Reader offer: Electronics World's archive CDs page 62

ELECTRONICS

WORLD

FEBRUARY 2004 £3.25
SDI to
analogue converter analysis II
D. Self on analogue switching
Bluetooth

Circuit ideas: Alkaline charger Simple VCO White LED driver

Audio Precision - system 1 - Dual Channel Audio Test System $£ 2200$ ENI 5501 Lamplifier (1.5 to 400 MHz) 50 Watus
Hewlett Packard 3314 A Function Generator 20MHz Hewlett Packard 3324A synth. function/sweep gen. (21MHz)
Hewlett Packard 3325B Synthesised Function Generator Hewlett Packard 3326A Two-Channel Synthesiser
 H.P. 4192A L.F. Imp. Analyser (13MHz) E399. Hewlett Packard
Hewlett Packard 4278 A
$1 \mathrm{kHz} / 1 \mathrm{MHz}$ Capaciter $(4-110 \mathrm{MHz})$ Hewlett Packard 4278A 1kHz/1MHz Capacitance Meter
H.P. 53310 A Mod. Domain Analyser (opt $1 / 31$) Hewlett Packard 8349B ($2-20 \mathrm{GHz}$) Microwave Amplifier
Hewlett Packard 8508A (with 85081B plug-in) Vector Voltmeter
Hewet Poct
Hewlett Packard 8904 A Multifunction Synthesiser (opt $2+4$)
Hewlett Packard 89440A Vector Signal Analyser ($(1.8 \mathrm{GHz}$)

H.P.ESG-D3000A 3GHz Signal Gen
Marconi 6310 - Prog'ble Sweep gen. (2 to 20 GHz) - ne Marconi 6310 - Prog'ble Sweep gen. (2 to 20 GHz) - ne
Marconi 6311 Progble sig. gen. (10MHz to 20 GHz)
Marconi 6313 Prog'ble sig. gen. (10MHz to 26.5 GHz) Marconi 6313 Prog ble sig. gen. (10MHz to 26.5 GHz)
R\&S SMG (0.1-1GHz) Sig. Generator (opts B1+2)
Rhode \& Shwarz UP Rhode \& Schwarz UPA3Audio Analyser
Rhode \& Schwarz UPA3 Audio Analyser Fluke 5700A Multifunction Calibrator
Fluke 5800 A Osilloscope Calibrator Fluke 5800A Oscilloscope C

SPECTRUM ANALYSER

alyser
Spertrum Analyser
$M H z-1.5 \mathrm{H}-\mathrm{z}$

Quality second-user test \& measurement equipment

Radio Communications Test Sets Hewlett Packard 8920B (opts 1,4,7,11,12)
Hewlett Packard 8922M +83220 E

3 COMMENT

Getting close

5 NEWS

- Transistor exceeds 500 GHz
- Laser comes out on top
- Fly-weight robot

Two wheels on my robo

- Lend me your receivers

Low cost storage uses plastic
Passports get their chips
All-plastic CMOS steps closer

- 0 force battery recycling

- Nano-springs are peizo-electric
- Motorola makes two-gate nano-transistor
- Mosfet lowers resistance

10 SDI TO ANALOGUE CONVERTER
Following on from last month's video converte boxes to take you back the other way

23 ELECTRONIC ANALOGUE SWITCHING
Douglas Self concludes his thoughts on the routing of analogue signals.

29 NEW PRODUCTS

The month's top new products.
38 CIRCUIT IDEAS

- Simple, low-power logic level to

RS232 level conversion
Alkaline charger

- 16 channel selector
mechanical vibrato
- Random clock

Instrumentation amplifier with differential output

46 LETTERS

- Audio experience
- Articles wan

The last O

- Wheatstone accuracy

Throwing stones in glas
50 AN INTRODUCTION TO NETWORK ANALYSIS II ohn Ellis cond imulation and shows how the equation programmed in software.

56 ALL YOU EVER WANTED TO KNOW ABOUT BLUETOOTH
swers all your Bluetooth questions with a possibly rose tinted view of our wireless
future.

60 WEB DIRECTIONS Useful web addresses for electronics engineers.

All equipmen
Add carriage and VAT to all goods.
1 Stoney Court, Hotchkiss Way, Binley Industrial Estate Coventry CV3 2RL ENGLAND

Transistor exceeds 500 GHz

A transistor with a peak switching
frequency of 509 GHz has been fabricated by researchers from the University of Illinois at UrbanaChampaign.
The team used indium phosphide and indium gallium arsenide to make
the device, which can support much higher current densities than silicon. "The steady rise in the speed of
bipolar transistors has relied largely on the vertical scaling of the epita xial
ayer structure to reduce the carrier transit time," said Professor Milton Feng from Illinois.
"However, this comes at the cost of ncreasing the base-collector capacitance. To compensate for this lateral scaling of both the emitter and
the collector." The 509 GHz device has a collector width of 75 nm and a base of 25 nm . "Further vertical scaling of the epita xial structure, combined with lateral device scaling, should allow
devices with devices with even higher
frequencies," Feng said "O ultimate goal is to make a terahertz transistor."

Laser comes out on top

semiconductor lasers that emit from the surface of the material are crucial for lowering cost, so making quantum cascade (ec) laser emit in this way is a significant ste
Scientists at Bell Labs have managed this trick, by combining a photonic crystal structure into the QC laser.
QC lasers QC lasers are made up from 30 or more very thin layers of introduced into the top of the stack, and as they pass down the layers they liberate photons in a cascad However, each layer emits its ligh
from the sides, making it tricky to collect and launch the light in a useful way.

By etching a photonic crystal pattern through the layers of semiconductor, the laser light is diffracted and forced to travel up surface of the device. Bell Labs' crystal is simply an array of holes etched in a hexagonal pattern, right through the layers and into the substrate
The surface emitting QC laser - the vertical cavity surface emitting laser. The QC version is half the diameter at $50 \mu \mathrm{~m}$, and does no equire the pair of complex distributed Bragg reflectors used by
The laser has a wavelength of

Fly-weight robot

A flying robot weighing in at just nine grams has been developed by Seiko Epson in Japan. In order to save weight, the $\mu \mathrm{FR}$ oo power its rotor blades. Ultrasonic motors are increasingly found in camera motor drives, mainly at the etter quality end of the market. Weight is further saved by using he use of a tail rotor as the blades cancel out any torque reaction. The motor and blades generate around 3 g of thrust, claimed Epson. A weighted linear actuator is used
to ad just the robot's centre of mass which helps it maintain a level flight aspect. Control signals are sent to the $\mu \mathrm{FR}$ va a Bluetooth wireless interface.
$8 \mu \mathrm{~m}$, which would make it suitable for sensing gasses and chemicals by measuring molecular absorption lines.

Basingstoke's Alpha Micro Basingstoke's Alpha Micro
Components has developed a plug-and-play serial-to-Ethernet cable adaptor. "It enables any device or machine with a serial port to become network said Alpha.
NetPort, as it is called, is aimed a network routers, meter readers and point of sale terminals, as well as home entertainment systems, vendin
machines and security systems particularly where adding Ethernet inside a product would mean re qualification or re-testing. The unit, slightly larger than a
match boo, has a sepgrate pown match box, has a separate power
input and can hold around six Web pages; allowing it to act as a server even when its host is turned off. A modem emulation mode is built in to make use of existing moden
handling capability in the host. NetPort is available from www.nifty-gadgets.net and www.alphamicronet

All-plastic CMOS steps closer

cientists at Philips fabricated plastic ield-effect transistors that conduct ingle sheet of material.
"The discovery enables the design of robust digital circuits with low
power dissipation and a high yield in power dissipation and a high yiel because CMOS requires both n and p -channel devices and the Philips evelopment makes them both possible in a single, perhaps spin "Unfortunately, until no
semiconductors only showed the flow of one type of charge," said Philips. This is not an intrinsic property of ccurrence of a high energy barrier for either electron or hole injection from the metal source and drain lectrodes.
The company has actually made it ransistors in two different ways. In the first, a blend of p -type and n type materials is used in combination old. "The charge in jection barrier roblem is solved by minection barrie problem is solved by mixing a electron injection, with a material with a low barrier for hole injection, aid Philips.
In the second approach a single Fganic semiconductor was
For this purpose, organic semiconductors were chosen with a

Lend me your receivers

Rights to frequencies in the radio sectrum could be
Radiocommunications Agency and regulator Ofcom go ahead.
The two organisations have launched a consultation programme to look at the proposals. They would allow licences issued to broadcasters mobile phone operators and others to be traded or sold.
"Spectrum trading will allow inovation and choice to shape the ture allocation of spectrum, in place of the centrally planned, top down approach of the past," said Carter.
The RA's responsibility for issuing non-military licences passed to Ofcom at the end of 2003.
nvironment in which the UK's communications industries flourish.
The introduction of spectrum trading is a major component of that overarching policy objective," added Carter.

Government is backing the proposals. Stephen Timms, minister for e-commerce, said: "This is key to the provision of new wireless services that underpin modern entertainment and leisure, as well as for essential public services." Ofcom reckons that opening up a market for spectrum trading will make it easier for companies to Ofcom and the RA are seeking responses for the consultation document. Details can be found at www.ofcom.org.uk

Low cost storage

 uses plasticMaterials for a write-once, read-many (WORM) memory aimed at low cost archiving have been developed by researchers at HP Labs and Princeto University.
The single use memory card would be faster and easier to use than CDs, said the team, and would not feature any moving parts.
A paper published in Nature describes the basic static bags, electro-chromic windowed in antistatic bas
The HP Labs/Princeton team integrated an electro-chromic polymer with a thin-film silicon
diode deposited onto a flexible metal foil substrate. Using thin films deposited onto metal foil would satisfy the requirement for low cost.

Passports get their chips

gearing themselves up for moves to gearing themselves up for move
add biometric identification to passports and national ID cards.
Europe's top three chip makers Infineon Technologies, Philips Semiconductors and
STMicroelectronics - along with Sharp Microelectronics have unveiled silicon with the necessary memory.
Sharp and ST, for example are Sharp and ST, for example are
ntegrating up to 1 Mbyte of flash memory in a secure chip, with all the
ocessor. Reza Kazerounian, head of ST's smartcard chip division, said: "The ST22FJIM was designed to allow smart card software architecture limitations and hence to enable new applications for existing and emerging markets,
The chip makers moves by international and nation to authorities. The International Civil

Aviation Organization, for example, has already outlined plans to add face recognition to all passports. Data, around 50 kbyte for face recognition, a wireless link. Meanwhile the German Government said it would add some sort of biometric to its passports by 2007. The UK's plans for a national but is likely to roll out in some form in the next ten years.

Two wheels on my robot

The Humanoid Robotics Group al MIT have modified a Segway self-
balancing people transporter to be the balancing peopl.
'legs' of a robot
"The Segway's dynamic balancing on wheels provides us with the agility of a narrower wheel base in tandem with the facility of mounting torso, arms and robotic head at human-lev intelligence lab.
So far, a simple one-armed robot with vision has been built that is capable of seeing a door, opening it, and passing through. "We are
deriving our assessment via a
prototype mobile humanoid robot with one arm," said MIT. "The goal
of this robot, named Cardea, is to navigate using simple active vision and sensors while using its arm to
reach out and interact with objects in compliant and safe ways." Compliance - a bit of 'give' in the robot arm - is important to the project as rigid powerful arms are seen as a potential hazard amongst everyday
objects and people. "Conventional objects and people. "Conventiona safe to spontaneously interact with and are confined to environments such as factory floors," said researchers.
To add compliance, MIT has put actuator which "allows the forces

interacting with the manipulator's xis to be sensed", said the lab, Using this force information, a
spring model can be used to control the manipulator - allowing the compliancy and responsiveness of a human arm that has muscles to be coarsely approximated." Unusually, Cardea will eventually Uve three a different "It will ave the potential to carry something while unscrewing or opening it. Plus hree arms provide three combinations of two arm pairs", said
MIT. "Cardea can extend beyond the assumptions and conventions of the humanoid condition."
Each arm will have six degrees of freedom: three at the shoulder, one at the elbow and two at the wrist. The proportions of their joint segments. 'Hands' will be varied.
MIT's artificial intelligence lab is also responsible for Cog, a stationary obot which explores its means of actively engaging the world. When Cog explores the world we must bring the world to Cog , said the lab. "We envision that, Cardea will actively seek objects a people, and use its mobil' Work done with Kismet, the lab's famous robot which makes facial expressions in response to human acial expressions, may also be rolle be outfitted with a head that, at the least, will serve two functions: it will be an active vision platform with human like visual properties such as
cameras that act and move as its eyes, cameras that act and move as its es social character and social inter perability."
Cardea can be seen in action at www.ai.mit.edu/projects/cardea

EU to force battery recycling

issue a Battery Directive, which will mandate the collection and recyclin of all batteries placed onto the
The Commission
practice of dumping spent batteries
in landfill sites or into incinerators.
"Due to the metals they contain, batteries pose environmental concerns when they are incinerated
or landfilled," said the EC. Recycling the metals used should also help to save resources, it said. "Discussions on a new Battery irective have been on-going
balanced proposal," said Margo Wallström, commissioner for the environment. "Most importantly,
consumers will have to contribute to environmental protection by bringing back their spent batteries to collection points."
The Commission reckons 1.15 million tonnes of batteries are sold in the EU each year. Some 800,000
tonnes are automotive, 190,000 tonnes are industrial and 160,000 tonnes are for consumer use.
Mercury Mercury, lead and cadmium have been identified as the most
dangerous substances to health
contained in the batteries. oher metals used in batteries, such as zinc, copper, manganese thinstitue envirenmental also
\qquad Existing legislation only applies to batteries containing certain quantities of cadmium, mercury or lead and covers only seven per cent of all the
portable batteries placed on the EU market annually.
The annual cost of recycling, paid or by producers and local authorities, would be under $€ 2$ per ousehold per year, claimed the

PC robot ripe for

 experimentationThis is 912, a robot from Pennsylvania-based White Box Robotics. At its heart is a mini-ITX motherboard from Taiwanese PC component firm VIA which mean experimentation.
"Our nine series of robots allows anyone who can operate a PC the chance to own an attractive and functional personal robot," said Thomas Burick, president of White Box. "The 912 is designed with an
industry standard approach to robot building. Almost all of the components used in the 912 are standard off-the-shelf computer parts. Any computer store in the world becomes your own personal robot parts bin. 912 is deliver play MP3 files
www.whiteboxrobotics.com

Motorola makes two-gate nano-transistor

Researchers at Motorola have created a nano-scale multiple independent gate Fet - a MIGFET.
Conventional mosfets have one gate
deposited on to of deposited on top of a channel drain. A voltage on the gate controls the carriers in the channel and therefore the fet's resistance. The fastest of today's research fet have a channel sitting on top of a
substrate with a gate deposited on channel's sides and top. With the gate
on three sides of the channel, and very thin channel, carriers can be affected extraordinarily quickly, resulting in multi-GHz operation.
If the top part of the gate can be removed, or not deposited, a two gate transistor is formed - with one gate on each side of the channel - but this has proved difficult to do, said Motorola: "Thus far, most of these experimental structures have been limited because
the two gates are electrically linked. While these structures will offer

additional performance mprovements over existing planar devices, we have gone beyond forming a single gate on multiple
sides of nanometer scale silicon sides of nanometer scale silicon.
The device in question has a silical channel region of around 25 nm wide and 100 nm high formed on a silicon on-insulator substrate. A 2.5 nm later of oxide grown on the channel form the gate insulator. Exactly how the
firm manages to deposit the gate on the channel sides without getting it on top is still a secret. "The process keeps the structural integrity of the entire channel and gate structures perfectly self-aligned to each other," is all Motorola will say
Two isolated gates 100 nm long are formed.
With two gates, one gate can be used to adjust the thr voltage speed against leakage current - while the other is used in the normal way. Also, two gates also mean the function on its own. And finally, the two gates can be wired together for super-fast operation like other research fets.
This last confi This last configuration results in a igh on $/$ off current ratio with
DSon $=10 \mu \mathrm{~A}$ and IS Soff $=1 \mathrm{pA}$.

Mosfet lowers resistance

hilips̀ Semiconductors has demonstrated a Mosfet with under
$\mathrm{m} \Omega$ on-resistance. The TO-220 package uses a copper plate to reduc esistan
The device is part of Philips
attempt to move further into the Mosfet market. The firm has also
unveiled 20 V p-channel Mosfets with $50 \mathrm{~m} \Omega \mathrm{R}^{\mathrm{DSon}}$ in TSOP6 packages Such devices are crucial packages. in mobile phone handsets and othe consumer products. The Mosfets are
used to power down idle components, such as hard drives or displays, in order to conserve battery power. P-channel devices are easier to drive in 'floating' mode, where no Philips.

oshiba has launched 40Gbyte disk drives that fit inside typard
Cards.
The Japanese firm began makin 8 -inch drives in 2000 , starting With a 2 Gbyte capacity removable The he standard 8 mm weighs just 62 grams. DMA transter rate is $100 \mathrm{Mbyte} / \mathrm{s}$, while the mean lime to failure is rated above 300,000 hou height card.

SDI to analogue converter

Following on from last month's analogue to SDI converter - quite often you need to go back the other way for example for older equipment or displays. Emil Vladkov explains

The devices presented here are the partner devices to the CSDI10 decoder described in last month's article. Both of the units to the CSDI10, namely they take the the CSD Serial Dieiy they take th signal according to SMPTE 259 M convert it to the analogue domain. One of the main strengths of the two ncoders presented is the possibility o output different formats - the RGB and the composite CVBS. You may ask yourself what is the intention or implementing such a converter, where can it be used? To provide an answer to this question lets examine
the following situation: you have a modern studio infrastructure with the
main distribution standard set to SDI. So you will probably have a SDI switcher, SDI distribution amplifiers, mixers with SDI inputs and outputs, recorders with SDI inputs and so on. Probably you will need to monitor the
signal at some point of the distribution, let's say at the stur output. I know there are monitors with SDI inputs, but they are expensive. You may well want to use existing (analogue) professional
monitors, which typically will hav component inputs. So you will need to convert from SDI to YUV. This is only one possible example. Everywhere you have old component or composite input equipmen
you wish to use in your SDI environment you will need a

Fig. 1. Functional Block-Diagram of the 8-bit SDIC08 Encoder.
onverter like the described here SDIC08 or SDIC10.
The difference between he units
The only difference is that the one evice uses an 8 -bit digital-tonalogue converter, while the other evice uses a 10 -bit D/A Converter. The input SDI data stream is deserialised in the encoders and
converted to parallel 10-bit data converted to parallel 10-bit data
words (the ITU $601 / 1656$ standard) The analogue video is usually igitised to 8 -bits but newer equipment may also use 10 -bit. For compatibility issues all deserialisers
output full 10 -bit word length with n output full 10 -bit word length with no or not. The SDIC08 takes only the most significant 8 -bits and encodes hem. The SDIC10 takes all 10 bits. Of course there are some very between the schematics of the two devices. The ADV7194 used in the DIC10 has no output drivers so external OPAMP based drivers have oo be arranged ${ }^{2}$. The simpler integrated cable drivers, so such external circuitry complication will not be needed ${ }^{1}$. Therefore the ADV7176 is a rather simple (very signal processing functions. This is not the case with the ADV7194, which can control many of the vide signal parameters (luma-chroma delay, pixel blocking artefacts, hue, saturation, contrast and so on). The
functional block diagram structures of the SDIC08 and the SDIC10 are presented in Fig. 1 and Fig. 2 presented in
respectively.

