

MAY 2005 £3.25

Relay
 evolution

Calculating SNR of RAA-equalised

new thinking in electronic engineering

Would you like to work in a dynamic industry at the leading edge of technology?

Does a challenging well-paid job spark your interest?
Then why not find out how Bell College can launch your career or advance your existing qualifications.

Full time and part time study opportunities are available in:

BEng Applied Electronic Design HND Electronic Engineering HNC Electronic Engineering

The courses are linked together to provide continuous progression with entry \& exit routes at each stage.

A MEMBER OF UNIVERSITIES SCOTLAND
For further information contact Andy Watson, email: a.watson@bell.ac.uk or I.ashbridge@bell.ac.uk phone 01698283100 www.bell.ac.uk
Bell College, Almada Street, Hamilton, ML3 0JB Scotland

May 2005

Editor's Comment3
Consumer leads the way
Technology4
Top Ten Tips 8
Insight 11
Structured/platform ASICs have arrived
The silicon path of relay technology 12Richard Thornton discusses
modern switching solutions
FOCuS18
The US military looks at lead-free solders
Data manioulation co-orocessor 20
Gamal Ali Labib introduces his co-processor
Adventure: Noise28
Burkhard Vogel looks for the best SNR in pre-amplifiersTried and tested Newsection40
Andrew Birt tries and tests the Tektronix WFM700 analyser
Letters45
Circuit ldeas 48- Voltage controlled optois lated resi

- Microcontroller drives LC oscillatorWireless Column54
Challenging future by Mike BrookesGadgets55
Products 56

TELEVISION TEST PATTERN GENERATORS The new GV 998 is a digital
pattern generator offering pattern generator offering
more advanced features at again a realistic price. - MPEG-2 format Transpo - MPEG-2 format Transport Video and audio included in the TS - Video and audio inputs
 -Generation of a variab

- Multistandard and multisysuency sound carrier for decoding verification - Multistandard and multisystem analogue TV signal generation
present the name of the
- Remote control via a personal computer
- Moving video patterns to check MPEG-2 decoders PROMAX

PROMAX GV SERIES

- Choice of 12 instruments
- NICAM and Teletext

- $4: 3$ and $16: 9$ Formats
- Computer Controlled
- Front panel memories
- Own Company Logo
- Computer Monitor testers
- Multi Standard, PAL, NTSC, SECAM
- High Quality Construction
- Attractive Price Levels
- Full After Sales Service

FOR TELEVISION PATTERN GENERATORS,
THERE'S NO WIDER CHOICE THAN WITH PROMAX

TA 903B CRT REJUVENATOR
\geq AUDIO ANALYSER

PRDMAX
SELECTEDITEMS FROM THE PROMAX
 Satellite Dish Installer's Meter
Does more than just BSkyB

PRODIG 2 Analogue \& Digital Aerial Meter

MC 577
nalogue \& Digital, Satellite \& Terrestria Measures channel power and C/N

PROLINK 3 + 4 PREMIUM Satellite \& Terrestrial, Analogue \& Digital,
Spectrum Analyser with BER (optional on P3)

Alban

ALBAN ELECTRONICS LIMITED THE PROMAX SERVICE CENTRE 6 Caxton Centre, Porters Wood, St. Albans, Hertfordshire, AL3 6XT
TEL:01727832266 FAX:01727810546
WEB: wuv.albanelectronics.co.uk
SALES + SERVICE + CALIBRTION

Consumer leads the way

- en million Apple iPod MP3 players, 680 million mobile phones, 60 million digital still cameras and over 50 million game consoles were sold worldwide in 2004 alone. Other consumer products also selling like hot cakes are widescreenTV plasma, LCD or CRT, projectors and home cinema pystems. By 2008 IDC research states that som systems. By 2008, IDC research states that ser What a sogering wount of What a staggering amount of consumer devices that represents. And yet, despite the over whelming evidence of the importance and impact of consumer electronics on our industry, some people still refuse to believe that this area of electronics is the key driving force today and obstinately continue to dismiss this vein of the industry as a "fashion fad", not worthy of being even associated with the 'true' electronics of yesteryear. Things were undoubtedly different in the past. New technologies were created for (more or less) the sake of it: developers proved how well they could push the boundaries of physics.
Nowadays, that technology push has been replaced by ever-growing demands from the consumers themselves. There's been a clear change in the way the electronics industry func tions compared to the past and that change has been driven by the consumer

Consumers' demands for convenience (easy connectivity, communication, portability) and low cost are certainly driving innovation in the electronics industry.
Nearly all portable, consumer devices sold on the High Street today have high-resolution colour screens, high energy-density batteries and chips supporting several different types of communication protocols. There are new coding/decoding technologies, lower-cost yet significantly improved microprocessors, DSPs, FPGAs and even new breeds of programmable logic devices (such as structured ASICs). New power and battery management techniques, new interfaces and lower supply voltages driving ever more complex circlits are just some of the innovations being rapidly adopted in this space
How can anybody refuse to see this as a positive trend: it drives innovation, it drives productivity, it creates jobs and stimulates the imagination? Anybody who remains insensitive of the consumer gadgetry that surrounds us in every sphere of our daily lives and who continues to dismiss the importance of such gadgetry to driving innovation - is simply out of touch with the industry today.

Svetlana Josifovska
Editor

Thank you to all of those readers who subscribed to our idea of reviewing books for Electronics World. The invitation is open to all readers interested in reviewing technical books. You choose the World. The invitation is open to all readers interested in reviewing technical books. You choose the book out of a selection, read it, review it for us and keep the book in return. It could not be simpler. Als H) (
Anag Electronics Cooksook - Radio Society of Great Britain • Batteries for Poriable Devices - Gianfranco Pistoia The M Mo Luis Moura, Izzat Darwazeh • Software Design for En
Engineering Mathematics (4th edition) - John Bird Please call us and leave your details ifyou would like to participate

EDITOR: Svetlana Josifovska E-man: s.|osifovska@highburybiz.com EDIToRIAL E-mail: EWeditor@highburybiz.com EDITORIAL ADMINISTRATION: +44 (0) 1322611274 E-mail: EWadmin@highburybiz.com PRODUCTION EDITORDDESIGNER: Jane Massey E-mail: J.Massey@highburybiz.com
sUBSCRIPTIONS: Customer Interface Ltd, Cary Court, Somerton, TAII 7BR Tellephone: 0870 4287950, Fax: 01458271146 SUBSCRIPTION RATES: 1 year: £38.95 (UK); 95 (Europe); $\$ 125$ US \& worldwide
GROUP SALES: +44 (0) 1322611254 • PRODUCTION EXECUTIVE: Dean Turner +44 (0) 1322611206 E-mall: d.turner@highburybiz.com PRINTER: William Gibbons Ltd • ORIGINarION: Impress Repro by Design Al Parkway, Southgate Way, Orton Southgate, Peterborough, PE2 6 YN NEWSTRADE: Distributed bySeymour Distribution Ltd, 86 Newman St, London WIT 3EX. • PUBLISHING DIRECTOR: Tony Greville If you are experiencing problems getting copies through your newsagent, please call Debbie Jenner on +44 (0) 1322611210

Discloimer: We work hard to ensure that the information presentied in Electronics World is accurate. However, Electonics Word's publisher - Highbuy Business - will not toke responsibiliy for any iniury or loss of earnings that may result from applying information presented in the magazine. It is your responsibility to familiorise yourself with the lows relating to de
customers and suppliers, and with sofery practices relang to working with electrical/electronic circuitry - particularly as regards electic shock, fire hazards and explosion

'Big is beautiful' in boards

The embedded board market is ripe for consolidation and acquisitions, ccording to Jeff Berson, enior analyst with CIBC, The financial community, particularly private equity funds that made their money during the Internet boom, are eyeing the embedded board business, he says after cosely tracking the market. "Wall Street likes it and is starting to wake up to the opportunity."
He points to 37 tier-two companies - all between $\$ 20 \mathrm{~m}$ and $\$ 100 \mathrm{~m}$ capitalisaion - that are ripe for consolidation. "That's where the opportunities are," he said. tions of a meaningful size." he remainder of the market is made up of eight large board companies and 455 small companies with rev-
enues of under $\$ 20 \mathrm{~m}$. Senior figures for the industry agree. "A fundamental change is taking place today with outsourcing and the market is shifting. There is also going to be more competition from competitors that we haven't seen in the past, such as Asian manufacturers that do motherboards and embedded boards, and we have to figure out how to differentiate ourselves," said Scott McGowan, chief executive of Artesyn Technologies, which makes boards and power supplies.
"We do think that it is very, very important to be able to operate at a level where you can offer a range of products - and that takes economies of scale," said Wendy Vittori, senior vice president at Motorola and general manager of the Embedded Communications Computing

Group (ECCG). This was formed late last year after Motorola ought the Force embedded board usiness from Susiness from Solectron and merged it with its computer Group, creating the largest the market.
"Clearly, there is
consolidation in the industry and that is going to continue," added Peter Cavill, chief xecutive of Radstone Technology, which has just stablished a new Embedded Computing division. "We're not interested in doing it just for being big, but, in a way, to help customers with specialist technologies that are complementary to Radstone." However, some of the maller board makers such as Pentek, point to the innova-

tion and intellectual property that they own and say they can be faster in meeting the needs of different niches that would not interest the larger companies. The firm has jus launched a module that allows a software radio transceiver to be added to VME card
The 7140 PMC module uses a Virtex II Pro FPGA and supports the XMC switched Mezzanine card standard.

Motorola backs PClexpress for VME platform

M otorola's new Embedded Communications Group (ECCG) is backing the PCI Express protocol for its VMEbus Switched Serial (VXS) interconnect in a move that gives the technology a significant boost and hits at the competing RapidlO technology. The group is the largest embedded board maker following its takeover of Force Technologies last year. The new VXS technology (previously called specification 41.4 from the VME Industry Trade Association - VITA) adds switching connectors to existing but does not specify which

protocol should be used. Rapidll had seen it as a natural application area, but has been hit by delays over the last
year and board makers such as SBS Technologies supporting afiniband and now Motorola supporting PCI Express.

Selecting PCI Express as our VXS (VITA 41.4) implementation is an important extension of the application of PCl Express," said Wendy Vittori, Motorola senior vice president and general manager of ECCG. "We are bringing the benefits of this standard, broadly-available technology to the new embedded communications computing segment, creating more cost-effective, highly integrated platforms upon which our customers can quickly build their applications." "PCI Express is also an excellent fit for the distributed computing applications that many of our customers are building," added Vittori.

New technologies push VME roadmap

-ollowing the success of the high-speed variant of 64 -bit VME, there are new specifica tions emerging for different parts of the embedded market While the VITA41 (VME Industry Trade Association) specification, VXS, provides a limited amount of switching between VME cards in an existing VME rack, the VITA4 specification aims to provide significantly more switching via dozens of serial links, with enough combined bandwidth to make distributed switching viable for high-performance applications.
VXS is set to be a general purpose specification, while, at his point, VITA46 is aimed more at the military and aerospace applications. The problem is that not entirely backward-compatible with
VME64, as it has to use a hybrid chassis with separate
connectors for VME64 and VITA46 cards. This has a series of VITA46 connectors and a series of VME64 connectors, and cards for one specification will not fit in th connectors for the other. The backplane then consists of both the VME64 lines and the VITA46 lines, making this more complex to produce.
This means that there isn't the traditional flexibility of any card in any slot, but system developers see the VITA46 systems as being custom developments with a set number of each slot for a particular application.
The strength is that existing VME cards, especially custom l/O cards, can still be used in the system, preserving the previous investments and cutting the cost of the development. The VITA46 specification also includes a 3 U format
or more compact systems that are being demanded in military and aerospace applications, rather than the existing 6 U VME systems. It also provides I/O connectors at the rear of the cards so that $1 / O$ can be run over the backplane rather than having to come out in cables from the front of the card, making the systems more rugged.
Yet another variant, VITA48, is coming through as critical or providing the thermal management to take full advantage of the next genera tion of hot processors, many with dual cores.
VITA41 VXS systems are emerging this year from manufacturers such as Motorola, while VITA46 and VITA48 are emerging in systems from companies such as Mercury Computer Systems by the end of the year.

Datalink Electronics,
Leicestershire-based contract electronics manufacturer went to Poland to recruit engineering staff. The firm says this is due to a lack
of skilled people in the UK. Datalink has had problems recruiting skilled staff from this country. The telecoms industry

Os so many skilled
echnicians either retrained or setted abroad, leaving a skills gap
in the UK," said lan Wilson, Datalink director. Datalink also took on students from Loughborough College under the Modern Apprenticeship

Ω

A multi-disciplinary team of scientists from the Universities of Sheffield, Notingham, Manchester and Glasgow has been awarded a £3m research grant to develop a new nanotechnology tool, whis The Snamede ill be uselina diversity of applications including understanding the origins of diseases, low-cost manufacture of plastic electronic circuits and the creation of 13 nm molecular
structures. The team is led by Professor Graham Leggett from the University of Sheffield. Ω
Barclays Bank has announcing £500m of lending to support growing businesses within the UK manuffacturing sector. "Working on a daily basis with many UK manufacturers, I see a large number of well-managed companies, which have both the desir ad the ability to expand and grow night inance is avilable' ational director for manufacturing.

Barclays predicts that the K manufacturing sector will grow by up to 2% this year, vey gradual
 Ω

Switch marks take-off for RapidIO infrastructure

Tundra Semiconductor has
launched the first RapidIO launched the first RapidlO switch chip that marks the start of the real development of this standard's infrastructure.
While there have been some chips with RapidlO interfaces linking them together has required FPGAs or custom ASICs. The Tsi568a serial switch chip is being used to provide RapidlO switching on different platforms, from VME to Advanced TCA, with an aggregate bandwidth of switchs. The non-blocking switch buffers at the output and so can stream a packet directly through the switch packet cut-through - to supports up to eight $4 x$ links
or sixteen $1 \times$ links through a SerDes interface.
"The Tundra switch marks the beginning of a significan year for RapidIO, with more than 20 RapidlO-based prod ucts scheduled for introduction including switches, processors, bridges, FPGAs, silicon IP, boards, software and tools," said lain Scott, the new executive director of the RapidIO trade association. "The debut of these products throughout the year will ensure OEMs have the devices they need to speed development of RapidIObased solutions for the embedded marketplace." The Association points out that it is ahead of other tech nologies such as the ASI
(Advanced Switching Interconnect). "The release of Tundra Semiconductor's Tsi568A Serial RapidIO Switch provides RapidlO a significant head-start over ASI, which is not expected to be releasing first silicon until the third quarter of this year," said Eric Mantion, senior analyst at market researcher InStat.
The RapidlO technology is an open standard and is already included as an interface on some PowerPCbased processors from Motorola, such as the dual core MPC8641D. This is aimed at the networking, telecom, military, storage and pervasive computing applications, with two PowerPC
e600 cores, each with the Altivec DSP coprocessor Texas Instruments has also launched a digital signal processor with built-in RapidIO interface, the
TMS320TCI6482. This supports four serial $1 \times$ links that can be combined to form a single $4 x$ link, allowing connectivity to multiple RapidIO enabled devices or to one high bandwidth RapidlO device. Link data rates support data bandwidth from 1Gbit/s to 10Gbit/s. "The TMS320TCl6482 is an impor tant component that facilitates higher speed interconnectivity and more reliable performance in the design of advanced communications systems," said Scott.

PCle moves into embedded

Cl Express is starting to PC and server market into the embedded world, say its embedded
The COMexpress specifica tion for Computer-On-aModule is set to be released April or May this year, with April or May th sear, base specification (approved early this year) and compliance testing starting before the testing starting before the COMexpress products are expected as soon as May although there are already pre compliant products from manufacturers such as Kontron and RadiSys.
To boost the infrastructure for PCI Express (PCle) embedded designs, US-based PLX Technology has been sampling a 16 -lane switch to customers over the last few

ADI technique makes even smaller radio chips

$A_{\text {alog Devices (ADI) }}^{\text {nalow }}$ Othello-G radio chip for GSM/GPRS applications at the 3GSM World
Congress. The chip uses 75% fewer components than its previous version Nevertheless, it supports full quad band operation and integrates nearly all the components for a complete cellular handset radio desig onto the single chip with a sensitivity of around -109dBm. he only components that are equired are four non-critical decoupling capacitors, SAW filters and matching components, and a power amplifier. The radio uses direct conver sion, zero frequency \mathbb{F} techniques, which ADI pioneered in

the mixer breakthroug of the local oscillator signal that would inter sets in the vicinity. This has been overcome using a technique known as a regenerative divider, also pio eered by ADI.
1999. Initially, many thought it would impossible to utilise this technique because of the large DC offsets that would appear after ampificication. However, by incorporating many new design features, including ADCs and DACs to monitor and compensate for these offsets and the use of differential signal paths, the system has been successfully implemented. A further problem envisaged was that of
and design with the world's in January, and has launched a smallest and the only reversible in January, and has launched a smallest and the only
bridge to link existing PCI sys-
PCI Express bridge." ems to PClexpress. The PEX 8111 provides both forward and reverse bridging from a single high-speed serial PCl bus, and PL X has already sampled the bridge and a development kit to manufac turers in the communications, graphics printing and notebook PC markets. "The PEX 8111 is a key building block for the next wave of PCI Express sys tems in 2005," said Chris tems in 2005," said Chris keting manager at PLX. "Sampling of the PEX 8111 and Sampling of the PEX 8111 and the availability of development
tools, such as the development kit for the bridge, marks a sigkit for the bridge, marks a sig-
nificant point in the deployment of PCI Express; manufacturers now have the ability to evaluate It features 8 k of shared RAM and consumes less than 500 mW of power. It is aimed at small form-factor designs for notebook computers and communication systems, such as the ExpressCard, PCI Express Mini Card, Advanced Mezzanine Card and Switched Mezzanine Card standards. The PEX 8516 switch is the industry's only 16 -lane PCle switch with four flexible ports, two virtual channels and nontransparent bridging. This is the second switch chip from PLX Both provide key capabilities Both provide key capabiit as quality of service such as quality of service traffic classes on two fully featured virtual channels, with arbitration support for each port, which is not possible with PC.

New touch control system

JS fimAtrua Technologies has demonstrated an innovative control system for use in mobile phones. With the man-machine interface on handsets becoming more important as their functionality increases, new ways are required to be able to control them easily. Atrua has developed the "Wings" intelligent touch-processing system, which convert finger movements easily into commands for the phone. The system is based on a small, thin sensor (typically less than $15 \times 5 \mathrm{~mm}$ in size) and specialised processing software By wiping a finger over the sensor, the phone is able to assess the owner's fingerprint. This can be used to unlock the phone and other security features. Using the prints from different fingers on the hand or twisting the fin gers, for example, can control different functions of the phone.
Atrua's device is already being used in a smart phone developed by Yulong, a subsidiary of China Wireless Technologies based in Hong Kong.

