Save $£ 20$ on a DataStation development kit. See page 16

DECEMBER 2003 £3.25

Planar resistors' stress

laptop batteries out-perform specialist traction batteries

MOSFET auto bias

Intro to network analysis

Circuit ideas:

Inductance multiplier Simple code lock

Quality second-user test \& measurement equipment

Radio Communications Test Sets Hewlett Packard 8920B (opts 1,4,7,11,12
Hewlett Packard 8922M +83220
Marconi 2955
Marconi 2955B/60B
Marconi 2955R
Racal 6103 (opts1, 2)
Rohde \& Schwarz SMFP2
Rohde \& Schwarz CMD 57 (opts B1, 34, 6, 19, 42, 43, 61)
Rohde \& Schwarz CMT 90 (2GHz) DECT
Ronde \& Schwarz CMTA 94 (GSM)
Schlumberger Stabilock 4015
Schlumberger Stabilock 4031
Schlumberger Stabilock 4040
Wavetek 4103 (GSM 900) Mobile phone teste
MISCELLANEOUS
Ealantine 16200 100Amp Transconductance Amplifi

 Gigationics 8541 C Power Meter +80350 A Peak Power Sens
Qigatronics $8542 C$ Dual Power Meter +2 sensors 8040
Hewlett Packard 333 A Distortion measuring set
Hewett Packard 339 A Distortion measuring set
Hewlett Packard d 338 power meter do dual channel
Hewlett Packard 3335 Hewlet Packard 3335A - synthesiser (200Hz-A Hew elet Packard 3784A- Digitala Tansmission A
Heweth Packard 37900D Siganaling test set
Hewlet Packard 34401 A Multimeter Hewlett Packard 4274A LCR Mete Hewlett Packard 4275A LCR Mete
Hewlett Packard 4276A LCZ Meeer Hwlett Packard 4276A LCZ Meter (100MH-2OKHz)
Hewlet Packard 532A M Microwave Frea.Counter (18 GH)
 Hewlet Packard 6060 A and B Electronic Load 300 W
Hewlett Packard 6622 A - Dual OPP system p.s.u
 Heewett Packard 8642 A - high performance R / F synthesiser ($(0.1-1050 \mathrm{NH}$ H $)$ ewwett Packard 8654- Synthesised signal generator
Hewlet P Pacarad 8656 B - - yyntesisised signal generator Hewlet Packard 8657- Synth. Signal gen. (0.1-1040 MH
Hewlett Packard $8657 \mathrm{~B}-100 \mathrm{MHz}$ Sig Gen - 2060 MHz Hewleff Packard 86578 - 100 MHz Sig sen - 2060
Packard 8657 D - XX DOPSK Sig Gen Hewett Packard 89018 - Modulation Analyser Hewlett Packard 8903A, B and E - Distortion Analys
Hewlett Packard $117298 /$ C Carrier Noise Test Set Hewlet Packard 53133 A Universal Frequency counter (3GHz) Hewett Packard 85024A High Frequency Probe
Heweet Packard 6032 A Power Supply (0.60 V -(0.50 Hewelt Packard 53518 Microwave Freq. Counter (26.5 GHz) Hewlet Packard 53528 Microwave Frea. Counter (40CHz) Keithley 220 Programmable Current Source
Keithey 228 Prog'ble Voltage/Current Source IEEE Keithley y 23 High Voltage - Source Measure Unit Eithley 238 ligh Current - Source Measure Unit Keithley 617 Electrometerssource Keithlyey 8006 Component Test Fixure

Philiss P P $5193-50$ MHz Function generator
Phililis PM 6 . $654 C$ System Timer Counter
Rohde $\& S$ Shwar FAM (oits 2.6 and 8)
Monde $\&$ Schwarr FAM (opts 2,6 and 8) Mootulation Analyser
Rohde $\&$ Schwarz NRVNRVVD Power meters with sensors

Wayne Kerr 3245 - Precision Inductance Annlyser
Bias unit 3220
and
$3225 L$
Cal. Coil available it requir

Tel: 02476650702
Fax: 02476650773
Web: www.telnet.uk.com
Email: sales@telnet.uk.com

CONTENTS

DECEMBER 2003 VOLUME 109 NUMBER 1812

3 COMMENT
Too much regulation?
5 NEWS

- Bacteria makes electricity from sugar

Optocouplers will use silicon
Super magnet breaks field record Soothing the hot spots

Capacitive coupling is fast
IEE merger backed by Governmen

- DAB radio reference design

- Credit cards get smart
- European 65 nm CMOS disclosed
- Digital TV too complicated, says DTI
- Light emitting handbag

12 REDUCING THE STRESS IN PLANAR RESISTORS
Leslie Green explains how best to mount resistive elements on PCBs

17 AUTOBIAS FOR MOSFET OUTPUT STAGES
If you think biasing for vertical d-MOSFETS in a class AB output stage is not very critical, let Edmond Stuart put you right.

21 TIME MACHINE 2 John Morrison concludes his article on accurate time measurement on a budget.

24 AN INTRODUCTION TO NETWORK ANALYSIS
Software based circuit simulators are all very well but John Elisi thinks he can give you a

29 NEW PRODUCTS

The month's top new products.
34 CIRCUIT IDEAS

- Simple code clock

Staircase waveform generator
Voltage-controlled capacitance/inductance

- An inductance multiplier
- A simple driver circuit for stepper motor

Cut relay power to a quarter

46 CAPACITOR \& AMPLIFIER DISTORTIONS
Cyril Bateman concludes his latest distortio series with tests on resistors and op-amps.

54 LETTERS
Wideband buffers
Walt Disney University

- In the defence of Mr Miller
- Volks radio receivers

Attracting younger readers

- Detention Green
- Cyril's quiz answer

EMC misconception

- Help wanted

60 WEB DIRECTIONS
Useful web addresses for electronics engineers.

10 IGM
 UK'S NO. 1 IEC CONNECTION

EDITOR

Phil Reed
p.reed@highburybiz.com

ONSULTANT

 Ian Hickman
ONTRIBUTING EDITO

 Martin EcclesEDITORIAL E-MAILS
EWeditor@highburybiz.com
DITORIAL ADMINISTRATION
Caroline Fisher
01322611274
EWadmin@highburybiz.com

GROUP SALES

Reuben Gurunlian
01322611292

ADVERTISEMENT

E-MAILS
r.gurunlian@highburybiz.com

CLASSIFIED FAX
01322616376

PUBLISHING DIRECTOR

Tony Greville

SSN 0959-8332
SUBSCRIPTION QUERIES
Tel (0) 1353654431 Fax (0) 1353654400

Disclaimer We work hard to ensure that the
 information presented in Electronics World publisher - Highbury, Business Communications - will not take earrings that may ry resilitryom or losplying of nformation presented in the magazaine. It your responsibilility to to tamiliarise yezeurself with the lows relating to dealing with your ustomers and suppliers, and with saferty ractices relating to working with electrical/electronic circuitry - particularly as regards selectric shock, fire hazards and explosions.

Too much regulation?

I've been following the letters in the last few months concerning EMC and CE marks. Reader consensus seems to be about $50-50$ on whether in fact there is a conspiracy or
not. My own opinion is that I am sure the not. My own opinion is that 1 am sure the
regulations do some good - but is it too little for the cost to the consumer. Does the consumer get his/her money's worth? I don't think so. Putting aside industrial, military and transport electronics for a moment, my own experiences are that the
things that traditionally cause interference still do. If I want to listen to AM radio, I must make sure I'm nowhere near my TV or fluorescent lighting. If I'm using a sensitive microphone amplifier, I must make sure there is not a refrigerator on the same powe
circuit. My mobile phone (only spewing a circuit. My mobile phone (only spewing a
few watts at very high frequency) will interfere with anything audio I own. And so it goes on - so regulations for the aforementioned interferers don't seem to work or they are not worth the paper they are printed on.
When it comes to industrial gear - in
particular when life is at risk if anythin particular when life is at risk if anything
went awry - I can see some sense. Although quite what it is that comes out of a CD/MD/DVD player that can affect an aircraft I can't imagine. But most flights these days ban them. And all this when the jury is still out on links to cancer from
overhead power lines and transmitters. Something's not making sense.
If you read last month's leader, you'll know I went to Rhodes on holiday. Whilst there I spied a fascinating pole mounted power distribution system. Looking closely and also working out roughly the load
what appears to be a 125 A feeder suggest that the latest IEE regs were no followed. But does it really matter? The pole has been there for years and there was no evidence of overload or indeed any other problems. So, does it matter that we sometimes don thow the advice of the

Wireless
Last month I suggested that G3 franchise holders ought to sell to the business fraternity and low and behold, Motorola have just announced that they are working
on a network card that will hook into a WiFi network if available and if not - seek out

G3 connection. Well done. Perhaps the orn industry won't be the 'killer app' fo 3 after all.

Welcome
Id like to welcome Caroline Fisher to our little $E W$ team. Caroline has taken over from Jackie and will be your first point of contact
for all things administrative. So, for those of you who were wondering if you'd ever get a response from us - hopefully you will soon!

New editorial and

advertising address
The Highbury Business Communications office previously at Cheam, Surrey has moved to Swanley in Kent. All and advertising departments should be addressed to:
Electronics World
Highbury Business Communications Azalea Drive,
Swanley,
Kent, BR8 8HU
The switchboard phone no. is 01322660070
Advertising sales (Reuben Gurunlian) Fax 01322616339

Subscriptions: Wyvern Subscripion	
	vices, Link House,
	Combridge, CB7 47D.
Teleophone 151535354431 . Please notifychange of addess.	
	Subscription rates
1 year UK $£ 38.95 \mathrm{O}$US\$100.62UuroO2,¢	

 Business Communications

December 2003 ELECTRONICS WORLD

QUASAR
 CREDIT CARD SALES
 electronics

UPDATE

Bacteria makes electricity from sugar

Sugars can be converted to
electricity with an efficiency highe than previously known, claim researchers at the University of Massachusetts Amherst. Professor Derek Lovley has
discovered a micro-organism that is discovered a micro-organism
capable of stable, long-term capable of stable, long-term
electricity production by oxidising carbohydrates - but it is early days. "I don't want to give the impression that it's 'Back to the Future,' where we stuff a banana in the engine and go, said Lovley, "but it's a pretty
good leap from where microbial fuel cells were before."
Lovley's cell produces 600 mV at between 600 and $800 \mu \mathrm{~A}$.
The organism, Rhodoferax ferrireducens, transfers electrons
directly onto an electrode as it directly onto an electrode as it
metabolises sugar, producing metabolises sugar, producing
carbon dioxide as a by-product.
'"There's been a lot of interest in microbial fuel cells trying to convert sugar into electricity, Lovley said. "But in the past, they ve converted ten percent or
less of the available electrons, and we're up over 80 per cent. And previous attempts to convert carbohydrates to electricity have required an electron shuttle, or mediator, which is typically toxic to humans."
This organism doesn't require a directly to the surface of the electrode, said Lovley: "That's one of the big advances. People have done it without a mediator before but their recovery of energy was
less than one per cent. In the end, the electrons in the fuel cell are

transferred to oxygen, so what we are really doing is putting a wire in
between the microbe and the between the microbe and the oxygen and harvesting this electron
flow that otherwise would just go flow that otherwise would just go directly to oxygen.
Rhodoferax was Rhodoferax was isolated at the
university from aquifer sediments in Virginia. "We found that it had the unique ability to oxidise sugars with the reduction of iron oxides," Lovley said. "This was of interest to
us because last year we reported another group of iron reducers, another group of iron reducers,
known as Geobacter, could transfer electrons to electrodes. We reasoned that Rhodoferax might be able to do the same thing, which proved to be the case. cell could produce 60 W for 17 hour

Opcouplers will use silicon

Silicon - great for ICs, but terrible at emitting light. That view may plans to sell optocouplers made using conventional silicon. The French/Italian chip firm has demonstrated light emitting silicon, and says the efficiency is better arsenide.
Moreover, the devices could be integrated with power electronics and control circuits, reducing the number of packages in applications
such as motor control.
Decenter 2003 flectroncs worid

ST's emitters avoid using
silicon's indirect bandgap by silicon's indirect bandgap by
embedding rare earth elements, embedding rare earth elements,
such as erbium, into a layer of silicon dioxide. When charge is injected into the SiO_{2} layer it excites the erbium. Photons are released, in erbium's case, at around $1.5 \mu \mathrm{~m}$.
Power output is claimed to be
1 mW per mm^{2} of silicon. More 1 mW per mm^{2} of silicon. More
photons are emitted, at a set current, than conventional LED materials such as AlInGaP and AlInGaN, claimed ST.

The organism Rhodoferax shown on an electrode
STMicroelectronics has produced light from silicon by doping with rare-earth materials. This is not new, many research teams have done is is not new, many research teams have done is
before but, unlike most attempts, ${ }^{\text {TI's }}$ devices are easily visible - as Electronics World witnessed during a visit to the development labs in Catania, Sicily. The emitters have been used to construct working all-silicon opto-isolators.

Soothing the hot spots

Technology developed at Stanford
University in the US has been
University in the US has be applied to the cooling of nicroprocessors, which could exceed The system, f

Cooligy, uses a series of
microchannels etched into a silicon
heet that is placed upon the surface of a processor chip. Water is forced
hrough the channels by an "electro Kinetic" pump, said the firm. The advantage of this technique, versus heat sink and fan cooling, is it
copes better with hot spots on the surface of the processor. "These hot spots, typically found above areas where the most amount of work is performed on the chip, must be kept to within a specified

emperature to ensure high performance and reliability," said the perfor.
firm.
It
irm.
It claims to be able to remove up to
, $000 \mathrm{~W} / \mathrm{cm}^{2}$.
Cooligy said its heat sinks would point of packaging. It expects to start upplying test systems to computer nanufacturers this year

Super magnet breaks field record

A superconducting magnet has
generated a magnetic field of 25 Tesla for the first time
In the experiment, carried out at the US National High Magnetic Field Laboratory, a 5T high temperature superconductor (HTS insert' coil was positioned in an xisting 20T magnet. even world records, claims the lab, including the highest field generated in a superconducting magnet and highest increment of field in an HTS insert of useful size. These records were previously held
industrial scientists.
"This is a critical and essential echnological breakthrough for high emperature superconducting
aterials for state-of-the-art Justin Schwartz. The lab worked ased Oxford Superconducting Technology.
The drive for ever higher fields in commercial NMR spectroscopy magnets was a compelling in this achievement, and we look in this achievement, and we look
orward to using the technological advances demonstrated in our high field business," said Dr Ken Marken project leader at Oxford. Oxford supplied long-lengths of
Bi-2212 superconducting the program and both organisation "spent much time on conductor development, conductor

IEE merger backed by Government

The proposed merger between the Institution of Electrical Engineers (IEE), the Institute of Mechanical Engineers and the Institute of Incorporated Engineers has been backed by the Government.
"This vitally important development reflects the fact that there is an increasing convergence I am sure it will unify and strengthen the profession as a whole," said Lord Sainsbury, minister for science.
"Such an institution would undoubtedly have stronger voice and therefore be more successful at promoting and representing the

The IEE itself has indicated that the merger is more likely to happen than not. The previous president of the Institution, Professor Mike Sterling, said earlier this year: "Most of the comment and questions concentrated on how to proceed rather than whether we should." consultation with members. A final vote on the proposed merger will be carried out in the autumn.
"Both members and their employers would find such a body more relevant to the first
decade of the 21 st century," said Sterling.

Digital TV too complicated, says DTI

A study published by the Departmen of Trade and Industry has warned that many UK consumers are not able to use digital TV systems. Minister, Stephen Timms, said: "Today's digital TV equipment is confusing and difficult to use." According to consulting firm Generics, which carried out the of the UK population cannot use a of the UK population cannot use a
digital set-top box or TV, even for simple everyday viewing. This compares to under three per cent for $\underset{ }{\text { analogue TVs. }}$ "The UK
"The UK leads the world in take up of digital TV, and we must not
squander the squander the opportunity to make the provides a wake-up call to the industry," said Timms.
Dr Jeremy Klein, Generics project leader, outlined the problem: "We now have a pretty good idea of wher
the problems lie. Compared with the problems lie. Compared with
analogue TV, digital TV provides many more useful features; but you can only access those features by using the remote control and onscreen displays.
"Our research indicates that unless improvements are made, then about able to use digital TV in its current form."
Much of the technology for digital set-top boxes comes from the PC world. "That's fine if you've had has. Some people simply cannot
equipme will make mistakes" said that they "It's fine to press the red butto claimed Kay Sinclair, Generics' product design expert, "but it's happens next that confuses people."

If you are in an interactive service and you want to go back to the top menu, then every broadcaster does it
a different way she said different way, she said and set design and use standards, the Government said.

London surrounded with sound

A five-channel, surround sound audio
broadcast trial has started in London with UK firms providing the receiving equipment.
Radioscape is supplying much of the core broadcast equipment, based on
the digital audio broadcasting (DAB) the digital audio broadcasting (DA Radioscape and Imagination Technologies.
The six month pilot scheme sees Capital Radio broadcasts using Microsoft's Windows Media Audio 9 format, which can squeeze 5.1 audio into a $128 \mathrm{kbit} / \mathrm{s}$ Internet protocol

2.4 GHz band not congested

 A Radiocommunications Agency report shows hat the 2.4 GHz band remains relatively free rom activity in the UK, despite warnings it Bluetooth.The report, from Mass Consultants, said "the use of 2.4 GHz services appears to be very widespread, although the recorded levels of ctivily were ge ly signal strength and the proportion of the time

NTL Broadcast is proving the multiplex for the trial using L-band 1.4 GHz) transmission. "The high quality and compression efficiencies of Windows Media 9 Series make 5.1 -channel surround
sound over DAB a reality," said Simon ound over DAB a reality," said Simo
Mason, head of new product development at NTL Broadcast. The Radioscape receivers are two CI-bus cards. Imagination is supplying DAB receivers that output nnel data to a PC via USB cable.
characterisation, coil winding studies, and the testing of coils, they said.

Capacitive coupling is fast Scientists at Sun Microsystems have invented a technique for passing high speed data between chips without using a direct electrical connection.
In fact the method uses capacitive coupling between closely spaced pads to transfer data from one die to another. Sun says that in tests a single channel could reliably send data at $1.35 \mathrm{Gbit} / \mathrm{s}$.
In fact the firm has manufactured test chips with 16 channel links, capable of transferring data at rate was better than 10^{10}, claimed the firm.
Links made between chips in this way are a factor of 60 times denser than using wires.
The technique was invented by Ivan Sutherland, a senior engineer at Sun who also invented the micropipeline method of asynchronous logic. A transmitter is an inverter directly
driving the pad measuring around driving the pad, measuring around
$35 \times 35 \mu \mathrm{~m}$. The receiver's pad makes up the other half of the capacitor, which feeds to back to back inverters. The smallest pads that gave reliable transmission measured $25 \times 25 \mu \mathrm{~m}$ said Sun.

Light emitting handbag

that signals were present".
The firm carried out private sector monitoring
in Cambridge and public sector tests in schools,
hospitals and Heathrow Airport. All areas were
covered extensively by wireless LAN.
In fact the main contributor to the band was
microwave ovens, while movement detectors
were commonly found at low signal strengths.
No cases of wireless LAN congestion were
observed, said the firm. No out of band
emissions were observed and power levels were
within the designated limits.

The firm carried out private sector monitoring in Cambridge and public sector tests in schools, hospitals and Heathrow Airport. All areas wer
covered extensively by wireless LAN. fact the main contributor to the band was were commonly found at low signal strengths. observed, said the firm. No out of band emissions were observed and power levels were within the designated limits.

European 65nm CMOS disclosed

Philips and Belgian research organisation IMEC have released they are jointly developing. "The completion of fabrication of 65 nm CMOS devices with good electrical performance marks the second milestone within the strategic partnership between Philips and
IMEC", said IMEC
MEC," said IMEC.
65 nm is the next step after 90 nm , the most advance CMOS process in production.
The organisations formed an alliance at the beginning of 2000 to explore processing and integration
steps in CMOS. Work on 65 nm be in early 2002 after achieving the first milestone: 90 nm CMOS.
The 65 nm technology is based on a scaled version of planar 90 nm bulk CMOS.

Devices feature 45 nm gate length, equivalent oxide thickness of
$1.4 \mathrm{~nm}, 100 \mathrm{~nm}$ thick polysilicon gates and sub-20nm junction depths. "Gate dielectric recipes were optimised through plasma nitridation of ultra-thin oxides for eduction of gate leakage and suppression of boron penetration,"
said IMEC. "Shallow source/drain engineering was performed using ultra-low energy implantation in combination with germanium pre amorphisation and fluorine co implantation (PMOST) and fast amping high-temperature spike anneals. Low-temperature deposition back-end for spacer, salicide locking and pre-metal dielectric layers to avoid excessive dopant

Fision and de-activation. Finally a two-step nickel
salicidation was integrated salicidation was integrated to
improved control of line width effects as well as reduced junctio leakage and contact resistance. Drive currents of $790 \mu \mathrm{~A} / \mu \mathrm{m}$ for NMOST and $355 \mu \mathrm{~A} / \mu \mathrm{m}$ for PMOST were obtained at $\mathrm{Vdd}=1$ nd an off-state current of $100 \mathrm{nA} / \mu \mathrm{m}$.
Devices exhibit good shor "Thel effects control. "The achieved electrical performance, which compares favourably with results from othe successful step has been made in joint exploration of the 65 nm technology at IMEC and Philip Research," says Dr Carel van der Poel, senior v-p of Philips Research.

Credit cards get smart

UK consumers are beginning to containing secure microcontrollers as part of the national Chip and PIN programme.
The replacement of magnetic stripe cut the UK's annual fraud bill of £425m.
Replacing the country's 122 million cards, 850,000 shop terminals and 0,000 cash machines will cost the anks around $£ 1.25 \mathrm{bn}$. Chip and PIN was trialed through 200,000 cards being issued and 1,000 retailers set up with card readers. In a
survey, four fifths of users were said o be in favour of the scheme. "I am encouraged that the lessons earnt in the trial will be taken forward as the scheme is rolled out across the country, so that the will be chip and PIN by 2005," said Hazel Blears, minister for crime reduction and policing. "As well as fighting fraud, Chip and PIN has also proved to be an efficient, secure and customer-friendly system."
APACS, the Association fo Payment Clearing Services, has set deadline of 2005 for a complete switchover to the smartcards. By the end of this year 20 per cent of UK cardholders will be using the cards.
In 2002 the UK banks los $f 425 \mathrm{~m}$ card fraud, the majority of which was to counterfeiting ($£ 148 \mathrm{~m}$). Card-notpresent fraud cost $£ 110 \mathrm{~m}$, while theft using stolen or lost cards cost $£ 108 \mathrm{~m}$.
Sonarics Labs has unveiled a DAB radio reference design. Called CSM1, the design is based around Analog Devices' $\$ 5$ Blackfin general purpose DSP. Running on this, Sonarics' software implements DAB Band III and L-Band decoding, MP3 playback from a flash card and digita
sound recording The evaluation sound recording. The evaluation $£ 199(\$ 299)$ and is $76 \times 66 \times 15 \mathrm{~mm}$. Sonarics estimates the parts would cost $\$ 25$ in production.
www.sonarics.com

Superlattices transducer
mproved ultrasound transducers could spring from theoretical computer-based studies at the University of Arkansas. "We can design new materials based Kour predictions," said researche
Kornev.
Using a computer model first described in 2000, Kornev and fellow researcher Laurent Bellaiche looked at hypothetical ferroelectric superlattices made of layers of lead zirconate titanate (PZT) with dif
compositions.
In particular, superlattices with between one and six layers of 44 per cent titanium PZT alternating with layer of 52 per cent titanium PZT. The average titanium composition of hese is 48 per cent - the composition at
which normal - disordered - PZT exhibits a huge piezoelectric respons With six layers of each, the superlattice exhibited a phase transition not previously seen in any piezoelectric material.
This transition created an even larger piezoelectric response than the phase material.
material. naddition, they found that the superlattice can be stuck in a higher energy state than the ground state, whic mplies commonly used and assumed he team.
"These superlattices are thus important not only for technological applications but also from a fundamental physics point of view" Kornev said.

