Design competition -3 prizes worth $£ 900$ in fotal ELECTRONICS WORLD IIILIII
MARCH $2001 £ 2.80$

Free gift with this issue: 555 fimer that runs off 1.5 V

Gircuif ideas:
 PIC frome check for PPP

Road ice warring
Automatic antenina
atitenuator
Dry cell charger
Prog. voltrage reference
Crystal ref. sinewave
Simple theff alarm
Power chopper

Planar resistor design

 Wireless 32-channiel volimeter
Tenet
 Tel: 02476650702

Hewlett Packard
8642A - high performance R/F synthesiser ($0 \cdot 1-1050 \mathrm{MHz}$)
3335A - synthesiser ($\mathbf{2 0 0 H z}-81 \mathrm{MHz}$)
Hewlett Packard
436A power meter and sensor (various)
from $£ 750$
437B power meter and sensor (various)
from $£ 1100$
Hewlett Packard
Wandel \& Goltermann
SPECIAL OFFER
PCM-4 PCM Channel measurement set
(various options available)
from $£ 5500$
Marconi 6310 - programmable sweep generator (2 to 20 GHz) - new
Marconi 6311 Prog'ble sig. gen. ($\mathbf{1 0 M H z}$ to 20 GHz) $£ 4000$
Marconi 6313 Prog'ble sig. gen. (10 MHz to 26.5 GHz) £6250
Hewlett Packard
5370B - universal time interval counter
£1500
Hewlett Packard 8662A synth. sig. gen. (10 kHz to 1280 MHz)
$£ 8250$
Hewlett Packard 3324A synth. function/sweep gen. (21 MHz)
OSCILLOSCOPES
Gould 40020 MHz -DSO - 2 channel
Gould 142120 MHz - DSO - 2 channe
Gould 142120 MHz - DSO - 2 channel
Gould 4068150 MHz 4 channel DSO
Gould 4074100 MHz - $400 \mathrm{Ms} / \mathrm{s}$ - 4 channel
Hewlett Packard 54201A - 300MHz Digitizing
Hewlett Packard 54600A - $100 \mathrm{MHz}-2$ channel
Hewlett Packard 54610A - $500 \mathrm{MHz}-2$ channel
Hewlett Packard $54502 \mathrm{~A}-400 \mathrm{MHz}-400 \mathrm{MS} / \mathrm{s} 2$ channel
Hitachi V152N212N222N302BN302FN353FN550BN650F
intron $2020-20 \mathrm{MHz}$. Dual channel D.S.O. (new)
lwatstu SS 5710/SS 5702
Kikusui $\operatorname{COS} 5100-100 \mathrm{MHz}$ - Dual channel Lecroy $9354 \mathrm{M} 500 \mathrm{MHz}-2 \mathrm{Gs} / \mathrm{s}-4$ channel ecroy 9314L 300 MHz - 4 channels
Megilips PM3094 - 200MHz-4 channe. (new) Philips $3295 \mathrm{~A}-400 \mathrm{MHz}$ - Dual channe
Philips PM3392-200MHz-200Ms/s - 4 channel Philips PM3070-100MHz - 2 channel - cursor readout Tektronix $465-100 \mathrm{MHZ}$ - Dual channel
Tekironix $464 / 466$ - 10 MHZ - (with AN. storage)
Tektronix $468-100 \mathrm{MHZ}$ - D.S.O.
Tektronix $2213 / 2215-60 \mathrm{MHz}$ - Dual channel
Tektronix $2220-60 \mathrm{MHZ}$ - Dual channel D.S.O Tektronix $2235-100 \mathrm{MHZ}$ - Dual channel
Tektronix $2221-60 \mathrm{MHz}$ - Dual channel D. Tektronix $2221-60 \mathrm{MHZ}$ - Dual channel D.S.O
Tektronix 2245 A - 100 MHZ - 4 channel Tektronix 2440 - $300 \mathrm{MHz} / 500 \mathrm{MS} / \mathrm{s}$ D.S.O Tektronix $2445 \mathrm{~A} / 2445 \mathrm{~B}$ - 150 MHz - 4 channe Tektronix $2445-150 \mathrm{MHZ}$ - 4 channel + DMM Tektronix TAS $475-100 \mathrm{MHZ}-4$ channel
Tektronix $7104-1 \mathrm{GHz}$ Real Time - with 7 A29 $\times 2,7 \mathrm{~B} 10$ and 7815 Tektronix $2465 / 2465 \mathrm{~A} / 2465 \mathrm{~B}-300 \mathrm{MHz} / 350 \mathrm{MHz} 4$ channel
Tektronix $2430 / 2430 \mathrm{~A}$ - Digital storage -150 MHz
Tektronix $2467 \mathrm{~B}-400 \mathrm{MHz}-4$ channel high writing speed
Tektronix TDS 31050 MHz DSO-2 channel
Tektronix TDS 31050 MHz DSO - 2 channel
Tektronix TDS 340 A 100 MHz DSO -2 channel
Tektronix 544 A 500 MHz 4 channel
SPECTRUM ANALYSERS
Ando AC $8211-1.7 \mathrm{GHz}$
Avcom PSA-65A-2 to 1000 MHz
Anritsu MS 610 B 10 $10 \mathrm{KHz}-2 \mathrm{GHz}$ - as new
Advantest/TAKEDA RIKEN $-4132-100 \mathrm{KHz}=1000 \mathrm{MHz}$
Hewlett Packard 8756A/8757A Scaler Network Analyser
Hewlett Packard 853A Mainframe +8559 A Spec. An. (0.01 to 21 GHz
Hewlett Packard 182T Maintrame +8559 A Spec. An. (0.01 to 21 GH
ewlett Packard 8568 A ($100 \mathrm{~Hz}-1500 \mathrm{MHz}$) Spectrum Analyse
Hewlett Packard $8567 \mathrm{~A} \cdot 100 \mathrm{~Hz} \cdot 1500 \mathrm{MHz}$
Hewlett Packard 8752A - Network Analyser (1.3 GHz)
Hewlett Packard 8754 A - Network Analyser $4 \mathrm{MHz}-1300 \mathrm{MHz}$
Hewlett Packard 8591E 9KHz-1.8GHz
Hewlett Packard 3561A Dynamic signal analyser
IFR A7550-10KHz-1GHz - Portable signal analyser
Meguro - MSA $4901-30 \mathrm{MHz}$ - Spec.Analyser
Meguro-MSA 4912 -I MHz - IGHZ Spec.Analyser
Tektronix 2712 Spec . Analyser ($9 \mathrm{kHz}-1.8 \mathrm{GHz}$)
Wandel \& Goltermann TSA-1 system analyser ($100 \mathrm{~Hz}-180 \mathrm{MHz}$)
Wiltron $6409-10-2000 \mathrm{MHz}$ R/F Analyser

Quality second-user test \& measurement equipment

NEW PHONE CODE FOR GOVENTRY 02476

Radio Communications Test Sets

Marconi 2955	£2000
Marconi 2955B	$£ 4500$
Antritsu MS555A2	$£ 1200$
Hewlett Packard 8922B (GSM)	$£ 6950$
Schlumberger Stabilock 4031	$£ 3500$
Schlumberger Stabilock 4040	$£ 1500$
Racal 6111 (GSM)	$£ 1750$
Racal 6115 (GSM)	$£ 3995$
Rhode \& Schwarz CMTA 94 (GSM)	$£ 4995$

Fax 02476650773

MISCELLANEOUS

Eaton 2075-2A - Noise Gain Analyse
 Eatun $5100 \mathrm{~A} / 5100 \mathrm{~B} / 5200 \mathrm{~A}$ - Calibration Units (various available)

 Fluke 2620 Data BucketsHewlett Packard 339A Distortion measuring set
Hewlett Packard 435A + 435B Power meters
Hewlett Packard 778D Dual-Directional Couplers
Hewlett Packard 3488A - Switch/Control unit
Hewlett Packard 3457A multi meter 6 1/2 digit
Hewlett Packard 3784A - Digital Transmission Analyser
Hewlett Packard 3785A - Jitter Generator \& Receive
Hewlett Packard 6033A - Autoranging System PSU (20v-30a)
Hewlett Packard 6033A - Autoranging System PSU
Hewlett Packard 6624A - Quad Output Power Supply
Hewlett Packard 6632A - System Power Supply ($20 \mathrm{v}-5 \mathrm{~A}$
Hewlett Packard 811A Pulse/Function Generator ($1 \mathrm{~Hz}-20 \mathrm{MHz}$)
Hewlett Packard 8112A - 50MHz Pulse Generator
Hewlett Packard 8350B - Sweep Generator Maintrame
Hewlett Packard 8656A Synthesised signal generator
Hewlett Packard 8656B Synthesised signal generator
Hewlett Packard 8657A Synth. sig. gen. ($0.1-1040 \mathrm{MHz}$)
Hewlett Packard 8660D - Synth'd Sig Gen ($10 \mathrm{KHz}-2600 \mathrm{MHz}$)

Hewlett Packard 16500A + B - Logic Analyser Mainframes
Hewlett Packard 16500 C - Logic Analyser Mainframe
Hewtett Packard 16501A/B \& C - Logic Analyser System Expander Frame Hewlett Packard 379000 - Signalling test set
Hewlett Packard 53508 - 20Hz Frequency Counter
Hewlett Packard 83220A DCS/PCS test sels
Hewlett Packard 8657 B - 100 KHz -2060 MHz Sig Gen Hewlett Packard 8657D - XX DOPSK Sig Gen
Hewlett Packard 8130A - 300 MHz High speed pulse generator
ni 1066 - Demu
Marconi 1066B - Demuitiplexer \& Frame Alignment Monitor (140MBIT to 64KBIT) NEW
Marconi 2305 - modulation meter
Marconi 2610 True RMS Voltmeter
Philips 5515 - TN - Colour TV pattern generator
Philips PM $5193-50 \mathrm{MHz}$ Function generator
eader 3216 Signal generator $100 \mathrm{KHz}-140 \mathrm{MHz}$ from £

Leader 3216 Signal generator $100 \mathrm{KHz}-140 \mathrm{MHz}$ - AM/FM/CW with built in FM stereo modulator (as new) a snip at
Racal 1992-1.3GHz Frequency Counter
Rohde \& Schwarz NRV dual channel power meter \& NAV Z2 Sensor
Rohde \& Schwarz SMG (B1/B2) sig. Gen. 1GHz
Systron Donner 6030 - 26.5 GHz Microwave Freq Counter
ektronix ASG100 - Audio Signal Generator
Wayne Kerr 3245 - Precision Inductance Analyser Wayne Kerr 6245 - Precision Component Analyser

All equipment is used - with 30 days guarantee and 90 days in some cases
Add carriage and VAT to all goods.
Telnet, 8 Cavans Way, Binley Industrial Estate, Coventry CV3 2SF.

163 COMMENT

Analysts rush in..

164 NEWS

- Magnetic memory closer to reality
- $£ 7 \mathrm{~m}$ funding for mobile hazard research
- Bluetooth gets a five-fold boost
- Ultra-fast transistors
- UK joins in MEDEA+ research
- Transistor gate just three atoms thick

170 WIRELESS 32-CHANNEL VOLTMETER

Read up 32 analogue voltages to 12 bit accuracy via four remote modules using Pei An and Ping Hua Xie's wireless data logger. Its central controller links to a PC.

180 HARD-DRIVE HAVOC

Your hard drive just took a dive and you haven't backed it up for months. Is there any hope of recovering your information? Andrew Emmerson reports.

184 NEW FILTER/MIXER CHIP
Zetex's new versatile high- Q bandpass filter chip operates to 150 kHz and its integral mixer extends operation to 700 kHz . This device is the subject of our design competition on page 187.

DESIGN COMPETITION

Turn to page 187 to find out how to enter our design competition. You could win one of three prizes worth $£ 900$ in total.

188 BEGINNERS' CORNER: BALANCED CIRCUITS

Balanced circuits play an important role in communications and in many other applications from audio to microwave frequencies. Ian Hickman explains why.

194 BEAUTIFUL RESISTORS

Les Green looks at the rarely discussed topic of the effects of stress in planar resistors and explains how to reduce it.

199 NEW PRODUCTS

New product outlines, edited by Richard Wilson

211 SOUND REINFORCEMENT AMPLIFIER

Needing a sound-reinforcement system for use in a medium size hall, Ben Sullivan came up with this unusual and versatile design.

214 CIRCUIT IDEAS

- Ice alert
- Battery-operated alarm
- Precision programmable reference
- PIC frame-check code for PPP
- Sinewave with crystal accuracy
- Auto input attenuator for radio
- Versatile power switcher

224 PHONE FEAR

The only thing scientists agree about on the mobile phone health question is that you cannot rule out the risk factor. So where does that leave the worried consumer? Melanie Reynolds reports.

227 CABLE FAULT LOCATOR

David Huddart's simple reflectometer is used with a reasonably fast scope to find faults in cables. It can test cables up to

200 m long and resolve to 100 mm yet it comprises only one IC and three transistors.

232 WEB DIRECTIONS

Useful web addresses for the electronics engineer.

236 LETTERS

B-class Class B, LF communications, Radio interference generator? E , fancy that, Speaker performance, Remote satisfaction, Amplifier for electrostatics? What is sky-scattered sunlight?

Collage created from Les Green's resistor stress patterns

Hard-drive havoc - Andy Emmerson reports on what you can do to recover the data from your crashed hard drive - page 180.

Health hazards from mobile phone - when will we have the facts? Melanie Reynolds' reports on page 224.

FREE WITH THIS ISSUE
555 timer with guaranteed 0.9 V operation (UK magazines and subscribers only). Turn to page 230 to find out more aloout it.
 - with EDS!

electronic design STUDIO

Introducing EDS Advance the new modular electronics design system that includes simulation, schematic, PCB, autorouting and CADCAM modules as standard.

Our powerful integrated development environment brings powerful management to your projects and now features 3D style PCB footprints, Viper rip up and retry autorouter, shape based design rule checking, full copper pour support with unlimited automatic zones and split power planes, cross probing between schematic/pcb/netlist, netlist navigator, wizards to automate key features, DTP quality feature rich schematics, 2000 look and feel, and a wide range of import/export optlons.

If you are struggling with your existing system and feel its time for a change, why not give us a call and we will send you our free information pack. Or visft our web site and download a free trial copy of EDS.

Try before you Buy at www.quickroute.co.uk
 SYSTEMS

Qulckroute Systems Ltd, Regent House, Heaton Lane, Stockport SK4 1BS UK Tel 01614760202 Fax 01614760505 Email info@quicksys.demon.co.uk

Standalone Data Loggers
Low-cost standalone data capture solution

T-Logger
44.99 +Vat

Micro power standalone single channel temperature logger

X-Logger
$69.99+$ Vat
Micro power standalone voltage logger with 1 temperature and 3 voltages channels

- Initialised by a PC via a RS232 port
- Catch data and store the values into its on-board memory for future retrieval
- Data can be downloaded into a PC and viewed though Excel or other spreadsheet packages
- Win 95/98 driver for initialisation and download
- Ultra-low power consumption
- Sensors available for X-logger: temperature, humidity, light intensity, etc.

Other Standalone Loggers

* Standalone Event Loggers (record occurrence of events)
* Standalone Data Loggers with memory up to 8 Mega byte.
* Intec designs standaione data loggers to your specification

Intec Associates Limited www.intec-group.co.uk
11 Sandpiper Drive. Stockport, Cheshire. SK 3 8UL. UK
Tel: +44 (0)1614775855 Fax: +44 (0)161 4775755

CIRCLE NO. 105 ON REPLY CARD

IPCRH-PMONDLS

Prototype PCBs

from your usual manufacturer for a fraction of the cost

> FREE Layout Software FREE Digital-Multimeter FREE PHONE 08003898560

Analysts rush in...

EDITOR

Martin Eccles
02086523614
CONSULTANTS
Ian Hickman
Philip Darrington
Frank Ogden
EDITORIAL ADMINISTRATION
Jackie Lowe
02086523614
EDITORIAL E-MAILS
jackie.lowe@rbi.co.uk
group sales executive
Pat Bunce
02086528339
ADVERTISEMENT E-MAILS
pat.bunce@rbi.co.uk
ADVERTISING PRODUCTION
02086528339
PUBLISHER
Mick Elliott

EDITORIAL FAX
02086528111
CLASSIFIED FAX
02086528938
NEWSTRADE ENQUIRIES
02079077777
ISSN 0959-8332

For a full listing of
RBI magazines:
http//www.reedbusiness.com

No group of people made themselves look more foolish in 2000 than the financial analysts. At the beginning of the year they valued high-tech companies so extravagantly that organisations like ARM and Bookham were propelled into the FTSE 100 of the UK's most valuable companies.
By the end of the year, these values had been decimated. Yet the companies involved were doing very nicely, thank you, in executing their business plans. It wasn't the businesses that had changed - it was the analysts' views of them. The analysts were fools in Q1 or fools in Q4 they can take their pick.
To an extent, the hysterical nature of the analysts can be blamed on the attitude of their employers - stockbrokers, investment banks and the like - who require them to produce recommendations which 'churn' stock i.e. which make people want to buy or sell stock, so that the employers can make a commission on the deal.
On the other hand there's also the inexperience - and sometimes even the stupidity - of the people involved. As one ceo puts it: "As long as 23 year-old analysts spit out bad stuff, there's a problem with market perceptions - if they only realised the explosion happening in electronics!"
Some analysts are confused because they are employed to study the industrial world in sectors, and assume that the trends in a sector apply to every company within it, whereas different companies within a sector can operate in different markets, and perform in accordance with different industrial and technological cycles.
So it could be that the ' 23 year-olds' look at bad figures from Intel, Apple, Dell and Microsoft and think: 'High-tech's a bummer,' when what they should be concluding is: 'The PC business is a bummer'.
But the PC business should not be seen as an indicator of the state of the electronics industry. The commoditisation of the PC, with fewer people willing to upgrade regularly, while mainstream PC prices are dropping in line with Moore's Law, spells the end of the PC's role as
the main driver of growth for the electronics industry.
"People seem to be surprised that Intel, which is tied to the PC industry, puts out these warnings about reduced growth", says Malcolm Penn, chairman of Future Horizons, "but it's obviously going to grow slower than the rest of the industry. The PC industry is growing at half the rate of the semiconductor industry".
Dataquest not only predicts slowing growth in the value of semiconductors going into PCs, but forecasts an actual decline in the market for semiconductors for PCs starting in 2002.
In 2000, for the first time since the 1980s, the main chip types which go into PCs - CPUs and DRAMs - grew by less than the industry

average

By contrast, chips for applications such as mobile phones, digital consumer,car multimedia, storage, smart card and networking are growing so fast that they will represent 40 per cent of the chip market in 2004.
So the PC industry's problems should not be taken as symptomatic of the state of the electronics industry as a whole. The only thing that can save the Intel PC business model of constant upgrading via more powerful processors, extra DRAM and more elaborate software, is the rapid deployment of inexpensive xDSL and cable modem installations giving the opportunity for more services to be offered to users.
However, despite EU regulations opening up all European markets to local loop unbundling in 2001, Dataquest is pessimistic about domestic adoption of DSL and cable modems, estimating that, in 2005, only 8 per cent of Internet PC connections will be broadband through xDSL or cable modems
Instead, mass market broadband connectivity may come to the mass market via the TV using low-cost, or free, 'Internet Appliances' bundled with attractive entertainment, new services and interactivity.
Such appliances could prove to be the deathknell of the PC's aspirations to be the central device in a connected world.

David Manners

SUBSCRIPTION HOTLINE
Tel (0) 1444475662 Fax (0) 1444445447

SUBSCRIPTION QUERIES
rbp.subscriptions@rbi.co.uk Tel (0) 1444445566
Fax (0) 1444445447

Electronics World is published monthly. By post, current issue $£ 2.65$, back issues, if available, $£ 3.00$. Orders, payments and general correspondence to L.333, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tlx: 892984 REED BP G. Make cheques payable to Reed Business Information Lid Newstrade: Distributed by Markefforce (UK) Lid, 247 Tottenham Court Road London WIP OAU 02072615108.
Subscriptions: Quadrant Subscription Services, Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 30H. Phone 01444445566 . Please notify change of address.
Subscription, 1 year UK $£ 36.002$ years $£ 58.003$ years $£ 72.00$. Europe/Eu 1 year $£ 51.002$ years $£ 82.003$ years $£ 103.00$ ROW 1 year $£ 61.002$ years $£ 98.003$ years $£ 123$

[^0]
£7m funding for independent research into mobile phone hazards

The UK's biggest ever investigation into the possible health effects of mobile phone use will see the Government and industry ploughing $£ 7 \mathrm{~m}$ into an independent research programme.
Industry will provide 50 per cent of the funding for the independent programme over the next three years.
There is still no proven scientific link between mobile phone use and potential health problems but the amount of research being done around the world is growing.
Speaking at the 'Mobile phones is there a health risk?' conference last week was Dr Sheila Johnston, neuroscience consultant to the UK mobile phone industry. "There is a lot
of research but the problem is a lot of people don't understand it. The gap right now is in human research," said Johnston who believes this is where the latest programme will be concentrated.
"There is no question that microwave radiation can be hazardous to human health," said James Lin, professor of Bioengineering at the University of Illinois. "The question is how hazardous is it?"
Concerns about negative results from the investigation being quashed, as happened with the BSE mad cow saga, were dismissed by Michael Repacholi of the World Health Organisation. He believes the lessons
have been learnt: "The UK Government is BSE sensitive which may even cause an over reaction in the EMF (radiation) situation."
Leaflets setting out advice on the use of mobile phones will also now be included with every new phone as recommended by the independent Stewart report in May.
The advice includes keeping calls short, especially for those under 16 , not using a phone while driving, and considering the SAR (specific absorption rate) value of phones when choosing a model. However, the standard method of measuring SAR is not expected to be set until the middle of next year.

Melanie Reynolds

UK-based mobile phone start-up warns rivals that it's "not just another wannabe"

UK-based start-up Sendo is set to take on the big mobile phone
manufacturers in the European market by targeting the network operators.
"The operator is the key purchaser, the key decision maker, in what gets to market," said Hugh Brogan, CEO. "The operators are looking to retain customers, they're looking to differentiate themselves."
Brogan believes the company is ideally placed to meet this need by offering unique physical designs and customised software. Its manufacturing technique also means it can ship products within 48 to 72 hours.
A basic electronics module is manufactured in China and shipped to
the Netherlands. On receipt of a customer order the module is programmed and the casing is fitted to completely enclose the module.
The first product, announced in Italy last week, is "technologically advanced" according to Brogan: "We want to show we're not just another wannabe."
The company is aiming to sell a "few million" phones in the first year and said sales of less than 500000 would be enough to break even. In the UK, the first products should be offered through Virgin Mobile. Sendo was founded in August 1999 with an initial $\$ 10 \mathrm{~m}$ of funding from Hong Kong telecoms company CCT. Since then CCT has invested a further

$\$ 25 \mathrm{~m}$ and owns 35 per cent of the company. Brogan said its present plans did not require further investors but if it "bagged a big deal" then more cash will be needed.

Sendo is aiming to sell a" "few million" phones in the first year and said sales of less than 500000 would be enough to break even.

Bluetooth gets a five-fold boost

TDK Systems has announced a Bluetooth product that operates at a distance up to five times greater than required by the specification.
The mobile communications specialist's Bluetooth PC Card can connect to another Bluetooth device up to 50 m away while the specification requires operation at 10 m . TDK said this performance is achieved by using new ceramic antenna and input
technology.
The card is expected to ship in the first quarter of next year.
The company is also developing a next generation Bluetooth $/ 10 / 100$ Ethernet PC card to combine fixed LAN connection and wireless Bluetooth in one PC card slot.
It has been working in partnership with UK-based Cambridge Silicon Radio.

A reprieve for Moore's law?

Researchers from Purdue University in the US have developed a transistor they claim could keep Moore's Law running until 2025.
A simulation tool showed that the double-gate transistor works as well as a conventional device down to a tenth of the channel length. A gate would function easily down to 10 nm . "If we could learn how to manufacture a device like this we could extend Moore's Law to the year 2025," said Professor Mark Lundstrom from purdue.

Unique reader offer: x1, $\times 10$ switchable oscilloscope probes, only £21.74 a pair, fully inclusive*
*Additional pairs as part of the same order, only £19.24 each pair.

Please supply the following:
Probes
Total \qquad
Name
Address
Seen on sale for $£ 20$ each, these highquality oscilloscope probe sets comprise:

- two $\times 1, \times 10$ switchable probe bodies
- two insulating tips
- two IC tips and two sprung hooks
- trimming tools

There's also two BNC adaptors for using the cables as 1.5 m -long BNC-to-BNC links. Each probe has its own storage wallet.
To order your pair of probes, send the coupon together with £21.74 UK/Europe to Probe Offer, Electronics World Editorial, Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS.
Readers outside Europe, please add $£ 2.50$ to your order.

Specifications

Switch position 1

Bandwidth
Input resistance input capacitance Working voltage

Switch position 2
Bandwidth
Rise time
Input resistance
$1 \mathrm{M} \Omega$
Input capacitance Compensation range
Working voltage

DC to 10 MHz
$1 \mathrm{M} \Omega$ - i.e. oscilloscope i/p 40pF+oscilloscope capacitance 600 V DC or pk-pk AC

DC to 150 MHz
2.4ns
$10 \mathrm{M} \Omega \pm 1 \%$ if oscilloscope i / p is
12 pF if oscilloscope i / p is 20 pF 10-60pF
600 V DC or pk-pk AC
Switch position 'Ref'
Probe tip grounded via $9 \mathrm{M} \Omega$, scope i / p grounded

UK is set to participate in European MEDEA+ research plan

Britain is to join MEDEA + , the Europe-wide research programme which starts in January, extending the existing scheme by eight years.
A spokesperson from the Department for Trade and Industry said: "The UK will formally join MEDEA+ this January, and it's our intention to fund suitable projects."
European companies such as Philips and STMicroelectronics have benefited significantly over the last decade from MEDEA and its predecessors.

Of the 9400 man-years of research in the original MEDEA programme, only 16 came from UK firms.

While companies based in the UK were eligible, no applications for funding were made, the DTI said. This was probably due to restrictive Eureka rules.
In addition, the DTI cited limited demand for MEDEA in the UK: "The UK has a substantial semiconductor manufacturing industry, but most of the large companies are inward investors who do R\&D in their own
countries."
As inward investors change their attitude and opt to carry out research in the UK, they may choose to apply for funding.
"We are in negotiation with a number of companies including large ones," the DTI said.
The Government will also encourage small and medium sized firms to enter the programme, which will be worth a total of $\mathrm{a4bn}$ over the next eight years:

Richard Ball

Magnetic memory comes closer to reality as IBM and Infineon agree collaboration

Magnetic memory has taken a step closer with a joint development agreement between IBM and Infineon.
The two firms are to take MRAM research and develop it for production. IBM will combine its well-developed MRAM technology with Infineon's ability to manufacture high density memory.
Commercially available products both embedded memory and standalone chips \leq are expected by 2004 . MRAM, with the desirable traits of being fast, small, having a nondestructive read, being non-volatile and easy to integrate, sounds like the ideal technology.

IBM has offered glimpses of its MRAM technology over the past year at various technical conferences. At ISSCC earlier this year the firm detailed its core technology.
IBM is using a magnetic tunnelling junction (MTJ) to store data. Two electrodes of magnetic material, such as nickel/iron or cobaltiron, sandwich a thin aluminium-oxide tunnelling layer.
Information is stored as magnetic polarisation - not as a charge. When the two magnetic electrodes have the same polarisation, there is more chance of electrons tunnelling through the aluminium oxide layer, so its resistance is reduced by 20 to 30%.
By changing the magnetic polarisation of one layer, resistance is increased. This resistance is sensed using a FET.
"For 15 years or so people have been trying to use magneto-resistive materials," Roy Scheuerlein, a researcher at IBM, said earlier this year. But previous MRAMs used serially-linked MR blocks which reduced sensitivity.
"The MTJ, and the way we use it in the cell, is dramatically better," said Scheuerlein. "The power required to read is 10^{5} times better than GMR [used in hard disk drives]."
Resistance of the cell is around $2.5 \mathrm{k} \Omega$ compared with about 10Ω for a GMR head.
"We can build this on standard CMOS. It looks somewhat like a DRAM cell," Scheuerlein said.
Which is where Infineon comes in to the picture. It will apply its
expertise in building large memory arrays - as it does with DRAM today.
IBM has already produced a 1 Kbit test chip made using a standard $0.25 \mu \mathrm{~m}$ CMOS. It claims to have achieved 10 ns access time from address input to data output. Using higher performance sense amplifiers, IBM has brought this down to 3ns. At the cell level, writing bits takes a time of less than 2.5 ns .
However, MRAM is not the perfect memory. It is not as small as DRAM, but is a lot smaller than SRAM, It's not as fast as SRAM, but is quicker than both DRAM and flash.

IBM and Infineon are sure to come up against some significant hurdles in moving to production. MRAM's nonvolatility may well be the attribute that forces it through to volume production.

PCB buyers hit by material shortfalls

Material shortages are causing serious problems for electronic equipment manufacturers, according to analysts Purcon-iPro. The shortages, combined with rising prices and lengthening lead times means that buyers of PCBs face a shortage.
Purcon-iPro said there are all the signs that it is currently a sellers market.

The Headphone Amplifier Box

Balanced or unbalanced microphone or line input to headphone output
Professional portable units operating from an internal PP3 battery or external mains adaptor

* Precision transformerless balanced input * Bridged headphones output drive * Sensitivity selectable over a wide range of input levels * Low noise and distortion
* High common mode rejection * Loop through facility * Extensive RFI protection

The Balance Box (precision mic/line amplifier) The Phantom Power Box - The OneStop DIN rail mounting radio frequency interference filter and voltage transient protector for voltage and current loop process signal lines

Conford Electronics Conford Liphook Hants gu30 7QW Information line 01428751469 Fax 751223 E-mail contact@confordelec.co.uk Web http://www.confordelec.co.uk/

Remco
GENUINE GOVERNMENT SURPLUS
We currently have in stock a selection of MOD surplus electrical equipment. All items are untested and sold as seen. Please ring for more details.

Tektronics 466 Storage Oscilloscope	$£ 99.00$
Tektronics 2445 Oscilloscope 150 mhz	$£ 399.00$
Phillips 3217 Oscilloscope 50 mhz	$£ 99.00$
Gould OS300 Oscilloscope 20 mhz as new, boxed	$£ 99.00$
Gould DS 4072 Oscilloscope 100 mhz	$£ 50.00$
Racal 9009 Modulation Meter	$£ 69.99$
Static Sine Wave Inverter 8242 as new, boxed	$£ 89.00$
Megger Pat.2 Portable Appliance Tester	$£ 39.99$
Marconi 2019A Signal Generator	$£ 249.00$

Take a look at our next TENDER SALE FEBRUARY 5th -7th
You may just find what

you are looking for! (Details on our web site)
FIND OUT MORE ABOUT US ON OUR WEBSITE

CHURCH LANE, CROFT, SKEGNESS, LINCS (JUST OFF THE A52) 01754880880

Analogue and digital circuit design for the PC

Government announces dramatic shake-up plans for comms regulation

The Government has announced in a White Paper the biggest shake-up of communications and broadcast regulation for a decade.

A single regulator for the entire industry will be created including the current responsibilities of Oftel to be called the Office of Communications (Ofcom).
The White Paper also holds out the prospect of Government cash being used to accelerate the introduction of
broadband technology like ADSL. It suggests there may be a case to require higher bandwidth services to be made universally available in an attack on the slow pace of change in unbundling the local telephone network.
"We will promote the availability of widespread access to higher bandwidth services and we will look for ways to build on the public investment that is already being

Transistor has a gate just three atoms thick

Intel researchers have made transistors with gate lengths of 30 nm and using a gate dielectric just three atomic layers thick. The firm expects to be using these devices in as little as

five years.
Clock speeds will reach 10 GHz operating from a sub-1V supply. Moreover the transistor's design is compatible with current IC techniques.
"Many experts thought it would be impossible to build CMOS transistors this small because of electrical leakage problems. Our research has proven that these smaller transistors behave in the same way as today's devices and shows there are no fundamental barriers to putting them into high volume in the future," said Intel's Dr Gerald Marcyk.

The company reckons Moore's Law has at least ten years of life. "As our researchers venture into uncharted areas beyond the previously expected limits of silicon scaling, they find Moore's Law still intact," said Intel v-p Dr Sunlin Chou.
made in broadband and consider whether public support is needed to help research and develop new high-speed networks," said the White Paper.

In a joint statement Culture Media and Sport Secretary Chris Smith and Trade and Industry Secretary Stephen Byers said: "Our goal is to make the UK the safest and most reliable place to use the new communications services."

£128m for science fund

Photonics and communications technology research at universities will be benefit from an injection of Government cash into scientific research. A total of 28 research projects at universities across the country will get a share of $£ 128$ m, which will be managed jointly by the Department of Trade and Industry and the Wellcome Trust.
Inevitably biochemistry, DNA and medical research dominate the project list but there is also room for some projects related to microelectronics, photonics and multimedia.