Zoran moves to Approach 4c
 has launched its secondgeneration multimedia appilcation processor - Approach SDRAM to provide enive multimedia solutions to phone makers. o phone makers. Based on the already suc ZR34527 improves system ZR34527 improves system umption, board space and ust all of which are crucial in he design of mobile phones. The design of mobsor provides interated SDRAM, MPEG-4 video apture and playback, H. 264 video decoding 3Mpixel amera capability 3D gam and 3D audio effects, MP3 and AAC+ playback.
For these capabilities, Zoran used advanced imaging, vide and graphics hardware accelerators and a comprehensive set of interfaces. Among them are

LCD interfaces with an 18 -bit video RGB data bus, 16-bit CPU interface format for up to 18 bits/pixels and an image 18 bits/pixels and an image sensor interface with 8/0-bit
CMOS/CCD camera module input port and up to 3Megapixel $15 / 30$ fps input resolution. There are also a USB device interface, JTAG emulation interface, two

ElectroMagnetic Compatibility
\rightarrow Consider EMC at the design stage to stop interference at
") When designing PCBs, avoid long tracks, use consistent and unbroken ground planes
> Shield the PCB wherever possible
Shield the enclosure wherever possible
-) Use shielded cables where necessary and terminate th shield at both ends to chassis/groun

Do not group noisy cables with other cables in a loom

- Avoid large apertures and holes in the enclosure
$\stackrel{\text { Remove the paint from unwelded }}{ }$ joints in enclosures, i.e. lids Use EMC gaskets for uneven joints

1) Ensure all input/output metallic connectors have good all-round contact with the chassis of the host unit

This month's Top Ten Tips list was supplied by Andy Kotas, Marketing Manager at Schaftner Limited.
If you'd like to send us your top five or top ten tips on any subject you like, please write to the Editor at EWadmin@highburybiz.com

M 9000 MODULAR GANGPROGRAMMER

- Very cost-effective gang programmer for microcontrollers, flash and eproms. Choice of over 125 plug-in modules eliminates the need for fragile socket adaptors in a production environment. Many modules have plug-in sockets which can be changed in seconds if they wear out.
- One or two identical or different modules can be fitted to support devices in DIL, SDIP, PLCC, LCC, TSOP, QFP, TQFP, SOIC, SSOP, PGA (Puma) and uBGA etc.
- New algorithms added monthly
- Large LCD displays checksum and number of devices programmed for cross checks.
- Flat working surface reduces contact problems with surface mount components.
- Optional remote control Windows PC software (RS232 and Centronics ports available for user written command scripts).
- Also available for next day delivery from international distributors.

Lovd Research Ltd has been designing gang programmers since the early 1980 .
The M9000 is an improved version of the 'industry standard' L9000 which has been used extensively for high volume programming in the telecommunications. automotive and TV manufacturing industries.

M9000 and L. .9000 modules are interchangeable.
For details of device support and module availability please visit our website.

SPECIFICATIONS

RAMSIIE
2, 8 or 32 Mbits
ReEOTE CONRROL
PC Windows 95,98 \& NT Assouvaibble with high.speed download
bailify for Motoona and intel files
ram edmag conrools Edtht Split Merge, Fill, Complemertand
Checsum eic
UNE SUPPYY
 Option: 11012120 V 5060 F Hz phrsical 125mmxW 385mmx 330 mm Weight: 5kg

e
 Structured/platform ASICs have arrived

Structured/platform ASICs
are not just a buzz word but a technology offering real benefits, says Gary Meyers

With the current buzz $l_{\text {going on about struc- }}^{\text {ith the current buzz }}$ tured/platform ASICs, the question many have been asking is "Will this new breed of ASIC be successful?" The new breed of ASIC be successful?" The answer is, "Absolutely." The era of tured/platform ASICs is here with a growing number of customer success customers engaging multiple designs and new vendors entering the field each and new vendors entering the field each year. This middle ground between
FPGAs and standard cells has FPGAs and standard cells has become cations not previoúsly anticipated. cations not previoúsly anticipated. the ASIC vendor's answer to the dilemma of deep submicron ASIC design. Smaller semiconductor geometries result in smaller die area and therefore less cost, higher performance and lower power consumption. On the other hand, the era of 130 nm design and below hit a wall of complex manufacturing, physics and timing problems that have resulted in expensive tooling charges and lengthier and less predictable design cycles. Through a combination of device architecture and customised design software, structured/platform ASICs solve these issues and seem a natural fit for ASIC designers who must get to market quickly and are able to relinquish a modest amount of the extreme perfor mance and aggressive unit cost of a standard cell ASIC. The up-front struc
tured ASIC NRE charges are \$200k or ess compared with $3 x$ to $10 x$ this amount r cell-based semiconductors at equivant technology nodes. This cost saving alone makes structured/platform ASICs a very attractive alternative for many design teams.
Customised design tools that directly arget and understand each unique structured/platform ASIC, typically enable $15-20 \%$ better speed and area improvements over conventional design-flows and thereby, bring results much closer to hat stand cll ASCs. They tive the timing cell ASICs. They also the use of physical synthesis techniques the use of physical synthesis technique hat are tigntly correlated to the final place-and-route timing. In addition, they nsure that the designer obeys vend specific design rules, which requires extensive signal integrity checking. High perfor shorter time-to-market with greater schedule predictability cannot be provid ed by generic tools. This is
why all major structured/platform ASIC vendors have ensured that customised physical synthesis tools are available for their architectures.
Early on, it was predicted that structured and platform ASICs could resuscitate the ailing ASIC business by making deep submicron ASIC technology available to smaller companies which, by necessity, have largely shifted from ASIC design to FPGA design. So, was the prediction correct? Structured and platform devices have indeed found themselves in smaller companies, such as Spidcom Technologies in France or WhiteRock Networks in Texas. Such companies that need to tightly manage venture funding can enjoy the perfor-
mance low power and unit cost advan tages of ASIC technology, while getting o market quickly at a reasonable project cost.
The untold story, however, is the emergence of structured/platform technology in larger companies such as Cisco ystems, Hewlett-Packard, Norte Networks, Raytheon, EMC, Alcatel, SG and Seagate that have traditionally only engaged in standard cell or FPGA design. Trimble Navigation, for example, needed to get its large 3.5 m -gate GPS design to market fast and as economicaly as possible. By choosing to use LSI Logic's RapidChip platform architecture, its NRE cost was about a quarter of what is NRE cost was about a quarter of what ASI. The firm now estimates a saving of 50% on engineering time.
if It was predicted that structured and platform ASICs could resuscitate the ailing ASIC business by making deep submicron ASIC technology available to smaller companies y

Structured/platform ASICs are also

 benefiting from a major shift in semiconuctor end markets. The Semiconductor ndustry Association (SIA) states that 50% of semiconductors shipped in 2004 will end up in the hands of individual consumers: from digital cameras to DVD players to increasingly cheap storage devices and cable modems.And in the consumer markets, performance, low bill of materials, small form actor and long battery life of the end device are vital. Structured/platform ASICs have indeed arrived.

Gary Meyers is President and CEO of Synplicity, based in the US.

The silicon path of relay technology

Richard Thornton, senior general manager at Matsushita Electric Works in the UK, discusses the development and features of modern switching solutions

Figure 1: Electrical circuit of a PhotoMOS relay

Figure 2: Construction of a non-polarised electromechanical relay

Many engineers believe that in an age of the microchip and its modern electronic circuits, relays no longer have a role to play. But, this is not the case, since electrically-controlled switches are still used in many applications due to their rela tive simplicity, long life and reliability. Moreover, recent semiconductor technology has provided sig nificant changes to the switching output circuits. This article discusses the development and features of different switching solutions and explains indepth two different semiconductor-based relay types: the MOSFET-based (PhotoMOS) and triacbased (SSR) relays.

An indispensable part

A relay is an electrical component which output circuit(s) is closed and/or opened depending on application or removal of a suitable voltage to the electrically insulated input circuit.
Relays are, in fact, the optimal switching solution for a wide variety of applications in industrial, consumer, telecommunications, measurement, automotive and other sectors. Many industry applications are completely based on the use of the ubiquitous electromechanical relay. Telecommunication line switching for instance is an area that, against all predictions, has continued to rely on the 2-pole changeover electromechanical relay to make and break line circuits reliably. Admittedly, the size of the relay has dramatically reduced from the old PO 3000 design that was the mainstay of the BT network (until the introduction of System X in the mid-1980 s that used miniature BT47 relays), to the current micro relays that allow 64 lines per switching card. However, the relatively low unit-cost, reliability of contact resistance, electrical and mechanical life factors, durability under overload conditions and ease of supplying the necessary control factors have made the electromechanical relay an indis pensable part of the modern telephone exchange. Modem test equipment requires many of these features, along with the added qualities of reliable low-level signal switching and electrical isolation, in order to allow distortion-free paths to the measuring

circuits. For many years, the electromechanical elay was the only choice for realising such a switching function for an electrical output circuit, which results from the relative movement of mechanical parts.
Semiconductor technology has, however, started to catch up with its electromechanical counterpart. During the last two decades, thanks to the emergence of semiconductor technologies, switching output circuits with an electrical control signal have also been realised by electronic, magnetic, optical and other means that require no mechanical movement.

Non-polarised power relay

The basic function of a non-polarised power relay can be described quite easily: voltage applied to the coil produces coil current that leads to a magnetic flux. Since the armature is mounted near the coil, there is no significant stray flux and the excitation
flux encloses the system. Since the yoke is moving, the corresponding contact system is actuated and the contact is opened or closed accordingly. While the relay is excited, the tension of a reset spring increases, leading to a reservoir of stored energy. When the coil applied voltage decreases, this stored energy causes the armature and the contact spring to return to the rest state. of a non-polarised relay.
Today, non-polarised relays employ an increased number of design details in order to offer advanced features. By employing permanent magnets in the magnetic circuit of the relay, efficient polarised relays offer increased advantages, such as reduced coil power consumption, higher contact force and bistable behaviour.
Due to arcs created during switching and mechanical effects, the electromechanical relay suffers wear during its lifetime. In order to prevent this, much consideration was given to the design of

Figure 4: Overview of SSR relays

Table 1: Differences between Electromechanical Relays and Semiconductor Relays	
Advantages	
PMOS \& SSR	EMR
Contact reliabiliy	High breakcown voltage
Long lifetime	Surge and noise resistant
Low control current	Form AB/C contacts
Switching frequency	Load current: microA to A
Noiscless operation	Gavaric isolation of open output
No contact arc	No leakage current
Shock resistant	
Disadvantages	
PMOS \& SSR	EMR
Leakage current	High volume
Weak against voltage surges	Coil energy consumption
Higher contactresistance	Unstable contact resistance
	Contact wears out
	Operation creates noise
	Contact bounce
	Creates contactarc

valves. Switching used to be done with electromechanical relays, but these have recently been replaced with triacs because of their smaller size, longer lifetime, better switching speed and lower power consumption.
Several manufacturers, including Matsushita Electric Works, pursued various paths during the evolution of semiconductor relays and came up with two distinct product groups: MOSFET-based (PhotoMOS) and triac-based (solid state relays, or SSR). One system's strength is the other's weakness. Although based on different working methods, both types of semiconductor relays have galvanically isolated input and output circuits, whereby the output side optically detects the control signal from the input side, hence triggering the switching operation.
However, different technologies can be found in the semiconductor device for switching the output. PhotoMOS relays employ two MOSFETs. The construction of a PhotoMOS relay is, in principle, based on a light transmitting construction. The input pins are connected to a light emitting diode (LED). This LED is located on the upper part of the relay and if a current flows through it, it starts emitting infrared light. Below the LED is an array of solar cells integrated into an optoelectronic device, located at least 0.4 mm from the LED to offer suitable isolation characteristics.

The optoelectronic device, in turn, serves as a control circuit for switching the power MOSFETs (and therefore the load circuit). These DMOS transistors are source-coupled, because of their intrinsic bulk-drain-diode in connection with drain and source. Thus, a single transistor is only capable of switching a DC voltage, since the diode will becom forward-biased if load polarity reverses. So, using a PhotoMOS relay for switching AC voltages require two source-coupled DMOSFETs. The output two source-coupled DMOSFETs. The output
MOSFET's on-resistance and maximum load voltage are a trade-off. For this reason, load current voltage are a trade-off. For this reason, load curre dissipation) and load voltage are related to each other. Corresponding PhotoMOS relays either have relatively high load-voltage with a smaller load current, or vice versa.

Solid state relays

When it comes to switching main network voltages and high currents, SSRs surpass PhotoMOS relays. The SSR is composed of a low current control inpu side (typical 5 mA to 20 mA , depending on the type of SSR) and a high current load side, whereby the elay provides an electrical I/O isolation of several thousand volts. When current flows through the LED on the input side, it emits light, which is detected by a trigger circuit after passing through a silicon resin The trigger circuit acts like a small triac device and is used to trigger the gate of a larger triac tha witches the load in the presence of a load voltage across the triac's output. Once triggered to an 'on state, the triac maintains this state until the load cur ent crosses zero and the trigger pulse on the input

Table 2: Differences between PhotoMOS and

 Solid State Relays
Advantages

PMOS
SSR

PMOS	SSR
Controls small	Best at control of 100/200VAC and analouve signals
Low leakage current	High capacity control (up to 40A)
AC and DC loads	High switching speed
Form A/B contacts	
Small size	
Disadvantages	
PMOS	SSR
Output capacity	High leakage current
	Protection circuit necessary
	1Form Aonly
	Heat sink

is absent Upon activation of the input signal, the output is activated in one of two ways: zero-
crossing and non zero-crossing

- Zero-crossing: when the input signal is activated the internal zero-crossing detector circuit triggers the triac to turn on as the AC load voltage crosses zero.
$>$ Non zero-crossing: when the input signal is activated, the output immediately turns on, since there is no zero-crossing detector circuit
Care has to be taken when inductive loads are involved. Voltage spikes may appear across the output when switching to the 'off' state as the SSR turns off when the load current is zero (which is not necessarily the case for the load voltage due to the phase difference of inductive loads). The generated voltage spike must not exceed the maximum load voltage rating or the $\mathrm{dV} / \mathrm{dt}$ rating, which is the ascending slope of the voltage spike. The constructional distinction of the output element of PhotoMOS and SSR causes different preferred applications for the two semiconductor relay types.
Nevertheless, there are also common characteristics between the two types of semiconductor relays. Both are sensitive to over-voltages and excessive currents, which leads to power dissipation and causes internal destruction by thermal stress. Therefore, care has to be taken when implementing semiconductor relays. However, if requirements such as long lifetime, stable behaviour, small size and switching speed are critical, semiconductor relays are the best option

The triac driver

A characteristic that is singular to the semiconductor relay is the possibility that the phototriac may be triggered to 'on' state accidentally. This can happen by exceeding the maximum blocking voltage or by applying very steep rising signals to the output. Such transient signals or noise may exceed the dV/dt rating of the triac driver and, hence, cause the device to proceed into 'on' state. The dV/dt ratings of the triac and its driver are very important when switching inductive loads, since load voltage and current are not necessary in phase. Since a triac turns off when the load current is zero, load voltage is not necessarily zero. Due to this, the triac may produce a sudden rise in load voltage to its own output, which may exceed its dV/dt rating. In order to increase voltage rise time, a snubber circuit can be used. In most cases, one snubber circuit will protect the main triac and the phototriac.
It is helpful to look at designing a snubber circuit for a non zero-crossing phototriac (e.g. APT1221), which also protects the main triac in most cases
(see Figure 1). When using a zero-crossing phototriac (e.g. APT1211), the snubber network may be designed to meet the needs of the main triac, since the phototriac will only switch to 'on' state when the voltage across its output is nearly zero. When designing the RC snubber network fo non zero-crossing triac drivers, detailed knowledge about the load is necessary By knowing the power factor PF, one can easily calculate the maximum turn-off voltage that may appear acros the output Consequently, a more sensitive triac will require a lower gate current and a higher resistor value. This will force the value of the capacity to increase.
The snubber circuit in this example is designed o meet the $\mathrm{dV} / \mathrm{dt}$ rating of the phototriac. If the $\mathrm{dV} / \mathrm{dt}$ rating of the main triac is different, the worst-case value has to be chosen for designing the snubber network.
As can be seen above, there is no easy method for selecting the parts and their values for a snubber network. In particular, detailed kno edge about the load circuit and the power factor
is required. These facts make snubber design empirical and result in detailed measurements to verify the parameters calculated if the user wants to save work when designing the circuit, or have fewer parts and more space on his PCB board they can choose an SSR
Besides the phototriac and a main triac, these relays may have an input protection circuit, integrated snubber circuits and a varistor inside. It is possible to choose from various alternatives, based on particular design needs, e.g. space, number of parts, costs, input/output conditions etc.

Silicon supports relays

In summary, the advances in silicon technology achieved during the past decade have allowed a range of semiconductor relays to be manufactured that start to offer both, replacement and complementary product to existing electromechanical product. Only in one area - that of contact configurations - have designs still to be qualified in order that a comprehensive alternative can be offered in the majority of relay switching applications.

Surface Mount Assenbly Equipnnent and Consumables fron KH Benz

Manual, Semi and Auto Pick \& Place High Accuracy Placement / Rework Systems for Laser Diodes, Flip Chips, CSPS, HBGA , BGAS, PLCCS, OFPS... Screen / Stencil Printer Batch Convection Reflow Ovens Self Contained Vacuum Pens Surface Mount Durmmy Components Solvent Saturated Wipes Die Cut Adhesive Materials Comprehensive Range of SMD and Radial Tape Splicing Systems Heavy Duty Solder Pots and Irons Weresch Preforming \& Taping M/cs Optical (Endoscope) BGA Inspection Depanelling Machines

Tel 0845 1306806 Fax0845 6580707 emaill sales@khbenz.co.uk

New powerfulfunctions
Virtual instruments - meters, scopes, transient recorder, function generator, power supplies and more

- Test mode, equivalent to the standard SPICE analyses and a separate continuous transient simulation mode that allows you to alter
device and circuit parameters and examine the results immediately
- Layered sweeps, meaning you can step almost any device or circuit
parameter on top of any test
- Monte Carlo analysis available for all tests including expanded Monte Carlo
- Easy part selection, including a customisable parts palette
- User-friendly interface with buttons and control tabs
- Live updating in simulation mode
- Circuit wizard makes it easy to generate standard circuits including attenuators, power supplies, filters, op-amp and tube-based circuits
- Over 25 thousand parts, unlimited circuit size
- Highly flexible 3D graphing

NEW "realistic" models for caps, resistors, inductors

- Interactive parts including switches, fuses, LEDs, etc.
- Layered sweep tests (expanded)

Ex VAT
B^{2} SPICE is backed by comprehensive free technical support both local rate telephone and online, full user manuals and tutorials and a NO QUIBBLE, FREE 30 DAY EVALUATION OFFER

po rich \quad PBE30 DAY

CALL 08456017242

www.spice-software.com

Pb

The US military looks - cautiously at lead-free solders

W
hile the world of electronics manufacturing is turning its attention - if not its enthusiasm - to lead-free processing, the US military is taking military establishment may, at some point, begin accepting Pb-free as a fact of life, but that time is not likely to arrive soon.
In terms of technology, the military is concerned with the same three Pb -free items that the rest of the world is focused on: the finish on lead frames, the joints between the component and the board, and the plating on the board itself.
The Defense Supply Center in Columbus, Ohio, known as DSCC, has responsibility for specifying parts, taking delivery from suppliers and stockpiling parts for use, as needed. The military perspective, though, is far more conservative than the consumer perspective. New consumer products have radically new designs appear daily, while the military, and DSCC in particular, is responsible for maintaining military electronics systems over periods of decades. A replacement for a navigation system for a helicopter, for example, needs to be available at
taining their global competitiveness. For example, the great majority of US component manufacturers are currently involved in the research and pilot production needed to begin full-scale Pb -free component production. For DSCC, this broad move toward Pb -free processing means that the supplier of a particular component may one day be able to supply that component only in a Pb -free version. Part of the current research by component manufacturers involves finding new non-Pb finishes for component lead frames and new molding compounds that will both adhere strongly to the new finishes and survive the higher reflow temperatures of Pb-free processing. As in Europe, US component manufacturers guarantee their components as long as they are reflowed under specified conditions. The critical temperature is $260^{\circ} \mathrm{C}$, the temperature above which component damage becomes far more likely. Since reflow temperature is not uniform across a board, a small component in an exposed location might experience 260°, even during conventional reflow using leaded solder. Manufacturers' guarantees typically account for this possibility by permitting exposure to $260^{\circ} \mathrm{C}$ for a

6 We expect to see the push for Pb-free to come first in the surface

mount area - chip resistors, chip capacitors and ICs. II
Dan Moore, chief of document standardisation, DSCC
any time during the service life of the helicopter and the replacement cannot incorporate any changes, however subtle, that make it unusable in the field. Unlike Europe, the US currently has no federal guidelines mandating the use of Pb -free solders in electronics, so the US military is under no legislativ pressure to make the transition. That pressure is more likely to come indirecty from world markets, DSC has hundreds of suppliers of components, subsystems and systems. Many of these suppliers also manufacture electrons systens that are marPb -free solders is a necessary element in main-
time of four seconds. But during Pb -free reflow, the same com ponent might reach $260^{\circ} \mathrm{C}$ for 30 seconds.

