wiring in the $200 \cdot \mathrm{kHz}$ receiver.
phase modulation of the 1 MHz output and hence to reduce the short-term accuracy. Since the total pull-in range of the phase-lock loop is only about 2 Hz the effect of this residual modulation (usually less than 10% peak-peak) is only a fraction of a hertz at the 200 kHz rate, or less than one hertz at 1 MHz .

The accuracy is thus better than one part in 10^{6} over a period of one second (or about three parts in 10^{6} if the signal does not produce full limiting at the collector of $\operatorname{Tr} 4$). Over a period of 10 seconds it is one part in 10^{7}, over 100 seconds one in 10^{8}, and so on. The longterm accuracy is, of course, the accuracy of the transmitted carrier, i.e., five parts in 10^{10}, with a drift rate of less than one in 10^{16} per day ${ }^{3}$.

The size of the capacitor at the collector of Tr6 cannot be greatly increased, or it will be found that it is not possible to set the phase-lock loop up initially. However, the circuit of Fig. 6 is suggested for those applications where higher short-term accuracy is needed. The phase-lock is set up with S1 open, when the circuit is similar to that of Fig. 2. After a period of some 30 seconds, to allow for the $100 \mu \mathrm{~F}$ capacitor to charge up, S1 is closed, which may cause slight temporary disturbance of the phase lock. After a further 30 seconds or so the phase lock will be steady, and largely free from modulation effects, since the low frequency cut-off of the phase-lock loop is below the lowest modulation frequencies. Switch SI must be opened again before switching on, or the phase-lock will not re-set. The $100 \mu \mathrm{~F}$ capacitor should preferably be of a low leakage type, such as a solid dielectric tantalum or wet tantalum electrolytic. The working voltage of the capacitor should be greater than the supply voltage, which can be up to 10 V with a fresh battery. The majority of users will find that this modification is not necessary.

Power supply.-A standard 9 V dry battery has been used in the prototype, and stabilization of this supply has not been found necessary. The main effect of reduced battery voltage is loss of output pulse amplitude.

If desired it would be a simple matter to build in a mains supply circuit with stabilization (perhaps by a zener diode only). Care should be taken, however, to provide adequate suppression of the mains supply lead, both to avoid the introduction of interference to the unit and to avoid the radiation of interference from the internal circuits, especially as the harmonic content of the output pulses covers a very wide frequency spectrum.

Constructional notes.-Figs. 7, 8 and 9 show the construction used in the prototype unit. The packing density is rather high, and if the author were to make a second unit it would be of larger size and use a larger battery than the PP7 shown. Despite its small size this battery gives about 40 hours of intermittent use at the normal load current of 28 mA at 9 V , and is quite adequate for the purpose for which the standard was built, namely as a reference for the calibration of signal generators, digital frequency meters, etc.

Figs. 8 and 9 show the construction of the 200 kHz receiver, which is built in a standard Eddystone diecast box, Type 896. Screening of the receiver in this way is essential for stability. The screening cans of the coils are the cans in which the coils are supplied, as suggested in the leaflet accompanying them. The numbers on the coils in the circuit diagram are the pin numbers of the coils.

Those readers wishing to modify the circuit to allow
use of silicon n-p-n devices should find that the BC108 is suitable, but slight changes of value may be necessary, for instance a reduction in the value of the emitter resistors of transistors 1,2 and 3 to maintain the value of the collector currents of those stages. It may also be necessary to alter the values of the 56 pF capacitors in the output pulse generator stage $\operatorname{Tr} 9$ and $\operatorname{Tr} 10$ to obtain a satisfactory pulse shape. If this change is made it will be necessary to reverse the two diodes, the meter and the battery connections. In addition, if the modification of Fig. 6 is incorporated, the electrolytic must be reversed. The output pulse will be negative, but can be made positive by connecting the output capacitor to the collector of Tr9. It should be added that the author has not tried these modifications, but that since the circuit is in no way critical, he sees no reason why the change to n -p-n silicon devices should not be successful.
Layout is not critical, but leads should be kept short. In the unit shown the circuits (other than the receiver) are constructed on small aluminium plates using A.E.I.

Polytags Type PT23, which are p.t.f.e. feed-through insulators. The progression of the circuit as shown in Fig. 2 should be followed in the physical layout to avoid unnecessary stray couplings between different parts. The output pulse generator was built on a separate plate and is coupled to the output socket through a coaxial cable.

REFERENCES

1. Motorola "Switching Transistor Handbook," 2nd edition. Section 8.4, page 276.
2. Mullard Reference Manual of Transistor Circuits, 1st edition. Section 8.4, page 276.
3. The Radio \& Electronic Engineer, the journal of the Institution of Electronic and Radio Enginecrs, publishes each month a record of the daily performance of the GBR (16 kHz) MSF (60 kHz), and Droitwich (200 kHz) standard frequency transmissions. (GBR is a standard time transmission and has at present the internationally agreed offset of - 300 parts in 10^{10}. The MSF and Droitwich transmissions have no offset as referred to the basic standard caesium F m (4-0)$\mathrm{F}_{\mathrm{m}} \mathrm{m}(3-0)$ transition at zero field of $9,192,631,770.0 \mathrm{~Hz}$.)

Further Notes on "VHF Signal Generator"

By G. W. SUTton, on his article in the December 1967 issue

Attenuator piston.-Since the attenuator drawings were made available Mr. V. J. Cox has pointed out that there is no advantage, and a definite disadvantage, in making the perspex piston as much as $\frac{7}{8}$ inch in axial length. It is suggested that this dimension should be reduced to $\frac{1}{4}$ inch, thus reducing the inductance of each turn of the piston coil to about one third of its previous value. The number of turns on the coil may therefore be almost doubled for the same total coil-inductance as before. The limit to the number of turns is set by the necessity to keep the inductive reactance of the coil well below 75Ω at the highest frequency generated. As the maximum output voltage was already within the range of a valve-voltmeter there is no particular advantage in raising it by 6 dB or so, but the battery voltage can be reduced, for the same output, to 20 V or less.
Coaxial cable.-Good quality 75Ω cable should be used for the coaxial output of the piston attenuator. A cheap open-mesh braiding is now in almost universal use, but some readers may not be aware of its shortcomings.
Battery voltage.-The battery voltage suggested is above the transistor manufacturer's maximum rating. The load current, on the other hand, is only about $1 / 20$ th of the rated maximum. The author has carried out tests at considerably more than 36 V , and has used BFY18s and BSY26s in signal generators at 36 V for protracted periods during the past 18 months. At no time has any instability been detected, nor has the output varied. However, if doubt is felt at this point, or more especially, if a germanium alternative is used, the piston turns may be increased to 4 or 6 on the shorter piston mentioned above, and the battery voltage correspondingly reduced. This will still provide a maximum output voltage readable on a valve-voltmeter.

Additional output.-For some tests on television sets an r.f. voltage of 1 V or more is needed. An additional, higher voltage, output from the signal generator has been provided by incorporating a pick-up coil coupled to the r.f. oscillator coil. A strip of perspex 4 mm thick was mounted on the rear face of the oscillator coil (see photo on p. 575 December issue, and piston attenuator drawings). Four small holes were drilled laterally through the strip and 2 turns of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire were threaded through these holes, fixed in place by squeezing a little cement into each hole, and terminated on a 7502 cable socket mounted on the top of the oscillator shield. Two to three volts r.f. are induced in this coil and, provided the leads to the receiver under test are short, can be applied undiminished to a valve grid. The lid of the outer shield has to be removed, but the resulting leakage is of no significance in tests at this level.
Better shielding.-The front end of the piston attenuator projects through a circular hole in the inner shield and is connected to it by phosphor-bronze springs. Somewhat better shielding is obtained if a slot of the same dimensions as that in the end of the attenuator is cut in the inner shield instead of a circular hole. The oscillator coil mounting should then be altered to bring the flat side of the coil to within 2 mm of this slot. The springs may be omitted and the attenuator face should be brought also to within 2 mm or so of the outer surface of the inner shield. The two slots should face one another accurately.
Corrections.-In the caption to Fig. 7 the reference to graph point $4 / 7$ should read "e.g. $4 / 7$ is the beat with the 7th harmonic of No. 4 crystal. . . ."

In the last paragraph on p. 573 the thickness of the coil turn spacing washers is incorrectly given as 0.400 in . This should be 0.040 in .

A Critique of Class D Amplifiers for A.F.

3: DISTORTIONS INHERENT IN P.W.M.

By K. C. JOHNSON, m.a.

THE two previous articles have described the possibility of making power amplifiers of high efficiency using components with wide tolerances by exploiting the class D principle. It has been pointed out that amplifiers of this type may suffer from serious distortion arising from two quite distinct causes. First there is the usual sort of trouble due to the non-linearity present in all electronic systems. This causes the amplirude of the final switching square-wave to have undesirable variations, and also degrades the precise timings of the edges as they pass through the several stages of amplification. These effects are analogous to those which are familiar in the more conventional types of amplifier and to a large extent they can be overcome in the same way-by the use of negative feedback. In a class D circuit this feedback has to be taken from the output of the switching stage and is used to modify the edge-timings at the square-wave generator, but the action is essentially the same as usual.

The second distortion effect is inherent in the class D principle itself. It comes from the fact that the output of a circuit of this type is taken from the powerful squarewave source to the loudspeaker through nothing more than a simple linear filter network. This means that the edge-timings of the square-wave should ideally possess the peculiar property that all its frequency components within the band to be amplified correspond exactly with those of the required signal; whilst the components at other frequencies must be such as to make the total form a square-wave. This very particular requirement is certainly not met by the square-wave from just any circuit that gives a variation of the mark-space ratio. It is true that moderately low levels of distortion can be obtained with a simple square-wave generator circuir if the average switching rate is made substantially higher than the highest output frequency required, and the maximum range of mark-space variation is severely restricted, as was the case in the circuit described last month, but the utilization of the output transistors in such an arrangement is very poor.

Alternatively we can consider more carefully what the exact mathematical requirements are and attempt to devise a generator principle that is nearer to the idcal but yet avoids being too complicated to be practical. This article is concerned with this approach, but, as the reader may suspect from the fact that it is appearing after the amplifier design, there is not going to be any clear conclusion and it seems that any real improvements in the performance of the square-wave generator are likely to be more trouble than they are worth. There is always the hope though, that this assertion will be proved false by some new development.

In order that an amplifier of the class D type shall behave sensibly for input signals of any nature, the switching square-wave cannot be allowed to stop or change dras-
tically in any way. In particular it must run steadily with a near 50:50 mark-space ratio when there is no input applied and change progressively in a smooth manner so as to give the required output when the input is varied. Clearly this is a process of modulation. The zero-input square-wave is an unmodulated carrier which must be generated within the circuit itself, whilst the change, when an input is applied, must follow some well defined modulation law.

Most readers will be familiar with the process of modulation as applied to sinusoidal carrier waveforms in radio practice, a.m., f.m., s.s.b. and so on. In every case appropriate demodulator circuits are necessarily incorporated in the receiver and it is normally possible so to design these that the original modulating waveform can be recovered without any distortion being introduced by the modulation process. The modulation technique that we require for the class D type of amplifier, on the other hand, must work without a demodulator of any sort. Thus if a distortionless output is to be obtained the modulation law must be such as to generate precisely that square-wave which contains the correct frequency components, and no other.

Suppose that we have a carrier square-wave of repetition frequency f_{c} under our control throughout an interval of time t during which it makes some exact number, $n=t, f_{c}$ of complete cycles. There will, of course, be $2 n$ edges occurring during this time, since there are two per cycle, and in the modulation process each of these cdges may be displaced independently by any required fraction of their separation. Thus the system has $2 n-1$ degrees of freedom, since one of the edge positions must effectively be used as a reference to measure the displacements of the remainder. But it is well known that in this kind of process the only distinguishable frequency components in the modulation are those which make an exact integral number of cycles during the interval of time t (it is as if this interval were necessarily joined round on itself head-to-tail). These components have the frequencies $0,1 / t, 2 / t, 3 / t$ and so on. Now for the first of these, the d.c. term, there is an amplitude only, whilst the remainder have both amplitude and phase. Thus, provided that the amplitudes are not so excessive that the edges try to cross-over with their neighbours, we can use our $2 n-1$ degrees of freedom to determine the values of all the frequency components from 0 to $(n-1) / t$ inclusive. But this upper frequency is $f_{c}-1 / t$ and, since the argument holds good as t increases to infinity, we therefore find that we can in principle so modulate the edge-timing of a square-wave as to make it have any frequency components of reasonable amplitude that we wish in the band between zero and just less than the carrier frequency itself.

Thus there is no theoretical objection to the use of a carrier which is only just above the highest frequency
that we wish to amplify. The edge-timings of such a carrier can be modulated so as to achieve the result we are seeking. In practice, though, there will have to be a decent margin left to allow for the attenuation change of the filter, which must pass the required signal whilst suppressing not only the carrier but also the mass of complicated components that will inevitably be present above it. So far then the prospect is quite encouraging and we have established that the modulation process we are seeking does at least exist. Let us next consider what the available modulation processes can in fact do.

Since a square-wave has both upward and downward edges there can be two distinct forms of modulation applied to it. The first is, of course, mark-space modulation, where the two types of edge are displaced in opposite directions in proportion to the magnitude of an applied signal. When the input signal changes, each displacement is proportional to the input at the instant that the edge is made, rather than to the value at the time from which the edge has been displaced. The magnitude of the modulation will be best measured in this case by the ratio of the displacement to the time of a quarter-cycle of the carrier and this will be called the modulation index, x. Clearly this index has strict limits and cannot go beyond the range from plus to minus unity without trouble due to the edges trying to cross over.

The second form of modulation is obtained by displacing all the edges in the same direction, regardless of type, by an amount which is again proportional to the input signal at the instant each edge is made. This is obviously a form of phase modulation and the magnitude can be measured in terms of the phase angle of the carrier that is equivalent to the displacement. This angle will be called θ and it will normally be convenient to measure it in radians. There is in principle no limit to the value that this angle can have, but as with sine-wave modulation, the value will not normally exceed a radian or so when the mechanism is of the nature of a "phase modulation;" but can have vastly greater values when a "frequency modulation" is involved. The distinction between the two is not a rigid one but is convenient and we shall use it here in the usual way.

Now clearly it is possible to generate a square-wave which has either of these forms of modulation, or even both at the same time if required. An analogue computer type of circuit can determine when each edge ought to be formed and then some form of flip-flop can be triggered so as to produce the required square-wave. There is a slight oddity in that it is possible for a sufficiently rapid change of either kind of input to cause an edge to be first made, then reversed, and then made again within a single half-cycle of the carrier, so that a triplet results. But this is nothing to worry about because the input waveforms of practical amplifiers never change sharply enough for this effect to occur. In general these modulation processes work quite well and there is no ambiguity about the square-wave produced for given modulating waveforms.

This is not true in the reverse direction since, in contrast to a sine-wave, a square-wave carries modulation information only at the instants when edges occur rather than continuously. Thus it is not possible to say unambiguously what the modulating waveforms were from an examination of the square-wave produced, and, in particular the same resultant square-wave can be obtained from a variety of different modulating waveforms. But things are not as bad as they may seem, since the ambiguities all result from the effects of reflection of frequency components through the effective sampling frequency. They can thus be eliminated for practical purposes if we
consider modulating waveforms whose frequency components are strictly limited to values below the carrier and this limitation will be assumed for the remainder of this articie.

It is not unduly difficult then to show that the amplitude A of a square-wave made from a carrier of angular frequency $\omega_{c}=2 \pi f_{c}$ by the application of both forms of modulation at the same time can be expressed as a mathematical series as follows:

$$
\begin{aligned}
A=x & +\frac{4}{\pi} \cos \left(\frac{\pi x}{2}\right) \cos \left(\omega_{c} t-\theta\right) \\
& =\frac{4}{2 \pi} \sin \left(\frac{2 \pi x}{2}\right) \cos 2\left(\omega_{c} t-\theta\right) \\
& -\frac{4}{3 \pi} \cos \left(\frac{3 \pi x}{2}\right) \cos 3\left(\omega_{c} t-\theta\right) \\
& +\frac{4}{4 \pi} \sin \left(\frac{4 \pi x}{2}\right) \cos 4\left(\omega_{c} t-\theta\right)+\ldots \ldots \ldots
\end{aligned}
$$

It will be seen that each term in this series consists of the product of an amplitude modulating factor, which is some function of the mark-space modulation index, and a cosine, which represents a sort of harmonic of the phase modulated carrier frequency. If both x and θ have steady values then the spectrum consists simply of a series of components on the harmonic frequencies. But if x and θ are made to vary in response to some applied input waveforms then each of these harmonic components becomes surrounded by a cluster of sidebands. Since the modulation laws involved are not simple even a single incoming tone will normally make each cluster an infinite series of sidebands spaced regularly at multiples of the modulation frequency with amplitudes which tend to decrease at greater distances from the harmonic, but which never actually become zero anywhere in the frequency range. When more than one input frequency is applied there will also be further sets of sidebands spaced from each harmonic by sum and difference frequencies, so that the pattern will be vastly more complicated.

IDEAL MODULATION SYSTEM

It will be noticed that the zero harmonic, or baseband, term at the start of this mathematical series is a plain unvarnished x. Thus if the index of the mark-space ratio modulation is made to follow the input waveform directly, this term alone will provide exactly the correct frequency components that we require for the proper reproduction of the signal. Since the later terms can only contribute components at frequencies which are of the nature of sidebands of the harmonics of the carrier frequency, it is inconceivable that these could also come at the wanted signal frequencies, since the carrier frequency is not in general related to the modulation in either its phase or its frequency. Thus we find that in the ideal system that we are seeking the mark-space modulation must have this simple proportionally to the input, and our problem is reduced to that of finding what function of the input voltage we must use for making phase modulation if we are to achieve the elimination of all the sidebands that fall within the band to be amplified as a result of this amount of modulation of the mark-space ratio.

Fig. 6 shows how this cancellation of the unwanted sidebands by the application of phase modulation can occur in a very simple case. The top diagram (a) shows a half-cycle of a low-frequency sine-wave applied to the amplifier input. Diagram (b) shows the square-wave
that corresponds to this if only the mark-space modulation is applied. The next diagram (c), indicates how we can extract an amplitude modulated fundamental component sine-wave from this square-wave, since a $50: 50$ square-wave plainly has a bigger fundamental component than one of the same amplitude but different mark-space ratio. It will be noticed that this modulated sine-wave is the second term of the mathematical series given previously. Diagram (d) illustrates how the amplitude modulation of this sine wave can be represented approximately by the addition of the two most important sidebands, which are at the frequencies $f_{c}-2 f_{m}$ and $f_{c}+2 f_{m}$ where f_{m} is, of course, the modulation repetition frequency and the usual "spinning vector" method of representation is used. But if we introduce also the amount of phase modulation of the square-wave represented by the "spinning vectors" shown in diagram (e), then the two sidebands at the lower frequency will cancel whilst the important modulation is almost unaffected and no serious extra sidebands are introduced.

It is not very difficult to show from these diagrams that if the original modulating waveform is a simple sinewave of such amplitude that the index for the mark-space ratio modulation is:

$$
x=X \cos \omega_{m} t
$$

where ω_{m} is the angular modulation frequency, and X is the peak amplitude of sine-wave modulation as a fraction of the limit of the system, then the phase modulation required to eliminate the sideband at $f_{c}-2 f_{m}$ will be very close to:

$$
\theta=\left(\frac{1-\cos (\pi x) / 2}{1+\cos (\pi x) / 2}\right) \sin 2 \omega_{m} t
$$

But this phase modulation only gives approximate cancellation of one only of the sidebands for the very simple case of a single sine-wave at the input, and it is already most unpleasantly complicated. It seems hard to believe that there is not some other better approach
whereby the correct phase-modulation to eliminate all the unwanted sidebands for any modulation waveform can be derived, but the author has been unable to find it.

The problem is in many ways analogous to that of producing s.s.b. modulation of a sine-wave, and there are two respects in which the systems will certainly prove to be similar. The first of these is that the extra modulation that must be applied to give the elimination of the unwanted sidebands will be of the nature of a "phase" modulation rather than one of "frequency." Thus in an ideal system the average carrier frequency will be constant regardless of the modulation, and the phase displacements will, in fact, be limited to no more than 90° at the most. Secondly we must expect that in constructing an ideal system we shall have to use the quadrature function of the input waveform. This is a sort of half-way between the integral and the differential waveforms and is similar to them in that every frequency component is separately phase-shifted through a right-angle, but differs in that the amplitudes are left unchanged. It is well known in s.s.b. techniques that this waveform can be obtained only by the use of a filter network whose cost and complexity increases rapidly as the performance is made more accurate and maintained over a wider frequency range. To obtain an output with the phaseshift correct to within say $\pm 10^{\circ}$ throughout the audioband would require a network costing more than most amplifiers, so that our ideal system is hardly likely to be an economic one.

We must never forget that it is not really the ideal that we are seeking but merely some system which is an appreciable improvement over those already known. We have been considering the perfect solution only as a guide to indicate how such an improvement might be obtained. Let us now consider just how serious these distortion effects are in the modulation systems that have been used in published designs of amplifier.

PRACTICAL MODULATION SYSTEMS

All the practical designs of class D amplifier of which the author is aware employ one or other of two quite distinct systems for the generation of the modulated square-wave. The system ${ }^{67}$ that we shall consider first uses a freerunning multivibrator arrangement to form a regular triangular waveform which is then compared with the input in a circuit that generates a switching-edge whenever the two voltage levels cross over. The alternative system, which was described with references in the first of these articles and used in the circuit of the second, is the one where a feedback network is used to give a continuous measure of the error of the output of the switching stage and the square-wave is obtained from a flip-flop circuit that is triggered whenever the time-integral of this error reaches either end of a prescribed range. We shall call these two the "pure mark-space" and the " simple feedback" systems respectively.

As the name of the first would suggest the essential action of a circuit of this type is to generate a square-wave which is correctly modulared in its mark-space ratio but has no phase variation at all. In practice amplifiers based on this system suffer from serious distortion due to the absence of negative feedback, but if we assume that the design is so generous that we can ignore the non-linearity effects, then there wilf still be distortion due to the presence of the sidebands, since no attempt has been made to obtain their cancellation. Notice that with this system there is a well-defined limit to the modulation value that can be obtained. In the theory this is reached when the displacement of the edges is so large that they

Fig. 6. Two forms of modulation combined to eliminate sidebands.

| Frequency at which
 distortion term occurs | Pure mark-space | MODULATION SYSTEM |
| :---: | :---: | :---: | :---: |
| | $f^{\prime}{ }_{c}=1$ | |

Toble shows the percentoge magnitude of various distortion terms introduced by the modulation of square
X Peak amplitude of sine-wave modulation as a fraction of the natural limit of the system.
f_{m} Frequency of the modulation as a fraction of that of the unmodulated carrier. waves
meet and try to cross over, whilst in the actual circuit the corresponding limit is the point when the incoming voltage equals the peak value of the triangular wave. We shall as before refer to the depth of sine wave modulation by the symbol X, which is the ratio of the peak value of an applied sine-wave to this ultimate limiting value. With this system the carrier frequency is constant when modulation is applied, so that we need not worry about any change, but it will be convenient to measure the frequency of the applied modulation by the symbol f_{m}, which is the ratio of the value to that of the steady carrier.
The simple feedback system gives a more complicated action in which the amount of mark-space modulation produced is not, in fact, correct, whilst a degree of phase modulation is introduced. This is exactly right to cancel any sideband whose frequency happens to fall very close to zero, the negative feedback and integration ensure that such cancellation must be obtained, but unfortunately the phase modulation produced is incorrect at other frequencies and can even make the sidebands larger than they need have been. Again there is a well defined limit to the input voltage that can be accepted, when the error current from the feedback network falls to zero. In this form of modulator the carrier frequency does change when modulation is applied, so that we must define not only the modulation frequency, f_{m}, but also the actual carrier frequency, f_{c}^{\prime}, and we can conveniently measure both by their ratios to the unmodulated carrier. It is not difficult to show that the relationship:

$$
f_{c}^{\prime} \approx a 1-\frac{1}{2} X^{2}
$$

holds to sufficient accuracy for our purposes.
Naturally actual circuits working on either of these principles have their own peculiarities and only follow the modulation rules in an approximate manner. Nevertheless it is possible to formulate the rule which an ideal version of each circuit would follow in a purely mathematical form. From this it is possible, in principle, to calculate the exact times at which the switching-edges would be generated under any particular conditions and hence, by a process of Fourier transformation, to obtain the precise frequency spectrum of the square-wave and the magnitudes of all the sidebands.

CALCULATION OF THE DISTORTION TERMS

It seems that the actual calculation of the spectra by analytical methods, so as to obtain a generalized result, is impossibly difficult in the case of the simple feedback system, whilst it involves the Bessel Functions even in the more straightforward case of the pure mark-space system. Fortunately, though, there is an alternative
approach that holds good for any conceivable modulation process and ailows different systems to be compared very conveniently. We can use a digital computer to produce both the timings of the edges and the spectrum of frequencies that they represent, The results obtained are necessarily only approximate and apply only to specific levels of modulation, however, it is possible to extract a useful general expression by the comparison of a suffcient number of individual cases. This is the method which has been employed in the production of the results shown in the Table.

There are restrictions in this method in that the modulation waveform used at each computation must not only be a single sine-wave but must also have a frequency related in some comparatively simple way to that of the carrier. This follows from the fact that the calculation must be performed over an interval which contains an exact whole number of cycles of each of the two frequencies, and the time required will become excessive if these numbers are made unduly large. The calculations from which the results given here are taken were made with an interval of 25 carrier cycles, so that modulation frequencies at multiples of 4% of the carrier could be tested.

There is a further restriction when the action is of a type where the average square-wave frequency changes with modulation, as in the simple feedback system, since it is then only possible to make a fair test at those amplitudes which bring the carrier to a frequency which is again related to that of the unmodulated carrier in this same way. Here the allowable amplitudes were those which reduced the carrier to $96 \%, 92 \%, 88 \%$ and so on of its initial frequency. This second restriction is much less serious than it might appear as these amplitudes are, in fact, reasonably convenient and the computer was able to work out the values to adequate accuracy very quickly. So far as it was possible to tell, these restrictions on the values that could be calculated have introduced no significant errors into the results. The errors arising in the computation itself were about one part in a million of the amplitude of the main carrier component.

The technique that was used to obtain the generalized form of the results shown in the Table consisted of finding the magnitude of a particular distortion term for a variety of values of modulation amplitude and frequency. These were so chosen that levels for the distortion in the range 0.1% to 1% were obtained at frequencies that would be likely to be important in actual use. An approximate expression was then derived for the term in question as a percentage of the modulation amplitude in the form of a constant factor and appropriate powers of the peak amplitude of the modulating sine-wave, the frequency of the modulation, and the frequency of the term itself.

At levels of distortion in the region of 1% the error in assuming this simple sort of power relationship is not too serious, being perhaps $\pm 10 \%$ of the term magnitude, but these results must not be extrapolated to higher levels of distortion where more complicated formulae are needed. Remember also that these results apply only to the rather artificial situation of modulation by a single steady sine-wave, and no estimate of the numerous possible forms of cross-modulation that will arise with more complicated input waveforms has been attempted.

The systems that are being considered have the property of giving the correct components at the output when the amplitude and the frequency of the modulation are both very low. At higher levels of input distortions of various kinds are generated. Since the pure markspace system has errors only in its phase modulation, the distortion terms that it causes are just unwanted sidebands of which those at $\left(f_{c}-2 f_{m}\right),\left(f_{c}-4 f_{m}\right)$ and $\left(f_{c}-6 f_{m}\right)$ will normally be the most important. Notice that the amplitude of these sidebands is not affected by the frequency at which they are made to occur. In contrast to this the simple feedback system not only generates these sidebands, but also has distortion of the fundamental and introduces harmonics, since its mark-space action is incorrect as well. These distortions rise with the square of the modulation frequency. Notice that the sidebands in this system change their amplitude in a relatively complicated manner with frequency falling to zero when their frequency is zero, and that they are centred on the modified carrier frequency, f, so that they will come into the band at lower modulation frequencies as the input amplitude increases.

Both the systems that we are considering have the property of being balanced, meaning that the treatment of positive and negative inputs and also of the upward and downward switching edges are symmetrical. This means that only the odd harmonics of the modulation will be generated, and also that only those sidebands at frequencies ($a f^{\prime}{ }_{c} \pm b f_{m}$) where $(a+b)$ is odd will occur. Needless to say such systems are much to be preferred and unbalanced systems need not be seriously considered unless they have some quite exceptional advantage in another respect.

It will be seen from the table that there is no clear advantage in either of these systems. The freedom from harmonic generation and lower average levels of the sidebands with the pure mark-space modulation compares with the cancellation of sidebands at low frequencies when the Simple Feedback system is used. The choice in practice depends on such factors as the benefits to be obtained from the action of the negative feedback and the fact that the feedback system requires appreciably fewer components.

POSSIBILITIES FOR IMPROVED SYSTEMS

We now naturally come back to the question of whether it is possible to devise a system which would be a useful improvement over these two, since we have shown that there is no fundamental reason why a vastly better system should not be made. Clearly the principle of feedback should be retained, since it reduces the effects of imperfections in the circuit and also ensures the elimination of any sidebands that come at very low frequencies, but what other features ought we to change? One of the more hopeful possibilities is to say that it is wrong for the carrier frequency to be made to vary, and this leads to the idea of the improved feedback system.

This is similar in most respects to the simple feedback arrangement, but differs in that the triggering limits of
the flip-flop are brought closer together (in a symmetrical manner), in proportion to the quantity ($1-x^{2}$), where x is the instantaneous value of the input waveform measured as a fraction of the natural limiting value. This quantity will have to be made by some circuit of the type used in analogue computers, but remember that it is only required to obtain a refinement of the action of a system which already works comparatively well, and so it will not matter too much if the value is not precisely correct. This reduction of the triggering range has been chosen so that the carrier frequency is maintained at a substantially constant value when modulation is applied and thus the excessive sideband amplitudes should be usefully reduced. The actual amplitudes to be expected from such a system have, in fact, been computed, since there is no problem in getting a digital machine to follow such a process with high accuracy, and the results are presented in the third column of the Table.

It will be seen that the effect obtained is more or less as predicted. The amplitudes of the sidebands are indeed a substantial improvement over the values obtained with the two previous systems. The third harmonic generation, however, is considerably worse, though the reason for this increase is not at all clear particularly as the fifth harmonic appears to be much reduced. The overall impression seems to be that these improvements are not sufficient to justify the extra complexity of the circuitry and that if any real improvement is to be obtained some other type of modification to the circuit arrangement will be required to achieve it. They might, for example, be expected to include some rudimentary form of 'quadrature " generating network in addition to arrangements for keeping the carrier frequency at a constant value, since the theory suggested that both these features would be required. But the advantages of the class D system are so small already that any successful improved modulation generator would have to use almost no extra components if it were to remain economic and the chance of such an arrangement being devised seems, unfortunately, to be negligible.

REFERENCES

6. D. R. Birt, Wireless World, Feb., 1963, p. 76.
7. C. Sinclair, X10 and X20 circuits as advertised 1965.

Physics Exhibition Symbol

The Institute of Physics and the Physical Society announces the adoption of this symbol for the annual Physics Exhibition. "Based on the weight diagram for the irreducible representotion $D^{8}(1,1)$ that of the SU(3) symmetry which has been so strikingly successful in bringing order to the classification of sub-atomic particles." The exhibition takes place on 11 . 14 March at Alexandra Poloce, London. Tickets are obtainable free from the I.P.P.S., 47 Belgrave Square, London, S.W.I.

Log-periodic TV Aerial

A New look in Band III Arrays

J
JUST over ten years ago the first frequency-independent acrials were announced in America. The bandwidth of these aerials, which are basically conical or spiral, is limited only by the smallest and largest dimensions of the structure. Change of frequency merely moves the resonant region of the acrial within the structure but does not affect the impedance or radiation pattern. The advantages of the frequencyindependent aerial have been combined with those of the Yagi in the logarithmic dipole. However, unlike the Yagi, which normally has only one driven element plus a number of parasitic elements, the log-periodic consists entirely of driven dipoles the lengths and spacings of which increase progressively.

Log-perioac aerials have, of course, been used for some time for h.f. communications and telemetry purposes. The principles were discussed and details given for a u.h.f. television aerial* in our September and October 1964 issues but log acrials for television have not been available commercially in the U.K. until now, although they were introduced in North America a year or more ago.

Antiference have now introduced a series of log-periodic dipole aerials for Band III, having in mind particularly those areas where both I.T.A. and BBC-1 transmissions are radiated on widely separated channels in this band.

To obtain a performance which is basically independent of frequency from a structure composed of a series of resonant dipoles, such resonances must "taper off" so that as the frequency is varied the function of the resonant dipole is smoothly transferred from one dipole to the next. This means that the physical dimensions of the dipoles must be scaled from one to the next in such a way that the desired frequency range is covered by a series of dipoles with * " Logarithmic Aerials for Bands IV and V" by M. F. Radford.
overlapping response characteristics. The degree of overlap of any one dipole to its immediate shorter neighbouring dipole must be constant throughout that part of the structure which is within the limits of the desired frequency range.

Since the characteristics of the elements are, to a certain degree also determined by their surroundings, such as relative spacing one to another, then these spacings must be scaled also.

The log-periodic dipole aerial is, then, an array of parallel linear dipoles arranged side by side, and both the "tapering off" of the

Polar diagrams for a 7 -element log-periodic aerial compared with those for a S-element double driven Yagi (broken lines).
element lengths and the spacing between them, form a geometric progression with a fixed ratio throughout.

The elements are energized from a balanced, constant impedance transmission line. Adjacent elements are connected to this line in an alternate manner and the operation of the aerial is "end fire" in the direction of the shorter elements with the feeder connected at this end.

In the Antiference log-periodic arrays a double rectangular crosssection boom performs the function of transmission line as well as the support for the elements.

Schematic diagram of log-periodic dipole aerial showing the phasing.

The Antiference 7-element log-periodic aerial type LP7.

Transistor Rationalization

How to standardize on a few, easily-available "work-horse" devices

By T. D. TOWERS, ${ }^{\star}$ m.b.E., M.A., c.eng.

IIAVING discussed last month semiconductor type numbering and how to find information on the many tens of thousands of device types on the market, we will now take a look at the rationalized selection of a few transistor families which many engineers have come to accept as standards for run-of-the-mill industrial circuit applications.

CHOOSING BETWEEN SILICON AND GERMANIUM

Every user of transistors is concerned with reliability, but the technique of transistor manufacture has reached a stage where there is little to choose on this score between germanium and silicon.
Semiconductor manufacturers tend to divide their products into three classes: "entertainment," "industrial," and "professional." In the past, reputable manufacturers have produced essentiaily professional transistors, these are reliable and are guaranteed to meet an exacting specification for Services use. The need for this close tolerancing, multiple testing and quality documentation of professional devices has meant that they are expensive. Semiconductors from the same production line but to a less rigorous specification are fed into the industrial market (high-quality instrumentation and communications field) where reliability is still a prime requirement but the reduced test costs result in lower prices. Finally, the entertainment field (which prudently designs for wide spreads of parameters) gets even more economical devices because with them much of the procedural and testing costs involved in the other fields are avoided.
Over recent years a new situation has emerged. Manufacturers are setting about designing transistors primarily for the entertainment field (in which users cannot afford to pay for even the economical offshoots of the high-quality professional-industrial transistor lines). Thus we see large numbers of plastic-encapsulated transistors at low prices on the market. These are silicon devices, because plastic encapsulations do not suit germanium. Despite some unresolved doubts on the long-term reliability of plastic encapsulated transistors, their low price means that they are finding their way even into the industrial field for less exacting requirements. But as yet they have not been accepted in the professional field.

L.F. TRANSISTORS

Transistors for low-frequency and d.c. use fall into three distinct groups: low level, operating in the region of 1 mA ; mid-level, around 50 mA ; and high level, around 500 mA . Each area has its different features.
L.F. low-level amplifiers.-The principal requirements in the low-level stages of low-frequency circuits are the
obvious ones of low noise and high gain at low currents. In general, in these respects, silicon tends to be superior to germanium and is largely replacing it. Even so, we still see many circuits using time-proved germanium $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices such as the AC107 and the NKT216. The OC71 and GET106 were progenitors of this breed. There are no germanium n-p-n transistors in common use in low-level circuits.

In silicon, on the other hand, low-noise low-level amplifier transistors tend to be n-p-n. The BC107/8/9 family has become almost a standard for this area. They are characterized by very low-noise levels and by high current-gain at collector currents of around $100 \mu \mathrm{~A}$. Many specialized devices in the same category, such as the 2N929/930 (for operation at high voltages and in the microamp current range), the $2 \mathrm{~N} 2483 / 4$ and the 2N2604/5, are marketed.

As yet there is no widely accepted common device for $\mathrm{p}-\mathrm{n}$-p silicon low-level work. Users have not established any particular type as a standard. I myself design around the 2N3547/8/9/50, which is a good p-n-p complement to the BC107/8/9. Somewhat in the same category fall such devices as the increasingly used BCY70/1/2 and the $2 \mathrm{~N} 3250 / 1$.
L.F. mid-level amplifiers.-In circuit stages operating from about $10-100 \mathrm{~mA}$, the major requirement on the transistor is that it should have a fairly high and constant current gain over a wide range of current. In germanium, both $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and p -n-p devices are common for mid-level amplifiers. Typical $n-\mathrm{p}-\mathrm{n}$ units are the $\mathrm{AC1} 27$ and NKT713 with voltage ratings around 30 V and current gains about 50 . On the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ side, there are many devices of which the OC75 and NKT213 are typical. These, too, are characterized by $30-\mathrm{V}$ collector rating and current gains of around 100 . Whatever the polarity, this style of transistor has an f_{T} of around 1 MHz .
When we turn to silicon, n -p-n mid-level amplifier transistors far outnumber p-n-p. Because so much American circuitry has been written around the 2N3053, it has become the best known device in this field. With a $60-\mathrm{V}$ rating, a capability of handling up to 500 mA , and a current gain of around 75, this "maid of all work" still has many competitors such as the 2N696, 2N697, 2N718, 2N956, 2N1420, 2N1613, 2N1711 and 2N1893.

In mid-level $n-p-n$ silicon transistors, the $2 \mathrm{~N} 1131 / 2$ is fairly typical with characteristics not unlike the n-p-n 2N3053. It finds many alternatives in the market such as the BFX29/30 and BFX87/88.
L.F. high-level amplifiers.-When a stage is required to handle up to 1 A collector current, we have to turn to "beefier" larger-geometry devices. In germanium we find well-tried standards like the AC176 and NKT781 in

[^1]n-p-n and the ACY17/8/9/20/1/2 and NKT237/ $8 / 9 / 40 / 1 / 2$ families in p-n-p. Whatever the polarity, these transistors are basically $30-\mathrm{V}$ transistors (with higher voltage selections), characterized primarily by a high current gain at currents up to 1 A .
In silicon for 1-A amplifications there is no widely used single device. However, the 2 N 2297 basic transistor, better known in this country under the family numbers BFY50/1/2, BFX84/5/6 and BSX60/1, is representative of $n-p-n$ devices. It has an f_{T} around 100 MHz , is characterized by a voltage rating of around 60 V , low saturation voltage and a 1-A current gain of 15 minimum. There is as yet no universal 1-A p-n-p device available.

R.F. AND SWITCHING TRANSISTORS

R.F. amplifier transistors tend either to have a low Cob* for stable low-level amplifier operation or the high Cob which goes with the larger junction for high current carrying capacity in later circuit stages.
R.F. "low-Cob" amplifiers.-For many years now r.f. amplifier circuits requiring low feedback capacitance have standardized on the well-known germanium p-n-p AF114/5/6/7 (OC170/1) and NKT674/5/6/7 families of devices. These are a special type of post-alloy diffused transistor, which because of their high gain at low current, and low (2 pF) collector-base feedback capacitance permit gains of around 45 dB per stage in standard tuned 470 kHz i.f. amplifiers. There has been no germanium n-p-n equivalent device in common use.
By contrast, when we come to silicon, there has been no common low-Cob p-n-p transistor. The n-p-n BF115, which can be regarded as a silicon equivalent of the p-n-p germanium AF115, has found many applications. Such devices are all characterized by very small collector-base junctions, but further improvements have been made by what is known as the "Faraday-shield diode" technique. In this, a diode diffused underneath the base overlay bonding pad is connected to the emitter, which is operated at a.c. ground. This diode region is diffused simultancously with the base during the diffusion cycle. By using this technique the intrinsic feedback capacity of the transistor can be reduced to around 0.1 pF . This, together with the typically 0.4 pF interlead capacitance gives a Cob of the order of 0.5 pF compared with the 2.0 pF of the AF114 family. Typical of this Faraday-shield type of transistor is the BF167.
R.F. "high-Cob" amplifier.-For higher level r.f. stages, where the feedback capacitance is not so critical, we find several widely used transistor types. In germanium the most common are p-n-p polarity, such as the 2N1303/5/7/9, the 2N404 and the NKT135. All of these have a Cob of the order of 20 pF , and typical f_{T} of the order of $5-15 \mathrm{MHz}$. Smaller geometry devices of the same character with $\mathrm{Cob}=10 \mathrm{pF}$ are the wellknown OC44/5 and NKT11/12.

The best known n-p-n germanium devices of the same sort are the $2 \mathrm{~N} 1302 / 4 / 6 / 8$ family which are direct n-p-n equivalents of the p-n-p 2N1303/5/7/9. All these high-Cob germanium transistors are similar in other respects, with voltage ratings of around 20 V , an f_{T} of typically 7.5 MHz and current gains of $50-100$.
Silicon transistors for high-Cob r.f. applications are readily available in both $n-p-n$ and $p-n-p$. The most commonly used device family is almost certainly the

[^2]n-p-n $2 \mathrm{~N} 2217 / 8 / 4 / 20 / 1 / L$ serics. 1 nese nave relatwe: flat current gain from a few mA to several hundred mA , with typical collector capacitances of 6 pF and f_{7} of around 350 MHz . Voltage ratings are typically 60 V , i.e., double the corresponding germanium devices mentioned above. Also $80-\mathrm{V}$ versions are available, by contrast with germanium, for which even $30-\mathrm{V}$ selections are rare.
In high-Cob r.f. transistors we also find a common p-n-p family, the $2 \mathrm{~N} 2904 / 5 / 6 / 7$, which is a close equivalent to the 2 N 2217 family in its characteristics. Other common devices similar to the 2 N 2904 family are the 2N3133/4/5/6.
V.H.F. amplifiers.-Silicon diffusion techniques lend themselves particularly to u.h.f. transistors. Thus we find the n-p-n type 2 N 918 with a typical f_{T} of 900 MHz in everyday use. The 2 N 2475 and the BSY90, faster versions of the 2 N 918 with f_{T} of the order of 1.5 GHz , are tending to replace the 2 N 918 . U.h.f. silicon transistors exhibit relatively low collector voltage ratings for silicon (around 30 V only) and low current gain (typically only 30). They do, however, have low collector capacity, typically 1.5 pF or less. U.h.f. germanium transistors, whether $\mathrm{p}-\mathrm{n}-\mathrm{p}$ or $\mathrm{n}-\mathrm{p}-\mathrm{n}$, are not in common use industrially.
L.F. switches.-For low-frequency switching, manufacturers do not in general produce special families of devices, and we find slow-speed switching generally being done by transistors of the type described above under l.f. mid-level amplifiers or h.f. high-level amplifiers, depending on the current being switched. There is one exception in that the 2 N 2904 family described above under r.f. high-cob amplifiers is so widespread that it is often used for slow-speed switching in the absence of a common $\mathrm{p}-\mathrm{n}-\mathrm{p}$ equivalent to the BFY50-52 series.
R.F. switches.-For r.f. or medium-speed switching, the tendency in the past has been to use r.f. amplifier transistors. Thus with germanium we find the $n-p-n$ 2N1302 family or the p-n-p 2N1303 family widely used, as also has been the OC42 (a selection of the OC44/45).

When we come to the new silicon r.f. switching transistors there is a vast array of transistors specially designed for switching rather than general purpose r.f. amplifier-cum-switching work. The commonest basic device is the famous 2N914, an n-p-n gold-doped switching transistor with a typical f_{T} of 300 MHz , a 500 mA current capability and a collector capacity of around 4 pF . Other well-known devices of a similar character are the $2 \mathrm{~N} 706,2 \mathrm{~N} 708,2 \mathrm{~N} 743 / 4,2 \mathrm{~N} 753$, 2N919/20, 2N2368/9/9A, BSY26/7, BSY38/9 and the ubiquitous BSY95A. Silicon p-n-p r.f. switching transistors are much less common, but the serviceable 2N2904 family again is often used.
V.H.F. switches.-For ultra-fast switching, there are no germanium devices in common use, but the last of the v.h.f. germanium switching transistors will still be found in equipment. Typical of these are the p-n-p 2N711B or NKT603F, with relatively low (20 V) collector voltage ratings, maximum currents of 100 mA , current gains of around 50 , typical f_{T} of 125 MHz and Cob of about 3 pF . On the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ side in germanium there never have been any common ultra-fast switches.

In silicon the "daddy of them all" in ultra fast switches is the n-p-n 2N709, with switching times of less than 10 ns . This device has a low collector voltage rating
(15 V) and will handle up to 200 mA only. On the other hand it has an f_{T} of 800 MHz typically and a $2-\mathrm{pF}$ Cob. Its current gain is about 50 . The 2N709 has proved a very difficult transistor to manufacture and is still quite expensive. There are no p-n-p silicon ultra-fast switches widely available.

POWER TRANSISTORS

When you want to dissipate more than about a watt in a transistor, you have to leave the small flexible-lead devices described so far. Two main styles of case have become widely used, at least for low-frequency operation. These are the well-known standard TO3 large "diamond-shaped" outline and a miniature version of it. The miniature medium power transistor comes in three different cases: (1) TO66 small diamond; (2) "Continental" small diamond (as Mullard AD161/162); and (3) TO8 (with clamp that makes it similar to small diamond).
L.F. medium-power transistors.-In germanium there are only a few medium-power devices on the British marker, but these are widely used. For p-n-p requirements, the international standard germanium unit is the 2N1183/4 or NKT302 in TO8 outline with typical voltage ratings of 60 V , current gains of around 50 , maximum current around 3 A and f_{T} about 1 MHz . In the

TABLE I
A SELECTION OF WIDELY USED TRANSISTOR TYPES AVAILABLE FROM MORE THAN ONE

	$n-p-n$		P-n-p	
	Ge	Si	Ge	Si
L.F. Low-level Amp.	*	BCIO9	$A C 107$	2N3548
L.F. Mid-level Amp.	$\left\{\begin{array}{l} \mathrm{ACl} 27 \\ \mathrm{NKT} \mid 3 \end{array}\right.$	$2 N 3053$	$\left\{\begin{array}{l} \text { OC75 } \\ \text { NKT213 } \end{array}\right.$	2N1132
L.F. High-level Amp.	$\left\{\begin{array}{l} \text { ACI76 } \\ \text { NKT78। } \end{array}\right.$	BFY52	ACY20	*
R.F. Low-Cob Amp.	*	BFII 5	$\left\{\begin{array}{l} \text { AF117 } \\ \text { NKT677F } \end{array}\right.$	*
R.F. High-Cob	2NI304	2N2221	$\left\{\begin{array}{l} \text { OC45 } \\ \text { NKTI2 } \end{array}\right.$	2N2906
V.H.F. Amp.	*	2N918	*	*
A.C./D.C. Switch	$\left\{\begin{array}{l} \mathrm{ACI76} \\ \mathrm{NKT} 781 \end{array}\right.$	BFY52	ACY20	*
R.F. Switch	2N1304	2N914	$\left\{\begin{array}{l} \text { OC45 } \\ \text { NKTI2 } \end{array}\right.$	2N2906
V.H.F. Switch	*	2N709	$\left\{\begin{array}{l} 2 N 711 B \\ \text { NKT603F } \end{array}\right.$	*
A.C./D.C. Medium Power Amp.	$\left\{\begin{array}{l} \text { AD161 } \\ \text { NKT87! } \end{array}\right.$	2N3054	$\left\{\begin{array}{l} 2 N 1183 \\ \text { NKT } 302 \end{array}\right.$	*
A.C./D.C. Power Amp.	*	2N305S	$\left\{\begin{array}{l} \text { OC35 } \\ \text { NKT404 } \end{array}\right.$	*
*No "standard" device commonly available from several manufacturers.				

n-p-n germanium category there is no corresponding TO8 standard, but the AD161 or NKT871 n-p-n small diamond power devices find wide use. These have a p-n-p exact counterpart in the AD162 or NKT371 (as an alternative in some applications to the 2N1183/4).

In silicon in the medium-power small diamond range there is no $\mathrm{p}-\mathrm{n}-\mathrm{p}$ commonly available, but in $\mathrm{n}-\mathrm{p}-\mathrm{n}$ the 2N3054 is a widely accepted standard device. This is in a TO66 encapsulation and features $90-\mathrm{V}$ collector rating, 4-A maximum current, $25-\mathrm{W}$ theoretical maximum dissipation, typical f_{T} of 1 MHz , and a current gain around 50.
L.F. power transistors. - When higher operating powers of the order of $10-25 \mathrm{~W}$ dissipation are called for, the larger TO3 outline is the common encapsulation. In germanium there is a family of TO3 p-n-p devices which has been virtually the standard power transistor for years now. These are the OC28/9/35/6 and NKT401/ $2 / 3 / 4$. The most important features of these are current carrying capacities up to 10 A , typical voltage ratings of 60 V , typical current gains of 50 and f_{T} of around 300 kHz . In the main, germanium p-n-p power transistors of this type still carry the bulk of transistor power applications in this country. There are no n-p-n equivalent germanium power transistors commonly used.

In silicon the standard TO3 high-current power transistor is the n-p-n 2N3055. This features voltage ratings of $60-100 \mathrm{~V}$, current ratings of $15 \mathrm{~A}, f_{r}$ of 1 MHz and theoretical maximum dissipation of 115 WW , together with typical current gains of around 50 at 1 A . Whenever the standard p-n-p germanium power transistors described above are replaced by silicon in a redesign, the tendency is very largely to go over to the n-p-n 2N3055. The only major drawback in this silicon transistor is its $7-\mathrm{V}$ emitter rating compared with the 20 V of the OC28 series.

Other special transistors.-So far, we have been dealing with "run-of-the-mill" devices. Limitations of space prevent any coverage of special devices such as r.f. power or field-effect transistors. Most semiconductor manufacturers have their own ranges of devices for these, but sufficient field experience has not yet accrued for any particular devices to become accepted as industry standards.

TABULAR INFORMATION SUMMARIES

To bring into focus all the information detailed above, Table I has been prepared setting out for each circuit function a typical device from the "standard" ranges discussed above, classified as germanium/silicon and $n-p-n / p-n-p$.

To give some idea of the special characteristic of the various families, Table II sets out critical information on the devices selected as examples in Table I. A study of Table II will reveal most of the differences between $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and between germanium and silicon transistors. For example, you will note in the emitter voltage rating column (headed $\mathrm{V}_{\text {eho }}$) that silicon diffused devices have ratings always below 10 V and germanium alloy always above 10 V .

PLASTIC vs METAL CASE TRANSISTORS

You cannot help but be aware that over the last two years plastic encapsulated silicon transistors at low prices have had a great impact on the transistor market,
but there has been controversy about them. Designed primarily for the entertainment market, their most obvious advantage is low cost, but the absence of a metal case can also be an advantage in that they can have lower parasitic capacitances than corresponding metal case units. Also in most silicon hermetically sealed transistors the collector is connected internally to the metal case, so that precautions have to be taken to isolate the case in equipment. With plastic encapsulated devices, no special care is required for this.

Plastic case transistors do have disadvantages, however. Generally the same transistor chip will have lower permissible dissipation than in the corresponding metal-can version. Also there has been much discussion about their long-term reliability when compared with true hermetically sealed devices. As yet, no plastic device has received "CV approval" in this country, and the final verdict on the long-term reliability problem will be given only if and when such approval is obtained.
Typical plastic-encapsulated transistors.- Table III sets out for 1.f. amplifier applications a selection of fairly common types of roughly equivalent specification, in two classes-n-p-n and p-n-p. The table cross-refers types from several manufacturers to common equivalent metal-case devices.
There is as yet no uniformity in the outlines used for the plastic encapsulations. Difficulties arise because, while some manufacturers supply devices physically interchangeable with standard TO18 or TO5 cans, others produce completely new lead configurations, which are sometimes difficult to fit to boards drilled for standard metal-case devices. However, some manufacturers do provide their devices with the leads pre-dressed

TABLE III
REPRESENTATIVE COMPARATIVE SELECTION OF METAL-CASE AND RELATED PLASTIC ENCAPSU. LATED SILICON TRANSISTORS

Metal Case Device	Plastic Encapsulated			
	Texas	S.T.C.	Ferranti	Fairchild
(L.F. Low-level $n-p-n$)				
BC107	BCI82L	BCI71	27×303	BCIIS
BCl08	BC183L	BC172	2TX302	BCI 13
BC109	BCI84L	BCI73	-	BCl 14
(L.F. Low-level p-n-p)				
BCY7	2N3702	-	ZTX502	BC154
BCY72	2N3703	-	ZTX503	8 Cl 153

to the required TO18 spacing. Also, you can get small plastic mounting pads which do the pre-dressing for you as you draw the transistor down to the board.
It is hoped that the analysis of the various transistor types given above will be helpful to the reader in his assessment of what transistor to use for a specific circuit application. He can find fuller information on details of devices in one of the various sources of information outlined in last month's article.

TABLE II

European Space Research

Sécbacks encountered - current programme - satellite situation uncertainty as to the future

TTHE satellite programme of the European Space Research Organisation (ESRO) has suffered two major setbacks since it was inaugurated in 1964, although the sounding recket programme has proceeded very smoothly. The first of these occurred in October 1966 when the premises of the European Space Technology Centre (ESTEC) and the European Space Research Laboratory (ESLAB) situated at Noordwijk in Holland were destroyed by fire together with all equipment, test data and records. The second occurred last May when a failure of the third stage of the four-stage Scout launch vehicle resulted in the first flight model (F1) of the satellite ESRO 2 falling into the Pacific after failing to go into orbit. Telemetry data received from the satellite during the abortive launch showed that all the satellite systems functioned normally.

At the time of this launch the European satellite tracking and telemetry network (ESTRAC) j was incomplete and full responsibility for tracking, attitude control, turnon of experiments, and data acquisition from ESRO 2 (F1) would have been with the American National Aero-
nautics and Space Administration (NASA). Now the ESTRAC facility is fully operational and the projected launch of F2, in April 1968, will result in a much larger ESRO participation. The design, integration, environmental and flight testing of the satellites is being carried by ESTEC and, apart from the early orbit determination that will be carried out by NASA as part of the launch service, full control of the satellite will be in the hands of ESTRAC.

Some uncertainty now exists as to the future programmes of ESRO following a meeting of member countries held in Rome last year. At this meeting no decision was taken as to the extent of future programmes on the grounds that insufficient information was available at that time. It was agreed, however, to form a programme advisory committee to look into the whole organization; their report is due to be presented shortly. It is envisaged that a further ministerial meeting will be held in late April or early May and a decision as to the magnitude of future programmes will be made, based on the Advisory Committee's Report.

The left hand photograph shows an experimental unit being installed in ESRO 2 and the right hand photograph shows the same satellite undergoing vibration tests. The main contractor for the project was Howker Siddeley Dynamics Ltd. with Société des Eng ins Matra (France) as principal sub-contractors, Ferranti supplying the solar cells. The satellite will be controlled in flight by 36 commands using a tone-digital
system on a frequency of 148.25 MHz .

As has already been mentioned the ESTRAC facility is now ready and in addition ESLAB and ESTEC have been rebuilt and re-equipped forming a sophisticated tool for research, design, environmental testing and tracking of satellites. This has been an expensive process involving the purchase of large amounts of capital equipment; the danger of too small a programme being granted is that these facilities will be only partly utilized. The net result would be a very high unit cost per project and a danger would exist in that scientists may tend to drift away from European Space Research. It is the hope of the organization that the programme will include communication and navigation satellites as well as those carrying scientific experiments currently planned.

The design and development of a satellite or sounding rocket payload is carried out in three definite stages materials and components, sub-systems and the integrated system. At ESTEC the main task is concerned with environmental testing during the first and third of these stages, the second stage being left in the hands of contractors. The equipment at ESTEC includes comprehensive vibration facilities and large chambers capable of simulating the space environment as far as temperature, vacuum, solar radiation and "blackness" are concerned.
Work is at present proceeding on five projects with the prospect of a sixth "on the horizon." Out of 41 scientific experiments to be carried in these craft, 17 are British. As far as contracts received by British industry are concerned the story is rather different; only a small percentage of the equipment comes from British sources. However, this situation is likely to improve. In the past the organization discovered that in many cases, "space approved" electronic components were not available from European sources and increasing reliance was placed on components of American manufacture, although some were obtained as by-products of the French national space programme.

Briefly the satellites planned by the organization are: ESRO 1, a polar ionosphere satellite which will measure energies and fluxes of particles at high altitudes and the effects of particles as manifested by auroral events and the composition of the ionosphere. Studies will also be made of solar proton events which are responsible for polar cap absorption phenomena. To assist in making these measurements, the satellite will be stabilized along the earth's magnetic field lines by incorporating permanent magnets in the structure.

ESRO 2 is designed to study solar astronomy and cosmic rays and as such its orbit is planned to keep the satellite in direct sunlight for the majority of its design lifetime (1 year). The equipment on board will measure the corpuscular radiation from the sun during solar flares, protons trapped in the inner Van Allen Belt, the electron component of primary cosmic radiation and the modulation mechanism of cosmic rays in interplanetary space.

The highly eccentric orbit satellite HEOS A is designed to study interplanetary physics, particularly magnetic fields, cosmic radiation and the solar wind during a period of large solar activity. The orbit apogee will be about $250,000 \mathrm{~km}$ and the perigee about 300 km . This orbit, a narrow ellipse, allows telemctry transmissions to be wholly in real time eliminating the need for an internal tape recorder and enabling the satellite to be "seen" for nearly 100% of the time (above $30,000 \mathrm{~km}$) using only two ground stations. These will be the ESTRAC installations at Redu (Belgium) and Fairbanks (Alaska).
The main purpose of the satellite TD1 will be to study stellar astronomy and cosmic rays and will to this end
carry seven experimental installations. It will have a circular orbit at an altitude of 500 km with an inclination of 97.4° to the equator.

TD2 will study solar-terrestrial relationships during a period of maximum solar activity. It is of similar construction to TD1 but will be on an elliptical orbit with an apogee of 1200 km and a perigee of 350 km inclined at 90°.

The previously mentioned sixth satellite "on the horizon " is the LAS (Large Astronomical Satellite) on which work, although not suspended, has been reduced to a minimum for financial reasons. 'This is the largest and most complex of the projected satellites and is expected to be of high optical resolution $10^{-5}, \mu \mathrm{~m}(0.1 \AA)$. Design of a three-axis simulator for the satellite was completed and various parts constructed up till the time of the fire at ESTEC; fortunately, some parts had not been delivered and escaped destruction. It has been estimated that some 7.5 man years and 232,000 French francs had been spent on this machine before the fire.

BOOKS RECEIVED

The BEAMA Directory 1967/1968. Compiled by The British Electrical \& Allied Manufacturers' Association Incorporated, this directory starts with a pictorial review of the achievement of the British Electrical Industry, the rest of the book being divided into four sections. Section 1Directory of Manufacturers-gives the names and addresses of manufacturers, a summary of the products manufactured, overseas branches, representatives and agents. Section 2Technical Information. Section 3-Buyers' Guide-an alphabetical list of products and who makes them. Section 4 -Foreign Languages-equivalent expressions in German, Spanish, French, lortuguese and Russian for the English headings found in the Buyers' Guide section. Pp. 556. Price 60s. Pergamon Press Lid., Headington Hill Hall, Oxford.

Telecommunications for Technicians, Vol. 1, by D. Coatesworth. From the Penguin Library of Technology this paper back is the first of three volumes to be published in this scries. It introduces some of the basic principles of electricity, magnetism and electronics in a clear and well defined manner without short-circuiting the necessary mathematics. Unusually, in a book of this nature, the properties of semiconductor materials, diodes and transistors are discussed as well as the principles of thermionic emission. Although by no means a full treatment of the subjects it covers, this book provides an excellent introduction to electronics either as a hobby or as an intended career. Pp. 136. Price 10s 6d. Penguin Books Ltd., Harmondsworth, Middlesex.

Television in Education and Training by D. A. de Korte from the Philips Technical Library.

The object of this book is to provide a general review of the development and scope of television as well as other audio-visual aids in education. Following a discussion of television and the audio-visual concept in general the history and the basic principles of television are broadly outlined together with details of equipment in use. Teaching projects that have been carried out in various countries using television are examined. Final chapters cover film projection and television, teaching machines and television and the production of closed circuit television broadcasts. Pp. 175. Price 41s. Macmillan \& Co. Lid., Little Essex Street, London, W.C.2.

GaAs Miniature Radar

SMALL, simple and cheap radar sets for burglar alarms, automobile speed measurement, ship docking and other domestic and professional uses have become a practical possibility as a result of a development programme at the Royal Radar Establishment, Great Malvern. They are all based on the gallium arsenide (GaAs) Gunn-effect diode. As is well known, this is a piece of bulk semi-conductor which only requires a low voltage battery to be connected across it to produce oscillations in the microwave region. The diodes are massproduced in a small plant at R.R.E. Their active part is a $10 \mu \mathrm{~m}$ epitaxial layer of pure GaAs deposited on a substrate of highly conducting GaAs. This conducting substrate acts as the anode, while a silver contact evaporated on to the epitaxial layer forms the cathode. The completed dice, which are $400 \mu \mathrm{~m}$ square, are mounted on molybdenum stubs and put into standard diode encapsulations.
R.R.E. were working on gallium arsenide in the early 1960s, before the Gunn effect was discovered. At that time it was thought that this material would be suitable for integrated circuits. A consortium of U.K. firms had been formed to explore the production possibilities of GaAs devices, and it was because of this early work, and successful co-operation between R.R.E. and the consortium, that the development of miniature radar went ahead so fast after the discovery of the Gunn effect. Incidentally the present leader of the R.R.E. team, Dr. Cyril Hilsum, is well known as the author of one of the first papers predicting the possibility of oscillations in GaAs and other bulk semiconductors*.

A further advantage of the Gunn oscillator over the klystrons and magnetrons normally used in radar trans-
*"Transferred Electron Amplifiers and Oscillators" by C. Hilsum. Proc. I.R.E., vol. 50, No. 2, February 1962, pp. 185-189.
mitters is that it can be turned on and off more rapidly, to give extremely narrow pulses. In fact pulses as short as 3 ns at 10 GHz have been obtained, and this means that a distance resolution of 0.5 metre is possible at ranges down to 2 metres-a useful facility in, say, the docking of ships.

The two devices illustrated are both Doppler radar systems. One is intended for use as a burglar alarm. The 6 in $\times 4$ in $\times 4$ in box holds a transmitter, receiver and dry batteries, and the radar has a range (on a man) of about 50 yards. When it is operating in a room, any disturbance of stationary conditions, such as the entry of an intruder, causes the lamp on top to light-and; of course, an external alarm could be actuated. The other device is a hand-held, battery-operated Doppler radar for vehicle speed measurement. Its range is 50 yards on a man and 200 yards on a large vehicle, and the speed is read directly on a meter.

A third set, not illustrated, is a high resolution pulsed radar suitable for marine application and has a distance resolution of better than 1 m at ranges down to 2 m . The $10-\mathrm{GHz}$ Gunn-diode oscillator is mounted across a waveguide in a straightforward radar transmitter-receiver system using a circulator, the receiver being blanked by a germanium diode switch during transmission. Switching of the Gunn diode is performed by an avalanche transistor circuit built into a coaxial structure. The best transmitter performance obtained has been pulses of 5 ns (half height) duration and peak power of 1 watt-that is, an energy of about 5 nJ per pulse. The receiver is a crystal video detector followed by a pulse amplifier with 1.2 ns risetime, and a sampling oscilloscope is used to give an A-scope display. It seems likely that this particular set will become available in commercial form.

(left) Portable radar spcedometer being used to measure the speed of a car. The batteryoperated microwave Doppler radar set has a range of about 200 yards on a large vehicle.
(below) Intruder alarm, showing warning lamp on top. The Doppler radar set inside uses a horn aerial glving a moderately wide beam, and has a range on a man of about 50 yards.

Acousto-electric V.H.F. Transmitter

THE simplest v.h.f./f.m. radio transmitter that one could hope to achieve was recently seen by Wireless World in operation at the Royal Radar Establishment, Malvern. Consisting of little more than a thin plate of cadmium sulphide with a voltage supply connected across it and an aerial attached, it was being used to transmit audio signals on a carrier frequency of 100 MHz across a room to an f.m. receiver. The power was only a few microwatts. This was in fact just a demonstration to illustrate some of the work of J. D. Maines and E. G. S. Paige at R.R.E. on acousto-electric oscillations in piezo-electric semiconductors, of which cadmium sulphide (CdS) is one. Nevertheless there are obvious practical uses for such a simple and cheap oscillator, which will operate between 30 MHz and 1 GHz , can bc frequency modulated by a varying voltage and will generate oscillations in both electrical and mechanical form. In the transmitter, higher power could be obtained by more efficient crystal/aerial coupling.

Acousto-electrrc oscillations are the result of interaction between ultrasonic (mechanical pressure) waves set up spontaneously in the semiconductor by thermal effects, and the electrons which arc caused to drift through the material by the voltage applied across it. Interaction occurs because the successive compressions and extensions of the ultrasonic waves, occurring as they do in a piezo-electric medium, produce electrical potentials within the material and these cause the drifting electrons to collect in bunches which travel with the waves (Fig. 1). If the electron stream is travelling in the same direction as the ultrasonic waves, and faster,

Fig. I. Interaction of acoustic and electric waves.

Fig. 2. Circuit of the v.h.f. transmitter, showing light control.

The transmitter, dipole aerial and light source assembly.
their interaction produces mechanical effects which augment the original waves-a phenomenon which has been used for acousto-electrical amplification in CdS. In the oscillator, however, when the ultrasonic waves strike an end face of the semiconductor they are reflected: the reflected waves are then travelling in the opposite direction to the electron stream and this causes them to be attenuated. After reflection at the opposite face the waves are once more travelling in the same direction as the electron stream, again being augmented by the effects of the electron-bunching, and by the time they have completed a "round trip" a net amplification has been obtained. Non-linear effects reduce the round-trip amplification to unity, and this, of course, is the condition necessary for self-sustaining oscillations.

After several hundred such round trips a steady-state acoustic oscillation on a single frequency is reached, and the electron bunching associated with this is sufficiently large to modulate the d.c. bias current. As a result electrical oscillations are produced in the supply circuit. The thickness of the CdS plate, t, determines which wavelengths can be supported ($2 t=N \lambda$, where N is an integer) and, through the velocity of sound, which oscillation frequencies are possible $(f=v / \lambda)$. If the piezoelectric plate were functioning as a crystal filter or transducer $N=1$, but in the demonstration transmitter $N=21$.
The velocity of the waves is determined by the applied voltage and the conductivity of the material. In CdS 0.2 mm thick, for example, frequencies between 20 and 500 MHz have been generated with applied voltages of 20 V to 100 V . For the 100 MHz demonstration transmitter a supply of 50 V is used. The conductivity of the CdS (typical resistivity $\approx 10^{\prime} \mathrm{ohm} \mathrm{cm}$) is controlled by directing a light source of adjustable intensity on to the plate so that the incident photons liberate electrons in the material. As shown in Fig. 2 a small lamp is included in the v.h.f. transmitter for this purpose.

Since the frequency of oscillation can be varied by altering the CdS supply voltage, it is a simple matter to frequency modulate the transmitter by superimposing a modulating signal on the d.c. bias as shown in Fig. 2. The frequency shift obrained varies with supply voltage and material conductivity but a typical value is 10 kHz per modulating volt and in the demonstration transmitter the modulating voltage range is about $0-2 \mathrm{~V}$.

WORLD OF WIRELESS

Satellite vs Cable Communications

WHEN commercial telephone traffic via Early Bird commenced in 1965 the Scandinavian countries had three circuits with New York terminating in Oslo, Stockholm and Copenhagen, and routed via London. It was decided to make a subjective evaluation of whether calls via Early Bird were acceptable to the general public, the idea being to make as close a comparison as possible with existing cable circuits to New York. A total of 1,624 satellite calls were listened to by operators and notes made of the quality of the connections and subscribers' reactions and comments. The same process was repeated on 844 cable calls. In a second stage of these tests subscribers were interviewed immediately after calls, in accordance with an agreed questionnaire. Each of the three terminal stations in Scandinavia made interviews after 50 satellite calls and 50 cable calls, making a total of 300 calls in all. The subscribers had no idea which means of communication they had used and no
subscriber was interviewed more than once and, in addition, no publicity was given to the tests.

It is obvious from what has been said that the statistical material obtained was very limited, nevertheless it was thought that investigations over a longer period or with a greater number of circuits would not have produced substantially different results. The main conclusion of the tests is that calls via Early Bird have been generally satisfactory to the Scandinavian public and the results of the objective evaluation of such calls are very much the same as for the cable calls. The tabulated result showed that, based on the operators' report, 84.1% of the satellite calls were found to be very good as against 76.1 \% of the cable calls. Observations of echo, crosstalk and signal level variation showed little difference between systems. Of the interviewed subscribers 46.7% found the satellite and 54% found the cable very good.

Television-telephone Trials in America

FIELD trials on a visual telephone equipment suitable for use in the office or home will commence next September. Known as the Picturephone and developed by Bell Telephone Laboratories of America, the equipment will be built and evaluated by Westinghouse Electric Corporation. For the trials some 40 sets will be manufactured, 28 will be installed in Pittsburgh and 12 in New York so that the usefulness of the system for both inter- and intra-city communications can be gauged. Providing the trials are a success, the American Telephone and Telegraph Company, Bells' parent organization, said that it hopes to introduce a limited number of the sets into customer service in the early 1970s.
A silicon target camera tube is employed utilizing an electronic zoom system, adjustable focus and an automatic iris resulting in the production of good pictures over a wide range of ambient lighting conditions. A screen measuring $5.5 \mathrm{in} \times 5 \mathrm{in}$ is incorporated and this, in conjunction with the

wide angle capability of the camera lens system, gives the user considerable latitude regarding side to side movement. To enable larger scenes to be transmitted the camera may be focused at 20 ft . Printed matter may also be sent, and for this the camera is focused at 1 ft . When this is done a built-in mirror swings to an angle of 45 degrees in front of the lens so that the material may be placed flat in front of the picturephone. When used for normal face-to-face conversation the depth of field is 16 inches centred on 32 inches. A typical installation comprises: dialling unit, control unit, display unit and a service unit. Four push buttons enable the user to initiate a video or voice-only call, to see the picture he is sending out, to prevent his picture from being transmitted-in this case a bar pattern is sent instead, and to select either a normal handset or a loudspeaker for the sound.

The camera tube employed is interesting in that the target consists of a small silicon slice containing over half a million photodiodes. An advantage of this tube is that its performance is not degraded or modified by exposure to bright light or by electron beam bombardment and is does not suffer from optical or raster "burn in."

Submarine Acoustics

ENGINEERS from Honeywell's Marine Systems Centre at Seattle have started a threc-year research programme to study the underwater scattering of sound waves. The object of the programme is to discover whether any consistent patterns emerge so that future marine acoustics instruments may be programmed to take them into consideration. The scattering medium consists of micro-organisms and impurities suspended in the sea that distort the sound paths in such a way as to make signals unreliable or too weak to be detected at all; it is known that air bladders in fish are a real factor in sound deflection. It was formerly assumed that the scattering field could be modelled on the homogenous, densely populated impurities and could be averaged for practical purposes, but this approach is now considered to be insufficiently precise. A 1,600 pound acoustic sensing and transmitting instrument has been set up on the ocean bed in the Strait of Juan de Fuca, British Columbia, where
the Pacific Ocean penetrates a protected salt-water labyrinth. The eight-foot high unit will send signals from a depth of 325 ft to Honeywells' research vessel Neper and at the same time water current, salinity, dissolved oxygen and temperature will be measured. The experiment is claimed to be the largest company sponsored basic research programme on underwater acoustics ever carried out.

The formal opening of Heriot-Watt University's new Mountbatten Building by Earl Mountbatten of Burma took place on January 3rd. The opening ceremony followed a graduation ceremony at which Sir Alec Douglas-Home, Chancellor of the University, conferred honorary degrees upon a number of dignitaries including a doctorate of science on Earl Mountbatten. The new building was recently completed at a cost $£ 650,000$ and accommodates the Department of Electrical and Electronic Engineering and departments of the Faculty of Humanites. The building is T-shaped in plan and it includes a 250 -seat conference theatre with adjacent conference rooms, a television suite (see "News from Industry," page 707), two main lecture theatres and a number of well-equipped laboratoriesincluding a language laboratory. Every room is wired for closed circuit television and a comprehensive network connects the TV complex in the Mountbatten Building with the main University building providing direct two-way links.

To assist listeners in parts of Scotland who are having difficulty in receiving B.B.C. Radio 2 on 1,500 metres and who do not possess a v.h.f. receiver, low-power repeater stations have been installed in Glasgow and Edinburgh. These stations will provide local reinforcemeht of Radio 2 by making use of the international common wavelength of 202 metres. The range of stations using this wavelength is restricted by international regulations to only a few miles. In addition the useful range is further limited at night by interference from the other 150 European stations that share this wavelength. The possibility of operating additional transmitters on this wavelength in other parts of Scotland is being investigated.

The Eddystone Radio essay competition organized early in 1967 has been won by Bruce Taylor, a 25 -year-old student who is engaged on Ph.D. work at Edinburgh University. For his essay describing a new approach to radio receiver design he wins an EA12 Eddystone communication receiver worth £185.

The Simon Mernorial Prize for 1968 has been awarded by The Physical Society to Dr. K. A. G. Mendelssohn, F.R.S., Reader in Physics in the University of Oxford, in recognition of his distinguished work on superconductivity and the properties of liquid helium.

ANNOUVCEIENTS

The second International Broadcasting Convention is to be held in London from the 9 th-13th September. Sponsored jointly by the Electronic Enginecring Association, the I.E.E., I.E.R.E., I.E.E.E. and the Royal Television Society, it will include an exhibition and the television conference already announced by the learned Societies. Enquiries should be addressed to the International Broadcasting Convention, Savoy Place, Victoria Embankment, London, W.C.2.

A second conference on solid state devices is being arranged by the Institute of Physics and the Physical Society in collaboration with the I.E.E., I.E.R.E. and I.E.E.E. The conference will be held at the University of Manchester Institute of Science and Technology from 3rd to 6th September.

A 98 -page prospectus giving details of full-time and sandwich courses to be held during 1968 and 1969 at the Borough Polytechnic, Borough Road, London, S.E.1, is now available.

A course on high-fidelity sound reproduction will be held each Wednesday evening during February and March at Hendon College of Technology, The Burroughs, London, N.W.4.

A course of three evening lectures on the science and engineering of elementary particle physics will be held at University College, Gower Street, London, W.C.1, on Mondays at 5.30 commencing February 26th.

Some 25 American manufacturers of miniature and microminiature components are collaborating with the U.S. Department of Commerce to stage an exhibition of the latest products at the United States Trade Center in London, between 14 th and 22nd February.

Now available from G. A. Stanley Palmer Ltd. are Type KS 1 polystyrene film capacitors manufactured by the German company Ernst Roederstien. The capacitance values range from 5 pF to $0.022 \mu \mathrm{~F}$ with working voltages of 25 , 63,160 and 630 V and tolerances vary from $\pm 2.5 \%$ to $\pm 20 \%$. The temperature range is -10 to $+70^{\circ} \mathrm{C}$.

The telemetry system for Britain's satellite launching vehicle Black Arrow is to be supplied by E.M.I.

For the sum of $£ 150$ per day, a complete closed circuit colour television system can be hired, with a cameraman and engineer, from Closed Circuir Television Hire, 93 Greenfield Road, London, E.l.

A new service for independent testing of audio equipment is available from H. F. Engineering, 3 Willowbank, Sunbury-on-Thames, Middx.

Professor J. Borraquer, àn eminent Spanish eye surgeon, flew into London recently to see a demonstration of EMI's miniature television camera, type BC. 930 . Professor Barraquer, who speciallses in anterior chamber surgery of the eye, required a high quality camera of small dimensions for use in the operating theatre at the Clinica Barraquer in Barcelona. The EML BC. 930 is 1.7 inches in diameter and about the size of a small pocket torch. Using a $\frac{1}{2}$-inch vidicon comera tube, the BC. 930 gives high resolution pictures with a very low noise level. After a test of the camera's capabilities. Professor Barraquer returned to Spain the following day with the comera. The picture shows Professor Barraquer using the camera during his evaluation.

PERSONALITIES

The B.B.C. has announced that James Redmond, F.I.E.E., assistant director of engineering for the past year, is to become director of engineering when Sir Francis McLean retires in May. Mr. Redmond, who is 49, served as a marine radio officer before joining

J. Redmond
the B.B.C. in 1937 and also during the war. In his early days with the Corporation he was in the Television Service at Alexandra Palace. He became asst. superintendent engineer (film) in 1956; supt. engr. (television recording) in 1960; supt. engr. television (regions and O.Bs) in 1962; for the past year he has been responsible for the oderational work of the Engineering Division.
S. N. Watson, F.I.E.E., head of the B.B.C. Designs Department for the past four years, is to become chief engineer, television, when T. H. Bridgewater, O.B.E., F.I.E.E., retires in April. Mr. Watson joined the B.B.C. in 1933 and after serving at the Newcastle and Birmingham studios he became an engineer in the Lines Department in 1938. He transferred to the Designs Department in 1947 and became head of the television group in 1951.

S. N. Watson
L. A. A. Thomas, B.Sc., F.I.E.E., F.Inst.P., chief physicist at the G.E.C. Hirst Research Centre, Wembley, since 1961, has been appointed visiting professor in the School of Physics at Bath University of Technology. He will be lecturing to postgraduate students in solid-state physics and will advise the School of Physics on both undergraduate and postgraduate courses. Mr. Thomas joined the Research Laboratories of the G.E.C. in 1935, graduating at the University of London in 1938, and specializing later in the fields of crystallography and magnetism.