S.V.G.A II

NEW! SVGA II now has a slimline case, 9 display outputs at $648^{\circ} 489,896^{\circ} 698$ a 1924768. Colourbars, crosshatch, dot, black, red, green, blue, white and flashing white patterns. Test and set-up computer monitors without a PC.
15 way D type output, runs on 8.12 V DC adapter and be buil New lower kit price of only $£ 29.50$.
Con be supplied in pe sone or Black cares. Software upgrade avo

MULTIGEN VIDEO GENERATOR
from the Author of SVGA generator and Videogen comes a new all in one unit. Ten display outputs in PAL, NTSC $\&$ VGA of testcard, colourbars, grayscale, crosshatch,
centering centering, red, green, blue, white and flashing white.
PAL 625 lines 56 Hz - NTSC 515 lines 68 Hz , Composite PAL 625 lines 5 EHZ - NTSC 515 lines 69 Hz , Composite \& 5 Video outputs - VGA
$649^{\circ} 48866 \mathrm{~Hz}, 15$ way D - AUDIO 1 KHZ Phono output Unit can be powered via 8.12 V oC adapter, 2 AA alkaline or rechargeable batteries that are recharged via adapter.
Full kit of parts to build the Multigen, $£ 58$ or $£ 62$ including $1.6 \mathrm{~A} / \mathrm{hr}$ NiMH Batteries.

Please add $£ 2$ postage to all orders. $£ 3$ for overseas orders. Send cheque, Postal Orders or Internatienal Muney Orders to:
Comming tharding. 43 Jonathan road, Trentham, Stoke-on-Trent, Staffs, ST4-8LP England.
Comming soon. D-GEN a PALL $512^{* 288}$ digitial pattern generator with 3:4/16:9 Testcards \& S
Visit our website "http://www.videocorner.co.uk" or Email us at "roy@videocorner.co.uk"

EaSM- PC ${ }_{\text {for }}^{\text {Windows }}$

Wortil Beating value in PCB Design Soffware

from : High performance Windows based PCB Design Capture,
£97 = Simulation and Layout software at prices you'd expect from your local computer store!

NEW! in Easy-PC 7

- Library Databook
- Step and repeat plotting
- Swap Connection Mode
- Dimensioning
- Copy to Metafile
plus much more......
 with Tsien Boardmaker 2 design import...
Number One Systems delivers true 32 bit Windows software applications including features that a few short years ago would only have been available in software tools priced in the thousands! Test drive Easy-PC and Easy-Spice for yourself and be prepared to be amazed at the super value...

Call for a brochure, price list and demo CD on +44 (0)1684 773662 or email sales@numberone.com

[^0]Number One Sysien
Oak lane, Breder
Tewkesbury, Glos G120 7LR
United Kingdon
or download from wwwonumberone.com

UPDATE

Better audio and smaller PCs from VIA

PC component maker has introduced a new audio chip, aimed at home entertainment PCs. Called Eight-TRAC Audio, the device complies with AC' 97 revision up to 20 -bit resolution with 96 kHz sampling rates.
Hardware down-mixing allows PC users to play 6 -channel audio with two or four speakers and the analog
mixer circuitry includes stereo mixer circuitry includes stereo
processing to provide 3D surround sound effect for stereo media. A high-quality headphone amplifier is also included on the chip. Automatic jack detection allows users to connect a record or playback
audio device to any jack. The chip
will detect this and the user onfigure the correct I) in use through the PC VIA also announced a smaller PC motherboard format. The successful $17 \times 17 \mathrm{~cm}$ mini-ITX PC motherboard format was initially promoted by the firm 18 months ago nd it is now mooting a full-functio C on a $12 \times 12 \mathrm{~cm}$ board - dubbed
It is aimed at "the next generation of smaller, quieter, digitally intelligent home, office, mobile, industrial and commercial devices aid VIA.

VIA Eight-TRAC Audio chip

AC97 rev 2.3 compliant

 96 KHz sampling 20-bit ADC and 20 -bit DAC $\rightarrow 95 \mathrm{~dB}$ signal/noise 7.1 ch outputs 96 kHz S/PDIF output Direct CD input to S/PDIF output Integrated headphone amp 3.3V or 5 V analog power 3.3 V digital power 48-Pin LQFP packageLaptop batteries can out-perform specialist traction batteries when it comes to electric vehicles.

Laptop batteries can out-perform specialist traction batteries when it Californian firm AC Propulsion recently revamped its tzero prototype car to make the 'super LIgh
versION'. A move from lead-acid batteries to lithium-ion (Li-ion)
saved 230 kg and tripled the vehicl aved 230 kg and tripled the vehicle's Power comes from 6,800 65 x 18 mm diameter (18650 size) Li-ion
cells - as used in laptop battery packs. "The market for big cells is small so they cost too much," said company president Tom Gage. "The small cells for the tzero cost less, in total, than the nickel-metal hydride battery in the Toyota RAV4 electric vehicle, and they hold twice the energy." Gage look into getting 'vehicle' cells made. "We got a quote from one battery company for a Li-ion pack made from 100 much larger cells," he said. "Their price was ten times higher, and neither the energy
or the power were as good as we get from the small cells. If you want to start building electric cars right now, as we do, you have to have a commercial battery. Right now, 18650s are the only game in town." Tzero weighs 900 kg and will drive
250 miles in $75-80 \mathrm{mph}$ traffic. "On 250 miles in $75-80 \mathrm{mph}$ traffic. "On
any type of standardised drive cycle it will go over 300 miles," said Gage. Its best $0-60 \mathrm{mph}$ time is 3.6 s .
www.acpropulsion.com

Correction

The UK's most | $\substack{\text { powerful computer, } \\ \text { HPCX, is not located }}$ |
| :--- | HPCx , is not located

in Oxfordshire as we reported in the
September edition of September edition of
EWt, but Cheshire, and
is arto of Daresbury spart of Daresbury

aboratory near | Laboratory near |
| :--- |
| Warrington. More | information about this

facility can be found faciity can be found
ati
www.cse.clrc.ac.uk/hp www.cs.clrc.ac.uk/hp
cx/index.shtml.

Carbon shines perfect light

Carbon nanotubes are "ideal photon emitters", said researchers at the US' emitters", said researchers at the US "Tniversity of Rochester. The emission bandwidth is a emperature," said professor Luk Novotny of the university's optics department.
Precise, discrete, wavelengths are emitted by the tubes, unlike the wider band output of most materials at room temperature.

The team was using confocal microscopy, illuminating a single anotube with a focused laser beam o see what was re-emitted by
fluorescence "The emissio
The emission wasn't just perfectly ould measure"" odd Keasure, said researcher Todd Krauss.
Molecules, said Rochester, usually mit their photons for a certain time and then cease, only to resume again
later. The tubes that Krauss and Novotny measured remained steady to the limits of the
instrumentation. "This is very exciting because for any application steady and precise photon emitter,' said Novotny.
Narrow steady emissions could help with the development of single phototography
crypt

- Powerful \& flexible schematic capture.
- Auto-component placement and rip-up/retry PCB routing
- Polygonal gridless ground planes
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation

- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers

- Supports PIC, AVR, 8051, HC11 and ARM micro-controllers
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays,
switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from Crownhill, IAR, Keil, and others.

$\bigcirc \cap$ Tel:01756753440 Fax: 01756752857

[^1]Works with PIC Basic Plus from Crownhill Associates
www.labeenter.co.uk info@labcenter.co.uk

Reducing the stress in planar resistors

A well-designed resistor should have a flow pattern that is smooth and gradual. And choosing which track pattern would be most suitable for high stability resistors is also very important. Leslie Green (CEng MIEE) takes us through some of the pitfalls
n the first part of this article, the measure 'stress ratio' was introduced to give a quantitative rule for choosing which track pattern would be most suitable for high
stability resistors. In this last part stability resistors. In this last part of
the article the subject of trimming is discussed. Without careful trimming all the work that went into designing a stable resistor pattern would be wasted; the trimming range is
required to be so great that it has a strong influence on the final stress strong influence on the final str
ratio in the trimmed resistor
The stress ratio is so important to this discussion that it is repeated again below:
Stress Ratio $=\frac{\text { Peak Electric Field Strength }}{\text { Mean Active Field Strengh }}$ Regions in the distribution which Regions in the distribution which of the peak field strength are not taken into account when calculating he mean field strength, hence the term 'mean active field strength'

Trimming

The problem with the resistor design so far is one of accuracy. It is very fificult to control the material of the Wi and its thickness accurately. Without some form of trimming the resistor would typically have a tolerance of around $\pm 19 \%$. Given that
trimming techniques consist of making cuts in the film, it is more natural to express this as a one sided olerance of the form $+0 \%-30 \%$. The resistor is then trimmed $u p$ to the
desired value. desired value.

You might think that there is an error in the above paragraph because from $\pm 19 \%$ you might have expected to go to $+0 \%-38 \%$. The answer is that large percentages don't behave in a nice additive way
Trimming is of major importance to manufacturers and users alike; it stable resistor, with excellent voltage withstand properties, and a poor resistor not having these qualities.
Trimming Techniques The best possible way to trim a film. Remember that the resistance of the film is inversely proportional to its thickness. Unfortunately this is not easy to achieve in practice, as it is consider theoretically. Possible whiques or seschace abrasion etching. These are all difficult and expensive processes, particularly when you consider that a dynamic trim is the optimum method. By dynamic trim I mean that the resisto
is being measured whilst it is being
trimmed. Otherwise you can imagine having to guess how long to leave the resistor in the etching tank to achieve the desired amount of trimming. Amongst these three trimming etching is currently being used commercially.
And now we go from the very best techniques to one of the worst. One of the worst ways to trim a resistor is to put a laser cut partly through the
middle, perpendicular to the current flow. This is shown in Fig. 1.
With electrodes on either side this rectangular element we should have a resistance of two squares. By cutting half way through it at the middle, th resistance is increased to 2.454 the peak electric field intensity, as the gradient field plot of Fig. 1 shows. The stress ratio is 7.09 .
The straight cut at right angles to the current flow is known as a plunge, a plunge cut or a P-cut. It is resulting stress ratio. It is also difficult to get accurate trimming, because the percentage resistance change per micron of cut length increases as you cut further into the film.

Laser Cutting
Laser trimming of resistive films is a detailed technology in its own right. The laser is not a continuous beam, a you might have expected, but is series of short bursts of inte
Each short pulse evaporates th material in a small circular region, but the edges of the 'cut' are not distinct. The laser beam has a finite focus in terms of its intensity, so that there is a small region around the material has been overheated but not evaporated.
As you can imagine, this region is not an ideal place for high current densities. It is also more likely to drif in resistance value, and if it is
contributing more than its fair of resistance to the overall resistance, then the resistor will not be as stable as it should be.
To get a cut line in the resistor, the beam is stepped to a new position, designed to overlap the previous
position by as much as 90%. This gives a clean cut, also called a kerf the film. Another problem associated with this cut is micro-fractures ${ }^{1}$. The resistive material is being heated sufficiently to evaporate it, althoug only a small amount of material is
being removed, the surrounding area still gets heated significantly. This results in micro-fractures spreading away from the lased path. These fractures wins spred the time and increasing after the trimming operation.
For this reason the manufacturer has to use predictive trimming to set the value lower than the final required value, so that the resistor tens of hours after the trimming is complete.
Another problem with the laser
trimming technique is that a narrow laser cut in a relatively large sheet of resistive material allows significant
distributed capacitance across the resistor ${ }^{2}$. When used in an attenuato such a resistor cannot be compensated to give a response that is flat to within a few percent.

Symmetry

It is evident from the previous plet that the field is mirror symmetric about the central cut. This symmetry is useful in terms of the accuracy of the finite element analysis. Because of the symmetry, it is actually only necessary to simulate half of the
resistor. In this way there are twice many simulation elements used in each direction, giving $4 \times$ the resolution in terms of the number of elements.
It is a general principle of any sort of computer simulation to take possible, to either improve accuracy or reduce the simulation time. Unfortunately the L-cut of Fig. which is used because it is easier to get a fine trim than with the P-cu, wrecks the symmetry. However,
throughout this article I have not made use of any available symmetry, in order to make the resistor designs easier to understand.
The resistance is increased by taking the cut paraliel with the
current flow, forming an L shap This pattern has a resistance of 2.45 squares and a stress ratio of 3.48 . The L-cut therefore gives a considerably better stress ratio for the same resistance as the P-cut. The only
possible drawback is that the length
\qquad Now the cut on the film has been shown as being very narrow. This would apply to a laser cut, typically around $25 \mu \mathrm{~m}$, on a relatively large thick film resistor. On a resistor of
0603 size, the simulated cut would appear considerably wider. This would reduce the distributed capacitance and the field stress ratio. For a larger thick film resistor another method is to use an air abrasion cut. This is wider than a
laser cut and therefore reduces the stress ratio and the distributed capacitance; the penalty is increased cost because the machine is slower. Obviously what we would like to do is to remove whole strips of the resistive material parallel to the with a laser because the trim time would be enormous and the resistor would overheat. Clearly, since the length of cut determines the trim time and therefore the trim cost, this has to be balanced against he achievabl

The User's Problem
You may not be designing the resistor, but you do need to understand what can happen in

Fig. 3. Above
gradient plot of a
lazy-J cut.

Fig. 4. Gradient
plot of a top hat plot of a top hat
pattern. The orange area is the
(insulating)
substrate.

Fig. 5. Below
gradient plot of a
serpentine trim.

the design of custom resistors based on one sample batch, you can get caught out. Suppose the prototype batch happened to have high sheet
resistivity. This would mean that the resistivity. This would mean that the trimmed. Thus any distributed capacitance effects and voltage breakdown effects would not necessarily be evident. Then, when you are in routine production, you get
a batch where the sheet resistivity is low and all the nasty problems surface. This is why a user would need to consider what the manufacturer was doing in the design of the resistor
Other Cuts The L-cut can be enhanced by a P-cut
at the 'open' end. When the plunge does not intersect with the L , a fine trim is achieved and the stray capacitance across the cuts is reduced.
If the plunge intersects the L , the
path becomes continuos path becomes continuous; a section of
resistive material is isolated and it becomes a box cut.
Looking at the stress patterns on the P-cut and the L-cut, it is clear that all the problems come at the sharp corners. Looking back in this article
at how the stress in the square corner problem was solved, a new cut is suggested. This consists of a sloping line which ends in a curved path. We could call this new cut a lazy-J as shown in Fig. 3.
The resistance is 2.52 squares and the stress ratio is 2.59 . This makes it
better than the L-cut. To get a finer trim, a sloping line should be cut up from the outside towards the open end of the arc. If this cut were continued, the shape of the cut would be a mirror symmetrical roundhelps to reduce capacitance across the cuts, by reducing the potential difference across them.
Dynamic Circuit Trimming The previous trimming techniques
have been to get the final resistor to have been to get the final resisto
predetermined value. Another possibility is to trim a circuit to defined operating point by adjusting a resistor appropriately. This might be done for a hybrid circuit, for
example, where it would be
Because we are trying to emulate
the range of a pot, the trimming range of the resistor needs to be
considerably increased. In this case
the top hat and serpentine cut can be used.

Figure 4 is one form of 'top ha' trim; it is good for making larger resistance changes, but it suffer
badly from the electric stress badly from the electric stress probem, with a stress ratio ot getting greatly increased resistance is the serpentine trim of Fig. 5. This is just a series of interlocked plunge cuts.
This example has a resistance of 4.75 squares, which is a considerable
'trim' from the starting value of 2 squares. Again the stress ratio is very poor at 7.22 . A better method is to use a lazy-J serpentine cut, shown in Fig. 6.
Figure 6 has a resistance of 5.30 squares and a stress ratio of 3.75 .
This new cutting pattern is therefore considerably better than the old serpentine cut. The top hat pattern is considerably more difficult to improve. First the basic shape of the
corners is changed by pushing them corners is changed by pushing them single corner section. Then the top of the cut needs to be made circular as shown in Fig. 7
This gives a resistance of 7.24 squares with a stress ratio of 3.45 , The circular cut on the end of the plunge needs some explanation. This
is not as infeasible as it might at first appear. Once the plunge is past the 'brim' of the top-hat, the change of resistance with cut depth is easily predictable. The fringing part of the
field is relatively constant because the height of the hat can be made much larger than the cut depth. It is therefore also true that the circular artefact on the end will have a relatively constanteffect on the resistance and so it is possible to predict when to start the circular part
of the cut. A fine trim can be done by of the cut. A fine trim can be done by
a P-cut into the side of the hat, some distance above the circular cut.

Link Cutting

An even better way of getting large
trims without affecting the stability trims without affecting the stability
the resistor is to use link cutting In one method the resistive film is used to form short links that bypass larger loops or ladders. When the link is cut, the current has to pass through the longer loop, thereby increasing the resistance.
These methods are very prone to the problems of stress in corners and can in fact be enhanced by the corner smoothin
earlier.
The key ar cutting methods is that the resistive

film is completely cut away. Thus the resistive material which has been
overheated around the edge of the is no longer used to carry current. Another method to overcome the trimming problem is to have strips of resistive bar, following the equipotential lines as shown in Fig. 8. These conductive strips can be connected to each other with laser cuttable strips and the resulting patter will have a stress ratio approaching 1. plot; the gradient plot would show nothing because the gradient is the same throughout. The capacitance of the bars will not be as significant as
you might at first imagine, simply
because there is very little potential difference between them.

Conclusion

There are many factors that affect the stability of a planar resistor. The important in order to give a low stres ratio and therefore the optimum performance from a given technology. Trimming a resistor with a laser is problematic. As far as the
film integrity is concerned the laser cut should be as narrow as possible. This minimises the heating of the film and therefore reduces the microcracks that form around the cut. The

Fig. 6. Gradien plot of an improved trim method, a lazy-J
serpentine trim.

Eactronics Wordi reader offer:

Save $£ 20$ on a DataStation ${ }^{\text {™ }}$ development kit and get free delivery!* Get a DataStation plus development board and cable for just $£ 99$ +VAT
(Normally priced at $£ 119.50$ + delivery).
DataStation ${ }^{T M}$ is a 16 channel, software configurable I/O module offering more than 500 samples per second and 391 different I/O configurations from a single product.
This unrivalled flexibility makes DataStation suitable for virtually any PC driven monitoring or control application.
Please send your completed coupon and payment to:

EW Reader Offer

Observant Electronics Ltd.
Unit F2b, Avonside Enterprise Park,
Melksham, Wiltshire SN1 2 8BS
Alternatively call 01225704631
or fax your order to 01225708618.
*Note: free delivery is only available within the UK. For delivery outside of the UK please add $£ 2.50$.

Offor valid untl $28^{\text {th }}$ November 2008

Specifications:

Max Analogue Inputs: ADC resolution: Sample Rate: Max PWM outputs: Max PWM resolution Max Digital outputs: Interface: Supply Voltage: Supply Current Dimensions:

8 or 12-bit selectable
>500 samples per second
20 bits
16
16
RS-232
7 to 35 v dc
$99 \times 82 \mathrm{~mm}$

Autohias for mosfet audio output stages

It's said that biasing vertical d-mosfets in a class-AB output stage is less critical than biasing their bipolar counterparts. So many designers are content with the classical $\mathbf{V}_{B E}$ multiplier as bias generator. However, the accuracy needed for utmost performance (in terms of cross-over distortion and quiescent dissipation), cannot be provided by such a circuit, even when it is thermally coupled to one of the output devices. Edmond Stuart explains
$\mathbf{S}^{\text {everal factors may contribute to }}$ the lack of accuracy 1) Mismatch between relative temperature coefficients of mosfets and bjts as consequence of the
variability of the gate threshold variability of the gate threshold
voltage as well as the temperature coefficient of $V_{G S}$
2) Thermal delay and attenuation of the coupling between output device and sensing element. 3) Drivers - if included - that
operate at a different temperature operate at a different temperature.
4) Long-term drift of threshold voltages as a result of ageing ${ }^{1}$. 5) Errors in adjusting the bias level
for each individual amplifier. So it seems natural to replace the $\mathrm{V}_{\text {BE }}$ multiplier - which in fact
provides a kind of error feed forward - by a control loop based on feedback of the bias current itself. In the past, several attempts has been undertake in this direction, but none of them seem to me suitable for high-end applications, as they are intrusive also
on other parts of the amplifier. This on other parts of the amplifier. This
could raise distortion
3,4, complicate could raise distortion ${ }^{3,4}$, complicate HF compensation ${ }^{5,6}$ or be incompatible ${ }^{3,4,5}$ with a complementary source follower
could be too complex ${ }^{7}$. Nevertheless, reference 5 , ingenious in its own reght, inspired me to a re-design that overcomes these shortcomings. The new design comprises three sections: a bias current sensor, an isolator and an integrator. Each of them will be discussed below in

Bias sensor
The bias sensor's purpose is to detect any deviation from the nominal bias level without being influenced by the current distribution over the output

Fig. 1. Circuit
rig. 1 . Circuit
diagram of the autobias generator
connected to connected to a
typical mosfet typical mosfet
output stage

${ }_{33 \mathrm{~K} 0}^{\mathrm{R} 6} \mathrm{R} 8 \mathrm{Ra}$

M11

current delivered to the load (R_{L}). This is accomplished by sensing the voltages across the source resistors the output stage and passing them to a non-linear network, comprising two current mirrors (transistor pairs $\mathrm{T}_{3,4}$ and $\mathrm{T}_{5,6}$ respectively). Two equal inputs of the mirrors via R_{6} and R_{8}. Since the voltage across each source resistors adds an off-set to $V_{\text {BE }}$ of T_{3} and T_{6}, the currents reflected by them will be lower than the reference. ffset is such that each mirror refle only 50% of the reference current. As dictated by the laws of physics, this condition is met if the offset voltage is 18 mV (at room temperature). ogether with R_{1} and R_{2}, this 18 mV output stage (e.g. 100 mA if

an under - or over-biased state.
an under - or over-biased state.
Beyond output currents of ca. 0.6 A the error signal is pinched off. This looks like a disadvantage, but it turned out to be beneficial, as explained below.
Fesence of large signals? Suppose presence of large signals? Suppose T_{1}
carries a large current and T_{2} is turned off. In this case the reflected current in T_{3} is zero, while in T_{6} it is 100%. Summed together and subtracted from the third reference, the resultant error signal is again zero. This is exactly
what we want, as an output stage operating in class B provides no information about the quiescent current, thus the error signal has be pinched off in order to preserve the charge of the integrator's capacitor $\left(\mathrm{C}_{3}\right)$.
Since music has a high peak/average ratio - some 20 dB - the average signal well within the capture range of the well within the capture range of the
bias sensor. Sine waves at full power give no trouble either, as the relative time traversing the capture region is long enough to let the control loop do its work. However, a large square wave pushes the output stage continuously in class B and no error signal is produced at all, leaving the integrator in an undefined state.

