Design competition – 3 prizes worth £900 in total

MARCH 2001 £2.80

## Free gift with this issue: 555 timer that runs off 1.5V

Circuit ideas: PIC frame check for PPP Road ice warning Automatic antenna attenuator Dry cell charger Prog. voltage reference Crystal ref. sinewave Simple theft alarm Power chopper

Planar resistor design Wireless 32-channel voltmeter



#### **Hewlett Packard** 8642A - high performance R/F synthesiser (0·1-1050MHz) £4750 3335A - synthesiser (200Hz-81MHz) £2400 **Hewlett Packard** from £750 436A power meter and sensor (various) 437B power meter and sensor (various) from £1100 **Hewlett Packard** Wandel & Goltermann SPECIAL OFFER **PCM-4 PCM Channel measurement set** (various options available) from £5500 Marconi 6310 - programmable sweep generator (2 to 20GHz) - new £3250 Marconi 6311 Prog'ble sig. gen. (10MHz to 20GHz) £4000 Marconi 6313 Prog'ble sig. gen. (10MHz to 26.5GHz) £6250 **Hewlett Packard** 5370B - universal time interval counter £1500 Hewlett Packard 8662A synth. sig. gen. (10kHz to 1280MHz) £8250 Hewlett Packard 3324A synth. function/sweep gen. (21MHz) £2,500

#### **OSCILLOSCOPES**

| OJCIELOJCOPEJ                                                 |            |
|---------------------------------------------------------------|------------|
| Gould 400 20MHz - DSO - 2 channel                             | £800       |
| Gould 1421 20MHz - DSO - 2 channel                            | £600       |
| Gould 4068 150MHz 4 channel DSO                               | £1500      |
| Gould 4074 100MHz - 400 Ms/s - 4 channel                      | £1350      |
| Hewlett Packard 54201A - 300MHz Digitizing                    | £995       |
| Hewlett Packard 54600A - 100MHz - 2 channel                   | £750       |
| Hewlett Packard 54610A - 500MHz - 2 channel                   | £1850      |
| Hewlett Packard 54502A - 400MHz-400 MS/s 2 channel            | £1800      |
| Hitachi VI52/V212/V222/V302B/V302F/V353F/V550B/V650F          | from £125  |
| Hitachi VI 100A - 100MHZ - 4 channel                          |            |
|                                                               | 2900       |
| Intron 2020 - 20MHz. Dual channel D.S.O. (new)                | £450       |
| Iwatstu SS 5710/SS 5702 -                                     | from £125  |
| Kikusui COS 5100 - 100MHz - Dual channel                      | £350       |
| Lecroy 9354M 500MHz - 2 Gs/s - 4 channel                      | £6000      |
| Lecroy 9314L 300MHz - 4 channels                              | £3000      |
| Meguro MSO 1270A - 20MHz - D.S.O. (new)                       | £450       |
| Philips PM3094 - 200MHz - 4 channel                           | £1750      |
| Philips 3295A - 400MHz - Dual channel                         | £1600      |
| Philips PM3392 - 200MHz - 200Ms/s - 4 channel                 | £1995      |
| Philips PM3070 - 100MHz - 2 channel - cursor readout          | £750       |
| Tektronix 465 - I00MHZ - Dual channel                         | £350       |
| Tektronix 464/466 - I00MHZ - (with AN, storage)               | £350       |
| Tektronix 475/475A - 200MHz/250MHz -                          | from £450  |
| Tektronix 468 - 100MHZ - D.S.O.                               | £650       |
| Tektronix 2213/2215 - 60MHz - Dual channel                    | £350       |
| Tektronix 2220 - 60MHZ - Dual channel D.S.O                   | £995       |
| Tektronix 2235 - 100MHZ - Dual channel                        | £600       |
| Tektronix 2221 - 60MHz - Dual channel D.S.O                   | £995       |
| Tektronix 2221 - 50MHZ - 5 channel                            | £900       |
|                                                               |            |
| Tektronix 2440 - 300MHz/500 MS/s D.S.O.                       | £2450      |
| Tektronix 2445A/2445B - 150MHz - 4 channel                    | £1000      |
| Tektronix 2445 - 150MHZ - 4 channel + DMM                     | £1200      |
| Tektronix TAS 475 - 100MHZ - 4 channel                        | £995       |
| Tektronix 7000 Series (I00MHZ to 500MHZ)                      | from £200  |
| Tektronix 7104 - 1GHz Real Time - with 7A29 x2, 7B10 and 7B15 | from £2500 |
| Tektronix 2465/2465A/2465B - 300MHz/350MHz 4 channel          | from £1250 |
| Tektronix 2430/2430A – Digital storage - 150MHz               | from £1250 |
| Tektronix 2467B – 400MHz – 4 channel high writing speed       | £4750      |
| Tektronix TDS 310 50MHz DSO - 2 channel                       | £750       |
| Tektronix TDS 320 100MHz 2 channel                            | £850       |
| Tektronix TDS 340A 100MHz DSO - 2 channel                     | £1250      |
| Tektronix 544A 500MHz 4 channel                               | £4950      |
|                                                               |            |

#### SPECTRUM ANALYSERS

| Ando AC 8211 - 1.7GHz                                            | £1500      |
|------------------------------------------------------------------|------------|
| Avcom PSA-65A - 2 to 1000MHz                                     | £850       |
| Anritsu MS 610B 10KHz - 2GHz - as new                            | £3500      |
| Advantest/TAKEDA RIKEN - 4132 - 100KHz - 1000MHz                 | £1500      |
| Hewlett Packard 8756A/8757A Scaler Network Analyser              | from £1000 |
| Hewlett Packard 853A Mainframe + 8559A Spec. An. (0.01 to 21GHz) |            |
| Hewlett Packard 182T Mainframe + 8559A Spec. An. (0.01 to 21GHz) |            |
| Hewlett Packard 8568A (100Hz - 1500MHz) Spectrum Analyser        | £3500      |
|                                                                  |            |
| Hewlett Packard 8568B - 100Hz - 1500MHz                          | £5250      |
| Hewlett Packard 8567A - 100Hz - 1500MHz                          | £3995      |
| Hewlett Packard 8752A - Network Analyser (1.3GHz)                | £5995      |
| Hewlett Packard 8754A – Network Analyser 4MHz-1300MHz 🔍          | £1500      |
| Hewlett Packard 8591E 9KHz-1.8GHz                                | £4250      |
| Hewlett Packard 3561A Dynamic signal analyser                    | £3995      |
| Hewlett Packard 35660A Dynamic signal analyser                   | £3250      |
| IFR A7550 - 10KHz-1GHz - Portable                                | £1950      |
| Meguro - MSA 4901 - 30MHz - Spec.Analyser                        | £700       |
| Meguro - MSA 4912 - I MHz - IGHZ Spec. Analyser                  | £995       |
| Tektronix 2712 Spec. Analyser (9kHz - 1.8GHz)                    | £3750      |
| Wandel & Goltermann TSA-1 system analyser (100Hz-180MHz)         | £2750      |
| Wiltron 6409 - 10-2000MHz R/F Analyser                           | £1750      |
| Willfoll 0409 - 10-2000Willz H/T Analysei                        | 21750      |
|                                                                  |            |

All equipment is used - with 30 days guarantee and 90 days in some cases Add carriage and VAT to all goods.

Coventry CV3 2SF.

## Quality second-user test & measurement equipment

### **NEW PHONE CODE FOR COVENTRY 02476**

#### Radio Communications Test Sets

| Marconi 2955                  | £2000 |
|-------------------------------|-------|
| Marconi 2955B                 | £4500 |
| Antritsu MS555A2              | £1200 |
| Hewlett Packard 8922B (GSM)   | £6950 |
| Schlumberger Stabilock 4031   | £3500 |
| Schlumberger Stabilock 4040   | £1500 |
| Racal 6111 (GSM)              | £1750 |
| Racal 6115 (GSM)              | £3995 |
| Rhode & Schwarz CMTA 94 (GSM) | £4995 |
|                               |       |



## Fax 02476 650 773

#### MISCELLANEOUS

| INCOLLEANEOOO                                                                                               |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Eaton 2075-2A - Noise Gain Analyser                                                                         | at £2750   |
| Fluke 5100A/5100B/5200A – Calibration Units (various available)                                             | from £1000 |
| Fluke 2620 Data Buckets                                                                                     | £500       |
| Hewlett Packard 339A Distortion measuring set                                                               | £1200      |
| Hewlett Packard 435A + 435B Power meters                                                                    | from £100  |
| Hewlett Packard 778D Dual-Directional Couplers                                                              | £650       |
| Hewlett Packard 3488A - Switch/Control unit                                                                 | £475       |
| Hewlett Packard 3457A multi meter 6 1/2 digit                                                               | £950       |
| Hewlett Packard 3784A - Digital Transmission Analyser                                                       | £4500      |
| Hewlett Packard 3785A - Jitter Generator & Receiver                                                         | £1250      |
| Hewlett Packard 5385A - 1 GHZ Frequency counter                                                             | £650       |
| Hewlett Packard 6033A - Autoranging System PSU (20v-30a)                                                    | £750       |
| Hewlett Packard 6622A - Dual O/P system p.s.u.                                                              | £1250      |
| Hewlett Packard 6624A – Quad Output Power Supply                                                            | £2000      |
| Hewlett Packard 6632A - System Power Supply (20v-5A)                                                        |            |
| Hewlett Packard 811A Pulse/Function Generator (1Hz-20MHz)                                                   | 0083       |
|                                                                                                             | £1250      |
| Hewlett Packard 8112A - 50MHz Pulse Generator                                                               | £2250      |
| Hewlett Packard 8350B - Sweep Generator Mainframe                                                           | £2000      |
| Hewlett Packard 8656A Synthesised signal generator                                                          | £850       |
| Hewlett Packard 8656B Synthesised signal generator                                                          | £1450      |
| Hewlett Packard 8657A Synth. sig. gen. (0.1-1040MHz)                                                        | £1750      |
| Hewlett Packard 8660D - Synth'd Sig. Gen (10 KHz-2600MHz)                                                   | £3250      |
| Hewlett Packard 8901B - Modulation Analyser                                                                 | £2750      |
| Hewlett Packard 8903A, B and E - Distortion Analyser                                                        | from £1250 |
| Hewlett Packard 16500A + B – Logic Analyser Mainframes<br>Hewlett Packard 16500C - Logic Analyser Mainframe | from £1000 |
| Hewlett Packard 16501A/B & C - Logic Analyser Mainframe                                                     | £3250      |
| Hewlett Packard 37900D - Signalling test set                                                                |            |
|                                                                                                             | £3750      |
| Hewlett Packard 5350B - 20Hz Frequency Counter                                                              | £1950      |
| Hewlett Packard 83220A DCS/PCS test sets                                                                    | £3000      |
| Hewlett Packard 8657B - 100KHz-2060 MHz Sig Gen                                                             | £3995      |
| Hewlett Packard 8657D - XX DQPSK Sig Gen                                                                    | £4500      |
| Hewlett Packard 8130A - 300 MHz High speed pulse generator                                                  | £5250      |
| Hewlett Packard 8116A - 50MHz Pulse/Function generator                                                      | £2250      |
| Marconi 1066B – Demultiplexer & Frame Alignment Monitor (140MBIT to<br>NEW                                  |            |
|                                                                                                             | £1750      |
| Marconi 2305 – modulation meter                                                                             | £999       |
| Marconi 2610 True RMS Voltmeter                                                                             | £550       |
| Marconi 6950/6960/6960B Power Meters & Sensors                                                              | from £400  |
| Philips 5515 - TN - Colour TV pattern generator                                                             | £1400      |
| Philips PM 5193 – 50MHz Function generator                                                                  | £1500      |
| Leader 3216 Signal generator 100KHz - 140MHz - AM/FM/CW with built i                                        |            |
| modulator (as new) a snip at                                                                                | £795       |
| Racal 1992 – 1.3GHz Frequency Counter                                                                       | £500       |
| Rohde & Schwarz NRV dual channel power meter & NAV Z2 Sensor                                                | £1250      |
| Rohde & Schwarz SMG (B1/B2) sig. Gen. 1GHz                                                                  | £3250      |
| Systron Donner 6030 - 26.5GHz Microwave Freq Counter                                                        | £1995      |
| Tektronix ASG100 - Audio Signal Generator                                                                   | £750       |
| Wavetek 178 Function generator (50 MHz)                                                                     | £950       |
| Wayne Kerr 3245 – Precision Inductance Analyser                                                             | £1995      |
| Wayne Kerr 6245 – Precision Component Analyser                                                              | £2500      |
|                                                                                                             |            |

## Tel: 02476 650 702 Fax: 02476 650 773

## CONTENTS

#### **163 COMMENT**

Analysts rush in...

#### **164 NEWS**

- Magnetic memory closer to reality
   £7m funding for mobile hazard research
- Bluetooth gets a five-fold boost
- Ultra-fast transistors
- UK joins in MEDEA+ research
- Transistor gate just three atoms thick

#### 170 WIRELESS 32-CHANNEL VOLTMETER

Read up 32 analogue voltages to 12 bit accuracy via four remote modules using **Pei An** and **Ping Hua Xie's** wireless data logger. Its central controller links to a PC.

#### **180 HARD-DRIVE HAVOC**

Your hard drive just took a dive and you haven't backed it up for months. Is there any hope of recovering your information? Andrew Emmerson reports.

#### **184 NEW FILTER/MIXER CHIP**

Zetex's new versatile high-Q bandpass filter chip operates to 150kHz and its integral mixer extends operation to 700kHz. This device is the subject of our design competition on page 187.

#### DESIGN COMPETITION

Turn to page 187 to find out how to enter our design competition. *You* could win one of three prizes worth £900 in total.

#### 188 BEGINNERS' CORNER: BALANCED CIRCUITS

Balanced circuits play an important role in communications and in many other applications from audio to microwave frequencies. Ian Hickman explains why.



April issue on sale 1 March

#### **194 BEAUTIFUL RESISTORS**

Les Green looks at the rarely discussed topic of the effects of stress in planar resistors and explains how to reduce it.

#### **199 NEW PRODUCTS**

New product outlines, edited by Richard Wilson

#### 211 SOUND REINFORCEMENT AMPLIFIER

Needing a sound-reinforcement system for use in a medium size hall, **Ben Sullivan** came up with this unusual and versatile design.

#### **214 CIRCUIT IDEAS**

- Ice alert
- Battery-operated alarm
- Precision programmable reference
- PIC frame-check code for PPP
- Sinewave with crystal accuracy
- Auto input attenuator for radio
   Versatile power switcher
- 224 PHONE FEAR

#### The only thing scientists agree about on the mobile phone health question is that you cannot rule out the risk factor. So where does that leave the worried consumer? Melanie Reynolds reports.

#### **227 CABLE FAULT LOCATOR**

David Huddart's simple reflectometer is used with a reasonably fast scope to find faults in cables. It can test cables up to



200m long and resolve to 100mm yet it comprises only one IC and three transistors.

#### **232 WEB DIRECTIONS**

Useful web addresses for the electronics engineer.

#### **236 LETTERS**

B-class Class B, LF communications, Radio interference generator? E, fancy that, Speaker performance, Remote satisfaction, Amplifier for electrostatics? What is sky-scattered sunlight?



Collage created from Les Green's resistor stress patterns



Hard-drive havoc – Andy Emmerson reports on what you can do to recover the data from your crashed hard drive – page 180.



Health hazards from mobile phone – when will we have the facts? Melanie Reynolds' reports on page 224.

| GND     |            | vcc       |
|---------|------------|-----------|
| Trigger |            | Discharge |
| Out     | ZSCT1555D8 | Threshold |
| Reset   |            | Control   |

**FREE WITH THIS ISSUE** 555 timer with guaranteed 0.9V operation (UK magazines and subscribers only). Turn to page 230 to find out more about it.

David Huddart's sim

tech suppor Expensive maintenance lees

Sinking jast with 900

costly upgrades? old fashioned software

electronic

Realise your potential s break free

## electronic design STUDIO

with EDS

Introducing EDS Advance the new modular electronics design system that includes simulation, schematic, PCB, autorouting and CADCAM modules as standard.

Our powerful integrated development environment brings powerful management to your projects and now features 3D style PCB footprints, Viper rip up and retry autorouter, shape based design rule checking, full copper pour support with unlimited automatic zones and split power planes, cross probing between schematic/pcb/netlist, netlist navigator, wizards to automate key features, DTP quality feature rich schematics, 2000 look and feel, and a wide range of import/export options.

If you are struggling with your existing system and feel its time for a change, why not give us a call and we will send you our free information pack. Or visit our web site and download a free trial copy of EDS.

Try before you Buy at www.quickroute.co.uk



Quickroute Systems Ltd, Regent House, Heaton Lane, Stockport SK4 1BS UK Tel 0161 476 0202 Fax 0161 476 0505 Email info@quicksys.demon.co.uk



#### Standalone Data Loggers Low-cost standalone data capture solution



**T-Logger** 44.99 + Vat Micro power standalone single channel temperature logger

#### X-Loaaer 69.99 +Vat

Micro power standalone voltage logger with 1 temperature and 3 voltages channels



- Initialised by a PC via a RS232 port
- 4 Catch data and store the values into its on-board memory for future retrieval
- Data can be downloaded into a PC and viewed though Excel or other spreadsheet packages
- Win 95/98 driver for initialisation and download
- Ultra-low power consumption
- Sensors available for X-logger: temperature, humidity, light intensity, etc. **Other Standalone Loggers** 
  - Standalone Event Loggers (record occurrence of events)
- Standalone Data Loggers with memory up to 8 Mega byte.
- Intec designs standalone data loggers to your specification

Intec Associates Limited 11 Sandpiper Drive, Stockport, Cheshire, SK3 8UL, UK Tel: +44 (0)161 477 5855 E-mail: mail@intec-group.co.uk

www.intec-group.co.uk Fax: +44 (0)161 477 5755 

PACIN- PADADI

CIRCLE NO.105 ON REPLY CARD

2



**Prototype PCBs** from your usual manufacturer for a fraction of the cost



CIRCLE NO.106 ON REPLY CARD

**ELECTRONICS WORLD March 2001** 

### Analysts rush in...

EDITOR Martin Eccles 020 8652 3614

#### CONSULTANTS

lan Hickman Philip Darrington Frank Ogden

EDITORIAL ADMINISTRATION Jackie Lowe 020 8652 3614

EDITORIAL E-MAILS jackie.lowe@rbi.co.uk

GROUP SALES EXECUTIVE Pat Bunce

020 8652 8339

ADVERTISEMENT E-MAILS pat.bunce@rbi.co.uk

ADVERTISING PRODUCTION 020 8652 8339

PUBLISHER Mick Elliott

EDITORIAL FAX

**CLASSIFIED FAX** 020 8652 8938

NEWSTRADE ENQUIRIES

ISSN 0959-8332

For a full listing of RBI magazines: http://www.reedbusiness.com **N** o group of people made themselves look more foolish in 2000 than the financial analysts. At the beginning of the year they valued high-tech companies so extravagantly that organisations like ARM and Bookham were propelled into the FTSE 100 of the UK's most valuable companies.

By the end of the year, these values had been decimated. Yet the companies involved were doing very nicely, thank you, in executing their business plans. It wasn't the businesses that had changed – it was the analysts' views of them. The analysts were fools in Q1 or fools in Q4 – they can take their pick.

To an extent, the hysterical nature of the analysts can be blamed on the attitude of their employers – stockbrokers, investment banks and the like – who require them to produce recommendations which 'churn' stock i.e. which make people want to buy or sell stock, so that the employers can make a commission on the deal.

On the other hand there's also the inexperience - and sometimes even the stupidity - of the people involved. As one ceo puts it: "As long as 23 year-old analysts spit out bad stuff, there's a problem with market perceptions - if they only realised the explosion happening in electronics!"

Some analysts are confused because they are employed to study the industrial world in sectors, and assume that the trends in a sector apply to every company within it, whereas different companies within a sector can operate in different markets, and perform in accordance with different industrial and technological cycles.

So it could be that the '23 year-olds' look at bad figures from Intel, Apple, Dell and Microsoft and think: 'High-tech's a bummer,' when what they should be concluding is: 'The PC business is a bummer'.

But the PC business should not be seen as an indicator of the state of the electronics industry. The commoditisation of the PC, with fewer people willing to upgrade regularly, while mainstream PC prices are dropping in line with Moore's Law, spells the end of the PC's role as the main driver of growth for the electronics industry.

"People seem to be surprised that Intel, which is tied to the PC industry, puts out these warnings about reduced growth", says Malcolm Penn, chairman of Future Horizons, "but it's obviously going to grow slower than the rest of the industry. The PC industry is growing at half the rate of the semiconductor industry".

Dataquest not only predicts slowing growth in the value of semiconductors going into PCs, but forecasts an actual decline in the market for semiconductors for PCs starting in 2002.

In 2000, for the first time since the 1980s, the main chip types which go into PCs – CPUs and DRAMs – grew by less than the industry average

By contrast, chips for applications such as mobile phones, digital consumer, car multimedia, storage, smart card and networking are growing so fast that they will represent 40 per cent of the chip market in 2004.

So the PC industry's problems should not be taken as symptomatic of the state of the electronics industry as a whole. The only thing that can save the Intel PC business model of constant upgrading via more powerful processors, extra DRAM and more elaborate software, is the rapid deployment of inexpensive xDSL and cable modem installations giving the opportunity for more services to be offered to users.

However, despite EU regulations opening up all European markets to local loop unbundling in 2001, Dataquest is pessimistic about domestic adoption of DSL and cable modems, estimating that, in 2005, only 8 per cent of Internet PC connections will be broadband through xDSL or cable modems

Instead, mass market broadband connectivity may come to the mass market via the TV using low-cost, or free, 'Internet Appliances' bundled with attractive entertainment, new services and interactivity.

Such appliances could prove to be the deathknell of the PC's aspirations to be the central device in a connected world.

David Manners

#### **SUBSCRIPTION HOTLINE** Tel (0) 1444 475662 Fax (0) 1444 445447

SUBSCRIPTION QUERIES

rbp.subscriptions@rbi.co.uk Tel (0) 1444 445566 Fax (0) 1444 445447 Electronics World is published monthly. By post, current issue £2.65, back issues, if available, £3.00. Orders, payments and general correspondence to L333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tk: 892984 REED BP G. Make cheques payable to Reed Business Information Ltd Newstrade: Distributed by Marketforce (UK) Ltd, 247 Tottenham Court Road London W1P OAU 0207 261 5108. Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3DH. Phone 01444 445566. Please notify change of address. Subscription, 1 year UK £36.00 2 years £88.00 3 years £72.00. Europe/Eu 1 year £51.00 2 years £98.00 3 years £103.00 ROW 1 year £61.00 2 years £98.00 3 years £123

Overseas advertising agents: France and Belgium: Pierre Mussard, 18:20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd Fl New York, NY 10016 Tel; (212) 679 8888 Fax; (212) 679 9455

USA mailing agents: Mercury Alfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. Periodicles Postage Paid at Rahway NJ Postmaster. Send address changes to above. Printed by Polestar (Colchester) Ltd, Filmsetting by JJ

Typographics Ltd, Unit 4 Baron Court, Chondlers Way, Southend-on-Sea, Essex SS2 5SE.

© Reed Business Information Ltd 1997 ISSN 0959 8332

# UPDATE

## £7m funding for independent research into mobile phone hazards

The UK's biggest ever investigation into the possible health effects of mobile phone use will see the Government and industry ploughing £7m into an independent research programme.

Industry will provide 50 per cent of the funding for the independent programme over the next three years.

There is still no proven scientific link between mobile phone use and potential health problems but the amount of research being done around the world is growing.

Speaking at the 'Mobile phones – is there a health risk?' conference last week was Dr Sheila Johnston, neuroscience consultant to the UK mobile phone industry. "There is a lot of research but the problem is a lot of people don't understand it. The gap right now is in human research," said Johnston who believes this is where the latest programme will be concentrated.

"There is no question that microwave radiation can be hazardous to human health," said James Lin, professor of Bioengineering at the University of Illinois. "The question is how hazardous is it?"

Concerns about negative results from the investigation being quashed, as happened with the BSE mad cow saga, were dismissed by Michael Repacholi of the World Health Organisation. He believes the lessons have been learnt: "The UK Government is BSE sensitive which may even cause an over reaction in the EMF (radiation) situation."

Leaflets setting out advice on the use of mobile phones will also now be included with every new phone as recommended by the independent Stewart report in May.

The advice includes keeping calls short, especially for those under 16, not using a phone while driving, and considering the SAR (specific absorption rate) value of phones when choosing a model. However, the standard method of measuring SAR is not expected to be set until the middle of next year.

Melanie Reynolds

## UK-based mobile phone start-up warns rivals that it's "not just another wannabe"

UK-based start-up Sendo is set to take on the big mobile phone manufacturers in the European market by targeting the network operators.

"The operator is the key purchaser, the key decision maker, in what gets to market," said Hugh Brogan, CEO. "The operators are looking to retain customers, they're looking to differentiate themselves."

Brogan believes the company is ideally placed to meet this need by offering unique physical designs and customised software. Its manufacturing technique also means it can ship products within 48 to 72 hours.

A basic electronics module is manufactured in China and shipped to

the Netherlands. On receipt of a customer order the module is programmed and the casing is fitted to completely enclose the module.

The first product, announced in Italy last week, is "technologically advanced" according to Brogan: "We want to show we're not just another wannabe."

The company is aiming to sell a "few million" phones in the first year and said sales of less than 500 000 would be enough to break even. In the UK, the first products should be offered through Virgin Mobile.

Sendo was founded in August 1999 with an initial \$10m of funding from Hong Kong telecoms company CCT. Since then CCT has invested a further



\$25m and owns 35 per cent of the company. Brogan said its present plans did not require further investors but if it "bagged a big deal" then more cash will be needed. Sendo is aiming to sell a "few million" phones in the first year and said sales of less than 500 000 would be enough to break even.

### Bluetooth gets a five-fold boost

TDK Systems has announced a Bluetooth product that operates at a distance up to five times greater than required by the specification.

The mobile communications specialist's Bluetooth PC Card can connect to another Bluetooth device up to 50m away while the specification requires operation at 10m. TDK said this performance is achieved by using new ceramic antenna and input

#### technology.

The card is expected to ship in the first quarter of next year.

The company is also developing a next generation Bluetooth /10/100 Ethernet PC card to combine fixed LAN connection and wireless Bluetooth in one PC card slot.

It has been working in partnership with UK-based Cambridge Silicon Radio.

#### A reprieve for Moore's law?

Researchers from Purdue University in the US have developed a transistor they claim could keep Moore's Law running until 2025.

A simulation tool showed that the double-gate transistor works as well as a conventional device down to a tenth of the channel length. A gate would function easily down to 10nm. "If we could learn how to manufacture a device like this we could extend Moore's Law to the year 2025," said Professor Mark Lundstrom from purdue.



## Unique reader offer: x1, x10 switchable oscilloscope probes, only £21.74 a pair, fully inclusive\*

\*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:

#### Probes

Name

Address

Postcode

Telephone

Total

Method of payment (please circle)

Cheques should be made payable to Reed Business Information Access/Mastercard/Visa/Cheque/PO

Credit card no

Card expiry date

Signed

Please allow up to 28 days for delivery

Seen on sale for £20 *each*, these highquality oscilloscope probe sets comprise:

- two x1, x10 switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5m-long BNC-to-BNC links. Each probe has its own storage wallet.

To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Readers outside Europe, please add £2.50 to your order.

#### **Specifications**

Switch position 1 Bandwidth Input resistance Input capacitance Working voltage

Switch position 2 Bandwidth Rise time Input resistance 1MΩ Input capacitance Compensation range Working voltage DC to 10MHz 1MΩ – i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600V DC or pk-pk AC

DC to 150MHz 2.4ns 10M $\Omega$  ±1% if oscilloscope i/p is

12pF if oscilloscope i/p is 20pF 10-60pF 600V DC or pk-pk AC

**Switch position 'Ref'** Probe tip grounded via 9MΩ, scope i/p grounded

### UK is set to participate in European MEDEA+ research plan

Britain is to join MEDEA+, the Europe-wide research programme which starts in January, extending the existing scheme by eight years.

A spokesperson from the Department for Trade and Industry said: "The UK will formally join MEDEA+ this January, and it's our intention to fund suitable projects."

European companies such as Philips and STMicroelectronics have benefited significantly over the last decade from MEDEA and its predecessors. Of the 9 400 man-years of research in the original MEDEA programme, only 16 came from UK firms.

While companies based in the UK were eligible, no applications for funding were made, the DTI said. This was probably due to restrictive Eureka rules.

In addition, the DTI cited limited demand for MEDEA in the UK: "The UK has a substantial semiconductor manufacturing industry, but most of the large companies are inward investors who do R&D in their own countries."

As inward investors change their attitude and opt to carry out research in the UK, they may choose to apply for funding.

"We are in negotiation with a number of companies including large ones," the DTI said.

The Government will also encourage small and medium sized firms to enter the programme, which will be worth a total of ¤4bn over the next eight years.

**Richard Ball** 

## Magnetic memory comes closer to reality as IBM and Infineon agree collaboration

Magnetic memory has taken a step closer with a joint development agreement between IBM and Infineon.

The two firms are to take MRAM research and develop it for production. IBM will combine its well-developed MRAM technology with Infineon's ability to manufacture high density memory.

Commercially available products – both embedded memory and standalone chips – are expected by 2004. MRAM, with the desirable traits of being fast, small, having a nondestructive read, being non-volatile and easy to integrate, sounds like the ideal technology.



IBM has offered glimpses of its MRAM technology over the past year at various technical conferences. At ISSCC earlier this year the firm detailed its core technology.

IBM is using a magnetic tunnelling junction (MTJ) to store data. Two electrodes of magnetic material, such as nickel/iron or cobalt/iron, sandwich a thin aluminium-oxide tunnelling layer.

Information is stored as magnetic polarisation – not as a charge. When the two magnetic electrodes have the same polarisation, there is more chance of electrons tunnelling through the aluminium oxide layer, so its resistance is reduced by 20 to 30%.

By changing the magnetic polarisation of one layer, resistance is increased. This resistance is sensed using a FET.

"For 15 years or so people have been trying to use magneto-resistive materials," Roy Scheuerlein, a researcher at IBM, said earlier this year. But previous MRAMs used serially-linked MR blocks which reduced sensitivity.

"The MTJ, and the way we use it in the cell, is dramatically better," said Scheuerlein. "The power required to read is  $10^5$  times better than GMR [used in hard disk drives]." Resistance of the cell is around 2.5k $\Omega$ compared with about  $10\Omega$  for a GMR head.

"We can build this on standard CMOS. It looks somewhat like a DRAM cell," Scheuerlein said.

Which is where Infineon comes in to the picture. It will apply its

expertise in building large memory arrays – as it does with DRAM today.

IBM has already produced a 1Kbit test chip made using a standard 0.25µm CMOS. It claims to have achieved 10ns access time from address input to data output. Using higher performance sense amplifiers, IBM has brought this down to 3ns. At the cell level, writing bits takes a time of less than 2.5ns.

However, MRAM is not the perfect memory. It is not as small as DRAM, but is a lot smaller than SRAM, It's not as fast as SRAM, but is quicker than both DRAM and flash.

IBM and Infineon are sure to come up against some significant hurdles in moving to production. MRAM's nonvolatility may well be the attribute that forces it through to volume production.

#### PCB buyers hit by material shortfalls

Material shortages are causing serious problems for electronic equipment manufacturers, according to analysts Purcon-iPro. The shortages, combined with rising prices and lengthening lead times means that buyers of PCBs face a shortage. Purcon-iPro said there are all the signs that it is currently a sellers market.



## Government announces dramatic shake-up plans for comms regulation

The Government has announced in a White Paper the biggest shake-up of communications and broadcast regulation for a decade.

A single regulator for the entire industry will be created including the current responsibilities of Oftel to be called the Office of Communications (Ofcom).

The White Paper also holds out the prospect of Government cash being used to accelerate the introduction of

broadband technology like ADSL. It suggests there may be a case to require higher bandwidth services to be made universally available in an attack on the slow pace of change in unbundling the local telephone network

"We will promote the availability of widespread access to higher bandwidth services and we will look for ways to build on the public investment that is already being made in broadband and consider whether public support is needed to help research and develop new high-speed networks," said the White Paper.

In a joint statement Culture Media and Sport Secretary Chris Smith and Trade and Industry Secretary Stephen Byers said: "Our goal is to make the UK the safest and most reliable place to use the new communications services."

### Transistor has a gate just three atoms thick

Intel researchers have made transistors with gate lengths of 30nm and using a gate dielectric just three atomic layers thick. The firm expects to be using these devices in as little as



five years.

Clock speeds will reach 10GHz operating from a sub-1V supply. Moreover the transistor's design is compatible with current IC techniques.

"Many experts thought it would be impossible to build CMOS transistors this small because of electrical leakage problems. Our research has proven that these smaller transistors behave in the same way as today's devices and shows there are no fundamental barriers to putting them into high volume in the future," said Intel's Dr Gerald Marcyk.

The company reckons Moore's Law has at least ten years of life. "As our researchers venture into uncharted areas beyond the previously expected limits of silicon scaling, they find Moore's Law still intact," said Intel v-p Dr Sunlin Chou.

## £128m for science fund

Photonics and communications technology research at universities will be benefit from an injection of Government cash into scientific research.

A total of 28 research projects at universities across the country will get a share of £128m, which will be managed jointly by the Department of Trade and Industry and the Wellcome Trust.

Inevitably biochemistry, DNA and medical research dominate the project list but there is also room for some projects related to microelectronics, photonics and multimedia.

### Semiconductor analyst predicts downturn in 2001

The semiconductor industry will turn down next year, according to IC Insights, the Arizona semiconductor industry analyst.

"Over the past 30 years, the IC industry has encountered six boombust cycles," said the analyst's report, "the downturn portion of an IC industry cycle is usually triggered by global economic recession, IC industry overcapacity, or IC inventory corrections. In 2001, IC Insights believes that the IC industry will be affected by all three 'triggers'."

For this year, the company is predicting 35 per cent growth for the semiconductor industry and 79 per cent growth in the semiconductor production equipment industry.

In the UK, Malcolm Penn, chairman of analysts Future Horizons, attributed

the Q4 downturn to over-expectations by PC makers leading to inventory sell-offs. "The PC industry is growing at half the rate of the semiconductor industry," said Penn, "people seem to be surprised that Intel, which is tied to the PC industry, puts out these warnings about reduced growth. But it's obviously going to grow slower than the rest of the industry."

Dataquest not only predicts slowing growth in the value of semiconductors going into PCs, but forecasts an actual decline in the market for semiconductors for PCs starting in 2002.

IC Insights reckons semiconductor production capacity will grow 24 per cent this year but less than 10 per cent next year. It reckons the 'inventory burn' – the selling off of semiconductors surplus to requirements – will continue until mid-2001.

"Worldwide GDP is forecast to slow from 4.8 per cent growth in 2000 to 3.5 per cent or less in 2001," says IC Insights, "although not a worldwide recession, the reduction in growth will negatively impact electronic system sales in 2001."

The result of that is over-stocking of components which, says the company, usually results in pricing weaknesses which are expected to persist throughout the first half of 2001.

The report ends optimistically: "After modest growth in 2001 and 2002, IC Insights expects the IC market to increase 20 per cent or more beginning in 2003."