Detailed schematic diagrams of the devices
Figure. 3. and Fig. 4 represent
detailed schematics of the SDIC atailed schematics of the SDIC 08 description of the SDIC08 (Fig.3) which seems to be a little less
omplicated. The SDI input signal is ed to the unit at J 1 BNC connector.
The input is matched to the line with he R3 75Ω resistor. The line equalizer, which makes it possible to connect up to 300 m of coaxial cable
to the SDIC08, is IC1 - a National Semiconductor CLC014 IC ${ }^{4}$. This ype of equalizer has differential nputs, so with a unipolar type of input some sort of balancing will be the R1, C1, R2, C2 and R5 components (R1 and R2 provide some kind of input isolation from the ne). C6 sets the response time of tion adaptive equalisation loop. The
CLC014 provides a CD (Carrier Detect) output, which is used to drive the D2 LED (through IC2A inverting uffer). So the user is provided with visual indication for valid signal
presence at the device input. The qualiser has a differential output DO, DOV) and the correct PECL levels on the internal signal paths are set through D1, R4 and R6. This provides some kind of trace line the IC2 buffer are tied to the supply voltage, so that they will not change tate and cause noise in the circuit. The differential output of the qualiser is fed to the IC3 (CLC016) Retiming/Reclocking chip5. The last one is configured to restore the four different uncompressed video data ates - $143,177,270$ and 360 Mbps , 17. Actually only the 270 Mbps dat rate is used, the others provided only for completeness. The D/A converter responds only to 4:2:2 uncompresse digital video, not to the digitised widescreen data formats. Therefore the re-timer is configured in manual data rate setting mode and the RD1/0 us lines are hardwired to allow the retiming of the 270Mbps data r components represent the loop filter of the internal PLL of the re-timer The CLC016 has two types of ifferential outputs - the Serial Data Outputs (SDO and SDOY) and the COI). These outputs are set to correct level and terminated through resistors R8 - R11.
The serial digital data stream and
the serial digital clock are supplied to the serial digital deserialiser IC8 deserialises the SMPTE 259M vid to parallel data words PD9-PD0 and produces the word-rate clock PCLK for clocking them into the encoder
The CLC011 is wired so that the The CLC011 is wired so that th
NRZI-to-NRZ conversion is performed (NRZI pin tied HIGH), the polynomial descrambling is conducted on the NRZ data (DESC pin tied HIGH) and the frame the Timing Reference Signal (TRS) recognised (FE-pin tied HIGH). The EAV (End of Active Video), TRS (Timing Reference Signal) and NSP (New Sync Position) outputs are not
implemented in this design. A more detailed descriptio Serial Digital Interface signal processing is given in an article of mine, pubished in EW and describin an SDitst patern generator and here?
The video encoder used in the SDIC08 device is the ADV7176A professional converter/encoder, fed
with CCIR 656 8-bit 4:2:2 parallel video with the luma and chroma information multiplexed ${ }^{1}$. The ADV7176 has the input option of accepting 16 -bit non-multiple xed 4:2.2 video through the PIJ-PO lines but this option is not used here as the format. The Telete xt data inputs (TTX, TTXREQ) are not used in the design, but the user is encouraged to project to feed telete xt information in proje analogue video signal. The CLOCK input has to be supplied with 27 MHz clock signal to operate the
evice; in our case this clock signal i derived from the incoming data
tream through the deserialiser stream through the deseriaisiser
(PCLK word-clock). The R27 resistor connected to the RSET pin is used to set the full-scale amplitude of the output signal. I have used the valu proposed by the manufacturer to supplied to the encoder through the use of the R22-C26 group. One great dvantage of this IC, compared to th far more powerful ADV7194, used i ignals (YUV or RGB) and the composite signal (CVBS) are simultaneously available at its outputs. The four DAC-outputs DAC A, DAC B, DAC C and DAC D ar
biased with the 75Ω R28-R31 esistors to achieve correct signal levels. The supply to the encoder is derived from the on-board VCC +5 V supply after filtering with the C27, 28 and L1 component DACs are built around the LCcircuits L2-L12 and C31-C42. These filters are important to smooth the output analogue signals, especially if
these will be subject to following ADC conversion or will be supplied o analogue TV monitor to prevent aliasing. The outputs of the device (component and composite) are The AT89C 2051 - 6 connectors. has 2 K onboard EEPROM memory where the firmware resides. The micro is clocked from the crystal oscillator build around X1, C18 and information of the whole device is stored in the IC7 EEPROM in a nonvolatile way. Any change the user makes to the configuration is written

to the EEPROM and is executed at
next power-up from the memory. The only device which needs setting up intermal registers is the IC9 encode passed to the device through the $I^{2} \mathrm{C}$ bus using the SDATA and SCLOCK lines. The ADV7176 responds to $\mathrm{I}^{2} \mathrm{C}$ oo address A0h, so the two devices re tied together to the common bus The AT89C2051 microcontroller is responsible for the serial communications with the host PC, needed for configuring the SDIC08
The IC5 interface circuit has the The IC5 interface circuit has the serial RS232 interface, provided on the back panel of the casing as P1
Cannon DB-9 connector. The JP1
connector is provided for device hardware extensions.
The SDIC08 has an onboard the associated C23, C24 and C25 supply filtering components. Power can be applied to the device in one of the two ways - through an intermal power supply transformer or through
the J2 power jack from an external wall cube adapter The last solution is implemented in the actual design as it is more versatile and frees the user from the need to adapt the power supply to the different country mains
standards. The D3-D6 diodes fom Graetz circuit so the input DC powe supply polarity has no significance on the correct operation of the device. The D7 diode provides indication that
power is supplied to the unit. The SW2 flag is the selection line for choosing one of the both component modes of operation of the
SDIC08 device. When closed the RGB mode of operation is selected, when open the YUV standard is supported. Regardless of the switch position the composite video output
(CVBS) is always produced from the encoder, which in my opinion is the greatest advantage of this device (SDIC08) over its sophisticated counterpart (SDIC10).
The schematic diagram of the
advanced video encoder SDIC 10 is presented in Fig. 4. The unit uses the professional extended 10 -Bit video encoder with 54 MHz oversampling
ADV7194 (IC4) ${ }^{2}$. The Serial Digital

Interface signal traverses the same way as in the SDIC08. First it is equalised by the IC1 SDI equaliser, IC3 and last it is deserialised in IC8 o provide full 10 -bit video resolutio to the encoder. The encoder is onfigured from the onboard microcontroller through the $I^{2} \mathrm{C}$ ines. Again the encoder responds to the address 54 h on the $\mathrm{I}^{2} \mathrm{C}$ bus where also the configuration EEPROM Pesides (IC). Power supply and hos Com the simpler 8 -bit case dif The ADV7194 encoder suppo many input formats of the paralle video words, like 4.2.2 YCbCr format in 8-, 10-16-and 20 -bits
length. It also supports the 3×10 bit
progressive scan format implemented some professional computer excessive number of inputs, which can be seen from Fig. 4. Besides the normal port inputs P19-P0 (from which only the 10 -bit P9-P0 are used in the design) there are 10 -bits wide recommendations of the chip manufacturer (Analog Devices Inc.) the unused inputs are tied to ground. The Teletext input signals (TTX TTXREQ) are not used in this feel encouraged to use this advanced option of the integrated circuit to produce new more sophisticated designs. Reset to the circuit is applie
through the R37-C39 components.
There is a hardware option to select
he output TV-standard (PAL_NTSC
the firmware setting up the correct
values in the internal registers. The
two resistors R18 and R19 connecte
to the RSET-pins determine the
$\begin{aligned} & \text { output voltage swings for the two } \\ & \text { halves of the outputDACs } 6 \text { in this }\end{aligned}$
case: DACA, DACB, DAC C and
DAC D, DAC E, DAC F). The
outputs of all 6 DACs can only
provide 4.33 mA of output current, so
in real world cable driving
applications. The output buffering is
provided for 3 of the D/A converters
$\begin{aligned} & \text { - DAC A, DAC B and DAC C. The } \\ & \text { single supply non-inverting AC- }\end{aligned}$

Fig. 5. Internal Structure of the ADV7194 advanced video encoder.

Main features of the ADV7194 extended encoder
The ADV7194, unlike the ADV7176
used in the SDIC08 d used in the SDIC08 device, has much more advanced features to
characteristics of the output video signal. A simplified block diagram of he internal structure of the IC is provided in Fig. 5. I will try to do without going down into detail, which will only distract the reader from the general idea of the project. If more detailed information should be obtained please refer to the references ${ }^{2}$.

Brightness detect: The ADV7194
can detect the average brightness of the video picture and this information Based on this information the use firmware (I encourage the readers to propose algorithms for making this strong feature useful) can adjust the
saturation, contrast and brightness to compensate for very dark pictures this information is not used, but the hardware implementation will allow for firmware upgrades.
Chroma/Luma delay: The Luma pixel data can be delayed for maximum six clock cycles at 27 MHz and the chroma information for maximum eight cycles. This feature
can be programmed through the

Command Group Default Configuration	Operation Loads the factory preset configuration	Mnemonics DEFAULT
Standard Selection	PAL (BDGHI), sync on RGB (default)	R00D61, R02DCB, R03D8A R04D09, R05D2A
	PAL (BDGHI), no sync on RGB	R00D41, R02DCB, R03D8A R04D09, R05D2A
	NTSC, sync on RGB	R00D60, R02D16, R03D7C, R04DF0, R05D21
	NTSC, no sync on RGB	R00D40, R02D16, R03D7C, R04DF0, R05D21
Embedded Colour Bar Generator	Colour Bar Generator OFF (default)	R01D00
	Colour Bar Generator ON	R01D80
Luma Delay Control	0 ns delay on the luminance path (default)	R07D08
	74 ns delay on the luminance path	R07D18
	148 ns delay on the luminance path	R07D28
	222 ns delay on the luminance path	R07D38

Command Group	Operation	Mnemonics
Default Configuration	Loads the factory preset configuration	DEFAULT
Standard Selection	Input Standard PAL (BGHID), (default) Input Standard NTSC (M)	R00D11 R0CDCB, R0DD8A, R0ED09, R0FD2A R00D10 R0CD16, RODD7C, ROEDF0, R0FD21
Luma Filter Selection	Low Pass PAL Notch PAL Low Pass NTSC Notch NTSC Extended Mode CIF QCIF	R00Dxxx001xx, R07DOF R00Dxxx011xx, R07DOF R00Dxxx000xx, RO7DOF R00Dxxx010xx, R07DOF R00Dxxx100xx, RO7DIF R00Dxxx101xx, R07DOF R00Dxxx110xx, R07DOF
Chroma Filter Selection	1.3 MHz Low Pass Filter 0.65MHz Low Pass Filter 1.0 MHz Low Pass Filter 2.0MHz Low Pass Filter CIF QCIF 3.0MHz Low Pass Filter	R00D000xxxxx R00D001xxxxx R00D010xxxxx R00D011xxxxx R00D101xxxxx R00D110xxxxx R00D111xxxxx
Oversampling Control	$2 \times$ oversampling (default) 4 x oversampling	$\begin{array}{\|l\|l\|} \hline \text { R01D38 } \\ \text { R01D78 } \\ \hline \end{array}$
Output Control	YUV Output (only if switch is set to YUV/RGB) RGB Output (only if switch is set to YUV/RGB)	$\begin{aligned} & \text { R02D61 } \\ & \text { R02D0 } \end{aligned}$
Colour Bar Generator Control	Colour Bar Generator OFF (default) Colour Bar Generator ON	$\begin{array}{\|l\|l\|} \hline \text { R04D00 } \\ \text { R04D40 } \\ \hline \end{array}$
RGB Sync Control	Sync on all RGB-outputs (default) No Sync on RGB-outputs	$\begin{array}{\|l\|} \hline \text { R05D08 } \\ \text { R05D00 } \\ \hline \end{array}$
Gamma, DNR, Resolution Control	Gamma Control	R08Dx0xx0100 - Gamma Correction OFF R08D01××0100 - Gamma Curve A R08D11x×0100 - Gamma Curve B
	Digital Noise Reduction Control	R08Dxx0x0100 - DNR disable R08Dxx1x0100 - DNR enable
	Resolution Control	R08Dxxx00100-8-Bit Resolution R08Dxxx10100-10-Bit Resolution
Chroma Delay Control	Chroma Delay $=$ Ons	R09D0000x×00
	Chroma Delay $=148 \mathrm{~ns}$	R09D0001 $\times 00$
	Chroma Delay $=296 \mathrm{~ns}$	R09D0010x×00
Blackburst on Luma	Blackburst on Luma disabled	R09D00x×0x00
Control (in CVBS-mode)	Blackburst on Luma enabled	R09D00x×1×00
Blackburst on Y Control	Blackburst on Y disabled	R09D00x $\times \times 000$
(in RGB/YUV-mode)	Blackburst on Y enabled	R09D00x x x 100
Luma Delay Control	Luma Delay = Ons (default)	R0AD08
	Luma Delay $=74 \mathrm{~ns}$	R0AD18
	Luma Delay $=148 \mathrm{~ns}$	R0AD28
	Luma Delay $=222 \mathrm{~ns}$	R0AD38
Contrast Control	Scaling of the Y -value Range $=0.0-1.5$ XX $=$ value $\times 128$	R1DDXX R1DD80 (default) R1DD00 - contrast $=0$ R1DDC0 - contrast $=1.5$
Color Control	Scaling of the U-value U-register value XX = Scale Factor $\times 128$, range $=0.0-2.0$	R1EDXX R1ED80 (default)

PAL. The generator can be switched on and off through software (termin appropriate value to a mode register (please refer to the command set table listed later in the article).
Chroma Burst switching ON/OFF: The chroma burst can be removed which is agposite or chroma sign software.
Contrast Control: The Y-input data (luminance) can be scaled to influence the contrast of the picture between 0% and 100%.
Brightness Control: The brightness ontrol is achieved through adding data. The range for NTSC without pedestal and for PAL is between -7.5
and +15 IRE.

Colour Saturation: The colour information (U and V components) can be independently scaled by a factor, programmed in an internal device register and accessible through erminal commands. The range is

促
Hue Adjust Control: Throug shifting the phase of the video chroma information relative to the
colour burst it is possible to control colour burst it is possible to contro the hue
$\pm 22^{\circ}$.

Digital Noise Reduction (DNR): his control works only on the luma

 high-frequency, low-amplitude components of the signal are evaluated. They are compared to a programmable threshold value. Depending on the mode of operatioselected - DNR Mode or DNR selected - DNR Mode or DNR amount is subtracted from all values under the threshold value to remove he noise or added to the values above threshold to sharpen the image. As in the input to the video encoder will come from an MPEG2 or MPEG1 decoder (providing SDI-output) the resulting video information will show he characteristic blockiness with (MPEG1). In this case the noise wil be concentrated on the border areas between blocks and the DNR can be applied selectively in this region. It is
possible to program through register access the size of the block, its position through pixel shift and the dimensions of the border area. This is very powerful feature of the

	Scaling of the V-value V-register value $\mathrm{XX}=$ Scale Factor $\times 128$, range $=0.0-2.0$		R1FDXX R1FD80 (default)
Hue Adjust Control	Hue Register Value $=$ (value degree in decimal) / $0.17578125+128$-> transform to hex to obtain XX Range: + / 22.5° phase in 0.17578125° increments		R20DXX R20D80 (default)
Brightness Control	0xxxxxxx = 7-bit brightness IRE value $=\mid$ IRE_value $\mid \times 2.015631>$ convert to hex, if negative two's complement Range: -7.5 IRE - 15 IRE		R21 D0xxxxxxx R21D00 (default)
Sharpness Control	Value in $\mathrm{dB}+4$) 1.5 -> convert to hex Range: $-4 \mathrm{~dB}-+4 \mathrm{~dB}$ in 0.75 dB steps		R22DXX R22D06 (default) R22D00 $=-4 \mathrm{~dB}$ R22DOC $=+4 \mathrm{~dB}$
Digital Noise Reduction	Mode (see DNR mode select)		Coring gain data Coring gain border
	Sharpness	DNR	R23DxxxxX R23DXxxxx
	OdB	OdB	R23D00
	+1/16	-1/8	R23D11
	+2/16	-2/8	R23D22
	+3/16	-3/8	R23D33
	+4/16	-4/8	R23D44
	+5/16	-5/8	R23D55
	+6/16	-6/8	R23D66
	+7/16	-7/8	R23D77
	+8/16	-1	R23D88
Block Size Control	8 pixels (default)		R24D0xxxxxxx
	16 pixels		R24D1xxxxxxx
Border Area Control	Border Area $=2$ pixels (default)		R24Dx0xxxxxx
	Border Area $=4$ pixels		R24Dx1xxxxxx
DNR Threshold Control	Threshold = dddddd Range: 0-62		R24Dxxdddddd
Block Offset Control	dddd=0000 -> 0 pixels offset		R25Dddddxxxx
	dddd $=1111$-> 15 pixels offset		
DNR Mode Select	DNR mode		R25Dxxxx0xxx
	Sharpness		R25Dxxxx1xxx
DNR Input Filter Select Control	No filter (default)		R25Dxxxxx000
	Filter A		R25Dxxxxx001
	Filter B		R25Dxxxxx010
	Filter C		R25Dxxxxx011
	Filter D		R25Dxxxxx100
Programmable Gamma Correction Control A-Curve Range: $0.3-1.8$	Location (x input value)		RXXDYY, $\mathrm{YY}=\mathrm{Y}$ value
	32: $Y=((16 / 224)$ ^Gamma) $\times 224+16$		R26DYY, R26D20 (default)
	64: $\mathrm{Y}=($ (48/224) Gamma$) \times 224+16$		R27DYY, R27D40 (default)
	96: $\mathrm{Y}=($ (80/224) Camma$) \times 224+16$		R28DYY, R28D60 (defaul)
	$\begin{array}{\|l} \hline \text { 128: } \mathrm{Y}=((112 / 224) \wedge \mathrm{Gamma}) \times 224+16 \\ \hline \text { 160: } \mathrm{Y}=\left((144 / 224)^{\wedge} \mathrm{Gamma}\right) \times 224+16 \\ \hline \end{array}$		R29DYY, R29D80 (default)
			R2ADYY, R2ADA0 (default)
	192: $\mathrm{Y}=($ (176/224)^ Gamma$) \times 224+16$		R2BDYY, R2BDC0 (default)
	224: $Y=($ (2	amma) $\times 224+16$	R2CDYY, R2CDE0 (default)
Programmable Gamma Correction Control B-Curve Range: $0.3-1.8$	Location (x input value)		RXXDYY, $\mathrm{YY}=\mathrm{Y}$ value
	32: $\mathrm{Y}=($ (16/224) (Gamma) $\times 224+16$		R2DDYY, R2DD20 (default)
	64: $\mathrm{Y}=($ (48/224) Gamma) $\times 224+16$		R2EDYY, R2ED40 (default)
	96: $\mathrm{Y}=\left((80 / 224)^{\wedge} \mathrm{Gamma}\right) \times 224+16$ 128: $\mathrm{Y}=\left((112 / 224)^{\wedge} \mathrm{Gamma}\right) \times 224+16$		R2FDYY, R2FD60 (default)
			R30DYY, R30D80 (defaul)
	160: $\mathrm{Y}=(1144 / 224)$ Camma) $\times 224+16$		R31DYY, R31DA0 (default)
	$\begin{array}{\|l} \hline \text { 192: } \mathrm{Y}=((176 / 224) \wedge \text { Gamma }) \times 224+16 \\ \hline \text { 224: } \mathrm{Y}=\left((208 / 224)^{\wedge} \text { Gamma) } \times 224+16\right. \\ \hline \end{array}$		R32DYY, R32DC0 (default)
			R33DYY, R33DE0 (default)

ADV7194, which makes the devic very useful as a noise reductio

Gamma Correction Control: Gamma correction can be performed on the luma data and the user is allowed to program two independent and curve B.
$4 x$ and $2 x$ oversampling: All six DACs of the ADV7194 can work is called $2 \times$ mode of operation. The IC incorporates an internal PLL, which when enabled will produce a 54 MHz clock signal for the DACs and this mode of operation is called $4 \times$ mode. As the Nyquist sampling
theorem states with increasing the sampling rate the aliased images in the output spectrum of the analogue video signal move further to the high frequency region. So it is usual
easier to implement low-pass easier to implement low-pass
filtering on a higher sample rat reconstructed analogue signal. Th output anti-image filter is a simpler one in $4 x$ mode of operation. The $2 x$ and $4 x$ modes can be switched in commands. In Fig. 7. the function of (and requirements to) the output filters in both modes of operatio (with and without oversampling) are presented.

Main features of the simpler

 ADV7176 encoderThe ADV7176 is a simpler video encoder compared to the ADV719 Like the enhanced one it has an
internal 32 -bit DDS (Direct Digita Synthesis) synthesiser for the colour subcarrier. It has a build-in video pattern generator, which can be used
for measurement tasks The IC for measurement tasks. The IC provides several low-pass, notch and
extended filter responses, which can be applied on the luma information. Through the internal registers of the device VBI (Vertical Blank Interval) data can be inserted into the vertical sync corresponding data positions.
From the signal processing functions specific to the ADV7194 only the programmable delay, which can b applied to the luma path, should b mentioned. Despite of the limited user to control the output video signal, the ADV7176 proves to be a very reliable device, which is very easy to manage and very reliab use. If a cheaper but reliable choice between the SDIC08 and SDIC10 devices I would recommend the SDIC08. If many advanced

Fig. 6. Luma and Chroma Information delay programmable in software.

Fig. 7. Anti-imaging output filters function in $2 \times$ and $4 \times$ oversampled mode of operation.