Isolator

To avoid any adverse interaction between common mode and differential signals at the gates (node A and B), an isolator has to be inserted somewhere inside the servo loop. Putting it between bias sensor
and integrator greatly simplifies the circuit, as the integrator can now simply use the bias voltage as supply Given the bipolar nature of the error signal, two opto-couplers $\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ are needed, one for charging, the other for discharging C_{3}. They are specified for Apart from their primary task (isolation), they serve one more purpose: masking the tiny deviations of the error signal, as can be seen at the middle curve of Fig. 3. The reduced transfer ratio at very low suffers (see Fig. 4), meets this purpose nicely. R_{11} delivers the supply voltage to U_{1}, while being limited by LED D_{3} reducing V_{CE} of T_{3} and T_{6} to approximately the same level as T_{4} and T_{5} and preventing
simultaneous conduction of U_{1} and U_{2}.

Integrator

Depending on the mosfets actually sed, bias voltage can vary from 2 to 10 V . To handle this range it leads
almost automatically to the kind of opology, as shown in Fig. 1. In spite of its simplicity, this integrator, or to be more precise - integrating shunt regulator, exhibits a dynamic output mpedance that is low enough ($<2 \Omega$ cope with AC currents from interaction at AF , integrator capacitor C_{3} is rated such that the unity gain frequency of the servo loop falls below the audio spectrum, somewhere between 1 and 10 Hz , depending on the transfer ratio of the opto-couplers. D_{4} discharges C_{3}
during switch off and protects the gate of T_{7}. For reliable operation, low leakage at the integrator input is essential, so D_{4} should be protected from light. Zener diode D_{5} is rated at the maximum expected bias voltage adapted to fit a particular design. If some component fails or if nasty test signals have been applied, this diode protects the output stage against

Accuracy

The bias level is very sensitive to mismatches of the transistor pairs and reference currents. Base-emitter voltages $T_{3} T_{4} T_{5}$ and T_{6} respectively should match at least within 0.5 mV . A quad transistor like a MAT04 or
CA3086, selected on low Vos, meets this requirement. For the same reason, $\mathrm{R}_{6}, \mathrm{R}_{8}$ and R_{9} should mat at least within 0.5% as well as the equivalent emitter series resistors, hence R_{7} and R_{10} are rated slightly higher than R_{4} and R_{5}. Since a
MAT04 is equipped with small reverse connected diodes betwee base and emitter, Schottky diodes D D_{2} are added to protect them. Now we come to a moot point: the voltage of 18 mV across R_{1} and R_{2}

which all relies upon, varies linearly with the absolute ambient temperature*. Of course, it varies much less than the junction temperature of the output devices and thermal runaway is precluded, bu clear to me whether this should be regarded as flaw or feature, as one could argue that the decreased transconductance of mosfets a elevated temperatures just needs an increased bias level. Interestingly, a bias control IC from Linear
Technology shows the same temperature dependence, which could not be explained by an inherent shortcoming of the basic circuit. So I concluded that this property has been added on purpose. Asking why, Linear Technology was unable to anybody could shed light on this
${ }^{*} \mathrm{~V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{T}} \mathrm{Ln} 2$, where $\mathrm{V}_{\mathrm{T}}=\mathrm{kT} / \mathrm{q}$, the
thermal voltage (25.86 mV at 300 K).
matter, please let me know.
Experimental results To see if the circuit is generally applicable, I tested it on several combinations of mosfets, all capable of delivering 12 to 20A, but of different types and brands. To
minimise temperature effects, measurements were done at a reduced supply voltage of $2 \times 16 \mathrm{~V}$, the mosfets mounted on a large heatsink with forced air cooling and at a frequency of 1 kHz . Static measurements were done at an even lower voltage,
$2 \times 7.5 \mathrm{~V}$. Since these were very consuming I have done this only in case 1 and 2.
In the first instance, dynamic behaviour of bias current was observed by means of an oscilloscope, but changes at various
output levels were hardly visible and output levels were hardly visible and
difficult to quantify, except in case 1 , which showed an increase of 5% at maximum output power. Instead, I

Fig. 4. Transfer function of the
isolator.

Ripple amplitude of the error signals measured at $\mathrm{V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{pp}}$ and 1 kHz
as well as estimated ripple on bias voltage ($\mathrm{V}_{\mathrm{RPL}}$) at $\mathbf{2 0 H z}$

Case	Type	Manufacturer	$R_{\mathrm{L}}(\Omega)$	$\mathrm{I}_{\text {ERR }}\left(\mu \mathrm{A}_{\text {eff }}\right)$	$\mathrm{I}_{\text {INT }}\left(\mu \mathrm{A}_{\text {eff }}\right)$	$\mathrm{V}_{\text {RPL }}\left(\mathrm{mV}_{\text {eff }}\right)$
1	IRFP240	Int. Rectifier	4	15.9	3.3	12.9
	IRFP9240	Idem	∞	62.4	157.0	568
	2SK1530	Toshiba	4	4.9	<0.1	<0.4
	2SJ201	Idem	∞	3.2	<0.1	<0.4
3	IRFP240	Intersil	4	14.2	1.3	4.7
	FQA12P20	Fairchild	∞	5.0	<0.1	<0.4
4	IRFP240	Intersil	4	7.2	0.2	0.8
	SFH9154	Fairchild	∞	5.6	<0.1	<0.4
	FQA19N20	Fairchild	4	11.6	0.7	2.5
	FQA12P20	Idem	∞	5.1	<0.1	<0.4

used a DVM to measure the ripple amplitude of the error signal before and after the isolator under load and
no load conditions. Next, I estimated he ripple-on-bias voltage at 20 Hz , according to $\mathrm{V}_{\mathrm{RLL}}=\mathrm{I}_{\mathrm{INT}} /\left(2 \pi \mathrm{fC}_{3}\right)$ 20 Hz , because thermal modulation could be disturbing. See table for results.
The first trial was rather disappointing, not to say confusing. The error-function, Fig. 5, is heavily
skewed and ripple currents are high skewed and ripple currents are high
(see table, case 1). Transconductances were reasonably matched - within 20%, so something else spoiled it. It apeeared that the output conductance (Gos) of the IRFP9240 was the culprit. At a drain current of 125 mA Gos is about $5 \mathrm{~mA} / \mathrm{V}$, while the
IRFP240 shows a $\mathrm{G}_{\text {os }}$ of only $0.4 \mathrm{~mA} / \mathrm{V}$ (corresponding to an Early voltage of 25 V and 312 V
respectively). So an increase of output voltage of 1 V - without load - will increase the quiescent current by .mmA. No wonder that the error function is skewed. At higher drain currents the IRFP9240 behaves better: t 1 A for instance, the Early voltage he ripple on $\mathrm{I}_{\mathrm{ERR}}$ becomes much smaller when the output stage is oaded with a low impedance. However, speaker impedances are not ways that low - at resonance up to lon, so a no-load condition has blaming the manufacturer, I cannot recommend this mosfet pair. After all, hese devices were designed for switching, not for driving budspeaker
In the next trial I used a complementary pair from Toshiba, intended for linear applications: 2SK1530 and 2SJ201.

Output current (A)

Due to closely matched ransconductances (within 5\%) and igh Early voltage (over 300V) for both N - and P -channel parts, the results were far better. The error unction, Fig. 6 , is in accordance with the simulation, although skew is
slightly higher and in the opposite direction. Ripple currents were hardly measurable.
In the last three cases I tested several ther samples (courtesy of Fairchild) hich are less expensive, but, as in witching. Results were almost ood as in case 2 and I see no reason not to use these mosfets, except that the higher gate threshold voltage reduces the maximum output power somewhat, that is, without using a boosted power supply for the drive
I have also investigated a few combinations of two 20A N-channe and three 12A P-channel devices. Because no improvements were seen, I will not discuss them any further Using bjts instead of mosfets will robably not work at all, as Spice For lack of Spice models, lateral dmosfets have not been investigated.

Conclusion

Provided that output devices are elected with some care, in particular with regard to trans- and output comes up to all expectations. Since the circuit acts only on the bias voltage and is not intrusive on any other par of the amplifier, it should be easy to designs like mentioned in ref 8 and

References

Finnegan, T, 'Going linear with power mosfets, part $2^{\prime}, E W$, Sep 1992, p. 781.
Self, D, 'Thermal dynamics in audio power', $E W$, May 1996, pp. 410-415.
3. Roehr, W., 'The autobias
amplifier', JAES, April 1982, pp 208-216.
Siliconix, 'Mospower Applicatio Handbook', Chapter 6, pp. 105

Gevel, M. van de, 'Audio power with a new loop', $E W$, Feb. 1996 pp.140-143.
Datasheet LT1166, Automatic bias
system, Linear Technology.
Brown, I. 'Opto-bias basis better power amps', $E W+W W$ Feb. 1992, pp. 107-109
8. Hitachi Mosfet Handbook, Section 6.1, pp. 143-151. 9. Stochino, G.,'300 $/$ /us power' EW, April 1997, pp. $278-282$

TIME MACHINE 2

Accurate time measurement on a budget by John Morrison. In this the second part of John's article, he describes the circuit and gives us the source code.

T
he 16F84 has 13 independent I/O pins. These can be configured individually
by the software to be inputs or outputs. When configured as outputs they can drive LEDs directly.
In this design we require 10 outputs to drive the bar graph display and one input to
read the pulse to be measured. The timer runs from the clock generated by the 4 Mhz xtal, this is divided by 4 internally. Using the maximum pre-scale of divide by 256 we have a counter that runs at 3906 Hz .

; Bar Graph Clock Calibrator. Pic $16 f 844 \mathrm{Mhz}$ Xtal. Fuse=3FF9			
$\begin{aligned} & \text {; Timer } 0+\text { timsb }\left(\begin{array}{l} \text { (16bits) }) \text { contain counter }(3609 \mathrm{cps}) \\ \text { inpin } \end{array} \text { bit }_{\text {porta. } 2}\right. \end{aligned}$			
;			
timer	equ	01	;pic timer address.
timsb	equ	0c	;interrupt counter
msbent	equ	010	
Isbcnt	equ	011	
intvect	jmp	main	
	org	004	
	incf	timsb	;come here on iterrupt.
	bcf	intoon,2	;clr toif
; BarGraph table 0-7 (8 Bar dots)			
table	addwf	02	
	tablw	07f,obf,0d	ff,ocf,of7,ofb,ofd,ofe
main	movlw	Ofc	
	tris	porta	;a0// outputs.
	movlw	00	
	tris	portb	;all B as outputs.
	movlw	07	
	option		;pre-scaler div 256
	movlw	Off	;swith off LEDs
	movwf	porta	;on both
	movwf	portb	;ports.
	bsf bsf	intoon, ${ }^{\text {a }}$; toie Enable timer Int.
mloop	bsf call	intcon, 7	;gie Enable Global Int.
	call	display	
	goto	mloop	
read	btfsc	inpin	;wait for inpin goes low
	goto	read	
	movf	timer,w	;get low 8 bits
	movwf	Isbent	;put to result low.
	movf	timsb,w	;get high 4 bits
	movwf	msbent	;put to result high.
	clrf	timsb	;Clear Int count
	clrf	timer	;Clear Timer count.
till _high	btfss	inpin	;wait for inpin goes high
	goto retur	till_high	

The timer is only 8 bits wide but 3906 ecimal requires 12 bits, and this is where familiar with microcontrollers, an interrupt can be hardware or software generated. This will divert the controller to a preset location in memory where it will process the instructions until it finds a 'return from terrupt', it then returns to where it left of riginally.
So we se every 256 counts, and write an interrupt
routine to increment a memory location. At the end of our pulse count the top 4 bits in interrupt counter plus 8 bits in timer counte should equal 3906 for a 1 second puls.

Source Code

The complete source code is supplied so that you can modify it to suit your needs.
For example if you wish to measure a 10 H pulse width the count expected would be
390 . This is 0186 hex so just change the 390 . This is 0186 hex so just change the

[^2]The Electronics World Book Service offers access to our team of specialist publishing experts. We can order any book or CD-ROM currently in print from War And Peace to the Reference Data for Engineers. All books are delivered free of charge within the UK unless otherwise stated. Contact us at the numbers below:
Telephone: 01737812727 or 01737812676
Fax: 01737813526
Email: salesteam@boffinbooks.demon. co.uk

ELECTRONICS WORLD

Codefefa 130811548
INTERFACING WITH C

ELECTRONICS

WORLD

BOOKS

NEWNES GUIDE TO	
DIGITAL TV	
Richard Brice	
Covering ill sspets of figital television	
multiplex; broddcasting digititl video; consumer	
doog	
2 2ndedition $\operatorname{Sep} 2002 \triangle 304$ prges \triangle HB	
Code 180750657219	£24.99

PIC IN PRACTICE: AN INTRODUCTION TO THE PIC MICROCONTROLLER David W Smith	
An exploration of the PIC microcontroller, designed to be used at a variety of levels. It introduces the reader to the range of tasks the PIC con perform and makes use of readily available components. The PIC used in the examples is the re-programmable EEPROM 16C84/16F84.	
Apr 2002 ± 261 poges \triangle P	
Code HB 0750648120	£14.99

An introduction to network analysis

Computerised circuit simulators are useful tools, but they are not infallible. Here, John Ellis provides an insight into how network analysis works, with the aim of giving you a better idea of how to assess the usefulness of the results of circuit simulations. In the second part of this article, John will also outline how you can produce your own basic simulation tools.

T
oday, circuit simulation is such an integral part of electronic design - whether for integrated circuits, discrete designs or even printed circuit boards - that andication that the design process, and technology is commercial, competitive and industrialised where the principles have become secondary to designing new circuits or products that put transistors to use.
Specialist software has become available to enable circuits with thousands or millions of transistors to be simulated with relative ease. The price that is paid for this
commercialisation is that the simulation a price tag. To an extent, only companies can afford to pay a price tag.
for them.
Yet the principles of simulation are quite
straightforward. It is possible to write programs on a PC to address some of the simpler tasks without too much difficulty - particularly for small-signal analyses. Transient analyses over large voltage swings causin
The SPICE - Simulation P
Circuit Emphasis - program ${ }^{1}$ is perhaps the most wide used simulator. Although a public domain program, Berkeley lists charges of $\$ 150$ for version 2 listings and $\$ 250$ for version 3 on their web site - at least as of May 2000. Commercial versions make it easier to use, but ar

This set of articles introduces the sin
circuit specification to methods for solving the equations and illustrates the solutions for some example circuits. As such the principles described are not new: the purpose of his article is to provide an overview of the simulation process.
Further
emphasised, quite basic and do not equate to a full commercial simulator. A commercial simulator will hav graphical user interface, or GUI, accepting a circuit diagram for the input which is drawn more or less as normal. With the simulator described here, you will have o enter the equations for the nodes manually which will deal with extreme non-linear behaviour in transistors. For example, while the basic exponential equations can be handled without much difficulty, in saturation, the gain rapidy collapses, making the collecto
ormal active mode. The algorithms here are somewhat
basic, but respond to short time-stepping.
In this article, I have limited discussion
In this article, I have limited discussions to resistors,
capacitors and the well-known SPICE capacitors and the well-known SPICE -type of model
he bipolar transistor. Bipolars form the bulk of most discrete circuit designs, but MOSFETs are dominating th transistor and IC market in many areas and perhaps should be considered in a separate article.
The bipolar SPICE model has served very well for many years since its introduction (op cit). It continues to describ he types of transistor used in amplifiers, such as the today regarded as somewhat lacking for very high speed transistors, such as used in the mobile phone industry, which have f_{T} of 10 GHz or more, but it is to its credit that it has withstood the test of time for so long.

How to simulate a circuit

There are several steps to simulating a circuit. First, the There are several steps to simulating a circuit. First, the
circuit has to be described in terms of its components. Then, expressions are required for each of those components to describe the electrical behaviour in terms of voltages and currents. Lastly, the resulting set of equations has to be solved in a self-consistent manner.
Starting with the circuit diagram, every interconnection specified as a 'net list',
In the SPICE model, a node is simply listed as a number with the related node numbers given as appropriate to the component, followed by a letter for the component type such as R for resistor - and finally its value. The result is set of nodes with the components described between each leading to a set of equations describing the electric no Hence the number of equations required is dictated by the number of interconnections in the circuit.
There are two approaches to simulation that provide complementary information about a circuit. These are the frequency-domain and time-domain methods. In the simulation world, the
information. The frequency-domain method is based on an AC smal signal model, while the time-domain approach uses discrete time steps. The frequency-domain method gives the frequency response of a circuit, but no absolute value
fixed and do not change with voltage
The time-domain approach will provi behaviour, distortion characteristics, and transient information for - in principle - any arbitrary input waveform. The frequency-domain method is useful for checkin whether an amplifier has a flat response, or whether there are some peaks or other surprises in its performance, while
the time-domain solution will provide absolute distortion and other information, but for a pre-defined input waveform.
Time-stepped simulation will thus provide the most detailed analyses of circuits. For long complex wave-forms though, it may take a while as there would be many calculations to make. For example if the response over a 1
second period were needed, but time steps of 1 1 s were required for accuracy, at least 1 million calculations would have to be made.
In some simulations, the time steps taken need to be varied according to the changes occurring in a circuit, so that where nothing much changes the time steps can be approach, possibly with 'trial and error's so that if a time step is taken which is too large to resolve accurately, finer time steps can be taken from the previous solution.
Component descriptions
Resistors. Resistors are almost too trivial to mention, but hermulation of the model. In a circuit two nodes N^{2},
N_{2} with a resistor between them, Fig. 1, have a description for the current which is just
$i=\frac{V_{2}-V_{1}}{R}$
where V_{1} and V_{2} are the voltages on the nodes and R is the resistance. Current is taken to flow in the direction 'there' to 'here', so if node 1 were 'here', the current is as given in equation 1 .

Capacitors. Capacitors are described in two ways, either as an impedance, for for fequey-domain anaysis, differential, for time-domain analysis. The
$Z_{c}=\frac{1}{2 \pi f C}$
Here, Z_{c} is the impedance of the capacitor, f the frequency
and C is the capacitance
The differential uses
$i=C \frac{d V}{d t}$
where C is the capacitance and $d V / d t$ is the rate of change of voltage across it with respect to time. In Fig. 2, on nodes N_{1} and N_{2}, for example, the rate of change of voltage with time is

$$
\frac{d v}{d t}=\frac{\left.\left(V_{2}-V_{1}\right)\right)_{t}-\left.\left(V_{2}-V_{1}\right)\right|_{t-1}}{l_{t}}
$$

where t is the time at the current time step; $t-1$ is the previous time step, and $d t$ is the difference between the
time steps. The current is then

$$
i=C \times \frac{\left.\left(V_{2}-V_{1}\right)\right)_{t}-\left.\left(V_{2}-V_{1}\right)\right|_{t-1}}{d t}
$$

Because the previous time-step solution leaves the capacitor with a charge on it, it is a little simpler to write
$i_{c}=\frac{C\left(V_{2}-V_{1}\right)}{d t}-\frac{Q!_{t-1}}{d t}$
(6)
where $Q \mid t-1$ is the charge on the capacitor at the previous teration $(t-1)$.
Inductors. I have not simulated any inductors here, but it is perhaps possible to describe inductors in a similar fashion to the capacitor. The small signal approach is very easy and uses
$Z_{l}=2 \pi f l$

For the transient simu here is a stored mimulation, instead of a stored charge, better symbol I designate by H. Then for a change in current the induced voltage
$V=-L \frac{d i}{d t}$
Following the same time steps as for the capacitor

$$
\begin{equation*}
V=-L \frac{i_{t}-i_{t-1}}{d t} \tag{9}
\end{equation*}
$$

and the stored magnetisation
$H=L^{i_{t-1}} d t$
so

$$
\begin{equation*}
V=-\left(L \frac{i_{t}}{d t}-\frac{H_{t-1}}{d t}\right) \tag{11}
\end{equation*}
$$

For any change in current, H will change, and if the current were to become constant, there could still be a stored energy represented by H. At the next time step H is apdated by $V . d t$ - rather than i.dt for the capacitor charge
which for a constant current will not alter H. This correctly gives an induced voltage if, for example, the current were to be switched off.
Note that the current must be referenced towards the node to obtain the correct signs.

Transistor models

Transistors are rather more complicated. The most widely used model is the bipolar algorithm used since the early used model is the bipolar algorithm used since the eary
1970s for SPICE. Actually, SPICE is a circuit solving environment, while the individual components are described using device models.
The bipolar transistor model is based on the Ebers-Moll formulation but extended by Gummel and Poon ${ }^{2}$. There are several equations to describe a transistor, which These can be found in SPICE manuals, or the SPICE code from Berkeley, and are discussed in bipolar device books ${ }^{3,4}$. In the following discussion, SPICE model really means 'the bipolar model used in SPICE'.
In a basic SPICE bipolar formulation, around forty
parameters describe the transistor Each
pave its characteristics described by a set of SPICE parameters known as the SPICE model. Most manufacturers provide the SPICE model values for their transistors.
In addition to the SPICE parameters, each transisto requires an additional set of variables to describe the particular device's operating conditions. For example, the collector resistance internal to the device - basically the silicon limiting resistances - and a saturation current for the junctions.
A particular transistor will need to refer to these fundamentals, which will vary for each type of transistor
used, but also to the voltages on the device such as $V_{b e}$ and $V_{c b}$, which may be different for each particular transistor

Formulating in C

Using C for the simulation program, the two sets of data required to describe a transistor can be accessed easily using pointers.
Pointers can
Pointers can be set up to refer to the model file and
particular variables by defining double precision ${ }^{*}$ trmodel $[n]$ and ${ }^{*}$ trvar[$\left.n\right]$, where n is a number equal to or larger than the maximum number of transistors required. Alternatively, double-deferred pointers can be set up for a true 'unlimited' simulation.
Now, for a particular transistor m the model pointer, trmodel(m), is set to point to the model file, from which more than one transistor may refer to the same SPICE file. The individual variables however, must be set separately for each transistor which are referenced from the pointer base trvar $[\mathrm{m}]$, where m is again the number of the particular transistor in the circuit. Thus a three-transistor SPICE files.
If the first and last transistor were a BC547, trmodel[0] and trmodel[2] should point to the same BC547 model file but trmodel[1] points to a BC557 file. Individual parameters are referred to by name, which is actually pre
defined as an index. To accomplish this, each SPICE defined as an index. To accomplish this, each SPICE For example, r_{e} might be set to 20 , meaning that the SPICE model parameter 'RE' is the 20th parameter from the model base trmodel[\#].
The parameter is accessed using trmodel[0][re]. Then, he individual variables will be accessed using a similar set of references such as trvar[0][vbe].
A snag is that it is not always easy to remember, at first, the operating voltages - and which are model parameters like $I_{s a t}, r_{e}, r_{b}$. Both are needed to describe a transistor in a
It was not the intention to describe the SPICE equations in this article. However, some discussion to illustrate the type of calculations SPICE performs is worthwhile. given base-to-emitter voltage $V_{b e}$ is

$$
\begin{equation*}
I_{c}=I_{s a t}\left(\left(\exp \frac{V_{b e}}{n f \times V_{t h}}\right)-1.0\right) \tag{12}
\end{equation*}
$$

where $I_{s a t}$ is the saturation current for the device, $V_{t h}$ is the thermal voltage $\mathrm{k} T / q$, (k is Boltzmann's constant, q the emperature) and $n f$ is the ideality term.
For some first-order simulations, using the transistor in the forward active region, this may suffice. In fact, this is why I always refer to a transistor as a voltage controlled as a current amplifier.
SPICE adds similar expressions to equation 12 for the collector-to-base voltage to reflect the second junction.