Semiconductor analyst predicts downturn in 2001

The semiconductor industry will turn down next year, according to IC Insights, the Arizona semiconductor industry analyst.
"Over the past 30 years, the IC industry has encountered six boombust cycles," said the analyst's report, "the downturn portion of an IC industry cycle is usually triggered by global economic recession, IC industry overcapacity, or IC inventory corrections. In 2001, IC Insights believes that the IC industry will be affected by all three 'triggers'."
For this year, the company is predicting 35 per cent growth for the semiconductor industry and 79 per cent growth in the semiconductor production equipment industry.
In the UK, Malcolm Penn, chairman of analysts Future Horizons, attributed
the Q4 downturn to over-expectations by PC makers leading to inventory sell-offs. "The PC industry is growing at half the rate of the semiconductor industry," said Penn, "people seem to be surprised that Intel, which is tied to the PC industry, puts out these warnings about reduced growth. But it's obviously going to grow slower than the rest of the industry."
Dataquest not only predicts slowing growth in the value of semiconductors going into PCs, but forecasts an actual decline in the market for semiconductors for PCs starting in 2002.
IC Insights reckons semiconductor production capacity will grow 24 per cent this year but less than 10 per cent next year. It reckons the 'inventory burn' - the selling off of
semiconductors surplus to requirements - will continue until mid-2001
"Worldwide GDP is forecast to slow from 4.8 per cent growth in 2000 to 3.5 per cent or less in 2001," says IC Insights, "although not a worldwide recession, the reduction in growth will negatively impact electronic system sales in 2001."
The result of that is over-stocking of components which, says the company, usually results in pricing weaknesses which are expected to persist throughout the first half of 2001.
The report ends optimistically: "After modest growth in 2001 and 2002, IC Insights expects the IC market to increase 20 per cent or more beginning in 2003 ."

David Manners

Quality second user test equipment bought and sold All purchases backed with full one-year warranty and technical support

DATACOMMS
Fluke DSP-100 Cat 5 Cable Tester 1650
Fluke DSP-FOM Fibre Optic Meter For DSP Series
Fluke DSP-SR Smart Remote Injector for DSP-100 HP J2300A /002 64KBPS Protocol Analyser Microtest MT340 Cat 5 Tester
Microtest PentaScanner+ CAT 5 Cable Tester
3500

electrical noise

Eaton 2075 Noise Analyzer
HP 8970B 1.6GHz Noise Meter
EMC
HP 84110B Pre Production EMC Test System
R\&S EB 100 1GHz Miniport Receiver
R\&S EPZ 100 Mini Panoramic Display
R\&S HE100 1GHz Active Antenna
REQUENCY COUNTERS
HP 5371 A 500 MHz Frequency / TI Analyser
3250
7950

Marconi CPM46 Counter Power Meter 4950
Philips PM6654C/526 1.5GHz/2ns Counter Timer
1250

FUNCTION GENERATORS

HP 33120A/001 15MHz Func/Arb Wave Generator
HP 8116A 50MHz Function Generator
HP 8165A Function Generator
Philips PM5193 50MHz Function Generator

LOGIC ANALYSERS

HP 16500B Logic Analyser Mainframe	1150
HP 1650A 80 Channel Logic Analyser	1000
HP 16550A Timing Analysis Module	1950
HP 1672A 68 Channel Logic Analyser	.4500

MULTIMETERS
HP 3466A 4.5 Digit Digital Multimeter

NETWORK ANALYSERS

HP 8510C 50GHz Microwave Network Analyser
HP 8720C/006/010 20GHz Vector Network Analyser
HP 8753C 3GHz Vector Network Analyser
22500
35000
13500
Marconi 6200A 10MHz-20GHz Microwave Test Set
OPTICAL FIBRE TEST
Anritsu MN9610B Optical Power Meter
1500
Anritsu MS9710B Optical Spectrum Analyser
21500

OSCILLOSCOPES

HP 541110500 MHz Digitising Scope
HP 54602A 4 Channel 150MHz Digital Storage Scope HP 54603B 2 Channel 60MHz Digital Storage Scope HP 70700A /H25 20MS/S Digitiser Module

Philips PM3295 2 Channel 350MHz Scope

 Philips PM3295A/40 2 Channel 400MHz Scope Philips PM3394 4 Channel 200MHz Combi-Scope Tek 2445 A 200 MHz 4 Channel Analogue Scope Tek 2465N-10 350MHz Analog Scope Tek 2465B 400 MHz 4 Channel Analogue Scope Tek Current Probe Set with Amplifier Tek TAS465 2 Channel 100 MHz Analogue Scope Tek TDS 380400 MHz 2 Channel Digitising Scope Tek TOS380P As Above But With dintegral Printer
POWER METERS

HP 436AN022 RF Power Meter With GPIB
HP 438A/002 Dual Channel RF Power Meter Various HP 848x Power Sensors (from) Marconi 6960 RF Power Meter
Various Marconi 69xx Power Sensors (from)
1250 1500 3200 1500 1950 2500 1750 695 695 2500 2950

POWER SUPPLIES

HP 6282A005/028 10V/10A DC Power Supply
HP 6284A 005/028 20V/3A DC Power Supply
HP 6632A 20V/5A Power Supply
HP6652A 20V/25A DC Power Supply
HP E3631A 25V/5A DC PSU
Hunting Hivolt Series $25050 \mathrm{kV} / 5 \mathrm{~mA}$ Power Supply Kikusui PLZ300W 300w Electronic Load Philips PE1539 20V/6A DC PSU
Philips PE1541 75V/1.6A DC PSU
Thandar PL330 32V/3A DC Power Supply Weir 732 60V/1A 30W DC PSU
Weir 761 30V/4A 60W DC PSU
RF SWEEP GENERATORS
HP 8340A 26.5GHz Synthesized Sweep Generator 15500
Marconi 6311 20GHz Sweep Generator
SIGNAL \& SPECTRUM ANALYSERS
Advantest R3265 8GHz Spectrum Analyser
Advantest R3361A Spectrum Analyser Advantest R3465 8 GHz Spectrum Analyser
Advantest R4131B 3.5 GHz Spectrum Analyser Advantest R4131D 3.5 GHz Spectrum Analyser Advantest R9211A 100KHz 2 Channet FFT Analyser Anritsu MS2601B 2.2 GHz Spectrum Analyser Anritsu MS610B Spectrum Analyser Anritsu MS612A 50 Hz to 5.5 GHz Spectrum Analyser Anritsu MS 710 F 23 GHz Spectrum Analyser HP 3561A 100KHz Dynamic Signal Analyser HP 3562A 2 Channel 100 KHz FFT Analyser HP 35660A 102.5KHz Dynamic Signal Analyser HP 700002.9 GHz Spectrum Analyser System HP 8560 A 2.9GHz Spectrum Analyser HP 8591A / 021 1.8GHz Spectrum Analyser 11950 3950
4500
3950 5500
2650
6500
6950
3250
4250
2950
9000 HP 8593A 22GHz Spectrum Analyser

9500 13500 HP 8594A / 010/021 2.9GHz Spectrum Analyser 7950 HP 8901A 1.3GHz Modulation Analyser 1250 HP 8903 B 20 Hz TO 100 KHz Audio Analyser 2750 HP8970B 1.6GHz Noise Figure Meter 7950
Lindos LA100 Audio Analyser (LA101 \& LA102) 2750
Marconi 23052.3 GHz Modulation Analyser
Tek $492 / 0221 \mathrm{GHz}$ Spectrum Analyser
Tek WM780V 50-75GHz Mixer Set

TV \& VIDEO

Minotta CA-100 CRT Colour Analyzer
Tek VM700A Video Measurement Set (various from)

SIGNAL GENERATORS
Advantest R4262/0234.5GHz Signal Generator $\quad 12500$
HP 8642A 1GHz Synthesised Signal Generator 2500
HP 8656B /001 1GHz Synthesised Signal Generator 1150
HP 8657B 2 GHz Signal Generator 4250
HP 8662A 1.28GHz Synthesised Signal Generator 8900
HP 8672A 18GHz Synthesised Signal Generator 6950
HP 86830 2.3-13GHz Signal Generator 6950
Marconi 2017 1GHz Low Noise Signal Generator 1000
Marconi 2019A 1GHz Signal Generator 1000
Marconi 2022 1GHz Signal Generator 650
Marconi 2024 10KHz To 2.4 GHz Signal Generator 4950
R\&S SME06 / B1/B116GHz Signal Generator 21500
R\&S SMG 1GHz Signal Generator 1950
R\&S SMH 2GHz Signal Generator 6950
R\&S SMHU 4.32 GHz Synthesised Signal Generator 13500 R\&S SMIO03 3.3GHz Vector Signal Generator 21500

SWITCHES \& MULTIPLEXERS
HP 3488A Switch / Control Unit
Various HP 444xx Switch Modules (from)
Racal 1250 Switching System Mainframe 450
Various Racal 1250 Switch Cards (from)

TELECOMS

Anritsu MD6420A Data Transmission Analyser 5950
Anritsu MP1656A / 02 STM16 Analyser 13500
Anritsu MS371A PCM Frame Analyser 4500
HP 3788A/001 2MBPS Error Performance Analyser 1950
Marconi 2840A Analyser
1950
Marconi Triton Signalling Test set 2500
Trend Aurora Duet Handheid ISON Tester 2150
TC Fireberd 6000 Opts 6007/6008 5500
Various Fireberd Interface Modules (from) 395
W\&G PFA-35 2MBPS Communications Tester 4950
W\&G DST-1 Handheld E\&M Signalling Tester 1250
W\&G PCM23 Voice Frequency PCM Tester 2750
W\&G PF-4 Bit Error Measuring Set 4500
W\&G PMP20 20 KHz Digital Level Meter

WIRELESS

HP 83220A /022 PCS/0CS1800 Test Set 3950
HP 83220E PCS/DCS1800 MS Test Set 3500
HP 8902A 1.3GHz Measuring Receiver 12500
HP 8920A 1GHz Radio Test Set (various from) 4950
HP 8922M GSM Test Set 8500
Marconi 2945A/001/003/023 Radio Comms Test Set 7500
Marconi 2955B Radio Comms Test Set 3500
Racal 6103/001/002 GSM/DCS Test Set 7750
R\&S CMS52 1GHz Radio Comms Test Set 5500
R\&S CMT54 B1/B4/B5/B6/B9 Radio Comms Test Set 4500 R\&S CMT56/B1/4/6/9/11/13/N1/9 Radio Test Set 2250 R\&S CMT84 B1/B5/B6/B9 Radio Comms Test Set 4500 R\&S CMTA84/B5/B6/B8 Radio Comms Test Set 4950 Schlumberger 40151 GHz Radio Comms Test Set 4500 Schlumberger 4031 1GHz Radio Comms Test Set 3250 Schlumberger 4039960 MHz Radio Comms Test Set 1250 Schlumberger 4040 1GHz Radio Comms Test Set 1950 Schlumberger 4922 Radio Code Analyser

See our extensive onllne catalogue at www.TestEquipmentHQ.com Flexible commercial solutions available on all products.

Free Palm m100 shipped with every order over £10k

Prices shown are in £UK and are exciusive of VAT. Free carriage to UK mainland addresses. This is just a selection of equipment we have avallable. If you don't see what you want, please call. All items supplied fully tested and refurbished with one year warranty. Ail manuals \& accessories required for normal operation included. Certificate of Conformance supplied as standard, Certificate of calibration available at additional cost. Test Equipment Solutions terms apply. E\&OE.

01753596000 fax: 01753596001
www.TestEquipmentHQ.com
e-mail info@TestEquipmentHQ.com

Wireless
 32-channel voltmeter

> You can read up 32 analogue voltages accurately via four individual remote a-to-d converter modules using Pei An and Ping Hua Xie's wireless data logger system. The central control station links to a PC via its COM port and each channel is read with 12-bit resolution.

This system allows a computer to measure up to 32 voltages remotely via a 433 MHz radio link. It consists of a central station connected to the RS232 port of a computer and up to four wireless remote data loggers having different addresses.
Each logger has eight analogue input channels with an analogue-todigital conversion accuracy of 12 bit. The measuring range is 0 to 2.5 V .
Within buildings, the radio can operate at up to 30 m , or 120 m over open ground, Fig. 1.

Main elements of the system
The central station connects to a PC's RS232 port. Its function is to receive commands from the computer, to broadcast the message to remote data loggers, to receive data sent back by remote loggers and finally to send the data back to the computer.
A Microchip PIC16F84 is at the heart of the central station. An RS232 transceiver and a
Radiometrix radio packet controller take care of the wireless interfacing, Fig. 2a).

Remote Logger 1

Remote Logger 2

Remote Logger 3

Remote Logger 4

Fig. 1. Wireless remote data acquisition system comprising a central station and up to four remote data loggers. Each data logger has eight 12 -bit analogue inputs. The central station connects to the RS232 port of a computer. In total, the computer can read 32 voltages remotely. Communication distance is 30 metres in building, $\mathbf{1 2 0}$ metres over open ground.

Each remote data logger is a standalone device located within the radio range of the central station. Up to four loggers can be used, each with a unique address of $0,1,2$ or 3 .
A PIC16F84 controls the logger. An eight-channel MAX147 a-to-d converter is used for measuring analogue voltages. This converter has 12-bit resolution. Further radio packet controllers handle the wireless data transfer, Fig. 2b).

How it works

At power-up, the central station reads data from its RS232 interface to see if the computer has sent a command. At this stage, its radio transmitter is switched off.
To read eight analogue voltages from a particular remote data logger, the computer first sends a stream of commands to the central station. These commands incorporate an address byte specifying which remote logger will receive them. Then the central station broadcasts the message. Next, the central station listens to a reply from the addressed data logger.
Immediately after power-up, all the remote data loggers are in listening mode, waiting for a valid radio-frequency signal. Once the message broadcast by the central station is received by the RPC, the PIC on the data logger checks whether the current data logger is addressed by comparing the received address with its own.
If the logger is not addressed, it just goes back to listening mode. If the logger is addressed, the PIC reads data from the eight-channel a-to-d converter. It then writes data to

Fig. 2. Block diagram of the central station and remote dała logger.
the RPC, which broadcasts the data. After the central station receives data from the addressed logger, it sends data to the computer via the RS232 port. Inside the computer, the information can be stored in a file for future retrieval, or it may be displayed on the screen. This completes a data read cycle.

Radio packet controller

The RPC is a SAW-controlled FM transmitter and superhet receiver. It is designed to comply with ETSi 300 220 regulations.
There are two version of the RPC. One works at 418 MHz for UK use and the other at 433 MHz for European use. Their respective part numbers are RPC-418-A and RPC-433-A.
These RPCs are self-contained plugin devices that require a whip type
antenna, a 5 V power supply and a byte-wide I/O port on a host microcontroller. Logic levels on the i/o port are 5 V CMOS compatible.
All the necessary rf circuitry is contained within the RPC, as are the low-level packet formatting and packet recovery functions required to interconnect a number RPCs to a single radio-linked network.

(b) Block diagram of the remote logger

Fig. 3. Lines DO to D3 form a bi-directional data bus. There are four handshake lines, namely - RXA, RXR, TXA and RXR. Two LEDs provided on the module indicate operating modes. Data bus and handshake lines are used to connect the RPC to a host microcontroller.

Details of the RPC presented here are limited to those relevant to the design. More information can be found in the manufacturer's data sheet
Figure 3a) shows the pin-out of the RPC while 3b) illustrates how it is applied. This device has a four-bit bidirectional data bus - D0-D3 - and four handshake lines. Its pin-functions are:

The host can be a micro-controller or a computer. It needs to be able to write a data packet consisting of 1 to 27 bytes into the RPC's data buffers. The packet is then sent out by the transmitting RPC to other RPCs.
The exact data packet appears in the receive buffers of all RPCs within the radio range. Once data is written into its buffers, the RPC takes care of the radio data transmission to other RPCs without any
further intervention Fig. 4.
More details on how data are transferred between RPCs is given in the module's data sheet.

How the packet controller works

The packet controller has four operating modes: idle/sleep, host-RPC data transfer, radio-data transmission and radio-data receive.

In idle/sleep mode, the receiver is enabled continuously or intermittently, depending on the set-up, to search for valid message preambles. Programming the RPC to search intermittently minimises power consumption. In this mode, the RPC also monitors the TXR line. The host requests to send data using an active-low signal.
In the host-RPC data-transfer mode, if the host is to transfer data into the RPC, the TXR
 controller, or RPC. It is possible to build the circuit on a single-sided PCB.

request is accepted by the RPC. Data are then placed on the four data lines - lower nibble of a byte first.
Now the host pulls the TXR line high to tell the RPC that a valid data is stable on the data bus. Next the host waits for the RPC to pull the TXA line high to indicate that the RPC has accepted the nibble.
This procedure is repeated to transfer the upper nibble of a byte. The writing procedure has to be repeated until the specified number
of bytes are written into the RPC.
Figure 5b) shows how data are transferred from the RPC into the host. In this case, the RPC firstly pulls down the RXR line. The Host responds to the request by pulling the RXA line low. Then the RPC places the lower nibble on the data lines and sets the RXR line high.
The host reads the data and makes the RXA line high. This completes one nibble read. The above procedure is repeated to
transfer the upper nibble of a byte. The reading procedure has to be repeated until the specified number of bytes are read by the host.

Data format

Two types of data can be transferred between a host and an RPC. The first is data to be transmitted to other RPCs in the form of data packets. The second is data, i.e. commands, used to set up the RPC's

operating modes. These commands are to be written into RPC's memory.
There are 63 on-board memory locations within each RPC, $0 \mathrm{I}_{16}$ to $3 \mathrm{~F}_{16}$. The first 15 bytes contain parameters to control the RPC. The rest of the memory is free for userdefined data. Functions of the locations are detailed in the manufacturer's data sheet.
For a data packet, the first byte is always the control byte. Bit 7 of the byte is always 0 . Bits 6 and 5 are the preamble control bits. For normal preamble, which is the case in this design, bits 6 and 5 are both zero. Bits 4 and 0 indicate the number of bytes in the present packet - including the control byte itself. The maximum number of data bytes is 28 , including the control byte.
To read a byte from an RPC's memory location, the byte sent to the RPC by the host has bit 7 set to one and bit 6 to zero. Bits 5 to

0 define the address of a memory location. The RPC responds with two bytes, the first of which is a control byte itself - i.e. an echo. The second byte is the memory contents. To write a byte to the RPC's memory, the host issues two bytes: a control byte and the byte to be written into the location. The control byte has bits 6 and 7 set to one. Bits 5 to 0 define the address of a memory location. The RPC does not give any response.

Circuit of the central controller

The central station consists of a MAX232CPE RS232 transceiver, a PIC16F84 and an RPC,
Fig. 6. The station connects to a computer via an RS232 port.
Line PA2 of the PIC receives data from an RS232 port while PA3 transmits data to the RS232 port. Port B controls the RPC. Line PAI connects to a low-current LED that gives
a visual indication.
The power supply to the central station is a DC at 5.5 V to 10 V . A low-power TC55RP5002 regulator produces the +5 V rail. Component layout and connections of the board are shown in Fig 8a).

The communication protocol is rather simple. First, the computer sends a command byte 88_{16} to the central station. The byte is followed by a byte that specifies a remote logger address of $0,1,2$ or 3 .
After the PIC receives these two bytes from the computer, it writes a data packet into the RPC. The packet consists of a control byte 02_{16} and the address byte of 0 to 3. The RPC then broadcasts the data packet.

After the RPC completes the broadcasting, it goes into listening mode to catch the reply from the addressed remote logger.

PIC object code for the remote module

: 020000001028C6

: 1000200083166 F 30860003308500831200308 B 000 A : 1000300085110516762105116 C 2105158617061602 : 100040000030 AF00051826282F1027282F148518F8 : 100050002 B 28 AF102C28AF143D20F32002300E02C5 : 10006000031D2D28F3200E082F02031D2D288511B6 : 1000700043207121E02085152D28762185117621D8 : 10008000851576210800103084008 E 308 F 00962070 : 100090000 C 088000840 A0D088000840A7121CE308B : 1000A0008F0096200C088000840A0D088000840AC6 : 1000B00071219E308F0096200C088000840A0D0864 : 1000C0008000840A7121DE308F0096200C088000A9 : 1000D000840A0D088000840A7121AE308F009620BA : 1000E0000C088000840A0D088000840A7121EE301B : 1000F0008F0096200C088000840A0D088000840A76 : 100100007121 BE 308 F 0096200 C 088000840 A 0 D 08 F 3 : 100110008000840A7121FE308F0096200C08800038 : 10012000840A0D088000840A7121080086170616CB : 100130007121831663308500831286110611051221 : 100140007121AE018F1BA6280611A728061567216D : 1001500086156721861107302E020319B228AE0ADO : 100160008F0DA228672167216721AE0186156721BF : 10017000861167210618 BE2 80C10BF280C14073002 : 100180002E020319C628AE0A8C0DB628AE018615BC :100190006721861167210618CF280D10D0280D146D :1001A00007302E020319D728AE0A8D0DC728051671 : $1001 \mathrm{B000762183166F308600831206168617080094}$: 1001 C 00005116 C 2105156 C 2111308 E 00282110308 D : 1001D000840000088E0028211F3004020319F22831 : 1001E000840AE9280800861AF3280612861EF628D3 : 1001F0008619FC288E11FD288E15061901290E116D : 1002000002290E15861806298E1007298E14061845 : 100210000B290E100C290E140616861A0D2906122B : 10022000861E1029861916298E1317298E1706196E : 100230001B290E131C290E17861820298E1221291E : 100240008 E 16061825290 E1226290E1606160800E7 $: 10025000712183166030860083128 \mathrm{E} 193129861130$: 10026000322986150 E1936290611372906158E18DA $: 100270003 \mathrm{~B} 2986103 \mathrm{C} 2986140 \mathrm{E} 1840290610412976$: 1002800006148613061 B 42298617061 F45298E1B56 : 100290004 B 2986114 C 2986150 E1B50290611512910 : 1002 A00006158E1A55298610562986140E1A5A29B3 :1002B00006105B2906148613061B5C298617061F89 : 1002C0005F29712183166F30860083120800123077 : 1002D000AD00ADOB692908000F30ADOOADOB6E29E4 : 1002 E00008003630AD00AD0B732908005030AE0 069 :0802F0006C21AE0B7829080017 : 00000001FF

PIC object code for the central station.
 : 020000001028 C 6

: 1000200083166 F30860014308500831200308B00F9 : 10003000851085158617061605100 C 2105142 F202E : 10004000D92055300C0203193428AA300C020319A8 : 10005000382888300 C 0203193 C 282 F 202 D 2816211 F : 100060008510162185140800 AA 308 C00EC2 20202869 : 1000700055308 CO 0 EC 202028432011214 C 201121 E 8 : 10008000592011213 C 28 D 920112102308 D 00652 FF2 : 100090000 C 088 D 0065200800 A42010308400A420E6 : 1000A0000D0880001F30040203195828840A4F28C5 : 1000B00008001030840000088C00EC201F3004027F : 1000 C 00003196428840 A5B28080011218316603014 : 1000D000860083128D196E2806106F2806140D19DC : 1000 E 00073288610742886148 D 18782806117928 AC : 1000F00006150D187D2886117E2886150612861A8B : 100100007 F 280616861 E 82288 D 1 B 882806108928 BF : 1001100006140 D 1 B 8 D 2886108 E 2886148 D 1 A 9228 A 1 : 100120000611932806150D1A97288611982886150A : 100130000612861 A99280616861E9C2811218316F7 : 100140006 F 30860083120800061 BA 4288613061 F 42 : 10015000A7288619AD280D10AE280D140619B2284F : 100160008 D 10 B 3288 D 148618 B 7280 D 11 B8280D15D9 : 100170000618BC288D11BD288D158617061BBE28B4 : 100180008613061 FC1288619C7280D12C8280D1608 : 100190000619CC288D12CD288D168618D1280D135E :1001A000D2280D170618D6288D13D7288D17861735 : 1001B00008000519D928072102218F010519E22815 : 1001C0008C13E3288C17022107300F020319EB2848 : 1001D0008C0C8F0ADE280800851102218F010C1C6F : 1001E000F3288515F4288511022107300F02031921 : 1001F000FC288C0C8F0AEF28851502210221022190 : 10020000022108001 C 308 E 008 E 0 B 042908001030 DB : 100210008 E 008 E 0 B 09290800 FF 308 E 008 E 0 B 0 E 29 FO : 10022000080036308 E 008 E 0 B 1329080010308 F 0026 : 080230000C218F0B18290800B6 : 00000001 FF

Technical support

Designers' kits, PIC and VB4 source codes are available from the authors. The kit includes PCB boards, all components, programmed PIC and VB5 software. Please direct your enquiry to Dr Pei An, 11 Sandpiper Drive, Stockport, Manchester SK3 8UL.
Tel/fax/answer: +44 (0)161-477-9583.
E-mail: pan@intec-group.co.uk

```
Visual Basic program list for running the remote data
logger on a PC
Dim Rsport As Boolean
Dim Data(16) As Byte
Dim Filename, UsePort, UseNolog As String
Dim dummy As Double
Dim i As Integer
Dim TimeStart As Long
Dim Inputdata As String
Dim Overrun As Boolean
Dim Start_time As Long
Sub Delay(ByVal Intervel As Integer)
Dim start As Long
    start = Timer
    Do While Timer < start + Intervel
    Loop
End Sub
Private Sub Log_data()
If cmbPort.Text = "COM1" Then
        If Rsport = True Then
                    MSComm1. Portopen = False
                    MSComm1. CommPort = 1
                            MSComm1. Portopen = True
        Else
            MSComm1.CommPort = 1
            MSComml. PortOpen = True
            MSComm1. PortOpen = False
            MSComm1. PortOpen = True
    End If Rsport = True
ElseIf cmbPort.Text = "COM2" Then
        If Rsport = True Then
                    MSComm1. PortOpen = False
                    MSComm1.CommPort = 2
                    MSComm1. PortOpen = True
    Else
            MSComm1. CommPort = 2
            MSComm1.PortOpen = True
            MSComm1.PortOpen = False
            MSComm1.PortOpen = True
        End If
        Rsport = True
ElseIf cmbPort.Text = "COM3" Then
    If Rsport = True Then
            MSComm1. PortOpen = False
            MSComm1.CommPort = 3
            MSComm1.PortOpen = True
    Else
            MSComm1.Commport = 3
            MSComm1. PortOpen = True
            MSComm1. PortOpen = False
            MSComm1.PortOpen = True
    End If
    Rsport = True
ElseIf cmbPort.Text = "COM4" Then
        If Rsport = True Then
            MSComm1.PortOpen = False
            MSComm1.CommPort = 4
            MSComm1.PortOpen = True
    Else
            MSComm1. CommPort = 4
            MSComm1.PortOpen = True
            MSComm1. PortOpen = False
```


Visual Basic program list for running the remote data

 logger on a PCDim Rsport As Boolean

Dim Filename, UsePort, UseNolog As String
Dim dummy As Double
Dim i As Integer

Dim

Dim Overrun As Boolean
Dim Start_time As Long

Sub Delay(ByVal Intervel As Integer)
Dim start As Long
start $=$ Timer
o while Timer < start + Intervel
Loop
End Sub

Private Sub Log_data()
If cmbPort. Text $=$ "COM1" Then If Rsport $=$ True Then

MSComm1. Portopen = False
MSComm1. CommPort $=1$
MSComm1. Portopen $=$ True Else

MSComm1.CommPort $=1$
MSComml. Portopen = True
MSComm1. Portopen = True
End If Rsport $=$ True

ElseIf cmbPort. Text $=$ "COM2" Then
If Rsport $=$ True Then
MSComm1. PortOpen = False

MSComm1. PortOpen $=$ True
E1se
MSComm1. CommPort $=2$
MSComm1. Portopen = True

MSComm1. PortOpen $=$ True
End If
Rsport $=$ True

ElseIf cmbPort. Text $=$ "COM3" Then
If Rsport $=$ True Then
MSComm1. PortOpen = False
MSComm1.Commport $=3$
(1.Portopen = Irue

Else
MSComm1. Commport $=3$
omm1. Portopen $=$ True

MSComm1.PortOpen = True
End If
Rsport $=$ True

ElseIf cmbPort.Text $=$ "COM4" Then
If Rsport = True Then
MSComm1. PortOpen $=$ False
omm1.Commport $=4$

Else
MSComm1. Commport $=4$
MSConn1.Portopen = Irue
MSComm1. PortOpen = False

MSComm1. PortOpen $=$ True
End If

End If
UsePort $=$ cmbPort. Text
Usenolog $=$ CmbNolog.Text
Labell. Caption $=$ "COM port:" + cmbPort + "
Logger No.: " + UseNolog
DoEvents
MSComm1. OutBufferCount $=0$
MSComm1 . InputLen $=16$
MSComm1. Output $=\operatorname{chr} \$(8 * 16+8)+$
Chr\$ (UseNolog)
Start_time = Timer
Overrun = False
Do
DoEvents
Labell. Caption $=$ "Communicating with
logger...
Overrun $=($ Timer $>$ Start_time +2$)$
Loop Until (MSComm1. InBufferCount $=16$) Or Overrun

If Not Overrun Then Labell. Caption = "Data
received logger No. " + UseNolog Else
Labell. Caption $=$ "Communication failed. Try again"
Inputdata $=$ MSComm1. Input
If Not Overrun Then
For $i=0$ To 15
Data(i) $=$ Asc (Right(Inputdata, 16 -
i))

Next

For $i=0$ To 7
dummy $=(\operatorname{Data}(2$ * i) * 16\# + Data(2 * i + 1)/
16\#) / 4096 * 2.508
lblChD(i).Caption $={ }^{m}{ }^{m}+$ Format (dummy
" 0.0000 ")
Next i
End If
End Sub

Private Sub cmdRead_Click()
Dim dummy As Double
Dim i As Integer
Dim Timestart As Long
Dim Inputdata As String

If cmbPort.Text $=$ "COM1" Then
If Rsport $=$ True Then
MSComm1.PortOpen = False
MSComm1. CommPort $=1$
MSComm1. PortOpen $=$ True
Else
MSComm1.CommPort $=1$
MSComm1. Portopen $=$ True
MSComm1. PortOpen = False
MSComm1. PortOpen = True
End If
Rsport = True

ElseIf cmbPort.Text $=$ "COM2" Then
If Rsport $=$ True Then
MSComm1. Portopen = False
MSComm1. CommPort $=2$
MSComm1. PortOpen $=$ True

Central station board, right, and remote data logger board, left.

Fig. 9. Screen dump of the Visual Basic 4 control software.

Circuit of the remote data

 loggerThe remote logger is built around a PIC16F84, a MAX147 a-to-d converter and an RPC, Fig. 7. Lines PA0 and PAl of the PIC set the local address of the logger to $0,1,2$ or 3 .
The MAX 147 is a 12 -bit 8 -
channel a-to-d converter. The 2.5 V reference is supplied by a TLE2425CPL IC.
Port B of the PIC controls the RPC as well as the MAX147. The power supply to the central station is again 5.5 V to 10 V DC. A lowpower TC55RP5002 regulator produces the 5 V rail. Component layout and connections of the board are shown in Fig. 8b).
The flow of the PIC software is as
follows. After a power reset, the RPC is in listening mode. Once a two-byte packet - as broadcast by the central station - is received by the RPC, the PIC checks whether the address byte matches its own address. If they match, the PIC reads eight voltages from the a-to-d converter.
As the conversion result is 12 -bit, two bytes are used to present one voltage. Next a data packet is written into the RPC for radio transmission. The packet has 17 bytes - one control byte and 16 data bytes for eight 12-bit data words.
The PIC program also ensures that a remote logger only responds to the message sent by the central station, not to the message sent by remote loggers. This is done by checking the content of the control byte. The control byte sent by the station is 02_{16}, whereas it is 11_{16} for the remote loggers.

PIC software

The PIC software for the central station and the remote data logger are developed using the PIC assembly language in the MPLAB environment. Both programs are lengthy. They are available from authors. Please see details in the technical support section.

PC software for the central station

The software drive for the central station is written in Visual Basic 4.
Figure 6 shows the screen of the driver. In the window, you should first select a COM port to be used and the address of the remote logger. Next, click the 'Get Data' button.
If data logging is successful, measured voltage from a remote data logger will appear on the screen. Online messages are shown at the bottom of the screen.

Application ideas

The analogue input channels require that the input voltage is within 0 to 2.5 V . Any sensors having that voltage output level can be connected directly to the logger.
Sensors with other types of outputs require signal conditioning circuitry. A list of sensors that can be used easily with the remote logger is given separately.
Finally, I would like to thank Mr. Kangyan from Radiometrix Ltd for his help and advice on this project.

References

1. Data sheets on Radio Packet Controller available from Radiometrix's website www.radiometrix.co.uk.
Telephone +44 (0)208 4281220

Communication between RPCs

RPC encoder. Data bytes to be transmitted by the RPC are converted into a packet before being transmitted. This is to ensure a reliable radio digital data transmission. A packet consists of four parts: preamble, frame synchronisation, data and check sum.