Dan Moore is the chief of document standardisa tion at DSCC. Every new part that is supplied to DSCC must meet carefully defined standards. He notes that no manufacturer has yet applied for approval of a Pb-free component, although he "We expects such requests some ne future. "We cover bo sure "Wound said Moore "We expect to see the push for Pb-fre

not Pb free? ...asks the US military

to come first in the surface mount area - probably in chip resistors, chip capacitors and ICs.
But Moore points out that a Pb -free component will be handled by DSCC as a new component and that it will have to pass the same battery of qualification tests that would be required of any new or redesigned component. "These are the tests that a manufacturer must perform when there is a design change, so that we are assured that the risk is low," he notes
A lead-free component coming into DSCC will also have its own part number, inscribed on the component by the manufacturer. This is what DSCC requires for all components except for those that are physically too small to be labelled - some resis tors, for example.
However, the unambiguous labelling of Pb -free components has not met with unanimous approval from US component manufacturers. Although nearly all US component manufacturers are planning to introduce Pb-free components, only slighty more than half of the component manufacturers plan to give those components new part numbers. Instead, they may label the box as Pb -free, or they may refer the user to the manufacturing date range to determine whether a component is Pb-free or not.
The situation differs markedly from Europe, where ISO 9000 standards and quality conrols govern labelling and traceability of compo nents. What DSCC wants to avoid, of course, is the situatio in which a conventional leaded component winds up on a Pb-ree board, or he reverse, a Pb-free
loosely connected to the board - able to pass initial electrical tests, but likely to fail at some unknown point in the future.
Various industry observers point out that a situa tion in which the wrong type of component winds up on the wrong board is certain to occur occasionally and that it is much more likely to occur if labelling is less than precise. Other problems also present themselves. For example, assemblers nor mally return a percentage of components to the component supplier, often without the original package. If only the package bore the Pb -free identification, how will these components be identified? What happens if they are re-sold?
DSCC has been encouraged, but not made less conservative, by scattered reports of tests in which Pb-free components have shown greater reliability than leaded components. Eventually, DSCC will begin qualifying and using Pb -free components. But in military applications in the US, conventional leaded solders will not disappear any time soon and DSCC anticipates having suppliers ofleaded components and systems well into the future

component sitting on a leaded board. In the firs case, the component might suffer damage, but might not fail untilit is in the field - the sort of mishap that it is DSCC's mission to avoid. In the second case, the Pb -free component might be only

Potential damage of Pb-free component after reflow, athigher

WstPb-free processing is Currenty being performed on conventional FR4
boards designed for lower emperatures. The higher eraturesmaywarpor delaminate the boards

Data manipulation co-processor

Gamal Ali Labib introduces his own design of a co-processor
dedicated for data manipulation

\square
espite the recent boorn in processors and memory technology, new challenges to computer performance still evolve.
Some applications require wire speed searches of a database, list or pattem. The searches would normally involve simultaneous comparison of the desired information against the entire list of prestored entries. Image or voice systems, computer and communication systems are possible platforms for such applications.
For example, ATM switches, due to their connection based protocol, must translate each ATM cell address at every point along the routing path into one of a few thousand possible outbound identifiers and port values. The switch maintains a table in memory of outbound identifiers and values, and uses the translated cell address as an index for that table. Cell address translation poses a challenge to hardware performance in order to maintain switch throughput.
On the other hand, manipulating user-defined data complex types and objects in modern programming languages and the increasing reliance of web-enabled and legacy applications on large databases sight additional challenges to hardware perfor mance to cope with software demands.
In this article, I review different processor architectures and introduce my design of a co-processor dedicated for data manipulation. The co-processor hits the key performance issues indicated above and simplifies the manipulation of complex data objects.
Associative memory vs conventional memory There is a fundamental distinction between associative memory (AM), also called content-addressable memory (CAM), and conventional memory. Associative memory is content addressable, allowing parallel access of multiple memory words. Some implementations of CAM accept search predicate data as inpu and produce the address of qualifying words as output (see Figure 1).
By comparing the input predicate data against the data in memory, a CAM determines if an input value matches one or more values stored in the array. If the comparison is done simultaneously, the CAM is said to be performing at maximum efficiency On the contary, conve output of RAM is norly yatain the output of RAM is nomally data contained in the addressed loca-
tion. A CAM, on the other hand, has the ability to signal the absence of a piece of data (indicated by the 'Match' output line in Figure 1), unlike an explicitly addressed memory, where some data is always read, whether or not it is what is wanted.

Associative memory architectures

The basic associative memory is a two-dimensional array of identical processing cells. The cell unit of the AM is several bits long and is capable of performing the standard functions of read/write like a RAM cell, but also contains sufficient logic to enable its bit content to be compared with the corresponding bits in a Comparand Register, or ignored depending on the setting of the corresponding bits of a Mask Register (see Figure 2). Information and commands are broadcast from the Central Control Unit (CCU) to all cells of memory in parallel. Each cell unit has associated with it a tag bit (response store). A matching cell unit for a compare command issued by the CUU will set its tag bit, while a non-matching cell unit will reset that bit. As commands issued to memory cell units will only affect those with set

Figure 1: Comparison of CAM and RAM functionality
tag bits, additional capability can be introduced to the AM by linking each tag bit to its immediate neighbours so that transfer ring (shifting) the activity from one cell unit to its neighbour
becomes possible. The Global Tag Operations Unit (GTOU) becomes possible. The Global Tag Operations Unit (GTOU) con trols tag bit activities, according to commands issued by the
The previous features were realised in different implemen
ion of the AM For tions in. For example, here is a design capable of performing assell units. Other desinn supprts fon ligh
 ag bits, for unlimited number of cell units
AM organisation may be categorised into four different types based on how bit/word slices are involved in the operation:
The bit serial: operates with one bit slice at a time across al called the cycle time) using devices of this type is a linear func ion of the number of bits involved in the operation (except pos sibly for read and write) sibly for read and write)
The word serial. operates with all bits of one word slice at a time. The speed of operation in such devices depends on the The fully-parall apray
mell ime speed of devices of this type depends on he operations implemented in hardware and on the hardware elements used. The cycle time of such devices increases as ported because of carry or borrow propagation are to be sup ported because of carry or borrow propagation
being read (i.e. on-the-fly). The speed of this type depends mainly on the access time of the storage device involved and the used search criteria.
There should be a trade-off between storage capacity, speed and cost when choosing CAM organisation. For example com

Figure 2: The conventional AM organisation
paring these four organisations suggests that fully-parallel CAM provides the highest speed (least cycle time) and the least storage capacity.
We may improve the computer performance even further if the processor is designed to perform navigational as well as the pattern-matching operations on structures and objects of business data.

The principles of the co-processor

In this proposal, I follow the direction of adopting associative memories (AM) in supporting querying and manipulating data structures. The proposed co-processor, which I call Associative Co-Processor (ACP), is not a stand-alone back-end structure, but is intended for integration in processor nodes of multiprocessor machines, or with the CPU in single-processor machines (see Figure 3).
The co-processor receives data blocks (or data pages) to be processed alongside user-queries or operations to be performed. The CPU is then freed to execute other tasks while the co-processor crunches cashed data. The co-processor module would have direct memory access (DMA) to the node's/computer's local memory and have access to the secondary storage puter's local memory and have access to the secondary storag
via the node's/computer's $/ \mathrm{O}$ controller. Such architecture accelerates data movement to/from the co-processor without posing an overhead on the CPU.
Some AM designs impose a restriction on data by reserving a specific bit pattern for data element headers. Others limit the movement of activity to one direction. The proposed co-processor design presents a solution to those limitations as I will explain in the following sections.

The co-processor architecture and operation The main functional blocks of the co-processor are similar to t

Figure 3: Modified processing node structure

Figure 4:The Co-processor organisation

those of the basic AM, namely: the Comparand, the Mask, the control unit and the associative words (see Figure 4). Directing input commands to Data words, the Mask, or the Comparator is achieved by issuing the proper selection command to the co-processor device(s).
The co-processor incorporates in each data word/cell unit (which is basically 8 -bit long) additional associative cells of two types: the structure-delimiter type, used to mark the first word of structure header (and optionally its trailer) and the element-delimiter type, used to mark the first word of each element and to navigate throughout structures.
The structure and element-delimiter cells can be manipulated as normal data cells. However, the element-delimiter cell has additional feature of combining its state outputs in the word control circuitry that incorporates the tag bit. A memory word may have one element-delimiter cell at the most, but may have more than one structure-delimiter cell. Allocating a structure-delimiter cell to each constituent-structure would provide optimum performance for accessing complex-structure's components. However, a single structure-delimiter cell per word would suffice to minimise the overhead of control gates per associative word, but with increased navigation overhead

Selecting a memory word is accomplished by setting its tag bit to '1'. Two commands affect the setting of this cell: Compare and Set. The Compare command matches the contents of each of the selected words with the Comparand according to the Mask setting and, if no according to the Mask setting and, if no
match is found, the corresponding tag bit is reset to ' 0 ', or otherwise it is left at its is reset to ' 0 ', or otherwise it is left at its
current state. The Set command sets all tag bits in the co-processor to ' 1 '. Each tag cell is linked to its immediate neighbors via its control circuitry that permits propagating the tag setting to the next/previous data word or element delimiter word. Navigating within the selected structures, those having words with their tag bits set to ' 1 ', can be achieved with four navigational command, as following: Forward navigation:
$>$ link-next-word (LNW) to select the next-to-current selected word and de-select the current one > link-next-element (LNE) to select the next-to-current selected element and de-select the current one.

Figure 5 (Left): Comparand and mask ce circuitry
Figure 6 (Right): Associative data/delimiter cell circuitry

Backward navigation:

$>$ link-previous-word (LPW) to select the previous-to-current selected word and de-select the current one
$>$ link-previous-element (LPE) to select the previous-to-current selected element and de-select the current one.
With such flexibility of navigation within the stored structures in the forward/backward direction, the predicates in a multiple-ele ment search condition can be evaluated in any order, irrespective of their physical locations within structures
The co-processor has two modes of operation that determine how the associative words are affected by the launched opera tions (either navigational or data manipulation). The sequential mode causes only the top-most selected word in the co-processor to be affected; the parallel mode affects all selected words, simultaneously. Controlling the mode of operation is realised via the Mode line input to the co-processor. Intermixing sequential and parallel modes of operation is supported within the same transaction.

Circuit design

Figures 5 and 6 show the circuit design of the Comparand Mask and Data cells mentioned earlier. The data cell is composed of nine gates, which can be reduced to seven (as opposed to five in RAM) if I allow gates O_{1} and O_{2} to be imple mented as wired-ORs. As I indicated before, the co-processor also incorporates in each memory word additional associative cells of two types: the structure-delimiter type, used to mark the first and the last words in the data structure, and the element-delimiter type, used to mark the first word of each structure-element.
Since delimiter words (those having either of their delimiter cells set to ' 1 ') are likely to be separated by a number of data words (non-delimiter words), i.e. a structure-element is likely to occupy more than one word, so I introduce a minimised version) dose cells that comprises none or a single gate (see Figure 7) depending on

The built-in control unit of the co-processor device decodes input commands into nine control signals. These are: Compare
(CMP) Select Data (SD) Select Mask (SM) Select Comparand (SC), and Set, Link Next Word (LNW), Link Previous Word (LPW) Link Next Element (LNE), Link Previous Element (LPE).
The tag bits manipulate some of the decoded control signals as well as some internal control signals which link the associative words together. Table 1 describes the functionality of each signal and its source.
The Delimiter minimisation concept also applies to the tag bits, resulting in two versions comprising 18 and 13 gates (see Figures 8,9 . Note that gate O_{4} is counted as
three 2 -input OR gates in Figure 8 with inputs from A1 and A8 being wired-ORed, and is counted for two 2-input OR gates in Figure 9 . Gate O_{5} is also counted for two 2 -input OR gates. Gat O_{6} can be implemented as wired-OR to improve cycle time so that RESULT line can convey the tag setting to the chip output as fast as possible. Mentioning the RESULT line, the NONE/SOME line (denoted by N/S) does the same function of the former and in addition it controls word selection in Sequential Mode. This incurs a propagation delay of one gate per associative word making the NONE/SOME line much slower to rely upon for checking comparison results.
Based on the previous optimisations, the co-processor can be manufactured with four intermixed types of words as shown in Table 2. Depending on the distribution of those types of words in the co-processor, the average control gates overhead (ACGO) per associative memory word and the maximum number of unused words (MNUW) - fragmentation between structures or structure-elements) - can be determined. For example, choosing an organisation pattern of one type-I word followed by seven type--V words gives an ACGO of 16 and a MNUW of 7 . Thus,
tailoring the organisation of the co-processor may be required to suit a particular application.

Operating the co-processor

$>$ Retrieval operation

Qualifying structures are retrieved starting with the topmos structure and according to the designated direction (i.e. forward or backward) depending on the word-linking command used (i.e. LNW or LPW). Also, the retrieval process can start at any point

Figure 7:Modified delimiter cell circuity of a non-delimiter word (type M)
within selected structures, depending on the requirement of the application and may proceed in either direction as indicated above. The output read lines of the co-processor (READ-OUT) carry the contents of the topmost selected word, while the NONE/SOME line enforces this action.
However, the NONE/SOME line has the potential of elongating the retrieval of selected structures due to its incurred delay of activating the next to the topmost selected structure. Such activating the next to the topmost selected structure. Such delays vary according to the distance (counted by associative
words) separating both structures. So, instead of accessing words) separating both structures. So, instead of accessing
structures at fixed intervals (equal to the maximum possible delay), the co-processor controller may sense the setting of the next structure-delimiter at the output lines, then resumes its activities. This mechanism achieves better performance for a large number of selected structures.
\geqslant Update operation
The co-processor has two modes for the write operation: single-word (Sequential Mode) and multi-word (Parallel Mode) The first mode is realised while the Mode line is reset to ' 0 ' dung word operation. in this case, only the topmos By activating the Mo aline (setting it to ' 1 ') the secend to
 comes in efrect. Dep, or SC the write operation is directed to the required cells,
Loading the co-processor with a data page is executed by first selecting all associative words using the SET command. While in dode, data is written to the topmost selected word, then the word is de-selected (by comparing it with an illegal value). The latter sequence of operations would be repeated for each word of structure data.

$>$ Delete operation

Deleting selected structure(s) can be performed by writing a special bit pattern in the structure header (for example ' 0 's in its first word). Structure freed space can be referenced by the structure's own ID or by replacing it with a special ID introduced specifically for memory management. $>$ Managing free space
The co-processor should be initialised prior to loading it with data. During initialisation, all words are reset to '0's while struc-ture- and element-delimiter cells are set to ' 1 's. So, by selecting the first empty structure-delimiter word (containing '0's in its data cells), while in the sequential-mode, each word of the structure header can be written with SD, followed by a LNW com-

mand to select the next empty word. To insert a new element, the LNE command should be issued to select the first available element-delimiter word, and then followed by a SD and LNW insert each of the element's data words. In this way, the free contiguous area In update-intensive applications, relocating tructures due to their need of acquiring extra space is possible This would require freeing previous space occupied by the This would require freeing previous space occupied by the ree space Reallocating freed structure space to other struces is possiblo by introducing a mrear res is possibe by induch a mager is the bina bud ree space. which was adopted for an object memory It might also ber, 10 and low a cen threshold whil fragments beco to smal cola the structures in the co-processor.

Flexible co-processor

In this article, I presented the design of an associative memory based co-processor (ACP) that can perform search and update operations, involving multi-word structure-elements, in parallel or sequentially. Unlike existing associative processors, the co-processor supports bi-directional navigation (forward and backward) within structures and facilitates direct manipulation of structures and their elements with minimal navigation overhead. The co-processor does not impose restriction on structure or element size or reserve any bit patterns to identify data structure or structure-element headers. Co-processor devices can be cascaded to achieve the required cache frame or data-page size. Rather than using separate specialised processors for operations such as data object selection and join operations, the co-processor performs such operations in addition to a variety
of logic and mathematical algorithms. Data structures can be relocated in the co-processor without the need to change their references or employ indirection in contrast with RAM-based systems. Supporting navigation between and within structures eliminates the need for storing intermediate query resuls (in somplex qui The associative operation of the co and ox 1 mes To elimina data in a database.
Such features make the co-processor capable of resolving user queries and manipulating data structures locally instead of transferring them to the host main memory for processing. oprations a speed up of operations, a over typical RAM-based system.