There are also additional terms for the collector to base diode - reflecting the extrinsic collector to base diode The basic operation is fairly symmetrical in terms of applied voltages though the forward and reverse parameters will usually lead to quite different results between forward and reverse bias. This basis for transistor
modelling was proposed by Gummel and Poon (op.cit). who included a modification for I_{c}, q_{b}, to describe gain fall-off at high currents from high level injection.
Base current comprises four terms. The first is the forward current from equation 12 divided by the forward gain parameter β_{F}. The second is a low-current term while
the third and fourth are terms for the collector to base diode. The third is the collector reverse current as described for the collector - the collector to base diode currents are the same but opposite signs - divided by the reverse gain and the fourth the low current gain
characteristic. The collector and base current account for some dozen or so parameters.
Once the DC operating point is established, the capacito
junction capacitances and transit times. These control the frequency response.
The two components making up a capacitance in a junction are the depletion capacitance, which varies with bias voltage with a power law usually between the ideal half (square root) and a less ideal one quarter. The

(13)
where m_{j} is the power, V_{j} the applied voltage, $V_{j 0}$ the built in voltage and $c_{j 0}$ the capacitance for zero bias. The parameters $V_{J x} M_{J x}$ and $C_{J x}$ where x is for E and C, for the emitter or collector, are supplied in the SPICE model file. An integrated circuit transistor also has a third junction to the substrate, designated by S.
For high reverse biases, V_{j} is negative and thus decreases the capacitance while for forward bias the term $V_{j} / V_{j 0}$
approaches 1 . To stop a numerical overflow as well as generating an unrepresentatively large capacitance, a term F_{C} limits the effective bias to a fraction, maybe 90%, of $V_{j 0}$. This parameter, as with all the others, is characterised to give the best fit to the transistor by the manufacturer. At the same time, however, there is an increasing capacitance arising from stored charge - current carriers -
within the transistor. This is expressed in terms of forward transit time (all carriers take the transit time to cross) and increases in proportion to the current and is the so-called diffusion capacitance. The net junction capacitance is the sum of the depletion and diffusion capacitances. There are terms for the base and collector junction capacitances, and terms for the transit time as a function of two terms separated by the effective base resistance, and all of these terms add up to the forty or so in the model. The transistor equivalent circuit is quite relevant to the

discussion on the model. There are two shown in Fig. 3(a) and (b) for the standard and small-signal models respectively. The main difference between these is that the
small-signal model contains equivalent resistances for the mail-signal model contains equivalent resistances for the input and output
standard model.
The small-signal model requires these impedances to be determined from the differentials of the DC equations. It will provide relative gain as a function of frequency. The large-signal model will calculate the currents and voltag 'effective' resistances.
In effect the large-signal model is a series of incremental small signal model changes and will accommodate the 'large signal' behaviour automatically.
In these equivalent circuits, $V_{b e}$ and $V_{c b}$ are the applied base to emitter and collector to base voltages respectively. Internal resistances of the transistor are described by $r_{b b}$ representing the external to intrinsic base resistance. The resistance arises because the base current has to flow laterally in the base. It is a measure of the resistance of the
base region, Fig. 4. Sometimes this is called 'rbb', but the base region, Fig. 4. Sometimes this is called 'rbb' ${ }^{\text {' }}$, but
SPICE equivalent circuit usually refers to it as 'rbb'. SPICE uses two terms called 'RB' and 'RBMIN' to
account for the change in $r_{b b}$ with bias.
Resistance 'RB' is the value of the base resistance under zero bias, normally its maximum value, while 'RBMIN' is the lowest value that $r_{b b}$ can
$r_{b b}$ to 'RB' and 'RBMIN'
Resistances 'RE' and 'RC' represent the fixed resistances associated with the contacts and diffusio resistances, and 'r0' the output resistance which relates roughly to the Early voltage in the large-signal model. Collector-to-base capacitance is spitwo which are lumped into the in
base ($c_{b c x}$) contact
ase $\left(c_{b c x}\right)$ contact.
To illustrate the difference between the small and large signal models consider a BC547B biased at 2 mA . The DC conditions may have $V_{b e}=0.64 \mathrm{~V}$ for both models, and $i_{b}=6.7 \mu \mathrm{~A}$. A small change in $V_{b e}($ say 1 mV$)$ leads to a change in base current of 25 nA .
The large signal model will calculate the new base current for a given voltage at a particular time step,
whereas the effective input impedance is a resith $1.0 / 25 \mathrm{nA}$ or $4 \mathrm{k} \Omega$. This input impedance is h_{i}, which is just the small signal change of base current for a small
change in base voltage.
The value of $h_{i e}$ used in the small signal model has to be

Fig. 4. Diagram of bipolar transistor showing mode parameters. Total base-emitter capacitance is $c_{b t}$ whil represent contact resistance from the metal to the semiconductor
determined for the particular bias point of the transisto The input impedance $h_{i e}$ is dependent on the transistor bias, as is $h_{f e}$, the forward gain; g_{m}, the forward transconductance and $c_{\text {bdiff }}$, the diff usion capacitance. So
for any small signal model these must be first calculated for any small signal model these must be first calculate from a static or DC solution and either then perturbing
these by a small amount to determine the small-signal arameters (numerical differentiation), or evaluating th ifferential directly,
A DC solution is also required for the transient model in DC to establish the starting conditions. So it follows defined for either simulation.

A DC solution

The DC problem is easier to consider as it uses a very basic equivalent circuit that has no capacitors in it as hown in Fig. 5.
The base and collector currents are shown as current ources. Resistors R_{E} and R_{C} can be lumped in with the emitter and collector load resistances. This reduces the number of unknowns in each transistor circuit to
essentially two: the base current and base voltage. Formulation of the equations to write the emitter voltage in terms of I_{e} is necessary though. This is $\left(1+h_{f}\right) i_{b}$, and R_{E}, and the base voltage ($V_{E}=V_{B}-V_{b e}$), and similarly for the collector to base voltage.
The DC solution generally has to be iterated to obtain the self-consistent solution which meets both the circuit requirements and SPICE model equations for those bia
One way to solve the DC problem is, having set the model for each transistor in the circuit, to guess the bias voltages $V_{b e} V_{c b}$, and gain. Then, the SPICE model is called which provides those bias condition
Friting the matrix these values are stored temporarily collector voltages being 'known' quantities, the circuit conditions are calculated. This leads to a collector and base current being defined which is closer to the circuit values than perhaps the original SPICE calculation Now the calculations are iterated. The collector curren from the SPICE simulation. If the current from SPICE is lower than the circuit current, the base-emitter voltage is increased; and if higher, reduced.
The new collector-base voltage corresponding to the circuit conditions is used, basically adjusting for the new base voltage. Then another loop comprising a SPICE
calculation followed by a circuit simulation is executed. Again the currents are compared and will eventually converge providing the base voltage adjustments are set accordingly. This approach is a type of relaxation method with a search test included.
One iterative method is to use a pure 'binary search whereby the base voltage is adjusted up or down by adjustments become smaller as the convergent value approached, for each input condition. This should reach any desired accuracy within a finite number of iterations,

typically 8 , giving 2^{8} reduction from the original difference Another is to use the fact that the collector current is exponentially dependent on base voltage and adjust the bas voltage by the voltage

$$
\begin{equation*}
d V_{b e}=V_{t h} \log \frac{I_{c(C)}}{I_{c(S)}} \tag{14}
\end{equation*}
$$

Here, $I_{c(C)}$ is the current determined from the circuit and $I_{C(S)}$ base voltage so that if the SPICE calculation is below the circuit current the voltage will increase $V_{b e}$. This is usually able to resolve the two conditions within four or five iterations, but will take more at high or low currents when the exponential law of the junction changes, unless this is predictive adjustment.
At this point we can consider the small-signal model.

Small-signal model

The small-signal AC analysis technique begins by
determining the impedance of each component in the model A frequency response' will require the gain and phase to b of interest.
Each solution is calculated using an AC (sinewave) signal so that components such as capacitors can be represented by an impedance at that frequency. By carrying out a number of these simulations over the desired range the bandwidth of a ircuit can be determined, along with any untoward

Complex numbers. In any reactive component, the voltage will be out of phase with the current. The current and voltag can be represented by an $x-y$ graph where y is current and x voltage. The resultant impedance is the vector sum of the where the current leads the voltage.
Other textbooks may plot the current on x and voltage as $-j y$, but the important point is the phase relationship. I prefer to keep voltage on x as the independent variable. Arguably for a capacitor the current is the independent variable. Impedance of a capacitor is Z_{c} as given in equation 2. impedance has to be obtained from the vector resultant. For single resistor and capacitor, this is trivially the square root of the individual impedances squared. For several components, this approach rapidly becomes unwieldy It has been known for a long time that complex numbers can be mapped onto an $x-y$ graph where y represents the imaginary term, resulting in an exactly equivalent vector
diagram to the simple impedance
 graph just mentioned. But now any number of impedances can be handled by following the rules of adding complex numbers. Each impedance is then
represented by a complex number represented by a complex numbe
comprising a real and imaginary term, represented by $x+j y$ where j is the square root of -1 . The rules of complex number arithmetic are straightforward if not quite as simple as ordinary arithmetic. Really, complex numbers make calculations easy.
A capacitor is represented by $(j \omega C)$, or $-j /(\omega C)$ to be more aseful. This maps the capacitor onto the im
direction.

To illustrate the use of complex numbers a basic resistor To illustrate the use of complex numbers a basic re
capacitor low-pass filter circuit as shown in Fig. 7 is simulated. Writing the nodal equations there are just $V_{\text {in }}$ and is the resistor current
$i_{r}=\frac{V_{\text {in }}-V_{\text {out }}}{R}$
and the capacitor current
$i_{c}=\frac{V_{\text {gnd }}-V_{\text {out }}}{Z_{c}}=-\frac{V_{\text {out }}}{Z_{c}}$
Note that we consider the node at $V_{\text {out }}$ with all currents written entering the node as shown in Fig. 7 such that we can write the sum of all currents to be zero. This is only
Kirchhoff's current law.
In this example we could also have written $i_{r}=i_{c}$, but note that i_{r} and i_{c} have 'directions'. If we use $i_{r}=i_{c}$ the directions are the same, but writing $i_{r}+i_{c}=0$ requires that the current flows are towards each other.
In more complicated circuits with several components connected to one node it is appropriate to consider al
currents entering that node and equating them to zero Summing these currents and setting them to zero gives
$V_{\text {out }}\left[-\left(\frac{1}{R}+\frac{1}{Z_{c}}\right)\right]+\frac{V_{\text {in }}}{R}=0$
This expression has the form which will be used in all subsequent simulations. In this case $V_{\text {in }}$ is known and is moved to the right-hand side to give
$V_{\text {out }}\left[-\left(\frac{1}{R}+\frac{1}{Z_{c}}\right)\right]=-\frac{V_{\text {in }}}{R}$
Using ordinary numbers, the only way we can combine the two impedance terms is by the vector sum. Using complex numbers we can add them directly. The complex version of resistor is $(R, 0)$ where the two terms represent the real and imaginary parts, in that order, while the complex impedance of the capacitor is $\left(0, Z_{c}\right)$.
In the above equation we have inverse impedances.
Defining the complex impedances

$$
\begin{align*}
& z_{r \text { real) }}=R \\
& z_{r \text { (imas) }}=0 \\
& z_{\text {creal) }}=0 \tag{20a}\\
& z_{\text {c(imas) }}=\frac{-1}{2 \pi f_{c}} \\
& \text { we can write } \\
& V_{\text {out }}\left[-\left(\frac{1}{z_{r}}+\frac{1}{z_{c}}\right)\right]=\frac{-V_{\text {in }}}{z_{r}}
\end{align*}
$$

In the second part of this article, I will go into more detail
about how the concepts of network analysis are implemented
in software. in software.

References

1. SPICE, Simulation Program with Integrated Circuit Emphasis, introduced by L.W. Nagel and D.O. Pederson, 16th Midwest Symposium on Circuit Theory, April 197
H.K. Gummel and H.C Poon 'An Integral Charge Control Model of Bipolar Transistors', Bell System Technical Journal, 49, 827, 1970
2. P. Ashburn, 'Design and Realisation of Bipolar

Transistors', Wiley, 1988
D. Roulston, 'Bipolar Semiconductor Devices', McGraw Hill, 1990

NEMPRODUCTS

Please quote Electronics World when seeking further information

Fast Ethernet switches Zarlink Semiconductor has announced availability of fast Ethernet switching chips aimed
at supporting high-speed at supporting high-speed streaming video and VoIP (voice over Internet protocol) The six-device ZL50408 family consists of eight-port Fast Ethernet switches with a Gigab uplink, as well as five and nii managed or lightly managed options, the switches provide full wire-speed forwarding at layer two and classification at layers two through four. The ZL50408/407 devices - are expandable to 16 ports. The family provides fine-granularity rate control - down to 16kbit/s increments - on both ingress and egress ports. The switch features such as congest management at the input and output of each port, patentpending port security and filtering, IEEE's 802..IX Extensive Authentication Protocol, 4K VLAN (virtua
local area network), 4K IP multicasting, advanced statis monitoring, and link aggregation with the capab to trunk ports across.chip
Zarlink
www.zarlink.com
Tel: +44(0) 1793518000

Heat compensated

audio transistors
The Sanken SAPMO1 series of emperature-compensated aud Allegro MicroSystems. The 150 V p-type and n-type devices use Sanken's Mosfet technology to offer highly accurate and responsive temperature
om-chip diodes. In addition, they feature built-in push/pull circuitry that eliminates the need to trim the idling current in audio amplifiers using externa components. Absolute

hardware, software, and installation instructions. The wafer reader's algorithms and electronically-controlled efficiency by reducing no-read on hardmarked, softmarked, or even super-softmarked codes that have been degraded by process effects. The ability to read new compact code tandards, while still being able to read older bar codes,
enhances prober versatility, said
SAPMO1 series are: drainsource voltage 150 V ; gate source voltage $\pm 20 \mathrm{~A}$; and pulsed drain current $\pm 80 \mathrm{~A}$ aximum power dissipation is 150 W at 25
www.allegromicro.com
Tel: +33 (0) 45051235

Prober retrofit kit for

 wafer IDCognex has announced the InSight 1700 series prober retrofit kit. The kit features the 1700 series wafer readers, which read alphanumeric and 2D matrix codes for the tracking wafers
through the production The kit comes with all
the firm. Ethernet
communication allows for remote setup, data access, and process monitoring on the test floor.
Cognex
ww.cognex.com
Tel: +33(0) 1908206033

4A PCB connectors

stack up together
Hypertac Interconnect has added a stacking option to its standard range of HPH high-density PCB connectors. A minimum gap of 9 mm between PCBs can be achieved by using a low-profile standard female connector in comparison to full height

version of 16 mm . Stainless steel hardware with optional polarising is available on all variations to discriminate mating connectors from one guiding system for correct mating, even in blind applications. The connectors are self-jigging when used in multi position applications. The guiding hardware is pressed in to specifically placed mounting
holes with the connector fitting around this. Both the insulator shroud and extended guides provide protection against contact damage during manufacturing
Hypertac
Tel: +33(0) 84508033

Transistors for fet drivers

Complementary dual biplar

 and Mosfet parts dual bipolar introduced by Zetex in its$3 \mathrm{~mm} \times 2 \mathrm{~mm} \times 1 \mathrm{~mm}$ micro push-pull circuit topologies

the transistor pairings create ow cost, high performance power gate drivers. Providing current and fast switching, the ZXTD4591AM832 offers a 40 V rated NPN and PNP combination collector curren of 2.5 A and a maximum up to 2 A , the gain of the two ransistors is also high, respectively 200 and 160 at 1A collector current. The Mosfet equivalent ZXMC3AM832 package Trench Mosfets that combine low on-resistance with enhanced rise and fall times Zetex ww.zetex.com
Tel: +44(0) 161622444

NEWPRODUCTS

Please quote Electronics World when seeking further information

Stereo headphone DAC has low power
Wolfson Microelectronics has introduced the WM8759, a low integrated headphone driver. It suited for use in the next generation of portable and hom
music players, and digital televisions. The WM8759 provides up to 50 mW headphone power, supporting 6- to 24 -bit word data inputs a p to 192 kHz sampling rate. Operating on split nalogue/digital power supplies, consumption down to 20 mW on 2.7 V supplies, less than $10 \mu \mathrm{~A}$ in standby, but supporting large output power from the headphone driver. The device has been rated at 100dB signalweighted at 48 kHz with -88 dB THD driving a line load and 72 dB THD driving 16Ω headphones. The WM8759 includes a hardware control data formats, a serial interface port, digital interpolation filters, nd multi-bit sigma delta modulators.
Wolt son Microelectronics Tel: +44(0) 131272 .

Fibre access with redundant architecture Data Device Corporation has Fibre Channel network interface controllers (NICs). The FC75000 Fibre Access NIC features a dual redundant architecture with autonomous failover or dual independent memory message latency deterministic autonomous message scheduling, and built-in avionics upper layer protocols on conduction cooled PMC card making it ideally suited for the most rigorous military
applications. The series of conduction cooled Fibre Channel NICs operate over a wide -40 to $+85^{\circ} \mathrm{C}$ temperature ange.
www.ddc-web.com
40in. LCD for TV and display information Torisan Sanyo has bought out a mproved version of its 40in. FTLCD module for television and public information display 71 N 32 is lighter by 2.3 kg and ffers a response time of 8 ms making it suitable for display of

16Mbit SRAM cuts size in half

Renesas Technology has a range of low power 16Mbit approximately $32 \mathrm{~mm}^{2}$. The small die size is achieved through combining an SRAM

R1LV1616RBG
cell using a thin film transistor and a DRAM cell
using a stacked capacito using a stacked capacitor.
First devices in the range comprise the 16 Mbit RILA1616R series (1.8 V version) and RILV1616R series (3V version). Dubbed SuperSRAM, the memory cell is approximately half the size of the firm's CMOS SRAM using a conventional six transistor structure (when employing the same process Unlike pseudo static RAM which employs DRAM large-capacity applications, SuperSRAM does not require refreshing, said the company As with conventional SRAM,
information stored in a memory cell is automatically maintained by means of the load transistor and driver transistor. Data retention current is $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$. Two external voltage versions of the SuperSRAM are available on a metal mask option basis: the 1.8 V (1.65 V to 2.3 V) (2.7 V to 3.6 V) RLIV 1616 R series. Both are housed in two different types of package, a 52 -pin TSOP ($10.79 \mathrm{~mm} x$ 10.49 mm) with a 0.40 mm pin pitch, and a 48 -ball fine-pitch a 0.75 ball pitch. Renesas www.renesas.com Tel: +44(0) 1628585161
television and other video format images without streaking or blurring. The panel offers a
full colour display of up to 16.7 million colours with a resolution of 1280×768 (WXGA) and a contrast ratio of $600 ; 1$. Luminance of $500 \mathrm{~cd} / \mathrm{m}^{2}$ combined with its contrast make
it suitable for use in areas where the ambient light levels might wash-out other displays. Minimum backlight life is 50,000 hours, reducing lifetime
costs when compared with costs when compared with alternatives such as plasma
displays, claims the company. displays, claims the company
Plans exist to develop much larger and improved versions of TFT LCD module in the future for these applications.
Torison Sanyo
www.displaze. www.displaze.com
Tel: $+44(0) 1296469$

DSL platform gets

 DSLAM1.1 data path Wintegra has added a DSLAM1.1 data path software release 1.1 data path soft tware release as is aimed at DSLAM chassisbased line cards and uplink cards. Using the fabless firm's internal packet processing engines the DSLAM 1.1 data path software release provides as multicast NAT VL AN support and enhanced deep packet classification, all with scalable performance. It is factory hardened and provided as a shrink-wrapped package no up-front NRE fees Wintegra
www.wintegra.com Tel: +44(0) 1698404885
Power Mosfet controller for 42V automotive systems The A3925 power Mosfet controller from Allegro MicroSystems is for use in 42 V automotive applications
involving high-power involving high-power motors. It
provides six high-current gateprovides six high-current gate-
drives capable of driving a wide range of power N -channel MOSFETs. Bootstrap capacitors provide a steady supply voltage over a varying battery input

NEWPRODUCTS

Please quote Electronics World when seeking further information

range. Direct control of eech ate output is control of each TTL compatible inputs. A different amplifier with two sample-and-hold outputs is integrated to allow accurate measurement of the low-side diagnostic fault outputs can be continuously monitored to protect the driver from short ircuits to battery or supply,
bridge-open, all undervoltage conditions, and therma shutdown. Operating
temperature range is -40 to temperat
$+135^{\circ} \mathrm{C}$. Allegro Microsystems

Buck bias regulato

 with 75V input National Semiconductor is offering its smallest high-voltage buck bias switching regulator to satisfy housekeeping or bios power needs in next-generation -48 V distributed and battery powered systems. The LM5007 is a buck bias regulator which steps down a high-voltage (up to 75 V) primary-side power supply and produces a low voltage (10 V typical) bias supply forsecondary-side control de The device contains an 80 V nchannel power Mosfet rated at

0.7 A peak that can be switched at high frequencies (up to 500 kHz), allowing the use of a small output filter to complete a bias supply design that sources up to 0.5 A continuous load current. The device is available in a $4 \times 4 \mathrm{~mm}$ 8-pin chip-scal package. According to the upplier, the control scheme

GPS receiver with broad beam antenna

broad antenna beam width is designed to provide a more accurate GPS fix. The position fix is normally accurate to within 10 metres worldwide. The device's serial data interface (RS232 and 3.3 V ground power connections are made via on
standard 14 -way header It does not require a ground plane. Operating on the GPS LI-band (1575.42 MHz) the GeoHelix antenna design is based on copper track
deposited on to a smal ceramic cylinder, which are individually and automatically laser-trimmed for optimum frequency response. The antenna-
receivers are fully mounted side-by-side in combined applications such as Blue tooth and GSM without loss of performance. A
development kit is available which allows the more the pre-emptive real time
operating
Sarantel
www.sarantel.com
Tel: +44(0) 193367056
deployed in the LM5007 can eliminate the need for loop
compensation while offering a compensation while offering
very fast transient response using an ON-time that is inversely proportional to the input line voltage $\left(\mathrm{V}_{\text {in }}\right)$. This produces a relatively constant
and easily filtered switching and easily filtered switching
frequency. An intelligent current limit is implemented with a forced OFF-time, which is inversely proportional to $\mathrm{V}_{\text {Out }}$. National Semiconductor www.national.com

Programmable output power module in slot Lambda has expanded the output options for its Vega series with the addition of two wide-range programmable output modules provide designers with a programmable output of 0.25 V

to 7 V at 30 A and 0.25 V to 32 V at 8.5 A respectively. The modules occupy a single slot on the Vega chassis. They offer overvoltage protection and ca be fitted with fast-on or screw terminal output connectors. The modules also offer a choice of either resistance programming of the output, between 0 and $32 \mathrm{k} \Omega$, output, between 0 and 5 V , Both programming types are available in four variants: inhibit with fixed current limit; inhibit with program current limit ($0-5 \mathrm{~V}$), enable with fixed current limit; limit $(0-5 \mathrm{~V})$. Power density is $0.35 \mathrm{~W} / \mathrm{cm}^{3}$ and there is no minimum load requirement. Lambda
Tel: $+44(0) 1271856666$