David Manners

# T EQUIPME

#### AMPLIFIERS

Amplifier Research 1W1000 1GHz 1W Amplifier HP 70621A /H50 100KHz to 2.9GHz Pre-Amp Module

#### COMPONENT ANALYSERS

HP 4084B Switching Matrix Controller HP 4085M Switching Matrix Tek 370A Curve Tracer



#### DATACOMMS

|    | Fluke DSP-100 Cat 5 Cable Tester               | 1650  |
|----|------------------------------------------------|-------|
|    | Fluke DSP-FOM Fibre Optic Meter For DSP Series | 350   |
|    | Fluke DSP-SR Smart Remote Injector for DSP-100 | 350   |
|    | HP J2300A /002 64KBPS Protocol Analyser        | 3000  |
|    | Microtest MT340 Cat 5 Tester                   | 950   |
|    | Microtest PentaScanner+ CAT 5 Cable Tester     | 1650  |
|    |                                                | 1000  |
| EI | ECTRICAL NOISE                                 |       |
|    | Eaton 2075 Noise Analyzer                      | 3250  |
|    | HP 8970B 1.6GHz Noise Meter                    | 7950  |
|    | MC                                             |       |
| E  |                                                | 04500 |
|    | HP 84110B Pre Production EMC Test System       | 24500 |
|    | R&S EB 100 1GHz Miniport Receiver              | 3750  |
|    | R&S EPZ 100 Mini Panoramic Display             | 1250  |
|    | R&S HE100 1GHz Active Antenna                  | 1150  |
| FI | REQUENCY COUNTERS                              |       |
|    | HP 5371A 500MHz Frequency / TI Analyser        | 3950  |
|    | Marconi CPM46 Counter Power Meter              | 4950  |
|    | Philips PM6654C/526 1.5GHz/2ns Counter Timer   | 1250  |
|    | Finips Finio0340/320 1.30H2/2hs Counter Timer  | 1200  |
| FI | JNCTION GENERATORS                             |       |
|    | HP 33120A/001 15MHz Func/Arb Wave Generator    | 975   |
|    | HP 8116A 50MHz Function Generator              | 2000  |
|    |                                                |       |



HP 8165A Function Generator Philips PM5193 50MHz Function Generator



| LOGIC ANALYSERS                                |
|------------------------------------------------|
| HP 16500B Logic Analyser Mainframe             |
| HP 1650A 80 Channel Logic Analyser             |
| HP 16550A Timing Analysis Module               |
| HP 1672A 68 Channel Logic Analyser             |
| MULTIMETERS                                    |
|                                                |
| HP 3466A 4.5 Digit Digital Multimeter          |
| NETWORK ANALYSERS                              |
| HP 8510C 50GHz Microwave Network Analyser      |
| HP 8720C/006/010 20GHz Vector Network Analyser |
| HP 8753C 3GHz Vector Network Analyser          |
| Marconi 6200A 10MHz-20GHz Microwave Test Set   |
|                                                |
| OPTICAL FIBRE TEST                             |
| Anritsu MN9610B Optical Power Meter            |

| Anritsu MS9710B Optical Spectrum Analyser        | 21500 |
|--------------------------------------------------|-------|
| OSCILLOSCOPES                                    |       |
| HP 54111D 500MHz Digitising Scope                | 2950  |
| HP 54602A 4 Channel 150MHz Digital Storage Scope | 1250  |
| HP 54603B 2 Channel 60MHz Digital Storage Scope  | 1150  |



RE - 1 \_ Free Palm m100 shipped with every order over £10k

|   | Philips PM3295 2 Channel 350MHz Scope          |
|---|------------------------------------------------|
|   | Philips PM3295A/40 2 Channel 400MHz Scope      |
|   | Philips PM3394 4 Channel 200MHz Combi-Scope    |
|   | Tek 2445A 200MHz 4 Channel Analogue Scope      |
|   | Tek 2465A/10 350MHz Analog Scope               |
|   | Tek 2465B 400MHz 4 Channel Analogue Scope      |
|   | Tek Current Probe Set with Amplifier           |
|   | Tek TAS465 2 Channel 100MHz Analogue Scope     |
|   | Tek TDS380 400MHz 2 Channel Digitising Scope   |
|   | Tek TDS380P As Above But With Integral Printer |
| 0 | WER METERS                                     |
| U | WEN WEIENS                                     |
|   |                                                |

| HP 436A/022 RF Power Meter With GPIB      |
|-------------------------------------------|
| HP 438A /002 Dual Channel RF Power Meter  |
| Various HP 848x Power Sensors (from)      |
| Marconi 6960 RF Power Meter               |
| Various Marconi 69xx Power Sensors (from) |
|                                           |



| POWER SUPPLIES                                                         |             |
|------------------------------------------------------------------------|-------------|
| HP 6282A/005/028 10V/10A DC Power Supply                               | 150         |
| HP 6284A 005/028 20V/3A DC Power Supply                                | 150         |
| HP 6632A 20V/5A Power Supply                                           | 1250        |
| HP6652A 20V/25A DC Power Supply                                        | 795         |
| HP E3615A 20V/3A DC Power Supply                                       | 195         |
| HP E3631A 25V/5A DC PSU                                                | 650         |
| Hunting Hivolt Series 250 50kV/5mA Power Supply                        | 895         |
| Kikusui PLZ300W 300w Electronic Load                                   | 950         |
| Philips PE1539 20V/6A DC PSU                                           | 100         |
| Philips PE1541 75V/1.6A DC PSU                                         | 100         |
| Thandar PL330 32V/3A DC Power Supply                                   | 195         |
| Weir 732 60V/1A 30W DC PSU                                             | 75          |
| Weir 761 30V/4A 60W DC PSU                                             | 75          |
|                                                                        |             |
| RF SWEEP GENERATORS                                                    | 15500       |
| HP 8340A 26.5GHz Synthesized Sweep Generator                           | 15500       |
| Marconi 6311 20GHz Sweep Generator                                     | 4950        |
| SIGNAL & SPECTRUM ANALYSERS                                            |             |
| Advantest R3265 8GHz Spectrum Analyser                                 | 8500        |
| Advantest R3361A Spectrum Analyser                                     | 7500        |
| Advantest R3465 8GHz Spectrum Analyser                                 | 11950       |
| Advantest R4131B 3.5GHz Spectrum Analyser                              | 3950        |
| Advantest R4131D 3.5GHz Spectrum Analyser                              | 4500        |
| Advantest R9211A 100KHz 2 Channel FFT Analyser                         | 3950        |
| Anritsu MS2601B 2.2GHz Spectrum Analyser                               | 5500        |
| Anritsu MS610B Spectrum Analyser                                       | 2650        |
| Anritsu MS612A 50Hz to 5.5GHz Spectrum Analyser                        | 6500        |
| Anritsu MS710F 23GHz Spectrum Analyser                                 | 6950        |
| HP 3561A 100KHz Dynamic Signal Analyser                                | 3250        |
| HP 3562A 2 Channel 100KHz FFT Analyser                                 | 4250        |
| HP 35660A 102.5KHz Dynamic Signal Analyser                             | 2950        |
| HP 70000 2.9GHz Spectrum Analyser System                               | 9000        |
| HP 8560A 2.9GHz Spectrum Analyser                                      | 9950        |
| HP 8591A / 021 1.8GHz Spectrum Analyser                                | 4500        |
| HP 8592B 22GHz Spectrum Analyser                                       | 9500        |
| HP 8593A 22GHz Spectrum Analyser                                       | 13500       |
| HP 8594A / 010/021 2.9GHz Spectrum Analyser                            | 7950        |
| HP 8901A 1.3GHz Modulation Analyser                                    | 1250        |
| HP 8903B 20Hz TO 100KHz Audio Analyser                                 | 2750        |
| HP8970B 1.6GHz Noise Figure Meter                                      | 7950        |
| Lindos LA100 Audio Analyser (LA101 & LA102)                            | 2750        |
| Marconi 2305 2.3GHz Modulation Analyser                                | 950         |
| Tek 492 /02 21 GHz Spectrum Analyser<br>Tek WM780V 50-75 GHz Mixer Set | 3950<br>900 |
| iek www.duv ou-rounz wixer Set                                         | 900         |
| TV & VIDEO                                                             |             |
| Mineita CA-100 CRT Colour Analyzer                                     | 2650        |
| Tek VM700A Video Measurement Set (various from)                        | 12000       |

See our extensive online catalogue at www.TestEquipmentH0.com Flexible commercial solutions available on all products.

Prices shown are in £UK and are exclusive of VAT. Free carriage to UK mainland addresses. This is just a selection of equipment we have available. If you don't see what you want, please call. All items supplied fully tested and refurbished with one year warranty. All manuals & accessories required for normal operation included. Certificate of Conformance supplied as standard, Certificate of calibration available at additional cost. Test Equipment Solutions terms apply. E&OE.

#### Quality second user test equipment bought and sold All purchases backed with full one-year warranty and technical support

| 0 | SIGNAL GENERATORS                               |       |
|---|-------------------------------------------------|-------|
| 0 | Advantest R4262/ 023 4.5GHz Signal Generator    | 12500 |
| 0 | HP 8642A 1GHz Synthesised Signal Generator      | 2500  |
| 0 | HP 8656B /001 1GHz Synthesised Signal Generator | 1150  |
| 0 | HP 8657B 2GHz Signal Generator                  | 4250  |
| 0 | HP 8662A 1.28GHz Synthesised Signal Generator   | 8900  |
| 0 | HP 8672A 18GHz Synthesised Signal Generator     | 6950  |
| 5 | HP 8683D 2.3-13GHz Signal Generator             | 6950  |
| 0 | Marconi 2017 1GHz Low Noise Signal Generator    | 1000  |
| 0 | Marconi 2019A 1GHz Signal Generator             | 1000  |
|   | Marconi 2022 1GHz Signal Generator              | 650   |
| 0 | Marconi 2024 10KHz To 2.4GHz Signal Generator   | 4950  |
| 0 | R&S SME06 / B1/B11 6GHz Signal Generator        | 21500 |
| 0 | R&S SMG 1GHz Signal Generator                   | 1950  |
| 0 | R&S SMH 2GHz Signal Generator                   | 6950  |
| - | R&S SMHU 4.32GHz Synthesised Signal Generator   | 13500 |
| 0 | R&S SMIQ03 3.3GHz Vector Signal Generator       | 21500 |



| SWITCHES & MULTIPLEXERS                     |         |
|---------------------------------------------|---------|
| HP 3488A Switch / Control Unit              | 400     |
| Various HP 444xx Switch Modules (from)      | 150     |
| Racal 1250 Switching System Mainframe       | 450     |
| Various Racal 1250 Switch Cards (from)      | 350     |
| TELECOMS                                    |         |
| Anritsu MD6420A Data Transmission Analyser  | 5950    |
| Anritsu MP1656A / 02 STM16 Analyser         | 13500   |
| Anritsu MS371A PCM Frame Analyser           | 4500    |
| HP 3788A/001 2MBPS Error Performance Analys | er 1950 |
| Marconi 2840A Analyser                      | 1950    |
| Marconi Triton Signalling Test set          | 2500    |
| Trend Aurora Duet Handheld ISDN Tester      | 2150    |
| TTC Fireberd 6000 Opts 6007/6008            | 5500    |
| Various Fireberd Interface Modules (from)   | 395     |
| W&G PFA-35 2MBPS Communications Tester      | 4950    |
| W&G DST-1 Handheld E&M Signalling Tester    | 1250    |
| W&G PCM23 Voice Frequency PCM Tester        | 2750    |
| W&G PF-4 Bit Error Measuring Set            | 4500    |
| W&G PMP20 20KHz Digital Level Meter         | 650     |
|                                             |         |
|                                             | TO AN   |
|                                             |         |

| WIRELESS                                        |       |
|-------------------------------------------------|-------|
| HP 83220A /022 PCS/DCS1800 Test Set             | 3950  |
| HP 83220E PCS/DCS1800 MS Test Set               | 3500  |
| HP 8902A 1.3GHz Measuring Receiver              | 12500 |
| HP 8920A 1GHz Radio Test Set (various from)     | 4956  |
| HP 8922M GSM Test Set                           | 8500  |
| Marconi 2945A /001/003/023 Radio Comms Test Set | 7500  |
| Marconi 2955B Radio Comms Test Set              | 3500  |
| Racal 6103/001/002 GSM/DCS Test Set             | 7750  |
| R&S CMS52 1GHz Radio Comms Test Set             | 5506  |
| R&S CMT54 B1/B4/B5/B6/B9 Radio Comms Test Set   | 4500  |
| R&S CMT56/B1/4/6/9/11/13/U1/9 Radio Test Set    | 2250  |
| R&S CMT84 B1/B5/B6/B9 Radio Comms Test Set      | 4500  |
| R&S CMTA84 /B5/B6/B8 Radio Comms Test Set       | 4950  |
| Schlumberger 4015 1GHz Radio Comms Test Set     | 4500  |
| Schlumberger 4031 1GHz Radio Comms Test Set     | 3250  |
| Schlumberger 4039 960MHz Radio Comms Test Set   | 1250  |
| Schlumberger 4040 1GHz Radio Comms Test Set     | 1950  |
| Schlumberger 4922 Radio Code Analyser           | 250   |

01753 59 6000 fax: 01753 59 6001

www.TestEquipmentHQ.com e-mail info@TestEquipmentHQ.com 

#### CIRCLE NO. 110 ON REPLY CARD

## Wireless **32-channel voltmeter**

You can read up 32 analogue voltages accurately via four individual remote a-to-d converter modules using Pei An and Ping Hua Xie's wireless data logger system. The central control station links to a PC via its COM port and each channel is read with 12-bit resolution.

his system allows a computer to measure up to 32 voltages remotely via a 433MHz radio link. It consists of a central station connected to the RS232 port of a computer and up to four wireless remote data loggers having different addresses.

Each logger has eight analogue input channels with an analogue-todigital conversion accuracy of 12 bit. The measuring range is 0 to 2.5V.

Within buildings, the radio can operate at up to 30m, or 120m over open ground, Fig. 1.

#### Main elements of the system

The central station connects to a PC's RS232 port. Its function is to receive commands from the computer, to broadcast the message to remote data loggers, to receive data sent back by remote loggers and finally to send the data back to the computer.

A Microchip PIC16F84 is at the heart of the central station. An RS232 transceiver and a Radiometrix radio packet controller take care of the wireless interfacing, Fig. 2a).

Central station





Connected to

COM port of the PC

Each remote data logger is a standalone device located within the radio range of the central station. Up to four loggers can be used, each with a unique address of 0, 1, 2 or 3.

A PIC16F84 controls the logger. An eight-channel MAX147 a-to-d converter is used for measuring analogue voltages. This converter has 12-bit resolution. Further radio packet controllers handle the wireless data transfer, Fig. 2b).

#### How it works

At power-up, the central station reads data from its RS232 interface to see if the computer has sent a command. At this stage, its radio transmitter is switched off.

To read eight analogue voltages from a particular remote data logger, the computer first sends a stream of commands to the central station. These commands incorporate an address byte specifying which remote logger will receive them. Then the central station broadcasts the message. Next, the central station listens to a reply from the addressed data logger.

Immediately after power-up, all the remote data loggers are in listening mode, waiting for a valid radio-frequency signal. Once the message broadcast by the central station is received by the RPC, the PIC on the data logger checks whether the current data logger is addressed by comparing the received address with its own.

If the logger is not addressed, it just goes back to listening mode. If the logger is addressed, the PIC reads data from the eight-channel ato-d converter. It then writes data to



#### COMPUTER PERIPHERALS

ANTENNA

SIGNAL

FM MODULATED CARRIER



the RPC, which broadcasts the data. After the central station receives data from the addressed logger, it sends data to the computer via the RS232 port. Inside the computer, the information can be stored in a file for future retrieval, or it may be displayed on the screen. This completes a data read cycle.

#### Radio packet controller

The RPC is a SAW-controlled FM transmitter and superhet receiver. It is designed to comply with ETSi 300-220 regulations.

There are two version of the RPC. One works at 418MHz for UK use and the other at 433MHz for European use. Their respective part numbers are RPC-418-A and RPC-433-A.

These RPCs are self-contained plugin devices that require a whip type

antenna, a 5V power supply and a byte-wide I/O port on a host microcontroller. Logic levels on the i/o port are 5V CMOS compatible.

PIC micro

2-BIT PRESET

ADDRESS

All the necessary rf circuitry is contained within the RPC, as are the low-level packet formatting and packet recovery functions required to interconnect a number RPCs to a single radio-linked network.

Details of the RPC presented here are limited to those relevant to the design. More information can be found in the manufacturer's data sheet1

Radio packet controlle RPC

12-bit A/D converter

Analogue signal input

(b) Block diagram of the remote logger

Figure 3a) shows the pin-out of the RPC while 3b) illustrates how it is applied. This device has a four-bit bidirectional data bus - D0-D3 - and four handshake lines. Its pin-functions are:

Fig. 3. Lines D0 to D3 form a bi-directional data bus. There are four handshake lines, namely -RXA, RXR, TXA and RXR. Two LEDs provided on the module indicate operating modes. Data bus and handshake lines are used to connect the RPC to a host microcontroller.



March 2001 ELECTRONICS WORLD

- **Pin Function**
- 1 Ground
- 2 D0, bi-directional data bus. Input or output of RPC. +5V CMOS logic.
- 3 D1, bi-directional data bus. Input or output of RPC. +5V CMOS logic.
- 4 D2, bi-directional data bus. Input or output of RPC. +5V CMOS logic.
- 5 D3, bi-directional data bus. Input or
- output of RPC. +5V CMOS logic. -TXR, host requests to transfer data into the RPC. Input to RPC. +5V CMOS logic.

6

7

8

- -TXA, RPC acknowledges request to the host. Output from RPC. +5V CMOS logic.
- -RXR, RPC requests to transfer data to host. Output from RPC.

+5V CMOS logic.

- 9 –RXA, host acknowledge request to RPC. Input to RPC. +5V CMOS logic.
- 10 -RESET, HOST reset the RPC. Input to RPC. +5V CMOS logic.
- 11 V<sub>cc</sub>, +5V supply.
- 12 Ground.



rig. 4. Op to 27 bytes can be downloaded into the transmitting radio packet controller's buffers. These bytes can be transmitted to receiving RPCs and appear in the receiving RPC's buffers. The RPCs perform all necessary low-level data formatting for reliable radio digital transmission.

> Fig. 5. Timing waveforms for writing data into the RPC's buffer and for reading data from it. The handshake between the host and the RPC secures data transfer between the host and the RPC. Note that a complete byte (8 bits) is transferred in two consecutive nibble (4 bits) transfers.



The host can be a micro-controller or a computer. It needs to be able to write a data packet consisting of 1 to 27 bytes into the RPC's data buffers. The packet is then sent out by the transmitting RPC to other RPCs.

The exact data packet appears in the receive buffers of all RPCs within the radio range. Once data is written into its buffers, the RPC takes care of the radio data transmission to other RPCs without any further intervention Fig. 4.

More details on how data are transferred between RPCs is given in the module's data sheet.

How the packet controller works

The packet controller has four operating modes: idle/sleep, host-RPC data transfer, radio-data transmission and radio-data receive.

In idle/sleep mode, the receiver is enabled continuously or intermittently, depending on the set-up, to search for valid message preambles. Programming the RPC to search intermittently minimises power consumption. In this mode, the RPC also monitors the TXR line. The host requests to send data using an active-low signal.

In the host-RPC data-transfer mode, if the host is to transfer data into the RPC, the TXR



#### **COMPUTER PERIPHERALS**

request is accepted by the RPC. Data are then placed on the four data lines – lower nibble of a byte first.

Now the host pulls the TXR line high to tell the RPC that a valid data is stable on the data bus. Next the host waits for the RPC to pull the TXA line high to indicate that the RPC has accepted the nibble.

This procedure is repeated to transfer the upper nibble of a byte. The writing procedure has to be repeated until the specified number of bytes are written into the RPC.

Figure 5b) shows how data are transferred from the RPC into the host. In this case, the RPC firstly pulls down the RXR line. The Host responds to the request by pulling the RXA line low. Then the RPC places the lower nibble on the data lines and sets the RXR line high.

The host reads the data and makes the RXA line high. This completes one nibble read. The above procedure is repeated to

transfer the upper nibble of a byte. The reading procedure has to be repeated until the specified number of bytes are read by the host.

#### **Data format**

Two types of data can be transferred between a host and an RPC. The first is data to be transmitted to other RPCs in the form of data packets. The second is data, i.e. commands, used to set up the RPC's



operating modes. These commands are to be written into RPC's memory.

There are 63 on-board memory locations within each RPC, 0116 to 3F16. The first 15 bytes contain parameters to control the RPC. The rest of the memory is free for userdefined data. Functions of the locations are detailed in the manufacturer's data sheet.

For a data packet, the first byte is always the control byte. Bit 7 of the byte is always 0. Bits 6 and 5 are the preamble control bits. For normal preamble, which is the case in this design, bits 6 and 5 are both zero. Bits 4 and 0 indicate the number of bytes in the present packet - including the control byte itself. The maximum number of data bytes is 28, including the control byte.

To read a byte from an RPC's memory location, the byte sent to the RPC by the host has bit 7 set to one and bit 6 to zero. Bits 5 to 0 define the address of a memory location. The RPC responds with two bytes, the first of which is a control byte itself - i.e. an echo. The second byte is the memory contents.

To write a byte to the RPC's memory, the host issues two bytes: a control byte and the byte to be written into the location. The control byte has bits 6 and 7 set to one. Bits 5 to 0 define the address of a memory location. The RPC does not give any response.

#### Circuit of the central controller

The central station consists of a MAX232CPE RS232 transceiver, a PIC16F84 and an RPC, Fig. 6. The station connects to a computer via an RS232 port.

RS232 port while PA3 transmits data to the RS232 port. Port B controls the RPC. Line

a visual indication.

The power supply to the central station is a DC at 5.5V to 10V. A low-power TC55RP5002 regulator produces the +5V rail. Component layout and connections of the board are shown in Fig 8a).

The communication protocol is rather simple. First, the computer sends a command byte 88<sub>16</sub> to the central station. The byte is followed by a byte that specifies a remote logger address of 0, 1, 2 or 3.

After the PIC receives these two bytes from the computer, it writes a data packet into the RPC. The packet consists of a control byte 0216 and the address byte of 0 to 3. The RPC then broadcasts the data packet.

After the RPC completes the broadcasting, it goes into listening mode to catch the reply from the addressed remote logger.

#### PIC object code for the remote module :020000001028C6

:1000200083166F30860003308500831200308B000A :1000300085110516762105116C2105158617061602 :100040000030AF00051826282F1027282F148518F8 :100050002B28AF102C28AF143D20F32002300E02C5 :10006000031D2D28F3200E082F02031D2D288511B6 :1000700043207121E02085152D28762185117621D8 :10008000851576210800103084008E308F00962070 :100090000C088000840A0D088000840A7121CE308B :1000A0008F0096200C088000840A0D088000840AC6 :1000B00071219E308F0096200C088000840A0D0864 :1000C0008000840A7121DE308F0096200C088000A9 :1000D000840A0D088000840A7121AE308F009620BA :1000E0000C088000840A0D088000840A7121EE301B :1000F0008F0096200C088000840A0D088000840A76 :100100007121BE308F0096200C088000840A0D08F3 :100110008000840A7121FE308F0096200C08800038 :10012000840A0D088000840A7121080086170616CB :100130007121831663308600831286110611051221 :100140007121AE018F1BA6280611A728061567216D :1001500086156721861107302E020319B228AE0AD0 :100160008F0DA228672167216721AE0186156721BF :10017000861167210618BE280C10BF280C14073002 :100180002E020319C628AE0A8C0DB628AE018615BC :100190006721861167210618CF280D10D0280D146D :1001A00007302E020319D728AE0A8D0DC728051671 :1001B000762183166F308600831206168617080094 :1001C00005116C2105156C2111308E00282110308D :1001D000840000088E0028211F3004020319F22831 :1001E000840AE9280800861AF3280612861EF628D3 :1001F0008619FC288E11FD288E15061901290E116D :1002000002290E15861806298E1007298E14061845 :100210000B290E100C290E140616861A0D2906122B :10022000861E1029861916298E1317298E1706196E :100230001B290E131C290E17861820298E1221291E :100240008E16061825290E1226290E1606160800E7 :10025000712183166030860083128E193129861130 :10026000322986150E1936290611372906158E18DA :100270003B2986103C2986140E1840290610412976 :1002800006148613061B42298617061F45298E1B56 :100290004B2986114C2986150E1B50290611512910 :1002A00006158E1A55298610562986140E1A5A29B3 :1002B00006105B2906148613061B5C298617061F89 :1002C0005F29712183166F30860083120800123077 :1002D000AD00AD0B692908000F30AD00AD0B6E29E4 :1002E00008003630AD00AD0B732908005030AE0069 :0802F0006C21AE0B7829080017 :00000001FF

PIC object code for the central station.

Line PA2 of the PIC receives data from an PA1 connects to a low-current LED that gives

| :02000001028C6                                                                             |
|--------------------------------------------------------------------------------------------|
| :1000200083166F30860014308500831200308B00F9                                                |
| :10003000851085158617061605100C2105142F202E                                                |
| :10004000D92055300C0203193428AA300C020319A8                                                |
| :10005000382888300C0203193C282F202D2816211F                                                |
| :100060008510162185140800AA308C00EC20202869                                                |
| :1000700055308C00EC202028432011214C201121E8                                                |
| :10008000592011213C28D920112102308D006520F2                                                |
| :100090000C088D0065200800A42010308400A420E6                                                |
| :1000A0000D0880001F30040203195828840A4F28C5                                                |
| :1000B00008001030840000088C00EC201F3004027F                                                |
| :1000C00003196428840A5B28080011218316603014                                                |
| :1000D000860083128D196E2806106F2806140D19DC                                                |
| :1000E00073288610742886148D18782806117928AC                                                |
| :1000F00006150D187D2886117E2886150612861A8B                                                |
| :100100007F280616861E82288D1B882806108928BF                                                |
| :1001100006140D1B8D2886108E2886148D1A9228A1                                                |
| :100120000611932806150D1A97288611982886150A                                                |
| :100130000612861A99280616861E9C2811218316F7                                                |
| :100140006F30860083120800061BA4288613061F42                                                |
| :10015000A7288619AD280D10AE280D140619B2284F                                                |
| :100160008D10B3288D148618B7280D11B8280D15D9                                                |
| :100170000618BC288D11BD288D158617061BBE28B4                                                |
| :100180008613061FC1288619C7280D12C8280D1608                                                |
| :100190000619CC288D12CD288D168618D1280D135E                                                |
| :1001A000D2280D170618D6288D13D7288D17861735                                                |
| :1001B00008000519D928072102218F010519E22815                                                |
| :1001C0008C13E3288C17022107300F020319EB2848<br>:1001D0008C0C8F0ADE280800851102218F010C1C6F |
| :1001D000820C8F0ADE280800851102218F010C1C6F                                                |
| :1001F000FC288C0C8F0AEF288515022107300F02031921                                            |
| :10020000022108001C308E008E0B042908001030DB                                                |
| :100210008E008E0B09290800FF308E008E0B042908001030DB                                        |
| :10022000080036308E008E0B1329080010308F0026                                                |
| :080230000C218F0B18290800B6                                                                |
| :00000001FF                                                                                |
|                                                                                            |
|                                                                                            |

#### Technical support

Designers' kits, PIC and VB4 source codes are available from the authors. The kit includes PCB boards, all components, programmed PIC and VB5 software. Please direct your enquiry to Dr Pei An, 11 Sandpiper Drive, Stockport, Manchester **SK3 8UL** 

Tel/fax/answer: +44 (0)161-477-9583 E-mail: pan@intec-group.co.uk

```
Visual Basic program list for running the remote data
                                                                               MSComm1.PortOpen = True
logger on a PC
                                                                      End If
Dim Rsport As Boolean
                                                                      Rsport = True
                                                             End If
Dim Data(16) As Byte
Dim Filename, UsePort, UseNolog As String
                                                                      UsePort = cmbPort.Text
Dim dummy As Double
                                                                      UseNolog = CmbNolog.Text
                                                                      Label1.Caption = "COM port:" + cmbPort + "
Dim i As Integer
                                                             Logger No.: " + UseNolog
Dim TimeStart As Long
Dim Inputdata As String
                                                                      DoEvents
                                                                      MSComm1.OutBufferCount = 0
Dim Overnun As Boolean
                                                                      MSComm1.InputLen = 16
Dim Start_time As Long
                                                                      MSComm1.Output = Chr$(8 * 16 + 8) +
                                                             Chr$ (UseNolog)
Sub Delay(ByVal Intervel As Integer)
                                                                      Start_time = Timer
Dim start As Long
         start = Timer
                                                                      Overrun = False
         Do While Timer < start + Intervel
                                                                      Do
                                                                               DoEvents
         LOOD
                                                                               Labell.Caption = "Communicating with
End Sub
                                                             logger..."
                                                                               Overrun = (Timer > Start time + 2)
Private Sub Log_data()
If cmbPort.Text = "COM1" Then
                                                                    Loop Until (MSComm1.InBufferCount = 16) Or
         If Rsport = True Then
                                                             Overrun
                  MSComm1.PortOpen = False
                                                                      If Not Overrun Then Label1.Caption = "Data
                  MSComm1.CommPort = 1
                  MSComm1.PortOpen = True
                                                             received logger No. " + UseNolog Else
                                                             Label1.Caption = "Communication failed. Try again"
         FICA
                                                                      Inputdata = MSComm1.Input
                  MSComm1.CommPort = 1
                                                                      If Not Overrun Then
                  MSComml.PortOpen = True
                                                                      For i = 0 To 15
                  MSComm1.PortOpen = False
                                                                               Data(i) = Asc(Right(Inputdata, 16 -
                  MSComm1.PortOpen = True
                                                             i))
         End If Rsport = True
                                                                      Next
ElseIf cmbPort.Text = "COM2" Then
                                                                      For i = 0 To 7
         If Rsport = True Then
                  MSComm1.PortOpen = False
                                                                      dummy = (Data(2 * i) * 16# + Data(2 * i + 1) /
                                                             16#) / 4096 * 2.508
                  MSComm1.CommPort = 2
                  MSComm1.PortOpen = True
                                                                      lblChD(i).Caption = <sup>in m</sup> + Format(dummy,
                                                             *0.0000*)
         E1se
                  MSComm1.CommPort = 2
                                                                      Next i
                                                                      End If
                  MSComm1. PortOpen = True
                  MSComm1.PortOpen = False
                                                             End Sub
                  MSComm1.PortOpen = True
                                                             Private Sub cmdRead_Click()
         End If
         Rsport = True
                                                             Dim dummy As Double
                                                             Dim i As Integer
ElseIf cmbPort.Text = "COM3" Then
                                                             Dim TimeStart As Long
         If Rsport = True Then
                                                             Dim Inputdata As String
                  MSComm1.PortOpen = False
                  MSComm1.CommPort = 3
                                                             If cmbPort.Text = "COM1" Then
                                                                      If Rsport = True Then
                  MSComm1.PortOpen = True
                                                                               MSComm1.PortOpen = False
         Else
                                                                               MSComm1.CommPort = 1
                  MSComm1.CommPort = 3
                                                                                MSComm1.PortOpen = True
                  MSComm1.PortOpen = True
                                                                      Else
                  MSComm1.PortOpen = False
                                                                                MSComm1.CommPort = 1
                  MSComm1.PortOpen = True
                                                                               MSComm1. PortOpen = True
         End If
                                                                                MSComm1.PortOpen = False
         Rsport = True
                                                                                MSComm1, PortOpen = True
                                                                      End If
ElseIf cmbPort.Text = "COM4" Then
                                                                      Rsport = True
         If Rsport = True Then
                  MSComm1.PortOpen = False
                                                             ElseIf cmbPort.Text = "COM2" Then
                  MSComm1.CommPort = 4
                  MSComm1.PortOpen = True
                                                                      If Rsport = True Then
                                                                                MSComm1.PortOpen = False
         Else
                                                                                MSComm1.CommPort = 2
                  MSComm1.CommPort = 4
                                                                                MSComm1.PortOpen = True
                  MSComm1.PortOpen = True
                  MSComm1.PortOpen = False
                                                                      Else
```

#### COMPUTER PERIPHERALS

```
MSComm1.CommPort = 2
                  MSComm1.PortOpen = True
                  MSComm1.PortOpen = False
                                                              F:
                  MSComm1.PortOpen = True
         End If
         Rsport = True
         'MSComm1.PortOpen = True
ElseIf cmbPort.Text = "COM3" Then
         If Rsport = True Then
                  MSComm1.PortOpen = False
                  MSComm1.CommPort = 3
                  MSComm1.PortOpen = True
         Else
                  MSComm1 CommPort = 3
                  MSComml.PortOpen = True
                  MSComm1.PortOpen = False
                  MSComm1.PortOpen = True
         End If
         Rsport = True
ElseIf cmbPort.Text = "COM4" Then
         If Rsport = True Then
                  MSComm1.PortOpen = False
                   MSComm1.CommPort = 4
                  MSComm1.PortOpen = True
         Else
                  MSComm1.CommPort = 4
                   MSComm1.PortOpen = True
                   MSComm1.PortOpen = False
                   MSComm1.PortOpen = True
         End If
         Rsport = True
End If
         Delay (1)
         UsePort = cmbPort.Text
         UseNolog = CmbNolog.Text
         Label1.Caption = "COM port:" + cmbPort + "
Logger No.: " + UseNolog
         DoEvents
         MSComm1.OutBufferCount = 0
         MSComm1.InputLen = 16
         MSComm1.Output = Chr$(8 * 16 + 8) +
Chr$(UseNolog)
         Do
                   DoEvents
                   Label1.Caption = "Communicating with
the logger ... "
         Loop Until MSComm1.InBufferCount = 16
                   Label1.Caption = "Data received logger
                                                            signal conditioning circuitry.
No. " + UseNolog
                                                            Sensor type
                                                            Temperature sensors, °C
                   Inputdata = MSComm1.Input
                                                            Temperature sensors, K
                                                            Infrared thermometer
                   For i = 0 To 15
                                                            Humidity sensors
                   Data(i) = Asc(Right(Inputdata, 16 -
                                                            Pressure sensors
i))
                                                            Force sensor
                   Debug.Print Data(i);
                                                            Light intensity sensors
         Next
                                                            Human eye light detector
                                                            Acceleration
          For i = 0 To 7
                                                            Angular velocity
         dummy = (Data(2 * i) * 16# + Data(2 * i + 1) /
                                                             Magnetic field
16#) / 4096 * 2.5
                                                            Ultrasonic distance sensor
          lblChD(i).Caption = " " + Format(dummy,
"0.0000")
```

```
Filename = "c:\rlg.ini"
          Open Filename For Output As #1
                   Print #1, UsePort
                    Print #1, UseNolog
          Close #1
          Filename = ""
 End Sub
 Private Sub CmbNolog_GotFocus()
          Label6.Caption = "Remote Logger No. " +
 UseNolog
 End Sub
 Private Sub cmbPort GotFocus()
 Command1.Enabled = True
 End Sub
 Private Sub Command1_Click()
 Log data
 End Sub
 Private Sub Command2_Click()
 End
 End Sub
 Private Sub Command3 Click()
          Timer1.Enabled = True
          Command1.Enabled = False
 End Sub
 Private Sub Command4_Click()
 Timer1.Enabled = False
 Command1.Enabled = True
 End Sub
 Private Sub Form Load()
 Timer1.Enabled = False
 End Sub
 Private Sub Form_MouseMove (Button As Integer, Shift As
 Integer, X As Single, Y As Single)
 Label5.Caption = "Com port selected: " + cmbPort.Text
 Label6.Caption = "Remote Logger No. " + CmbNolog.Text
 End Sub
 Private Sub Timer1_Timer()
 Log_data
 End Sub
Here's a list of sensors that should interface with the remote data logger with little
```

Next I

LM35 Available from most stockists LM135, AD590KH Available from most stockists Calex T sensor RS3299326 Mercator RHU217-AT Farnell 540997 PTE5000 series Sensor Technics Honeywell Farnell 7216671 **TSL250** Available from most stockists IS474 RS2678447 ADXL05 Available from most stockists Murata Gyrostar Farnell 731985 Honeywell HMC2003 Famell 7220121 UNDK 30U6103 Baumer electric

Source

Part ID



Central station board, right, and remote data logger board, left.

|                                              | _    |
|----------------------------------------------|------|
| 🗧 tomoLog 🛛 🔓                                | DX   |
| Remote Data Lo                               | gger |
| Com port Logge                               | n No |
|                                              |      |
| Channel 1 Ch1                                | M    |
| Channel 2 ch2                                | M    |
| Channel 3 ch3                                | M    |
| Channel 4 ch4                                | M    |
| Channel 5 ch5                                | M    |
| Changel 6 ch6                                | M    |
| Chonnel 7 ch7                                | M    |
| Channel 8 ch8                                | M    |
| Get inte                                     | * 1  |
| T , , C I                                    |      |
| H                                            | -    |
| Choose COM port on PC<br>Remote Logger No. 1 |      |

Fig. 9. Screen dump of the Visual Basic 4 control software.

### Circuit of the remote data logger

The remote logger is built around a PIC16F84, a MAX147 a-to-d converter and an RPC, Fig. 7. Lines PA0 and PA1 of the PIC set the local address of the logger to 0, 1, 2 or 3.

The MAX147 is a 12-bit 8channel a-to-d converter. The 2.5V reference is supplied by a TLE2425CPL IC.

Port B of the PIC controls the RPC as well as the MAX147. The power supply to the central station is again 5.5V to 10V DC. A lowpower TC55RP5002 regulator produces the 5V rail. Component layout and connections of the board are shown in Fig. 8b).