See next page for Table 1.
Table 2: Associative word types (all sizes in gates)

Word Type	Element Cell	Structure Cell	Tag Cell	Data Tatal Cell Word Size

Typee I	7	7	18	56	88	Fully customisable word
Type II	7	1	18	56	82	Can be an element- delimiter word
Type III	0	7	13	56	76	Can be a stracture- delimiter word

$\begin{array}{lllllll}\text { Typelv } & 0 & 1 & 13 & 56 & 70 & \text { Non-delimiter word }\end{array}$

Table 1：Signal legend for the ACP
Signal Description
external
SET Set tag bits of all words to 1
LPW Link activity to next word
LPE Link activity to previous word
LNE Link activity to next element
SPE Link activity to previous element
Select input from the data bus as data to associative data cells
Select input from the data bus as
data to Comparand cells
Select inputfrom the data bus as data to Mask cells
CMP Compare data cells with the corresponding unmasked Comparand cells
QE $E_{\mathrm{i}} \quad$ State of element－deliniter cell of word（i）
QFi State of forward navigation line of word（i） linked to word（1＋1）and is used to inink activity to the next element－delimiter word．Itis dis
QB B_{i} State of backward navigation line of word State of backward navigation ine or word（i） to the current element－delimiter word．It is disabled if word（1）is an element－delimiter word．
WS Select word（i）
$N / S_{i} \quad 1=$ no matching fond in words $(0-i)$ $0=$ at least one matching word found in words（0－i）
Mismatch ${ }_{j i}$ Accumulated Mismatch results of bits
$\begin{array}{ll}\text { FSET }_{i} & \begin{array}{l}\text { Realiseses forward navigation in conjunction } \\ \text { with } L \text { NW．Sets Tag cel of next word }(i+1)\end{array}\end{array}$ to 1 if Tag（）is setto 1 and［operating in Parallel Mode（MODE＝1）or Tag（i）is the topmost set cell］
BSET $_{i}$ Realises backward navigation in conjunction with V LPW．Sets Tag cell of previous word（i－1）to 1 if Tag（i）is set to 1 and（Ioperating in Parale：Mod
（MODE $=1$ ）or Tag i）is the topmost set cell｜ （MODE＝1）or Tag（i）is the topmos set cell）
${ }^{2}$ Ti $_{i}$ Accumulated state output of Tag cells of words $(O-1)$ propagated 10 word $(1+1)$
READ－OUT，，Accumulated state of delimiter／data cells
READ－N．Input data to bit j from the data bus．It is solit into two adjacent lines：BO $(=1$ if READ－Nj $=0$ and $B 1 j$（ $=1$ if READ－Nj $=1$ ）
$B O_{j}, B 1 j$ Input data lines tobit slice j where $B O j=1$ if
bitj $=0$ and $B 1 j=1$ if bitij $=1$
$D 0_{j}, D_{1}$ Input data propagated to cell jof each word （correspond to BOj and B 1 j when enabled by
Signal） Uinas
$\mathrm{CO}_{j}, \mathrm{C1}_{\mathrm{j}}$ Unmasked Comparand cell（）outputto delimiter and data cell（ ）of each wor $[0,0$ no comparison done
$[0,1]$ compare cells（ () with 1
$[10]$ $[1,0]$ compare cells (i) with 0
Note：i（）refers to bit sequence within the word，where（i）refers to word sequence within the co－processor

TEA：FIU CABL＝S

 delivered next warking dayTalk to FS Cables for all your telephone cable requirements．We stock many of the CW series，with a special emphasis on Low Smo talogen free types．Custom designed cables and types解 Telecom Spec Options：
CW1044 function earth，stocked up $50 \mathrm{~mm}^{2}$ with some sizes in LSHF．
CW1308 internal PVC from 2－200 pair
CW1308 type H Low Smoke Halogen
Free insulation and sheath
CW1600 Limited fire hazard，screened and LSHF throughout．
CW1128 External PJ filled up to 200 pair in 0.5 mm or 0.9 mm for use in ducts．
CW1128／1198 External Armoured PJ fille for direct burial in 0.5 mm or 0.9 mm
\Rightarrow Drop Wire 10,11 and 14 （ 2,3 and 4 pair） FS Cables Customer Services： Next working day delivery
Carriage paid on orders over $£ 100$ Bulk drums or cut to length on Bulk drums or
many products．
Free $100+$ page catalogue
plus full FS Cables range online at www．fscables．com

Tel： 01727828 Fax： 01727824 E－mail－sales＠fscables．com
＂圖（1）回

Very Interesting！

The entire range of the 2005 Skytronic catalogue available from Cricklewood Electronics

This，Dutch Wholesaler＇s Catalogue，is now available to UK retail customers via Cricklewood Electronics and includes thousands of electronic items and components at bargain prices．The 432 Catalogue pages includes：
Plugs，Sockets，Cables，Switches，Speakers，Microphones，Components，Car Audio Disco \＆PA \＆HiFi Equipment CCTV Cameras \＆Recorders，Tools，Test Equipment， Inverters，Power Supplies，Electrical，Multimedia，Computer accessories，etc etc

Catalogue \＆Price List free to shop－callers．To have it posted－please send $£ 2.00$ towards postage costs．（UK only）．

Cricklewood Electronics Ltd
40－42 Cricklewood Broadway，London NW2 3ET．Tel： 0208452452 0161，Fax 02082081441 email：sales＠cricklewoodelectronics．co．uk Visit our website＠www．cricklewoodelectronics．com

Adventure:
 Noise

How to mathematically outwit the less nice aspects of electronic or mechanical piece of art

By Burkhard Vogel

7he design of hum- and noiseless RIAA pre-amplifiers is a kind of art. The existence of a great variety of circuit designs tells many stories of pursuits of high signal-to sion of the RIA, transfer. Solutions proposed in the sion of the RIAA transfer. Solutions proposed in the past to use - as substitute - resistors or inductors at the input of mathematical octave-band masure to measured ones (with mm-cartridge as input load) do not satisfy raddition hum spoils many measurement attempts and the optimal loading capacitance of the mm-cartridge is quite often pot taken into account of calculations or measurements. That's why I wanted to get the answer to the following How can I calculate with relatively high precision the unweighted SN can calculate win relaively high precision he unweighed cartridge at the input?" In this case, "relatively high precision" artridge at the pifference $0.5-1.0 \mathrm{~dB}$ between results of the mathematical approach to find measurement.
Several years ago, in another and much more complex mathe matical struggle, I was confronted with a powerful mathematica software called MathCAD (mcd). It's easy to use and offers high speed to find solutions for differential and quadratic equations, integrals, magnitudes etc. So, I thought it might be worth
answering my question with the help of such software. But theory is only one side of the coin, the other side is craftsfronted with measurement results. Hence, before starting cal lations with mod 11 , the whole measurement set up must be built and tested Earlier versions of mad will work equally but mod11 has one giant mcd11 has one gia ferent languages.

Sophisticated piece of equipment

MM-cartridge is a very sophisticated piece of electronic and mechanical elements. Its rather high resistance and mechanical elements. Its rather high resistance and the right input section for the appropriate amplifier or a good enough mathematical model.
Manufacturers' specifications about cartridges are mostly restricted to DC resistance ($R 1$), inductance ($L 1$), recommended load capacitance (C1) and output voltage (U : in most cases given in $\mathrm{mV}(\mathrm{rms})$ at 1 kHz at $5 \mathrm{~cm} / \mathrm{s}$ peak velocity). Nearly all of this data (see Table 1) needs to be questioned since the reality in many (see Table dif needs to be questioned since tife reality, in many tested mm -cartridges are made by Shure). Concerning the data of the M44G cartridge that l've used, the
big differences cannot be explained. Because of the many derivatives of this cartridge, it is possible that I have the wrong data. Unfortunately, it does not end there: the R1 resistance seems not to have a fixed value. It is claimed that it grows proportional to growing frequencies and, thus, takes an increasing part of the noise creation in the whole input network of a RIAA pre-amplifier, which includes mm -cartridge, $C 1$, input resistance $\operatorname{Rin}(=47 \mathrm{k} \Omega)$ and input transistor of the pre-amp (Figure 1). Fortunately, the influence of the input transistor can be made rather low. With a clever design for the most part, it can be limited to its noise contribution alone.
The frequency generator Gen1 feeds the mm-cartridge via a high value resistor ($2.2 \mathrm{M} \Omega$), with that creating a current source. capable of handling the whole frequency range from $10 \mathrm{~Hz}-20 \mathrm{kHz}$ The cartridge is connected to a FET-input op-amp (e.g. OPA604) with low input capacitance (<10pF) and very high input resistance ($>10 \mathrm{M} \Omega$). The output of the op-amp must be connected to an appropriate measurement system, being capable to measure voltages and phase angles. Here, this is a CLIO40 measuring system that runs very well on an old 133 MHz -Pentium computer. It also includes Gen1. To create the trace of the magnitude of the mm -cartridge, the whole frequency range must be fed to the cartridge. The resulting voltage is proportional to the magnitude of $Z 1=|R 1+j \omega L 1|$ of the cartridge (Figure 3a, lower trace, left ordinate [dBV]). It can be transferred into Ohms by calculation with the rule of three. Starting point for $Z 1$ is $1.01 * \mathrm{R} 1$ at 10 Hz which is an empirical value as a result of many performed measurements. If $R 1$ and $L 1$ are a constant value, then the phase angle $\phi(=$ angle between the magnitude of the impedance of the mm cartridge and it's real part R1, Figure 3a upper trace, right ordinate) should become values more and more close to 90° with frequencies above 10 kHz (Figure 3b = Spice simulation with constant values for the V 15 V resistance and inductance, ransferred into Excel).
But this is not the ease as one can see in Figure 3a (>3kHz). 1 guess that not only $R 1$ is frequency-dependent, $L 1$ will be too.

For example, V15V - right channel: $L 1(120 \mathrm{~Hz})=338.0 \mathrm{mH}$, $L 1(1 \mathrm{kHz})=331.8 \mathrm{mH}$. The manufacturers of mm -cartridges don't give much usable information about the substance of their creation. Therefore, any attempts will fail to dive deeper into the physical and chemical secrets by analysing skin effects and permeability. But Figure 4 shows several interesting looking traces for the V15V MR cartridge, which might give better hints for a mathematical model of a mm-cartridge. Measured with CLIO's $1 / 3$-octave band analyser (RTA) these four traces represent unweighted and RIAA-equalised resistor white noise and V15V noise. You can see that unweighted resistor white noise and V15V noise have the same slope $<1 \mathrm{kHz}$. For frequencies $>1 \mathrm{kHz}$ the slope of the V 15 V noise becomes +6 dB and above, until it reaches the resonance frequency of the input network, whereas the slope of the resistor noise keeps its initial slope (+3ab). Th's why mm -cartridge noise is always stronger than the noise of a resistor alone. Consequently, to get results closer to reality when measuring SNs you'll never find a resistor that is able to replace a mm -cartridge - other approaches have to be found.

A simple mathematical mode

In accordance with the findings, it makes sense to start with the simplest mathematical model for a mm -cartridge, which consists of a sequence of a constant value resistor R1 and a constant value inductance $L 1$ (Figure 5). For calculations of SNs all you need are the exact values of the noise-making components of the RIAA pre-amp and the mm cartridge itself.
To examine the results of the proposed mathematical model for a particular mm-cartridge connected to a particular RIAA preamp, it must be possible for all readers to check these results. That's why details for all measurement tools are given. The measurements where carried out with different pieces of equipment, shown in Figure 6.
The measurement arrangement consists of:

1) A low-noise measurement pre-amplifier simulates the input stage of a RIAA amplifier. It is not equalised. Its gain is set to

Figure 3 a (Left): V15VMR-impedance and phase Figure 3b (Below): Phase of constant R1 \& L1

 Frequency $[20 \mathrm{~Hz}-20 \mathrm{kHz}]$

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.

- USB 2.0 connection (USB I.I compatible)
${ }^{\circ}$ sample speed up to 100 MHz per channel
8 to 16 bit resolution (6μ Volt resolution)
${ }^{\circ} 50 \mathrm{MHz}$ bandwidth
${ }^{\circ}$ input sensitivity from 200 mVolt up to 80 Volt
- large memory up to 131060 samples per channel
${ }^{\circ}$ four integrated measuring devices
${ }^{\circ}$ spectrum analyser with a dynamic range of 95 dB
- fast tránsient recorder up to 10 kHz
${ }^{\circ}$ several trigger features
${ }^{\circ}$ auto start/stop triggering
auto disk function up to 1000 files
${ }^{\circ}$ auto setup for amplitude axis and time base
${ }^{\circ}$ auto trigger level and hysteresis setting
${ }^{\circ}$ cursor measurements with 21 read-outs
${ }^{\circ}$ very extensive function generator (AWG) $0-2 \mathrm{MHz}, 0-12$ Volt

for more information, demo software, software, source code and DLL's visit our internet page: http://mww.tiepie.nl

following calculations on the worksheet will change accordingly
The input impedance network Ztot(f) shown in Figure 1 (mmcartridge, C1, Rin) can be written as the sum of admittances, which is in mod style:

$$
z_{\operatorname{Ro}}(f):=\left(\frac{1}{R 1+2 j \pi / L 1}+2 j \pi f c 1+\frac{1}{R_{i n}}\right)^{-1}
$$

To calculate the magnitude of Z tot(f) and its phase angle, all values of the components and the plot frequency range f (e. g. 10 Hz steps from $10 \mathrm{~Hz}-20 \mathrm{kHz}$) have to be defined first, in this example case for the Shure V15V MR cartridge. The calculation results can be plotted in diagrams (Figure 7 and 8). All values in the diagrams can be read out by applying the mod-tool " $x-y$ trace". Values (without units) written in mod style look as follows: R1=793; L1 $=0.3318$
C1 $=250 * 10^{-12} ;$ Rin $=47.5 * 103 ; f=10,20 \ldots 20000$
In Mathcad, phase angles of complex figures are expressed as radians (rad) of the argument (arg). To get "degrees", the results in "rad" have to be divided by "deg" (Figure 8). The total noise voltage of Z tot (f) consists of the two parts $\mathrm{e}_{\mathrm{N}_{1}(f)}$ and $\mathrm{e}_{\mathrm{N}_{2}(f)}$, which, as uncorrelated noise voltages, have to be summed up together with the other amplifier's uncorrelated noise voltages at the +-input of a noiseless amplifier (Figure 9), according to the mathematical rules of the handling of noise voltages and currents. In this case, $\mathrm{e}_{\mathrm{N}_{1}(f)}$ is the noise voltage of $R 1$ after it passed through the voltage divider formed by $Z 1(f)$ and $Z 2(f), e_{N 2}(f)$ is the noise voltage of Rin after it passed through the voltage divider formed by Rin and Z1a(f). To continue in mcd style, all physical constants and values ($\mathrm{T}=300^{\circ} \mathrm{Kelvin}=$ absolute $($ room $)$ temperature, $\mathrm{k}=1.380651 * 10^{-20}=$ Boltzmann's constant, frequency bandwidth $\mathrm{B}=19980 \mathrm{~Hz}$) have to be written down as well. Application of the Nyquist formula gives the noise voltages of the noise producing components R1 and Rin within B:
$\mathrm{e}_{\text {NR1 }}=5.124 * 10^{-7}$
$e_{\text {NRin }}=3.965 * 10^{-6}$

The impedances that form the input voltage dividers in Figure 9 are:

$$
\begin{aligned}
& Z(f):=R 1+2 j \pi f 1 \\
& Z 1 a(f):=\left(\frac{1}{Z(f)}+2 j \pi f(1)^{-1}\right. \\
& Z Q(f):=\left(\frac{1}{\operatorname{Rin}}+2 j \pi f 1\right)^{-1}
\end{aligned}
$$

Consequently, the equations for $\mathrm{e}_{\mathrm{N} 1}(f)$ and $\mathrm{e}_{\mathrm{N} 2}(f)$ look like:

$$
\begin{aligned}
& \operatorname{cmin}^{M}(f):=\sqrt{\operatorname{enR1}^{2}\left|\frac{Z \sum(f)}{2(f)+Z(f)}\right|^{2}} \\
& \operatorname{eng}(f):=\sqrt{\operatorname{cin}_{2 i n}\left|\frac{Z 1 a(f)}{21 a(f)+R_{\text {in }}}\right|^{2}}
\end{aligned}
$$

Besides these two noise sources, there are several other equiva lent and uncorrelated ones: equal noise voltages and currents $\mathrm{e}_{\mathrm{NTT}, 2}, \mathrm{I}_{\mathrm{NT}, 2}$ of the long-tailed pair $\mathrm{T} 1, \mathrm{~T} 2$ ("equal" if both transistors are carefully paired, h_{FE} should be >550) and noise votage sources from the feedback network itseff or in conjunction with $i_{\text {NT2 }}$ as well as from the total input network in conjunction with $i_{\text {NT1 }}$ (the measurement amp will be shown in detail later). It is assumed that in the frequency band B, the spectral noise densities are "white" in general and that there is no $1 / f-$-noise in B. This assumption seems to be valid because the chosen transistors

Figure 7: Impedance of input network

Figure 8: Phase of input network
(2SC2546E) create noise figure traces (Figure 10-12) which are very favourable for typical mm -cartridge source resistances in the range of $700 \mathrm{R}-40 \mathrm{k}$ at $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$.
But these findings do not give an answer to the question from where to get the input transistor noise voltage and noise current at a definite collector current. In the low-noise op-amp case, you can find these figures or traces in the data sheets. The values of $e_{N T 1}, e_{N T 2}, i_{N T 1}$ and $i_{N T 2}$ only depend on physical constants (T, k $q=$ elementary charge $=1.6022 * 10^{-19}, I C, h_{F E}$ and base resistor R_{B} (all other internal transistor resistors can be neglected).

$$
\begin{aligned}
& R_{B} \text { (al other internal ransistor resistors ca } \\
& i_{N T 1}=3.267 * 10^{-11} e_{n T 1}=2.069 * 10^{-7}
\end{aligned}
$$

To get $\mathrm{e}_{N T 1}\left(=e_{n T 1}+R_{B}\right.$-effect), further steps have to be taken to find the right value for R_{B} first. Calculations lead to a quadratic equation for $\mathrm{e}_{N}{ }^{2}$ that can easily be solved with mod. The
2SC2546 data sheet figures for the noise voltage e_{N} at the definite collector current l_{k} will be the basis for the following calcula tion:
$T_{K}=10^{-2} \mathrm{~A} / \mathrm{vHz} \quad \mathrm{e}_{N}=0.5 * 10^{-9} \mathrm{~V} / \mathrm{vHz}$
Noise voltage and current can be calculated as:

$$
\begin{aligned}
& i_{n}\left(I_{K}\right):=\sqrt{\frac{2 q I_{K}}{h_{F E}}} \\
& \epsilon_{n}\left(I_{K}\right):=k T \sqrt{\frac{2}{q I_{K}}}
\end{aligned}
$$

The quadratic equation's mcd solution for R_{B} looks as follows (including the specific mcd-tool "solve, R_{B} ":

$$
\begin{aligned}
& e_{N}=e_{N}\left(I_{K}\right)^{2}+\left(i_{M}\left(I_{K}\right) R_{B}\right)^{2}+4 L T R_{B} \\
& \text { solve, } R_{B} \rightarrow(-31158 R+1374)
\end{aligned}
$$

For further calculations only the positive solution for $R B=13.74 \Omega$ makes sense. A check of the calculation approach with LM394 creates a result close to the manufacturer's detail too $-40 R 3$ vs $40 R 0$. Thus, $\mathrm{e}_{\text {NT1 }}(I C=100 \mu \mathrm{~A})$ becomes:

$$
\begin{aligned}
& e_{N T 1}:=\sqrt{\left(e_{N T 1}\right)^{2}+\left(i_{N T 1} R_{B}\right)^{2}+41 T R_{B} B} \\
& e_{M T 1}=2176+10^{-7}
\end{aligned}
$$

The collection of important noise sources will be completed by inserting the influential factors of $Z 3(f)$ and $Z 4(f)$ into the whole calculation course: $Z 3(f)=R 3+1 /(\eta 2 \omega f C 3)$ and $Z 4(f)=R 4 \| Z 3(f)$ $i_{N T 2}$ flows through R4 only, thus, $\left(i_{N T 2} * R 4\right)^{2}$ is a noise voltage source, which is independent of the noise gain of the amplifie To refer this term to the input it must be divided by the noise gain $G=1+R 4 / Z 3(f) \mid$, thus, $R 4$ divided by G leads to the nois voltage $\left.i_{N T 2} * Z Z(f)\right)^{2}$.
To get $Z 3(f)$ and $Z 4(f)$ you have to define the values of $R 3, C 3$, R4 first (without units):
$R 3=130 ; C 3=122 * 10^{-6} ; R 4=6.37 * 10^{3}$;

$$
\begin{aligned}
& Z g(f):=R 3+\frac{1}{2 j \pi f 3} \\
& Z 4(f):=\left(\frac{1}{R 4}+\frac{1}{|Z 3(f)|}\right)^{-1} \\
& C_{N Z 4}(f):=\sqrt{41 / T \mid Z 4 f) \mid B}
\end{aligned}
$$

> Equation 12
> $e_{\text {NRot }}(f):=\sqrt{Q^{2}\left(e_{M T 1}\right)^{2}+e_{\text {NII }}(f)^{2}+e_{N 2}(f)^{2}+\left(i_{M T 1}\left|Z_{\text {tot }}(f)\right|^{2}+\left(i_{N T 1}|Z 4(f)|^{2}+e_{N Z 4}(f)^{2}\right.\right.}$

The sum of all relevant noise voltages squared will lead to the input referred and frequency dependent noise voltage $e_{\text {Ntof }}(f)$. Its rms value is the basis of the signal-to-noise ratio $S N$ with reference to an input voltage of $5 \mathrm{mV}(\mathrm{rms})(-46 \mathrm{dBV})$. Consequently, signal to noise $S N_{n e}[d B]$ can be defined as $S N$ of the
unweighted and unequalised noise signal ($n \mathrm{e}=$ non equalised) $\mathrm{e}_{\text {Ntot }}(f)$, which includes noise from. the cartridge as well as from the pre-amp. $S N_{\text {riaa }}$ is the $S N$ of $e_{\text {Ntof }}(f)$ after equalisation with the RIAA transfer, $S N_{\text {ariaa }}=S N_{\text {riaa }}+$ A-Filter weighting. See
Equation 12 above.
The rms form $\mathrm{e}_{N^{\prime}}(f)$ of a noise voltage $\mathrm{e}_{N_{x}}(f)$ in a definite frequency bandwidth can be plotted:

$$
e_{N}(f)=\sqrt{\frac{1}{f_{\text {iogh }}-f_{\text {low }}} \int_{\text {flow }}\left|e_{\text {higy }}(f)\right|^{2} d f}
$$

Thus, $S N_{\text {ne }}[\mathrm{dB}]$ referred to $5 \mathrm{mV}(\mathrm{rms})$ becomes:

$$
S N_{n e}:=20 \log \frac{\sqrt{\frac{120000}{B} \int_{N 0}(f)^{2} d f}}{5 n V}
$$

$S N_{n e}=-65.1 \mathrm{~dB}$ Measured: $S N_{n e}=-67.2 \mathrm{~dB}$
Before going further on at this point I have to go back to Figure 9: there are two reasons for the inclusion of a hp pole (formed by R3 and C3) into the circuit.
a) Heavy changes of DC voltages at the output can be minimised (caused by impedance changes at the input when measuring with different input loads),
b) This is an additional time constant, simulating the RIAAIEC roll-off frequency at 20 Hz . I've chosen to shift this frequency to 10 Hz , because my V15V and V15IV driven RIAA pre-amps sound optimal with this configuration. Generally, this frequency doesn't give any heavy extra disturbance. It is kept at 10 Hz throughout the whole calculation and measurement process.