OSCILLOSCOPE FFT ANALYSER VOLTMETER RECORDER

The Handyscope 3 is a powerful and versatile two channel measuring instrument with an integrated function generator.
${ }^{\circ}$ USB 2.0 connection (USB I.I compatible)
${ }^{\circ}$ sample speed up to 100 MHz per channel
${ }^{\circ} 8$ to 16 bit resolution (6μ Volt resolution)
${ }^{\circ} 50 \mathrm{MHz}$ bandwidth

input sensitivity from 200 mVolt up to 80 Volt large memory up to 131060 samples per channel ${ }^{\circ}$ four integrated measuring devices
${ }^{\circ}$ spectrum analyser with a dynamic range of 95 dB
${ }^{\circ}$ fast transient recorder up to 10 kHz
${ }^{\circ}$ several trigger features

- auto start/stop triggering
${ }^{\circ}$ auto disk function up to 1000 files
${ }^{\circ}$ auto setup for amplitude axis and time base
auto trigger level and hysteresis setting
${ }^{\circ}$ cursor measurements with 21 read-outs
${ }^{\circ}$ very extensive function generator (AWG) $0-2 \mathrm{MHz}, 0-12 \mathrm{Volt}$

for more information, demo software, software, source code and DLL's visit our internet page: http://mww.tiepie..nl

NEWPRODUCTS
Please quote Electronics World when seeking further information

profile systems requiring gain, reference voltage and bias mode biasing in RF power amplifiers and gain adjustment in audio applications. Other arget applications include signa conditioning circuits to set zero sfset and span correction process controls requiring parameter retention. parameter reten
Xicor
www xicor com
Tel: +44(0) 1993700544

IDE improves data

 visualisation Green Hills Software, the supplier of real-time operating systems and embedded softwar evelopment tools, has released he latest version of its integrated developmentenvironment (IDE) for embedded developers. Multi DE 4.0 features new data isualisation, workspace management and low-level and bare-board debugging featu development activities, rang from connecting to, exercising nd testing new boards through advanced application debuggin nd project management. The improve developer productivity over more aspects of the software development process, says the supplier. The Workspace Manager provides graphical interface for managin sequences of commonly used
actions within the IDE. Also the Multi Editor supports complete cross reference-browsing capabilities without the need fo a compiled or linked program and it locates function rototypes included in heade required function signatures while typing, without requiring ny previous configuration. Multi 4.0 will support PowerPC ARM, MISS, x86/Pentiu K/Coldfire, V800 and well as native development for Windows, Solaris, HP/UX and Linux.
Green Hills Softwar
www.ghs.com

Ultra-fine pitch probe tests down to 0.5 mm centres
The P706 from Peak Test Services is an ultra-fine pitch test probe for testing
components at centres down to 0.5 mm (0.02 inch). According to the supplier, the probe is specifically designed for testing boards using ball grid array,
multi-chip modules and other fine-pitch packages. The P706 has a gold-plated 4-point crown measuring only 0.25 mm in diameter, a working travel of 0.65 mm and a spring force of 0.2 N .
PeakT

Peak Test Services
www.thepeakgroup.com
Tel: +44(0) 1462475600

Isolated approach to

 POL converter design Vicor has introduced its first in a range of isolated point-of-load (POL) power converters which is designed to sit on its factorised bus architecture. The power module supplier is responding to the need for more ranging current levels on PCB designs with a new type of low current power regulator which can supply voltages ranging from 5 V down to 1 V scatteredabout the PCB at positions close about the PCB at positions close
to the point-of-load. Vicor's approach is to introduce a family of isolated point of load devices. It believes there is a problem with ground currents, generating
unwanted noise with the more

JOHN RADIO ELECTRONIC TEST AND COMMUNICATION EQPT. MASSIVE RETIREMENT CLEARANCE SALE
30.00SQ FT OF TEKTRONIX-HP-AGILENT-MARCONI-PHILIPS-RACAL ETC.
Over the rest of this year at our bulk Smithies Mill site sales by
auction-Tender-Offer-all welcome private or trade-single or bulk items. Equipment sale floor 6000 sq $\mathrm{ft}+25.000$ sq ft of adioining buildings plus 9000 sq ff will be slowly added from our Whitehal orks headquarter site
Open weekdays $9 \mathrm{am}-5 \mathrm{pm}$ and Saturday mornings to $1: 00 \mathrm{pm}$ ALWAYS PHONE FOR APPOINTM
ALWAYOTHILCHAPPOINIMENT FIRST

ALWAYS PHONE FOR APPOINTMENT FIRS
website www.johnsradio-uk.com www.johnsradio.com email: johnsradio@btconnect.com Location M62 Junction 27, A62 to Huddersfield, 1 mile Birstall
Smithies Lights (6 roads)
look to your left, site under fal Smithies Lights (6 roads) look to your left, site under factory
chimney with aerials on top, road second left, Smithies Moor
Lane, 100yds second Johns Radio, Smithies Mill, Birstall Smithies Lights 883-885 Bradford Rd, Batley, West Yorks WF17 8 NNTs,

Phone - 01924442905 - Fax - 01924448170
Our normal sales, workshop, repairs and calibration will continue until clearance of all items.
Contact Patricia at Whitehall Works-84 Whitehall Rd East, Birkenshaw, Bradford BD11 2ER.

Phone - 01274684007 -Fax 01274651160

NEXT SALE FRI-SAT DECEMBER 5-6
DETAILS www.tech-asset.co.uk info@tech-asset.co.uk

Check out Flexlt at wuw.ennovi.co.uk

A QUANTUM LEAP IN EMBEDDED CONTROLLERS

SUPERGONTROELERS

 UPGRCONTROLLERS

 UPGRCONTROLLERS}pur range provides:6 The fastest 68000 based core up to 66 Mhz .
Extensive 10:- Serial IIDA, SPI, IRC, Analogue, Timers/ Counters, RTC, etc.

- Large Memory CapacityFlash, SRAM, DRAM. - Supports:-

Mono \& Colour LCD's, Touch Panels \& Keypads. Very Low Power.

ALSO LOW COST

DEVELOPMENT

nTarget easily \& quickly.

- FUUINSI 'C' compiler, assembler er all Windows32 based.
-Source Level Debug. II Driver Support with Libraries.
- Real Time Multitasking OS with a free run time licence. - Free Unlimited email support.

WWW.cms.uk.com
ee our web site for full details
CAMBRIDGE MICROPROCESSOR SYSTEMS LTD

Unit 17-18 Zone 'D' Chelmsford Rd. Ind. Est. Great Dunnow, Essex CM6 1XG Telephone: 01371875644 email: sales@cms.uk.com

NEWPRODUCTS

Please quote Electronics World when seeking further information

aditional non-isolated device alled the V-1 chip voltage it achieves a response time of less than $1 \mu \mathrm{~S}$ and delivers up to 80A in a volume of less than 0.25 cubic inch while converting 48 V to 1.5 V . The modules may f amps at an output voltage of amps a an output voltage
settable from 1.0 to 1.8 V DC, full load. The firm's factorised power architecture is different to alternative intermediate bus rchitecture of other suppliers Which feed non-isolated POL Vicor maintains this approach is ess efficient. The company says its VTMs have 1 MHz bandwidth and can provide efficient bi-directional powe voltage excursions due to instantaneous load surges or dumps. The open loop output resistance, Rout, of the V048K015T80 VTM is pproximately $1.3 \mathrm{~m} \Omega$. The mounting with a low profile of .16 inch (4 mm) over the board. A J-leaded package option will upport on-board surface mounting with a profile of 6 mm
over the board. Outline dimensions are $32 \times 21.5 \times$ 6 mm
Vicor
www.vicoreurope.com
Oven controlled crystal oscillators for all synchronization C-MAC Micro Technology has a range of single oven temperature-controlled crystal oscillators. The CFPO-D03 single oven TCXO series is suitable as a frequency source
andtime keeping reference for all synchronization systems, including GPS based equipment.

The device is designed to provide a holdover performance provide a holdover performance
of better than 7μ s over 24 hours in stable ambient conditions and frequency stability better than 2×10^{-10} peak-to-peak over an perating temperature range from -20 to $+70^{\circ} \mathrm{C}$. Package size $51.0 \times 41.0 \times 19.0 \mathrm{~mm}$. www.cmac.com

PC format
National Instruments ha nnounced a suite of
00 Ms ample/s PXI in intended for the prototrument est of mixed-signal devices an ystems. It includes 100 and 0 MHz digital waveform generator/analysers (N1 00Msample/s, 16-bit arbitrary waveform generator (NI PX15421), and a $100 \mathrm{Msample} / \mathrm{s}$, 14 bit high-resolution digitiser (NI PX1-51220. The modules are designed to be used with the enerator (NI PXI-5404) and 500 MHz switching module (N PI-2593) which were announced earlier this year.

Integrated connector modules Pulse has introduced 12
integrated connector modules, for use in ADSL and cable modems, set-top boxes and video-on-demand equipment.

Designed to run with the firm's LabView 7 Express graphical
development software and the interactive NI Digital Waveform Editor, the instruments will also integrate with third-party software simulation tools, such as standard VCD files from FPGA simulation packages for test execution in LabView,
LabWindows/CVI or other development environments. The digitiser, arbitrary waveform generator and digital waveform generator/analysers are built on a synchronisation and memory
core architecture developed by core architecture deved
the firm for its mixed signal instrument modules. Onboard memory is up to 512 Mbyte . In addition, the 5421 arbitrary waveform has a close-in spurious free dynamic range
91 dB . The digitisers capture signals with increased fidelity 64 times the resolution of traditional 8-bit instrumentation, said the company. The digital waveform generator/analysers provide programmable voltage
levels from -2.0 to 5.5 V with the 10 mV resolution necessary for testing devices that use different levels or for characterising how a given device performs under changing conditions.
National Instru
www.ni.com

Unidirectional pressure

 transducerKulite is offering a unidirectional differential
pressure transducer for measuring low differential pressures. This digitally corrected miniature pressure transducer is for use in air speed measurements using pitot tubes. It can also be used for fow
measurements. The ET-3DC 312 has a full scale output of 5 V DC, with a total error band of 0.5 per cent over 0 to $100^{\circ} \mathrm{C}$ and a bandwidth from DC to 2.5 kHz The device can withstand 100 peak linear vibration of 50 g (sine 10 to $2,000 \mathrm{~Hz}$) and a mechanical shock of 100 g . Kulite
www.kulite.co.uk
Tel: +44(0) 1256461646

ClRCUIIIDEAS

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity. Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly. Where software or files are available from us, please email Caroline Fisher with the circuit idea name as the subject.
Send your ideas to: Phil Reed, Highbury Business Communications, Nexus House, Azalea Drive, Swanley, Kent, BR8 8HU
email ewcircuit@highburybiz.com

Simple code lock
 This code lock makes use of toggle

switches to generate a preset binary code that activates a solenoid to designed in such a way that any wrong switching will cause interruption of the power supply to the solenoid and will keep it de-
activated. For convenience, the activated. For convenience, he
switches with their toggles up are assigned binary code ' 1 ', while switches with toggles down ar assigned binary code ' 0 '. The ' 0 ' (toggle down) and ' 1 ' (toggle up) states of these switches with toggles up (state 1) to conduct current, terminals b-c are used. For switches, with toggles down (state 0) to conduct current, terminals a-b are used. The central terminals, ' b ' of al these switches are connected to + terminal of the DC supply. It can be
seen Fig. 1. that in order to energise relay 2 , the toggles of the switches number $2,3,6,7,8$ and 10 must be up (binary state 1), and the toggles of the switches number $1,4,5$ and 9 must be down (binary state 0). With
the relay 2 energised, the user's the relay 2 energised, the user 's
solenoid system is activated to the lock. If any of these switch(es) is/are in a wrong state, relay 1 is energized and will interrupt the dc supply of relay 2 , and the solenoid system is not activated at all. circuit, was 0110011101 as shown in Fig. 1. But re-arranging these switches can set any code. Total combinations of a ten-digit binary code come out to be more than 1000
Each addition of a switch doubles
the number of combinations that could be set and thus, makes it more someone else. It is advised to use more switches to make the combination more difficult. Ejaz ur Rehman Islamabad
Pakistan

Binary State 0
Single Pole Double Th ough Toggle Switch

Staircase waveform generator
 A 555 timer configured as an astable

multivibrator drives the programmable staircase waveform generator shown in Fig. 1. This ultivibrator can be reset using switch S_{1}.
Output from the multivibrator feeds a presettable decade up/down counter hrough the push switch S_{4} and rotary witches S_{5} and S_{6}. and CP_{D} are the clock up and down
nputs respectively. The rotar switches are coupled to ensure that clock pulses feed only one of these
nputs at a time. They are wired suc hat the unused clock input is pulled that the
high.
Count
Counter outputs are Q_{0-3} and S_{2} rovides a reset facility. Push switch S_{3} is added to allow parallel data to be oaded into the counter inputs D_{0-3}
Terminal-count outputs TC_{U} and TC_{D} are normally high so the monitor

EDs are off. When the counter eceiving clock pulses via CP_{U} and the low on the next high-to-low transitio of the clock, lighting LED_{1}. Output TC_{U} remains low until the CP_{U} input goes high again. Similarly, LED_{2} ights when CP_{D} is clocked down to lighs.
zero.
Outp

Outputs from the counter feed the decoder shown in Fig. 2. This decode is configured as an digital-to-analogue converter.
Initially, the op-amps are adjusted for minimum offset. Diode D_{1} doesn' start to conduct until its associated output rises above 0.7 V . Diodes D_{2} and D_{3} clam
1.4V.
The binary
The binary-weighted resistors follow the relationship:

$$
\begin{aligned}
R_{i n} & =\frac{R_{f} \times V_{c}}{V_{o}} \\
& =\frac{10 \mathrm{k} \times 1.4 \mathrm{~V}}{1 \mathrm{~V}}=14 \mathrm{k}
\end{aligned}
$$

Gain of the final op-amp can be

High Resolution PC Oscilloscope

adjusted to give the desired staircase haracteristic. By using S_{3} and loading data into the counter, the output can be made to start from any preset value. The minimum voltage the staircase can be set using potentiometer Z at the bottom of the resistor ladder.

Figures 3, 4 and 5 show the components shown. Operation of the fully in an arter is explained more Journal of the de by in the Journal of the Instrument Society of ndia, ol. 18, 1988 p. V. Gopalakrishnan

D-to-a converter section of the staircase

Output waveform when the circuit is used for producing a triangular waveform.

Output waveform when the circuit is used as a staircase generator

By loading the counter with preset data, the ramp can be made to start at any voltage.

Voltage-controlled capacitance/inductance

With a transconductance op-amp such as the XR13600, it is possibl o use the transconductance, g , to produce a simulated capacitance or inductance, as shown in the diagram.
Such a circuit can be considered to have three modes of operation. Firstly, with $Z_{1}=R$ and $Z_{2}=R_{1}$ the output resistance is given by
$R_{\text {out }}=\frac{R+R_{A}}{g R_{A}}$
With $Z_{1}=R_{1}$ and $Z_{2} \rightarrow C$, the inductance is given by:
$L_{\text {out }}=\frac{C R_{1}}{g}$
Finally, with $Z_{2}=R_{2}$ and $Z_{1} \rightarrow C$, the capacitance is given by
$C_{\text {out }}=g C R_{2}$
Here, $g=19.2 I_{B}$, hence resistance, inductance and capacitance can be controlled by altering only voltage V_{B}.
Kamil Kraus
Rokycany
Rokycany
Czech Republic

Using a transconductance op-amp, one simple circuit can act as a voltage-controlled resistance, capacitance or inductance

\&FOWIVN:

An inductance multiplier
 It is known that the application of

large inductances in electronic circuits is always undesirable because large price.
The proposed multiplier of inductance can be used in order to replace a large inductance coil by a
small one. The circuit of the multiplier of inductance is sh

Fig.1. The equivalent inductance of the circuit is found to be
$L_{e q}=(\beta+1) L$,
where β is the current gain coefficient of the bipolar transistor.
The proposed circuit can be used in
low-frequency filters and other aw-frequency filters and other inductance is necessary. For example,
it can be used in a low-frequency
oscillatory circuit as it is shown in oscillatory circuit as it is shown in
Fig.2. The oscillatory circuit consists of the 1 nF capacitor and the equivalent inductance of the multiplier. The field-effect transistor is used to ensure the necessary bias current of the bipolar transistor. The field-effect transistor is very large, so it does not shunt the circuit. The equivalent inductance of the multiplier is equal to 0.4 H in this case, i.e. the equivalent inductance is 400 times larger than the inductance of the applied coil.

frequency $[k H z]$
Fig.3. Frequency response of the oscillatory circuit.
scillatory circuit is shown in Fig. 3 It is easy to see that the output AC oltage is 15 times larger than the nput $A C$ voltage at the resonance frequency. Consequently the Q -factor is approximately equal to 15 . It is also easy to check that the resonance requency of 8 kHz really corresponds to the inductance of 0.4 H and application of the proposed circuit allowed getting a low resonance frequency of the oscillatory circuit without applying a large inductance coil.
.Chekcheyev
Tiraspol
Moldova Russia

A simple driver circuit for stepper motor and its control through a PC

In the circuit shown below a 12 V $1.5 \mathrm{~A}, 10 \mathrm{~kg}-\mathrm{cm}$ torque stepper motor is interfaced to the PC via its parallel port. This is done in order to motor. This circuit is mainly IC based which makes it easy for construction, has fewer components and is also cost effective.
To move the stepper motor, a proper sequence of output bits from
the PC parallel port (25 pin D he PC parallel port (25 pin D port consists of 25 pins but we make use of only four data pins (2 to 5) and one ground pin (25) of the port 378 (hex) of LPT1. In the circuit only 4 of he 25 pins are shown. Pin 25 , whic clockwise rotation output bit sequence $0001,0010,0100,1000$ is required. The voltage levels corresponding to logic 0 and logic 1 are insufficient for driving this stepper motor and hence need to be

Program for continuous rotation

cdelay(float); void ccdelay(float); int a[4]=\{1,2,4,8\};main()\{ int n; float rpm; int calib $=18750$; char ch; clrscr(); printf("\n Enter speed in RPM ");
scanf("̊f", \&rpm);
printf("Please select the direction cw/ccw :- ");
$\mathrm{ch}=$ getche();
if (ch $==$ ' C^{\prime})
if(ch $=$
if ($(\mathrm{rpm}>=0.3) \& \&(\mathrm{rpm}<8)$) \{cdelay(calib/rpm); $\}$
else if (rpm >8)
\{printf(" Too fast ");
else if (rpm<0.3)
\{printf(" Too slow ");
else if(ch=='a')
if ($(\mathrm{rpm}>=0.3) \& \&(\mathrm{rpm}<8)$ \{ccdelay(calib/rpm); \}
else if (rpm >8)
\{prif (rpm<0 fast");
lse if (rpm<0.3)
\{printf("Too slow");\}
${ }^{3}$
oid cdelay(float rpm)
int $\mathrm{n}=3$;
while(!kbhit())
outportb(0x378,a[n]);
delay(rpm)
$\mathrm{n}=\mathrm{n}-1$;
if $(\mathrm{n}<0)\{\mathrm{n}=3 ;\}$
\}
void ccdelay(float rpm) \{int $\mathrm{n}=0$;
while(!kbhit())
outportb(0x378,a[n]);
delay(rpm);
$\mathrm{n}=\mathrm{n}+1$;
if $(n>3)\{n=0 ;\}$
\}

Program for Stepwise Movemen
 /* handcrl.c*/
 \# include<conio.h>
 \# include<dos.h>
 main()

char key, key ${ }^{\text {; }}$
int $a[4]=\{1,2,4,8\}$;
int $1=0$
while((key=getch()) != ‘(r')
if (key==0)
keyl=getch();
if(key1==72) /* extended code for up arrow key */
outportb
$i=1$
$=1+1$
(
$i=i+1$;
if $(i=3)$
$\{i=0 ;\}$
else if(key1 == 80) /*extended code for down arrow
key */
\{ if(i<0)
\{i=3;\}
outportb(0x378,a[i]);
i $=1-1$;
\}
$\}^{\}}$
\}
configuring the op-amps (741) in the non-inverting mode to provide a gain ~ 4. In the circuit diagram the power supply connections for the op-amp are not shown i.e. $\mathrm{Vcc}=+12 \mathrm{~V}$, Vee -12 V . The IC ULN2074B (Vcc is used for current amplification The IC pins 4, 5, 12, 13 are connected to a heat sink and grounded. The voltage pulses obtained from this IC are then used to drive the stepper motor. Two
programs in ' C ' language control the

[^3]program is used to calibrate the speed of the stepper motor. This calibration factor may vary from PC to PC and needs to be determined before using the program. In the handcrl.c program he up arrow and the down arrow keys are used to rotate the motor in direction respectively, the motor moves by one step by pressing the key once.
S. Tauro, M.A.N. Razvi Mumba
India

A fast accurate differentiator

Op-amp based differentiators have a number of problems such as high
output noise, ringing and instability, and severely limited speed of operation due to the finite open loop bandwidth of the op-amp. These limitations have effectively excluded their use in fast instrumentation and
measurement systems. The active differenti shown in Fig. 1. is inherently stable has very low output noise and can deal with input signal slew rates up to about $1000 \mathrm{~V} / \mathrm{\mu s}$ with high accuracy and even beyond $5000 \mathrm{~V} / \mathrm{us}$
with reduced accuracy. Fig. 2. shows the performance of the circuit. For the slew rate tests above $2000 \mathrm{~V} / \mathrm{\mu s}$, the power supply voltages were increased from those shown in the circuit.

