

Padio Communication and Sunspots

A Versatile ATU. Modern Receiver Font-End Design

WELZ SP15M
 wELz -

 ${ }^{\text {SPR }} 15 \mathrm{M}$ SP 15 MSPP
SP2
S200 SWR-PWR Meter $2 \mathrm{M} / 70 \mathrm{~cm}$ 100W

 SP380 compact
SP380 SWR-PWR Meter H.F/2M/70cm
$\begin{array}{ll}\text { AC38 } & \text { AT.U. } 3.5 \text { to } 30 \mathrm{MHz} \text { 400W PEP } \\ \text { CT15A } & 15 / 50 \mathrm{~W} \text { OUmmy Load (P1259) }\end{array}$
 (SO239)

SWr-POWER METERS

\qquad orated P
Meter $\begin{array}{ll}\text { Model 110 } & \text { H.F/2M Calibrated Power Rea } \\ \text { YW-3 } & \text { H.F/2M Twin Meter } \\ \text { UH74 } & \text { 2M/70 } \\ \text { T435N } & 2 \mathrm{M} / 70 \mathrm{CM} \text { Twin Meter 120W } \\ \text { DAIWA CN620A } & \text { H.F/2M Cross Pointer }\end{array}$ $\begin{array}{ll}\text { T435N } & 2 \mathrm{M} / 70 \mathrm{CM} \text { Twin Meter 120W } \\ \text { DAIWA CN620A } & \text { H.F/2M Cross Pointers }\end{array}$ DAIWA CN630
DUMMY LOADS DUMMY LOADS
DL30 PL259 30W MAX
WELZ CT 15A 50W MAX PL25 AX
PL259
N type WELZ CT 15A 50W MAX PL259
WELZ CT 15 N 50 W MAX N type $\begin{array}{ll}\text { T100 } & 100 \mathrm{~W} \text { MAX } \\ \text { T200 } & 450 \mathrm{MHz} \\ 200 \mathrm{~W} \text { MAX } & 450 \mathrm{MHz}\end{array}$ DL600 600W MAX 350 MHz DL600 600W MAX 350 MHz
WELZ CT300 1000 W MAX $\quad 250 \mathrm{MHz}$ YAESU
FT1
FT980
FT902DM
FC902
SP901 Superb H.F. Transceiver
H.F. Transceiver $160-10 \mathrm{~m} 9$ Band Transceiver All Band A.T.U.
$160-10 \mathrm{~m} 9$ Band Transceiver 8 Band Transceiver 200W Pep Matching Power Supply Matching A.T.U./Power Meter
Mobile Mounting Bracket for FT7
FC707
MMB2.
MMB2 FRG7
FRG7700 General Coverage Receiver
$200 \mathrm{KHz}-30 \mathrm{MHz}$ Gen. Covera $200 \mathrm{KHz}-30 \mathrm{M}$
Receiver
FRG7700M
FRT7700
Receiver
A above but with Memories $\begin{array}{ll}\text { FRI7700 Antenna Tuning Unit } \\ \text { FRA7700 } & \text { Active Antenna Unit }\end{array}$
FT208R
F1708R
NC7

2 M FM Synthesised Handheld
70 cm FM Synthesised Hand NC7
NC8
NC9C
NC9C
FBA2
FNB2
FBA2 Bompact Trickle Charger
FNB2 \quad Spare Battery Pack
PA3
FT480R 2M Synthesised Multimode
FT780R 70cm Synthesised Multimode
FT290R
FT790R 2M Portable Multimode
$\begin{array}{ll}\text { MMB11 } & \text { Mobile Mounting Bracket } \\ \text { CSC1 } & \text { Soft Carrying Case }\end{array}$
240 V AC Trickle C
FL2010 Matching 10W Linear
Nicads \quad 2.2 AMP HR Nicads
FF501DX
FSP1
YH55
$\begin{array}{ll}\text { YH55 } & \text { Headphones } 8 \text { ohm } \\ \text { YH77 } & \text { Heakhtweile }\end{array}$
Lightweight Headphones 8 ohm
YH7R24D World Clock
OTR
YM24A Speaker/Mic 207/208/70
YD148 Stand Microphone Dual IMP
4 Pin Plug

YM38	21.10	(1.50)

FDK VHF/UHF EQUIPMENT
Multi 750E 2 M Multimode Mobile
Expander $\quad 70 \mathrm{~cm}$ Transverter for M750E

DRAE

$\begin{array}{llllll}\text { Power Supplies } & & & & \\ \text { 4 AMP } & 30.75 & (1.50) & 12 \text { AMP } & \mathbf{7 4 . 0 0} & (2.00) \\ 6 \text { AMP } & 49.00 & (2.00) & 24 \text { AMP } & \mathbf{1 0 5 . 0 0} & (3.00)\end{array}$
$\begin{array}{lllll}6 \text { AMP } & 49.00 & (2.00) & 24 \mathrm{AMP} & \mathbf{1 0 5 . 0 0} \\ \text { VHF Wavemeter } 130-450 \mathrm{MHz} & & 27.50 & (-)\end{array}$ 32.0
45.0
61.9
85.0
61.9
21.9

49.0
59.0
6.9
11.9
45.0 c\&p.

F T Tr

 Ferrite Rinference aids Toroid Filter TV Down per pair Trio Low Pass Filter LF30A 1 kW Trio Low Pass Filter LF30A 1kW
Yaesu Low Pass Filter FF5010X 1 kW HP4A High Pass Filter TV Down Lead

ANTENNA BITS H1-Q Balun 1:1 5 kW pap
7.1 MHz Traps Pair
T Piece Polyp T Piece Polyprop Dipole Ce

Polyprop Strain Insulators Small Egg Insulators Large Egg Insulators 4 mm Polyester Guy Rope (strength 400 kg) per metre 75 ohm Twin Feeder - Light Duty-Per Metre 300 ohm Twin Feeder - Per Metre URM67 Low Loss 50 ohm Coax-Per Metre | 0.60 |
| :--- |
| 0.25 |
| (0.05) |

Please send total postage indicated. Any excess

TRIO TS 930 S £1154		
Amateur band transceiver/General coverage receiver		
TRIO		
TS930S	New Transceiver	1154.00 (-)
TS830S	160-10m Transceiver 9 Bands	678.00
VFO230	Digital V.F.O. with Memories	231.00 (2.00)
AT230	All Band ATU/Power Meter	129.00 (2.00)
SP230	External Speaker Unit	39.00 (1.50)
DFC230	Dig. Frequency Remote Controller	179.00 (1.50)
TS430S $160-10 \mathrm{~m}$ Transceiver TBA (-)		
TS 13058	8 Band 200W Pep Transceiver	531.00 (-)
TS130V	8 Band 20W Pep Transceiver	433.00 (-)
VFO120	External V.F.O.	93.61 (1.50)
TL120	200W Pep Linear for TS120V	159.00 (1.50)
MB100	Mobile Mount for TS $130 / 120$	17.70 (1.50)
SP120	Base Station External Speaker	25.00 (1.50)
AT130	100W Antenna Tuner	88.50 (1.50)
PS20	AC Power Supply - TS 130 V	54.90 (2.50)
PS30	AC Power Supply - TS130S	96.00 (5.00)
MC5O MC35S MC30S LF30A TR9130 B09A TR7800 TR7730	Dual Impeadance Desk Microphone	29.44 (1.50)
	Fist Microphone 50 K ohm IMP	14.00 (0.75)
	Fist Microphone 500 ohm IMP	14.00 (0.75)
	HF Low Pass Filter 1 kW	20.00 (1.00)
	2M Synthesised Multimode	411.00 (-)
	Base Plinth for TR9130	37.26 (1.50)
	2M Synthesised FM Mobile 25W	257.00 (-)
TR2300	2 M Synthesised FM Compact Mobile 25 W	268.00 (-)
	2M Synthesised FM Portable	144.00 (-)
VB2300	10W Amplifier for TR2300	62.00 1.50)
MB2	Mobile Mount for TR2300	20.00 1.50)
TR3500	70 cm Handheld	238.00 (-)
TR2500 2	2M FM Synthesised Handheld	220.00 (-)
ST2	Base Stand	49.45 1.50)
SC4	Soft Case	$13.000 .50)$
MS1	Mobile Stand	$30.201 .00)$
SMC25	Speaker Mike	15.40 1.00)
PB25	Spare Battery Pack	23.60 1.00)
TR8400	70 cm FM Synthesised Mobile Transceiver inc. PS10	299.00
PS10 TR9500	Base Station Power Supply for 8400	64.00 2.00)
	70 cm Synthesised Multimode	428.00 (-)
R2000	$200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver	391.00 (-)
R600	Gen. Cov. Receiver	244.00 (-)
SP100 E	External Speaker Unit	26.90 (1.50)
HC10 D	Digital Station World Time Clock	64.40 (1.50)
HS5 D	Deluxe Headphones	21.85 (1.00)
HS4	Economy Headphones	10.80 (1.00)

TELEREADERS (CW \& RTTY) $\mathbf{£}$ $\mathbf{c \& p}$ TASCO CWR 610 189.00 $1-$ TONO 500 $\mathbf{2 9 9 . 0 0}$ -1 TONO 9000 $\mathbf{6 6 9 . 0 0}$ $1-1$		
MORSE EQUIPMENT		
MK704	Saueeze Paddle	11.95 (0.75)
HK708	Up/Down Key	10.50 (0.75)
	Practise Oscilla	8.75 (0.50)
EK121	Elbug	33.00 (0.75)
EKM12A	Matching Side Tone Monitor	10.95 (0.75)
EK150	Electronic Keyer	78.00
ROTATORS		
Hirschman	RO250 VHF Rotor	39.95 (2.00)
	Colorotor (Med. VH	56.95 (2.00)
KR400RC	Kenpro - inc lower clamps 1	125.00 (2.50)
KR600RC	Kenpro - inc lower clamps 1	175.00 (3.00)
DESK MICROPHONES		
SHURE 444D D	Dual Impead	39.00 (1.50)
SHURE 526T M	Mk II Power Microphone	53.00 (1.50)
ADONIS AM 303	3 Preamp Mic. Wide Imp.	29.00
ADONIS AM503	3 Compression Mic 1	39.00
ADONIS AM 802	2 Compression Mic+Meter 3 O/P	59.00
ADONIS AM 202S Clip-on ADONIS AM 202H Head Band + Up/Down Buttons ADONIS AM 202F Swan Neck + Up/Down Buttons		21.00
TEST EQUIPMENT		
Drae VHF Wavemeter		27.50
DM81 Trio Dip Meter		67.60 (0.75)
MMD50/500 Dis	Dig. Frequency meter (500MHz)	75.00 (-
Co-AXIAL SWITCH		
2 Way Diecast (V.H.F.) SA450		10.00 (0.75)
2 Way Diecast with N sockets2 Way Toggle (V.H.F.)		12.95 (0.75)
		6.00 (0.50)
WESTERN 5 Way 1KW Switch		13.95 (1.00)
HELIAL ANTENNAS		
2M BNC or PL259 (state which required)		4.50 (0.50)
2M Thread for TR2300 or FT290R (state which)		4.50 (0.50)
70 cm BNC or Thr	, read	4.50 (0.50)
MICROWAVE MODULES		
MMT144/28 2M Transve		109.95
MMT432/28SMMT432/144R 70	70 cm Transverter for HF Rig	159.95
	70 cm Transverter for 2M Rig	184.00 (-)
$\begin{aligned} & \text { MMT432/144R } \\ & \text { MMT70/28 } \end{aligned}$	4M Transverter for HF Rig	119.95 (-)
$\begin{aligned} & \text { MMT70/144 } \\ & \text { MMT1296/144 } \end{aligned}$	4M Transverter for 2M Rig	119.95 (-)
	23 cm Transverter for 2M Rig	184.00 (-)
MML144/30 MML144/100S	2M 30W Linear Amp	69.95
	2M 100W Linear Amp (10W I/P)	139.00
MML144/100LS 2	2M 100W Linear Amo (3W 1/P)	159.00 (-)
MML432/30 7	70 cm 30 W Linear Amp (3W1/P)	99.00 (-)
$\begin{aligned} & \text { MML } 432 / 50 \\ & \text { MML432/100 } \end{aligned}$	$70 \mathrm{~cm} / 50 \mathrm{~W}$ Linear Amp	109.95 (-)
	70cm 10/100W Linear Amp	228.64 (-)
MM2001 MM4000	RTTY to TV Converter	189.00 (-)
	RTTY Transceiver	269.00
MMC50/28	6M Converter to HF Rig	29.90 (-
MMC70/28	4M Converter to HF Rig	29.90 (
MMC144/28	2M Converter to HF Rig	29.90
MMC432/28SMMC432/144S	70 cm Converter to HFRig	37.90 (-)
	70 cm Converter to 2 M Rig	37.90 (-)
MMC435/600	70 cm ATV Converter	27.90 (-)
MMK1296/144	23 cm Converter to 2M Rig	69.95
MMDO50/500	500 MHz Dig. Frequency Meter	75.00 (-
MMD600P	600 MHz Prescaler	29.90
MMDP1	Frequency Counter Probe	14.90 (-)
MMA28	10M Preamp	16.95 (-)
MMA144V	2M RF Switched Preamp	34.90 (-)
MMF144	2 M Band Pass Filter	11.90
MMF432	70 cm Band Pass Filter	11.90 (-)
MMS 1	The Morse Talker	115.00 (-)

D70 MORSE TUTOR $£ 56.35$

DATONG PRODUCTS
PC1 Gen. Coverage Converter HF on 2M Rig

$\mathrm{PC1}$	Gen. Coverage Converter HF on 2M Rig Very Low Frequency Converter	137.42
FLI	Frequency Agile Audio Filter	79.35
FL2	Multi-mode Audio Filter	89.70
FL3	Audio Filter + Notch	129.00
ASP/B	Auto RF Speech Clipper (Trio 4p Plug)	82.80
ASP/A	Auto RF Speech Clippers (Yaesu 4p Plug)	82.80
D75	Manually controlled RF Speech Clipper	
RFC/M	RF Speech Clipper Module	29.90
D70	Morse Tutor	56.35
AD270	Indoor Active Dipole Antenna	47.15 (-)
AD370	Outdoor Active Dipole Antenna	64.40 (-
MPU1	Mains Power Unit	6.90
MK	Keyboard Morse Sender	137.42
RFA	Broadband Preamplifier	33.92
Codecall	Selective Calling Device (link prog)	32.20
	(switch prog)	33.92 (-)

 APRIL 1983
 VOL. 59
 NO. 4
 ISSUE 913

PW ORP 144MHz Contest

20
 A Versatile ATU
 Tony Smith G4FAI

27
 Are the Voltages Correct?-11
 Roger Lancaster

Air Test HF5 Vertical Antenna;
Yaesu FT-230R 144MHz f.m. Transceiver

Introducing OSCAR-3

Mervyn J. Axson G8WHG

36
Basic OSOs in German-2
G. W. Roberts GW4JXN

Modern Receiver Front-End Design-1
G. W. Goodrich

PW "Durley" Distortion \& SINAD Meter-2
E. A. Rule

Radio Communication and Sunspots
J.A. Kennewell

Antennas-3
F. C. Judd G2BCX

COPYRIGHT © IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

four new models from Trio

for the HF man, the TS 430S

 £698.00 inc vat carriage $£ 5.00$

A new HF transceiver, taking into account the outstanding performance of the previous Trio rigs you could be forgiven for thinking that it would be impossible for them to improve on existing models and specifications. Alternatively of course, you might be of the opinion that engineers with the talents as displayed by the designers of such rigs as the TS830S, TS130V and TR2500 etc. would have no trouble in pushing forward the frontiers of transceiver technology s we know it today.
The new HF transceiver from Trio is the TS430S. Those who have seen it and the fortunate ones who have used it on the air are all agreed that here we have a major advance for the enthusiastic operator on todays busy bands. Not only does the transceiver have full amateur band coverage from 160 to 10 metres (including the three new bands) but it also incorporates a general coverage receiver (150 kHz to 30 MHz). The new transceivers features are many; USB, LSB, CW, and AM with FM available (optional FM430 board), compact size 270 mm wide/ 96 mm high $/ 275 \mathrm{~mm}$ deep, continuous tuning over the entire frequency range, two separate VFO's and an up/down scan mode using the optional MC42S microphone. Eight memories, each of which can be used as a separate VFO are provided and frequency scan is programable between the two frequencies held in memory channels six and seven. Not only does the memory remember frequency but also the mode of operation, thus short wave DX and Broadcast stations can be stored alongside a SSB net channel and complete sense made as the frequencies are scanned. The by now normal Trio features are all included, IF shift, notch filter, speech processor and narrow/wide filter selection on CW, SSB and AM modes.
The TS430S, Trio's rig for todays operator.

for the SWL who deserves the best, the $\mathbf{R} \mathbf{2 0 0 0}$

$£ 391.20$ inc vat carriage $£ 5.00$

and

later in the year for the $\mathbf{R 2 0 0 0}$ a 118 to 174 MHz internal vhf converter.

Now from Trio, the R2000 general coverage receiver. By taking all the superb features of the R1000 and combining them with the latest in microprocessor control Trio have, in one step, completely revised the standard by which short wave receivers are judged. Among the many features provided for the discerning listener are programmable scan, memory scan, memory retention of the mode set for a particular frequency and last, but not least, Trio have included an FM mode - why FM after all this time and our repeated comment that for a shortwave broadcast receiver FM is not really necessary. Take a look at the rear panel of the R2000: socket marked VHF converter. Wouldn't it be superb if Trio produced a VHF converter covering from 118 to 174 MHz - then you would require FM, you would also require AM. Study the features and I am sure you will agree the Trio R2000 is
the receiver for you.

Continuous Coverage from 150 KHz to $\mathbf{3 0} \mathbf{~ M H z}$
Use of an innovative up conversion digitally controlled PLL circuit provides maximum ease of operation and superb receiver performance. Front panel up/ down band switches allow easy selection within the full coverage of the receiver. The VFO is continually tunable throughout the full $150 \mathrm{KHz}-30 \mathrm{MHz}$ range.

Ten Memories Store Frequency, Band and Mode Data

Each of the ten memories can be tuned by the VFO, thus operating as ten built in digital VFO's. The original memory frequency can be recalled by simply pressing the appropriate memory channel key. All information on frequency, band, and mode is stored in the selected memory. The "auto $\mathrm{M}^{\prime \prime}$ switch allows two types of memory storage: when the "auto M " switch is off, data is memorized by pressing the " M in" switch; when the "auto $\mathrm{M}^{\prime \prime}$ switch is on the frequency being used at that time is automatically memorized.

Memory Scan

Scans all memory channels or may be user programmed to scan specific channels. Frequency, band and mode are automatically selected in accordance with the memory channel being scanned

Programmable Band Scan
Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish the scan limit frequencies. The hold switch interrupts the scanning process. However, the frequency may be adjusted using the tuning knob whilst in
the scan hold position.

Three Built In Filters with Narrow/Wide Selector
In the AM mode 6 KHz wide or 2.7 KHz narrow may be selected. In the SSB mode 2.7 KHz is automatically selected. In the CW mode 2.7 KHz is again chosen and if the optional $\mathrm{YG455C}$ filter is installed then 500 Hz in the narrow position. In the FM Other important features are: squelch on all mod
front mportant features are: squelch on all modes, noise blanker, a large 4 inch front mounted speaker, tone control, RF attenuator, AGC switch, high and low impedance antenna terminals, optional 13.8 V DC operation, record jack and, of All in all, a truly remarkable receiver.

LOWF IN LONDON,
Open monday to saturday, six days a week lower sales floor, Hepworths, Pentonville Rd, London. telephone 01.837.6702 LOWE IN GLASGOW,

Open tuesday to saturday 4,5 Queen Margarets Rd, Glasgow. telephone 041.945. 2626

for the VHF operator, the TR'7930 mobile transceiver

£289.80 inc vat carr $£ 5.00$

Any amateur who has used or owns a Trio TR7800 has had the finest piece of 2 metre mobile technology at his fingertips. The TR7800 had simply everything that the keen mobile operator could ever want. Of course, there were a few points which customers said could be improved on and, I must admit, we, in the majority of cases, agreed. Trio, with the introduction of the new TR7930, have taken note of this feedback of information and the result, I am sure you will agree, is as close to perfection as you will find in a rig.
The improvements are, a green floodlit LCD readout which does not disappear in strong sunlight, additional memory channels, both timed and carrier scan hold on occupied channels, selectable memory channel for the priority frequency and automatically corrected mode selection (simplex or repeater) without having to instruct the rig. The most significant change is the liquid crystal frequency readout on a green illuminated background, but closely following this must be the ability to omit specific memory channels when scanning, and the programmable scan between user designated frequencies. This gives the rig the ability to scan simplex channels only, without holding on repeaters.
The Trio TR7930. The mobile 2 metre FM rig designed with ease of operation coupled to outstanding performance.

for the UHF enthusiast, a handheld transceiver,

 the TR3500

 the TR3500}

Without a doubt one of life's great mysteries to me is why, when the two metre band is at times so busy, few people are to be found communicating on the wide open spaces of the seventy centimetre band.
I have come to the conclusion that misapprehensions exist about the band. The first being the lack of activity. From my first comments you will have gleaned the fact that seventy centimetres is not a busy band, however there are stations on, myself G8GIY, my colleagues David G4KFN and Roy G8ROR form the nucleus of a UHF group here in Matlock, there are many others like us up and down the country. Seventy centimetre repeaters abound and are a perfect means of communication, their somewhat shorter range serving well their immediate area and, please remember, in the words of that doyen of seventy centimetres Jack G5UM, "Activity breeds activity," simple but true. The second misapprehension is that the equipment is expensive. Not so, the Trio TR3500 costs only slightly more than its matching stable mate, the TR2500, and here again, with the same sensible approach which we have all come to expect from Trio, the accessories which you bought for your TR2500 are compatible with the new TR3500. The appearance, size and weight are similar to the TR2500, output power is 1.5 watts high and 300 milliwatts low, repeater shift is programmable, ten memory channels are provided and frequency scan between operator-defined limits is included. The conventional memory scan and reverse repeater facilities help to make operating a pleasure no matter how difficult the conditions. With the Trio TR3500 handheld as part of your station, you are equipped to expand your operating and begin communicating on the wide open spaces of the seventy centimetre band.

$£ 238.50$ inc vat carriage $£ 5.00$

and we now stock the superb vibroplex range of keys.

SHORT WAVE LISTENING BRINGS THE WORLD TO YOUR FINGERTIPS WIDE COVERAGE ALL MODE MEMORY RECEIVER; FRG7700M £399 inc

$\star 30 \mathrm{MHz}$ down to 150 kHz (and below).
$\star 12$ Channel memory with fine tune.
\star SSB (LSB/USB), CW, AM, FM.
$\star 2.7 \mathrm{kHz}, 6 \mathrm{kHz}, 12 \mathrm{kHz}, 15 \mathrm{kHz}$, @ -6 dB . $\star 3$ Selectivities on $A M$, squelch on FM . \star Up conversion, 48 MHz first IF.
$\star 1 \mathrm{kHz}$ digital, plus analogue, display.
\star Inbuilt quartz clock/timer.

* No preselector, auto selected LPF's.
\star Advanced noise blanker fitted.
\star Antenna 500Ω to $1.5 \mathrm{MHz}, 50 \Omega$ to 30 MHz .
$\star 20 \mathrm{~dB}$ pad plus continuous attenuator.
\star Switchable A.G.C. Variable tone.

' 7700 THE ONE WITH FM! Non memory version $£ 335$

COMMUNICATION RECEIVER; NRD $515 £ 985$ inc. VAT @ 15\% + Securicor.

$\star 30 \mathrm{MHz}$ to 100 KHz or lower, 100 Hz steps. \star PLL digital VFO stability.
\star Backlash free, 10 KHz rev, 500 Hz analogue calib.
\star Fast tune up/down switch, dial lockout.

* SSB (USB/LSB), CW, AM, RTTY.
$\star 6$ and $2.4 \mathrm{KHz}, 600^{*}$ and $300^{*} \mathrm{~Hz} @-6 \mathrm{~dB}$.
\star Passband tuning $\pm 2 \mathrm{KHz}$ on SSB and CW .
\star Variable BFO on CW for preferred tone.
\star Modular plug in design with mother board.
\star High reliability - low power schottky \& CMOS.
\star Designed for maximum ease of operation.
\star Noise blanker. $0-10-20 \mathrm{~dB}$ attenuator.
\star Small $(140 \times 340 \times 300 \mathrm{~mm})$ light 712 Kg , rugged.

PROFESSIONAL MONITOR

* Up conversion, 70.455 MHz and 455 KHz . \star No R.F. amplifier, balance U310 mixer. \star Crystal filter before first IF amplifier. * Transceiver provisions; mute, trip etc. \star Frequency data input/output port. NHD518 $96(4 \times 24)$ channel memory unit. NCM515 Remote frequency keypad controller, LCD readout. Up/down step tuning, 4 channel memory.
CQE515 Junction unit (NCM515 to NHD518).
NVA515 External 3W speaker $130 \times 140 \times$ 200 mm .
CFL260 600 Hz mechanical filter.
CFL230 300 Hz crystal filter.

TWO OR SEVENTY; FT230R, FT208R, FT708R, FT730, 2030, FT726 PLUS:-
\star Multimode USB, LSB, FM, CW.
$\star 100 \mathrm{~Hz}$ backlit LCD Frequency display. $\star 10$ memory channels ' 5 year' backup.
\star Any TX/Rx split with dual VFOs.
\star Up/Down tuning from microphone.

* AF output 1W @ 10\% THD.
\star Bandwidth 2.4 kHz and $14 \mathrm{kHz} @-6 \mathrm{~dB}$.
\star LED's; 'On Air', 'Busy'. m/c meter; S, PO.
$\star 58(\mathrm{H}) \times 150(\mathrm{~W}) \times 195(\mathrm{D})(1.3 \mathrm{~kg})$.
SMC2.0C NiCad 2.0A/hr "C"
SMC8C Slow Charger (220 mA)
MMB11 Mobile Mount
CSC1A Soft carrying case
FL2010 Linear Amplifier 2m 10W
FL7010 Linear Amplifier 70 cms

FT290R

£265
Inc. VAT @ 15\%

+ Securicor.
$144-146 \mathrm{MHz}(144-148)$ possible.
* 2.5W PEP, 2.5W RMS $/ 300 \mathrm{~mW}$ out.
\star FM: 25 kHz and 12.5 kHz steps.
\star SSB: 1 kHz and 100 Hz steps.
$\star \pm 600 \mathrm{kHz}$ repeater split 1750 Hz burst.
\star Integral telescopic antenna.
$\star \mathrm{Rx}, 70 \mathrm{~mA}, \mathrm{Tx} ; 800 \mathrm{~mA}$ (FM maximum).

FT790R

£325
Inc. VAT @ 15\%

+ Securicor.
$\begin{array}{ll}\star & 430-330 \mathrm{MHz} \text { (} 440-450 \text { alternative). } \\ \star & 1 \mathrm{~W} \\ \mathrm{PEP}, 1 \mathrm{~W} / 250 \mathrm{~mW} \text { FM/CW out. } \\ \star & \mathrm{FM}: 100 \mathrm{kHz} \text { and } 25 \mathrm{kHz} \text { steps. } \\ \star & \mathrm{SSB}: 1 \mathrm{kHz} \text { and } 100 \mathrm{~Hz} \text { steps. } \\ \star & 1.6 \mathrm{MHz} \text { shift with input monitor, } \\ \star & 1750 \mathrm{~Hz} \text { burst. } \\ \star & \mathrm{Rx} ; 100 \mathrm{~mA} / 200 \mathrm{~mA} \text {. Tx; } 750 \mathrm{~mA} \text { max. } \\ \star & \text { BNC Mounting } \frac{1}{2} \lambda \text { flexi antenna. }\end{array}$
* 110 and 240 V ac, 12 Vdc option.
* Signal meter calibrated in " S " and SIMPO.
\star Acc; Tuners, Converters, LPF, Memory.
\star FRT7700; $150 \mathrm{kHz}-30 \mathrm{MHz}$, Switch, etc.
\star FRV7700A; $118-130,130-140,140-150 \mathrm{MHz}$. * FRV7700B; 118-130, $140-150,50-59 \mathrm{MHz}$. \star FRV7700C; $140-150,150-160,160-170 \mathrm{MHz}$. \star FRV7700D; $118-130,140-150,70-80 \mathrm{MHz}$. * FRV7700E; $118-130,140-150,150-160 \mathrm{MHz}$. \star FRV7700F; $118-130,150-160,170-180 \mathrm{MHz}$. \star FF5; 500 kHz (for improved VLF reception). * MEMGR7700; 12 Channels (internal fitting).
* FRA7700; Active Antenna.
\star USB-LSB-CW-FM (A 3j, A1, F3).
* 30W PIP A3j, 10/1W out A1 F3.
\star Any Tx Rx split with dual VFO's.
\star Four easy write-in memory channels.
* Memory scanning with slot display.
* Up/down tuning/scanning from mic.
\star Priority channel on any memory slot.
\star Digital RIT. Advanced noise blanker.
\star Satellite mode allows tuning on Tx.
\star Semi break in with side tone.
\star Very bright blue 100 Hz digital display.
\star Display shows Tx \& Rx freq (inc RIT).
* String LED display for "S" and PO.
\star LED's; "On Air" Clar, Hi/Low, FM mod.
* Size (Case): 8.3" D, 2.3" H, 6.9" W.

consol and YD 148 mic

SMC; LARGEST STOCKISTS OF ANTENNAS, MASTS, CABLES ETC.

SOUTH MIDLANDS COMMUNICATIONS LTD

 MAIL ORDER; AS NEAR AS YOUR 'PHONE OR PEN

* $144-146 \mathrm{MHz}$ (143.5-148.5 possible)
$\star \pm 600 \mathrm{kHz}$ standard repeater split. * Excellent dynamic range and sensitivity.
$\star \mathrm{FM} ; 25,12 \frac{1}{2}, 1 \mathrm{kHz}$ steps.
\star SSB; $1,000,100,10 \mathrm{~Hz}$ steps.
$\star 430-434 \mathrm{MHz}$ ($440-445$ possible).
$\star \mathrm{GaAs}$ Fet RF for incredible sensitivity.
$\star \mathrm{FM} ; 100 \mathrm{kHz}, 25 \mathrm{kHz}, 1 \mathrm{kHz}$, steps.
\star SSB; $1,000,100,10 \mathrm{~Hz}$ steps.
\star FT780R 1.6 fitted 1.6 MHz Shift $£ 459$ inc.
6,2 or 70 !

HF TRANSCEIVERS; FTONE, FT980, FT707, FT101Z, JST100 \& FT102

* 80-10 metres including WARC allocations
* Multimode LSB-USB-CW (W)-CW (N) and FM
* 100W PEP output. (10W "S" version)
* No tune design - inbuilt SWR meter
\star Only $33^{3 \prime \prime} \times 92^{\prime \prime}$ - Less than a foot deep!
* Dual selectable pulse width noise blanker

FT77
FT77S
MARK7
FMU77
XF8.9HC (N)
FV707DM
FC707
FP707
FTV707
Modules

Transceiver 100W output

Crystal Marker board £23.75 £24.90 £203.15£85.10£112.50

Transceiver 10W output FM Unit 600 Hz or 300 Hz (N) Digital Memory VFO Antenna Tuner Mains P.S.U.

Transvertor, frame only $432 \mathbf{£ 1 8 5 . 0 0}, \quad 144 £ 100.00, \quad 70 £ 80.00$

FT902DM, £885 inc. VAT @ $15 \%+$ Securicor.

* Variable IF bandwidth 2.4 kHz down to 300 Hz .
\star Audio reak and independent notch controls. \star AM, FSK, USB, LSB, CW, FM, (Tx and Rx). * Semi-break in, inbuilt Curtis IC Keyer. \star Digital plus analogue frequency displays. \star VOX built-in and adjustable. \star Instant write in memory channel. \star Tune up button (10 sec , of full power). \star Switchable AGC and RF attenuator. * 350 or 600 Hz CW, 6 kHz , AM filters. \star Clarifier (RIT) switchable on Tx, Rx or both. \star Plug in modular, computer style constructor. « Fully adjustable RF Speech processor. \star Ergonomically designed with necessary LEDS. \star Incredible range of matching accessories. \star Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC.

COAXIAL CONNECTORS, CABLES, MASTS AND TOWERS, ANTENNAS, HF MOBILE, VHF/UHF MOBILE PLUS:
ANTENNAS HF FIXED

ANTENNA ROTATORS

ANTENNAS VHF FIXED

Hhatiscunt Just a few stars to choose from the fabulous galaxy of Amateur Radio Equipment available at Thanet Electronics. trap dipole ع49.50.inc.

The MT-240X Multi-band trap dipole antenna (80 m 10 m) is a superbly constructed antenna with its own Balun incorporated in the centre insulator with an SO239 connector. Separate elements

of multi-stranded heavy duty copper wire are used for 80-40-15 and 20-10 Metres. Really one up on its competitors

ICOM's answer to your HF mobile problems - the IC-730. This new $80 \mathrm{~m}-10 \mathrm{~m} .8$ band transceiver offers 100 W output on SSB, AM and CW. Outstanding receiver performance is achieved by an up-conversion system using a high IF of 39 MHz offering excellent image and IF interference rejection, high sensitivity and above all, wide dynamic range. Built in Pass Band Shift allows you to continuously adjust the centre frequency of the IF pass band virtually eliminating close channel interference. Dual VFO's with $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 KHz steps allows effortless tuning and what's more a memory is provided for one channel per hand. Further convenience circuits are provided such as Noise Blanker. Vox. CW Monitor APC and SWR Detector to name a few. A built in Speech Processor boosts talk power on transmit and a switchable RF Pre-Amp is a boon on today's crowded bands. Full metering WWV reception and connections for transverter and linear control almost completes the IC-730's impressive facilities.
The main problem that the amateur of today has to deal with is deciding just which rig out of the many excellent products available he is going to choose. Technology is advancing at such a rapid rate and getting so sophisticated that many cannot hope to keep up. Some go too far!

Perhaps one way of dealing with the problem is to look at just What each model offers in its basic form without having to lay out even more hard earned cash on "extras". The IC-720A scores very highly when looked at in this light. How many of its competitors have two VFOs as standard or a memory which can be recalled, even when on a different band to the one in use, and result in instant returning AND BANDCHANGING of the transceiver? How many include a really excellent general coverage receiver covering all the way from 100 KHz to 30 MHz (with provision to transmit there also if you have the correct licence)? How many need no tuning or loading whatsoever and take great care of your PA, should you have a rotten antenna, by cutting the power back to the safe level? How many have an automatic RIT which cancels itself when the main tuning dial is moved? How many will run full power out for long periods without getting hot enough to boil an egg? How many have band data output to automatically change bands on a solid state linear AND an automatic antenna tuner unit when you are able to add these to your station?

Well you will have to do quite a bit of hunting through the pages of this magazine to find anything to approach the IC-720A. It may be just a little more expensive than some of the others but when you remember just how good it is, and of course the excellent reputation for keeping their secondhand value you will see why your choice will have to be an IC-720A!

Securicor or post

 despatch free.

It was only when we started to use the new fully automatic antenna tuners from ICOM that we realised just how far ahead of their competitors they are! The very fast tune up time and simplicity of use make them a real worthwhile addition to any station even if the rest of your station isn't ICOM. If it is, then you have the added advantage of fully automatic band selection so that you can virtually hide it away in a cupboard if you want (though we think you will want to show it off).

Apart from its very rapid action and auto band selection facilities it will select the correct antenna for the band (up to four) The new bands are covered of course, but the AT100 does not cover topband, whereas the AT500 does.

Dual accessory sockets are supplied so that you can easily chain your IC-720A, (or IC-701 or IC-730) together with the IC2 KL and AT-500 to produce what must be one of the most advanced automatic stations available.

And remember we also sell Yaesu, Jaybeam, Datong, Welz, G-Whip. Western. TAL, Bearcat, Versatower and RSGB publications from our shop and showroom at the address below
Come in for a demonstration or just a chat. our qualified sales staff and technicians will be glad to assist you.
Listed below are other sets available from Thanet Electronics. a more detailed specification of these will appear in future advertisements. prices are inclusive of VAT. IC- 730 £629. C-740 £725. PSU for $740 £ 119$. IC-SP3 $£ 39$. IC-410 $£ 379$. C-PS15 £119. IC-ML1 £59. IC-451 £689. IC-4E £199. C- 505 £299. IC-251 £559. IC-290E £379. IC-290H £399. C-25E £269. IC-2E £169, IC490 £429, IC-AT 100 £249. C-R70 £469. IC-45E £289. IC-551 £369, IC-PS20 £139. TASCO CWR-670 £289 CWR-685E 5789 . CWR- 610

Agents

 £189. TONO MR250 £325. 9000E £669To compliment the excellent IC-720A HF Transceiver. ICOM have produced the IC-2KL linear amplifier. It is of a similar size and matches the IC-720A perfectly. It produces 500 W output on SSB, CW. AM and RTTY needing 80-100W of drive. As with the IC-720A it will operate from 1.6 MHz to 30 MHz continuously at full output power, but you still need an antenna that matches. It will follow the IC-720A automatically changing bands WITH NO TUNING - the operating is done from the prime-mover.

This automatic facility can be overriden for use on rigs other than the IC-720A, but can be added to the IC-701. IC-730, IC-74O The IC-2KL employs a heat pipe cooling system for the heatsink of the power transistors. This is a new technology used to transfer the heat, and has a high conductance, several hundred times that of copper, plus a very quick response.

The IC-2KL has a matching power supply the IC-2KLPS delivering 40 vDC at 25A continuous for 10 minutes maximum.

The BEST in recent tests and really well made too. Send for a catalogue of these DX antennas. Here's part of the range:-

4el 2m yagi VHF	4144 A	8 dBd	
10el 2m yagi VHF	10144	11.4 dBd	$£ 24.93$
15el 2m yagi VHF	15144	14 dBd	$£ 45.16$
17el 70 cm yagi UHF	17432	14.5 dBd	$£ 63.00$
$4 / 5 \mathrm{el} \mathrm{HF} \mathrm{Beam}$	DUO2	$(14 / 21 \mathrm{MHz}) 9 / 8 \mathrm{dBd}$	$£ 48.00$
		$£ 356.71$	

Our very first advertisement-in RAD COM for November 1976, for those who keep such things-invited readers to display their surplus equipment for sale on a commission basis, and ever since secondhand sales have been an important and integral part of our business.

Now we are proud to announce out new Central Computer facility for instant matching of buyers and sellers of secondhand gear. No need to part-exchange it, or bring it to the shop, unless you're a coffee addict! Just phone us with the details, which we then
enter into our computer, at a normal charge of just $£ 10$ per item.
All enquiries for a particular type or make of equipment are answered by mailing out the relevant entries in the electronic store, after which it is up to the two parties concerned to get in touch and negotiate their deal.

So, if you have things you want to sell really fast, phone us now on our direct Central Computer line -

01-992 5789

This AMTOR
terminal unit (Amateur Teleprinting Over Radio) is a micro-processor controlled error-correcting data communication system, allowing virtually error-free data transmission between suitably equipped stations. Made in England by ICS Electronics, it offers full AMTOR error-correcting facilities plus RTTY, ASCII and CW (transmit only).

- Mode and configuration control from the keyboard of your terminal e Crystal controlled AFSK generator and 4-pole active receive filter
A milestone in amateur radio communications for just $£ 275$.

LICENSED CREDIT BROKERS * Ask for written quotation on HP terms. Also interest-free terms with 50% deposit.

R-2000

In their latest general coverage receiver Trio combine the features which made the R-1000 so successful with the most up-to-date micro-processor control techniques.

- Continuous coverage from 150 kc to 30 MHz • SSB/CW/AM/FM - Ten memories to store frequency, band and mode data - Memory scan e Programmable band scan e Three filters built in with Narrow/Wide selector.
Good value at its list price of $£ 391$
Even better value from us at only $\mathbf{£ 3 6 5}$

373 UXBRIDGE ROAD, ACTON, LONDON W3 9RH

Tel: 01-992 5765/6/7 Just 500 yards east of Ealing Common station on the District and Piccadilly Lines, and 207 bus stops outside. just around the corner from the Rugby Ground.
Closed Wednesday at Acton and Monday at St Helens, but use our 24 -hour Ansafone service at either shop.

WOOD \& DOUGLAS

We have moved! Our new manufacturing facility in Berkshire will provide an even better service for our extensive range. Credit card orders can also now be taken, ring for details. PROJECT

CODE
ASSEMBLED
70 cms EQUIPMENT

Transceiver Kits and Accessories			
FM Transmitter (0.5W)	70FM05T4	38.10	23.10
FM Receiver	70FM05R5	68.25	48.25
Synthesiser (2 pcb's)	70SY25B	84.95	60.25
Synthesiser Transmit Amp	A-X3U-06F	27.60	17.40
Synthesiser Modulator	MOD 1	8.10	4.75
Bandpass Filter	BPF 433	6.10	3.25
PIN RF Switch	PSI 433	9.10	7.75
Converter (2M or 10M if.)	70R×2/2	27.10	20.10
FM Package 2 (Synthesised)	70PAC2	163.00	128.00
TV Products			
Receive Converter (Ch 36)	TVUP2	26.95	19.60
Pattern Generator	TVPG1	39.95	32.53
TV Modulator	TVM1	8.10	5.30
3W Transmitter (boxed)	ATV-1	87.00	
3W Transceiver (boxed)	ATV-2	119.00	
Power Amplifiers (FM/CW Use)			
50 mW to 500 mW	70FM1	14.65	8.85
500 mW to 3 W	70FM3	19.65	13.25
500 mW to 10 W	70FM10	30.70	22.10
3 W to 10W	70FM3/10	19.75	14.20
10 W to 45W	70 M 45	58.75	45.20
Combined Power Amp/Pre-Amp	70PA/FM10	48.70	34.65
Linears			
500 mW to 3 W	70LIN3/LT	25.75	18.60
3W to 10W (Compat. ATV1/2)	70LIN3/10E	39.10	28.95
Pre-Amplifiers			
Bipolar Miniature (13dB gain)	70PA2	7.90	5.95
MOSFET Miniature (14dB gain)	70PA3	8.25	6.80
RF Switched (30W Max)	70PA2/S	21.10	14.75
2M EQUIPMENT			
Transceiver Kits and Accessories			
FM Transmitter (1.5W)	144FM2T	36.40	22.25
FM Receiver	144FM2R	64.35	45.76
Synthesiser (2 pcb's)	144SY25B	78.25	59.95
Synth Mul/Amp (1.5W o/p)	SY2T	26.85	19.40
Bandpass Filter	BPF 144	6.10	3.25
PIN RF Switch	PSI 144	9.10	7.75
Synthesised FM Package (1.5W)	144PAC	138.00	105.00
Power Amplifiers/Linears			
1.5W to 10W FM (No Changeover)	144FM10A	18.95	13.95
${ }^{1.5 W}$ to 10W FM (Auto-Changeover)	144FM10B	33.35	25.95
1.5 W to 10W SSB/FM (0/P c/o)	144LIN10A	26.80	19.87
1.5W to 10W SSB/FM (Auto c/o)	144LIN10B	35.60	26.95
Pre-Amplifiers			
Low Noise, Miniature	144 PA 3	8.10	6.95
Low Noise, Improved Performance	144 PA 4	10.95	7.95
Low Noise, RF Switched	144PA4/S	18.95	14.40
SYNTHESISER ACCESSORIES			
Display Decoder/Driver	DISP1/2	22.60	16.10
GENERAL ACCESSORIES			
Toneburst	TB2	6.20	3.85
Piptone	PT3	6.90	3.95
Kaytone	PTK3	6.80	4.25
Relayed Kaytone	PTK4R	9.95	7.75
Regulator	REG1	6.80	4.25
Solid State Supply Switch	SSR1	5.80	3.60
Microphone Pre-Amplifier	MPA1	5.40	2.95
Reflectometer	SWR1	6.35	5.35
CW Filter	CWF1	6.40	4.75
TVI Filter (Boxed)	HPF1	5.95	
MICROWAVE PROJECTS			
Microwave Drive Source	MD05T	29.50	20.40
Bandpass Filter	BPF 384	5.10	3.25
4M EQUIPMENT			
FM Transmitter (1.5W)	4FM2T	34.75	21.20
FM Receiver	4FM2R	61.65	43.15
Pre-Amplifier	$4 \mathrm{PA4}$	10.95	7.95
Pre-Amplifier, RF Switched	4PA4/S	18.95	14.40
6M EQUIPMENT			
Converter (2M)	6RX2	27.60	19.95

Enquiries by post should contain a SAE. Please restrict telephone technical enquiries between 6 pm and 9 pm in the evening on either 025624611 or 07356 5324. Access and Barclaycard orders can be taken on 073565324.