Preamble. The preamble is a 20 kHz square wave. The number of cycles can be defined by the user. The initial 3 ms portion of the preamble is used to allow the receiving circuitry of the remote RPCs to settle. The remaining 15 -cycle portion of the preamble is used by the remote RPCs to phase lock onto the incoming signal. The preamble may be extended to wake-up remote RPCs that are in power-saving mode.

Frame sync

A 7 -bit Barker sequence is used to identify the start of the data. An eighth balancing bit is added after the Barker sequence.

Data. Each byte in the RPC's buffer is expanded into a 12 -bit symbol prior to sending. The symbol coding has the following properties:

- Perfect 50:50 balance - always 6 zeros and 6 ones
- There are never more than 4 consecutive ones or zeros in a byte.
- Each code is different from any other codes by a minimum of 2 bits.
- Only 256 of 4096 (6.25\%) possible codes are valid. This means a 93.75% probability of trapping a byte error.
- Preamble and the frame sync codes are not part of the
symbols. A clash signal will cause immediate termination of the current decoding process,

Check sum. An eight-bit check sum is used to test for overall packet integrity. This is also coded into a 12 -bit symbol prior to transmission.

RPC decoder. Radio-signal decoding consists of four steps:

Search. First, the RPC searches for valid preamble comprising a 20 kHz square wave. The search is performed by a 16 -times oversampling detector which computes the spectral level of 20 kHz in 240 samples of the incoming signal.

Lock-in. The 240 samples are also used to compute the phase of the incoming preamble and synchronise the internal recovery clock to an accuracy of $\pm 2 \mu \mathrm{~s}$. When the frame sync is detected the decoder attains full synchronisation and will move the next stage.

Decode. Data is taken in 12 bits at a time, decoded into the original byte and placed in the buffer. The symbol decoder verifies each received symbol as valid (only 256 out of a possible 4096 are valid) and will abort the decoding process on a symbol failure. The first byte contains the byte count and is used to determine the end of message.

Check sum

The last byte is the received check sum. If the check sum matches the locally calculated one, the RXR line becomes low to inform the host that a packet is ready for downloading.

Ring for Latest Reduced Prices on this advert

HP8444A Tracking Generator $\bullet 5$-1300Mc/s - $£ 450$, HP8444A OPT 059 Tracking Gen - 5-1500Mc/s - E650. HP35601A Spectrum Anz Interface - $£ 300$.
HP4953A Protocol Anz - 3400.
HP8970A Noise Figure Meter + 346B Noise Head - E3k. HP8755A+B+C Scalar Network Anz PI - $\mathrm{E} 250+$ MF 180C Heads 11664 Extra - $£ 150$ each.
HP3709B Constellation ANZ $£ 1,000$
FARNELL TVS70MKII PU 0-70V 10 amps - C 150 . MARCONL 6500 Network Scaler Anz - E500. Heads available to 40 GHz many types in stock.
Mixers are available forANZs to 60 GHz .
Marconi TF2374 Zero Loss Probe - $£ 200$.
Racal/Dana 1250-1261 Universal Switch Controller + $200 \mathrm{Mc} / \mathrm{s}$ PI Cards and other types.
Racal/Dana 9303 True RMS Levelmeter + Head - $\mathrm{C450}$. TEKA6902A also A6902B Isolator - $£ 300-£ 400$. TEK CT-5 High Current Transformer Probe - $£ 250$ HP Frequency comb generator type 8406 - 1400 . HP Sweep Oscillators type $8690 A+B+$ plug-ins from $20 \mathrm{Mc} / \mathrm{s}$ to 18 GHz also $18-40 \mathrm{GHz}$.
HP Network Analyser type 8407A $+8412 \mathrm{~A}+8601 \mathrm{~A}$ $100 \mathrm{Kc} / \mathrm{s}$ - $110 \mathrm{Mc} / \mathrm{s}$ - E 500 - £ 1000 .
HP 8410-A-B-C Network Analyser 110Mc/s to 12 GHz or 18 GHz - plus most other units and displays used in this set-u - $8411 \mathrm{a}-8412-841$
8650 From E1k.

Racal/Dana $9301 \mathrm{~A}-9302 \mathrm{RF}$ millivoltm letel) (2GF aty in stock $£ 250-\mathrm{E} 400$.
Racal/Dana Modulation Meto
1.5 GHz - $\mathrm{E} 150 / \mathrm{F} 250-9009 \mathrm{~A}$

£600. MF unly $\mathrm{EZ5}$
Gould J3B test oec

Gould 33 sest oacillat + tranual $-£ 150$. Berr Stroud V ariable AHer EF3 $0.1 \mathrm{~Hz}-10$ - low pass - $£ 150$, other makes in

Racal(D. 9300 RMS voltmeter - $£ 250$
HP 8750 - storage normalizer - C 400 with lead + S.A. or $-\square$
Marconi mod meters type TF2304 - $£ 250$ - TF2305. $\mathrm{E1}$ Racal/Dana counters-99904-9905-9906-9915-991-
$9921-50 \mathrm{Mc} / \mathrm{s}-3 \mathrm{GHz}$ - E 100 - E 00 -all fita standards.
HP 180TR. HP 181T, HP182T \quad yentrames E30 C 500 HP 432A-435A or B-436A - Neters + ponerheads to
 HP86222A+B Sweep P. OT 2.4Ge - STT $£ 1000-£ 1250$. HP86290A + B Sweep Pl-2-18GHz- $11000-£ 1250$. HP8620C Mainframe - E 250 . IEEE $£ 350$. HP8165A Programmable signal source - 1 MHz - $60 \mathrm{Mc} / \mathrm{s}$ £1k.
HP3455/3456A Digital voltmeter - $£ 400$. HP5370A Universal time interval counter - £1k TEKTRONIX 577 Curve tracer + aderer TEKTRONIX 1502/1503 TDR cable test set in HP8699B Sweep PI
MF-L250. Both E500.
Dummy Loads \& Power att up to 2.5 vilowatitr X up to 18 GHz - microwave parts new and ex equin, relays attenuators - switches - waveguides - Yigs - SMA - APC7 plugs - adaptors etc. qty. in stock.
B\&K Items in stock - ask for list.
Power Supplies Heavy duty + bench in stock - Farnell - HP Weir - Thurlby - Racal etc. Ask for list. Large quantity in stock, all types to 400 amp -100 Kv
HP8405A vector voltmeter - late colour - £400 HP8508A Vector voltmeter - $£ 2500$.

LIGHT AND OPTICAL EQUIPMENT

Anritsu ML93A \& Optical Lead Power
Anritsu ML93B \& Optical Lead Pov
Battery Pack MZ95A.
Anritsu MW97A Pulse
Anritsu MW97A Pulse Eono rice Pl avalable - MHMAC MH925A 1.3- MH529

e Domain Reflector.
Pl available - MH914C 1.3 - MH915B 1.3 - MH913B 0.85 MH925A 1.3-MH929A 1.55-MH925A 1.3GI-MH914C 1.3SM - f500 + one P.I.

Anritsu MZ100A E/O Converter.

+ MG912B (LD 1.35) Light Source + MG92B (LD 0.85) Light Source $£ 350$.
Anritsu MZ118A O/E Converter.
+MH922A 0.8 O/E unit + MH923 A1.3 O/E unit $£ 350$. Anritsu ML96B Power Meter \& Charger $£ 450$.

Anritsu MN95B Variable Att. $1300 £ 100$.
Photo Dyne 1950 XR Continuous Aft, $1300-1500 \mathrm{E} 100$. Photo Dyne 1800 FA. Att E 100.
Cossor-Raytheon 108L Optical Cable Fault Locator 0.1000 M 0.10 kM £200

TEK P6701 Optical Converter $700 \mathrm{MC} / \mathrm{S}-850 \mathrm{£} 250$
TEK OF150 Fibre Optic TDR - $\mathrm{f750}$.
HP81512A Head 150MC/S 950-1700 £250.
HP84801A Fibre Power Sensor 600-1200 $£ 250$. HP8158B ATT OPT 002+011 1300-1550 £300. HP81519A RX DC-400MC/S $550-950$ £250. STC OFR10 Reflectometer - $£ 250$.
STC OFSK 15 Machine jointing + eye magni ir - E25 TEK $465-4658$ 100MC/S +2 probes - $\mathrm{E} 250-$ - 300 MISCELLANEOUS ITEMS

MARCONI 2370 SPECTRUM ANATYERS - HIGH OUALITY -DIGITAL STORAGE-30Hz-110MCIS Lorge qiy to clear as received from Gov- 11 sold s is is complete or add £100 for basic testiog and editistmquallers preferred -
 A EARLY MODEL CRI Y. horizontal alloy cooling fins -
EZATE MODEL GREY - vertical alloy cooling fins - $£ 300$ c. ATE MODEL BROWN - as above (few only) - $£ 500$.

SEILLOSCOPES

TEK 466 100 CIS
TEK 475-475A $200 \mathrm{MC} / \mathrm{S}-250 \mathrm{MC} / \mathrm{S}+2$ probes - £ 300 - C 350
TEK 2213-2213A-2215-2215A12224-2225-2235-2236-2245-60-
TEK 24454 ch 150 MON N 2 p es - E 450 .

TEK 485 85 C/S 2probes - f 550 .
$\mathrm{C} / \mathrm{S}-\mathrm{f} 1,150$.

IE D. $50.2430 \mathrm{~A}-150 \mathrm{MC} / \mathrm{S}+2$ probes $-£ 1,750$ TEK TAS $475-485-100 \mathrm{MC} / \mathrm{S}+2$ probes - โ2,000. E1.1K.
HP1740A - 100MC/S +2 probes - E 250 .
HPT71A - $100 \mathrm{MC} / \mathrm{S}$ storage +2 probes $-£ 200$.
AP1 20A - 1722A-1725A 275 MC/S +2 probes - E $300-$
RP1744A-100NCS storage - lorge screen $-£ 250$.

HP54200A- 5 Phacs divining - f 500 .

MICROWAVE COUNTERS - ALL LED READOUT
IP 351D Autohet 20 Hz -18G Hz - $\mathbf{E 7 5 0}$.
IP 371 Micro Source Locking - 20 Hz -18GHz EIP 546 Microwave Frequency Counter

 EIP 588LT. 4 K.
 SD 60548 Mi ro Coume 812 FHz - N Socket - $\mathbf{~} 700$. SD 6054 D Micgo Coubter $800 \mathrm{MC} / \mathrm{S}-18 \mathrm{GHz}-£ 600$.
 ${ }_{5}{ }_{5}$ P5352B Micro Counter OPT $010-005-46 \mathrm{GHz}$ - new in box HP5340A Migu Coumer 10 Hz -18GHz - Nixey - E 500 .
 001 H02-003HP5342A + 5344 Sos Sirce Synchronizer - $£ 1.5 \mathrm{~K}$. HP5345A 500nAOCS 11 Digit LED Readout - $£ 400$.
 PP5345A +5354 A Plugin $-4 \mathrm{GHz}-\mathrm{E} 700$. P5345A +5355 A Plugin with 5356 A 18 GHz Head - f 1 K $5385 \mathrm{~A} 1 \mathrm{GHz} 5386 \mathrm{~A}-5386 \mathrm{~A} 3 \mathrm{GHz}$ Counter - E 1 K - E 2 K . Racal/Dana Counter 1991-160MC/S - $£ 200$.
Racal/Dana Counter $1992-1.3 \mathrm{GHz}$ - f 600 .
Racal/Dana Counter 9921 -3GHz - $£ 350$.

SIGNAL GENERATORS

HP8640A - AM-FM $0.5-512-1024 \mathrm{MC} / \mathrm{S}$ - £200-E400. HP8640B - Phase locked - AM-FM-0.5-512-1024MC/S L500-£1.2K. Opts $1-2-3$ available. HP8654A - B AM-FM 10MC/S-520MC/S - E300. HP8656A SYN AM-FM 0.1-990MC/S - $£ 900$. HP8656B SYN AM-FM 0.1-990MC/S - $£ 1.5 \mathrm{~K}$. HP8657A SYN AM-FM 0.1-1040MC/S -E2K. HP8660C SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - $£ 2 \mathrm{~K}$. HP8660D SYN AM-FM-PM-0.01-1300MC/S-2600MC/S - £3K. HP8673D SYN AM-FM-PM-0.01-26.5 GHz - 112 K . HP3312A Function Generator AM-FM 13MC/S-Dual - $£ 300$ HP3314A Function Generator AM-FM-VCO-20MC/S - 6600 HP3325A SYN Function Generator 21MC/S - £800. HP3326A SYN 2CH Function Generator 13MC/S-IEEE £1.4K.
HP3336A-B-C SYN Func/Level Gen 21MC/S - £400-£300 £500.
Racal/Dana 9081 SYN S/G AM-FM-PH-5-520MC/S - $£ 300$.
Racal/Dana 9082 SYN S/G AM-FM-PH-1.5-520MC/S - £400.
Racal/Dana 9084 SYN S/G AM-FM-PH-001-104MC/S - E300.

SPECIAL OFFERS

MARCONI 2019 A SYNTHESIZED SIGNAL GENERATORS $80 \mathrm{KC} / \mathrm{S}$-1040 MC/S - AM-FM - E400 inc. instruction book tested.
MARCONI 2022E SYNTHESIZED SIGNAL GENERATOR $10 \mathrm{KC} / \mathrm{S}-1.01 \mathrm{GHz}$ AM-FM - $£ 500 \mathrm{inc}$. instruction book tested.
R\&S APN 62 LF Sig Gen $0.1 \mathrm{~Hz}-260 \mathrm{kHz} \mathrm{c} / \mathrm{w}$ book - $£ 250$

MARCONI 2383 S . ANZ $100 \mathrm{~Hz}-4.2 \mathrm{GHz}$, £2K
H.P RF AMP $8349 \mathrm{~A} 2-20 \mathrm{GHz}$ microwave. $£ 2 \mathrm{~K}$. H.P. RF AMP $8347 \mathrm{~A} 100 \mathrm{kHz}-3 \mathrm{GHz} £ 1,500$. H.P. 8922 radio communication test sets. G-H - M. options various. $£ 2,000-£ 3,000$ each. H.P. 4193 A VECTOR IMPEDANCE METER + probe kit. 400 kHz. To $110 \mathrm{ML} / \mathrm{S} . £ 3,500$.
H.P. 83220A - E GMS UNITS for above. $£ 1,000-£ 1,500$. WAVETECK SCLUMBERGER 4031 RADIO
COMMUNICATION TEST SET. Internal Spectrum ANZ. £1,800- $£ 2,000$.
ANRITSU MS555A2 RADIO COMM ANZ. TO $1000 \mathrm{MC} / \mathrm{S}$ No C.R. tube in this model. £450.
TEK $2445 \mathrm{~A}-4 \mathrm{CH}-150 \mathrm{MLS}$ SCOP probe. Instruction book. £500 each.

ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS PRICE IS EX WORKS. SAE FOR ENQUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILITY OR PRICE CHANGE. VAT AND CARRIAGE EXTRA. ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EQUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EQUIPMENT ETC.

Hard drive havoc

0nce bitten, twice shy, that's me. Learning the hard way is the only real way of finding out what a data loss really means and boy, do I know now! That gut-wrenching feeling as your hard drive stops and a reboot brings up the message, "primary device failure," followed by the realisation that the backup you meant to do last month never happened.
Having not practised what I preached, I had to come to terms with the loss of 15 years' accumulated data - my contact details, my accounts records, the text files including a complete book I was working on. All gone, or so I thought.
In fact I had a month-old partial backup so I could re-create most of my appointments and accounting data. But all my current writing assignments, half-started articles, related notes and briefs for new jobs had vanished. And all because I hadn't backed up.

But what about you? Forget about my problem now; are you backed up? Do you rely on your PC for your livelihood? If it went into meltdown mode could you laugh it off and start again? Would insurance help? How long would it take to re-create the lost data and what would this cost in lost earnings? Or should you be thinking of taking the frazzled drive to a data recovery specialist in the hope it can be fixed?

What to do

To begin, start backing up regularly if you're not already doing so. But if you do have the misfortune to suffer hard-disk failure, don't try and fix it yourself. There's nothing useful that keen users or PC

> Your hard drive just
> took a dive and you haven't backed it up for months. Is there any hope of recovering your information, or is everything lost? Andrew Emmerson reports.

technicians can do to mend hard drives; any tinkering will only do harm. All you can do is replace the hard drive, reload the operating system and application software and start over again.
If you're intending to use a data recovery service, save the drive and pack it carefully with the original documentation. But don't investigate it yourself.*

How drives fail...

Hard drives are remarkably reliable in the main; until my recent escapade I suffered no failure in 15 years and most other users are equally fortunate. But that's purely a statistic, just as the mean time between failure (MTBF) quoted in hard-drive specifications is purely an average.
In fact malfunctions of this kind can come at any time and make up the prime cause of data loss according to data recovery specialists Ontrack, as the chart shows. What's more, as storage capacities and density get ever higher, the impact of data loss problems can only increase. You have been warned!
Hard-drive failures are classed as either physical or logical. Of course I had to have both kinds of failure simultaneously, which is
most unusual and typical bad luck!
Physical failure implies some kind of physical destruction; it can be electronic (one of the control chips may have given up the ghost) or else mechanical, such as the dreaded head crash.

The read/write heads float above the magnetic platter on a cushion of air narrower than a human hair, so it doesn't take much disturbance to cause the most almighty ploughing up of data. The fact that grief is so rare is a tribute to the engineering standards and the hermetically sealed container in which the heads and platter reside.

Logical failure is less catastrophic; in this case the data is not actually destroyed but still effectively lost because something has wiped the disk's file allocation table (FAT) or partition information, thus erasing the directory that catalogues your data. Imagine, if you like, dropping a ring binder of 10000 un-numbered data sheets written in Chinese. You could gather up every piece of paper but without page numbers you'd never assemble them in the right order again.

...and why they fail

Accidents don't happen; they are caused. Power surges, malicious disk activity and supply interruptions are the chief sources of disk failure.

* If the data on your corrupted hard drive isn't that dear to you, try using Norton Utilities or a similar rescue package to recover it. Such software usually allows you to make a rescue floppy disk while your system is working properly. This disk is supposed to increase your chances of recovering data on the next crash.

Before you give up on a corrupted hard drive, try low-level formatting it. The only low-level formatter that l've found that wipes a drive clean enough to allow the OEM version of Windows 98 to load is SGATFMT from Seagate. It is only supposed to work with Seagate drives but I've used the 'custom' option many times on many different makes up to 5Gbyte.

I have read that low-level formatting can render a hard drive unusable though, and it will no doubt void any warranties, so be warned. Let the drive run for half an hour before formatting.
This software can be made to write a test pattern in each location then read it and report any errors. I believe that it also locks out any bad sectors. If the software finds catastrophic errors, it aborts the format. You will need to run it from a system floppy. A search using SGATFMT4 via Google should turn up Seagate's web site.

Windows' Scandisk utility can be set to check your hard drive's integrity using the 'thorough' option. According to its description, a package called Spinrite constantly monitors your hard drive for impending failures. It is available from the GRC site whose address is in the contacts panel. Ed.

Leading causes of data loss, information courtesy Ontrack.

Surge filters and anti-virus software will go a long way to curing the first two evils and these are both low-cost solutions. Uninterruptible power supplies (UPS devices) will sort out supply fluctuations at a higher (but not outrageous) price.
Sometimes impending disk failure gives warning signs; very sluggish disk activity and ominous clicking sounds - both caused by repeated read/write attempts - are a clue. By this time the damage is probably done, however. Bad news.

Mission impossible?

Data recovery from dead disk drives is not impossible. Specialist firms boast of 95 per
cent success rates, but the rates they charge may put you off. In most cases you can expect little change out of $£ 1000$ and only you can decide if the lost data is worth this price. If, as in my case, your livelihood genuinely depends on it, then the cost is irrelevant. For what you get it's not bad value really.
Physical failures demand repair in a cleanroom atmosphere with skills approaching those of a brain surgeon. They also involve the procurement of an identical drive for replacement parts. Finding old-production disk drives can be acutely difficult.
The work may be done on a 'no fix, no fee' basis and since the difference of just

Tips from the professionals

- Successful data recovery takes time, no matter how high its priority. There are no magic machines or instant utilities that can do the job; it's a highly specialised skill.
- There are occasions when data is damaged beyond any kind of recovery but it's a rare case when absolutely no data is retrievable. Most companies claim a data recovery success rate of around 85%.
- More data is lost every year to failed recovery attempts, than to actual breakdown or malfunction. Frequently there is no second chance so don't even think of tinkering!
- Hard disks are sealed units and just disturbing screws on the mechanical casing can destroy a drive.

Despite a rash of new companies, there are still only a handful of legitimate, professional recovery services. Ask for references and make your choice carefully! Would you trust your valuable data to un-named individuals on an anonymous web site?

Where the recovery company is located is irrelevant; your choice should be based on what they can do not where they are. Whether they are five or 500 miles away will make no difference in the time it takes to evaluate and recover your information.

- Maybe you do have backups but have you considered keeping them off-site, where they may be safer?

Your problem may not be the media you've stored your data on at all. Are the drives connectors all seated properly? Is your hardware or driver configuration correct?

Useful contacts

This is not an exhaustive list nor to be taken as endorsement or recommendation. Other firms can be found on the WWW by using a search engine and the phrase 'data recovery'.

- CBL Data Recovery Technologies Limited. 0800028 2069, http://www.cbltech.co.uk
- MjM Data Recovery Ltd. 01462680733 http://www.mjm.co.uk
- Vogon International. 01869355255 vogoninternational.com
- Data recovery problem solver wizard: http://www.ontrack.com/helpwizard/index.asp
- The (in)famous Click of death resource page - essential reading for Zip and Jaz drive users:
http://www.grc.com/clickdeath.htm
one month in manufacturing date can render a potential donor unit useless, the repair process can be a slow and expensive task.
No mechanical skills are needed for repairing logical failures but the work is just as involved. Hours of patient bit twiddling may be needed to recreate the file structure of a confused hard drive, the more so if the data had not been defragmented recently.

Last words

By now you should be dashing to make a backup. Either that or you're smiling because your backups are fully up to date. Pride goes before a fall, though; backups assume that your hardware and storage media are in working order; that the data is not corrupted, and that your backup is recent enough to provide full recovery. In reality, hardware and software do fail and backups don't always contain current enough data. Maybe it's time to make sure!

Fatalists will argue it's all inevitable and that data loss happens to us all sooner or later. No matter how fastidious we are about backing up there will always be a crucial file created after the backup and thus lost to Silicon Heaven.
What's more, every cloud has a silver lining; as a result of my mishap I bought a new, faster, larger drive and now my PC loads far quicker and runs more efficiently. I also bought a second drive and 'mirroring' software by DataKeeper so that all work created on Drive C : is copied automatically to the D : drive as a back-up.
I'm still out of pocket though, and a lot of data that I carefully saved over the years is gone forever. It's a crying shame but a useful lesson!

How a UPS can help

An uninterruptible power supply, or UPS, is a kind of power station in miniature, using battery-powered electronics to produce a limited quantity of mains electricity as and when needed. It cuts in when there's a total outage (black-out), temporary hiccup (dropout) or voltage reduction (brown-out).
A UPS also buffers the supply by filtering out the excess voltage surges that can destroy chips and data. It won't hold for long, but it will keep your computer running long enough to save data held in memory and shut down the computer gracefully.
Some UPS models come with power-save software that handles these back-up and shut-down procedures automatically if there's a power failure in your absence.
With a UPS, the more you pay, the better you get. Simple 'standby' systems monitor the mains and switch over to battery power when a problem is detected. Even if this is only a millisecond or two, this delay may be too long.
'On-line' models eliminate even momentary power cuts. They do this by providing power constantly from their own battery, even when the mains supply is normal. The battery is constantly under charge. On-line UPSs are superior but more expensive.

Would insurance help?

Data that has taken a lot of time to assemble can have a very high value, whether it's a

Put it in the fridge then tap it...

Just in case you didn't see it in the August 2000 issue, Ed Dell's letter advises owners of failed hard drives to try putting the drive in the refrigerator for an hour. Take it out, then tap it lightly and re-install. This works most of the time for Ed. A follow-up letter from Chris Eccles in the September issue explains why this trick might work.

Eurocard interface design, the accounts database of your business or your twentyvolume family history. Consequently an insurance policy is no substitute for proper back-ups. Moreover you'll find that many home and small business insurance policies specifically exclude computer hardware failure too.
In some cases the insurers will pay the cost of manually recreating lost data and of replacing hardware destroyed by fire or lightning. In my own case, in which the hard drives were zapped by a power surge, the company was prepared to treat this as lightning and paid up the replacement cost minus a standard 'excess' of $£ 100$. They also paid for the services of a data recovery expert, which made me mighty pleased I had taken out cover.

What will it cost?

Some data recovery firms work on a 'no fix, no fee' basis, while others charge an initial diagnosis fee of around $£ 150$. It is most likely that you will end up paying the same overall if recovery is possible.
Repairing a logical failure could cost between $£ 350$ and $£ 500$, while curing physical damage could easily double that cost. Worse still, work may be delayed while the contractor finds a suitable donor drive; because of constant firmware revisions and design improvements the precise characteristics of hard drives change over time. Consequently, if your drive was made in February 1998, parts from an August 1999 model may be totally unsuitable. Only an expert can tell, and finding NOS (new old stock) drives can be an expensive and very time-consuming task.
Add VAT to all these prices of course.

What if it still doesn't work?

You may have some problems when your data is recovered, but don't despair. Some DIY tasks remain even after the data recovery firm has handed you a fistful of CD-Rs containing what they have found for you.
Assuming you're using Windows Explorer, the folder names will probably show the \sim symbol (swung dash, tilde or 'twiddle') as their first character. The rest of the folder name will give you a good clue to the real name.
Most programs should now work, although you may find that document files refuse to load. The trick is to bypass Word or whatever and use Wordpad or a file viewer such as Quick View Plus. You'll find your text inside the files plus a load of garbage that was preventing it loading. Select the meaningful parts you want, then copy this into a brand new file and save it.
a comprehensive guide to using PIC BASIC

EXPERIMENTING with the PICBASIC PRO PHERASIf- 4995
Quicker and easier than ' C ' or assembler. PIC BASIC is a true compiler providing faster execution and shorter programs than BASIC stamp interpreters, built in I2C routines and serial comps upto 115 K Baud and full BASIC STAMP compatibility make writing for the Microchip PICmicro's easyl PIC BASIC compiles your basic language programs to Microchip Hex format for use with In-Circuit emualtors or for programming directly into the
PIC CHIP. Supports PIC12C67x. PIC14Cxxx, PIC16C55x, Ex, \&x x,84, 92xand 16F87x PIC CHIP. Supports PIC12C67x, PIC14Cxxx, PIC16C55x, bx, \& x x, $84,92 x$ and $16 F 87 x$
Full documentation with syntax examples are provided in the 168 page user manual. A technical support mailing list is provided for life time support.
 The PIC BASIC Pro compler Instruction set is compatible with the Basic Stamp II
providing additional functionally Over PIC BASIC, feature like LCD, ADCin, I2CRead, I2CWrite customisable Serial in / out. (Create a serial LCD display driver in minutes). Full de-bug facilities, compile with debug to produce assembly commented with your Basic commands
PIC BASIC and PIC BASIC PRO compile tight efficient code without the use of a basic interpreter. Supplied with a 168Page manual, explaining each command and worked examples (
FREE PIC Macro compiler, FREE Programmers File Editor, FREE Windows Front End.
PIC BASIC PRO Includes samples programs and code to support Smart card read\&write.

Download the full 168 page PIC BASIC MANUAL and more http://www.plcbasic.co.uk Order Online via -our secure server http://www.crownhill.co.uk

- Low cost programmer for PIC12Cxxx, PIC12CExxx, PIC14Cxxxx, PIC16C505, 55x, ex, 7xox, 84,9 9xPIC 16CE62x and PIC 16F87x
- ZIF adaptors are available for $8 / 18$ in $40 / 28$ Pin DIL, 8.18 and 28 SIC, 44 PIn MQFP. 44 and 68 Pin PLCC
Powered by $2 \times 9 V$ batteries or $A C$ adapter
- Upgradable software is supplied for future PIC Micro's - FREE 8051 style PIC Macro compiler

$£ 35$ When purchased with PIC BASIC $<$ -5

Parallel port extension cable - $£ 5.95$ 40PIn ZIF socket - $£ 22.50$ 8/18 PIn ZIF Socket -E22.50 PIC 8 Prototype hoard - $\mathbf{E 4 . 5 0}$ PIC 18 Prototype hoard - $£ 5.50$ PIC 64 Prototype hoard - 88.50

PIC Real-time Emulator'

 and Programmer Nine Dice PIE 10F87 In CircuitVF or PIC 16F8m (emulates most PIC 16C6N TM devices) VIn-Circult run time debugging
Wheal Time code execution 32whz to 20Whz rat time operation W HIgh Speed Parallel portintoriace
$\square 2.5 \mathrm{y}$ to $6, y$ operating range
Built in device programmer
Gran, stan, hun to cursor ate
Conditional animation Brat
-
In addition to opcode, W, Status, F5R
registers and corresponding Instructions.
\square Source Level and symbolic debugging
huns inter PICICD IDE (WIn $95 / 98$ or MT) or MPLAE
Supplied with ICD debug module, Prot board.
40 Pln and 28 PIn emulator headers.
Cables linE software and user guide
Al prices are subject io Va@@1\%.5\%

Crownhill Associates Limited

 24G16-E9R5.
 $2 \operatorname{lica3}-1,50$

32 Broad Street Ely Cambridge Cb 4PW
Tel: 01353666709 Fax: 01353666710

New filler/mixer chip

The new ZXF36L01 is a versatile analogue high-Q filter chip. In addition to its variable-Q bandpass or bandstop filter, the device also contains a mixer block, extending its range of applications.
To set the centre frequency, the basic filter section requires two resistors and two capacitors. Filter Q is controlled by two external resistors and can be varied up to about 50, Fig. 1.
While the filter operates up to 150 kHz , the mixer extends the useful frequency range up to 700 kHz and allows the frequency to be tuned. The local oscillator can be any waveform, making microprocessor control convenient.
The device is expected to be useful in audio gear and instrumentation for bandpass, notch and adaptive filtering. As the waveform at the local oscillator's input is irrelevant, a microcontroller can be used to produce a low-cost and variable frequency input.
Combining the filter and mixer functions in one low-cost chip makes the device interesting for sonar and ultrasonics, as you will see from the application outlined in the separate panel.
Typical operating current of this 5 V device is 3.4 mA and there's a shutdown mode reducing current to just $160 \mu \mathrm{~A}$. Devices are easily cascaded.

Filter circuits

From Figs $2,3 \& 4$, you can see how easy it is to implement various notch filters. Centre frequency, f_{c}, is given by,

$$
f_{c}=\frac{1}{2 \pi R C}
$$

while Q is,

$$
Q \propto \frac{R_{f}}{R_{r}}
$$

Here R, R_{i} and $R_{f} \geq 10 \mathrm{k} \Omega$ and $\mathrm{C} \geq 50 \mathrm{pF}$.
There's more on designing for a value of Q in the device data sheet.
Figure 5 shows how the device's frequency range can be extended using the mixer block.

Fig. 2. Circuit for a notch band-stop filter using the ŻXF36L01, together with its gain and phase response graphs.

Fig. 4. Notch filter with attenuating skirts. Skirt 'roll-off' away from the peak is $-20 d B / d e c a d e$, regardless of Q.

Deign example - using the ZXF36L01 in a sonar application

In a typical sonar system, the transducer is pulsed at its resonant frequency and the reflection is received after a period proportional to distance. The 'ZXF36L01 variable-Q filter is used to maximise the sensitivity at the required frequency and reduce noise. The on-chip mixer allows the received frequency to be tuned to accommodate different transducer frequencies.
The diagram shows how the ZXF36L01 provides a tuning and filtering solution for a sonar system. The received signal is first processed by an amplifier. This amplifier's gain increases with time to compensate for the reduction in reflected signal with time. At the same time, this amplifier reduces problems due to input overload.
From here, the signal is mixed with a local oscillator generated by a micro-controller. The filter then selects the appropriate signal.
In this example for a
200 kHz transducer,
the filter is set at 75 kHz and the local oscillator at 275 kHz . The mixer output contains the sum at 475 kHz and the difference at 75 kHz and the filter selects the 75 kHz signal.
An envelope detector follows the filter to provide a voltage proportional to the received signal. A microcontroller can now be used to process the time delay and signal strength to provide distance information.

Electrical characteristics of the ZXF36L01

Supply current

Parameter	Conditions	Min.	Typ.	Max.	Units
Operating	Filter	2.2	3.4	4.5	mA
Shutdown			160	300	$\mu \mathrm{~A}$

Filter characteristics

Parameter	Conditions	Min.	Typ.	$\begin{aligned} & \text { Max. } \\ & 150 \end{aligned}$	Units kHz
Max. operating frequency					
Q usable range		0.5		50	
Centre frequency temp.co.	$\mathrm{Q}=30, \mathrm{f}_{0}=1 \mathrm{kHz}$		2000		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Q temp. co.	$\mathrm{Q}=30, \mathrm{f}_{0}=1 \mathrm{kHz}$		0.7		\% ${ }^{\circ} \mathrm{C}$
Voltage Noise	$1-100 \mathrm{kHz}$		20		$\mathrm{n} V / \mathrm{NHz}$
Input Impedance		30		50	k Ω
Linear output range	10k Ω load		1.6		$\checkmark \mathrm{p}$-p
Sink current			150		$\mu \mathrm{A}$
Source current			150		$\mu \mathrm{A}$

Fig. 5. Filtering higher frequencies using the mixer. The signal to be filtered is mixed with the IO, whose frequency is chosen so that the difference, or intermediate, frequency equals the filter's centre frequency.