Q1 forms an emitter follower to buffer the input and to provide a low
impedance source to the capacitor, C1. Q2 and R3 act as a current to voltage converter. The relatively high standing current in Q2 gives it an emitter input impedance of about 1.4 ohm, so most of the capacitor
current flows into Q2 emitter with only a small amount flowing through R2. This common base stage Q2 gives very fast response to capacitor current changes. The 50 ohm collector output resistor, R3, was chosen to match a 50 ohm

system for high-speed work, but
could be made higher to achieve could be made higher to achieve a larger output with only a small effect The circuit output is given by
$\mathrm{Vo}=\mathrm{R} 3 * \mathrm{C} 1 *$ Input slew rate
Where the input slew rate is in V / s. The output is a scaled version of the
true differential of the input signal. For input signal slew rates of up to 1000 pF . For slew rates greater this, C1 should be reduced to ensure that Q1 can provide sufficient current into the capacitor without loading the source too much. As the circuit does not rely on a high gain amplifier for its operation,
output noise is very low. With the output noise is very low. With the
capacitor value at 1000 pF , the 'no signal' output noise is less than 1 mV peak to peak measured with a 350MHz scope.
It should be
It should be noted that, in contrast with RC passive differentiators, the
circuit's output response is related to circuit s output response is rele
the actual differential of the input waveform. This means that the circuit can be used to measure accurately the linearity of ramp waveforms or observe small rapid changes in signals. With small values
of C 1 , it can be used to generate very fast rise (~ 1 ns), short duration pulses from slower input signals. For good high frequency performance the circuit should be constructed using RF techniques on a ground plane. As the output is
taken effectively across R 3 , the circuit is sensitive to noise on the positive supply rail and so it should be very well decoupled as indicated. Alan Lloyd
Upton Upton
Chester UK

Unusual application of comparators as excellent high speed linear amplifiers

A comparator is essentially a high
gain, high slew rate amplifier with excellent offset and drift characteristics. An internal compensating capacitor is not provided at the manufacturing stage
to significantly improve the to significantly improve the
requirement of slew rate.
The comparator is an element of pulse width modulator, peak detector, delay generator, switch drivers, A / D converters etc. Howe comparator being used as linear amplifier with excellent high frequency and good output drive capability.
In order to use the comparator as an op-amp, one has to externally and choose the appropriate value of open collector pull up resistor. The LM139/LM239 being the mos popular and easy to use quad comparator, is chosen to show how can be configured as a non-invertin
amplifier. Similarly the amplifier. Similarly the popular comparator, is used to show how it can be configured as an inverting amplifier. Standard connections are shown in Fig.1. and Fig. 2.
comparators do not have internal provisions for compensation by external components; therefore externally at the input of the device. The R1, C1 network provides the external frequency compensation
the input. A small value of C 2 is introduced across R3 to prevent high frequency oscillation and to reduce the gain of the amplifier outside the frequency range of interest.
The feed back network R3 \& R2 sets the closed loop gain at $1+\mathrm{R} 3 / \mathrm{R} 2$ in the case of a non-inverting amplifier and at $-\mathrm{R} 3 / \mathrm{R} 2$ in the case of an inverting amplifier as shown in the Figs $1 \& 2$ respectively. For the values indicated the closed loop gain circuits.
The vals
lue of R4 tied to the +15 V supply, not only affects the positive swing, but also the drive (current sourcing) capability. The higher the value of R4, the lesser the positive swing and the lesser the output drive
capability. Therefore it is suggested
outpe $4 \leq 820$ ohms, so that the output can have a maximum linear
swing of + or -13 V when operated + or -15 V .
The circuits wor for low and high level signal The amplifiers even respond linearly to
square wave input of up to 100 kHz easily and can safely drive a load 13 V .
V.Manoharan Kerala
India

Cut relay power to a quarter

Electro-mechanical relays are chea and easy to use but unfortunately waste a large amount of power in their coil. Because of the magnetic hysteresis, the full drive voltage must one half of this voltage is needed to keep it held.
The circuit shown takes advantage of this property and has been designed to fulfil the requirements of various supply voltages and control

GMD
polarities (figure $\mathrm{a}=$ positive contro
figure $\mathrm{b}=$ negative control). Vcc is the supply voltage and the relay has an operating voltage of 2 Vcc . In the OFF state, capacitor Cl is charged to Vcc through D1, R1 and the at fig. b). When switching to the ON state, Mosfets commute so that C 1 is connected in series with the supply and the voltage across the coil rises to 2 Vcc for a few milliseconds. When 2 Vcc for a few milliseconds. When Frair

C 1 is discharged, the coil voltage drops to $V \mathrm{lc}$ thus reducing the powe
consumption. consumption.
Relay's specifications exhibit a coil resistance that is about four times higher when the operating voltage is
double (FINDER: $55 \Omega @ 6 \mathrm{~V}$ 2202@12V, $900 \Omega @ 24 \mathrm{~V})$ hence the power is cut to a quarter.
Paul Gelineau
Mazières-en-Mauge
France

'None of the Above' decoder
This circuit idea can save a gate or two, which may on the difference between V_{O} (or $\mathrm{V}_{\text {cin }}$) of the drivers and V_{f} of the diode being greater than the difference in V_{f} of an "on" and an off" LED. Most individual LEDs go from dark to bright within 500 mV , but there is significant V_{f} variation between types and colours, the idea applied to turn a 1 -of-10 decoder into a 1 -of12 with just one more gate. Of course, the same idea works for fewer (or more) outputs, such as
Red/Yellow/Green LEDs for model traffic lights, or a standby/on indicator (a neat use for a common-anode bicolour LED, if only somebody made them!) early Nixie decoder/drivers by turning all the outputs off? Peter Horn
By email

> Electronics World reader offer: $\times 1$, $\times 10$ switchable oscilloscope probes, only £21.74 a pair, fully inclusive*

*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following

Probes

Total \qquad
Name
Address
\square

[^4]\qquad Telephone
Method of payment (please circle)
Cheques should be made payable to Electronics World
Access/Mastercard/Visa/Cheque/PO

Credit card no
-

Card expiry date
Signed
Please allow up to $\mathbf{2 8}$ days for delivery

Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m-long BNC-to-BNC links. Each probe has its own storage wallet. To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Jackie Lowe, Highbury Business Communications, Nexus House, Azalea Drive, BR8 8HU
Readers outside Europe, please add $£ 2.50$ to your order.

Specifications

Switch position 1
Bandwidth
Input resistance nput capacitance

Switch position 2 Bandwidth Rise time nput resistance 1Ω Input capacitance Working voltage
witch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i/p grounded

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p ope capacitance

DC to 150 MHz 2.4 ns
$10 \mathrm{M} \Omega$
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF $10-60 \mathrm{pF}$ is 600 V DC or pk-pk AC

Op-Amp and resistor distortions

In the last article of this series, Cyril Bateman uses his real-time distortion measuring system to explore means to reduce distortions in IC op-amp circuits and investigates distortions in resistors and potentiometers

Having completed the desig for my very low distortion of the equipment for my original Capacitor Sounds series, I needed to provide a variable level output, able to develop an undistorted 6 V test signal across my near perfect $1 \mu \mathrm{~F}$ eference capacitor. My original ponentiometer and non-inverting distorted badly driving a 3 V signal into a 600Ω resistive load. This problem was solved by using an NE5534AN op-amp as a variable gain inverting amplifier, with a conductive plastic potentiometer for feedback. This inverting, variable gain output stage and potentiometer,

Fig. 1. This test PCB, attached to my real-time hardware distortion analyser, was used for more than 75 distortion
measurements of the IC op-amps and test circuits in this article, simply by unplugging ICs. Switching the link shown arrowed, changes from the 'dual' amplifier position shown to 'single' using the ' A ' section only of the IC. Replacing the DIL amplifier circuit, $U 7$ and $U 8$.
added almost no measurable distortion driving a 600Ω resistive oad, but did distort with a capacitive Cle
neasurements capacitor very low distortion, more powerful, buffer output stage. Searching my bookshelves and back issues of Electronics World I found nothing, series of articles by Walt Jung, "Op Amp Audio" originally published in the US magazine Electronic Design from September to December 1998^{1} In this he suggests using a gain stage
and separate output buffer. nd separate output buffer. the Analog Devices AD811AN a current feedback video amplifier, as an audio output buffer. Using an OPA134 gain stage with this AD811AN output, I could develop an undistorted 6 V signal at 1 kHz capacitor from a 100Ω source impedance.
A similar test signal at 100 Hz across larger capacitors needed more current than the AD811AN could provide. Further searching found a accurate, active feedback amplifier developed as input buffer for a 16 bit ADC, in Electronic Design April 2001 ${ }^{2}$. A similar arrangement could drive the more powerful output stage needed for my 100 Hz test equipment ${ }^{3}$. Then, whilst busy
developing circuits and measuring capacitor distortions, time did not permit exploring these solutions in more detail for general use. Now two years later, using my standalone istortion tester ${ }^{4}$, I could at las begin. Fig. 1

Active Feedback Amplifie Many low level audio systems use unity gain, voltage following ICs as claimed such circuits can output up to 10 V AC using $\pm 15 \mathrm{~V}$ supply rails, but measurable distortions are produced with much smaller signals. This novel active feedback amplifier, developed sections of a dual op-amp, the first amplifier section to drive the load as usual, the second stage to provide distortion cancelling active feedback instead of the usual feedback resistor. The idea being that having two errors of equal value but opposite sign, the the forward gain error ${ }^{2}$. Fig. 2 Initial tests measuring the input output voltage differential of an AD712JN using my differential scope probe ${ }^{5}$ confirmed that this arrangement did reduce errors. buffer, I wondered whether it could

Fig. 2. The schematic from the "Active Feedback Amplifier Enables High-Performance A-to-D accessing the Electronic Design site.
be adapted for use in the gain of two buffer I now needed. A few initia measurements confirmed this arrangement could provide gain and improve performance. Initially it seemed an almost ideal distortion reducing panacea, except that some
ICs I tried did not work at all well in my gain of two circuit.
Op-Amp distortion tests Most op-amps provide very large open loop gain, typically 100 dB substantial feedback to reduce distortion. However this gain reduce rapidly with frequency such that by 1 kHz , the open loop gain has reduced by 20 dB and output distortion is increasing. With small audio signals
and light loading this may not present and light loading this may not p reblem but with increasing
a proble a problitude and heavier circuit loadin problems do emerge. Capacitance to ground compounds these difficulties and can even result in oscillations. The 'direct' input to my notch filter presents a high resistance in paralle
with a 10.2 nF capacitance, which with the 600Ω to ground in my test $P^{\prime} B^{6}$ provides a difficult 575Ω and parallel 10.2 nF test load, exceeding that expected in an audio circuit. I decided to use this load to explore how popular audio op-amps behave
Would using the second stage of a dual IC as an output buffer or the Walt Jung external buffer permit larger amplitude undistorted signals? To make certain of a stable performance at all signal levels decided to use my test PCB to
measure distortion with a 1 V test signal, then increase the signal in 1 V steps to 6 V or until the amplifier distorted. Fig. 3.
Single Amplifier circuit For many years the TL072CP, MC4558TPI and NE5532AN dual systems. With a DIL header to bypas U8 and taking the output from U7A using one half of a TL072CP, its unloaded second section simply voltage following the first section's distortion signals with a gain of two could be driven into my test load. Fig. 4.
The other two ICs worked rather better, the MC4558TPI producing 0.00228% distortion at 4 V , but the
NE5532AN was seven times better just 0.00032% distortion driving a 4 signal into this difficult test load, the best of these older op-amps. From earlier measurements I already knew the expensive AD797 could prov large amplitude low distortion
signals, so for this article I wanted to explore less exotic devices. To minimise distortion with any IC it is essential to match as closely as possible the impedances 'seen' at its inverting and non-inverting inputs, Jung papers, it will generate increased second harmonic distortio The AD797 is able to produce exceptionally low distortion, but is sensitive to small impedance differences between its inverting and non-inverting inputs. particular distortion performance in the past I found the BiFET AD712JN behaved well when driving adverse loads. Tested as above I measured 0.00162% distortion, rather better
than the MC4558TPI and TL but worse than the NE5532AN. A

Fig. 3. The test PCB and component values used for this article. The link which changes from measuring the 'single' to 'dual' configurations is highlighted in white. Resistor R28, highlighted in white, must be removed when using an NE5534AN or similar amplifier also the DIL header for U8 With a current feedback AD811AN for U8, resistor R28 required, so should be refitted.

JFET input TLE2072CP measured JFET input TLE2072CP measured TL072CP and slightly better than the AD712JN while an OP275G with its Butler Bi-polar/JFET input stage, intended for audio circuits, measured
0.00088% distortion The Burr 0.00088% distortion. The Burr part of their 'SoundPlus' range designed for low distortion audio, measured 0.00036% to equal the NE5532AN performance. Fig. 5.

Dual Amplifier

Having established a distortion baseline for a single stage amplifier driving 4 V into my test load, would gain of two version of the dual amplifier active feedback design, with output now taken from U7B,
work any better? The heavy output
currents would be removed from the input gain stage, but being in the one package, would thermal or capacitive feedback present new problems, increase distortions or even result in
occillation? oscillation?
I decided to start by trying the worst performing of the above clearly show any improvement, as reduced distortion or increased drive level. The TL072CP in this 'dual arrangement could not provide increased drive, but distortion at 4V
output reduced dramatically from 0.01266% to 0.00041%, almost equalling the best of the dedicated 600Ω capable audio op-amps. Fig. 6. With such a dramatic improvement, wondered how the other op-amps
would perform using this circuit and
components by simply plugging in a different IC. Strangely the outperformed the TL072CP in my first tests, also improved but by a far
smaller margin, from 0.00228% as a
ingle stage to 0.00062% in this dual circuit. However, this IC could now almost drive a low distortion 5 V signal The NE5532AN also improved from its original, equal best single stage
 Fig. 5. Tested at $4 V$ output, but otherwise exactly as Figure 4, this 'single' amplifier test of an NE5532AN Fig. 5. Tested at $4 V$ output, but otherwise exactly as Figure 4, this 'single' amplifier test of an NE,
produced remarkably little distortion driving this difficult test load, a heavier load than would be propuced remarkably little distortion driving this difficult test load
expected in any real world circuit or interconnect cable loading.
 Fig. 6. The TL072CP of Figure 4, tested in the 'dual' amplifier circuit using its ' A ' half for gain and ' B ' half as a voltage follower driving the test load. Distortion has dramatically reduced from 0.01266% to 0.00041%.
prformance, to an amazing 0.00022% thV, almost halving the best single stage results. In addition it could now easily drive a full 5 V low distortion signal into my test load. In like fashion the AD712JN also could drive a 5 V signal at 0.00073% and a 4 V signal
with just 0.00032% distortion. Fig. 7 . Whether a feature of the op-amps themselves or my test circuit, the TLE2072CP, OPA2134CPA and OP275G were unusable in this configuration, so after all it has failed palliative. Exactly why some ICs performed so well in this circuit and others were unusable is not clear. Perhaps using an external load bearing buffer op-amp as proposed by Walt Jung would work better. This two IC arrangement is more expensive
and requires larger printed board area, and requires larger printed board area,
but in small quantities it could prove less expensive than using say a single AD797. I decided to explore this option, using the identical test set up, test load and PCB test circuit by replacing the bypass DIL header with
an IC. I knew the AD811AN worked well in this circuit position, but how would an NE5534AN perform?

Two amplifiers

Starting with a 1 V test signal and increasing in 1V steps as before,
tried an NE5534AN as the output stage with various amplifier gain stages. With R28 removed, the NE5534AN output stage works as a unity gain voltage follower. Taking the output once more from U7A, the 'A' section of the first op-amp second section following the first section output but was otherwise inactive. Using the NE5532AN as the first amplifier, at each test voltage significantly less distortion was measured compared with the same
NE5532AN used alone, whether as a single amplifier or in my dual configuration. Furthermore, with the drive signal into my test load increased to $6 V 1$ measured just 0.00017% distortion. At alllower test voltages, a similar or slightly lower
distortion was measured, an amazing result. Clearly removing the output stage's thermally conducted heat from the gain stage was beneficial in reducing distortion. Fig. 8. Even more amazing was that the well on its own, with the NE5534AN well on its own, with the NE5534AN
output, was able to drive a 5 V signal with only 0.00044% distortion, into the test load. The MC4558TPI also improved and was able to drive a 6 V signal at 0.00031%. With this success I decided to refit R28 so I could use an

AD811AN output buffer to compare directly with these NE5534AN results
The NE5532AN which had worked so well with the NE5534AN output so well with the NE5534AN output
buffer, partnered now with the buffer, partnered now with the
AD811AN generated 0.00308%, ten

Technical support

Full details of the 'Real Time' hardware test method and my original Capacitor Sounds lo distortion oscillator, buffer amplifier, notch filter/pre-amplifier with parts lists, assembly manuals and full size printed circuit board drawings as .PDF files arranged for easy viewing of the figures, on screen or hardcopy, are provided in my CD.
This CD includes updated and much expanded re-writes with very many more figures, of my first series Capacitor Sounds articles, supported now by some ninety capacitor distortion measurement plots as well as all six articles from series.
Also included are PDF re-writes of my earlier Understand
Capacitors series together with articles on how to diagnose failed printed board mounted capacitor
and essential low cost capacitor measurement methods, more than twenty popular articles.
This final version of my CD, now with 'artwork' label, costs $£ 15$ Sterling inclusive of post \&
packing.
Readers who purchased an earlier CD, can now upgrade to this I can still supply sets of three professionally manufactured printed circuit boards, FR4 with legend and solder resist, also four gang potentiometers, as described in my original Capacitor Sounds articles.
One set of boards costs $£ 27.50$ but due to weight, post and packing is extra
Four gang potentiometer if ordered together with PCBs costs
£5.00.
Post packin Post packing UK and
Rest of World: $£ 7.50$
Send cheques or postal/money orders in pounds Sterling only to:
C. Bateman.
'Nimrod' New Road
ACLE. Norfolk.
NR13 3BD
England.
times more distortion than when measured as a single amplifier. Since this was the last but one combination of those tested and the final combination worked perfectly, this
distortion must result from a
particularly unhappy combination of
IC and test load characteristics. However, all other combinations I
tried worked extremely well with this AD811AN and 5 V output. The TL072CP improved to 0.00022%

Fig. 7. Retesting the Figure 5 NE5532AN in the 'dual' amplifier test circuit as Figure 6, distortion has rig. . Retesting the Figure 5 ,
reduced again to $0.00022 \%, 50 \%$ less than the best 'single' amplifier of those tested
 Fig. 8. Removing the DIL header and R28 to use two separate ICs rather than the 'dual' arrangement of
Figures 6 \& 7 . Retesting the Figure 5 NE5532AN ' A 'section with an NE5534AN for U8 removed the test load thermal effects, reducing distortion to just 0.00017%, halving that measured with the best performing 'single' IC
distortion, half that found when this IC was used with an NE5534AN. The
OP275G and MC4558TPI improved more to 0.00016% and 0.00014% distortion respectively. Best of all, the OPA2134CPA with this AD811AN output, measured a remarkable
0.00010% at 5 V output and could even
manage 0.00011% distortion at 6 V utput, approaching the distortion measuring limit of my equipment. Fig. 9 .
Op-Amps - Conclusions Clearly, while the dual amplifier arrangement worked well, following
the Walt Jung advice ${ }^{1}$ to physically

Fig. 9. Refitting R28 and using an AD8114N cur fedtack amplifier for U8, this Burr Brown OPA2134CPA, the joint best 'single' amplifier tested, reduced its distortion from 0.00036\% at 4 V output to this remarkable 0.00011% distortion at 6 V out put.

Fig. 10. This 20 year old 0.25 watt carbon film resistor made with a ground, not laser trimmed, spiral, produced 0.00013% distortion when loaded to 25% rated power. The second harmonic for a same
make 0.5 watt resistor loaded to 12.5% rated power, measured 23 dB better. Distortions from make 0.5 watt resistor loaded to 12.5% rated power, measured $2.3 d B$ better. Distortions from a
modern laser spiralled, low cost $1 \% 0.5$ watt metal film resistor, were too small to be measured.
separate the gain and output driver stages can produce exceptionally low for many perhaps most combinations of gain and driver ICs.

Resistors

Many readers have written requesting much publicised in marazines and internet discussion groups and based on subjective tests, not measurements They were concerned about voltage and temperature coefficients and the effect of magnetic and non-magnetic leadwires.
composition and to a lesser exten carbon film resistors can be a problem, but expected modern laser spiralled 1% metal film resistors would not produce any measurable distortion with my
equipment. Today no sensible audio design would use carbon composition or carbon film resistors.
Every resistor exhibits a temperature coefficient and a very small voltage coefficient, specified according to international standards and test method. 'BS evalues', so test demand 'true instrument uncertainties must be added to the component's measured values in any published claim. Consequently a resistor specified as 50 ppm temperature coefficient, may in practise ex
deviation.
In circuit, resistor body core temperature will increase above local ambient according to the power dissipated. The body temperature of a
typical 0.25 W resistor with 25% rated loading, increases some $6^{\circ} \mathrm{C}$ above loacal ambient, but temperature coefficient with a steady temperature rise does not produce distortion. To generate distortion with an AC signal, resistor core temperature must track th AC signal. Every resistor has some temperature cannot instantly change Metal film resistor temperature and voltage coefficients with modest AC signal loading generate little or no measurable second harmonic distortion, even with low frequency signals.
In past years when 5% carbon film speed grinding wheels were used to cu groove in the resistive film, to trim to value. The resultant spiral cut through the resistive element, into the surface the exceptionally hard resistor core, usually had ragged edges and varying
width. In places a poor grind could leave minute semi-conducting bridges across the cut, resulting in increased
third harmonic distortion. Today 1%
tolerances require laser cutting equipment. Lasers cut clean, consistent, spirals, virtually eliminating this source of distortion. The termination between lead wire wattage resistors relies on a pressure contact between the end cap and the resistor element. Unless adequate contact can be assured after soldering the resistor into circuit, this presents a potential source of third harmonic companies have used non-magnetic end caps to counter the 'magnetic' discussions. To maximise the contact pressure it is essential the thermal expansion coefficients of end cap and resistor body are matched using a high tensile strength, elastic metal. For steel end capped resistors with tinned copper leadwires, believing any magnetic field effects due to the tiny currents in most resistors, flowing through this end cap, are preferable to end contact pressure. My equipmen can only stress a resistor to some 6 V and read distortions above -120 dB . To stand any chance of realistically measuring distortions in 1% metal film resistors, much larger pure test perhaps 50% power and measurements down to -135 dB or better are needed. I no longer have any carbon composition resistors but do have a number of 20 year old, ground spiral, carbon film resistors. I decided to see whether my test equipment might find these produced more distortion than
modern low cost 1% metal film types. Using a 6 V test signal, I measured some $56 \mathrm{k} \Omega$ with $1 \mathrm{k} \Omega$ source impedance, $5.6 \mathrm{k} \Omega$ also using $1 \mathrm{k} \Omega$ source and finally some 560Ω resistors using 100Ω sources. Naturally resistor
current through the $56 \mathrm{k} \Omega$ parts was minuscule so it was no surprise to find all types, carbon film and metal film measured almost identically, near my equipment s basic distortion. At $5.6 \mathrm{k} \Omega$ I found one particula carbon film resistor measured film types at 0.00007%. At 560Ω, because the resistors were passing 10 mA through current and dissipating 65 mW , larger differences were noticed. I now found two carbon film resistors measuring increased distortion. One, a quarter watt part
measured 0.00013% and a half watt 0.00010%. In comparison low cost 1% metal film resistors measured
0.00007% as did 0.5% Welwy 0.00007% as did a 0.5% Welwyn RC55, near the baseline distortion of
my equipment, at these settings. my equipment, at these settings.

Fig. 11. This multi-turn cermet trimmer, set as a $5.6 \mathrm{k} \Omega$ variable resistor and tested with a 6 V signal from $1 \mathrm{k} \Omega$ source impedance, generated this enormous - 97 dB third harmonic, $\mathbf{0} \mathbf{0 . 0 0 1 3 8 \%}$ harmonic distortion. control and 10-turn wirewound generated only 0.00009% and 0.00007%.
resistors measured -127 dB , the metal film third harmonics measured -125d while the carbon film third harmonics measured -118 and -120 dB
respectively, all higher harmonics
emained below -140dB for all types. ig. 10.