The flow of the PIC software is as

follows. After a power reset, the RPC is in listening mode. Once a two-byte packet – as broadcast by the central station – is received by the RPC, the PIC checks whether the address byte matches its own address. If they match, the PIC reads eight voltages from the a-to-d converter.

As the conversion result is 12-bit, two bytes are used to present one voltage. Next a data packet is written into the RPC for radio transmission. The packet has 17

bytes – one control byte and 16 data bytes for eight 12-bit data

words.

The PIC program also ensures that a remote logger only responds to the message sent by the central station, not to the message sent by remote loggers. This is done by checking the content of the control byte. The control byte sent by the station is  $02_{16}$ , whereas it is  $11_{16}$  for the remote loggers.

#### **PIC software**

The PIC software for the central station and the remote data logger are developed using the PIC assembly language in the MPLAB environment. Both programs are lengthy. They are available from authors. Please see details in the technical support section.

### PC software for the central station

The software drive for the central station is written in Visual Basic 4.

Figure 6 shows the screen of the driver. In the window, you should first select a COM port to be used and the address of the remote logger. Next, click the 'Get Data' button.

If data logging is successful, measured voltage from a remote data logger will appear on the screen. Online messages are shown at the bottom of the screen.

#### **Application ideas**

The analogue input channels require that the input voltage is within 0 to 2.5V. Any sensors having that voltage output level can be connected directly to the logger.

Sensors with other types of outputs require signal conditioning circuitry. A list of sensors that can be used easily with the remote logger is given separately.

Finally, I would like to thank Mr. Kangyan from Radiometrix Ltd for his help and advice on this project.

#### References

1. Data sheets on Radio Packet Controller available from Radiometrix's website www.radiometrix.co.uk. Telephone +44 (0)208 428 1220

#### **Communication between RPCs**

**RPC encoder.** Data bytes to be transmitted by the RPC are converted into a packet before being transmitted. This is to ensure a reliable radio digital data transmission. A packet consists of four parts: preamble, frame synchronisation, data and check sum.

**Preamble.** The preamble is a 20kHz square wave. The number of cycles can be defined by the user. The initial 3ms portion of the preamble is used to allow the receiving circuitry of the remote RPCs to settle. The remaining 15-cycle portion of the preamble is used by the remote RPCs to phase lock onto the incoming signal. The preamble may be extended to wake-up remote RPCs that are in power-saving mode.

#### Frame sync

A 7-bit Barker sequence is used to identify the start of the data. An eighth balancing bit is added after the Barker sequence.

**Data.** Each byte in the RPC's buffer is expanded into a 12-bit symbol prior to sending. The symbol coding has the following properties:

- Perfect 50:50 balance always 6 zeros and 6 ones
- There are never more than 4 consecutive ones or zeros in a byte.
- Each code is different from any other codes by a minimum of 2 bits.
- Only 256 of 4096 (6.25%) possible codes are valid. This means a 93.75% probability of trapping a byte error.
- Preamble and the frame sync codes are not part of the

symbols. A clash signal will cause immediate termination of the current decoding process.

**Check sum.** An eight-bit check sum is used to test for overall packet integrity. This is also coded into a 12-bit symbol prior to transmission.

RPC decoder. Radio-signal decoding consists of four steps:

**Search.** First, the RPC searches for valid preamble comprising a 20kHz square wave. The search is performed by a 16-times oversampling detector which computes the spectral level of 20kHz in 240 samplés of the incoming signal.

**Lock-in.** The 240 samples are also used to compute the phase of the incoming preamble and synchronise the internal recovery clock to an accuracy of  $\pm 2\mu s$ . When the frame sync is detected the decoder attains full synchronisation and will move the next stage.

**Decode.** Data is taken in 12 bits at a time, decoded into the original byte and placed in the buffer. The symbol decoder verifies each received symbol as valid (only 256 out of a possible 4096 are valid) and will abort the decoding process on a symbol failure. The first byte contains the byte count and is used to determine the end of message.

#### **Check sum**

The last byte is the received check sum. If the check sum matches the locally calculated one, the RXR line becomes low to inform the host that a packet is ready for downloading.

#### SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

**Ring for Latest Reduced Prices on this advert** 

Anritsu MN95B Variable Att. 1300 £100 Photo Dyne 1950 XR Continuous Att. 1300 - 1500 £100. Photo Dyne 1800 FA. Att £100. Cossor-Raytheon 108L Optical Cable Fault Locator 0-1000M 0-10kM £200. TEK P6701 Optical Converter 700 MC/S-850 £250 TEK OF150 Fibre Optic TDR - £750. HP81512A Head 150MC/S 950-1700 £250 HP84801A Fibre Power Sensor 600-1200 £250. HP8158B ATT OPT 002+011 1300-1550 £300. HP81519A RX DC-400MC/S 550-950 £250 STC OFR10 Reflectometer - £250 STC OFSK15 Machine jointing + eye magn £2 MISCELLANEOUS ITEMS

HP 4261 LCR meter - £650. HP 4274 FX LCR meter - £1 HP 3488 Switch Contro HP 75000 VXI Bus Co HP 83220A GSM DCS £500 B-DVM-quantity. 1990MC/S tor fo use with 8922A - £2 HP 1630-1631-1650 2,000. 1-1650 Logic ANZ's in st

OMC/

8502A

HP 8754A Network ANZ 4-1300MC/S

#### 8754A Network ANZ H24

8350A Sweeper MF 3540A PI 2-8.4GHz 5.9-12.4GHz all 3 - £3.500. HP MICROWAVE TWT AMPLIFIER 489A 1-2G ual - £300.

6400. HP PREAMPLIFIER 8447A 0.1-400MCS - 6200, Dua P PREAMPLIFIER 8447A 0.1-400MCS - 6200, Dua P PREAMPLIFIER 8447F 0.01-1 3GHz - 6400 HP PRE - PRIWER A.M.PLIFIER 8447F 0.01-1 3GHz -HP 3574 Gain-Phase Motor 1Hz-13MC/S OPT 001 Du MARCONI 2305 Modulation Meter-50kHz-2.3 GHz -MARCONI 2305 Modulation Meter-50kHz-2.3 GHz -MARCONI 838 AF Power Meter (opt Sinad filter) -6350 £40 £250 6350. MARCONI 6950-6960B Power Meters + Heads – £ MARCONI SIGNAL SOURCE-6056-6056-6057-605 - £400

MARCONI States - South FX Range 4-18GHz- 625-6400. RACAL 1792 COMMUNICATION RX - 6500 entry Raching and buts test. RACAL 1792 COMMUNICATION RX - 6500 early - 1, 0 late model with banklighting and branest. RACAL 1 - 1 COMMUNICATION RX - 6400-660. TEK MODULE MAINFRAMES - 1M501-802-503-504-506-TM500 5006. TEK PI 5010-M1 - Prog Multi Interface - 6250. FG Prog. 20MC/S Function Gan - 6400 - S1-Prog Scanner - 610 -DM Prog DMM - 6400. S1-Prog Scanner - 610 -DM Prog DMM - 6400. TEK 1000 OSCIL 09COPE MAINFRAMES - 7503- 73- 6 7831-7154-903. 704A-7104 - 6185-61900. TEK 2000 H's - 7411-7412-7413-7487-74941-92-7A24-7425-7425-742-7810-7815-7850-78507885-7892A-7015-7020.

012-7\$14-7M11-ST-S2-S3A-S4-S5-S6 K 7000 - 75 S51-S53 St HP POV

Trequency

EP In U-OCK HP and other makes of h Frequence is which when firms to the RF output socket of a rator doubles or out requency EG.50-1300V 600MC Spille fit w250+2450 each. doublers which when fi S/Generator doubles to 50-2600MC/S place fi

to 50-2600MC + 0 an inc. 2250 - 2450 e SPECTRUM AN. YZER HP 3580A GH2-50KH - 2750. HP 3582A Dual 0.2Hz-25.5KH2 - £11 - 0. HP 3585A 20H2-40MC(S - 13, 500. HP 3588A 10H2-150KC S - 17, 50. HP 3588A 10H2-150KH2 - 23,500. HP 8598B 10H2-15GH2 - 23,500. HP 8598B 10H2-15GH2 - 24,500. HP 8598B 10HC S (0.01-22GH2) - 23,500. HP 8598B 10MC S (0.01-22GH2) - 23,500. HP 8598B 10MC S (0.01-22GH2) - 23,500. HP 8598 0KH2-21GH2 OPT 1-2-3, 500. Telk928D 50kH2-21GH2 OPT 1-2-3, 500. Telk928D 50kH2-21GH2 OPT 1-2-3, 500. TEK492BP 50kHz-21GHz - £3,000-£4, TEK495 100kHz-1.8GHz - £2,000. HP 8557A 0.01MC/S-350MC/S - £500 + MF180T or 180C -£150 - 182T - £500 HP 8558B 0.01-1500MC/S - £750 - MF180T or 180C - £150 -182T - £500 HP 8559A 0.01-21GHz - £1.000 - MF180T or 180C - £150 -182T - £500. HP 8901A AM FM Modulation ANZ Meter - £800 HP 8901B AM FM Modulation ANZ Meter - £1,750. HP 8903A Audio Analyzer – £1,000. HP 8903B Audio Analyzer – £1,500.

MARCONI 2370 SPECTRUM ANALYZERS – HIGH QUALITY – DIGITAL STORAGE – 3047-110MC/S Linge qty to clear as received from Gov – all sources is from the complete or add £100 for basic testing and availating – allers preferred – and adj justr - discount on qtys of pick your own from five

A EARLY MODEL GR Y - horizontal alloy cooling fins -LATE

MODEL GREY - vertical alloy cooling fins - £300. ATE MODEL BROWN - as above (few only) - £500.

#### SCILLOSCOPES

TEK 465-465B 100MC/S + 2 probes - £250-£300. TEK 466 100MC/S storage + 2 probes - £200. IEK 475-475A 200MC/S-250MC/S + 2 probes - £300-£350 TEK 2213-2213A-2215-2215A-2224-2225-2235-2236-2245-60-

100MC/S - £250-£400 TEK 2445 4ch 150MC/S -TEK 2445 4ch 150MC/S -TEK 24458 - 150MC TEK 24458 - 150MC TEK 24458 - 150MC 2 propes - £450. 2 propes - £600. 2 propes - £750. 5 - 2 propes - £500.

TEK 468 D. C. 00 VS + 2 probes - £500. TEK 468 03: U/S - 2 probes - £550. 2466 4 300WC/S - £1,150. 1 2465 4 cl-350MC/S - £1,550. TE D.S 0. 2430A -150MC/S + 2 probes - £1,750. TEK D.S 0. 2440 -300MC/S + 2 probes - £2,000. TEK TAS 475-485 -100MC/S-20MC/S-4 ch + 2 probes - £900-£1.1K

HP1740A - 100MC/S + 2 probes - £250. 104 - 100MC/S + 2 proces - £200. 114 - 100MC/S storage + 2 probes - £200. 204 - 1722A - 1725A - 275MC/S + 2 probes - £300-

S storage - large screen – £250. 1001 IC S - large screen – £350. digitizing - £500. large screen - £250. ALA 100MC

ICROWAVE COUNTERS - ALL LED READOUT HIGHOWAYE COUNTERS - ALL LED READOR
 19 351D Autohet 20Hz-18GHz - £750.
 EIP 371 Micro Source Locking - 20Hz-18GHz EIP 451 Micro Pulse Counter - 300MC/S-18GHz
 EIP 546 Microwaye Frequency Counter - 10Hz
 EIP 548A Microwaye Frequency Counter - 10Hz

EIP 575 Mic rowave Source Lock EIP 588 Microwave Pulse Counte 86. z - £1.2K.

-

EP 575 Microwave Source Lock - 10/186/tz - £1.2K. EP 588 Microwave Pulse Content - 20/17/5 26.5GHz -1.3K. SD 60548 Micro Content 2042 - 18GHz - SMA Socket - £800. SD 60540 Micro Content 2042 - 18GHz - N Socket - £700. SD 60540 Micro Content 2042 - 18GHz - £600. SD 6246A Micro Content 20Hz - 26GHz - £1.2K. SD 6244A Micro Counter 20Hz - 45GHz - £400. Micro Counter 20Hz - 45GHz - £400. P5352B Micro Counter OPT 010-005-46GHz - new in box -

LSK. HP5340A Micro Counter 10Hz-18GHz – Nixey – £500. HP5342A Micro Counter 10Hz-18-24GHz – £800-£1K – OPTS 001-002-003-5 – 011 available. HP5345A + 534-55 Sotrce Synchronizer – £1.5K. HP5345A + 5354A Plugin – 4GHz – £700. P5345A + 5355A Plugin with 5356A 18GHz Head – £1K. P5385A 1GHz 5386A-5386A 3GHz Counter – £1K-£2K. P5385A 1GHz 5386A-5386A 3GHz Counter – £1K-£2K. Nacal/Dana Counter 1991-160MC/S – £200. Racal/Dana Counter 1992-1.3GHz – £600. Bacal/Dana Counter 9921-3GHz - £350

SIGNAL GENERATORS

HP8640A – AM-FM 0.5-512-1024MC/S – £200-£400. HP8640B – Phase locked – AM-FM-0.5-512-1024MC/S – 500-£1.2K. Opts 1-2-3 available. HP8654A – B AM-FM 10MC/S-520MC/S – £300. HP8656A SYN AM-FM 0.1-990MC/S - £900, HP8656B SYN AM-FM 0.1-990MC/S - £1.5K. HP8657A SYN AM-FM 0.1-1040MC/S - £2K. HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £2K. HP8660D SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K. HP8673D SYN AM-FM-PM-0.01-26.5 GHz – £12K, HP3312A Function Generator AM-FM 13MC/S-Dual – £300. HP3314A Function Generator AM-FM-VCO-20MC/S – £600. HP3325A SYN Function Generator 21MC/S – £800. HP3326A SYN 2CH Function Generator 13MC/S-IEEE -

£1.4K HP3336A-B-C SYN Func/Level Gen 21MC/S - £400-£300 £500.

Racal/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S - £300. Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S - £400. Racal/Dana 9084 SYN S/G AM-FM-PH-.001-104MC/S - £300.

#### MARCONI 2019A SYNTHESIZED SIGNAL GENERATORS 80KC/S-1040MC/S - AM-FM - £400 inc. instruction book tested

HP8444A Tracking Generator • 5-1300Mc/s - £450.

HP4953A Protocol Anz - 3400.

Heads 11664 Extra - £150 each.

to 40GHz many types in stock.

200Mc/s Pl Cards and other types.

8650, From £1k.

stock £250-£400.

standards

HP3709B Constellation ANZ £1.000

FARNELL TVS70MKII PU 0-70V 10 amps

Mixers are available for ANZs to 60GHz

HP8444A OPT 059 Tracking Gen • 5-1500Mc/s - £650. HP35601A Spectrum Anz Interface - £300.

HP8970A Noise Figure Meter + 346B Noise Head - £3k

HP8755A+B+C Scalar Network Anz PI - £250 + MF 180C

MARCONI 6500 Network Scaler Anz - £500, Heads available

Marconi TF2374 Zero Loss Probe - £200. Racal/Dana 1250-1261 Universal Switch Controller +

Racal/Dana 9303 True RMS Levelmeter + Head - £450. TEKA6902A also A6902B Isolator - £300-£400.

HP Sweep Oscillators type 8690 A+B + plug-ins from 20Mc/s to 18GHz also 18-40GHz.

HP Network Analyser type 8407A + 8412A + 8601A -100Kc/s - 110Mc/s - £500 - £1000.

GHz - plus most other units and displays used in this 8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-

Marcolli Microwaye regular i smeep occ., maintrame 6650PI - 18-26 5 GHz - 5 31 PI - 26,5 4 GHz-E750 or 6000 MF onto 2250 Gould J3Ditest occiliator emenual - £150. Barr & Strind V mable filter EF3 0.1Hz-100Kc/ - hig low pass - £150, other makes in stock. Read Dame 9300 RMS voltmeter - £250. HP 87504 storage normalizer - £400 with lead + S.A. Marconi mod meters type TF2304 - £250 - 1F2305 - 1 Read/Dame counters wep04.9905 9906, 9915-9056, 915

standards. HP180TR. HP181T, HP182T muinframes 2300, 1500 HP432A-435A or B-436A exclose theters a porterheads to 60GHz - £150 - £1750 - spere hours available. HP3586A or C selective lavel me == 0.0. HP86222A+B Sweep PI-2 - 18GHz - £1000 - £1250. HP86290A+B Sweep PI-2 - 18GHz - £1000 - £1250. HP8620C Mainframe - £250. IEEE £350.

HP8165A Programmable signal source - 1MHz - 50Mc/s -

Dummy Loads & Power att up to 2.5 kilowatte FX up to 18GHz - microwave parts new and ex equiper - relays -attenuators - switches - waveguides - Yigs - SMA - APC7

Power Supplies Heavy duty + bench in stock - Farnell - HP Weir - Thurlby - Racal etc. Ask for list. Large quantity in

Dattery Pack M23994. Anritsu MW97A Pulse Ecno Le 199 Pl available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -MH925A 1.3 - MH929A 1.55 - MH926A 1.3GI - MH914C

Pl available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 -

MH925A 1.3 - MH929A 1.55 - MH925A 1.3GI - MH914C

MG912B (LD 1.35) Light Source + MG92B (LD 0.85)

+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit £350.

Anritsu ML96B Power Meter & Charger £450

MAS

Racal/Dana counters-99904-9905-9906-9915-

9921-50Mc/s-3GHz - £100 - £400 - all fitted

HP3455/3456A Digital voltmeter - £400. HP5370A Universal time interval counter - £1k

HP5335A Universal counter - 200Mc/s-£1000.

TEKTRONIX 577 Curve tracer + adaptors - 19

stock, all types to 400 amp - 100Kv. HP8405A Vector voltmeter - late colour - £400. HP8508A Vector voltmeter - £2500.

LIGHT AND OPTICAL EQUIPMENT Anritsu ML93A & Optical Lead Power Met Anritsu ML93B & Optical Lead Power Met Power Sensors for above MASEA - MA98A Battery Pack MZ95A.

Anritsu MW98A Time Domain Reflector

1.3SM - £500 + one P.I.

1.3SM - £500 + one P.I.

Light Source £350.

Anritsu MZ100A E/O Converter.

Anritsu MZ118A O/E Converter

TEKTRONIX 1502/1503 TDR cable test set HP8699B Sweep PI YIG oscillator .01

plugs - adaptors etc. qty. in stock. B&K Items in stock - ask for list.

ME-£250 Both £500

Racal/Dana 9301A-9302 RF millivoltmeter - 1

Racal/Dana Modulation Meter Type 9009

1.5GHz - £150/£250 - 9009A £35 Marconi Microwaye 6600A 1 sw 6650Pl - 18-26 5 GHz

HP 8410-A-B-C Network Analyser 110Mc/s to 12 GHz or 18

TEK CT-5 High Current Transformer Probe - £250. HP Frequency comb generator type 8406 - £400.

-£150

08 .

inframe - 26.5-40 GHz-£750 or

MARCONI 2022E SYNTHESIZED SIGNAL GENERATOR -10KC/S-1.01GHz AM-FM - £500 inc. instruction book -

R&S APN 62 LF Sig Gen 0.1Hz - 260 kHz c/w book - £250.

MARCONI 2383 S.ANZ 100Hz - 4.2 GHz. £2K H.P RF AMP 8349A 2-20 GHz microwave. £2K. H.P. RF AMP 8347A 100 kHz - 3GHz £1,500. H.P. 8922 radio communication test sets. G – H – M. options various. £2,000 - £3,000 each.

H.P. 4193A VECTOR IMPEDANCE METER + probe kit. 400 kHz. To 110 ML/S. £3,500.

SPECIAL OFFERS

H.P. 83220A – E GMS UNITS for above. £1,000 - £1,500. WAVETECK SCLUMBERGER 4031 RADIO COMMUNICATION TEST SET. Internal Spectrum ANZ.

£1,800 - £2,000. ANRITSU M\$555A2 RADIO COMM ANZ. To 1000MC/S. No C.R. tube in this model. 2450. TEK 2445A - 4CH - 150MLS SCOPE + New X1 + X10-probe. Instruction book. £500 each.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 2ER. Tel: (01274) 684007. Fax: 651160



# Hard drive havoc

nce bitten, twice shy, that's me. Learning the hard way is the only real way of finding out what a data loss really means and boy, do I know now! That gut-wrenching feeling as your hard drive stops and a reboot brings up the message, "primary device failure," followed by the realisation that the backup you meant to do last month never happened.

Having not practised what I preached, I had to come to terms with the loss of 15 years' accumulated data – my contact details, my accounts records, the text files including a complete book I was working on. All gone, or so I thought.

In fact I had a month-old partial backup so I could re-create most of my appointments and accounting data. But all my current writing assignments, half-started articles, related notes and briefs for new jobs had vanished. And all because I hadn't backed up.

But what about you? Forget about my problem now; are you backed up? Do you rely on your PC for your livelihood? If it went into meltdown mode could you laugh it off and start again? Would insurance help? How long would it take to re-create the lost data and what would this cost in lost earnings? Or should you be thinking of taking the frazzled drive to a data recovery specialist in the hope it can be fixed?

#### What to do

To begin, start backing up regularly if you're not already doing so. But if you do have the misfortune to suffer hard-disk failure, don't try and fix it yourself. There's nothing useful that keen users or PC Your hard drive just took a dive and you haven't backed it up for months. Is there any hope of recovering your information, or is everything lost? Andrew Emmerson reports.

technicians can do to mend hard drives; any tinkering will only do harm. All you can do is replace the hard drive, reload the operating sys-

tem and application software and start over again.

If you're intending to use a data recovery service, save the drive and pack it carefully with the original documentation. But don't investigate it yourself.\*

#### How drives fail ...

Hard drives are remarkably reliable in the main; until my recent escapade I suffered no failure in 15 years and most other users are equally fortunate. But that's purely a statistic, just as the mean time between failure (MTBF) quoted in hard-drive specifications is purely an average.

In fact malfunctions of this kind can come at any time and make up the prime cause of data loss according to data recovery specialists Ontrack, as the chart shows. What's more, as storage capacities and density get ever higher, the impact of data loss problems can only increase. You have been warned!

Hard-drive failures are classed as either physical or logical. Of course I had to have both kinds of failure simultaneously, which is

cent success rates, but the rates they charge

may put you off. In most cases you can

expect little change out of £1000 and only

you can decide if the lost data is worth this

price. If, as in my case, your livelihood gen-

uinely depends on it, then the cost is irrele-

vant. For what you get it's not bad value

Physical failures demand repair in a clean-

room atmosphere with skills approaching

those of a brain surgeon. They also involve

the procurement of an identical drive for replacement parts. Finding old-production

The work may be done on a 'no fix, no

fee' basis and since the difference of just

disk drives can be acutely difficult.

most unusual and typical bad luck!

Physical failure implies some kind of physical destruction; it can be electronic (one of the control chips may have given up the ghost) or else mechanical, such as the dreaded head crash.

The read/write heads float above the magnetic platter on a cushion of air narrower than a human hair, so it doesn't take much disturbance to cause the most almighty ploughing up of data. The fact that grief is so rare is a tribute to the engineering standards and the hermetically sealed container in which the heads and platter reside.

Logical failure is less catastrophic; in this case the data is not actually destroyed but still effectively lost because something has wiped the disk's file allocation table (FAT) or partition information, thus erasing the directory that catalogues your data. Imagine, if you like, dropping a ring binder of 10 000 un-numbered data sheets written in Chinese. You could gather up every piece of paper but without page numbers you'd never assemble them in the right order again.

#### ... and why they fail

Accidents don't happen; they are caused. Power surges, malicious disk activity and supply interruptions are the chief sources of disk failure.

\* If the data on your corrupted hard drive isn't that dear to you, try using Norton Utilities or a similar rescue package to recover it. Such software usually allows you to make a rescue floppy disk while your system is working properly. This disk is supposed to increase your chances of recovering data on the next crash.

Before you give up on a corrupted hard drive, try low-level formatting it. The only low-level formatter that I've found that wipes a drive clean enough to allow the OEM version of Windows 98 to load is SGATFMT from Seagate. It is only supposed to work with Seagate drives but I've used the 'custom' option many times on many different makes up to 5Gbyte.

I have read that low-level formatting can render a hard drive unusable though, and it will no doubt void any warranties, so be warned. Let the drive run for half an hour before formatting.

This software can be made to write a test pattern in each location then read it and report any errors. I believe that it also locks out any bad sectors. If the software finds catastrophic errors, it aborts the format. You will need to run it from a system floppy. A search using SGATFMT4 via Google should turn up Seagate's web site.

Windows' Scandisk utility can be set to check your hard drive's integrity using the 'thorough' option. According to its description, a package called Spinrite constantly monitors your hard drive for impending failures. It is available from the GRC site whose address is in the contacts panel. Ed.



Leading causes of data loss, information courtesy Ontrack.

Surge filters and anti-virus software will go a long way to curing the first two evils and these are both low-cost solutions. Uninterruptible power supplies (UPS devices) will sort out supply fluctuations at a higher (but not outrageous) price.

Sometimes impending disk failure gives warning signs; very sluggish disk activity and ominous clicking sounds – both caused by repeated read/write attempts – are a clue. By this time the damage is probably done, however. Bad news.

#### **Mission impossible?**

Data recovery from dead disk drives is not impossible. Specialist firms boast of 95 per

#### Tips from the professionals

• Successful data recovery takes time, no matter how high its priority. There are no magic machines or instant utilities that can do the job; it's a highly specialised skill.

really.

- There are occasions when data is damaged beyond any kind of recovery but it's a rare case when absolutely no data is retrievable. Most companies claim a data recovery success rate of around 85%.
- More data is lost every year to failed recovery attempts, than to actual breakdown or malfunction. Frequently there is no second chance so don't even think of tinkering!
- Hard disks are sealed units and just disturbing screws on the mechanical casing can destroy a drive.
- Despite a rash of new companies, there are still only a handful of legitimate, professional recovery services. Ask for references and make your choice carefully! Would you trust your valuable data to un-named individuals on an anonymous web site?
- Where the recovery company is located is irrelevant; your choice should be based on what they can do not where they are. Whether they are five or 500 miles away will make no difference in the time it takes to evaluate and recover your information.
- Maybe you do have backups but have you considered keeping them off-site, where they may be safer?
- Your problem may not be the media you've stored your data on at all. Are the drives connectors all seated properly? Is your hardware or driver configuration correct?

#### **Useful contacts**

This is not an exhaustive list nor to be taken as endorsement or recommendation. Other firms can be found on the WWW by using a search engine and the phrase 'data recovery'.

- CBL Data Recovery Technologies Limited. 0800 028 2069, http://www.cbltech.co.uk
- MjM Data Recovery Ltd. 01462 680 733 http://www.mjm.co.uk
- Vogon International. 01869 355255 vogoninternational.com
- Data recovery problem solver wizard: http://www.ontrack.com/helpwizard/index.asp
- The (in)famous Click of death resource page – essential reading for Zip and Jaz drive users: http://www.grc.com/clickdeath.htm

one month in manufacturing date can render a potential donor unit useless, the repair process can be a slow and expensive task.

No mechanical skills are needed for repairing logical failures but the work is just as involved. Hours of patient bit twiddling may be needed to recreate the file structure of a confused hard drive, the more so if the data had not been defragmented recently.

#### Last words

By now you should be dashing to make a backup. Either that or you're smiling because your backups are fully up to date. Pride goes before a fall, though; backups assume that your hardware and storage media are in working order; that the data is not corrupted, and that your backup is recent enough to provide full recovery. In reality, hardware and software do fail and backups don't always contain current enough data. Maybe it's time to make sure! Fatalists will argue it's all inevitable and that data loss happens to us all sooner or later. No matter how fastidious we are about backing up there will always be a crucial file created after the backup and thus lost to Silicon Heaven.

What's more, every cloud has a silver lining; as a result of my mishap I bought a new, faster, larger drive and now my PC loads far quicker and runs more efficiently. I also bought a second drive and 'mirroring' software by DataKeeper so that all work created on Drive C: is copied automatically to the D: drive as a back-up.

I'm still out of pocket though, and a lot of data that I carefully saved over the years is gone forever. It's a crying shame but a useful lesson!

#### How a UPS can help

An uninterruptible power supply, or UPS, is a kind of power station in miniature, using battery-powered electronics to produce a limited quantity of mains electricity as and when needed. It cuts in when there's a total outage (black-out), temporary hiccup (dropout) or voltage reduction (brown-out).

A UPS also buffers the supply by filtering out the excess voltage surges that can destroy chips and data. It won't hold for long, but it will keep your computer running long enough to save data held in memory and shut down the computer gracefully.

Some UPS models come with power-save software that handles these back-up and shut-down procedures automatically if there's a power failure in your absence.

With a UPS, the more you pay, the better you get. Simple 'standby' systems monitor the mains and switch over to battery power when a problem is detected. Even if this is only a millisecond or two, this delay may be too long.

'On-line' models eliminate even momentary power cuts. They do this by providing power constantly from their own battery, even when the mains supply is normal. The battery is constantly under charge. On-line UPSs are superior but more expensive.

#### Would insurance help?

Data that has taken a lot of time to assemble can have a very high value, whether it's a

#### Put it in the fridge then tap it...

Just in case you didn't see it in the August 2000 issue, Ed Dell's letter advises owners of failed hard drives to try putting the drive in the refrigerator for an hour. Take it out, then tap it lightly and re-install. This works most of the time for Ed. A follow-up letter from Chris Eccles in the September issue explains why this trick might work. Eurocard interface design, the accounts database of your business or your twentyvolume family history. Consequently an insurance policy is no substitute for proper back-ups. Moreover you'll find that many home and small business insurance policies specifically exclude computer hardware failure too.

In some cases the insurers will pay the cost of manually recreating lost data and of replacing hardware destroyed by fire or lightning. In my own case, in which the hard drives were zapped by a power surge, the company was prepared to treat this as lightning and paid up the replacement cost – minus a standard 'excess' of £100. They also paid for the services of a data recovery expert, which made me mighty pleased I had taken out cover.

#### What will it cost?

Some data recovery firms work on a 'no fix, no fee' basis, while others charge an initial diagnosis fee of around  $\pounds 150$ . It is most likely that you will end up paying the same overall if recovery is possible.

Repairing a logical failure could cost between £350 and £500, while curing physical damage could easily double that cost. Worse still, work may be delayed while the contractor finds a suitable donor drive; because of constant firmware revisions and design improvements the precise characteristics of hard drives change over time. Consequently, if your drive was made in February 1998, parts from an August 1999 model may be totally unsuitable. Only an expert can tell, and finding NOS (new old stock) drives can be an expensive and very time-consuming task.

Add VAT to all these prices of course.

#### What if it still doesn't work?

You may have some problems when your data is recovered, but don't despair. Some DIY tasks remain even after the data recovery firm has handed you a fistful of CD-Rs containing what they have found for you.

Assuming you're using Windows Explorer, the folder names will probably show the ~ symbol (swung dash, tilde or 'twiddle') as their first character. The rest of the folder name will give you a good clue to the real name.

Most programs should now work, although you may find that document files refuse to load. The trick is to bypass Word or whatever and use Wordpad or a file viewer such as Quick View Plus. You'll find your text inside the files plus a load of garbage that was preventing it loading. Select the meaningful parts you want, then copy this into a brand new file and save it.



# New filter/mixer chip

A versatile high-Q bandpass filter chip with integral mixer has recently been launched by UK semiconductor manufacturer Zetex. The subject of our design competition on page 187, this filter operates to 150kHz and its mixer extends operation to 700kHz.

he new ZXF36L01 is a versatile analogue high-Q filter chip. In addition to its variable-Q bandpass or bandstop filter, the device also contains a mixer block, extending its range of applications.

To set the centre frequency, the basic filter section requires two resistors and two capacitors. Filter Q is controlled by two external resistors and can be varied up to about 50, Fig. 1.

While the filter operates up to 150kHz, the mixer extends the useful frequency range up to 700kHz and allows the frequency to be tuned. The local oscillator can be any waveform, making microprocessor control convenient.

The device is expected to be useful in audio gear and instrumentation for bandpass, notch and adaptive filtering. As the waveform at the local oscillator's input is irrelevant, a microcontroller can be used to produce a low-cost and variable frequency input.

Combining the filter and mixer functions in one low-cost chip makes the device interesting for sonar and ultrasonics, as you will see from the application outlined in the separate panel.

Typical operating current of this 5V device is 3.4mA and there's a shutdown mode reducing current to just 160µA. Devices are easily cascaded.

#### **Filter circuits**

From Figs 2, 3 & 4, you can see how easy it is to implement various notch filters. Centre frequency,  $f_c$ , is given by,

while Q is,  $Q \propto \frac{R_f}{R}$ 

Here R,  $R_i$  and  $R_f \ge 10 k\Omega$  and  $C \ge 50 pF$ .

There's more on designing for a value of Q in the device data sheet. Figure 5 shows how the device's frequency range can be extended using the mixer block.



Fig. 2. Circuit for a notch band-stop filter using the ŽXF36L01, together with its gain and phase response graphs.



Notch filter gain response 0 ମ ଅପ୍ର –10 Gain -20 -30 10 100 1k 10k Frequency (Hz) Notch filter phase response 270 Phase (°) 180 90 10 100 1k 10k



Frequency (Hz)







Fig. 3. Circuit for a band-pass filter with OdB stop level.



Fig. 4. Notch filter with attenuating skirts. Skirt 'roll-off' away from the peak is -20dB/decade, regardless of Q.



185

#### Deign example - using the ZXF36L01 in a sonar application

In a typical sonar system, the transducer is pulsed at its resonant frequency and the reflection is received after a period proportional to distance. The ZXF36L01 variable-Q filter is used to maximise the sensitivity at the required frequency and reduce noise. The on-chip mixer allows the received frequency to be tuned to accommodate different transducer frequencies.

The diagram shows how the ZXF36L01 provides a tuning and filtering solution for a sonar system. The received signal is first processed by an amplifier. This amplifier's gain increases with time to compensate for the reduction in reflected signal with time. At the same time, this amplifier reduces problems due to input overload.

From here, the signal is mixed with a local oscillator generated by a micro-controller. The filter then selects the appropriate signal. In this example for a

200kHz transducer, the filter is set at 75kHz and the local oscillator at 275kHz. The mixer output contains the sum at 475kHz and the difference at 75kHz and the filter selects the 75kHz signal. An envelope

now be used to

information.



#### **Electrical characteristics of the ZXF36L01**

| Supply current             |                   |      |      |      |               |
|----------------------------|-------------------|------|------|------|---------------|
| Parameter                  | Conditions        | Min. | Тур. | Max. | Units         |
| Operating                  | Filter            | 2.2  | 3.4  | 4.5  | mA            |
| Shutdown                   |                   |      | 160  | 300  | μA            |
|                            |                   |      |      |      |               |
| Filter characteristics     |                   |      |      |      |               |
| Parameter                  | Conditions        | Min. | Тур. | Max. | Units         |
| Max. operating frequency   |                   |      |      | 150  | kHz           |
| Q usable range             |                   | 0.5  |      | 50   |               |
| Centre frequency temp. co. | Q=30, $f_0=1$ kHz |      | 2000 |      | ppm/⁰C        |
| Q temp. co.                | $Q=30, f_0=1 kHz$ |      | 0.7  |      | % /°C         |
| Voltage Noise              | 1-100kHz          |      | 20   |      | nV/√Hz        |
| Input Impedance            |                   | 30   |      | 50   | kΩ            |
| Linear output range        | 10kΩ load         |      | 1.6  |      | V <b>p</b> -p |
| Sink current               |                   |      | .150 |      | μΑ            |
| Source current             |                   |      | 150  |      | μΑ            |
|                            |                   |      |      |      |               |

#### Typical mixer characteristics

Max. operating frequency 700kHz 300mV p-p Maximum signal input Maximum LO input 100mV p-p Minimum LO input 5mV p-p 60Ω LO input impedance

#### Absolute maximum ratings

7.0V relative to V<sub>ss</sub> Voltage on any pin 0 to 70°C, derated for -40 to 85°C Operating temperature range -55 to 125°C Storage temperature Test conditions: temperature 25°C, V<sub>DD</sub> = 5.00, V<sub>SS</sub> = 0V

Fig. 5. Filtering higher frequencies using the mixer. The signal to be filtered is mixed with the LO, whose frequency is chosen so that the difference, or intermediate, frequency equals the filter's centre frequency.



## **Design competition**

Devise a useful and/or ingenious application for the ZXF36L01 versatile high-Q bandpass filter with integral mixer and you could win a £500 voucher to spend with Farnell. There's two runner up prizes of £100 vouchers too.