Gerald H. Askew, B.Sc., M.I.E.E., who has been with Peto Scott Ltd. for the past three years, has become chief engineer and will manage the development laboratory. After graduating at King's College, London University, he joined Kolster Brandes Ltd. in 1945 as a junior development engineer. Seven years later he went to Cinema Television (now Rank Cintel) where he

G. H. Askew
became section leader and was concerned mainly with the development of flying-spot telecine equipment. Mr. Askew, who is 42, left Rank Cintel in 1964 to join Peto Scott.
I. W. Dick, who resigned last October as managing director of the Marconi Marine Company's Norwegian associates, Norsk Marconikompani A/S, which he joined as general manager in 1962, has been appointed management executive with the parent company. Mr. Dick served as an instructor in air radio in the Royal Air Force during the war, and on leaving the Service in 1946 became an instructor at the Glasgow Wireless College. He later joined the seagoing radio officer staff of the Marconi Marine Company. In 1955 he was transferred to the company's technical shore staff.
G. C. Briggs, Grad.I.E.R.E., who joined Marconi Instruments in 1959 as a special trainee after 15 years' service in the Royal Navy from which he retired with the rank of lieutenant commander, has become manager, commercial administration. In 1960 he joined

G. C. Briggs
the company's technical sales department and has for some time been field sales manager. He is succeeded in this position by T. L. Clarke, B.Sc. (Eng.), M.I.E.E., who has been with Marconi Instruments as senior representative in the Midland Area since 1963. A graduate of King's College, London University, he served his graduate apprenticeship with B.T.H. During his National Service with the R.E.M.E., he served as a staff instructor on radar equipment at the Army School of Electronics at Arborfield, leaving the Service with the rank of captain. He then joined Iso-

T. L. Clarke
tope Developments Ltd., as a senior development engineer, and from 1957 to 1963 was technical sales manager of I.D.M. Electronics Ltd. Marconi Instruments also announce the appointment of J. H. Buying to the newly created post of manager, overseas projects. He will be responsible for the
smooth running of the Company's overseas manufacturing operations (at present in the U.S.A., Italy and India), whilst also retaining his duties as an export regional manager. Mr. Buying joined Marconi Instruments as an Xray development engineer in 1948, following service with Philips Electrical Ltd. In 1950 he became a service engineer with General Radiological Ltd. but rejoined Marconi Instruments, as a sales engineer in the Export Department in 1954.

Leonard T. Perriam, M.A., who joined Daystrom Lid, of Gloucester, six years ago as technical sales and service manager of the Industrial Products Division, has been appointed managing director. He has succeeded A. E. B. Perrigo, M.Sc., F.I.E.E., who has been managing director since the formation of the company in 1960, and recently took up the appointment of director of the Small Businesses Centre at the University of Aston, Birmingham. Mr. Perriam was for some fifteen years with I.C.I. Ltd., working on instrument development, before joining Daystrom.

L. T. Perriam

Kenneth L. Richardson, a technical systems supervisor at the London Air Traffic Control Centre, Heathrow Airport, has received a cheque for $£ 500$ " in recognition of his suggestion which has led to improvements in the performance of radar displays used by air traffic controllers." The Committee on Awards to Inventors considered that Mr. Richardson had provided an elegant solution to a long-standing problem and had made a significant contribution to safety. Mr. Richardson, who is 43, joined the National Air Traffic Control Service in 1947 and at the time he made the suggestion was engaged on radar maintenance at the London A.T.C. Centre. Now known as Selective Noving Target Indicator, the specification prepared by Mr. Richardson has been developed by Solartron Lid. who have been asked by the Board of Trade to incorporate S.M.T.I. into five longrange radars at Ash (Kent), Ventnor (Isle of Wight), Clee Hill (Shropshire) and East and West Harrow on a trial basis and it will probably be incorporated in radars at ten civil airports.

J. Boldwin

A. Woods

P. Darby

John Baldwin, B.Sc., A.Inst.P., recently joined the I.T.A. as head of the video and colour section of the Experimental and Development Dept. Mr. Baldwin, who is 39, had been chief engineer and research and development manager of Peto Scott Ltd. since 1965. Prior so joining Peto Scott in 1964 he had been for 14 years with Rank Cintel.

Alfred Woods, who has joined the I.T.A. as contracts engineer in the Station Design and Construction Dept., was with E.M.I. Electronics from 1958, latterly as commercial contracts officer. Prior to joining E.M.I. he scrved with R.E.M.E. on a shortservice commission.

Philip Darby, who joined the I.T.A. staff in 1955 as a senior shift engineer at the Caldbeck transmitting station,
is appointed head of the technical quality control section of the Authority's Operations and Maintenance Dept. Mr. Daroy, who is 42, became assistant engmeer-in-charge at the Emley Moor transmitting station in 1956 and has been engineer-in-charge of the Dover transmitting station since 1959.
G. Kaye, M.I.E.E., recently joined ATV Network L.t. (I.T.A. programme contractors for London and the Midlands) as head of enginecring. For the past eleven years he has been with Alpha Television Studios latterly as engineer-in-chief. Mr. Kaye was for two years with the B.B.C. before joining the R.A.F. as a radar mechanic in 1946. After the war he went to E.M.I. Research Laboratories and from 1954-6 was studio manager of High Definition Films Ltd.

NEW YEAR HONOURS

Among the recipients of awards in the New Year Honours list are the following:-

Oliver W. Humphreys, C.B.E., B.Sc., F.Inst.P., F.1.E.E., who was for many years director of the G.E.C. Hirst Research Centre, Wembley, and recently retired as vice-chairman of the General Electric Company and also as chairman of the Conference of the Electronics Industry, has been created a knight bachelor.

C.B.

Captain M. Hodges, O.B.E., M.I.E.R.E., Royal Navy (retired), lately Under Secretary, Cabinet Office.

Ieuan Maddock, O.B.E., F.R.S., M.I.E.R.E., Controller of Industrial Technology, Ministry of Technology.

C.B.E.

B. J. A. Bard, D.I.C., Ph.D., board member and chief executive (department of applied science), National Research Development Corporation.
E. L. T. Barton, O.B.E., M.I.R.E., chief of telecommunications (civil aviation) Board of Trade.
H. K. Robin, chief engineer, Diplomatic Wireless Service, Foreign Office.

O.B.E.

E. R. T. Ponsford, chairman and managing director of Solartron Electronic Group Ltd., for services to export.
W. H. Storey, managing director of Unicam Instruments Ltd., for services to export.

M.B.E.

E. A. Beaumont, superintendent engineer, B.B.C. External Broadcasting.
G. A. C. R. Britton, M.I.E.E., lately senior executive engineer, G.P.O. Radio Planning \& Provision.
A. G. German, M.I.E.E., senior executive engineer, G.P.O.
C. E. Hutchings, assistant station radio officer, Government Communications Headquarters, Foreign Office and Commonwealth Office.
B. B. Learoyd, co-ordinator, colour familiarisation, B.B.C.

B.E.M.

H. E. Wall, receiver technician, B.B.C.

LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his correspondents

"A Genuine Reject?"

PUTTING spurious type numbers on transistors amounts to giving a false description of goods offered for sale. This is an offence. Unfortunately, unscrupulous vendors are likely to get way with it, because the victims are invariably buyers of small quantities, who cannot afford to go to law.

A reasoned complaint is sometimes effective, but if no redress is obtained the buyer should complain to the magazine in which the goods were advertised. The advertisement managers of reputable magazines always pay attention to reasonable complaints
Magazine publishers do possess the ultimate sanction of refusing to accept further advertisements, thereby depriving a mail order firm of its "shop window", and while this sanction is seldom exercised (perhaps too seldom), a reminder that it exists can curb the excesses of some advertisers.
"Unmarked transistors are in quite a different category to "re-marks". The vendor does not often claim that they meet a standard specification, and in practice they range from straightforward factory rejects (including out-and-out duds) to perfectly genuine transistors which conform exactly to a standard specification. The trouble is that there is no way of distinguishing the sheep from the goats. Unless the supplier is prepared to quote a definite specification the description of such goods as "tested" or "guaranteed" is almost meaningless. Even if a specification is forthcoming, the things it leaves unsaid may be more significant than the things it says. A transistor with $h_{1 e}=200$ at $I_{c}=1 \mathrm{~mA}$ may appear to be suitable for use in low-level a.f. stages, but what about leakage and noise? It may have been rejected on these very counts. Testing transistors thoroughly calls for time and proper equipment, and as the specification of an unmarked transistor is made more rigid so the price rises towards that of the genuine article.

There is a third class of transistors: those marked with type numbers, but not type numbers which appear on any transistor maker's lists. They are sometimes peculiar to a large-scale user, such as a computer maker, who
arranges with the manufacturer for a supply of transistors which are a variant on some standard type, but there are other possible explanations, less attractive to the buyer. To my knowledge at least one big manufacturer has been known to mark his own rejects with both non-standard type numbers and the name of an obscure subsidiary company as a 'front' for marketing them.

George Wareham

London, W.C. 2

AS ONE of the " home constructors" referred to in your January Editorial, I welcomed your remarks about "reject" transistors. But what can be done about it? A glance through the smaller display advertisements in that issue reveals the following descriptions:

1. "Genuine brand new products."
2. " 100% tested transistors."
3. "Fully guaranteed devices."
4. "All guaranteed."
5. "Discount transistors."
6. "First grade, guaranteed."
7. "Transistors-not remakes."
8. "Best quality new semi-conductors."
9. "Brand new, first grade and guaranteed."
10. "No duds: uncoded devices."

And many, many more variations, including those that claim "unmarked" as if it were an advantage.

Nor are these the only snags into which the "home constructor" can run, particularly if components for highquality audio equipment are needed. Even a simple piece of equipment can involve six suppliers. My efforts to obtain a series of small non-electrolytic capacitors produced an incredible series of replies ranging from " 6 s each but out of stock" to "£3 each and 26 weeks delivery."

I hate to be able to paint the U.S.A. in a better light, but there one can obtain massive catalogues free and obtain ALL your parts, post free, from one supplier.

Gordon B. Ness
Altrincham, Ches.

The Future of British Electronics

I DISAGREE with your Editorial in the December issue on two counts. First, electronics is now growing from the black box to the systems phase. So long as one was concerned with the production of individual "black boxes", the design of the detailed circuits (i.e. the connecting together of selected discrete components) was the aspect on which the designer exercised his skill. But surely the main concern of the equipment designer now is with systems, and he is not interested in the contents of a package provided it gives him the specification he wants. If an equipment designer can call for an i.c. linear amplifier, in terms of gain, bandwidth, distortion and peak-to-peak output voltage, or a logic circuit in terms of fan-in, fan-out, 0 and 1 levels, propagation, time and noise immunity, is not this better than being
obliged himself to assign a value to every individual component in such a circuit? L.S.I. might be thought to be a move to extend integrated-circuit techniques from the black-box to the systems phase. But the l.s.i. manufacturer could not sell his wares unless either he had engaged in vertical integration, in the economic sense, so that he had changed from being an i.c. manufacturer to being an equipment manufacturer, or he was manufacturing to the requirements of equipment manufacturers. Presumably it is the former alternative which equipment makers fear.

Secondly, I do not like the protectionist idea of a "Buy British Act." Apart from military projects (to which special strategic considerations apply) products should be bought on the basis not of brand image but of specifica-
tion, price and delivery. If British made components cannot compete on this basis, there is no hope for them in the long run. But if British purchasing executives place orders irresponsibly (as suggested in your Editorial), it is the business of the managements who employ them to see that they mend their ways. It must be rare for the merits of rival suppliers to be so finely balanced that they cannot be differentiated until one finds a difference in nationality. If the British component manufacturer is consistently inferior to the foreigner, then the British equipment maker cannot afford to buy British; because if he buys his components for non-commercial reasons the equipment he wishes to sell will not remain commercially competitive.
D. A. Bell

University of Hull.

Identification of Electronic Parts

WE were, of course, extremely interested in Dr. Stanton's letter in the January issue concerning identification of electronic parts under the 8S 9000 scheme run by. the Institution.

You, sir, have partially given the answer to Dr. Stanton in your Editorial, but it is worth adding a few more facts. The committee co-ordinating the implementation of the Burghard recommendations considered very carefully the question of parts identification. They decided that first priority was to get the specification system going and that it would be better to consider an identification code after some viable specifications were in being. It was felt that, when this stage was reached, the practical implications to which you yourself refer on page 619 would be more easily assessed.

It may be of interest that this co-ordinating committee is comprised of organizations representing the manufacturers of active and passive electronic parts and industrial and Government.

Rohn Hopper
British Standards Institution, London, W.1.

Semi-stabilized D.C. Supply

THIE term " semi-stabilized" was used to describe my circuit (October 1967, p. 482) because the stabilization is obtained, not by comparing the output voltage with a reference voltage and then applying a correction, as in a conventional series stabilizer, but by recourse to a sort of "dead reckoning" process. With such a system, the degree of perfection attained in the stabilizing action cannot be made arbitrarily large as it can in theory in a series stabilizer by making the loop gain very high.

Nevertheless, the performance is quite good enough for many purposes. Even without load-current compensation the output voltage of my prototype stays within half a volt of 15 V over the range $0-150 \mathrm{~mA}$. The variation can be reduced to less than 0.1 V by using loadcurrent compensation, and improved still further by the methods kindly suggested by Mr. Peter Williams (November, p. 554). The only serious shortcoming is that if the circuit is set up to give optimum performance at one output voltage it does not necessarily provide optimum performance at other output voltages.

In the revised circuit shown here, Mr. Williams' method of compensating for input-voltage variations by means of resistance \mathbf{R}_{2} is incorporated. With careful adjustment perfect compensation can be achieved at any chosen output voltage. A current-limiting circuit (Trt,

$\mathbf{R}_{10}, \mathbf{R}_{11}$, etc.) has been substituted for the lamp used in the original version. The output current can be limited to anything between about 3 mA and 0.25 A with the values of current-sensing resistance shown. Smoothing capacitor C_{3} has been retained because the optimum setting of R_{7} for supply voltage compensation turned out to be different from the optimum value for hum cancellation. This is presumably an indication that the a.c. impedance of the Zener diode differs from its d.c. incremental resistance. With some output transistors a leakage current of several milliamps flows, and for this reason R_{t} has been reduced to 1 k ? so that the minimum output voltage off load is kept small.
G. W. Short

Croydon

Variants on the Ring-of-two Reference

FIRST may I apologize for a silly slip in my letter published in the November issue. The bridge action referred to for balancing out the effects of supply changes should not have included the combination $\mathbf{R}_{2}+\mathbf{R}_{3}$, but rather the added compensating resistor R_{i}.

The high performance of the single Zener diode form of the ring-of-two reference described by Mr. May (November "Letters") shows the flexibility of this circuit. I agree entirely with him on the self-starting problems that may exist, and in my original letter (September 1966) had described the circuit as "a complementary bistable with catching Zeners." The single diode circuit is a good example of how, even in these days of massively increasing publication, effort is duplicated. I, too, have used it for some time and referred to it in a letter published in June 1967 (p. 301) without knowing of Mr. May's design. Already I have come across half a dozen individuals who have devised variants on the ring-of-two reference quite independently.

It occurs to me that there may be other readers who have done so, or have seen some published information. Might I ask any such to get in touch with me, as it would help me considerably in a research project I have undertaken. In return I would gladly supply them with a complete list of information received should they wish it.

Peter Williams

> Dept. of Elec. Engg.,
> Paisley College of Technology,
> Paisley, Renfrew.

Computer Aided Circuit Construction

MUCH design effort in electronics can be saved by using computers to work out problems which are solvable by a systematic, logical routine. At the Royal Radar Establishment, Great Malvern, experiments are being conducted in using a computer to decide the optimum placing of components on printed-circuit boards-in particular the placing of dual-in-line integrated circuit packages on a rectangular matrix. Ultimately the computer programmes will be used in conjunction with a conductor route running programme to provide a complete placing and interconnection diagram. So far, three programmes, based on two algorithms, have been evolved.

To determine the optimum placing of a package any one of a number of criteria can be used. Two programmes prepared at R.R.E. have as their aims: (1) the minimum number of through connections from one side of the board to the other; and (2) the minimum length of leads between packages. The first programme helps to reduce the number of platedthrough holes required on doublesided boards. If two packages are electrically connected the programme will try to place them in either the same row or the same column of a matrix arrangement. The second programme will try to place packages which are electrically connected as close to each other as possible. An alternative version using a square law tries to reduce very long leads.

A random initial placing is assumed in each case, and then pairs of packages are exchanged in the matrix. At each stage all the possible exchanges are considered, then the
best one is selected. For practical boards the programmes take into account fixed devices such as plugs and sockets, and for a board containing twelve packages and an edge connector a layout can be produced, using about 3,000 words of computer storage, in approximately 15 seconds. Practical boards usually do not have very well defined "best arrangements," and it is sometimes difficult to decide which of two alternatives is really optimum.
R.R.E. are also using computers to design integrated circuits. In general, the computer does d.c. and transient analyses of a theoretical circuit design and from this produces information for the manufacture of the masks used in fabricating the i.cs. A circuit analysis programme for use in the design of m.o.s. integrated circuits has been written. This can analyse any circuit made up of resistors, m.o.s. transistors and their associated capacitances, and has a simple but flexible input code so that it can be used by a circuit engineer with no knowledge of computer programming. The programme has been applied to the design of a four-stage binary counter, containing 84 transistors on a 0.06 -in square silicon chip. Sample devices have been made by using the resulting mask master drawings in Plessey's i.c. manufacturing process. Work has now started on a language for describing integrated circuit layouts to the computer. The stored information will then be used for mask checking, calculation of circuit parameters for use by analysis programmes, and for control of an automatic mask making machine.

Monolithic F.M. Discriminator

A SMALL quartz plate carrying a simple electrode pattern that will detect narrow-band f.m. signals has been developed by Bell Telephone Laboratories, U.S.A. The device eliminates the need for the second stage converter used in many f.m. receivers and is superior to conventional crystal units with comparable bandpass limits. The discriminators can be produced to operate a: frequencies in the range of 10 to 30 MHz with a passband ranging from 0.01%
to 0.02% of the desired midband frequency. The discriminator consists of an AT cut quartz plate 0.5 in \times

0.25 in and a triple resonator array formed by depositing gold electrodes on the two major surfaces. The amount of gold deposited sets the frequency of each region; by this means the centre region is adjusted to resonate at the centre frequency and the outer regions above and below this to give the required passband. The resonant frequencies are determined partly by controlling the mass of the gold deposited and partly by the properties of the crystal. The device operates in a similar fashion to electric circuit discriminators except that the resonators and coupling are mechanical. Electro-mechanical conversion is carried out through the piezo-electric effect.

Picosecond Pulses Observed
 in Q-switched lasers

TRAINS of light pulses with individual pulse lengths in the picosecond region have been discovered in the outputs of ruby and neodymium: glass lasers Q-switched by a rotating mirror. These pulse trains were previously thought to be a single pulse due to the resolution, or lack of it at these speeds, of oscilloscopes. The discovery, made at Bell Telephone Laboratories, U.S.A., made use of a phenomenon known as two-photon fluorescence to display the pulses. Using this method, pulses of less than a fraction of a picosecond may be seen. The train of light pulses to be observed is directed on to a mirror immersed in a fluorescent liquid and the pulses are reflected back on themselves. Two-photon fluorescence occurs at the points where two pulses overlap, causing bright luminous spots to appear. These are photographed and measured to determine their duration. Using this technique, pulses with a duration of about ten picoseconds in ruby lasers and less than one picosecond in neodymium: glass lasers have been observed. Pulses from two to eight microseconds in duration had previously been produced in a neodymium : glass laser Q -switched with a special dye. At the time it was generally believed that the dye was the agent responsible for the appearance of the short pulses. However, the new observations show clearly that the mechanism for the generation of these pulses is inherent in the laser itself.

Emitter-coupled, Emittertimed Multivibrators

2: Monostable circuits

By G. B. CLAYTON, B.Sc., A.Inst. P.

LAST month the advantages of emitter-coupled emittertimed circuits were discussed and the astable multivibrator was looked at in detail. An example of a monostable multivibrator that forms the basis of this month's article is shown in Fig. 13. In the permanently stable state Tr2 is conducting and Tr1 is off. The circuit loop-emitter Trl-collector Trl-base Tr2-emitrer Tr2-emitter Tr 1 -is regenerative and if Tr is brought into conduction, by a positive pulse applied to its base, a regenerative switching action takes place which switches Tr 2 off. The negative step at the emitter of Tr 2 is communicated to the emitter of Tr 1 by capacitor C, diode D 2 is reverse biased. The emitter current I_{e} is transferred to Trl and C charges (Fig. 14) causing the potential at the emitter of Tr 2 to fall towards earth. After a period t_{p}, Tr 2 goes into conduction again and a regenerative action returns the circuit to its permanently stable state.

The waveforms observed in the circuit are shown in Fig. 15. At the end of the timing period the emitter of Trl is driven positive and the capacitor C has then to discharge. The discharging current, in addition to the current through R_{4}, passes through $\operatorname{Tr} 2$ and is responsible for the overshoot in the collector waveform of Tr2. The overshoot decay and recovery time are governed by a time constant $C\left(R_{3}+R_{d}+R_{t}\right)$. Where R_{d} is the effective resistance of diod= D 2 and R_{ℓ} is the input resistance at the emitter of $\operatorname{Tr} 2$. The run down in the emitter voltage of $\operatorname{Tr} 2$ during the timing period is non-linear accounting for the slope in the collector waveform of Trl. The transistors do not saturate and the circuit is capable of producing narrow pulses, Fig. 15 (c) shows a 320 ns . pulse at the collector of Tr2.

A detailed design procedure will not be given since the circuit will operate satisfactorily with a fairly wide range of component values. Care must of course be taken to

Right, Fig. 13. The basic circuit of an emitter-coupled, emiter-timed mono-

lo

Left, Fig. 14. Charging path of Fig. 13 during the quasi-stable state.
ensure that the transistor ratings are not exceeded. The following are some useful design equations;
The pulse width is given by the approximate relationship $t_{p}=C R^{\prime}\left(1-R^{\prime} / 2 R_{4}\right)$. Where $R^{\prime}=R_{1} R_{5} /\left(R_{1}+R_{5}\right)$.
${ }^{p}$ The emitter current of Tr 2 in the permanently stable state is given approximately by:
$I_{e}=V_{c}^{\prime} / R_{4}$, where $V_{c}^{*}=V_{c c} R_{5} /\left(R_{1}+R_{5}\right)$ is the
potential at the base of $\operatorname{Tr} 2$ in the permanently stable state.

The output pulse height at the collector of $\operatorname{Tr} 2$ is equal

Fig. 15. Woveforms of Fig. 13. (a) The upper trace shows the woveform of the emitter and the lower trace the waveform at the collector of TrI. (b) The collector (upper) and emitter (lower) waveforms of Tr2. (c) High speed performance of the monostable; a 320 ns pulse at the collector of Tr 2 the timing copacitor reduced to 330 p .

(a) upper - $1 \mathrm{~V} / \mathrm{cm}$, lower - $5 \mathrm{~V} / \mathrm{cm}$. $5 \mu \mathrm{~s} / \mathrm{cm}$.

(b) $2 \mathrm{~V} / \mathrm{cm}, 5 \mu \mathrm{~s} / \mathrm{cm}$.

(c) upper $-2 \mathrm{~V} / \mathrm{cm} .5 \mu \mathrm{~s} / \mathrm{cm}$. lower - $i \mathrm{~V} / \mathrm{cm} . \quad 0.2 \mu \mathrm{~s} / \mathrm{cm}$.

Fig. 16. An improved emitter timed monostoble.
to $\left(V_{c}^{\prime} / R_{4}\right) \cdot R_{2}$. The fastest switching is realised if the transistors are not allowed to saturate, in the case of Tr 2 the output pulse height should be made less than $V_{c c}-V_{c}^{\prime}$ and for $\operatorname{Trl} R^{\prime}$ should be less than $R_{\mathbb{1}}$ if saturation is to be avoided.

It is advantageous to make $V_{c}{ }^{\prime}$ as large as possible in order that the pulse width should be reasonably stable against changes in the supply voltage $V_{\text {ec }}$ (See appendix). Using the component values shown in Fig. 13 a change in supply voltage from 20 to 30 V was found to change the pulse width by 10%. The trigger sensitivity of the circuit is low. This is to be expected since the triggering pulse has to supply a forward bias to three silicon p.n. junctions (D1, D2 and the base emitter junction of Tr1) before any current can pass in Tr1. This situation can be improved by connecting a $5 \mathrm{k} \Omega$ variable resistor between the positive supply rail and the base of Tr 1 . When this resistance is reduced below a certain value the circuit free runs.
The performance of the circuit of Fig. 13, as far as the stability of the pulse width is concerned can be improved if the emitter resistance R_{4} is replaced by a transistor acting as a constant current source. ${ }^{1}$ An example of a practical circuit using this modification is shown in Fig. 16. This circuit incorporates a trigger sensitivity control in the form of a variable resistor connected between the base of Trl and the stabilized zener voltage upply. The waveforms obtained with this circuit are ${ }_{s}$ hown in Fig. 17. The run down in Tr 2 emitter voltage
is seen to be linear and the bottom of the collector waveform of Trl is flat. The steps in the emitter waveforms occurring at the start of the timing period are smaller than those in Figs. 28 and 29. This fact arises from the small forward biasing of Trl by the trigger sensitivity control.

An expression for the pulse width may be readily obtained if it is assumed that transistor $\operatorname{Tr} 3$ takes a constant current I_{c}. The run down in $\operatorname{Tr} 2$ emitter voltage starts at a value $V_{3}^{\prime}-V_{b e 2}-\delta V_{e 2} \cdot \quad V_{c}^{\prime}=$ $V_{c c} R_{5} /\left(R_{1}-R_{5}\right)$ is the voltage at the base of $\operatorname{Tr} 2$ in the permanently srable state, $V_{b e 2}$ is the base emitter voltage of $\operatorname{Tr} 2$ in this state $\delta \mathrm{V}_{\mathrm{Eg}}$ is the step occuring in the emitter voltage of $\operatorname{Tr} 2$ as it switches off. The run down ends when Tr 2 emitter voltage reaches a value $V_{c}^{\prime}-I_{c} R^{\prime}-V_{b e^{\prime}}$ s $R^{\prime}=R_{1} R_{5} /\left(R_{1}+R_{5}\right)$, is the effective collector load resistance of Trl and $V_{b e}$ ' is the base emitter voltage of Tr 2 when regenerative switching occurs. Capacitor C thus charges through a voitage, $\Delta V=I_{c} R^{\prime}-\left[\delta V_{c 2}+\left(V_{b \epsilon}-V_{b e}\right)\right]$.

The pulse width,
$t_{p}=(\Delta V C) / I_{c}=C R^{\prime}-C / I_{c}\left[\delta V_{e 2}+V_{b e 2}-\left(V_{b e}\right)\right]$.
If the bracketed terms, which are small, are neglected $t_{p}=C R^{\prime}$. Note that the power supply voltage does not occur in this expression for pulse width. In the case of the circuit shown in Fig. 16 a change in supply voltage from 15 to 30 V was found to produce only a 2% increase in pulse width.

A further modification to the basic circuit can be made in order to eliminate the overshoot in the pulse at the collector of $\operatorname{Tr} 2$. An example of a practical circuit in which this modification is incorporated, is shown in Fig. 18. The waveforms produced by the circuit are shown in Figs. 19 (a), (b) and (c).

SAWTOOTH GENERATOR

In the circuit of Fig. 16 the run down in the emitter voltage of transistor $\operatorname{Tr} 2$ is linear enabling the circuit to be used as the basis of a linear sawtooth generator. The collector load resistor of transistor Tr 2 is not required and with it omitted from the circuit, the resistor R_{5} is no longer needed to prevent $\operatorname{Tr} 2$ from saturating. A circuit for the saw tooth generator is shown in Fig. 20.

Fig. 17. Waveforms of Fig. 16 (a) Upper trace-collector, lower-trace emitter, Til (b) upper trace-collector, lower trace emitter Tr2.

(o) upper - $5 \mathrm{~V} / \mathrm{cm}$, Jower $2 \mathrm{~V} / \mathrm{cm}$. $5 \mu \mathrm{~s} / \mathrm{cm}$.

(b) $2 \mathrm{~V} / \mathrm{cm} . \quad 5 \mu \mathrm{~s} / \mathrm{cm}$.

Fig. 19. Waveforms encountered in the circuit of Fig. 18 (o) emitter Trl (b) collector Trl and (c) collector Tr2.

Fig. 20. A linear sawtooth generator circuit.
The measurements made on the practical circuits described would appear to confirm that emitter timed multivibrators possess the desirable features outlined in the introduction. Facilities were not available to test the stability of pulse widths against changes in temperature. The analyses given show that temperature changes may be expected to affect the timing periods because of the $V_{b e}$ terms that appear in the equations. These terms change by a few millivolts per ${ }^{\circ} \mathrm{C}$ change in temperature but the analysis shows that they only have a small effect on the timing periods. The astable circuits are useful as stable frequency pulse sources and the monostable circuits are suitable for use as high speed pulse generators. ${ }^{2}$ The circuits are not really suitable when long timing periods are required as the timing capacitor would need to be excessively large. Base timed circuits are more suitable for low frequencies and long timing periods.

APPENDIX

Derivation of an expression for the pulse width produced by the circuit of Fig. 13. During the quasi-stable period the charging current into C starts at a value $I_{i}=\left(V_{c}{ }^{\prime}-V_{b_{e 2}}-\delta V_{e 2}\right) / R_{4}$ and decays exponentially to a value $I_{f}^{c}=\left(V^{b_{c}^{\prime}}{ }_{c} \cdot-I_{c} R^{\prime}-V_{b e}\right) / R_{4}$ in a time t_{p}.
$\boldsymbol{V}_{c}^{\prime}=\boldsymbol{V}_{c c} \boldsymbol{R}_{5}^{c} /\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{5}\right)$ is the potential at the base of Tr 2 in the permanently stable state. V be2 is the base emitter voltage of Tr 2 in this state. $V_{b e}{ }^{\prime}$ is the base emitter voltage of $\operatorname{Tr} 2$ when switching occurs. $\delta V_{e 2}$ is the step in the emitter voltage of $\operatorname{Tr} 2$ and $R^{\prime}=R_{1} R_{5}^{\varepsilon 2} /\left(R_{1}+R_{5}\right)$ is the effective collector load resistor of Trl. It is assumed that $\alpha_{c b 1}+\alpha_{c b 2}$.
Now $I_{f}=I_{i} \exp .\left(-t_{p}\right) / C R_{4}$ so that $t_{p}=C R_{4} \log _{e} I_{i} / I_{f}$.

Substitution for I_{i} and I_{f} gives:
$t_{p}=\dot{C} R_{4} \log _{e} \frac{V_{c}^{\prime}-V_{b e}-{ }_{2} \delta V_{e 2}}{V_{c}^{\prime}-V_{b e}^{\prime}} \cdot \frac{R_{8}+R^{\prime}}{R_{b}}$
If $V_{c}{ }^{\prime}$ is considerably larger than the other voltage terms we may write an approximate expression for the pulse width.
$t_{p}=C R_{4} \log _{e} \cdot \frac{R_{4}+R^{\prime}}{R_{4}}$
Expanding the log term gives:
$t_{y}=C R_{4} \cdot\left[\frac{R^{\prime}}{R_{4}}-\frac{1}{2}\left(\frac{R^{\prime}}{R_{4}}\right)^{2}+\frac{1}{3}\left(\frac{R^{\prime}}{R_{4}}\right)^{3} \cdots\right]$
$t_{p}=C R^{\prime}\left[1-\frac{1}{2}\left(\frac{R^{\prime}}{R_{4}}\right)+\frac{1}{3}\left(\frac{R^{\prime}}{R_{4}}\right)^{2} \ldots\right]$
provided that $R_{4}>R^{\prime}$. If $R_{4} \geqslant R^{\prime}$ then $t_{p} \approx C R^{\prime}$.

Correction: Amend caption of Fig. 2 to read "below" and caprion of Fig. 3 to read "above" (not right and left). The lower end of R_{1} (Fig. 6) should be connected to the base of Tr2.

Do you want a job in electronics that is something out of the ordinary? Would you like to be in daily contact with, and extending your knowledge of, the whole field of electronics and communications? Do you want to travel and meet people? Would you like the opportunity to develop your own interests, theoretical or practical, in this field? Do you enjoy doing something creative and working on your own initiative?

If so, and you have a flair for writing, you may not realize it but you are a potential technical journalist. So why not consider joining the editorial staff of Wireless World

> (see advertisement on p.l14)

The Simple Transistor Equivalent Circuit

and the Impedance Transforming Node

By R. V. LEEDHAM, ${ }^{\star}$ B.Sc.Tech., M.Sc., C.Eng.

T
HE idea that a transistor may be used in a similar way to a transformer for the conversion of impedance levels in problems of matching loads to generators, and devices to one another, is familiar to circuit designers. This property of impedance transformation is due to a particular arrangement of one of the nodes in the T equivalent circuit of the transistor, and it will be shown how the effect occurs, and how the simple T circuit may be used for approximate circuit analysis by inspection, without the tedious algebra of an exact analysis.
The simple T equivalent circuit for the transistor is shown in Fig. 1. The element r_{c} has been omitted from the exact circuit, removing the internal feedback, and leaving the transforming node b^{\prime} in its pure form. The

Fig. I. Simple Ttransistor equivalent circuit

Fig. 2. Transforming node input on 'base' side

Fig. 3. Transforming node input on 'emitter' side

Fig. 4. Ideal tronsformer

essential elements of the node are shown in Fig. 2 together with an impedance z which includes the emitter resistance r_{θ}. The important property of this node is that one node current is a linear function of one of the other node currents. In this case, αi_{e} is directly proportional to i_{e}. In order to determine the apparent impedance between the terminals shown, assume an input step δv, then $\delta i=\delta i_{e}-\alpha \delta i_{e}=\delta i_{e}(1-\alpha)=\frac{\delta i_{e}}{\alpha_{e b}}$
where $\alpha_{e b}$ is the current gain between base and emitter, and is related to the current gain between base and collector by

$$
\alpha_{e b}=\alpha_{c b}+1
$$

The test potential step may be equated to the circuit parameters

$$
\delta v=\delta i_{e} z=\alpha_{e b} \cdot \delta i . z
$$

and the apparent impedance is given by

$$
\frac{\delta v}{\delta i}=\alpha_{e b \cdot z}
$$

i.e. the impedance z appears to be increased by the factor $\alpha_{e b}$ when seen from the base connection. This impedance transformation works both ways, and Fig . 3 illustrates the effect of an impedance z in the base lead (including $r_{b b}{ }^{\prime}$). In this case when we apply the test signal δv the current drawn from the generator is δi_{e}. The current through z however is

$$
\delta i_{e}(1-\alpha)=\frac{\delta i_{e}}{\alpha_{e b}}
$$

and hence the potential difference produced across z is

$$
\delta v=z \times \frac{\delta i_{e}}{\alpha_{e b}}
$$

and the apparent impedance is

$$
\frac{\delta v}{\delta i}=\frac{z}{\alpha_{e b}}
$$

In this case the impedance z has been reduced by the factor $\alpha_{e b}$. This impedance transformation effect is entirely due to the fact that two of the node currents are related by a constant factor. The effect is similar to that of the ideal transformer shown in Fig. 4, of ratio $1: n$. The relationships in this case are well known to be

$$
\frac{v_{2}}{v_{1}}=\frac{n}{1} \quad \frac{i_{2}}{i_{1}}=\frac{1}{n}
$$

and the apparent impedance

$$
\frac{v_{1}}{i_{1}}=\frac{v_{2}}{n} \cdot \frac{1}{n i_{2}}=\frac{z}{n^{2}}
$$

a transformation ratio of n^{2}.
The transformer is a more versatile component than

* University of Bradford.
the transforming node, since both the current and voltage are transformed in the ratio n, whereas in the case of the node the current only is transformed. Using the idea of the transforming node, the input impedance and gain of a transistor circuit may be written by inspection. The method gives no indication of the output impedance of the transistor, but this is not very serious, since the output impedance is high, normally, compared with the load which shunts it. Examples of the method are given below.

COMMON COLLECTOR

The basic circuit is shown in Fig. 5. It may be seen that the input impedance is given by the sum of $r_{b b}{ }^{\prime}$ and the effect of the transforming node on r_{e} and R_{L}.

$$
R_{i n}=r_{b b}^{\prime}+\alpha_{e b}\left(r_{0}+R_{L}\right)
$$

Fig. 6 shows the circuit for the calculation of output impedance. The impedance is seen to be

$$
\boldsymbol{R}_{o u t}=r_{a}+\frac{\left(r_{b b}^{\prime}+\boldsymbol{R}_{s}\right)}{\alpha_{e b}}
$$

The voltage gain is seen to be that of an attenuator, from Fig. 5, of

$$
\text { gain }=\frac{\alpha_{e b} R_{L}}{r_{b b}^{\prime}+\alpha_{c b}\left(r_{e}+R_{L}\right)}
$$

COMMON EMITTER

The circuit is shown in Fig. 7 and the circuit parameters of interest may be written down as

$$
R_{i n}=r_{b u}^{\prime}+\alpha_{e b}\left(r_{e}+z_{e}\right)
$$

The gain is obtained as follows.

Consider the attenuator giving the potential at b^{\prime}. The attenuation factor is

$$
\frac{\alpha_{e b}\left(r_{e}+z_{e}\right)}{r_{b b}^{\prime}+\alpha_{e b}\left(r_{e}+z_{e}\right)}
$$

the current i_{e} is given by the attenuated signal at b^{\prime} divided by the impedance $r_{e}+z_{e g}$, and the output signal is $\alpha . i_{e}$.

$$
\begin{gathered}
\text { gain }=\frac{\alpha_{e b}\left(r_{e}+z_{e}\right)}{r_{b b}^{\prime}+\alpha_{e b}\left(r_{e}+z_{e}\right)} \cdot \frac{1}{\left(r_{e}+z_{e}\right)} \cdot \alpha \cdot R_{\Delta} \\
=\frac{\alpha_{c b} R_{b}}{r_{b b}^{\prime}+\alpha_{e b}\left(r_{e}+z_{e}\right)}
\end{gathered}
$$

COMMON BASE
The circuit is shown in Fig. 8. The circuit parameters of interest are

$$
R_{i n}=r_{e}+\frac{r_{b b}^{\prime}}{\alpha_{e b}}
$$

and, by inspection, the voltage gain is

$$
\text { gain }=\frac{\alpha \cdot R_{L}}{r_{e}+\frac{r_{b b}^{\prime}}{\alpha_{e b}}}
$$

In some cases it is possible to include the effect of the component r_{c}, but the effect is often complex due to 'Miller effect' and other feedback aspects. The method is presented as a quick first approximation analysis to facilitate design synthesis, to be followed by exact analysis when the design is completed.

VVURLD OF AMATEUR RADIO

Antique Wireless Association

Mrs. Marion Armstrong, widow of Edwin H. Armstrong, the f.m. pioneer, was guest of honour at the fifth annual convention of the Antique Wireless Association held recently in' the Henry Ford Museum, Dearborn, Michigan, U.S.A. Among the historical radio items on display in the Museum are the original rotary gap and condenser used at station NAA (Arlington, Va), the McMurdo-Silver historical collection of valves, early de Forest equipment (including a Syntonizer and a 1907 U.S. Navy "singing arc" radiophone), as well as much early amateur equipment. During the convention Mr. Henry Houck (Major Armstrong's assistant) demonstrated one of the first superheterodyne receivers developed by Majer Armstrong. The receiver was later donated to the Museum by Mrs. Armstrong. The call sign of the Antique Wireless Association, an amateur radio organization interested in the history of early wireless, is W2AN. The Association maintains a muscum of historical equipment at Holcolmb, New York, the earliest example on display being a replica of the spark transmitter and coherer used by Marconi in his initial tests. Secretary of the A.W.A. is Mr. Bruce Kelley (W2ICE ex-8ACY) of Main Street, Holcomb, N.Y., who also edits The Old Timers' Bulletin, published quarterly. Is is not time a similar organization was established in the United Kingdom to document the history of wireless and the work of its pioncers?

Eye Bank Network.-Dr. Alson E. Braley (WOGET), Professor of Ophthalmology of the University of Iowa, received the first annual Achievement Award of the Medical Amateur Radio Council for founding the Eye Bank Network in December 1962. The purpose of the network, operated by radio amateurs, is to provide rapid, inexpensive and efficient communication once a day, to make known to participating eye banks throughout the United States of America any emergency requirements for eye tissue and where such tissue is available. The sight of scores of patients has been saved since the network was founded.

Australian Intruder Watch.-Nearly 20 years ago the R.S.G.B. set up an organization to report on the presence in "exclusive" amateur bands of broadcast and commercial stations. Known as an Intruder Watch the organization continues to submit regular reports to the G.P.O., who take action, when appropriate, to have the offending stations removed. Since that time Intruder Watch organizations have been established by national amateur radio societies in a number of countries including the U.S.A. Latest addition to the list is the Wireless Institute of Australia.

Belgium-Netherlands Amateur TV Contact.-Thanks to having been granted a temporary (three-day) licence by the Belgium authorities, Gaspard de Wilde (ON4ZK) in Dessel (Province of Antwerp) was able to achieve the first two-way amateur television contact on 70 cm between his country and the Netherlands when he worked A.H.M. Lambriex (PAOLAM) in Reethoven, on October 27th, at 19.30 G.M.T., over a distance of 24 km . M. de Wilde has also received amateur television from PAOCOB (The Hague) and from G3NOX (Saffron Walden, Essex).

Reports on Two-metre German Beacon.-First U.K. reception reports of signals from the German beacon station DLOPR at the Lindau Ionospheric Observatory operating on 145.97 MHz , have reached the R.S.G.B. from R. A. Ham, of Storrington, Sussex. Signals were first heard on November 21 st, at readability 5 and signal strength varying from 2 to 5 from 08.30 to 09.30 G.M.T. Further reports will be welcomed by the Society's Scientific Studies Committee, 28 Little Russell Street, London, W.C. 1.

International DX Competition.-Amateurs throughout the world are invited to participate in the 34th A.R.R.L. International DX Competition for which special certificates of performance will be issued to the top telephony and telegraphy scorers in each country. In addition, plaques will \mathbf{t} : awarded to continental high scorers-single-operator, telephony and telegraphy. The competition will take place during the weekends February 3/4 and March 2/3 (telephony) and February 17/18 and March 16/17 (telegraphy). The object of the contest is for stations outside the U.S. and Canada to work as many of the 48 United States and Canadian call areas as possible. Further details and \log forms can be obtained from A.R.R.L., 225 Main Street, Newington, Conn., 06111, U.S.A.
A.R.R.L. 1967 DX Contest.-The leading U.K. station in the 1967 A.R.R.L. Telegraphy Contest was D. Gibson (GI3OQR), Co. Tyrone, N. Ireland, with a score of $1,886,304$ points obtained from 2,807 transatlantic contacts made during an operating time of 70 hours. Leading English station was that of C. R. Perks (G4CP), Walsall, Staffs, whose score cf $1,446,552$ was obtained from 2,199 contacts in a 40 -hour operating period. In the Telephony Section the leadirg U.K. entrant was L. F. Coursey (G.4JZ), Birdlip, Glos, who had a score of 1,171,596, obtained from 2,194 contacts in an operating period of 53 hours.

Top European Memberships.-The German amateur radio society (D.A:R.C.) recently reported a total membership in excess of 18,000 , of whom more than half hold a transmitting licence. As at June 30th, 1967, the total membership of the Radio Society of Great Britain stood at 13,400 (an increase of 115 since the same date in 1966) of whom 7,945 (including a large number of overseas members) held a transmitting licence. At the same date there were 12,308 Class A Sound Licences in force in the U.K. The rapid growth of the amateur radio movement in the Federal German Republic can be attributed, in full measure, to the efforts made by D.A.R.C. to cater for "Der Jungamateur," a section of each issuiz of DL-QTC-the society's journalbeing devoted especially to their interests.
R.S.G.B. President.-John C. Graham (G3TR), of Crawley, Sussex, was instalied as the 34th president of the Radio Society of Great Britain at a recent informal meeting of members at the Kinglsey Hotel, London, W.C.1. Mr. Graham has been a member of the Scciety for more than 30 years. Professionally he is senior air traffic controllei at Gatwick Airport.

OSCAR News Bulletins about satellites designed to carry amateur radio equipment into orbit are transmitted by W6ASH on Fridays at 02.00 G.M.T, on 14.03 MHz and at $05.00 \mathrm{G} . \mathrm{M} . \mathrm{T}$. on 7.015 MHz . The European OSCAR constructed by the German amateur Karl Meinzer (DJ4ZC) and the Australian OSCAR, constructed by a team of radio amateurs associated with Melbourne University, are both in the U.S.A. waiting to be launched.

Change of Name.-The title of the R.S.G.B. Bulletin, known throughout the world of amateur radio as "The Bull," has been changed to Radio Communication. The official journal of the Radio Society of Great Britain first appeared in July 1925 as the $T \mathcal{E} R$ Bulletin. It remained the title until July 1942, although the Transmitter \& Relay Section of the Society ceased in December 1926. The T \& R Section came into being during September 1923 to safeguard the interests of the transmitting amateurs, many of whom considered too much attention was being given by the Society to bresdcasting matters and to the interests of broadcast listeners; broadcasting having commenced in the United Kingdom in November 1922.

John Clarricoats, G6CL

Pin-board Construction

A simple, beginners' circuit-building technique employing a circuit diagram as a guide to layout
By G. W. SHORT*

IT is very difficult for the beginner or young constructor to perform the mental contortions necessary to turn a theoretical circuit into a practical layout, and even if he manages this feat, or has it done for him, useful working concepts, such as the idea of signals flowing from left to right, or the positive line always being at the top, are destroyed, unless one uses an inordinate quantity of terminal blocks.

The practical difficulties are manifold. First, screwdown terminal blocks are not very reliable as a means of making connections, at least not in the hands of a young constructor. The actual connection is hidden away inside the block, and so cannot be inspected. Dimensions of the blocks impose limitations on the components which can be used with them. Epoxyencapsulated transistors with half-inch leads have to be mauled in order to make them span three adjacent terminals. Short-lead second-hand resistors and capacitors are likewise awkward, and the assembled circuit often looks clumsy. Certain educational circuit-construction techniques were considered, but were rejected because of their high cost. However, from these, and demonstration circuits seen at exhibitions, the simple constructional technique discussed here was developed. The main problem was the method of making joints. If the ends of leads can first be wrapped round a fixed, rigid post even an eleven-year-old can then solder them. Suitable posts can be provided by hammering ordinary domestic electro-plated pins (which solder well) into a piece of wood and then cutting off their heads with wire snippers, leaving about a quarter of an inch of stem showing.

Suitable materials for the baseboard are hardboard, soft wood, and the "sandwich board" which has an inner core of softwood and outer skins of veneer, even plywood can be used if not too hard. Whatever is used, it must be dry. If thin materials such as hardboard are used, the points of the pins come through, and should be filed off to avoid scratching surfaces on which they are laid.

Fig. 1. The circuit diagram is drawn in the usual way, except that the transistor electrode connections are positioned so as to correspond with the tronsistor header. In this circuit the only transistor which requires special treatment is the 2N3702, which has its leads in a straight line with the collector in the middle.

Fig. 2. Ordinary household pins are hammered in at every connecting point.

Fig. 3. Adding a choke increases r.f. gain. By-passing the $680-0 \mathrm{hm}$ resistor to o.f. reduces noise.

The layout problem is solved by working directly from a circuit diagram, drawn out large, so that the actual components can be laid over their symbols on the paper. Transistors are drawn both symbolically and physically, so that the connections are quite clear (Fig. 1). This circuit diagram is placed on the baseboard, and pins are knocked in at every junction point (Fig. 2). The lines and symbols then form a direct guide for wiring-up. Errors will be at a minimum, and are easily checked by inspection, and soldered joints can be inspected. Straight connections which do not cross other wires are first put in using bare wire, and soldered. Crossing-over wires are next put in, with insulated wire. The passive components come next, and finally the transistors. Variable capacitors, volume controls, and earphones are at first connected by long leads, then, when the equipment is working, they can be accommodated on a front panel.

Pinboard construction is very simple and adaptable. If for example, the leads of a resistor prove to be too short to span the gap between a pair of pins, it is a simple matter to drive in an extra pin and complete the connection with ordinary wire. Modifications are easily made, because the layout is necessarily open and accessible. Testing is likewise easy. Apart from its cheapness and simplicity, this method has the great advantage that the beginner is not tied to very elementary circuits. There is no reason, for example, why his first radio receiver should not be something more than a mere toy.

The accompanying diagrams show how the basic radio receiver of the pin-board (Fig. 1) can be gradually im-

[^3]proved. Adding a choke (Fig. 3) increases the r.f. gain substantially. It then becomes apparent that the signal-to-noise ratio is poor (because the wide-band r.f. amplifier generates a.f. noise). Adding an a.f. bypass capacitor across the resistive part of the load of 2N3702 takes care of this, but if its capacitance is too large, I.f. relaxation oscillations may occur, because of the phase shifts round the d.c. feedback path over the first three stages. The easiest way to add reaction (improving selectivity) is to connect a wire to the live side of the aerial tuned circuit, and place the other end somewhere near the collector load (680Ω) of the second transistor 2N3702 (Fig. 1). The audio output can be progressively increased by means of the amplifier circuits of Figs. 4 and 5.
Although the pin-board method was devised for the

Fig. 4. Simple two-stage class A amplifier. The current droin is $8-35 \mathrm{~mA}$, depending on the speaker impedance. A power output of about 10 mW is delivered to a load of $20-40 \Omega$ and loads up to 200Ω may be used without change of component volues. For higher loads, or headphones, the bias resistor is $8.2 \mathrm{M} \Omega$, and the current taken is 1.5 mA .

Fig. 5. Complementary a.f. amplifier. With sine-wave drive this delivers 60 mW to an 8Ω load. Speakers of any higher impedance may be connected.
beginner, it is also useful for experimental circuits, since it is very quick, and the chances of making a wiring error are small. Quite compact layouts are possiole, and a number of circuit "cards" can be stacked in a complete equipment. The usual type of pin, known as a "standard short white," is one inch long, strong and easy to handle. The cut ends are rather sharp, however, and if this is considered a serious hazard it is better to use shorter pins and leave the heads on. The type known as "lills," which are half an inch long are suitable.

H. F. PREDICTIONS - FEBRUARY

- MEDIAN STANDARD HUF
- - - - optimum traffic frequency
--..--.- LOWEST USABLE HF

Daytime maximum usable frequencies continue to peak around 35 MHz . Duration and timing of these peaks depends on relative longitudes of the stations; high MUFs occurring when both ends of a path are in daylight. On the South African route conditions on frequencies between 23 and 30 MHz should be excellent. The South American route will be similar.

Hong Kong being a long-distance east-west route will be difficult due to the almost continuous change of MUF and probably be unworkable from midnight to dawn G.M.T.

The great-circle path to Montreal crosses the North Auroral zone. To allow for expected periods of high attenuation the curve for the lowest usable frequency has been amended.
LUFs shown are for reception in the U.K. of automatic telegraphy but serve as a guide for all types of service.

Ferrite Aerial Receivers

Setting up known fields in a loop aerial for receiver alignment

RECEIVERS designed for use with outdoor aerials are, of course, tested or aligned by injecting a modulated signal into the aerial terminal from a signal generator, and a suitable indicating device is used to measure the a.f. output.

However, receivers that use a built-in ferrite aerial pose two problems. How should the signal-generator voltage be injected, and how can the final sensitivity be assessed?

The first problem is usually overcome by using a little ingenuity in devising a loop of wire which, when connected to a signal-generator, can set up a field in the vicinity of the ferrite aerial. Such a field can be adjusted by varying the position of the loop with respect to the aerial rod, and alignment can be carried out quite satisfactorily using this method for injecting a test signal. But what of the funal sensitivity? It is not possible to know whether the overall sensitivity of the aligned receiver is up to standard. The performance cannot be related in any way to the signal generator output setting.

Many transistor receivers that use a built-in ferrite aerial have provision for connecting an external aerial. It is a convenient way of using a portable receiver with, say, a car aerial. A signal generator test signal can be injected into the aerial socket of such a receiver, but the results will, generally, be meaningless in terms of receiver sensitivity. The coupling provided in the receiver between the ferrite tuned circuit and the aerial socket can be carried out in a number of possible ways, none of which provides a clear relationship between the signal generator output setting and the sensitivity of the receiver to a known field strength.

It is possible, however, to set up a known field by using a signal generator to drive a current round a suitable loop aerial. The resulting field in the vicinity of the loop can be determined, and the receiver aerial can be positioned in the field.

By passing a current through a loop, a magnetic field, H, is produced. This field can be related to an equivalent electric field component, E, by the relationship $E=Z H$, where Z is the impedance of free space ($Z=377 \Omega$).

The magnitude of the field strength produced by a single-turn circular loop is given by

$$
\begin{equation*}
E=\frac{60 \pi r_{1}^{2} I}{\left(d^{2}+r_{1}{ }^{2}+r_{2}{ }^{2}\right)^{3 / 2}} \sqrt{1+\left(\frac{2 \pi d}{\lambda}\right)^{2}} \cdots \tag{1}
\end{equation*}
$$

where
$E=$ equivalent free-space field strength (V / m)
$r_{1}=$ radius of tranmitting loop (m)
$r_{2}=$ radius of receiving loop (m)
$d^{2}=$ axial spacing between loops (m)
$I=$ transmitting loop current (A)
$\lambda=$ wavelength (m).
The magnitude of the field is substantially independent of frequency up to about 10 MHz if the spacing, d, is kept low. Useful fields can be generated up to about 30 MHz .
† National Bureau of Standards Circular 517, December 1951.

By

R. S. ROBERTS*
 M.I.E.R.E.

The stubindicates the centre of the loop from which the receiver coil should be spaced axially 24 in .

Examination of equation (1) suggests that a few simplifications and expedients can be adopted to assist in turning it into practical form:-
(a) Making the transmitting loop 10 in (0.254 m) dia.
(b) Determining d as 24 in (0.6 m).
(c) Ignoring r_{2}. The radius of most receiver aerial coils using ferrite rod cores is, generally, about 0.5 cm .
(d) Ignoring the last part of the equation, under the root sign.

Re-writing equation (1) in these terms gives $E \approx 13.12 I$.
. \because (2) \because
Using a three-turn loop, equation (2) becomes $E \approx 39.36 I$.
If this loop is driven from a signal generator, the current I is conveniently determined by placing in series with the loop a resistance which is large in value compared with the loop reactance. This resistance value is particularly useful if it is about 390 ohms . If the loop is then driven by, say, 1 V from a low-impedance generator, the current through the loop is then $\approx 1 / 390 \mathrm{~A}$ and, from equation (3), the field E is $0.1 \mathrm{~V} / \mathrm{m}$. In other words, the generated field strength in V / m will be -20 dB on the signal-generator output voltage setting.

The loop requires screening in order to minimize "vertical effect" and is, preferably, driven from a balanced source. The device is easily constructed, and the photograph shows one version. The three turns of insulated wire are threaded into a loop which is made from $3 / 8$ in diameter aluminium tube. The loop is split at the top by means of an insulating sleeve. and is secured in a suitable base that houses the $390-\Omega$ series resistor and the end of the feeder cable.

The model shown is unbalanced, and the feed cable is a length of $75-\Omega$ coaxial. The cable length is not very significant when the device is used in the m.f. and 1.f. bands but, if it is to be used up to 30 MHz , the length should not be an appreciable fraction of a wavelength. Although the device is not a precision instrument the fields generated on the long- and medium-wave broadcast bands are surprisingly accurate, with increasing errors up to 30 MHz , where the error is about 2 dB .
The author thanks the directors of Antiference Ltd. for permission to publish this article.

[^4]
Miles-per-Gallon Meter

An electronic motoring aid

By D. J. GROVER, B.Sc.

THE meter described here indicates continuously miles per gallon when installed in a car; it makes use of facilities already available to obtain the necessary information, namely, distance and fuel flow. The rate of petrol flow is measured by using pulses obtained from an electric petrol pump. Unfortunately the quantity obtained at each stroke varies with the rate of pumping due to inertia of the liquid, distortion of the diaphragm and valve leakage. However, over the practical operating range this variation is nearly linear with speed and may easily be compensated for electronically. A measure of distance is obtained from the odometer which contains a mechanism which reciprocates at the rate of one cycle per 32.5 yds . It is a simple matter to mount an insulated contact which is shorted for approximately half the cycle of this lever. It would have been preferable to have a contact which was shorted to ground for a very small time compared with the cycle time, but this was difficult to achieve in practice so as near a 50 : 50 ratio as possible was chosen.
The circuit generates a voltage which is proportional to the number of strokes of the petrol pump over the distance indicated by the odometer contactor. This voltage is stored and fed to a meter while the calculation for the next distance period is being carried out. The "working" stroke of the petrol pump generates a positive going 12 V pulse which is fed to a diode-transistor pump formed by $C_{1}, C_{2}, \operatorname{Tr} 1, \mathrm{D} 2$ via capacitor C_{1} (Fig. 1). Capacitor C_{2} therefore assumes a potential proportional to the number of pulses entering C_{1} until it is reset to zero by switch P. Tr2 is an emitter-follower whose function is to buffer C_{2} from the storage capacitors C_{3} and C_{4}. Assume that Q is in the position shown and that X is open and Y closed. The meter, M, will now be deflected if there is any charge in capacitor $C_{4} \quad C_{3}$ will follow the potential on C_{2} until a reset pulse is imminent. When this pulse arrives Q changes over and P momentarily shorts C_{2} to earth. Y opens and X closes so that the voltage stored in C_{3} now feeds the meter. C_{2} again assumes a voltage proportional to the number of strokes of the petrol pump and $\operatorname{Tr} 2$ charges C_{4} until a reset pulse is again imminent. When this occurs the

Fig. I Illustroting the computing methad employed.
D. J. Grover graduated in physics and mathematics at University College, London, in 1953. After several years of circuit development work in this country he spent three years in the U.S.A. Returning to the U.K. in 1963 Mr. Grover joined Marconi Instruments and later went to Cossor Electronics as a senior systems engineer.
process repeats itself. It is evident that the meter deflection will be proportional to the number of strokes of the petrol pump between operations of the reset switch P. The current generator I compensates for leakage etc., in the petrol pump and capacitor C_{5} smooths the drive to the meter.

Contact K of the petrol pump (Fig. 2) assumes earth potential during each activation stroke. A connection is easily made to this to provide the required 12 volt pulse. The quantity of petrol per stroke varies with the rate of pumping as shown in Fig. 3. At low pumping rates pump efficiency is poor due to leakage past the inlet valve. At higher rates of pumping the efficiency is increased due to the inertia of the liquid and the pump armature. The characteristic over the range of interest, between $0.4 \mathrm{sec} . /$ stroke and $4 \mathrm{sec} . /$ stroke, is sufficiently linear for a simple correction to be applied electronically. It is shown in the appendix that the characteristic of Fig. 4 is equivalent to a discharge of 3.23% per sec.

A four pole four way relay is controlled by the contact in the odometer so that it is energized and de-energized every 32.5 yds , with a ratio of approximately $50: 50$. The spacing of the contacts A-H is indicated diagrammatically in Fig. 4. The moving contacts B \& C are connected together and adjusted to give a make before break action between $\mathrm{A} \& \mathrm{D}$. A \& D are therefore shorted momentarily each time the relay operates. F \& G are connected together and adjusted to give a break before make changeover between E \& H . The contacts were further adjusted so that the break of FG occurred before the make of BC in both directions. The effect is to short D momentarily to earth while FG is travelling between E\&H.

CIRCUIT DESCRIPTION

The circuit diagram is shown in Fig. 2. The 12 V pulses from the petrol pump enter via diode D1, this eliminates the negative spike occurring when the pump coil is opencircuited. R_{1} discharges C_{1} to -12 V after each pulse. $C_{1}, C_{2}, \mathrm{Tr} 1, \mathrm{D} 2$ form the diode-transistor pump, a silicon diode D3 providing some compensation for the emitter-base voltage drops of $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ or $\operatorname{Tr} 4$. The current generator for compensating for petrol pump leakage is provided by R_{2}. The switch J is the contact in the odometer; imagine that this contact is open (relay not energized) the contacts FG are switched on to E , and BC to $\mathrm{A} . C_{3}$ assumes the voltage applied

Fig. 2. Circuit diagram and the method of adjusting the relay contacts.
to C_{2} via the emitter follower $\operatorname{Tr} 2$. The function of switch X (Fig. 1) is performed by grounding the collector of $\operatorname{Tr} 3$ via R_{0}; since BC is shorted to A which is at ground. Silicon transistors are used for $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ and since their emitters are limited to the order of 100 mV by the meter, the grounding of the collectors prohibits transistor action even in the inverted mode. The potential on C_{4} feeds current to the base of $\operatorname{Tr} 4$ which amplifies it to drive the meter.

The closing switch J energizes the relay and $B C$ switches to D and FG to $\mathrm{H} . \mathrm{D}$ is grounded during this transition and discharges C_{2} via D3 to ground. BC approaches -12 volts enabling $\operatorname{Tr} 3$ to amplify the current from C_{3} and D 3 is reverse biased. C_{4} now assumes the charge across C_{2} and Tr4 is immobilized by grounding its collector via R_{7} to switch J. It is necessary that resistors R_{4} and R_{5} be sufficiently large to prevent appreciable discharge of C_{3} and C_{4} when feeding the meter. Tr3 and Tr4 must be matched, any slight variations in gain being compensated for by adjusting the value of R_{4} and R_{5}. The resistors R_{6} and R_{7} protect the meter in the event of one of the transistors going short circuit and also safeguard $\operatorname{Tr} 4$ from the inductive voltage spike generated by the collapsing field across the relay coil when J opens.

CALIBRATION

It is shown in the Appendix that the ratio of close/open periods of the relay has a secondary effect provided the periods are nearly equal. The ratio may be checked in a number of ways. A lamp or counter, switched by a relay contact, forming a suitable indicator, the number of counts being recorded over a known distance. Fig. 4 shows an alternative method for measuring the open/close distance ratio; it can also be used for measuring the relay shorting period. The capacitor C is alternatively charged and discharged between earth and -12 volts. Prowided the time constant associated with R_{2} and the meter resistance is sufficiently large, compared with the relay period, then the voltage across capacitor C remains essentially constant at V. Then:

$$
\frac{T_{12}}{T_{0}}=\frac{V}{12-V} \quad\left(\frac{T_{12} \text { is time } \mathrm{A} \text { is at } 12 \mathrm{~V}}{T_{0} \text { is time } \mathrm{A} \text { is at } 0 \mathrm{~V}}\right)
$$

Fig. 3. The characteristic of the petrol pump in the writer's car.

Fig. 4. The circuit employed for period rotio measurement.

The close/open distances in the author's case were 11.5 millimiles and 7.3 mmls giving a ratio of $1.55: 1$.

The meter is calibrated by simulating normal operating conditions. The pulses from the pump are simulated by grounding the input diode Dl with a switch or bellpush ($\mathbf{S} 1$). The car is moved until contact J is open and a second switch (S2) wired in parallel. The quantity of petrol corresponding to a pulse at D1 is known and the average distance travelled, for J to be switched, is also known. Hence by switching S1 n times for every throw of $\mathbf{S} 2$ (at a rate which is within the normal operating range) until the meter reading is steady, the deflection for a known rate of consumption is obtained. The deflection for an integral number of m.p.g. is readily interpolated if a scale is retained on the meter for this purpose.

As explained in the appendix a correction is necessary if the relay does not operate on a $50: 50$ duty ratio. For the ratio quoted ($1.55: 1$) the meter drive will be 5% higher when caused by the manual means described than when created by normal operating conditions.

The variation of battery voltage between charging and discharging is sufficient to give an unacceptable error. Accordingly the power supply to the circuit must either be stabilised with a zener diode or the calibration performed with the battery on charge.

The choice of the ratio of capacitors C_{1} and C_{2} is a compromise between generating a voltage step large enough to make semiconductor junction variations negligible and the probability of the voltage on C_{2} approaching the supply voltage thereby saturating transistors Trl and Tr2. A ratio of $1: 5$ was chosen to give steps of approximately 2 V . Six pump strokes in a distance of $11.5 \mathrm{~mm}!\mathrm{s}$ at $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. corresponds to $5.4 \mathrm{~m} . \mathrm{p} . \mathrm{g}$. The heaviest consumption occurs at lowest speeds during acceleration where the decay of the capacitor voltage permits seven steps without saturation. The maximum time between resets will depend on the lowest speed at which a measurement is desired. At $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. the time to cover 11.5 mmls is approximately 4 seconds. The potential on C_{2} will vary by 5% of 2 V in this time if the leakage current is $2.5 \mu \mathrm{~A}$. Since this leakage may be compensated for in the value of R_{2} (the system can be calibrated empirically) leakage can vary by this amount. The time constants $C_{3} R_{4}$ and $C_{4} R_{5}$ must also maintain the stored potential within acceptable limits. The decay will be less than 5% in 4 seconds if the time constant exceeds 80 seconds. The value of C_{5} will depend on the conditions of use and the response time required.
R_{3} must discharge C_{3} or C_{4} during the shortest summing time. $7 \mathrm{~mm} / \mathrm{s}$ at $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. corresponds to 0.36 seconds. It is unlikely that consecutive sums will differ substantially, however, for a time constant of 0.39 sec ., C_{3} or C_{4} will discharge to 40% of the initial value in 0.36 sec . The base current of Tr 2 if significant, will cause a variable discharge of C_{2}, however it may be used to supplement $I R_{2}$, particularly if R_{3} is taken to +V .

APPENDIX

Suppose the petrol pump to have a linear characteristic extending from a stroke of period 0 seconds to the range of interest. (In practice, only that portion of the characteristic which coincides with the actual pump characteristic between 0.4 seconds and 4 seconds will be used.)
Let $Q \gamma$ be the quantity of petrol pumped per stroke of period γ, then for a linear characteristic:

$$
\begin{equation*}
Q_{\gamma}=Q_{0}(1-k \gamma) \tag{1}
\end{equation*}
$$

From Fig. 4 when $\gamma=0.4, Q_{0.4}=0.356 \mathrm{mgals} /$ stroke

Then: $\frac{3.56}{3.15} \quad \frac{1-0.4 k}{1-4.0 k} \quad$... $\quad . . \quad$.. .. (2)

$$
k=0.032
$$

For each stroke of the petrol pump a pulse is applied to the diode transistor pump, which raises its potential by V volts. The voltage V_{n} after n strokes is therefore $V_{n}=n v$.
The leakage of the petrol pump may be simulated, over the working range, by a current generator which discharges the storage capacitor C_{3} at a constant rate. Let this rate be K_{v} volts per second. If C_{3} is partially discharged over the period $n \gamma$, then V_{n} reduces to $V^{\prime}{ }_{n}$ where $V_{n}^{\prime}=n V(1-K \gamma)$.

In order for the quantity of petrol pumped at a rate I / γ to be equivalent to the voltage of the diode pump: $V^{\prime}{ }_{n}=n Q \gamma$. i.e. $n Q_{0}(1-k \gamma)=n v(1-K \gamma)$ where $v \cong Q_{0}$ and $K \equiv k$.

Let the minimum number of strokes that can occur in time T be n, then the number of strokes in a period T will vary between n and ($n+1$) depending on the random timing of the pump strokes and the reset mechanism. Let us suppose that the reset occurs just before the $(n+1)$ th pulse, then $t=T-n \gamma$. Hence n pulses will be counted if $T-n \gamma<t<\gamma$ i.e. over a variation of t_{1} of $[(n+1) \gamma-T]=\Delta t_{1} .(n+1)$ pulses will be counted if $0<t<\boldsymbol{T}-n \gamma$.
i.e. over a variation of t of $[T+n \gamma]=\Delta t_{2}$.

The probabilities will be proportional to these times since the events are random with respect to each other.
i.e. $\begin{aligned} & P(n) x \Delta t_{1} \\ & P(n+1) x \Delta t_{2}\end{aligned}$
where $P(n)+P(n+1)=1$
$\therefore \frac{1-P(n)}{P(n)}=\frac{\Delta t_{2}}{\Delta t_{1}}=\frac{T-n \gamma}{(n-1) \gamma-T}$
whence $P(n)=\frac{(n+1) \gamma-T}{\gamma}$

$$
P(n)+1)=\frac{T-n \gamma}{\gamma}
$$

The mean potential $\bar{V}=V_{n} P(n)+V\left({ }_{n}+,\right) P(n+1)$

The mean potential, after discharge over the period T, will be $V^{\prime} \frac{T v}{\gamma}-T K v=\frac{v^{\prime} T}{\gamma}$ where $v^{\prime} \quad v(1-K \gamma)$.

Suppose that alternate summing periods are of lengths T_{1} and T_{2}, where $T_{1} \approx T_{2}$.
Then $Q_{1}=\left(v^{\prime} T_{4}\right) / \gamma$ and $Q_{2}=\left(v^{\prime} T_{2}\right) / \gamma$
The quantity Q over period $T_{1}+T_{2}$ is

$$
Q=Q_{1}+Q_{2} \frac{v^{\prime}}{\gamma}\left(T_{1}+T_{2}\right)
$$

The nature of the relay reser and storage system makes it difficult to ensure that it alternates with a $1: 1$ duty cycle. Suppose that the cycle time is T, where $T_{1}+T_{2}=T$ and $T_{1}=\propto T$,
so that $T_{2}=(1-a) T$,
then $V_{1}=\frac{x T v^{\prime}}{\gamma}$ and $V_{2}=\frac{(1-x) T v^{\prime}}{\gamma}$
The voltage V_{1} accumulated over period T_{1} is applied to the meter circuit for period T_{2}, and the converse applies for V_{2}. The charge received by the meter over the period T is therefore proportional to

$$
\frac{\alpha T v^{\prime}}{\gamma}(1-\alpha)+\frac{(1-\alpha) T v^{\prime} x}{\gamma}
$$

i.e. meter charge over period $T=q_{T}=2 \alpha(1-\alpha) v^{\prime} \frac{1}{\gamma}$

The effect of a non 1:1 duty cycle for the relay is more apparent if we substitute $\epsilon=0.5-\alpha$
then $q_{r}=2 v^{\prime} T\left(\frac{1}{1}-\epsilon^{2}\right)=v^{\prime} T\left(0.5-2 \epsilon^{2}\right)$.
In the system described $\alpha=0.41, \therefore \varepsilon^{2}=0.012$. The error which is readily compensated for reduces the meter reading by 4.8% from that obtained with a $1: 1$ duty ratio. It is apparent that \dot{x} need not be measured very accurately provided it is near to 0.5 .

Point-to-Point Review, 1967

By DAVID WILKINSON,* b.Sc., m.I.E.E.

DURING the year h.f. conditions continued to improve due largely to the increase in values of sunspet number and ionosphere index (IF2). The predicted value of the latter for December was 129, compared with 66 for the same month in 1966. The increase in solar activity, however, continued at a much slower rate than at the same phase of the previous sunspot cycle and there was little change in the monthly provisional number from and including September. Should the present trend continue, it would seem that the forecast of Professor Waldemeir, of Zurich, that the approaching maximum would be in the region of 100 may be fairly accurate.

The Greenwich provisional monthly mean sunspot number for the first eleven months of 1967 was 103.2 compared with 50.4 for the previous year. Forty-one sunspot groups of area equal to or greater than 500 millionths of the visible solar hemisphere were reported. Eight of these were of area of 1,000 millionths or greater, the largest (reaching 2,200 millionths - approximately 2,570 million square miles in area) did not produce any significant ionospheric disturbances during its passage across the sun's disc from July 21 st to August 4th.

Considering that the predicted sunspot maximum is only a few months distant, 1967 was notable for the remarkable inactivity of the sunspot groups reported on the disc. Only 45 sudden ionosphere disturbances were reported up to mid-December (46 during 1966). Many were of a minor nature and had little effect on h.f. operation. Most of the activity occurred during February, March and May with 10,9 and 12 fades respectively. From the end of May only 9 were reported.

So far, during the present cycle, reports of complete "blackouts" associated with intense solar flares have been conspicuous by their absence.

There was a slight increase in the level of magnetic activity during the year, the monthly mean Hartland " C " valuet for 1967 being 0.62 com-

[^5]pared with 0.57 for 1966. Apart from a severe magnetic storm from May 25 th-31st, during which a " C " value of 2.4 was attained on the 26 th, there were few disturbances of note. On a number of occasions increased magnetic activity occurred during periods when there were no groups of notifiable size (500 millionths or greater) on the sun and there was some evidence that the disturbances were of the M region (27-day recurrence) type.

By the choice of suitably lower operating frequencies at critical times the effect of the disturbances was generally masked and h.f. communication was seldom seriously affected.

The increase in sunspot activity and values of IF2 (shown by the smoothed values in the graphs) resulted in higher maximum usable
frequencies (MUFs) and the influence of sporadic \mathbf{E} on circuit operation was less marked. On many long-distance point-to-point circuits opportunity was taken to move up in frequency to the $23-25 \mathrm{MHz}$ band for daylight operation. It was noted that, on many occasions, v.h.f. reception was possible over long distances.
Most h.f. circuits showed an increase in efficiency compared with 1966 and the monthly average percentage efficiency on four representative circuits using $A R Q$ (automatic error detection and correction) and received in this country was 94% as against 92.9% for the previous year. These are equivalent to efficiencies of 99.3% and 99.1%, respectively, without the use of ARQ.
There was considerable activity in the higher frequency bands, especi-

Monthly figures and smoothed values of the IF2 and of the sunspot numbers for the pas thirteen years.
ally in the field of satellite communications. As reported last year, \ddagger the first (F1) of the Intelsat II satellites suffered a failure of the apogee motor when launched in November 1966, and did not reach synchronous orbit However, F2 and F3 were successfully launched in January and March 1967, and are now positioned respectively over the Pacific and Atlantic Oceans. In addition, because of the rapid growth of traffic, F4 in the Intelsat II series was also launched, in September, and is now in use in the Pacific Area. Intelsat I (Early Bird) continued to operate, having been in continuous use for 32 months by the end of the year.

The communication system in sup\ddagger Wireless World, March 1966, p. 135.
port of the NASA Apollo project was set up. This involves, in addition to the two stations on the U.S. mainland at Andover (Maine) and Brewster Flats (Washington), stations at Ascension Island, Canary Isles, Carnarvon (Western Australia) and two shipborne. Additional temporary stations were set up to provide public service channels between Thailand and the Philippines, and the U.S. mainland. Stations were completed at Fucino (Italy) and Buitrago (Spain), and the station at Moree (Australia) was almost finished. Stations in Argentina, Bahrain, Brazil, Chile, Hong Kong, Mexico, Peru, Philippines, Thailand, and at a number of other locations were under active discussion or being constructed. All these will
employ 85 -foot, or larger, paraboloids in order to meet the full requirements of the I.C.S.C. (Interim Communications Satellite Committee) for standard earth stations.

Work on the Intelstat III satellites continued. It is expected that the first of this new generation will be launched in the Summer or Autumn of 1968 . These 1200 -circuit satellites will considerably increase the capacity available in the Atlantic and Pacific Oceans and will also, for the first time, give Indian Ocean coverage, permitting U.K.-Australia and U.K.Japan circuits to be set up. Also, a full-time television service should be possible without the need to cut off part of the telephone service, as is necessary at present.

Literature Received

Racal RA 217 series solid-state h.f communications receivers are described in a four-page brochure received from Group Publicity, Racal Electronics Ltd., "The Elms," 26 Broad Street, Wokingham, Berks.
Ww 332 for further details
The performance characteristics and the applications of dry reed switches are discussed in a 41 -page booklet issued by the Publicity Department, The M-O Valve Company Ltd., Brook Green Works, Hammersmith, London, w.6.

WW 333 for further detalls
The results of a two-year reliability study on Motorola plastic encapsulated transistors are contained in report No. RD 104 published by Motorola Semiconductor Products Inc., York House, Empire Way, Wembley, Middlesex.
Ww 334 for further details
We have received a set of pamphlers from Aero Electronics Ltd., Gatwick House, Horley, Surrey, that include details of a range of television signal generators, portable aerial masts for one- and two-man erection, quartz crystals, radiotelephones and educational equipment. Also included is a CV type valve equipment guide.
WW 335 for further details
Lasky's Radio Lid., who recently celebrated their 35th birthday, have sent us a copy of their 12 -page colour pictorial catalogue. Their headquarters are at 3-15 Cavell Strect, Tower Hamlets, London, E.1, and they have five branches in London.
ww 336 tor further details
Semiconductor Polarizing Filter for Infra-Red is the title of a leaflet on Siemens semiconductor i.r. filters and polarizers available from Cole Electronics Lid., 7-15 Lansdowne Road, Croydon, CR9 2HB.
wW 337 for further detalls

Facilities for all aspects of printed circuit design and production offered by S.C.E.E. Ltd., Reddicap Trading Estate, Sutton Coldfield, Warwicks, are described in the five-page leaflet PCB 10-1.
WW 338 for furtiter detalis
A multi-channel carrier frequency system, that can be used with wire or foil strain gauges (half or full bridge connected), rotary transformers and transducers for the measurement of torque, load, displacement, vibration, acceleration, and pressure, is described in a leaflet from the Vibro-meter Corp., Haletop Civic Centre, Wythenshawe, Manchester 22.
ww 333 for further detalis
Received from the British Industrial Measuring and Control Apparatus Manufacturers' Association the 1967/ 69 edition of its handbook which describes the association, what it does, its members and their products. This 112-page publication will be sent free to branches and subsidiaries of industrial organizations at home and abroad, to Government departments, public authorities, public technical reference libraries and technical college libraries. The address is $23 / 24$ Margaret Suress London, W.1.
WW 340 for further detalls
Aim Electronics Ltd., have just published their first short-form catalogue, Advanced Instrumentation Modules. Within its 20 pages, modular units available in each of three spheres of waveform technology are described. The same units may also be obtained either ready-assembled into complete systems or for assembly by the user. The three divisions in which systems are available are signal recovery and analysis, pulse generation and waveform sampling. The booklet ends with basic explanations of phaselock techniques, waveform sampling techniques
and lock-in amplifiers. Copies are available from Aim Electronics Ltd., 71 Fitzroy Street, Cambridge.
WW 3al for further details
A new comprehensive guide to five product ranges of particular interest to industrial electronics engineers and designers has been published by Newmarket Transistors Ltd. The 20 -page guide described as a "Products Portfolio" gives in tabular form details of semiconductors, including industrial germanium and silicon devices, packaged circuits and film attachment devices. A special section is devoted to the company's customer-oriented microcircuit building service. Free copies for buyers, engincers and designers can be obtained from the Sales Office Manager, Newmarket Transistors Ltd., Exning Road, Newmarket, Suffolk.
WW 342 for further detalls
Electro-magnetic pick-ups that convert mechanical motion into an a.c. voltage without physical contact or external power are described in the 6 -page Bulletin F-8 available from Ampex Electronics, Seminole Division, P.O. Box 8488, Fort Lauderdale, Florida 33310. ww 343 for lurther details

The latest position regarding the preparation of metric standards is given in the B.S.I. publication PD 6286, "Metric standards published and in progress." Section 1 lists more than 800 standards already written in metric units. Some 250 standards independent of any system of units such as glossaries and colour codes are listed in Section 2. Sections 3 \& 4 give details, under industry headings, of the 500 or so standards now being revised or awaiting revision in metric terms. The information in this 82 -page booklet is complete to 31 st August, 1967. B.S.I. Sales Office, Newton House, 110 Pentonville Road, London, N.1. Price is 10 s .

advice on materials technology

THE United Kingdom Atomic Energy Authority (U.K.A.E.A.) has set up a Materials Technology Bureau at the Atomic Energy Research Establishment at Harwell. The purpose of this bureau is to stimulate enquiries on materials from industry and research organizations and to share knowledge accumulated by scientific and technological staff in the Authority. It is also intended to provide an advice consultancy service and to encourage visits between Authority staff and industrial firms. This may lead to the use of Authority facilities on specific problems either by visiting technologists or U.K.A.E.A. staff. Information services of a general nature will be provided free although a charge will be made for consultancy work and for the use of experimental facilities. Most of the knowledge acquired by the
U.K.A.E.A. during the course of their work, relates to materials-particularly conventional materials for unconventional use. The experience includes the use of modern techniques for the fabrication and preparation of metals and ceramics, including high-frequency and electron beam melting and casting, hydrostatic extrusion; planetary swaging, hot pressing, isostatic pressing (hot and cold) and vibro-compaction of powders. Other examples are the ultrasonic machining of glass and ceramics, together with the various jointing processes including electron beam and friction welding, roll-bonding and the brazing of metals to ceramics. Interested readers should contact the head of the Bureau, Mr. H. Lloyd, M.B.E., Ceramics Division, Building 35, A.E.R.E., Harwell.