Fixed Resistors - Conclusions Provided a resistor is loaded to 25% of its rated power or less, modern 1% metal film resistor distortion is small, typically less than 0.0001%, smaller
than almost any other active or passiv han almost any other active or passive audio system.
Distortions found with the 1% metal film resistors used for this article are mall and cannot be properly measure at 6 V using my less than 1 ppm

Volume controls - trimmer resistors
Almost as many words have been written about noisy carbon volume ontrols as for distorting capaciors, for volume controls or pre-set immers. As seen in this series, harmonic distortion in capacitors and esistors is usually caused by nonOhmic contact resistances, surely the wiping contacts used in volume produce similar distortions. Recallin
the problems I had with my original
the problems I had with my original
oscillator variable output stage, I decided to explore further. Unlike other variable resistor types, a multi-turn wire wound at AC wil exhibit a reactive phase angle in addition to its claimed DC resista
value. Depending on its design, value. Depending on its design,
construction and the test frequency, may appear either as inductive or capacitive. I tested my stocks and without exception all were capacitive at low frequencies, measuring typically 100 pF , becoming inductive at higher frequencies. This reactance may caus Using the 6 V drive at 1 kHz from m equipment, I first connected some $10 \mathrm{k} \Omega$ potentiometers and multi-turn pre-set resistors to make $5.6 \mathrm{k} \Omega$ variable resistors, passing some 1 mA
through each wiper. I used a 10 -turn wirewound, a 20 -turn cermet trimmer a low cost carbon and a conductive plastic volume control. Not surprisingly the 10 -turn wirewound measured 0.0000%, my equipmen baseline distortion, the cond plastic was almost as good at
0.00009%, the difference being a 5 dB increase in third harmonic distortion. When I tried the low cost carbon volume control I expected and found increased distortions, now measuring . han the conductive plastic volur

Fig. 12. Re-connected as potentiometers to output a $3 V$ test signal drawing $225 \mu \mathrm{~A}$ through their wipers, produced a similar pattern of distortion. The cermet control with 0.00124% distortion was worst; the low cost carbon was much better at $\mathbf{0 . 0 0 0 3 9 \%}$, the conductive plastic and wirewound measuring just 0.00009% and 0.00005% respectively.
control. Second harmonic was
-117 dB third -98 dB , fourth -137 dB and fifth -121 dB .
Finally, the multi-turn cermet frimmer which measured an enormous 0.00138% distortion, worse even than the inexpensive carbon control. While the second and fourth harmonics remained near my
measurement baseline, its -97 dB third harmonic dominated distortion, more han 31dB worse than measured on he wire wound control. Fig. 11.

Used as a potentiometer
While the above test reasonably simulated use as a variable resistor many potentiometers and pre-sets are used as potential dividers or volume controls. To simulate this requirement I connected my 6 V test signal to one end terminal, the other end to ground,
hen set the wipers to measure a 3 V output signal. To ascertain the effect of wiper contact linearity, each control was tested twice, once with my notch filter input switched to 'pre-amp' for a negligible $10 \mu \mathrm{~A}$ direct' position, a $13.5 \mathrm{k} \Omega$ resistance in parallel with 10.2 nF capacitance, drawing some $225 \mu \mathrm{~A}$ through the wiper.
With the $10 \mu \mathrm{~A}$ wiper current, the

FFT Software

Throughout my Capacitor Sounds series, except the first two articles, I used the SpectraPlus 232 software for my distortion plots. This software is easy to set up and have asked whether lower cost software might be used, since with a full set of options it becomes expensive.
I have now found two alternatives Provided the reader can accept not having the on screen en are provided by purchasin only the Spectra base module, almost halving the cost. The on screen THD\% ${ }^{\text {option can be purchased later. }}$
"My second alternative is
"WinAudioMLS Pro", I evaluated version 1.66, a new version having its microphone
correction ability updated for use with my test equipment, or a conventional microphone. It can be obtained from the Dr. Jordan web site.
As standard this sof tware provides a THD+N display and cursor controlled readout of harmonic levels. It accepts the
microphone correction file, essential when using my notch filter/pre-amplifier assembly. In addition to all the features needed for my measurements it also provides an MLS measuring facility. This
can be used to measure loudspeaker and room responses as well as the impedance and phase of low impedance components, especially those used in loudspeakers. All SpectraPlus 232 module, makes this
software well worth your evaluation
This sof tware also has a range of additional cost upgrade options, but I found the base WinAudioMLS Pro version \% option, sufficient for my needs.

Fig 13. The Dr Jordan software, measuring a 511Ω resistor at 1 V and 1 kHz .

10T wire wound measured 0.00006%, the carbon and conductive plastic controls 0.00007%. Th cermet trimmer third harmonic increased by 16 dB to measure a distortion of 0.00037%. Clearly this
increase results mainly from the cermet resistive element, not the wiper contact which was passing only $10 \mu \mathrm{~A}$ of current compared with $600 \mu \mathrm{~A}$ through its element. Distortion was third harmonic at 109 dB , second -120 dB To determine how increased wiper measured each with the pre switch set to 'direct', for $225 \mu \mathrm{~A}$ wiper current. The wire wound and conductive plastic controls changed little, reading 0.00006% and carbon control measured 0.00039% distortion, indicating its wiper made reasonable contact, whereas the cermet trimmer measured very badly at 0.00124% its distortion was dominated by a -98dB third

Variable resistors and potentiometers - conclusion Clearly to minimise distortion, the
lowest possible Ohmic values should be used and variable resistors, potentiometers and pre-set contro must be subject to the smallest possible through and wiper currents. Particular care must be taken to avoi passing capacitive load currents
through the wiper contacts, which could result in unexpected tone control distortions.
For almost all applications, a conductive plastic control will produce low noise and distortion
while avoiding any reactive loading problems which may result when using a wire wound control. When a cermet type control must be used, it is essential to make certain it is subjected only to small voltage drops with small currents passing through the element and none or very little
current is drawn through the wiper.

Conclusions

This series has shown how using low cost self build equipment and simple test methods, one can easily measure the distortions generated by most systems as well as complete
amplifiers, in the hope many readers will replicate these measurement
methods. Gain understanding, especially of capacitor functions and help to eliminate many popular misconceptions. Improving our knowledge base by using real measurements to replace subjective
opinion.

Contacts:
 WinAudioMLS Pro http://www.dr-jordan-design.d SpectraPlus232 http://www.soundtechnology.com

References

1. Op-Amp Audio. Walt Jung, Electronic Design, September 1
to December 14, 1988.
ittp:///www.elecdesign.com/conten
2. Active Feedback Amplifier Enables High-Performance A to-D Conversion. Moshe Gerstenhaber \& Chau Tran, Electronic Design, April 2, 2001
3. Capacitor Sounds. C. Bateman, Electronics World, January 2003
4. Capacitor Sounds II. C. Bateman, Electronics World, 5. Diftember 2003
5. Differential-in 100 MHz scope probe. C. Bateman,

Clectronics World, December 2001 Colitor Sounds. C. Bateman, Electronics World, September 2002

Complete and fax the coupon to: +44 (0) 1353654400	
I wish to subscribe for one year to Electronics World:	ELEC.R@NMCS
Price \square UK $£ 38.95$ \square $0 / 5 £ 64.50$ \square US $\$ 100.62$ \square Euro 102.55	W-DRL $\begin{gathered}\text { Hichibury } \\ \text { Busiess commuicioins }\end{gathered}$
Please tick preferred method of payment	
\square Please invoice me \square Purchase №	
- Ne Purchase order must be included to validate invoice)	
Club/Switch/Delta (please circle)	electronics magazine,
Card No	Electronics World is a
Expirv Date	technology- transfer magazine for the global
(Switch/(olta Only) Valid from $\square \square$ / $\square \square \square$ Issue Number \square	
Date	electronics industry. It covers research, technology,
Name	
Job Title	
Company	
Address	and much, much more.....
Postcode/Zip	
Country	
Telephone/Fax	
E-mail	
Please tick here if you do not wish to be contacted by other businesses either by Mail $\quad \square$ Telephone $\quad \square$ Fax $\quad \square \quad$ E-mail \square	ef regular monthly copy by
Please return to: Highbury Subscription Services,	subscribing today................
Link House, 8 Bartholomew's Walk, Ely, Cambridgeshire CB7 4ZD, UK.	subscribing today................
Email: wssewyverncrest.co.uk (Quote ref: EW1)	

LETTERS
 to the editor

Letters to "Electronics World" Highbury Business Communications
Nexus House, Azalea Drive, Swanley, Kent, BR8 8HU
e-mail EWletters@highburybiz.com using subject heading 'Letters'.

Defence of Mr. Miller continued

I would like to clarify my June 2003 detter regarding Miller compensatio letter regarding Mirler compensation,
in light of Mr. Graham Maynard's and Mr. John Ellis's responses to said matter.
Mr. Maynard noted that Mr. Ellis published graphs of 2 mV spikes for the Miller compensated case and suggested that I was unaware of such graph. Fortunately, I had not had any Guinness that day, so this suggestio is somewhat strained. He then made an elementary explanation as to
such behaviour might, for those

Walt Disney University

Perhaps Brian Corbett would like to tell us just wh he means by a 'Mickey Mouse' degree. Or is it just an all purpose term of denigration he has picked up from the press and politicians! Perhaps the m suggest a bit of a re-think might be needed. Media studies courses were developed at the old polytechnics more than twenty years ago. The people who undertook the early courses are now in heir forties and fifties, and many have gone on to successful careers in broadcasting. Thilar institutions. They could develop worthwhile vocational courses without being forced to call them degrees. Abolishing the polytechnics took away that option.
In England we have a very poor understanding of
xactly what we mean by vocational courses. Studies exactly what we mean by vocational courses. St seen as vocational and are acceptable to the chattering classes as worthy of being called degrees
Mathematics, physics, chemistry and biology will just about pass muster provided they are studied at a 'good university. Studying engineering, elecuranirs, way to be seen as just about one step up from the drawers of water and hewers of wood'.
With this kind of snobbery around do we really need Brian Corbett casting around for someone to
look down on?
Dr. Les May
Rochdale
UK
unskilled in such matters, result in degraded audible performance. Indeed, this was despite the fact that, by his own admission, he also suggested that such spikes would no have been measurable in a THD distortion test set-up. I certainly agree however, I am unaware of any convincing or credible evidence tha such microsecond width spikes would actually be audible, despite being visible on a scope. This is a view often held by the "golden ears brigade" which, arguable, is in an cash extract rather large quantities of cash from the uninititated. Mr. Maynard also made an assertion hat I considered Miller compensation Menstial. It would appear that Mr Maynard may have been on the Guinness himself whilst reading said
article. I made no such claim. There re indeed, other very well known and very well used alternatives to miller ompensation. For example, a ommon technique in current feedback mplifiers ${ }^{1}$ is to compensate by one apacitor from the high impedance
Mr. Maynard also pointed out th he failed to notice the ambiguity in he simulation graphs. This will, hopefully be rectified by the following. It was, and is still, not clear as to the exact method as to how is important to break the loop in the correct place. It is quite common for he inexperienced to perform loop analysis incorrectly, as a correct loop analysis is not necessarily trivial. For example Dr. Middlebrook ${ }^{2}$ has summary, it can be quite difficult to break the loop without ensuring the correct loading on each side if the loop. There may be significant interactions. In addition, Mr. Ellis article did not specify exactly were
the loop was broken, which can be quite crucial. The exact details of the loop gain measurement need to be specified in order to make any conclusions as to the validity to the
results. results.

To continue, I certainly agree with Mr. Maynard that there are ma without the experience to
competently design amplif competently design amplifiers and incorrectly However thens ation incorrectly. However, there are also problem In addition there are those that are prone to use such term as "high amplitude transparency" intermixed with various Star Trek technical terms in an effort to mislead or obscure the real issues, or becaus
that do not actually understand the real significance of these terms themselves.
Regarding Mr. Maynard's query o he MOSFET 1000 amplifier, which was, of course, and no surprise here would gather, designed by myself. cheme utilising a mere 8 transistor or the complete driver design,
xcluding the output power mosfets It achieved $<0.005 \%$ THD at 20 kH 8 Ohms. The only other ompensation was the standard RC parallel LR in series with the outp I do agree with Mr. Maynard that some writers do indeed fail to consider many aspects of their subject matter. However, there are also those hat have considerable experience, acquaintance often misunderstand the finer and more subtle points being presented by individuals who do have such experience. I also note that Mr Maynard is not acquainted with myself, further information may be
obtained by reference to my AnaSoft Web Director entry in this magazine:-) In reply to Mr. John Ellis's response, I certainly agree with M Ellis regarding the assertion that some amplifiers may well have been designed rather poorly with regard to
slew induced distortion However his slew induced distortion. However, his
arguments and technical rationale in his letter are very well known and completely understood by many, many, professional amplifier designers and have been so for many years, indeed going way back to the
likes of J. Linsley Hood and Peter

Baxendale, well known prior regular Ellis seagazine I might add. Mr Elis seems to be implying that all shilling Thesigners are not the full all. The reality is that this is a solved problem and a dead issue. As suggested in my first letter, is
relatively straightforward to audibly perfect amplifiers with Mille audibly perfect amplifiers with Miller overloading etc. Mr. Ellis appears to That is, comparing a good PLIL amplifier, with a bad Miller compensated amplifier. Mr. Ellis also comments on the addition of a low pass filter to avoid slew limiting, so will address this by noting that for full power bandwidth of 200 kHz , di not require, and had no input filter. Mr. Ellis then addresses my comments on the loop gain analysis. Unfortunately, he still fails to addres the fundamental criticism. Exactly was the loop broken? What steps were taken to ensure that loading effects were accounted for correctly? He appears to be suggesting "... by performing the subtraction..." that one can determine a valid loop gain 1 from the closed loop plot, as seen from the input signal. This is a very well known error, and was one of the issues that was being addressed in my original letter. The gain determined from the signal input is simply not the path. It is quite common for these two gains to be significantly different, such that the signal input derived loop gair shows stability, when in fact, the real loop gain as seen by the feedback loop, shows, and is,
unstable.
Mr. Ellis then goes on to point out objective. While there wasticle was objective. While there was a passing
nod to impartiality, it appeared to present the case from the advantage of the PLIL point of view. Furthermore, I clearly quoted two indeed contradictory, that is, his claim that their was an "improvem in linearity" for the PLIL, yet his results, further supported in Mr. Ellis own table in his reply to my lette, showed worse linearity,
competent Miller compensated amplifiers are not standard practice is ludicrous. Indeed they are, and have been for well over 20 years, probably 30. I would estimate that there are
1000's of amplifier designs with golden ear specifications, using

Miller compensation. I would sugge that Mr. Ellis actually investigate what the facts actually are. His overall inferred implication that 100's of amplifier designers are clueles says much Peterborough

UK

References:

1 "The current feedback myth" 2 Dr. Middlebrook, http://www.rdmiddlebrook.com/

Wideband buffers

Many thanks to Dewald de Lange for his comprehensive article, 'Flat, 2003. He certainly clarified issues that have given me fits. If only I'd had this information 35 years ago when we all were building op-amps from bits and pieces!
Despite the continuing abundance of linear integrated circuits in a wor
gone digital, discretion is said to be the better part of valour, and often a design using discrete components ha decided advantages over its monoithic counterpart. 1 would love to see nore artes extling the circuit design.
circuit design.
Jim Wood California

USA

Test failure

It appears that I would not be a likely recruit for C. Bateman \& Co. I tried Cyri's cube-of-resistors puzzle (Letters, September 2003) and I must confess that it took me considerably longer than the required couple of minutes. To make myself feel better
showed it to three other engineers Engineer 1 muttered something abour having to see a man about a dog and departed. Engineer 2 rather irritatingly solved the problem in about five minutes. Some time later Engineer 3 alleged that I had been that he would be able to do it with Kirchhoff's Laws and simultaneous equations but he hadn't the time. He reappeared the following morning with a solution similar to Engine ${ }^{2}$'s. At this point, before hastily would happen if the resistors all had different values. I was able to work out the answer much quicker this time: the person who had posed the question would be in dange having their own resistance
determined by a mob armed with the

PCB help wanted

seek the help of readers who may be familiar with my problem. To design my double-sided PCB's, I use
a homemade program that in the end generates two drawings in bit-map format. Then, via the commercial program Paint Shop Pro version 4, I can print the ayout of the component side and the solder side of double-sided PCB. To register one drawing with respect to the other, I use markings on the four corners each drawing. On one drawing the markings are open squares and on the other the markings are solid egister the drawings I put them face to face and ound that the markings do not register. When I put he drawings together face to back, in the same fashion as they come out of the printer, the marking do register. It turned out that vertical lines are not old ink-jet printer, I took the bit-map files to a print shop to have them printed on a state-of-the-art laser printer. Their printouts however showed the same defect. I would be very much obliged if somebody can explain to me what causes this error Chris Schuur
vuenen
The Netherlands
electrician's Megger. (A clue fo anyone still struggling: short togeth potential.)
Pete Fry's letter remarked on school science lessons and reminded me of a question I used to ask sandwich-course students. I thought it would indicate their ability to apply theoretical knowledge to a
practical situation. I got it from a MENSA magazine. (As you have probably guessed by now, the magazine was someone else's.) Suppose that two metal balls have identical weight, diameter, and surface finish. One ball has a lead
core surrounded by aluminium, and the other an aluminium core surrounded by lead. How does on tell which is which without damaging the balls? I had to abandon this question when my son complete further maths, and physics witho having been taught about moments of inertia. A university lecturer told me that this is now quite normal. This seems to me to leave a gaping hole in students' understanding of a world which contains numerous rotating
objects, and to be a bad thing for a nation which relies increasingly on its technical ability and
inventiveness.
On one more topic, I found the
article "The Cathode" interesting article "The Cathode interesting, process for oxide-coated cathodes

When I worked in T.V. servicing many years ago, the workshop had
box of tricks called a tube booster. box of tricks called a tube boos
This was sometimes able to This was sometimes able to
rejuvenate cathodes which had lost rejuvenate cathodes which had lost the booster put an excessive current through the heater and a large
ositive voltage on the control grid. Presumably the effect was similar to the forming process, removing the
oxygen from any residual oxide on xygen from any residual oxide on he cathode and leaving exposed wondering if the success rate would have been higher if the tube had been

Dinosaurs and Crosstalk

 R Harris makes serious errors in his letter "Dinosaurs" in the September issue of $E W$,p54. Since in my June article I wrote; ".... coarse grain arrays made up of a small number of powerful processors have discredited rather than promoted large scale (fine grain) array processors, he should not have written
failure of Transputer (powerful) arrays discrediting my promotion of an array of million processors, because I had already said millio
so.
Hat
Harris's second error is to write within the paradigm of separation between management subservient We have just spent half a demonstrating that such an arrangement fails, and I have written books and articles about its failure; see my book Computer Worship, (pub Pitman 1973), or my article 'The New Bureaucrac', Wireless World December 1982 my June 2003 article, which Harris is supposed to be commenting on. Harris, nilly, writes as if it will always be thus; ". make the transition to management; technical side of the fence". The error some technocrats make is to assume, in their ignorance, that management is a challenge. know from experience. Hi-tec activity contains within it all the challenges of management, so that the challenge of management is a subset of the challenges posed by high technology. That is the reason for the nervous rearguard by management
against hi-tec, and the incessant propaganda that Harris parrots, that technocrats would not be able to manage. The recent major case of such propaganda was to try to blame an engineer for the collapse of GEC after Weinstock had systematically rooted out GEC's technical (a middle managerial) when the cold war 'defence' scam disappeared. The journalists who blamed an engineer were not technocrats.
In his letter, "Design for EMC", EW Nov.03, p53/54, Ian Darney recommends his earlier article in May ' 01 , in both of which he in turn recommended certain faulty software to calculate crosstalk in digital systems. Unfortunately both Ian Darney and those who supply the software betrayed their lack of grasp of the subject Aug ' 98 article. The software output proves
that he and they do not know that in the configuration shown, the crosstalk (noise) is which oscilloscope photographs I took of such cases and published in IEEE Trans. Comp. Dec 1967. The whole industry has ignored m. exciting discovery of the two modes of propagation and my rigorous proof, leading to crosstalk amplitude for any configuration of printed circuit wires. These can now be found on the www via www.ivorcatt.com/34.htm. As to "De-bounce II", the letter by Ronald Ogilvie on the same page, I have gone back to Yong's circuit is nonsense. However there a second problem, which is 'The Glitch'. This hazard, also called 'synchroniser' or 'arbiter', has to be dealt with by circuitry which also solves de-bounce. In 1561 , when I complained to a designer of the $£ 5$ million Ferranti Atla Computer hatry behind a mechanical switch deal with the glitch, he replied that this did not matter because the computer was so unreliable anyway. Too get a feel for the money, my raduate salary was less than $£ 1,000$. Later, I was the first to publish on ‘The
Glitch', see IEEE Trans. Com. Feb. 1966 , G108. Although the subject was and remains taboo, I published in the IEEE by giving it a misleading title. (Repeated in my selfpublished 1980 book Digital Electronic Design vol. 2, p281. Send large s.a.e. to me ia $E W$ for those 23 pages). It is also discussed in my book Computer Worship, Telegraph, 5 Feb.1974, "Computers sent mad by 'The Glitch'".
Later, Wormald claimed to have solved the insoluble problem of 'The Glitch', but he recanted when I went after him. His recantation, in IEEE Trans. Com. Oct 1979,
ended; ".... Obviously the situation needs understanding by a much wider circle of the computing fraternity than the small proportion of engineers who have been concerned so ar." Since then, the problem has been gnored/suppressed for a further quarter century, so that computers can continue to
crash. Chris Penfold was commissioned to write a play about the suppression, and wrote the script, but it was cancelled before
shooting.
Ivor Cat
St Albans
Hertfordshire
left for some time before being operated, so that the oxygen could be absorbed by the getter. Hugh Mirams, G8UTW By email

Volks radio receivers

 Germany 1930'sI read the $E W$ August article on 'Radio Receivers of the Third Reich'. As I examined the schematic that was
shown on page 17 I noticed how extremely primitive it is. This is one of the crudest receiver circuits that was commercially produced after 1929 the year the superneterodyne came out in America). The Germans obviously intending to make a mass produced radio that was as cheap as
possible, your article's propaganda about the Nazi censuring, notwithstanding. In any case I noticed that the output stage was directly connected to the speaker and that the power amp stage had a directly would have made for a very noisy speaker -50 Hz tone from the AC line I was thinking, there was a method used in dynamic speakers called a 'hum-bucking coil'. This coil was wrapped around the field coil of the speaker. The hum from the speaker
would induce a counter-EMF in the H-B coil and cancel out this 'waste noise'.
Could the Germans have used that in their radio receiver sets to nullify the 50 cycle power line hum from the
lousy circuitry they used ? ? lousy circuitry they used ???

Woodland Hills

California
USA

Fluorescent Starter

October's Circuit Ideas on 'Fluorescent Starter Circuit' reminded me of working on lamp dimming circuits in the 1960 s . We
found that it was necessary to kee the heaters alive and used a double secondary transformer to heat the two cathodes and so dispensed with the starter. I seem to remember 9 volts but I have been using 6.3 volts in several fittings at home for over 30 years. These have given me nearly instant starting without flicker and usually the light gets too poor before circuits work well but must have a flywheel action to cope with the back EMF from the choke otherwise the dimming range is poor.
Albert Lardeur
Chaldon
UK

Cyril's quiz answer
The answer to my quiz is all too simple provided you spot the importance of the circuit's assigning resistor and junction node numbers, as in the amended figure. Starting from point A, we have three same value resistors, each connecting to a pair of resistors of
the same value, shown as junctions $2,3,4$. One resistor of each pair then connects to one of the three resistors which lead out through point B,
shown as junctions 5, 6,7.
Hence each of the junctions 2, 3, 4, sees the same source and load
currents, so these three equipotential points. In similar are fashion, junctions 5, 6,7 are also set of three equipotential points, but have a different voltage from the first set. Hence we can short junctions 2,3 , and 4 together
short. Likewise junctions 5, 6, and 7.
Equipotential points can be interconnected without contravening the Kirchoff' law as in the rearranged figure. Hence by inspection we have $1 / 3+1 / 6+1 / 3=5 / 6$ or 0.833 Ohms which is the answer. simulation can be made by adding a very small current sensing resistor R13, 0.0001 Ohms, as shown in the schematic which also clearly shows the above symmetry and node junctions, this R13 is much too small
to affect the calculated values I have also attached MC6 simulations showing the overal circuit resistance of the original figure as 0.833 Ohms and two roups of equipotential points at .6 V and 0.4 V , using a 1 V signal as Cyril Bate Acle
Acle
Norfolk
UK.