Typical mixer characteristics
Max. operating frequency 700 kHz
Maximum signal input $\quad 3.00 \mathrm{mV}$ p-p
Maximum LO input $\quad 100 \mathrm{mV}$ p-p
Minimum LO input
LO input impedance
5 mV p-p

Absolute maximum ratings

Voltage on any pin
Operating temperature range
Storage temperature
7.0 V relative to $\mathrm{V}_{\text {ss }}$

0 to $70^{\circ} \mathrm{C}$, derated for -40 to $85^{\circ} \mathrm{C}$
Test conditions: temperature $25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5.00, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Devise a useful and/or ingenious application for the ZXF36L01 versatile high-Q bandpass filter with integral mixer and you could win a $£ 500$ voucher to spend with Farnell. There's two runner up prizes of £100 vouchers foo.

Rules

- Electronics World reserves the right to publish submitted entries. All designs published will be attributed to their designers. A minimum payment of $£ 50$ will be made for each design published.
- Submission of an entry does not remove your right to exploit your design, but it does give Zetex the right to use the entry as an application note, or as the basis thereof, effectively making the design public domain.
- Winners will be chosen jointly by technical experts from Zetex, Farnell and the editor of Electronics World. The judges' choice will be final and no correspondence will be entered into regarding the choice of winner.
- No employee of Reed Business Information, Zetex and Farnell, or any of their associated companies, may enter this competition, nor may members of their families.
- No entry will win more than one prize, but multiple entries may be submitted.
- Prizes are as stated here and not negotiable.
- Entries arriving after the closing date will be void.
- No purchase in necessary to enter this competition.
- Winners will be notified by post, and the results may be publicised.
- For a list of winning entries, send an SAE to the editorial offices.
- Submitting an entry for the competition implies acceptance of these rules.

Launched this year, the ZXF36LO1 is a versatile high-Q bandpass filter requiring a minimum of external components. In addition to the variable-Q analogue filter there is also a mixer block, making the device suitable for a wide range of applications.
All you have to do to enter the competition is send a design idea incorporating the ZXF36LO1 to the address below. Entries will be judged on ingenuity, originality and usefulness. All entries are subject to the rules set out below.
A designer's kit is available from Farnell and you can find full data on the device on Zetex's web site
http://www.zetex.com/pdf/ics/zxf36101.pdf.
It is not necessary for you to prove your design, and buying the kit is not a condition of entry into the competition. The design you submit has to work in practice but you will not be penalised for not having built a prototype.
If you do submit a design that meets the competition criteria and you have bought the kit, then you will receive a Farnell voucher for $£ 15$, courtesy of Zetex.
Send your entry to Filter Design, Electronics World,
Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS. Note that it is not necessary to send your prototype! Simply send the circuit diagram and a clear, concise description of the circuit. It will help if you describe why you think that your circuit should be among the winners. You can also e-mail your entry to jackie.lowe@rbi.co.uk, but unless the e-mail has a subject heading that reads 'Filter Design' it will not be eligible. Please attach diagrams and text separately and include a daytime phone number with your entry if possible.
The closing date for the competition is 30 April.

Win a $£ 500$

voucher

reseemable

at Farnell.

For more information...

Visit
http://www. farnell.co for details of the ZXF36L01 development kit or http://www. zetex.com/pdf/ic s/zxf36101.pdf for more data on the filter chip.

This Electronics World competition is sponsored by UK semiconductor manufacturer Zetex and distributor Farnell Electronics Components.

Beginners' corner Balanced circuits

Balanced circuits play an important role in communications and in many other applications from audio to microwave frequencies. Ian Hickman explains why they are so widely used.

Balanced circuits have played an important part in communications, since before the days of 'electronics' as a recognisable branch of engineering. They continue to do so today.
Many circuits, such as a 75Ω coaxial television feeder cable for example, are unbalanced. That means that the signal is conveyed on one conductor, while the other remains at zero or ground potential - at least nominally.

Typically, unbalanced circuits are physically asymmetrical; in the case of coaxial cable, one conductor completely surrounds the other, hopefully screening it from any outside interference.
Balanced circuits, on the other hand, are both physically and electrically symmetrical. For audio-frequency signals, a typical arrangement consists of two wires side by side, spaced several inches apart.
Such wire pairs carrying telephone signals and supported on telegraph poles used to be a common sight alongside railway tracks. You can still see them in some rural areas of the country, and in many places throughout the world.
Depending on the gauge of the wire and the spacing, such circuits have a nominal characteristic impedance of $600 \Omega, 900 \Omega$ or 1200Ω. The latter two are more common abroad than in the United Kingdom.
If you were to climb a telegraph pole with a portable battery-operated oscilloscope, and view the signal on one wire with a high impedance probe, you would find it looked much the same as the signal on the other. But if you viewed them both at once, using a dual channel scope, you would see that the signal on one wire was the same as on the other, but inverted.
The telephone on the far end of the line responds to the voltage difference between the wires, i.e. the voltage on one with respect to the other. Any interference induced in the wires will produce the same voltage with respect to ground, on both lines. Such interference might be caused by electrostatic or electromagnetic coupling between the pair of wires and an overhead power transmission line for example.
In UK telephone engineers' parlance, this type of signal is called a 'longitudinal voltage'. In the US, it would be referred to as a 'voltage to ground'. It is also called a common-mode or 'push-push' signal.
The differential voltage - the voltage on one wire with respect to the other - is called the 'transverse' or 'metallic' signal by UK or US telephone engineers, or the normal-mode or push-pull voltage.
Although the circuitry within a telephone handset is not itself balanced, it responds to the transverse voltage while largely ignoring any longitudinal voltage. This is because it is 'floating', i.e. no part of it is ground referenced.
The handset also of course has to transmit outgoing speech to the line - a function traditionally performed with the aid of a specially wound transformer or 'hybrid'.

Nowadays, an electronic hybrid avoids the use of a costly, bulky wound component; various circuit arrangements can be used, such as those in reference 1 .

Balanced circuits abound

That basic building block of analogue electronics, the op-amp, is equipped with a balanced floating input. This means that the output voltage should depend only upon the voltage of one input with respect to the other, regardless of whether their average potential is 0 V or some other value.
Manufacturers' data sheets always quote the degree of balance or 'common-mode rejection ratio', which is frequently shortened to CMRR.
For example, the popular and long established TL081 op-amp typically provides a CMRR of 86 dB , with a minimum of 70 dB for the commercial TL081C, 75 dB minimum for premium types. The differential input voltage amplification of the device is $200 \mathrm{~V} / \mathrm{mV}$ typical $-25 \mathrm{~V} / \mathrm{mV}$ or $50 \mathrm{~V} / \mathrm{mV}$ minimum, depending on version.
The typical figure corresponds to 106 dB and the common-mode input voltage amplification should therefore typically be 86 dB less than this, or just 20 dB . In principle, you could measure the common-mode gain using the circuit of Figure 1a). With no negative feedback around the opamp though, the offset voltage adjustment needed to set the mean output voltage level to 0 V ground would be very critical.
There is a way around this problem. Instead of returning the wiper of the offset adjustment potentiometer via $1.5 \mathrm{k} \Omega$ to the negative rail, it can be returned through a high resistance to the op-amp's output, although this back door negative feedback will of course affect the gain. I once used this scheme to make a CA3130 provide a very high impedance

- balanced floating input, for use as the null detector in an AC bridge.
In practice, an op-amp is always used with negative feedback applied, to define the gain to the desired value. Figure 1b) shows inverting and non-inverting amplifiers, each with an unbalanced input. Although the input terminals themselves provide a balanced input, applying negative feedback causes unbalanced operation. Balance can be restored by a modification to the circuit, shown in Fig. 2. Here, the device inputs connect to a bridge of resistors, providing a balanced input and a gain of 20 dB , if $R_{2}=10 \times R_{1}$.

If a common mode input of say +1 V is applied, the non-inverting input rises to $10 \div 11=0.909 \mathrm{~V}$. If the output stays at zero volts, the inverting input will rise to the same voltage, provided that the resistor values are accurate. Thus there is no change in the differential input voltage. Hence, due to the device's commonmode rejection, there is no change in output voltage.
But while the Fig. 2 circuit provides a balanced input, i.e. one with common-mode rejection, it is not ideal. In the case of the TL081, the op-amp's input pins are virtual open circuits, each looking like a resistance of $10^{12} \Omega$. So assuming that R_{1} is $10 \mathrm{k} \Omega$ and R_{2} is $100 \mathrm{k} \Omega$, the circuit's input resistance at the non-inverting input terminal is just $110 \mathrm{k} \Omega$.
However, if you work it out for the inverting input, you will find that with a balanced input signal, it comes to $5.238 \mathrm{k} \Omega$. Thus the circuit will unbalance the output of a balanced source with a finite output resistance. This could be a problem when making 'bridging' measurements, i.e. tapping across a line in service.
Of course if the source were truly floating, there would not be a problem, but then a truly floating source could equally well use either of the Figure 1b) circuits.
There are several ways round this. For example, the LT1 193 high slewrate video difference amplifier from Linear Technology features two identical parallel input stages. These have closely defined gain, and both of them control the output. Thus one pair of input terminals can be used to set the gain, leaving the other pair floating free ${ }^{2}$.
Alternatively, three op-amps can be harnessed together to provide an 'instrumentation amplifier', as in Fig. 3a). This provides a very high input impedance at both input terminals, converting the signal to an unbalanced output.
Note that the two input op-amps provide no common-mode rejection. It is all obtained from the second stage. This has the same configuration as Fig. 2, and as noted above, it
has an unbalanced input resistance. But it is driven from the output impedance of the first stage, which is near zero due to the negative feedback around the input op-amps.
The arrangement is so useful that the three op-amps together with their various resistors are available from most semiconductor manufacturers, integrated into a single IC. A typical example is the AD624 from Analog Devices, providing pin-
programmable gains from $\times 1$ to $\times 1000$, a gain bandwidth product of 25 MHz , low noise, high linearity and low input-offset voltage. In addition, its CMRR is 130 dB minimum at gains of $\times 500$ or above.

Fig. 1a). Illustrating common-mode rejection. Applying an identical signal to both inputs of an ideal op-amp would result in zero output.

Fig. 1b). Adding negative feedback to define the gain accurately converts the op-amp to an unbalanced input circuit, either inverting with an input resistance R_{1} (i), or noninverting with a high input resistance (ii).

Fig. 2. This circuit provides a balanced input and converts the signal to a singleended output.

[^1]An alternative circuit arrangement can provide the floating high input impedance of an instrumentation amplifier with just two op-amps, Fig. 3b)

Applications for balanced circuits

Balanced circuits are widely used. A common example is the 300Ω balanced feeder often used for the run between a dipole antenna and a VHF broadcast receiver. Any interference picked up on the feeder is a commonmode signal, which is ignored by the balanced floating input of the receiver.
At much lower frequencies, instrumentation amplifiers are used in situations where it is required to accurately record or process small signals that may be contaminated with much larger unwanted common mode voltages.
Many instances occur in manufacturing process-control, with sensors measuring strain, temperature, pH , etc. At one time I was involved with measuring the performance of telephone transmission circuits. I have already mentioned 600Ω balanced open wire lines, but many a
subscriber's 'local loop', or connection to their local exchange, is via a

- multi-cored twisted-pair cable for most of its length. Such twisted pairs have a lower characteristic impedance than open-wire lines. Values of $135 \Omega, 140 \Omega$ (standard in UK) and 150Ω are common.
On both types of line, quite large longitudinal voltages may be experienced from time to time, so telephone transmission test equipment is designed to be very well balanced. This applies particularly to a psophometer, which must meet the stringent requirements laid down in the relevant CCITT specification.
A psophometer is an instrument for measuring the perceived level of noise on a telephone circuit, using a true rms meter circuit. It includes a 'telephone weighting filter' (CCITT Rec. P53, 1970), which takes into account the variation of efficiency of a telephone earpiece with frequency, and the acuity of the ear likewise
A 'broadcast filter' is also supplied for use on the higher bandwidth lines working at 50 Hz to 15 kHz . These are provided for linking studios. The filter also has a 'flat' position.
The CCITT-specified degree of
a)

Voltage gain $=(2 \times R 2 / R 1)(R 4 / R 3)=$ unbalanced output voltage $/$ balanced input voltage
Fig. 3. Circuit a) provides a high impedance balanced floating input and converts the signal to a single-ended output. Fig. 3b) is similar to a) but uses only two op-amps.
b)

Voltage gain $=5+20 \mathrm{k} / \mathrm{Rg}$
balance or rejection of longitudinal (common-mode) signals is not a unique figure, but varies according to the frequency. At 50 Hz , the requirement is that when 200 V rms is applied between the instrument's input and its case, the reading shall not exceed $100 \mu \mathrm{~V}$, i.e. a CMRR of 126 dB . For this test, the two input terminals are strapped together.
In an instrument I designed, subsequently bought in quantity by the then GPO, roughly half the required rejection was obtained in an input transformer with a balanced floating primary. The other half was obtained from a modified version of the circuit in Fig. 2.
For signal level adjustments and measurement purposes, balanced systems need balanced attenuators. Figure 4a) shows a switched 0 or 60 dB balanced 600Ω attenuator stage. Together with a bridged balanced-tee $0-50 \mathrm{~dB}$ stage with 10 dB steps and a similar 0-11dB stage with 1 dB steps, it was used in another GPO contract, for a balanced attenuator covering $0-121 \mathrm{~dB}$ in 1 dB steps.
The original specification demanded a very high degree of balance 60 dB - at any attenuation setting up to the maximum, over the audio band. This was tested by applying an input between the input terminals, which were strapped together, and the case. The output was measured at various frequencies with a balanced instrument, such as a psophometer.
With careful design, the required performance can be met at low and medium values of attenuation. But if the measuring instrument's input is balanced floating, whether 'bridging' (high impedance) or 'terminating' (600Ω), the attenuator in Fig. 4a) provides no attenuation of the longitudinal signal. So one is in effect measuring the balance of the measuring instrument, rather than that of the attenuator.
The situation is little changed if the measuring instrument's input is bridging, centre tapped to ground. It is rather better if the measuring instrument's input is also set to terminating. Thus at the maximum attenuation, the degree of balance demanded could be around 180 dB which is clearly impracticable.
So the customer agreed to change the specification, and the pad was redesigned as a balanced-tee pad, with a centre tap brought out to a terminal on the front panel, Fig. 4b).
When using high attenuations of 60 dB and above, the pad centre tap could be earthed, making the attenuation of longitudinal components equal
to that of transverse. Evidently, when considering a balanced transmission system, it is necessary to know if the receive end is floating or centre-tapped to ground, and whether terminated or bridging.
Balanced circuits are also used on printed circuit boards, where very high frequency emitter-coupled logic (ECL) signals must be routed from one place to another without corruption by cross-talk, etc.
Rise times of the signals concerned are of the order of a nanosecond, so correspondingly fast test signals are required. Testing of unbalanced transmission lines for data is usually carried out using time domain reflectometer (TDR) measurements.
A voltage step with a very short rise time is applied to the input of the line from a matched generator. The line input voltage is monitored by a sampling oscilloscope, and if the line is good, and correctly terminated in its characteristic impedance, 50Ω say, then the step is undistorted. But if the line is short circuited, the input voltage will collapse again to zero after a time equal to the round trip time from the input to the short and back again.

Similarly, any impedance variations at any point along the line will cause a reflection of some magnitude and sign. A measurement of the time between the step and the returned echo gives the distance to the fault.
For such measurements on a balanced line, two step generators and line input voltage monitors are necessary, one for each line. The Tektronix 1180IC oscilloscope, with option SD-24, is designed for just this purpose.
With one step positive-going and the other negative-going, the performance of the balanced line as such can be determined. The effective rise time of the instrument, taking into account the rise time of the step and the rise time of the line voltage monitor section, is 35 ps or less.
Further tests are possible - and desirable - given that any induced crosstalk may be a common mode component. So there is provision to reverse the polarity of the negativegoing step. With both steps positivegoing, the characteristics of the line to ground, as an unbalanced system can be investigated, as can its response to common-mode signals.

b)

References

1. Hickman, Ian, 'Phantom data', Electronics World, August 1998 pp. 650-655.
2. Hickman, Ian, 'Four op-amp inputs are better than two,' Electronics World, May 1992 pp. 399-401

PASSIVE COMPONENTS FOR CIRCUIT DESIGN

Passive Components for Circuit Design is a unique introduction to this key area of analog electronics designed for technician engineers and anyone involved in circuit design. The coverage encompasses all component types capable of power amplification: resistors, capacitors, transformers, solenoids, motors and transducers. The behaviour of the components is explored along with the different types available and the principles of circuit design. Tolerances, stability, variation with temperature, reliability and manufacturing standards are all covered. Reading this book will improve your skills in component selection and analog circuit design. These are essential skills not only for the analog designer, but for all circuit designers, professional or amateur.
Confents: Preface; Fundamentals; Fixed resistors; Variable resistors, polentiometers and diodes; Capacitors; Inductors and inductive components; Inductive devices; Transducing components; SMT; Hardware; Index
Readership: Technician engineers, circuit designers, advanced hobbyists
Pages: 304pp
Price: UK $£ 22.00$
Europe $£ 24.00$
ROW £26.00

ELECTRONIC PROJECTS FROM THE NEXT

 DIMENSIONFor years paranormal scientists have explored the delection and documentation of spirits, auras, ESP, hypnosis, and many more phenomena through electronics. Electronic Projects from the Next Dimension provides useful information on building practical circuits and projects, and applying the knowledge to unique experiments in the paranormal field. The author writes about dozens of inexpensive projects to help electronics hobbyists search for and document their own answers about instrumental transcommunication (ITC), the electronic voice phenomenon (EVP), and paranormal experiments involving ESP, auras, and Kirlian photography.
Although paranormal studies are considered esoteric, Electronic Projects from the Next Dimension teaches the technical skills needed to make devices that can be used in many different kinds of experiments. Each section indicates how the circuit can be used in paranormal experiments with suggestions about procedures and how to analyze the results.
Contents: White noise generators for use in instrumental transcommunication (ITC) and electronic voice phenomenon (EVP) experiments; Practical circuits for image experimentation, such as a
wireless sparkling image generator, horizontal bar generator, brontophic sound, magnetic field generator, high-voltage generators (Kirlian Machine's I \& III; Paranormal skills experiments with temperature change, polygraph, electro-shock, random number generation, UFO detection, and ghostfinding.
Readership: Hobbyists, Electronics Enthusiasts
Pages: 256pp
Price: UK $\mathbf{\Sigma 2 2 . 0 0}$
Europe $£ 24.00$
ROW £26.00

BASIC AC CIRCUITS

This is the step-by-step approach for beginners. This self-paced individualized learning tool covers concepts, terms, and the mathematics required to understand AC circuit problems. It has been designed to improve analysis techniques for prediction and control development.
Readership: Beginners meeting $A C$ circuits for the first time: students; lechnicians Pages: 921 pp Price: UK $£ 27.00$
Europe $\mathbf{£ 2 9 . 0 0}$
ROW £31.00

Post your completed order form to:-
Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Fax your order form to 02086528111

How to order Book Title

- I enclose a cheque/bank draft for $£$
(payable to Reed Business Information)

Please charge my credit/charge card
\square Mastercard \square American Express \square Visa Diners Club
Credit Card No:
Expiry Date:

Signature of Cardholder

Cardholder's statement address: (please use capitals)

Name

Address \qquad
\qquad Tel:

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU and any additional electronics used in your designs. And it does so in real time. *

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info
- Interactive device models include LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility - compile and simulate with one keystroke.
- Over 4000 standard SPICE models included. Fully compatible with manufacturers' SPICE models.
- DLL interfaces provided for application specific models
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages.
- ARES Lite PCB Layout also available.

Beautiful resistors

Les Green looks at the rarely discussed topic of the effects of stress in planar resistors, and he explains how to reduce it.

You may never get the chance to design your own custom resistor network. In fact you may not think there is anything interesting involved in resistor design, but every electronics designer should be able to appreciate the beauty of a well designed resistor.
The subject of resistor design is seldom taught in electronics courses, possibly because most of the techniques are computer based rather than mathematically biased. In fact it is the development of computer graphics which has really made the subject come alive.

A brief history

Early electrical research was not restricted to one or two experimenters; a great many researchers contributed along the way. The short list of discoveries shown in the panel fits the history of resistance into its proper historical perspective.
Resistors were originally coils of thin wire. As this construction method is bulky and expensive, it is now only used on laboratory standard resistors and power wire-wound resistors.
For some time, ordinary resistors were made of a mixture of carbon and insulating binding material, forming the 'carbon composition' construction. These were horribly unstable, noisy and inaccurate by modern standards.
The modern form of resistors is always a thin film*

Fig. 1. Equipotential
plot of a square-corner turn. Orange is insulator. The blue and green lines, left and bottom respectively, are electrodes.
"Technically, thick film usually refers to a screen-printed resistor, while thin film refers to a vacuum deposited resistor. Here I mean 4hin' in the usual English sense, rather than the specialist sense.

Resistance-related discoveries

1785 Coulomb, discovered that electric charges exert forces on each other.
1800 Volta, invented the primary battery.
1820 Oersted, discovered that an electric current deflected a magnetic compass needle.
1820 Ampère, discovered that electric currents exert forces on each other.
1826 Ohm, identified the relationship between electric current, potential difference and resistance
1831 Faraday, discovered electromagnetic induction.
1845 Kirchhoff, formulated the basic laws of electrical networks.
of conducting material on an insulating substrate; either in tubular form or as a flat film (planar). It is this planar form that is the chief target of this article.

Rectangular film resistance

The resistance, R, of a block of conductive material is given by the formula:

$$
R=\frac{\rho \times L}{T \times W}
$$

Here, L is the length, T is the thickness, W is the width and ρ is the resistivity. Since R has units of ohms, it should be clear that the units of ρ are $\Omega \times$ metre, often written as Ω 'm.
For a thin film it is convenient to consider a new formula, where the resistivity and the thickness are combined into one term:

$$
R=R_{s Q} \times \frac{L}{W}
$$

It is evident that if the length of the film and the width of the film are equal, forming a square of resistive material, the resistance is a constant value of $R_{S Q}$. This is therefore known as the 'ohm per square', or $\Omega /$ sq for short, which is more formally called the sheet resistivity. It is not ohms per square metre or ohms per square foot; it is just ohms per geometric square.
This resistive film may be screen printed ('thick film') or vacuum deposited ('thin film'), but its primary characteristic is its Ω / sq. To make a resistor of a particular value, the aspect ratio, i.e. the ratio of the length to the width, is designed along with the Ω / sq parameter. Thus resistors are made short and fat, or long and thin, according to whether the desired resistance is greater or lesser than the Ω / sq for that film.

Resistor shape options

There is obviously a problem with high value resistors in relatively low resistance films; you need lots of squares in series. Therefore you either have to have a long resistor or a very thin resistor.
Given that the width of the resistor is governed by the manufacturing tolerances, there is obviously a limit as to how narrow you can make the resistive path. In order to make a long path in a small size, there is a need to go around corners.
Our nice simple formula now falls to pieces in the face of this geometrically simple rectangular corner. We have gone from simple geometry to a two-dimensional field pattern.
The resistance is no longer calculable without advanced mathematical formulae. We now enter the domain of finite element analysis by computer.
In Fig. 1, the orange area represents insulator. The blue line on the left is one electrode and the other electrode is below the bottom of the plot. This equipotential field plot clearly shows how the current flows around the corner. This shape has a resistance of 2.57 squares. In other words, if the sheet resistivity were $100 \Omega / \mathrm{sq}$, the resistance would be 257Ω.
By inspection we could have known that the resistance would be somewhere between 2 and 3 squares. Getting a more accurate answer would not have been possible without some sort of field plot. In fact manually produced field plots have been used for at least 100 years, as they

Fig. 2. Gradient field plot of the square corner turn.

appear in Maxwell's treatise ${ }^{1}$.
Another way of looking at the field plot is in terms of the electric field intensity. This is the voltage gradient within the resistive film and represents electric stress on the film.
You can see from Fig. 2 that there is a lot of stress at the corner. On this simulation the electric field is around 38 units near the electrodes, but rises to 175 units at the corner.

Fig. 3. Gradient plot of a bevelled corner turn.

Fig. 4. Plot a) is the gradient of a half-width inner radius turn. In b) is a gradient plot of a full-width inner radius turn and in c) a gradient plot of the new style improved corner turn.

The current is taking a 'short-cut' around the corner and bunching up. This high stress point is a weakness in the design, as it will be damaged by over-voltage events more readily.
You should also realise that the power dissipated in a small element is proportional to the square of the voltage across it. Thus an element that has 5 times the electric stress across it, will actually be generating 25 times the heat. This is not a good way of making a stable resistor!
These points of stress also have a disproportionately large effect on the overall resistance compared to the rest of the pattern. This is another factor limiting the long term stability of the resistor.
The resistor is the wrong shape for accuracy and stability. What is needed is a smoother transition. Just bevelling the inside comer slightly has a useful effect, Fig. 3. The resistance has reduced to 2.4 squares, but the peak stress has reduced to 106 units at the corners, with 40 units near the conductors.
The other point about having stress in the resistive film is that current noise ($1 / f$ noise) is increased ${ }^{2}$.

Stress ratio

The ratio of the peak electric field strength to some sort of average field strength is obviously important. Up to this point I have been using a fairly imprecise measure, as the field around the electrodes is not constant. What is desirable is a more definitive measure with which to make quantitative comparisons between resistor shapes.

$$
\text { Stress ratio }=\frac{\text { Peak electric field strength }}{\text { Mean active field strength }}
$$

The term 'mean active field strength' needs defining and explaining. If an extra resistive area is added on to any field pattern, it is possible that there will be little or no voltage gradient in that area. In this sense the area is inactive.
If we average this new area in with all the rest, the stress
ratio would get worse although the resistor would not actually be under any more stress. The inactive area would have skewed the stress ratio and given a misleading result.
A simple way to overcome this problem is to define an active area as one where the voltage gradient is greater than 5% of the peak gradient. The inactive areas are then neglected when calculating the mean electric field strength and the stress ratio.
Using this new measure the 'square cornet turn' has a stress ratio of 4.94 . The bevelled corner turn has a stress ratio of 2.99 . This is a considerable improvement for little effort.
A radius on the inside corner of half the resistor width, with the outer radius $11 / 2$ widths, both on the same centre, reduces the stress ratio to $2: 05$, Fig. 4a).
Increasing the inner radius to equal the resistor width, and making the outer radius double the resistor width, gives a slight improvement to a stress ratio of 1.71, Fig. 4b).
There is a law of diminishing returns here. The best possible stress ratio is of course 1. The half-width-radius bend achieves a stress ratio of 2.05 with a resistance of 2.515 squares. The full width radius gives a stress ratio of 1.71 and a resistance of 2.323 .

We want a maximum amount of resistance in a given space, but without putting the resistor under too much stress.
An interesting compromise is to deliberately make the short-cut around the corner less 'attractive' to the current flow. By pushing the inner corner out into the flow, the path length, and therefore the path resistance, is increased, Fig. 4c).
This new shape has a stress ratio of 1.9 and a resistance of 2.87 squares. As it gives more resistance with less stress in the same space, it is undeniably preferable to the halfradius bend.
No hard and fast rule can be made about what stress ratio is acceptable for a resistor in general, because the design
environment and required specification for the resistor have not been stated. If pushed, I would say that a stress ratio of above 3 would give a poor resistor and that a stress ratio below 2 is desirable.
So far in this article, a quantitative measure of the stress in a resistive pattern has been presented. This then gives a quantitative way of saying which is a good pattern and which is a bad pattern.
In a second article on this topic, I will be discussing the subject of trimming. This is vitally important because poor trimming causes increased stress and therefore worse stability. The amount of trimming necessary on a thick film resistor is around $\pm 19 \%$ so the subject is not trivial.
The reason why this is important to the non-specialist is that because of the large trimming range, one batch of resistors can work whilst the next batch can be utterly useless. This is of considerable importance to any designer!

References

1. Maxwell, J.C., 'A Treatise on Electricity \& Magnetism', Volume 2, 3rd edition 1891. (1954 reprint.)
2. Yoshida, H, 'The Effect of Resistor Geometry on Current Noise', IEEE Transactions on Components, Hybrids and Manufacturing Technology: Vol. 16, No 3; May 1993, pp. 344-349.

How to pay

(VCR Fault Finding Guide) paperback

- I enclose a cheque/bank draft for $£$ (payable to Reed Business Information)

Please charge my credit/charge card
-Mastercard American Express Visa Diners Club Credit Card No: Expiry Date:

Signature of Cardholder
Cardholder's statement address: (please use capitals)

Name
Address \qquad

Post Code \qquad Tel: \qquad

Television magazine's VCR Clinic column is a unique forum for practical servicing tips, with the UK's leading service engineers and servicing writers contributing their observations and recommendations month by month. But try finding those faults reports for the Amstrad XYZ123 that's on your bench. Even with an index you will be chasing through a pile of magazines... until now. Peter Marlow's VCR Fault Finding Guide is a distillation of the most used fault reports from 11 years of Television magazine. Arranged by make and model the information is extremely easy to access, and the book is a convenient size for the bench or to carry with you. This will undoubtedly become one of the service engineer's most useful tools. Unlike other fault guides, this one is based on top quality information from leading authorities, and genuine repair case studies. This is real-life servicing information, not just a compilation of manufacturers' manuals.
Approximately 2,000 reports on 193 models from 35 different manufacturers. Instant on-thespot diagnosis and repair advice. Television magazine's leading writers' wit and wisdom available for the first time in book form

Post your completed order to:-

Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

VCR Fault
 Finding Guide

Peter Marlow

This book is on
essentiol repair
tool, not just
another volume for the shelf

Pages: 464pp

Price: £22.50

Post your completed order form to:-
Jackie Lowe, Room L514, Quadrant House,
The Quadrant, Sutton, Surrey, SM2 5AS
Phone your credit card order: 02086523614
Fax your completed order form to 02086528111
UK Price: $£ 17.50$ Europe $£ 20.00$ ROW $£ 22.00$
Paperback price includes delivery
How to pay
(Blumlein) paperback

- I enclose a cheque/bank draff for £ (payable to Reed Business Information)

Please charge my credit/charge card

- Mastercard American Express Visa Diners Club

Credit Card No:
Expirey Date:

Signature of Cardholder
Cardholder's statement address: (please use capitals)
Name \qquad
Address \qquad

Post Code \qquad Tel: \qquad

NFW/ PRODUCTS

Please quote Electronics World when seeking further information

Triple-output converter

With outputs of 3.3 V at 6.2 A and $\pm 12 \mathrm{~V}$ at 530 mA , this Elec \& Eltek DC-to-DC converter is designed for telecom applications where a 3.3 V DC feed is needed. Every output has over-voltage protection and the converter achieves 3.3 V from 12 V or 24 V . With an input range of 40.5 to 60 V DC this 34W unit features at least 80 per cent efficiency and operates without an additional heatsink over a temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The specification includes 1 kV DC isolation, and line and load regulation better than five per cent. Switching at

300 kHz keeps dimensions down to $71 \times 65 \mathrm{~mm}$ with a height of 13 mm and the footprint is compatible with industry standard models. The converter is designed to meet UL1950 and EN60950.
DT Electronics
Tel: 02476437400
Web: www.dtelectronics.com

32Mbit synchronous SRAM in 119 BGA

White Electronic Designs is offering three 32Mbit synchronous SRAMs, the WED2ZL36IMS-BC and the WED2ZL36IMV-BC are 2.5 V and 3.3 V versions, respectively, of $1 \mathrm{M} \times 36$-bit NBL (no bus latency) synchronous SRAM. Each integrates two $1 \mathrm{M} \times 18$ SRAMs into a single $17 \mathrm{~mm} x$ $23 \mathrm{~mm}, 119$ BGA package. The WED2ZL2365 12S-BC, also a 119 BGA , is a 2.5 V version configured as two banks of $512 \mathrm{~K} \times 36$. All three products are available in speed ranges from 100 MHz to 166 MHz . making them suitable for highend networking applications such as Gigabit/Terabit Ethernet, ATM Switches, Add/Drop Multiplexers and Optical Switches. The NBL

Synchronous SRAMs are designed to sustain 100 per cent bus bandwidth by eliminating turnaround cycles when there is a transition from read to write, or vice versa. All inputs are synchronised to rising clock edges with the exception of output enable and linear burst order. Asynchronous inputs include sleep mode enable. Write cycles are internally selftimed and initiated by the rising edge of the clock input. This feature eliminates complex offchip write pulse generation and provides increased timing flexibility for incoming signals. White Electronic Designs Tel: 0015083665151 Web: www.whitedc.com

SuperH processors run up to 200 MHz

Hitachi has announced two microprocessors in the SuperH 32-bit Risc family, the SH7729R and SH7709S. Based on the SH3-DSP and SH-3 cores respectively, each device offers a high performance of 217/260Mips at operating frequencies of $167 \mathrm{MHz} / 200 \mathrm{MHz}$. The SH7709S achieves low power consumption with the $\mathrm{SH}-3$ as

its CPU core, making it suitable for use in portable information devices such as hand-held PCs and PDAs. The SH7729R in particular, with its on-chip DSP, can handle high-speed processing of voice recorder and image data in portable information devices. This allows for the high-speed execution of middleware, for example VoIP, in products such as voice codecs. The SH7729R is also capable of simultaneously executing browser display and voice codec processing, for instance in Windows CE, which has been difficult with previous products.
Hitachi
Tel: 01628585163
Web: www.global.hitachi.com

Mobile phone driver IC generates 128 colours

Rohm has expanded its family of miniature LED driver ICs with a surface mount device that allows 128 different colours to be generated from a single tri-colour LED. Designed for portable, battery-powered applications such as mobile phones, the BU8770FV LED driver can be used to optimise LED colours dependent on certain operating conditions. The BU8770FV integrates an oscillator, a CPU interface block, a DC/DC converter for driving the LED and three PWM controllers for red, green and blue output respectively. The PWM circuitry allows the LED to generate up to 128 different colour shades. Device input is via a serial interface. Supplied in an SSOP 16 -pin package with dimensions of $5 \times 4.4 \times 1.5 \mathrm{~mm}$, the device will operate from a 3.3 V supply and incorporates a standby mode that minimises power consumption when driver operation is not required.
Rohm Electronics
Tel: 01908282666

Single-cell lithium-ion battery charger IC

TelCom Semiconductor's first battery charger IC, the TC3827, is a controller designed to carry out safe and fast charging of a single lithium-ion cell. The device's accuracy is ± 1 per cent and shutdown current is $1 \mu \mathrm{~A}$.
With an overall system accuracy of 1 per cent, the company says this device ensures the cell capacity is fully utilised without life cycle degradation.
TelCom Semiconductor
Tel: 0016509689241
Web: www.telcom-semi.com

Circular connectors are very small

Flint is offering Hirose's miniature circular connector range, the HR25 which provides up to 20 contacts in an outside diameter of 12.5 mm . Designers have a choice of $4,6,8,12,16$ or 20 contacts, and a variety of wiring options including crimp-

style and direct board mounting as well as soldered wiring types. The HR25 is available in screw-lock or push-type mating. Their construction ensures that pins cannot bend if the male pins are inserted incorrectly, even if the two pieces are engaged, safe positioning of male contacts prevents any possibility of collision, says the supplier. A combination of watertight coupling and goldplated contacts comes as standard.
Flint
Tel: 01530510333
Web: www.flint.co.uk

200W modules output at 30,40 and 50 kV

Applied Kilovolts has introduced a range of 200 W modules with output voltages of $30 \mathrm{kV}, 40 \mathrm{kV} \& 50 \mathrm{kV}$ at 200W. The supplies use an energy recovery circuit to achieve high oscillator conversion efficiency and as a result are small in size for such high voltage power supplies, said the supplier. Operation is from 24V DC and uses a high frequency (50 kHz) switch mode FET oscillator with the energy recovery circuits. All high voltage components are generously de-rated to give a design life of ten years or more and are vacuum encapsulated in silicone rubber. The modules are high stability with a load and line regulation of better than 0.1 per cent and a
temperature co-efficient of better than $300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Output ripple is better than one per cent peak to peak.
Applied Kilovolts
Tel: 01273439440
www.appliedkilovolts.com

Vandal resistant keyboard is sensitive

Using high frequency touch sensitive technology, Sussexbased EAO has produced a rugged PC compatible 105-key keyboard. For Larger volume applications, touch sensitive keyboards or keypads may be customised to customers' specific needs regarding the number of keys, design, shape, colour and functionality. The keyboards are PCB based and designed to be used through a glass or polycarbonate front plate. This makes them completely sealed.and resistant to chemical attack as well as vandal resistant and easy to clean.