Table 3: Luminance and Chrominance Filter Selections

Filter Type	Passband Ripple (dB)	3dB Bandwidth (MHz)
Low-Pass (NTSC)	0.16	4.24
Low-Pass (PAL)	0.1	4.81
Notch (NTSC)	0.09	2.3/4.9/6.6
Notch (PAL)	0.1	3.1/5.6/6.4
Extended (SSAF)	0.04	6.45
CIF	0.127	3.02
QCIF	Monotonic	1.5
Chrominance Filter Specifications (4 x oversampling)		
Filter Type	Passband Ripple (dB)	3dB Bandwidth (MHz)
1.3 MHz Low-Pass	0.09	1.395
0.65 MHz Low-Pass	Monotonic	0.65
1 MHz Low-Pass	Monotonic	1.0
2 MHz Low-Pass	0.048	2.2
3 MHz Low-Pass	Monotonic	3.2
CIF	Monotonic	0.65
QCIF	Monotonic	0.5

features of the ADV7194 are the goal of the application I will suggest the
SDIC10 As with many other fields life the decision depends upon what you want in your specific needs what is absolutely necessary for one application may be treated as needless splendour in another not so
demanding one. The internal structure demanding one. The internal structure
of the ADV7176 encoder is depicted in Fig. 8. and this diagram provides far more detail than the diagram for the ADV7194 in Fig. 5^{1}. It should be noted that this detailed structure is aso innerent to the ADV to por device space, consumed by the other features of the enhanced encoder. From the structure in Fig. 8 the composition of the Composite Video Signal (CVBS) becomes very clear and also the culour subcarrier generation by techniques (DDS) is visible.
How to configure the encoders As with all other devices which I As with all other devices which I
have recently published in $E W$ ther is a dedicated instruction set to control the devices through the serial interf ace (with the settings. about the CSDI10 decoder I described a very powerful concept, which allows the user to write to any register of the integral encoders in the units whatever value he/she finds appropriate. Despite of the fact that
writing inappropriate values can result in a mis-configured or not working device (not permanently of course!), this idea allows for easy device upgrades and the implementation of new features of the modifying the hardware. This concept works for the two encoders SDIC08 and SDIC10 too. The general syntax of the commands is the same: firs ASCII-Hex value is the register subaddress in the IC and then ' D ' to present the value to be written as the next ASCII-Hex value. So the command looks like: RXXDXX
Carriage Return + Line Feed. XX denotes an ASCII hex value - 7 E for example. Of course also the salvage command 'DEFAULT' is presented in the command set, which returns the after the user has changed so many registers in so many ways that everything refuses to work. Every command (strictly speaking every data value for the corresponding executed (becomes active) but also is stored in the internal non-volatile memory to be executed at next start-
p of the device. The power-on outputting the active configuration he serial communication port, so that the configuration can be identified and analysed with a simple terminal program. After the successful OK' message is returned from the encoders to the host PC. The command set for the SDIC08 is presented in Table 1 and that of the
SDIC10 encoder - in Table 2 The SDIC10 encoder - in Table 2. T ncorporate strings like xxx 001 xx , are inary representations of the register values, as the x (lower case) are set by other commands. Please compile Il x to a valid binary word and entering the command to the device. Obviously the commands for the DIC10 are far more complicated an are often composed from many

Fig. 8. Internal functional structure of the ADV7176 video encoder

Technical specifications of the SDIC08 encoder

Main Features:
ITU-R BT601/656 YCrCb to PALNTSC Video Encoder;
High Quality 10 -bit Video DACs, 70 dB Video SNR;
Multi-standard Video Output Support - Composite (CVBS), Component YUV and Component RGB;
Programmable Luma Filters (Low-Pass/Notch/Extended);
Programmable Luma Delay;
Input Equalizer with superior jitter performance - equalizes up to $300+$ meters of Belden 8281 coaxial cable Data Retimer/Reclock PLL onboard - provides for removing of excessive jitter at the input SDI signal Carrier Detect Indicator on the FrontBack Panel:
Simple Reconfiguration through the integrated Serial RS-232 Interface and ASCII Terminal Commands / Configuration GU

Video Serial Digital Inputs		Video Performance		
Applicable Standards	ITU-R BT.601/656	Impedance	$75 \Omega \mathrm{BNC}$	
Format	EBU Tech 3267-E and	Return Loss $\quad>35 \mathrm{~dB}$ to 5.5 MHz		
	SMPTE 259M-C	Hue Accuracy 1.0 Degree		
Number of Inputs	1 BNC	Colour Saturation Accuracy $\quad 1.2 \%$		
Input Impedance	75Ω	Luminance Nonlinearity $<1.1 \%$		
Sampling	4:2:2, 8 bit	S/N Ratio	$>68 \mathrm{~dB}$ unweighted ($10 \mathrm{k}-5 \mathrm{MHz}$)	
Line/field rate	525/60 and 625/50	Differential Gain Differential Phase	0.4 Degree	
Return Loss	>19dB, 5-270MHz			
Cable Equalization	0-250m (Belden 8281)			
Data Rate	270Mbps	Frequency Response (PAL Mode)		
Data jitter	180ps for 270Mbps data passed	$\begin{array}{lr}\text { Y Stopband Cutoff > 50dB Attenuation } \\ \text { Y Passband Cutoff > 3dB Attenuation } & 7.4 \mathrm{MHz} \\ \end{array}$		
	through 200 m of Belden 8281			
	cable			
		Chroma Stopband Cutoff $>40 \mathrm{~dB}$ Attenuation 4 MHz Chroma Passband Cutoff > 3 dB Attenuation 2.4 MHz		
Output Levels YUV (SMPTE/EBU)				
Level Y	1 p p-p	Power Requirements		
Level U,V	$\pm 350 \mathrm{mV}, 75 \%$ saturation	Power	9-12 VDC, 600 mA	
		Mechanical \& Climatic		
Output Levels RGB		Height	45 mm (1.75 inches)	
RGB	700 mV p-p non-composite	Width		
RGB	1 V -p composite (sync)	Depth	130 mm (5 inches)	
		Weight	0.2 Kg	
Output Standards		Temperature	$+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	
PAL-B, D, G, H, I, PAL-M, NTSC		Humidity	96% maximum	

registers, controlling different functions of the device. The table lists all possible combinations but extreme commands from the individual register bits.
There is the
There is the option to control the
SDICO8 device for SDIC08 device from a simple interface program running under
Win9x on the host PC. A snapshot from this GUI program is provided in Fig. 9. It allows the user to change the output video signal standard, to
control the interal control the internal video test pattern
generator and to insert a delay in the luma path of the signal. I have not written an interface for the SDIC10 as it has so many options that such an interface in my opinion will look too
crowded to be of any use. Of course the readers are encouraged to develop their own interfaces on the basis of

Technical specifications of the SDIC10 encoder
Main Features:
High Quality 1056 YCrCb to PAL/NTSC Video Encoder;
$4 \times$ Oversampling with Internal 54 MH Video SNR;
On-board Super with Internal 54 MHz PLL;
On-board Super Subalias Filter (SSAF);
Digital Noise Reduction for reducing MPEG-systems block artefacts;
32-bit Direct Digitial Synthesizer for the
32-bit Direct Digital Synthesizer for the Colour Subcarrie
Multi-standard Video Output Support - Composite (CVBS), Component YUV, Component RGB, Luma and Chroma;
Multiple Luma and Programmable Luma and Chroma Del
Programmable Gamma Correction - 2 differen
Brightness, Contrast, Colour, Hue and Sharpness Control:
Input Equalizer with superior jitter performance - equalizes up to $300+$ meters of Belden 8281 coaxial cable; Data Retimer/Reclock PLL onboard - provides for removing of excessive jitter at the input SDI signal:
Carrier Detect Indicator on the FrontBack Panel;
Onboard Colour Bar Generator switchable through the Configuration RS-232 Interface;
Simple Reconfiguration through
Simple Reconfiguration through the integrated Serial RS-232 Interface and ASCII Terminal Commands / Configuration GUI;
Table 3: Luminance and Chrominance Filter Selections

Luminance Filter Specifications (4 x oversampling)			Chrominance Filter Specifications (4x oversampling)		
Filter Type	Passband Ripple (dB)	3 dB	Filter Type	Passband Ripple (dB)	3dB
Bandwidth (MHz)			Bandwidth (MHz)		
Low-Pass (NTSC)	0.16	4.24	1.3 MHz Low-Pass	0.09	1.395
Low-Pass (PAL)	0.1	4.81	0.65 MHz Low-Pass	Monotonic	0.65
Notch (NTSC)	0.09	2.3/4.9/6.6	1 MHz Low-Pass	Monotonic	1.0
Notch (PAL)	0.1	3.1/5.6/6.4	2 MHz Low-Pass	0.048	2.2
Extended (SSAF)	0.04	6.45	3 MHz Low-Pass	Monotonic	3.2
CIF	0.127	3.02	CIF	Monotonic	0.65
QCIF	Monotonic	1.5	QCIF	Monotonic	0.5
Contrast Control Range: $0.0 \div 1.5$					
$\begin{array}{ll}\text { Colour Control Range (U, V-scaling): } & 0.0 \div 2.0 \\ \text { Hue Adjust Control: }\end{array}$					
Hue Adjust Control: $\quad \pm 22.5{ }^{\circ}$					
(applicable only if Luma filter is in Extended Mode)					
Luma Delay Control Range: 0			Ons $\div 222$ ns		
Chroma Delay Control Range: 0 ns			96 ns		
Video Serial Digital Inputs			Video Performance		
Applicable Standard	ITU-R BT.601/656		Impedance	$75 \Omega \mathrm{BNC}$	
			Return Loss	>35dB to 5.5 MHz	
FormatSMPTE 259M-C EBU Tech 3267-E and			Hue Accuracy	0.5 Degree	
			Colour Saturation Accuracy	0.7\%	
$\begin{array}{ll}\text { Number of Inputs } & 1 \mathrm{BNC} \\ \text { Input Impedance } & 75 \mathrm{~W}\end{array}$			Luminance Nonlinearity	< 0.6 \%	
Sampling \quad :2:2, 10 bit			S/N Ratio > 70dB unweighted	ed ($10 \mathrm{kHz}-5 \mathrm{MHz}$)	
Line/field rate $\quad 525 / 60$ and 625/50			Differential Gain	0.4\%	
Return Loss $\quad>19 \mathrm{~dB}, 5-270 \mathrm{MHz}$			Differential Phase	0.4 Degree	
Cable Equalization $0-250 \mathrm{~m}$ (Belden 8281)			Chroma Nonlinear Gain	0.7\%	
Data Rate 270Mbps			Chroma Nonlinear Phase	0.5 Degree	
Data jitter 180ps for 270Mbps data passed			Chroma AM noise	82 dB	
through 200 m of Belden 8281 cable			Chroma PM noise	72 dB	
Output Levels YUV (SMPTE/EBU)			Power Requirements		
Level Y	1 p p-p		Power	9-12 VDC, 600 mA	
Level U, V $\quad \pm 350 \mathrm{mV}, 75 \%$ saturation					
Output Levels RGB			Mechanical \& Climatic		
			Height	45 mm (1.75 inches)	
RGB	700 mV p-p non-comp	posite	Width	90 mm (3.5 inches)	
RGB IV p-p composite (sync)			Depth	130 mm (5 inches)	
			Weight	0.225 Kg	
Output Standards			Temperature	$+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	
PAL-B, D, G, H, I, PAL-N, NTSC-M, NTSC-N, PAL-60			Humidity	96\% maximum	

the provided detailed command set
and possibly these and possibly these programs will suitable for the particular application of the encoder.
Firmware, Software and Printed Circuit Boards The listings of the code residing inside the 89C2051 microcontrollers are long with detailed comments but unsuitable for publishing due to the
large space they will occupy Also I think they will not significantly contribute to the aim that the reade should obtain a generalised view of the device technology, applications and internal structur. Ofourse they the design as the hardware will not work without the firmware covering the register access to the encod integrated circuits, the serial communications with the host PC and
the command translation from ASCII-hex format to $I^{2} \mathrm{C}$-compat register address and data format. The assembly code of the firmware, the object code or the microcontroller
EEPROM image (bin-representatio of the content) can be obtained from the $E W$ editorial office. The same is true for the GUI configuration program for the SDIC08 encoder I have prepared dedicated 2-layer
PCBs for both devices. Actually it is impossible to build the project without such PCBs as the integrated circuits involved are SMD technology components, some of encoder for example). Soldering thes tiny components on a piece of universal prototyping board is not advisable (if at all possible!). The PCBs can be obtained from the $E W$
ffice for $£ 50$ each. Please allow four weeks for delivery if they run out of stock and need to be produced. The SDIC08 and SDIC10 encoder re housed in a plastic case as can be seen from the pictures presented in
Fig. 10. Of course if a more rugged r reliable operation is the goal then several such encoders (combined with the decoders CSDI10) can be ounted in a 19 inch 1 KU metal unit ase. In such a case the power supplie can be merged and a switched mode power supply in the 19 " case can be used as the primary supply. This device-casing structure is suitable for he studio environment, where usually decoders will be implemented.
Testing the encoders/decoders To ensure that a signal processing ment has to one, tho called worst case conditions. Such a condition for a video processing acility is the process of several ncoding/decoding sequences, which of quality if such exists. With the uncompressed digital video represented by the SDI stream there re no expectations for any loss of uality. Because of the sampling liasing phenomena could result, so he cascaded operation is a reasonable eeasurement method. The first photo Fig. 10 shows the experimental set up I have used. The same set-up is 11. The input CVBS (composite) nalogue video signal is converted to DI by the first CSDI10 decoder. The SI can be passed through a SDI
switcher or through a long intentionally the digital signal). The second converter - an SDIC08 encoder converts the SDI stream to component video (YUV). This component video signal is applied to
the second CSDIIO, which works in component mode in this case. The resulting SDI signal can be passed through signal degrading equipmen (such a long transmission line). The final step is the back-conversion of the
SDI signal to an analogue composite signal performed by the second SDIC08 converter. So we have CVB signal at the input and CVBS at the output too. The input signal can be sourced from a test pattern generator
or it can be a live video signal (which on my opinion is the better way to stress the system and to test the subjective working of the devices). The output composite signal can conventional video monitor. Using proposed experimental set-up I could not observe a visible degradation of the video material with the exception of the degradation inherent to the (the composite signal is always a lower quality one!). This last degradation is only a feasible one - 1 could not observe any degradation a all. So in conclusion I will say professional signal processing conversion of video signals from the digital to the analogue domain and
reverse reverse.

References

1. Analog Devices,
'ADV7175A/ADV7176A High Quality, 10-Bit, Digital CCIR-601 to ,
2. Analog Devices, 'ADV7194 Professional Extended-10TM Video Encoder with 54 MHz Oversampling Rev. A, $02 / 200$
3. Analog Devices
'AD8051/AD8052/AD8054 Low Cost, High Speed Rail-to-Rail Amplifiers', Rev. D, 02/2003
National Semiconductor, 'cLC014 Adaptive Cable Equalizer for High Speed Data Recovery', June 1998. . National Semiconductor, 'CLC016 Data Retiming PLL with Automatic Rate Selection', July 199 National Semiconductor, 'CLC01 Serial Dig
4. ${ }^{\text {Vladkov, E., 'Analyse your SDI', }}$ Electronics World, February 2002,
pp. 18-28.

Electronic analogue

Having looked in detail at analogue switching using CMOS gates, and having seen how well they can be made to work, you might be puzzled as to why anyone should wish to perform the same function with discrete FETs. Douglas Self explains

here are at least two advantages in particular pplications. Firstly, JFETs can handle the full output range of opamps working from maximum directly without requiring opamps to convert between current and voltage mode.
Secondly, the direct access to the device gate allow relatively slow changes in attenuation (though still rather than the rapid on-off action which CMOS gates give as a result of their internal control-voltage circuitry. This is vital in creating mute circuits that essentially implement a fast fade rather than a sharp cut, and so do not generate clicks and thumps by abruptly interrupting the signal
The downside is that they require carefully-tailored voltages to drive the gates, and these cannot always be conveniently derived from the usual opamp supply rails.

Discrete FETs in voltage mod

The series JFET switch
The basic JFET series switching circuit is shown in Fig 15. With the switch open there is no other connection to the gate other than the bootstrap resistor, V_{gs} is zero, and so the FET is on. When the switch is closed, the gate hat the FET is biased off even when the input signal is its negative limi
The JFET types J111 and J112 are specially designed for analogue switching and pre-eminent for this application. The channel on-resistances are low and relatively linear This is a depletion-mode FET, which requires a negative
gate voltage to actively turn it off. The J111 requires a gate voltage to actively turn it off. The J 111 requires a lower $\mathrm{R}_{\mathrm{ds}(\mathrm{on})}$ which means lower distortion. The J111, J1 12 (and J113) are members of the same family- in fact they are same the device, selected for gate/channel characteristics, unless I am much mistaken. but gives a 30Ω on-resistance or $\mathrm{R}_{\mathrm{ds}(0)}$) with zero gate but gives a 30Ω on-resistance or $\mathrm{R}_{\text {ds(on) }}$ with zero gate
voltage. In contrast the J112 needs only 5.0 V at most to turn it off, but has a higher $\mathrm{R}_{\mathrm{ds}(0 n)}$ of 50Ω. The trade-off is

Table 4			
	$\mathbf{J 1 1 1}$	$\mathbf{J 1 1 2}$	$\mathbf{J 1 1 3}$
$\mathrm{V}_{\mathrm{gs}(\text { (ff) }} \min$	-3.0	-1.0	-0.5 V
$\mathrm{~V}_{\mathrm{gs}(\text { (ff) }} \max$	-10	-5.0	-3.0 V
$\mathrm{R}_{\mathrm{ds}(\text { on })}$	30	50	100

linearity. The higher the $\mathrm{R}_{\mathrm{ds}(0 \mathrm{n})}$, the higher the distortion, st this is a non-linear resistance
FET tolerances are notoriously wide, and nothing varies more than the V_{gs} characteristic. It is essential to take the full range
Both the J111 and J112 are widely used for audio Bitching. The J111 has the advantage of the lowe distortion, but the Jl 12 can be driven directly from 4000 eries logic running from $\pm 7.5 \mathrm{~V}$ rails, which is often convenient. The J1 13 appears to have no advantage to set gainst its high R_{ds}
The seen on
ppropriate. The typical version used is shown, along with ypical values for associated components. Figure 15 has Source and Drain marked on the JFET. In fact these devices appear to be perfectly symmetrical, and it seems to so further diagrams omit this. As JFETs, in practical use they are not particularly static-sensitive.
The off voltage must be sufficiently negative to ensure at V_{gs} never becomes low enough to turn the JFET on. ince a J 111 may require $\mathrm{a} \mathrm{V}_{\mathrm{gs}}$ of -10 V to turn it off, the

Fig. 19. The JFET THD with loads from 1 K to 10 K .

Fig. 20. The THD with different values of bootstrap resistors from 100K to 22 K .
ff voltage must be 10 V below the negative saturation point of the driving opamp- hence the -23 V rail. This ot exactly a convenient voltage, but the rail does no seed to supply much current and the extra cost in urn a JFET on, the V_{gs} must be held at zero volts. Tha sounds simple enough, but it is actually the more difficult of the two states. Since the source is moving up and down with the signal, the gate must move up and is done by bootstrap resistor $\mathrm{R}_{\text {boot }}$ in Fig 15 . When the FET is off, DC flows through this resistor from the ource; it is therefore essential that this path be DC coupled and fed from a low impedance such as an opamp output, as shown in these diagrams. The causes no problems.
Figure 16 is a more practical circuit using a driver transistor to control the JFET (if you had a switch ontact, you would presumably use to control the audio directly). The pull-up resistor R_{c} keeps diode D reverse the value is not critical. It is usually high to reduce power consumption. I have used anything between 47 K and 680 K with success.
Sometimes DC-blocking is necessary if the opamp output is not at a DC level of 0 V . In this case the circuit
of Fig. 17. is very useful; the audio path is DC-blocked but not the bootstrap resistor, which must always have a DC path to the opamp output. $\mathrm{R}_{\text {drain }}$ keeps the capacitor voltage at zero when the JFET is held off
Figure 18 shows the distortion performance with a
load of 10 K . The lower curve is the distortion from th ad of 10K. The lower curve is the distortion mmediately it was a 5532 . The signal level wa 7.75 V rms (+20 dBu).

Figure 19 shows the distortion performance with heavier loading, from 10 K down to 1 K . As is usual in he world of electronics, heavier loading makes thing becomes a more significant part of the total circuit resistance. The signal level was $7.75 \mathrm{Vrms}(+20 \mathrm{dBu})$. Figure 20 shows the distortion performance with
different values of bootstrap resistor. The lower the iff erent values of bootstrap resistor. The lower the at high audio frequencies, and so the lower the distortion. The signal level was $7.75 \mathrm{Vrms}(+20 \mathrm{dBu})$ nce again. There appears to be no disadvantage to using bootstrap resistor of 22 K or so, except pecial circumstances, as explained below. make a changeover switch, as shown in Fig. 21. Thed valid states are A on, B on, or both off. Both on is not good option because the two opamps will then be
driving each other's outputs through the JFETs It is possible to cascade FET switches, as in Fig. 22. output is switched between A and B as before, but a second auxiliary output is switched between this selection and another input C by JFET3 and JFET 4. The current drawn by the second bootstrap resistor $\mathrm{R}_{\text {boor }}$ must flow
through the $\mathrm{R}_{\text {d }}$ of the first FET , and will thus generate a small click. $\mathrm{R}_{\text {boot2 }}$ is therefore made as high as possible oo minimise this effect, accepting that the distortion performance of the JFET3 switch will be compromised at HF, this was acceptable in the application as the second f JFET4 can be the desirable lower value as this path is driven direct from an opamp.
The shunt JFET switch
The basic JFET shunt switching circuit is shown in Fig 23 ike the shunt analogue gate mute, it gives poor offness oltage is controlled so it never allows the JFET to begin onducting. Its great advantage is that the depletion JFE be in its low-resistance before and during circuit ower-up, and can be used to mute switch-on transients. drive circuitry is configured to turn on the shunt FETs as soon as the mains disappears, and keeps them on until the various supply rails have completely collapsed. The circuit of Fig. 23. was used to mute the turn-on and urn-off transients of a hi-fi preamplifier. Since this is an
output that is likely to drive a reasonable length of cable, with its attendant capacitance, it is important to keep R1 as ow as possible, to minimise the possibility of a drooping reble response. This means that the $\mathrm{R}_{\mathrm{ds}(\text { (on })}$ of the JFET puts a limit on the offness possible. The output series as its only job the isolation of the output opamp from cable capacitance. Here it has a value of 1 K , which is a distinct ompromise.
The muting obtained with 1 K was not quite enough so two J 11 1s were used in parallel, giving a further - 6 dB of
attenuation, and yielding in total -33dB across the audio attenuation, and yielding in total -33dB across the audio
band, which was sufficient to render the transients naudible. The offness is not frequency dependent as the impedances are all low and so stray capacitance is irrelevant.