#### Rules

- Electronics World reserves the right to publish submitted entries. All designs published will be attributed to their designers. A minimum payment of £50 will be made for each design published.
- Submission of an entry does not remove your right to exploit your design, but it does give Zetex the right to use the entry as an application note, or as the basis thereof, effectively making the design public domain.
- Winners will be chosen jointly by technical experts from Zetex, Farnell and the editor of Electronics World. The judges' choice will be final and no correspondence will be entered into regarding the choice of winner.
- No employee of Reed Business Information, Zetex and Farnell, or any of their associated companies, may enter this competition, nor may members of their families.
- No entry will win more than one prize, but multiple entries may be submitted.
- Prizes are as stated here and not negotiable.
- Entries arriving after the closing date will be void.
- No purchase in necessary to enter this competition.
- Winners will be notified by post, and the results may be publicised.
- For a list of winning entries, send an SAE to the editorial offices.
- Submitting an entry for the competition implies acceptance of these rules.

Launched this year, the ZXF36L01 is a versatile high-Q bandpass filter requiring a minimum of external components. In addition to the variable-Q analogue filter there is also a mixer block, making the device suitable for a wide range of applications.

All you have to do to enter the competition is send a design idea incorporating the ZXF36L01 to the address below. Entries will be judged on ingenuity, originality and usefulness. All entries are subject to the rules set out below.

A designer's kit is available from Farnell and you can find full data on the device on Zetex's web site http://www.zetex.com/pdf/ics/zxf36101.pdf.

It is not necessary for you to prove your design, and buying the kit is not a condition of entry into the competition. The design you submit has to work in practice but you will not be penalised for not having built a prototype.

If you do submit a design that meets the competition criteria and you *have* bought the kit, then you will receive a Farnell voucher for £15, courtesy of Zetex.

Send your entry to Filter Design, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Note that it is not necessary to send your prototype! Simply send the circuit diagram and a clear, concise description of the circuit. It will help if you describe why you think that your circuit should be among the winners. You can also e-mail your entry to jackie.lowe@rbi.co.uk, but unless the e-mail has a subject heading that reads 'Filter Design' it will not be eligible. Please attach diagrams and text separately and include a daytime phone number with your entry if possible.

The closing date for the competition is 30 April.

Win a £500 voucher redeemable at Farnell.

For more information... Visit http://www. farnell.co for details of the ZXF36L01 development kit or http://www. zetex.com/pdf/ic s/zxf36101.pdf for more data on the filter chip.





You don't need to buy this this new development board for the ZXF36L01 in order to enter the competition, but if you do, and your entry meets the competition requirements, you will receive a Farnell voucher for £15 to help cover its cost.

This Electronics World competition is sponsored by UK semiconductor manufacturer Zetex and distributor Farnell Electronics Components.

## Beginners' corner Balanced circuits

Balanced circuits play an important role in communications and in many other applications from audio to microwave frequencies. Ian Hickman explains why they are so widely used.

B alanced circuits have played an important part in communications, since before the days of 'electronics' as a recognisable branch of engineering. They continue to do so today.

Many circuits, such as a  $75\Omega$  coaxial television feeder cable for example, are unbalanced. That means that the signal is conveyed on one conductor, while the other remains at zero or ground potential – at least nominally.



Typically, unbalanced circuits are physically asymmetrical; in the case of coaxial cable, one conductor completely surrounds the other, hopefully screening it from any outside interference.

Balanced circuits, on the other hand, are both physically and electrically symmetrical. For audio-frequency signals, a typical arrangement consists of two wires side by side, spaced several inches apart.

Such wire pairs carrying telephone signals and supported on telegraph poles used to be a common sight alongside railway tracks. You can still see them in some rural areas of the country, and in many places throughout the world.

Depending on the gauge of the wire and the spacing, such circuits have a nominal characteristic impedance of  $600\Omega$ ,  $900\Omega$  or  $1200\Omega$ . The latter two are more common abroad than in the United Kingdom.

If you were to climb a telegraph pole with a portable battery-operated oscilloscope, and view the signal on one wire with a high impedance probe, you would find it looked much the same as the signal on the other. But if you viewed them both at once, using a dual channel scope, you would see that the signal on one wire was the same as on the other, but inverted.

The telephone on the far end of the line responds to the voltage *difference* between the wires, i.e. the voltage on one with respect to the other. Any interference induced in the wires will produce the same voltage with respect to ground, on both lines. Such interference might be caused by electrostatic or electromagnetic coupling between the pair of wires and an overhead power transmission line for example.

In UK telephone engineers' parlance, this type of signal is called a 'longitudinal voltage'. In the US, it would be referred to as a 'voltage to ground'. It is also called a common-mode or 'push-push' signal.

The differential voltage – the voltage on one wire with respect to the other – is called the 'transverse' or 'metallic' signal by UK or US telephone engineers, or the normal-mode or push-pull voltage.

Although the circuitry within a telephone handset is not itself balanced, it responds to the transverse voltage while largely ignoring any longitudinal voltage. This is because it is 'floating', i.e. no part of it is ground referenced.

The handset also of course has to transmit outgoing speech to the line - a function traditionally performed with the aid of a specially wound transformer or 'hybrid'.

Nowadays, an electronic hybrid avoids the use of a costly, bulky wound component; various circuit arrangements can be used, such as those in reference 1.

#### **Balanced circuits abound**

That basic building block of analogue electronics, the op-amp, is equipped with a balanced floating input. This means that the output voltage should depend only upon the voltage of one input with respect to the other, regardless of whether their average potential is 0V or some other value.

Manufacturers' data sheets always quote the degree of balance or 'common-mode rejection ratio', which is frequently shortened to CMRR.

For example, the popular and long established TL081 op-amp typically provides a CMRR of 86dB, with a minimum of 70dB for the commercial TL081C, 75dB minimum for premium types. The differential input voltage amplification of the device is 200V/mV typical – 25V/mV or 50V/mV minimum, depending on version.

The typical figure corresponds to 106dB and the common-mode input voltage amplification should therefore typically be 86dB less than this, or just 20dB. In principle, you could measure the common-mode gain using the circuit of **Figure 1a**). With no negative feedback around the opamp though, the offset voltage adjustment needed to set the mean output voltage level to 0V ground would be very critical.

There is a way around this problem. Instead of returning the wiper of the offset adjustment potentiometer via  $1.5k\Omega$  to the negative rail, it can be returned through a high resistance to the op-amp's output, although this back door negative feedback will of course affect the gain. I once used this scheme to make a CA3130 provide a very high impedance balanced floating input, for use as the null detector in an AC bridge.

In practice, an op-amp is always used with negative feedback applied, to define the gain to the desired value. Figure 1b) shows inverting and non-inverting amplifiers, each with an unbalanced input.

Although the input terminals themselves provide a balanced input, applying negative feedback causes unbalanced operation. Balance can be restored by a modification to the circuit, shown in Fig. 2. Here, the device inputs connect to a bridge of resistors, providing a balanced input and a gain of 20dB, if  $R_2=10 \times R_1$ . If a common mode input of say +1V is applied, the non-inverting input rises to  $10\div11=0.909V$ . If the output stays at zero volts, the inverting input will rise to the same voltage, provided that the resistor values are accurate. Thus there is no change in the differential input voltage. Hence, due to the device's common-mode rejection, there is no change in output voltage.

But while the Fig. 2 circuit provides a balanced input, i.e. one with common-mode rejection, it is not ideal. In the case of the TL081, the op-amp's input pins are virtual open circuits, each looking like a resistance of  $10^{12}\Omega$ . So assuming that  $R_1$  is  $10k\Omega$  and  $R_2$  is  $100k\Omega$ , the circuit's input resistance at the non-inverting input terminal is just  $110k\Omega$ .

However, if you work it out for the inverting input, you will find that with a balanced input signal, it comes to  $5.238k\Omega$ . Thus the circuit will unbalance the output of a balanced source with a finite output resistance. This could be a problem when making 'bridging' measurements, i.e. tapping across a line in service.

Of course if the source were truly floating, there would not be a problem, but then a truly floating source could equally well use either of the Figure 1b) circuits.

There are several ways round this. For example, the LT1193 high slewrate video difference amplifier from Linear Technology features two identical parallel input stages. These have closely defined gain, and both of them control the output. Thus one pair of input terminals can be used to set the gain, leaving the other pair floating free<sup>2</sup>.

Alternatively, three op-amps can be harnessed together to provide an 'instrumentation amplifier', as in Fig. 3a). This provides a very high input impedance at both input terminals, converting the signal to an unbalanced output.

Note that the two input op-amps provide no common-mode rejection. It is all obtained from the second stage. This has the same configuration as Fig. 2, and as noted above, it



Fig. 2. This circuit provides a balanced input and converts the signal to a singleended output.

Voltage gain = R2/R1 =unbalanced output voltage / balanced input voltage

has an unbalanced input resistance. But it is driven from the output impedance of the first stage, which is near zero due to the negative feedback around the input op-amps.

The arrangement is so useful that the three op-amps together with their various resistors are available from most semiconductor manufacturers, integrated into a single IC. A typical example is the AD624 from Analog Devices, providing pin-

programmable gains from  $\times 1$  to  $\times 1000$ , a gain bandwidth product of 25MHz, low noise, high linearity and low input-offset voltage. In addition, its CMRR is 130dB minimum at gains of  $\times 500$  or above.







accurately converts the op-amp to an unbalanced input

inverting with a high input resistance (ii).

circuit, either inverting with an input resistance R1 (i), or non-

An alternative circuit arrangement can provide the floating high input impedance of an instrumentation amplifier with just two op-amps, Fig. **3b**).

### Applications for balanced circuits

Balanced circuits are widely used. A common example is the  $300\Omega$  balanced feeder often used for the run between a dipole antenna and a VHF broadcast receiver. Any interference picked up on the feeder is a common-mode signal, which is ignored by the balanced floating input of the receiver

At much lower frequencies, instrumentation amplifiers are used in situations where it is required to accurately record or process small signals that may be contaminated with much larger unwanted common mode voltages.

Many instances occur in manufacturing process-control, with sensors measuring strain, temperature, pH, etc. At one time I was involved with measuring the performance of telephone transmission circuits. I have already mentioned  $600\Omega$ balanced open wire lines, but many a subscriber's 'local loop', or connection to their local exchange, is via a multi-cored twisted-pair cable for most of its length. Such twisted pairs have a lower characteristic impedance than open-wire lines. Values of  $135\Omega$ ,  $140\Omega$  (standard in UK) and  $150\Omega$  are common.

On both types of line, quite large longitudinal voltages may be experienced from time to time, so telephone transmission test equipment is designed to be very well balanced. This applies particularly to a psophometer, which must meet the stringent requirements laid down in the relevant CCITT specification.

A psophometer is an instrument for measuring the perceived level of noise on a telephone circuit, using a true rms meter circuit. It includes a 'telephone weighting filter' (CCITT Rec. P53, 1970), which takes into account the variation of efficiency of a telephone earpiece with frequency, and the acuity of the ear likewise.

A 'broadcast filter' is also supplied for use on the higher bandwidth lines working at 50Hz to 15kHz. These are provided for linking studios. The filter also has a 'flat' position.

The CCITT-specified degree of



Voltage gain = (2 x R2/R1)(R4/R3) = unbalanced output voltage / balanced input voltage

Fig. 3. Circuit a) provides a high impedance balanced floating input and converts the signal to a single-ended output. Fig. 3b) is similar to a) but uses only two op-amps.



balance or rejection of longitudinal (common-mode) signals is not a unique figure, but varies according to the frequency. At 50Hz, the requirement is that when 200V rms is applied between the instrument's input and its case, the reading shall not exceed  $100\mu$ V, i.e. a CMRR of 126dB. For this test, the two input terminals are strapped together.

In an instrument I designed, subsequently bought in quantity by the then GPO, roughly half the required rejection was obtained in an input transformer with a balanced floating primary. The other half was obtained from a modified version of the circuit in Fig. 2.

For signal level adjustments and measurement purposes, balanced systems need balanced attenuators. Figure 4a) shows a switched 0 or 60dB balanced  $600\Omega$  attenuator stage. Together with a bridged balanced-tee 0-50dB stage with 10dB steps and a similar 0-11dB stage with 1dB steps, it was used in another GPO contract, for a balanced attenuator covering 0-121dB in 1dB steps.

The original specification demanded a very high degree of balance – 60dB – at any attenuation setting up to the maximum, over the audio band. This was tested by applying an input between the input terminals, which were strapped together, and the case. The output was measured at various frequencies with a balanced instrument, such as a psophometer.

With careful design, the required performance can be met at low and medium values of attenuation. But if the measuring instrument's input is balanced floating, whether 'bridging' (high impedance) or 'terminating' ( $600\Omega$ ), the attenuator in Fig. 4a) provides no attenuation of the longitudinal signal. So one is in effect measuring the balance of the measuring instrument, rather than that of the attenuator.

The situation is little changed if the measuring instrument's input is bridging, centre tapped to ground. It is rather better if the measuring instrument's input is also set to terminating. Thus at the maximum attenuation, the degree of balance demanded could be around 180dB – which is clearly impracticable.

So the customer agreed to change the specification, and the pad was redesigned as a balanced-tee pad, with a centre tap brought out to a terminal on the front panel, Fig. 4b).

When using high attenuations of 60dB and above, the pad centre tap could be earthed, making the attenuation of longitudinal components equal

b)

#### **ANALOGUE DESIGN**

to that of transverse. Evidently, when considering a balanced transmission system, it is necessary to know if the receive end is floating or centre-tapped to ground, and whether terminated or bridging.

Balanced circuits are also used on printed circuit boards, where very high frequency emitter-coupled logic (ECL) signals must be routed from one place to another without corruption by cross-talk, etc.

Rise times of the signals concerned are of the order of a nanosecond, so correspondingly fast test signals are required. Testing of unbalanced transmission lines for data is usually carried out using time domain reflectometer (TDR) measurements.

A voltage step with a very short rise time is applied to the input of the line from a matched generator. The line input voltage is monitored by a sampling oscilloscope, and if the line is good, and correctly terminated in its characteristic impedance,  $50\Omega$  say, then the step is undistorted. But if the line is short circuited, the input voltage will collapse again to zero after a time equal to the round trip time from the input to the short and back again. Similarly, any impedance variations at any point along the line will cause a reflection of some magnitude and sign. A measurement of the time between the step and the returned echo gives the distance to the fault.

For such measurements on a balanced line, two step generators and line input voltage monitors are necessary, one for each line. The Tektronix 11801C oscilloscope, with option SD-24, is designed for just this purpose.

With one step positive-going and the other negative-going, the performance of the balanced line as such can be determined. The effective rise time of the instrument, taking into account the rise time of the step and the rise time of the line voltage monitor section, is 35ps or less.

Further tests are possible – and desirable – given that any induced crosstalk may be a common mode component. So there is provision to reverse the polarity of the negativegoing step. With both steps positivegoing, the characteristics of the line to ground, as an unbalanced system can be investigated, as can its response to common-mode signals.



Fig. 4a). A switched 0 or 60dβ 600Ω balanced π or 'box' attenuator pad. In Fig. 4b), the balanced tee or 'H' version is provided with an optionally grounded centre tap.

#### References

- 1. Hickman, Ian, 'Phantom data', *Electronics World*, August 1998 pp. 650-655.
- Hickman, Ian, 'Four op-amp inputs are better than two,' *Electronics World*, May 1992 pp. 399-401.

#### How to order (PC Interfacing and data acquisition)

□ I enclose a cheque/bank draft for £\_\_\_\_ (payable to Reed Business Information)

Please charge my credit/charge card Mastercard American Express Visa Diners Club Credit Card No: Expiry Date:

Signature of Cardholder

| Cardholder's | statement address: | (please use capitals) |
|--------------|--------------------|-----------------------|
|--------------|--------------------|-----------------------|

| Name      |      |
|-----------|------|
| Address   |      |
|           |      |
|           |      |
| D. I.C. I | Tel: |
| Post Code | 1ei: |
|           |      |

## PC Interfacing and data acquisition

A practical guide to programming for data acquisition and measurement must-have info in just the right amount of depth for engineers who are not programming specialists. This book offers a complete guide to the programming and interfacing techniques involved in data collection and the subsequent measurement and control systems using an IBM

compatible PC. It is an essential guide for electronics engineers and technicians



Price: UK £32.00 Europe £33.50 ROW £35.00

involved in measurement and instrumentation, DA&C programmers and students aiming to gain a working knowledge of the industrial applications of computer interfacing.

Contents: Preface; The PC as a platform for data acquisition; Software considerations; Sensors and interfacing; Sampling, noise and filtering; The interrupt system; Data transfer; Parallel busses; Serial communications; Scaling and linearisation; Basic control techniques; Example projects; Appendix A: Adaptor installation reference; Appendix B: Character codes; Appendix C: References; Index.

Readership: Electronic engineers/technicians using PCs for measurement and instrumentation applications (process control, testing, etc.) Data acquisition and control programmers in industry. PC interfacing - university and advanced hobbyist projects.

Post your order to:- Jackie Lowe, Room 514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS Or Fax 020 8652 8111

# BOOKS TO BUY

## Passive Components

#### PASSIVE COMPONENTS FOR CIRCUIT DESIGN

Passive Components for Circuit Design is a unique introduction to this key area of analog electronics designed for technician engineers and anyone involved in circuit design. The coverage encompasses all component types capable of power amplification: resistors, capacitors, transformers, solenoids, motors and transducers. The behaviour of the components is explored along with the different types available and the principles of circuit design. Tolerances, stability, variation with temperature, reliability and manufacturing standards are all covered. Reading this book will improve your skills in component selection and analog circuit design. These are essential skills not only for the analog designer, but for all circuit designers, professional or amateur.

**Contents:** Preface; Fundamentals; Fixed resistors; Variable resistors, potentiometers and diodes; Capacitors; Inductors and inductive components; Inductive devices; Transducing components; SMT; Hardware; Index

Readership: Technician engineers, circuit designers, advanced hobbyists Pages: 304pp Price: UK £22.00 Europe £24.00 ROW £26.00

#### Electronic Projects from the Next Dimension



#### ELECTRONIC PROJECTS FROM THE NEXT DIMENSION

For years paranormal scientists have explored the detection and documentation of spirits, auras, ESP, hypnosis, and many more phenomena through electronics. Electronic Projects from the Next Dimension provides useful information on building practical circuits and projects, and applying the knowledge to unique experiments in the paranormal field. The author writes about dozens of inexpensive projects to help electronics hobbyists search for and document their own answers about instrumental transcommunication (ITC), the electronic voice phenomenon (EVP), and paranormal experiments involving ESP, auras, and Kirlian photography.

Although paranormal studies are considered esoteric, Electronic Projects from the Next Dimension teaches the technical skills needed to make devices that can be used in many different kinds of experiments. Each section indicates how the circuit can be used in paranormal experiments with suggestions about procedures and how to analyze the results.

**Contents:** White noise generators for use in instrumental transcommunication (ITC) and electronic voice phenomenon (EVP) experiments; Practical circuits for image experimentation, such as a



wireless sparkling image generator, horizontal bar generator, brontophic sound, magnetic field generator, high-voltage generators (Kirlian Machine's I & II); Paranormal skills experiments with temperature change, polygraph, electro-shock, random number generation, UFO detection, and ghostfinding. Readership: Hobbyists, **Electronics Enthusiasts** Pages: 256pp Price: UK £22.00 Europe £24.00 ROW £26.00

#### **BASIC AC CIRCUITS**

This is the step-by-step approach for beginners. This self-paced individualized learning tool covers concepts, terms, and the mathematics required to understand AC circuit problems. It has been designed to improve analysis techniques for prediction and control development.

Readership: Beginners meeting AC circuits for the first time: students; technicians Pages: 921pp Price: UK £27.00 Europe £29.00 ROW £31.00

Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your order form to 020 8652 8111

| How to order<br>Book Title                                                          |
|-------------------------------------------------------------------------------------|
| I enclose a cheque/bank draft for £                                                 |
| Please charge my credit/charge card<br>Mastercard American Express Visa Diners Club |
| Credit Card No: Expiry Date:                                                        |
| Signature of Cardholder                                                             |
| Cardholder's statement address: (please use capitals)                               |
| Name                                                                                |
|                                                                                     |
|                                                                                     |
| Post CodeTel:                                                                       |

192

# PROTEUS

Virtual System Modelling

## Build It In Cyberspace

www.labcenter.co.uk circle NO. 113 ON REPLY CARD

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU <u>and</u> any additional electronics used in your designs. And it does so in real time. \*

 CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info.

E60 tin Clon Ine Shareware Order Online Download & Order Online

- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility compile and simulate with one keystroke.
- Over 4000 standard SPICE models included.
   Fully compatible with manufacturers' SPICE models.
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.





\*E.g. PROTEUS VSM can simulate an 8051 clocked at 12MHz on a 300MHz Pentium II.

Write, phone or fax for your free demo CD - or email Info@labcenter.co.uk. Tel: 01756 753440. Fax: 01756 752857. 53-55 Main St, Grassington. BD23 5AA.

## **Beautiful resistors**

Les Green looks at the rarely discussed topic of the effects of stress in planar resistors, and he explains how to reduce it.



ou may never get the chance to design your own custom resistor network. In fact you may not think there is anything interesting involved in resistor design, but every electronics designer should be able to appreciate the beauty of a well designed resistor.

The subject of resistor design is seldom taught in electronics courses, possibly because most of the techniques are computer based rather than mathematically biased. In fact it is the development of computer graphics which has really made the subject come alive.

#### A brief history

Early electrical research was not restricted to one or two experimenters; a great many researchers contributed along the way. The short list of discoveries shown in the panel fits the history of resistance into its proper historical perspective.

Resistors were originally coils of thin wire. As this construction method is bulky and expensive, it is now only used on laboratory standard resistors and power wire-wound resistors.

For some time, ordinary resistors were made of a mixture of carbon and insulating binding material, forming the 'carbon composition' construction. These were horribly unstable, noisy and inaccurate by modern standards.

The modern form of resistors is always a thin film\*

Fig. 1. Equipotential plot of a square-corner turn. Orange is insulator. The blue and green lines, left and bottom respectively, are electrodes.

\*Technically, thick film usually refers to a screen-printed resistor, while thin film refers to a vacuum deposited resistor. Here I mean 'thin' in the usual English sense, rather than the specialist sense.

#### **Resistance-related discoveries**

1785 Coulomb, discovered that electric charges exert forces on each other.

**1800 Volta**, invented the primary battery.

1820 Oersted, discovered that an electric current deflected a magnetic compass needle.

1820 Ampère, discovered that electric currents exert forces on each other.

1826 Ohm, identified the relationship between electric current, potential difference and resistance

1831 Faraday, discovered electromagnetic induction.

1845 Kirchhoff, formulated the basic laws of electrical networks.

of conducting material on an insulating substrate; either in tubular form or as a flat film (planar). It is this planar form that is the chief target of this article.

#### **Rectangular film resistance**

The resistance, R, of a block of conductive material is given by the formula:

$$R = \frac{\rho \times L}{T \times W}$$

Here, L is the length, T is the thickness, W is the width and  $\rho$  is the resistivity. Since R has units of ohms, it should be clear that the units of  $\rho$  are  $\Omega \times$  metre, often written as  $\Omega$ 'm.

For a thin film it is convenient to consider a new formula, where the resistivity and the thickness are combined into one term:

$$R = R_{sQ} \times \frac{L}{W}$$

1

It is evident that if the length of the film and the width of the film are equal, forming a square of resistive material, the resistance is a constant value of  $R_{SQ}$ . This is therefore known as the 'ohm per square', or  $\Omega/sq$  for short, which is more formally called the sheet resistivity. It is not ohms per square metre or ohms per square foot; it is just ohms per geometric square.

This resistive film may be screen printed ('thick film') or vacuum deposited ('thin film'), but its primary characteristic is its  $\Omega$ /sq. To make a resistor of a particular value, the aspect ratio, i.e. the ratio of the length to the width, is designed along with the  $\Omega$ /sq parameter. Thus resistors are made short and fat, or long and thin, according to whether the desired resistance is greater or lesser than the  $\Omega$ /sq for that film.

#### **Resistor shape options**

There is obviously a problem with high value resistors in relatively low resistance films; you need lots of squares in series. Therefore you either have to have a long resistor or a very thin resistor.

Given that the width of the resistor is governed by the manufacturing tolerances, there is obviously a limit as to how narrow you can make the resistive path. In order to make a long path in a small size, there is a need to go around corners.

Our nice simple formula now falls to pieces in the face of this geometrically simple rectangular corner. We have gone from simple geometry to a two-dimensional field pattern.

The resistance is no longer calculable without advanced mathematical formulae. We now enter the domain of finite element analysis by computer.

In Fig. 1, the orange area represents insulator. The blue line on the left is one electrode and the other electrode is below the bottom of the plot. This equipotential field plot clearly shows how the current flows around the corner. This shape has a resistance of 2.57 squares. In other words, if the sheet resistivity were  $100\Omega/sq$ , the resistance would be  $257\Omega$ .

By inspection we could have known that the resistance would be somewhere between 2 and 3 squares. Getting a more accurate answer would not have been possible without some sort of field plot. In fact manually produced field plots have been used for at least 100 years, as they



Fig. 2. Gradient field plot of the square corner turn.



#### appear in Maxwell's treatise<sup>1</sup>.

Another way of looking at the field plot is in terms of the electric field intensity. This is the voltage gradient within the resistive film and represents electric stress on the film.

You can see from Fig. 2 that there is a lot of stress at the corner. On this simulation the electric field is around 38 units near the electrodes, but rises to 175 units at the corner.

Fig. 3. Gradient plot of a bevelled corner turn.



Fig. 4. Plot a) is the gradient of a half-width inner radius turn. In b) is a gradient plot of a full-width inner radius turn and in c) a gradient plot of the new style improved corner furn. The current is taking a 'short-cut' around the corner and bunching up. This high stress point is a weakness in the design, as it will be damaged by over-voltage events more readily.

You should also realise that the power dissipated in a small element is proportional to the square of the voltage across it. Thus an element that has 5 times the electric stress across it, will actually be generating 25 times the heat. This is not a good way of making a stable resistor!

These points of stress also have a disproportionately large effect on the overall resistance compared to the rest of the pattern. This is another factor limiting the long term stability of the resistor.

The resistor is the wrong shape for accuracy and stability. What is needed is a smoother transition. Just bevelling the inside corner slightly has a useful effect, Fig. 3. The resistance has reduced to 2.4 squares, but the peak stress has reduced to 106 units at the corners, with 40 units near the conductors.

The other point about having stress in the resistive film is that current noise (1/f noise) is increased<sup>2</sup>.

#### **Stress ratio**

The ratio of the peak electric field strength to some sort of average field strength is obviously important. Up to this point I have been using a fairly imprecise measure, as the field around the electrodes is not constant. What is desirable is a more definitive measure with which to make quantitative comparisons between resistor shapes.

$$Stress ratio = \frac{Peak \ electric \ field \ strength}{Mean \ active \ field \ strength}$$

The term 'mean active field strength' needs defining and explaining. If an extra resistive area is added on to any field pattern, it is possible that there will be little or no voltage gradient in that area. In this sense the area is inactive.

If we average this new area in with all the rest, the stress

ratio would get worse although the resistor would not actually be under any more stress. The inactive area would have skewed the stress ratio and given a misleading result.

A simple way to overcome this problem is to define an active area as one where the voltage gradient is greater than 5% of the peak gradient. The inactive areas are then neglected when calculating the mean electric field strength and the stress ratio.

Using this new measure the 'square corner turn' has a stress ratio of 4.94. The bevelled corner turn has a stress ratio of 2.99. This is a considerable improvement for little effort.

A radius on the inside corner of half the resistor width, with the outer radius  $1\frac{1}{2}$  widths, both on the same centre, reduces the stress ratio to 2.05, Fig. 4a).

Increasing the inner radius to equal the resistor width, and making the outer radius double the resistor width, gives a slight improvement to a stress ratio of 1.71, Fig. **4b**).

There is a law of diminishing returns here. The best possible stress ratio is of course 1. The half-width-radius bend achieves a stress ratio of 2.05 with a resistance of 2.515 squares. The full width radius gives a stress ratio of 1.71 and a resistance of 2.323.

We want a maximum amount of resistance in a given space, but without putting the resistor under too much stress.

An interesting compromise is to deliberately make the short-cut around the corner less 'attractive' to the current flow. By pushing the inner corner out into the flow, the path length, and therefore the path resistance, is increased, Fig. 4c).

This new shape has a stress ratio of 1.9 and a resistance of 2.87 squares. As it gives more resistance with less stress in the same space, it is undeniably preferable to the halfradius bend.

No hard and fast rule can be made about what stress ratio is acceptable for a resistor in general, because the design environment and required specification for the resistor have not been stated. If pushed, I would say that a stress ratio of above 3 would give a poor resistor and that a stress ratio below 2 is desirable.

So far in this article, a quantitative measure of the stress in a resistive pattern has been presented. This then gives a quantitative way of saying which is a good pattern and which is a bad pattern.

In a second article on this topic, I will be discussing the subject of trimming. This is vitally important because poor trimming causes increased stress and therefore worse stability. The amount of trimming necessary on a thick film resistor is around  $\pm 19\%$  so the subject is not trivial.

The reason why this is important to the non-specialist is that because of the large trimming range, one batch of resistors can work whilst the next batch can be utterly useless. This is of considerable importance to any designer!

#### References

 Maxwell, J.C., 'A Treatise on Electricity & Magnetism', Volume 2, 3rd edition 1891. (1954 reprint.)
 Yoshida, H, 'The Effect of Resistor Geometry on Current Noise', IEEE Transactions on Components, Hybrids and Manufacturing Technology: Vol. 16, No 3; May 1993, pp. 344-349.



#### How to pay

(VCR Fault Finding Guide) paperback

I enclose a cheque/bank draft for £\_\_\_\_ (payable to Reed Business Information)

Please charge my credit/charge card □ Mastercard □ American Express □ Visa □ Diners Club

Credit Card No:

Expiry Date:

Signature of Cardholder

Cardholder's statement address: (please use capitals)

| Name      |       |
|-----------|-------|
| Address   |       |
|           |       |
|           |       |
| Post Code | _Tel: |
|           |       |

Television magazine's VCR Clinic column is a unique forum for practical servicing tips, with the UK's leading service engineers and servicing writers contributing their observations and recommendations month by month. But try finding those faults reports for the Amstrad XYZ123 that's on your bench. Even with an index you will be chasing through a pile of magazines... until now. Peter Marlow's VCR Fault Finding Guide is a distillation of the most used fault reports from 11 years of Television magazine. Arranged by make and model the information is extremely easy to access, and the book is a convenient size for the bench or to carry with you. This will undoubtedly become one of the service engineer's most useful tools. Unlike other fault guides, this one is based on top quality information from leading authorities, and genuine repair case studies. This is real-life servicing information, not just a compilation of manufacturers' manuals.

Approximately 2,000 reports on 193 models from 35 different manufacturers. Instant on-thespot diagnosis and repair advice. Television magazine's leading writers' wit and wisdom available for the first time in book form

Post your completed order to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS



#### VCR Fault Finding Guide

Peter Marlow This book is an essential repair tool, not just another volume for the shelf

Pages: 464pp

Price: £22.50

# BUUK TO BUY



Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS Phone your credit card order: 020 8652 3614 Fax your completed order form to 020 8652 8111 UK Price: £17.50 Europe £20.00 ROW £22.00 Paperback price includes delivery

#### How to pay

(Blumlein) paperback

I enclose a cheque/bank draft for £\_\_\_\_\_ (payable to Reed Business Information)

 Please charge my credit/charge card

 Mastercard
 American Express

 Visa
 Diners Club

 Credit Card No:
 Expirey Date:

Signature of Cardholder\_

Post Code\_\_\_\_\_Tel:\_\_\_

Cardholder's statement address: (please use capitals)

Name\_

Address

his book is the definitive study of the life and works of one of Britain's most important inventors who, due to a cruel set of circumstances, has all but been overlooked by history.

Alan Dower Blumlein led an extraordinary life in which his inventive output rate easily surpassed that of Edison, but whose early death during the darkest days of World War Two led to a shroud of secrecy which has covered his life and achievements ever since.

His 1931 Patent for a Binaural Recording System was so revolutionary that most of his contemporaries regarded it as more than 20 years ahead of its time. Even years after his death, the full magnitude of its detail had not been fully utilized. Among his 128 patents are the principal electronic circuits critical to the development of the world's first electronic television system. During his short working life, Blumlein produced patent after patent breaking entirely new ground in electronic and audio engineering.

During the Second World War, Alan Blumlein was deeply engaged in the very secret work of radar development and contributed enormously to the system eventually to become 'H2S' - blind-bombing radar. Tragically, during an experimental H2S flight in June 1942, the Halifax bomber in which Blumlein and several colleagues were flying, crashed and all aboard were killed. He was just days short of his thirty-ninth birthday.

For many years there have been rumours about a biography of Alan Blumlein, yet none has been forthcoming. This is the world's first study of a man whose achievements should rank among those of the greatest Britain has produced. This book provides detailed knowledge of every one of his patents and the process behind them, while giving an in-depth study of the life and times of this quite extraordinary man.

#### Contents

Earliest days Telegraphy and telephony The audio patents Television EMI and the Television Commission The high- definition television period From television to radar The story of radar development H2S - The coming of centimetric radar The loss of Halifax V9977 Legacy To Goodrich Castle and beyond

# NEW PRODUCTS

#### Please quote Electronics World when seeking further information

#### Triple-output converter

With outputs of 3.3V at 6.2A and  $\pm 12V$  at 530mA, this Elec & Eltek DC-to-DC converter is designed for telecom applications where a 3.3V DC feed is needed. Every output has over-voltage protection and the converter achieves 3.3V from 12V or 24V. With an input range of 40.5 to 60V DC this 34W unit features at least 80 per cent efficiency and operates without an additional heatsink over a temperature range of 0°C to 70°C. The specification includes 1kV DC isolation, and line and load regulation better than five per cent. Switching at



300kHz keeps dimensions down to 71 x 65mm with a height of 13mm and the footprint is compatible with industry standard models. The converter is designed to meet UL1950 and EN60950. DT Electronics Tel: 024 7643 7400 Web: www.dtelectronics.com

#### 32Mbit synchronous SRAM in 119 BGA

White Electronic Designs is offering three 32Mbit synchronous SRAMs, the WED2ZL361MS-BC and the WED2ZL361MV-BC are 2.5V and 3.3V versions, respectively, of 1M x 36-bit NBL (no bus latency) synchronous SRAM. Each integrates two 1M x 18 SRAMs into a single 17mm x 23mm, 119 BGA package. The WED2ZL2365 12S-BC, also a 119 BGA, is a 2.5V version configured as two banks of 512K x 36. All three products are available in speed ranges from 100MHz to 166MHz, making them suitable for highend networking applications such as Gigabit/Terabit Ethernet, ATM Switches, Add/Drop Multiplexers and Optical Switches. The NBL

Synchronous SRAMs are designed to sustain 100 per cent bus bandwidth by eliminating turnaround cycles when there is a transition from read to write, or vice versa. All inputs are synchronised to rising clock edges with the exception of output enable and linear burst order. Asynchronous inputs include sleep mode enable. Write cycles are internally selftimed and initiated by the rising edge of the clock input. This feature eliminates complex offchip write pulse generation and provides increased timing flexibility for incoming signals. White Electronic Designs Tel: 001 508 366 5151 Web: www.whitedc.com

#### SuperH processors run up to 200MHz

Hitachi has announced two microprocessors in the SuperH 32-bit Risc family, the SH7729R and SH7709S. Based on the SH3-DSP and SH-3 cores respectively, each device offers a high performance of 217/260Mips at operating frequencies of 167MHz/200MHz. The SH7709S achieves low power consumption with the SH-3 as



its CPU core, making it suitable for use in portable information devices such as hand-held PCs and PDAs. The SH7729R in particular, with its on-chip DSP, can handle high-speed processing of voice recorder and image data in portable information devices. This allows for the high-speed execution of middleware, for example VoIP, in products such as voice codecs. The SH7729R is also capable of simultaneously executing browser display and voice codec processing, for instance in Windows CE, which has been difficult with previous products. Hitachi Tel: 01628 585163 Web: www.global.hitachi.com

#### Mobile phone driver IC generates 128 colours

Rohm has expanded its family of miniature LED driver ICs with a surface mount device that allows 128 different colours to be generated from a single tri-colour LED. Designed for portable, battery-powered applications such as mobile phones, the BU8770FV LED driver can be used to optimise LED colours dependent on certain operating conditions. The BU8770FV integrates an oscillator, a CPU interface block, a DC/DC converter for driving the LED and three PWM controllers for red, green and blue output respectively. The PWM circuitry allows the LED to generate up to 128 different colour shades. Device input is via a serial interface. Supplied in an SSOP 16-pin package with dimensions of  $5 \times 4.4 \times 1.5$ mm, the device will operate from a 3.3V supply and incorporates a standby mode that minimises power consumption when driver operation is not required. *Rohm Electronics* 

Tel: 01908 282666



#### NEW PRODUCTS

#### Please quote Electronics World when seeking further information

# Single-cell lithium-ion battery charger IC

TelCom Semiconductor's first battery charger IC, the TC3827, is a controller designed to carry out safe and fast charging of a single lithium-ion cell. The device's accuracy is  $\pm 1$  per cent and shutdown current is 1µA. With an overall system accuracy of 1 per cent, the company says this device ensures the cell capacity is fully utilised without life cycle degradation. TelCom Semiconductor

Tel: 001 650 968 9241 Web: www.telcom-semi.com

# Circular connectors are very small

Flint is offering Hirose's miniature circular connector range, the HR25 which provides up to 20 contacts in an outside diameter of 12.5mm. Designers have a choice of 4, 6, 8, 12, 16 or 20 contacts, and a variety of wiring options including crimp-



style and direct board mounting as well as soldered wiring types. The HR25 is available in screw-lock or push-type mating. Their construction ensures that pins cannot bend if the male pins are inserted incorrectly. even if the two pieces are engaged, safe positioning of male contacts prevents any possibility of collision, says the supplier. A combination of watertight coupling and goldplated contacts comes as standard Flint Tel: 01530 510 333 Web: www.flint.co.uk

#### 200W modules output at 30, 40 and 50kV

Applied Kilovolts has introduced a range of 200W modules with output voltages of 30kV, 40kV & 50kV at 200W. The supplies use an energy recovery circuit to achieve high oscillator conversion efficiency and as a result are small in size for such high voltage power supplies, said the supplier. Operation is from 24V DC and uses a high frequency (50kHz) switch mode FET oscillator with the energy recovery circuits. All high voltage components are generously de-rated to give a design life of ten years or more and are vacuum encapsulated in silicone rubber. The modules are high stability with a load and line regulation of better than 0.1 per cent and a

temperature co-efficient of better than 300ppm/°C. Output ripple is better than one per cent peak to peak. Applied Kilovolts Tel: 01273 439440 www.appliedkilovolts.com

#### Vandal resistant keyboard is sensitive

Using high frequency touch sensitive technology, Sussexbased EAO has produced a rugged PC compatible 105-key keyboard. For Larger volume applications, touch sensitive keyboards or keypads may be customised to customers' specific needs regarding the number of keys, design, shape, colour and functionality. The keyboards are PCB based and designed to be used through a glass or polycarbonate front plate. This makes them completely sealed and resistant to chemical attack as well as vandal resistant and easy to clean.