MAIN AGENTS J. Birkett, LINCOLN 0522-20767
Darwen Electronics, LANCS 0254-771497
Amateur Radio Exchange, ACTON 01-992 5765
Wood \& Douglas (Scandia) HB, SWEDEN 040-94-89-55
Prices include VAT at the current rate. Please add 75p postage and handling to the total order. ATV-1 and ATV-2 orders should include $£ 2.00$ for postage and insurance. Please allow 28 days for delivery if not stock at time of ordering.

Unit 13, Youngs Development
Aldermaston, Reading RG7 4PQ

RSGB Publications

A Guide to Amateur Radio (new 19th edn) £3.44
Amateur Radio Awards (2nd edn)
£3.41
£3.41
Amateur Radio Operating Manual (2nd edn) £5.03
Amateur Radio Techniques (7th edn) E6.20
HF Antennas for All Locations £6.67
Radio Amateurs' Examination Manual (10th edn) £3.42RSGB Amateur Radio Call Book (latest 1983 edn)£5.70
RSGB Amateur Radio Call Book (latest 1983 edn)
Teprinter Handbook (new 2nd edn) £13.84
Television Interference Manual (2nd edn) £1.95
Test Equipment for the Radio Amateur (2nd edn) f 6.07
VHF/UHF M
Amateur Radio Logbook f $£ .45$
Mobile Logbook £1.14
Receiving Station Logbook £2.72
Wall maps
Great Circle DX Map £2. 12
IARU QTH Locator Map of Europe £1.37
QTH Locator Map of Western Europe £1.37
World Prefix Map (in full colour) E2.23
Other Publications
ABC's of Capacitors (Sams) E 6.71
ABC's of Integrated Circuits (Sams) $£ 4.79$
A Course in Radio Fundamentals (ARRL) £3.24
Active Filter Cookbook (Sams)
$£ 12.71$
$£ 2.99$
All About Cubical Quad Antennas (RPI)
f2.39
f2.39
ARRL Electronics Data Book £3.60
Beam Antenna Handbook (RPI) $£ 4.13$
Better Short Wave Reception (RPI) £3.42
Care \& Feeding of Power Grid Tubes (Varian)
£2.98
£2.98
Design of VMOS Circuits (Sams) £8.50
FET Principles, Experiments and Projects (Sams) f 1.78
FM \& Repeaters for the Radio Amateur (ARRL) £3.72
Hints and Kinks for the Radio Amateur (ARRL) £3.13
How to Troubleshoot and Repair AR Equip. (Sams) $£ 7.13$
Practical Antennas for the Radio Amateur (Scelbi...................
£8.10
Radio Amateur Call Book (1983 US listings) 17.15
Radio Amateur Call Book (1983 DX listings) $£ 16.45$
Radio Amateurs Handbook 1983 (ARRL) £2.69
RTTY the Easy Way (BARTG) £1.44
SCRs and Related Thyristor Devices $£ 7.99$
Single Sideband for the Radio Amateur £3.32
Solid-state Design for the Radio Amateur (ARRL) £5.64
The ARRL Antenna Book (new 14th edn) £8.10
The Cheap Video Cookbook (Sams) $\begin{array}{r}£ 5.47 \\ \\ \hline 7.05\end{array}$
TTL Cookbook (Sams) 88.55
Understanding Amateur Radio (ARRL) £4.14
World At
£1.91
World Radio TV Handbook 1983 £3.12

Prices include postage, packing and VAT where applicable. Postal terms:
cheques/POs with order (not stamps or book tokens).

PLEASE ALLOW UP TO 28 DAYS FOR DELIVERY

The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby, including listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and its publications.

> Radio Society of Great Britain Alma House, Cranborne Road, Potters Bar, Herts EN6 3JN Telephone Potters Bar 59015

WATERS \& STANTON ELECTRONICS
 18/20 MAIN ROAD, HOCKLEY,

ESSEX. TEL (0702) 206835

TRIO R600

BUYING A RECEIVER? ... THEN COME TO THE EXPERTS!

WE STOCK THE LOT

If you're a beginner just starting out in radio you'll be delighted with the performance that the R600 offers you. Considering the electronics that are packed into this receiver, the price is remarkably low. A few years ago this performance would have cost you twice as much. Full digital readout and really simple tuning in of SSB signals makes this one of the few top receivers that the beginner should consider. With all the gloom and doom one hears about in the news these days, why not put a pair of headphones on your head, plug them into the R600 and whisk yourself away into the wonderful world of wireless. Signals from the Australian outback or the flying doctor, radio amateur expeditions on some remote Pacific island, signals aircraft over the Atlantic, shipping distress frequencies; all this and much more is possible on this little receiver. So don't delay any further, send today for full details and introduce yourself to an exciting new hobby.

TRIO NEW R2000 £391

The R2000 is Trio's latest communications receiver covering the entire spectrum from 150 KHz to 30 MHz . It boasts a whole host of features that make it probably one of the best buys radio communications receivers currently available today. Its uncompromising design provides facilities for AM, SSB, CW and FM 10 separate frequencies to be programmed in any mode and for automatic scanning of all channels. In addition, pr-programmed se programmed in any mode and for automatic scanning of all channels. In designs available. As an segments of the band may also be scanned making it one of the most versathe memory even when the power is disconnected. The rate of tuning is controlled electronically and has 3 meins to suit all types of operation. Another novel feature is the squlch control that is effective on all speeds to suit all types of operation. Another novel feature is the squelch control that is effective on all modes for suppressing background noise when no signal is present. Other features include noise blanker, mounted speaker, mounted speaker, tone control, RF step attenuator, dual impedance aerial terminals, 230 v AC or optional
12 v DC operation, built-in timer etc, etc.
 12v DC operation, built-in timer etc, etc.

YAESU FRG7700

ICOM R70
£469

2335 The FRG7700 is for the advanced listener or for the enthusiast who demands the best in short wave reception. The receiver covers the complete spectrum 200 kHz to 30 mHz with a highly accurate digital
 display. The receiver offers excellent sensitivity and selectivity and has separate detectors or AM, inain control, noise blanker, SSB, plus switched bandwidth on AM. Other controls. Thelude automatic gain control, noise facilities for fitting an optional 12 attenual mer 230 v AC mains or 12 v DC and there is an optional aerial channel me with it And if you are interested in VHF there is a complete range of specially designed uner to go with it. And if you are interested in VhF, there is a complete range of specialy desigen today for our coloured brochure and get to know more about what the FRG7700 has to offer.

The R70 is possibly the ultimate in receivers designed for the amateur market. We've tested this thoroughly and are convinced that this receiver offers everything that the enthusiast could ever wish for. If anything can pull the signals in, this one will. Frequency coverage is 100 kHz to 30 mHz in 30 bands. A 3 stage rate of tuning enables easy tuning for all modes, AM, SSB, CW and FM (the latter requires the otional FM module). The dual VFO enables 2 separate frequencies to be used and the bright digital display gives precise frequency readout down to 100 Hz with absolute stability. Great emphasis has been put on selectivity and in addition to independant filters for each mode, there is a separate selectivity control. This enables the bandwidth to be continuously varied down to 500 Hz . Another control provides a variable notch filter to prevent hetrodyne interference - now you can really dig deep for those elusive DX signals. Another nice of a obtained by the use of a well designed front end incorporating switched pre-amplifier and attenuator dial lock, RIT control, squelch control, tone control, FM tuning indicator, forward facing speaker, 230 V AC dial lock, RIT control, squelch
power requirements, etc, etc.

NEW CD6000AR

MOBILE/BASE AIRBAND MONITOR $110-140 \mathrm{MHz}$ 12v DC DIGITAL READOUT

5 kHz steps.
$0.5 \mu \mathrm{v}$ for 20 dB .
1 watt audio output.

£89
p\&p £1.50

AIRBAND MONITORS

SPECIFICATION

Frequency range : $118-136 \mathrm{mHz}$ Channel Steps : 25 kHz Mode Sensitivity Selectivity Antenna AM :0.5uv $: 8 \mathrm{kHz} / 6 \mathrm{~dB}$ \& 25 kHz 60 dB :50 ohms TRIO, YAESU, ICOM, FOK, WELZ, AZDEN, ADONIS, JAYBEAM, ETC.
\qquad
Name.
Goods required
Address.
\qquad

FOUR P F E E E			
MTV435	MM4001KB	MML144/50-S	MML432/30-L
435MHz ATV 20 WATT TRANSMITTER $\star 20$ WATTS PSP OUTPUT POWER \star BUILTIN TEST GENERATOR \star TWO VIIDEO INPUTS \star AERIAL CHANGEOVER FOR RX CONVERTER \star THOCHANNELUSING PLUGINCRYSTALS This high performance ATV transmitier consists of a two channel exciter, video modulator and a two stage 20 watt Iniear ampifier. The unit will accept both colour and monochrome signals, and syxc-pulse clamp is incorporated to ensure maximum output. An internal pin diode serial maximum output An internal pin ciode aerie changeover switch allows connection of the arial to a suitable receive converter when in the receive mode. (The MMCA35/500 is ideal for this application, and has an output on channel $35-$ fy2 so inc E27.90 inc. VAT, p\&p f1). Ful transmitr receive switching is included together with an internal wave form test generator. diecast case and all circuitry is constructed on high quality glass fifire printed circuit board. The two stage inear amplifier is housed in a separate intemal compartment, thus ensuring excellent stability.	FEATURES: * Complete Transceive Data RTTY TRANSCEIVER Communication System using the Latest State of the Art Microprocessor \star Wide Range of Popular RTTY \& ASCII Speeds * 170, 425,850 AND 1200 Hz Shifts Available on both RX and TX \star Four Separate Message Stores * Compatible with a Standard Parallel ASCII Keyboard and Printer \star Stored Test functions * Auto catic Call Facility \star Automatic Letter and Figure Shift \star Upper \& Lower Case Display for ASCII Modes of operation - Murray Coded RTTY - 45.5, 50, 75, 100 baud. Amateur Standard ASCII 110, 300, 600, 1200 baud. accept FSK and AFSK signals. This MM4001KB unit, when simply connected to any HF or VHF transceiver, a standard TV set, and the supplied keyboard, provides a complete data communication capability at a cost of less than half of any similar system. The MM4001 KB contains a terminal unit, a microprocessor controlled TV interface and the necessary transmit tone generators to enable transmission and re ception of RTTY and ASCII, with the minimum of ancillary equipment.	144MHz 50 WATT LINEAR POWER AMPLIFIER A truly cost effective PRODUCT! - REAL VALUE FOR MONEY! This new product represents one of the best combinations of high power at a realistic cost, whilst still not requiring a huge power supply. FEATURES: * 50 WATTS OUTPUT POWER FOR 10 WATTS IN * LINEAR ALL MODE OPERATION \star STRAIGHT THROUGH MODE AT THE FLICK OF A SWITCH * ULTRA LOW NOISE RECEIVE PREAMP 3SK88 - SWITCH SELECTABLE * RF VOX (WITH MANUAL OVERRIDE) * LED STATUS LIGHTS	432MHz 30 WATT LINEAR POWER AMPLIFER Following the success of the ever popular MML144/30-LS, comes a 70 cm equivalent. Designed to complement the many 1 or 3 watt hand held transceivers, this new product will provide an output power of 30 watts. (An internal attenuator controlled by a front panel switch allows the input sensitivity to be selected between $1 / 3$ watts.) An RF VOX circuit is provided to allow automatic changeover and switched delay times for SSB or FM can be selected on the front panel A low noise receive preamp is included to provide an increased receiver sensitivity. FEATURES: * 30 WATTS OUTPUT POWER * SUITABLE FOR 1 OR 3 WATT TRANSCEIVERS * ULTRA LOW-NOISE RECEIVE PREAMPLIFIER * RF VOX (WITH MANUAL OVERRIDE) * LINEAR ALL MODE OPERATION * LED STATUS LIGHTS \star SUPPLIED WITH ALL CONNECTORS
f149 inc VAT (p\&p f2.50)	£299 inc VAT (p\&p £4.00)	£85 inc VAT (p\&p f2.50)	£99 inc VAT (p\&p £3.00)
Goods normally despatched by return but please allow up to 7 days for delivery	MICROWAVE MODULES BROOKFIELD DRIVE AINTREE LVERPOOL L9 7AN, ENGLAND Telephone: 051-523 4011 Telex: 628608 Micro d CALLERS ARE WELCOME, PLEASE TELEPHONE FIRST		HOURS: MONDAY TO FRIDAY $9-12.30,1-5.00$

DEWSBUAY A elegtronics
 TEN METRES USE IT OR LOSE IT!!

Work U.S REPEATERS

either home or mobile, with the DE 48006 watt FM TRANSCEIVER.
Price $£ 46.25$ plus $£ 2$ post and packing. 6 month warranty. MAKE TEN YOUR LOCAL CHAT BAND

Dewsbury Electronics offer a full range of Trio Equipment always in stock.
We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES ICS AMTOR - AEA PRODUCTS - DRAE
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063. After Hours: Kidderminster (0562) 851255
Closed Thursday

KEEP AHEAD WITH THE FT-102!
Once again YAESU lead the field with the exciting FT-102

HF transceiver- no other manufacturer offers so many innovative features.
Better Dynamic Range
The extra high-level receiver front end uses 24 VDC for both RF amplifier and mixer circuits, allowing an extremely wide dynamic range for solid copy of the weak signals even in the weekend crowds. For ultra clear quality on strong signals or noisy bands the high voltage JFET RF amplifier can be simply bypassed via a front panel switch. boosting dynamic range beyond 100 dB . A PLL system using six narrow band VCOs provides exceptionally clean local signals on all bands for both transmit and receive.
Total IF Flexibility
An extremely versatile IF Shift/Width system, using friction-linked concentric controls and a totally unique circuit design, gives the operator an infinite choice of bandwidths between 2.7 kHz and 500 Hz , which can then be tuned across the signal to the portion that provides the best copy sans QRM, even in a crowded band. A wide variety of crystal filters for fixed IF bandwidths are also available as options for both parallel and cascaded configurations. But that's not all; the 455 kHz third IF also allows an extremely effective IF notch tunable across the selected passband to remove interfering carriers, while an independent audio peak filter can also be activated for single-signal CW reception. New Noise Blanker
The new noise blanker design in the FT-102 enables front panel control of the blanking pulse width, substantially increasing the number of types of noise interference that can be blanked, and vastly improving the utility of the noise blanker for all types of operation.
Commercial Quality Transmitter
The FT-102 represents significant strides in the advancement of amateur transmitter signal quality, introducing to amateur radio design concepts that have previously been restricted to top-of-the-line commercial transmitters; far above and beyond government standards in both freedom from distortion and purity of emissions.
Transmitter Audio Tailoring
The microphone amplifier circuit incorporates a tunable audio network which can be adjusted by

the operator to tailor the transmitter response to his individual voice characteristics before the signal is applied to the superb internal RF speech processor.
IF Transmit Monitor
An extra product detector allows audio monitoring of the transmitter IF signal, which, along with the dual meters on the front panel, enables precise setting of the speech processor and transmit audio so that the operator knows exactly what signal is being put on the air in all modes. A new "peak hold" system is incorporated into the ALC metering circuit to further take the guesswork out of transmitter adjustment.
New Purity Standard
Three 6146B final tubes in a specifically configured circuit provide a freedom from IMD products and an overall purity of emission unattainable in twotube and transistor designs, while a new DC fan motor gives whisper-quiet cooling as a standard feature. For the amateur who wants a truly professional quality signal, the answer is the Yaesu FT-102.

New VFO Design

Using a new IC module developed especially for Yaesu, the VFO in the FT-102 exhibits exceptional stability under all operating conditions.
A. SP-102 EXTERNAL SPEAKER/

AUDIO FILTER
The SP-102 features a large high-fidelity speaker with selectable low- and high-cut audio filters allowing twelve possible response curves. Headphones may also be connected to the SP-102 to take advantage of the filtering feature, which allows audio tailoring for each bandwidth and mode of operation to obtain optimum readability under a variety of conditions.

B. FC-102 1.2 kW

ANTENNA COUPLER
1.2KW band-switched L-C
pi-network antenna coupler.

AMAIEDR EIECIRONICS \prod^{7} Your number one source

or attractive H.P. terms readilv available for on-the-spot transactions. Full demonstration facilities. FAST Free Securicor delivery.

This incredible new transceiver incorporates the highest level of microprocessor control ever offered in an HF all solid-state radio. Including a general coverage $(0.15-30 \mathrm{MHz})$ receiver with its own, separate front end, this amateur transceiver offers a new dimension in frequency control; whereby frequencies can be entered by either front panel keypad or tuning dial, and then scanned in selectable steps either freely or between any two programmable limits. Twelve memories include four with special protection, and two large digital displays allow full flexibility and control for split
frequency operation while two meters allow full transmitter information.
Additional controls include IF Width and Shift on concentric controls, AMGC (Automatic Mic Gain Control) to set microphone input threshold, RF Speech Processor, ALC Meter Hold function, IF Notch and Audio Peak filters, Transmit Monitor, Noise Blanker and CW Full Break-in. Controls are also provided for FM Squelch and CW Keyer Speed when the optional FM and Keyer Units are installed.
The most important feature of the FT-980 is that
practically all of the above features can be controlled by the user's separate personal computer, when connected through an optional Interface, also available from Yaesu. Where up to now the few amateur transceivers that offered any kind of computer interfacing at all permitted only frequency control, the FT-980 permits almost total control of all functions from a separate microcomputer, including Mode; IF Width and Shift; Scanner Step, Speed and Limits; and switching of most other functions. (Microcomputers are not available from Yaesu.)

Reliable

UTILIZING THE NEW CAD/CAM* MANUFACTURING TECHNIQUES, YAESU PRESENTS THE FT-77 AS A NEW MILESTONE IN RELIABILITY, SIMPLICITY AND ECONOMY IN HF COMMUNICATIONS.

Thrifty

Featuring efficient, all solid-state, no-tune circuitry, the FT-77 offers a nominal 100 watts of RF output on all amateur bands between 3.5 and 30 MHz , including the WARC bands. New CAD/CAM techniques plus the simple design of the FT-77 add up to one of the smallest, lightest HF transceivers ever; both in your hands, and on your wallet.

Simple

The front panel control layout and operation are actually simpler than some VHF FM transceivers, with only essential operating controls; while the simple circuit design leaves fewer parts that could cause problems. Nevertheless, all of the essential modern operating features for HF SSB and CW are included, along with extras such as dual selectable noise blanker pulse widths (designed to blank woodpecker or common impulse noise), full SWR metering, and capabilities for an optional internal fixed-frequency channel crystal, narrow CW filter and FM Unit.

second rig

for old-timers.
*Computer Aided
Design/Computer
Aided Manufacture.

FT-726R VHF/UHF Multibander

Combining all of the best features from Yaesu HF and V/UHF transceivers, the FT-726R opens a new world of operating ease and flexibility for FM, SSB and CW on the 50*, 144 and $430 / 440 \mathrm{MHz}$ amateur bands. The design of the FT-726R integrates the individual operating requirements of each of the three operating modes into one unit, and the user can then select which of the optional plug-in band modules he desires.
The VFO-A/B scheme has ten programmable memories, and can be tuned in 20 Hz steps for CW and SSB operation, or in selectable steps for FM. FM tuning is accomplished by an indented tuning knob. IF Width and Shift controls are provided for CW and SSB operation, while both preset standard and user programmable repeater offsets can be selected for all modes. An optional Satellite Unit makes the FT-726R into a full duplex cross-band satellite transceiver.
*144 MHz Unit instalied, other Units available as options according to local regulations.

AGENTS

North West - Thanet Electronics Ltd. Gordon, G3LEQ, Knutsford (0565) 4040 Wales \& West-Ross Clare. GW3NWS. Gwent (0633) 880146 East Anglia-Amateur Electronics UK, East Anglia, Dr. T. Thirst (TIM) G4CTT Norwich 0603667189
North East - North East Amateur Radio, Darlington 032555969 Shropshire-Syd Poole G3IMP, Newport, Salop 0952814275

For full details of these new and exciting models, send today for our latest SHORT FORM CATALOGUE. All you need do to obtain the latest information about these exciting developments from the World's No. 1 manufacturer of amateur radio equipment is to send 36 p in stamps and as an added bonus you will get our credit voucher value $£ 3 \cdot 60-$ a 10 to 1 winner!

As factory appointed distributors we offer youwidest choice, largest stocks, quickest deal and fast sure service right through-

A new venture totally unconnected with any other amateur radio retailer

THE ENFIELD EMPORIUM

DAVE, G8SYG \& MIKE, G6LHL emporium it is just 1 mile from the new l.e.d. S-meter to your 2E (or 4 E) while you Circular Road in fill and the mod can either be carried available to those in need of refreshment. supply a kit for you to fit yourself ($£ 16$).

LOAN SET - We will have two licensed engineers in attendance to help you with any problems that you may have and they will be willing to repair rigs that were bought elsewhere! We will even offer you the use of a LOAN SET while yours is being repaired!!!

WE CAN SUPPLY EQUIPMENT AND ACCESSORIES FOR

TRIO \& YAESU

WE ARE ASP ANTENNA STOCKISTS
$\star \star \star$
TRIO - We are offering substantial reductions on TRIO prices to personal callers only.
(Trio 930S with built-in auto A.T.U. - now in stock)

* \star t $\star \star \star$

STANDARD - we now have in stock the C58, the C78, the 7900 and the brand new multi-mode - the superb C5800 (25 watts) only $£ 359$.
$\star \star \star$
ANTENNAS - We now have in stock the full range of TÔNNA, JAYBEAM and CUE DEE antennas. We also have some very special bargains such as:-
2 m Colinear (3dB)
.$£ 17.50$ (Base station) 2 m Colinear (6dB) .£33.00 (Base station)
10-15-20m Vert. trapped Dipole
.$£ 45.00$
Halo (Sideband Mobile)
.$f 5.75$
Aerial Poles ($1 \frac{1}{2}^{\prime \prime} \& 2^{\prime \prime}$) - Assorted lengths in stock. Prices from $\mathbf{£ 6 . 5 0}$
Chimney lashing kits (Heavy duty)
£15.00
Stand-off brackets - $12^{\prime \prime} £ 11-18^{\prime \prime} £ 12-24^{\prime \prime} £ 15.50$.
$\star \star \star$
ROTATORS - Kenpro KR 250 (Light Yagis) - KR 400 (Medium to Heavy) - KR 600 (Heavy) Daiwa DR 7600 (Heavy) - Hirschmann 250 (Heavy).
DRAE -
ADONIS Wave meters, Power meters, Morse Tutor.
Headset microphones. 208 and 708
$£ 33.65$
$2 \mathrm{E}, 4 \mathrm{E}$ and 2500
$£ 32.65$

$\star \star \star$

BARGAINS - Sleeving .4 pence per m.
813 Valves (Normally £ 91.00 each) . $\mathbf{\$ 3 5}$ for TWO
\qquad We cannot list all of the switches, coils, transformers and components that we have in stock so COME IN AND RUMMAGE.
$\star \star \star$
CRYSTALS - We have in stock a large selection of crystals, some very rare $\mathbf{£ 2 . 0 0} \mathbf{e a c h}$ Crystal Special Line 2,000 2 meter and 70 cms crystals all at $\mathbf{£ 2 . 5 0}$ each
$\star \star \star$
METERS - We stock the full range of DAIWA crossed needle SWR/Power meters.

Specifications:			
Antenna	4144 A	10144 A	15144 A
No. Elements	4	10	15
Gain	8 dBd	11.4 dBd	14 dBd
Front/Back	20 dB	20 dB	26 dB
Front/Side	40 dB	40 dB	40 dB
Boom Length	1.1 m	4.5 m	6.45 m
Weight	1 Kg	3 Kg	5 Kg
Boom		3 sections	4 sections

Independent Tests Model Boom Length	Gain		
	Annaboda*)	Claimed	
$15144(\mathrm{~A})$	3.1λ	13.0 dBd	14.0 dBd
C. C. Boomer	3.2λ	12.8 dBd	16.2 dBd
14 el Parab	2.9λ	12.7 dBd	13.7 dBd
Tonna	3.1λ	12.2 dBd	15.7 dBd

") Gain over dipole under matched condition.

Linears	
2M-50W	40 Watt Linear For 2 Metres 65.00
2M-100W	90 Watt Linear For 2 Metres + switchable pre-amp. $\mathbf{1 2 9 . 0 0}$
MR-150W	140 Watt Linear For 2 Metres + switchable pre-amp. 169.00
MR-250W	210 Watt Linear For 2 Metres + switchable pre-amp. 325.00
MR28	100 Watt Linear For 10 Metres + switchable pre-amp 65.00
UC70	50 Watt Linear For $70 \mathrm{cms}+$ switchable pre-amp. 159.00
Full range	TONO products in stock.

.00 $\begin{array}{llr}\text { 2M-50W } & 40 \text { Watt Linear For } 2 \text { Metres } & 65.00 \\ \text { 2M-100W } & 90 \text { Watt Linear For } 2 \text { Metres + switchable pre-amp. } 129.00\end{array}$ MR-150W 140 Watt Linear For 2 Metres + switchable pre-amp.169.00 MR-250W 210 Watt Linear For 2 Metres + switchable pre-amp. 325.00 MR28 100 Watt Linear For 10 Metres + switchable pre-amp 65.00 Full range of TONO products in stock.

Opening hours:
Mon-Thur 9-6
Fri 9-8
Sat 9-6
AND NOW
SUN 9-1

SPECIAL OFFER - Only $\mathbf{£ 7 . 5 0}$ inc. $\mathbf{p + p}$.
Slim Jim - Collapsible to 20 inches - can be mailed. k PART EXCHANGES WELCOME stamped Addrossed letter for brochure atc. All prices include VAT. Goods normally despatched by return, but please allow up to 7 days.

281 HERTFORD ROAD, EDMONTON N9.
Telephone (01) 8040128
Buses 249, 279 and 149 stop outside the door.

BARCLATCARD
VISA

BY THE TIME this issue of PW appears on the bookstalls, the first of the additional March sittings of the UK Radio Amateur's Examination will be almost upon us.

Provisional figures for the December 1982 exam, just released as I write, show that 3855 candidates sat the first paper and 3929 sat the second. Overall, 68-2 per cent of candidates were successful.

Since the present multiple-choice format was introduced in May 1979 it has come in for a lot of criticism. Some people thought the exam had been made too easy by taking away the need to write essay-type, in-depth answers. Others thought it was too hard. The number of "questionable" questions included in the various papers since 1979 has not helped the exam's reputation, and you may recall that l've had a go at City and Guilds on that particular topic in past issues. There haven't been so many moans just lately, but whether that's because the papers have been getting better, or because people have given up complaining, I'm not too sure.

Like all City and Guilds examinations, the RAE comes up for a periodic review of the syllabus. There was a minor change in 1982, and the next review is now under way. Elsewhere in this issue (see page 30), we publish an invitation from the CGLI to any interested individuals or groups, to send in suggestions for alterations or amendments to the present syllabus. Now's your chance - let's have some really constructive comment.

The background of many aspiring amateurs now is quite unlike that of the average RAE candidate of a few years ago. The "short wave listener" route has been largely replaced by the "frustrated CBer" route (either legal or illegal), so that the student is building on different interests and experience. This means that, more than ever before, the real point is whether the RAE is asking the right questions. The sentence in the CGLI announcement: 'The principal objective of the Examination is to ascertain the candidate's ability to operate an amateur station within the terms of the licence and not necessarily to test expertise in particular aspects of the Amateur Service" really says it all, to my mind. What the examination needs to discover is whether the candidate is safe to let loose on the amateur bands, using either home-built or bought equipment, without causing mayhem among other radio users, of whatever sort. The expertise comes later, with experience.

Should some basic level of practical operating ability have to be demonstrated by a candidate, as well as passing the multiplechoice papers? I can see considerable problems in such a scheme, not least in choosing and providing some standard form of equipment for the test, but they should not be impossible to overcome. No closing date for comment is quoted in the City and Guilds announcement, but don't leave it too long before setting pen to paper.

Services

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH 15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more difficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

INSURANCE

Turn to the following page for details of the PW Radio Users Insurance Scheme, exclusive to our readers.

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 13$ per annum, from "Practical Wireless" Subscription Department, Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at $£ 1$ each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 5.00$ to UK addresses, $£ 5.25$ overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.

Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

Practical Wireless Radio Users Insurance Scheme was devised by Registered Insurance Brokers B. A. LAYMOND \& PARTNERS LIMITED following consultation with PRACTICAL WIRELESS to formulate an exclusive scheme designed to meet the needs and requirements of:
Amateur Radio Enthusiasts - CB Radio Users - Taxi Companies and Fleet Users with Radio Telephones and any individual or company needing cover for communications equipment which is legal to use and properly licensed.

SPECIAL FEATURES

- All Risks Cover
- "New Lamps for Old" Cover (as defined in policy)
- Index Linked Cover to combat inflation
- Licence protection-covers legal costs arising from any breach of your licence conditions
- Equipment covered anywhere in the UK, Channel Islands and Isle of Man, but not Northern Ireland and Eire
- Fixed Antennas (Aerials) covered
- Frequency, Power and SWR Meters and similar radio-related test equipment covered
- 30 days cover in Western Europe included Free of Charge
- Absolute Security as this scheme is underwritten by a leading member of the British Insurance Association on the London Insurance Market
- Practical Wireless radio receiver and transmitter projects covered (when stated infeature)
- Available to Clubs and Organisations ${ }^{\dagger}$
- Available to Companies \dagger
+Write directly to B. A. LAYMOND \& PARTNERS LTD, 562 North Circular Road, London NW2 7QZ, for a special application form and full details, enclosing the coupon below.

Sum to Insure	$£ 100$	$£ 150$	$£ 300$	$£ 500$	$£ 750$	$£ 1000$	$£ 2000$
Annual Premium	$£ 6.00$	$£ 6.50$	$£ 8.00$	$£ 9.00$	$£ 10.00$	$£ 12.00$	$£ 14.00$

The premium is charged on sums insured in pre-selected bands. Thus equipment totalling $£ 250$ would be in the band up to $£ 300$. Quotations for larger sums available on application.

Claims will be settled after deduction of the Policy Excess which is: $£ 10$ on sums insured up to $£ 500 ; £ 25$ on sums insured up to $£ 3000$.

HOW TO INSURE: Complete the application form below to obtain immediate insurance cover. Photocopies will not be accepted.

[^0] cancelled, declined, restricted, or other terms imposed in any way other than the normal Policy terms. 3. This proposal shall be the basis of the contract and that the contract will be on the Underwriters normal terms and conditions for All Risks and Legal Costs/Expenses cover unless otherwise agreed. 4. I/We have not* sustained any loss or damage to any radio communications equipment or been involved in litigation relating to use of radio equipment during the past three years, whether insured or not. 5 . All the above statements made in connection with this proposal are true and no material information has been withheld. 6. I/We understand no liability shall attach until this proposal shall have been accepted by Laymond's and the premium paid in full and a Certificate issued.

- If you have, please give details on a separate sheet.

N

IMPORTANT-The ideas presented here are suggestions only, and as they are untried by this magazine, we cannot accept responsibility for any resultant damage, however caused. Before alterations are attempted, care should be taken to ensure that any guarantee is not invalidated, and it should also be borne in mind that modifications usually have an adverse effect on resale prices In cases where specialist skills or equipment are needed, most dealers will undertake the work for a reasonable fee.

Roger Hall G8TNT(Sam)

No. 21

Mods for the FT-290R seem to be very popular and we have another set this month.

Semi-Reverse Repeater

I have received three mods for semi-reverse repeater (listen-on-input) operation. The first was supplied by Harry Leeming G3LLL, of Holdings Photo Audio Centre in Blackburn. He has said that although this mod has been approved by the importer, Amateur Electronics UK Ltd., anyone thinking of doing it should heed the warning at the top of this page about invalidating their guarantee. Harry has also asked me to point out that he will only do this

Fig. 1
mod to rigs that he has supplied, so if you are unable to carry it out yourself, please do not send your rig to him.

This mod uses two diodes, any sort of small switching diode will do. After removing the top and bottom covers, locate the back of the MODE switch. Solder the anode of one of the diodes to the tag that has a green wire connected to it, this is the +600 kHz wire. Use sleeving on the lead from the diode to prevent shorts. Solder the other end of this diode to the green/white wire that goes to Pin 1 of Plug A. You will need to scrape away some of the insulation on the wire to do this. Now turn the rig over and locate Plug B. Cut the green wire that is soldered to Pin 12. Wrap insulating tape around the end that is attached to the plug and solder the anode of the other diode to the end of the wire that leads to the MODE switch below. Solder the cathode of the diode to the black/white wire that is connected to Pin 11. Again you will need to scrape away some of the insulation. Make sure that the two joints that have been made by soldering to the green/white and black/white wires are well wrapped in insulating tape and then replace the covers. The +600 kHz position on the MODE switch now switches the receiver -600 kHz for listening on the input.

The second semi-reverse repeater mod was supplied by Amateur Electronics UK Ltd. First, remove the bottom cover and locate the black/white wire on SK1-it's the tenth one in from the left. Cut this wire at the socket and insulate the free end. Now find the green/white wire on SK2 and solder the anode of an 1S1555 or 1N914 diode to it. Connect the cathode of the diode to the red/white wire soldered to the p.c.b. adjacent to the microphone socket. Both diode leads should be insulated to prevent shorting. This mod is now complete and pressing the call bUTTON should allow listening on the repeater input whenever the MODE switch is in the + or - position.

A third variation of this mod which seems to have originally come from SMC has been sent in by Nick G8MCQ. He suggests adding a $10 \mu \mathrm{~F} 16 \mathrm{~V}$ capacitor, a $150 \mathrm{k} \Omega$ resistor and a 1 N 4148 diode to Pin 2 of PO 3 as shown in Fig. 1. A lead should also be run from the end of Ca and Ra to Pin 11 on PO 4 on the Voltage Regulator Unit. D1 should then be removed from that unit and the track cut as shown. Now add two wires, one between R75 (220Ω) and the cut p.c.b. track near PO 4 and one from the junction of the red/white wire to Pin 1 of PO 2 via a new $5.6 \mathrm{k} \Omega$ resistor and 1 N 4148 diode as shown. The call button should now activate the Listen Input facility and there should also be an automatic toneburst whenever the -600 kHz shift is selected.

P 144 MHz ORP CONTEST

Sunday 19 June 1983 1000-1800 GMT

This new v.h.f. contest, with its 3 W p.e.p. power output limit, is open to all licensed radio amateurs in the UK. A simple contest exchange and straightforward scoring system will enable newcomers and experienced operators to enjoy the challenge of QRP on 144 MHz . Full rules will be published in the May issue of Practical Wireless.

This is a simple a.t.u. based on the "transmatch" tuner originally developed by Lew McCoy W1ICP about 20 years ago. This version can be used for low power transmitting, up to about 20 watts, on all authorised frequencies 1.8 to 30 MHz , and for listening on the medium as well as all short wave bands.

Construction features a wood and hardboard case, use of a standard twin-gang receiving type capacitor instead of the split-stator capacitor usually specified, a simple allband $4: 1$ ferrite balun, a dummy load to assist in tuning up QRP (low power) transmitters and an easily made tapped tuning coil. Three different types of antenna feed lines can be connected at the same time, selected for use from a switch on the front panel, and various options are possible to adapt the unit to the needs of the user.

What is an Antenna Tuner?

The first thing to remember is that an a.t.u. does not usually tune an antenna. It is merely a device which ensures that the antenna feeder does not present a mismatch to the equipment in use. Most transmitters today need to "see" a 50Ω load at their output and the function of the a.t.u. is to transform the impedance at the transmitter end of the feeder to meet the transmitter's needs whilst discriminating against the radiation of unwanted frequencies (harmonics) by the transmitter.

When used with a receiver an a.t.u. matches the impedance of the antenna circuit to the receiver input circuit ensuring maximum transfer of available signal. It also provides a high degree of selectivity which helps to reduce "image" interference from stations on other frequencies.

When used with random length end-fed wire antennas an a.t.u. will function as already described for both transmitting and receiving and will, in this case, also tune the antenna to resonate at the desired frequency.

Circuit Details

Switch Sla selects the dummy load in position 4 whilst switch S1b then isolates all antennas. The dummy load may be omitted if the tuner is to be used only for receiving. C 1 tunes L1 and, whilst transmitting, provides good rejection of harmonics with TVI (television interference) protection when properly adjusted.

L 1 is tapped at 12 positions by S 2 to give full coverage from 3.5 to 30 MHz whilst S 3 extends the range to 1.8 MHz (top band) and, if required, to the medium wave band.

The final match between input and output for both transmitting and receiving is achieved by adjustment of C1

and C 2 in conjunction with each other. C 1 in the prototype was of the type used in valve receivers, which can often be obtained cheaply as surplus components. Neither value is very critical. If bought new Jackson type OO twin-gang 365 pF would be suitable for C 1 and type O single-gang 365 pF for C 2 .
Slb selects up to three different antenna feeders, i.e. single wire (end-fed), coaxial, and balanced, thus allowing a flexible and versatile antenna system to be tailored to the needs of the operator.

Construction

The base and ends of the case are made from 12.5 mm wooden board with the front, rear, and top panels from hardboard, as shown in the photographs. If the constructor has limited workshop facilities it may well be possible to obtain the wood pre-cut to size from the local timber supplier when the making of the case will then become a simple assembly job.

Capacitors C1 and C2 are mounted on the front panel. Note that they are not earthed. The drilling of holes and the method of fixing will depend on the type of capacitor used. Switches S1, S2, and S3 are also mounted on the front panel.

The main coil, L1a and L1b combined, is threaded through a piece of Veroboard $95 \times 95 \mathrm{~mm}(0 \cdot 15 \mathrm{in}$ matrix). The copper track is cut, and holes carefully drilled out, as shown in Fig. 2. A 4.5 metre length of 18 s.w.g.