They can also be operated using gloved hands. Available either as a stand-alone desktop unit, or a PCB version for mounting behind the customer front panel, the series 75 keyboard comprises an oscillator, a detection cell per key and an output signal processor. The keys are activated by dampening the oscillator's high frequency signal with a finger.
EAO
Tel: 01444236000
www.eao-group.com

Hybrid IC switches varying loads

The STR-G655I is an off-line switching IC from Ultimate Renaissance which operates in 'fixed off-time' mode with a maximum frequency of 60 kHz . The device features a 3.9Ω $\mathrm{R}_{\mathrm{DS}(\text { on })}$ avalanche rated 650 V , 158 mJ FET and includes over voltage protection (OVP), under voltage lockout (UVLO) and

Class-D audio amplifier gives a virtuoso performance

Zetex has announced the first product in its Class-D audio amplifier family. The ZXCD 1000 switching amplifier controller offers efficiency greater than 90 per cent, claims the supplier. This allows the amplifier to be offered in a compact package, and to generate much less heat than a comparable Class A/B linear amplifier - which would typically have an efficiency of around 65 per cent. It offers THD + N (total harmonic distortion and noise) of typically 0.2 per cent open loop, or typically less than 0.1 per cent with a 10 dB feedback loop (measurements are taken at 90 per cent power, full band). Depending on the choice of output filter, the ZXCD 1000 provides true high fidelity performance at an output of 25 W or 50 W and can drive either a 4Ω or 8Ω load, says the firm.
Zetex
Tel: 01616224422
Web: www.zetex.com

Please quote Electronics World when seeking further information

thermal shutdown (TSD) circuitry. Available in a 5 -pin isolated TO-220 package the STR-G655I operates up to 60 W on a European input voltage range and 30 W on a world-wide input voltage range. Ambient operating temperature range is $-20^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Ultimate Renaissance
Tel: 01793439310
www.ur-home.com

SM LEDs protect against discharge

Lumex's latest family of surface mount technology LEDs are designed to offer protection from electrostatic discharge (ESD). Applications include right-angle panel or fault

indicators, where the light source is exposed to an end user. The SMF-HM1340XD-L series of LED indicators are available in right-angle or straight-up packaging. They can be equipped with any of the supplier's off-the-shelf lensed $\mathrm{T}-3 \mathrm{~mm}$ (T-1) light emitting diodes. Typical choices include standard low-current ($I=2 \mathrm{~mA}$) LEDs in red, green, yellow or amber, with blue and white also available. An ESD-safe lens snaps over the LED to complete the package. The base unit is designed as a mate-able unit. Lumex
Tel: 0018002785666
www.lumex.com

DC supplies range from 13.3 to 30 kW

The Magna-Power SQ Series of DC supplies range from 13.3 kW to 30 kW . They are sold by Kingshill in the UK. Developed from the established PQ series, these current-fed units combine high and medium frequency power processing technologies to

Boundary scan controller supports compactpci/pxi

JTAG Technologies has extended its line of high-performance boundary-scan controllers with an addition to the JTAGTAPS family, the JT3710/PXI DataBlaster. The controller supports the CompactPCI/PXI format and its software structure is identical to the previous ISA, $\mathrm{PCI}, \mathrm{VXI}$ and USB versions of the DataBlaster. The PXI-based controller offers 32 -bit operation with data transfer speeds up to 25 MHz . To accommodate the high data rates and lengthy vectors demanded by boundaryscan applications, such as flash memory In-System Programming, the JT3710/PXI uses a unique boundary scan implementation. This includes the firm's chipset for real-time data decompression, high-speed TAP (test access port) drivers and AutoWrite used to boost boundary-scan-based flash ISP performance. A high capacity memory is also incorporated onboard for local ISP data storage.
JTAG Technologies
Tel: 01234272226
www.jtag.com

reduce package size. There are 50 models with outputs from 16 $625 \mathrm{~V}, \mathrm{DC}, 21-1800 \mathrm{~A}, \mathrm{DC}$. They are fully programmable through resistance, voltage, current or optional JEEE-488/R5232. Overvoltage and over-current are also programmable. Constant monitoring ensures shutdown if a line opens or a programmed input is exceeded. Units function as voltage or current sources, depending on control settings and load conditions. As a voltage source, if the load increases beyond the current command setting, the unit automatically crosses over to current mode. Diagnostics are embodied within the control loop, while proprietary circuitry identifies whether voltage, current or a fault condition has control. If the fault condition demands user intervention, mains power is disconnected and the diagnostic status latched into memory. Kingshill
Tel: 01634821200
www.kingshill.com

Adapter board connects CompactPCI supplies

Schroff's latest adapter board is a CompactPCI connection system using the power supply's M-connectors. It is intended to allow a user to carry out prototyping and small scale production work without having to manufacture an application specific backplane with integral power supply connections. It is based on a two layer intermediate board, which is used as an adapter
the backplane of a 19 in . subrack. Available in heights of 3 U and 6 U , these boards like the backplane itself can be mounted onto the rear horizontal rails. All signals including drive supply, sense line and current share bus signals are fed from the DINM24/8 connector of the CompactPCl by cable to the intermediate board and then to the backplane.
Schroff
Tel: 01442240471
www.schroff co.uk
between the power supplies and

NEW PRODUCTE

Please quote Electronics World when seeking further information

Custom voltmeter for under £15
Lascar has launched a customscaled addition to its EM series of drill mountable panel meters - the EMV 1025S-XX. This new 3 -wire, $3 \frac{1}{2}$ digit LCD voltmeter has 'factory set' scaling. According to the supplier, the user orders a 10 -wire evaluation unit, confirming preferred scaling and decimal point options. All subsequent meters ordered
in quantities over 50 pcs will be provided in the particular configuration chosen for only $£ 14.94$ per unit, says the firm. As with each of the modules in the EM Series, the EMV $1025 \mathrm{~S}-\mathrm{XX}$ is fitted with a threaded stud, mountable through a 5.5 mm hole, is 43.5 mm by 21.4 mm in size and has a low profile finish of 5 mm . Lascar Electronics
Tel: 01794884616
www. lascarelectronics.com

1.4MHz buck converter offers 95% efficiency

Linear Technology's LTC3404, 1.4 MHz current mode monolithic synchronous stepdown $\mathrm{DC} / \mathrm{DC}$ is capable of delivering up to 600 mA of output current. The buck converter has an operating quiescent current for less than 1 MHz operation of $10 \mu \mathrm{~A}$ with
no load and less than $1 \mu \mathrm{~A}$ in shutdown. Efficiency is rated at 95 per cent.
Linear Technology
Tel: 01276677676
www.linear.com

Comms modules for industrial PCs

Xycom Automation has extended its range of Industry Pack (IP) industrial PC communications modules. The module can be used on processor boards with IP sites, on XVME-9660 6 U carrier cards (four per card) or XVME9630 3U carrier cards (two per card). The XIP-4520 offers 8 channels of RS-232 communications with 64 bytes each of transmit and receive FIFO buffers and bit rate programmable up to $230 \mathrm{kbit} / \mathrm{s}$. Xycom Automation
Tel: 01604790767
www.xycomautomation.com

32-bit configurable chip

Triscend has introduced a 32 -bit configurable device which integrates an ARM7TDMI processor core with programmable logic, representing over 3000 flipflops and 300 programmable I/O. The A7 configurable system-on-chip device includes a dedicated system bus with a transfer rate of $264 \mathrm{Mbit} / \mathrm{s}$ and system features such as a fourchannel DMA controller, an external memory interface unit, full power management utilities and JTAG debug interface. Additional peripherals include timers, UARTs, interrupt and watchdog. Alongside the ARM core is an SRAM-based configurable logic matrix with over 3000 flip-flops and 300 programmable I/O. The system interconnect bus combines 32bit addressing with 32 -bit data

The Distributor with 20,000 hard-to-find lines EX STOCK!!!
 Semiconductors

We have one of the largest ranges of discrete parts in the UK, both new and obsolete types and, if we do not have it in stock, we can usually source it for you.
Call or fax for our latest Semiconductor stock list.

Computer products

We carry in stock everything to make a Personal Computer. CPUs - Memory - Motherboards - Cards - Scanners Modems - Sound Cards - Speakers - All types of Drives Cases - PSUs - Monitors etc

Components \& equipment

Call or fax for our latest Semiconductor stock list. Capacitors - Resistors - Connectors - Potentiometers Cables - Batteries - Speakers - Amplifiers - Lamps Microphones - Fans - Power supplies - Transformers Buzzers - Sirens - Fuses and Holders - LEDs - LCDs Relays - PA Systems - Tools - Test Equipment - etc

See our web site. Non-trade customers, send $£ 9.80$ to the sales office for a complete suite of catalogues.

Semiconductor Supplies International Ltd
Dawson House, 128-130 Carshalton Road, Sutton, Surrey, England, UK. SM1 4TW 020-8643 1126 (Sales and Technical Queries) Fax: 020-8643 3937 (For International use +4420) e-mall: sales@ssl-uk.com Web: ssl-uk.com

Clock generators for digital set-top boxes

AMI has introduced a family of single phaselock loop (PLL) clock generator ICs that support a variety of platforms. Each device contains an on-chip voltage-controlled crystal oscillator (VCXO) that develops the PLL reference frequency when combined with a crystal resonator. The VCXO allows designers to adjust the timing in systems that have frequency matching requirements, such as digital satellite receivers. The AMI
 devices also feature a phase-locked loop (PLL) that drives one or more clock outputs. The clock outputs are phase- and frequency-locked to the VCXO reference frequency. This locking of the output frequencies to the reference tackles unpredictable artifacts in video systems and reduces electromagnetic interference (EMI) caused by harmonic frequency stacking. Individual device pin-outs vary, but all packaging features a small circuit board footprint to contribute to reduced end-product size. Both 3.3 V and 5 V versions are available.
AMI
Tel: 00049351530331

Professional PCB Layout for Windows at Computer Store Prices!

Number One Systems

Call +441684773662 or Fax +44 1684773664

> E-mail info@numberone.com

Easy-PC For Windows 4.0

now reads Ultiboard designs/libraries*

Suddenly, a professional level PCB layout product is available at a realistic price. Just check the specification and see what excellent value you get with Easy-PC For Windows. Then test before you buy with a demo version - you will be simply amazed with Easy-PC For Windows.

True Windows 32 bit product
Integrated Schematics and Layout as standard Windows drag \& drop throughout Multiple documents open within display Technology files for fast start-up Tiled display - Cascade, Vertical, Horizontal Multi-level Undo/Redo
Integrated standard Autoplace Optional shape based AutoRouter Full Copper Pour Split powerplanes
Unlimited signal/powerplane layers Unilmited non-electrical/doc layers Keep out/keep in areas for routing R/H mouse menu support
Pan across design to cursor position
Cross probing between Schematics and PCB
Full forward \& backward annotation Schematics /PCB
Modeless driven operation, no menu selection required

- Ultiboard is a trademark of Ultimate Technology

Over 7,000 users must be right!

Consistently, one of Europe's most popular PCB Layout products for Windows
95/98/NT/2000, Easy-PC has won praise from users for the wealth of features within each new release.
Many of these new features are normally only found in the world's most expensive PCB Layout software packages.

Now try Easy-PC For Windows for yourself
call us for a demonstration copy or download from

Please quote Electronics World when seeking further information

carriage. The first device available, the TA7S20, offers 2048 configurable logic cells, 16 K RAM and 25 ! programmable I/O. It is packaged in 128LQFP, 208QFP and 484BGA styles.

Triscend

Tel: 01628681565
www.triscend.com

SM connector is metric

The BP2 2mm contact pitch connector is an eight contact, surface mounting connector capable of handling up to 3 ADC on two contacts and 0.5 A on the remainder. The UL-rated insulator is high temperature and

the operating range of the connector is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The sideways mounted copper alloy blade contacts can endure 5000 mating cycles and all are gold plated. When mated the connector provides a co-planar (end to end) style board mating. Packaging options include embossed tape or semi-hard tray for auto placement.
Robinson Nugent
Tel: 01227794495
www.robinsonnugent.com

LED Indicators for low or mains voltage

Hero Electronics is stocking a range of 22 mm LED Indicators from German manufacturer Signal Constructs. The range includes products suitable for 130 and 230 V AC mains operation as well as $20-28 \mathrm{~V} \mathrm{AC}$ or DC operation. The indicators are sealed to meet IP67 standards, overall diameter of

Media platform in single pci slot

RadiSys' next generation family of Spirit-6000 media processing platforms is claimed to offer four-times the performance of its predecessor, the Spirit-6020, in a single PCI slot. Delivering up to 128 compressed voice or fax channels, the platform is intended for medium to high-end enterprise and media gateways including voice/fax over packet, CTI/IVR, audio conferencing, voice record and playback and other voice, fax and telephony signal processing applications. With the ability to packetise voice
and send the data over a LAN using on-board 10/00Base-T network interfaces, the board is both PCI and H .100 bus compliant. Each of the board's eight TI DSPs runs at an internal clock speed of 300 MHz providing a total of $2400 \mathrm{Mcycles} / \mathrm{s}$ per PCI slot. The system is available with a choice of voice coders and telephony algorithms.
RadiSys
Tel: 01793411200
www.radisys.com

the lens is 30 mm and mounting hole diameter is $22 \mathrm{~mm}+$ 0.5 mm . Designed for front panel mounting, the devices are secured with a circular fixing nut that is supplied along with an O-ring seal. A feature of the range is a 180° viewing angle. Five different LED colours are available as well as a bi-colour version. Luminous intensities range from 160 to 350 mcd at 20 mA operating current.
Hero Electronics
Tel: 01525405015
www. heroelec.co.uk

In-circuit emulation support for STAR12

iSYSTEM has in-circuit emulation support for the Star 12 micro controller family from Motorola. The system
supports the Star 12's 25 MHz bus clock (50 MHz clock). Based on the firm's ActivePOD technology, a high-speed probe for real time in-circuit emulation was developed and tested with Motorola. It supports the 68HC9S 12DP256 microcontroller with 256 K byte of flash memory and can be used with all iC3000 and iC4000 systems. There is an adapter for Star 12's 112-pin QFP package. The overlay RAM is on-board to provide the fast access times. The integrated trace buffer offers $16 \mathrm{~K} \times 160-$ bit capture at an upload speed of $100 \mathrm{Msample} / \mathrm{s}$. In addition to complete in-circuit emulation, iSYSTEM also provides serial debug (BDM - background debug mode) support for the STAR 12 family. iSYSTEM
Tel: 01280700262
www.directinsight.co.uk

Emergency stop switch is foolproof

EAO's series 04 and 61 ranges of panel mounting switches now include a selection of emergency stop switches that have a foolproof actuation

method. The term foolproof means that the switch contacts cannot be accidentally operated without fully actuating the mushroom head. Available in both twist-to-release and key-to-release options, both series of emergency stop switches conform to the latest approvals and machinery directives and are environmentally protected to IP65. Available in both 16 and 22.5 mm mounting dimensions and 27 and 37 mm front dimensions.
EAO
Tel: 01444236000
www.eao-group.com

The sophisticated cursor read outs have 21 possible read outs. Besides the usual read outs, like voltage and time, also quantities like rise time and frequency are displayed.

- Measured signals and instrument settings can be saved on disk. This enables the creation of a library of measured signals. Text balloons can be added to a signal, for special comments. The (colour) print outs can be supplied with three common text lines (e.g. company info) en three lines with measurement specific information.
- The HS801 has an 8 bit resolution and a maximum sampling speed of 100 MHz . The input range is 0.1 volt full scale to 80 volt full scale. The record length is $32 \mathrm{~K} / 64 \mathrm{~K}$ samples. The AWG has a 10 bit resolution and a sample speed of 25 MHz . The HS801 is connected to the parallel printer port of a computer.
- The minimum system requirement is a PC with a 486 processor and 8 Mbyte RAM available. The software runs in Windows 3.xx / 95 / 98 or Windows NT and DOS 3.3 or higher.
- TiePie engineering (UK), 28 Stephenson Road, Industrial Estate, St. Ives, Cambridgeshire, PE17 4WJ, UK Tel: 01480-460028; Fax: 01480-460340

TiePie engineering (NL),
Koperslagersstraat 37, 8601 WL SNEEK The Netherlands
Tel: +31515415416; Fax+31515418819
Web: http://www.tiepie.nl

RF amplifiers operate at Bluetooth frequencies

NEC has introduced three monolithic integrated amplifiers ($\mu \mathrm{PC} 8178 \mathrm{~TB}, \mu \mathrm{PC} 8179 \mathrm{~TB}$ and $\mu \mathrm{PC} 8182 \mathrm{~TB}$) covering the 0.1 to 2.9 GHz frequency range which makes them suitable for Bluetooth designs as well as CATV and wideband-CDMA applications. Supplied in a sixpin super minimould package (SOT-363) in tape and reel format with 3 k pieces per reel, the $\mu \mathrm{PC} 8178 / 79$ are manufactured using the firm's 30 GHz silicon bipolar process which uses direct silicon nitride passivation

film and gold electrodes, enabling a bandwidth of 0.1 to 2.4 GHz . Power consumption is 4 mA or less at 3 V , power gain is between 11.5 and 15.5 dB at 2.4 GHz for the two devices and typical signal isolation is 44 dB at 1 GHz . It is suggested that the devices are suitable for designing buffer amplifiers in the final stages of Bluetooth receivers. For applications where a higher frequency response is required, the $\mu \mathrm{PC} 8182 \mathrm{~TB}$ has a range of 0.9 to 2.9 GHz , with a power gain of 20.5 dB at 2.4 GHz . NEC
Tel: 01908691133 www.nec.de

Single latching relay in small footprint

 The subminiature G6KU, DPDT single pole latching relay from Omron is suitable for highdensity mounting, with its compact dimensions of 5.2 mm x $6.5 \mathrm{~mm} \times 10 \mathrm{~mm}$ and weight of 0.7 g . Operating at less than 100 mW , the relay also conforms to UL and CSA standards and is plastic sealed for use in most soldering and washing processes. Also available is the G6KU-Y version which conforms to Bellcore specifications offering an impulse withstand voltage of 2500 V for $2 \times 10 \mu \mathrm{~s}$. Models offering outside-L SM terminals, inside-L SM terminals and PCB terminal shape options are available, with surface mount terminals incorporating a specially developed terminal structure with high infrared irradiation efficiency, allowing terminal temperature to rise easily when mounting the IRS, thereby ensuring excellent soldering. Mechanical life expectancy is in excess of 50
million operations and an electrical life expectancy of 100000 operations minimum. Omron
Tel: 02084504646
www.eu.omron.com

Desktop robot solders and assembles

A desktop robot available from Townsend Coates is suitable for applications such as screw-

 Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

 Servicing Audio and Hi-Fi EquipmentPlease supply the following title: Servicing Audio and Hi-fi Equipment

Total \qquad
Name
Address

Postcode
Telephone
Method of payment (please circle)
Mastercard/Visa/Cheque/PO
Cheques should be made payable to
Reed Business Information
Credit card no \qquad
Card expiry date
Signed
'Its readers will benefit from its wealth of easily assimilated information, and repairs hitherto thought impossible will speedily become routine. And the first may well cover its purchase price. Congratulations on a comprehensive, well-written and lucid work' Electronics Informer:
'Interesting, entertaining and useful for both practitioners and teachers. All round a satisfying book which deserves to be considered as a tool rather than an ornament collecting dust on the shelf.' Skillset Newsletter
Service engineers and technicians have come to regard this book as essential to their work. As a bench-side companion and guide it has no equal. Its purpose is to ease and speed up the processes of fault diagnosis, repair and

- Essential bench companion for all service engineers.
- New technology such as DVD and expanded material on MiniDisk will ensure another successful launch to this new edition testing of all classes of home audio equipment: receivers, amplifiers, recorders and playback machines. The mechanics and electronics of domestic audio are examined by Nick Beer in a down-to-earth and practical way, concentrating on what goes wrong, how to track down problems, and how to solve them.
A symptom index and comprehensive manufacturer and supplier guide allow quick access to specific advice and suggestions.
The third edition is bang up to date with the latest technology-DVD, CD Recordable, PC audio systems. There is also new material on PA equipment.
UK Price: $£ 32.00$ Europe $£ 34.00$ ROW $£ 64.50$
Price includes delivery and packing

Visit our website www．distel．co．uk
 TV SOUND \＆ VIDEO TUNER CABLE COMPATIBLE

IC＇S－TRANSISTORS－DIODES

The TELEBOX is an attractive fuly cased mains powered unit，containing a elecrionics ready to plug into a
are ftted with a composite vide

MB）．Push button contrels on the most television receivers＊（IELEBO） non

sion fequencies VHF and UHF including the MYPERBAND as mily most cable TV operators Ideal tor duding the HYPERBAND as used by （picture in picture）selups．For complete compatsility－even for monitors withou ELEOX ST dard．Brand new－fully guaranteed较 TELEBOX MB Multiband VHF／UHF／Cable／Hyperband funer | E39．50 |
| :--- |
| 195 |

State of the art PAL（UK spec）UHF TV tuner module with composite 1 V pp video \＆NICAM hi fi stereo sound
tputs．Mlcro electronics all on one small PCB only 73×160 SRAND NEW

FLOPPY DISK DRMVES 21／2＂－${ }^{\prime \prime}$	
All units（unless stated）are BRAND NEW or removed from often brand new equipment and are fully tested，aligned and shipped to you with a full 90 day guarantee．Call or see our web site www．distel．co．Uk for over 2000 unlisted drives for spares or repair．	
$31 / 2$＂Mitsubishi MF355C－L． 1.4 Meg ．Laptops only	
发＂Mitsublshi MF355C－D． 1.4 Meg ．No	
－aa	
＂Teac FD－55F－03－U 720K $40 / 80$（for BBC＇s etc）RFE £	E2
BRAND NEW Mitsubishi MF501B 360K £	£22
Table top case with integral PSU for HH 51／4＂Floppy／HD £	D 129
8＂Shugart 800／801 8＂SS refurbished \＆tested E2	£210．00
8＂Shugart 8108° SS HH Brand New	£195．00
8＂Shugart $8518^{\prime \prime}$ double sided returbished \＆tested	¢260．00
$8{ }^{\text {＂Mitsublshi M2894－63 double sided NEW }}$	
8＂Mitsublshl M2896－63－02U DS slimline NEW	
Dual 8 ＂cased drives with integral power supply 2 Mb	
HARD DISK DRIVES 212＂ $14^{\prime \prime}$	
$21 / 2{ }^{\prime \prime}$ TOSHIBA MK2101MAN 2.16 Gb laptop（ 19 mm H ）New	－
21／2＇TOSHIBA MK4309MAT 4．3Gb laptop（ 8.2 mm H ）New	New£105．00
$21 / 22^{\prime \prime}$ TOSHIBAMK6409MAV 3.1 Gb laplop（ 12.7 mm H ）New	New 1190.00
$21 / 2{ }^{\prime \prime}$ to $31 / 2^{\prime \prime}$ conversion kit fer PG＇s，complete with connectors	ctors $£ 14.95$
－309－26 20 mb MFM I／F RFE	$£ 59.95$
ONNER CP3024 20 mb IDE i／F（or equiv．）	$£ 59.95$
ER CP3044 40 mb IDE I／F（or equiv．）RF	$£ 69.00$
drive 42mb SCSili，New Rr	$£ 49.00$
MINISCRIBE 342520 mb MFM I／F（or equiv．）RFE	£49．95
SEAGATE ST－238\％ 30 mb RLL I／F Requr	$\underline{69.95}$
CDC 94205－51 40 mb HH MFM I／F RFE tested	£69．95
5／4＂HP 97548850 Mb SCSI RFE tested	$\underline{99.00}$
51／4＂HP C3010 2 Gbyte SCSI difterential RFE teste	£195．00
8＂NEC D2246 85 Mb SMD interface．New	£199．00
8＊FUJIITSU M2322K 160Mb SMD I／F RFE tested	£195．00
8＇FUJITSU M2392K 2 Gb SMD I／F RFE tested	£345．00

OBSOLETE－SHORT SUPPLY－BULK
$10,000,000$ Items EX STOCK
CALL OR SEE OUR WEB SITE www．distel．co．uk VIDEO MONITOR SPECIALS
One of the highest specification
monitors you will ever see At this price－Don＇t miss it！！

 ised \＆Sondition． GA cable for IBM PC IncludedEx demo 17＂ 0.28 SVGA Mitsublshi Diamond

$$
\text { Full } 90 \text { day guarantee. Only £199.00 (E) }
$$

Just In－Mlcrovitec 20 ＂VGA（ 800×600 res．）colour monitors． Good SH condition－from $£ 299$－CALL for Info PHILIPS HCS35（same style as CM8833）attractively styled 14
colour monitor with both AGB and standard composite 15.62 Khz vldeo inputs via SCART socket and separate phono jacks Integral audio power amp and speaker for all audlo visual uses．
Will connect direct to Amiga and Atari BBC computers．Ideal for ail video monitoring／security applications with direct connection video monltoring／security applications with direct connection
to most colour cameras．High quality with many features such as

PHILIPS HCS31 Ultra compact $9^{\prime \prime}$ colour video monitor with stan－ dard composite 15.625 Khz video input via SCART socket．Ideal
for all monitoring／security applications．High quality，ex－equipment fully tested \＆guaranteed（possible minor screen bums）．In attrac
\qquad
KME 10＂ 15 M 10009 high definition colourOnly $£ 79.00$（D）

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Superbly made UK manufaclure．PIL all solid state colour monitors，

 omplele wih UK manu eak style case．Perfect for Schools，Shops，Disco，Clubs， $20^{\prime \prime} \ldots 135 \quad 22^{\prime \prime} \ldots . . f 155$ 26＂．．．．f185（F） We probably heve the largest range of video monltors inEurope，All sizes and types from $4^{\prime \prime}$ to $42^{\prime \prime}$ call for info．

DC POWER SUPPLIES

Virtually every type of power
supppy you can magine．over
supply you can imagine．Over
10，oop ower Supplies Ex Stock
call or see our web site．

TEST EQUIPMENT \＆SPECIAL INTEREST ITEMS

MITS．FARNELL $0-60 \mathrm{~V}$ OC 50 Amps，bench Power Suplies FAWN to 400 kW － 400 Hz 3 phese power sources－ex suppy IBM 8230 T IBM 53F5501 RA200 Audio trequency response analyse IBM MAU Token ring distribution panel 8228－23－5050N AIM 501 Low distortion Oscillator 9 Hz to 330 Khz ，IEEE Trend DSA 274 Data Analyser with $\mathrm{G} 703(2 \mathrm{M}) 64$ i／o Marconl 6310 Programmable 2 to 22 GHz sweep
Marconl $2022 \mathrm{C} 10 \mathrm{KHz}-1 \mathrm{GHz}$ RF signal generator Marconl 2030 opt 03 10KHz－1 RF signal generator HP1650B Logic Analyser
HP3781A Pattern generator \＆HP3782A Error Detector
HP6621A Dual Programmable GPIB PSU $0-7 \mathrm{~V} 160$ watts HP6 264 Rack mount variable 0－20V 20A metered PSU HP54121A DC 1022 GHz four channel test set HP8130A opt 020300 MHz pulse generator，GPIB etc HP A1，A0 8 pen HPGL high speed drum plotters
HP DRAFTMASTER 18 pen high speed plotter

$$
\begin{aligned}
& \text { EG+G Brookdeal } 95035 \mathrm{C} \text { Precision lock in amp } \\
& \text { View Eno. Mod } 1200 \text { computerised insoection sv: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { View Eng. Mod } 1200 \text { computerised inspection system } \\
& \text { Sony DXC-3000A High quality CCD colour TV camera }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sony DXC-3000A High quality CCD colour TV camera } \\
& \text { Keithley } 590 \text { CV capacitor / voltage analyser } \\
& \text { Racal ICRAn dual an }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Racal ICR40 dual } 40 \text { channel voice recorder system } \\
& \text { Fiskers } 45 \text { KVA } 3 \text { ph On Line UPS - New batteries }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Emerson AP130 } 2.5 \mathrm{KVA} \text { industrial spec. UPS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mann Tally MT645 High speed line printer } \\
& \text { Intel SBC } 486 / 133 \text { SE Multibus } 486 \text { system. } 8 \mathrm{Mb} \text { Ram } \\
& \text { Siemens K } 440064 \mathrm{~Kb} \text { to } 140 \mathrm{Mb} \text { demux analyser }
\end{aligned}
$$