RIAA transfer function

The magnitude of the RIAA transfer function is $R(f)$ and is a combination of two low-pass filters ($T 1=3180 \mu \mathrm{~s}$ and $T 2=75 \mu \mathrm{~s}$) and one differentiator ($T 3=318 \mu \mathrm{~s}$). To make certain that $\mathrm{R}(\mathrm{f})$'s gain at 1 kHz will become OdB it is necessary to include a 2 nd term $R(1000)$ into the formula of $R(f)$. This term is nothing else but the reciprocal figure of the original transfer function with $f=1000 \mathrm{~Hz}$. A plot (Figure 13) allows to pick all values with the help of the
e. g. $20 \mathrm{~Hz}=+19.274 \mathrm{~dB}, 20 \mathrm{kHz}=-19.62 \mathrm{~dB}$.
$R(f)=\left[\frac{\sqrt{1+(2 \pi f T 3)^{2}}}{\sqrt{1+(2 \pi f T 1)^{2}} \sqrt{1+(2 \pi f T 2)^{2}}}\right] R(1000)^{-1}$ FR(1000$)^{-1}=9898$

Thus, with the calculation rules for noise voltages passing through a given circuit block the input voltage referred RIAA weighted $S N$ becomes:
$S N_{\text {riad }}=20 \log \frac{\sqrt{\frac{1 \int_{B}^{20000} e_{\text {Nhot }}(f)^{2} R(f)^{2} d f}{}}}{5 \mathrm{mV}}$

$$
S N_{\text {riaa }}=-78.4 d B
$$

Measured: $S N_{\text {riaa }}=-78.6 d B$

A-filter transfer function

RMS noise voltages passing through an A-filter according to NAB/ANSI standard (or IEC/CD 1672) with reference to a definite ms voltage level ($5 \mathrm{mV}(\mathrm{rms})$) produce the A-weighted $S N a$
$S N_{a}$ for $\mathrm{e}_{\text {toot }}(f)$ A-filter weighted becomes:

$S N_{a}=-70.1 d B$
Measured: $S N_{a}=-70.9 \mathrm{~dB}$
and $S N_{\text {riaa }}$ for $\mathrm{e}_{\text {Ntof }}(f)$ equalised with RIAA transfer plus A-filter weighting becomes:

[^0]

In line with our policy of producing top quality products at amazing prices we have reduced the price of our best selling items by up to 50%
Don't delay - this is for a limited period only!

WHEN IT COMES TO POWEB
FOR RACES IT MUST BE

Olson Electronics Limited Honeypot Lane, Stanmo
Middlesex HA7 IJX Middlesex HA7 $1 J X$
Fax: 02089521232 -mall: saleseolson.co.uk

Send for your

ew free catalogue

9" Horizontal 2U High

4	Sockets	13A/4/R	@	£22.65 ea. Nett
5	Sockets	13A/5/R	@	£24,99 ea. Nett
6	Sockets	13A/6/R	@	£27.57 ea. Nett
7	Sockets	13A/7/R	@	£30,96 ea. Nett
Vertical				
4	Sockets	T13A/4	@	£20,25 ea. Nett
6	Sockets	T13A/6	@	£24,60 ea. Nett
8	Sockets	T13A/8	@	£31.47 ea. Nett
10	Sockets	T13A/10	@	\$34,95 ea. Nett
12	Sockets	T13A/12	@	239.62 ea. Nett

Vertical Left Hand with Switch

4	Sockets	4LH/MS	@	$£ 20.25$ ea. Nett
5	Sockets	5LH/MS	@	$£ 23.37$ ea. Nett
6	Sockets	6LH/MS	@	$£ 24.60$ ea. Nett
8	Sockets	8LH/MS	@	$£ 31.47$ ea. Nett
10	Sockets	10LH/MS	@	$£ 34.95$ ea. Nett
12	Sockets	12LH/MS	@	$£ 39.62$ ea. Nett

Vertical Right Hand with Switch
4 Sockets 4RH/MS @ £20.25 ea. Neti
5 Sockets 5RH/MS @ $£ 23.37$ ea. Nett
6 Sockets 6RH/MS @ $£ 24.60$ ea. Nett

8	Sockets	8RH/MS	@	$£ 31.47$ ea. Nett
10	Sockets	$10 R H / M S$	@	$£ 34.95$ ea. Nett

12 Sockets 12RH/MS @ $£ 39.62$ ea. Nett

GAIL OUR SALES HOTLINE
02089057273
discount or offer. Olson Electronics Ltd reserve the right to change the price without prior notice.

Figure 13: RIAAtransfer

Figure 14: A-weighting fiter transfer

It seems that RIAA equalisation "smoothes" the mathematical SN results more towards the measured ones in comparison with the nonequalised cases

Measurement clrcult

The measurement circuit consists of three different blocks. They are all located on one small PCB that is fixed in a shielded Al-box with the dimensions of $170 \times 120 \times 60 \mathrm{~mm}$. Block 1 (Figure 15) is the adaptation of a RIAA pre-amp circuit design described in National Semiconductor's Application Note An-222. Block 2 (Figure 16) is the impedance measurement stage and block 3 Figure 17) is AMP according to Figure 6.
To keep noise on the power supply lines as low as possible the respective circuit looks relatively extensive. VR1 and VR2 stabilise the incoming $\pm 20 \mathrm{~V}$, which is fed in from a separate power supply unit through a 1 m -shielded cable. Gyrators (T4, T5)
form an extra power supply filter. The separate power supply unit (not shown here) consists of one toroidal transformer, two rectifiers and two high-value Cs followed by two additional gyrators fiers and two high-value Cs followed by two additional
with high $h_{F E}$ Darlington transistors BD679 and BD680.
with high $h_{F E}$ Dariington transistors BD 69 and BD 680 .
The mm -cartridge is attached to its headshell, fixed by an SME The mm -cartridge is attached to its headshell, fixed by an SME
connector to a very short piece of tonearm pipe on the top of a connector to a very short piece of tonearm pipe on the top of a separate shielded Al-box ($(15 \times 65 \times 55 \mathrm{~mm}$). The signal ines go into block 2 and cartridge box (Figure 2) enables impedance measurements, while a very short BNC coupler connects block 1 with the cartridge box for SN measurements.
The circuit diagram of block 2 is shown in Figure 16. For other measurement purposes, S3 switches the input resistance from 10 M to 47 k 5 . The 1 Hz cut-off frequency of the high-pass filter C3, C4 \& R15 is low enough to keep the amp free from gain errors in the $20 \mathrm{~Hz}-20 \mathrm{kHz}$ frequency band.
Block 3 (AMP) is a simple low-noise amplifier with its gain set ting components. R18 simulates the resistor that might play a role in a two-stage RIAA pre-amp arrangement (75us low-pass filter, e.g. $750 \mathrm{R}+100 \mathrm{n}$). This stage's contribution to the overall noise is totally negligible. A rule of thumb says that, "if the input referred SN of an amplifier stage is more than 20dB below the SN at the output of the stage in front of it, then this noise contribution can be neglected" (a calculation gave a 0.0001 dB deterioration factor).

Results

Calculation and measurement results are listed in Table 2. The most important lines are number 13 (RIAA-equalised noise. $\mathrm{SN}_{\text {riaa) }}$ and 16 (RIAA-equalised and A -weighted noise: $\mathrm{SN}_{\text {ariaa }}$). These deltas indicate that the claim at the beginning of this article becomes true that a maximum 1.0dB variance between mathematics and measurements could be possible. Another interesting point is that the measured results for the 1 k and 12 k resistors (lines $6,9,12,15$) match perfectly with the calculated ones, which is a nice proof of the mathematical model for white noise. The results of the ORO and 100R resistors (lines 7, 10) indicate the problems shown in Figure 10, 11, 12: very low source resistances and a low collector current $(100 \mu \mathrm{~A})$ don't match and will lead to additional noise, which is not reflected in the chosen

Figure 16: Impedance measurement circuit

Figure 17: AMP circuit

Figure 15: Circuit of measurement pre-amp and power supply for AMP and impedance measurement block

mathematical approach.

For comparison reasons, column " L " shows the calculated results of a so-called "standard" cartridge, which is used in test magazines to check SNs of RIAA amplifiers (e.g. stereo play"). nsists of a 1 k resistor series-connected with a 0.5 H inducance (which, of course, is not the same as mm-cartridge induc tance of 0.5 H with its resistance of 1 k . It's nearer to the truth han a resistor alone). But it might not be a good idea to compare test magazine results (with "standard" cartridge) with selfgenerated ones because there isn't enough information about C1's value in the measurement setup. This capacitor has a great influence on SN, which will be lined out a bit later. The SNs
shown in Table 2 are not the whole truth because each of the tested mm -cartridges has its definite sensitivity U, expressed in rms output voltage at 1 kHz at $5 \mathrm{~cm} / \mathrm{s}$ peak velocity. Taking this into account, all SNs in Table 2 will be improved: e. g. U $\mathrm{U}_{115 \mathrm{~V}}$ 3.2 mVrms at $5 \mathrm{~cm} / \mathrm{s}$, on an LP-disc the 0 dB level is at $8 \mathrm{~cm} / \mathrm{s}$ peak velocity, therefore, with the rule of three $\mathrm{U}_{\mathrm{V} 15 \mathrm{v}}$ becomes $5.12 \mathrm{mV}(\mathrm{rms})$ and thus, the V 15 V SNs improve by +0.21 dB . The M44G is much better: with it's output voitage of $\mathrm{U}_{\mathrm{M} 44 \mathrm{G}}=$ $9.6 \mathrm{mV}(\mathrm{rms}) / 8 \mathrm{~cm} / \mathrm{s}$ it improves all SNs by the factor of
$20 * \log (9.6 \mathrm{mV} / 5 \mathrm{mV})=5.67 \mathrm{~dB}$.
In line four of Table 2 there are different values of C 1 . For mm cartridges its 30 pF higher than for resistors because of the addi-

Figures 10, 11 and 12

May 2005 ■ ELECTRONICS WORLD

tional capacitance of the BNC connectors and cables inside the cartridge box. A test-wise increase to 250pF for resistor measurements didn't change anything except for input loads $>15 \mathrm{k}$. A rather significant effect can be observed if you don't take C1 into account. The SNne of the V15V changes from -65.1dB (250p) to $-68.5 \mathrm{~dB}(3 \mathrm{p})$, which is an improvement of +3.4 dB $\mathrm{SN}_{\text {riza }}$'s improvement will be +1.2 dB . Similar improvements will come up in the A-Filter case.
R7 of Figure 15 has an influence on the SNs too. Provided that C 11 and C 12 and $\mathrm{R} 5+\mathrm{P} 3$ or P 4 have been changed adequately a change from 130R to 10R improves the SN riaz of a V 15 V cartridge by a factor of +0.2 dB , whereas a change to 499 R worsens it by a factor of -0.6 dB . In the RIAA+A-filter case the respective figures are $+0.1 \mathrm{~dB} /-0.5 \mathrm{~dB}$.
Cooling of the pre-amp (e. g. down to $-18^{\circ} \mathrm{C}=255.2^{\circ} \mathrm{K}$) leads to an SN improvement of only +0.5 dB for $S N_{\text {riaa }}$ and $S N_{\text {ariaa }}$
because the cartridge can't be cooled down the same way. With a software like Mathcad and the formulae given in this study to calculate unweighted or weighted Signal-to-Noise atios of mm-cartridges connected to a RIAA-transfer forming pre-amplifier, you only need seven basic parameters to get very good calculation results that are close to reality; the DC resistance, the inductance, the output voltage and the optimal bad capacitance of the cartridge the preamplifier's input refered noise voltage and noise current and the gain setting eferred noise voltage and noise current and the gain setting omponents of the feedback network of the pre-amp. the mm -carrtridge's noise reality and those carried out with values $<10 \mathrm{k}$ will lead to SNs that are too optimistic. Doubling of the input transistors or minimising the resistors in the feedback network (e. g. in Figure 15: R7 ~ 1RO) does not produce that big difference in noise reduction, at all.

ELECTRONICS WORLD

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of Electronics World for me each month

Take advantage of the low Dollar!

OSCILLOSCOPE

Memory Depth	32KB/Ch
Single Frequency	DC to 30MHz (DSO-2100 USB)
DC to 5MHz (DSO-220 USB)	

SPECTRUM ANALYZER

2-channel, Fast-Fourier Transform, Range: 0Hz-50MHz (DSO-2100USB), 0Hz-10MHz (DSO-220), Cursor: Frequency, Data Point: 32K/chan

Unbeatable Price: DSO-2100 (30MHz): \$350.00, DSO-220 (5MHz): \$250.00
ORDER VIA: www.pc-instrumentmart.biz

Tektronix WFM700 Waveform Monitor

ByAndrembiat

Whilst the current talk is about a revolution in multimedia - DVDs, widescreen, plasma displays etc. the real big noise in television and cinema produc tion circles is high definition television (HDTV), even though this has not been an overnight phenomenon. Plans were started back in the early eighties under the European Eureka EU95 project.
Unfortunately, achieving satisfactory resolution for 1250 lines with it resultant bandwidth of around 30 MHz , thermionic camera tubes and analogue circuit techniques of the day, HDTV was firmly stuck in the world of laboratory prototypes and demonstration roadshows. Since then, two main factors have lead to HDTV being developed to a sophisticated television and film origination tool. Firstly, solid-state charge-coupled devices (CCD) have now all but replaced the earlier thermionic camera pickup-tubes, leading to smaller, more reliable optical assemblies.

Secondly, the widespread introduction of digital technology has simplified both equipment and studio topologies. Manufacturers are now able to bring to market advanced digital equipment for both the current standard-definition television (SDTV) and HDTV systems.
The Tektronix WFM700 analyser is a good example. It is aimed mainly at practising engineers involved in manufacturing R\&D, broadcasting and studio project teams. The last category is one to which I belong. Over the last few months I have been using the WFM700 on a daily basis whilst designing and installing a new high-definition television facility for the University of Surrey, Guildford.
Various international bodies define standards for the digital interchange within studios and broadcast facilities; for HDTV the European ITU defines this serial digital interface (SDI) as recommendation BT709-5. Stated very simply, separate luma and chrominance video signals are multiplexed together with synchronising and control signals (ANC). This then forms an uncompressed $1.485 \mathrm{~Gb} /$ s serial data signal that can be sent via a lowloss 75Ω coaxial cable.

The complexity of the serialised signal renders conventional oscilloscopes virtually useless. Even when decoded, there is no easy way to observe what is, or not, happening to the actual data stream. The Tektronix WFM700 analyser permits the user to monitor the serial signal and then check the integrity of the various data chanels, bo dictate the level of monitoring for Optional plug-in cards dictate the level of monitoring, for example the standard base model is suitable for compliance, i.e. video levels, liegar colours and general picture impairments. Further signal and digital audio signals conforming to the woldwide AES signal ard The model reviewed here features all of these options.
standard. The modelreviewed here features al of rack mounting reandor anit. When ordering it important to rember that the destop model is supplied 'bare' and that portabe cabinet is antional extra. When used on flat sur face, the unit can be angled upwards approximately 9 cm by clicking down the two front legs. Personally, I don't find this gives paricul gives a particularly comfortable viewing angle, alhough extra height can The rear of the analyser houses the various modules with book. The rear of the analyser houses the
their respective BNC sockets (Figure 1).
Other connectors include IEC mains, CAT 5 Ethernet USB VGA and 9 -pin D-type. Mains operation is from 100 V to 240 V
and, rather inconveniently, the main fuse is non-user serviceab The front of the unit consists of a TFT screen (approximately 17 cm diagonal), three conventional knob-type controls and a selection of press-buttons. The general layout is quite intuitive definite advantage for engineers working in panic-stations scedefinite advantage for engineers working in panic-stations scenarios. I regard digital displays a mixed blessing when used for clear bright image with touch-screen button selection, on the ther, I can't sometimes help feeling that sharp transient spikes are lost at certain timebase settings. Although I haven't actually experienced this with the WFM700, it is something I have noticed experienced this with the WFM700, it is something I have noticed
with some other digital oscilloscopes. My belt-and-braces solution, at least for critical standard-definition TV applications, is to use the WFM700 in conjunction with its earlier CRT incarnation the WFM601.
Rather than laboriously explain every button and feature in turn it is perhaps better to describe some real-world example applicafions. For the purpose of this review, I shall use the WFM700 to and potential reliability (digital video signals are notorious for the cliff-edge' effect, where signals can slowly degrade with no visible picture impairment, until a point is reached where a signal is suddenly completely lost).
Finally, I perform a quick analysis of a Thomson HDTV elec-tronic-cinematography camera.
First, I examine a link, which consists of a colour-bar test signal transmitted via a 50 m coaxial cable. Switching to the 'Eye' menu allows you to see the $1.485 \mathrm{~Gb} / \mathrm{s}$ signal directly. In order to determine the quality of the signal, it is necessary to create an eye-diagram that consists of three superimposed bit-cells. Measuring the eye-diagram aperture is a good (but not infalibibe) indicator of the quality of the signal.
A well-formed eye-pattern indicates a reliable signal; alternatively, if the eye pattern is nearly closed there is a good chance that it will be unreliable. In this example, I can see that the opening is fairly good and, using the onscreen electronic

Figure 1: Optional modules may be plugged in atthe rear ofthe unit. This example has additional inputs for AES digital audio.
graticule, the peak-to-peak level is to within specification $(800 \mathrm{mV}$ $\pm 10 \%$) (Figure 2). As with a conventional oscilloscope, using the WFM700's 'Cursor' option will enable a direct textual readout of the voltages.
The HD-SDI signal is self-clocking, therefore, the amount of jitter is critical to the receiver's locking ability. Pressing the 'Jitter' on-screen soft button will give us a direct reading in terms of me. In this case, it was measured to be approximately 250ps and this would be considered quite good, well within specifica ion for HDTV Very quickly we aready can see that this repre sents a healthy, reliable signal.
Having established the serial signal's integrity, it is now pos sible to check the individual video, audio and control signals through the analyser's waveform and measurement menus. A direct analogue representation of the video signals can be displayed under the WFM menu. Soft selection buttons allow you to elect between luma, red, green and blue channels, either displayed in a row or overlaid. There is also a 'Composite' option that will display the signal as a psuedo old-fashioned PAL colou waveform - very handy for broadcast engineers of a certain age Signal levels can therefore be directly equated with values simila those used for analogue television, i.e. 700 mV peak white, mV black and -300 mV for synchronising pulses.
Figure 2: Waveform of HD-SDI signal at the receiving end of a 50 m

Figure 3: Selecting the correct line and pixel location shows timecode data. Values displayed are selectable hex, decimal or binary notation.