\star components

```
Resistors
Carbon
    To suit dummy load (see text)
```


Capacitors

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Air-spaced variable \(500 \mathrm{pF}+500 \mathrm{pF} 1\) 300 pF}} & C1a, 1b (see text) \\
\hline & & C2 (see text) \\
\hline \multicolumn{3}{|l|}{Inductors} \\
\hline Main coil & 1 & \(24 T 18\) s.w.g. 47 mm dia (see text) \\
\hline Medium wave coil & 1 & 140T 24 s.w.g. 9.5 mm dia (see text) \\
\hline Balun & 1 & \(10 T+10 T 22\) s.w.g. bifilar wound on ferrite rod 9.5 mm dia \(\times 40 \mathrm{~mm}\) \\
\hline
\end{tabular}
```


Switches

```
Rotary
\begin{tabular}{lll}
\(3 p .4 w\). & 1 & S1 \\
1 p .12 w. & 1 & S2
\end{tabular}
Min. toggle s.p.d.t. 1 S3 (see text)
centre off
```


Miscellaneous

Chassis mounting phono sockets (2); Wander sockets, red (3), non-insulated (2); Knobs (4); Veroboard, 0.15 inch matrix (see text); Ferrite rod $40 \mathrm{~mm} \times 9.5 \mathrm{~mm}$ dia; Wire, cable (see text); Wood, aluminium sheet etc. for case.
tinned copper wire is wound round a 47 mm diameter former. A sauce bottle found in the kitchen served this purpose for the author. When removed from the former the coil will spring out and be approximately the correct diameter to thread through the enlarged holes on the Veroboard. Before this is done two strips of plain Veroboard (24×3 holes) are required to act as spacers for the coil at right angles to the main board. These strips are cut from a larger board, using a sharp cutting/scoring tool, and the holes in the centre line are enlarged to 1.5 mm .

CONSTRUCTION RATING
 Intermediate

BUYING GUIDE

The majority of the components used for this project are easily obtained. The variable air-spaced capacitors are made by Jackson Brothers and should be obtainable from Bi-Pak, Electrovalue, Maplin Electronics and Watford Electronics.

> APPROXIMATE COST £15

The coil is threaded through the main board and the spacing strips in the direction indicated in the diagram. Some care is required towards the end of the operation to avoid distorting the windings with undue pressure but the enlarged holes allow the completion of the threading without too much difficulty. Individual turns should then be adjusted to ensure a uniform size winding and any surplus wire at the end removed. The spacing strips should be centred and secured with spots of glue at one or two points, and each winding then soldered to the main Veroboard.

The coil is mounted by wooden strips forming slots on the floor and side of the case. A piece of aluminium sheet is cut to shape and fitted to provide a back mounting and general earthing plate. Thin flexible aluminium, often obtainable in hardware/d.i.y. shops, is preferred as this is easily cut and bent to shape whilst the case can provide the necessary rigidity.

The medium wave coil L1c is made separately from the tapped coil. It is wound on a 60 mm length of 9.5 mm diameter wood dowelling. There are 140 turns of 24 s.w.g. enamelled copper wire in two layers of 70 turns each, so the two connecting wires are at the same end of the coil. Two rubber grommets having 9.5 mm diameter holes are used to secure the windings. The coil is mounted on a piece of Veroboard by two pieces of 18 s.w.g. tinned copper wire, each 75 mm long, bent round the grommets, inserted through the holes in the board and soldered underneath. The board is then secured to the side wall of the a.t.u. by small woodscrews using $6.3 \mathrm{~mm} \times$ No. 6 (4BA) spacers.

If the medium wave coil is not required S 3 can be changed to single pole changeover as the centre-off facility will no longer be required.

The balun is wound on a piece of ordinary ferrite rod, as used for medium wave antennas, 9.5 mm diameter x 40 mm long. The rod can be cut to size by filing a groove all round and carefully tapping the rod to achieve a clean break at the desired point. Two lengths of 22 s.w.g. enamelled copper wire, each 420 mm long, are wound

Fig. 2: Details of the $\mathbf{0}$.15in matrix Veroboard used to support the main coils

Fig. 3: Details of winding the balun
round the rod in bifilar fashion for ten turns. The windings are secured at each end by rubber grommets as for the medium wave coil, leaving approximately 40 mm of wire protruding at each end. The balun is mounted on Veroboard and fixed to the earthing plate as shown in the photograph.

Dummy Load

The optional dummy load consists of a number of carbon resistors mounted on Veroboard to provide the impedance and wattage required. In the prototype, for example, a two watt load was required, at approximately 50 ohms, and four resistors, each 220 ohms $\times \frac{1}{2}$ watt, were used. Five 270Ω 1W resistors will give 54Ω at 5 W . If a dummy load is not required S1a can be dispensed with. In this case the number of positions on S1 can be reduced to three or a single pole-twelve way switch, with adjustable stop limit, could be substituted for selecting the outputs required.

The rear panel layout and general wiring details can be seen in the photographs. Before the components are finally mounted the case can be painted or covered with Contact or Fablon.

The various outputs are connected to S1 and a length of UR43 or similar 50 ohm coaxial cable wired from the input phono socket to C 1 . The tappings on the coil are wired as shown in Table 1. Note that position 1 of S2 effectively shorts out the coil windings when S3 is set for the 28 $3 \cdot 5 \mathrm{MHz}$ range. This is necessary to match some antennas when operating in the 28 MHz band.

Table 1

Tap	Connect to	Tap	Connect to	
13	Rotor S2/Stator C2	6	S2	6
12	Not connected	5	S2	5
11	S2	11	4	S2
10	S2	10	4	
9	S2	9	3	S2
8	S2	8	3	
7	S2	7	1	S2
		1		

The completed balun

The medium wave coil

Cardboard discs are glued behind the knobs and marked by Letraset or similar system. The discs used were obtained from the local stationers in the form of "conference badges". The centres were removed by perforating them with the aid of a domestic sewing machine.

Operation

The input of the unit is connected to the transceiver or receiver. It is desirable to have an s.w.r. (standing wave ratio) bridge connected between the a.t.u. and the transmitter to assist tuning. The antennas to be used are connected to the appropriate output sockets and an earth connection is required if an end-fed antenna is to be used. When transmitting the dummy load can be used to establish the forward setting for the s.w.r. bridge before adjusting the a.t.u. Both capacitors should be fully open for this operation otherwise their capacitance affects the impedance of the dummy load.

The bands required are selected by S3 and the antenna to be used by S1. The correct setting for the tuner is found by adjusting the coil tappings (S2) in conjunction with the input and output capacitors. Starting with C1 and C2 at minimum capacitance C 1 is adjusted for minimum s.w.r. and then C2 is similarly adjusted. This procedure may have to be repeated once or twice before the optimum setting is found.
This is not as difficult as it sounds and once the correct settings are identified they can be recorded on a reference chart (one for each antenna). On the $28-3 \cdot 5 \mathrm{MHz}$ range the higher number tappings will be appropriate for 3.5 MHz and the lower, probably Nos 1 and 2 , for $28-$ 21 MHz . The aim should be to achieve maximum capacitance, i.e. vanes as fully meshed as possible, to obtain best power output. Where it is possible to tune a particular frequency to a $1: 1$ s.w.r. on more than one coil tapping the lowest number of tappings (i.e. minimum inductance) should be chosen and this will give maximum capacitance. On some bands it may be necessary to re-tune the unit at different frequencies across the band.

For listening the audible difference between peaks on different coil settings may not always be apparent. It is, however, still desirable to select maximum capacitance and minimum inductance, as with transmitting, in order to optimise performance.

The unit will effectively match random lengths of wire although the aim should always be to get as much wire up as possible in these circumstances. Matching will be simplified if lengths can be used which have a frequency relationship to the bands to be used. A good all-amateur band length is 40 metres, which is a half wave on the 3.5 MHz band, but other lengths will often perform surprisingly well. Dipoles and beams cut to individual bands and fed by coaxial cable can be tuned across the band even if they are not accurately cut. Dipoles and loops cut to almost any length and fed with balanced feeder, including 300 ohm ribbon, can be matched to any frequency higher than that at which they naturally resonate.

This is a very versatile unit suitable for both the beginner and the more experienced operator interested in QRP working. Many antenna configurations of various dimensions can be tried and matched and satisfactory results obtained. It must be stressed however that as described the unit is suitable only for low power transmission. The switching arrangements may cause problems if higher power is used and this is not recommended. The basic circuit is quite suitable for higher power but a heavy duty switch would be required for selecting the coil tappings and the antenna switching arrangement as described would not be feasible.

ALAN IVARTIN GBZPW

Morse Code Keyer/Trainer

I.C.S. Electronics Ltd announce the availability in the UK of a full function computerised Morse code keyer and trainer unit called the model KT-2, and manufactured by A.E.A. Inc. of Seattle, USA.

The KT-2 provides precisely calibrated code speed controls allowing the user to choose between the Fast (Farnsworth) mode or the Slow Code mode of intracharacter speeds and actual code speeds from 1 to 99 w.p.m. in 1 w.p.m. increments. For example, the user can program a character speed of say 12 w.p.m. within an overall code speed of 4 w.p.m.

An additional facility is the ability of the unit to increase automatically the
speed during practice sessions. The user may select a starting speed and a finishing speed, within a variable length of practice time (from 0.1 to 99.9 minutes). At the end of the practice time, the characters continue to be sent at the finishing speed until interrupted manually.

Two levels of code difficulty may be selected for practice: normal characters or all characters. The normal character mode sends all the alphabet, numerals and common punctuation. Also the user may select either fiveletter code groups or random word length. Characters are perfectly timed but the ratios can be independently programmed (full weighting control).

A 24000 character Answer Booklet is supplied to enable the student to check his progress. Ten known starting positions are available, that correspond to positions within the Answer Booklet. For normal practice there is also a random mode.

The unit provides an automatic Tune function which enables easy tuning of the transmitter, this function can be

overridden by simply touching any key pad or the paddle. Semi-automatic or "bug" key operation can be selected instead of the normal iambic operation. A sidetone can also be selected.

The KT-2 operates from any 12 V ($\pm 3 \mathrm{~V}$) d.c. source capable of delivering 200 mA and costs $£ 89.00$ (inc. VAT) plus $£ 2.50 \mathrm{p} \& \mathrm{p}$ and insurance.

For further information contact: I.C.S. Electronics Ltd., P.O. Box 2, Arundel, West Sussex BN18 ONX. Tel: (024 365) 590.

QRV 28MHz FM

You can't judge a book by the cover is an old adage that would seem to apply to the Ranger 4800 transceiver, stocked by Dewsbury Electronics of Stourbridge, West Midlands.

The chassis for the Ranger 4800 was originally designed for the legal 27 MHz f.m. CB service; however, in its imported form it has been reengineered for amateur use on the f.m. section of the $28 \mathrm{MHz}(10 \mathrm{~m})$ band.

The rig employs Motorola devices and covers the frequency range 29.310 to 29.700 MHz over 40 10 kHz spaced channels selected by a rotary switch.

RF output power is 6 W (1W low) and other front panel controls are Volume, Squelch and receiver sensitivity via a DX/LOC (local) toggle switch. Selected channel is displayed

on a digital readout and I.e.d.s indicate transmit and free channel, an S-meter is also provided.

The Ranger 4800 costs only $£ 46.25$ (inclusive of VAT) plus $£ 2.00$ for $p \& p$, carries a six month warranty and is available from: Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands. Tel: (0384) 390063.

FT101 Modification Kit

Owners or prospective purchasers of Yaesu's FT101 Mk 1-E transceiver may be interested ta learn of the availability of a modification kit that will enable the transceiver to operate on the 10 , 18 and 24 MHz bands.

Harry Leeming G3LLL, Technical Director of Holdings Photo Audio Centre, informs me that they now produce the simple modification kit which enables early FT101s to operate on the three new bands by adapting the CB and WWV switch options, together with an interlocked relay in the 15 m position.

The kit is easy to install and is designed to produce full power; however, the manufacturers warn potential users that they should observe the power limitations of the particular band regulations. The manufacturers emphasise that the kit is specifically for the early series of FT101s, and that they have no intention of marketing a kit for other models.

Priced at $£ 15.75$, which includes VAT and carriage, the kit is available from: Holdings Photo Audio Centre, Mincing Lane, Darwen Street, Blackburn BB2 2AF. Tel: (0254) 59595.

Microwave Learning Lab.

Schools, Colleges and perhaps even radio clubs and societies who wish to progress their knowledge of microwave technology and equipment may be interested in a tutorial package, called Understanding Microwave Equipment, prepared for the Microwave Products Division of Marconi Instruments Ltd.

The course, which comprises six lectures on 90-minute audio cassettes and an accompanying book of crossreferenced charts, diagrams and photographs, explains the basic concepts of microwave technology, principles of operation, performance and typical applications in simple terms without recourse to detailed mathematics.

Packaged in a sturdy ring binder that contains the six cassettes and associated lecture notes, the course (Part No. 2200284) costs $£ 80.00$ plus VAT and is available from: Marconi Instruments Ltd., Microwave Products Division, P.O. Box No. 10, Gunnels Wood Road, Stevenage, Herts. SG1 $2 A U$.

TRIO TS－430S

£698 inc．VAT

COLLINS KWM－380 Amateur Bands

Transceiver $1.8-30 \mathrm{MHz}$ Receiver $\quad 1.8-30 \mathrm{MHz}$ £2195

40 Channels AM／FM £258．75

BC－150FB 10 channel BC－250FB 50 channel

BENCHER PADDLES

BY－1 Black Base
BY－2 Chrome Base BY－3 Gold plated

ZA－1A Balun ZA－2A Balun ZY－2 CW Audio Filter
£35．84
£43．72
£92．00
£15．00
$\mathbf{£ 1 7 . 2 5}$
£57．50

BEARCAT SCANNERS BC－100FB $£ 345.00$

三关
픞
二二二
二是

Hand held 16 channel programmable

The most famous of the General Coverage Transceivers £1069．50

GAADI EAST LONDON HAM STORE H. LEXTON LIMITED
 191 FRANCIS ROAD LEYTON E. 10 TEL 01-558 0854 TELEX 8953609 LEXTON G 01-556 1415

COMPUTERISED ROTATOR CONTROL

We are expecting delivery in early March of a revolutionary new rotator. When under automatic control it has several unique features including:
Control is handled by an 8 bit CPU
scanning between directions stored it can rotate to a specified angle it can scan between two specified it wifl scan
it will scan 360 degrees continuously single step rotation available
360 continuous steps a certain range
rotation to a direction stored in a in the memory changing the origin of rotation adjustable scanning speed
adjustable step angle and pause
data can be stored and cleared from Manual operation is also possible

COMING SOON - An interface board is under development. It will have the following outstanding features:- An RS232C $1 / O$ port that will allow the unit to be connected to a personal computer - a morse code reader - an electronic keyer.

ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR £31.50, 70CM COLINEAR £31.50

Solution to last month's problem: The circuit is reproduced here in Fig. 11.1.

Fig. 11.1
You were asked to estimate the potentials at $\mathrm{g} 1, \mathrm{~g} 2$ and d under no-signal conditions for the two extreme settings of R6, given that source potential was $+3 \cdot 1 \mathrm{~V}$ (R6 at minimum resistance) and +4 V (R6 at maximum resistance).
(a) When R6 $=0 \Omega$:

$$
\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R7}}=\frac{3 \cdot 1}{0.22}=14 \cdot 1 \mathrm{~mA}=\mathrm{I}_{\mathrm{d}}
$$

$$
V_{R S}=14.1 \times 0.22=3.1 \mathrm{~V}
$$

Therefore, potential at $\mathrm{d}=+10-3 \cdot 1=+\mathbf{6 . 9} \mathrm{V}$
(b) When $\mathrm{R} 6=1 \mathrm{k} \Omega$:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s}}}{(\mathrm{R} 6+\mathrm{R} 7)}=\frac{4}{1.22}=3.3 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{R} 5}=3.3 \times 0.22=0.7 \mathrm{~V}
\end{gathered}
$$

Therefore, potential at $\mathrm{d}=+10-0.7=+9.3 \mathrm{~V}$
The setting of R6 does not affect either of the gate potentials with respect to earth, since gate currents are negligible, and so these gate potentials depend solely on the potential dividers.
So, potential at $\mathrm{gl}=$

$$
\frac{\mathrm{R} 4 \times 10}{(\mathrm{R} 3+\mathrm{R} 4)}=\frac{1000}{1330} \times 10=+7.5 \mathrm{~V}
$$

And, potential at $\mathrm{g} 2=$

$$
\frac{\mathrm{R} 2 \times 10}{(\mathrm{R} 1+\mathrm{R} 2)}=\frac{330}{1330} \times 10=+\mathbf{2 . 5 V}
$$

Integrated Circuits

There are such a ovide variety of integrated circuits available that it is impossible to cover all types in this series. They vary in complexity from basic digital gates whose operation can be fully described by a simple truth table, through a vast selection of linear and specialised i.c.s which need several pages of description (as in IC of the Month) to microprocessor i.c.s which require a whole textbook to describe the operation of a single device.

One obvious voltage applicable to all types will be the power supply to each i.c. Ironically, it is all too easy to overlook this basic requirement, the reason being that the wiring of power supplies to i.c.s is often omitted from circuit diagrams in the interest of clarity. So don't forget that each i.c. will need its power supply even if no details of this are shown on the circuit diagram.

In this series, I shall only be able to look at certain general-purpose i.c.s and the d.c. voltages that apply to them. However, once you can understand the principles you should not have much difficulty in applying the same ideas to more specialised i.c.s in conjunction with data sheets.

On frequent occasions I shall be obliged to use words such as "normally", "usually", etc. This will contribute nothing to readers' confidence in dealing with i.c.s but it is unavoidable, unfortunately, because even among these basic general-purposes i.c.s there are variations available. The trouble is that, as soon as you attempt to generalise about the operation of any type of i.c., you will discover that some manufacturer has produced a version which operates in precisely the opposite way; and if not, some manufacturer will produce such a version next week! As an example, the usual master-slave JK bistable is clocked by a negative-going transient, but there are variations which are clocked by positive-going transients.

I shall therefore be describing voltage measurements applicable to the "most common" forms of these generalpurpose i.c.s. Variations will be comparatively rare, but if you do take measurements around an i.c. which do not tally with the descriptions in this series, it is just possible that you may have one of the uncommon versions and you would have to refer to its data sheet.

Operational Amplifiers

The basic operational amplifier has many applications in scientific and experimental work as well as being a substitute for a multi-stage voltage amplifier. This is because it
is a differential amplifier (output being the amplified difference between two inputs) and also because its gain can easily be set to anything between unity and about 200000 times. It has the further advantages of high input impedance (a megohm or so), low output impedance (about 150 ohms) and very good temperature stability. "Op. amps." form the basis of a multitude of more specialised i.c.s.

The circuit symbol for the basic op. amp. is shown in Fig. 11.2 (the voltages and the common line not being a part of the symbol).

Fig. 11.2

WKM195

Power supplies are " $\mathrm{V}+$ " and " $\mathrm{V}-$ ", " $\mathrm{V}+$ " being positive with respect to " $\mathrm{V}-$ ". The p.d. between these two will be quoted by the manufacturer and should not be exceeded, a typical figure being 30 V . This is usually applied so that " $\mathrm{V}+$ " is positive with respect to the common line by half the total (e.g. +15 V in the example quoted) and " $\mathrm{V}-$ " therefore negative with respect to the common line by the same amount (e.g. -15 V). There are variations, but we will consider this symmetrical application of supply voltages to be the case for the time being. We will also consider the common line to be earthed (0 V).

With no input voltages applied (i.e. $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}=0 \mathrm{~V}$), the output voltage V_{0} should be halfway between the " $\mathrm{V}+$ " and " $\mathrm{V}-$ " supplies, i.e. at 0 V . This results from the internal circuit configuration within the i.c.

When voltages are applied at the "+" and "-" inputs, the output is determined by the formula:

$$
V_{o}=A_{v}\left(V_{b}-V_{a}\right)
$$

where A_{v} is the differential voltage gain (or "open-loop" gain), a typical figure being 200000 at low frequencies, although this falls as frequency increases. As we are only concerned with d.c. potentials in this series, A_{v} will be the full open-loop gain.

From the formula, V_{o} is therefore equal to A_{v} times the difference between the input voltages.

There are limits to V_{o}, however, imposed by " $\mathrm{V}+$ " and " $\mathrm{V}-$ ". The positive limit of V_{0} is slightly less positive than " $\mathrm{V}+$ " (e.g. +14 V) and the negative limit of V_{0} is slightly less negative than "V-" (e.g. -14V).

Using these typical figures, let us see what the input voltage difference will be to cause such a limiting of V_{0}. If the V_{o} positive limits to +14 V , the formula will be:

$$
14=200000 \times\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}\right)
$$

Therefore,

$$
\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}\right)=\frac{14}{200000}=70 \mu \mathrm{~V}
$$

You are not likely to notice this very small difference in input potentials in your meter readings yet this is the maximum difference you are likely to get because the op. amp. will normally be operating well within its output voltage limits. So, for all practical purposes, the potentials measured at the " + " and "-" inputs will be the same, in this case virtually 0 V .

There are two basic op. amp. circuits for conventional voltage amplification, the first of these being shown in Fig. 11.3. This is the inverting op. amp., where the input voltage is applied via R1 to the inverting input ("-") and produces a phase-inverted output, V_{o}. The gain of the amplifier is determined solely by the ratio of the resistors. This gain, called the "closed-loop" gain, because negative
feedback is now being applied via R2, is given by R2/R1. Notice that it is independent of A_{r}. Remember also that there is a phase reversal (change of polarity as far as d.c. is concerned).

In the example of Fig. 11.3, therefore, the gain is $100 \mathrm{k} \Omega / 10 \mathrm{k} \Omega=10$. So if $\mathrm{V}_{\mathrm{i}}=+1 \mathrm{~V}$, then V_{o} is ten times this and with reversed polarity, i.e. $-\mathbf{1 0 V}$. If V_{i} is -0.5 V , $\mathrm{V}_{\mathrm{o}}=+(10 \times 0.5)=+5 \mathrm{~V}$. If $\mathrm{V}_{\mathrm{i}}=+3 \mathrm{~V}$, however, V_{o} is not $-(10 \times 3)=-30 \mathrm{~V}$, but will be $-\mathbf{1 4 V}$, the negative limit.

In all of the preceding examples, the potential measured at the "-" input will be $0 \mathbf{V}$ because the " + " input is earthed and these two are virtually the same potential. In many cases there will be no d.c. component at the output, only undistorted sine waves (e.g. signals), in which case the measured d.c. potentials at V_{i}, "-", " + ", and V_{0} would all be zero.

The other common amplifier arrangement is shown in Fig. 11.4. It is the non-inverting op. amp. circuit, so called because the output is in phase with the input. Voltage V_{i} is applied direct to the " + " input but the negative feedback is still to the "-" input via the potential divider R2/R1.

Fig. 11.3

WKM196
Fig. 11.4

WKM197
Gain is given by:

$$
1+\frac{\mathrm{R} 2}{\mathrm{R} 1}
$$

in this example gain is therefore $1+(100 / 10)=11$. So, if $\mathrm{V}_{\mathrm{i}}=+1 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{o}}=+11 \mathrm{~V}$. If $\mathrm{V}_{\mathrm{i}}=-0.5 \mathrm{~V}$ then $\mathrm{V}_{\mathrm{o}}=$ $11 \times(-0.5)=-5.5 \mathrm{~V}$. If $\mathrm{V}_{\mathrm{i}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}$ is not +33 V but is limited to $\mathbf{+ 1 4 V}$. The potential at the "-" input will be equal to V_{i} in all cases, since V_{i} is applied direct to the " + " input and we have already established that there is negligible difference between the potentials of the " + " and "-" inputs.

The circuits of Figs. 11.3 and 11.4 require two power supplies (the +15 V and the -15 V). Where a.c. only is to be amplified, as is the usual case in radio work, the circuits can be adapted to operate from a single supply of +30 V , an example of an inverting op. amp. circuit of this type being shown in Fig. 11.5.

Now " $\mathrm{V}+$ " is at $+\mathbf{3 0 V}$ and " $\mathrm{V}-$ " at $\mathbf{0 V}$, the same potential difference existing between these as before. There is no d.c. input because of C 1 , so V_{o} will be at a d.c. potential halfway between " $\mathrm{V}+$ " and " $\mathrm{V}-$ " (due to the internal circuits of the chip), i.e. $+\mathbf{1 5 V}$. The "-" input will be at +15 V also, via R2, through which no d.c. current flows. So the " + " input must be made to be $+\mathbf{1 5 V}$ as well, otherwise the d.c. potential difference between the " + " and
"-" inputs would cause V_{0} to be other than +15 V and would reach limit level if the " + " input was earthed to d.c. The " + " input level is therefore set by the potential divider $\mathrm{R} 3 / \mathrm{R} 4$ until V_{o} is exactly +15 V , the resistors being made variable pre-set to allow compensation for slight differences in their resistance values and to compensate for any asymmetry in the circuits of individual i.c.s. A slight difference of a few mV in p.d. between the " + " and " - " inputs usually has to be applied anyway in order to achieve the correct no-input value of V_{o}, this small p.d. being called the "input offset voltage".

Capacitors C1 and C3 are d.c. blocks which prevent the d.c. conditions of other stages from upsetting the critical d.c. conditions of the op. amp. circuit. As far as signals are concerned C2 earths the " + " input but allows the correct d.c. potential to exist there.

The single power supply version of the non-inverting op. amp. circuit is shown in Fig. 11.6. The d.c. conditions are as follows: $" \mathrm{~V}+"=+\mathbf{3 0 V}$ and $" \mathrm{~V}-"=\mathbf{0 V}$.

Therefore V_{0} is $+\mathbf{1 5 V}$. The "-" input is at +15 V via R 2 , the " + " input is also at $+\mathbf{1 5 V}$ via the potential divider R3/R4/R5 (there is no d.c. voltage dropped across R5 as no d.c. current flows through it).

WKM199
As before C1 and C3 are d.c. blocks. Capacitor C2 allows the negative feedback to the "-" input to be due to signals only. The +15 V bias is decoupled to the " + " input via C4, and R5 allows input signals to be developed across it, being connected between the " + " input and earth as far as signals are concerned.

External circuits are often connected to other pins of the i.c., for example to modify the op. amp.'s basic frequency response, but these will not normally affect the d.c. conditions of the points mentioned.

If the d.c. voltages are incorrect, the i.c. itself may be suspect. The easiest way to prove this is to substitute a new i.c., as most of them are relatively inexpensive. If this is not possible or convenient, the suspect i.c. could be removed and tested in a simple test rig similar to the circuit
of Fig. 11.3. Where the i.c. is plugged into a holder this makes substitution easy and also enables the d.c. potentials to be checked on the pins with the i.c. out of circuit. If the i.c. is soldered in, the voltage readings should be carefully analysed, if necessary taking into account meter resistance and referring to the appropriate data sheet, before undertaking the difficult task of unsoldering the i.c.

Often i.c. faults are intermittent and temperature sensitive. In these cases, a squirt of freezing fluid onto the i.c. can frequently bring a change in its operation, so directing suspicion to the i.c. rather than to the associated circuit. Freezing fluid should be obtainable from component retailers and is very handy when fault-finding on integrated circuits, whether of the op. amp. type or not.

Now to this month's problems:

WKM200
Fig. 11.8

WKM201

No. 1: Calculate the d.c. potentials at the " + " and " - " inputs and the value of V_{o} if the following d.c. inputs are applied to the circuits of (a) Fig. 11.7 and (b) Fig. 11.8.
(i) +100 mV
(ii) -500 mV
(iii) -2 V

No. 2: Referring to Fig. 11.5, what d.c. potentials should exist on the following pins of the i.c. holder if the i.c. was removed?
(i) " + " input
(ii) "-" input
(iii) " $\mathrm{V}+$ "
(iv) "V-"
(v) V_{o}

Next month we will take a look at some of the more common digital i.c.s as used in control and counting circuits.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISERS

Find That Project

The third edition of the Electronic Projects Index (EPI), compiled by M. L. Scaife G6RJU, Bibliographical Services Officer of North Tyneside Libraries and Art Department, is now available.

The index provides a complete list of projects published during 1979-80, in 16 named technical magazines, which includes Practical Wireless, Practical Electronics, Everyday Electronics, Television, Wireless World and Practical Hi-Fi.

Containing 118 A4 size pages, EPI No. 3 costs $£ 2.50$ (which includes p\&p) and is available on a cash-withorder basis from: EPI Sales, Central Library, Northumberland Square, North Shields, Tyne \& Wear NE3O 1 QU.

The next edition, EPI No. 4 covering 1981-82, is being compiled at this moment and should be published mid1983.

New Amateur Radio Shop

A new shop, specialising in amateur radio equipment, has opened at Stourbridge in the West Midlands.

Called Dewsbury Electronics, the proprietor, Tony Dewsbury G4CLX, is the designer of the respected Morse sending "G4CLX Keyboard" and the firm, an approved Trio dealer, are also stockists of Daiwa, Weltz, Davtrend, Tasco Telereaders, AEA Products, Microwave Modules, ICS Amtor and Drae equipment.

The address of the new shop is: 176 Lower High Street, Stourbridge, West Midlands. Tel: (0384) 390063.

News from AMSAT-UK

Phase IIIB: The latest launch date for this satellite, from French sources, is now 27 May, 1983.
Phase IIIC: The USAF has not taken up the launch option for this satellite. The cost is estimated at 1.8 million dollars and no part of the budget can be undertaken at this time. So, it looks like AMSAT will have to find another launc̄h agency for Phase IIIC.

Components Fair

The Pontefract and District Amateur Radio Society will be holding a "Components Fair" at the Carleton Community Centre, Pontefract, on Sunday, 13 March, 1983.

The doors will open at 1100 and there will be talk-in on 144 MHz (S22), bring-and-buy stall, licensed bar and refreshments plus RSGB publications, and the overall emphasis of the fair will be on home construction.

Further details from: G4AAQ, tel: (0977) 791071.

New Catalogue

Jaybeam's latest catalogue called Amateur Radio Antennas is now available. The catalogue contains technical details, including v.s.w.r. graphs of their entire range of amateur antennas, plus other associated products, such as rotators, masts, phasing harnesses, mounting brackets etc.

The catalogue is available from most Jaybeam stockists on receipt of a medium-sized s.a.e., or direct from: Jaybeam Ltd. (Dept. AM/CAT), Kettering Road North, Northampton NN3 $1 E Z$.

Teleprinter Handbook

The 2nd edition of the Teleprinter Handbook, jointly edited by A. G. Hobbs G8GOJ, E. W. Yeomanson G3IIR and A. C. Gee G2UK, has recently been published.

The book, now revised and updated, is one of the most comprehensive guides to the theory and practice of amateur RTTY available, and is a must for anyone seriously interested in this mode.

The book gives system descriptions and servicing information for several popular European and American machines. Other essential RTTY equipment, including test gear, is described and designs for home construction are given where appropriate.

Chapter titles are: Basic telegraph transmission theory; Teleprinters; Other RTTY machines; Power supplies; Demodulators; Polarised relays; Keying methods; Filters; Test Equipment; A video display unit; The Hellschreiber system; Control systems; The RTTY station; Operating procedures; plus three appendices: Glossary of commercial equipment; Terminology; Data.

This hardbound book has 368 pages measuring $246 \times 184 \mathrm{~mm}$ and is fully illustrated with hundreds of line diagrams and photographs.

The UK cover price is $£ 12.00$ from booksellers, or $£ 13.84$ by post from: RSGB, Alma House, Cranborne Road, Potters Bar, Hertfordshire EN6 3JW. Tel: (0707) 59015.

Radio Amateur's Examination

The periodic review of the syllabus for the Radio Amateur's Examination is now due and the City and Guilds R.A.E. Committee has established a working party for this purpose.

The principal objective of the Examination is to ascertain the candidate's ability to operate an amateur station within the terms of the licence and not necessarily to test expertise in particular aspects of the Amateur Service. Suggestions for alterations or amendments to the existing syllabus would be welcome and should be sent to: Mr. S. D. Allison, City and Guilds of London Institute, 46 Britannia Street, London WC1X 9RG.

GB3SF s.s.b. Repeater Experiment

We have recently received details of the proposals for the 144 MHz pilot carrier s.s.b. repeater GB3SF submitted to the RSGB RWG by Dr. A. J. T. Whitaker G3RKL, of the University of Sheffield Department of Electronic \& Electrical Engineering.

This unique experimental installation will be operational for a 12 month period, during which time investigations will be carried out into the feasibility of pilot carrier s.s.b. for mobile use. Comparisons will be made between f.m. and s.s.b. systems in respect of range, quality, ease of use and occupied bandwidth. The RWG have approved the proposals and have made it quite clear that this 12 month experiment is not being established to enhance or promote DX working - in fact the predicted range will be no greater (probably less) than a conventional f.m. repeater. Data obtained during the operational period will be fed back to the RWG and, if the system is found to be viable, will in the long term assist with amateur band planning.

Following the experimental period a full report will be submitted by G3RKL to the 1984 IARU Conference.

As this is an experimental project, involving a new technique, much of the equipment will also be experimental in nature. It will all be designed, constructed or modified at the University of Sheffield, some possibly by final year students in connection with their projects.
The pilot carrier system chosen for the repeater is thought to be the most appropriate for the amateur service and will allow adequate reception of the repeater without modification. A small modification will be required to the transmitting section of individual transceivers to provide a steady carrier at 16 dB below peak output (14.5 dB down on peak modulation). In practice this will be accomplished by leaking the correct amount of carrier around the balanced modulator/filter sections.

In order to provide acceptable voice quality in the presence of both frequency and doppler shift, the repeater
will extract the pilot from input signals, using a 200 Hz wide filter, apply limiting and then be re-inserted as the b.f.o., resulting in "perfect" demodulation. This same system can be applied to individual receivers to derive the same "locked" benefits. To allow for drift in input signals the repeater receiver will have a capture range of $\pm 200 \mathrm{~Hz}$ and a tracking range of approximately $\pm 500 \mathrm{~Hz}$ with respect to the nominal input frequency.

Apart from status signals from the GB3US Mk II m.p.u. based control logic, to indicate H1/LOW frequency and "overmodulation", the repeater will perform in the same way as existing f.m. devices. Output power will be 10W p.e.p. u.s.b. using a single vertical antenna (probably a $\frac{5}{8} \lambda$ ground-plane) and located at the top of the 36 m University's metallurgy tower near to the city centre. In order to cause negligible interference to the existing repeater network the input/Output frequencies requested are 145.185 and 145.785 MHz respectively.

ZX81 OTH Locator Programs

With these two programs, written for the $\mathrm{ZX} 81+16 \mathrm{~K}$, you can find your QTH Locator or, using QTH Locators, work out distance and bearings as well as contest scores. You will also be helping a good cause-the RAIBC (The Radio Amateur Invalid and Blind Club) as for each tape sold $£ 1.00$ will be donated to this worthy cause.

Program A uses latitude and longitude data and performs the complicated and tortuous calculations needed to work out the equivalent QTH Locator. This is displayed on the screen in a novel way showing the position within the final QTH Locator square as a black block and also showing the surrounding squares with their Locator designations.

The other program works out the distance, bearing and contest score from QTH Locators input into the ZX81 via the keyboard. The program also calculates your lat. and long, from your OTH Locator which it displays on the screen. As the contest progresses the computer keeps a tally of total points scored and the best DX so far together with the number of contacts. Of course
the program is useful even if you are not working a contest.

The two programs are available on a cassette from G8CEZ, 35 Chichester Walk, Merley, Wimborne, Dorset, price $£ 3.50$ inc. post and packing. Out of this $£ 1.00$ will be donated to RAIBC. RAIBC members can purchase the cassette for $£ 2.50$ but then no donation will be given to the club.

ATV Group

The Home Counties Amateur Television Group, which has been in existence for over a year, meets on the fourth Wednesday of every month at the Richings Park Sports and Social Club, Richings Park, near Iver, Bucks. A talk-in station is operated on $145 \cdot 200 \mathrm{MHz}$.

The group's committee is quite active in trying to attract newcomers to ATV and invite interested parties to attend their meetings.

At the moment, the group's main interest lies with fast-scan on 432 MHz $(70 \mathrm{~cm})$; however, they are trying to
generate more activity with fast-scan on $1.3 \mathrm{GHz}(24 \mathrm{~cm})$ and slow-scan on the h.f. bands and $144 \mathrm{MHz}(2 \mathrm{~m})$.

The group's next meeting, at Richings Park, is on Wednesday 23 March 1983, starting at 2000hrs.

Further information is available from: Sec. HCATVG, P. Miller G4REE. Tel: Maidenhead (0628) 76020.

Radio Rally

The White Rose Amateur Radio Society, based at Moortown R.U.F.C., Leeds, have organised their radio rally for Sunday 27 March 1983, starting at 1100 at The Refectory, University of Leeds, which is the same venue as last year.

In addition to all the usual attractions of a radio rally, ample car parking is available and the entrance fee is only 50p-free to senior citizens, XYLs and harmonics.

For further details contact: Rally Manager, Richard R. Hughes, 3 Primley Park Crescent, Leeds LS17 7HY.

Continuing last month's theme of antennas for small gardens

HS-HF5
 5-band Vertical Antenna

The HF5 operates as a quarter-wave vertical on the five pre-WARC h.f. amateur bands at $3.5,7,14,21$ and 28 MHz , with a maximum powerhandling capability of 200W p.e.p. on the two lower bands and 500 W p.e.p. on the remainder.
Automatic band-switching is accomplished by the inclusion of one trap and one loading coil, with separate toploading elements for 3.5 and 7 MHz looking rather like the horns on a snail. The overall height of the antenna is 4.8 metres from the tips of these elements to the SO239 connector at the base.

The HF5 can be installed in three ways. 1: On a ground post, in which case the base of the antenna must be not more than 100 mm from the surface of the ground. 2: As a groundplane antenna using wire radials, at least one wire per band, sloping downwards at approximately 30° below the horizontal, and with lengths ranging from 2.7 to $21.5 \mathrm{~m}(\lambda / 4)$. 3: As a ground-plane antenna using the HF5R radial kit (maximum power 150 W p.e.p.), which comprises a loading coil plus five adjustable rod elements slightly over 2 metres long, sloping downwards at 45°. Using either of the ground-plane systems, the antenna can be mounted above ground, on a mast or roof-top. The HF5 weighs 2.9 kg and the HF5R 1.8 kg .

Adjustment of the HF5 for minimum v.s.w.r. at the desired part of each band must be carried out at ground level, even if it is to be used ultimately with a ground-plane system on a mast, etc. The 28 MHz band is pre-set (no adjustment), the 21 and 14 MHz bands are set by telescoping the lower and upper sections respectively, and the 7 and 3.5 MHz bands by trimming the loading elements to length.

Adjusting the ground-plane radials can be more difficult because of the problem of getting at them when the system is installed.

I first used the HF5 with an HF5R, all mounted on the gable-end of the roof, with the antenna above the ridge and the HF5R below. Because it was
very difficult to get at the system in that position due to a large beech hedge in my neighbour's garden, I set it up first using a temporary pole in my garden. This was fairly successful, though it was difficult to get the v.s.w.r. down to the specified maximum of $1.5: 1$, and bandwidth was very restricted on 3.5 and 7 MHz . When mounted on the roof-end though, the radial element ends were obviously much too close to the brickwork, and the v.s.w.r. went way up and refused to come down again, no matter what adjustments were made. I used the antenna there for some months with an a.t.u. (but see comment later), though not with very great success.

Other HF5 users have had better results with the system in the clear, on a mast-top or even on the corner of a house, so that the radials were farther from the wall, but neither of these solutions was really practical for me at the time. Eventually, against much advice, I drove an aluminium post into the ground at the bottom of the garden and bolted my HF5 to that, feeding it underground through about 15 metres of UR43 coaxial cable, protected by a length of garden hose-pipe. There are trees pretty well all round it, some of them twice as tall as the antenna, and all the pundits say it will give lousy results. But it works, giving good contacts even with a low-power transmitter (see PW, October 1982, page 54). After over two years' exposure, the only corrosion is rust on a couple of self-tapping screws.