US rant

In October Circuit Ideas featured a little electronic fluorescent lamp starter from contributor Henry Maidment. It's a cute circuit. I assume in the text that P3 actually refers to R3. I assume that in the diagram,
one of the two different resistors labelled R 1 is also, in fact, R 3 - probably the 15 k item.
I know that editing contributor pieces and proof reading are two of the least pleasurable tasks in all of publishing, but please remind the residents of your galley-
hold that they are important. By the way... I'm one of yo American followers. Each year I remind our technical library to re-up our subscription to your journal. Each year I get a message
back from the library saying the Electronic

World is an amateur publication, and a
World is an amateur publication, and a
British one at that. In response I send off one of two saved emails. One says that $E W$ may be an amateur publication, but its a damn good one and it isn't the only one we get, and that if we keep our subscription to
Time Magazine and cancel $E W$ ''ll scream. The other says that the articles on RF and audio are so relevant to our field (wireless telecom) that the subscription has real value for many of the technical staff here. And as far as being British, the last I checked Maxwell's Laws hadn't been overturned by our Supreme Court, so aside from having to
convert everything from 240 V 50 Hz to 120 V 60 Hz and from Mains to Line and from Earth to Ground, we're finding your material pretty useful.
Two wish list items... Your amplifier articles have taught me a great deal. I'd love
to see a high performance utility audio
to see a high performance utility audio
amplifier design built on a modern IC such as TDA7294. I'm fascinated by studio photoflash systems, such as the Broncolor or Ascorlight systems. Any chance you would publish a studio/lab strobe flash system showing how they work - perhaps
from the same author who did the inverter design in your current number. Richard W. Davis USA
Your error spotting is absolutely correct and I have no idea how the errors got was OCR'd and the diagram was redrawn, which is a bit unusual in is these paperless times. And I'd be pleased to hear from any potential authors on the
subjects you mention-Ed subjects you mention.-Ed
'carefully-worded paragraph'. The DoC is a bald statement that the named, standards
Next, he refers to the application of tests being 'selective', as if that is no good, but then inverts his position in
saying that a kettle has to be tested for all sorts of irrelevant phenomena It doesn't: it is an established ruling that irrelevant testing is not required. In fact, no actual testing at all is
demanded: all that is necessary legally is that the DoC is true.
The torch example is another in the
same line as above: a simple torch needs no EMC assessment, let alone testing, and doesn't legally need a CE mark, although many manufacturers apply one so as to prevent questions as to why there isn't one, from people
like Mr. Denham, who sound off from a position of not knowing the facts. However, the torch with an inverte definitely does need to be assessed, and probably tested for emissions only, since it's unlikely that the applicable immunity test levels would
produce any unfavourable effect. The produce any unf avourable effec
decisions about testing are the 'responsibility' of the manufactur but there is plenty of advice available, some of it even free.
The text about detachable mains leads is utterly ludicrous. The produ while it is being tested, so any effect due to that lead are included in the test results. Any CE marking on a mains lead substantially refers to the Low Voltage Directive, not the EMC Directive.
The passage on plug-top power supplies is equally surreal. If a product is sold with its power supply,
they are assessed and tested together If a product is sold without a plug-to power supply, but one can be attached, it is assessed and tested with a representative power supply. In any
case, non-switching plug-top supplies are CE marked for electrical safety rather than EMC.
True to form, Mr. Denham trots out he 'faceless men in Brussels' cliché. In fact, the EMC and safety standard are written by practising
(me, for instance) from
manufacturing industry, the electricity suppliers and academia. There are no people from the Commission involved, except an EMC expert who spent most of his career
stry and now has an advisory
If it were true that industry, left to itself, always made products 'with minimal interference radiation and
absorption problems' Mr. Denham
and his confrères would have trouble in meeting the EMC requirements, so his protests would
be without foundation. It's precisely because it's not easy to design and manufacture such products th testing, self-certification and The idea that individual consumers have an effective part to play in EMC regulation is not entirely unrealistic. It is, for example, a justification for no test for immunity to electrostatic discharges (ESD) appearing in television receivers EN55020 receiver were marketed that had poo ESD immunity, the return rate under guarantee would demonstrate to the manufacturer the error of his ways. But this reasoning doesn't apply to which affect other equipment not the receiver that is the source. John Woodgate

Oh, ' ${ }^{\prime}$ '
May I point out a small typo on P52 OC as though the ' 0 ' was a letter of the alphabet. As you remember well the 0 C series you will also remember such things as the 2 A 3 , the 5 U 4 , the 6 V 6 , the 12AT7, etc., and so will have an excellent opportunity to instruct,
really meant.
J. I. Anderson

Edinburgh
Scotlan
UK
Well, I stand corrected. All these years I've thought that the ' O^{\prime} ' zero) was in fact the letter ' O^{\prime} '. 1 remember the 12AT7 etc. and also the ECC83, AF117 and the like and naturally assumed ' O ' was ' O '. For readers that did not know and here) the 0 (zero) prefix predates the common 'Pro-Electron' numbering system that was used or things like the AF117, AC128 and the ubiquitous BC108/9. It appears that the in the early
numbering days transistors treated as valves with a zero heater voltage (as the first letter of any valve numbered under the UK system denoted its heater voltage and/or current) - hence the leading Vintage Wireless Society web site for the answer. A full description of transistor numbering can be found at:
www
www.bvws.org.uk/405alive/tech/va Ivenos6.html-Ed.

HIP WHNT:

I have a Kikusui COS 6100 M oscilloscope with a dea
tube: I'd like to obtain working tube or similar dead tube: I'd like to obtain working tube or similar dead model with good tube or offer the scope to a good home

Old radios again

In the October EW, I asked for help in identifying an old radio - well I've finally got some pictures to jog eaders' memories.
The set was a thr
The set was a three valve TRF design with no manufacturer's names and I would really like to know who made it and when. The receiver is built on a half inch thick wooden base board of side 12×14. It has an ebonite panel, 14×7 ", with four controls, i.e. LT switch, reaction and twin edge-wise tuning controls with scales marked 0 to 180
Chas F Fletcher. G3DXZ g3dxz@thersgb.net

To reserve your web site space phone Reuben Gurunlian Tel: 01322611292 Fux: 01322616376

Vutrax electronic schematic and pcb
desing
docter NT, 2000, XP and Linux. Limited capacity FREE version downloads avaiable, all WILMSLOW AUDIO http://www.wilmslowaudio.co.uk

"UK's largest supplier ofhigh quality
loudspeaker kits and drive units. loudspeaker kits and drive units.
Comprenensie arge of components and
accesssories, includuing damping products, Connectors and grilles materias.
Demonstration facilities available.

Ten year index: new update

www.soffcopy.co.uk
100,101, and 102 are avainble at Ez each, excluding
postage.

Hard copies and floppy-disk

 databases both availableWhether as a PC data base or as hard copy, SoftCopy can supply a complete index of Electronics World articles going back over the past nine years.
The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.
The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive. Please specify whether you need 5.25 in, 3.5 in DD or 3.5 in HD format.

Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non- EC overseas orders
Postal charges on hard copy indexes and on photocopies are 50 p UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide.
of the EC or $£ 2$ worldwide.
Send your orders to SoftCopy Ltd,
1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoftCopy Ltd, please allow 28 days for delivery
Photo copies of Electronics World articles from back issues are
available at a flat rate of 53.50 fiat rate of $£ 3.50$
per article, $£ 1$ per articie, $£ 1$ excluding postage.

Hard copy Blectronics World index
Indexes on Indexes on paper for

FRUSTRATED!

Looking for ICs TRANSISTORS
A phone call to us could get a
result. We offer an extensive
result. We offer an extensive
range and with a World-wide
database at our fingertips, we are able
database at our fingertips, we are able
to source even more. We specialise
(to name but a few).
2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N6N 1740 AD

Please ask for our Free CD Rom STOCK LIST
WE STOCK A MASSIVE RANGE OF COMPONENTS:
Mail, phone, Fax, Credit Card orders \& callers welcome.
Cricklewood Electronics Ltd
$40-42$ Cricklewood Broadway, London NW2 3ET Tel: 02084520161 Fax: 02082081441 Www.cricklewoodelectronics.co.uk
E-mail: sales@cricklewoodelectronics.com

ADVERTISERS INDEX

Beta Layout .. 63
Cambridge Microprocessor Systems Ltd 35
Cricklewood Electronics 63
Ennovi Ltd ... 35
Johns Radio .. 35
JPG Electronics ... 63
Labcente ... 11
Multigen .. 9
Observant ElectronicsIBC
Olson Electronics .. 2
Pico Technology .. 38
Quasar Electronics 4
Stwarts of Reading .. 31
Telnet Ltd ...IFC
Test Equipment SolutionsOBC
Tie Pie Engineering 33
Vann Draper Electronics Ltd.......................... 31
Westdev.. 9

Simply send your files ond order OWINE:
WWW.PCB-POOL.COM
Protel 3 ar orcad EDNN Graphicade

Service Link

Service Link

A thousand applications ONE SOLUTION!

Introducing DataStation ${ }^{\text {'" }}$ a 16 Channel, mixed-signal, software-configurable serial I/O controller.

Greater than 500 samples
per second, 391 different
I/O configurations from
one single product!

With up to:

- 6 Analogue Inputs
- Selectable ADC resolution
- 2 PWM Outputs
- 16 Digital Inputs
- 16 Digital Outputs
- RS-232 interface

Typical Applications:

- Machine control
- Industrial automation

- Environmental monitoring
- Robotics

This unrivalled flexibility allows designers to meet the needs of virtually any application with just one product, helping to reduce development costs and time-tomarket significantly.
market significanty.

£89.00 plus VAT

To find out more or buy online visit: www.ObservantWorld.com

Unit F2b, Avonside Enterprise Park, New Broughton Road, Melksham, Wiltshire. SN12 8BS. U.K.
Telephone: 01225704631
Facsimile: 01225708618
Facsimile: 01225708618

Quality Second User Test Equipment With 12 Months Warranty

The Industry's Most Competitive Test Equipment Rental Rates

AMPLIFIERS

Amplifier Research 100L IOKHz-220MHz I5OW RF Amplifier Amplifier Research IOWIO008 IGHz IOW RF Amplifier Amplifier Research IWIO00 IGHz IW RF Amplifier EN 5100 L 400 MHz IOOW Power Amplifier HP $834982-20 \mathrm{GHz}$ I5d8 +20 d 8 m Amplifier Kalmus KMS737LC 25W IOKHz-IGHz Amplifier DATACOMMS
Fluke DSP4000 Cat 5e/6 LAN Cable Tester HP I8294A X2I Interface For HP Protocol Analyser HP J23000 WAN Internet Advisor
HP J3446C LAN Fast Ethernet Internet Advisor Inet SPECTRA 2 Port Mult-protocol Analyser - Prices From Tek I503C Metallic TDR

ELECTRICAL NOISE

HP 346A 18GHz APC-3.5(m) Noise Source HP 346C 26.5GHz APC-3.5(m) Noise Source HP 89708/020 2GHz Noise Meter

ELECTRICAL POWER

8MI IOOG POWERVISA Single Phase Mains Disturbance Ana. 8MI A-II6 1-600A Current Clamp for 8MI 4800/100G
Dranetz PP4300 Power Quality Analyser
Dranetz TR2022 10-1000A Current Clamp For PP4300 EMC
Chase LFRIOOO 9KHz-I5OKHz Interference Meas Receiver Electrometrics EM7600 IOKHz-I OOMHz Transient Limiter R\&S E8IOO 20MHz-IGHz EMC Test Receiver
R\&S EPLIOO Panoramic Display For E8100
Schaffner NSG435 ESD Simulator
FREQUENCY COUNTERS
EIP 54826 GHz Frequency Counter HP 53131A 225MHz 10 Digit Universal Counter HP 5313IA/030 3GHz Universal Counter Philips PM6670 I2OMHz Frequency Counter/Timer Philips PM6673 120MHz Frequency Counter/Timer Racal 1992 I.3GHz Frequency Counter Racal 1998 I.3GHz Frequency Counter Racal 990350 MHz Frequency Counter Timer FUNCTION GENERATORS HP 33258 21MHz Function Generator HP 8904 A 600KHz Function Generator Lecroy 9109/9100-CP ArbWaveform Gen With Controller Philips PM5I38 IOMHz Function Generator Philips PM5 193 50MHz Function Generator Tek AWG202I $125 \mathrm{MHz} 250 \mathrm{MS} /$ s Arbitrary Waeform Gen. Thandar TGI304 I3MHz Function Generator Wavetek 650 2MHz Variable Phase Synthesiser LOGIC ANALYSERS
HP I6500A Logic Analyser Mainframe HP 16500C/03 Logic Analyser Mainframe With 32M Memory HP 16510 A 100MHz Timing/25MHz State 80 Ch Logic Card HP 165108100 MHz Timing/35MHz State 80 Ch Logic Card HP 1662A 500MHz Timing 100 MHz State 68 Ch Logic Ana. HP 1662AS 500MHz Timing 100MHz State 68 Ch with DSO MULTIMETERS
HP 3440 IA 6.5 Digit Digital Multimeter HP 3458A 8.5 Digit System Multimeter Keithley 2400 200V Digital Sourcemeter Schlumberger $7150+6.5$ Digit Precision Multimeter

$\begin{aligned} & \text { Sale } \\ & \text { (GBP) } \end{aligned}$	$\begin{aligned} & \text { Rent } \\ & \text { (GBP) } \end{aligned}$	NETWORK ANALYSERS	$\begin{aligned} & \text { Sale } \\ & \text { (GBP) } \end{aligned}$	$\begin{aligned} & \text { Rent } \\ & \text { (GBP) } \end{aligned}$
9950	359	Anritsu S33IC 4GHz Scalar Network Analyser	5250	189
2950	89	Anritsu S820A 20 GHz Sitemaster Scalar Network Analyser	10950	414
950	48	HP 3552A Transmission Test Set	1450	75
8950	330	HP 3577A 5Hz-200MHz Vector Network Analyser	4750	142
2950	89	HP 4195A 500MHz lector Network/Spectrum Analyser	8950	323
4750	143	HP 4396A I.8GHz Network/Spectrum Analyser	10950	395
		HP 8712ES I.3GHz lector Network Analyser c/w 5 Param	9500	342
3250	135	HP 8714C/IEI 300KHz-3GHz lector Network Ana c/w TR	7250	218
750	34	HP 87538/006 6GHz lector Network Analyser	6500	195
2550	92	HP 8753D/002/006/010 6GHz lector Net Ana c/w S Param	17950	647
3950	119	HP 8753ES 3GHz lector Network Analyser c/w S Param	16950	508
4950	179			
2500	90			
1150	42	Checkout our		
1595	65	Autumn 2003		
7250	218	Product Guide !!		
1950	95	Call Us Now for Your Copy		
650	33			
4950	179			
595	25			
		HP 8757C Scalar Network Analyser	4500	162
850	43	HP 8944IA - Various option sets zailable - Call from	14000	504
185	10	RQS ZVC 20KHz-8GHz Vector Network Analyser	19500	702
1950	59	OSCILLOSCOPES		
695	28	HP 54501A 4 Channel 100MHz 20MS/s Digitising Scope	1250	38
2950	89	HP 54502A 2 Channel 400MHz 400MS/s Digitising Scope	1500	45
		HP 54540A 4 Channel 500MHz 2GS/s Digitising Scope	3950	189
2750	99	HP 54542C 4 Channel 500MHz 2GS/s Digitising Scope	4950	179
850	31	HP 54825A 4 Channel 500MHz 2GS/s Digitising Scope	7250	287
1350	41	HP 54845A 4 Channel 1.5GHz 86S/s Digitising Scope	10950	395
350	28	Lecroy LC534AL/GPOI/64MBSM 4 Ch IGHz 2GS/s Dig Scope	6500	234
395	20	Lecroy LC584AM 4 Channel IGHz 8GS/s Digitising Scope	15350	553
1150	35	Tek TDS3054/3FFT/3TRG 4 Channel 500MHz 5GS/s DPO	6250	188
695	35	Tek TDS350 2 Channel 200MHz IGS/s Digitising Scope	1850	112
295	24	Tek TDS5208 2 Channel 500MHz 500MS/s Digitising Scope	3450	125
		Tek TDS540 4 Channel 500MHz IGS/s Digitising Scope	4400	159
2650	80	POWER METERS		
1350	49	HP II722A 2.6GHz Power Sensor Module	1250	45
1950	59	HP 436A/022 RF Power MeterWith GPIB	750	32
1500	54	HP 4378 RF Power Meter	1350	49
1750	63	HP 438A Dual Channel RF Power Meter	1550	49
4950	149	HP 8153A Light Wave Multimeter Mainframe	1750	63
495	30	HP Power sensors - Many available......................Call us		
4150	150	HP E44I2A 10MHz-18GHz 100 mW Power Sensor	695	35
		HP E4418A Single Channel RF Power Meter	1500	54
1250	71	HP E44I88 Single Channel RF Power Meter	1650	60
2350	85	Marconi 6910 20GHz 100 mW Power Sensor	350	18
675	34	POWER SUPPLIES		
890	45	Many different units available..... Call Us Prices from	85	9
2900	87	HP II22A Probe Power Supply	250	15
4500	135	Kikusui PLII50W I50W Electronic Load PULSE GENERATORS	595	25
650	33	HP 8082A 250MHz Pulse Generator	1450	53
4850	175	HP 81 IOA/81103A 150MHz Pulse / Pattern Generator	4750	171
2500	7518	HP 81I2A 50MHz Pulse Generator	2450	89
395	29	HP 8130A 300MHz Pulse Generator	5500	198

Sale	Rent
(GBP)	(GBP)

SIGNAL \& SPECTRUM ANALYSERS
(GBP) (GBP)
Advantest R3361A 9KHz-2.6GHz Spectrum Analyser With TG Advantest R4I3ID 3.5 GHz Spectrum Analyser Advantest R92IIA IOOKHz Dual Channel FFT Analyser Anritsu MS2602A/01 $100 \mathrm{~Hz}-8.5 \mathrm{GHz}$ Spectrum Analyser Anritsu MS6108 2GHz Spectrum Analyser Anritsu MS7IOA 23GHz Spectrum Analyser Anritsu MS7IOC 23GHz Spectrum Analyser HP 339A IIOKHz Distortion Analyser HP 3562A 100KHz Dual Channel Dynamic Signal Analyser HP 35660A 102.5kHz Dual Channel Dynamic Signal Analyser HP 3585 A 40 MHz Spectrum Analyser
HP 53310A 200MHz Modulation Domain Analyser HP 8563A/103/104/H09 22GHz Spectrum Analyser HP 8591A/010/021 1.8GHz Spectrum AnalyserWith TG HP 8594E/04I 2.9GHz Spectrum Analyser HP 8901A/001 1.3 GHz Modulation Analyser HP 89038/001/013/05I 20Hz-IOOKHz Audio Analyser SIGNAL GENERATORS
HP 837328/IEI/IE5/IE8 0.01-20GHz Synth Sig Generator HP 86448/002 2GHz High Performance Signal Generator HP 86488 2GHz Synthesised Signal Generator HP 86568/00I $0.01-990 \mathrm{MHz}$ Synthesised Signal Generator HP 8657A IGHz Signal Generator
HP 86578/001 2GHz Synthesised Signal Generator HP E44218 3 GHz Signal Generator
HP E4432A/IEM 3GHz Signal Generator HP E44338/202/UN8/UN9/UND 4GHz RF Signal Generator Marconi 2022 Synthesised IGHz Signal Generator R\&S SMYO2 9KHz-2GHz Synthesised Signal Generator TELECOMS
HP 37117C/UK) PDH Transmission Analyser HP 37722A 2MBPS Digital Telecom Analyser HP 37732A 50BPS-2M8PS Telecom/Datacom Analyser HP 3788A/001 2MBPS Error Performance Analyser Marconi 2840A 2M8 Handheld Transmission Analyser Trend AURORA DUET Basic \& Primary Rate ISDN Tester Trend AURORA PLUS Basic Rate ISON Tester TTC 147 2M8PS Handheld Communications Analyser ПC Fireberd 4xxxx Interfaces - many types available...Call TC Fireberd 6000A/6004/6005/6006 Comms Analyser TTC TIMS-45 TIMS Test Set For Fireberd 4000/6000 W\&G DST-I Handheld E \& M Signalling Tester W\&G PCM-23 Vice Frequency PCM Tester W\&G PCM-5/BN984/00.01/02/BN958.24 PCM Chan Meas Set
W\&G PFA-35 $2 \mathrm{MB} / \mathrm{s}$ Digital Transmission Analyser WIRELESS
Anritsu ME45IOB Digital Microwave System Analyser HP II759C RF Channel Simulator HP 8920A/I/4/7//3/I/4/I03 IGHz Radio Comms Test Set HP 8920B/I/4/I3/I4/5I/I02 IGHz Radio Comms Test Set IFR I600S/16/20/21/22/35 IGHz Radio Comms Test Set 3950 Marconi 2955A/2957A IGHz Rad Comms Test Set c/w AMPS Marconi 2955R IGHz Radio Comms Test Set
Marconi 2965/II IGHz Radio Communications Test Set 5950 R\&S CMD55/BI/4/6/9/41/42/43/44/51/61/U18/U2O RCTS 6550 ReS CMU200/81I/82I/84I/B52/K21/K22/K23 RCTS(tri-band) Wavetek 42OIS Triband Digital Mobile Radio Test Set Wavetek 42025/AM Triband Digital Mobile Radio Fest Set

650

Prices shown are for guidance in EUK and are exclusive of VAT. Rental prices are per week for a rental period of 4 weeks. Free carriage to UK mainland addresses for Sales. This is just a selection of the equipment we hare available If you don't see what you want, please call. All items supplied fully tested and refurbished. All manuals and accessories required for normal operation included. Certificate of Conformance supplied as standard; Certificate of Calibration available at additional cost. Test Equipment Solutions Terms apply. E\&OE.

[^0]: No1 Number One Systems

[^1]: 53-55 Main Street, Grassington. BD23 5A A
 Free Demo CD

[^2]: 100000001028FF3FFF3FFF3F8COAOB1109008207 100010007 F 34 BF 34 DF 34 CF 34 F 734 FB 34 FD 34 FE 346 10002000 FC 3065000030660007306200 FF3085005 $1000400001089100 C 089028 C 0181010512628$ 10005000080005148514 FF 3086003 D 309102031 Cl 1000600090030 F309002031C46280A30110203183 10007000442891080319442891030319482891033 100080001108072086000800031 D48288510080075 00000001 F

[^3]: stepper motor. The first program (contin.c) is used when the motor needs to be continuously rotated and the second program (handcrl.c) moves the motor in a step-by-step motor can be moved at user sele speeds between $0.3-8.0 \mathrm{rpm}$. The direction of motion,
 clockwise/counter clockwise is also user selectable by pressing the ' c '/' a ' keys when prompted by the program. variable 'calib $=18750$ ' in this

[^4]: Postcode