COMPUTERS-A NEW CONTENDER

INITIALLY producing a range of three medium sized computers for the European market Philips Computer Industries are to be officially opened on June 14th at Apeldoorn in the Netherlands. The first production models of landse general purpose machines will be absorbed by Philips for their own use, however, deliveries to outside customers are expected to start in the beginning of 1969. At present the staff at Apeldoorn numbers a thousand although throughout the Philips concern about 6,000 people are either directly or indirectly employed on computers. Philips started research into coniputers in 1950, which led to the construction of a number of machines, some for use within the company. Among these were PETER, PASCAL and STEVIN.

Later this research led to the production of machines for military applications, air traffic control, fire control and defence purposes.

In the Netherlands some 2,200 are employed on rescarch whilst in other countries another 1,500 reinforce these activities. Work is proceeding on memories in the United Kingdom, peripheral equipment in Germany and multilayer circuit boards and software in Belgium.

The new range of machines will be called the P1000 series. They will use integrated circuits and will feature a fast memory. It will be a fairly simple matter to translate programmes written for other computers for use on these machines.

CAR DRIVING SIMULATOR

A NEW car driving simulator, the Drivotrainer, has been developed by the Raytheon Company, Massachusetts, U.S.A., which is capable of training up to 32 students simultaneously. In essence, it consists of 32 "cars," a large cinema screen, a control computer and an instructor's monitoring console. The student "drives" in response to the changing road conditions indicated by a colour film projected on the screen which includes the rear mirror view), he film having previously been taken hrough the windscreen of a camerasquipped car. The film carries a sound rrack and binary coded information indexing all the proper driving responses
that match the actions seen on the screen. The computer scans each car and in the event of a student acting incorrectly, lights a message indicator informing the student of what he should do to correct his action. The cars can even run out of petrol and will stall if the student allows the petrol gauge to indicate zero. Another task of the computer is to keep a score for each student and to print out a detailed account of the student's actions compared to what they should have been. Advanced films prepare the student for handling emergency situations and enable them to drive in rain, snow, fog and ice in complete safety

Drivers on the London Transport Victoria line and its Brixton extension will be cble to communicate directly with other trains using a v.h.f. radio link. So far Nelson Tansley Lid., 144 Holland Park Avenue, W.II, have received orders for about 170 communication systems as shown in the photograph. These, in addition to inter-train communications, offer passenger address and cab-to-cab intercom facilities.

ELECTRONIC CONTROL OF LOCOMOTIVES

THE combined use of a radio link and digital control equipment has allowed freight trains to be operated more economically in America by enabling more trucks to be incorporated in a train. For instance, using the system, a typical train would consist of three 3,600 horse-power diesel units followed by as many as 300 trucks and three slave diesel units of similar horse power. The system, designated Locotrol, translates commands of an engineer in the lead locomotive and transmits them to the slave locomotives. Each neessage comprises 50 bits, transmitted over a 200 ms period, and includes address code, control information and an error check code. Each command cortains an algebraic problem which mus: be solved for zero by the addressed locomotive before the order is accepted. If the result is something other than zcro the slave requests that the message be repeated thereby ensuring the fidelity of the radio link. The equipment is manufactured by Radiation Inc.

An advanced educational television studio has been opened at Herriot-Watt University, Edinburgh, which it is hoped will substantially increase the effectiveness of teaching and strengthen
the universitys ties with industry. Although equipped with black-andwhite cameras (Marconi V322Bs) and ancillary equipment at the present time, the design of the studio renders it suitable for colour television use. Equipment includes a telecine system that will accept 16 or 35 mm film or slides and seven cameras with seven-inch clectronic monitor/viewfinders. The studio is linked with lecture theatres, laboratories and staff rooms throughout the university. The studio control room design is in agreement with the latest in broadcasting philosophy, consisting of an array of four 14 -in monitors, a nine-inch preview monitor and a comprehensive vision and sound control console.

Land reclaimed from the river Itchen, Southampton will be the site of a new colour television centre to be built for Southern Independent Television at a cost of $£ 500,000$. The prime contractor is the Marconi Company who will provide a substantial proportion of the equipment and will assist Southern Television with the planning and installation. The equipment will include a comprehensive control switching system to allow television to be fed in and out of the I.T.A. broadcasting network. Some of the fifteen colour television cameras to be supplied are destined for outside broadcast units currently under construction. The cameras will be supplied complete with colour balance equipment correcting for variations in colour temperature. A large number of distribution amplifiers will be installed for routing signals to monitors throughout the centre. A Marconi designed switching system will carry signals from Video tape recorders and Rank Cintel telecine equipment to the studio control rooms for integration into the programme.

A new Product Division has been formed at Basildon, Essex, within the Marconi Company which is known as the Electro-Optical Systems Division. This new division will exploit the growing use of electro-optics to extend human capability. This can be achieved either directly by extending human operator faculties or indirectly by using the system to train him more effectively. The division has been formed by combining the activities of two groups, the Closed-Circuit Television Division and Project Martel-a team producing the television guidance system for the Anglo-French missile Martel. The two activities represent a turnover in excess of $£ 3 \mathrm{M}$.

Johnson Matthey Metals Ltd. have introduced a new line, gold inlaid beryl-lium-copper, that should be of interest to manufacturers of plug and socket components, particularly those for use with printed circuit boards. The minimum dimensions of the 5% nickel-gold inlay are 0.25 in wide by 0.0002 in thick; in all cases the thickness of the inlay must exceed 3% of the total thickness of the strip.

A new telecine system announced by Marconi is capable of making fast (50 ns) cuts between any of four programme sources. Two versions are available, one for black-andwhite reproduction only, using a Mk. VI camera. and one for colour or black-and-white built around the Mk. VII comero. Inputs can be from 35 mm or 16 mm cine projectors ond/or a dual slide projector. A variable density filter in between the lamp-house and the film compensates for variations in
 film density whilst electronic circuits compensote for film dye imperfections. The system has been designed by Marconi with the exception of the film projection mechanisms which are of well-established professional manufocture. A sync. interlock drive motor is employed which allows precise registration of separate magnetic sound followers. The equipment is intended for use with a Westrex sound follower unit, but other units may be employed providing minor modifications are made.

An exhibition of small American computers is to be held in various places throughout Britain early in the new year. The exhibition will open at the U.S. Trade Center and then go on tour in seven specially fitted British Rail display coaches. Places at which the exhibition will be held are:
London U.S. Trade Centre, Jan. 16 to 19.
Birmingham, Moor St. Sration, Jan. 25 to 27.
Manchester. Victoria Station, Jan. 29 to 31.
Newcastle, Central Station, Feb. 1 to 3.
Glasgow, Stobcross Freight
Dept. Feb. 5 to 7.

In all, 16 exhibitors will show machines ranging from simple electronic calculators to complex process control computers.

A Norwegian firm, Nera Bergen A/S, has been awarded a contract by the Norwegian Director-General of Telecommunications worth 21.6 M Norwegian Crowns (just over £1M) for microwave equipment to be used internally. The contract is for 1800 channel broadband equipment for the routes between Tromsø and Hammerfest; Stifjell and Rassegalvarre, Oslo and Bergen, in addition to equipment for 27 300-channel local branch links from the main network. The equipment has been developed by Nera Bergen and production has already begun. The expansion is the foundation for further work that will lead to a fully automated telephone network and it is hoped to link the more northerly districts of the country to the national telephone network in 1969.

The Central Treaty Organization have ordered seven meteorological radar systems from Plessey Radar which will be installed in Iran, Turkey and Pakistan early in 1968. The equipment, which is worth $£ 131,000$, consists of four windfinding radars type WF2 and three type 42 weather radars.

After winning a colour television contract, the Marconi Company succceded in delivering, installing and commissioning the equipment in Bangkok within six weeks. The contract, worth $£ 160,000$, was to supply and install, in an outside broadcast van supplied by the Bangkok Broadcasting and Television Corporation, two Mk. VII colour cameras, monitors, sound and vision mixing equipment and a video tape recorder. Thailand commenced live colour televison broadcasts last November.
B. H. Morris \& Co. (Radio) Ltd., of 84/88 Nelson Street, London, E. I, have been appointed sole U.K. distributors for the Trio Corporation, of Japan. The Trio product range consists of audio equipment and communications receivers. Featured in the range is a double conversion superhet crystal controlled communications receiver (Model JR500SE) that has a recommended retail price of about $£ 60$. It incorporates a crystal controlled b.f.o. and an S meter and covers 3.5 to 29.7 MHz .

An American manufacturer of precision components for the focusing, deflection and control of electron beams in cathode-ray tubes has appointed Walmore Electronics, 11-15 Betterton Street, Drury Lane, London, W.C. 2 as their U.K. Agents. The firm, Constantine Engineering Laboratories, of New Jersey, produce a short form catalogue illustrating specialized applications that is available from Walmore.

The contract to provide the solar cells for the ESRO satellites TD1 and TD2 (see page 683) has been won by Ferranti Ltd. The satellites will carry a sun-oriented array of 11,520 silicon solar cells worth over $£ 300,000$. Ferranti solar cells are also being used on ESRO 2 and Ariel 3.

DEMONSTRATING RECTIFIER ACTION IN SLOW MOTION

By T. PALMER,* B.A., Assoc.I.E.R.E.

VERY often it is useful to be able to clarify points of theory with a slow motion demonstration. The writer has previously described methods for demonstrating series circuits in phase-shift oscillators ${ }^{1}$ and a.c. theory ${ }^{2}$ in slow motion. This third article applies similar techniques to rectifier action, in particular illustrating one aspect that is difficult to show on an oscilloscope. The demonstration comprises three separate stages. In stage one the output of a v.l.f. signal generator operating at about seven cycles per minute is applied to three meters: A_{1} and A_{2} swing in step with V_{1}. Adjust the outpur voltage of the signal generator to give a peak reading of, say, one volit on V_{1}. Then set \mathbf{R}_{1} to give a peak reading of $100 \mu \mathrm{~A}$ on A_{2}.

For stage two a diode is inserted (OA81) as shown. Now when meter V, gives a reading on the right of zero A_{1} and A_{2} follow, and when V_{1} swings to the left A_{1} and A_{2} read zero. The peak forward current is now less than $100 \mu \mathrm{~A}$ because of the forward resistance of the diode; restore this current to $100 \mu \mathrm{~A}$ by re-adjusting R_{1} -note the amount by which $\mathrm{R}_{\text {, }}$ is reduced. This reduction corresponds to the forward resistance of the diode (although it would be truer to say that it represents the forward resistance when a forward current of $100 \mu \mathrm{~A}$ is flowing).

Proceeding to stage three, capacity C_{1} is added. This was originally made up of 20 separate $100 \mu \mathrm{~F}$ tantalum capacitors but ordinary low voltage electrolytics should do. Eventually the circuit will reach a state of equilibrium where in each cycle the charge flowing into Dl is equal to that flowing out of C_{1} through \mathbf{R}_{1}. When this happens it can be clearly seen that the diode passes current for only a small fraction of the positive half cycle as indicated by the brief pulse of current shown on A_{1} when V_{1} has almost reached its maximum positive value. This is about the same as the peak current on A_{3} and is around half a milliamp.

After the pulse C_{1} discharges through R_{1} and the readings on A_{2} and A_{3} are equal (as C_{1} is discharging A_{3} reads to the left of zero). Until the equilibrium condition is reached more charge flows into C_{1} through D^{1} than leaks out through R_{1} in the intervals between pulses. The first pulses of current may have a peak value of 0.8 mA . As C_{1} becomes more and more charged in successive cycles this diode current diminishes until it reaches a value 0.5 mA and the duration of the pulse decreases correspondingly.

The peak value of the diode current should be the sum of the

[^6]
peak current on A_{3} and the current through the resistor. If the meters A_{2} and A_{3} are heavily damped this may not be suggested by the meter readings; but the meters used originally did support the equation.

It is easy to extend this technique to other rectifier circuits-a bridge, for instance. It is recommended in this case to have a meter in series with each of the four diodes and one for the a.c. current and one for the d.c. current; six meters in all. It is a good idea for provision to be made for shorting out individual meters as the sight of six pointers swinging simultaneously at early stages in the demonstration can be confusing, to say the least.

STAGE 3

R. CURRENT shown on A_{2}

,

NEW
 PRODUCTS

Colour TV Pattern Generator

THE adjustment and servicing of colour television receivers is simplified by the Philips pattern generator, type PM5506. It will be available in Britain from the M.E.L. Equipment Company Lid., and will cost $£ 245$. The instrument takes full advantage of the "self checking" properties of the PAL system which enable a receiver to be adjusted using the picture tube as the only indicator. This is said to almost eliminate the need for an oscilloscope, but if one is used it can be synchronised by line and field sync pulses from the generator. The generator delivers ten pattern signals which are selected by ten push-buttons arranged in logical sequence across the front panel as follows: (1) black and white checkerboard of 6×8 squares for checking tuning, scanning, amplitude and linearity, (2) blank raster with constant white content for purity check, (3) blank raster with constant red content for purity check, (4) eight-step staircase for grey-scale tracking, (5) dots, 11×15, for adjustment of static and dynamic convergence, on 625 lines only, (6) crosshatch, 11×15 lines, for adjustment of static and dynamic convergence, on 625 lines only, (7) four colour bars for delay line phase and amplitude adjustment, using tube as indicator, (8) four colour bars for demodulator phasing, using tube as indicator, (9) four colour bars for matrix check, using an oscilloscope, and (10) eight colour bars similar

to the B.B.C. signal for general check. The standard is PAL 625 lines, and the range covered is 470 to 850 MHz , frequency being selected by push-buttons and continuous tuning. Outputs are 10 mV at u.h.f. (continuously variable) and 1 V at video, both into 75 ohms. Burst amplitude is variable for checking colour killer and a.g.c. The sound carrier can be modulated internally, unmodulated or switched off. Complete solid state construction has been used, and the generator measures $10 \frac{3}{4} \times 8 \frac{1}{4} \times$ $7 \frac{1}{2} \mathrm{in}$. The weight is 10 lb . M.E.L. Equipment Co. Ltd., Manor Royal, Crawley, Sussex.
ww 301 for further detalls

Solid Tantalum

LOW COST, epoxy encapsulated, solid tantalum capacitors, designated Kemet "E"Series capacitors, are now available from Union Carbide U.K. Lid.,

Capacitors

Electronics Division. "E" Series capacitors have been designed for commercial and high quality electronics applications, e.g., in communication equipment, where high capacitance values are required in small space, for coupling, decoupling and timing circuits. The devices have a high volumetric efficiency, low leakage current, and reverse voltage capability. The capacitance tolerance is $\pm 20 \%$ and the capacitors are designed for continuous operation between $-55^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. Kemet " E " Series capacitors are available from 3 V to 35 V , at 0.1 to $100 \mu \mathrm{~F}$. Electronics Division, Union Carbide U.K. Ltd., 8 Grafton St., London, W.1. WW 302 for further detalls

Tape Recorders

TWO tape recorders have been added to the Truvox range of sound recording and reproducing equipment. The new models, the R52 (two-track) land R54 (four-track), have an entirely new threespeed ($7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{8} \mathrm{in} / \mathrm{sec}$) Truvox deck. Known as the Series 50 models, they incorporate many other significant departures from previous designs. The combination of twin acoustically matched 7×4-inch speakers mounted in a wood cabinet is said to result in exceptionally good sound quality. The case, controls and mechanism have been designed for both flat and vertical operation of the unit. The Series 50 recorders have linear frequency characteristics from 30 Hz to 17 kHz at $7 \frac{1}{2} \mathrm{in} /$ sec , with wow and flutter of less than 0.14%. Oscillator frequency is 90 kHz . With calibrated VU meter, tone control, full monitoring facilities, mixing and (on R54 only) dual play provision, the new units come within the definition of hi-fi equipment. Total output is 6 W . The three-figure digital counter has a push-button reset. Unbreakable control keys and key switches themselves are also of a new type, ensuring light yet positive action. Controls are interlocked and there is pause control, automatic tape-end stop, push-on spool retainers and an accessory storage compartment. Truvox decks have a large robust motor mounted below a solid aluminium deck plate with anodised lettering to identify controls. Micro-gap recording heads are used, and the solidstate electronics include selected matched silicon transistors. Low-noise, moulded-track potentiometers are also employed. Both models take 7 -inch spools, giving $8 \frac{1}{2}$ hours and 17 hours of play respectively on double-play tape. Both are supplied complete with a mov-ing-coil microphone, one 7 -inch reel and $1,200 \mathrm{ft}$ of tape. They weigh 25 lb $(11.5 \mathrm{~kg})$ and measure $13 \frac{1}{2} \times 15 \times 7 \mathrm{in}$ ($34 \times 38 \times 18 \mathrm{~cm}$). The price is 56 gns for both models. Truvox Ltd., Hythe, Southampton.

WW 303 for further details

Modular Sound Systems

THE ASTRONIC A1700 Series of modular amplifying equipment has been designed to enable particular requirements to be met by building up a system using standard units, thereby keeping the cost of otherwise non-standard equipment down and reducing delivery delays. The 75 W power amplifier is intended for large p.a. installations, its output circuit incorporating current sensing diode networks which render it short-circuit proof. The amplifier can be racked up in multiples for parallel operation to give higher power outputs up to 750 W . Silicon transistors are used throughout all units and transformers are vacuum impregnated and dipped. Using either a $10 \mathrm{~W}, 25 \mathrm{~W}$ or 75 W power amplifier, up to seven input and control modules may be fitted to the main frame, any unwanted position being filled by a blank panel. Thus, a fiveway microphone mixer with a music input and master gain control, or a twoway microphone with tape, gram and radio input modules together with master gain, can be constructed. A variety of standard modules are available. All input and control modules are constructed on etched aluminium front panels with suitably marked controls and components are marked on printed circuit boards. The prestages amplifier of both the 25 W and 75 W power amplifier are also on printed circuits boards, the main chassis being equipped with edge connectors intc which these boards are plugged, alignment being ensured by guides. The modules are retained in the main frame by captive screws. Input, output and mains connection are situated at the rear of the case. The amplifier is constructed on a rigid sheet plated steel chassis and provided with adequately ventilated removable steel covers when used as a free standing amplifier. For rack mounting these covers become optional and the case end plates are changed to provide standard 19 in G.P.O. rack fixing. The inputs are: microphone, low impedance 15 50Ω balanced with a sensitivity of $50 \mu \mathrm{~V}$; tape, high impedance 270Ω unbalanced, sensitivity 150 mV ; gram, high impedance $2 \mathrm{M} \Omega$ unbalanced, sensitivity 120 mV ; radio, high impedance $270 \mathrm{k} \Omega$ unbalanced, sensitivity 150 mV . The controls consist of microphone module: bass filter, gain control, tape, gram, radio modules: treble control $\pm 15 \mathrm{~dB}$ at 10 kHz , bass control

$\pm 12 \mathrm{~dB}$ at 100 Hz , gain control. Distortion is less than 1% for full output on $10 \mathrm{~W}, 25 \mathrm{~W}$ and 75 W models. Response for microphone is $\pm 2 \mathrm{~dB} 50 \mathrm{~Hz}$ -10 kHz and music $\pm 2 \mathrm{~dB} 40 \mathrm{~Hz}$ 12 kHz . Noise on microphone is better than 50 dB and on music it is better than 60 dB . The dimensions are: standard free-standing unit $16 \frac{1}{2} \times 7 \times$ 10 in deep; rack mounting model $19 \times$ 7×10 in deep. Associated Electronic Engineers Lid., Dalston Gardens, Stanmore, Middlesex.
ww 304 for further detalls

LEGEND INDICATOR

USING a bright-glow neon lamp, the miniature Bulgin mains legend indicator is operated directly from 200 250 V . The power consumption is approximately 1 W , with negligiole temperature rise. Connections are by 110 Series pushon tags equally suitable for direct soldering. The two styles of legend available are black characters on lit amber background, or lit amber characters on a black background. This component will fit into a panel cut out to $1.32 \mathrm{in} \times 0.512 \mathrm{in}$. A F. Bulgin \& Co. Lid., Bye-Pass Road, Barking, Essex.
WW 305 for further detalls

Flat-Lens Photodevices

TWO MINIATURE silicon planar photodevices from SGS-Fairchild Ltd., the BPY66 and BPY67, are said to entirely eliminate cross-talk and crosslight problems in photoelectric reading systems for punched card and punched tape equipment. Contained in hermetically sealed cylindrical Kovar cases only 2 mm diameter by 4.5 mm long, they feature a coaxial flat-lens construction that enables them to be mounted absolutely flush in the reading head so that each device receives light only from its associated source. Mounting can be achieved without the need for critical alignment, thus simplifying manufacture and maintenance of the equipment. Both devices are manufactured from specially diffused silicon chips which, despite the unusually small device dimensions, have a very large base surface to trap the maximum number of photons. Their planar construction guarantees an inherently low dark current and a high light-to-dark current ratio, enabling them to be used at very low light levels. The BPY66 is a sensitive photo-transistor capable of providing a photocurrent of 0.3 mA minimum in a light level of only $10 \mathrm{~mW} / \mathrm{cm}^{2}$. As it operates efficiently with tungsten lighting, it can be employed in optically coupled circuits, coding equipment, character recognition
and process control. The BPY67 is a photo-diode which, in the reverse-bias mode, features good photocurrent linearity. In the photo-voltaic mode, its open-circuit voltage varies in a logarithmic manner suitable for servo-type applications such as horizon detectors and proportional followers. A prime attribute of the BPY67 is speed; it is at least 10 times faster than a phototransistor permitting detection of laser beam modulation up to several MHz .
WW 306 tor further details

Feed-through Terminal

A MINIATURE feed-through terminal engineered for insertion into panels 0.320 in thick is available from Sealectro. Designated press-fit part no. FT-160-TUR, the new feed-through has a 0.148 in minor diameter measuring 0.500 in long. When installed in a 0.125 in or thicker panel, the insertion hole is $0.144 \mathrm{in} \pm 0.002$ diameter with a 60° countersink to a diameter of $0.174 \mathrm{in}+0.010-0.002$. It features a gold over copper-plated brass lug, rated for 5.5 A continuously. Sealectro Lid., Walton Road, Farlington, Portsmouth.
Ww 307 for turther details

Micro-miniature Coaxial Connector

SUITABLE for matched impedance coupling of 50Ω lines, an r.f. microminiature coaxial connector by Thorn Special Products Ltd. has overall dimensions of 0.625 in length and 0.103 in diameter. Its low-loss characteristics result in a voltage standingwave ratio of less than 1.16 at a frequency of 3.5 GHz . With simple push-pull coupling, the connector allows rapid assembly or servicing of miniaturised u.h.f. equipment. Contact resistance is less than $4 \mathrm{~m} \Omega$ and the operating temperature range is $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$. Made of gold-plated copper alloy, with crimped connections, the connector is internally insulated with p.t.f.e. The disengaging force of a mated connector is in excess of 4.4 N (16 ozf), while cable retention in each

half of the connector is greater than 44 N (10 lbf). The micro-miniature connector is supplied as a completed cable assembly, the pin and socket each being assembled with a 12 -in length of 50Ω Teflon jacketed coaxial cable (RG.178BU). Alternative lengths are available to order. Thorn Electrical Industries Ltd., Thorn House, Upper Sairt Martin's Lane, London, W.C. 2.
WW 108 for further details

I.C. Audio Amplifier
 AUDIO amplifier type PA 222 is an

 encapsulated eight-lead dual-in-line integrated circuit by General Electric (U.S.A.). It is intended for consumer and light industrial applications with a 1 -watt output rating. The supply voltage required is 25 V , the power gain is said to be 72 dB with a 22Ω load; with one watt output the noise figure is -55 dB . This unit has a frequency response of $\pm 3 \mathrm{~dB}$ over the range 55 Hz to 15 kHz . Price is £1 16 s 0 d and data sheets are available. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.WW 309 for further detalls

H.F. Communications Receiver

A NEW communications receiver (RC410/R) with a built-in frequency synthesizer has been introduced by G.E.C. (Electronics), replacing their BRT 400 range which ran to eight marks over the course of 20 years. The receiver covers $2-30 \mathrm{MHz}$ and has facilities for s.s.b. reception (upper or lower sideband) as well as c.w., m.c.w. and d.s.b. The signal frequency is displayed digitally on a bank of in-line cold cathode tubes, the display being locked to the frequency synthesizer. Unusually the receiver is single-knob-tuned in 1 kHz or 100 Hz steps and has the "fcel" of a conventional free-tuning receiver; frequency stability is quoted as being 5 Hz at 30 MHz . A f.e.t. is employed in the front end to provide a
good cross- and inter-modulation performance. Crystal filters are incorporated for A1, A2 and A3 modulation and a sideband filter for $\mathrm{A3a}$ and A 3 j is included. Sensitivity for 12 dB (signalnoise)/noise at the output in the A2, A3 mode is $2.5 \mu \mathrm{~V}$ and in the A1, A3a, and A 3 j better than $0.5 \mu \mathrm{~V}$. The audio stage provides 1 W into 3Ω or 10 mW into a 600Ω balanced load. Image response is greater than 60 dB below signal response and other spurious responses are at least 70 dB down on the signal. Second- and third-order intermodulation selectivity is better than 60 dB below signal response. A notch filter with a 6 dB bandwidth of 800 Hz tunable 4 kHz about a centre frequency of 100 kHz providing a rejection of at least 30 dB is incorporated. A three-position switch selects a.g.c. attack times of 10,20 or 30 ms and a.g.c. performance is such that the audio output level will not vary more than 6 dB for an input level variation of 90 dB referred to $1 \mu \mathrm{~V}$. G.E.C. (Electronics) Ltd., Communications Division, Spon Street, Coventry CV1 3AZ.
ww 310 for further details

R.F. Bridge

AN IMPEDANCE bridge for accurate measurements in the 400 kHz to 60 MHz range is now available from General Radio Co. (U.K.) Ltd. The 1606-B radio frequency bridge is adaptable to coaxial connectors, and in particular the GR900 precision coaxial connector, for convenience in making highly repeatable measurements on devices fitted with such connectors. The GR900 coaxial connection also simplifies calibration of the bridge with precision resistance and capacitance standards. The screw-type terminals on the basic instrument can be adapted to GR900 coaxial connectors with the 1606-P2 adaptor kit, and to other coaxial systems with appropriate adaptors. The resistance range of the bridge is 0 to $1 \mathrm{k} \Omega$, and the reactance range is $\pm 5 \mathrm{k} \Omega$ at 1 MHz (at other frequencies the reactance reading must be divided by the frequency in megahertz). General Radio Company (U.K.) Ltd., Bourne End, Buckinghamshire.
WW 311 for further details

High Current Vacuum Variable Capacitor

A NEW high-current small-size ceramic vacuum variable capacitor, the CAQA200, by ITT Jennings is available from S.T.C. This new variable capacitor utilizes high efficiency ceramic and copper materials with vacuum dielectric. The overall length is only 3.75 in with a diameter of 1.31 in . The CAQA-200 is capable of handling 50 A r.m.s. at 16 MHz . The temperature rating is $120^{\circ} \mathrm{C}$ by actual current testing. Capacitance range is 10 to 200 pF . Peak voltage is 3 kV at 60 Hz . Design of compact transmitter tank circuits is possible with the CAQA-200. Typical uses are as tank capacitors on medium power fixed frequency and pre-selected frequency transmitters. STC Components Marketing Division, Edinburgh Way, Harlow, Essex.
WW 312 for further details

INSTRUMENT RECORDER

A 7-CHANNEL instrumentation tape recorder-reproducer, weight 30 lb , and small enough to be stowed under an aeroplane seat, is now being marketed in the U.K. by Consolidated Electrodynamics. The Model 417 recorder can, in laboratory applications, be operated from $110 / 220 \mathrm{~V}$ a.c. In the field it runs off its own built-in, rechargeable batteries. It is equipped with a low mass differential capstan drive which is said to ensure good performance under difficult operating conditions. Other features include dynamic braking, low power consumption (maximum 12 W), and a switchable reproduce channel for field monitoring of all record channels. Frequency response of the model 417 is 200 Hz to 100 kHz direct and d.c. to 10 kHz f.m. The $\frac{1}{2}$-in head arrangement is IRIG (Inter Range Instrumentation Group, U.S.A.) compatible. A choice of four new speed combinations is offered within the range $15 \mathrm{in} / \mathrm{s}$ to $30 \mathrm{in} / \mathrm{s}$. Optional facilities include remote control, voice track, continuous-loop adapter, end of tape sensor, and footage counter. Size of the Model 417 is only 14 in wide \times $151^{\frac{3}{5}}$ in deep $\times 6 \frac{1}{\frac{3}{5}}$ in high. Consolidated Electrodynamics, 14 Commercial Road, Woking, Surrey.
WW 313 for turther detalls

Resistance Boxes

RESISTANCE box Series 1200 by D.S. Controls gives a selection of 72 values of resistance from 1Ω to $8.2 \mathrm{M} \Omega$ in a 10% tolerance preferred value range with two selector knobs. The ranges are $\times 10 ; \times 100 ; \times 1 \mathrm{k} ; \times 10 \mathrm{k} \times 100 \mathrm{k}$; $\times 1 \mathrm{M}$, and resistance types are high stability carbon film. Ratings available are $1200,0.5 \mathrm{~W}$; and 1201, 0.25 W to $4.7 \mathrm{M} \Omega$ and 0.5 W from $5.6 \mathrm{M} \Omega$ up. The size is $8 \times 5 \times 5$ in and the weight is $3 \frac{1}{2} \mathrm{lb}$. Prices are 1200 , £ 1510 s 0 d , and 1201, £19 10s 0d. D. S. Controls, 24 Broughton Road, Orpington, Kent.
wW 314 for furthep detaits

DC Servomotors

DIRECT current servomotors capable of reaching 1200 r.p.m. from zero in one millisecond ate available from Honeywell. First model in the series, the HSM 30 servomotor, has very low armature inertia ($0.00035 \mathrm{~N} \mathrm{~cm} \mathrm{~s}^{2}$), extremely rapid acceleration characteristics, ($278,000 \mathrm{rad} / \mathrm{s}^{2}$ initially at 24 V), a mechanical time constant (inertial) of 2.4 ms and a rated torque of 21 N cm (30 ozf in). Design of the servomotor represents a complete break from conventional motor design geometry in that all the rotating iron has been removed, leaving a moving coil, shell-type rotor configuration. Coils are encapsulated in a hollow, cylindrical shell of special high-temperature material, and a fourpole permanent magnet circuit is employed, using extremely high flux densities. In use the HSM 30 will start or stop in less than half the time of other motors of comparable frame size (4.0 in dia $\times 3.6$ in long). It can be directly coupled to the load for inertia match, so that gearing and belts can be eliminated, and can replace motor-brake or motor-clutch combinations, with the added advantage, in many cases, of solid state control. The new servomotor is suitable for use with tape capstan drives, intermittent motions, machine tool drives, drafting machines, digital and analogue positioning, computer
printers, readers, memory disc packs, etc. Honeywell Controls, Ltd., Brentford, Middx.

WW 315 for further detalls

RESONANT GATE TRANSISTOR

A NEW solid-state device called a resonant gate transistor (r.g.t.) is now available in evaluation quantities from Westinghouse Electric Corporation. The r.g.t. is a frequency selective device capable of providing Qs from 20 to 200, and its availability offers a solution to the problem of building tuned circuits without inductors. The operation of the r.g.t. results from a mechanical resonating beam or "tuning fork" of minute proportions actuated by electrostatic forces. A signal voltage, when superimposed upon a larger constant polarization voltage, sets the resonating beam in motion. Vibration of the beam is sensed by a conventional m.o.s. field effect transistor for which the beam serves as the gate electrode. The frequency range of the r.g.t. is at present limited to about $3 \mathrm{kHz}-30 \mathrm{kHz}$ but higher frequencies can be obtained by using an overtone mode of vibration. Westinghouse Electric International, 1-3 Lr. Regent St., London, S.W.1. WW 316 for turther ietalts

Biaxial Field Electromagnet

THE SCIENTIFICA 2 inch electromagnet has features that make it suitable for both research and advanced teaching. Either standard plane pole caps or ones with an axial bore hole through them can be used. The magnet is therefore supplied with two sets of pole caps, one being plane with optically polished faces, while the other pair are similar, but have in addition an axial hole of 1 in diameter. This enables additional experimental investigations to be carried out. In order to ensure maximum

field homogeneity for all field settings, the pole ferrous caps are precision machined and the pole faces are grctiod and polished to a flatness of 0.001 inch. A typical value for field ho::ogeneity with an air gap of $\frac{3}{3}$ in and field strength of $2.4 \times 10^{\mathrm{A}} \mathrm{A} / \mathrm{m}$ (3,000 gauss) is $1 \mathrm{pr}=\mathrm{t}$ in 10^{6} over a volume of 0.1 nil . The magnet is therefore suitable for us: in a low resolution nuclear magnetic r:sanance spectrometer or an X-band clectron spin resonance spectrometer. An all solid-state power supply has $b=: n$ designed for the 2 inch magnei, the control circuitry of which takes the form of an error acjivated loop system. Fecdback in this circuit compensates fo: variations in both load resistance and supply voltage fach that a 100% change in load will result in only a small pescentage change in magnet current. Scientifica \& Cook Electronics Ltd., 148, St. Dunstan's Avenue, Acton, London, W. 3.

Low Frequency Measuring System

THE PHILIPS low frequency measurement system consists of a compatible family of solid state generators, amplifiers, attenuators and other equipment designed to meet new needs of measurement. The first six instruments in the range are now in quantity production and a further six are already planned and in the design stage. Others are envisaged for the future. Each instrument is self-contained and can be used singly or in combination with others in the system. Complete test sets can be assembled in minutes for special purposes and dismantled when no longer required and the individual units put to other work. A valuable feature of the system is the extension of the frequency range at both ends of the spectrum well beyond the ordinary concept of low frequency, the new frequency range extending from 0.0005 Hz to 1 MHz . This considerably increases possible applications and widens the appeal of the equipment. Typical applications include frequency amplitude response, gain measurement, gain response, gain response of attenuators and filters, two-tone tests, transmission tests, servo and process control measurement, medical electronics and education. Instruments now available include Type PM 5160 wide-band oscillator covering the range 1 Hz to $1 N \mathrm{~Hz}$. Features include capacitance tuning giving high resolution and a buffer amplifier to isolate the oscillator from the load. Type PM 5168 function generator is a function generator with some
 Manor Royal, Crawley, Sussex.

WW 318 for further detalls
unique features. Simultaneous outputs give sine, triangular and square waveform signals at a fixed amplitude. One of these waveforms is also available simultaneously from a fourth output but with adjustable amplitude and d.c. shift. A "hold" facility enables all waveforms to be held static at will. A mark/space ratio switch effectively provides ramp facilities. Single shot and external trigger facilities add to the versatility of the instrument. Frequency coverage is from 0.0005 Hz to 5 Hz . Like the PM 5168 function generator, this instrument also has sine, triangular and square wave outputs but the PM 5162 has an internal oscillator which can be switched on to three different sweeping ratios. Both the sweep frequency and sweep width are adjustable up to a maximum of $1: 10,000$. Additional features are single cycle sweep, external frequency modulation, and a frequency analogue output. The latter facility provides an output voltage proportional to the logarithm of the frequency. M.E.L. Equipment Co. Ltd.,

Paper Tape Reader

PAPER tape reader GNT 24, made in Denmark, is a motor-driven reader that

can accept $5,6,7$ or 8 channel tape or edge punched cards. Tape/card transportation is accomplished with a feed rake rather than the conventional sprocket wheel, and the equipment will read at up to 50 characters $/ \mathrm{sec}$ step-bystep or 70 characters $/ \mathrm{sec}$ continuous running. Sensing is mechanical and the motion of sensing pins is transferred to set reed switches in a contact unit. The switches remain set until the next reading action takes place. The dimensions of the reader are $6 \frac{1}{2} \mathrm{in} \times 6 \frac{1}{2} \mathrm{in} \times 3 \frac{1}{2} \mathrm{in}$ and it is normally supplied as a free standing unit. A panel mounting version and spooling facilities will be available soon. Great Northern Telegraph Works, 5 St. Helen's Place, London, E.C.3.
WW 319 for further detalls

THYRISTOR-DIODE KIT

A THYRISTOR-diode kit has been introduced by International Rectifier, Hurst Green, Oxted, Surrey. The new kit is complementary to the IR zener "40 Plus" Semiconductor Kit which was designed for the circuit designer, development engineer and laboratory technician. The new kit provides all the semiconductor components required to set up single-phase and three-phase circuits for use in such applications as motor speed control, solid state switching, voltage control, temperature control, controlled battery chargers, light dimmers and flashers. The kit costs $£ 12$ and includes a design handbook, a thyristor slide-rule calculator, a selection of useful circuits, 15 thyristors and diodes with p.i.v. ratings from 50 V to 800 V and current ratings of 600 mA to 8 A , and a 2 N 2160 unijunction transistor. International Rectifier, Hurst Green, Oxted, Surrey.

WW 320 for further details

Optical Increment Encoder

OPTICAL increment encoders by Moore Reed Ltd., are housed in a 3.062in diameter frame. The electrical output consists of 1,000 on-off square waves for one shaft revolution. A second output, of the same resolution but displaced relative to the first by a quarter cycle, provides means of direction sensing. Complement signals of both outputs are also provided to facilitate doubling the number of cycles by means of an Exclusive or gate. Thus 4,000 "edges" per shaft revolution can be realised. A fast rise time of under $2 \mu \mathrm{~s}$ can be obtained and thus the square wave can be maintained from effectively zero (shaft speed) up to 6,000 r.p.m. $(100 \mathrm{kHz})$ with little change in mark/space ratio. A marker pulse oocurring once per shaft revolution is also provided. Two additional outputs give "lamp healthy" or "lamp failed" signals. Long lamp life is achieved by a factory soak test to eliminate early mortalities, and under-running the lamp by 20% to 30% of its capacity. An additional feature is an easily interchangeable lamp and lens assembly. The amplification, squaring and buffer circuits are self-contained. Accurate control of shaft and spigot dimensions, shaft run-out and squareness, enables the encoder to be used where high precision is needed in the relationship between pulse output and shaft rotation. Moore Reed \& Co. Ltd., Walworth, Andover, Hants.

[^7]
DOUBLE BALANCED MIXERS

BROADBAND double-balanced mixers from Hewlett-Packard are housed in a compact package ($1.63 \times 0.70 \times 0.43 \mathrm{in}$) for mounting directly on printed circuit boards or in strip-line circuits. The 10514 B , retains the characteristics of the 10514 A but is in a more compact package, and is offered at a lower price. The frequency range of the 10514 B is 0.2 to 5000 MHz at the local oscillator and signal ports; the third port is d.c. coupled. The frequency range of the 10534 A , with BNC connectors, and the companion printed-circuit mounting Model 10534 B , is 50 kHz to 150 MHz . As suppressed carrier modulators deriving sum and difference products of two input frequencies, the doublebalanced mixers serve either as up-converters or down-converters with appropriate band filtering at the output. D.C. coupling at the X port enables them to serve also as phase detectors. Conversely, the X -port can be used as the input for a signal that modulates a signal applied to either of the other ports. These broadband, untuned mixers are thus useful as pulse modulators, capable of high carrier suppression between pulses, as current-controlled attenuators, as a.m. modulators, and also as spectrum or comb generators. Of particular importance, the i.f. noise specified for all the HP mixers is claimed to be very low (less than $0.1 \mu \mathrm{~V}$ per root cycle at an output frequency of 10 Hz). Mixer conversion loss (single sideband) of the $0.2-500 \mathrm{MHz}$ Model 10514 B is less than 9 dB over the full input frequency range, and less than 7 dB , typically 6 dB , in a frequency range of 0.5 to 50 MHz . Mixer conversion loss of the $0.05-150 \mathrm{MHz}$ Models 10534 A and 10534 B is less than 6.5 dB , between 0.2 and 35 MHz , and less than 8 dB throughout the rest of the range. Other performance data and comprehensive specifications for these mixers are given over a wide environmental range. By the use of hot-carrier diodes in the diode-bridge modulator circuit, these double-balanced mixers have high carrier suppression. Intermodulation products are also exceptionally low. All of the double-balanced mixers are designed for and specified in 50Ω systems. Prices of the double-balanced mixer family for single unit purchases are Model 10514B 0.2 to 500 MHz PC mixer E57; Model 10514A 0.2 to 500 MHz BNC mixer 569 ; Model 10534B 50 kHz to 150 MHz PC mixer $£ 23$; and Model 10534 A 50 kHz to 150 MHz MNC mixer 129: Hewlett Packard Lid., 224 Bath Road, Slough, Bucks.
WW 322 for further detalls

Bi-directional Counter

A BI-DIRECTIONAL solid-state pulse counter (by A \& R Design Lid.) has a six-digit wide-angle view neon indicator display and direction sign, and is available either enclosed (as illustrated in photograph) or in open form for standard 19 in rack mounting. Designed primarily for use with optical gratings using the moiré fringe effect for either linear or radial position indication, these counters can be driven by other transducers or signals. Driven by an optical grating transducer of sufficient accuracy, the counter can read position to within $1 \mu \mathrm{~m}(0.00004 \mathrm{in})$ linear or within 30 sec of arc radially. Alternatively, the counter can be driven by any sine or square wave or pulse input at speeds up to 100 kHz , and because of its bi-directional nature if 2 inputs are employed that are 90° out of phase the direction of the count can be reversed by changing the phasing of the inputs, giving true bi-directional counting. The standard counter is fitted with a sign change at zero and the direction of the count is also reversed at zero, giving a true zero with upward count in either direction with sign change clearly indicating direction of count. The counter can be supplied with transducers and can also be supplied with predetermining counters, for sequence operations; with print-out units recording individual and total counts, for measuring, inspection or statistical analysis; and with automatic zeroing and remote control and print-

out facilities. Power supply 200/250 V $50 \mathrm{~Hz}, 110 \mathrm{~V}, 60 \mathrm{~Hz}$, or 24 V d.c. to special order. A \& R Designs Ltd., 1 Vineyards, Bath, Somerset.
ww 323 for further detalls

Driver Transistor

A SILICON planar transistor, type BSW70, by Mullard, is primarily intended for driving cold-cathode numerical indicator tubes. It has a $V_{\text {CEO }}$ of 60 V and therefore adequately meets the "off" requirements of the number tube's cathodes-an essential condition for good visual performance. The BSW70 will become part of the company's "Practical Planar" range. Brief data is as follows:- Vcro max. $100 \mathrm{~V}, V_{\text {CEX }}$ (at $I_{\mathrm{B}} 10 \mu \mathrm{~A}, 25^{\circ} \mathrm{C}$) 75 V , $V_{C E} \mathrm{Sat}$. (at $\mathrm{I}_{\mathrm{C}} 2 \mathrm{~mA}$) $0.5 \mathrm{~V}, h_{\mathrm{PE}}$ (at $\left.I_{\mathrm{C}} 2 \mathrm{~mA}, V_{\mathrm{CE}} 5 \mathrm{~V}\right) 50 \mathrm{~min}$. $P_{\text {tot }}$ continuous is 250 mW . Encapsulation TO-18. Mullard Lid., Mullard House, Torrington Place, London, W.C.1.
ww 324 for further detalls

White Noise Test Set

THE Marconi Instruments white noise test set is an equipment used in the measurement of noise interference in wideband telecommunications systems. The test set comprises a noise generator, with bandwidth extending from below 12 kHz to above 12.388 MHz , and the noise receiver. The latter, connected to the receiving end of the link system, is switch-tuned to the centre frequency of a quiet test channel, and the noise breakthrough into the quiet channel is measured in terms of relative or absolute power. It is fitted with

an internal standardising noise source, so that its sensitivity can be set up independently from the noise generator This feature is necessary when the receiver is to be used for out-of-band testing, utilizing the traffic as the noise source. A pW scale has been added to the attenuator calibration to facilitate measurement in terms of absolute power per unit bandwith. Provision is made for adjusting the sensitivity on each reception channel independently, so that the sensitivity of the receiver can be equalised over its working range. The price of the TF 2092A noise receiver is £415. The price of the OA 2090A white noise test set comprising the noise generator and receiver is £787. Marconi Instruments Ltd., Si. Albans, Hertfordshire, England.

Adjustable Loudspeaker
 TO enable adjustments to be made for

 specific acoustic conditions desirable in recording, broadcasting and television studios, the Tannoy Monitor Gold speaker has a panel accommodating the treble roll-off and treble energy controls. The roll-off control permits extreme treble response to be attenuated while the energy control reduces the treble response from the cross-over point upwards. Of interest to general users is that the impedance of 8Ω now available in this type of speaker (dual concentric) is held to within close limits making this unit particularly suitable for use with solid-state amplifiers. The mass of the l.f. diaphragm assembly has been increased in order that the bass response will be better maintained in smaller enclosures. The 15 in unit h.f. diaphragm has been modified to use a lighter voice coil yielding an improvement in high frequency response. The crossover has been modified on the three units in this range, the " 15 ,"
" 12 " and "IIILZ," resulting in reduced intermodulation and smoother response. The frequency response, power handling capacity and cross-over frequencies for the " 15 ," " 12 " and "IIILZ" are respectively, 23 Hz to $20 \mathrm{kHz} ; 25 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; 27 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; 50 \mathrm{~W}, 30 \mathrm{~W}, 15 \mathrm{~W} ; 1 \mathrm{kHz}$; $1 \mathrm{kHz} ; 1.2 \mathrm{kHz}$. Tannoy Products Ltd., West Norwood, London, S.E.27.
WW 326 for further detalls

Variable Power Supply

VARIABLE power supply Type 300 incorporates regulation and control circuits. The unit has been evolved to cater for educational, laboratory, test, circuit development, production and component evaluation applications. Voltage and current output monitoring is effected by a 2% dual scale (volt/ ammeter) with a clearly calibrated continuously variable voltage control spanning from truc zero to 25 V with a setting resolution of 0.2%. To ensure an interference-free supply of regulated power under the worst conditions of supply line or load change, spurious transients are held to less than 250 mV while transient recovery time does not exceed $10 \mu \mathrm{~s}$. The unit is protected against possible semiconductor and capacitor breakdown should a reverse polarity voltage be applied. Further safety provisions include automatic current limiting and a "short-circuit proof" facility, with automatic "reset." As load and line regulation is typically

held to within 0.1% and ripple and noise do not exceed 1 mV peak to peak, the unit meets the requirements of most sophisticated applications. Because of its ambient temperature operating range ($0-50^{\circ} \mathrm{C}$), initial "turn on" drift is kept to a minimum and can be ignored for most practical purposes. This unit can be used singly or stacked in parallel or in series to meet higher voltage or multirail requirements. The output is 0 to 24 V d.c. 0.5 A from the following inputs: $105-125 \mathrm{~V}$ or 200 250 V a.c. $50 / 60 \mathrm{~Hz}$. Weir Electronics Ltd., Durban Road, Bognor Regis, Sussex.

WW 327 for further detalls

D.C. Transducer

SOMETIMES known as a "d.c. transformer," a direct current transducer is especially applicable to the measurement of d.c. in high voltag: circuits. The device operates entirely from the magnetic field resulting from the d.c. The insulated current carrying conductor that passes through an Airpax d.c. transformer serves as a half-turn d.c. signal input winding to a toroidal magnetic core. This core is excited from an a.c. supply. Interaction of the two magnetic fields produces an output signal which, after rectification and filtering in a solid-state network, is linearly proportional to the measured current. The d.c. transformer produces no loading on the current carrying circuit because of loose coupling. An internal resistance limits the excitation current. Response time of the magnetic circuit is of the order of ten milliseconds. The Airpax high sensitivity d.c. transducers produce full-scale outputs from as little as 1 mA d.c. signal levels. The transducer fully isolates the output (meter) circuit from the input (metered) circuit in a manner similar to the isolation provided by instrument transformers used in metering a.c. circuits. With the d.c. transducer, d.c. in high voltage circuits can be measured to an accuracy of $\pm 1.0 \%$ of full-scale. The internal circuit is designed for continuous operation and long life. The instrument is claimed to retain its accuracy from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ and with a $\pm 5 \%$ variation in the 115 V a.c. supply. The excitation is 60 Hz (50 Hz available on special order). Overloads in the input current line do not damage the unit, nor do short circuits in its output circuit. Airpax Electronics, Seminole Division, P.O. Box 8488, Fort Lauderdale, Florida 33310, U.S.A.
WW 328 for further defails

DIGITAL CLOCK

TIME indication by the Racal integrated circuit digital clock Type 812, is in hours, minutes and seconds. Display is through six in-line numerical indicator tubes. Timebase facilities offered include an internal standard derived from a 1 MHz crystal oscillator or 50 Hz mains power frequency. The crystal oscillator has a short-term stability of ± 1 part in 10^{6} because of cyclic oven control; long term stability is typically within three minutes of nominal setting over a period of a year. The 50 Hz stability is dependent on the mains supply. Also available are external standard frequencies of 1 MHz ,

100 kHz , or 1 Hz , at a level of 1 V r.m.s. Other features of this clock include a timebase failure alarm and the following controls: (1) initial time setting, (2) clock start and synchronization, (3) time adjustments during operation, and (4) zero reset; and time interval measurements (stop watch application). The electrical output of information is 4 line b.c.d. weighted 1248 code per display unit, " 0 " state logic. Options available are higher stability timebases (two) and an alternative power supply. Racal Instruments Ltd., Dukes Ride, Crowthorne, Berkshire.
WW 329 for further details

R Trimmer

A MINIATURE rectangular trimmer by Reliance Controls Lid., although a discrete component, is intended for use with integrated circuits or where space is at a premium. The trimmer, Type CW50, is 0.75 in long, 0.165 in wide, 0.28 in high, and has been designed for printed circuit applications with pins on the standard 0.1 in matrix. Operating torque is 2.1 N cm (3 ozf in). The resistance range is 100Ω to $20 \mathrm{k} \Omega$. Temperature range is -65° to $+125^{\circ}$, and the power rating is 1 W at $+40^{\circ} \mathrm{C}$.
WW 330 for further details

CW50103

4-channel f.e.ts

EIGHT new 4-channel f.e.t. switches, the G125F to 132 F , are available in the Siliconix line of multi-channel f.e.t. switches and drivers, now available in this country from U.E.C.L. These nchannel junction devices, packaged four to a TO-84 can, are designed primarily for switching applications; however, they are also useful in amplifiers and volt-age-controlled-resistor and constant current applications. The series offers a choice between separate or commondrain configurations, four $\gamma_{d s}$, and two V_{P} ranges in each configuration. Maximum pinch-off voltages are 5 and 10 ; maximum " on" resistances are 500 , 250,90 and 45Ω. The f.e.ts have low $I_{G S S}, 0.1$ and 0.2 nA max. depending on device type, and 0.05 and 0.1 nA $\max \quad I_{D(\mathrm{OFF})}$ and I_{S} (orp). N-channel junction fects provide several advantages; very low " on " resistance per unit capacitance, trade-off between V_{p} and $r_{d \times(o n)}$ to lessen the drive swing requirement and low leakage. On special order, Siliconix will package any of its junction f.e.ts in a flat package. Ultra Electronics (Components) Ltd., Microelectronics Division, 35-37 Park Royal Road, London, N.W.10.

$$
\text { Ww } 331 \text { for further detalls }
$$

 THE ROUSE OF BUKGFN AT YOUR SERVICD

A SMALL SELECTION FROM OUR RANGE OF OVER 300 MOULDED INSULATION SWITCHES

An ever-increasing range of superior quality Miniature Switches, produced from the finest materials available, by fully automatic processes with constant testing to ensure the highest degree of reliability and finish. Fine Silver Contacts.
Single Pole models are available either Change-Over rated 250V. 2A~ or Make-Break rated 250 V . 3A.~. Double Pole models are basically Change-Over, rated 250 V . 2 A 。~ and easily wired to give Make-Break contacting.

SINGLE POLE RANGE

List No. S.M.265/PD Toggle Operated

List No. S.M. 593
Slide Operated

List No. S.R.M.259/TERM Successional Push Action

List No. S.M.319
Key Operated

List No. S.M. 357
Biased Push Action

List No. S.M. 254
Semi-Rotary Shaft

DOUBLE POLE RANGE

List No. S.M.270/PD Toggle Operated

List No. S.M. 446
Push Pull Operated

List No. S.R.M. 270
Successional Push Action

For full details send for leaflet 1509/C free on request.

FEBRUARY MEETINGS

Tickets are required for some meetings : readers are advised, therefore, to communicate with the socicty concerned

LONDON

1st. I.E.R.E.-" Satellite communication systems and the diverse engineering techniques which they require" by C. F. Davidson at 6.0 at 8-9 Bedford Sq.3 W.C.1.
2nd. I.E.E.-Colloquium on "MOSTs for analogue switching " at 2.30 at Savoy P1., W.C.2.
5th. I.E.E.-"Future trends in the design of subscribers' telephone instruments" by F. E. Williams, F. A. Wilson and K. A. T. Knox at 5.30 at Savoy Pl., W.C. 2 .

6th. I.E.E. \& R.Ae.S.-" Automatic landing of aircraft-control techniques in all-weather aircraft operations" by K. Smith at 5.30 at Savoy Pl., W.C.2.
7th. I.E.E.-"A new electrostatically focused and deflected vidicon" by Dr. H. G. Lubszynski, N. Barford, Dr. B. Mayo and J. Wardley and "Beam separation and low-noise read-out in isocons" by P. C. Ruggles, Dr. N. A. Slark, D. P. Mouser and P. H. Batev at 5.30 at Savoy Pl., W.C.2.

7th. I.E.R.E. \& I.E.E.-Colloquium on "Fluid logic in peripheral equipment for computers" at 6.0 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C. 1 .

8th. I.E.E- "A system for transmission and display of weather information" by R. H. D. Hardy at 5.30 at Savoy Pl., W.C.2.

8th. Inst. Electronics.-" Measurement and control in the wire and cable industry" by P. Barter at 6.45 at the School of Hygiene \& Tropical Medicine, Keppel St., W.C.I.

9th. I.E.E.-"Evanescent mode filters"
by G.F. Craven at 5.30 at Savoy P1., W.C. 2 .
9th. R.T.S.-"A comparison of wired and wireless broadcasting for the future" by R. P. Gabriel at 7.0 at I.T.A., 70 Brompton Rd., S.W.3.

13th. I.E.R.E.-"The MOST integrated circuit" by P. Cooke at 6.0 at $8-9$ Bedford Sq., W.C.1.

14th. I.E.E.-"Stimulus or constraint? The interplay of computer design and use" by F. J. M. Laver at 5.30 at Savoy PI., W.C. 2 .

15th. I.E.E.-Colloquium on "Direct digital control of systems and processes" at 2.0 at Savoy Pl., W.C. 2.

16th. I.E.E.-" \dot{A} position fixing aid to marine surveying" by J. K. V. Lee at 5.30 at Savoy PI., W.C.2.

21st. I.E.R.E.-Symposium on "Integrated harbour radar systems" at 6.0 at 8-9 Bedford Sq., W.C.l.
23rd. R.T.S.-"Data presentation by visual displays" by R. A. Ward and M. H. Cufflin at 7.0 at I.T.A., 70 Brompton Rd., S.W.3.

27th. I.E.E.-Colloquium on "Developments towards a computer-based information service in physics, electrotechnology and control" at 2.30 at Savoy Pl., W.C.2.

28th. I.E.E.-"Measurement as an aid to archaeological research "' by Dr. E. T. Hall at 5.30 at Savoy Pl., W.C.2.
28th. I.E.R.E.- Ultrasonic delay lines and their uses in television" by R. Gibson and S. M. Edwardson at 6.0 at 8-9 Bedford Sq., W.C.1.

BASINGSTOKE

8th. I.E.R.E.-" High voltage pulse techniques in fusion rescarch "by Dr. N. R. McCormick at 7.30 at the Technical College.

BIRMINGHAM

20th. R.T.S. \& I.E.R.E.-" Colour is our future" by Bill Ward at 7.0 at A.T.V. Ltd.

BRIGHTON

13th. I.E.R.E.-"Radio astronomy" by J. M. H. Hill at 6.30 at College of Technology.

BRISTOL

5th. I.E.R.E. \& I.E.E.-"Computer control systems for materials handling plans" by J. P. Coley and W. J. Castens at 6.0 at the University, Queens Building.

13th. R.T.S.-" Colour TV receiversgeneral design problems" by B. J. Rogers at 7.30 at B.B.C., Whiteladies Rd.

CAMBRIDGE

Ist. I.E.R.E. \& I.E.E.-" Recent developments in wideband aerials "by M.F. Radford at 8.0 at the University Engineering Laboratories, Trumpington St.

29th. I.E.R.E. \& I.E.E.-" The theory of oscillators" by P. J. Baxandall at 8.0 at the University Engineering Laboratories, Trumpington St.

CARDIFF

9th. S.E.R.T.-" Field effect transistors" by E. F. Munroe at 7.30 at Llandaft Technical Collcge, Western Ave

14th. I.E.R.E.-"Electronic techniques ir electro-physiology" by D. P. Nelligan at 6.30 at University of Wales Institute of Science and Technology.
14th. R.T.S.-"Techniques for 'pop' music recording" by D. Heelis at 7.30 at Broadcasting House, Llandaff.

CHESTER

14th. I.E.E.T.E.-"The laser" by Dr. P. T. Andrews at 7.0 at College of Further Education, Eaton Rd.

CHESTERFIELD

5th. S.E.R.T.-" U.H.F. reception" by B. M. Goodwin at 6.30 at College of Technology, Infirmary Rd.

COVENTRY

Sth., I.E.R.E.-" Post Office towers and trunks "by J. C. Billen at 7.15 at Lanchester College of Technology, Priory St.

DUNDEE

7th. I.Prod.E.-"An introduction to integrated circuits and methods of manufacture" by J. T. Brown and C. Turner at 7.30 at Queen's Hotel, Nethergate.

EDINBURGH

13th. I.E.R.E. \& I.E.E.-"The use of satellites for long-distance telecommunications" by H. Stanesby at 6.0 at Carlion Hotel, North Bridge.

23rd. S.E.R.T.-"Colour television" by J. C. Allen at 7.30 at Napier Technical College, Colinton Rd.

EVESHAM

27th. I.E.R.E.-"Slow motion video disc recording" by C. R. Webster at 7.0 aı B.B.C. Club.

FARNBOROUGH

22nd. I.E.R.E.--" Electrical interference in electronic sustems" by D. Harrison at 7.0 at Technical College.

GLASGOW

12th. I.E.R.E. \& I.E.E.-"The use of satellites for long-distance telecommunica-
tions" by H. Stanesby at 6.0 at University of Strathclyde

21st. I.E.E.T.E.-" Cybernetics in management " by W. A. Gay at 7.0 at University of Strathclyde, Montrose St.

GRANGEMOUTH

22nd. S.Inst.Tech.-" Gas lasers and their applications", by H. Foster at 7.0 at Leapark Hotel, Bo'ness Head.

GREENOCK

2nd. S.E.R.T.-" Colour television" by J. McMaster at 7.30 at Watt Memorial College.

halifax

8th. I.E.R.E.-" Machine tool control transducers" by D. Mather at 7.0 at Percival Whitley College of Further Education, Department of Engineering, Francis St.

HORNCHURCH

20th. S.E.R.T.-"Automatic landing systems " by F. J. Sullings at 7.0 at Havering Technical College, 42 Ardleigh Green Road.

LINCOLN

6th. S.E.R.T. "U.H.F. reception" by B. M. Goodwin at 7.30 at Technical College, Cathedral St.

LIVERPOOL

21 st. I.E.R.E.-"Electronic standards conversion" by D. Stebbings at 7.0 at Regional College of Technology, Byrom St.

LOUGHBOROUGH

20th. I.E.R.E. \& I.E.E. "The 57 effects of electric current" by Dr. G. S. Brosan at 6.30 at University of Technology.

MANCHESTER

22nd. C.E.I.-" Our present knowledge of the universe" by Sir Bernard Lovell at 6.30 at Renold Building, Manchester College of Science and Technology, Altrincham St .

NEWCASTLE-UPON-TYNE

7th. S.E.R.T.-"Interference" by T. Boast at 7.15 at Charles Trevelyan Technical College, Maple Terrace.
14th. I.E.R.E.-"Automatic landingsome design aspects of high integrity autopilots" by R. Bishop at 6.0 at Institute of Mining and Mechanical Engineers, Neville Hall, Westgate Rd.
22nd. S.Inst.Tech. - "Integrated circuits" by W. L. Clough at 7.0 at the Rutherford College of Technology.

OLDHAM

8th. S.E.R.T.-_"Stereo broadcasting " at 8.0 at The Technical College.

PLYMOUTH

20th. I.E.E., I.E.R.E. \& R.T.S.-"Concorde electronics" by H. Hill at 7.0 at College of Technology.

READING

13th. I.E.R.E.-"On-line control" by Dr. R.C. Butchart at 7,30 at J. J. Thomson Physical Laboratory, The University.

STOKE-ON-TRENT

16th. S.E.R.T.-"Sony video tape recorders" at 7.30 at North Staffs College of Technology, College Road.

WAKEFIELD

29th. I.E.E.T.E-" The application of thyristors in industry " by E. J. l'epper at 7.0 at Adult Education Centre, Queen Street.

When is an Avo meter not an Avometer?

When it tests nuvistors, compactrons \& 13-pin valves

The new Avo VCM163 Valve Characteristic Meter is one of the most versatile valve testers ever developed. With facilities for testing valves with as many as 13 pin connections (and 2 top caps), plus recently introduced types such as nuvistors and compactrons, the VCM163 provides both rapid fault diagnosis and comprehensive static/dynamic characteristics data. Nevertheless, it is even simpler to use than previous models - no backing-off is required. A separate meter displays mutual conductance values continuously during testing, and there is pushbutton monitoring of screen parameters. The full range of $h . t$. voltage -12.6 V to 400 V - can be applied to anode and screen, heater voltage is adjustable in 0.1 V steps from 0 to 119.9 and grid voltage may be varied continuously from 0 to 100 V (calibrated). Get complete information about the VCM163 from your local dealer or Avo Ltd, A vocet House, Dover,
 Kent. Telephone Dover 2626. Telex 96283.
\qquad

8/8

4/8
2/8
The ever-increasing application of digital techniques to data acquisition has prompted Marriott Magnetics to investigate track density in $\frac{1}{4}$ inch wide magnetic tape. The possibility of using readily available and comparatively cheap tape and tape transport mechanisms opens up new and attractive avenues of approach to many applications which hitherto have been dismissed on cost grounds. This $8 / 8$ head is a valuable newcomer to our standard range which now includes $4 / 8$ and $2 / 8$ in addition to the $4 / 4-2 / 4$ and $1 / 4$ configuration.
Combination Record/Playback/Erase heads to the above configuration are available for some of the above types.
Marriott Magnetics were the very first company in the world to mass-produce miniature heads, and in 1959 Marriotts scooped the world by mass-producing a iour-track head. Well over 5 million heads have been sold since then, and it is the company's firm intention to continue leading the world in the design and manufacture of Magnetic Recording Heads.

RESEARCH AND DEVELOPMENT

Marriott Magnetics' research and development activities are directed towards continuously improving the mechanical and electrical characteristics of their heads through the use of many new ideas, engineering approaches and manufacturing techniques.
Much research and development effort is applied to the development of heads with unique configurations for many special and unusual instrumentation applications. A highly efficient pre-production group works closely with research and development to provide a fast service of prototypes, small quantity production and special heads.

MANUFACTURING

Marriott Magnetics maintain a complete facility; fully equipped with the machines, tools, optical equipment and electronic test instruments for mass production of precision heads. Machinery, assembly, test and inspection operations are performed by operators experienced in close tolerance and precision assembly work.
Material handling methods are used to permit cost reduction and quick delivery of Standard Heads. Assembly, test and inspection procedures are carried out under most controlled conditions.

ENGINEERING

Marriott Magnetics' engineering staff has extensive experience in application of design, manufacturing and test techniques to head production problems, and taking a new design through the prototype stage to quantity manufacture. The ability to analyse and to provide answers quickly to engineering problems peculiar to precision heads results in a quality product with superior operational characteristics and very uniform production runs.

QUALITY CONTROL

Continuous piece part inspection and evaluation of each Sub-Assembly are the two basic points of Marriott Magnetics' quality control system. Incoming materials and parts are closely inspected to ensure that mechanical and electrical specifications are met. All completed heads are vigorously inspected and performance tested to ensure complete customer satisfaction.

This looks like a'B’size Ignitron

but it controls 65\% MORE POWER and saves money

The new EEV Mini ‘C’ Ignitron

It's well-known that ' B ' and ' C ' Ignitrons are often used for applications which call for something in between. You can either overwork a ' B ' or underwork a 'C'. Whatever you do wastes money. To cut out this waste EEV has developed a new Mini 'C' Ignitron which has a standard international ' B ' size envelope, but can handle 65% more KVA than the ' B ' size. The new tube has a number of advantages. Take-over voltage is low to minimise misfiring at low current conditions, which in turn increases ignitor life. When used in place of a standard ' B ' size ignitron, you will find that the Mini ' C ' lasts nearly twice as long. The cooling water is in direct contact with the vacuum envelope, and the inlet
has been streamlined for better water flow. This adds up to better cooling, especially at hot spots, and reduced clogging by sediment. Both water connections are of the quick release type. Plastic coating is optional. The Mini ' C ' fits standard ' B ' size sockets, so that you can use it to uprate existing equipment to provide new intermediate types. Makers of welding equipment will see in the Mini ' C ' a means of extending their range, as there is no need for a new socket size calling for radical design changes. Use the Mini ' C ' in place of an overworked ' B ' size for longer life, or to replace an underworked ' C ' size for lower running costs. In both cases it will save you money.

EEV's new Mini 'C' Ignitron is available from stockists throughout the country.

Coventry Factors Ltd, Coronet House, Upper Well Street
Downes \& Davies Ltd, G.P.O. Box 555. 72 Chapeltown Streef
Edmundson Electronlcs Ltd, 60-74 Market Parade, Rye Lane. Peckham
Gothle Electrlcal Supplies Ltd, Gothic House. Henrietta Street
Harper Robertson Electronics Ltd, 97 St George's Road
Smith \& Cookson Ltd, 4957 Bridgewater Sireet
The Needham Englneering Co. Ltd, P.O. Box 23, Townhead Street
Wireless Electric Lid, Wirelect House, St Thomas Sireet

Coventry Tel: Coventry 21051
Manchester 1 Tel: Ardwick 5292
London SE15 Tel: New Cross 9731
Birmingham 19 Tel: Central 5060
Glasgow C3 Tel: Douglas 2711
Liverpool 1 Tel: Royal 3154-7
Sheffield 1 Tel: Sheffield 27161
Bristal 1 Tel Bristol 294313

Let cathodeon provide you with a megacycle escort

(... anything from 1-140 motorcycles)

We at Cathodeon are very happy to sit back in our swivel chairs and let your orders for crystals drop into the mailbox day after day. It's a great life and doubtless has everything to do with our reputation for a first-class product and reliable delivery. But we know that, on occasion, you would also welcome some assistance in determining the optimum crystal specification for a new or unfamiliar application. That's where you can call on us again! If you're heading into strange teritory. chances are Cathodeon have already mapped out the route and we'll gladly provide a megacycle escort to keep you on the right road.

Got the drift? Better 'phone Cathodeon now !-or write to the megacycle factory, Cathodeon Crystals Ltd., Linton, Cambridgeshire. Telephone: Linton 501. Telex: 81212. Cables: 'Quartz' Cambridge.

QUARTZ CRYSTALS • CRYSTAL FILTERS • CRYSTAL OVENS

Mercury Vapour Rectifiers

DATA

Type	Service type	Peak inverse voltage max. (kV)	Peak anode current max. (A)	Mean anode current max. (A)	3-phase full wave	
					Voltage $(k v)$	Current (A)
8698	,	20.0	10.0	2.5	19.0	7.5
AH200	-	20.0	10.0	2.5	19.0	7.5
$\begin{aligned} & \mathrm{AH} 205 / \\ & 857 \mathrm{~B} \end{aligned}$	CV2673	22.0	40.0	10.0	21.0	30.0
AH211A	CV532	16.0	8.0	2.0	15.2	6.0
AH221	$\begin{aligned} & \text { CV5 } \\ & \text { CV1435 } \end{aligned}$	20.0	5.0	1.25	19.0	3.75
AH238	CV1629	13.0	5.0	1.25	12.4	3.75
BD10	-	1.0	25.0	8.0	. 0.95	24.0
BD12*	-	1.0	2×50	2×16.5	0.95	49.5

-Full waye rectifier.
This range of Mercury Vapour Rectifiers is available from your local EEV stockist. English Electric Valves production methods ensure the reliability and performance you are looking for and prices are competitive.

Coventey Factort Lid. Coronel House. Upper Well Street	Coventey Tel: Coventry 21051
Downes a Davies Lid. G.P.O. Box 555, 72 Chapeltown Sueet	Manchester 1 Tel: Ardwick 5298
Edmundson Electronics Lid, 60.78 Markat Farade. Rye Lane. Peckham	London SE1s Tel. New Cross 9731
Gothle Electrical Supplies Lid. Gothic Mouse. Menrietta Street	Birmingham 19 Tel Central 5060
Harper Poberteon Electronics Ltd, 07 St George's Road	Glasgow C3 Tel: Douglas 2711
Smith \& Cookson Ltd, 49/57 Bridgewatar Street	Liverpool \% Tel: Royal 3954.7
The Needham Engincering Co. Ltd, P.O. Bor 23, Townhead Slreet	Sheffield 1 Tel: Sheffeld 27961 .
Wireless Electric Ltd. Wirelect Mouse. St Thomas Street	Eristol 1 Tel: Brisiol 294313

and when we get
the bit between our teeth
there's no letting go
until we have the solution to your transmission, shock, vibration or what-have-you problem.
There is usually more than one way to approach the answer
and that is where
Silentbloc mental flexibility comes in our design team
will bend over backwards
to make sure it's the best possible, not only functionally but cost-wise too. The spotlight is on Silentbloc mountings, couplings, bearings, ball joints, link assemblies and every kind of vibration-damping device,

Voltage Stabilisers

DATA		Operating voltage approx.	Strikin	(V)	Tube current range	Regu max.	
Type	type	(V)	O	\bullet	(mA)		Base
OA2	CV1832	150	185	225	5-30	6.0	B7G
OA2WA \ddagger	CV4020	150	165	225	5-30	5.0	B7G
OB2	CV1833	108	133	210	5-30	3.5	B7G
OB2WA \ddagger	CV4028	108	133	210	5-30	3.0	B7G
OC2	CV8766	75	115	145	5-30	4.5	B7G
QS75/20	CV284 \dagger	75	110	160	2-20	6.0	B7G
QS75/60	CV434	75	117	-	5-60	5.0	B8G
QS92/10	CV188t†	92	140	-	1-10	5.0	Br.4-pin
QS95/10	CV286	95	110	-	2-10	5.0	B7G
QS108/45	CV422	108	120	-	5-45	5.0	B8G
QS150/15	CV287	150	170	-	2-15	5.0	B7G
QS150/45	CV395	150	170	-	5-45	5.0	B8G
QS1202ł	CV4052	108	133	210	2-15	3.0	B7G/F
QS1203 \ddagger	CV4053	150	180	225	$2-15$	4.5	B7G/F
QS1215	CV5173	90	115	115	1-40	8.0	B7G
\# A rugged and reliable type O in normallighting - In total darkness $\dagger \dagger$ Also CV1070 (operating voltage 100V) \dagger Also CV5083 (operating voltage 70 V)							
This range of cold cathode Voltage Stabilisers is available from your local EEV stockist. English Electric Valves production methods ensure the reliability and performance you are looking for and prices are competitive,							
Coventry Factors Lid, Coronet House. Upper Miell Street				Coventry Tel: Coventry 2105,			
				Manchester 1 Tel: Arowlch 5292			
				Te: New C			
Bothic Electrical Supplles Lid. Gothic House, Henrieya Sireer				Blimingham is Ter: Cental 5060			
Tarper Robertson Electronics Lto, 97 St George's Road				Glasgow C3 Ter Douglas 2711			
imith \& Cookson Lot, 49/57 Briggewaler Street				Iverpool 1 Tel: Roval $3154{ }^{\text {a }}$			
The Needham Engineering Co. Lid, P.O. Box 23, Townhead Street				Shetreld 1 Tel: Snelfeid 27161			
Nireless Elcetric Lld, Wirelest House. St Thomas S.teet				Bristol 9 Tel: Erisiol 294313			

See all these models, and many more... in the latest HEATHKIT Catalogue

NEW! $12+2 W$ TRANSISTOR STEREO AMPLIFIER Model TSA. 12
Luxury performance at lowest possible cost

Actractive low-sithouetre seyling in compact sizes
$34^{\circ} \times$ hl5 ${ }^{\circ}$ w $\times 10^{\circ}$ deep

- 17 transistors, 6 diode circuit $\pm 1 \mathrm{~dB} ., 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms. Outpus suitable for 8 or 15 ohm loudspeakers 3 stereo inputs for Grams, Radio and Aux. Modern low silhouerte styling - Actractive aluminium, golden anodised frone panel. Handsome assembled and finished walnut veneered cabinet available Matches Heathkit models TFM-I and AFM-2 transistor tuners.
Kit $\mathbf{2 0 . 1 0 . 0}$ (less cabinet) Ready-to-use $\mathbf{1 4 2 . 1 0 . 0}$
Beautiful Walnut cabinet $\mathbf{1 2 5 . 0}$. extra

LOW COST TRANSISTOR STEREO AMPLIFIER, TS- 23

Incorporates all the essential features for good quality sound reproduction from record, radio and other sources 16 transistor, 4 diode circuit - Good frequency response 3 wates $\% . m . s$. (15 ohms) each channel - 6 position selector switch easily handles your reeerd, radio or tape inpucs-stereo or mono - Separate controls provide bass boost, treble cut, amplifier balance procolume - Printed circuit board construction © Compact, slimline scyling © Measures 3 in . high $\times 13 \mathrm{in}$. wide $\times 8 \mathrm{in}$. deep - Beauciful walnut veneered cabinet Measures extra) - Attractive Perspex front panel.
KIT \& 17.15 .0 (less cabinet)
KIT \&18.19.0 (with cabinet)

TRANSISTOR AM-FM STEREO TUNER, AFM- 2

- 18 Transistor, 7 diode circuir - AM-LW/MW, FM Stereo and FM Mono cuning - Automatic stereo indicator light Stereo phase control for maximum separation, minimum distortion . Automatic frequency contrul for positive " lock-in "tuning - Auto matic gain control for even, steady volume © Preassembled and aligned "front end" FM unit powered - Low-silhouette syaling All and FM printed circuit boards Self powered Low-silhouette scyling-atatches AA-22U amplifier . Handsome AFM-2T RF Tuning Heneered cabine: available as optional extra. Comprising: supply kit $\subset 24 / 9 / 6$.

TOTAL PRICE KIT $\mathbf{6 3 2 . 7 . 0}$ incl. P.T.
Optional exera: Walnut vencercd cabinet $\mathbb{E} \mathbf{2} / 5 /$ exera

TRANSISTOR FM STEREO TUNER, TFM-IS

(Mono version TFM-IM available)

- 14 eransistor, 5 aiode circuit for cool instane operation - Mono TFM-IM and Secreo TFM-IS models available. Automatic frequency control - Stereo phase concrol to maximise stereo separation, minimise and selectivity \&iltered free "stereo recording light - Prealigned, preassembled ". Iront-end" " euner
and one circuit board for fasst, simple assembly. Cabine 215 , ent TFM-Th circurinoard Tur fast, simple assembly. Cabiner (2)/5/- extra. Comprising: supply $£ 15 / 3 /=$ Kiz or TFMA-1S (Stereo) if Amplifier. Power supply $£ 19 / 2 \mid$ - Kiz.

TOTAL PRICE KIT (Stereo) $\mathbf{E 2 0 . 1 9 . 0} \mathrm{incl}$ P.T.
TOTAL PRICE KIT (Mono) 624.18.0 incl. P.T.
Optional extra: Walnut vencered cabinet $£ 2 / 5 /-$ extra.

All models must perform to published specification when assembled in accordance with the instruction manual. ALL MODELS COVERED BY MONEY BACK GUARANTEE.

BERKELEY SLIM-LINE SPEAKER SYSTEM

- Specially designed to obtain optimum performance from the slim elegant cabinet - Beautiful walnut veneered, fully finished cabiner - Makes attractive addition to any room Stood on end uses only 17 in . x 7atin. of floor space - Two specially designed loudspeakers give adequate power handling for most applications - 12 in . low resonance unit and 4 in . Mid/High frequency unit, covers $30-17,000 \mathrm{c} / \mathrm{s}$. Build it in an evening - Professional attractive styling - Use one for mono and a pair for stereo - Outstanding performance at a low price - Shelf or floor standing - Use versical or horizontal - Designe to harmonize with modern or traditional decor.
KIT $£ 19.10 .0$ Ready-to-Use $\mathbf{E 2 4 . 0 . 0}$

LOW-COST SPEAKER SYSTEM SSU-I (not illustrated) - Build it yourself in an evening - All wooden parts accurately precut, drilled and sanded -Wide f́requency response - Two specially designed loudspeakers - Hi-Fi on a budget - Glue, sandpaper, ecc. are included in kit - Use one for mono, two for stereo. ©Finish it to match your own furnishing - I6 page instruction manual -7in. or 15 in . legs optional extra, $14 / 6$ - Use vertical or horizontal.