The graphs show the v.s.w.r. measured on the three lower bands. You can, of course, set the minimum to whatever part of the band is your particular interest. In wet weather, the v.s.w.r. minimum moves down in frequency by about 10 kHz on 3.5 MHz and about 25 kHz on 7 MHz . On 21 and 28 MHz the v.s.w.r. is between $1 \cdot 2: 1$ and $1.4: 1$ right across the band. I would advise against trying to extend the operating bandwidth of the HF5 on the 3.5 MHz band by using at a.t.u. to improve the match at the transmitter. I
tried this using a 100 W transmitter but the high voltage generated in the $3 \cdot 5 / 7 \mathrm{MHz}$ loading coil obviously caused a flashover. Result, one "dead" loading coil.

The HS-HF5 and HF5R are widely stocked by amateur radio retailers around the UK. Current prices are around $£ 40.25$ for the HF5 and $£ 29.90$ for the HF5R. Contact your local dealer or South Midlands Communications Ltd. for further details.

Geoff Arnold

The loading coil with its two "horns", and the trap

The HF5 base, with connections to five buried radials for improved soil conductivity

The v.s.w.r. obtained on the three lower bands with the HF5 on the ground post

YAESU FT-230R 144MHz FM Transceiver

Every month it seems that the Japanese electronics industry produces yet another 144 MHz transceiver to make the radio amateur's choice even more difficult.

Yaesu's latest contender in the f.m. only mobile lists is the 25 W FT-230R-a smart and compact piece of equipment which performs as well as it looks.

Simple to operate, an essential requisite for safe mobile operation, the FT-230R has 10 programmable memories selected by a rotary switch on the front panel. Programming the memories can be a little confusing at first but once the hang of selecting the DIAL mode to tune the rig has been mastered and the fact that the displayed frequency changes as the required memory is selected, the operation becomes simplicity itself. The memories can be scanned by turning the memory switch to MS and pushing the MR button. A slide switch on the rear panel selects BUSY/MAN/CLEAR modes for scanning.

Frequency is displayed on a liquid crystal display showing the last five digits of the operating frequency. The display also indicates memory opera-

tion, priority channel, scanning and priority checking and memory shift operation. A red I.e.d. indicates that the rig is in transmit mode while a matching green l.e.d. shows that the squelch is open. An analogue meter indicates signal strength on receive and r.f. output power during transmit. Manual tuning is carried out by rotating the large knob below the digital display panel.

Repeater operation is catered for by the provision of 600 kHz shifts in both directions giving reverse repeater operation if desired. The audio toneburst is selected by a push-button on the front panel just above the 7-pin mic socket. If required the tone-burst can be switched to auto by operating a slide switch on the rear panel. This is only recommended for accessing repeaters still requiring a tone-burst for re-access. Also on the rear panel is the antenna socket (SO239) and the 12 V d.c. power socket which is also of the
screw-locking type-a good feature for a mobile rig as it makes life much safer.

Operating the rig was a pleasure and the reports received indicated that the output was clean and the audio very good. It must be pointed out though, that this was the fourth sample triedthe first three all suffered from such appalling audio quality on transmit that it was impossible for the other end of a QSO to even tell the sex of the operator! Obviously Yaesu have taken note of the complaints and it is understood that the necessary mods have been carried out to rectify the problem.

Receiver sensitivity was good and the squelch operated smoothly. The r.f. output measured 25 W at 13.8 V d.c. and on the low power setting was reduced to $2 \cdot 5 \mathrm{~W}$. When pushing out full power the current consumption was 4.7 A reducing to 1.8 A on low power. On standby the current drawn was 200 mA .

The handbook is good and clearly written and covers alignment and maintenance as well as operation and installation. A full circuit diagram and parts list is also included-useful when the rig is no longer a current model.

The FT-230R costs $£ 235$ inc. VAT from South Midlands Communications Ltd., SM House, Rumbridge Street, Totton, Southampton SO4 4DP, Tel: 0703 867333, to whom we extend our thanks for the loan of the review samples.

Dick Ganderton

M.J.AXSON B.A.G8WHG

The latest introduction to the amateur satellites currently in orbit is OSCAR 9, more commonly referred to in the UK by its pre-launch title of UOSAT.

After the successful launching of OSCAR 8 into a nearEarth circular orbit, the thoughts of AMSAT turned to more adventurous projects for dedicated radio amateurs to be known as the Phase 3 series satellites and which would be in elliptical orbit. However a number of people, principally in the UK, had the idea that an alternative route would be to introduce more of the non-technical population to the concept of satellite use and at the same time to provide facilities for scientific experimentation. Both projects were to be given the blessing of the appropriate authorities and to proceed in parallel.

UOSAT-OSCAR 9, which is the largest and most complex OSCAR spacecraft yet launched, was built by a team from the Department of Electronic Engineering at the University of Surrey, hence its name, who received support from AMSAT, the RSGB and various sections of industry. Unlike the other active satellites, UOSAT does not carry any transponders, since it is intended to be used for educational and scientific purposes rather than simply as a means of enhancing communication. To this end it carries a number of sophisticated experiments and has two onboard computers.

The experiments can be divided into two broad groups. Firstly, those on the scientific side. There is a series devoted to propagation experiments on various amateur bands. On the h.f. bands phase-related beacons, when activated, will be available on $7.050 \mathrm{MHz}, 14.002 \mathrm{MHz}$, 21.002 MHz and 29.510 MHz , all at output powers of

100 mW . Two further beacons in the microwave regions will be on 2.401 GHz and 10.470 GHz with a power output of 125 mW . There are two radiation detectors to provide information on solar activity and auroral effects, and a magnetometer experiment to study the earth's magnetic field. All of these will provide ample scope for the scientifically minded to carry out some meaningful research.

The second group, of the so-called educational experiments, are designed to be of more general interest, and are transmitted on the general data beacon at a frequency of 145.825 MHz with a power output of 350 mW . Much information is transmitted on the status of the spacecraft systems derived from sensors situated at vital points. These are available from time to time at various data rates and types of transmission, i.e.
$1200,600,300$ \& 110 baud ASCII
45.5 baud RTTY

10 or 20 w.p.m. c.w.
and synthesised voice.
These varying formats allow for a considerable range of sophistication in the ground receiving equipment. The voice synthesiser has been switched on on a number of occasions, at first just going through its vocabulary, but more recently giving telemetry reports, and it can be clearly received at the author's home in Cheshire on an ordinary 144 MHz band amateur transceiver (TR-9000) fed from a vertically polarised colinear antenna. The transmissions are n.b.f.m. and no pre-amplification is necessary. A friend who listened to the synthesised voice beacon did remark that it sounded rather like "an American Dalek with a cold", but that presumably originated with the programming of the synthesiser chip and not through any defect in the ground station!

Perhaps the most intriguing apparatus in this section is the camera. This is a solid-state charge-coupled-device (c.c.d.) and it will be pointed at the Earth to transmit SSTV pictures from orbit. The standard to be employed is rather higher than that usually used in amateur SSTV, being 256 lines $\times 256$ picture elements (pixels) and 16 possible grey levels, so good quality pictures should be obtained. Each frame will take apporoximately $3 \frac{1}{2}$ minutes to transmit and optimum resolution on the earth's surface is

The 46m antenna used to rescue OSCAR 9
photograph EIMAC VARIAN
expected to be 2 km . Full details of a suitable decoder to display the pictures on a domestic TV set have been published by AMSAT-UK, and p.c.b.s should be made available when the system is proven.

Finally, the spacecraft carries an engineering beacon with a power output of 650 mW on 435.025 MHz which will transmit further telemetry.

UOSAT was successfully launched from Vandenburg Air Force Base in the USA on board a Delta launch vehicle which also carried an SME spacecraft into orbit, on 6 October 1981. Work then commenced on loading data into the on-board computers from the Surrey ground control station in preparation for attitude control manoeuvres required before initiating the major experiments-this was a slower process than had been anticipated. The orbital height of approximately 540 km gives three useful orbits each day, with a further three at night, each averaging 10 minutes duration. The project manager, Dr. Martin Sweeting, graphically likened this aspect of the operation as attempting to de-bug a computer at the end of a noisy telephone line in your coffee breaks!"

However, all proceeded well until 4 April 1982, when through an unfortunate combination of circumstances, both the 145 and 435 MHz beacons were switched on together without the usual computer control being in operation. This de-sensed both spacecraft receivers and prevented the reception of further command signals from the ground.
Eventually, on 20 September 1982, after a number of unsuccessful attempts by various parties throughout the world, a team of amateurs from Stamford University (USA) using very high power u.h.f. equipment were able to switch the 145 MHz beacon off, so enabling Surrey to regain control of the spacecraft. The state of all systems appears to be good and work is continuing to achieve full operational status.

In addition to the information available from AMSATUK, the University of Surrey maintains a recorded information service on Guildford (0483) 61202, which is updated at frequent intervals and includes orbital predictions.

The Phase 3 Project

So far, the satellites discussed have been in relatively low, near-circular orbits. As was shown in Part 1 of this series, these have the disadvantages of short visibility times over fairly limited areas. High circular orbits would give a great improvement in coverage, but at a considerable cost in terms of power required from the launch vehicle. A compromise can be found by placing the spacecraft in an elliptical orbit and this is the plan adopted for the Phase 3 transponder project.

If an object in a circular orbit has its velocity increased, e.g. by firing a booster rocket, it will climb away from the earth. Unless the new velocity is greater than approximately $11200 \mathrm{~m} / \mathrm{s}$ (the escape velocity from the earth's influence), gravity will slow it down until a point is reached where the velocity is too low to maintain a circular orbit at that distance and the object will return towards the earth. Gravity will now act to increase the velocity and the process will be repeated so sustaining an elliptical orbit (Fig. 3.1.). This is a very much simplified explanation but it may help in understanding the concept. The lowest point of the orbit is called the perigee and the highest, the apogee.
The Phase 3 project anticipates a perigee of 1500 km and an apogee of 35000 km , with the apogee initially being over the northern hemisphere of the earth. In practice this means that the spacecraft will be visible for periods of ten hours at a time over the northern half of the earth, i.e. most of the land masses including Europe, Northern

Africa, Asia and North America. Further, due to the nature of an elliptical orbit it will appear to be almost stationary (i.e. in the same part of the sky) for about 3 hours either side of apogee, a total of 6 hours per orbit.

These facts lead to some interesting conclusions about the equipment and antennas required by a station wishing to operate through the satellite, particularly in view of the proposed uplink and downlink frequencies which are in the 1.3 GHz and the 432 MHz band respectively. Calculations suggest that antennas with a gain of 20 dB would allow the use of a normal 432 MHz amateur band transceiver. The output could be transverted to 1.3 GHz so requiring a minimum of equipment.

A gain of 20 dB for an antenna sounds formidable for those used to thinking in terms of h.f. and v.h.f. frequencies, but at u.h.f. the physical dimensions are so much smaller that it becomes a practical proposition. The RSGB VHF/UHF Handbook shows a design for a 32 -element Yagi for 1.3 GHz which has a gain of approx 19 dB with an overall length of 2 metres. Two or more could be combined to give greater gain.

Don't think that the chimney would not stand up to the strain of such an array for there may be no need to put it up there. If the satellite is on a pass of say ± 30 degrees from overhead and the antenna has a 3 dB beamwidth of 20 degrees it may simply be pointed in a roughly vertical direction, so that it could be fixed on a short post just

The Phase 3b satellite due to be launched in mid-1983 AMSAT-UK/ESA above ground level. This would give the advantages of short feeder runs, no great wind loading and no planning approval required! Parabolic dish antennas would also be a practical propositon again situated at low level.

So when will it all happen? Sadly, it should already have done so, for the first Phase 3 satellite was on board the European Space Agency Ariane LO2 vehicle which was launched from the Guyana Space Centre on 23
continued on page $41 \mapsto$

Technical		
I have a new rig/linear/antenna which I am testing.	Ich habe eine neue Anlage/eine neue Linear welche ich probiere/eine neue Antenne die ich probiere	Ish habe aine noye anlage/eine noye linear velshe ish probiere/aine naoye antene dee ish probiere.
Is my modulation OK? Your modulation is good/bad.	Ist meine Modulation in Ordnung? Ihre Modulation ist gut/schlecht.	Ist maine modwlatsion in ordnwng. Eere modulatsion ist goot/shlecht.
What is my exact frequency?	Was ist meine genaue Frequenz?	Vas ist maine genawe frequents?
I'm using a speech compressor.	Ich benutze einen Spreechcompressor.	Ish benwtse ainen speechprocessor.
Does this make any difference?	Hören Sie einen Unterschied?	Hoeren zee ainen wntersheet?
Thank you for the test.	Danke für den Test.	Danke fir den test.
Social		
From the shack I can see mountains/sea/moors.	Von dem Schack (der Funkbude) aus sehe ich das	Fon dem shak (der fwnkbwwde) aws sehe ish das
	Gebirge/die See/die Heide.	gebirge/dee zee/dee haide.
I have a friend/wife/children in the shack with me.	Ich habe einen Freund/meine Frau/Kinder bei mir im Schack.	Ish habe ainen froynt/maine fraw/kinder bai mir im shak.
He is a visitor/a short wave listener.	Er ist ein Besucher/ein Kurzwellenhörer.	Er ist ain bezwcher/ain kwrtsvelenhoerer.
She is a visitor.	Sie ist eine Besucherin.	Zee ist aine bezwcherin.
He intends to sit his radio exam.	Er will seine Amateurradioprüfung machen.	Er vil saine amateurradioprifwng machen.
I am at home/at work/at a friend's house.	Ich bin zu Hause/am Arbeitplatz/bei einem Freund.	Ish bin tsw hawse/am arbaitsplats/bai ainem froynt.
This is a demonstration/special station/club station.	Dies ist eine Vorführstation/Sonderstation/Klubstation.	Deez ist aine forfirstatsion/zonderstatsion/klwbstatsion.
I have visited your country.	Ich habe ihr Land besucht.	Ish habe ear lant bezweht.
I hope to visit your country.	Ich hoffe Ihr Land zu besuchen.	Ish hoffe ear lant tsw bezwchen.
We had a nice time.	Wir haben viel Spass gehabt.	Veer haben feel shpas gehabt.
Excuse my German.	Entschuldigen Sie mein Deutsch!	Entshwldigen zee main doytsh.
I wish I could speak your language as well as you speak mine.	Ich wollte ich könnte ihre Sprache so gut sprechen wie Sie meine.	Ish volte ish koente eare shprache zo gwt shprechen vee zee maine.
Can we continue in English?	Können wir englisch weitersprechen?	Koenen veer english vaitershprechen?
May I say it in English?	Darf ich es auf Englisch sagen?	Darf ish es awf english zagen?
May I explain it in English?	Darf ich es auf Englisch erklären?	Darf ish es awf english erklayren?
QSL		
Could you please send me your QSL card?	Könnten Sie mir bitte eine QSLkarte schicken?	Koenten zee mir bitter aine kooesselkarte shiken?
I would be very pleased to get a QSL card from you.	Es würde mich freuen eine QSLkarte von Ihnen zu bekommen.	Es virde mish froyen aine Koo ess el karte fon eenen tsw bekomen.
I shall send you my OSL card via the bureau/direct.	Ich werde meine QSLkarte über das Büro/direkt schicken.	Ish verde maine koo ess el karte iber das biwro/deerekt shicen.
My name is in the American/British callbook.	Mein Name ist im Amerikanischen/Englischen Callbook (Rufzeichenliste).	Main name ist im amerikanishen/englishen callbook (rooftsaichenliste).
Is your name and address in the callbook?	Stehn Ihr Name und Ihre Anschrift in der Rufzeichenliste?	Shtayen eer name wht eare anshrift in der rooftsaichenliste?
Can you give me your address and telephone number over the air?	Könnten Sie mir Ihre Anschrift und Telefonnummer per Funk sagen?	Koenten zee mir eare anshrift wht telephonnwmer per fwnk zagen?
What is your postal code/telephone code?	Was ist ihre Postleitzahl/Vorwahlnummer?	Vas ist eare postlaitstaal/forwaalnwmer?
This is my address and my telephone number.	Heir sind meine Anschrift und meine Telefonnummer.	Here zint maine anshrift und maine telephonnwmer.
Concluding Remarks		
May I thank you once more for this call/contact and wish	Noch einmal besten Dank für diesen Ruf(Kontakt)/dieses	
you a very good morning/afternoon/evening/good weekend.	QSO und wünsche Ihnen einen guten Morgen/Tag/Abend/ ein gutes Wochenende.	QSO unt winshe eenen ainen gwten morgen/taag/abent ain gwtes vochenende.
Merry Christmas and a Happy New Year. I send you my best regards.	Fröhliche Weihnachten und glückliches neues Jahr. Herzliche Grüsse.	Froeliche vainachten wnt glikliches noyes yaar. Hertsliche grisse.

All the best to you and yours. I look forward to working you again. May I wish you 73,55, 88 and make this my final. Back to . . . from . . . who is waiting for any concluding remarks from you. So best wishes and good DX. Goodbye until next time/until the pleasure of seeing you again.	Alles Gute an Sie und Ihre Familie. Ich hoffe Sie bald wiederzuhören. Ich wünsche Ihnen dreiundsiebzig, fünfundfünfzig, achtundachtzig und mache jetzt mein Final. Zürück an ... von ... der auf ein paar abschliessende Bemerkungen von Ihnen wartet. Also alles Gute und gut DX. Auf Wiederhören bis zum nächsten $\mathrm{Mal} /$ bis zu unserem nächsten Gespräch (Kontakt).	Ales gwte an zee wht eere fameelie. Ish hoffe zee balt veedertswhoeren. Ish winshe eenen draiuntzeebtsig, finfuntfinftsig, achtwntachsig, wnt mache yets main feenal. Tswrik an ... fon . . . der awf ain paar abshleesende bemerkwngen fon eenen vartet. Alzo ales goote wnt gwt day ecs. Awf veederhoeren bis tswm nexten mal/bis tsw unzerem nexten geshpraych (contact).
Stating Future Intentions		
This is . . . signing off and clear with . . . and I am now standing by for a call on this frequency. ... now monitoring this frequency and waiting for any call. ... now changing frequency to now returning to the calling channel. . . . now going QRT.	(Callsign) verabschiedet sich hiermit von . . . und geht jetzt auf allgemeinen Empfang. Ich bleibe auf dieser Frequenz. . . . und warte auf einen Ruf auf dieser Frequenz. Ich schalte jetzt um auf . . . Ich gehe jetzt auf den Anrufskanal zurück. Ich mache jetzt QRT.	(Callsign) ferabshaidet zich hecurmit fon . . . wnt gayt yets awf algemainern empfang. Ish blaibe awf deezer freqvents. . . . wnt vartr awf ainen roof auf deezer freqvents. . . . ish shalte yetst wm awf ish gaye yets awf den anroofskanal tswrik. . . . ish mache yets coo er tay.
For those who have some knowledge of German there follows a list of the most common technical words and phrases. The pronunciation is not given.		
absorption wavemeter - der Absorptionswellenmesser ammeter - das Amperemeter amplifier - Der Verstärker amplitude modulation - Die Amplitudenmodulation antenna - Die Antenne antenna tuning unit - Der Antennen-Abstimmkries aurora - das Nordlicht auroral - Nordlicht auroral zone - Die Nordlichtzone balun - das Symmetrierglied beam - der Beam calibrator - das Eichgerät a carrier - Der Träger coaxial cable - Das Koaxialkabel coil - die Spule condenser - Der Kondensator continuous wave - die ungedämpfte Welle (c.w.) cross-modulation - Die Kreuzmodulation deviation - Die Abweichung dial - Die Skalenscheibe/Die Skala directional antenna - Die Richtantenne disturbance - Die Störung dummy load - die künstliche Antenne the earth - Die Erde to earth - erden earthed - zu Erde/geerdet fading - das Fading/der Schwund feeder - Die Verbindungsleitung/das Antennenkabel final stage - Die Endstufe fixed - fest	```frequency modulation - Die Frequenzmodulation fuse - die Sicherung groundwave - Die Bodenwelle high-pass filter - das Hochpass-filter indoor antenna - Die Zimmerantenne insulator - Der Isolator ionosphere - die lonosphäre jack - die Buchse lightning protection - Der Blitzschutz line of sight - auf Sichtweite lower sideband - Das untere Seitenband low-pass filter - das Tiefpass-filter metal case - Das Metallgehäuse a meter - Das Messgerät modulated wave - die modulierte Welle omnidirectional antenna - Die Rundstrahlantenne operator - Der Funker parasitic oscillations - parasitäre Schwingungen(f) plug - Der Stecker power supply - Das Netz/der Netzanschluss preset - voreingestellt preset potentiometer - der Trimmer pulse modulation - die Impulsmodulation radiate - strahlen/abstrahlen the range - Die Reichsweite readability - die Lesbarkeit receiver - der Empfänger repeater - der Umsetzer/die Relaisstation r.f. amplifier - Der h.f. Verstärker rotating antenna - die drehbare Antenne```	```a rotator - der Rotor satellite - der Satellit selectivity - Die Trennschärfe sensitivity - Die Empfindlichkeit shielded braiding - die abgeschirmte Litze short circuit - Der Kurzschluss sideband - Das Seitenband skip zone - Die Tote Zone sky wave - Die Raumwelle sound frequency - Die Tonfrequenz splatter - der Splatter standing wave - die stehende Welle switch - der Schalter to test - prüfen transceiver - der Senderempfänger transistor - der Transistor transmitter - der Sender troposphere - Die Troposphere tuned circuit - Der Schwingkreis to tune up - abstimmen upper sideband - Das obere Seitenband valve - die Röhre variable - veränderlich/variabel vertical antenna - eine vertikale/senkrechte Antenne voltmeter - das Voltmeter wavelength - Die Wellenlänge wavemeter - der Wellenmesser Yagi - der Yagi```

AUDIO FILTERS
 MODELS FL2, FL3, FL2/A

Model FL. 3 represents the ultimate in audio filters for SSB and CW. Connected in series with the loudspeaker, it gives variable extra selectivity better than a whole bank of expensive crystal filters. In addition it contains an automatic
notch filter which can remove a "tuner-upper" all by itself.
Model FL2 is exactly the same but without the auto-notch. Any existing or new FL2 can be up-graded to an FL3 by adding Model FL2/A conversion kit, which is a standalone auto-notch unit. Datong filters frequently allow continued copy when otherwise a QSO would have tobe abandoned.
Prices: FL2 £89.70, FL3 £129.37. FL2/A £39.67

ACTIVE RECEIVING ANTENNAS

Datong active antennas are ideal for
modern broadband communications
receivers-especially where space is limited.

- highly sensitive (comparable to full-size dipoles)

Broadband coverage (below 200 kHz to over 30 MHz).
needs no tuning, matching or other adjustments,

two versions AD270 for indoor mounting or AD370 (illustrated) for outdoor use Prices: Model AD270 (indoor use only) $£ 51.75$ Both prices include mains power unit. Model AD370 (for outdoor use) $£ 69.00$

MORSE TUTOR

The uniquely effective method of mproving and maintaining Morse Code proficiency. Effectiveness
proven by thousands of users world-wide

- Practise anywhere, anytime at your convenience.
- Generates a random stream of perfect Morse in five character groups.
- D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve educe the delay. The speed within each character always remains as set on the independent "SPEED" control.
- Features: long life battery operation, compact size, Price: £56.35 built-in loudspeaker plus personal earpiece.

Get the Most from your VHF equipment with a HAMPTRON
 VHF/UHF ANTENNA TUNING UNIT

IMPROVE YOUR V S W R!

We are often asked, 'Why and ATU at VHF?', well for exactly the same reason that apply at HF.
(1) Antennas are rarely 50Ω.
(2) Their VSWR is never constant across the band from CW, through SSB \& FM, to satellites.
(3) Many modern rigs are VSWR protected. Even a slight increase in VSWR can cause dramatic loss in output
4) Rotation of a beam can cause reflections from nearby objects.

Many customers are experimenting with long wires and with our AT-145Z (built-in balun) feeding rhombics, Vees and G5RVs.

USE FIXED OR MOBILE MATCHES 50-10/500 Ω 500W
AT-145 $£ 24.45$ SO-239 standard. N or BNC £23.75
AT-145Z $£ 32.31$ SO-239 plus terminals for built-in balun.
AT-145B $\quad \mathbf{E 2 8 . 4 5}$ SO-239 plus 1 m coax with car-radio plug.
$\begin{array}{lll}\text { AT-70 } & £ 26.33 & \text { Any connector to order, see you on } 4 \mathrm{ml} \text {. } \\ \text { AT-432 } & £ 28.65 & \mathrm{~N} \text { standard, others to order, ideal for ATV. }\end{array}$
YOU MUST HAVE A WAVEMETER! Over two thousand of our WM-2 two meter
The cover $130-300 \mathrm{MHz}$, well past the second harmonic demanded by the Home Office, and are VERY sensitive. $£ \mathbf{2 2 . 9 5}$
WM-4 for 4 m , similar to WM-2 and the same price.
WM-7 for $70 \mathrm{~cm} 400-900 \mathrm{MHz} £ 24.85$.
2-XY POLARISATION SWITCH fot XY antennas. Gives Vert, Horiz, righthand and lefthand polarisation. $\mathbf{£ 3 4 . 4 5}$. With built-in antenna tuner $\mathbf{£ 4 4 . 9 5}$.
All the products manufactured by Packer Communications of Coniston are now being produced by:

HAMPTRON

SANDERSON CENTRE, GOSPORT, HAMPSHIRE
Access - Visa - American Express Cards welcome.
Allow 14 days tor delivery.

Modern Receiver Front ~End Design

part 1

G.W.GOODRICH

The keen radio amateur, short wave listener, or for that matter anybody else interested in communications receiver design, can hardly have failed to notice that some of the traditional design concepts of the superhet are slowly being superseded by modern, and to my mind at least simpler, techniques at the front-end of the system. However, I will qualify this statement by saying that actually generating the local oscillator frequency appears more complex in commercial equipment, due to the use of MPU driven digital frequency systems.

The use of higher, and yet higher, first i.f.s in the conversion process has meant that image responses can, with suitable pre-selection arrangements, be reduced to a minimum. This, along with the use of very efficient passive mixers and suitably narrow crystal filters for these high i.f.s, means that the home designer/constructor no longer needs to consider the double conversion technique in order to guarantee a reasonable performance in communication terms.

This article discusses, in simple terms, the implications of the modern single conversion approach, and how this may affect the potential designer/constructor.

The Traditional Superhet

The "traditional" double conversion superhet is a very complex beast indeed. I spent a lot of time in the early 70s looking at amateur designed receivers while researching data for my own project, and I have developed a great deal of respect for designers, such as G2DAF who produced a superb "advanced amateur receiver". Frankly, if I had been interested in designing my own equipment at this time, I would have given up long before drawing the block schematic!!

The problem for the designer of the traditional superhet front end, as shown in block schematic form in Fig. 1, was to provide enough selectivity to help alleviate crossmodulation and image responses. However, bearing this in mind, the designer also had to provide r.f. amplification to overcome noise generated in the mixer stages, and inherent noise in the rest of the receiver's circuitry.

In fact he had to work against himself, in that he was actually encouraging the very interference he was trying to filter to appear at the input to the first mixer. For this reason the local oscillator and the pre-selector (or r.f. tuning if you prefer) needed to be arranged in such a way that only the desired signal would find its way to the first mixer, whilst the local oscillator would provide the correct frequency to generate the desired i.f.

The usual method of achieving these goals was to track the r.f. pre-selection circuits with those of the local oscillator, the circuits' relationships to one another being designed such that the local oscillator ran higher, or lower, in frequency terms in order that a fixed i.f. would appear at the output of the mixer stage.

At a first glance it might appear to be quite easy to achieve such a condition. If the two circuits shared a common spindle to their respective variable capacitors, surely all the designer needed to do was to add a bit of inductance or capacitance to one circuit to create the ideal relationship? Inevitably it is not quite as simple as this. Why? Considering the equation used to derive the resonant frequency of a tuned circuit, it will be remembered that frequency is inversely proportional to the square of the product of two co-efficients, namely inductance and capacitance.

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \quad \text { so } \mathrm{f}_{\mathrm{r}} \propto \frac{1}{\sqrt{\mathrm{LC}}}
$$

The implications of this law are easier to understand by studying the graphs (Fig. 2). Fig. 2(a) shows the resonant frequency curves for two similar tuned circuits, except that the circuit giving curve T2 has a small amount of extra capacitance in parallel with the main tuning capacitor. If we look at the relationship between the two curves, we can see that the two circuits do not track one another constantly over the whole range. In fact there is only one point where the i.f. produced at the mixer was correct, and the error grows very quickly either side of this point. So by

Fig. 1: Traditional superhet front-end

The need to provide the small tuning bands, to reduce tracking errors as previously described, coupled with the complexity of switching and aligning them, must have caused would-be constructors to give up. I am sure that I would have been numbered with them.

Part 2 will look at the modern approach to receiver design and how the latest technology has helped.

INTRODUCING OSCAR 3

- ${ }^{\text {D continued from page } 35}$

May 1980. Unfortunately, one of the first stage engines of LO2 failed and the vehicle and its payload ended up in the Indian Ocean instead of in earth orbit. AMSAT immediately authorised the completion of the back-up

satellite 3b which is now awaiting launch on a later Ariane vehicle. It was initially hoped that this would take place in 1982, but further problems have taken place with the launch vehicle and it is now likely that it will be at least mid-1983 before another attempt to put the Phase 3 satellite in orbit will be made. However, it should be worth waiting for!
 by E.A.RULE Part 2

Distortion and SINAD Meter

Following the circuit considerations of Part 1 the second part of this article details the constructional phase of this versatile instrument.

Construction

Although full construction details are given, many readers will prefer to construct a chassis to match in with existing equipment. There is nothing against this, but great care should be taken to ensure that screening between the various sections and their general layout is carefuly followed as shown. This aspect of construction is most important as we are dealing with circuits that have a high overall gain between input and output ($\times 10000$) and which are also of relatively high impedance. Particular attention should be given to the way switching has been carried out, do not be tempted to use less wafers to save on switching costs because stray capacitance coupling across switches can completely prevent satisfactory operation. (The author found out the hard way!)

Front Panel and Chassis

The rear layout of the front panel is shown in Fig. 2.1 and consists in fact of one sheet of aluminium folded into an "L" shape. No measurements are given for the indicating meter cut-out as this will depend on the type used, but it should be arranged so that its vertical centre line is on the same line as the voltmeter range switch. All other front panel measurements may be obtained from the twothirds scale Fig. 2.1. The printed circuit mounting holes are best positioned by laying the finished boards in place and marking through their holes and then drilling the chassis to suit.

Details of the screens required are shown in Figs. 2.1, 2.2 and 2.3. The one mounted over the bridge section is best made from thin tinplate which is easy to form and can then be soldered into its final position with the help of solder tags fitted to switch S3 and the bridge potentiometers. Alternatively, brackets could be used and screwed to the front panel, but this would mean that the screws would be seen from the front. The other screen is made from aluminium and fixed in position by screws in the chassis.

The meter movement will also need screening while the unit is being tested without the main screens in place. This screen is formed by wrapping a thin tinplate strip around the meter and connecting to earth as shown in the main layout wiring diagram. It can then be left in position permanently. Calibration marks for the dB scale of the meter can be obtained from the prototype photograph used in the heading.

Case Construction

This is simply a wrap-around case made from one sheet of aluminium to form the top and sides to which is fitted another folded aluminium sheet to form a back. A commercial case of suitable size could be used for the $P W$ Durley, with the overall size of the front panel/chassis modified to suit.

Control Assembly

If switch kits are used to make up the main switches these should be assembled first. They should be carefully checked to ensure that they are correctly assembled and that the end stops are in the correct positions. Check all wafers for position and don't forget the metal screen fitted between the wafers, this screen is very important. The FREQUENCY selector switch S3 has a dummy wafer fitted in its centre and this is used to anchor the common ends of capacitors etc. The required spacing of the various switches will be shown in Part 3, and is correct for the switch types specified. Other types of switch may need modified spacing. When mounting the finished switches onto the panel, make sure the wiper contacts are positioned as shown in the diagrams.

The various potentiometers, l.e.d.s and sockets can be assembled and when all controls have been fitted the two screens should be checked for size and fixing. These screens should then be removed while wiring is carried out. The meter should be fitted last, after any extra drilling or filing has taken place. Control spindles should of course be cut to the correct length to suit the knobs before fitting onto the panel.

Pudurtif

components

Resistors		
$\frac{1}{4}$ W 2% Carbon film		
$9 \cdot 1 \Omega$	1	R37 (100 2 and 10Ω paralleled)
82Ω	1	R36
91』	1	R31 (100Ω and $1 \mathrm{k} \Omega$ paralleled)
820Ω	2	R30, 35
$8.2 \mathrm{k} \Omega$	2	R29, 34
$82 \mathrm{k} \Omega$	2	R28, 33
$820 \mathrm{k} \Omega$	2	R27, 32
$\frac{1}{4}$ W 5\% Carbon film		
100』	2	R4, 19
150Ω	3	R67, 68, 64
470Ω	2	R24, 26
560Ω	2	R65, 66
600Ω	1	R3 ($2 \times 1.2 \mathrm{k} \Omega$ paralleled)
820Ω	1	R72
$1 \mathrm{k} \Omega$	9	R2, $9,10,18,41,49,56,61,62$
$2.7 \mathrm{k} \Omega$	1	R70
$5.6 \mathrm{k} \Omega$	4	R21, 51, 54, 58
$10 \mathrm{k} \Omega$	4	R1, 38, 40, 47
15Ω	1	R42
$22 \mathrm{k} \Omega$	2	R13, 14
$27 \mathrm{k} \Omega$	1	R43
$47 \mathrm{k} \Omega$	1	R7
$100 \mathrm{k} \Omega$	8	R39, 46, 48, 50, 53, 57, 60, 69
$120 \mathrm{k} \Omega$	2	R16, 44
$1 \mathrm{M} \Omega$	2	R17, 71
1W 5\% Carbon film		
$2.7 \mathrm{k} \Omega$	4	$R 5,23,45,63$
Miniature horizontal preset		
$10 \mathrm{k} \Omega$	3	R52, 55, 59
Linear Carbon track potentiometer		
$2 \mathrm{k} \Omega$	1	R25
$5 \mathrm{k} \Omega$	3	R8, 11, 22
$100 \mathrm{k} \Omega$	2	R6, 20
Ganged linear potentiometer		
$100 \mathrm{k} \Omega$	1	R12/15
Capacitors		
Polyester		
10 nF	2	C6, 7
22 nF	1	C17
32 nF	2	C4, 5
68 nF	1	C18
$0.1 \mu \mathrm{~F}$	6	C2, 3, 22, 29, 41, 42
$0.22 \mu \mathrm{~F}$	3	C1, 19, 21

Resistors
$\frac{1}{4} W 5 \%$ Carbon film
2 R24,26
$600 \Omega \quad 1 \quad \mathrm{R} 3(2 \times 1.2 \mathrm{k} \Omega$ paralleled)
$1 \mathrm{k} \Omega \quad 9 \quad \mathrm{R} 2,9,10,18,41,49,56,61,62$
$\begin{array}{lll}2.7 \mathrm{k} \Omega & 1 & R 70 \\ 5.6 \mathrm{k} \Omega & 4 & \text { R21,51,54,58 }\end{array}$
$10 \mathrm{k} \Omega \quad 4 \quad \mathrm{R} 1,38,40,47$
$\begin{array}{lll}15 \Omega & 1 & R 42 \\ 22 \mathrm{k} \Omega & 2 & \mathrm{R} 13,14\end{array}$
$27 \mathrm{k} \Omega$ 1. R43
$47 \mathrm{k} \Omega \quad 1$ R7
,
$120 \mathrm{k} \Omega \quad 2$ R16,44
W 5\% Carbon film
$2.7 \mathrm{k} \Omega \quad 4 \quad \mathrm{R} 5,23,45,63$
Miniature horizontal preset
$10 \mathrm{k} \Omega \quad 3 \quad$ R52,55,59
Linear Carbon track potentiometer
anged linear potentiometer
Capacitors

Circuit Boards

The component and track layouts for these are shown in Fig. 2.1, no problems should be encountered.

Start assembly with the smaller components and progress to the larger ones as assembly proceeds. Pay particular attention to the polarity of electrolytics and diodes

Polystyrene		
33 pF	1	C 26
220 pF	1	C 25
330 pF	2	$\mathrm{C} 12,13$
680 pF	1	C 14
1 nF	6	$\mathrm{C} 10,11,20,35,40,49$
$2 \cdot 2 \mathrm{nF}$	1	C 15
$3 \cdot 3 \mathrm{nF}$	3	$\mathrm{C} 8,9,28$
$4 \cdot 7 \mathrm{nF}$	2	$\mathrm{C} 30,31$
$6 \cdot 8 \mathrm{nF}$	1	C 16

Electrolytic single-ended p.c.b. type

$2 \cdot 2 \mu \mathrm{~F}(63 \mathrm{~V}) 6$	$\mathrm{C} 32,34,38,46,4750$
$22 \mu \mathrm{~F}(16 \mathrm{~V}) 5$	$\mathrm{C} 27,33,36,37,39$
$22 \mu \mathrm{~F}(50 \mathrm{~V}) 2$	$\mathrm{C} 48,51$
$470 \mu \mathrm{~F}$	
$(63 \mathrm{~V})$	3

Air spaced trimmer

$5-65 p$	1	C24
C23	1	see text
Cx	1	see text

Semiconductors
Integrated circuits $\begin{array}{lll}\text { LF353 } & 3 & \text { IC1, 2, } 3\end{array}$

Diodes

BZX61C 18V 2	D11, 12	
OA202	4	D13, 14, 15, 16
TIL209	7	D1,2,3,4, 7, 9, 10
1N4148	3	D5, 6,8

Switches

Midget wafer

$1 p 6 w$	1	$S 4$
$2 p 6 w$	1	$S 1$

Rotary switch assemblies

$2 p 7 w$	1	$S 5$
$4 p 6 w$	1	$S 3$

$8 p 3 w \quad 1$ S2
Miniature toggle
d.p.s.t. 1 S7
d.p.d.t. 1 S6

Miscellaneous

20-0-20V 6VA transformer; 1A bridge rectifier; $0-1 \mathrm{~mA}$ f.s.d. meter RS 259-640 or equivalent; aluminium sheet; p.c.b.s; BNC sockets (2); knobs (12)
as with a split rail power supply the negative end is not always at earth potential, so be extra careful regarding this point. The use of Veropins for the terminations is recommended, although some constructors may prefer to solder the wires directly through the holes onto the copper track. The author prefers the use of pins as it makes it easier to remove the board for any reason at a later date.

Once the components have been assembled into the board, the tinplate screen (Fig. 2.3) can be fitted over the input end of the main p.c.b. It is held in place by soldering to the earth pins, numbered 17, 18 and 19. A strip of Sellotape is wrapped around part of its bottom edge to prevent possible shorts to the i.c. pins or components.

Fig. 2.2: Details of the 18 s.w.g. folded aluminium input section screen located over SK1, S1, 2 and 5

Final Wiring

As only low current is flowing, the wire gauge may be small and $7 / 0.2 \mathrm{~mm}\left(0.22 \mathrm{~mm}^{2}\right)$ tinned copper wire with pve insulation is suitable. A number of different colours will be found helpful in identifying the various circuits. The screened wire may be of the lapped braid type approximately 2 mm diameter with a $7 / 0 \cdot 1 \mathrm{~mm}$ inner conductor.

The switches should have their components fitted before they are assembled onto the front panel and the layout and connections for these are shown in Figs. 3.1, 3.2 and 3.3 for the main switches. The layout for the other switches can be seen in the main wiring diagram, Fig. 2.1. Warning: When soldering components to the three main switches use only the minimum amount of heat and solder to ensure a good joint as the solder tends to flow along the switch contact into the centre and blocks the end. Once this has happened it is almost impossible to remove and the switch
is ruined. A pair of long-nosed pliers used as a heat shunt will be found helpful. This is something else the author found out the hard way, so be warned!

It should be noted that certain screened leads only earth by their braiding at one end. Others are earthed to certain earth points which may not be the nearest to where the inner connects. This is done deliberately so as to avoid earth loops which could prevent low signal measurements.

WRM765

Fig. 2.3: The folded tinplate p.c.b. screen

Remember that properly constructed this instrument can measure signals as low as $20 \mu \mathrm{~V}$ - this level of signal is often less than that arriving at the average radio antenna! Once wiring is complete it can be tidied up by the use of cable ties. The unit is now ready for testing.

Fig. 2.4

Testing and Setting-up

The following minimum equipment is required to set up the $P W$ SINAD/IHFM meter. The inherent accuracy of the equipment used will determine the final accuracy of the meter and because of this should be of the highest standard possible.

1: An audio signal generator with either a calibrated output attenuator or a calibrated output meter. The generator should cover the frequency range of at least 15 Hz to 100 kHz and be level to $\pm 0.25 \mathrm{~dB}$ over this range, or better. The actual voltage output level should also be known to within 0.25 dB or better.

Alternatively, a lower quality signal generator could be used with an accurate voltmeter and frequency counter to monitor its output.

2: An oscilloscope with a sensitivity of at least $1 \mathrm{~V} / \mathrm{cm}$ (most are much better than this).

3: A multi-range meter for checking voltages around the circuit.

Part 3 - Setting-up, uses and test procedures.

Wertern

Buying A Telescopic Mast? THE CHOICE IS YOURS! (and don't say we didn't tell you!)

You may choose the ULTI-MAST

which is the mast designed by our Qualified Structural Engineering Department with full Engineering Calculations

OR

You can simply buy 'A Mast'
Of course, the manufacturer probably doesn't publish a specification because he doesn't really know anything about designing! (Or, he's probably copied a 'spec' from somewhere else and hopes his mast will do the same job!)