Discrete FETs in current mode
JFETS can be used in the current mode, just as for analogue gates. Figure 24 shows the basic muting circuit, with series FET switching only.
When switching audio signals, an instantaneous cut of the signal is sometimes not what is required. When a non-
zero audio signal is abruptly interrupted there is bound to be a click. Perhaps surprisingly, clever schemes for making the instant of switching coincide with a zerocrossing give little improvement. There may no longer be step-cha the in lever, there is stits a step-change in
a click. his is long enough to prevent clicks, without being so slow that the timing of the event becomes sloppy. This is normally only an issue in mixing consoles, where it is circuits are often called 'mute blocks' to emphasise that they are more than just simple on-off switches. Analogue gates cannot be slowly turned on and off due to their iternal cirETS for berro-volage generation. Theref

Febrary 2004 ELECTRONICS WORID
this function have been produced, but the ones I have evaluated have been expensive, single-source, and give
less than startling results for linearity and offness. This less than startling results for linearity an.
situation is of course subject to change.
In designing a mute bloc, we want low distortion AND good off ness at the same time, so the series-shunt analogue gates, is the obvious choice. The basic circuit is shown in Fig. 27. Capacitor C is usually required to ensure HF stability, due to the FET capacitances hanging
on the summing node at D .

Fig. 25. The THD of a series-only JFET mute bloc (Fig 24)

The control voltages to the series and shunt JFETs are complementary as before, but now they can be slowed shown in Fig. 28. The exact way in which the control voltages overlap is easy to control, but the V_{g} resistance law of the FET is not (and is about the most variable FET parameter there is) and so the overlap of FET conduction
is rather variable. However, I should say at once that this system does work and works well enough to go in topnotch mixing consoles. As you go into the muted condition the series JFET turns off and the shunt JFET urns on, and if the overlap gets to be too much in erro the following bad things can happen: JFET is still mostly on, a low-resistance path is established from the opamp VE point to ground, causing a large but brief rise in stage noise gain. This produces a chuff of noise at the output as muting occurs.
2) If the shunt FET turns on too late, so the series JFET is mostly off, the large signal voltage presented to the series FET causes visibly serious distortion. I say visibly' because it is well-known that even quite severe distortion is not obtrusive if it occurs only briefly. The ransition here it wosuld not however be a practical way to generate a slow fade.
The drive circuitry
The mute bloc requires two complementary drive voltages, and these are most easily generated by $4000-$
series CMOS running from 7.5 V rails. NAND gates are shown here as they are convenient for interfacing with other bits of control logic, but any standard CMOS output can be used. It is vital that the JFET gates get as close to 0 V as possible, ensuring that the series gate can be fully
on and give minimum distortion, so the best technique is to run the logic from these rails and use diodes to clamp the gates to 0 V .
Thus, in Fig 28, when the mute bloc is passing signal, he signal from gate A is high, so Dl is reverse-biased and the series JFET TR1 gate is held at ol by R1, moment) Meanwhile, D2 is conducting as the NAND-gate output driving it is low, so the shunt JFET TR2 gate is at about -7 V and it is firmly switched off. This voltage is more than enough to turn off a J112, but cannot be suaranteed to turn off a J11, which may require - 10 V
(See Table 5). This is one reason why the J112 is more often used in this application - it is simpler to generate the control voltages. When the mute bloc is off, the

Fig. 27. Circuit of series-shunt JFET mute bloc

Table 5			
	$\mathbf{1 k H z}$	$\mathbf{1 0 k H z}$	$\mathbf{2 0 k H z}$
THD dBu	0.0023%	0.0027%	0.0039%
Offness	-114 dB	-109 dB	-105 dB

Conditions are reversed, with the output of A low, turning off TR1, and the output of B high, turning on TR2

Reducing THD by on-biasing

The distortion generated by this circuit bloc is of onsiderable importance, because if the rest of the audio professional equipment - then this stage can generate more distortion than the rest of the signal path combined nd dominate this aspect of the performance. It is herefore worth examining any way of increasing th nearity.
already noted that to minimise distortion, the series JFET should be turned on as fully as possible to
minimise the value of the non-linear $R_{d s}(o n)$. When a FET has a value of the non-linear $\mathrm{R}_{\mathrm{ds}}(o n)$. When Ensidered fully on. It is, however, possible to tully even more on than this. The technique is to put a small positive voltage on the gate, say about $200-300 \mathrm{mV}$. This further reduces the R_{ds} (on) in a smoothly continuous manner, without forward biasing the JFET gate junction and injecting DC into the signal path. This is ccomplished in Fig 28 by the simple addition of R_{p}, the 680 K resistor R 1 . The value of R_{p} is usually in the $10-22 \mathrm{M} \Omega$ range, for the circuit values shown here. Care is needed with this technique, because if temperatures rise the JFET gate diode may begin to conduct after all, and DC will leak into the signal path,
causing thumps and bangs. In my experience 300 mV is about the upper safe limit for equipment that gets reasonably warm internally, i.e. about $50^{\circ} \mathrm{C}$. Caution is he watchword here, for unwanted transients are much less tolerable than slightly increased distortion. resistors $R_{\text {in }}$ and $R_{\text {nf }}$ that define the magnitude of the signal currents is an important matter. Figs. 30. and 31 examine how the offness of the circuit is affected by using values of 4 K 7 and 22 K . Usually 4 K 7 would be the preferred value; choosing 22 K as the value makes the below 4 K 7 are not usual as distortion is likely to increase, as the JFET $\mathrm{R}_{\mathrm{ds}(0 \mathrm{n})}$ becomes a larger part of the otal resistance in the circuit. The loading affect on the previous stage must also be considered

Layout and offness

The offness of this circuit is extremely good, providing certain precautions are taken in the physical layout. In .ig 32 there are two possible crosstalk paths that can damage the offness. The path C-D, through the internal capacitances of the series JFET, is rendered innocuous
C is connected firmly to ground by the shunt JFET. However, point A is still alive with full amplitude sign and it is the stray capacitance from A to D that defines he offness at high frequencies. Given the finite size of $R_{\text {in }}$, it is often necessary to extend the PCB track B-C to
get A far enough from D. This is no problem if done with get A far enough from D. This is no problem ir done with when the mute bloc is on, and so vulnerable to
capacitative crosstalk from other signals straying in to he area.
thd IHD+N(\%) us FREQ(Hz) $\mathrm{Rp}=10 \mathrm{M}$

Fig 29. The THD of the mute bloc in Fig 27. The increase in FET distortion caused by using the J112 rather than J111 is shown.

						22K						
-80.8085							10					A_{p}
-90.00]												
-109.0												
-110.												-
-118.0]										, 1		
-20.8:								,				
-139.0			$1,$									

Fig. 30. The offness of a series-shunt JFET mute bloc with $R_{i n}=R_{n i b}=22 K$.

Fig. 31. The offness of a series-shunt JFET mute bloc with $R_{\text {in }}=R_{\text {nib }}=4 K 7$. Offness is better and the noise floor (the flat section below 2 kHz) has been owered by about $2 d B$.

Dealing with the DC

The circuits shown so far have been stripped down to thei bare essentials to get the basic principles across. In reality things are (surprise) a little more complicated. Opamps
have non-zero offset and bias voltages and currents and i not handled properly these will lead to thumps and bangs. There are several issues
If there is any DC voltage at all passed on from the

previous stage, this will be interrupted along with the signal, causing a click or thump. The foolproof answer is
of course a DC blocking capacitor, but if you are aiming to remove all capacitors from the signal path, you may have a problem. DC servos can partly make up the lack, but since they are based on opamp integrators they are no more
accurate than the opamp while DC blocking is foolproof. The offset voltage of the opamp. If the noise gain is changed when the mute operates (which it is) the changing amplification of this off set will change the DC level at the
output. The answer is shown in Fig 32. The shunt FET is connected to ground via a blocking capacitor to prevent the signal path' as audio only goes through it when the circuit is muted. Feedback of the opamp offset voltage to this capacitor renders it innocuous.
The input bias and off set currents of the opamp. These uşing JFET opamps such as the OPA2134, where the bia and off set currents are negligible at normal equipment temperatures
Soft changeover circuit
This circuit (Fig 33) is designed to give a soft changeover between two inputs - in effect a fast crossfade. It is just the
mute block but with two separate inputs, either or both of which can be switched on. The performance at +20 dBu n/out is summarised in Table 5 .
The THD increase at 20 kHz is due to the use of a TL072 circuit is intended for soft-switching applications. where the transition between states is fast enough for a burst of high distortion to go unnoticed. It is not suitable for generating slow crossfades in applications like disco

Control voltage feedthrough in JFETs
All discrete FETs have a small capacitance between the gate and the device channel, so changes in the gate voltage will therefore cause a charge to be transferred to the audio down the control voltage change tends to give a thump rather than a click to a thump; the same amount of electric charge has been transferred to the audio path, but more slowly. Lowering the circuit impedances is effective in reducingcertainly reduces the effect of the feedthrou
butit is of limited effectiveness use. Halving the impedance only y reduces the amplitude by 6 dB , and such a reduction is likely to increase distortion.

Make sure of your copy of Electronics World

It can be difficult finding a copy of Electronics World at local newsagents. The number of magazines being published keeps increasing, which means that newsagents have less shelf space for the display of individual titles. Specialis magazines in particular get crowded out.
There's a solution to the problem. Most newsagents provide "shop-save" and/or home-delivery services. There's no charge for a shop save. You simply ask your newsagent to order a copy for you: it will be kept on one side each month ready for you to collect. Home-delivered copies are ordered in the same way, but generally incur a delivery charge.
A newsagent can order any magazine for you, whether or not the shop normally stocks it.
If you buy your copies of Electronics World from a newsagent and want to make sure you get every issue, just ask at the counter.

NIINPRODUCTS

Please quote Electronics World when seeking further information

Dual 1Gbit Ethernet board supports up to four devices
The MAT 1040 PICMG single combines a Pentium 4 with the Intel 845G chipset. Socket 478 Pentium 4 processors up to 3 GHz and Celeron processor
up to 2 GHz are supported. Product features include supp for two 10/100/1G Ethernet ports, DDR memory up to 2 Gbyte, and provision for compactFlash type I and II. The allows support of up to four devices including hard disc, CDROM, LS and Zip drives. Other interfaces include two serial, one parallel, four USB, IrDA, 845G chipset features integrated graphics and video support, while additional AGP daughte cards add further graphics capability, ranging from nVidia
GeForce2 MX 400 , to an ADD card for DFP/LVDS panels, and an ATI Mobility Radeon flat panel controller.
Microbus
www.microbus.com

Mini ferrite chokes

 rated for 55AA range of miniaturé high current ferrite common mode
chokes from Steward are rated up to 55 A of continuous operating current. Suitable for high- or low-frequency
pplications, the CM41 chokes low frequency materials and are

Motor with integral electronics

Comprising motor plus
integrated control electronics and network filter Papst's 56 mm EC motor operates from the standard industrial voltage of 18 to 28 Vdc with a nominal current consumption of 5 A . Utilising neodymium magnets,
the motor attains an output of 90 W and a torque of 29 mNm at a rated speed of 3000 rpm . Different types of gear units are available to expand the field
use. The service life of the use. The service life of thy commutated motor is ove 20,000 hours. Dimensions of the drive are 56 mm diamete and 140 mm in length. Microprocessor-based control functions of to carry ou management. Three Hall sensors give the
microcontroller
microcontroller position signals of the motor current. The four-
maller and less suscepttible to he effects of vibration than nore traditional wire-wound devices.
teward wteward.com
Real-time radar processing platform in 6U VME
Pentek is offering developerready systems aimed at data acquisition, digital up- and analysing, recording and synthesising signals. It is also offering RTS Turnkey System ailored for specific, high-end pplications. To support the
ffering, the VME board firm as entered into a strategic alliance with a system integrator, DSPCon, which will come up with an integrated and design with custom application code and a complete graphical user interface. The first platform ffering in the series is the
ver-current, and a protection function for other safety and temperature monitoring. In order to keep within the limits for incoming and outgoing interference radiation, an integrated in the casing. The
drive can be controlled via 10 V signal or an optional 10 V signal or an optional 400 Hz . An actual value output and alarm output permit external monitoring of the drive.
Papst
www.papstplc.com

System RTS 2501, a real-time adar signal processor and consisting of a $100 \mathrm{MHz}, 14$-bit nalogue front end, scalable from 2 to 80 channels. The system is delivered in a 6
VMEbus card cage preMMEbus card cage prerequired cabling and software Pentek
,

Shielded M-12

 Profibus connector Harting has introduced a hielded M-12 prof ibus connector using the company's ARAX rapid termination eliminates soldering or screw erminations. The individual srands in a cable are inserted into a splicing ring and cut to the metal housing via a sliding ring. The individual strands are then terminated securely using insulation displacementechnology with the aid of a in connector is for nvironments and offer protection to IP67. It is rated at up to 32 V and 4 A , and designed or conductor sizes from . larting
www.harting.co.uk Tiger-SHARC board for military uses BittWare has a TigerSHARC board support package for Gedae. Largely used in military applications, Gedae developed by Blue Horizon Software, is processing algorithm design and mplementation on real-time mbedded multiprocessor ystems. The approach is designed to allow developers to mbedded implementation and optimise it to various hardware platforms. They can use Gedae
to develop hardware-

Easy-PC

Windows
World Beading value in PCB Design Soffware
independent code in a graphica environment and then port the designs to any supported hardware. The EZ-TigerSHAR developers to port their design to any of BittWare's ADSP TS201 and ADSP-TS 101 TigerSHARC platforms,
providing all the TigerSHARC components required to tailor any Gedae design to BittWare hardware. It features cluster bus and link port communication methods in word, block, and interprocessor communication capability. The memory handler offers full use of the TigerSHARC multi-memory block architecture and th Bittware

LCD developer kit Intelligent display Solutions has Intelligent display Solutions has
launched an LCD development tool which is intended to
simplify the design of user

interfaces. Called Eddie, it
allows the user to create graphics and text in MSPaint, or
any other suitable drawing any other suitable drawing
program. The graphics are the program. The graphics are then
loaded onto the display. Control for up-loading is managed by the hyperterminal software too that is standard on all PCs. It requires no special software and
connects to the PC via the RS232 port.
Intelligent Display Solutions
www.intelligentdisplay.com
Multi-processor support device Fujitsu has introduced an ARM9
multi-CPU evaluation device,
the MB87Q1100, which implements the next-generation SoC platform, integrating
ARM926EJ-S and ARM946E ARM926EJ-S and ARM946E-S embeded macrocell cores. The AHB-Lite, a subset of the AHB system bus, is incorporated. According to the supplier, this makes it possible for customers
to design and verify modules in their Asic by connecting the master and slave module of AHB-Lite to the device. The device is available in
FBGA400 package. fuiltsu
www.fme.fuijtsu.com

Green light for

 touch switches Schurter has launched a ring illuminated piezo switch, ideal for night use or to provide a simple on/off status display in a wide variety of applications.Thedevice has a mounting diameter of 22 mm and, unlike mechanical switches has no moving parts, and is less likely fail due to parts

IEGT module line-up saves space and simplifies cooling

Toshiba's latest 3.3kV IEGT

 (injection-enhanced gate. transistor) module is designed to have reduced on-stage losses aswell as offering a 30 per cent reduction of off-state losses when compared with conventional modules, said the supplier. Integrating multiple IEGT chips with fast recovery
diodes (FRDs), the

MG1200FXFIUS53, MG800FXFIUS53 and MG400FXF2YS53 IEGT modules have respective current 400A. Maximum junction to case R_{th} ratings for the transistor stages of the IEGT modules are as low as $8 \mathrm{~K} / \mathrm{kW}$. Typical for both the MG400 and MG80 (AlSic) base plate has been used
to optimise thermal dissipation to optimise thermal dissipation operation and extended lifetime characteristics. The modules are suitable for very high-power applications including large trams and other traction control systems, uninterruptible power supplies (UPS), power transmission and distribution designs. The 1200A and 800 A
modules are based on a 1 -in-1 circuit configuration, while the 400A module incorporates a 2 in- 1 circuit. All the modules have an isolation voltage rating
of 6000 Vac (for one minute) and can operate with junctio temperatures of between - 40 and $125^{\circ} \mathrm{C}$. Minimum short circuit capability is rated at 2500V. www.toshiba-europe.com

wearing out. The PSE M22R series are specified with a 20 million lifecycle operation. The switch housing is made of available in various colours. The ring illumination is available in red, green or a 2 -colour
red/green combination, the switches are rated to IP67. An Oring is supplied to seal the front plate. The switches are supplied or alternatively, with a Molex ype connector. The socket features a D-shaped area to allow for the correct positioning of marked switches
Schuter Schurter
www.schu

Ultra miniature chip capacitors Murata's smallest range of Murata s smallest range of
multi-layer ceramic capacitors (MLCCs) measure just $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$. The 01005 size
MLCC is already in volume MLCC is already in volume production and the capacitance 15 pF for COG dielectric types and from 1000 pF to 10000 pF for R characteristic capacitors. According to the supplier, to get
an idea of the scale of these an idea of the scale of these
chips when compared to the current 0201 size $(0.6 \times 0.3 \times 0.3 \mathrm{~mm})$ the 01005 size \square

High performance Windows based PCB Design Capture, £97 - Simulation and Layout software at prices you'd expect from your local computer store!

NEW! in Easy-PC 7

- Library Databook
- Step and repeat plotting
- Swap Connection Mode
- Dimensioning
- Copy to Metafile
plus much more......

No1 Number One Systems

Stop press... by customer demand, now with Tsien Boardmaker 2 design import...
Number One Systems delivers true 32 bit Windows software applications including features that a few short years ago would only have been available in software tools priced in the thousands! Test drive Easy-PC and Easy-Spice for yourself and be prepared to be amazed at the super value...

Call for a brochure, price list and demo CD on +44 (0)1684 773662 or email sales@numberone.com

Urar Radio Modules/Modems www.radiotelemetry.co.uk

electronics
Motor Drivers/Controllers Here are just a few of our controller and
driver modules for AC, DC, unipolarlbipolar stepper motors and servo motors. See
website for full details.
DC Motor Speed Controller ($6 \mathrm{~A} / 100 \mathrm{~V}$) Control the speed of almost any common DC motor rated up to 100V/5A. Pulse width
modulation output for maximum motor torque at all speeds. Supply: $5-15 \mathrm{VDC}$. Box supplied. Dimensions (mm): $60 \mathrm{~W} \times 100 \mathrm{~L}$
lit Order Code: 3067 KT - $£ 12.96$ Kit Order Code:
Assembled Order Code: AS3067-£19.96
NEW! PC / Standalone Unipolar Stepper Motor Driver
Drives any 5, 6 or 8 -lead rated up to 6 Amps max Provides speed and direc-
tion control. Operates in stand-alone or PCcontrolled mode. Up to six 3179 driver board can be connected to a single 9 DC . PCB: $80 \times 50 \mathrm{~mm}$.
Supple Kit Order Code: 3179KT - $\mathbf{E 9 . 9 6}$

Controllers \& Loggers Here are just a few of the controller and See website for full details. Suitable PSU See wessite or full detalis. Suitable es
for all units: Order Code PSU203 £9.95

Rolling Code 4-Channel UHF Remote State-of-the-Art. High security
4 channels. Momentary or atching relay output. Range be learnt by one $R x$ (kitit includes one Tx but more availables separately. 4 indicator LED 's. Rx: PCB
$77 \times 85 \mathrm{~mm}, 12 \mathrm{VCC} / \mathrm{mA}$ (standby) $77 \times 85 \mathrm{~mm}, 12 \mathrm{VDC} / 6 \mathrm{~mA}$ (standby). Two an Kit Order Code: $3180 \mathrm{KT}-\mathbf{£ 4 1 . 9 5}$
Kit Order Code: $\mathbf{3 1 8 0 \mathrm { KT }}$ - $£ 41.96$
Assembled Order Code: AS3180-£49.96 Computer Temperature Data Logger
4 -channel temperature log.
ger for serial port. ${ }^{\circ}$ or or ${ }^{\circ} \mathrm{F}$. Continuously logs up to 4
separate sensors 10 acted
200m+ separate sensors located
$200 \mathrm{~m}+\mathrm{from}$ board. Wide
range of free software appli cations for storing/usinge of free sota. PCB just $38 \times 38 \mathrm{~mm}$. Powered by PC. Includes one
DS 1820 sensor and four header cables. Kit Order Code: $3145 \mathrm{KT}-£ 22.96$ Assembled Order Code: AS3145- $£ 29.96$
Additional DS1820 Sensors - $\mathbf{\$ 3 . 9 6}$ each

NEW! DTMF Telephone Relav Switcher Call your phone number
using a DTMF phone from using a DTMF phone from anywhere in the world and the 4 relays as desired.
 User settable Security Password, AntiTamper, Rings to Answer, Auto Hang-up and
ockout. Includes plastic, case $130 \times 110 \times 30 \mathrm{~mm}$. Power: 12 VDC
Kit Kit Order Code: 3140 KT - $\mathrm{E39.96}$
Assembled Order Code: AS3140- $\mathbf{- 6} \mathbf{6 9 . 9 6}$

Serial Isolated I/O Module

E 0 PC controled 8 -Relay PC controlled 8 -Relay
Board. $115 / 250 \mathrm{~V}$ relay outputs and 4 isolated
digital inputs. Useful in a variety of control and Uses PC serial port for programming (using Uses PC serial port for programming (using
our new Windows interface or batch files).
Once programmed unit can operate withou Once programmed unit can operate without
PC. Includes plastic case $130 \times 100 \times 30 \mathrm{~mm}$. P. Includes plastic $12 \mathrm{VDC} / 50 \mathrm{~mA}$.