LOW-COST SHORTWAVE RECEIVER, GR-64E

- 4 bands-3 short wave bands cover $1 \mathrm{Mc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. plus $550 \mathrm{ke} / \mathrm{s}$ to $1.620 \mathrm{kc} / \mathrm{s}$ AM broadcast band - Built-In sin. permanent broadcast band Buils-In 5 in. permanent magnet speaker for a big, bold sound - lllumi nated sca in, slide-rule dial with extra logging scale Easy to read lighted bandspread tuning signal strength station selection Relative suning strength indicator ands pin-point station
 silicon diode rectifiers 4 -valiable ger - Built-in rectifiers - Variable BFO control for code and SSB transmissions simple circuit board construction assures stabilit Built-in AM rod antenna - Fass, simple circuit board construction assures stabilit, Handsome " low-boy "styling - Headphone jack for privace lisecning panel, and green and white band markings A.C. 30 watts. Dimensions: 13 in. KIT 22.10 Ready KIT $\mathbf{1 2 2 . 8 . 0}$ Ready-to-Use $\mathbf{E 2 7 . 8 . 0}$
GENERAL COVERAGERECEIVER, GG-IU (not illustrated) - Powerful 10 transistor, 5 diode circuit -Tunes 580 to $1,550 \mathrm{ke} / \mathrm{s}$ and 1.69 to 30 Mc / s in five bands. Bandspread on all bands Fixed-aligned ceramic If transfitters for best selectivity - Pre-assembled and aligned "front-end " for fast, easy assembly © Buile-in 6 in . $\times 4 \mathrm{in}$. speaker - Tuning meter for pin-point tuning - Completely self-contained for portability.

KIT $\mathbf{E 3 7 . 1 7 . 6}$ Ready-to-Use $\mathbf{E 4 5 . 1 7 . 6}$

Send for the Latest FREE CATALOGUE Now with more Kits more colour. Fully describes these models along with over 150 models for Stereo/ $\mathrm{Hi}-\mathrm{Fi}$, test and laboratory instruments, amateur radio gear, intercom, radio educational kits. Includes helpful information on Hi-Fi in your home and planning your Hi-Fi system. Mail coupon or write	HEATHKIT Please Address enquiries to: DAYSTROM LTD., Dept. WW.2, Gloucester. Tel.: 29451 Enclosed is C. \qquad post paid U.K. only Please send model(s) \qquad Please send me FREE Heathkit Cqralogue
VISIT THE HEATHKIT CENTRES	NAME
233 TOTTENHAM COURT ROAD, LONDON, W. 1 Open Mon.-Fri, 9 a.m. -5.30 p.m. Sat. 9 a.m. 1 p.m.	ADDRESS
AND	
17-18 ST. MARTINS HOUSE, BULL RİNG, BIRMINGHAM Open Tues.-Sat, 9 a.m.-6 p.m. incluslve.	Prices and specifications subjece 10 change without notice.

Heathkit world-Leader in INSTRUMENTS • HI-FI RADIO - Electronic kits

The construction manual provided with the kit ensures successful assembly

5in. WIDE BAND GENERAL-PURPOSE OSCILLOSCOPE, 10-12U

- "Y" sensitivity 10 mV . r.m.s. per cm , at $1 \mathrm{ke} / \mathrm{s}$. - Bandwidth $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Frequency compensated input attenuator $\times 1, \times 10, \times 100$. T/B, $10 \mathrm{c} / \mathrm{s}-500 \mathrm{kc} / \mathrm{s}$. in 5 steps. Two extra switeh selected pre-set sweep frequencies in $\mathrm{T} / 8$ Trange. T / B output approx. 10 v . peak to peak. Builtin IV callbrator "Facility for "z" axis modulation © Elecin Iv callibrator enacily stabilised power supply. Power req. $200-250 \mathrm{v}$. eronically stabilised power supply . Front panel, silver and A.C., $40-60 \mathrm{c} / \mathrm{s}$.: 80 watts chatinet, charcoal grey, size $8 \frac{1}{8} \times 14 \times 17 \mathrm{in}$. deep. Net weight 231b. 56-page construction and operation deep.
Kit £35.17.6. Ready-to-use £45.15.0
Attenuator and demodulator probes avallable as optional extras.
bin. VALVE VOLTMETER, IM-I3U

- Modern styling - Extra features - The ideal VVM for the Electronic Engineer - Gin. Ernest Turner $200 \mu \mathrm{~A}$. meter with multi-coloured seales - Unique glmbal bracket allows bench, shelf or wall mounting Measures A,C. (r.m.s.). D.C. voits $0.1 .5,5,15,50,150,500,1.500$ Q ${ }^{\circ}$ Restsance range 0.1 to $1,000 \mathrm{M} \Omega$ with int. battery action zero and ohms adjustment Roller-tinned printed circuit High input resistance ($11 \mathrm{M} \Omega$) Comprehensive assembly leads. Kit £18.18.0. Ready-to-use $\mathbf{2} \mathbf{2 6 . 1 8 . 0}$
4inin. Valve Voltmeter-V-7A (not illustrated). Kit $\mathbb{1} 13.18 .6$. Ready-to-use $\mathbb{E} 19.18 .6$

3in. PORTABLE GENERAL-PURPOSE SERVICE OSCILLOSCOPE, OS-2

- Modern styling, lightweight and compaet size, make this the ideal 'scope for service man, laboratory technician, amateur radio enthusiast or hobbyist 0 YV bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. Sensitivlity $100 \mathrm{mV} /$ cm - Push-pull vertical and horizontal amplifiers - Wide range time-base generator $20 \mathrm{c} / \mathrm{s}-200 \mathrm{ke} / \mathrm{s}$ in four ranges. - Automatic lock-in synchronisation © Mu-metal c.r.e. shield - Printed circuit board construction - Power req. $200-250 \mathrm{v} .50-60 \mathrm{c} / \mathrm{s}$ A.C. 40 watts © Fused Front panel silver and charcoal grey. Size 5in. w. $\times 7$ tin. h. $\times 12 \mathrm{in}$.
deep. Weight: 9 Z 1 b . deep. Weight: 9llb.

Kit £23.18.0. Ready-to-use $£ 31.18 .0$

GENERAL-PURPOSE SERVICE RF SIGNAL GENERATOR, RFIU

- Ideal for the alignment and trouble shooting of RF, IF and audio circuits Large easy-to-read dial Pre-aligned coil and bandswitch assembly RF output of at least millivolts $100 \mathrm{kc} / \mathrm{s}-100$ Mc/s. fundamentals up to $200 \mathrm{Mc} / \mathrm{s}$ harmonics Dimensions $9 \frac{1}{2}$ in. wide $\times 6 \frac{1}{2}$. high $\times 5$ in. decp.

Kit $\mathbf{1} 13.18 .0$. Ready-to-use $\mathcal{E} 20.8 .0$
AUDIO SIGNAL GENERATOR, AG-9U (not illustrated) Kit $\mathbf{2 2 3}$.15.0. Ready-to-use $\mathbf{\text { E }}$ 1.15.0

See these and other Heathkit models in the FREE catalogue

NEW! PORTABLE STEREO TAPE RECORDER, STR-I

- t track stereo or mono record and playback at 71. $3 \frac{3}{4}$ and 17 I.p.s. 18 eransistor circuit Record level indicator Digital counter with zero reset Stereo mic and aux. inputs. Built-in audio amplifier gives 4 wates rms output per channel. Two high efficiency Sin. \times Sin. speakers.
pakers
Versatile Recording facilities. So-easy-to build. Outstanding performance for price.

Kit $\mathbf{4} \mathbf{4 5} \mathbf{1 8 . 0}$. Ready-to-use $\mathbf{£ 5 9 . 1 5 . 0}$
THE CAR RADIO TO COMPLETE YOUR MOTORING PLEASURE CR-I
Complete your motoring pleasure with this small. compact, high output unit. Superb tong and medium wave entertainment whenever you drive. For 12 v , positive or 12 v . negative car earth systems.
8 latest semi-conductors (6 translstors, 2 diode circuit) - Powerful output 4 watts) wlll drive two speakers. Styled to harmonise with most car colour (4, wats) wit inc, P.T. IF/AF amplifier kit $£ 11.3 .6$.

Total price kit (excl. LS) ... £12.17.0 inc. P.T.
L/speakers and accessories available as extras.

NEW! PORTABLE STEREO RECORD PLAYER, SRP-I

- Compact, economical stereo and mono record playing for the whole family. - Mains operated * All "solid state" circuitry. Modern compace styling - Detachable second loudspeaker gives optimum stereo effect Automatic playing of $16,33,45$ and 78 rpm records - Suitcase portabllier - Two $8 \mathrm{in} \times 5 \mathrm{in}$ speakers Controls: Volume, Balance and Tone. Dimensions: overall 271 n . wide $\times 14 \frac{1}{8}$ in. $h i g h \times 7 \frac{1}{2}$ in. deep.

Kit $\mathbf{2} 27.15 .0$. Ready-to-use price on request.

"OXFORD" LUXURY TRANSISTOR PORTABLE, UXR-2

This superb transistor radio is the ideal domestic or personal portable Medium and Long Wave receiver - Solid leather case and handle Easy-to read tuning scale Extra large loudspeaker. Push button L. MW and tone 10 semi-conductors (7 transistors plus 3 diodes) - Sockets for personal earphones, tape recorder car aerial Internal 9 -volt battery (not supplied) lasts for months - Latest printed circuit techniques * Comprehensive, easy-to-follow. fully illustrated Instruction Manual.

Kit $\mathbb{1} 4.18 .0$ inc. P.T. Ready-to-use price on request

LEVELL VOLTMETERS
 measure μ V's from 1 Hz to 450 MHz

TYPE TM3A $£ 49$

Complete with bat tery and inpue lead OPTIONAL EXTRAS Leather case $64 / 10 /=$ A.C Power Unis

TRANSISTOR A.C. MICROVOLTMETERS

Response from 1 Hz to 3 MHz with amplifier output available. Two versions differ only in meter size and bandwidth switch on type TM3B

TYPE TM3в £63

Complete with bat tery and input lead. OPTIONAL EXTRAS Leather Case ES A.C. Power Uni E7/10/-

VOLTMETER RANGES

dB RANGES

100dB to 50 dB in 10 dB seeps. Scale
-20 dB to 6 dB . OdB 1 ImW !nco 600 s .

FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: 3 dB from 1 Hz to 3 MHz . 0.3 dB from 4 Hz co 1 MHz On $500, \mathrm{~V}$: 3 dB from 2 Hz to 2 MHz . On 150 NV : 3 dB from 4 Hz to 1 MHz On $50, \mathrm{~V}$: 388 from 7 Hz to 500 kHz .

AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges. Will drive a load of 200 kg and 50 pF without loss.
POWER SUPPLY
One type PP9 battery. life 1000 hours; or,
$\star \star \star \star \star \star \star \star \star \star$
BROADBAND VOLTMETERS
As A.C. Microvolemesers plus H.F. probe to excend response to 450 MHz . Two versions differ only in meter size and L.F. bandwidth switch on type TM6B

TYPE TM6A

 585Complete with bat-
tery and inpus lead tery and inpus lead. OPTIONAL EXTRAS Leather Case 64/10/-. A.C. Power Unit

H.F. VOLTAGE RANGES
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$. . . . 3 V f.s.d. Square law scales. Accuracy 4% of reading o ofls.d. at 3omiz.
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} \ldots+20 \mathrm{~dB}$.
$S c a^{4} \mathrm{c}-10 \mathrm{~dB} 80+3 \mathrm{~dB}$. $0 \mathrm{~dB}=1 \mathrm{dW}$ into 5012

TYPE TMA6B

 $£ 99$Complete with bat. tery and input lead. OPTIONAL EXTRAS Leaiher Case 65. Leather Case 65. A.C.

H.F. RESPONSE

$\pm 0.7 \mathrm{~dB}$ from 1 MHz so 50 MHz
$\pm 3 d B$ from 300 kHz to 000 MHz . I 6 dB from 400 MHz to 450 MHz

L.F. RANGES

As TM3A and TM3B except for the omis sion or $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$.

LEVELL

PORTABLE INSTRUMENTS

Fully detoiled leaflets are ovailable on our complete range of portable instruments.

POWER SUPPLY
One cype PP9 battery, life 1000 hours on L.F. ranges and 400 hours on H.F. ranges; or, A.C. mains when Levell Power Uni
is ficsed.

LEVELL ELECTRONICS LTD., Park Road High Barnet, Herts. Tel.: 01-449 5028

Instead of illustrating

 a lot of meters you may not need let's just say Anders carry the largest stocks in the U.K.And you can say that again! We have just compiled a catalogue* and even we are surprised at the variety of standard and non-standard meters we offer for off-the-shelf delivery. Among them there is almost certain to be that meter you need in a hurry. It would be interesting (for both of us) to find out. It won't take a moment when you've got through to Euston 1639. (By the way, for 'meter' read 'meters'. . . whenever the occasion demands).

New TELEFRONT Series with clear plastic bezels
*We'll gladly send one to any manufacturer or bona-fide engineer.
Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.
ANDERS METER SERVICE
Anders Electronics Ltd • 48/56 Bayham Place • Bayham Street London NW1 • Telephone 01-3879092 Ministry of Aviation Approved

...OR ONE THOUSAND-

To Your Specification and Delivery

Whether your need is for a single instrument or a thousand (or even more) the Ernest Turner organisation is geared to give the same renowned service. From a very wide choice of movements and case styles we can provide precisely the Instrument for your application, including the manufacture of special dials and provision of built-in or external units to permit indication of any electrical quantity.
We invite your specific enquiry for any number of instruments from one upward, and we should be pleased to send you a copy of our general catalogue $86 / 25$ on request.

ERNEST TURNER ELECTRICAL INSTRUMENTS LTD. CHILTERN WORKS, HIGH WYCOMBE BUCKS

Tel: 30931-4

valuable new handbook FIFE TO AMBITIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

Electronic eng.

Advanced Electronic Eng. -Gen. Elecironic Ens.-Applied Electronics - Practical Elecronics - Radar Tech. Frequency

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughrsman-ship- Illuminatimg Eng. Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanirary Eng. - Road Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio - Radio Er TV Servicing - TVV Eng. - Telecommunications - Sound Recording - Automation Practical, Radio - Radio Amateurs' Exam.

MECHANICAL ENG. Advanced Mechunical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Desigh Sheet Metal Work-W elding - Eng. Patternt Making inspection-Drawghtsmanship Eng. Metallurgy - Production

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. Attomabile Maimenance Mepair - Auromobile - Auromobile Maintenance - Antomobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRU. MENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
 A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Chem.E., A.R.I.C.S.,
M.R.S.H.: A.M.I.E.D.: A.M.I.Mun.E., CNG., CITY \&UILDS, GEN. CERT. OF EDUC̈ATION. ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," Send for your copy now-FREE and without obligation.

Since its introduction the Bradley 125B A.C. Calibrator has established itself as a versatile A.C. voltage source, not only for the calibration of instruments and the testing of meters, but also as a stable source for driving high resolution digital measuring systems and calibration potentiometers. Further it is a well-tried instrument, which does not have a rival anywhere in the world, at the price . . . £395.

A.C. Output

The A.C. voltage (R.M.S. or average) is controlled by four stud switches giving a clear in-line digital read-out. The range is from 0 to 511 volts in 100 mV steps. The accuracy is 0.2% of setting, whilst the egulation is better than 0.15% and the distortion is less than 0.15%. The output is continuousiy referred to a Weston Standard Cell.

Output Frequency
Plug in oscillator units cover the range $40-2400 \mathrm{~Hz}$. The instrument is
normally supplied with 1 plug-in unit giving output frequencies of $50,60,400$ and 1000 Hz . An alternative unit giving $50,400,1000$ and 2400 Hz can be supplied if required.
Percentage Deviation Indicator A feature of the instrument is that the selected output voltage can be continuously varied over the ranges $\pm 5 \%$ and $\pm 0.5 \%$, with meter indication.
Ratio Transformer
A $\times 10$ and $\times 100$ Ratio Transformer is available as an extra. This will extend the output down to 1 mV in 10 mV and 1 mV steps.

The full specification is given in our booklet 'Calibration Equipment'. This also describes our D.C. voltage and current sources. May we send you a copy? Or better still, try the instrument yourself.
We will be pleased for our Area Sales Engineer to call. Write, or phone 01-450 7811

Eddystone

Professional communications receivers

940 single conversion superheterodyne receiver

for c.w, a.m and s.s.b modes in the range 480 kHz to 30 MHz . The sensitive thirteenvalve circuit uses a low-noise, high-gain cascode r.f amplifier followed by a second r.f stage, two i.f amplifiers, phased crystal filter, separate detectors for a.m, c.w/s.s.b, silicon diode noise limiter and push-pull audio output. Sensitivity substantially constant at 3 uV for a 15 dB signal-to-noise ratio, 30% modulation and 50 mW output. The efficient a.g.c circuit ensures a change of less than 9 dB in audio output with a carrier level increase of 100 dB above 5 uV . Audio response level within 3 dB over the range 100 Hz to 8000 Hz . Connections for 2.5 -ohm speaker and 600 -ohm line, balanced or unbalanced. Power supply $110 / 125 \mathrm{~V}$ and $200 / 240 \mathrm{~V}$ a,c $40-60 \mathrm{~Hz}$.

770R Mark II

for reception of c.w, a.m narrow and broadband f.m signals in the range 19 MHz to 165 MHz in six bands. Selectivity automatically adjusted to suit signal mode. Twenty valves and two germanium diodes are used in a highly sensifive circuit with push-pull audio output and provision for a 2.5 -ohm speaker, 600 -ohm balanced line or high resistance telephones. Power requirement $100 / 125 \mathrm{~V}$ and $200 /$ 250 V a.c $40-60 \mathrm{~Hz}$.

770U Mark II receiver

for coverage of a.m and f.m signals in the range 150 MHz to 500 MHz in six bands. High sensitivity with circuitry using nineteen valves, four diodes and one transistor. The r.f section incorporates a specially designed tuner, a fully tuned grounded-grid amplifier followed by a diode mixer. Low-impedance outputs available at the first i.f of 50 MHz and also at the second i.f at 5.2 MHz . Power requirement $100 / 125 \mathrm{~V}$ and $200 / 250 \mathrm{~V}$ a.c $40-$ 60 Hz .

830/7 wide-range receiver

fully tunable from 300 kHz to 30 MHz in nine ranges and accepting $\mathrm{C} . \mathrm{w}$, a.m and s.s.b signals. Overall bandwidth continuously variable within the limits of 1.3 kHz and 6 kHz and narrowed to 50 Hz with 100 kHz crystal filter. Instant changeover to crystal control with rapid selection of up to eight spot frequencies. Sensitivity better than 3 uV for a 15 dB signal-to-noise ratio. Power requirement $100 / 125 \mathrm{~V}$ and $200 / 250 \mathrm{~V}$ a.c $40-60 \mathrm{~Hz}$.

Write for list of UK and overseas agents to Eddystone Radio Limited, Alvechurch Road, Birmingham 31 Telephone: Priory 2231 Telex: 33708

Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.
Marine Radar.
Communication Equipment.
Research and Development.
Government Departments.
Aircraft Mllitary and Civil.

Ministry of Aviation Approved Inspection. Air Registration Board Approved Inspection.

For quality, reliability and world-wide avallability, rely on Hall Electric's speed, intelligence and reputation.

Hall Electric Led., Haltron House, Anglers Lane, London, N.W.5.
Telephone: 01-485 8531 (10 lines). Telex: 2-2573. Cables: Hallectric, London, N.W.5.

TIED MICRO SWITCHES immediate despatch

PROCESS TIMERS

611-T Delay Relay

SYS MINI-TIMER

AT-10

PNEUMATIC TIMER - delay relay

SYNCHRONOUS MOTOR \& CLUTCH * 10 MILLION OPERATIONS \star Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs. to 28 Hrs. May also be used as impulse start and automatic reset.
£9.15.0 dependent on $£ 9.15 .0 \begin{aligned} & \text { dquantity. approx. }\end{aligned}$

 SYNChRonous motor \& clutch Matchbox size frontal area. Automatic re-set. \star PLUG-IN OCTAL BASE - instantaneous AND TIMED OUT 2 AMP CONTACTS
$\star \begin{aligned} & \text { RANGES: } \\ & \text { TO } 36 \\ & 36 \\ & \text { SINSS. }\end{aligned}$ approx. $£ 5.0 .0$ each.

*FOR BATCHING, CONVEYORS, MACHINE TOOL CONTROL, PACKAGING, SORTING. etc.

+ SENSES FERROUS OBJECTS
tNEEDS NO MECHANICAL FORCE
OR PRESSURE TO OPERATE
* SOLID STATE SENSING HEAD INCLUDES CONSTANT VOLJAGE CIRCUIT
approx. \&1 0.0 dependent on quantlity. OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE
U.L. APPROVED (Appr. No. 32667)
U.S. MIL. SPEC. ALWAYS AVAILABLE FROM STOCK

[^8]

ERTAS, or to give its full title - the Ever Ready Technical Advisory Service, is a specialised branch of the Ever Ready Organisation. Its aim is to help the portable appliance manufacturer to get the best possible performance from battery-operated products.
ERTAS is supported by highly specialised Research Scientists at Ever Ready's Central

ResearchLaboratories. EverReady welcomes you to take advantage of this department's far reaching technical services which ensure that the correct battery is selected for your particular requirement.
Up-to-date technical information on our latest products is available on request.

Q1AD for the closest approach to the original sound

QUAD
 303 POWER AMPLIFIER

A two channel power amplifier of unique design capable of a standard of quality* limited solely by the capabilities of the accessories with which it is used.
*Distortion: harmonic, intermodulation, amplitude, steady state or modulated and however weighted, several times lower than any other amplifier known to us

QUAD 33

 CONTROL UNITA self powered control unit to select, match, correct and amplify for the closest approach to the original sound inherent in the programme.

For further details, ask any dealer advertising in this magazine, or send a postcard 10 :ACOUSTICAL MANUFACTURING COMPANY LTD., HUNTINGDON.

Ryint patid " fomails

Prevention is better than claim. Even your most fragile apparatus will arrive intact when packed in Foamair. A flexible urethane, Foamair gives complete protection against vibration and shock.
The illustration shows a highly successful transit pack designed for exporting brittle furnace elements to Russia. Commissioned by Morganite Electroheat Limited, the bespoke pack was repeatedly tested at the prototype stage: complete consignments survived fourfoot drop tests on to concrete.
As it can be cut or profiled to any shape, let us tailor Foamair to your product. If you cannot risk sending it, we'll arrange to have it collected. Then we'll safely consign it back to you packed in Foamair.

Aitesulda 20 WATT SOLDERING INSTRUMENT

- CONTROLLED TEMPERATURE Design holds max. temp. of $380^{\circ} \mathrm{C}$. within close limits.
- EASY BIT REPLACEMENT

Simple, fast replacement of low-cost copper bits. Non-wearing PERMATIP bits cut servicing costs.

- BEAUTIFULLY COMPACT

Length 7ilin. Weight $1 \frac{1}{4}$ oz. Max. handle dia. 0.715in.

- UNEQUALLED PERFORMANCE Ideal for fast production soldering on the majority of modern electronic equipment.
- all voltages
- NEON INDICATOR 10, 18, 20 \& 25 watt models supplied to special order with Neon Indicator.

The LITESOLD range includes six other models ($10,18,25,30,35$ and 55 watts), and many accessories. Please ask for colour catalogue L5.

LILHT SOLDERNG DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Tel. 01-688 8589 \& 4559

(2) -the first name in mobile radio

PYE ‘CAMBRIDGE’ mobile radio

for dependable, reliability-tested, peak-performance, alwaysAll-transistor receiver- 100 mA battery drainG.P.O. approved; meets U.S., Canadian and European specifications \square Sealed I.F. block fitters
\square A.M. or F.M. versionsDust and splash proofOption of $122 \mathrm{kc} / \mathrm{s}, 20 / 25 / 30 \mathrm{kc} / \mathrm{s}$ or $40 / 50 / 60 \mathrm{kc} / \mathrm{s}$ channel spacing $\square 1$ to 8 channels available

Pye Telecommunications Limited, Cambridge, England.
Telephone Cambridge 61222. Telex 81166

PARK ROYAL PORCELAIN CO., LTD.
Incorporating V. G. Porcelain Co., Ltd.

GORST ROAD
PARK ROYAL
LONDON, N.W. 10

Telephones: ELGAR 1411/7 Telex: London 25589

What is the latest In Electronics? Come and see how men, ideas and techniques have advanced in a year.

Be
present
at the

INTERNATIONAL EXHBBIIIONS OF ELECTRONIC COMPONENTS AND OF AUDIO-EQUIPMENT

FROM APRIL 1st TO 6th 1968 - PARIS porte de versailles

INTERNATIONAL CONFERENCE ON COLOUR TELEVISION

scientific and technical considerations FROM MARCH $25^{\text {th }}$ TO $29^{\text {th }} 1968$ - PARIS

Programme and registration conditions on request

WW- 028 FOR FURTHER DETAILS

Pinnacle

The widest ranging and most comprehensive valve catalogue available from any independent supplier.

PINNACLE ELECTRONICS LTD achilles Street - New cross • london S.E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

The Lilliput Series

ULTRA MINIATURE, INVERTER, WIDE BAND, CARRIER MATCHING, DRIVER AND PULSE TRANSFORMERS, A.F. AND SMOOTHING INDUCTORS

Gardners Lilliput series of Ultra Miniature transformers has been specifically developed for compatibility with other wired-in modules used on printed circuit boards. Exceptional performance has been achieved by a unique form of construction incorporating extremely thin (down to $3: 2$ microns) high permeability core materials and a very short length of coil turn. Transformers in this new series are particularly suitable for pulse and switching circuits with rise times of 10 nanoseconds or less

GTi2A. Describes the Lilliput series of Ulira Minlature transformers and gives useful infor. mation and dala on their applicalion In transistor converter/inverter, wide band communicalion and high speed pulse circuils.

The Alpha Series

FILTERS, DELAY LINES, TRANSFORMERS, MODULATORS, HIGH STABILITY INDUCTORS, TUNED CIRCUITS, OSCILLATORS

A range of custom built components from simple or hybrid transformers and modulators to highly complex multi-section filters or complete active networks of exceptional stability hermetically sealed to DEF. 5214 Humidity Class H1.

GT16. Gives a general description of the Alpha series assemblies and describes their suitability for wound components where a high degree of stability is required.

Low Voltage Isolating and Auto Transformers

A comprehensive range of conventional double wound and auto transformers for applications in industry and in the home. Nearly 200 types are available in six different styles and with outputs from 6 volts to 240 volts and from' 5 VA rating to 2 kilowatts. All types are normally held in stock in reasonable quantities for immediate delivery.

GT 17. Everyone in the electronics industry uses low voltage, Isolating and auto transformers at some time or other and this booklet describes the complete Gardner range of this type of transformer in a convenient and presentable form.

Complete coupon and post indicating publication(s) required \mathbb{X}

Gardners Transformers Lid., Christchurch, Hampshire
Telephone: Christchurch 1734
Telex 41276

EDDYSTONE COMMUNICATION RECEIVERS
For the Professional or Amoteur user who Jikes the Best.

840 C
666

HIRE PURCHASE TERMS

WW-031 FOR FURTHER DETAILS
Speed up Repair Work

AND STEP UP YOUR EARNINGS Nearly 1,000 peges of Circuits, Data and Repair in-structions-including the latest facts on colour TV ... that's what you get in this big 2-volume RADIO \& TV SERVICING. All the information you need for the 1965/67 Popular Television. Radio, Radiograms, Car Radios, Record Reproducers, Tape Recorders is here co guarantee quicker turn-round of repair lobs to Increase your earnings. Thousands of sets of previous editions have been sold-solid proof of its value so you as essential workshop " equipment. for the first time-advance data on COLOUR TV (Pal System) A big 32-page section well worth seeing STUDY IT - USE IT FREE for 7 days

To: Euckingham Press Led 4 Fltzroy Square, London, W.I. Please send RADIO \& TELEVISION SERVICING without obligation Please send RADIO \& TELEVISION SERVICING without obligation to buy if you accept my application. I will return it in 8 days or post Tick () \square Full cash price
here $(\sqrt{ } \quad \square 10 /$ dep. \& 16 monthly payments of $1 \overline{0} /$ If you are under 21 your fother must fill up coupon.

Full Name
(BLOCK LETTERS) Address
Coun

Occupation

Cash price C8. (Credit price E8.10s.) For-Eire \& N.I. send 68 with coupon

WW-033 FOR FURTHER DETALLS

О.K!

-so you're not a surgeon...

. but if you are concerned with hospital teaching or administration you can help bring the most advanced surgery techniques and the atmosphere of the operating theatre to as many young doctors as you can comfortably house, through the medium of G.E.C. Closed-Circuit Television.
Similarly, if you are concerned with educational training. in commerce or industry, the same G.E.C. equipment is readily available to you. Ask G.E.C. about it today. Send for full information on the highquality equipment now available at a price which sets new standards for general purpose systems.
G.E.C. Communications-increasing efficièncy, helping the community.

Radio Telephones, Mobile Air-to-Grourd, Long Distance \& Hospital Communications.
Closed Circuit Television.
Remote Control \& Supervisory Systems.

Communications Division

S.E.C.

Electronics

Information Centre, G.E.C. (Electronics) Limited, Communications Division, Spon Street, Coventry Telephone: Coventry 24155. A subsidiary of the General Electric Company Limited. of England

HOWELLS RADIO LTD. MinIStRy of aviation inspection approved

TRANSFORMERS
STANDARD RANGE OR DESIGNED TO YOUR SPECIFICATION
$0-50 \mathrm{KVA}$, "C" CORE, PULSE, 3 PHASE, 6 PHASE, TOROIDS, ETC.
Transformers for 20W Transistor Amplifier (W.W., Nov. 1966).

Driver	$22 / 6$	Carr.	$2 /-$
Mains	$29 / 6$	Carr.	$4 / 6$

L.P. Filter, Chassis Mounting 11/6. Carr. 1/-.
L.P. Filter, Printed Circuit Mounting 14/6. Carr. $1 /-$

*MAINS TRANSFORMERS

$350-0-350$ v. $60 \mathrm{~mA} ., 6.3 \mathrm{v} .2$ A. $11 / 15 /-$. Carr. $4 / 6$.
500 v. 300 mA .6 .3 v. 4 A., 6.3 v. 1 A. £3/12/6. Carr. 5/6 $500-0-500$ v. 0.25 A., 6.3 v. 4 Act., 6.3 v. 3 Act., 5 v. 3 A. £4/10/6. Carr. 6/6.
$525-0-525$ v. 0.5 A., 6.3 v., 6 Act., 6.3 v., 6 Act., 5 v. 6 A. §5/5/-. Carr. 6/6.

```
*LOW VOLTAGE
```

30-0-30 v. 4 A.
£2/5/6. Carr. 5/6.
15 v .2 A .
15 v .6 A.
15 v .10 A .
1/12/6.
ع2/1/-. Carr. 4/6.
£2/15/-. Carr. 5/6.
STEP DOWN TRANSFORMER
Primary 0-415-440 v. Sec. 250 v. 1.5 A. £5/5/-. Carr. 6/6. *PRIMARIES 10-0-200-220-240 v .
CHASSIS, CABINETS \& PRECISION METALWORK
ELECTRONICS-DEVELOPMENT \& ASSEMBLY
CASH WITH ORDERS PLEASE
Carlton Street, Manchester 14, Lancashire TEL. (STD 061) 226-3411

WW-035 FOR FURTHER DETAILS

Capacity 36 in . wide x 8-gauge mild steel Forms channels and angles down to 45 deg. which can be flattened co give sale edge. Depth of fold according so height of bench. Will form flanges.
Weight approx. 2 cwe
Price $\mathbf{2 2 5}$, carr. free. Also the well-known vice models of:
36 in . $\times 18$-gauge capacity 1121000 Carriage
24in. x 18-gauge capacity
$\left.\begin{array}{lll}17 & 5 & 0 \\ \hline 7 & 5 & 0\end{array}\right\} \quad$ free
18 in . $\times 16$-gauge capacity
One year's guarantee: money refunded without question if not satisfied Send for details
A. B. PARKER folding machine works

UPPER GEORGE' STREET, HECKMONDWIKE, YORKSHIRE
Tel: 3947
WW-036 FOR FURTHER DETAILS

A.C. SOLENDID type SAM/T

Now fitted with stainless steel guides-six times the life.
Continuous 14 o\%. at 3 in . Instantaneous to 5 flb . Larger and smaller sizes available.
Also Transformers to 8 kVA 3 phase.
R. A. WEBBEER LTD.

KNAPPS LANE, CLAY HILL, BRISTOL 5. Phone: 65-7228/9

WW-038 FOR FURTHER DETAILS

audiosuite BY GOODMANS

Take a 'top-flight' Amplifier, choose your loudspeaker from a quality-proven High. Fidelity range, add a Tuner designed and built by experts and a transcription Record Player guaranteed by Goodmans and there you have it - the most compact, adaptable, handsome, and the most technically advanced audio system in the world - true High Fidelity. This is the AUDIO SUITE-by GOODMANS.

Ignore if you will, the handsome appearance, the compactness, the versatility of the Audio Suite. Judge it on the specification and performance alone.
Send for full technical details included in Goodmans High Fidelity Manual or, if you have one already, then send for
the Audio Suite booklet in full colour. When you've read all about it-call at your nearest Hi-Fi dealer - see it in the flesh and listen to a demonstration. Judge for yourself the simple sophistication of the controls and facilities, see how easy they are to use.

m•RANGE

The Audio Suite is completed - to individual choice - with loudspeaker systems from Goodmans ' M ' Range.
MAXIM Unrivalled true High Fidelity in ultra compact size - only $10 \frac{1}{2}$ " $\times 5 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{t^{\prime \prime}}{4}$ deep.
MEZZO II The most advanced High Fidelity Bookshelf reproducer. Flush-fitted attenuator. $12^{\prime \prime} \times 19 \frac{1}{2} \times 9^{\prime \prime}$ deep.
MAGNUM-K Studio quality, 3 -speaker system, two attenuator controls. $24^{\prime \prime} \times 15^{\prime \prime} \times 11 \frac{1}{4}^{\prime \prime}$ deep.

MAXIS

MEZZO II

AUDIO SUITE

(Top right) MAXAMP $\mathbf{3 0}$ High Fidelity Stereo Amplifier. (Top left) STEREOMAX High Fidelity AM/FM Siereo FM Tuner, (Top centre) MT1000 High Fidelity Record Player complete win arm and cartridge.

FREE Please send free copy of Goodmans (tick which required) $\begin{aligned} & \text { High Fidelity Manual } \\ & \text { Audio Suite Booklet }\end{aligned}$ and the name of my nearest Goodmans Dealer.
Name

Quality, quantity and speed . . . they all add up to Harwin precision turned-parts service!
Quality first. Pins, lugs, inserts - in fact any turned part for electronics must be precision-made. Harwin do it to order - any size, any shape.
Now quantity. Thousands? Millions? Harwin can do it at speed . . . with quick delivery and low costs.

It all adds up to Harwin service. Let us have your turned parts problemwe know three ways we can solve it better!

Harwin do you a good turn! Turned parts - indicator units lugs - stand-offs - brackets - insulators - resistors terminal boards . . . and more.

WW-041 FOR FURTHER DETAILS

"Technically Proven For Exacting Performance

Model JR-500SE

CRYSTAL CONTROL TYPE dOUBLE CONVERSION communication recelver

* Superior stability performance is obtained by the use of a erystal controlled first local oscillator and also, a VFO type 2nd oscillator. * Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Hi-Sensitlvity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)

水 Hi-Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB

* Dimensions: Width $13^{\prime \prime}$, Height $7^{\prime \prime}$. Depth 10°.

TRIO

manufactured by TRIO Corporation, Tokyo, Japan.

> Sole Agent for the U.K.

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES
COMMUNICATION RECEIVER

* Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
* A mechanical filter enabling superb selectivity with ordinary IF transformers.
* Frequency Range: 550 KHz to 30 MHz (4 Bands)
* Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S/N Ratio (at 10 MHz)
* Selectivity: $\pm 5 \mathrm{kHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When use the Mechanical Filter
* Dimensions: Width 15°. Height 7^{*}. Deoth $10^{\prime \prime}$

[^9]

New free booklel describes
the complete range of
Enthoven Solder products.
Ask now for your copy
of 'Soldering with Enthoven.'

Only S.M.E. Precision Pick-up Arms offer all these features. Choice of arm length Model 3009 (9in.) or Model 3012 (12in.) for stlll lower tracking error-of special importance with elliptical styli - low inertia. High precision ball races and knife-edge bearings for minimum pivot friction - Linear offset chosen for lowest distortion. Automatic slow-descent with hydraulic control . Bias adjuster calibrated for tracking force. Exact overhang adjustment with alignment protractor. Precise tracking force from $\frac{1}{4}-5 \mathrm{grams}$ applied without a gauge . Shielded output socket. Low capacity 4 ft . connecting cable with quality plugs . Light-weight shell. Camera finish in satin chrome, gun-black and anodised alloy. Comprehensive instructions. Rational development-all improvements can be incorporated in any existing Series II arm.

For sales and service ring Steyning 2228

SME LIMITED - STEYNING • SUSSEX • ENGLAND

 WW-044 FOR FURTHER DETAILS

We make our monolithic capacitors in Britain

Monobloc: an advanced product for sophisticated applications. A tiny component that has become the most exciting prodigy this side of the Atlantic. Its capacitance is vast, its size minute - up to 1 uf in $0.3 \times 0.3 \times 0.1 \mathrm{in}$. (nine times smaller than a postage stamp). This capacitance-to-volume ratio is achieved by the unique monolithic construction. Wafer-thin ceramic dielectrics and platinum electrodes are fused into a solid, layered structure, to give a volumetric efficiency 10 to

100 times that of conventional capacitors. It's a rugged little device. The layered construction gives excellent stability and resistance to every form of shock and environmental stress.
We manufacture a preferred range, concentrated on the individual requirements of the British designer. There are other configurations available for more complicated designs :

The monolithic capacitor is already a pretty important contribution to the progress of modern electronics - our Monobloc Ceramicon design caters for projects of the future.
Contact us for the full details. Technical Sales,

Erie Resistor Limited,

 South Denes,Great Yarmouth, Norfolk. Phone:0493 4911
Telex: 97421
Monoblocs are featured in the 1.968
glass-encased, precision moulded, phenolic coated, and unencapsulated chips for hybrid integrated circuits. edition 6 catalogue of S.T.C Electronic Services.

Monobloc and Ceramicon are registered trade marks

SPEECH LINK
ON/OFF LINK are being given daily at our only address,
52 TOTTENHAM COURT ROAD, LONDON, W.1.

from

These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulation and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

MGA100

 TYPE MSP3 Solid State Photo Recelving Device
 TYPE MGA 100 General Purpose Gallium Arsenide Light Source A filamentless, Gallium Arsenide infra-red emitter only 5.54 mm . dia. and 8.1 mm . long. Features a robust cylindrical package coaxial with the beam, facilitating optical allgnment and heat- sinking. sinking.

 MAX RATINGS

 MAX RATINGS
 Forward current IF max.*. D.C....... 400 mA . Forward peok current IF max.* (pk). 6 A Power dissipation ${ }^{*} \ldots \ldots .600 \mathrm{~mW}$. Derating foctor for $\mathrm{T}_{\text {umb }}$ greater than $25^{\circ} \mathrm{C} \ldots . .7 .5 \mathrm{~mW} \mathrm{~W}^{\circ} \mathrm{C}$ When mounted on an aluminium her.
 When mounted on an alyminium hear sink $\operatorname{lin} . \times \frac{1}{2}$ in. $\times \frac{1}{4}$ in. Supplied complete with suitable lenses, full Technical D including Line of Sight Speech Link

An ultra-sensitive infra-red and visible light detector, this device is a complete silicon photo-electric receiver with a peak spectral response at 9500 A . Size only 6.4 mm . día. and 25.4 mm . long, yet absolutely complete, the device will generate sufficient power to
drive an external relay. Chiefly intended for use in optical links based on Gallium Arsenide Light Sources, they are equally based on Gallium Arsenide Light Sources, they are equally
suitable for systems based on visible light. Features a robust
cylindrical cylindrical package coaxial with the incident light facilitating optical alignment and heat-sinking.
MIX RATINGS

Supplied complece with suitable lenses. full Technical Data and Application Sheets, including LIne of Sight Speech Link.

31F2 $\overline{8}$

Type 31 F2 Micro-miniature Infra-Red Detector Extremely small photo diodes of silicon NPN passivated planar construction and suitable for Punched Card Readers, Counters, Film Sound Track, etc.
Supplied complete with suitable lenses, full Technical Data and Application Sheets including Line of Sight Speech Link.

DROCBEBRTHERS LIMITED

52 Tottenham Court Road, London, W.1. Telephone: LANgham 0141 (01-580 0141)

And these new solid state devices RCA TRIACS Type 40432
Intended primarily for phase control of A.C. loads in light dimming, universal control, etc., these gate controlled full. wave A.C. silicon switches, with interral trigger, switch from a blocking state to a conducting state for elther polarity of applied voltage with positive or nega. tive gate triggering.

$45=E A C H$
Post Free Application Sheets.

INTEGRATED CIRCUIT RCA - CA 3020 AF POWER AMPLIFIER \& PREAMPLIFIER (or servo-amplifier) The RCA-CA 3020 is an integrated-cir. cuit, Multistage, Muiti-Purpose AF
Power Amplifier on a single monolithic silicon chip. providing a stabillzed direct-coupled amplifier, performing pre-amp. phase inverter, performing power output functions without trans. formers, and with one power supply suitable for sound, communications and control systems.
Supplied complete with full Data and Application Sheets.

2
Take a tone generator... incorporating L-C osciliator and emitter follower, and available at 31 frequencies 120 Hz apart
two band-pass filters... available for 31 centre frequencies with an insertion ioss less than 5 db

3
a tone detector... with built-in amplifier, rectifier and d.c. switching cirr,ut

COMPLIEI

 SHSTEMand you've got a one-way channe! of a low-cost, remote control or signalling system!

Could it be simpler?
Four miniature transistorised units which enable you to build up your own remote control or telegraph system
Up to 31 channels in the 540 to 4,000 Hz range.
Suitable for wire or radio link.
Plug into standard type $-3,000$ relay bases or our universal chassis.
Low pass filter (2.7 or 2.3 kHz) just added to the range.
Hybrid and line transformers available. Off-the-shelf delivery for common types.
Want to know more? Just write to :
The Plessey Company Limited
AT\&E (Bridgnorth) Division
Bridgnorth, Shropshire, England
Telephone: Bridgnorth $\mathbf{5} 21$ Telex: 33373

WW-048 FOR FURTHER DETAILS
(W) PE(RT)6A

, Todmorden 2601 extension 1

INTERNATIONAL RECTIFIER

Quality Semi-Conductors.
Complete Rectifier Assemblies up to thousands of Amps, Diodes, Thyristors, Zeners, Encapsulated Bridges, Photocells, Klipsel Surge Protectors.

For experiment and teaching:ZENER KITS, THYRISTOR KITS.

Bulletins and prices on request.

Save drafting time and costs. Selfadhesive shapes and tapes. Terminal circles-fillets-tees-elbows-universal corners and mounting holes.

ENGLISH ELECTRIC

or the protection of rectifiers and thyristors.

Bulletins and prices on request.

Rail Mounted Terminals and Terminal Blocks 0.5-250 Amps.
Bulletins and prices on request.

\qquad

MODEL 1000A

AM/FM Multiplex Stereo Tuner Amplifier

This is a high-quality, tubed unit that uses the latest Nuvistor devices and power tubes. Other features include High-cut and Low-cut Filters for virtually interference-free enjoyment, a Muting switch that further reduces noise, and an Automatic Frequency Control switch to eliminate 'drift'. RMS power: $40 / 40 \mathrm{~W}$.
Music power: 100 W (IHFM).
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output.
Overall frequency response: $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
FM sensitivity: $1.8 \mu \mathrm{~V}$ (IHFM).

MODEL 500A
AM/FM Multiplex Stereo Tuner Amplifier
A tubed unit with a similar performance to the 1000 A , but giving a lower power output.
RMS power: $23 / 23 \mathrm{~W}$.
Music power: 50 W (IHFM).
Harmonic distortion: 1.0% at 1000 Hz RMS rated power output.
Frequency response : $20-20,000 \mathrm{~Hz} \pm 1.5 \mathrm{~dB}$ at
normal listening level.
FM sensitivity: $2.0 \mu \mathrm{~V} \pm 3 \mathrm{~dB}$ (IHFM).

Sansui

Sole U.K. Distributors:
Technical Ceramics Limited
Cheney Manor, Swindon, Wiltshire. Telephone: Swindon 6251.
Accredited Midland \& Northern Distributors to the retail trade
Audio Distributors Limited
4 Lion Street, Kidderminster, Worcestershire
Telephone: Kidderminster 3293

MODEL 250
AM/FM Multiplex Stereo Tuner Amplifier
A high-performance, tubed unit with many studio-equipment features. And at a modest price.
RMS power: 10/10 W.
Music power: 22 W (IHFM).
Harmonic distortion: 1.5\% RMS rated power output.
Frequency response: $30-20,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ at normal listening level.
FM sensitivity: $4.0 \mu \mathrm{~V}$ (IHFM).
AM sensitivity: $30 \mu \mathrm{~V}$ (IHFM).
MODEL 220-AM/FM Stereo Tuner Amplifier
A similar model to the 250 , but without multiplex.
Other equipment in the superbly styled Sansui range
MODEL 3000A - Solid-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $48 / 48 \mathrm{~W} . \pm 1 \mathrm{~dB}$.
MODEL 2000-Solid-state AM/FM Multiplex Stereo Tuner Amplifier. RMS power: $32 / 32 \mathrm{~W}$.
MODEL AU-777 - Solld-state Stereo Control Amplifier.
RMS power: $30 / 30 \mathrm{~W}$.
MODEL AU-70-Stereo Control Amplifier:
RMS power: 12/12 W.
MODEL TU-70-AM/FM Multiplex Tuner. FM: 88 to 108 MHz . AM: 535 to 1605 kHz .
Stereo Headphone SS-2 -
Hi-Fi Speaker Systems -
SP-50-2-way, 2-speaker system, 25 W.
SP-100-3-way, 3-speaker system, 25 W .
SP-200-3-way, 5-speaker system, 40 W .
SP-300-3-way, 4-speaker system, 50 W .
For complete details and fully illustrated colour leaflets, please send the coupon below, Indicating the equipment in which you are interested, to:

Technical Ceramics Limited, Cheney Manor, Swindon, Wilts. Please send me fuliy illustrated leaflets, and advise me of the nearest Sansui Hi-Fi dealer.
Name
Address

NOW MADE BY RESLOSOUND Chapman Stereo Tuners

AM/FM TRANSISTORISED TUNER type FM. I005A/B. Long, Med ium and two Short wavebands. FM. 80-108 Mc/s. $£ 48 .+$ P.T. E9.13.0.

AM/FM VALVE TUNER type S6BS/FM MK.II. The finest Tuner in the Chapman range. Medium and two Short wavebands, also six bandspread ranges on $11,1316,19,25,31$ metres. FM. 80-108 Mc/s. FM. Stereo Decoder optional extra. Much in demand overseas for its exceptionally good short wave reception. Ł64. + P.T. $£ 12.17 .5$.

For Sales or Service write or 'phone

Cudid sound srstems
 SILICON TRANSISTOR AMPLIFIERS

MODEL

A 80 - 70 watts. A 25 - 30 watts.

Five channel inputs-two mic, aux., gram., tape, and tape record master gain control, low distortion, standard rack or cabinet mounting, modular construction.

MODEL A.80. A.C. Mains. Dimensions 22 in . wide $\times 7 \frac{1}{4} \mathrm{in}$. high $\times 11$ tin. deep. Weight 40 lbs .

MODEL A.25. A.C. Mains.
Dimensions 22 in . wide \times Sin. high $\times 8 \frac{1}{2} \mathrm{in}$. deep. Weight 27 lbs.

WRITE FOR CATALOGUE AND PRICE LIST

Oudix sound systems STANSTED, ESSEX.

TELEPHONE:- STANSTED 3132/3437
wwobs for furthier detaile

THE MOST ADAPTABLE TELESCOPIC MAST IN SERVICE

SCAM Telescopic Masts are the most versatile in the World. They come as complete kits ready for immediate erection in the field. They are freestanding with easily fitted guys for the worst winds. Alternatively they are easily fitted by simple brackets to any vehicle. There are 3 models, 30,40 or 50 feet extended. Each has the same design features and the same well-tried system of extensionjust air from the handpump in the kit.

If you are in military communications you should know more about SCAM. Write to us now.

SCAM 40 Mast in action. NATO
Stock Ref. 5820-99:105-3397.

A. N. CLARK (ENGINEERS) LIMITED

BINSTEAD - ISLE OF WIGHT
Telephone: RYDE 3691 Telegrams: TELEMAST RYDE
AN ASSOCIATE COMPANY OF COUBRO \& SCRUTTON WW-05S FOR FURTHER DETAILS

The same safeguards in manufacture and control that have won government contracts for TEONEX in over forty different countries apply equally to ensure top quality for private users too. When you require valves to comply with E.V.S. or M.I.L. standards - choose TEONEX.
The TEONEX range (for use outside the U.K. only) incorporates the entire series of Britishproduced valves or their Continental equivalents, including a wide range of colour T.V. valves. Price list and technical specifications may be obtained from:-

Export Enquiries Only Please! TEDIIEK LIIIITED

331.C FREDUENCY MEIER AND STANDARD SIGINAI GENERRTOR

NATO STOCK NO. 6625-99.104-4293 (CT 551) Combines the ease of operation and readout of a counter with the versatility and sensitivity of a heterodyne wavemeter.

- Wide range (DC-3000 Mc/s) - Very high sensitivity - Magic eyezero beat detection - Extremely stable reference standard (5 parts in 1010) - Reading accuracy of ± 1 cycle - 37000 Siandard Frequencies available phase-locked to Crystal Automatic Harmonic Identification - Many other built-in facilities - Environmentally tested to DEF 133

Write for further details to

J.A.C. EIECRRONICS LIMITED

BLACKWATER CAMBERLEY SURREY CAMBERLEY 5399
A MEMBER OF SOUTHERN INSTRUMENTS GROUP
WW-057 FOR FURTHER DETAILS

Ni. R. SUPPLIES, LTD., (Established 1935)

 nttiol waitherpmont loustew which ormen when motor is switehed on and closed athen ELECTRIC FANS (ELECTRIC FANS (Papg), for extractlig or blowing. The mome exerptionat olfer we
 nomating, £ais/- (d)er. \%(b). SMALL GEARED MOTORS. In addition to our well-known range (Lkt Gsh.5tif), we

 SYNCHRONOUS TIME SWITCHES Only B8/6 (dea. 3/-)
SYNCHRONOUS TIME SWITCHES. (Our very popular asecially), $20 / 200$ \%. 30 e. for

 MIMATURE COOLING FANS. $200 / 450$, A.C. With open type induetion motor (tue
 MINIATORE RONNING TIME METERS (Sankano). We have (dreat deman

 AIR BLOWERS. Hightr , ceny to tivatiall. $60 /$ - (pont paid).

 SYCCHRONOUS ELECTRIC CLOCK MOVEMENTE (a* nuellioned and tecomuentedl in

 SYNCHRONOUS TIMER MOTORS (Sanganu). 200/250 v. 50 c/p. Self-elarling 2itre dip.
 Ir.p.m.. $57 / 6$ (des. $1 / 6$ (1).
IMMEDIATE DELIVERY of Stuart Centrifagal Pumps, lichenling stalulema stew (unt modela). Philips Variable Transtormers (all moskleh).
M. R. SUPPLIES, Ltd., 68 New Oxford Streat, London, w.C. 1
(Telephone: O1-636 2958)

Vahodio TRANSVERTORS

(TRANSISTORISED D.C. CONVERTERS/INVERTERS)

INTRODUCING THE VALRADIO "B" SERIES SINEWAVE output 200W (120W also available).
FREQUENCY:50 c/st $\pm \mathrm{c} / \mathrm{s}(60 \mathrm{e} / \mathrm{s}$ to order):
OUTPUT V.: $115-230 \mathrm{v} . \pm 10 \%$
INPUT \vee : $12 \mathrm{v}-10 \%+25 \%$ ($24-50 \mathrm{v}$. also available)

* FREQUENCY REGULATION OF $\pm .005 \%$ WITH ADDITIONAL "RESONATOR"
\star INFINITE LIFE.
* WILL OPERATE ALMOST ANY ELECTRONIC OR

ELECTRICAL EGUIPMENT

* SUITABLE FOR SUPER-SENSITIVE RADIO \& AUDIO

OTHER MODELS from $£ 10$ to $£ 179 / 12 /-$ - 12 v to 110 v .D.C. up to 1 kW
VALRADIO LTD., Dept. Cl0
BROWELLS LANE FELTHAM MIDDLESEX ENGLAND Telephone: FELTHAM 4837-4242 01-890 4837/4242
VALRADIO and STEREOSONOSCOPES are the registesed trade marks of VALRADIO LTD

Rely on $A D V A N C E$ to do it better

($1 \times \mathbb{N}$) Wide RangeOscillator SG67
$10 \mathrm{~Hz}-1 \mathrm{MHz}$ Frequency Range
Sine wave or square wave Frequency is continuously variable in five switched ranges covering 10 Hz to 1 MHz . Sine wave or square wave output selected by a switch.
Amplitude is controlled by a variable level control in conjunction with a four-position push-button attenuator giving an output up to 2.5 V r.m.s.
The SG67 iscompact and portable, can be run frominternal batteries or mains. Send for full specification now.

Telephone 01-500 1000. Telegrams Altenuate ilford. Telex 263785 Division of ADVAINCE ELECTRONICS LIMITED WW-059 FOR FURTHER DETAILS

FUILY APPROVED TO DEF 5325-5 STANDARD FOR $9,15,25$, อ 3 AND 50 WAY CONNECTORS.

These connectors consist of one-piece Diallyl Plithalate moulding with hard gold plated plug pins, socket contacts, and beryllium copper contact clips. Closed entry contact design eliminates the risk of damage to the sockets by test probes. The shells are of passivated cadmium plated steel and the covers and cable clamps are of die-cast aluminium Grade LM6.
ELECTRICAL RATINGS Working voltage: 750 volts DC Current capacity: 5 amps max per contact

 the firm with the best connectionsStapleford, Nottingham.
Telephone: Sandiacre 2661
Sales offices: Wembley.
Birmingham, Sale, Glasgow.
CARRFASTENER

UNITEO-CARRGROUP WW-060 FOR FURTHER DETAILS

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM
For professional or private use: * INSTRUCTION

* EXPERIMENT * DEVELOPMENT An absorbing and exciting medium

Clear, simple versatile, this rugged system can build almost any electronic circuit. It is used by hundreds of educational establishments throughout the U.K. - Univer. sities, Technical Colleges, Schools, the Armed Forces and Industry.
Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.

The system is beautifully engineered from top quality British components. No soldering. No mains. No prior knowledge needed. Simply arrange components on perforated eransting strip underneath, fix with 6BA

ting strip underneath, fix with 6BA
No. 1 Set $£ 6$ O 0 2d. conversion
No. 2 Set $£ 7 \quad 1$

No. 3 Set $61127 \mathrm{~d}^{*} 22$ Circuits ($7 \times 4 \mathrm{in}$. Loudspeaker output) No. 4 Set 61538 d. 26 Circuits (include 6 Transistor and reflez superhets)
Prices (Post Free)
nuts and circuit works with full efficiency. You can then dismantle and build another circuit. Your results are guaranteed by our Technical Department and News Letter Service. All parts available separately Sor conversion or expansion of sets

Prices (Post Free)

RADIONIC CIRCUIT SHEET NO ESOT

Theoretical Circuit.
Practical Layout
Our ' E ' Series of basic electronic circuits is available separately. (See Electronic Orgon obove)
SEND FOR DETAILS OF E/SO8-OUR DIGITAL COMPUTER
UNIQUE! Our "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.

Full detoils from:

RADIONIC PRODUCTS LIMITED STEPHENSON WAY, THREE BRIDGES CRAWLEY, SUSSEX

Tel. CRAWLEY 27028
Trade Enqulries invited
WW-061 FOR FURTHER DETAILS

New Rare Earth Red Phosphor

These new red phosphors-exclusive to RCA-combined with efficient sulphide blue and green phosphors produce pictures at their brightest and most dependable. They completely overcome the imbalance of the three guns which cause red blooning, colour fringing and failure of the red gun due to overwork. RCA's New Kare Earth Red Phosphor achieves UNITY CURRENT RATIOS -equal beam current from each clectron gun; higher brightness, picture contrast and highlight; much longer tube life.

Perma-Chrome

This is a four-point, temperature-compensated shadow mask assembly which accurately adjusts and sets the shadow mask position relative to the screen. Shadow mask expansion limits the performance of a rectangular colour-tube-Perma-Chrome renders this problem negligible. Perma-Chrome produces full-colour fidelity and temperature equilibrium throughout normal operation. It maintains excellent field purity and uniformity.

RCA 'HI-LITE' COLOUR PICTURE TUBES ... THE BRIGHTEST IN THE INDUSTRY

For full technical specification and application information, write to:

WW-06E FCK FLRTHER DETAI S

RE-CREATES THE FINER SHADES OF ORIGINAL SOUND

To re-create faithfully the finer shades of original sound, stored as complex mechanical patterns in the
micro-grooves of modern records, calls for a cartridge in the precision instrument class. Goldring engineers have spent two years developing such a cartridge the Goldring " 800 " Free Field Cartridge. At a comparatively modest cost this cartridge rivals the finest in the world ${ }_{i}$ whilst at the same time guaranteeing the complete

GOLDRING800 FREEFIELD STEREO CARTRIDGE reliability for which the name "Goldring" has stood for sixty years in record 'reproduction

GOLDRING " 800 " FREE FIELD
strat canfrino $£ 12.7 .6$
SPECIFICATION

Type
Frequency Response
Sensitivity
Separation
Load
Compliance
Stylus
Eflective Tip Mass
Tracking Weight
Head Weight
Vertical Tracking Angle
Mu Metal Shield for hum protection.

Magnelic-(Free Field)
$20 \mathrm{~Hz}-20 \mathrm{kHz}$
1 mv . per $\mathrm{cm} / \mathrm{sec}$.
25 dB at 1 kHz and nowhere
less than 15 dB
$100 \mathrm{k}-47 \mathrm{k} / \mathrm{hms}$
$20 \times 10-6 \mathrm{~cm} /$ dyne
$0.0005^{\prime \prime}$ diamond ieplaceabls
1 mg .
1 mg .
$1-3$ grms.
8
15°

STUMPI a new connector for the weight-andspace race

-a new connector specifically designed for a new Military project and for the race toward ever lighter, smaller equipment. It uses the very latest materials to achieve brand new standards in compact, efficient design. Just look at these features:

1. Glass filled Nylon housings and insulators for extreme light weight, high insulation properties and minimal fire risk.
2. Compact design and positive coupling with the tip of one finger - low height feature making it ideal for use on portable equipment or as low voltage, medium power connectors.
3. "Split shell" construction of cable unit housing for ease of wiring. Elimination of strain on cable joint by means of right-angle contacts.
4. Crimp type contacts in cable unit, with full width cable clamp and sealing grommet.
The Stumpi range is a new conception in design, fully sealed, meeting the requirements of DEF.5325, and is initially available in three shell sizes with nominal contact ratings of 5 , 20,40 and 60 amps .

THERE IS A THORN CONNECTOR FOR EVERY PURPOSE!

GD972
loudspeakers for the perfectionist

-for guitars and organs

Write for Catalogue No: RCS162

Rola Celestion Ltd.

Ferry Works, Thames Ditton, Surrey, England. Telephone: 01-398 3402

Telex: 266135

VRRIABLE-HIGH CURRENT
 SMOOTHED POWER SUPPLIES WITH ACCUMULATOR PERFORMANCE FROM A.C. MAINS

TYPES 250VRU/30/20 250VRU/60/10 250VRU/120/5 250VRU/240/2.5

PRICE: $£ 131: 5.0$
FEATURES. Type 250 Vru $30 / 20$ 0-30 v. Continuously Variable up eo 20 A RIPPLE CONTENT. Negligible. IMPEDANCE and REGULATION equivalent to aceumulator periormance SILICON RECTIFIERS. Inadverient SHORT" protection.
OVERLOAD CAPACITY. 200% for shors periods. Supplied to M.O.Tech CA servicing 28 . Suitabe aircraft instrumentation within B.C.A.R.'s. Ref. 10 K CA 3035. Suitable for" 19"RACKMOUNTING.
FIXED OUTPUTS ALSO AVAILABLE Smooth
12 or 24 V . up to 24 A . APPLICATIONS OPERATING AND SERVICING. Transistorised equipment e.g. 12-24 Y Mobile R dio Telephone. D.C. motors, etc., direce Irom AC-WITHOUT THE USE OF ACCUMULATORS, AVOID THE EXTRA EXPENSE OF SUPER REGULATIO NEVER NEED.
PRICES:
C14.16.0 to C88.4.0.

Please writ = to
Department C3b
for current literalure.

BROWELLSLANE FELTHAM MIDDLESEX, ENGLAND.

CX2012

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS EDITING \& REPRODUCING SETS

Codes: Int. No. 2 Mercary/Perssus, Elliot 808, Binery and special purpose Codes.

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

TELEORAPH AUTOMATION AND COMPUTER PERIPRERAL ACCESSORIES
Picture Telegraph, Desk-Fan, Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone, Carriers and Repeaters; Carriers Multiplex Frequency Shift, Keying Equipment; Line, Mains Transporters and Suppressors; Racks and Consoles; Plugs, Sockets; Key, Push, Miniature and other Switches Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment ; Oscilloscopes; Miscellaneous Accessories and Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts. Tel.: Tring 3476 (3 Jines) Cables: RAHNO TRING

STD:044-282 TELEX82362

WW-071 FOR FURTHER DETAILS

Celestion ssomes

loudspeakers for the perfectionist
-for high fidelity

Write for Catalogue No: RCS 2002

Rola Celestion Ltd.

Ferry Works, Thames Ditton, Surrey, England. Telephone: 01-398 3402

Telex: 266135

240° andfyne

The outlook is always favourable when you specify panel meters from the "Wide Angle ${ }^{\text {e }}$ range of Taylor Fynelines. These new Fynelines feature clear visibility of a precisely-marked full 240° scale. You get shadowless readings and the proven Taylor moving-coil movement with a standard accuracy of $\pm 2 \%$ f.s.d. ($\pm 1 \%$ f.s.d. available). So set your course fair with 'Wide Angle' Fynelines.

Lance or 'knife edge' pointers are fitted and mounting arrangements are identical with existing Fyneline and Vista panel meters.

Complete technical and price details from Taylor Electrical Instruments Ltd, Montrose Avenue, Slough, Bucks. Telephone: Slough 21381 . Telex 84429.

Just what is this ABR, that makes such a vital difference to the
 'DITTON 15'?

 and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm giving high rigidity and low mass: double roll suspension allowing excursions up to $l^{\prime \prime}$ with minimal distortion.
5. High compliance bass unit with
massive Ferroba II magnet structure for optimum magnet damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction eflects and tunnel resonances; covered by acous fically transparent grille cloth for maximum presence.
7. Full.L-C hall-section Crossover network.

It's an interesting story and worth enquiring about.
 Fill in the coupon

Pinnacle the largest single valve independent

THIS IS WHAT WE DO

Make available the widest range of valves for commercial and industrial use. Give a personalised service based on
intelligence and speed.
Ensure that we only supply valves made by the world's foremost manufacturers.
Provide valves selected for your special needs.
Help out rapidly with that "awkward " valve that nobody
else seems to have heard of. Specialise in European or American types which are not normally easily obtainable. Rush you a small order, or quote for a bulk requirement -1's or 1,000's are all the same to us.

IF I'D ONLY TRIED PINN ACLE FIRST . . .

Every valve in either widespread or specialised use in the fields of Entertainment, Industry, Education and Research will be found in our catalogue, together with its main equivalents, classification, and the Pinnacle " P " number under which it may be ordered.

PINNACLE ELECTRONICS LIMITED aChilles Street
Telephonie: All Depariments-01-692 7285 Direct orders-01-692 7714

Electronic components from the U.S.A.

are only
 hours away via Milo.

For whatever you may need in electronic components from the U.S.A., Milo can satisfy your requirements with prompt deliv-

International jetliners have helped to close the supply line gap between the U.S.A. and users of American-made electronic components in most parts of the world. But it takes more than a fast airplane to achieve a high degree of speed and efficiency in international procurement and distribution of elec. tronic components.

Milo International, with years of successful experience plus a full staff of highly trained specialists, is thoroughly skilled in the complex technology of world-wide distribution. From your first inquiry to accurate delivery and detailed follow-through, Milo is completely capable of handling the entire process. Import Certificates, Export Licenses, Customs Declarations, Certificates of Conformance, Export Packaging, Delivery Verifications - these and all other technical requirements of international commerce are coordinated to guarantee reliable performance in simplifying and expediting each of your ordērs.
ery, at direct factory prices, from a huge stock of thousands of components made by the leading American manufacturers including this partial listing:

Amperex	Eimac	R.C.A.
Amphenol	Electrons, Inc.	Raytheon
Arrow-Hart \&	Erie	Simpson
Hegeman	General Electric	Sola
Bourns	Hardwick Hindle	Solitron
Burgess	Hickok	Sprague
Cannon	H.T.T.	Stancor
Centralab	J.F.D.	Superior
Cinch-Jones	Kings	Sylvania
Clarostat	Littelfuse	Texas Instruments
Cornell-Dubilier	Mallory	Transitron
Corning	Oak	United Transformer
Dale Electronics	Ohmite.Allen Bradley	Vector
Delco Radio	Potter\& Brumfield	Xcelite

For immediate price and delivery quotations, contact Milo by mail, phone, cable or international Telex.

II LO International

World-Wide Electronic Component Suppliers
530 Canal Street, New York, N. Y. 10013 / Tel 212-233-2980 / Cable MILOLECTRO, N.Y. / Int'l. Telex 62528
germaniumdevicessilicon devicespackagedcircuitsfilm-attachmentactive devicescustom-builtmicrocircuits

INDUSTRIAL
 SEMICONDUCTOR DEVICE
 MANUFACTURERS AND SOLID STATE ENGINEERS

EXNING ROAD NEWMARKET SUFFOLK 'PHONE ONE 83381

Newmarket TRANSISTORS LIMITED

Accurate and direct measurement of speed without coupling to moving parts
 FRAHM

 ResonantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literature on FRAHM Tachometers and Frequency Meters is freely avallable from the Sole U.K. distributors: ANDERS METER SERVICE ANDERS ELECTRONICS LTD. 48/56 8AYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 09-387 9092. MINISTRY OF AVIATION APPROVEO WW-078 FOR FURTHER DETAILS

TECHNICAL TRAINING by

 ELECTRONIC ENGINEERINGFirst-class opportunities in Radio and Electroniss awair the IC S tratned man. Let ICS erain YOU lor a well-paid post in this expanding field.
ICS courses offer the keen. ambitious man the opportunity to acquire, quickly and easily. the specialized eraining so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics,
Computers. etc. Expert coaching for

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. \& G. TELECOMMUNICATION TECHNICIANS CERTS.
- C. \& G. ELECTRONIC SERVICING
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE,
- Radio amateurs examination.
- P.M.G. CERTIFICATES IN RADIOTELEGRAFHY

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Buld your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition.
POST THIS COUPON TODAY and find ouf how ICS can help YOL in your career. Full details of ICS courses in Radio, Television and Electronics wilt be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES

IWTEMATIONAL

CORRESPONDENC:
Sciools

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

a unique sound mixing system...

(1)官

KONGSBERG VAPENFABRIKK KONGSBERG NORWAY

Head office and plant: Kongsberg, Norway
Tel.: Kongsberg 37. telex: 1491, cable: Vâpenlabrikken, Kongsberg
Oslo office: Drammensveien 40, VII
Tel.: Oslo 5667 70, telex: 1114, cable: Konsern, Oslo
Central European office: Kongsberg Vápenfabrikk, Bonn Watter Flex Strasse 1, West Germany
Tel.: Bonn 27422 , telex: 886505 , cable: Korakontor, Bonn

Take aleaf from our book

and send for your copy of the new

REGAVOLT catalogue
36 pages packed with detailed information on the widest range of variable transformers made by a single manufacturer in Europe.
All listed standard models are in stock for immediate delivery from our trade counter or by mail order, and are backed by a year's guarantee and a first class repair and replacement service.
Ask for list MT/625
(3rd Edition) NOW!

THE BRITISH ELECTRIC RESISTANCE COMPANY LTD.,
Queensway, Enfield, Middlesex. Tel: 01-804 2411 Telex: 263194

LOUDSPEAKERS for every purpose

High Flux high quality. wide frequency. highly sensitive Cone units.

Cabinet speakers
contemporary styling -painted and oak veneer types

Circular Diffuser patterns
surface, flush and suspension types

Projector loudspeakers Re-entrant and Exponential types for fixed and mobile use

Column loudspeakers wood-cased and fibre glass types for indoor and outdoor use.

Grampian SOUND EQUIPMENT
-integrity that you hear Send for leaflet giving full details -

GRAMPIAN REPRODUCERS LTD.,
"Hanworth Trading Estate, Fellham, Middlesex. 01-894.9141

ELECTRONICS
 cience with staduates. In Dairving. Food minimum

ience. are required for of four years ind Technology,
ty Control Manager. RONIC ENGINEER

\square° RADFORD

AUDIO LABORATORY INSTRUMENTS

LOW DISTORTION OSCILLATOR (Series 2)

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification

Frequency coverage:
Output Impedance:
Ourput Voltage:
Output Attenuation:
Sine Wave Distortion:

Square Wave Rise Time: Monitor Output Meter:
Mains Input:
Size:
Weight:
Price:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges)
600 Ohms.
10 Volts r.m.s. max.
0.110 dB continuously variable.
0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
Scaled $0-3,0-10$, and dBm .
100 V.-250 V. $50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{4} \times 11 \times 8 \mathrm{in}$.
25 lb.
£ 125.

DISTORTION MEASURING SET (Series 2)

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range:
Distortion Range:
Sensitivity:
Meter:
Input Resistance:
High Pass Filter:
Frequency Response:
Power Requirements:
Size:
Weight:
Price:

VOLTMETER (new item)
A transistor operated voltmeter satisfying the requirements for audio frequency measurement.
Specification

Sensitivlty:
Calibration Accuracy: Frequency Response: Input Impedance:

Meter Scaled:
Power Requirements:
Size:
Weight:
Price:
$£ 90$
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges) $0.01 \%-100 \%$ f.s.d. (9 ranges) 100 mV .100 V . (3 ranges) Square law r.m.s. reading. 100 kOhms.
3 dB down to 350 Hz .
3 dB down to 35 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of
rejection frequency to 250 kHz Included battery.
$17 \frac{1}{4} \times 11 \times 8$ in.
15 lb.
190.

Rack mounting version available.

1 mV .300 V. f.s.d. (12 ranges) 2% f.s.d.
$\pm 1 \mathrm{~dB} \cdot 10 \mathrm{~Hz}-500 \mathrm{kHz}$.
1 MOhm. $1 \mathrm{mV} .-300 \mathrm{mV}$.
$10 \mathrm{MOhm} .1 \mathrm{~V} .-300 \mathrm{~V}$.
$0-3,0-10$, and dBm .
Included battery.
$11 \frac{1}{2} \times 6 \frac{1}{2} \times 6 \mathrm{in}$.
716.

E35.

RADFORD LABORATORY INSTRUMENTS LTD

Ashton Vale Road
Bristol 3

Those transistors cost money! Protect them!!

36A SPACESAVER

DRAWER UNIT $42^{\prime \prime}$ high, $24 \frac{1}{2}$ " wide, $12^{\prime \prime}$ deep. 36 drawers each $3^{\prime \prime}$ high, $5 \frac{1}{4}$ " wide, $10 \frac{7}{8}{ }^{\prime \prime}$ deep, with identification cards.

12A POPULAR DRAWER

 UNIT $9^{\prime \prime}$ high, $35^{\prime \prime}$ wide, $12^{\prime \prime}$ deep. 12 drawers each $3^{\prime \prime}$ high, $5 \frac{t^{\prime \prime}}{}$ wide, 102- deep. with identification cards. Ideal for sheff or table-top.$£ 4.15 .0$ bRAND NEW

ORDER NOW
Send for FREE cata. logue of our complete range of storage equip. ment.

WW- 085 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days delivery.

Full information from:

138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

No connector could be more appropriate to modern space-saving requirements than the new JT. It's lighter, shorter and considerably more compact than anything of its type at present available. Simply designed (with fewer components) and precision made, the JT sets an entirely new standard in reliability for connectors. It is at home in conditions ranging from cryogenic to high temperature, offering much greater freedom to designers in many different fields.

AVAILABLE NOW - with up to 128 contacts in less than $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ diameter.
Already in use on over 80 international projects.
JTA - general duty types. JTC-Pressurised styles. JTG - for RFI protection. JTH - Hermetically sealed,
JTP - for potting. JTRE - Crimped contacts
JTS - for hight temperatures. JTL-100\% scoop proof.
There is a Thorn connector for every purpose!
\square THORN SPECIAL PRODUCTS LIMITED Great Cambridge Road, Enfield, Middlesex. 'Phone: 01-363 5353: Telex: 263201-2-3

THE ANTEX CN 24015 WATT FOR ABSOLUTE PRECISION

Designed as the ideal instrument for continuous production work on printed circuits, transistors, micro-miniature assemblies etc., the CN 240 is the most widely used iron in the Antex range. It's well-balanced yellow handle is to be seen in electronics factories and on production lines all over the world. Fitted with a $3 / 32^{\prime \prime}$ Ferraclad bit as standard, there is a range of 17 other interchangeable bits of differing shapes and sizes available to make the CN truly the most versatile iron of its type.

The full Antex range of Precision Soldering equipment is detailed in the 16 -page Antex catalogue - SEND TODAY FOR YOUR FREE COPY.

ET
The CN is one of a range of Fine Precision Soldering tools and equipment by Antex

Model E 20W 35/-d.

ANTEX LTD., GROSVENOR HOUSE, CROYDON CR9 10E TELEPHONE: 01-686 2774
-

Armstrong

 high fidelity sound
series 27

TUNER-AMPLIFIERS

 for the BUDGET SYSTEM

127 STEREO TUNER-AMPLIFIER (illustrated)
£40.1.6
127 M MONO TUNER-AMPLIFIER £29.18.9
227 M MONO TUNER-AMPLIFIER
£40.1.6
OPTIONAL CASE, teak and vinyl hide
£3.15.9
Three tuner-amplifiers, identical in size and similar in styling, each with the same high performance AM-FM Tuner incorporated. The 227 M provides 10 watts power output whilst the 127 M , with 5 watts output, is designed for those whose power requirements are more modest. The 127 is the stereo version of 127 M , having two amplifiers, each of 5 watts output. All three have similar facilities; pick-up and tape inputs, tape recording output, bass and treble tone controls.
For full details and technical specifications of all models, including the new series 400 , plus list of stockists, post coupon or write mentioning 2 WW68.

ARMSTRONG AUDIO LTD., WARLTERS ROAD, N. 7 Telephone 01-607 3213
\qquad
\qquad

This is an illustration of sixty-two different power units

Concealed behind this $4 \frac{3^{\prime \prime}}{3^{\prime \prime}} \times 5 \frac{1}{8}{ }^{\prime \prime}$ front panel is a standard range of parts manufactured in large quantities, resulting in low production costs. The saving is passed on to you without affecting the superior performance and high reliability. For example, you can have a pre-set unit in the range 11 to 28 volts at 4 amps for as little as $£ 34$.

The 62 units in the new Series 30 range cover voltages from 0 to 500 with output currents up to 10 amps , depending on the voltage. A choice of protection circuits is available including 'crowbar' for your integrated circuits.

For complete details of this new approach to power supply design send for Series 30 full-colour folder and price list.

A.P.T Electronic Industries Ltd. Chertsey Rd., Byfleet, Surrey. Tel: Byfleet 41131.

More scope-D.C. X-Amplifier standard Only £55 in the U.K. Large 5" screenBright trace Small size-low weight DC-3Mc/s-100mV cm sensitivity Auto sync and trigger level control Easy to use oscilloscope \square Ideal for inspection, production control, transistor testing, training, monitoring etc. Specification leaflet ready for you RIGHT NOW! *Serviscope is a registered trade mark of Telequipment Ltd.

TELEQuipment

Editor-in-chief
W. T. COCKING, F.I.E.E

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALI

Editorial Assistant
B. S. CRANK

Drawing Office:
H. J. COOKE

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL
 (Manager)

J. R. EYTON-JONES
lliffe Technical Publications Ltd., Managing Director: Kenneth Tett Editorial Director: George H . Mansell
Dorset House, Stamford Street, London, S.E. 1

Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address.
(c) Ilifie Technical Publications Ltd., 1968. Permission in writing from the Editor must first be obtained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

ELECTRONICS TELEVISION, RADIO, AUDIO

FEBRUARY1968

665 Technical Manpower
666 Portable $1-\mathrm{MHz}$ Frequency Standard
672 Distortions Inherent in P.W.M.
by L. Nelson-jones

677 Log-Periodic Television Aerial
678 Transistor Rationalization
by T.D. Towers
668 European Space Research
684 GaAs Miniature Radar
685 Acousto-electric V.H.F. Transmitter
693 Emitter-coupled Emitter-timed Multivibrators-2
by G. B. Clayton
696 The Simple Transistor Equivalent Circuit and the Impedance Transforming Node
by R. V. Leedham
by G. W. Short
by R. S. Roberts
by D. J. Grover
by D. Wilkinson
by T. Palmer

SHORT ITEMS

671 Further Notes on "V.H.F. Signal Generator"
692 Computer-aided Circuit Construction
692 Monolithic F.M. Discriminator
692 Picosecond Pulses Observed in Q-switched Lasers
707 Advice on Materials Technology

REGULAR FEATURES

665	Editorial Comment	698	World of Amateur Radio
683	Books Received	700	H.F. Predictions
686	World of Wireless	706	Literature Received
688	Personalities	707	News from Industry
690	Letters to the Editor	710	New Products
692	Technical Notebook	718	February Meetings

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines), Telegrams/Telex Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriprions: Home; $£ 265 \mathrm{Od}$. Overseas: $£ 215 \mathrm{Od}$. Cunada and U.S.A. $\$ 8.00$. Second-Class mall privileges authorised at New York N.Y. BRANCH OFFICES: BIRMINGHAM: 401. Lynton House, Walsall Road, 22b. Telephone: Birchflelds 4838. BRISTOL: 11 Marsh Street, 1, Telephone: Bristol 21491/2. COVENTRY:8-10, Corporation Street. Telephone: Coventry 25210. GLASGOW: 123, Hope Street, C.2. Telephone: Central 1265-6. 260, Deansgate, 3. Telephone: Blackfriars 4412.
East 42 nd Street, New York 10017. Telephone: 867-3900

BRIMAR offers the most comprehensive range of monitor tubes in the country, together with the widest selection of phosphors.
The tubes range in size from $5^{\prime \prime}$ to $23^{\prime \prime}$. They can be used for television camera viewfinders, studio quality monitors, data displays and closed circuit television - twenty tubes in all! They have been designed to give maximum resolution under high ambient lighting conditions.
A variety of mounting and implosion protection methods, including self protection bonded glass faces are available from BRIMAR who are Britain's leaders in implosion protection.
Common features include magnetic deflection, electrostatic focus and aluminised screens.
The phosphors. In addition to the standard type for television, a wide selection of others is available offering varying degrees of persisience and colour.