DESIGNED TO BRITISH STANDARD CP3, MADE BY WELDERS CERTIFIED TO BS.4872.

Abstract

SPECIFICATION Headload, horizontal 45 kg un-guyed at 100 mph . Height raised 9 m (30ft), lowered 4.75 m (15.5 ft), tilted over 1.1 m (3.6 ft), galvanised to BS. 729 .

The ULTI-MAST is a tubular steel two-section mast which is telescopic and tilt-over. Constructed of two steel tubes- the lower square section and the upper round section- and hot-dip galvanised for corrosion resistance, the ULTI-MAST telescopes up to 30 ft (9 m) and down to 15 ft (4.5 m). Secured to a square section tubular base post, the mast can be tilted over to only $3 \mathrm{ft}(1 \mathrm{~m})$ above the ground for ease of access to antennas. Two head units allow clamping or rotor to $2^{\prime \prime}(50 \mathrm{~mm})$ dia. stub, or internal flat plate mounting.

PRICES (Carr. \& VAT inclusive) UM-1. "ULTI-MAST" £251.85 UHD-1. "REDUCER" Head Adaptor provides 2" O.D Top Tube for Rotor Attachment. £16.10 UHD-2. Head Unit takes Rotor Inside. £35.65 * Slim and unobtrusive * One-winch operation \star Simple ground fixing * Self-supporting \star For HF and VHF antennas

BUY NOW and we will give you FREE
our WE-1145 Rotator if you'll send us a photo of your ULTIMAST when you have erected it

ULTI-MAST. . .THE ULTIMATE MAST DESIGN GIVING MAXIMUM PERFORMANCE FOR MINIMUM COST

"BEST BUY" the WE-1145
Supply- $220 / 240 \mathrm{~V}$ AC 50 Hz
Motof- 24 V AC
Rotation- $360^{\circ}\left(1+5^{\circ},-0_{z}\right)$ in 60 seconds
Braking Torque- $1000 \mathrm{Kg}-\mathrm{cm}$
Silent control box, lower bracket included good value at
There are 100s of WE-1145 in use and this really is at "BEST BUY", You There are 100s of WE-1145 in use and this really is a "BEST BUY". You could pay more for an inferior rotor! Get yours now before price rise Also available for HF beams is the WE-1144 at

Mast size- $28-44 \mathrm{~mm}$
Mast size- $28-44 \mathrm{~mm}$
Max. antenna weight: 50 kg
Wind area (max.) 0.25 m
Cable- 5 -way
could pay
£74.95

SSB POWER METER gives steady reading on speech

The PM 2000A is an accurate means of measuring your peak envelope out put of power on SSB. The unit has been inspected by the Home Office and pose. SWR measure ments can also be made but the PM 2000A does what all other SWR meters cannot do, i.e., tell your peak cutout power as required in your licence. PRICE $\mathbf{E 5 9 . 9 5}$

PM 2000A 1.5, 30MHz, 2kW. PM 2001 50, 150MHz, £46
OPEN HOURS: 09.00 - 12.00; 13.00-17.00, Mon - Fri; SATS 09.00-12.00

PLEASE NOTE that all our Dual Gate MOSFET 2 m pre-amp and Power/Preamps have always used the BF981.

S.E.M. TRANZMATCH

The most VERSATILE Ant. Matching system. Will match from 15-5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO239 and 4 mm connectors for co-ax or wire feed. 160-10 metres TRANZMATCH £69.60. 80-10 metres $£ 62.60$. EZITUNE built in for $£ 24$ extra. (See below for details of EZITUNE). All ex stock. We sell many more with EZITUNE fitted.
3 WAY ANTENNA SWITCH 1 Kw SO239s. Good to 2 metres. $\mathbf{£ 1 5 . 0 0}$ Ex stock.
S.E.M. 2 METRE TRANZMATCH. $53^{\prime \prime} \times 2^{\prime \prime}, 3^{\prime \prime}$ deep. SO239s. $£ 24.90$ Ex stock.
S.E.M. EZITUNE (with New Look)

Because no similar unit is made, it's usefulness is not appreciated until you have used one.
We could not improve its performance, so we improved its appearance. Clean up the bands by tuning up without transmitting.
Connects in aerial lead, produces $S 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. or aerial for minimum noise. You have now put an exact 50 Ohms into your transceiver. Fully protected, you can transmit through it, save your P.A. and stop QRM. SO239s. $£ 29.50$ Ex stock. P.c.b. + instructions to fit in any A.T.U. £24 Ex stock.
SENTINEL 2M LINEAR POWER/PRE-AMPLIFIERS
Now feature either POWER AMP alone or PRE-AMP alone or both POWER AND PRE-AMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from 0 to 20dB. N.F. around 1dB with a neutralised strip line DUAL GATE
MOSFET. MOSFET.
Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8 V nominal supply. SO239 sockets.

Three Models:

1. SENTINEL 35 Twelve times power gain. 3 W IN 36 W OUT. 4 amps . Max. drive $5 \mathrm{~W} .6^{\prime \prime} \times 21^{\prime \prime}$ front panel, $42^{\prime \prime}$ deep. $\mathbf{f 6 2 . 5 0}$ Ex stock.
2. SENTINEL 50 Five times power gain. 10W IN 50W OUT. Max. drive 16 W 6 amps. Same size as the Sentinel $\mathbf{3 5} \mathbf{~} \mathbf{£ 7 4 . 5 0}$ Ex stock.
3. SENTINEL 100 Ten times power gain. 100 W IN 100 W OUT. Max. drive 16 W . Size: $6 \mathrm{y}^{\prime \prime} \times 4^{4 \prime}$ front panel, $33^{\frac{1}{2}}$ deep. 12 amps . $£ 115$ Ex. stock.
POWER SUPPLIES for our linears $6 \mathrm{amp} £ 34.12 \mathrm{amp} £ 49$.
SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER
1dB N.F. and 20dB gain, (gain control adjusts down to unity) 400 W P.E.P. power rating. Use on any mode. 12 V 25 mA . Sizes: $11^{\prime \prime} \times 21^{\prime \prime} \times 4^{*}$. $£ 28.00^{*}$ Ex stock.

PA5 Same specification as the Auto including 240V P.S.U. $£ 33.00^{*}$ SENTINEL STANDARD PRE-AMPLIFIER $\mathbf{£ 1 5 . 0 0 ^ { * }}$ Ex stock.
PA3. 1 cubic inch p.c.b. to fit inside your equipment. $£ 10.00 \mathrm{Ex}$ stock. 70 cm versions of all these (except PA5) $\mathbf{£ 4 . 0 0}$ extra. All ex stock.
S.E.M. AUDIO MULTIFILTER

To improve ANY receiver on ANY mode. The most versatile filter available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hi -pass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to 20 Hz . Tunable from 2.5 KHz to 250 Hz . PLUS another notch available in any of the four switch positions which covers 10 KHz to 100 Hz . 12 V supply. Sizes: $6^{\prime \prime} \times 22^{\prime \prime}$ front panel, $32^{\prime \prime}$ deep, all for only E 57.00 Ex stock.

SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz}$, 15 dB gain. Straight through when OFF, 9-12V. $21^{\prime \prime} \times 12^{\prime \prime} \times 3^{*}$. 200 W through power. $\mathbf{£ 1 9 . 5 5 ^ { \circ }}$ Ex stock.
SENTINEL STANDARD H.F. PRE-AMPLIFIER. No R.F. switching. $£ 12.62^{*}$ Ex stock.
S.E.M. IAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching, $\mathbf{£ 3 4 . 5 0}$ Ex stock. Twin paddle touch key. $£ 12.50$ Ex stock.
S.E.M. VISA 80 METRE RECENER

Already a great success. If you want an 80 metre ($3.5-3.8 \mathrm{MHz}$) Rx. Only $2 \mathrm{l}^{\prime \prime} \times 6^{\prime \prime} \times$ $3^{3} .12$ volt operation. I.W. o / p. This is for you. Still only $£ 39.00$.

FREQ. CONVERTERS from 10 KHz to 2 metres in stock.
12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service. -Means Belling Lee sockets, add $£ 1.90$ for SO239s or BNC sockets. Ring or write for more information. Place orders or request information on our Ansaphone at cheap rate times.

The radiations that we receive from our sun, catalogued by astronomers as a main sequence G2 type star, provide the right conditions for the existence of life on the earth. Its radiations also provide us with the ionosphere, a series of ionised layers from about 80 to 500 km in altitude which allow us to communicate around the world on the h.f. (short wave) bands.

Solar Ionising Radiations

Both X-rays and hard ultraviolet (uv), with wavelengths from around 1000 to $1 \AA$ ngstrom (\AA) (an Angstrom is equal to one hundred millionth of a centimetre), are the main source of ionising radiation responsible for producing and maintaining the ionosphere.

The ionosphere consists of not one, but several different layers of ionisation, Fig. 1. The most important of these are the D, E and F layers, although by day the F layer splits in two: the F_{1} and F_{2} layers. The reason that different layers are formed is that the atmospheric composition changes with altitude and different wavelengths of uv or X-radiation interact with different molecules or atoms and thus a layered structure results. Ionisation occurs by the process of knocking one or more electrons off an atom or molecule in the atmosphere. The resulting free electrons form a conductive cloud which is able to reflect radio waves.

The larger the number of free electrons that exist in a particular layer, the higher the frequency that can be reflected by that layer. The maximum usable frequency (m.u.f.) for a radio circuit where the ground take-off angle is A (see Fig. 1) is given by the formula:

$$
\mathrm{f}_{\mathrm{m} . \mathrm{u} . \mathrm{f} .}=\frac{9 \sqrt{\mathrm{~N}_{\max }}}{\sin \mathrm{A}}
$$

(Equation 1)
where $\mathrm{N}_{\text {max }}$ is the maximum concentration of free electrons per cubic centimetre of the layer. The critical frequency for a layer is equal to the m.u.f. when the angle of incidence is 90 degrees. That is, when the transmission is directed vertically upwards. Although this situation is not particularly useful as far as communication is concerned, it does allow us to measure indirectly (via equation 1) the state of the various ionospheric layers.

The ionising radiations that produce the ionosphere arise in the upper atmosphere of the sun and increase with the number and extent of "active" regions on the sun.

[^1]These regions are manifest in various spectral emissions from the solar chromosphere as light areas called plage, Fig. 2. One of these narrow bands of radiation is produced by hydrogen at a wavelength of $6563 \AA$ and has a beautiful red colour which may be seen with the aid of an appropriate filter or a spectrohelioscope. The underlying agency responsible for the active region is a system of concentrated magnetic fields. Usually at some stage during the lifetime of these active regions a phenomenon occurs which is visible in white light and that is the development and growth of a sunspot group on the solar disc. Sunspots are relatively cool areas which appear dark on the otherwise brilliant surface, Fig. 3(a). When examined with greater magnification it can be seen that the larger spots have an internal structure. The central dark region called the umbra is surrounded by a somewhat lighter filamentary area called the penumbra, Fig. 3(b).

We have written evidence that man has been aware of sunspots for at least two millenia, but it has only been since the development of long range communication that they have had a vital significance for us. Because sunspot groups are associated with solar active regions, and because these are associated with solar and X-ray emissions, which in turn produce free electrons in the ionosphere, we might naturally assume that there is some correlation between the number of sunspots on the solar surface and the m.u.f. over a given communication path. This is indeed so, if we choose the right "index" to represent the sunspot population on the sun at any one time.

Fig. 1: Outline of the ionosphere. Region F, which reflects $h . f$. and is formed by uv radiation from 100 to $1000 \AA \AA$, contains the bulk of free ionisation. The E region reflects m.f. at night (when the D region does not absorb) and is produced by radiation from 10 to 100Å. Region D is an ill-defined layer which causes radio-wave absorption and is produced by uv wavelengths greater than $1000 \AA$ during quiet solar conditions or by 1 to $10 \AA$ X-rays from solar flares

The Sunspot Number

It is not sufficient simply to count the number of individual spots, because the surface area covered by each sunspot may vary enormously. It would, of course, be possible to measure the total area occupied by sunspots and it turns out that this method does in fact yield a good index of solar activity. However, the measurement of area requires accurate equipment, good drawing skill and a considerable amount of time - fortunately this is not necessary.

Around the middle of the last century Rudolph Wolf, the first director of the Zurich Federal Observatory,

Fig. 2: Photograph of the sun as seen in the light of hydrogen at a wavelength of $6563 \AA \AA$. The light areas called plage indicate active regions on the sun. The dark ribbons are termed filaments and are huge clouds of gas suspended in the solar atmosphere by magnetic forces

Learmonth Solar Observatory Photograph
defined a relative sunspot number by the formula:

$$
\begin{equation*}
\mathrm{R}=\mathrm{k}(10 \mathrm{~g}+\mathrm{s}) \tag{Equation2}
\end{equation*}
$$

where g is the number of sunspot groups visible, and s is the total number of individual spots, or more correctly the total number of umbra, comprising these groups. The term k is an observer correction factor, close to one which takes into account different observing equipment and observer efficiency or "overeagerness". An uncorrected relative sunspot number would use a value where $\mathrm{k}=1$. It can be seen that this formula gives more weight to the number of groups or in effect the number of active regions on the sun. Although the formula is really an arbitrary one, it is amazing how well this number, when averaged over a month, or a year, has stood the test of time in correlating with many varied geophysical events.

As discussed before, the m.u.f. for a particular circuit, at a given time of day, shows variation according to the value of the monthly mean sunspot number. The variation is not complete because of the influence of other factors, the largest being a superimposed annual cycle. This cycle is due in small part to the changing earth-sun distance throughout the year, but mostly due to the changing angle at which the sun's radiation is incident on the upper atmosphere - the same effect that gives us the seasons.

Even monthly mean values of the relative sunspot number can show large variations from month to month and so it is common to compute a smoothed sunspot number R_{5} for a particular month. This is produced by averaging together the monthly values from $5 \frac{1}{2}$ months before to $5 \frac{1}{2}$ months after the particular month in question. When this is done and the value is plotted over many years, the display shown in Fig. 4 is obtained. The well known solar cycle of approximately 11 years between successive peaks is clearly apparent. The value of R_{s} can drop to 10 at times of solar minimum and has risen to almost 200 during the peak of 1957-58. This was the highest value ever seen in
over 300 years of record keeping and corresponded with m.u.f.'s that exceeded 70 MHz over some communication paths.

There is one other index of solar activity that should be mentioned and that is the value of solar radio noise at 3 GHz or a wavelength of 10 cm . This value follows the smoothed sunspot number quite closely (Fig. 5) and has the advantage of being totally objective, as compared with the subjective element that exists in sunspot counting. However, the relative sunspot number is likely to be with us for a long time to come, particularly in amateur circles, due in part to the comparative difficulty of constructing equipment to measure accurately radio signals on microwave frequencies.

Fig. 3: Photographs of the sun taken in "white" light. (Above) Full disc shows a number of spots formed into groups dotted across the surface. (Below) An enlargement of a group shows that spots have an internal structure with dark central umbra surrounded by the lighter penumbra

Learmonth Solar Observatory Photographs

Fig. 4: A plot of the sunspot number over the years of significant long range radio communication clearly shows the approximately 11 year long solar cycle

Observation and Drawing

Counting sunspots is an activity that can be accomplished with reasonably modest equipment. Never attempt to look at the sun directly, either through a telescope or with the naked eye.

A small telescope or even a pair of binoculars can be used to project an image of the sun onto a clean white surface. It is usually necessary to shield this surface from direct sunlight and this is most easily achieved by placing a screening board at the objective lens or eyepiece of the telescope. A small hole of the appropriate size will let through the desired light, Fig. 6.

To trace the sunspots accurately it is almost essential to have some kind of motor driven tracking on an equatorial mount. However, accurate drawing is not really required for the calculation of sunspot number. Even so, it is still a good idea to attempt at least a rough tracing of the image; the reason for this will be seen later.

Whatever equipment is employed, a tracing sheet should be prepared beforehand. This should include a

Fig. 5: This plot shows the degree of correlation between smoothed sunspot number and the radio output from the sun at $\mathbf{2 . 8 G H z}$ (for the current solar cycle)
circle of appropriate size and identification as to date and time drawn. Comments regarding equipment used, and viewing conditions are also helpful. Where possible, the viewed image should be at least 100 mm in diameter, although this may be difficult to achieve with small binoculars. A compromise is also necessary here in relation to image size and image movement - the larger the image, the faster it will appear to move across your tracing sheet. It is thus necessary to develop a technique of rapid sketching combined with frequent movement of the sheet. Even when a motor driven telescope is used and the tracing sheet can be stuck to the projection board, a small white card should be oscillated across a particular region just before drawing, in order to help distinguish real features on the sun from spots present in the manufacture of the drawing paper.

Once the sunspots have been traced, or at least a careful inspection of the solar surface has been carried out, it is necessary to determine the number of spot groups present. This is usually the most difficult part of the whole procedure, and even the definition of a group does not help us much here. A sunspot group is defined as being all those spots belonging to the same magnetic system. This is sometimes the only way that two close groups can be told apart, but it is not at all helpful to the observer who has no access to a solar magnetograph (and this even includes many specifically solar oriented observatories). How then, can we determine the number of sunspot groups at any time?

Fig. 6: A simple makeshift set-up for viewing projected solar images employs a pair of binoculars (only one monocular used), a shielding board and an imaging board. This apparatus was actually used to view a solar eclipse in 197ϵ high on top of a mountain in SE Australia. The author's wife records temperature and light values in the background. Eclipses historically helped identify the agencies responsible for producing the ionosphere

Sometimes the sun is kind to us and all the groups are well separated from one another, Fig. 7(a), thus providing no difficulty in identification. In the case where there are many spots fairly closely bound, Fig. 7(b), there are two main characteristics that may help us to decide whether there is one or more than one group present.

The first fact to remember is that all groups start life as a single or small group of black dots called pores. These may initially be only 2000 km across and are very difficult to see on a small scale projection. They then proceed through several stages of the evolutionary sequence depicted in Fig. 8. Not all groups go through all stages. Some

Fig. 7: Sunspot drawings illustrating cases where (left) six groups are clearly separated over the face of the sun and (right) a multiplicity of closely spaced groups makes identification very difficult

Drawings: Learmonth Solar Observatory
may start at A and develop right through to D and back again, while others may only go through the sequence $\mathrm{A}-\mathrm{B}-\mathrm{A}$. When a large D group decays it may end life as an H -spot which slowly disappears. It is also possible for a group that has nearly decayed to reform again.

The second fact that may help us unravel the groups is the time factor. If two or more groups exist side by side, it is unlikely that they will be in the same stage of their life cycle. Observation of the sun over several days is likely to show the different groups developing at different times. Herein lies the importance of keeping your daily sketches. Comparison of records on a daily basis will resolve many group division problems. Of course, if two close groups suddenly rotate into view around the sun's east limb, it may be necessary to go back and correct your records of sunspot number after you have observed them decay at separate rates. Even with the foregoing knowledge, sorting out close groups can be a problem. The only consolation is to realise that even the professionals "get it wrong" on occasion.

After the groups have been sorted out, the total number of spots must be counted. This should be done a group at a time using the oscillating card technique mentioned before. When finished, your daily sunspot number can be calculated by substituting the appropriate values into equation 2 . For the moment you should use a value for k of 1 . When you have a whole month's data an average value for that month can be computed. Obviously there will be some missing observations due to clouds, etc. Remember when calculating the average, to divide only by the number of days that you could observe the sun and calculate R.

If you continue your observations over several months, it is possible to scale your observations so that they are in accord with the world accepted Zurich or International sunspot values (from January 1981 the Brussels observatory has taken over this function from Zurich). It is necessary to locate a source of these numbers for comparison with your own. Sunspot numbers are published regularly in the Journal of Geophysical Research and also in a number of amateur radio publications. Your observer correction factor k can then be found by dividing the

Zurich (International) number by your sunspot number for the same month. For accuracy, this should be done for several months and the values of k so obtained averaged. This average k value can then be used at any time in the future in equation 2 . It is, of course, not necessary to go through the above procedure in order to examine trends in sunspot number: the uncorrected value is perfectly adequate.

Before leaving the subject of observation and drawing, it should be pointed out that sunspots can be counted from a photograph. A student in an astronomy class that the author recently conducted obtained good sunspot photos using a 35 mm camera, a telescopic lens and lots of neutral density filters. A note of caution should be issued here. The sun emits sufficient radiation in the visible and infrared to be dangerous to the naked eye. When focused by an optical system it will quickly destroy any retina. Never look at the sun through any unprotected telescope or equivalent.

Whichever safe method you do choose to examine sunspots, you will find their progression and development across the face of the sun fascinating. Combined with monitoring of the h.f. bands, you will come to a greater understanding of the long term effect our nearest star has on our terrestrial environment. You may even notice on occasion, that phenomenon called short wave fade (s.w.f.) whereby the signal from a station in the sunlit hemisphere of the earth may disappear for a period ranging from a few minutes up to an hour. This is the time when the sun shows its other face - a face of violence and turmoil.

The Active Sun

Although the sun is responsible for giving us long-range short wave communication, it is also at times responsible for the disruption of this communication.

Occasionally the enormous energy stored in the solar magnetic field concentrations is released over a short time interval and large numbers of high energy, or hard, X-rays are produced. Simultaneous with this release it is usually possible to observe a sudden brightening, or flare at the red Hydrogen-alpha wavelength, and also an abrupt in-
crease in the solar microwave output at wavelengths from 3 to 10 cm . It is the X-rays, however, that are responsible for the radio fades. With very short wavelengths, in the order of 1 to $10 \AA$, they have sufficient energy to penetrate to the bottom of the ionosphere and cause an increase in ionisation of the D layer. This results in increased absorption of radio waves as they pass through to the reflecting F layer.

It may at first appear strange that the F layer reflects radio signals whereas the D layer absorbs. This can be understood by examining the way in which a cloud of electrons interacts with r.f. Basically, when the high frequency

Fig. 8: Diagram roughly illustrating the various evolutionary or developmental stages through which a sunspot group may pass. The words unipolar and bipolar refer to the magnetic fields present
signal encounters the electrons, it sets them into oscillation at the frequency of the r.f. signal. In the process, the electrons have extracted energy from the wave. These oscillating electrons then act as miniature individual transmitters and re-radiate the signal. The relative phase difference between the electrons is such that the signals tend to reinforce each other in the direction of mirror type reflection and cancel elsewhere.

This process can only occur efficiently if there are a negligible number of neutral atoms or molecules in the surrounding atmosphere, as is typical at F layer heights. At the height of the D layer, the atmosphere is sufficiently dense such that collisions occur between the oscillating
electrons and other molecules, before the electrons have a chance to radiate much energy. The net effect is an absorption of the exciting r.f. signal. The energy that is absorbed appears as heat energy (albeit small) at the height of absorption.

In very energetic solar flares, atomic particles, most importantly protons, are often released. These may reach earth in a matter of days or even hours, and cause further disruption to communications, especially at high latitudes around the polar regions.

Many questions have yet to be answered about processes occurring on the sun and about their effect on the earth. One field of particular interest to communicators is the ability to predict solar flares before they happen. Intensive research on this subject has so far provided no really satisfactory answers - only continued intensive observations, both on the earth and in space, can lead us toward more answers.

Additional Reading

For those who wish to pursue any aspect of this article more deeply the following texts are recommended.
Sun, Earth and Radio J A Ratcliffe, World University Library (1970)
The Face of the Sun H W Newton, Penguin (1958)
Skyshooting - Photography for Amateur Astronomers
R N Mayall and M W Mayali, Dover (1968)
Introduction to Solar-Terrestrial Phenomena and the SESC S J Mangis, NOAA TR ERL 315-SEL 32 (1975)
This last reference contains a wealth of information and may be purchased from: Superintendent of Documents, US Government Printing Office, Washington DC 20402 as stock number 1978-0-777-067/1249.

Have Pye Vanguard (f.m. modified) 144 MHz transceiver complete with mic, control box, all leads (spare set for mobile use), crystalled S10, S14, S20, S21, S22 and R6, repeater tone burst fitted. Would exchange for a general coverage receiver. Tel: Manchester 0617665200.

Q859
Have an Atari video game with three game programs. Would exchange for two Pye pocketphones with batteries or IC-2E. 27 Crichton Road, Pathhead, Midlothian, Scotland.

Q860

Have Sanyo M2420 3-band a.m. receiver, $530 \mathrm{kHz}-1.6 \mathrm{MHz}$, 2.5$7 \mathrm{MHz}, 7 \cdot 5-22 \mathrm{MHz}$ mains or battery. Also m.w./l.w. r.f. signal generator 6 V , pocket size (a converted receiver). Would exchange for Vibroplex/semi-automatic keyer etc. Please write with offers to: G. Ebbs, 98 Shakespeare Road, London SE24 00Q.

Q861
Have Harvard 410T hand-held CB, 2.5W f.m., boxed, carrying case and strap also fly lead for external antenna. Would exchange for 144 MHz scanner or receiver. S. Talbot, Menu, Town Lane, Chartham Hatch, Canterbury, Kent. Tel: Canterbury 738747. 0879

Have SkiBat sailing dinghy similar Topper, light and quick single handed sailer, fully rigged, valued around $£ 300$. Would exchange for 144 MHz multimode in good condition. Also $\frac{3}{4}$ wetsuit and two buoyancy aids for w.h.y. C. J. McLardy, 47 Wilmington Way, Haywards Heath, Sussex, RH16 3JA. Tel: $0444452844 . \quad Q 880$

(Y) ANTENNA SPECIAL

In the last part of this article we dealt with the basic function of the helical antenna and its relatively wide bandwidth characteristic.

A helical antenna is, of course, circularly polarised and reception/transmission, to and from a linear antenna, either vertically or horizontally polarised, produces an inherent loss of effective transmitted power or effective received signal of 3 dB . Circular polarisation has, however, at least one advantage and a useful one at that. Considerable fading over a distance of 50 or 60 km can occur when the polarisation of the wave from a linear antenna, horizontal or vertical, becomes twisted. This effect is not unknown over even shorter distances and can frequently be permanent due to other local or environmental causes. The use of a circularly polarised antenna can obviate this effect to a very marked degree in that regardless of polarisation changes to the wave from a linear antenna, the signal received with a helical antenna will never be more than 3 dB down.

Helical antennas are widely used for satellite operation because of the often constantly varying polarisation that can occur on signals transmitted from orbiting satellites. It

Fig. 3.1: The author's prototype six turn helical antenna
must be remembered, however, that circularly polarised waves revolve in the direction of the turns/pitch (or thread) of the antenna helix and that a right-hand orientated wave will be very poorly received by a helical antenna with a left-hand orientated helix. The loss due to circularly polarised waves orientated in opposite directions, i.e. one clockwise and one counter-clockwise, is in the region of 30 dB . It can be said fairly simply that helical antennas can be "left or right-hand threaded".

Helical Antenna for 432MHz

A six or seven turn helical antenna with a circular plane reflector having a diameter of approximately $\lambda / 3$ has an input impedance in the region of 140 ohms and therefore requires a matching transformer to provide a direct connection with a normal 50 ohm coaxial feed cable. This matching section can take the form of a $\lambda / 4$ section (Ztr) of coaxial line with a self-impedance of approximately

Fig. 3.3: Constructional details of the $\lambda / 4$ matching transformer which has an impedance of approximately 86 ohms to provide a match between the 50 ohm coaxial feeder cable and the 140 ohm characteristic impedance of the helical antenna. The line impedance is derived from the formula:

$$
138 \log _{10} \frac{D}{d}
$$

where $\mathbf{D}=$ internal diameter of the tube and $d=$ the centre line diameter
$\sqrt{\mathrm{Zo} \times \mathrm{Za}}$, where $\mathrm{Zo}=50$ ohms and Za is the drive impedance of approximately 140 ohms to the helix. This gives a value for Ztr as $\sqrt{50 \times 140}=83.6$ ohms. The nearest obtainable impedance to this value using standard dimensioned materials, is shown in Fig. 3.3 and using the formula $\mathrm{Ztr}=138 \log _{10} \mathrm{D} / \mathrm{d}$, is 86 ohms. The small amount of mismatch is not critical and no problem was experienced in obtaining a v.s.w.r. of between $1 \cdot 2$ and $1 \cdot 3: 1$ across the 432 MHz band with the matching section shown in Fig. 3.3.

The Six Turn Helix

Axial mode helical antennas necessitate three major dimensions, of which none are that critical. These are the overall length (L), the diameter of the helix (D) and the pitch between turns (P). Length is more or less determined by (P) which is $\lambda / 4$ and (D) which is constant at λ / π and gives each helix turn a circumference of λ at centre frequency. The physical dimensions for a six turn helical antenna for 432 MHz are given in Fig. 3.2.

The insulating support for the helix turns used in the prototype was of pvc tube of approximately 20 mm diameter secured at one end to the reflector. The helix was

Fig. 3.4: Alternative reflector construction methods using either wire mesh or open spokes
threaded through holes along the pvc tube, spaced 175 mm apart.

The completed antenna is shown in the photo, Fig. 3.1. The longest direct contact made during moderate lift conditions was about 210 km with the antenna mounted only 4 m above ground.

Fig. 3.5 (A): Prototype radiation pattern at midfrequency (from horizontally polarised wave). Fig. 3.5 (в): Amplified rear section showing low level back lobes

Fig. 3.6 (a): (left) Six turn helical antenna radiation pattern at mid-frequency from vertically polarised wave. Fig. 3.6 (b): (right) Break-up of uniform radiation pattern at extreme limit of frequency coverage

The circular plane reflector may have a diameter of between 0.5 and 0.8λ although the smaller is recommended to comply with the main band of operation, in this case 420 to 440 MHz . There are various ways of making this but two suggested ideas are given in Fig. 3.4.

Radiation Patterns

At around the centre frequencies the forward radiation patterns remain fairly constant as shown in Fig. 3.5 and regardless of whether receiving from, or transmitting to, a linear antenna, either vertically or horizontally polarised. As a further check on this a half-scale model was made of the 432 MHz design outlined in this article. Its centre frequency was therefore $435 \times 2=870 \mathrm{MHz}$, with end frequencies of 840 and 880 MHz .

At centre frequency a clean and symmetrical lobe as in Fig. 3.5 (A) was obtained, with very little back radiation. Even with the main lobe greatly amplified, as in Fig. 3.5 (в), the minor rear and side lobes now visible are of little consequence. In this case the radiating antenna was a linear type and horizontally polarised; the helical model antenna was operating in receive mode.

The next pattern, Fig. 3.6(a) was obtained with the radiating linear antenna in vertical mode. These patterns maintain reasonable uniformity and the gain of the model antenna over the frequency range 840 to 880 MHz is the same as that for the full size 432 MHz version. At the extreme ends of the test band the uniform pattern breaks up

Fig. 3.7 (a): (above) 3000 MHz model six turn helical antenna. Fig. 3.7 (b): (right) Model Radiation pattern
as shown by Fig. 3.6(b), but these points are far beyond the normal working range. For a further study of these patterns the antenna bandwidth and v.s.w.r. etc. refer to Part 2 of this series.

To show just how accurate scale model antennas can be Fig. 3.7(a) shows a helical antenna modelled for a frequency of 3000 MHz and Fig. 3.7(b) the radiation pattern obtained at centre frequency. Compare this with Fig. 3.6 of this article.

In the next part of this series we will be examining methods of specifying antenna gain and comparing these with various manufactured antenna specifications.

Information on Helical Antennas

ANTENNAS. J. D. Kraus. McGraw-Hill USA publication.
Amateur Radio Handbook. Third Edition, or later. Available from the RSGB.
ARRL Antenna Handbook. ARRL Staff. Available from the RSGB.

Some more discussion now on the a.t.u. described last month, as promised, with the six permutations of the coil and capacitor repeated here for convenience, Fig. 1. Whatever the arrangement tried the procedure is always to go from one end of the coil to the other, swinging the tuning capacitor from maximum to minimum at each switch position, finding the combination that peaks the signal strength and makes the length of antenna wire resonant at any given frequency.

If a low frequency is involved then start with all the coil in circuit and gradually decrease the number of turns in use. Conversely, at high frequencies start with a minimum of turns and increase until resonance is reached. Once the optimum positions have been found for a given band, note the readings, for future use, finally making up a table for all the bands.

Circuit (a) will prove best for antennas around 10 to 20 m long. If not then try (b) by adding the tuning capacitor by means of the plugs. Position (c) will be found useful for loading wires on the lower frequency bands such as 3.5 and 1.8 MHz or even 7 MHz , depending upon the length of the wire. Note that in (d) the tuning capacitor is across the coil, making sure that point 3 is not still left earthed.

Arrangement (e) is simply a method of electrically shortening a wire to obtain resonance using only the capacitor. A wire antenna some 50 m long will prove an excellent antenna on Top Band $(1.8 \mathrm{MHz})$ when tuned with circuit (e). Finally circuit (f) will enable quite short wires to be used on the l.f. bands. Be assured that the improvement in signal strength that results when the a.t.u. is tuned properly is quite significant. False positions may be met where the peak is very shallow in which case continue to try other combinations.

The receiver's " S " meter may be used to tune the a.t.u. but if done by ear switch off the a.g.c. otherwise an increase in signal strength due to the a.t.u. will be counteracted by the action of the a.g.c. circuits unless the signal is of a very low level, insufficient to activate the a.g.c.

On a quite different tack now, most readers will be aware that we are now moving down the curve of sunspot activity known as the 11-year solar cycle although, at times, the sun seems not to have been told about it, judging by recent bursts of activity! Nevertheless it will decline with a noticeable effect on radio propagation, or "conditions" as we say. In general the low frequency bands $7,3 \cdot 5$ and 1.8 MHz will become more and more useful over longer and longer periods and amateurs will go along with this trend by moving down the bands, in terms of frequency. The recent addition of the 10,18 and 24 MHz bands now means that the steps down are not quite so drastic, as changing from, say, 14 MHz to 7 MHz has meant in the past.

Our two lowest bands, 3.5 and 1.8 MHz , will become better and better

(a)

(e)

Fig. 1
from the DX point of view and now that so many transceivers in use have Top Band included in their coverage so it will really begin to hum. Many countries have now obtained permission to use 1.8 MHz to add to the number, making DXCC less of a remote dream. Top Band is dead except for UK or near European stations during daylight hours, coming to life at dusk and fading away at dawn or just after. A band well worth watching.

In General

David Ackrill BRS50878 in Birmingham hopes to get something better soon than his present HAC rig if the RAE results are satisfactory although it may mean a period as a G6 before the G4 comes along due to pressure of work at college. David is another who finds some of the DX nets rather confusing, often not knowing who is calling whom!

Good news from regular writer Dave Warr down in Weymouth, Dorset, who had to wait only a couple of weeks after applying for his licence. Proudly he is now G4RQI instead of G6HRV and started off with a borrowed FT-7 and a wire 10 m long, with QSOs on c.w. and s.s.b. in the log. We wish you plenty of good DX OM.

Royston Price in Haverfordwest, Dyfed, has forsaken his GW8YJN for GW4PCX after a lot of slogging at code sessions. He also has an FT-7, plus a fullsize G5RV and Z-match a.t.u. for starters, the FT-7 being the result of swapping some $144 \mathrm{MHz}(2 \mathrm{~m})$ gear. Already, he says, he is working the world on the 28 , 21 and 14 MHz bands. He gets a bit annoyed with the c.w. ops who don't have the courtesy to slow down a bit for him. Don't worry OM you'll soon be up to their speeds if you keep at it. As a PS Royston says his son Andrew is now awaiting the results of the last RAE! Now, don't squabble over that rig!

A brief repeat of the late late item which I hope will have appeared in the March issue. Bob Salmon G4LJX, professional skipper, has room in the crew for another op, sailing a 12 m cutter from the British Virgin Islands to the UK, around five weeks in April/May, with plenty of amateur gear aboard. Muck in and share some of the expenses is the general theme. Interested? Contact Bob on Plymouth (0752) 862558 and we'll all be listening for that/MM!

Paul Morrison is aged 15 and lives in Morpeth, N'thumberland and has caught the DX bug. "Having read thoroughly through "your article on buying a s.w. receiver" he went and bought something from the local shop of a national network of electronics shops and promptly forgot all he'd read! I feel he may have been conned into something he didn't want and he could probably get his money back since it is not suitable for the purpose for which it was bought. So he can't copy s.s.b., which was the main idea. However, sticking to the job in hand he built an external b.f.o. and can now manage, after a style. All good experience!

Paul Martin lives at 18 Wilkinson Close, Temple Hill, Dartford, Kent, and
is new to the game. He has a Lafayette HA700 receiver and would dearly love to get hold of a circuit diagram or any other info on this receiver.

Round the Bands

Not a lot of reports this month, probably a spinoff from the Christmas and New Year lethargy as we are dealing with January. Let's start with Dave Coggins of Knutsford in Cheshire with his FRG-7700 plus 20 m -long wire plus a.t.u. Best catch was undoubtedly HZ1AB on Top Band both on c.w. and s.s.b. at 2100 GMT , frequencies of 1820 and 1833 kHz respectively. Like I say, this band is worth watching and is very productive after dark. On 3.5 MHz EP2TY, J3AH and 7X2HM turned up on s.s.b. while 7 MHz revealed VK6AJW and ZL4BO on the short path around 1900GMT, with 6W8DY the only other DX mentioned. On 10,18 and 24 MHz little was heard from outside Europe. More reports on these bands would be appreciated. For 28 MHz Dave reports CR9CT, JT1KAI, KB7IJ/KH2 on Guam, 5T5RR, 6T1YP the Omdurman Club and QSL to DF3NZ, 9N38 reported as a DXpedition to Nepal.

Gordon Carmichael in Lincoln has a Realistic DX302 and dipole on 21 MHz to find C6AEY, J73CB who said QSLs to POB 389, Roseau, Dominica, VP5WJR, 6 W 8 AAD and 6 W 8 HL , ending with TU2IF. On to 14 MHz where an inverted "V" and a.t.u. helped with CT3DH, HP1XXO, KH6WU, XT2A, 5B4ES and 5Z4WD. Anne Edmondson BRS47285 is all excited as she is after the call GM4SYL having received credits in both parts of the RAE which won't mean waiting very long by the look of it. On her Realistic DX200 and indoor wire in Edinburgh she stuck to $3.5 \mathrm{MHz}(80 \mathrm{~m})$ with A71AD, CP1PRS (POB 2349, La Paz), FY7AN, HH5CB, 4Z4AB, VE3LRU/6Y5 and a couple of PTs.

As he says, nothing too exciting this time from Jon Kempster in Berkhamsted, Herts with his FR400SDX plus half-size G5RV and about 40 m of wire in the form of a loop and a.t.u. (I should hope so) to log YS9RVE, TI2KD and ZS1CY on 28 MHz . Then 9L1DR and SL1AH on 21 and sole 3 A 2 EE on $3 \cdot 5 \mathrm{MHz}$.

Now that Viv Doidge down in Callington in Cornwall has got the DX bug he has started serious studies for the RAE but still spent some time copying the following on his FRG-7700 and matching a.t.u. with a wire 30 m long. On 28 it was EL9A, HC1JQ, and J73DF, on to 21 MHz and HH2JR, J6LKZ, J73CB, VP2MF, V2AC and PY0KA on Trinidade Island. For 14 MHz there was FB8ZQ, FR7VE, S83H, 4K1D, 6T1YP and 7P8CR. Goodies on 7 MHz included YK1AH, 5N3EC, 5T5TO, 6W8DY, 8P6OR, CR9CT, DU7RLC, FM7WS, ZL4PO/C which is Chatham Island, and 9 Y4RD/SU which looks like a UN outpost. Finally to 3.5 MHz and HH2BM, HP3FL, J88AW and 6W8DY.