HP6030A $0-200 \mathrm{~V}$（ 17 Amps bench power supply intel SBC 486／125C08 Enhanced Multibus（MSA）New
Nikon HFX－11（Ephiphot）exposure control unit Motorola VME Bus Boards \＆Components List．SAE／C Fulitsu M3041R 600 LPM high speed band printer Fulitsu M3041D 600 LPM printer with network interface Perkin Elmer 2998 Infrared spectrophotomete Perkin Elmer 597 Infrared spectrophotometer
VG Electronlcs 1035 TELETEXT Decoding Margin Meter LightBand 60 output high spec 2u rack mount Video VDA B\＆K 2633 Microphone pre amo
Taylor Hobson Tallysurf amplifier／recorder
ADC SS200 Carbon dioxide gas detecior／mon
BBC AM20／3 PPM Meter（Ernest Tumer）＋drive electronic ANRITSU $9654 A$ Optical DC－2．5G／b waveform monitor
ANRITSU MS9001B1 0．6－1．7 uM optical spectrum analyse ANRITSU MS9001B1 0．6－1．7 uM opta
ANRITSU Fibre optic characteristic test set
R\＆S FTDZ Dual sound unit
R\＆S SBUF－E1 Vision modulato
WILTRON $6630 \mathrm{~B} 12.4 / 20 \mathrm{GHz}$ RF sweep generator
TEK 2465300 Mhz 300 MHz oscilloscope rack mount
TEK TDS 380400 Mhz digital realtime＋disk drive，FFT etc
TEK TDS524A 500 Mhz digital realtime＋colour display
PHILIPS PW1730／10 60KV XRAY generator $\&$ accessories
CLAUDE LYONS 12 A 240 V single phase auto．volt．regs $£ 325$

D CAMERAS

E5650 EPOA

 use in low light \＆high light
applications．A 10 mm fixed tocus
wide angle lens gives excellent wide angle lens gives excellent focus
and resolution from close up to long
range．The composite video output will
connect to any composite monitor or TV via SCART socket）and most video
ecorders．Unit runs from 12 V DC so
deal for security \＆poriable applica－ BRA位 BRAND NEW \＆fully guaranteed with user data， 100 ＇s of appllca－ Web ref $=$ LK33 ONLY $£ 99.00$ or 2 for $£ 180.00$（B）

SOFTWARESPECIALS	
NT4 WorkStation，complete with service	ck 3
and licence－OEM packaged．ONLY £89	00 （8）
ENCARTA 95 －CDROM，Not the latest－but at this price	－ 87.95
DOS 5.0 on 31／2＂disks with concise books c／w QBasic	£14．95
Windows for Workgroups 3．11＋Dos 6.22 on 3．5＂disks	£55．00
Wordperiect 6 for DOS supplied on $31 / 2^{\prime \prime}$ disks with manual	£24．95

19＂RACK CABINETS

Superb quality 6 foot 40U Virtually New，Ultra Smart Less than Half Price！ rop quality 19 rack cabinets made in UK by
OptIma Enclosures Ltd．Units feature designer，smoked acrylic lockable front door，
full height lockable half louvered back door and louvered removable side panels．Fully adjustable internal fixing struts，ready punched plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make
these racks some of the most versat／le we have over sold．Racks may be stacked side by side and therefore Overall dimensions are： $7742^{\prime \prime} \mathrm{H} \times 32^{1 / 2^{\prime \prime} \mathrm{D} \times 22^{\circ} \mathrm{W} \text { Order as } .}$ OPT Rack 1 Complete with removable side panels．$£ 345.00$（G） Over 1000 racks，shelves，accessories $19^{\prime \prime} 22^{\prime \prime}$ \＆24＂wide 3 to 46 U high． Available from stock ！！

32U－High Quality－All steel RakCab

 rack features all steel construction with removable side，front and back doors．Front and back doohinged for easy access and all are lockable ivive secure 5 Iever barren locks．The tront dood
is constructed of double walled steel with ＇designer style＇smoked acrylic front panel to panel，yet remain unoblrusive．Internally the rack eatures fully slotted reinforced vertical flxing equipment．The two movable vertical fixing struts extras available）are pre punched for standard y mounted to the bottom rear，provides $8 \times$ IEC 3
pin Euro sockets and 1×13 amp 3 pin switched utility socket．Overall ventilation is provided
 with top and side louvres．The top panel may be removed for fitting castors and floor levelers，prepunched utility panel at include：fitted castors and tloor levelers，prepunched utility panel at lower rear for condition with keys．Colour Royplied in excellent，slightly used

A superb buy at only $£ 245.00$（G） $42 U$ version of the above only $£ 345-$ CALL

12V BATTERY SCOOP－ 60% off ！！

 A special bulk purchase from a cancelled export order brings you echargeable batteries．Made by Hawker Energy Ltd，type SBS15 eaturing pure lead plates which offer a far superior shelf \＆guaran－ eed 15 year service life．Fully BT \＆BS6290 approved．Supplied BRAND NEW and boxed．Dimenslons 200 wide， 137 high， 77 deep． aach Our Price £35 each（c）or 4 for $£ 99_{\text {（E）}}$ RELAYS－200，000 FROM STOCK Save Exex＇s by choosing your next relay from our Massive StocksDISTEL on the web ！！－Over 16，000，000 items from stock－WWW．distel．co．uk

ALL MAIL TO ww，29／35 Osborne Rd Thornton Heath Surrey CR7 8PD
Open Mon－Fri 9．00－5：30

LONDON SHOP Open Mon－Sat 9．00－5．30 South Norwood South Norwood
On 68 Bus Route
N．Thomnon Heath \＆ ．Thomion Hoath

Valve Radio and Audio Repair Handbook

* A practical manual for collectors, owners, dealers and service engineers * Essential information for all radio and audio enthusiasts * Valve technology is a hot topic

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis ìs firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair techniques are also Illustrated throughout.
This book is an expanded and updated version of Chas Miller's classic Practical Handbook of Valve Radio Repair. Full coverage of valve amplifiers will add to its appeal to all audio enthusiasts who appreciate the sound quality of valve equipment.

Contents: INCLUDES: Electricity and magnetism;
 Voltage, current, resistance and Ohm's Law; Real life resistors; Condensers; Tuning; Valves; Principles of transmission and reception; Practical receiver design; Mains valves and power supplies; Special features of superhets; Battery and mains battery portable receivers; Automobile receivers; Frequency modulation; Tools for servicing radlo receivers; Safety precautions; Fault finding; Repairing power supply stages; Finding faults on output stages; Faults on detector/AVC/AF amplifier stages; Finding faults on IF amplifiers; Faults on frequency-changer circuits: Repairing American 'midget' receivers; Repairlng faults on automobile radios; Repairling battery operated receivers; Repairing FM and AM/FM receivers; Public address and high fidelity amplifiers.

UK Price: £22.50 Europe £25.00 ROW £27.00

** Price includes delivery and packing **
Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sution, Surrey, SM2 5AS

Please supply the following title:
Valve Radio and Audio Repair Handbook
Total \qquad
Name
Address
\qquad

Postcode
Telephone
Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information

Credit card no
Card expiry date
Signed

NEW PRODUCTE

Please quote Electronics World when seeking further information

tightening, dispensing, soldering and impulse welding. Using an L-type body structure, and an aluminium-alloy, die cast single-structure base, the Janome JR200 mini desktop robot offers positional repeatability of $\pm 0.01 \mathrm{~mm}$. It can also support a portable work weight of 3.5 kg (max.) for the Z -axis and 7 kg for the X/Yaxes.
Data capacity is up to 6000 points and 100 programs and for storage the robot uses a flash memory card which needs no battery. The product is supplied as standard with two serial (RS232) interfaces (one for the teaching pendant, the other for PC connection), and a third - for external I/O - is available as an option. A simple sequencer is built into the robot, and operates independently. No further hardware is necessary, because the I/O uses part of the robot's main external I/O port. With speeds up to $500 \mathrm{~mm} / \mathrm{s}(\mathrm{X} / \mathrm{Y})$, and $250 \mathrm{~mm} / \mathrm{s}(\mathrm{Z})$, the robot is driven by a 5 -phase stepping motor operating from a 90 -
132VAC/180-250VAC supply, with a current consumption of 200VA.
Townsend Coates
Tel: 01162744488
www.townsendcoates.com

Sealed packaging for frequency converters

Rittal's range of compact AE enclosures are now available with integrated aluminium heat sink and are designed for the installation of standard-design frequency converters, together with their corresponding protective devices and power contactors. Designed as a

passive heat sink with cooling ribs on the rear of the enclosure the mounting plate provides space for the mounting of frequency converters, motor circuit breakers, power contactors or terminal strips. Three different sizes of heat sink permit individual adaptation of the cooling capacity and the thermal conductivity of aluminium guarantees reliable dissipation of the generated heat, says the supplier.
Rittal
Tel: 01709704000
www.rittal.co.uk

PC power supplies can be customised

A range of PC power supplies with a number of options offering customisation is now available from Powerline. Designed for use in industrial and critical business PC applications, the units are available with continuous output ratings of up to 400 W from a standard ATX package. Options available include power-factor correction to meet the requirements of forthcoming legislation, auto-ranging inputs and approvals for worldwide use, and hot-swap units for mission-critical applications.

Custom capabilities that can be factory-fitted include modified cable leads with different lengths and connector styles, fan reversal, and internal voltage trimming. In addition to the standard ATX packaged products, a range of low-profile units suitable for $1 U$ rack mounting is available with output ratings of $150-200 \mathrm{~W}$. Powerline
Tel: 01494753800
www.powerline.co.uk

Self on Audio

Douglas Self

The cream of 20 years of Electronics World articles (focusing on recent material)

A unique collection of design insights and projects - essential for all audio designers, amateur and professional alike.

Scientific electronics based on empirical data
Douglas Self has been writing for Electronics World and Wireless World over the past 20 years, offering cutting-edge insights into scientific methods of electronics design.
This book is a collection of the essential Electronics World articles, covering twenty years of amplifier technology but with a very strong bias towards more recent material. The articles include self-build projects as well as design ideas and guidance for the professional audio designer. The result is a unique collection of design insights and projects - essential for all audio designers, whether amateur or professional.

Contents: Introduction; PRE-AMPLIFIERS: An advanced preamplifier MRPI;
High-performance preamp MRP4; Precision preamp MRP10; Moving-coil head amp; Preamp '96 I; Preamp '96 II; "Overload Matters" (RIAA overload); Balanced line inputs and outputs, part 1; Balanced line inputs and outputs, part 2;
POWER AMPLIFIERS: FETs less linear than BJTs; Distortion in power amplifiers
1-8; Distortion residuals; Trimodal part 1, 2; Load-invariant power amp INVAR.DOC; Common-emitter amps; Two-stage amplifiers; SPEAKERS: Excess speaker currents; Class distinction (amp classification); Relay control; Power partition diagrams; Audio power analysis.

Douglas Self has dedicated himself to demystifying amplifier design and establishing empirical design techniques based on electronic design principles and experimental data. His rigorous and thoroughly practical approach has established him as a leading authority on amplifier design.

Readership: Audio electronics enthusiasts; Professional amplifier designers;
Power amp users
Paperback
Pages: 416pp
UK Price: £26.50 Europe £27.50 ROW £28.50
Return to Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:
SELF AUDIO
Total \qquad
Name
Address

Postcode

Telephone

Method of payment (please circle)
Mastercard/Visa/Cheque/PO
Cheques should be made payable to
Reed Business Information
Credit card no
Card expiry date
Signed

Too good for words

Advanced Systems \& Technology for PCB Manufacturers
Old Buriton Lime Works, Buriton. Petersfield, Hants. UK GU31 5SJ Tel: (44) 01730260062 Fax: (44) 01730267273

CIRCLE NO. 118 ON REPLY CARD

Quality Alphanumeric backlit LCDs in $4 \times 40,2 \times 40,4 \times 20,2 \times 20$ and 2×16 formats
Supplied either bare or pre-fitted with one of our Eze-Use, Serial interface boards with options
such as software buzzer control, backlight control, operator interface, start-up message, big character generation, and PC-AT Keypad /mouse interface - all at very competitive pricing

We also stock Serial Interface Graphic modules and front panel bezels for all our LCDs. Please call (01977 683665) or check our web site (www.milinst.com) for full details and pricing

Milford Instruments - your total LCD solution

Milford Instruments Milford House, 120 High St South Milford LEEDS LS25 5AQ Tel 01977683665 Fax 01977681465
www.milinst.com

Sountrainforement amblifier

Abstract

Needing a sound-reinforcement system for use in a medium size hall, Ben Sullivan came up with this unusual and versatile design. Its pre-amp/mixer stage has three mono channels, each of which can take a variety of input options, and it caters for a wide range of input levels.

Meetings of a local society, of which I am a committee member, are due to move to a new location that does not have a sound reinforcement system. So in readiness, I designed the system presented here. Versatility was to be a key design criterion, both as far as amplifier inputs were concerned, and also for connecting different loudspeakers.
For public address, or PA, systems operating in the open air, an amplifier driving a 100 V line with multiple horn speakers is the norm. But for this application, a modest maximum output power of something in excess of 15 W was deemed sufficient. The equipment is intended solely for indoor use, with conventional loudspeakers.
A pair of surplus-to-requirements sizeable loudspeakers, each including a 10 inch 15Ω WB cambric cone loudspeaker, tweeter and crossover, were donated by a colleague. A suitable microphone was already to hand, so it only remained to produce an amplifier.

The requirement

In addition to using the microphone, some presenters bring along illustrations to their talks, either on cassette or CD , so more than one input channel would be required.
To allow for any contingency, three input channels would be provided. Each would have its own level control and there would be a master overall level control.
For a sound reinforcement system,
stereo operation is not appropriate. With one loudspeaker at each side of the hall near the front, most of the audience would not hear any stereo effect, while those near one loudspeaker or the other would receive just the left or right channel alone. So
the amplifier was designed to drive the approximately 8Ω load of the two loudspeakers in parallel.

Power-amplifier configuration
Figure 1 shows the configuration usually used for a hi-fi amplifier in

Fig. 1. Skeleton diagram of common hi-fi power-amplifier circuit with direct-coupled loudspeaker. Here, a centre-tapped transformer makes producing the necessary positive and negative rails easy.

Fig. 2. Power-amplifier circuit using a single rail-supply. Because ground is no longer the same potential as the static voltage at the output of the power amplifier, the speaker has to be connected via a large electrolytic coupling capacitor.
simplified form. A mains transformer with two identical secondary windings, or a centre tapped winding, is used in conjunction with a bridge rectifier to produce plus and minus voltage rails. The arrangement requires two main smoothing capacitors, and has the advantage that the rails can also be stepped down to $\pm 15 \mathrm{~V}$ to supply a preamplifier design using op-amps.
A high-quality toroidal mains transformer of suitable secondary voltage and VA rating was available from stock. On the face of it though, it was not suitable as its two secondary windings had different voltages.
As the overall voltage of the windings in series was just what was needed, the PA arrangement of Fig. 2 was viewed as a possible alternative. This needs only a single main smoothing capacitor, though of twice the voltage rating of those in Fig. 1. It is quite convenient if the input signal is large enough to drive the PA to full output, but not so useful if a preamplifier/mixer stage using op-amps is needed.
In the event, the circuit designed circumvented this difficulty.

Power amplifier design

A TDA2050V was chosen as the power amplifier. It proved to be capable of providing over 15 W into a dummy load from the nominal 40 V
supply provided by the transformer The dummy load consisted of two 15Ω wirewound resistors in parallel.
After some thought and experimentation, it was incorporated into the PA circuit of Fig. 3. This can be seen as a cross between the Figure 1 and Figure 2 arrangements.
The circuit design was taken directly from the power amplifier's data sheet as far as component values are concerned. Usefully, the device includes over-temperature and overcurrent protection, and it provides a massive 90 dB of open loop gain. With the 30 dB of demanded gain set by R_{7} / R_{6}, the 60 dB of negative feedback within the loop results in a distortion figure of around 0.02%
The chassis earth symbols shown at R_{3} and elsewhere indicate not only the circuit's nominal 0 V rail, but also the case metalwork and mains earth. This means that effectively, the power supply provides both positive and negative voltages.
These voltages are used also, suitably stepped down, to supply the earlier preamplifier/mixer stages. This circuit arrangement means that neither side of the loudspeakers is earthed, and both poles of the loudspeaker output sockets must be isolated from ground.
As mentioned, the amplifier is designed to drive two 15Ω loudspeakers in parallel. For versatility, $1 / 4$ in jack sockets, two-pin DIN
loudspeaker sockets and phono (RCA) sockets were provided. All six sockets were connected in parallel.
As the power supply section was mounted at the opposite end of the case from the PA board, C_{7} and C_{8} were fitted close to the TDA2050V on its 0.1 in matrix strip-board circuit, as local decoupling in accordance with good practice.
The TDA 2050 V was mounted at one end of the stripboard, with its pins twisted to fit a 0.1 inch spacing. The body of the device was bolted to a substantial L shaped bracket, using a mica insulator and silicone mounting grease. This would not have been necessary in the circuit of Fig. 2, as the device's metal heat-sink tab is connected to the negative supply rail.
In turn, the bracket was bolted to the base of the case to provide additional heat-sinking. On soak test, driving 30 V peak-to-peak into the 7.5Ω resistive dummy load, the device case temperature eventually just reached $50^{\circ} \mathrm{C}$, in a room ambient of $20^{\circ} \mathrm{C}$.

Preamplifier and mixer stages

The three input channels and mixer stage are shown in Fig. 4. Each channel is provided with an input for a stereo signal, these being resistively combined into a mono signal.
There are also three inputs for mono signals per channel. The sockets are so distributed across the

Fig. 3. Circuit of sound reinforcement amplifier using a modified single rail supply.

Fig. 4. Circuit diagram of the preamp stage and three-input mixer channels. Any stereo input signals are combined into mono at the inputs as stereo is not appropriate in sound reinforcement systems.
control at maximum.
In fact, it was the phenomenon of 'motor-boating', which old timers may have encountered many years ago. In those days, I made three, four and even five valve sets, using prewar battery valves with 2 V filaments. Disturbances caused by the current drawn by the output valve fed back along the HT+ lead to the first stage, and thence back around the loop. Increased decoupling served only to reduce the frequency of the oscillation. So D_{1} and D_{2} were added, extending the effectiveness of the decoupling down to 0 Hz , and completely curing the problem.
The other oddball surfaced during frequency response testing. The bass roll-off set in at a higher frequency than expected, so C_{14} was increased to $1 \mu \mathrm{~F}$. In conjunction with R_{27}, R_{28} or $R_{29}-33 \mathrm{k} \Omega$ - one might then expect a -3 dB point of 4.8 Hz , but it was much higher than this.
The reason is that, once the reactance of C_{14} becomes significant, R_{27} ${ }_{29}$ no longer look into a virtual earth. So the output of $I C_{1 \mathrm{a}}$ via R_{27}, for example, is subject to attenuation by R_{28} and R_{29} in parallel before being applied to C_{14}.
It is running across points like these, and working out the reasons, that keeps circuit design a constant challenge and joy.

Fact: most circuit ideas sent to Electronics World get published

The best circuit ideas are ones that save time or money, or stimulate the thought process. This includes the odd solution looking for a problem - provided it has a degree of ingenuity.
Your submissions are judged mainly on their originality and usefulness. Interesting modifications to existing circuits are strong contenders too - provided that you clearly acknowledge the circuit you have modified. Never send us anything that you believe has been published before though.
Don't forget to say why you think your idea is worthy.
Clear hand-written notes on paper are a minimum requirement: disks with separate drawing and text files in a popular form are best - but please label the disk clearly.

Bike computer reads amps, amp.hours

Abicycle computer counts wheel revolutions, and displays speed and distance travelled. Depending on the model, it may also show the maximum and average speeds achieved.
The user has to program the computer with the wheel circumference C in metres, since velocity v in km / h is related to the frequency of wheel

Winner!

Overall winner of our 2000 circuit ideas competition - sponsored by National Instruments - is Heinz Zanke's ingenious amp.hour meter. Heinz wins a National Instruments LabVIEW graphical programming environment package worth over $£ 700$.
rotation, $F r p s$, by $(\nu \div 3.6) / C=F$. Usually, a magnet attached to a wheel operates a reed relay to provide the count pulses, but in this application, a transistor switch is used.
Such a bicycle computer can be used for other purposes, such as measuring the charge rate and total charge stored in a solar panel accumulator charging set-up, Fig. 1. To achieve this, the charging current is monitored by a current shunt R_{s}, controlling a voltagecontrolled oscillator.
The voltage controlled oscillator produces an output frequency such that a bicycle computer velocity reading of $120 \mathrm{~km} / \mathrm{h}$ indicates a current

Fig. 1. Block diagram of charger metering system in a solar-energy system, using a bicycle computer to monitor amps and Ah.
of 12 A , and a trip reading of 2998.9 km indicates a charge of 299.89 Ah . The programmable value of C on the computer used was up to 2.999 m . The VCO was designed to produce an output frequency of up to 13.7 Hz for a 140 mV input, corresponding to a 14 A charging current. With this design of oscillator, Fig. 2, a circumference setting C of 2.671 m worked well.
This application is limited by the lowest and highest frequencies that the bicycle computer can count, and by VCO offset and linearity errors.
A minimum output frequency of 0.1 Hz is produced by the VCO, even when the drop across R_{s} is zero. But linearity errors up to the designed maximum, checked with a DVM and DSO, proved to be generally insignificant. There is a slight increase in error at the high frequency end of the range, due to the finite discharge time of C_{1}.

Heinz Zanke

GR-24002 Messenias
Greece
E10

Ice alert!

The recent cold weather reminded me of a simple ice alert warning circuit I built in 1974, long before such circuits became available as standard fittings in some cars.
My present car has a factory fitted ice warning which simply lights an orange LED for temperatures below $5^{\circ} \mathrm{C}$ or red LED below $0^{\circ} \mathrm{C}$. This suffers from two problems. When driving in bright winter sunlight, these indicator lights do not easily attract attention, also there is no indication of temperature changes except when it passes the above limits.
My ice alert differs in that for temperatures above some $5^{\circ} \mathrm{C}$ the green LED glows continuously, to indicate normal function.
As temperature reduces the red LED pulses on and the green LED pulses off, approximately once each
second. The a duty cycle increases as the temperature falls. Ultimately at $0^{\circ} \mathrm{C}$ and at lower temperatures, the green LED remains off and the red

LED glows continuously.
I find this most beneficial in bright sunshine, because the brief initial pulses of the red LED as temperature

This ice indicator gives more useful information than a car's simple factory fitted warning indicator.

Ten year index: new update

www.softcopy.co.uk

Photo copies of Electronics World articles from back issues are available at a fiat rate of $£ 3.50$ per article, $£ 1$ per circuit idea, excluding postage.

Hard copy Electronics World index Indexes on paper for volumes 100,101, and 102 are available at $£ 2$ each, excluding postage.

Hard copies and floppy-disk databases both available

Whether as a PC data base or as hard copy, Softcopy can supply a complete index of Electronics World articles going back over the past nine years.

The computerised index of Electronics World magazine covers the nine years from 1988 to 1996, volumes 94 to 102 inclusive and is available now. It contains almost 2000 references to articles. circuit ideas and applications including a synopsis for each.

The EW index data base is easy to use and very fast. It runs on any IBM or compatible PC with 512 K ram and a hard disk.

The disk-based index price is still only $£ 20$ inclusive.
Please specify whether you need $5.25 \mathrm{in}, 3.5 \mathrm{in}$ DD or 3.5 in HD format.

Existing users can obtain an upgrade for $£ 15$ by quoting their serial number with their order.

Ordering details

The EW index data base price of $£ 20$ includes UK postage and VAT. Add an extra $£ 1$ for overseas EC orders or $£ 5$ for non-EC overseas orders Postal charges on hard copy indexes and on photocopies are 50 P UK, $£ 1$ for the rest of the EC or $£ 2$ worldwide. For enquires about photocopies etc please send an sae to SoftCopy Lid. Send your orders to SoftCopy Ltd, 1 Vineries Close, Cheltenham GL53 ONU.
Cheques payable to SoffCopy Lid, please allow 28 days for delivery.

The definitive biography of the century's godfather of invention-from the pre-eminent Edison scholar "Israel's meticulous research and refusal to shy away from the dodgier aspects of Edison's personality offers a fresh glimpse into the life of the inventor."New Scientist

"Remarkable."- Nature

"An authoritative look into Edison's working methods, here leavened by enough personal detail to give the achievements shape."-Publishers Weekly
"Israel's book should go a long way toward faking Edison out of the shadows and placing him in the proper light."-Atlanta Journal-Constitution
"Exhaustively researched, with strong emphasis on Edison's methods and achievements."-Kirkus Reviews

The conventional story of Thomas Edison reads more like myth than history: With only three months of formal education, a hardworking young man overcomes the odds and becomes one of the greatest inventors in history. But the portrait that emerges from Edison: A Life of Invention reveals a man of genius and astonishing foresight whose career was actually a product of his fast-changing era. In this peerless biography, Paul Israel exposes for the first time the man behind the inventions, expertly situating his subject within a
thoroughly realized portrait of a burgeoning country on the brink of massive change. Informed by Israel's unprecedented access to workshop diaries, notebooks, letters, and more than five million pages of archives, this definitive biography brings fresh insights to a singularly influential and

Post your completed order form to:Jackie Lowe, Room L5 14, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Fax your completed order form to 02086528111 UK Price: $£ 15.00$ Europe $£ 17.00$ ROW $£ 19.00$ Price includes delivery

How to pay

(Edison) paperback

- I enclose a cheque/bank draff for $£$ (payable to Reed Business Information)

Please charge my credit/charge card
\square Mastercard American Express Visa Diners Club
Credit Card No:
Expirey Date:

Signature of Cardholder \qquad
Cardholder's statement address: (please use capitals)
Name \qquad
Address \qquad

Post Code \qquad Tel: \qquad
drops below $5^{\circ} \mathrm{C}$ attracts attention and the change in duty cycle indicates whether the temperature is rising or it is becoming colder. The LEDs can even be located below your line of sight, so as not to interfere with normal driving, yet still attract your attention when needed.
Using only one IC, the circuit is low cost and easily built. The thermistor should be mounted in a closed housing located behind the front bumper. While I used a thermistor of $15 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, other values can be accommodated simply by amending the calibration and feedback resistors at A_{1}.
The LM3900 IC responds to current
ratios at its inputs, not voltage as is more usual. Hence it is insensitive to change in battery voltages. The zener is included to clip supply voltage transients caused by load shedding of the alternator.
Amplifier A_{1} simply compares the resistance of the thermistor with the series combination of $V R_{1}$ and $33 \mathrm{k} \Omega$, changing from $0.3 V_{\text {battery }}$ above $5^{\circ} \mathrm{C}$ to $0.6 V_{\text {batrery }}$ at $0^{\circ} \mathrm{C}$.
Amplifier A_{2} is configured as a free running multivibrator with a repetition rate of approximately one pulse each second and output varying between $0.3 V_{\text {battery }}$ and $0.6 V_{\text {battery }}$.
Outputs of A_{1} and A_{2} are compared in the remaining amplifiers A_{3} and
A_{4}. When the A_{2} output is lower than A_{1} output the red LED lights. When the A_{2} output is higher than A_{1}, the green LED lights. Since A_{3} and A_{4} inputs are wired in opposition both LEDs cannot simultaneously be lit.
Calibration at $0^{\circ} \mathrm{C}$ is simply obtained by immersing the thermistor probe in an ice water mixture, adjusting $V R_{1}$, prior to installing in your car.
This now elderly circuit has performed well for many years in a number of different vehicles.

Cyril Bateman

Acle
Norfolk

Battery operated theft alarm

This circuit can be used as either a loop alarm or with a pressure sensor/switch to give a treasured/expensive item 24 -hour alarm protection while you are on the premises with your building's burglar alarm switched off. It is simple and cheap enough to build several, with each protected item possibly using a different sounding alarm for identification purposes. Running on a single PP3 battery, it is portable and allows over 12 months use while waiting for action, less if the unit is triggered often.
The unit is built around a 4001 quad cmos nor gate with two gates, la and lb , forming a bistable and the remaining two, Ic and Id, forming an inverting buffer. The main on/off switch $S_{1 \mathrm{a}}$ is ganged with $S_{1 \mathrm{~b}}$ and is a double-pole double-throw device,
which can be key operated for added security. It is wired such that when the alarm is switched on C_{2} is open circuit and when the unit is switched off C_{2} is shorted out.
At switch on, and assuming that the wire loop/switch is closed and hence holding pin 1 low, a brief high pulse via C_{1} at pin 6 causes the bistable to set and its output to go high. As C_{2} was initially discharged, via $S_{1 b}$ when the unit was off, it charges via R_{3} and hence takes a little while before the inverting buffer, lc and 1d outputs an high. During this time approximately 1 second $-T r_{1}$ is switched on and the sounder energised. This allows the battery condition to be assessed at switch on. After this delay Tr_{1} switches off and the alarm is ready to be triggered
To trigger the alarm, either the loop
must be broken or the sensor switch opened. This sends pin 1 of $I C_{1}$ high and resets the bistable. Its output goes low and due to D_{1} the capacitor discharges very quickly sending the input to the buffer low, its output high and hence switching Tr_{1} and the sounder on rapidly. To reset the unit the power must now be switched off and back on again.
Several items could be protected by a single unit if extra sensor switches are wired in series, avoiding the need to build extra circuits. The maximum current that the sounder can take is limited to 200 mA by $T r_{1}$'s maximum collector current. Uprating this device would allow a louder unit to be used.

Lee Archer

Ashton-in-Makerfield
Lancashire
E48

£70 WINNER

Portable precision programmable reference generator

A
battery powered programmable voltage reference generator is shown here. Its output range is between 0 and 4.0955 V . By pushing
up and down buttons, more than 8000 voltages can be selected.
The selected voltage is maintained in non-volatile memory when the power

PIC16C84

is turned off. A MAX5130 13-bit serial d-to-a converter generates the reference voltage. This device has an internal reference and an operational amplifier so no external components are required to send precision voltage out.
A PIC16C84 microcontroller is used to accept input commands and control the output voltage by sending data into MAX5130 through three wires. This PIC has built-in EEPROMs to store the output data without power supply.
Four buttons control the output voltage up or down. Switches S_{2} and S_{4} make a step change in 0.5 mV increments. Switches S_{3} and S_{5} change 100 steps (50 mV) to make output voltage reach the desired level quickly. Yongping Xia Torrence
USA
E49

A PIC micro driving a d-to-a converter makes a very simple, push-buttori operated voltage reference capable of producing more than 8000 different voltages.

$£ 50$ WINNER

PIC-based frame-check sequence for point-to-point protocol

0ne of this year's growth areas is likely to be internet-friendly control using the 'point-to-point protocol', or PPP for short, with the popular PIC devices from Microchip likely to lead the way. Although the minimum protocol is relatively straightforward, the generation and verification of the frame check sequence, or FCS, may not be. Here it is as a subroutine in assembler. It is based upon the original 6502 routine ${ }^{1}$ and a tidy-up may be in order.
The required 16 -bit polynomial is $8408^{2,3}$. To transmit, remms and
remls are initially set to all ones (FFFF_{16}) with the 8 -bit data byte at 'datl'. At the end of transmit data, the FCS is ones complemented (inverted) and transmitted remls first, lsb first. For example (one data byte only in case you want to wade through the ones and zeros!):

remms remls datl							
FF	FF	79					
->	EI	C1					
Invert	1E	$3 E$	79				
			\rightarrow transmit				
			this way				

To receive, preload remms/ls with

FFFF, and include the FCS bytes in the routine. The remainders remms and remls will be $\mathrm{F} 0 \mathrm{~B} 8_{16}$ for no detected error.

Graham Stephens

Plymouth
E43

References

1. 'The What and How of CRCS' Electronics \& Wireless World, Sep 1989
2. 'RFC 1662 ' - Network Working Group
3. 'X.25'-CCITT Blue Book

Using a 10:1 duty cycle, this circuit gives new life to tired dry cells.

Pulsed dry-cell charger

This circuit produces a charging current in short bursts with a 10% duty cycle. The average charging current is $\mathrm{C} / 100$ where C is the cell capacity. Typical average charge currents of 36 mA and 18 mA are used for the D-size and the AA-sized cells respectively.
A zinc-carbon cell may be considered as being made up of many smaller parallel connected elements. The pulses of current give each element an increased charging voltage, allowing time for all elements to stabilise.
The CMOS counter 4017 is
clocked by the AC supply pulses and
produces one 20 (or 16) ms pulse for each ten AC input cycles at 50 (or 60) hertz. This establishes the duty cycle ratio of 1 to 9 . The AC drive at the counter is rectified by the internal IC protection diodes.
The output pulse operates a transistor switch, which connects the cell or battery to the charging supply via the current limiting resistor and indicating LED. The limiting resistor is chosen to give the appropriate average charge current. The ballast resistor is chosen so that the LED flashes to indicate this current.
For D cells a current limiting
resistor of 33Ω and a ballast resistor of 5Ω are used. For AA sized cells 56Ω and 10Ω are used. With a modified current limiting resistor, two or more similar cells can be connected in series, so that a battery can be charged.
I have found that a pulsed charge of twelve to twenty four hours duration or 25% of the original cell's capacity, will greatly rejuvenate weak cycle lamp and personal stereo batteries.
Alkaline cells also benefit, however the total charge given should not be significantly increased,

Warning

Zinc-carbon and alkaline cells can explode due to inappropriate charging, with the potential to cause bodily harm. They may also leak. Take precautions against both of these possible eventualities.
as they tend to be more susceptible to deterioration through over charging.