They can also be operated using gloved hands. Available either as a stand-alone desktop unit, or a PCB version for mounting behind the customer front panel, the series 75 keyboard comprises an oscillator, a detection cell per key and an output signal processor. The keys are activated by dampening the oscillator's high frequency signal with a finger. EAO Tel: 01444 236000 www.eao-group.com

# Hybrid IC switches varying loads

The STR-G6551 is an off-line switching IC from Ultimate Renaissance which operates in 'fixed off-time' mode with a maximum frequency of 60kHz. The device features a  $3.9\Omega$ R<sub>DS(on)</sub> avalanche rated 650V, 158mJ FET and includes over voltage protection (OVP), under voltage lockout (UVLO) and





# Class-D audio amplifier gives a virtuoso performance

Zetex has announced the first product in its Class-D audio amplifier family. The ZXCD1000 switching amplifier controller offers efficiency greater than 90 per cent, claims the supplier. This allows the amplifier to be offered in a compact package, and to generate much less heat than a comparable Class A/B linear amplifier - which would typically have an efficiency of around 65 per cent. It offers THD + N (total harmonic distortion and noise) of typically 0.2 per cent open loop, or typically less than 0.1 per cent with a 10dB feedback loop (measurements are taken at 90 per cent power, full band). Depending on the choice of output filter, the ZXCD1000 provides true high fidelity performance at an output of 25W or 50W and can drive either a 4 $\Omega$  or 8 $\Omega$  load, says the firm. *Zetex* 

Tel: 0161 622 4422 Web: www.zetex.com

#### Please quote Electronics World when seeking further information

thermal shutdown (TSD) circuitry. Available in a 5-pin isolated TO-220 package the STR-G6551 operates up to 60W on a European input voltage range and 30W on a world-wide input voltage range. Ambient operating temperature range is -20°C to +125°C. Ultimate Renaissance Tel: 01793 439310 www.ur-home.com

# SM LEDs protect against discharge

Lumex's latest family of surface mount technology LEDs are designed to offer protection from electrostatic discharge (ESD). Applications include right-angle panel or fault



indicators, where the light source is exposed to an end user. The SMF-HM1340XD-L series of LED indicators are available in right-angle or straight-up packaging. They can be equipped with any of the supplier's off-the-shelf lensed T-3mm (T-1) light emitting diodes. Typical choices include standard low-current (I=2mA) LEDs in red, green, yellow or amber, with blue and white also available. An ESD-safe lens snaps over the LED to complete the package. The base unit is designed as a mate-able unit. Lumex Tel: 001 800 278 5666

Tel: 001 800 278 5666 www.lumex.com

## DC supplies range from 13.3 to 30kW

The Magna-Power SQ Series of DC supplies range from 13.3kW to 30kW. They are sold by Kingshill in the UK. Developed from the established PQ series, these current-fed units combine high and medium frequency power processing technologies to

#### Boundary scan controller supports compactpci/pxi

JTAG Technologies has extended its line of high-performance boundary-scan controllers with an addition to the JTAGTAPS family, the JT3710/PXI DataBlaster. The controller supports the CompactPCI/PXI format and its software structure is identical to the previous ISA. PCI. VXI and USB versions of the DataBlaster. The PXI-based controller offers 32-bit operation with data transfer speeds up to 25MHz. To accommodate the high data rates and lengthy vectors demanded by boundaryscan applications, such as flash memory In-System Programming, the JT3710/PXI uses a unique boundary scan implementation. This includes the firm's chipset for real-time data decompression, high-speed TAP (test access port) drivers and AutoWrite used to boost boundary-scan-based flash ISP performance. A high capacity memory is also incorporated onboard for local ISP data storage. JTAG Technologies Tel: 01234 272226 www.jtag.com

reduce package size. There are 50 models with outputs from 16-625V, DC, 21-1800A, DC. They are fully programmable through resistance, voltage, current or optional JEEE-488/R5232. Overvoltage and over-current are also programmable. Constant monitoring ensures shutdown if a line opens or a programmed input is exceeded. Units function as voltage or current sources, depending on control settings and load conditions. As a voltage source, if the load increases beyond the current command setting, the unit automatically crosses over to current mode. Diagnostics are embodied within the control loop, while proprietary circuitry identifies whether voltage, current or a fault condition has control. If the fault condition demands user intervention, mains power is disconnected and the diagnostic status latched into memory. Kinashill Tel: 01634 821200

www.kingshill.com



#### Adapter board connects CompactPCI supplies

Schroff's latest adapter board is a CompactPCI connection system using the power supply's M-connectors. It is intended to allow a user to carry out prototyping and small scale production work without having to manufacture an application specific backplane with integral power supply connections. It is based on a two layer intermediate board, which is used as an adapter between the power supplies and the backplane of a 19in. subrack. Available in heights of 3U and 6U, these boards like the backplane itself can be mounted onto the rear horizontal rails. All signals including drive supply, sense line and current share bus signals are fed from the DIN-M24/8 connector of the CompactPCl by cable to the intermediate board and then to the backplane. Schroff

Tel: 01442 240471 www.schroff .co.uk



#### NEW PRODUCTS

#### Please quote Electronics World when seeking further information



#### Custom voltmeter for under £15

Lascar has launched a customscaled addition to its EM series of drill mountable panel meters - the EMV 1025S-XX. This new 3-wire, 3<sup>1</sup>/<sub>2</sub> digit LCD voltmeter has 'factory set' scaling. According to the supplier, the user orders a 10-wire evaluation unit, confirming preferred scaling and decimal point options. All subsequent meters ordered in quantities over 50 pcs will be provided in the particular configuration chosen for only £14.94 per unit, says the firm. As with each of the modules in the EM Series, the EMV 1025S-XX is fitted with a threaded stud, mountable through a 5.5mm hole, is 43.5mm by 21.4mm in size and has a low profile finish of 5mm. Lascar Electronics Tel: 01794 884616 www.lascarelectronics.com

#### 1.4MHz buck converter offers 95% efficiency

Linear Technology's LTC3404, 1.4MHz current mode monolithic synchronous stepdown DC/DC is capable of delivering up to 600mA of output current. The buck converter has an operating quiescent current for less than 1MHz operation of 10µA with no load and less than  $1\mu$ A in shutdown. Efficiency is rated at 95 per cent. Linear Technology Tel: 01276 677676 www.linear.com

## Comms modules for industrial PCs

Xycom Automation has extended its range of Industry Pack (IP) industrial PC communications modules. The module can be used on processor boards with IP sites, on XVME-9660 6U carrier cards (four per card) or XVME-9630 3U carrier cards (two per card). The XIP-4520 offers 8 channels of RS-232 communications with 64 bytes each of transmit and receive FIFO buffers and bit rate programmable up to 230kbit/s. Xycom Automation Tel: 01604 790767 www.xvcomautomation.com

# 32-bit configurable chip

Triscend has introduced a 32-bit configurable device which integrates an ARM7TDMI processor core with programmable logic. representing over 3000 flipflops and 300 programmable I/O. The A7 configurable system-on-chip device includes a dedicated system bus with a transfer rate of 264Mbit/s and system features such as a fourchannel DMA controller, an external memory interface unit, full power management utilities and JTAG debug interface. Additional peripherals include timers, UARTs, interrupt and watchdog. Alongside the ARM core is an SRAM-based configurable logic matrix with over 3000 flip-flops and 300 programmable I/O. The system interconnect bus combines 32bit addressing with 32-bit data

#### **Clock generators for digital set-top boxes**

AMI has introduced a family of single phaselock loop (PLL) clock generator ICs that support a variety of platforms. Each device contains an on-chip voltage-controlled crystal oscillator (VCXO) that develops the PLL reference frequency when combined with a crystal resonator. The VCXO allows designers to adjust the timing in systems that have frequency matching requirements, such as digital satellite receivers. The AMI devices also feature a phase-locked loop (PLL)



that drives one or more clock outputs. The clock outputs are phase- and frequency-locked to the VCXO reference frequency. This locking of the output frequencies to the reference tackles unpredictable artifacts in video systems and reduces electromagnetic interference (EMI) caused by harmonic frequency stacking. Individual device pin-outs vary, but all packaging features a small circuit board footprint to contribute to reduced end-product size. Both 3.3V and 5V versions are available. *AMI* 

Tel: 000 49 351 530 331

# The Distributor with 20,000 hard-to-find lines EX STOCK!!!

#### Semiconductors

We have one of the largest ranges of discrete parts in the UK, both new and obsolete types and, if we do not have it in stock, we can usually source it for you.

Call or fax for our latest Semiconductor stock list.

#### Computer products

We carry in stock everything to make a Personal Computer. CPUs – Memory – Motherboards – Cards – Scanners – Modems – Sound Cards – Speakers – All types of Drives – Cases – PSUs – Monitors etc

#### Components & equipment

Call or fax for our latest Semiconductor stock list. Capacitors – Resistors – Connectors – Potentiometers – Cables – Batteries – Speakers – Amplifiers – Lamps – Microphones – Fans – Power supplies – Transformers – Buzzers – Sirens – Fuses and Holders – LEDs – LCDs – Relays – PA Systems – Tools – Test Equipment – etc

See our web site. Non-trade customers, send £9.80 to the sales office for a complete suite of catalogues.



Semiconductor Supplies International Ltd

Dawson House, 128 - 130 Carshalton Road, Sutton, Surrey, England, UK. SMI 4TW 020-8643 1126 (Sales and Technical Queries) Fax: 020-8643 3937 (For International use +4420) e-mail: sales@ssi-uk.com Web: ssi-uk.com



# Professional PCB Layout for Windows at Computer Store Prices!



🕼 Easy-PC - Number One Systems - [PCB Design: Design 566.pcb]

Number One Systems Call +44 1684 773662 or Fax +44 1684 773664 E-mail info@numberone.com

### **Easy-PC For Windows 4.0**

#### now reads Ultiboard designs/libraries\*

Suddenly, a professional level PCB layout product is available at a realistic price. Just check the specification and see what excellent value you get with Easy-PC For Windows. Then test before you buy with a demo version - you will be simply amazed with Easy-PC For Windows.

- True Windows 32 bit product Integrated Schematics and Layout as standard Windows drag & drop throughout Multiple documents open within display Technology files for fast start-up Tiled display - Cascade, Vertical, Horizontal Multi-level Undo/Redo Integrated standard Autoplace Optional shape based AutoRouter Full Copper Pour Split powerplanes Unlimited signal/powerplane layers Unlimited non-electrical/doc layers Keep out/keep in areas for routing R/H mouse menu support Pan across design to cursor position Cross probing between Schematics and PCB
- Full forward & backward annotation Schematics /PCB Modeless driven operation, no menu selection required

\*Ultiboard is a trademark of Ultimate Technology

Consistently, one of Europe's most popular PCB Layout products for Windows 95/98/NT/2000, Easy-PC has won praise from users for the wealth of features within each new release. Many of these new features are normally

Over 7,000 users must be right!

only found in the world's most expensive PCB Layout software packages.

Now try Easy-PC For Windows for yourself !

call us for a demonstration copy or download from WWW.NUMberone.com

Number One Systems, Oak Lane,Bredon, Tewkesbury, Glos, GL20 7LR. UK

CIRCLE NO.115 ON REPLY CARD

#### NEW PRODUCTS

#### Please quote Electronics World when seeking further information

carriage. The first device available, the TA7S20, offers 2048 configurable logic cells, 16K RAM and 251 programmable I/O. It is packaged in 128LQFP, 208QFP and 484BGA styles. *Triscend Tel: 01628 681565 www.triscend.com* 

# SM connector is metric

The BP2 2mm contact pitch connector is an eight contact, surface mounting connector capable of handling up to 3A DC on two contacts and 0.5A on the remainder. The UL-rated insulator is high temperature and



the operating range of the connector is  $-55^{\circ}$ C to  $+85^{\circ}$ C. The sideways mounted copper alloy blade contacts can endure 5000 mating cycles and all are gold plated. When mated the connector provides a co-planar (end to end) style board mating. Packaging options include embossed tape or semi-hard tray for auto placement. *Robinson Nugent Tel:* 01227 794495 *www.robinsonnugent.com* 

# LED Indicators for low or mains voltage

Hero Electronics is stocking a range of 22mm LED Indicators from German manufacturer Signal Constructs. The range includes products suitable for 130 and 230V AC mains operation as well as 20-28V AC or DC operation. The indicators are sealed to meet IP67 standards, overall diameter of



#### Media platform in single pci slot

RadiSys' next generation family of Spirit-6000 media processing platforms is claimed to offer four-times the performance of its predecessor, the Spirit-6020, in a single PCI slot. Delivering up to 128 compressed voice or fax channels, the platform is intended for medium to high-end enterprise and media gateways including voice/fax over packet, CTI/IVR, audio conferencing, voice record and playback and other voice, fax and telephony signal processing applications. With the ability to packetise voice and send the data over a LAN using on-board 10/100Base-T network interfaces, the board is both PCI and H.100 bus compliant. Each of the board's eight TI DSPs runs at an internal clock speed of 300MHz providing a total of 2400Mcycles/s per PCI slot. The system is available with a choice of voice coders and telephony algorithms. *RadiSys* 

Tel: 01793 411200 www.radisys.com



the lens is 30mm and mounting hole diameter is 22mm + 0.5mm. Designed for front panel mounting, the devices are secured with a circular fixing nut that is supplied along with an O-ring seal. A feature of the range is a 180° viewing angle. Five different LED colours are available as well as a bi-colour version. Luminous intensities range from 160 to 350mcd at 20mA operating current. Hero Electronics Tel: 01525 405015 www.heroelec.co.uk

#### In-circuit emulation support for STAR12

iSYSTEM has in-circuit emulation support for the Star12 micro controller family from Motorola. The system supports the Star12's 25MHz bus clock (50MHz clock). Based on the firm's ActivePOD technology, a high-speed probe for real time in-circuit emulation was developed and tested with Motorola. It supports the 68HC9S12DP256 microcontroller with 256Kbyte of flash memory and can be used with all iC3000 and iC4000 systems. There is an adapter for Star12's 112-pin QFP package. The overlay RAM is on-board to provide the fast access times. The integrated trace buffer offers 16K x 160bit capture at an upload speed of 100Msample/s. In addition to complete in-circuit emulation, iSYSTEM also provides serial debug (BDM - background debug mode) support for the STAR12 family. **iSYSTEM** Tel: 01280 700262 www.directinsight.co.uk

#### Emergency stop switch is foolproof

EAO's series 04 and 61 ranges of panel mounting switches now include a selection of emergency stop switches that have a foolproof actuation



method. The term foolproof means that the switch contacts cannot be accidentally operated without fully actuating the mushroom head. Available in both twist-to-release and keyto-release options, both series of emergency stop switches conform to the latest approvals and machinery directives and are environmentally protected to IP65. Available in both 16 and 22.5mm mounting dimensions and 27 and 37mm front dimensions. EAO Tel: 01444 236000

www.eao-group.com

# TiePieScope HS801 PORTABLE MOST

ABRITARY WAVEFORM GENERATOR-STORAGE OSCILLOSCOPE-SPECTRUM ANALYZER-MULTIMETER-TRANSIENT RECORDER-

Reliability

The HS801: the first 100 Mega samples per second measuring instrument that consists of a MOST (Multimeter, Oscilloscope, Spectrum analyzer and Transient recorder) and an AWG (abritary waveform generator). This new MOST portable and compact measuring instrument can solve almost every measurement problem. With the integrated AWG you can generate every signal you want.

- The versatile software has a user-defined toolbar with which over 50 instrument settings quick and easy can be accessed. An intelligent auto setup allows the inexperienced user to perform measurements immediately. Through the use of a setting file, the user has the possibility to save an instrument setup and recall it at a later moment. The setup time of the instrument is hereby reduced to a minimum.
- When a quick indication of the input signal is required, a simple click on the auto setup button will immediately give a good overview of the signal. The auto setup function ensures a proper setup of the time base, the trigger levels and the input sensitivities.

The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) en three lines with measurement specific information.
- The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz. The input range is 0.1 volt full scale to 80 volt full scale. The record length is 32K/64K samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz.The HS801 is connected to the parallel printer port of a computer.
- The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.
- TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL), Koperslagersstraat 37, 8601 WL SNEEK The Netherlands Tel: +31 515 415 416; Fax +31 515 418 819

Web: http://www.tiepie.nl

#### NEW PRODUCTS

#### Please quote Electronics World when seeking further information

#### RF amplifiers operate at Bluetooth frequencies

NEC has introduced three monolithic integrated amplifiers (µPC8178TB, µPC8179TB and µPC8182TB) covering the 0.1 to 2.9GHz frequency range which makes them suitable for Bluetooth designs as well as CATV and wideband-CDMA applications. Supplied in a sixpin super minimould package (SOT-363) in tape and reel format with 3k pieces per reel, the µPC8178/79 are manufactured using the firm's 30GHz silicon bipolar process which uses direct silicon nitride passivation



film and gold electrodes, enabling a bandwidth of 0.1 to 2.4GHz. Power consumption is 4mA or less at 3V, power gain is between 11.5 and 15.5dB at 2.4GHz for the two devices and typical signal isolation is 44dB at 1GHz. It is suggested that the devices are suitable for designing buffer amplifiers in the final stages of Bluetooth receivers. For applications where a higher frequency response is required, the µPC8182TB has a range of 0.9 to 2.9GHz, with a power gain of 20.5dB at 2.4GHz. NEC Tel: 01908 691133

www.nec.de

#### Single latching relay in small footprint

The subminiature G6KU, DPDT single pole latching relay from Omron is suitable for high density mounting, with its compact dimensions of 5.2mm x 6.5mm x 10mm and weight of 0.7g. Operating at less than 100mW, the relay also conforms to UL and CSA standards and is plastic sealed for use in most soldering and washing processes. Also available is the G6KU-Y version which conforms to Bellcore specifications offering an impulse withstand voltage of 2500V for 2 x 10µs. Models offering outside-L SM terminals, inside-L SM terminals and PCB terminal shape options are available, with surface mount terminals incorporating a specially developed terminal structure with high infrared irradiation efficiency, allowing terminal temperature to rise easily when mounting the IRS, thereby ensuring excellent soldering. Mechanical life expectancy is in excess of 50

million operations and an electrical life expectancy of 100 000 operations minimum. *Omron Tel: 0208 450 4646 www.eu.omron.com* 

### Desktop robot solders and assembles

A desktop robot available from Townsend Coates is suitable for applications such as screw-



# BOOK TO BUY

# Servicing Audio and Hi-Fi Equipment

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

Servicing Audio and Hi-fi Equipment

Total\_\_\_\_

Name

Address

. .

Postcode

Telephoné

Method of payment (please circle)

Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Information

Credit card no\_

Card expiry date

Signed

'Its readers will benefit from its wealth of easily assimilated information, and repairs hitherto thought impossible will speedily become routine. And the first may well cover its purchase price. Congratulations on a comprehensive, well-written and lucid work' *Electronics Informer*.

'Interesting, entertaining and useful for both practitioners and teachers. All round a satisfying book which deserves to be considered as a tool rather than an ornament collecting dust on the shelf.' *Skillset Newsletter* 

Service engineers and technicians have come to regard this book as essential to their work. As a bench-side companion and guide it has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and testing of all classes of home audio

equipment: receivers, amplifiers, recorders and playback machines. The mechanics and electronics of domestic audio are examined by Nick Beer in a down-to-earth and practical way, concentrating on what goes wrong, how to track down problems, and how to solve them.

A symptom index and comprehensive manufacturer and supplier guide allow quick access to specific advice and suggestions.

The third edition is bang up to date with the latest technology-DVD, CD Recordable, PC audio systems. There is also new material on PA equipment.

UK Price: £32.00 Europe £34.00 ROW £64.50 \*\*Price includes delivery and packing\*\*



 Essential bench companion for all service engineers.

 New technology such as DVD and expanded material on MiniDisk will ensure another successful launch to this new edition



The TELEBOX is an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors or AV equipment which are fitted with a composite video or SCART input. The composite video output will also plug directly into most video recorders, allowing received of 1V channels not normally receivable on most television receivers' (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable off air UHF colour television channels. TELEBOX MB cover vitally all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. Ideal for desktop computer video systems & PIP (picture in picture) setups. For complete compatibility - even for monitors without sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. Brand new - fully guaranteed.

TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors TELEBOX ST Las ST but fitted with integral speaker TELEBOX MB Multiband VHF/UHF/Cable/Hyperband tuner 569.95 for overseas PAL versions state 5.5 or 6 mHz sound specification. "For cable / hyperband signal reception Telebox MB should be connected to a cable type service. Shipping on all Telebox's, code (B)

nected to a cable type service. Shipping on all relebox s, code (b) State of the art PAL (UK spec) UHF TV tuner module with composite 1V pp video & NICAM hi fi sterec sound outputs. Micro electronics all on one small PCB only 73 x 160 x 52 mm enable full tuning control via a simple 3 wire link to an IBM pc type computer. Supplied complete with simple working pro-gram and documentation. Requires +12V & + 5V DC to operate. BRAND NEW - Order as MY00. Only £49.95 code (B) See www.distel.co.uk/data\_my00.htm for plcture + full details

FLOPPY DISK DRIVES 21/2" - 8"

All units (unless stated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a full 90 day guarantee. Call or see our web site www.distel.co.uk for over 2000 unlisted drives for spares or repair.

| LIADD DIOK DDIVED AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 4 11  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Dual 8" cased drives with integral power supply 2 Mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £499.00 |
| 8" Mitsublish M2896-63-02U DS slimline NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £295.00 |
| 8" Mitsubishi M2894-63 double sided NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £295.00 |
| 8" Shugart 851 8" double sided refurbished & tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £260.00 |
| 8" Shugart 810 8" SS HH Brand New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £195.00 |
| 8" Shugart 800/801 8" ŠS refurbished & tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £210.00 |
| Table top case with integral PSU for HH 51/4" Floppy / HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 5¼" BRAND NEW Mitsubishi MF501B 360K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £22.95  |
| 5¼" Teac FD-55F-03-U 720K 40/80 (for BBC's etc) RFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £29.95  |
| 51/4" Teac FD-55GFR 1.2 Meg (for IBM pc's) RFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £18.95  |
| 31/2" Mitsubishi MF355C-D. 1.4 Meg. Non laptop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £18.95  |
| 31/2" Mitsubishi MF355C-L. 1.4 Meg. Laptops only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £25.95  |
| and a strength of the state of the strength of | 005 05  |

HARD DISK DRIVES 2½" - 14

 HARD DISK DRIVES 2½" - 14"

 2½" TOSHIBA MK1002MAV 1.1Gb laptop(12.5 mm H) New £79.95

 2½" TOSHIBA MK2101MAN 2.16 Gb laptop (19 mm H) New £105.00

 2½" TOSHIBA MK2101MAN 2.16 Gb laptop (19 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (8.2 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £105.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £109.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £109.00

 2½" TOSHIBA MK4309MAT 4.3Gb laptop (12.7 mm H) New £109.00

 3½" CONNER CP30424 00 mb IDE I/F (or equiv.) RFE

 54" CONNER CP30424 00 mb IDE I/F (or equiv.) RFE

 54" QUANTUM 40S Prodri ve 42mb SCSI I/F, New RFE

 54" SEAGATE ST-238R 30 mb RLL I/F Relurb

 54" SEAGATE ST-238R 30 mb RLL I/F Relurb

 54" SEAGATE ST-238R 30 mb RLL I/F Relurb

 54" HP C3010 2 Gbyte SCSI dlffarential RFE tested

 54" NEC D2246 85 Mb SMD Interface. New

 54" FUJITSU M2322K 160Mb SMD I/F RFE tested

 54" FUJITSU M2322K 2 Gb SMD I/F RFE tested

 545.00

 7 FUJITSU M2322K 2 Gb SMD I/F RFE tested



used condition Only £119 (E) MITS-SVGA Tilt & Swivel Base £4.75 VGA cable for IBM PC included.

External cables for other types of computers available - CALL Ex demo 17" 0.28 SVGA Mitsublshi Diamond Pro monitors, Full multisync etc.

Full 90 day guarantee. Only £199.00 (E)

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299 - CALL for Info

PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with <u>both</u> RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for all video monteci directi o Amiga and Atan bac computers, todal for all video monteriori a security aplications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button etc. Good used condition - fully tested - guaranteed Dimensions: W14\* x H12%\* x 15%\* D. Only £99.00 (E)

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen bums). In attrac-tive square black plastic case measuring W10" x H10" x 13½" D. 240 V AC mains powered. Only £79.00 (p) Only £79.00 (D)

KME 10" 15M10009 high definition colour monitors with 0.28" dot ME 10<sup>-1</sup> 15M 10009 high definition colour monitor, pltch. Superb clarify and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composite sync such as Atarl, Commodore Amiga, Acorn Archimedes & BBC. Measures only 13½" x 12" x 11". Good used condition. Only £125 (E) Only £125 (E)

#### 20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, etc.In EXCELLENT little used condition with full 90 day guarantee.

20"....£135 22"....£155 26"....£185 (F) We probably have the largest range of video monitors in Europe, All sizes and types from 4" to 42" call for info.



Virtually every type of power supply you can imagine.Over 10,000 Power Supplies Ex Stoc Call or see our web site. Stock

#### **TEST EQUIPMENT & SPECIAL INTEREST ITEMS**

(B ÌΒ

MITS. & FA3445ETKL 14" Industrial spec SVGA monitors FARNELL 0-60V DC @ 50 Amps, bench Power Supplies FARNELL AP3080 0-30V DC @ 80 Amps, bench Suppy 1kW to 400 kW - 400 Hz 3 phase power sources - ex stock IBM 8230 Type 1, Token ring base unit driver Wayne Kerr RA200 Audio frequency response analyser IBM 53765501 Token Rhg ICS 20 port lobe modules IBM MAU Token ring distribution panel 8228-23-5050N AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE ALLGON 8360.11805-1880 MHz hybrid power combiners Trend DSA 274 Data Analyser with G703(2M) 64 i/o Marconi 6310 Programmable 2 to 22 GHz sweep generator Marconi 2022C 10KHz-1GHz RF signal generator Marconi 2022C 10KHz-13 GHz signal generator, New HP1650B Logic Analyser £245 £995 £1850 £POA £760 £2500 £750 £95 2550 6250 FPOA £1550 Marconi 2022C 10KH2-1GH2 Hr signal generator Marconi 2022C 10KH2-1GH2 Hr signal generator, Nev HP1650B Logic Analyser HP3781A Pattern generator & HP3782A Error Detector HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts HP6264 Rack mount variable 0-20V @ 20A metered PSU HP54121A DC to 22 GH2 four channel test set HP8130A opt 020 300 MHz pulse generator, GPIB etc HP A1, A0 8 pen HPGL high speed drum plotters - from HP DRAFTMASTER 1 8 pen high speed plotter EG-G Brookdeal 95035C Precision lock in amp View Eng. Mod 1200 computerised inspection system Sony DXC-3000A High quality CCD colour TV camera Keithley 590 CV capacitor / voltage analyser Fiskers 45KVA 3 ph On Line UPS - New batteries Emerson AP130 2.5KVA industrial spec.UPS Mann Tally MT645 High speed line printer Intel SBC 486/1335E Multibus 486 system. 8Mb Ram Siemens K4400 64Kb to 140Mb demux analyser £4995 £3750 **EPOA** £1800 £675 £POA £7900 £550 £750 £1800 £995 £POA £3750 £9500 £2100 £2200 £945 £2950

VISA

28 YEARS

 

 ECIAL INTERESTITEMS

 HP6030A 0-200V DC @ 17 Amps bench power supply Intel SBC 486/125C08 Enhanced Multibus (MSA) New Nikon HFX-11 (Ephiphot) exposure control unit
 £1450

 Nikon HFX-11 (Ephiphot) exposure control unit
 £1450

 PHILIPS PM5518 pro. TV signal generator
 £1250

 Motorola VME Bus Boards & Components List. SAE / CALL £POA
 Trio 0-18 vdc linear, metered 30 amp bench PSU, New
 £550

 Fujitsu M3041B 600 LPM printer with network interface
 £1250

 Perkin Elmer 299B Infrared spectrophotometer
 £550

 Perkin Elmer 597 Infrared spectrophotometer
 £3500

 VG Electronics 1035 TELETEXT Decoding Margin Meter
 £1395

 Sekonic SD 150H 18 channel digital Hybrid chart recorder
 £1995

 B&K A2633 Microphone pre amp
 £300

 Taylor Hobson Tallysurf amplifier / recorder
 £750

 BBC AM20/3 PPM Meter (Ernest Turner) + drive electronics
 £755

 ANRITSU 9554A Optical DC-2.5G/b waveform monitor
 £1450

 MITSU ML93A optical power meter
 £900

 ANRITSU Fibre optic characteristic test set
 £P0A

 ANRITSU ML93A optical power meter ANRITSU Fibe optic characteristic test set R&S FTDZ Dual sound unit R&S SBUF-E1 Vision modulator WILTRON 6630B 12.4 / 20GHz RF sweep generator TEK 2445 150 MHz 4 trace oscilloscope TEK 2465 300 Mhz 300 MHz oscilloscope rack mount TEK TDS380 400Mhz digital realtime + disk drive, FFT etc TEK TDS524A 500Mhz digital realtime + colour display etc HP3585A Opt 907 20Hz to 40 Mhz spectrum analyser PHILIPS PW1730/10 GKV XRAY generator & accessories CLAUDE LYONS 12A 240/415V 3 phase auto. volt. regs **EPOA** £650 £050 £775 £5750 £1250 £1955 £2900 £5100 63950 2POA



require only two side panels to stand singly or in multiple bays Overall dimensions are: 771/2" H x 321/2" D x 22" W. Order as:

#### OPT Rack 1 Complete with removable side panels. £345.00 (G) OPT Rack 2 Rack Less side panels £245.00 (G Over 1000 racks, shelves, accessories 19" 22" & 24" wide 3 to 46 U high. Available from stock !!

#### 32U - High Quality - All steel RakCab

ade by Eurocraft Enclosures Ltd to the highest possible spec, rack features all steel construction with removable

Made by Eurocraft Enclosures Ltd to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy access and all are lockable with five secure 5 lever barrel locks. The front data designer style' smoked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack detures fully slotted reinforced vertical fixing struts (extras available) are pre punched for standard cage nuts'. A mains distribution pane internal y mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 3 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellant, slightly used condition with keys. Colour Royal blue. External dimensions mm=1625H x 635D x 603 W. (64 H x 25 To x 23\* W) Sold at LESS than a third of makers price II



Sold at LESS than a third of makers price II A superb buy at only £245.00 (G) 42U version of the above only £345 - CALL

#### 12V BATTERY SCOOP - 60% off !!

A special bulk purchase from a cancelled export order brings you A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ltd, type SB515 featuring pure lead plates which offer a far superior shelf & guaran-teed 15 year service life. Fully BT & B5629 approved. Supplied BRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep. M6 bolt terminals. Fully guaranteed. Current makers price over £70 each Our Price £35 each (c) or 4 for £99 (E)

### RELAYS - 200,000 FROM STOCK

Save ££££5's by choosing your next relay from our Massive Stocks covering types such as Military, Octal, Cradle, Hermetically Sealed, Continental, Contactors, Time Delay, Reed, Mercury Wetted, Solid State, Printed Circuit Mounting etc., CALL or see our web site www.distel.co.uk for more information. Many obsolete types from stock. Save FEEE's

#### COLOUR CCD CAMERAS



Colour ccb camera tor special buying power I A quality product lead give away price I Unit features full autoight sensing for the special buying power I A quality product lead give away price I Unit features full autoight sensing for the special buying power I A quality product lead give away price I Unit features full autoight sensing for the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power I A quality product lead the special buying power land the special buying power not available. The special buying power land the special buying power power land the special buying power special buying power land the special buying power speci

ONLY £99.00 or 2 for £180.00 (B) Web ref = LK33

#### SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. ONLY £89.00 (B) ENCARTA 95 - COROM, Not the latest - but at this price! £7.95 DOS 5.0 on 3%' disks with concise books c/w QBasic. £14.95 Windows for Workgroups 3.11+ Dos 6.22 on 3.5' disks ±55.00 Wordperfect 6 for DOS supplied on 3%' disks with manual £24.95



All prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools Universities and Local Authorities - minimum account order £50. Cheques over £100 are subject to 10 working days clearance. Carriage charges (A)=£3.00, (A1)=£4.00, (B)=£5.50, (C)=£8.50, (C) ±12.50, (D)=±15.00, (E)=£16.00, (F)=£20.00, (G)=CALL Aliow aprice 6 days for shipping - faster CALL. Al goods supplied to our Standard Conditions of Sale and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All rights reserved to charge prices / specifications without prior notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks, tradenames etc acknowledged. © Display Electronics 1999. E & O E 07/99.

# BOOK TO BUY

# Valve Radio and Audio Repair Handbook

\* A practical manual for collectors, owners, dealers and service engineers \* Essential information for all radio and audio enthusiasts \* Valve technology is a hot topic

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis's firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair techniques are also Illustrated throughout.

This book is an expanded and updated version of Chas Miller's classic Practical Handbook of Valve Radio Repair. Full coverage of valve amplifiers will add to its appeal to all audio enthusiasts who appreciate the sound quality of valve equipment.



Contents: INCLUDES: Electricity and magnetism; Voltage, current, resistance and Ohm's Law; Real life resistors; Condensers; Tuning; Valves; Principles of transmission and reception; Practical receiver design; Mains valves and power supplies; Special features of superhets; Battery and mains battery portable receivers; Automobile receivers; Frequency modulation; Tools for servicing radio receivers; Safety precautions; Fault finding; Repairing power supply stages; Finding faults on output stages; Faults on detector/AVC/AF amplifier stages; Finding faults on IF amplifiers; Faults on frequency-changer circuits; Repairing American 'midget' receivers; Repairing faults on automobile radios; Repairing battery operated receivers; Repairing FM and AM/FM receivers; Public address and high fidelity amplifiers.