....OR A MORE PERSONALISED SERVICE!

Every BRIMAR tube is backed by a first-class technical service and assistance on any type of problem involving its use in monitors - from special characteristics to circuit design. BRIMAR engineers are always available - contact is on a personal basis. Please telephone or write for full details.

Thorn-A.E.I. Radio Valves \& Tubes Ltd. 7 Soho Square, London W1. Telephone : 01-4375233

Marconi complete naval

communications

A complete range of communications equipment using s.s.b, i.s.b and all other modes of h.f and m.f transmissions, designed specifically for naval communications systems.

- Simple, precise and highly accurate continuous decade selection of frequencies in 100 Hz steps.
- Rigid stability controlled by a single high accuracy frequency standard.
- Extreme simplicity of operation combined
with versatility of service and high quality performance.
- Synthesizers and wideband amplifiers employed in these systems, which make maximum use of semiconductors.
- NATO codified.
- Complete system planning and installation.
This new range of Marconi equipment has already been used in the modernization of the communications of 10 Navies.

Marconi naval radio and radar systems

More speed for 'Concorde

Speed is as vital in the production of the AngloFrench 'Concorde' as in its performance. That's why magnetic tape systems are in use for the 'numerical control' of machine tools. 'Numerical control' makes it possible to machine complex parts without models or templates, thereby reducing production time and cutting down demands on skilled workers. All the movements of the machineslides, accurate to one fivethousandth of an inch, are produced by command
signals recorded on 'Scotch' Instrumentation Tape. Large quantities of tape are used for this purpose by Ferranti Ltd. while a considerable amount is also used by Bristol-Siddeley Engines Ltd. on their part of the 'Concorde' project, the development of the Olympus 593 engine. If 'Scotch' Instrumentation Tape can be of assistance to you, please complete and post the coupon below for TECHNICAL TALK publications and for 'Scotch' magnetic tape data sheets.

3 II minnesita mining and - manufacturing co. lta.

Manufacturers of 'Scotch'Instrumentation Tape, Profess ional Quality Magnetio Tade. Quadrature and Helical Scan Video Tape.

To: Mr. G. C. WRIDE, 3M HOUSE, WIGMORE ST, LONDON W1
Please send me technical details and specifications on'Scotch'Instrumentation Tape.

NAME

ADDRESS \qquad

——ortexion quality equipment

TYPE C.B.L. TAPERECORDER

Here is a versatile stereophonic recorder which has no equal in its price group.
IT CAN record monaurally or stereophonically with its own mixed inputs from Gram, Radio or other sources and from high grade low impedance balanced line microphones. With good microphones, etc., the result is a suitable master for disc manufacturers. "Before and After"" monitoring is provided together with adjustable metered bias for perfection.
IT CAN also make a recording on one track and then transfer it to the other track while measuring and listening to it and adding one or two more signals also metered. A special PPM type meter is now used.
IT CAN repeat the process and transfer this combined signal to the first track with one or two more signals. Composers use it for this purpose. One track may have music or commentary and the other cueing signals or commentary and either may be altered without the other.
IT CAN play back stereophonically or monaurally with its own amplifiers of $3 \frac{1}{2}$ watts each.
Speeds $1 \frac{7}{8} / 3 \frac{1}{4} / 7 \frac{1}{2}$ i.p.s. Price $£ 172$ Os. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s. Price $£ 180$ Os. Od.
The Vortexion W.V.B. is a high quality monaural machine with "Before and After" monitoring. The recording inputs are a high sensitivity socket for moving coil or ribbon microphone and a high impedance socket for radio, etc., either of which can be selected by a switch. Superimposing and echo work can be done and the playback has reserve gain for abnormal requirements. This model cannot be converted for stereo playback, but it is a thoroughly reliable machine for the engineer specialising on monaural work.

Speeds $1 \frac{1}{8} / 3 \frac{3}{4} / 7 \frac{1}{2}$ i.p.s. Price $£ 11510$ s. Od.
Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15$ i.p.s. Price $\mathbb{E} 128$ Os. Od.
The Vortexion W.V.A. is a monaural machine which has a performance equal in sound quality to the other models. It possesses all the features of the W.V.B. except for "Before and After" monitoring, Dubbing and Echoes. The recording being made can be heard on the internal loudspeaker as in the W.V.B. and C.B.L. The controls are uncomplicated.

$$
\text { Speeds } 1 \frac{7}{1} / 3 \frac{3}{4} / 7 \frac{1}{2} \text { i.p.s. Price } 6967 \mathrm{~s} \text {. Od. }
$$

Speeds $3 \frac{3}{4} / 7 \frac{1}{2} / 15^{2}$ i.p.s. Price $£ 107$ 3s. Od.
All tape recorders have adjustable bias controls, low impedance mic. inputs for unlimited lengths of cable, highly accurate position indicators and meters to measure recording level and bias.

Depicted here are typical examples of a range of Waterproof Connectors of unique design enabling electrical circuits to be connected or disconnected even when under water. The range caters for electrical loads of 440 volts a.c. 175 amps. down to the signal current levels associated with instrumentation and similar arrangements.

The basic design incorporates a patented principle referred to as "Watermate". Both plug and socket are moulded of a specially compounded neoprene rubber with unusually high insulation resistance and non-wetting surface. As mating occurs water, salt deposits, sand and other foreign matter are wiped from the sockets and ejected from a duct in the socket to form a leak-proof seal. The wiping action assures a dry connection at the moment of contact resulting in a leakage resistance of not less than 100 megohms WHEN MATED UNDER WATER.
They are pressure balanced and will not block up under high pressures. There are no glands or threads to seize up in water and the method of moulding to the associated neoprene jacketed cable provides an extremely robust and simple connector for both Military and Civil applications.
For full details of these Connectors and a new Underwater Reed Switch Assembly, please write or telephone to the Technical Sales Department.

[^10]

It's Ampex.It's 91 gns
 For further information and list of dealers in the U.K. send

The new Ampes 753 Tape Deck (complete with pre-amplifiers) gives you these important new features:off-tape monitoring \square sound-on-sound sound-with-sound \square echo control
The 753 is specially engineered for sound-on-sound recording and monitoring. You can mix narration with music tracksadd sound and music to your home-produced programmes. You get the famous Ampex stereo fidelity too. Precision engineering. And better performarice than any price-range competitor. Plus \square rigid block construction-tapes align with heads to one thousundth of an inch, and the 753 finds every sound on the tape. \square deep-gap heads give three years' peak performance-few other makes give more thanone year. \square stereo 4 -track \square dual-capstan drive $\square 3$ speeds \square digital counter \square fast wind \square solid state throughout \square vertical or horizontal operation \square available in teak case.
coupon below, or write to: Ampex Great Britain Ltd., (Dept WW2 Acre Road, Reading, Berkshire.

WW-102 FOR FURTHER DETAILS

\section*{MST E succ | $4+8$ |
| :--- |
| \square | (ats) cis)}

SALES NOW EXCEED £10,000,000

 More and morecountries are buying
Marconi Self-Tuning h.f systems...

and one good reason is: INCREASED RELIABILITY

- Wideband and distributed amplifiers simplify and reduce the number of moving parts, which are to the highest engineering standard, thus minimising mechanical failure.
- Silicon diode rectifiers, vacuum variable capacitors and extensive use of solid-state techniques give optimum reliability.
- MST receivers are all solid-state, eliminating mechanical variable capacitors and telegraph relays.

and other good reasons are:

Reduced capital outlay
MST designs reduce demands for space and need for standby equipment. Installation costs are decreased.

Economy of manpower
High equipment reliability together with full remote control facilities permit unmanned station working. Complete h.f systems can be controlled by one man.

Traffic interruption reduced

Frequency changes and retuning accomplished in less than one minute without loss of traffic.

World-wide acceptance
30 countries throughout the world have ordered more than $£ 10,000,000$ worth of MST equipment to improve their communications services.

Marconi telecommunications systems

[^11]
CONTIL AND PIDAM SYSTEMS

ACCESSORIES
A full range of accessories are available for PIDAM. Shown are the meter, scaled $0-9$, at $35 / 6$ Test prods insulated and flexible with fine steel clips at
the tip, red or black at $13 /=$. the tip, red or black at ${ }^{\text {High speed resetring counter }}$ High speed resetcing counter including speed of over 40 opera with speed or over $165 /$. Plug-in
tions per sec. tions per sec. $645 /$ - Plugein
Octal relay 24 v , with two Octal relay 24 v with wo
changeover at $17 / 6$. Not changeover at $17 / 6$. Not
shown: 8 range test meter, 42/-. Oseilloscope made for us $42 /$ Oscilloscop
by Advance, E25.

PIDAM (Plug-in Digital and Analogue Modules) perform all the usual logic functions, but, unlike orher units, can be plugged in, using their B9A bases and can be quickly connected to the required configuration. To help learning, the module covers are easily removable for circuit exam ination and sets of components are available.
The 16 modules have an enormous range of use, from a single MONO for a cachometer, to over 300 unizs in a computer Interface; nevertheless, their greatest asset is extreme simplicity. Design time is cut and elaborate breadboards superseded and any reader of ". Wireless World " could, with PIDAM, build up a low cose system for his own needs.

PIDAM PLUG-IN

 MODULES,
PRICES

per module range from $9 / 6$ so $28 /-$ and all necessary accessories are supplied. A complere starting kit is only £ $19 / 19 /$. (normally (22/16/4).

B) (Bistable) module shows B9A base for ease of connection, Pins 7, 8,9 are always power connections.

PIDEC
(Plug*in Digital Educational Clrs cuit.) This Pider unit allows seven modules to be incerconnetred without soldering. Including internal power supplies, 370/\%.

PRINTED CIRCUIT CHASSIS
Printed circuit chas sis type " P " which 16127 case, or type " Q " which can be mounted on an aluminium chassis. Both types take up to 20 boards and connectors on $\frac{1}{}{ }^{\prime \prime}$ centres. Prices from 45/6 down to 37/- for quancities.

CONTIL CASES

Contil cases are mass-produced to give the lowest prices yet. In 21-gauge steel. Finished hammer blue, with 18 gauge front panel supplied with easy-so-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Individually packed, inc. feet and screws.

 spare panels, etc. Kit $£ 11 / 19 \%$ (normally $\{14 / 12 /$).

TRANSFORMERS Two West Hyde transformers are available for uransistorised equipment one $6{ }^{3 t}{ }^{2}$ amps. giving 6, 10 , 15.18 and 30 v i.e. 3. 4, 5, 6, 8, 9 , $10,12.15,18,24$ and 30 with $12-0.12$ and $15-0.15$. The $\begin{array}{ll}\text { second at } \\ \text { 6. } & 10, \text { amp. } \\ \text { 18v. }\end{array}$ set. 10.18 v , eaps.
Price $34 /$ and $25 /$ -

"BRIGHTLIFE" NEONS NEONS $25,000 \mathrm{hr}$. average NEON life with high in- The smallest yet. tensity and resistor Type "Q ${ }^{* *}$ overall in housing; either dia. $\frac{3^{\circ}}{10}$ Wody length $\frac{\bar{g}^{\prime \prime}}{}$ or $\frac{1^{\prime \prime}}{2}$ dia. Stan- 10 . malits 160 . for maln $3 / 9$ each. dard units 160 . Minimum quancity 250 v , with 6 lead Minimum 10 a $2 / 6$ each. $\begin{array}{ll}\text { variants. } 10 & \text { at } \\ 2 / 6 \text { each with } 10\end{array}$ different eaps. In different caps. In quantity down to dily down to 6id only each.

REED SWITCH

The West Hyde Reed Switch work ac up to 2,000 times a second for more than fifty thousand million operations. Ideal for: over and under speed monitors, counting, timing, switching, rev. counting. etc. Hermetically sealed and moulded. Prices from 14/- each co 7/6 each per thousand.
.

(W) WIEST HVOE

digital computer modules

CONTIL LOW COST PRINTED CIRCUIT BOARDS ONE TEN FIFTY Standard eransistor B7G or B9A boards ine their or respecrive bases hour respective bases 20 way
10 -way
$9 / 6 \quad 8 / 6 \quad 8 / 6$ 10-way $\ldots . . .51 . \quad 4 / 6 \quad 4 /$ "P" ehassis to fit 127? Contil 39/6 37/6 37/6 printed sircuit kit: including çase, normally $\mathbb{C 1} 48$ for only E11/19/6

Please Note

 All products ex-stock for normal quaneities. Recurn of post service. No S.A.E. Minimum order $£ 1$. Fully detailed leaflees available. All prices include postage and packing.WEST HYDE DEVELOPMENTS LTD.
30 HIGH STREET, NORTHWOOD, MIDDLESEX
Tel: Northwood 24941

Hal

ACOUSTICALLY CONTOURED SOUND CHAMBERMAXIMUM LOADING IN EXCESS OF 14 WATTSbrilliant trahsient RESPONSE15 OHMS IMPEDANCE
OF COMPACT AND ORIGINAL DESIGNAN ALL-BRITISH PRODUCT

a truly superb loudspeaker

Price need no longer stop you enjoying first - class high - fidelity loudspeaker reproduction nor is size any longer a problem. (These considerations are of utmost importance to every enthusiast for stereo.) In the Sinclair Q. 14 you will find a loudspeaker of such remarkable quality and so compactly and attractively styled that you will want to change over to Sinclair as soon as you hear it. This is no ordinary loudspeaker. Indeed, at a recent trade demonstration experts were greatly impressed on hearing the Q. 14 against speakers costing many times as much. It proves beyond question that good reproduction need not be expensive.
When tested in an independent laboratory a Q. 14 from stock showed exceptionally smooth response between 60 and $16,000 \mathrm{c} / \mathrm{s}$ with well sustained output both below and above these readings. Its remarkable transient response ensures clean-cut separation between instruments, voices, etc. Much

SENT POST FREE TO ANY PART OF U.K.
of its success results from the use of materials different from those found in conventional speaker manufacture. The unusual shape of the sealed, seamless pressure chamber allows the Q .14 to be conveniently positioned on shelves, in wall corners, or flush mounted in assemblies of one or more units.

"More than delighted"

"I have tested them (two Q.14's) side by side with two first class speakers in large reflex cabinets coupled to a very good Hi-Fi stereo set up and can honestly say the Q .14 is superior to the speakers / have been using. Every note came through perfectly. I am more than delighted. I would like to congratulate you on producing such a fine unit."-J.R.H., Blackpool.
Try the Q. 14 in your own home by sending the order form off today: If you are not satisfied your money plus the cost of returning the Q. 14 to us will be refunded in full.
£6.19.6

SINCLAIR RADIONICS LTD. 22 NEWMARKET ROAD, CAMBRIDGE.

Phone: OCA3-52996

COMBINED 12 WATT HI-FI AMP AND PRE-AMP

Fantastic power \& versatility

- 12 Watts R.M.S. con tinuous sine wave. (24 w. peak.)
- 15 watts music power (30 w . peak.)
- Ultralinear class B output
- Input $-2 m V$ into $2 \mathrm{k} / \mathrm{ohm}$
- Output suitable for 15, 7.5 and 3 ohm speakers. Two 3 ohm speakers may be used in parallel
15.50,000 c/s $\pm 1 \mathrm{~dB}$
- Ideal for battery operation
- 3"×1娄 $\times 1$ n $^{\prime \prime}$

BUILT, TESTED AND GUARANTEED

A NEW
SINCLAIR POWER UNIT

The $\mathbf{Z} .12$ proves beyond all question that high-fidelity can be combined with very low price. No other integrated amplifier system so successfully meets such a wide range of requirements. The Z .12 will operate from any power supply between 6 and 20 v. D.C. The output is suitable for any impedance berween 1.5 and 15 ohms, and consequently for any loudspeaker including, of course, the Sinclair Q.I4. This remarkable amplifier has facilities for matching to any types of conventional inputs, details of which are given in the $Z .12$ manual supplied. Included amongst popular applications for the $\mathbf{Z} .12$ are mono and stereo high fidelity systems (two are needed for stereo), guitars, electric organs, car radios and P.A. and intercom systems, etc. It is also of great value in experimental work where dependable standards are required.
"All you claim for it"
"The sinclair Z .12 is all and more that you claim for it. Its performance is outstanding. Thank you for your prompt service."-S/Sgt. R...., B.A.O.R.
"Performance excels that of many systems"
"I have buite a stereogram employing 2 Z .12 amplifiers and a PZ.3. 1 am delighted with the reproduction which is better than some I have heard costing over double the price. It has also silenced some of the old brigade who stubbornly believe that nothing can beat valves.'

SINCLAIR STEREO 25 PRE-AMP/CONTROL UNIT For use with two $\mathbf{Z . 1 2 s}$ or any hi-fi stereo system. Frequency response $25 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s} \pm \mathrm{IdB}$. Switched inputs for P.U., Radio, Microphone, etc. Equalisation correct to within \pm I dB on RIAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s} .6 \frac{1}{\mathrm{i}} \mathrm{in} . \times 2 \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$. plus knobs. 9.19 .6 BUILT, TESTEDAND GUARANTEED 2.19 .6

PZ.4. Heavy duty, stabilized power pack to meet requirements power pack to meet requirements
of $Z .12$ assemblies in $\mathbf{~ Q 9 / 6 ~}$
secreo. ere. Output stereo. ete. Output 18 V.D.C. at 1.5 A

GUARANTEE

Should you not be completely satisfied with your purchase when ou receive it from us, your money will be refunded in full and a once without question.

If you prefer not to cut page please quote WW268 when ordering.

SINCLAIR

 MICROMATICThe world's smallest radio now includes magnetic earpiece, yet costs less.
Prites of the Mieromatic have been substansially reduced. Performance has been improved by the inclusion of a new magnetic type earpiece These two facts mean that still more enthusiasts can enjoy even better stilf more entrom this fabulous little set-and performance all British, too. Keep a Micromatic so hand always-it plays anywhere. Size $1 \frac{1}{3}$ in $\times 1$, ${ }^{3} \times \frac{1}{\frac{1}{2}}$ in. always-it plays anywher. $79 / 6$ built and tested. KIT 49/6 Bulte and $59 / 6$ NOW 49/6 for Micromatie_each $1 / 11$

MICRO FM

 Less than $\sin \times 1 \frac{1}{4} \mathrm{in} . \times \frac{1}{3} \mathrm{in}$. 7 transistor F.M. Superhet using pulse councing discriminator. Low I.F. makes alignment unnecessary. Tuncs $88-108 \mathrm{Mc} / \mathrm{s}$. The telescopic aerial solfices for good reception in all buk poorest areas. Signal to noise ratio- 30 dB at 30 misrovole. One outlet for amplifier or recorder, one for use as a pocket portable. Complete Kit inc. earpiece.

AT LAST a small capacity CORE STORE 1024, 4 bit words at 1/4 $\mathbf{4}^{\text {a }}$ BIT
 into pints!
 -electronically speaking!

$$
\text { MEASURING } 1 I^{\prime \prime} \times 10 \frac{1_{4}^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{}
$$

This model is one of a range of Core Stores offering a variety of word/bit combinations.

Type CS442. Type CS552. Type CS444. Type CS453.

Type CS550. 1024 Single bit words at $£ 135$
1024 Single bit words at $£ 135$
256 Four bit words at $£ 135$ 1024 Four bit words at $£ 270$
256 Sixteen bit words at £335
512 Eight bit words at $£ 310$

These stores comprise a core matrix, address selection, control circuitry and output staticisors mounted on a single unit.
We also undertake the complete design and manufacture of special purpose digital systems.
If you require a reliable low cost core store, contact

Vero are electronic packaging specialists. A wide range of standard Vero boards, Card Frames, Module Racks and Cases are available from stock. In addition we are always prepared to discuss special designs and requirements, but prefer to be consulted early so that our designers can work closely with yours. Our design experience and know-how is invaluable in electronic problems where maximum space usilisation is important

VERO ELECTRONICS LTD industrial estate, chandlers ford, eastleigh, HANTS, SO5 3ZR Tele: Chandlers Ford 2921/4. Telex 47551 BRANCHES AND AGENTS THROUGHOUT THE WORLD

Fully Appovero
 REL ANE

A.D.S. P.O.

3000
SERIES

Through 30 years telephone service, and automation refinemenes, the world's most versatile relay (0.1 to 400 volts): Fast, slow, and A.C. versions; I to 16 contact units (36 springs max.); Standard contacts 0.3 to 1 amp; Alternatives for switching Dry-state. Inductive, and 10 amp circuits. Insulation from 100 to 4,000 volts; Life up to 100 million operations; Plain or tropical finishes; Approx. dimen* sion $11^{\prime \prime} \times 3 t^{\prime \prime} \times 2 \xi^{\prime \prime} \max$. An A.D.S. 3000 Type to meet all specifications-G.P.O., E.I.D. C.E.G.B., ADMIRALTY, U.K.A.E.A., ALL COMMERCIAL, ETC.

A.D.S. PI. PLUG-IN 3000 TYPE

Plug-in version, enabling relays to be changed in seconds. Fully approved.

A.D.S. MINI G.P.

Special ADS miniaturised 600 Type: Single or double winding; 1 to 8 contact units (24 springs max.); Ideally suited to printed circuit and general purpose uses; A sensitive miniature Relay built to suit each specific requirement; Minimum operation below 50 milliwates (3 mA in $5,000 \Omega$ coil). AC. coils available. Approximate dimensions: tl in. $\times 1$ fin. $\times 2$ din. (plus tags).

A.D.S. P.O. 600 SERIES

Miniaturised 3000 with similar, but restricted, specification; only in. chassis space (twelve $=$ nine 3000 Type): (or 2
coils: to 6 contact units (14 springs max.).

A.D.S. LITTE KING (at right)

Screw-Fix type 2,3 and 4 pole. QuickChange (Plug-in Type) 2 and 3 pole 12 and 24 v. D.C., 100 and 240 v. A.C. Ex-stock Little space required: Screw-Fix 1.7 sq. in.. Quick-Change 2.0 sq. 1 . King size swish ing: Screw-Fix 2 kVA , Quick change $\mathrm{kVA}, 10 \mathrm{million}$ operations (proof este m 27 million). Power transfer $=1,500$. Max current gain $=1,400$ (coll to all contacts). volts (, 000 VA max.) per pole.

NEW SWITCHED ATIENUTIOR

Type 687E

* 600 ohms impedance

The new Hatfield type 687E Switched Attenuator extends the present range of 50 and 75Ω impedance models (Types 687 A and B), features 600Ω input and output impedance and frequency range D.C. to over 1 MHz . All three models provide precise switched attenuation from l-I00 dB in I dB steps and are housed in die-cast aluminium boxes only $5 \frac{1}{2} \times 1 \frac{5}{8} \times 2 \frac{1}{2}$ in., fitted with two B.N.C. coaxial sockets.

Type Q

Impedance levels 50 or 75 ohms. Available for the ranges $0-1.1 \mathrm{~dB}$ up to $50 \mathrm{MHz}, 0-11 \mathrm{~dB}$ in 1 dB steps or O-IIOdB in 10dB steps, frequency range D.C. to 500 MHz

Type 708

Offers reliable operation up to 100 MHz yet is low in cost, and can be used equally well in equipment or inserted in lines without mismatch

Write for fully illustrated literature on the complete range of Hatfield Attenuators and for a copy of the new edition the SHORT FORM CATALOGUE.

HATFIELD INTSRUMENTS LTD. Dept. WW., Burrington Way, Plymouth. Devon
Telephone: Plymouth (07S2) 72773/S. Telegrams: Sigien, Plymouth.

WW-112 FOR FURTHER DETAILS

SOLDERING

-you need the Antex 屠 SOLDERING TOOL KIT

- Model CN240 15W Precision Iron with is " bit - Two spare Interchangeable Bits ($\frac{5}{12}{ }^{\prime \prime}$ and $\frac{3}{32^{\prime}}$) - Reel of Solder - Heat Sink Cleanina Pad - PLUS 36-page booklet on "How-to-Solder"
 British made. From The Army \& Navy
Stores, Harrods, and Radio Shops Stores, Harrods, and Radio Shops, of if unobtainable locally, direct from:

ANTEX LTD

GROSVENOR HSE CROYDON CR:11OE
Telephone : 01-686 2774

STOCKISTS

MODEI, \& 3K. U।

REPAIR SERVICE 7.14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: TIDeway 2689
E.I.D. \& G.P.O. APPROVED CONTRACTOR TO H M. GOVT WW-II4 FOR FURTHER DETAILS

remember there's an RTS in the month!
A period in which you can beat all targets. Aim high, but avoid placing undue reliance on jaded sources of supply. Temporary setbacks brilliantly overcome by resorting to RTS 'by-return' service on electronic components. Lucky numbers: Cambridge (OCA3) 51471 -for orders

Cambridge (OCA3) 59101 -other business Sond for comprehensive catalogue today to see what RTS hoids in store for you.
.RTS for all your components, by return, even overseas!

RADIO AND TELEVISION SERVICES LIMITED P.O. Box 11 Gloucester Street, Cambridge A MEMAER OF IME PO GROUP OF COMPANIES

6 mm tubular midget flange $\mathrm{S} 6 / 8$ cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of Vitality types and ratings may well be. Catalogue 66 , free and post-free, details them all.

* Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS, SUFFOLK. TEL. BURY 2071. S.T.D. 02842071 w $\mathbf{w}-116$ FOR FURTHER DETAILS

Recent additions to the Hatfield range of Attenuators, Hybrids, and Modulators include: TYPE MD4, a compact V.H.F. Double Balanced Modulator using "Hot Carrier " Diodes, capable of very good performance as an amplitude modulator, mixer, phase detector or current controlled V.H.F. Attenuator. Input and output frequency range is $0.5-300 \mathrm{MHz}$.
TYPE MDS, the newest development, with similar features to Type MD4, but fully encapsulated and suitable for direct mounting on printed circuit boards.
Large scale production of this type makes possible an extremely competitive price.
Deliveries of both these types can be made from stock. Write now for fully detailed literature of tire complete range, and for your copy of the new edition of the HATFIELD SHORT FORM CATALOGUE.
hatField instruments ltd.
Dept. WW. Burrington Way, Plymouth, Devon.
Telephone: Plymouth (0752) 72773/5
Telegrams: SIGJEN, PIrmouth.

WW-117 FOR FURTHER DETAILS

WHITELEY forccousicichoods

All noisy environments such as factories, workshops, department stores and hotels require the facility of an acoustic hood which permits telephone conversations to be held without the interference of annoying background noises. Whiteley acoustic hoods are strongly made from resin bonded ply and finished in a cellulose enamel which makes these suitable for indoor or outdoor use.

Fitted with doors for outdoor use Fitted with loudspeakers with doors for outdoor us
Also available with internal light andlor a slorage shelf below hood

\& directory holders

These attractive, and extremely functional directory holders will hold five directories neatly and securely, in individual swivel holders permitting easy identification and reference. The lower shelf provides additional storage space. The units are of cast alloy and are finished in an attractive grey epoxy resin enamel and constructed to strict G.P.O. design specifications. Directory Holder Dimensions

For further details please write or telephone
WHITELEY ELECTRICAL RADIO CO. LTD
MANSFIELD NOTTS ENGLAND
Tel: Mansfield 24762
London Offico: 109 KINGSWAY, W.C. 2
Tel: HOLborn' 3074
WW-118 FOR FURTHER DETAILS

Solder with the NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors:
S. KEMPNER LIMITED

384A Finchley Road LONDON N.W.2.
Tel: 01-794 2371-01.4356365

For Inner Core
Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joins Miniature Cuters and Pliers including Tip Curting Pliers, Printed Circuit Crimping and Cutcing Pliers, Torque Wrenches and Piercing Punches. II you require quality tools ask for Catalogue WW/68.
WèwynTool Co. Itd.

WW-121 FOR FURTHER DETAILS
 Iil Here's a n fIPACK
il
iil STATIC INVERTER or
Ii
NO-BREAK POWER SUPPLY to suit you -

iiil
iil
iil
iil
iil 11

\%DESIGN ${ }_{8 s}$ PERFORMANCE wDELIVERY

SINE AND SQUARE WAVE -UP TO 30 K.V.A.-
ill \square INDUSTAIAL
ㄴ. 1 INSTRUMENTS
INSTAUMENTS
LIMITED
STANLEY RD. BROMLEY, KENT
Tel. 01-450 9212. Telegrams: Transipack, Bromley
iil
 WW-122 FOR FURTHER DETAILS

The new $V 51$ helical range of Sealed construction, proof MEC miniature wirewound potentionieters offers high resolution in very small size. 3,5 \& 10 -turn units are available. Resistance values range from $2202^{3} 3$-turn, resolution 0.262%, to 220 K 10 -turn, resolution 0.017%. 3-turn units have continuous power rating $0.25 \mathrm{~W}, 5$-turn 0.5 W and 10 -turn 1 W at $70^{\circ} \mathrm{C}$.
against humidity, vibration, shock, altitude and
acceleration to meet Def 5011
severities.
Prices from 28/- depending on quantity.

Miniature Electronic
Components Ltd.,
St. Johns Woking Surrey
Telephone Woking 63621

The smallest helical potentiometer available in UM

1H-20-C
Trimmer Potentiometers
Wire-wound Resistors
Minlafure Siwitches
Elapsed Time Meters

Thenext full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 24th April 1968.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'D Level Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of ciectronics (Dept,WW), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

WW-124 FOR FURTHER DETAILS

LEEDTHROUGH MSULLTORS

WINGROVE \& ROGERS LTD
DOMVILLE ROAD. LIVERPOOL 13
Telephone: Stoneycrof: 2265
LONDON OFFICE: 75 Uxbridge Road Ealing W.5. Tel: 01-567 7046 WW-125 FOR FURTHER DETAILS

second Edition PUBLICATION DATE 26th JAN. 1960
176 Pages, Fine Art Paper. 144 lilustrations (including 50 new to this Edition and 14 Cartoons).
Price $15 /$ - ($16 /$ post free), Semi-Stiff cover.
$22 / 6$ ($24 /$-post free). Cloth bound Library Edition.
The first edition of Aerial Handbook was published in Oct. 1964 and the 5,000 copies whis sold out in just over a year.
This second edition has been delayed until the plans for Colour Television \& Multiplex Stereo had matured and could be dealt with from the angles of TransThe activities of the B and
The activities of the B. B.C. and I.T.A. are well covered. Relay Systems, Eurovision, World Satellites and Colour Conversion, Pose Office Tower, ete., also receive CONTENTS
CONTENTS

Chaprer No.	er No.
1. General Principles 16	s
2. Medium and Long	8. Diplexers, Mu
3. Short Waves	osters and
4. VHF and Band II (FM \& Stereo.whonic Sound)	10. Transmitters (including Col TV \& Stereo)
5. Television, Bands I and III (UHF)	11. Relay and Communal Systems 12. Questions and Answers
Television, Bands IV and \vee (UHF)	

RANK WHARFEDALE LIMITED, IDLE, BRADFORD, YORKSHIRE. Tel.: Bradford 612552.

W E Y R A D

COILS AND I.F. TRANSFORMERS IN
 LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 9 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} \times 14 \mathrm{~mm}$. Ferrite cores $6 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation, Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.
These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required,

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.
WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET
WW-127 FOR FURTHER DETAILS

WW-128 FOR FURTHER DETAILS

Bunlleros ceramics

for the Electronic industry (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quallity material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products. Write today for detalled particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines) Telegrams \& Cables: Bullers, Stoke-on-Trent London Office: 6 Laurence Pountney Hill, E.C. 4 Phone: MANsion House 9971

TELETON sums stutu . .

Already highly successful in Belgium, Germany, Switzerland, Holland, France, and Italy, we now proudly present the finest integrated Solid-State Hi-Fidelity Equipment for your approval. Ultra-modern designs have been created according to European technical standards and popular requirements. These outstanding products are supplied exclusively to us by MITSUBISHI Shoji Kaisha of Japan.
Superbly styled in oiled walnut, TELETON Tuner/ Amplifiers include AM/FM Multiplex facilities, comprehensive filters, four inputs and up to fifty watts RMS output, at prices to suit even the most modest pocket.
As an example of unsurpassed value, the TELETON SRQ 302X Solid-State AM/FM Multiplex Stereo Tuner with integrated Amplifier (20 watts RMS) is available in a matt oiled-walnut case-price only 64 gns , retail!

There are over fifty TELETON products from which to choose, and these include Stereo Tape Recorders, Radios, Cassette Recorders, Transceivers, Memopacks and Stereo Loudspeaker Systems. Centralised bulk purchasing power enables us to compete most favourably with any Company in the U.K. and our home-based Service Department implements a full 12 months Warranty.
TELETON home-entertainment units are obtainable from most high-class specialist dealers, or from selected wholesalers. Representative brochures and price lists are available to bona-fide trade enquirers, and a comprehensive display of the products may be seen in our Showroom by arrangement.

Telephone or write for further details to:-
TELETON ELEKTRO (U.K.) CO., LTD., 66-68 Margaret Street, London, W.I.
Telephone: 01-636 6491
WW-130 FOR FURTHER DETAILS

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nyion to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads.

Please send for List W9/65 (WW)

WALKER-SPENCER COMPONEMTS

5, High Street, Kings Heath, Birmingham, 14.

Telephone: (021 for 5 TO) HIGHBURY 3155 (Sales)
WW-131 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up 106 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socke combinations a yailable from stock. All types of fittings and finishes.
brochure from
LEXOR DIS-BOARDS LIMITED,
Allesley Old Road, Coventry.
Telephone 72614 or 72207

RECEPTION SETS R220/R220

These comprise two crystal conerolled AM receivers and can be operated independent of each other on one sput irequency in, the band They are housed in onc metal cabinet. size They are housed in one metal cabimet. siate $21 \frac{1}{\frac{1}{2}} \times 12 \frac{1}{\frac{1}{2}} \times 18 \frac{1}{1 \mathrm{~m}}$. and ready c / s.). Supplied BRAND NEW in original crate, complete BRAND NEW in original crate, complete POWER UNIT TYPE 24 FOR R. 216 RE. CEIVER. A.C. operated 100-125 or 200-250 oles $50 \mathrm{c} / \mathrm{s}$. BRAND NEW AND BOXED 9/19/6. Carr 106
FILTER VARIABLE BAND PASS No. I Dual channel unit. each channel has variable slot frequency of $500-900 \mathrm{c} / \mathrm{s} ., 1,200-1,600 \mathrm{c} / \mathrm{s}$. and band pass fachlity. 600 ohms inpue and outpue, monitor input and high impedance oucpue jacks. 5candard rack mounting $3 \frac{1}{9}$ in deep panel. Mains operation 200/250 v. $50 \mathrm{c} / \mathrm{s}$ BRAND NEW. $5 / 19 / 6$. Carr. 10/-.
HRO TUNING METER. $0-1$ ma. New and boxed 25/-. Post 2/-

BC221
FREQUENCY METER This concrolled heterodyne frequency meter is too well-known to need further description. Those we offer are complete with correct individual calibration book and are carciully tested and guar
anteed. New condition. Laboratory Standard

Also some less calibration book, in working order. 69/19/6. Carr. 10/.
V.H.F. SIGNAL GENERATOR MARCONI TF-80IA/I. Covers 10 to 310 Mc/s. (4 bands). DIRECTLY calibrated. Int. Mod. at $400,1,000$ and $5,000 \mathrm{c} / \mathrm{s}$. Attenuated or force output. Guaranteed overhauled, accurate and in perfect working order 635. Carr. 41

BEAT FREQUENCY OSCILLATORS

 MARCONI TF-19SM. Covers 10 cps . to $40 \mathrm{kc} / \mathrm{s}$. in two sweeps. 0 to $20 \mathrm{kc} / \mathrm{s}$. and 20 to $40 \mathrm{kc} / \mathrm{s}$. Output. 2 wates into 600 or 2,500 ohms. Panel meter indicates outpur voltage. A.C. mains operation 100 to 250 volts. First class condition. Fully tested. $620 . \quad$ Carr. 30/-.AMERICAN HEADSET TYPE HS-30-U 600 impedance. BRAND NEW and boxed. 15/-, postage $2 / 6$.

DISTORTION FACTOR METER

 MARCONI TF-I42E. This instrumen measures the percentage of total harmonic distortion in the fundamental frequency range 100 to $8,000 \mathrm{c} / \mathrm{s}$. The lowesc scale engraving is 0.05%. Will hande 2 watts (continuous) and will give sacisfactory readings with only 1 mW inpus. Mains operated. Output impedance 600 ohmsVery good condition. £20. Carr. 20/-.

MICROAMMETERS

R.C.A. $0-500$ mieroamps. 2 $\frac{1}{4}$ in. circulai flush panel mounting. Dials are engraved $0-15,0-600$ volts. As used in the American version of the No. 19 set. BRAND NEW and boxed $15 / \mathrm{m}$ P. \& P. 1/6.

AR-88 SPARES

Knobs, Medium size, Ser of 8 Knobs, Large size
Condenser (3×4 mid.). Post $4 / 6$
Mains Trans. (L.F.) (postage 9/-)

$10 /-$ $5 / 6$

$5 / 6$
$12 / 6$

MINIATURE RELAYS 240 v. A.C. coils. Coneace assembly 2 makes and C.O. 5 amps. Size $2 \times 1 \frac{1}{2} \times$ equipment $8 / 6$ pose paid.

MOVING COIL PHONES. MOVING COIL PHONES. Finest
quality Canadian with chamois ear-muffs
With and leather-covered headband. With
lead and iack plug. Noise excluding and supremely comfortable. 22/6. As above but complete with moving coil microphones $25 /-$ -
DLR-5 Low impedance headphones with DLR-S Low impedance headphones with attached throat microphone.
items BRAND NEW. Postage extra $2 / 6$.

CINTEL NUCLEONIC SCALERS Nos. 36402 and 36411 . Unused wish hand book. List Price £ $300 /$ / 320 . Our Price $£ 65$
CRT Type 89D as used in the Cossor 1035 Oscilloscope. Brand New 59/6. P. \& P. 1/6

ADVANCE TEST EQUIPMENT

H1B Audio Signal Generator

J1B Audio Signal Generator J2B Audio Signal Generator
TT1S Transistor Tester
VM76 AC/DC Valve Voltmeter
VM78 AC Millivoltmeter (transistorised)
VM79 UMF Millivoltmeter (transistorised)
$£ 30 \quad 0$
$\begin{array}{ll}£ 30 & 0 \\ £ 30 & 0\end{array}$
350

These are current production, manufactured in U.K. by Advance Electronics Litd. (not discontinued models). Showing a saving of approximately $33 \neq \%$ on nett trade price. BRAND NEW, all in original sealed carton. Carr. 10/- extra per item. Special offer of 10% discount for schools and technical colleges, etc.

OSCILLOSCOPE TYPE 13A

Double bearn. Time base $2 \mathrm{c} / \mathrm{s}$. to $750 \mathrm{kc} / \mathrm{s}$. Band width up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers at $100 \mathrm{kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Operates from A.C. mains 100 to 250 volts. A completely reliable quality instrument. Supplied fully checked with circuit 622/10\%. Carr. 30\%

HRO MODEL 5T £30

The octal valve version. In mint condition. Complece with al nine general coverage coil sets covering $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$, Inseruction Booklet and circuit, but less external power supply Carriage 30%. Complese manual available at $30 /$ extra.

PRICES NOW REDUCED CINTEL EQUIPMENT. ELECTROI YTIC CAPACITANCE AND INCREMEN-

TAL INDUCTANCE BRIDGE No. 36601 A moderon instrument, all solid state, which accurately measures the capacity of electrolytic condensers from 0.1af to 1,000 $\mu \mathrm{F}$ under operating conditions. Leakage current and polarizing to 100 H can also be measured with current up to 100 mA . to mains operation. Unused with handbook. List Price €220. Our Price $£ 70$. W220. Our Price E70. A matching instrument to the above. All solid state. Mains A matching instrument to the above. Al sold state. Mains operation. List Price $£ 250$. Our Price 675.

MARCONI TEST EQUIPMENT

PORTABLE FREQUENCY METER TYPE TF. 1026

 SERIES TF. $1026 / 4$ 2,000/4,000 Mc/s., TF. $1026 / 5 \quad 1.800 / 2.200 \mathrm{Mc} / \mathrm{s}$ TF. $1026 / 6$ 3.800/4,200 Mc/s., TF.1026/7 1.700/2,100 Mc/s. TF. $1026 / 9$ 2,425/2,525 Mc/s. 40 each.WIDE BAND MILLIVOLTMETER TYPE TF.I37I $100 \mu \mathrm{v}$ to 300 mv in five ranges. $30 \mathrm{c} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$. 645.

VACUUM TUBE VOLTMETER TYPE TF.I300 A.C. measurement 0.05 to $100 \mathrm{v} ., 20 \mathrm{c} / \mathrm{s}$. to $300 \mathrm{Mc} / \mathrm{s}$. D.C. A.Casurement 0.1 to 300 v . Each over 5 ranges. Will also measurement 0.1 to to 5 m . in 2 ranges. ©45.
SENSITIVE VALVE VOLTMETER TYPE TF.II00 $00 \mu \mathrm{v}$ to 300 v . A.C. in 12 ranges. $10 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$. Can Iso be used as a wide-band amplifier. 650.

DELAY GENERATOR TYPE TF.I415
Provides sweep-delaying facilities when used in conjunction with the TF. 1330 (series) or similar oscilloscope. Alternatively, it may be used independently as a general purpose delay generator. $£ 35$.
TF.867.A Standard Signal Generator
TF. $890 . \mathrm{A} / 1$ R.F. Test Set
TF.1020.A/2 R.F. Power Meter
T.F. 1066. B/2 U.H.F. F.M. Signal Gener
TF. 1067 Hetrodyne Frequency Meter

TF. 1102 Amplitude Modulator
TF. 1221 Hetrodyne Unit.
TF. 1274 V.H.F. Bridge Oscillator
TF. 1275 V.H.F. Bridge Detector.
TF. $1350 / 1$ Power Unit for TF. 1346 /
TF. 1400 Double Pulse Generator
Detailed technical specifications supplied upon $£ 100$
Offered BRAND NEW at fraction of original cose.

CHARLES BRITAIN (Radio) LTID.

II UPPER SAINT MARTIN'S LANE LONDON, W.C.2.
$01-8360545$
(Opposite Thorn House)

PORTABLE OSCILLOSCOPE CT.52. A compacs general purpose instrument with wide, 6 thin. deep. Time base $10 \mathrm{c} / \mathrm{s}$. co wide. $40 \mathrm{kc} / \mathrm{s}$. Y plate sensitivity 40 v . per cm . Tube $2 \frac{1}{i n}$. Frequency compensated amplifier up to 38 dB gain. Bandwidth up to $1 \mathrm{Mc} / \mathrm{s}$. Single sweep facilities. Operates from A.C. mains $100-250$ voles, $50 \mathrm{c} / \mathrm{s}$. Complete with all test leads, metal transit case, instruction book and circuir diagram. BRAND NEW. Tested and guaranteed. $\mathbf{~ 2 2 / 1 0 / \%}$. Carr. 10/\%

SIGNAL GENERATOR CT-218 (FM/

 AM). MARCONITF 937.Covers $85 \mathrm{Kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. in 8 switched ranges. Effective length of film scale is 50 ft. Output level varlable in I dB steps from I $\mu \mathrm{V}$ to $100 \mathrm{mV}(75 \Omega 2)$. Also IV Ourputs down to $0.1 \mu \mathrm{~V}$ from an outlet at 7.5Ω. Int. mod. at $400 \mathrm{c} / \mathrm{s} ., 1 \mathrm{Kc} / \mathrm{s} ., 1.6 \mathrm{Kc} / \mathrm{s}$. and $3 \mathrm{Kc} / \mathrm{s}$. FM at frequencies above $394 \mathrm{Kc} / \mathrm{s}$. Variable mod. depth and deviation. Crystal calibrator 200 Kc / s and $2 \mathrm{Mc} / \mathrm{s}$. Monitor speaker for beat detection. Fully metered, blower cooled, Panclimatic. A.C. mains 100 to 150 and 200 to 250 volts, 45 to $100 \mathrm{c} / \mathrm{s}$. $17 \times 20 \frac{1}{2} \times$ guaranteed Fraction of original cose. $\& 65$. guaranteed
Carr. $50 /$.
T.C.C. METALPACK CONDENSERS. 0.1 mid. 500 v. D.C. wkg. at $70^{\circ} \mathrm{C}$. Brand new, polythene wrapped, $7 / 6$ doz., or 62 per 100 T.C.C. METALMITE 350 V. D.C. Wkg mid. (CP, 32 N) all at $5 / 6 \mathrm{doz}$. or $32 / 6$ per 100 SPRAGUE METAL CASED CONDEN. SERS 0.01 mid. 1,000 v. D.C. wkg., 5/6 doz. or $32 / 6$ per 100.

T.C.C. VISCONAL CONDENSERS.

 8 mid. 800 . D.C. wkg, at $71^{\circ} \mathrm{C}$. CP NEW (boxed), $8 / 6$ each. DUBILIER. 4 mfd .600 v . wkg. CP 130 T or similar, it x if x 4in. high. BRAND NEW (boxed), $4 / 6$ each. All post paid.
STANDARD TRANSFORMERS

Vacuum impregnated, incerleaved, E.S screen, universal mounting. Size $4 \times 3+x$ $2 \frac{1}{2}$ in. ALL BRAND NEW. 24/0 each Post $4 / 6$.
Type I. $250-0-250$ v. 80 mA .6 .3 v .3 .5 a 6.3 v . I a., tapped at 2 a .

Type 2 . As above but 350-0-350 80 mA
Type 3. 30 v. 2 a., tapped at 12, 15 , 20 and 24 v . to give 3-4-5-6-8-9-10 v.. etc.
Type 5. $0-6-9-15 \mathrm{v} .4 \mathrm{a}$. Ideal for chargers.

LOW CAPACITANCE BRIDGE MARCONI TF. 1342. Range 0.002 pF . to 1, Ill pF. Accuracy 0.2%. Three cerminal transformer ratio arm bridge allows "in situ" measurements. Internal oscillator írequency $1,000 \mathrm{c} / \mathrm{s}$. $12 \times 17 \times 8 \frac{1}{2} \mathrm{in}$. Weighe
 $150 \mathrm{v} .40-100 \mathrm{c} / \mathrm{s}$. With leads and handbook. ABSOLUTELY BRAND NEW. List Price 6120. Our Price 645.

WE SUPPORT EVERYTHNG!
 We are the TOWER PEOPLE

Floodlights, aerial arrays, flue stacks;
we support them all cheaply, handsomely and efficiently.
We are accredited manufacturers of the 'Tubewrights' range of tubular steel tripoles. towers and headframes. Heights from 20 ft . to 155 ft .
Alternatively we will design towers for any special requirement Warning! We are habit-forming. Customers tend to standardise on our towers.
Unifab Structures - the Tower People - provide uplift, easy on E.s.d.

Unifab Structures Ltd

Gale Road,
Kirkby Industrial Estate, Liverpool.
Phone: 051-546 3401.
WW-137 FOR FURTHER DETAILS

TRANSFORMERS

 COILS CHOKESLARGE OR SMALL QUANTITIES trade enquiries welcomed
SPECIALISTS IN
FINE WIRE WINDINGS MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.653 .2261
CR4.8LZ
EST. 1933

WW-138 FOR FURTHER DETAILS

DUAL-IN-LINE SOCKETS

- New Cheaper version available -

In addition to the well known 3I4-AG 3A and 316-AG 3A
Rastra can now offer the cheaper
314-AG 6 D-2
ask us for prices and
316-AG6D-2 OUR NEW CATALOGUE

BODY: Black Phenolic

CONTACTS: Spring Temper Beryllium Copper. Tin Plated

GEM PANEL METERS

Send S.A.E. for full lists. Cther ranges available. Please include postage.

CLEAR PLASTIC METERS

pe MR.52P. 2 \$in. aquare fronte.

BAKELITE P

Type MR.65. 3lin. square fronts.

35μ A	65/-	50 mmp .	$29 / 6$
51) HA .	42/6	sv. D.C.	$29 / 6$
$50-0-50 \mu \mathrm{~A}$	$42 / 6$	10 V . D.C.	29/6
$100 \mu \mathrm{~A}$	38/6	20 V . D.C.	29/6
200-0.100 $\mu \mathrm{A}$	39/6	sov. D.C.	
$\mathrm{SHM}_{1} \mu \mathrm{~A}$	351-	150 V . D.C.	$29 / 6$
$500-0.500_{\mu} \mathrm{A}$	351-	300 V . D.C.	29/6
$\ln A$	29/6	30 V A.C.	$29 / 6$
1.0 .1 mA	29/6	50V. A.C.*	29/6
5 mA	29/6	150 V . A.C.*	29/6
10ma	$29 / 6$	300V. A.C.*	$29 / 6$
50 ma	$29 / 6$	1 mmp A.C.*	$29 / 6$
100 ma	29/6	δ stup. A.C.	$29 / 6$
$\mathrm{sbOma}^{\text {a }}$	$29 / 6$	10 amp . A.C.	$29 / 6$
1 atup.	29/6	20 mmp . A.C.	-29/6
5 amp.	29/6	30 amp . A.C.	28/6
15 amp.	29/6	50 mmp A.C.	-29/6
30 amp .	29/8	FU meter	49/6

NEW RANGE OF "SEW
 EDGEWISE METERS

MODEL PE 70. Dimensions $3 \frac{17}{2} \mathrm{~m} . \times 1 \frac{1}{2} \mathrm{~m}$. $\times 2 \frac{2}{2} \mathrm{in}$. deep overall. Avaliable se followe:

AVO CT. 38 ELECTRONIC MULTIMETERS
High qualits 97 range inatrument whech neasures A.O. and D.C. Voltage Current, Renintance and Power output. Ranges
D.C. voit $250 \mathrm{mV} \cdot 10.000 \quad \mathrm{v}$. (10 mego 110 mera inputi, O.C. curent 10μ A 20 ampn. Ohtma: (0.1 .060 negn. A.C. Volm up to $250 \mathrm{Mc} / \mathrm{s}$.). A.C. current $10 \mu \mathrm{~A}$ 25 amps. Power output 50 microwatts6 watle. Operation $0 / 110 / 200 / 250$ v. C Supplied in perfect condition complete with CYO CALIBRATION TEST UMIT TYPE CT.155. For nee with CT. 38 Mulimeter. .6 v. $70 / 26 / 100 \mathrm{~F}$. A.C. and 250 mV milivolh D.C. from internal standari cell. Operation 0/110/200/230 v. A.C. Brand new $7 / 10 /-\quad$ P. \& P. 10/6 $}$

MULTIMETERS for EVSGYy purposed

NEW MODEL 500, 30,000 O.P.V. vith overload
 $250 / 500 / 1.000$ v. D.C. $0 / 2.51$
$10 / 25 / 100 / 250 / 600 /$
 $0 / 60 / \mathrm{KB}$. Meg./60. £8/17/6. Post pald

MODEL TE. 80
20.000 O.P.V. A.C. $0 / 5 / 26 / 50 / 250 / 500 /$ 1.000 F. D.C. $0-50 \mu \mathrm{~A}$ 5/50/500mA.
K/6 meg. £4/17/6. P.P. $3 / 8$

MODEL TE-70. 30,000 O.P.V. $0 / 3 / 15 / 60 / 300$ 600/1.200 v. D.C. 0/6/30/ $120 / 600 / 1.200$ *. A.C.
$0 / 30 \mu \mathrm{~A} / 3130 / 300 \mathrm{tnA}$. Mer. Ω. $\mathrm{f} 5 / 10 / \mathrm{F}$.

MANY OTHER MODELS AVAIL ABLE FROM AS LOW AS $39 / 6$. NEW LAFAYETTE HATOO AM/CW/SSB AMATEUR
 tivity. FrequencF coverage of 5 hands 150

 product detectos, electrical bowdspread, is meter, slide rule dial. Output for phomen, low in 2 K g or apeaker 4 or 8 chms. Operation $220 / 240$ volt A.C. Size $7!\mathrm{in} . \times 15 \mathrm{~m} . \times 20 \mathrm{~km}$. Bupplled brand
new and giaranteed new and guaranteed with hatulbook. 36 GNS

LAFAYETTE MODEL HA-500 SSB/AM/CW
80 THROUGH 6 METRE RECEIVER

New outatanding Hant lands only rerefive covering the $80 / 40 / 20 / 15 / 10 / 6$ metre bands. Incorporiates 10 milven, proxinet detector. two mechanical filten, 8 Meter, dual convernion on
 240 volt A.O. Buppliced brand hew and guaranteed with hanclionok 42 Gas . Clarr. $10 /-100 \mathrm{Kej}$

HARVERSON SURPLUSCO. LTD. 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01.5403985

PLEASE NOTE: P. \& P Charges quoted apPLY TO U.K. ONLY.P. \& P CHARGED EXTR ORDERS

Wilkinsons FOR RELAYS P.O. TYPE 3000 AND 600

 BUILT TO YOUR REQUIREMENTS-QUICK DELIVERY COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS-QUOTATION BY RETURN LARGE STOCKS OF MINIATURE SEALED RELAYS, DETAILED LIST ON REQUEST

PORTABLE VOLTMETERS $0 / 100$ Moving 1 ron AC/DC
8in. mirrur scale, in polished worxd case, $99 / 6$. Post $\mathbb{6} /$
8in. wirrur scale, in polished woud case, $99 / 6$. Post $6 /-$
Resistor to double the range, 26 .
PORTABLE AMMETERS, $0 / 3$ AC/DC $3 i n ., 35 /-$, p. $3 /=$
 FREQUENCY METERS. $45 / 55$ cycles per second.
230 volts; 6in. Flush Round. Brand new, $810 / 10 \%$ 230 volts; Bin. Flush Round. Brand new, $\$ 10 / 10 \%$.
RESISTORS wire wound or carbon, potentioneters, RESISTORS ware wound or carbon, potentio condeasers, quantfti very powerful reversible, 24 v . A.C. $35 / \mathrm{m}$, post $2 / 6$
operated from 230 v. with our Transformer. $20 /-$ BLUE LINE Heavy Duty Switelaes liy Kraua \& Nammer, Code A A Jel3 withoxtras, iaso cle switeh
avatable from mock at less than maker's urice.

 4 C Non Lock 4 C Non Lock, $16 / 6$.
2 C Lock $/ 2 \mathrm{C}$ Lock, $12 / 6$.
4 C Lock/4 C Locek' $17 / 6$.
Sop 4 C Lock, $12 / 6$.
Many Other types.
Low Capaeltance \& C Muirhead, $17 / 6$.
Stop/2C Lock, $7 / 6$. C l.ock / 0 C Lock, 106.

Post MAINS TRANSFORMERS. Output 9 amp., $25 / \%$. Post $6 / \%$, 6.3 volts,
AUTO TRANSFORMERS by S.T.C.
Totally enclosed C.core type, $110 / 250$ volts. 8 tappings. 50 cycles. 1,000
watts. Size $6,8 \times 55_{6}^{3} \times 5 \frac{1}{2}$ in., $\varepsilon 4$. P. $10 / 6$.

RAT10 ARM UN1TS. Sullivan $600 \Omega+600 \Omega$. $50 /-$ DOUBLE HEADPHONES. High resistance, $4,000 \mathrm{~S}$, SMALL MAGNETIC COUNTERS

MAGNETIC COUNTERS
MAGNETIC COUNTERS, with zero reset 230 or 110 v . Veeder lioot 6 fig. $65 /-$ ea. Counting Insts. flush type 48 v. D.C. $90 /-$ ea, post $8 /-$.
P.O. STANDARD RACKS $6 f t . U$ channel sides drilled for 10 in . panels, heavy angle base $150 /$ - cge. $20 /$. for 1 inin. panels, heavy angle
LIGHT TYPE $5 f t$. high \&5. JACK PLUGS. 2 Hoints, with screw-on cover, 2/6, post 1 d . PO. 201 with cord, $3 /-$, post $1 / 6$;
P.O. 310,3 Point, $4 / 6$, post 1 dd . PLUG-IN RELAYS, Londex 4
CIN RELAYS, Londex 4 change-over HD con25. D.C. or 940 V. A.C. with base and cover, RE TRANSISTORS AS/ with Dust Cover, 20 each. $7 / 6$ en. (iF.L 5

HAIR HYGROMETER.
hambra, scaled $0 / 101$
METERS GUARANTEEO

Complete list avallable Microamps $0 / 1002$ 2il MC 40 Microamps 1500 Nin. 25 Microamps $0 / 500$ in. MC $37 / 6$ Milliamps $0 / 502$ in. MC $35 /$ Milliamps $0 / 500$ 3! in. AIC 54 Amps Volts 5 $\begin{array}{ll}\text { Volts } 0 / 2 \\ \text { Volts } 0 & 5\end{array}$ Volts 0
Microamps $0 / 50$ scaled in Milli Rontgers 241 m . MC $\mathbf{4 5}$ Millivoits $350,0 / 350$ ($3.5,0,3.5$) MilliA 21 in . MC 35 PORTABLE VOLTMETERS. 0/250 Moving Iron MINIATURE BUZZERS (as illus.), 12 volt with tome adjuster, $7 / 6$.
HIGH NOTE BUZZERS

SUBMIMIATURE MICRO SWITCMES HONEYWELL 11SMI-TN13. SWITCHES Sizc; $.78 \mathrm{lin} \times 250 \mathrm{in} \times 35 \mathrm{sin} .6 / 6 \mathrm{cach}$ o 0 MICRO SWITCH. Burgess M|KHHR, robust die cast
L. WILKINSON (CROYDON) LTD.

LONGLEY HOUSE LONGLEY RD. CROYDON SURREY

Tastiva's Paraclio

CONSTRUCTORS BARGAINS

THE SKYROVER DE LUXE

7 transistor plus 2 dione superbet, 6 Wuvebana portabie Whetsand $51-44 \mathrm{M}$ and aloo 4 scparate suitched band
 Spread Tuaing for accurate Station Belecthob. The col pack and tusing heart is factory assembled, whed and
tested. Superhet, $470 \mathrm{Kc} / \mathrm{f}$. Mularl Transistors. Usee 4
 Output. Telescopic Aetria and Ferite liod Aerial. Tone Cricult. In wood eablnet, size $11!\times 6 ; \times 3 \mathrm{~m}$., cor ered with wis linhle matertal, plantic trimand hatile. Can
Can uow

£8.19.6

H.P. Terms: $60 /$-deposil and 11 monthly payments of $12 / 9$ Total B.P.P. $110 / 08$.
Datn 24. Recunded it you purchave parde. components with conmtruetion data. Only 10/-extra, Post Free. This conversion is suitable for recelvers already constructed.

MULTIPLEX ADAPTOR

Now you can enfoy sterew sound with the FM Tuner ahove. Brief spec.: MPX mput Hize $5!\mathrm{in} . \times 2 \mathrm{in}$. \times in LASKY'S PRICE 99/6
PACKAGE PRICE HE BOUGHT TOGETHER £11.11.0. thust b/

LASKY'S PANEL METERS

THA MK-38A 1fin. square
THA MK-38A 1fin. square
THA MK-38A 1fin. square
$5 \mathrm{~mA} D 0$
$300 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$
TYPE KR-65 3 : $\times 3 \mathrm{in}$.
1 mADC
5
mADDC
$6 \mathrm{maA} D \mathrm{C}$
$300 \mathrm{~V} D$
$100 \mu \mathrm{~A}$
$10 \mu \mathrm{~A}$
1 mis is Beter
TYPE MK-45A 2in. square
1 HAADCC
5 mA DC
300 V DC
300 V DC
1 ma 8 Meler
25%
$25 /-$
$25 /-$
TYPE MK-65A, 3in. square
HBA DC
300 VDC
300
solua

STUDIO DECKS

MAGNAVOX 363 TAPE DECKS
 $250 \times 11 \times 51 \mathrm{in}$. deep below unit plate. For $:(30)$
LASKY'S PRICE imock $£ 10.10 .0$
LASKY'S PRICE ${ }_{\text {tomel }}^{\text {tracel }}$ £13.9.6

SPECIAL FOR OVERSEAS CUSTOMERS-the dew Magnavox-Culiaro 3ins Deeck for 110/I25
NEW MARTIN TAPE RECORD REPLAY AMPS.

[^12]
SPECIAL INTEREST ITEMSI

TWO BAND TRANSISTOR CAR RADIO BARGAIN! MODEL CR-62
A bew high-quality imported all-transiator
superhet car ralio that really breaks the fually price barrier. Unique features of this thef are the which Mou bourd stat ion pre-selection buttons stations-t his belf in matidition to full M / W V oover over $150-800 \mathrm{kc} / \mathrm{h}$. (1 F frequency $455 \mathrm{kc} / \mathrm{s}$) Externally aljualable aerial trimmeri ensuric anximum output. Six transistor (including or
 powerful. 2 w . nutpuk. The set is adjustable for use on elther poos. or ne circuit prorides systems (external line fuse fitted). Standard mounting size $6 \| \times 58 \times 2$ in.-front panel thin mounting bracketa, full instaliation instructions and 2 barile push buttors. Complete with speaker). F'ully'guarauteed.
LASKY'S PRICE 99.19 .6 Poat $5 / 26 \times 4 \mathrm{in}$. elliptical 80 dynamic
SPECIAL OFFER-LOCKING CAR AERIAL
undque locking device to 40 in . extenston heavy chrome telencople wing mounting type with lead and plug and two "protys." the antenna when closed. Complete with mounting brackeh LASKY'S SPECIAL PRICE 39/6 \qquad

NEW
 FOR THE RECORDING ENTHUSIAST VOICE ACTUATED MICROPHONE

MODEL B 5001
Thls new voice actuated microphone is denigned for use willh tape recordern with altowing normal hand remote control. voice sensltivity action and orf. The swich of voice or sound levci required to operate the recorder can be alluated. The megreephone is self prowered by one 9 V (PP3 type) battery giving 6 to 10 hm , operating time. for hand-held use or lying fat. Fitted with 2.5 and 3.6 mime. Length $7 f$ ins. Deaigued LASKY'S PRICE £6.19.6

EXPORT TTC B4002 FM WIRELESS MIC.

Highly senalitive-sultable for elther atatic or mobile use. Sighal can be picked up by miy FM raillo or tuner whilh recelves frequencien between $96-104 \mathrm{Mc} / \mathrm{s}$. on one
on ons type battery. Complete with neck cord, clipon dy famic extension
LASKY'S EXPORT PRICE £6.19.6
Pot Froe TTC $13 / 500$. More powerfu' 'ersion of above-size $7 / \times 11 \times 2$ in. Operates on the
PI's trype hattery. LASKY'S PRICE 12 Gas. Pont Free. Any where in the World.

MICROPHONE BARGAIN

 STC MODEL 414A high quality omnl-ilirecthonal moving coll micmphone-suitable for ase with sound relnforcement and P.A. Myterms. tape. recorders. atanding or hand-held use-size $21 \times 2 \mathrm{~g}^{2} \times 2!\mathrm{in}$. Complete with 6 it. acreened cable. New and unuscd in maker's cartons-fuly guarantced.

NEW INTERNATIONAL TAPE

High Fidelity Audio Centres
42 TOTENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573
Open all day Thursday, early closing 1 p.m. Saturday
118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789
Open all day Saturday, early closing 1 p.m. Thursday

Inenstany TEBEClio

DON'T MISS THISI

HAVE YOU GOT YOUR COPY OF OUR GREAT "35th Birthday" CATALOGUE - FREE $\begin{gathered}\text { withour } \\ \text { COMPLMENTs }\end{gathered}$

Printed in targe 16×11 in, modern magazine format the "Birthday Pictorial" contains thousands of
different items from our vast stocks of Radio, $\mathrm{Hi}-\mathrm{Fi}$, TV, Test Gear, Componenti, Communications and other equipment.
PLUS many bargain offers and prices exclusive
AND in addition every copy of the "BirthAND day Pictorial " is numbered and automatically enters you in our great "Birthday
Draw "with over £100 in Gife Vouchers to be Draw
won.
All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches -or by post to any address in the U.K. or overscasbringing the bencfiss of shopping at Lasky's to you in

SECOND REPRINT ISSUE NOW

 AVAILABLE-iust send your name, address and 6d stamp for postage only.
A MUST FOR EVERY ELECTRONICS \& HI-FI ENTHUSIAST!

RECORD PLAYERS

B.S.R.

AUTOCHANGERS
Fully guaranteed complete with cartridge and stylue UAld ov, battery modet............... 85196 UA:20 tobpeed matins model $£ 5196$

NEW-B.S.R. UA70 (Illustrated

 * apeed malns autochanger superb arodern styiting at LIEKY゚g IPRICE £9/196 (ex cartridge)GARRARD AUTOCHANGERS

[^13]
COMMUNICATION RECEIVERS

NOW AVAILABLE FOR THE FIRST TIME IN GREAT BRITAIN. TWO NEW TRIO RECEIVERS MODEL JR-500SE

 LASKY'S PRICE $£ 61.19 .0$
MODEL 9R-59DE

TAPE RECORDERS

JUST ARRIVED-FANTAVOX TAPE CASSETTE PLAYER
This machine is the Arat of tha type and is detgned annectiwally t

 size fil $\times 4 \mathrm{~K}^{2} \times 2 \mathrm{~ns}$. with irrint strap. Cotuplete wlih earlueze ane

LASKY'S PRICE £9.19.6

OUTSTANDING VALUE-THE 'TELETON' 701 T-TRANSISTOR TWO-SPEED
CAPSTAN DRIVE MAINS/BATTERY RECORDER
An outahadingly lish quality machine that is
 oook at these outslanding features:

- 7 transhator and 3 diode circuit- 800 mW

 ot 33 i.p.e. Paut forward and rewimat. evel meter (ants as loattery check of perlay) - I'iano key funetion emntrolin, plus vol. and

LASKY'S PRICE
$£ 22$

NO EXCUSES! NO DELAYS! FROM STOCK!

PJRTABLE

Input 230 *. A.C. Output variable 0 . 260 v 1.5 mmp . Fitted in beautifully finished steel case. Complete with volemeter. pilot lamp, fuse swizch, carrying handle. \&8 10 - P. \& C. 10% Also 2.5 amp . as above. $\frac{19.17 / 6 .}{\text { OPE } \& \text { C. } 10 / \cdots}$ Designed for Paned Input 230 v A.C. $50 / 60$ Input 230 v. A.C. $50 / 60$
Output variable. Output variable.
0.260 v.
$\frac{1}{3}$ amp. .. 3330 $\begin{array}{llllll}\frac{1}{2} \text { amp. } & . . & 63 & 3 & 0 \\ 1 & \text { amp. } & \ldots & 64 & 10 & 0 \\ 21 & \text { amp. } & . . & 65 & 12 & 6\end{array}$

SERVICE TRADING CO

 Postage and Carriaze shownbelow are inland only. For below are inland only. For
Overseas pleaze ask for querseas play. We do not
quotation. catalorne or list.

LIGHT SENSITIVE SWITCHES Kit and parts including ORP, 12 Cadmium Sulphide Photocell. Relay Transistor and Circuit. Now supplied whth new Siemens High Speed Relay for 6 or 12 volt operations. Price $25 / \%$, plus $2 / 6$ P. \& P ORP. 12 and Circuit $10 /$-post paid.
A.C. MAINS MODEL
incorporates mains eransformer rectifier and special relay with 3×5 amp. mains c/o contacts. Price inc. circuit $47 / 6$, plus $2 / 6$ P. \& P
 housing to cake MBC bulb. Separate photo cell
complere composite apparasus comprising a ro bustly built Trans ro-magner wieh removable coils and pole pieces coll rapped fo $\begin{array}{llll}230 & v_{1}, & 220 & v_{6} \\ 110 & v_{3} & 115 & v_{0} \\ 12 & 36 & 110\end{array}$ 12, 36,110
D.C. experiments A.C. These coils are also used for D,C. experimenes Complete with all accessories
$15 /$ carr. Leaflet on request.

PHOTO MULTIPLIER

Type CV337, this supersedes type 931A, complete with special P.T.F.E. base and divider networ $57 / 6$ incl. P. \& P
RESETTABLE HIGH SPEED COUNTERS figure, 24 V. D.C. oper ation (illustrated). Similar to above, but may be pre-set to any number up to 999 reducing to zero Either type 32/6, P. \& P 2/6d.

4 figure, 1,000 ohm coil, 36-48 v. D.C. operation. 63/10/-. P. \& P. 1/6.

PHOTO ELECTRONIC COUNTER

 Can be set for counts of up to 500 per minute. $210-250$ v. A.C. powered. Kit of Components. including photo cell, high speed non-resettable counter, transiormer, relay, etc, $3 / 6$ P. \& P. With clear circuit diagram,LATEST HIGH SPEED MAGNETIC
COUNTERS (NON-RESETTABLE) 4 figure, 10 impulses per second. Type $100 \mathrm{~A}, 500$ ohm eoil. Type. $100 \mathrm{~B}, 2,300 \mathrm{ohm}$ coil. Either $15 /$ each, plus $1 / 6$ P. \& P.
230 VOLT A.C., GEARED MOTORS Type DI5G 5 r.p.m. 1.71b. inch, $62 / 9 / 6$, P. \& P. $3 / \mathrm{F}$ Type B16G 80 r.p.m. 261b. inch, $62 / 2 /-$ P. 8 P. $3 /$ Type DIGG
P. 8 P. $3 / 1$

PRECISION FLATPOT
Manufactured by M.E.C. 50 k., 45 turn. Fly leads all metal sealed construction. $10 / 6 \mathrm{~d}$. Plus $1 / 6 \mathrm{P} . \& \mathrm{P}$

INSULATED TERMINALS Available in black, red Available in black, red,
white, yellow, blue and white. yelow, blue and
green. New $15 /$ per doz green. New

TRANSISTORISED MORSE OSCILLATOR Fitted $2 \frac{1}{2} i n$. Moving Coil Speaker. Uses type PP3 or equiv. 9 V . battery.
design Morse Key. 22/6, plus $1 / 6$ P. \& P.

NICKEL CADMIUM BATTERY

 sintered Cadmium Type 1.2 V. 7AH, Size ${ }^{2} 2 / 6$ prox.
GENUINENEW MULLARD 6 AMP. SILICON DIODES NOT Rejects or Seconds $\begin{array}{lll}\text { BYZ } 13200 \text { PIV 7/- } & \text { BYZ } 12400 \text { PIV } \\ \text { BYZII } \\ \text { BYO } \\ \text { BY }\end{array}$
100 WATT POWER RHEOSTATS
(NEW) Ceramic construction, windEnamel, heavy duey brush assembly designed for conelinuous duty AVALABLE FROM STOCK IN THE FOLLOWING 11 VALUES 25 ohm 2 a ; $50 \mathrm{ohm} \mathrm{l} 1.4 \mathrm{a}: 100 \mathrm{ohm}$ la; 250 ohm 25 ohm $500 \mathrm{ohm} 45 \mathrm{a} ; 1,000 \mathrm{ohm} 280 \mathrm{~mA} ; 1,500$ ohm 230 mA .; $\mathbf{2}$, 500 ohm 2 an Diameter 3 tin, Ohm
Shaft length fin. diz. Agin., 27 $/ 6$. P. \& P. P. $1 / 6$.
50 WATT POWER RHEOSTATS 1 ohm 7a, 5 ohm 3a; 10 ohm 2.25a. 25 ohm 500 ohm .3a; 1,000 ohm .22a; 2,500 ohm .14a
All at $21 /-$ each. P. \& P.
25 NATT
10 ohm 1.5a; 25 ohm 1a; 50 ohm. 75a.: 100 ohm .5a; 250 ohm .3a.; 500 ohm .2a; 1,000 ohm . I5a.; 1,500 ohm . 12a.: 2,500 ohm .la.; all at $14 / 6$ each. P. 8 P. $i / 6$.

SWING ARM RHEOSTAT
Especially designed for educational use, $0-10 \mathrm{ohm}$ in precision 1 ohm steps. Max. current 5 amp. Size: Height 19 in . Wideh II in. Depth 6tin. Price 44/19/6. P \& P. $7 / 6$.

DRY REED SWITCHES New special offer of Dry Reed Switches, $\frac{1}{2}$ amp. contack. $1 \frac{1}{2}+1 \mathrm{~m}_{\text {. }} 4$ for 10%, post paid.

VENNER ELECTRIC TIME

SWITCH

$200-250$ v. A.C. 20 amp. contaces twice on, swice off, at any manually of power cur) fully tested $63 / 9 / 6$, P. \& P. $4 / 6 \mathrm{~d}$. Or complete in weatherproof mesal case (illustrated) $63 / 19 / 6$,
plus $4 / 6$ P. \& P. Can be supplied with olar dial, on at dusk-off at dawn. Prices as above. \qquad dawn.

RADIO ALTIMETER

This precision Instru-
mene, buile to highest ment, buile to highest Ministry specificasion. is LOW INERTIA (Inte-
 grasing) Motor. The grasing (Motor, The
Motor, ficed with gold brushes and drawing only 800 microamp at 24 V . D.C. drives two precision pots with platinum wipers through close tolerance gear-trains, including miniature slipping clutch, combined with two sub-miniature pots for calibrating the electrical bridge circuit. The 3in. calibrated dial, with a number aperture indicating one rev, per revolution of pointer with maximum of 5 revs. gives an effective scale length of approx. 30in Offered at fraction of Manufactur

Multi Range Meters

중Acknowledged throughout the world as the ultimate in test meters.
NEW MODEL U-50D MULTINEW MODEL U.50D MULTI SCALED WITH OVERLOAD PRO SCALED WITH OVERLOAD PRO TECTIO N. Ranges: D.C volts: 100 mV 0.5 v., 5 v., 250 v., 1,000 v. A.C. voles
v., $50 v_{\text {. }} 250$ v. 1,000 v. D.C. current: $5 \mu \mathrm{~A}$
 Complete with batteries $\$ 5.15 .0$ and test prods.
55.15 .0

200 ohm 1.25 amp SLIDER RESISTANC
ohm 10 2mp. 37/6 P \& P 3/6
230 V . A.C. REL. AY, ${ }^{2} \mathrm{c} / \mathrm{o}$
$9 / 6$ ex new equip. P. \& P. $1 / 6$.
THYRISTOR 400 piv, $5 \mathrm{amp} ., 14 / 6$ post paid. THYRISTOR 400 piv, 8 amp., $28 / 6$ post paid. Condenser $5,000 \mathrm{~m} / \mathrm{d} 50 \mathrm{v}$. $1 \frac{1}{2} \times 4 \mathrm{in}$. $12 / 6$. New. LATEST TYPE
SELENIUM BRIDGE RECTIFIERS
30 vole 3 amp. . $11 /$ plus $2 / 6$ P. \& P.
30 vole 5 amp., $16 /$, plus $2 / 6$ P. \& P.
MOVING COIL HEADPHONE AND MIKE Solt rubber ear-pieces with M/C Mike ficted S-way plug as on No. 19 set. New. in maker's packing. $16 / 6$ plus $3 / 6 \mathrm{C}$. \& P .
A.C. AMMETERS $0-1,0-10,0-15,0-20$ amp. F.R. A.C. VOLTMETERS $0-25$ v., $0-50$ v. $0-150$ v. M.I $2 \frac{1}{2}$ in. Flush round all as $21 /$-each. P. \& P. extra. $0-300$ v. A.C. Rect. M-Coil $2 \frac{1}{2}$ in. $0-300$ v. A.C. Rect. M-Coil $3 \frac{1}{2}$ in. Type Wi...... 29.0 Latest type VARLEY MINIATURE RELAY in Transparent Case. 2 c/0 700 ohm coil. Size $\frac{7}{2} \times \frac{3}{\frac{3}{3}} \times 1$ in. 15/- inc. base. Size $\frac{3}{2}$ Y TYPE VP4 (similar to illus.) 5,800 ohm. $4 \mathrm{c} / \mathrm{o}$.
New 12/6, less base.
Similar to above. Mrd. by GRUNER $10 / 0,2,4$
New, $10 /$, less base.
UNISELECTORS SWITCHES NEW 4-BANK 25-WAY
UNISELECTOR
$\begin{array}{llll}25 \text { ohm coil, } 24 & \text { v. D.C. } \\ \text { operation. } & \text { \& } / 17 / 6 \text { plus } 2 / 6 .\end{array}$ operation.
P. \& P.

8-BANK 25-WAY FULL WIPER
STANDARD SIZE UNISELECTOR
SANDARD SIZE UNISELECTOR
D.C., 6 bank 25 position, 5 non-bridging, I bridging
wiper. 6 bank 25 position, 5 non-bridging 3 bank, 50 positions
6 bank arranged to give 3 bank,
ex-equipmens. $35 /-$ each. P. \& P. $2 / 6$.
MINIATURE UNISELECTOR SWITCH
3 banks of 11 positions plus $24-36$ y D.C. operation. Care fully removed from equipment and tested. $22 / 6$, plus $2 / 6$ P. \& P

AIR BLOWER

Highly efficient blower un

 firsed with totally enclosed $200 / 250$ v. A.C. 50 cyeles \$h.p. motor producing 2,800 r.p.m. outlet $2 \frac{1}{2} \times 1 \frac{1}{2}$, used, but in firss class condition and zessed. Price 63/15/\%. P, \& P AUTO TRANSFORMERS. Seep up, step down. $110-200-220-240$ v. Fully shrouded. New. E4/2/6 each. P. \& P. 6/6. 1,000 watt cype $65 / 5 /-\mathrm{each}$. P. \& P. $7 / 6$.

personal cnlers onty
- LITTLE NEWPORT STREET.

PR-901

NEW FROM ILIFFE

"Unitech Outlines"

the highly successful American series of paperback technical titles are now available from ILIFFE

First 8 titles

OUTLINE OF ELECTROMAGNETIC THEORY OUTLINE OF ELECTRONIC CIRCUIT ANALYSIS OUTLINE OF LINEAR CIRCUITS AND SYSTEMS-Pant CUTLINE OUTLINE OF PULSE CIRCUITS

OUTLINE OF SERVOMECHANISMS
OUTLINE OF TRANSISTOR CIRCUIT ANALYSIS
OUTLINE OF ATOMIC PHYSICS OUTLINE OF FOURIER ANALYSIS
Each volume 35s. net
from leading booksellers Postage Is. 4d.

GANGED POTS buve them nt 12 , doz. (or $1 / 8$ each if less than on lat doz. then $1 /-$ per doz, θ doz. or more post free

HURSEAL AUTOMATIC TIME SWITCH
 HI-FI SPEAKER BARGAIN

$35 /-\mathrm{p}$

MAINS RELAYS

Type A. $210 / 250 \mathrm{~V}$. A.C. coil, 2 tyines, one for stagle hole chaskls mounting, has
Trse B. In clear plantic case on tha bave, plugs Into $18 / 6$ eash.

COPPER CLAD ELEMEMT

1,250 watis-4ft. long but bent to U slupe, deal fot
overhead heater-just mount reflector above, $12 / 6$ each plus $4 / 6$ post. $£ 6$ doz., post paid.

MAINS TRANSFORMER. Upright mounting with primary tapped $200,220,240$ v. H.T. Becondary is $250 \cdot 0 \cdot 250 \mathrm{v}$. at 80 mA . and it has two L. T. Eeconda nes of 6.3 . . it arup.-unues (remsuved

PP3 Eliminator. Play your pocket radlo from the malua! Save Co. Complete component kit comprises 4 rectifersaains dropper cosintances, smoothag con deuer and instructions. Only 6/6 plus /- post.