Here, again, on-screen cursors can be selected for more accurate voltage and timing measurements.
Located at the bottom right of the screen is a very useful pic-ture-in-picture facility showing the incoming signal. This would ture-in-picture faciity showing the incoming signal. 'Unis would button will display a full-sized image (16×9 aspect ratio for HDTV), with surprisingly good resolution and colorimetry. Additionally, this picture feed is available through a VGA con nector, located at the rear of the unit. Connecting a conventional PC-type monitor here makes for a very economical HDTV display. One caveat, however, is that the video is 'raw' in that the signal is unprocessed, it is unlikely therefore that some monitors will lock to lower frame rates such as 25 fps and 24 fps .
The WFM screen also contains other important information in textual form. The presence of embedded timecode and audio ANC data are indicated and, most importantly, for checking unknown sources, the HDTV standard is being monitored. There are currently many different HD standards in use worldwide, the WFM700 will detect and display the vast majority of them. All the foregoing is fine if there are no problems, but finding oddities within such a complex serial stream is very hard. For example, if the embedded timecode were to skip the occasional frame(s), I could view the data words directly by choosing the Measure' menu and selecting TV line 10. As it is one of several ancillary signals located within the horizontal blanking period, I have to select the relevant starting pixel, number 1934 in this example. I now have displayed a waveform of timecode data plus text readout of the data words in hex form. The timecode data immediately follows unique data identification words (as defined within the specification) 0000h 3FFh 3FFh 260 h 260 h 10h (Figure 3).
After all that hi-tech, it's then all down to the keen eyes and patience of the engineer to spot the dropped frames.
Basic television camera performance can be measured using just the WFM700 plus suitable lighting and a test chart. Monitoring of video and black level controls is possible, using the WFM function. A check of the cameras' white-balance, i.e.

Figure 4: Magnified viewofvectorscope display, showing a correctly white-balanced camera

Waveform Menu

Figure 5: As in Figure 4, but camera gains are unbalanced producing an erroneous tinting of neutral grey areas of the picture. In this case channel.

PROS AND CONS

- Clear and bright TFT display
- Intuitive operation
- Picture-in-picture display for Picture-in-picture disp
confidence monitoring
- Automatic logging of video and audio errorsRemote Ethernet operationDifferent SD/HDTV formats displayed all, in one self-contained unit

\checkmarkGood build quality

Front support feet create an inconvenient viewing angle
X Confusing audio mapping menu
X Mains fuse mounted inside the unit
X Course line-select control scrolling through individual TV lines requires a deft touch
X Expensive

MOST USEFUL FEATURE

Textual readout of the incoming signals' line and frame rates - absolutely essential for monitoring or fault-finding within HDTV's multiformat environment

SUGGESTED IMPROVEMENTS
Built-in AES digital-toanalogue converter for audio monitoring

- More ANC analysis tools particularly for nasty timecode problems

Shallower cabinet version for portable use

Virtues and failings of C I was very surprised to see that it is apparently legal to produce computerised machines for medical applications, which are controlled by programs written in C . Although C has many virtues it also has many failings. Important in this kind of application are that explicit use of pointers can make code
obscure e.g. pointers to pointers or de-referenced pointers to structs, or lead to writing or reading beyond the bounds of an array, and that mproper and potentially dangerous type casts will probably be passed by the compiler.
Those managing the project, enforcing safer coding standards, can ameliorate these problems and/or by the use of programs like Lint, which can pick up many (possibly all) of the problems. Perhaps it would be better if 'safer' languages were used to program safety critical devices in the first place.
The on-board computer of the recently successful Titan lander was programmed in the language Ada83. Presumably, the team that specified this felt they had a good reason to reject C.
The very least that we can expect is that medical devices
will be specified with at least will be speciified with at least one-off devices like spacecraft.
The usual reason for not using a 'safer' language like Ada or Modula 2 is that ther are not enough programmers familiar with these languages. But this eventually becomes self-fulfilling prophecy, seff-uafiling programmers will because programmers w
only develop expertise in these languages if there is a these languages if there is a
demand for them to be used demand for them to be used. governments can legitimately seek to influence marketdriven decisions, by insisting that the programs for all safety-critical programmable devices are written in languages that meet the highest possible standards for safe usage.
C and C++ do not.
Dr Les May
Rochdale
UK

Going lower in frequencies Recent articles in Electronic World (March, pages 8 and 43) suggest that research workers investigating allegations of adverse health effects due to mobile phone
echnology are still focusing or much on high carrier fre quencies (100 kHz to 3 GHz) and not (fough on low fre and not enoug ($\mu \mathrm{Hz}$ to 100 Hz), which are operant in moder telecommunications system as well as cognitive and bio logical processes.
Frequency-hopping, after the fashion originally envisaged by Hedy Lamarr in her patent, granted in 1942, appears to have settled in the range 56 ms (lan Poole on Tetra, EW December 2004) to 660 ms , which equate to 8 Hz and 1.6 Hz respectively both of which occur in the brain-wave frequency range. Kitai and Plenz showed that 0.8 Hz and 0.4 Hz are of primary importance in normal basal pace-making (ganglia) formed by phase-locking between the subthalamic nucleus and the external globus pallidus (Nature, 12th August 1999, 677-682, 6212), which would resonate or phase-lock, with an external signal of 1.6 Hz ; possibly that a natural resonance of 0.8 Hz between the earth and the moon, which may be a factor in language development in hildren (Laura Anne Pettito); may be over-ridden.
A good example of importance of these low frequencies is Cysarz's work Scientific American, October 2004, page 13), illustrating how reciting the Odyssey can improve one's health substantially, by synchronising cardiovascular rates (Mayer waves of 0.12 Hz) with breathing rates.
Previous correspondence in EW suggested that this was a oad of "incoherent non sense" - but not now (v Chronicles', pp158-9, Simon \& Schuster, 2004).

Researchers investigating mobile phone technology in relation to health will find Dannah Zohar and Dr lan Marshall's book 'SQ' invaluable (published by
Bloomsburg, UK 2000), especially the section on 40 Hz . Tony Callegari Much Hadham UK

Concel don't encrypt Mark Chimley's IBE system (EW March 2005, p22) is an interesting idea that may find useful applications, but I am sure that he is wrong to think that it will be used for email. People who require moderate security typically use PGP or GPG, which have a slight difficulty with the distribution of public keys. However, that dif ficulty has never been much of an impediment.
The IBE system involves a third party having potential access to encrypted mes sages, which would be com pletely unacceptable to most users, as it defeats the object of encrypting a message in the first place. This is a matter that the author mentions only in passing. He is, therefore, proposing a cure worse than the disease.
The IBE system might be useful not as a replacement for such things as PGP, but as
an additional method of disan additional method of dis-
tributing and verifying its tributing and verifying its

Quasar Electronics Limited PO Box 6935, Bishops Stortford CM23 4WP, United Kingdom Tel: 08702461826 Fax: 08704601045 E-mail: sales@quasarelectronics.com Web: www.QuasarElectronics.com	Postage \& Packing Options (Up to 2 Kg gross weight): UK Standard 3-7 Day Delivery - $£ 3.95$; UK Mainland Next Day Delivery - $£ 8.95$; Europe (EU) - £6.95; Rest of World - £9.95. We accept all major creditrdebit cards. Make cheques/PO's payable to Quasar Electronics. Prices include 17.5% VAT. Call now for our FREE CATALOGUE with details of over 300 kits, projects, modules and publications. Discounts for bulk quantities.	

Motor Drivers/Controllers
Here are just a few of our controller and driver modules for AC, DC, unipolar/bipolar stepper motors sard sevvo motors. See website for full details.

website for full details.

NEW! Bidirectional DC Motor Controller
 Controls the speed of most common DC
motors (rated up to
$32 V D C(5 A)$ in both $32 \mathrm{VDC} / 5 \mathrm{~A}$) in bo re
the forward and r verse direction. The
fully OFF to fully ON
ange of control is from fully OFf to fully O are controlled using a single potentiometer. Screw terminal block for connection
Kit Order Code $3166 \mathrm{KT}-£ 14.95$

DC Motor Speed Controller (5A/100V)

almost any common
DC motor rated up to
$100 \mathrm{~V} / 5 \mathrm{~A}$. Pulse width
modulation output for naximum motor toraue at all speeds. Supply: $5-15 \mathrm{VDC}$. Box supKit Order Code: 3067 KT - $£ 11.95$
NEW! PC / Standalone Unipola Stepper Motor Driver
Drives any 5,6 or 8 -lead Drives any 5,6 or 8 -lead
nipolar stepper motor rated up to 6 Amps max. rovides speed and direction control. Operates in stand-alone or PC-
controlled mode. Up to six 3179 driver boards can be connected to a single parallel port. Supply: 9 DC DC. PCB: $80 \times 50 \mathrm{~mm}$.
Kit Order Code: 3179 KT - $£ 9.95$ Kit Order Code: 3179 KT - $£ 9.95$
Assembled Order Code: AS3179 - $£ 16.95$
NEW! Bi-Polar Stepper Motor Driver Drive any bi-polar stepper

motor using externally supplied 5 V levels for stepping and direction control. These usually come from softwa | Sunning on a computer. |
| :--- |
| Supply: $8-30 \mathrm{~V}$ DC. PCB: $75 \times 85 \mathrm{~mm}$ | Kit Order Code: 3158KT - $£ 12.95$

Most items are available in kit form (KT suffix)
or assembled and ready for use (AS prefix).

Rolling Code 4-Channel UHF Remote State-of-the-Art. High seccurity
4 channels. Momentary 4 channels. Momentary or lat to 40 m . Up to 15 Tx's can
 cludes one $T \times$ but more avail able separately.) 4 indicator LED 's Rx: PCB $77 \times 85 \mathrm{~mm}, 12 \mathrm{VDC} / 6 \mathrm{~mA}$ (standby). Two and Fen channel versions also available. Kit Order Code: 3180KT - £41.95
Assembled Order Code: AS3180-£49.95

Computer Temperature Data Logger
 cations for storing/using data. PCB just DS1820 sensor and four header cables. Kit Order Code: $3145 \mathrm{KT}-£ 19.95$ Assembled Order Code: AS3145- $\mathbf{£ 2 6 . 9 5}$
Additional DS1820 Sensors - $£ 3.95$ each

NEW! DTMF Telephone Relay Switcher Call your phone number using a DTMF phone from
anywhere in the world and anywhere in the world and he 4 relays as desired. ser settable Security Password, Antiamper, Rings to Answer, Auto Hang-up and
Lockout. Includes plastic case. Not BT approved. $130 \times 110 \times 30 \mathrm{~mm}$. Power: 12 VDC . Kit Order Code: 3140KT - £39.95 Serial Isolated I/O Module

uter controlled 8 channel relay board. 5A mains rated relay
outputs. 4 isolated digital inputs. Useful in
a variety of control and sensing applications. Controlled via serial sensing applications. Controlled via serial
port for programming (using our new Windows interface, terminal emulator or batch
fies). Includes plastic case $130 \times 100 \times 3 \mathrm{~mm}$ files). Includes plastic case $130 \times 100 \times 30 \mathrm{~mm}$.
Power Supply: $12 \mathrm{VDC} / 500 \mathrm{~mA}$. Power Supply: $12 \mathrm{VDC/} / 500 \mathrm{~mA}$.
Assembled Order Code: AS3108-£64.95

Infrared RC Relay Board
Individually control 12 on-
board relays with included oard relays with included Toggle or momentary. $15 \mathrm{~m}+$ range. $112 \times 122 \mathrm{~mm}$. Supply: $12 \mathrm{VDC} / 0.5 \mathrm{~A}$ Kit Order Code: 3142 KT - $£ 41.95$
Assembled Order Code: AS3142-£51.95

PIC \& ATMEL Programmers We have a wide range of low cost PIC and ATMEL Programmers. Complete range and documentation available from our web site. Programmer Accessories: 40-pin Wide ZIF socket (ZIF 40 W) $£ 15.00$ 18V DC Power supply (PSU010) $£ 19.95$
Leads: Parallel (LDC136) $£ 4.95$ / Serial (LOC441) £4.95 /USB (LDC644) £2.95

NEW! USB 'All-Flash' PIC Programmer
USB PIC programmer for all 'Flash' devices. No external
power supply making it truly portabse. Supply makied with it bouly portable. Supplied with box and
Windows Software. ZIF Socket and USB Plug A-B lead not incl. Assembled Order Code: AS3128-£44.95
Enhanced "PICALL" ISP PIC Programmer
Will program virtually ALL 8
to 40 pin PICs plus a range
of ATME AVR SCENX
to 40 pin PICs pius a range
of ATMEL AVR, SCENIX
SX SX and EEPROM 24 C de-
vices. Also suppors vices. Also supports in SysAVRs. Free software. Blank chip auto detect for super fast bulk programming. Available in assembled format with ZIF socket only.

ATMEL 89xxxx Programme
Uses serial port and any tandard terminal comms program. 4 LED's display
the status. ZIF sockets not included. Supply: $16-18 \mathrm{VDC}$ Kit Order Code: 3123 KT - $\mathbf{£ 2 9 . 9 5}$
Assembled Order Code: AS3123 NEW! USB \& Serial Port PIC Programmer 4 USB/Serial connection. Heade cabe for ICSP. Free Widows
software. See website for PIIs
supported. ZIF Socket/USB Plug
 Assembled Order Code: AS3149C - $£ 49.95$

WWW.quasarelectronics.com
Secure Online Ordering Facilities • Full Product Listing, Descripitions \& Photos • Kitit Documentation \& Sofiware Downloads
intended as public informa tion, in any case. The outstanding problems in secure communications are not really in such things as tion, but rather in methods of concealing the fact that a message has been transmitted and received, as much can be learned from traffic analysis.
Robert Baines
Newcastle upon Tyne UK

Fight security breaches Recent security breaches, such as the intruder in Channel 4's Big Brother enclosure and numerous attempts to scale the walls surrounding Buckingham Palace, not only encouraged more businesses to conside the potential threats these security breaches pose, but have also highlighted the debate surrounding intrusion detection techniques, questioning how important building this level of security actually is.
Although these high profile cases of intrusion are not commonplace in an every day business environment, the threat of someone tapping into communication lines coming in and going out of ne bul very realistic issue.

Whereas, an intruder trying to break into an establish ment like the Big Brother House may be picked up on CCTV or by a security guard, someone tapping a phone line may be more difficult to Just because a cable is laid underground does not mean it is impervious to risk. For example, many busi nesses fail to recognise manhole covers as being a serious threat to building security and information integrity. Businesses have measures in place to make emails and information secure once they have entered the building, but surely these measures should be taken into account as information comes into and goes out of the building too?
Fibre intrusion technology is the next logical step in securing the flow of informa tion and the business from physical attack.
As soon as a cable of this type is touched it will raise an alarm and pinpoint exactly where the interference has occurred, meaning it can be dealt with immediately. This is valuable for not just under ground cables but can be put at the top of razor or barbwire fences to detect a disturbance and highlight an intrusion before someone manages to get over the fence and into the building. Phillip Coombes Managing Director Fibre Technologies

Renewed interest in amps Reading Mr. Stan Curtis's letter in the February 2005 issue [p48], in which he stated that emphasised bass, rekin-
dled my interest in building my own. l'm interested in vilding three amplifiers for each 3-way speaker and con nect each driver directly to its mplifier. An active 12 dB per ctave low-pass, high-pass and bandpass would provide he required signals for each amp.
I need a design of 30 W to 40 W rms for the woofer, maybe 25 W for the midrange river and 10-15W for the weeter.
Better yet, what power ratings would you suggest for this arrangement? Should the weeter be driven from a lass A amp?
Robert Bliek
Calgary
Canada

Cosmologists are desperate to find dark matter, becaus they cannot explain how stars can orbit faster and fur ther out than is normal under Newton's laws. The alternative answer is that they are looking at either expanded course counters the theory that the universe is expanding, since the expanded space is far back in time where the big bang is. Expanded space would neatly explain the problem and the red shift of light that we assume is due to the big bang is light coming from expanded space, which might well be travelling faster or slower, hence the observed distances may be wrong and maybe, the energy mc^{2} too. Without the solution of hidden dark matter our current calculations are way, way out. If time is dilated too, observe stars are travelling at the wrong orbital speeds, and light coming from such a system might not have the 'correct' speed either and may be red-shifted, hence our observation that the universe is expanding with distance, if time is changing across the universe since the 'big bang' Chris Doherty
UK
Dilated time, expanded space As wacky ideas go, dark matter seems to be the wackiest, and we don't even ow if there has really been big bang', because the theory is based on the 'red shift of distant galactic light. Then, there is the problem of alaxies accelerating without an accelerating force, and
now, 'dark matter gravity'?

Please send your
Please se
letters to
letters to:
Highbury Business,
Media House,
Azalea Drive, Swanley,
Kent BR8 8HU

e-mail:

ewletters@highburybiz.com using the heading Letters Electronics World reserve
edit all correspondence.