Kit Order Code: 3108 KT - $\mathbf{£ 5 4 . 9 6}$
www.quasarelectronics.com

Ifrared RC Relay Board ndividually control 12 on-
board relays with included frared remote control unit oggle or momentary. $15 \mathrm{~m}+\ldots$ Kit Order Code: 3142 KT - $£ 41.96$ PIC \& ATMEL Programmers We have a wide range of low cost PIC and ATMEL Programmers. Complete range and Programmer Accessories:
40 -pin Wide ZIF socket (ZIF 40 W) $£ 16.00$ 18V DC Power supply (PSU201) £6.96 Leads: Parallel (LEAD 108) $£ 4.96 /$ Serial
(LEAD76) $£ 4.96$ / USB (LEADUAA) $£ 4.96$

EW! USB 'All-Flash' PIC Programmer Bh' devices No for all power supply making it truly portable. Supplied complete w 0 -pin wide-slot ZIF socket, box
nd Windows Software. and Windows Software.
Kit Order Code: 3128 KT - $\mathbf{£ 4 9 . 9 6}$. Assembled Order Code: AS3128-£64.96
nhanced "PICALL" ISP PIC Programmer Will program virtually ALL 8 to 40 pin PICs plus a range
of ATMEL AVR, SCENIX SX and EEPROM 24 C de-
vices Also suparts em Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requ Kit Order Code: 3144 KT - $£ 54.96$

ATMEL 89xxxx Programmer Uses serial port and any standard terminal comms rogram. 4 LED's display he status. ZIF sockets Kit Order Code: $3123 \mathrm{KT}-\mathbf{~} \mathbf{2 2 9 . 9 6}$ Corder Code AS3123 NEW! USB \& Serial Port PIC Programmer 1 USB/Serial connection. Ideal for ield use. Header cable for ICSP. Free Windows software. See website for PICs supported. ZIF It - socket not incl. Supply: 18 VDC . Kit Order Code: 3149 KT - $£ 29.96$ Kit Order Code: 3149KT - $\mathbf{E 2 9 . 9 6}$
orkIT
Secure Online Ordering Facilities o Full Product Listing, Descriptions \& Photos o Kit Documentation \& Software Downloads

DC-DC converters can
deliver up to 5A C\&D Technologies has DC converters designed for use with nominal 3.0 V to 5.5 V and 10.8 V to 13.2 V intermediate bus architectures. The NNL 05 S maximum 5.0A output current. Typical efficiency levels are up to 93 per cent. The converters offer user-selectable output voltages of between 0.75 V and
3.3 V and feature a low typical output ripple and noise rating of 24 mV (peak-to-peak). Voltage accuracy is up to 0.3 per cent, while typical line regulation and load regulation are 0.76 and 0.5 per cent respectively
C\&D Technologies
www.cdpoweronline.com
SIM card controller has 256kbyte memory Samsung is offering a 256 kbyt version of its SIM card microcontroller series. Industry standard security features common to all family member
include built-in DEST/T-DES hardware and SPA/DPA prevention circuitry. Samsung is targeting common criteria security certification, and has
already received EAL4 securite already received EAL4+ secur
certification for the 64 KB controller. Common criteria has been adopted as ISO standard
ISO/ISEC 15408 ISO/ISEC 15408.
Samsung
www.sams
P-channel Mosfet is optimised for bucks Vishay Siliconix claims to have the ina Mosfet optimised for us in synchronous buck converters. Used on the synchronous buck
high-side, a p-channel Mosfe
can be turned on with a gate can be turned on with a gate
drive that is lower than the drive that is lower than the
battery voltage. According to battery voltage. According to the
supplier, this can potentially supplier, this can potential
eliminate the need for extra eliminate the need for extra
bootstrap circuitry in DC-DC converter design. Combining on resistance of 0.051Ω with a typical gate charge of on-resistance-times-gate-charg figure of merit of 0.36 . The device has been designed to eliminate secondary turn-on effects
www.vishay.com
More I/O for PC/104 computer boards
Ampro Computers has added extra I/O expansion capabil
for its Little Board and for its Little Board and CoreModule single board
computers and CPU modules. computers and CPU modul
MiniModule products MiniModule products EBX-form-factor SBCs such as the little Board 700 which features low-power Pentium 11 and Celeron processors, as well
as PC/104- and PC/104-Plus-form-factor CPU modules and SBCs such as the 486 -based CoreModule 400 and the CoreModule 410 and 600 products. The modules plug on
top of the CPUs and SBCs usin the industry-standard PCI and ISA buses in PC/104 and PC/104-Plus connectors. They plug in horizontally rather than vertically like slot cards, which
reduces the height and mounting requirements of end systems. Ampro
www.ampro.com
Advances in digital signal analysis Tektronix has added multichannel eye-diagram signal analysis capabilities to its
TLA700 series logic analysers. offers eye diagrams and mask testing for hundreds of signals instantaneously. As part of the iLink Tool set, iVerify provides multi-channel analysis and
validation testing using powerful oscilloscope-generated eye oscilloscope-generated eye
diagrams. It joins iConnect

DSP design with first power-over-Ethernet computer DSP Design claims to have he first touch screen, flat over an Ethernet CAT5 cable. Known as POET 6000, it uses IEEE802.3af power-over Ethernet technology to single standard CATS cable. It includes a 12.1 in TFT display fitted with an impac resistant, touch screen for user input and is available on
a wall-mounted panel or as a desktop unit. Delivered with a pre-configured copy of
Microsoft Windows XP Microsoft Windows XP
Embedded, the enclosure ha Embedded, the enclosure has
a standard RJ45 Ethernet connector and two USB connectors. Power-over-
Ethernet allows IP telephon
Ethernet allows IP telephones,
over existing LAN cabling.
wireless LAN access point
and other appliances to
receive power as well as data
DSP Design

ww.dspdesign.com
(digital/analogue data acquisition through a single probe) and iView (time-correlated, digitalanalogue/digital probing analysis.) Tektronix
Tekronix

Embedded board spec

 combines next generation buses Kontron has proposed a Kontron has proposed aspecification for embedded computers which integrates the latest interface technologies such

as PCI Express, Serial ATA, Gigabit Ethernet, Dual Channel
DDR and USB 20 Called DDR and USB 2.0. Called ETXexpress, it will support 4
PCI Express $x 1$ Lanes and PCI Express cards as well as established hardware based on current busses such as 32 -bit PCI and ISA bus (via a LPG). A 10/100/1000Mbit Ethernet por provides fast connectivity to
LAN/WAN and 6 x USB 2.0 provide interfaces for external drivesfflash, keyboard, mice and other peripherals. The new standard is planned to be initial.
offered in a $85 \mathrm{~mm} \times 125 \mathrm{~mm}$ form factor. Signals are brought
out via 160 -pin SMT connector that permit data transmissio rates of up to 5 GHz . Six mounting holes on the board provide resistance to shock and vibration. The thermal couplin system incorporates a
standardized heat sprea the case with ETX. The first Kontron ETXexpress modules will be based on 1.6 GHz Intel Pentium M processors as well
the Intel 855 GME chipset the Intel 855 GME chipset.
Kontron
www.kontron.com
802.11b/g/a RF frontend module
Epcos is offering its first module to integrate the complete dualband front-end circuitry for wireless LAN devices in package measuring
$5.4 \times 4.0 \times 1.4 \mathrm{~mm}$. The R005 module combines two duplexers

NIWWI PRODUCTS
Please quote Electronics World when seeking further information

in testing cable harnesses and automotive electrical systems. A small mounting diameter allows it to be used in applications
where probes needed to be where probes needed to be
spaced at 2.2 mm centres spaced at 2.2 mm centres, said
the supplier. It is also suited to applications involving 2.5 mm centres where greater clearance between adjacent probes is
required to allow for wider required to allow for wid
tolerance in test-fixture construction or to prevent electrical arcing. Two tip styles with a choice of two diameters
for each are intially for each are initially available
from stock, with further variants being introduced in the near future. A choice of four spring pressures from 1 N to 3 N is available. Peak Test Services
www.thepeak group.com

Plug-and-play evaluation kit An evaluation kit is available from AMI Semiconductor for its recently launched AMIS-70020
'Power Failure Elapsed Time Counter ' IC.
The kit allows designers to reduce the component count,
cost and time-to-market for
industrial power failure duration
monitoring systems, typically

used in applications where measuring power failure duration is needed for equipment and material protection. The board allows users to
evaluate the counter IC in a "stand alone IC evaluationmode" or in a "system integration mode". AMI Semiconducto
www.amis.com

DIN rail mounted module housings Distributor Switchtec is offering electronic housings from packaged electronic modules fo DIN rail mounting

FCB colour block camera

FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a esult. We offer an extensive database at our fingertips, we are able to source with the following prefix (to name but a few) 2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N6N 1740 AD
ADCANNAMA BA BC BD BDT BDV BDW BD BF
BFR BFS BFT BFW BFX BFY BLY BLX BS BR BRXBRYBS
BSS BSV BSW BSX BTBTA BLB BRW BU BUK BUT BUV

Please ask for our Free CD Rom STOCK LIST. WE STOCK A MASSIVE RANGE OF COMPONENTS

Cricklewood Electronics Ltd 40-42 Cricklewood Broadway, London NW2 3ET Tel: 02084520161 Fax: 02082081441 E-mail: sales@cricklewoodelectronics.con

JOHN RADIO ELECTRONIC TEST AND COMMUNICATION EQPT MASSIVE RETIREMENT CLEARANCE SALE 30.00SQ FT OF TEKTRONIX-HP-AGILENT-MARCONI-PHILIPS-RACAL ETC. Over the rest of this year at our bulk Smithies Mill site sales by
auction-Tender-Offer-all welcome private or trade-single or bulik tems. Equipment sale floor 6000 sa $\mathrm{ft}+25.0000 \mathrm{sa}$ ft of adjoining ems. Equipment sale orks headquarter site.
Open weekdays 9 am-5pm and Saturday mornings to 1:00pm ALWAYS PHONE dim APPOINTM

Item lists-photos-site map-N FIRST,
website www.johnsradio-uk.com www.johnsradio.com Location M62 Junction 27, A62 to Huddersfield, 1 mile Birstall
Smithies Lights (6 roads) Smithies Lights (6 roads) look to your left, site under factory Lane, 100yds second entrance on left
Johns Radio, Smithies Mill, Birstall Smithies Lights, 883-885 Bradford Rd, Batley, West Yorks WF17 8NN-8NS. Phone - 01924442905 - Fax - 01924448170
Our normal sales, workshop, repairs and calibration will continue until clearance of all items. atricia at Whitehall Works-84 Whitehall Rd East, Birkenshaw, Bradford BD11 2ER.
Phone - $01274 \mathbf{6 8 4 0 0 7}$-Fax 01274651160 NEXT SALE FRI-SAT DECEMBER 5-6 DETAILS www.tech-asset.co.uk
info@tech-asset.co.uk

February 2004 ELECTRONICS WORLD

(dirdUJil IDEAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process.
This includes the odd solution looking for a problem - provided it has a degree of ingenuity
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Caroline Fisher with the circuit idea name as the subject.
Send your ideas to: Phil Reed, Highbury Business Communications, Nexus House,
Azalea Drive, Swanley, Kent, BR8 8HU
email ewcircuit@highburybiz.com

Simple, low-power logic level to RS232 level conversion

With the proliferation of low-power, built-in-power-supplies RS232 driver
ICs available these days, the need for ICs available these days, the need for
this circuit is perhaps not too great. this circuit is perhaps not too great.
Still, it may come in handy if an IC happens to be una vailable. A PNP and an NPN general-purpose switch transistor performs the logic inversion and the unipolar logic level to bipolar RS23
Q1 receive
signal and provid S232 transmitter output. This output open-collector be pulled to the logic Vcc supply as
shown with R5. D2 protects Q 1
from the negative excursion of th RS232 signal that could be large enough to cause base-emitter breakdown.
and drives and drives the RS232 receiver between a positive voltage equal to the logic supply and the negative voltage at C1. Logic supplies down
to 3.3 V should still (barely) meet RS232 level specifications. D1 and C1 steal negative voltage from the RS232 transmitter to pull the RS232 Rx line negative when Q2

is OFF. In other words, the RS232 transmitter drives the RS232 receiver input to the negative level. The size of Cl is not critical, it just needs to hold up during the positive time of a
RS232 transmitted character, so its size depends on baud rate and receiver input impedance. The interface circuit draws only eakage currents from the logic disconnected or even if connected but inactive. The logic supply provides the base current for Q2 when the logic tx signal is low, but
when the RS232 is idle, the Rx line when the RS232 is idle, the Rx line
should be negative and therefore Q2 should be OFF, so the logic level tx signal should be normally high. Similarly, the idle RS232 Tx line is negative, turning Q1 OFF. When the
RS232 Tx is active, O1 switches ON and the logic supply provides the Q1 collector current via pullup resistor R5. R2 and R6 connect the base-emitter junctions of the transistors to assure they are of disconnected.
It is worth emphasising that the interface circuit ground is common o and connects the RS232 and logic ircuit grounds.
Ve Young
British Columbia

Alkaline charger

This circuit was specifically The unusual connection of the transistor in each charging unit will cause it to oscillate, on and off, thus ransferring the charge accumulated LED will blink any time there is this transfer of charge, around five times second for a 1.377 V cell (see chart showing the voltage across an AA cell being charged). For a totall
discharged cell the blinking is aster: up to nine times a second it will decrease until it comes to a stop when the cell is charged. You may leave the cell in the charger as it will trickle charge and keep it at
around 1.6 V . To set the correct voltage you have to connect a fresh, unused cell and ad just the trimmer until oscillations set in, then go back a little until no oscillation is present and the circuit is ready to operate. transistors, LED colours, zener voltage and power rating because they will set the final voltage acros the cell. A simple 9 V charging charge up to around 9.3 V and the keep it on a trickle charge: the green LED will be off while charging and will be fully on when the battery is close to its final voltage. A 2.5 VA
aattery and up to several days for a large D type cell. The best practice cell or battery but rather give it a short charge every so often although admittedly this is not easy to achieve. The circuit will endure temporary battery reversal, sh
and over voltages but do not recharge cells or batteries that show even a minimal damage, leakage, or have been kept discharged for a long time.
D. DiMario
four cells at the same time although
two only are shown in the two only are shown in the
schematic. You may add mor charging circuits provided you increase the transformer powe rating. In order to minimise interference from one circuit to the
other they have nothing in common except the transformer and in order to show a balanced load to the transformer, half of the charging units will use the positive sine wave and the other half the negative sine
wave. All types of alkaline cells can be recharged: it will take around 1 ay for a discharged AA cell or 9 V

Milan
 Italy

16 channel selector

his circuit will allow push butto control of 16 channels in any expansion of the 8 -channel control pablished some time ago. As with he previous circuit it consists of 4 to
16 channel line decoders with diode feedback. To create an expansion to 16 channels, the outputs are controlled in groups of 4 outputs by U4514 decoders. A fifth CD4514 is used as priority decoder. When a
push button is pressed the feedback diodes maintain the selected input.
s the inputs are directly connected o priority encoder U1, it will select selected with the push button. By roviding a prie push button. By impossible to have more than one output selected. It is also excluded to have an output selected if more then ne pushbutton is depressed. If this where the case, no outputs are nabled as this is prevented by the 4 pplication the only outputs used of the decoders are those that have only
ne high level input. An additional function of the priority decoder is to provide an the IC not only controls the outputs of the IC but also the outputs of the channel selectors U2-U5. In the present circuit the output ontrol relays with ULN power drivers. However the possibilities or output control are unlin

Evergern

Electronic half bridge replaces mechanical vibrator in 6 V to 12 V conversion

A friend, currently engaged in rebuilding an American Ford Mercury of 1953 vintage, asked me to restore and convert the origina
valve car radio to 12 V as the vehicle electrical system was being converted fro 6 V to 12 V . The American vehicle voltage standard of the time was 6 V and as a result the radio had no provision for conversion to 12 V operation built-in. With eight oct
valves, including twin 6 V 6 GT valves operating in push-pull, this radio was capable of driving $10 \mathrm{~W}+$ into the speakers and drew a massive $8-10 \mathrm{~A}$ from a 6 V supply; a linear seriestion The radio had to be converted to 'internal' 12 V operation.
The first step, re-arranging the valve heaters in series-parallel was a trivial matter the power, sompe thought had to be given to the power supply; derived from a mechanica 6X5GT HT rectifier valve. Replacing the

centre tap is left to float. R10 provid

primary damping, smoothing out discontinuities at the switching points. With
the diodes and R10 mounted on the vibrato base, the rest of the circuitry, built on a small PCB was mounted in the original vibrator can. Other points of note in this circuit: 1) 'Boosted supply' for Q5 gate is
developed from the developed from the supply via R3. This
means that whilst V 1 is warming up the bridge operates at a much reduced voltage thus limiting the peak voltages seen by Tl \& tuning capacitor Cl
2) $R 7 \& R 2$ are included to slow the switching of the MOSFETs and thus reduce interference.
3) Running at an input power of around no heatsinks are required for Q3 \& Q5 Jeremy Stevens
Ealing
London
UK

transformer was out of the question and the only alternative that immediately sprang to mind was the use of a half or full bridge
MOSFET driver circuit. As the half bridge was simpler, this was evaluated first and found to be perfectly adequate. A CMOS 4047 oscillator was used, its complementary outputs driving a pair of IRFIZ44 MOSFETs
via a suitable drive circuit. Most vibrators ia a suitable drive circuit. Most vibre
operate at around 100 Hz , but with the electronic replacement there was some scope or adjusting the frequency to improve fficiency, hence the choice of 170 Hz . Due to the low operating frequency
conventional 1 N4000 series diodes can be conventional 1 N4000 series diodes can be
used in the output stage. The four diodes D3, D4, D5 \& D6 effectively constrain the transformer's primary winding within the supply rails and the transformer 'sees exactly the same input waveform as it did
with the mechanical vibrator running on 6 V the only difference being that the primary

Random clock

The Random Clock in Fig. 1 is
based on a 12 V unipolar stepper motor operating in wave mode. Such motors are now widely, available from discarded $5^{1 / 4 "}$ he clock tick at gradually increasing and decreasing speeds, reversing direction from time to time.
IC1d is a 'slow' sawtoot enerator and IC1c a 'fast' sawtooth generator which runs at approximately twice the speed of C1d. These determine the rate which clock generator 1 CI a (a voltage controlled oscillator) one complete cycle of IC1d, around one hundred clock pulses will be sent to 1 C 2 pin 15 . The two sawtooth waveforms re mixed through the two varying speed at the clock input of

C2. This determines the speed at which the hands of the Random Clock move clockwise or IC2 is wired as a 4 tst face. up-down counter. IClb converts the two sawtooth waveforms to square waves, and mixes them, to randomly switch the Up/Down input at IC2 pin 10. This causes the Random Clock to reverse direction.
IC2's outputs Q1 to Q4 produce a 4 bit binary number. This needs to be converted to a decimal 1 to Clock's unipolar me the Random Clock's unipolar motor phases. number repeat every 4 steps, so these outputs (Q2 and Q3)are selected to clock 2 to 4 line decoder IC3. It is recommended versions should be used for IC3.

Four BD135 power transistors serve as current amplifiers at the outputs of IC3. Since stepper motors can work up quite a heat, and full power is not required,
suitably rated resistor may be inserted in the motor's common line if desired. A 12 V 3 W
$(250 \mathrm{~mA})$ power supply is required.
The Random Clock further move its hours and minutes hand at different speeds. This is easily constructed from a selection of gears.
A further possibility is to use th circuit to cascade lights up and used for the lights, suitably rated ballast resistors need to be wired in series with outputs A to D.
Rev. Thomas Scarborough Cape Town Cape Town

Instrumentation amplifier with differential output

An instrumentation amplifier is used
to convert a differential input from a floating source, such as any transducer, to a single ended ground impedance. But in some cases this output needs to be driven over a long distance. To drive long distances, balanced differential
swing. The gain can be changed by
manipulating the ratio $a=R 1 / R-b y$ manipulating the ratio $a=R 1 / R-$ by
changing the value of R alone the gain can be modified. This structur gain can be modified. This structu driving with low source impedance. S. Vijayan Pillai Kerala
India
Here a three op-amp to have a differential input mod balanced differential output. This h a differential gain of six and lower at-off frequency of 72 Hz and an apper cut-off frequency determined by the op-amp and maximum signal

Simple VCO

A description is given of an oscillator of which the parts are floating and nevertheless whose frequency can be schematic diagram). The oscillator
consists of two inverters connected in well-known way with the frequency determining capacitor and resistor. The esistor is replaced by a resistor in series coupler, of which the 'resistance' is controlled by the current through the

The relation between frequency and ontrol voltage is reasonable linear (see table and graph). Waalre The Netherlands

Drive a white LED from less than 1 V

White LEDS are increasingly being used to provide illumination in portable equipment, such as display
backlights for pagers and mobile 'phones. However, generating the 3 to 5 V forward voltage required by these LEDs poses problems for single ce
applications. Several applications. Several boost ICs specifically for driving one or more white LEDs. Some of these devices, such as the
Zetex ZXSC300 are as Zetex ZXSC300, are capable of
operating down to one volt, but tend to run out of steam below 0.8 V .