[^14]
INFRA-RED

HEATERS

easy-to-follow Instructionn-usen sillca eneloned elements dealghed for the cor

 INTERCOM BARGAIN

Will save tince and improve efficiency. Ideal in home-office-shopnurgery, etc. Complete outht comprione Master unit and three subutatinnn cach of which can cail the moster and have full two-why working. No wirligg problems as subm fitted with 60 th. twin thex and they pligg
sockets. Also included in packet of elaples-and battery. Nothing mockets. Also included is packet of kiaples- $4 / 9$ poat and linuratace.

GARRARD

AUTO RECORD PLAYER Model 2000
This is one of the latest producta of the World's most experienced maker of tane record reproducers. It playing of up to 8 milxed eizo recontistoppling and starting without rejecting Ow etylun preasure-large diameter turnable for max. ntability adjustmenta nclude phik-uy height-plick-up dropping ponition and atflus preakure. Size ia artidge for stervo- and mono. L.P. and 78. Suppliedicompletof with mount ing template and service sheet. Offered this month at the Bpecial 8 nip prlee of £6/19/6 plus 7/6 carriage and lamurance.

THE VECTRONOME GAPSTAN DRIVEN TAPE RECORDER

This is a truly purtable, Relf-contained
finstrument with bullt-in microphone and loudspeaker built-in anderophone amplitter with p.P. output and suit. able for operation from thaina or by cliargeable batterfes. Tape capacity is
25 mlauten on casily changed rpools. A tape position tadicator givea quick. reference to any part of dictation. Recording level is automatically pre-
met during dictation and can be adnet durligg dictation and cean be ad-
justed to sult operator. Interloct prejusted to sult operator. Interlock pre-
vents unintentional erayures. Tape venta unintentinnal erayures. trape capatar. Very portable in neat crse
with earrying handle. overall size of With earrying handle. overall nize of
whlch is approximately $B \| \times 7 \pm \times 2 \mathrm{~h}$.
 chargeable baterles and mains battery
charser $£ 9 / 18 / 6$ (rather less than one charser eq8/18/6 (rather less fiah one-
thtrd originall price). tnsuratice $7 / \theta$. Unued and m perfect

RADIO STETHOSCOPE

Easiest way to fault fad-tracee eignal from nerial to apperker-when wignal mops you've found the faulto Une
it on Radio, TV, auplither, anything-complete kit compriwes two speclai tranaintors and all parts including pmolic primes two apectal earpiece $28 / 6-t w i n$
carpicce $7 / 6$ extre-post and $\operatorname{lns} .2 / 9$.

TUBULAR HEATERS
New and ununed made by GiE.C.-rated at 60 watto per $t t$,-these are Ident New and unused made by papery can touch then whenout fear of scorchilng or fire. Supplied complete papern can touchets and wvailable in the following sizen. Prices which are about

FLOOD LAMP CONTROL
Our dhm and full switch is wieal tor controiling photo Hood lamps: It gived wo lumpe in serim. two lampm full frilliance ant lampe off. Blenllar ontrol of other appllances can le arranged wherc used in palr or where circute can be walt exactly in half fechuleally the switeh is known in a loible-pole change over with of Our price $4 / 6$.

MAINSTRANSISTOR POWER PACK
Demimed to nperate transiver gets aud amplifters. Adsuntable output 6 v . 8 V .. 12 volts for up to 500 miA
clasp B working). Taken the plece of any of the (elasp B working). Taken the plece of any of the and others. Kit comprises: mahs tranaforiner reet fifier. mpoothtere and load reaintor. 5,000 and 500 intd. condensem, Therer dimple and instru
it onty $16 / 6$. plus $3 / B$ poatage.

DOOR INTERCOM

hnow who is callling and apeak hem whout learing bed hatr. Outtit comprimes micro phone uthb call puik button, coinectors and manter fintercon slanply plugn torether. Originally oold at 210 . Special

GEARED MOTOR HALF REV. PER MINUTE Male by famous simith quite powermil. Size 31 $2 f \times 1 / \mathrm{m}$. deep. Becondary une an procens timer. Internal wwiteh can be marle to hreak circuit within a perlod up to 2 mina. $17 / 6$. P. \& P. 2/6 unless ordered with

MAINS MOTOR restion maste-au ureel to record decta and tape re orders-lideal alwo for ex tractor lan-blower, hester. te. New and perfect.
snip at g/6. Powtage 3/. Sor firmt one then
ondered. 12 and
over poat iree.
RELAY SWITCHES. Theme enable rulem swhelien, elicate therruostata or of her low current devicen to heatrot up to totors, etc., Inale by the famons A.E.I. group thene are listed at $\mathbf{£ 2 5}$ cach-Sou can buy t1 you group thene are listed price of $39 / 6$ each and we will nclude diagramín and data. Dounted on panel size pproxinatels $6 \times 7 \times 2 \mathrm{ja}$. deen

THERMOSTATS

ype "A" to ramp. for controlling room heateres greenhouge, atring buphoart. Has oppindle for pointer

 lineater or to make dlame-start or fire ularm. 8/6 plus e/f puat 'and inéurance.

Type "D". We call this the Iceostat as th cuta in and out at around freezing polnt, $2 / 3$ ampas, Has
 $(1 / \mathrm{yds}, 10 /-)$ in wound round the ptpes. $7 / 6, \mathrm{P}$, \& P Type "E". Thin is Alandari efrigeral reirigerator wtat. Apindie ailjustruente cover
Type "F ". Glask encesed for controlling the temp. of liquid-particularly thone In class isnke, vatu or ainks-thermostat is held (hat anbmerged) by
rubber sucker or wire citp-ident for finh fanksrubber sucker or wire chip-dent for haths of all typw. Adlustable over range 0°
and fusurance.

LOUDSPEAKER CORNER CONSOLE CABINETS. Attrutive design 		
		Re
1 RTV R.S.C. A10 HIGH FIDELITY 30 WATT AMPLIFIER		15 in .40 WATt
R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER PUSH-PULL DLTTRA LINEAR OUTPUT WBUILT- \qquad qrally mect lorially wound mit put franstintuer and		
		$7 \text { ki }$
 R.S.C. AlIT TRANSISTORISED VERSION of above 9 Canylete kn 9 Gns.		
TWO-WAY TELEPHONE AMPLIFIERS only $£ 3.19 .9$		
R.S.C. 4 watt GRAM AMPLIFIER KIT		
SELENIUM RECTIFIERS F.W. (Bridged) \qquad 		
R.S.C. BATTERY/MAINS CONVERSION UNITS Type RM1. An allodry liathory ellathator. Size $5 \frac{1}{} \times 4!\times 21 \pi-$ "ith cliagran $4 \% / 9$ or reauly for use $58 / 11$.		
R.S.C. $6 / 12 v$ CAR BATTERY CHARGER KITS 		
4 amp 49/9. 6 amp Heavy Duty 69/9 All typee factory buill 20/-extra.		

SWANCO PRODUCTS LTD.

G3nap AMATEUR RADIO SPECIALISTS G3PQQ SEW EQUIPMENT

Sommerkanip F-Series Equipmens: FR-100B double conversion sujerheterodsne will crystal contmolled tirst mixer, $80-10$ metree		1250			
FL-200B RAB/AM/CW transmittes, 240-walta TEP. anmplere whth bult-in power supply and antenn					
FLeldy 1000 linear ampliter, Mrio watio prip		100			
Sommarkamp FT-150 tranmeeiver, 80-10 metres .. 22000					
Swad Line Equip					
Swan 350 s8B Tranacelver, 80-10 metree		219			
an 410 VFO aund alupter 6115					
Hallicrafte					
SX-130 Commun					
HT-46 88B Tranamiltee,					
HT-48888 Tranamither.					
Eddystone 980 Communhear hon		185			
		Eddysione 840 C Communtrat ionn Eddytune EC10 receiver Eddystone EB35 raceiver			
Trio JR-60 14 Lubres amatear communhatinna					
Trio 9R59 tube conmumh thmn ferriv					
		3716			
-350 A mateur thands revelver, $90-10$ metrea .. 6810					
K.W. 2000A AsB Tranmeelver, wo mi.-10					
		200			
ley Electro					
TA-32fr. Triband two					
TA-31Jr. Trimand mol					
TD-3Jr. Wire					
Channelmaster ma	atorn				
Channelamaster rotatorn					
2-M Sel Thus recelver					
Sks Bandit Airtult recel					
Kurer Airerafl, shorl, meedient, and long wave recelver					
Light Aireraft Tramaniteing anul Recelving Kquippo ment. Alem availabl-pyleamen mend full detalle por our atutation					
Swanco CsE Equipmen					
Swanco/CSE 2 Alo solit stit					
Swauco/C8E Type II A.T.M.A. mehsle/tred/pmiable antemtia					
nywtent					
Swance Quad Spiders (is T cris)					
Echelford B1/4 trunmiltere fir thil					
Echelliord M1/4 transulifer (wualue or sinblle					
Full range of Drake Equipment availalie to order. Full range of Heatbalt Eynipment arailable to ort					
Coder Radio Compzay					
R.Q.10X ...). 88					
$\underset{\text { ç. } 40 \mathrm{SK}}{ }$					
Eartidre Eleetronier: Shure Micropbon					
Type 3,4 tuner Type $\&$ funce.	${ }_{4}^{3} 4{ }_{4}{ }^{6}$ (Bhure tola				
K.W. "Vankuard" Celea, il 2 Tit , MOBO, Tiger TR100, Viking "Vali-nt", DI-100. 8B10. K.W. "Valient," K.W. 76					
Your enquirien plenco.					
Full Service Facilities memervin n-aligned. transmithern merviced etc.					
Illastrated Catalor de \%/6 post paid.					
SWANCO PRODUCTS LTD.					
Dept. W 247 Humber Avenue					
COVENTRY					
Telephone:Coventry 22714 Hours: Mon.-Sat. 9a.m.-6p.m.					

USED SCIENTIFIC EQUIPMENT

High Vacuum Pumps from $\frac{1}{3}$ to 120 c.f.m., diffusion pumps from lın.-9in., gauges and accessories, etc.A. Air Liquefier. Philips PW 2000/25. 4 litres/hour. As new.... \&1,000 Induction Heater from I kW at $£ 180$ so 6 kW . and higher, from $£ 175$ Dielectric Heater. Pye $12 \mathrm{~kW}, 27 \mathrm{Mc} / \mathrm{s}$, , 450 . Redifon 4 kW . $10 \mathrm{Mc} / \mathrm{s}$.

4300
Inspection Enlarger. Hilger X50 $\mathbb{1} 20$
PH Meter. EIL continuous reading, as new, 0-14 PH $£ 120$
Recording Polarograph. Cambridge $\mathfrak{£ 2 5 0}$
Sedimentation Balance. Gallenkamp PC650 $\mathbb{1 0 0}$
Centrifugal Sediometer. Gallenkamp PC700 \&125
End Punner Pascal 10 in litcle used
680
Tube Furnace. $2 \mathrm{in}, \times 12 \mathrm{in}$., controlled atmosphere $1,000^{\circ} \mathrm{C}$.... $\mathbf{6 2 5 0}$
Chart Recorders, Pyrometers and Controllers. All types and
sizes, from $2 \mathbf{2 5 - 6 2 0 0}$
High Precision Potentiometer. Cambridge Standard Instrument, measures up to $48 \mathrm{v} . \times 0.0001$ volts
High Voltage Pulse Generator. $10 \mathrm{kV} .600 \mathrm{~m} . \mathrm{a}$. DC supply
with delaylines, chokes, etc., 2 Micro sec., 6 microsec. 10 microsec.
Thermocouple Amplifier. Barr \& Seroud with PSU $\mathbb{E 1 2 0}$
Radio Isotope Container. Pantatron CR2 6240
Geiger Muller Tubes. BF3 tubes, etc. P. O.A.
Spot Welder. Bench Mounted, 675, and others for mounting.
Variable Transformer. Motor driven, 3 phase 10 kW., Berco... 〔45
V arious chassis, cabinets, laboratory equipment, etc., etc.
ASK FOR CATALOGUE.

V. N. Barrett \& Co. Ltd., 28©a, Lower Addiscombe Road, Croydon CRD 7AB 01-654-6470

SUPER QUALITY NEW RESISTORS

High Stability Carbon Film Low Noise
iW 5% E24 series, 5.10 to $330 \mathrm{k} \Omega$, $1 / 10 \mathrm{doz}$. mixed; $14 / 6100$ mixed; $13 /-100$ in 100 's of one ohmic value. in to 4.70 available, ohmic value
tW 10% E 12 series, 4.70 to 10 MD . $1 / 9$ doz. mixed; $13 / 6100$ mixed;
W 5% 12/. 100 in 100 's of one ohmic value.
IW 5\% E24 series, 4.70 to $10 \mathrm{Mo}, 2 / 2$ doz. mixed; $17 / \mathrm{L} 100$ mixed: 100 to 10 MO 4d each,
All mixtures to your specification large quanclies mixed
Quality carbon skeleton pre-sets: $100,250,500,1 k, 2 k, 2.5 k, 5 k, 10 k$, $20 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M}, 10 \mathrm{Mo}$. All available in horizontal or vercical mounting, $1 /$ each.
Volume controls: $100,250,5000$ series to $10 \mathrm{M} \Omega$ linear, $2 / 3$ each.
$5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{~kg}$ and series to 5 Mg log. $2 / 3 \mathrm{each}$.
Electrolytics, low cost: $5,10,25,50 \mu \mathrm{~F} 10 \mathrm{~V}, 5,10 \mu \mathrm{~F} 25 \mathrm{~V} 9 \mathrm{~d}$. each. 100 , Electrolytics, 0 , cost: 5 , 10, 25,5
$200 \mu \mathrm{~F} 10 \mathrm{~V}, 25,50 \mu \mathrm{~F} 25 \mathrm{~V}$ I/-d. each.
Mullard electrolytics, sub-min C426, whole series stocked.
Ceramic discs: 0.01μ F $50 \mathrm{~V} 5 \mathrm{~d} ., 0.02,0.05 \mu \mathrm{~F} 50 \mathrm{~V} 6 \mathrm{~d}$.

BEMIGOMDJBTDR

SILICON

Low noise, high gain: BCI69 2/9: BC109 4/-; 2N3707 5/-; 2 N4058 5/6. High gain: BCI 68 2/6; BCIO8 3/11; 2N2926/yellow 3/6; 2N4062 5/6. High power: 2N3055 16/6; 40465 16/3; MJE521 21/3; MJE371 PNP 24/6. Field effect: MPFIO5 10/-: $2 N 3819$ 14/9: $2 N 3820$ 24/6.
Many others: BC167 3/-; BC107 4/-; 2N3702 4/-; $2 N 3703$ 4/-; $2 N 3704$
4/-; 2N3705 4/-; CS29255/-; C52926/red 3/9; C407 6/-, ete.

GERMANIUM

Many types including: ACY22 3/6; 2G308 6/9; 2G309 7/9; 2N1304 4/-; $2 N 13054 /-;$ NKT274 3/8; NKT403 16/3; $2 N 214716 / 9: \quad 2 N 2148 \quad 13 / 6 ;$ AD161 9/-: AD1629/-; 2G371 2/9; MATIO1 8/6; MATI20 7/9. MINIATURE SILICON DIODES: 30V $75 \mathrm{~mA} 1 / 3$ each: OA $202 \mathrm{2} / \mathrm{h}$ Other diodes: OA47, OA70, OA81 $1 / 9$ each: OA90 OA91, OA95 $1 / 3$ each.

PEAK SOUND PRODUCTS

CIR-KIT No. 3 Pack 12/6; adhesive copper strip $5 \mathrm{ft} . \times \frac{1}{\text { o }}$ or $\frac{1}{6} \mathrm{in}$. 2/-. Perforated board 0.1 in . matrix, 5 in . $\times 3 \frac{3}{2} \mathrm{in}$. $4 /-; 2 \frac{7}{\mathrm{in}}, \times 3 \frac{3}{\mathrm{i}} \mathrm{in} .2 / 6$. Transistorised Stereo Amplfier kit type SAB-8 610/10/\%.
Cabinet 63 ; Power supply kit 63 . Post free and 15% discountl ALL GOODS BRAND NEW. NO SURPLUS. FAST DELIVERY. DISCOUNTS: 10% over $63 ; 15 \%$ over $\in 10$. P. \& P. I/., free over El

ELECTROVALUE
6 MANSFIELD PLACE, ASCOT, BERKSHIRE

WW-145 FOR FURIMER DETAILS

ADVANCE TEST EQUIPMENT

VM76 Valve Voltmeter
R.F. Measurements in excess of 100 mHz and d.c. measurements up to $1,000 \mathrm{~V}$ with accuracy of $\pm 2 \%$. D.c. range- $300 \mathrm{mV}-1 \mathrm{kV}$ f.s.d. A.c. range- $300 \mathrm{mV}-300 \mathrm{~V}$ r.m.s. Resistance in 8 ranges, $0.02-500$ Megohms.
Manufacturer's price £90: Our price $£ 72$
VM77C: A.C. Millivoltmeter
$1 \mathrm{mV}-300 \mathrm{~V}$ full scale in 12 ranges. Freq. range $15 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s}$. Input impedance 10 Megohms 20 pf. Calibrated in r.m.s. volts for sine wave input and dB . $100-250-\mathrm{a}$ a.c. input.
Manufacturer's price £55: Our price £40
VM78: A.C. Millivoltmeter
Transistorised. $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges. Freq. $1 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$. Input impedance 2 Megohms 60 pf. Calibrated in r.m.s. for sine wave and input dB.
Manufacturer's price £70: Our price $£ 55$

TT1S: Transistor Tester (CT472)

Suitable for measuring medium and low powered transistors. Current gain (B) can be measured in range 10 to 500 for p.n.p. and n.p.n. types, either in circuit using the clip on probes provided. Small compact instrument.
Manufacturer's price $£ 57$: Our price £37/10/-

VM79: UHF Millivoltmeter
Transistorised. A.c. range $10 \mathrm{mV}-3 \mathrm{~V}$ f.s.d., 10 ranges. D.c. current range $0.01 \mu \mathrm{~A}-0.3 \mathrm{~mA}$ f.s.d., 10 ranges. Resistance $1 \mathrm{Ohm}-10$ Megohms in 7 decade ranges. Complete with probe Manufacturer's price £180: Our price $£ 125$
J1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Output 600 Ohms, $0.1 \mathrm{~mW}-1 \mathrm{~W}(0.25-24 \mathrm{~V})$, variable. Attenuation $20 \mathrm{~dB}-600$ Ohms (Attenuator is incorporated), output $10 \mathrm{~mW}(2.5 \mathrm{~V}) . \quad 100-250 \mathrm{~V}$ a.c.
Manufacturer's price £46: Our price £30
J2B: Audio Signal Generator
Same specification as for the J1B except that this model has an additional 2 in . meter calibrated $0-40 \mathrm{~V}$ a.c.
Manufacturer's price £50: Our price $£ 35$
H1B: Audio Signal Generator
$15 \mathrm{c} / \mathrm{s}-50 \mathrm{kc} / \mathrm{s}$ in 3 ranges. Sine wave $200 \mu \mathrm{~V}-$ 20 V r.m.s. Square wave $1.4 \mathrm{mV}-140 \mathrm{~V}$ peak to peak (approx.). $100-250 \mathrm{~V}$ a.c.
Manufacturer's price £42: Our price $£ 30$
Special offer of 10% discount for schools and Technical Colleges, etc. These were manufactured in U.K. by Advance Electronics L.d. BRAND NEW, all in original sealed carton. Cars. 10/-extra per item.

CONDENSERS. $10 \mathrm{mfd} .1,000 \mathrm{y}_{6}, 12 / 6$, post $2,6.8 \mathrm{mfd}, 1,200$ volts CONDENSERS. $1 / 6$, post $3 /-.8$ mfd. 600 volts, 86 , post $2 / 6.0 .25 \mathrm{mfd} ., 2 \mathrm{kv}, 4 /-$, post 1/6.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$. \&1 carriage.
APNI ALTIMETER TRANS REC., suitable for conversion $420 \mathrm{mc} / \mathrm{s}$. complete with all valves 28 v. D.C. Dynamotor and 3 relays, 11 valves, price £3 each, carr. 10/-.
ROTARY TRANSFORMERS. 24 v . input, 175 v . at 40 mA output, $25 /=$, plus $2 /$-post. 12 v. input, 225 v. at 100 mA 。 output, $25 /-$. plus $3 /-$ post. (All the above arc D.C. only.)
AVo mULTIRANGE No. I ELECTRONIC TEST SET: £25 each, carr. E1.
HRO RECEIVER. Model 5T. This is a famous American High Frequency
 superinet, suitable for CW, and phasing control. AVC and signal phasing contro. Frac. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine cons. Receiver only in working order, ci8/10-a carr. 15- cach. Set of nine conls, 民ith set. Power unit for HRO $100 / 240$ v. A.C., $£ 2 / 15 /-$, carr. 10/-.
SPECIAL OFFER: Complete HRO SET (Receiver, Coils \& Power Unit) for £30, plus 30/-carr.
HRO-M-SETS available with UX type valves; secondhand cond., with 5 coil and power unit, £20 each, carr. 30/-
CONVERTERS. Type $8 \mathrm{a}, 24 \mathrm{v}$. D.C., 115 v. A.C. at 1.8 amps 400 cycles, 3-phase, $\mathbf{8} 6 / 10 /-$ each, post $8 /-$
MARCONI DEVIATION TEST SET, TF934: freq. $2.5-100 \mathrm{Mc} / \mathrm{s}$. Can be extended to $500 \mathrm{Mc} / \mathrm{s}$. Deviation range $0.5,0-25$ and $0.75 \mathrm{Kc} / \mathrm{s}$. £ 35 each, carr. £1.
MARCONI IMPEDANCE BRIDGE, TF-373: inductance $5 \mu \mathrm{~h}-100 \mathrm{H}$ in 5 ranges, capacity $5 \mathrm{pF}-100 \mu \mathrm{~F}$ in 5 ranges, resistance $.05 \mathrm{meg} .-1$ meg., in $\begin{aligned} & \text { power supply } 250 \mathrm{v} \text {. A.C. } £ 37 / 10 /- \text { each, carr. } 15 /- \text { - }\end{aligned}$
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$ o, directly calibrated. Power supply $1.5 \mathrm{v} .-22 \mathrm{~V}$. D.C \&12 10/- each, carr. 15/-.
TACAN. Trans./Receiver, same as ARN21, British made, STC, TR9171 TACAN. Trans. Receiver, same as ARN21, British made, As new price \&25. Used condition, $£ 15$, carriage $£ 1$.
RELAY UNITS. 2 high speed relays $\mathrm{H} 96 \mathrm{E}, 1700+1700 \mathrm{ohms}$, 1 changeover relay 14,000 ohms, 1 CV 455,100 ohms and 1 meg. pot., etc. Mounted in box, $4 \mathrm{in} . \times 6 \mathrm{in} . \times 30 \mathrm{in}$., $30 /-$ cach, $4 /-$ post.
RECEIVERS. Type AR8BD: freq. $540 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. \&45 each, carr. £2 AR88 SPEAKERS. New in cartons, metal casc with black crackle finish 59/6 ca., post $7 / 6$.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L.55. Price 10/- cach, post 2/6. By-pass Capacitor K.98034-1, 3×0.05 mid. and M. $98034-4,3 \times 0.01$ mfd., 3 for $10 /-$, post $2 / 6$. Trimmers, 95534 502, 2-20 p.f. Box of 3, $10 /$-, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$, 600 v., £2 each, $4 /-$ post. Filter Choke, L45 and 50 , K $901433-501,25 /$-each, 4/- post.
AIRCRAFT RECEIVER ARR2. $235-258 \mathrm{Mc} / \mathrm{s}$. qunable, 24 v. D.C. input, £3 ca. 7/6 carr.
HEWLETT PACKARD TYPE 400C: $115 \mathrm{v} . / 230 \mathrm{v} .$, input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Inpui impedance 10 megohms. Designed for rack mounting, £30 each, carr. 15/-.
COMMAND RECEIVERS : Model $3-6 \mathrm{Mc} / \mathrm{s}$. and $6-9 \mathrm{Mc} / \mathrm{s}$, as new, price 55/10,- each, post 5/-

SIGNAL GENERATORS:

MARCONI TF-144G: freq. $65 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$, internal and external MARCONI TF-144G: freq. $85 \mathrm{Kc} / \mathrm{s}-25$.Mc/s, internal and modulation, power supplies $200 / 250$ v. A.Cl. (secondhand cond.), price
\&25 ea.; or available in transit case, complete with spares, in first class $£ 25$ ca.; or available in transit case, co.
condition $£ 30$ ca., carr. on both 30 /- ea.
TS155e/UP (as new): price $£ 75$ each, carr. £1.
CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. with Calibration chart. Output CT53. Freq. range $8.9-300 \mathrm{Mc} / \mathrm{s}$. With Calibration chart. $100 \mathrm{c} / \mathrm{s}$., $1 \mu \mathrm{~V}-100 \mathrm{mV}$. internal square wave and sinewave modulation at external modulation $50 \mathrm{c} / \mathrm{s}-10 \mathrm{~K}$
etc., price $£ 27 / 10 /-$ ca., carr. $£ 1$.
etc., price $£ 27 /$ TF801A/1 Freq. $10-300 \mathrm{Mc} / \mathrm{s}, 4$ bands, output 200 mV ,
MARCONI TFrr. Attenuator 0-110dB. Input 75 ohms. e65 each, carr. £1.
MARCONI TF516-F/1: Covering $10-18 \mathrm{Mc} / \mathrm{s}, 33-58 \mathrm{Mc} / \mathrm{s} ., 150-300$ Mc/s. £12/10/- each, carr. £1.
MARCONI CT218: price $£ 65$ each, carr. $30 /$.
CT. 480 and $478: 1.3-4.2 \mathrm{Mc} / \mathrm{s}$, F.M. or A.M., price. $£ 75$ each, carr. $30 /$.

TELEPHONE EQUIPMENT:

GPO 'CANDLESTICK' TYPE TELEPHONE. Upright model with receiver, ideal novelty for converting to lampshąde. Available any with receiver, $£ 510 /$ - cal, post $7 / 6$
TELEPHONE WIRE: 220 yds., $£ 1$ a roil, post $6 /-$
GPO TERMINAL BLOCKS, $7 / 6$ each. FUSE AND PROTECTOR, $7 / 6$ each. Post on both $2 / 6$.
TELEPHONES (PORTABLE) TYPE * F." Suitable for all outdoor activities up to a range of 5 miles. Price $£ 7 / 10 /$ cath, as new, complete activities up to a range of 5 miles. Price
with carrying case. Price, f 510 - each, secondhand. Carr. 10 i-
TELEPHONE EXTENSION CORD. Brown, 3-way; come in leng ths of 6 ft . and 14 ft , 7/6 and $15 /-$ respectively. Post 2,6 .

BC-433-G COMPASS RECEIVER: Freq. $200-1,750 \mathrm{kc} / \mathrm{s}$. in 3 bands, suitable for aircraft, boats, etc. Complete wirh 15 valves, power supply suitable for aircrait, boats, erc. Complety $i 5$ each. Carr. 15).
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec 6,000 ohms. Price $25 /-$, post 5/-
NIFE BATTERIES: 6 v. 75 amps ., new, in cases, $£ 15$ cach, $£ 1$ carr, 6 v. 160 amps., new in cases, $£ 25$ cach, $£ 1 / 10 /-$ carr.; 4 v .160 amps ., new in cases, $\mathbf{8 2 0}$ each, $£ 1 / 10$ /- carr.
L.R. 9 Cells, only 1.5 v. 75 amps., new, $£ 3$ each, 12 - carr.
L.R. 7 Cells, only 1.5 v. 75 amps., new, $£ 3$ each, 12 - carr.
The above batteries are low resistance designed to give heavy surge for The above batteries are low resistance designed to give heayy surge for
starting and can be stored for long periods withou any effect to their starting and
performance.
WAVE GUIDES FLEXIBLE CG-152 APMA0. Lengih 18 inches. Price $£ 2$ each, post 4/-.
MACHMETERS: Range $0: 1$ and $0: 1.2 .6 \mathrm{~A} / 3384 \& 5325$ respectively, price 30/- each, postage 5-
FUEI. INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and resct controls mounted in a 3 in . diąmeter case. Price $30 /$ - each, postage 5 -
DRY BATTERIES, NO. 1. HT 90 v , and $7 \frac{\mathrm{v}}{\mathrm{v}}$., sizc $2 \frac{\mathrm{j}}{\mathrm{jin} .} \times 3 \frac{3}{6} \mathrm{in} . \times 5 \mathrm{in}$., 5/- each, or 5 for $£ 1$, post $4 /$ - and $7 / 6$ respectively.
BATTERY NO. 4 (suitable for bells, erc.) $f!V .$, size $4!\mathrm{in} . \times 6 \mathrm{in} . \times 21 \mathrm{in}$. 5/- each. Post 3/-.
UNISELECTORS (ex equipment): 10 Bank, 50 Way, alternate wipe, \&2/5/- ea. 6 Bank, 25 Way, alternate wipe, £2/26 ca. 8 Bank, 25 Way, £2/5/- ea. 6° Bank, 25 Way, \&2 ea. 4 Bank, $25 \mathrm{Way}, 35 /-$ ea. All the above are 75 ohm coil. Postage 4/- per uniselector.
FREQUENCY METERS: IM-13 or BC- $221 ; 125-20,000 \mathrm{Kc} / \mathrm{s}$, , 225 each, carr. 15/-. TS $174 / \mathrm{U}$; $20-250 \mathrm{Mc} / \mathrm{s}$. modulated, £ 45 each, carr. 15/-. TS $323 / \mathrm{UR} ;$ 20-450 Mc/s., $£ 75 \mathrm{cach}$, carr. 15/- FR-67/U: This instrument is direct reading and the results are presented directly in digital form. Counting rate: $20-100,000$ events per sec. Time Base Crystat Freq.: $100 \mathrm{Kc} / \mathrm{s}$. ing rate: Power Supply: 115 v . $50 / 60 \mathrm{c} / \mathrm{s}$., $£ 100 \mathrm{cach}$, carr. £1
AMERICAN EQUIPMENT: Power supply, PP893/GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base \& Cables CY 728/GRC; M1st Erection Kits, 1186 , GRC; Recelver type 278B; Directional Antenna CRD.6: Comparator Unit, CM.23; Directional Con

GEARED MOTORS: $24 \mathrm{v}$. D.C., current 150 Ma , Outpur 1 8.p.m. 30/- each, 4/-post. Assembly unit with Leeicherbar Tuning Mechanism

MOTORISED ACTUATOR: 115 v. A.C. $400 \mathrm{c} / \mathrm{s}$. single phase, reversible, thrust approx. 3 inches complete with limit switches, etc. Price $£ 2 / 10 /-$ each, postage $5 / \cdot$ (ex equipment).
D.C. MOTOR: 27 v. D.C. with gear box, 4 r.p.m. Price 25/-, postage 3/- (ex equipment).
Actuator Type SR-43: 28 v. D.C. 2.000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs., rating intcrmittent, price $£ 3$ each, post. 5/-.

28 V. D.C. $200 \mathrm{s.p.m}$. current consump:ion approximately 6 amps . | 28 | V. D.C. 200 |
| :--- | :--- |
| Price $£ 3 / 10 /-$, post $7 / 6$. | |

FRACTIONAL MOTORS \& FANS: Low Inertia Motor 5UD/5361, Type 903, 24 v . input D.C., $£ 2 / 10 /-e^{\text {ach, } 5 /-p o s t . ~}$
Model PM84: 28 v. D.C.@ 2 amps., 4,500 r.p.m., output 40 watts continuous duty complete with magnetic brake. Price $£ 2$ each, postage 4/-.
Model SR-2: 28 v. D.C. 7,000 r.p.m., dusy intermittent, output 75
 A.C. Motor 3 Dalmotor SC5. 28 V . D.C. at 45 mmps ; 12,000 r.p.m. output 750 W . (approx. $1 \mathrm{~h} . \mathrm{p}$.), brand new, $\AA_{2} / 10 /$ - cach, post $7 / 6$.

CATHODE RAY TUBE UNIT: With 3 in. tube, colour green, medium CATHODE RAY TUBE UNIT:
TRANSMITTER/RECEIVER TCS-12: Freq. $1.5 \mathrm{Mc} / \mathrm{s}-12 \mathrm{Mc} / \mathrm{s}$, outpur 25 W., complete stations available with astenna equipment, mast, and 25 petrol generater. Trans-receiver, complete with 12 v. D.C. Power Unit and A.T.U. $£ 25$ each, carr. $£ 2 / 10$-. Petrol Gencrator Unit for the above and A.T.U. $£ 25$ each, carr. $£ 3$. Complete actial system $£ 10$ each, carr. $£ 2$.

MULLARD									WIRELESS WORLD digital computer
${ }_{\text {AAYM1 }}$	${ }_{14 / 6}$	$\left.\right\|_{B F Y G 1} ^{B F F G O}$	${ }_{5 /-1}^{6 /-}$		${ }_{4 / 3}^{4 / 8}$				
${ }_{\text {ACl17 }}$	8/-	${ }_{\text {Bry }}^{\text {Bri }}$	${ }_{8}^{61-}$		${ }_{316}{ }^{4}$				Send for our complete part
${ }_{\text {A }}^{\text {A01788 }}$	81/-	$\underbrace{\text { B8879 }}_{\text {BF184 }}$	${ }_{81}^{8 /-}$	${ }_{\text {OC84 }}^{\text {OCP4 }}$	4/-				list. Competitive priecs for
AD149	110	Pry799400R	2716	Oc139	12%				all components. Transistors,
AD161	${ }_{716}^{718}$		${ }^{235}$ -	${ }^{\text {OCLI40 }}$	12/-	2N3SMET	${ }^{2 \times 1132}$.. 10%		Diodes, Resistors, Capacitors,
${ }_{\text {ACYY7 }}$	${ }_{5 i-}^{7 / 8}$	${ }_{\text {BRX 30.10i }}^{\text {Br9 }}$	35/-	${ }^{\text {OC169 }}$	6)-				ons, Veroboard, etc.
${ }^{\text {a CYz }}$	$3 / 6$	BTY87.500R	47/-	OC171	-		2N1304 .. 6 6/-		
${ }_{\text {ACY }}^{\text {ACY2 }}$	${ }_{2 / 6}^{4 / 8}$	BYZ210 BYZ12	${ }_{7 / 6}^{11 /}$	${ }^{\text {OC200 }}$	8/-	sinclair	${ }^{2 N 1305}$.. $61 /$		IRCHILD
${ }_{\text {AFLII }}^{\text {ACY22 }}$	$2 / 8$ 101	${ }_{\text {BYZ13 }}^{\text {BYZ }}$	${ }_{51}^{7 /-}$	- ${ }^{\text {OC201 }}$	13/-	${ }_{\text {ATT414 }}^{\text {AD }}$	${ }_{\text {2N1306 }}^{\text {2N1307 }}$		FARCHIL AF 11
${ }_{\text {AFPIL }}^{\text {AF }}$	1219		12/-	${ }^{\text {Occap3 }}$	81/	8T140 3/-			2OW SOLID STATE
AF146	49		${ }_{8}^{5 /-}$	${ }^{\text {Oczos }}$	11/6		2N1309 2N247	-5A	
${ }_{\text {AFP117 }}$	498		$51 / 4$	ocris	10/6	alscmito		charoubugute	AMPLIFIER KI
${ }_{\text {AF118 }}$	99	GETM11	10%	orpra	8 8--			- ${ }^{\text {a }}$	
	12/-		51.1	${ }_{\text {ORPr }}^{\text {ORP3 }}$	18/-	integhaile circurts			E8.8.0d Complete
- ${ }_{\text {AsYY }}^{\text {ASY }}$	5	OC20	${ }^{331}$ 13--		18/6	Epoxy Tos 10 lead	PLANAR BARGAIN		Ineludes Printed circults
Asz21	4 4-	Oc23	${ }_{251}^{131}$	Oalo	${ }^{3-}$		2N2926Y		Sord, Semiconductors,
A8Y29	- ${ }_{38 / 6}$	${ }^{0024}$	18/-	${ }_{\text {OAA }}^{\text {OAT }}$	${ }_{1 / 6}^{1 / 6}$		4 lor		Resistors, Capacitors, Heat
BA115 BCIOT	${ }^{21 / 8}$	-	12\%-	0779k	$1 / 8$		Oree 2.000 tranais-		sink and short clrcuit pro-
${ }_{\text {BCIO8 }}$	$5 /$	-	$12 /$.	${ }_{\text {OAREK }}^{\text {OAR1K }}$	1/8		lor sad diode types		tection components. S.A.E. for details
${ }^{\text {BCIO9 }}$	5/.	ocas	916	OAsok	1/6				
${ }_{\text {decria }}$	${ }_{22 \%} 20$	OC4	13/6	-	${ }_{1 / 6}^{1 / 6}$				
всузо	\%	OC43	4 4.	OAzoo	$2 /-$		decadea to 820 Na .		over 40 pages
${ }_{\text {BCCY32 }}^{\text {BCY3 }}$	${ }_{81}^{13 .}$	${ }_{\text {OC4 }}^{\text {OC4 }}$	3 3/-	Oasoz	2 2-		3. 100 pieces		AVAILABLE SHORT
всуз	\%/-	-0.71	3/-	8X631	${ }_{7 /-1}$	${ }^{\text {price. }}$ prierauce, IW	Heg.8. 2 Meg., sathe		
${ }_{\text {BCFY3 }}$	8-1	${ }^{\text {OCT73 }}$	$4 / 8$	${ }^{\text {8x } 648}$	10\%	Preeet potentl minial ure typer	Slandard or		POST \& PACKING 9d. per order
	191-	${ }^{\text {OCC73 }}$	5/-		12/-				EXPORT ENQUIRIES WELCOME
${ }_{\substack{\text { recyen } \\ \text { BCY71 }}}$	${ }_{15 /}^{18 /-}$	OC76 OCP1	31.	${ }_{\substack{\text { aldev } \\ \text { fisc }}}$	${ }^{\text {955/- }}$				
BCz11	1ヶ,	ocald	3/-	${ }_{8 \mathrm{VCl}}$	$18 / 9$	orer 12 of 1 ralue.		7 COPTFOLD	transistor manua
guaranteed. We will replace at no charge any device found to be faulky, Fursher: all devices carry the Manufacturer's name or Trade Mark, cype number and batch number. We do not offer for sale devices often described as "new and tested "or bearing re-nbers, these often have a short and unreliable life. L.S.T. COMPONENTS.								BRENTWOOD	G.E. $28 / 9$
								BRENTWOOD 7904 24HOUR POSTAL SERVICE	RETAIL AND WHOLESALE SUPPLIED.

IWWEDITE DESPATGH

20 Amp. LT. SUPPLY UNIT

As supplied to Min. of Defence and Crown Agents for overseas Gove. LATEST DESIGN HEAVY DUTY $12 / 24$ VOLT D.C. Output: Adjustable up to 20 AMPS. CONTINUOUS at $12 / 24$ volts. FULLY FUSED, Neon indicator, $0-20 \mathrm{amp}$. meter. Size $16 \times 12 \times 20 \mathrm{in}$ high, in heavy gauge steel cabinet. Grey Hammer finish-Weight 50 lbs . Input: $220 / 230 / 240$ v. A.C. 50 cycles.

30 Amp. LT. SUPPLY UNIT

UP TO. 18 v . D.C. WITH SMOOTH STEPLESS VARIATION Designed for CONTINUOUS use at max. loading \star Fitted volemeter and ammeter. \star Instaneaneous overload cur-our. Input: Mains A.C. Robust construction, 2 tone finish, steel case.
£55.0.0
C. \& P. 40/\% G.B. (Inland).
Entirely suitable for plating plants,
Laboratory supplies, etc.

5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT
Specification: Output: $0-260$ v. A.C. $0-240$ v. D.C.

* Smooth stepless voltage variation from O-Max. \star Current consistent throughout the controlled
* Amme. Aneter and voltmeter fitted, and neon indicator.
* Fully fused input and output.

Strong steel case, with carrying handle and rubber fece. $11 \times 7 \times 14 \mathrm{in}$. high. Made in England.
£30.0.0 \quad C. \& P. 40\%. Gr. Britain (Inland).
CURRENT PRODUCTION - BUY DIRECT FROM MANUFACTURER
 VARIABLE VOLTAGE TRANSFORMERS

Modern styling for modern equipment 'SLIDE-TRANS' \& 'SLIDUP' MODELS

Ful!y rated current consistent at all points along the winding aVAILABLE ONLY FROM I.M.O.

* SMOOTH CONTINUOUS ADJUSTMENT
* ALL MODELS SHROUDED FOR SAFETY (IDEAL FOR EDUCATIONAL AUTHORITIES)
* BENCH OR PANEL MOUNTING
* UP TO 260 v . AVAILABLE FROM ALL MODELS All models 230 v . A.C. $50 / 60$ c.p.s. Input

| 1 Amp. | $£ 4 \cdot 10.0$ |
| ---: | ---: | ---: | ---: |
| 2.5 Amp. | $£ 5 \cdot 17 \cdot 6$ |
| 5 Amp. | $£ 9 \cdot 0 \cdot 0$ |
| 8 Amp. | $£ 13 \cdot 10 \cdot 0$ |
| 10 Amp. | $£ 18 \cdot 5 \cdot 0$ |
| 12 Amp. | $£ 19 \cdot 10 \cdot 0$ |
| 20 Amp. | $£ 32 \cdot 10.0$ |

TRANSISTORISED MEGOHMMETER \star PUSH BUTTON TO READ 500 v. - 1,000 Megohms. Superb, portable instrument. Suppled case. ONLY £25.0.0 с. \& р.7/6.

36 FT. AERIAL MAST
new latest pattern tubular mast
Check thesc vital points
Check thesc vital points:
$*$ Made from $6 \times 1 / 2 \mathrm{in}$. Sheradized steel sections,$~$

* for durabilley and strength.
* Extra strong locating basc.
* 2 sets (8) Rotproof Guys.
\star Rustproofed 5 teel Pieketing Stakes.
ÓNLY £15.0.0 ex works
Carr. 20\%. Rerurnable wood case 40/-
PORTABLE VARIABLE A.C. POWER Designedfor engineers SUPPLY UNIT whose requirements call for a visual indication of vo
OUTPUT:
OUTPUT:
0.260 v . It amps
$0-260 \mathrm{~V} .1$
INPUT:
INPUT:
230 v. A.C. $50 / 60$ c.p.s.
Fitted with fuse, volemeter, safety indicator on-off switch and lead.
Size $8 \times 5 \times 5$ in Size $8 \times 5 \times$ Sin. high
$\begin{array}{lll}\text { PRICE } & 8.17 .6 & \text { c. \& P. } 12 / 6\end{array}$

CONSTANT VOLTAGE TRANSFORMERS

BEAT WINTER!
AUTOMATIC MAINS STABILISER

ONCE AGAIN WE CAN EXPECT THE USUAL VOLTAGE DROPS DUE TO THE COLD WEATHER
\star Noattention
\star No Maintenance
\star No Moving Parts
\star Corrected Wave
Input: 190-250 V. A.C. Output: 240 V. A.C. Maintain" spot-on " test-gear readings at all times Weight: 21 lb . Fitred signal lamp and switch. Size: $11 \times 6 \frac{1}{2} \times 6 \mathrm{in}$. high.
§12. 10 . 0

LATEST SOLID STATE VARIABLE VOLTAGE CONTROLS
\star COMPLETELY SEALED
\star COMPACT AND COM. PLETE

* PANEL MOUNTING

230 A.C. Input $25-230$ volts output
$5 \mathrm{amp} . \operatorname{model} £ 8$
10 amp model E13/5/-

PORTABLE TRANSISTOR TESTER SUITABLE FOR PRODUCTION \& LABORATORY USE SPECIFICATION:
Alphz 0.7 to 0.997
Beta 5.300
ICO O-50 $\mu \mathrm{A}$. 5 mA .
Capable of measuring GERMANIUM AND SILICON DIODES.
DESIGNED WITH RESIS. TANCE SCALE 200 ohms to I Megohm as an ADDED FEA. plastic case. c/w internal plastic
battery.

Hanover Fair - the words stand for a concentrated display of everything used in your particular field, opportunity for full quality and price comparison, priceless business information. Make your buying decisions in Hanover, where you can check many compettive offers simply by walking a few paces.
If you're interested in studying economic developments within the larger framework, Hanover is the ideal location. In just two decades Hanover has become one of the world's major market places, an assembly of more than 5,500 firms from thirty countries.
Make sure you see all this in 1968.

HANOVER FAIR

Today's Market for Tomorrow's Needs

[^15]
VALVES SAME DAY SERVICE NEW ! TESTED! GUARANTEED !

READERS RADIO

85 Torquay Gardens, Redbridge, Ilford, Essex. 01.5450
Postage on 1 valve gd. extra. On 2 valves or more, poatage 6d. per valve axtra Any Parcel Insured against Damage in Tranali 6d. ertrm.

transistor television receivers

T. D. Towers, M.B.E., M.A., B.Sc., M.I.E.E. A.M.I.E.R.E.

This book covers virtually every aspect of transistors in television receivers, with examples drawn from the United Kingdom, U.S.A., France, Germany, Russia and Japan. Although transistor sets may never entirely displace valve operated, mains-driven, large screen sets, for personalportable sets the transistor has no rival.
194 pp. 188 illustrations. 55 s net 56 s 3 d by post.
' For the designer, and the interested serviceman, this is a book packed with information. RADIO AND ELECTRICAL RETAILING

He (the author) has done the job so thoroughly that his book-che first in the field-is likely to remain first in the field for quite a while.

MUSIC TRADES REVIEW
. . . gives the reader a clear perspective of the subject and provides an important chapter on servicing methods.' ELECTRICAL AND RADIO TRADING
ovailable from leading booksellers

ILIFFE BOOKS LTD

Dorset House, Stamford St., London, S.E.I.

VIKING AMPLIFIER

50 WATT AMPLIFIER

 An extremely reliable general purpose valve amplifier. Its rugged and design makes it by far the bestvalue for money. TECHNICAL SPECIFICATIONS 4 etectronically mixed channels, with 2 inputs per channel, enables the use of 8 separate instruments at the same cime. The volume controls SENSITIVITIES AND INPUT CHANNEL 1 AMV. AT 470 K .) CHANNEL 24 MV . AT 470K. CHANNEL 2 4MV. AT 470K. CHANNEL 3200 MV . AT IM.
CHANNEL 4200 MV . AT IM. CHANNEL \& 200MV. AT IM.
INPUT SENSITIVITY RELATIVE TO TONE CONTROLS ARE COMMON TO ALL INPUTS
TONE CONTROLS ARE COMMON TO ALL INPUTS.
BASS BOOST + 12 db AT $60 \mathrm{~Hz} / \mathrm{s}$. BASS CUT - i3 db AT $60 \mathrm{~Hz} / \mathrm{s}$. TREBLE BASS BOOST + 12 db AT $60 \mathrm{~Hz} / \mathrm{s}$. BASS CUT - 13 db AT $60 \mathrm{~Hz} / \mathrm{s}$. TREBLE
BOOST + 11 db AT $15 \mathrm{KHz} / \mathrm{s}$. TREBLE CUT -12 db AT $15 \mathrm{KHz} / \mathrm{s}$. BOOST +11 db AT $15 \mathrm{KHz} / \mathrm{s}$. TREBLE CUT -12 db AT $15 \mathrm{KHz} / \mathrm{s}$.
WITH BASS AND TREBLE CONTROLS CENTRAL -3 db POINTS ARE $30 \mathrm{~Hz} / \mathrm{s}$. AND $20 \mathrm{KHz} / \mathrm{s}$.

POWER OUTPUT
FOR SPEECH AND MUSIC
FOR SUSTAINED MUSIC
FOR SINE WAVE
$\begin{array}{ll}\text { FOR SINE WAVE } & 45 \text { WATTS RMS. } \\ \text { TOTAL DISTORTION AT } & 38.5 \text { WATIS RMS }\end{array}$
45 WATTS RMS. 90 WATTS PEAK
TOTAL DISTORTION AT RATED OUTPUT 20 WATTS 0.15%. 2% AT I $\mathrm{KHz} / \mathrm{s}$.
OUTPUT TO MATCH INTO 8 OR IS OHMS SPEAKER 5YSTEM.
NEGATIVE FEED BACK 20 db AT I'KHz/s.
PRICE

27 gns.

P. \& P. 20/.

MAINS VOLTAGES. Adjustable from 200-250 V A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit.
VALVE LINE UP: Double purpose ECC83 $\times 3$, EL34 $\times 2$ and GZ 34.

STAR SR 150 COMMUNICATION RECEIVER
Frequency range: $535 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. 4 wavebands. 5 valve superhet. Incorporates BFO, bandspread tuning. "S" meter, external celescopic aerial and ferrite aerial. Buils-in $4 i n$. speaker. Easy-zo-read dial. For 240 v. A.C. operation. Complete, brand new, with full instruction manual. 15 gns. P. \& P. 10/.

PRICE:
£5.5.0 ${ }^{\text {Plus } 7 / 6}$
Circuit and parts lise $2 / 6$ free with parts.

* Simple connections to only 6 tags on the R.F./I.F. module, 31.F stages, ose. coil and 3 eransistors which, with their associated components are completely wired.
* Only 4 connections on the A.F. module to complete the 4 transistor 600 milli-wate solid state amplifier * Pre-aligned R.F./I.F. module built and tested.
A.F. module bulls and tested.

Fully cunable over M.W. and L.W. bands. M.W. $540-1,640 \mathrm{Ke} / \mathrm{s}$. (557183 metres). L.W. $150-275 \mathrm{Kc} / \mathrm{s}$. (2,000-1,100 merres).

* Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$.
* Sensitivity: M.W. ar 1 Mc/s 10 microvoles plus or minus 3 dB . L.W. at $200 \mathrm{Kc} / \mathrm{s}$. 40 microvals plus or minus 4 dB . and thermistor put scage.

NEW! The DORSET
 TRANSISTOR PORTABLE RADIO

with BABY ALARM Facilities
600 milli-watt solld state 7 transistor plus diode
Completely modulised high quality portable radio featuring complementary N.P.N. and P.N.P. out

The comprehensive easy-lo-follow drawings supplied make this the easiest-ever transistor radio set of parts, with the following features:

BRESGES Geared Motor

240 V. A.C. Mains 50 Hz .0 .49 amp (65 watc). Ungeared speed 2,750 R.P.M. Geared speed 80 R.P.M. Constane Gear racio 35 : I. Reversible. Spindle dia. 12 our price $67 / 19 / 6$. 7/6 P. \& P.

RADIO AND T.V. COMPONENTS (ACTON) LTD

SHOP HOURS 9 a.m. $t 06$ p.m. EARLY CLOSING WEDNESDAY
Terms C.W.O. Goods nat despatched outside U.K. All enquiries stamped add, envelope. 323 EDGWARE ROAD, LONDON, W.2. Early elosing Thursday PERSONAL SHOFPERS ONLY All orders by post must be sent to our Acton address. parts.

'ELEGANT SEVEN' MK IIIA

 Power supply kit to purchasers of "Elegant SPECRAL OFFER Seven parts, incorporating mains transformer, 00/250 volts Outpur 9 v. 100 mA .16 - luxe wooden cabinet size $121 \times 81 \times 31$ in Horizontal easy to read cuning scale printed Horizontal easy to read tuning scalegrey with black letters, size $11 \frac{1}{\frac{1}{2}} \times 2 \mathrm{in}$.

* High "Q Q " ferrite rod aerial.
* I.F. neutralization on each separate stage.
- D.C. coupled push pull output stage with separate A.C negative feedback
* Room filling output 350 mW

Ready etched and drilled printed circuit board back printed for foolproof construction.

* Fully comprehensive instructions and point-copoint wiring diagram.
* Car aerial socket.
* Fully tunable over medium and long wave. 168-535 merres and 1,250-2000 metres.
* All components, ferrite rod and tuning assembly mount on printed board.
Sin. P.M. Speaker
* Parts list and circuit diagrams $2 / 6$ free wich

MARCONI INDUSTRIAL TELEVISION

£4.4.0 7/6P. Plus.
Buy yourself an easy to build 7 transistor radio and save at least flo. Now you can build east Llo. Now you can buhd this suprb 7 transistor superhet radio for under $44 / 10 /-$. No one else can offer such a fantastic radio with so many de luxe sear features.
CAMERA CHANNEL
Comprises a small Vidicon Camera type 4339 C and lts camera control unit type 4340 G together with a suitable monitor or receiver these two units form a closed circuit camera channel. Suitable monitors type BD 879 are also available. Technical manuals with instructions and circuits are avallable. ONE ONLY.
Complece with 3 monitors. $£ 250$.

FIRST QUALITY PVC TAPE

POST \& PKG

$5 \mathrm{zin}$.	Std.	850 ft .	9/-	Sin.	L.P.	850ft.	10/6	EA
7 in .	Std.	1,200f.	11/6	3 in .	T.P.	600 ft .	10/6	1/6.
3 in .	L.P.	240 ft .	4/-	5 in .	T.P.	1,800ft.	25/6	
5 in .	L.P.	1.2001t.	11/6	5lim.	T.P.	2,400ft.	32/6	OR MOR
5 ¢ in.	D.P.	1,800ft.	18/6	7in.	T.P.	3.600 ft .	42/6	POST
7 in .	L.P.	1,800ft.	18/6	4 in .	TP	900 ft .	15/	POS

FOUR PLUS FOUR Stereo Amplifler

A superb High Quality, yet inexpensive stereo amplifier. Due to great demand we are now able to offer this precision made instrument at a fancascically low price. Its quality, relibility and syyling has in no way been marred by its low price.
SPECIFICATIONS
Elegant seyled cabiner (sizes 16 in . wide sin. high, 8 ifin. deep) in black rexine and woodgrained sides. Brushed aluminium front panel with contrastin black/silver knobs
CONTROLS
Stereo/Mono switch. Gram/Aux. switch. Volume left. Volume righs. Treble (cut and lift). Bass (cut and life) Separate on/off switch. Neon pilot indicator.
INPUTS
INPUTS AND OUTPUTS (per channel)

Tape out and Speaker out
A switched mains socket is also pro-
vided at the rear of unit. ECC83 and $2 \times$ ECL 86 . With a metal ECC83 and $2 \times E C L$ 86. With a metal
bridge rectification. TECHNICAL SPECIFICATIONS Gram sensitivity 40 mv , at I KHz . Aux. sensitivity 50 mv . at 1 KHz . (senAux, sensitivity sitivites are given for rated output). 4 wates R.M.S. per channel (8 watts R.M.S. in monorail position). Ourput R.M.S. in monores into standard 3 ohms speaker matches into standard suitable 10 in . $x 6$ in. speakers system. Suitable are available as $29 / 6$ each $+5 /-P$. \& P. Bass control at 100 Hz lift +9 dB , cut -10 dB . Treble co
Treble control at 10 KMz . Lire 18 db,
cut -13 db . Total harmonic distortion 0.35% at Total harmonic distortion 0.35% at 3 watts
1 KHz.
Negative feedback 13 db at 1 KHz . Negative feedork
Mains supply $220-250$. A.C. $50-60 \mathrm{~Hz}$. Mains supply $220-250$ Y. A.C.
PRICE 13 gns. P. \& P. $15 / \mathrm{m}$

Features NPN and PNP Com-
plementary Symmetrical Output Stage. $2 t \times \frac{1}{6} \times 1 \mathrm{in}$. Speaker ourput impedance " 12 ohms.
Price 15/- plus $1 /-P$ \& P.

4-TRANSISTOR AMPLIFIER

. A.C. mains
BSR TAPE DECKS 200/250 v. A.C. mains
Type TD2. Tape speed 37 ewin erack, $66 / 19 / 6$.
Type TDIO, 2-track, 3 speed, plus rev. counter, $\mathbf{6 7 / 1 9 / 6}$.
Type TDIO, 4erack, 3 speed, plus rev. counter, $69 / 5 / \mathrm{m}$
P. \& P. on each 7/6.

3 TO 4 WATT AMPLIFIER

3-4 watt Amplifiem built and cested. Chassis size $7 \times 3 \ddagger \times \operatorname{lin}$. Separare bass, ereble and volume concrol. Dauble wound mains transformer, metal rectifier and output cransformer for 3 ohms speaker. Valves ECC8I and 6V6, £2/5/-plus 5/6 P. \& P.

M.I.P. PYROMETER

Temperature Range
$50^{\circ} \mathrm{F}-230^{\circ} \mathrm{F}$ and $10^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$
 Complete with probe and batteries. Only 65.0 .0 . Plus $5 /-\mathrm{P} . \& \mathrm{P}$.

A very useful instrument, directly calibrated in centigrade and Fahrenheit on an easy to read moving coil meter.
Particularly suitable where heatrise plays an important part in the functions of:- Inseruments, Cars, Cooling or Heating Systems, etc.

TRANS/RECEIVER TWO-TWO

This is one of the Latest F Heleases by the Gove. of an extremely recent R/T set covering $2-8 \mathrm{Mc} / \mathrm{s}$. In two switched Bands, containing 13 Valves (3 EL32s in TX Output) which can be used for Morse CW or R/T. Also has Netting Trimmer, BFO, RF \& EF Controls, Switched Meter for checking all parts of set, Size 17 in . $\times 8 \mathrm{in}$. $\times 12 \mathrm{in}$. Power required LT 12 volts DC, HT 325 voles D.C. Supplied Brand New and Boxed with Headphones \& Mike, also Two Spare Valves and Circuit of set. Few only at $65 / 10 /$. Carr. 50\%. New Plug in Power Supply made by us for either 12 volts D.C. Input E5/10/- or 200/250 Volts A.C. $\mathbb{E} 3 / 17 / 6$

LARGE QUANTITY OF SARAH V.H.F. TRANS/RECEIVERS
 AVAILABLE FOR IMMEDIATE EXPORT

General Information. Thls set is normally carried in the life jacket of Airmen, its is a complete miniature lightweight radio Trans/Recelver, which is used so give a Beacon plus two way speech communication in the event of finding themsefves in the sea. It comprises a Transmitter-Receiver, a speech unit, a coding unit and a power supply either Battery OR Transistor. These chree
 items are permanensly interconnected and all units are completely seated and watertight using a combined speaker/Mike, Press to talk or listen butcons, Fold Up Aeriat, a cotat of three Valves are used, power required 6.3 Volts LT 90 Volts and 435 Voles DC RT. Frequency $243 \mathrm{Mc} / \mathrm{s}$. Transmitser output pulse power-Beacon 15 Wates, Talk 3 Watts. Supplied in maker's boxes in Grade I condision singly as $45 /$-, pose 5% - with circuit. New batteries If avaitable $7 / 6$ eath

FEW ONLY LEFT! WALKIE-TALKIE MK111 AND
CRYSTAL CALIBRATOR NO. 9
We have a few of these V.H.F. 12 Valve Transreceivers operating on 3 swieched channels between $60 \mathrm{Mc} / \mathrm{s}-95 \mathrm{Mc} / \mathrm{s}$ complete with all 6 Crystals, Headphones, Mike, Mobile Aerial and Dipole Aerial, all Connectors plus Alloy Tripod for mounting the set on. Power Input 12 volts D.C., TX output 3 Watts Internal Speaker (All Valves BG7). All Air Tested O.K., Supplied in good Grade 2 Condition at $£ 10 /-/-$ each, Carr. $30 /-$. Also available in Matched Pairs Air Tested O.K., Supplied in
$\mathbf{1 2 5}$ per pair, Carr. 30/-Tested.
JOHN'S RADIO

OLD CO-OP, WHITEHALL ROAQ, DRIGHLINGTON, BRADFORD. TEL.: DRIGHLINGTON 732

titanium cone loudspeakers

TITANIUM CONE-provides the highest standard of definition ever achieved.

BERYLLIUM COPPER SUSPENSIONprovides powerful low-distortion bass.

MASSIVE CERAMIC MAGNET-for large and easy power handling.

HIGH "PERFORMANCE TO SIZE" RATIO-securing deep fundamental from small systems.

MODULAR APPROACH-allows flex:bility of system design.

VERSATILE—the ideal driver for the home constructor.

HIGH DEFINITION PRODUCT

The "Titan-Mini " is a no compromise bookshelf system employing a Titanium Cone Loudspeaker module. The remarkable characteristic of the hyperbolic tiranium cone lies in fits ablitity to reproduce detail in complex sound with hitherto unheard of accuracy. Due to the bervllium copper suspension stabilising the free air resonance the cabinet is designed as a low friction phase inverter and provides the perfect load to the driver

For iurther details on this unique product please request from:

\square

 AUDIO \& DESIGN LIMITED 40,QUEEN STREET MAIDENHEAD BERKS. TEL. 25204
BARGAIN OPPORTUNITIES FROM Amplifiers
 IN KIT FORM AND COMPLETE

 garrard UNITS AND PLINTHS

 garrard UNITS AND PLINTHS
 FOR IMMEDIATE DELIVERY

MULLARD
10-10
STEREO

Valve amplifier to
exact Mullard spec.
With pre-amp. tapped
and 15Ω all controls, H.T. and L.T. outlet, mono, stereo and speaker phase switching. Complete with escutcheon, knobs, plugs. etc. Ready
buit
e20 0.0 (p. \& p. 12/6) in kit form with chassis knobs, plugs, etc. (p. \& p. 12/6)

MULLARD 5-10 MONO

 valves and instructions (p. \& p. 7/6)£9.19.6 With passiv
\&11.19.6 pancep. 76 kit with valves and instructions. $\& 6.12 .6$

SPECIAL MULLARD $2+2$ PRE-AMP Stereo pre-amp and control unit. Complete kit with valves and instructions. S.A E. brings details.
BUILT-I3 gns. Kit, complete 10 gns. (P \& P . BUILT- 13 gns.

PEAK SOUND SA 8-8
14 Transistor Kit builds into superb hi-fi amp. 8W per channel (16W mono) with integrated pre-amp to take high quality ceramic p.u. Unusually easy to build by following the instructions
(1/6 purchased separately and refunded when kit ($1 / 6$ purchased separately and refunded when kit is bought). This makes one of the best and most economical stereo transistor amps., we have ever offered. All purchases backed by TRS service
facilisies. When built and fitted in its special facilities. When built and fitted in its special
cabinet the SA $8-8$ equals the best in modern cabinet
seyling.
seyling.
AMPLIFIER KIT
(p.\&p. 4/-)
(p) WER PACK KIT (p. \& D. 4/-)

MODERN SLIMLINE WOOD CABMPLETE ASSEMBLY
£9.10.0
E2. 10.0
£2. 10.0
post free if ordered at same time.
£ 14.10 .0

7 VALVE AM/FM RG CHASSIS

A superbly powerful high performance instrument for the keenest enthusiasts. Provides tuning on sensitivity. Permeability tuning on F.M. Large clear dial, A.V.C. good neg. feedback. Magic eye 3W ourpue. A.C. $220 / 250 \mathrm{~V}$. Circuit diagrams available. Aligned, tested and ready for use (Carr. and ins. 7/6). S.A.E. brings \mathbb{C}) 3.19 .6 SINCLAIR Z.12 AMPLIFIER This famous amplifier operates from 6 to 20 V D.C. and is adaptable to a wide range of applications because of its very small size. Supplied ready built with comprehenslve instructions $89 / 6$
manual. Post free. manual. Post free.

$$
\text { SINCLAIR STEREO } 25
$$

De luxe pre-amp conerol unit for two Z.12s. Smart front panel and

E9.19.6 knobs. Ready bulte. Post free.
SINCLAIR PZ. 3 Power supply unis for two Z12s and stereo 25 . Posst free $79 / 6$
JUST INSTALLED-A new arrangement enabling you to hear in our shop any combination of our advertised amplifiers, speakers, tuners, etc. Personal shoppers are particularly invited to
come along and hear this for chemselves. SHOPPING BY POST
Please send cash with Order or pay C.O.D Please mention "Wireless World"
POSTAGE, Unless stated add $1 /-$ on $1 / \mathrm{lb}$. orders, $1 / 9$ on 11 b ., $3 / 6$ on 216 ., $5 /-$ on $61 \mathrm{~b} ., 6 / 6$ on 101 b .

LM 3000 Record Player with 9T.A. Stereo Cartridge. Brand new as from
factory.

AT. 60 Mk. II De-luxe Auto-changer, diecast zurntable. Less cartridge $\mathbb{E | |} \mid 9.6$
SP. 25 De luxe single record player, diecast turntable Less cartridge. $9 \frac{1}{2}$ gns.
Packing and carriage on any one of above 7/6 extra.

Med. and V H.F. -6 valves metal rectifier, Self-contained power unit. Magic-eye, 3 push-button controls. Diode and high output sockets. Illuminated 2 -colour dial. chassis 118 in . $\times 4$ in. $\times 53$ in. A.C. 200/250 v. Unbeatable value. Complete kie, inc. Power Pack as lllustrated, 11 gns. Carr. 7/6. Ditto less Power Pack, 10 gns. Carr. 7/6. Circuit and Const. details $4 / 6$. Free with kit.

Garrard Plinch. Ideal mounting for the Garrard Units offiered here. Will-readily suit any hi-fi set-up. In fine Teak Complete with useful soft plastic dust cover.
Carriage and pack $5 /$. Garrard clear-view rigid perspex cover (carriage 3/6)

57/6

SINCLAIR MICROMATIC AT NEW REDUCED PRICES The world's smallest radio now
includes hi-fi magnetic earpicce, includes hi-fi magnetic earpicce, yet costs even less.
Complete kit formerly 49/6 Ready built and tested $59 / 6$
formerly $79 / 6$, now SINCLAIR MICRO FM 7. Complete kit for building 7 . cransistor cigarette packet size amplifier, ete or pocket receiver. With earpiece and \mathbf{t} (5.19.6
teopic aerial. Thesed TR FM DECODER
hased on Mullard deaign and produced by T.R.A. Built-in Indicator. 6.trans-
istor model. reailly adaptable for use with falve tuners as well. For $9-15 \mathrm{v}$. operatlon. Complete kft with
Mullaril Specified inductorn al Mullard Bpecified Inductorn already milgned. Bpecited $\quad\{5.5 .0 \quad(\mathrm{P} .8 \mathrm{p}$.

Sin. FR8

EXCLUSIVE TRS TAPE WALLET OFFER

With each reel of this fine tape by an internationally fanoun thanufacturer we give yol
a beautfully male widlet atrongly mede in shaulated leather with space for a reel of lape each side. This is profesaional quadity full trequency tape with metalliked leailes/ stop foils. These ibrary walleth solve once and for all the probletns of storing tapes
efficleatly and tidity. $\begin{array}{ll}\begin{array}{l}\text { shin. reel. } 12001 t . . \\ \text { with wallet. }\end{array} & 17 / 6 \\ \begin{array}{l}\text { sin. reel, } 900 \text { tt. } \\ \text { with wallet. }\end{array} & 2 / 6\end{array}$

FORONLY Gd.

LAROE STOCKS OF TRANSISTORS.
TRANSISTOR COMPONENTS. COLLS 8WITCHES. VALVES. SPEAKERS ETC. ALWAYSAVAILABLEATKEEN EST PRICES.
Inciuding $2 \| \mathrm{in}$ - \times Illin. standard sizes.
 2 in . $x 17 \mathrm{in} .12 / 6$. Ail accestorles and
STEREO BALANCE CONTROLS. Logl
 10 ohme to 10 megohtus. 10% i-1 W..

 (helow each 100 , Hi-stab, IW, $1 / 6$ each
 10 k , $6 \mathrm{~W}, 1 / 6$ each; $10 \mathrm{~W}, 1 / 9$ each. CONDENSERS-8ijver Mica, All values
QpF to $1,000 \mathrm{pF}$, Gd each. Ditto ceramles. 2 pF to $1.000 \mathrm{pF}, 6 \mathrm{~d}$ each. Ditto ceramims.
9 d . Tub. 450 V T.C. $\mathrm{C} . \mathrm{etc} .0 .001-0.01$ 9 d . Tub. 10 d each.: $0.1-350 \mathrm{vV}$. 10 d each:

You can start to 0
THB lateat 8 -page
ge printed line, but the perwonal service
every transacthon ho wover large or Brall.
LATEST TRB LIBT TODAY.
CLOSE TOLS/MICAS- $10 \% 5-500 \mathrm{pF}$
 $100-250 \mathrm{p} \mathrm{F}, \mathrm{L} 2: 270.800 \mathrm{pr}, \mathrm{L} /-; 800$ A.000p ALUM . ALUMN, CRASSIS-1Rg. Piain un-
 $10 \mathrm{in} . \times 7 \mathrm{in} ., 6 / 9 ; 12 \mathrm{in} . \times 6 \mathrm{ln} .476 ;$
$12 \mathrm{in} . \times 8 \mathrm{in} . .8 /-\mathrm{etc}$. TYOAN FRET or Vynaír speaker fabrlc.
 BONDACOUST Speaker Cabinet Aconstic Wadding, approx, 1 lin. thick 18 ith.
wide, any tength cut, $2 / 8 \mathrm{ft} . \mathrm{B} /-\mathrm{yd}$. SILICON RECTIFIERS-MinialureType $15 Y 100800$ r. 500 mA . $8 / 8$
 450\%. $500 \mathrm{~mA} 8 /=$, BY237 500 v. 800 mA . E/6. MAINS INDICATOR LAMP. WlTr enda. 3/6. COPPER WIRE. 2 oz. reels- $144 \mathrm{k} \cdot 20 \mathrm{~g}, 3 /-222-28 \mathrm{~g}, .3 / 8 ; 30-34 \mathrm{~g}$ 4/3: 36-38.; 4/9: $88-40$ R. 5 -

SAVE ON SPEAKERS

TRS TEAK ENCLOSURES, size $2 l i n . \times 15 i n$. wide $\times 7$ in Cut to cake tweeter and 8 in tically loaded for finest quality FANTASTIC $\& 4 . \mid 5.6$ (Add $7 / 6$ for port cost of packing and forwarding)
8in., 15,000 lines, ceramic magnet 10 warts. Foam sus- $\mathbb{5} .19 .6$ pended cone
 £4.10.0
WB Bin. HFI 64.0 .0

Goodman's 8in. Axiette $\mathbf{E 6 . 0 . 0}$
The above units are particularly recommended for use with the TRS Teak Acoustic Enclosure and wherever high-fidelity stondords are required at modest outlay. 13i \times 8in. heavy duty 55/SINCLAIR Q.14
A remarkable new reproducer from a famous house, $9 \frac{1}{4} \mathrm{in}$. 59 . 15 ohms. Truly superb quality obtainable in stereo,
each E6.19.6

NEW IMPROVED "CIR-KIT" Now incorporaso 0. In. matriz boand haproved "Cir-Kit ". material. Eanter than ever to use. No drillitsg necensary. See HISHI NEWB, Not. Lswe. Mutrix Board, Jin. $x 31 \mathrm{im}$, " $4 /=531 \mathrm{~K}$ K B.B.C. 2-U.H.F. Low Lo-s Cable, fiper $\begin{array}{ll}\text { yard } 1 / 3 \\ 80 & \text { COM } \\ \text { COBLE-Famous }\end{array}$ make-lst Grade Quality. Bemi-air-
Apaced, luw-losis, lifigh quality 80 othtu Aeraxial Cible. stranded Conductor. standard fth. dian approx, 6d per Yard.
 carr. $3 /$. 60 sdu. $25 / \%$, carr. $3 / 6$.
Super Aeramai (Pringe qualisy), 1/044. $1 / 3$ per yad.
COAX CABLE ACCESSORIES
Loaz Plug (Aerisilte) el
Car Railo Type. EKC0, etc......

Conx Sockels (cable end type) ench I/9
Coble Couplers-back-to-liack
Outhet Bozen-1 in 1 -out, each $\frac{1 / 6}{4 /=}$
Ditto is in-2 out comprehsated. \quad col-
Attenumtond Plug in type Aerialits
Adjuntable fdib-3fid B, cmeh
Band 1-Band 2 - Band 3 Croon ove
Unit (Bplitier Rox)
Bund 1. Hand 3 .
Band 1 kland :3

TRS SPECIAL SERVICE IN TRANSFORMERS

All types, and chokes arallable angles or small production runs to apecification at competitive prices.
Enquities invited. Prisate enquiries, please mend B.A.E.

TRS RADIO

70 BRIGSTOCK RD., THORNTON HEATH, SURREY.

THO 2188 SPECIALISTS

Telephone:
 Few doors from

(I p.m. Wednesday) Thornton Heath Stn.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO!

RADIO EXCHANGE. 61 High Street, Bedford.
 VERSION with minlature

SUPER SETEN LONG \& TRAWLEE BAND 7 trausiatora and a diodes 3 in . speaker, 2 R.F. stages
 68/6. P. \& P. 8/6. Plane mad parts liki $2 /$ - (iree with parta)

ROAMER SIX. 6 warclandaMW1. MWथ, BWI, SWฯ, LW and Trawler Band. 6 transistors and dlodes Ferrite rod and telescopi aerials. 3 in , apeaker. Top grale coni ponents, Bize $71 \times 51 \times 11 \mathrm{in}$. Tote Playn and parts list $2 f$ - (free with parts).
allers side entrance Bneratts Shoe Sbop nllers side entrance Barratts Shoe Sbop
Open $9-5$ p.m. (Sst. $9-12.30$ p.n.)

MARCONI AUDIO TESTER, TYPE TF89 This directly callibrated AF oscillator from $50 \mathrm{c} / \mathrm{s}$ to $12 \mathrm{kc} / \mathrm{s}$ has a maximum output of 300 mW into 600 ohm and is fitted with an output level meter and 600 ohm ladder attenuator of $0-50 \mathrm{~dB}$. An alter native 5,000 ohm outlet is provided and the level in ach ease is continuously yariable. AF measuremen the voltmeter may be used for. AF inputs (external) over voltmeter may be used for AF inputs (external) over the ranges of 0 to 80 V in 4 ranges, providing dition and working order for only excellent condition and working order for only $\mathbf{£} \mid 8.10 .0$. Power
supply $\mathbf{2 4 0 V}$ a.c. (internal).

COSSOR DOUBLE BEAM

OSCILLOSCOPES TYPE 1035
An ateractive end of contract run enables us eo offer these fine professional scopes in perfect work ing order at only $\mathbf{2 5}$ each plus 25/- P. \& P. Brie technical spec.: 4 in . flat face C.R.T.: bandwideh $20 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$; timebase repetitive, triggered or single stroke $15 \mu \mathrm{sec}$ to 150 msec : size $16 \mathrm{in} . \times 11 \mathrm{in} . \times$ 19in. Also Cossor 1049 DC Coupled DB Scope same size and appearance as 1035 . Price $£ 30$ plus $25 /$

DIGITAL VOLTMETER

For the first time ever, we proudly present a three digit a.c./d.c. voltmeter for less than 6100 !
Manufactured by the world-famous Hawker Siddeley Group at its Gloucester Works, the Digimeter Type B.I.E. 2123 is a fully eransiscorised multi-range in serument possessing the following distinctive features:
Electrical Characteristics: D.C. ranges: 10 mV to 400 V in four ranges ($1,000 \mathrm{~V}$ for positive voltages) Accuracy: the greater of $\pm 0.1 \%$ of ± 1 digit A.C. ranges: 100 mV to 250 V r.m.s. in three ranges Accuracy: the greater of $\pm 0.5 \%$ or $\pm I$ digic over the frequency range $30 \mathrm{c} / \mathrm{s}$ co $10 \mathrm{kc} / \mathrm{s}$.
Range change is manual.
Input impedance: D.C.-15M Ω on wo lower ranges. IM Ω on two higher ranges.
A.c.a.c. coupled, approximately equivalent to a shunt impedance of $8 \mathrm{~K} \Omega$ in series with the parallel impedances $180 \mathrm{~K} \Omega$ and 550 pF .
Input characteristics: Single ended, floating. The potential between terminal connecked to OV and earth should not exceed 400 V d.c. or 250 V a.c. Input filter: 55 dB arcenuation at $50 \mathrm{c} / \mathrm{s}$.
Conversion time: 300 msec .

Sampling rate: 1 reading per 2 sec . or manually onerolled.
Power Supply: $100 / 120 \mathrm{~V} ; 200 / 250 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$
Mechanical Characteristics:
Dimensions: $10 \frac{1}{2} \mathrm{in}$. high $\times 7 \mathrm{in}$. wide $\times 13 \mathrm{in}$. deep Weight: 151 bs
Display details: Three digit with decimal point indication. Character height lin
At the price we can offer these instruments no lobortory can afford to be without one! They are ideally suited to production and inspection application. Brand new in manufacturer's pack
£92.10.0

Carriage
 IMMEDIATE DELIVERY!

SOLARTRON LABORATORY
 OSCILLOSCOPE TYPE 711/S2

This magnificent scope will take pride of place it any service dept., college or university, offered at 'one-fifth of manufacturer's price, in perfect working order and excellent condition, $\mathcal{C 8 0}$ plus carriage. Brief specification: bandwidth DC-7Mc/s; sensitivity $3 \mathrm{mV} / \mathrm{cm}$ co $100 \mathrm{~V} / \mathrm{cm}$; sweep velocity $0.33 \mathrm{~cm} /$ sec co $3.3 \mathrm{~cm} / 1 \mathrm{sec} ; X$ expansion variable up to $X 10$: size $16 \mathrm{in} . \times 13 \mathrm{in} . \times 27 \mathrm{in}$. deep.

MARCONI AF ABSORPTION

Designed to measure she power ourpur of all audio equipment in the range of 10 micro wates so 6 watts in 3 ranges. Impedance 2.5 to 20Ω swirched in It ranges. Indication to large Sin. meter, a small portable modern inserument. Price $\epsilon 25$ plus P. \& P. $12 / 6$

SOLARTRON CALIBRATING UNIT AT203 Providing an ouepue range $10 \mu \mathrm{~V}$ co loV in the Providing an output range $10 \mu \mathrm{~V}$ to 10 V , in the
frequency range of $D C$ to $300 \mathrm{ke} / \mathrm{s}$. An extremely frequency range of $D C$ to $300 \mathrm{kc} / \mathrm{s}$. An extremely
useful instrument of high accuracy for calibrating useful instrument of high accuracy for calibrating
meters, and research work where the voltage output must be easily selected and of high standard. must be easily selected and of high standard.
Offered in first class condition, fully tested, for Offered in first class
240 V a.e. supply at $\mathbf{£ 5 0}$.
P. F. RALFE

Radio \& Electrical Supplies
423 GREEN LANES, HARRINGAY
LONDON, N.4. MOUNTVIEW 6939

SPECIAL OFFER OF COLVERN 10 TURN HELIPOTS TYPES CLR26/1001/9

Values: $1,000 \Omega$ and $100 \mathrm{k} \Omega$. Brand new stock. Price 30/-. P. \& P. 1/6.