Michael Mucklow

Newport Pagnell
Buckinghamshire
E45

Simple circuit delivers sinewave with crystal frequency accuracy

Thishis circuit uses a digital clock signal up to 20 kHz to produce a sinewave with exactly the same frequency. There are no critical components.
Transistor $T r_{1}$ is switched on and off by the clock signal, see schematic, creating a square wave at node A. The amplitude of the square wave at A is determined by the voltage at point B. The square wave at A is filtered by the band-pass filter built around op-amp $I C_{1}$, this band pass reduces the harmonics of the square wave to a level such that a very usable sinewave is the result.
To counter variation of the amplitude of the resulting sinewave with the component tolerances of the filter network a simple but effective amplitude stabilisation circuit, built around T_{2}, is used.
When the sinewave's amplitude is small, $T r_{2}$ is permanently off, and the
voltage at node B rises until the amplitude of the square wave at A reaches the designed value. Transistor $T r_{2}$ then periodically draws current out of node B, keeping the sinewave's amplitude constant. At the designed amplitude - a few volts the influence of temperature on the amplitude is very small.
The clock signal must have a 50% duty-cycle. A low cost divide-by-two IC such as the 74 HC 74 may be necessary to achieve this.
In many applications a microcontroller can generate the clock signal directly, using a timer function.

Alternatively, a divider with built-in crystal oscillator such as the CMOS 4060 may be used. The band-pass filter has a Q value of 5 .
Component values in the schematic give a frequency of 1 kHz . For other frequencies, the resistor or capacitor values may be simply scaled. The opamp must have adequate gainbandwidth product and slew rate; the LF356 works well up to 20 kHz and beyond.
Ivan Moerman
Nazareth
Belgium
E44

Fed with a 1 kHz clock, this circuit can produce sinewaves with crystal timing precision. For other frequencies, components around the op-amp filter need to be scaled. The op-amp shown works to about 20 kHz .

Automatic input attenuator for radio receiver antennas

An attenuator, located at the aerial input, can greatly reduce cross modulation in communications receivers.
Laurence Cachia has devised a simple magnetic system in which a variable resistor across a tertiary winding on a toroidal core controls the coupling between two signal windings. Subsequent developments involve the use of a FET as a voltage variable resistor to facilitate automatic control.
Unless provision is made to minimise drain/source resistance, the amount of attenuation is limited. By driving the FET's gate positive with respect to its source, residual drain/source
resistance can be significantly lowered and performance comes much closer to that achieved with Cachia's original manual control.
In this circuit, the FET is connected across the arms of a bridge formed by $T r_{1}, R_{1}$, and $V R_{3}$. A rising agc voltage of 0 V to +0.6 V on the base of $T r_{1}$ swings the gate/source voltage of Tr_{2} from -2.5 V to +2 V , thereby maximising the resistance change.
For negative going AGC, the connections to the gate and source of $T r_{2}$ should be reversed, and $V R_{1}$ set to increase the bias on the base of Tr_{1}. The pre-set resistors can be adjusted to introduce delay and to accommodate different agc
voltage swings.
A ferrite toroid must be used, but its size is not critical. For general coverage receivers, signal windings of six turns on a core with a permeability of 850 will minimise losses at medium and low frequencies.
Turns can be reduced to three for HF receivers, and a lower permeability core could be used. Control windings should have twice the number of turns of the individual signal windings. Insertion losses are minimal.

Raymond Haigh

Doncaster
South Yorkshire

Attenuating an over-strong signal at the antenna greatly reduces cross modulation in comms receivers. This
circuit does the job automatically.

Versatile power switching circuit

This is a simple circuit that can be used for a wide range of switching or control applications. The purpose of the original circuit was to reduce rotational speed of a small DC motor. The motor drove a 'mirror ball' and was required to turn the ball at $2 \mathrm{rev} / \mathrm{min}$.
The same basic circuit can be used to flash a LED or incandescent filament lamp or even dim a filament lamp. All these applications can be realised with two transistors, three resistors, and one capacitor. An added benefit is that the current
consumption can also be made to be extremely small.
The circuit works as a simple proportional control circuit where the ratio of 'on' to 'off' time determines the speed and the effective voltage across the load. Components C_{1} and R_{2} define the 'on' time while the ' OFF ' time is defined by \boldsymbol{C}_{1} and \boldsymbol{R}_{1}. The load is connected in the collector of Tr_{2}. In the example given, this load is the 10Ω coil resistance of the motor. When 'on', $T r_{2}$ saturates and when 'off', the circuit consumes very little current,

so efficiency is high. This makes the circuit ideal for battery operation with any supply voltage from a single 1.2 V NiCd cell up to 24 V . Maximum voltage is only limited by the choice of $T r_{1}$ and $T r_{2}$ and of course the motor.
All components are non-critical; in the original application $T_{r_{2}}$ was a small 1A device. Capacitor C_{1} should be non-polar. Optimum performance in a given application may require adjustment of the timing by modifying the values of R_{1} and R_{2}.
If a variable speed drive is required, a potentiometer can be used instead of R_{1}. In this case a fixed resistor must be placed in series, to limit the maximum T_{r}, base current.
For microprocessor control, R_{1} could be a digital potentiometer IC. For other applications, alarms, beacons, etc., one or more LEDs may replace the motor

Alan Jones

Newcastle-under-Lyme
Staffordshire
E46

LANGREX SUPPLIES LT							
PHONE 0208684 1166		$\begin{gathered} \text { 30AD } \\ \text { PRESS } \\ \text { en } \end{gathered}$				S. 0 2ap K ITEMS	$\begin{array}{r} 0208684 \\ 3056 \end{array}$
OPEN TO CALLERS MON-FRI 9AM-4PM. CLOSED SATURDAY This is a selection from our stock of over 6,000 types. Please enquire for types not listed.Obsolete items are our speciality. Valves are new mainly original British or Amerlcan brands							

FRUSTRATED!

Looking for ICs TRANSISTORS A phone call to us could get a result. We offer an extensive range and with a World-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFW BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD DX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA J MJE MJF MM MN MPS MPSA MPSH MPSU MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SV1 T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + many others
We can also offer equivalents (at customers' risk).
We also stock a full range of other electronic components.
Mail, phone, Fax, Credit Card orders \& callers welcome.

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway, London NW2 3ET
Tel:020 84520161 Fax: 02082081441

WATCH SLIDES ON TV MAKE VIDEOS OF YOUR SLIDES DIGITISE YOUR SLIDES
 (using a video capture card)

"Liesgang diatv" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are In very good condition with few signs of use. For further details see www.diatv.co.uk $. . £ 91.91+$ vat $=£ 108.00$
Board cameras all with 512×582 pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 and 12 vDC 150 mA .
47MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye). $£ 37.00+$ vat $=£ 43.48$ 30 MP size $32 \times 32 \times 14 \mathrm{~mm}$ spy camera with a fixed focus pin hole lens for hiding behind a very small hole $. £ 35.00+\mathrm{vat}=£ 41.13$
40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' C ' mount lens these give a much sharper image than with the smaller lenses.. $£ 2.00+$ vat $=£ 37.60$
Economy C mount lenses all fixed focus \& fixed iris
VSL1220F 12mm F1.6 12×15 degrees viewing angle $\ldots \ldots £ 15.97+$ val $=£ 18.76$
VSL4022F 4 mm F1.22 63×47 degrees viewing angle. .. $£ 17.65+$ vat $=£ 20.74$ VSL6022F 6 mm F1. 2242×32 degrees viewing angle. . $£ 19.05+$ vat $=£ 22.38$ VSL8020F 8 mm F1.22 32×24 degrees viewing angle. $£ 19.90+$ vat $=£ 23.38$ Better quality C Mount lenses
VSL1614F 16 mm F1.6 30×24 degrees viewing angle. $£ 26.43+$ vat $=£ 31.06$ VWL813M 8 mm F1.3 with iris 56×42 degrees viewing angle........ $£ 77.45+$ vat $=£ 91.00$ 1206 surface mount resistors E12 values 10 ohm to 1 M ohm 100 of 1 value $£ 1.00+$ vat 1000 of 1 value $£ 5.00+$ vat
866 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42×22 dia the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily ... £7.46+vat $=£ 8.77$

Please add $1.66+$ vat $=£ 1.95$ postage \& packing per order

JPG ELECTRONICS

276-278 Chatsworth Road, Chesterfield, S40 28H.
Tel 01246211202 Fax 01246550959 Mastercard/Visa/Switch Callers welcome 9:30 a.m .to 5:30 p.m. Monday to Saturday

CIRCLE NO. 121 ON REPLY CARD

FREQUENCY SHIFTER FOR HOWL REDUCTION

- For public address and sound reinforcement.

Provides more gain and greater stability.

- 5 Hz Fixed Shift Board with mains supply.
- Broadcast Monitor Receiver $150 \mathrm{kHz}-30 \mathrm{MHz}$.
- Advanced Active Aerial $4 \mathrm{kHz}-30 \mathrm{MHz}$.
- Stereo Variable Emphasis Limiter 3.
- PPM10 In-vision PPM and chart recorder.
- Twin PPM rack and Box Units.
- PPM5 hybrid, PPM9 microprocessor and PPM8 IEC/DIN -50/+6dB drives and movements.

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh GU6 7BG Telephone: 01483275997 Fax: 01483276477

The only thing scientists

 agree about on the mobile phone health question is that you cannot rule out the risk factor.So where does that leave the worried consumer? In limbo for a while yet, says Melanie Reynolds

The fear

re mobile phones detrimental to human health? This question is likely to trouble us for a very long time. It may be a question we carry on asking forever. For despite numerous studies on the subject, only one aspect of the testing is agreed upon. "One of the things about science is you cannot prove there isn't risk," says Gerd Friedrich, MD of communications industry organisation
Forschungsgemeinschaft Funk in Germany.

This means tests that do not show any ill effects are doomed to be repeated to demonstrate there is still no danger. So the message remains that 'the balance of scientific evidence does not suggest that any harm is caused by mobile phone technologies'

Of course, there have been various reports of studies that do show ill effects, but the scientific community has its rules on research, which have so far meant these studies have been set to one side. The rules mean that before a study is accepted as scientific fact, it must be repeated, with the same results, in other laboratories. To date this has not happened.
"One point we need to bear in mind is that we are dealing with biological organisms and they are notoriously unreliable," explains James Lin, professor of bioengineering at the University of Illinois. "You have to be very cautious and aware of biological variability."

Lin says consistent, dependable and scientific conclusions cannot be drawn yet. He believes that there is no immediate cause for concern. But, "this is the first time in human history that millions of

When do we get the numbers?

t is all very well being told to consider SAR (specific absorption rate) values when choosing a phone, but in Europe they are not available yet. The problem is the standards for testing SARs have not been agreed and are not expected to be available until the middle of this year.
Any SAR values quoted now could have been achieved using one of several test set-ups, all of which can provide vastly different answers.
A CENELEC standard is due this month while an apparently
similar IEEE standard is going through internal voting. But the one to wait for is the IEC document, due early 2001, which draws on both these standards.
"For the first time it looks good that we may have a harmonised standard," comments Camelia Gabriel, director of UK-based Microwave Consultants. "It's very important we get there but it's not an easy task."
Of course once the standard has been agreed the phones must be tested to it. It could be a long time before we see SAR figures which we can legitimately compare.

factor

humans have been exposed to a source of radiation close to the head," continues Lin. "There is no question that microwave radiation can be hazardous to human health. The question is, how hazardous is it?"

The speakers at IBC's 'Mobile phones - is there a health risk?' conference were all keen to illustrate how much time and money is being put into this question on a global basis.
"There is a lot of research. The problem is that a lot of people don't understand the research out there, but it is very well planned," explains Sheila Johnston, neuroscience consultant to the UK mobile phone industry. Sheila illustrated her point with an extremely long list of all the research.

Johnston feels the gap right now is in human research, but believes this area will be addressed by the UK Government's $£ 7 \mathrm{~m}$ research project announced at the end of last year (see news on 164).

Despite this large amount of money there remains scepticism over the issue of public health and cover-ups. You only need to look at recent history to see why. The tobacco companies are a fine example of an industry cover up, while the UK's handling of BSE (mad cow disease) illustrates political inadequacies all too well.

But Michael Repacholi of the World Health Organisation is convinced this will not happen with mobile phones.

Despite the fact a lot of research is industry funded he says there is a "firewall" which keeps industry at
arms length from the researchers.
"It won't be the tobacco problem," states Repacholi. "The UK Government is more BSE sensitive which may even cause an over reaction in the EMF situation. They might see it as another situation which could get out of control."
Repacholi also believes adopting a precautionary approach to fixing exposure levels is a mistake. In the UK levels fixed by the National Radiological Protection Board were shifted by the Government simply to bring them in line with other countries. According to Repacholi this, "undermines hundreds of millions of dollars of research for no apparent benefit to health".
"It doesn't matter how far politicians reduce levels. It doesn't reduce anxiety. It needs to be based on scientific fact," says Repacholi who believes public confidence will be increased if governments and scientists agree on the health risks. And after all, the alleviation of public concern is what all this is about.
$\rightarrow \cdot \cos _{3} 1$ a

co n s u 1 t ancy con

Emifacts Consult anoy has been in exartance since 1994 and has produced over 21 pubbcations/papers dealing wish various beath usues related to human exposure to Electromagnetce Radnabon

Thas website was established in. 1997 as an independent source of information on the posable health and safoty is sues arising from human exposure to Electromagnetic Eneriy (EIME)

Thas consists of both 50 and 60 Herty (Het) Electromagnetic Fields (EMMF) From our use of olectnctry and Rado GrequencyMbcrowave (RFMMW) Electromagnetc Radiation (INMR) from tole communications

This site is designed to be uthized as a resoturce by indivitualk, groups, organisabang and communation who are trying to empower themselves by gining a betwer understanding of the complex issues novolved whth this important environmental issue.
 absundry by the noxt, and that which is regunded as a superstuon in one cowny, may form the basse of science for the following one." - Paracelsus

[^2]There's plenty of background information on mobile phone health hazards at http://www.tassie.nel.au/emfacts/mobiles/ iegroup.html.

Advice on using mobile phones

As a result of the Stewart report on mobile phone health issues in May 2000, the Government agreed a leaflet setting out its advice would be handed out with every mobile phone sold.

The leaflet says there is some evidence that changes in brain activity can occur at levels below the guidelines set internationally for exposure to radio waves, but says it is not clear why. As a result it is taking a
precautionary approach to the use of mobile phones. Its recommendations include:

- Keep your calls short

- Consider relative SAR values when buying a mobile phone
- Do not use a mobile phone when driving, not even if you have a hands-free kit
- Under $\mathbf{1 6 s}$ should use mobile phones only for essential purposes and keep all calls short

Personal voice communications without a licence over a two mile radius for $£ 75$, exclusive.
Reader offer

RS446 key features...

- Up to 2 mile coverage radius
- Scans main and subchannels
- Eight channels, each with 38 sub channels
- Backlit display for night time use
- Unique call function
- Headphone and mic sockets allow discrete use
- Battery status indicator
- Auto battery save feature
- Keypad lock-out A pair of two-way PMR radios for just $£ 75^{*}$
RS 446 personal mobile radio...
To celebrate its launch, new test and instrumentation company Tecstar is offering Electronics World readers two RS446 personal mobile radios for just £75 excluding VAT and carriage.
Capable of transmitting and receiving voice over a distance of up to two miles, depending on terrain, the PMR 446 needs no licence. It offers eight channels, scanning - and with CTCSS up to 304 channel combinations.
A backlit liquid-crystal display shows volume level, channel number, subchannel number, battery level and transmit/receive or channel busy. A unique call feature enables the user to alert the person they wish to contact.
Transmission distance is up to 2 miles. The radio has an accessory socket for an external headphone, earpiece or vox-microphone/headphone combination. A keypad lock and battery save feature are also standard.
The unit measures only 120 by 50 by 20 mm and weighs less than 150 grams including batteries. It is supplied complete with instructions and belt/mounting clip.
Compact, lightweight and low cost, the RS446 wireless personalcommunications' hand set has a wide range of applications. These include fetes, events and rallies. Builders on building sites could benefit from these radios, as could exhibitors at exhibitions and staff at warehouses, winter activities, sports events, maintenance departments, schools and care homes. Of course you can also use the RS446 just to keep contact with someone locally. The uses are almost limitless.
Send a chieques or postal orders to Tecstar Electronics Limited, 1 Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX.
Tel 01480 399499, fax 01480399503 , e mail sales @tecstar.co.uk
Order coupon
Please send me RS446 personal mobile radios, for which I enclose:

For \qquad pairs of RS446 radios at $£ 75$ per pair \qquad
Plus VAT at 17.5%, or $£ 13.13$ per pair \qquad
Plus $£ 6$ UK postage per order, or $£ 14$ overseas \qquad
Total \qquad
Fill in your name and address and post this coupon together with a cheque for the total amount above payable to Tecstar to the address below.

Name \qquad
Address \qquad
\qquad
Post code \qquad
Signature \qquad
Send cheques, postal orders etc to Tecstar Electronics Limited, 1 Nuffield Road, St Ives, Huntingdon Cambridgeshire PE27 3LX. Tel 01480 399499, fax 01480 399503, e mail sales @tecstar.co.uk

What is CTCSS CTCSS - or 'continuous-tone controlled squelch system' - allows sub channels of the main channels to be used. There are 38 sub channels to each main channel. Using subchannels decreases the likelihood that someone else will be using the same frequency.

This design was developed for locating faults in coaxial cables. A 'time-domain reflectometer', or TDR for short, sends a brief, very fast edged pulse into a cable and then looks for reflections. If the cable is open or short circuit, a return echo that is twice the transit time of the cable will be observed - a socalled 'go and return' echo. This unit generates the fast
pulses needed and uses any reasonably fast oscilloscope to monitor the activity on the line.

How the circuit works Schmitt trigger $I C_{1 \mathrm{~A}}$ forms a simple 50 kHz oscillator. This is a 74 HC part. Output from this oscillator triggers an avalanche pulse generator.
The pulse generator, and its associated voltage clamp, is based
on a previous article about sampling oscilloscopes . Pulse transistor $T r_{1}$ is not designed specifically for use in avalanche mode, I found that but several samples of 2N2369, BSX20, and BFR91 all worked reliably in this sort of circuit configuration.
Other transistors such as $\mathrm{BC107}$, BFY50 would not function. I put this down to the fact that the 2N2369, BSX19/20 are all high-

Fig. 1. Circuit of the timedomain reflectometer includes a fly-back converter around Tr_{2} to step the 10 V supply up to the 70V or so needed for the pulse generator.
speed switching transistors with low $V_{\text {ceo }}$. Ian Hickman's article mentioned in the reference details the operation of the pulse generator but I made a few minor changes:

- The open circuit 50Ω coaxial line is longer so that a pulse of approximately 6 ns is generated
- The trigger pulse feeds Tr_{1} via an adjustable capacitor to fine tune the pulse waveform.
- The line charge voltage clamp is modified slightly to allow for the high-voltage supply.

The pulse generator needs at least 70 V . Partly because I did not have a suitable bench supply available, I decided to build in a switch mode supply to boost the 10 V input to 70 V
This simple power supply is based on the fly-back principle and uses the 50 kHz signal
available from $I C_{1 \mathrm{~A}}$, via $I C_{1 \mathrm{E}, \mathrm{F}}$ to drive a MOSFET, Tr $_{2}$.
During the on-time of Tr_{2}, current in L_{1} builds to approximately 50 mA . When $T r_{2}$ turns off the voltage at the junction of $\operatorname{Tr}_{2}, D_{3}$, L_{1} 'flies' up to be caught by D_{3} at the voltage across C_{3}. All the energy in L_{1} is then dumped into C_{3} in about $1 \mu \mathrm{~s}$.

Because the load across C_{3} is several tens of kilo-ohms, and the energy being delivered is fixed, the voltage across C_{3} rises until all the energy is consumed. Expect between 60 and 100 V across C_{3}. The actual value is not critical.
Transistor Tr $_{3}$ and its associated components form a variable voltage clamp. This stabilises the charge voltage of the line. Adjustment from 30 to 50 V is provided by $R V_{1}$.
In operation the open circuit 50Ω line is charged to the preset clamp voltage via R_{2} and R_{1}. On
the rising edge of the signal feeding $V C_{1}$, current flows into $T r$, base and starts conduction. The avalanche effect causes Tr_{1} to turn on very rapidly and the energy stored in the line is discharged via $T r_{1}$ into R_{3} and on to the output.
Resistors R_{5} and R_{6} form a simple attenuator so that the voltage at the output may be monitored.

Implementing the design I built the TDR into a small diecast box and fitted two BNC sockets for the outputs and simple flying leads for the DC power supply

You can use Veroboard, as I did, but take care to ensure that connections are as short as possible and that decoupling capacitors are close to the source of surge currents. Capacitor C_{5} must be a ceramic type and

Fig. 2. Output pulse of the instrument with no cable under test connected.

Fig. 3. Reflection from 9m open-circuit coaxial cable cable.

Fig. 4. Reflections from $9 m$ of open-circuit coaxial cable and faulty BNC connector at 6 m .

Fig. 5. Reflections from approximately 40 m of open-circuit coaxial cable.
connected directly between pins 7 and 14 of $I C_{1}$. Capacitor C_{2} should be reasonably close to L_{1} and $T r_{2}$.
Components shown in the dotted area are the heart of the device and must have very short leads less than 10 mm - to minimise inductance. If they haven't, the rise time of the pulse will be affected. I soldered them to the BNC connectors, providing support for $T r_{1}$ on small, insulated, terminals.
The stub line is a length of RGI74 miniature 50Ω coaxial cable coiled to fit inside the box. The far end is open circuit.

Setting up

Apply voltage slowly, watching for excessive current flow. Typical consumption is 40 mA at 10 V . Monitor Tr_{2} for activity and the voltage across C_{3}. It should be 110 V maximum.
Next monitor the output and the collector of $T r_{1}$. Set $V C_{1}$ to maximum and $R V_{1}$ to give 30 V at $T r_{3}$'s emitter. Now increase $R V_{1}$ until the fall time of the voltage at $T r_{1}$ collector suddenly becomes very sharp.
The output waveform is shown in Fig. 2. This is the point where avalanche starts. Increase $R V_{1}$ about 4 V more and remove the scope probe from $T r_{1}$'s collector.
Now the output should show a very fast rising pulse about 6 ns long. Adjust $V C_{1}$ to reduce the drive current into $T r_{1}$'s base. This should clean up the falling edge a little reducing the base current after $T r_{1}$ has triggered.
If the output stops altogether, back off the adjustment a little to give reliable operation. This completes the set-up.

Using the meter

For good results, an oscilloscope with a bandwidth of at least 50 MHz is required, otherwise the resolution is limited. My scope has a 150 MHz bandwidth and 2.3 ns rise time. It is easy to resolve length to 100 mm .

In operation the oscilloscope is connected to the monitor output using 50Ω coax and terminated at the input to the scope. The cable under test connects to the output.
The scope should display the transmit pulse and later any returned echo Fig. 3. There will be echoes from any point along the test cable where its impedance changes. Typically this would be

Note short leads around avalanche transistor near the two BNC connectors.
an open or short circuit.
It is surprising how sensitive this TDR is. For example a reflection can be obtained from the change in impedance that 5 mm of stub cable connected to a tee causes, Fig. 4. Cable lengths of up to 200 m have been tested and reflections easily measured. Figure 5 shows results from a 40 m cable.
The polarity of the echo indicates open or short circuit ($>Z_{o}$ or $<Z_{o}$) in the cable. Positive echoes indicate high impedance and vice versa.
The time delay can be used to estimate the distance down the cable where a fault is,

$$
l=\frac{t \times V_{\mathrm{c}} \times \mathrm{C}}{2}
$$

Where $/$ is the length of cable in metres, t is the time from transmit pulse to echo in seconds, C is the speed of light, at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and V_{c} is the velocity coefficient for cable under test.
The velocity coefficient is the ratio of the speed of signals through cable to the speed of light. It varies depending on the exact type of cable but is usually between 0.6 and 0.8 . If this coefficient is not known it may be simply calculated using a known length of cable from,

$$
V_{\mathrm{c}}=\frac{2 l}{t \times \mathrm{C}}
$$

Measure the round trip delay of a known physical length of cable and calculate V_{c}.

The TDR has given good service in locating faults in coaxial cable runs, detecting dubious coaxial connections and even measuring the characteristic impedance of an unknown line by adjusting the termination impedance of a length until minimum reflections are

Components	
1 off R_{1}	3 k 3
1 off R_{2}	33k
1 off R_{3}	22R
2 off $\mathrm{R}_{4,10}$	100R
2 off $R_{5,11}$	62R
1 off R_{6}	220R
1 off R_{7}	22 k
1 off R_{8}	270R, 1/2W
1 off R_{9}	10k
Capacitors	
2 off $\mathrm{C}_{1,2}$	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$
1 off C_{3}	$100 \mathrm{nF}, 250 \mathrm{~V}$
1 off C_{4}	2 n 2 F
1 off C_{5}	100 nF
Integrated circuits	
1 off IC1	74HC14
Transistors	
1 off Tr_{1}	2N2369
1 off Tr_{2}	BSS100
1 off Tr_{3}	BC212
Diodes	
1 off D_{1}	BZX79C20
1 off D_{2}	BZX79C4V7
1 off D_{3}	BAV20
1 off D_{4}	BAX13
1 off D_{5}	BZX79C30
Miscellaneous	
1 off L_{1}	$820 \mu \mathrm{H}$
1 off RV_{1}	47k
1 off VC_{1}	5-30pF

observed. It is surprising how useful it has become in the workshop

Reference

1. Hickman, Ian, ‘Towards a 500 MHz scope add-on', Electronics. World, March 2000.

A low-power 555 timer guaranteed to run from supplies down to 0.9 V .

Abstract

Sponsored by UK semiconductor manufacturer Zetex, this month's cover mount is a state-of-the-art version of one of the most successful ICs ever made - the 555 timer. The device is housed in a dual-in-line package and its pin designations are the same as those of the standard 555. Featuring a very low quiescent current of $74 \mu \mathrm{~A}$, the ZSCT1 555 can be powered by any $D C$ supply from 0.9 V up to its absolute maximum rating of 6 V . For more applications information and a data sheet, visit

This is the DIL version of Zetex's low-power 555 timer. The device is also available in SOIC with the same pin configuration.
www.zetex.com

Single-cell boost converter

Relative to similar CMOS 555 timers the ZSCT1555 has a lower operating voltage. But more importantly, it can offer a longer battery life.
The circuit shown in Fig. 1 generates a 5 V output using a boost topology combined with pulse width modulation to regulate the output voltage to 5 V . The ZSCT1555 generates the required 150 kHz signal for the PWM circuit.
Inductor L_{1}, with D_{2} and Q_{2}, allow operation up to very high switching frequency. This speed-up circuit uses active base drive, which minimises switching losses. Schottky diode, D3, used for charge steering is unique. In SOT23 the DC rating of the ZHCS750 at 750 mA is exceptional.

The circuit features a ZR431 adjustable shunt regulator in the feedback control loop. This device again offers power economy as its quiescent current is only $35 \mu \mathrm{~A}$ - ten times lower than other similar parts.

Extremely low saturation voltage, equating to an onresistance of only $30 \mathrm{~m} \Omega$ at 300 mA , of the FMMT617 switching transistor, Q3, further optimises circuit efficiency.

Fig. 2. Electroluminescent display drivers normally need a bulky and heavy transformer. This alternative eliminates the transformer without compromising on efficiency.

Electroluminescent driver

Traditional electroluminescent display driver circuits feature a flyback transformer topology to generate the high AC voltage required to energise the panel. This is expensive - the cost of the transformer and its size, together with a larger PCB area, increases the overall equipment cost.
Eliminating the need for a transformer, the circuit in Fig 2 is more cost-effective. To add to this, the ZSCT1555's low power consumption and the capabilities of the switching transistors make
for a highly efficient solution. The innovative design uses two combined switching circuits. The first generates a high voltage, approximately 200 V , using a 'boost' topology. This voltage is chosen, according to EL-Panel size and brightness, by varying the frequency. Effectively the EL panel behaves like a capacitor. The second circuit converts the high voltage to an 800 Hz AC signal to drive the EL-Panel.
The two ZSCT1555 timers form clocks for the switching
transistors. High efficiency is ensured by the switching capabilities of the Zetex bipolar transistors. Advanced transistor design gives the lowest saturation voltage in the switch for the lowest dissipation.
These two application examples highlight the specific advantages of the ZSCT1555 for high-efficiency circuits - namely low supply voltage and low power consumption. This Zetex timer offers advantages to many of the thousands of traditional applications for the 555 .

BOOK TO BUY

Completely updated, this comprehensive dictionary contains over 28,000 electronic terms, phrases, acronyms, and abbreviations from the everexpanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. This dictionary is a valuable resource for professionals in the field, hobbyists, students, or anyone interested in electronics.' Poptronics

Included in this fully revised classic are well over 28,000 terms, phrases, acronyms, and abbreviations from the ever-expanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. From the basic elements of theory to the most cutting-edge circuit technology, this book explains it all in both words and pictures. For easy reference, the author has provided definitions for standard abbreviations and equations as well as tables of SI (International System of Units) units, measurements, and schematic symbols.

Modern Dictionary of Electronics is

 the bible of technology reference for readers around the world. Now fully updated by the original author, this essential, comprehensive reference book should be in the library of every engineer, technician, technical writer, hobbyist, and student.

Post your completed order form to:Jackie Lowe, Room L514, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS
Fax your completed order form to 02086528111 UK Price: £42.50 Europe $£ 45.00$ ROW £47.50 Price includes delivery

How to pay

Modern Dictionary of Electronics

- I enclose a cheque/bank draft for $£$ (payable to Reed Business Information)

Please charge my credit/charge card
\square Mastercard American Express Visa Diners Club Credit Card No:

Expiry Date:

Signature of Cardholder
Cardholder's statement address: (please use capitals)
Name
Address \qquad
\qquad
\qquad
Post Code \qquad Tel

WEB
 Illi:GIOMS

ACQUIVISION

http://www.acquivision.com
AcquiVision solutions, including XYPlotting, Oscilloscopes (with FFT), Data Logging and Custom Software, have been getting the most from computers since 1994. Download software. Telephone (01903)830502.

AQUILA VISION

http://www.aquila-vision.co.uk

Aquila Vision specialises in supplying and supporting Embedded Microprocessor Development products from PICs to DSPs. We also stock robotics boards, Linux and general interest CD-ROM's.

ALCATEL COMPONENTS

http://www.components @alcatel.de

ASHWELL ELECTRONICS

http://www.ashwell-hq.com
Ashwell provide technical support for Apex Microtechnology op-amps and DC/DC'S; Aeroflex; EMP filtered connectors; M S Kennedy; Mintech obsolescence; NSC Mil/Aero; Teledyne Relays and isocom mi//optocouplers.

ARCOM

http://www.arcomcontrols.com/ew

A leading internatlonal supplier of communication and control technology to ind ustry, Arcom provides leading edge solutions through a
comprehensive range of market leading products

BROADERCASTING
 COMMUNICATIONS SYSTEMS

www.broadercasting.co.uk
WINRADIO now brings you a complete choice in personnel computer controlled
radio scanning and reception solutions Broadcast © Media - Monitoring • Professional Amateur Radio communications

BEDFORD OPTO
 TECHNOLOGY LTD

http://www.bot.co.uk
Optoelectronic products UK design development manufacture standard and custom, LED bargraphs, circuit board Indicators, stand offs,
transmissive/reflective switches, baseefa optocouplers tubular and surfacemount, pannel mount LED assemblies.

CONCEPT ELECTRONICS

http://www.conceptkey.co.uk
Concept Keyboards are specialists in the design and manufacture of customer specified membrane panels and keyboards, and electronic design. Concept's membrane manufacture is supported by a full electronic production facility to provide a complete turnkey keyboard and electronics service, fully accredited to IS09001.

CONTROL SOLUTIONS

 www.controlsolutions.co.ukData acquisition and control for beginners, hobbyists, and professionals. Perform mathematical and logical operations on data in real time. Email: info@controlsolutions.co.uk.

COOKE INTERNATIONAL
http://www.cooke-int.com e-mail: info@cooke-int.com

Stockists of Quality Used Electronic Test Instruments and Operating \& Service Manuals.

CROWNHILL ASSOCIATES LTD

http://www.crownhill.co.uk
Crownhill supply low cost development tools for use with Micro-Controllers and Smart Cards. Products include Smart Card development tools, Smart cards, Micro Development tools and Bespoke Design Services.

DANIEL MCBREARTY

http://www.danmcb.demon.co.u keng.html
Experienced engineer based in London, specialist in audio and control systems. Available for design, project engineering or general consultancy. Background of high-quality work.

DESIGNER SYSTEMS CO.
http://www.designersystems.co. uk

Electronic product design company with over a decade of experience promoting it's own product range and designing and manufacturing innovative products for client companies/individuals.

ECM SELECTION

http:// www.ecmsel.co.uk

For the pick of the UK's Top High-Tech Software and Hardware career opportunities - from fresh Grad/PhD to Senior Engineer/Manager - £22,000-£70,000

EDWIN PCB DESIGN SOFTWARE

http://www.swifteurotech.co.uk
Swift Eurotech supply the best-selling EDWin CAD/CAE system for PCB design including schematics, simulation and PCB design. Discounts up to 60% for noncommercial users.