#### UK Price: £22.50 Europe £25.00 ROW £27.00

\*\* Price includes delivery and packing \*\*

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:

#### Valve Radio and Audio Repair Handbook

Total

Name

Address

Postcode

Telephone

Method of payment (please circle)

Access/Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Information

Credit card no\_

Card expiry date

Signed

#### **NEW PRODUCTS**

Please quote Electronics World when seeking further information

tightening, dispensing, soldering and impulse welding. Using an L-type body structure, and an aluminium-alloy, die cast single-structure base, the Janome JR200 mini desktop robot offers positional repeatability of ±0.01mm. It can also support a portable work weight of 3.5kg (max.) for the Z-axis and 7kg for the X/Yaxes.

Data capacity is up to 6000 points and 100 programs and for storage the robot uses a flash memory card which needs no battery. The product is supplied as standard with two serial (RS232) interfaces (one for the teaching pendant, the other for PC connection), and a third - for external I/O - is available as an option. A simple sequencer is built into the robot, and operates independently. No further hardware is necessary, because the I/O uses part of the robot's main external I/O port. With speeds up to 500mm/s (X/Y), and 250mm/s (Z), the robot is driven by a 5-phase stepping motor operating from a 90-132VAC/180-250VAC supply, with a current consumption of 200VA.

Townsend Coates Tel: 0116 274 4488 www.townsendcoates.com

# Sealed packaging for frequency converters

Rittal's range of compact AE enclosures are now available with integrated aluminium heat sink and are designed for the installation of standard-design frequency converters, together with their corresponding protective devices and power contactors. Designed as a



passive heat sink with cooling ribs on the rear of the enclosure, the mounting plate provides space for the mounting of frequency converters, motor circuit breakers, power contactors or terminal strips. Three different sizes of heat sink permit individual adaptation of the cooling capacity and the thermal conductivity of aluminium guarantees reliable dissipation of the generated heat, says the supplier. Rittal Tel: 01709 704000 www.rittal.co.uk

#### PC power supplies can be customised

A range of PC power supplies with a number of options offering customisation is now available from Powerline. Designed for use in industrial and critical business PC applications, the units are available with continuous output ratings of up to 400W from a standard ATX package. Options available include power-factor correction to meet the requirements of forthcoming legislation, auto-ranging inputs and approvals for worldwide use, and hot-swap units for mission-critical applications.



Custom capabilities that can be factory-fitted include modified cable leads with different lengths and connector styles, fan reversal, and internal voltage trimming. In addition to the standard ATX packaged products, a range of low-profile units suitable for 1U rack mounting is available with output ratings of 150-200W. *Powerline Tel: 01494 753800 www.powerline.co.uk* 

# Self on Audio Douglas Self

The cream of 20 years of Electronics World articles (focusing on recent material)

A unique collection of design insights and projects - essential for all audio designers, amateur and professional alike.

Scientific electronics based on empirical data

Douglas Self has been writing for Electronics World and Wireless World over the past 20 years, offering cutting-edge insights into scientific methods of electronics design.

This book is a collection of the essential Electronics World articles, covering twenty years of amplifier technology but with a very strong bias towards more recent material. The articles include self-build projects as well as design ideas and guidance for the professional audio designer. The result is a unique collection of design insights and projects - essential for all audio designers, whether amateur or professional.

Contents: Introduction; PRE-AMPLIFIERS: An advanced preamplifier MRPI; High-performance preamp MRP4; Precision preamp MRP10; Moving-coil head amp; Preamp '96 I; Preamp '96 II; "Overload Matters" (RIAA overload); Balanced line inputs and outputs, part 1; Balanced line inputs and outputs, part 2; POWER AMPLIFIERS: FETs less linear than BJTs: Distortion in power amplifiers 1-8; Distortion residuals; Trimodal part 1, 2; Load-invariant power amp INVAR.DOC; Common-emitter amps; Two-stage amplifiers; SPEAKERS: Excess speaker currents; Class distinction (amp classification); Relay control; Power partition diagrams; Audio power analysis.



Douglas Self has dedicated himself to demystifying amplifier design and establishing empirical design techniques based on electronic design principles and experimental data. His rigorous and thoroughly practical approach has established him as a leading authority on amplifier design.

Readership: Audio electronics enthusiasts; Professional amplifier designers; Power amp users Paperback Pages: 416pp UK Price: £26.50 Europe £27.50 ROW £28.50

Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title: SELF AUDIO

Total\_\_\_\_

Name Address

Postcode

Telephone

Method of payment (please circle)

Mastercard/Visa/Cheque/PO Cheques should be made payable to Reed Business Information

Credit card no\_

Card expiry date

Signed

# Too good for words

The Complete Integrated Schematic PCB Layout Package

Advanced Systems & Technology for PCB Manufacturers

The New Ranger

FREE Website Download Demo

£170

£500

£950

Ranger 2 for Windows

NEW Ranger 2XL

NEW Ranger XL from

Old Buriton Lime Works, Buriton. Petersfield, Hants. UK GU31 5SJ Tel: (44) 01730 260062 Fax: (44) 01730 267273

CIRCLE NO.118 ON REPLY CARD



#### Quality Alphanumeric backlit LCDs in 4x40, 2x40, 4x20, 2x20 and 2x16 formats

Supplied either bare or pre-fitted with one of our Eze-Use, Serial interface boards with options such as software buzzer control, backlight control, operator interface, start-up message, big character generation, and PC-AT Keypad /mouse interface - all at very competitive pricing. We also stock Serial Interface Graphic modules and front panel bezels for all our LCDs. Please call (01977 683665) or check our web site (www.milinst.com) for full details and pricing.

#### Milford Instruments - your total LCD solution



Milford Instruments Milford House, 120 High St South Milford LEEDS LS25 5AQ Tel 01977 683665 Fax 01977 681465 www.milinst.com



CIRCLE NO.119 ON REPLY CARD

# Sound-reinforcement amplifier

Needing a sound-reinforcement system for use in a medium size hall, Ben Sullivan came up with this unusual and versatile design. Its pre-amp/mixer stage has three mono channels, each of which can take a variety of input options, and it caters for a wide range of input levels.

eetings of a local society, of which I am a committee member, are due to move to a new location that does not have a sound reinforcement system. So in readiness, I designed the system presented here. Versatility was to be a key design criterion, both as far as amplifier inputs were concerned, and also for connecting different loudspeakers.

For public address, or PA, systems operating in the open air, an amplifier driving a 100V line with multiple horn speakers is the norm. But for this application, a modest maximum output power of something in excess of 15W was deemed sufficient. The equipment is intended solely for indoor use, with conventional loudspeakers.

A pair of surplus-to-requirements sizeable loudspeakers, each including a 10 inch  $15\Omega$  WB cambric cone loudspeaker, tweeter and crossover, were donated by a colleague. A suitable microphone was already to hand, so it only remained to produce an amplifier.

#### The requirement

In addition to using the microphone, some presenters bring along illustrations to their talks, either on cassette or CD, so more than one input channel would be required.

To allow for any contingency, three input channels would be provided. Each would have its own level control and there would be a master overall level control.

For a sound reinforcement system,

stereo operation is not appropriate. With one loudspeaker at each side of the hall near the front, most of the audience would not hear any stereo effect, while those near one loudspeaker or the other would receive just the left or right channel alone. So the amplifier was designed to drive the approximately  $8\Omega$  load of the two loudspeakers in parallel.

#### **Power-amplifier configuration Figure 1** shows the configuration usually used for a hi-fi amplifier in



Fig. 1. Skeleton diagram of common hi-fi power-amplifier circuit with direct-coupled loudspeaker. Here, a centre-tapped transformer makes producing the necessary positive and negative rails easy.



Fig. 2. Power-amplifier circuit using a single rail-supply. Because ground is no longer the same potential as the static voltage at the output of the power amplifier, the speaker has to be connected via a large electrolytic coupling capacitor. simplified form. A mains transformer with two identical secondary windings, or a centre tapped winding, is used in conjunction with a bridge rectifier to produce plus and minus voltage rails. The arrangement requires two main smoothing capacitors, and has the advantage that the rails can also be stepped down to  $\pm 15V$  to supply a preamplifier design using op-amps.

A high-quality toroidal mains transformer of suitable secondary voltage and VA rating was available from stock. On the face of it though, it was not suitable as its two secondary windings had different voltages.

As the overall voltage of the windings in series was just what was needed, the PA arrangement of Fig. 2 was viewed as a possible alternative. This needs only a single main smoothing capacitor, though of twice the voltage rating of those in Fig. 1. It is quite convenient if the input signal is large enough to drive the PA to full output, but not so useful if a preamplifier/mixer stage using op-amps is needed.

In the event, the circuit designed circumvented this difficulty.

#### Power amplifier design

+10V 🔶

A TDA2050V was chosen as the power amplifier. It proved to be capable of providing over 15W into a dummy load from the nominal 40V supply provided by the transformer. The dummy load consisted of two  $15\Omega$  wirewound resistors in parallel.

After some thought and experimentation, it was incorporated into the PA circuit of Fig. 3. This can be seen as a cross between the Figure 1 and Figure 2 arrangements.

The circuit design was taken directly from the power amplifier's data sheet as far as component values are concerned. Usefully, the device includes over-temperature and overcurrent protection, and it provides a massive 90dB of open loop gain. With the 30dB of demanded gain set by  $R_7/R_6$ , the 60dB of negative feedback within the loop results in a distortion figure of around 0.02%

The chassis earth symbols shown at  $R_3$  and elsewhere indicate not only the circuit's nominal OV rail, but also the case metalwork and mains earth. This means that effectively, the power supply provides both positive and negative voltages.

These voltages are used also, suitably stepped down, to supply the earlier preamplifier/mixer stages. This circuit arrangement means that neither side of the loudspeakers is earthed, and both poles of the loudspeaker output sockets must be isolated from ground.

As mentioned, the amplifier is designed to drive two  $15\Omega$  loud-speakers in parallel. For versatility,  $\frac{1}{4}$  in jack sockets, two-pin DIN

loudspeaker sockets and phono (RCA) sockets were provided. All six sockets were connected in parallel.

As the power supply section was mounted at the opposite end of the case from the PA board,  $C_7$  and  $C_8$ were fitted close to the TDA2050V on its 0.1in matrix strip-board circuit, as local decoupling in accordance with good practice.

The TDA2050V was mounted at one end of the stripboard, with its pins twisted to fit a 0.1 inch spacing. The body of the device was bolted to a substantial L shaped bracket, using a mica insulator and silicone mounting grease. This would not have been necessary in the circuit of Fig. 2, as the device's metal heat-sink tab is connected to the negative supply rail.

In turn, the bracket was bolted to the base of the case to provide additional heat-sinking. On soak test, driving 30V peak-to-peak into the 7.5 $\Omega$  resistive dummy load, the device case temperature eventually just reached 50°C, in a room ambient of 20°C.

#### Preamplifier and mixer stages

The three input channels and mixer stage are shown in Fig. 4. Each channel is provided with an input for a stereo signal, these being resistively combined into a mono signal.

There are also three inputs for mono signals per channel. The sockets are so distributed across the



Fig. 3. Circuit of sound reinforcement amplifier using a modified single rail supply.



channels that almost any conceivable type of input can be accommodated, with the exception of the bulky XLR audio connector. A <sup>1</sup>/<sub>4</sub>in jack plug/XLR socket BSA (between series adapter) will cope with this eventuality, should it arise.

Each input signal is routed directly to a volume control. This is not of course good practice in a hi-fi system, but there the amplitude of the inputs is known. The arrangement used here permits the amplifier to accept any conceivable amplitude input.

Output from the pre-amp/mixer feeds the power amplifier stage via a switchable 0 or 10dB attenuator,  $S_6$ . Channels 1 and 2 are switchable between a nominal +20dB gain and unity gain. Channel 3 provides the option of unity gain or +30dB.

Capacitor  $C_{13}$  was found necessary to ensure stability when both the channel 3 and master level controls were at maximum,  $S_4$  at the +30dB and  $S_6$  at the 0dB settings. Under these conditions, a 1mV rms input will provide around 15W output.

Naturally, with such high gain, there is a little background hiss and the level of this proved to be precisely what should be expected, given the quoted 10Hz to 10kHz voltage noise of the TL084 of  $4\mu$ V. The treble rolloff available with  $S_5$  could then be useful. It is debatable if the full channel 3 gain will ever be needed, but it is available just in case.

#### **Design anomalies**

While the amplifier design described performs perfectly the function required, one or two surprises surfaced during development.

The first concerned a very low frequency instability. This set in as any of the channel level controls was advanced, with the master level



Fig. 4. Circuit diagram of the preamp stage and three-input mixer channels. Any stereo input signals are combined into mono at the inputs as stereo is not appropriate in sound reinforcement systems.

control at maximum.

In fact, it was the phenomenon of 'motor-boating', which old timers may have encountered many years ago. In those days, I made three, four and even five valve sets, using prewar battery valves with 2V filaments. Disturbances caused by the current drawn by the output valve fed back along the HT+ lead to the first stage, and thence back around the loop. Increased decoupling served only to reduce the frequency of the oscillation. So  $D_1$  and  $D_2$  were added, extending the effectiveness of the decoupling down to OHz, and completely curing the problem.

The other oddball surfaced during frequency response testing. The bass roll-off set in at a higher frequency than expected, so  $C_{14}$  was increased to 1µF. In conjunction with  $R_{27}$ ,  $R_{28}$  or  $R_{29} - 33k\Omega$  – one might then expect a -3dB point of 4.8Hz, but it was much higher than this.

The reason is that, once the reactance of  $C_{14}$  becomes significant,  $R_{27}$ . <sup>29</sup> no longer look into a virtual earth. So the output of  $IC_{1a}$  via  $R_{27}$ , for example, is subject to attenuation by  $R_{28}$  and  $R_{29}$  in parallel before being applied to  $C_{14}$ .

It is running across points like these, and working out the reasons, that keeps circuit design a constant challenge and joy.

# **CIRCUIT IDEAS**

#### Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem – provided it has a degree of ingenuity.

Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too – provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.

Don't forget to say why you think your idea is worthy.

Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best – but please label the disk clearly.

# Bike computer reads amps, amp.hours

A bicycle computer counts wheel revolutions, and displays speed and distance travelled. Depending on the model, it may also show the maximum and average speeds achieved.

The user has to program the computer with the wheel circumference C in metres, since velocity v in km/h is related to the frequency of wheel

Overall winner of our 2000 circuit ideas competition

programming environment package worth over £700

sponsored by National Instruments – is Heinz

Zanke's ingenious amp.hour meter. Heinz wins a

National Instruments LabVIEW graphical

rotation, Frps, by  $(v \div 3.6)/C=F$ . Usually, a magnet attached to a wheel operates a reed relay to provide the count pulses, but in this application, a transistor switch is used.

Such a bicycle computer can be used for other purposes, such as measuring the charge rate and total charge stored in a solar panel accumulator charging set-up, Fig. 1. To achieve this, the charging current is monitored by a current shunt  $R_s$ , controlling a voltagecontrolled oscillator.

The voltage controlled oscillator produces an output frequency such that a bicycle computer velocity reading of 120km/h indicates a current of 12A, and a trip reading of 2998.9 km indicates a charge of 299.89Ah.

The programmable value of C on the computer used was up to 2.999m. The VCO was designed to produce an output frequency of up to 13.7Hz for a 140mV input, corresponding to a 14A charging current. With this design of oscillator, Fig. 2, a circumference setting C of 2.671m worked well.

This application is limited by the lowest and highest frequencies that the bicycle computer can count, and by VCO offset and linearity errors.

A minimum output frequency of 0.1Hz is produced by the VCO, even when the drop across  $R_s$  is zero. But linearity errors up to the designed maximum, checked with a DVM and DSO, proved to be generally insignificant. There is a slight increase in error at the high frequency end of the range, due to the finite discharge time of  $C_1$ . Heinz Zanke

*GR-24002 Messenias Greece* E10



Fig. 1. Block diagram of charger metering system in a solar-energy system, using a bicycle computer to monitor amps and Ah.



Winner!

# Ice alert!

The recent cold weather reminded me of a simple ice alert warning circuit I built in 1974, long before such circuits became available as standard fittings in some cars.

My present car has a factory fitted ice warning which simply lights an orange LED for temperatures below 5°C or red LED below 0°C. This suffers from two problems. When driving in bright winter sunlight, these indicator lights do not easily attract attention, also there is no indication of temperature changes except when it passes the above limits.

My ice alert differs in that for temperatures above some 5°C the green LED glows continuously, to indicate normal function.

As temperature reduces the red LED pulses on and the green LED pulses off, approximately once each second. The a duty cycle increases as the temperature falls. Ultimately at 0°C and at lower temperatures, the green LED remains off and the red LED glows continuously. I find this most beneficial in bright sunshine, because the brief initial pulses of the red LED as temperature



This ice indicator gives more useful information than a car's simple factory fitted warning indicator.

# Ten year index: new update



### www.softcopy.co.uk

Photo copies of *Electronics World* articles from back issues are available at a flat rate of £3.50 per article, £1 per circuit idea, excluding postage.

Hard copy *Electronics World* index Indexes on paper for volumes 100,101, and 102 are available at £2 each, excluding postage.

#### Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, SoftCopy can supply a complete index of *Electronics World* articles going back over the past nine years.

The computerised index of *Electronics World* magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications - including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512K ram and a hard disk.

The disk-based index price is still only £20 inclusive. Please specify whether you need 5.25in, 3.5in DD or 3.5in HD format.

Existing users can obtain an upgrade for £15 by quoting their serial number with their order.

#### Ordering details

The EW index data base price of £20 includes UK postage and VAT. Add an extra £1 for overseas EC orders or £5 for non-EC overseas orders

Postal charges on hard copy indexes and on photocopies are 50p UK, £1 for the rest of the EC or £2 worldwide. For enquires about photocopies etc please send an sae to SoftCopy Ltd. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 ONU.

Cheques payable to SoftCopy Ltd, please allow 28 days for delivery.

# **BOOK LO BOA**

The definitive biography of the century's godfather of invention-from the pre-eminent Edison scholar "Israel's meticulous research and refusal to shy away from the dodgier aspects of Edison's personality offers a fresh glimpse into the life of the inventor."-New Scientist

"Remarkable."- Nature

"An authoritative look into Edison's working methods, here leavened by enough personal detail to give the achievements shape."-Publishers Weekly

"Israel's book should go a long way toward taking Edison out of the shadows and placing him in the proper light."-Atlanta Journal-Constitution

"Exhaustively researched, with strong emphasis on Edison's methods and achievements."-Kirkus Reviews

The conventional story of Thomas Edison reads more like myth than history: With only three months of formal education, a hardworking young man overcomes the odds and becomes one of the greatest inventors in history. But the portrait that emerges from Edison: A Life of Invention reveals a man of genius and astonishing foresight whose career was actually a product of his fast-changing era. In this peerless biography, Paul Israel exposes for the first time the man behind the inventions, expertly situating his subject within a thoroughly realized portrait of a burgeoning country on the brink of massive change. Informed by Israel's unprecedented access to workshop diaries, notebooks, letters, and more than five million pages of archives, this definitive biography brings fresh insights to a singularly influential and triumphant career in science.



Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your completed order form to 020 8652 8111 UK Price: £15.00 Europe £17.00 ROW £19.00 Price includes delivery

#### How to pay (Edison) paperback

□ I enclose a cheque/bank draft for £\_\_\_\_ (payable to Reed Business Information)

Please charge my credit/charge card Mastercard American Express Visa Diners Club

Credit Card No:

**Expirey Date:** 

Signature of Cardholder\_

Cardholder's statement address: (please use capitals)

Name

Address

Address

Post Code\_\_\_\_\_Tel:\_\_\_\_\_

drops below 5°C attracts attention and the change in duty cycle indicates whether the temperature is rising or it is becoming colder. The LEDs can even be located below your line of sight, so as not to interfere with normal driving, yet still attract your attention when needed.

Using only one IC, the circuit is low cost and easily built. The thermistor should be mounted in a closed housing located behind the front bumper. While I used a thermistor of 15kΩ at 25°C, other values can be accommodated simply by amending the calibration and feedback resistors at  $A_1$ .

The LM3900 IC responds to current

ratios at its inputs, not voltage as is more usual. Hence it is insensitive to change in battery voltages. The zener is included to clip supply voltage transients caused by load shedding of the alternator.

Amplifier A<sub>1</sub> simply compares the resistance of the thermistor with the series combination of  $VR_1$  and  $33k\Omega_2$ , changing from 0.3 Vbattery above 5°C to 0.6 Vbattery at 0°C.

Amplifier  $A_2$  is configured as a free running multivibrator with a repetition rate of approximately one pulse each second and output varying between 0.3  $V_{battery}$  and 0.6  $V_{battery}$ . Outputs of  $A_1$  and  $A_2$  are compared

in the remaining amplifiers A3 and

## **Battery operated theft alarm**

his circuit can be used as either a loop alarm or with a pressure sensor/switch to give a treasured/expensive item 24-hour alarm protection while you are on the premises with your building's burglar alarm switched off. It is simple and cheap enough to build several, with each protected item possibly using a different sounding alarm for identification purposes. Running on a single PP3 battery, it is portable and allows over 12 months use while waiting for action, less if the unit is triggered often.

The unit is built around a 4001 quad cmos nor gate with two gates, la and lb, forming a bistable and the remaining two, 1c and 1d, forming an inverting buffer. The main on/off switch  $S_{1a}$  is ganged with  $S_{1b}$  and is a double-pole double-throw device,

which can be key operated for added security. It is wired such that when the alarm is switched on  $C_2$  is open circuit and when the unit is switched off  $C_2$  is shorted out.

At switch on, and assuming that the wire loop/switch is closed and hence holding pin 1 low, a brief high pulse via  $C_1$  at pin 6 causes the bistable to set and its output to go high. As  $C_2$ was initially discharged, via  $S_{1b}$  when the unit was off, it charges via  $R_3$  and hence takes a little while before the inverting buffer, 1c and 1d outputs an high. During this time approximately 1 second  $-Tr_1$  is switched on and the sounder energised. This allows the battery condition to be assessed at switch on. After this delay  $Tr_1$  switches off and the alarm is ready to be triggered.

To trigger the alarm, either the loop

 $A_4$ . When the  $A_2$  output is lower than A<sub>1</sub> output the red LED lights. When the  $A_2$  output is higher than  $A_1$ , the green LED lights. Since A3 and A4 inputs are wired in opposition both LEDs cannot simultaneously be lit.

Calibration at 0°C is simply obtained by immersing the thermistor probe in an ice water mixture, adjusting  $VR_1$ , prior to installing in your car.

This now elderly circuit has performed well for many years in a number of different vehicles. **Cyril Bateman** Acle

Norfolk

must be broken or the sensor switch opened. This sends pin 1 of  $IC_1$  high and resets the bistable. Its output goes low and due to  $D_1$  the capacitor discharges very quickly sending the input to the buffer low, its output high and hence switching  $Tr_1$  and the sounder on rapidly. To reset the unit the power must now be switched off and back on again.

Several items could be protected by a single unit if extra sensor switches are wired in series, avoiding the need to build extra circuits. The maximum current that the sounder can take is limited to 200mA by Tr<sub>1</sub>'s maximum collector current. Uprating this device would allow a louder unit to be used. Lee Archer

Ashton-in-Makerfield Lancashire F48



#### £70 WINNER

# Portable precision programmable reference generator

A battery powered programmable voltage reference generator is shown here. Its output range is between 0 and 4.0955V. By pushing up and down buttons, more than 8000 voltages can be selected.

The selected voltage is maintained in non-volatile memory when the power



is turned off. A MAX5130 13-bit serial d-to-a converter generates the reference voltage. This device has an internal reference and an operational amplifier so no external components are required to send precision voltage out.

A PIC16C84 microcontroller is used to accept input commands and control the output voltage by sending data into MAX5130 through three wires. This PIC has built-in EEPROMs to store the output data without power supply.

Four buttons control the output voltage up or down. Switches  $S_2$  and  $S_4$ make a step change in 0.5mV increments. Switches  $S_3$  and  $S_5$  change 100 steps (50mV) to make output voltage reach the desired level quickly. **Yongping Xia** Torrence

USA E49

A PIC micro driving a d-to-a converter makes a very simple, push-button operated voltage reference capable of producing more than 8000 different voltages.

0x0d

0x0e

 $0 \times 0 f$ 

;

#### PIC assembler for a very simple reference circuit that can produce more than 8000 voltages between 0 and 4.0955V. LIST p=16C84

| ma b a  | P   |        |        |        |                                           |
|---------|-----|--------|--------|--------|-------------------------------------------|
|         |     |        | temp_1 | equ    | 0×10 ;                                    |
| TMRO    | equ | 0x01   | temp_2 | equ    | 0x11 ;                                    |
| PCL     | equ | 0x02   |        |        | 2                                         |
| STATUS  | equ | 0x03   |        | org    | 0x0 ;                                     |
| PORTA   | equ | 0x05   | main   |        | ;                                         |
| PORTB   | equ | 0x06   |        | clrf   | PORTA ; initialization                    |
| EEDATA  | equ | 0x08   |        | clrf   | PORTB ;                                   |
| EEADR   | equ | 0x09   |        | bsf    | STATUS, RP0 ; bank 1                      |
| INTCON  | equ | 0x0b   |        | movlw  | 0x7f ;                                    |
| OPT     | equ | 0x81   |        | option |                                           |
| TRISA   | equ | 0x85   |        | movlw  | ; 00x0                                    |
| TRISB   | equ | 0x86   |        | movwf  | TRISA ; set PORTA output                  |
| EECON1  | equ | 0x88   |        | movlw  | OxOf ;                                    |
| EECON2  | equ | 0x89   |        | movwf  | TRISB ; set PB0-PB3 input, PB4-PB7 output |
|         |     |        |        | bcf    | STATUS, RP0 ; bank 0                      |
| Z       | equ | 2      |        | bsf    | PORTA, 2                                  |
| С       | equ | 0      |        |        | ;                                         |
| W       | equ | 0      |        | clrf   | EEADR ; read from eeprom                  |
| F       | equ | 1      |        | bsf    | STATUS, RP0 ; bank 1                      |
| RP0     | equ | 5      |        | bsf    | EECON1, RD ;                              |
| RD      | equ | -0     |        | bcf    | STATUS, RPO ; bank 0                      |
| WR      | equ | 1      |        | movf   | EEDATA, W ; read data_1 from eeprom       |
| WREN    | equ | 2      |        | movwf  | data_1 ;                                  |
| ******* | -da |        |        | incf   | EEADR, F                                  |
| data_1  | equ | 0x0c ; |        | bsf    | STATUS, RP0 ; bank 1                      |
| udta_1  | equ | 0x0c ; |        | NOL    | Santos, aro , bank 1                      |
|         |     |        |        |        |                                           |

data 2

cnt\_1

cnt 2

eau

equ

equ

#### **CIRCUITS IDEAS**

|           |                   | -                   |                          |                  | -          |              |                          |
|-----------|-------------------|---------------------|--------------------------|------------------|------------|--------------|--------------------------|
|           | bsf               | EECON1, RD          | ;                        |                  | movwf      | temp_1 ;     |                          |
|           | bcf               | STATUS, RPO         | ;bank 0                  |                  | movf       | data_2, W    | 1                        |
|           | movf              | EEDATA, W           | ;read data_2 from eeprom |                  | movwf      | temp_2 ;     |                          |
|           | movwf             | data_2 ;            |                          |                  | movlw      | 0x40 ;       |                          |
|           | call              | send_data           |                          |                  | addwf      | temp_2, f    | ;                        |
|           |                   | ;                   |                          |                  | bcf        | PORTA, 2     |                          |
| read_butt | on                | ;                   |                          |                  | movlw      | 0x08 ;       | ,                        |
| .cuu_bucc | btfss             | PORTB, 0            | ;test +1 button          |                  | movwf      | cnt_1 ;      |                          |
|           |                   |                     | , test #1 bacton         | 1-1              | movwi      |              | igh buto                 |
|           | goto              | up_1 ;              |                          | lp_1             | ) F        | ; send h     |                          |
|           | btfss             | PORTB, 1            | ;test +100 button        |                  | bcf        |              | 1                        |
|           | goto              | up_100 ;            |                          |                  | rlf        |              | ;move 1 bit              |
|           | btfss             | PORTB, 2            | ;test -1 button          | •                | btfsc      | STATUS, C    | - i                      |
|           | goto              | down_1 ;            |                          |                  | bsf        | PORTA, 1     | i                        |
|           | btfss             | PORTB, 3            | ;test -100 button        |                  | bsf        |              | ;sclk high               |
|           | goto              | down_100            | i.                       |                  | bcf        | PORTA, 0     | ;sclk low                |
|           | goto              | read_button         | ;                        |                  | decfsz     |              | ;                        |
| ip_1      |                   | ;                   |                          |                  | goto       | lp_1 ;       |                          |
|           | incfsz            | data_1, F           | ;                        |                  | movlŵ      | 0x08 ;       |                          |
|           | goto              | up_date             |                          |                  | movwf      | cnt_1 ;      |                          |
|           | incf              | data_2, F           | ;                        | 1p_2             |            | ; send 1     | ow byte                  |
|           | btfss             | data_2, f           |                          | *b <sup></sup> v | bcf        | PORTA, 1     | ;                        |
|           |                   |                     |                          |                  |            |              |                          |
|           | goto              | up_date             | ;                        |                  | rlf        | temp_1, F    | i                        |
|           | decf              | data_1, F           |                          |                  | btfsc      | STATUS, C    | 7                        |
|           | decf              | data_2, F           | ;                        |                  | bsf        | PORTA, 1     | ;                        |
|           | goto              | up_date             | 2                        |                  | bsf        | PORTA, 0     | ;sclk high               |
| 100 p_100 |                   | 7                   |                          |                  | bcf        | PORTA, 0     | ;sclk low                |
|           | movlw             | 0x64 ;              |                          |                  | decfsz     | cnt_1, F     | 1                        |
|           | addwf             | data_1, F           | ;                        |                  | goto       | 1p_2 ;       |                          |
|           | btfss             | STATUS, C           |                          |                  | bcf        | PORTA, 1     | ;                        |
|           | goto              | up_date             |                          |                  | bsf        |              | ;cs high                 |
|           | incf              | data_2, F           |                          |                  | return     | IONIA, Z     | , es mign                |
|           |                   |                     | ;                        |                  | recurn     | '            |                          |
|           | btfss             | data_2, 5           | ;                        |                  |            |              |                          |
|           | goto              | up_date             | ;                        | write_d          |            | 3            |                          |
|           | movlw             | Oxff ;              |                          |                  | movf       | data_1, W    | 1                        |
|           | movwf             | data_1 ;            |                          |                  | movwf      | EEDATA ;     |                          |
|           | movlw             | Oxlf ;              |                          |                  | clrf       | EEADR ;      |                          |
|           | movwf             | data_2 ;            |                          |                  | call       | write_eeprom |                          |
|           | goto              | up_date             | ž –                      |                  | movf       | data_2, W    | ;                        |
| lown_1    |                   | ;                   |                          |                  | movwf      | EEDATA ;     |                          |
|           | decf              | data_1, F           | ;                        |                  | incf       | EEADR, F     |                          |
|           | movf              | data_1, W           | #                        |                  | call       |              |                          |
|           | sublw             | Oxff ;              | r                        |                  | return     | naroo_ooprom |                          |
|           | btfss             | STATUS, 2           |                          |                  | recurn     |              |                          |
|           |                   |                     | ;                        |                  |            | ;            | 0.0                      |
|           | goto              | up_date             |                          | dly_1            |            |              | 0.2 seconds              |
|           | decf              | data_2, F           | 194.                     |                  | clrf       | cnt_1 ;      |                          |
|           | btfss             | data_2, 7           | 1                        |                  | movlw      | 0x20 ;       |                          |
|           | goto              | up_date             | ;                        |                  | movwf      | cnt_2 ;      |                          |
|           | clrf              | <pre>data_1 ;</pre> |                          | 1p_3             | decfsz     | cnt_1, F     | ;                        |
|           | clrf              | data_2 ;            |                          |                  | goto       | lp_3 ;       |                          |
|           | goto              | up_date             | 75                       |                  | decfsz     | cnt_2, F     | ;                        |
| lown_100  |                   | ;                   |                          |                  | goto       | lp_3 ;       |                          |
|           | movlw             | 0 <b>x</b> 64 ;     |                          |                  | return     | ;            |                          |
|           | subwf             | data_1, F           | ;                        |                  |            | ;            |                          |
|           | btfsc             | STATUS, C           | ;                        | write_e          | eprom      | ;            |                          |
|           | goto              | up_date             |                          |                  | bsf        | STATUS, RPO  | ;bank 1                  |
|           | decf              | data_2, F           | 2                        |                  | bsf        |              | ;enable to write eepro   |
|           |                   |                     |                          |                  |            |              | , should be write cepie. |
|           | btfss             | data_2, 7           | ;                        |                  | movlw      | 0x55 ;       |                          |
|           | goto              | up_date             | ř.                       |                  | movwf      | EECON2 ;     |                          |
|           | clrf              | data_1 ;            |                          |                  | movlw      | 0xaa ;       |                          |
|           | clrf              | data_2 ;            |                          |                  | movwf      | EECON2 ;     |                          |
|           |                   | ;                   |                          |                  | bsf        | EECON1, WR   | ;start write             |
| up_date   |                   | ;                   |                          | write_d          | ly         | ;            |                          |
|           | call              | send_data           | 4                        |                  | btfsc      | EECON1, WR   | ;                        |
|           | call              | write_data          |                          |                  | goto       | write_dly    |                          |
|           | call              | dly_1 ;             |                          |                  | bcf        | STATUS, RPO  | ;bank 0                  |
|           | goto              | read_button         |                          |                  | return     | ;            |                          |
|           | goto              |                     |                          |                  | Tecurit    |              |                          |
|           |                   | ;                   |                          |                  |            | ,<br>,       |                          |
|           |                   |                     |                          |                  | - Constant |              |                          |
| send_data | a<br>mov <b>f</b> | ;<br>data_1, W      | ;                        |                  | end        | Set -<br>Pp  |                          |

## E50 WINNER PIC-based frame-check sequence for point-to-point protocol

One of this year's growth areas is likely to be internet-friendly control using the 'point-to-point protocol', or PPP for short, with the popular PIC devices from Microchip likely to lead the way. Although the minimum protocol is relatively straightforward, the generation and verification of the frame check sequence, or FCS, may not be. Here it is as a subroutine in assembler. It is based upon the original 6502 routine<sup>1</sup> and a tidy-up may be in order.

The required 16-bit polynomial is 8408<sup>2,3</sup>. To transmit, remms and

remls are initially set to all ones (FFFF<sub>16</sub>) with the 8-bit data byte at 'dat1'. At the end of transmit data, the FCS is ones complemented (inverted) and transmitted remls first, lsb first. For example (one data byte only in case you want to wade through the ones and zeros!):

|        | remms | remis | dat |             |
|--------|-------|-------|-----|-------------|
|        | FF    | FF    | 79  |             |
|        | ->    | EI    | C1  |             |
| Invert | 1E    | 3E    | 79  | -> transmit |
|        |       |       |     | this way    |

To receive, preload remms/ls with

FFFF, and include the FCS bytes in the routine. The remainders remms and remls will be F0B8<sub>16</sub> for no detected error. *Graham Stephens Plymouth E43* 

#### References

- 1. 'The What and How of CRCS' Electronics & Wireless World, Sep 1989
- 2. 'RFC 1662' Network Working Group

3. 'X.25' - CCITT Blue Book

|         |          | for PPP in PIC assembler.               |       | xorwf  | remls,w              |  |  |
|---------|----------|-----------------------------------------|-------|--------|----------------------|--|--|
| ***** F | REGISTE  | R DEFINITIONS**********                 |       | movwf  | tmp                  |  |  |
| entr    | equ      | h'10' ;bit per byte                     |       | rrf    | remms,1              |  |  |
| mp      | equ      | cntr+1 ;was A in 6502                   |       | bcf    | remms,7              |  |  |
| cemls   | equ      | tmp+1 ; check byte 1s                   |       | rrf    | tmp,l                |  |  |
| emms    | equ      | remls+1 ;ms                             |       | btfss  | status, c            |  |  |
| olyls   | equ      | remms+1 ;polynomial 1s                  |       | goto   | crc4                 |  |  |
| olyms   | equ      | polyls+1 ;ms                            |       | movf   | tmp,w                |  |  |
| latl    | equ      | polyms+1 ;data byte for crc             |       | xorwf  | polyls,w             |  |  |
| polyms  | /ls coul | d be in-line                            |       | movwf  | remls                |  |  |
|         |          | 08 respectively                         |       | movf   | remms,w              |  |  |
| ******  | ******   | *************************************** |       | xorwf  | polyms, w            |  |  |
| Actual  | Subrout  | ine for one 8-bit byte                  |       | movwf  | remms                |  |  |
| crcl:   |          |                                         | crc3: |        |                      |  |  |
|         | movlw    | h'08' ; 8 bits                          |       | decfsz | cntr,1               |  |  |
|         | movwf    | cntr                                    |       | goto   | crc2                 |  |  |
| erc2:   |          |                                         |       | return | ;stop, get next data |  |  |
|         | movlw    | h'00' ; clear                           | byte  |        |                      |  |  |
|         | movwf    | tmp                                     | crc4: |        |                      |  |  |
|         | rrf      | datl,1 ; 1sb into c                     |       | movf   | tmp,w                |  |  |
|         | rlf      | tmp,1 ; and into tmp                    |       | movwf  | remls                |  |  |
|         | movf     | tmp,w                                   |       | goto   | crc3                 |  |  |



Using a 10:1 duty cycle, this circuit gives new life to tired dry cells.