The circuit shown in the figure enables the ZXSC300 to drive a white LED from a voltage
source that has fallen to less than half a volt. Additionally, the circuit provides enough power to supply over 3 V to an external load.
On power up, the ZXSC300
receives supply current via D and starts to oscillate. The device functions as a PFM (Pulse Frequency Modulation)
controller which controller which steps up the battery voltage, $V_{\text {BATT }}$, using
L1, TR2 and D3 in the familiar 'voltage boost' configuration. The voltage, $\mathrm{V}_{\text {LED }}$, on C2 then rises to a level sufficient to forward bias the LED. At the
same time, D2 becomes forwar same time, D2 becomes
biased and provides a 'bootstrapped' supply voltage
for the ZXSC300. In this way, he voltage at V_{CC} (pin 1) is never more than a diode drop below the LED's forward
voltage. This ensures a voltage. of at ensures a supply
voltage of least 2.4 V , even when $V_{\text {BATT }}$ has dropped to les han half a volt. Once the LED supply has been established, D becomes reverse biased and controller continues to operate. The bootstrap scheme allows he circuit to continue
$\mathrm{V}_{\text {BATT }}$ has fallen well below the BATT has fallen well below the
0.8 V minimum supply voltage .8ecified for the ZXSC 300 . With no load across the LED, a test circuit using a Kingbright L54PWC white LED having a produced good intensity at $\mathrm{V}_{\text {BATT }}=0.5 \mathrm{~V}$, and generated reasonable light output with $\mathrm{V}_{\text {batt }}$ as low as 0.3 V cross C 2 steals power from the LED. However, provided the load is not excessive, the LED intensity remains acceptable delivered to the load without delivered to the load
dimming the LED. Circuit components should be chosen carefully. D1 and D3 should be low drop Schottkys, should be a low saturation device such as the ZTX689B or FMMT617. Resistor R SENSE

determines the peak inductor current and, consequently, has a significant bearing on the power delivered to the LED and extound 0 ad (if fitted). Value found to provide good results. Take care that the peak curren delivered to the LED does not exceed the maximum value f
the particular type used. Inductor L1 should have a current rating well in excess of the peak level set by R RENSE to ensure it does not saturate.
Values in the range $33 \mu \mathrm{H}$ $100 \mu \mathrm{H}$ were found to provide good performance.
Breadboard tests with $\mathrm{V}_{\text {BATT }}=$ 1.0 V using the component values shown in the figure
produced excellent brightness in the L54PWC white LED and delivered over 3.3 V to a $1 \mathrm{k} \Omega$ load - more than enough to power a range of low power
circuitry. With $V_{\text {BATT }}$ reduced to circuitry. With $\mathrm{V}_{\text {BATT }}$ reduced to
$0.5 \mathrm{~V}, \mathrm{~V}_{\text {LED }}$ was measured as 3.0 V with $\mathrm{R}_{\mathrm{LOAD}}=1 \mathrm{k} \Omega$, and the LED intensity was fair. The voltage to the external load can be increased by connecting a signal diode in
series with the LED, or by connecting two or more LEDs in series. With no external load connected, the test circuit maintained reasonable
brightness in two series connected white LEDs with $\mathrm{V}_{\text {batt }}$ as low as 0.65 V . Diode D2 is necessary to prevent $R_{\text {LOAD }}$ stealing current from the supply on power up. If
the external load is not fitted, D2 may be linked out and C1 can be omitted. The minimum power-up voltage depends on the diode type used for D1. Using a
BAT49, the breadboard started operating at just under 1.0 V . This can be reduced still further by replacing D1 with TR1 and R1. If TR1 is a low saturation device, the minimum
power-up voltage can be as low power-up voltage can be as
as 0.9 V . The disadvantage, however, is that TR1's collector base junction becomes forward biased by $\mathrm{V}_{\text {LED }}$, resulting in wasted power in R Anthony
Biddenham Bedfordshire UK

－\＃います。 to the editor

Letters to＂Electronics World＂Highbury Business Communications，
Nexus House，Azalea Drive，Swanley，Kent，BR8 8HU
e－mail EWletters＠highburybiz．com using subject heading＇Letters＇．

Throwing glasses at

tone houses

feel sad that my adversaries persistently lead with their chins． However，this one also keeps his eyes
tight shut．A turkey shoot is cruel， ight shut．A turkey shoot is cruel，
nd I I do not feel proud of myself． In his letter of December 2003， Kevin Aylward wrote；＂．．．．There are also those that are prone to use such erms as ．．．．intermixed with various
．．．technical terms in an effort to mislead or obscure the real issues，or because they do not actually understand the real significance of hese terms ．．．．．．．．those with only passing acquaintance often subtle points being presented by individuals who do have such experience．＂
In his letter of January 2004，Kevin fully accepted theory of EM is Quantum Electrodynamics（QED）for which Richard Feynemann got the Nobel Prize．The theory explains EM Maxwell＇s equations are simply wrong．They cannot be used
to explain all the results of EM．Thi was decisively proved in the early 1900s．．．
What a pity Kevin did not avoid his gaffe by actually reading

Articles wanted

Wanted badly（written well）．A continuing series of answer such question as：What ＇formatting＇on digital discs；what does＇finalising＇ do；why do CD－R and CD－RW cause such amateur do；why do CD－R and CD－RW cause such amateur
frustration in exchanging copies which don＇t work in players or PCs；and even more so on DVD +R looks on the most informed of experts．
Never mind nanometric stuff we can＇t see，let＇s have someone knowledgeable to impart the gen！ Alan Watling
Colche
Essex
the history of mankind－seen from， say，ten thousand years from now－
there can be litle doubt that the most there can be little doubt that the most
significant event of the $19{ }^{\text {th }}$ century will be judged as Maxwell＇
discovery of the laws of
War will pale into provincial
insignificance in comparison with
this important scientific event of the same decade．＂－R．P．Feynman，R．B．
Leighton，and M．Sands，Feynman Leighton，and M．Sands，Feynman Wesley，London，1964，c．1，p． 11. （see
http：／／www．ivorcatt．com／2804．htm） It gets worse；＂The special theory Maxwell＇s equations of the electromagnetic field．＂Einstein quoted in ed．Schilpp，P．A．，＂Albert Einstein，Philosopher－Scientist，＂ Library of Living Philosophers， 1949 ， some different people to drool over．） What a pity Kevin did not read anything about The Catt Anomaly either，but again relied on guesswo guessing that there was a link
between The Catt Anomaly and Maxwell＇s Equations，which there is not．＂．．．．the so－called＇Catt anomaly＇，this whole subject matter is really a bit of a red herring． Maxwell＇s equations are simply
wrong．They cannot be used to explain all the results of EM．＂ Kevin，letters，$E W$ January．Here， Kevin is in good company．The only previous attempt to link The Catt Anomaly with Maxwell＇s equations Cavendish，see
http：／／www．electromagnetism．demon co．uk／stoppress．htm
See Howies letter
See Howie＇s letter at
http：／／wwwelectromagnetism＿demon co．uk／07091b．htm＂The central issue as to whether there is anything wrong with Maxwell＇s equations is not I believe best resolved by a vote following some kind of public debate Punch and Judy show．＇－Howie．This clearly misrepresents my October 2001 letter ．．．．Also note that the
definitive statement of The Catt Anomaly，（at
o．uk／cot．electromagnetism．demon． he book＂The Catt And also on p3 of http：／／www．ivorcatt．com／28anom h which Howie says he received by recorded delivery，does not mention Maxwell＇s Equations．－（I Catt，30 Oct 2001）＂
As to Nobel Prizewinners，two so far have made fools of themselve
over the Catt Anomaly；Salam in Wireless World，December 1982，and more recently Huxley，see
http：／／www．ivorcatt．com／28anom．htm ＂Dear Mr．Catt，I much enjoyed our week ago．．．．I confess that I find it unsatisfactory that you dismiss Pepper＇s discussion as＂drivel＂（p．5， bottom）and make no attempt to explain what you think is wrong with
it．An analogous situation exists in it．An analogous situation exists in
nerve conduction，the field in which I worked for many years with Alan Hodgkin．The best－understood nerve fibre ．．．．．Yours sincerely，Andrew Huxley．＂
1 know from personal experience the time．All the same， extraordinarily，in the middle of writing（incompetently）about The Catt Anomaly，he drifted off into
discussing how a squid shakes a leg． Other Nobel Prizewinners have wisely，and frustratingly，held their peace．At the next level，＂Pepper FRS＂（worth doing a Google search or）fell disastrously at the Catt
Anomaly fence，as did Howie FRS． However，as Nigel Cook pointed out in the Aug 2003 EW Editorial，＂The Catt Anomaly＂is actually a question and the problem arises from total ext book writers when answering this elementary question．Catt is not involved，except as an anxiou tudent of these luminaries． As a Drivelmaster，or in electrical could well merge unnoticed among Nobel Prizewinners．Unfortunately he lacks the dynastic or patronage
background．Trinity High Table is full of them．A Nobel Prize has to be proposed by an existing Nobe reason，despite all his social graces， they don＇t hand one to their buddy
Ivor．
Ivor Catt
St．Albans
UK

Throwing stones in
 \section*{glass houses II}

Thanks to Kevin Aylward（EW，Jan） for promoting quantum
electrodynamics（QED）as the solution to the light speed of
electricity，via＇virtual＇
electricity，via＇virtual＇photons．
Perhaps Kevin missed my article this subject，dealing with particle and force mechanisms？（ $E W$ ，April 2003．）
Maxwell＇s equations can＇t be derived from QED at all，and efforts
o derive them from superstring to derive（heneral relativity tensors 10 or more dimensions of space） spew out a welter of solutions and do not lead uniquely to Maxwell type equations，let alone Maxwel The so－called virtual particles in QED only increase the magnetic moment of the electron by 0.11596 percent．It is this trivial number to about 13 decimals．Dirac first claimed that the magnetic moment was exactly 1 unit，so I suppose that would be accuracy to an infinite number of decimals
Clever Feynman does actually admit，I find，in his book＇QED＇that QED predicts the EM force to be 13 times too high；he says this is the ＇greatest damn mystery＇．On the nuclear force，not EM！For EM you need what Kevin calls the＇wrong＇ Maxwell result that spinning charges adiate continuous（non－quantum）
nergy！
The co
with surrounding particles of enes EM forces with the correct strength as proven in the April EW article．B the way，the derivation of the
c．curl B used in the April article is based upon the unique fact that both the EM vector field equation $\mathrm{E}=\mathrm{cB}$ （derived from experimentally proven $\mathrm{F}=\mathrm{Bil}=\mathrm{Eq}=\mathrm{Bq} / \mathrm{t}=\mathrm{Bqc}$ ）and the
definition of the curl vector definition of the curl vector operato
both describing perpendicular fields， so c is just a vector multiplier．

Finally，the Chairman of the Nobe rize is not God，but more like a ports referee：prizes are generally he absence of any intelligent he absence of any inteligent
competition，Ivor Catt has no motivation to use QED．Mendel＇s genetics were ignored during his retime，whereas Darwin had instant ame（too much for his liking！） competitor（the Church）．Success of C＇s work after 30 years of being eglected thus relies on an urgent n－in with today＇s
igel Cook by email

Ooooo no

I＇ve gone back to looking at the old and the crumbling data book character in＇OC71＇etc．is an O and not a 0 ．
Pro－Electron coding certainly first letter was the code for either the heater voltage（e．g．＇ E ＇$=6.3 \mathrm{~V}$ ）or current（e．g． $\mathrm{U}={ }^{\prime} 100 \mathrm{~mA}^{\prime}$ ）．So the most one could say is that O （not 0 ） the code for zero voltage or current． JEDEC－that came later）code has th first number for the approximate heater voltage（ 6 or 7 for 6.3 V ，for example）．But the cold－cathode ctifier used in car radios was an

Editors 1 Web sites 0 ．
However，the editorial in this issue doesn＇t score many Brownie points． and not worthless．If you look at the emission standards you will see that emissions are measured at a reasonable distance from the source m，（in a few cases） 10 m （for equipment）．This is because it was realised a＇long＇time ago that it＇s impracticable to demand emission levels and immunity levels for most equipmenenatens Your proposal that the regulations don＇t work or are not worth the paper they are printed on is a gross insult to me and my colleagues who work on these standards，and are paid by
industry for doing so．Do you seriously imagine that we are employed by＇industry＇（not Government）to waste everyone＇s those who pay us？ The point about electronic equipment on aircraft is two－fold．

Much aircraft equipment was designed before carry－on electronics was present in large amounts，so it las never been tested for immunity to Furthermore，the details of those emissions are simply not know here are millions of units of housands of model numbers that may be present on an aircraft．So，it＇s a
wise precaution to control the use of the equipment at critical times－take ff and landing．Mobile phones are special case－if airborne at lowish levels（say below 2000m）they can tations over a wide area，and thus potentially disrupt the system． Then you take an opposite stance on links between EM fields and cancer．The only reason that＇the jury an anti－technology agenda and refuse o be convinced by the huge body of negative results of all the legitimate esearch．You can see how ludicrou some of this cultivated anxiety is： to a cell－phone base station while living near a 5 MW TV transmitter and quite happily using their mobile phones，bour field stic give hundre base station．
Finally，your observation in Rhode is way off beam．You may be right about the feeder being suitable for 125 A，but why on earth should the
purely British IEE Regs（BS 7671） apply in Greece？Quite apart from the fact that they don＇t apply to supplier＇s works＇anyway！In any case，in southern European countries here is no electrical heating load an
household supplies are often not the 60 A or 100 A rated supplies we are used to here，but only 25 A or so John Woodgate

It was not my intention to insult those the EMC fraternity who 1 m sure generally do a good job．The point 1 ＇m making is how many of the regulations are actually needed？How much does get good value（since ultimaly ther pay for it？？Regarding the possibility of some＇bodies＇wasting everybody＇s time and money－I think you will find this happens an awful lot in Brussels．And agree that the IEE have no jurisdiction down there－they surely have a simila body．And since there is no mains gas on the island，all apartments have
water heaters of at least 2 W and this pole fed about 20 of them and a string of bars！But again，you missed my point．－Ed．

Oo000000000

In the words of 'Big John' alias 'The Duke', "never apologise - it shows
weakness" (after all you may be right). The addition in brackets mine.
Correspondent J.I. Anderson is only partially correct with reference to voltage. An example of this was the voltage. An example of this was the
OZ4, a rectifier, without a discrete heater, mainly used in car radios. This tied in with the widely used American system of identification for tubes which used 5 for 5 volts, 6 (and
7) for 6.3 volts, 35 for 35 volts and so on.
However, UK manufacturers such as Mullard adopted the European system of nomenclature in which the initial alphanumerics were letters and
the first of these indicated the heater voltage (or current) for example D for 1.4 volts, E for 6.3 volts and U for 100 milliamps. Upper case letter O was adopted to indicate (logically but
confusingly zero volts. Thus we have OC (letters) indicating a transistor (C was used in the Mullard system to indicate a triode) and OA to indicate a semiconductor diode (A indicating a single diode)
example, the Mullard Maintenance Manual, Second Edition where it will be found that the semiconductor with a leading O lie in logical alphabetical sequence between MW
and PC. The physical dimensions of the leading O and final 0 in, for example, the OC70 transistor (p.155) will be found to different also. 'Ed' keep up the good work, I have
taken the WW and its descendants since 1949 and hope you have something better to publish than the antique garbage I have written above. ohn Winterburn

The last O

There seems to be some confusion and carelessness in some quarters over the use of ' 1 ', ' I , ' 0 ' and ' 0 ' for
numbering semiconductors. Before numbering semiconductors. Before
the Pro-Electron system came into use the situation was fairly chaotic but manufacturers in the Philips empire such as Mullard used the Philips valve coding system. One or Crystal and, I think, BTH also followed Philips' example. The

system had $\mathrm{O}(\mathrm{oh})=$ zero heater volts, $A=$ single diode, $C=$ triode, 6
and $7=$ wire-ended devices ran out of eptended devices. It soon an out of options. To support the scan of a page from a Mullard 1956 valve data booklet and an image of an C201 silicon transistor because I haven't an OC70 in my collection ote that Philips' system was being
odified by using 2 for silicon and eaving other numbers for
germanium.
The supporters of 0 C 71 are 6 misguided in using valves 12AT7, 0 C 3 as examples bease epresent the US numbering system represent the US Mubering system approximately the actual
heater/filament voltage, the letter very roughly indicating the function, nd the last number approximately are 0C3: a gas-filled regulator diode with an extra internal connection, and 0Z4: an ionic heated full-wave rectifier in an earthed steel envelope. who referred to diodes as IN4148 instead of 1 N 4148 , for example, but I won't. ichard Hubbard
Whistable,
Kent
UK

How low do we need?

 I've been intrigued by Cyril measurement distortion which may be introduced by components in analogue circuits. Such low levels may well be of interest and concern in the design ofhigh quality measuring instruments, high quality measurng inst that the
but Cyril seems to suggest that same precautions are relevant to
ordinary audio equipment (the stuf that used to be called hi-fi?). worked for Ampex for many years
and was often involved with sound and was often involved with sound
recording studios and broadcasters. I cannot see that practical source of audio can be "pure" to the extent that Cyril's measurements of very low distortion products are relevan.
The heterogeneous collection of analogue boxes found in recording studios contributed 'their sound' to recordings made in the past. Those with 'golden ears' attributed a particular sound to each brand of
(analogue) recording tape. Now we analogue) recording tape. Now we
have 'digital', so the end-product may have been through several codecs, and then a compressor, to yield the popular MP3 recordin format or DAB digital radio.
Lastly to harmonise with the Lrecision of Cyril's approach to distortion measurement, which I'm sure is very valuable in a relevant situation, I think the form of the trimming groove he refers to in film
resistors is a helix and not a spiral. This confusion is encouraged by the common reference to spiral staircases, which are really helical!
Justin Underw
Much Marcle
Much Marcle
UK