Having a go on the s.w. bands for the first time S. J. Dunsmore in Scunthorpe has a homemade set recently presented to him, plus a wire about 40 m long. Neglecting the non-amateur calls heard on 3.5 MHz the best DX was YB0WR, FC9UP and HP3FL, with mainly North Americans on 28 MHz .

Since the new WARC bands on 10,18 and 24 MHz were released a number of readers have asked where they can obtain suitable traps for these bands so that they can make up trapped dipoles to suit. The only source that I know of is G2DYM Aerials, a $P W$ advertiser (albeit, he is shown as G2Dym in the Feb index!) and, if you haven't got your copy to hand, it is 03986215.

In Colchester, Essex, Andrew Durrant is determined not to miss the fun of constructing his own gear so is busy with a one-transistor set although he sports an AR88 the only items noted on that being F8HB/EA6 and F9UW/3A, both on $14 \mathrm{MHz}(20 \mathrm{~m})$ and both on holiday I'd suggest! From Grimsby Jim Willett reports returning to the fold after some 20 years starting with a DX100L which was swopped for an FRG-7700 and a.t.u. Logs are promised very soon. Apart from Euros the 3.5 MHz band came up with JA's mainly.

Club Time!

A note or two to secs, chairmen, PROs and all those who kindly send in info for this feature. Please include club meeting place and time and day/s in each letter. This will save me a tremendous amount of time looking up past records. The sensible thing is to send in one list of events and details for the rest of the year! Some hope! But there are the odd clubs that do just that and it is much appreciated. While in the griping mood, please do write to me direct, details at top of feature every month, rather than to $P W$ where they have plenty to do without having to redirect mail. Ta!

Abergavenny \& Nevill Hall ARC GW4GFL Registered C \& G examination centre, the club reminds potential candidates that it can accept late entries for the May exam up to March 10 entailing a late fee. Interested? Contact Hon Sec via Aircom, Brecon Road, A'gavenny. RAE courses run every Tuesday at 7.15 in the Seminar Room, Nevill Hall Hospital with club night on Thursdays at 7.30 in the Penyful Hospital (above male ward 2). Sec is Dave Jones GW3SSY, 2 Dalwyn Houses, Llanover Road, Blaenavon, Gwent, or (0495) 791617.

Acton, Brentford \& Chiswick ARC On Tuesday March 15 a talk will deal with an introduction to c.w., at the usual spot, the Chiswick Town Hall, High Road, Chiswick, London W4 at 7.30. So says sec Bill Dyer G3GEH, 188 Gunnersbury Avenure, Acton, London W3.

Biggin Hill ARC Get together at the Biggin Hill Memorial Library at 8pm, not missing the junk sale on March 22. Ad-
vance notice of G8CQE talking about and demonstrating construction techniques for the amateur at home, date unknown. More from G4NSD who says "QTHR".

Braintree ARS G4JXG G6BRH Excellent newsletter BARSCOM comes out monthly which must mean a lot of work for some people. New editor G8UUO has only one message. "Can I have some copy?" the eternal cry of editors everywhere! New sec is Mike Jones G6DFZ 26 Anson Way, Braintree, Essex or B'tree 44168. So it is the first and third Mondays at the Braintree Community Centre, Victoria Street, B'tree at 7.45 with the club rigs activated, tea and coffee flowing and books and Morse practice tapes available on loan.

Bournemouth RS G2BRS First and third Fridays by the look of it from the club's newsletter, at the Kinson Community Centre but for more info you'll have to call Arthur Bagley G4EKE on Ferndown 877945.

Bristol ARC G3TAD New PRO is Mark Goodfellow G4KUQ, 99 Somerset Road, Knowle, Bristol (0272) 716093, who says club location at the YMCA, Park Road, Kingswood, Bristol gives good results on the v.h.f. and u.h.f. bands with the full range of equipment held by the club. There are regular courses, code sessions, constructional projects plus the usual talks and visits. Meetings every Tuesday at 7.30 with the fourth devoted to computers, particularly their applications to AR.

Bromsgrove \& District ARC Second Friday at 8pm, the Avoncroft Arts Centre while QRP holds sway at the same place on the fourth Friday. More immediately, the AGM on March 11. Constructors to note that their efforts will be judged at the April meeting. Details of forthcoming club picnic and other events from A. Kelly G4LVK, 8 Green Slade Crescent, Marlbrook, Bromsgrove, B60 1DS, otherwise 021-445 2088.

Bury RS Mosses Community Centre, Cecil Street, Bury every Tuesday at 8 the principal gathering being on the second Tuesday, such as March 8 when Trevor Hopkins G8TYY's subject is 1296 MHz $(23 \mathrm{~cm})$ and repeaters. Newcomers very welcome of course, says sec Malcolm Pritchard G3VNQ, 56 Shelfield Lane, Norden, Rochdale, Lancs.

Carlisle \& District ARS Mondays at 7.30, White Quay Inn, Durdar, Carlisle. Sec is Paul Boyd G8RJA, 13 Stackbraes Road, Longtown, Cumbria, and that's that! Short but succinct.

Chichester \& District ARC First and third Thursdays, 7.30, in the Green Room, Fernleigh Centre, 40 North Street, Chichester with a club net on S11 Weds at 7 pm . On March 17 it's G8HY telling all on wartime radar. Note the AGM is on April 21. All this info on the first page of the club's newsletter, where it should be. Hon sec is T. M. Allen G4ETU, 2 Hillside, West Stoke, Chichester, Sussex otherwise West Ashling 463.

Conwy Valley ARC The second Thursday at 7.45 at Green Lawns Hotel,

Lee Iestrontes ird

* $144-146 \mathrm{MHz}$
* 25W SSB/FM
* 10 Memories
* 3 Scan Modes
* USB/LSB/FM
* $25 / 5 \mathrm{KHz}$ Steps
* RIT Control
* S/Power Meter

C5800

£359

(inc. VAT \& carriage)

These small slim transceivers
are ideal for todays compact cars as very little room is required for fitting. The units can be fitted separately or stacked one above the other with the brackets provided. Both units feature tiltable led displays for easy reading when the sets are mounted below the drivers eye level. The sets provide a good 10 watts RF output with excellent performance specification.

$\mathbf{£ 1 9 9 . 0 0 / £ 2 3 9 . 0 0}$
 (inc. VAT)

INTEREST FREE H.P.

STANDARD C5800 Cash Price: $£ \mathbf{3 5 9}$

H.P. over 6 months

Deposit
..f72
Repayments87.83
TOTAL £359
H.P. over 12 months Deposit \qquad
(180
Repayments£14.91
TOTAL .$£ 359$

STANDARD C7900 Cash Price: $£ 239$

H.P. over 6 months

Deposit \qquad .. f 48
Repayments $\mathbf{£ 3 1 . 8 3}$
TOTAL ...£239

H.P. over 12 monthsDeposit120Repayments91TOTAL239

Deposit .$f 120$

TOTAL£239

STANDARD C8900 Cash Price: $£ 199$

H.P. over 6 months

Deposit \qquad Repayments26.50 TOTAL \qquad ...£199
H.P. over 12 months

Deposit ... $£ 99.50$
Repayments£8.29
TOTAL
TOTA

STANDARD C58
 Cash Price: £245

H.P. over 6 months

Deposit
..f50
Repayments£32.50
TOTAL£245
H.P. over 12 months

Deposit \qquad £122.50 Repayments£10.21 TOTAL .f245

400 EDGWARE ROAD, LONDON W2
01-723 5521 TIx 298765

NEAREST TUBE: EDGWARE ROAD PADDINGTON

Get it right from the start.

A GOOD START is essential to short wave listening and expert advice is important in achieving this. Firstly, a receiver is only as good as the antenna it sees. The old adage regarding wire antennas "as long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, or at worst none.

For PEAK PERFORMANCE on all frequencies you need good matching between your Receiver and Antenna. If you plan to listen on the high frequency bands up to 30 MHz then you know you can't have an antenna for every frequency! BUT we can offer you MUCH IMPROVED PERFORMANCE from your receiver by using an antenna tuning unit that will electrically change the length of your antenna to match the frequency you select. In other words A MATCH FOR ALL FREQUENCIES.

You'll see many antennas being advertised under gimmicky names, but when it comes down to it they're only random wires or odd configurations, but at the end of the day, if you're expecting the performance the manufacturers specified, then you'll have to buy an antenna tuning unit. DON'T! We'll give you one ABSOLUTELY FREE when you buy your receiver from Amcomm, as well as

Get it right. HAVE PEAK PERFORMANCE FROM THE START, BUT DON'T FORGET, ADD $£ 6.00$ IF YOU REQUIRE NEXT DAY SECURICOR DELIVERY.
YAESU - JAYBEAM - HYGAIN - BANTEX AMTECH - CUSHCRAFT - ICOM and 50 other major lines - all ex stock.

SHOWROOM OPENING HOURS
UES-FRI. 10.00am-6.00pm continuous SAT. 9.00am -5.00 pm continuous

COMMUNICATION CENTRE OFTHENORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters. Ali tubing - wall brackets etc.
We are the only official TRIO stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
We can offer a full range of receiver from the SR9 $2 m$ $\mathbf{£ 4 6 . 0 0}$ to the Drake R7 at $\mathbf{£ 9 8 9}$ and the NRD515 at $\mathbf{£ 9 8 5 . 0 0}$ + Antenna Tuning Units - Audio Filters - Indoor and Outdoor Antennas-Cable - Plugs etc.

RECEIVERS

TRIO R2000 Solid State Receiver due shortly. TRIO $\mathbf{R 6 0 0}$ Solid State Receiver 150 KHz to 30 MHz $\mathbf{£ 2 3 5 . 0 0}$. Yaesu FRG7 Solid State Receiver $£ 199.00$. Yaesu FRG7700 Solid State Receiver $£ 329.00$.
For the caller a wide range of Aluminium Tubing, Clamps etc. at competitive prices, i.e. $12^{\prime} \times 2^{\prime \prime}$ Ali Tubing $£ 9.00$.

+ VHF - Aircraft Band Converters and Receivers.
Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities.
Open 6 days a week. 24 Hour Mail Order Service.
Phone 0942-676790.
Stephens James Ltd.
47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA.

AT LAST! A New Concept in VHF Antennas.

The SAT-TRAK and HAM-TRAK ranges of British designed, compact multi-function antennas now makes it possible for VHF operators to sample a wide variety of 2 metre and other VHF activity, with just one array!
This series of low cost, lightweight and highly effective devices, are capable of wide variety of modes, for both reception and transmission.
DIRECTIONAL, OMNI-DRECTIONAL, QUASI-VERTICAL and CIRCULAR modes are possible, with just one antenna and the correct option system.
A REAL breakthrough for Amateurs and listeners alike! Supplied with full instructions on how to install and operate, in a wide variety of modes. Optional hardware and cables available.

Easy Mounting. No Rotators. High Performance. Small Size. Home and Portable Use.
IDEAL for: Oscar, UOSAT, Beacons, Net Channels and Standby Services, in any mode: FM - SSB - CW.
Choose the one to suit you.
Available NOW: "SAT-TRACK 2"
$144-146 \mathrm{MHz}$ circular
from $£ 14.50$ inc VAT \& 44.25 Securicor
ORDER NOW or send large SAE for full details to:

NORTHERN COMMUNICATIONS

299-303 Claremount Road, Halifax, West Yorkshire HX3 6AW. Tel: 042240792

Bay View Road, Colwyn Bay (sounds lovely!) with possibly top talk of the year on March 10 by Dr David Last of Bangor University, an eminent speaker but the subject remains a secret until the last moment. Sec is Norman Wright GW4KGI, 46 The Dale, Woodlands, Abergele. Also A'gele 823674.

Dartford Heath DF Club This specialist club meets at the Malt Shovel pub, Eynsford, Kent, on the Wednesday before a DF event to sort out the problems. That's their excuse, anyway! Like on March 2, which has probably gone, for the hunt on March 6 which probably hasn't. So had better give the dates for April which are the 6 and 10. Alan Birchmore G4BWV, 49 School Lane, Horton, Kirby, Dartford for more info.

Denby Dale \& District ARS G4CDD G8KMK The club seems to be out and about on visits just as much as it spends on talks etc with coach trips to radio shows and other desirable places. However March 9 is devoted to OSCAR matters, all explained by G4JJ. Warning of the meeting on April 13 when Lowe Electronics have the floor, and of a visit by the RR. Could that be G4DAX again? Much further on but still worthy of note is the club rally on June 19, and G5RV on guess what on July 13. If there is any more you want to know then try Jack Clegg G3FQH, 8 Hillside, Leak Hall Lane, Denby Dale, Huddersfield.

Derby \& District ARS Members gloating 'cos the RSGB "do" is at the NEC, literally just down the road! Wednesday meetings at 119 Green Lane, Derby starting at 7.30 with prospective members extremely welcome. Details from Jenny Shardlow G4EYM on Derby 556875 or drop a line to 19 Portreath Drive, Darley Abbey, Derby.

Echelford ARS Second Monday and last Thursday, 7.30, The Hall, St Martin's Court, Kingston Crescent, Ashford, Middx with club nets on 1930 kHz Sundays at 10 am and on 144.575 MHz f.m. Weds at 8 pm . Morse practice is handled by G3KKQ, G3MCK and G8ALB. Highlight of excellent Newsletter is Angela G4CKQ describing how to make scrumptious brandy truffles! Your contact is Anton Matthews G3VFB, 13a King Street, Twickenham, Middx also 018922229.

Edgware \& District RS G3ASR It's 145 Orange Hill Road, Burnt Oak, Edgware, Middx at 8 pm on the second and fourth Thursdays, the main event in March being SKE, or straight key evening, with all the excitement on 3.5 MHz (80 m). If you have an SK I suppose you'd be welcome to call in. Club net on 1.875 kHz Mondays at 10 pm , plus slow Morse on 1.875 and 144.175 during the week from G3ASR. Secretary still is Howard Drury G4HMD, 11 Batchworth Lane, Northwood, Middx or N'wood 22776.

Farnborough \& District RS March 9 is natter nite while on the 23 rd G3OQB will handle satellite communications as a sub-
ject. Clear out the shack 'cos May 13 is bring-and-buy night. Place is the Railway Enthusiasts Club, Access Road, off Hawley Lane, Farnborough with PRO Chris French G8ZAJ, 26 Wood Street, Ash Vale, near Aldershot, Hants waiting to welcome new members and visitors, or buzz him first on Aldershot 29469.

Flight Refuelling ARS Sunday meetings see G4JET (I don't believe it!) describing power supplies on March 6 and 13 , with an informal meeting with G8MCQ on the 20th. Visitor from the South Dorset RS G8EOJ discusses DF hunting on the 27 th. So it's the Sports and Social Club, Merley, Wimborne, Dorset. The Society's sec is still Mike Owen G8VFY, "Hamden", 3 Canford View Drive, Canford Bottom, Wimborne, likewise (0202) 882271.

Fylde ARS Queens Hotel, Central Beach, Lytham, at 8, on second and fourth Tuesdays with G4AHZ describing aircraft instrumentation on March 8, an informal meeting on the 22nd, the usual pattern of the meetings. April 12 is worth noting when G3WGU deals with the logic and logistics of repeaters. Harold Fenton G8GG, 5 Cromer Road, St Annes, Lytham St Annes, as programme secretary can fill you in.

Hastings Electronics \& RC G6HH All but third Wednesday of the month is micro night at the Ashdown Farm Community Centre. The third Wed is dedicated to the main meeting of the month at the West Hill Community Centre, that on March 16 being AGM time. On Tuesdays it's RAE course or code practice at the Farm at 7.30 and chat night there on Fridays. When does one get on the air?! More from George North G2LL, 7 Fontwell Avenue, Little Common, Bexhill-on-Sea where telephone Cooden 4645 is installed.

Inverness ARC Still wet behind the ears the club would love to welcome new members or visitors on Mondays and Thursdays at the Cameron Boys' Club, Planefield Road, Inverness, with an RAE course running on the Mondays with more practical work like club projects on the Thursdays, says club sec R. H. Brown GM8VIZ, The Flat, 21 High Street, Dingwall, Ross-shire, Scotland.

Ipswich RC First notice of the annual East Suffolk Wireless Revival taking place on Sunday May 29 at the Civil Service Sports Ground, The Hollies, Straight Road, Ipswich, running from 10am with new attractions the Fleamarket and a Car Boot Sale (anyone want to buy a car boot?). Other features not to be missed include a transceiver clinic and an antenna test range, plus all the trade stands and family attractions and displays. Much more info from Jack Tootill G4IFF, 76 Fircroft Road, Ipswich, Suffolk. Callsign for the special event will be GB4SWR if you can't get there but would like to call in.

Lincoln SWC G5FZ G6COL Pam Rose G8VRJ (Pinchbeck Farmhouse, Mill Lane, Sturton-by-Stow) wants me to tell you of the Hamfest ' 83 organised by
the club on Sunday May 8 from 1100 to 1730 at the Lincolnshire Fairground with trade stands, raffles, model aircraft display and bring and buy stalls. And you could win an FT290R if you've got the lucky programme number. Try Pam for the more mundane details of the regular club meetings at the City Engineers Club, Central Depot, Waterside South, Lincoln.

Midland Amateur RS Seems from club newsletter Probe that the club room is in use just about every night, but I know not where! But, in particular, March 15 is booked for G4KZH to talk on the new Midlands repeaters. Club net is on Thursdays from 8 pm on 145.425 MHz , while the club President monitors S17 from 10 am to 10 pm seemingly and he, surely, will have all the answers. Tom Brady G8GAZ, 57 Green Lane, Great Barr, Birmingham or try 021-357 1924.

Norfolk ARC G6NRC Meetings at 7.45 at the Crome Centre, Telegraph Lane East, Norwich on Wednesdays says Paul Gunther G8XBT who answers on N'wich 610247. VHF FD will be discussed on March 9, with a junk sale on the 23 rd .

North Bristol ARC G4GCT Flourishing is hardly the word for this progressive club with 162 members on the books with some 50 per cent turning up at meetings. Sad note was the passing of Geoff Manning G2IK "father" of the club running the RAE classes and general training programme. It's every Friday, at 7 pm , Self-Help Enterprise, 7 Braemar Crescent, Northville, Bristol. More from Ted Bidmead G4EUV, 4 Pine Grove, Northville, Bristol.

Northern Heights ARS G2SU Newsy newsletter NHARS News plus fixture card for the rest of the year shows that someone has been doing their homework up there! Meetings at 8 pm at the Bradshaw Tavern, Bradshaw, Halifax, on Wednesdays. J. Fish G4MH (heard that somewhere) talks to the club on amateur radio on March 9 and there is a visit to the Bradford Police HQ on the 23rd while the AGM on April 6 should not be overlooked, with G4DAX of the RSGB reaching the club on April 20 in the course of his rounds. Chairman Geoff Milner G8NCK sent me all the info but I really think you should contact sec Brian Aspinall G6CJL, 11 Buck Street, Denholme, Bradford, also B'ford 834442 for more details.

North Wakefield RC Note that sec Steve Thompson, G6ELC last month, is now G4RCH, so congrats OM. He resides at 3 Harlington Court, Morley and will be pleased to see visitors and potential members at the Carr Gate Working Men's Club at around 7.45. He is also (0532) 536633. Make it Thursdays like March 10 when G8PUT talks on comPUTers! Or the 17th when it's off to visit the BBC TV studios in Leeds. Note visit by G4DAX honourable RSGB RR on April 14, not to be missed when you can put all your grizzles and grumbles to him, poor chap.

on the air

Reading \& District ARC "Alternate Tuesdays" but "RF hazards and the radio amatęur" by G3SEK of the NRPB on March 15 is a good datum point. The Clubroom, The White Horse, Peppard Road, Emmer Green, Reading will be filled for a chat on the work of the RI department of BT by Don Franklin on March 29. Sec is Chris Young G4CCC, 18 Wincroft Road, Caversham, Reading.

Rhyl \& District ARC Remember the new meeting place on the second and fourth Thursdays is the 1st Rhyl Scout HQ, Tynewydd Road, Rhyl, with rigs for all bands available for members on the first occasion plus constructional projects, while fourth Thurs are devoted to talks, film shows etc with March 24 being named RSGB film night. B. N. Jones GW8OYT lives at 6 Rhofa Maes Hir, Rhyl, Clwyd (this is worse than the Morse code!) or try (0745) 37284, and he'll bring you up to date.

Rossendale Valley ARC Still settling down in its new premises at 4 Bacup Road, Rawtenstall but not averse to getting a few more members. Celia Adams G6GZM, 373 Bury Road, Rawtenstall, Rossendale, Lancs (or Rossendale 220935) is your guide to the club's activities.

Southdown ARS Meets first Mondays, 7.30 , at Chaseley Home for Disabled ExServicemen, South Cliff, Eastbourne but you'll not miss the junk sale on March 7 I hope. Note that the April meeting is on April 11 due to intervention of the Bank Holiday. New sec is Tom Rawlance G4MVN, 18 Royal Sussex Crescent, Eastbourne.

South East Kent ARC G3YMD G8YMD An excellent press release tells all about the club and its activities and is ideal for the visitor or potential member. An idea that most other clubs could well emulate, helping to dispel the rather parochial attitude found in some clubs. Also known as the Dover Radio Club, meetings are held at the Dover YMCA, Leyburne Road, Dover every Wednesday at 7.45 with earlier arrivals getting their hands on the FT101ZD. As well as RAE courses by Pete G4EGQ also handles correspondence courses with the same object in mind. Right, March 9 with a talk on old Dover, then on the 16th a junk sale, construction contest on the 23 rd , and G3LCK chats on the 30th, subject as yet unknown. Don't forget the AGM on April 6, and presentation of club awards. Club sec is Alan Moore G3VSU, 168 Lewisham Road, River, Dover or 'phone (03047) 2738 at home or (0304) 207670 at the salt mine.

Southgate ARC Second Thursdays at St Thomas' Church Hall, Prince George Avenue, Oakwood, London N14 with doors open at 7.40. March's event is a demo of amateur radio colour TV by G8FSL while the April date is the traditional junk sale. More from G8EWG, 16 Kent Drive, Cockfosters, Barnet, Herts.

Spalding \& District ARS Second Friday at the Maples Room, White Hart Hotel, Market Place, Spalding, around
7.30 with a treat on March 11 when the Planning Officer of the South Holland District Council will deal with the planning aspects of antennas and masts. From the horse's mouth, as it were, and who better? April 8 has G3CCH telling all about slow scan TV. Ian Buffham G3TMA, 45 Grange Drive, Spalding, Lincs will fill in the details.

Stevenage \& District ARS First and third Tuesdays at the TS Andromeda, Shephall View, Stevenage, Herts at 8 or 7.15 if you want to participate in the code classes. Note that the AGM is on March 15. Your contact is Les Mather G8OKI, 63 Woodhall Lane, Welwyn Garden City, Herts or try Terry Bailey G6CRF on Stevenage 62860.

Sutton Coldfield RS Second and fourth Mondays, 7.30, at the Central Library, SC. Nice list of events down to July but for the moment it's a natter nite on March 14 and Derby stalwart Fred Ward G2CVV telling how to set up an amateur radio station on March 28. Who better? For the diary, a Spring cleanout junk sale on April 25. PRO is Reg Smith G3XXJ, 29 Colestream Road, Warmley, or 021 3512370.

Swansea ARS First and third Thursdays in Lecture Room " N " at the Applied Sciences Building, Swansea at 7.30 for code classes, otherwise make it 8 pm . In the shack is a Trio TS530 put to good use after every meeting. Important note for April: On the Sunday April 10 an Amateur Radio Trade Rally in the Patti Pavilion hard by the St Helens County Cricket Ground with all the usual fun of the fair including RSGB bookstall, operational stations on h.f. and v.h.f., S22 talk-in from GB2SWR, and refreshments, all from 1030 to 5 pm . Roger Williams GW4HSH is your man, at 114 West Cross Lane, Swansea, otherwise 404422.

Torbay ARS G3NJA G8NJA The club is mourning the loss of G3OTP, Fred Leeder, member for many years. Note now the AGM on April 30 but much earlier is the annual dinner on March 12. Club nights every Friday at Bath Lane (rear of 94 Belgrave Road) Torquay, says PRO Les Mays G2CWR, Atlantis, Clennon Avenue, Paignton.

Vale of White Horse ARS First Tuesdays, 7.40, The White Hart Inn, Harwell Village, with up-to-date info on club activities from the net on Thursdays at 7.30 pm on 28.750 MHz s.s.b. or at 8.15 on $145 \cdot 2 \mathrm{MHz}$ f.m. Sec is Ian White G3SEK, 52 Abingdon Road, Drayton, Abingdon, Berks also (0235) 31559.

Wakefield \& District RS "Alternate Tuesdays" makes it March 8 for a film show and an on-the-air cum natter nite on the 22nd. All at Holmfield House, Denby Dale Road, Wakefield at 8 pm , says sec Dick Sterry G4BLT, 1 Wavell Garth, Sandal, W'field, W. Yorks.

West Kent ARS The Adult Education Centre in Monson Road, Tunbridge Wells, first and third Fridays with informal meetings on the intervening Tuesdays at the Drill Hall in Victoria Road. On March 18 Charlie Newton (could this be G2FKZ, I ask myself) deals with AR
research projects. Note the AGM on April 29. More from Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent or (0732) 456708 with the office answering on 01-739 3464.

White Rose ARS G3XEP G8LVQ Rally ' 83 for the club is on March 27, a Sunday, at Leeds University with talk-in on $144 \mathrm{MHz}(2 \mathrm{~m}) \mathrm{S} 22$ and 432 MHz (70 cm) SU8 plus repeaters GB3NA (R3) and GB3WF (RB14), details from G4NDU or G4DZL, but where they hang out I haven't the faintest idea! Normally the club is open on Wednesday evenings at 8 at the Moortown RFC, off the Avenue it seems, where a wellequipped shack is enjoyed by members. Hon sec is Dave Coomber G8UYZ, 43 King Edward Avenue, Horsforth, Leeds, LS 18 4BG.

Wimbledon \& District RS 8pm, St John Ambulance HQ, 124 Kingston Road, Wimbledon, London SW19 second and last Fridays. On March 11 it's Morse practice and natter nite, but on the 25th G3EPU gives his views and advice on DF hunts. Your man in Wimbledon is Geoff Mellett G4MVS, 26 Paget Avenue, Sutton, Surrey, or try 01-644 8249.

Wirral ARS G3NWR Chatty newsletter News \& Views reveals the club's main events way on until October but for the moment it's an inter-club QSO session on March 16, but don't miss the sale of surplus equipment on April 6. From which you may deduce that the club meets on the first and third Weds, at the Minto House School, Birkenhead Road, Hoylake, at 7.45. Newsletter editor Cedric Cawthorne G4KPY for the last five years is the new hon sec, at 40 Westbourne Road, West Kirby or 051 6257311 , so you can plague him now instead of G3UJX who becomes the editor.

Worthing \& District ARC The Amenity Centre, Pond Lane, Worthing, W.Sx will find the club gathering around 8 pm every Tuesday according to the comprehensive club newsletter from editor Stan Williams G3LQI. Let's see... page 15 for Diary Dates ... March 8 when G4ILY will be expounding on slow scan TV matters, no doubt with a demo too, nosh time on the 15 th when it is the annual dinner, at another place. Construction contest judging time on March 22 with the month's activities ending with G4EFO describing radio comms in the Fire Brigade. There is just not enough space to describe the multifarious activities of this club so get on to Joyce Lillywhite, 41 Brendon Road, Worthing for full information.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISERS

Obtaining a QSL from a medium wave station requires a rather different approach to that used on the short waves. Some stations respond readily enough but it is worth remembering that they are doing you a favour as you are not one of their listeners. You are outside their target area and are eavesdropping into local broadcasting in another part of the world. Your report has to do two things: you have to convince the station that you really did hear it and you have to persuade it to reply.

Reception Reports

The report should start off by saying that you picked up their broadcast on . . . kHz , then you quote the time and date in operation at the station. For example, if you were listening to North America at 0200GMT on the 24th of the month, this corresponds to 2100EST on the 23 rd in New York. Eastern Standard Time (EST) is five hours behind GMT (UTC) and of course the date can be one day earlier. If in doubt give the time in GMT as well, but you will be able in many cases to obtain the correct local time from station announcements.

It is very important to supply enough evidence to convince the station that you really did pick it up, this means listening, if you can, long enough to collect some programme details. The five minutes before the hour and again before the half hour is often productive as this is the period when programmes change and station identification is given. News bulletins usually start on the hour, followed by a weather report. Always give details of commercials. With small stations it could mean your letter being shown to the advertiser with the comment "we are even heard as far away as the UK!"

Give the exact time to the nearest half minute if possible of each programme detail you report e.g. 2155 commercial for . ..; $2155 \frac{1}{2}$ "This is radio . . . in New York"; 2200 News read by . . .; 2203 Weather "temperature 65 degrees"; and so on. The names of announcers, telephone numbers of commercials or even the station itself if you heard a phone-in, temperatures from weather reports, items of local news, these are the meat of the reception report as they are items that are easily checked.

The report now gives brief details of your receiver, antenna and signal strength. Reporting codes such as SINPO
or SIO are inappropriate and may not even be understood by small broadcasters. Say in words what their signal sounded like - weak, good, fading, interference from other stations etc. The station does not intend being heard in your area so your report would normally only be of interest.

The Personal Touch

The closing part of the report can be crucial, it may even determine whether you get a reply. Many DXers recommend that the report should take the form of a personal letter which gives details of the DXer, his equipment and his home town and the end of the report is the place for this information. Finally always enclose return postage. International Reply Coupons (IRCs) are useful but probably inconvenient for some stations to cash and some station personnel may not even know what they are. If you have made a really good catch then it is worth the effort to go to your local stamp shop for unused stamps of the country concerned. Say what you want them for and you may get advice on how many are required. Send off your reception report promptly by airmail. Surface mail can take weeks even to North America. Address the report to the Chief Engineer, followed by the name of the station e.g. Radio WINS, then the city, state and country and request a verification of reception.

Reporting Cards

$P W$ reader Brian Russell enclosed one of his reporting cards when writing to me recently. This card is designed for reporting to radio amateurs, the BRS number being issued by the RSGB to non-transmitting members. Such a card could not be used as a substitute for a full reception report when writing to a medium wave station but it does give the personal touch. Even the photograph alone, which is in colour, would be a very useful addition to any report. You could have a photo of yourself at the controls at the top of your stationery if you are prepared to find the outlay and this really would make an impact.

Mediterranean DX

Radio Mediterranean, located in Malta, is now on 1557 kHz for three hours every evening using the 600 kW transmitter at Cyclops belonging to the Deutsche Welle relay station. Test transmissions were made in January and came in quite well at my QTH after 2300 when France-Culture was off the air. The schedule of R. Mediterranean is now 1800 to 1900 in English, 2130 to 2230 in Arabic, 2230 to 2330 in French. The address is Radio Mediterranean, PO Box 2, Valetta, Malta. In an interview on Radio Netherland's Media Network, the
manager said this schedule may be extended to include an English programme later in the evening.

Brian Russell's reporting card
From the same area listen for the Voice of Free Sahara on 927 kHz . It is located in Beni Abbès in Algeria and can be heard regularly after 2300 when Brussels is off the air for the night. Programming, which is in Arabic, is intended for West Sahara, which was part of Spanish Sahara before Spain pulled out of the area. The easiest North African is Algiers on 891 kHz which is often the dominant station on this channel in the evening and can easily be separated from any co-channel QRM by a loop or by rotating a portable receiver to make use of the directional properties of the internal antenna.

A photo of Brian Russell's loop an-

 tennaAccording to a report from Sweden Calling DXers a station calling itself Radio Mediterranean International located in Morocco has been testing on 173 kHz on the longwaves. At one time the Voice of America Tangiers used this frequency. I haven't heard the tests myself but the only other occupant of this channel is the USSR so it should not be too difficult to pick out Morocco when it is on the air. At the other end of the l.w. band listen to Tipaza in Algiers on 251 kHz . It relays the international service and includes a daily programme in English at 2000. The address is RTV Algerienne, 21 Boulevard des Martyrs, Algiers, Algeria.

Origins of the Loop

My request for information about early loop antennas brought an interesting reply from Douglas Byrne G3KPO who is Hon. Curator of the National Wireless Museum. "I have been glancing through the Museum archives, for it is truly fascinating to find out how origins are quite often almost lost in the mists of antiquity" writes Douglas. He goes on to say that C.E. Prince converted the four open antennas of the Marconi Adcock system to a pair of closed loops in 1912. These loops would be used with a radiogoniometer so I suppose it would be a natural progression to move to a single rotatable loop when space was at a premium.
"The battle of Jutland was the first time that radio direction finding was used in warfare when British battleships fired over the horizon at the German fleet, guided by means of DF on their transmitters. Shades of Woodpecker!" concludes G3KPO. The National Wireless Museum which has the callsign GB3WM is located at Arreton Manor, Near Newport, Isle of Wight and Douglas can be contacted in advance by would-be visitors at Arlington House, 34 Pellhurst Road, Ryde, IOW, PO33 3BW. Tel: Ryde 62513.

G3KPO QSL card shows the site of Marconi's test near the Needles

A Problem with the DX160

A cry for help from down under comes from old-timer Harry Capsey VK2OQ who has acquired a secondhand DX160 receiver. This set works very well until the main tuning control is adjusted then the set starts to drift (wander in frequency) and it takes about 15 minutes to settle down again. Then it functions normally, even the bandspread can be used, but once the main tuning control is moved the drift starts again.

All the obvious checks have been made. Switch cleaner has been used, a check made for dry joints, the printed board examined with a magnifier, the
main tuning capacitor including the wipers examined and an outboard local oscillator tried. "Boy this is the best trap I have ever had in my 46 years in ham radio, even three 'experts' have given it up hi!" concludes Harry.

Harry Capsey's first station

On the face of it the fault is in, or around, the main tuning capacitor but this seems not to be the case. Percussion testing is a good way of stirring up an intermittent fault. Use a home made "hammer" consisting of a pencil and eraser and tap gently round the suspect area. Has anyone come across this fault on the DX160 ? If so, please write to Harry at 58 Elliston St, Chester Hill 2162, NSW, Australia. Let us know what the trouble was Harry if you track it down.

"Can you recommend a good receiver? Which is the best buy?" Every month brings in letters from readers who, bewildered by the varied selection on offer, seek advice. Unfortunately, there isn't a simple answer since there is no standard, or best receiver. Not only do sets differ in appearance, they also offer different facilities to the user who will, or should, select the model most suitable to his needs. Not an easy task for the newcomer to the hobby, so perhaps it might be useful to have a look at the problem.

If you are interested in listening to short wave broadcasting then your receiver should be able to tune over the range 5.9 MHz to $26 \cdot 1 \mathrm{MHz}$ or the greater part of it. If you are a DXer you will want to try the Tropical Bands which lie in the range $2 \cdot 2 \mathrm{MHz}$ to $5 \cdot 1 \mathrm{MHz}$. The amateur bands are found between 1.8 MHz and 29.7 MHz and to listen you will need a receiver capable of resolving single sideband (s.s.b.) and Morse (c.w.).

Medium wave DXers will want a receiver that does not have its own medium wave antenna so that it can be used with a m.w. loop.

If you want to put up an outdoor antenna, make sure your receiver can cope with it. Power supplies too are important. Dry batteries are expensive, so if you intend listening a lot at home then a receiver which operates from the mains is an obvious asset. It is an advantage, though, to have a set that operates on batteries as well as the mains. You may on occasion want to listen away from home, in a caravan or boat, and you can sometimes reduce electrical noise at home by operating on batteries.

Communications Receivers

This would be my personal choice. A communications receiver will cover the whole range from the l.f. end of the medium waves at 540 kHz to the upper end of the short waves at 30 MHz . It will resolve s.s.b. and Morse and sets currently on offer, such as the FRG7, FRG7700, SRX30D, DX302, R600, R1000 can be used with a m.w. loop. Most receivers in this category will have a noise limiter, r.f. gain control or attenuator, an " S " meter, provision for connecting a dipole antenna and on the more expensive models, digital readout which displays the frequency you are tuned to on a pocket calculator-type display.

There are two problems with this type of set. One is cost. You will have to spend
the best part of $£ 300$ for a new communications receiver. Not a great deal perhaps compared with the outlay required for other hobbies and pastimes. If you look after your set it will maintain its value and you will be able to trade it in, in part exchange for amateur gear if you move in that direction. If you decide later on that radio is not for you, then you can always realise on the set in the secondhand market or exchange it for something else (Swap Spot).

The second problem has to do with antennas. A communications receiver does not have an antenna of its own so you will have to provide one. A metre of wire hanging from the back will not do because the set would be operating on maximum gain on moderately strong signals and a poor signal-to-noise ratio would result. A short outdoor random wire, say 5 to 10 metres in length, is ideal for general short wave listening. So is a vertical antenna mounted on the chimney stack and a TV antenna is a good sub-

Radio United Nations

South Wales Communications Ltd 02915-552 LARGEST STOCKS OF AMATEUR RADIO EQUIPMENT IN WALES

G3LJD Bristol (842463) G4NVO Cwmbran (61022) on line GW6 MkI

LECTRO-LINES

101 Hainault Road, Romford, Essex RM5 3HF. Tel. Romford 22018/9

AM/FM STEREO TUNER MODULE 3 BAND

New boxed pre-aligned and tested. Complete with ferrite rod aerial, 6 way function switch, drive drum, cord drive, knobs, sample calibration scale and circuit diagram.
3 stage FM tuning, phase lock loop decoder, L.E.D. stereo indicator, FM sensitivity 2 uV.

Wavebands $\mathrm{FM} 88-108 \mathrm{MHz}$, LW $160-280 \mathrm{KHz}$, MW $525-1650 \mathrm{KHz}$.
Output approximately 200 mV . Input 12 v DC.
Price only $£ 6.90$ including VAT
plus $£ 1.50$ P \& P
Please allow 7 days for delivery

Brookes Electronics Ltd.

Manufacturers of Electronic Equipment Specialists in Citizens Band Radio
2a Leicester Street - Norwich - NR2 2AS • England Tel. (0603) 24573
RTTY TERMINAL BOARDS
Complete \& tested, you just wire them into your own unit. Double or single current. For teleprinter, also TTL, for video.
$\mathbf{£ 3 5 . 0 0}$ inc. VAT \& $p \& p$.
PERSUADER SPEECH PROCESSOR
Improve your talk power, on AM, FM and SSB, Works fantastic on ham or CB equipment. SAE for details. $\mathbf{E 3 5 . 0 0}$ inclusive. FREQUENCY DISPLAY UNITS
For the FRG7, SSR1 \& SRX30 communication receivers.
Please allow 21 days delivery
$\mathbf{£ 3 5 . 0 0}$ inclusive.
(Access, VISA, CWO, POs.) SAE For Details.

NEW COMPONENT SHOP IN WEST LONDON

TOKO COILS + FILTERS
R + EW KITS
STOCKISTS FOR - VERO - ANTEX - EXPO -
ULTRASONIC TRANSDUCERS $\mathbf{£ 2 . 5 0}$ Price inc. VAT + P\&P
$40 \mathrm{KHz} \star$ SPECIAL OFFER \star
BONEX LTD.,
102, Churchfield Rd., London W3 6DH

Tel. (01) 9927748
Please allow 7 days delivery
stitute. Indoor antennas are to be avoided, for as well as picking up more signal they may also pick up more electrical noise. Many DXers have to use an indoor antenna but there can be problems with them.

Self-Contained Table
 Receivers

By self-contained I mean a set that uses a telescopic antenna for short wave reception and a ferrite rod antenna for the medium and long waves and perhaps for the tropical bands as well. You will pay nearly as much for a top priced receiver in this category as you would for a communications receiver, but you will be getting a really marvellous product of modern technology. This is the receiver for the short wave programme listener who can listen to the world. Multi-band receivers with digital readout and even keyboard frequency selection are available and is it not a luxury to know what you are listening to and to be able to go back to a station with certainty. Typical are the Sony ICF 2001, Panasonic RF2900 (DR29), Grundig Satellit at one end of the price range. The Grundig Ocean Boy is an example at under $£ 50$ of the other end.

This type of receiver is remarkably immune to the addition of accessories, as someone aptly put it. Even the ubiquitous antenna tuning unit (a.t.u.) has no place with a set that uses a telescopic antenna. Even if there is a socket for an additional antenna, it is likely to be coupled to the receiver in such a way that only a small fraction of the energy from the external antenna is used. If there isn't an antenna socket then clearly the maker does not

Radio Ulan Bator
intend one to be used and you invite problems if you try to connect one by twisting the antenna lead round the whip or joining it to the end via a low value capacitor. A few of these sets will receive s.s.b. but it is not feasible to modify one that does not. Tropical band DXing is possible but you really need a good external antenna to DX on these bands. This type of set is rarely of much use to the medium wave enthusiast as a loop cannot null out a signal picked up by the receiver's own antenna.

Portables

There is no clear division between table models and portables as portability can mean all sorts of things. I am thinking of small battery operated sets that can be carried around. You can obtain good short wave reception from a portable but make sure that it covers all or most of the

The Chinese Frequency and Time station BPM

short wave bands. These sets usually start at 6 MHz and if you get one that goes up to 22 MHz you will be doing well. More common is a top frequency of 18 MHz which misses out $21 \mathrm{MHz}(13 \mathrm{~m})$ which is a good daytime band. A few sets will only tune as high as 12 MHz and I have even seen one that only covers the 6 MHz band $(49 \mathrm{~m})$. These are to be avoided as you will miss $15 \mathrm{MHz}(19 \mathrm{~m})$ which is the main long distance band for daytime and evening reception. The Vega Spidola or Selena is a good example of a receiver at the bottom of the price range around $£ 20$, which covers the short waves adequately. I have a Vega 204 which performs very well and although this model is no longer available the Vega 308 is currently on offer in the small ads columns of $P W$.

Short Wave Broadcasting

During the evening you can hear broadcasts in English from all over the world. The peak listening time in Europe is around 2000 which is the hour for foreign broadcasters to beam-in their programmes. The peak listening time is not always the best time for reception on some paths so there is a tendency to use