### Pulsed dry-cell charger

This circuit produces a charging current in short bursts with a 10% duty cycle. The average charging current is C/100 where C is the cell capacity. Typical average charge currents of 36mA and 18mA are used for the D-size and the AA-sized cells respectively.

A zinc-carbon cell may be considered as being made up of many smaller parallel connected elements. The pulses of current give each element an increased charging voltage, allowing time for all elements to stabilise.

The CMOS counter 4017 is clocked by the AC supply pulses and

produces one 20 (or 16) ms pulse for each ten AC input cycles at 50 (or 60) hertz. This establishes the duty cycle ratio of 1 to 9. The AC drive at the counter is rectified by the internal IC protection diodes.

The output pulse operates a transistor switch, which connects the cell or battery to the charging supply via the current limiting resistor and indicating LED. The limiting resistor is chosen to give the appropriate average charge current. The ballast resistor is chosen so that the LED flashes to indicate this current.

For D cells a current limiting

resistor of 33 $\Omega$  and a ballast resistor of 5 $\Omega$  are used. For AA sized cells 56 $\Omega$  and 10 $\Omega$  are used. With a modified current limiting resistor. two or more similar cells can be connected in series, so that a battery can be charged.

I have found that a pulsed charge of twelve to twenty four hours duration or 25% of the original cell's capacity, will greatly rejuvenate weak cycle lamp and personal stereo **batteries** 

Alkaline cells also benefit however the total charge given should not be significantly increased,

#### Warning

Zinc-carbon and alkaline cells can explode due to inappropriate charging, with the potential to cause bodily harm. They may also leak. Take precautions against both of these possible eventualities.

as they tend to be more susceptible to deterioration through over charging. Michael Mucklow Newport Pagnell **Buckinghamshire** F45

### Simple circuit delivers sinewave with crystal frequency accuracy

his circuit uses a digital clock signal up to 20kHz to produce a sinewave with exactly the same frequency. There are no critical components.

Transistor  $Tr_1$  is switched on and off by the clock signal, see schematic, creating a square wave at node A. The amplitude of the square wave at A is determined by the voltage at point B. The square wave at A is filtered by the band-pass filter built around op-amp  $IC_1$ , this band pass reduces the harmonics of the square wave to a level such that a very usable sinewave is the result.

To counter variation of the amplitude of the resulting sinewave with the component tolerances of the filter network a simple but effective amplitude stabilisation circuit, built around Tr2, is used.

When the sinewave's amplitude is small,  $Tr_2$  is permanently off, and the voltage at node B rises until the amplitude of the square wave at A reaches the designed value. Transistor  $Tr_2$  then periodically draws current out of node B, keeping the sinewave's amplitude constant. At the designed amplitude - a few volts the influence of temperature on the amplitude is very small.

The clock signal must have a 50% duty-cycle. A low cost divide-by-two IC such as the 74HC74 may be necessary to achieve this.

In many applications a microcontroller can generate the clock signal directly, using a timer function.

Alternatively, a divider with built-in crystal oscillator such as the CMOS 4060 may be used. The band-pass filter has a Q value of 5.

Component values in the schematic give a frequency of 1kHz. For other frequencies, the resistor or capacitor values may be simply scaled. The opamp must have adequate gainbandwidth product and slew rate; the LF356 works well up to 20kHz and beyond.

Ivan Moerman Nazareth Belgium E44



Attenuating an over-strong signal

at the antenna

in comms

greatly reduces

receivers. This

circuit does the

job automatically.

cross modulation

#### **£70 WINNER**

# Automatic input attenuator for radio receiver antennas

A n attenuator, located at the aerial input, can greatly reduce cross modulation in communications receivers.

Laurence Cachia has devised a simple magnetic system in which a variable resistor across a tertiary winding on a toroidal core controls the coupling between two signal windings. Subsequent developments involve the use of a FET as a voltage variable resistor to facilitate automatic control.

Unless provision is made to minimise drain/source resistance, the amount of attenuation is limited. By driving the FET's gate positive with respect to its source, residual drain/source resistance can be significantly lowered and performance comes much closer to that achieved with Cachia's original manual control.

In this circuit, the FET is connected across the arms of a bridge formed by  $Tr_1$ ,  $R_1$ , and  $VR_3$ . A rising agc voltage of 0V to +0.6V on the base of  $Tr_1$  swings the gate/source voltage of  $Tr_2$ from -2.5V to +2V, thereby maximising the resistance change.

For negative going AGC, the connections to the gate and source of  $Tr_2$  should be reversed, and  $VR_1$  set to increase the bias on the base of  $Tr_1$ . The pre-set resistors can be adjusted to introduce delay and to accommodate different agc voltage swings.

A ferrite toroid must be used, but its size is not critical. For general coverage receivers, signal windings of six turns on a core with a permeability of 850 will minimise losses at medium and low frequencies.

Turns can be reduced to three for HF receivers, and a lower permeability core could be used. Control windings should have twice the number of turns of the individual signal windings.

Insertion losses are minimal. Raymond Haigh Doncaster South Yorkshire F4



### Versatile power switching circuit

This is a simple circuit that can be used for a wide range of switching or control applications. The purpose of the original circuit was to reduce rotational speed of a small DC motor. The motor drove a 'mirror ball' and was required to turn the ball at 2rev/min.

The same basic circuit can be used to flash a LED or incandescent filament lamp or even dim a filament lamp. All these applications can be realised with two transistors, three resistors, and one capacitor. An added benefit is that the current consumption can also be made to be extremely small.

The circuit works as a simple proportional control circuit where the ratio of 'on' to 'off' time determines the speed and the effective voltage across the load. Components  $C_1$  and  $R_2$  define the 'on' time while the 'OFF' time is defined by  $C_1$  and  $R_1$ .

The load is connected by or line  $r_1$ . The load is connected in the collector of  $Tr_2$ . In the example given, this load is the  $10\Omega$  coil resistance of the motor. When 'on',  $Tr_2$  saturates and when 'off', the circuit consumes very little current,

Although very simple, this chopping power attenuator is efficient and lends itself to microprocessor control.



so efficiency is high. This makes the circuit ideal for battery operation with any supply voltage from a single 1.2V NiCd cell up to 24V. Maximum voltage is only limited by the choice of  $Tr_1$  and  $Tr_2$  and of course the motor.

All components are non-critical; in the original application  $Tr_2$  was a small 1A device. Capacitor  $C_1$  should be non-polar. Optimum performance in a given application may require adjustment of the timing by modifying the values of  $R_1$  and  $R_2$ .

If a variable speed drive is required, a potentiometer can be used instead of  $R_1$ . In this case a fixed resistor must be placed in series, to limit the maximum  $Tr_1$  base current.

For microprocessor control,  $R_1$ could be a digital potentiometer IC. For other applications, alarms, beacons, etc., one or more LEDs may replace the motor.

#### Alan Jones

Newcastle-under-Lyme Staffordshire E46

| PHONE<br>020 8684<br>1166 11<br>24 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TUBES AND SE<br>MAYO ROAD •<br>OUR EXPRESS MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOF ELECTRON<br>EMICONDUCTORS<br>CROYDON • SUR<br>AIL ORDER SERVICE<br>I: langrex@aol.co<br>20.00 524GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IC VALVES<br>S AND I.C.S. ()<br>IREY CRO 2QP<br>ON STOCK ITEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FAX<br>20 8684<br>3056 | WATCH SLIDES ON TV<br>MAKE VIDEOS OF<br>YOUR SLIDES<br>DIGITISE YOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CL33       15         EB80CC       EB80CC         EB80CC       EB80CC         EB80CC       EB80C         EB910F       20         EB910F       20         EB910       1         EB911       1         EBP60       2         EB911       1         EBP60       2         EC033       12         ECC33       12         ECC81       2         ECC83       2         ECC83       2         ECC83       2         ECC83       2         ECC83       2         ECC83       2         ECC84       2         ECC85       2         ECC86       2         ECC88       6         ECC88       6         ECC80       2         ECH42       2         EC180       2         EC181       2         EF37A       2         EF40       4         EL34       2         EL34       2         EL34       2         EM34       2         EM | 8.00         KT88 Special           5.00         N78           8.50         OR2           0.00         OC3           4.00         OC3           1.50         PCF80           1.50         PCF80           1.50         PCL85           0.00         PC36           3.00         PL36           3.00         PL36           3.00         PL504           3.00         PL504           3.00         PL504           3.00         PL504           3.00         PL504           3.00         PL802           3.00         PL804           3.00         PL802           3.00         QV03-00           3.00         QV03-10           3.50         QV02-6           3.50         QV02-6           3.50         QV02-6           3.50         QV02-6           3.50         QV02-6           3.50         QV02-6           3.50         UC442           2.75         UC442           2.00         UL41           2.00         UL45           5.00         VR15/30 | 20.00 6AQ5<br>8.00 6AR5<br>3.00 6AU5GT<br>3.00 6AU5GT<br>3.00 6AU5GT<br>3.00 6AU5GT<br>2.00 6BAG<br>2.00 6BAG<br>2.00 6BAG<br>2.50 6BH6<br>8.00 6BQ7A<br>3.00 6BW7<br>2.00 6BBR8<br>3.00 6BW7<br>3.00 6BW7<br>3.00 6BW7<br>1.00 6BX7GT<br>4.00 6BZ6<br>3.00 6C4<br>1.50 6C6BA<br>1.50 6C6BA<br>1.50 6C6BA<br>1.50 6C6G<br>1.200 6C4<br>1.50 6C6B<br>3.00 6C4<br>1.50 6C6B<br>3.00 6C4<br>1.200 6C6<br>3.00 6C4<br>1.200 6C6<br>3.00 6C4<br>1.200 6C6<br>3.00 6C4<br>1.200 6C6<br>3.00 6C7<br>1.200 6C6<br>3.00 6J7<br>2.00 6J5<br>3.00 6J5<br>3. | 2.00 6V6G<br>6.00 6V6GT<br>7.50 6V6GT<br>2.00 12AT7<br>4.00 12AT7<br>2.00 12AX7<br>1.50 12AX7<br>1.50 12AX7<br>4.00 12AX7<br>2.00 12AX7<br>2.00 12BY7<br>4.00 12BY7<br>4.00 12BY7<br>4.00 12BY7<br>4.00 12BY7<br>4.00 12BY7<br>3.00 12E1<br>7.50 13E1<br>3.00 572B<br>2.00 605<br>3.00 807<br>3.00 811A<br>3.00 866A<br>6.00 866A<br>812A<br>3.00 812A<br>3.00 814<br>3.00 814<br>3.00 866A<br>6.00 866A<br>7.50 872A<br>10.00 931A<br>8.00 5751<br>6.00 5764<br>7.50 636A<br>17.50 6350A<br>17.50 |                        | <ul> <li>SLIDES<br/>(using a video capture card)</li> <li>"Liesgang diatv" automatic slide viewer with built in hig<br/>a composite video output to a phono plug (SCART &amp; E<br/>are In very good condition with few signs of use. For full<br/>Board cameras all with 512x582 pixels 8.5mm 1/3 inch<br/>All need to be housed in your own enclosure and hav<br/>parts. They all require a power supply of between 10 ard<br/>47MIR size 60x36x27mm with 6 infra red LEDs (gives<br/>torch but is not visible to the human eye)</li></ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CALLERS MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N-FRI 9AM-4PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . CLOSED SATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | JPG ELECTRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Obsolete items a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion from our stock o<br>tre our speciality. Val<br>Terms CWO<br>P&P 1-3 v.<br>Add 17.5 <sup>c</sup><br>CIRCLE f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /min order £10 for cred<br>alves £2.00. 4-5 valves<br>% VAT to total including<br>NO.120 ON REPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iginal British or America<br>dit cards.<br>s £3.00<br>g P&P<br>CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n brands.              | 276-278 Chatsworth Road, Ches<br>Tel 01246 211202 Fax 01246 550959 I<br>Callers welcome 9:30 a.m .to 5:30 p.r<br>CIRCLE NO.121 ON REPL                                                                                                                                                                                                                                                                                                                                                                                                       |
| Disolete items a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion from our stock o<br>Tree our speciality. Val<br>Terms CWO<br>P&P 1-3 v<br>Add 17.5'<br>CIRCLE F<br>STR/<br>for ICs TRA<br>call to us co<br>c offer an ex<br>l with a Wor<br>at our finger<br>even more.<br>th the follo<br>but a few).<br>B 2SC 2SD 2P<br>AM AY BA BC<br>FT BFW BFX I<br>SW BSX BT BT<br>BUY BUZ CA<br>GL GM HAA<br>HLB LC LD LF I<br>MJE MJF MM<br>NE OM OP P.<br>AS SDA SG SS<br>S SV1 T TA T/<br>IP TIPL TEA T<br>JDN ULN UM<br>ny others<br>Iso offer equipelent<br>ock a full ram<br>ne, Fax, Credi                                                                                                                                                                                                                                                                                                                                                                                                                               | ves are new mainly or<br>vimin order £10 for crec<br>alves £2.00.4-5 valves<br>% VAT to total including<br><b>VAT to total including</b><br><b>VAT to total including</b>                                                                                                                                       | iginal British or America<br>dit cards.<br>5 53.00<br>9 PAP<br>CARD<br>CARD<br>CARD<br>CARD<br>CARD<br>CARD<br>CARD<br>CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n brands.              | Tel 01246 211202 Fax 01246 550959 I<br>Callers welcome 9:30 a.m .to 5:30 p.r                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



gang diaty" automatic slide viewer with built in high quality colour TV camera. It has mposite video output to a phono plug (SCART & BNC adaptors are available). They very good condition with few signs of use. For further details see www.diatv.co.uk ..£91.91+ vat = £108.00

d cameras all with 512x582 pixels 8 5mm 1/3 inch sensor and composite video out. eed to be housed in your own enclosure and have fragile exposed surface mount They all require a power supply of between 10 and 12v DC 150mA.

| 47MIR size 60x36x27mm with 6 infra red LEDs (gives the same illumination as a small  |
|--------------------------------------------------------------------------------------|
| torch but is not visible to the human eye)                                           |
| 30MP size 32x32x14mm spy camera with a fixed focus pin hole lens for hiding behind a |
| very small hole£35.00 + vat = £41.13                                                 |
| 40MC size 39x38x27mm camera for 'C' mount lens these give a much sharper image       |
| than with the smaller lenses $632.00 \pm yat = 637.60$                               |

| Economy of mount longes all indea locas a mod mo |                       |
|--------------------------------------------------|-----------------------|
| VSL1220F 12mm F1.6 12x15 degrees viewing angle   | £15.97 + vat = £18.76 |
| VSL4022F 4mm F1.22 63x47 degrees viewing angle   | £17.65 + vat = £20.74 |
| VSL6022F 6mm F1.22 42x32 degrees viewing angle   | £19.05 + vat = £22.38 |
| VSL8020F 8mm F1.22 32x24 degrees viewing angle   | £19.90 + vat = £23.38 |
| Better quality C Mount lenses                    |                       |

614F 16mm F1.6 30x24 degrees viewing angle ......  $f_{26,43} + vat = f_{31,06}$ 813M 8mm F1.3 with iris 56x42 degrees viewing angle......£77.45 + vat = £91.00 surface mount resistors E12 values 10 ohm to 1M ohm 100 of 1 value £1.00 + vat of 1 value £5.00 + vat

pattery pack originally intended to be used with an orbitel le telephone it contains 10 1.6Ah sub C batteries 22dia the size usually used in cordless screwdrivers etc.) ack is new and unused and can be broken open quite £7.46+vat = £8.77



Please add 1.66 + vat = £1.95 postage & packing per order

JPG ELECTRONICS 276-278 Chatsworth Road, Chesterfield, S40 2BH. 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m .to 5:30 p.m. Monday to Saturday

CIRCLE NO.121 ON REPLY CARD



- Broadcast Monitor Receiver 150kHz-30MHz.
- Advanced Active Aerial 4kHz-30MHz.
- Stereo Variable Emphasis Limiter 3.
- PPM10 In-vision PPM and chart recorder.
- Twin PPM rack and Box Units.
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements.

SURREY ELECTRONICS LTD The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483 275997 Fax: 01483 276477 The only thing scientists agree about on the mobile phone health question is that you cannot rule out the risk factor. So where does that leave the worried consumer? In limbo for a while yet, says Melanie Reynolds

# The fear





re mobile phones detrimental to human health? This question is likely to trouble us for a very long time. It may be a question we carry on asking forever. For despite numerous studies on the subject, only one

aspect of the testing is agreed upon. "One of the things about science is you cannot prove there isn't risk," says Gerd Friedrich, MD of communications industry organisation Forschungsgemeinschaft Funk in Germany.

This means tests that do not show any ill effects are doomed to be repeated to demonstrate there is still no danger. So the message remains that 'the balance of scientific evidence does not suggest that any harm is caused by mobile phone technologies'.

Of course, there have been various reports of studies that do show ill effects, but the scientific community has its rules on research, which have so far meant these studies have been set to one side. The rules mean that before a study is accepted as scientific fact, it must be repeated, with the same results, in other laboratories. To date this has not happened.

"One point we need to bear in mind is that we are dealing with biological organisms and they are notoriously unreliable," explains James Lin, professor of bioengineering at the University of Illinois. "You have to be very cautious and aware of biological variability."

Lin says consistent, dependable and scientific conclusions cannot be drawn yet. He believes that there is no immediate cause for concern. But, "this is the first time in human history that millions of

#### When do we get the numbers?

t is all very well being told to consider SAR (specific absorption rate) values when choosing a phone, but in Europe they are not available yet. The problem is the standards for testing SARs have not been agreed and are not expected to be available until the middle of this year.

Any SAR values quoted now could have been achieved using one of several test set-ups, all of which can provide vastly different answers.

A CENELEC standard is due this month while an apparently

similar IEEE standard is going through internal voting. But the one to wait for is the IEC document, due early 2001, which draws on both these standards.

"For the first time it looks good that we may have a harmonised standard," comments Camelia Gabriel, director of UK-based Microwave Consultants. "It's very important we get there but it's not an easy task."

Of course once the standard has been agreed the phones must be tested to it. It could be a long time before we see SAR figures which we can legitimately compare.



humans have been exposed to a source of radiation close to the head," continues Lin. "There is no question that microwave radiation can be hazardous to human health. The question is, how hazardous is it?"

The speakers at IBC's 'Mobile phones – is there a health risk?' conference were all keen to illustrate how much time and money is being put into this question on a global basis.

"There is a lot of research. The problem is that a lot of people don't understand the research out there, but it is very well planned," explains Sheila Johnston, neuroscience consultant to the UK mobile phone industry. Sheila illustrated her point with an extremely long list of all the research.

Johnston feels the gap right now is in human research, but believes this area will be addressed by the UK Government's £7m research project announced at the end of last year (see news on 164).

Despite this large amount of money there remains scepticism over the issue of public health and cover-ups. You only need to look at recent history to see why. The tobacco companies are a fine example of an industry cover up, while the UK's handling of BSE (mad cow disease) illustrates political inadequacies all too well.

But Michael Repacholi of the World Health Organisation is convinced this will not happen with mobile phones.

Despite the fact a lot of research is industry funded he says there is a "firewall" which keeps industry at arms length from the researchers. "It won't be the tobacco problem," states Repacholi. "The UK Government is more BSE sensitive which may even cause an over reaction in the EMF situation. They might see it as another situation which could get out of control."

Repacholi also believes adopting a precautionary approach to fixing exposure levels is a mistake. In the UK levels fixed by the National Radiological Protection Board were shifted by the Government simply to bring them in line with other countries. According to Repacholi this, "undermines hundreds of millions of dollars of research for no apparent benefit to health".

"It doesn't matter how far politicians reduce levels. It doesn't reduce anxiety. It needs to be based on scientific fact," says Repacholi who believes public confidence will be increased if governments and scientists agree on the health risks. And after all, the alleviation of public concern is what all this is about.

#### Advice on using mobile phones

s a result of the Stewart report on mobile phone health issues in May 2000, the Government agreed a leaflet setting out its advice would be handed out with every mobile phone sold.

The leaflet says there is some evidence that changes in brain activity can occur at levels below the guidelines set internationally for exposure to radio waves, but says it is not clear why. As a result it is taking a precautionary approach to the use of mobile phones. Its recommendations include:

- Keep your calls short
- Consider relative SAR values when buying a mobile phone
- Do not use a mobile phone when driving, not even if you have a hands-free kit
- Under 16s should use mobile phones only for essential purposes and keep all calls short



EMfacts Consult and y has been in existance since 1994 and has produced over 21 publications/papers dealing with various health issues related to human exposure to Electromagnetic Radiation.

This website was established in 1997 as an independent source of information on the possible health and safety issues arising from human exposure to Electromagnetic Energy (EME)

This consists of both 50 and 60 Hertz (Hz) Electromagnetic Fields (EMF) from our use of electricity and Radiofrequency/Microwave (RF/MW) Electromagnetic Radiation (EMR) from telecommunications

This site is designed to be unlined as a resource by individuals, groups, organisations and communities who are trying to empower themselves by gaining a better understanding of the complex issues involved with this important environmental issue.

"That which is looked upon by one generation as the apex of human knowledge is often considered an absurdity by the next, and that which is regarded as a superstition in one century, may form the basis of science for the following one." - Paracelsus

#### Online Resource Information:

 <u>Mobile Phone Health Hazards:</u> Over 20 research paper abstracts, articles & press releases on the possible adverse affects of mobile phone use, (Changed 6th June 2000)

There's plenty of background information on mobile phone health hazards at http://www.tassie.net.au/emfacts/mobiles/ iegroup.html.



# Reader offer A pair of two-way PMR radios for just £75\*

#### RS 446 personal mobile radio...

To celebrate its launch, new test and instrumentation company Tecstar is offering *Electronics World* readers *two* RS446 personal mobile radios for just £75 excluding VAT and carriage.

Capable of transmitting and receiving voice over a distance of up to two miles, depending on terrain, the PMR 446 needs no licence. It offers eight channels, scanning – and with CTCSS up to 304 channel combinations.

A backlit liquid-crystal display shows volume level, channel number, subchannel number, battery level and transmit/receive or channel busy. A unique call feature enables the user to alert the person they wish to contact.

Transmission distance is up to 2 miles. The radio has an accessory socket for an external headphone, earpiece or vox-microphone/headphone combination. A keypad lock and battery save feature are also standard.

The unit measures only 120 by 50 by 20mm and weighs less than 150 grams – including batteries. It is supplied complete with instructions and belt/mounting clip.

Compact, lightweight and low cost, the RS446 wireless personalcommunications hand set has a wide range of applications. These include fetes, events and rallies. Builders on building sites could benefit from these radios, as could exhibitors at exhibitions and staff at warehouses, winter activities, sports events, maintenance departments, schools and care homes. Of course you can also use the RS446 just to keep contact with someone locally. The uses are almost limitless.

Send a cheques or postal orders to Tecstar Electronics Limited, 1 Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX. Tel 01480 399499, fax 01480 399503, e mail sales@tecstar.co.uk

#### Order coupon

Please send me RS446 personal mobile radios, for which I enclose:

For \_\_\_\_ pairs of RS446 radios at £75 per pair Plus VAT at 17.5%, or £13.13 per pair Plus £6 UK postage per order, or £14 overseas

Total

Fill in your name and address and post this coupon together with a cheque for the total amount above payable to Tecstar to the address below.

| Name                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------|
| Address                                                                                                                       |
|                                                                                                                               |
| Post code                                                                                                                     |
| Signature                                                                                                                     |
| Send cheques, postal orders etc to Tecstar Electronics Limited, 1                                                             |
| Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX.<br>Tel 01480 399499, fax 01480 399503, e mail sales@tecstar.co.uk |
|                                                                                                                               |



#### What is CTCSS

CTCSS – or 'continuous-tone controlled squelch system' – allows sub channels of the main channels to be used. There are 38 sub channels to each main channel. Using subchannels decreases the likelihood that someone else will be using the same frequency.

\*excludes carriage and VAT

RS446 key

coverage radius

Eight channels, each

with 38 sub channels

Scans main and

subchannels

Backlit display for

Unique call function

 Headphone and mic sockets allow

night time use

discrete use

indicator

feature
 Keypad lock-out

**Battery status** 

Auto battery save

features...

Up to 2 mile

David Huddart's simple time-domain reflectometer is used with a reasonably fast oscilloscope to find faults in cables by transmitting a pulse and analysing its echo. It has been tested with cable lengths up to 200m and can resolve down to 100mm yet it comprises only one IC and a three transistors.

his design was developed for locating faults in coaxial cables. A 'time-domain reflectometer', or TDR for short, sends a brief, very fast edged pulse into a cable and then looks for reflections. If the cable is open or short circuit, a return echo that is twice the transit time of the cable will be observed – a socalled 'go and return' echo.

This unit generates the fast

pulses needed and uses any reasonably fast oscilloscope to monitor the activity on the line.

How the circuit works Schmitt trigger  $IC_{1A}$  forms a simple 50kHz oscillator. This is a 74HC part. Output from this oscillator triggers an avalanche pulse generator.

The pulse generator, and its associated voltage clamp, is based

# CABLE FAULT LOCATOR

on a previous article about sampling oscilloscopes<sup>1</sup>. Pulse transistor  $Tr_1$  is not designed specifically for use in avalanche mode, I found that but several samples of 2N2369, BSX20, and BFR91 all worked reliably in this sort of circuit configuration.

Other transistors such as BC107, BFY50 would not function. I put this down to the fact that the 2N2369, BSX19/20 are all high-



Fig. 1. Circuit of the timedomain reflectometer includes a fly-back converter around Tr<sub>2</sub> to step the 10V supply up to the 70V or so needed for the pulse generator. speed switching transistors with low  $V_{ceo}$ . Ian Hickman's article mentioned in the reference details the operation of the pulse generator but I made a few minor changes:

- The open circuit 50Ω coaxial line is longer so that a pulse of approximately 6ns is generated.
- The trigger pulse feeds *Tr*<sub>1</sub> via an adjustable capacitor to fine tune the pulse waveform.
- The line charge voltage clamp is modified slightly to allow for the high-voltage supply.

The pulse generator needs at least 70V. Partly because I did not have a suitable bench supply available, I decided to build in a switch mode supply to boost the 10V input to 70V.

This simple power supply is based on the fly-back principle and uses the 50kHz signal available from  $IC_{1A}$ , via  $IC_{1E,F}$  to drive a MOSFET,  $Tr_2$ .

During the on-time of  $Tr_2$ , current in  $L_1$  builds to approximately 50mA. When  $Tr_2$ turns off the voltage at the junction of  $Tr_2$ ,  $D_3$ ,  $L_1$  'flies' up to be caught by  $D_3$  at the voltage across  $C_3$ . All the energy in  $L_1$  is then dumped into  $C_3$  in about 1µs.

Because the load across  $C_3$  is several tens of kilo-ohms, and the energy being delivered is fixed, the voltage across  $C_3$  rises until all the energy is consumed. Expect between 60 and 100V across  $C_3$ . The actual value is not critical.

Transistor  $Tr_3$  and its associated components form a variable voltage clamp. This stabilises the charge voltage of the line. Adjustment from 30 to 50V is provided by  $RV_1$ .

In operation the open circuit  $50\Omega$  line is charged to the preset clamp voltage via  $R_2$  and  $R_1$ . On

the rising edge of the signal feeding  $VC_1$ , current flows into  $Tr_1$  base and starts conduction. The avalanche effect causes  $Tr_1$  to turn on very rapidly and the energy stored in the line is discharged via  $Tr_1$  into  $R_3$  and on to the output.

Resistors  $R_5$  and  $R_6$  form a simple attenuator so that the voltage at the output may be monitored.

#### Implementing the design

I built the TDR into a small diecast box and fitted two BNC sockets for the outputs and simple flying leads for the DC power supply.

You can use Veroboard, as I did, but take care to ensure that connections are as short as possible and that decoupling capacitors are close to the source of surge currents. Capacitor  $C_5$ must be a ceramic type and







Fig. 3. Reflection from 9m open-circuit coaxial cable cable.



Fig. 4. Reflections from 9m of open-circuit coaxial cable and faulty BNC connector at 6m.



Fig. 5. Reflections from approximately 40m of open-circuit coaxial cable.

#### **INSTRUMENTATION & TEST**

connected directly between pins 7 and 14 of  $IC_1$ . Capacitor  $C_2$ should be reasonably close to  $L_1$ and  $Tr_2$ .

Components shown in the dotted area are the heart of the device and must have very short leads – less than 10mm – to minimise inductance. If they haven't, the rise time of the pulse will be affected. I soldered them to the BNC connectors, providing support for  $Tr_1$  on small, insulated, terminals.

The stub line is a length of RG174 miniature  $50\Omega$  coaxial cable coiled to fit inside the box. The far end is open circuit.

#### Setting up

Apply voltage slowly, watching for excessive current flow. Typical consumption is 40mA at 10V. Monitor  $Tr_2$  for activity and the voltage across  $C_3$ . It should be 110V maximum.

Next monitor the output and the collector of  $Tr_1$ . Set  $VC_1$  to maximum and  $RV_1$  to give 30V at  $Tr_3$ 's emitter. Now increase  $RV_1$  until the fall time of the voltage at  $Tr_1$  collector suddenly becomes very sharp.

The output waveform is shown in Fig. 2. This is the point where avalanche starts. Increase  $RV_1$ about 4V more and remove the scope probe from  $Tr_1$ 's collector.

Now the output should show a very fast rising pulse about 6ns long. Adjust  $VC_1$  to reduce the drive current into  $Tr_1$ 's base. This should clean up the falling edge a little reducing the base current after  $Tr_1$  has triggered.

If the output stops altogether, back off the adjustment a little to give reliable operation. This completes the set-up.

#### Using the meter

For good results, an oscilloscope with a bandwidth of at least 50MHz is required, otherwise the resolution is limited. My scope has a 150MHz bandwidth and 2.3ns rise time. It is easy to resolve length to 100mm.

In operation the oscilloscope is connected to the monitor output using  $50\Omega$  coax and terminated at the input to the scope. The cable under test connects to the output.

The scope should display the transmit pulse and later any returned echo Fig. 3. There will be echoes from any point along the test cable where its impedance changes. Typically this would be



an open or short circuit.

It is surprising how sensitive this TDR is. For example a reflection can be obtained from the change in impedance that 5mm of stub cable connected to a tee causes, **Fig. 4**. Cable lengths of up to 200m have been tested and reflections easily measured. **Figure 5** shows results from a 40m cable.

The polarity of the echo indicates open or short circuit  $(>Z_o \text{ or } <Z_o)$  in the cable. Positive echoes indicate high impedance and vice versa.

The time delay can be used to estimate the distance down the cable where a fault is,

 $l = \frac{t \times V_{\rm c} \times {\rm C}}{2}$ 

Where *l* is the length of cable in metres, *t* is the time from transmit pulse to echo in seconds, C is the speed of light, at  $3 \times 10^8$  m/s, and  $V_c$  is the velocity coefficient for cable under test.

The velocity coefficient is the ratio of the speed of signals through cable to the speed of light. It varies depending on the exact type of cable but is usually between 0.6 and 0.8. If this coefficient is not known it may be simply calculated using a known length of cable from,

$$V_{\rm c} = \frac{2l}{t \times 0}$$

Measure the round trip delay of a known physical length of cable and calculate  $V_{c}$ .

The TDR has given good service in locating faults in coaxial cable runs, detecting dubious coaxial connections and even measuring the characteristic impedance of an unknown line by adjusting the termination impedance of a length until minimum reflections are

| Components<br>Resistors |              |  |  |  |  |
|-------------------------|--------------|--|--|--|--|
|                         | 21.2         |  |  |  |  |
| 1 off R <sub>1</sub>    | 3k3          |  |  |  |  |
| 1 off R <sub>2</sub>    | 33k          |  |  |  |  |
| $1 \text{ off } R_3$    | 22R          |  |  |  |  |
| 2 off R <sub>4,10</sub> | 100R         |  |  |  |  |
| 2 off Rrat              | 62R          |  |  |  |  |
| 1 off $R_6$             | 220R         |  |  |  |  |
| 1 off R <sub>7</sub>    | 22k          |  |  |  |  |
| 1 off R <sub>8</sub>    | 270R, 1/2W   |  |  |  |  |
| 1 off R <sub>9</sub>    | 10k          |  |  |  |  |
| i on ing                |              |  |  |  |  |
| Capacitors              |              |  |  |  |  |
| 2 off $C_{1,2}$         | 100µF, 16∨   |  |  |  |  |
| 1 off $C_3$             | 100nF, 250V  |  |  |  |  |
| 1 off $C_4$             | 2n2F         |  |  |  |  |
|                         | 100nF        |  |  |  |  |
| 1 off C <sub>5</sub>    | TUUTE        |  |  |  |  |
| Integrated circu        | its          |  |  |  |  |
| 1 off IC1               | 74HC14       |  |  |  |  |
| TON ICT                 | 7 111014     |  |  |  |  |
| Transistors             |              |  |  |  |  |
| 1 off Tr <sub>1</sub>   | 2N2369       |  |  |  |  |
| 1 off Tr <sub>2</sub>   | BSS100       |  |  |  |  |
| 1 off Tr <sub>3</sub>   | BC212        |  |  |  |  |
|                         |              |  |  |  |  |
| Diodes                  |              |  |  |  |  |
| 1 off D <sub>1</sub>    | BZX79C20     |  |  |  |  |
| 1 off Da                | BZX79C4V7    |  |  |  |  |
| 1 off D <sub>3</sub>    | BAV20        |  |  |  |  |
| 1 off D <sub>4</sub>    | BAX13        |  |  |  |  |
| 1 off D <sub>5</sub>    | BZX79C30     |  |  |  |  |
|                         | 02111 9 00 0 |  |  |  |  |

Note short leads around avalanche transistor near the two BNC connectors.

observed. It is surprising how useful it has become in the workshop

820µH

5-30pF

47k

#### Reference

Miscellaneous

1 off L

1 off  $RV_1$ 1 off  $VC_1$ 

1. Hickman, Ian, 'Towards a 500MHz scope add-on', *Electronics World*, March 2000.

# Free with this issue\*

# A low-power 555 timer guaranteed to run from supplies down to 0.9V.

Sponsored by UK semiconductor manufacturer Zetex, this month's cover mount is a state-of-the-art version of one of the most successful ICs ever made – the 555 timer. The device is housed in a dual-in-line package and its pin designations are the same as those of the standard 555.

Featuring a very low quiescent current of 74µA, the ZSCT1555 can be powered by any DC supply from 0.9V up to its absolute maximum rating of 6V.

For more applications information and a data sheet, visit

www.zetex.com

#### GND VCC version Investment Investment Investment GND VCC version Iow-p Discharge timer. Is also Threshold in SO same Control config

This is the DIL version of Zetex's low-power 555 timer. The device is also available in SOIC with the same pin configuration.

## Single-cell boost converter

Relative to similar CMOS 555 timers the ZSCT1555 has a lower operating voltage. But more importantly, it can offer a longer battery life.

The circuit shown in Fig. 1 generates a 5V output using a boost topology combined with pulse width modulation to regulate the output voltage to 5V. The ZSCT1555 generates the required 150kHz signal for the PWM circuit.

Inductor  $L_1$ , with  $D_2$  and  $Q_2$ , allow operation up to very high switching frequency. This speed-up circuit uses active base drive, which minimises switching losses. Schottky diode, D3, used for charge steering is unique. In SOT23 the DC rating of the ZHCS750 at 750mA is exceptional.