POWER RHEOSTATS

3 ohms $8 \cdot 5 A, 35 /-$, P. \& P. $3 / 6$.
3 ohms $8.5 A, 35 /-, P . \&$ P. $3 / 6$.
7.5 ohms $5.5 A, 35 /-$, P. \& P. $3 / 6$
7.5 ohm $5.5 A, 35 /-, P . \& P .3 / 6$
50 ohms $1.5 A, 12 / 6, P . \& P .1 / 6$
$3 \mathrm{k} \Omega 75 \mathrm{~W}, 12 / 6, P, \&$ P. $1 / 6$.
All heavy ducy eypes Torodial wound on ceramic formers.

COMMUNICATIONS RECEIVERS

Marconi CR150/3. $2-60 \mathrm{Mc} / \mathrm{s}$ Double-conversion. erystal calibrator. esc. C/w case, in as new condition. Only E35. Mains P.S.U. E5
AR88D, like new, $540 \mathrm{kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}, 655$.
Murphy B40 640kc/s-30.5Mc/s. Recond. to maker's specification, $£ 37$
Redifon R50M $94 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$ in 6 bands, perfece
condition. 675 .

INDUSTRIAL POWER AMPLIFIERS

 Oueput 175 watts can be supplied with variable frequency oscillator $10 \mathrm{c} / \mathrm{s}$ to $14 \mathrm{kc} / \mathrm{s}$. C/w with all usual facilities for. 19 in . rack mounting supply volts 250 V a.c. Price $\mathbf{6 7 5}+$ carriage.CAPACITANCE BRIDGE ELECTROLYTIC B.P.L. Cat. No. ZD00506. Measures capacitane under full working loads (variable voltage selection) easy to operate. C/W volemezer, leakage current meter, balance indicator, discharge switch, etc. Range 2 mfd . to $2,200 \mathrm{mfd}$. A modern instrument in new condition, and guaranteed accurate. Price C35, P. \& P. 20/-

STC MOVING COIL STUDIO MICROPHONES TYPE 4035A
A limited quanity of these superb low impedance microphones for sale at approx. One-third of maker's price. C/w type 4069A jack plug in as new little used condicion. Price $\in T / 10 / \mathrm{F}$. P, \& P. $3 / 6$.

WESTON RF AMP METERS 0-3A Two inch flush round panel mounting, black scale, white pointer. These first grade meters are offered

POWER SUPPLY 22 \& 14.0 .0 TRANSISTORISED

NOMBREX

NEW STYLE IMPROVED INSTRUMENTS OTHER MODELS AVAILABLE-
R.F. GENERATOR 31
C.R. BRIDGE 32

- INDUCT. BRIDGE 33

SEE PREVIOUS ISSUES FOR DETAILS
ALL IN FULL PRODUCTION

POST \& PKG. 6/6 EACH EXTRA
C12.10.0
\& 10.10 .0
$\mathbf{~} \mathbf{2 0 . 0 . 0}$

A. F. GENERATOR $30<19.10 .0$ TRANSISTORISED

6d. STAMP FOR ALL LEAFLETS
NOMBREX LIMITED - EXMOUTH
NOMBREX LIMITED - EXMOUTH - DEVON

TRADE AND EXPORT ENQUIRIES

NEW SOLID STATE HIGH FIDELITY EQUIPMENT POWER AMPLIFIERS - PRE-AMPLIFIERS POWER SUPPLIES-BRITISH MADE

$87 / 105 \mathrm{Mc} / \mathrm{s}$ Transistor Superhec. Geared cuning. Terrific qualiey and sensisivizy. For valve or eransistor amplifiers. $4 \times 3 \frac{1}{1} \times{ }_{2} \mathrm{in}$. Complete with dial plate, 5 Mullard Transistors, Plus 4 Diodes. (Cabiner Assembly 20/- exera) TOTAL COST $\{6.19 .6$ P.P. $2 / 6$
TO BUILD

BUILD A QUALITY TAPE RECORDER

7 Mullard Transistors. Printed Clicuit Design with Stereo Indicator. For use with any valve or transistor FM. Uses pot cores to Mullard design and ger. and silicon transistors. As used by B.B.C. and G.P.O. Complete Kit Price 55.19 .6 P.P. $2 / 6$

$u \sin \dot{8}$

MARTIN RECORDAKITS

\rightarrow TWO-TRACK. Deck $10 / 10 / 0$. Martin Amplifier, $814 / 19 / 6$. Cabinet and speaker 7 gns . Complete kits with and speaker 7 gns. Completekits with
FREE 7in. $1,200 \mathrm{ft}$. tape, spare spool Today's Value 645. 27 gins. P.P. 15/= - FOUR-TRACK. Deck $\mathrm{E} 13 / 10 / 0$. Martin Amplifier C15/19/6. Cabinet and speaker 7 gns. Complete kits with FREE 7in. 1.200ft. tape, spare spool. Today's Value $£ 50.30$ gins. P.P. $15 /-$

MW/LW QUALITY
TRANSISTOR RADIO TUNER

Fully cunable superhet with excellent sensitivity and selectivity. Complete with front panel, 9 with any amplifier or tape recorder. tape recorder TO BUILD $£ 3.19 .6$

MANUFACTURERS We wish to Purchase large quantities of NEW TRANSISTORS \& DEVICES - Please write or phone (01) 723-1008/9, EXTN. 4.

* Fully TRANSISTORISED POLYPHONIC British design.
* Build this supert Instrument STAGE BY STAGE in your own home. * A Truly poreable insirument for all enthusiases.
* Call in for a DLMONSTRATION

ORGAN COMPONENTS
WRGAN COMPONENTS We carry a comprehensive stock of organ components for
VALVE FREE PHASt designs: complete detalls on request.

TOTAL COST

We PROUDLY PRESENT THIS RANGE OF AUDIO EQUBPMENT developed from DINSDALE Mk. Il-each unit or system will compare favourably with other professional equipment selling at much higher prices.
Brief details are below:-

SYSTEM	COMPRISING	SYSTEM PRICE
A	5 watt mono for 3 to 5 ohm speakers	$\pm 10.3 .0$
I	12 watt mono for 3 to 5 ohm speakers.	\&13.17.6
2	12 watt mono for 12 to 16 ohm speakers.	\& 14.12 .6
4	24 watt mono two channel for 12 to 16 ohm speakers.	¢20.15.0
8	20 watt mono/stereo for 12 to 16 ohm speakers.	¢24.0.0
9	24 watt mono/stereo for 3 to 5 ohm speakers.	¢26.15.0
14	40 watt mono/stereo for $7 \frac{1}{1}$ to 16 ohm speakers.	<29.10.0

AUTO-BAN TRANSISTOR CAR RADIO British Made
BUY NOW!

8 -Transiter Mw/LW Car risilo. 12 volt operated. 3 witt output. Push-button wavecharge. Supplied
built. boxed. ready to use with Speaker and Baitle. Cur ilsing kit and nanufacturets velurrent guarahtee. sueciai Bargain Ofler. Powllve or Nezative Eurth. LIST PRICE 12 GNS. $\begin{array}{ll}\text { Bend for deluilk on } \\ \text { our ravige of }\end{array}$ De-luxe
Push-buthun version
£11/18/6.
P.P. $4 /$. $\quad \mathbb{9 . 9 . 0}$
PORTABLE GEIGER COUNTERS
FOR MEASUREMENT OF RADIO-ACTIVITY
Supplied complece with instructions, haversack, cables and probe.

List price 670

E4.19.6 P.P. 10%
\star Ever Ready Batteries for above 15/- pair.

SALFORD 193A XTAL CHECKER
$110 / 250 \mathrm{v}$ A.C. In new condition. $\mathbf{4 1 2 . 1 0 . 6}$ plus carriage 10/-

TRANSISTORS SEMICONDUCTORS

SEND FOR NEW 1968 frREE LIGT
No. 36 OF 1000 TRANBISTOR DEVICE8.
We have the

- Largest ranae-over 1000 types \star COMPETITIVE PRICES Ist GRADE STOCKS
* FULL GUARANTED
24-PAOE ILLUSTRATED BROCHURE LISTING 2,000 DEVICES. Data and ctrcuita laciudinz Valve and Quartz Crystal lists. he post paid.

CATALOMUJ
 LATEST EDITION 225 PAGES. 6,000 ITEMS 1,000 ILLUSTRATIONS.

* 20 pages of transistors and semi-conductors devices, Valves and Crystals
* 150 pages of components and equipment.
* 50 pages of microphones, decks and $\mathrm{Hi}-\mathrm{Fi}$ equipment.

The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE in GT, BRITAIN. Complete with 10% worth DISCOUNT VOUCHERS.
FREE WITH EVERY COPY.
303 EDGWARE ROAD
LONDON, W. 2

WE CAN SUPPLY FROM STOCK MOSY OF THE PARTS SPECIFIED ON CIRCDITS IN THIS MAGAZINE. SEND LIST FOR qUOTATION.
PHONE 01-723 $1008 / 9$
OPEN MON SAT 9 a
9 en M n.sAT. 9 a.m.- 6 p.m, THURS.
$9 \mathrm{amo} .1 \mathrm{D} . \mathrm{m}$.

Linstead instruments are designed for accurate yet continuous hard work. Here are shown just three in the range which are receiving such glowing comments as ". . . does everything that instruments costing several times its price can do " (letter available for inspection). These are products which can be relied upon time and time again. Below we give a brief specification of three.
S.I. Twin stabilised Power Supply

Controlled by silicon transistors. Two supplies each. 0 to 20V, 0 to 0.5A. Full overload and short circuit protection. $£ 45$ nett U.K.

G.2. L.F. Signal Generator

10 Hz to $100 \mathrm{kHz} \pm 2 \% \pm 1 \mathrm{c} / \mathrm{s}$. Sine wave. 0.6 V low distortion. Square wove. $0-9 \mathrm{~V}$. No droop H.F. rise time lus. I Wate into 3 ohms. 24 nett U.K
M.I. Electronic Voltmeter
$15 \mathrm{~A} . \mathrm{C}$. ranges. 1 mV to 500 V . 10 Hz to 100 kHz . 3 D.C. ranges. $0-400 \mathrm{~V}$. Inpus

R.S.T. VALVE MAIL ORDER CO. 146 WELLFIELD ROAD, STREATHAM, S.W. 16

		EY				0024 13/-
		EY			90.10	OC25 11/-
CrL33	${ }_{21 /}^{15 /}$	$\begin{array}{ll}\text { EY833 } & \text { 8/6 } \\ \text { EYB1 } & 7 / 8\end{array}$	QS130/313 ${ }_{20 /-}$		90aV 45/-	$0^{0126} 776$
DAP91	4,	EY86	Yisiso/dis		90004	Oczas $18 /$
Darag	$8 / 3$	EZ41	(1)	-1/at 4/8	:10cy 25	
DCCH	\%	87.80	Q81,0/80	4ibitio 4/6	1501	OC44 $4 / 6$
+91		17781			150133816	OCi4 4/-
	8/3	at	Q81209 7/3	6ilus 7\%-	801 8/-	OC71 4/6
043/	30-	arso 10才-		113K4 27/6	803 35/=	OC72 8/-
DK91	5/-	C7332 196	10-	HHNS 718	807 71-	OC7
DK92	8/-	Cz3 10-	QVed 7 12/8	- ${ }^{\text {BCO7A }}$	811	OC7
DK¢8		$\mathrm{Czz37}^{12 / 8}$.26 71-	46B77 8/6	313 73-	0c76 6/-
${ }^{\text {DLas }}$	419				8868 ${ }^{8318}$	OHF_{678}^{81}
DL94	5/9	18/6	810 15/-		3651 7/6	OCH
DL,93	71	KTB1 12/6	1117	(64 2/9	365	
DLSIO	12/6	KTrici		${ }^{\text {chind }}$ 5/-	5872 71-	ocisis 3/6
DLS16	30]-	$1 \mathrm{~F}^{\text {T6i }}$	110	rcictal 20	5687 101-	OL
DM70	30)-	${ }^{15} /{ }^{\text {c/- }}$	0		$\begin{array}{ll}5691 \\ 5749 & \text { 25- }\end{array}$	0c9e 8/-
		KT81(0EL)	8130 251-	(6.W4 12\%	3763 105-	OCHzis
Dr8	6)-	35/-	81301 $25 /-$	$60.15 /$	3842 65j-	OCR3
P8800	12/-	KTas 27/8	8P41	6DK	5nd	OClt
El80F	17/6	KTwer 10-	${ }^{\text {SProb }}$	85283 13/6	6057	OCL170
E18:CC	22/6	KTWBE 10/-	8TV내30/40		6058 6059	$0_{0} \mathrm{Cl} 171$
		15/-	8TV	6is)793 9/9		
ERCs3	7-	$8 / 6$	901-	$6 \mathrm{k} 70 \quad 1 / 9$	Giest 121-	${ }^{1} \times 101$
EBPro	6/6	PC	817215012/8	6ise	6062 14/-	XAlll 3/6
E®Br89	8/8	PC	8U-2150.	11	6063	${ }^{8}$ Al12 $4 / 8$
EBL31	$27 / 6$	10900 9/8	12/6	807G 8/-	в06:4	- A125 $8 /$
ECLLso		PCCES 5/6	019	\%83		- 1111
			U24 $24 /-$		-	XA142
	$15 /-$	${ }_{8 / 3}$	U23 13/8	inglar $4 / 9$	ково 25-	xal4
	${ }^{9 / 6}$		V178 13/6	68N70T 4/6	25	
\%.ccsa	$4 / 9$		1191818	4/8		
ECOA3	4	${ }^{\text {PGLas }}$	O1,801 $11 / 9$ 23			${ }_{2 \times P 31}$
EOC		PCI	UAbicao 5/0	i87 71-	Rectifers	38 Pl
10048		1rclam $8 / 6$	UAFris B/9	7Cs 15\%	- Y10n 516	$3 \mathrm{HP1}$
ECFFso	8/8	PENBE $20 /-$	[CH42 8/6	70	Diodes	3EG1
ECFPas	11-	PENAODU	CoH81 8/3	${ }^{\text {i }}$	1515	
Fichis	11/-	$L^{200}{ }^{18 /-}$	CLLAE \%-	787. 17/9	10131 4 ,	30
FCHEI	5/3		$\begin{array}{ll}\text { UCLA3 } & 8 / 9 \\ 17 \mathrm{~L} & 89\end{array}$		$2102{ }^{2 / 3}$	${ }^{5 B P 1}$
ECH83	9	PLa3i	ULA4 8/-	12AOS $10 /=$	22381	
ECLS	8/6	PLSI 7/6	UY41 $0 / 3$	12ADH11/-	(10392 6 -	${ }_{\text {BNL }}$
	6/3	PLP4	UYas 5-	12atis 9/6	26301	
ECL3	$9 / 8$	Plusto 13/8	YPdB 26/-	$12 \mathrm{ar8}$	2\% 40.2	ACr22 800^{-}
Ficlisg	20/9		v1lios/30	12 ATB 4/6	2 cas	-
EF3	7/	8/6		12.uvz 4/9	${ }_{20416} 818$	CY96tio 35 -
EF39	6/-	PY33 8/6	/-	124×7819	26.17	C11087
EFs0	$8 / 3$	$\begin{array}{ll}\text { PY81 } \\ \text { PY82 } & \text { 8/8 } \\ \text { 8/8 }\end{array}$	W81 81-	${ }^{1213} \mathrm{AB}^{5 / 8}$	${ }^{2} \mathrm{~N} 247{ }^{9 / 6}$	CV1588
\% 69	$5 /-$	PY\%3 ${ }_{\text {¢1- }}$	\%2319 25/-			b07
EF91	${ }^{3}$	PYM00	72303 23/-	$12 \mathrm{~K} 71 \mathrm{~T}^{1 / 8}$	ACl27 78	DH3/81
EF92	26	${ }^{1} \mathrm{Y} 801$ 7-	\%8030 15/-	12 Kmit 8	ACl28 8/6	0--
	81-	P730 $04902 / 101-$	$\begin{array}{ll}042 \\ 082 & 519 \\ 080\end{array}$		$\mathrm{ACY}^{\text {ACP }} 8$	504/8/16
14.4	6-	45/-	O\% ${ }^{\text {\% }}$	26% 19/3	${ }_{\text {ACY } 21}{ }^{\text {d/8 }}$	ECR30 ${ }^{\text {75/- }}$
EF	21	10	$1 \mathrm{B36}$ 'T 8/-	234513 T \%/-	AD140 13/6	ECR35
H10		(1)	2D31 5/-	${ }^{2354 a i r t ~} 8 / 6$	$\mathrm{ArP14}_{71}^{71}$	M W6-2 ${ }^{60 /-}$
ERH90	$7 / 8$ 1816	QQvos/30		30016181316	${ }^{\text {AF15 }}$ 71-	-
ELa33	12/6	QQvetit ${ }^{105 /}$	$\begin{array}{ll}3105 \\ 31328 & 70 \\ 40 \%\end{array}$			0
EL41	$8 / 6$	105/	3c45 471-	30 PLa 16	UET875 6 -	Cr9\%
ELA2	88 79	Qquori/40	0.	$\begin{array}{ll}301.15 & 15 / 3 \\ 30 \mathrm{LI} 17 & 14 / 3\end{array}$	NKT211 5-	VCR138
E1.31	1/3	QQVe/10	Sthay 8 8/9	$\begin{array}{ll}301.17 & 14 / 3 \\ 3019 & 13 /-\end{array}$	NKTT214 7 \%-	
ELess	7/8		3U1G 4-	$30 \mathrm{PLI} 1{ }^{15}$	N1くT217 8-	
ELP8	718	Q870/20 $5 / 6$		301PL13 17-	NKT218 81-	Cris
EL360	22j-	$\begin{aligned} & \text { Q975/30 } 5 / 8 \\ & 0875 / 40 \end{aligned}$	$\begin{array}{ll} 5430 T & 5- \\ 8740 & 8 / 9 \end{array}$	30PLIt 16/3 35Lmiet 5/9	Nкт228 в1-	$\text { VCH } 516^{35 /-}$
E1821	8/-	QR75/80 20	6/3018 189	30-N4		
ELS*2	161-	Qsar3/3 718	NAKS \%/8	352act 5/8	NKT675 61-	VCRsi7a
EM3\%	151-	Q892/10 4 4-			$\begin{array}{r}\text { NKT877 } \\ \text { NKTila } \\ \hline\end{array}$	
EM90		QS $100 / 45$	1683/6	31/-	$0 \mathrm{Cl16} 80$	
E.3184 Ex 32					${ }^{17}$	vCR517C

Another member is needed for the editorial team of

WIRELESS WORLD

Readers (25/35) with a flair for writing and an interest in the presentation of technical information are invited to send details of education and experience to the :

Editor-in-Chief,

Wireless World, Dorset House,
Stamford Street, London, S.E.1.
DUE TO THE RISING COST OF COPPER WE ARE COMPELLED TO INCREASE OUR PRICES OF THE ABOVE IISTED THIS AMOUNT WHEN ORDERING.
MULTI-TAPPED TRANSFORMERS MOST TYPES, FULLY SHROUDED AND TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220-240 VOLTS

Samson's Electranics Ltd.

 9 \& 10 CHAPEL STREET, LONDON, N.W. 1 01-723 7851 01-262 5125
BRAND NEW SURPLUS L.T. TRANS-

 FORMERS. ALL BY FAMOUS MAKERS LATEST ARRIVALSI. PRI 240 v . Sec. 6.5 v .46 amps . conservatively rated. Table cop connections. Open type construction. 75/-. Carr. 7/6.
2. PRI 240 v. Sec. 24 v. 12.5 amps. As above $75 /-$

Carr. 7/6
PRI 200-250 v. Sec. tapped $13-13 \frac{1}{2} 14 \mathrm{CT}$. $13-13 \frac{1}{2}-14$ v. 2 amps, and 8 v. $\frac{1}{2}$ amp. 27/6,
open type table top connections. 27/6. P.P. 5/-.
. PRI 200-240 v. Sec. 6.2 V.i2.5 amps. Open type
PRI 200-240 v. Sec. (1).tapped $38-40 \mathrm{v} .10 \mathrm{amps}$.
Sec. (2) $6.2,6.8,7.3,7.9,8.5,9,9.5,10,10.6$
18 amps., open rype T.B. connections, $67 / 10 / \mathrm{m}$ Carr. $10 /$.
6. PRI 240 v. Sec. tapped 53.655 .2 v. 10 amps . "C" core T.B. connections. 75/\%. Carr. $7 / 6$. PRI $220-240 \mathrm{v} . \mathrm{Sec}$. capped $75,80 \mathrm{v} ., 2.4 \mathrm{amps}$. and 6 r . A . " C " core table top connections 75/- Carr. 7/6.
8. PRI $230-240$ v. Sec. (1) 4.5 v. 30A. Sec. 8 v. IA. Sec. (3) 4.5 v. IA table top connections. Fully shrouded. 75/\%. Carr. 7/6.
9. PRI $240 \mathrm{v}, 5 \mathrm{ec}$. (1) $45 \mathrm{v}, 25 \mathrm{~mA} . \mathrm{Sec}$. (2) | v. $\frac{1}{3} \mathrm{~A}$
"C" core. $15 /=$ P.P. 3/6.
PRI 240 v . Sec. (1) 22.3 v. 0.9A. Sec. (2) 21 v

BLOCK CAPACITORS
New and Guaranteed. Send for List, over 2.000 in stock at a fraction of maker's price.

Naker	- M ${ }_{\text {d }}$		$\begin{aligned} & \text { D.C.v. } \\ & \text { wkg. } \end{aligned}$	Temp.	Price	Car
т.C.C.	1		750	$60^{\circ} \mathrm{C}$	10/6	2/6
т.c.c.	1		350	$60^{\circ} \mathrm{C}$	$6 / 6$	2/-
T.C.C.		R	1,500	$8^{60}{ }^{\circ} \mathrm{L}$	17/6	$3 /$
т.C.C.		8	1.000	$60^{\circ} \mathrm{C}$	10/6	$2 / 19$
T.c:c		S	750	$60^{\circ} \mathrm{C}$	$8 / 6$	$2 /$
T.c.c.		8	600	Finc°	$7 / 6$	\because
т.c.c.		8	400	718	616	$2 /$
T.c.c.		2	2.000	H0¢	12.6	2
Dubllier		${ }^{8}$	\%000	${ }^{60} 0^{\circ} \mathrm{C}$	7/6	2)
Dubliter		4	800	$71^{\circ} \mathrm{C}$	516	2
Dubilier		1	3,010	$109{ }^{\circ} \mathrm{C}$	17/6	2
Dubiler		0.5	5.000	$\mathrm{tin}^{\circ} \mathrm{C}$	$17 / 6$	2
Dubilier	$0.1+0.1$		6.004)	710	8/6	2

SPECIAL OFFER OF BRAND NEW H.T TRANSFORMERS

```
maker's price. All capped primarie
200-250 v. Table rop connections. Enclosed type.
GARDNERS
No. 1. Sec 500-0-500 v. 200 mA. 6.3 v.4 A. 6.3v
3A. 6.3v.2A. 5v. 2A. 85/%. P.P. 7/6
No. 2. Sec. 450-0-450v.180mA. 6.3v.3A. 6.3v
No. 2. 3A 6.jv 3A Sv.3A. 75% P.P.7/6
No. 3. Sec 350-0-350\vee 180 mA 6.3v,3A. 6.3v
    Sec. 350-0,350V. 
    5 v.8A 75% P.P 716
No. 4. Sec. 450-0-450v. }95\textrm{mA}.6.3\textrm{v}.3\mathrm{ A. }6.3\textrm{v
3A.6.3v.2 A. 5v. 3 A. 65/%. P.P. 7/6
No. 5. Sec. 400-0-400 v. }85\textrm{mA}.250\textrm{v}.50\textrm{mA
    6.3v. 5 A. 6.3v.4.75 A. 6.3v,0.5 A. }6.3\mathrm{ v
    .2A. 75/- P.P. 7/6
No, 6 Sec. 250-0-250 v. }50\textrm{mA}.6.3\mathrm{ v. 2A. }6.3\textrm{v
    2A 5\vee 25 A 37/6. P.P.5/
No. 7. Sec. }300v.37.5\textrm{mA.}300v. 37.5\textrm{mA}.47/
    P.P. 5/- 4kV D.C. wkg. 4 v. I A. 4 kV
        D.C. wkg. }4\mathrm{ v. 0.3 A.
No. 8. Sec. 225v. }100\textrm{mA}.6.3\mathrm{ v. 2.5 A. 6.3 v
| A. 37/6. P.P. 5/%
No.9.'Sec. }45\mathrm{ v. }87\textrm{mA},6.3\mathrm{ v. 4.5 A. 6.3 v. 1.5 A
No. 10. Sec rapped 450-470 v 275 m. P.P. 4/%
        Sec. tapped 450-470 v. 275 mA. 42/6
```

 SPECIAL OFFER OF WODEN
 TRANSFORMERS
 BRAND NEW
 No. 1. PRI tapped 200-250 v. F.5. Sec. Tapped
8-15-25-28-30-33-35 v. 15 amps. Tropically finished
able sop connects. $\mathbf{6 5 / 1 7 / 6}$. Carr. 10\%-
No. 2. PRI $240 \mathrm{v} . \mathrm{E} .5$. Sec. No. I. 50 v. 4 A
sec. No. 2. 18-0-18 v. I A. 55/-. P.P. $7 / 6$.
No. 3. PRI rapped 200-250 v. E.S. 5ic. 1. 315-0.
315 v .110 mA . Sec. 2. $175-0.17525 \mathrm{~mA}$. Sec. 3
5 v .9 A .5 Sec .4 . 6.3 v .3 .1 A .5 sec .5 .6 .3 v
CTAA. Sec. 6.3 v . CTI2A. Sec. $6.3 \mathrm{v}, 1 \mathrm{~A} .{ }^{\circ} \mathrm{C}$.
$\begin{array}{lll}\text { Core table top connections. } & 50 / \% & \text { P.P. } 7 / 6 .\end{array}$

ADVANCE COMPONENTS, LTD

 5tabilised low voltage power supply units, Type DC3. Input 200-215-230-245 v. Output 12 v 1.25 A . at $55^{\circ} \mathrm{C}$. stabilised within $\pm 1 \%$ at full load with supply voleage variation up to $\pm 15 \%$.Ripple less than 1.5% R.M.5. of total output. Ropple ess than
Supplied brand new

Microwave Valves

C. H. Dix, B.Sc., F.I.E.E. and W. H. Aldous, B.Sc., A.R.C.S., D.I.C., F.I.E.E.

This book is for the technically educated reader (graduate or H.N.C. level) who wants to understand the physical processes and operation of microwave valves. These processes are described from a fundamental viewpoint with some appropriate mathematical treatment. The treatment is based on the motion of electrons in electric and magnetic fields and the properties of the various types of r.f. circuits and transmission lines that are used in the devices. Microwave triodes are discussed, but the emphasis is on beam devices, both linear and crossed field, and in describing these the space charge wave approach is used consistently. Further chapters cover the formation and focusing of electron beams, the noise properties of devices, construction and applications. 275 pp .185 illustrations incl. 8 plates. 55 s net, 56s ld by post.

Short-Wave Listening

J. Vastenhoud

This easily understood book is intended as a guide for the benefit of the increasingly large numbers of regular listeners to short-wave transmitting stations and also for radio amateurs who are interested in short-wave listening, and fully covers the many problems and possibilities of the subject, ranging from interference to DX clubs. 112 pp .33 illustrations and 4 plates. 12 s 6 d net, 13 s 5 d by post.

Foundations of Wireless

M. G. Scroggie, B.Sc., F.I.E.E.

Seventh Edition

This standard work covers the whole basic theory and, starting from the most elementary principles and assuming no previous knowledge on the reader's part, deals with receivers, transmitters, amplification, valves, transistors, aerials, power supplies and transmission lines. The treatment of frequency changers has been brought into line with modern practice, while common-grid and cascode v.h.f. amplifiers, e.h.t. generators and transistor d.c. voltage raisers are also covered. 388 pp .278 diagrams. 21 s net, 22 s 5 d by post.

RECORD PORTABLE RECORDING

 MILLIAMMETERSThese are visuilar to the above but are somewhat smather and ibghter, and D.E. resistance of the movensent is 4008 Other limbing and carriace 15/-.
These are nhw avallabite an decibel metern. Type $19 \mathrm{~A} / \mathrm{C} . \mathrm{T} . \mathrm{A}$ Range $+3 / 01-3 \mathrm{~dB}$ i + with current of $500 / \mu \mathrm{A}$ at 0 dB .

THYRISTORS

Type $3 / 40,400$ p.l.s., 3 amps., stud mounted; Gate Whe sput. 240 p.l.v,. 5 ampe., stion nounted: Gate
 7/6

TEXAS SILICON FULL.WAVE BRIDGE RECTIFIERS

 'unthar' $1 / 15$ juer rectither.

24-WATTS 210.240 V . SOLDERING IRONS Recently imported extremely attactive and oturdily buld woldering frony whils angle bits. Chromhtum plated wteel body and jolished wouden laatile. No beikelice or breakable plaxt hax Unerl in colustructions.

Nivare bits

Bpare heathon element
Jahtlling and jemage el

HEADPHONES No. 10 ASSY.
(OR CANADIAN NO. I ASSY)
Moving Coil Headphones with moving coll Hand Microphone Hited with press-to-talk wiflech. Kulber earpads. Cord ferminated with aruny tripe s-point moulded connector P. \& P. P. $3 / 6$ per bet

SLIDEWIRE WHEATSTONE BRIDGE

Battery Powered Portable Itemistance Bringe. Range 0.5 to 50 whus with inultiplier metting: of $0,1-1 \cdot 100 \cdot 1000$, prowhding a mesuring range of 0,05 to 50,000 obsis. Aecuracy in
the mividle 3 rangen- 0.8% approx. the mikldle 3 ramgen-0. 8 \% apprex.
PIICE...................
£15 150

CURRENT PRODUCTION FIRST QUALITY

 MOVING COIL METERS

Trpe 70DA and 70DV, 80 men. Bquare thange, Flush mounted. 38 mm . dia. body. 40 mm . depth from the panel.
Type 85 DA and $85 \mathrm{DV}, 85 \mathrm{~mm}$. dia. flange. Flush mounted. 57 mm . dia, body. 48 mm . depth from the panel. Type 120DA and 120DV. 120 nim. aquare Bange. Fluah
mounted. 08 man. dia. body. 40 mm . depth trom the panel.

ZENER DIODES
$5 \% 260 \mathrm{~mW}$
$0 A \% 200$. 7 VIO OA2200 4.7V10/0×2202 6.6v $9 / 6$ 0 , 22036.2 v 0 AZz204 6.8 F \%/ 0 AREOG 7.5 v 7 0 AZ206 8.2v 7

5\% 10-WATT STUD MOUNTED

DRY REED INSERTS

 cads. One " make" contact of 100 mA capmeity at 60 V . Cas be operated by permuahent magnet on 30 - Jo Amp-turns relay
coids. PRICE $18 / 0$ per doz. pont free.

BEEHIVE TRIMMERS

$10 \mathrm{~F} F$ and 50 pF . $15 /$ - per dozen, in any combination. $2 /$ P. P

MICROWAVE DIODES

Cartridge Type

$3000 \mathrm{mc} / \mathrm{s} .: 1 \mathrm{~N} 21,4 /-\mathrm{iN} 21 \mathrm{~B}, 6 /-1 \mathrm{~N} 28,20 /$
$6,000 \mathrm{mc} / \mathrm{s} .:$ CS2, $5 / \mathrm{F}$; CV101, 5/m; CV102, 5/-: CV201. 8,375 me/s.: $1 \mathrm{~N} 23,4 /-1 \mathrm{~N} 23 \mathrm{~A}, 4 / \mathrm{F} ; 1 \mathrm{~N} 23 \mathrm{~B}, 6 \mathrm{c}-\mathrm{iN} 23 \mathrm{C}, 8 \mathrm{~m}:$ 1 me3CR, $20 /-i$ iN23WR, $100 /-; \operatorname{Cs} 103,701-$

 85/-:CV2355, 200/-; 81M2 (CV2 (54), 37/6; 813 (CV 2105), 34.860 me/a.: VXalsh (CVasp1). 65/m.

AVALANCHE SILICON RECTIFIERS

 10/6

CATHODE RAY TUBES

2AP1-2hn. mereen, Green Trace Medium Permintence Oacilloseope Tube. RHT reguired 500 to 1000. ENenaitivity apave. Orerall length 7 t in. DC/as. 6.8 y . qeaters. Usal PRICE.
$\mathrm{APPBl}=\mathrm{BH} 7.01$-2in in . Mellum Persistence Owelloscope Tube EBT required ro0-1000v. Suitabie for symmetrical athd anymmetrical ujperation, Sensitivity $\mathrm{Y}=30 \mathrm{v}$. DC/in; $\mathrm{X}=50 \mathrm{v}$. DCins.

3BPl-3ill acten Green Trace Medumi Persistemee
 approx. $100-160 \mathrm{v}$. DC/lar. at 1500 v . and $150-200 \mathrm{v}$. D.C./bs at yoovv, 6.sv, heakers. B14A base. Overall length $10!\mathrm{hm}$. PRICE.
4 Pr31-4in, werem FFlat Face Greeb Trace Medium Pomistene TWIN GU: Om-illoweple Tube. EH'T required 1001 to 1800 v
 Blaf Rase. Overatl length 12in.
PItICE.

Pipase conoult our Catalngue for luil range of Catbonle liay Tubes.

Current Production

VALVES FOR EXPORT

Here are a lew examples from our stock of over 2,500 items.

0.42	3/-	2D21	$3 / 11$	6B44 12/6	6SN70T 3/2	
OA3	518	28.en	$18 \cdot$	$6 \mathrm{CY} 53 / 11$	6 VGO	$3 / 2$
0132	3/6	3 CH 45	46/:	6Cw\% 8/9	3104	$20 / 8$
OC2	$14 / 4$	3V4	$3 / 2$	6DS4 8/8	\$11A	2819
0 OB	47	5 St 4 GB	311	6J4 6/1	828A	23/-
OD3	4/4	6Y3GT	$3 / 6$	6JJdT 3/6	329 A	23/-
$1 \mathrm{B3GT}$	3/6	624GiT	4/4	0.7 5/2	807	6/4
$1{ }^{104}$	$2 / 6$	6 AKS	3/6	6L60C 4/11	811.	$34 / 6$
$1 \mathrm{~V}_{2}$	3/9	6.AL6	$1 / 9$	$61570 T 4 / 4$	813 A	70%
122	20/2	6AQū	2/8	68L70T 3/8	829]	52/-

THE ABOVE PRICER ARE FOR DIREXT EXPORT, I.E. FOR DELIVERY TO OVERBEAB ADDRESS, OR TO THE SUPPLIERS, FOR VALVES TYPE MAREED AND BULK PACKED, IN LOT\& OF 100 PER TYPE.

FULL EXPORT PRICE LIST AVAILABLE ON REQUEST

OUR NEW 1987/68 Valve CATALOGUE AND PRIOE LIST IS NOW READY. IT CONTAINS FULL REFERENCE DATA ON SEMD-CONDUCTORE, CATHODE RAY TUBES, ETC, Please send s.a.c. (qiarto.).

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN E FOR HANDLING AND POSTAGE. NO C.O.D. ORDERS ACCEPTED. IN ORDER TO AVOID DELAYS PLEASE SEND ALL MAIL ORDERS AND CORRESPONDENCE TO OUR HEAD OFFICE AT 44A WESTBOURNE GROVE, W.2. AND NOT TO THE RETAIL SHOP

ELECTRONIC BROKERS LIMITED

PRECISION HELICAL POTENTIOMETERS

BECKMAN MODEL J. Continuous Instrument Potentiometer, 2 in . dia., 10 k ., $35 /$. Brand new Res. $501 .+5 \%$. Lin. col. $+0.15 \%$. Also Colvern type, 100 k . I $k+1 \mathrm{k}$ dual. BECKMAN MODEL. A. 10 turn Precision Wirewound Potentiometers, available in the following values: 100 ohms, $10 \mathrm{k}, 100 \mathrm{k}$. Offered at $50 / \mathrm{m}$. Well below list price. Also Colvern, eypes 50 k , BECKMAN MO ${ }^{30}{ }^{3} k$. and $1.5 k$ at 5 turn.
BEKMAN MODEL 7216. 10 turn Precision Potentiometer, \& dia., $2 \mathrm{k} ., 60 \%$. Brand new. Miniature Beckman Multi-zurn Continuous Dial, adjustable up to 15 turn, with separate brakelocking lever, 7 dial. Will fit most pots. SINE/COSINE PO price, $£ 12110 \%$
PLUG-IN PRECISION DUAL SPEED DRIVE O.S.D. 7.
0.1 accuracy (dial calibration). Readings one from 0° to 360 on ewo concentric dials, coarse increments of 10° and fine increments of 0.1 . Miniature coupling provided to transmit rotation to a synchro. This precision drive permits rapid positioning and extremely accurate repositioning of otational components such as synchros and resolvers, which can be mounted dirccely to the frame
of the, $£ 19 / 10 \%$. SPERRY PRECISIO
SPERRY PRECISION D.C. TACHOGENERATOR TYpe L526. Brand new, in manufacturer's
original packing. $5 V 11,000$ R.P.M. Size 11 Model original packing. SV/I,000 R.P.M. Size 11 , Model 2, $\mathrm{CI} 2 / 10 \%$.
"MINICUBE
BLOWER. Sub "MINICUBE" BLOWER. Sub-miniature, only I in. square. Operates on 26 V. $400 \mathrm{c} . \mathrm{p} . \mathrm{s}$. input
power, 1 or 2 pH . Output $2.2 \mathrm{c.f.m} .\mathrm{at} \mathrm{free} \mathrm{air} \mathrm{wt} .\mathrm{It} \mathrm{oz} .\mathrm{Brand} \mathrm{new}$.Made by Saunders Associat
 third of manufacturer's price, $£ 19 / 10 / \mathrm{m}$
GEAR BOXES. By Vactric. Size II. $149.1: 2$ and $300.2: 1,64 / 10 / \mathrm{l}$
GEAR BOXES. By Vactric. Size II. 149.1 :
INSTRUMENTS FOR DYNAMIC ANALYSIS
LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLAR-TRON-Type VP 253.2A for the analysis of Dynamic Response of systems and components to the highest accuracy with rejection of harmonics and noise over the frequency range. Used for the measurement of transformer magnetising and core loss. Performance of synchros and fractional motors and other electro mechanical units. Also designiand This instrument will indicate by means of
solved components of a signal voltage with respect eo co zero 6 in. scale meters the resolved components of a signal voltage with respect to the applied reference energlsation. Signal Voleage Ranges. $50 \mathrm{MV}, 150 \mathrm{MV}, 500 \mathrm{MV}$ i $5 \mathrm{~V} \mathrm{~F}^{\mathrm{KV}} \mathrm{I}$
input.
Signal Input Resistance:
$10 \mathrm{M} \Omega$ unbalanced
Reference Input
20 MS 2 balanced
Four-phase feferen
Reference Input Resistergisation is required, each phase having a level of 10 V r.m.s. with respect to virtual earth Harmonicand Unrelated Frequency 6.2 M! per Phase.
Rack Panel, 19 in . $\times 12 \mathrm{fin}$, high 175 rimination better than 40 dB . Mains voltage $90 / 130$ or $230 / 240 \mathrm{~V}$. Standard T.F.A. A.C. CARRIER CONVERTOR JY G4IA by SOLARTRON - For
indicator VP 253.2 for the rescing of A.C. servo of pick-off.
Modulation of Carrier to provide signals for Magnetic Amplifier, Synchros, ece
Carrier Input Frequency: $50 \mathrm{c} / \mathrm{s}, 60 \mathrm{c} / \mathrm{s}, 200 \mathrm{c} / \mathrm{s}, 400 \mathrm{c} / \mathrm{s}$.
Carrier Input Level: $20,26,90,115,200$ or $230 \mathrm{r} . \mathrm{m} . \mathrm{s}$.
Size 22 in. $x 12$ tin. $x 12 \mathrm{in}$.Wr. 60 lb ., 695.
T.F.A. REFERENCE RESOLVER JY 641 A BY SOLARTRON-For use with resolved component indicato A.C. carrier convertor JY 641 A for A.C. carrier amplifier design

MINIATURE PRECISION SAMPLING SWITCHES, 100-CHANNEL. COnsisting of 4 tracks of 25 coneacts, each running at 80.2 r.D.m. Driven by a Vactric P. $2386: 3$ V. D.C. (a 5,000 r.p.m. shrough a Vactric gearbox 1/ H7-J. Gear racio 80.2:1. Max. corque 2 Ib . inch, E18/10. 48-CHANNEL. Consisting of 2 tracks of 24 contaces driven by E:M.I. precision motor and gearbox, 6.3 V D.C. chrough a E.M.I. S.31 gearbox, $\mathrm{f} 12 / 10 /$.

HIGH TEMPERATURE PRESSURE TRANS DUCER-Type NT4-317, by Solareron. Highly aceurate and stable performance. Suitable for uses in explosive and mining, research, moulding. pressing and extrusion research. High eemperature environmental instrumen-$0-75$ p.s. $100 \quad 150$ etc. 160,250 following pressures only: $0-75$ p.s.i.. $100,150,160,250,500$ absoluce. $1,000,1,500$ $\$, 000$ p.s.i. Gauge 0 ± 150 p.s.i. differencial. fi9/io/=. Size in. dia. I in. length. It should be noted that al though these cransducers are offered new condition, in manufacturer's packing, they do require individual calibration.
SOLARTRON PRESSURE SCANNING VALVE NT.999.3-This unit enables a single pressure transducer to be used to measure up to 24 separate pressure: in one second. For inlet pressure range of 0.1 p.s.i. co 40 p.s.i. depending on which transducer is used.
The eransducer is housed inside the valve and is exposed to the unknown pressures in order. This unic is offered with Vactrie synchmonous motor, 100 evele $30 / 60 \mathrm{~V}$, 8000 r.p.m., with gearbox ratio of 149.06:'1. New condition, in manufacturer's original packing. Oftered at a fraction of che original cost, $849 / 10 /$.
A varlety of Size II motors and gear heads can be fitted instead but we regret this will have to be undercaken by the intended purchaser.
500 WATT CONSTANT VOLTAGE TRANS. FORMER. By advance MT. $262+\mathrm{A}-190-260 \mathrm{~V}, 50$ cycle, 500 waces. 230 V., $£ 12 / 10 \%$.
A.R.L. HIGH-SPEED GALVANOMETER FILM RECORDER. 10 mirror Galvos. at 1 Ke . Juse like a Camera.
EVERSHED '\& VIGNOLE. 2 pen Recorder with Amplifier. ${ }^{2} \frac{1}{1,}, 3$ and 6 in. per sec., $£ 25$
SOLARTRON PLATINUM RESISTANCETHERMOMETER PROBES. NT4-1039/1 Probes in a stainless sceel case <tin. dia. Reslstance at 0 C . is $130.0+0.3$ ELECTRONIC BROKERS LIMITED 8, BROADFIELDS AVENUE, EDGWARE, MIDDX.
ohms. Time response: $<\mathbf{3}$ seconds. Temperature range
$42^{\circ} \mathrm{C}, \operatorname{co~} 500^{\circ} \mathrm{C}$. Length of Probe, $\frac{3}{3} \mathrm{in}$. New condition. G.E.C price 225 . Our price $\mathbf{E 4 / 1 0 /}$
G.E.C. HERMETICALLY-SEALED RELAYS. complete range of these hard-tomget relays for replace. ment are available, Send for lise.
S.T.C. STANTALUM CAPACITORS. From 0.15100 mid. Polarized and non-polarized. Also Plessey Castanet, 50 m.f.d., 70 V. 250 m.f.d. $15 \mathrm{~V}, 140$ m.f.d. 30 vole. Send for list.
Ser INDUSTRIAL BUYERS OC25, $£ 17 / 10$ per 100. Mullard OC81D $£ 7 / 10$ per 100.
COUNTER PRECISION FOUR DIGIT IMPULSE zero received, 24 V . D.C. . D.C.. $185 \mathrm{~m} / \mathrm{A}_{1}, \pm 3 / 19 / 6$. Black finish.
G-V controls. Hermetically-sealed thermal timing relays available in the following: 7.5 seconds at 28 V ., 20 sec , at 6.3 V ., 30 sec , at 28 V ., 120 sec . at 28 V . 180 sec . at 28 V . All Cl each.
LEACH. Balanced Armature Relays, 3 pole. D.T.10 amp, $24 / 28$ V. D.C., 25/-.
CHOPPERS. S.P.D.T. 6 volt, 400 eycles, octal base. $7 / 6$. DELAY RELAY. Hermetically Sealed Thermoaltitudes S.P.S.T. Normally mospheric conditions and delay, 7/6.

PLUGS AND SOCKETS, MOTORS, TRANSISTORS, VALVES AND KLYSTRONS, RESISTORS, CAPACI TORS. POTENTIOMETERS, TEST EQUIPMENT, RELAYS TRANSFORMERS, METERS. CABLES, ETC. PRANSFORMERS, METERS. CABLES, ETC.

ROMPT PAYMENT AND COLLECTION
TURN YOUR CAPITAL INTO CASH

TEL. 01-958 9842

Mathematical Techniques in Electronics and Engineering Analysis

Students' Editio.
J. W. Head, M.A. (Cantab.), F.Inst.P., M.I.E.E., F.I.M.A.

Divided into two parts, the first part consists of general mathematical tech-niques-the solution of equations; series and partial fractions; differentiation and integration; versors, vectors and irironometry; and various labour saving divices. The second part deals with more specialised applications of mathematics to problems in electrical and electronic engineering. 224 pp. 67 illustrations. 18s net limp, Is Id postage.

Unified Circuit Theory in Electronics and Engineering Analysis

Students' Editior.

A new approach to solving non-steady state problems. J. W. Head, M.A. (Cantab.), F.Inst.P., M.I.E.E., F.I.M.A., and C. G. Mayo, M.A., B.Sc., F.I.E.E.

Steady - state conditions present no mathematicai difficulties, but more advanced techniques are required when dealing with the non-steady state. The authors of the present book prefer, and advocate, the use of operational calculus, which they maintain has the outstanding advantage of directness and simplicity of working that makes it easy for practising engineers and students alike to appreciate the significance of each necessary process. The early part of the book is concerned with electrical circuits; the latter part is more theoretical. 174Fp. 20 diagrams. Limp 18s. Postage 10d.
obtainable from all booksellers

ILIFFE BOOKS LTD
 DORSET HOUSE STAMFORD STREET S.E.I

CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: $\mathbb{C} 6$ per single col. inch.
LINE advertisements (run-on): $7 /$ - per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /=$. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUWBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.I.
No responsibility accepted for errors.

SITUATIGNS VACANT

A N OVERSEAS CAREER with Intermational Aeradio A Linited. TO meet the requlrements of constant growth and expansion, we invite appilcatlons from technicians and engineers for an overseas career in North, West and East Africa, the Mediceranean area and sorvice in a lrade such as Ground Wircless Fitter in the R.A.F. Radio Electrical Artincers in the Royal Navy or R.E.ME., Army. or have other experience in the malnlenance of H.F. and V.H.F. commulcations. R.T.T. and navigation adds, we should be interested to hear from you, Successiul candidates would normaily spend six weeks at our Rad.o Englneering school, in some cases staf with sultable quallications and experience may be ofered imaneliate posting. Overseas staff recetve a tax-free salary with married and chlld allowances if uppropriuic and accommodation bachelon or married is leave and membership of an excellent penous and hifave assurance behemes.
WRITTEN applications please, to Personnel Manager. International Aeradio Limited, Aeradio House, Hayes Intermational Southall, Middlesex.
TRANED engineers required for interesting work on T rained engineers required fadar equipments at aying umit in North Wales.-Apply: Shott Bros. \& Harland. Ltd.. R.A.E. Wanbedr. Mertoneth, N. Wales.
R ADIO Engineer/Mechanic, first-class communica-- tions work, required by large company englneers, 12 ms . service overseas, excellent opportunity. Write
ase, experience. Box $\mathbf{W} \mathbf{W}$. 1909, "Wireless World."
FXPERIENCED enthusiasts required. London, W. 1 E for tape editing, disc cutting, mobile work, eventugs, weekends, state experience and salary expected. Box W.W. 1051. "Wireless World."
SENIOR EXVCUTIVE ENGINEERS, POST OFPICE, Four posts in London for men and women normally aged 35 or over (well-quallfied younger candidates considered). The successiul candidates will be concerned with: (a) Leadership of a team engaged on the design and development of large vehicular and non-vehicular equipmeat for the mechanisation of the installation of exteraal engineering piant, requires (b) Leadershlp of a team engaged on the design and development of specialised mail handing machinery and equipnent for the full scale mechanisation of the postal services: (c) Leadership of a small group of engineers making used for the provision of radio and other services by communications satellites; (d) The mechanical and electrical development, and standardisation of, relays aua telephone exchange su'itching mechanisms. Qualitcations: Posts (a) snd (b), degree in mechanical of the Institution of Mecbanical Engineers or ship of the institution of qualification. For post (a) knowledge of the design and operation of mechanical atds together with experience of hydrautic and/or pnetimatic equipment and a knowledge of modern manuracturing the design of manipulative machinery or mechanised handling plant essential; a flair for invention in this field and the ability to design experimental riks desirable. Posus (c) and (d); degree in engineering. or an equivaient or higher qualiftcation. for post (c) basic knowledge of the technical methods used in moderal knowledge of satellite technology and related general knowledge of satelite (d) experience in the development and large scale production of light electromechanical apparatus, preferably in the telecommunications tield essential appreciation of cost and telephone exchange switching and signalling an advan age. Salary (Inner London): £2,050 to $£ 2,609$ Starting Ealary may be above the minimum Noncontributory pension. Promotion prospects. - Write to Civil Service Commission, Savile Row, London, W. 1 lor application form, quoting S/6847/68. Closing date
15th February. 1968.
[1949

FOR

sale and wanted ADVERTISEMENT FORM

PAGE No. 139

TURN TO

Advertisements accepted
up to FEBRUARY 6 for the UP to FEBRUARI 6 for the Mare being available.

ELECTRONIC TEST TECHNICIANS

this big 'if' is worth up to $£ 1,500$ a year to you
We need really experienced Electronic Test Technicians who can tackle fault-finding, test and calibration problems in complex electronic equipment with confidence and flair.
If you think you can meet our spec. there are vacancies waiting at our new plant in the Herts/Beds área offering the following benefits-and more:

\square
\square
\square
Up to $\mathrm{f}, 500$ basic salary.
Up to $\mathbf{L 2 0 0}$ re-location expenses (plus help with house purchase).
Full staff conditions, plus superannuation, plus free life assurance.
Stable, permanent employment, plus the chance to advance in a vigorous, expanding company.
\square 5-day week, plus generous, progressive holiday scheme.
Please quote reference No. WW 164

TAYLOR RECRUITMENT
85 GLOUCESTER PLACE, LONDON W. 1
Strict considence will be observed. Just sfate separately the companios to whom you do not wish your application forwarded

The Civil Service
 Professional and Technical appointments

RADIO AND ELECTRONIC ENGINEERS
 BOARD OF TRADE (CIVIL AVIATION)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
QUALIFICATIONS: Degree or Dip. Tech. with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ac.S.

AGE: 23 and normally under 35 on 31st December, 1968 (extension for Forces and Overseas Civil Service).
SALARY (Inner London): On the scale $£ 1,160-£ 2,092$ depending on age and qualifications. Good prospects of promotion.
Pensionable appointments.
(Reference: S/85/ASO).

EXECUTIVE ENGINEERS AND ASSISTANT EXECUTIVE ENGINEERS

 POST OFFICEEXECUTIVE ENGINEERS are required for research, development and design work for electronic telephone exchages, satellite communications, submarine telephony, novel hine and radio transmission systems, electro-acoustics, mechanical aids and postal mechanisation. Most of these posts are in London.
There are also posts in engineering management to direct and control the provision and mainrenance of communications installations and plant. These posts are available in London and in a number of provincial centres.
ASSISTANT EXECUTIVE ENGINEERS are required in London and provinces for work on the development and design of communications systems and postal service equipment QUALIFICATIONS: Executive Engineers: Degree or Dip. Tech. in Mechanical or Electrical Engineering, or Physics or Applied Physics, or have achieved Corporate Membership of the I.E.E., I.Mech.E., or I.E.R.E. Final year students may apply. Assistant Exceutive Engineers: G.C.E. (or equivalent) pass in English language, and one of the following: H.N.D., in Electrical or Mechanical Engineering or Applied Physics; a pass in (or exemption from) Parts 1,2 and 3 of the examinations of I.E.E., or I.Mech.E.; a pass in (or exemption from) Sections A and B of the I.E.R.E. examinations; a pass in (or exemption from) Parts 1 and 2 of the examination of the Council of Enginecring Institutions, in subjects acceptable to one of the Institutions named above.
SALARIES (national): Executive Engineer: £906 (at 21)- £1,677 (at 34 or over)- £1,884.
Assistant Executive Engineers: $£ 734$ (at 18 or under)- £1,097 (at 25 or over)- £1,631. Salaries increased for officers serving in London; £125 Inner London, £75 Outer London. non-contributory pension, Promotion prospects to higher grades with maxima of $£ 2,484$ and £3,105.
AGE: Executive Engineer: At least 21 and under 35 on 31st December, 1968. (Some exrensions for service in H.M. Forces or Overseas Civil Service.)
Assistant Executive Engincer: At least $17 \frac{1}{1}$ and under 27 on 31st December, 1968. Applications for both posts from well qualified older candidates will be considered.
(Reference: S/353)
APPLICATION FORMS are obtainable from the Secretary, Civil Service Commission, Savile Row, London, W.1. Please quote appropriate reference.

An Electronics Engineer, preferably with H.N.C. is required to assist with the developmens of experimental computer control systems in our laboratories at Battersea.

A salary will be commensurate with age and previous experience. Conditions of employment are attractive and include pension scheme.
Applications stating age and experience should be sent to:
Personnel Officer,
BISRA - The Inter-Group Laboratories of the British Steel Corporation, 24 Buckingham Gate, London, S.W.I.
Please quote reference number PE/28 in your reply.

Engineers \& Technicians

required for test and repair work on a variety of equipment including:-

Television transmission equipment
Audio amplifie.s and control equipment Electronics instruments
Preference is given to applicants with City \& Guilds or equivalent qualifications. Juniors taking day-release courses will be enabled to continue their training. There are good opportunitics for promotion to laboratory and other specialised work. Apply giving full details to

Personnel Manager, British

Relay (Electronics) Ltd.,
1-7 Croft Street, Deptford, London, S.E.8.

World wide News and News Picture Agency requires competent versatile

TELECOMMUNICATIONS ENGINEERS

for extremely interesting work in London, Europe, Middle East and Africa.
Applicants must have a sound knowledge of Radio/ Electronics and general principles of Line/Radio Telegraphy/Telephony.
Apply in writing giving all details of past experience, present salary, languages spoken, etc., 10 :

Mr. D. Till

Dircctor of Communications,
UNITED PRESS INTERNATIONAL, 8 Bouverie Strcet, E.C.4.

RADIO AND TELEVISION ENGINEER

A Radio/Television Engineer is required for the Industrial unit of the Decca Radio and Television Company at Battersea.

He should have experience in Bench installation work, Radio Amplifiers, S.R.E., Television off air and closed circuit Television.

Salary will be commensurate with experience and conditions are good.

Apply to the Personnel Officer (Ref. R'T/ 74), Decca Radio and Television, Ingate Place, Queenstown Rd., Battersea, S.W. 11 Telephone: MACaulay 6677, Ext. 31.

A CAREER IN THE SUNSHINE

RADIO TECHNICIAN TRAINING
 IN THE
 RAAF

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields: Applicants should be United Kingdom citizens residing in the U.K. and aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phoning:RAAF CAREERS OFFICER (0ept. WwI) AUSTRALIA HOUSE STRAND, LONDON W.C.2.

Telephone No: 01-836 2435

THE EUROPEAN SPACE RESEARCH ORGANISATION ESRO

wish to recruit for its

LAUNCHING RANGE IN KIRUNA (Sweden)

HEAD OF RADAR SECTION

to be responsible for:

1. Maintenance and operation during campaigns of: -tracking radar (C Band-SELENIA type RIS 4C)
-the radar data transmission system digital computer-punched paper tapetarget acquisition system).
2. Possible development and extension of the system, with the assistance of six senior technicians.
Unversity degree or equivalent in electronic engineering and minimum of three years' experience in tracking radar equipment and data transmission equipment is required. Experience as group leader desirable.
Preference will be given to candidates below 35 years of age, although applications from older candidates will be considered.
Applications for this post should be sent to the Assistant Director for Personnel, ESRO, 114 Avenue de Neuilly, 92-Neuilly, France, quoting reference TR-7-add. 63.

How to switch

 from a good career in engineering to a better one servicing computersTo become a successful IBM Data Processing Customer Engineer, you need more than engineering qualifications. You need to be able to talk confidently and well to any level of customer management, and to have a pleasing personality in your work. As a D P C E, you work in direct contact with your customers, on some of the world's most advanced data processing equipment.

You must have a sound electronic and electromechanical background, such as ONC/HNC Electronic or Electrical, or Radar/Radio/Instrument Fitters course in the armed services.

You will get thorough training on data processing equipment throughout your career. Starting salaries depend on experience and aptitude, but will not be less than $£ 1,100$ a year. Salary in. creases are on merit-within 3 years you could be earning $£ 1,750$. Drive and initiative are always well rewarded at IBM; promotions are made on merit and from within the company.

If you are between 21 and 31, and would like this chance to become part of a rapidly expanding and exciting computer industry, write to IBM.

Send details of training, experience and age to Mr. D. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London, W4, quoting reference DP/WW/229.

IBM

IMPERIAL CHEMICAL INDUSTRIES LIMITED HEAVY ORGANIC CHEMICALS DIVISION TELECOMMUNICATIONS MANAGER

For this senior vacancy candidates, who technically must be abreast of the latest developments in the communications field, should be capable of planning the future development of the various installations servicing the Tees-side sites of I.C.I., including the data transmission needs of computers.

Managerially he will be responsible for the installations and for the staff who operate them and will liaise with telecommunication and computer specialists in other Divisions and areas of the Company. Requests for application forms should be addressed to.

Mr. R. B. Poots,
Personnel Officer, Imperial Chemical Industries Limited, Heavy Organic Chemicals Division. Organic House, BILLINGHAM,
Co. Durham.

FED UP WITH YOUR PRESENT JOB?

We require a number of funior engineers with drive and initiative for:-

Circuit design-development and prototype construction, etc.; Electro-mechanical draftingprinted circuit/chassis layouts, etc.; Production line test and inspection engineers; Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to $\mathcal{K}, 000$ depending on experience and qualifications.
Send full details in writing of experience to date and present salary to:-
Solid State Controls Limited
30/40 Dalling Road, London, W. 6

ARE YOU AN ENGINEEROR HOPING TO BE ONE?

A missile systems expert is just one of the things you could become, in today's Royal Navy.

Are you a professional engineer with a degrce or Dip Tech? You can enter the Navy as an acting Sub-Lieutenant. If you don't have a degree but have been accepted for a university place, you may qualify for an allowance of about $£ 770$ p.a. while you study-and get naval training too. If you have ' A ' levels in pure and applied maths and physics, but no university place, we'll give you full enginecring training with a degree at the end.
The ships and aircraft of today-and to-morrow-call for top engineers. We make sure they get the best training. As an Engineer Officer you will be encouraged to keep abreast of the latest developments, and will be given opportunity for post-graduate studies. You could also have direct responsibility for equipment design.
Your naval training-like that of all our officers -will begin at The Naval Training College, Dartmouth. You learn to take responsibility, both for your men and for complex equipment.
You'll see the world. Your ship might go anywhere: on important naval trials, or on special operations, when the Navy is asked to bring aid, rescue or relief to civilians. You'll have a highly professional status and the salary to match. For the right man, the way to the top lies clear ahead-ability and intelligence are thę qualifications for promotion.
For details write to: Capt. J. H. F. Eberle, RN, Officer Entry Section (WW/F), Old Admiralty Buildings, London, S.W.1.

COMMUNICATIONS ENGINEERS

Engineers with U.K or overseas field experience of the maintenance of radar broadcasting or communications equipment are required by the Marconi Company at Chelmsford. They will be engaged in the preparation of the technical handbooks produced by the Company on all the latest equipment. While previous writing experience is desirable it is not essential. There are no age limits.

An attractive salary will be paid and there are excellent conditions of employment.

Marconi 國国

Applications quoting reference WW/TEC/15 should be sent to Mr N. Finegan, Central Personnel Services, The Marconi Company Limited, English Electric House, Strand, London WC2.

EUROPEAN SPACE research organisation ESRO

offer interesting positions in their Establishments
THE CONTROL CENTRE Darmstadt (West Germany)

THE TRACKING STATION Redu (Belgium)

THE LAUNCHING RANGE Kiruna (Sweden)

Candidates are required for the following positions

TF1: ELECTRONICS SENIOR ENGINEER

TF2: ELECTRONIC ENGINEER

TF3: ELECTRONIC TECHNICIANS for Technical Facilities Section

SCA: SPACECRAFT CONTROLLERS (Senior and Junior)

ET1: ELECTRONIC ENGINEER and

ET2: ELECTRONIC TECHNICIANS for Telemetry Data processing

EN1: ELECTRONIC ENGINEERS for Network and Communications of Operation Group

ETC: ELECTRONIC TECHNICIANS in Communications

HRS: ELECTRONIC ENGINEER
for Head of Radar Section of ESTRANGE, Kiruna, Sweden

SCP: SENIOR COMPUTER PROGRAMMER

For further detaiis please write to the
PERSONNEL OFFICE, ESTEC
Domeinweg, Noordwijk, Holland
Stating for which post you wish to apply and quoting reference CC/SG-12-67

transistor

television

 receiversT. D. Towers, M.B.E., M.A., B.Sc., M.I.E.E., A.M.I.E.R.E.

This book covers virtually every aspect of transistors in television receivers, with examples drawn from the United Kingdom, U.S.A., France, Germany, Russia and Japan.

Although transistor sets may never entirely displace valve operated, mains-driven, large screen sets, for personal-portable sets the transistor has no rival.

194 pp. 188 illustrations. 55s net 56s 3d by post.
'For the designer, and the interested serviceman, this is a book packed with information.

RADIO AND ELECTRICAL RETAILING

- He (the author) has done the job so thoroughly that his book-the first in the field-is likely to remain first in the field for quite a while.'

MUSIC TRADES REVIEW
. . . gives the reader a clear perspective of the subject and provides an important chapter on servicing methods. ELECTRICAL AND RADIO TRADING
available from leoding booksellers

ILLIFE BOOKS LTD

Dorset House, Stamford St., London, S.E.I.

City and County of Bristol BRISTOL TECHNICAL COLLEGE DEPARTMENT OF NAVIGATION, MARINE RADIO AND RADAR

Applications invited for post of
ASSISTANT LECTURER GRADE B
IN RADIO AND RADAR Ref. No. T67/74/1
Duties to commence 1st May, 1968.
Applicants should hold a First Class P.M.G. Certificate in Radio Telegraphy. Additional qualification such as B.O.T. Radar Maintenance Certificate, H.N.C. in Electronics or Electrical Engineering, Aircraft Radio Maintenance Engineer's Licence (Catcgories A \& B) or similar an advantage.
Salary Scale: £955-£1,625 with additions for approved qualifications. Starting salary
dependent upon approved experience and qualifications.
Further particulars and application forms (retumable by 29th January), from Registrar, Bristol Technical College, Ashley Down; Bristol, 7. Quoting ref.

UNIVERSITY OF NOTTINGHAM

DEPARTMENT OF ELECTRICAL
AND ELECTRONIC ENGINEERING

EXPERIMENTAL OFFICER

Applications are invited for the above appointment to commence as soon as possible. Candidates should have a good knowledge and pracrical experience of basic electronic circuit techniques using both vacuum-tube and solid-state devices; they will normally be expected to have H.N.C. or equivalent qualification. Salary will be within the range of $£ 915$ so $£ 1,525$ per annum. Forms of application and further particulars, returnable not later than 29 th January, 1968 , from the Registrar.

Television

We are expanding our' activities in the field of television-by-wire, and need an experienced development engineer who can undertake important work on both immediate and long-term projects, involving both transmitting and receiving systems and equipment.

Good Laboratory experience and proven ability are the main requirements for the appointment, which offers very good security and opportunitic for promotion $t 0$ an engineer of the right calibre All enquiries will be treated in strict confidence, and should be addressed to

The General Manager, British Relay (Electronics) Ltd.,
1-7 Croft Street, Deptford, London, S.E.8.

HIECRONNC MANIENAMCE ENGNEERS

There are excellent opportunities in the Installation and Maintenance Division of E.M.I. Electronics Ltd., for engineers to carry out maintenance work on a wide variety of electronic equipment, including laboratory test gear, tape recorders, broadcast and studio T.V. equipment, and electronic automation equipment.
Candidates should be between 21 and 45 , have had at least three years experience of this type of work, and be willing to travel.
Good commencing salaries will be paid, and staff conditions include a contributory pension scheme and free life assurance. Grants towards re-location expenses will be made in suitable cases.

EMI
Applications, giving concise personal/career details to:
P. JONES - GROUP PERSDNNEL OEPARTMENT - E.M.I. LTD BLYTH RD HAYES MIODLESEX TEL: 01-573-3888 - EXT: 411

TECHNICAL/COMMERCIAL ASSISTANTS
 RADIOS AND TAPE RECORDERS

A vacancy exists in the technical-commercial department of both the Radio and Tape Recorder Divisions of Philips Electrical Limited, for an assistant to the Manager.
Applicants for both these positions should be between 25 and 35 years of age and be qualified to H.N.C. or City and Guilds final standard. Membership of an appropriate professional institution would be an added advantage.
The job is basically one of liaison and communication between the commercial, financial, production and design functions. A knowledge of the Radio and Tape Recorder market, with regard to appearance, price and performance is desirable. Experience in methods of measuring expressing performance and field test reporting is essential. If you would like to know more about these positions, please write to:

E. G. Johnson,
PHILIPS ELECTRICAL LTD., Century House, Shaftesbury Avenue, London, W.C. 2

ELECTRONIC ORGANBUILDERS REQUIRE

TEST \& INSPECTION ENGINEERS; men with sound Electro-mechanical background, valve and transistor amplifier experience, some musical knowledge an advantage. ,DRAUGHTSMEN with at least 5 years' Electro-mechanical and Electronic experience, minimum qualification ONC or equivalent.

These positions carry good salaries and prospects.
Applications, giving age \& career details to Mr. J. Meredith,
COMPTON ORGANS LIMITED, CHASE ROAD, London, N.W. 10.

Abstract

RADIO TECHNICIANS A number of suttatily qualified candidater are requited for unentabintiod ponts. leaditg to permment and pensionalile employment (is Cheitenhamand other parts of the U.K. indinding London). There are adoo opportunittem for servive ahruad. Teve Gricants mast be 19 or over and he familiar with the use of Teut Grar, and have haul uractical kadio/ Flectronic work hop "Oxperience. Preference will be given to candidatea who can offer Physics. or hold the City and Guidla Teleconmmunicatioun Tech. nical Intermediate Certificate or equivaleut technical yualifica. thons Pay acrording to age. e.g. at 19-E412 at 25-f1046 (Obgheat age pay on entry) rming on 1.1 .68 to at 19 -2 288 , it $25-21,070$. Prowpecta of promotion to gradea in valary satnge ell, 120. £1,941. There are a few powle carrying higher matarhes. Annual leave allowance of 3 weeke 3 days rising to 4 werks 2 days. Normal Clvil Servie days. Normal Clvil Berviee slick teave regubathuts mphly. Application fortus available from:- Recrailment offler (RT). Government Communications Headquarters. Onkley, Priors Road, Cheltenham, Glos.

ENTHUSIASTS Have you considered a career in Technical Authorship? If fyou have sound experience in electronics or communications and ability to write clear concise English we would train applicants as Technical Authors. The commencing salaries range from $£ 1,300$ to $£ 1,700$ depending on experience with the prospects of high future rewards and earnings.
Box No. 5039, c/o Wireless World

TECHNICAL ASSISTANT

Applications are invited from young electrical or electronic engineers with a live mind to work in the Group patents department of Pye of Cambridge Ltd.

The successful applicant will have a flair for describing technical equipment and be required to liaise between patent agents, inventors and legal liaise be
advisers.

An attractive salary taking into account age and experience will be offered.
Please apply, giving full details of age, qualifications and experience to: The Personnel Manager, Pye of Cambridge Lid., St. Andrew's Road, Cambridge.

THE UNIVERSITY OF LEEDS

Applications are invited for the position of Electronics Technician in the department of Biochemistry. Duties will include the maintenance of electrical and electronic equipment used in all types of chemical analysis.
Qualifications: O.N.C. or H.N.C. with Electronics endorsements, City and Guilds Finals, Radar Fitter with appropriate industrial experience.
Salary within the Senior Technician range ($£ 912-1,150$) plus a qualification allowance where applicable. Apply to: Dr. T. A. Scott, Department of Biochemistry, 9 Hyde Terrace, Leeds, 2.

TELECOMMUNICATIONS TECHNICAL OFFICERS DIPLOMATIC WIRELESS SERVICE

Hanslope Park, Bucks. and Crowborough, Sussex

Several posts for men, normally aged 23 or over but well qualified younger candidates considered, for installation, modification, maintenance and operation of (a) radio transmitters and receivers remotely tuned aerial systems, teleprinters and voice frequency telegraph equipment over a worldwide network, $O R$ (b) very high power transmitters, receiving equipment, tape recorders, generating plant, etc., at several high power broadcasting stations.
QUALIFICATIONS: O.N.C. in Electrical Engineering, or City and Guilds Intermediate Certificate in Telecommunications (old syllabus, i.e., subject No. 50) plus Radio II, or Intermediate Telecommunications Certificate (new syllabus, i.e., subject No. 49) plus Certificate in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B, or equivalent standard of technical education, and at least 5 years' appropriate training and
experience.
SALARY (national): $£ 983$ (at 21) to $£ 1,066$ (at 23) to $£ 1,283$ (at 28 or over). Scale maximum £1,449. Prospects of promotion. Non-contributory pension.
WRITE to Civil Service Commission, Savile Row, London, W.1, for application form, quoting S/6670/67. Closing date 7th February 1968. Candidates who have already applied should not do so again.

University of Salford
 SENIOR TECHNICIAN

T
HERE is a vacancy in the rapidly expanding Department of Electrical Engincering for a SENIOR TECHINICIAN.

The successful applicant may work in a research group and be concerned with building, maintaining and operating research equipment; or in an electronic workshop, where equipment for teaching and research is manufactured and maintained.
The post will particularly appeal to those who have practical experience of a variety of electromechanical and electronic equipment and who prefer to work on their own initiative in a wide variety of fields.
The salary scale is $£ 1,040$ to $£ 1,385$ per annum for which the desirable minimum educational qualification is H.N.C. The starting point on the scale will depend on age, experience and qualifications. The post is superannuable.
Applications, giving details of age, education and experience, should be sent to the Registrar, University of Salford, Salford 5, Lancs., by 29th January, 196s, quoting reference E/99/IE.

FIELD SERVICE ENGINEER FOR PUBLIC ADDRESS EQUIPMENT AND AUDIO AMPLIFICATION EQUIPMENT

Covering London and Southern Counties. Experience Essential. Good Salarx. Expense Allowance. Company Vhicle or Vehicle Allowance provided. Write:
SERVICE MANAGER, MAGNETA (B.V.C.) LTD., Parsons Green Lane, London, S.W.6.

w

ORKS Manager required for progressive compan engaged in. transformer Wor progressive company tronle assembly in the South Midlands. The position
should appeal to a man with should appeal to a man with some technical knowledge and the abillty to obtadin increased production.-Write
R ECORD COMPANY requires a qualifipd Sound It Engineer to operate and maintain studio and disc cutting equipment. Previous experience in the
use of morern protessional sound equipment and a genuine montern protessional sound equipment and a offered commensurate with the responsibilities of this important position.-Replles to Box W.W. 1962.

R ADIO ENGINEERS required by the Natlonal Guard R of Saudi Arabla. Initial contracts for ofie year including six weeks' paid leave ta United King year. Unmarried men preferred. Salary and altowances approxtmately $\& 3.300$ per annum net. Candidated
should have good knowledge of modern HF Should have good knowledge of modern HF SSB com-
munications equipment and VHF techniques. Previous experience of petrol engines and teleprinters an advantage. Duties involve repair and maintenance of static. moblle and portable radio equipment throughout Saudia Arabia, and iraining of local personnel as radto mechantcs and operators. Frequent air and road travel is involved. Initial applications. giving employment. should be made to Brigadier
H. E E R
Watson. $\begin{array}{ll}\text { Watson. c/o Sh.Q. National Guard. P.O. Box } & \text { R. } \\ \text { R. }\end{array}$ Riyadh. Sal'di Arabia, by clvil air mail at tull postage
rates.
[196]

University of Wales
 INSTITUTE OF SCIENCE AND TECHNOLOGY CARDIFF
 DEPARTMENT OF APPLIED PHYSICS M.Sc./DIPL.OMA COURSE in ELECTRONICS

Applications are invited for places in the full-time one-ycar M.Sc. Diploma course in Electronics, commencing 30 th September, 1968.

Further details can be obtained from the Registrat and Secretary, University of Wales Institute of Science and Technology, King Edward VII
Avenue, Cathays Park, Cardiff, CF1 3NU. Application forms should be completed and returned to the Institute as soon as possible.

Computer Engineers

Due to continued expansion NCR require additional ELECTRONIC and ELECTRO-MECHANICAL ENGINEERS for Computer Maintenance. Posts are available for men wishing to become Site Engineers.
Training Courses are arranged for suitably qualified men. H.N.C. Electronics, City \& Guilds Final or equivalent standard required. Men from Forces with radar experience welcome.
Knowledge of electronic or electro-mechanical equipment necessary. Good Pension and Bonus Plan in operation. Please write for Application Form to The Personnel Officer.
NCR, 1000 North Circular Road, London, NW2, quoting Publication and month of issue:
Plan your future with

A FULL-TIME technical experienced salesman reprevious experience, salary required fo-The Manager. Henry's Radio. Lid., 303 , Edgware Rd., London. w. 2 .

WEST London Aero Club invite "A " and " B " W licensed engineers wth capital andior neces sary equipment to commence Radio Workshop. Alternative propositions may be Airtleld. near Maidenhead detalks

A SSISTANI Edtior required to work on technical books. mainly concerning radio. electronics and ctrical engineerins: experience of handing book or periodical, also technical MSS. and lilustrations desirable. a knowledke of electrical, elecironics technolony. Prokressive post in a rapidly expandinr organisation in modern offices in Feltham. Middx.-Please write to: The Managing Editor. Practical and Home DiviCentre. Feltham Middlesex

We have a vacancy in the experimental services section of our Advanced Research Laboratory for an assistant to help in the construction, wiring and testing of prototype electronic and electrical apparatus and in the checking and calibration of laboratory electronics. The section provides instrumentation support to the scientific staff of the laboratory.
Applicants should have experience in electronic laboratory practice and in the wiring and testing of transistor circuits and preference will be given to candidates who have an O.N.C. in electrical engineering or equivalent qualification. Please write for application form giving brief details of career to date, to:

Laboratory Manager, ROLLS-ROYCE LIMITED, Old Hall, Burton Road, Littleover, Derby, DE3 6FJ.

ST. LAURENCE'S HOSPITAL, DUBLIN 7 (Richmond, Whitworth \& Hardwicke Hospitals)

EleCtronics mantenance techilcian

Salary: $\mathbf{£ 8 0 0} \times \mathbf{£ 5 0 - £ 1 , 2 0 0}$ per annum.
Applications are invited for the above position from persons holding the following qualifications:
(a) City \& Guilds Telecommunications Technicians Cerificate B Level Examination, and
(b) City \& Guilds Electronic Servicing Certificate Final, or equivalent qualifications.
Particulars and application forms available from the Secretary to whom completed applications must be returned so as to reach him not later than 12 noon on 23rd February, 1968.

ROYAL HOLLOWAY COLLEGE (University of London) Englefield Green, Surrey

SENIOR ELECTRONICS TECHNICIAN required to assist with design and construction of equipment used in advanced teaching and research. This appointment offers theopportunity for a wide range of interesting and nonrepetitive work. Salary on the scale £912£1150 plus qualification allowance and London Weighting. $37 \ddagger$ hour week. 4 weeks holiday. Applications should be made to the Secretary.

BOQKS, INSTRUCTIONS, ETC.
 M ANUALS, circuits of all British ex-W.D. 1939-45 R.E.M.E. ilistructions; s.a.e. for list over 70 oripes. W. H. Balley, I67a, Mofiat Road, Thornton Heath. Surrey. CRt-8pZ.

TAPE RECORDINC ETC.

SAVE on cost of Rt-Fi. See Audio Supply notice T APE to disc transfer. using latest feedback dise HIgh Bank, Hawk St., Carniorth. Lancs. Let.-Deroy Hikh bank, Hawk St.. Carniorth. Lancs. TAPE/Disc/Tape transfer editing. duplicating. 11 from qualty and durablity matter (especially with LPS from your previous tapes), consult Britain's oldest schools musical societles (tax free). Sound News Productions, 10. Clifford St. London, W.1. Reg. 2745 .
[1952
SERVICE \& REPAIRS
REPAIRS.-Our modern service cepartment equipped
with the latest test equipment including g wow R With the latest test equipment including a wow and flutter meter and multiplex setereo signal generator is able to repair. Hi Fi and tape recording equipment to manufacturers ${ }^{\text {tondandard.-Telesonic. Ltd. } 92 \text {. Tot- }}$ tenham Court Rd. London, W.1. 01-636 8177. 121

FIELD AIRCRAFT SERVICES

Radio/Radar Centre, London Airport require three additional RADIO MECHANICS
for bench and light aircraft work. Aircraft experience not essential and suitable applicants will be considered for relevant training.
Apply by letter or telephone to:
Mr. D. W. Griffiths,
Heathrow Airport-London,
Hounslow, Middlesex.
Tel. : SKY 2141.

Eastern GAS

COMMUNICATIONS DEPARTMENT

COMMUNICATIONS TECHNICIAN

Eastern Gas is in the process of modifying an extensive mobile radio network covering a large geographical area. Due to this, it is necessary to strengthen the Communications Department by the appointment of a suitably qualified person to assist in all planning and operational aspects of V.H.F. and U.H.F. mobile radio networks.

The successful applicant will be based at the Board's Headquarters at Watford, Herts.
The salary for this position will be within the range $£ 1,170-£ 1,400$ per annum, with initial placing according to qualifications and experience.
Apply in writing, giving full personal particulars, and quoting reference number 4069 to Area Personnel Manager, Eastern Gas, 49 Clarendon Road, Watford, Herts., with in 10 days from the appearance of this advertisement.

Research in Opto-Electronics

We are still building our team for work in Modern Optics, and need an experienced

Electronics Engineer

with enthusiasm for new fields of engineering. His chief duty will be to study applications of the basic research now in hand on pattern recognition and other optical information processing.
Please write to:-
The Personnel Manager (Ref. 46),
Hawker Siddeley Dynamics Ltd., HATFIELD,
Herts.