Audio experience

D. Lucas' assumptions concerning D. Lucas assumptions concerning
my age, knowledge and experience just make his letter (October) suffer from all the faults he sees in mine (July). So, as many writers of letters
to $E W$ currently do, I have to admit my age, 53 and say a bit to admit myself. I hope this will stop Mr Lucas to consider contradictors as necessarily being kids.
Involved in electronics for more than 35 years, I have repaired, built
and even conceived many electronic designs. Among the amplifiers I built, there are five different J. LinsleyHood projects (including the class A in 1971 and the latest mosfet that D . Lucas has modified) and the fir
version of D. Self's blameless amplifier.
Already having the two compilations of Wireless World, 'High fidelity Designs', I bought my
first regular issue in December 1978 . It contained major contributions by two 'giants': one by P. Baxandall titled Audio power amplifier design and the other by S. Linkwitz titled Loudspeaker system design. Could audio-related reading? Since 1975, I've been passionately
studying audio and particularly solidtate amp designs, collecting everything I could get on the subject.
Among many articles, three studies ad a great influence on my thinking The first was the above Baxandall one, but it was unfortunately not ompletely published, as far I know. In the eighties, in the French magazine L Laudiophile, Hephaisto pubfished a very interesting series hermal and memory distortions: its xperiments failed to prove them in onventional bipolar amplifiers The third study, by D. Self, starting in 1993 in $E W+W W$, is the most complete and very easy to read. It was wonderfully welcome because it questions I had asked myself for a long time and that of unveiling some important distortion mechanisms, which were never addressed before, particularly by the subjectivist camp. nd more intrigued by the debate bout differences between amplifiers which is far more raging than those tween loudspeakers.
D. Lucas raises a fundamental "emotion" he talks about? Till now, aave been aware of that emotion ould be driven by electric currents e brain but never in electronic circuits, as intellectually exciting a input signal, what mechanism doe remove it in a given amplifier and espectic in another one with lowe pecifications? I spent years askin As controversial it ma
have made up in my mind that what gives an apparently more detailed endition is nothing else than a bit of istortion and noise, which are then rticle 'Can noise improve your hearing?' $E W+W W$, Dec 1993, p 976 confirms this point of view, regarding noise.
I have numerous examples where listening conditions' leave some nonlinearity to be dominant in the transfer of the signal. The result of uch subjectivist approaches is the mergence of an enormous a designing rules. The objectivist school feels better to obey to more firmly established guidelines, which evertheless do not exclude rowing number of competent ngineers, some under the banne EW, are now fighting audio myths of
subjectivist emanation with strong arguments. After my assertion abou the appeal of distortion, T. Callegari designers spend so many efforts to avoid it?
Let's have a look at the domain of photography: aberrations to optics are non-linearity to electronics. An
engineer designing a lens will certainly try to get the best sharpnes out of it. However there are some subjects (portraiture, for example) for whom a soft or foggy effect may be desired. The easiest way to get it is some kind of smoothing filter, on the lens. But leaving this filter permanently in place would certainly make all the oring style.
The situation
design. An engineer o design the most accurate one. If a bit of non-linearity is a desired eature, the easiest way to introduce controllable manner, by insing some kind of "niceness" (D. Self's word) processor. Among these pages, Ian Hickman has shown how to genera various non-linearities. A very
interesting figure, in $E W$ March p226, shows how to generate an "ideal" spectrum of regularly decaying harmonics. In combination with a bit of noise, a tailored bandwidth, and a blameless amplifier output, you can get the same transfer function as a famous SE tube amp this procedure would be a perfect subject for a thesis.
Finally contrarily
Finally, contrarily to optics, amp
designing for very high audio performances is not complex does not cost more: the number of components is not great and good tandard quality s sufrient to obtain having nicely distorting amplifier but it is considering them as being musical instruments, just as do jazz and rock musicians. They are perfectly right to do it, but literally
speaking, such amplification is not anymore in the territory of 'high fidelity'.
An example of the cascode connection that W. Cross (letters found in the Y. Ezkhov amplifier (EW, September 1999): the bias of the common-base transistors is floating, clamped to the tail of the nput pair. Such connections are used ophisticated circuits in Halcro Lavardin-Hephaiistos or Sansui amplifiers, to name a few. I do not
see great interest, at least for non-
inverting amplifiers with a long tai pair input, in the popular cascode
connexion where the bias is connexion where the
As long as no precise technical information is given to $E W$ readers D. Lucas's reference to Krell advertisement and only indicates that audio designers can afford xtravagances.
I find intellectually exciting the ontroversy among the writers of $E \mathrm{~W}$ But I cannot give any credit to people who seem to consider audio
components as interpreters of music have seen criticisms about the 'excessive neutrality' of amplifiers.
The aim of my previous and he aim of my previous and prayer to $E W$ to maintain its high standard regarding audio and avoiding recent attempts of intrusion about the subjective goodness of circuits and components.
$E W$ is a technical magazine which has always published innovative rticles with a minimum of subjectivity and which never the less
had had a profound influence all over the world. The whole lot of recent articles, contrary to a few letters, proves that its traditional high standard for audio is intact. There are other magazines, with a far greater
audience than $E W$, which perfectly entertain their readers with considerations full of emotion. Concerning the current content of , my only regret is the illustrations. Sébastien Veyrin-Forrer Saint Chartres

Wheatstone accuracy

Referring to the letter Meringless
Algebra' in the November issue, I would query the statement that using
1% resistors in a Wheatstone bridge 1% resistors in a Wheatstone bridge Remembering that the balance conditions for a bridge are R1/R2 $=$ R3/R4, then putting limit tolerances of 1% in the least favourable accuracy tolerance is actually $3 \%, 1 \%$ being contributed by each of the three bridge resistors. Hence for a bridge to be accurate to 1% we need resistors the bridge to have accuracies of 0.03% or better
IIkley
Ilkley
West Yorkshire U

An introduction to network analysis II

In his second article on circuit simulation, John Ellis explains how the equations for determining circuit characteristics are programmed in software, leading off with a discussion of how to program with complex numbers.

ome programming languages have complex number as a standard variable - others done complex number of those that does. Equation 21 from the end of last month's article

$$
V_{\text {out }}\left[-\left(\frac{1}{z_{r}}+\frac{1}{z_{c}}\right)\right]=\frac{-V_{\text {in }}}{z_{r}}
$$

can be written in Fortran more or less as shown, where the variables z_{r} and z_{c} have been declared as complex along with $V_{\text {in }}$ and $V_{\text {out }}$ - even though $V_{\text {in }}$ might have only a rea term as the resistor did. A complex number in Fortran is
declared thus:
complex (selected_real_kind ($\mathrm{P}=14, \mathrm{R}=300$)) : : zr,
zc, vin, vout
and each complex component defined as for example by: $z \mathrm{r}=\mathrm{cmplx}(\mathrm{R}, 0)$ \qquad
Unfortunately, C does not know about complex numbers by default. But C is able to have a structure defined, so it is possible to add complex numbers. Since C will not know how to multiply, divide, subtract or add complex numbers, the four basic mathematical operations will have A complex structure type ca following:
struct complex \{double re; double im; \};
This declaration has to be first, so that complex functions may also be defined. Then, the complex maths routines ar prototyped as functions returning a complex number as in List 1.

List 1. Complex maths routines are prototyped as functions returning
 struct complex cxadd(struct complex 21 , struct ${ }^{22}$ struct complex cxsub (struct complex 21 , struct complex 22)

list 2. The four basic operations.

$(\mathrm{A}+j \mathrm{~B})+(\mathrm{C}+j \mathrm{D})=(\mathrm{A}+\mathrm{C})+j(\mathrm{~B}+\mathrm{D})$
$(A+j B)-(C+j D)=(A-C)+j(B-D)$
$A+j B) *(C+j D)=(A C-B D)+j\left(B C+{ }^{2}\right)$
$A+j B)(C+j D)=(A C D)$

- and therefore of indeterminate record length - until the problem is known, or found that Fortran really doesn't lik characters outside it base set, a miserly sub-set of
Even the old VAX extension of Fortran, whic length parameter to be passed to an output format descriptor, seems to have been excluded in F90. Invariably have given up and used C. However, modern Fortran has pointers, too, just to point out that Fortran is still resonably competitive

The result of solving equation 21 for a frequency sweep from 1 Hz to 100 kHz for a resistor of $1 \mathrm{k} \Omega$ and capacitor of $.1 \mu \mathrm{~F}$ is shown in Fig. 1 . The ratio Vout/Vin is the final
vector sum which is determined as follows:

Define gain as complex. Then
ain=vout/vin (using gain=cxdiv(vout,vin) in C) (24) mplitude=sgrt/gain.re*gain retgain.in*gain.im) (25) a real number)
and
hase $=\operatorname{atan}(\mathrm{v} / \mathrm{u})$
(26)
(also real)
Here, $\mathrm{v}($ a real number $)=$ gain.im and $\mathrm{u}($ also real $)=$ gain.re as was defined for C ; o
phase $=\operatorname{atan}($ imag (gain) $/$ real(gain)
in Fortran
Simultaneous equations
simple one-transistor circuit is shown in Fig 2. It uses the standard four resistors for biasing, and coupling capacitors for the input and output, and a decoupling apacitor across the emitter resistor.
To simulate the small-signal characteristics of this circuit, the transistor is replaced by its equivalent circuit where the input and output impedances are shown by in Fig. 3.
Initially,
Initially, a calculation is performed to determine the DC operating conditions, followed by a small perturbation

Fig. 1. Output voltage versus frequency for a low-pass filter, where $\boldsymbol{v}_{\text {in }}=\mathbf{1 . 0}$.

Fig. 4. Full matrix expression for the one-transistor small-signal circuit. All values are complex, designated by ' z '. Some combinations have been used for simplification; zrch $=1 /(1 / z c h t+1 / 2 h i e) ;$ zrc $4=1 /\left(1 / 2 R_{4}+1 / z C_{4}\right)$.

small signal analysis is performed with no further
consideration of the DC conditions and both power supply nes are in effect grounded, Fig. 3 solved is assembled into a matrix format. There are seven nodes, three additional nodes being included in the transistor equivalent circuit. For a seven-unknown node, the matrix comprises a seven-by-seven array of terms, or eerms of all of the others. This is multiplied by the unknown voltages written in a column vector, and the product is equated to the "right-hand side" quantities. Figure 4 shows the matrix for the simple transistor circuit is shown in full. Note that only values that relate to
components on the nodes are assigned values: where there is no component, the matrix entry is zero. There is only one right-hand side value representing $V_{i n}$. The rest of the nodes, as we said earlier, sum to zero.
Although the matrix form may appear daunting, it is ver traightforward to determine, and can be done by own voltage". This has a negative sign attached and the all the impedances attached to it are summed, five components in the case of node 1
The other nodes only have an impedance where there is component attached to the node in question. For node 1, node 5 (through cbcx). These entries are located so that they multiply by the relevant node voltage in the column vector.

Nodes that are not on the main diagonal all have positiv signs. A fixed quantity which is transferred to the
hand side" vector of course changes sign as in any
expression.
he only other consideration is where there is an interna generator such as the gain given by g_{m} and the base to
emitter node emitter node voltage. To obtain the correct signs the
Fig. 7 from the current representing gm is drawn in, as in
Fig. 7 from last month's article.
If gm is attached to a node such as 5 where the currents normally enter the node, but in this case exits, g_{m} takes a
negative. For node $3, g_{m}$ "enters" and assumes a positive sign as any other current entering the node, and is added to the other impedances. Of course, the whole lot are negated when node 3 is considered on the main diagonal, but the relationship betw
same sign. $\stackrel{\text { same sign. }}{ }$
there are many zero entries, actually complex zeros or $(0,0)$. Where there are more zeros than entries in a matrix, it is known as "sparse". Sparse matrices can be solved using a shorter algorithm, but with iteration.
For a three transistor circit 15 notes wer by following the principles illustrated it is not actually necessary to write the full matrix out as it can be constructed directly into a program.

Solving matrices

Matrix operations are written in shorthand as
Mx=y
where \mathbf{M} represents the matrix of coefficients, \mathbf{x} the set of unknowns - usually voltages or currents - and \mathbf{y} the set of \mathbf{M} and \mathbf{y}.
Many, if not all, mathematics textbooks which discuss matrices describe the standard inversion procedure which provides the inverse of \mathbf{M} such that

$\mathrm{M}^{-1} \cdot \mathrm{y}=\mathrm{x}$

To obtain the inverse matrix \mathbf{M}^{-1}, the adjoint of \mathbf{M} is divided by the determinant of \mathbf{M}. The adjoint is the
ransposed matrix of the co-factors, obtained by crosnultiplying all the other row and column elements minors) for a given element, having "crossed off" the row The determinant is the n
multiplication of all the coefficients with their minors. The determinant and co-factor matrix involve a lot of calculations, and needs a sign rule attached to the oefficient matrix to preserve the correct signs. Despite
being in nearly all maths textbooks this method is rarely used, if ever, in practice. To be fair, more recent maths books discuss better methods.
Perhaps the majority of commercial solvers today use a method of decomposition. A decomposition splits the triangular matrix. There are some variations on this wher the matrix is symmetrical. This is true for many
calculations involving electric current, heat flow, stress or lectromagnetic effects for example.
One, named after Cholesky, obtains an upper and lower triangular matrices which are the transpose of each other.
But in circuit simulations the matrices tend to be not quite symmetrical, (e.g. compare the coefficients on lines 2 and above) and the Cholesky decomposition may not be
usable.
For nearly symmetrical and other asymmetrical matrice decomposition) works well providing that the matrix soluble. Generally this means that the main diagonal must not contain any zeros, but also preferably that the main iagonal is d ther values.
Ideally the main diagonal should have a negative sign while all the other values are positive, and in general this is aso true for circuits. Of course in many sets of equations the main diagonal is arranged to correspond with one of the unknowns, so is guaranteed to have a non-zero value
Sparse matrices can be solved with the incomplete LU Secomposition where only the elements of \mathbf{L} and \mathbf{U} are calculated where there is a non-zero value in \mathbf{M}. This pproach is approximate - the full decomposition is in principle accurate - and has to be iterated to improve the particularly for large matrices. This is because the numbe of equations in a matrix is increasing faster than a square aw for each point added.
The direct LU decomposition works as follows:
In matrix form
Mx=y
Write \mathbf{M} as an upper-lower triangular pair
$\mathrm{M}=\mathrm{LU}$
Hence
LUx=y
By writing
Ux=z
we can solve
$L z=y$
by forward elimination for z . Then solve
Ux=z
or x by back elimination.
The bulk of the work in LU decomposition is in splitting \mathbf{M} into \mathbf{L} and \mathbf{U}. If \mathbf{L} comprises the elements $L_{i j}$ where i is the row and j the column for all rows and columns up to

Fig. 7. Transient analysis of the one-transistor circuit. Note that the output
signal is asymmetrical with about 20% distortion.
$\mathrm{j}=\mathrm{i}$, and the main diagonal of U is unity, then, for example
$\left[\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right]=\left[\begin{array}{ccc}1_{11} & 0 & 0 \\ 1_{21} & 1_{22} & 0 \\ l_{31} & 1_{32} & 1_{33}\end{array}\right] \times\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]$ (33)
Starting with 1_{11} the sum of the multiplication of the first row of \mathbf{L} with the first column of \mathbf{U} gives $1_{11}=m_{11}$. U gives $\mathrm{m}_{12}=\mathrm{l}_{11}, \mathrm{u}_{12}$ or $\mathrm{u}_{12}=\mathrm{m}_{12} / /_{11}$. Similarly, u_{13} is calculated, and in general, for each row i, each element of \mathbf{L} is calculated from l_{i} to l_{i}, then the rest of the 'u's are calculated from the is on that row. Both \mathbf{L} and \mathbf{U} can be diagonal of \mathbf{U} is known and therefore does not have to be stored.
The forward and backward eliminations follow a similar procedure but operating with \mathbf{L} to obtain \mathbf{z} from \mathbf{y}, starting with the lowest number \mathbf{x}_{1}, then on \mathbf{U} and \mathbf{z} to obtain \mathbf{x} starting with $\mathrm{x}_{\text {max }}$ and working backwards to give x_{1}. program, and is more straightforward than the classical inversion procedure. However, it involves about the same number of calculations.
This number increases rapidly with matrix size. For three unknowns the matrix is three-by-three; for six it is six-by-
(29) Six. For each additional line, a set of calculations, or number as the order of the matrix. The total number of calculations therefore is rooghly increasing as the cube of the number of unknowns.
For small problems, there is no difficulty in performing
mposition. For large problems though it is clear that the number of calculations may be prohibitive as well as needing an M -array of the order of n^{2} where n is the number of unknowns.
Thus for sparse arrays, the decomposition is limited only array. This is not accurate, but successive iterations can be
(33) employed to reduce the error

Even with iteration a limited decomposition is faster for large arrays than the full decomposition. As a guide to the
effect of incomplete decomposition in the limit the " I " effect of incomplete decomposition, in the limit the "L
array equates to the M-array, as is, while the ' U ' array array equates to the M -array, as is, while the U array
becomes $M(i, j) / M(i, i)$. Hence incomplete decompositio are attractive for large matrices and are more accurate the sparser they are

Figure 5 shows a plot of the frequency response for the
one-transistor circuit of Fig. 2, as represented by Fig. 3 one-transistor circuit of Fig. 2, as represented by Fig. 3
using the matrix of Fig. 4. It also shows full LU using the matrix of Fig. 4. It also shows full LU
decomposition and a implementation of the SPICE model for the transistor. The gain is relative to the input As mentioned, because the equivalent impedances fixed, there is no knowledge of distortion - small-signal means linear here - and the input voltage magnitude is irrelevant, within reason.
Points to note are that the low frequency gain roll-off
begins at around 100 Hz using an emiter decoupling begins at around 100 Hz using an emitter decoupling
capacitor of $220 \mu \mathrm{~F}$. It rolls off at a value of $18 \mathrm{~dB} /$ octa well in the 'unstable' region except that two time constants are external to the transistor $-C_{i n}$ and $C_{\text {out }}$ - and would no cause a problem for feedback around the transistor only.
Neither of these time constants - the input formed from $h_{i \times} \times C_{\text {in }}$ and the output $R_{\text {lood }} \times C_{\text {out }}-$ is low enough to $h_{i e} \times C_{\text {in }}$ and the output $R_{\text {load }} \times C_{\text {out }}-$ is low enough to
account for the 100 Hz roll off. The roll off is controlled something else, yet I have seen one text book state quite categorically that the low-frequency response is controlle by $C_{i n}$ and R_{2}.
affect the low frect picture is that all time constants will constant will dominate.
Effective emitter-input impedance, or $h_{i b}$, is roughly $V_{t h} / I_{c}$, or $25 / I_{c}(\mathrm{~m} \Omega)$. For a BC547, or similar, at 2 mA this is 12.5Ω. This rather low value is the critical impedance decoupling capacitor - not the emitter resistor R_{4}, nor the input resistor R_{2}. In fact the simulation gives a slightly higher value for hib than the nominal 12.5Ω.
For a low-impedance signal voltage, the upper cut-off frequency is around 10 MHz . But if you were to use the that it has a much more limited open-loop bandwidth. Because of the capacitance between the collector and base, a small input resistance will significantly alter the characteristics. The second curve shows the gain for the
same amplifier but with a $1 \mathrm{k} \Omega$ resistor in series with the input. The effect is quite remarkable, but is only the wellknown Miller effect, shown in practice.
Given that volume controls of about $10 \mathrm{k} \Omega$ are often use in real circuits, the open-loop performance could be changing dramatically with volume setting. With negative feedback this effect will be minimal, but could explain
sensitivities in some designs that do not consider this, distortion figures that depend on the open-loop to closedloop gain difference to reduce distortion.
Small-signal circuits are useful as checks to see whether there are peaks or dips in the frequency-response curve, o frequencies, as this is a guide to potential instability quantitative assessment of an amplifier's characteristics, a quantitative assessment of an ampy.
time-stepped solution is necessary.

Transient mode

The circuit for a transient simulation is essentially the ame as in Frg . 3 , but with the ordinary SPCE model
replacing the small-signal equivalent. The transient model preserves the operating voltages, and works on a timestepped approach using the differential form of the capacitor equations.
A simple test is to consider an $R C$ network again Assume that a capacitor C is initially uncharged, and at unknown node - the junction between the resistor and capacitor. For each node - in this case just the one unknown - the various nodal elements of current are summed to zero
The potentials are taken again where positive means
"from there to here". Thus in the case of the resistor the current from the point of view from node 1
$i_{r}=\frac{V_{\text {gnd }}-V_{1}}{R}$
but $V_{\text {gnd }}=0$. Whereas the capacitor current
$i_{c}=-C \cdot \frac{d\left(V_{i n}-V_{1}\right)}{d t}$
The node currents then sum to zero:
$i_{r}+i_{c}=0$
erms of
$i_{c}=C \frac{\left(V_{i n}-V_{1}\right)}{d t}-\frac{Q_{i-1}}{d t}$
For this illustration, if a step function defined by $V_{i n}=0$ up to $t=t_{0}$, then for $t>t_{0}, V_{i n}=2 \mathrm{~V}$ is applied - the response for a $1 \mathrm{k} \Omega$ resistor and $0.1 \mu \mathrm{~F}$ capacitor is the exponential one would expect to see (Fig. 6).
The one limitation is that while time steps can be made short, this approach cannot resolve an 'infinitely short'
step. This means that the output does not quite reach the peak input that would have been seen had the step been infinitely fast. However, the transient model does not 'know' about any voltages between the input time steps,
and assumes a linear interpolation and assumes a linear interpolation.
Considering the one-transistor circuit described earlie instead of the small-signal circuit. Otherwise the circuit is the same.
Instead of using impedances for each capacitor, the differential version and previously stored charges are used. from the input via $C_{i n}$, the bias resistors R_{1} and R_{2}, the collector-to-base external resistance $c_{b c x}$ and the base resistance $r_{b b}$, totalling five. The nodal equation becomes:

$$
\begin{aligned}
& -(1.0 / \mathrm{r} 1+1.0 / \mathrm{r} 2+\mathrm{cin} / \mathrm{dt}+1 \\
& . \mathrm{V} 1+1 / \mathrm{rbb} . \mathrm{v} 2+\mathrm{cbc} \mathrm{c} / \mathrm{dt} . \mathrm{v} 5
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
\mathrm{v} 1+1 / \mathrm{rbb} . \mathrm{v} 2+\mathrm{cbcx} / \mathrm{dt} . \mathrm{v} 5 \\
=-\mathrm{vcc} / \mathrm{r} 1-\mathrm{cin} \mathrm{in} \mathrm{vin} / \mathrm{dt}+\mathrm{qcin} / \mathrm{dt}+q \mathrm{cbcx} / \mathrm{dt}
\end{array} \tag{}
\end{align*}
$$