High-linearity 12-bit DAC with only two micro pins
eferring to the Circuit Idea $\left\{\begin{array}{l}\text { eferring to the Circuit ide } \\ 61 / 4 \text { bit DAC requires }\end{array}\right.$ only four output pins' by lan Benton in EW, November 2004 (p46), I salute him for his elegant solution. I too have been working on this problem and would like to pass on an effective two-pin solution, which is even more efficient i wide bandwidth isn't a equirement.
Precision frequency oscillator control can be achieved using pulse-width modulated DAC feedback, which gives very good linearity. The usual circuit (Figure 1) involves on micro pin (PD5) and a simple RC filter (R1/C1), which integrates the pulse-width modulated output and removes the "clock" frequen y component. With one pin output, the PWM hardware available in several micros can be put to good effect. The upper frequency response is limited by the requirements of the RC filter but is still appropriate for applications such as frequen cy control.
High resolution and good inearity are features of the PWM DAC, but a further problem is that the higher the required resolution, the slower the system response since the PWM period is related to the power of the number of bits. For example using a 10 kHz PWM rate, 8 bit resolution results in a "clock" of $10,000 / 256=$ 39 Hz . This low PWM period is the major limitation of this echnique.
My improvement allows higher resolution, modestly faster response, or both. Tw or more) separately (but PWM'd outputs can be 48
combined to
provide a single voltage on a single on a single capacitor. For capacitor. For
example (see Figure 2), if R1 is $10 k$ and R2 is 160 k (ratio 1:16), the lower four bits of an 8 -bit value can be PWM'd on R2 and the upper four bits on R1. The output has a resolution of eight bits but, $\quad 10,000 / 16=625 \mathrm{~Hz}$. This most significantly, the PWM makes the PWM noise easier period is much faster. To use to remove and improves the the previous example,
 frequency response of the

DAC. If the micro has two high-speed PWM registers the response could be even faster.
This very simple design is easily expanded to 12 or more bits, by increasing the number of bits per output, or the number of outputs. The 12 -bit is best achieved with two 6bit PWMs rather than three 4 bit PWMs. In a system requiring only 10 Hz frequency esponse, I routinely use a wo output 12-bit DAC, with R1 $=5 \mathrm{kO}$ and R2 $=320 \mathrm{k}$ (ratio :64), and achieve extremely ood 12-bit monotonic outpu with a PWM "clock" of $0,000 / 64=156 \mathrm{~Hz}$. The esistors need to be 1% to ensure an accurate transition at the centre of the range. 1 use two parallel 10 k resistors or R1 and $100 \mathrm{k}+220 \mathrm{k}$ in series for R2. The availability of accurate resistors ultimatey limits the useful resolution of this technique and some trimming may be necessary to get the ratio exact.
Software PWM control algorithm is best used in a high-speed interrupt loop and dual PWM can be achieved using a single counter that has half as many bits as the output. A 12-bit example for the AVR is in Table 1
As a final comment, this technique, which can easily provide 12-bit D-A output with only two micro pins and three passive components, also permits the outputs to be set in nigh impedance mod unticipa vol (for change is anticipated (for example in hase-locked loop applications). This can further reduce hurray Green. Murray Greenman Papakura New Zealand

0
 Radio Modules/Modems www.radiotelemetry.co.uk

PLEASE ENSURE YOU TELEPHONE TO GHECK AVAILABILITY
OF EQUIPMENT BEFORE ORDERING OR CALLING MISCELLANEOUS CLEARANGE STOCK

Voltage-controlled optoisolated resistor

This is an idea of a voltagecontrolled resistor that incidentally is not just very cheap and simple but also ver flexible and optoisolated. To make it work right, you should use a photoresistance driven by an LED. Both compo nents should have to be in the dark and placed closely one in front of the other. Varying gently the voltage in the LED (from 1.7V to 2.2 V I have made the plot of voltage versus current and resistance (see plots). It refers to two of those classic LDRs (for which I incidentally learned too late that have its peak light sensibility around
control AC connected devices ke SCRs or triacs directly from microprocessor's output, for example. Control methods could several digital outputs with a R2 R resistor network, directly from voltage source, oryou can wer LED's current needs for the controller by adding a BJT or little power MOS (which I work with). Two of these arrangements working in opposite can form a full potentiometer. As it can be seen, this circuit is easy to do, extremely cheap and very flexible. However, it should kept in mind that "precision" control would be

Microcontroller drives LC oscillator

In the Figure 1 circuit, if there is an imbalance in the capacitor voltages, charge will flow from one capacitor to the other and a sine wave with frequency:

$\frac{1}{\pi \sqrt{2 \mathrm{LC}}}$

will appear across the inductor
In the circuit of Figure 2 the comparator senses the waveform and energy is supplied each time the comparator switches. The implementation uses an Atmel AT90S2313 microcontroller, though many other chips will be suitable. The on-chip compara(pin PBO and PBI) is configured to interrupt when it toggles, when the interrupt service routine switches PD6 from a high impedance state to either 0 or Vcc for a short period to keep the scillation going.
This scheme allows an oscillator to be integrated with the microprocessor used to monitor the frequency, as in a metal letector, for example.
Circuit operation is non critical, though changes may be needed With L $=2 \mathrm{mH}$ (rer values.
With $L=2 \mathrm{mH}$ (resistance 17Ω) and $\mathrm{C}=22 \mathrm{nF}$, oscillation was at The protely 33 kHz .
The processor clock speed was set with a 4.9152 MHz crystal. During initialisation, PD6 is held high for several instructions to tart the oscillation.
The code for the interrupt senvice routine is listed below (too many instructions will limit the upper frequency):

AC_Int:

sbic	ACSR,ACO	;If PBO <
sbi	PORTD,6	;Otherwis
sbi	DDRD, 6	;Make PD
nop		;Add or sub
cbi	DDRD, 6	;Make PD
cbi	PORTD, 6	;Reset PD
reti		-Return fromer
RLD		
		5

Back issues of Electronics World are available priced at $£ 4$ including $p+p$ in the UK and $£ 4$ plus $p+p$ elsewhere. Please send correct payment to:

Electronics World, Highbury Business, Media House, Azalea Drive, Swanley, Kent BR8 8HU There are a also a limited number of back issues from 2002 \& 2003.

Ultra-simple accelerometer

t t is possible to make inexpensive but accurate accelerome ers using the new MEMSbased accelerometer chips, simple application of the simple application of the ADXLIO3 accelerometer chip from Analog Devices. (he Electro Mechanical System) device that is capable of device thing is capabtion $\pm 1.7 \mathrm{~g}\left(1 \mathrm{~g}\right.$ being $9.8 \mathrm{~m} / \mathrm{s}^{2}$). It has 1.7 g (g beng $9.8 \mathrm{~m} / \mathrm{s}^{2}$). \checkmark supply/2 for an acceleration of of that value, depending on the acceleration The sensitivity of acceleration. The sensitivity $1 \mathrm{~V} / \mathrm{g}$ (typical) at $\mathrm{V} \quad 5 \mathrm{~V}$ which is high enough for the output to be read directly by digital multimeter or panel meter The only requirement that the input impedance of the meter is high enough so as not to load the output of the ADXL103.
The supply voltage for the ADXL103 can range from $3-6 \mathrm{~V}$. Here, a 78L05 regulator is used to maintain a 5 V supply voltage This is necessary because the sensitivity $(\mathrm{V} / \mathrm{g})$ of the device is proportional to the supply voltage. Resistors R1 and R2 form a voltage divider so that the voltage at their junction is $\mathrm{V}_{\text {supply }} / 2$. Voltmeter M is connected between the outputs of the ADXL103 and the divider,

so that zero acceleration will give zero volts output. M can be a DMM or any of those 2 V f.s. panel meters with 1 MW or higher impedance. Capacitor C1 serves to limit the bandwidth of the ADXL103. The value depends on the application. A value of 2.2 nF would give a bandwidth of 2200 Hz (suitable for vibration measurement with an oscilloscope instead of the meter). A value of $1 \mu \mathrm{~F}$ gives 5 Hz , which would be suitable for measuring the acceleration of a vehicle, while filtering out vibration. Capacitor C2 is used to decouple the chip
from any noise present on the power supply line The ADXL103 measures acceleration in its plane, along an axis running through pins 4 and 8. Tilting that axis pro duces a non-zero reading corresponding to the compo nent of the earth's gravity present along that axis. This may be used to test the circuit or to measure tilt. A reading of +1 V or -1 V will be produced with the sensor vertical. The polarity will depend on whether pin 8 is up or down. Direct readings in units of $\mathrm{cm} / \mathrm{s}^{2}$ ar possible, if the supply voltage is set for a sensitivity of
$980 \mathrm{mV} / \mathrm{g}$ instead of $1000 \mathrm{mV} / \mathrm{g}$ (1 g is $\sim 980 \mathrm{~cm} / \mathrm{s}^{2}$). There are other chips in this series. For example, the ADXL203 is identical to the $\times 103$ except it can measure acceleration in two directions X and Y tion in two directions (X and Y). time-integrated to give velocity or double-integrated to give or double-integrated to give
displacement, but this simple displacement, but this simple
circuit is enough in order to start circuit is enough in order to start More information may be found on the manufacturers website: www.analog.com Aarohi Vijh Toled
USA

Send new circuit ideas to:

The Editor, Electronics World,
Highbury Business, Media House,
Azalea Drive, Swanley, Kent BR8 8HU
or email to: ewcircuitehighburybiz.com

Challenging future
 By Mike Brookes

- ifteen years ago, pioneering short(SRDs) were considered just about capable of opening garage doors, but little else Alternative high-quality, usually narrowband, devices usually narrowband, devices
were expensive and sold only in small quantities.
So, SRDs' confinement to a rigidly defined spectrum as secondary occupants seemed reasonable at the time.
Today, highly sophisticated transceivers are available in chip form, featuring frequency agility and programmability, with features such as 'listen before transmit' built in. All of this is available at unit prices of below $\$ 10$.
This technological explo-sion/price-implosion has led to rapid expansion of SRD applications. This, in turn, required better access to the existing spectrum but, also, a growing demand to access different frequencies. As far as licence-free devices are
concerned, a situation like this in a climate of spectrum selling at huge numbers pre sents regulators with real problems.
The recent workshop at ERO (European Radio communications Office) devoted to an EC initiative 'Strategic future for SRDs in Europe' future for SRDs in Europe

© Such freedom, however, brings many other questions for regulators, including Declarations of Conformity within the meaning of the R\&TTE Directive リI

recognises this challenge, drawing comparisons with action to confront similar problems in the US and Asia, with the basic question being "restrict SRDs - or give them access to more spectrum free of charge".
Also, a new nightmare will soon present itself to regulators in the shape of Software Defined Radio (SDR). In this espect, previous limitations
o radio module flexibility, through the need to use fixed hardware components such
this means that a future SRD module will have an inherent ability to operate dynamically on almost any part of the spectrum up to 1 GHz , without physical component limitation. They will also have an inbuilt 'intelligence' to detect interference and adjust output power. All this is likely with unit prices still within the $\$ 10$ band, which will further stimulate demand.
Such freedom, however, brings many other questions for regulators, including
as filters, are lifted. The speed of today's microprocessors, relative to the frequency bands in which most SRDs reside, leads to the real pra ticabiity of internal prothan the data much faster and so to real-tim dion and, so, to real-time digita signal processing. In effect,

Declarations of Conformity within the meaning of the R\&TTE Directive. Until now, est houses and manufac furers have been able to define the performance and tent of a radio module giving regulators a baseline today's addiction to softwa downloads from the Internet, it will be difficult for a manu facturer to provide meaningfu declarations that cannot be overwritten by replacement software. software.
This brings about a challenging future for manufacturers and administrations in controlling the use and spread of these devices.

The LPRA (Low Power Radio
Association) is a Euronean tade Assocation) is a European trac
byoy that recresents manufactre and ueers of short range devices (SRDS)
It is active in the production of SRD
Radio standards and requations
Mike Erookes is LPRA's chairman

Wireless Software Solutions

Firmware revision 2.1

 Jan 05
whiay oxse sen

 Emat: infos iprs. co. ukNew robust software ensures stability of user selected frequency.
data rates and ot oft paw er conicirable viz Windows besed softwere
dala Go to Go to our website to order an evaluation/programming kit and use is saved and revenue returned faster
with "easy-Radio" software solutions.
radio www.easy-radlo.com/ew1

This little number made its UK debut at the Association of British Orchestras (ABO) annual conference in February this year. It is a handheld gadget for concert-goers, dubbed CoCo (Concert Companion). At its heart this is a PDA that offers real-time commentary and commentary and video, promising to transform the concert experience. It picks up each concert-goer to focus their personal screen on any aspect of the concert to get the best view. "CoCo can be compared to audio : guides in museums or supertitles at the opera," said Roland Valliere, - CoCo's creator. CoCo has been developed in co-operation with the - Kansas City Symphony and tested with the New York Philharmonic, : the Philadelphia Orchestra and the Pittsburgh Symphony
: Price and availability to be advised

HP's PAQ hx2700 series pocke PC line contains a
FingerChip sensor from Atmel. It is aimed at providing a secure and convenient way to protect their users' information without the need to manually enter a password It can also be used in conjunction with a password, if required. The FingerChip sensor uses a patented method for imaging the entire finger. A sweeping motion across the sensor captures successive images (slices), applying software to reconstruct the fingerprint. This method allows the space-efficient FingerChip
sensor to return a large, high-quality 500 dots per inch image of the fingerprint. This image is then processed through authentication software, which creates a template to be used for later comparisons.
www.hp.com and www.atmel.com

Catalogue offers Narda

A new catalogue from Link Microtek features over 60 new products from US manufacturer Narda to mark its 50th anniversary.
The catalogue consists of 600 pages and it comprises of Narda's entire product range. The catalogue is divided into coloured sections for ease of navigation, covering fibre optics, active components, passive components, electrom chanical RF switches, power meters and monitors, satcom products, RF radiation safety products and low-cost of wireless components.
Equally, the catalogue carries specifications, outline drawings, perfor mance charts, applications notes and articles.
Also available is a CD version of this catalogue, with information presented in PDF format, featuring a part-number search facility. ww.linkmicrotek.com

Clare expands its Horizon

Clare Instruments has a new set of specialist cable and wiring harness testers for electrical safety. Dubbed Horizon 1500, the series tests variety of applications from simple data cables to complex wiring assemblies used in electrical and electronics systems in the automotive, aerospace, computing, medica military and telecom industries. The unit is in a rugged benchtop format and includes automatic product-learning, fault location and test report
generation, making it suitable for in progress functional and final testing of electrical wiring har ness configurations
The Horizon 1500 series is equipped with 128 high-voltage test points as standard and it can be expanded to 1024 points can be expanded to 1024 points with high current (up to 1A) and and/or 1067VAC. The system has a touchcreen and a hard disc drive for high capacity data storage. wwu.clareisstrunent.com

Miniature PCB-mounting

transducers now on offer from LEM

The new miniature PCB-

 mounting current transducers for unipolar +5 V operation from LEM are based on an open-loop technology combined with an ASIC. hey have access to an internal voltage reference and come in many ranges. In addition, they ome with a five-year warranty. The HXS series is designed to perate from a single +5 V power supply. The units measure $18.5 \times 16.5 \times 10 \mathrm{~mm}$ and inte rate a multi-range primary conductor. The pinout on this conductor allows the HXS 20 NP to be configured as a five, 0 or 20 ARMS nominal modeland the HXS $50-\mathrm{NP}$ as a 12.5 25 or 50 ARMS nominal model, with a measuring span of up to $\pm 3 \times 1$ pn
The internal reference voltage $(2.5 \mathrm{~V}$) is provided on a separate pin or can be replaced by an external reference (between 2 V and 2.8 V).
The ASIC used with these transducers is combined with open-loop Hall effect technology, which in turn guarantees better offsets, gain drifts and linearity. It also offers operating temperature that ranges between $-400^{\circ} \mathrm{C}$ and $850^{\circ} \mathrm{C}$. www.lem.com

Advanced PCB testing from Remploy
Remploy Electronics has launched an advanced PCB testing service for small and medium sized contract manufacturers.
Its facility, which is equipped with some of the latest equipment including the double-sided flying probe Scornion FLS 450 in-circuit tester from Scorpion testernologies, enables Techiogies, enables automatic and simulaneous testing of PCB assemblies. The company says testing cost-effective and simple to setup, and tests active and passive components and boards featuring fine pitch and flip-chip technologies. Companies invest a lot of money in the development and production of today's complex boards and it makes sound commercial sense to apply the same scrupulous approach to the testing process," said Graham Denyer, project engineer for Remploy Electronics. For lese technically demanding boards, Remploy an offer a range o testing options including automatic optical inspection (AOI) as well as Wayne Kerr and Schlumberger automatic test equipment. www.remployelectronics.co.uk

Versatile range of slip rings
The Endura-Trac range of modular industrial slip rings from different combinations, offering flexiliby and cost-effectiveins lexiliby and cost-effectivness of and durability They are crucial and duricion wher electrical digital and video sig nals orelectrical power from stationary to rotating components is required Endura-Tra can iscomodate all black and white video signals, high-speed digital da signals, 80Mbit/s and high frequency signals up to 125 MHz with higher frequency options also available increasing bandwidth available, increasing bandwidth to $25 \mathrm{Mbit} / \mathrm{s}$. speeds of up to 25Mbit/s
flange mounting and offer up to 100 signal circuits of $250 \mathrm{~V} / 5 \mathrm{~A}$ and 24 power circuits with capacity of $600 \mathrm{~V} / 30 \mathrm{~A}$. They capacity of $600 \mathrm{~V} / 30 \mathrm{~A}$. They
offer full 3600 continuous rotation in either direction. There are options for sealed units, highspeed rotation and high voltage. All of them are supplied with 600 mm flying leads as standard but any connectors, lead lenght or lead exit pattern can be selected for any requirement www.idmelectronics.co.uk

Multipath fading emulator

Elektrobit Testing Ltd intro-
 Emulator, PROPSim FE, is a furnkey solution that includes al the required test system components, latest multipath fading emulation technology, integrated interference generation and dvanced test connection configurability, in a single box

This is the latest product in the Elektrobit PROPSim family. It is especially suited to customers who are looking for a cost-effective solution for standard requirement testing without compromising quality.

The PROPSim FE with interfaces RF, analogue and digital baseband, provides a ading test solution for all stages of chipsets, mobile phones, BTS and wireless network development.
The PROPSim FE introduces an integrated solution for reating test case connections of TS34.121, TS25.141, TS51.010, TS51.021 TIAEEIA and IS-95/97/98/2000, including AWGN (additive white Gaussian noise) generation and faded modulated interfering signals inside a single tool. mow. Propioncom

200W battery-backed PSU with multiple outputs

is available in
both 12 V and 24 V versions and features fan cooling as standard, enabling it to deliver 200W continuously at the maximum permissible ambient

The new Oracle III 200-9 batterybacked switch-mode power supply from Vxl Power offers designers greater flexibility by providing one main output, one charger output and up to seven 35 W auxiliary outputs. Operating from an $85-264 \mathrm{~V}$
AC autoranging input, the PSU
mperature of $700^{\circ} \mathrm{C}$, with a peak output capability of 300 W . In the event of a mains failure, the backup battery supplies power to the load via an internal diode, thereby ensuring that the output is maintained without interruption.

The unit is capable of charg-
ing 'Cyclon' cells over the full emperature range and can also be configured for either 2- or 3stage charging to reduce batter echarge times in cyclic applications.
The 200-9 features the standard Oracle III RS232/RS485 erial communications interface, with a choice of Modbus, Canbus, DeviceNet or IrDa protocols. As well as enabling data to be downloaded to a PC, his facility makes it possible for sers to input parameters such as battery type and battery test iterval. In addition, the serial interface allows the PSU to be integrated into a SCADA system f required
nww.rıippover.com

Altemative ATCA units cooling

UK-based enclosure manufac turer Rittal has introduced high-capacity RiCool III fans for heat dissipation of up to 3.2 kW and above for an entire Advanced TCA (ATCA) shelf. o achieve a reliable system Rittal has used liquid cooling
technology that was developed for cooling multiple high power servers in image processing applications in conjunction with the Max Planck Institute. The package allows the locating of heat exchangers, away from the rack, office
or equipment room, saving on noise and heat build-up. Rittal expects even higher heat losses to be incurred in the future, as integration levels rise and clock frequencies extend beyond the 10 GHz www.rittal.co.uk

The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Order form opposite.