relay stations to get round the problem. A relay station picks up and re-transmits a broadcast.

Holland is a major international broadcaster whose evening transmission to Europe is from 2030 to 2120UTC. The format is news, commentary, a feature programme. I try not to miss Media Network on a Thursday. The Happy Station programme, originated by Eddie Startz, has been on the air for many years.

Listen on 17.695 MHz and 21.685 MHz and prepare for a surprise. Although the programme is coming from Holland the transmitters are in Bonaire in the Caribbean as we are too close to Holland for night-time reception on the short waves. The signal goes from Holland to the Bonaire relay station by satellite link and is re-transmitted back to Europe. If you can listen during the day, try 5.995 MHz or 6.045 MHz at 0930 and 1330 for the same programme. This time you will be listening to Holland direct. The address of the station is Radio Netherlands, English Section, PO Box 222, 1200 JG Hilversum, Holland.

QSL Cards

The QSL cards this month are from the collections of R. McDonald (UN Radio and Ulan Bator) and Philip Hodgson (BPM and Radio Japan). The address of UN Radio is United Nations, New York, NY 10017, USA and the sta-

Radio Japan
tion transmits mainly from USA and the Philippines. Ulan Bator in Mongolia is on 12.07 MHz in English at 1200,1400 and 1445 daily except Sunday. Reports should go to PO Box 365, Ulan Bator, Mongolia. I picked up BPM on 10 MHz at 1830 on July 30 last year and the entry in my log reads, "Clock pulses, BPM is Morse, YL in Chinese." The address is Shaanxi Astronomical Observatory, Chinese Academy of Sciences, PO Box 18, Lintong, Xian, China. Radio Japan comes in well in the morning on the h.f. bands. Listen on 21.61 MHz and 17.785 MHz and write to Radio Japan, Nippon Hoso Kyokai, Tokyo, Japan for a QSL.

To all us radio enthusiasts those two important letters "DX" simply means rarity and/or long distance and to many of my readers, that's what their radio is all about. No matter what the band, amateur, broadcast or citizen's, or what mode, a.m., c.w., f.m., RTTY, satellite or s.s.b. is favoured, there is always that unexplainable thrill and sense of achievement, when that special bit of DX, previously thought impossible, is safely in the station log.

Solar

Although the sun was low in the sky, which may have affected sunspot visibility, Ted Waring, Bristol, counted 10 sunspots on December 22, 16 on the 28th and 24 on January 8 and observed active areas on the central meridian on December 28 and January 3 and 9. As far as radio observation on 136 and 143 MHz was concerned, Cmdr Henry Hatfield, Sevenoaks, and I, recorded several individual bursts of noise on December 25, 29 and 31 and January 1, 5 and 18 and noise storms on December 26, 27, 28 and 30.

Readers often ask, "What does solar noise sound like?". Well, I can best describe an individual burst as a very definite rise in receiver background noise "whooOOoosh!", untuneable and covering several megahertz and sometimes strong enough to blot out normal radio traffic on the band. An individual burst of solar radio noise may last several minutes, but when there is a noise storm in progress, this may continue for several days and the receiver noise is fluctuating all the time, in fact, it sounds like the waves breaking against the seashore.

These events are sometimes heard in the $28 \mathrm{MHz}(10 \mathrm{~m})$ band but the main area of activity is between 120 and 160 MHz , depending on the intensity of the particular disturbance.

The $50 \mathrm{MHz}(6 \mathrm{~m})$ Band

"On December 18, the DL3ZM/YV5 beacon on 50.045 MHz was heard at 1226 and Trevor Brook G3WBQ, Farley Green, Surrey, had a cross-band $50 / 28 \mathrm{MHz}$ QSO with PJ9EE at 1300 on c.w. and s.s.b.," writes David Newman G4GLT, Leicester. Around 1415 on the 19th, John Wilson G3UUT, Great Shelford, Cambridge, heard signals from the Colombian repeater on 50.075 MHz , the 6 Y 5 RC beacon on 50.025 MHz and an HI8 station. During this opening, SM6PU worked PJ9EE and Gordon Pheasant G4BPY, Walsall, worked TI2HL and TI2JIC, all cross-band and heard HK0BKX and numerous stateside stations on 50 MHz . Between 1542 and 1554, David made c.w. cross-band contacts with K2OVS, WA1OUB, WB2RYY and W1RJA, all around 559 with some QSB.

Five members of the " 6 m GROUP" heard VE1YX on the 26th and between 1450 and 1515 on the 27th, David made brief c.w. cross-band QSOs with K1EM, K2MUB, WA1OUB, W1GCI, W1QXX, W1RJA and W3JO, with signals varying from 539 to 579 accompanied by some deep QSB. During the afternoon of the 28th, David was among the first stations to receive signals from the Anglesey 50 MHz beacon GB3SIX 50.020 MHz , when it began running continuously, beaming west and giving 20 watts to a 3element Yagi, 15 m a.g.l. at a QTH some 50 m a.s.l. Prior to the 28th, this beacon was limited to operate between 0100 and 0830 GMT and now, like the beacon keeper, Alan Mills GW3NNF, we are all delighted by this big step forward. Signals from the beacon FY7THF 50.038 MHz were heard briefly in Leicester on the 30th and January 1 and David Newman tells me that three Californian 50 MHz enthusiasts went on a DXpedition to the

Fig. 1: Distribution of beacon signals

Azores between January 3 and 9, using high power, a big beam and the callsign W6JKV/CT2 on $50 \cdot 110 \mathrm{MHz}$. At 1514 on the 8th, they had a DX QSO with K8MMM in Ohio, who uses a 20 -element array, 4×5 element 6 m Yagis, at 30 m a.g.l.

The $28 \mathrm{MHz}(10 \mathrm{~m})$ Band

"Quite an interest in 28 MHz f.m. is developing in Hampshire in particular and also in Surrey, with G3TUX, G4PSX, G4RRA and G4GGZ known to be active," writes Norman Hyde G2AIH, Epsom Downs, Surrey. He told me that on December 19, Arthur Dorsett G4PSX, worked JE6QJV in Tokio on 28 MHz f.m. with a power of 4 watts and on January 6 Arthur worked LAODT/MM, Bergen, via the US repeater in Boston on 29.620 MHz . On the same theme, John Coulter, Winchester, writes, "f.m. boys are fairly active on $29 \cdot 260$, although there is deep and frequent fading-one eastern England ham was working southern England through a 9600 km path via a Maryland repeater." That's amateur radio John and a credit to all concerned.

Harold Brodribb, St Leonards-on-Sea, Sussex, is a regular 28 MHz buff and noted a variety of harmonics, between 28 and 35 MHz , from lower frequency broadcast stations on December 19, 20, 21, 26, 28 and 31 and identified the Alma Ata I and II stations on several occasions. Harold also keeps an eye on the m.u.f. and between December 19 and January 5 he found the extremes were 37 MHz at 1220 on the 28 th and 46 MHz at 1130 on the 30th. On most days during this reporting period there seemed to be plenty of signals from Canada, the USA and USSR on 28 MHz , but the band went through a quiet patch between January 9 and 12. "Absolutely dead," said Fred Pallant G3RNM, Storrington, who was looking for some DX from his new QTH; "nothing heard at all," writes Henry Hatfield in his 28 MHz beacon log for the 10 th; "conditions poor around December 22 and 23 and band flat on January 10 and 11," comments Norman Hyde and when I checked the band at 0830 and 1500 on the 10 th and 0920 and 1310 on the 11th, there was only local ignition interference above the receiver noise to prove my FR-101 was alive to the signals.

28MHz Beacons

Many of my readers who want to know about the prevailing condition of the 28 MHz band make routine daily checks on the beacon frequencies which are mainly found between 28.2 and 28.3 MHz . Most of these beacons, which usually transmit 24 hours per day, have been organised on an international basis by the RSGB and others by clubs and private individuals for the study of radio
wave propagation throughout the world. Among the regular beacon observers who have contributed this time to the list of beacons heard, Fig. 1, are Susan Beech RS50969, Dollar, Scotland, John Coulter, Henry Hatfield, Norman Hyde, Ted Waring and I, which all adds up to a reasonable report for scientific study in the years to come.

Congratulations to David Newman who heard his 45 th and 46 th 28 MHz beacons early in January when he logged KA1YE/B at 1303 on the 6th and WB1GWS/B at 1419 on the 8th, on 28.284 and $28 \cdot 280 \mathrm{MHz}$ respectively.

Tropospheric

Late on December 19, my barograph showed the atmospheric pressure well down at $29 \cdot 2$ in (988 mb) and still falling. At 0200 on the 21 st a huge rise began from 29.1 (985) to $30 \cdot 1$ (1019) by 1000 on the 23 rd , on up to 30.4 (1029) by noon on the 26th and peaking at $30 \cdot 5$ (1032) by midnight on the 29 th, where it remained until 0200 on the 31st. At this point a gradual fall set in and the pressure hovered around $30 \cdot 0$ (1015) until 2200 on January 6 when it rose gradually to settle around 30.4 from 1800 on the 8th to midnight on the 11th, then falling slowly to 30.0 at 0600 on the 13th, when it began fluctuating between 29.9 (1012) and 30.1 until midday on the 16th where it settled at $30 \cdot 3$ (1026), only to commence falling again at 1400 on the 17th.

The barograph chart, Fig. 2, covering the period December 27 to January 2, shows a text book change in atmospheric pressure, which, coupled with associated tropospheric changes, gave us the lift at the end of 1982. I have placed an "X" on the chart to indicate the point in time where a v.h.f. disturbance is most likely to begin.

Susan Beech has been listening on the $144 \mathrm{MHz}(2 \mathrm{~m})$ band with an IC290E and during the mild lift over Christmas she heard signals through the 144 MHz repeaters GB3AR, MP, RF, and WT and EI and GI signals through a repeater she could not identify on R3. The range of many 144 MHz repeaters was extended by another mild tropo opening at the turn of the year and at 0848 on December 31. I heard PDOLUI have consecutive QSOs with G6DAY and G8YGK through the Belgian repeater ONOBT, situated in QRA square CK31b on R3.

With the barometric pressure over Southern Europe just beginning to descend from a record high of 1050 mb it was not surprising that both 144 MHz and 432 MHz "opened-up" during January $21 / 22$. Many UK stations contacted countries as far apart as EA and LA which was exceptionally widespread even for tropo.

Down in Dorset Jim Marshall G4MHF worked EA1KC in XD square at mid-day on the 21 st , exchanging $5 / 5$ reports. The Swiss beacon HB9HB on 144.865 MHz in DH square peaked at $5 / 6$ at this time, with the German beacon DLOPR on 144.910 MHz in EO square also present. John Fell G8MCP reports working several PA, F, DL and long haul G stations during this lift. A personal first for John on January 22 was an exchange with OK1AIU/P (HK square) with several other Czechoslovakian stations heard but quickly disappearing in QSB. Jim G4MHF was also pleased with his recently re-engineered feeder system, which is now low-loss Heliax and no doubt helped him to work OE, HB and Y22-this time on 432 MHz .

No doubt your reports, which are still coming in, will provide further insight into the nature and extent of this first big 1983 season tropospheric opening.

Band II

Judging from reports and the number of French and Dutch broadcast stations I heard between 88 and 102 MHz on December 31, the change of year opening also disturbed the normal paths of signals in Band II.

Between 2030 and 2045 on December 30, Simon Hamer, Presteigne, heard signals from Belgium BRT II, Egem, France TDF Culture from Abbeville, Caen, Lille, Perpignan, Reims and Vannes and Holland NOS-I from Goes, between 87 and 103 MHz . Harold Brodribb counted 14 French stations in Band II at 0930 on December 30, 16 at 1130 on the 31 st and again at 0930 on January 1. The situation changed on January 8 and 9 because although Harold's barometer was reading high, he only logged 8 French stations. This often happens Harold, especially when the opening is on specific rather than general paths. Simon noted that the lift on the 12th seemed confined to stations within

Fig. 2: Atmospheric pressure recorded by the author
the UK, borne out by the fact that his DX during the event amounted to BBC Radios Cambridge and Solent and ILR Thames Valley. I think that Michael Welch, London, hit the nail on the head by saying, "Knowing the band in one's own area, one can tell when something appears that normally isn't there." Michael uses an Aiwa 9700 tuner and a 23-element antenna for his DXing and at present is not too pleased about the lack of response from some broadcast stations to whom he sent detailed reports. Last June and November he sent tape recordings to overseas broadcasters, heard around 96 MHz via sporadic-E, but as yet there is no reply. I have experienced the same thing after sending photographs of television pictures to some overseas stations, so don't be too downhearted Michael, many of my readers, as well as myself, have received QSL cards, personal letters and programme schedules from station engineers and managers in answer to DX reception reports.

Following my report about Radio Boulogne Littoral on 103.7 MHz , in our February issue, Michael tells me that he heard this station last October and again at 2300 on December 25 when they were transmitting pop music played by Jingle Joe and Carl. "I can get Boulogne on a Roberts 505 portable with its own rod antenna," writes Harold Brodribb; "it takes only a slight lift for me to be able to hear this station," says Martin Messias G4JCN, London, who uses a Rotel-925 tuner with an outdoor dipole antenna and heard a mixture of French and English programmes from RBL over the Christmas period.

Fig. 3: Horndean Award Certificate

RTTY

I see from the December 1982 issue of the BARTG newsletter that the Sunday news service on v.h.f. is transmitted under the callsign GB2ATG on $144 \cdot 600 \mathrm{MHz}$ at 1130 for the Brighton area, 1200 Manchester, 1230 London 50 bauds, 1330 Northern Ireland, 1800 London 45.45 bauds, 1930 Wisbech and Glasgow and 2000 for the Blackpool area. Readers wishing to join the British Amateur Radio Teleprinter Group should write to Mrs T Crane, "Greta Woods", Bromley Road, Ardleigh, Colchester, Essex CO7 7SF.

Peter Lincoln BRS 42979, Aldershot, is now using an Icom IC-R70 receiver' and a Datong FL2 filter for his RTTY reception and is very pleased with the performance of both units. During the month preceding January 6 he copied signals on 14 MHz (20m) from most European countries and signals from Africa including 5 N 0 HGB and 5 N 7 HKB , Asia including OD5GN and 9K2KA, South America with CE3CBG and CE3FCF, and North America including AK2H and KX8E.

Although I did not get the usual listening time I would have liked during the period of this report, I did copy RTTY signals from 13 countries, EA, DK, F, HB9, I IT9, OE, OH, OK, OZ, SM, YU and YV on 14 MHz and WB2JAB working into G at 1740 on January 16 on 28 MHz .

Norman Jennings, Rye, did very well on December 10 when he copied RTTY stations in TU2, XT2, 8P6, 5B4 and plenty of VEs and Ws on $14 \mathrm{MHz}, \mathrm{JA} 1$, VEs, YV1, PP5 and 9Y4 on 21 MHz and CT2, ZS6 and a few Europeans on 28 MHz . Between December 9 and January 10, Norman logged RTTY sta-
tions from 23 European countries including IT, LX and SV, which all goes to show there is a great deal to be had from RTTY.

Readers often ask where to find RTTY signals in the wavebands quoted. Well, most of the h.f. traffic is around $14.090 \mathrm{MHz}, \quad 21 \cdot 090 \mathrm{MHz}$ and 28.090 MHz and do make sure that you only tune to one clear signal at a time, because if there is interference from another printer, c.w. or man-made sources on the wanted signal, then your equipment may only print garbage.

Station Information

For those readers interested in the weather, which plays a major role in v.h.f. DX, I have just finished building the Heathkit Digital Rain Gauge to replace my "manual" affair. The new instrument, with its automatic self emptying rain collecting unit, works very well and saves my XYL Joan a lot of work.

The Horndean and District Amateur Radio Club G4FBS, has introduced a
two class h.f./v.h.f. operating award open to both licensed amateurs and s.w.l.s. The certificate, Fig. 3, will be awarded for the required numbers of contacts, or in the case of s.w.l.s for callsigns heard, with bona-fide members of the HDARC. Readers interested in more details should send an sae to Jonathan Kay G6DWT, 109 Drift Road, Clanfield, Portsmouth, Hants.

The input and output frequencies of the 1296 MHz band (23 cm) repeater GB3WX (RM9) are 1291.225 and 1297.225 MHz respectively. In addition to the repeater facility, GB3WX transmits site weather telemetry, at present atmospheric pressure and local temperature, with more to come later, on RTTY 45.5 bauds, 170 Hz shift, $1275-1445 \mathrm{~Hz}$ tone using a.f.s.k. The carrier runs continuously with callsigns and QTH identification, in c.w., every 3 minutes and telemetry every 30 minutes if the repeater is not in use.

GB3WX is located in ZK20j at the Sussex Repeater Group's site in Brighton and radiates $3 W$ of r.f. from four horizontally polarised dipoles, with the main lobe westwards.

With the news that one of my readers was seen on Swedish television, pictures from Scandinavia and Spain via meteor pings, vintage literature found by DXers in Australia and Gloucestershire and a new antenna catalogue to review, is there any wonder why I look forward to your letters when I have items like this to consider for this column.

Tropospheric

George Garden, Bracknell, always keeps an eye on the prevailing weather and noted that he received the colour pictures from Central Television's u.h.f. transmitter, at Waltham, much stronger during the freezing fog and high humidity on December 13 and the hard frost and fog patches on the 22 nd , than he normally does. Good observation George, I am sure other readers can add to this especially where u.h.f. DX is concerned. Knowing that readers are interested in TV captions which help to identify stations, George sent two of his DX pictures, Figs. 1 and 2, which he received from Germany on Ch. 21 during a tropospheric opening last September.

Between 2100 and midnight on December 30, Tim Anderson, Stroud, logged a weak picture from Radio Telefis

Eireann, RTE 1, in Band III and some French sound on Ch. F5 around 175 MHz . Conditions were up as the old year ended because at 1335 on the 30th I received a test card from Belgium, BRT TV1 and at 1945, I watched a film review programme, in colour, on Ch. E10. While the high atmospheric pressure continued falling on the 31st as shown in Fig. 2 in v.h.f. bands, the lift continued and around 0840 there were strong test cards from Holland PTT-NED 1, on Chs. E4 and 5 and at 1830 a clock appeared on Ch. E8 showing 1930. During the early evening I watched a bingo type programme, in colour and captioned "Lotto" on Chs. E7 and 10 most likely from Holland.

Band I

During the 1982 sporadic-E season, Roger Wallis, Solihull, received pictures from Austria ORF FS1, Fig. 3, on Ch. E2, Hungary Budapest, Fig. 4, on Ch. R1, Spain, Fig. 5, on Ch. E3 and at 1530 on May 3 he received a picture on Ch . R1, Fig. 6, that he could not idenify, any ideas? Roger uses a 20 year old Ilford Sportsman camera with HP5 film, a shutter speed of $1 / 25$ and a stop of $f 4$ to take his TV pictures and judging by the results Roger, you seem to have the settings spot on.

Although well away from the sporadicE season it is always worth running the rig periodically on Chs. E2 48.25 MHz and R1 49.75 MHz and by doing just this between December 19 and January 18, I easily identified many bursts of test card, especially in the mornings, from Austria,

Czechoslovakia, Hungary, Norway, Poland, Spain and the USSR and around 1900 on January 7 strong pictures appeared on Ch. R1 which looked like a comedian with an audience and then a male announcer. In mid-January, Dave Cawser, Burton-on-Trent, kept an eye on Band I and between 1300 and 1307 on the 11th he saw an advert for Ariel washing powder and YL news reader on Ch. E3, short bursts of test card from Portugal RTP 1, a cartoon film and a group of people in track suits doing keep fit exercises between 1743 and 1917 on the 12 th and more pictures from Portugal at 1040 on the 14th.

Meteor Scatter

On January 2, Brian Renforth, Torquay, received many strong bursts of pictures and identified a YL singer and a male announcer, via meteor scatter on either Chs. E2 or R1 and because these channels are so close together in frequency one cannot be sure of the station unless a test card or caption is seen. During the peak of the Quadrantid meteor shower, which Tim Anderson found between 2300 on January 3 and 0200 on the 4th, many "pings" of signal were seen in Band I and as high as Ch. E10 in Band III. Among the signal pings that Tim identified, while using his Plustron TVR5D, were test cards from a Swedish station and Norway Gulen, on Ch. E2 and RTVE Spain on Chs. E2, 3 and 4. Dave Cawser also kept a meteor scatter watch and caught a glimpse of the TVE revolving caption at 2244 on the 3rd and the RTVE test card at 0943 on the 4th.

Known as Radlo Shack In the USA \square vsh Prices may vary at individual stores Offers subject to availability.

toroldals

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been obsolete laminated type. Industry has been quick to recognise the advantages toroidals,
offer in size, weight, lower radiated field and, offer in size, weight, low
thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

$\star 294$ TYPES TO CHOOSE FROM! - ORDERS DESPITCHED WITEIN 1 DAYS OF RECEIPT FOR SINGLE OR SHILL QUANTITY ORDERS - 5 YEAR NO QUIBBLE CUARANTEE

Trpf		$\begin{gathered} \text { SECONOARY } \\ \text { Volis } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AMS } \\ \text { Current } \end{array}$	PRICE
225 VA	6×012	$12+12$	938	
$110 \times 45 \mathrm{~mm}$	6×013	$15 \cdot 15$	750	
Regulation	6x014 6×015	18.18 22.22	625	
	601016 68016	22.22 25.25	450	± 9.20
	5×017	$30 \cdot 30$	375	-0.0500
	${ }^{6} \mathbf{6} 018$	35.35	321 381 8	-velts
	6×026 60025	$40 \cdot 40$ $45+45$	281 280	totative
	${ }_{6 \times 033}$	50.50	225	
	6×028	110	204	
	6×029 60030	220	102 0.93	
	6×030	240	093	
300 va	7×013	is. 15	1000	
$110 \times 50 \mathrm{~mm}$	7×014	18.18	833	
Regulation 6%	7×015 7×015	22.22 35.25	682 600	f017
	7×16 7×017 7	$25 \cdot 25$ $30 \cdot 30$	S 600	0.17
	7x018	35.35	428	-8, 6780
	7x026	$40 \cdot 40$	375	- etitis
	7×025	45.45	333	1014tin $0^{\text {a }}$
	7×028 7×03 7	${ }^{50}$	300 272	
	7.029	220	${ }_{1} 136$	
	7×030	240	125	
500 vA	8×015 8012	25.25	1000	
$140 \times 60 \mathrm{~mm}$	8x017	$30 \cdot 30$	${ }^{83} 3$	91353
	${ }^{6} 018$	$35 \cdot 35$	14	3.53
Regulation	8.026 8025	$40 \cdot 40$ 4.45	523 5 5	-pithn
	8×025 80033	$45 * 45$ 50.50	535	- watras
	8×033 8×042	50.50 55.55	500	1014.19\%
	8×028	110	454	
	8×029	220	227	
	84030	240	208	
625 VA	9×017	$30 \cdot 30$ 30	1041 898	
$140 \times 75 \mathrm{~mm}$	9×018	$35 \cdot 35$	892	
5 kg	9.026	40.40 45045	781	16.13
Regutition	9×025 9.033	45.45 50.50	694 625	*ロロ*
	9, 9×042	55.55	568	-Wtic\%
	9.028	110	568	Nata 0 - 6
	9,029	270 240	284 260	

IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Piease add regulation figure to secondary vollage to obtain off load voltage.
The benefits of ILP toroidal transtormers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as tollows: For 110 V primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) insert " 1 " in place of " x " in type number.
For 240 V primary (UK) insert " 2 " in place of " X " in type number
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products trom other ILP Electronics advertisements. No stamp is needed if you address to Freepost Cheques and postal orders must be crossed and payable to ILP Electronics Lid Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalue, Maplin and Technomatic
ILP Electronics Ltd.
Freepost 3, Graham Bell House, Roper Close, Canterbury CT2 7EP.

Please send
Total purchase price
I enciose Cneque $\square \quad$ Postal Orders $\square \quad \mathrm{Int}$. Money Order \square
Debit my Access/Barclaycard No
Name
Address

Signature

SELECTRONIC SERVICES

THE FINEST ANTENNAS IN THE WORLD

 ARE NOW AVAILABLENo hi-fi specifications here, just antennas that are stronger, last longer and work better than any other antenna available today.
HF Antennas
10 MHz Broadside, similar to classic bobtail array (10/BDA): gain 5 dBd with this wire array at only $£ 41.25 .14 \mathrm{MHz}$ Broadside, same specifications as $10 / \mathrm{BDA}$, ($14 / \mathrm{BDA}$): £36.25.
4 m Quads
4 Ele quad (4/4EQ): gain 7dBd, £58.50; 6 Ele quad (4/6EQ): gain 9dBd, £60.50
2 m Quads
4 Ele quad (2/4EQ): gain $7 \mathrm{dBd}, £ 45.25$; 8 Ele quad (2/8Eq): gain 12 dBd , long yagi spacing (12 ft boom), £ 62.50
All quad antennas have glass fibre booms and supports for strength and less corrosion and less effect on performance.
Helix range
$70 \mathrm{cms}, 6$ turn $(6 / 7 \mathrm{OH})$: gain $12 \mathrm{dBd}, £ 42.85$; 12 turn ($12 / 7 \mathrm{OH}$): gain $16 \mathrm{dBd}, £ 46.85$ $23 \mathrm{cms}, 6$ turn ($6 / 23 \mathrm{H}$): gain $12 \mathrm{dBd}, £ 34.50$; 12 turn ($12 / 23 \mathrm{H}$): gain $16 \mathrm{dBd}, £ 35.50 ; 20$ turn $(20 / 23 \mathrm{H})$: gain 17 dBd , $£ 37.50$.
Helix range uses glass fibre booms and comes complete with ' N ' plug and socket. All helix antennas have a $50 \int$ feed impedance suitable for satellites, tropo, FM repeaters and ATV.
Stacked collinear arrays
$70 \mathrm{cms}, 16 \mathrm{Ele}(70 / \mathrm{SC} 16)$: gain 14dBd, £45.20; 20 Ele (70/SC20): gain 16dBd, £49.20. 23 cms , 16 Ele (23/SC16): gain 13 dBd , £43.50; 20 Ele (23/SC20): gain 14.5 dBd , E38.50.
Continuation to be placed after stacked collinear array specifications.

> COMMING SOON!

Due to the massive response to our previous advertisements and many pleas for an HF minibeam "at a reasonable price that works and is not a rotatable dummy load on 20 m " I We are pleased to say that the research and development of a very high performance minibeam is well advanced. The price will be considerably lower than it's competitors and constructional techniques we use will ensure that they will last for years.
Thanks for the interest you have shown. Any suggestions? Please ring. (As long as they are decent). We hope to visit most rallys and exhibitions during 1983.

OVER 40 NEW ANTENNAS TO COME
The most comprehensive range of anntenas to suit every operator and every climatic condition.
Please enclose a stamped addressed envelope with all enquiries.

For further information contact:
 SELECTRONIC SERVICES

Unit BT50/55B, Perry Avenue,
Teesside Industrial Estate, Thornaby, Stockton-on-Tees, Cleveland TS17 9LN. Tel: (0642) 760093

RATEC 83 Radio Rally 22nd May South Manchester

RATEC announce this NEW venue for

 ManchesterLocated on the A5102 in Woodford, it is within three miles of the M56/63 motorways. Situated in a rural setting just off the A34.
Up to eighty traders have been invited to attend, offering the widest range of interest to the amateur, and micro enthusiast.
Opening from 11.00 am , and closing at 5 pm , the rally will have the following facilities.
\star Talk in on 145.550 MHz FM.
\star On site catering, and bar.
\star Overnight camping, and caravans by arrangement.
\star Large parking areas.

* Professional security guards.
\star Attractions for wives and children.
Admission 50p (Children under 16 Free)
For further details of this prestigious event, contact:
David G3VFP, on 061-439 2377. Or sae to:
17 Laleham Green, Stockport SK7 3LJ.

Food For Thought

Throughout the 1982 sporadic-E season, Tim Anderson noted the best events in Band I often occurred on sunny days with high pressure systems and cloudy days rarely produced a major disturbance. Tim thought this was a coincidence until he found an old booklet, with a long title, How to Receive Foreign TV Programmes on Your Set by Simple Modification, in which, says Tim, "the author seems to imply that sporadic-E is best with fine weather and high pressure". I don't go along with this Tim, but you
have the best idea when you say "I shall certainly take more notice of weather conditions during the sporadic-E this summer". I will look forward to hearing about the results Tim because I feel that we still have a lot to learn about all modes of propagation.

On the subject of old journals, Wenlock Burton, Victoria, Australia, sent an article from the magazine Radio, Television and Hobbies (now Electronics Australia), dated March 1957 with a report about BBC television sound being received by an amateur in Sydney on 41.5 MHz in October 1956 and some sync pulses on the vision channel of 45 MHz .

SSTV

"There has not been too much DX that I could find on SSTV this month" writes Peter Lincoln from Aldershot, on January 6, who logged EA5AWK working an Italian station, Fig. 7, HBOAWQ calling CQ , Fig. 8, along with signals from 4X4 and 5B4. During the previous month, Peter copied a CQ from what looks like DJ3OGF, Fig. 9 and on December 24, a picture of a building, Fig. 10, taken during a transmission by possibly a German station who stopped transmitting before Peter could get his callsign.

Fig. 3: Austrian test card (Roger Wallis)

Fig. 6: Mystery picture (Roger Wallis)

Fig. 9: SSTV CQ from a German
station (PeterLincoln)
"My SC422A SSTV converter is now fitted with Volker's 25 seconds singleframe colour board and I have exchanged excellent such colour pictures with I3XQW" writes Richard Thurlow G3WW, March, Cambridge. During 1982 Richard made first time two-way SSTV QSOs with 144 stations worldwide including 3 new countries, FM7CD, ZE1EK and 5 B4CV, bringing his twoway SSTV score up to 112 countries worked. "The American 14 MHz (20m),

Fig. 10: SSTV picture (Peter Lincoln)

Saturday 1800GMT SSTV net around 14.228 and $14 \cdot 230 \mathrm{MHz}$, is always worth viewing/listening in to/or working with, to learn the latest SSTV news, ac-
tivity, or just gossip", says Richard who in January 1983 added 2 DJs, 2 EAs and WB8UHZ to his new stations list. In our September 1982 issue, I reported one of Richard's many achievements during a QSO with a Swedish station, which resulted in the following letter from one of my readers in Sweden. "We all saw how Richard Thurlow transmitted a picture of a table laden with delicious food and how SM5EEP responded with a photograph of the Swedish royal couple and a small Swedish flag attached" writes David Appleyard from Uppsala, who during the evening of January 9 watched an hour long programme about amateur radio, on Swedish Television, which covered most aspects of the hobby including such items as moon-bounce and SSTV. Many thanks for the gen David, I know that Richard will be pleased to hear about it.

Other Stations

Brian Renforth has moved to Torquay and has been busy modifying and repairing valve type TV receivers to get his DXTV station back on the air. When complete his antenna installation will have a Plemi-Margon 103-element array for u.h.f. and a 3 -element beam antenna for Band I, driven by a Stolle/ Hischmann rotator and a 6 -element Yagi in the loft for Band III.

Two well known TVDXers, Roger Bunney and David Martin, directors of South West Aerial Systems, sent me their firm's latest catalogue which, as well as many useful technical tips, contains a wide range of antennas, pre- and distribution amplifiers, filters, masts, rotators, up and down converters and a variety of accessories for the Band II and TVDXer. Readers interested should write to: SWAS at 10 Old Boundary Rd, Shaftesbury, Dorset, SP7 8ND.

In April 1981, Roger Wallis, purchased a Thorn 850 TV receiver, a Hugh Cocks up-converter and with a 3 -element beam this set-up gave good results in Band I during the sporadic-E season. In May 1982, Roger purchased a working Bush TV183 and with the aid of some technical literature, made both sets switchable between v.h.f. and u.h.f., 405 and 625 lines and positive and negative video modulation. During the 1982 sporadic-E season, Roger's 10 year old son was the envy of his school friends, because he was able to see some of the World-Cup football matches that were not on British television.

I must once again warn readers not to attempt to modify old or new television receivers unless you know what you are doing, because of the high voltages and often live chassis employed and the great risk of electric shock.

Have heavy duty p.s.u. suitable for communications receiver, 300 V h.t., 7 V l.t. and dB meter in portable case. Would exchange for stereo tape deck. A. L. Holdsworth, 149 Blenheim Chase, Leigh-onsea, Essex, SS9 3HJ. Tel: 76211.

Q653
Have Raleigh Caprice ladies cycle 26 in wheels, 3 -speed and dynamo, as new, value $£ 70$. Would exchange for Trio- 310 receiver or similar. Please collect and deliver. Walker, 35/37 Brighouse and Denholme Road, Queensbury, Bradford, Yorkshire, BD13 1NA.

Q669
Have Tandburg 15 reel tape recorder with group trainer facilities, Ferguson tape recorder, Avo valve voltmeter etc. Would exchange all or part for h.f. receiver or transmitter, non-working OK. Cain, 18 Oaky Balks, Alnwick, Northumberland. Tel: 602487.

Q670
Have $240 \mathrm{~V}-115 \mathrm{~V}$ p.s.u. converter, high quality Aiwa AD 1800 stereo cassette deck top loader DIN 455500, cost $£ 172$. Realistic twin bass reflex speakers 70W each, 5 months old, cost $£ 140$. Would exchange for any amateur radio equipment. Northampton 0604719233.

Q710
Have Canon 814 super 8 cine camera. Would exchange for R216. Everall, 36 Eleanor Road, Waltham Cross, Herts, EN8 7DL. $Q 739$

Have 140 amp welding kit complete with all leads, masks, brazing attachment, supply of welding rods. Would exchange for Sinclair ZX81 and 16 K memory pack. 46 b Musgrove Road, New Cross, London SE14. Tel: 01639 3530. Anyone interested must collect.

Q579
Have Pye Bantam and Pocket-phone, both in good and original condition (will crystal any reasonable channel of your choice). Would exchange for military radios or accessories, anything conisidered. G8MQT, 0707327233 (Welwyn Garden City).
$Q 740$
Have mint 144 MHz handheld f.m. transceiver with band/memories scanning, l.c.d. readout, charger, Nicads etc., one or three watts output, one owner, model Azden PCS300. Would exchange for mint unmodified Trio R1000 RX with cash adjustment. Tel: 0373 64694 (Warminster area).

Q741
Have Lafayette HA-600A solid state receiver 150 kHz to 30 MHz a.m./s.s.b./c.w. 220V/12V, operating manual. Would exchange for Sinclair ZX81 with 16 K RAM or similar. 22 Murray Ave., Kilsyth, Glasgow. Tel: 0236823424.

Q810
Have Tektronix 543 oscilloscope with type B plug in unit. Would exchange for any $144 \mathrm{MHz}(2 \mathrm{~m})$ transceiver or w.h.y. Tony G6PDA. Tel: 0777707698.

Q839
Have h.f. mobile linear, $3-30 \mathrm{MHz}$, switchable up to 200 W p.e.p., still in box, with 13.8 V 10A power supply. Also Amstrad CB900 f.m. CB and other items. Would exchange for $144 \mathrm{MHz}(2 \mathrm{~m})$ multimode in very good condition. Tel: Gravesend 59346. $Q 857$

Have Grundig 1400 SL receiver one year old in mint condition. Would exchange for good f.m. scanner or Yaesu FRV7700D converter or w.h.y. M. Clapham, 99 Fairfax Avenue, Harrogate. Tel: 886627.

Q858

LONDON'S NEWEST AND BRIGHTEST EMPORIUM

SETTING IP ASTATION...

Finding the right equipment at a price to suit your pocket - now that's a serious business.
You need a wide range to choose from. We have it - Trio, Yaesu, Icom, FDK.

You need time to look, time to listen. We provide it - with our full-scale operating station.

You may need advice from serious, dedicated amateurs. We've been on the air for years - HF, VHF and UHF . . . and there are all those local amateurs who drop in from time to time.
You may need finance facilities - we accept Access and Barclaycard - we offer Creditcharge Instant Finance.
Above all, you need to know we are reliable and know our business. We've been in electronics and amateur radio for years. We are approved dealers for Trio, Yaesu, Icom and FDK - and we offer full, prompt and efficient servicing in our up-to-date workshop.
. . . Try the superb new state of the art HF transceiver and general coverage receiver . . . The Trio TS 430 S

A compact, high performance all solid-state transceiver, the TS 430 S by Trio covers all the WARC bands from 160 to 10 metres - with SSB, CW, AM and optional add-on FM.
Want a change from transmitting? There is a 150 khz to 30 mhz general coverage receiver to give you world wide reception.
Dual digital VFO's, eight memory channels with memory scan, IF shift, notch filter - all these and many more features make this one of the most exciting pieces of equipment we've come across for a long time. Try it for yourself. Come and see us.
See the Professionals
Derek G3 TGE
Roy G3 TLE
Kerry G6 IZF

Four minutes from the M1. Exit Junction 14. Head for the High Street, Newport Pagnell. We're at number 58. Parking opposite or round the corner in Silver St . Or phone 0908610625.

Photo Acoustics Ltd.

EHFAK EARGANS

\square

121 SCREWDRIVER SET
6 precision screworivers in hingee plastulu

3131 NUT DRIVER SET
5 preceision nul otrvers in hingee plastic case
Wint futring iod

STI TOOL SET
borecision instroments in minged plastic case
Crosspoint । Pnillips＇screwdivers
H 0 ano 1 Hex key wrenches
152 and $2 \mathrm{mmm} \mathbf{~} 1.75$
ओ WRENCH SET
5 Decision wreriches in ninged piastic case Sizes -4.455 .5 万and $6 \mathrm{~mm} \mathbf{£ 1 . 7 5}$ BUY ALL FOUR SETS $\$ 121$ STh ano ge＇ HEXKEY SET FREE HEX KEY SET ON RING Sizes 15 2253 Mace of naroeneo stee $\mathrm{HX}_{\mathrm{I}}^{\mathrm{I}}$ §1．25

＂IARESISTABLE

 RESISTOR BARGAINS＇ $\begin{array}{llll}\text { Pat Ma．} & \text { Ots＊} & \text { Description } & \text { Price } \\ \text { SX10 } & 400 & \text { Mired All Type Resistors } & \text { II }\end{array}$ Mired＂All Type＂Resistors fPieformed th 4 watt Carbon Preformed Resistors 4 watt Carbon Resistors 4 watt Catbon Ressistors 4 watt Resistors 22 ohm 2 m 2 Mued 1 and 2 watt Resistors 22 ohm－ 2 m 2 Mixed
Paks $5 \times 12-15$ contain a range of Catbon film Resistors of assorted values from 22 ohms to 22 meg Save pounds on these resistor paks and have a full range to
cover your projects －Quantities appromimate count by weight

GUARANTEED TO SAVE YOU

 SX27A 60 Assoted PolyESX27A 60 Assorted Polystyrene Bead Capacitors SX28A 50 Assorted Silver Mica Caps SX29A 50 Assop
SX29A 180pF－4700pF
\qquad Sx30A 50 High Voltage Disc Ceramics $750 \mathrm{~V} \quad £ 1.00$ up to 8 KV ．Assorted useful values $\mathbf{£ 1 . 0 0}$ SX31A 50 Wirewound 9 watt（arg）Resistors．

AUTO SCREWDRIVERIDRILL Automatic spiral ratchet．Complete with screwdriver blades， 5 \＆ 65 mm ． 1 screwedriver cross point No． 1 \＆three drills－2， 2.8 and

SIREN ALARM MODULE
American Police type screamer powered from any 12 volt supply into 4 or 8 ohm speaker．Ideal for car burglar alarm， purposes． 5 watt， $12 v$ max．
$£ 3.85$ Order No
BP124．

BI－PAK SOLDER

DESOLDER KIT

IICOmpises HRDERNO Sx80
1 Hign Quality 40 watt General Purpose Lightweight Soidet
$3 / 16 \quad(47 \mathrm{~mm})$ on
1 Ouality Desoicering pump High Suction wit automatic ejection Knutied ant－corrosive casing and letion nozzie
15 metres ot De soldering oraid on piastic dispenset
2 ycs 1183 m ）Resin Coreo Solder on Cara
1 Heal Shunt tool Iweezer Type
Total Retail Value over $£ 12.00$
OUR SPECIAL KiT PRICE £8．95

－TheThird and

Fourth Hand．．．

．．．．you always need Dut have never got unti now
This neipful unit with Rod mounted tached to roc enos Six Dall \＆socket cips give intinite varation Six dali \＆socket joints 360° also availation dad positions through magnitier giving $25 \times$ magnitication Helping hand unit avatable with or without magnitiet Our Price with magnotier as illustrated ORDER NO T402 $£ 5.50$
Without magnitiet ORDER NO T400 £4．75

BI－PAK PCB ETCHANT
AND DRILL KIT
Complete PCB Kil cumprises
1 Expo Mint Dril 10 000RPM $12 v$ DC inci 3 collets $81 \times 1 \mathrm{~mm}$ Iwist in 1 Sneet PCB Transters $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ 1 Elch Resist Pen － $1 / 1 \mathrm{l}$ pack FERRIC CHLOR 3 sheets copper clad boara ？sheets Fitreglass copper clan Doara Full instructions tor making your own PCB boartas
Retar Value ove：£15．00 OUR BI PAK SPECIAL KIT PRICE $£ 9.75$ ORDER NO S×81

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year A host of Electronic components including potentiometers－rotary and slidet．presels－horizontal and vertical Resistors of mixed values 220 hms to $2 \mathrm{M} 2-1 / 8102$ Watt A comprehensive range of capacitors including eiectrolytic and polyester types plus disc ceramics etcetera Audio plugs and sockels of various types plus swilches fuses．healsinks．wire nuls bolts gromets，cable clips and tyes．knobs and PC．Board Then add to that 100 Semiconduitors to include transistors．diodes．SCR＇s opto＇s．all of which are current everyday usable devices In aH a Fantastic Parcel No rubbish all identilable and valued in current calalogues at well over $£ 2500$ Out Fight Against Inflation Price－
－Beat the Budget
Down with Depression
JUST
E．50．

－ロ \rightarrow－

PROGRAMMABLE UNIJUNCTION TRANSISTOR PUT case T0106 plastic MEU22 Similar to
2N6027／6028 PNPN Silicon $\begin{array}{lll}\text { Price：} 1.9 & 10-49 & 50-99\end{array}$ $\begin{array}{llll}\text { Price } & 1.9 & 10-49 & 50.99 \\ 100 * & \text { Normal Retail }\end{array}$ SX33A 6 small Switches 240 v 5 mpp oggle ${ }_{£ 1.00}$ SX35A 6 small（min）Rocker Switches £1．00 SX32A 12 Assorted Jack \＆Phono plugs． $50 c k e t s$ and adaptors． 2.5 m ．
$\begin{array}{ll}\mathrm{SX71} & 50 \text {＂C108 Fallouts＂Manufac }\end{array}$
ture．s out of spec on volts or gain You test
5×52
6 Black Heatunk will hit 103 and 10.220 Ready drilled Half prhe blue

BRAND NEW LCD

 DISPLAY MULTITESTER． RE 188 mLCD 10 MEGOHM INPUT IMPEDANCE ＊ 3 施 digit＊ 16 ranges plus HFE test tacility to PNP and NPN transistors＊Auto zeto．auto poianty＊Single－handed pushoutton operation＊Over range indication＊ 125 mm （ $1 /$－inch）large $L C D$ readout ${ }^{*}$ Dioue check －Fust circuit protection＊Test leads．Datter and instructions included
Maxindication 19990 or－1999
Polanty indication Negative only Positive readings appear without + sign
input impedance 10 Megohms
Zero adjust Automatic
Sampling time 250 milliseconds remperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Power Supply
$1 \times$ PP3 or equivalent gu Dattery
Consumption Datter
$591-20 \times$ large $2^{\prime \prime}$ RED LED
5442 20 small 125 Redico
54310 Rectangular Green LED＇s？ f1 30 Assorted Zener Diodes $250 \mathrm{mw}-2$ watt mured voltages． all coded New

Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$ RANGES
5×474 Black Instrumen
DC Voitage 0.203 mV
0．2－20－200－1000V Acc 08% AC Voitdge $0.200-1000 \mathrm{~V}$
Acc 12% DC Current $0-200 \mathrm{uA}$ $0-2.20 .200 \mathrm{~mA} 0.10 \mathrm{~A}$ Acc 1 Resistance 0．2－20－200K ohms 0． 2 Megohms Acc 13
BI－PAK VERY LOWEST POSS PRICE
£35．00 each
SINGLE SIDED FIBREGLASS

NPN like 2N3055－but not full spec 100 watts 50 V min
10 for $£ 1.50$－Very Good Value
Order No． $\mathbf{S X 9 0}$

SX72 A mixed bundle of Copper clad $£ 1.00$ Board Fibre glass and paper． Single and double sided．A lantastic bargain

REGULATED

VARIABLE
Stabilised
POWER SUPPLY
Variable from 2.30 volts and 0.2 Amps．Kit includes－ 1－VPS30 Module， 1 － 25 volt 2 amp transtormet， $1-0.50 \mathrm{v} 2^{\prime \prime}$ Panel Meter， $1-0.2 \mathrm{amp} 2^{\prime \prime}$ Panel Meter 1－470 ohm wirewound potentiometer． $1-4 \mathrm{~K} 7$ ohm wirtbound potentiometer，Wring Diagram．
included．Order No．VPS30 KIT $\frac{£ 2 Q}{\text { included．Order No．VPS } 30 \text { KIT }}$ Freq： $95-106 \mathrm{MHz}$ ．Range：$\frac{1}{}$ mile