TELEPRINTER MECHANIC

Responsibility will initially be for the development and maintenance of logic controlled systems at locations within a 20 mile radius of Southall.
This position will appeal to a man with a sound knowledge of Telegraphic or logic switching who seeks the opportunity to commence a career with a fast expanding Company. Driving licence desirable.
Our business is telecommunications.
A good salary will be offered commensurate with experience. The Company has an excellent pension and life assurance scheme. Substantially reduced holiday air fares are available to most parts of the world.
Please apply in writing stating details of age and experience to:
Generar Manager, Personnel,
INTERNATIONAL AERADIO LIMITED Acradio House, Hayes Road, Southall, Middlesex.

V.H.f. WIDE-bAND AMPLIFIERS

 (1 carrier) 3 volts. InpatOutput Impedance 75 ohma;
10in. Rack Moanting. Two-stage Distributed Circoit 10in. Rack Moanting. Two-stage Distributed Circuit, Power Requiroment, $100-250$ volts 50 watts
Bullt to Professional Standards. Brand New and Funs Guaranteed.
For Sale at the Reduced Price of $\mathbf{5 3 0 . 0} \mathbf{0}$
Further details Boz No. 5040, c/o "Wreles World."

ELECTRONIC SUBCONTRACTORS

A subsidiary of a large American Company manufacturing high quality Electronic products has capacity available for assembly wiring or manufacture of electronic equipment.
We should be pleased to quote promptly for your requirements however large or small.
Write or telephone Mr. Brandon or Mr. Mills. Baldwin Burns Ltd., Chesham Close,
Romford,
Essex.
Romford 46465

TELEVISION ENGINEERS

with Management in mind
Rapidly expanding Company in CCTV requires seven senior engineers to control its Sales/Servicing operations in the London, Midlands-Birmingham, North West - Manchester, East Anglia-Cambridge, Southern-Southampton, West Bristol, and Yorkshire - Leeds areas. Ability to maintain one inch helical scan video VR 7003 recording machines, T/V monitors and vidicon cameras essential.
In addition to servicing CCTV installations, they will be required to promote new business in their areas. Estate car will be provided and there is a pension scheme. Salary to be negotiated and promotion for the right men guaranteed. Write giving full details to:-
Technical Director, Telévision Applications Ltd., 9/11 Windmill St., London, W1

Sole Distributors
Super-Electronies
Ltd.
5 Violet Hill
London, N.W. 8
Tel. Maida Vale 8281

Airborne Electronics

SERVICE TECHNICIANS

RCA Great Britain Limited, is an International Electronics Company with diverse interests in the field of electronic engineering. Our Service Division operating as A \& AEE, Boscombe Down. Wlieshire is engaged on servicing and maintaining airborne electronic equipment, particularly AIRBORNE RADARS, ELECTRONIC NAVIGATIONAL AIDS, and HF, VHF AND UHF COMMUNICATIONS.

A number of interesting vacancies have arisen which offer excellent opportunities for developing the inftiative and furthering the career of young men between 22 and 35 . They must have relevant experience preferably on the specific equipment mentioned above.

These positions carry monthly paid staff status with excellent fringe benefits, including three weeks paid holiday each year. A comperitlve salary will be paid and there are excellent promotion prospects.

Please write or 'phone for on application form $10:-$

Mr. A. Freemantle. Great Britain Limited, Lincoln Way, Windmill Road, Sunbury on Thames, Middlesex.

Telephone Sunbury on Thomes 85511, Ext. 105
A SUBSIDIARY OF RADIO CORPORATION OF AMERICA.

new VARI-STAT thermostatic soldering iron

High Production Model D PRICE Miniature Iron 50 watt Voltage 12.250 volt Welght i $3 / 4 \mathrm{oz}$. "Screw on" Bit sizes 3/32in. 1/8in. 3/16in., $1 / 4 \mathrm{in}$.
Our range also inctudes.
Standard Instrument Model 50W
Standard Instrument Model 70W
High Production Instrument Model 125 W Industrial Modet 500 W
All these irons give excellent bit and element life since the thermostat completely etiminates overheating and controls reserve healing capacity which makes pos. of the bit. The consisterit temperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO. LTD.,
Woodyard Road, Dumbarton.
Phone: Dumbarton 2655

Solve your conmunication problems with this new 4-station Transistor Intercom system (1 mastor and 3 subs), In de luxe plastic cabinets for desk or wall mounting. Call/ialk/Jisten from Master to Subs and Subs to Master. Operates on one 9 v. battery. On/off switch. Volume control. Ideally suitable to moderaise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant Inter-dẹpartmental contacts. Completewitn 3 comnocting wires, each 66ft. and other accessories. Nothtug else to buy. P. \& P. F/6 in U.K.

Same as 4 -Station Intercom for two-way instant conversation. Ideal as Baby Alama and Door Phone. Complete with 64 ft . ldeal as Baby Alarma and Door Phone, Connp
connecting wire. Battery 2/6. P. \& P. $/ 4 / 8$.

7-STATION INTERCOM

(1 MLASTER \& 0 SUB-STATIONS) in strond metal cabinets. Fully transistorised. 3iln. Speakers. Call on Aasteridentified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Complete with 50 yards cable and batteries. Price 21 gns. P. \& P. $12 / 6$ in U.K.

Foossom TIPPIONEMMPIFIER

Why not increase efficiency of Office, Slop and Warchonse with this incredible De-ibuxe Portable Transistor TELEPHONE AMPLIFIER which enabics you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volunise Comtrol. Operates on one 9 v , battery which lasts for months. Ready to operate. P. \& P. 2/6 in U.K. Add $2 / 6$ for Battery. Full price refunded if retumed in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street. London. W. 8

THIS IS ONE OF THE WORLD'S MOST advanced OSCILLOSCOPES.

WHY NOT HELP US
MARKET OR
MAINTAIN IT?

We are looking for Marketing and Maintenance Engineers who would take pride in being part of a team providing Tektronix Products and services in a diverse and expanding field.

If you have a sound basic knowledge of Oscilloscope applications or circuitry with a pleasant telephone manner and the ability to write good letters, or a flair for repair and calibration, we would like to hear from you.

We offer pleasant working conditions, progressive salary opportunities, profit sharing and non-contributory life assurance and pension scheme.

To be considered for one of these outstanding opportunities, write to

Mr. R. M. Garrett, Field Engineering Manager,
Tektronix U.K. Ltd., Beaverton House:
Station Approach, Harpenden, Herts.

MINIATURE KEY SWITCHES. (P.O. Lever Type 1000) centre off. 2 c/o each way. $7 / 6$ ea.
RE-SETTABLE HIGH SPEED COUNTER $(3 \times 1 \times$ HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times$ lin.) 4 digic. (state which), $6 / 6$ ea, P.P. I/ OLARTRON OSCILLOSCOPES. CD7IIS. 150 carr. 70/CD643 650, carr. 70/-: QD910 £75, carr. E5. Al units in first class condition. Complete with R.F. AMMETERS 3 in . Rnd. $0 / 6 \mathrm{amp}$. 10% ea. P.P. $2 / 6$. R.F. AMMETERS 3 in. Rnd. $0 / 6$ amp.
COPPER LAMINATE PRINTED CIRCUIT BOARD $\left(8 \frac{1}{3} \times 5 \frac{1}{2}\right)$ COPPER LAMINATE PRINTED CIM
It in.), $2 / 6$ sheet, 5 for $10 /$.
BULK COMPONENT OFFERS
100 Capacitors (latest types) 50 pF to . $5 \mu \mathrm{~F}$.
250 Resistors tand t watt.
250 Resistors $\frac{1}{2}$ and 1 watt.
150 Hi -Stab Resistors, t. $\frac{1}{2}$ and 1 watt.
25 Vitreous W/W Resistors, 5%.
12 Precision Resistors 1% (several standards
included).
12 Precision Capacitors I and 2% (several
standards included).
12 Electrolytics (miniature and standard sizes).
ANY ITEM $10 /-$ ANY 5 ITEMS $£ 2$

VENNER LIGHTWEIGHT ACCUMULATORS (1 oz. $1 \frac{x}{x}$ $\left.1 \frac{1}{2} \frac{1}{2} i n.\right) 2 \mathrm{~V}$.
CARPENTER POLARISED RELAY 18,000 turns at 4000Ω 15/. (with base). ALL Types of G.E.C./SIEMENS/
s.f.C. Sealed relays stocked.

MAINS RELAY (240 v. A.C.) 12 H.D. make contacts, MAINS RELAY (240
REED RELAYS (2 Herkons) S.T.C. 2426-582-15, 2 make. 10-15 vole coil, $15 / \mathrm{ea}$.
" 3000" TYPE RELAYS (Ex. New Equip.) 10 for 25/(our choice), p.p. 5/\% indICATOR (Solartron VP253.2A
Condition new, $£ 35$ (with manual), carr. 50/-.
TELEPHONE HANDSET (Type 706) 17/6 ea., P.P. $2 / 6$.
ZENER DIODES 3 to 50 volt. 5%. 1.5 watt, $3 / 6 ; 10$ ZENER DIOD
BLOWER/EXTRACTOR FANS (By PAPST Motors) $4 \frac{1}{2} \times$ $4 \frac{1}{2} \times 2 \mathrm{in}$. cast moulding. 450 C.F.M. Engineered to Very fine limits. 50/- ca., P.P. $2 / 6$.
THYRISTOR LAMP DIMMER/SPEED CONTROL KITS. 200 wate kit, 27/6, P.P. $2 / 6 ; 500$ wate kit, $37 / 6$. SILICON CONTROLLED RECTIFIERS (Thyristors) BTY87 (100 r) 100 p.i.v. 12 amp. $15 /$ ea. TBY91 (150r) 150 p.i.v. 16 amp., $20 /$-; CR's $25 / 10100$ p.i.v. 25 amp., 30/-; CRS $25 / 40400$ p.i.v. 25 amp., $60 /-;$ CRSI/20 200 p.i.v. 1 a mp., 5/6; CRS $1 / 40400$ p.I.
SILICON DIODES RS220af $2 /$ eca., Ei doz.; RS240 3/- ea.,
30/= doz.: RS280 4/- ea., 40/. doz.; IS103/BY100
40/- ea, $40 /$ doz.; RAS3loaf (avalanche) //. ea. 4/\% eas, 40/. doz.; RAS310al (avalanche) $6 /$. ea.,
$60 /-$ doz.; $15413 \mathrm{5} /-$ ea., 50% doz.: RS610, 10% ea. 60/-doz.: IS413 5/\% ea., S0/- doz.; RS6/0,
RS640 20/: ea., RS812 40/- ea.; RS845 $60 /$ ea
PRODUCTION BATCH COUNTER (BURNDEPT) BE403. oscilloscopes Cew 115 ea., P.P. 20/. OSCILLOSCOPES Cossor 103S, $\mathbb{E} 17 / 10 /-10$
Solartron D300, E20, P.P. any unic $2 / 10 /-$
E.M.I. MINIATURE RELAYS $(24 \mathrm{v} .1 \mathrm{c} / \mathrm{o})$: E.M.I. MINIATURE RELAYS ($24 \mathrm{v} .1 \mathrm{c} / 0) \frac{1}{\frac{1}{2}} \times \frac{1}{2} \times \mathrm{in}$.
WE. $\frac{1}{2} \mathrm{oz} .7 / 6 \mathrm{ea}$. We. oz. $7 / 6$ ea.
TELEPHOMF DESK SETS (cype 706), Brand new, $95 / \mathrm{c}$., SILICON BRIDGE UNITS. GEXS4I 80 p.i.v. $10 \mathrm{a} ., 37 / 6$; EIIBD-RC 100 p.i.v. 10a., 37/6; GA31-A (Germ). 200 p.iv. 2 a., $20 /$-.
SORENSON VOLTAGE REGULATORS. Type LT-1000-2S. SORENSON
E25 ea.
P.C. CONNECTORS (13 way in-line), $4 / 6$ pair.

LARGE CAPACITY ELECTROLYTICS. $2,000{ }_{\mu F}$ F. 150 v .
LARGE CAPACITY ELECTROLYTICS. $2,000 \mu \mathrm{~F}$. IS
$4,000 \mu \mathrm{~F}, 90 \mathrm{v} .7 / 6 \mathrm{ea} .6,300 \mu \mathrm{~F}, 63 \mathrm{v} . ; 10,000 \mu \mathrm{~F} 30 \mathrm{v}$. $4,000 \mu \mathrm{~F}, 9 \mathrm{v} .76 \mathrm{ea} .6,300 \mu \mathrm{~F}, 63 \mathrm{v}$. $10,000 \mu \mathrm{~F} 30 \mathrm{v} . i$
$16,000 \mu \mathrm{~F} 15 \mathrm{v} .25,000 \mu \mathrm{~F} 15 \mathrm{v} .10 /-\mathrm{ea}$. All $4 \frac{1}{2} \times 2 \mathrm{in}$. Screw terminals. P.P. I/- ca
SPEAKER BARGAINS. E.M.1. $13 \times 8 \mathrm{in}$. with double Twecters 15 ohm, 65/-, P.P. 5/-. As above less FANE 12 in .20 watt (Dual Cone), $95 /$, P.P. $5 /$ -
FANE $12 \mathrm{in}$.20 watt (DUSE E65.
TRANSFORMERS L.T. SOv. at 5 mp . 19-0-19v. $\frac{1}{2}$ amp. TRANSFORMERS H.T. 625-0-625v, at $110 \mathrm{~m} . \mathrm{a}, 6.3 \mathrm{v}$. at 2a., 6.3v. at 3a. c.c. Parmeko Neptune series, $35 /$-. ELECTRIC SLOTMETERS ($/ /-$) 25 amp. L.R. 240 v . A.C., QUARTERLY ELECTRIC CHECK METERS, 40 amp . 240 v . A.C., 20/- ca, P.P. S/-

TRANSISTOR POWER SUPPLY, $2 \times 12 \mathrm{v}$, at 250 m.a. 240v. $50 \mathrm{c} / \mathrm{s}$. inpur, $25 /$ - ea., P.P. $5 /-$ (made by E.M.I.). STEP-DOWN IRANSFORMERS. 1.25 mps ; Sec. 2. 25 v , at $5 \mathrm{amp} ., 25 \%$ ea.,

PATTRICK \& KINNIE
81 PARK LANE, HORNCHURCH, ESSEX
Tel.: ROMFORD 44473.

DIOTESTER

IN-CIRCUIT TRANSISTOR TESTER

THE DIOTESTOR detects faulty diodes and transistors when still in circuit without need for unsoldering.

BRITEC LIMITED

17. Charing Cross Road, London, W.C. 2 Tel: 01-930-3070

WW-152 FOR FURTHER DETAILS

MISCELLANEOUS

Metalwork, all types cabinets, chassis, racks.
etc. to your own specification. capacity ayallable for smaii mithng and capstan work up to lin bar. PHILPOTT'S METALWORKS. Ltd.. Chapman St
Loughboroukh. oushboroush

ARTICLES FOR SALE

$\mathbf{G}^{\circ O D}$ second-hand Ferrorraphs often avallable.Colartron cD568 Oscilloscope. Bandwidth SOLARTRON $5 \mathrm{Mc} / \mathrm{s}$. vardable f / f delay. $£ 25$. Hicks, Dartiord 26687. evenings.

VacuUM pumps. pauges. etc. recorders. general scientific and laboratory equipment, catalogue.-V. N.
Barrett \&\% Co. Ltd., 01-654 6770. $\mathbf{S}^{\text {OLARTRON C.T. }} 436$ minlature military scope.
 1OMV/CM. brand ne: with manual; $£ 90$ o.n.o.-
Box W.W. 203. Wireless World.
2 new. unused. Belling-Lee Filtron R.F.I. Hilters. 2 B.F.S.R. 201: sult restarch lab. electronics tratnless World.
TEST sets 219, mains operated. $30 / 0$ carraige $\mathrm{Cl}^{\circ} \mathrm{c}$ alves. EF70. EFT3. etc. fransformers. pots. etc. 5/- carrlage 7/6: Vibators. 12 -volt 4 -pin; new and boxed, 2/-
Cumberland

B B.C.2. TV RADIO. TAPE REC SERVICE SPARES B UHF/ 625 , modIfy your set to B.B.C.2. Manufacurers conversion kits \& tuners, Hst available. Phllps | 65 | |
| :--- | :--- |
| conversion | kit. new. including | Dual $405 / 625$ IF amp and output chassis. new. incl. circuit $38 / 6$. p'p $4 / 6$. Ferguson $625 ~ 1 F ~ a m p ~ c h a s s i s . ~$

nep.
valves $55 /-$ less valves $17 / 6$). p/p $4 / 6$. new. incl. 6 valves $55 /-$ vass valves $17 / 6$) p/p $18 / 6$
New UHF tuners. incl. valves $32 / 6$ less valves 126) New UHF tuners. incl. vaves $32 / 6$ (less valves tuners.
 Brayhead $3003{ }^{30}-$ Cyldon C $20 /-$ K-B. $16 \mathrm{Mc} / \mathrm{s}$ or $38 \mathrm{Mc} / \mathrm{s} 10 /-$ pp p a/6. Many others
ball tuners. push bution tuners. used. $17 / 6$. $\mathrm{p} / \mathrm{p} 4 / 6$.
4. TV Signal Boosters. transistorised. Pye Labgear
and UHF Lattery $75 /-$, UHF matns 976 , UHF mastand UHF Lattery T5/-, UHF matns 97 , ${ }^{97}$, colls. mast frame output transt., mains droppers. etc.0 for all popular
makes. CRTs $14,17,19$ inch from $£ 45$ (callers only. Tape recorder belts. heads. motors. etc Salvageed components. largee selecton transiormers
scan colls.
lurrets. etc. Enquiries invited. C.O.D.
 Load. North Finchley. N. 12 (near Granvilie Road).

EXCLUSIVE OFFER

PERMANENT OR TRANSPORTABLE STEEL 60-FOOT AERIAL TOWERS As supplied to British and other Governments \star Unique design
\star Scientific Construction
having the following remarkable features.
 - Entirely sell supporting, reduling no cuys, sfans, fonn-
dations, plecketa of spiket of dations, plekety of spikel of Fround. Fitted with step ladder to the lop and balcony with tallinke all round (Jou can halk
rikhe round the top witi) beth righs round
hands ffee).
\star ing to gquare at base teperthes are quite sale when scb. ject to kale foree winds and witl accept 50 square leel
superficial sreas on top at superficial srea on top at
lorce of $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. They requre ground area of 20 leet
Witl support ap to 2 tons of equipment on top. the whole lowered io the kroand $\begin{array}{cc}\text { by } 2 \\ \text { minutes ind in } 20 \\ \text { und } & \text { raised }\end{array}$ minutes und raised
in the same time.
t Can be completely \star Can be completely
erected
and disatied by
man. mantled by 3 men.
\star Breaki down. - Breski down 10 lorry into paris easthy malled by 2 men, thereare no small loose parts. no ants or bolit to get host or anmeus and so detínafd to be free from damake when rarsported or lett loose on the erround.
\star Foolprool-tbe Tower canuot be erected if not asseb Lled correctly. No alklled labour la required and no mjecial tools are necessary.
Can be ralsed and lowered, erected a od dismantled ase $1 e^{\circ}$ moved as many times as dexired.

- Everythink necessary for the complete tower to put ings and tustructions.
These Ane Towers were anade in England by B.B.C.i. and coss the Government $£ 2.200$ each. Thes are BRAN ; EW nd is makerty orikinal packing. You can set oue rected at our premises.

Cost £2,200 Price Brand New

 \&345

P. HARRIS ORGANFORD - DORSET

WESTBOURNE 65051

OSMABET LTD.

WE MAKE TKABAFUKMEHZ ALONGSL UTHER THINGS. itumn, fully shrouded, atted lerminal blocka, bil $\%$. $22 / 6 ; 75$ w $27 / 6 ; 100 \mathrm{w} .32 / 6 ; 160 \mathrm{w} .37 / 6 ; 200 \mathrm{w} .55 / \mathrm{w}, 320 / 6 ; 75 \mathrm{w}$ 400 w. $85 /-800 \mathrm{w} .1201 ; 600 \mathrm{w}, 135 /=1,000$ w. $180 /=$ 1.500 w. £12; 2,000 w. £17; 3.000 w. £21: 4.000 w . £25. MAINS ISOLATION TRANSFORMERS. Input $200-240 \mathrm{v}$. A.C. $1: 1$ rat $\%$, $100 \mathrm{w} .70 /=; 200 \mathrm{w} .110 /-; 600 \mathrm{w} .240 /=$
MAINS TRANSFORMERS. InPut $200-240 \mathrm{v}$. AC. TXI $425-0$
 TX2 $280-0-250$ v. $150 \mathrm{~mA} \cdot \mathbf{c} \cdot 6.3$ v. 4 a. ct. $0-5-6,3$ v. 3 a.- $60 /$
 TK7, $45-0 \cdot 45$ v. 1 a. 50%; TX8, $250-0-250$ v. $65, \mathrm{~mA}$, 6.3 v. 1.5 A .
 INSTRUMENT TRANSFORMERS. Prim. $200-240$ ©, A.C. OMT4, Tapped sec., $50-20-30-40-60$ v.: giving $5010-15-20-125-30$. $35-40-65-60,10-0-10.20-0-20,30-0-30$ v. A.C. 1 a. 27/6: 2 a. 37/6 OMT5, Tapped sec. $40-50-60-80-90-100-110$. . हivlag $10-30-80$ $40-50-60-70-80-30-100-110,10-0 \cdot 10,20-0-20,30-0-30,40-0-40$ HEATER TRANSFORME
HEATER TRANSFORMERS. Prim. $200-250$ v. A.C.: 6.3 F
 24 v. 8 a. 110 - : 24 v. 12 a. 1401 . Carriage extra all tranafurmers from $3 / 6$ to $7 / 6$ each.
TRANSFORMERS WOUND TO YOUR SPECIFICATION POWER PACE input $200 / 240$ v. A.C. nominal output I2 BATTERY ELTETY ATORS
 BULK TAPE ERASER, and head detnagnether, 200/250 A.C., sultable any size spool. any type head, $35 /-$. leaflet s.zee. LOUDSPEAKERS, new slock. fatmous make full reage sine. all less 20% list, heavy duty 15 or 25 wati, 3 or 15 ohmy lisi $105 / \mathrm{F}$; 36 watt 15 ohnus $168 /$-. Cantiage 5/6. Liats amic. AUTOCHANGERS. Garrard, I/cartridge, 1000 100/-: 2000 $110 /-; 3000$ 130 -i Bek super slim UA2s wfcartridge. $100 /-$ All brand new, carriage $7 / 6$ each.
CONDENSERS, electrolytic, $2.500 / 50$ v̌, $5 / 6 ; 6,000 / 15$ 3/6: $1000 / 252 / 6 ; 100 / 450$ \%. $3 / 6 ; 100 \times 400 / 275$ v. 3/6: 100×200 350 v. 4/6; min. portage $1 / 6$
FLUORESCENT LOW VOLTAGE HGRTING, input 6. 12. 24 r. D.C. Extensive range of fluorescent fiteings and itwerters. List sa.a.e.
S.A.E. all enquirles please

Mail Order Only,
48. KENILWORTH ROAD, EDGWARE, MIDDX

Tel.: sTOmegnow 9814

You are interested in Radio and T.V.?-Why not

PUT SOME LETTERS

 AFTER YOUR NAMEYou can rapidly qualify in your spare time by means of an absorbingly interesting Chambers Postal Course. We offer expert and highly personal training backed by a " SATISFACTION-OR-MONEY-BACK " Agreement. Over 75 years' experience. thousands of successes.

FREE 100-PAGE GUIDE

Choose from hundreds of CoursesPractical Radio (apparatus supplied), Radio \& T.V. Servicing, Applied Electronics, P.M.G. Cert., City \& Guilds, R.T.E.B., A.M.I.E.R.E., Radio Amateurs Exam., etc. Send today for the informative 100 -Page Chambers Guide To SuccessFREE. (Please state Career, exam. or subject of interest).

Chambers College

(Dopt. 855F) 148 Holborn, London, E.C.1.

ADJUSTABLE HOLE E WASHER CUTTERS

The right Adjustable tool for trepanning holes $\left.\right|^{\prime \prime}-12 \frac{1^{\prime \prime}}{2}$ in diameter
in our range of 17 Models hole and washer cutters 18\% Tungsten High Speed Tool bits

Write for illustrated brochure of our full range with straightor Morsetaper 1-4or Bitstock shank AKURATE ENGINEERING CO. LTD.

Cross Lane, Hornsey, London, N. 8
TEL fitzROY 2670
wW-153 FOR FURTHER DETAILS

TO INSERT AN ADVERTISEMENT IN THE CLASSIFIED SECTION

TELEPHONE
WIRELESS WORLD WATERLOO 3333 EXT. 210

Quartz Crystal Units

For
ACCURACY
RELIABILITY
PRICE ECONOMY
you can
DEPEND
on
Write for
illustrated
Brochure \&
THE QUARTZ CRYSTAL CO. LTD.
Q.C.C. Works, Wellington Crescent,
New Malden, Surrey (MALden 0334 \& 298

WW-154 FOR FURTMER DETAIIS

AMERICAN

TEST \& COMMUNICATIONS EQUIPMENT

AN/APN-9 Loran Receiver Indicators, suitable for navigation or Scope able for navigation or Scope conversion, price
S.A.E. for details.
AN/ARC-33 Transceivers 225/399.9 Mc/s AN/VRC-19 F.M. Transceivers. $152 / 174$ AN/URC-4 \& AN/URC-11 "Handy-Talkies" AN/ARN-6 \& AN/ARN-44 Compass Receiverśs AN/TRC-8 U.H.F. Radio Relay Sets. AN/FPN-13 X band Radar Beacons.
CU-168/FRR 2/32 Mc/s Antenna Couplers. AN/PSM-2A $\begin{aligned} & \text { "M-gger" Insulation Testers } \\ & 500 \mathrm{~V} 0-1,000 \text { Meg. }\end{aligned}$
AN/URM-30 Tesi Set for AN/URC-4s.
AN/PSM-6 Multimeters $1 \mathrm{~K}-20 \mathrm{k} \Omega / \mathrm{PV}$.
AN-URM-61 Signal Generator $1.8 / 4 \mathrm{Gc} / \mathrm{s}$.
TS-47 Test Oscillat or $40 / 500 \mathrm{Mc} / \mathrm{s}$. £25
T-216/GR Xtl Synthesizer Signal Generator $225 / 399.9 \mathrm{Mc} / \mathrm{s}$.
AN/UPM-11A X Band Range Calibrators AN/USM-24A Measuring Oscilloscopes. TS-413C/U Signal Gencrators $75 \mathrm{Kc} / 40$ Mc / s.
TS-497B/UUR Signal Generator $2 / 400 \mathrm{Mc} / \mathrm{s}$. TS-147A/UP Radar Test Sets.
TS-917A/CG (Stelma TDA-2) Telcgraph Distortion Analysers.
ME-22/PCM Decibel Meters-45/+25 DBM Tektronix 541,543 \& 545 spare Tubes Type 5BHP2A. Price £14.

- NEW GENERAL CATALOGUE

SUTTON ELECTRONICS

Salthouse, Nr. Holt, Norfolk. CLEY 289.

PHOTO ELECTRIC CONTROL SYSTEM Comprasea higut source uant with uptionian Intrin hed uter Helay control unit. Both housed in metal cases for bench or wall mounting, sensitivty control, maibs on-oll wwitch. Works trom $230 / 240$ v. A.C. Mains. Can be used an an simple on-oll switch by breaking the bearn of light (Invisible if Infra Bed filter is used) and se such . It will operate an a
burglar alarm, or will open doors, etc. Alo in con burglar alarm, or will open doors. etc. Also in conjunction
Whth a counter or ather equiprnent, it will function in the factory or warehouse. will perform $\mathbf{8 9 . 1 9 . 6}$

M. WIMELENO
 MICROPHONE

84-104 Mc/a. Tranalhtorused. Complete with additionn secret tie clip microphone List R12/10/
ONLY
E6.15.0 ONLY These cannot be operatear
TRAMSISTORISED FM

IUNER

TRANBIBTOL HIOH GUALITY TUNER. BLZE ONLY 6in. \times 4ln. $\times 24 \mathrm{in}$.
3 I.F. stages.
Doubie 3 I.F. Atages. Double output to feed moet amplifiers. Operates on y volt battery. Coverage M8. $108 \mathrm{Mc} / \mathrm{s}$. Ready built

LOUDSPEAKERS. $2^{2} 9 / 6$ 40 ohm $21^{\circ} 80$ ohm, $9 / 6$
12^{*} TWIN CONE $1035 / 0$ Watt, 16 or 3 ohm 10 wate. $18 K$-CPB $29 / 6$
CROSSOVER NETWORK 16 ohm

17/=
 ADAPTOA Primed circuit
biscuit. 4 iranm

bsk tape heads brad. ${ }_{2}$ TRACE $39 / 6$ pair

BSR TAPE heads mall
4 TRACK $39 / 6$ pair
REFLEX CONE TYPE

PA \& Mubic
Relas

$\underset{\substack{\text { ITom }}}{\text { MUlTimeters }} 32 /=$
s.A.E. tor full selecition and thargain otfers in MulthAlarins, Intercoms, WalkieTalkiey, and Rectifers.

SUPPLIES

175E Durham Road, Bradford 8, Yorkshire

ALL GOODS GUARANTEED CONYERTOR/BATTERY CHARGER.

12 y, D.C output $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s} .170$ watts max. Input $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$., output 12 v .5 amp . D.C. Fully Input 240 V . $50 \mathrm{c} / \mathrm{s}$., output 12 v . 5 amp . $10 \times 4 \frac{1}{2}$ in. fused with indicator lamps.
Weight 19 lb . An extremely compact unit that will Weighe 19 lb . An extremely compact unit with plug

DEKATRON SCALER/TIMERS. Various models
from $\epsilon 6$ to $\mathrm{E12}$. Also available Retemeters from E 14 .
Write for details.
TRANSISTORS-Not remakes. ACY 19 Mul..... 4/-ea. 25301 Tex BCZ 11 Mul..... $4 / 6 \mathrm{ca}$. 25701 Tex GET885 Mul. . 4/- ea. 25702 Tex. 2N1305 Rea. . $4 / 6 \mathrm{ea}$ V30/201P New MA393 3/6 ea. V60/10P. New

6SN7 ……... 2/6 еа. 12SN7/B36.... 3/-еа. 12AT7 …...... 2/- еа. 6CH6.......... 3/6 еа. E180F.......... 8/6 еz. 6BR7............ 6/-еа.
COUNTER TUBES GCI OB. $12 / 6$ ea. Trigger
 BROOKS CRYSTALS. $500 \mathrm{kc} / \mathrm{s}: 2,5,10 \mathrm{mc} / \mathrm{s}$. $10 /$ - ea.
RELAYS

American miniature gold contacts, 4 pole co 48 v Brand new boxed $1 / 6 \mathrm{ea}$.
Carpenters type 51 Al/ $/ 50$. Brand new boxed $1 /$ ea 3000 Series 5 k/ohms, 2 pole make, HD contacts $3 / 6 \mathrm{ca}$, Siemens sealed HS, 48 v., spco type H96E, 3/- ea American miniature 4.pole co $12 / 24$ v. 200 ohms. sealed $5 / 6 \mathrm{ea}$
FRACTIONAL H.P. MOTORS. $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.
Brand new. Ideal models, fans, erc. $8 / 6$ ea.
TRANSFORMERS. All 200/250 inputs, tapped $0-6-12-18,3 \mathrm{amp} .15 / \mathrm{e} \mathrm{ea} 7 \mathrm{amp} .30 / ea.$.
H.T. TRANSFORMERS, e.g., $450-0-450.250 \mathrm{~mA}$ $3 \times 6.3-3 \mathrm{amp} .1 \times 5 \mathrm{v}, 2 \mathrm{amp}$. Potted Parmekol Gardiners, as new $50 /$ ea. Write stating requirements NEW DIODES. Mullard genuine OA8I, $1 / 6$ ea CV448/425, 1/-ea.
METROSILS. Ideal pulse suppression 2/- ca
EHT CONDENSERS. 7.5 kv . working, with clips. $0.1 \mathrm{mfd} .5 / 6 \mathrm{ea} .0 .25 \mathrm{mfd} .8 / 6 \mathrm{ea}$.
Cash with order. Post paid over 10/-
CHILTMEAD LTD
22 Sun Street, Reading, Berks.

FOR SALE

E.M.I. RE. 404 Studio Stereo/Mono Mixing Console transistorised throughout.
10 Channels (5 left and right).
Complete with presence filters. Tone Controls and provision for M.S. \& A.B. working with spreader facility.
Fully isolated Monitor System incorporated. Manufactured in 1962.
Price £1,250.
Enquiries to:
CALAN ELECTRONICS LTD.
6 Croft Street, DALKEITH, Scotland. Phone: DALKEITH 2344

GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Sole Manchester Distributors for world famous BRYAN AMPLIFIERS
Agents for Ampex, Akal, Ferrograph, Tandberg, Agents Brenell, B \& O, Vortexion, Truvox, Sony. Leak, Quad, Armstrong, Clarke \& Smith, Lowzher, Fisher. Goodmans, Wharfedale, Garrard, Goldring, Dual, Decca. mans, Whariedale, Gitrobe, G.K.D., etc.
Any combination of leading ampllficrs and speakers demonstrated without the slightest obligation.

THIFF:Tin asilusen andils

MODULAR CONSTRUCTION -

ADD TO BASIC CAMERA AS REQUIREMENT ARISES

TYPE A OSCILLOSCOPE CAMERA

* VIEWING SYSTEMS INCLUDE PARALLAX-FREE VIEWING DURING EXPOSURE
* ADAPTORS FOR ALL POPULAR SCOPES
\star LENSES f1.5, f1.9, f2.8, f3.5. CHOICE OF OBJECT/IMAGE RATIOS
* ACCESSORIES INCLUDE SOLENOID OPERATION AND DATA RECORDING

FILM BACKS: POLAROID 10 SECOND PRINTS: ROLL, PACK, OR CUT FILM ALL CONVENTIONAL PHOTO MATERIALS INGLUDING 35 mm ,
© Registered erade mark of Polaroid Corp. U.S.A
TYPE A. Illustrated; other types available
Full details will be gladly supplied on request

TELFORD PRODUCTS LTD
4 WADSWORTH ROAD, GREENFORD, MIDDX.

bavall

PRODUCT
GROUP
Ww
MEMBER OF BENTIMA GROUP
WW-ISS FOR FURTHER DETAILS

WORLD RADIO \& T.V. handBook

1968 ED. $42 / . \quad$ P. \& P. $1 /$

RADIO HANDBOOK by Editors and Engineers, new 17ch ed. 84/-. P. \& P. 4/6 ELECTRONIC COUNTING, CIRCUITS TECHNIQUES, DEVICES by Mullard, 27/6 P. \& \& P. $1 /$

TAPE RECORDER SERVICING MECH ANICS by Schroder, 21/- P. \& P. I/-
COLOUR T.V. TRAINING MANUAL by Oliphant, 40% P. \& P. $4 / 6$.
COMPUTER DICTIONARY AND HAND. BOOK by Sippl, $90 /-\mathrm{F}$ \& P. $4 / 6$. SYNCHROS AND SERVOS by Brite Training and Retraining Inc. 35/-. P. \& P. 1/ELECTRONICS HOBBIES MANUAL by Standard Telephones, 10/6. P. \& P. $1 / 3$. HAND-
TRANSISTOR SUBSITUTION HAND BOOK, new 7 th ed., $15 / \%$ P. \& P. It-

Where possible 24-hour service guarainteed

UNIVERSAL BOOK CO.

12 LITTLENEWPORTST., LONDON, W.G. 2
(Leicester Square Tube Station)

R adio/ELECTRONIC Retallers advised to send for Reperiodic lists of new/surplus spares snd com-
ponents, good profits. -Detads from Box W.W. 202 .
QUANIITIES of Barretter valves, CL33, CY31 and new 6AQ5, ELS4 6BR7 boxed; have for exchange buy for cash.-Harringay Photographic, 435. Green Lanes. London, N.4. 01.340 5241. [1910 SOUND recording equipment (prolessional), includWing mixers. and spares. Ampex 350 portable re-
corders. power packs. etc. surplus to requirements major London Studto: s.8.e. for ILsts.-Box WW 1965 Wireless World
A Better deal for cash customers. We do not provide of 15% for cash. Equipment despatched brand new in sealed cartons on receipt of remittance with order Agents for all leading makes. Demonstrations, service Kuldance,-Write or 'phone. Callers welcome. Open
all day Saturday, Thursday half day,-Audlo Services. Ld.. 82. East Barnet Rd., New Barnet, Herts. Tel

EFIL ARTICLES WANTED

GLASS workus machinery, regunntng plant, vacuum Barrett. 01-654 6470

- ALVE voltmeter-2 millivolts to 30 volts. Marcont R050A Oscilloscope for Voddeo Dreferred. Also Roband R050A Oscilloscope for Video Servicing.-01-472 2110
W anted, all types of communications recelvers Electronics. Ltd.. Ashville Old Hall. Ashville Rd.. Lon-
don. E.11. Ley. 4986 .

NEW GRAM AND SOUND EQUIPMENT

CLASGOW.-Recorders bought. sold. exchanged; verameras. etc. exchanged for recorders or vice.

BUILDING A "SCOPE

Indicator unit type 10053 , One of the finest units to appear on the surplus market, modern manufacturer, $10 . \mathrm{B} .7 . \mathrm{G}$, and 3.10 , valves, buil in E.H.T. unit producing 3 kV . 10 a brilliance, focus, X and Y shifi C.R. 517 tube, orillance, tocus, X and Y shift. Controls on front panel, circuit diagram supplied. Ideal for conversion to an oscilloscope. Size of unit 7 in. $x 7$ in. x 19in. long. Used but good condition $60 /-$, carriage $19 /-. \quad$ Circuit diagram
sold separately, $3 / 9$, Post Free.

New Catalogue No. 17. Government and manufacturers surplus. Also new components, 3/- posi frce.
QADIO COHTROL RTHUR $15^{93 \text { NORTH ROAD }}$ BRIGHTION BRIGHTON thertix ratich surpus

SDREDUS BRETHilns

 ratisinalt 500 v. D.C. slightly used. 55 -. Belected condition 85/-: All 19 set ancillary parta avallable.
No. 31. TRANSCEIVER VRF,
0. 31. TRANSCEIVER $V E F, 40 / 48 \mathrm{Mc} / \mathrm{s}$. Tunable. 90 No. 88 . TWO-WAY RADIO, $40 / 42 \mathrm{Mc} / \mathrm{s}$. Crystal controlled.
 B44. VHF RADIO TELEPEONE. $60.95 \mathrm{Mc/a}$. Crybtal con

Vo. 62. TRANSMITTER RECEIVES, $1.6-10 \mathrm{Mc/a}$. Tumabl
 atation. Brand new. 12 or 24 ₹. D.C. operation. $£ 18 / 100$ No. 52 RECEIVERS. Pew left. Used (serviceable). 87/10/TUBULAR STEEL TELESCOPIC AERIAL MASTS. 20 . 4 section, $70 /-$. 32 ft . ay above with 12 th . whip. 80%. 34 ft .
MAKE YOUE OWN AERIAL MAST!
61t. 8 Ln .. 2 in . dia, interlocking wteel sections (7 sections make 25ft. mant). $20 /=$ per section.
FYLON GUY ROPES. with 6/6. soft. 7/8. 60RL, 9/a
ROTARY TRANSFORMERS $82 / 6$
Output 250 ษ. D.C. at 125 mA ., $251-12$. 12 v. D.C. Intut, 490 v. D.C. at 65 mA .. $25 /-$-.
REJECTOR UNIT. For rejecting unwanted signals. Ewtichet 4 rangea. $1.2-10 \mathrm{Mc/a}$. $30 / \mathrm{l}$.
R.F. ANTENNA TUNER (A.T.U.). 160/80/40 metres. 25/6 MOVING COIL READPBONES. Soft rubber earpadi. 18/6 DIEADSET WITH BOOM MICROPHOENE. AB wsed with 88 get
MOVING COLL HEADPRONES AND MICROPBONES. $21 / 6$. MOVING COIL FIST TYPE MICROPEONE. $17 / 6$.
TELE "P" SETS. High Power No. L Mk. II, with ampliter
ALL ITEMS CARRIAGE PAID MAINLAND ONLY
Lists giving fuller details of these and many other surplus bargains, $2 /=$. S.A.E. all enquiries (Please
A. J. THOMPSON (Dept. WW)
"Eiling Lodge" Codicote, Hitchin, Herts. Tel.: Codicote 242

FOR SALE 2,000,000 TRANSISTORS

BRITISH MANUFACTURERS SURPLUS Owing to the reorganisation and expansion by the manufacturers of these transistors, it has been necessary to clear them as surplus to requirements. These devices would normally be tested several times into different groups, approx. 50% would be used as good industrial transistors and a further 35% would make diodes. The remaining 15% would be disposed of as scrap rejects.

Offering these devices in varied quantitics mak them ideal for AMATEUR ELECTRONICS, RADIO HAMS and for EXPERIMENTAL USE IN SCHOOLS, COLLEGES and INDUSTRY.
All transistors are in mixed lots, mainly PNP but some NPN, all are Germanium type. Prices and quantities as follows:-

100 pieces (approx. count by weight)
300
500
1,000
10,000

SURPLJS AANDBOOVS

19 ret Ctrcuit \& Notes
Li55 set Oircnit \& Notes
H.R.O. Technical Instractions
38 set Technical Instructions.

38 set Technical Instructions
48 set Working Instuctions
48 set Working Instructions
88 set Technica! Instructions
BC. 221 Circuit \& Notes
Wavemeter Class D Techu. Ins
18 set Circuit \& Notes
8C. 1000 (31 set) Circuit \& Notes
CR. 100 OB28 Circuit \&
A. 107.88 Circuit \& Notes

62 set Circuit \& Notes
52 set Sender and Receiver Circuits
Circuit Diakrams 3/- each, post free. R. $1116 /$ A. R. $1224 /$ A. R. 1353, RF. 24,25 \& 26, A.1134, T.1154 Resistor Colour Code Indicator, $1 / 6 . \mathrm{p} / \mathrm{p}$ 6d
Posiage rates apply to OV. A. only.
INSTRUCTIONAL HANDBOOK SUPPLIES, Dept. W.W TALBOT HOUEE. 28 TALBOT GARDENS. LEEDS. 8

DAMAGED METER?

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all ypes and nakes of

TERMS:-CASH WTTH ORDER, an goads sent by return. Please add $2 /-$ towards Post $\&$ Packing orders up to £3, over £3, 5/-. Monthly accounts for Education Authorities, etc. on receip of an Official Order. Minimum order $£ 3$.

EXPORT ENQUIRIES WELCOME All correspondence, cheques, Postal Orders, etc. to DIOTRAN SALES, P.O. Box 5, 63, High St., WARE, HERTS.

Tel. WARE 3442

CURSONS TRANSISTORS

ALL GUARANTEED

1/. each. BAY3I, BAY50, DKIO, OA70, OA8I
2/- each. XA101, XA102, OC71, OC72, OCAI, OC8ID, OC44, OC45, GETI6, FST3/I, ACY22. 3 -each. OCI 39, OCI $40,2 \mathrm{~N} 706,2 \mathrm{~N} 708,2 \mathrm{~N} 2894$, BY100. RAS3IOAF, 2N914, BSY26, BSY27, BY9SA, AFZ12. BFYI8, BFY19, BFY26.
$7 / 6$ each RASSO8AF, CRS3/40, BLYIO, BLYII BUY10, BUY11, ADY22, ADY23, ADY24, OC26.

ZENER DIODES

3.9 v. to 26 v ., $\frac{1}{d}$ w. $3 / 0$ each; $1.5 \mathrm{w} .4 /-; 7 \mathrm{w} .5 /$ eea. CURSONS. 78 BROAD STREET, CANTERBURY KENT S.A.E. LATEST NEW LIST

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves, and transistors, cables electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12 RING 4452713

4450749
9587624
9589842 Meters, Electrical Thermometers, Recording Instruments, Leak Detectors. Temp. Controllers. all types Bridges \& Insulation Testers, etc.
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in the Industry. For prompt estimste and speedy delivery send defective instruments by registered post, or write to Dept. W.W.:-

[^16]

 for electronic components-by return

Valyes
 VALVE cartons by return at keen prices; send $1 /-$ for all samples and Mst.-J. \& A. Boxmakers, 75 a , Godwin St., Bradiord. 1.

VALVESWANTED

We buy new valves. tranststors and clean new com Wonents. tarke or small quantittes. all detalls quotation by return.-Walton's
Worcester St., Wolverhampton.

C CAPACITY AVAILABLE

A IRTRONICS Lid., for coil winding, assembly and unit sheet metal work. 3 Fa , Walerand Rd. London S.E.13. Tel. 01-852 1706 .

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

RESISTANCE WIRES
 EUREKA-CONSTANTAN Most Gauges Available

NICKEL-CHROME
 MANGANIN

NICKEL-SILVER

COPPER WIRE

ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED
SMALL ORDERS PROMPTLY DESPATCHEDB.A. SCREWS, NUTS, WASHERS, SOLDERING TAGS, EYELETS and RIVETS
EBONITE and BAKELITE PANELS
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES, ALL DIAMETERS
SEND STAMP FOR LIST. TRADE SUPPLIED
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4 Telephone 01-254-4688

B
3.P.A. ELECTRONICS can undertake immediately, Electro-Mechanical assembly and wiring, Coil winding Electro-Mechanical), cabse formink. vacuum impregnation and encapsulation. printed circuit board manutacune includink layout and preparation of artwork
inspection to AiD. or A.R.B. if required. Boulton
 Paul
3191.

SERVICES OFFERED JOIN Audio Supply Association 7/6 p.a. 65-page photo- graphicaly Hustrated. non-advertising Hi-Fi cataJoIN Audio supply Assichation Moveralising Hi-Fi catalogue $5 /-$ equipment housing booklet guldes for sale buying.-10. Clifford St.. London. W.1. II

TUITION
 TV and Radio. City of Guilds. R.T.E.B. Certs. etc. Inds of passes. For full detals of exams and home ands of passes. (including practical equipment) in all branches of radio. TV. electronics, etc. write for 132 page handbook-free; please state subject.-British Institute of Engineering Technology (Dept. 150K), Institute of Engineering Technology (Dep Aldermaston Court. Aldermasion. Berks.

KingSTON-UPON-HULL Education Committee.
Coliege of Technology, Princlpal E. Joues. M.Sc. FOLL-TIME courses for P.M.G. certificates and the radar maintenance certificate, also in electria and
electrontc enxineering.-Information from College of Tectronlogy, Queen's Gardens, Kingston-upon-Hull.

STUDY radio, television and elfctronics with the City \& Gullds. R.T.E.B.. ete. Also practical courses with equipment. No books to buy. Write for free pros pectus to ICS (Dept. 442). Intertext House. London. SW11.
R ADIO ofticers see the world. Sea-going and shore R appointments. Trainee vacancies durlng 1968 . Grants avallable, Day and boarding students. Stamp
for prospectus.-Wireless College, Colwym Bay. [12

GENUINE BRAND NEW PRODUCTS AT LESS THAN half PRICE

BRAND NEW BRITISH RECORDING TAPES-P.V.C POLYESTER AND MYLAR, with flted leaders th poly-
 inported or usual tapen.

inporteal or ustal taper.						
8.P.	$3{ }^{*}$	$180{ }^{\circ}$	Hf	5	600°	\%1-
	55°	900	8/0	7	1,200	9.
L.P.	3	25^{\prime}	2/4	5	ก100\%	$8 / 6$
	$8^{3 *}$	1.200	10/-	5	1,800'	$131-$
D.P.	3^{-}	$350{ }^{\circ}$	4/4i	5	1.300°	123-
D.1.	38*	4.800	18j.	7	2,400 ${ }^{\circ}$	$20 /-$

on tape, in brencin, GERMAN, ITALIAN, GPASISI, Full nel course of es lewors recorled at $3:$ Lp.a. on Scoteh at E.M.I. Counne lawt 1 hr . and is complete with masomal. our price Junt 19/6, retail- \quad 9/0.

0003	8 -	AFItH	4/-	AD149	8/-
0025	8/-	A1:117	4/-	Аキ\%し2	81
0084	8/-	AF'118.	4/-	HCYs3	816
O02 2	81.	Ar119	41.	10.734	$6 / 6$
OC36	10/-	A 1 ' ${ }^{\text {A2 }}$	4.	BCY38	$6 / 6$
OC3s	$18 / 6$	AC107	81/	18CY39	6/6
0×44	3/-	AClus	4 -	BFYOO	5/6
$0 \mathrm{OC4}$	$31-$	Acl27.	4-	HrY51	$5 / 6$
OCAH	3/-	ACl2s	$4 i^{-}$	BFYS2	$5 / 6$
0070	3/-	ADIto	81	GETT10s.	4/-
0 C 71	3 -	OClisi	4/	GETIL3.	40-
0 Cl 2	3-	0clas	4		10\%
0073	3 i-	$0 \mathrm{Cl170}$		GET118.	5:-
0078D	3.	$0 \mathrm{CLI7}$	$4 /$	CETII9.	5/-
OCW1	3)-	0 CL 72	4-	(1)TT573.	5/-
00x11)	3 -	00200	81/	GVT587.	B/-
OC:'3	3 -	0 C 22	81	GETR73.	$4 /$.
0c7*	$3 i=$	OC30	8/-	(1)T887.	4/6
OC\%	3.	OC3u	$12 / 6$	GET889.	46
0c>>>21)	3 /-	OCTI	$4 /$	CH:TA90.	46
OLSH	$4 / 6$	00481	41-	OLT890.	416
AFFld	4.	0 Cl 23	46	Gfit89\%.	$4 / 6$
AF113	4/-	2 N 404	6/6	dET898.	4.

TRANSISTORS, MATCEED SETS
OLAA+2 OCA5. ber set. 10/-
1 antsitp aleeved Yellow OCA4, per set. 10/-
 1 ocsid +2 ocal, per set, $9 / 6$.
OC83 (1ETI18/119, net of $3,9 / 6$.
DIODES. OA81 4/-. OA9S 4/F, OA182 4/-, OA20: $4 / \mathrm{d}$ SILICON DIODES

ELAC SPEAKERS. $7 \times 4 \mathrm{in}$. Price 12/6

- TRANSISTOR PUSH/PULL ULTRA, Lin amplifier, 1 uall
 frice 15/6.
Cabinet TO MATCH ABOVE, 10/-
VOLUME CONTROLS, wilh, awitch, prlce 3/6
TRANSISTORISED CAR RADIOS. normally TRANSISTORISED
Our price £6/10/6.
TELESCOPIC CAR AERIALS. 3 extenaions. price $17 / 6$ ALL GOODS SUPPLIED CARRY OUR MONEY BACK SATISFACTION GUARANTEE
Pontage on adl aricure 1
STARmAN. 28. Linkscroft Averue, Abblord, Middiesez Ashford 53020.

DUXFORD ELECTRONICS (W.W.) DUXFORD, CAMBS.

C.W.O. P. \& P. 1/-. Minimum order value 5/-. (Trade inquiries invited)
POTENTIOMETERS (Carbon): Long life, low noise. $\frac{1}{2}$ at $70{ }^{\circ} \mathrm{C} \pm 20 \% \leq t M, \pm 30 \%>\frac{1}{2} M$, $80 d y$ dia. $\frac{t}{t}$ in. Spindle lin. $\times \frac{1}{2} i n ., 2 /-$ each. Linear: $1 k, 2.5 k, 5 k$, etc., per decade to 10 M . Logarithmic: $5 k, 10 k, 25 k$, etc., per decade to 5 M .
SKELETON PRE - SET POTENTIOMETERS (Carbon): Linear: $1 k, 2.5 k, 5 k$, etc., per decade to 5 M Miniature: 0.3 W ar $70^{\circ} \mathrm{C}$. $\pm 20 \% \leq t \mathrm{M}+30 \%>1 \mathrm{M}$ Horizontal ($0.7 \mathrm{in}, \times 0.4 \mathrm{in}$. P.C.M.) or Vercical $(0.4 \mathrm{in}$. $\times 0.2 \mathrm{in}$ P.C.M.) mounting $1 /-$ each.

Submin. 0.1 W as $70^{\circ} \mathrm{C} \pm 20 \% \leq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Hori zontal ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.) or Vertical ($0.2 \mathrm{in} . \times 0.1 \mathrm{lin}$. P.C.M.) mounting, 10 d . each.

RESISTORS (Carbon film): High stability, very low noise, $t W$. at $70^{\circ} \mathrm{C}$. Body. $\frac{1}{3}$ in. $\times \frac{1}{1} \mathrm{in}$. Values in each decade $10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47$, $51,56,62,68,75,82,91$ from 4.7Ω to $1 M, 45 \%, 2 \mathrm{~d}$. each. $1.2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}, 3.9 \mathrm{M}, 4.7 \mathrm{M}, 5.6 \mathrm{M}$. $6.8 \mathrm{M}, 8.2 \mathrm{M}, 10 \mathrm{M} . \pm 10 \%, 2 \mathrm{~d}$, each.
SILICON RECTIFIERS: 0.5 A at $70^{\circ} \mathrm{C} .400$ P.I.V., 3 800 P.I.V., 3/3 1,250 P.I.V., 3/9. I,500 P.I.V. 4/-
SEMI-CONDUCTORS (AII NEW), OAR, OA81, $1 / 6$ OC44, OC45, 1/9. OC71, OC72, OC73, OC81, OC81D OC820, OC170, OC171, 2/3, OCI 40 , AFII 5 , AF116, AFI 17 3/-. SEND S.A.E. FOR FULL CATALOGUE.

FREE to ambitlous engineerst 132 -page Guide to City \& Guilds, A.I.O.B.E.E.R.E.A A.M.S.E. A.M.I.M.I. *t Satisfaction or A.I.O.B... A.R.I.C.S.. G.C.E.. etc. Ren Enver 600 Home study Courses in all branches of Engineering. Buhling. Radio. Electronics, etc.-Write: B.I.E.T. (Dept. 15IK). Aldermaston Court. Aldermas-

LAWSON HRANID NED TELEVISION TUBES
 Complete fitting instructions
 Terms: C.W.O. Carriage and insurance 10%
 LAWSON TUBES
 18 CHURCHDOWN ROAD MALVERN, WORCS.
 Tel. MAL 2100
 he conamally increasing demand for ruber of the ver nghest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s.
 "Century 99" are absolutely brand nerv tubes throughout mannfaciured by Britain's largest C.R.T manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type givi.ig maximum Contrast and Light output; rogether with high reliability and very long life.
 "Century 99 "are e complere range of tubes in all sizes for all British sets manufacrured 1947-1967.
 2 YEARS FULL REPLACEMENT GUARANTEE. WW-156 FOR FURTHER DETAILS
 12"- $44: 10: 0$
 14"-65:10:0
 17"-65:19:0
 19"—66:19:0
 $21^{\prime \prime}-67: 15: 0$

T.E.R.E.., Clty \& Guilds and R.T.E.B. exams. SpeForladsed ICs home-study course will ensure success. For details of wide range of exam. and diploma courses in radio, TV and electronics. also new practica! courses Wondon, SW11. to: ICS (Dept. 522), Intertext House,
[23

TEST EQUIPMENT - SURPLUS AND SECONDHAND

SIGNAL generators, oscilloscopes. output meters. wiave etc.0 etc. In stock.-R. T, \& 1 . Electronics, Lid.. Ashville Old Hall, Ashville Rd., Loncion, E.11. Ley. Ash-

RONDON CENIREAS ReadLO STORES

10-WAY PRESS-BUTTON INTER-COM TELEPRONES

 Bakelite case with Junction box handex:20-WAY PRESS-BUTTON INTER-COM TELEPHONES 20-WAY PRESS-BUTTON INTER-COM TELEPEONES in Bakelte case with
Ouarantect.
E $7 / 15 /-$ per Unition
Unit.
MODERN HAND SETS with colied lead. griy, white and black MODER P. P. 3/
telephone coiled hand set leads, 3 core 5/6, P.r, $2 /$ MODERN DESK PRONES, 2 tone grey or bleck, with internal

Wireless SET No. 38 A.f.7. Freq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{s}$.
 Inctuden power kupply 8 , and spare valveinle F.P. $26 /-$ ELECTRICITY SLOT METERS (1/- in flot) for A.C. maing Fixed tariit to your requiremente. Sultable for hotela, etc

 QUARTERLY ELECTRIC CHECK METERS, Leconditioned as new. 200/2z0 v. 10 A. 42/6: 16 A. $52 / 6$
TWIN GONG TELEPHONE, cxteniou belle, 2ע-
8-BANK UNISELECTOR SWITCHES. 35 contacta, altemate wipink $£ 2 / 15 /-;$ B bank lati whpe $£ 2 / 151-; 0$ bank half wipe 25 contacts 47/B. P.P. 3/8.
DESK PHONES. Black Rakelite cance, complete wilh band ret dud interual beil with 0.1 diai. 42/6. P.P. of
HIGH-SPEED ELECTRO-MAGNETIC COUNTERS. Er-GONt MOH-GEED ELECTRO-MRN Single coil thon, B/6. P.P. $3 / 6$

- boyt balanced armatore throat mikes complete Ex ith plug, bew, 7/6. P.P. 3/8.

DESK PHONES from 35/=. Various typen in atock. Final End Selectom. Belitsy, Various callers, also 13 Receivers In stock. All for callers oniy.

23 LISLE ST. (GER 2969) LONDON W.C. 2
closed Thursday 1 p.m.
Open all day Salurday

RECEIVERS AND AMPLIFIERSSURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640 Al etc. etc. in stock. -R. T. \& I. Electronics. Lid. Ashville Old Hall. Ashwille Rd, London. E.11. Ley
4985

TECHNICAL TRAENING

CITY \& GUILDS (Electrical, etc.) on '. Satisfaction Or Refund of Fee "' terms. Thousands of passes. trical engineering, electronics. radio. T.V., automation trical send for ilectrones handbook-free.-B.I.E.T (Dept. ${ }^{152 \mathrm{~K} \text {). Aldermaston Court. Aldermaston. Berks. }}$

B ECOME "Technically Qualified" in your spare time $B_{\text {guaranteed diploma and exam, home-study courses }}$ in radio, TV, servicing and maintenance. R.T.E.B.E Guide-free.-Chamber's College (Dept. 857K). 148 , olborn, London. E.C. 1
P.M.G. Certificates, City $\&$ Guilds and I.E.R.E. Examinations. Also many non-examination courses in Radio. TV and Electronics. Study at home with world famous 1.c.s. Write for ree prospectus stational 443). Intertext House. Parkgate Rd.. London. S.W.II,

Abstract

BOOKS ULTRASONIC delay Lines." C. F. Brockelsby R. W. Glbson. B.Sc. (Eng.), Grad. I. Mech E. The authors are members of a ceam which has been working on ultrasonic delay lines. since the early days. at the Mullard Research Laboratorles. This is the frst book to be written specincally on the subject. which has important applications in radar. radio and television. electronic computers. pulse-forming networks, correlation techniques and mult-channel communtcation systems. The early chapters discuss basic principles and the various type of delay lines are then covered. lines deals fully with the design of broad-band ampliflers, osctilators, etc., either with transistors or valves. The last two chapters are devoted to the delay line measurements and the many applications of delay lines. Among the five appendices there is one con- taning nearly 60 curves which aive the characteristics of many delay line materials. The final appendix discusses one of the latest developments. ceramic transducers, 65\%-net, 66/3 by post.

COLOUR TELEVIIION

With particular reference to the

PAL SYSTEM

There are 157 diagrams and photographs and 83 illustrations. in colour.
y G. N. Patchett
40/-
Postage 1/-
MODERN TAPE RECORDING \& HI FI, by K. Peters. 30/-. Postage $1 /$.
SYSTEMATIC ANALOGUE COMPUTER PROGRAMMING by A. S. Charlesworth \& J. R Flecther. 25/-. Postage 1/-.

ELEMENTS OF FEEDBACK \& CONTROL. by A.M. Hardie. 55%. Postage 1/-.
ELECTRONIC ENGINEER'S AEFERENCE BOOK, by L. E. C. Hughes \& F. W. Holland 126/-. Postage frce.
COMPUTER DICTIONARY \& HAND. BOOK, by C. J. Sippl. $90 /$-. Postage $2 /$-.
RADIO VALVE DATA, 8th ed., compiled by WW." 9/6. Postage 1/-

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Sat. I p.m.

Two New Titles From lliffe Books

ILIFFE BOOKS have acquired the exclusive UK, European and Commonwealth sales rights of these important books

Integrated Circuit Engineering

Basic Technology
By the Staff of Integrated Circuit Engineering Corporation,
Phœnix Arizona
391 pp fully illustrated 220 s net. 4 s 6d. postage.

Microelectronic Technology

Selected Articles from Semi-conductor Products and Solid State Technology

Edited by Samuel L. Marshall 232 pp fully illustrated 130s net. 1s 6d. postage.
ovailable from leading booksellers ILIFFE BOOKS LTD DORSET MOUSE, STAMFORD ST., LONDON, S.E. 1

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send stamps value 9d. for 16 page booklet and supplementary data sheets Nos. I and 4 giving the fullest and latest information.
CECIL E. WATTS LIMITED Darby House Sunbury-on-Thames, Middx.

INSTANT** ELECTRLCITY ANYWHERE! AMALING NEW AMEKLLAA UYMA.

 MOTOR UNIT Which ruhs trom any12-v. CAR BATTERY And produces a 12-q. QAR BATTERY and produces a 240 F. At 220 watis. Marvelloras for TELEVIBION, ELECTRICAL DRILLS, MAINS LGBTLIG and all Universal AC/DC malns equipurni. Wonder-

 eavelope for llumtrated detalm. Oped. 7 dend arampe
SCIENTIFIC PRODUCTS (Dept. H)
Onward Building (rear of Flectwood Arms Hotel), Mount Street, Fleetwood, Lancs.

FOR SALE-

4 Westminster Multiwinders, 10-way Automatic Interleave.
PRICE: $£ 100$ each and carriage. Can be viewed by arrangement.
Large range of
TRANSFORMER LAMINATIONS in Radiometal, Mumetal \& H.C.R. "C " and " E " cores-Case and Frame Assy"s. Please send for list.

J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. : 01-203 1855 \& 3033

WANTED

High Band, Fixed Station (25 Watt minimum) in working order or repairable. Full details, Manufacturer, Model, Age, Condition, Price, etc.

Box No. 5041 \% "Wireless World"

SERTO AND ELECTRONIC SALES LTD. RECONDITIONING SERVICE POR INDUSTRIAL INSTRUMENTS Moving Coll Multi-range Meters. Electical and Electronle Test | Equipmant o1 all kinds. Estimates given for all repairs. |
| :--- |
| 67 London Road Oroydon. 8 arrey | 67 London Romd, Oropdon. 8arry

(Invtrument Repstry and Counter Tal.: 01 -888 161 WE ARE SPECLALISTS SOPPIIERS LIN ELECTRONICS, AUTOMATIOA
Also at: 43 High AND ELEGTROMECHANICs Orptrgton. Kens Tel.: 8106833976 Mill Road, Lydd. Kent Tel.: Lydd 252

DEDMOS ${ }_{\text {Lt }}$
 TAPE RECUKUEKS rUR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO slogie and multichannel 8 CORWALLLANE, HILLINGDON, MDX.

HAYes 3561

 WW-159 FOR FURTHER DETAILS
TRANSFORMERS

 MAINS TRANSFORMERS IVA TO 2.5 KVA AUTO TRANSFORMERS 20 watts to 5,000 watesTrade and Professional Enquiries Only OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD LONDON, N. 7 NOR 2914

ENTHUSIASTS
for tape recording subscribe to the Magazine with the ZEBRA stripes! 25/ (U.S.A.) ${ }^{\text {³.75) }}$ yrly. incl. postage. FREE SPECIMEN COPY ON REQUEST PRESTIGE HOUSE, 14-18 HOLBORN, LONDON, E.C.I. OI-242 4851

[^17]
BERRY'S RADIO

Require

COUNTER SALES STAFF AND
STENORETTE ENGINEERS
(fully experienced applicants only)
5 day week, L.Vs., PERMANENCY

25 HIGH HOLBORN, LONDON, W.C. 1

WW-160 FOR FURTHER DETAILS

DINSOALE MK II AMPLIFIERS

Printed circuits and parts for mono and stereo versions. Special now power amp. printed board ellminates earth loop problems.

BAILEY 20 WATT AMPLIFIER. All pares available for this unic including Radiometal-cored Oriver Transformer and recommended bi-fllar wound Mains Transformer.
MULLARD 10 W . A.B. TRANSISTOR AMPLIFIER. SPECIAL CLEARANCE.
Printed Circuit Boards to Mullard specificacion, fully drilled and fluxed. Price 4/- each or 7/- for two post free.

Layout Diagrams 9d. each. All other parts available. Please send S.A, E. for all Lists.

HART ELECTRONICS
321 Great Western Street, MANCHESTER14

RESISTORS
$\frac{1}{8}$ watt carbon film 5%
All preferred values in stock from 10 ohms to 10 megohms, 2d. each.
Send S.A.E. for free sample.

CAPACITORS

Mullard Miniature Metallised Polyester P.C. Mounting, all 250 V . D.C. working. 0.01 mf ., 0.022 mf ., $0.047 \mathrm{mf} ., 0.1 \mathrm{mf} ., 0.22 \mathrm{mf}$, all at 6 d . cach. Hunts tubular 0.1 mf . 200 V . working at 3 d . each. Send 6d. stamp for extensive list of low-priced Electronic Components, Instruments \& Equipment Please include $1 /=$ postage $\&$ packing on all orders under £1.
Dept. WW8.
BRENSAL ELECTRONICS LIMITED,
CHARLES STREET, BRISTOL, I.

VIDIO RECORDING TAPE

LARGE QUANTITIES OF HALF-INCH AND ONE-INCH VIDIO RECORDING TAPE AVAILABLE, TESTED AND GUARANTEED ALSO QUANTITIES OF HALFINCH AND ONE-INCH PRECISION TAPE SPOOLS AND CASES.
prices on application
RADIO TRADERS LTD.
8 STEPHEN STREET,
TOTTENHAM COURT ROAD, LONDON, W.I
Tel. O1-636 4666

A BACS of Nomosrams." By A. Glet. Translated from the French by H. D. Phlppen and J. W. Head. Mast engineers have made use of nomgrams at some time in their careers, and are fully alive to the fact that they are a very conventent tool then the same formula has to be solved repeatedly for several sets of variables. It is fair to say, however. that only a small proportion of even those who habitually employ nomoframs know how to construct them for their ovna use. Mast of the comparatively small literature on the subject is written for mathematicians and Is extremely difficult for the practical engineer to comprehend. This book is essentially practical and not only demonstrates the many and varled applicathons of the abac of nomogram, but shows how even those without highly specialized mathematical know ledge may construct their oun charts, 35/- net from all booksellers. By past $36 /$ - from Inffe Books Ltd., Dorset House. Stamford St., London, S.E.1.

OCOLOR CINE RECORDING TAPE Superior quality 5 reel, 900 ft . L.P. with strobe markings, also cine light deflector-mirror. Suitable all taperecorders and OUR
cineprojectors. List $28 /$. PRICE $\mathbf{4 / = \text { EACH }}$ Post $2 / 6$

SMITHS PRECISION SIX MINUTE DELAY ACTION SWITCH

Clockwork actuated
$10 / 6$ EACH (3 or more
Separate switching up to 6 mins. 15 amps. 250 volts. MADE FOR ROLLS WASHERS. Ideal photographic timer, sequence switching operations, etc., etc. Brand new units at a fraction of thelir valde.

SPECIAL PURCHASE STELLA RECORD PLAYER Amplifier and Loudspeaker-all transistor-top performance of discs at $33 \frac{1}{3}, 45$ and $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. LP xtal cartridge. Smart red or blue plastic cabinet.
WORTH DOUBLE WORTH DOUBLE

the instant bulk tape ERASER AND RECORDING HEAD

DEMAGNETISER

$\underset{\substack{200 / 250 ~ A . C . C .}}{\text { Leaflet S.A.E. }} \quad 35 /-{ }_{2 / 6}^{\text {Post }}$

TRANSISTOR BOOSTER-

DOUBLE YOUR VOLUME! Black plastic cabinet speaker with 20 ft. lead for transistor radio, intercom, mains radio, tape recorder.
Size: $7 t \operatorname{lin}$. 5 tin. x in. $30 /=\begin{gathered}\text { Post } \\ 2 / 6\end{gathered}$

SPECIAL OFFERI BRAND NEW B.A.S.F. TAPES 60 min . Cassette C60 (For Philips etc.) $17 / 6$ 7 in. L.P. 1,800 ft. (Cat. LGS35) 45/* Post 2/6-3 or 7 in . D.P. 2,400 ft. (Cat. LG\$26) 70\%- more post free.
radio component Specialists
337 WHITEHORSE RD., CROYDON, TeI: 01-684-1665

200/250 volls, 20 amp. contucte,
ON/OFF twice every 24 hours at any manlually pru-set times. By-pass override, 38 bour spring reserve, overcnmee stoppling wilh folar dial if requited. on Joed but perfect. IIMITED QUANTITY 69/6 P. d. P.t/s
 HORSTMANN IS DAY COCKWORK TIME SWITCH Jewelled movement. Once ON/OF'H erery 24 houng at any inanually pre-pet themew Kiey and mounthg bracket. Ueat but perfect. 5 smp model. V'ully gharanteel. $35 / . \quad$ P. \& P. 4/ft. VENNER $200 \% 250$ v. FLASHER ONITS. ON/OFF every second noow contacth. supprewsed. Kecondtioned. 42/6 inc. powt.

Box 365, KINGSWOOD SUPPLIES (w.w.10) 4, SALE PLACE, LONDON,W.2. Tel:01.7238189.

WW-162 FOR FURTHER DETAILS

Television Engineering Principles and Pracilce vol. III. Waveform Generation." by S. W. Ames B.Sc.(Hons.). A.M.LE.E. and D. C. Birkinshaw, M.B.E.. M.A.. M.I.E.E. The third volume of a comprehensive work on the fuadamentals of television theory and practice. written primarily for the instructhon of BBC engineeting statf. This volume gives the application in television and sinusoidal, rectangular. sawtooth and parabolic waves and shows the mathematical relationship between them. The main body of the text is devoted to the fundamental principles of the circults commonly used to generate such signals. the freatment being largely descriptise in nature and. therefore less mathematical than that of the previous volume. The work is intended to provide a comprehensive survey of modern television principles and practice. $30 /$ - net from all booksellers. By post $31 /$ from Iliffe Books Ltd., Dorset House. Stamiord St. London, S.E. 1.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 6/- PER LINE. Average seven words per line.
- Name and address to be Included in charge if used in advertisement.
- Box No. Allow two words plus 1/.
- Charges etc., payable to "Wireless World" and crossed "\& Co."
- Press Day 6 February for March 1968 issue

NAME

ADDRESS

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

'Hike-Mike' really started something... the finest range of radio microphone systems in the world
 From the very successful general purpose unit Hike-Mike has developed a whole range of special purpose microphone transmitters each one precision made for precision perfor/mance. Suitable for both hand-held and Lavalier operation. Write now for descriptive literature of these and the full range of Audac Audio Equipment. Demonstrations with pleasure.
 audac marketing company limite / carey road / wabeham / oodset / telephone wareham 2255 .

WW-163 FOR FURTHER DETAILS

INDEX TD ADVEIRTISERS Appointments Vacant Advertisements appear on pages 119-129

Unlfab
Universal Book Co................................... 884

Z. \& I. Aero Services. Ltd. .. 116. 117

[^18]SOLDERING EQUIPMENT

MANUFACTURERS OF THE WORLD'S FINEST SOLDERNG INSTRUMENTS

CATALOGUE SURVEY No. 4 THE L. 107.

THIS INSTRUMENT IS THE BIG BROTHER OF THE L64 aND IS PARTICULARLY SUITED TO THE LARGEST TAGGING WORK FOUND IN SOME INDUSTRIES. ALTHOUGH IT IS OF ROBUST CONSTRUCTION IT WEIGHS ONLY $6 \frac{1}{2}$ OZS. AND operator fatigue is obviated. the STANDARD SIZE IS $\frac{1^{\prime \prime}}{4}$ BUT ALTERNATIVE SIZES RANGE FROM $\frac{1^{\prime \prime}}{6}$ TO $\frac{5}{16}{ }^{\prime \prime}$ TO COVER ALL TYPES OF APPLICATION. IN ACCORDANCE WITH NORMAL ADCOLA POLICY, SPECIAL TEMPERATURE AND VOLTAGES ARE AVAILABLE AT NO EXTRA CHARGE.

Send for details to
HEAD OFFICE SALES \& SERVICE

The world's finest cored solder

Contains 5 cores of non-corrosive high speed Ersin flux. Femoves surface oxides and prevents their formation during solderine. Complies with B.S. 219, 441, DTD 599A. B.S.3252, U.S. Spec. QQ-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is $215 \mathrm{C}^{\circ}-415^{\circ} \mathrm{F}$. Ministry approved under ref. DTD/900/4535

Solder Tape, Rings, Freforms and Washers, Cored or Solid, are availabl3 in a wide range of specifications.

Liquid fluxes and printed circuit soldering materials comply with Government swecifications. Ask for special details.

FOR THE FACTORY

Arax 4-core acid cored solder

Used in 38 industries it has replaced tinman's and blowpipe solders, fluid and paste fluxes and killed spirits for rapid and precision soldering in metal fabrication processes.
Arax Flux-exclusive to Multicore-has the tastest speed
of flux in any cored solders. Flux residue is easily ren:uvable with water or, where flame heating is employed, is entirely volatilised. Residue will not contaminate plating baths. No pre-cleaning is necessary and the speed ensures that the solder will flow between the laps by capillary action, thus using the minimum amount of solder. Not recommended for wire to tag joints in radio or electrical equipment.

For further information please apply on your Company's note paper mentioning the product references Dept. WW. Multicore Solders Limited, Hemel Hempstead, Herts. Telephone : Hemel Hempstead 3636

[^0]: * "Standard Frequency Transmissions" by J. McA. Steele, Wireless World, Sept. 1967, p. 443.

[^1]: * Newmarket 「ransistors Limited.

[^2]: - Cob $\left(C_{o b}\right)$-output capacity winh base open to a.c.

[^3]: *Amatronix Ltd.

[^4]: * Northern Polytechnic, London.

[^5]: * Cable \& Wireless Led.
 t The mean of the "K K " values recorded every three huurs at Hartland, Devon.

[^6]: - Acton Technical College.

 1. "Demonstrating a.c. theory," by T. Palmer. Wircless World, October 1963.
 2. "Demonstrations at V.l.f." by T
[^7]: WW 321 for further detafls

[^8]:

 S5G
 +1 MILLION OPS.
 5 amp. c/o Sub-miniature Micro-switch. 2/5 each per 1,000

 HEAVY DUTY PUSH-BUTTON SWITCHES 7 different panel mounting actuators including; knob,

 LIMIT SWITCH WL 10 FNJ $\star 10$ AMP 2 CIRCUIT $\star 5$ INCH FLEXIBLE aCtuator
 as illustrated
 as LOW AS 47/7 EACH. five other standard trpes avallable
 key, and lever, as well 3 E push on/push off. Up to 4 switch blocks can be fitted. Dust and splash proof, D/Pslow
 make and break, 5 make and break, 5
 amp rating. Full literature on request.

 | | V-10-1B |
 | ---: | :--- |
 | $*$ | IMILLION | OPERATIONS. * 10 amp . c/o.

 \star COMPARE OUR SPEC. \& OUR PRICES WITH OTHER SIMILAR TYPES.
 Screw Terms. 2/2 each per 1,000
 V-10-1A Solder Tags 1/11 each per 1,000

 New! Approx. 4/- each per 1000. Light force wire operated Micro-switch. Designed for even more economical coin operation mechanism.

 NEW RANGE OF SLOW BREAK-\&-MAKE HEAYY DUTY PUSH-BUTTON SWITCH ACTUATORS. PANEL MOUNTING, TO BE USED WITH I to 4 D/P S/T SWITCH BLOCKS. COLOURED KNOBS. ALSO PUSH-ON/PUSH-OFF TYPES. SUITABLE FOR MACHINE TOOLS, MOULDING \& PACKAGING MACHINES \& CONTROL PANELS. FULL LITERATURE \& DETAILS ON REQUEST.

[^9]: TO: B.H. Morris \& Co., (Radio) Ltd.
 84/88. Nelson Street, London EI.
 Send me information on TRIO COMMUNICATION
 RECEIVERS \& name of nearest TRIO retailer.
 NAME :
 ADDRESS :

[^10]: McMurdo instrument co, LTD., RODNEY Rd, FAATTON, PORTSMOUTH, Tel: Por ismouth 35361 Telex: 86112 LUGTON \& CO. LTD., 209/210 Tottenham Court Raad, London, W.I. Tel.: Miuseum 3261. SASCO. P.O. Box No. 20, Gatwiek Road, Crawley, Sussex. Telephone: Crawley 2870 (also: Chipping Sodbury 2641. Cumbernauld 25601 . Hitchin 2242).
 ARGENTINA: Corte \& Mon S.R.L. Salta 1325, BUENOS AIRES. AUSTRALIA: McMurdo (Australia) Pty. Led., 15 Edinburgh Se., Huntingdale, VICTORIA. AUSTRIA: Lipschirz \& Co. Biberstrasse 22, VIENNA
 WW-101 FOR FURTHER DETAILS

[^11]: The Marconi Company Limited, Radio Communications Division, Chelmsford, Essex, England LTD/H78

[^12]: Branches
 207 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 3271 Open all day Saturday, early closing 1 p.m. Thursday
 33 TOTIENHAM CT. RD., LONDON, W. 1
 Tel.: 01-636 2605
 Open all day, 9 a.m. -6 p.m. Monday to Saturday

 152/3 FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St 2833
 Open all day Thursday, early closing 1 p.m. Saturday

[^13]: LIasky's High Fidelity Sound Centres 42 Tottenham
 tion of the Ahest quality equipment; our expericaced stalf are on hand to belp you plan a

 ## PACKAGE DEALS

 of equipment of your ou in thowe. Thend us lectail of your requirnnents. H.P. and Eass Credit Tern

[^14]: Where postage fos not definitely stated an an extra Where pastage is not delnitely stated as an extra 8. Seml-conductorx mild $1 /$ pront
 sic. B.A.E. with enquition pleane.

[^15]: Schenkers Limited, Royal
 London House, 13, Finsbury
 Square, London, E.C. 2
 Telex: 22625

[^16]: L. GLASER \& CO. LTD.

 1-3 Berry Street, London, E.C.1.

[^17]: WANTED-
 Redundant or Surplus stocks of Transformer Redundant or
 materials (Laminations, C. cores, Copper wire, etc.), materias (Laminations, C. cores, Copper wire, etc.);
 Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

 44 Green Lane, Hendon, N.W. 4
 Tel. 01-203 1855 and 3033

[^18]:

 Way of Trade; of aftixed to or as part of any publication or advertising. Iterary or pictorial matter whatsoever.