Note that in general the impedance of a capacitor has been replaced with $C / d t$, and this time the current from a fixed $\nu_{c c}$ in R_{1} is required. The previous charges on the capacitor written as $C . \mathrm{d} V / \mathrm{d} t$.
Capacitor charges are initially set to that of the DC bias conditions. After each time step, the new charge can be determined simply from the capacitance and terminal voltages rather than calculating from the change in current:
this has to be multiplied by $\mathrm{d} t$, having just divided by it, so the standard $Q=C V$ is rather easier and more efficient. When the set of equations is written out, some capacito charges appear on more than one node. The charge will
have been set in the direction 'there' to 'here' the first time a capacitor is encountered, and the charge from the
fight side of the equation to give a positive quantity.
The same charge applies to the node that was 'there
when that node is considered, but as the original node is ow 'there' and the 'there' now 'here', the sign has
anged.
For example, qcbcx is the charge on cbcx between nodes
and 5 . When considering node 1 ncce is rom node 1 , but to use the same charge for node 5
requires a sign change.
For each node, if a capacitor is attached to that node and is seen for the first time, write the charge according to the
point of view of that node. If, later, we get to the other side and see a capacitor we have seen before, use the charge previously calculated but reverse the sign.
The transient solution does not require complex numbers. Each variable is an ordinary real or floating point solving this model.
To solve the transient response of the circuit, the DC perating point is again established. Then a pre-defined signal is applied to the input, and the output voltage is celaxation approach as outlined for the DC case. First, the matrix is solved for the given transisto characteristics - using primarily gain - which leads to a bias voltage on the transistor. The SPICE or other bipolar model equations are solved, returning currents, gains and constants. Next, th
matrix, then the SPICE model, updating the input parameters to each between each call. For signals that do ot cause abrupt non-linearities - such as the transistor entering the saturation region - this approach is stable for determine convergence
This relatively simple relaxation algorithm, iterating between the circuit matrix and the SPICE model, is not particularly robust under adverse conditions. If the matrix should increase, yet the SPICE model shows that the ransistor saturates and the gain collapses, the collector current should not increase, the subsequent circuit simulation will try to increase the collector voltag
eading to an unstable loop.
ime steps. This means that at the start of each loop the previous successful solution is saved. If difficulties are ncountered, indicated by a diverging voltage particularly on the collector, or a numerical overflow, the whole time step has to start again using the previous solution
smaller time increment, until a solution is found.
Another approach is to use a more robust algorithm th calculates the differentials, and use these in a Newton type solution to try to achieve a more stable formulation. This pproach, or in general, any more robust algorithm, will leaving them entirely separate.
A crude fall-back solution that is not elegant is to
perform a binary search on one model to force the result.
This may work but would take more iterations than strictly hhis may work but would take more iterations than strictly necessary.
Finally, discrete time-stepping in this manner is a digita characterisation of an analogue system. Just like audio igititsation, there is no information regarding the output
waveform between time steps, which is usually 'filled in waverorm between time steps, which is usually 'filled in
the time steps will have to be small enough that the digitisation errors do not contribute to the distortio requiring to be analysed
This is well below the CD digitisation frequency of 44 kH , but may still be too large to resolve high-frequency

harmonics

The result of applying a $20 \mathrm{mV}, 10 \mathrm{kHz}$, sinewave signal to the transistor circuit of Fig. 2 using transient analysis is
shown in Fig. 7 . For reference a sinewave ha included. You can see that the upper part of the outpu waveform is flattened (peak 1.4 V), while the lower part of the waveform is peaked (trough -2 V). Distortion levels of this are in the region of 20%.
apparent shape of the waveform - it does seem that the eye is not a good judge of a waveform. The transient analysis will provide the time delay of the circuit. An enlarged scale of the initial part of the wave is shown in Fig. 8. This
indicates that there is about 1μ s at the most. This is well indicates that there is about 1μ at the most. Mis is well still be too large to resolve high frequency harmonics. The results of applying a $20 \mathrm{mV}, 10 \mathrm{kHz}$, sinewave signal to the transistor circuit of Fig. 2 using transient analysis is included. You can see that the upper part of the output waveform is flattened (peak 1.4 V), while the lower part of the waveform is peaked (trough -2 V).
Distortion levels of this are in the region of 20%. The
absolute values are more of a guide than the apparent
shape of the waveform - it
The transient analysis provides the time delay of the circuit. An enlarged scale of the initial part of the wave is shown in Fig. 8 . This indicates that there is about $1 \mu \mathrm{~s}$ delay between the start of the input signal and the point stage of course the output is opposite to the input.) This occurs in one time step for the simulation, and is not resolved particularly well. A smaller time increment is really needed.
The use of these simulations becomes apparent when considering circuits with more transistors. I have used
these approaches to investigate the use of the Miller capacitor in amplifier circuits compared with alternative stabilisation schemes.
The two-pole roll-off method discussed by Self ${ }^{1}$ is particulary interesting and seems to tave we capability of difficulties. The method used by Bailey ${ }^{2}$ and Lins
Hood ${ }^{3}$ where the compensation capacitor is connected around both input and VAS stages is a possible alternative to the "Miller" Capacitor. it has some advantages but subsequent article.

References

. D. Self, from Electronics World series on audio amplifiers, August 1993 to March 1994, two po
2. A. R. Bailey, "High Performance 30 W Amplifier",

Wireless World, May 1968
. J. Linsley-Hood, "70 W Audio Amplifier", HiFi News

All you ever wanted to know about Bluetooth

The concept of a wireless society where different

 peripherals seamlessly connect together may appear to be a rose tinted view of the future, but this is what the aim of Bluetooth was when it was first conceived. Ian Poole tries to relieve 'Bluetoothache'$\underset{\text { Blueto }}{\text { a }}$
oday there are many Bluetooth devic on the market, and to some it is a rea
dvantage, whilst others refer to it Buetoothache. Whatever one's view the technology is here to stay, with many
mobile phones and other devices using
The technologytraces its origins back to concept that came out of Ericsson in 1994. The original intention was to make a wireless connection between something like mobile phone However the ide developed as the possibilities of interconnections with a variety of other peripherals such as computers, printers, phones and more were ealised. Using this technology, the possibility of quick and easy connections
between electronic devices should be possible.
In order that the technology could move forward and be accepted as an industry standard, Ericsson opened the technology up. As a result of this, in February 1998,
five companies (Ericsson, Nokia, IBM, Toshiba and Intel) formed a Special Interest Group (SIG) to further advance the work that Ericsson had begun, hoping to develop an industry standard. The group consisted of
market leaders in the fields of telephony and computing - the two main areas they wished to address. Then in May 1998, Bluetooth

Fig. 1. Frequency hopping.
was publicly announced with the first
pecification following on with the first release of the standard in July 1999. Later more members were added to the group with four new companies, Motorola, Microsoft, Lucent and 3Com, joining the
group. Since then more companies have joined and the specification has grown and is now used in a large variety of products. The name of the standard originates from the Danish king named Harald Blåtand who
was king of Denmark between 940 and 981 was king of Denmark between 940 and 981 ,
AD. His name translates to be "Blue Tooth" and this was used as his nickname. A brave warrior, his main achievement was that of uniting Denmark under the banner of Christianity, and then joining it with Bluetooth standard was named after him because it endeavours to unite personal computing and telecommunications devices.
Basic capabilities
Bluetooth is primarily a wireless data Buetooth is primarily a wireless data
system and can carry data at speeds of up to 721 Kbps but it also offers up to three voice channels. The technology enables a user to replace cables between devices such as printers, fax machines, desktop computers
and peripherals and a host of other digital devices. Furthermore, it can provide a connection between an ad hoc wireless network and existing wired data networks. The technology is intended to be placed in a low cost module that can be easily sorts. It uses the licence free Industrial, Scientific and Medical (ISM) band and enables communications to be established of 100 metres. of 100 metres.

RF system
The system uses a low power frequency-
hopping carrier that is modulated using Gaussian Frequency Shift Keying (GFSK) only remains on a given frequency for a short time and if any interference is present the data will be re-sent later, but on a different channel that is likely to be clear of hopping rate of 1600 hops per second. a hopping rate of 1600 hops per second
These hops are spread over 79 fixed frequencies that are chosen in a pseudorandom sequence. The fixed frequencies occur at $2400+\mathrm{n} \pi \mathrm{MHz}$ where the value of ories from 1 to 79 . This gives frequencies
of $2402,2404 \ldots .2480 \mathrm{MHz}$. In some countries the ISM band allocation does not allow the full range of frequencies to be used. In France, Japan and Spain, the hop sequence has to be restricted to only frequencies because
The frequency hopping system was used rather than a direct sequence spread spectrum approach because it is able to perate over a greater dynamic range. If irect sequence spread spectrum techniques the receiver would block the required ransmission if it is further away and weaker.
The way in which the data is modulated Onto the carrier was also carefully chosen.
As I mentioned earlier, a form of frequency shift keying known as Gaussian Frequency Shift Keying is employed. Here the frequency of the carrier is shifted to carry he modulation. A binary one is represente inary zero is represented by a negative frequency deviation. It is then filtered using filter with a Gaussian response curve to nsure the sidebands do not extend too far either side of the main carrier. By doing this
it achieves a bandwidth of 1 MHz with tringent filter requirements to prevent interference on other channels. For correct operation the level of BT is set to 0.5 and and modulation 0.28 and 0.35
The transmitter powers for Bluetooth are classes of output dependent upon the
anticipated use and the range required. Power Class 1 is designed for long range
communications up to about 100 m , and this has a maximum output power of 20 dBm Next is Power Class 2 which is used for what are termed ordinary range devices with e up to about 10 m , with a maximum output power of 4 dBm . Finally there is Power Class 3 for short-range devices. This supports com and it h.
0 dBm .
There are also some frequency accuracy requirements. The transmitted initial centre frequency must be within $\pm 75 \mathrm{kHz}$ from th receiver centre frequency. The initial frequency accuracy
frequency accuracy before any informatio is transmitted and as such any frequency drift requirement is not included
In order to enable effective
communications to take place in an
may receive the signal, each device has its
own identifier. This is provided by having a 48-bit hard-wired address identity giving a total of 2.8 Is x unique iden

Link
There are two main types of link used for data transfer. The first is the Asynchronou (ACL) and this is used for file and data (ACL) Synchronous Connection-orientated Communications Link (SCL) is used for applications such as digital audio. The asynchronous link supports a
maximum data rate of $732.2 \mathrm{kbits} / \mathrm{sec}$ in maximmetric mode whereas in a symmetrical mode running the same data rate in both directions this rate is reduced to
$433.9 \mathrm{kbits} / \mathrm{sec}$. The synchronous links support two bi-directional connections adequate for audio and most file transfers However the available data rate is insufficient for applications such as high rate DVDs that require $9.8 \mathrm{Mbit} / \mathrm{sec}$ or for many other video a
Data is organised into packets to be sent across the link. The Bluetooth specification lists seventeen different formats that can be used dependent upon the requirements. They have options for elements such as
forward error correction data and the like However the standard packet consists of a 72 -bit access code field, a 54 -bit header field and then the data to be transmitted, which may be between 0 and 2745 bits. This data includes the 16 -bit CRC if it is needed.
As it is likely that interference will cause errors, error handling is incorporated within the system. For asynchronous links, packet

Fig. 2. Bluetooth nets.
equence numbers are transmitted. If an ror is detected in a packet then the eceeiver can request it to be re-sent. Error For the synchronous links packets cannot be e-sent as there is unlikely to be sufficient andwidth available to re-send data and catch up'. However it is possible to include me forward error control.

Nets

To communicate between different Bluetooth devices, they form small nets called 'piconets'. These comprise up to ight devices, of which one takes on the rol of a master whilst all the others become ange, then they may remain in an inactive standby state and may be requested at a late me to join the net. Still further devices may be in a standby state.
Heni establishing a net, the master seconds to discover whether there are any other devices within range. If replies are received then an invitation to join the net is ansmict To specife devices hat might be range. To set up the net the master then controls their transmissions. All Bluetooth devices have a clock that Ans at twice the hopping speed and this provides synchronisation to the whole net.
The master transmits in the even numbered time slots whilst the slaves transmit in the odd numbered slots once they have been iven permission to transmit.
As security is becoming an important issue, especially where links to computers possible over Bluetooth with the devices encrypting the data transmitted. A key up to 128 bits is used and it is claimed that the evel of security provided is sufficient for
financial transactions. However in some countries the length of the key is limited nable the security agencies to gain access if equired.
summary
Recent reports indicate that Bluetooth is now well established in the market place. It is estimated that over 7 milhion items equippe Next year this figure is expected to rise considerably as the technology becomes further embedded in today's systems and recognised as a standard means of This is a for cry
This is a far cry from the early days of
Bluetooth when, for example in 2001, only 10 million items were shipped. In fact the early days of Bluetooth saw relatively low levels of uptake. One of the major facto
causing this was the interoperability problems that were encountered when setting up communications between devices made by different manufacturers. These are said to be something of the past now, although many Bluetooth users may choose to disagree.
Nevertheless as the number of applications and the number of users increase the echnology should mature still further improvements in the way the different units inter-operate should improve.
For the future it is anticipated that the use not only by increasing the market penetration, but also by the new application that will be discovered. The fact that there are no clear competitors in the personal sector of he wireless networking market is a clear have the scope, or the maturity to take any significant element of the market. In view of his, it appears that Bluetooth will become ar more common feature on personal computers and many other devices that are in common use around the home and office. Further information about radio and wireless technology can be found in Ian Poole's book entitted Newnes Guide to Radio by Newnes (2003) ISBN 0750656123 priced 16.99. It is available through the Electronic World bookshop (Boffin Books) page 58 .

WORLD
EHECRO
WORLD

BEBOP TO THE BOOLEAN BOOGIE Clive Maxfield	NEWNES GUIDE TO DIGITAL TV Richard Brice	NEWNES DICTIONARY OF ELECTRONICS
Comprehensive introduction to Whether you're an engineer hobbyist, or student who needs a thorough and up-to-date electronics reference or a non-technical person who wants to understand more about this electron dance that has seemingly token over the world, this book is the answer. Hundreds of diagrams thot clarify even the most difficult subjects.	(terrestrial, satellite and cable), this text has been updated with developments since the 2000 edition coding; digital signal processing; video data compression; audio data compression; digital audio production; digital video production; the MPEG multiplex; broadcasting digital video; consumer digital technology; the future.	SW Amos \& R S Amos Aimed at engineers, technicians and students working in the field of electronics, this dictionary provides clear and concise definitions, including TV, radio and computing terms, with illustrations and circuit diagrams.
2ndedition LJon 2003	2 ndedition \triangle Sep $2002 \triangle 304$ proges \triangle HB	4thedition \triangle March2002 $\triangle 344$ prges \triangle PB
	Code H80750657219 $\quad £ 24.99$	Code H80750656425 $\quad £ 12.99$

RSGB RADIO AN ELECTRONICS
COOKBOOK
Radio Society O G Great Britain

 fedecation,
step.

Nov 2000 336 proges \triangle PI
Code BBo 50652144
£17.99

NEWNES RADIO AND RF ENGINEERING POCKET BOOK
Steve Winder \& Joseph C Cor STeve inder a Joseph J Corr

3 rdedition \perp Jul 2002 a 352 ppoges Δ

01737813526
solesteam@boffinbooks.demon.co.uk

ELECTRONICS WORLD

On CD-ROM

Electronics World is enjoyed by some of the world's top circuit designers - but it's not just for professionals. Stimulating designers for almost a century. Electronics World covers analogue, RF and digital circuit technology and incorporates design information on network.. and it's now available all on CD-ROM.

12 issues on each CD-RON

- Full text and diagrams of all articles, circuit ideas, letters etc - Easy to browse

Fully searchable by keywords and index
High-quality print in colour
1999, 2000, 2001, 2002, and 2003

ELECTRONICS WORLD

- Full software listings included
- easy to use

CDROMS are available for 1999, 2000, 2001 2002 and 2003. Each disk contains 12 back ssues of Electronics World in a searchable, browsable and printable format PLUS the ibrary of software files. The CDROMS run on PCs with Windows '9x, Me, 2000 and XP equires IE4 or above and Adobe Acrobat Reader (supplied on the CD).
The CDROMs are only $£ 30$ each including VAT and UK post, add $£ 1$ extra postage for Europe, $£ 5$ extra postage for rest of the world, exclusively available from SoftCopy Limited, address below.

Limited special offer for readers of Electronics World - all five CDs for the price of four
Please send the following CD-ROMS
___qty 2000
____aty 2001
_ _ aty 2002
qaty 2003

Order now at:

www.ewmag.co.uk

SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 0NU, UK Tel: +44 (0) $\mathbf{1 2 4 2} 241455$ Fax: +44 (0) 1242241468 sales@softcopy.co.uk

Cable laying problems? use licence free, call charge free Radio Data Transmission

VIOM can be used either as a stand-alone module, as a general purpose seria £49.35 ($£ 42.00 \mathrm{ex}$ VAT)
Www phaedrustd coul

Visit our Web site to download sample projects and PC based and control applications. www.phaedrusitd.co.uk

- Up to 256 moys on each - 100 metrede sesses - Free application soffware £37.60 ($£ 32.00$ ex VAT)

Phaedrus Limited Unit 1. Darwen Enterprise Centre
Railway Road, Darwen BB3 3EH Tel 01254772622

WATCH SLIDES ON TV MAKE VIDEOS OF
YOUR SLIDES

DIGITISE YOUR

SLIDES

(using a video capture card)

 7 Mif size $60 \times 363 \times 27 \mathrm{~mm}$ with 6 infra red LEDS (gives the same illumination as a sma

 Economy C mount lenses all fixed focus 8 fixed iris
VSL $1220 \mathrm{~F} 12 \mathrm{~mm} \mathrm{~F} 1.612 \times 15$ degreas viewning ang

 206 surface mount resistors
1000 of value $55.00+$ vat

JPG ELECTRONICS
Shaws Row, Old Road, Chesterfield 4402 R
Tel 01246211202 Fax 01246550959 Mastercard/Visa/Switch
Callers welcome 9:30 a.m to 5:30 p.m. Monday to Saturday

Honeywell
Europe's Largest Selection of Pressure Sensors

Are you ready for some extra service?
$\square-\mathrm{Cos}$ Contact us today!

Service Link

ARTICLES
WANTED
BEST GASH PRICES PAID
FOR VALVES KT88, PX4 AND MOST AUDIO/OTHER TYPES. Tel: 01403784961
TOP PRICES PAID For all your valves, tubes, semi conductors and ICs. Langrex Supplies Limited 1 Mayo Road, Croydon, Surrey CR0 2QP
WANTED

For a FREE consultation on how best to market your products/services to a professional audience ring
02087226028

WANTED

WANTED surplus or Obsolete Electronic Components
Turn your excess stock into instant cash!
SEND OR FAX YOUR LSTT IN STRICTEST CONFIDENCE Will collect anywhere in the UK

28 College Street, Kempston, Bedfordshire, MK42 8 LU Tel:: 01234363611 Fax: 01234326611
E-mail: sales@mushroom.co.uk E-mail: sales@mushroom.co.uk
Internet: www.mushroom.co.uk

Service Link

A click in

 the right direction
Te
Amitsu - MP1552A/B various options ATM/PDH/SDH Analyser .From £1400
Amitsu - MP1560A opt 01/02/03 STM Analyser 2700
Amitsu - MP1656A opt 02 Portable STM-16 Analyser 1310/1550mm $£ 4000$
Amitsu - MP1570A- SDH/PDH/ATM Tester various From £2700
Amitsu - MI9001A Optical Power Meter (Various sensors available) £650
Amitsu - MN939A/MN939C/MN9605A/MN9610A Optic. Attens. From £750
Amitsu - ME520A Digital Transmission Test Set £500
Amitsu - ME520B Digital Transmission Test Set. £2000
Amitsu - MP1520B Digital Transmission Analyser £1500
Amitsu - ME3520A SDH/SONET Analyser (Tx and Rx) £6000
Amitsu - ME3620A SDH/SONET Analyser (Tx and Rx) £7500
Amitsu - MD6430A Network Data Analyser £9995
Amitsu - Emiscan EMCT Test Solution (Consists: MS2601B/ANT1/4401/MA8611) £3500
Agilent - J2300E Advisor WAN Protocol Analyser £5250
Agilent - 8753D (Opt 006) Network Analyser - Colour - 6GHz £12000
Agilent - 54810A Infinium 500 MHz - 2 channel £3000
Agilent - 54610B 500MHz - 2 channel £1250
Agilent - 3325B Synthesised Function Gen. (21 MHz). £2000
Agilent - 3326A (opt 001) Synth. Function Gen. (13MHz) £1500
Agilent - 35665A Dual Channel Dynamic Signal Analyser. £4000
Agilent - 71500A - 40GHz Microwave Transition Analyser (Inc 70004A/70820A) £8000
Agilent - 37717C - Various options available - phone for details from £1000
Agilent - 37718B - Comms. Perf. An. opts 1, 12, 106, 601, 602 £9750
Agilent - 8153A Lightwave Multimeter (less I/P Module) Modules available separately £650
Agilent - 8163A Lightweight Multimeter £500
Agilent - 8156A Dig. Optical Attenuator - various options from $£ 750$
Agilent - 8164A Lightwave Measurement Mainframe £2250
Agilent - 86120C Optical Wavelength Meter from $£ 1500$
Agilent - 83480A Sampling Oscilloscope Mainframe (plus ins avail) £2950
Burster - 1424 IEEE High Precision Decade Resistor £1250
IFR 20312.7 GHz Signal Generator (opt 05) £3500
IFR 2850 Digital Transmission Analyser £900
IFR 2853 Digital Transmission Analyser (opts 14, 15, 25) £1475
Tektronix CSA 8000 Comms. Sig. An. (ring for plug-ins available) from £11000
Tektronix CSA 803C Communications Signal Analyser Mainframe £3500
Tektronix MTS 100 MPEG Test System £3000

Lots more equipment available. Please call for availability and prices.