Size： $45 \times 20 \mathrm{~mm}$ ．Add： 9 v batt．ONLY Not licenced in U．K． ONLY
$\mathbf{£ 5 . 5 0}$
Not licenced in U．K．
Ideal for：007－MI5－FBI－CIA－KGB etc．
£5．50

MORE BARGAINS！

SX51 60 metres PVC covered Hook－up wite single and stranded Mixed colours．
Sx58 25 Assorted TTL Gates 7400
Senes． 7401.7460 ．
Sx59 10 Assorted flip Flops and MSI
TIL
20 Assorted Slider
Potentiometers
sx62 40 Assorted Pre．Sets Hor／Vert
etc
10 Reed
3
10 Reed Switches－glass type 3 Micro Switches－with lever

FT 102 Full Range SP 102 External Speaker with audio filter

FRG 7700 - This Receiver leaves the competition standing

A host of useful accessories -
Active Antenna FRA7700
UHF Convertor FRV 7700
Antenna Tuner FRT 7700
DC Kit FRG-DC
Memory 12 channel
Tape outlet, Clock and Timer standard.

We hold probably the most comprehensive Yaesu Spares stock in Europe. What we do not have we will get in the shortest time, if available.
The ALL NEW FT980 plus accessories - available March The Compact FT77-Stock by the end of February.

Entire YAESU Range Stocked TV 625 Line TX/RX System
BEARCAT - DEALER - IRELAND Announcing ExStock the fabulous BC20/20FB AM-FM Scanner
YAESU P.M.R. Equipment - Full Range ExStock, including Repeaters, Patch, Remote

WESTERN COMMUNICATIONS (GALWAY) LTD.
Unit 1, I.D.A. Cluster Development,
Tuam Road,
Galway, IRELAND
Phone: (091) 65166/65208

> U.K./N.I. (0009) 65166/65208
> International Dial - Int. $(353) /(9) / 65166 / 65208$

Telex: 28933 MHTC EI

ISHERWOOD ELECTRONICS
 BARGAIN

FM4 Tuners
ONLY £9.95 inc. P.8p.
A complete AM/ FM tuner chassis covering L.W., M.W. \& V.H.F. (stereo). Brand new and boxed.
Condenser microphones inserts with built in F.E.T. amplifier 5k IMP2. 20 mm diam.
£1.25 incl. P.\&P.

S.A.E. for lists: HOZIER ST., BLACKBURN.
 Tel: (0254 57616)

T. POWELL 311 edoware road, London w. 2
 SPECIAL OPENING OFFER
 - A negative ion generator kit

This kit will saturate your home or office with millions of refreshing ions. Without fans or any moving parts it will put our a pleasant breeze. A pure flow of ions pours out like water from a fountain. The result is that the air feels pure, crisp and wonderully refreshing.
As a special opening offer we are selling the kit, complete with case for ONLY £18. We also stock PW kits including:-
Amateur TV UP Converter
R.F. Noise Bridge
Beginners Short-wave Receiver
(Components only)

ZW22		$\mathbf{£ 1 4 . 5 0}$
ZW16	Jan '82	$\mathbf{£ 8 . 2 5}$
ZW15	Jan '82	$\mathbf{£ 2 2 . 5 0}$
ZW11	Sept '81	$\mathbf{£ 1 3 . 5 0}$
ZW10	March '81	$\mathbf{£ 9 . 0 0}$
ZW6	Sept '80	$\mathbf{£ 1 5 . 0 0}$
ZW14	Jan '80	$\mathbf{£ 1 8 . 5 0}$

Active Receiving Antenna
AF Speech Processor

$$
\text { \& } 15 \% \text { VAT }
$$

ZW14 VAT
Reprints of articles 40 p extra (+SAE if no kit required)
Barclaycard/Access welcome.
Please allow 14 days for delivery.
We have many millions of components in stock - personal callers are very welcome at our new shop at
311 EDGWARE ROAD, LONDON W2. 01-723 9246

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.
Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed".

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics* Introduction to Microprocessing* Electrical Engineering*
Electrical Contracting \& Installation

- Qualify for IET Associate Membership

Member of ABCC

POST OR PHONE TODAY FOR FREE BOOKLET

Accurate Digital Multimeters at

NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE

28 RANGES, EACH WITH FULL OVERLOAD ECIFICATION MODELS 6010 \& 7030

- $10 \mathrm{amp} \mathrm{AC} / \mathrm{DC}$
- Battery: Single 9V drycell. Life: 200 hrs

Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$.

- Weight: 400 g inc. battery.
- Mode Select: Push Button.
- AC DC Current: $200 \mu \mathrm{~A}$ to 10 A
- AC Voltage: 200 mV to 750 V
- DC Voltage: 200 mV to 100
- Resistance: 200Ω to $2 \mathrm{M} \Omega$
- Input Impedance: $10 \mathrm{M} \Omega$

Display: $3 / 2$ Digit 13 mm LCD

- O/load Protection: All ranges

MM $\int_{\mathrm{NEW}}^{5 \mathrm{HM102BZ}}<$ HM 102 BZ
f13.00 N SPECIFICATION NC Voltage: $0.25,1,2.5,10,25,100,250,1000$ - AC volts 20,000 ohms/volt. - AC Voltage: $0.10,25,100,250,1000$ volts 10,000 ohms/volt.

- Decibels: -20 to +22 dB
- DC Current: $0.50,500 \mu \mathrm{~A}, 0.5,50,500 \mathrm{~mA}$
- Ohmmeter: $0-6$ Megohms in 4 ranges.

30 ohms Centre Scale

- Power Supply: One 1.5 V size ' A ' battery (incl)
- Size \& Weight: $135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{gr}$.

HM 101 POCKET SIZE MULTIMETER SPECIFICATION

- DC \& AC Voltage: $0-10,50,250,1000$ volts,
- Decibels: $\quad .10$ to +22 dB
- DC Current: $\quad 0-100 \mathrm{~mA}$
- Ohmmeter: 0.1 Megohm in 2 ranges, 60 ohms Centre Scale One 1.5 V size ' A ' battery (incl) $90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr}$. incl. battery battery
$\mathbf{f 5 . 5 0}$

Add 15% to your order for VAT. P\&P is free of charge. Quantity discount for trade on application. ARON ELECTRONICS LTD.

Cottrell House. 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH. England

Telephone 01-9024321 (3 lines)

TELEX No 923985

ZX81 - RTTY

A COMPLETE TRANSMIT/RECEIVE RTTY PACKAGE FOR THE XX. 81 - 5 MEMORY STORES, AUTO-RUN, AUTO CARRIAGE RETURN AND LINE FEED, FULLY DOCUMENTED. SEND FOR DETAILS OF THIS AND OTHER AMATEUR RADIO SOFTWARE FROM

SCARAB SYSTEMS

PURCHASERS AND DISTRIBUTORS OF SOFTWARE 141 Nelson Road, Gillingham, Kent ME7 4LT. Midway (0634) 575778

FREE
 CATALOGUE OF BURGLAR ALARM
 EQUIPMENT

TOP QUALITY D.I.Y. SYSTEMS AND PARTS AT TRADE
SEND S.A.E. OR PHONE
C-TEC SECURITY, DEPT. PW 60 MARKET ST, WIGAN

AT LAST!! - A REALLY FINE RECEIVER FROM ICOM

SSB, CW, AM, RTTY AND FM WITH SUPERB PERFORMANCE ICR70 PRICE £469

- Call or write for more details.

THANET ELECTRONICS LTD.

MASHMF THTFOHRONICS NOW! The PRACHTCAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

Newdob?NewCareer? ?NewHobby?Getinto Mlectronics Now! as described above RADIO AMATEUR LICENCE MICROPROCESSORS LOGIC COURSE

BritishNational Radio\&\&Electronics School Reading.Berks.RG1 BR

J. BIRKETT

(Partners: J. H. Birkett, J. L. Birkett
Radio Component Suppliers
25 The Strait, Lincoln LN2 1JF. Telephone 20767
METAL FLIM RESISTORS $5.6,6.8,7.5,9.1,10,11,12,15,18,27,33,36,43,47,56$, $68,75,82,100,110,120,130,150,160,180,200,220,240,270,330,360,390,430$, $470,510,560,680,750,820,910,1 \mathrm{~K} 1,1 \mathrm{~K} 2,1 \mathrm{~K} 3,1 \mathrm{~K} 5,1 \mathrm{~K} 6,2 \mathrm{~K}, 2 \mathrm{~K} 4,2 \mathrm{~K} 7,3 \mathrm{~K} 3,3 \mathrm{~K} 6$, $3 \mathrm{K9}$, 4K3, 5K1, 5K6, 6K8, 7K5, 8K2, 9K1, 10K, 11, 12, 13, 16, 18, 20, 22, 24, 30, 33, 36, $39,43,47,51,56,62,75,82,91,100,120,150,160,180,200,220,240,330,390,560$, 680,820 , 1 M . Ali at 3p each, 50 for $£ 1$.
CRYSTALS FI 241A Types 54th. Harmonic. 20 assorted for $£ 1$.
CRYSTALS HC6U 20 assorted for $£ 1,30$. Metal Cased FT243 Types 20 for $\mathbf{£ 1}$.
TRANSISTORS BSX19, BSX20, BSX21, BC 548, BC 549, BC 558, ZTX 108, ZTX 213,
ZTX 342, ZIX 450, 2N 706, 2N $5220,2 N 2907 A$, All at 6 for 50 p.
ITT PMT TYPE CAPACTORS $0.1 \mathrm{uf} 400 \mathrm{v} . \mathrm{w} .6$ for 25 p , 0.1 uf 100 v .w. @ 5p each. SILICON DIODES 500 PIV 100 Amp @ $£ 3$ each.
100 PIV 10 Amp BRIDGES @ 90p each 100 PIV 20 Amp BRIDGES @ $\mathbf{1 1 . 3 0}$.
CRYSTALS. $10 \times$ AJ $6 \mathrm{MHz} 7025 \mathrm{KHz}, 7085,8065,8082.35,8089.09 \mathrm{KHz}$. All at 60 p each. HC18U. 8005, 8006, 8014, 8016. All at $£ 1$ each
UHF RUBBER DUCK AERIALS around 450 MHz at $£ 60$ each.
SUB-MINIATURE TUBULAR TRIMMERS 0.5 to 3 pf at 15 p each.
WIRE ENDED ELECTROLYTICS $5000 \mathrm{uf} 15 \mathrm{v} . \mathrm{w}$. @ 20p. 1000uf $16 \mathrm{v} . \mathrm{w}$. @ 15p.
50 OHM PUSH ON PLUGS BNC 3 for £1.15, BNC 50 OHM SOCKETS 3 for £1.15.
MUUARD VHF POWER 570BLY 40 Watt 28 Volt 175 MHz with data @ $\mathbf{8 6 . 5 0}$. MULLARD UHF POWER BFR64 470MHz 4 Watt $12-24 \mathrm{~V}$ Volt $£ 4$.
MULLARD SUB-MINIATURE CERAMIC PLATE CAPACITORS $0.01 \mathrm{uf} 63 \mathrm{v} . \mathrm{w}$. @ 25p doz Please add 30 p for post and packing. Orders over $£ 3$ post free. Goods normally by return

[^2]$\mathbf{£ 6 . 0 0}$
£10.00
$£ 17.00$
£65

RTTY TERMINAL UNITS. Redifon CSF term units I.F. type I/P freq preset $445 / 470 \mathrm{Kc}$ drive level $25 \mathrm{Mil} / \mathrm{V}$ from 50 ohms, shift freq 400 $1000 \mathrm{c} / \mathrm{s}$ contains monitor meter, telyprinter drive relay \& Tx FSK relay, as provision for AFC operation with up to 2.5 Kc drift, uses 19 miniature valves, $19^{\prime \prime}$ unit contained in Mil Patt transit container, these units req ext P.U. for HT, LT, Bias \& $80-0-80 \mathrm{v}$ supplies. The Rect. 7 will supply 80 v , supplied with circ \& handbook. £65.
RECT. No. 7. I/P $110 / 200 / 250 v$ AC or $12 v$ DC O/Ps $80-0-80 v$ at 30 Ma , 12 vDC at $300 \mathrm{Ma} \& 40 \mathrm{v} \mathrm{AC}$ can also be used to supply 240 v AC at 40 watts from 12 v at $300 \mathrm{ma} \& 40 \mathrm{v}$ AC can also be used to supply 240 v AC at 40 watts from 12 v DC I/P fitted fuse, swt Ind lamp, in wood case $7 \times 9 \frac{1}{2} \times 7^{\prime \prime}$ with circ \& spare vibrator. $\mathbf{£ 8 . 5 0}$.
WAVEMETER. CLASS D No. 2 for use on $240 v$ AC or $12 v$ DC Hetrodyne freq meter 1.2 to $19.2 \mathrm{Mc} / \mathrm{s}$ in 4 ranges supplied with charts, spare valves, phones, leads \& Inst book in case size $19 \times 12 \times 12^{\prime \prime} \mathbf{£ 3 5}$ also few Class D.No. 1 W.M. at $\mathbf{£ 1 2 . 5 0}$.
MORSE KEYS miniature key for use with A510 set new cond. $\mathbf{£ 3 . 5 0}$.
HEAD \& MIKE SET modern style unit with boom mike \& padded phones finished in grey nom 100 ohm imp. $£ 12.50$. Also Army type rubber with throat mikes $£ 7.50$.
R.N. TYPE CAS RECEIVERS General purpose comm Rx 5 bands 60/ $560 \mathrm{Kc} \& 1.5$ to $30 \mathrm{Mc} / \mathrm{s}$ uses 13 min valves as 2 RF \& 3 IF stages, BFO, Xtal Filter O/P for 100 ohm phones or 600 ohm spk line, in case size $13 \times 14 \times 14^{\prime \prime}$ reqs ext P.U. to give $250 \& 150 \mathrm{v}$ DC \& 6.3 AC supplied tested with circ, H/Bk \& connectors. £115 see list for P.U. MORSE SIGNAL LAMPS with morse key, control unit, lamp unit for 12 volt new cond few only $£ 25$.
VALVE KITS with CV types 6BA6x5, 6BE6 $\times 2$, EF91×4, EB91x3, EL91. f 10.
U.H.F. Rx sub ass spot freq Rx for $243 \mathrm{Mc} / \mathrm{s}$ with crystal \& valves dual conversion with o/p for phones reqs ext power new cond $\mathbf{£ 1 6 . 5 0}$.
AERIALS. Army dipole approx 60 Mts overhaul with connector stranded bare copper wire, new on card $\mathbf{\mathbf { 6 } . 5 0}$.
POWER UNITS mains power units for use with Army 128 Set Tx \& Rx in case size $9 \times 6 \times 6^{\prime \prime} \mathbf{£ 1 7 . 5 0}$ few only.
PANEL METERS mostly m.c. types 2 to $5^{\prime \prime}$ dia 4 different for $\mathbf{£ 6 . 5 0}$ new.
Above prices include carr/postage \& VAT, goods ex-equipment unless stated new, allow 14 days for delivery, SAE with enquiry or $2 \times 15 \frac{1}{p}$ stamps for List 29/1.
A. H. SUPPLIES

122, Handsworth Rd, SHEFFIELD S9 4AE
Tel. (0742) 444278

Software

PROVEN ZX81 RTTY TRANSCEIVER PROGRAM and circuit, with no alteration to the computer. SAE for details. GM4CUZ. 15 Campfield Road. Broughty Ferry. Dundee. DD5 2 NG .

Receivers and Components

VALVES, RADIO, TV. Industrial transmitting, despatched to all parts of the world by post, 6000 parts in stock. Quotation s.a.e. Cox Radio (Sussex) Ltd., The Parade, Eas Wittering. Sussex. 2023 (024 366).
BOURNEMOUTH/BOSCOMBE Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Rd. now at 36, Ashley Rd., Boscombe. Tel 302204. Closed Weds.

MIXED METAL FILM RESISTORS - 1000: $£ 5.100$ mixed TR5 $\frac{1}{2} \mathbf{~ 2 \% : ~ 8 5 p . ~ C e r m e t ~ p o t e n t i o m e t e r s ~}-10$ mixed: $£ 1$. Low profile DIL sockets -24 pin: $£ 15$. P\&P 40 p. SAE for lists. T. Milner. 203 Goodman Park, Slough. Berkshire
TVDX. VHF TO UHF CONVERTOR. Receive VHF DX signals on a UHF TV set. hundreds sold. $£ 13.50$ VHF 2 M . 4 M . airband convertors. 10.7 MHz IF $£ 9$. Satellite TV equipment available. SAE data, lists H. Cocks. Cripps Corner. Robertsbridge. Sussex. Tel. 058083-317.

BRAND NEW COMPONENTS BY RETURN

HIGH STABILITY MINIATURE FILM RESISTORS 5\% $\frac{1}{4} W$ E24 Series 0.51R-10MO. (Except 7M5)-1p. 0.125 W E12 Series 10 R to $1 \mathrm{MB}-2 \mathrm{og}$. O .5 W E12 Series
1 RO to 10 MO - $1 \frac{1}{2 \mathrm{p}}$. 1.0 W E12 Series 1OR to $10 \mathrm{MO}-3 \mathrm{p}$. $\frac{1}{4}$ W Metal Film Eì 2 series 10 R to 1 MO $5 \%-\mathbf{2 p}$. $1 \%-3$ p.
CAPACITORS. $2 \% ~ 56 \mathrm{pt}$. to 330 pt . 4 p . $10 \% 390 \mathrm{pt}$. to 4700 pf - 4 p

 Miniature Polyester 250 V Wkg. Vertical ${ }^{\text {to }}$ Mounting. | 01, | 015, | .022 | $\&$ | .033 | 0.22 | .047 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2.1-5 p$ | 8 | 0.33 | 068 | mfds, | 0.15 | 0.47 | $0.68-11$ p. $1.0-15$ p. $1.5-20$ p. $2.2-22$ p

ELECTROLYTIC. Wiro Ended (Mfds/Volts)

0,47/50	5p	$22 / 25$	6 p :	100/25	7 p	470/25
1.050	5 p	22/50	6 p .	100/50	8 p	470/40
22/50	$5 p$	47/16	6 p 1	220/16	${ }^{8}$	1000/15
47/50	$5 p$	47/25	6p.	220/25	8_{p}.	1000/25
$10 / 50$	5p	47/50	6p	220/50	$10 p$	1000/40
22/16	6 p	100/16	7 p	470/16	11p	2200/16

 $10 / 35 \mathrm{~V}, 22 / 16 \mathrm{~V} / 147 / 6.3 \mathrm{~V}, 48 / 3 \mathrm{~V}$ \& $\& 100 / 3 \mathrm{~V}-30 \mathrm{p}$
$15 / 25,22 / 25,47 / 10-35 \mathrm{p} .47 / 16-80 \mathrm{p} .220 / 16-\mathbf{~} 1.20$ Polystyrene 63V Wkg. E12 Series Long Axial Wires. 10 pf . to 820

THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield S8 ORN V.A.T. Inclusive Prices, Postage 15p (FREE over $£ 5.00$)

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Dept., Practical Wireless, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

BILLINGTON VALVES
 Established valve and vintage specialists

VALVE USERS/COLLECTORS: We are "one stop shopping" for all your valve requirements. Rare/"extinct" types our speciaity, plus every popular type at competitive prices. Send 25 p for our valve list and 50 p voucher, or SAE quatation.

VINTAGE RADIO COLLECTORS: We talk your language!
Send $8 p+$ SAE for our radio component clearance list. 4CX250B f18. Eimac produced. Never used; removed from unfinished equipment
PROFESSIONAL QUALTTY. New Morse Keys $£ 4+35$ p post Money back if not delighted.
$\frac{1}{2} \mathrm{~kg}$ reels of high quality solder (radio/TV use) $16 \mathrm{swg} £ 7$ post.
Mailing address only (callers by appointment only): Billington Valves,
23 Irwin Dr., Horsham, W. Sussex RH12 1NL.
MAIDSTONE has its own Component Shop. Thyronics Control Systems, 8 Sandling Road. Maidstone, 675354.

TRADE ONLY. Surplus/Liquidators components etc. Silly prices. Lists: Bardwell Lid, 288 Abbeydale Road, Sheffield S7 IFL.

CRYSTALS Brand new high-precision. You benefit from very large stocks held for industrial supplies. All normal freq standards, baud rates. MPU, and all magazine projects inc:
$\mathrm{HC33} / \mathrm{U}: 1.0 ~ £ 3.75,2.5625 \mathrm{MHz} £ 3.50$. HC18/U: 4.0 HC33/U: 1.0. E3.7. 5.0 . 7.0 . 10.0 . 10.7 i2.0. 15.0. 16.0. 18.0 $5 \cdot 0,6 \cdot 0,7 \cdot 0,8 \cdot 0,9 \cdot 0,10 \cdot 0,10 \cdot 7,12 \cdot 0,15 \cdot 0,16.0 .18 \cdot{ }^{2}$
$20 \cdot 0,38 \cdot 6667 \mathrm{MHz} £ 3 \cdot 35$. Selected freqs stocked in Glider. Marine and 27 MHz bands. Any freq made to order in 8 weeks from $£ 4.50,2-3$ week service available. CB Beat "Bleed-Over" with our special $10.695 \mathrm{MHz}, 7 \mathrm{kHz}$ BW. HC 18/U Filters $\mathbf{£ 4 . 0 0}$ each. Quantity discounts. Many crystals stocked for CB conversions.
Prices inc. VAT and UK post. SAE lists.

P. R. GOLLEDGE ELECTRONICS
 G3EDW, Morriott, Somerset, TA16 5NS.

BUMPER BOX OF BITS

WOWIII We've got so many components in stock, we can't possibly list them all!! - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's etc, coils, pots . . . and so on. All modern parts - guaranteed at least 1000 items, minimum weight 10 lbs . ONLY $£ 8.50$ inc.

ELECTRONICS WORLD
1b Dews Road, Salisbury, Wilts SP2 7SN. (Prop: Westborough Ltd.)

TaINTAGE

WIRELESS COMPANY
NOSTALGIA-COLLECTING 1900-1950s
Publishers of 'The Antique Wireless Newsheet (Sample on Request)
Suppliers of: - Valve Radio sets \& Amplifiers

- Valves,Components
- Repairs \&
Restorations
- Service Data
\& Manuals
- Historical Data
- New and Used Books/Magazines
The complete service for the collector and enthusiast of Vintage Radio.
THE VINTAGE WIRELESS COMPANY 64 Broad Street, Staple Hill, Bristol BSI6 5NL Tel:Bristol(O272) 565472 -24hour Ansaphone,Closed Mondays.

RADIO CANADA, Peking. Moscow, Voice of America. A Vega 206 (LWMW6XSW) pulls these and dozens more daily. $£ 23.45$ inclusive. Year's guarantee. Corrigan Radiowatch. Building 109. Prestwick Airport. KA9 2RT.

NEW SURPLUS RELEASE

VERSATILE BENCH POWER SUPPLY UNITS
Contains high quality transformer made to exacting specifications giving one 20 V output and two 30 V outputs. All outputs 3 amps. D.C. Input $110 / 250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$. Bridge Rectification. Contained on metal chassis with robust compact case size $7 \times$ an ideal variable mower supply. Normally cost around ss0.00 OUR PRICE AS NEW with circuits $\mathbf{5 8 . 5 0}$. Carr. 13.2 ins for €20 carr. free
CORDLESS INDUCTIVE LOOP HEADPHONES. Self powered. Input via loop or external min BNC socket. Contains transistorised high gain amplifier. Operates from internal batteries. Noise excluding milo stocks last f6 P. f 2 pairs for $\mathbf{f 1 2}$ post Specia
free.
LIGH
IIGHTWEIGHT HEADSETS (Govt. release). Brand new 600 ohms impedance. A bargain at $£ 3.50$ p.p. $£ 1.2$ pairs for $£ 7$ post free.
RIDICULOUS RESISTOR SALE. Brand new i watt carbon film resistors. 5% tol High quality resistors made to exacting specifications by automatic machines. E12 Range IRO to 10M in lots of 1000 (25 per value). Only $£ 8$ per 1000. Lots of 5000 for E35. I RO to 10 M . 1000 PCB type resistors $\mathbf{~} 2.50$. Bulk purchase enables us to offer 1000 mixed pre-formed carbon film resistors. 5% tol for PCB mounting. Huge range of values. $\mathbf{~} 2.50$ per 1000.4000 for 68 GENUINE AFV TANK HEADSETS AND MIKE $£ 3.50$ per pair, p.p. $£ 1.2$ pairs $£ 7$ post free. All headphones fitted with Exministry plug. Standard jack plugs available 25 p each. 2 for 40 p. Headphone extension sockets available at 25 p each 2 for 40 p . Impedance of first two items 600 ohms. All headphones in good condition.

SCOOP PURCHASE

PYE POCKET PHONE RECEIVERS Type PFI normal freq. 450 mHz . Supplied in used condition less battery, $£ 4.50$ each. Carriage f1 2 pairs f9.00 post free 4 pairs f 1600 post free THE GOVT. SURPLUS WIRELESS EQUIPMENT HANDBOOKK. Gives detailed information and circuit diagrams for British and American Government Surplus Receivers. Transmitters and American Government Surplus Receivers, Transmitters and Test Equipment etc. Also suggested modicationents for surplus equipment. Incorporated is a Surplus/Commercial cross referenced valve and transistors quide. The standard reference work in this field. Only £7.50 PD. $£ 150$ No VAT on books.
New release of MODERN DYNAMIC MOVING COIL MICROPHONES. 200 ohms impedance. Switch incorporated. Most with lead and DIN plug Used but nice condition 3 designs of wase housing. Price one mike our choice \mathcal{E} plus 50 p p. Bargain offer all 3 mikes $£ 4.50$ p.p. $£ 1$.
GENUINE EX-GOVT COLLAPSIBLE AERIALS. A fully adjustable highly efficient whip aerial in 5 sections. Length $1 \frac{1 f}{}$ metres. Closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Govt Manpacks. Brand new in makers boxes $£ 2.50$ each, p.p. 75 p. 2 for $£ 5$ post free.
HAVE YOU SEEN THE GREEN CAT. $1000 \times$ of new components, radio, electronic, audio at unbelievably low prices. Send 50 p and receive catalogue and FREE RECORD SPEED INDICATOR.
Try a JUMBO PACK. Contains transistors, resistors, caps, pots, switches, radio and electronic devices. OVER $£ 50$ worth for $£ \mathbf{1 1 . 0 0}$. Carriage and packing $£ 2.50$.

MINI JUMBO PACK ($£ 20$ worth)

for $£ 5$ p.p. $£ 1.50$.
PLEASE ADD 15\% VAT to all orders including
carriage and p.p.

Myvers Electronic Dewoes

Dept PW1, 12/14 Harper Street, Leeds LS2 7EA. Leeds 452045.

New retail premises at above address (opposite Corals). Callers welcome 9 to 5 Mon to Sat. Sunday 10 to 1 by appointment. GOVT. SURPLUS ITEMS ALWAYS IN STOCK.

Veteran \& Vintage

VINTAGE RADIO'S over 200 always in stock. Open every day. S.A.E. lists. Radio Vintage, 250 Seabrook Road, Seabrook. Hythe, Kent CT21 SRO. Phone anytime (0303) 30693.

Equipment and Tools

25 OR 30 WATT SOLDERING IRONS. Supplied with $4 \times$ 65 mm round bevel long life tips. Built-in anti roll/rest handle. 1 year no quibble guarantee. PLUS if you are not completely satisfied within 14 days please return for a full refund. ONLY £3.99 plus 50p P\&P. Hawkwood Marketing Ltd., Hawkwood House, Delderfield, Leatherhead, Surrey KT22 8UA.

Aerials

50M (165ft) AERIAL WIRE. Strong PVC covered copper $£ 4.40$ inc. Post. W. H. Westlake, Clawton. Holsworthy, Devon.
AERIAL WIRE. Hard drawn copper 140 ft 14 swg $£ 6.90,50$ meters 16 swg $£ 5.90$ including postage. S. M. Tatham, I Orchard Way, Fontwell. Arundel, W. Sussex.
$\overline{\text { AERIAL BOOSTERS. Improve UHF/VHF Television, VHF }}$ Radio Reception. Price from £7. SAE leaflets. Electronic Mailorder Lid, Ramsbottom, Lancashire, BL0 9AGW.

RESTRICTED IN SPACE? A G2DYM UNI-POLE

 Will be your answer, TX or SWL Data Sheets, Aerial Guide 75p. Indoor and Invisible Aerials $£ 3.50$.
G2DYM, Uplowman, Tiverton,

 Devon.VOCOM 5/8-WAVE ANTENNAS for 2 m handhelds. $47^{\prime \prime}$ collapses to $8^{\prime \prime}$, BNC terminated, base spring/loading coil, low SWR, lots of gain. Last few only, at reduced price $£ 13.50$ +50 p postage. Write: Zedwyn Electronics, 38 Downlands. Waltham Abbey, Essex, EN9 1UH.
AERIAL WIRE 14G hand drawn copper $13 \mathrm{p} / \mathrm{m}$. 50 ft drawn copper $£ 5$ per 100^{\prime} coil. Aluminium 1.6 mm dia., $13 \mathrm{p} / \mathrm{m}$. Postage up to $20 \mathrm{~m}, £ 1.40$. Over $20 \mathrm{~m}, £ 2$. Add VAT to total. WESTERN ELECTRONICS (UK) LTD, Dept PW, Fairfield Estate, Louth, Lincs. LN11 0JH.

Books and Publications

WORLD RADIO TV HANDBOOK 1983, delivery expected late February. Introductory price includes first class letter post upon publication. Send $£ 12.10$ or Access/Visa number to: Pointsea, 25 Westgate, North Berwick, East Lothian.
CONFIDENTIAL FREQUENCY LIST, new book listing over $100,000 \mathrm{CW}$, aero, costal, fax, etc, frequencies. Send 56.85 + £1 P\&P to: Interproduct Ltd, Stanley, Perth PHI 4QQ. Tel. 073882575.

ELECTRONICS BOOKS. International publishers. Lowest rates. Ask list. Business Promotion, 376 Lajpatrai Market, Delhi. India.

AIRCRAFT COMMUNICATIONS HANDBOOKS
Including spot MF, HF, VHF, UHF, frequencies, Military \& Civil Including spot MF, HF, VHF, UHF, frequencies, Military \& Civil Airports, Air Traffic Control Centres Long Range SSB HF Stations, Navigation Beacons, Instrument Landing systems, Details of Meteorological Broadcasts, Broadcast Times, Coordinates, Callsigns, Maps, etc. UK/Europe $£ 8.50$. Western Hemisphere $£ 9.50$. Asia, Australasia \& Pacific $£ 9.50$. Africa $£ 7$.
Maritime Maritime Books including spot MF, HF, VHF, frequencies, Coast Radio Stations, Long range SSB HF Stations, Callsigns, etc. Part
UK/Europe, Africa \& A sia 99.50 . Part 2 rest of World 9850 . Prices include postage \& packing UK Only. Overseas customers please add 10%.

PLH ELECTRONICS,
70 Vallis Road, Frome, Somerset, BA11 3EJ England.

Situations Vacant

LONDON SALES MANAGER c. $\mathbf{£ 1 1 , 0 0 0 ~ + ~ C a r ~}$

A rapidly expanding company, part of a large international group has an urgent requirement for a Sales Manager preferably aged between $23-39$ years to expand it's revenue from the Amateur Radio Market.
Previous sales experience within the industry, a current Amateur Licence and a strong outgoing personality are the essential factors for the successful applicant.
Our client offers a high basic salary, an open ended commission structure, a company car and an excellent future career path.

Please contact Ken Lathane in the first instance:
Carreras Lathane Associates
18, Golden Square, London W1. 01-439 9634

When replying to Classi-
fied Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

Service Sheets

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono etc. $£ 2+$ large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/videos. E.g. A823 $£ 6.50$; Autovox (early) $£ 6.50$. Tyne $5000 / 6000$ series $£ 7.50$

NEW!! Comprehensive Practical TV Repair Course - A must for everyone - Only $£ 8.50$.
Quotations any service or repair manual -also free 50p mag/price lists -large s.a.e.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ s.a.e. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1HE.

30,000 SERVICE SHEETS IN STOCK
COLOUR MANUALS ALSO AVAILABLE
TV Monos, Radios $£ 200$. Tuners $£ 200$. Tape Recorders, Record Players $£ 2.00$. Transistors from $£ 2.00$. Car Radio $£ 3.00$ + SAE. Stereograms \& Music Centres $£ 2.00$. Radiograms are not in stock. All TV Sheets are full length 24×12 not in Bits \& Pieces. All other Data full lengths. All Sheets $£ 2.00$ except colour. S.A.E. please. Old Valve Radio's $£ 3+$ SAE $9 \times 3 . \begin{gathered}\text { C. CARANNA } \\ 71 \text { Beaufort Park, London NW11 } 6 \mathrm{BX} \text {. } \\ 01-4584882 \text { (Mail Order). }\end{gathered}$

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc... $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogate, N. Yorkshire. Tel (0423) 55885.

Courses

CONQUER THE CHIP . . . Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C1, Reading. Berks. RG1 IBR.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list-Offer by return - WALTONS, 55A Worcester Street, Wolverhampton.

WANTED KLYSTRON K3077, 9410 mega-cycles. Stan quantitiy. Langlon, 46B Overstrand Mansions, Prince of Wales Drive, SWI1

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Wireless for
insertions I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME
Send to: Classified Advertisement Dept.,

ADDRESS
PRACTICAL WIRELESS
Classified Advertisement Dept., Rm 2612 King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5846 Rate
34 p per word, minimum 12 words.
Box No. 60p extra
Company registered in England. Registered No. 53626. Fegistered Office: King's Reach Tower. Stamford Street, London SE1 9LS.

For Sale

CALL SIGN BADGES, professionally engraved, by return of post. $£ 1.50$ cash with order. (State name and callsign). Aylmer-Kelly (P). 2 Pickwick Road. Corsham. Wilts. SN12 9 BJ .

AMATEUR EQUIPMENT bought and sold. Cash waiting. Contact: G3RCQ. Hornchurch 55733 evenings.

TRIO R-600 RECEIVER plus few FRT 7700 A.T.U. $£ 215$. 86 The Glen.-Palacefields. Runcorn. Cheshire.

LIST-A-RIG. A service offered by G3RCQ Electronics to introduce buyers and sellers of used amateur equipment. Buying? its free. just send an S.A.E.; selling/wanted? send S.A.E. for details on how to join the fast growing list. List-A Rig is sent and updated daily. No waiting, no deadlines. List-A-Rig. (PW). 65 Cecil Avenue, Hornchurch. Essex RMII 2NA.

MORSE CODE TUTOR all speeds, numbers, letters. Mixed also QTH locator programme. Both available on tape VIC $20 £ 5$. Tel. 053463305

AERIAL (NEW) MOTOR DRIVEN, rotatable, TV wideband, brackets, 8C, cost $£ 109$, sell $£ 70$ (bereavement). Bristol area. Tel. 0272-842199. Buyer collects.

BADGES PROFESSIONALLY ENGRAVED! Call signs, CB, clubs, management, sales teams, shops etc. SAE for details, or $£ 1.25$ with your Call Sign etc. Rugeley Electronics, 30 UpperBrook St., Rugeley, Staffs.

Miscellaneous

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloys stock. Special sizes to order. Call Earth Stations, 01-228 7876. 22 Howie Street, London SW11 4AR.

ALUMINIUM TUBES/RODS for masts/aerials. Nerva Metals, Wembley, Middlesex. Tel. 01-904 4647.

AVIATION FREQUENCY LISTS (Europe) 384 pages $£ 5.75$ per copy. AOS (PW). West London Building, White Waltham Aerodrome. Maidenhead, SL6 3MJ. Tel. (0628 82) 5362.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4. Telephone 01-531 1568 ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	20 oz
8 to 34	$4 \begin{aligned} & 330\end{aligned}$	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	3 4.87	2.65	2.05	1.46
44 to 47	7 8.37	5.32	3.19	2.50
48 to 49 SILVER PLATED COPPER WIRE \quad15.96 				
TINNED COPPER WIRE				
14 to 30	303.97	2.41	1.39	0.94
FLUXCOR SOLDER				
	5.75	3.16		0.96
Prices include P\&P and VAT.				
Orders under $£ 2$ add 20p.				

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MORSE CODE CASSETTES

Cassette A: 1-12 w.p.m. for amateur radio examination.
Cassette B: 12-25 w.p.m. for professional examination preparation. Each cassette is type C90. Price each Cassette (including booklets) £4.75 Price includes postage etc. UK only.

MH ELECTRONICS (Dept PW) 12 Longshore Way, Milton, Portsmouth PO4 8LS.

PROJECT CASES

A very attractive case in plastic laminated metal that will give your PROJECT that Professional look. There is a choice of sizes from $2 \times 5 \times 65$ inches with plastic or wooden end cheeks. Send Stamped Addressed Label to:
ELINCA PRODUCTS LTD (Dept. W) Lyon Works, Capel St, SHEFFIELD S6 2HL
£6.50 post $\mathbf{5 0}$ p L MINI-MULTI TESTER Deluxe pocket size precision moving
coil instrument. Impedance + Capacity coil instrument. Impedance + Capacity
tant ranges meatery included. 111 instant ranges measure: DC volts 5,25 ,
250,500 . AC volts $10,50,500,1000$. 250,500 . AC volts. $10,50,500,1000$.
DC amps $0-250 \mu \mathrm{a}: 0-250 \mathrm{ma}$. Continuity and resistance 0 to 600 K ohms.
De-Luxe Range Doubler Modal,
50,000 o.p.v. $£ 18.50 .7 \times 5 \times 2$ in. Post $£ 1$
NEW PANEL METERS $\mathbf{£ 4 . 5 0}$ $50 \mu a, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}$,
$5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 25 \mathrm{volt}$. V Meter, 500 ma . $1 \mathrm{amp}, 2 \mathrm{amp}$. Facia $2 \frac{1}{6} \times 2 \times 1 \frac{\mathrm{in}}{}$. Post 50 p .
Stereo VU $3 \frac{1}{4} \times 1 \frac{1}{2} \times 1$ in. $£ 3$.

FAMOUS LOUDSPEAKERS
Make
Make
Seas
Seas
Audax Audax Goodmans Baker Hi-Fi Baker Hi -Fi Baker Hi -Fi Baker P.A. Baker Hi -Fi Baker Hi -Fi Baker P.A. Goodmans Baker PA. Baker P.A. Baker P.A. Baker P.A. Goodmans EMI Goodnians
Model
Mid-Range
Mid-Range
Woofer
Woofer
Woofer
8HB
Deluxe
Major
Superb
Group 45
Auditorium
Auditorium
Group 75
GR (Group)
Group 100
Disco 100
Group 100
Disco 100
HPD (Disco)
450
HP (Bass)

Size	Wat
$4 \frac{1}{2}$	100
5 in	80
8 in	40
8 in	40
10 in	50
8 in	60
12 in	15
12 in	30
12 in	30
12 in	45
12 in	45
15 in	60
12 in	75
12 in	90
12 in	100
12 in	100
15 in	100
15 in	100
12 in	120
13×8 in	10
18 in	230

Post $£ 2$ each
Ohms ELIMINATOR MAINS to 9 VOLT DC Stabilised output, 9 volt 400 m.a. UK made with terminals. Overload cut out. $5 \cdot 3 \frac{1}{4} \times 2 \frac{1}{3} \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios. Cassettes. £4.50., Post $£ 1$.
R.C.S. LOUDSPEAKER BARGAINS $3 \mathrm{ohm}, 5 \mathrm{in} .7 \times 4 \mathrm{in} . \mathfrak{£ 2 . 5 0} ; 8 \times 5 \mathrm{in} .6 \frac{\mathrm{in}}{} \mathrm{£3}$; $8 \mathrm{in} . \mathfrak{£ 4 . 5 0} ; 10 \mathrm{in} . \mathfrak{£ 5}$ $8 \mathrm{ohm}, 2 \mathrm{in} .2 \mathrm{t} \mathrm{in} . £ 2.00 ; 3 \mathrm{in} .5 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . £ 2.50$. $6 \frac{10}{} .8 \times 5 \mathrm{in}, \mathfrak{£ 3} ; \mathbf{8 i n .} \mathbf{£ 4}, 50 ; 10 \mathrm{in} . £ 5 ; 12 \mathrm{in} . \mathfrak{£ 6}$.
 $25 \mathrm{ohm}, 3 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . £ 2.50 ; 120 \mathrm{ohm}, 3 \frac{1}{2} \mathrm{in}$. dia. $\mathbf{£ 1 . 5 0}$.

LOW VOLTAGE ELECTROLYTICS

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$. $1,2,4,5,8,16 ; 25,30,50,100,200 \mathrm{~m}$
500 mF 12 V 15p; $25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{~V} 30 \mathrm{p}$:
 $2000 \mathrm{mF} 6 \mathrm{~V} \mathrm{25p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 2000 \mathrm{mF} / 100 \mathrm{~V} \not \mathrm{f1.20}$.
$2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} ; 2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} ; 2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$.
$3300 \mathrm{mF} 63 \mathrm{~V} £ 1 \cdot 20 ; 4700 \mathrm{mF} 63 \mathrm{~V} \mathrm{£} 1 \cdot 20 ; 2700 \mathrm{mF} / 76 \mathrm{~V}$ £1 $3300 \mathrm{mF} 63 \mathrm{~V} £ 1 \cdot 20 ; 4700 \mathrm{mt} 63 \mathrm{~V} \mathrm{£} 1$
$4700 \mathrm{mF} 30 \mathrm{~V} 85 \mathrm{o}: 1000 \mathrm{mF} 100 \mathrm{~V} \mathrm{f}$.
HIGH VOLTAGE ELECTROLYTICS
$8 / 450 \mathrm{~V} 45 \mathrm{p} \quad 8+8 / 500 \mathrm{~V} \quad £ 1.00 \quad 50+50 / 300 \mathrm{~V} \quad 50 \mathrm{p}$ $16 / 350 \mathrm{~V} 45 \mathrm{p} \quad 8+16 / 450 \mathrm{~V}$ 75p $\quad 32+32+32 / 325 \mathrm{~V}$ 95p $32 / 350 \mathrm{~V} 75 \mathrm{p} \quad 20+20 / 450 \mathrm{~V}$ 75p $\quad 100+100 / 275 \mathrm{p} \quad 65 \mathrm{p}$ $32+32 / 350 \mathrm{~V} 85 \mathrm{p} \quad 150+200 / 275$ $50 / 450 \mathrm{~V} 95 \mathrm{p} 32+32 / 500 \mathrm{~V} £ 1.80 \quad 220 / 450 \mathrm{~V}$ TRIMMERS 30pF, 50pF, 10p. 100pF, 150pF, 15p. 500pF 30p CONDENSERS VARIOUS, 1 pF to $0.01 \mathrm{mF} 350 \mathrm{~V}, 5 \mathrm{p}$. $400 \mathrm{~V}=0.001$ to $0.055 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$.

SINGLE SOLID DIELECTRIC 100pF, $500 \mathrm{pF} \mathbf{£ 1 . 5 0}$. GEARED TVION DRIVE 6:190p. REVERSE VERNIER 60p. SLOW MOTIONDRIVE 6:190p. REVERE
VERNIER DIALS 36 mm £2.25 5 mm £ 75
SPINDLE EXTENDERS 85 p . COUPLERS 65 .
NEON PANELINDICATORS 250 V . Red $1 \frac{1}{4}, i 45 \mathrm{p}$.
RESISTORS. 10Ω to $10 \mathrm{M} .+\mathrm{W}, 1 \mathrm{~W} .2 \mathrm{p}, 2 \mathrm{~W}, 10 \mathrm{p}$
RESISTORS. 100 to $10 \mathrm{M} . \dot{\mathrm{W}} \mathrm{W}, 1 \mathrm{~W}, 2 \mathrm{p}, 2 \mathrm{~W}, 10 \mathrm{p}$.
HIGH STABILITY. $\frac{1}{2} \mathrm{~W} 2 \% 10$ ohms to 1 meg .10 p .
IOW OHM 1 watt 47 ohm to 3.9 ohm 10 p .
OW OHM I WOH
WIRE-WOUND 10 ohm to 10 K 5 watt, 10 watt, 20p. 10×7-£2.75; 12×8 - £3.20; $14 \times 9-\mathbf{E 3 . 6 0} ; 16 \times 6$ - 22.50 ; $16 \times 10-3.80$. All $21 / \mathrm{in} .18 \mathrm{swg}$. ANGLE ALI. $6 \times \frac{3}{2} \times \frac{3}{2} \mathrm{in} .30 \mathrm{p}$; $4 \times 3-90 \mathrm{p} ; 10 \times 7-\mathbf{\varepsilon 1 . 1 5 ; ~} 12 \times 8$-£1.30; $12 \times 5-\mathbf{£ 9 0}$ p 16×6 - $\mathbf{E 1 . 3 0} ; 14 \times \mathbf{9 - \mathbf { E 1 . 7 5 } ; 1 2 \times 1 2 - \mathbf { £ 1 . 8 0 } ; 1 6 \times 1 0 - \mathbf { £ 2 . 1 0 } .}$ PLASTIC box with aluminium facia $6 \frac{1}{4} \times 3 \frac{1}{4} \times 2$ in. $£ 1.50$. ALUMINIUM BOXES WITH LIDS $3 \times 2 \times 1 £ 1.20 .4 \times 2 \frac{1}{4} \times 2 £ 1.20$

$10 \times 7 \times 3 £ 3.60$. $12 \times 5 \times 3 \mathrm{£3.60}$. $12 \times 8 \times 3 \times 4.30$. BRIDGE RECTIFIER 200 V PIV $\frac{\mathrm{amp}}{} \mathrm{amp}$. 2 amp E1.00. TOGGLE SWITCHES SP 40 p. DPST 50 p. DPDT 60 p. MINIATURE TOGGLES SP. 40p; DPDT, 60p.
BNC Plugs $£ 1$; Sockets $\mathrm{f1}$; Reducers 20p.
BNC Plugs £1; Sockets £1; Reducers 20p.
UHF Plugs 50p; Sockets 50p; Lead Socket $£ 1.10$. XLR Cable Male $\mathbf{£ 2 . 4 0 \text { ; Female } £ 2 . 7 5 \text { . }}$
XLR Chassis Male $\mathbf{f 2} 2 \mathbf{2 0}$; Female $£ 2.55$
XLR Chassis Male $£ 2.20$; Female $£ 2.55$
Coax Plugs 30 p; Chassis Sockets 20p.
4mm Banana Plugs red/black 20p; Sockets 20p. Jack Plugs Mono 25p; Chassis Sockets 25p; Lead 45p Jack Plugs Stereo 30p; Sockets 30p; Lead 45p.

MAINS TRANSFORMERS

RADIO COMPONENT SPECIALISTS

Dept. 2, 337 WHITEHORSE ROAD, CROYDON SURREY, UK. TEL: 01-684 1665 Post 50 p Minimum. Callers Welcome.
Closed Wed Same day despatch. Access-Barclay-Visa. Lists 25p.

H.A.C. short-wave

 KITS WORLD-WIDE RECEPTION 45 years old and still surviving!Our shortwave receiver kits are still in demand in spite of opposition from sophisticated electronics.

Construct your own shortwave receiver and discover the fascination of DX-ing.
Prices range from: £15-£26.50
All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.
SORRY, NO CATALOGUES WITHOUT S.A.E.

"H.A.C."

SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ.

If you see an advertisement in the press, in print, on posters or a cinema commercial which makes you angry, write to us at the address below. (TV and radio commercials are dealt with by the I.B.A.)

The Advertising Standards Authority.
ASA Ltd., Brook House, Torrington Place, London WCIE 7HN.

EXPERIENCED SERVICE ENGINEER
 Wanted to repair and service amateur, private mobile radio and marine equipment. Previous experience is necessary. Salary £7,500 a year, plus car for personal use. Apply to:
 COMMUNIQUE,
 Communications House,
 Purley Avenue, London, NW2.
 Tel. 01-450 9755

SPECTRUM COMMUNICATIONS

19A な유웅NN0.85
11.50
8.50
39.55

PM COMPONENTS LTD.
VALVE \& COMPONENTS SPECIALISTS SELECTRON HOUSE, WROTHAM ROAD, MEOPHAM GREEN, MEOPHAM, KENT PHONE 0474 813225. TELEX 966371 PM COMP

Your Radio Amateurs Exam - our guarantee of success

Pass first time - or up to 4 years' continued tuition at our expense.
RRC's complete tuition service

- Self-contained courses, regularly updated for The City and Guilds Radio Amateurs Exam - Fully inclusive fees
- No costly, time consuming text books to buy
- Everything you need in booklet lecture form - Regular tests ensure you are fully prepared - Enrol at any time - Timetable to suit you © Up to 4 years' containued tuition at no extra cost if you don't pass first time.
FREE PROSPECTUS \& ADVISORY SERVICE $-\mathbb{R} R C$

Write or 'phone today for full details, and a Free copy of our prospectus, without obligation.
THE RAPID RESULTS COLLEGE
Dept. JX5, Tuition House, London SW19 4DS

- $\begin{aligned} & \text { Tel: 01-947 } 7272 \text { (9am-5pm) - or use our 24-hour } \\ & \text { Recordacall Service: 01-946 1102 quoting Dept. JX5 }\end{aligned}$

IHERAP/D BKSUMS GOLIEAE

SERVICE TECHNICIAN REQUIRED

A reputable U.K. radio communications company has a vacancy for a high quality Technician able to understand and service a range of amateur and private mobile radio equitpment. The equipment is in HF, UHF and VHF ranges.

If you feel you have the necessary qualifications and ability, and wish to work in the London area in good conditions with excellent salary and other benefits, please write in strictest confidence giving fullest details of experience and include a telephone number to allow arrangements to be made for an early interview.
P.O. Box No. PW7, Room 301, Hatfield House, Stamford Street, London SE1 9LS

Western "BARGAIN CORNER" TRIO TR-9500 THIS MONTH' SNIP AT £399! NOW LOOK AT PRICES ELSEWHERE! Offers close 31 March 1983 Wertern Electronics (UK) Itd
 FAIRFIELD ESTATE, LOUTH, LINCS LN11 OJH
 Tel: Louth (0507) 604955 Telex: 56121 WEST G.

Published approxumately on the 15th of each month by IPC Magazines Lto., Westover House, West Quay Road. Poole. Dorset BHI5 IJG. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand - Gordon \& Gotch (A/sia) Ltd.: South Africa - Central News Agency Ltd.
Subscriptions INLAND and OVERSEAS $£ 13.00$ payable to IPC Services, Oakfleld House. Perrymount Road, Haywards Heath. Sussex.
Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as

GPE=CHSMNUHEGER $=0 R 4281$ ind MC20

 THE MAPLIN TALK-BACK
Now your computer can talk!

*Allophone (extended phoneme) system gives unlimited vocabulary.

* Can be used with unexpanded VIC20 or ZX81does not require large areas of memory.
\star In VIC20 version, speech output is direct to TV speaker with no additional amplification needed. *Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LK00A (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS FOR ZX81

* Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81).
*Complete with electronics to make "Shift Lock", "Function" and "Graphics 2" single key selections.
* Powered (with adaptor supplied) from ZX81's own standard power supply.
Full details in Project Book 3 (XAO3D) Price 60p. Complete kit (excl. case) $£ 19.95$. Order As LW72P Case $£ 4.95$. Order As XG17T.
Ready built-in case $£ 29.95$. Order As XG22Y.

OTHER KITS FOR ZX81

3-Channel Sounds Generator (Details in Book 5) Order As LW96E. Price $£ 10.95$.
ZX81 Sound On Your TV Set (Details in Book 6). Order As LKO2C. Price $£ 19.95$
ZX81 I/O Port gives two bi-directional 8-bit ports (Details in Book 4).
Order As LW76H. Price $£ 9.25$.
ZX81 Extendiboard will accept 16 K RAM and 3 other plug-in modules.

PCB: Order As GB08J. Price $£ 2.32$
Edge Connectors (4 needed):
Order As RK350. Price $£ 2.39$
HOME SECURITY SYSTEM
Six independent channels-2 or 4 wire operation. External horn. High degree of protection and long term reliability. Full details in Projects Book 2. (XAO2C) Price 60p

MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Full construction details in our book (XH55K). Price $£ 2.50$. Complete kits available Electronics (XY91Y) $£ 299$ Cabinet (XY93B) $£ 99.50^{*}$ Demo cassette (XX43W) $£ 1.99$

25W STEREO MOSFET AMPLIFIER

\star Over $26 \mathrm{~W} /$ channel into 8Ω at 1 kHz both channels driven \star Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.

* Low distortion, low noise and high reliability power MOSFET output stage.
\star Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations).
\star Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet. Full details in Projects Book 3. Price 60p (XAO3D). Complete kit only $£ 49.95$ incl. VAT and carriage (LW71N).

BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power up to 24 times your monthly payments, instantly.

MAPLIN'S FANTASTIC PROJECTS

Full details in our project books. Issues 1 to 5 : 60p each Issue 6: 70p
In Book 1 (XAO1B) 120W rms MOSFET ComboAmplifier Universal Timer with 18 program times and 4 outputs e Temperature Gauge - Six Vero Projects.
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit \bullet Stopwatch with multiple modes e Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics 0 Stereo 25W MOSFET Amplifier eDoppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions eFrequency Counter 10 Hz to 600 MHz ©Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm e Remote Control for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard e 100W 240V AC Inverter © Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp e ZX81 Sound on your TV

- Damp Meter - Scratch Filter

MAPLIN'S NEW 1983 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items. On sale in all branches of WHSMITH
Price $\boldsymbol{£ 1 . 2 5}$.

Please send me a copy of your 1983 catalogue. I enclose $£ 1.50$ (inc p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.90$ or 10 International Reply Coupons. Despatched by return of post.
Name
Address

[^0]: DECLARATION: I/We hereby declare that: 1 . The sums insured represent the full replacement value of the equipment. 2 . I/We have not* had insurance

[^1]: * Principal Physicist, lonospheric Prediction Service Learmonth Solar Observatory, W. Australia

[^2]: PYE POCKETFONES
 RECEIVER SUITABLE FOR 70CMS
 EX EQ $4 \mathrm{C} \times 250$ B BASES
 PTFE WITH INTEGRAL CHIMNEY
 PYE POCKETFONE NIGHTCALL
 FOR PFI/TX/RX. NEW BOXED
 EX EQ REFLECTOMETER
 MODULES FOR VHF/UHF FORWARD \& REVERSE
 MODULES FOR VHF/UHF FORWARD \& REVERSE $\mathbf{£ 5 . 0 0}$
 FM VHF Mobile Transceivers as new. Model RC/600 TR 80 to 100 MHz , 20 watts. Complete
 Ex/Govern. 3 foot fibre glass aerial poles $1 \frac{1}{2}$ dia. interlocking. Good condition $£ 2.50$ each. Minimum order of 4 .
 Ex/Govern. Pye P/F rechargeable transmitter batteries 19 volts $£ \mathbf{3}$ each 4ft Long 2 inch dia. ex/govern. steel interlocking aerial poles $£ \mathbf{~} \mathbf{3}$ per pole

 All prices include VAT and postage (Mainland Only)
 Please allow 14 days for delivery.

 A. H. THACKER \& SONS LTD.,
High Street, Cheslyn Hay,
Nr. Walsall, Staffs.