ELECTRONICS AND COMPUTING PRINCIPLES

http://www.eptsoft.com
Studying electronics or computing or just want to keep up-to-date in an easy and enjoyable way, then this fully interactive software is for you.

EQUINOX TECHNOLOGIES UK LTD
http://www.equinox-tech.com

Equinox Technologies UK Lid., specialise in development tools for the embedded microcontroller market.
FELLER UK
http://www.feller-at.com
Feller (UK) Ltd. manufacture Fully approved cordsets (Moulded mains plugs and connectors) and Power Supply Cables for all ind ustrial Countries to National and International Standards

FLASH DESIGNS LTD

http://www.flash.co.uk
Flash supply low cost AVR ISP programmers (£39), MINI-ICE starter kits (from £69), Portable Easy-ICE emulators (from £199), ICE Adapters \& 'C' compilers for any ATMEL AVR, MCS51, Dallas, Hitachi H8 microcontroller. Download FLASH NEWS now, Watch out for Special Offers'. ARE YOU developing code in a Flash?
GOOT PRODUCTS
http://www.kieagoot.co.uk

Kiea Trading Company is the sole agent of Goot products, We specialise in supplying the soldering and desoldering product range manfactured by Goot Japan for the UK market. Goot uses advanced production technology to manufacture high quality soldering iron products for industrial, professional and general purpose use.

HSPS LTD

http://dspace.dial.pipex.com/hsps/
FILTER DESIGNER - Advanced analog and digital filter design software for the PC. Standard and Professional versions.- Free download of Evaluation version.

To reserve your web site space contact Pat Bunce

Tel: 02086528339 Fax: 02086523981

HTB ELEKTRONIK

http://www.htb-elektronik.com
We are selling second-hand test \& measurement equipment and accessories for over 10 years,from all leading manufactures.
LEVY/LATHAM GLOBAL
http://www.levylatham.com
U.S. Military Surplus meters, plug-ins, test sets, oscilloscopes, power supplies, signal generators, spectrum analyzers and radio components from Tektronix, Hewlett Packard, Sony, Phillips and more!

LOW POWER RADIO
 SOLUTIONS

http://www.lprs.co.uk
LPRS markets low power radio transmitters, receivers and transceiver modules manufactured by ourselves, Radiometrix, Circuit Designs, RDT and Micrel. Applications for telemetry, video and remote control.
MATTHEY MICROFILTERS
http://www.microfilters.net

30 years experience in the design and manufacture of high quality passive filters and delay lines. Used in Broadcast, Telecommunications, Medical, Multimedia, and Computer industries.

MATRIX MULTIMEDIA LTD
www.matrixmultimedia.co.uk

Matrix Multimedia publishes a number of highly interactive CD ROMs for learning electronics including: Complete electronics course, Analogue filter design, and PICmicro(R) microcontroller programming (C and assembly).
NEWNES - BOOKS FOR THE ELECTRONICS WORLD
http://www.newnespress.com Over 300 books and information packages

for those working with electronics and engineering technology. Visit our site for a free catalogue and downloads.

NORCALL
http://www.norcall.co.uk
Suppliers and repairers of MOBILE RADIO equipment
SALES
HIRE
REPAIR
Huge stacks of used radios and spares Pye Philips Simoco Icom Kenwood Standard Cleartone Maxon Yaesu Key MIdand.
WE CAN PROGRAM ANYTHING 24 hr Service

OMEGA RESEARCH LTD

http://www.omega-research .co.uk
"SMD prototyping adapters. Unique, flexible, low cost adapters to allow bench working with SM devices. Range suits most devices down to 0.5 mm pitch."

PCA:PHILIP COLLINS \& ASSOCIATES PTY. LTD
http://www.pca.cc
PCA manufactures Radphone 2000DX remote control systems for shortwave broadcasters and government agencies wanting worldwide control of communications receivers and transceivers from any tone phone.

POLY-FLEX CIRCUITS LTD

http://www.polyflex.com
Design, manufacture and population of printed polyester flexible circuits, including Flip Chip on Flex providing practical, low cost, reliable solutions for today's small lightweight products.

QUASAR ELECTRONICS
www.quasarelectronics.com

Over 250 electronic kits, projects and ready built units for hobby, educational \& industrial applications. TEL: 01279 306504, FAX: 07092203496 or EMAIL: ewsales@quasarelectronics.com

QUILLER ELECTRONICS

http://www.quiller.com
$100+$ pages of detailed technical information on Schrack Relays, MEC Switches, Hirose Connections.

RADIOMETRIX

http://www.radiometrix.co.uk
Radiometrix specialises in the design and manufacture of VHF \& UHF, RF data modules. We offer a broad range of PCB mounted miniature transmit, receive and transceiver modules for OEM use.

RADIO-TECH LIMITED

http://www.radio-tech.co.uk
Radio modules, modems, telemetry, audio transmitters, pagers, antenna, remote controls and much more. All UK designed and manufactured.

RALFE ELECTRONICS

professional test \& measurement www.ralfe-electronics.co.uk

RD RESEARCH

http://www.looking.co.uk/spice

Analogue and digital SPICE modelling software. Full details available on this site. Available on a 30 day evaluation basis.

RS COMPONENTS LTD
http://rswww.com

The award winning on-line service from RS $-110,000+$ products available
Technical data library

- Stock availability check

Integrated on-line purchasing
Order by 8 pm - with you tomorrow.

SOFTCOPY

http://www.softcopy.co.uk
As a PC data base or hard copy, SoftCopy can supply a complete index of Electronics World articles over the past ten years. Photo copies of articles from back issues are also available.

SESCOM, INC.
http://www.sescom.com
SESCOM, INC. is a 30 -year manufacturer of audio "problem solvers" and transformers. We also offer easilyfabricated aluminum enclosures for small production runs and prototypes.

STAFFORDSHIRE WIRELESS COMPANY

http://www.staffs-wireless.com
Wireless, communication, test equipment, bought and sold for very competitive prices vislt our web site or elephone John on 01889569928 or 0973296461

SUPRA AUDIO CABLES

http://www.jenving.se
Jenving Technology $A B$ is the manufacturer of Supra Audio Cables. OEM productlons are also accepted.

temwell corporation http://www.temwell.com.tw
Manufacturer \& Exporter of Heelical BPF Filter, 30 Watts BPF Power Filter and Handset/Base Station Duplexers

TEST EQUIPMENT

SOLUTIONS
http://www.TestEquipmentHQ.com
Quality second user test equipment with full warranty and support. All types of equipment from all leading manufacturers Including general purpose, communications and industrial test

We illethois

THOSE ENGINEERS LTD
http://www.spiceage.com
Working evaluations of SpiceAge mixedmode simulator, Spicycle PCB design tools and Superfilter demo (synthesises passive, active, digital filters). Tech support, sales links and price list.

THERMOSPEED

http://www:thermospeed.co.uk

Temperature and pressure, control and
instrumentation. Full on-line purchasing.

* Overnight ex-stock delivery
* Create your own hotlist
* Download datasheets
* Full technical support

TRIDENT

MICROSYSTEMS LTD
http://www.trident-uk.co.uk
Visit the Trident website for details and datasheets on their entire LCD and printer product range. Download data and subscribe for our regularly updated newsleter.

TOWER HILL
 TECHNICAL SERVICES

http://www.towerhillaerials.com
Everything you need for DIY Satellite \& TV aerial installation. The one stop

shop for TV, FM, Satellite, Amateur Radlo PMR Aerials, Distribution Equipment, Cable \& Accessories.

TECHNICAL AND SCIENTIFIC SUPPLIES

http://www.technicalscientific.com
Suppliers of pre-1985 equipment and components.
Test/Measurement equipment
Valves and semiconductors

- Transducers and pressure gauges - Scientific books and catalogues - Manuals and data sheets

VANN DRAPER

ELECTRONICS LTD
http://www.vanndraper.co.uk
Test equipment from Grundig. Kenwood, Hitachi, Fluke, Avo, Glassman, Advance in a comprehensive site including ascilloscopes, multimeters, power supplies, generators, counters, soldering, digital tv etc.

vUTRAX PCB DESIGN SOFTWARE

http://www.vutrax.co.uk
VUTRAX electronic schematic and pcb design system for Windows 95, 98 and NT. Limited Capacity FREE version

downloads available, all upgradeable to various customised levels.

WOOD \& DOUGLAS

http://www.woodanddouglas.co.uk
Wood \& Douglas Ltd is the leading independent British designer and manufacturer of quality radlo products for International telemetry, data,voice \& video wireless communications.

UK ELECTRICAL DIRECT

http://www.uked.com
For a comprehensive on-line directory, buyers guide and resource locator for the UK Electrical Industry look at this site. Many of the companies Ilsted have links to their own web slites, making this a one-stop shop for a huge amount of information.

UK MAILING LIST GROUP

http://www.egroups.com/list/uk tvrepair

Following on from the newsgroup discussion last month there is a UK Email group for TV technicians where you can send an Email to everyone in the group. There's just over 30 people in the group at present. For more details and how to register look at the egroup home page. Just a general comment though you do have to be careful who you give your Email address to so that you can avoid "spamming" - that is getting lots of unwanted Email about dubious Russian site (amongst others).

REED CONNECT

http://www.reedconnect.net/
Another free internet access site, this time from Reed Business Information. However the site possesses a useful UK

People and Business Finder, with an email search. There's also business news and local information, and some good links to directory sites.

REPAIRWORLD

hitp://www.repairworld.com Repairworld is a sophisticated US based fault report database which is updated bi-weekly. It operates on a subscription basis and describes itself as an "affordable solution for all technicians". You can see some samples of the material for free, monitors, VCR, DVD and Camcorders being of particular relevance to UK users. The site also provides a "chat room"

> To reserve your web site space contacł Pat Bunce
> Tel: 02086528339 Fax: 0208652398

Put your web address in front of 21000

 electronics enthusiasts and experts.Electronics World acknowledges your company's need to promote its web site, which is why we are now dedicating pages in every issue to announce your
WEB ADDRESS.
This gives other readers the opportunity to look up your company's name, to find your web address and to browse the magazine page to find new sites.

We understand that cost is an important

factor, as web sites are an added drain on budgets. But we are sure you will agree that the following rates make all the difference:

FOR 12 ISSUES:

Lineage only will cost $£ 150$ for a full year just £12.50 per month.
This includes your company's name, web address and a 25 -word description.
Lineage with colour screen shot costs $\mathbf{£ 3 5 0}$ for
a full year, which equates to just $\mathbf{£ 2 9 . 1 7}$ per month.
This price includes the above mentioned information, plus a 3 cm screen shot of your site, which we can produce if required.

To take up this offer or for more information ring:
Par Bunce on 02086528339 or fax on 02086523981.
or e-mail: pat.bunce@rbi.co.uk

Company name	Web address			

Sate 1-5\% Pico ADC42 Virtual oscilloscope

Featuring 12-bit resolution and $1 \mathrm{M} \Omega$ input impedance, the ADC42 samples at up to $15 \mathrm{kS} / \mathrm{s}$ and includes software for spectrum analysis, oscilloscope functions and frequency display. Plugging into a PC's LPT port, the unit provides large, colourful displays and all the usual timebases and trigger options - all in a case slightly larger

ADC42 single channel oscilloscope

- Low cost and easy to use
- No power supply required
- Ultra compact design
- Oscilloscope and data logging software included
- Write-to-disk on trigger function standard

The ADC42 is a single-channel pc based virtual instrument. Simply plug the unit into the parallel port of your pc and run the software. Designed for analysing low-frequency signals, it provide all the functionality of a conventional scope at a fraction of the price.
The ADC42 has 12 -bit resolution making it suitable for applications where detection of small signal changes is needed.

Specifications

Scope timebases Spectrum analysis Max sampling Voltage range Resolution Channels //P impedance Accuracy PC connection Power supply
$500 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~s} / \mathrm{div}$
100 Hz to 10 kHz
15ksample/s
$\pm 5 \mathrm{~V}$
12 bit
1 BNC
$1 \mathrm{M} \Omega$, dc coupled
1\%
D25 to PC parallel port Not required

Use this coupon to order your ADC42

Please send me ADC-42(s) at the special offer price of $£ 98$ fully inclusive of VAT and recorded UK delivery, normal selling price £111.63 excluding postage.

Name \qquad
Address \qquad
hone number/fax \qquad
Total amount £..........
I enclose a cheque \qquad
Please charge to my credit/debit card.
Card type (MasterNisa/Switch etc)

Card No \qquad

Expiry date \qquad 1

Please mail this coupon to Electronics World, together with payment. Alternatively fax credit card details with order on 01816528111.
Address orders and all correspondence relating to this order to Pico Offer, Electronics World, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
email jackie.lowe@rbi.co.uk
Make cheques payable to Reed Business Information Group.

Letters to the editor

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS e-mail jackie.lowe@rbi.co.uk using subject heading 'Letters'.

B-class Class B

In reply to James Bongiorno's in the February 2001 issue's letters section, I must admit that I was not aware that the problem of crossover distortion in Class-B output stages had been completely solved thirty-five years ago. Looks like we're all out of step except Jim.
If Mr Bongiorno feels he has solved a problem that has defeated thousands of engineers, I think we might expect some details, perhaps even a circuit diagram and some test results.
Since I am not quite so ignorant about diodes in output stages as Mr Bongiorno seems to think, I would like to go
straight for the jugular and ask what quiescent current is required to make his scheme work properly? Linearity is easy to achieve with amperes of current flowing - but this does not constitute solving the Class-B problem.
I am also unmoved by a THD figure of less than 0.01% at 20 kHz , as most versions of the Blameless amplifier can achieve this: many of them do much better. The 'load-invariant' version gives 0.004% at 20 kHz while driving 3Ω.

What exactly are the advantages of a dual-differential input stage? The normal pair gives a differential input, and
you cannot make an input more differential than differential can you?

I am perfectly aware that complementary amplifier topologies exist, and given the time, it would be interesting to analyse them properly.
However, the disincentive is that they look unpromising in two areas: maintaining exact I_{c} balance of the input pair, and maintaining a well-defined current through the output stage bias generator. Both are absolute requirements for good linearity. Perhaps Mr Bongiorno has solutions to these problems. Douglas Self London

LF communications

It is with some pleasure that I see real 'wireless' making a return to Electronics World, in the article entitled 'Comms at 136 kHz ' on page 16 of the January issue.
As it happens, the UK is a relatively active region in this area of the amateur radio spectrum. Much of the contact between the widely-spread adherents is conducted via the RSGB's LF Group reflector on the Internet.
Unfortunately, much of the comment in the article about the band is a little dated. There is a growing band of enthusiasts in Europe, Canada, the USA, Australia and New Zealand who are investigating this fascinating region of the radio spectrum again.

While a lot of our initial work was based on guidance from early books like the pre-war Admiralty Handbook, we have progressed rapidly and are probing some of the forgotten corners of technology. Litz wire, and basket weave coils, not considered by your contributors, have proved to still have advantages.
Several UK station have constructed and operate stations running several hundred watts
output. This has enabled the Atlantic to be spanned for the first time on this frequency by an amateur signal in September this year. It was done using an ERP of just less than 1 W .
Skywave or ionospheric propagation is not only available at night and there a regular instances of contacts over 1200 km during daylight hours. Fortunately, as amateurs we do not have to maintain a commercial quality channel, so the exploitation of sporadic events at these frequencies adds greatly to the interest.
The UK 73 kHz band has not been closed, as was stated in the article. The licence variation holders have been awarded a further three years use of this band.
Alan Melia G3NYK
Ipswich
Suffolk

Radio interference generator?

I stared with disbelief at your recent presentation of the Circuit Ideas prize to a 'radio interference generator' (p. 892 November 2000 issue), using a technique that does not work, to circumvent the EMC regulations.

Moving the frequency of a
poorly designed switching regulator around so that it does not stay in the spectrum analyser bandwidth long enough to register, does not make the amplitude of the interference any less. It merely spreads to misery.
Alan Melia

E, fancy that

Referring to Letters in the December 2000 issue, I suggest that Mr Wells has not thought about the issue of resistor E ranges enough.
I don't know who devised the system, but presumably the object was to find a series of resistor values with nominally 10% tolerance such that the ranges of adjacent values just touched. A moment's calculation indicates that this will involve 12 or 13 per decade, and 12 was chosen.
We would therefore like each value in the series to be related to the previous one by the 12 th root of 10 . We would also like each value to be readily expressed. In practice, this means to only two significant figures.
If you try to devise a series meeting these criteria, I think you will soon conclude that the present one is the least bad, in
that it spreads the values as uniformly as possible logarithmically across the decade.
If you calculate the error in the ratio of each value to its neighbour compared with the ideal 12 th root of 10 , you will find that any other sequence is worse. In fact, the biggest error is 1.5 , not 3.3 , and changing 3.3 to 3.2 is too close to 2.7 and too far from 3.9.
Hence I suggest that whoever devised the sequence really did a very good job.
Kenneth Gundry
San Francisco

Speaker performance

Speaking as an engineer who has devoted all his working life to the misguided notion that loudspeakers could be improved by careful design, innovation and
the application of new technologies, I have to take issue with at least one of John Watkinson's statements in his article 'Baffling the speaker buyer'
In particular, I take issue with the statement referring to the low value of drive units; "...built down to a cost like this, the performance is not going to be special". The cost of manufacturing any object is fundamentally based on four things; the value of raw materials, the ease of manufacture, the cost of labour and number of objects produced. 'Special
performance' does not figure in this calculation.
Although good design costs a little more than bad design, cost is of no more relevance to the sound quality of a loudspeaker drive unit than it is to the writing ability of a ball-point pen.
How John can be saddened by purchasers of expensive audiophile cables I just don't understand. He clearly applies their criteria to his selection of drive units.
John's comment that, "CAD reduces costs, but does little for
performance," is just a little absurd. Try it out on Ron Dennis and he'll give you the same answer that I would.
A few caveats wouldn't have gone a miss in the article. Some of us really are trying quite hard to improve things.

Stuart Pooert

Brighton

Remote satisfaction

The article 'Remote control the easy way' in the December 2000 issue immediately caught my attention because of the simplicity of the hardware. I already had a Sony remote control for my video, a spare infra-red receiver and an 8051 development board.
I connected the IR receiver to the 8051 board. Because of the broad header pulse and the convenient frame rate, I was able to view the waveform on my oscilloscope using TV frame triggering. The waveform did not match the published diagram though. But after some head scratching, I realised that the published waveform was a mirror image of the oscilloscope's display.
After I began to write the software, I had to do a lot more head scratching before I discovered that my oscilloscope had been set to 'invert', which was why the polarity of my CRO display appeared to agree
with the diagram in the article. The output of the IR detector is normally high.
After solving those problems, it didn't take too long to finish a program to select one of two LEDs as in the article. I then modified it to control the volume on my 20 year old TV set, and loaded it into an Atmel AT89C2051, which I mounted on a small piece of Veroboard.
The project was very satisfying. Thank you for the article. Interested readers can view the source code on my web site:
http://www.users.bigpond.com/ alphaelectronics.

Ross Willson

Sydney
Australia

Amplifier for electrostatics?

High-voltage, high-power transistors, such as CRT deflection transistors, exist. Two examples are the MJL16218 and S2000AF.
Can anyone tell me if a highvoltage, low-distortion transistor amplifier capable of driving electrostatic loudspeakers directly has ever been designed? If not, does anyone think that such an amplifier would be feasible using such transistors? Ged Landon via e-mail

An unskilled generation

With regard to Simon Wright's article 'Exploiting Third World skills', in the January issue, the problem is not a shortage of electronics graduates. The problem is that British companies don't train people.
I have had a degree in Communication and Electronics since 1993 and I am still unemployed. I have only been able to find short-term temporary work from time to time. Of course, reading newspaper jobs sections will reveal many jobs for electronics engineers, but they all require five years experience.
There are very few training positions. The few that do exist usually want recent graduates with a 2.1 or above.
The real problem is not immigration policy. It is that two generations of school and university leavers have grown up unemployable and we have finally run out of skilled workers. Malcolm Lisle Gateshead

Is crossover not over?

I was surprised that cross-over distortion can still generate a heated exchange in your columns. I refer to 'Better buffers rebuffed' in February 2001 issue.

For me the problem was largely solved for me by L M Shaw's article in Wireless World, June 1969, and the refinement proposed by Peter Baxandall in Wireless World for the following September.
Then came the very elegant 'current-dumping' configuration used in the Quad 401. I think this design also originated from Baxandall.
I think the editor should not be afraid to use his blue pencil on comments about correspondents' life styles, and whether they choose to be troglodytes or not. A lot of internet material, mostly from the USA, shows how low things can sink if not moderated.
As cross-over is rather old-hat, perhaps Mr Bongiorno would like to turn his talents to help America find means to reduce its green-house gas production without too much pain for its population?

Justin Underwood

Much Marcle
Herefordshire
Justin, when contributors to the letters pages make unnecessarily harsh or derogatory criticisms, I remove them. However, if I feel that derogatory criticisms are justified, or might give readers a flavour of their author's character, thus adding information to the message being conveyed, I leave them in. Did you notice how Dave Kimber didn't respond in kind? Ed.

What is sky-scattered sunlight?

I have a couple of questions that I would like to put to your readers.
Colour television, based on the British PAL system, started in Australia in 1975. The bible of TV, recommended to all the technicians was 'Colour Television: The PAL System', by G N Pratchett. It was first published 1967 by Norman Price, London.

My question has to do with the colour of TV white, normally called 'illuminant D', which has a colour temperature 6500 kelvin. Pratchett says this is the colour temperature of "sky-scattered sunlight" and/or "sky-scattered daylight".
What do these terms mean and are they the same thing? Does it mean the light reflected off a white sheet of paper
placed in the open shade?
Where in Britain was it measured? I've heard Scotland or Wales mentioned.
Gary Yates
Sydney
Australia

Boobs

Two errors appeared in redrawn circuit diagrams in the February 2001 issue. Apologies to you, and to the authors concerned.
On page 134, in the digital metal detector circuit, the device marked $I C_{3}$ should be a 7490 - not a 555.
In the ACMOS frequency tripler on page 140 , the 47 pF capacitor should be in the series path to the left of the shunt branch containing the $1 \mu \mathrm{H}$ inductor rather than to the right of it. The circuit will not work as shown.

Cooke International

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K. Tel: (+44)01243545111/2 Fax: (+44)01243 542457

Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

Unit Four, Fordingbridge Site, Barnham,
Bognor Regis, West Sussex, PO22 OHD, U.K Tel: (+44)01243545111/2 Fax: (+44)01243542457 Web: http://www.cooke-int.com E-mail: info@cooke-int.com catalogue available

IRCIE NO. 124 ON REPIY CARD

ADVERTISERS' INDEX

BETA 162
CONFORD 167
COOKE INTERNATIONAL 238
CRICKLEWOOD 223
CROWNHILL 183
DISPLAY ELECTRONICS 207
DATAMAN OBC
EPTSOFT IBC
INTEC ASSOCIATES 162
JOHNS RADIO 179
JPG ELECTRONICS 223
KOMPASS 240
LABCENTER ELECTRONICS 193

As an advertiser you can be certain that your sales message is going to be read by decision-making electronics professionals with the power to purchase your products.

The pre-paid rate for semi-display setting is $£ 17$ per single column centimetre (maximum 4 cm). Box number $£ 22$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc to be made payable to Reed Business Information. Advertisements together with remittance should be sent to Electronics World Classified, 12th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Fax: 02086523981.

Tel: 02086528339

ARTICLES WANTED

Rack Enclosures
New and Used most sizes 16 U to 50 U side and rear panels mains distribution 19" Panel mounts optima eurocraft. Prices from $£ 45$ +vat

M\&B Radio

86 Bishopsgate Street Leeds LS1 4BB Tel. 01132702114 Fax. 01132426881

TOP PRICES PAID

For all your valves, tubes, semi conductors and ICs.
Langrex Supplies Limited
1 Mayo Road, Croydon, Surrey CRO 2QP TEL: 02086841166 FAX: 02086843056

FOR SAIE

RF DESIGN SERVICES

All aspects of RF hardware development considered from concept to production.
waterbeach electronics
www.rlaver.dial.pipex.com
TEL: 01223862550
FAX: 01223440853

Do you have a web site?

Then why not let our readers know about it. See our web section on pages 232, 233, 234

BEST CASH PRICES PAID
For valves KT88, EL37, DA100, PX25 and complete collections. Please ask for our wanted list. WIDE RANGE OF VALVES \&
OBSOLETE CRT STOCKED
E-mail: sales@BEL-Tubes.co.uk Tel: 01403784961 Fax: 01403783519 Billington Export Ltd., Sussex RH14 9EZ Visitors by appointment please

SERVICES

POWER SUPPLY

 DESIGNSwitched Mode PSU Power Factor Correction designed to vour specification

Tel/Fax: 01243842520 e-mail: eugen_kus@cix.co.uk Lomond Electronic Services

LINEAGE

FREE to collector, two carphones, Motorola 4800X and NEC TR5E1320-11A with handsets but no leads. Phone David Martin 01279506212.

WIRELESS WORLD magazines for sale, 1976 to 1999, please telephone/fax S. Jacovides 020 72727139 or e-nail: jacovides@ btinternet.com

QTY Electronic Equipment, Components, Data Books etc. $£ 550$ ono. Tel/Fax 01280848626.

APPOINTMENTS

SOFTWARE AND SYSTEMS ENGINEERS
 (Two Posts)

Daresbury Laboratory, Warrington, Cheshire

The Council for the Central Laboratory of the Research Councils (CLRC) at its Daresbury Laboratory, in North Cheshire, operates the UK National Synchrotron Radiation Source (the SRS). Based around a complex of three particle accelerators (Linac, Booster Synchrotron and Storage Ring) it provides world-class research facilities to a large user community from academic institutions and industry.
The Electronics and Controls Group provides design, development and operational support to maintain the SRS as a world-class facility. This includes an extensive programme of development on the SRS Control System, which is based on PC clients and embedded servers. In addition there are ongoing developments in distributed control system design, control of power converters and digital signal processing of beam position detectors.
Two vacancies exist in the Electronics and Controls Group; one as a Software Engineer and the second as a Systems Engineer. The Software Engineer will have responsibilities for application software development in C, Visual Basic and Object Orientated languages, development of databases and web page generation. The System Engineer will have responsibilities for the design of embedded systems, software and hardware, system depsign and interfacing to equipment
Candidates should have a good honours degree in physics, computer science, electronic engineering or a related discipline. Knowledge of software design and experience in programming is essential while exposure to real time OSs, Linux, Microsoft Windows development, Visual Basic or ' C ' is desirable Previous experience with VME systems, embedded systems, network protocols or Unix would be advantageous. The ability to work effectively within a team is essential. Further information about this post is available from Mark. Heron. Tel: (01925) 603210 or email m.t.heron@dl.ac.uk
The salary range is between $£ 18,620$ and $£ 26,600$. Further progression is dependent upon performance A non-contributory pension scheme, flexible working hours and a generous leave allowance are also offered.
Application forms can be obtarned from: Recruitment Office Human Resources Division, Daresbury Laboratory; Daresbury, Warrington, Cheshire, WA4 4AD. Telephone (01925) 603864 quoting reference VND047/O1, More infornation about CLRC is available on the worldwide web at http:/ / wwweclrc.ac.uk

All applications must be returned by 14 February 2001
The CLRC is committed to Equal Oppartunities and to achieving the Investors In People standard:
A no smoking policy is in operation.
COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

> Please Mention Electronics World When Replying to advertisements

Need directing to filters...

cables, connectors or sockets?

Whatever your business needs find it on kompass.com.

MNMM.KOMPAESS.GOM

1.5 million companies worldwide at your fingertips. Telephone: +44(0)1342335876.

CIRCLE NO. 125 ON REPLY CARD

-
BS.Sirad Handy-Recuncer with Color Display

-2.

Hioki's New 8807/8808 Memory Recorder

These compact, light recorders have 2 or 4 analogue channels with isolated inputs, PC card slot, fax/modem communication function, versatile trigger functions and 3 -way power. They are ideal for a variety of applications requiring long memory lengths and high transient speed capability.

Telonic Instruments Ltd Tel: 01189786911 Fax: 01189792388

CIRCIE NO. 126 ON REPIY CARD

How would you like to advertise in a marketplace where your products and services will be seen by the right people?

Then why not be seen in Electronics Weekly's classified section, ARENA?

If you would like further information, contact Denise Stupart on:

＇Electronics and Computing
 ＇95，＇98，NT or 2000 Principles V7＇

Studying elec ${ }^{\text {ºn }}$ ， ent．able way，then this fully interactive sofite is for you．
DC AC Electrical Semi－Conductors DpAmps Maths Digital Computing Testing Micro PIC Tooltox Lab Index SAQ＇s Windowt富（3）家目

Visit OHOT GO CO or tephone for
full details of more than a tho sand menu items．

Electronics：－

Atomic Structures，DC Current flow，Basic Electronics，Simple DC Circuils，Types of Switching，Variable Vollages，Ohm＇s Law，DC Voltage， DC Current，Series／Parallel Resistors，AC Measurements，AC Voltage and Current，AC Theory，RCL Series／Parallel Circuits，Capacitance， Capacitors，Inductance，Inductors，Impedance，Communication System， Signals，Attenuators，Passive／Active Filters，Tuned Circuits，Coupling and－ Selectivity，Oscillators，Circuit Theorems．Diode Theory，Diode Applications，Transistor Theory，Bipolar Transistor，
Configurations，Transistor Circuits，Field Effect Tran isiors，Operational Amplifier Theory and Applications，Sum and Difference Amplifiers． Electrical：－
DC and AC Power，SCR，Power Supplies，Voltage Regulators，
Magnetism，Motors／Generators，Transformers，Three Phase Systems． Digital Techniques：－
Logic Gates，Flip Flops，Combinational Logic，Counters，Counting，Shift Registers，Logic Interfacing，Timers，Boolean Algebra and DeMorgan＇s Theorems．
Microprocessors and PIC Microcontrollers：－
Basic Micro－Computer，Busses，A．L．U，Clock and Reset，Instructions and Control，Memory Cells，ROM and RAM，Memory Addressing，
Insiructions，PIC Introduction，PIC 16F84 Architecture，PIC16C71 AID，
Bye，Bit，Literal and Control Instructions．

Personal user £99．95．VAT Education £299．95＋VAT

（ Includes unlimited multi－user site licence．）

Measurement and Component Testing：－

Analogue multi－meter，Measurement，Component Testing Mathematics：－
Simple Numbers，Number Types，Roots，Triangle Ratio＇s，Triangle Angles，Area，Surface Area and Symmetry，Volume，Percentages Ratio＇s，Fractions，Vectors，Circle Angles，Laws，Algebra Ru Powers，Simplifying，Equations，Graphing，Slope and Tra
Angles，Complex Numbers，Statistics，Lottery Number PI Science．

Computer Science：－

Hardware Devices，Data Structures，Data Files，Bina Numbes Binary Arithmetic

Toolbox：－

DC Calculations，AC Calculations，Numbers，Application． Self－Assessment Questions：－
DC，AC，Power，Semi－Conductors，Op－Amps，Digital，Mathematics． Components and Equipment Picture Dictionary：－ High quality digital camera images and explanatory text．
ELECTRONICS LAB（Optional add－on hardware）
eptsoft limited．Pump House，Lockram Lane，Witham，Essex．UK．CM8 2BJ．
Tel：$+44(0) 1376514008$ ．Fax：＋44（0）870 0509660．Email：info＠eptsoft．com．
Switch，Delta，Visa and MasterCard accepted．
No additional postage or airmail charges．

STILL THE WORLD'S MOST

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN - 48LV

SURELY NOT.
SURELY SOMEONE SOMEWHERE HAS DEVELOPED A PORTABLE PROGRAMMER THAT HAS EVEN MORE FEATURES, EVEN GREATER FLEXIBILITY AND IS EVEN BETTER-VALUE FOR MONEY.
ACTUALLY, NO, BUT DON'T TAKE OUR WORD FOR IT, USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPAR A

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at $2.2 .7,3.3 \& 5 \mathrm{~V}$
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DA AMAN S4

- Programs 8 and 16 bit EPROMS, EEPROMs, PEROMs, 5 and 12 V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows/DOS software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

 If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders received by 4 pm will normally be despatched same dey. Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK
Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34N.FCN. 32 bis
Home page: http://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: Overseas advertising agents: France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 475 Park Avenue South, 2nd FI New York, NY 10016 Tel; (212) 6798888 Fax; (212) 6799455
 USA mailing agents: Mercury Airfreight International Lid Inc, 10 (b) Englehard Ave, Avenel NJ 07001 . Periodicles Postoge Paid at Rahway NJ Postmaster. Send address changes to above. Printed by Polestar (Colchester) Ltd, Filmsetting by لل Typographics Ltd, Unit 4 Baron Court, Chondlers Way, Southend-onSea, Essex SS2 5SE.

[^1]: Voltage gain $=R 2 / R 1=$ unbalanced output voltage $/$ balanced input voltage

[^2]: Online Retource Information:
 O Mabile Phone Health Hazards: Over 20 research paper aburacts, arieleı \& press reieaues on the possible adverse affectrs of moble phone uee. (Chented bib June 2000)