The circuit features a ZR431 adjustable shunt regulator in the feedback control loop. This device again offers power economy as its quiescent current is only  $35\mu$ A – ten times lower than other similar parts.

Extremely low saturation voltage, equating to an onresistance of only 30mΩ at 300mA, of the FMMT617 switching transistor, Q3, further optimises circuit efficiency.



Fig. 2. Electroluminescent display drivers normally need a bulky and heavy transformer. This alternative eliminates the transformer without compromising on efficiency.

#### **Electroluminescent driver**

Traditional electroluminescent display driver circuits feature a flyback transformer topology to generate the high AC voltage required to energise the panel. This is expensive – the cost of the transformer and its size, together with a larger PCB area, increases the overall equipment cost.

Eliminating the need for a transformer, the circuit in Fig 2 is more cost-effective. To add to this, the ZSCT1555's low power consumption and the capabilities of the switching transistors make for a highly efficient solution. The innovative design uses two combined switching circuits. The first generates a high voltage, approximately 200V, using a 'boost' topology. This voltage is chosen, according to EL-Panel size and brightness, by varying the frequency. Effectively the EL panel behaves like a capacitor. The second circuit converts the high voltage to an 800Hz AC signal to drive the EL-Panel.

The two ZSCT1555 timers form clocks for the switching transistors. High efficiency is ensured by the switching capabilities of the Zetex bipolar transistors. Advanced transistor design gives the lowest saturation voltage in the switch for the lowest dissipation.

These two application examples highlight the specific advantages of the ZSCT1555 for high-efficiency circuits – namely low supply voltage and low power consumption. This Zetex timer offers advantages to many of the thousands of traditional applications for the 555.



# **BOOK TO BUY**

Completely updated, this comprehensive dictionary contains over 28,000 electronic terms, phrases, acronyms, and abbreviations from the everexpanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. This dictionary is a valuable resource for professionals in the field, hobbyists, students, or anyone interested in electronics.' -Poptronics

Included in this fully revised classic are well over 28,000 terms, phrases, acronyms, and abbreviations from the ever-expanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. From the basic elements of theory to the most cutting-edge circuit technology, this book explains it all in both words and pictures. For easy reference, the author has provided definitions for standard abbreviations and equations as well as tables of SI (International System of Units) units, measurements, and schematic symbols.

Modern Dictionary of Electronics is the bible of technology reference for readers around the world. Now fully updated by the original author, this essential, comprehensive reference book should be in the library of every engineer, technician, technical writer, hobbyist, and student.



Post your completed order form to:-Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your completed order form to 020 8652 8111 UK Price: £42.50 Europe £45.00 ROW £47.50 Price includes delivery

#### How to pay Modern Dictionary of Electronics

□ I enclose a cheque/bank draft for £\_\_\_\_ (payable to Reed Business Information)

Please charge my credit/charge card Mastercard American Express Visa Diners Club

Credit Card No:

Expiry Date:

Signature of Cardholder

Cardholder's statement address: (please use capitals)

Name\_\_\_\_

Address

Post Code Tel:



#### ACOUIVISION

http://www.acquivision.com

AcquiVision solutions, including XY-Plotting, Oscilloscopes (with FFT), Data Logging and Custom Software, have been getting the most from computers since 1994. Download software. Telephone (01903)830502.

#### **AQUILA VISION**

http://www.aguila-vision.co.uk



Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards. Linux and general interest CD-ROM's

#### ALCATEL COMPONENTS

http://www.components @alcatel.de

#### **ASHWELL ELECTRONICS**

http://www.ashwell-hg.com

Ashwell provide technical support for Apex Microtechnology op-amps and DC/DC'S; Aeroflex; EMP filtered connectors; M S Kennedy; Mintech obsolescence; NSC Mil/Aero; Teledyne Relays and isocom mil/optocouplers.

#### ARCOM

http://www.arcomcontrols.com/ew/



A leading international supplier of communication and control technology to industry, Arcom provides leading edge solutions through a comprehensive range of market leading products

#### BROADERCASTING **COMMUNICATIONS SYSTEMS**

www.broadercasting.co.uk

WINRADIO now brings you a complete choice in personnel computer controlled radio scanning and reception solutions . Broadcast . Media . Monitoring . Professional Amateur Radio communications

#### **BEDFORD OPTO TECHNOLOGY LTD**

http://www.bot.co.uk

Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board Indicators, stand offs, transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, pannel mount LED assemblies

#### **CONCEPT ELECTRONICS**

http://www.conceptkev.co.uk

Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to IS09001

#### **CONTROL SOLUTIONS**

www.controlsolutions.co.uk Data acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk

#### **COOKE INTERNATIONAL**

http://www.cooke-int.com e-mail: info@cooke-int.com



Stockists of Quality Used Electronic Test Instruments and Operating & Service Manuals

## **CROWNHILL ASSOCIATES LTD**

http://www.crownhill.co.uk

Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke **Design Services** 



#### DANIEL MCBREARTY

http://www.danmcb.demon.co.u k/eng.html

Experienced engineer based in London, specialist in audio and control systems. Available for design, project engineering or general consultancy. Background of high-quality work.

#### **DESIGNER SYSTEMS CO.**

http://www.designersystems.co.



Electronic product design company with over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals

#### ECM SELECTION http:// www.ecmsel.co.uk



For the pick of the UK's Top High-Tech Software and Hardware career opportunities from fresh Grad/PhD to Senior Engineer/Manager - £22,000 - £70,000

#### EDWIN PCB DESIGN SOFTWARE

http://www.swifteurotech.co.uk

Swift Eurotech supply the best-selling EDWin CAD/CAE system for PCB design, including schematics, simulation and PCB design. Discounts up to 60% for noncommercial users.

#### **ELECTRONICS AND COMPUTING PRINCIPLES**

http://www.eptsoft.com

Studying electronics or computing or just want to keep up-to-date in an easy and enjoyable way, then this fully interactive software is for you.

#### EQUINOX TECHNOLOGIES **UK LTD**

http://www.equinox-tech.com



Equinox Technologies UK Ltd., specialise in development tools for the embedded microcontroller market

#### FELLER UK

http://www.feller-at.com

Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all industrial Countries to National and International Standard s

#### **FLASH DESIGNS LTD**

http://www.flash.co.uk

Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters & 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?

#### **GOOT PRODUCTS**

http://www.kieagoot.co.uk



Kiea Trading Company is the sole agent of Goot products, We specialise in supplying the soldering and desoldering product range manfactured by Goot Japan for the UK market. Goot uses advanced production technology to manufacture high quality soldering iron products for industrial, professional and general purpose use

#### **HSPS LTD**

#### http://dspace.dial.pipex.com/hsps/

FILTER DESIGNER - Advanced analog and digital filter design software for the PC. Standard and Professional versions.- Free download of Evaluation version



# To reserve your web site space contact Pat Bunce Tel: 020 8652 8339 Fax: 020 8652 3981

#### **HTB ELEKTRONIK**

http://www.htb-elektronik.com

We are selling second-hand test & measurement equipment and accessories for over 10 years, from all leading manufactures.

#### LEVY/LATHAM GLOBAL

http://www.levylatham.com

U.S. Military Surplus meters, plug-ins, test sets, oscilloscopes, power supplies, signal generators, spectrum analyzers and radio components from Tektronix, Hewlett Packard, Sony, Phillips and more!

#### LOW POWER RADIO SOLUTIONS

http://www.lprs.co.uk

LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.

#### MATTHEY MICROFILTERS

http://www.microfilters.net

|                                                             | A latthey Microfilters                                                                                                                                                         |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silvence city<br>Duebests<br>Cities<br>State Jose<br>Office | earth na bhí i críthtir e ní cennnntíleid bh hu Suudyn si f gublith<br>pruite acruna i natios prealacta la the la runaic pri prial<br>bairté Smithuchim i miduchnan amhú saide |
| Baltonule: J<br>Dama Johnson<br>Silicut                     | PPESS RELEASES                                                                                                                                                                 |
| Low                                                         | 100-Jonuary 2005 SP Outputted Birth J<br>29: December 1969 Tables, Boot Sec. Mar. Jacob Sec. Jacob                                                                             |
|                                                             | film light upstated - Self- zarwaye 2000                                                                                                                                       |

30 years experience in the design and manufacture of high quality passive filters and delay lines. Used in Broadcast, Telecommunications, Medical, Multimedia, and Computer industries.

#### MATRIX MULTIMEDIA LTD

www.matrixmultimedia.co.uk



Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).

#### NEWNES - BOOKS FOR THE ELECTRONICS WORLD

http://www.newnespress.com Over 300 books and information packages



for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

#### NORCALL

http://www.norcall.co.uk

Suppliers and repairers of MOBILE RADIO equipment SALES HIRE REPAIR Huge stocks of used radios and spares Pye Philips Simoco Icom Kenwood Standard Cleartone Maxon Yaesu Key Midland.

WE CAN PROGRAM ANYTHING 24hr Service

#### OMEGA RESEARCH LTD

http://www.omega-research .co.uk

"SMD prototyping adapters. Unique, flexible, low cost adapters to allow bench working with SM devices. Range suits most devices down to 0.5mm pitch."

# PCA:PHILIP COLLINS & ASSOCIATES PTY. LTD

#### http://www.pca.cc

PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

#### POLY-FLEX CIRCUITS LTD http://www.polyflex.com

Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.

#### QUASAR ELECTRONICS

www.quasarelectronics.com



Over 250 electronic kits, projects and ready built units for hobby, educational & industrial applications. TEL: 01279 306504, FAX: 07092 203496 or EMAIL: ewsales@quasarelectronics.com

#### **QUILLER ELECTRONICS**

http://www.quiller.com

100+ pages of detailed technical information on Schrack Relays, MEC Switches, Hirose Connections.

#### RADIOMETRIX

#### http://www.radiometrix.co.uk

Radiometrlx specialises in the design and manufacture of VHF & UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

#### RADIO-TECH LIMITED

http://www.radio-tech.co.uk

Radio modules, modems, telemetry, audio transmitters, pagers, antenna, remote controls and much more. All UK designed and manufactured.

#### **RALFE ELECTRONICS**



professional test & measurement www.ralfe-electronics.co.uk

#### **RD RESEARCH**

http://www.looking.co.uk/spice



Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

#### **RS COMPONENTS LTD**

http://rswww.com



The award winning on-line service from RS - 110,000+ products available

- Technical data library
- Stock availability check
- Integrated on-line purchasing
- Order by 8pm with you tomorrow.

#### SOFTCOPY

#### http://www.softcopy.co.uk

As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.



#### SESCOM, INC.

http://www.sescom.com

SESCOM, INC. is a 30-year manufacturer of audio "problem solvers" and transformers. We also offer easilyfabricated aluminum enclosures for small production runs and prototypes.

#### STAFFORDSHIRE WIRELESS COMPANY

http://www.staffs-wireless.com

Wireless, communication, test equipment, bought and sold for very competitive prices visit our web site or telephone John on 01889 569928 or 0973 296461.

#### **SUPRA AUDIO CABLES**

http://www.jenving.se

Jenving Technology AB is the manufacturer of Supra Audio Cables. OEM productions are also accepted.



#### TEMWELL CORPORATION http://www.temwell.com.tw

Manufacturer & Exporter of Heelical BPF Filter, 30 Watts BPF Power Filter and Handset/Base Station Duplexers

#### TEST EQUIPMENT SOLUTIONS

http://www.TestEquipmentHQ.com

Quality second user test equipment with full warranty and support. All types of equipment from all leading manufacturers Including general purpose, communications and industrial test.





#### THOSE ENGINEERS LTD http://www.spiceage.com

Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

#### THERMOSPEED

http://www.thermospeed.co.uk



Temperature and pressure, control and instrumentation. Full on-line purchasing.

- \* Overnight ex-stock delivery
- \* Create your own hotlist \* Download datasheets
- \* Full technical sunport

#### TRIDENT MICROSYSTEMS LTD

http://www.trident-uk.co.uk Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter. TOWER HILL TECHNICAL SERVICES

http://www.towerhillaerials.com Everything you need for DIY Satellite & TV aerial installation. The one stop



shop for TV, FM, Satellite, Amateur Radio PMR Aerials, Distribution Equipment, Cable & Accessories.

#### TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com Suppliers of pre-1985 equipment and

- components. - Test/Measurement equipment
- Valves and semiconductors
- Transducers and pressure gauges
- Scientific books and catalogues
- Manuals and data sheets

#### VANN DRAPER ELECTRONICS LTD

http://www.vanndraper.co.uk

Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including oscilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

#### VUTRAX PCB DESIGN Software

http://www.vutrax.co.uk

VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version <text><text><section-header><section-header>

downloads available, all upgradeable to various customised levels.

#### **WOOD & DOUGLAS**

http://www.woodanddouglas.co.uk

Wood & Douglas Ltd is the leading independent British designer and manufacturer of quality radlo products for International telemetry, data,voice & video wireless communications.

#### **UK ELECTRICAL DIRECT**

http://www.uked.com

For a comprehensive on-line directory, buyers guide and resource locator for the UK Electrical Industry look at this site. Many of the companies llsted have links to their own web sltes, making this a one-stop shop for a huge amount of information.

#### **UK MAILING LIST GROUP**

http://www.egroups.com/list/uk tvrepair

Following on from the newsgroup discussion last month there is a UK Email group for TV technicians where you can send an Email to everyone in the group. There's just over 30 people in the group at present. For more details and how to register look at the egroup home page. Just a general comment though – you do have to be careful who you give your Email address to so that you can avoid "spamming" - that is getting lots of unwanted Email about dubious Russian site (amongst others).

#### **REED CONNECT**

http://www.reedconnect.net/

Another free internet access site, this time from Reed Business Information. However the site possesses a useful UK



People and Business Finder, with an email search. There's also business news and local information, and some good links to directory sites.

#### REPAIRWORLD

http://www.repairworld.com

Repairworld is a sophisticated US based fault report database which is updated bi-weekly. It operates on a subscription basis and describes itself as an "affordable solution for all technicians". You can see some samples of the material for free, monitors, VCR, DVD and Camcorders being of particular relevance to UK users. The site also provides a "chat room".

> To reserve your web site space contact Pat Bunce Tel: 020 8652 8339 Fax: 020 865**2** 398

Put your web address in front of 21 000 electronics enthusiasts and experts. *Electronics World* acknowledges your company's need to promote its web site, which is why we are now dedicating pages in every issue to announce your

WEB ADDRESS.

This gives other readers the opportunity to look up your company's name, to find your web address and to browse the magazine page to find new sites. We understand that cost is an important factor, as web sites are an added drain on budgets. But we are sure you will agree that the following rates make all the difference:

#### FOR 12 ISSUES:

Lineage only will cost £150 for a full year just £12.50 per month. This includes your company's name, web address and a 25-word description.

Lineage with colour screen shot costs £350 for

a full year, which equates to just £29.17 per month.

This price includes the above mentioned information, plus a 3cm screen shot of your site, which we can produce if required.

To take up this offer or for more information ring:

Pat Bunce on O2O 8652 8339 or fax on O2O 8652 3981. or e-mail: pat.bunce@rbi.co.uk

| Company name |  | Web address |  |  |
|--------------|--|-------------|--|--|
|              |  |             |  |  |
|              |  |             |  |  |
|              |  |             |  |  |

# Save 15% Pico ADC42 Virtual oscilloscope



\*UK only. Overseas readers please fax or e-mail for a quote including delivery charges

Featuring 12-bit resolution and  $1M\Omega$ input impedance, the ADC42 samples at up to 15kS/s and includes software for spectrum analysis, oscilloscope functions and frequency display. Plugging into a PC's LPT port, the unit provides large, colourful displays and all the usual timebases and trigger options – all in a case slightly larger than a matchbox.



ADC42 single channel oscilloscope

- Low cost and easy to use
- No power supply required
- Ultra compact design
- Oscilloscope and data logging software included
- Write-to-disk on trigger function standard

The ADC42 is a single-channel pc based virtual instrument. Simply plug the unit into the parallel port of your pc and run the software. Designed for analysing low-frequency signals, it provide all the functionality of a conventional scope at a fraction of the price.

The ADC42 has 12-bit resolution making it suitable for applications where detection of small signal changes is needed.

#### **Specifications**

Scope timebases Spectrum analysis 100Hz to 10kHz Max sampling Voltage range Resolution Channels I/P impedance Accuracy PC connection Power supply

500µs/div to 50s/div 15ksample/s ±5V 12 bit 1 BNC 1M $\Omega$ , dc coupled 1% **D25 to PC parallel port** Not required



#### Use this coupon to order your ADC42

Please send me ...... ADC-42(s) at the special offer price of £98 fully inclusive of VAT and recorded UK delivery, normal selling price £111.63 excluding postage.

Name Address Phone number/fax Total amount £..... I enclose a cheque \_ Please charge to my credit/debit card. Card type (Master/Visa/Switch etc) Card No Expiry date \_\_\_\_ / \_\_\_ Please mail this coupon to Electronics World, together with payment. Alternatively fax credit card details with order on 0181 652 8111. Address orders and all correspondence relating to this order to Pico Offer, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

email jackie.lowe@rbi.co.uk

Make cheques payable to Reed Business Information Group.

# Letters to the editor

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS e-mail jackie.lowe@rbi.co.uk using subject heading 'Letters'.

## **B-class Class B**

In reply to James Bongiorno's in the February 2001 issue's letters section, I must admit that I was not aware that the problem of crossover distortion in Class-B output stages had been completely solved thirty-five years ago. Looks like we're all out of step except Jim.

If Mr Bongiorno feels he has solved a problem that has defeated thousands of engineers, I think we might expect some details, perhaps even a circuit diagram and some test results.

Since I am not quite so ignorant about diodes in output stages as Mr Bongiorno seems to think, I would like to go straight for the jugular and ask what quiescent current is required to make his scheme work properly? Linearity is easy to achieve with amperes of current flowing – but this does not constitute solving the Class-B problem.

I am also unmoved by a THD figure of less than 0.01% at 20kHz, as most versions of the Blameless amplifier can achieve this: many of them do much better. The 'load-invariant' version gives 0.004% at 20 kHz while driving  $3\Omega$ .

What exactly are the advantages of a dual-differential input stage? The normal pair gives a differential input, and you cannot make an input more differential than differential can you?

I am perfectly aware that complementary amplifier topologies exist, and given the time, it would be interesting to analyse them properly.

However, the disincentive is that they look unpromising in two areas: maintaining exact  $I_c$ balance of the input pair, and maintaining a well-defined current through the output stage bias generator. Both are absolute requirements for good linearity. Perhaps Mr Bongiorno has solutions to these problems. **Douglas Self** London

poorly designed switching regulator around so that it does not stay in the spectrum analyser bandwidth long enough to register, does not make the amplitude of the interference any less. It merely spreads to misery. Alan Melia

#### E, fancy that

Referring to Letters in the December 2000 issue, I suggest that Mr Wells has not thought about the issue of resistor E ranges enough.

I don't know who devised the system, but presumably the object was to find a series of resistor values with nominally 10% tolerance such that the ranges of adjacent values just touched. A moment's calculation indicates that this will involve 12 or 13 per decade, and 12 was chosen.

We would therefore like each value in the series to be related to the previous one by the 12th root of 10. We would also like each value to be readily expressed. In practice, this means to only two significant figures.

If you try to devise a series meeting these criteria, I think you will soon conclude that the present one is the least bad, in that it spreads the values as uniformly as possible logarithmically across the decade.

If you calculate the error in the ratio of each value to its neighbour compared with the ideal 12th root of 10, you will find that any other sequence is worse. In fact, the biggest error is 1.5, not 3.3, and changing 3.3 to 3.2 is too close to 2.7 and too far from 3.9.

Hence I suggest that whoever devised the sequence really did a very good job. *Kenneth Gundry* 

San Francisco

#### **Speaker performance**

Speaking as an engineer who has devoted all his working life to the misguided notion that loudspeakers could be improved by careful design, innovation and

the application of new technologies, I have to take issue with at least one of John Watkinson's statements in his article 'Baffling the speaker buyer'.

In particular, I take issue with the statement referring to the low value of drive units;

"...built down to a cost like this, the performance is not going to be special". The cost of manufacturing any object is fundamentally based on four things; the value of raw materials, the ease of manufacture, the cost of labour and number of objects produced. 'Special performance' does not figure in this calculation.

Although good design costs a little more than bad design, cost is of no more relevance to the sound quality of a loudspeaker drive unit than it is to the writing ability of a ball-point pen.

How John can be saddened by purchasers of expensive audiophile cables I just don't understand. He clearly applies their criteria to his selection of drive units.

John's comment that, "CAD reduces costs, but does little for

#### LF communications

It is with some pleasure that I see real 'wireless' making a return to *Electronics World*, in the article entitled 'Comms at 136kHz' on page 16 of the January issue.

As it happens, the UK is a relatively active region in this area of the amateur radio spectrum. Much of the contact between the widely-spread adherents is conducted via the RSGB's LF Group reflector on the Internet.

Unfortunately, much of the comment in the article about the band is a little dated. There is a growing band of enthusiasts in Europe, Canada, the USA, Australia and New Zealand who are investigating this fascinating region of the radio spectrum again.

While a lot of our initial work was based on guidance from early books like the pre-war Admiralty Handbook, we have progressed rapidly and are probing some of the forgotten corners of technology. Litz wire, and basket weave coils, not considered by your contributors, have proved to still have advantages.

Several UK station have constructed and operate stations running several hundred watts output. This has enabled the Atlantic to be spanned for the first time on this frequency by an amateur signal in September this year. It was done using an ERP of just less than 1W.

Skywave or ionospheric propagation is not only available at night and there a regular instances of contacts over 1200km during daylight hours. Fortunately, as amateurs we do not have to maintain a commercial quality channel, so the exploitation of sporadic events at these frequencies adds greatly to the interest.

The UK 73kHz band has not been closed, as was stated in the article. The licence variation holders have been awarded a further three years use of this band.

Alan Melia G3NYK Ipswich Suffolk

## Radio interference generator?

I stared with disbelief at your recent presentation of the Circuit Ideas prize to a 'radio interference generator' (p. 892 November 2000 issue), using a technique that does not work, to circumvent the EMC regulations.

Moving the frequency of a

performance," is just a little absurd. Try it out on Ron Dennis and he'll give you the same answer that I would.

A few caveats wouldn't have gone a miss in the article. Some of us really are trying quite hard to improve things. Stuart Pooert Brighton

#### **Remote satisfaction**

The article 'Remote control the easy way' in the December 2000 issue immediately caught my attention because of the simplicity of the hardware. I already had a Sony remote control for my video, a spare infra-red receiver and an 8051 development board.

I connected the IR receiver to the 8051 board. Because of the broad header pulse and the convenient frame rate, I was able to view the waveform on my oscilloscope using TV frame triggering. The waveform did not match the published diagram though. But after some head scratching, I realised that the published waveform was a mirror image of the oscilloscope's display.

After I began to write the software, I had to do a lot more head scratching before I discovered that my oscilloscope had been set to 'invert', which was why the polarity of my CRO display appeared to agree with the diagram in the article. The output of the IR detector is normally high.

After solving those problems, it didn't take too long to finish a program to select one of two LEDs as in the article. I then modified it to control the volume on my 20 year old TV set, and loaded it into an Atmel AT89C2051, which I mounted on a small piece of Veroboard.

The project was very satisfying. Thank you for the article. Interested readers can view the source code on my web site:

http://www.users.bigpond.com/ alphaelectronics.

Ross Willson Sydney Australia

## Amplifier for electrostatics?

High-voltage, high-power transistors, such as CRT deflection transistors, exist. Two examples are the MJL16218 and S2000AF.

Can anyone tell me if a highvoltage, low-distortion transistor amplifier capable of driving electrostatic loudspeakers directly has ever been designed? If not, does anyone think that such an amplifier would be feasible using such transistors? **Ged Landon** via e-mail

#### An unskilled generation

With regard to Simon Wright's article 'Exploiting Third World skills', in the January issue, the problem is not a shortage of electronics graduates. The problem is that British companies don't train people.

I have had a degree in Communication and Electronics since 1993 and I am still unemployed. I have only been able to find short-term temporary work from time to time. Of course, reading newspaper jobs sections will reveal many jobs for electronics engineers, but they all require five years experience.

There are very few training positions. The few that do exist usually want recent graduates with a 2.1 or above.

The real problem is not immigration policy. It is that two generations of school and university leavers have grown up unemployable and we have finally run out of skilled workers. *Malcolm Lisle Gateshead* 

#### Is crossover not over?

I was surprised that cross-over distortion can still generate a heated exchange in your columns. I refer to 'Better buffers rebuffed' in February 2001 issue.

For me the problem was largely solved for me by L M Shaw's article in *Wireless World*, June 1969, and the refinement proposed by Peter Baxandall in *Wireless World* for the following September.

Then came the very elegant 'current-dumping' configuration used in the Quad 401. I think this design also originated from Baxandall.

I think the editor should not be afraid to use his blue pencil on comments about correspondents' life styles, and whether they choose to be troglodytes or not. A lot of internet material, mostly from the USA, shows how low things can sink if not moderated.

As cross-over is rather old-hat, perhaps Mr Bongiorno would like to turn his talents to help America find means to reduce its green-house gas production without too much pain for its population?

Justin Underwood Much Marcle Herefordshire

Justin, when contributors to the letters pages make unnecessarily harsh or derogatory criticisms, I remove them. However, if I feel that derogatory criticisms are justified, or might give readers a flavour of their author's character, thus adding information to the message being conveyed, I leave them in. Did you notice how Dave Kimber didn't respond in kind? Ed.

## What is sky-scattered sunlight?

I have a couple of questions that I would like to put to your readers.

Colour television, based on the British PAL system, started in Australia in 1975. The bible of TV, recommended to all the technicians was 'Colour Television: The PAL System', by G N Pratchett. It was first published 1967 by Norman Price, London.

My question has to do with the colour of TV white, normally called 'illuminant D', which has a colour temperature 6500 kelvin. Pratchett says this is the colour temperature of "sky-scattered sunlight" and/or "sky-scattered daylight".

What do these terms mean and are they the same thing? Does it mean the light reflected off a white sheet of paper placed in the open shade? Where in Britain was it measured? I've heard Scotland or Wales mentioned. Gary Yates Sydney Australia

#### Boobs

Two errors appeared in redrawn circuit diagrams in the February 2001 issue. Apologies to you, and to the authors concerned.

On page 134, in the digital metal detector circuit, the device marked  $IC_3$  should be a 7490 – not a 555.

In the ACMOS frequency tripler on page 140, the 47pF capacitor should be in the series path to the *left* of the shunt branch containing the  $l\mu$ H inductor rather than to the right of it. The circuit will not work as shown.



# **ADVERTISERS' INDEX**

| BETA162                   | LANGREX223              |
|---------------------------|-------------------------|
| CONFORD                   | PICO203                 |
| COOKE INTERNATIONAL238    | QUICKROUTE162           |
| CRICKLEWOOD               | MILFORD INST210         |
| CROWNHILL                 | RAMCO167                |
| DISPLAY ELECTRONICS       | RD RESEARCH167          |
| DATAMANOBC                | SEETRAX210              |
| EPTSOFTIBC                | SIGHTMAGIC203           |
| INTEC ASSOCIATES162       | SURREY ELECTRONICS223   |
| JOHNS RADIO179            | TELNETIFC               |
| JPG ELECTRONICS223        | TEST EQUIP SOLUTIONS    |
| KOMPASS                   | TIE PIE                 |
| LABCENTER ELECTRONICS 193 | WEB PAGES 232, 233, 234 |

As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

The pre-paid rate for semi-display setting is £17 per single column centimetre (maximum 4cm). Box number £22 extra. All prices plus 17½% VAT. All cheques, postal orders etc to be made payable to Reed Business Information. Advertisements together with remittance should be sent to Electronics World Classified, 12th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Fax: 0208 652 3981. Tel: 0208 652 8339

# Service

Link

# ARTICLES WANTED

#### Rack Enclosures New and Used most sizes 16U to 50U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from £45 +vat

M&B Radio 86 Bishopsgate Street Leeds LS1 4BB Tel. 0113 2702114 Fax. 0113 2426881

### **TOP PRICES PAID**

For all your valves, tubes, semi conductors and ICs. Langrex Supplies Limited

1 Mayo Road, Croydon, Surrey CR0 2QP TEL: 020 8684 1166 FAX: 020 8684 3056

# FOR SALE

## RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.

WATERBEACH ELECTRONICS www.rlaver.dial.pipex.com TEL: 01223 862550 FAX: 01223 440853

Do you have a web site? Then why not let our readers know about it. See our web section on pages 232, 233, 234





Switched Mode PSU Power Factor Correction designed to your specification

Tel/Fax: 01243 842520 e-mail: eugen\_kus@cix.co.uk Lomond Electronic Services



but no leads. Phone David Martin 01279 506212. WIRELESS WORLD magazines for sale, 1976

to 1999, please telephone/fax S. Jacovides 020-7272 7139 or e-mail: jacovides@btinternet.com

QTY Electronic Equipment, Components, Data Books etc. £550 ono. Tel/Fax 01280 848626. APPOINTMENTS

## SOFTWARE AND SYSTEMS ENGINEERS (Two Posts)

#### Daresbury Laboratory, Warrington, Cheshire

The Council for the Central Laboratory of the Research Councils (CLRC) at its Daresbury Laboratory, in North Cheshire, operates the UK National Synchrotron Radiation Source (the SRS). Based around a complex of three particle accelerators (Linac, Booster Synchrotron and Storage Ring) it provides world-class research facilities to a large user community from academic institutions and industry.

The Electronics and Controls Group provides design, development and operational support to maintain the SRS as a world-class facility. This includes an extensive programme of development on the SRS Control System, which is based on PC clients and embedded servers. In addition there are ongoing developments in distributed control system design, control of power converters and digital signal processing of beam position detectors.

Two vacancies exist in the Electronics and Controls Group; one as a Software Engineer and the second as a Systems Engineer. The Software Engineer will have responsibilities for application software development in C, Visual Basic and Object Orientated languages, development of databases and web page generation. The System Engineer will have responsibilities for the design of embedded systems, software and hardware, system design and interfacing to equipment.

Candidates should have a good honours degree in physics, computer science, electronic engineering or a related discipline. Knowledge of software design and experience in programming is essential while exposure to real time OSs, Linux, Microsoft Windows development, Visual Basic or 'C' is desirable Previous experience with VME systems, embedded systems, network protocols or Unix would be advantageous. The ability to work effectively within a team is essential. Further information about this post is available from Mark Heron. Tel: (01925) 603210 or email m.t.heron@dl.ac.uk

The salary range is between £18,620 and £26,600. Further progression is dependent upon performance. A non-contributory pension scheme, flexible working hours and a generous leave allowance are also offered.

Application forms can be obtained from: Recruitment Office, Human Resources Division, Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD. Telephone (01925) 603864 quoting reference VND047/01. More information about CLRC is available on the worldwide web at http://www.cclrc.ac.uk

All applications must be returned by 14 February



2001. The CLRC is committed to Equal Opportunities and to achieving the Investors In People standard. A no smoking policy is in operation.

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

Please Mention Electronics World When Replying to advertisements

# Need directing to filters...

# cables, connectors or sockets?

Whatever your business needs find it on kompass.com.

# www.kompass.com

1.5 million companies worldwide at your fingertips. Telephone: +44(0)1342 335876.



The National Instruments Measurement and Automation Catalogue 2001 is the leading resource for engineers and scientists seeking the most effective customer-defined measurement and automation solutions. The catalogue details the complete line of NI products with comprehensive tutorials, product specifications and selection advice – all designed to help engineers and scientists develop integrated networked measurement and automation applications.

Tel: 01635 523545 Fax: 01635 524395 E-mail: info.uk@ni.com Web: www.ni.com/uk

CIRCLE NO.125 ON REPLY CARD



**ELECTRONICS WORLD** is the longest established magazine in the industry, with a history of over 80 years.

The editorial is the most respected in the industry, presenting ideas to innovate and improve products.

For all your advertising needs Call Pat 0208 652 8339 E-mail: Patbunce@rbi.co.uk

CIRCLE NO.127 ON REPLY CARD



#### Hioki's New 8807/8808 Memory Recorder

These compact, light recorders have 2 or 4 analogue channels with isolated inputs, PC card slot, fax/modem communication function, versatile trigger functions and 3-way power. They are ideal for a variety of applications requiring long memory lengths and high transient speed capability.



CIRCLE NO.126 ON REPLY CARD



How would you like to advertise in a marketplace where your products and services will be seen by the right people?

Then why not be seen in Electronics Weekly's classified section, ARENA?

If you would like further information, contact Denise Stupart on:

020 8652 3034

CIRCLE NO.128 ON REPLY CARD

# 'Electronics and Computing **Principles V7** '95, '98, NT or 2000

Studying electronics or computing or just want to keep up-to-date in a easy and able way, then this fully interactive soft me is for you.



#### Visit CDISOTLCO or telephone for full etails of more than a thousand menu items.

#### **Electronics:-**

Atomic Structures, DC Current flow, Basic Electronics, Simple DC Circuits, Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series/Parallel Resistors, AC Measurements, AC Voltage and Current, AC Theory, RCL Series/Parallel Circuits, Capacitance, Capacitors, Inductance, Inductors, Impedance, Communication System, Signals, Attenuators, Passive/Active Filters, Tuned Circuits, Coupling and-Selectivity, Oscillators, Circuit Theorems. Diode Theory, Diode Applications, Transistor Theory, Bipolar Transistor Configurations, Transistor Circuits, Field Effect Transistors, Opera Amplifier Theory and Applications, Sum and Difference Amplifiers. **Electrical:-**

and AC Power, SCR, Power Supplies, Voltage Regulators gnetism, Motors/Generators, Transformers, Three Phase Systems. **Digital Techniques:-**

ic Gates, Flip Flops, Combinational Logic, Counters, Counting, Shift isters, Logic Interfacing, Timers, Boolean Algebra and DeMorgan's

#### Microprocessors and PIC Microcontrollers:-

Basic Micro-Computer, Busses, A.L.U, Clock and Reset, Instructions and ntrol, Memory Cells, ROM and RAM, Memory Addressing, Iructions, PIC Introduction, PIC16F84 Architecture, PIC16C71 A/D, Byte, Bit, Literal and Control Instructions.

#### Personal user £99.95 A/AT Education £299.95 +VAT (Includes unlimited multi-user site licence.)

#### Measurement and Component Testing:-Analogue multi-meter, Measurement, Component Testing. Mathematics:-

Simple Numbers, Number Types, Roots, Triangle Ratiofs, Triangle Angles, Area, Surface Area and Symmetry, Volume, Percentag Ratio's, Fractions, Vectors, Circle Angles, Laws, Algebra Rule Powers, Simplifying, Equations, Graphing, Slope and Tra-Angles, Complex Numbers, Statistics, Lottery Number P Science.

#### **Computer Science:-**

Hardware Devices, Data Structures, Data Files, Binar Numbers, Binar Arithmetic.

#### Toolbox:-

DC Calculations, AC Calculations, Numbers, Application Self-Assessment Questions:-

DC, AC, Power, Semi-Conductors, Op-Amps, Digital, Mathematics **Components and Equipment Picture Dictionary:-**High quality digital camera images and explanatory text.

ELECTRONICS LAB (Optional add-on hardware).

eptsoft limited. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel: +44 (0)1376 514008. Fax: +44 (0)870 0509660. Email: info@eptsoft.com. Switch, Delta, Visa and MasterCard accepted. No additional postage or airmail charges.

# STILL THE WORLD'S MOST POWERFUL PORTABLE

# PROGRAMMERS?

NEW MODEL

nbmbrbs

INTELLIGENT UNIVERSAL PROGRAMMER

SURELY SOMEONE SOMEWHERE HAS DEVELOPED A PORTABLE PROGRAMMER THAT HAS EVEN MORE FEATURES, EVEN GREATER FLEXIBILITY AND IS EVEN

ACTUALLY, NO. BUT DON'T TAKE OUR

WORD FOR IT. USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPARE

BETTER VALUE FOR MONEY.

......

TUNTINIAN - DE

......

SURELY NOT.

CIRCLE NO. 103 ON REPLY CARD

## DATAMAN-48LV

£495+VAT

( (

- · Plugs straight into parallel port of PC or laptop
- Programs and verifies at 2, 2.7, 3.3 & 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

#### S4 AMAN DA

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

#### MODULE S4 GAL

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular, compilers

## SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

## MONEY - BACK 30 DAY TRIAL

£795+VAT

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund



0 Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!



Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK Telephone +44/0 1300 320719 Fax +44/0 1300 321012 BBS +44/0 1300 321095 (24hr) Modem V.34/V.FC/V.32bis Home page: http://www.dataman.com FTP: ftp.dataman.com Email: sales@dataman.com