NEWNES GUIDE TO RADIO AND COMMUNICATIONS TECHNOLOGY Ian Poole	DICTIONARY OF VIDEO AND TELEVISION TECHNOLOGY Jack Tsuitsoulin	many
This is aguide to the technology ond applications of modern radio and communications equipment. foundation fop college stuvedents and technicions seeking on update on the latest technology.	This work provides comprehensive and contemporary information on the essentiol concepts and terms in video and television, including coverage of test and measurement procedures. The CD accompanying the texindludes an electronic version of the book.	
Jul 2003 - 352 pages \triangle Index \triangle PB Publishedin UK	Sept $2002 \Delta 365$ pages \& CD-Rom Published in UK	
Code 0-7506-5612.3 \quad ¢16.99		£29.99

INTRODUCTION TO DIGITAL	
SYTEMS	

FUZZY LOGIC FOR EMBEDDED SYSTEMS APPLICATIONS Dr Ahmad Ibrahim	
Written by a recognised expert in the tield, this covers ${ }^{\text {relevevont }}$ to electronics design, techniques can be applied to sh and handle logic problems that odvances in the field dre discus circuit design examples presen	he basictheory particular It shows how the tought to solve , and practical
$0 \mathrm{ct} 2003 \triangle 312$ pages \triangle PB Code 0-7506-7605-1	£35.00

NEWNES DICTIONARY OF ELECTRONICS S W Amos; R S Amos	VCR FAULTFINDING GUIDE Edited by Pefer Marlow
Aimed at engineers, technicians andstudents working in the field of electronics, this dictionary provides clear and concise definitions, including TV, radio and computing terms, with illustrations and circuit diagrams.	A distillation of the most-used fault reports from 11 years of Television magazine. Arranged by make and model, it features over 2000 reports on over 200 models of VCR, including diagnosis and repair advice.
4thedition \triangle Mar $2002 \Delta 394$ pages 100illustrotions \triangle PB \triangle Published in UK	Mar $2000 \triangle 447$ pages \triangle Illustrations \triangle PB Published inUK
Code 0 -7506-5642-5 \quad ¢12.99	Code 0-750-4634-9 $£ 20.99$

DESIGNING AUTONOMOUS MOBILE ROBOTS John Holland	
January $2004 \triangle$ PB \& CO.Ror	352 pag
Code $0-7506-7683.3$	£35.0

$\begin{aligned} & \text { BEBOP TO THE } \\ & \text { BOOLEAN } \end{aligned}$	
BOOGIE: AN	
UNCONVENTIONAL	
GUIDE $T 0$ ELECTRONICS	
Clive Maxtield	
The second edition of this comprehensive introduction to contemporary electronics now has added material. It is witten for the engineer, hobbyist or student who needs a thorough electronics reference, os well as for non-technical people, ond is accompanied by a CD-ROM.	
2ndedition $\mathbf{~ J a n ~} 2003$ 500 pages \& (D-Rom 4 184 ilustrations ${ }^{187}$ photographs \triangle Glossary \triangle PB Published in UK	
Code 0-7506-7543-8	£27.50

VIDEO AND CAMCORDER SERVICING AND TECHNOLOGY Steve Beeching A comprehensive guide to domestic VCR technology and repair techniques. This edition brings the information fully-up-todate, with expanded coverage of camcorders VCR technology.	VIDEO DEMYSTIFIED Keith Jack Thisedition has been updated to include information on digital television, datacasting, interactive video, digitol camcorders and VCRs, and video interfacing. Coverage is international including European, Asian and North/South American video standards, methods and techniques.
5th edition \triangle Apr $2001 \triangle 323$ pages lllustrations \triangle PB \triangle Published in UK	Referenes \triangle Glossary \triangle Index \triangle PB Published in UK
Code 0-750-5039-7 £20.99	Code 1878707-56-6 \quad E50.00

Card Number
Expiry Date
Signed

Porti: Boffin Books Lrd, 24 Walton Smeet, Wathon-on-the-Fill, Tadworth, Surrey KT20 7RT, UK

To reserve your web site space phone Ed Robinson 01322611260 e.robinson@highbúybiz.com

CHYGWYN
www.chygwyn.com

ChyGwyn Limited offers electronic design and embedded software development for remote monitoring, embedded appliances, set-top boxes and similar devices. We are experts in customisation of Linux and write

COMPONENT TECKNOLOGY www.component-tecknology.co.uk

- PIC microcontroller kits and module
for students and hobbyist.
- 18F45X,16F87X Proto-Boards for ease and fast development of project ideas.
Infared iliuminators for CCTVs in low
ambient light security areas. tor Data logging.
5\% discount code 'elwwdir2004' for Electronics World readers.
- Consultancy
- TIG control systems - REIS interface - Real-time X-ray Imaging.

DB TECHNOLOGY
www.dbtechnology.co.uk/

Anechoic chamber and open area
test site.
Compliance Tests

- Fixes included. FCC Listed.
- Flexible hourly booking available. Rapid, accurate pre-compliance test

DESIGNER SYSTEMS CO
www.designersystems.co.uk

Electronic product design company with over a decade of experience pro moting it's own product range and designing and manufacturing innovative
www.ipeva.com

PEVA sell FPGA plattorms and provid

Design Services for Embedded Systems, OpenCores IP, Analogue, Digital, FPGA, ASIC, HDL Translations (e.g. Schematics $/ / / / C++$ to VHDL) and
Migrations. Altium Nexar and Protel Migrations. Aftium Nexar and Protel
Bureaux.

MCES LTD

Web: www.mces.co.uk

MCES are a specialist electronics company providing a high quality repair rework and re-manuuacturing sevice including handling both large and smal volume production and rework for major manufacturers. Established in 1972 we have continued to make large investments in specialised test equipment surface mount technology and tooling enabing us to clagnose repar and verit very high standard. We also operate a fit ting service for surface mount multi pin IC's and BGA's
www.redrat.co.uk

infrared remote control input and output for computers - USB and TCP/IP

Applications areas include:

- Home automation
- PC based multimedia installations - Consumer electronics test systems - Broadcast monitoring - Show and theatre control

SOFTCOPY

www.softcopy.co.uk

As a PC data base or hard copy, Sofitcopy can supply a complete index of Electronics World articles over the
past ten years. Photo copies of articles past ten years. Photo copies of articics
from back issues are also available.

TELONIC

www.telonic.co.uk

Telonic specialists in laboratory AC \& DC Power Supplies, Electronic AC \& DC Loads, Electrical Safety Testing and
completetest systems. Pus RF Filters, complete test systems. Pus RF Filters,
Attenuators, Diesel Engine Smoke Measurement, Quartz Crystal Microbalances.
Tel +44 (0) 1189786911

ELECTRO WORLD
 ELECTRONICS WORLD ON CD-ROM 2004, 2003, 2002, 2001, 2000, 1999

Electronics World magazine is enjoyed by some of the world's top circuit designers - but it's not just or professionals. Stimulating designers for almost a century, Electronics World covers analogue, RF and digital circuit technology and incorporates design information on everything from model train control to input/output via a 10baseT network... and it's now available all on CD-ROM

- 12 issues on each CD-ROM

- full text and diagrams of all articles, circuit ideas, letters etc - easy to browse
- fully searchable by keywords and index
- high-quality print in colour
- full software listings included
- easy to use

CDROMs are available for 1999, 2000, 2001, 2002, 2003 and 2004. Each disk contains 12 back issues of Electronics World in a searchable, browsable and printable format PLUS the library of software files. The CDROMs run on PCs with Windows ' 9 x , Me, 2000 and XP. Requires IE4 or above and Adobe Acrobat Reader (supplied on the CD)
only $£ 30$ each including VAT and UK post, add $£ 1$ extra postage for Europe, $£ 5$ extra postage for Rest of the World, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World and libraries all six CDs for the price of five.

OFFICIAL ORDERS ACCEPTED
Order now at:
www.ewmag.co.uk

Please send the following CD-ROMs

\qquad

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 ONU, UK Tel: +44 (0) 1242241455 Fax: +44 (0) 1242241468 sales@softcopy.co.uk

WEB SITE WWW.JOHNSRADIO-UK.COM WWWWOHNRADIOCOM
JOHNSRADIO ELECTRONICS TEST AND COMMUNICATION EOPT LARGE QUANTITY SALE EX M.O.D. MARCONI TF2019A Synthesized Signal Generators - 80Khz to 1040Mc/s AM - FM - High Class with many functions - f 285 each.
TEKTRONIX 2445 A OSCILLOSCOPE $150 M$ Cls Four Channel $£ 300$ TEKTRONIX 2445 A OSCILLOSCOPE 150 Mcls Four Channel $f 300$.
HP COMMUNICATION TEST SET $8922 \mathrm{M}-10-1000 \mathrm{Mc/s}+$ GMS 83220
 ALL UNITS AND PRICED EX WORKS WITH INSTRUCTIONS - TESTED BASIC WORKING. CARR + PACKING IF REQUIRED EXTRA.
All welcome, Private or Trade, sales, workshop repairs or calibration
PLEASE CONTACT PATRIIIA AT WHITEHALL WORKS, 84 WHITEHALL RO
EAST, BIRKENSHAW, BRADFORD, WEST YORKSHIRE, BD11 2ER.
WEB SITE WWW.JOHNSRADIO-UK.COM WWW.JOHNRADIO.COM
This Magazine reaches oysr

potentifi, customers
To advertise in the space call

Little Doctor

Student Data Logger
Simple, Powerful, Affordable
Finally....a versatile 15 -channel data logger at a price that anyone can afford. The "Little Doctor" comes packed with features including:

ADVERTISING INDEX

ALBAN .
BELL COLLEGE..IFC
CRICKLEWOOD..P. 27
EASYSYNCP. 10
FS CABLES P. 26
JOHNS RADIO. P. 63
$P .63$
$P .16$KH BENZP. 9
LPRS.. P. 54
MICROLITE P. 63
NEWBURY ELECTRONICS IBC
OLSONP. 39
PC INSTRUMENTMART P. 39
RD RESEARCH.. P. 17
STEWART OF READING P. 50
TELNET P. 61
TEST EQUIPMENT SOLUTIONS OBC
TIE PIE $\begin{array}{r}. . P . ~ \\ \hline\end{array}$
WARWICK WIRELESSP. 61
Rec NIMH
AA 20
C4Ah
D9Ah

Instrument case with edge connector and screw terminals
Size $112 \mathrm{~mm} \times 52 \mathrm{~mm} \times 105 \mathrm{~mm}$ tall.
This box consists of a cream base with a PCB slot, a cover plate to protect your circuit, a black lid with a 12 way edge connector and 12
screw terminals built in $(8 \mathrm{~mm}$ pitch) and 2 screws to hold the lid on The cream bases have minor marks from dust and handling. Price $£ 2.00+\operatorname{VAT}(=£ 2.35)$ for a sample or $£ 44.00+\operatorname{VAT}(=£ 51.70)$ for a box

	866 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42×22 dia the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily $£ 6.46+\text { VAT }=£ 8.77$
	Please add $£ 1.66+$ VAT $=£ 1.95$ postage and packing per order. JPG ELECTRONICS Shaws Row, Old Road, Chesterfield S40 2RB Tel: 01246211202 Fax: 01246550959 www.jpgelectronics.com Mastercard/Visa/Switch Callers welcome 9.30am to 5.30pm Monday to Saturday

by permission of Highbury Business, Electronics World magazine's publishers

Service Link

> For a FRE를 consultation on how best to market your products/services to a professional audience ring ED on 01322611260

POWER SUPPLY DESIGN Swictced MMde PSU Powerfacior Corection Telfer:01243842520 Telfax: 012438825220 . omond Electronic Services

Service Link

PTH PCBs with solder resist and legend from just $£ 30.00$ lot price.

Visit www.pcbtrain.com

020 for full details.

00000000000 N NEWBURY ELECTRONICS, the home of PCBTrain, the UK market leader for low-cost prototype PCBs

$$
\begin{aligned}
& \text { - Exclusive UK representatives for Circuit Mission Ltd } \\
& \text { (China) - manufacturers of low-cost high quality rigid } \\
& \text { PCBs } \\
& \text { A Exclusive UK representatives for Sunflex Ltd (Taiwan \& } \\
& \text { China) - manufacturers of flexible circuits } \\
& \text { Whorev (China)-manufacturers of low-cost high quality rigid } \\
& 1010001 \\
& \text { China) - manufacturers of flexible circuits }
\end{aligned}
$$

NEWBURY ELECTRONICS LTD
Faraday Road Newbury Berkshire RG14 2AD UK

Sample Stock List - If you don't see what you want, please GALL

AMPLIFIERS
 AT/HP 8348A 26.5 GHz 25 dB 25 dBm Microwave Amplifier

 AT/HP 8349B $2-20 \mathrm{GHz}+15 d B>50 \mathrm{~mW}$ Amplifier AT/HP 8449B 26.5GHz 26dB +7 dBm Pre-amplifier Amplifier Research IOW IOOOM7 IGHz IOW 40dB Amplifier Amplifier Research IWIO00 IGHz IW RF Amplifier Amplifier Research 25WIO00 IGHz 25W Amplifier Kalmus KMST37LC 25W IOkHz-IGHz Amplifier Stanford Research SR8 10 Lock In AmplifierStanford Research SR850 DSP Dual Phase Lock In Amplifier CALIBRATORS AT/HP 58503A GPS Time And Frequency Reference Receiver AT/HP 58503B GPS Time And Frequency Reference Receiver Keithley 220 Programmable Current Source Racal 9475 Rubidium Frequency Standard COMPONENT ANALYSERS
AT/HP 4I92A I3MHz Impedance Analyser AT/HP 4I93A IIOMHz Impedance Analyser AT/HP 4I94A 40MHz Impedance Analyser AT/HP 4275A IOMHz Impedance Analyser AT/HP 4276A 20kHz Impedance Analyser AT/HP 4278A IkHZ/IMHz Capacitance Meter AT/HP 4284A IMHz Impedance Analyser AT/HP 4285A 30MHz Precision LCR Meter AT/HP 4285A/001 30MHz Precision LCR Meter AT/HP 4286A IMHz-IGHz LCR Meter Wayne Kerr 3245 300kHz Impedance Analyser

FREQUENCY COUNTERS

AT/HP 53131A/001 DC-225MHz 10 Digit Universal Counter AT/HP $53131 \mathrm{~A} / 030$ 3GHz Universal Counter AT/HP 53 I32A/030 3GHz 12 Digit Frequency Counter AT/HP 53I8IA/030 3GHz Frequency Counter AT/HP 5352B/005 46GHz Frequency Counter Marconi CPM46 46GHz Counter Power Meter Racal 1992/001 I.3GHz Frequency Counter Racal 1992/04C I.3GHz Frequency Counter Racal 1992/55 I.3GHz Frequency Counter FUNCTION GENERATORS
AT/HP 33I20A/00I 15MHz Function/Arbitrary Weveform Gen AT/HP 3325B 21 MHz Function Generator
AT/HP 3325B/001/002 2IMHz Function Generator AT/HP 8904A/001/002/003/004 600kHz Function Generator NETWORK ANALYSERS
Advantest R3765BH 40MHz-3.8GHz Network Analyser Advantest R3767CG 8GHz lector Network Analyser AT/HP 3589A I50MHz Network/Spectrum Analyser AT/HP 4195IA Impedance Test Kit For 4195A AT/HP 41952A 500MHz Transmission/Reflection Test Set AT/HP 4195A 500MHz Vector Network/Spectrum Analyser AT/HP 85032B/K05 Type N (0) Calibration Kit
AT/HP 85036 B 75 Ohm Type N Calibration Kit AT/HP 85046A 3GHz 50 Ohm S Parameter Test Set AT/HP 85046 B 3GHz S Parameter Test Set (75 Ohm) AT/HP $8510 \mathrm{C} / 010$ Microwave Network Ana $45 \mathrm{MHz}-110 \mathrm{GHz}$ AT/HP 8714ET/IEI 3GHz Vector Network Analyser c/w TR AT/HP 8753NOIO 3GHz Vector Network Analyser AT/HP 8753B/06/85047A 6GHz VNA with S Parameter AT/HP 8753C/006/85047A 6GHzVNA with S Parameter
8
2700
4700 950
5850 585 4500 1650 4450 2850 3250
1525 1525
4200 4200 12350
2075 5950
7625
7950 7950
6975
2950 2950

95 1475
1650 1650
1450
2950 2950
3550

Sale Rent (GBP) (GBP)

$$
4700 \text { 188 AT/HP } 54121 T 4 \text { Channel 20GHz Digitising Scope }
$$

2950 II8 AT/HP 5450IA 4 Channel IOOMHz 20MS/s Digitising Scope ஏゅ

Quality Second User Test Equipment

The Industry's Most Competitive Test Equipment Rental Rates

PULSE GENERATORS
AT/HP 8012A 50MHz Pukse Generator AT/HP 8130N020 300HHz Pulse Generator AT/HP 8131 IA 500 HHz High-speed Puse Generator AT/HP 8133A 33-3000MHz Pubse Generator AT/HP 8133NOO2 $33-3000 \mathrm{HHz}$ Pulse Generator AT/HP 8160A 50MHz Pulse Generator AT/HP 8160N20 50 HHz Pulse Generator SIGNAL \& SPECTRUM ANALYSERS Advantest R4131A 3.5 GHz Spectrum Analyser AT/HP 356 IA 100 Kkz Dynamic Signal Analyser at/HP 35660A 102.5kHz Dual Chamnel Dynamic Signal Ana AT/HP 85024A 3GHz Acive Probe AT/HP 856 IE 6.5 GHz Spectrum Analyser AT/HP $8591 \mathrm{~N} 010 / 0211.8 \mathrm{GHz}$ Spectrum Analyser With TG AT/HP 859 IE 1.8 GHz Spectrum Analyser AT/HP 8594E 2.9 GHz Spectrum Analyser AT/HP 8595E/004/041/101/105 6.5GHz Spectrum Analyser AT/HP 8596E/041 12.8 GHz Spectrum Analyser AT/HP 8901B/001 I.3GHz Modulation Analyser AT/HP 8903B/00I/010/05I 20Hz-l00kHz Audio Analyser Anritsu MS27IIB/05 3GHz Handheld Spectrum Analyser Marconi 2392 9kHz-2.9GHz Spectrum Analyser Neutrik Al Audio Test Set
R\&S FSEA30/B4/B5/B7 20Hz-3.5GHz Spectrum Analyser RRS FSP3 3GHz Spectrum Analyser R\&S FSP7 9kHz-7GHz Spectrum Analyser SIGNAL GENERATORS
AT/HP 837 IIA/IEI I-20GHz Synth CW Signal Generator AT/HP 8642N002 IGHz High Performance Synth Signal Gen AT/HP 8648B/IE5 2GHz Signal Generator AT/HP 8657B/00I 2GHz Synthesised Signal Generator AT/HP 8662A I.28GHz Synthesised Signal Generator AT/HP 8780A IOMHz-3GHz Vector Signal Generator AT/HP 8782B 3GHz Vector Signal Generator AT/HP E443IA 2GHz Digital Signal Generator AT/HP E4433B 250 kHz -4GHz Signal Generator Anritsu 6769B IOMHz-40GHz Synthesised Signal Generator Anritsu $68047 \mathrm{C} / 2 \mathrm{~A} / 16$ IOMHz-20GHz Synth Signal Generator Anritsu MG3601A/02 IGHz Signal Generator Marconi 2024 9kHz-2.4GHz Synthesised Signal Generator Marconi 2031 2.7GHz Synthesised Signal Generator Marconi 2032 10kHz-5.4GHz Signal Generator National VP-7201A 500 kHz RC Oscillator R\&S SMEO3/BI/B2/B5/BII 5kHz-3GHz Signal Generator R\&S SME06 6GHz Signal Generator

WIRELESS

AT/HP 8902A I.3GHz Measuring Receiver AT/HP 8920B/I/4/IO/I3/102 Radio Comms Test Set AT/HP 8922M/00I/006/010 IGHz GSM MS Test Set IFR 2967/I2/16/21 Radio Comms Test SetWith GSM \& TACS Marconi 2935 GSM Test Set [Tri Band] Marconi 2945/05 Radio Comms Test Set Marconi 2955B IGHz Radio Comms Test Set Marconi 2966A/I2 IGHz Radio Comms Test Set with GSM R\&S CMD55/B1/3/4/6/9/41/42/43/44/6I Comms Test Set R\&S CTD55/B5 GSM GO/NOGO Tester Racal 6103/001/002 Digital Mobile Radio Test Set

AT/HP 89441A-Various option sets avail - Call - prices from 11950 Anritsu 37247A 40MHz-2OGHz lector Network Analyser
The only company with the confidence to offer 12 month warranty
as standard, with 24 month available! W\&G 4106 GSM/DCSI800/PCWI900 Mobile Phone Tester Wavetek 4107 Mobile Phone Test set - Triband as standard, with 24 month available!
available - if you don't see what you want, please call. All items are supplied fully tested and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard. Certificate of Calibration available at additional cost. Test Equipment Solutions Ltd Terms and Conditions apply. All E\&OE.

01753596000

[^0]: $S N_{\text {ariaa }}=-81.9 \mathrm{~dB}$
 Measured: $S N_{\text {ariaa }}=-81.4 d B$

